UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA GEOLOGICA MINERA Y METALURGICA

MEJORAMIENTO DEL SISTEMA DE VENTILACION EN LA ZONA CUERPOS COMPAÑÍA MINERA CASAPALCA S.A. UNIDAD AMERICANA

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO DE MINAS

PRESENTADO POR: CARLOS ALBERTO HUAMAN SOLIS

> Lima - Perú 2009

INDICE

RESUMEN

INTRODUCCION
• Objetivos
 Justificación
Metodología de investigación
• Hipótesis
CAPITULO I: ASPECTOS GENERALES
1.1. Ubicación3
1.2. Accesibilidad5
1.3. Clima
CAPITULO II: GEOLOGIA6
2.1. Geología regional6
2.2. Estratigrafía de la zona
2.3. Morfología
2.4. Geología local11
2.5. Geología estructural
2.6. Geología económica 13
2.6.1. Cuerpos mineralizados
2.6.2. Mineralogía
2.6.3. Controles de la mineralización
2.6.4. Alteraciones
2.7 Geomecánica

2.7.1. Caracterización de la masa rocosa	16
2.7.1.1. Aspectos litológicos	16
2.7.1.2. Distribución de discontinuidades	16
2.7.1.3. Aspectos estructurales	18
2.7.2. Clasificación de la masa rocosa	19
CAPITULO III: SISTEMAS DE EXPLOTACION	20
3.1. Labores mineras	20
3.2. Método de sublevel stopping con taladros largos	21
3.3. Operaciones unitarias	22
3.3.1. Perforación	22
3.3.2. Voladura	24
3.3.3. Limpieza	24
3.3.4. Transporte	25
CAPITULO IV: SISTEMA ACTUAL DE VENTILACION ACTUAL	26
4.1. Descripción del sistema de ventilación actual	26
4.2. Levantamiento general de ventilación y registro de data	27
4.2.1. Alcances del levantamiento de ventilación	27
4.2.2. Equipos para levantamiento de ventilación	27
4.2.3. Estaciones de control de ventilación	27
4.3. Balance de ingresos y salidas de aire de la mina	28
4.4. Necesidades de aire para la mina	29
4.4.1. Para el personal	30
4.4.2. Para los equipos diesel	30

4.4.3.	Para mantener la temperatura efectiva de 30°C	. 30
4.4.4.	Para la dilución de los gases de disparo	32
4.4.5.	Resumen de necesidades de aire	. 33
4.5. Cob	ertura de aire	. 33
4.6. Capa	acidad instalada de ventiladores principales	. 34
4.7. Con	diciones de operación de chimeneas y galerías de ventilación	. 34
4.7.1.	Chimenea 885	34
4.7.2.	Chimenea 803	35
4.7.3.	Chimenea 806	35
4.7.4.	Galería 430.	36
4.7.5.	Chimenea RB 1	36
4.8. Con	diciones de operación de ventiladores secundarios	. 36
4.9. Ope	ración de ventiladores auxiliares	37
4.10. Cir	cuito principal de aire en la mina	38
4.11. Co	ndiciones de ventilación en labores de producción y servicios	39
4.12. Me	edición de temperatura ambiental	41
4.13. Me	edición de gases en equipo diesel	42
4.14. Cá	lculos de pérdida de presión	42
4.14.1	.Resistencia de los conductos.	42
4.14.2	2. Perdida de presión	. 43
4.14.3	3. Calculo de resistencia y pérdida en chimeneas y galerías	43
CAPITULO	V: DISEÑO DEL SISTEMA DE VENTILACION	. 45
	etivo	
J		

	5.2. Antecedentes	. 45
	5.3. Diseño del circuito principal de ventilación	. 46
	5.4. Balance general de aire proyectado	. 47
	5.5. Planeamiento de ventilación	. 49
	5.6. Requerimiento de ventiladores	. 50
	5.6.1. Ventiladores principales y secundarios proyectados	. 50
	5.6.2. Ventiladores auxiliares proyectados	. 51
	5.7. Relación de equipos diesel proyectados en mina	52
	5.8. Requerimiento de labores horizontales y verticales	. 52
CA	PITULO VI: EVALUACION ECONOMICA DEL PROYECTO	54
	6.1. Inversión del proyecto	.54
	6.1.1. Inversión en desarrollos y preparaciones	54
	6.1.2. Inversión en equipos	55
	6.2. Costo total de inversión.	55
	6.3. Costo de ventilación.	57
	6.4. Costo de energía en ventilación	60
	6.5. Evaluación económica del proyecto	60
CA	PITULO VII: APLICACIÓN DEL PROGRAMA DE VENTILACION	.62
	7.1. Descripción del programa	62
	7.2. Características del programa	.63
	7.3. Registro de data.	.63
	7.4. Resumen de resultados.	64
	7.5. Esquemático.	.69

7.6. Análisis de resultados del programa	69	
CONCLUSIONES	73	
RECOMENDACIONES	76	
BIBLIOGRAFIA	78	
APENDICE.	80	

RESUMEN

Compañía Minera Casapalca es una empresa en crecimiento, tanto en producción, infraestructura, personal y equipos. Las áreas de servicios deben estar atentas a estos cambios y proyectarse, como es la ventilación, el cual busca mantener y satisfacer las necesidades mínimas de trabajo y dar cumplimiento con las normas legales vigentes. Es por ello que hace necesario replantear el circuito actual de ventilación, empezando con el análisis de nuestro circuito actual y plantear una alternativa que sea compatible con el avance de la mina.

Este crecimiento nos lleva a la necesidad de diseñar chimeneas de diámetros mayores a los que se estaban realizando en ubicaciones de acorde a la ubicación de los cuerpos en profundidad. Se estimo realizar chimeneas circulares principales mayores de 2,1 m de diámetro, en donde se ubicaran ventiladores principales extractores, para la extracción del aire viciado y mejorar los flujos de aire de la mina, adicionalmente mejorar algunas galerías y cruceros para ingreso y salida de aire.

INTRODUCCION

La implementación de un Sistema de Ventilación es necesario durante la vida de un proyecto minero subterráneo, en su diseño comprende etapas que va desde la evaluación, análisis y planeamiento de circuitos de ventilación primaria, secundaria y auxiliar, y selección de ventiladores. La ubicación de infraestructura de ventilación se basa en la información geológica, geomecánica, recursos y reservas de mineral, para garantizar la continuidad operativa de la mina.

Objetivos.

- Efectuar un diagnostico integral de la ventilación en la mina Casapalca.
- Definir los requerimientos de aire para la mina.
- Diseñar un sistema e infraestructura de ventilación necesaria para su ejecución a corto y mediano plazo, según el crecimiento y profundización de la mina.

Justificación.

Mejoramiento de las condiciones ambientales actuales y proyectadas de la mina, dotando de aire fresco y libre de contaminantes. Analizando los requerimiento de aire

actuales y los proyectados durante la etapa de crecimiento y profundización de la mina.

Metodología de Investigación

La realización de un levantamiento del sistema actual de ventilación de la zona desde el nivel 1 al nivel 7, el cual nos proporcionara un diagnostico de referencia.

Elaborar un proyecto de ventilación optimo basado en conceptos y formulas matemáticas, los cuales nos determinara la infraestructura necesaria a ser ejecutada. Esto apoyado con herramientas informáticas.

Hipótesis

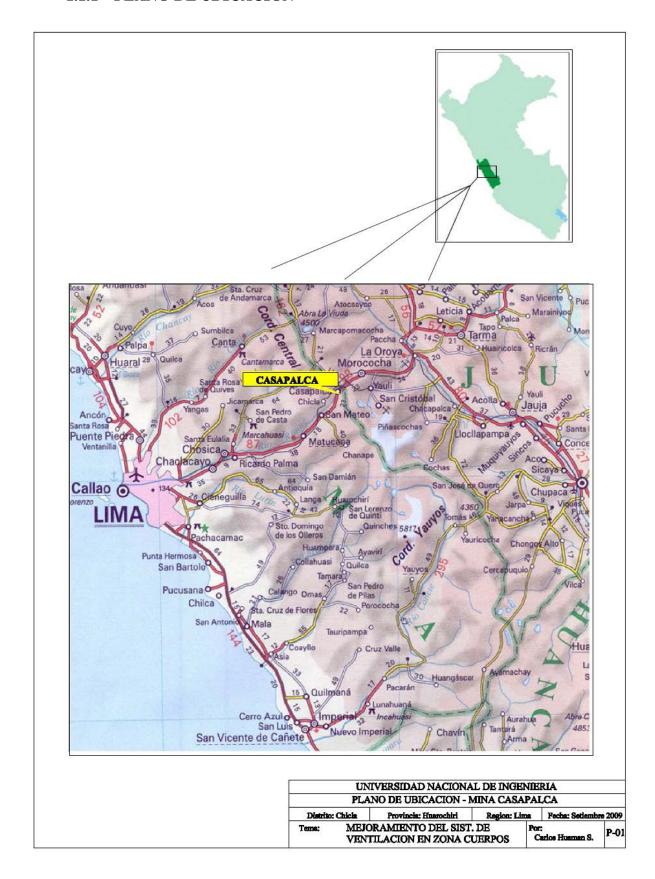
La dimensión del diseño de labores de ventilación depende del dimensionamiento de las labores de producción. A mayor tamaño en la sección de labores mayor flujo de aire requerido.

El mayor consumo de aire no debe ser sinónimo de aumento de costos operativos.

CAPITULO I

ASPECTOS GENERALES

1.1 UBICACION


La mina Casapalca está ubicada geográficamente en la zona minera del centro del Perú en el paraje Piedra Parada, Distrito de Lima, Provincia de Huarochiri, departamento de Lima, Región Lima, cercano al límite con la Región Andrés Avelino Cáceres.

Las coordenadas geográficas de la unidad minera son:: N-8 709 526 N E-358 436E, a una altitud promedio de 4.617 msnm.

Los centros poblados más cercanos son:

- Casapalca a 4 Km
- Chicla a 11 Km
- San Mateo a 25 Km.

1.1.1 PLANO DE UBICACION

5

ACCESIBILIDAD 1.2

La mina es accesible por la Carretera Central hasta el Km. 120 donde están

situadas las instalaciones de la Empresa Minera Los Quenuales S.A., luego se

continúa por una carretera afirmada de 8 Km, que sube por la quebrada Carmen hacia

el S.E. que conduce a las instalaciones de Compañía Minera Casapalca.

Lima-Casapalca: 120 Km. Tiempo de recorrido en 3:00 horas

Casapalca-Mina: 8 Km. Tiempo de recorrido en 0:20 horas

El recorrido total desde la ciudad de Lima hasta la mina es de 128 km y que se

realiza en un tiempo de 3:20 horas.

1.3 **CLIMA:**

En el sector geográfico que se emplaza la Mina Casapalca se aprecian

dos estaciones bien definidas:

La temporada de lluvias comprendida entre los meses de enero a marzo

caracterizada por fuertes precipitaciones con una temperatura de 10° C y

disminuyendo esta a 0° C. Con presencia de nieve.

El resto del año caracterizado por un clima seco casi todo el año, con

lluvias aisladas, con cambio de temperatura muy fuertes de 10 grados a

bajo cero, el cual se presenta temperaturas más bajas en los meses de

junio-agosto.

CAPITULO II

GEOLOGIA

2.1 GEOLOGÍA REGIONAL

La mina se encuentra ubicada en el cinturón volcánico de la cordillera occidental andina, y situada en la cabecera de la cuenca hidrográfica del río Rímac. Regionalmente presenta dos formaciones bien definidas, correspondientes a las edades del Cretáceo y del Terciario. Dentro del Cretáceo se tienen a las unidades del grupo Machay y Formación Jumasha conformadas por calizas.

En el Terciario inferior a superior se tiene la formación Casapalca constituida por dos principales miembros denominados Capas Rojas y Miembro Carmen, en donde generalmente se desarrollan los cuerpos mineralizantes de la mina Casapalca, asimismo se tiene otras formaciones concordantemente como Carlos Francisco y el Volcánico Tablachaca.

Los Tufos Yauliyacu sobreyacen a los volcánicos Carlos Francisco concordantemente, asimismo se tiene en forma localizada la formación Bellavista y Formación Río Blanco que se encuentra al Suroeste de Casapalca y superpuesta sobre la Formación Bellavista.

2.2 ESTRATIGRAFÍA DE LA ZONA

La columna estratigráfica de la región está conformada principalmente por areniscas, lutitas calcáreas, calizas (capas rojas), brechas, tufos volcánicos y lavas, los cuales alcanzan una potencia aproximada de 5,400 metros.

2.2.1 CRETÁCICO

- a). Grupo Machay: Esta constituido principalmente por calizas con intercalaciones de lutitas arenosas, se ubica en la parte suroeste del distrito.
- b). Formación Jumasha: Las rocas de esta formación no afloran en superficie dentro del área de Casapalca; sin embargo una secuencia correlacionable con esta formación constituida por calizas de color gris con algunas intercalaciones de lutitas, fue interceptada en el nivel 5200 por los túneles Graton. Secuencias representativas de calizas Jumasha afloran prominentemente a lo largo de las montañas que conforman la Divisoria Continental presentando un característico color gris claro en contraste con los colores oscuros que presentan las calizas de la formación Pariatambo, pertenecientes al grupo Machay,

2.2.2 TERCIARIO

a). Formación Casapalca: Forma el amplio anticlinal Casapalca, que es cortado por el río Rímac y comprende una serie de rocas sedimentarias de ambiente continental y constituye la formación más antigua que aflora en el área .Esta formación ha sido dividida en dos miembros. A continuación se describen el miembro de Capas Rojas y miembro Carmen:

- **a-1) Miembro Capas Rojas:** Este miembro se caracteriza por presentar intercalaciones de lutitas y areniscas calcáreas, presentando el conjunto coloraciones rojizas debido a las diseminaciones de hematita. Las areniscas son de grano fino a grueso y comúnmente se observa una débil estratificación.
- **a-2) Miembro Carmen**: Sobre yaciendo a las capas rojas se encuentra una serie de paquetes de conglomerados y calizas intercaladas con capas de areniscas, lutitas, tufos y aglomerados volcánicos con una potencia que varía de 80 a 200 m. Los conglomerados que también se presentan en lentes, están compuestos de guijarros y rodados de cuarcitas y calizas en una matriz areno arcillas y cemento calcáreo.
- b). Formación Carlos Francisco: Sobre las rocas sedimentarias se encuentra una potente serie de rocas volcánicas a las que se les ha denominado formación Carlos Francisco. Esta formación ha sido dividida en tres miembros:
- **b-1) Volcánico Tablachaca:** Sobre yaciendo el miembro Carmen y separado de este, por lutitas de potencia variable, se encuentra una sucesión de rocas volcánicas constituidas por tufos, brechas, conglomerados aglomerados y rocas porfídicas efusivas que forman el miembro Tablachaca.
- **b-2**) **Volcánico Carlos Francisco:** Sobre el miembro Tablachaca se encuentra los volcánicos Carlos Francisco que consisten de flujos andesíticos masivos y fragmentados (brechas). Las capas de brechas consisten de fragmentos porfiríticos angulares; generalmente verdosos, incluidos en una

matriz de roca porfirítica rojiza. Intercaladas con las brechas están las andesitas porfiríticas que varían de gris oscuro a verde. Los fenocristales de feldespato son conspicuos y alterados a clorita y calcita.

Tufos Yauliyacu: Los tufos Yauliyacu sobreyacen a los volcánicos Carlos Francisco concordantemente. Este miembro consiste de tufos rojizos de grano fino.

Formación Bellavista: Esta formada de capas delgadas de calizas de color gris con algunas intercalaciones de calizas gris oscuras con nódulos de sílice, tufos de grano fino y lutitas rojizas.

Formación Río Blanco: Sobre la formación Bellavista descansa una potente serie de volcánicos bien estratificados que consisten en tufos de lapilli de color rojizo con intercalaciones de brecha y riolitas .Algunas capas de calizas ocurren en la parte inferior de la formación En el área afloran hacia el sureste, pero su mayor exposición se encuentra entre Chicla y Río Blanco.

2.2.3 MATERIAL CUATERNARIO

La zona de Casapalca está representada por una serie de depósitos cuaternarios compuestos por glaciares y conos de escombros de formación reciente.

Debajo de los depósitos glaciares recientes existen potentes series de morrenas terminales a elevaciones aproximadas de 4.300 a 4.500 msnm., no han sido encontrados signos de glaciación debajo de estas elevaciones en el

valle del Rímac; sin embargo en otros valles, depósitos glaciares fueron encontrados en elevaciones de 3.900 m.

Los depósitos recientes están formados por materiales inconsolidados compuestos por clastos angulosos de diversos tamaños con matriz areno arcillosos, que forman conos y taludes.

2.3 MORFOLOGÍA

La geomorfología de la zona de estudio muestra un relieve relativamente empinado, cuyas pendientes evidencian profunda erosión. Es evidente que el relieve ha sido modelado por acción glaciar mostrándose en cotas mas elevadas presencia de nieve perpetua. El afluente principal de la zona representado por el Río Rimac, surca de este a oeste drenando dendríticamente hacia el Océano Pacifico.

Localmente, la Mina Casapalca se ubica dentro de la microcuenca Carmen, la misma que se caracteriza por su reducida extensión, topografía accidentada y porque drena hacia el torrentoso río Rímac. La micro cuenca Carmen, ubicada entre las cotas 4.150 y 5.300 m.s.n.m., tiene 11,5 Km2 de área, una longitud del curso principal de 7,5 Km. y una pendiente de 15%.

El curso principal se denomina Magdalena en la parte alta y Carmen en la parte baja. La quebrada aporta al río Rímac, un caudal medio anual de 260 l/s, flujo que últimamente se ha incrementado ya que en el interior de la mina por las operaciones mineras de profundización, el acuífero se ha incrementado

considerablemente, existiendo fuertes fluctuaciones hacia la parte baja, las cuales serán recuperadas próximamente en su totalidad y por gravedad con la ejecución del Proyecto Túnel Potosí.

2.4 GEOLOGÍA LOCAL

Dentro de la geología local se puede mencionar la Formación Casapalca y que está constituida por dos miembros característicos en toda la zona del yacimiento de Casapalca; el miembro de Capas Rojas y el Carmen.

Las Capas Rojas se caracterizan por presentar intercalaciones de lutitas y areniscas calcáreas. Las areniscas son de grano fino a grueso y comúnmente se observa una débil estratificación. Miembro Carmen: Sobre yaciendo a las Capas Rojas se encuentra una serie de paquetes de conglomerados y calizas intercaladas con capas de areniscas, lutitas, tufos y aglomerados volcánicos. Los conglomerados que también se presentan en lentes, están compuestos de guijarros y cantos rodados de cuarcitas y calizas en una matriz areno arcillas y cemento calcáreo.

Asimismo localmente se tienen varios cuerpos intrusivos que afloran en el distrito, entre ellos tenemos los siguientes:

Pórfido Taruca: Diques de stock que intruyen a los volcánicos aflorantes en la zona La Americana al sureste del área. Uno de los stock son de forma elongada con dirección norte – sur aflora en el cerro Taruca. Estos diques y stock son pórfidos, con fenocristales de feldespatos (oligoclasa-albita), horblenda y poco cuarzo incluido en una matriz afanítica. Estas rocas pueden ser llamadas andesitas porfiríticas.

Pórfido Victoria: Aflora en la parte norte del área es de aproximadamente de 300 m de ancho, es un intrusivo de color gris claro. La roca consiste de fenocristales de albita y poco cuarzo en una matriz fina de sericita.

2.5 GEOLOGÍA ESTRUCTURAL

El aspecto estructural es uno de los factores más importantes en la mina Casapalca, los múltiples movimientos durante la tectónica Andina han generado la formación del marco estructural presente en la zona, aprovechando de estas grandes zonas débiles previamente formadas, la actividad magmática del Mioceno Tardío ha permitido el emplazamiento de intrusivos ácidos que son los causantes de la mineralización.

El sistema de esfuerzos producidos en los ciclos de la tectónica Andina, en el Terciario y Pleistoceno en el Centro del Perú en especial en la región de Casapalca, San Cristóbal y Morococha han formado un sistema de estructuras extensas con pliegues, fallas y fracturas. Es importante mencionar que estas estructuras controlan el emplazamiento de los intrusivos y la mineralización de las vetas.

Pliegues: Uno de los rasgos más importantes en el distrito minero de Casapalca es el plegamiento y posteriormente el fracturamiento. El plegamiento es extenso y muy notorio esto ha producido la formación de anticlinales y sinclinales.

El marco estructural principal del distrito está definido por la presencia del gran sinclinal de Pumatarea-Aguascocha de dirección Nor-Oeste; Sur-Este que alcanza 9 Km de longitud, seguido por el anticlinal de Casapalca que alcanza 2 Km y el

anticlinal de Antuquito de 1 Km. Este plegamiento controla el fracturamiento transversal desde el extremo Nor-Oeste al Sur-Este donde se presentan una serie de vetas casi paralelas entre ellas pero transversales al eje del sinclinal y anticlinal.

Fallas: Los mayores rasgos estructurales del distrito minero de Casapalca se encuentran formados por fallas, fracturas, cuyo rumbo general es Este-Oeste a Nor-Este en forma casi perpendicular al gran eje del sinclinal Pumatarea-Aguascocha, anticlinal Casapalca. Estas fallas y fracturas que en algunos casos permitieron la circulación de soluciones hidrotermales dieron origen a las vetas. Otras fallas han sido rellenadas solamente con gouge tal es el caso de las fallas Carmen y Eloida.

Las fallas y fracturas están controladas por las rocas encajonantes de acuerdo a su competencia, por ejemplo las lutitas y conglomerados de la Fm. Casapalca permiten la fuerte alteración y el fuerte fracturamiento respectivamente y en otros casos cuando la roca no es favorable se observan solo fracturas menores como en la roca del Miembro Tablachaca; Fm. Bellavista y la Fm. Río Blanco.

2.6 GEOLOGÍA ECONÓMICA

Casapalca es un yacimiento polimetálico del tipo "Cordillerano", la mineralogía está representada por una mena abundante de esfalerita, tetraedrita, calcopirita, galena y como mena de ganga pirita, cuarzo, calcita y rodocrocita.

Esta se presenta de manera principal en vetas que han sido formadas por el relleno de fracturas. Las vetas son de carácter mesotermal lo cual indicaría su gran profundidad de mineralización.

También existe la presencia de Cuerpos Mineralizados los cuales se han formado por el reemplazamiento de capas favorables de caliza, arenisca y lutitas calcáreas adyacentes a las vetas.

2.6.1 CUERPOS MINERALIZADOS

La mineralización se presenta de dos tipos:

- Sulfuros masivos que son el resultado del reemplazamiento de estratos favorables.
- Diseminaciones y vetillas de sulfuros que son rellenos de fisuras y reemplazamiento de elementos calcáreos.

2.6.1.1 Cuerpo Mery

Está localizado en el miembro Carmen de la Formación Casapalca tiene forma alargada.

La mineralización está presente de forma muy irregular; como reemplazamiento de estratos favorables con esfalerita marmatita, calcopirita, menores cantidades de tetraedrita y relleno de cavidades vacías, este relleno está representado por esfalerita, tetraedrita, galena, calcopirita, con ganga de pirita cuarzo y carbonatos.

La alteración hidrotermal varía de propilítica con presencia de epidota y pirita así como una silicificación insipiente.

15

2.6.1.2 Cuerpos y vetas menores

Encontramos cuatro estructuras principales dentro de ellas se tiene la

veta Sofia, Emilia, Anita y Esperanza y algunos otros cuerpos menores.

2.6.2 MINERALOGÍA

Minerales de mena: Tetraedrita, bornita, esfalerita, tenantita calcopirita,

marmatita.

Minerales de ganga: Calcita, rodocrocita, cuarzo, pirita, hematita,

especularita.

Elementos económicos; Ag, Zn, Pb, Cu

2.6.3 CONTROLES DE LA MINERALIZACIÓN

Existe una estrecha relación entre los controles estructurales y

litológicos en el yacimiento Casapalca, la mineralización, está íntimamente

controlada por el fracturamiento de la roca huésped y por las características

litológicas. Por ejemplo: el miembro Carmen de la Formación Casapalca es el

más favorable seguido de los volcánicos Carlos Francisco. Los menos

favorables son miembro Tablachaca, Yauliyacu y Bellavista.

2.6.4 ALTERACIONES

Alteración Hidrotermal, la alteración predominante de las rocas

encajonantes es la silicificación y piritización, en formas distantes como halo

se tiene también la propilitización.

2.7 GEOMECANICA

2.7.1 CARACTERIZACIÓN DE LA MASA ROCOSA

2.7.1.1 Aspectos litológicos

La roca circundante está compuesta generalmente por Capas Rojas, caracterizada por presentar intercalaciones de lutitas y areniscas calcáreas. Las areniscas son de grano fino a grueso y comúnmente se observa una débil estratificación y en mayor dimensión en areniscas silicificadas compactas y masivas.

Sobreyaciendo a las capas rojas se encuentra el miembro el Carmen compuesto por una serie de paquetes de conglomerados y calizas intercaladas con capas de areniscas, lutitas, tufos y aglomerados volcánicos. Los conglomerados que también se presentan en lentes, están compuestos de guijarros y rodados de cuarcitas y calizas en una matriz areno arcillas y cemento calcáreo.

2.7.1.2 Distribución de discontinuidades

Se presentan tres sistemas típicos de discontinuidades conformando el arreglo estructural de la masa rocosa de los Cuerpos Mery. Estos sistemas son:

Sistema 1: Con rumbo N12°W y buzamiento 74°SW.

Sistema 2: Con rumbo N82°E y buzamiento 76°SE.

Sistema 3: Con rumbo N20°W y buzamiento 76°NE.

Todos estos sistemas están conformados mayormente por diaclasas. El sistema principal de fallas tiene rumbo de NE a NNE y buzamientos moderados a altos hacia el NW. En el análisis estereográfico compósito no se puede apreciar este sistema de fallas debido al reducido número de las mismas frente a la numerosa cantidad de datos de diaclasas.

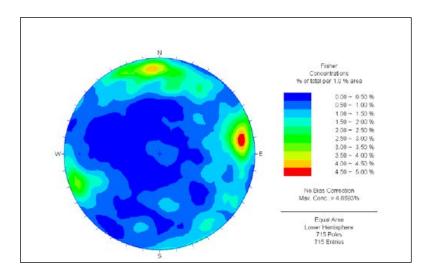


Figura 1: Diagrama estereográfico de contornos del compósito general.

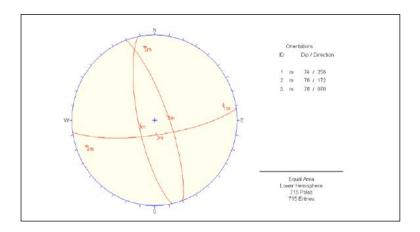


Figura 2: Diagrama estereográfico de planos principales del compósito general.

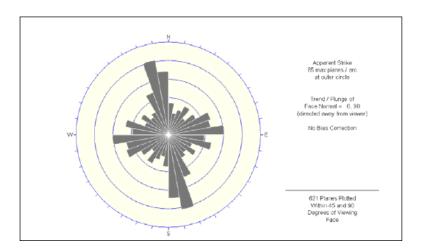


Figura 3: Diagrama de roseta de discontinuidades del compósito general.

2.7.1.3 Aspectos estructurales

Las siguientes son las principales características estructurales de las discontinuidades mayores (fallas) y menores (diaclasas).

Fallas. Las fallas tienen espaciamientos por lo general de 3 a 10 m. La persistencia es de decenas de metros y en algunos casos de unas centenas de metros: la apertura es de 1 a 5 mm, las superficies de las caras son ligeramente rugosas a lisas y espejos de falla con ciertas ondulaciones y estrías de falla. Estas estructuras están rellenadas con materiales de panizo, brechas, materiales oxidados y arcillas, el espesor de estos rellenos varía entre 5 y 10 cm.

Diaclasas. Sus características estructurales son: espaciamiento entre 20 a 60 cm, persistencia de 3 a 10 m., apertura variable de 1 a 5mm y menores de 1mm en algunos casos cerrada y sin relleno, la rugosidad de las paredes es ligeramente rugosa a rugosa con ciertas ondulaciones con relleno suave a

duro con presencia de calcitas de espesores entre 0.5 a 1 cm. Las paredes de las discontinuidades estructurales por lo general son ligeramente alteradas con cierta presencia de goteo de agua localmente.

2.7.2 CLASIFICACIÓN DE LA MASA ROCOSA

Para clasificar geomecánicamente a la masa rocosa se utilizó el criterio de clasificación geomecánica de Bieniawski (RMR – Valoración del Macizo Rocoso – 1989).

Los valores del índice de calidad de la roca (RQD) fueron determinados mediante el registro lineal de discontinuidades, utilizando la relación propuesta por Priest & Hudson (1986), teniendo como parámetro de entrada principal la frecuencia de fracturamiento por metro lineal.

El criterio de Bieniawski (1989) modificado para esta evaluación a fin de clasificar a la masa rocosa se presenta en el siguiente cuadro:

Cuadro 1: Criterio para la clasificación de la masa rocosa

Tipo de Roca	Rango RMR	Calidad según RMR	
II	>60	Buena	
IIIA	51 – 60	Regular A	
IIIB	41 – 50	Regular B	
IVA	31 – 40	Mala A	
IVB	21 – 30	Mala B	
V	< 20	Muy Mala	

La masa rocosa está entre los Tipos IIIA y II (RMR 55-65).

Localmente hay presencia de rocas de calidad Regular B en el rango superior,
y en algunos sitios muy puntuales rocas de calidad Mala A.

CAPITULO III

OPERACIONES MINERAS EN LA ZONA DE CUERPOS

3.1 TIPOS DE LABORES MINERAS

En la zona de cuerpos se realiza operación minera de trackless o mecanizada, para lo cual se ejecutan diferentes labores como:

- a) **Rampas:** Son labores de acceso hacia los niveles de explotación, tiene una sección de 3.5m x 3.5m con gradientes que varía de 12% a 15%, y en las curvas varían de 10% a 12%.
- b) **Chimeneas:** estas se realizan con el equipo de desplazamiento ALIMAK, que tiene por finalidad tener una mejor ventilación además de llevar por allí los diferentes servicios. Para la perforación de las chimeneas se tiene máquina neumática Jack Leg con una profundidad de taladro de 8′.
- c) Galerías: Son labores horizontales realizadas con una sección de 3,5 m x 3,5 m que se ejecutan en los niveles principales, son de forma paralelas entre ellas, y que para interceptarse se realizan cruceros, dejando un pilar de hasta 10 m.
- d) **Cruceros:** Parten desde las galerías con la misma secciones en forma perpendicular a ellas pero su fin es atravesar exploratorio.

e) **Ventanas:** Presentan la misma sección, pero su función principal es el de acceder al cuerpo mineralizado y realizar su preparación para la explotación.

3.2 MÉTODO DE SUB LEVEL STOPPING CON TALADROS LARGOS (LARGE BLAST HOLE)

Este método es aplicado en zonas donde la mineralización está representada por cuerpos mineralizados. Tiene el mismo principio de voladura en tajos abiertos, en forma de perforación en paralelos además de realizarse también en abanico, según el diseño de explotación. Es en este método donde las concentraciones de mineral es dispersa con leyes mínimas pero de alto volumen.

La zona de diseminados en la mina se le conoce como "Cuerpo Mery" y tiene diversos cuerpos de menor volumen, los cual se emplazan en las rocas sedimentarias de la Formación Casapalca.

Este tipo de explotación presenta las siguientes ventajas y desventajas:

VENTAJAS.-

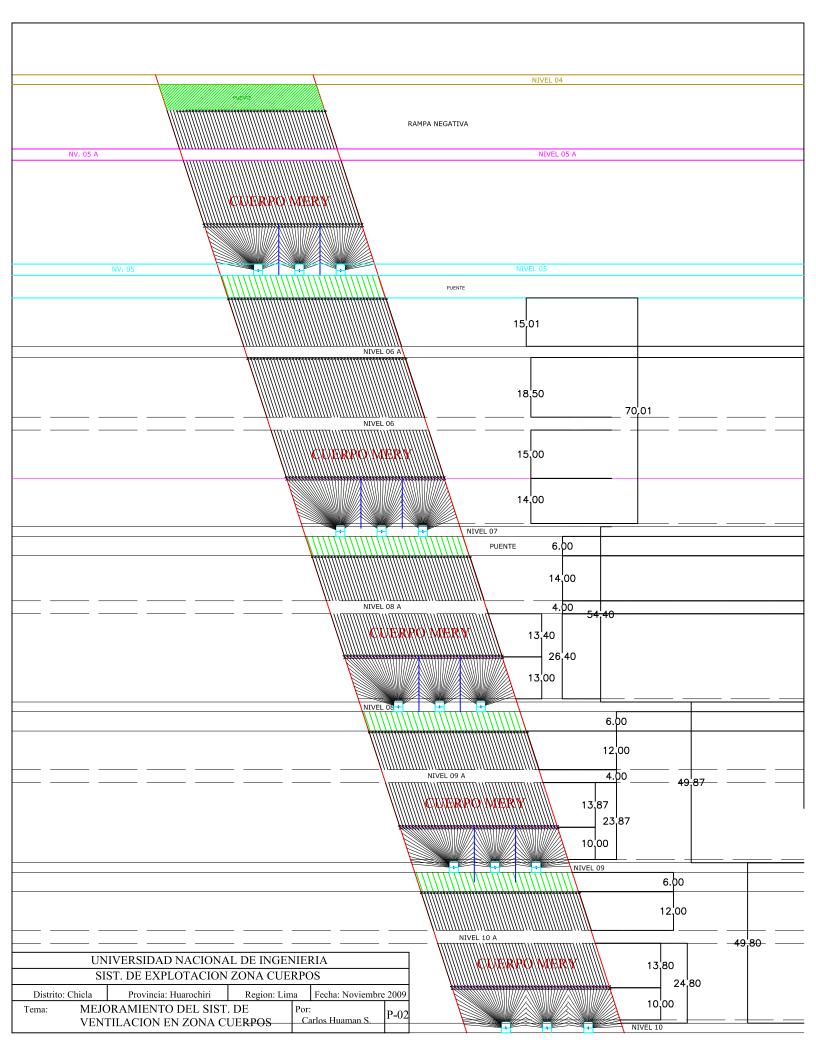
- Gran volumen de producción en cuestión de tonelaje.
- Alta productividad en relación hombre / tonelada.
- Es aplicable en cajas competentes.
- Bajos costos en voladura y perforación.

DESVENTAJAS.-

• Se tiene alto riesgo en lo que se refiere a seguridad.

- Alta dilución por rompimiento de cajas.
- Alta cantidad de bancos grandes y costos adicionales en voladura secundaria (plasteo).
- Bajas leyes y baja recuperación de mineral.

3.3 OPERACIONES UNITARIAS


3.3.1 PERFORACIÓN

La perforación en forma de abanicos con taladros ascendentes, que se realizan desde ventanas ya preparadas de sección de 3,5 m x 4,0 m con perforaciones cuyas longitudes se adaptan al contorneo realizado por geología. Se realiza con el fin de disminuir las labores de preparación que son costosas.

La perforación vertical se realiza en roca más competente y se tiene contorneado todo el tajo. Las longitudes de taladros llegan hasta los 15 m.

Para la perforación se utilizan perforadoras Electro-hidráulicos, energía eléctrica de 440v y sistema hidráulico para perforadora ATLAS COPCO COP 1238ME, con varillaje extensible de 4 pies T-38 con brocas de 64 mm. La desviación máxima permitida de taladros es de 2%.

El diseño de las mallas de perforación está a cargo del Área de Planeamiento, en donde la relación burden y espaciamiento en taladros verticales están entre 1,2 m x 1,2 m a 1,4 m x 1,4 m. Y en los taladros en abanico la distancia entre secciones está entre 1,2 m a 1,4 m.

3.3.2 PERFORACIÓN DE SLOT

Sirve para dar espacio a la voladura de las secciones perforadas; para realizar la perforación de la cara libre primero se realiza un chimenea de sección 1,2 m x 1,2 m que debe tener la altura que llegarán las perforaciones, ésta se realiza con máquina Stoper para luego realizar la zanja con perforaciones verticales de equipos de taladros largos que tendrán la altura de los taladros de producción o un metro mayor.

3.3.3 VOLADURA

La voladura que se realizan en taladros largos es de gran dimensión, por lo que los efectos en lo que se refiere a estabilidad de roca y seguridad son de cuidado. Para ello solo se disparan unos cuantos taladros que producirán grandes volúmenes de mineral. Como accesorios de voladura se utilizan: fanel con retardos largos, mechas lentas, pentacord. Como explosivos se utilizan emulsiones como cebo y como carga de columna ANFO.

3.3.4 LIMPIEZA

Para la limpieza de mineral se cuenta con equipos diesel de gran capacidad como son:

- Scoop diesel de 6.0 yd³
- Scoop diesel de 4.1 yd³
- Scoop diesel de 3.5 yd³

3.3.5 TRANSPORTE

Para el transporte de mineral dentro de mina se cuenta con camiones de bajo perfil dumper. Estos trasladan el mineral desde los puntos de carguío en los tajos hacia los echaderos en los niveles de extracción como son en los niveles 1 y 4.

Luego se cargan a los carros mineros gramby, que los traslada a superficie mediante locomotoras a troley, para finalmente ser transportado a la planta concentradora con volquetes de 25 t y 30 t.

CAPITULO IV

SISTEMA DE VENTILACION ACTUAL DE LA ZONA CUERPOS

4.1 DESCRIPCION DEL SISTEMA DE VENTILACION ACTUAL

El sistema de ventilación actual de la mina es mecánica sujeta a la operación de ventiladores primarios y secundarios, extractores de aire usado, instalados en los Niveles 1 y 4.

En toda la zona cuerpos se identifica un solo esquema de circuito de aire que gira básicamente sobre los ingresos de aire fresco por las bocaminas Alex Nivel 1 y Gubbins Nivel 4, a los que se suma otras vías de menor cuantía.

La falta de una mayor capacidad de extracción de aire viciado, limitado por labores de secciones inadecuadas por el flujo que se necesita, además que no se aprovechen los ingresos de aire fresco de Zonas aledañas.

4.2 LEVANTAMIENTO DE VENTILACION Y REGISTRO DE DATA

En esta etapa se efectúa un mapeo detallado de los niveles en operación, tomando información de campo.

4.2.1 ALCANCE DEL LEVANTAMIENTO DE VENTILACIÓN

Se tiene el siguiente alcance:

- a) Evaluación integral de los circuitos de ventilación de la mina en los niveles en operación: 1, 2, 3A, 3, 4B, 4A, 4, 5A, 5B, 5, 6A, 6, y 7.
- b) Determinar la infraestructura de ventilación para el mediano plazo, para la ventilación de la profundización de la mina y su integración con la Zona Esperanza.

4.2.2 EQUIPOS DE LEVANTAMIENTO DE VENTILACION

Actualmente el Área de Ventilación Mina de la empresa cuenta con equipos e instrumentos de monitoreo digitales, el cual se puede observar el Cuadro N° 28 de anexo: Equipos e Instrumentos de Monitoreo de Ventilación.

4.2.3 ESTACIONES DE CONTOL DE VENTILACION

En cada Nivel se ubicaron estaciones de control de ventilación de acuerdo a la importancia de la distribución de los flujos de aire circulantes, ubicación de labores en operación, zonas con presencia de gases y temperatura significativa, labores con alta recirculación de aire y otros.

Igualmente, se fijaron estaciones de control en las labores de ingreso y salida de aire de la mina para determinar la cantidad de aire circulante en toda la mina.

En cada una de las estaciones de control se efectuaron mediciones de la sección transversal de la labor, tomando debida nota de las características de la misma.

Se determinó la orientación de las corrientes de aire y se efectuaron mediciones de velocidad del aire, haciendo uso de un anemómetro y en otros casos con una bombilla y tubos de humo. Igualmente, se efectuaron mediciones de temperatura ambiental.

4.3 BALANCE DE INGRESOS Y SALIDAS DE AIRE DE LA MINA

Las vías principales de ingreso de aire fresco a la mina son las bocaminas Alex Nivel 1 con un caudal de 2.897 m³/min (102.298 pies³/min) y Gubbins Nivel 4 con un caudal de 1.646 m³/min (58.140 pies³/min).

Las comunicaciones a labores ya explotadas de vetas comunicados a los niveles 1 y 4 constituyen igualmente vías importantes de ingreso de aire fresco para la zona, con los flujos de aire de 577 m³/min (20.380 pies³/min) y 649 m³/min (22.921 pies³/min) respectivamente.

Las mayores salidas de aire se registraron por las chimeneas 803, 806 y 855 debido a la operación de ventiladores extractores de 40.000, 60.000 y 60.000

pies3/min respectivamente ubicadas en el Nv 1. Por la primera chimenea sale 890 m³/min (31.434 pies³/min), la segunda 1.380 m³/min (48.752 pies³/min) y el ultimo mencionado 1.301 m³/min (45.954 pies³/min).

Otra vía importante de salida de aire viciado es la Raise Borer N° 1 con 1.671 m^3/min (59.014 $pies^3/min$).

Las mediciones practicadas en campo determinaron en resumen los resultados siguientes:

Cuadro 2: Balance General Actual de Aire

Ingresos de Aire

Labor	m ³ /min	CFM
Nv 1 Bocamina Alex	2.896,80	102.298
Ingreso Mariana	577,11	20.380
Ingreso CX 800	649,05	22.921
Ingreso CX 800 de Gubbins	1.646,36	58.140
Total Ingreso de Aire	5.769,32	203.738

Salidas de Aire

Labor	m ³ /min	CFM
RB Nv 4 Zona Kiara (Ventilador 60,000 pies3/min)	1671,11	59.014
CH 803 (Ventilador 40,000 pies3/min)	890,12	31.434
CH 885 (Ventilador 60.000 pies3/min)	1301,31	45.954
CH 806 (Ventilador 60,000 pies3/min)	1380,53	48.752
Labores antiguas	1146,36	40.483
Total Salida de Aire	6389,43	225.636
Salida de Aire - Ingreso de Aire	620,11	21.899

4.4 NECESIDADES DE AIRE PARA LA MINA

Los requerimientos de aire han sido definidos fundamentalmente para cubrir las necesidades del personal y equipos diesel y mantener el ambiente con

temperaturas inferiores a 30°C. Los requerimientos de aire para diluir los gases de disparo son opcionales, a tener en cuenta si su valor supera el aire requerido para mantener temperaturas efectivas inferiores a 30°C.

4.4.1 PARA EL PERSONAL

Para este efecto los cálculos fueron efectuados considerando la guardia que cuenta con mayor número de personal, esto es la guardia día. Según lo establecido por el Reglamento de Seguridad e Higiene Minera, Decreto Supremo 046-2001-EM, se requiere de un flujo de aire de 6 m3/min por persona para la altura en que se ubica la mina.

4.4.2 PARA LOS EQUIPOS DIESEL

De acuerdo por lo establecido por el Reglamento de Seguridad e Higiene Minera Decreto Supremo 046-2001-EM, los requerimientos de aire para los equipos están establecidos en 3 m3/min por cada HP que desarrollen los equipos.

4.4.3 PARA MANTENER LA TEMPERATURA EFECTIVA DE 30°C

Estudios experimentales han demostrado que el rendimiento de los trabajadores disminuye considerablemente cuando el ambiente de trabajo presenta condiciones de alto contenido de humedad y temperatura elevada.

En minería subterránea, la temperatura efectiva es el criterio normalmente empleado para definir el grado de bienestar y esta se obtiene a partir del efecto combinado de la temperatura, la humedad y la velocidad del aire.

El Reglamento de Seguridad e Higiene Minera establece que "en los lugares de trabajo donde se supere la temperatura efectiva de treinta grados Celsius (30°C), se tomarán medidas como: cortos periodos de descanso, suministro de agua para beber, aclimatación, tabletas de sal, entre otras a fin de controlar la fatiga, la deshidratación y otros efectos sobre el personal".

El Cuadro N° 03 muestra los efectos de la Temperatura Efectiva en la eficiencia del trabajo:

Cuadro 3:

Efectos de la Temperatura Efectiva en la Eficiencia del Trabajo				
Temperat	tura Efectiva	Eficiencia de Trobaia (0/)		
°F	°C	Eficiencia de Trabajo (%)		
70	21,11	100		
80	26,67	90		
85	29,44	80		
92	33,33	60		
97	36,11	40		
105	40,56	20		
Fuente: Howard Har	tman, "Mine ventilation	and Air Conditioning", 1982		

Para lograr una eficiencia de trabajo de 80% la máxima Temperatura Efectiva no debe superar los 30°C.

En la zona de cuerpos las labores registran valores de temperatura ambiental inferiores a 23°C. Por esto no consideraremos flujo de aire para disminuir la temperatura.

32

4.4.4 PARA LA DILUCIÓN DE LOS GASES DE DISPARO

Para determinar la cantidad de aire circulante para diluir los gases originados durante los disparos se hace uso de la relación establecida por Mateer (año 1979).

Q = (V/T) * Ln (Ci/Cp)

Donde:

Q: Caudal de aire requerido

V: Volumen de gases luego del disparo (pies³)

Ci: Concentración inicial de gases tóxicos (%)

Cp: Concentración máxima permisible según reglamento de seguridad (%)

T: Tiempo para diluir los gases a la concentración permisible (min)

Considerando que el espacio de los gases de un disparo se encuentra aproximadamente en una longitud de 50 metros, el tiempo requerido para diluir los gases es de 30 minutos, la concentración de gases después del disparo se encuentra en el orden de 0,78%, el Límite Máximo Permisible para el CO es 25 ppm y para una sección transversal promedio de 16 m² de las labores, se determina que el caudal de aire circulante para ventilar un frente de desarrollo es 154 m³/min (5,438 pies³/minuto). Para un piso en operación donde se disparan 3 labores simultáneamente, la cantidad de aire necesario para la remoción de estos gases será 462 m³/min (16,315 pies³/minuto).

4.4.5 RESUMEN DE NECESIDADES DE AIRE

Los resultados de las necesidades de aire para la zona de operación se muestran en el cuadro siguiente:

Cuadro 4: Necesidades de aire

	Cantidad	HP/Equipo	m³/min	Pies ³ /min
1. PARA EL PERSONAL				
Total personal	154		924	32.630
Sub Total:			924	32.630
2. PARA EQUIPO DIESEL				
Scooptram ST-3.5	1	172	516	18.222
Scooptram ST-2G	1	127	381	13.455
Scooptram R1300G	3	150	1.350	47.674
Camión Dumper EJC 417	6	200	3.600	127.130
Camión Dumper MT 2010	1	290	870	30.723
Camionetas	1	85	255	9.005
Sub Total:		1.024	6.972	246.209
4. PARA LA REMOCION DE GASE	S DE DISPARO		-	
Zona expansión de gases (m)	50			
Sección transversal m2	16			
Concentración de gases (%)	0,78			
Límite Máximo Permisible (%)	0,0025			
Tiempo de ventilación	30			
Frentes simultáneos de disparo	2			
Pisos de trabajo	6			
Sub Total:			1.838	64.899
TOTA	L:		8.686	306.723

4.5 COBERTURA DE AIRE

Comparando el flujo de aire que ingresa a la mina, con el requerimiento de aire determinado para la mina, se observa que este requerimiento es cubierto solo en el orden del 66%, como se puede apreciar.

Cuadro 5: Balance General Actual de Aire

Descripcion	m ³ /min	CFM
Total Ingreso de Aire	5.769,32	203.738
Requerimiento de aire	8.685,60	306.723
Cobertura (%)	66%	66%

Existen varios factores por los que esta cobertura es baja, entre ellas en gran medida a la falta de capacidad de salida de aire viciado.

Por otro lado, la falta de ventiladores disponibles para cubrir citaciones de contingencia y mantenimiento, han determinado que no se instalen ventiladores en una forma oportuna.

4.6 CAPACIDAD INSTALADA DE VENTILADORES PRINCIPALES

Durante el levantamiento de campo, los ventiladores han estado trabajando en forma normal ubicados en sus respectivas chimeneas.

Cuadro 6: Rendimiento de Ventiladores Principales

Item	Chimenea RB	Capacidad nominal ventilador pies ³ /min	tilador en ventiladores	
1	CH 885	60.000	48.954	82
2	CH 806	60.000	48.754	81
3	CH 803	40.000	31.434	79
4	RB 001	60.000	59.014	98
Total		220.000	188.156	85

4.7 CONDICIONES DE OPERACIÓN DE CHIMENEAS Y GALERÍAS DE VENTILACIÓN

4.7.1 Chimenea 885

Esta chimenea tiene una longitud de 135 m, con 2,0 m x 2,0 m de sección y se ubica entre los niveles 430 y el Tajo Sorpresa Nivel 3.

La chimenea fue usada como chimenea de servicios, por lo que se encuentran tuberías de agua y aire que no se habían recuperado y

permanecían en la chimenea, disminuyendo su sección. Un ventilador de 60.000 pies³/min se encuentra instalado en el nivel 1, el cual impulsa el aire hacia el Nivel 430 para luego lanzar el aire a superficie por la GL 430.

4.7.2 Chimenea 803

Esta chimenea tiene la longitud de 300 m, con 2,0 m x 2,0 m de sección y se ubica entre los niveles 430 y 6A.

La chimenea es usada como chimenea de servicios, por lo que se encuentran tuberías de agua y aire, disminuyendo su sección. Un ventilador de 40.000 pies³/min se encuentra ubicado en el nivel 1, el cual impulsa el aire hacia el Nivel 430 para luego lanzar el aire a superficie por la GL 430.

Adicionalmente, un ventilador secundario de 30.000 pies3/min se encuentra instalado en el nivel 4, el cual impulsa el aire viciado de los niveles inferiores al nivel 4 hacia el ventilador del nivel 1.

4.7.3 Chimenea 806

Esta chimenea tiene la longitud de 135 m, con 1,2 m x 2,1 m de sección y se ubica entre los niveles 430 y 3. A la altura del nivel 2 tiene un cuello de una sección de 1,2 m por 1,0 m, lo que disminuye su eficiencia.

Un ventilador de 60.000 pies3/min se encuentra instalado en el nivel 1, el cual impulsa el aire hacia el Nivel 430 para luego lanzar el aire a superficie por la GL 430.

4.7.4 Galería 430

Esta galería tiene una longitud 730 m, con una sección promedio en todo su recorrido de 2,1 m x 2.1 m. Por esta galería sale el aire viciado de los ventiladores extractores de las chimeneas 803, 855 y 806.

La poca sección de esta galería y las tuberías en desorden, ocasionan una elevada resistencia en el paso del aire.

4.7.5 Chimenea RB 1

Esta chimenea ha sido escavada en su primera etapa desde el Nivel 10 al Nivel 4. Se usa momentáneamente como chimenea de ventilación, aunque su verdadera utilización será como piloto para el desarrollo de un pique. Sirve para extraer aire viciado de los niveles inferiores al nivel 4 con un ventilador de 60,000 pies3/min.

Al concluir la segunda etapa de la Raise Boring del Nivel 4 al 1, este ventilador será retirado, para dar inicio a los trabajos del Pique 650.

4.8 CONDICIONES DE OPERACIÓN DE VENTILADORES SECUNDARIOS

En los distintos niveles de la mina existen ventiladores que han sido instalados para cumplir la función de boosters o para encauzar el aire a determinadas zonas, de acuerdo a las necesidades de operación de las labores de preparación y explotación.

En su mayoría los ventiladores secundarios son de 30,000 pies³/min de capacidad.

Todos estos ventiladores se encuentran ubicados en galerías de mayor dimensión que su diámetro o en los collares de chimeneas convencionales de poca longitud. Por esta situación estos ventiladores normalmente deben mover flujos de aires mayores a su capacidad nominal, es claro señalar que las resistencias de las labores al paso del aire son mínimas.

Las mediciones y observaciones de campo indican que en general el rendimiento de estos ventiladores son bajos debido a las deficientes condiciones de instalación de los tapones en los que se ubiquen los ventiladores. Esta situación genera una alta recirculación del aire que mueven los ventiladores.

4.9 OPERACIÓN DE VENTILADORES AUXILIARES.

Gran parte de los frentes de desarrollo, preparación y explotación disponen de ventilación auxiliar. Para este efecto se utilizan ventiladores de 10,000, 20,000 y 30,000 pies³/min y mangas de polietileno de 18, 24 y 30 pulgadas de diámetro. Los ventiladores impulsan el aire fresco a través de mangas hacia los frentes, el aire usado retorna por la labor de acceso al frente en trabajo hacia una vía de evacuación de aire.

Debido a la reducida sección transversal de las labores de acceso a los frentes de trabajo, el aire fresco que llega a los frentes es mínimo. Normalmente las mangas

se encuentran muy deterioradas con rotura en toda su longitud debida principalmente al tránsito permanente de scooptrams.

Las mangas permanecen rotas y no son cambiadas.

En otros casos, las mangas en su trayecto van siendo reducidas de diámetro, minimizando así la descarga de aire fresco al frente de trabajo.

En general, la instalación de las mangas de ventilación requiere de un mayor control operativo.

4.10 CIRCUITO PRINCIPAL DE AIRE EN LA MINA.

En toda la zona de cuerpos se identifica un solo esquema de circuito de aire que gira básicamente sobre la captación de aire fresco principalmente de las bocaminas Alex Nivel 1 y Gubbins Nivel 4, a los que se suma otras vías de menor cuantía.

El aire fresco se distribuye a las labores a través de los cruceros principales, rampas, chimeneas y piques antiguos.

Todos los ventiladores principales son de extracción de aire viciado, los cuales generan diferencia de presión para que el aire de superficie ingrese a la mina.

El aire que ingresa del Nivel 1 baja por la rampa principal y un pique antiguo distribuyéndose en su recorrido de bajada por los diferentes niveles de la zona alta, apoyado en parte por el aire que ingresa por el Nivel 4.

Como se dijo una pequeña parte de aire fresco que ingresa por el Nivel 4 sube a la zona alta, el mayor volumen se distribuye bajando a la zona baja por la rampa principal y chimeneas comunicadas a los tajos.

4.11 CONDICIONES DE VENTILACIÓN EN LABORES DE PRODUCCIÓN Y SERVICIOS

A continuación se resume los aspectos más relevantes observados durante el levantamiento de ventilación.

Como consecuencia del déficit de aire para cubrir las necesidades de la mina existen varias zonas de la mina con deficiente ventilación, ambientes con humo, como consecuencia del tránsito de equipos diesel.

4.11.1 Nivel 430

- a) La comunicación más importante es la bocamina, que es salida de aire usado. Presenta cuadros de madera en mal estado, los cuales están por caer. Además presenta demasiadas tuberías que no están en uso que disminuyen la sección de la labor.
- b) Este es un nivel de extracción de aire usado, por lo que no cuenta con labores.
- c) Tiene una puerta que controla que el aire viciado no se mezcle con el aire fresco que está en la Rampa 916. Esta puerta falta hermetizar ya que presenta muchas fugas

4.11.2 Nivel 1

- a) Los ventiladores principales que están ubicados en este nivel tienen puertas que no aíslan adecuadamente el aire viciado, lo cual origina una recirculación del aire viciado. Necesita hermetizar.
- El polvo que se genera en este nivel debe ser controlado con el regado continuo por parte de la cisterna.

4.11.3 Nivel 4

- a) En la chimenea RB 1 el ventilador de 60.000 pies³/min genera una fuerte recirculación de aire debido a los tapones y puertas que deberían evitar la recirculación no están adecuadamente hermetizadas.
- b) CH 803, ventilador secundario de 30.000 pies³/min no funciona adecuadamente, porque el tapón tiene muchos huecos, además los operadores de locomotoras lo apagan por el fuerte sonido que origina su funcionamiento y no les permite descargar la tolva cercana a esta chimenea.

4.11.4 Nivel 5

- a) No cuenta con labores suficientes de extracción de aire viciado, hace falta ejecutar chimeneas a los tajos y comunicar la RB.
- b) Los ventiladores instalados en este nivel no son suficientes ya que por no existir labores de desfogue de aire viciado cercanas a los tajos origina la recirculación de aire viciado.

c) Por los tajos abiertos y el número de labores en este nivel, presenta velocidades bajas en el flujo de aire, esto comprueba la necesidad de proporcionar mayor caudal de aire a este nivel.

4.11.5 Nivel 6

- a) No cuenta con chimeneas comunicadas a los niveles superiores, lo cual dificulta la evacuación de los gases. La comunicación con el RB 1 mejoro la extracción de aire viciado, pero al entrar en ejecución la ampliación del Pique 650, se perderá esta salida.
- Estan en ejecución chimeneas que comunican a los niveles superiores pero por su lentitud complican la ventilación.
- c) El ventilador instalado no es suficiente por ser de poca capacidad (20.000 m3/min) para la cantidad de equipos que ingresan a este nivel, además el mantenimiento de manga es permanente, por la rotura de este a causa del paso de scoop y dumpers.
- d) La comunicación de la rampa al nivel 7, ha ayudado a disminuir la temperatura en el ambiente.

4.12 MEDICIONES DE TEMPERATURA AMBIENTAL

Durante el levantamiento se efectuaron mediciones de temperatura ambiental. Las mediciones en las estaciones de control de ventilación, donde se incluyen las vías de ingreso de aire fresco a la mina, así como las vías de circulación de aire usado y su salida de la mina. Se registraron temperaturas mínimas de 6 °C y temperaturas máximas de 20°C.

Por otro lado, se efectuaron mediciones de temperatura ambiental en las labores de profundización los cuales registraron temperaturas mínimas de 22°C y temperaturas máximas de 28°C. En promedio la temperatura en estas labores alcanza 25°C.

4.13 EMISIÓN DE GASES DE CO EN LOS EQUIPOS DIESEL

Para la medición de gases monóxido de carbono en tubo de escape de equipos diesel se cuenta con equipos apropiados.

Las mediciones registran valores elevados sobre el límite máximo permisible (1.000 ppm) en los dumpers EJC 417, esto por la antigüedad de estos equipos y la inadecuada programación en su mantenimiento. Estos equipos serán reemplazados por la adquisición de unidades nuevas de mayor tonelaje de transporte.

Cuadro de mediciones de equipos en anexos.

4.14 CALCULOS DE PERDIDA DE PRESION

4.14.1 Resistencia de los conductos

La resistencia específica, es la resistencia que opone el paso del aire de una labor. Está dado por siguiente la fórmula:

$$R = \frac{K x (L + Le) x P}{A^3}$$

Donde:

R : Resistencia (Ns²/m^S).

K : Factor de Fricción (Ns³/m⁴).

L : Longitud (m).

Le : Longitud Equivalente por Choques (m).

P : Perímetro de la Sección (m).

A : Arca de Sección de la Galería (m²).

4.14.2 Perdida de presión

La pérdida de presión se calcula con la Fórmula de Atkinson:

$$HL - R \times Q^2$$

Donde:

HL: Pérdida de Presión (Pa).

R : Resistencia (Ns²/m⁸).

Q : Caudal de Aire (mVs).

El Coeficiente de Fricción (K): La fricción causa una transformación de la energía de trabajo a energía de calor. Mientras más áspera sea la superficie, mayor será la turbulencia y por lo tanto, mayor la fricción y pérdida de poder.

4.14.3 Calculo de Resistencia y perdida de presión en Chimeneas y galerías

El cálculo de resistencia en labores de desfogue de aire viciado, permite realizar una verificación preliminar si el diseño de labores de

ventilación seleccionados y/o ejecutados y la selección de ventiladores extractores principales fue adecuado. Estos valores podrían explicar los problemas presentados en los ventiladores como son un cambio prematuro de estos equipos por falla en alguno de sus componentes y el alto consumo de energía.

A continuación presentamos los resultados de resistencia y pérdidas de presión obtenidos.

Cuadro 7: Resultado de resistencias y pérdidas de presión

Labor	Resistencia	Pérdida Presión Total
	(Ns²/m²)	(" H ₂ O)
CH 741	5,15869	5,28
CH 771	5,40831	5,51
CH 027	1,25971	2,91
CH 803	1,17968	1,15
CH 806	1,57803	3,57
CH 885	0,72747	1,66
GL 430	1,44254	8,55
RB #1	0,87289	2,62
RB #2	1,33231	9,92
XC 754	0,16433	1,16
GL 520	0,24574	1,62
XC 510	0,27062	1,77

CAPITULO V

DISEÑO DEL SISTEMA DE VENTILACION

5.1 OBJETIVO

El objetivo principal de esta actividad es el determinar el circuito de ventilación mas optimo para la mina, con la infraestructura de ventilación más adecuada para el mediano plazo; a fin de brindar un ambiente de trabajo seguro, saludable y confortable, cumpliendo con las normas legales vigentes.

Como lograr este objetivo:

- Establecer entradas y salidas primarias
- Determinar los caudales requeridos (Qo)
- Formular una red de ventilación
- Resolver la red y determinar un sistema económico
- de ventilación.

5.2 ANTECEDENTES

El caudal de aire actual es insuficiente para mantener una adecuada ventilación en la Zona Cuerpos, esto se comprobó con el análisis del sistema de

ventilación y verificación de las necesidades de aire. Los resultados obtenidos dan inicio a plantear una alternativa que mejore la ventilación actual de la mina y planificar un proyecto de ventilación que pueda estar de acorde con los proyectos de crecimiento y profundización de la mina.

El incremento de producción en trackles, trae como consecuencia incremento de equipos diesel y mayor infraestructura. Esto debe ir a la par con la infraestructura de ventilación, como son chimeneas y equipos.

Los proyectos en ejecución como son el Pique 650 y el pique circular deberían ser tomados en consideración para la evaluación de la ventilación de la mina, ya en caso del primero deben de estar operando el próximo año.

5.3 DISEÑO DEL CIRCUITO DE VENTILACION

Con el análisis de los circuitos de aire existentes, ubicación de chimeneas que comunican a superficie, equipos de ventilación existentes, ubicación de áreas de trabajo, zonas de mayor temperatura ambiental, zonas de mayor tránsito vehicular, etc., es posible identificar dos zona vitales de atención, que son adecuadas para la ubicación de chimeneas de extracción de aire viciado.

Se han identificado las zonas de laboreo en función a de la dirección de los cuerpos mineralizados en profundidad, ubicando dos chimeneas una hacia el extremo sur y otra hacia el extremo norte.

Durante el desarrollo del presente informe se mostraran los diagramas unifilares de los circuitos de ventilación, con los resultados obtenidos para cada ramal (flujos de aire, resistencia, caídas de presión, etc.), así como los resultados de presión, flujos de aire, HP y costo de operación por consumo de energía eléctrica de los ventiladores.

Se definen la ubicación de dos chimeneas raise boring con diámetros no menor de 2,1 m, por donde deberán instalarse ventiladores con un equivalente en extracción de no menos de 150.000 pies3/min en cada Raise boring.

Además dentro de los proyectos generales de la mina se encuentra la ejecución de otros ingresos de aire, como es la Bocamina Alex 2, el cual estará comunicado al nuevo Pique 650 y permitirá el ingreso de aire fresco de superficie por el pique. La recuperación de labores de ingreso de aire como son el Raise Boring 2 (piloto del pique circular) el cual viene siendo utilizado actualmente como una alternativa para la extracción de aire viciado. Adicionalmente, se recuperan los accesos de aire fresco de las bocaminas antiguas de vetas.

5.4 BALANCE DE AIRE PROYECTADO

Los cuadros siguientes muestran el resumen de los ingresos y salidas de aire de la mina una vez implementado las chimeneas y ventiladores propuestos, y la cobertura esperada.

Cuadro 8 :Balance General Actual de Aire

Ingresos de Aire

Labor	m~/min	pie /min
Nv 1 Bocamina Alex	2.790	98.526
Nv 1 Bocamina Alex 2	2.800	98.879
Nv 1 Mariana	570	20.129
Nv 600 RP 916	800	28.251
Nv 4 XC 800 Oroya - Esperanza	1.600	56.502
Nv 4 RB 2	2.100	74.159
Nv 4 XC 800 Bocamina Gubbins	1.646	58.140
Nv 7 Esperanza	1.880	66.390
Total Ingreso de Aire	14.186	500.977

Salidas de Aire

Labor	m³/min	pie /min
Nv 600 RB	4.248	150.000
Nv 1 CH 803 (Ventilador 40,000 pies3/min)	1.200	42.377
Nv 1 CH 806 (Ventilador 60,000 pies3/min)	1.700	60.034
Nv 1 CH 855 (Ventilador 60,000 pies3/min)	1.700	60.034
Nv 4 RB	4.248	150.000
Labores antiguas	1.146	40.483
Total Salida de Aire	14.242	502.927

Cuadro 9 : Necesidades de Aire Estimada

	Cantidad	HP/Equipo	m³/min	Pies ³ /min
1. PARA EL PERSONAL	•		•	
Total personal	186		1.116	39.410
Sub Total:			1.116	39.410
2. PARA EQUIPO DIESEL				
Scooptram EJC 3.5 yd3	1	172	516	18.222
Scooptram EJC 2.5 yd3	1	127	381	13.455
Scooptram R1300G	5	150	2.250	79.457
Scooptram R1600G	2	170	1.020	36.020
Camión Dumper EJC 417	3	200	1.800	63.565
Camión Dumper MT 2010	6	290	5.220	184.339
Camionetas	2	85	510	18.010
Sub Total:		1.194	11.697	413.068
4. PARA LA REMOCION DE GASES	S DE DISPARO			
Zona expansión de gases (m)	50			
Sección transversal m2	16			
Concentración de gases (%)	0,78			
Límite Máximo Permisible (%)	0,0025			
Tiempo de ventilación	30			
Frentes simultáneos de disparo	3			
Pisos de trabajo	6			
Sub Total:			2.757	97.348
TOTAL	:		14.094	497.726

Cuadro 10 :Balance General Actual de Aire

Descripcion	m ³ /min	CFM
Total Ingreso de Aire	14.186,36	500.977
Requerimiento de aire	14.094,30	497.726
Cobertura (%)	101%	101%

Se observa que se cumplen con las necesidades de aire requeridas.

5.5 PLANEAMIENTO DE VENTILACION

El planeamiento de la ventilación es una herramienta que nos permite administrar eficientemente el diseño de las actividades mineras, para el cual deberá tenerse en cuenta las siguientes variables de decisión:

- Fuentes de calor natural y artificial en la mina.
- Equipos en uso y para usar.
- Emisiones de los gases productos de combustión (Diesel).
- Exposición de sustancias dañinas.
- Tiempos de permanencia de los contaminantes.
- Complejidad del circuito y costes de desarrollo.
- Flexibilidad del control del circuito.
- Sistemas de ventilación auxiliar.
- Velocidad en chimeneas y accesos de transporte.
- Requerimientos legislativos.

Todas estas variables deben acoplarse al diseño de la mina para considerar caudales de aire necesarios en:

- Áreas de producción
- Áreas de desarrollo fijadas
- Rutas de transporte (camiones/ cintas)
- Trituradoras y Molinos (Primarios)
- Quebrantadoras, trituradoras
- Estaciones de carga
- Izamiento o extracción del mineral al exterior
- Zonas de almacenamiento de combustible y explosivos
- Comedores y Áreas de espera

El planeamiento de ventilación debería garantizar la continuidad operativa de la mina.

5.6 REQUERIMIENTO DE VENTILADORES

5.6.1 Ventiladores principales y secundarios proyectados

Dentro del proyecto a mediano plazo se consideran la adquisición de dos ventiladores principales de 150.000 m³/min, los cuales según el orden serán adquiridos a medida que se desarrolle la mina:

Cuadro 11: Ventiladores Principales proyectados

	Ubicación	Punto de	Capacidad	HP	Función	Condición
		instalación	(m ³ /min)	motor		
1	Superficie	Collar chimenea Sur	150.000	400	Extractor	En operación
2	Superficie	Collar de chimenea norte	150.000	300	Extractor	Por adquirir

Adicionalmente se proyectan ventiladores secundarios que ayudaran a direccionar el aire, tales como:

Cuadro 12: Ventiladores Secundarios proyectados

	Ubicación	Punto de	Capacidad	HP	Función	Condición
		instalación	(m³/min)	motor		
1	Nivel 4	CH 741	40.000	100	Extractor	En operación
2	Nivel 4	CH 771	40.000	100	Extractor	En operación
3	Nivel 4	CH VCR	60,000	150	Extractor	En operación

5.6.2 Ventiladores auxiliares proyectados

Para poder cumplir con los avances proyectados se consideran la adquisición de ventiladores auxiliares que aumentaran el inventario actual de la zona. Se considera un incremento, debido a que no se disponía de ventiladores con la capacidad necesaria para satisfacer la demanda de flujo de aire para las labores de la zona cuerpo.

Cuadro 13: Ventiladores Auxiliares proyectados

	Nivel	Punto de instalación	Capacidad	HP	Función	Condición
			(m³/min)	motor		
1	8	RP 686 Profundización	30.000	75	Impelente	Nuevo
2	8	RP 686 Profundización	30.000	75	Extractor	Nuevo
3	8	XC 807	30,000	75	Impelente	Nuevo

El inventario de ventiladores de la zona, se encuentra en el anexo.

5.7 RELACION DE EQUIPOS DIESEL PROYECTADOS

Cuadro 14: Relación de Equipos Diesel proyectado

EQUIPO	MARCA	CANTIDAD	HP
Scooptram EJC 3.5 yd ³	WAGNER	1	172
Scooptram EJC 2.5 yd ³	WAGNER	1	127
Scooptram R1300G	CAT	5	150
Scooptram R1600G	CAT	2	170
Camión Dumper EJC 417	SANVICK	3	200
Camión Dumper MT 2010	WAGNER	6	290
Camionetas		2	85
	TOTAL H	1194	

5.8 REQUERIMIENTO DE LABORES HORIZONTALES Y VERTICALES

Para el nuevo sistema de ventilación en su circuito principal hace necesario el avance de labores mineras horizontales y verticales, los cuales serán contemplados en el proyecto.

Cuadro 15: Labores Horizontales proyectadas

	Nivel	Labor	Sec	Sección		
			m	m	m	
1	4	XC 754	3,0	3,0	150	
2	4	GL 590	3,0	3,0	200	
3	1	ALEX 2	5,0	5,0	100	
4	7	XC 890	3,5	3,5	90	
5	9	XC al RB	3,5	3,5	100	
6	10	XC 790	3,5	3,5	50	
	Total proyectado					

Se plantearon dos chimeneas en el nuevo esquema de ventilación, su función y la cantidad de aire que aire que deben mover durante su operación, además chimeneas menores como parte del circuito que apoyaran al direccionamiento del circuito secundario.

Cuadro 16: Labores verticales proyectadas

	Labor	Ubicación	Diámetro	Caudal	Longitud	OBS.
			m	M3/min	m	
1	Raise Boring	Nivel 10 a superficie	2,1	150.000	350	
2	Raise Boring	Nivel 10 a superficie	3,0	150.000	350	
3	Chimeneas convencionales	Nv 9 al 7	1,8 x 1,8	No definido	100	Longitud total
4	Chimeneas convencionales	Nv 11 al 10	1,8 x 1,8	No definido	90	Longitud total
		690				

CAPITULO VI

EVALUACION ECONOMICA DEL PROYECTO

Se ha efectuado un estimado de costos basado en las excavaciones de las chimeneas y labores relacionadas con estas chimeneas, adquisición de ventiladores y accesorios, y la infraestructura necesaria.

6.1 INVERSION DEL PROYECTO

6.1.1 Inversión de desarrollos y preparaciones

Cuadro 17: Inversión en desarrollos y preparaciones

VENTILACION PRINCIPAL	m	US\$/m	US\$	US\$
RB Ventilación 2,1 m diámetro	588	1.100	646.800	
RB Ventilación 3,0 m diámetro	469	1.300	609.700	
Chimeneas convencionales	190	120	22.800	
Labores horizontales	587	350	205.450	1.484.750

VENTILACION AUXILIAR	m	US\$/m	US\$	US\$
Chimeneas convencionales	720	120	86.400	
Labores horizontales	360	350	126.000	212.400

TOTAL INVERSION DESARROLLO Y PREPARACION	1.697.150
--	-----------

6.1.2 Inversión de desarrollos y preparaciones

Cuadro 18: Inversión en ventiladores y accesorios

VENTILACION PRINCIPAL	CANT.	US\$/m	US\$
Ventilador de 150.000 cfm 400 HP	1	88.650	88.650
Ventilador de 150.000 cfm 300 HP	1	65.974	65.974
Ventilador de 60.000 cfm 150 HP	2	22.000	44.000
Ventilador de 40.000 cfm 100 HP	2	20.000	40.000
Arrancadores con variadores de velocidad	2	54.231	108.462
Arrancadores para 150 HP	2	2.800	5.600
Arrancadores para 100 HP	2	2.800	5.600

VENTILACION AUXILIAR	CANT.	US\$/m	US\$	
Ventilador de 30.000 cfm 75 HP	3	12.000	36.000	
Ventilador de 20.000 cfm 50 HP	2	10.000	20.000	
Arrancadores para 75 HP	3	1.012	3.035	
Arrancadores para 50 HP	2	1.012	2.023	61.058

TOTAL INVERSION VENTILADORES Y ACCES	SORIOS 419.343
--------------------------------------	----------------

6.2 COSTO TOTAL DE LA INVERSION

Para el proyecto, además de los costos de preparaciones, desarrollo, equipos de ventilación y accesorios, se deben adherir costos de instalación y obras civiles los cuales serán considerados en el cuadro siguiente:

Cuadro 19: Inversión ventilación principal

DESCRIPCION	CANTIDAD	P.U.	GASTO	SUBTOTAL
	T			Γ
DESARROLLO VENTILACION PRINCIPAL	m	US\$/m	US\$	US\$
RB Ventilación 2,1 m diámetro	588	1.100	646.800	
RB Ventilación 3,0 m diámetro	469	1.300	609.700	
Chimeneas convencionales	190	120	22.800	
Labores horizontales	587	350	205.450	1.484.750
EQUIPOS	Unid.	US\$/unid.	US\$	
Ventilador de 150.000 cfm 400 HP	1	88.650	88.650	
Ventilador de 150.000 cfm 300 HP	1	65.974	65.974	
Ventilador de 60.000 cfm 150 HP	2	22.000	44.000	
Ventilador de 40.000 cfm 100 HP	2	20.000	40.000	
Arrancadores con variadores de velocidad	2	54.231	108.462	
Arrancadores para 150 HP	2	2.800	5.600	
Arrancadores para 100 HP	2	2.800	5.600	358.286
OBRAS CIVILES	Unid.	US\$/unid.	US\$	
Loza para RB	4	535	2.138	
Base y caseta para ventiladores principales	2	7.560	15.120	
Base y muros para ventiladores secundarios	4	1.010	4.040	21.298
INSTALACION ELECTRICA	Unid.	US\$/unid.	US\$	

- 0			
	TOTAL INVERSION VENTILACION PRINCIPAL	1.940.987	
		1.770.701	

2

2

Unid.

1

1

12.826

8.000

US\$/unid.

15.000

20.000

25.653

16.000

US\$

15.000

20.000

41.653

35.000

Instalación línea aérea (materiales

Transformador para energía

y mano de obra)

Asistencia Técnica

Ingeniería de detalle

OTROS

Cuadro 20: Inversión ventilación auxiliar

DESCRIPCION	CANTIDAD	P.U.	GASTO	SUBTOTAL

DESARROLLO VENTILACION PRINCIPAL	m	US\$/m	US\$	US\$
Chimeneas convencionales	720	120	86.400	
Labores horizontales	360	350	126.000	212.400
EQUIPOS	UND.	US\$/m	US\$	
Ventilador de 30.000 cfm 75 HP	3	12.000	36.000	
Ventilador de 20.000 cfm 50 HP	2	10.000	20.000	
Arrancadores para 75 HP	3	1.012	3.035	
Arrancadores para 50 HP	2	1.012	2.023	61.058

TOTAL INVERSION VENTILACION AUXILIAR	273.458

Cuadro 21: Inversión Total

TOTAL INVERSION VENTILACION PRINCIPAL	1.940.987
TOTAL INVERSION VENTILACION AUXILIAR	273.458
TOTAL INVERSION	2.214.445

6.3 COSTO DE VENTILACION

El siguiente, es el estimado del costo operativo de ventilación, comparado con la extracción anual de mineral de la zona cuerpos.

Cuadro 22: Costo de ventilación

			COSTOS	VIDA	AMORTIZACION	DEPRECIACION	MANTENIMIENTO	SUBTOTAL
CONCEPTO	UNIDAD	CANTIDAD	ADQUISICION	UTIL	US\$/año	US\$/año	US\$/año	US\$/año
			US\$	años				
VENTILADORES								
Adquiridos								
Ventilador de 150.000 cfm 400 HP		1	88.650	10	8.865	7.092	8.865	24.822
Ventilador de 60.000 cfm 150 HP		2	22.000	10	4.400	3.520	4.400	12.320
Ventilador de 40.000 cfm 100 HP		2	20.000	10	4.000	3.200	4.000	11.200
Arrancadores con variadores de velocidad		1	54.231	10	5.423	4.338	5.423	15.185
Arrancadores para 150 HP		2	2.800	10	560	448	560	1.568
Arrancadores para 100 HP		2	2.800	10	560	448	560	1.568
Ventilador de 30.000 cfm 75 HP		3	12.000	10	3.600	2.880	3.600	10.080
Ventilador de 20.000 cfm 50 HP		2	10.000	10	2.000	1.600	2.000	5.600
Arrancadores para 75 HP		3	1.012	10	303	243	303	850
Arrancadores para 50 HP		2	1.012	10	202	162	202	566
En uso:								
Ventilador de 60.000 cfm 150 HP		1	22.000	10	2.200	1.760	2.200	6.160
Ventilador de 40.000 cfm 100 HP		2	20.000	10	4.000	3.200	4.000	11.200
Arrancadores para 150 HP		2	2.800	10	560	448	560	1.568
Arrancadores para 100 HP		2	2.800	10	560	448	560	1.568
Ventilador de 30.000 cfm 75 HP		4	12.000	10	4.800	3.840	4.800	13.440
Ventilador de 20.000 cfm 50 HP		4	10.000	10	4.000	3.200	4.000	11.200
Arrancadores para 75 HP		4	1.012	10	405	324	405	1.133
Arrancadores para 50 HP		4	1.012	10	405	324	405	1.133

			COSTOS	VIDA	AMORTIZACION	DEPRECIACION	MANTENIMIENTO	SUBTOTAL		
CONCEPTO	UNIDAD	CANTIDAD	ADQUISICION	UTIL	US\$/año	US\$/año	US\$/año	US\$/año		
			US\$	años						
EQUIPOS MEDICION										
Adquiridos										
Thermoanemometro		1	632	5	126	253	316	695		
Medidor monogas		6	650	5	780	1.560	1.950	4.290		
Medidor CO -MSI		1	3.000	5	600	1.200	1.500	3.300		
Psicrometro		1	350	5	70	140	175	385		
En uso:										
Thermoanemometro		2	632	5	253	506	632	1.390		
Medidor multigases		2	3.500	5	1.400	2.800	3.500	7.700		
Bomba gavimetrica		1	1.824	5	365	730	912	2.006		
Medidor CO -MSI		1	3.000	5	600	1.200	1.500	3.300		
Calibracion equipos								1.260		
DUCTOS FLEXIBLES										
Mangas de 18 pulgadas	m	1.800	2.570					2.570		
Mangas de 24 pulgadas	m	3.720	6.640					6.640		
Mangas de 30 pulgadas	m	3.720	7.083					7.083		
MATERIALES										
Cemento	Bolsa	240	1.285					1.285		
Arena/grava	m3	150	893					893		
Tablas	c/u	1.800	3.427					3.427		
Listones	c/u	240	685					685		
Clavos	kg	505	541					541		
Alambre de amarre	kg	250	238					238		
Puntales	c/u	250	149					149		
Herramientas								350		
SALARIOS	•									
Personal								99.180		
			COSTO TOTA	L				278.529		
		PRODUC	CION ANUAL	(TM/añ	0)		·	960.000		
COSTO (US\$/TM)										

6.4 COSTO DE ENERGIA EN VENTILACION

Cuadro 23: Costo de Energía en ventilación

Potencia Instalada		
Ventilación Principal	900	hp
Ventilación Auxiliar	575	hp
Potencia promedio medida	1056	kw
Horas funcionamiento por día	24	horas
Tarifa de energía eléctrica	0,06	US\$/kw-h
Costo de Energía mensual	45634	US\$
Producción mensual	80000	TM

Costo de Energía de ventilación / TM	0,57 US\$/TM
--------------------------------------	--------------

6.5 EVALUACION ECONOMICA DEL PROYECTO

Se evalúa proyecto según las alternativas de ejecutar chimeneas de 3,0 m de diámetro o usar 2,1 m de diámetro. Los parámetros a considerar son el gasto realizado en infraestructura, versus el consumo de energía que generara la puesta en operación de los ventiladores necesarios en cada caso. Como la primera chimenea fue realizada de 2,1 m de diámetro, se evalúa variando el diámetro de la segunda chimenea.

Alternativa 1: Una chimenea de 2,1 m de diámetro y la otra de 3,0 m de diámetro.

Alternativa 2: Ambas chimeneas de 2,1 m de diámetro.

Cuadro 24: Alternativas de evaluación económica

ALTERNATIVA 1										
ALIEKNATIVAT										
Descripcion	Año 2009	Año 2010	Año 2011	Año 2012	Año 2013	Año 2014	Año 2015	Año 2016	Año 2017	Año 2018
Costo capital US\$	1.142.507	798.480	0	0	0	0	0	0	0	0
Costo operación US\$	45.634	45.634	54.915	54.915	54.915	54.915	54.915	54.915	54.915	54.915
Flujo de caja US\$	1.188.141	844.114	54.915	54.915	54.915	54.915	54.915	54.915	54.915	54.915
TIR	13	%								
VAN	1.918.895	US\$								
ALTERNATIVA 2										
Descripcion	Año 2009	Año 2010	Año 2011	Año 2012	Año 2013	Año 2014	Año 2015	Año 2016	Año 2017	Año 2018
Costo capital US\$	1.180.195	821.157	0	0	0	0	0	0	0	0
Costo operación US\$	45.634	45.634	58.009	58.009	58.009	58.009	58.009	58.009	58.009	58.009
Flujo de caja US\$	1.225.829	866.791	58.009	58.009	58.009	58.009	58.009	58.009	58.009	58.009
TIR	13	%								
VAN	1.981.634	US\$								

Se observa que la primera alternativa es más conveniente, ya que a mayor diámetro de chimenea, a pesar de ser mayor costo el metro de chimenea raise boring, el gasto disminuye por el costo de equipos y consumo de energía, los cuales son menores en comparación con la otra alternativa. Todo esto originado por la baja presión de los ventiladores principales a utilizar (baja resistencia en las chimeneas).

CAPITULO VII

APLICACIÓN DEL PROGRAMA DE VENTILACION

7.1 DESCRIPCION DEL PROGRAMA

Un programa de simulación de ventilación de minas subterráneas es diseñado para simular el flujo de aire (y muchos otros tipos de datos de ventilación) de un modelo de red de las vías de aire. La ventaja de usar un programa de ventilación es la fácil integración del diseño gráfico de Windows con el poder de los gráficos 3D que se encuentra sólo en los programas CAD. El software es usado por la mayoría de las minas, universidades, consultores y organizaciones de investigación en todo el mundo.

La base de todos los programas de ventilación es el algoritmo de Hardy Cross, para lo cual se tiene que realizar un diagrama de ramales en 2D o 3D. Esto nos ayuda a simular diagramas de ventilación complejas.

7.2 CARACTERISTICAS DEL PROGRAMA

- Hasta 30.000 ramales individuales
- 1000 diferentes tipos de ventiladores, con la eficiencia puede ser modelada en la red.
- Las redes pueden ser creados a escala real en 3D simplemente dibujando los ramales con el clic del ratón.
- Permite la rotación en 3D del modelo en tiempo real para ayudar a la visualización y la creación.
- Da simulación de contaminantes de humo, gases u otros contaminantes
- Importación y exportación de datos de hojas de cálculo o DXF de CAD o de otros sistemas de planificación de minas.
- Modelado de carga a los reguladores y los mamparos.
- Modelado de la presión de los aficionados y corrientes de aire fijo.

7.3 REGISTRO DE DATA

La alimentación de ramales para VNET PC se ven en el Cuadro 25.

7.4 RESUMEN DE RESULTADOS

Los resultados se ven en los cuadros 26 y 27.

Cuadro 25: Alimentación de Ramales para VNET PC

RAMAL				FACTOR FRICCIO	LONGITU	LONGITUD EQUIVALENTE	AREA	Pe rime tr				
N°	DE	A	Tipo	N (kg/m3)	D (m)	(m)	(m2)	o (m)	(Ns2/m8)	Autolongitud	Superficie	Observacion
1	108	106	k Factor	0.0050	149.9	49.9	3.46	6.60	0.15918	Desactivado		x
2	110	108	k Factor	0.0167	66.9	0.0	15.33	15.85	0.00492	Desactivado		x
3	111	108	k Factor	0.0050	149.9	49.9	3.46	6.60	0.15918	Desactivado		x
4	15	10	k Factor	0.0167	23.0	0.0	15.33	15.85	0.00169	Desactivado		x
5	54	53	k Factor	0.0167	66.9	0.0	15.33	15.85	0.00492	Desactivado		X
6	9	3	k Factor	0.0167	88.9	0.0	15.33	15.85	0.00653	Desactivado		X
7	117	63	k Factor	0.0167	74.1	0.0	15.33	15.85	0.00544	Desactivado		X
8	103	106 Q	k Factor	0.0167	44.9	0.0	15.33	15.85	0.00330	Desactivado		х
9	83	85	k Factor	0.0167	120.1	0.0	15.33	15.85	0.00882	Desactivado		X
10	100	101	k Factor	0.0167	133.9	0.0	15.33	15.85	0.00984	Desactivado		х
11	103	102	k Factor	0.0167	137.1	0.0	15.33	15.85	0.01007	Desactivado		х
12	90 87	91	k Factor	0.0167	219.2	0.0	15.33	15.85	0.01610	Desactivado		X
13	113	93 59	k Factor	0.0167	75.1 95.1	0.0	15.33 15.33	15.85	0.00552	Desactivado		X
14 15	113	118	k Factor	0.0167	95.1 149.9	200.1		15.85	0.00699 0.00000	Desactivado		X
			k Factor	0.0000			8.64	11.89		Desactivado		
16 17	98 98	89 99	k Factor	0.0223	126.0	20.0	3.72	8.23	0.52051	Desactivado		
	98		k Factor	0.0223	68.9	20.0 20.0	3.72 3.72	8.23	0.31694	Desactivado		
18 19	73	95 77	k Factor	0.0223	68.9 44.9	0.0		8.23	0.31694	Desactivado		
	77		k Factor	0.0167			15.33	15.85	0.00330	Desactivado		X
20	64	64 86	k Factor	0.0167	134.1 76.1	0.0	15.33 15.33	15.85 15.85	0.00985 0.00559	Desactivado		X
22	86	59	k Factor	0.0167	76.1 88.9	0.0			0.00559	Desactivado		X
23	59	72	k Factor	0.0167	45.9	0.0	15.33	15.85	0.00653	Desactivado		X
	72		k Factor	0.0167			15.33	15.85		Desactivado		X
24 25	58	58 79	k Factor k Factor	0.0167 0.0167	78.1 120.1	0.0	15.33 15.33	15.85 15.85	0.00574 0.00882	Desactivado Desactivado		X
	79	55	_		145.0	0.0			0.00882			X
26 27	55	78	k Factor k Factor	0.0167 0.0167	102.0	0.0	15.33 15.33	15.85 15.85	0.01065	Desactivado Desactivado		X
28	78	48	k Factor	0.0167	56.1	0.0	15.33	15.85	0.00749	Desactivado		
29	48	74	k Factor	0.0167	79.1	0.0	15.33	15.85	0.00412	Desactivado		x
30	74	54	k Factor	0.0167	98.1	0.0	15.33	15.85	0.00381	Desactivado		
31	54	65	k Factor	0.0167	66.9	0.0	15.33	15.85	0.00721	Desactivado		x
32	70	42	k Factor	0.0167	88.9	0.0	15.33	15.85	0.00492	Desactivado		v v
33	42	71	k Factor	0.0167	100.1	0.0	15.33	15.85	0.00633	Desactivado		v v
34	71	67	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00733	Desactivado		v v
35	60	47	k Factor	0.0167		0.0	15.33		0.00287	Desactivado		v v
36	47	63	k Factor	0.0167	54.1	0.0	15.33	15.85	0.00287	Desactivado		v
37	63	38	k Factor	0.0167	79.1	0.0	15.33	15.85	0.00597	Desactivado		v v
38	38	61	k Factor	0.0167	129.9	0.0	15.33	15.85	0.00954	Desactivado		v v
39	61	44	k Factor	0.0167	180.1	0.0	15.33	15.85	0.01323	Desactivado		v v
40	26	35	k Factor	0.0167	125.0	0.0	15.33	15.85	0.00918	Desactivado		x
40	43	23	k Factor	0.0167	255.9	0.0	15.33	15.85	0.01880	Desactivado		v v
42	23	51	k Factor	0.0167	123.0	0.0	15.33	15.85	0.00904	Desactivado		v
43	51	28	k Factor	0.0167	205.1	0.0	15.33	15.85	0.01507	Desactivado		v
44	80	81	k Factor	0.0223	68.9	20.0	3.81	8.23	0.29501	Desactivado		^

Cuadro 25 (Continuación): Alimentación de ramales para VNET PC

					FACTOR		LONGITUD			Resistencia			
RAMAL					FRICCIO	LONGITU	EQUIVALENTE	AREA	Perimetr	Calculada			
N°	DE	A		Tipo	N (kg/m3)	D (m)	(m)	(m2)	o (m)	(Ns2/m8)	Autolongitud	Supe rficie	Observacion
45	96	123		k Factor	0.0223	588.9	100.1	8.64	12.01	0.28611	Desactivado	Salida	
46	98	94		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
47	105	104	V	k Factor	0.0050	299.9	49.9	3.46	6.60	0.27868	Desactivado	Salida	
48	73	69		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
49	69	49		k Factor	0.0168	123.0	0.0	11.73	13.78	0.01764	Desactivado		
50	49	56		k Factor	0.0168	155.8	0.0	11.71	13.78	0.02246	Desactivado		
51	41	45		k Factor	0.0223	68.9	20.0	3.72	8.23	0.31694	Desactivado		
52	33	41	Q	k Factor	0.0223	124.0	20.0	3.72	8.23	0.51338	Desactivado		
53	46	45		k Factor	0.0223	80.1	20.0	3.72	8.23	0.35687	Desactivado		
54	95	96		k Factor	0.0	68.9	20.0	3.72	8.23	0.31694	Desactivado		
55	80	76	_	k Factor	0.0223	68.9	20.0	3.72	8.23	0.31694	Desactivado		
56	81	82	Q	k Factor	0.0223	68.9	20.0	3.72	8.23	0.31694	Desactivado		
57	56	62		k Factor	0.0168	109.9	100.1	11.71	13.78	0.03028	Desactivado		
58	62	68		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
59	122	120		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
60	120	121	V	k Factor	0.0045	299.9	100.1	7.07	9.42	0.04798	Desactivado	Salida	
61	106	105		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
62	37	29		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
63	40	30		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
64	52	39		k Factor	0.0223	153.9	20.0	3.72	8.23	0.61998	Desactivado		
65	53	37		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
66	48	40		k Factor	0.0167	124.0	0.0	15.33	15.85	0.00911	Desactivado		x
67	76	65		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
68	67	75		k Factor	0.0167	56.1	0.0	15.33	15.85	0.00412	Desactivado		x
69	24	22		k Factor	0.0223	48.9	20.0	3.72	8.23	0.24564	Desactivado		
70	22	19		k Factor	0.0223	23.0	20.0	3.72	8.23	0.15330	Desactivado		
71	19	17		k Factor	0.0223	34.1	20.0	3.72	8.23	0.19287	Desactivado		
72	114	115		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
73	5	4		k Factor	0.0167	66.9	0.0	15.33	15.85	0.00492	Desactivado		x
74	4	3		k Factor	0.0167	88.9	0.0	15.33	15.85	0.00653	Desactivado		x
75	3	84		k Factor	0.0167	66.9	0.0	15.33	15.85	0.00492	Desactivado		x
76	7	9		k Factor	0.0167	45.9	0.0	15.33	15.85	0.00337	Desactivado		x
77	10	12		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
78	36	50		k Factor	0.0167	86.9	0.0	15.33	15.85	0.00638	Desactivado		x
79	17	15		k Factor	0.0223	24.9	20.0	3.72	8.23	0.16007	Desactivado		
80	28	15		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
81	15	36		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
82	36	27		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
83	102	87		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
84	87	23		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
85	92	35		k Factor	0.0167	145.0	0.0	15.33	15.85	0.01065	Desactivado		x
86	91	44		k Factor	0.0167	67.9	0.0	15.33	15.85	0.00499	Desactivado		x
87	34	25		k Factor	0.0167	85.0	0.0	15.33	15.85	0.00625	Desactivado		x
88	10	21		k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x

Cuadro 25 (Continuación): Alimentación de ramales para VNET PC

			1	FACTOR	1	LONGITUD	1		Resistencia		İ	İ
RAMAL				FRICCIO	LONGITU	EQUIVALENTE	AREA	Perimetr	Calculada			
N°	DE	A	Tipo	N (kg/m3)	D (m)	(m)	(m2)	o (m)	(Ns2/m8)	Autolongitud	Superficie	Observacion
89	57	68	k Factor	0.0168	500.0	100.1	11.71	13.78	0.08652	Desactivado	Entrada	Observacion
90	122	124	k Factor	0.0045	98.1	49.9	7.07	9.42	0.01775	Desactivado	Direction	
91	101	84	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
92	39	31	k Factor	0.0223	68.9	20.0	3.72	8.23	0.31694	Desactivado		
93	31	21	k Factor	0.0223	88.9	20.0	3.72	8.23	0.38824	Desactivado		
94	50	85	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
95	27	18	k Factor	0.0167	233.9	0.0	15.33	15.85	0.01718	Desactivado		x
96	18	32	k Factor	0.0167	56.1	0.0	15.33	15.85	0.00412	Desactivado		x
97	32	34	k Factor	0.0167	35.1	0.0	15.33	15.85	0.00258	Desactivado		x
98	25	11	k Factor	0.0167	145.0	0.0	15.33	15.85	0.01065	Desactivado		x
99	11	97	k Factor	0.0167	143.0	0.0	15.33	15.85	0.01051	Desactivado		x
100	5	6	k Factor	0.0167	68.9	0.0	15.33	15.85	0.00506	Desactivado		x
101	6	110	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
102	125	118	k Factor	0.0168	200.1	100.1	11.71	13.78	0.04328	Desactivado	Entrada	
103	88	53	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado	- Difference	x
104	99	40	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		x
105	33	30	k Factor	0.0223	29.9	20.0	3.72	8.23	0.17790	Desactivado		
106	30	29	k Factor	0.0223	50.9	20.0	3.72	8.23	0.25277	Desactivado		
107	76	75	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		v
108	2	24	k Factor	0.0169	1000.0	399.9	8.64	12.01	0.44054	Desactivado	Entrada	^
109	111	97	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado	Entrada	v
110	112	127	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado		\hat{\pi}
111	129	114	k Factor	0.0208	799.9	200.1	6.97	10.79	0.66281	Desactivado	Entrada	^
112	129	52	k Factor	0.0208	799.9	200.1	5.48	9.45	108.531	Desactivado	Entrada	
113	115	112	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado	Littrada	v
114	112	97	k Factor	0.0167	66.9	0.0	15.33	15.85	0.00492	Desactivado		X
115	63	39	k Factor	0.0167	59.1	0.0	15.33	15.85	0.00492	Desactivado		x
116	39	24	k Factor	0.0167	37.1	0.0	15.33	15.85	0.00273	Desactivado		<u>.</u>
117	128	117	k Factor	0.0169	1200.1	200.1	8.64	12.01	0.44063	Desactivado	Entrada	X
118	50	12	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00699	Desactivado	Liitiada	
119	34	7	k Factor	0.0167	58.1	0.0	15.33	15.85	0.00427	Desactivado		<u>.</u>
120	7	- /	k Factor	0.0167	47.9	0.0	15.33	15.85	0.00427	Desactivado		X v
120	67	60	k Factor	0.0167		0.0	15.33	15.85	0.00332	Desactivado		x
121	65	70		0.0167	87.9	0.0	15.33		0.00969			**
123	35		k Factor	0.0167		0.0		15.85	0.00646	Desactivado		X
123	44	43 26	k Factor k Factor	0.0167	66.9 98.1	0.0	15.33 15.33	15.85 15.85	0.00492	Desactivado Desactivado		X
124	110	119	k Factor	0.0167	105.0	0.0	15.33	15.85	0.00721	Desactivado		x
125	110	119	k Factor	0.0167	208.0	0.0	15.33	15.85	0.007/1	Desactivado		x
126	103	100	k Factor	0.0167	43.0	0.0	15.33	15.85	0.00316	Desactivado		x
127	100	90	k Factor	0.0167	66.9	0.0	15.33	15.85	0.00316	Desactivado		x
128	90	83	k Factor	0.0167	85.0	0.0	15.33	15.85	0.00492	Desactivado		x
130	91	92	k Factor	0.0167	96.1	0.0	15.33	15.85	0.00623			
130	92	92	k Factor	0.0167	95.1	0.0	15.33	15.85	0.00706	Desactivado Desactivado		X
131	124	127		0.0043	95.1 149.9	49.9	7.07	9.42	0.00699			X
133	82	96	k Factor k Factor	0.0223	49.9	20.0	8.64	12.01	0.02290	Desactivado Desactivado		
133	46	96 82	k Factor	0.0223	89.9	9.8	8.64	12.01	0.02903	Desactivado		
134	94	82 89	k Factor	0.0223	95.1	0.0	15.33	15.85	0.04140	Desactivado		v
136	126	113	k Factor	0.0167	200.1	20.0	23.97	19.81	0.00529	Desactivado	Entro do	^
136	59	52		0.0167	100.1	0.0	15.33	15.85	0.00529		Entrada	
137	117	52 114	k Factor	0.0167	133.9	0.0	15.33	15.85	0.00735	Desactivado		X
138			k Factor							Desactivado		X
139	34	114	k Factor	0.0167	145.0	0.0	15.33	15.85	0.01065	Desactivado	l	X

Cuadro 26: Resultados de ramales

Ramal	_		Resietencia Total	Caudal	Presion	Energia de aire perdida	Costo de operación				
N°	De	A	(Ns2/m8)	(m3/s)	Baja (Pa)	(kw)	(US\$/año)	Observacion			
1	108		0.15918	50.59	407.3	20.61	11108				
2	110		0.00492	29.50	4.3	0.13	68				
3	111 15		0.15918	21.09 0.43	70.8	1.49 0.00	805				
5	54		0.00169	9.68	0.5	0.00	0 x 3 x				
6	9		0.00492	-1.47	0.0	0.00	1	x			
7	117		0.00544	20.94	2.4	0.05	27				
8	103		0.91195	23.60	507.9	11.99	6462				
9	83		0.00882	-7.33	-0.5	0.00	2				
10	100		0.00984	28.67	8.1	0.23	125				
11	103		0.01007	-22.34	-5.0	0.11	60				
12	90		0.01610	-22.61	-8.2	0.19	100				
13	87	93	0.00552	-16.48	-1.5	0.02	13	x			
14	113	59	0.00699	68.30	32.6	2.23	1200				
15	117	118	0.00000	-82.35	0.0	0.00	0				
16	88	89	0.52051	8.05	33.7	0.27	146				
17	98	99	0.31694	-10.83	-37.2	0.40	217				
18	94	95	0.31694	18.88	113.0	2.13	1150				
19	73		0.00330	17.09	1.0	0.02	9	x			
20	77		0.00985	17.09	2.9	0.05	27	x			
21	64	86	0.00559	17.09	1.6	0.03	15				
22	86		0.00653	17.09	1.9	0.03	18				
23	59		0.00337	73.25	18.1	1.33	715				
24	72	58	0.00574	73.25	30.8	2.26	1216	x			
25	58	79	0.00882	73.25	47.3	3.46	1868	x			
26	79	55	0.01065	73.25	57.1	4.18	2255	x			
27	55		0.00749	73.25	40.2	2.94	1587				
28	78		0.00412	73.25	22.1	1.62	873				
29	48		0.00581	35.73	7.4	0.26	143				
30	74		0.00721	35.73	9.2	0.33	177				
31	54		0.00492	26.05	3.3	0.09	46				
32	70		0.00653	8.71	0.5	0.00	2				
33	42		0.00735	8.71	0.6	0.01	3				
34	71		0.00699	8.71	0.5	0.00	2				
35	60		0.00287	7.17	0.1	0.00		x			
36	47		0.00397	7.17	0.2	0.00		x			
37	63		0.00581	51.36	15.3	0.79	424				
38	38		0.00954	51.36	25.2	1.29	698				
39 40	61 26		0.01323	51.36	34.9	1.79	966				
40	43			18.59 12.27	2.8	0.06	32 19				
42	23		0.01880	6.41	0.4	0.03					
43	51		0.00904	6.41	0.6	0.00	2	x x			
44	80		0.29501	18.88	105.2	1.99	1071	^			
45	96		0.28611	66.08	1249.3	82.55	44503				
46	98		0.00699	10.83	0.8	0.01	44303	x			
47	105		0.27868	74.19	1533.7	113.79	61339				
48	73		0.00699	-17.09	-2.0	0.03	18	x			
49	69		0.01764	-17.09	-5.2	0.09	48				
50	49		0.02246	-17.09	-6.6	0.11	61				
51	41		0.31694	28.32	254.2	7.20	3881				
52	33		0.51338	28.32	411.7	11.66	6285				
53	46		0.35687	-28.32	-286.2	8.11	4369				
54	95		0.31694	18.88	113.0	2.13	1150				
55	80		0.31694	-18.88	-113.0	2.13	1150				
56	81		0.31694	18.88	113.0	2.13	1150				
57	56		0.03028	-17.09	-8.8	0.15	81				
58	62		0.00699	-17.09	-2.0	0.03	18				
59	122		0.00699	109.97	84.5	9.29	5009				
60	120		0.04798	109.97	580.3	63.82	34402				
61	106		0.00699	74.19	38.5	2.86	1540				
62	37		0.00699	1.64	0.0	0.00		x			
63	40		0.00699	26.68	5.0	0.13	72				
64	52		0.61998	19.47	235.1	4.58	2468				
65	53		0.00699	1.64	0.0	0.00	0				
66	48		0.00911	37.52	12.8	0.48	259				
67	76		0.00699	-17.34	-2.1	0.04	20				
68	67		0.00412	1.54	0.0	0.00	0	x			
69	24		0.24564	10.87	29.0	0.32	170				

Cuadro 26(Continuación): Resultados de ramales

Ramal N°	De	A	Resietencia Total (Ns2/m8)	Caudal (m3/s)	Presion Baja (Pa)	Energia de aire perdida (kw)	Costo de operación (US\$/año)	Observacion
70	22		0.15330	10.87	18.1	0.20	106	Observacion
71	19		0.19287	10.87	22.8	0.25	134	
72	114		0.00699	58.43	23.9	1.40	753	x
73	5	4	0.00492	-27.20	-3.6	0.10	53	x
74	4		0.00653	-27.20	-4.8	0.13	70	x
75	3		0.00492	-28.67	-4.0	0.11	62	
76	7		0.00337	-1.47	0.0	0.00	0	
77	10		0.00699	11.57	0.9	0.01	6	
78	36 17		0.00638	-4.24	-0.1	0.00	0	x
79 80	28		0.16007 0.00699	10.87 6.41	18.9 0.3	0.21	111	x
81	15		0.00699	16.85	2.0	0.03	18	
82	36		0.00699	21.09	3.1	0.07	35	x
83	102		0.00699	-22.34	-3.5	0.08	42	x
84	87		0.00699	-5.86	-0.2	0.00	0	
85	92		0.01065	-6.32	-0.4	0.00	0	
86	91		0.00499	-32.77	-5.4	0.18	95	х
87	34	25	0.00625	25.92	4.2	0.11	59	x
88	10	21	0.00699	-11.13	-0.9	0.01	5	x
89	57		0.08652	17.09	25.3	0.43	233	
90	122	124	0.01775	-109.97	-214.7	23.61	12728	
91	101		0.00699	28.67	5.7	0.16	88	x
92	39		0.31694	11.13	39.3	0.44	236	
93	31	21	0.38824	11.13	48.1	0.54	289	
94	50		0.00699	7.33	0.4	0.00	0	
95	27		0.01718	21.09	7.6	0.16	86	
96	18	32		21.09	1.8	0.04	20	
97	32		0.00258	21.09	1.1	0.02	13	
98	25		0.01065	25.92	7.2	0.19	101	x
99	11		0.01051	25.92	7.1	0.18	99	X
100 101	5 6		0.00506 0.00699	76.20 76.20	40.6	2.24 3.09	1208 1668	
101	125		0.04328	82.35	293.5	24.17	13029	X
102	88		0.00699	-8.05	-0.5	0.00	13029	x
103	99		0.00699	-10.83	-0.8	0.00	5	
105	33		0.17790	-28.32	-142.7	4.04	2179	Α
106	30	29		-1.64	-0.7	0.00	1	
107	76	75		-1.54	0.0	0.00	0	x
108	2	24	0.44054	25.79	292.9	7.55	4072	
109	111	97	0.00699	-21.09	-3.1	0.07	35	x
110	112	127	0.00699	63.27	28.0	1.77	955	X
111	129	114	0.66281	23.57	368.3	8.68	4680	
112	1	52	108.531	7.33	58.4	0.43	231	
113	115		0.00699	58.43	23.9	1.40	753	x
114	112	97	0.00492	-4.84	-0.1	0.00	0	X
115	63	39		-23.25	-2.3	0.05	29	x
116	39	24	0.00273	-14.91	-0.6	0.01	5	x
117	128		0.44063	25.81	293.4	7.57	4082	
118	50		0.00699	-11.57	-0.9	0.01		X
119 120	34 7		0.00427 0.00352	47.53 49.00	9.6 8.5	0.46	246 225	
120	67		0.00352	7.17	0.5	0.00		x
121	65		0.00969	8.71	0.5	0.00		x
123	35		0.00492	12.27	0.7	0.01		x
123	44		0.00721	18.59	2.5	0.05	25	
125	110		0.00721	46.70	16.8	0.78	423	
126	119		0.01528	46.70	33.3	1.56	838	
127	103		0.00316	-1.26	0.0	0.00		x
128	100		0.00492	-29.94	-4.4	0.13	71	
129	90		0.00625	-7.33	-0.3	0.00	0	x
130	91	92	0.00706	10.16	0.7	0.01	4	x
131	92	93	0.00699	16.48	1.9	0.03	17	x
132	124		0.02290	-63.27	-91.7	5.80	3128	
133	82		0.02903	47.20	64.7	3.05	1646	
134	46		0.04140	28.32	33.2	0.94	507	
135	94		0.00699	-8.05	-0.5	0.00		x
136	126		0.00529	68.30	24.7	1.69	909	
137	59		0.00735	12.14	1.1	0.01	7	
138	117		0.00984	87.22	74.9	6.53	3522	
139	34	114	0.01065	-52.36	-29.2	1.53	824	X

Cuadro 27: Resultados de ventiladores

			Presion	Caudal		Costo de		
			Ventilador	ventilador	Energia	ope ración	Ventiladores	Ventiladores
Ventilador	De	A	(KPa)	(m3/s)	Aire (kW)	(US\$/año)	en Paralelo	en Serie
1	105	104	2,469	74,19	183,18	98.745	1	1
2	120	121	1,415	109,97	155,61	83.884	1	1

7.5 ESQUEMATICO

Ver Figuras 5, 6 y 7.

7.6 ANALISIS DE RESULTADOS DEL PROGRAMA

El modelamiento del programa, nos da como resultado una caída de presión de los ventiladores instalados en las cabezas de las chimeneas de ventilación, con sus costos de operación de los ventiladores de US\$ 98.745/año y US\$ 83.884/año, con pérdidas de presión de 2,47 kPa (10" c.a.) y 1,42 kPa (6" c.a.).

Aquí observamos, el mayor caudal que puede extraer por el ventilador N°2, esto por el diámetro mayor de la raise boring, además se aprecia una menor caída de presión del ventilador, y por consiguiente un menor consumo de energía.

Se observan algunos ramales con poco flujo de aire, para ello según el diagrama, hace falta colocar tapones y reguladores. Pero por su ubicación estos dependerán del programa mensual de labores, ya que no todas los niveles están en operación en un solo mes.

Los valores negativos en los caudales en la cuadro de resultado, indica solo el caudal inverso del flujo en el esquema dibujado.

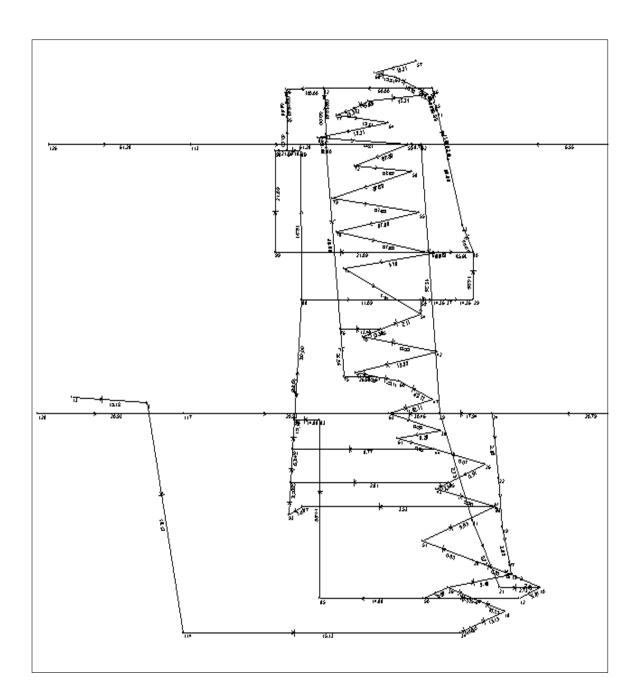


Figura 5: Esquema inicial de circuito principal de ventilación

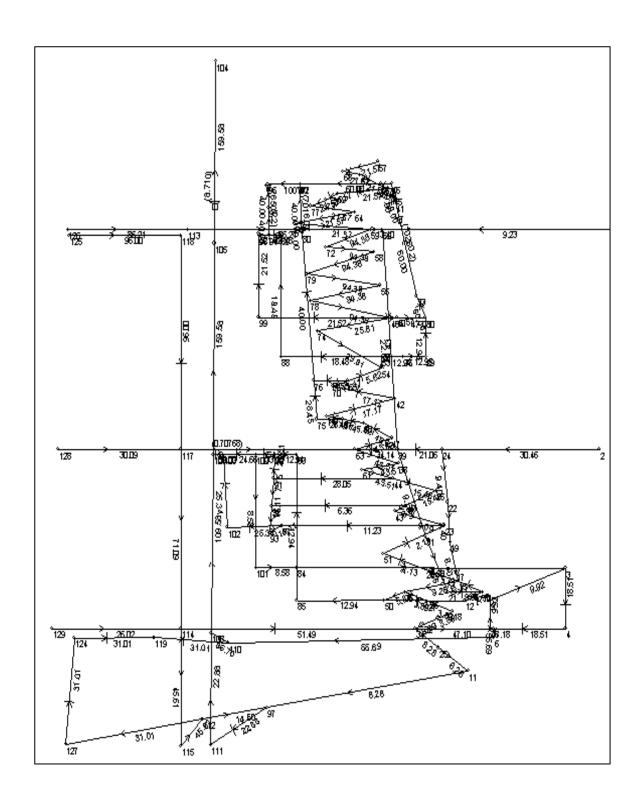


Figura 6: Esquema actual de circuito principal de ventilación

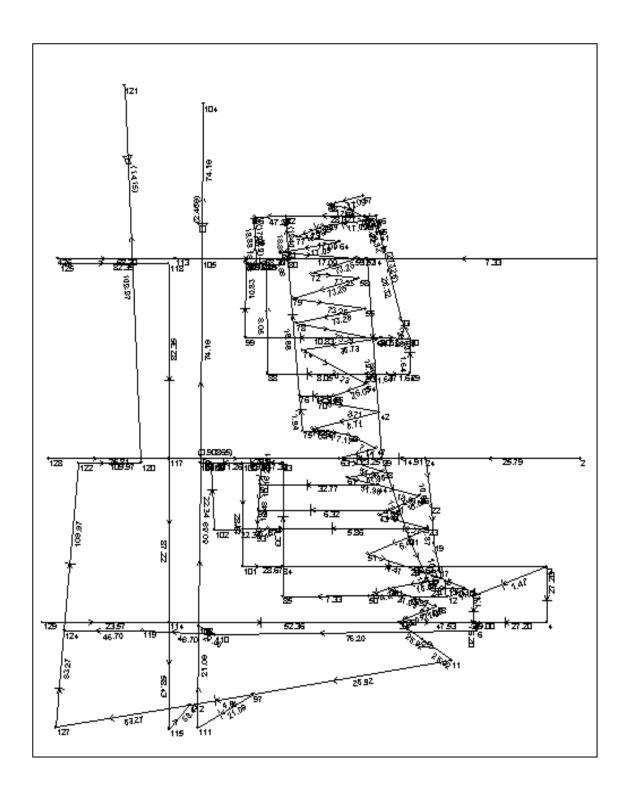


Figura 7: Esquema final de circuito principal de ventilación

CONCLUSIONES

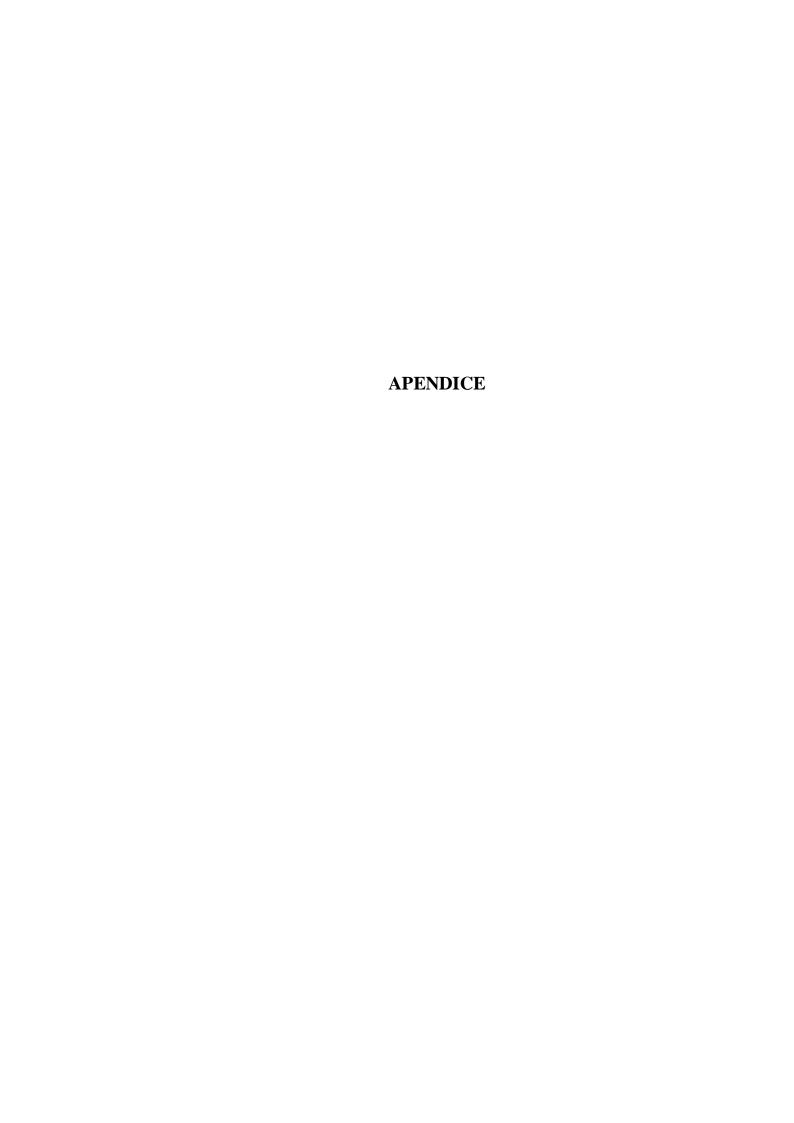
- De acuerdo al levantamiento inicial, se observa un ingreso de aire de 5.769 m3/min, lo cual según el requerimiento mínimo calculado de 8.686 m³/min, nos presenta una deficiencia en la cobertura de 34% (cobertura alcanzada 66%). Lo que hace necesario realizar un replanteamiento de todo el circuito de ventilación.
- Hace necesario realizar diseño de labores mineras (crucero, galerías y chimeneas), que estén de acorde con los diseños de ventilación. Los diseños encontrados, solo originaron un funcionamiento inadecuado de los ventiladores principales, mayor consumo de energía, y no poder extraer el caudal de aire requerido.
- Las chimeneas de ventilación del tipo raise boring son las más adecuadas para la ventilación, debido a su baja resistencia que presenta cuando circula el aire en sus paredes, ya que son casi lizas. Y la rugosidad e mínima en comparación con las chimeneas convencionales, bajando el costo de energía en la evacuación de aire contaminado.
- El análisis de la ventilación debe estar de acorde al método de explotación empleado. Para nuestro caso del Sub Level Stopping, que presenta labores de

grandes dimensiones, no solo en los tajos, sino también en la sección de los frentes de avance, hace necesario tener caudales de aire mayores de aire que métodos convencionales, para poder conservar las velocidades mínimas requeridas de aire. La velocidad mínima del aire recomendada para trackless debe ser de 33 m/min.

- Instalar ventiladores de mayor caudal, no debería generar mayor consumo energía, si se programa labores de dimensiones adecuadas.
- Realizar labores de desfogue de aire viciado de mayor diámetro o de paredes mas lisas, podrían compensar el aumento de caudal, sin aumentar o minimizar el consumo de energía.
- El análisis de un circuito principal de ventilación, debe tener como objetivo principal el mejorar las condiciones de trabajo en la mina y cumplir con las normas legales vigentes.
- El uso de herramientas como un programa de ventilación, en nuestro caso el VNET PC, facilita el trabajo de análisis de circuitos complejos. Se debe tener cuidado en los datos que se ingresan, para ello la experiencia y pruebas son necesarias para alcanzar resultados verdaderos.
- El uso de variadores de velocidades en los ventiladores, son una alternativa para disminuir el consumo de energía, al poder programar velocidades mínimas en horas en la que la necesidad de aire es baja, debido al poco transito de personal y equipos. Y velocidades máximas en horas de trabajo normal.

- El control de la calidad de aire, caudal y velocidad es obligatorio, no solo para cumplir con la normas, sino permite realizar una evaluación de nuestro sistema de ventilación y realizar correcciones inmediatas.
- Los circuitos auxiliares deben tener un control permanente a través del monitoreo de calidad de aire y velocidades, por ser labores ciegas que solo dependen de ventiladores y energía.

RECOMENDACIONES


- Ampliar la capacidad instalada de la infraestructura y equipos de ventilación de la mina a fin de cubrir los requerimientos de aire fresco, optimizar los circuitos de ventilación y mejorar la calidad de aire circulante en la mina.
- Programar la ejecución de chimeneas, que se ejecuten de acorde al aumento de la producción y profundización de la mina.
- Ejecución inmediata de una chimenea raise boring de 2,1 m de diámetro al lado sur de la zona cuerpos para la extracción de aire viciado, desde el nivel 10 a superficie, ejecutado en dos tramos. La no disponibilidad de equipos de raise boring con rimadora de mayor diámetro y ante la urgencia de mejorar las condiciones actuales, es que se ejecutara con un diámetro adecuado.
- Ejecutar a mediano plazo una chimenea raise boring de 3,0 m de diámetro al lado norte de la zona de cuerpos para la extracción de aire viciado.
- Adquisición de dos ventiladores, cuyas características dependerán de la chimenea en donde estarán ubicadas.

- En la chimenea lado sur de la zona cuerpos debe adquirirse un ventilador de 150.000 pies³/min con motor de 400 HP y 12" c.a. de caída de presión de doble etapa.
- En la chimenea lado norte de la zona de cuerpos debe adquirirse un ventilador variable de 150.000 a 200.000 pies³/min con motor de 300 HP y 6" c.a. de caída de presión de una sola etapa.
- Adquirir ventiladores de 60.000 y 40.000 pies3/min, como ventiladores secundarios para mejorar el circuito principal.
- Mejorar la instalación de los ventiladores instalados en el nivel 1, tanto en la distancia de ubicación las chimeneas y la ampliación de la GL 430 a 3,0 m x 3,0 m, para bajar la alta resistencia al paso del aire.
- Realizar chimeneas de 3,0 m de diámetro, para poder extraer aire viciado con menor resistencia y por consiguiente usar ventiladores de menor potencia de motor.
- Los avances de los proyectos de salida de aire, deben estar a la par con el avance de los proyectos de ingreso de aire fresco, ya que al retrasarse este último, podría generar un aumento de la resistencia de la mina.
- Formar una cuadrilla, que realice monitoreos permanentes de la mina, como son calidad de aire (polvo, gases, temperatura y humedad), presiones y velocidades de aire.

BIBLIOGRAFIA

- MINING ENGENEERING HANDBOOK, "Mine Ventilation" Chapter 11.6
 and "Mine Ventilation Desing" Chapter 11.7, Ramani, Raja. V. and Johnson,
 Bruce.
- CALIZAYA F. AND P. MOUSSET-JONES. 1993. A Method of Designing
 Auxiliary Ventilation Systems for Long Single Underground Openings,
 Proceedings of the 6th US Mine Ventilation Symposium. Salt Lake City, UT: 245-250.
- HARTMAN H.L. et.al., 1997. Mine Ventilation and air Conditioning,
 Chapter 11. 3rd Edition. John Wiley & Sons, Inc., New York, NY: 405-430.
- MCPHERSON M.J., 1993. Subsurface Ventilation and Environmental Engineering. Chapman & Hall, London SE1 8HN, UK: 89-133.
- Mine Ventilation Services, Inc. Manual de usuario y tutorial del VNET PC 2003, USA, 2003.
- MALLQU1 TAPIA, Anibal N., Ventilación de Minas, Universidad Nacional del Centro del Perú, Facultad de Ingeniería de Minas, Huancayo 2.005.
- AIRTEC S. A., Manual de Ventilador Axial para Minería, Lima, 2007.

- M. E. M. "Reglamento de Seguridad e Higiene Minera" D. S. N° 046 -2001
 EM, Lima, 2.001.
- YANES G., E., Ventilación de Minas, Universidad de Chile, Santiago de Chile, 2006.
- ZITRON, Conferencia sobre ventilación de Minas, Lima, 2007.
- S.S.M.A. E.I.R.L., Informe Levantamiento de Ventilación Mina Cerro de Pasco VOLCAN Compañía Minera S.A.A., Cerro de Pasco, 2006.
- DCR INGENIEROS S.R.Ltda., Informe "Evaluación Geomecánica del Minado de los Cuerpos Mery", Casapalca, Octubre 2007.
- COMPAÑÍA MINERA CASAPALCA S.A., Resumen de Geología de Cuerpos Mery, realizado para Evaluación Geomecánica, Casapalca, 2007.

APENDICE 1

RESISTENCIA AL MOVIMIENTO DEL AIRE

1. TEOREMA DE BERNOULLI.

Expresa que en el movimiento de un fluido, en un medio ideal, las sumas de las alturas permanecen constantes, podrá disminuir una pero las otras aumentarán. En el caso de un medio ideal horizontal, las alturas geodésicas no cambiarán, luego si varía el diámetro del medio, variará la altura cinética y la altura de presión lo hará de igual magnitud pero sentido contrario.

Pero, en la realidad el fluido se va a mover en un medio real, el cual le pondrá resistencia a su movimiento, luego, la ecuación de Bernoulli se transforma en:

$$hs_1 + hc_1 + hz_1 = hs_2 + hc_2 + hz_2 + H$$

Siendo "H" la pérdida de carga o pérdida de presión producida a causa del roce con las paredes del medio real donde se mueve, como también, a causa de las singularidades que encuentra en su recorrido, por las turbulencias que ellas provocan, entre los puntos 1 y 2.

Es este término "H" el que nos interesa encontrar para conocerlo y poder entregar la energía equivalente que permita el movimiento del aire.

Consideremos que las presiones geodésicas cambian según una situación que depende totalmente de la estructura del yacimiento, del sistema de explotación que se usará y de las posibilidades que se presenten de desarrollar galerías para ventilación, por lo tanto ellas poco podrá n aportar para ayudar a vencer "H". Las presiones

cinéticas o de velocidad dependerán del tamaño de las galerías por donde se moverá el aire (V = Q/A, donde V = velocidad, Q = caudal y A = área del medio), luego tampoco podrá entregar libremente presión para disminuir el aire. Estas dos formas de energía podrán usarse para vencer, si se quiere, parte de "H" dependiendo de lo que se proyecte con el circuito de ventilación respecto a ubicación de entradas y salidas y tamaño de las galerías.

Es entonces, la presión estática la que tendrá que incrementar para vencer "H"; luego, pensaremos en general que:

$$\mathbf{H} = \mathbf{h}\mathbf{s}_1 - \mathbf{h}\mathbf{s}_2$$

Considerando que las presiones de velocidad se anulan mutuamente y que se elimina todo término geodésico, trabajando con las presiones manométricas.

La otra conclusión que debemos sacar del teorema de Bernoulli es que:

"Siempre el fluido se va a mover desde un punto de mayor presión a otro de menor presión y la diferencia será H".

2. CAIDA DE PRESION.

En ventilación de minas, como en hidráulica y en otros campos donde se aplican los principios de mecánica de fluidos, es de mayor interés determinar la diferencia de presión entre dos puntos que la determinación de la presión en ellos. Sabemos que el flujo de aire se origina porque existe una diferencia de presión entre dos puntos del sistema, para poder lograr esta diferencia es necesario agregar energía al sistema.

Esta energía entonces, es consumida en superar las resistencias que las labores mineras le ponen al paso de una cantidad determinada de aire. Estas resistencias originan entonces una caída o pérdida de presión que llamaremos "H" y está dada en mm de columna de agua o Kg/m².

Las pérdidas de presión están formadas por dos componentes: pérdidas por fricción y pérdidas por choque:

$$H = Hf + Hx$$

Las pérdidas por fricción representan las pérdidas de presión en el flujo lineal, a lo largo del ducto y es producida por el rozamiento del aire contra las paredes del ducto; en cambio las pérdidas por choque son de origen local producidas por diferentes accidentes como lo son: cambiar el área, bifurcaciones o uniones, obstrucciones, cambios de dirección, etc.

Ley de resistencia.

En los cursos de hidrodinámica, se demuestra que la diferencia de presión entre dos áreas de un ducto está dada por la Ecuación de Atkinson:

$$Hf = \frac{\alpha * Lf * P * V^{2}}{A}$$
; (mm. de c.a. o Kg/m²)

Donde:

Lf = Largo de la labor en m;

A = Area de la labor en m^2 ;

P = Perímetro de la labor en m;

V = Velocidad del aire en m/s;

α = Coeficiente de resistencias aerodinámica en Kgr*s²/m⁴;

 $= f * \gamma / 8g$

f = Coeficiente de roce;

γ = Peso específico del aire en Kgr/m³;

g = Aceleración de gravedad en m/s^2 .

Como sabemos que:

$$V = Q/A$$

Podemos colocar la fórmula anterior como sigue:

$$Hf = \frac{\alpha * Lf * P * Q^{2}}{A^{3}}; \text{ (mm. de c.a. o Kg/m}^{2})$$

Coeficiente de resistencia aerodinámica.

El coeficiente de resistencia aerodinámica "α", varía de acuerdo al número de Reynolds (Re). Esta variación se hace insignificante a medida que crece Re y por lo tanto, si aceptamos que en las labores mineras activas el movimiento será turbulento con un alto Re, se considera este coeficiente constante.

La determinación del coeficiente de resistencia aerodinámica es un paso muy importante en todo proyecto de ventilación; cuando es posible determinarlo en el terreno es recomendable hacerlo si no se debe recurrir a diversas tablas que entregan

coeficientes de acuerdo a la experiencia e investigación, una de ellas es la que se adjunta en estos apuntes y corresponde a una tabla obtenida por el Servicio de Minas de los E.E.U.U. en base a numerosas experiencias en minas metálicas. Los valores de " α " que en ella se entrega están referidos al aire normal, por lo tanto, una vez elegido el valor debe ser corregido de acuerdo al peso específico del lugar.

$$\alpha_{\gamma} = \alpha * \gamma/1,2$$

Donde:

 α_{γ} = Coeficiente de resistencia aerodinámica para el peso específico γ .

El cálculo de este coeficiente " α ", usando la experimentación en terreno se hace por la fórmula:

$$Hf = \frac{\alpha * Lf * P * Q^2}{A^3}$$

Donde:

$$\alpha = \frac{Hf * A^3}{Lf * P * Q^2}$$

Todos los parámetros que intervienen en ella pueden ser determinados en terreno. Pero, cuando no es posible efectuar un estudio de terreno, cuando por ejemplo se está desarrollando un proyecto donde no se tiene instalaciones o no se sabe de análisis anteriores realizados, es necesario hacer uso de tablas, como la que se muestra a continuación, para decidir que coeficiente usar en un proyecto.

COEFICIENTE DE RESISTENCIA AERODINAMICA. (Para γ= 1,2 Kg./m³)

Valores básicos de α*10⁻⁵ Irregularidades de la Obstrucción Tipo de galería superficie Limpias Pequeñ | Modera da Mínimo 19 29 48 Superficie suave Promedio 29 38 57 (forrada) Máximo 38 48 **67** Mínimo 57 **67** 86 Roca sedimentaria Promedio 105 114 133 (carbón) Máximo 133 143 162 **190** Mínimo 152 162 **GALERÍAS** Promedio 190 209 181 **ENMADERADAS** Máximo 200 209 220 Mínimo 171 181 200 279 **ROCA IGNEA** Promedio 285 304 Máximo 399 371 380

Resistencias locales.

Se dijo que las pérdidas por choques son de origen local, producidas por turbulencias, remolinos, frenadas, etc. del aire al enfrentar diversos accidentes dentro de un circuito de ventilación y no necesariamente estas pérdidas deben estar presentes en todas las galerías de ventilación; ellas, además de depender del tipo de accidente de que se trate -cambios de dirección, entrada, contracción, etc.- también dependen de la velocidad del aire y del peso específico.

$$Hx = \frac{\xi * V^2 * \gamma}{2g} \; ; \; (\text{mm. de c.a. o Kg/m}^2)$$

Siendo ξ el coeficiente de resistencia local, existiendo tablas que entregan los valores de este coeficiente.

Un método más adecuado para calcular estas pérdidas se obtiene al asimilar las pérdidas por choque en las pérdidas por fricción a través de los largos equivalentes, o sea se trata de determinar a qué largo físico de una galería equivale la pérdida por choque.

El método para encontrar la fórmula que exprese los largos equivalentes es el de igualar las pérdidas por fricción con las pérdidas por choque:

$$Hf = Hx$$

luego:

$$\frac{\alpha * Lf * P * V^2}{A} = \frac{\xi * V^2 * \gamma}{2g}$$

Asumiendo el largo Lf el valor de largo equivalente "Le" y despejando:

Le =
$$\frac{\xi * \gamma * A}{2 * g * \alpha * P}$$

Tal como se expresó anteriormente existen tablas donde se dan valores de ξ, el profesor Howard L. Hartman en su libro "Ventilación de Minas y Aire Acondicionado" entrega fórmulas experimentales para obtener ξ de acuerdo a distintas situaciones; a continuación se adjunta tablas de "Le" para pérdidas por choque más comunes y diferentes tamaños de galerías, estos valores fueron obtenidos para aire normal y un coeficiente de resistencia aerodinámica igual a 189" 10^{-5} [Kg"s²/m⁴] para obtener los datos de acuerdo a un caso determinado los valores deben ser multiplicados por:

$$0,00158 * \gamma/\alpha$$

LARGOS EQUIVALENTES.

Para ♥ 0,00189 (K=1100*10)

Tipo de Singularidad		Sección d	e la Galerí	ía (m)	
•	2x2	2,5x2,5	3x3	3,5x3,5	4,5x4,5
Angulo obtuso redonde ado	0,2	0,2	0,2	0,3	0,3
Angulo recto redondeado	0,3	0,3	0,3	0,6	0,6
Angulo agudo redondeado	0,6	0,6	0,9	0,9	1,2
Angulo obtuso quebrado	2,5	3,4	4,3	5,2	6,4

Tipo de Singularidad		Sección de la Galería (m)									
•	2x2	2,5x2,5	3x3	3,5x3,5	4,5x4,5						
Angulo recto que brado	15,0	16,2	20,1	24,4	30,5						
Angulo agudo que brado	26,0	34,5	43,0	51,8	64,6						
Contracción gradual	0,3	0,3	0,3	0,6	0,6						
Contracción abrupta	1,6	2,5	3,0	3,7	4,6						

Tipo de Singu	ılaridad		Sección d	e la Galerí	ía (m)	
		2x2	2,5x2,5	3x3	3,5x3,5	4,5x4,5
Expansión gradual		0,3	0,3	0,3	0,6	0,6
Expansión abrupta	· · · · ·	3,4	4,6	5,8	7,0	8,5
$ \longrightarrow $	Derivación rama derecha rama 90°	5,2 34,5	7,0 45,7	8,9 57,3	10,7 68,6	13,1 86,0
	Unión rama de re cha rama 90°	10,4 5,2	13,7 7,0	17,1 8,9	20,8 10,7	26,0 13,1

Tipo de Singularidad		Sección d	e la Galer	ría (m)	
	2x2	2,5x2,5	3x3	3,5x3,5	4,5x4,5
Entrada de aire	0,3	0,5	0,6	0,9	1,2
Salida de aire	11,3	15,0	18,6	22,6	28,0
Paso sobre nivel excelente	0,3	0,3	0,3	0,6	0,6
Paso sobre nivel malo	50,0	66,3	83,2	100,0	125,0
Puerta contra incendio	12,2	16,2	20,1	24,4	30,5
Carro obstruyendo el 20 % del área	17,0	22,9	28,7	34,5	43,0
Carro obstruyendo el 40 % del área	85,6	114,3	143,0	171,6	214,9
Valores calculados para	una altur	a de 2.500	m.s.n.m.		

Fórmula fundamental de ventilación.

Considerando el reemplazo de **Hx** por el largo equivalente **Le** tendremos, entonces, la fórmula para la caída de presión:

$$H = \frac{\alpha * (Lf + Le) * P * Q^2}{A^3}$$
; (mm. de c.a. o Kg/m²)

donde:

 $H = caída de presión, Kg/m^2$

 $\alpha \hspace{0.5cm} = coeficiente \ de \ resistencia \ aerodinámica, \ Kg* \ s^2/m^4;$

Lf = largo físico, m;

Le = largo equivalente, m;

A = \acute{a} rea, m^2 ;

P = perímetro, m;

 $Q = \text{caudal}, \text{ m}^3/\text{s}$

Si L = Lf + Le

$$\mathbf{H} = \mathbf{R} * \mathbf{Q}^2$$

$$R = \frac{\alpha * L * P}{A^3}$$

Donde "R" representa la resistencia de las labores mineras al paso del aire.

Si el aire está dado en m³/s y la pérdida de presión en mm de columna de agua se define a la unidad de resistencia igual a 1 Kilomurgue ($k\mu$) = 1.000 murgue [μ] como la resistencia que opone al paso del aire una labor por la cual 1 m³/s de aire circula con una depresión igual a 1 mm de columna de agua.

La facilidad o dificultad de ventilación de una labor depende del valor de "R". La resistencia puede reducirse disminuyendo el valor de " α ", disminuyendo el largo de la galería o el aumento del área. Tanto la disminución de " α ", como el aumento del área están supeditadas a limitaciones económicas y el largo de la galería, a la configuración del sistema.

A continuación se muestra esta fórmula fundamental de ventilación de minas según los más usados sistemas de medidas:

Parámetros		Sistemas	
1 arametros	M.K.S.	S.I.	Ingles
Н	R * Q ²	R * Q ²	$\mathbf{R} * \mathbf{Q}^2$
	Kgr./m ²	Pascal	Pulg. c.a.
	mm.c.a.	Nw/m ²	
R	$\alpha * L * P / A^3$	α' * L * P / A ³	k * L * P / 5,2A ³
	kμ	Kgr/m ⁷	Atkinson
α - α' - k	9,806α	α'	1,85*10 ⁶ k

LISTA DE CUADROS

- Cuadro 1: Criterio para la clasificación de la masa rocosa
- Cuadro 2: Balance general actual de aire
- Cuadro 3: Efecto de la temperatura en la eficiencia del trabajo
- Cuadro 4: Necesidad de aire
- Cuadro 5: Balance General actual de aire
- Cuadro 6: Rendimiento de ventiladores principales
- Cuadro 7: Resultado de resistencias y perdidas de presión
- Cuadro 8: Balance General de aire propuesto
- Cuadro 9: Necesidad de aire estimada
- Cuadro 10: Balance general de aire
- Cuadro 11: Ventiladores principales proyectados
- Cuadro 12: Ventiladores secundarios proyectados
- Cuadro 13: Ventiladores auxiliares proyectados
- Cuadro 14: Relación de equipos diesel proyectados
- Cuadro 15: Labores horizontales proyectadas
- Cuadro 16: labores verticales proyectadas
- Cuadro 17: Inversión en desarrollos y preparaciones
- Cuadro 18: Inversión en ventiladores y accesorios
- Cuadro 19: Inversión ventilación principal
- Cuadro 20: Inversión ventilación auxiliar

Cuadro 21: Inversión total

Cuadro 22: Costo de ventilación

Cuadro 23: Costo de energía en ventilación

Cuadro 24: Alternativas de evaluación económica

Cuadro 25: Alimentación de ramales para VNET PC

Cuadro 26: Resultado de ramales

Cuadro 27: Resultado de ventiladores

Cuadro 28: Inventario de equipos de medición

Cuadro 29: Factores de conversión de unidades

Cuadro 30: Ventilador axial de 150,000 cfm de aletas aerodinámicas y paso

variable de doble etapa

Cuadro 31: Grafica de ventilador

Cuadro 32: Calculo de resistencias y perdidas de presión

Cuadro 33: Medición de velocidad y caudal de aire por niveles

Cuadro 34: Medición de velocidad y caudal de aire por niveles

Cuadro 35: Medición de velocidad y caudal de aire por niveles

Cuadro 36: Medición de velocidad y caudal de aire por niveles

LISTA DE FIGURAS

- Figura 1: Diagrama estereográfico de contornos del composito general
- Figura 2: Diagrama estereográfico de planos principales del composito general
- Figura 3: Diagrama de roseta de discontinuidades del composito general
- Figura 4: Diseño de explotación de taladros largos
- Figura 5: Esquema inicial del circuito principal de ventilación
- Figura 6: Esquema actual del circuito principal de ventilación
- Figura 7: Esquema final del circuito principal de ventilación

LISTA DE PLANOS

Plano 1: Plano de ubicación

Plano 2: Secuencia de minado

Plano 3: Instalación de ventilador de 150.00 cfm

Plano 4: Isométrico de ventilación de la zona cuerpos

Plano 5: Unifilar de ventilación de la zona cuerpos

CUADRO N° 28 EQUIPOS E INSTRUMENTOS DE MONITOREO DE VENTILACION

	EQUIPO	MARCA	MODELO	N° SERIE	OBSERVACION
01	Detector Multi- gases digital	DRAGER	Multiwarn	ARRA-0193	Operativo
02	Detector Multi- gases digital	DRAGER	Multiwarn	ARUF-0125	Operativo
03	Medidor CO equipos Diesel digital	DRAGER	MSI	KRXC-0105	Operativo
04	Medidor de nivel de ruido digital	SIMPSON	884-2 (TYPE S2A)	005952	Operativo
05	Thermo- Anemometro digital	EXTECH	451126	05360872	Operativo
06	Hygro Thermo- Anemometro digital	EXTECH	407412	Q132769	Operativo
07	Medidor de intensidad de lux digital	ВЕНА	93408	050907978	Operativo
08	Medidor de temperatura seca y humeda	TAYLOR			Operativo
09	Bomba medidor de polvo	MSA	ESCORT ELF	S/N	Operativo

CUADRO 29

Factores de conversión de unidades

Longitud	
1 ft	= 0.304 8 m
1 yd	= 0.914 4 m
1 in	= 0.025 4 m
Area	
1 ft ²	$= 0.092 9 \text{ m}^2$
1 in ²	$= 0.000 645 \text{ m}^2$
<u>Velocidad</u>	
1 ft/s	= 0.304 8 m/s
1 ft/min	= 0.005 08 m/s
<u>Flujo de volumen</u>	
1 ft ³ /s	$= 0.028 32 \text{ m}^3/\text{s}$
1 ft ³ /min	$= 0.000 472 \text{ m}^3/\text{s}$
<u>Presión</u>	
1 lbf/ft ²	= 47.880 N/m ² = Pa
1 lbf/in ²	= 6894.76 N/m ²
1 in c.a.	= 249.089 N/m ²
1 ft c.a.	= 2989.07 N/m ²
1 mm c.a.	= 9.807 N/m ²
1 in Hg	= 3386.39 N/m ²
1 mm Hg	= 133.32 N/m ²
Airway specific resistance	
1 in w.g. per 10 000 ft ³ /min	= 22.366 Ns ² /m ⁸
Factor de fricción	
1 lbf min ² /ft ⁴	$= 1.8554 \times 10^6 \text{ kg/m}^3$
<u>Densidad</u>	
1 lb/ft ³	= 16.018 5 kg/m ³
<u>Potencia</u>	
1 hp	= 745.700 W
<u>Temperatura</u>	
К	= °C + 273.15
°R	= °F + 459.67

CUADRO 30

VENTILADOR AXIAL DE 150,000 CFM DE ALETAS AERODINAMICAS Y PASO VARIABLE DE DOBLE ETAPA

• Marca : AIRTEC

• Modelo : VAV-66-30-1750-II-B

• Caudal de aire : 150,000 CFM

• Presión total a nivel del mar : 20.00" H2O

• Presión estática a nivel del mar : 18.60" H2O (con difusor)

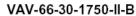
• Consumo fuerza a nivel del mar : 607.76 HP

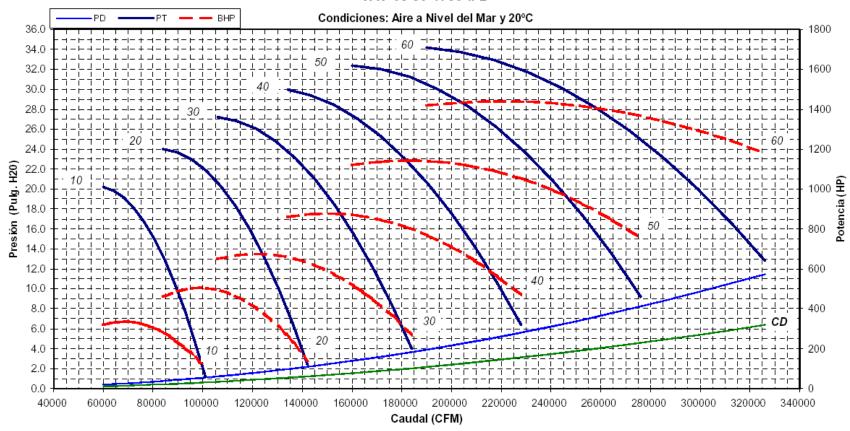
• Presión total a 4,800 msnm : 12.34" H2O

• Presión estática a 4,800 msnm : 11.47" H2O (con difusor)

• Consumo fuerza a 4,800 msnm : 374.99 HP

• Eficiencia : 77 %


• RPM ventilador : 1790


• Transmisión : Directa

• Nivel de ruido : 115db (A)

Diámetro del ventilador : 66 pulgadas

CUADRO 31

Cuadro 32: CALCULO DE RESISTENCIA Y PERDIDA DE PRESION EN LABORES PRINCIPALES

	Altitud	Temperatura del Aire		Densidad del Aire		ccion	Longitud	d Longitud Equivalente		Perímetro Sección	Ventilador Simulado		Pérdida Presión (hf)		Pérdida Presión Corregido (hf)		Pérdida Presión Total
	(m)	(°C)	(kg/m³)	(lb/pie³)	(m)	(m)	(m)	(m)	(m²)	(m)	(m³/seg)	(pie³/min)	(Pascal)	(" H ₂ O)	(Pascal)	(" H ₂ O)	(" H ₂ O)
CH 741	4.400	15,0	0,770	0,0454	1,2	1,2	94	30	1,44	4,80	18,88	40.000	1.838,9	7,382	1.178,7	4,732	5,08
CH 771	4.400	15,0	0,770	0,0454	1,2	1,2	94	36	1,44	4,80	18,88	40.000	1.927,9	7,739	1.235,8	4,961	5,31
CH 027	4.400	15,0	0,770	0,0454	1,2	2,4	144	42	2,88	7,20	28,32	60.000	1.010,4	4,056	647,6	2,600	2,79
CH 803	4.400	15,0	0,770	0,0454	2,0	2,0	300	120	4,00	8,00	18,88	40.000	420,5	1,688	690,1	2,770	2,82
CH 806	4.400	15,0	0,770	0,0454	1,2	2,4	135	98	2,88	7,20	28,32	60.000	1.265,7	5,081	3.342,6	13,419	13,61
CH 885	4.400	15,0	0,770	0,0454	2,0	2,0	135	124	4,00	8,00	28,32	60.000	583,5	2,342	2.124,4	8,528	8,63
GL 430	4.400	15,0	0,770	0,0454	2,4	2,4	730	80	5,76	9,60	37,76	80.000	1.079,2	4,332	5.008,4	20,106	20,19
RB #1	4.400	15,0	1,770	0,0454	1,5	1,5	150	40	1,77	4,71	28,32	60.000	700,1	2,811	448,8	1,802	2,99
RB #2	4.400	15,0	0,726	0,0454	1,5	1,5	250	40	1,77	4,71	47,20	100.000	2.968,3	11,916	1.902,7	7,638	8,99
XC 754	4.400	15,0	0,726	0,0454	2,4	2,4	173	22	5,76	9,60	47,20	100.000	303,8	1,220	194,7	0,782	0,91
GL 520	4.400	15,0	0,726	0,0454	2,4	2,4	240	23	5,76	9,60	47,20	100.000	547,5	2,198	350,9	1,409	1,54
XC 510	4.400	15,0	0,726	0,0454	2,4	2,4	366	21	5,76	9,60	47,20	100.000	602,9	2,420	386,5	1,551	1,68

Cuadro 33: MEDICION DE VELOCIDAD Y CAUDAL DE AIRE POR NIVELES

NIVEL: <u>600</u>

N°	FECHA	LABOR	AREA	VELOCIDAD	CAU	DAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	07/10/09	RB VENT	3,46	1027,00	3.557,12	125.616	16	Ingreso Bocamina Alex

NIVEL: 1

N°	FECHA	LABOR	AREA	VELOCIDAD	CAU	DAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	07/10/09	XC 390 NE	15,16	189,00	2.865,62	101.196	4	Ingreso Bocamina Alex
EV2	07/10/09	XC 390 NE	14,41	179,00	2.579,66	91.098	4	Pasando el XC 630 (RB Pique Rectangular)
EV3	07/10/09	XC 390 SW	4,19	63,00	263,94	9.321	6	Crucero a Mariana
EV4	07/10/09	XC 890 N	17,96	127,50	2.289,26	80.843	7	
EV5	07/10/09	XC 884	17,38	27,75	482,20	17.028	9	
EV6	07/10/09	XC 898	5,39	32,10	172,91	6.106	9	
EV7	07/10/09	RP(-) 877	10,08	104,40	1.052,35	37.163	10	

NIVEL: 2

N°	FECHA	LABOR	AREA VELOCIDAD CAUDAL TEMP.		Observaciones			
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	07/10/09	RP(-) 905	10,46	43,50	455,12	16.072	6	Salida hacia la Rampa 877
EV2	07/10/09	RP(-) 877	12,40	96,00	1.190,25	42.032	9	
EV3	07/10/09	GL 925 NE	8,58	52,50	450,70	15.916	10	
EV4	07/10/09	RP(-) 877	11,81	114,00	1.346,11	47.537	10	

NIVEL: 3A

N°	FECHA	LABOR	AREA	VELOCIDAD	CAU	DAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	07/10/09	RP(-) 877	13,25	72,00	954,04	33.691	11	
EV2	07/10/09	Acceso Nv. 3A	10,79	35,00	377,72	13.339	11	
EV3	07/10/09	RP(-) 877	11,70	63,60	744,37	26.287	10	

Cuadro 34: MEDICION DE VELOCIDAD Y CAUDAL DE AIRE POR NIVELES

NIVEL: 4A

1414	7/1							
N°	EECHA	ECHA LABOR		VELOCIDAD	CAU	DAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	08/10/09	RP(+) 850	14,81	28,50	421,94	14.900	12	
EV2	08/10/09	XC 855	13,86	55,50	769,23	27.165	12	
EV3	08/10/09	XC 851	12,96	73,80	956,45	33.776	14	
EV4	08/10/09	GL 788	11,34	25,20	285,77	10.092	15	
EV5	08/10/09	XC 900	14,18	26,40	374,22	13.215	10	
EV6	08/10/09	RP(+) 850	15,12	34,80	526,18	18.581	15	

NIVEL: 4

N°	FECHA	LABOR	AREA	VELOCIDAD	CAU	IDAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	11/10/09	XC 800	10,97	217,80	2.389,27	84.375	5	Ingreso de Bocamina Gubbins
EV2	11/10/09	XC 800	10,91	152,40	1.662,53	58.711	7	Ingreso Zona Cuerpos
EV3	11/10/09	XC 800	10,26	141,45	1.451,28	51.250	8	Pasando comedor
EV4	11/10/09	GL 825	8,37	45,60	381,67	13.478	8	Hacia CH 823
EV5	11/10/09	XC 800	8,90	172,50	1.534,91	54.204	10	De Oroya-Esperanza
EV6	11/10/09	GL 890 SE	7,83	81,60	638,93	22.563	10	
EV7	11/10/09	XC 795 S	12,60	18,60	234,36	8.276	14	
EV8	11/10/09	XC 565 SE	6,38	94,50	603,29	21.305	19	Chiara
EV9	11/10/09	Labores antiguas	8,93	19,80	176,77	6.243	15	Por veta mariana piso

NIVEL: <u>5A</u>

N°	FECHA	LABOR	AREA	VELOCIDAD	CAU	DAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	11/10/09	RP(-) 862	10,60	147,75	1.566,45	55.317	14	Antes RP 833
EV2	11/10/09	RP(-) 833	9,90	95,55	946,37	33.420	14	
EV3	11/10/09	XC 833 NW	8,60	68,20	586,67	20.718	13	
EV4	11/10/09	XC 780 NE	8,57	38,70	331,58	11.709	13	
EV5	11/10/09	GL 840 NW	9,77	19,20	187,49	6.621	10	
EV6	11/10/09	GL 811	10,08	33,15	334,15	11.800	9	
EV7	11/10/09	RP(-) 862	11,63	51,00	593,03	20.942	15	Despues RP 833

Cuadro 35: MEDICION DE VELOCIDAD Y CAUDAL DE AIRE POR NIVELES

NIVEL: 5B

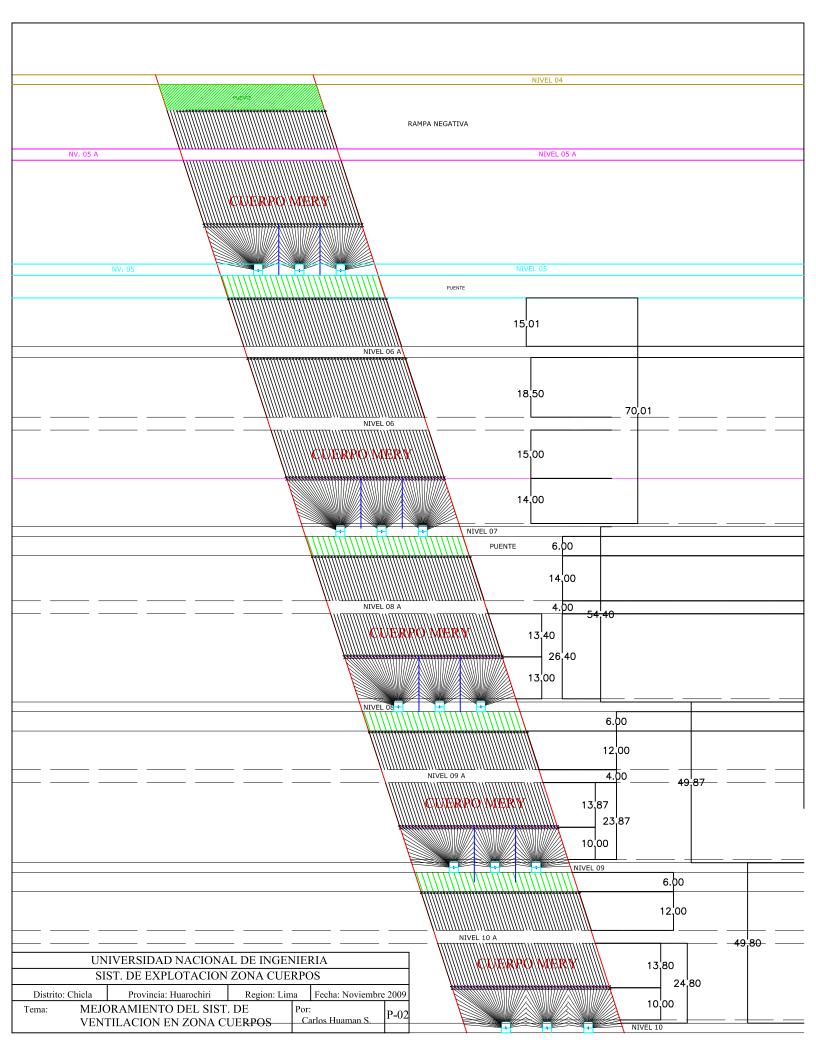
N°	FECHA LABOR		AREA VELOCIDAD		CAUDAL		TEMP.	Observaciones
EST.	FECHA	LABUR	m²	m/min	m³/min	CFM	ç	Observaciones
EV1	11/10/09	RP(-) 862	13,34	39,00	520,18	18.370	16	
EV2	11/10/09	VN 927	13,68	63,00	861,84	30.435	12	
EV3	11/10/09	XC 805 W	9,92	48,75	483,50	17.074	12	
EV4	11/10/09	GL 880 SW	14,44	35,70	515,51	18.205	12	
EV5	11/10/09	BP 850 SW	13,69	34,80	476,38	16.823	12	
EV6	11/10/09	RP(-) 862	13,36	69,00	921,63	32.547	14	

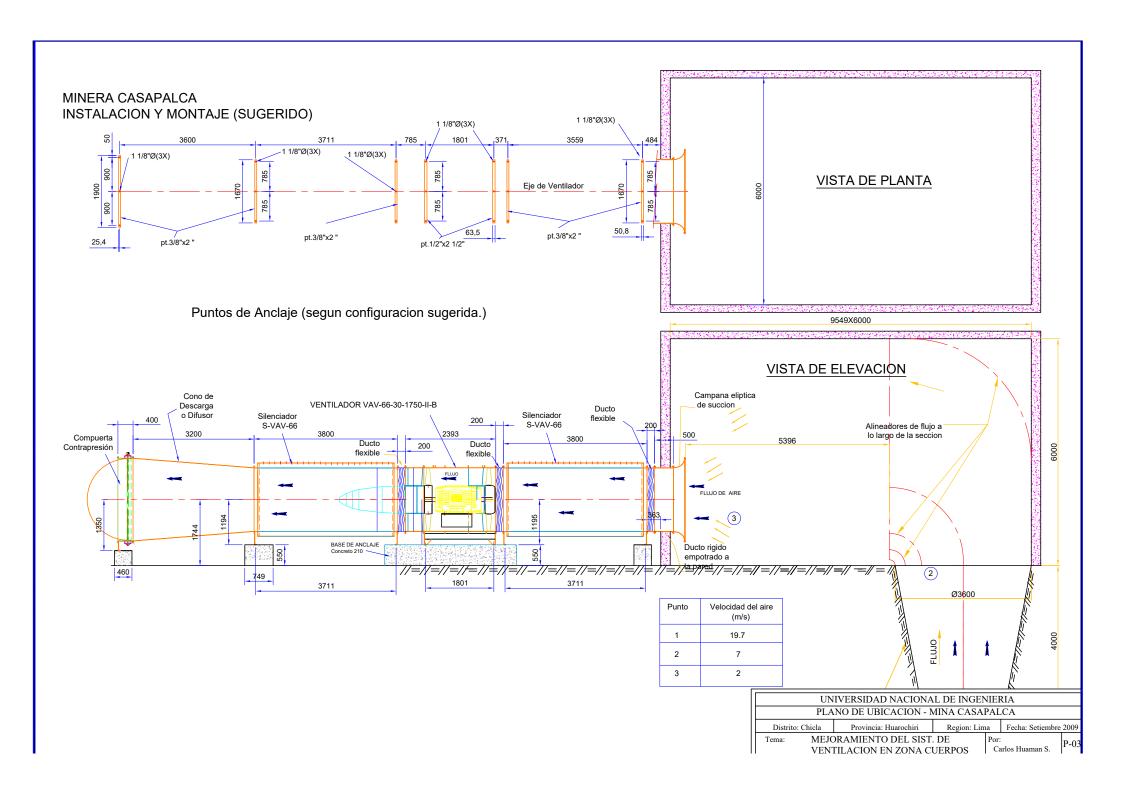
NIVEL: 5

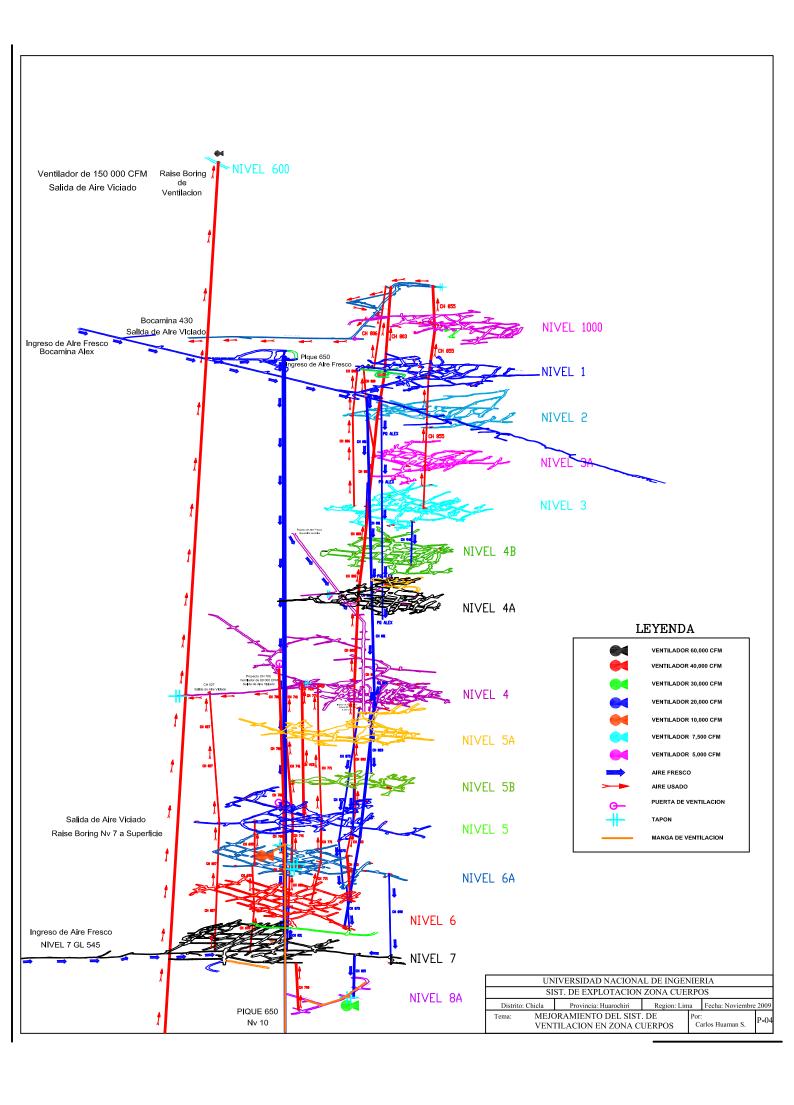
1417	<u>~</u>							
N°	FECHA	LABOR	AREA	VELOCIDAD	CAU	DAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	12/10/09	RP(-) 862	14,78	109,80	1.623,12	57.319	14	
EV2	12/10/09	RP(-) 862	13,12	88,65	1.162,79	41.063	14	
EV3	12/10/09	XC 887 NW	16,89	19,20	324,29	11.452	14	
EV4	12/10/09	XC 814 W	10,69	46,80	500,39	17.671	15	
EV5	12/10/09	XC 814 W	11,00	59,80	657,90	23.233	15	
EV6	12/10/09	RP 800	18,42	45,60	840,01	29.664	16	
EV7	12/10/09	BP 800	14,18	24,00	340,20	12.014	15	

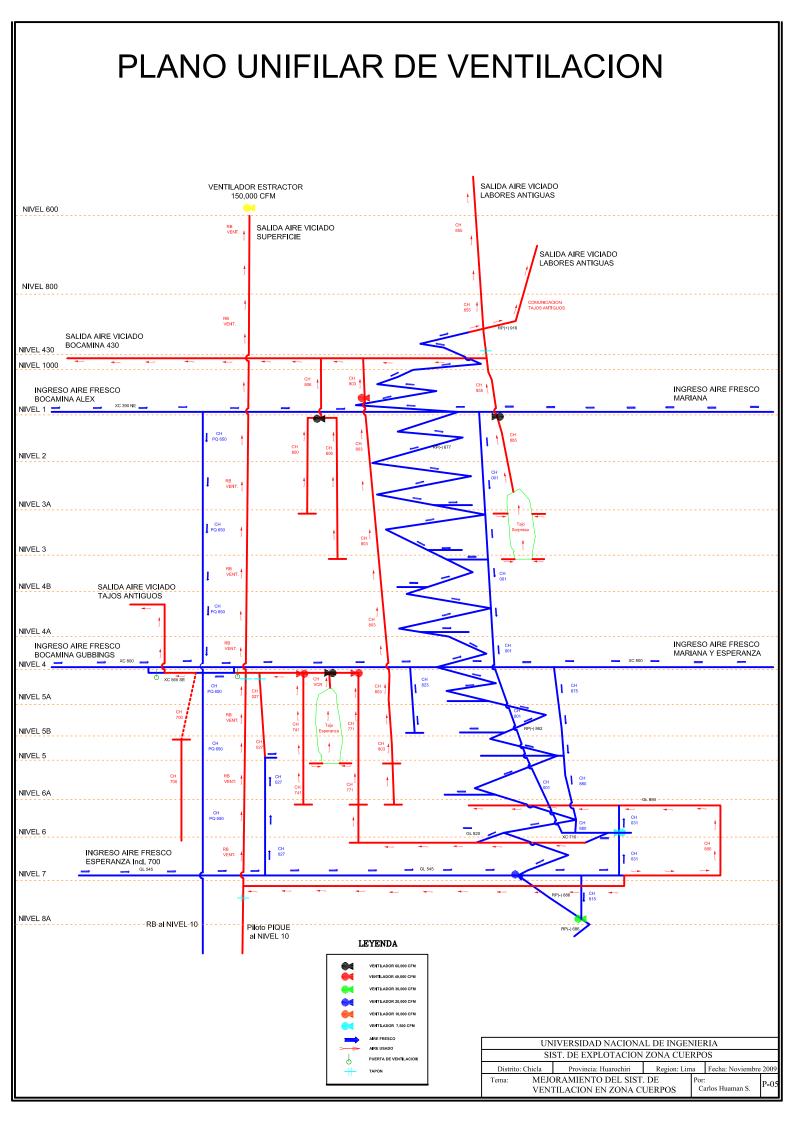
NIVEL: 6A

N°	FECHA LABOR		AREA VELOCIDA		CAU	DAL	TEMP.	Observaciones
EST.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	12/10/09	RP(-) 862	12,80	37,20	476,32	16.821	14	
EV2	12/10/09	XC 880 NW	15,39	27,60	424,76	15.000	14	
EV3	12/10/09	XC 850 SW	12,92	39,00	503,69	17.787	15	Antes XC 780 S
EV4	12/10/09	XC 850 SW	13,34	23,40	312,11	11.022	14	Pasando XC 780 S
EV5	12/10/09	XC 780 S	12,31	59,40	731,33	25.826	14	
EV6	12/10/09	GL 730 E	12,65	25,20	318,88	11.261	14	


Cuadro 36: MEDICION DE VELOCIDAD Y CAUDAL DE AIRE POR NIVELES


NIVEL: 6


N° EST.	FECHA	LABOR	AREA	VELOCIDAD	CAU	IDAL	TEMP.	Observaciones
N ESI.	FECHA	LABOR	m ²	m/min	m³/min	CFM	°C	Observaciones
EV1	14/10/09	RP(-) 862	15,12	44,40	671,33	23707		
EV2	14/10/09	GL 820 NW	14,04	72,00	1010,88	35698		
EV3	14/10/09	XC 715 NW	14,19	45,60	647,20	22855		
EV4	14/10/09	XC 850 E	13,65	42,60	581,62	20539		Al oeste CH 771
EV5	14/10/09	XC 850 E	14,02	36,60	513,21	18123		Al este CH 771
EV6	14/10/09	RP(-) 862	15,13	29,40	444,79	15707		


NIVEL: 7

N° EST.	FECHA	LABOR	LAROP AREA		CAUDAL		TEMP.	Observaciones
N ESI.	FECHA	LABOR	m²	m/min	m³/min	CFM	°C	Observaciones
EV1	14/10/09	GL 545	7,02	154,00	1081,08	38177	15,00	De inclinado 700
EV2	14/10/09	XC 650 SE	14,74	38,40	566,09	19991	15,00	
EV3	14/10/09	GL 545	14,04	28,20	395,93	13982	14,00	Despues de XC 650
EV4	14/10/09	XC 622 E	12,31	31,20	384,13	13565	16,00	
EV5	14/10/09	GL 545 NE	8,37	29,40	246,08	8690	18,00	

