UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA

"OPTIMIZACIÓN Y SISTEMA DE CONTROL EN CARGUÍO Y ACARREO EN LA CANTERA DE CALIZA DE ATOCONGO-UNACEM"

INFORME DE COMPETENCIA PROFESIONAL PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

ELABORADO POR:

CARLOS ALBERTO TARRILLO DIAZ

ASESOR:

M.Sc. Ing. JOSÉ ANTONIO CORIMANYA MAURICIO LIMA – PERÚ 2013

Dedicatoria

Al Señor Dios, nuestro padre, a mis padres. A mis hermanos, y a todos aquellos que han contribuido directa e indirectamente a la realización de este trabajo.

RESUMEN

Este trabajo está enfocado en mostrar la mejora de la actividad operacional de Carguío y Acarreo de Cantera Atocongo, compararlas con datos anteriores a la implementación de un área específica, cuya misión es reducir la demora que genera una serie de eventos al momento de ejecutarse el mencionado proceso. El resultado se ve reflejado en el incremento y alcance de las metas trazadas, habiendo obtenido un crecimiento del 5% ,6% y 8% en promedio versus años anteriores.

Este estudio se inició a comienzos del 2009 y durante este periodo se realizó el levantamiento de datos, comparación y análisis entre los datos del proceso de Carguío y Acarreo. La memoria se concentró en evaluar el impacto que se produce en las horas efectivas de los equipos de transportes, producto de la variación de los índices operacionales. Todos estos escenarios fueron analizados teniendo como línea base los indicadores de gestión de Cantera Atocongo del año 2009.

Adaptar toda una cultura de trabajo de los operadores de mina para que interactúen con un área nueva fue todo un reto que solo se ha logrado cumplir por el involucramiento, adaptabilidad y calidad de los trabajadores de San Martin Contratistas Generales obteniendo así una mejora continua como forma de vida para poder mantenernos en este negocio.

ABSTRACT

This work is focused on showing the improved operational activity of loading and hauling of Cantera Atocongo, compared with previous data to the implementation of a specific area, whose mission is to reduce the delay that generates a series of events at the time of executing the above process. The result is reflected in the increase and reach the goals, having obtained a growth of 5%, 6% and 8% on average versus previous years.

This study was initiated in early 2009 and during this period was the collection of data, analysis and comparison between the data of the process of loading and hauling. The report focused on evaluating the impact that occurs in the actual hours transport equipment, product variation operational indices. All these scenarios were analyzed taking as baseline indicators Atocongo Quarry Management 2009

Adapt whole work culture mine operators to interact with a new area was a challenge that were fulfilled only by the involvement, adaptability and quality of workers in San Martin General Contractor thereby obtaining a continuous improvement as a way of life in order to remain in business.

INDICE

		Pág
	INTRODUCCION	13
	Objetivos	14
	CAPITULO I : ASPECTOS GENERALES DE LA CANTERA DE CALIZA DE ATOCONGO – UNACEM	16
1.1.	Sede de UNACEM Lima S.A.A	16
1.2.	Ubicación Política y Acceso.	18
1.3.	Escenario Geológico	19
1.4.	Calidad del Yacimiento	20
1.5.	Método de explotación de la cantera	21
1.6.	Proceso de Explotación	22
1.6.1.	Perforación	22
1.6.2.	Malla de Perforación	23
1.6.3.	Voladura o disparo.	23
1.6.4.	Costos de Voladura	24
1.6.5.	Fragmentación luego del disparo	25
1.6.6.	Carguío.	28
1.6.7.	Costos de Carguío	29
1.6.8.	Acarreo	30
1.6.9.	Chancado primario	32

	CAPITULO II: DESCRIPCION DEL PROCESO DE CARGUIO Y	
	ACARREO ANTES DE LA IMPLEMENTACION	34
2.1.	Procedimiento de Carguío y Acarreo	34
2.1.1.	Objetivo y alcance	34
2.1.2.	Referencias	35
2.1.3.	Responsabilidades	35
2.1.4.	Desarrollo del proceso de carguío y acarreo	35
2.1.5.	Disponibilidad física de flota	43
2.2.	Producción del Año 2009	44
2.3.	Compilado de la Producción	56
2.4.	Síntesis	58
	CAPITULO III : COMPARACION ENTRE EL ANTERIOR Y ACTUAL PROCESO DE CARGUIO Y ACARREO	59
3.1.	Descripción del Área	59
3.1.1.	Operaciones básicas	59
3.1.2	Funciones Control Mina	60
3.1.3.	Supervisores:	61
3.1.4.	Auxiliar de Operaciones	62
3.1.5.	Modelo CONTROL MINA	65
3.1.6.	Carguío y Transporte	66
3.1.7.	Planificación	66
3.1.8.	Disponibilidad física de flota	66

3.1.9.	Costos 2010,2011,2012 de Carguío	70
3.1.10.	Ejecución Cambio de Guardia	71
3.1.11.	Reunión en Mina	72
3.1.12.	Formato de cambio de guardia	73
3.1.13.	Reportes	74
3.1.14.	Días Típicos	74
3.1.15	Demoras Operativas	75
3.1.16	Retroalimentación	76
3.1.17.	Evolución de la Producción	77
	CONCLUSIONES	80
	RECOMENDACIONES	81
	REFERENCIA BIBLIOGRÁFICA	83
	ANEXOS	86

INDICE DE FIGURAS

		Pág
Figura 1.1.	Planta de UNACEM Lima en el muelle de Conchán	16
Figura 1.2.	Logotipo de la empresa	17
Figura 1.3.	Planta de Atocongo de UNACEM Lima	18
Figura 1.4.	Vista Satelital de las canteras de UNACEM Lima	19
Figura 1.5.	Perforado Ingersoll Rand DM45	22
Figura 1.6.	Perforado Ingersoll Rand DM45	23
Figura 1.7.	Proceso de voladura a cielo abierto	24
Figura 1.8.	Reporte Granulométrico	25
Figura 1.9.	Muestreo	26
Figura 1.10	Digitalización de la foto representativa de la fragmentación	26
Figura 1.11	Carguío de material en volquetes Volvo	29
Figura1.12	Cargadores KOMATSU alimentando a Camión CAT	30
Figura 1.13	Flota de volquetes Volvo FM 8x4	31
Figura 1.14	Camión CAT 775E trasladando material	31
Figura 1.15	Equipos en actividad	32
Figura 1.16	Descarga de material trasladado de la cantera	33
Figura 2.1	Diagrama de flujo del proceso de carguío y acarreo	41
Figura 2.2	Diagrama de flujo del proceso de carguío y acarreo	42
Figura 3.1	Formato de transferencia de Información	73
Figura 3.2	Gestión de Indicadores	76

Gráfico 1.1	Análisis granulométrico	27
Grafico 2.1	Disponibilidad física 2009	43
Grafico 2.2	Cumplimiento de meta de producción	44
Grafico 2.3	Cumplimiento de meta de producción	45
Grafico 2.4	Cumplimiento de meta de producción	46
Grafico 2.5	Cumplimiento de meta de producción	47
Grafico 2.6	Cumplimiento de meta de producción	48
Grafico 2.7	Cumplimiento de meta de producción	49
Grafico 2.8	Cumplimiento de meta de producción	50
Grafico 2.9	Cumplimiento de meta de producción	51
Grafico 2.10	Cumplimiento de meta de producción	52
Grafico 2.11	Cumplimiento de meta de producción	53
Grafico 2.12	Cumplimiento de meta de producción	54
Grafico 2.13	Cumplimiento de meta de producción	55
Grafico 2.14	Producción Total	56
Grafico 2.15	Producción Total	57
Grafico 3.1	Disponibilidad física 2010	67
Grafico 3.2	Disponibilidad física 2011	68
Grafico 3.3	Disponibilidad física 2012	69
Grafico 3.4	Costo Total	71
Grafico 3.5	Producción Total en Tn. por cambio de guardia efectivo	72
Grafico 3.6	Tiempo (horas) Demoras operativas por	75
Grafico 3.7	Producción mensual por año	77

Grafico 3.8	Producción Total	77
Grafico 3.9	Producción mensual por año	78
Grafico 3.10	Producción Total	78
Grafico 3.11	Producción mensual por año	79
Grafico 3.12	Producción Total	79

INDICE DE TABLAS

		Pág
Tabla 1.1	Tipos de caliza y variables de calificación con sus leyes de tolerancia.	21
Tabla 1.2	Malla de perforación	23
Tabla 1.3	Costos operativos en US\$/Tn	24
Tabla 1.4	Costos operativos en US\$/Tn	29
Tabla 2.1	Uso de flota 2009	43
Tabla 2.2	Producción enero	44
Tabla 2.3	Producción febrero	45
Tabla 2.4	Producción marzo	46
Tabla 2.5	Producción abril	47
Tabla 2.6	Producción mayo	48
Tabla 2.7	Producción junio	49
Tabla 2.8	Producción julio	50
Tabla 2.9	Producción agosto	51
Tabla 2.10	Producción setiembre	52
Tabla 2.11	Producción octubre	53
Tabla 2.12	Producción noviembre	54
Tabla 2.13	Producción diciembre	55
Tabla 2.14	Producción total en Toneladas	56
Tabla 3.1	Uso de flota 2010	67
Tabla 3.2	Uso de flota 2011	68
Tabla 3.3	Uso de flota 201	69

Tabla 3.4	Costos por mes 2010	70
Tabla 3.5	Costos por mes 2011	70
Tabla 3.6	Costos por mes 2012	70
Tabla 3.7	Producción por mes	77
Tabla 3.8	Producción por mes	78
Tabla 3.9	Producción por mes	79

INTRODUCCIÓN

En las minas de producción a tajo abierto, al igual que en otras minas, es necesario realizar trabajos de exploración y desarrollo para encontrar nuevas reservas y mantener o alargar de esta forma la vida útil de la mina e ir desarrollando el yacimiento para su posterior exploración.

La visión de negocio, la mejora continua del proceso y una política de gestión que se lleva a cabo en el yacimiento de la Cantera de Atocongo, hacen hincapié en la máxima utilización de los activos fijos para obtener de estos el mayor rendimiento y beneficio.

Para conseguir este objetivo se cuenta con una serie de procesos de producción y control siendo uno de los principales, el proceso de Carguío y Acarreo que actualmente se utiliza.

Al contar con un área específica que optimiza las asignaciones de camiones a cargadores en el tiempo esperado, cualquier información ingresada, que no corresponda plenamente a la realidad de terreno, ya sea durante el ciclo operativo o alguna detención, repercutirá de forma negativa en el proceso, sin alcanzar la

maximización en la utilización del tiempo ni la minimización de las pérdidas.

Como una forma de conocer la realidad operacional del Yacimiento de la Cantera de Atocongo, se realizó un estudio técnico y económico de la gestión operativa del proceso de Carguío y Acarreo.

Objetivos

a. Objetivos Generales

- Actualizar y validar la información de la gestión operativa en el Yacimiento de la Cantera de Atocongo.
- Analizar y validar el procedimiento de alimentación de estatus, realizado por los operadores de equipo, en el Yacimiento de la Cantera de Atocongo.
- 3. Análisis de reportes del sistema de despacho y tableros de control
- Analizar el impacto que produce la variación de los índices operacionales en los distintos niveles productivos.

b. Objetivos Específicos

- Conocer en terreno la realidad de gestión operativa en el Yacimiento de la Cantera de Atocongo
- Reconocer las variables críticas de alimentación al sistema de despacho y el impacto que tienen sobre este.
- Evaluar técnica y operacionalmente las posibles mejoras a la gestión operativa, que llevaran a una mejor utilización de los tiempos y equipos

- Evaluar económicamente los escenarios actual y proyectado sobre la base de mejoras operacionales.
- Utilizar de manera óptima los recursos de la organización y que esto se vea reflejado en el incremento de la producción.

CAPITULO I

ASPECTOS GENERALES DE LA CANTERA DE CALIZA DE ATOCONGO - UNACEM

1.1. SEDE DE UNACEM LIMA S.A.A.

UNACEM Lima, es la primera productora de cemento en el Perú con una participación del 47% del mercado nacional, es una empresa dedicada a la explotación, procesamiento de las materias primas involucradas en la fabricación del cemento y la comercialización del mismo, tanto en el país como en el extranjero a través del muelle de Conchán y vía terrestre.

Figura.1.1 Planta de UNACEM Lima en el muelle de Conchán [1]

San Martin Contratistas Generales S.A. como empresa contratista, se encarga del total de la explotación de la cantera Atocongo UNACEM Lima S.A.A. desde el año 1998 hasta la actualidad.

San Martin Contratistas Generales S.A. también presta servicios a otras empresas mineras para trabajos de Minería Subterránea, Exploraciones, Construcción, Transporte y Geotecnia.

Figura.1. 2 Logotipo de la empresa [2]

Actualmente sus principales obras son: Unacem Lima, Explotación de Canteras Atocongo, Pucará y Las Dunas - Operación a Tajo Abierto. Unacem Tarma, Explotación de Cantera Cerro de Palo - Operación a Tajo Abierto. Shougang Hierro Perú S.A.A. Desarrollo de Mina Shougang - Operación a Tajo Abierto. Gold Fields La Cima S.A. Desarrollo de Mina Cerro Corona - Operación a Tajo Abierto. Minera Coimolache - Desarrollo de Mina Proyecto Tantahuatay.

1.2. Ubicación Política y Acceso.

La cantera Atocongo se encuentra en el sitio de Atocongo que pertenece políticamente al distrito de Villa María del Triunfo, provincia y departamento de Lima.

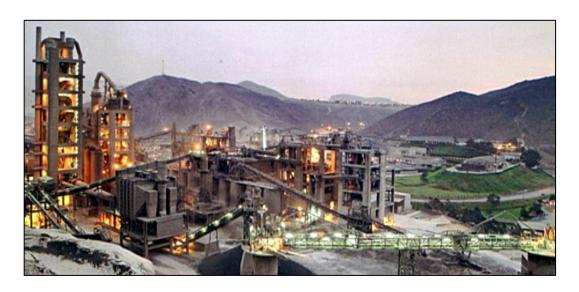


Figura.1.3 Planta de Atocongo de UNACEM Lima [3]

Geográficamente está en la costa y dentro de la Cuenca del río Lurín, específicamente en el flanco izquierdo de la quebrada Atocongo. El área de estudio está delimitada dentro de las Coordenadas UTM, siguiente: N 8'651,200 a 8'652,100 y E 292,900 a 294,100; y alcanza una altitud de 370 m.s.n.m. La superficie aproximada es de 108 Has.

Existen 2 vías de acceso a la cantera Atocongo; la primera de ellas es mediante la vía Panamericana Sur hasta el Km. 15, saliendo un ramal con dirección a José Gálvez - Nueva Esperanza, distante unos 7 Km. al norte; la segunda vía, Av.

Benavides – Tomas Marsano – Pachacutec y Nueva Esperanza – José Gálvez, distante unos 18 Km. al sur.

Figura1.4 Vista Satelital de las canteras de UNACEM Lima [4]

1.3. Escenario Geológico.

La caliza de la formación Atocongo es la materia prima que se utiliza en la fabricación del cemento, que este estudio se le está identificando como "Yacimiento Calcáreo Atocongo". En esta cantera, la formación Atocongo se ha dividido en tres miembros, en base a su estructura. El inferior tiene una estratificación delgada y alto contenido de material carbonoso, el medio está formado por estratos de espesor medio, mientras que el superior son bancos gruesos y masivos.

1.4. Calidad del Yacimiento.

La industria del cemento depende de diversas materias primas; con esta premisa debemos efectuar un control de calidad minucioso que nos permita seleccionar áreas económicas y así diseñar y explotar la materia prima que nos asegure un cemento de óptima calidad, ser selectivo significa mezclar adecuada y cuidadosamente las variables químicas contenidas en la caliza Atocongo brindando así una operación económica.

La evaluación de la calidad de la cantera se ha efectuado en base a los resultados de los análisis químicos efectuados por UNACEM. Los resultados de los ensayos fueron ploteados en el mapa geológico y en las secciones geológicas. Con los criterios indicados anteriormente se elaboró la zonificación del yacimiento en superficie para cada uno de las variables de óxido de sílice (SiO₂), algunos dióxidos de sílice, óxido de aluminio (Al₂O₃), óxido de fierro (Fe₂O₃), óxido de calcio (CaO), óxido de magnesio (MgO), trióxido de azufre (SO₃), (algunos anhídridos sulfurosos), óxido de potasio (K₂O), óxido de sodio (Na₂O).

La clasificación de los tipos de caliza en base a su composición química y rangos de ley establecidos para las variables, se indica en el cuadro siguiente:

Tabla 1.1 Tipos de caliza y variables de calificación con sus leyes de tolerancia [5]

COMPOSICION	TIPOS DE CALIZA								
QUIMICA		ı	EXPORTACION						
	PIEDR	A BAJA	PIEDR <i>A</i>	MEDIA	PIEDRA ALTA				
VARIABLES	Prom. Tolerancia		Prom.	Tolerancia	Prom.	Tolerancia			
	(%)	(%)	(%)	(%)	(%)	(%)			
CaO	41.5	41 a 42.7	43.41	42.8 a 43.8	44.95	> 43.8			
SiO2	14.61	15.5 a 13.3	12.4	12 a 13.3	10.64	< 12			
SO3	0.99	< 1.2	0.96	< 1	0.78	< 0.8			
CO3	70.4	70 a 74	75.2	72 a 76.6	78	> 76.6			
MgO	2.14	< 2.5	2.1	< 2.5	2.03	< 2.5			

Las variables principales de control son el CaO y el SO₃. Los carbonatos son sólo referenciales.

1.5. Método de Explotación de la Cantera de Caliza.

El método de explotación es a tajo abierto (Cantera de Caliza) que en la actualidad mide aproximadamente 1,700 m. de largo, 1,000 m. de ancho y con una profundidad de 400 m. aproximadamente. Cuenta con 105 millones de Tn. de reserva con una ley promedio de 43.5% de CaO.

Las características principales del diseño del tajo son bancos de explotación de 14 m. de altura con rampas de acarreo de 10% de pendiente, el ángulo del talud final es de aproximadamente 53° y tenemos una distancia promedio de 1,400 m. de acarreo ya sea a chancadora como a botaderos, se opera en la actualidad en dos guardias de 12 horas al día.

Figura 1.5 Perforado Ingersoll Rand DM45 [6]

1.6. Proceso de Explotación.

El proceso de explotación se realiza mediante 5 operaciones unitarias: Perforación, voladura, carguío, acarreo y chancado o trituración.

1.6.1. Perforación

Como en la mayoría de operaciones mineras a cielo abierto el ciclo se inicia con la perforación. Los equipos de perforación nos permiten hacer taladros desde 5" hasta 8" de diámetro, siendo el más usado en nuestra cantera 6.75" con una malla de perforación estandarizada después de varias pruebas de 5.5 m. x 6 m. en caliza; y 5.5 m. x 5 m. en desmonte y para 5" es de 4m. x 4 m. en ambos casos.

1.6.2. Malla de Perforación

Tabla 1.2 Malla de perforación [7]

MALLA DE PERFORACION									
Tipo de Roca	Burden m	Espaciamiento m	Altura de Banco m	Densidad Tn/m3	Toneladas por Taladro	Toneladas por metro			
Caliza Atocongo	5.5	6.3	14	2.6	1261.3	90.1			
Caliza Atocongo Norte	5.5	6.3	10	2.6	900.9	90.1			
Desmonte Atocongo	4.5	5.2	14	2.7	884.5	63.2			
Desmonte Atocongo Norte	4.7	5.5	10	2.7	698.0	69.8			

Figura 1.6 Perforado Ingersoll Rand DM45 [8]

1.6.3. Voladura o disparo

Luego de la perforación se realiza la voladura para el cual se ha normado el uso de explosivos como el HEAVY ANFO y ANFO. El HEAVY ANFO fue implementado hace dos años aproximadamente, después de determinar su efectividad y ampliación de la malla lo que conlleva a la reducción de los costos.

1.6.4. Costos de Voladura

Los costos considerados incluyen los operativos según detalle

Tabla 1.3 Costos Operativos en US\$/Tn [9]

2009	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPT	OCTUBRE	NOV	DIC	Prom
PERFORACION	0.141	0.146	0.148	0.143	0.150	0.143	0.148	0.150	0.145	0.142	0.150	0.148	0.146
VOLADURA	0.159	0.169	0.165	0.160	0.165	0.163	0.167	0.164	0.161	0.162	0.166	0.163	0.164
CARGUIO	0.193	0.194	0.198	0.201	0.202	0.193	0.203	0.201	0.193	0.197	0.201	0.203	0.198
ACARREO	0.310	0.321	0.349	0.355	0.316	0.329	0.333	0.317	0.350	0.326	0.313	0.349	0.330
M. VIAS	0.068	0.070	0.076	0.075	0.074	0.075	0.069	0.069	0.076	0.074	0.069	0.075	0.072
G. GENERALES	0.059	0.064	0.065	0.060	0.063	0.065	0.064	0.064	0.066	0.064	0.065	0.071	0.064

Figura 1.7 Proceso de voladura a cielo abierto. [10]

Se realizan tres disparos por semana; cada proyecto de voladura es de aproximadamente 150 taladros, que usan un promedio de 350 Kg. de explosivo por taladro.

Debemos de saber que la necesidad de la perforación y voladura está ligada a la calidad del mineral y necesidad del mercado, lo cual nos obliga a tener una reserva mínima de aproximadamente 150,000 TM de caliza rota en la cantera.

1.6.5. Fragmentación luego del disparo

Figura 1.8 Reporte Granulométrico [11]

Tajo:	Proyecto:	Nivel:	Línea de muestreo	Pasante 90%
ATOCONGO-Z-SUR	3476	136	Composito OverAll	9.6474

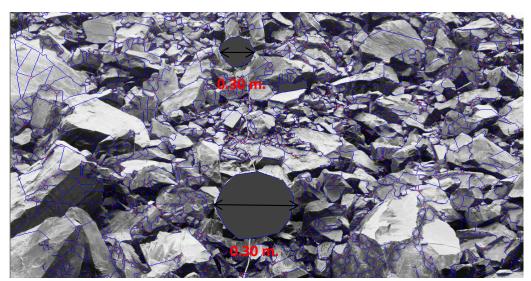


Figura 1.9 Muestreo [12]

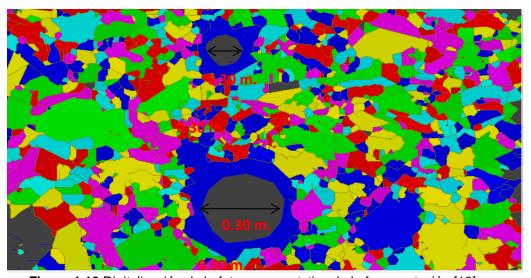


Figura 1.10 Digitalización de la foto representativa de la fragmentación [13]

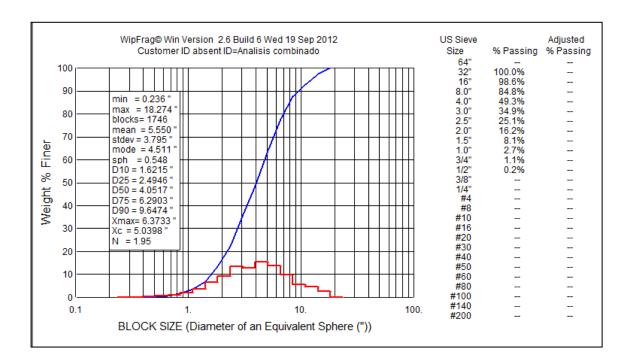


Gráfico: 1.1 Análisis granulométrico [14]

- 1.- El comportamiento de la curva acumulativa indica el 90 % del material analizado pasa por un "Tamiz" de 9.6474 Pul, de igual manera el valor "N" de cunningham es de 1.95
- 2.- Tamaño máximo de fragmentos 18.274 pul. Y mínimo 0.236 pul.
- 3.- Porcentaje de gruesos: el 84.8% de la carga corresponden a tamaños mayores a 8.0 pulg. de diámetro.
- 4.-Porcentaje de finos: el 49.3% corresponden a tamaños menores a 4 pulg.
- 5.- Explosivo: SAN-G.

1.6.6. Carguío

Fracturado el material, se inicia la actividad de carguío. San Martín cuenta en la actualidad con 4 cargadores frontales para la caliza ya que la falta de homogeneidad de los componentes químicos (leyes, Tabla 1), hace tener tres frentes de carguío.

La capacidad aproximada de estos cargadores varía desde los 600 TM/hora hasta 1,100 TM/hora por cada uno.

Los equipos con que se cuenta para las operaciones de carguío de caliza/desmonte son 03 cargadores CATERPILLAR 988H con una cuchara de capacidad de 6.1 m³ a 6.9 m³; 01 cargadores KOMATSU con una cuchara de capacidad de 5.2 m³ y 01 excavadora CATERPILLAR 374-D con una cuchara de 4.6 m³ de capacidad. También se cuenta con 01 cargador CAT 966 H con una cuchara de 4.1 m³ de capacidad.

1.6.7. Costos de Carguío

Tabla 1.4 Costos operativos en US\$/Tn [15]

2009	ENERO	FEBRERO	MARZO	ABRIL	МАҮО	JUNIO	JULIO	AGOSTO	SEPT	OCTUBRE	NOV	DIC	Prom
PERFORACION	0.141	0.146	0.148	0.143	0.150	0.143	0.148	0.150	0.145	0.142	0.150	0.148	0.146
VOLADURA	0.159	0.169	0.165	0.160	0.165	0.163	0.167	0.164	0.161	0.162	0.166	0.163	0.164
CARGUIO	0.193	0.194	0.198	0.201	0.202	0.193	0.203	0.201	0.193	0.197	0.201	0.203	0.198
ACARREO	0.310	0.321	0.349	0.355	0.316	0.329	0.333	0.317	0.350	0.326	0.313	0.349	0.330
M. VIAS	0.068	0.070	0.076	0.075	0.074	0.075	0.069	0.069	0.076	0.074	0.069	0.075	0.072
G. GENERALES	0.059	0.064	0.065	0.060	0.063	0.065	0.064	0.064	0.066	0.064	0.065	0.071	0.064

Figura 1.11 Carguío de material en volquetes Volvo [16]

Figura1.12 Cargadores KOMATSU alimentando a Camión CAT [17]

1.6.8. Acarreo

Para el acarreo de este material, San Martín cuenta con una flota de 8 camiones y 6 volquetes distribuidos en caliza y desmonte. La producción diaria es aproximadamente de 38,000 TM entre caliza y desmonte.

Figura 1.13 Flota de volquetes Volvo FM 8x4 [18]

Figura 1.14 Camión CAT 775E trasladando material [19]

Figura 1.15 Equipos en actividad [20]

1.6.9. Chancado primario

El trabajo de San Martin Contratistas Generales S.A. en la cantera termina con el descargue de la caliza en chancadora primaria, que requiere una alimentación no menor a 1,250 TM/hora por aspectos económicos y operacionales.

Figura 1.16 Descarga de material trasladado de la cantera [21]

CAPITULO II

DESCRIPCION DEL PROCESO DE CARGUIO Y ACARREO ANTES DE LA IMPLEMENTACION

2.1 Procedimiento de Carguío y Acarreo

2.1.1 Objetivo y alcance

Establecer las actividades que intervienen en el proceso de carguío y acarreo con el propósito de cumplir con el plan de minado, el cual fue elaborado en función a los requerimientos del cliente.

El alcance de este procedimiento comprende desde las coordinaciones para el inicio de las operaciones hasta el análisis de indicadores.

2.1.2 Referencias

- OPE-PRO-001 Proceso de planificación anual y semanal.
- Condiciones de contrato

2.1.3 Responsabilidades

Dentro de los cargos responsables de llevar a cabo el carguío y acarreo externo se encuentran:

- Jefe de mina y jefe de oficina técnica: Son los responsables de la elaboración, ajuste y difusión del plan de minado anual y semanal.
- Jefe de obra: es el responsable de aprobar el plan de minado anual y semanal para los períodos correspondientes.
- Supervisores de carguío y acarreo: Son los responsables de alcanzar los resultados propuestos en el plan de minado semanal.

2.1.4 Desarrollo del proceso de carguío y acarreo

El proceso de carguío y acarreo externo se lleva a cabo realizando los siguientes pasos:

Paso1. Coordinar el inicio de la operación: El supervisor de carguío y acarreo coordina vía telefónica con el jefe de mina el inicio de las operaciones de su tumo.

Paso 2. Revisar plan semanal: El supervisor de carguío y acarreo debe revisar la producción de caliza planificada para su turno, de acuerdo al plan semanal.

Paso 3. Preparar el blending: El muestrero es el responsable de realizar las mezclas de los tipos de caliza para cumplir las leyes que requiere el cliente. Cada mezcla trae indicado los proyectos, niveles y leyes que se mezclarán. Los resultados obtenidos serán presentados al supervisor de carguío y acarreo.

Paso 4. Revisar el blending: El supervisor de carguío y acarreo revisará las mezclas con las leyes requeridas para ser presentadas al cliente.

Paso 5. Reunión con el cliente: El supervisor de carguío y acarreo solicita al cliente diariamente el requerimiento de caliza con la ley o leyes específicas de carbonato de calcio y otros elementos.

Paso 6. ¿Se requiere caliza?:

- Si es sí, ir al paso 8.
- Si es no, ir al paso 7.

Paso 7. Distribuir flota en acarreo interno o parar: Si el cliente no solicita caliza en el turno, el supervisor distribuye los equipos asignados al acarreo externo en los frentes internos. En el caso de no haber frentes la flota de desmonte, se deben paralizar operaciones.

Paso 8. Aprobación del blending: El supervisor le presenta al cliente las mezclas de material que cumplen con su requerimiento, el cliente revisa las mezclas y aprueba la más conveniente.

Paso 9. Distribuir flota en frentes de caliza: El supervisor de carguío y acarreo distribuye sus equipos en los frentes de carguío indicados en el blending aprobado.

Paso 10. Coordinar con supervisor saliente: El supervisor de carguío y acarreo saliente, le informa al entrante las condiciones de los frentes de carguío, descargas, estado de las vías, operatividad de los equipos, resultados de producción, cumplimiento del plan semanal y ubicación de los equipos.

Paso11. Charla de seguridad/reparto de guardia: El supervisor de carguío y acarreo (entrante) dicta la charla de seguridad sobre temas relacionados a la seguridad de trabajos en cantera que dura 5 minutos. Culminada la charla, el supervisor procederá repartir la guardia, informa al personal las condiciones de los frentes de carguío, descargas y el estado de las vías de acarreo. Distribuye a los operadores en los frentes de carguío de caliza y desmonte planificados. Entrega los reportes a los operadores y les indica el lugar donde se realizará el cambio en caliente.

Paso12. Supervisar el cambio de guardia/inicio de operaciones: El supervisor de carguío y acarreo se dirige a los lugares designados para el cambio en caliente para supervisar que se realice de forma adecuada y en el tiempo establecido. Culminado el cambio en caliente, procede a recorrer la cantera para coordinar y verificar las condiciones de seguridad, mantenimiento de vías, tiempos de los ciclos de carguío y acarreo. De ser necesario toma acciones correctivas.

Paso13. Cambio de guardia: El operador al culminar la charla de seguridad se traslada a los lugares indicados para realizar el cambio de turno.

Paso14. Llenar el pre-uso de su equipo: Al terminar el cambio en caliente cada operador debe llenar el pre-uso de su equipo indicando las observaciones que haya encontrado al revisarlo.

Paso15. Recoger y revisar los pre-usos de los equipos: El supervisor de carguío y acarreo recoge los pre-usos, revisa y señala observaciones que deberán

corregirse por el área de mantenimiento, priorizando aquellas que puedan afectar la operatividad del equipo. Luego, las entregará al auxiliar de operaciones.

Paso 16. Generar solicitud de trabajo en Oracle: El auxiliar de operaciones ingresa en el sistema Oracle y generará una solicitud de trabajo al área de mantenimiento.

Paso 17. Asistir a la reunión de coordinación diaria en cantera: El supervisor de carguío y acarreo asiste a la reunión de coordinación diaria desarrollada en cantera, convocada por el jefe de mina. En la reunión, el supervisor de carguío y acarreo expone sus resultados, acciones correctivas y necesidades.

Paso 18. Realizar el control de pisos y avances: El topógrafo entrega el informe de control de pisos de los frentes de carguío, al supervisor de carguío y acarreo para que tome las acciones correctivas. Durante el turno día, el topógrafo le hará llegar tres informes al supervisor (mañana, mediodía y tarde).

Paso 19. Supervisar operaciones: el supervisor de carguío y acarreo culminada la reunión diaria supervisa la seguridad, producción, rendimientos y trabajos auxiliares relacionados al proceso de carguío y acarreo.

Paso 20. Muestrear frentes de caliza: El muestrero es el encargado de obtener las muestras para el análisis solicitado por el cliente. El supervisor de carguío y acarreo lo apoya trasladándolo a los frentes de carguío de caliza para la toma de muestras; y al área de control de calidad del cliente para la entrega de ellas.

Paso 21. Recoger resultados del análisis de muestras: El muestrero realiza el seguimiento del análisis de las muestras por el cliente. Recoge los resultados y los comunica al supervisor de carguío y acarreo.

Paso 22. Verificar el cumplimiento del blending: El supervisor de carguío y acarreo verifica el cumplimiento del blending. De cumplirse se mantiene los frentes

de carguío de caliza. De lo contrario se toma medidas correctivas como: reubicación del equipo de carguío en el frente, traslado a otro frente de carguío (autorizado por el cliente), paralización del acarreo si no se tiene caliza que cubra las necesidades del cliente.

Paso 23. Control de tonelaje: En el punto de destino, el operador de balanza informa al auxiliar de operaciones el tonelaje acarreado 2 veces al día. La comunicación es a través de radio o vía telefónica.

Paso 24. Control tonelaje por día: En el punto de destino el operador de balanza es el encargado de informar al *auxiliar de operaciones*, el tonelaje acarreado en los dos turnos del día anterior. Esta actividad se realiza diariamente a las 7 am.

Paso 25. Comunicar control al supervisor: El auxiliar de operaciones registra el informe del operador de balanza e informa vía radio al supervisor de carguío y acarreo el tonelaje acarreado por hora y por día (acumulado de los dos turnos del día anterior).

Paso 26. Controlar la producción: El supervisor de carguío y acarreo verifica el cumplimiento del tonelaje planificado, en el registro del auxiliar de operaciones. En caso de detectar desviaciones, toma los correctivos necesarios.

Paso 27. ¿Falla mecánica?:

- Si es sí, ir al paso 27
- Si es no, ir al paso 28

Paso 28. Coordinar con el área de mantenimiento: El supervisor de carguío y acarreo se comunica con personal del área de mantenimiento para que adopte acciones correctivas.

Paso 29. Registrar en el formato de carguío y acarreo: El operador debe llenar los campos de los formatos de carguío y acarreo de forma objetiva y clara cuando termine su turno.

Paso 30. Recoger y revisar los formatos de carguío y acarreo: El supervisor de carguío y acarreo recoge, revisa y visa los partes de equipos, los cuales han sido llenados por los operadores. Luego, los entrega al auxiliar de operaciones.

Paso 31. Registrar los formatos: El auxiliar de operaciones recibe y registra los formatos en el reporte de carguío y acarreo, la cual es enviada al jefe de oficina técnica.

Paso 32. Generar y enviar indicadores de carguío y acarreo: La oficina técnica procesa la información, genera y envía indicadores de carguío y acarreo al supervisor y personal de nivel gerencial.

Paso 33. Analizar indicadores: El supervisor de carguío y acarreo recibe los indicadores de carguío y acarreo para analizarlos y enviar sus observaciones a la oficina técnica.

Paso 34. Registro del cuaderno de obra: El supervisor de carguío y acarreo registra la producción, incidentes de seguridad y otras ocurrencias de su turno en el cuaderno de obra.

Paso 35. ¿Es día de reunión?:

- Si es sí, ir al paso 36
- Si es no, finalizar el flujo de carguío y acarreo.

Paso **36. Asistir a la reunión de operaciones:** El supervisor de carguío y acarreo debe asistir a la reunión de operaciones cada semana para recibir el plan de operaciones. A la reunión semanal debe asistir el personal de todas las áreas.

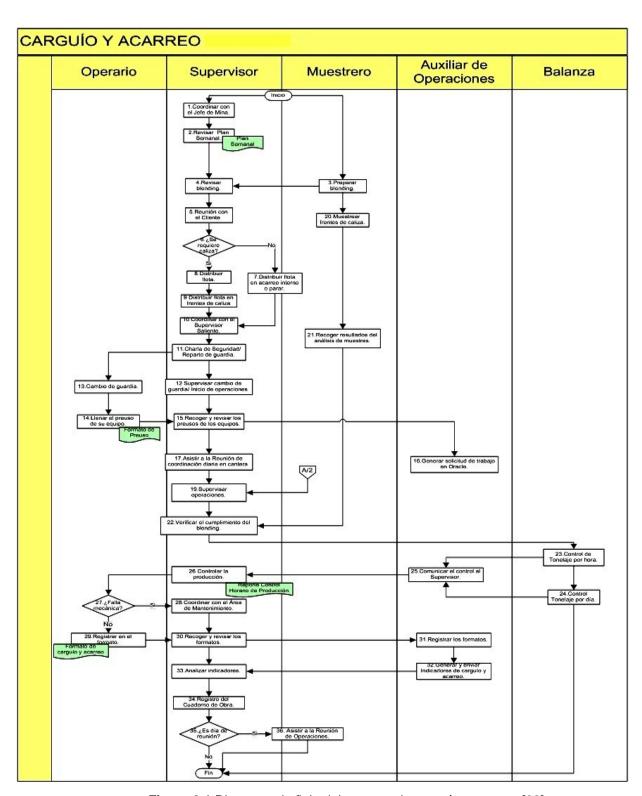


Figura 2.1 Diagrama de flujo del proceso de carguío y acarreo [22]

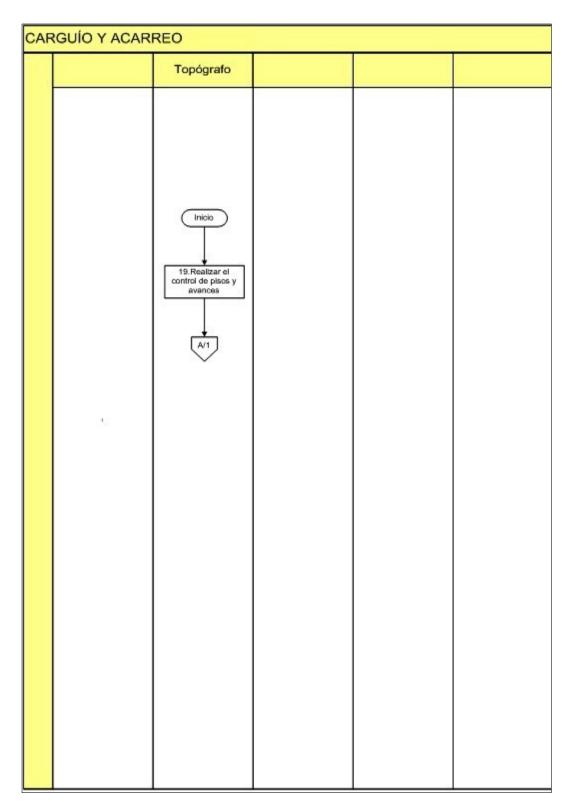


Figura 2.2 Diagrama de flujo del proceso de carguío y acarreo [23]

2.1.5 Disponibilidad física de flota

Tabla 2.1 Uso de flota 2009 [24]

		USO DE DISPONIBILIDAD FISICA DE FLOTA 2009												
Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	
Programada	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	
Real	81.1%	81.9%	81.2%	80.0%	80.1%	81.9%	81.8%	80.1%	80.5%	81.2%	81.9%	80.0%	81.0%	
% de Variacion	-4.5%	-3.6%	-4.5%	-5.9%	-5.8%	-3.7%	-3.8%	-5.8%	-5.3%	-4.4%	-3.6%	-5.9%	-4.7%	

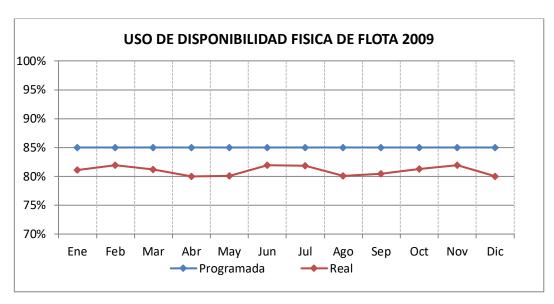


Grafico 2.1 Disponibilidad física 2009 [25]

2.2 Producción del Año 2009 en Toneladas

Tabla 2.2 Producción enero [26]

Total Producción								
Semanas	1	2	3	4	5	Total	Obj. Sem	OBJ
Producción Semanal	210,000	210,000	210,000	210,000	210,000	1,050,000	220,000	1,100,000
objetivo	1,100,000	1,100,000	1,100,000	1,100,000	1,100,000	1,100,000	1,100,000	1,100,000
Producción Acumulada	210,000	420,000	630,000	840,000	1,050,000	1,050,000	1,050,000	
% de cumplimiento	19%	38%	57%	76%	95%	95%		

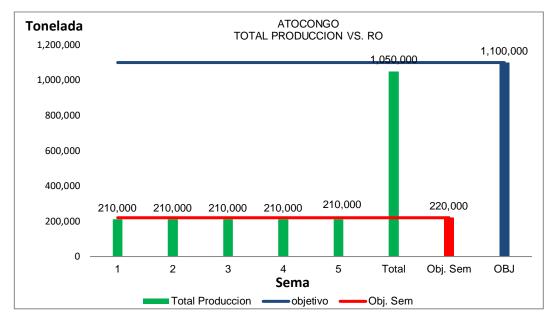


Grafico 2.2 Cumplimiento de meta de producción [27]

Tabla 2.3 Producción febrero [28]

Total Producción								
Semanas	1	2	3	4	5	Total	Obj. Sem	ОВЈ
Producción Semanal	350,000	250,000	350,000	250,000	200,000	1,400,000	285,811	1,224,903
objetivo	1,224,903	1,224,903	1,224,903	1,224,903	1,224,903	1,224,903	1,224,903	1,224,903
Producción Acumulada	350,000	600,000	950,000	1,200,000	1,400,000	1,400,000	1,400,000	
% de cumplimiento	29%	49%	78%	98%	114%	114%		

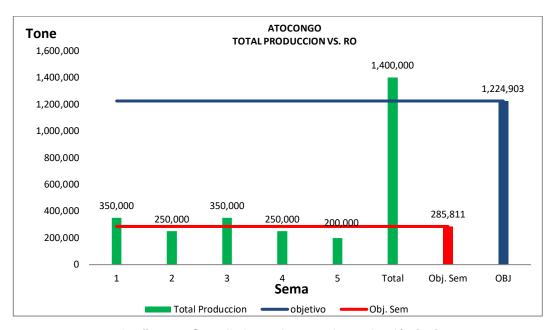


Grafico 2.3 Cumplimiento de meta de producción [29]

Tabla 2.4 Producción marzo [30]

Total Producción								
Semanas	10	11	12	13	14	Total	Obj. Sem	OBJ
Producción Semanal	426,800	253,985	407,356	258,000	75,000	1,421,141	332,955	1,426,952
objetivo	1,426,952	1,426,952	1,426,952	1,426,952	1,426,952	1,426,952	1,426,952	1,426,952
Producción Acumulada	426,800	680,785	1,088,141	1,346,141	1,421,141	1,421,141	1,421,141	
% de cumplimiento	30%	48%	76%	94%	100%	99.6%		

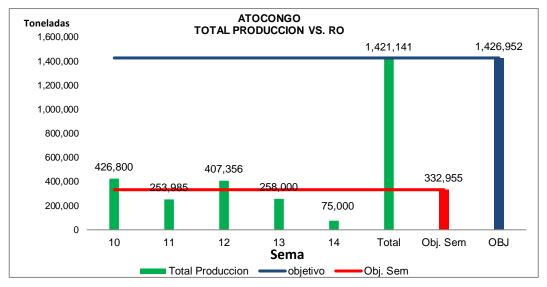


Grafico 2.4 Cumplimiento de meta de producción [31]

Tabla 2.5 Producción abril [32]

Total Producción								
Semanas	14	15	16	17	18	Total	Obj. Sem	OBJ
Producción Semanal	194,352	337,542	298,567	333,387	190,000	1,353,848	295,714	1,267,345
objetivo	1,267,345	1,267,345	1,267,345	1,267,345	1,267,345	1,267,345	1,267,345	1,267,345
Producción Acumulada	194,352	531,894	830,461	1,163,848	1,353,848	1,353,848	1,353,848	
% de cumplimiento	15%	42%	66%	92%	107%	107%		

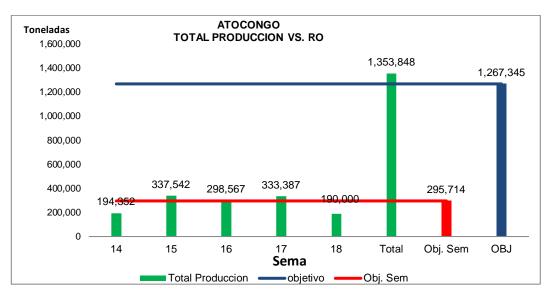


Grafico2.5 Cumplimiento de meta de producción [33]

Tabla 2.6 Producción mayo [34]

Total Producción								
Semanas	18	19	20	21	22	Total	Obj. Sem	OBJ
Producción Semanal	112,247	150,345	210,654	398,567	393,504	1,265,317	315,204	1,350,876
objetivo	1,350,876	1,350,876	1,350,876	1,350,876	1,350,876	1,350,876	1,350,876	1,350,876
Producción Acumulada	112,247	262,592	473,246	871,813	1,265,317	1,265,317	1,265,317	
% de cumplimiento	8%	19%	35%	65%	94%	94%		

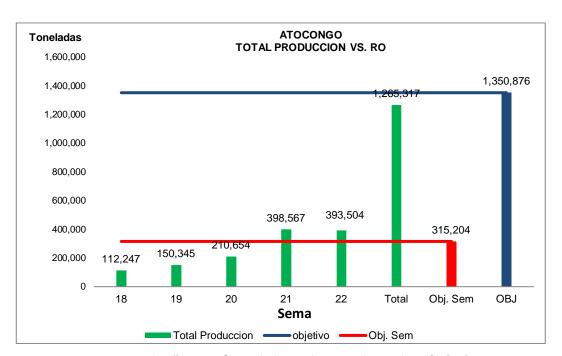


Grafico 2.6 Cumplimiento de meta de producción [35]

Tabla 2.7 Producción junio [36]

Total Producción								
Semanas	23	24	25	26	27	Total	Obj. Sem	ОВЈ
Producción Semanal	215,982	225,769	424,570	426,461	183,543	1,476,325	338,465	1,450,563
objetivo	1,450,563	1,450,563	1,450,563	1,450,563	1,450,563	1,450,563	1,450,563	1,450,563
Producción Acumulada	215,982	441,751	866,321	1,292,782	1,476,325	1,476,325	1,476,325	
% de cumplimiento	15%	30%	60%	89%	102%	102%		

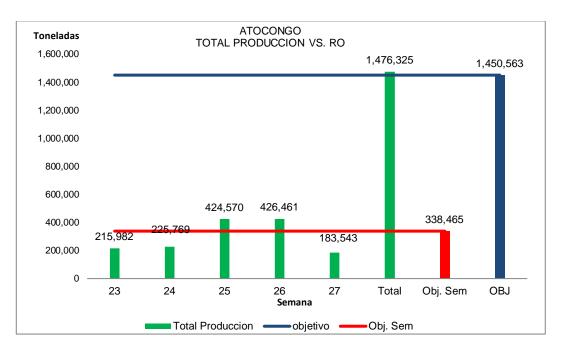


Grafico 2.7 Cumplimiento de meta de producción [37]

Tabla 2.8 Producción julio [38]

Total Producción								
Semanas	27	28	29	30	31	Total	Obj. Sem	OBJ
Producción Semanal	210,435	356,732	325,634	398,543	351,558	1,642,902	366,181	1,569,345
objetivo	1,569,345	1,569,345	1,569,345	1,569,345	1,569,345	1,569,345	1,569,345	1,569,345
Producción Acumulada	210,435	567,167	892,801	1,291,344	1,642,902	1,642,902	1,642,902	
% de cumplimiento	13%	36%	57%	82%	105%	105%		

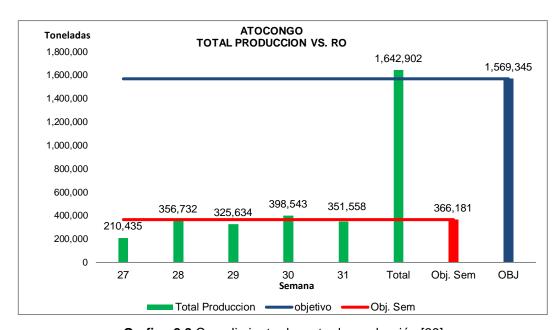


Grafico 2.8 Cumplimiento de meta de producción [39]

Tabla 2.9 Producción agosto [40]

Total Producción									
Semanas	31	32	33	34	35	36	Total	Obj. Sem	ОВЈ
Producción Semanal	129,909	405,632	234,512	321,986	469,838	64,288	1,626,165	381,963	1,636,984
objetivo	1,636,984	1,636,984	1,636,984	1,636,984	1,636,984	1,636,984	1,636,984	1,636,984	1,636,984
Producción Acumulada	129,909	535,541	770,053	1,092,039	1,561,877	1,626,165	1,626,165	1,626,165	
% de cumplimiento	8%	33%	47%	67%	95%	99%	99%		

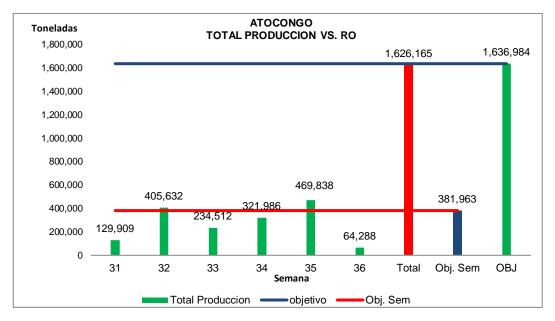


Grafico 2.9 Cumplimiento de meta de producción [41]

Tabla 2.10 Producción setiembre [42]

Total Producción								
Semanas	36	37	38	39	40	Total	Obj. Sem	OBJ
Producción Semanal	429,031	518,021	486,587	220,878	0	1,654,517	509,863	2,185,129
objetivo	2,185,129	2,185,129	2,185,129	2,185,129	2,185,129	2,185,129	2,185,129	2,185,129
Producción Acumulada	429,031	947,052	1,433,639	1,654,517	1,654,517	1,654,517		
% de cumplimiento	20%	43%	66%	76%	76%	76%		

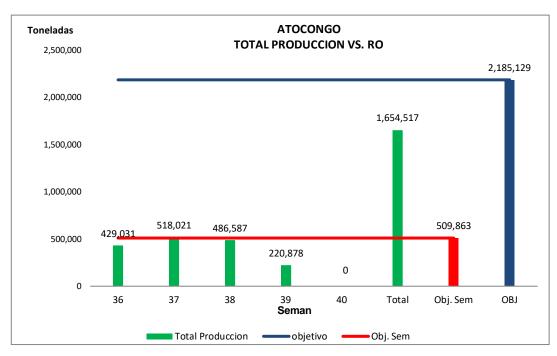


Grafico 2.10 Cumplimiento de meta de producción [43]

Tabla 2.11 Producción octubre [44]

Total Producción								
Semanas	40	41	42	43	44	Total	Obj. Sem	OBJ
Producción Semanal	270,204	438,034	496,066	465,482	468,952	2,138,738	439,553	1,883,800
objetivo	1,883,800	1,883,800	1,883,800	1,883,800	1,883,800	1,883,800	1,883,800	1,883,800
Producción Acumulada	270,204	708,238	1,204,305	1,669,786	2,138,738	2,138,738		
% de cumplimiento	14%	38%	64%	89%	114%	114%		

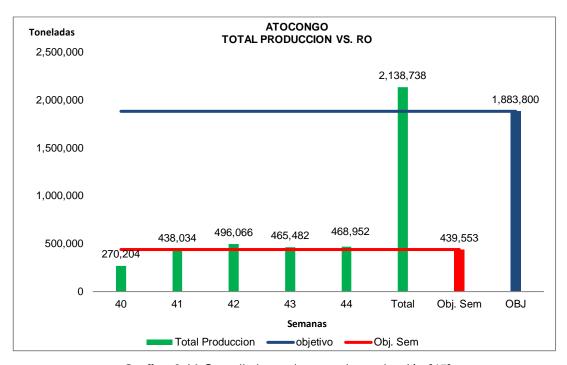


Grafico 2.11 Cumplimiento de meta de producción [45]

Tabla 2.12 Producción noviembre [46]

Total Produccion									
Semanas	44	45	46	47	48	49	Total	Obj. Sem	OBJ
Producción Semanal	63,167	428,805	380,062	505,433	508,412	77,383	1,963,262	531,278	2,276,907
objetivo	2,276,907	2,276,907	2,276,907	2,276,907	2,276,907	2,276,907	2,276,907	2,276,907	2,276,907
Producción Acumulada	63,167	491,972	872,034	1,377,467	1,885,879	1,963,262	1,963,262		
% de cumplimiento	3%	22%	38%	60%	83%	86%	86%		

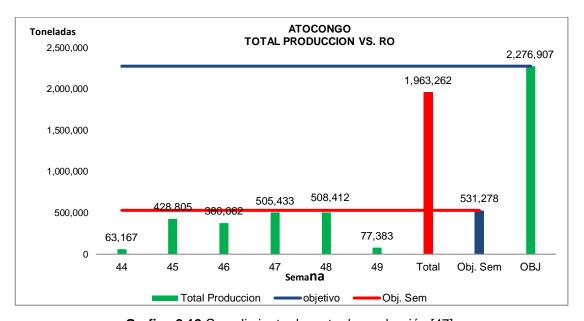


Grafico 2.12 Cumplimiento de meta de producción [47]

Tabla 2.13 Producción diciembre [48]

Total Produccion									
Semanas	44	45	46	47	48	49	Total	Obj. Sem	OBJ
Producción Semanal	65,324	325,673	231,769	490,657	500,043	350,873	1,964,339	463,735	1,987,435
objetivo	1,987,435	1,987,435	1,987,435	1,987,435	1,987,435	1,987,435	1,987,435	1,987,435	1,987,435
Producción Acumulada	65,324	390,997	622,766	1,113,423	1,613,466	1,964,339	1,964,339		
% de cumplimiento	3%	20%	31%	56%	81%	99%	99%		

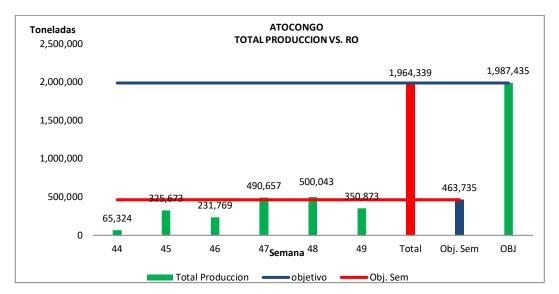


Grafico 2.13 Cumplimiento de meta de producción [49]

2.3 Compilado de la Producción

Tabla 2.14 Producción total en Toneladas [50]

Produccion Anual		2009											
Meses	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
Obj.Mensual	1,100,000	1,224,903	1,426,952	1,267,345	1,350,876	1,450,563	1,569,345	1,636,984	2,185,129	1,883,800	2,276,907	1,987,435	19,360,239
Prod. Acumulada x mes	1,050,000	1,400,000	1,421,141	1,353,848	1,265,317	1,476,325	1,642,902	1,626,165	1,654,517	2,138,738	1,963,262	1,964,339	18,956,554
% de cumplimiento	95.5%	114.3%	99.6%	106.8%	93.7%	101.8%	104.7%	99.3%	75.7%	113.5%	86.2%	98.8%	97.9%

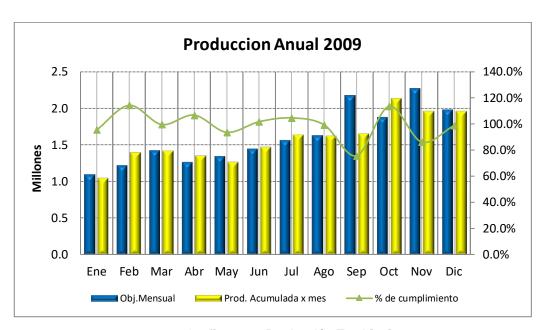


Grafico 2.14 Producción Total [51]

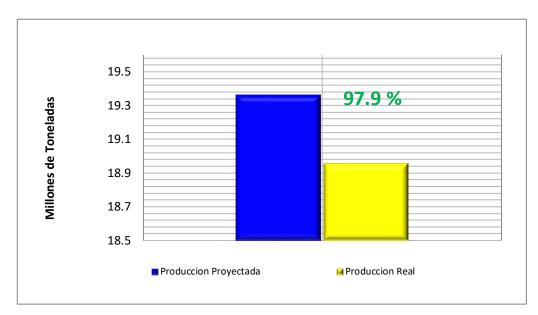


Grafico 2.15 Producción Total [52]

2.4 Síntesis

Podría decirse que esto funcionaba de manera eficiente pero en realidad no se tenía conocimiento en tiempo óptimo de lo que estaba sucediendo con la flota, como el control de las demoras y fallas de los equipos. Al no tener la suficiente información no se podían tomar las decisiones en el tiempo adecuado, por ejemplo: el supervisor no tenía información de la producción de la flota en determinada hora, ni los rendimientos de los equipos con lo cual no podía tomar las decisiones que lo llevaran a elevar el rendimiento de sus equipos para cumplir con las metas de producción.

CAPITULO III

COMPARACION ENTRE EL ANTERIOR Y ACTUAL PROCESO DE CARGUIO Y ACARREO

El área de Control Mina, registra, gestiona las operaciones mineras y provee de una funcionalidad de planificación. Con acceso a los planes de mantenimiento, a los programas de los equipos de trabajo y a los planes de minería, suministra las herramientas necesarias para tomar decisiones bien fundadas.

3.1Descripción del Área.

3.1.1. Operaciones básicas.

Básicamente el control mina es el encargado de registrar cada uno de los eventos que se producen durante los distintos ciclos de operación. Es en base a esta información que el sistema es capaz de determinar la ruta

óptima de acarreo. Las operaciones básicas que desarrolla el área son las siguientes:

- 1) Registro de eventos relevantes del ciclo de acarreo.
- 2) Registro y almacenamiento de datos.
- 3) Envío de reportes cada hora a las jefaturas involucradas.
- 4) Ingreso de los Pre usos al sistema Oracle
- 5) Ingreso de horometros de equipos auxiliares
- Coordinación minuto a minuto de parada de equipos con los operadores y supervisores
- 7) Rendimiento de los equipos de perforación, carguío y acarreo.
- Control diario de Diésel; control diario de cisternas de agua;
 control del stock de material desmonte.

3.1.2. Funciones Control Mina

Una mina de tajo abierto ocupa un gran territorio, y cuenta con operaciones en áreas separadas por varios kilómetros y tienen su propia gestión en cada área. Como un optimizador de rutas y administrador de la operación minera, el área se convierte en una importante herramienta de gestión y control, de esta forma el equipo humano asignado cumple con las siguientes funciones:

3.1.3. Supervisores:

- Definen los factores claves que están bajo el control directo del supervisor, que puede ser medido y controlado por hora (por ejemplo, toneladas por hora, carga de camiones, etc.).
- Implementan un sistema en la cual los operadores de camión y pala, reportan resultados sobre una base horaria a través de una radio de canal abierta, lo que permite que el supervisor mantenga un control horario de la operación, sin importar donde se encuentre. Esto tiene el beneficio adicional de dar a los operadores de camiones y de pala comprensión e interés en la operación durante el día.
- Instalación de reportes de turno que no sólo tienen los indicadores claves, sino también las medidas adoptadas para corregir las variaciones dentro de una reunión de cambio de turno.
- Coaching uno a uno en el sitio, comprometiendo a garantizar que los principios del entrenamiento sean comprendidos y aplicados.
- La gran cantidad de indicadores disponibles a través del sistema informático se redujo a indicadores significativos y críticos, tales como cargas de los camiones y los tiempos de espera para la carga, estos se combinaron con los indicadores de mantenimiento diario en un informe significativo de producción diaria, en la que las causas de las variaciones pudieron ser identificadas.

3.1.4. Auxiliar de Operaciones

3.1.4.1. Datos Generales

Nombre de la posición	Unidad organizativa
Auxiliar de operaciones	Gerencia: Operaciones
Auxilial de operaciones	Departamento: Oficina técnica
Posición a la que reporta	Posiciones que le reportan
Analista de resultados operativos Jefe de Oficina Técnica	

Misión del puesto.

Brindar un excelente apoyo en el registro y mantenimiento de la información relacionada a operaciones y oficina técnica.

Objetivos del puesto.

- Garantizar un óptimo archivo de los documentos de operaciones y planta.
- Asegurar que la información digital de las operaciones en cantera y planta, se encuentre actualizada con los registros correctos y sea enviada a sus encargados oportunamente.
- Atender los requerimientos de información del área de oficina técnica.

- Funciones específicas.

1º función:	Archivo
Qué hace:	Recibe y archiva los reportes de operaciones.
Cómo lo hace:	Recibe en su escritorio los partes diarios de punteros, equipos de carguío y acarreo, previa revisión del jefe de Guardia. Recibe en su escritorio los partes diarios de equipos de perforación, previa revisión del supervisor de perforación y voladura. Recibe en su escritorio los partes diarios de equipos de planta, Previa revisión del supervisor de planta. Luego de registrar la información de los partes diarios, los archiva en sus respectivas carpetas y en orden cronológico.
Para qué lo hace:	Para garantizar un óptimo archivamiento de los documentos de Operaciones y planta.
2º función:	Mantenimiento de bases de datos
Qué hace:	Registrar información de las áreas de operaciones, planta y oficina técnica en sus respectivas bases de datos.
Cómo lo hace:	Recibe diariamente al final de la guardia, los partes diarios de Operaciones y planta revisados por los supervisores. Los ordena de acuerdo al área y cronológicamente. Registra la información de las partes en los archivos digitales Excel que contienen la base de datos de cada área. Actualiza los archivos digitales Excel de indicadores que son Alimentados por las bases de datos. Envía por email los archivos digitales Excel actualizados a las Personas designadas.
Para qué lo hace:	Para asegurar que la información digital de las operaciones en cantera y planta, se encuentre actualizada con los registros correctos y sea enviada a sus encargados oportunamente. El departamento de Sistemas es el encargado de realizar los backups de la información de oficina técnica.
3º función:	Elaboración de reportes

Qué hace:	Elabora reportes de datos de acuerdo a los requerimientos del área de Control Mina e informa cada hora a las jefaturas en relación a la producción.
Cómo lo hace:	De acuerdo al requerimiento de información: - Filtra registros de las bases de datos Realiza cálculos Elabora gráficos explicativos.
Para qué lo hace:	Para atender los requerimientos de información del área del área de Control Mina y las áreas involucradas.

Responsabilidades

- A) Responsabilidades en cuanto a recursos, equipo y maquinarias:
 - Equipos: pc, información confidencial.

Posición, área o empresa	Propósito de la relación						
Jefe de oficina técnica	Proveedor: mantiene actualizada la base de datos de indicadores.						
	Cliente:						
	Proveedor:						
Operarios	Cliente: recibe partes diarios de carguío y						
	carreo.						
	Proveedor: brinda información de consumo						
Perforación y voladura	de aceros.						
	Cliente: recibe reportes de perforación						
Planta	Proveedor: brinda información de movimiento de agregados y alquileres de equipos en planta.						
	Cliente: recibe partes diarios de planta						

- Relaciones de la posición

Posición, área o empresa	Propósito de la relación						
Jefe de oficina técnica	Proveedor: mantiene actualizada la base de datos de indicadores.						
	Cliente:						
	Proveedor:						
Operarios	Cliente: recibe partes diarios de carguío y						
	carreo.						
	Proveedor: brinda información de consumo						
Perforación y voladura	de aceros.						
	Cliente: recibe reportes de perforación						
Planta	Proveedor: brinda información de movimiento de agregados y alquileres de equipos en planta.						
	Cliente: recibe partes diarios de planta						

Cada una de estas funciones es relevante y es en ellas, que el departamento basa las respectivas asignaciones.

3.1.5. Modelo CONTROL MINA

Una de las grandes ventajas que presenta el control mina es la gran cantidad de información capaz de recopilar rápidamente, además de llevar un control de cada uno de los lugares en los que se encuentran los equipos. Para optimizar esta gran cantidad de información y variables y entregar a los equipos la mejor asignación, el área se desempeña como el siguiente modelo:

3.1.6. Carguío y Transporte

3.1.7. Planificación

En la situación anterior: no se contaba con un proceso para la elaboración de un plan semanal y el área que debía elaborarlo no estaba definida. El cronograma de los procesos de minado estaba incompleto y variaba constantemente; el mantenimiento de vías se realizaba sin una programación.

Actualmente: se creó y definió que el área de Control Mina es la que debe elaborarlo siguiendo las necesidades de las áreas de carguío, acarreo, perforación y voladura de acuerdo a las necesidades del cliente. A su vez, ahora se coordina con el área de equipos la disponibilidad proyectada de los equipos. Así, este nuevo plan semanal se comunica a todas las áreas involucradas con anticipación para poder coordinar los trabajos.

Estos controles actuales contemplan el control de los costos del plan de minado. Se designó al jefe del Área Control Mina y se redistribuyó al personal existente en la obra para ocupar los puestos de esta área.

3.1.8. Disponibilidad física de flota

En la situación anterior, el factor de uso de la disponibilidad física de la flota era del 85%, en ese entonces no se llegaba a utilizar lo programado.

Actualmente: el factor uso se encuentra por encima de lo programado en un 4%.

Tabla 3.1 Uso de flota 2010 [53]

		USO DE DISPONIBILIDAD FISICA DE FLOTA 2010												
Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total	
Programada	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	
Real	88.7%	88.8%	89.6%	87.2%	87.6%	88.0%	88.1%	88.4%	88.7%	88.2%	88.6%	87.5%	88.3%	
% de Variacion	4.4%	4.5%	5.4%	2.5%	3.0%	3.5%	3.7%	4.1%	4.4%	3.7%	4.2%	3.0%	3.9%	

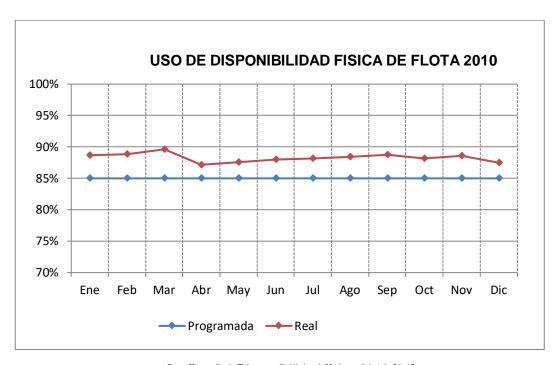


Grafico 3.1 Disponibilidad física 2010 [54]

Tabla 3.2 Uso de flota 2011[55]

					USO	DE DISPONIB	ILIDAD FISIC	A DE FLOTA	2011				
Mes	Ene	Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic :											
Programada	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%
Real	89.0%	88.8%	87.8%	89.3%	87.2%	89.0%	88.7%	87.9%	87.9%	89.2%	87.8%	87.3%	88.3%
% de Variacion	4.7%	4.5%	3.3%	5.1%	2.6%	4.7%	4.4%	3.4%	3.4%	4.9%	3.3%	2.7%	3.9%

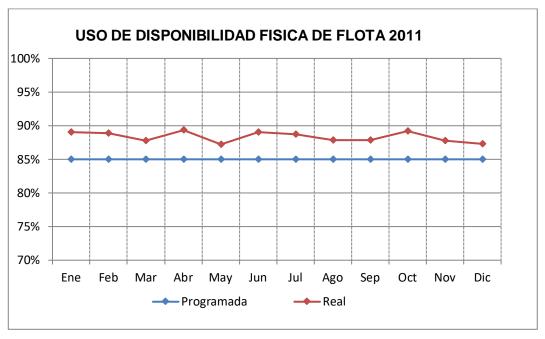


Grafico 3.2 Disponibilidad física 2011 [56]

Tabla 3.3 Uso de flota 2012 [57]

		USO DE DISPONIBILIDAD FISICA DE FLOTA 2012												
Mes	Ene	Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dic Tota												
Programada	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	85.0%	
Real	87.2%	89.4%	88.9%	89.3%	88.2%	88.0%	88.1%	88.8%	87.4%	89.2%	88.6%	88.6%	88.5%	
% de Variacion	2.6%	5.2%	4.6%	5.1%	3.7%	3.5%	3.6%	4.5%	2.9%	4.9%	4.2%	4.2%	4.1%	

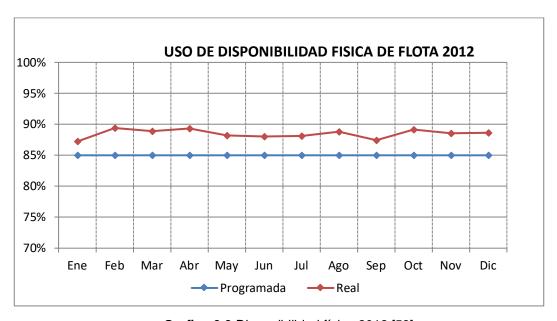


Grafico 3.3 Disponibilidad física 2012 [58]

3.1.9. Costos 2010,2011,2012 de Carguío en US\$/Tn

Tabla 3.4 Costos por mes 2010 [59]

2010	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Prom
PERFORACION	0.138	0.144	0.143	0.146	0.145	0.139	0.145	0.142	0.145	0.143	0.144	0.145	0.143
VOLADURA	0.155	0.163	0.159	0.164	0.158	0.163	0.157	0.155	0.156	0.158	0.160	0.162	0.159
CARGUIO	0.189	0.190	0.195	0.197	0.196	0.192	0.193	0.199	0.191	0.199	0.192	0.194	0.194
ACARREO	0.304	0.328	0.349	0.319	0.317	0.344	0.328	0.348	0.314	0.336	0.328	0.314	0.327
M. VIAS	0.067	0.068	0.073	0.077	0.071	0.075	0.077	0.076	0.068	0.073	0.067	0.074	0.072
G. GENERALES	0.057	0.062	0.058	0.061	0.067	0.062	0.059	0.060	0.058	0.066	0.066	0.062	0.062

Tabla 3.5 Costos por mes 2011[60]

2011	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Prom
PERFORACION	0.135	0.138	0.140	0.142	0.143	0.137	0.137	0.138	0.144	0.143	0.138	0.136	0.139
VOLADURA	0.153	0.157	0.155	0.156	0.158	0.156	0.161	0.158	0.155	0.157	0.163	0.156	0.157
CARGUIO	0.185	0.194	0.193	0.192	0.188	0.193	0.192	0.191	0.191	0.195	0.190	0.191	0.191
ACARREO	0.298	0.329	0.303	0.316	0.306	0.336	0.310	0.323	0.302	0.344	0.343	0.338	0.321
M. VIAS	0.066	0.070	0.072	0.069	0.068	0.070	0.071	0.075	0.071	0.070	0.072	0.067	0.070
G. GENERALES	0.056	0.063	0.066	0.066	0.059	0.065	0.064	0.060	0.063	0.064	0.059	0.057	0.062

Tabla 3.6 Costos por mes 2012 [61]

2012	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Prom
PERFORACION	0.134	0.135	0.139	0.144	0.137	0.139	0.135	0.143	0.142	0.140	0.135	0.136	0.138
VOLADURA	0.151	0.153	0.161	0.156	0.158	0.161	0.153	0.152	0.153	0.159	0.153	0.161	0.156
CARGUIO	0.184	0.188	0.191	0.193	0.191	0.186	0.193	0.193	0.188	0.186	0.192	0.192	0.190
ACARREO	0.295	0.308	0.315	0.319	0.307	0.342	0.309	0.323	0.334	0.333	0.336	0.335	0.321
M. VIAS	0.065	0.068	0.066	0.074	0.074	0.068	0.074	0.071	0.068	0.065	0.067	0.073	0.069
G. GENERALES	0.056	0.057	0.065	0.060	0.062	0.059	0.056	0.065	0.064	0.058	0.064	0.063	0.061

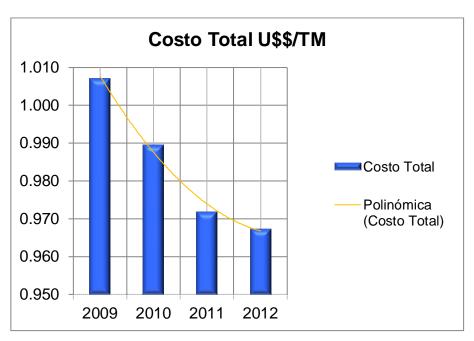


Grafico 3.4 Costo Total [62]

3.1.10. Ejecución Cambio de Guardia

En la situación anterior: no se contaba con un procedimiento de cambio de guardia efectivo, dichos cambios de guardia duraban treinta y cinco minutos en promedio y no existía una planificación de los tiempos de espera de los equipos del tumo saliente.

Actualmente: se implementó el cambio de guardia efectivo con lo que se logró reducir esta demora operativa en promedio unos 12 minutos, esto trajo como consecuencia aumentar la producción en estas horas de cambio de guardia en un 16% en la primera hora del turno y en la última hora.

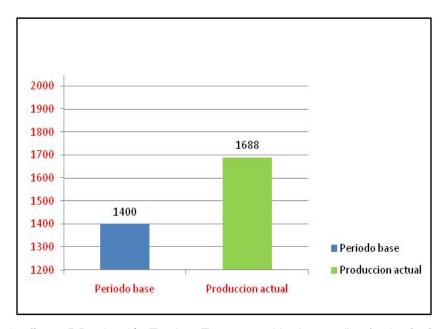


Grafico 3.5 Producción Total en Tn. por cambio de guardia efectivo [63]

3.1.11. Reunión en Mina

En la situación anterior: no se contaba con un proceso de coordinación diaria para la optimización del día operativo, tampoco existía una respuesta rápida para los ajustes del plan.

Actualmente: se estableció una reunión diaria en cantera donde asisten las partes involucradas de la operación y se definen los ajustes al plan de forma inmediata y de acuerdo a los requerimientos del cliente.

3.1.12. Formato de cambio de guardia

En la situación anterior: no se contaba con un formato para el traspaso de información de los cambios de guardias. El traspaso de información no era exacto y bastante lento y generalmente se obviaba información.

Actualmente: se estableció un formato para transferir información de una manera minuciosa, ordenada, completa y sobretodo rápida.

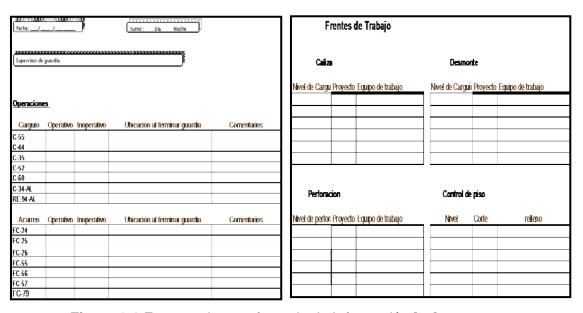


Figura 3.1 Formato de transferencia de Información [64]

3.1.13. **Reportes**

En la situación anterior: los formatos existentes no estaban debidamente estructurados para el control de las actividades de la operación, algo similar sucedía con las demoras operativas además del hecho de que el registro de esta información era mal llenado por los operadores.

Actualmente: se cuenta con nuevos formatos de carguío y acarreo rediseñados que contemplan toda la información necesaria para el control de la operación.

Se implementó el formato del control horario de producción y, con ello, el formato de control de viajes del puntero.

Para controlar el correcto llenado de los partes por los operadores se llevó a cabo una serie de capacitación y posterior seguimiento. Se capacitó, también, al auxiliar de operaciones para el correcto llenado de esta información en la base de datos que, posteriormente, generarán los indicadores.

3.1.14. Días Típicos

En la situación anterior: como sucedía con las otras áreas no se contaba con una secuencia de actividades diarias para los puestos claves, además de no realizarse una adecuada supervisión de los procesos de minado.

Para corregir esta mala coordinación de las actividades diarias, se diseñaron los días típicos que generaron un mayor compromiso en los supervisores para el cumplimiento de los seguimientos y esto produjo como resultado el tener la operación bajo control.

3.1.15. Demoras Operativas

En la situación anterior: el supervisor no tenía un reporte formal y completo que le permitiera hacer un análisis causa-efecto-solución de las demoras operativas y desviaciones al plan de producción. Se tenía un alto índice de demoras operativas pero no se conocía al detalle cuáles eran, es decir, no estaban identificadas.

Actualmente: se redefinieron las demoras operativas y se optimizó su control mediante el correcto uso de los reportes, como resultado se redujeron las demoras operativas en un 51%

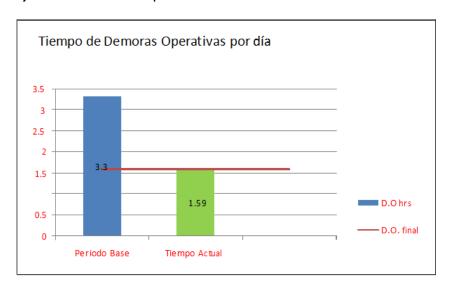


Grafico 3.6 Tiempo (horas) Demoras operativas por día [65]

3.1.16. Retroalimentación

Como resultado se logró actualizar día a día los indicadores que controlan la operación. Estos indicadores son revisados de manera constante en las juntas semanales.

Figura 3.2 Gestión de Indicadores [66]

3.1.17. Evolución de la Producción

Tabla 3.7 Producción por mes [67]

Produccion Anual							2010						
Meses	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
Obj.Mensual	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	1,040,000	12,480,000
Prod. Acumulada x mes	1,069,845	1,082,954	1,078,902	1,066,995	1,050,359	1,061,952	1,050,959	1,089,209	1,058,063	1,080,477	1,069,329	1,075,786	12,834,830
% de cumplimiento	103%	104%	104%	103%	101%	102%	101%	105%	102%	104%	103%	103%	103%

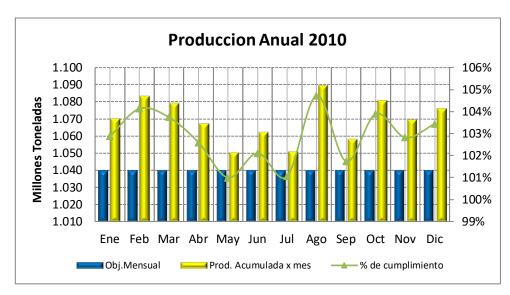


Grafico 3.7 Producción mensual por año [68]

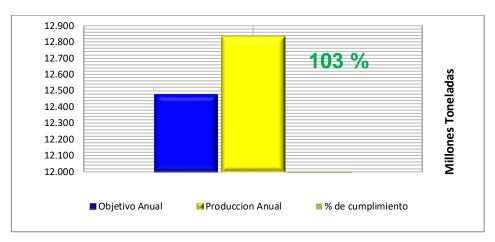


Grafico 3.8 Producción Total [69]

Tabla 3.8 Producción por mes [70]

Produccion Anual							2011						
Meses	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
Obj.Mensual	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	1,014,000	12,168,000
Prod. Acumulada x mes	1,051,188	1,066,092	1,085,604	1,100,387	1,081,041	1,107,115	1,118,310	1,087,412	1,073,880	1,057,972	1,064,702	1,080,617	12,974,321
% de cumplimiento	104%	105%	107%	109%	107%	109%	110%	107%	106%	104%	105%	107%	107%

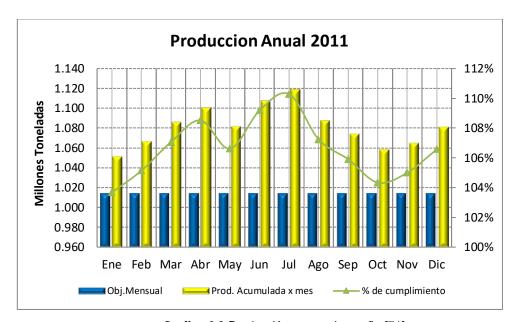


Grafico 3.9 Producción mensual por año [71]

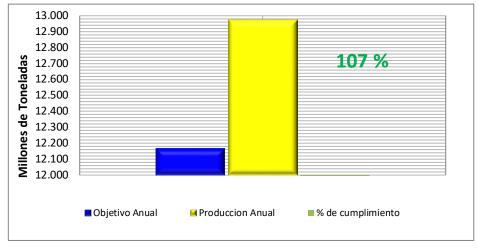


Grafico 3.10 Producción Total [72]

Tabla 3.9 Cumplimiento meta de producción [73]

Produccion Anual							2012						
Meses	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
Obj.Mensual	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	1,066,000	12,792,000
Prod. Acumulada x mes	1,159,684	1,173,724	1,150,533	1,183,321	1,158,369	1,184,726	1,170,241	1,154,893	1,176,571	1,148,036	1,171,413	1,196,974	14,028,485
% de cumplimiento	109%	110%	108%	111%	109%	111%	110%	108%	110%	108%	110%	112%	110%

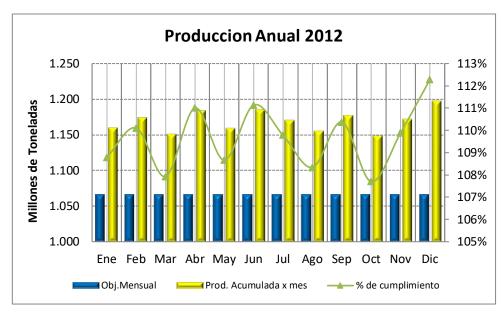


Grafico 3.11 Producción mensual por año [74]

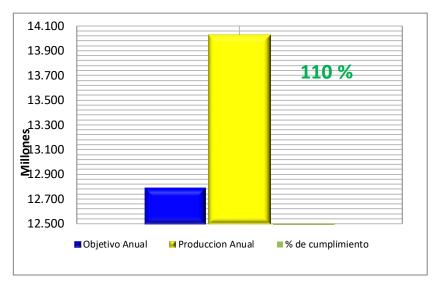


Grafico 3.12 Producción Total [75]

CONCLUSIONES

Basándose en los resultados obtenidos al aplicar la metodología propuesta para optimizar (analizar, rediseñar, implementar y controlar) los procesos de carguío y acarreo, así como en el cumplimiento del objetivo planteado al inicio de este documento, se concluye lo siguiente:

- El desempeño de la empresa puede expresarse a través de indicadores clave de los procesos críticos en la cadena de valor.
- La metodología propuesta constituye una herramienta integral en la que son intervenidos los procesos críticos (que generan valor) y se verifica el control de los mismos. Asimismo, es una base para la administración de la satisfacción del cliente, requisito indispensable en cualquier modelo de administración por calidad total.
- La implementación de una nueva área dedicada al Control de Mina, tuvo un impacto positivo en cuanto al incremento de la producción, pues este último venia teniendo constantes caídas en los objetivos semanales; sin embargo, como se aprecia en el informe en los años posteriores a su implementación la producción al año 2012 ha dado como resultado el crecimiento esperado.

RECOMENDACIONES

El campo de la calidad en el campo de explotación de mineral es muy amplio y se está extendiendo cada vez más en todas las empresas, debido al auge en el sector de construcción.

Asimismo, es clara la tendencia de toda empresa, independientemente del sector al que pertenezca, a adoptar sistemas de gestión de calidad que hagan más eficientes los procesos productivos.

De tal forma, los proyectos que se pueden desarrollar para ampliar este trabajo se mencionan en las siguientes líneas:

- Desarrollar un análisis estadístico (análisis de regresión / diseño de experimentos) de las variables identificadas en los procesos críticos, para enfocar los esfuerzos en aquellas con mayor impacto en los resultados.
- Adecuar la metodología empleada en proyectos de duración más reducida, como en obras de construcción civil.

- Adquirir, desarrollar e implementar un sistema de control de indicadores a través de un software, que permita conocer en tiempo "real" el desempeño de los procesos críticos o clave.
- Incluir en la metodología empleada procesos más amplios,
 como la producción del clinker, para poder medir con mayor
 precisión los impactos en el producto final.

REFERENCIA BIBLIOGRÁFICA

CHANG Richard Y., NIEDZWIECKI Matthew E., Herramientas Para la Mejo Continua de la Calidad. Ediciones Granica, 1999.

DENTON, D. Keith; tr. Asel. Calidad en el servicio a los clientes: cómo compiten las grandes compañías americanas en la revolución del servicio al cliente... y cómo podemos hacerlo todos. Editorial Díaz de Santos. México, 1991.

FETZ, Bruce H. (1996) Measuring Customer Satisfaction for an R &D organization. IEEE. Electronics Manufacturing Technology Symposium. pp. 373 – 340.

GRANT, Eugene L., LEAVENWORTH, Richard S. Control Estadistico de Calidad 3ª. edición CECSA, 1986

HOPE, Becerley G., WILD, Rosemary H. (1994) An expert support system fo Service Quality Improvement. IEEE. pp. 183 – 190.

- [1] Fuente: http://www.arpl.com/proyectos-es.asp?id=8 Anexado en marzo del 2013
- [2] Fuente: http://www.sanmartinperu.pe/portada Anexado en marzo del 2013
- [3] Fuente: http://www.arpl.com/proyectos-es.asp?id=5 Anexado en marzo del 2013
- [4] Fuente. Foto tomada de google maps satelital Anexado en marzo del 2013

[5] Fuente: Datos tomados de SMCG

[6] Fuente: Foto tomada en las instalaciones de SMCG

[7]Fuente: Datos tomados de SMCG[8]Fuente: Datos tomados de SMCG[9] Fuente: Datos tomados de SMCG

[10]Fuente: Datos tomados de SMCG [11]Fuente: Datos tomados de SMCG [12]Fuente: Datos tomados de SMCG [13]Fuente: Datos tomados de SMCG [14]Fuente: Datos tomados de SMCG [15]Fuente: Datos tomados de SMCG [16]Fuente: Datos tomados de SMCG [17]Fuente: Datos tomados de SMCG [18]Fuente: Datos tomados de SMCG [19]Fuente: Datos tomados de SMCG [20]Fuente: Datos tomados de SMCG [21]Fuente: Datos tomados de SMCG [22]Fuente: Datos tomados de SMCG [23]Fuente: Datos tomados de SMCG [24]Fuente: Datos tomados de SMCG [25]Fuente: Datos tomados de SMCG [26]Fuente: Datos tomados de SMCG [27] Fuente: Datos tomados de SMCG [28]Fuente: Datos tomados de SMCG [29]Fuente: Datos tomados de SMCG [30]Fuente: Datos tomados de SMCG [31]Fuente: Datos tomados de SMCG [32]Fuente: Datos tomados de SMCG [33]Fuente: Datos tomados de SMCG [34]Fuente: Datos tomados de SMCG [35]Fuente: Datos tomados de SMCG [36]Fuente: Datos tomados de SMCG [37]Fuente: Datos tomados de SMCG [38]Fuente: Datos tomados de SMCG [39]Fuente: Datos tomados de SMCG [40]Fuente: Datos tomados de SMCG [41]Fuente: Datos tomados de SMCG [42]Fuente: Datos tomados de SMCG

[43]Fuente: Datos tomados de SMCG [44]Fuente: Datos tomados de SMCG [45]Fuente: Datos tomados de SMCG [46]Fuente: Datos tomados de SMCG [47]Fuente: Datos tomados de SMCG [48]Fuente: Datos tomados de SMCG [49]Fuente: Datos tomados de SMCG [50]Fuente: Datos tomados de SMCG [51]Fuente: Datos tomados de SMCG [52]Fuente: Datos tomados de SMCG [53]Fuente: Datos tomados de SMCG [54]Fuente: Datos tomados de SMCG [55]Fuente: Datos tomados de SMCG [56]Fuente: Datos tomados de SMCG [57] Fuente: Datos tomados de SMCG [58]Fuente: Datos tomados de SMCG [59]Fuente: Datos tomados de SMCG [60]Fuente: Datos tomados de SMCG [61]Fuente: Datos tomados de SMCG [62]Fuente: Datos tomados de SMCG [63]Fuente: Datos tomados de SMCG [64]Fuente: Datos tomados de SMCG [65]Fuente: Datos tomados de SMCG [66]Fuente: Datos tomados de SMCG [67]Fuente: Datos tomados de SMCG [68]Fuente: Datos tomados de SMCG [69]Fuente: Datos tomados de SMCG [70]Fuente: Datos tomados de SMCG [71]Fuente: Datos tomados de SMCG [72]Fuente: Datos tomados de SMCG [73]Fuente: Datos tomados de SMCG [74]Fuente: Datos tomados de SMCG [75]Fuente: Datos tomados de SMCG

ANEXO 1 .Costo directo: equipo - materiales - mano de obra

COSTO DIDECTO DEDECDACION CALIZA V DESMONTE	Caliza	Caliza	Desmonte S	Desmonte H
COSTO DIRECTO PERFORACION CALIZA Y DESMONTE	Tricono	DTH	DTH - 6 3/4 "	DTH - 6 3/4 "
Espaciamiento (metros)	7.6	7.6	6	5.2
Burden (metros)	6.6	6.6	5.2	4.5
Altura de Banco (metros)	14	14	14	14
Sobre perforación (metros)	1	1	2	2
Densidad (Kg/bcm)	2.6	2.6	2.7	2.9
Diametro (pulgadas)	7 7/8	7 7/8	6 3/4	6 3/4
Vp (mt / HM)	31	39	22	19
TM influencia / m perf	122	122	74	59
TM influencia / Taladro	1,826	1,826	1,179	950
Costo del equipo Perforadora (US\$/HM)	113.0	113.0	113.0	113.0
Costo Diesel US\$/HM	58.8	58.8	58.8	58.8
Costo Mano de obra (US\$/TM)	0.001	0.001	0.001	0.001
Costo Aceros (US\$ / mp)+Afilador	2.6	3.1	3.6	3.6
US\$ / mp	8.27	7.62	11.51	12.69
US\$/TM COSTO DIRECTO PERFORACION	0.068	0.063	0.156	0.214

COSTO DIRECTO VOLADURA CALIZA Y DESMONTE (PRIMARIAS)	Caliza Tricono	Caliza QB Tricono	Desmonte S DTH - 6 3/4 "	Desmonte H DTH - 6 3/4 "
FC (kg explosivo / TM)	0.20	0.20	0.22	0.29
% HA (Nitrato + Diesel)	0.7	0.7	0.7	0.7
% Emulsión	0.3	0.3	0.3	0.3
Costo explosivos HA (US\$/TM)	0.104	0.104	0.114	0.150
Costo explosivos SANG (US\$/TM)	0.112	0.112	0.123	0.162
Costo accesorios (US\$/TM)	0.008	0.008	0.011	0.013
Costo del equipo - camión fábrica (US\$/TM)	0.026	0.026	0.026	0.026
Costo Diesel (US\$/TM)	0.0006	0.0042	0.0042	0.0006
Costo Mano de obra (US\$/TM)	0.0057	0.0057	0.0057	0.0057
US\$/TM (Heavy ANFO)	0.143	0.147	0.160	0.195
US\$/TM (SANG)	0.152	0.155	0.169	0.207

COSTO DIRECTO PERFORACION Y VOLADURA SECUNDARIA	Caliza	Caliza QB	Desmonte S	Desmonte H
Perforación y Voladura secundaria (se considera 7'000,000 TM año)	Tricono	Tricono	DTH - 6 3/4"	DTH - 6 3/4"
Bolones / voladura	20	20	20	20
Bolones anuales	3,500	3,500	3,500	3,500
m. totales perf. / bolones	7,000	7,000	7,000	7,000
Rend. Track drill (m/HM)	15	15	15	15
HM equipo amual	467	467	467	467
kg ANFO / bolonería	35,000	35,000	35,000	35,000
Costo del equipo track drill (US\$ anual) Mano de obra - US\$	30,455	30,455	30,455	30,455
Costo Diesel track drill US\$ anual	19,600	19,600	19,600	19,600
Costo Aceros (US\$ anual)	12,441	12,441	12,441	12,441
Costo Explosivos	18,359	18,359	18,359	18,359
	80,855	80,855	80,855	80,855
US\$/TM PERFORACION Y VOLADURA SECUNDARIA (US\$/TM)	0.012	0.012	0.012	0.012
COSTO DIRECTO US\$/TM PERVOL (Heavy ANFO)	0.223	0.221	0.328	0.420
COSTO DIRECTO US\$/TM PERVOL (SANG)	0.231	0.229	0.337	0.432

ANEXO 2. Acta de reunión de Retroalimentación.

	RETRO	ACTA DE REUN DALIMENTACIÓN D			: REOP : 01
		OPERACION	ES	Feoha	:
OBJETIVO					
001					
002					
AGENDA					Duración
UBICACIÓN		LUGAR	FECHA	INICIO	FIN
A 818TENTE 8		PUESTO	OITSISA	LLEGADA	SALIDA
TEMA 8 TRATADOS					
002					
003					
004					
005					
ACUERDO8					
Nº Descripción	del acuerdo			Responsable	Feoha Lin
001					
002					
003					
004					
005					

ANEXO 3. Reporte de Perforación

									<u>I</u>	Ve	rsión: 01	
-	sanı	martín tas Generales			REPORT	E DE PERF	ORACIÓN			Fech	na: 03/04/1	13
	Contratis	tas Generales			10	0-OPO-FOR-	001			Pá	g.: 1 de 2	
FECH	A:			OPERADOR:					SEDE:			
TURN	O:			SUPERVISOR:					CÓDIGO DEL EQU	IIPO:		
COTA	/ NIVEL:			MALLA:	Burden:		Espaciamiento:		MODELO DEL EQ	UIPO:		
PROY	ECTO:			HOROMETRO INI					HOROMETRO FINA	Δ1 •		
				PROFUND		TIF	MPO				l	
Nº	Nº Taladro	Tipo d	e Roca	Altura de Diseño	Altura Real		Hora Final	Tiempo Total	Tipo de Perforación	Observaci	ones del	Taladro
1												
2												
3												
4												
_				-								
5 6				 								
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25			,									
		Broca 1	Broca 2	Broca 3	Broca 4	Martillo 1	Martillo 2	ВА	ARRA 1	BARR	A 2	
Seri	e											
Marc	ca											
Dián	netro (plg)											
Uso	a la Fecha (m.)											
Metr	ros Perforados											
Acur	mulado (m.)											
		BIT	SUB	ТОР	SUB	Centraliza	Porta Bit					
Seri	e											
Marc	ca											
Dián	netro (plg)											
Uso	a la Fecha (m.)											
Metr	ros Perforados											
	mulado (m.)											

ANEXO 4. Reporte de Perforación

DIAM.	Profu TEORICO	TAJO OPERADOR SUPERVISOR ROCA Indidad (m) REAL		UIO CON SAN	TEMP)°C	HOROME HOROME DENSID	Fecha: 01/04/13 D CAMION TRO INICIAL TRO FINAL AD (explo)
DIAM.		OPERADOR SUPERVISOR ROCA undidad (m)	CARG		ļ	0°C	HOROME HOROME DENSID	TRO INICIAL TRO FINAL AD (explo)
DIAM.		SUPERVISOR ROCA Indidad (m)	CARG		ļ) °C	HOROME	AD (explo)
DIAM.		ROCA undidad (m)	CARG		ļ)°C	DENSID	AD (explo)
		undidad (m)	CARGA		ļ	o oc		
			CARGA		I-G	1	ODSEDI	<u> </u>
ф	TEORICO	REAL		CARGA TACO-1 TACO-2			ODSERV	/ACIONES
				1,700 1	TACO-2			
		Total Emulsion:		Total N20:				
			Total Emulsion:	Total Emulsion:	Total Emulsion: Total N20:			

ANEXO 5. Reporte de Perforación

										PE	RFORACION - SEI	MANA 07-08										
Dias		ves 2/2013	Vie:		Sáb 16/02		Don 17/0	ingo 1/2013	Lur 18/02		Mar 19/02			rcoles 12/2013	Jue 21/02			rnes 2/2013	Sáb 23/02		Dom 24/02	ingo 1/2013
TURNO	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE	DÍA	NOCHE
EP-33				Nv.	370 Atocongo N	lorte			N	v. 302 Lado N	orte		Nv.316	Lado Norte				Nv. 302 Lado No	orte			
			Proy. 253	Proy. 253	Proy. 253	Proy. 253	Proy. 253		Proy. 3543	Proy. 3543	Proy. 3543	Proy. 3541	Proy. 3541	Proy. 3541	Proy. 3541	Proy. 3544	Proy. 3544	Proy. 3544	Proy. 3544	Proy. 3544		
Taladros			10	10	10	10	10		10	10	10	5	10	10	5	10	10	10	10	10		
EP-18			Nv. 370 AN			Nv. 340 Ato	congo Norte				Nv.	340 Atocongo I	Vorte				Nv. 370 A	tocongo Norte				
£1-20			Proy. 253	249	249	249	249		249	252	252	252	252	252	254	254	254	254	254	254		
Taladros			8	10	10	10	10		10	10	10	10	10	10	10	10	10	10	10	10		
EP-27																						
EP-27																						
Taladros																						
											Nv. 45	O A.N.	N	. 370		'	Nv. 302	Nv. 316	Nv. 340 A.N.	Nv. 340 A.N.		
PROYECTOS											Proy.	248	Pro	y. 253			Proy. 3543	Proy. 3541	Proy. 252	Proy. 249		
TONELADAS											15,64	0.00	91,0	00.00	PUC	ARA	19,5	00.00	73,90	80.00		
TON X PROY.											15,640.00		91,000.00				9,750.00	9,750.00	36,990.00	36,990.00		
SAN G											6,45	1.50	37,	537.50			8,0	13.75	30,5:	16.75		

ANEXO 6. Cronograma

CRONOGRAMA DE CARGUIO Y ACARREO

				Jueve	s 14						Viernes	s 15						Sábado	16						Doming	0 17		$\neg \neg$
Horario	Proy.	Dist.	С	A	١ .	Tn/hr	Tn	Proy.	Dist.	С	A		Tn/hr	Tn	Proy.	Dist.	C	A		Tn/hr	Tn	Proy.	Dist.	C	A		Tn/hr	Tn
								Cal	1.8	C-44 55-60	FC	6	1,200.00	7,200.00	Cal	1.8	C-44 55-60	FC	6	1,200.00	7,200.00							-
								250			FC V	3		3,600.00	3538	1.7	RE-20	FC V		600.00	3,600.00							
7:00 - 15:00														-							-							
	CK	3.7		FC V		0.00		CK	3.7		FC V				CK	3.7		FC V				CK	3.7		FC V		0.00	
	Planta			FC V	3	0.00	-	Planta			FC V	1	0.00	-	Planta			FC V	1	0.00		Planta			FC V	3	0.00	-
							-	3538	1.7	RE-20	FC V	3	600.00	2,100.00	3538	1.7	RE-20	FC V	3	600.00	2,100.00							
								238	1.7	C-55	FC V	3	550.00	1,925.00	238	1.7	C-55	FC V	3	550.00	1,925.00							
15:00 - 19:00								250	0.7	RE-27	FC V	3	600.00	2,100.00	250	0.7	RE-27	FC V	3	600.00	2,100.00							
	CK	3.7		FC V				CK	3.7		FC V				CK	3.7	C-58-52	FC V				CK	3.7		FC V		0.00	-
	Planta			FC V	3	0.00	-	Planta			FC V	1	0.00	•	Planta			FC V	1	0.00	-	Planta			FC V	3	0.00	-
							-	3538	1.7	RE-20	FC V		600.00	2,100.00	3538	1.7	RE-20	FC V	3	600.00	2,100.00							-
							-	238	1.7	C-55	FC V	3	550.00	1,925.00	238	1.7	C-55	FC V	3	550.00	1,925.00							-
19:00 - 23:00							-	250	0.7	RE-27	FC V	3	600.00	2,100.00	250	0.7	RE-27	FC V	3	600.00	2,100.00		<u></u>					-
																							<u></u>					
	Planta			V V	3	0.00	-	Planta			V	1	0.00	•	Planta			V V	1	0.00	•	Planta			V V	3	0.00	-
							-				FC			-				r.c			•							-
							-	250	0.7	RE-27	FC V	3	600.00	3,600.00	250	0.7	RE-27	FC V	3	600.00	3,600.00							-
23:00 - 7:00														-							-		ļ					-
				FC			-				EC			-				EC			-		<u></u>		FC .			
Tn/Día	Planta			FC V	3	0.00	0.00	Planta			V	3	0.00	26,650.00	Planta			FC V	3	0.00	26,650.00	Planta			FC V	3	0.00	0.00
myora							0.00							20,000.00							20,000.00							0.00