UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLÓGICA MINERA Y METALÚRGICA

"ANALISIS DE CADENA DE VALOR, ESTABLECIMIENTO, EVALUACIÓN
Y CUADROS DE CONTROL DE KPI'S PARA OPERACIONES MINA EN
TAJO ABIERTO"

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO DE MINAS

ELABORADO POR: OMAR CASTILLO RIOS

ASESOR: ING. TITO PALOMINO FLORES

Lima – Perú 2014

AGRADECIMIENTO

A mis padres, hermanos, abuela y familiares que me guían y apoyan incondicionalmente durante todas las etapas de mi vida, forjándome cada día a ser mejor en lo personal y profesional.

A los catedráticos y compañeros de la universidad nacional de ingeniería por compartir sus conocimientos y enseñarme las bases para mi desarrollo profesional A mis compañeros de trabajo y supervisores por brindarme su confianza, experiencia y conocimientos para mi consolidación y crecimiento profesional.

DEDICATORIA

A Mis padres por ser un ejemplo de honestidad, desprendimiento, nobleza y perseverancia que me brindan día a día la inspiración para esforzarme cada día más.

A Mis hermanos por motívame a seguir creciendo.

A Mi abuelita por demostrarme que el cansancio está en la inactividad y familiares

por su soporte constante.

RESUMEN

El análisis de la cadena de valor, establecimiento y cuadros de control de KPI's en operaciones mina a tajo abierto surge por la necesidad de realizar una evaluación de las oportunidades de mejora y las cuantificaciones de sus potenciales de agregar valor a la operación. Empezando con un adecuado mapeo de la cadena de valor de operaciones mina y de sus procesos internos (perforación, voladura, carguío, acarreo y servicios auxiliares). Durante el mapeo de cada proceso internos se realiza la evaluación de los diferentes indicadores y mediante el análisis de sensibilidad y por impacto en costos y producción se identifican los indicadores claves de desempeño (KPI's), identificados los Indicadores se procede con la asignación de que posiciones los deben controlar y monitorear, se fijan las metas a lograr en los indicadores claves de desempeño (KPI's), para ello se utiliza, límites teóricos, técnicos y datos históricos. Dichas metas a lograr deben estar respaldadas por planes de acción, seguimiento e incentivos al personal.

El plan de acción estará soportado por las diferentes actividades que se deben implementar para lograr los objetivos trazados. El plan de seguimiento tendrá como base los diferentes cuadros de control y mapas de ruta que permitan un monitoreo en línea ó periódico de los indicadores. El plan de incentivos se enfoca en brindar estímulos a los logros obtenidos por el personal, equipos de trabajo, áreas y empresa.

ABSTRACT

The analysis of the value chain, establishment and panels control of KPI's in open pit operations arises from the need to conduct an assessment of the opportunities for improvement and the quantification of their potential to add value to the operations. We have to begin with an adequate value string mapping of mine operations and their internal processes (drilling, blasting, loading, hauling and ancillary services). During the mapping of each internal process assessment is made of the different indicators and by the sensitivity analysis and impact on production and costs are identified key performance indicators (KPI's), ones indicator identified we proceed with the assignment to positions that have to control and monitoring, goals are set to achieve in the key performance indicators, for it is used, theoretical, technical limits and historical data. Achieve those goals must be supported by an action, monitoring and personnel incentive plans.

The action plan will be supported by the various activities that must be implemented to achieve the KPI's goals. The monitoring plan will be based on different control panels and roadmaps that enable online and periodic indicators monitoring. The incentive plan will focus on achievements of personnel, work teams, areas and company.

INDICE

		Pág.
INTRODUCCI	ÓN	24
CAPITULO I –	CONCEPTOS	
1.1 Cadena d	e valor	26
1.1.1	Logística interior(de entrada)	27
1.1.2	Operaciones	27
1.1.3	Logística exterior(de salida)	27
1.1.4	Mercadotecnia y ventas	27
1.1.5	Servicios	28
1.1.6	Actividades de apoyo o de soporte	28
1.1.6	5.1 Infraestructura de la empresa	28
1.1.6	5.2 Gestión de recursos humanos	28
1.1.6	5.3 Desarrollo de la tecnología	28
1.1.6	5.4 Aprovisionamiento	28
1.2 Indicador	clave de desempeño (KPI por sus siglas en ingles)	29

CAPITULO II – MAPEO DE LA CADENA DE VALOR

2.1	Mapeo 8	global de la cadena de valor de una mina en operación	35
	2.1.1	Listado de todas las actividades de una mina a tajo abierto	35
	2.1.2	Clasificación de todas las actividades	37
	2.1.	2.1 Actividades principales y secuencia en orden de producción	37
	2.1.	2.2 Actividades de soporte	37
	2.1.	2.3 Actividades transversales	38
2.2	Mapeo	de la cadena de valor de actividades principales	40
	2.2.1	Desglose de actividades principales	40
	2.2.1	1.1 Logística	40
	2.2.1	1.2 Operaciones mina	40
	2.2.1	1.3 Procesos	41
	2.2.1	1.4 Ventas	41
2.3	Evaluaci	ón del cuello de botella	43
	2.3.1	Análisis de oportunidades en actividades principales	43
	2.3.2	Análisis de actividades de operaciones mina	47
	2.3.3	Análisis de acarreo(Hauling)	49
	2.3.3	.1 Análisis de oportunidades en disponibilidad	49
	2.3.3	.2 Análisis de oportunidades en utilización	51
	2.3.3	.3 Análisis de oportunidades en calidad	53
	2.3.4	Análisis de carguío(Loading)	56
	2.3.4	4.1 Análisis de oportunidades en disponibilidad	56

	2.3.4.2	Análisis de oportunidades en utilización	58	
	2.3.4.3	Análisis de oportunidades en calidad	61	
	2.3.5	Análisis de perforación(Drilling)	63	
	2.3.5.	1 Análisis de oportunidades en disponibilidad	63	
	2.3.5.2	Análisis de oportunidades en utilización	64	
	2.3.5.3	Análisis de oportunidades en calidad	65	
	2.3.6	Análisis de voladura(Blasting)	67	
	2.3.6.	1 Análisis de oportunidades en calidad	67	
	2.3.6.2	Análisis de oportunidades en contrato	68	
CAF	CAPITULO III – MAPEO DE INDICADORES CLAVES DE DESEMPEÑO DE			
OPI	ERACIONE	S MINA(KPI's)		
		S MINA(KPI's) el indicador	70	
			70 70	
	Entidad de	el indicador		
3.1	Entidad de 3.1.1 3.1.2	el indicador Concepto y descripción	70	
3.1	Entidad de 3.1.1 3.1.2	el indicador Concepto y descripción Diseño y presentación	70 72	
3.1	Entidad de 3.1.1 3.1.2 Indicador	el indicador Concepto y descripción Diseño y presentación es de perforación	70 72 73	
3.1	Entidad de 3.1.1 3.1.2 Indicador 3.2.1	el indicador Concepto y descripción Diseño y presentación es de perforación Mapeo de indicadores de labor	70 72 73 73	
3.1	3.1.1 3.1.2 Indicador 3.2.1 3.2.2	el indicador Concepto y descripción Diseño y presentación es de perforación Mapeo de indicadores de labor Mapeo de indicadores de costo operativo	70 72 73 73 74	
3.1	3.1.1 3.1.2 Indicador 3.2.1 3.2.2 3.2.3 3.2.4	el indicador Concepto y descripción Diseño y presentación es de perforación Mapeo de indicadores de labor Mapeo de indicadores de costo operativo Mapeo de indicadores de calidad	70 72 73 73 74 76	

	3.3.2	Mapeo de indicadores de costo operativo	79
	3.3.3	Mapeo de indicadores de calidad	80
3.4	Indicador	res de carguío	81
	3.4.1	Mapeo de indicadores de labor	81
	3.4.2	Mapeo de indicadores de costo operativo	82
	3.4.3	Mapeo de indicadores de calidad	84
	3.4.4	Mapeo de indicadores de equipo	85
3.5	Indicado	res de acarreo	86
	3.5.1	Mapeo de indicadores de labor	86
	3.5.2	Mapeo de indicadores de costo operativo	87
	3.5.3	Mapeo de indicadores de calidad	89
	3.5.4	Mapeo de indicadores de equipo	90
3.6	Indicado	res de equipo de servicios auxiliares	91
	3.6.1	Mapeo de indicadores de equipo de soporte	91
	3.6.2	Mapeo de indicadores de calidad	92
3.7	Indicado	res de administrativos	93
	3.7.1	Mapeo de costo administrativo	93
	3.7.2	Mapeo de costo de capital	94

CAPITULO IV – IMPACTO EN PRODUCCIÓN, ECONÓMICO Y FINACIERO EN LA CADENA DE VALOR POR VARIACION DE LOS INDICADORES CLAVES DE DESEMPEÑO

4.1	Indicador	es claves de desempeño de operaciones mina	95
	4.1.1	Indicadores operativos	95
	4.1.2	Indicadores administrativos	96
	4.1.3	Indicadores de gestión	96
4.2	Indicador	res claves de acarreo	96
	4.2.1	Utilización	96
	4.2.2	Capacidad de carga	104
	4.2.3	Tiempo de cola	109
	4.2.4	Tiempo de traslado	111
	4.2.5	Tiempo de descarga	113
	4.2.6	Vida de llantas de volquetes	116
	4.2.7	Consumo de combustible de volquetes	117
4.3	Indicador	res claves de carguío	119
	4.3.1	Utilización	119
	4.3.2	Tiempo de carguío	126
	4.3.3	Tiempo espera	130
	4.3.4	Tiempo de arreglo de frente	132
	4.3.5	Vida de llantas de cargadores	134
	4.3.6	Consumo de combustible de cargadores	135

4.4	4.4 Indicadores claves de perforación 1		136
	4.4.1	Utilización	136
	4.4.2	Tiempo de perforación	142
	4.4.3	Tiempo traslado de taladro	143
4.5	Indicador	es claves de voladura	146
	4.5.1	Factor de potencia	146
	4.5.2	Tiempo de voladura	148
	4.5.3	Frecuencia de voladuras por semana	151
4.6	Indicado	res claves de servicios auxiliares	153
	4.6.1	Utilización	153
	4.6.2	Costo de operación	155
4.7	Indicado	res claves administrativos	157
	4.7.1	Costo de supervisión	157
	4.7.2	Costo de entrenamiento y capacitación	158
	4.7.2	Costo de personal operativo	158
4.8	Indicador	es de gestión	159
	4.8.1	Productividad de volquetes	159
	4.8.2	Productividad de cargadores	160
	4.8.3	Costo operativo de operaciones mina	161
	4.8.4	Costo administrativo de operaciones mina	161
	4.8.5	Producción horaria, diaria, mensual y anual	162
	4.8.6	Efectividad total de operaciones mina	163

4.9 Indicadores claves de gestión de seguridad		164
4.9.1	Seguridad	164
4.9.1	.1 Incidente con tiempo perdido	166
4.9.1	.2 Incidente con atención médica	166
4.9.1	.3 Incidente con primeros auxilios	166
4.9.1	.4 Incidente con pérdida en el proceso	166
4.9.1	.5 Incidente con daño al equipo	166
4.9.1	.6 Incidente con impacto ambiental	167
CAPITULO	V - CUADROS DE CONTROL DE INDICADORES CLAVES DE	
DESEMPEÑO		
5.1 Indicado	res de acarreo	169
5.1.1	Utilización	169
5.1.2	Capacidad de carga	170
5.1.3	Ciclo de acarreo	171
5.1.4	Producción	172
5.1.5	Consumibles volquetes	173
5.2 Indicado	res de carguío	174
5.2.1	Utilización	174
5.2.2	Tiempo de carguío	175
5.2.3	Producción	177
5.2.4	Consumibles cargadores	179

5.3	5.3 Indicadores de perforación		180
	5.3.1	Utilización	180
	5.3.2	Producción	181
5.4	Indicador	es de voladura	182
	5.4.1	Factor de potencia	182
	5.4.2	Tiempo de voladura	183
	5.4.3	Frecuencia de voladura	184
5.5	Indicador	res de servicios auxiliares	184
	5.5.1	Utilización	184
	5.5.2	Consumibles	185
5.6 Indicadores de gestión		res de gestión	185
	5.6.1	Costo	185
	5.6.2	Producción	186
	5.6.3	Seguridad	188
	5.6.4	Personal	189
COI	NCLUSION	NES	191
REC	RECOMENDACIONES		192
REF	REFERENCIAS BIBLIOGRAFICAS		193

INDICE DE TABLAS

TABLA 1.0	Evaluación de cuello de botella global	46
TABLA 1.1	Evaluación de cuello de botella operaciones mina	48
TABLA 1.2	Evaluación de priorización	49
TABLA 1.3	Potencial de producción por variación de disponibilidad de	50
	volquetes	
TABLA 1.4	Potencial de costo fijo por variación de disponibilidad de volquetes	50
TABLA 1.5	Potencial de oportunidad por variación de disponibilidad de	51
	volquetes	
TABLA 1.6	Potencial de producción por variación de utilización de volquetes	52
TABLA 1.7	Potencial de costo fijo por variación de utilización de volquetes	52
TABLA 1.8	Potencial de oportunidad por variación de utilización de volquetes	53
TABLA 1.9	Potencial de producción por variación de productividad de	54
	volquetes	
TABLA 2.0	Potencial de costo fijo por variación de productividad de volquetes	54
TABLA 2.1	Potencial de costo variable por variación de productividad de	55
	volquetes	
TABLA 2.2	Potencial de oportunidad por variación de productividad de	55
	volquetes	
TABLA 2.3	Potencial de producción por variación de disponibilidad de	56
	cargadores	
TABLA 2.4	Potencial de costo fijo por variación de disponibilidad de cargadores	57

TABLA 2.5	Potencial de costo variable por variación de disponibilidad de	57
	cargadores	
TABLA 2.6	Potencial de oportunidad por variación de disponibilidad de	58
	cargadores	
TABLA 2.7	Potencial de producción por variación de utilización de cargadores	59
TABLA 2.8	Potencial de costo fijo por variación de utilización de cargadores	59
TABLA 2.9	Potencial de costo variable por variación de utilización de	60
	cargadores	
TABLA 3.0	Potencial de oportunidad por variación de utilización de cargadores	60
TABLA 3.1	Potencial de producción por variación de productividad de	61
	cargadores	
TABLA 3.2	Potencial de costo fijo por variación de productividad de cargadores	62
TABLA 3.3	Potencial de costo variable por variación de productividad de	62
	cargadores	
TABLA 3.4	Potencial de oportunidad por variación de productividad de	63
	cargadores	
TABLA 3.5	Potencial de ahorro por variación de disponibilidad de perforadoras	64
TABLA 3.6	Potencial de ahorro por variación de utilización de perforadoras	65
TABLA 3.7	Potencial de ahorro por variación de productividad de perforadoras	66
TABLA 3.8	Potencial de ahorro por variación de costo operativo de	66
	perforadoras	
TABLA 3.9	Potencial de ahorro por variación de factor de potencia	67

TABLA 4.0	Potencial de ahorro por variación de costo operativo	68
TABLA 4.1	Potencial de ahorro por variación de costo de servicio	69
TABLA 4.2	Componente de la utilización acarreo	98
TABLA 4.3	Abastecimiento de combustible acarreo	99
TABLA 4.4	Refrigerio acarreo	100
TABLA 4.5	Esperando en chancadora acarreo	101
TABLA 4.6	Cambio de turno acarreo	101
TABLA 4.7	Voladura acarreo	102
TABLA 4.8	Oportunidad económica y financiera en utilización acarreo	103
TABLA 4.9	Priorización de implementación utilización acarreo	104
TABLA 5.0	Especificaciones técnicas de los volquetes	105
TABLA 5.1	Cambio de tolvas	105
TABLA 5.2	Análisis de peso de volquetes 785B/C	106
TABLA 5.3	Análisis de peso de volquetes 730E	106
TABLA 5.4	Análisis de costo de tolvas	107
TABLA 5.5	Análisis de financiero de implementación de tolvas livianas	107
TABLA 5.6	Análisis de financiero de reducción de tiempo de colas	110
TABLA 5.7	Evaluación de costo de uso de equipos para arreglo de vías	111
TABLA 5.8	Análisis financiero de la reducción de tiempo de traslado	112
TABLA 5.9	Evaluación de costo de uso de equipos para de zonas de descarga	113
TABLA 6.0	Análisis financiero de la reducción del tiempo de descarga	114
TABLA 6.1	Oportunidad económica y financiera tolvas, colas, traslado y	115

descarga

TABLA 6.2	Priorización de implementación tolvas, colas, traslado y descarga	116
TABLA 6.3	Evaluación económica de incremento de vida de llantas en acarreo	117
TABLA 6.4	Evaluación económica de ahorro de combustible en acarreo	118
TABLA 6.5	Componentes de la utilización carguío	120
TABLA 6.6	Abastecimiento de combustible carguío	121
TABLA 6.7	Refrigerio carguío	122
TABLA 6.8	Traslado de frente carguío	123
TABLA 6.9	Cambio de turno carguío	123
TABLA 7.0	Voladura carguío	124
TABLA 7.1	Oportunidad económica y financiera en utilización carguío	125
TABLA 7.2	Priorización de implementación utilización carguío	126
TABLA 7.3	Especificaciones técnicas de los cargadores	127
TABLA 7.4	Tiempo de carguío	128
TABLA 7.5	Análisis financiero de la reducción del tiempo de carguío	129
TABLA 7.6	Análisis financiero de la reducción del tiempo de espera	131
TABLA 7.7	Análisis financiero de la reducción del arreglo de piso	132
TABLA 7.8	Oportunidad económica y financiera carguío, esperas y arreglo	133
TABLA 7.9	Priorización de implementación carguío, esperas y arreglo	133
TABLA 8.0	Evaluación económica de incremento de vida de llantas en carguío	134
TABLA 8.1	Evaluación económica de ahorro de combustible en cargadores	135
TABLA 8.2	Componentes de la utilización perforación	137

TABLA 8.3	Abastecimiento de combustible perforación	138
TABLA 8.4	Refrigerio perforación	138
TABLA 8.5	Traslado de frente perforación	139
TABLA 8.6	Cambio de turno perforación	139
TABLA 8.7	Voladura perforación	139
TABLA 8.8	Oportunidad económica y financiera en utilización perforación	140
TABLA 8.9	Priorización de implementación utilización perforación	141
TABLA 9.0	Análisis de financiero de reducción de tiempo de perforación	143
TABLA 9.1	Análisis de financiero de reducción de tiempo de traslado	144
TABLA 9.2	Oportunidad económica y financiera de tiempo perforación y	145
	traslado	
TABLA 9.3	Priorización de implementación tiempo de perforación y traslado	145
TABLA 9.4	Análisis de financiero de reducir el factor de potencia - caso 1	147
TABLA 9.5	Análisis de financiero de reducir el factor de potencia - caso 2	148
TABLA 9.6	Análisis de económico de reducir tiempo de voladura acarreo	150
TABLA 9.7	Análisis de económico de reducir tiempo de voladura carguío	150
TABLA 9.8	Oportunidad económica y financiera de tiempo de voladura	151
TABLA 9.9	Oportunidad económica y financiera de frecuencia de voladura	152
TABLA 10.0	Priorización de implementación en voladura	152
TABLA 10.1	Flota de equipo auxiliar	153
TABLA 10.2	Utilización de equipo auxiliar	154
TABLA 10.3	Potencial de ahorro por bajar la utilización de equipo auxiliar	154

TABLA 10.4	Costo de equipo auxiliar	156
TABLA 10.5	Potencial de ahorro por bajar costo horario de equipo auxiliar	157
TABLA 10.6	Indicadores de productividad de volquetes	159
TABLA 10.7	Indicadores de productividad de cargadores	160
TABLA 10.8	Ejemplo de presupuesto operativo de mina	161
TABLA 10.9	Costo operativo de mina	161
TABLA 11.0	Costo administrativo de operaciones de mina	162
TABLA 11.1	Producción de operaciones de mina	162
TABLA 11.2	Efectividad total de acarreo	163
TABLA 11.3	Evaluación de pérdidas económicas y financieras por incidente	165
TABLA 11.4	Evaluación de situación actual de incidentes	167
TABLA 11.5	Objetivo de incidentes	168
TABLA 11.6	Utilización mensual de volquetes	169
TABLA 11.7	Utilización diaria de acarreo	170
TABLA 11.8	Capacidad de carga mensual	170
TABLA 11.9	Capacidad de carga horaria	171
TABLA 12.0	Ciclo de acarreo de volquetes en mina	171
TABLA 12.1	Producción mensual	172
TABLA 12.2	Producción horaria	172
TABLA 12.3	Vida de llantas de volquetes	173
TABLA 12.4	Consumo de combustible volquetes	173
TABLA 12.5	Utilización mensual de cargadores	174

TABLA 12.6	Utilización diaria de carguío	174
TABLA 12.7	Tiempo de carguío mensual	175
TABLA 12.8	Tiempo de carguío diario WA 1200 a 785B/C	175
TABLA 12.9	Tiempo de carguío diario WA 1200 a 730E	176
TABLA 13.0	Tiempo de carguío diario 994D a 785B/C	176
TABLA 13.1	Tiempo de carguío diario 994D a 730E	177
TABLA 13.2	Producción horaria mensual cargadores	177
TABLA 13.3	Producción diaria de cargadores	178
TABLA 13.4	Movimiento diario de material de cargadores	178
TABLA 13.5	Vida de llantas de cargadores	179
TABLA 13.6	Consumo de combustible cargadores	179
TABLA 13.7	Utilización mensual de perforadoras	180
TABLA 13.8	Utilización diaria de perforadoras	180
TABLA 13.9	Velocidad de perforación diaria/mensual	181
TABLA 14.0	Taladros perforados por día por tipo de material	181
TABLA 14.1	Metros perforados por acero de perforación	182
TABLA 14.2	Factor de potencia mensual	182
TABLA 14.3	Factor de carga por tipo de material	183
TABLA 14.4	Tiempo diario por voladura	183
TABLA 14.5	Frecuencia semanal por meses	184
TABLA 14.6	Utilización de equipos auxiliares	184
TABLA 14.7	Costo mensual de combustible equipos auxiliares	185

TABLA 14.8	Costo mensual de producción de operaciones mina	185
TABLA 14.9	Costo por onza de producción operaciones mina	186
TABLA 15.0	Producción de operaciones mina	186
TABLA 15.1	Efectividad total de equipos mina	187
TABLA 15.2	Perdida total de equipos mina	187
TABLA 15.3	Onzas entregadas	188
TABLA 15.4	Incidentes mensuales de operaciones mina	188
TABLA 15.5	Costo de Incidentes operaciones mina	189
TABLA 15.6	Ausentismo y rotación de personal operaciones mina	189
TABLA 15.7	Costo de entrenamiento de personal operaciones mina	190
TABLA 15.8	Parámetros operativos de considerados en las evaluaciones	190
	INDICE DE FIGURAS	
FIGURA 1.0	Mapa de cadena de valor	27
FIGURA 1.1	Fundamento de los KPI's	31
FIGURA 1.2	Ejemplo de KPI's	34
FIGURA 2.0	Mapeo global de la cadena de valor una mina en operación	39
FIGURA 2.1	Mapeo de las actividades principales de la cadena de valor	42
FIGURA 3.0	Entidad del KPI	72
FIGURA 4.0	Distribución inicial	108
FIGURA 4.1	Distribución propuesta	108
FIGURA 4.2	Distribución de colas actualmente	109

FIGURA 4.3	Distribución de colas propuesta	110
FIGURA 4.4	Distribución de tiempo de descarga actual	114
FIGURA 4.5	Distribución de tiempo de descarga propuesto	115
FIGURA 4.6	Punto de equilibrio en voladura	147
FIGURA 4.7	Secuencia en tiempo actual de voladura	149
FIGURA 4.8	Secuencia en tiempo propuesto de voladura	149

NOMENCLATURA

KPI: Indicador clave de rendimiento o desempeño(Key principal indicator)

DCC: Días de cuentas por cobrar

DCP: Días de cuentas por pagar

tph: Toneladas por hora

tpd: Toneladas por día

tpa: Toneladas por año

OP: Operaciones mina

PR: Procesos

MA: Mantenimiento

CA: Cadena de abastecimiento

VE: Ventas

ST: Servicios técnicos

CO: Contabilidad y finanzas

RC: Relaciones comunitarias y públicas

LP: Legal y permisos

RH: Recursos humanos

TI: Tecnología de la información

GA: Gerencia y administración

SE: Seguridad y medio ambiente

MC: Mejora continua y proyectos

CP: Cambio de turno

R: Registrable o dato

M: Mejorable

AC: Abastecimiento de combustible

CT: Cambio de turno

RE: Refrigerio

VO: Voladura

ED: Esperando en descarga

TL: Tolvas livianas

TC: Tiempo de cola

TT: Tiempo de traslado

TD: Tiempo de descarga

TF: Traslado de frente

Tc: Tiempo de carga

TA: Tiempo de arreglo

TP: Tiempo de perforación

Tt: Tiempo de traslado perforadora

tal: Taladro

P80: 80% de material volado menor a una dimensión requerida

FC: Factor de carga

TV: Tiempo de voladura

FV: Frecuencia de voladuras

785 B/C: Camión minero Caterpillar

730 E: Camión minero Komatsu

WA 1200: Cargador minero Komatsu

INTRODUCCIÓN

Como necesidad de obtener beneficios que sean cuantificables, se propone en este trabajo una secuencia de actividades que ayudará a concretar y plasmar dichos beneficios iniciando este proceso en el mapeo de la cadena de valor de operaciones mina y de sus proceso internos, para nuestro caso: perforación, voladura, carguío, acarreo y servicios auxiliares, donde se realiza un análisis de los procesos (en esta etapa se identifican los subproceso y reproceso que no agregan valor a nuestra operación) que nos darán una visión general de algunas oportunidades de mejora, continuando con una evaluación de cada componente de los procesos identificando y centrándonos en los indicadores claves que nos permitirán medir la eficiencia y efectividad con la que se obtenemos los resultados, un aspecto importante es la correcta identificación de los indicadores claves de desempeño(KPI's), que son los que nos permitan concentrarnos en ciertos puntos del proceso y no utilizar recursos en mejorar indicadores que requieren de un gran despliegue de recursos y obtener muy pocos beneficios.

La identificación de indicadores claves de desempeños se realiza a través de análisis de sensibilidad de los procesos, estos análisis de sensibilidad nos dan una visión puntual de cuáles son los indicadores en los que debemos enfocarnos a obtener y mejorar los resultados.

La estrategia de los planes de acción es enfocada en primera instancia a obtener mayores beneficios sin requerir muchos recursos, la segunda instancia es a los resultados de mayor beneficios pero regular esfuerzo, en cuanto a los planes de seguimiento la estrategia está basada en el control visual de los indicadores, que permita una rápida acción cuando no se logran los resultados esperados, es decir no esperar hasta el fin de un periodo(Semana, Mes Año) para darse cuenta que no se han logrado los objetivos, el plan de incentivos brinda los estímulos para lograr y mantener metas y mejorar continuamente.

CAPITULO I

CONCEPTOS

1.1 Cadena de Valor.

Actividades primarias o de línea.

La cadena valor es una herramienta de gestión diseñada por Michael Porter que permite realizar un análisis interno de una empresa, a través de su desagregación en sus principales actividades generadoras de valor.

Se denomina cadena de valor, pues considera a las principales actividades de una empresa como los eslabones de una cadena de actividades (las cuales forman un proceso básicamente compuesto por el diseño, producción, promoción, venta y distribución del producto), las cuales van añadiendo valor al producto a medida que éste pasa por cada una de éstas.

Esta herramienta divide las actividades generadoras de valor de una empresa en dos, las actividades primarias o de línea y las actividades de apoyo o de soporte:

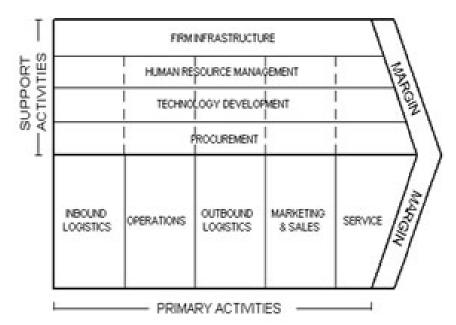


Figura 1.0 – Mapa de cadena de valor

Son aquellas actividades que están directamente relacionadas con la producción y comercialización del producto:

- 1.1.1 Logística interior (de entrada): actividades relacionadas con la recepción, almacenaje y distribución de los insumos necesarios para fabricar el producto.
- 1.1.2 Operaciones: actividades relacionadas con la transformación de los insumos en el producto final.
- 1.1.3 Logística exterior (de salida): actividades relacionadas con el almacenamiento del producto terminado, y la distribución de éste hacia el consumidor.
- 1.1.4 Mercadotecnia y ventas: actividades relacionadas con el acto de dar a conocer, promocionar y vender el producto.

1.1.5 Servicios: actividades relacionadas con la provisión de servicios complementarios al producto tales como la instalación, reparación, mantenimiento.

1.1.6 Actividades de apoyo o de soporte

Son aquellas actividades que agregan valor al producto pero que no están directamente relacionadas con la producción y comercialización de éste, sino que más bien sirven de apoyo a las actividades primarias:

- 1.1.6.1 Infraestructura de la empresa: actividades que prestan apoyo a toda la empresa, tales como la planeación, las finanzas, la contabilidad.
- 1.1.6.2 Gestión de recursos humanos: actividades relacionadas con la búsqueda, contratación, entrenamiento y desarrollo del personal.
- 1.1.6.3 Desarrollo de la tecnología: actividades relacionadas con la investigación y desarrollo de la tecnología necesaria para apoyar las demás actividades.
- 1.1.6.4 Aprovisionamiento: actividades relacionadas con el proceso de compras.

El desagregar una empresa en estas actividades permite realizar un mejor análisis interno de ésta, permitiendo, sobre todo, identificar fuentes existentes y

potenciales de ventajas competitivas además de comprender mejor el

comportamiento de los costos, de ese modo, potenciar o aprovechar dichas

ventajas competitivas y hallar formas de minimizar dichos costos ó incrementar la

producción.

En general, el objetivo ulterior de la herramienta de la cadena de valor es procurar

generar el mayor valor posible en cada una de las actividades desagregadas y al

mismo tiempo procurar minimizar los costos en cada una de éstas; buscando, de

ese modo, obtener el mayor margen de utilidad posible.

Fuente: http://www.crecenegocios.com/cadena-de-valor/

1.2 Indicador clave de desempeño (KPI por sus siglas en ingles)

Los KPI, del inglés Key Performance Indicators, o Indicadores Clave de Desempeño,

miden el nivel del desempeño de un proceso, centrándose en el "cómo" e indicando

el rendimiento de los procesos, de forma que se pueda alcanzar el objetivo fijado.

Los indicadores clave de desempeño son métricas financieras o no financieras,

utilizadas para cuantificar objetivos que reflejan el rendimiento de una

organización, y que generalmente se recogen en su plan estratégico. Estos

indicadores son utilizados en inteligencia de negocio para asistir o ayudar al estado

actual de un negocio a prescribir una línea de acción futura. El acto de monitorizar

los indicadores clave de desempeño en tiempo real se conoce como monitorización

de actividad de negocio. Los indicadores de rendimiento son frecuentemente

utilizados para "valorar" actividades complicadas de medir como los beneficios de desarrollos líderes, compromiso de empleados, servicio o satisfacción.

Los KPI suelen estar atados a la estrategia de la organización (ejemplificadas en las técnicas como la del cuadro de mando integral). Los KPI son "vehículos de comunicación"; permiten que los ejecutivos de alto nivel comuniquen la misión y visión de la empresa a los niveles jerárquicos más bajos, involucrando directamente a todos los colaboradores en realización de los objetivos estratégicos de la empresa. Así los KPI tienen como objetivos principales: medir el nivel de servicio, realizar un diagnostico de la situación, comunicar e informar sobre la situación y los objetivos, motivar los equipos responsables del cumplimiento de los objetivos reflejados en el KPI, progresar constantemente.

Usado para calcular, entre otros:

- Tiempo que se utiliza en mejorar los niveles de servicio en un proyecto dado.
- ii. Nivel de la satisfacción del cliente.
- iii. Tiempo de mejoras de asuntos relacionados con los niveles de servicio.
- iv. Impacto de la calidad de los recursos financieros adicionales necesarios para realizar el nivel de servicio definido.
- v. Rentabilidad de un proyecto (Retorno de la Inversión ROI)
- vi. Calidad de la gestión de la empresa (Rotación del inventario, Días de Cuentas por cobrar DCC, y por Pagar DCP...)

Para una organización es necesario al menos que pueda identificar sus propios KPI. La clave para esto es:

- i. Tener predefinido de antemano un proceso de negocio.
- Tener claros los objetivos/rendimiento requeridos en el proceso de negocio.
- iii. Tener una medida cuantitativa/cualitativa de los resultados y que sea posible su comparación con los objetivos.
- iv. Investigar variaciones y ajustar procesos o recursos para alcanzar metas a corto plazo.

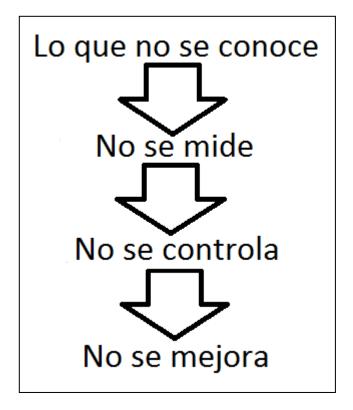


Figura 1.1 – Fundamento de los KPI's

Cuando se definen KPI se suele aplicar el acrónimo SMART, ya que los KPI tienen que ser:

32

i. eSpecificos (Specific)

ii. Medibles (Measurable)

iii. Alcanzables (Achievable)

iv. Relevantes (Relevant)

v. a Tiempo (Timely)

Lo que realmente es importante:

i. Los datos de los que dependen los KPI tienen que ser consistentes y

correctos.

ii. Estos datos tienen que estar disponibles a tiempo.

Fuente: http://es.wikipedia.org/wiki/KPI.

Partes de un KPI:

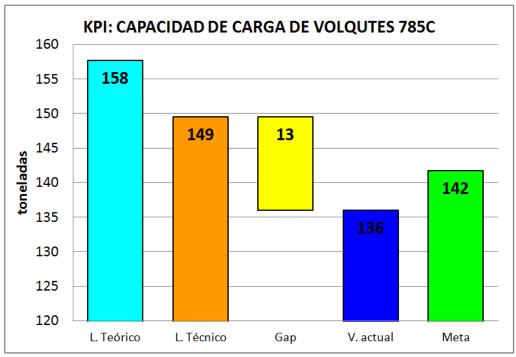
Nombre, identificación del KPI

ii. Unidades o dimensionamiento

iii. Valor actual, real ó histórico, viene dado por los valores reales

promedios (Históricos) de un indicador durante un periodo.

iv. Valor objetivo o meta, es el valor que se desea lograr en un periodo


de tiempo, soportado por una serie de actividades enfocadas en

dicho objetivo o meta, se aplica de menor a mayor ó de mayor a

menor valor según sea el caso del indicador, la evaluación de este

- objetivo se cuantifica el incremento de producción, reducción de costos que la empresa desea lograr en un periodo.
- v. Límite técnico, viene dado por la capacidad máxima en tiempo de trabajo y producción que técnicamente (correcciones por altura, tiempos mínimos de parada y no productivos requeridos la continuidad de la operación) puede brindar una persona, equipo ó proceso.
- vi. Límite teórico, Viene dado por la capacidad máxima en tiempo de trabajo y producción que teóricamente (en libros) puede brindar una persona, equipo ó proceso. Este valor se usa como referencia y como punto de partida para el cálculo del límite técnico.
- vii. Gap o brecha, es el valor absoluto de la diferencia entre el límite técnico y el valor actual, se utiliza para evaluar el potencial total al mejorar un indicador
- viii. Potencial total, es la cuantificación del gap en producción y/o costos de una persona, actividad, equipo o proceso, esto se evalúa en un escenario donde se alcanza el valor del límite técnico, es decir valor actual = valor límite técnico
- ix. Potencial de logro, es la capacidad de obtener beneficio en producción y/o costo al alcanzar el valor meta de una persona, actividad, equipo o proceso, se evalúa al lograr el valor objetivo, es decir valor actual = valor objetivo.

x. Periodo, es el tiempo (horas, días, semanas, meses, años), número de repeticiones de un proceso, unidades producidas, etc. en el que se desea alcanzar una meta.

Evaluamos para: Periodo de 1 años

Potencial total Potencial de logro 495,809 toneladas movidad adicionales 209,559 toneladas movidas adicionales

Figura 1.2 – Ejemplo de KPI's

CAPITULO II

MAPEO DE LA CADENA DE VALOR

2.1 Mapeo global de la cadena de valor de una mina en operación

- 2.1.1 Listado de todas las actividades de una mina a tajo abierto en operación, este ejemplo que hemos tomado es el de una mina que tiene como recursos minerales óxidos con contenido de oro y plata:
 - Legal y permisos, área que se encarga de asegurar la licencia para operar.
 - Relaciones comunitarias y públicas, encargada de las relaciones con las comunidades del área de influencia y de interactuar con las poblaciones aledañas y autoridades (locales y regionales).
 - iii. Tecnología de la información, encargada del soporte informático(Hardware y software) y administración de la información.
 - iv. Operaciones mina, encargado de extraer el mineral y desmonte al la chancadora y botadero respectivamente.

- v. Servicios técnicos, encargados del soporte de ingeniería y técnicos a las actividades operativas.
- vi. Contabilidad y finanzas, encargados la administración del financiamiento de las operaciones.
- vii. Procesos, encargado de la extracción del metal del mineral.
- viii. Mantenimiento, en cargado del mantenimiento de los equipos y maquinarias.
- ix. Recursos humanos, encargado de brindar los recursos que requiereel personal para su desempeño.
- x. Gerencia y administración, encargada de brindar las estrategias y directivas para la obtención de resultados.
- xi. Cadena de abastecimiento, encargada de la logística, abastecimiento de recursos y administración de contratos para el desarrollo de las actividades.
- xii. Ventas, encargada de la venta y entrega de los productos.
- xiii. Seguridad, encargado del brindar los lineamientos y políticas para realizar trabajos seguros y sin accidentes.
- xiv. Mejora continua y proyectos, encargado de buscar las oportunidades de mejora en las actividades y del desarrollo de proyectos.

- xv. Consultoría y contratistas, se provee de acuerdo al requerimiento de las diferentes actividades.
- xvi. Corporación, encargado de dar el financiamiento, estrategias, lineamientos, políticas, directivas y estándares para el desarrollo de las actividades a nivel global (mundialmente).
- 2.1.2 Clasificación de todas las actividades de acuerdo a su participación en el proceso productivo.
 - 2.1.2.1 Actividades principales y secuencia en orden de producción:
 - i. Cadena de abastecimiento (logística de suministros)
 - ii. Operaciones mina (incluye servicios auxiliares)
 - iii. Procesos
 - iv. Cadena de abastecimiento (logística de productos)
 - v. Ventas
 - 2.1.2.2 Actividades de soporte:
 - i. Servicios técnicos
 - ii. Mantenimiento
 - iii. Relaciones comunitarias y públicas
 - iv. Cadena de abastecimiento
 - v. Legal y permisos
 - vi. Contabilidad y finanzas
 - vii. Recursos humanos

- viii. Tecnología de la Información
- ix. Gerencia y administración
- 2.1.2.3 Actividades transversales, son las que se requieren y pueden o no estar presentes de una u otra manera, excepto seguridad que es inherente a todas las actividades:
 - i. Seguridad y Medio Ambiente
 - ii. Mejora continua y proyectos
 - iii. Consultoría y contratistas
 - iv. Corporación

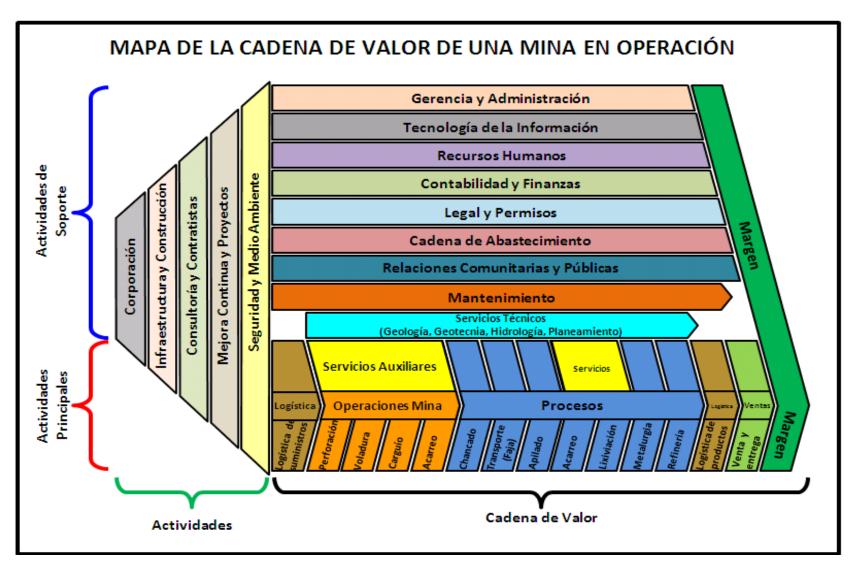


Figura 2.0 – Mapeo global de la cadena de valor de una mina en operación

2.2 Mapeo de la cadena de valor de actividades principales

- 2.2.1 Desglose de actividades principales de la cadena de valor, idea es desglosar la cadena de valor de las actividades hasta llegar a nuestro enfoque, se tiene que realizar estas actividades porque permite ir de menos a más detalle y poder identificar las oportunidades de mejora los mas antes posible, además de saber si es que se mejora una actividad o proceso va tener un impacto en el resultado final.
 - 2.2.1.1 Logística, tiene varias actividades en su proceso interno pero para nuestro caso solo nos interesa dos las que impactan directamente en las actividades principales de nuestra cadena de valor:
 - i. Logística de suministros
 - ii. Logística de productos
 - 2.2.1.2 Operaciones mina, esta es el área del enfoque de este trabajo, pero que más adelante iremos detallando, para este efecto realizaremos un desglose de sus procesos internos:
 - i. Perforación (Drilling)
 - ii. Voladura (Blasting)
 - iii. Carguío (Loading)
 - iv. Acarreo (Hauling)

- v. Servicios auxiliares (ancilliary services).
- 2.2.1.3 Procesos, como área responsable del tratamiento del mineral y la extracción del metal, tiene varios procesos internos que solo mencionaremos hasta este detalle.
 - i. Chancado
 - ii. Transporte de chancado al silo(faja)
 - iii. Apilado (silo de mineral chancado)
 - iv. Acarreo del silo a lixiviación (volquetes)
 - v. Lixiviación
 - vi. Metalurgia
 - vii. Refinería

Nota: Acarreo y lixiviación requieren del soporte de servicios auxiliares.

- 2.2.1.4 Ventas, esta área tiene como finalidad la negociación y entrega de los productos, que solo veremos a hasta este nivel de detalle.
 - i. Ventas
 - ii. Margen, beneficio obtenido por la venta del producto

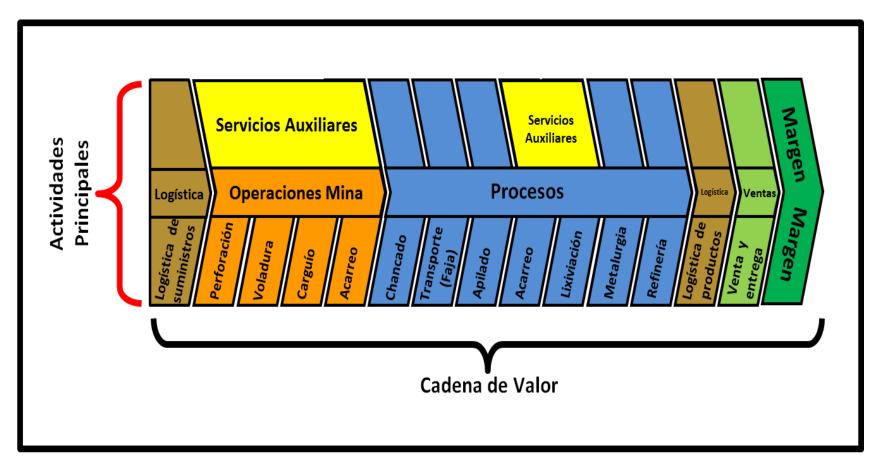


Figura 2.1 – Mapeo de las actividades principales de la cadena de valor

2.3 Evaluación del cuello de botella

2.3.1 Análisis de oportunidades en actividades principales

La evaluación del cuello de botella es importante para saber enfocar nuestros esfuerzos, además de identificar en que parte de nuestra cadena de valor está el cuello que no permite tener mejores resultados(realizando mejoras en este punto se mejora los resultados finales), lo importante de este análisis es evaluar las capacidades actuales de cada actividad y observar que una vez mejorado el cuello, este pasa a otra actividad y así sucesivamente, hasta llegar a un punto donde se requiera muchos recursos y costos para continuar mejorando, el cuello de botella puede regresar una actividad anteriormente mejorada, para nuestro caso la situación actual:

- i. Un sistema de logística con capacidad de abastecimiento de suministros y manejo de productos ilimitada (15.000 tph).
- ii. Perforación, tres Perforadoras Ingersoll rand DMM2 (perforación 10,5 m/taladro, sobre perforación 0,5 m, con una velocidad de perforación neta de 51,47 m/hr), capacidad de perforar, 8.301 toneladas por hora
- iii. Voladura, para efectos de nuestra mina se tiene unas capacidad de volar 500.000 toneladas por disparo, (malla de triangular de 6,5x6,5 m, altura de banco 10 m, densidad de material 2,2 gr/cm3, 800,8 t/taladro, factor de carga 0,18 kg/t), a tres disparos por

- semana(1.500.000 t), a cuatro por mes(6.000.000 t), en resumen, 10.200 toneladas por hora.
- iv. Carguío, dos cargadores CAT 992G (900 tph), dos cargadores CAT 994D (1.650 tph), dos cargadores komatsu AW-1200(2.200 tph), con capacidad de cargar 6.864 toneladas por hora en total.
- v. Acarreo, 13 volquetes 785C(136 t/carga), tres volquetes 785B(136 t/carga), seis volquetes komatsu 730E(183 t/carga), solo 18 en producción y cuatro en acarreo en lixiviación, con una relación desmonte mineral de 2 a 1, de acuerdo a las condiciones de la mina(ciclo 22 min/viaje) con los volquetes destinados a mina se tiene una capacidad total(mineral y desmonte) de 126.013 toneladas por día y 42.404 toneladas de mineral, 1.750 toneladas por hora de mineral.
- vi. Circuito de chancado de 2.822 toneladas por hora de capacidad.
- vii. Faja transportadora de 2.772 toneladas por hora de capacidad.
- viii. Apilador (Ore Bin) de 5.643 toneladas por hora de capacidad.
- ix. Acarreo en lixiviación, cuatro volquetes 785 y de acuerdo a las condiciones(ciclo 10,9 min/viaje), 750 tonelada por hora por volquete, a cuatro volquetes 2.214 tph en total
- x. Lixiviación de 9.000 toneladas por hora de capacidad.
- xi. Metalurgia de 2.600 metros cúbicos por hora de capacidad de tratamiento de solución rica.

- xii. Refinería de capacidad de producir 4,2 toneladas diarias de metales preciosos (metal 1 y metal 2), para las condiciones de la mina, lo tomaremos como ilimitada.
- xiii. Ventas, al igual consideramos como capacidad ilimitada de ventas para las condiciones actuales.

Tabla 1.0 – Evaluación de cuello de botella global

MAPA DE VALOR DE MINA A TAJO ABIERTO

Actividad	Logística de suministros	Perforación (Drilling)		Carguío (Loading)	Acarreo (Hauling)	Chancado (Crusher)	Transporte - faja (Overland)	Apilado (Ore Bin)	Acarreo (Hauling)	Lixiviación (leaching)	Metalurgia (Metallurgy)	Refinería (Refinery)	Logística de productos	Ventas (Sales)
Unidades	tph	tph	tph	tph	tph	tph	tph	tph	tph	tph	m3/hr	kg/día	kg/día	kg/día
Productividad	15000	12208	11333	9500	7445	3000	2800	6000	3000	9000	2600	4200	15000	15000
Mineral	5000	4069	3778	3167	2482	3000	2800	6000	3000	9000	2600	4200	15000	15000
Desmonte	10000	8139	7556	6333	4964									
•							,							
Unidades	Porcentaje	Porcentaje	Porcentaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje	Porcenaje
Disponibilidad	100%	85%	100%	85%	82%	99%	99%	99%	82%	100%	99%	100%	100%	100%
Utilización	100%	80%	90%	85%	86%	95%	100%	95%	90%	100%	99%	100%	100%	100%
Unidades al día	tpd	tpd	tpd	tpd	tpd	tpd	tpd	tpd	tpd	tpd	m3/día	kg/día	kg/día	kg/día
Capacidad diaria	360000	199235	244800	164730	126013	67716	66528	135432	53136	216000	62400	4200	15000	15000
Mineral	120000	66412	81600	54910	42004	67716	66528	135432	53136	216000	62400	4200	15000	15000
Desmonte	240000	132823	163200	109820	84009									
Unidades	tpa	tpa	tpa	tpa	tpa	tpa	tpa	tpa	tpa	tpa	m3/año	kg/año	kg/año	kg/año
Capacidad anual	131400000	72720614	89352000	60126450	45994683	24716340	24282720	49432680	19394640	78840000	22776000	1533000	5475000	5475000
Mineral	43800000	24240205	29784000	20042150	15331561	24716340	24282720	49432680	19394640	78840000	22776000	1533000	5475000	5475000
Desmonte	87600000	48480410	59568000	40084300	30663122									

Toneladas por hora Nota: tph Toneladas por día

tpd tpa Toneladas por año

Con estos datos podemos observar que el cuello de botella de toda nuestra cadena de valor, la tabla 1.1 muestra exactamente en qué actividad podemos enfocar nuestros esfuerzos de mejora y obtener mejores resultados en todo nuestro proceso, observamos que en acarreo está el cuello de botella, dentro de las actividades de operaciones mina.

2.3.2 Análisis de actividades de operaciones mina

El análisis global nos enfocamos en las actividades de operaciones mina, que es el enfoque de análisis de este trabajo, identificado el cuello de botella en esta cadena de valor además de analizar todas las oportunidades de mejorar producción, se evalúan las oportunidades de bajar costos y los costos de oportunidad que son aquellos que la empresa obtiene por el interés de la venta de minerales, concentrados o metales antes de lo presupuestado, para la evaluación del costo de oportunidad usaremos el 10% de interés, para ello realizamos un detalle más minucioso de las actividades de operaciones mina y las mencionamos en orden de obtener mejoras operaciones mina.

- i. Acarreo
- ii. Carguío
- iii. Perforación
- iv. Voladura

Servicios auxiliares no se analiza como actividad de la cadena de valor, sino actividad de soporte y su efecto en los resultados de las actividades principales de operaciones mina.

Tabla 1.1 – Evaluación de botella cuello operaciones mina

MAPA DE VALOR DE OPERACIONES MINA

Operacione mina	Perforación (Drilling)	Voladura (Blasting)	Carguío (Loading)	Acarreo (Hauling)	
Unidades	tph	tph	tph	tph	
Productividad	12,208	11,333	9,500	7,445	
Mineral	4,069	3,778	3,167	2,482	
Desmonte	8,139	7,556	6,333	4,964	
	<u> </u>	In		· 1	
Unidades	Porcentaje	Porcentaje	Porcenaje	Porcenaje	
Disponibilidad	85%	100%	85%	82%	
Utilización	80%	90%	85%	86%	
Unidades al día	tpd	tpd	tpd	tpd	
Capacidad diaria	199,235	244,800	164,730	126,013	
Mineral	66,412	81,600	54,910	42,004	
Desmonte	132,823	163,200	109,820	84,009	
	1	1	· ·	1	
Unidades	tpa	tpa	tpa	tpa	
Capacidad anual	72,720,614	89,352,000	60,126,450	45,994,683	
Mineral	24,240,205	29,784,000	20,042,150	15,331,561	
Desmonte	48,480,410	59,568,000	40,084,300	30,663,122	
Unidades	USD\$/t	USD\$/t	USD\$/t	USD\$/t	
Equipo Principal	0.05	0.18	0.35	0.57	
Servicio Auxiliares	0.05	0.02	0.10	0.17	
Administrativo Mina	0.005	0.004	0.011	0.011	
Costo Total	0.11	0.20	0.46	0.76	
		<u> </u>	1	1	
Unidades	Número/año	Número/año	Número/año	Número/año	
Accidentes Personal	1	0	1	3	
Accidentes Equipo	2	1	4	5	
Impactos Ambientales	1	0	6	22	
Total	4	1	11	30	

MATRIZ DE PRIORIZACIÓN DE ENFOQUE

Operacione mina	Perforación (Drilling)	Voladura (Blasting)	Carguío (Loading)	Acarreo (Hauling)
Productividad Horaria	4	3	2	1
Disponibilidad	2	4	2	1
Utilización	1	4	2	3
Productividad Diaria	3	4	2	1
Productividad Anual	3	4	2	1
Costo	4	3	2	1
Seguridad	3	4	2	1
Promedio	3	4	2	1
Grado de enfoque	1			
	2			
	3			
	4			

Tabla 1.2 – Evaluación de priorización

Nota:

1 de mayor a 4 de menor enfoque

2.3.3 Análisis de acarreo(Hauling)

2.3.3.1 Análisis de oportunidades en disponibilidad

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de disponibilidad, esto implica reducción de tiempos por mantenimientos preventivos, predictivos y correctivos, estas oportunidades están a cargo del área de mantenimiento, para este trabajo solo se evaluará el potencial de impacto en la operación. El impacto de la variación de la disponibilidad se refleja en tres puntos:

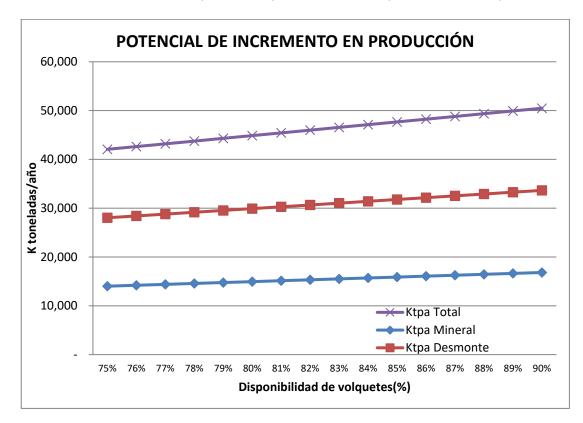


Tabla 1.3 – Potencial de producción por variación de disponibilidad de volquetes

Tabla 1.4 – Potencial de costo fijo por variación de disponibilidad de volquetes

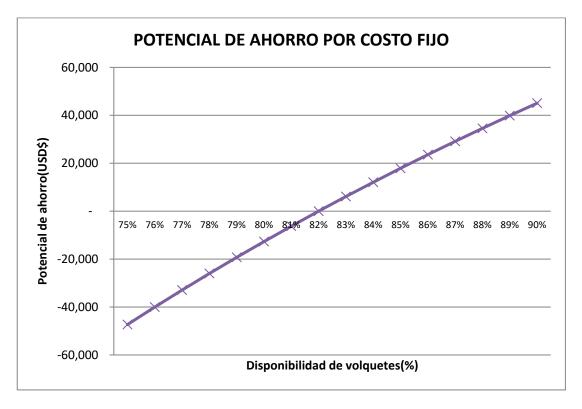


Tabla 1.5 – Potencial de oportunidad por variación de disponibilidad de volquetes

2.3.3.2 Análisis de oportunidades en utilización

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de utilización, su implicancia es cuánto tiempo se utiliza el equipo estando mecánicamente operativo, su mejora implica reducción de tiempos de paradas, estas oportunidades están a cargo del área de operaciones mina, más adelante evaluaremos el detalle de estas oportunidades.

El impacto de la variación de la utilización se refleja en tres puntos:

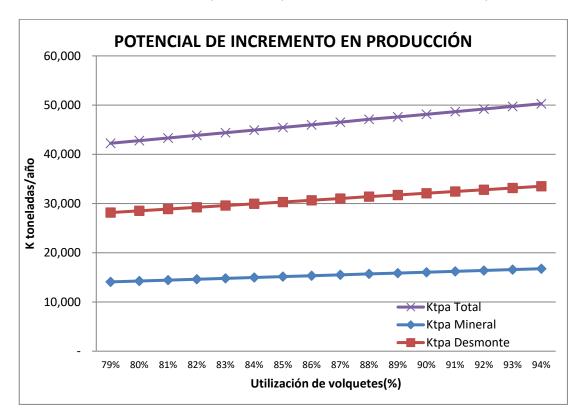


Tabla 1.6 – Potencial de producción por variación de utilización de volquetes

Tabla 1.7 – Potencial de costo fijo por variación de utilización de volquetes

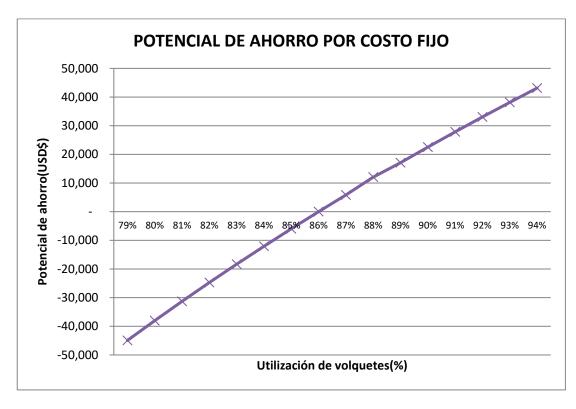


Tabla 1.8 – Potencial de oportunidad por variación de utilización de volquetes

2.3.3.3 Análisis de oportunidades en calidad

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de la productividad de la flota de acarreo, su mejora implica que tan bien usamos o cuanto más podemos mejorar la productividad sin comprometer la seguridad y operatividad del equipo, a cargo del área de operaciones mina, más adelante evaluaremos el detalle de estas oportunidades.

El impacto de la variación de la productividad se refleja en cuatro puntos:

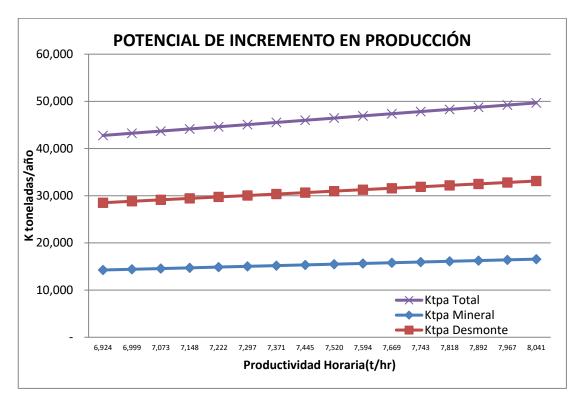


Tabla 1.9 – Potencial de producción por variación de productividad de volquetes

Tabla 2.0 – Potencial de costo fijo por variación de productividad de volquetes

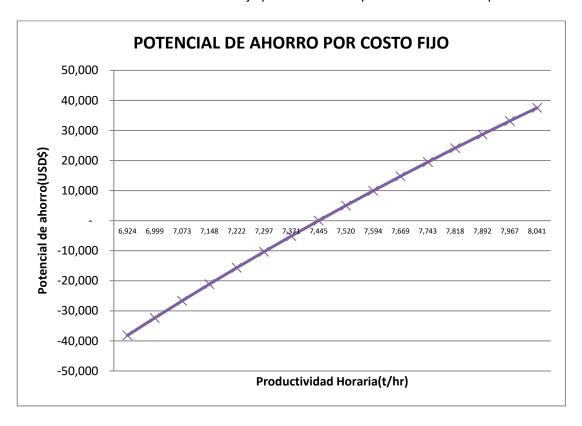


Tabla 2.1 – Potencial de costo variable por variación de productividad de volquetes

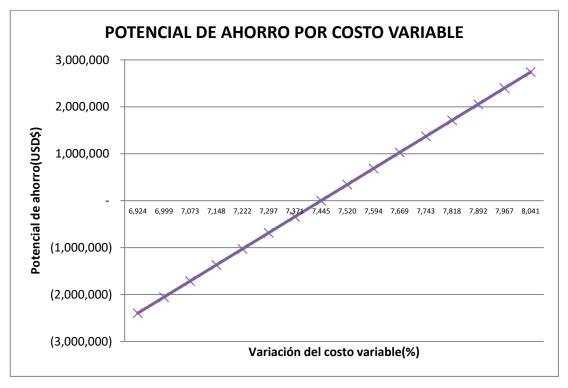


Tabla 2.2 – Potencial de oportunidad por variación de productividad de volquetes

2.3.4 Análisis de carguío(Loading)

2.3.4.1 Análisis de oportunidades en disponibilidad

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de disponibilidad, esto implica reducción de tiempos por mantenimientos preventivos, predictivos y correctivos, estas oportunidades están a cargo del área de mantenimiento, para este trabajo solo se evaluará el potencial de impacto en la operación. El impacto de la variación de la disponibilidad se refleja en cuatro puntos:

Tabla 2.3 – Potencial de producción por variación de disponibilidad de cargadores

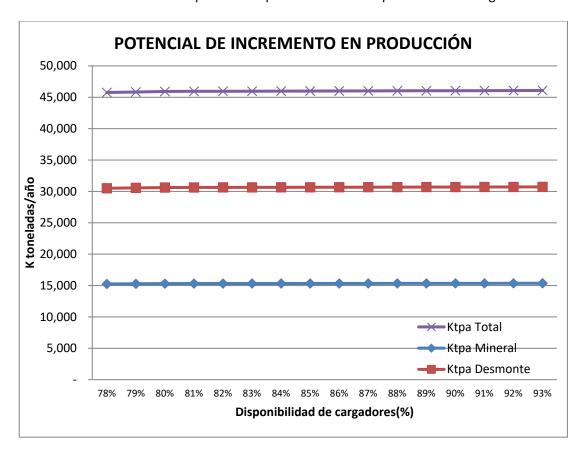


Tabla 2.4 – Potencial de costo fijo por variación de disponibilidad de cargadores

Tabla 2.5 – Potencial de costo variable por variación de disponibilidad de cargadores

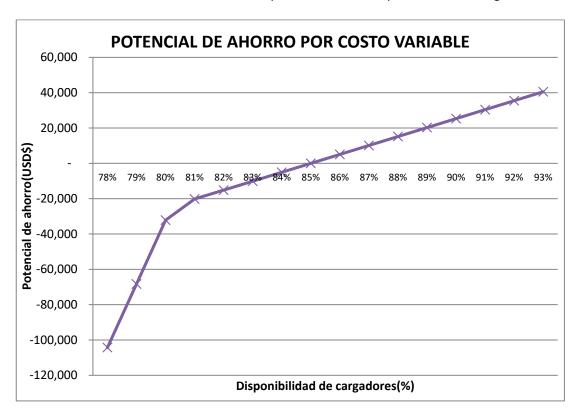


Tabla 2.6 – Potencial de oportunidad por variación de disponibilidad de cargadores

2.3.4.2 Análisis de oportunidades en utilización

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de utilización, su implicancia es cuánto tiempo se utiliza el equipo estando mecánicamente operativo, su mejora implica reducción de tiempos de paradas, estas oportunidades están a cargo del área de operaciones mina, más adelante evaluaremos el detalle de estas oportunidades.

El impacto de la variación de la utilización se refleja en cuatro puntos:

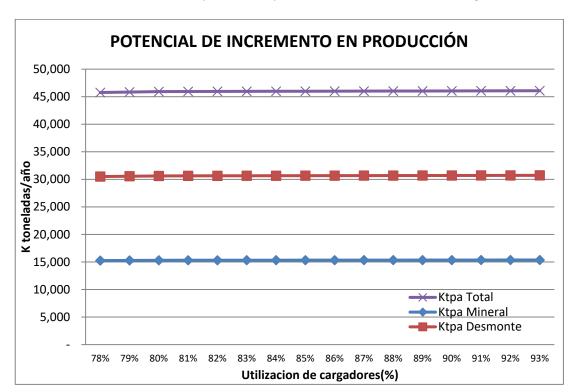
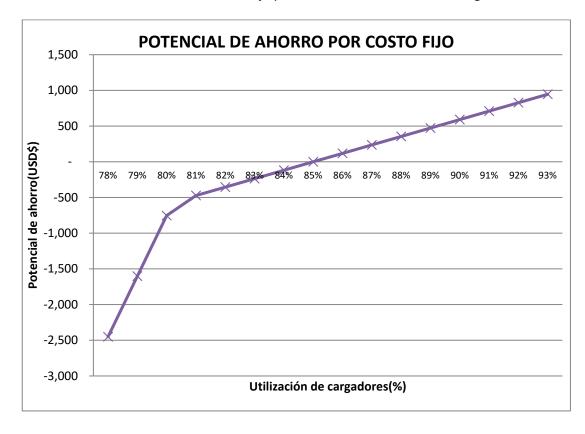
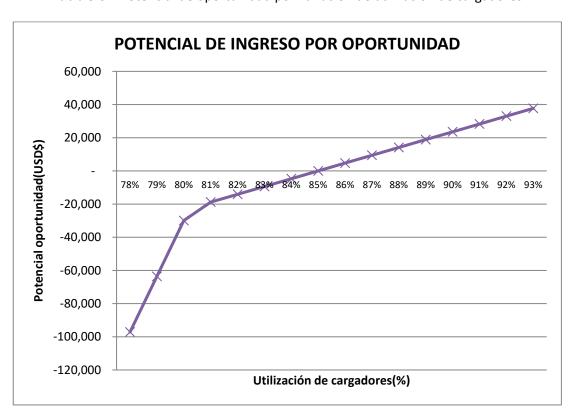



Tabla 2.7 – Potencial de producción por variación de utilización de cargadores


Tabla 2.8 – Potencial de costo fijo por variación de utilización de cargadores

POTENCIAL DE AHORRO POR COSTO VARIABLE 60,000 40,000 20,000 Potencial de ahorro (USD\$)
-20,000
-40,000
-60,000 79% 80% 81% 82% 83% 85% 86% 88% 89% 90% 91% 92% 93% -80,000 -100,000 -120,000 Utilización de cargadores(%)

Tabla 2.9 – Potencial de costo variable por variación de utilización de cargadores

Tabla 3.0 – Potencial de oportunidad por variación de utilización de cargadores

2.3.4.3 Análisis de oportunidades en calidad

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de la productividad de la flota de carguío, su mejora implica que tan bien usamos o cuanto más podemos mejorar la productividad sin comprometer la seguridad y operatividad del equipo, a cargo del área de operaciones mina, más adelante evaluaremos el detalle de estas oportunidades.

El impacto de la variación de la productividad se refleja en cuatro puntos:

Tabla 3.1 – Potencial de producción por variación de productividad de cargadores

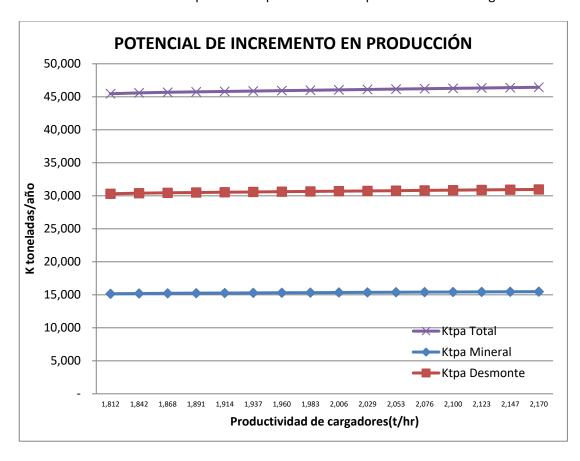


Tabla 3.2 – Potencial de costo fijo por variación de productividad de cargadores

Tabla 3.3 – Potencial de costo variable por variación de productividad de cargadores



Tabla 3.4 – Potencial de oportunidad por variación de productividad de cargadores

2.3.5 Análisis de perforación(Drilling)

2.3.5.1 Análisis de oportunidades en disponibilidad

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de disponibilidad, esto implica reducción de tiempos por mantenimientos preventivos, predictivos y correctivos, estas oportunidades están a cargo del área de mantenimiento, para este trabajo solo se evaluará el potencial de impacto en la operación.

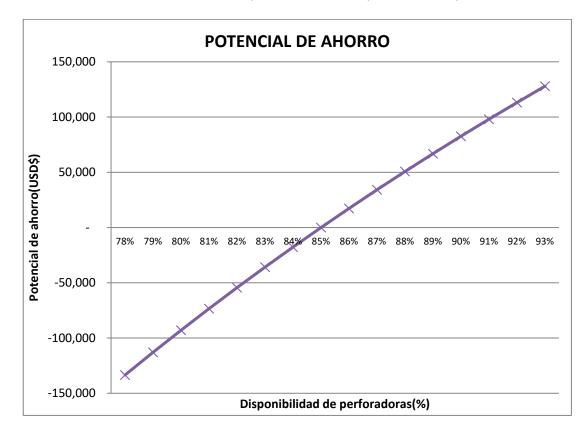


Tabla 3.5 – Potencial de ahorro por variación de disponibilidad de perforadoras

2.3.5.2 Análisis de oportunidades en utilización

En este punto realizaremos un análisis de sensibilidad de impacto en la producción por variación de utilización, su implicancia es cuánto tiempo se utiliza el equipo estando mecánicamente operativo, su mejora implica reducción de tiempos de paradas, estas oportunidades están a cargo del área de operaciones mina, más adelante evaluaremos el detalle de estas oportunidades.

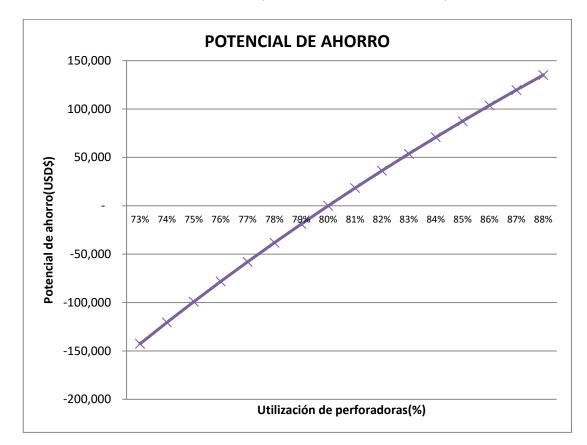
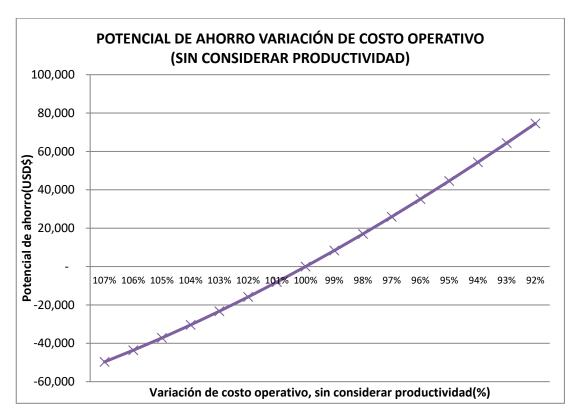


Tabla 3.6 – Potencial de ahorro por variación de utilización de perforadoras

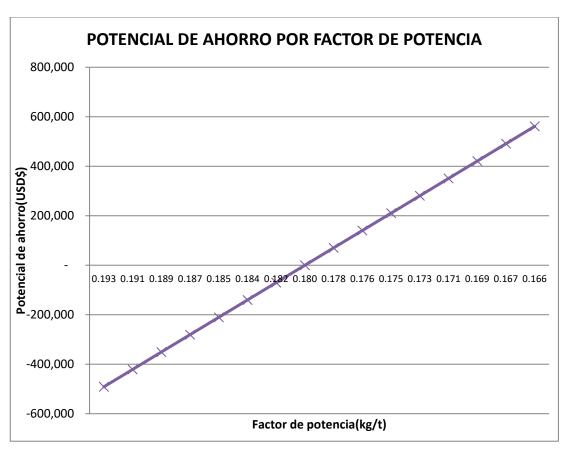
2.3.5.3 Análisis de oportunidades en calidad


En este punto realizaremos un análisis de sensibilidad de impacto en el costo por variación de la productividad de las perforadoras, su mejora implica que tan bien usamos o cuanto más podemos mejorar la productividad sin comprometer la seguridad y operatividad del equipo, a cargo del área de operaciones mina, más adelante evaluaremos el detalle de estas oportunidades.

El impacto de la variación de la productividad se refleja en dos puntos:

Tabla 3.7 – Potencial de ahorro por variación de productividad de perforadoras

Tabla 3.8 – Potencial de ahorro por variación de costo operativo de perforadoras



2.3.6 Análisis de voladura(Blasting)

2.3.6.1 Análisis de oportunidades en calidad

En este punto realizaremos un análisis de sensibilidad de impacto en el costo de producción por variación del factor de potencia (esto implica reducción de carga, incremento de malla de perforación, diseño de malla de voladura) y variación de costos operativo por accesorios de voladura, esto variaciones se asumen no afecta la fragmentación del material, estabilidad de taludes y tiempo de carguío de volquetes a las condiciones actuales.

Tabla 3.9 – Potencial de ahorro por variación de factor de potencia

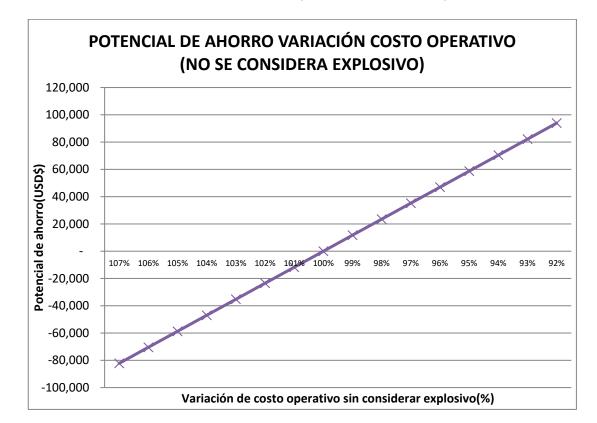


Tabla 4.0 – Potencial de ahorro por variación de costo operativo

2.3.6.2 Análisis de oportunidades en contrato

En este punto realizaremos un análisis de sensibilidad de impacto en el costo de producción por variación del costo de servicio de voladura de la empresa especializada en voladura (implica personal, camiones fábrica, camionetas, materiales y equipos necesarios para el servicio).

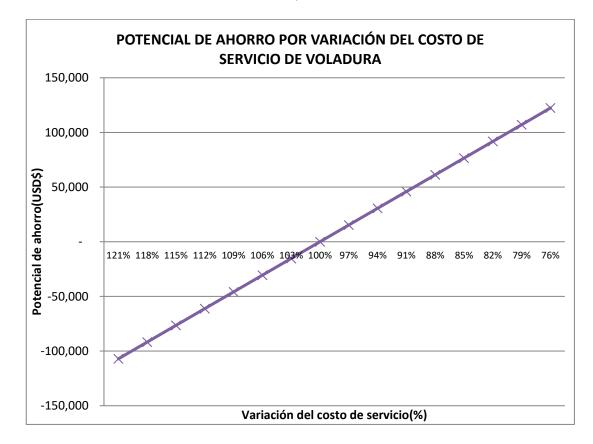


Tabla 4.1 – Potencial de ahorro por variación de costo de servicio

CAPITULO III

MAPEO DE INDICADORES CLAVES DE DESEMPEÑO DE OPERACIONES MINA (KPI'S)

3.1 Entidad del indicador

3.1.1 Concepto y descripción

La entidad del indicador es el formato para estandarizar su presentación en el mapeo de las diferentes actividades, esto permite que cualquier actividad a la cual se realice su mapeo tenga el mismo patrón, las parte del formato de presentación son:

- i. Descripción o nombre.
- ii. Código de área, permite identificar al área al que pertenece, normado de la siguiente manera: OP(operaciones mina), PR(procesos), MA(mantenimiento), CA(cadena de abastecimiento), VE(ventas), ST(servicios técnicos), CO(contabilidad y finanzas), RC(relaciones comunitaria y públicas), LP(legal y permisos), RH(recursos humanos), TI(tecnología de la información),

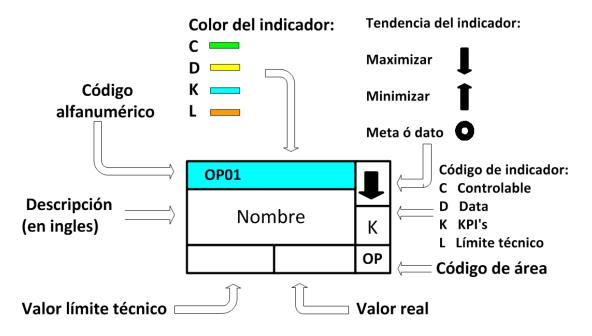
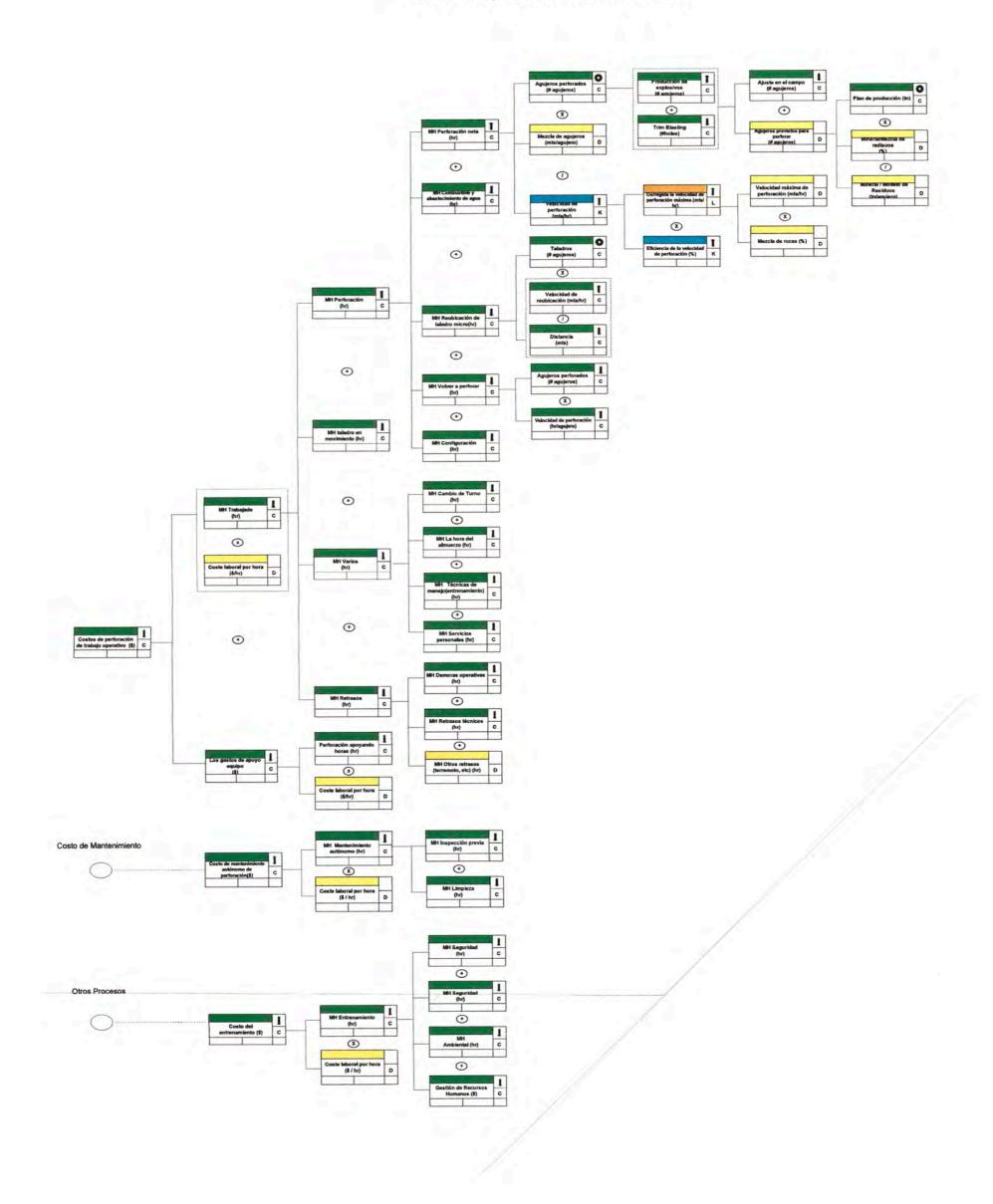
- GA(gerencia y administración), SE(seguridad), MC(mejora continua y proyectos), IC(infraestructura y construcción), CP(corporación).
- iii. Código alfanumérico, que permitirá identificarlo en área al que pertenece y se va nombrando en orden secuencial, Ejemplo: OP01, este sería el primer indicador operaciones mina; PR04, este sería el cuarto indicador de procesos y así sucesivamente.
- iv. Código del indicador, que identifica el grado de injerencia para administrarlo que tenemos en el indicador y lo hemos normado de acuerdo a: K(indicador clave o KPI, que su variación es de alta sensibilidad e impacto en los resultados), D(dato, es un valor no controlado, ejemplo precio de los metales), C(indicador controlable pero no clave), L(límite técnico, es máximo resultado técnicamente alcanzable).
- v. Tendencia del indicador, esto se muestra que se tiene que hacer para que los resultados mejores, están denotado de la siguiente manera: flecha ↑, esto no dice que si el valor sube los resultados mejoran; flecha ↓, si el valor baja los resultados mejora y signo •, esto nos dice si es un valor meta o dato.
- vi. Valor del límite técnico, el valor que deberíamos enfocarnos para maximizar los resultados.
- vii. Valor real, es el valor actual de indicador.

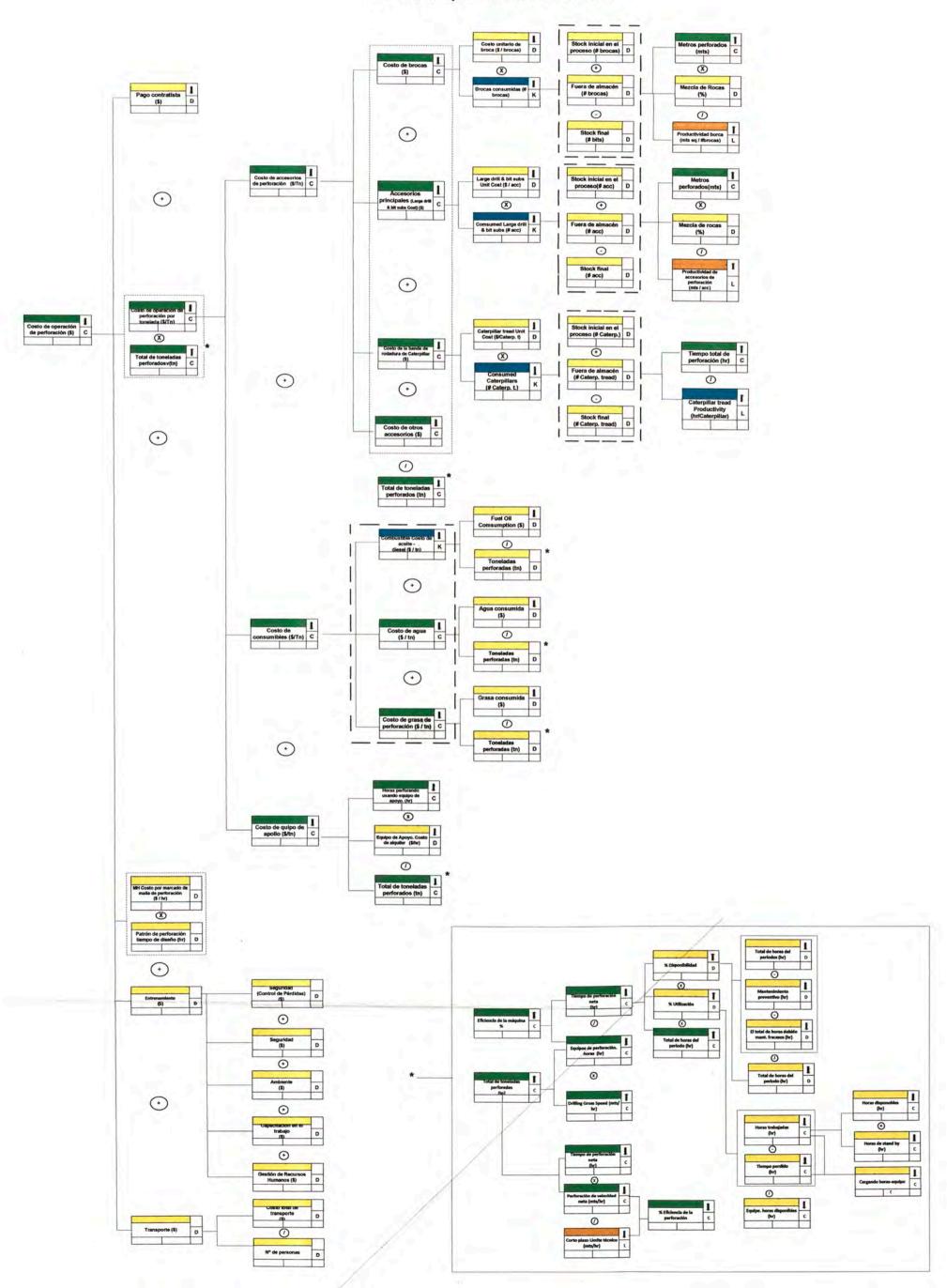
viii. Color del indicador, lo hemos caracterizado en cuatro colores, verde para un valor controlable, amarillo para un dato, cian para un indicador clave o KPI, marrón claro para un límite técnico.

3.1.2 Diseño y presentación

El modelo escogido nos facilita su seguimiento e identificación en un mapeo de acuerdo a las descripciones anteriormente mencionadas.

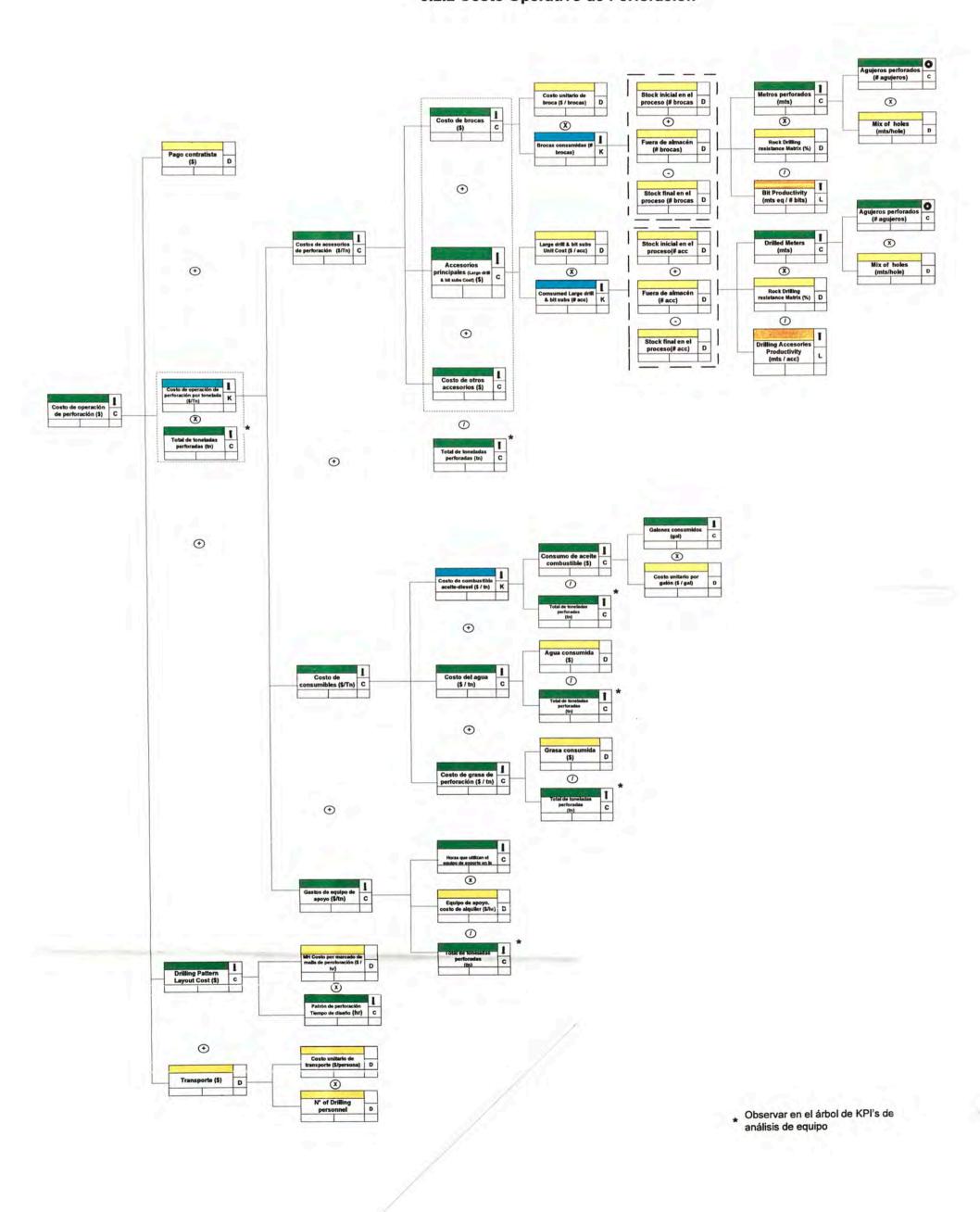
3.1 Entidad del KPI

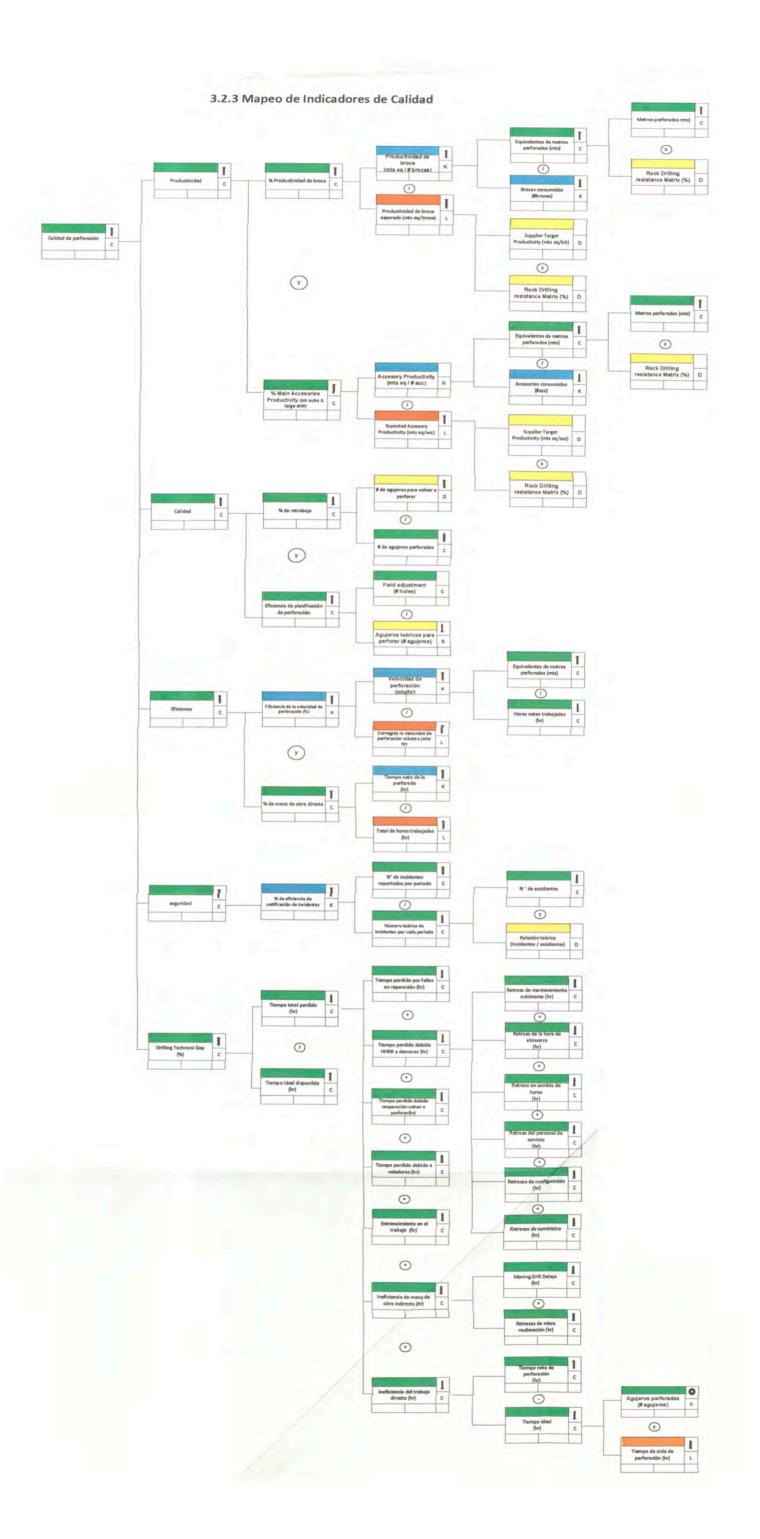




Figura 3.0 – Entidad del KPI

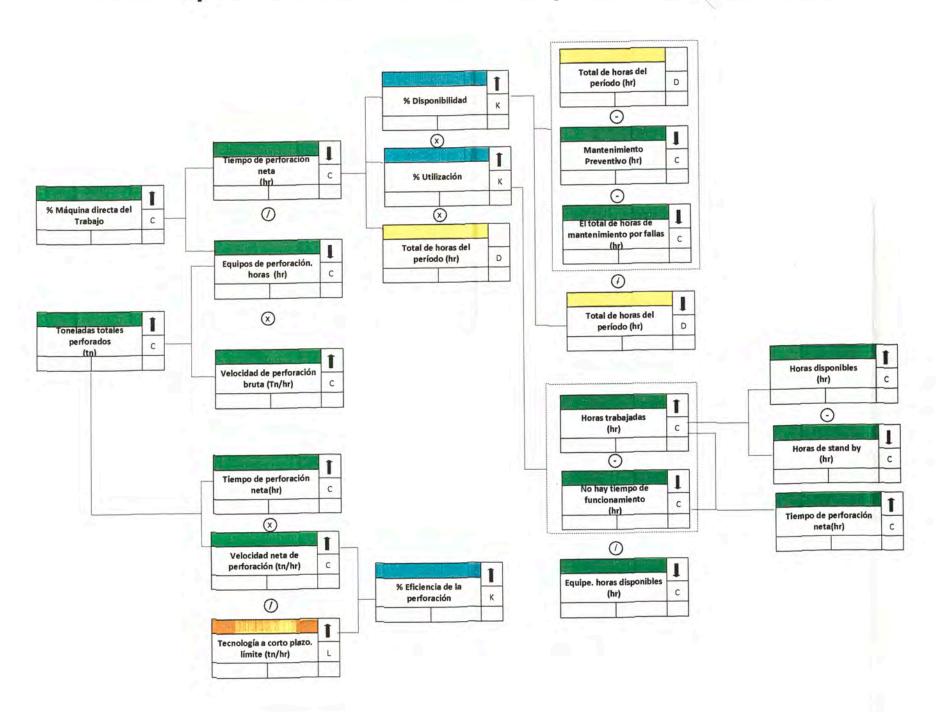
3.2 Indicadores de perforación

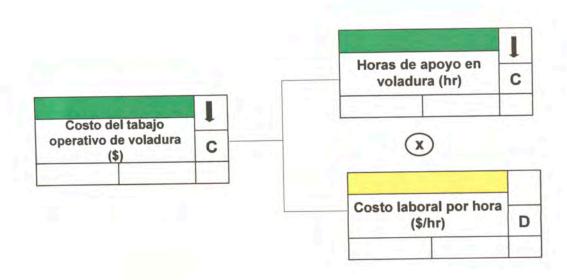
3.2.1 Mapeo de indicadores de labor



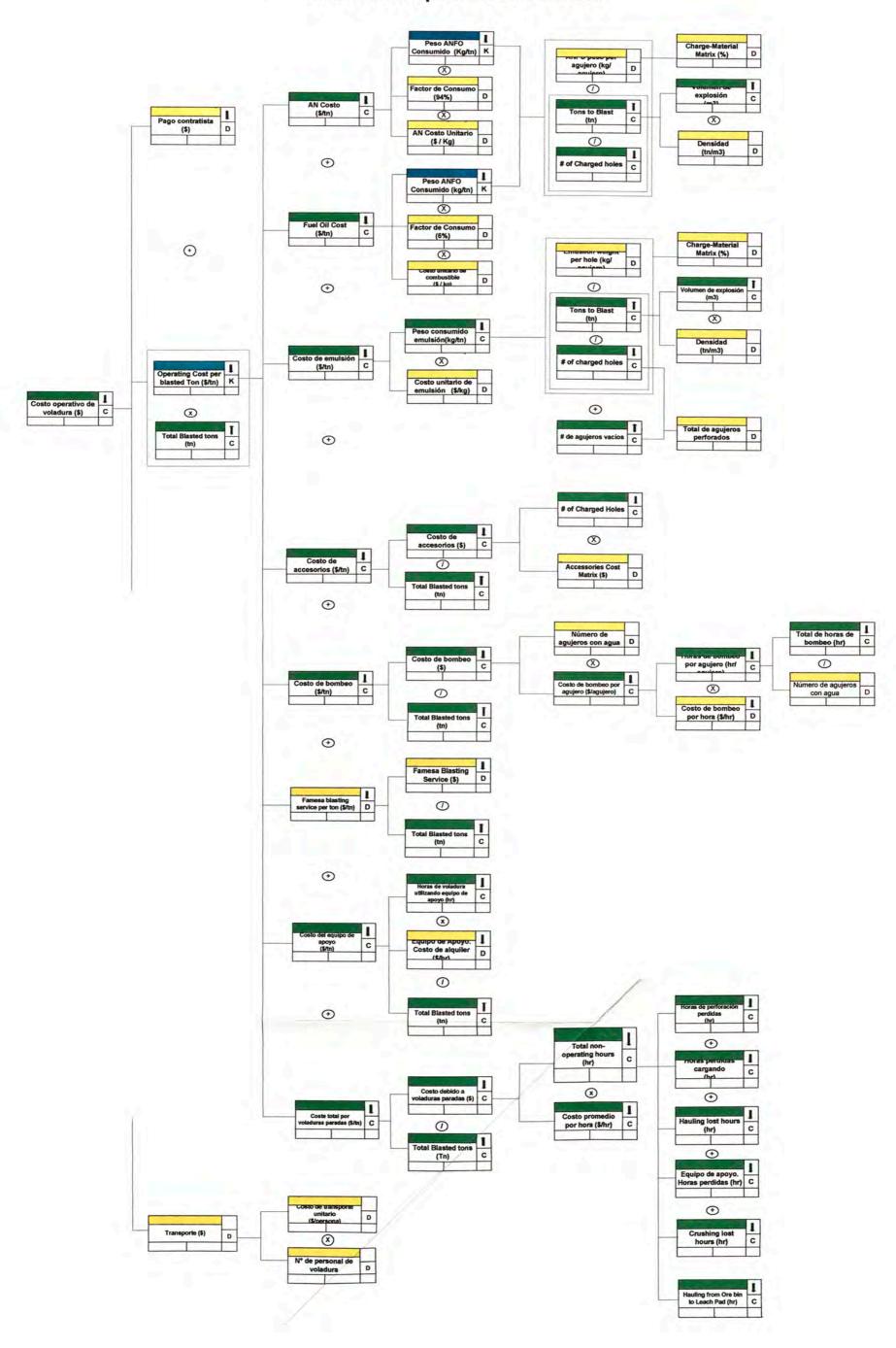

3.2.2 Costo Operativo de Perforación

3.2 Indicadores de perforación

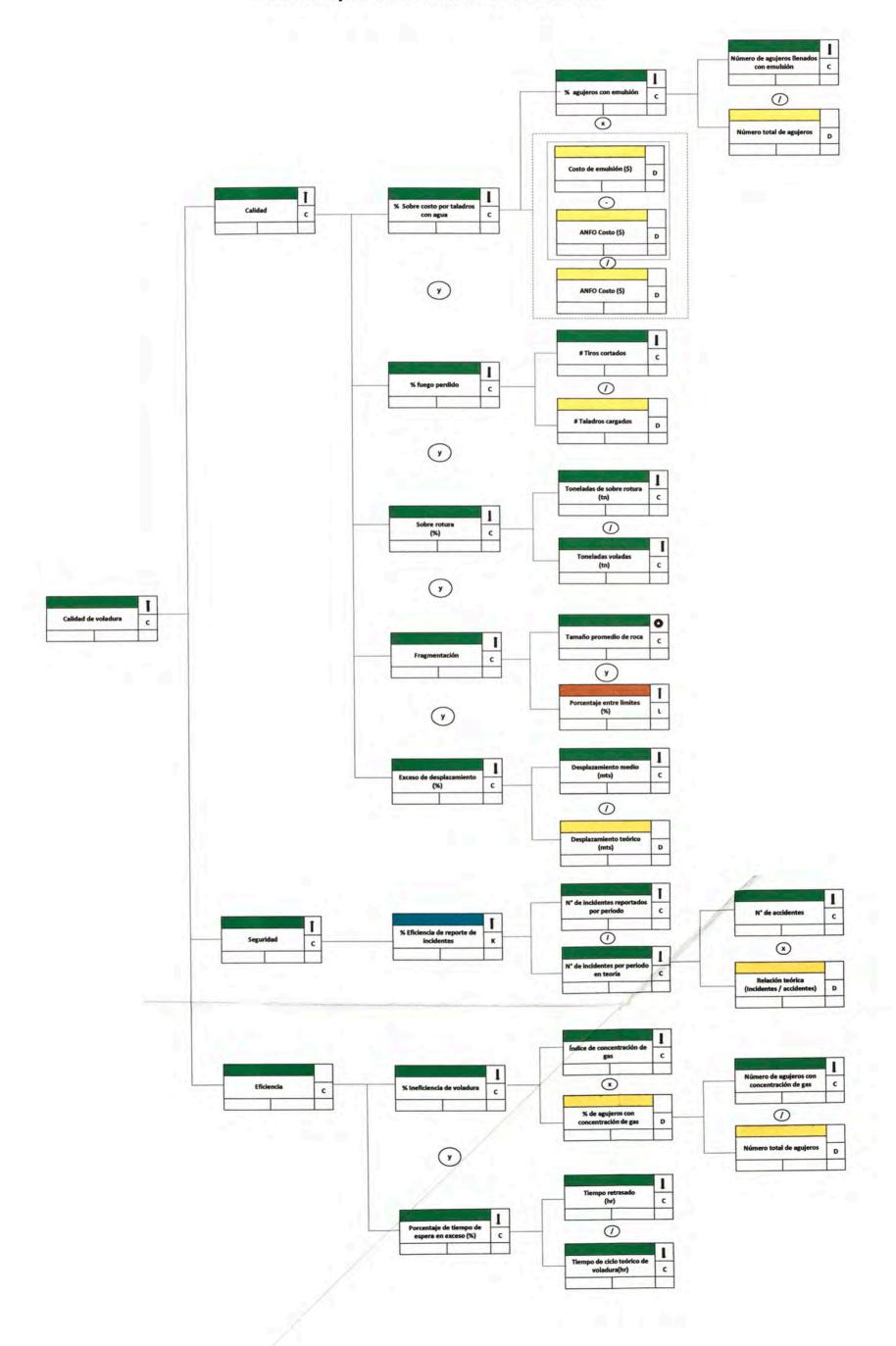

3.2.2 Costo Operativo de Perforación


3.2 Indicadores de Perforación

3.2.4 Mapeo de Indicadores de Equipo de Perforación

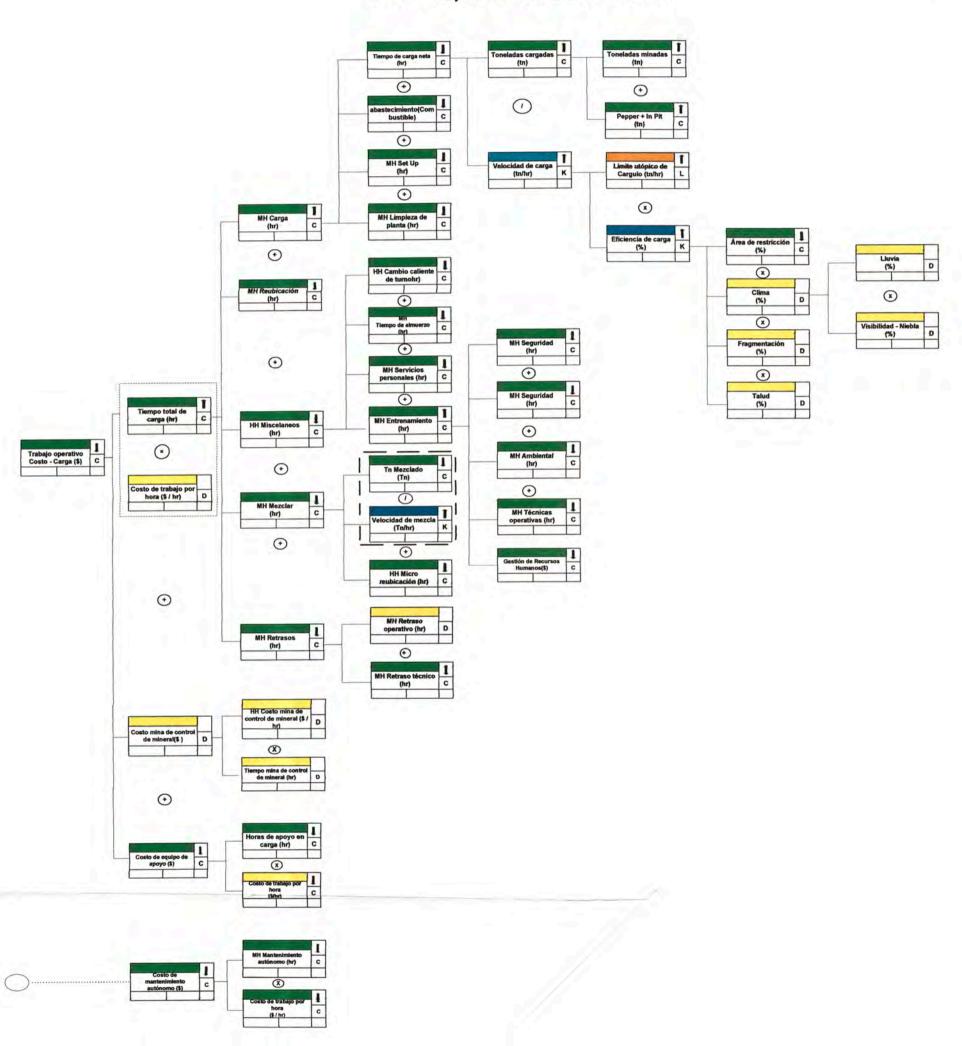

3.3 Indicadores de Voladura

3.3.1 Mapeo de indicadores de labor

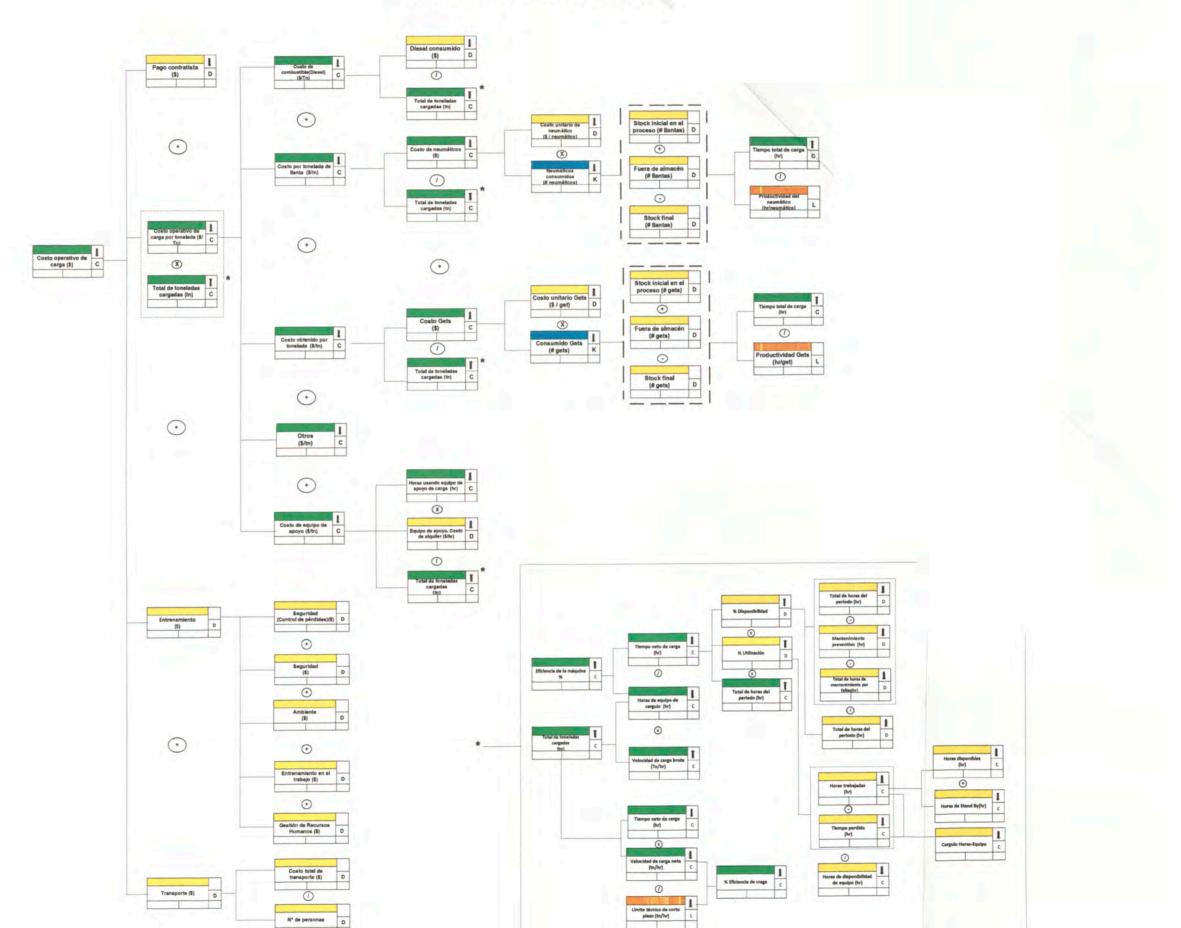


3.3 Indicadores de Voladura

3.3.2 Costo Operativo de Voladura

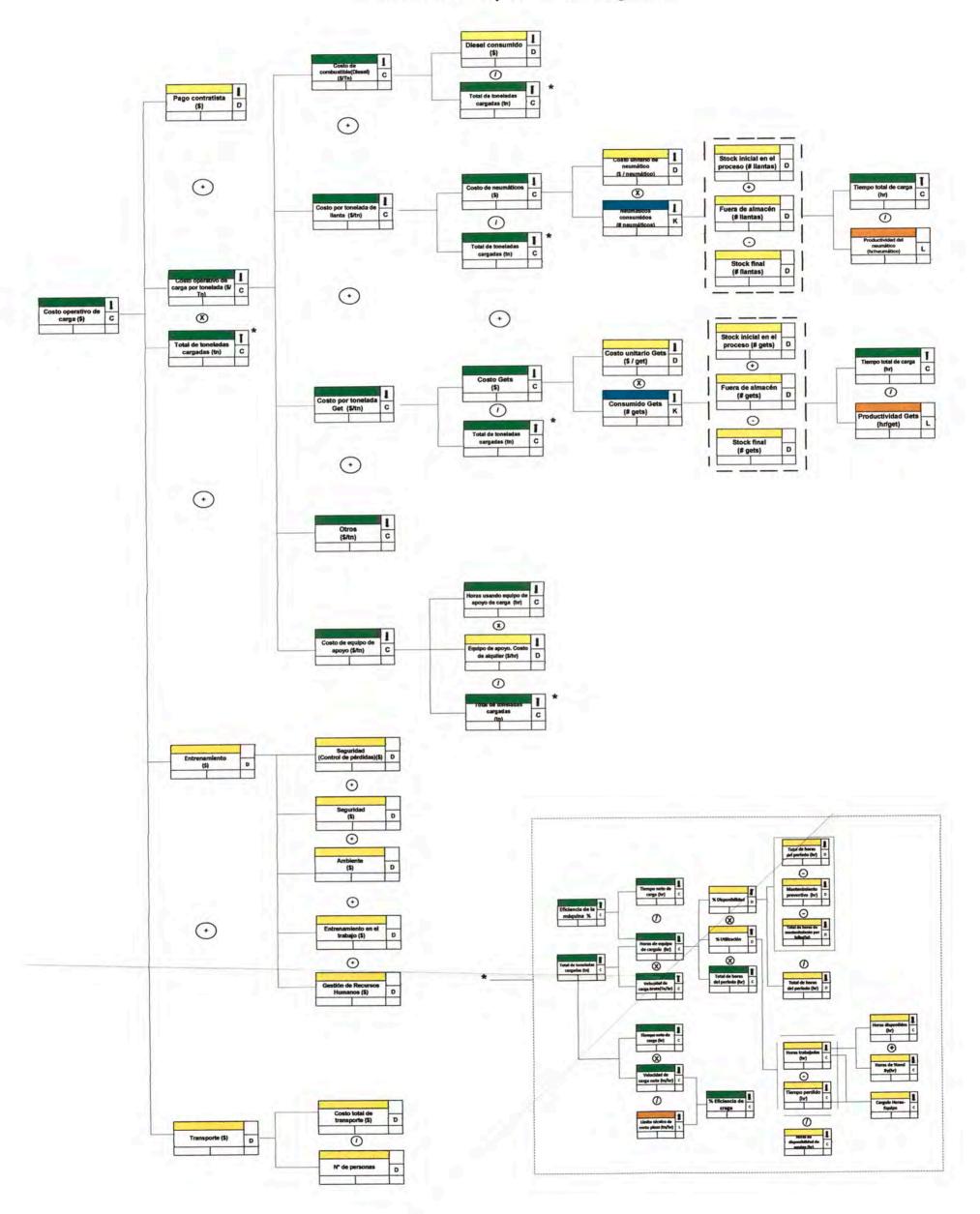


3.3.3 Mapeo de Indicadores de Calidad

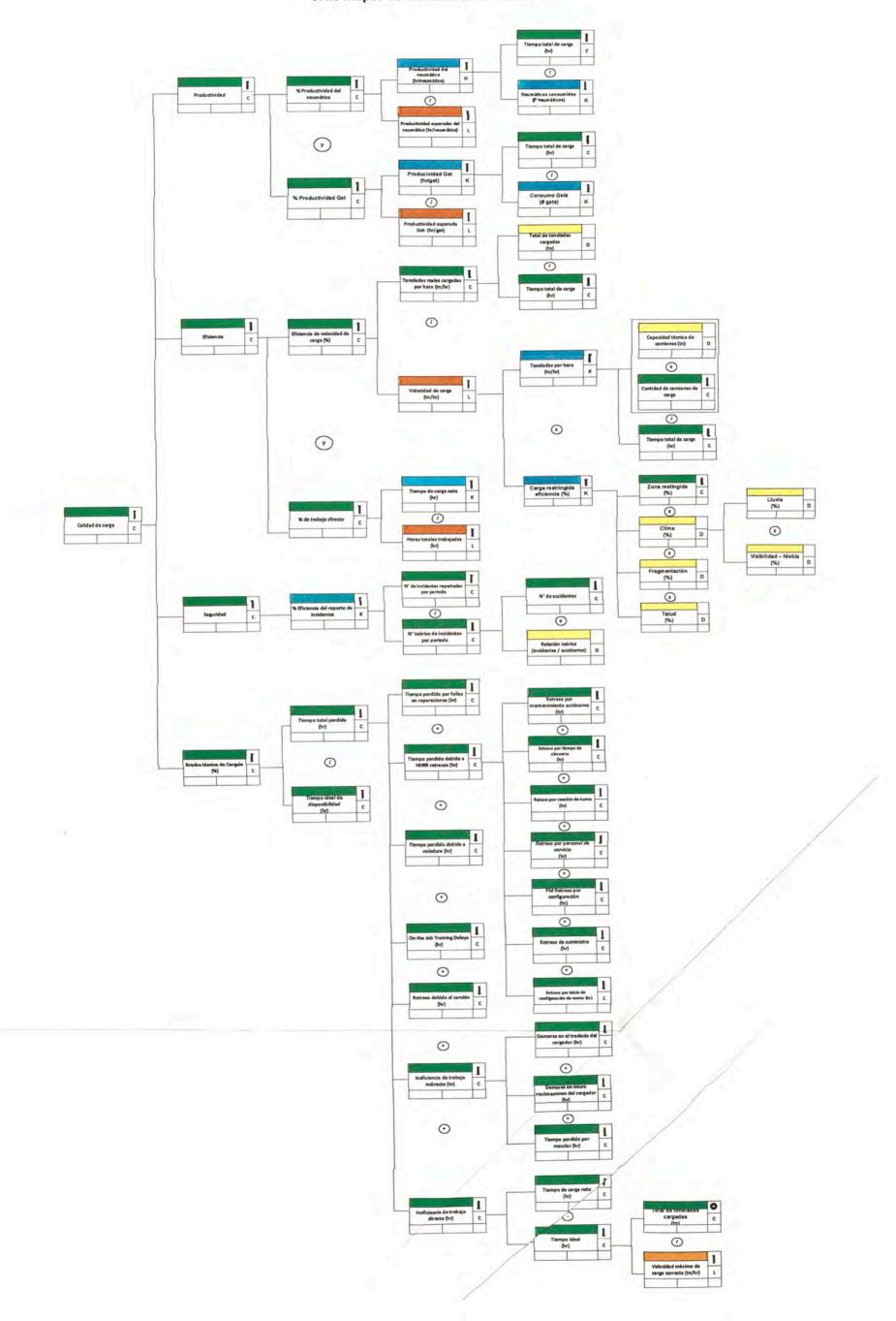


3.4 Indicadores de carguío

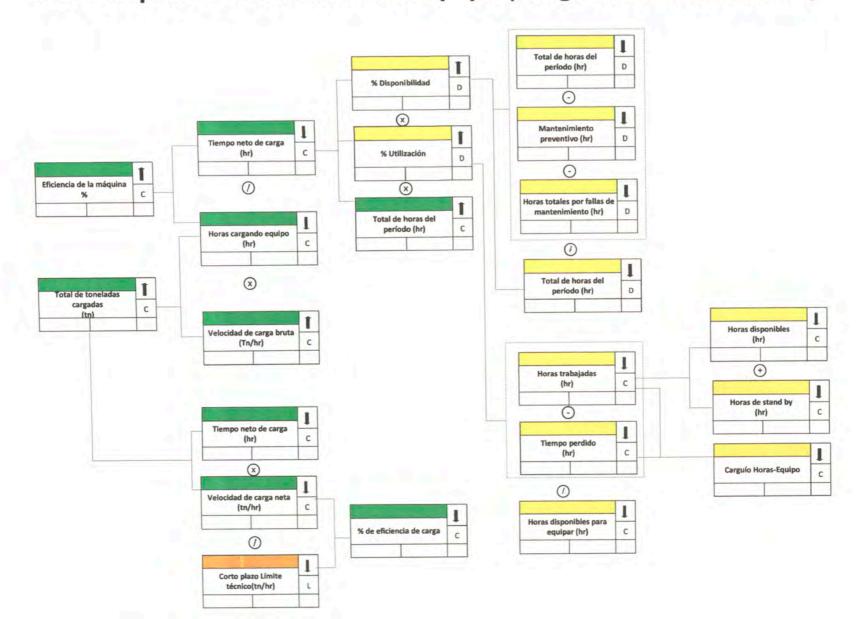
3.4.1 Mapeo de indicadores de labor



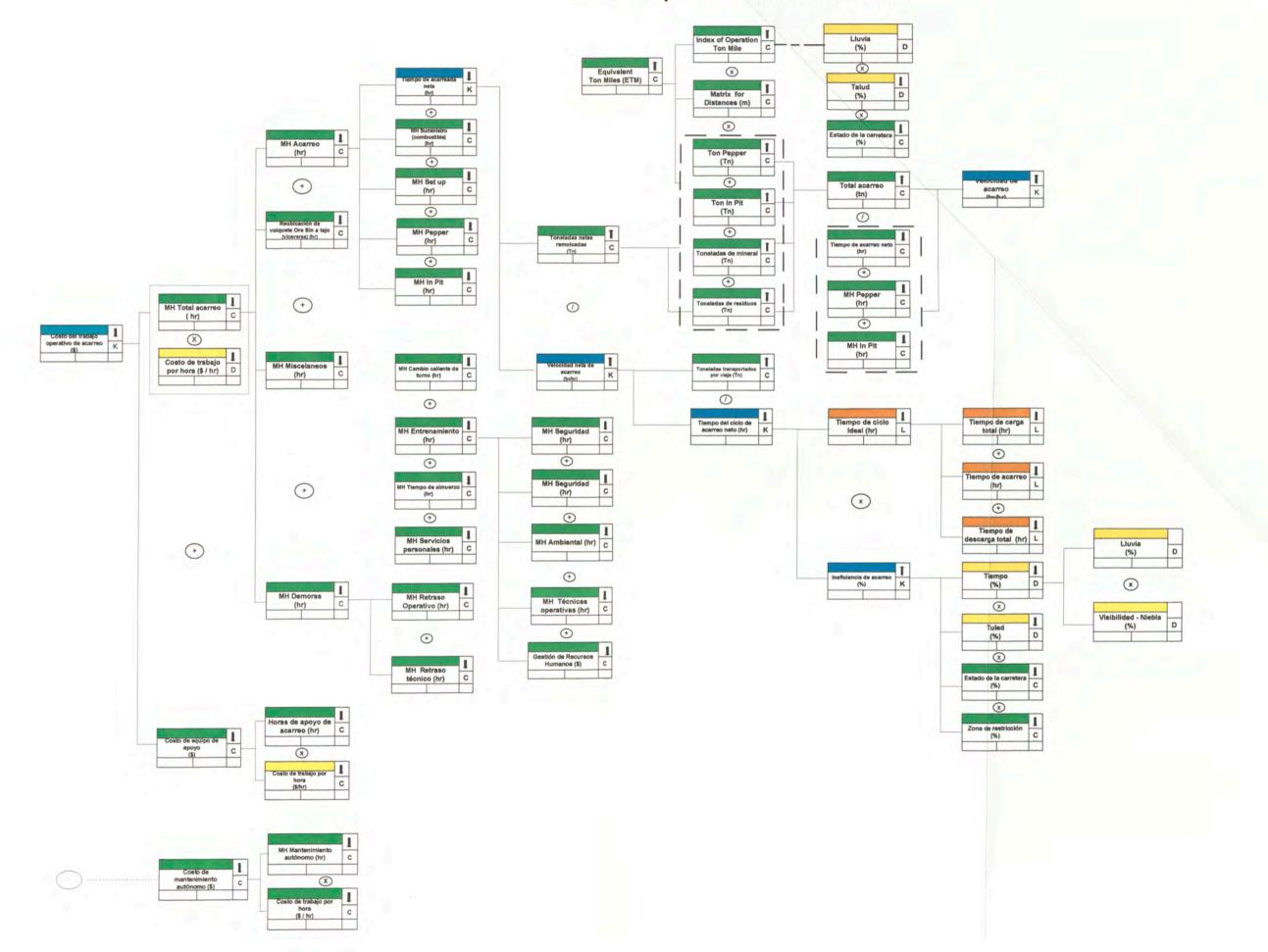
3.4 Indicadores de carguío
3.4.2 Costo Operativo de carguío


3.4 Indicadores de carguío

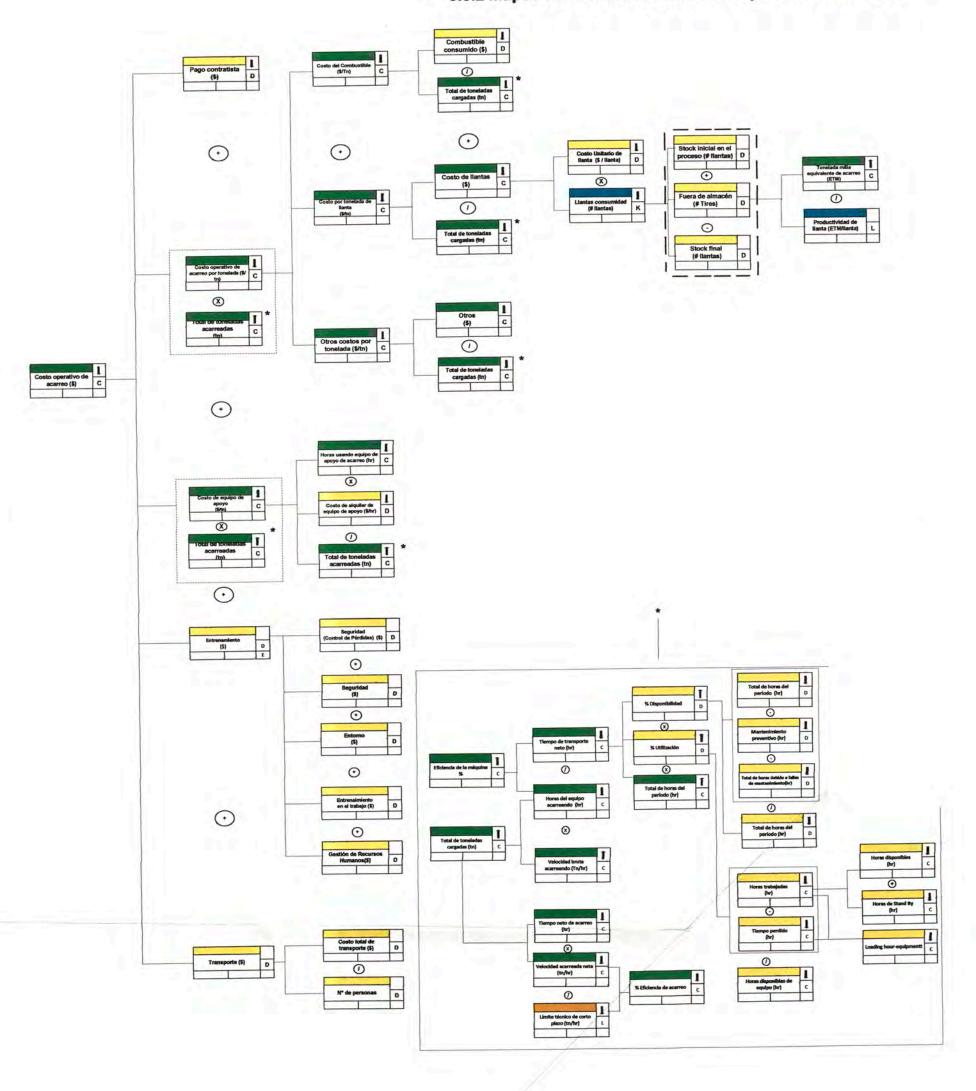
3.4.2 Costo Operativo de carguío

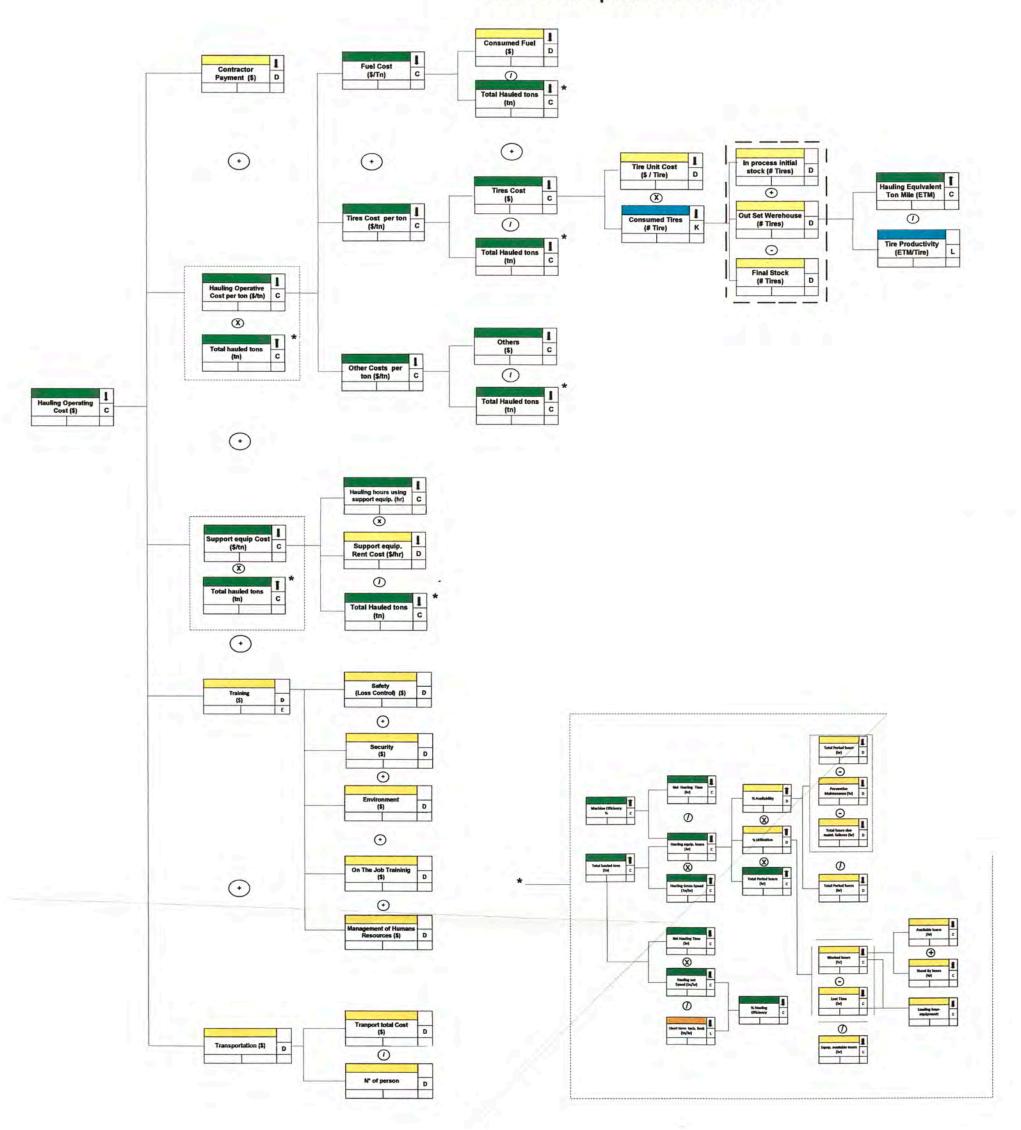

3.4 Indicadores de carguío

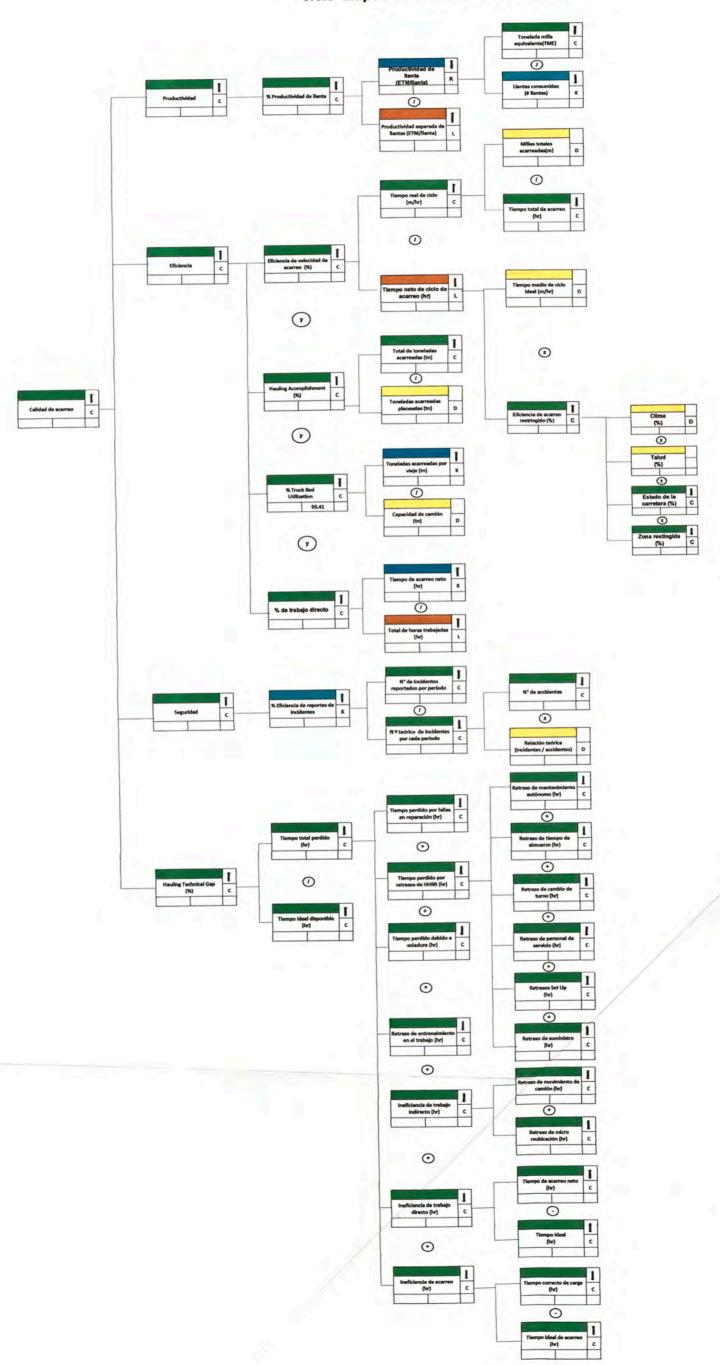
3.4.3 Mapeo de Indicadores de Calidad

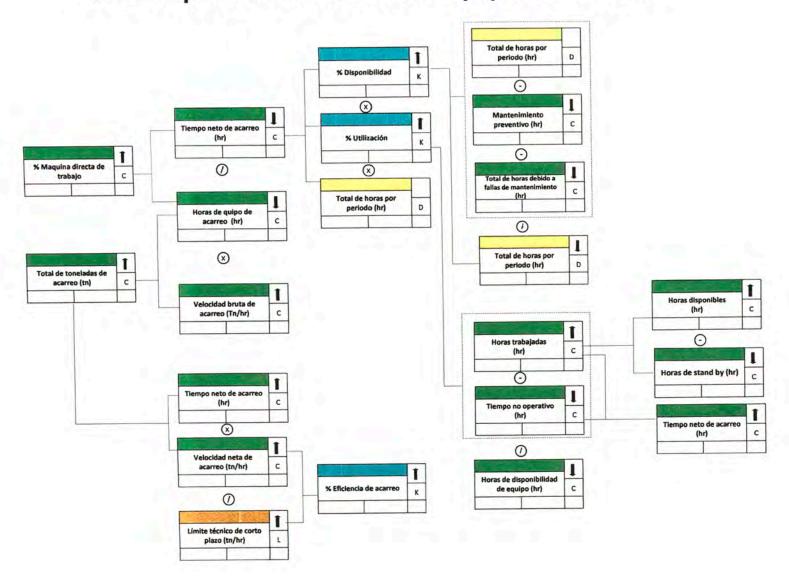


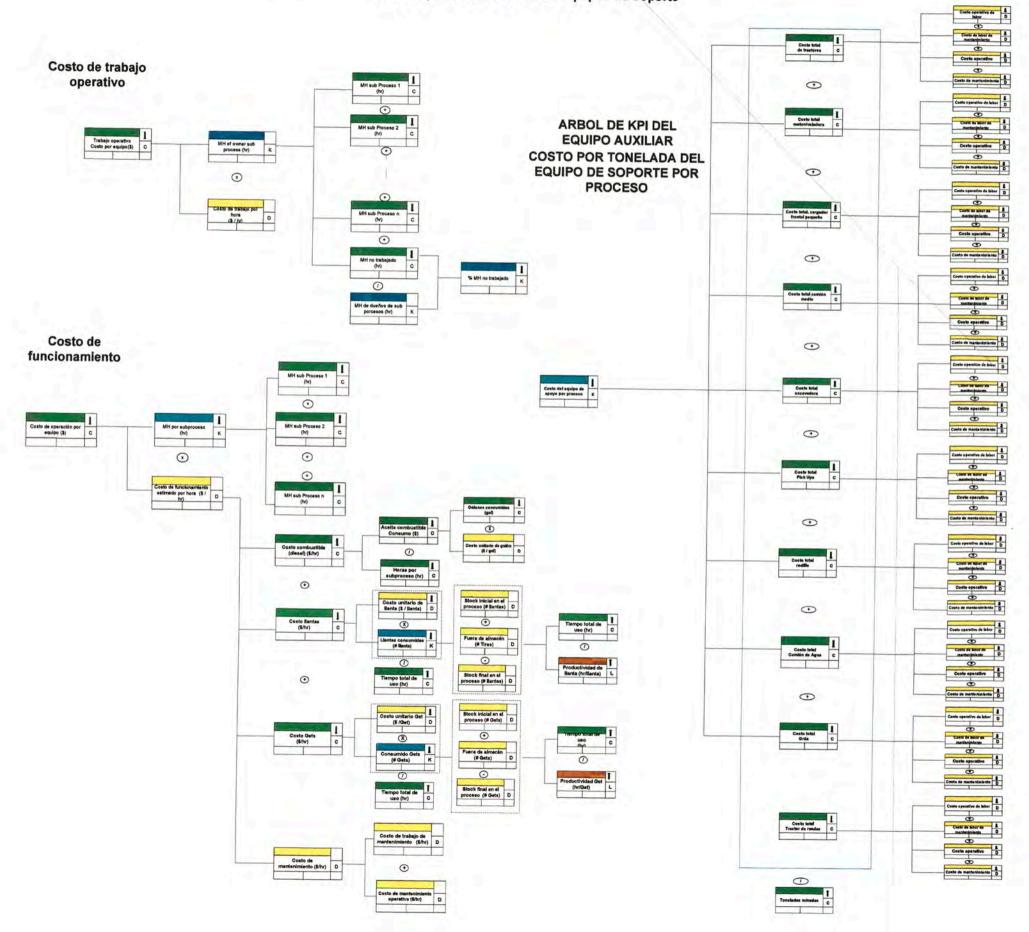
3.4 Indicadores de Carguío

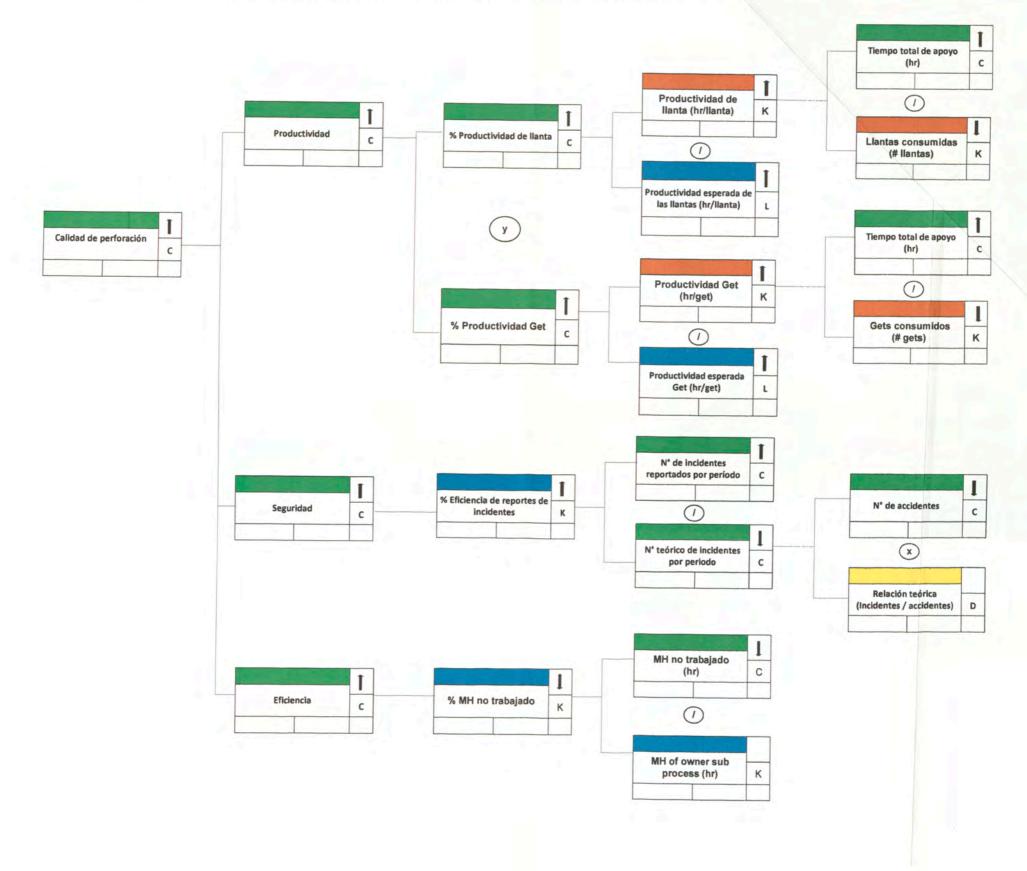

3.4.4 Mapeo de Indicadores de Equipo (Carga total en toneladas)


3.5.1 Mapeo de indicadores de labor

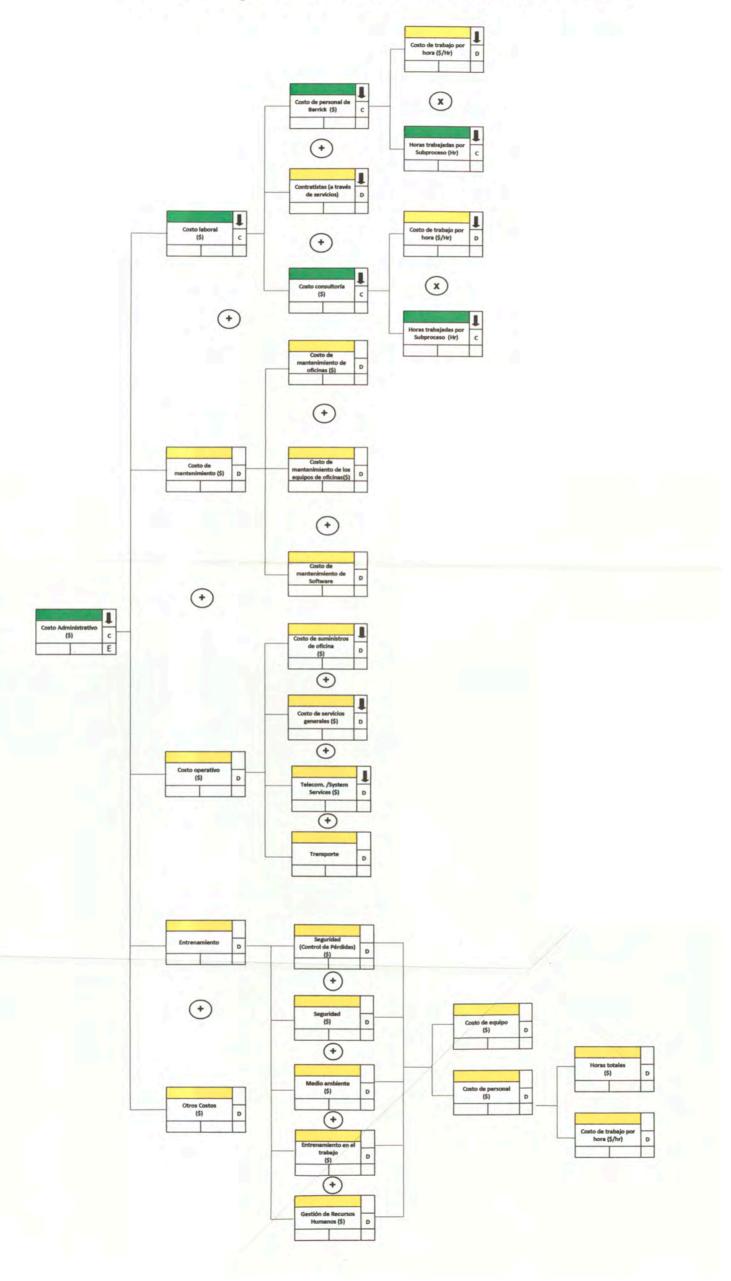

3.5.2 Mapeo de indicadores de Costo Operativo de Acarreo


3.5.2 Costo Operativo de Acarreo

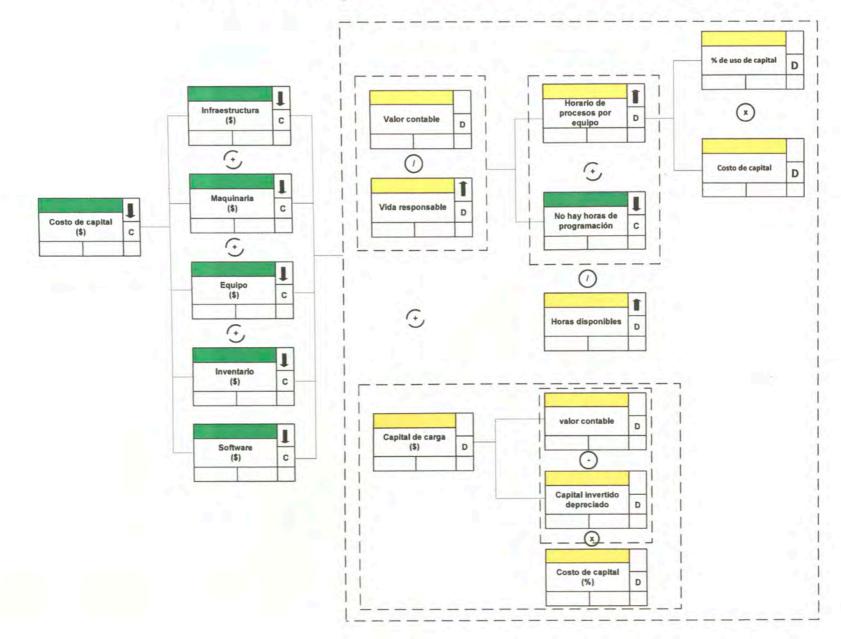

3.5.3 Mapeo de Indicadores de Calidad


3.5.4 Mapeo de Indicadores de Equipo de Acarreo

3.6.1 Mapeo de Indicadores de Equipos de Soporte



3.6 Indicadores de equipos de servicios auxiliares3.6.2 Mapeo de Indicadores de Calidad



3.7 Indicadores de administrativos

3.7.1 Mapeo de Costo Administrativo

3.7.2. Mapeo de Costo de Capital

CAPITULO IV

IMPACTO EN PRODUCCIÓN, ECONÓMICO Y FINANCIERO EN LA CADENA DE VALOR POR VARIACION DE LOS INDICADORES CLAVES DE DESEMPEÑO EN OPERACIONES MINA

4.1 Indicadores claves de desempeño de operaciones mina

4.1.1 Indicadores operativos.

Son los de mayor impacto sensibilidad e identificados en el capítulo III y se refleja directamente en los resultados, viene dado por las mejoras realizadas en la parte operativa en la ejecución de las actividades de perforación, voladura, carguío, acarreo y servicios auxiliares, la mejora de indicadores se refleja directamente en la producción y costo de nuestros productos finales. Solo realizaremos la evaluación del impacto de indicadores que corresponden a operaciones mina (utilización y producción), ya que disponibilidad es administrado por mantenimiento

4.1.2 Indicadores administrativos.

El impacto de estos indicadores puede ser directo o indirecto en los resultados y viene dado por el conjunto de actividades direccionadas a mejorar la calidad de las condiciones de trabajo del personal y de acciones para mejorar la el desempeño de los operadores y vienen dado por las mejoras en entrenamiento, costo de personal en gerencia, administrativo y supervisión, porcentaje de ausentismo y rotación.

4.1.3 Indicadores de gestión.

Son indicadores que reflejan el resultado total de una gestión y administración, en ellos se reflejan todos los esfuerzos individuales y grupales y que son monitoreados por las gerencias, superintendencias, jefaturas y supervisión.

4.2 Indicadores claves de acarreo

4.2.1 Utilización.

La utilización de volquetes tiene varios componentes de los cuales los clasificamos como mejorables y registrables

i. Componente mejorable, son la que tienen oportunidad de reducir el tiempo de parada, ejemplo: tiempo de cambio de turno, algunos componentes mejorables tienen una parte establecido por legislación por ejemplo: en el tiempo de voladura la parte de espera de minutos establecidos para ingresar a revisar un disparo en tajo abierto, en otros componentes mejorables tiene una parte técnica como ejemplo: abastecimiento de combustible, el tiempo de parada antes de apagar el equipo para esperar a bajar las revoluciones y no dañar los componentes del motor, otro componente mejorables como por ejemplo: el tiempo de cambio de guardia, se tiene el tiempo establecidos por reglamento o procedimiento internos para asegurar la integridad del operador esto nos quiere decir que en los componentes mejorables hay tiempos no mejorables(establecidos por ley, especificaciones técnicas del equipo, procedimientos, reglamentos, etc.) que no están sujetos a mejora, pero los otros tiempos que son parte de los componentes si son mejorables.

ii. Componente registrable, son las paradas impredecibles por razones internas o externas a la operación que solo se registran, ejemplo: parada por condiciones climáticas.

Tabla 4.2 – Componente de la utilización acarreo

PARADAS POR VOLQUETE - SITUACIÓN ACTUAL

Paradas	Día min/día	Noche min/día	Total Día min/día	Sub total min/día	Porcentaje %	Duración hrs/año	Observación
Minutos al día	720	720	1.440	1.440	100%	8.760	R
Paradas por mantenimiento	Paradas por mantenimiento						
Mantenimiento preventivo		49	49			297	R
Inspección de mantenimiento		16	16			99	M
Malogrado	1	94	194			1.181	M
Sub Total	2	259	259			1.577	M
Tiempo disponible(Disponibilidad)				1181	82.0%	7.183	M
Paradas por operaciones mina							
Abastecimiento de combustible	10	10	20			122	M
Refrigerio	45	60	105			639	M
Esperando en descarga	7,5	7	15			88	M
Cambio de turno	5	6	11			67	M
Voladura	7,5	0	7,5			46	M
Condiciones climáticas	3	3	6			37	R
Limpieza de tolva	0,2	0,2	0,4			2	R
Charlas/Accidentes	0,9	0	0,9			6	R
Sub total	78	86	165			1.006	M
Tiempo utilizable(Utilización)				1.015	86.0%	6.178	M
	1			The state of the s			_
Uso neto en producción				1.015	70.5%	6.178	M

Nota:

Nos enfocaremos en las demoras de operaciones mina

R Registrable o dato

M Mejorable

Tabla 4.3 – Abastecimiento de combustible acarreo

Análisis de oportunidades de reducción en abastecimiento de combustible

Ítem	Valor Actual	Propuesta	Unidades
Capacidad de tanque	500	700	galones
Porcentaje de llenado	70%	75%	%
Volumen abastecimiento	350	525	galones
Caudal de bombeo	80	100	galones/min
Tiempo de apagado de motor	2,6	2,6	min
Tiempo de abastecimiento neto	4,4	5,3	min
Tiempo de motor prendido para salir	2	2	min
Demora de conexiones y otros	1,0	1,0	min
Tiempo de abastecimiento neto	10,0	10,9	min
Consumo horario	29,2	30,0	gal/hr
Horas de independencia del volquete	12,0	17,5	hrs
Paradas por abastecimiento	2,00	1,37	
Tiempo total por abastecimiento	20,0	14,9	min/día
Costo por tanque de combustible	0	1.500	\$/tanque
Tanques de combustible	0	18	tanques
Costo total de tanques	0	27.000	\$
Vida de tanques	0	5	años
Costo por año de tanques	0	5.400	\$/año
Costo de bomba de abastecimiento	0	5.000	\$
Costo por año de bomba de abastecimiento	0	1.000	\$/año
Costo total de inversión	0	6.400	\$/año

Nota:

Se propone cambio de tanques de combustible de mayor volumen y aumentar el caudal de abastecimiento de las bombas de combustible

Tabla 4.4 – Refrigerio acarreo

Análisis de oportunidades de reducción en el tiempo de refrigerio

Ítem	Valor Actual			Propuesta			Unidades
item	Día	Noche	Total	Día	Noche	Total	Unidades
Tiempo de refrigerio	30	45	75	4	4	8	min
Tiempo de traslado	15	15	30	0	0	0	min
Tiempo total	45	60	105	4	4	8	min
Personas para remplazo en refrigerio	0		0	15		15	
Costo por operador		2.475	2.475	2.47	75	2.475	\$/mes
Costo total de personal adicional	0		0		37.125	37.125	\$/mes
Costo anual de personal adicional	0		0		445.500	445.500	\$/año
Bahías comedor a implementar	0		0	6		6	
Costo por bahía/comedor	0		0		20.000	20.000	\$/bahía
Costo de bahías/comedor	0		0		120.000	120.000	min
Duración de bahías	0		0	5		5	años
Costo anual de bahías	0		0		24.000	24.000	\$/año
Costo de total de inversión	0		0		469.500	469.500	\$/año

Nota:

Se propone una cuadrilla de personal para reemplazo en la hora de refrigerio además de la construcción de bahías/comedor de cambio de operador, el reemplazo de operadores se realiza a la hora de refrigerio en un rango de hora (12 m a 2 pm o 1 a 3 am)

Tabla 4.5 – Esperando en chancadora acarreo

Análisis de la oportunidad de reducir el tiempo de esperando en descarga

Ítem	Valor Actual	Propuesta	Unidades
Espera en descarga	15	11	min
Inversión de seguimiento	0	35	min/día
Costo de seguimiento	0	10,3	\$/hr
Costo diario de seguimiento	0	5,99	\$/día
Días	0	365	días
Costo total de inversión	0	2.188	\$/año

Nota

La inversión en seguimiento es el tiempo que dedicará la supervisión para mejorar este punto a través de paneles de control en línea vía web

Tabla 4.6 – Cambio de turno acarreo

Análisis de la oportunidad de reducir el tiempo de cambio de turno

Ítem	Valor Actual	Propuesta	Unidades
Cambio de turno	11	9	min
Inversión de seguimiento	0	45	min/día
Costo de seguimiento	0	13,3	\$/hr
Costo diario de seguimiento	0	10,00	\$/día
Días	0	365	días
Costo total de inversión	0	3.649	\$/año

Nota

La inversión en seguimiento es el tiempo que dedicará la supervisión para mejorar este punto incluye un nuevo procedimiento de cambio de turno

Tabla 4.7 – Voladura acarreo

Análisis de la oportunidad de reducir el número de voladuras por semana

Ítem	Valor Actual	Propuesta	Unidades
Tiempo de voladura	17,5	17,5	min/voladura
Frecuencia	3	2	frecuencia/semana
Tiempo por día	7,5	5,0	min/día
Tiempo de planificación adicional	0	60	min/día
Costo horario de planificación	0	13,75	\$/hr
Costo diario planificación	0	13,75	\$/día
Días	0	365	días
Costo total de inversión	0	5.019	\$/año

Nota

La inversión es el tiempo adicional en planificación para reducir el número de voladuras por semana

Los indicadores claves en utilización de la flota de acarreo mejorable, se contemplan los cinco puntos mencionados y analizados anteriormente: abastecimiento de combustible, refrigerio, esperando en descarga, cambio de turno y voladura.

Dentro de la utilización también tenemos componentes registrables como: parada por condiciones climáticas, limpieza de tolva, accidentes, charlas y muchas otras más, que no son predecibles y que solo se registran, estas paradas no las podemos planificar y lo que se hace para programarlas e incluirlas dentro de los planes de producción es considerar los promedios de los registros históricos.

En siguiente cuadro adjuntamos el potencial de mejora total en utilización.

Tabla 4.8 – Oportunidad económica y financiera en utilización acarreo

OPORTUNIDAD DE AHORRO E INGRESO POR MEJORAS EN LOS COMPONENTES DE LA UTILIZACIÓN

Ítem	AC	RE	ED	СТ	VO	Unidades
Nuevo tiempo	14,9	8	11	9	5	min/día
Reducción	5,1	97	4	2	2.5	min/día
Utilización	86,4%	94,2%	86,3%	86,2%	86,2%	%
Incremento de producción	230.348	4.393.439	181.173	90.586	113.233	t/año
Ahorro en costo fijo	2.526	44.197	1.989	996	1.245	\$/año
Costo oportunidad	97.072	1.851.450	76.348	38.174	47.718	\$/año
Ingreso total	99.598	1.895.647	78.337	39.171	48.963	\$/año
Costo de implementación	6.400	469.500	2.188	3.649	5.019	\$/año
Ingreso neto	93.198	1.426.147	76.150	35.522	43.944	\$/año

NOTA: Abastecimiento de combustible: AC

Cambio de turno: CT
Refrigerio: RE
Voladura: VO
Esperando en descarga: ED

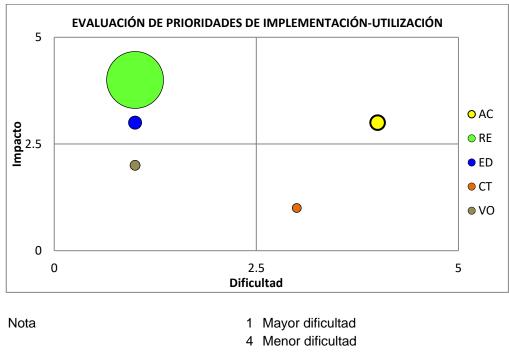


Tabla 4.9 – Priorización de implementación utilización acarreo

- 1 Menor impacto económico
- 4 Mayor impacto económico

4.2.2 Capacidad de carga.

Mejorar la capacidad de carga se basa en el incremento de las toneladas en la carga de los volquetes sin poner en riesgo la integridad de la persona y del equipo, para ello utilizamos las especificaciones técnicas de los equipos.

Dentro de las alternativas de mejora se listan las oportunidades de instalar componentes o partes del equipo con menor peso al original (el instalar un componente o parte de menor peso no implica en comprometer el diseño del equipo, se instalar componentes con materiales de mejor aleación y más tecnología que reemplacen y cumplan las funciones de los componentes o partes originales), se mantiene el peso total (incluido carga) para el que fue diseñado el equipo.

Tabla 5.0 –Especificaciones técnicas de los volquetes

Off Highway Trucks Specification					
Trademark	Caterpillar	Komatsu			
Model	785C/B	730E	Units		
Body Type	Standard Body	Standard Body			
Chassis Weight	79.584	113.850	Kgs		
Debris(4% of Chassis Weight)	3.183		Kgs		
Total Chassis Weight	82.767	113.850	Kgs		
Body weight without liners	21.300	24.520	Kgs		
Standard Liner Weight	7.639		Kgs		
Standard sideboards and tail extension	1.769	2.948	Kgs		
Total Body Weight	30.708	27.468	Kgs		
Operating Weight Empty	113.475	141.318	Kgs		
Nominal Payload Capacity	136.000	183.000	Kgs		
Gross Machine Operating Weight	249.475	324.318	Kgs		

Fuente: Handbook Caterpillar Ed. 36 y Handbook Komatsu Ed. 22

Tabla 5.1 –Cambio de tolvas

Propuesta de cambio de tolvas					
Volquete	Caterpillar	Komatsu			
Modelo	785C/B	730E	Unidades		
Tipo de tolva	Max Body	Max Body			
Peso total del chasis	82.767	113.850	Kgs		
Peso total de tolva	19.300	22.500	Kgs		
Nueva capacidad de carga	147.408	187.968	Kgs		
Capacidad de carga inicial	136.000	183.000	Kgs		
Peso bruto de maquina operativa	249.475	324.318	Kgs		

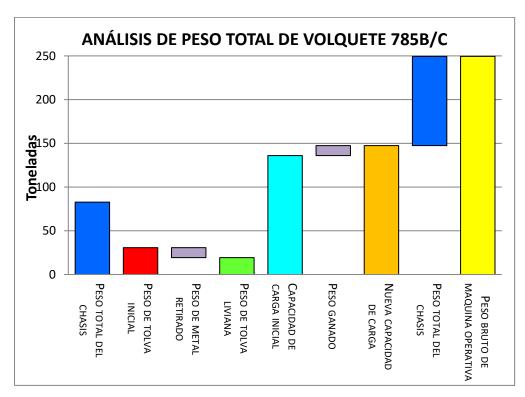


Tabla 5.2 – Análisis de peso de volquetes 785B/C

Tabla 5.3 - Análisis de peso de volquetes 730E

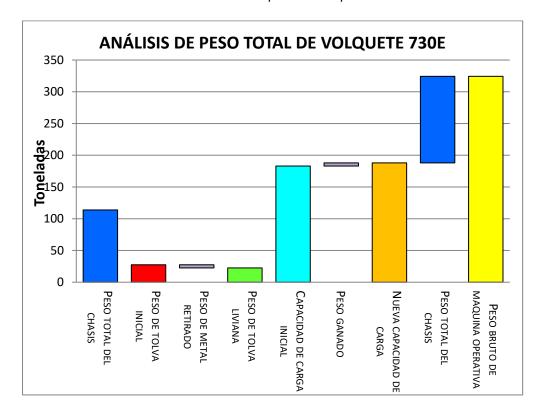


Tabla 5.4 – Análisis de costo de tolvas

Costo de cambio de tolvas					
Tipo de tolva	Max Body	Max Body	Unidades		
Volumen de tolva SAE 2:1	91	111	m3		
Capacidad de carga	147.408	187.968	kgs		
Capacidad de carga adicional	11.408	4.968	kgs		
Costo de tolva	86.000	110.000	\$/tolva		
Duración	4	4	años		
Costo de reparación	30.000	35.000	\$/año		
Duración de reparación	1	1	año		
Costo anual por tolva	51.500	62.500	\$/año		
Número de tolvas	12	6	tolvas		
Costo anual por flota	618.000	375.000	\$/año		

Tabla 5.5 – Análisis de financiero de implementación de tolvas livianas

EVALUACIÓN ECONÓMICA DE IMPLEMENTACIÓN DE TOLVAS LIVIANAS					
Ítems	785B/C	Komatsu	Unidades		
Capacidad de Carga	136	183	t		
Ciclo	22	22	min		
Productividad horaria	371	499	t/hr		
Flota	12	6	volquetes		
Producción por flota	4.451	2.995	t/hr		
Producción total		7.445	t/hr		
Nueva capacidad de carga	147	188	t		
Productividad horaria	402	513	t/hr		
Nueva producción por flota	4.824	3.076	t/hr		
Nueva producción total		7.900	t/hr		
Producción adicional		2.808.607	t/año		
Ahorro costo fijo		29.172	\$/año		
Ahorro costo variable		1.971.379	\$/año		
Costo de oportunidad		1.183.582	\$/año		
Ingreso total		3.184.132	\$/año		
Costo de implementación		993.000	\$/año		
Ingreso neto		2.191.132	\$/año		

La capacidad de carga también tiene oportunidad de mejora de acuerdo a la distribución de carga, esta oportunidad de mejora se refleja en la mejor conservación de los componente, estructura y llantas de los volquetes y por lo tanto menos costos de mantenimiento y menos paradas por reparaciones.

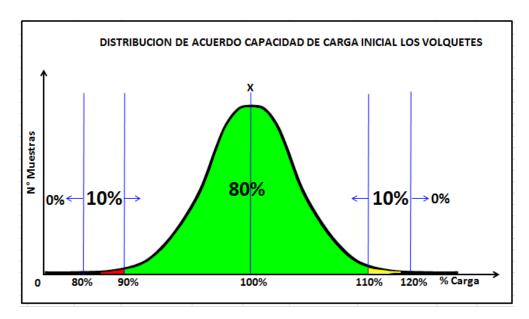


Figura 4.0 – Distribución inicial

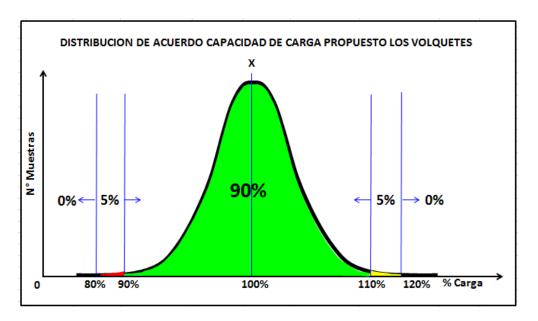


Figura 4.1 – Distribución propuesta

4.2.3 Tiempo de cola.

El tiempo de cola es un tiempo muerto é improductivo que idealmente debería ser cero, pero que operativamente como promedio de un periodo no es posible obtenerlo, el motivo de la generación de colas es por diferentes causas, muchas de estas incontrolables, otras controlables y mejorables.

Actualmente existen muchos sistemas de despacho monitorean constantemente a los equipos y que permiten realizar programaciones y configuraciones para reducir considerablemente la formación de colas en carguío y descarga, la inversión viene dada por mayor tiempo dedicado a la configuración y monitoreo de las colas..

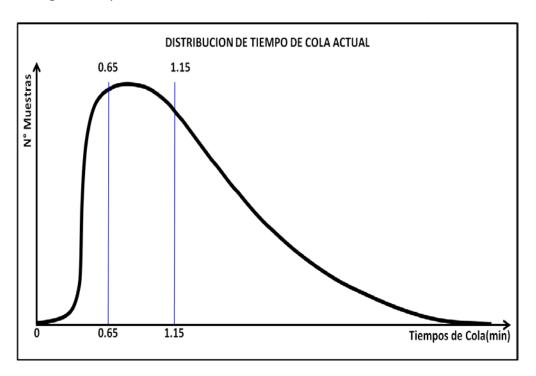


Figura 4.2 – Distribución de colas actualmente

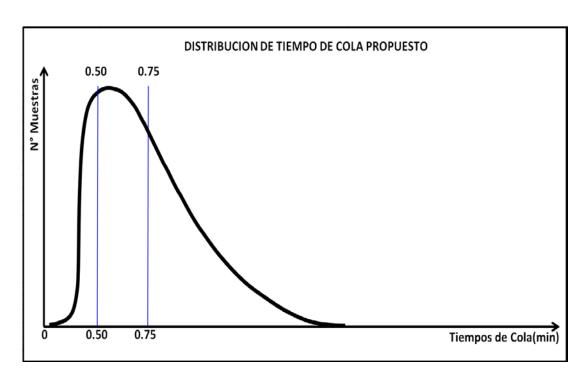


Figura 4.3 – Distribución de colas propuesta

Tabla 5.6 – Análisis de financiero de reducción de tiempo de colas

EVALUACIÓN ECONÓMICA DE REDUCCION DE TIEMPO DE COLA							
Ítems	785B/C	Komatsu	Unidades				
Capacidad de Carga	136	183	t				
Ciclo	22	22	min				
Tiempo de cola actual	1,15	1,15	min				
Tiempo de cola propuesto	0,75	0,75	min				
Ciclo nuevo	21,6	21,6	min				
Productividad horaria	378	508	t/hr				
Flota	12	6	volquetes				
Producción por flota	4.533	3.050	t/hr				
Producción total		7.583	t/hr				
Producción adicional		851.753	t/año				
Ahorro costo fijo		9.216	\$/año				
Ahorro costo variable		622.824	\$/año				
Costo de oportunidad		\$/año					
Ingreso total		990.980	\$/año				
Costo de implementación		19.127	\$/año				
Ingreso neto		971.853	\$/año				

4.2.4 Tiempo de traslado.

El tiempo de traslado viene dado por el tiempo de viaje vacío y el tiempo de viaje cargado y su mejora está dado por incremento de velocidad de los volquetes, este incremento se da por tres condiciones: mejora en la superficie de rodadura (corrección de peraltes, reducción del patinaje, limpieza de vía, eliminación de baches y ondulamientos), reducción de cruces con equipos livianos o pesados y reducción de curvas cerradas. Hay beneficios colaterales como incremento de la vida de componentes (suspensiones, mandos finales, chasis y convertidor), llantas y combustible

Tabla 5.7 – Evaluación de costo de uso de equipos para arreglo de vías

COSTO DE USO DE EQUIPO AUXILIAR PARA MEJORAR ESTADO DE VIAS									
Equipo	Costo horario (\$/hr)	Uso adicional (hr/mes)	Costo mensual (\$)	Costo anual (\$)					
Tractor D10	302	37,0	11.165	133.976					
Tractor D8	170	27,7	4.730	56.760					
Motoniveladora 16H	147	83,2	12.194	146.326					
Tractor 834B	142	83,2	11.835	142.019					
Excavadora 330C/D	115	9,2	1.060	12.716					
Cargador 980G	115	9,2	1.060	12.716					
Retroexcavadora 416E	45	4,6	208	2.497					
Cargador CAT 992	380	18,5	7.020	84.235					
Volquete 785C/B	204	83,2	17.011	204.132					
Lastre y materiales			5.107	61.279					
Costo total	1.619	356,0	71.388	856.657					

Tabla 5.8 – Análisis financiero de la reducción de tiempo de traslado

EVALUACIÓN ECONÓMICA DE REDUCCION DE TIEMPO DE TRASLADO						
Ítems	785B/C	Komatsu	Unidades			
Capacidad de Carga	136	183	t			
Ciclo	22	22	min			
Velocidad cargado actual	15	15	km/hr			
Distancia	2,77	2,77	km			
Tiempo viaje cargado	11,07	11,07	min			
Velocidad vacío actual	32	32	km/hr			
Distancia	2,77	2,77	km			
Tiempo viaje vacío	5,19	5,19	min			
Tiempo de viaje total	16,27	16,27	min			
Velocidad cargado propuesta	17	17	km/hr			
Nuevo tiempo viaje cargado	9,77	9,77	min			
Velocidad vacío propuesta	35	35	km/hr			
Nuevo tiempo viaje vacío	4,75	4,75	min			
Nuevo tiempo de viaje total	14,52	14,52	min			
Ciclo nuevo	20,25	20,25	min			
Productividad horaria	403	542	t/hr			
Flota	12	6	volquetes			
Producción por flota	4.835	3.253	t/hr			
Producción total		8.088	t/hr			
Producción adicional		3.969.453	t/año			
Ahorro costo fijo		40.271	\$/año			
Ahorro costo variable		2.721.450	\$/año			
Costo de oportunidad		1.672.777	\$/año			
Ingreso total		4.434.498	\$/año			
Costo de implementación		856.657	\$/año			
Ingreso neto		3.577.841	\$/año			

4.2.5 Tiempo de descarga.

El tiempo de descarga viene dado por la suma del tiempo de cuadrado en zona y el tiempo neto de descarga, la disminución de estos tiempos están dadas por mejoras en la zona como: amplitud, condición de la superficie, visibilidad, condición de los muros de contención y equipo de empuje de material (caso de botaderos o stock de material) o limpieza (en caso de chancadora).

La consideración adicional que se debe tener en las zonas de descarga al igual que en las zonas de carguío es que es estos lugares es donde se produce la mayor cantidad de daños irreversibles a las llantas. Los muros de seguridad conformados de acuerdo a procedimiento o reglamentación en descarga brindan la seguridad de retroceder y descargar de una manera eficiente. La iluminación nocturna brinda una mejor visibilidad para retroceder y realizar una actividad sin causar daño a los neumáticos.

Tabla 5.9 – Evaluación de costo de uso de equipos para de zonas de descarga

COSTO DE USO DE EQUIPO AUXILIAR PARA MEJORAR ESTADO ZONAS DE DESCARGA								
Equipo	Costo horario (\$/hr)	Uso adicional (hr/día)	Costo mensual (\$)	Costo anual (\$)				
Tractor D10	302	2,0	18.109	220.327				
Motoniveladora 16H	147	2,0	8.790	106.950				
Tractor 834B	142	2,0	8.532	103.802				
Cargador 980G	115	1,0	3.438	41.825				
Luminarias	10	24,0	7.200	87.600				
Costo total	715	31,0	46.069	560.504				

Nota:

Uso de 2 luminarias en botaderos en el turno noche (12 hora cada una)

Tabla 6.0 – Análisis financiero de la reducción del tiempo de descarga

EVALUACIÓN ECONÓMICA DE REDUCCION DE TIEMPO DE DESCARGA						
Ítems	785B/C	Komatsu	Unidades			
Capacidad de Carga	136	183	t			
Ciclo	22	22	min			
Tiempo de descarga actual	1,08	1,08	min			
Tiempo de descarga propuesto	0,75	0,75	min			
Ciclo nuevo	21,67	21,67	min			
Productividad horaria	378	508	t/hr			
Flota	12	6	volquetes			
Producción por flota	4.533	3.050	t/hr			
Producción total		7.583	t/hr			
Producción adicional		851.753	t/año			
Ahorro costo fijo		9.216	\$/año			
Ahorro costo variable		622.824	\$/año			
Costo de oportunidad		358.939	\$/año			
Ingreso total		990.980	\$/año			
Costo de implementación		560.504	\$/año			
Ingreso neto		430.476	\$/año			

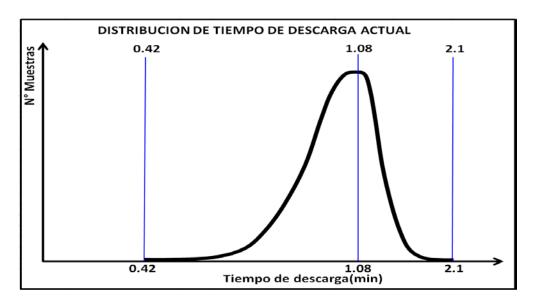


Figura 4.4 – Distribución de tiempo de descarga actual

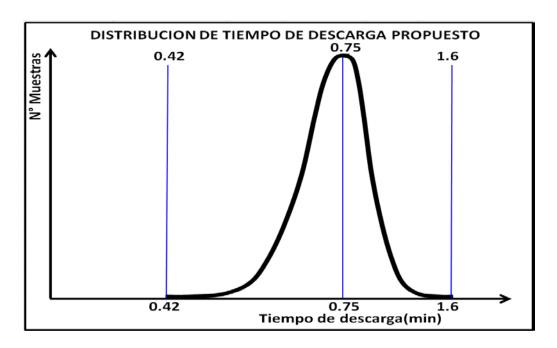


Figura 4.5 – Distribución de tiempo de descarga propuesto

Tabla 6.1 – Oportunidad económica y financiera tolvas, colas, traslado y descarga

Ítem	TL	TC	TT	TD	Unidades
Nuevo tiempo/C. Carga	160,9	0,75	15	0,75	min/día
Reducción	9,3	0,4	1,7	0,3	min/día
Tiempo de ciclo	22,0	21,6	20,3	21,7	%
Incremento de producción	2.808.607	851.753	3.969.453	851.753	t/año
Ahorro en costo fijo	29.172	9.216	40.271	9.216	\$/año
Ahorro en costo variable	1.971.379	622.824	2.721.450	622.824	\$/año
Costo oportunidad	1.183.582	358.939	1.672.777	358.939	\$/año
Ingreso total	3.184.132	990.980	4.434.498	990.980	\$/año
Costo de implementación	993.000	19.127	856.657	560.504	\$/año
Ingreso neto	2.191.132	971.853	3.577.841	430.476	\$/año

NOTA: Tolvas livianas: TL

Tiempo de cola: TC

Tiempo de traslado TT

Tiempo de descarga TD

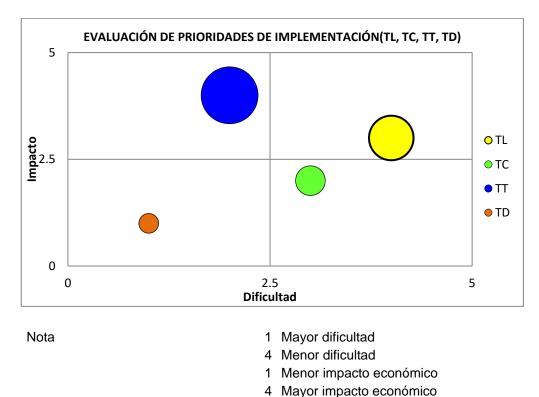


Tabla 6.2 – Priorización de implementación tolvas, colas, traslado y descarga

4.2.6

Vida de llantas de volquetes

El incremento de la vida de las llantas impacta directamente en el ahorro de la operación, el costo de las llantas es uno de los costos más importantes de operaciones mina, el incremento de vida de llantas viene acompañado de actividades que involucra cambio de actitud en la operación de volquetes, centrado de carga, controlar los excesos de carga, control de la velocidad de volquete, diseño adecuado de vías(peraltes, pendientes y anchos), limpieza de vías, adecuada construcción de vías para disminuir el patinaje y resistencia. Las técnicas de operación de volquetes son claves para el incremento de vida de llantas, una adecuada selección de marcha permite menos derrame de material.

Tabla 6.3 – Evaluación económica de incremento de vida de llantas en acarreo

Equipo	785 B/C	730E	Unidades
Vida de llanta	5.400	4.900	hrs/llanta
Vida de llanta propuesta	5.800	5.250	hrs/llanta
Horas adicionales	400	350	hrs/llanta
Horas al año de volquetes	74.131	37.065	hrs/año
Llantas	83	46	Llantas/año
Llantas(nueva vida)	77	43	Llantas/año
Diferencia	6	3	Llantas/año
Costo de llanta	28.500	42.000	\$/llanta
Ahorro	171.000	126.000	\$/año
Costo de tractor de ruedas	142	142	\$/hr
Horas adicionales	1	0,5	hrs/día
Costo	51.901	25.951	\$/año
Ingreso neto	119.099	100.049	\$/año
Ingreso total		219.148	\$/año

4.2.7 Consumo de combustible de volquetes.

El disminuir el consumo horario de combustible impacta directamente en el ahorro de la operación, el costo de combustible es uno de los costos más altos de operaciones mina, al igual que las llantas involucra cambio de actitud en la operación de volquetes(correcta selección de marcha), controlar los excesos de carga, control de la velocidad de volquete, diseño

adecuado de vías(peraltes, pendientes y anchos), limpieza de vías, adecuada construcción de vías para disminuir el patinaje y resistencia.

Tabla 6.4 – Evaluación económica de ahorro de combustible en acarreo

Equipo	785 B/C	730E	Unidades
Consumo	26,4	34	glns/hr
Consumo propuesto	25,4	33	glns/hr
Ahorro de consumo	0,9	1,2	glns/hr
Horas al año de volquetes	74.131	37.065	hrs/año
Consumo	1.954.995	1.260.221	glns/año
Consumo(propuesta)	1.886.570	1.216.113	glns/año
Diferencia	68.425	44.108	glns/año
Costo	4,14	4,14	\$/gIn
Ahorro	283.279	182.606	\$/año
Costo de motoniveladora	147	147	\$/hr
Horas adicionales	1,5	1	hrs/día
Costo	80.212	53.475	\$/año
Ingreso neto	203.067	129.131	\$/año
Ingreso total		332.198	\$/año

4.3 Indicadores claves de carguío

4.3.1 Utilización

La utilización de cargadores tiene varios componentes al igual que los volquetes y también se cuenta con componentes mejorables y registrables, descritos anteriormente.

En mejorar la utilización de cargadores implica reducir el ciclo de acarreo de los volquetes (cuello de botella) por el hecho de utilizar en producción los cargadores grandes de menor tiempo de carguío, reemplazar la participación en el minado de los cargadores de mayor tiempo de carguío y por lo tanto mayor productividad total de todo el proceso de operaciones mina.

Tabla 6.5 – Componentes de la utilización carguío

PARADAS POR CARGADORES - SITUACIÓN ACTUAL

Paradas	Día min/día	Noche min/día	Total Día min/día	Sub total min/día	Porcentaje %	Duración hrs/año	Observación
Minutos al día	720	720	1.440	1.440	100%	8.760	R
Paradas por mantenimiento							
Mantenimiento preventivo		49	49			297	R
Inspección de mantenimiento		16	16			99	М
Malogrado	,	151	151			919	М
Sub Total		216	216			1.314	М
Tiempo disponible(Disponibilidad)				1.224	85,0%	7.446	М
Paradas por operaciones mina							
Abastecimiento de combustible	15	15	30			183	М
Refrigerio	45	60	105			639	М
Traslado de frente	3,4	3,41	7			41	М
Cambio de turno	5	6	11			67	M
Voladura	16,1	0	16,08			98	М
Condiciones climáticas	2,79	2,79	5,58			34	R
Limpieza de cucharón	0,47	0,47	0,94			6	R
Arreglo de frente	4,1	4,09	8,2			50	R
Sub total	88	92	184			1.117	M
Tiempo utilizable(Utilización)				1.040	85,0%	6.329	M
Uso neto en producción				1.040	72,3%	6.329	M

Nota:

Nos enfocaremos en las demoras de operaciones mina

R Registrable o dato

M Mejorable

Tabla 6.6 – Abastecimiento de combustible carguío

Análisis de oportunidades de reducción en abastecimiento de combustible

Ítem	Valor Actual	Propuesta	Unidades
Capacidad de tanque	1.347	1.347	galones
Porcentaje de llenado	70%	75%	%
Volumen abastecimiento	943	1.011	galones
Consumo horario	52,9	52,9	galones/hr
Horas de independencia del cargador	17,8	19,1	hrs
Paradas por abastecimiento/día	1,35	1,26	
Caudal de bombeo	80	100	galones/min
Tiempo de apagado de motor	4,0	4,0	min
Tiempo de abastecimiento neto	11,8	10,1	min
Tiempo de motor prendido para salir	4	4	min
Demora de conexiones y otros	2,5	2,5	min
Tiempo de abastecimiento neto	22,3	20,6	min
Tiempo de abastecimiento/guardia	15	12,9	min
Tiempo total por abastecimiento	30	25,9	min/día
Vida de bomba	0	5	años
Costo de bomba de abastecimiento	0	5.000	\$
Costo por año de bomba de abastecimiento	0	1.000	\$/año
Costo total de inversión	0	1.000	\$/año

Nota:

Se propone aumentar el caudal de la bomba de abastecimiento del camión cisterna

Tabla 6.7 – Refrigerio carguío

Análisis de oportunidades de reducción en el tiempo de refrigerio

Ítem		Valor Act	ual	Propuesta			Huidada a
item	Día	Noche	Total	Día	Noche	Total	Unidades
Tiempo de refrigerio	30	45	75	4	4	8	min
Tiempo de traslado	15	15	30	0	0	0	min
Tiempo total	45	60	105	4	4	8	min
Personas para remplazo en refrigerio		0	0	2		2	
Costo por operador		2.475	2.475	2.47	5	2.475	\$/mes
Costo total de personal adicional		0	0	4.950	0	4.950	\$/mes
Costo anual de personal adicional		0	0	59.40	0	59.400	\$/año
Costo de total de inversión		0	0	59.40	0	59.400	\$/año

Nota:

Se propone una cuadrilla de personal para reemplazo, el reemplazo de operadores se realiza a la hora de refrigerio en un rango de hora(12 m a 2 pm o 1 a 3 am)

Tabla 6.8 – Traslado de frente carguío

Análisis de la oportunidad de reducir el tiempo de traslado de frente

Ítem	Valor Actual	Propuesta	Unidades
Tiempo de traslado de frente	7	4	min
Inversión de seguimiento	0	10	min/día
Costo de seguimiento	0	10,3	\$/hr
Costo diario de seguimiento	0	1,71	\$/día
Días	0	365	días
Costo total de inversión	0	625	\$/año

Nota

La inversión en seguimiento es el tiempo que dedicará la supervisión para mejorar este punto a través de paneles de control en línea vía web

Tabla 6.9 – Cambio de turno carguío

Análisis de la oportunidad de reducir el tiempo de cambio de turno

Ítem	Valor Actual	Propuesta	Unidades
Cambio de turno	11	9	min
Inversión de seguimiento	0	10	min/día
Costo de seguimiento	0	13,3	\$/hr
Costo diario de seguimiento	0	2,22	\$/día
Días	0	365	días
Costo total de inversión	0	811	\$/año

Nota

La inversión en seguimiento es el tiempo que dedicará la supervisión para mejorar este punto incluye un nuevo procedimiento de cambio de turno

Tabla 7.0 – Voladura carguío

Análisis de la oportunidad de reducir el número de voladuras por semana

Ítem	Valor Actual	Propuesta	Unidades
Tiempo de voladura	17,5	17,5	min/voladura
Tiempo de traslado por voladura	20,0	20,0	min/voladura
Frecuencia	3	2	frecuencia/semana
Tiempo por día	16,08	10,72	min/día
Tiempo de planificación adicional	0	20	min/día
Costo horario de planificación	0	13,75	\$/hr
Costo diario planificación	0	4,58	\$/día
Días	0	365	días
Costo total de inversión	0	1.673	\$/año

Nota

La inversión es el tiempo adicional en planificación para reducir el número de voladuras por semana

Las paradas por condiciones climáticas, limpieza de cucharón, arreglo de frente son paradas que se presentan normalmente en la temporada de lluvias, pero que solo son registrables, no predecibles.

Para efectos de presupuesto se utilizan los tiempos promedios registrados en los tres últimos años y se realiza una prorroga diaria, para efectos de cálculos económicos y financieros, pero en la planificación se requieren estos tiempos en la temporada de lluvias, para calcular la utilización productiva de los equipos que esta temporada, existen otros tiempos como el de paradas por charlas, incidentes, falta de frente de carguío, etc. Son bastante pequeños y más impredecibles que no se consideran en los planes.

Tabla 7.1 – Oportunidad económica y financiera en utilización carguío

OPORTUNIDAD DE AHORRO E INGRESO POR MEJORAS EN LOS COMPONENTES DE LA UTILIZACIÓN

Ítem	AC	RE	TF	СТ	VO	Unidades
Nuevo tiempo	25,9	8	4	9	10,72	min/día
Reducción	4,1	97,0	3	2	5,36	min/día
Utilización	85,3%	92,9%	85,2%	85,2%	85,4%	%
Incremento de producción	3.756	88.683	2.573	1.825	4.892	t/año
Ahorro en costo fijo	40	937	27	19	52	\$/año
Ahorro en costo variable	1.700	40.137	1.165	826	2.214	\$/año
Costo oportunidad	1.583	37.372	1.084	769	2.061	\$/año
Ingreso total	3.322	78.446	2.276	1.614	4.327	\$/año
Costo de implementación	1.000	59.400	625	811	1.673	\$/año
Ingreso neto	2.322	19.046	1.651	804	2.654	\$/año

NOTA:	Abastecimiento de combustible:	AC
	Cambio de turno:	CT
	Refrigerio:	RE
	Voladura:	VO
	Traslado de frente:	TF

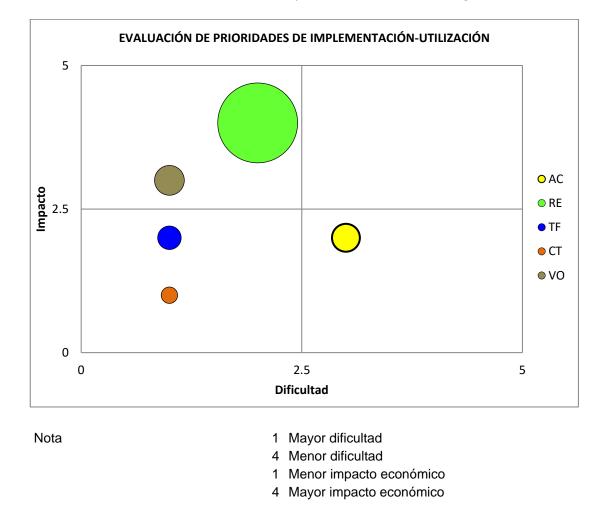


Tabla 7.2 – Priorización de implementación utilización carguío

4.3.2 Tiempo de carguío

El tiempo de carguío es el indicador de desempeño de mayor sensibilidad en la actividad de carguío (además de ser parte del ciclo de acarreo de volquetes, el mejorar este indicador, mejora la productividad total de operaciones mina), el mejorar este indicador nos permite incrementar nuestra eficiencia de carguío, es decir mayor cantidad de toneladas cargadas por hora y menores costos operativos.

Tabla 7.3 – Especificaciones técnicas de los cargadores

Wheel Loaders Specification						
Trademark	Komatsu	Caterpillar	Caterpillar			
Model	WA - 1200 3	994D	992G	Units		
Bucket type	Spade nose rock	Spade nose rock	Spade nose rock			
Chassis weight	143.860	137.637	66.016	Kgs		
Bucket size	20,0	18,0	12,2	m3		
Bucket weight	23.840	21.300	11.400	Kgs		
Bucket payload	37.500	31.800	21.700	Kgs		
Bucket Weight & Payload	61.340	53.100	33.100	Kgs		
Machine Operating Weight	205.200	190.737	99.116	Kgs		

Fuente: Handbook Caterpillar Ed. 36 y Handbook Komatsu Ed. 22

Nota: El componente más sensible a modificación es el lampón(bucket). Modificaciones son pensadas en darle más durabilidad y reducir el número de mantenimientos, los cuales aumentan peso a este componente, sin tomar en cuenta que reducen la capacidad de carga del cargador ó sobrecargar el sistema hidráulico del equipo, que impacta en un mayor tiempo de carguío.

Modificaciones con suples en las partes laterales del lampón para proteger las llantas delanteras del equipo reducen el ratio de penetración del cargador en el frente de carguío y por lo tanto aumente el tiempo de carguío.

Modificaciones en los adaptadores y uñas del lampón enfocados en mayor durabilidad de estos componentes en contra de la penetrabilidad del equipo.

Las mejoras implementadas en lampones deben darle menor tiempo de carguío y menor tiempo de ciclo de acarreo y mayor productividad a todo el proceso.

Tabla 7.4 – Tiempo de carguío

Equipo	WA - 1200 3	994D	992G	Unidades
Volquete	785 B/C	786 B/C	787 B/C	
Capacidad de carga	136	136	136	t
Flota	12	12	12	volquetes
# Pasadas	4,0	5,0	7,0	Pasadas
Tiempo de cuadrado volquete	20,0	20,0	20,0	S
Tiempo por pasada	29,1	32,1	46,5	S
Tiempo neto de carga	1,94	2,67	5,43	min
Tiempo de carga	2,27	3,01	5,76	min
Volquete	730 E	730 E		
Capacidad de carga	183	183		t
Flota	6	6		t
# Pasadas	5,0	6,0	-	Pasadas
Tiempo de cuadrado volquete	20,0	20,0	20,0	S
Tiempo por pasada	29,1	32,1		s
Tiempo neto de carga	2,42	3,21	-	min
Tiempo de carga	2,76	3,54	-	min
	T	T	1	
Tiempo de carga más cuadrado	2,43	3,18	5,76	min
Tiempo neto de carga	2,10	2,85	5,43	min
Participación en la producción	60,5%	39,5%	0%	%
Tiempo de carga neto total	2,40 min			

Tabla 7.5 – Análisis financiero de la reducción del tiempo de carguío

EVALUACIÓN ECONÓMICA Y FINANCIERA DE MEJORAR EL TIEMPO DE CARGUÍO

Ítems	Actual	Propuesta	Variación	Unidades
Tiempo de ciclo actual	22	21,80	-0,20	min
Tiempo de carga actual	2,40	2,20	-0,20	min
Productividad 785B/C	370,9	374,3	3,35	t/hr
Productividad 730E	499,1	503,6	4,51	t/hr
Producción horaria de flota	7.445,5	7.512,7	67,27	t/hr
Producción diaria	126.013	127.151	1.139	t/día
Producción anual	45.994.683	46.410.254	415.571	t/año
Ahorro costo fijo	0	5.030	5.030	\$/año
Ahorro costo variable	0	217.346	217.346	\$/año
Costo oportunidad	0	202.375	202.375	\$/año
Ingreso total	0	424.751	424.751	\$/año
Costo de entrenamiento	4,125	4,125	-	\$/hr
Horas requeridas/operador	0	250	250	hrs/operador
# operadores	13	13	-	operadores
Costo de capacitación	0	13.406	13.406	\$/año
Curso de capacitación	0	40.000	40.000	\$/año
Total inversión	0	53.406	53.406	\$/año
Ingreso neto	-	371.345	371.345	\$/año

Nota:

Se considera una capacitación y entrenamiento de los operadores de cargador, para mejorar su tiempo de carga, todas estas mejoras se realizan sin generar acciones que perjudiquen la estructura, componentes y sistema hidráulico del equipo

4.3.3 Tiempo de espera

El tiempo de espera es tan sensible como el tiempo de carguío, el objetivo de reducir este tiempo es mejora la productividad horaria de los cargadores, por mayor número de carguíos de volquetes en una hora, este incremento de uso productivo del equipo, reducción del consumo innecesario de combustible y componentes generan beneficios al resultado total del producto.

El tiempo de espera de cargador por volquete depende mayormente de la programación de los sistemas de despacho y de la reducción de actividades y diseño de carreteras que interfieran con al tránsito normal de los volquetes y llegar a sus puntos de carguío sin demora.

Tabla 7.6 – Análisis financiero de la reducción del tiempo de espera

EVALUACIÓN ECONÓMICA Y FINANCIERA DE MEJORAR EL TIEMPO DE ESPERA

Ítems	Actual	Propuesta	Variación	Unidades
Tiempo de carga actual Komatsu (WA 1200)	2,10	2,10	-	min
Tiempo de cuadrado y set up de 1er lampo	0,63	0,63	-	min
Capacidad de carga de volquetes promedio	151,7	151,7	-	t
Ratio de excavación	3.329	3.329	-	t/hr
Productividad horaria	2.200	2.430	230	t/hr
Tiempo de espera	33,9%	27,0%	-6,9%	%
Productividad diaria	38.148	42.143	3.995	t/día
Productividad de flota	76.296	84.285	7.989	t/día
Participación en producción	60,5%	66,9%	6,3%	%
Tiempo de carga actual CAT 994D	2,85	2,85	-	min
Tiempo de cuadrado	0,63	0,63	-	min
Capacidad de carga de volquetes promedio	151,7	151,7	_	t
Ratio de excavación	2.612	2.612	_	t/hr
Productividad horaria	1.650	1.829	178,71	t/hr
Tiempo de espera	36,8%	30,0%	-6,8%	%
Productividad diaria	28.611	31.710	3.099	t/día
Productividad de flota	49.717	41.728	-7.989	t/día
Participación en producción	39,5%	33,1%	-6,3%	%
				A / ~
Ahorro costo fijo	0	624	624	\$/año
Ahorro costo variable	0	26.734	26.734	\$/año
Costo oportunidad	0	24.893	24.893	\$/año
Ingreso total	0	52.251	52.251	\$/año
Costo de seguimiento	5,73	5,73	-	\$/hr
Tiempo de seguimiento	0	90,0	90,0	min/día
Costo de seguimiento	0	8,6	8,6	\$/día
Costo anual de seguimiento	0	3.137	3.137	\$/año
Curso de capacitación despachadores	0	10.000	10.000	\$/año
Total inversión	0	13.137	13.137	\$/año
Ingreso neto	-	39.115	39.115	\$/año

Nota:

La reducción del tiempo de espera esta soportado por un mejor uso del sistema de despacho que requiere de una constante reprogramación de prioridades, actualización de rutas, configuración del sistema que permita tener una armonía entre cargadores y volquetes requeridos minimizando los tiempo improductivos(tiempo de espera y colas)

4.3.4 Tiempo de arreglo de frente

El tiempo de arreglo de frente es un tiempo que no se registra como parada, se registra como operativo pero no en carguío, estos arreglos disminuyen las cargas de volquetes por hora y por lo tanto, la productividad del equipo.

Tabla 7.7 – Análisis financiero de la reducción del arreglo de piso

EVALUACIÓN ECONÓMICA Y FINANCIERA DE REDUCIR EL TIEMPO DE ARREGLO DE PISO

Tiempo de carga actual Komatsu(WA 1200) Tiempo de cuadrado y set up de 1er lampo Capacidad de carga de volquetes promedio Ratio de excavación Productividad horaria Tiempo de espera Productividad diaria Productividad de flota Participación en producción	2,10 0,63 151,7 3.329 2.200 33,9% 38.148 76.296 60,5%	2,10 0,63 151,7 3.329 2.364 29,0% 40.988 81.976 65,1%	- - - - 164 -4,9% 2.840 5.680 4,5%	t/día t/día
Capacidad de carga de volquetes promedio Ratio de excavación Productividad horaria Tiempo de espera Productividad diaria Productividad de flota	151,7 3.329 2.200 33,9% 38.148 76.296 60,5%	151,7 3.329 2.364 29,0% 40.988 81.976 65,1%	- 164 -4,9% 2.840 5.680	t t/hr t/hr % t/día t/día
Capacidad de carga de volquetes promedio Ratio de excavación Productividad horaria Tiempo de espera Productividad diaria Productividad de flota	151,7 3.329 2.200 33,9% 38.148 76.296 60,5%	151,7 3.329 2.364 29,0% 40.988 81.976 65,1%	- 164 -4,9% 2.840 5.680	t/hr t/hr % t/día t/día
Ratio de excavación Productividad horaria Tiempo de espera Productividad diaria Productividad de flota	3.329 2.200 33,9% 38.148 76.296 60,5%	2.364 29,0% 40.988 81.976 65,1%	-4,9% 2.840 5.680	t/hr % t/día t/día
Tiempo de espera Productividad diaria Productividad de flota	2.200 33,9% 38.148 76.296 60,5%	29,0% 40.988 81.976 65,1%	-4,9% 2.840 5.680	% t/día t/día
Productividad diaria Productividad de flota	38.148 76.296 60,5% 2,85	40.988 81.976 65,1%	2.840 5.680	t/día t/día
Productividad de flota	76.296 60,5% 2,85	81.976 65,1%	5.680	t/día
	2,85	65,1%		
Participación en producción	2,85		4,5%	%
	·	2 85	I	
Tiempo de carga actual CAT 994D	·		-	min
Tiempo de cuadrado	0,03	0,63	-	min
Capacidad de carga de volquetes promedio	151,7	151,7	-	t
Ratio de excavación	2.612	2.612	-	t/hr
Productividad horaria	1.650	1.776	126,46	t/hr
Tiempo de espera	36,8%	32,0%	-4,8%	%
Productividad diaria	28.611	30.804	2.193	t/día
Productividad de flota	-76.296	-81.976	-5.680	t/día
Participación en producción	39,5%	34,9%	-4,5%	%
Ahorro costo fijo	0	4.411	4.411	\$/año
Ahorro costo variable	0	190.362	190.362	
Costo oportunidad	0	177.249	177.249	
Ingreso total	0	372.023	372.023	
Costo de seguimiento	5,73	5,73	-	\$/hr
Tiempo de seguimiento	0	90,0	90,0	min/día
Costo de seguimiento	0	8,6	8,6	
Costo anual de seguimiento	0	3.137	3.137	\$/año
Costo de equipo auxiliar adicional	448	448	-	\$/hr
Horas de uso de equipo auxiliar	0	1	1	hr/día
Inversión anual en equipo auxiliar	-	163.639	163.639	\$/año
Total inversión	0	166.775	166.775	\$/año
Ingreso neto	-	205.248	205.248	\$/año

Nota:

Utilizamos la reducción de esperando volquetes

Tabla 7.8 – Oportunidad económica y financiera carguío, esperas y arreglo

Ítem	Тс	TE	TA	Unidades
Nuevo tiempo	2,2	28%	30,0%	min/día
Reducción	0,2	6,9%	4,9%	min/día
Tiempo de ciclo	21,8	21,95	21,8	%
Incremento de producción	415.571	99.625	420.608	t/año
Ahorro en costo fijo	5.030	1.052	4.411	\$/año
Ahorro en costo variable	217.346	45.089	190.362	\$/año
Costo oportunidad	202.375	41.983	177.249	\$/año
Ingreso total	424.751	88.124	372.023	\$/año
Costo de implementación	53.406	13.137	166.775	\$/año
Ingreso neto	371.345	74.988	205.248	\$/año

NOTA: Tiempo de carga Tc
Tiempo de espera TE
Tiempo de arreglo TA

Tabla 7.9 – Priorización de implementación carguío, esperas y arreglo

Nota 1 Mayor dificultad

4 Menor dificultad

1 Menor impacto económico

4 Mayor impacto económico

Factores que contribuyen a un constante arreglo de frente son: Inadecuada fragmentación de material, frentes de carguío angostos, inadecuado llevado del nivel de los pisos (sobre o bajo nivel), inadecuado drenaje, material del piso deleznable o esponjoso.

4.3.5 Vida de llantas de cargadores.

El incremento de la vida de las llantas impacta directamente en el ahorro de la operación, el costo de las llantas es uno de los costos más importantes de operaciones mina.

La mejora de la fragmentación y arreglo de piso en los frentes son factores que impactan directamente en el incremento de la vida de las llantas.

Tabla 8.0 – Evaluación económica de incremento de vida de llantas en carguío

Equipo	WA 1200	994D	992G	Unidades
Vida de llanta	6.300	6.700	7.900	hrs/llanta
Vida de llanta propuesta	6.800	7.200	8.200	hrs/llanta
Horas adicionales	500	500	300	hrs/llanta
Horas al año de cargadores	12.658	11.682	4.965	hrs/año
Llantas	8,04	6,97	2,51	llantas/año
Llantas(nueva vida)	7,45	6,49	2,42	llantas/año
Diferencia	0,59	0,48	0,09	llantas/año
Costo de llanta	92.000	92.000	32.000	\$/Ilanta
Ahorro	54.368	44.557	2.943	\$/año
Costo de torito	142	142	142	\$/hr
Horas adicionales	0,1	0,1	0	hrs/día
Costo	5.190	5.190	-	\$/año
Ingreso neto	49.178	39.367	2.943	\$/año
Ingreso total			91.488	\$/año

4.3.6 Consumo de combustible de cargadores

Al igual que en acarreo impacta directamente en el costo de operaciones mina, involucra un cambio de actitud en la operación de cargadores(correcta selección de transferencia de la potencia al sistema hidráulico y de tracción), controlar la carga por lampona, adecuada fragmentación y material no amarrado, frentes amplios, pisos estables y nivelados.

Tabla 8.1 – Evaluación económica de ahorro de combustible en cargadores

Equipo	WA 1200	994D	992G	Unidades
Consumo	52,9	43,1	30,5	glns/hr
Consumo propuesto	51,0	42	29	glns/hr
Ahorro de consumo	1,9	1,5	1,1	glns/hr
Horas al año de cargador	12.658	11.682	4.965	hrs/año
Consumo	669.477	503.726	151.673	glns/año
Consumo(propuesta)	646.045	486.095	146.364	glns/año
Diferencia	23.432	17.630	5.309	glns/año
Costo	4,14	4,14	4,14	\$/gln
Ahorro	97.007	72.990	21.977	\$/año
Costo de capacitación	750	750	0	\$/hr
Horas adicionales	7	7	0	hrs/día
Costo	5.250	5.250	-	\$/año
Ingreso neto	91.757	67.740	21.977	\$/año
Ingreso total			181.474	\$/año

4.4 Indicadores claves de perforación

4.4.1 Utilización.

La utilización de perforadoras tiene varios componentes al igual que los volquetes y cargadores, también se cuenta con componentes mejorables y registrables, descritos anteriormente.

El mejorar la utilización de perforadoras no implica incremento de producción total, ya que estos equipos no participan directamente en el ciclo de acarreo de los volquetes, que son nuestro cuello de botella, lo que implica directamente es la reducción de costos operativos, por la reducción de uso de equipo innecesario, enfocándose en la maximización del uso de los equipos para la capacidad de producción actual de los equipos cuello de botella.

Tabla 8.2 – Componentes de la utilización perforación

PARADAS POR PERFORADORA - SITUACIÓN ACTUAL

Paradas	Día min/día	Noche min/día	Total Día min/día	Sub total min/día	Porcentaje %	Duración hrs/año	Observación
Minutos al día	720	720	1.440	1.440	100%	8.760	R
Paradas por mantenimiento							
Mantenimiento preventivo		89	89			541	R
Inspección de mantenimiento		16	16			99	М
Malogrado		111	111			675	М
Sub Total		216	216			1.314	М
Tiempo disponible(Disponibilidad)				1.224	85,0%	7.446	M
Paradas por operaciones mina							
Abastecimiento de combustible	15	15	30			183	М
Refrigerio	45	60	105			639	М
Traslado de frente	5,4	5,4	11			66	М
Cambio de turno	17,8	17,8	35,7			217	М
Voladura	15,0	0	15,0			91	M
Abastecimiento de agua	15,0	15,0	30,0			183	M
Condiciones climáticas	4,7	4,7	9,4			57	R
Cambio de accesorios	2,37	2,37	4,7			29	R
Arreglo de piso	2,0	2,0	4,1			25	R
Sub total	120	122	245			1.489	М
Tiempo utilizable(Utilización)				979	80,0%	5.957	M
Uso neto en producción				979	68,0%	5.957	M

Nota:

Nos enfocaremos en las demoras de operaciones mina

R Registrable o dato

M Mejorable

Tabla 8.3 – Abastecimiento de combustible perforación

Análisis de oportunidades de reducción en abastecimiento de combustible

Ítem	Valor Actual	Propuesta	Unidades
Capacidad de tanque	350	350	galones
Porcentaje de llenado	70%	75%	%
Volumen abastecimiento	245	263	galones
Consumo horario	21,0	21,0	galones/hr
Horas de independencia de la perforadora	11,7	12,5	hrs
Paradas por abastecimiento/día	2,06	1,92	
Caudal de bombeo	80	100	galones/min
Tiempo de apagado de motor	4,0	4,0	min
Tiempo de abastecimiento neto	3,1	2,6	min
Tiempo de motor prendido para salir	4,0	4,0	min
Demora de conexiones y otros	3,5	3,5	min
Tiempo de abastecimiento neto	14,6	14,1	min
Tiempo de abastecimiento/guardia	15,0	13,6	min
Tiempo total por abastecimiento	30	27,2	min/día
Vida de bomba	0	5	años
Costo de bomba de abastecimiento	0	5.000	\$
Costo por año de bomba de abastecimiento	0	1.000	\$/año
Costo total de inversión	0	1.000	\$/año

Nota:

Se propone aumentar el caudal de la bomba de abastecimiento del camión cisterna

Tabla 8.4 – Refrigerio perforación

Análisis de oportunidades de reducción en el tiempo de refrigerio

Ítem		Valor Actual		Propuesta			Unidades
item	Día	Noche	Total	Día	Noche	Total	Unidades
Tiempo de refrigerio	30	45	75	4	4	8	min
Tiempo de traslado	15	15	30	0	0	0	min
Tiempo total	45	60	105	4	4	8	min
Personas para remplazo en refrigerio	(0	0		3	3	
Costo por operador		2.475	2.475		2.475	2.475	\$/mes
Costo total de personal adicional	(0	0		7.425	7.425	\$/mes
Costo anual de personal adicional	(0	0		89.100	9.100	\$/año
Costo de total de inversión		0	0		89.100	9.100	\$/año

Nota:

Se propone una cuadrilla de personal para reemplazo en la hora de refrigerio, el reemplazo de operadores se realiza en un rango de hora(12 m a 2 pm o 1 a 3 am)

Tabla 8.5 – Traslado de frente perforación

Análisis de la oportunidad de reducir el tiempo de traslado de frente

Ítem	Valor Actual	Propuesta	Unidades
Tiempo de traslado de frente	11	6	min
Inversión de seguimiento	0	10	min/día
Costo de seguimiento	0	10,3	\$/hr
Costo diario de seguimiento	0	1,71	\$/día
Días	0	365	días
Costo total de inversión	0	625	\$/año

Nota

La inversión en seguimiento es el tiempo que dedicará la supervisión para mejorar este punto a través de paneles de control en línea vía web

Tabla 8.6 – Cambio de turno perforación

Análisis de la oportunidad de reducir el tiempo de cambio de turno

Ítem	Valor Actual	Propuesta	Unidades
Cambio de turno	36	24	min
Inversión de seguimiento	0	10	min/día
Costo de seguimiento	0	13,3	\$/hr
Costo diario de seguimiento	0	2,22	\$/día
Días	0	365	días
Costo total de inversión	0	811	\$/año

Nota

La inversión en seguimiento es el tiempo que dedicará la supervisión para mejorar este punto incluye un nuevo procedimiento de cambio de turno

Tabla 8.7 – Voladura perforación

Análisis de la oportunidad de reducir el número de voladuras por semana

Ítem	Valor Actual	Propuesta	Unidades
Tiempo de voladura	17,5	17,5	min/voladura
Tiempo de traslado por voladura	17,5	17,5	min/voladura
Frecuencia	3	2	frecuencia/semana
Tiempo por día	15,00	10,00	min/día
Tiempo de planificación adicional	0	20	min/día
Costo horario de planificación	0	13,75	\$/hr
Costo diario planificación	0	4,58	\$/día
Días	0	365	días
Costo total de inversión	0	1.673	\$/año

Nota

La inversión es el tiempo adicional en planificación para reducir el número de voladuras por semana

Tabla 8.8 – Oportunidad económica y financiera en utilización perforación

OPORTUNIDAD DE AHORRO E INGRESO POR MEJORAS EN LOS COMPONENTES DE LA UTILIZACIÓN

Ítem	AC	RE	TF	СТ	VO	Unidades
Nuevo tiempo	27,2	8,0	6,0	24,0	10,0	min/día
Reducción	2,8	97,0	4,9	11,7	5,0	min/día
Utilización	80,2%	87,9%	80,4%	81,0%	80,4%	%
Incremento de producción	-	-	-	-	-	t/año
Ahorro en costo operativo	4.301	134.048	7.349	17.504	7.572	\$/año
Ingreso total	4.301	134.048	7.349	17.504	7.572	\$/año
Costo de implementación	1.000	89.100	625	811	1.673	\$/año
Ingreso neto	3.301	44.948	6.724	16.693	5.899	\$/año

NOTA:	Abastecimiento de combustible:	AC
	Refrigerio:	RE
	Traslado de frente:	TF
	Cambio de turno:	CT
	Voladura:	VO

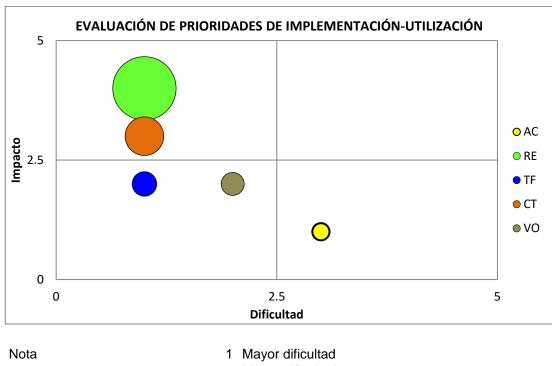


Tabla 8.9 – Priorización de implementación utilización perforación

- 4 Menor dificultad
- 1 Menor impacto económico
- 4 Mayor impacto económico

Las otras demoras en su mayoría son solo registrables, a excepción del abastecimiento de agua, cuya oportunidad de mejora se debe evaluar de acuerdo a las condiciones de cada operación, para este trabajo se considera una oportunidad muy baja(es una demora muy variable porque depende de la disponibilidad y accesibilidad a las plataformas de perforación de las cisternas de abastecimiento).

Si la utilización de la perforación formaría parte del cuello de botella el análisis de las oportunidades de mejora serían mucho más detalladas y con ingresos mucho mayores, no significa, que no se deban analizar, primero analizar y enfocarse las que mayor beneficio tienen.

4.4.2 Tiempo de perforación

El tiempo de perforación es el indicador más sensible de la productividad de la perforación, se debe tener un control adicional de dicho indicador, el enfocarse en incrementar la velocidad de perforación (disminuir el tiempo de perforación) puede incurrir en mayor gasto por desgaste prematuro de los aceros de perforación (brocas, barrenos, bit subs, amortiguadores, adaptadores y guiadores), este punto de equilibrio se debe evaluar de acuerdo a las necesidades de la operación, ejemplo:

- i. Por motivos operativos se requiere y poner al límite la capacidad de producción de las perforadoras y depende de la perforación el incremento de la producción de metal o concentrado, debemos evaluar una mayor velocidad de perforación, impactando en el desgaste prematuro de los aceros de perforación (mayor costo de perforación), pero en el resultado total será mayor producción.
- ii. Para el caso de este estudio, la capacidad de perforación está muy por encima de la capacidad productiva del cuello de botella (volquetes), el enfoque es bajar costo de perforación y por lo tanto el incremento de velocidad está limitado por la vida de los aceros de perforación, el equilibrio se da cuando el incremento de velocidad de perforación no disminuye significativamente la vida de los aceros y hay un equilibrio entre costo/beneficio por velocidad y vida de componentes.

La investigación de aceros de para el tipo de terreno debe ser constante, con la finalidad de bajar el costo de los aceros, incrementar la vida o ambos a la vez, en resumen bajar el costo por metro.

Tabla 9.0 – Análisis de financiero de reducción de tiempo de perforación

EVALUACIÓN ECONÓMICA Y FINANCIERA DE MEJORAR EL TIEMPO DE PERFORACIÓN							
Ítem	Actual	Propuesta	Variación	Unidades			
Profundidad	10,50	10,50	0,00	m			
Tiempo de traslado entre taladros	1,17	1,17	0,00	min			
Tiempo neto de perforación	11,07	10,0	-1,11	min/tal			
Velocidad neta de perforación	56,89	63,21	6,32	m/hr			
Tiempo total de perforación	12,24	11,13	-1,11	min/tal			
Velocidad de perforación	51,47	56,59	5,12	m/hr			
Horas de perforación	11.717	10.657	-1.060	hrs/año			
Costo horario de perforadora	127	127	-	\$/hr			
Costo total de perforadora	1.486.644	1.352.149	-134.494	\$/año			
Costo de aceros	77,36	91,3	14	\$/hr			
Costo total de aceros	906.425	973.418	66.993	\$/año			
Costo total	2.393.069	2.325.567	-67.501	\$/año			
Ingreso neto	0	67.501	67.501	\$/año			

Nota:

Se considera una disminución de la vida de las brocas, barrenos y bit subs en un 20% y el resto de aceros de perforación en un 10%

4.4.3 Tiempo de traslado de taladro

El tiempo de traslado, se refiere al tiempo que le toma a una perforadora desde que terminó de perforar un taladro, con la columna de perforación levantada totalmente, hasta el inicio del siguiente taladro, lo cual implica

levantar las gatas, trasladarse (6.5 metros), ubicar el siguiente taladro, bajar las gatas y la columna de perforación.

Tabla 9.1 – Análisis de financiero de reducción de tiempo de traslado

EVALUACIÓN ECONÓMICA Y FINANCIERA DE MEJORAR EL TIEMPO TRASLADO						
Ítem	Actual	Propuesta	Variación	Unidades		
Profundidad	10,50	10,50	0,00	m		
Tiempo de traslado entre taladros	1,17	0,78	-0,39	min		
Tiempo neto de perforación	11,07	11,07	0,00	min/tal		
Velocidad neta de perforación	56,89	56,89	0,00	m/hr		
Tiempo total de perforación	12,24	11,85	-0,39	min/tal		
Velocidad de perforación	51,47	53,16	1,69	m/hr		
Horas de perforación	11.717	11.345	-372	hrs/año		
Costo horario de perforadora	127	127	-	\$/hr		
Costo total de perforadora	1,486,644	1,439,410	-47,234	\$/año		
Costo horario de seguimiento	13,75	13,75	-	\$/hr		
Tiempo de seguimiento diario	0	60	60	min/día		
Costo de seguimiento	-	5.019	5.019	\$/año		
Inversión capacitación	-	3.500	3.500	\$/año		
Inversión total	-	8.519	8.519	\$/año		
Ingreso neto	0	38.715	38.715	\$/año		

Nota:

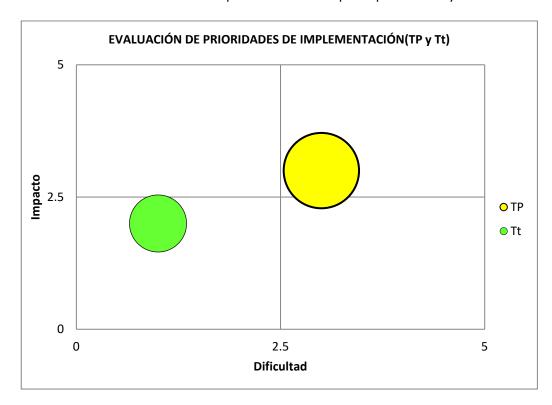

Se considera una capacitación y entrenamiento a los operadores adicionalmente un tiempo de seguimiento diario por parte de la supervisión

Tabla 9.2 – Oportunidad económica y financiera de tiempo perforación y traslado

Ítem	TP	Tt	Unidades
Tiempo de nuevo	11,1	0,78	min/tal
Reducción	1,1	0,39	min/día
Costo de implementación	66.993	8.519	t/año
Ahorro en costo operativo	134.494	47.234	\$/año
Ingreso neto	67.501	38.715	\$/año

NOTA: Tiempo de perforación TP Tiempo de traslado Tt

Tabla 9.3 – Priorización de implementación tiempo de perforación y traslado

Nota

- 1 Mayor dificultad
- 4 Menor dificultad
- 1 Menor impacto económico
- 4 Mayor impacto económico

4.5 Indicadores claves de voladura

4.5.1 Factor de potencia

El factor de potencia es el indicador mayor sensibilidad en voladura, su variación impacta en costo de explosivos, fragmentación del material (el efecto se refleja en el tiempo de carguío, tiempo de chancado de material y paradas rotura de rocas en chancadora), arreglo de piso y estabilidad de taludes.

El enfoque de la mejora es reducir los costos de explosivos, mejorando la fragmentación (mayor velocidad de carguío y productividad de chancadora) y estabilidad de taludes (reducir los costos de remediación de paredes).

La evaluación económica de mejorar la fragmentación y estabilidad de taludes son beneficios que son el principal enfoque y reducir costos en voladura mínimo deberá mantener los parámetros actuales, pero la evaluación económica solo se realizará en base a la reducción del uso de explosivo por tonelada (factor de potencia).

Estas reducciones de explosivo por tonelada de material volado, se pueden dar por cambio en los tipos de amarre (mallas de voladura), incremento de la malla de perforación o reducción de la cantidad de explosivo a cargar por taladro.

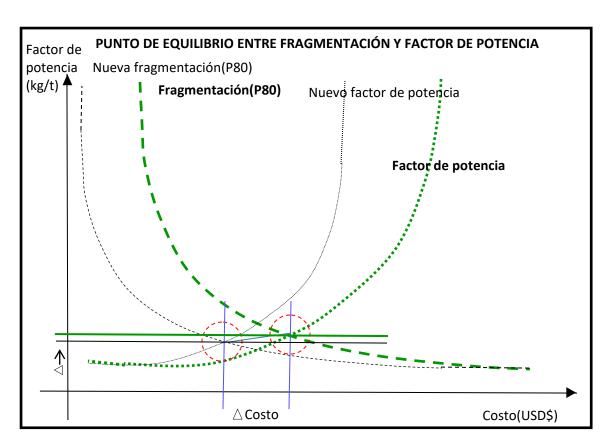


Figura 4.6 – Punto de equilibrio en voladura

Tabla 9.4 – Análisis de financiero de reducir el factor de potencia - caso 1

EVALUACIÓN ECONÓMICA Y FINANCIERA DE MEJORAR EL FACTOR DE CARGA						
Ítem	Actual	Propuesta	Variación	Unidades		
Malla	6,5x5,6	7,0x6,1	0,5x0,5	m x m		
Producción	8,008	8,008	0	t/tal		
Explosivo	144,1	135,0	-9	kg/taladro		
Factor de potencia	0,18	0,17	-0,01	kg/t		
Producción anual	45.994.683	45.994.683	-	t/año		
Explosivo anual	8.279.043	7.753.849	-525.194	kg/año		
Nitrato de amonio	7.807.137	7.311.879	-495.258	kg/año		
Diésel D2	148.426	139.010	-9.416	glns/año		
Costo nitrato de amonio	820	820	1	\$/t		
Costo diésel	4,14	4,14	-	\$/gIn		
Costo total nitrato de amonio	6.401.853	5.995.741	-406.112	\$/año		
Costo total nitrato de diésel	614.483	575.503	-38.981	\$/año		
Costo total	7.016.336	6.571.244	-445.092	\$/año		
Ahorro total	0	445.092	445.092	\$/año		

Nota:

Se menor cantidad de explosivo por taladro(tal)

Tabla 9.5 – Análisis de financiero de reducir el factor de potencia - caso 2

EVALUACIÓN ECONÓMICA Y FINANCIERA DE MEJORAR EL FACTOR DE CARGA						
Ítem	Actual	Propuesta	Variación	Unidades		
Malla	6,5x5,6	7,0x6,1	0,5x0,5	m x m		
Producción	800,8	939,4	138,6	t/tal		
Explosivo	144,1	144,1	-	kg/taladro		
Factor de potencia	0,18	0,15	-0,03	kg/t		
Producción anual	45.994.683	45.994.683	-	t/año		
Explosivo anual	8.279.043	7.057.545	-1.221.498	kg/año		
Nitrato de amonio	7.807.137	6.655.265	-1.151.873	kg/año		
Diésel D2	148.426	126.527	-21.899	glns/año		
Costo nitrato de amonio	820	820	-	\$/t		
Costo diésel	4,14	4,14	-	\$/gIn		
Costo total nitrato de amonio	6.401.853	5.457.317	-944.536	\$/año		
Costo total de diésel	614.483	523.822	-90.661	\$/año		
Costo total voladura	7.016.336	5.981.139	-1.035.197	\$/año		
Numero de taladros	57.436	48.962	-8.474	tal/años		
Costo de perforación	41	41	-	\$/tal		
Costo total de perforación	2.340.519	1.995.196	-345.322	\$/año		
Costo total	9.356.855	7.976.335	-1.380.520	\$/año		
Ahorro total	0	1.380.520	1.380.520	\$/año		

Nota:

Se considera un aumento de distancia de malla de perforación triangular Implica un ahorro en perforación por menor cantidad de taladros.

4.5.2 Tiempo de voladura

El tiempo de voladura, es el tiempo de parada de toda la operación para el despeje de personal y equipos del área de influencia de voladura.

Actualmente la reglamentación peruana exige despejar y retirar al personal en un radio de 500 metros de la zona de disparo, para los equipos no menciona ninguna reglamentación, pero para nuestro caso se despejan a un radio de 200.

La reducción del tiempo de parada por voladura implica dar mayor tiempo de producción a los equipos(cargadores y volquetes), por lo tanto influye en el incremento de producción total de operaciones mina y su evaluación la económica y financiera lo enfocaremos en base al incremento de producción de nuestro cuello de botella(acarreo).

PROCEDIMIENTO VOLADURA					
Pasos del Procedimiento	Tiempo de Voladura				
Cerrar el pase a todo equipo y retirar equipos de produccíon	0:05:35				
El responsable de voladura da la orden de iniciar el disparo a su personal .	0:00:20				
Personal designado inicia el disparo	0:00:20				
Salida de disparo	0:00:30				
Espera de Seguridad para ingresar a chequear el disparo	0:05:00				
El responsable de la voladura da la orden de ingresar a chequear el disparo	0:00:30				
Personal que chequea disparo confirma salida de disparos.	0:02:00				
El responsable de la Voladura entrega la mina al Jefe de Guardia.	0:00:15				
Equipos inician operaciones	0:03:00				
TOTAL TIEMPO DE DISPARO	0:17:30				

Figura 4.7 – Secuencia en tiempo actual de voladura

PROCEDIMIENTO VOLADURA					
Pasos del Procedimiento	Tiempo de Voladura				
Cerrar el pase a todo equipo y retirar equipos de produccíon	0:04:35				
El responsable de voladura da la orden de iniciar el disparo a su personal .	0:00:20				
Personal designado inicia el disparo	0:00:20				
Salida de disparo	0:00:30				
Espera de Seguridad para ingresar a chequear el disparo	0:05:00				
El responsable de la voladura da la orden de ingresar a chequear el disparo	0:00:30				
Personal que chequea disparo confirma salida de disparos.	0:02:00				
El responsable de la Voladura entrega la mina al Jefe de Guardia.	0:00:15				
Equipos inician operaciones	0:02:00				
TOTAL TIEMPO DE DISPARO	0:15:30				

Figura 4.8 – Secuencia en tiempo propuesto de voladura

Tabla 9.6 -Análisis de económico de reducir tiempo de voladura acarreo

Análisis de la oportunidad de reducir el tiempo de voladuras acarreo

Ítem	Valor Actual	Propuesta	Unidades
Tiempo de voladura	17,5	15,5	min/voladura
Frecuencia	3	3	frecuencia/semana
Tiempo por día	7,50	6,64	min/día
Tiempo de planificación adicional	0	20	min/día
Costo horario de planificación	0	13,75	\$/hr
Costo diario planificación	0	4,58	\$/día
Días	0	365	días
Costo total de inversión	0	1.673	\$/año

Nota

La inversión es el tiempo adicional en planificación se planea reducir 1 min en el tiempo de retiro de equipos y 1 min en el tiempo de ingreso de equipos

Tabla 9.7 – Análisis de económico de reducir tiempo de voladura carguío

Análisis de la oportunidad de reducir el tiempo de voladura carguío

Ítem	Valor Actual	Propuesta	Unidades
Tiempo de voladura	17,5	15,5	min/voladura
Tiempo de traslado por voladura	20,0	20,0	min/voladura
Frecuencia	3	3	frecuencia/semana
Tiempo por día	16,08	15,22	min/día
Tiempo de planificación adicional	0	20	min/día
Costo horario de planificación	0	13,75	\$/hr
Costo diario planificación	0	4,58	\$/día
Días	0	365	días
Costo total de inversión	0	1.673	\$/año

Nota

La inversión es el tiempo adicional en planificación se planea reducir 1 min en el tiempo de retiro de equipos y 1 min en el tiempo de ingreso de equipos

Tabla 9.8 – Oportunidad económica y financiera de tiempo de voladura

OPORTUNIDAD DE INGRESO POR MEJORAS EN REDUCCIÓN DE TIEMPO DE VOLADURA

Ítem	ACARREO	CARGUÍO	Unidades
Nuevo tiempo	6,6	15,22	min/día
Reducción	0,9	0,9	min/día
Utilización	86,1%	85,1%	%
Incremento de producción	113.233	782	t/año
Ahorro en costo operativo	1.245	362	\$/año
Costo oportunidad	16.360	330	\$/año
Ingreso total	17.605	692	\$/año
Costo de implementación	1.673	418	\$/año
Ingreso neto	15.932	274	\$/año

Nota:

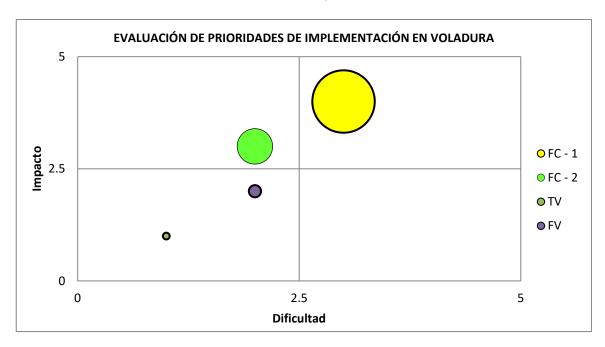
Los ingresos por reducir el tiempo de voladura se reflejan en mayor productividad de las actividades principales de acarreo y carguío

4.5.3 Frecuencia de voladuras por semana

La reducción de la frecuencia de voladuras por semana fueron evaluadas anteriormente en acarreo, carguío y perforación, esta variación se refleja en aumento de la utilización productiva de los equipos.

La frecuencia de voladuras por semana se soporta en el plan y secuencia de minado, ya que se debe contar con amplias plataformas de perforación para poder cumplir con la reducción, es importante mencionar que el material volado deberá ser aproximado a la producción de dos semanas, ejemplo: si el movimiento semanal es de 882,090 t, el tonelaje de material volado debería ser aproximadamente 1,764,180 t.

Tabla 9.9 – Oportunidad económica y financiera de frecuencia de voladura


OPORTUNIDAD DE INGRESO POR MEJORAS EN REDUCCIÓN DE FRECUENCIA DE VOLADURA

Ítem	ACARREO	CARGUÍO	PERFORACIÓN	Unidades
Nuevo tiempo	5,0	10,72	10,00	min/día
Reducción	2,5	5,4	5,0	min/día
Utilización	86,2%	85,4%	80,4%	%
Incremento de producción	113.233	4.892	-	t/año
Ahorro en costo operativo	1.245	2.266	7.572	\$/año
Costo oportunidad	47.718	2.061	•	\$/año
Ingreso total	48.963	4.327	7.572	\$/año
Costo de implementación	5.019	1.673	1.673	\$/año
Ingreso neto	43.944	2.654	5.899	\$/año

Nota:

Ingresos evaluados anteriormente en los KPI's de cada actividad

Tabla 10.0 – Priorización de implementación en voladura

FC-1: Factor de carga caso 1
FC-2: Factor de carga caso 2
TV: Tiempo de voladura
FV: Frecuencia de voladuras

- 1 Mayor dificultad4 Menor dificultad
- 1 Menor impacto económico 4 Mayor impacto económico

4.6 Indicadores claves de servicios auxiliares

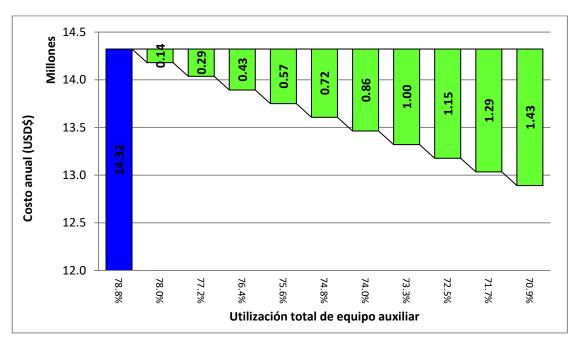
4.6.1 Utilización

La utilización de los equipos de servicios auxiliares es indicador que impacta directamente en el costo de producción total.

Lo que debemos buscar es siempre una utilización óptima de equipo auxiliar, ya que su productividad tiene diversas y complejas evaluaciones, el motivo son los diversos trabajos que realizan.

Debemos considerar que el resultado del trabajo de los equipos auxiliares impacta en la productividad de los equipos y por lo tanto en un menor costo total.

Tabla 10.1 – Flota de equipo auxiliar


Equipo auxiliar	Modelo	Cantidad
Tractores	D10	3
Tractores	D8	2
Cisternas	777B/C	2
Cisternas	Volvo	2
Motoniveladoras	16H	2
Tractor de ruedas	834B	2
Excavadoras	330C/D	2
Cargador	980G	1
Retroexcavadora	416E	1
Total		17

Consideraremos la flota de equipo auxiliar que se desempeña en las labores de operaciones mina.

Tabla 10.2 – Utilización de equipo auxiliar

Equipo auxiliar	Modelo	Disponibilidad	Utilización	Uso(hrs/día)
Tractores	D10	80,0%	83,0%	15,9
Tractores	D8	82,0%	83,0%	16,3
Cisternas	777B/C	75,0%	72,0%	13,0
Cisternas	Volvo	85,0%	78,0%	15,9
Motoniveladoras	16H	80,0%	83,0%	15,9
Tractor de ruedas	834B	82,0%	85,0%	16,7
Excavadoras	330C/D	80,0%	78,0%	15,0
Cargador	980G	75,0%	84,0%	15,1
Retroexcavadora	416E	85,0%	48,0%	9,8
Total		80,5%	78,8%	15,2

Tabla 10.3 – Potencial de ahorro por bajar la utilización de equipo auxiliar

Nota: El gráfico muestra una posibilidad de ahorro de 1.43 millones de dólares, si logramos bajar 8.1% la utilización total del equipo auxiliar.

Esta propuesta de bajar de utilización, se entiende como un mejor uso del equipo, que no perjudica el normal desenvolvimiento de las actividades principales

4.6.2 Costo de operación

El costo de operación de los equipos auxiliares representa un 30.3% del costo de las actividades principales y un 22.8% del costo total de operaciones mina, significa que el uso efectivo de dichos equipos nos puede conllevar a sustanciales ahorros La utilización de los equipos de servicios auxiliares es indicador que impacta directamente en el costo de producción total.

Él análisis de costos y rendimiento tiene que realizarse equipo por equipo, los costos que operaciones mina puede controlar y optimizar son los de consumo de combustible, aceros de corte(cuchillas, uñas, lampones, protectores, etc.) y llantas. Los costos de mantenimiento se pueden reducir controlando el traslado innecesario o distancias largas(equipos de orugas no deben trasladarse por sus propios distancias mayores a 500 m), el uso de cama bajas para el traslado de equipos de orugas reduce considerablemente los tiempos de movimiento y los costos del sistema de orugas.

Gran parte de los trabajos de estos equipos se usan para implementar controles y corregir condiciones para mejorar la seguridad de mina, dichas actividades son complejas de cuantificar en términos de costo y beneficio, además de habilitar vías, rampas, frentes de carguío, limpieza de taludes, vías, cunetas y corrección de peraltes, actividades que permiten una operación de cargadores y volquetes sin restricciones.

Tabla 10.4 – Costo de equipo auxiliar

Equipo auxiliar	Modelo	Cantidad	Costo(\$/hr)	Disponibilidad	Utilización	Uso(hrs/día)	Costo(\$/día/equipo)	Costo(\$/día/flota)	Costo total(\$/año)
Tractores	D10	3	302	80,0%	83,0%	15,9	4.810	14.429	5.266.709
Tractores	D8	2	170	82,0%	83,0%	16,3	2.785	5.570	2.032.960
Cisternas	777B/C	2	101	75,0%	72,0%	13,0	1.304	2.608	951.959
Cisternas	Volvo	2	50	85,0%	78,0%	15,9	800	1.601	584.309
Motoniveladoras	16H	2	147	80,0%	83,0%	15,9	2.335	4.669	1.704.349
Tractor de ruedas	834B	2	142	82,0%	85,0%	16,7	2.379	4.757	1.736.402
Excavadoras	330C/D	2	115	80,0%	78,0%	15,0	1.716	3.432	1.252.736
Cargador	980G	1	115	75,0%	84,0%	15,1	1.733	1.733	632.391
Retroexcavadora	416E	1	45	85,0%	48,0%	9,8	441	441	160.834
Total		17	148	80,5%	78,8%	15,2	18.302	39.240	14.322.648

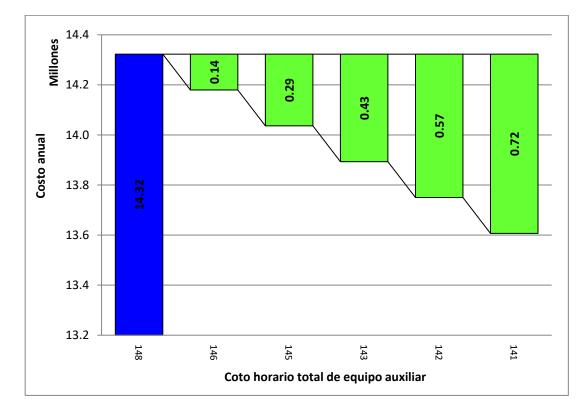


Tabla 10.5 – Potencial de ahorro por bajar costo horario de equipo auxiliar

Nota: El gráfico muestra una posibilidad de ahorro de 0.72 millones de dólares si logramos bajar 7 \$/hr el costo total horario del equipo auxiliar.

Esta propuesta de bajar el costo horario, se entiende como un mejor uso del equipo, respetando sus capacidades máximas de empuje, carguío, etc.

4.7 Indicadores claves de administrativos

4.7.1 Costo de supervisión

Es el costo administrativo de supervisar la operación, cuyo control está en manos de la gerencia y superintendencia de mina, es un monto fijo, pero al llevarlo a unidades productivas se convierte en variable.

Este costo usualmente varía anualmente, es importante mantenerlo de acuerdo al mercado, si es muy bajo, tenemos el riesgo de tener alta rotación lo cual impacta negativamente en la operación.

4.7.2 Costo de entrenamiento y capacitación

Es el costo de capacitación y entrenamiento al personal, usualmente las empresas utilizan ratios de costo de entrenamiento en cursos técnicos y de gestión para jefaturas, supervisores y operadores.

Dentro de los cursos de capacitación y entrenamiento, tenemos los obligatorios exigidos por ley y los que requiere la empresa para un mejor desempeño de sus resultados.

Algunas empresas utilizan el costo de entrenamiento como incentivo al personal para su retención y contratación

4.7.3 Costo de personal operativo

Es el costo del personal que opera los equipos, este tiene un componente fijo(sueldo) y uno variable(bonos, acuerdos sindicales, etc.).

Un componente que varía constantemente es el costo de personal en descanso médico, que normalmente se duplica por cada personal faltante, ya que se tiene que cubrir la posición y además se continuar pagado al operador faltante.

Su optimización se basa en la distribución del personal por grupos y horarios de trabajo.

Su importancia de mantenerlo de acuerdo al mercado, si es muy bajo, se tiene el riesgo de tener alta rotación, lo cual impacta negativamente en la operación.

4.8 Indicadores de gestión

4.8.1 Productividad de volquetes

La mejora de este indicador se evaluó anteriormente, en este punto mostraremos los indicadores que son controlados a nivel de jefaturas y supervisión.

Tabla 10.6 – Indicadores de productividad de volquetes

Indicador	Valor	Unidades
Producción 785 B/C	371	t/hr
Producción 730E	499	t/hr
Producción flota 785 B/C	4.451	t/hr
Producción flota 730E	2.995	t/hr
Producción total volquetes	7.445	t/hr
Producción total volquetes	126.013	t/día
Capacidad de carga 785 B/C	136	t
Capacidad de carga 730E	183	t
Disponibilidad	82%	%
Utilización	86%	%
Costo 785 B/C	204	\$/hr
Costo 730E	300	\$/hr
Costo unitario 785 B/C	0,55	\$/t
Costo unitario 730E	0,60	\$/t

Nota: El indicador de producción horaria de los volquetes cambia constantemente por la variación de distancias y velocidades.

4.8.2 Productividad de cargadores

La mejora de este indicador se evaluó anteriormente, en este punto mostraremos los indicadores que son controlados a nivel de jefaturas y supervisión.

Tabla 10.7 – Indicadores de productividad de cargadores

Indicador	Valor	Unidades
Producción WA 1200	2.200	t/hr
Producción 994D	1.650	t/hr
Producción 992G	900	t/hr
		. 0
Producción flota WA 1200	4.400	t/hr
Producción flota 994D	3.300	t/hr
Producción flota 992G	1.800	t/hr
Producción total carguío	9.500	t/hr
Capacidad de carga WA 1200	37.500	kg
Capacidad de carga 994D	31.800	kg
Capacidad de carga 992G	21.700	kg
Disponibilidad	85%	%
Utilización	85%	%
	T	
Costo WA 1200	765	\$/hr
Costo 994D	576	\$/hr
Costo 992G	380	\$/hr
Costo unitorio WA 1200	0.240	C/4
Costo unitario WA 1200	0,348	\$/t
Costo unitario 994D	0,349	
Costo unitario 992G	0,422	\$/t

Nota: Este es un costo más estable que el de productividad depende de las condiciones del frente, habilidad del operador y fragmentación del material

4.8.3 Costo operativo de operaciones mina

Es el costo que controla toda la producción y gasto operativo de mina, este indicador muestra la gestión de la gerencia mina y superintendencia, solo se incluye el costo de personal operativo en esté indicador.

Tabla 10.8 – Ejemplo de presupuesto operativo de mina

Operaciones mina	Perforación (Drilling)	Voladura (Blasting)	Carguío (Loading)	Acarreo (Hauling)	Total	Unidades
Equipo Principal	2.308.468	8.190.734	16.017.739	26.257.175	52.774.117	USD\$/año
Servicio Auxiliares	2.399.446	799.815	4.798.891	7.998.152	15.996.304	USD\$/año
Costo Total	4.707.914	8.990.549	20.816.631	34.255.327	68.770.421	USD\$/año

Tabla 10.9 – Costo operativo de mina

Operaciones mina	Perforación (Drilling)	Voladura (Blasting)	Carguío (Loading)	Acarreo (Hauling)	Total	Unidades
Equipo Principal	0,05	0,18	0,35	0,57	1,15	USD\$/t
Servicio Auxiliares	0,05	0,02	0,10	0,17	0,35	USD\$/t
Costo Total	0,10	0,20	0,45	0,74	1,50	USD\$/t

4.8.4 Costo administrativo de operaciones mina

Es el costo del personal administrativo, costo de entrenamiento y capacitación, equipos de supervisión, suministros y mantenimiento de oficina de operaciones mina, dentro del personal se incluye: gerencia mina, superintendencias, jefaturas, supervisión, personal de entrenamiento, asistentes administrativos, practicantes y becarios.

Tabla 11.0 – Costo administrativo de operaciones de mina

Operaciones mina	Perforación (Drilling)	Voladura (Blasting)	Carguío (Loading)	Acarreo (Hauling)	Total	Unidades
Personal administrativo	0,005	0,004	0,011	0,011	0,031	USD\$/t
Entrenamiento y capacitación	0,001	0,001	0,001	0,001	0,004	USD\$/t
Equipos de supervisión	0,002	0,002	0,002	0,002	0,007	USD\$/t
Suministros y mantenimiento de oficinas	0,0003	0,0003	0,0003	0,0003	0,001	USD\$/t
Costo Total	0,008	0,007	0,014	0,014	0,043	USD\$/t

4.8.5 Producción horaria, diaria mensual y anual

La producción no solo debe ser controlada en base a total material, mineral y desmonte, adicionalmente se debe controlar la cantidad de metal o concentrado depositado para el siguiente proceso productivo.

Tabla 11.1 – Producción de operaciones de mina

Producción	Horaria	Diarias	Mensual	Anual	Unidades
Total	7.445	126.013	3.780.385	45.994.683	t
Mineral	2.482	42.004	1.260.128	15.331.561	t
Desmonte	4.964	84.009	2.520.257	30.663.122	t
Contenido metálico 1	56,0	947,0	28.410	345.661	onzas
Contenido metálico 2	313	5.303	159.099	1.935.701	onzas

Nota: El contenido metálico o concentrado es el producto final de operaciones mina y por lo tanto se debe controlar en cantidad y calidad.

4.8.6 Efectividad total de operaciones mina

La efectividad total de una actividad se mide en base a su cuello de botella, es el indicador global de rendimiento de un proceso productivo.

Se caculo está basado en tres factores:

- i. Disponibilidad, cuanto tiempo tengo disponible el equipo
- ii. Utilización, cuanto tiempo utilizo el equipo
- iii. Calidad, que tan bien uso el equipo

Para el cálculo usamos: Disponibilidad X Utilización X Calidad, se evalúa para acarreo que es la actividad cuello de botella.

Tabla 11.2 - Efectividad total de acarreo

Ítem	Valor actual
Disponibilidad	82,0%
Utilización	86,0%
Calidad	83,9%
Efectividad total	59,1%

Este es un indicador general, es el resultado de varios indicadores, en este indicador se suman todos los esfuerzos en las diferentes actividades de operaciones mina, es decir mide el total de la gestión, al igual existe un indicador de esta categoría para todo el proceso productivo de una mina, es normalmente de control gerencial.

4.9 Indicadores claves de gestión de seguridad

4.9.1 Seguridad

La seguridad es uno de los indicadores tan importantes como la producción total de la empresa.

Los incidentes generan más pérdidas producción de las que normalmente se consideran por ejemplo: un incidente de bajo potencial de pérdida humana, rotura de un espejo de un volquete(730E) durante el carguío(WA 1200), por impacto de roca, consideramos la pérdidas de producción y costo por traslado del volquete al taller, parada por cambio de espejo, retorno al frente de trabajo, costo del espejo, costo del personal de mantenimiento para cambio del espejo, rotura de ciclo productivo, restablecimiento del ciclo productivo, tiempo de investigación del personal involucrado, reportes y el costo de oportunidad de los equipos involucrados en el incidente.

Tabla 11.3 – Evaluación de pérdidas económicas y financieras por incidente

Ítems	Valor	Unidades
Tiempo de parada por incidente -volquete	20	min
Tiempo de rotura de ciclo - volquete	5	min
Tiempo de traslado al taller - volquete	10	min
Tiempo de cambio de espejo - volquete	30	min
Tiempo de retorno al frente - volquete	10	min
Tiempo de restablecimiento de ciclo - volquete	5	min
Tiempo total de parada por incidente - volquete	80	min
Costo de equipo - volquete	300	\$/hr
Costo total por incidente - volquetes	400	\$/incidente
Material no acarreado	665	t
Mineral no acarreado	222	t
Costo de oportunidad perdido	261	\$/incidente
Tiempo de parada por incidente - cargador	20	min
Tiempo de rotura de ciclo - cargador	2	min
Tiempo de restablecimiento de ciclo - cargador	2	min
Tiempo total de parada por incidente - cargador	24	min
Costo de equipo - cargador	765	\$/hr
Costo total por incidente - cargador	306	\$/incidente
Tiempo de investigación	60	min
# Personas involucradas en investigación	6	personas
Costo promedio por persona en investigación	7,1	\$/hr
Costo de investigación	42,40	\$/incidente
Costo de personal de mantenimiento	5,7	\$/hr
Personal de mantenimiento para el cambio	2	personas
Costo de personal mantenimiento	5,7	\$/incidente
Costo del personal de logística	5,7	\$/hr
Personal de logística en almacén	2	personas
Tiempo del personal de logística	5	min
Costo de personal de logística	0,95	\$/incidente
Costo de espejo	500	\$/espejo
Costo total	1.516	\$/incidente

Nota: Se considera un incidente sencillo

Dentro de los indicadores claves de desempeño que consideramos para medir el la gestión de seguridad se consideran:

4.9.1.1 Incidente con tiempo perdido

Son considerados los que como consecuencia del incidente, una o varias personas resultaron incapacitadas de trabajar por más de un día, tiene 2 componentes.

- i. Número de incidentes
- ii. Días perdidos

4.9.1.2 Incidente con atención médica

Son los accidentes que requirieron una atención médica pero que el mismo día o al siguiente el trabajador regresa a sus labores cotidianas.

i. Número de incidentes

4.9.1.3 Incidente con primeros auxilios

Incidente que se requirió primeros auxilios, pero que el trabajador retorna a sus labores cotidianas ese mismo día

i. Número de incidentes

4.9.1.4 Incidente con pérdidas de procesos

Son los incidentes que como resultado se tiene una parada del proceso productivo de los equipos.

- i. Número de incidentes
- ii. Material dejado de mover, atraso en las actividades

4.9.1.5 Incidente con daño al equipo

Son los incidentes que como resultado se tiene costo de reparación de equipos y maquinarias.

- i. Número de incidentes
- ii. Costo de reparación

4.9.1.6 Incidente con impacto ambiental

Son los incidentes que como resultado se tiene costo de reparación de equipos y maquinarias.

- i. Número de incidentes
- ii. Costo de reparación

Un incidente puede tener las 6 clasificaciones, pero siempre se incluirá en la clasificación con mayor gravedad de impacto al personal, ambiente, costo y producción, en ese orden.

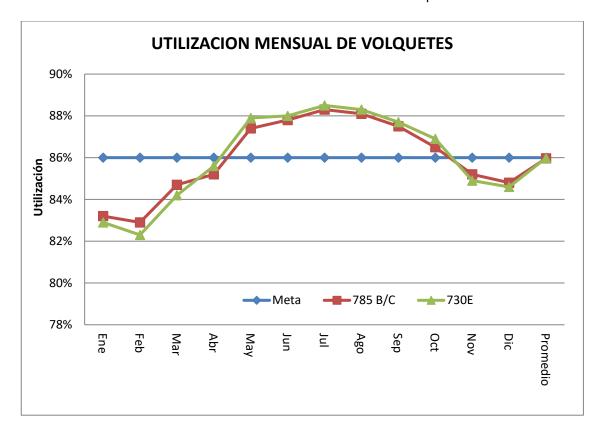
Tabla 11.4 – Evaluación de situación actual de incidentes

Incidente actual	Número	Días perdidos	Costo (\$)
Tiempo perdido	2	35	11.550
Atención médica	1	0	120
Primeros auxilios	2	0	50
Pérdida en el procesos	5	0	16.834
Daño al equipo	7	0	46.550
Impacto ambiental	29	0	7.251
Total	46	35	82.355

Nota:

Los incidentes ambientales en operaciones mina son por derrame de hidrocarburos y el costo es por la limpieza y disposición de suelo contaminados

Tabla 11.5 – Objetivo de incidentes


Incidente actual	Número	Días perdidos	Costo (\$)
Tiempo perdido	0	0	-
Atención médica	0	0	-
Primeros auxilios	0	0	-
Pérdida en el procesos	2	0	8.417
Daño al equipo	3	0	23.275
Impacto ambiental	14	0	3.626
Total	19	0	35.318

CAPITULO V CUADROS DE CONTROL DE INDICADORES CLAVES DE DESEMPEÑO

5.1 Indicadores de acarreo

5.1.1 Utilización

Tabla 11.6 – Utilización mensual de volquetes

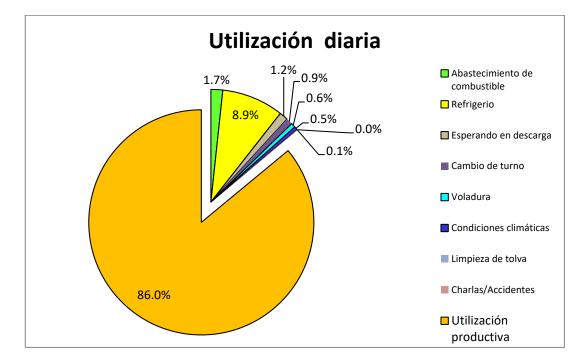


Tabla 11.7 – Utilización diaria de acarreo

5.1.2 Capacidad de carga

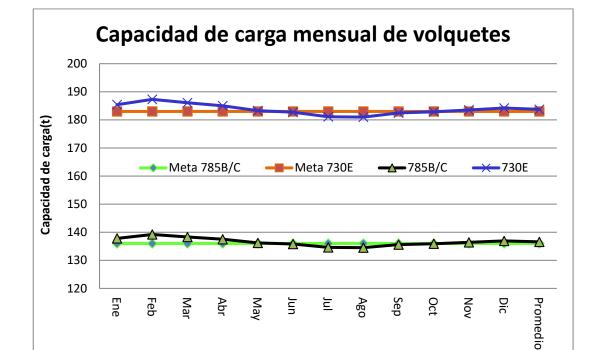


Tabla 11.8 – Capacidad de carga mensual

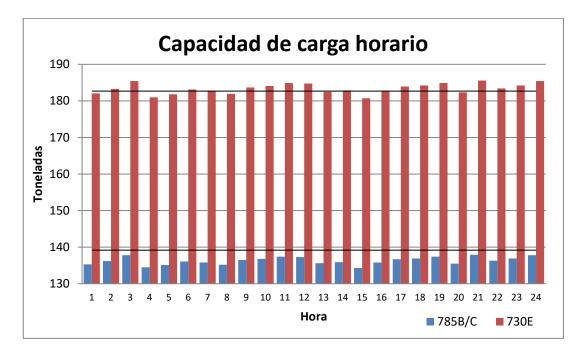
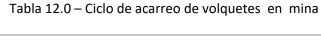
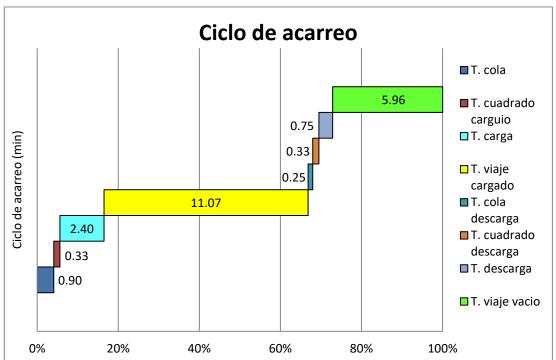




Tabla 11.9 – Capacidad de carga horaria

5.1.3 Ciclo de acarreo

5.1.4 Producción

Tabla 12.1 – Producción mensual

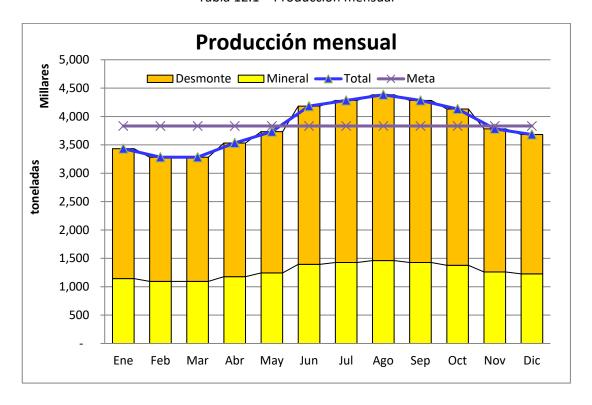
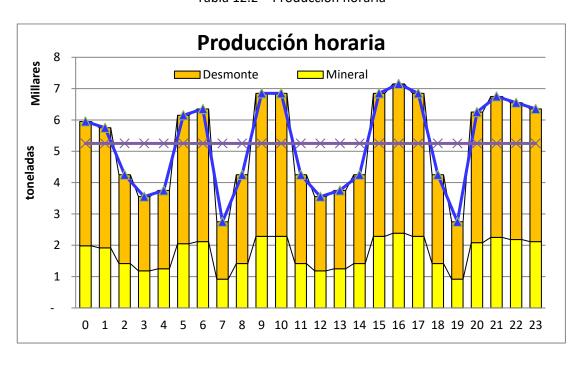



Tabla 12.2 – Producción horaria

5.1.5 Consumibles volquetes

Tabla 12.3 – Vida de llantas de volquetes

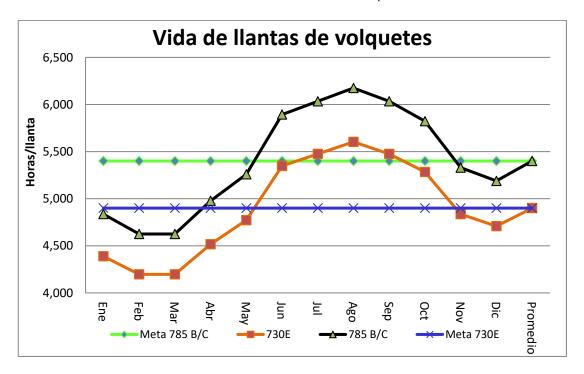
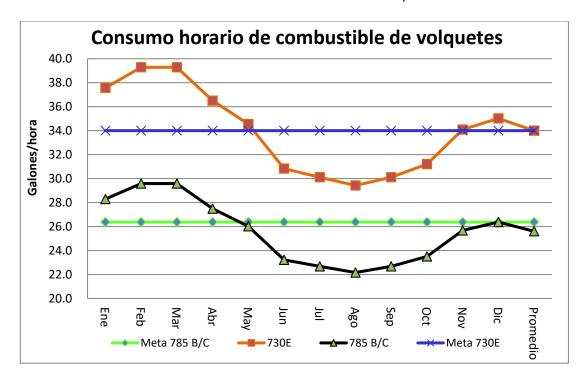



Tabla 12.4 – Consumo de combustible volquetes

5.2 Indicadores de carguío

5.2.1 Utilización

Tabla 12.5 – Utilización mensual de cargadores

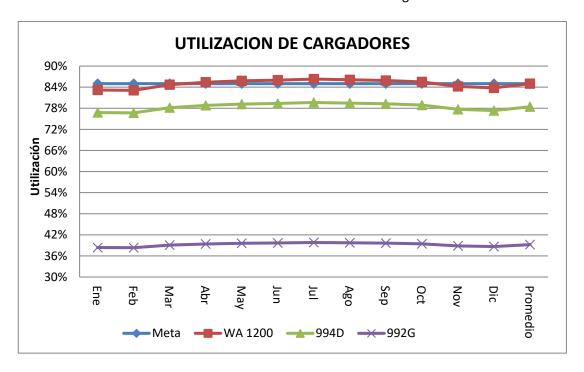
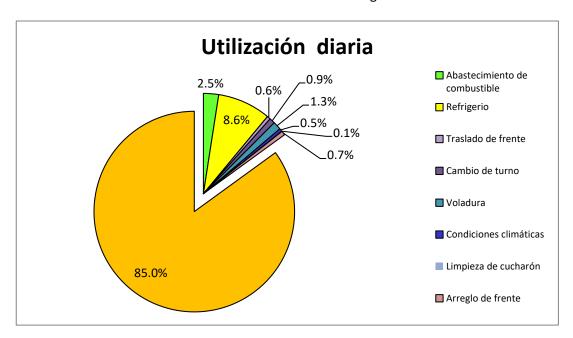



Tabla 12.6 – Utilización diaria de carguío

5.2.2 Tiempo de carguío

Tabla 12.7 – Tiempo de carguío mensual

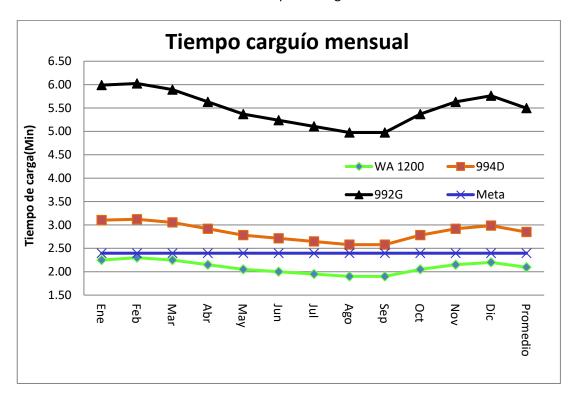
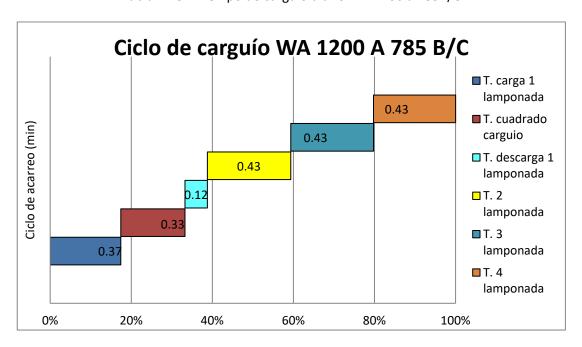



Tabla 12.8 – Tiempo de carguío diario WA 1200 a 785B/C

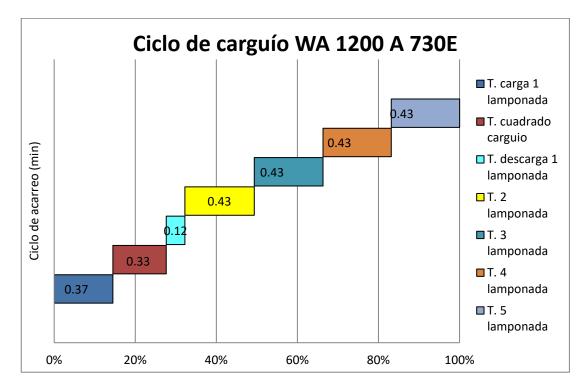
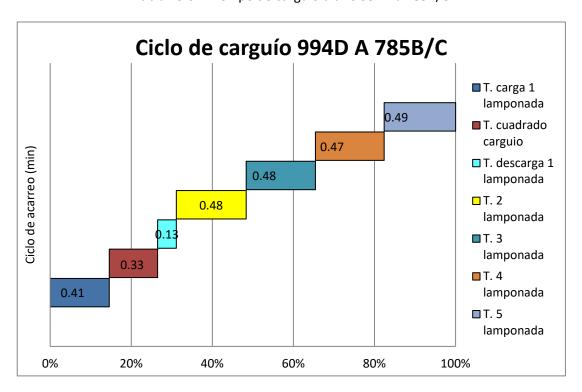



Tabla 12.9 – Tiempo de carguío diario WA 1200 a 730E

Tabla 13.0 – Tiempo de carguío diario 994D a 785B/C

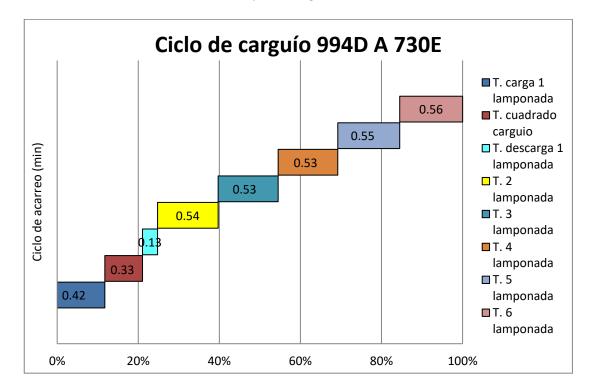


Tabla 13.1 – Tiempo de carguío diario 994D a 730E

5.2.3 Producción



Tabla 13.2 – Producción horaria mensual cargadores

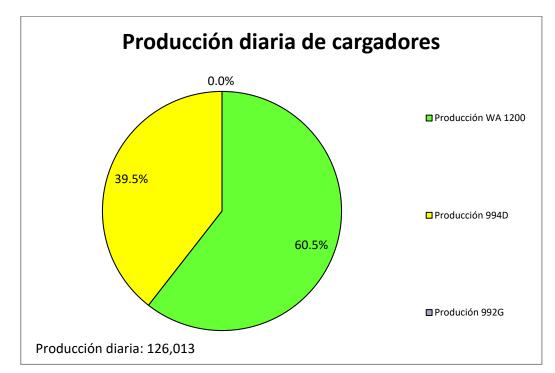
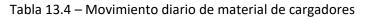
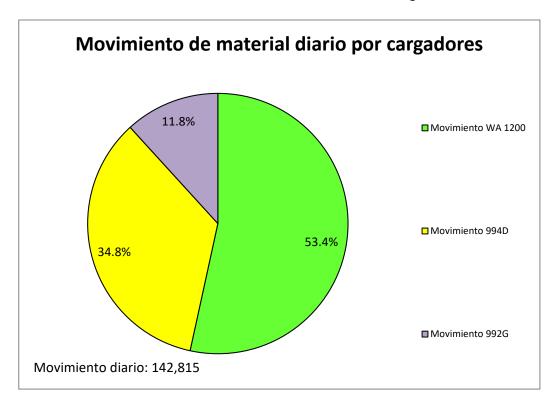




Tabla 13.3 – Producción diaria de cargadores

5.2.4 Consumibles cargadores

Tabla 13.5 – Vida de llantas de cargadores

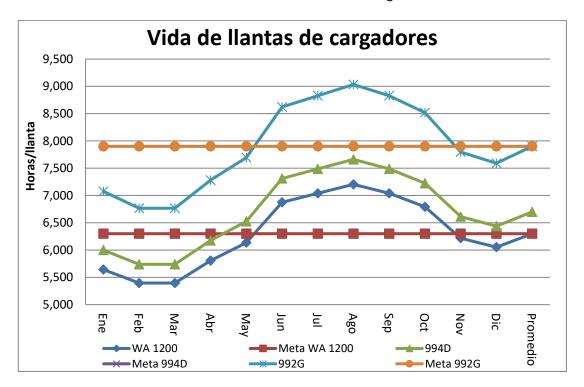
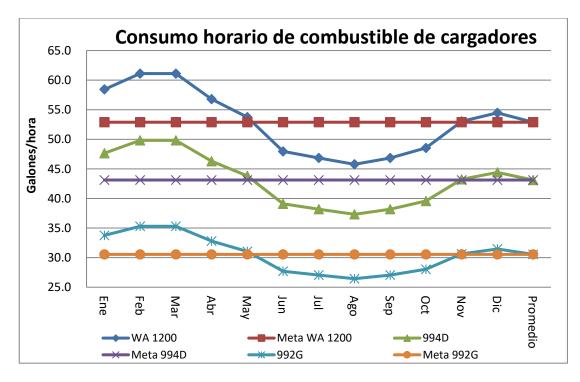



Tabla 13.6 – Consumo de combustible cargadores

5.3 Indicadores de perforación

5.3.1 Utilización

Tabla 13.7 – Utilización mensual de perforadoras

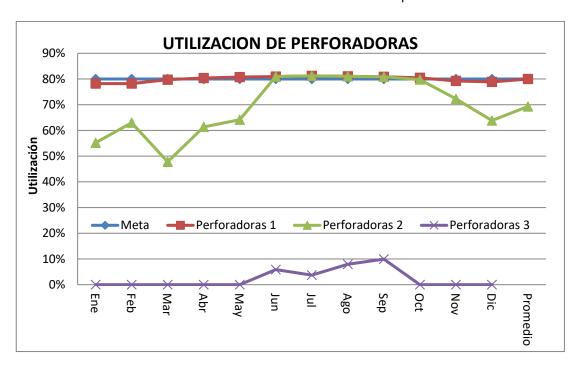
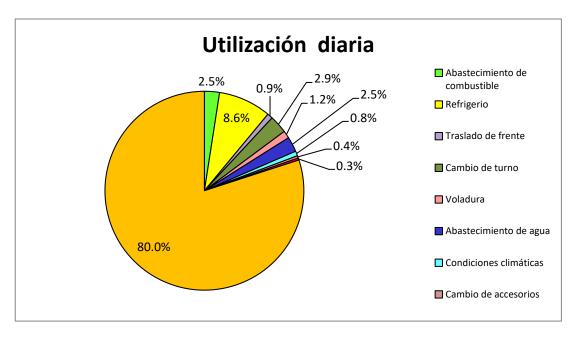



Tabla 13.8 – Utilización diaria de perforadoras

5.3.2 Producción

Tabla 13.9 – Velocidad de perforación diaria/mensual

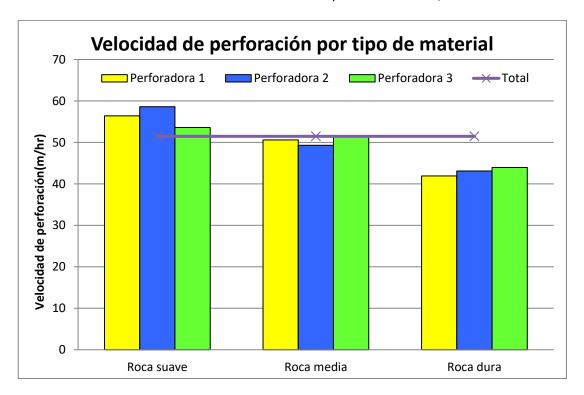
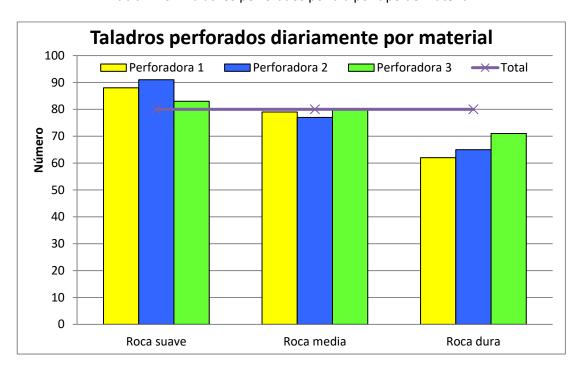



Tabla 14.0 – Taladros perforados por día por tipo de material

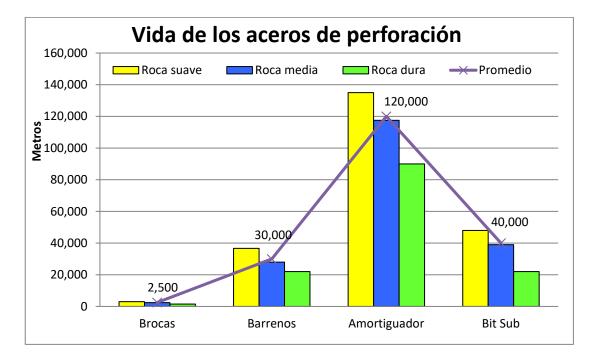


Tabla 14.1 – Metros perforados por acero de perforación

5.4 Indicadores de voladura

5.4.1 Factor de potencia

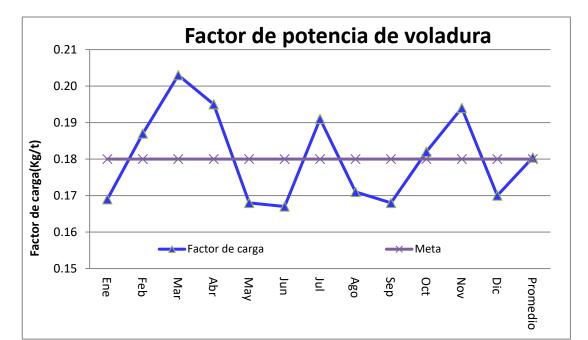
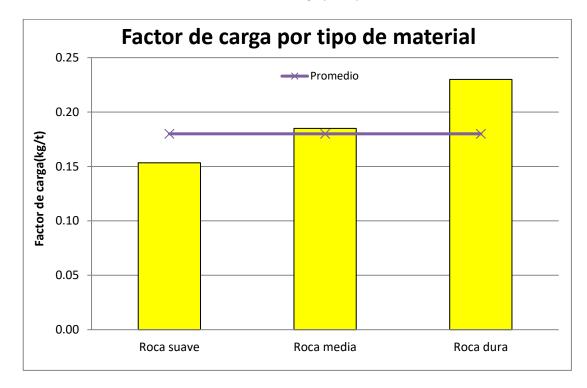


Tabla 14.2 – Factor de potencia mensual



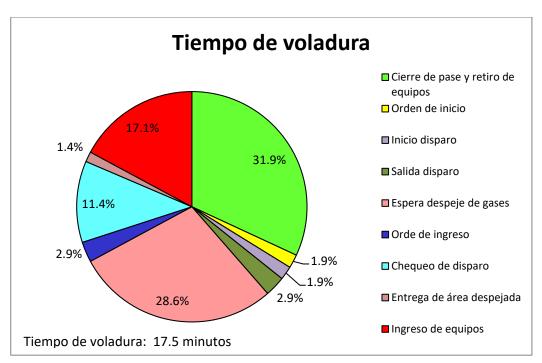
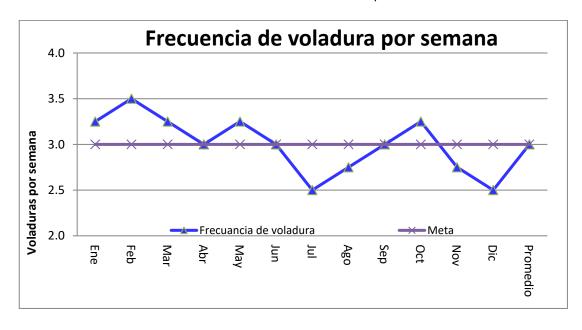
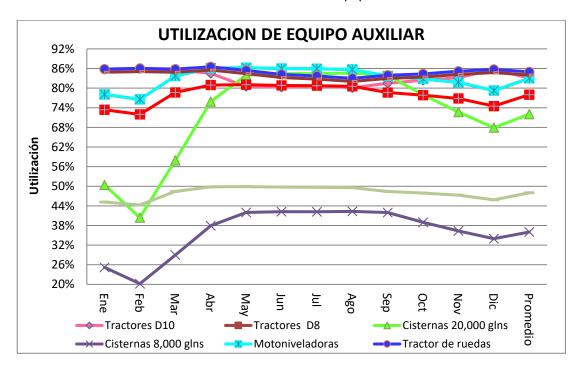


Tabla 14.3 – Factor de carga por tipo de material


5.4.2 Tiempo de voladura

5.4.3 Frecuencia de voladura


Tabla 14.5 – Frecuencia semanal por meses

5.5 Indicadores de servicios auxiliares

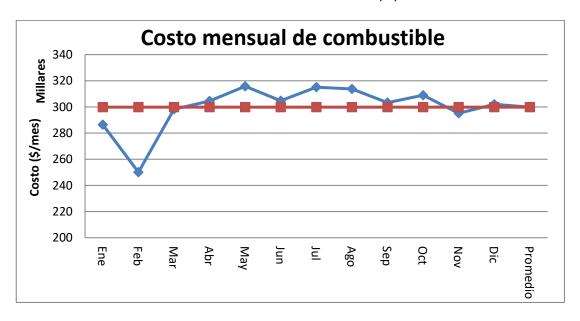

5.5.1 Utilización

Tabla 14.6 – Utilización de equipos auxiliares

5.5.2 Consumibles

Tabla 14.7 – Costo mensual de combustible equipos auxiliares

5.6 Indicadores de gestión

5.6.1 Costo

Tabla 14.8 – Costo mensual de producción de operaciones mina

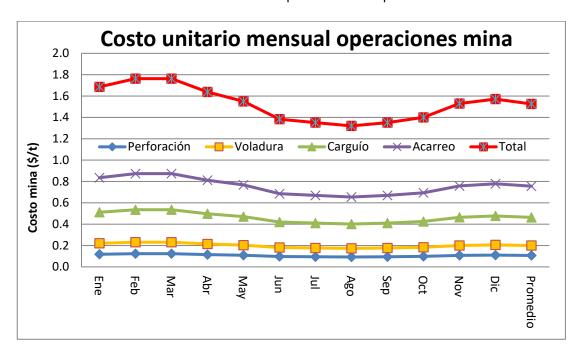
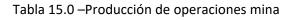



Tabla 14.9 – Costo por onza de producción operaciones mina

5.6.2 Producción

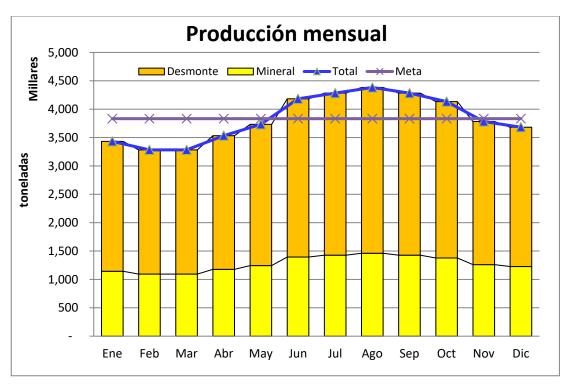
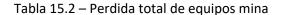
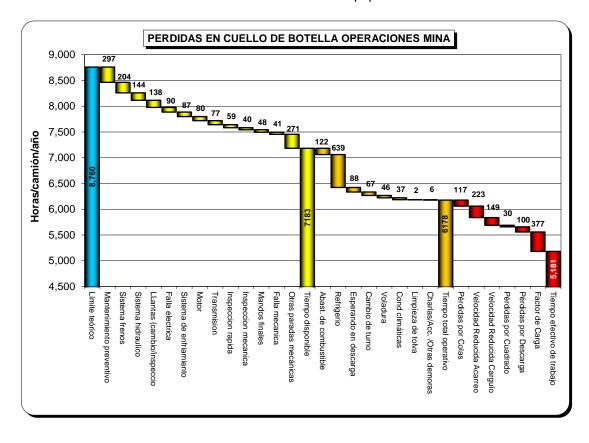




Tabla 15.1 – Efectividad total de equipos mina

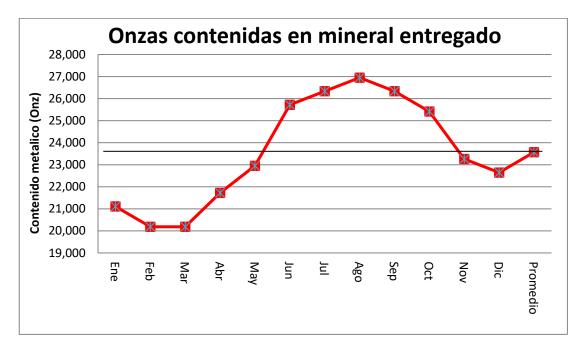
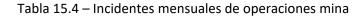
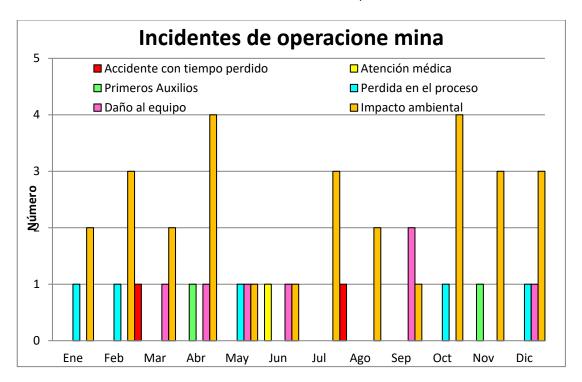




Tabla 15.3 – Onzas entregadas

5.6.3 Seguridad

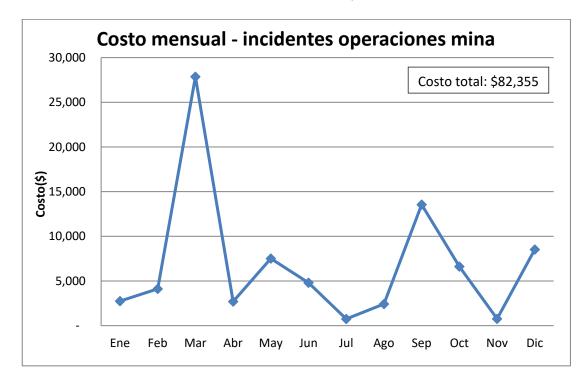
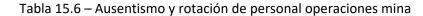




Tabla 15.5 – Costo de Incidentes operaciones mina

5.6.4 Personal

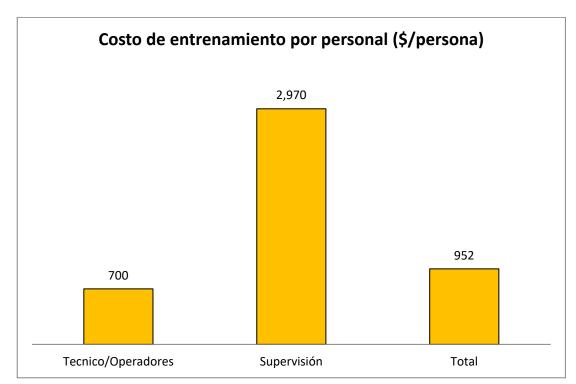


Tabla 15.7 – Costo de entrenamiento de personal operaciones mina

Tabla 15.8 – Parámetros operativos de considerados en las evaluaciones

Ítems	Valor	Unidades
Ley metal 1	0,75	gr/t
Ley metal 2	4,2	gr/t
Recuperación metal 1 Lixiviación	0,825	%
Recuperación metal 2 Lixiviación	0,35	%
Recuperación metal 1 fundición	0,99	%
Recuperación metal 2 fundición	0,97	%
Precio metal 1	1.300	\$/Onz
Precio metal 2	20	\$/Onz
Costo de producción metal 1	660	\$/Onz
Costo de producción metal 2	0	\$/Onz
Costo oportunidad	10,0%	%
Humedad	6,5%	%
Gramos/Onza	31,103	g/Onz

CONCLUSIONES

- -EL proceso de identificación de oportunidades de mejora es aplicable para todo tipo de actividad.
- -La identificación y análisis de oportunidades de mejora según el proceso mostrado en este trabajo, permite enfocarse en las mejoras que realmente incrementa la producción y/o bajar costos en el resultado final.
 - -Todo proceso de mejora implica una inversión de tiempo y recursos adicionales.
- -La identificación de potenciales de ahorro de costos o incremento de producción requiere de un análisis vertical, horizontal y transversal.
- -Los costos de oportunidad son beneficios(costo de capital) de obtener ingresos por adelantado.
- -El conocer e implementar este proceso permite identificar exactamente las mejoras que aportan al proceso, además de canalizar y enfocar los recursos en las oportunidades de mayor impacto y menos requerimiento de recursos.
- -Este procedimiento entrega buenos resultados cuando el análisis se realiza de evaluaciones globales a individuales.

RECOMENDACIONES

-Toda mejora implementada debe considerar obligatoriamente la seguridad del personal, protección del equipo y ambiente, bajo ninguna condición se debe comprometer lo antes mencionado.

-El compromiso e involucramiento de la alta gerencia en todo el proceso es clave para el éxito de la implementación.

-El procedimiento requiere de implementación completa, el no cumplir con la secuencia de actividades puede conllevar la omisión de oportunidades de mejora o mejorar actividades que no aportan al resultado final.

REFERENCIAS BIBLIOGRAFICAS

INTERNET: CRECE NEGOCIOS, http://www.crecenegocios.com/cadena-de-valor/

INTERNET: WIKIPEDIA, http://es.wikipedia.org/wiki/KPI.

CATERPILLAR: HANDBOOK CATERPILLAR, EDICION 36

KOMATSU: HANDBOOK KOMATSU, EDICION 22

TYLER G. HICKS: STANDARD HANDBOOK OF ENGINEERING CALCULATION, EDICION 3

IAN C. RUNGE: MINING ECONOMICS AND STRATEGY

HOWARD L. HARTMAN: CASE STUDIES OF SURFACE MINING 1969