UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA GEOLOGICA MINERA Y METALURGICA

SIMULACIÓN DEL CIRCUITO DE MOLIENDA CLASIFICACION DE LA PLANTA CONCENTRADORA RAURA

INFORME DE INGENIERIA

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO METALURGISTA

ALIAGA QUILIANO ALDO ENRIQUE

LIMA - PERU 2001

Dedicado a:

Dios, Mis padres, Mi Universidad...

SIMULACION DEL CIRCUITO DE MOLIENDA CLASIFICACION DE LA PLANTA CONCENTRADORA RAURA

	NERALIDADES	1				
1 1	1 Objetivos					
1.2 Planta Concentradora Raura						
•••=	1.2.1 Descripción de las operaciones (1995).	1				
	1.2.1.1 Sección Chancado.	1				
	1.2.1.2 Sección Molienda.	2				
	1.2.1.3 Sección Flotación.	2				
	1.2.1.4 Sección Filtrado.	4				
	1.2.1.5 Sección disposición de relaves.	5				
Сар	pitulo 2	16				
MOI	DELO SIMPLIFICADO DE MOLIENDA	16				
2.1	Introducción.	16				
2.2	Derivación del modelo simplificado de molienda.	16				
2.3	Función velocidad específica de fractura.	18				
2.4	La ley de Bond un caso particular del modelo simplificado.	20				
2.5	Modelo cinético general para un proceso continuo.	21				
2.6	Modelo simplificado de molienda continua.	23				
Сар	DITUIO 3 DEL OS EMPÍPICOS PARA HIDROCICI ONES	25				
3 1		20				
32	Modelación empírica	25				
3.3	Requerimientos de modelación.	25				
3.4	Modelo de Lynch & Rao.	26				
3.5	Modelo de Plitt.	28				
Cap	bitulo 4	31				
col	LECCION DE DATOS Y CALCULO DE PARAMETROS DE LOS MODELOS	31				
4.1	Generalidades.	31				
4.2	Colección de Datos de Planta.	31				
4.3	Cálculo de Flujos.	32				
	4.3.1 Programa para Corrección de					
	Datos por Multiplicadores de Lagrange.	35				
	4.3.1.1 Características Generales del Programa.	35				
	4.3.1.2 Estructura del Programa.	36				
4.4	Calculo de la Función Selección Específica de Fractura					
	y/o Estimación de Parametros de los Modelos.	38				
	4.4.1 IVIUIIIIUS.	38				

	4.4.2 Hidrociclón.	39					
4.5	Programa para Simular el Circuito Molienda Clasificación.	41					
	4.5.1 Características Generales del Programa.	41					
	4.5.2 Estructura del Programa.	41					
Сар	itulo 5	47					
SIM	ULACION DEL CIRCUITO MOLIENDA CLASIFICACION	47					
5.1	Simulación del Circuito en Condiciones Actuales de						
	Operación (1995).	47					
5.2	Simulación del Circuito aumentando la dilución de la						
	Pulpa de Alimentación al Hidrociclón.	49					
5.3	Simulación del Circuito variando el Apex y Vortex del						
	Hidrociclón.	51					
5.4	Simulación del Circuito variando la Densidad de Descarga						
	del Molino Secundario con densidad en el overflow constante.	53					
5.5	Hojas de simulación. 5						
5.6	Simulación del circuito afinando la granulometria de alimentación al circuito.	65					
Сар	itulo 6	67					
CON	ICLUSIONES Y RECOMENDACIONES	67					
Cap	itulo 7	69					
		69					
1.1	Algunos criterios sobre optimización						
7 0	de Circuitos de Mollenda Clasificación. Poloneo ejustado do motoriolos Mótodo do Lastoneo (Solución Constal)	69					
1.Z	Cádigo del programa de simulación	19					
1.5		00					

BIBLIOGRAFÍA

101

CAPITULO 1

GENERALIDADES

1.1 Objetivos

El objetivo del presente trabajo es el de determinar el comportamiento del circuito molienda / clasificación frente a cambios a nivel operativo y cambios a nivel de componentes del circuito.

A la vez pretende justificar la necesidad de tener cuantificada algunas variables operacionales, ya que estas permitirán optimizar el rendimiento del circuito.

1.2 Planta Concentradora Raura

1.2.1 Descripción de Operaciones (1995)

1.2.1.1 Sección Chancado

La sección de chancado opera en circuito abierto, consta de chancado primario, secundario y terciario.

El mineral procedente de interior mina y tajo abierto (humedad de 3% a 5%), llega ha la Planta en volquetes (capacidad 25 ton) y se deposita en una cancha (capacidad 2000 ton), con la ayuda de un cargador frontal (Cat 966), se alimenta ha la tolva de gruesos, de acuerdo al blending establecido; la tolva de gruesos tiene una capacidad de 150 ton El mineral almacenado se alimenta con dos alimentadores de placas (COMESA, 40 placas x 42"), hacia la faja No. 2, se clasifica en un grizzly. El sobre tamaño es triturado en una chancadora de quijadas Pioneer, $35^{\circ}x 46^{\circ}$ (set $3\frac{1}{2}^{\circ}$), los finos que atraviesan el grizzly caen a la faja No. 3 conjuntamente con el producto de la chancadora, este material es conducido por a faja No. 4 hacia una nueva clasificación, en un cedazo de doble piso Ty Rock No. 1, 5'x 12' (abertura 2 1/2" x 2 1/2" y 1/2 " x 1"), el under es triturado en una chancadora Symons Standard 5 1/2' (set 3/4"), el over con el producto de la chancadora es llevado sucesivamente por la faja No. 5, No. 6, No. 7 y No. 8, a una clasificación, el material se comparte a dos cedazos, la mayor parte va ha un cedazo Ty Rock No. 2, 5'x 12'(abertura 1"x ½") y el remanente, a un cedazo de 4' x 5 ½' (abertura 1"x ½"), el under de los cedazos es triturado en chancadoras Symons Short Head 5100 (set 3/8"), A (Madrigal) y B (Minsur), respectivamente; el over de los cedazos con el producto de las chancadoras es llevado por la faja No. 9, luego por la faja No. 11, de esta faja el mineral puede ser depositado en la tolva de finos de 1000 ton, ó pasar a la faja No. 11- A y después a la faja No. 11-B para ser almacenado en la tolva de finos de 1500 ton.

En esta sección se tiene instalado un colector de polvos Rotoclone, con puntos de captación en los shuttes de descarga de las chancadoras secundarias y terciarias y shuttes de finos de los cedazos.

En la faja No. 3 y No. 7, se tienen colocados magnetos, para retener posibles objetos metálicos. Además se cuenta con un detector de metales Metcorr 117 instalado sobre la faja No. 4, el cual al detectar la presencia de material metálico, detiene la faja.

La sección cuenta con dos operadores, uno en chancado primario y otro en chancado secundario y terciario. También se cuenta con un micro scoop para tareas de limpieza en la sección.

1.2.1.2 Sección Molienda

La sección de molienda cuenta con dos circuitos de molienda primaria independientes, los cuales son abastecidos por las tolvas de finos de 1000 ton y 1500 ton Se cuenta con molienda secundaria. El producto de la sección es de aproximadamente 55% menos malla 200.

Los finos de la tolva de 1 500 ton se alimentan mediante fajas, No 12 ó No. 13 hacia la faja No. 14, en donde se tiene instalada una balanza electrónica, para el control del tonelaje, el mineral ingresa ha un molino de bolas COMESA 8'x 10' A. Los finos de la tolva de 1 000 ton. también se alimentan por fajas, No. 17 ó No. 18, hacia la faja No. 19 y luego a la faja No. 20, en donde se tiene una balanza electrónica para el control del tonelaje, el mineral ingresa ha un molino de bolas COMESA 8'x 10' B. La descarga de los dos molinos se juntan y son bombeados (bomba Denver SRL-C, 10" x 8", No. 1 ó No. 2) a un hidrociclón (Krebs de 20", 1-B ó 2-B, posición inclinada, apex 2 ½"), los finos son conducidos hacia la flotación y los gruesos retornan a un molino de bolas COMESA 8' x 8' B, cuya descarga se junta con la de los molinos primarios.

La densidad en el over del hidrociclón se controla en 1350 gr/lt, la descarga de los molinos primarios, se establece en 2000 gr/lt y la del molino secundario en 2250 gr/lt.

En esta sección se tiene instalado un manómetro para el control del agua de alta presión, para los sellos de las bombas, la presión debe oscilar entre 50 PSI y 60 PSI. El agua para la Planta es suministrada por un tanque de 60 000 galones, el cual capta agua de los reboses de las lagunas de Niñococha y Santa Ana. En caso de faltar agua, se bombea agua desde las lagunas de Santa Ana y Caballococha.

Como alternativa, se cuenta con una celda de flotación rápida Skim Air SK-80, Outokumpu, la cual flota el under del hidrociclón, sus espumas constituyen un concentrado final de plomo y el relave ingresa al molino secundario. Esta celda opera únicamente cuando la cabeza de plomo es muy alta.

La sección cuenta con un molino Allis Chalmers, 8' x 8' A, el cual se encuentra parado. Se vienen realizando trabajos para poder remoler el relave del rougher I bulk en este molino, se contará además con dos hidrociclones de 15" (apex 1 7/8"), instalados en posición vertical y una bomba Denver SRL-C, 12" x 10" No. 2. Todos estos operando en circuito cerrado inverso. El producto de este circuito ingresará como cabeza al rougher II bulk. Lo que se busca, es incrementar la recuperación del cobre, sin bajar el grado del concentrado. El producto que se estima para este circuito es aproximadamente de 60% a 65% menos malla 200.

La sección cuenta con un operador, el cual se encarga de mantener los parámetros de operación, chequear los equipos, limpieza de la sección y de alimentar bolas, con la ayuda del reactivista.

A los molinos primarios se añaden los siguientes reactivos, NaCN, ZnSO₄ y NaHSO₃; al molino secundario se alimenta únicamente $ZnSO_4$. Al overflow del hidrociclón se añade Z-11 y espumante (MIBC ó ER-300).

1.2.1.3 Sección Flotación

La sección de flotación cuenta con tres circuitos: Circuito Bulk Circuito de Separación (método Bicromato) Circuito de Zinc Es de destacar en esta sección, para los bancos Outokumpu de rougher y scavenger, tanto para el bulk y zinc que la pulpa se traslada por gravedad únicamente, aprovechando los desniveles existentes entre los bancos anteriormente citados.

El aire de baja presión es suministrado por sopladores y blowers, la presión oscila entre 1.5 PSI y 2.5 PSI.

Los bancos Outokumpu, poseen controladores automáticos de nivel. Se cuenta también con un potenciómetro instalado en el acondicionador de Zinc 8'x 8' y un potenciómetro portátil.

Las bombas que se utilizan en la sección son Vacseal de sello seco, Denver con sello de agua y verticales Galigher.

La sección cuenta con dos operadores, uno para la flotación bulk y de separación y otro para la flotación de zinc. Se cuenta con un reactivista encargado de preparar los reactivos y controlar la concentración de estos.

Circuito Bulk

La pulpa acondicionada con depresores, colector y espumante ingresa al banco rougher I bulk (03 celdas Outokumpu, 300 pies³), luego pasa al banco rougher II bulk (02 celdas Outokumpu, 300 pies³) y finalmente al banco scavenger (02 celdas Outokumpu, 300 pies³), el relave de este banco se mezcla con lechada de cal y es llevado al circuito de zinc. Las espumas del rougher I y II se juntan y van a un circuito de 04 bancos de limpieza, compuestas por celdas Agitair No. 36, con 06, 06, 04 y 04 celdas para cada uno de los bancos. Las espumas del scavenger retornan a la cabeza del rougher I.

Es en las espumas del rougher primario en donde se capta mayormente al plomo y en las espumas del rougher II se capta al cobre, ya que la cinética de flotación del plomo es mayor que la del cobre. En esta flotación bulk (rougher y scavenger) se añaden reactivos como el Z-11, ER-300 ó MIBC y ZnSO₄.

El relave de la primera limpiadora bulk retorna ha la cabeza de flotación, el relave de las otras limpiadoras retorna como cabeza a la limpiadora anterior. El concentrado de la cuarta limpiadora constituye el concentrado final, el cual es llevado al circuito de separación. En las limpiadoras se añade ZnSO₄ y NaHSO₃.

Circuito de Separación

El concentrado proveniente de la cuarta limpiadora bulk, se acondiciona (acondicionador 8'x 8') con Bicromato, luego ingresa a un rougher de separación (03 celdas Agitair No. 36) y después a un scavenger de separación (04 celdas Agitair No. 36), el relave de este banco constituye el concentrado de plomo final. Las espumas del scavenger de separación retornan al acondicionador. Las espumas del rougher de separación ingresan a un circuito de 04 limpiadoras de cobre, la 1ra. limpiadora está compuesta por 04 celdas Agitair No. 36, la 2da. por 02 celdas Denver 18 SP, la 3ra. por 01 celda Denver 18 SP y la cuarta por 01 celda Denver 18 SP. Las espumas de esta cuarta limpiadora forman el concentrado final de cobre. Al relave de la 2da. limpiadora se le añade Bicromato. El circuito de limpiadoras de cobre, generalmente se opera con tres limpiadoras únicamente, ya que se obtiene un concentrado aceptable de la tercera limpiadora, de esta forma se evita recargar el circuito con una excesiva carga circulante.

Circuito de Zinc

El relave del scavenger bulk, mezclado con lechada de cal, se acondiciona con CuSO₄ y Z-11 en dos acondicionadores (8' x 8' y 11' x 11') conectados en serie mediante bombeo,

esta pulpa acondicionada ingresa al banco rougher I de zinc (03 celdas Outokumpu, 300 pies³), para pasar luego al rougher II de zinc (03 celdas Outokumpu, 300 pies³) e inmediatamente al scavenger de zinc (03 celdas Outokumpu, 300 pies³), el relave final de este banco, constituye el relave final. Las espumas del scavenger retornan a la etapa de acondicionamiento. Las espumas del rougher I y II, ingresan a un circuito de 03 limpiadoras, compuestas por celdas Agitair No. 48, 10 celdas para la 1ra. limpiadora, 06 celdas para la 2da. limpiadora y 04 celdas para la 3ra. limpiadora. Las espumas de la tercera limpiadora, forman el concentrado final de zinc. El relave de la 1ra. limpiadora retorna ha los acondicionadores. El relave de las otras limpiadoras retorna como cabeza ha la etapa de limpieza anterior. En la etapa de acondicionamiento y flotación (rougher y scavenger) se añade Z-11, CuSO₄, lechada de cal y espumante mix (mezcla de D-250, MIBC y aceite quemado), en la etapa de limpieza, se añade lechada de cal únicamente.

1.2.1.4 Sección Filtrado

Se cuenta con:

05 espesadores:

Espesador de cobre 24' x 10' Espesador de plomo 24' x 10' Espesador Dorco de zinc No. 1, 24' x 10' Espesador Dorco de zinc No. 2, 24' x 10' Espesador Denver de zinc No. 3, 30' x 8'

03 filtros de disco:

Filtro Denver No. 1, 6" \oslash (4 discos Pb y 2 discos Cu) Filtro Denver No. 2, 6" \oslash (3 discos Zn) Filtro Denver No. 3, 6" \oslash (5 discos Zn)

02 filtros de tambor:

Filtro EIMCO No. 1, 8' x 10' (Zn) Filtro EIMCO No. 2, 8' x 10' (Zn)

En la sección se utilizan bombas Denver y una Vacseal, para bombear los concentrados espesados a los respectivos filtros.

Se cuenta con 04 bombas de vacío, 02 Nash y 02 COMESA; el aire para el soplado de los filtros es abastecido desde la sección de flotación.

La humedad de los concentrados oscila entre 8% y 11%. Se tienen instaladas bombas horizontales Denver para recuperar parte de los reboses de los espesadores de plomo y cobre. El rebose del espesador de zinc No. 1 se recupera en parte con una bomba vertical Galigher.

El concentrado de zinc proveniente de la flotación se deposita en el espesador No. 3, cuyo rebose está conectado al espesador No. 2, el rebose de este, está conectado al espesador No. 1.

Se cuenta con 01 cocha para el cobre, 02 cochas para el plomo y 06 cochas para el zinc; estas captan los reboses de los respectivos espesadores. En caso de sobrecarga del espesador de zinc No. 3, se descarga hacia las cochas, esto ocurre cuando se tienen cabezas altas de zinc o cuando se tienen dificultades operativas / mecánicas con los filtros de zinc.

La sección cuenta con un operador, el cual se encarga también de preparar los sectores para los filtros de discos.

1.2.1.5 Sección Disposición de relaves

El relave del scavenger de zinc, constituye el relave final, este es llevado por gravedad, hacia la Planta de relleno hidráulico, que opera bajo supervisión de la Oficina de Mina. El relave se deposita en un pequeño tanque y con la ayuda de tres bombas (02 Denver 5" x 5", 5" x 4" y otra Vacseal 3"x 4") y sendos hidrociclones (02 de 15" y otro de 20"), es clasificado. Los finos por gravedad son conducidos a la laguna de Caballococha, los gruesos son almacenados en un depósito de concreto, pasando paulatinamente a un acondicionador 9' x 9', es aquí donde se añade cemento en caso de ser necesario. Con una densidad mínima de 1600 gr/lt, es bombeada hacia la mina, para ello se cuenta con una bomba pistones Mars L-180.

SECCION CHANCADO

No.	Cant.	Descripción
1	01	Tolva de gruesos, concreto, 150 ton de capacidad
2	02	Alimentadores de placas COMESA, 40 placas x 42"de ancho
3	01	Faja transportadora No. 2, 48" x 16.40 m
4	01	Grizzly de 1.05 m x 2.36 m
5	01	Chancadora de quijadas Pioneer, 35" x 46"
6	01	Faja transportadora No. 3, 36" x 47.70 m
7	01	Faja transportadora No. 4, 36" x 52.70 m
8	01	Detector de metales Corrigan Metcorr 117C
9	01	Zaranda vibratoria Ty Rock Duplex No. 1, 5' x 12'
10	01	Chancadora Symons Standard, 5 1/2 '
11	01	Faja transportadora No. 5, 24" x 21.70 m
12	01	Faja transportadora No. 6, 24" x 38.00 m
13	01	Faja transportadora No. 7, 24" x 16.00 m
14	01	Faja transportadora No. 8, 24" x 28.75 m
15	01	Zaranda vibratoria, 4' x 5 1/2'
16	01	Zaranda vibratoria Ty Rock No. 2, 5' x 12'
17	01	Chancadora Symons 5 100, Short Head, B ó Madrigal
18	01	Chancadora Symons 5 100, Short Head, A ó Minsur
19	01	Faja transportadora No. 9, 30" x 37.70 m
20	01	Faja transportadora No. 11, 36" x 41.35 m
21	01	Faja transportadora No. 11-A, 30" x 6.46 m
22	01	Faja transportadora No. 11-B, 36" x 57.60 m
23	01	Tolva de finos, metálica, 1 500 ton. de capacidad
24	01	Tolva de finos, metálica, 1 000 ton. de capacidad
25	02	Fajas transportadoras No. 17, 36" x 16.60 m y No. 18, 36" x 16.80 m
26	02	Fajas transportadoras No. 12, 36" x 19.40 m y No. 13, 36" x 19.80 m
27	01	Extractor de polvo Rotoclone
28	02	Magnetos

CIRCUITO DE MOLIENDA - CLASIFICACION

Figura 1.2: Circuito de Molienda Clasificación, año 1995

SECCION MOLIENDA - CLASIFICACION

No.	Cant.	Descripción
29	01	Faja transportadora No. 12, 36" x 19.40 m
30	01	Faja transportadora No. 13, 36" x 19.80 m
31	01	Tolva de finos, metálica, 1 500 ton. de capacidad
32	01	Faja transportadora No. 14, 30" x 21.12 m
33	01	Balanza electrónica OHMART
34	01	Molino de bolas CCMESA, 8' x 10', A
35	01	Molino de bolas Allis Chalmers, 8' x 8', A
36	01	Molino de bolas COMESA, 8' x 10', B
37	01	Molino de bolas COMESA, 8' x 8', B
38	02	Bombas Denver SRL-C, 10" x 8", No. 1 y No. 2
39	01	Faja transportadora No. 17, 36" x 16.60 m
40	01	Faja transportadora No. 18, 36" x 16.80 m
41	01	Faja transportadora No. 19, 24" x 20.40 m
42	01	Balanza electrónica OHMART
43	01	Faja transportadora No. 20, 24" x 39.00 m
44	02	Hidrociclones Krebs, 20", 1-B y 2-B
45	01	Celda de flotación rápida Skim Air, Outokumpu SK-80
46	01	Muestreador de cabeza
47	01	Tolva de finos, metálica, 1 000 ton. de capacidad

SECCION FLOTACION BULK Y SEPARACION Pb - Cu

Figura 1.3: Circuito de Flotación Bulk, año 1995

SECCION FLOTACION BULK Y SEPARACION Pb/Cu

No.	Cant.	Descripción
48	03	Celdas Outokumpu, 300 pies ³ , rougher bulk No. 1
49	02	Celdas Outokumpu, 300 pies ³ , rougher bulk No. 2
50	02	Celdas Outokumpu, 300 pies ³ , scavenger bulk
51	02	Bombas Vacseal, 4" x 3", No. 1 y No. 2
52	02	Bombas verticales Galigher, 2 1/2"
53	01	Bomba vertical Galigher, 2 1/2"
54	01	Bomba vertical Galigher, 2 1/2"
55	01	Bomba vertical Galigher, 2 1/2"
56	06	Celdas Agitair No. 36, 1ra. limpieza bulk
57	06	Celdas Agitair No. 36, 2da. limpieza bulk
58	04	Celdas Agitair No. 36, 3ra. limpieza bulk
59	04	Celdas Agitair No. 36, 4ta. limpieza bulk
60	01	Acondicionador de separación Pb/Cu, 8' x 8'
61	02	Bombas Vacseal, 4" x 3", No. 1 y No. 2
62	01	Bomba Vacseal, 4" x 3"
63	01	Bomba vertical Galigher, 2 1/2"
64	03	Celdas Agitair No. 36, rougher de separación Bicromato
65	04	Celdas Agitair No. 36, scavenger de separación Bicromato
66	04	Celdas Agitair No. 36, 1ra. limpieza de cobre
67	02	Celdas Denver 18 SP, 2da. limpieza de cobre
68	01	Celdas Denver 18 SP, 3ra. limpieza de cobre
69	01	Celdas Denver 18 SP, 4ta. limpieza de cobre
70	02	Muestreadores automáticos
71	02	Sopladores centrífugos, No. 1 y No. 2
72	02	Blowers Sutorbilt, No. 3 y No. 4
73	01	Bomba vertical Galigher, 2 1/2", de recuperación de Pb/Cu

SECCION DE FLOTACION DE ZINC

Figura 1.4: Circuito de Flotación de Zinc, año 1995

SECCION DE FLOTACION ZINC

No.	Cant.	Descripción
74	01	Acondicionador de zinc, 8' x 8'
75	01	Acondicionador de zinc, 11' x 11'
76	02	Bombas Denver 10" x 8" No. 3 y 12" x 10" No. 1
77	03	Celdas Outokumpu, 300 pies ³ , rougher de zinc No. 1
78	03	Celdas Outokumpu, 300 pies ³ , rougher de zinc No. 2
79	03	Celdas Outokumpu, 300 pies ³ , scavenger de zinc
80	10	Celdas Agitair No. 48, 1ra. limpieza de zinc
81	06	Celdas Agitair No. 48, 2da limpieza de zinc
82	04	Celdas Agitair No. 48, 3ra. limpieza de zinc
83	02	Bombas Denver 5" x 4" No. 1 y 5" x 5" No. 2
84	01	Bomba Denver 5" x 5"
85	01	Bomba Denver 3" x 3"
86	01	Bomba Denver 5" x 5", de recuperación de zinc
87	01	Muestreador automático
88	01	Muestreador automático
89	02	Soplador Spencer y blower Sutorbilt

Figura 1.5: Circuito de Espesamiento y Filtrado, año 1995

14

SECCION ESPESAMIENTO Y FILTRADO

No.	Cant.	Descripción
90	01	Espesador Denver de cobre, 24' x 10'
91	01	Espesador Denver de plomo, 24' x 10'
92	01	Espesador Dorco de zinc, No. 1, 24' x 10'
93	01	Espesador Dorco de zinc, No. 2, 24' x 10'
94	01	Espesador Denver de zinc, No. 3, 24' x 10'
95	01	Bomba Denver, 1 1/2" x 1 1/4"
96	01	Bomba Denver, 1 1⁄2" x 1 1⁄4"
97	01	Bomba Denver, 1 1⁄2" x 1 1⁄4"
98	01	Bomba Denver, 1 1/2" x 1 1/4"
99	02	Bomba Denver 3" x 3" y bomba Vacseal 4" x 3"
100	01	Bomba de vacío COMESA
101	02	Bomba de vacío Nash, CL-1003
102	01	Bomba de vacío COMESA - Hytor
103	01	Filtro de discos Denver de 6' Ø, No. 1, 04 discos de Pb y 02 discos de Cu
104	01	Filtro de discos Denver de 6' \emptyset , No. 2, 03 discos de Zn
105	01	Filtro de discos Denver de 6' \varnothing , No. 3, 05 discos de Zn
106	01	Filtro de tambor EIMCO, No. 2, 8' x 10'
107	01	Filtro de tambor EIMCO, No. 1, 8' x 10'
108	01	Bomba vertical Galigher, 2 1/2", de recuperación de zinc
109	01	Bomba Denver 2 1/2" x 2", de recuperación de plomo
110	01	Bomba Denver 2 1/2" x 1 1/4", de recuperación de cobre

CAPITULO 2

MODELO SIMPLIFICADO DE MOLIENDA

2.1 Introducción

En la práctica, dada la variabilidad que se observa a escala industrial, tanto en las propiedades intrínsecas de los minerales como en las condiciones experimentales y resultados metalúrgicos de la operación, resulta difícil evaluar la información experimental disponible, a objeto de controlar y lograr un mejor aprovechamiento de las instalaciones existentes. La situación se torna aún más crítica si se considera que generalmente no se dispone de toda la información requerida, para una estimación confiable de cada uno de los parámetros involucrados en los distintos modelos descriptivos del proceso en cuestión.

Tales razones han conducido al desarrollo de ecuaciones más simples, que requieren de menor cantidad de información experimental para su aplicación y que, para el caso especifico de la molienda efectuada en molinos de bolas, han demostrado ser lo suficientemente precisas, proporcionando un grado aceptable de detalle para la mayoría de las aplicaciones industriales. Ello ha facilitado enormemente la estimación de parámetros claves del modelo, prescindiendo de otros, que en la práctica resultan difíciles de evaluar.

2.2 Derivación del Modelo Simplificado de Molienda

Como sabemos. la ecuación diferencial, del modelo cinético lineal de molienda discontinua se expresa según:

$$\frac{dw_{k}(t)}{dt} = -S_{k} w_{k}(t) + \sum_{j=1}^{k-1} b_{ij} S_{j} w_{j}(t) \qquad k = 1, n \qquad (3.1)$$

Sumando las primeras ecuaciones "i" ecuaciones diferenciales lineales, se obtiene:

$$\frac{d}{dt}\left(\sum_{k=1}^{t-1} w_k(t)\right) = -\sum_{k=1}^{t-1} S_k w_k(t) \sum_{k=1}^{t-1} \sum_{j=1}^{k-1} b_{ij} S_j w_j(t)$$
(3.2)

Por definición:

$$\mathsf{R}_{i}(t) = \sum_{k=1}^{i-1} w_{k}(t)$$
(3.3)

Donde R_i(t) es la fracción en peso de mineral acumulado sobre el i-ésimo intervalo de tamaño. Aplicando la definición anterior a la ec., 3.2, se obtiene:

$$\frac{d}{dt} \mathsf{R}_{i}(\mathsf{t}) = -\sum_{k=1}^{i=1} S_{k} w_{k}(t) + \sum_{k=1}^{i-1} \sum_{j=1}^{i-1} b_{kj} S_{j} w_{j}(t)$$
(3.4)

Permutando el orden de las sumatorias en la doble sumatoria y considerando que $b_{kj} = 0$, para k = 1, ..., j-1, se obtiene:

$$\sum_{k=1}^{t-1} \sum_{j=1}^{t-1} b_{kj} S_j w_j(t) = \sum_{j=1}^{t-1} \sum_{k=1}^{t-1} b_{kj} S_j w_j(t)$$
(3.5)

Reemplazando 3.5 en 3.4

$$\frac{d}{dt} \mathbf{R}_{i}(t) = -\sum_{k=1}^{i-1} S_{k} w_{k}(t) + \sum_{j=1}^{i-1} \left(\sum_{k=j}^{i-1} b_{kj} \right) S_{j} w_{j}(t)$$
(3.6)

Donde, en la doble sumatoria de la ecuación anterior, sólo b_{kj} depende de k. De acuerdo a la definición de B_{ij} :

$$\sum_{k=j}^{l-1} b_{kj} = 1 - \sum_{k=l}^{n} b_{kj} = 1 - B_{ij}$$
(3.7)

Reemplazando 3.7 en 3.6

$$\frac{d}{dt} R_{i}(t) = -\sum_{k=1}^{i-1} S_{k} w_{k}(t) + \sum_{j=1}^{i-1} (1 - B_{ij}) S_{j} w_{j}(t)$$

$$\frac{d}{dt} R_{i}(t) = -\sum_{k=1}^{i-1} S_{k} w_{k}(t) + \sum_{j=1}^{i-1} S_{j} w_{j}(t) - \sum_{j=1}^{i-1} B_{ij} S_{j} w_{j}(t)$$

En consecuencia:

$$\frac{dR_{i}(t)}{dt} = -\sum_{j=1}^{i-1} B_{ij} S_{j} w_{j}(t) \qquad i = 1, n$$
(3.8)

La ec. 3.8 constituye el Modelo Cinético Lineal de Molienda Discontinua escrita en forma acumulada.

Experimental se ha demostrado que para un gran número de aplicaciones se cumple la relación:

$$\frac{dR_i(t)}{dt} = -G_i R_i(t) \qquad ; \qquad i = \overline{l, n}, \qquad t \to 0$$
(3.9)

En que los valores de G_i corresponden a las pendientes de las rectas que resultan al graficar los valores de $lnR_i(t)$ versus t, para cada fracción de tamaño (i=1,..., n) empleando tiempos cortos de molienda discontinua.

Reemplazando la ec. 3.6 en 3.9 y comparándola con la ec. 3.8, se obtiene la siguiente relación de equivalencia:

$$G_{i} \sum_{j=1}^{t-1} w_{j}(t) = \sum_{j=t}^{t-1} B_{ij} S_{j} w_{j}(t)$$
(3.10)

Introduciendo G_i en la primera sumatoria y separando términos en la segunda:

$$\sum_{j=i}^{i-1} G_j w_j(t) = \sum_{j=i}^{i-1} (B_{ij} S_j) w_j(t)$$
(3.11)

Cuya solución trivial (condición suficiente, aunque no siempre necesaria), es la siguiente:

$$\mathbf{G}_{i} = \mathbf{B}_{ij}\mathbf{S}_{j} \tag{3.12}$$

Para todo $i \ge j$

Evaluando la ec. 3.12 para el caso particular i=j, se obtiene:

$$G_i = B_{ii}S_i \tag{3.13}$$

Pero como por definición $B_{ii} = 1$, se obtiene:

$$\mathbf{G}_{\mathbf{j}} = \mathbf{S}_{\mathbf{i}} \tag{3.14}$$

Mientras para que i>j se obtiene:

$$B_{ij} = \frac{G_{i}}{S_{j}} = \frac{S_{i}}{S_{j}}$$
(3.15)

Finalmente se deduce que:

$$B_{ij}S_{j} = S_{i}$$
 $j = 1, i$ $i = j + 1, n$ (3.16)

Ecuación conocida como Condición de Compensación. Al reemplazar 3.16 en la ec. 3.8, se obtiene:

$$\frac{dR_i(t)}{dt} = -\sum_{j=1}^{i-1} S_i w_j(t) = -S_i \sum_{j=1}^{i-1} w_j(t) = -S_i R_i(t)$$
(3.17)

Cuya solución, después de integrar la ecuación entre t=0 y t=t, es:

$$R_i(t) = R_i(0) \exp(-S_i t)$$
 (3.18)

Esta expresión corresponde al modelo discontinuo simplificado.

2.3 Función Velocidad Específica de Fractura

Para poder aplicar las ecuaciones derivadas anteriormente al dimensionamiento y optimización de circuitos industriales de conminución, primero se debe conocer el efecto de las distintas variables de operación y diseño del equipo sobre los parámetros cinéticos del modelo, las funciones S_j y b_{ij}. Una de las formas más usuales de lograr salvar este problema es relacionando la función velocidad de fractura, S_j con unidades de tiempo⁻¹, con la potencia suministrada al molino, según la siguiente ecuación:

$$\mathbf{S}_{i} = S_{i}^{\mathcal{E}} \left(\frac{P}{H} \right)$$
(3.19)

Donde el conjunto de constantes de proporcionalidad S^E_j, que tiene unidades de ton/KWh, para i=1, n es denominada comúnmente Función Velocidad Específica de Fractura y tiene como característica principal que es independiente de las dimensiones del molino y demás variables dentro de rangos normales de operación, exceptuando el tamaño de partículas, diámetro máximo de bola y distribución de la carga de bolas.

La ec. 3.19 es de partícular importancia, ya que por un lado agrupa en una simple correlación a la mayoría de las variables de interés práctico, y por otro, reafirma el concepto generalizado de que el consumo de energía específica es el parámetro controlante de la molienda, por lo que se debería utilizar para el escalamiento de resultados. En la ec. 3.19, la expresión "P / H" representa el consumo de potencia específica en el molino, siendo "P" la potencia espesa en KW y "H" el hold-up de sólidos, expresado en toneladas.

Otra conclusión interesante derivada de trabajos relacionados a este tema, es que la Función Distribución de Fractura b_{ij}, es invariante frente a cambios en las dimensiones y variables operacionales del molino.

Considerando ahora que el consumo específico de energía en la molienda discontinua está dado por:

$$\mathsf{E} = \frac{P}{H}t\tag{3.20}$$

Reemplazando 3.20 en 3.19, se obtiene:

$$S_{i} = S_{i}^{\mathcal{E}}\left(\frac{P}{H}\right) = S_{i}^{\mathcal{E}}\left(\frac{E}{t}\right)$$
(3.21)

De donde:

$$\mathbf{S}_{i} \mathbf{t} = \mathbf{S}_{i}^{E} E \tag{3.22}$$

Que constituye la relación clave, para expresar el modelo cinético de molienda discontinua en su forma normalizada.

$$\frac{d}{dE}w_{i}(E) = S_{i}^{E}w_{i}(E) + \sum_{j=1}^{i-1}b_{j}S_{j}^{E}w_{j}(E) \qquad ; \qquad i=1, n \qquad (3.23)$$

Esta última ecuación se obtiene reemplazando la ec. 3.22 en la ecuación diferencial del modelo cinético lineal de molienda discontinua y constituye una detallada relación de energía vs. tamaño. A través de esta expresión, se puede fácilmente visualizar que para un material dado, con distribución granulométrica inicial $f_i(0)$, una condición necesaria para alcanzar idénticas distribuciones granulométricas del producto de molienda en diferentes molinos discontinuos es el idéntico suministro de energía específica a cada molino, E, independiente de las dimensiones del molino y demás condiciones de operación, dentro de los rangos normales de operación.

2.4 La Ley de Bond, Un Caso Particular del Modelo Simplificado

A partir del Modelo Matemático Simplificado de Molienda Discontinua se puede demostrar que la ecuación de Charles Walker constituye un caso particular de éste, y por tanto, también lo es la Ley de Bond.

Escribiendo la ecuación 3.18 en función de la energía y la función velocidad específica de fractura, se obtiene:

$$R_i(E) = R_i(0) \exp(-S_i^{\varepsilon}E)$$
 (3.24)

Donde la función velocidad específica de fractura, S_{i}^{E} , i = 1,..., n, depende solamente del tamaño de partícula, x_i en µm, y de la resistencia del material a la fractura de independiente del tamaño del molino y de las condiciones de operación utilizadas en la molienda. Consideramos además que esta función puede representarse a través de una distribución tipo Schumman, con módulo de distribución α , como sigue:

$$S_i^E = k d_i^{\alpha}$$
; i=1,..., n (3.25)

Donde k es una simple constante de proporcionalidad, que depende de la dureza del mineral, mientras que el parámetro α depende de la forma como se fracturan las partículas.

Reemplazando 3.25 en 3.24, se obtiene:

$$R_i(E) = R_i(0) \exp(-k d_i^{\alpha} E);$$
 i=1,, n (3.26)

Para determinar el registro energético asociado a cada partícula, Primer Principio de la Tercera Teoría de la Conminución de Bond, se debe calcular en primer lugar el consumo de energía específica requerida para moler un material desde un tamaño teóricamente infinito hasta el tamaño 80% pasante de la alimentación a un test estándar de moliendabilidad; esto es, determinar $\overline{E_F}$ para R_I(0) = 1.00 y R_I($\overline{E_F}$) = 0.20 (20% retenido = 80% pasante). En la ec. 3.26 se obtiene:

$$0.20 = 1.00 \exp\left(-k F_{80}^{\alpha} E_{F}\right)$$
(3.27)

De donde:

$$E_{\rm F} = -\frac{\ln 0.2}{kF_{s0}^{\alpha}} \tag{3.28}$$

De igual forma, al calcular el consumo de energía específica requerida para moler el mismo material desde un tamaño infinito hasta el tamaño 80% pasante del producto final de un test estándar de molienda, P_{80} en μ m, y designemos por E_p dicho valor, en la ec. 3.26, se obtiene:

$$0.20 = \exp\left(-k P_{80}^{\alpha} E_{P}\right)$$
(3.29)

De donde:

$$\mathsf{E}_{\mathsf{P}} = -\frac{\ln 0.2}{k P_{30}{}^{\alpha}} \tag{3.30}$$

Designando por W = $\Delta E = E_p - E_F$ el consumo de energía específica requerida para llevar el material desde el tamaño F_{80} hasta el tamaño P_{80} . Obtenemos:

$$W = \frac{\ln 5}{k 100^{\alpha}} \left[\left(\frac{100}{P_{80}} \right)^{\alpha} - \left(\frac{100}{F_{80}} \right)^{\alpha} \right]$$
(3.31)

Denominando:

$$W_{i} = \frac{\ln 5}{k 100^{a}}$$
(3.32)

Reemplazando en la ec. 3.31:

$$W = W_{i} \left[\left(\frac{100}{P_{80}} \right)^{\alpha} - \left(\frac{100}{F_{80}} \right)^{\alpha} \right]$$
 (3.33)

El cual constituye el postulado de Charles Walker. La ecuación de Bond se obtiene suponiendo que α es igual a 0.5, esto es:

$$W = W_{i} \left[\left(\frac{10}{P_{s0}} \right) - \left(\frac{10}{F_{s0}} \right) \right]$$
(3.34)

El Wi quedaría dado por:

$$W_i = \frac{0.16094}{k}$$
(3.35)

2.5 Modelo Cinético General para un Proceso Continuo

La ecuación 3.1, además de su utilidad para representar un proceso discontinuo de conminución, juega un rol preponderante en la descripción del proceso de conminución continua.

En este caso, el proceso continuo de molienda puede ser descrito mediante el modelo de molienda discontinua utilizando la función distribución de tiempos de residencia para representar en forma estadística el tiempo de molienda de cada partícula de material. El modelo se basa en las siguientes suposiciones:

- El régimen es permanente
- La cinética de molienda puede ser descrita mediante ecuaciones lineales
- La función de distribución de tiempo de residencia, E(t), es única para todos los tamaños de partículas.

Designando por f_i y p_i las fracciones de partículas de tamaño *i* alimentadas y producidas por el molino respectivamente, y $w_i(t)$ la fracción de partículas de tamaño *i* producidas en el mismo molino para el tiempo *t* en molienda discontinua. Cuando la cinética de

molienda puede ser descrita por ecuaciones lineales, la molienda continua se comporta en forma similar a la molienda discontinua tal que cada fracción de partículas con tiempo de residencia t- θ en el molino continuo, adquiere la misma granulometría que tendría si hubiese sido molida por un tiempo t- θ en forma discontinua.

Siguiendo este razonamiento, Gardner y Verghese en 1975, usaron el modelo de Reid para desarrollar un modelo de molienda continua. Substituyendo la solución de Reid en la ecuación:

$$p_i = \int_{0}^{\infty} w_i(t) E(t) dt$$
 (5.1)

Donde E(t) dt representa la fracción de partículas que, habiendo entrado al sistema de conminución en el instante t=0, abandonará el mismo en el intervalo de tiempo t y t+dt. Así, se obtiene:

$$p_{i} = \int_{0}^{\infty} \left[\sum_{j=1}^{i} a_{ij} e^{-\tilde{s}_{ij}} \right] E(t) dt$$
(5.2)

De donde,

$$p_i = \sum_{j=1}^{i} a_{ij} e_j$$
 (5.3)

con:

$$\mathbf{a}_{ij} = \begin{pmatrix} 0 & i < j \\ f_i - \sum_{k=1}^{i-1} a_{ik} & i = j \\ 1 & \sum_{k=j}^{i-1} a_{ik} & i > j \\ S_i - S_j & \sum_{k=j}^{i-1} a_{ik} & i > j \end{pmatrix}$$

У

$$\mathbf{e}_{j} = \int_{0}^{\infty} e^{-S_{j}t} E(t) dt$$
(5.4)

En la solución de Luckie y Austin se obtiene:

$$\mathbf{p}_{\mathbf{i}} = \sum_{j=1}^{i} d_{ij} f_{j} \qquad \mathbf{n} \ge \mathbf{i} \ge \mathbf{j} \ge \mathbf{1}$$
(5.5)

$$d_{ii} = \begin{bmatrix} 0 & i < j \\ e_i & i = i \end{bmatrix}$$

$$\int_{0}^{1} - \int_{0}^{1-1} c_{ik} c_{jk} (e_{k} - e_{i}) \qquad i > j$$

$$\mathbf{c}_{ij} = \begin{bmatrix} -\sum_{k=1}^{j-1} c_{ik} c_{jk} & i < j \\ 1 & i = j \end{bmatrix}$$

$$\left(\frac{1}{S_i} - \frac{1}{S_j} \sum_{k=j}^{i-1} S_k b_{ik} c_{kj} \right) \qquad i > j$$

Con e_j dado por la ec. 5.4. Así se desprende que esta expresión es la transformada de Laplace de la función DTR con respecto a la variable S_j . De esta forma, para diversos tipos de funciones DTR se puede calcular su respectivo e_j .

2.6 Modelo Simplificado de Molienda Continua

En forma análoga, a partir del modelo simplificado de molienda discontinua desarrollado anteriormente, se puede derivar el Modelo Continuo Simplificado a partir de:

$$R_{i}^{P} = \int_{0}^{\infty} R_{i}^{B}(t) E(t) dt$$
(5.6)

Donde R_i^P representan la fracción acumulada retenida en el Producto de molienda obtenido después de una molienda continua y R_i^B representan la fracción acumulada retenida de la alimentación al molino después de una molienda continua. Reemplazando esta expresión en la ec. 3.18, y considerando la distribución de tiempos de resistencia, E(t), para *N* mezcladores iguales perfectamente mezclados, se obtiene:

$$R_{t}^{P} = \int_{0}^{\infty} R_{t}^{B} e^{-S_{t}t} \left(\frac{N \frac{N(t/\tau)}{\tau(N-1)!}}{\tau(N-1)!} \right) e^{-N\frac{t}{\tau}} dt$$
(5.7)

O bien:

$$R_{i}^{P} = \left[\frac{R_{i}^{B}N^{N}}{\tau^{N}(N-1)!}\right]_{0}^{\infty} t^{N-1} \exp\left[-\left(S_{i} + \frac{N}{\tau}t\right)\right] dt$$
(5.8)

Cuya solución es:

$$R_i^P = R_i^B \left[1 + \left(\frac{\tau}{N}\right) S_i \right]^{-N}$$
(5.9)

Esta ecuación corresponde al modelo continuo simplificado. Una forma equivalente de esta ecuación se obtiene reemplazando $S_i \tau$ por $S^{E_i}E$.

$$R_i^P = R_i^B \left[1 + \left(\frac{E}{N}\right) S_i^E \right]^{-N}$$
(5.10)

El valor de N, número de reactores perfectamente mezclados en serie, se puede aproximar por la razón Largo / Diámetro del molino, cuando esta varía entre 1 y 2.

Figura 2.1: Distribuciones teóricas de tiempos de residencia adimensionales para el modelo de N reactores en serie perfectamente mezclados.

CAPITULO 3

MODELOS EMPÍRICOS PARA HIDROCICLONES

3.1 Introducción

La simulación es reconocida hoy día como la mejor herramienta para la operación, control y optimización de los circuitos de molienda. La simulación de un circuito de molienda requiere de modelos para los molinos y para los hidrociclones. Los modelos de molinos que se utilizan están basados en al teoría fenomenológica de molienda como un proceso cinético de primer orden y en la teoría de distribución de tiempos de residencia.

Estas teorías han sido capaces de producir un modelo robusto que representan los molinos industriales con precisión necesaria. Con los hidrociclones ha sucedido algo distinto. Hasta el momento se utiliza modelos empíricos, tales como el de Lynch & Rao o el de Plitt, los que son de aplicación aceptable. La principal desventaja de estos modelos es el rango de aplicabilidad y la escasa información que los acompaña.

3.2 Modelación Empírica

Una manera de poder conocer como se comporta una operación unitaria bajo distintas condiciones ya sea de diseño, de operación o para distintos tipos de materiales procesados, sin alterar su funcionamiento en un circuito de producción, es necesario desarrollar modelos empíricos o fenomenológicos que permitan el estudio de su comportamiento, a través de la simulación.

Para la modelación empírica de un hidrociclón, en este caso, se requiere que los datos obtenidos experimentalmente sean previamente balanceados para que no existan inconsistencias en los valores medidos. La modelación consiste en una serie de ecuaciones que representan como se comportaría el hidrociclón bajo ciertas condiciones de operación, transformando datos de alimentación conocidos u obtenidos, en datos de producto que pueden ser finales o que pueden ser usados como datos de entrada para otra unidad operacional.

Cuando los modelos utilizados fueron obtenidos a partir de una base de datos experimental, recolectada de la misma disposición de las operaciones unitarias que se desea simular tiene un alto grado de confianza en su estimación, siempre que se los utilice dentro del rango de variables que forman la base de datos que les dio origen.

3.3 Requerimientos de Modelación

Los modelos deben ser capaces de predecir el comportamiento del clasificador frente a cambios en la granulometría, flujo y densidad de la pulpa alimentada, esto es, deben proporcionar información relativa a la granulometría, flujo y densidad en la descarga y el rebalse.

Los hidrociclones son equipos que operan con un alto flujo de material y que poseen un pequeño volumen interno. Por esta razón, sus características dinámicas son fundamentalmente diferentes de las otras unidades del proceso de molienda. A modo de comparación se puede decir que el tiempo de residencia del material en un hidrociclón es del orden de unos pocos segundos en tanto que en un molino éste es del orden de varios minutos. Por esta razón es que el hidrociclón es una unidad que puede ser moldeada

simplemente por una característica estática como lo confirman varios estudios que involucra la simulación estática de circuitos cerrados de molienda clasificación.

Un modelo estático para la clasificación en un hidrociclón debe permitir el cálculo de la granulometría, densidad y flujo total en la descarga y en el rebalse, a partir de la misma información en la alimentación. Por consiguiente, el número de variables dependientes del modelo está dado por:

N + 1	(variables en descarga)
N + 1	(variables en descarga)
2N + 2	(variables dependientes)

Los balances de materia para los distintos rangos de tamaño de sólido y de masa total aporta N + 1 ecuaciones al modelo del clasificador. En consecuencia para completar el modelo se requieren N + 1 ecuaciones adicionales. Estas ecuaciones son las que dan cuenta de la repartición de sólidos y del agua entre descarga y rebalse, y que en el estado actual del conocimiento en este campo no pueden obtenerse a partir de consideraciones fundamentales o fenomenológicas, debido al alto grado de complejidad que implica el escurrimiento de un sistema con alta concentración de sólidos. En vez de abordar este problema desde un punto de vista teórico, se ha optado por un enfoque empírico, basado en la correlación de gran cantidad de información experimental. Los modelos empíricos difundidos mas ampliamente corresponden a los trabajos de Lynch & Rao (1975) y de Plitt (1976).

3.4 Modelo de Lynch & Rao

El modelo de Lynch & Rao corresponde a un trabajo de regresión de datos obtenidos en diferentes plantas, considerando un amplio rango de tamaños de equipos, con diversas granulometrías y también para diferentes tipos de mineral. El resultado de esta investigación son cuatro ecuaciones con 10 parámetros ajustables.

Las ecuaciones son: una ecuación para la repartición de agua, una ecuación para la eficiencia de separación (curva de clasificación de sólidos), una ecuación para el tamaño de separación y una ecuación para la capacidad. Estas ecuaciones tienen validez en un rango no muy amplio de condiciones de operación y su utilización en rangos más grandes requiere de algunas modificaciones, como señalara mas adelante. Las ecuaciones del modelo Lynch y Rao se presentan a continuación:

Ecuación de capacidad volumétrica:

$Q = A_0 \times P \times V F \times (100 - FSF$	Q	=	A _o x	PA	x	VFA:	x	(100 - PSF)
---	---	---	------------------	----	---	------	---	-------------

Donde:

Dona	. .	
Q	:	flujo de pulpa, alimento al hidrociclón (m³/h)
Р	:	presión de alimentación al hidrociclón (PSI)
VF	1	diámetro del vortex (pulgadas)
PSF	1	porcentaje de sólidos en peso de la pulpa de alimentación al hidrociclón
Ao	Ξ	Constante típica del sistema mineral / hidrociclón
A ₁	=	0.500
A ₂	=	1.000
A ₃	=	0.125

Ecuación de distribución de agua:

WOF	=	$B_0 + B_1 \times WF + B_2 \times SPIG$
Donde	:	
WOF	5	flujo de agua en el overflow del hidrociclón (ton/h)
WF	:	flujo de agua en la alimentación del hidrociclón (ton/h)
SPIG	ž.	diámetro del apex (pulgadas)
B₀	=	Constantes típicas del sistema mineral / hidrociclón
B ₁	=	0.500
B ₂	=	1.000

Ecuación del d₅₀ corregido:

 $d_{50}(corr) = exp(C_0 + C_1 \times VF + C_2 \times SPIG + C_3 \times P + C_4 \times WOF)$

Donde:

VF	:	diámetro del vortex (pulgadas)
SPIG		diámetro del apex (pulgadas)
Р	:	presión de alimentación al hidrociclón (PSI)
WOF		flujo de agua en el overflow del hidrociclón (ton/h)
Co	=	Constantes típicas del sistema mineral / hidrociclón
C ₁	=	1 / 2.6
C ₂	=	-1/3.5
C3	=	1 / 10.7
C₄	=	-1 / 52

Ecuación de eficiencia de clasificación:

 $Y_{i}(corr) = \frac{\exp(\alpha x_{i}) - 1}{\exp(\alpha x_{i}) + \exp(\alpha) - 2}$

Donde:

x_i		d _i / d ₅₀ (<i>corr</i>)
α	:	constante empírica del mineral

El by-pass de agua:

Вр	=	1 – WOF / WF
Вр	=	$1 - B_1 - B_0 / WF - B_2 x$ (SPIG / WF)

La ecuación de eficiencia real:

	Y,(real)	=	$Y_{i}(con) \times (1 - Bp) + B$
--	----------	---	----------------------------------

Donde:		
Y _i (real)	1	eficiencia de clasificación real
Y (corr)	5	eficiencia de clasificación corregida
Вр	ж Х	by-pass de agua, fracción de agua del alimento que se reporta en el underflow

3.5 Modelo de Plitt

El modelo de Plitt reduce considerablemente la cantidad de parámetros ajustables, y en principio puede ser utilizado como un modelo predictivo. En cambio, requiere mayor cantidad de información acerca de las características geométricas del equipo, las cuales no siempre corresponden a las del diseño original del fabricante, debido a que los hidrociclones poseen revestimientos internos que sufren la acción abrasiva de la pulpa y en consecuencia sus dimensiones varían con el tiempo de operación.

Es importante señalar también el hecho de que en la construcción de este modelo el autor utilizó además de los datos experimentales empleados por Lynch & Rao otros obtenidos en distintos equipos. Este modelo puede ser aplicado en un rango bastante amplio de condiciones de operación lo que constituye una ventaja importante respecto del modelo presentado anteriormente. Las ecuaciones son las vigentes:

Curva de eficiencia corregida

 $Y_c = 1 - exp(-0.69315(d/d_{50}c)^m)$

Donde:

m	:	parámetro que caracteriza la acción del clasificador
d	2	tamaño de partícula (micrones)
d ₅₀ C	а ж	valor de d50c en micrones
Yc	2	eficiencia corregida para partículas de tamaño d.

Ecuación del d50c

$$d_{50}C = \frac{A_o D_c^{A_b} D_l^{A_c} D_o^{A_c} \exp(A_4 S \nu)}{D_o^{A_b} h^{A_b} Q^{A_b} (\rho_s - \rho_l)^{A_b}}$$

Donde:

d ₅₀ c	4	valor de d50 corregido (micrones)
Dc	:	diámetro interno del hidrociclón (pulgadas)
Di	•	diámetro interno de la abertura de alimentación del
-	(A))	diámetre interne de le charture de rehelee
Do	9906 -	o vortex del hidrociclón (pulgadas)
Sv	1	% volumétrico de sólidos en la pulpa de alimentación al hidrociclón
Du	•	diámetro interno de la abertura de descarga o apex del hidrociclón (pulgadas)
h		distancia entre la parte inferior del vortex y la parte superior del apex (pulgadas)
Q	:	flujo volumétrico de pulpa alimentada al hidrociclón; (pie ³ /min)
$ ho_s$	1	densidad del sólido (gr/cm³)
ρ_l		densidad del líquido (gr/cm ³)

Si no se dispone de esta información para las constantes se recomienda utilizar los valores: $A_1=0.46$; $A_2=0.60$; $A_3=1.21$; $A_4=0.063$; $A_5=0.71$; $A_6=0.38$; $A_7=0.45$; $A_8=0.50$; $A_0=35$, este último valor se debe determinar para cada sistema mineral / hidrociclón.

m = exp(K _o	+ K1 (1	$-R_v) + K_2 \ln (D_c^2 h / Q)$)
Donde: R	23	0 + 0 = (0 + 0) + (1 + 0 + 0) = 0 + (1 + 0)
I N _V	<u>*</u> ($Q_{u} / Q = (Q_{u} / Q_{o}) / (1 + Q_{u} / Q_{o}) = S / (1 + S)$
S		distribución de caudales volumétricos del rebalse y descarga del hidrociclón Q_u / Q_o
Q, Q _o , Q _u	24/ B	flujos volumétricos de pulpa de alimentación, rebalse y descarga del hidrociclón (pie ³ /min)

Los valores propuestos para las constantes son K_0 = -1, K_1 =1.58, K_2 =0.15

Ecuación de distribución de caudales volumétricos rebalse y descarga

$$S = \frac{B_o (D_u / D_o)^{B_1} h^{B_2} (D_u^2 + D_o^2)^{B_1} \exp(B_4 S v)}{H^{B_6} D_c^{B_6}}$$

Donde:

Н	-	presión estática de pulpa alimentada en pies
		H = 2.312 P / Densidad
Р	1	presión de alimentación (PSI)
Densidad		densidad de la pulpa de alimentación (gr/cm ³)

Los valores propuestos para las constantes son: $B_1=3.31$, $B_2=0.54$, $B_3=0.36$, $B_4=0.0054$, $B_5=0.24$, $B_6=1.11$, $B_0=2.9$ (valor que depende del sistema mineral / hidrociclón

$$Bp = \frac{S/(1-S) - (\sum_{i=1}^{n} f_i Yc_i)(Sv/100)}{1 - (\sum_{i=1}^{n} f_i Yc_i)(Sv/100)}$$

*f*_i : fracción granulométrica de la alimentación correspondiente al tamaño i

Y_{C_i} valor de eficiencia corregida correspondiente al tamaño i

Ecuación de Presión vs Capacidad

$$P = \frac{C_o Q^{C_1} \exp(C_2 S v)}{D_c^{C_1} D_i^{C_1} h^{C_1} (D_u^2 + D_o^2)^{C_1}}$$
$$Q = E_o P^{E_1} D_c^{E_2} D_i^{E_1} h^{E_1} (D_u^2 + D_o^2)^{E_2} \exp(-E_6 S v)$$

Unidades:

Р		PSI
Q	(2)	pie ³ /min
D_c, D_o, D_u, D_i, h	•	pulgadas

Los valores propuestos para las constantes son:

 $(C_0=4.7), C_1=1.78, C_2=0.0055, C_3=0.37, C_4=0.94, C_5=0.28; C_6=0.87$ $(E_0=0.21), E_1=0.56, E_2=0.21, E_3=0.53, E_4=0.16, E_5=0.49, E_6=0.0031$

En general, todas las constantes deben determinarse para cada sistema mineral / hidrociclón, pero si no se dispone de tal información, se pueden utilizar las propuestas por Plitt, y ajustar solamente el valor de una constante en cada ecuación, indicada con el subíndice ($_0$) con una información mínima del circuito.

CAPITULO 4

COLECCIÓN DE DATOS Y CALCULO DE PARÁMETROS DE LOS MODELOS

4.1 Generalidades

Un modelo matemático de un equipo en el procesamiento de minerales cumple la función de transformar la alimentación en producto, en términos de una representación analítica o estadística del proceso y la confiabilidad de los parámetros del modelo.

Los modelos de molinos de bolas e hidrociclones expuestos anteriormente son típicos ejemplos. Antes que estos modelos puedan ser usados para simular, los parámetros de los modelos necesariamente deben ser definidos.

En la mayoría de los casos los parámetros se obtienen desde serie de datos experimentales tomados del equipo a simular. Frecuentemente un conjunto de datos colectados del equipo sirven para definir todos los parámetros del modelo, pero en algunos casos, algunos parámetros pueden quedar no definidos, así existe un determinado número de grados de libertad para definir estos parámetros. La situación opuesta usualmente surge cuando más de un conjunto de datos está disponible para definir los parámetros del modelo. La redundancia de datos normalmente contiene inconsistencias y estas usualmente se resuelven con el uso del criterio del mínimo error al cuadrado para la estimación de los parámetros.

La necesidad de derivar los parámetros de los modelos desde datos experimentales se origina parcialmente a causa de que los modelos usados para la simulación son incompletos. No todas las variables disponibles están incluidas en la descripción analítica de la mayor parte de los modelos, esto puede ocurrir por que la variable es difícil de medir o tiene un efecto para el cual una representación analítica no tiene provecho. Un típico ejemplo de esto es la omisión de la velocidad de rotación del molino en el modelo básico de un molino de bolas. Para propósitos prácticos el modelo incompleto puede ser utilizado efectivamente para derivar un nuevo juego de parámetros cuando cambios son hechos a una variable la cual no está representada en el modelo.

La colección de datos precisos del proceso es una importante parte del procedimiento, esto nos conduce a varios problemas en el análisis de los datos, cuantificación estadística de los errores, uso de procedimientos de mínimos cuadrados, ajustes estadísticos y apreciación de los resultados.

En la aplicación práctica, de las técnicas disponibles para el problema de la simulación de un proceso, por ejemplo, la de un circuito cerrado de molienda, los siguientes pasos básicos son requeridos:

- Colección de datos de Planta.
- Cálculo de flujos o cálculo completo del balance de materiales.
- Cálculo de los parámetros de los modelos.
- Simulación, usando los parámetros derivados.

4.2 Colección de Datos de Planta

En el caso específico del circuito de molienda / clasificación de la Planta Concentradora Raura, los datos para el cálculo de los parámetros de los modelos se obtuvieron por :

- Muestreo manual usando cortadores, flujos de pulpa (análisis granulométrico, densidad de pulpa, gravedad especifica, balance de masa).
- Instrumentación, control de los tonelajes de alimentación al circuito.
 - Controles puntuales de voltaje y amperaje de los equipos.

El muestreo del circuito y controles se efectuó durante un periódo de tiempo de 08 horas, tiempo que garantizó una muestra representativa a condiciones de operación lo más estables posibles.

4.3 Cálculo de Flujos

Para el cálculo de los flujos de sólidos en el circuito se utilizó el criterio de errores aparentes del balance de materiales con corrección de datos por el método de multiplicadores de Lagrange.

PUNTO	PUNTOS DE MUESTREO	TMS/hr	Dp	Gravedad	%S	H₂O	Pulpa
	· · · · · · · · · · · · · · · · · · ·		(gr/it)	Específica		(it/min)	(tt/min)
1	DESCARGA 8'x8' B	79,22	2120	3,70	72,40	503,43	860,30
2	DESCARGA 8'x10' B	44,63	1950	3,30	69,90	320,28	545,65
3	DESCARGA 8'x10' A	40,75	1950	3,40	69,02	304,89	504,64
4	UNDERFLOW (GRUESOS)	79,22	2660	3,70	85,52	223,58	580,44
5	OVERFLOW (FINOS)	85,38	1320	3,35	34,56	2694,52	3119,27
6	FAJA 20	44,63	_	3,30		[]	
7	FAJA 14	40,75		3,40		_	
8	CAJON DEL UNDERFLOW (*)	79,22	2340	3,70	78,47	362,19	719,05
9	CAJON DE BOMBEO	164,60		3,52			

Los resultados de los cálculos se muestran a continuación .

(*) : Punto especialmente muestreado para determinar la cantidad de agua agregada al cajón de descarga del Underflow.

Análisis granulométrico inicial

MALLA		DESCARCA			DESCARGA		
MALLA	ADERTURA	DESCARGA	CICLON D 20"		DESCARGA	0'v40'D	
	PROMEDIO	0 X0 D	CICLON D-20		OXIUA	0 X 10 B	
	(um)	(n _i)	(O _i)	(u _i)	(r _i)	(m _i)	(t _i)
m4	5492	0.28	0.00	1.56	0.14	1.30	0.35
m10	2182	0.35	0.00	2.84	0.94	1.80	1.28
m30	651	3.32	0.78	17.04	8.71	9.15	6.40
m70	251	31.68	13.56	46.51	25.79	25.06	27.68
m100	178	20.39	12.85	16.31	11.14	12.47	15.88
m140	126	10.20	9.36	5.89	7.29	8.10	9.40
m200	89	6.45	7.09	2.92	5.83	6.71	6.73
m270	63	6.37	10.13	2.36	6.66	8.01	7.82
m325	49	3.97	6.02	1.20	4.41	4.26	4.31
-m325		16.99	40.21	3.37	29.09	23.14	20.16
		100.00	100.00	100.00	100.00	100.00	100.00

Tonelaje Molino 8 Tonelaje Molino 8	'x10' A 'x10' B	:	326 357	TMS TMS
K : 357/326	:	1.095		
K ₁ : 1/(1+K)	:	0.477		
K ₂ : K/(1+K)	:	0.523		

β : 0,481

Proporción del alimento al hidrociclón que va al underflow (gruesos), considerando como alimento a la unidad.
Análisis granulométrico corregido

MALLA	ABERTURA	DESCARGA	OVER FLOW	UNDER FLOW	DESCARGA	DESCARGA	ALIMENTO
	(um)	8'x8' B	CICLON D-20"	CICLON D-20"	8'x10'A	8'x10'B	CICLON D-20"
		(n _i)	(O _i)	(Այ)	(r _i)	(m _i)	(t _i)
m4	5492	0,411	0,000	1,297	0,217	1,375	0,624
m10	2182	0,746	0,000	2,486	1,165	2,026	1,197
m30	651	4,712	0,000	15,212	9,515	9,952	7,322
m70	251	31,506	11,494	46,394	25,692	24,959	28,292
m100	178	19,726	13,815	17,180	10,757	12,087	15,435
m140	126	9,760	10,282	6,721	7,037	7,850	8,568
m200	89	5,954	8,034	3,770	5,545	6,428	5,981
m270	63	6,358	10,646	2,817	6,656	8,003	6,878
m325	49	3,801	6,361	1,504	4,308	4,156	4,023
-m325		17,025	39,369	2,618	29,108	23,164	21,681
Sum	atoria	100,000	100,000	100,000	100,000	100,000	100,000

Los análisis de malla de la alimentación a los molinos primarios (fajas No. 14 y No. 20) se presentan a continuación :

MALLA	ABERTURA	Molino 8' x 10' A	Molino 8' x 10' B
	(um)	Faja No. 14	Faja No. 20
1. S. M		% peso	% peso
1"	25739	7,32	0,00
3/4"	20630	6,00	6,92
3/8"	10315	31,80	31,12
m4	5492	14,55	14,60
m10	2182	10,03	10,23
m30	651	10,67	12,10
m70	251	6,84	8,51
m100	178	2,29	2,65
m140	126	1,44	1,67
m200	89	1,07	1,36
m270	63	0,70	1,76
m325	49	0,28	1,97
-m325		7,02	7,10
Sun	natoria	100,00	100,00

Los análisis granulométricos que se presentan no han sufrido corrección alguna y corresponden a sus valores originales.

La corrección de estos datos no es posible, ya que estos no forman parte de ningún nudo en el circuito, lo que hace imposible una redistribución de errores en cada fracción de tamaño.

De estos datos se desprende que la alimentación al molino 8' x 10' A es más gruesa, ya que se

tiene 7.32% en el tamaño de más 1". Esto debido a la segregación en la distribución del producto de chancado hacia las tolvas de finos.

Algunos aspectos del cálculo del balance de masa se muestran enseguida

Como se conoce la relación entre F y G definimos las siguientes constantes :

K = G / F; $K_1 = 1/(1+K)$; $K_2 = K/(1+K)$

Entonces :

 $F = (1 - \beta) / (1 + K) = (1 - \beta) * K_1$ $G = (1 - \beta) * K / (1 + K) = (1 - \beta) * K_2$

Planteando un balance de materiales en cada nudo :

 $\Delta_{1i} = (t_i - o_i) + \beta * (o_i - u_i)$ $\Delta_{2i} = \beta * (n_i - K_1 * r_i - K_2 * m_i) - (t_i - K_1 * r_i - K_2 * m_i)$ Hidrociclón Cajón de bombeo

DIAGRAMA DEL BALANCE DE MASA

Figura 4.1: Esquema del balance de masa planteado

FLUJO	DESCRIPCION	FRACCION
F	Alimento molino 8' x 10' A	(1-β)*K ₁
G	Alimento molino 8' x 10' B	$(1 - \beta) * K_2$
R	Descarga molino 8' x 10' A	(1-β)*K ₁
м	Descarga molino 8' x 10' B	$(1 - \beta) * K_2$
U	Under del hidrociclón D - 20	β
0	Over del hidrociclón D - 20	(1-β)
N	Descarga molino 8'x 8' B	β
т	Alimento al hidrociclón D - 20	1

Minimizando los errores y hallando β :

 $S = \Delta_{1i}^2 + \Delta_{2i}^2$

 $dS / d\beta = 0$

$$\begin{split} \beta &= (\,(\,t_i - K_1 \,*\,r_i - K_2 \,*\,m_i\,)\,*\,(\,n_i - K_1 \,*\,r_i - K_2 \,*\,m_i\,) - (\,t_i - o_i\,)\,*\,(\,o_i - u_i\,)\,)\,/ \\ &\quad (\,(\,o_i - u_i\,)^2 \,+\,(\,n_i - K_1 \,*\,r_i - K_2 \,*\,m_i\,)^2\,) \end{split}$$

Los datos (fracciones en peso de partículas de tamaño i) corregidos son :

Usando los multiplicadores de Lagrange, hallamos :

 $\Delta \mathbf{r}_{i} = -\lambda_{2i} * (\mathbf{K}_{1} * (1 - \beta))$ $\Delta \mathbf{m}_{i} = -\lambda_{2i} * (\mathbf{K}_{2} * (1 - \beta))$ $\Delta \mathbf{n}_{i} = -\lambda_{2i} * \beta$ $\Delta \mathbf{t}_{i} = -\lambda_{2i} - \lambda_{1i}$ $\Delta \mathbf{u}_{i} = \beta * \lambda_{1i}$ $\Delta \mathbf{o}_{i} = -\lambda_{1i} * (\beta - 1)$

$$\begin{split} \lambda_{2i} &= ((\beta^*(u_i - o_i) + (o_i - t_i)) - (\beta^*(K_1 * r_i + K_2 * m_i - n_i) + (t_i - K_1 * r_i - K_2 * m_i)) \\ &* (-2\beta^2 + 2\beta - 2)) / (1 - (K_1^2 * (-\beta^2 + 2\beta - 1) + K_2^2 * (-\beta^2 + 2\beta - 1) - (\beta^2 + 1)) \\ &* (-2\beta^2 + 2\beta - 2)) \end{split}$$

 $\lambda_{1i} = (\beta^* (u_i - o_i) + (o_i - t_i) - \lambda_{2i}) / (-2\beta^2 + 2\beta - 2)$

4.3.1 Programa para la Corrección de Datos por Multiplicadores de Lagrange

El proceso antes descrito de cálculo del balance de materiales y corrección de datos se implementó en una hoja de cálculo (MS Excel), la cual cubrió nuestras necesidades de contar con un balance de materiales y datos coherentes de los análisis granulométricos. La necesidad de generalizar el proceso de corrección de datos por los multiplicadores de Lagrange para una configuración de circuito cualesquiera, debido a que esta es la etapa más engorrosa de los cálculos, nos motivó a elaborar un programa que nos simplifique este procedimiento.

4.3.1.1 Características Generales del Programa

El programa se desarrolló en lenguaje de programación MS Visual Basic 5.0, ocupa 64 KB y es ejecutable en ambiente Windows, siempre que se tenga instalado el controlador Msvbvm50.dll en la carpeta System del directorio Windows. El programa se basa en una solución general de tipo matricial.

La solución para el vector de valores corregidos se da ha continuación

 $\hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{W}^{-1} * \mathbf{A}^{\mathsf{T}} * (\mathbf{A} * \mathbf{W}^{-1} * \mathbf{A}^{\mathsf{T}})^{-1} * \mathbf{A} * \mathbf{Y}$

540) 27	Matriz de datos ajustados. Dimensión : No. de fluios x No. de datos por fluio
:	Matriz de datos originales.
	Dimensión : No. de flujos x No. de datos por flujo
:	Matriz de los factores de ponderación.
	Dimensión : No. de flujos x No. de flujos
:	Matriz que define la configuración del circuito.
	Dimensión : No. de nodos x No. de flujos
	; ; ;

4.3.1.2 Estructura del Programa

El programa consta de una primera ventana en la que se tiene un "Acerca del..." programa, luego en la ventana de fondo se configura el circuito por número de flujos y nudos, en otra ventana se ingresa el balance del circuito, luego se pide ingresar los factores de ponderación para la corrección de cada flujo, paso seguido se ingresa el número de datos por flujo y posteriormente los datos de cada flujo, finalmente se presenta una pantalla con los datos corregidos. Se tiene la posibilidad de grabar un archivo llamado "Imprimir.xls" en un disco extraible con los datos corregidos para luego ser recuperados en MS Excel y ser impresos.

La imagen muestra el inicio del programa, con la ventana "Acerca del..."

Figura 4.2: La primera ventana muestra algunos datos acerca del programa

La siguiente ventana muestra la configuración del circuito, por número de flujos y nodos, además se tiene la ventana de ingreso del balance de masa.

Abajo, bajo la misma ventana anterior, ahora se pide ingresar el factor de ponderación para cada flujo.

úmero de Fluios	7			
				× .
imero de Nodos			이 아랍니까 있	
ngresar datos	Ingreso de Dato		×	
	Nodo 1 : Flujo 1	The second second	DK	
			Cancel	
<u>S</u> alir	100		<u> </u>	
	1.00			

Figura 4.3: Se muestra el ingreso de la configuración del circuito

lúmero de Flujos ° 		
lúmero de Nodos 🛛 📔		
Ingresar datos	Ingreso de Datos	
Siguiente	Ponderación para el Flujo (1) o/1 DK	
	Cancel	
<u>>san</u>	<u>1</u>	
	Ponderación de la Corrección	
	Anterior Siguiente	

Figura 4.4: Ingreso del factor de ponderación para un determinado flujo

Enales	Programa	Grabar Archivo
Fluijo (1)	11.83333	
Fluijo (1)	11.5	
Fluijo (1)	15	
Flujo (1)	8.5	
Fluio (1)	23.16667	
Fluijo (2)	12.83333	
Fluijo (2)	13	
Fluijo (2)	25	
Fluijo (2)	6	
Fluijo (2)	33.16667	
Fluijo (3)	10.83333	
Fluijo (3)	10	
Fluijo (3)	5	
Fluijo (3)	11	
ດ ເພື່ອ ເພື່ອ	1216667	

Reporte Datos Corregidos

Figura 4.5: Esta ventana muestra los valores corregidos para cada flujo

Esta ventana presenta los resultados finales de la corrección y los botones correspondientes que permiten finalizar el programa y el de la posibilidad de grabar un archivo en un disco extraible.

4.4 Cálculo de la Función Selección Específica de Fractura y/o estimación de Parámetros de los Modelos

4.4.1 Molinos

En esta etapa calculamos los valores de S^E para cada tamaño de nuestra distribución granulométrica en cada uno de los molinos.

Usamos la siguiente fórmula:

$\left(\frac{1}{OUT}\right)^{1/N} - 1$

Donde:

Ν	1	relación largo / diámetro del molino
E	:	energía específica KWh/TM
R_i^{IN}	•	acumulado retenido º/1, alimentación al molino
R_i^{OUT}	ŝ	acumulado retenido º/1, descarga del molino
S_i^E	1	valor de la función selección específica para el
		tamaño "i"

Malla	Abertura Promedio	Función Se	elección Espe MOLINO	cción Específica (S, ^E) MOLINO	
		8' x 10' A	8' x 10' B	8' x 8' B	
m4	5492	15.540	3.272	0.794	
m10	2182	3.871	1.745	0.837	
m30	651	0.694	0.557	0.824	
m70	251	0.176	0.162	0.276	
m100	178	0.117	0.100	0.164	
m140	126	0.089	0.073	0.124	
m200	89	0.072	0.055	0.102	
m270	63	0.053	0.037	0.078	
m325	49	0.043	0.031	0.064	
-m325		0.000	0.000	0.000	
Diámetro	D	8	8	8	
Largo	L	10	10	8	
Relación N	LID	1.25	1.25	1.00	
Consumo Específico de Energía (TMS/KWh)		7.11	6.67	2.71	

Los valores que se obtuvieron para cada molino fueron:

FUNCIÓN SELECCIÓN ESPECÍFICA

Figura 4.6: Gráfica con los valores de la Función Selección Específica, para cada molino

4.4.2 Hidrociclón

El modelo de Lynch & Rao se utilizó para la modelación del hidrociclón. Las constantes que se determinaron para cada una de las ecuaciones fueron:

Ecuación de capacidad volumétrica:

 $Q = A_0 \times P^{A_1} \times VF^{A_2} \times (100 - PSF)^{A_1}$

Dond	e:	
Q	:	flujo de pulpa, alimento al hidrociclón (m ³ /h)
Ρ	:	presión de alimentación al hidrociclón (PSI)
VF	1	diámetro del vortex (pulgadas)
PSF	:	porcentaje de sólidos en peso de la pulpa de alimentación al hidrociclón
Ao	=	6.734 (para una presión de 11.25 PSI)
A ₁	=	0.500
A ₂	=	1.000
A ₃	=	0.125

Ecuación de distribución de agua:

WOF	=	$B_0 + B_1 \times WF + B_2 \times SPIG$
Donde	:	
WOF	:	flujo de agua en el overflow del hidrociclón (ton/h)
WF	1	flujo de agua en la alimentación del hidrociclón (ton/h)
SPIG	÷.	diámetro del apex (pulgadas)
Bo	=	-5.323 (para un WOF de 161.67 ton/h)
B ₁	=	0.500
B ₂	=	1.000

Ecuación del d₅₀ corregido:

 $d_{50}(corr) = exp(C_0 + C_1 \times VF + C_2 \times SPIG + C_3 \times P + C_4 \times WOF)$

Donde:

VF	:	diámetro del vortex (pulgadas)
SPIG		diámetro del apex (pulgadas)
Р	:	presión de alimentación al hidrociclón (PSI)
WOF	•	flujo de agua en el overflow del hidrociclón (ton/h)
Co	=	5.649 (para un d ₅₀ corregido de 175.42 micrones)
C ₁	=	1/2.6
C_2	=	-1 / 3.5
$\overline{C_3}$	=	1 / 10.7
C₄	=	-1 / 52

Ecuación de eficiencia de clasificación:

V.(com)	=	$\exp(\alpha x_i) - 1$
		$\exp(\alpha x_i) + \exp(\alpha) - 2$

Donde:

\boldsymbol{x}_i	:	d _i / d ₅₀ (<i>corr</i>)
α	1	constante empírica del mineral
α	=	1.9847, para nuestra aplicación

El by-pass de agua:

Bp	=	1 – WOF / WF
Вp	=	$1 - B_1 - B_0 / WF - B_2 x$ (SPIG / WF)
Bp	=	0.0766 °/1, para nuestro caso

La ecuació	ón de efic	ciencia real:
Yi(<i>real</i>)	=	$Y_i(corr) \times (1 - Bp) + Bp$

Donde: Y_i(real)

Y _i (real)	:	eficiencia de clasificación real
Y _i (corr)	i.	eficiencia de clasificación corregida
Вр	č.	by-pass de agua, fracción de agua del alimento que se
		reporta en el underflow

4.5 Programa para Simular el circuito de Molienda Clasificación

La necesidad de simular el circuito de molienda clasificación bajo distintas condiciones, flujos de agua de dilución, granulometrías de alimentación y diámetros de vortex y apex nos llevó a elaborar un programa que integre los modelos de los molinos y del hidrociclón.

4.5.1 Características Generales del Programa

El programa se desarrolló en lenguaje de programación MS Visual Basic 5.0, ocupa 147 KB y es ejecutable en ambiente Windows, siempre que se tenga instalado el controlador Msvbvm50.dll en la carpeta System del directorio Windows.

El programa utiliza los modelos de los molinos (Función Selección Específica) e hidrociclón (Lynch & Rao) planteados lineas arriba. Este simulador presenta los resultados de la simulación bajo la condición de estado estacionario y usa el criterio de convergencia de tonelajes ($1x10^{-9}$ toneladas) por iteraciones sucesivas, tonelaje de mineral fresco en la alimentación igual al tonelaje de mineral en el overflow.

4.5.2 Estructura del Programa

El programa simula los dos molinos primarios 8' x 10', el molino secundario 8' x 8' y el hidrociclón D-20.

Como variables de entrada al programa en ejecución son necesarios:

- Tonelaje de alimentación fresca (ton/h) para cada molino primario.
- Densidad de pulpa (gr/lt) de descarga de cada molino primario, el cual fija el flujo de agua en la alimentación de cada uno de los molinos.
- Las gravedades específicas del mineral (por cada molino).
- El flujo de agua (lt/min) de dilución al cajón de la bomba (lt/min).
- El flujo de agua (It/min) en la alimentación del molino secundario (underflow del hidrociclón).
- El diámetro en pulgadas del apex y vortex del hidrociclón.

Internamente dentro del programa se consignan los valores de la Función Selección Específica por cada molino y las constantes del modelo (Lynch & Rao) del hidrociclón.

El programa presenta finalmente el número de iteraciones realizadas para lograr la convergencia de tonelajes y un formulario resumen con los principales valores, del balance másico y de las variables operativas del circuito. Existe la posibilidad de grabar un archivo con las distribuciones granulométricas de cada uno de los flujos del circuito.

A continuación cada una de las pantallas que se presentan durante la ejecución del programa.

Figura 4.7: Primera ventana muestra algunas referencias acerca del programa

Figura 4.8: Muestra cada uno de los botones, para los cuales es necesario ingresar información

PROGRAMA DE SILOIO CONCENTRA

Molino B' x 10" A	Ingreso de Datos		2
Molino 8' x 10' B	Abertura de Malla (9) micrones		Aceptar Cancelar
Molino 8' x 8' B	48.84		
1	Date: del Date:	19 s.	리미지
Cajón Bomba 8' x 10'			1
	Número de Tamices	10	
Hidrociclón D-20"			
	Aberturas		
			1

Figura 4.9: Se muestra el ingreso del número de tamices y las aberturas de estos

PHOGRAMA DE SIMONA IN ESTA

Datos de los Tamices			
Molino 8' x 10' A			Marken G 11 C
	Ingreso de Datos		2
	Peso Mala (10) %		Aceptar
Molino 8" x 10" B			Cancelar
Molino 8' × 8' B	7.01		
			-미즈
Cajón Bomba 8" x 10"		10.7	
	Flujo de mineral	40.75	ton/h
		24	
HIGOCALEPI D-20	Densidad del mineral	3.4	gr/cc
		1950	1.00
Simular	Densidad de descarga	1330	gr/n
			- (a)

Figura 4.10: Ingreso de datos acerca de la operación del molino 8' x 10' A

43

```
- 18 X
```

PROGRAMA DE SIMULACION			遺解的にない	_18
Datos de los Tamices				
Malino 8' x 10' A	Ingreso de Datos		×	
Malino 8' x 10' B	Peso Malla (10) %		Aesptar Cancelar	
Molino 8' x 8' B	7.10			
Cajón Bomba 8'' x 10''.	Molino 8' x 10' B	44.63	ion/h	
Hidrociclán D-20"	Densidad del minesal	3.3	gr/cc	
Simular	Densidad de descarga	1950	gr/it	
Ietminar Programa	Almento	Aceptar		

Figura 4.11: Ingreso de datos acerca de la operación del molino 8' x 10' B

PR0	GRAMA DE SIMULACION	<u>-le</u>	×
¥ S	Datos de los Tamices		
	Molino 8' x 10' A		
	Malino 8' x 10' B	Melino 8' x 8' 8	
	Malino 8' x 8' B	Caudal Agua Fresca al molino 279.85 k/min	
	Cajón Bomba 8" x 10"	Aceptar	
	Historication D-20"		
	Simular		
	Ieminar Programa		

Figura 4.12: Ingreso del caudal de agua fresca en la alimentación del molino secundario

Figura 4.13: Ingreso del caudal de agua de dilución al cajón de la bomba

PROGRAMA DE SIMULACION		_ # ×
Datos de los Tamicas		
Molino 8' x 10' A		
Malino 8' x 10' B	Hidrocictón D - 20"	
Molino 8' x 8' B	Diámetro de Vortez 6 pulgadas	
Cajón Bomba 8' x 10'	Diámetro de Apex 2.56 pulgadas	
Hidrociclán D-20"	Acepter	
Simular		
Ismina Programa		

Figura 4.14: Ingreso del los diámetros de vortex y apex del hidrociclón

🗖 Reporte de Simulación

	-	8	×	
--	---	---	---	--

	NOLINO 8" x	10' A (Comesa) M	DLINO 8' x 10	D' B (Comesa)	
Flujo de mineral	40.75	ton/h		44.63	ton/h	
Derwidad del mineral	3.4	gr/cc		3.3	gr/cc	
Derwidad de pulpa en la descarga	1950	gr/it		1950	gr/R	
Flujo de pulpa en la descarga	504.64	ft/min		545.72	k/min	
Flujo de agua fresca al molino	304.89	R/min		320.31	k/nin	
	MOLINO 8' x	8' B (Conesa)				
Flujo de mineral				f .		
Densidad de pulpa en la descarga						
Flujo de pulpa en la descarga						
Flujo de agua fresca al molino	Se logró Convei	rgencia:				
Flujo de agua en la descarga		5				
	Herzeión Número :	20				
		30		1		
Fiujo de agua mesica al cajon	Alimetación Fresca :	85 39	ton/h			
		03.30	COIN II			
	Overflow :	85.38	tan/h	1		
2					Over Flow	
Flujo de mineral				h	85.38 to	on/h
Flujo de pulpa	[Graha	Ambia i		n	3119.61 #	Jain
Flujo de agua	i <u>Q</u> iaba			İn	2694.55 N	/min
Z sálidos en peso				1	34.56 2	:
Z sálidos en volúmen	20.00 -		00.10 %	1	13.63 2	5
ζ- m200	33.42 2		8.75 %		55.56 2	
Denxidad de pulpa	1523.87 g	r/lit	2637.37 gr/l	t	1319.89 g	r/h
Denxadad de mineral	3.51 gi	r/cc	3.70 ga/o	CIC .	3.35 g	r/cc
d(50) Corregido	173.99	icrones				
Presión de alimentación	11.16 P	SI				
Carga Circulante	89.73 2					
Proporción al Under flow	47.29 %	:				
By - pass	7.66 2					

Figura 4.15: Número de iteraciones realizadas para conseguir la condición de equilibrio

Reporte de Simulación						-
	NOLINO E	r z 10° A (Comesa)	MOLINO 8' x	10° 8 (Conses	a)
Flujo de mineral	40.75		ton/h	44.63	ton/h	
Denxidad del mineral	3.4		gt/cc	3.3	gı/cc	
Denxidad de pulpa en la descarga	1950		gr/lt	1950	gı/h	
Flujo de pulpa en la descarga	504.6	4	- It/min	545.72	k/min	
Flujo de agua fresca al molino	304.8	9	t/min	320.31	lt/min	
	NOLINO 8	r x 8° 8 (C	(anesa)			
Flujo de mineral	76.61		ton/h			
Denxidad de pulpa en la descorga	2097.	49	gr/it			
Flujo de pulpa en la descarga	848.7	4	t/min			
Flujo de agua fresca al motino	279.8	5	t/min			
Flujo de agua en la descarga	503.4	3	t/min			
	CAJÓN BO	DMBA 10"	K 8" (Denver)			
Flujo de agua fresca al cajón	1789.	50	t/min			
	HIDROCIO	CLÓN D-20) (Kreps)			
	Atimento		Under Fla		Over Flow	
Flujo de mineral	161.99	ton/h	76.61	ton/h	85.38	ton/h
Flujo de pulpa	3686.61	k/nin	568.89	lt/min	3119.61	tt/nin
Flujo de agua	2918.13	k/min	223.58	lt/min	2694.55	ħ/min
X sálidas en peso	48.06	z	85.10	z	34.56	z
2 sólidos en volúnen	20.85	z	60.70	z	13.63	z
% - m200	33.42	z	8.75	z	55.56	z
Densidad de pulpa	1523.87	gr/R	2637.37	gr/it	1319.89	gr/lt
Derwidad de mineral	3.51	gı/cc	3.70	gr/cc	3.35	gr/cc
d(50) Corregido	173.99	micrones	:			
Presión de alimentación	11.16	PSI				
Carga Circulante	89.73	z				
Proporción al Under flow	47.29	z				
By - pass	7.66	z				

Figura 4.16: Ventana que muestra un resumen de los resultados de la simulación

CAPITULO 5

SIMULACIONES DEL CIRCUITO MOLIENDA CLASIFICACIÓN

5.1 Simulación del Circuito en condiciones Actuales de Operación

Esta simulación está referida a las condiciones operacionales bajo las que se determinaron los parámetros de los modelos, idealmente los valores de Planta deberían ser iguales a los valores obtenidos por simulación (Simulación 0).

Item	Unidades	Valor de Planta	Valor Simulado	Dif. Absoluta
Molino Primario 8´ x 10´ A				
Fluio de mineral	ton/h	40.75	40.75	0.00
Densidad de pulpa en la descarga	ar/It	1950	1950	0.00
Fluio de pulpa en la descarga	It/min	504.64	504.64	0.00
Fluio de agua fresca al molino	It/min	304.89	304.89	0.00
Molino Primario 8' x 10' B				
Flujo de mineral	ton/h	44.63	44.63	0.00
Densidad de pulpa en la descarga	ar/It	1950	1950	0.00
Fluio de pulpa en la descarga	It/min	545.65	545.72	0.07
Flujo de agua fresca al molino	It/min	320.28	320.31	0.03
Caión de Bomba				
Fluio de agua fresca	I It/min	1789.50	1789.50	0.00
Molino Secundario 8' x 8' B				
Fluio de mineral	ton/h	79.22	76.61	-2.61
Densidad de pulpa en la descarga	ar/It	2120	2097	-22.51
Fluio de pulpa en la descarga	It/min	860.30	848.74	-11.56
Fluio de aqua fresca al molino	It/min	279.85	279.85	0.00
Hidrociclón Krebs	· · · · · · · · · · · · · · · · · · ·			
Alimento	200		A second second	
Fluio de mineral	ton/h	164.60	161.99	-2.61
Fluio de pulpa	It/min	3699.71	3686.61	-13.10
Fluio de agua	It/min	2918.09	2918.13	0.04
% sólidos en peso	%	48.45	48.06	-0.39
% sólidos en volúmen	%	21.07	20.85	-0.22
% -m200	%	32.58	33.42	0.84
Densidad de pulpa	or/It	1531	1524	-7.13
Under Flow	<u> </u>			
Fluio de mineral	tor/h	79.22	76.61	-2.61
Fluio de pulpa	It/min	580.44	568.89	-11.55
Fluio de aqua	It/min	223.58	223.58	0.00
% sólidos en peso	%	85.52	85.10	-0.42
% sólidos en volúmen	%	61.48	60.70	-0.78
% -m200	%	6.94	8.75	1.81
Densidad de pulpa	gr/lt	2660	2637	-22.63
Over Flow	2			
Flujo de mineral	ton/h	85.38	85.38	0.00
Flujo de pulpa	It/min	3119.27	3119.61	0.34
Flujo de agua	It/min	2694.52	2694.55	0.03
% sólidos en peso	%	34.56	34.56	0.00
% sólidos en volúmen	%	13.62	13.63	0.01
% -m200	%	56.38	55.56	-0.82
Densidad de pulpa	gr/lt	1320	1320	-0.11
Otros Valores				
d(50) corregido	um	175.42	173.99	-1.43
Presión en el hidrociclón	PSI	11.25	11.16	-0.09
Carga Circulante	%	92.79	89.73	-3.05
Proporción al under flow	%	48.13	47.29	-0.84
By - pass de finos	%	5.81	7.66	1.85

El hidrociclón operó con un apex de 2.56" de diámetro y un vortex de 6" de diámetro.

MALLA	ABERTURA	O/F Hid	rociclón	U/F Hid	rociclón	Almto. Hi	drociclón
	(um)	Real	Simulado	Real	Simulado	Real	Simulado
m4	5492	100.00	100.00	98.70	98.66	99.38	99.37
m10	2182	100.00	100.00	96.22	96.10	98.18	98.16
m30	651	100.00	99.95	81.00	80.51	90.86	90.76
m70	251	88.51	86.74	34.61	37.36	62.57	63.39
m100	178	74.69	73.56	17.43	19.30	47.13	47.90
m140	126	64.41	63.60	10.71	12.22	38.56	39.30
m200	89	56.38	55.56	6.94	8.75	32.58	33.42
m270	63	45.73	45.18	4.12	5.69	25.70	26.50
m325	49	39.37	39.00	2.62	4.23	21.68	22.56
-m325		0.00	0.00	0.00	0.00	0.00	
Coeficiente o	de correlación		1.000		1.000		1.000

Las distribuciones granulométricas reales de Planta y simuladas fueron:

Gráfico 5.1

CURVAS ACUMULADO PASANTE (REAL vs SIMULADO)

MALLA	ABERTURA	Descarga	a 8' x 10' A	Descarga	8' x 10' B	Descarga	a 8' x 8' B
	(um)	Real	Simulado	Real	Simulado	Real	Simulado
m4	5492	99.78	99.78	98.63	98.63	99.59	99.58
m10	2182	98.62	98.62	96.60	96.60	98.84	98.82
m30	651	89.10	89.11	86.65	86.64	94.13	94.03
m70	251	63.41	63.36	61.69	61.69	62.62	64.40
m100	178	52.65	52.70	49.60	49.54	42.90	44.39
m140	126	45.62	45.50	41.75	41.81	33.14	34.55
m200	89	40.07	40.09	35.32	35.37	27.18	28.74
m270	63	33.42	33.31	27.32	27.42	20.83	22.35
m325	49	29.11	29.26	23.16	23.29	17.02	18.57
-m325		0.00	0.00	0.00	0.00	0.00	0.00
Coeficiente	de correlación		1.000		1.000		1.000

Gráfico 5.2

CURVAS ACUMULADO PASANTE (REAL vs SIMULADO)

5.2 Simulación del Circuito aumentando la dilución de pulpa en la alimentación del Hidrociclón

Para estudiar el efecto de una mayor adición de agua de dilución al cajón de la bomba del hidrociclón se efectuaron 6 simulaciones, el rango de trabajo fue de +/- 20% de la cantidad de agua normal de operación.

INFLUENCIA DEL AGUA DE DILUCION EN EL % C.C. Y EL % - m 200 EN EL OVERFLOW

De estas simulaciones se desprende que una mayor adición de agua favorece a incrementar la fineza del producto (% -m200 en el overflow), teniéndose en el caso extremo que una adición de 20% más de agua permite ganar hasta 3.44% más en el porcentaje de menos 200 mallas del overflow. Este margen podría traducirse en un incremento de tonelaje siempre y cuando la capacidad de la bomba nos lo permita.

También queda demostrado para nuestro circuito que el incremento de la carga circulante es favorable para la obtención de un producto mas fino del circuito.

Flujo de agua de dilución al cajón (lt/min)

El mejoramiento en la fineza de nuestro overflow, se puede explicar por una mejor clasificación, disminución del by pass de finos al underflow (alimento al molino secundario).

Sin embargo se observó en las simulaciones, que un incremento de agua dilución produce un aumento del % de sólidos del underflow, el cual es peligroso por el posible "roping" que pudiera ocurrir. En condiciones normales nuestro % de sólidos es 85.10%, con una adición de +20% de agua de dilución este porcentaje de sólidos se elevaría ha 89.07%.

Una estimación teórica del % de sólidos del underflow crítico previo al "roping" se obtiene mediante el criterio de Laguitton D. (The SPOC Manual Simulated Procesing of Ore and Coal, CANMET EMR Canada,1985), el cual se aplica para pulpas con menos de 35% de sólidos por volumen en la alimentación del hidrociclón.

 $C_{uv} > 56 + 0.2 (C_{vf} - 20)$ Donde: $C_{uv} : %$ sólidos en volumen del underflow $C_{vf} : %$ sólidos en volumen de la alimentación

Para el caso de operación normal de la Planta de acuerdo a la fórmula dada obtenemos un $C_{uv} > 56.17\%$, sin embargo nosotros durante la operación obtuvimos un % de sólidos por volumen en el underflow de 60.70% mucho mayor al 56.17%, no observándose en la operación el efecto "roping", por lo que este criterio no podría aplicarse. La alternativa que nos quedaría sería la de comprobar a nivel industrial cual es el porcentaje de sólidos límite previo al "roping".

Otro factor de importancia a observar sería el % de sólidos del overflow, una mayor dilución de este implicaría un menor tiempo de flotación en la etapa rougher bulk, en el caso de un 20% adicional de agua de dilución el tiempo de flotación decrecería en aproximadamente 10%, lo que sin duda afectaría en la recuperación del Cu, por su cinética de flotación mas lenta.

5.3 Simulación del Circuito variando el Apex y el Vortex del Hidrociclón

El objetivo de estas simulaciones fue la estudiar los efectos en el circuito al variar el apex y vortex del hidrociclón. Para este caso se efectuaron 9 simulaciones.

Nuestro vortex estándar es de 6 pulgadas de diámetro, un aumento o disminución de este produce un engrosamiento de las partículas del overflow, siendo más perjudicial el aumento de diámetro que la disminución.

Nuevamente se observa la relación inversa entre el porcentaje de la carga circulante con el tamaño de corte del hidrociclón.

Para el caso de la caída de presión en el hidrociclón observamos un decrecimiento uniforme de esta conforme se aumenta el vortex.

Queda demostrado que cuando se quiere afinar el tamaño de partículas del overflow no es sufiente disminuir el diámetro del vortex, también debemos considerar una variación del diámetro del apex.

Gráfico 5.6

En cuanto a la influencia en el porcentaje de sólidos del underflow esta no es significativa.

El variar el diámetro de vortex no tiene influencia alguna sobre el by pass de finos al underflow.

El apex estándar es de 2.5 pulgadas (medición de campo 2.56 pulgadas). Al incrementar el diámetro del apex se observa un incremento de la carga circulante con el consiguiente incremento del porcentaje de menos 200 mallas en el overflow y disminución del tamaño de corte del hidrociclón. A pesar del ligero incremento del by pass de finos al underflow.

En cuanto a la caída de presión en el hidrociclón esta se incrementa al incrementar el diámetro del apex.

El % de sólidos del underflow presenta una disminución al incrementar el diámetro del apex. Por lo que la presencia del fenómeno "roping" queda descartada.

Gráfico 5.8

Gráfico 5.7

La limitante para el incremento del diámetro de apex como factor optimizante quedará supeditada por la capacidad de la bomba de alimentación al hidrociclón y la capacidad del molino secundario, ya que como se vió anteriormente el incremento del diámetro de apex produce un incremento de la carga circulante.

Una estimación del máximo de carga circulante permitida por el circuito al ritmo actual de molienda, 85.38 ton/h, con la consideración del consumo específico de energía del molino secundario, 2.67 KWh/ton, y la potencia instalada del motor del molino, 298 KW: nos arroja una máxima carga circulante de 131% (111.6 ton/h de alimentación al molino secundario).

Este porcentaje de carga circulante se estaría alcanzando con un apex de 3 pulgadas de diámetro, por lo que en base a este análisis se recomendaría trabajar con un apex de 2.75 pulgadas de diámetro.

5.4 Simulación del Circuito variando la densidad de la descarga del Molino Secundario con densidad en el overflow del Hidrociclón constante

Visto el beneficio de incrementar el flujo de agua de dilución al cajón de la bomba del hidrociclón, pero con las restricciones principales de la dilución del overflow (acortamiento del tiempo de flotación en el rougher bulk) y capacidad de la bomba, se estimó por conveniente simular el circuito variando las proporciones de adición de agua al circuito (agua adicionada al cajón de la bomba y agua adicionada al underflow / alimentación del molino secundario), de tal forma que siempre se mantuvo constante el porcentaje de sólidos del overflow 35.46% (1320 gr/lt).

La operación normal en la Planta se hace con una distribución de agua de la siguiente forma, 86% (1789 lt/min) al cajón de la bomba y 14% (280 lt/min) al underflow, obteniéndose un 71.7% de sólidos en la descarga del molino secundario (2097 gr/lt). Esta distribución de agua deja un estrecho margen de incremento de agua al cajón de la bomba.

INFLUENCIA DEL FLUJO DE AGUA FRESCA AL CAJON DE BOMBEO EN

El gráfico anterior muestra que cuando se incrementa la proporción de agua al cajón de la bomba, la densidad de pulpa (sólidos) de descarga del molino secundario se incrementa, mientras que la densidad del underflow es decreciente. Esto sólo puede explicarse por el decremento que sufre la carga circulante.

Debemos tener en cuenta un hecho importante, el % menos 200 mallas del overflow se incrementa, por el mayor tiempo de residencia de la pulpa en el molino. El tamaño de corte del hidrociclón como es de suponer también decrece.

INFLUENCIA DEL FLUJO DE AGUA FRESCA AL CAJON DE BOMBEO EN ALGUNAS VARIABLES OPERATIVAS

Al aumentar la proporción de agua al cajón de la bomba el porcentaje de sólidos de alimento al hidrociclón obviamente disminuye.

Gráfico 5.11

De estas simulaciones desprendemos que deberíamos operar con una distribución de agua entre 90% a 95% del total al cajón de la bomba del hidrociclón. Con esta distribución obtendríamos en la descarga del molino secundario un porcentaje de sólidos entre 74% a 78%.

5.5 Hojas de simulación

A continuación presentamos las hojas reporte de cada una de las simulaciones realizadas en los acápites anteriores.

Simulación 0 (Condiciones actuales de operación)

	MOLINO 8	3' x 10' A	(Comes	a)	MOLINO	8' x 10' B (Comes	a)
Flujo de mineral	40,75		ton/h		44,63	3 ton/h	
Densidad del mineral	3,4		gr/cc		3,3	gr/cc	
Densidad de pulpa en la descarga	1950		gr/lt		1950	gr/lt	
Flujo de pulpa en la descarga	504,6	4	lt/min		545,7	72 lt/min	
Flujo de agua fresca al molino	304,8	9	lt/min		320,3	31 It/min	
	MOLINO 8	3" x 8" B	(Comesa))			
Flujo de mineral	76,61		ton/h				
Densidad de pulpa en la descarga	2097,	49	gr/lt				
Flujo de pulpa en la descarga	848,7	4	lt/min				
Flujo de agua fresca al molino	279,8	5	lt/min				
Flujo de agua en la descarga	503,4	3	lt/min				
	CAJÓN BO	DMBA 10)"x 8" (D	enver)			
Flujo de agua fresca al cajón	1789,	50	lt/min				
	HIDROCIC	CLÓN D-	20 (Kreb	s)			
	Alimento			Under Flo	~	Over Flow	,
Flujo de mineral	161,99	ton/h		76,61	ton/h	85,38	ton/h
Flujo de pulpa	3686,61	lt/min		568,89	lt/min	3119,61	lt/min
Flujo de agua	2918,13	lt/min		223,58	lt/min	2694,55	lt/min
🎗 sólidos en peso	48,06	z		85,10	z	34,56	z
X sólidos en volúmen	20,85	z		60,70	z	13,63	z
% - m200	33,42	z		8,75	z	55,56	z
Densidad de pulpa	1523,87	gr/lt		2637,37	gr/lt	1319,89	gr/lt
Densidad de mineral	3,51	gı/cc		3,70	gr/cc	3,35	gr/cc
d(50) Corregido	173,99	micron	82				
Presión de alimentación	11,16	PSI					
Carga Circulante	89,73	z					
Proporción al Under flow	47,29	z					
By - pass	7,66	z					

Simulación 0, 1, 2, 3, 4, 5 (Aumentando el agua de dilución al cajón de la bomba)

Simulación 0, 11, 12, 13, 14 (Aumentando el diámetro de apex)

Simulación 0, 21, 22, 23, 24 (Aumentando el diámetro de vortex)

Simulación 0, 31, 32, 33, 34, 35 (Aumentando la proporción de agua al cajón de la bomba, pero manteniendo constante los sólidos del overflow)

By - pa**ss**

	NOLINO 8' x	10'A (Comes	a)	MOLINO 8' x	10' B (Comesa	1)
Flujo de mineral	40.75	ton/h		44.63	ton/h	
Densidad del mineral	3.4	gr/cc		3.3	gı/cc	
Densidad de pulpa en la descarga	1950	gr/R		1950	gr/R	
Flujo de pulpa en la descarga	504.64	lt/min		545.72	lt/min	
Flujo de agua fresca al molino	304.89	lt/min		320.31	lt/min	
	NOLINO 8' x 3	8' B (Comesa)			
Flujo de mineral	62.71	ton/h				
Densidad de pulpa en la descarga	1931.39	gr/R				
Flujo de pulpa en la descarga	818.61	lt/min				
Flujo de agua fresca al molino	279.85	lt/min				
Flujo de agua en la descarga	535.96	lt/min				
	CAJÓN BOMB	A 10"x 8" (D	enver)			
Flujo de agua fresca al cajón	1431.60	lt/min				
	HIDROCICLÓ	N D-20 (Kreb	.			
	Alimento		Under Flo	~	Over Flow	
Flujo de mineral	1 48.09 to	n/h	62.71	ton/h	85.38	ton/h
Flujo de pulpa	3298.77 lt/	min	538.76	lt/min	2761.71	lt/min
Flujo de agua	2592.76 k/	min	256.11	lt/min	2336.65	lt/min
🎖 sólidos en peso	48.77 X		80.32	z	37.85	z
Z sólidos en volúmen	21.40 🏅		52.46	z	15.39	z
≿ - m200	34.86 %		11.07	z	52.34	z
Densidad de pulpa	1534.16 gr/	/R	2415.18	gr/k	1361.35	gr/lt
Densidad de mineral	3.5 gr/	/cc	3.70	gr/cc	3.35	gı/cc
d(50) Corregido	214.19 mi	ciones				
Presión de alimentación	8.97 PS	1				
Carga Circulante	73.44 2					
Proporción al Under flow	42.34 2					
By - pa ss	9.88 %					
Simulación 2						
- · · · ·	MOLINO 8' x	10' A (Comes	aj	MOLINO 8' x	10' B (Comesa)
Flujo de mineral	40,75	ton/h		44,63	ton/h	
Densidad del mineral	3,4	gr/cc		3,3	gr/cc	
Densidad de pulpa en la descarga	1950	gr/lt		1950	gr/it	
Flujo de puipa en la descaiga	3U4,64 204.00			545,72 220,21		
Flujo de agua fresca al molino	304,89			320,31	1 (/min	
	MOLINO 8' x	8° B (Comesa)			
Flujo de mineral	80,60	ton/h				
Densidad de pulpa en la descarga	2141,39	gr/lt				
Flujo de pulpa en la descarga	858,59	lt/min				
Flujo de agua fresca al molino	279,85	lt/min				
Flujo d e agua en la descarga	495,29	lt/min				
	CAJÓN BONB	A 10"x 8" (D	enver)			
Flujo de agua fresca al cajón	1878,98	lt/min				
	HIDROCICLÓ	N D-20 (Kreb	s}			
	Alimento		Under Flo	~	Over Flow	
Flujo de mineral	165,98 to	n/h	80,60	ton/h	85.38	ton/h
Flujo de pulpa	3785,89 lt/	min	578,74	lt/min	3209,09	lt/min
Flujo de agua	2999,47 lt/	min	215,44	lt/min	2784,03	lt/min
🎗 sólidos en peso	47,98 X		86,18	z	33,82	z
X sólidos en volúmen	20,77 %		62,77	z	13,25	z
% - m200	33,06 %	41.	8,31	Z	56,42	z
Densidad de pulpa	1522,96 gr	/IC	2693,32	gr/lt	1310,97	gr/lt
Vensidad de mineral	3,52		3,70		3,33	
d(50) Conegido	166,04 mi	ciones				
Presión de alimentación	11,77 PS	51				
Carga Circulante	94,40 %					
Proporción al Under flow	48,56 %					
By - pass	7,18 %					

_		MOLINO 8	' x 10' A	(Comesa	a)	MOLINO	8' × 10' B	(Comesa	ı
	Flujo de mineral	40.75		ton/h	-,	44,6	3	ton/h	,
	Densidad del mineral	3,4		gr/cc		3,3		gr/cc	
	Densidad de pulpa en la descarga	1950		gr/lt		1950)	gr/lt	
	Flujo de pulpa en la descarga	504,64	4	lt/min		545,	72	lt/min	
	Flujo de agua fresca al molino	304,8	9	lt/min		320,	31	lt/min	
		MOLINO 8	" × 8' B ((Comesa)]				
	Flujo de mineral	84,74		ton/h					
	Densidad de pulpa en la descarga	2185,	54	gr/lt					
	Flujo de pulpa en la descarga	869,14	4	lt/min					
	Flujo de agua fresca al molino	279,8	5	lt/min					
	Flujo de agua en la descarga	487,1	6	lt/min					
		CAJÓN BO	MBA 10	"x 8" (D	enver)				
	Flujo de agua fresca al cajón	1968,	45	lt/min					
		HIDROCIC	CLÓN D-2	20 (Krebs	=)				
		Alimento			Under Flov	~	C	ver Flow	
	Flujo de mineral	170,12	ton/h		84,74	ton/h		85,38	ton/h
	Flujo de pulpa	3885,87	lt/min		589,29	lt/min		3298,56	lt/min
	Flujo de agua	3080,81	lt/min		207,31	lt/min		2873,50	lt/min
	z sólidos en peso	47,93	z		87,20	z		33,12	z
	🎗 sólidos en volúmen	20,72	z		64,82	z		12,89	z
	% - m200	32,69	z		7,93	z		57.28	z
	Densidad de pulpa	1522,49	gr/lt		2748,54	gr/lt		1302,54	gr/lt
	Densidad de mineral	3,52			3,70			3,35	
	d(50) Corregido	158,79	microne	::					
	Presión de alimentación	12,39	PSI						
	Carga Circulante	99,25	z						
	Proporción al Under flow	49,81	z						
	By - pa ss	6,73	z						
S	imulación 4								
			' • 10' A	Comera			8" x 10" B	Comesa	ı
	Fluio de mineral	40 75		ton/h	•,	44.6	3	ton/h	,
	Nentidad del mineral	34				3.3	-	ar/cc	
	Densidad de nulha en la descarga	1950		gr/lt		1950		gr/lt	
	Fluio de pulpa en la descarga	504,64	4	lt/min		545,	72	lt/min	
	Flujo de agua fresca al molino	304,89	9	lt/min		320,	31	lt/min	
				_					
		MOLINO 8	* * 8 * B ((Comesa)					
	Flujo de mineral	89,02	~~	ton/h					
	Densidad de pulpa en la descarga	2229,0	6Z	gr/n					
	Flujo de pulpa en la descarga	220 0		It/min					
	Flujo de agua fresca al molino	273,03 479 0	2						
	Flujo de agua en la descarga	475,0	L						
		CAJÓN BO	MBA 10'	"x 8" (De	enveri				
	Fluio de agua fresca al caión	2057,	93	lt/min	·····,				
	······································								
		HIDROCIC	LÓN D-2	0 (Krebs	;)				
		Alimento		1	Under Flov	•	0	ver Flow	
	Fluio de mineral	174,40	ton/h		89,02	ton/h		85,38	ton/h
	Flujo de pulpa	3986,46	lt/min		600,45	lt/min		3388,04	lt/min
	Flujo de agua	3162,15	lt/min		199,17	lt/min		2962,98	lt/min
	Z sólidos en peso	47,90	z		88,16	z		32,44	z
	Z sólidos en volúmen	20,68	z		66.83	z		12,55	z
	% - m200	32,34	z		7,59	z		58,14	z
	Densidad de pulpa	1522,37	gr/lt		2802,71	gr/lt		1294,55	gr/lt
	Densidad de mineral	3,53			3,70			3,35	
	d(50) Corregido	152,16	microne	::					
	Presión de alimentación	13,04	PSI						
	Carga Circulante	104,27	z						
	Proporción al Under flow	51,04	z						
	By - pass	6,30	z						

	MOLINO 8' x 10	0° A (Convesa))		8' x 10'	B (Comesa)
Flujo de mineral	40.75	ton/h		44.63		ton/h	
Densidad del mineral	3.4	gs/cc		3.3		gr/cc	
Densidad de pulpa en la descarga	1950	g∎/it		1950		g∎/lt	
Flujo de pulpa en la descarga	504.64	it/min		545.7	2	lt/man	
Flujo de agua fresca al motino	304.89	R/min		320.3	1	lt/men	
	MOLINO 8' x 8'	' B (Comesa)					
Flujo de mineral	93.41	ton/h					
Densidad de pulpa en la descarga	2273.36	gar∕it					
Flujo de pulpa en la descarga	891.93	lt/min					
Flujo de agua fresca al molino	279.85	it/min					
Flujo de agua en la descarga	470.89	lt/min					
		100.000					
Eluío de squa frenca al caión		lux 8 (De	nveri				
nujo de agua nesca ai cajon	2147.40	147 18 8 1					
	HIDROCICLÓN	D-20 (Krebs	า				
			, , , ,,			0 51	
			Jindies Flow	•		Uver Flow	
Flugo de mineral	1/8./9 ton	/h	93.41	ton/h		85.38	ton/h
Ftujo de pulpa	4087.51 R/m	NO .	612.08	R/mm		3477.51	lt/min
Flujo de agua	3243.49 lt/m	H N	191.04	R/m m		3052.45	k/min
Z sólidos en peso	47.88 Z		89.07	z		31.80	z
% sólidos en volúmen	20.65 🏅		68.79	z		12.22	z
% - m200	31.98 X		7.29	Z		59.00	z
Densidad de pulpa	1522.51 gr/l	lt	2855.56	gr/lt		1286.97	gr/īt
Densidad de mineral	3.53 gr/d	CC .	3.70	gr/cc		3.35	gr/cc
d(50) Corregido	146.08 mic	iones					
Presión de alimentación	13.71 PSI						
Carga Circulante	109.40 X						
Proporción al Under flow	52.24 %						
Ru - pass	5.89 2						
Simulación 11							
	MOLINO 8' x	10' A (Comes	al	MOLINO) 8' x 1	0' 8 {Come	sa)
Eluio de mineral	40.75	ton/h	-,	44.0	63	ton/h	, , , , , , , , , , , , , , , , , , ,
Densidad del mineral	3.4	ar/cc		3.3		ar/ca	:
Densidad de pulpa en la descarga	1950	ar/lt		195	0	gr/lt	
Eluio de nulha en la descarga	504.64	lt/min		545	.72	lt/min	1
Fluio de aqua fresca al molino	304.89	lt/min		320	.31	lt/mir	1
	MOLINO 8' x	8' B (Comesa)				
Flujo de mineral	53.45	ton/h					
Densidad de pulpa en la descarga	2113.38	gr/lt					
Flujo de pulpa en la descarga	583.77	lt/min					
Fluio de aqua fre‡ca al molino	279.85	lt/min					
Flujo de agua en la descarga	342.82	lt/min					
	CAJÓN BOMB	A 10"x 8" (D	enver)				
Flujo de agua fresca al cajón	1789.50	lt/min					
	HIDHULILLU	N D-20 (Kreb	[2(
			Under Fl	low		Over Flo	W
	Alimento						
Fluio de mineral	Alimento 138.83 to	n/h	53.45	ton/h		85.38	ton/h
Flujo de mineral Flujo de pulpa	Alimento 138.83 to: 3421.98 lt/	n/h 'min	53. 4 5 303.92	ton/h It/min		85.38 3119.6	ton/h 1 lt/min
Flujo de mineral Flujo de pulpa Flujo de aqua	Alimento 138.83 to 3421.98 it/ 2757.52 it/	n/h 'min 'min	53.45 303.92 62.97	ton/h t/min t/min		85.38 3119.6 2694.5	ton/h 1 lt/min 5 lt/min
Flujo de mineral Flujo de pulpa Flujo de agua Z sólidos en peso	Alimento 138.83 to 3421.98 it/ 2757.52 it/ 45.63 *	n/h 'min 'min	53.45 303.92 62.97 93.40	ton/h t/min t/min 2		85.38 3119.6 2694.5 34.56	ton/h 51 lt/min 55 lt/min 2
Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen	Alimento 138.83 to 3421.98 it/ 2757.52 it/ 45.63 2 19.42 2	n/h 'min 'min	53.45 303.92 62.97 93.40 79.28	ton/h t/min t/min t t/min t/min		85.38 3119.6 2694.5 34.56 13.63	ton/h 51 lt/min 55 lt/min 2 2
Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen X - m200	Alimento 138.83 to 3421.98 it/ 2757.52 it/ 45.63 x 19.42 x 35.93 x	n/h 'min 'min	53.45 303.92 62.97 93.40 79.28 5.97	ton/h lt/min lt/min Z Z Z		85.38 3119.6 2694.5 34.56 13.63 54.68	ton/h 51 lt/min 55 lt/min 2 2 2 2
Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen X - m200 Densidad de pulpa	Alimento 138.83 to 3421.98 lt/ 2757.52 lt/ 45.63 % 19.42 % 35.93 % 1482.02 mr.	n/h 'min 'min /lt	53.45 303.92 62.97 93.40 79.28 5.97 3138.5	ton/h lt/min t/min Z Z Z 9 gr/lt		85.38 3119.6 2694.5 34.56 13.63 54.68 1319.8	ton/h 51 lt/min 55 lt/min 2 2 2 89 gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen X - m200 Densidad de pulpa Densidad de pulpa	Alimento 138.83 to 3421.98 lt/ 2757.52 lt/ 45.63 % 19.42 % 35.93 % 1482.02 gr. 3.48	n/h Imin Imin /It	53.45 303.92 62.97 93.40 79.28 5.97 3138.5 3 70	ton/h lt/min lt/min 2 2 2 9 gr/lt		85.38 3119.6 2694.5 34.56 13.63 54.68 1319.8 3.35	ton/h i1 lt/min i5 lt/min z z z 89 gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen X - m200 Densidad de pulpa Densidad de mineral	Alimento 138.83 to 3421.98 lt/ 2757.52 lt/ 45.63 % 19.42 % 35.93 % 1482.02 gr. 3.48	n/h 'min 'min /lt	53.45 303.92 62.97 93.40 79.28 5.97 3138.5 3.70	ton/h It/min It/min Z Z Z 9 gr/lt		85.38 3119.6 2694.5 34.56 13.63 54.68 1319.8 3.35	ton/h i1 lt/min i5 lt/min z z z 89 gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua % sólidos en peso % sólidos en volúmen % - m200 Densidad de pulpa Densidad de mineral d(50) Corregido	Alimento 138.83 to 3421.98 lt/ 2757.52 lt/ 45.63 % 19.42 % 35.93 % 1482.02 gr. 3.48 201.79 mi	n/h 'min 'min /lt crones	53.45 303.92 62.97 93.40 79.28 5.97 3138.5 3.70	ton/h It/min It/min Z Z Z 9 gr/lt		85.38 3119.6 2694.5 34.56 13.63 54.68 1319.8 3.35	ton/h i1 lt/min i5 lt/min z z z i9 gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua % sólidos en peso % sólidos en volúmen % - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación	Alimento 138.83 to 3421.98 it/ 2757.52 it/ 45.63 ž 19.42 ž 35.93 ž 1482.02 gr 3.48 201.79 mi 9.51 PS	n/h Imin Imin /It icrones 51	53.45 303.92 62.97 93.40 79.28 5.97 3138.5 3.70	ton/h It/min It/min Z Z Z 9 gr/lt		85.38 3119.6 2694.5 34.56 13.63 54.68 1319.8 3.35	ton/h i1 lt/min i5 lt/min z z z i9 gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua % sólidos en peso % sólidos en volúmen % - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante	Alimento 138.83 to 3421.98 it/ 2757.52 it/ 45.63 % 19.42 % 35.93 % 1482.02 gr 3.48 201.79 mi 9.51 PS 62.61 %	n/h Imin Imin /It icrones 51	53.45 303.92 62.97 93.40 79.28 5.97 3138.5 3.70	ton/h It/min It/min Z Z Z 9 gr/lt		85.38 3119.6 2694.5 34.56 13.63 54.68 1319.8 3.35	ton/h i1 lt/min i5 lt/min z z z i9 gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua % sólidos en peso % sólidos en volúmen % - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow	Alimento 138.83 to 3421.98 it/ 2757.52 it/ 45.63 % 19.42 % 35.93 % 1482.02 gr 3.48 201.79 mi 9.51 PS 62.61 % 38.50 %	n/h Imin Imin /It icrones 51	53.45 303.92 62.97 93.40 79.28 5.97 3138.5 3.70	ton/h It/min It/min Z Z Z 9 gr/lt		85.38 3119.6 2694.5 34.56 13.63 54.68 1319.8 3.35	ton/h i1 lt/min i5 lt/min 2 2 2 9 gr/lt

	MOLINO 8' a	x 10' A (Come	esa)	MOLINO 8' x	10' B (Comesa)
Flujo de mineral	40,75	ton/h	h	44,63	ton/h
Densidad del mineral	3,4	gr/ca	C	3,3	gr/cc
Densidad de pulpa en la descarga	1950	ar/lt		1950	ar/lt
Fluio de pulpa en la descarga	504.64	lt/mir	n	545.72	lt/min
Fluio de aqua fresca al molino	304 89	lt/mir	n	320 31	lt/min
· · · · · · · · · · · · · · · · · · ·	001,00			020,01	
	MOLINO 8'	x 8' 8 (Comes	sal		
Fluio de mineral	63.97				
Deneidad de pulsa en la desearca	2000 20		•		
Densidad de pulpa en la descalga	2033,23	gr/it			
Fiujo de pulpa en la descarga	/06,49	it/mir	n		
Flujo de agua tresca al molino	279,85	it/me	n		
Flujo de agua en la descarga	418,58	it/ma	n		
	..				
	CAJON BOM	IBA 10"x 8"	(Denver)		
Flujo de agua tresca al cajón	1789,50	J it/mii	n		
	HIDROCICL	ON D-20 (Kre	ebs)		
	Alimento		Linder Flor		Over Flow
Fluio de mineral	149.25	on/h	63.87	ton/h	85.38 ton/h
Eluio de pulos	2544 52 1		426 64		2119 61 11/min
Fiujo de pulpa Eluía da asua	3044,03 1		420,04		
Fiujo de agua	2833,28 1		138,73		2694,55 K/min
z solidos en peso	46,75	z	88,47	z	34,56 %
🎗 sólidos en volúmen	20,07	z	67,48	X	13,63 🏅
% - m200	34,73	z	7,55	z	55,06 🎗
Densidad de pulpa	1501,13	gr/lt	2820,36	gr/lt	1319,89 gr/lt
Densidad de mineral	3,5		3,70		3,35
	107 57	_:			
aloni romegiao	107,57	micrones			
Presion de alimentacion	10,25 1	PSI			
Carga Circulante	/4,81	z			
Proporción al Under flow	42,79	*			
By - pa ss	4,90	z			
Similarion 13					
		101 A (C)		10' B (Camaaa)
	MOLINO 8' >	x 10° A (Come	esa)	MOLINO 8' x	10' B (Comesa)
Flujo de mineral	MOLINO 8' > 40,75	k 10° A (Come ton/h	esa) h	MOLINO 8' x 44,63	10° B (Comesa) ton/h
Flujo de mineral Densidad del mineral	MOLINO 8' > 40,75 3,4	x 10° A (Come ton/h gr/co	esa) h	MOLINO 8' x 44,63 3,3	10° B (Comesa) ton/h gr/cc
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga	MOLINO 8' x 40,75 3,4 1950	x 10' A (Come ton/h gr/cc gr/lt	esa) h c	MOLINO 8' x 44,63 3,3 1950	10' B (Comesa) ton/h gr/cc gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64	k 10° A (Come ton/h gr/cc gr/lt lt/mir	esa) h c	MOLINO 8' x 44,63 3,3 1950 545,72	10' B (Comesa) ton/h gr/cc gr/lt it/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' > 40,75 3,4 1950 504,64 304,89	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir	esa) h c n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' > 40,75 3,4 1950 504,64 304,89	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir	esa) h c n n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min It/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' >	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes	esa) h c n n sa)	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min It/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h	esa) h c n n sa) h	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min It/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h j gr/lt	esa) c n n sa) h	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min It/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h j gr/lt	esa) h c n sa) h	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h j gr/lt lt/mir lt/mir	esa) h c n sa) h n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h j gr/lt lt/mir lt/mir lt/mir	esa) h c n sa) h n n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h i gr/lt lt/mir lt/mir	esa) h c n n sa) h n n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM	x 10° A (Come ton/h gr/cc gr/lt lt/mir x 8° B (Comes ton/h j gr/lt lt/mir lt/mir lt/mir	esa) h c n n sa) h n n n (Denver)	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50	x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h j gr/lt lt/mir lt/mir lt/mir lt/mir	esa) c n n sa) h n n n (Denver) n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h gr/lt lt/mir lt/mir lt/mir lt/mir lt/mir	esa) c n n sa) h n n n (Denver) n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h j gr/lt lt/mir lt/mir lt/mir lt/mir lt/mir 0 lt/mir	esa) c n n sa) h n n (Denver) n	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h j gr/lt lt/mir lt/mir lt/mir lt/mir lt/mir 0 lt/mir	esa) h c n n sa) h n n (Denver) n ebs)	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h gr/lt lt/mir lt/mir lt/mir lt/mir lt/mir lt/mir 0 D-20 (Kre	esa) h c n n sa) h n n (Denver) n (Denver) n under Flow	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h it/mir lt/mir lt/mir lt/mir it/mir it/mir 0 N D-20 (Kre on/h	esa) h sa) h (Denver) n (Denver) n Under Flow 87,36	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 0ver Flow 85,38 ton/h
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 tt 3801,63 ft	x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h it/mir lt/mir lt/mir lt/mir 0N D-20 (Kre on/h t/min	esa) h c n n sa) h (Denver) n (Denver) n Under Flow 87,36 684,04	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 0ver Flow 85,38 ton/h 3119,61 it/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 to 3801,63 m 2984,79 m	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h it/mir lt/mir lt/mir it/mir it/mir 0N D-20 (Kre on/h t/min t/min	esa) h c n n sa) h (Denver) n (Denver) n Under Flow 87,36 684,04 290,24	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 0ver Flow 85,38 ton/h 3119,61 it/min 2694,55 it/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 to 3801,63 m 2984,79 m	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h it/mir lt/mir lt/mir it/mir it/mir óN D-20 (Kre on/h t/min t/min	esa) h c n n sa) h (Denver) n (Denver) n Under Flow 87,36 684,04 290,24 83,38	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 * ton/h lt/min t/min z	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min \$5,38 ton/h 3119,61 it/min 2694,55 it/min 34,56 %
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 tt 3801,63 m 2984,79 m 49,10 2 21,49	x 10° A (Come ton/h gr/cc gr/lt lt/mir t/mir x 8° B (Comes ton/h it/mir lt/mir lt/mir lt/mir it/mir 0 N D-20 (Kre on/h t/min t/min t/min	esa) h c n n sa) h (Denver) n (Denver) n (Denver) s7,36 684,04 290,24 83,38 57,57	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 % ton/h lt/min t/min z z	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min \$5,38 ton/h 3119,61 it/min 2694,55 it/min 34,56 % 13,63 %
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Slujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 to 3801,63 m 2984,79 m 49,10 2 21,49 2 32,43	x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h i/mir lt/mir lt/mir lt/mir iBA 10° x 8° () lt/mir t/min t/min t/min t/min	esa) h c n n sa) h (Denver) n (Denver) n under Flow 87,36 684,04 290,24 83,38 57,57 9,41	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 20,31 kon/h lt/min t/min z z	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 % 13,63 % 55,99 %
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Silujo de agua en la descarga	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 tt 3801,63 ft 2984,79 ft 49,10 2 21,49 2 32,43 2	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h i gr/lt lt/mir lt/mir lt/mir it/min t/min t/min t/min t/min t/min	esa) h c n n sa) h n n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 20,31 kon/h lt/min lt/min z z z	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 35,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 % 13,63 % 55,99 % 1319,89 gr/lt
 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de agua Sididos en peso Sididos en volúmen Sididos en volúmen Sididos de pulpa Densidad de pulpa Densidad de pulpa Densidad de mineral 	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 to 3801,63 to 2984,79 to 49,10 2 21,49 2 32,43 2 1542,45 co	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h j gr/lt lt/mir lt/mir lt/mir 0N D-20 (Kre on/h t/min t/min z z	esa) h c n n sa) h n n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 320,31 kon/h k/min k/min z z gr/k	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 2694,55 lt/min 34,56 % 13,63 % 55,99 % 1319,89 gr/lt 3,35
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Flujo de pulpa	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 to 3801,63 ti 2984,79 ti 49,10 to 21,49 to 32,43 to 352	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h i gr/lt lt/mir lt/mir lt/mir it/min it/min t/min t/min t/min t/min t/min t/min	esa) h c n n sa) h n n (Denver) n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 20,31 kon/h lt/min lt/min z z gr/lt	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 2694.55 lt/min 34.56 2 13.63 2 55.99 2 1319.89 gr/lt 3.35
 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Bensidad de mineral d(50) Corregido 	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLI Alimento 172,74 tt 3801,63 ft 2984,79 ft 49,10 2 21,49 2 32,43 2 1542,45 4 3,52 164,84 ft	x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h i gr/lt lt/mir lt/mir lt/mir it/min it/min t/min t/min t/min t/min t/min t/min t/min	esa) h c n n sa) h n n (Denver) n (Denver) n ebs) Under Flow 87.36 684.04 290.24 83.38 57.57 9.41 2552.92 3.70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 20,31 kon/h lt/min lt/min z z gr/lt	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 2694,55 it/min 34,56 % 13,63 % 55,99 % 1319,89 gr/lt 3,35
 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Bensidad de pulpa Corregido Presión de alimentación 	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 to 3801,63 ft 2984,79 ft 49,10 2 21,49 2 32,43 2 1542,45 0 3,52 164,84 ft 11,93 ft	x 10° A (Come ton/h gr/cc gr/lt lt/mir lt/mir x 8° B (Comes ton/h i gr/lt lt/mir lt/mir lt/mir it/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min	esa) h s a sa) h n n (Denver) n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 20,31	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min k/min 2694,55 it/min 34,56 % 13,63 % 55,99 % 1319,89 gr/lt 3,35
 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de pulpa Flujo de agua \$ sólidos en peso \$ sólidos en volúmen \$ - m200 Densidad de pulpa Densidad de pulpa de agua de fuelpa de agua de agua de agua de agua fujo de agua<!--</td--><td>MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 tú 3801,63 h 2984,79 lí 49,10 2 21,49 2 32,43 2 1542,45 2 3,52 164,84 m 11,93 F</td><td>x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h i gr/lt lt/mir lt/mir lt/mir iRA 10"x 8" (i) lt/mir iXmin t/min t/min t/min t gr/lt s z z</td><td>esa) h c n n sa) h n n (Denver) n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92 3,70</td><td>MOLINO 8' x 44,63 3,3 1950 545,72 320,31 20,31</td><td>10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 2694,55 it/min 34,56 % 13,63 % 55,99 % 1319,89 gr/lt 3,35</td>	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 tú 3801,63 h 2984,79 lí 49,10 2 21,49 2 32,43 2 1542,45 2 3,52 164,84 m 11,93 F	x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h i gr/lt lt/mir lt/mir lt/mir iRA 10"x 8" (i) lt/mir iXmin t/min t/min t/min t gr/lt s z z	esa) h c n n sa) h n n (Denver) n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 20,31	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 2694,55 it/min 34,56 % 13,63 % 55,99 % 1319,89 gr/lt 3,35
 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de agua Sujo de agua Flujo de agua resca al cajón Flujo de agua sólidos en peso sólidos en volúmen - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow 	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 tu 3801,63 m 2984,79 m 49,10 2 21,49 2 32,43 2 1542,45 9 3,52 164,84 m 11,93 F 102,32 2 50,57 2	x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h i lt/mir lt/mir lt/mir iRA 10"x 8" (l lt/mir it/min t/min t/min t/min t/min t z z gr/lt s	esa) h c n n sa) h n n (Denver) n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 % ton/h lt/min lt/min z z gr/lt	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 2694,55 it/min 34,56 2 13,63 2 55,99 2 1319,89 gr/lt 3,35
 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de agua Sujo de a	MOLINO 8' > 40,75 3,4 1950 504,64 304,89 MOLINO 8' > 87,36 2102,05 963,89 279,85 570,09 CAJÓN BOM 1789,50 HIDROCICLU Alimento 172,74 tt 3801,63 ft 2984,79 ft 49,10 2 21,49 2 32,43 2 1542,45 2 3,52 164,84 ft 11,93 ft 102,32 2 50,57 2 9,72 2	x 10° A (Come ton/h gr/cc gr/lt lt/mir k 8° B (Comes ton/h i gr/lt lt/mir lt/mir lt/mir k/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min t/min	esa) h c n n sa) h n n (Denver) n (Denver) n ebs) Under Flow 87,36 684,04 290,24 83,38 57,57 9,41 2552,92 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 * ton/h lt/min lt/min z z z gr/lt	10' B (Comesa) ton/h gr/cc gr/lt it/min it/min it/min 2694,55 it/min 34,56 % 13,63 % 55,99 % 1319,89 gr/lt 3,35

	MOLINO 8' x 10' A	A (Comesa)	MOLINO 8' x	10' B (Comesa)
Flujo de mineral	40.75	ton/h	44.63	ton/h
Densidad del mineral	3.4	gr/cc	3.3	gı/cc
Densidad de pulpa en la descarga	1950	gr/lt	1950	gr/lt
Flujo de pulpa en la descarga	504.64	lt/min	545.72	lt/min
Flujo de agua fre s ca al molino	304.89	lt/min	320.31	lt/min
	MOLINO 8' x 8' B	(Comesa)		
Fluio de mineral	100.30	ton/h		
Densidad de pulpa en la descarga	2110.74	ar/lt		
Eluio de pulpa en la descarga	1097 95	lt/min		
Fluio de aqua fresca al molino	279.85	lt/min		
Fluio de aqua en la descarga	645.85	lt/min		
	ΓΑΙΏΝ ΒΟΜΒΑ 1	0"x 8" (Denver)		
Eluio de aqua fresca al cajón	1789 50	lt/min		
		-20 (K (eh+)		
		20 (11003)		
	Alimento	Under Fl	low	Over Flow
Flujo de mineral	185.68 ton/h	100.30	ton/h	85.38 ton/h
Flujo de pulpa	3935.57 lt/min	818.10	lt/min	3119.61 lt/min
Fluio de agua	3060.55 lt/min	366.00	lt/min	2694.55 lt/min
Z sólidos en peso	50.28 X	82.04	z	34,56 %
Z sólidos en volúmen	22 23 X	55.26	z	13.63 🎗
Σ · m200	31.35 2	9 96	ž	56 48 2
Dentidad de nulha	1563.99 or/lt	2490 7	illyn D	1319 89 m/lt
Densidad de pigeral Densidad de mineral	3 54	3 70	o gink	3 35
Densidad de imiteral	5.54	5.70		5.55
d(50) Corregido	155.88\ micror	nes		
Presión de alimentación	12.86 PSI			
Carga Circulante	117.47 %			
Proporción al Under flow	54.02 %			
By - pass	11.96 🎗			
Simulación 21				
Simulación 21	MOLINO 8" + 10" A	(Cometa)		10' B (Comesa)
Simulación 21	MOLINO 8" x 10" A	(Comesa)	MOLINO 8' x '	10' B (Comesa)
Simulación 21 Flujo de mineral	MOLINO 8" x 10" A 40.75	(Comesa) ton/h	MOLINO 8' x ' 44.63	10° B (Comesa) ton/h
Simulación 21 Flujo de mineral Densidad del mineral	MOLINO 8" x 10" A 40.75 3.4 1950	(Comesa) ton/h gr/cc	MOLINO 8' x 44.63 3.3 1950	10°B (Comesa) ton/h gr/cc
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga	MOLINO 8" x 10" A 40.75 3.4 1950	(Comesa) ton/h gr/cc gr/lt	MOLINO 8' * ⁻ 44.63 3.3 1950 645 72	10°B (Comesa) ton/h gr/cc gr/lt
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga	MOLINO 8" x 10" A 40.75 3.4 1950 504.64	(Comesa) ton/h gr/cc gr/lt It/min b/ai	MOLINO 8' * 1 44.63 3.3 1950 545.72 200.21	10°B (Comesa) ton/h gr/cc gr/lt It/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al motino	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89	k (Comesa) ton/h gr/cc gr/lt lt/min lt/min	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10°B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89	(Comesa) ton/h gr/cc gr/lt lt/min lt/min	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10'B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa)	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10'B (Comesa) ton/h gr/cc gr/lt It/min It/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al motino	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10'B (Comesa) ton/h gr/cc gr/lt It/min R/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al motino Flujo de mineral Densidad de pulpa en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min	MOLINO 8' * ' 44.63 3.3 1950 545.72 320.31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' 8 71.69 2054.62 826.60 279.85 503.43	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min	MOLINO 8' * ' 44.63 3.3 1950 545.72 320.31	10' B (Comesa) ton/h gr/cc gr/lt It/min It/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min	MOLINO 8' * ' 44.63 3.3 1950 545.72 320.31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min	MOLINO 8' * ' 44.63 3.3 1950 545.72 320.31	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50	k (Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min	MOLINO 8" * 1 44.63 3.3 1950 545.72 320.31	10°B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50	k (Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min	MOLINO 8" * 1 44.63 3.3 1950 545.72 320.31	10°B (Comesa) ton/h gr/cc gr/lt It/min It/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' 8 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D-	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs)	MOLINO 8" * 1 44.63 3.3 1950 545.72 320.31	10°B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D-	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs)	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10°B (Comesa) ton/h gr/cc gr/lt lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga Flujo de agua en la descarga	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Flo 71.69	MOLINO 8' * 44.63 3.3 1950 545.72 320.31	10°B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Fla 71.69 E45 25	MOLINO 8' * ' 44.63 3.3 1950 545.72 320.31	10° B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 85.38 ton/h 2119.61 k/cim
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al motino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al motino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de mineral Flujo de mineral	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 it/min	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Flu 71.69 546.75	MOLINO 8' x 44.63 3.3 1950 545.72 320.31	10° B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 85.38 ton/h 3119.61 lt/min 2004 train
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al motino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al motino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de mineral Flujo de agua	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Flu 71.69 546.75 223.58	MOLINO 8' x 44.63 3.3 1950 545.72 320.31	10° B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min st/min s5.38 ton/h 3119.61 lt/min 2694.55 lt/min
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al motino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al motino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min 47.29 2	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Fla 71.69 546.75 223.58 84.24	MOLINO 8' x 44.63 3.3 1950 545.72 320.31 ton/h t/min t/min z	10° B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min st/min st.ss ton/h 3119.61 lt/min 2694.55 lt/min 34.56 %
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de minera	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' 8 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min 47.29 %	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Flo 71.69 546.75 223.58 84.24 59.11	MOLINO 8' x 44.63 3.3 1950 545.72 320.31 ton/h t/min t/min 2 2	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 3119.61 lt/min 2694.55 lt/min 34.56 %
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Fl	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' 8 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 k/min 2918.13 k/min 47.29 % 20.37 % 33.83 %	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Flu 71.69 546.75 223.58 84.24 59.11 8.96	MOLINO 8' x 44.63 3.3 1950 545.72 320.31 ton/h k/min z z z	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 85.38 ton/h 3119.61 lt/min 2694.55 lt/min 34.56 % 13.63 %
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de gua X sólidos en peso X sólidos en volúmen X - m200 Densidad de pulpa	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 k/min 2918.13 k/min 47.29 % 20.37 % 33.83 %	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min lt/min 20 (Krebs) Under Flu 71.69 546.75 223.58 84.24 59.11 8.96 2594.43	MOLINO 8' x ' 44.63 3.3 1950 545.72 320.31 ton/h k/min k/min z z z gr/lt	10' B (Comesa) ton/h gr/cc gr/lt lt/min lt/min k/min 85.38 ton/h 3119.61 lt/min 2694.55 lt/min 34.56 % 13.63 % 54.72 % 1319.89 gr/lt
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al mofino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al mofino Flujo de agua en la descarga Flujo de agua en la descarga Sidido en mineral Flujo de mineral Flujo de mineral Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de mineral	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min 47.29 2 20.37 2 33.83 2 1510.71 gr/lt 3.51	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min 20 (Krebs) Under Flo 71.69 546.75 223.58 84.24 59.11 8.96 2594.43 3.70	MOLINO 8' x ' 44.63 3.3 1950 545.72 320.31 ton/h k/min k/min z z z gr/lt	10° B (Comesa) ton/h gr/cc gr/lt lt/min t/min t/min 85.38 ton/h 3119.61 lt/min 2694.55 lt/min 34.56 % 13.63 % 54.72 % 1319.89 gr/lt 3.35
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de a	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min 47.29 2 20.37 2 33.83 2 1510.71 gr/lt 3.51	ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min 20 (Krebs) Under Fla 71.69 546.75 223.58 84.24 59.11 8.96 2594.43 3.70	MOLINO 8" x 1 44.63 3.3 1950 545.72 320.31 ton/h k/min k/min z z z gr/lt	10° B (Comesa) ton/h gr/cc gr/lt lt/min t/min t/min 85.38 ton/h 3119.61 lt/min 2694.55 lt/min 34.56 % 13.63 % 54.72 % 1319.89 gr/lt 3.35
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de a	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 t/min 2918.13 t/min 47.29 2 20.37 2 33.83 2 1510.71 gr/lt 3.51	(Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min 20 (Krebs) Under Fla 71.69 546.75 223.58 84.24 59.11 8.96 2594.43 3.70	MOLINO 8" x 1 44.63 3.3 1950 545.72 320.31 ton/h R/min R/min z z z gg/lt	10° B (Comesa) ton/h gr/cc gr/lt lt/min t/min t/min 2094.55 tt/min 34.56 % 13.63 % 54.72 % 1319.89 gr/lt 3.35
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Elujo de agua en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Densidad de pulpa Densidad de pulpa Densidad de pulpa Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' 8 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min 47.29 2 20.37 2 33.83 2 1510.71 gr/tt 3.51 183.09 micron 15.82 PS1 93.97 7	a (Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min 20 (Krebs) Under Fla 71.69 546.75 223.58 84.24 59.11 8.96 2594.43 3.70 es	MOLINO 8" x 7 44.63 3.3 1950 545.72 320.31 ton/h k/min k/min k/min z z z gg/lt	10° B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 2694.55 lt/min 34.56 ± 13.63 ± 54.72 ± 1319.89 gr/lt 3.35
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Sidido en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Elujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de pulpa Flujo de pulpa Flujo de pulpa Flujo de pulpa Considad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min 47.29 z 20.37 z 33.83 z 1510.71 gr/tt 3.51 183.09 micron 15.82 PS1 83.97 z	a (Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min 20 (Krebs) Under Fla 71.69 546.75 223.58 84.24 59.11 8.96 2594.43 3.70 es	MOLINO 8" x 7 44.63 3.3 1950 545.72 320.31 ton/h tt/min tt/min z z z gr/lt	10° B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 2694.55 lt/min 34.56 z 13.63 z 54.72 z 1319.89 gr/lt 3.35
Simulación 21 Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Companya en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Companya en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de pulpa Flujo de pulpa Flujo de pulpa Flujo de pulpa Considad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow	MOLINO 8' x 10' A 40.75 3.4 1950 504.64 304.89 MOLINO 8' x 8' B 71.69 2054.62 826.60 279.85 503.43 CAJÓN BOMBA 10 1789.50 HIDROCICLÓN D- Alimento 157.07 ton/h 3664.53 tt/min 2918.13 tt/min 47.29 z 20.37 z 33.83 z 1510.71 gr/tt 3.51 183.09 micron 15.82 PS1 83.97 z 45.64 z 7 cc z	a (Comesa) ton/h gr/cc gr/lt lt/min lt/min (Comesa) ton/h gr/lt lt/min lt/min lt/min 20 (Krebs) Under Fla 71.69 546.75 223.58 84.24 59.11 8.96 2594.43 3.70 es	MOLINO 8" x 7 44.63 3.3 1950 545.72 320.31 ton/h tt/min 2 2 2 3 gr/lt	10° B (Comesa) ton/h gr/cc gr/lt lt/min lt/min lt/min 2694.55 lt/min 34.56 z 13.63 z 54.72 z 1319.89 gr/lt 3.35

)		10' R (Cometa	1
Fluio de mineral	MULINU 8 X		aj	AA 63		J
Densidad del mineral	40,73 3 A			44,00		
Densidad de nulna en la descarga	J,4 1950	gi/CC		1950	gr/tt	
Eluio de pulpa en la descarga	504 64	yızıcı Uzan		545 72	gizie It/min	
Fluio de aqua fresca al molino	304,04			320 21		
	504,05			520,51		
	MOLINO 8' x	8' B (Comesa	1			
Fluio de mineral	76 18	ton/h	-,			
Densidad de nulna en la descarga	2093 82	ar/lt				
Eluio de pulha en la descarga	846.80	gr/n It/min				
Fluio de aqua fresca al molino	279.85	lt/min				
Fluio de agua en la descarga	503 43					
	000,40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	CAJÓN BOMI	BA 10"x 8" (C)enver)			
Flujo de agua fresca al cajón	1789,50	lt/min	•			
	HIDROCICLÓ)N D-20 (Kret	(2			
	Alimento		Under Flov	~	Over Flow	
Fluio de mineral	161 56 to	nn/h	76 18	ton/h	85.38	ton/h
Fluio de ouloa	3684 67 1	/min	566 95	lt/min	3119.61	lt/min
Fluio de aqua	2918 13 II	/min	223 58	lt/min	2694 55	it/min
X sólidos en peso	47 99 2	·	85 03	z	34 56	z
Z sólidos en volúmen	20.80 2		60 56	z	13 63	z
2 - m200	33 46 2		8 77	ž	55 49	z
Densidad de nulna	1522 72 m	, r/lt	2633 73	ar/lt	1319.89	ar/lt
Densidad de mineral	3 51		3 70	J	3.35	9
			-,			
d(50) Corregido	174,73 m	lictones				
Presión de alimentación	13,27 P	SI				
Carga Circulante	89,22 %	-				
Proporción al Under flow	47,15 Z					
By - pass	7,66 z					
Simulación 23						
		10' A (Come:	tal	MOLINO 8' x	10' B (Comesa	
Fluip de mineral	MOLINO 8' x 40.75	: 10' A (Come: ton/h	sa)	MOLINO 8' x 44 63	10° B (Comesa ton/h)j
Flujo de mineral Densidad del mineral	MOLINO 8' x 40,75 3 4	: 10' A (Com e : ton/h ar/cc	≠a)	MOLINO 8' x 44,63 3,3	10°B (Comesa ton/h ar/cc	ij
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga	MOLINO 8' × 40,75 3,4 1950	: 10' A (Come: ton/h gr/cc ar/lt	sa)	MOLINO 8' x 44,63 3,3 1950	10' B (Comesa ton/h gr/cc ar/lt	ij
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga	MOLINO 8' × 40,75 3,4 1950 504,54	: 10' A (Come: ton/h gr/cc gr/lt lt/min	sa)	MOLINO 8' x 44,63 3,3 1950 545 72	10'B (Comesa ton/h gr/cc gr/lt it/min)j
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' × 40,75 3,4 1950 504,64 304,89	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min	sa)	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10'B (Comesa ton/h gr/cc gr/lt it/min lt/min) J
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' × 40,75 3,4 1950 504,64 304,89	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min	sa)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10°B (Comesa ton/h gr/cc gr/lt it/min lt/min)j
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' ×	: 10' A (Come: ton/h gr/cc gr/lt It/min It/min & 8' B (Comes;	sa) a)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10°B (Comesa ton/h gr/cc gr/lt it/min lt/min	ij
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69	: 10' A (Come: ton/h gr/cc gr/lt It/min It/min & 8' B (Comes; ton/h	sa) a)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10°B (Comesa ton/h gr/cc gr/lt it/min lt/min	ij
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min & 8' B (Comes; ton/h gr/lt	sa) a)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10°B (Comesa ton/h gr/cc gr/lt it/min lt/min	ij
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min & 8' B (Comes; ton/h gr/lt lt/min	sa) a)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10°B (Comesa ton/h gr/cc gr/lt it/min lt/min	• j
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min x 8' B (Comes; ton/h gr/lt lt/min lt/min	sa) a)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10°B (Comesa ton/h gr/cc gr/lt it/min lt/min	
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min ton/h gr/lt lt/min lt/min lt/min	sa) a)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10°B (Comesa ton/h gr/cc gr/lt it/min lt/min	
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min t 8' B (Comes: ton/h gr/lt lt/min lt/min lt/min	sa) a)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min	
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min ton/h gr/lt lt/min lt/min lt/min lt/min	sa) a) Denver)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min	,
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min ton/h gr/lt lt/min lt/min lt/min lt/min	sa) a) Denver)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min	•
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50	: 10' A (Come: ton/h gr/cc gr/lt It/min It/min t/min gr/lt It/min It/min It/min R/min BA 10''x 8'' ([It/min	sa) a) Denver)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min	
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLO	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k8' B (Comes: ton/h gr/lt lt/min lt/min lt/min lt/min k/min t/min	sa) Denver) Ds)	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min	
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLO Alimento	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k% B (Comes: ton/h gr/lt lt/min lt/min lt/min lt/min k/min t/min	sa) Denver) Dst) Under Flor	MOLINO 8' * 44,63 3,3 1950 545,72 320,31	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min	
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLO Alimento 159,07 to	: 10° A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8° B (Comes: ton/h gr/lt lt/min lt/min lt/min lt/min lt/min it/min on/h	sa) Denver) Dst) Under Flor 73,69	MOLINO 8' x 44,63 3,3 1950 545,72 320,31	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min 0ver Flow 85,38	ton/h
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLO Alimento 159,07 to 3673,49 kt	: 10' A (Come: ton/h gr/cc gr/lt It/min It/min 8' B (Comes: ton/h gr/lt It/min It/min It/min It/min ND-20 (Krel on/h	≤a) Denver) bs) Under Flor 73,69 555,73	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 w ton/h	10° B (Comesa ton/h gr/cc gr/lt it/min lt/min t/min 85,38 3119,61	ton/h It/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min t 8' B (Comes: ton/h gr/lt lt/min lt/min lt/min DN D-20 (Krel on/h	≤a) Denver) 5≤) Under Flor 73,69 555,73 223,58	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 w ton/h lt/min lt/min	10° B (Comesa ton/h gr/cc gr/lt it/min it/min it/min 85,38 3119,61 2694,55	ton/h lt/min lt/min
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de nupa Flujo de nupa Slujo de nupa Flujo de nupa	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLO Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h gr/lt lt/min lt/min lt/min lt/min t/min t/min	sa) Denver) bs) Under Flor 73,69 555,73 223,58 84,60	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 w ton/h lt/min t/min z	10° B (Comesa ton/h gr/cc gr/lt it/min it/min it/min 85,38 3119,61 2694,55 34,56	ton/h lt/min lt/min z
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min t 8' B (Comes: ton/h lt/min lt/min lt/min lt/min 0N D-20 (Krel on/h t/min	≤a) Denver) bs) Under Flor 73,69 555,73 223,58 84,60 59,77	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 w ton/h lt/min z z	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 85,38 3119,61 2694,55 34,56 13,63	ton/h lt/min lt/min z z
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min t 8' B (Comes: ton/h gr/lt lt/min lt/min lt/min lt/min 0N D-20 (Krel on/h t/min t/min	sa) Denver) bs) Under Flo 73,69 555,73 223,58 84,60 59,77 8,87	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 x ton/h lt/min z z z	10° B (Comesa ton/h gr/cc gr/lt it/min it/min it/min 85,38 3119,61 2694,55 34,56 13,63 55,07	ton/h lt/min lt/min z z
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 g	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h lt/min lt/min lt/min lt/min bN D-20 (Krel on/h k/min k/min k/min k/min k/min	sa) Denver) bs) Under Flov 73,69 555,73 223,58 84,60 59,77 8,87 2612,26	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 it/min it/min z z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 85,38 3119,61 2694,55 34,56 13,63 55,07 1319,89	ton/h lt/min lt/min z z gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de pulpa	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 g 3,51	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min t 8' B (Comes: ton/h lt/min lt/min lt/min lt/min it/min it/min it/min it/min it/min it/min it/min	a) Denver) bs) Under Flor 73,69 555,73 223,58 84,60 59,77 8,87 2612,26 3,70	MOLINO 8' * 44,63 3,3 1950 545,72 320,31 20,31 k/min k/min k/min z z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 85,38 3119,61 2694,55 34,56 13,63 55,07 1319,89 3,35	ton/h lt/min lt/min z z gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de mineral	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLO Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 g 3,51	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h lt/min lt/min lt/min lt/min bN D-20 (Krel on/h t/min k/min k/min k/min k/min k/min k/min k/min	a) Denver) bs) Under Flor 73,69 555,73 223,58 84,60 59,77 8,87 2612,26 3,70	MOLINO 8' * 44,63 3,3 1950 545,72 320,31 820,31 k/min k/min k/min z z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 85,38 3119,61 2694,55 34,56 13,63 55,07 1319,89 3,35	ton/h lt/min lt/min z z gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de mineral	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 g 3,51 179,24 m	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h lt/min lt/min lt/min lt/min bN D-20 (Krel on/h k/min k/k	a) Denver) bs) Under Flor 73,69 555,73 223,58 84,60 59,77 8,87 2612,26 3,70	MOLINO 8' * 44,63 3,3 1950 545,72 320,31 ton/h lt/min lt/min z z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 85,38 3119,61 2694,55 34,56 13,63 55,07 1319,89 3,35	ton/h lt/min lt/min z z gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Casao Gisculaste	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 g 3,51 179,24 m 9,42 F 85 31 2	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h lt/min lt/min lt/min lt/min k/min k/min k/min k/min k/min k/min k/min k/min k/min k/min k/min k/min k/min k/min k/min k/min	a) Denver) bs) Under Flor 73,69 555,73 223,58 84,60 59,77 8,87 2612,26 3,70	MOLINO 8' * 44,63 3,3 1950 545,72 320,31 * ton/h lt/min t/min z z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 85,38 3119,61 2694,55 34,56 13,63 55,07 1319,89 3,35	ton/h lt/min lt/min z z gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de pulpa Flujo de notimen & sólidos en peso & sólidos en volúmen & - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Pronorsión al Undor florri	MOLINO 8' × 40,75 3,4 1950 504,64 304,89 MOLINO 8' × 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 tr 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 9 3,51 179,24 m 9,42 F 86,31 2 46,32 2	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h lt/min lt/min lt/min lt/min bN D-20 (Krel on/h t/min t/min t/min t/min t/min t/min t/min	sa) Denver) bs) Under Flor 73,69 555,73 223,58 84,60 59,77 8,87 2612,26 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 v ton/h lt/min z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 2694,55 34,56 13,63 55,07 1319,89 3,35	ton/h lt/min lt/min z z gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua fresca al cajón Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de agua & sólidos en peso & sólidos en peso & sólidos en volúmen & - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow	MOLINO 8' x 40,75 3,4 1950 504,64 304,89 MOLINO 8' x 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 tr 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 9 3,51 179,24 m 9,42 F 86,31 2 46,32 2 7 66 2	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h lt/min lt/min lt/min lt/min k/min	sa) Denver) bs) Under Flov 73,69 555,73 223,58 84,60 59,77 8,87 2612,26 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 v ton/h lt/min z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 2694,55 34,56 13,63 55,07 1319,89 3,35	ton/h lt/min lt/min 2 2 gr/lt
Flujo de mineral Densidad del mineral Densidad de pulpa en la descarga Flujo de pulpa en la descarga Flujo de agua fresca al molino Flujo de mineral Densidad de pulpa en la descarga Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de mineral Flujo de pulpa Flujo de pulpa čidos en peso č sólidos en volúmen č - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow By - pass	MOLINO 8' x 40,75 3,4 1950 504,64 304,89 MOLINO 8' x 73,69 2072,28 835,58 279,85 503,43 CAJÓN BOM 1789,50 HIDROCICLÓ Alimento 159,07 to 3673,49 lt 2918,13 lt 47,60 2 20,56 2 33,67 2 1516,07 9 3,51 179,24 m 9,42 F 86,31 2 46,32 2 7,66 2	: 10' A (Come: ton/h gr/cc gr/lt lt/min lt/min k 8' B (Comes: ton/h lt/min lt/min lt/min lt/min k/min	sa) Denver) bs) Under Flov 73,69 555,73 223,58 84,60 59,77 8,87 2612,26 3,70	MOLINO 8' x 44,63 3,3 1950 545,72 320,31 v ton/h lt/min z z gr/lt	10° B (Comesa ton/h gr/cc gr/lt lt/min lt/min lt/min 2694,55 34,56 13,63 55,07 1319,89 3,35	ton/h lt/min lt/min 2 z gr/lt

	MOLINO 8' x 10' /	A (Comesa)	MOLINO 8" >	(10' B (Comesa)				
Flujo de mineral	40,75	ton/h	44,63	to n/h				
Densidad del mineral	3,4	gr/cc	3,3	gr/cc				
Densidad de pulpa en la descarga	1950	gr/lt	1950	gr/lt				
Flujo de pulpa en la descarga	504,64	lt/min	545,72	lt/min				
Flujo de agua fresca al molino	304,89	lt/min	320,31	lt/min				
	MOLINO 8' x 8' B	(Comesa)						
Flujo de mineral	68,41	ton/h						
Densidad de pulpa en la descarga	2024,68	gr/lt						
Flujo de pulpa en la descarga	811,80	lt/min						
Flujo de agua fresca al molino	279,85	lt/min						
Flujo de agua en la descarga	503,43	lt/min						
	ΓΑΙΏΝ ΒΟΜΒΑ 1							
Flujo de agua fresca al cajón	1789,50	lt/min						
		20 (K)						
		-20 (Kieds)						
	Alimento	Under I	Flow	Over Flow				
Flujo de mineral	153,79 ton/h	68,41	ton/h	85,38 ton/h				
Flujo de pulpa	3649,78 lt/min	531,9	5 It/min	3119,61 it/min				
Flujo de agua	2918,13 lt/min	223,5	8 It/min	2694,55 lt/min				
🎗 sólidos en peso	46,76 X	83,61	z	34,56 %				
🎗 sólidos en volúmen	20,05 %	57,97	z	13,63 🎗				
% - m200	34.11 Z	9.12	z	54 14 2				
Densidad de nulna	1501.83 or/lt	2563	75 or/lt	1319.89 gr/lt				
Densidad de pineral	3.5	3 70		3 35				
	3,5	5,10		3.33				
d(50) Corregido	189,99 micror	nes						
Presión de alimentación	7,99 PSI							
Carga Circulante	80,13 X							
Proporción al Under flow	44,48 2							
By - pass	7.66 2							
o : i :/ o/								
Simulación 31								
	MOLINO 9' - 10'			10' P (Cometa)				
Eluia da minaral		A (COMesa)	MULINU 0 7					
	40,75		44,03					
Densidad del mineral	3,4	gr/cc	3,3	gi/cc				
Densidad de pulpa en la descarga	1950	gr/ it	1950	grit				
Flujo de pulpa en la descarga	504,64	it/min	545,72	it/min				
Flujo de agua fresca al molino	304,89	lt/min	320,31	lt/min				
	MOLINO 8' x 8' B	(Comesa)						
Eluio de mineral	79.64	ton/h						
Densidad de nulha en la descarga	1938 68	ar/lt						
Eluio de pulpa en la descarga	1031 61	lt/min						
Flujo de pulpa en la descarga Elujo de pous frences el moline	449.05							
Flujo de agua resca al molino	445,05							
Fiujo de agua en la descarga	672,63	1C7 mm						
	CAJÓN BOMBA 1	0"x 8" (Denver)						
Flujo de agua fresca al cajón	1620,30	lt/min						
	HIDROCICLÓN D	-20 (Krebs)						
	Alimento	Under I	Flow	Over Flow				
Flujo de mineral	165,02 ton/h	79,64	ton/h	85,38 ton/h				
Flujo de pulpa	3700,24 lt/min	582,5	6 It/min	3119,61 It/min				
Fluio de agua	2918,13 lt/min	223,5	8 It/min	2694,55 lt/min				
Z sólidos en peso	48.52 X	85,58	z	34,56 %				
Z sólidos en volúmen	21.14 2	61.62	z	13.63 2				
2 - m200	31 70 7	8 12	z	53.70 ×				
		0,12	-					
Deneidad de eulea	1521 01 or /h	2663	24 or/lt	1219 29				
Densidad de pulpa Densidad de giacast	1531,91 gr/lt	2662.	24 gr/lt	1319,89 gr/lt 3 25				
Densidad de pulpa Densidad de mineral	1531,91 gr/lt 3,52	2662 <i>.</i> 3,70	24 gr/lt	1319,89 gr/lt 3,35				
Densidad de pulpa Densidad de mineral d(50) Corregido	1531,91 gr/lt 3,52 175,75 micror	2662, 3,70	24 gr/lt	1319,89 gr/lt 3,35				
Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación	1531,91 gr/lt 3,52 175,75 micror 11,27 PSI	2662, 3,70	24 gr/lt	1319,89 gr/lt 3,35				
Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante	1531,91 gr/lt 3,52 175,75 micror 11,27 PSI 93,28 %	2662, 3,70 nes	24 gr/lt	1319,89 gr/lt 3,35				
Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow	1531,91 gr/lt 3,52 175,75 micror 11,27 PSI 93,28 2 48,26 2	2662, 3,70 nes	24 gr/lt	1319,89 gr/lt 3,35				
Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow By - pass	1531,91 gr/lt 3,52 175,75 micror 11,27 PSI 93,28 % 48,26 % 7,66 %	2662. 3,70 nes	24 gr/lt	1319,89 gr/lt 3,35				

	MOLINO 8' x 10)' A (Comes	a)	MOL	INO 8' x 1	0° 8 (Comesa)
Flujo de mineral	40.75	ton/h			44 63	ton/h	
Densidad del mineral	3 4				2 2		
Densidad de pulpa en la descarga	1950	gi/cc			1050		
Ekvia da pulpa an la descarga	1950	gr/it			1950	grad	
Fiujo de puipa en la descarya Fiujo de como focos el collo e	504,64	It/min		:	545,72	it/min	
iujo de agua fresca al molino	304,89	lt/min			320,31	lt/min	
	MOLINO 8' x 8'	B (Comesa	i)				
·lujo de mineral	78,19	ton/h					
) ens idad d e pul pa en la descarga	2010,93	gr/lt					
Flujo de pulpa en la descarga	940,43	lt/min					
⁻ lujo de agua fresca al molino	364.41	lt/min					
flujo de agua en la descarga	587,99	lt/min					
	CAJÓN BOMBA	10"x 8" (D	enver)				
[;] lujo de agua fresca al cajón	1704,94	lt/min					
	HIDROCICLÓN	D-20 (Kreb	(z)				
	Alimento		Under Flow	~		Over Flow	
lujo de mineral	163,57 ton/	'n	78,19	ton/h		85,38	ton∕h
[;] lujo de pulpa	3693,72 lt/m	in	576,02	lt/min		3119,61	lt/min
Flujo de agua	2918,13 lt/m	in	223,58	lt/min		2694,55	lt/min
č sólidos en peso	48.30 Z		85,36	z		34 56	z
sólidos en volúmen	21 00 2		61 19	z		13 63	z
r . m200	21,00 %		01,13 Q 41	~		13,03 64 67	~ ~
	JZ,JI 4		0,41	*		04,57	4
vensidad de pulpa	1528,07 gr/lt		2650,49	gr/lt		1319,89	gr/lt
)ensidad de mineral	3,51		3,70			3,35	
I(50) Corregido	174,90 micr	ones					
Presión de alimentación	11,22 PSI						
Carga Circulante	91,58 🎗						
Proporción al Under flow	47 80 X						
Ru - natt	7.66 2						
Imulacion 33		0 A (C)			10' 0 (C	
Eluio de mineral		יש א נטסח פי א = - י	adi	MUL		IU D (LOMES	•)
riujo ue mineral Desette tatat	4U,/D				44,0J 2 2	ton/h	
Vensigad del mineral	3,4	gr/cc			J,J	gr/cc	
Vensidad de pulpa en la descarga	1950	gr/lt			1950	gr/lt	
Flujo de pulpa en la descarga	504,64	lt/min			545,72	lt/min	
Flujo de agua fresca al molino	304,89	lt/min			320,31	lt/min	
	MOLINO 8' x 8	B (Comes	a)				
Flujo de mineral	74,86	ton/h					
Densidad de pulpa en la descarga	2203,80	gr/lt					
Flujo de pulpa en la descarga	756,17	lt/min					
Fluio de aqua fresca al molino	195.14	it/min					
Flujo de agua en la descarga	418,72	it/min					
	CAJÓN BOMBA	10"x 8" (C)enver)				
Flujo de agua fresca al cajón	1874,21	lt/min	-				
	HIDROCICLÓN	D-20 (Kret	(20				
	Alimento		Under Flo	w		Over Flow	
	160.24 ton	/h	74,86	ton/h		85,38	ton/h
Flujo de mineral		in	561,03	lt/min		3119,61	lt/min
Flujo de mineral Flujo de pulpa	3678,77 lt/m			10.4		2004 55	lt/min
Flujo de mineral Flujo de pulpa Flujo de aqua	3678,77 lt/m 2918.13 lt/m	nin	223,58			2034.33	
Flujo de mineral Flujo de pulpa Flujo de agua Z sólidas en neso	3678,77 lt/m 2918,13 lt/m 47 79 7	hin	223,58 84 80	1(/min 2		2654,55	z
Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en peso	3678,77 lt/m 2918,13 lt/m 47,79 ≵ 20.68 ₹	hin	223,58 84,80 60 15	it/min Z Z		2654,55 34,56 13,63	2 7
Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen X = 200	3678,77 k/m 2918,13 k/m 47,79 % 20,68 %	hin	223,58 84,80 60,15 9.14			2654,55 34,56 13,63	z z
Flujo de mineral Flujo de pulpa Flujo de agua & sólidos en peso & sólidos en volúmen & - m200	3678,77 lt/m 2918,13 lt/m 47,79 z 20,68 z 34,48 z	nin	223,58 84,80 60,15 9,14			2694,55 34,56 13,63 56,70	z z z
Flujo de mineral Flujo de pulpa Flujo de agua & sólidos en peso & sólidos en volúmen & - m200 Densidad de pulpa	3678,77 lt/m 2918,13 lt/m 47,79 % 20,68 % 34,48 % 1519,22 gr/l	t	223,58 84,80 60,15 9,14 2622,51	z z gr/lt		2694,55 34,56 13,63 56,70 1319,89	Z Z Z gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua % sólidos en peso % sólidos en volúmen % - m200 Densidad de pulpa Densidad de mineral	3678,77 lt/m 2918,13 lt/m 47,79 % 20,68 % 34,48 % 1519,22 gr/l 3,51	t	223,58 84,80 60,15 9,14 2622,51 3,70	z z z gr/lt		2634,55 34,56 13,63 56,70 1319,89 3,35	z z gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua % sólidos en peso % sólidos en volúmen % - m200 Densidad de pulpa Densidad de mineral d(50) Corregido	3678,77 lt/m 2918,13 lt/m 47,79 % 20,68 % 34,48 % 1519,22 gr/l 3,51 172,98 mic	t rone s	223,58 84,80 60,15 9,14 2622,51 3,70	it/min Z Z gr/lt		2694,55 34,56 13,63 56,70 1319,89 3,35	z z gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua \$ sólidos en peso \$ sólidos en volúmen \$ - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación	3678,77 k/m 2918,13 k/m 47,79 % 20,68 % 34,48 % 1519,22 gr/l 3,51 172,98 mic 11,10 PSI	t rone s	223,58 84,80 60,15 9,14 2622,51 3,70	it/min z z gr/lt		2694,55 34,56 13,63 56,70 1319,89 3,35	z z gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante	3678,77 lt/m 2918,13 lt/m 47,79 2 20,68 2 34,48 2 1519,22 gr/l 3,51 172,98 mic 11,10 PSI 87,68 2	t rone s	223,58 84,80 60,15 9,14 2622,51 3,70	z z gr/lt		2694,55 34,56 13,63 56,70 1319,89 3,35	z z gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Pronorción al Under flom	3678,77 lt/m 2918,13 lt/m 47,79 2 20,68 2 34,48 2 1519,22 gr/l 3,51 172,98 mic 11,10 PSI 87,68 2 46 72 2	t rone s	223,58 84,80 60,15 9,14 2622,51 3,70	it/min z z gr/lt		2694,55 34,56 13,63 56,70 1319,89 3,35	z z gr/lt
Flujo de mineral Flujo de pulpa Flujo de agua 2 sólidos en peso 2 sólidos en volúmen 2 - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow	3678,77 It/m 2918,13 It/m 47,79 2 20,68 2 34,48 2 1519,22 gr/l 3,51 172,98 mic 11,10 PSI 87,68 2 46,72 2	t t	223,58 84,80 60,15 9,14 2622,51 3,70	it/min z z gr/lt		2694,55 34,56 13,63 56,70 1319,89 3,35	Z Z gr∕lt

	MOLINO 8' x 10'	A (Comesa)	MOLINO 8' x 10' B (Comesa)			
Flujo de mineral	40,75	ton/h	44,63	ton/h		
Densidad del mineral	3,4	gr/cc	3,3	gr/cc		
Densidad de pulpa en la descarga	1950	gr/lt	1950	gr/lt		
Flujo de pulpa en la descarga	504,64	- It/min	545,72	lt/min		
Flujo de agua fresca al molino	304,89	lt/min	320,31	lt/min		
	MOLINO 8' x 8' B	(Comesa)				
Flujo de mineral	72,92	ton/h				
Densidad de pulpa en la descarga	2337,83	gr/lt				
Flujo de pulpa en la descarga	662,79	lt/min				
Fluio de aqua fresca al molino	110,50	lt/min				
Fluio de agua en la descarga	334.08	lt/min				
	CAJÓN BOMBA 1	0"x 8" (Denver)				
Flujo de agua fresca al cajón	1958,85	lt/min				
	HIDROCICLON D	-20 (Krebs)				
	Alimento	Under F	low	Over Flow		
Fluio de mineral	158.30 ton/h	72 92	ton/h	85.38 ton/h		
Fluio de pulpa	3670.06 lt/min	552.29		3119.61 It/min		
	2919 12 b/min	272 50		2694 55 It/min		
	2310,13 171111	223,30	↔ (7 mm)			
4 solidos en peso	47,48 4	84,40	*	34,56 4		
z solidos en volúmen	20,49 %	59,52	z	13,63 %		
% - m200	35,72 🎗	9,59	z	58,03 %		
Densidad de pulpa	1514,02 gr/lt	2605,5	i0 gr/lt	1319,89 gr/lt		
Densidad de mineral	3,51	3,70		3,35		
d(50) Corregido	171.88 micro	nes				
Bresión de alimentación	11 03 PSI	103				
	95 41 9					
Carga Circulante Disea si fa shila da fila	0J,41 &					
Proporcion al Under riow	46,07 %					
Bà - bass	7,66 4					
Simulación 35						
	MOLINO 8' v 10'	'Δ (Cometa)		10' B (Comesa)		
Eluio do minoral	40.75	ton/h	44.63	ton/h		
	24	allee	3 3	ar/cc		
Densidad dei minerai	1950	gr/lt	1950	gi/tt		
Densidad de pulpa en la descarga	1350		E 45 72			
Flujo de pulpa en la descarga	5U4,64 204.00		J4J,72 220.21			
Flujo de agua tresca al molino	304,89		320,31			
		R (Cometa)				
Eluio do minoral	70 74	ton/h				
Piero de minieral Dessidad de sulas es la deseaves	2513 47	or/lt				
Densidad de pulpa en la descarga	2313,47					
	EC0 30	11/01/0				
	568,30	lt/min				
Flujo de agua fresca al molino	568,30 25,87 249,45	It/min It/min				
Flujo de agua fresca al molino Flujo de agua en la descarga	568,30 25,87 249,45	lt/min lt/min lt/min				
Flujo de agua fresca al molino Flujo de agua en la descarga	568,30 25,87 249,45	It/min It/min It/min				
Flujo de agua fresca al molino Flujo de agua en la descarga	568,30 25,87 249,45 CAJÓN BOMBA 2043 48	It/min It/min It/min 10"x 8" (Denver) It/min				
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón	568,30 25,87 249,45 CAJÓN BOMBA 2043,48	It/min It/min It/min 10"x 8" (Denver) It/min				
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón	568,30 25,87 249,45 Cajón Bomba 2043,48 Hidrociclón I	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs)				
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs)	1	Quer Flow		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F	-lo w	Over Flow		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/ł	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F 1 70,74	-lo w ton/h	Over Flow 85,38 ton/h		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/f 3660,23 lt/min	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Kreb\$) Under F 1 70,74 n 542,4	^{-low} ton/h 3 It/min	Over Flo w 85,38 ton∕h 3119,61 k/min		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de agua	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/f 3660,23 lt/mit 2918,13 lt/mit	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Kreb\$) Under F n 70,74 n 542,4 n 223,55	Flow ton/h 3 It/min 8 It/min	Over Flow 85,38 ton/h 3119,61 k/min 2694,55 k/min		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de agua X sólidos en peso	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/f 3660,23 lt/mit 2918,13 lt/mit 47,14 %	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Kreb\$) Under F n 70,74 n 542,43 n 223,55 84,06	Flow ton/h 3 It/min 8 It/min 2	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 ≈		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de agua % sólidos en peso % sólidos en volúmen	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/f 3660,23 lt/mit 2918,13 lt/mit 47,14 & 20,27 &	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F n 70,74 n 542,43 n 223,55 84,06 58,78	Tlow ton/h 3 lt/min 8 lt/min 2 2	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 % 13,63 %		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de pulpa X sólidos en peso X sólidos en volúmen X - m200	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/I 3660,23 lt/min 2918,13 lt/min 47,14 & 20,27 & 37,19 &	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F n 70,74 n 542,4 n 223,58 84,06 58,78 10,14	Flow ton/h 3 It/min 8 It/min 2 2 2	Over Flow 85,38 ton/h 3119,61 k/min 2694,55 k/min 34,56 % 13,63 % 59,61 %		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de pulpa X sólidos en peso X sólidos en volúmen X - m200 Densidad de pulpa	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/I 3660,23 lt/min 2918,13 lt/min 47,14 2 20,27 2 37,19 2 1508,13 gr/lt	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Kreb\$) Under F n 70,74 n 542,4 n 223,53 84,06 58,78 10,14 2585,1	Flow ton/h 3 lt/min 8 lt/min 2 2 2 55 gr/lt	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 % 13,63 % 59,61 % 1319,89 gr/lt		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de pulpa Slidos en peso X sólidos en volúmen X - m200 Densidad de pulpa Densidad de mineral	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/I 3660,23 lt/min 2918,13 lt/min 47,14 & 20,27 & 37,19 & 1508,13 gr/lt 3,51	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Kreb\$) Under F n 70,74 n 542,4 n 223,53 84,06 58,78 10,14 2585,1 3,70	Flow ton/h 3 lt/min 8 lt/min 2 2 2 55 gr/lt	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 % 13,63 % 59,61 % 1319,89 gr/lt 3,35		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen X - m200 Densidad de pulpa Densidad de mineral	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/ł 3660,23 lt/min 2918,13 lt/min 47,14 2 20,27 2 37,19 2 1508,13 gr/lt 3,51	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F n 70,74 n 542,4: n 223,53 84,06 58,78 10,14 2585,1 3,70	Flow ton/h 3 lt/min 8 lt/min 2 2 2 55 gr/lt	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 & 13,63 & 59,61 & 1319,89 gr/lt 3,35		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de pulpa Flujo de agua & sólidos en peso & sólidos en volúmen & - m200 Densidad de pulpa Densidad de mineral d(50) Corregido	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/ł 3660,23 lt/mir 2918,13 lt/mir 47,14 2 20,27 2 37,19 2 1508,13 gr/lt 3,51	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Kreb±) Under F 10,74	Flow ton/h 3 lt/min 8 lt/min 2 2 2 65 gr/lt	Over Flow 85,38 ton/h 3119,61 lt/min 34,56 % 13,63 % 59,61 % 1319,89 gr/lt 3,35		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de mineral Flujo de pulpa Flujo de pulpa Flujo de agua X sólidos en peso X sólidos en volúmen X - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/I 3660,23 lt/min 2918,13 lt/min 47,14 & 20,27 & 37,19 & 1508,13 gr/lt 3,51 170,65 micro 10,96 PSI 22.25 F	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F h 70,74 n 542,4: n 223,5: 84,06 58,78 10,14 2585,1 3,70 Snes	Flow ton/h 3 lt/min 8 lt/min 2 2 2 65 gr/lt	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 & 13,63 & 59,61 & 1319,89 gr/lt 3,35		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de pulpa Flujo de pulpa Flujo de agua & sólidos en peso & sólidos en volúmen & - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HIDROCICLÓN I Alimento 156,12 ton/I 3660,23 lt/mit 2918,13 lt/mit 47,14 & 20,27 & 37,19 & 1508,13 gr/lt 3,51 170,65 micro 10,96 PSI 82,85 &	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F h 70,74 n 542,4: n 223,53 84,06 58,78 10,14 2585,1 3,70	Flow ton/h 3 lt/min 8 lt/min 2 2 2 5 gr/lt	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 ≵ 13,63 ≵ 59,61 ≵ 1319,89 gr/lt 3,35		
Flujo de agua fresca al molino Flujo de agua en la descarga Flujo de agua en la descarga Flujo de agua fresca al cajón Flujo de pulpa Flujo de pulpa Flujo de agua & sólidos en peso & sólidos en volúmen & - m200 Densidad de pulpa Densidad de mineral d(50) Corregido Presión de alimentación Carga Circulante Proporción al Under flow	568,30 25,87 249,45 CAJÓN BOMBA 2043,48 HID ROCICLÓN I Alimento 156,12 ton/I 3660,23 lt/mit 2918,13 lt/mit 47,14 2 20,27 2 37,19 2 1508,13 gr/lt 3,51 170,65 micro 10,96 PSI 82,85 2 45,31 2	It/min It/min It/min 10"x 8" (Denver) It/min D-20 (Krebs) Under F h 70,74 n 542,4 n 223,53 84,06 58,78 10,14 2585,1 3,70 Dnes	Flow ton/h 3 It/min 8 It/min 2 2 2 5 gr/lt	Over Flow 85,38 ton/h 3119,61 lt/min 2694,55 lt/min 34,56 ≵ 13,63 ≵ 59,61 ≵ 1319,89 gr/lt 3,35		

5.6 Simulación del circuito afinando la granulometría del alimento fresco

La granulometría promedio de alimentación al circuito de molienda es aproximadamente 30% mas ½", dentro de los planes de corto plazo de la concentradora esta el proyecto del cerrado del circuito de chancado terciario, con la finalida de obtener un producto más uniforme y de menor dimensión, con lo que se estaría mejorando la calidad de la molienda.

Con la finalidad de evaluar el impacto de la menor granulometría de alimentación (aproximadamente 15% mas ½") se realizó una simulación del circuito, bajo las condiciones actuales de operación, excepto la granulometría de alimentación a los molinos primarios.

No	MALLA	ABERTURA		Año 1995		Año 1996		
			% Peso	Ac (+)	Ac (-)	% Peso	Ac (+)	Ac (-)
1	1"	25739	3.66	3.66	96.34	0.00	0.00	100.00
2	3/4"	20630	6.46	10.12	89.88	0.00	0.00	100.00
3	1/2"	15533	20.00	30.12	69.88	15.00	15.00	85.00
4	3/8"	10897	11.46	41.58	58.42	12.24	27.24	72.76
5	m4	4467	14.58	56.16	43.84	25.68	52.92	47.08
6	m10	2182	10.13	66.29	33.71	16.07	68.99	31.01
7	m30	651	11.38	77.67	22.33	8.70	77.69	22.31
8	m70	251	7.68	85.35	14.65	6.98	84.67	15.33
9	m100	178	2.47	87.81	12.19	2.34	87.01	12.99
10	m140	126	1.56	89.37	10.63	2.33	89.34	10.66
11	m200	89	1.22	90.59	9.41	0.97	90.31	9.69
12	m270	63	1.23	91.82	8.18	1.91	92.22	7.78
13	m325	49	1.12	92.94	7.06	1.05	93.27	6.73
14	-m325		7.06	100.00	0.00	6.73	100.00	0.00
	SUMATO	RIA	100.00	0		100.00		

Presentamos las distribuciones granulométricas de ahora (1995) y después:

Gráfico 5.12: Comparación de las distribuciones granulométricas

A continuación el resumen de la simulación realizada:

	MOLINO 8' x 10' A (Comesa)			MOLINO 8' x 10' B (Comesa)			
Flujo de mineral	40.75		ton/h	44.0	63 ton/h		
Densidad del mineral	3.4		gr/cc	3.3	gr/cc		
Densidad de pulpa en la descarga	1950		gr/lt	195	0 g r/l t		
Flujo de pulpa en la descarga	504.64	4	lt/min	545	.72 lt/min		
Flujo de agua fresca al molino	304.89	9	lt/min	320	.31 It/min		
	MOLINO 8	'x8'B((Comesa)				
Flujo de mineral	76.49		ton/h				
Densidad de pulpa en la descarga	2096.52		gr/it				
Flujo de pulpa en la descarga	la descarga 848.23		lt/min				
Flujo de agua fresca al molino	279.8	5	lt/min				
Flujo de agua en la descarga	503.43	3	lt/min				
	CAJÓN BO	OMBA 10	"x 8" (Denver)				
Flujo de agua fresca al cajón	1789.9	50	lt/min				
	HIDROCIC	LÓN D-2	0 (Krebs)				
	Alimento		Under	Flow	Over Flow		
Flujo de mineral	161.87	ton/h	76.49	ton/h	85.38	ton/h	
Flujo de pulpa	3686.10	lt/min	568.3	8 It/min	3119.61	lt/min	
Flujo de agua	2918.13	lt/min	223.5	8 It/min	2694.55	lt/min	
% sólidos en peso	48.04	%	85.08	%	34.56	%	
% sólidos en volúmen	20.83	%	60.66	%	13.63	%	
% - m200	33.51	%	8.84	%	55.62	%	
Densidad de pulpa	1523.57	gr/lt	2636.	41 gr/lt	1319.89	gr/lt	
Densidad de mineral	3.51	gr/cc	3.70	gr/cc	3.35	gr/cc	
d(50) Corregido	173.92	micron	es				
Presión de alimentación	11.16	PSI					
Carga Circulante	89.59	%					
Proporción al Under flow	47.26	%					
By - pass	7.66	%					

Como se aprecia no se observa un incremento significativo en el porcentaje de la malla menos 200.

En el resto de parámetros de operación tampoco no se observa variaciones significativas respecto a la operación actual.

De esto podemos concluir que esta disminución de la granulometría de alimentación fresca no tendrá impacto significativo sobre la calidad de la molienda, ya que 15% sobre la malla mas ½" sigue siendo aun una granulometría bastante gruesa.

Esto quedo demostrado en el año 1996 cuando se puso operativo el nuevo circuito, no se logró incrementar el porcentaje de menos 200 mallas en el overflow.

CAPITULO 6

CONCLUSIONES Y RECOMENDACIONES

El modelo simplificado de molienda, en base a la Función Selección Especifica y los modelos empíricos (Lynch & Rao y Plitt) para hidrociclones, constituyen herramientas eficaces para lograr una mejor comprensión del funcionamiento y la optimización de un circuito de molienda clasificación.

Los conceptos arriba indicados, son posibles de aplicar en Plantas de la mediana minería, el requisito sería caracterizar todos las mezclas de mineral que son alimentadas a la concentradora, determinación de la función selección específica y constantes del modelo del hidrociclón. Esto para obtener resultados de las modelaciones de más amplio rango de validez.

El objetivo de una etapa de molienda clasificación es generalmente obtener la liberación de las especies valiosas, la cual casi siempre se da en tamaños de partícula bastante pequeños, siendo parámetros de control a nivel de Planta el % acumulado o pasante de una determinada abertura de malla (% menos 200 mallas ó % mas 65 mallas, generalmente). En nuestro caso la malla de control es el % de malla menos 200, la cual debe ser aproximadamente entre 53 y 56%.

El objetivo a corto plazo en la Planta fue la de incrementar el porcentaje de menos 200 mallas arriba del 60%, con la implementación de una etapa adicional de remolienda, la finalidad fue mejorar la recuperación del cobre, evitando su desplazamiento al circuito de zinc.

Este trabajo pretendió en su momento conocer el comportamiento del circuito frente a cambios operativos para posteriormente lograr una optimización del circuito en base a los recursos existentes. Así en las simulaciones se exploran estrategias de aumento de agua de dilución al cajón de la bomba, variaciones de diámetros de vortex, variaciones de diámetros de apex y variación de las proporciones de distribución de agua al circuito, con la finalidad de no afectar el tiempo de flotación por dilución del overflow.

Al aumentar el agua de dilución se consigue aumentar el porcentaje de malla menos 200 con el consiguiente incremento de la carga circulante y aumento del porcentaje de sólidos del underflow, el cual es peligroso por el posible "roping" que podría presentarse. Otro inconveniente de esta estrategia es la dilución del overflow, el cual restaría hasta un 10% del tiempo de flotación al incrementarse un 20% más de agua.

Mediante las simulaciones también se determinó que una disminución del diámetro de vortex no es beneficiosa, sino que esta debería ser acompañada de un cambio de diámetro en el apex. Así se determinó que un apex de 2.75 pulgadas sería conveniente. El aumentar el diámetro del apex no compromete el porcentaje de sólidos del underflow (se observa ligera disminución), la limitante sería el porcentaje de carga circulante. Se determinó que el máximo de carga circulante que podría soportar el circuito es 130%.

La estrategia de variar la distribución de agua al circuito, sin variar los sólidos del overflow, permite controlar el incremento de la carga circulante, al dosificarse casi la totalidad del agua al cajón de la bomba y solo un mínimo para la dilución del underflow. La limitante para esta estrategia seria el máximo porcentaje de sólidos permisible en la descarga del molino secundario. De esto se concluye que entre el 90 y 95% del agua total debería dosificarse al cajón de la bomba.

Se recomienda la instalación de al menos cuatro flujometros e igual número de válvulas automáticas para cuantificar y controlar a nivel de Planta la dosificación y distribución de agua en el circuito. De ser posible la instalación de un lazo de control (PLC) entre el tonelaje (balanzas electrónicas) y las válvulas de dosificación de agua para mantener constante el porcentaje de sólidos del overflow y la distribución de agua.
CAPITULO 7

ANEXOS

7.1 Algunos criterios sobre optimización de Circuitos de Molienda Clasificación

Estos criterios han sido tomados del artículo "Diez Mandamientos para mejorar la Productividad de sus Molinos", presentado por el Dr. Jaime E. Sepúlveda en el IV Sistem Samarco Mineracao (Belo Horizonte, 1994).

Mandamiento Nº 1:

Mantener el máximo nivel de carga en el Molino

Como ya se sabe, para una tarea de molienda dada, resulta obvio que cualquier aumento en la demanda de potencia del molino debiera traducirse en un correspondiente aumento en su productividad. En concreto, la ecuación:

$$P = 0.238 \times D^{3.5} \times (L/D) \times N_c \times d_{ap} \times (f - 1.065 \times f^2) \times Sen \alpha$$
(1)

Donde:

D	:	diámetro del molino, pies
L	2	largo del molino, pies
Nc		fracción de la velocidad crítica, $N_c = 76.6 / D^{0.5}$
dap	:	densidad aparente de la carga, ton/m ³
f	:	nivel aparente de llenado, ^o / ₁ (incluyendo espacios intersticiales)
α	0	ángulo de levante del centro de gravedad de la carga con respecto a la vertical, típicamente entre 35° a 40°

Figura 1: Efecto del nivel de llenado sobre la potencia demandad por el molino, en función de la velocidad de giro.

Representada gráficamente en la Figura 1 adjunta, indica que, por ejemplo, un leve aumento en el nivel aparente de cuerpos moledores en el molino, desde un 38% a un 42%, se traduciría en un correspondiente aumento del 2.6% en la potencia y en consecuencia, un similar y no despreciable porcentaje de aumento en el ritmo de beneficio del mineral, que alcanzaría a las 102.6 ton/hr (Condición 1). Es preciso reconocer sin embargo que, por su geometría y diseño, no todos los molinos industriales aceptan los mismo niveles porcentuales de llenado; en particular los del tipo overflow de gran diámetro, normalmente limitados a llenados máximos inferiores al 40%.

Se podrá contra argumentar que tal recomendación es demasiado evidente para incluirla en un listado de potenciales fuentes de optimización.

Sin embargo, no han sido pocas las oportunidades en que este autor ha podido constatar, en terreno, hasta que punto se descuida el control acucioso de tan importante condición operacional. La práctica común de recargar bolas en una proporción fija con respecto a la cantidad de mineral beneficiado el turno o día anterior puede fácilmente conducir a una condición de llenado insuficiente; con la consecuente pérdida de capacidad de tratamiento y/o fineza en el producto molido. Por el contrario, se está actualmente trabajando en el diseño y evaluación industrial de diversos dispositivos automáticos para la recarga continua de cuerpos moledores, con el preciso propósito de mantener el nivel de potencia del molino cercano a su máximo permisible.

Mandamiento Nº 2

Incrementar la velocidad rotación del Molino

Concordante con la lógica anterior, un incremento en la velocidad de rotación del molino se traduce, según la misma Ecuación 1, en un incremento directamente proporcional en su demanda de potencia, como se ilustra también en la Figura 1 adjunta. Varias operaciones han experimentado con éxito esta alternativa, mediante simples modificaciones en el sistema motriz del molino.

No obstante, tal recomendación está limitada por la consecuente alteración en el posicionamiento dinámico del riñón conformado por la carga, aumentando en el posicionamiento dinámico del riñón conformado por la carga aumentando los riesgos de impactos bola/revestimiento y los resultantes daños a estos últimos, afectando negativamente la disponibilidad operacional del equipo. En el extremo, la carga de bolas puede llegar a impactar preferentemente a las barras levantadoras del extremo opuesto, imperando una condición de volante de inercia, caracterizada por una disminución de la potencia demanda. Ciertamente, bajo tales circunstancias, la Ecuación 1 ya no es aplicable.

Por lo anterior, dependiendo del nivel de llenado y el perfil de los revestimientos, el aumento de velocidad del molino estará limitado a un máximo de 75% a 79% de su correspondiente velocidad crítica. En este caso hipotético, se ha considerado factible aumentar la velocidad de giro de 72% a 76% de su velocidad crítica proyectándose así un incremento de tonelaje a 108.3 ton/hr (5.6%) (Condición 2)

Mandamiento Nº 3

Incrementar la fineza de la alimentación fresca la circuito

Es posible constatar en numerosas instalaciones de procesamiento de minerales que la capacidad de los equipos de chancado que anteceden a la etapa de molienda es considerablemente superior a la capacidad total de los molinos disponibles. Es por tanto inusual que las chancadoras operen en forma continua las 24 hr del día. Se suma a ello, que la tecnología actual ha efectivamente permitido ampliar el rango de aplicabilidad de las chancadoras terciarias a productos tan finos como ¼", e incluso 3/16", resulta entonces atractiva la posibilidad de relajar la tarea de molienda traspasando a esta etapa

un producto de alimentación lo más fino posible, utilizando al máximo la capacidad de chancado disponible.

Figura 2: Efecto de la fineza de la alimentación fresca sobre la productividad del molino. La línea punteada corresponde a la predicción de Bond a partir de la Condición 2

La Figura 2 adjunta ilustra el beneficio potencial de implantar tal alternativa, en el caso hipotético en consideración. Para una fineza de producto $P_{80} = 150 \mu m$ constante, simulaciones desarrolladas (sobre la base del modelo lineal de la molienda antes descrito) indican la potencialidad de aumentar el beneficio hasta 118.7 ton/hr (9.6%) (Condición 3), en el caso de que fuera posible reducir el tamaño de alimentación desde 95% - $\frac{1}{2}$ " (F₈₀ = 9795 μm) hasta 95% - 1/4" (F₈₀ = 5148 μm). Resulta de interés destacar que, para la misma situación, la Ley de Bond predice un incremento menor a sólo 114.4 ton/hr (5.6%); ello a causa de que Bond no reconoció debidamente la molienda anormal de partículas gruesas, caracterizadas en el modelo general por el parámetro d_{crit}. Al reducir la presencia de estas partículas más gruesas, de baja moliendabilidad, el aumento real de productividad ha demostrado ser mayor que el anticipable según Bond.

Mandamiento Nº 4

Reducir la fineza del producto al mínimo permitido

De la misma forma, puede ser ocasionalmente factible relajar la tarea de molienda reduciendo la exigencia de fineza sobre el producto final de la molienda. Frecuentemente, un adecuado análisis de alternativas, en un contexto económico global, permite demostrar la conveniencia de sacrificar en parte la eficiencia de las etapas de concentración subsiguientes a cambio de una mayor tasa de tratamiento a través del circuito. En la minería de los sulfuros, la flotación es el caso típico en el cual, dentro de límites razonables, es económicamente aconsejable producir más recuperando menos.

Para el ejemplo particular en consideración, la Figura 2 ilustra un aumento potencial a 138.1 ton/hr (16.3%) (Condición 4) cuando se acepta reducir la fineza del producto a P_{80} = 180 µm. Nuevamente, la predicción de Bond es más conservativa: 127.8 ton/hr (11.7%).

Mandamiento Nº 5

Determinar el tamaño optimo de bolas a recargar

En lo referente a la política de recarga de cuerpos moledores, es posible determinar en cada caso particular un área específica óptima, función de la tarea de molienda impuesta, que maximiza la moliendabilidad del mineral. Para tal efecto, se realiza ensayos de laboratorio con distintos tamaños de bolas, emulando distintas políticas de recarga, a fin de cuantificar la variabilidad de los parámetros α_0 y d_{crit} con respecto al área específica de la carga; obteniéndose resultados del tipo:

Política de	100%	100%	100%	50/50%	100%
Recarga	75 mm	64 mm	50 mm	50 mm	38 mm
Área m²/m³	63	76	94	108	126
α_0 ton/KWh	.00875	.01019	.01107	.01150	.01165
d _{cnt} , μ m	6532	4677	3548	3103	2800

Luego con la ayuda de un simulador adecuado, es posible construir gráficos como el de la Figura 3 que revela claramente la conveniencia de mantener un nivel de 85 m²/m (aparente) de área específica expuesta, para aumentar el beneficio a 156.3 ton/hr; equivalente a un 13.2% de mayor tratamiento respecto de la condición actual de recarga con bolas de 75 mm (Condición 4).

Figura 3: Efecto del área específica de la carga sobre la productividad del molino

Tal condición de área expuesta es factible de ser generada por una infinidad de políticas de recarga, alternativas y equivalente, entre ellas:

22% de bolas de 75 mm y 78% de bolas de 50 mm 48 de bolas de 75 mm y 52% de bolas de 38 mm 45% de bolas de 64 mm y 55% de bolas de 50 mm o preferiblemente optar por la alternativa subóptima de mono-recarga con 100% bolas de 50 mm (a = 94 m^2/m^3); de similar nivel de eficiencia y de mayor simplicidad operacional (Condición 5)

Es interesante además observar en la misma Figura 3 que, si se mantiene la granulometría gruesa de alimentación al circuito ($F_{80} = 9795 \ \mu m$), el área óptima requerida sería consecuentemente menor, del orden de 70 m²/m³, equivalente a una mono-recarga con 100% bolas de 70 mm.

Mandamiento Nº 6

Maximizar el contenido de sólidos en el retorno de los clasificadores

En el contexto de la "Cuarta Ley" que sugiere la conveniencia de operar los clasificadores con un contenido de sólidos en la descarga tan alto como sea operacionalmente posible. Ello apunta a minimizar el cortocircuito o retorno de partículas finas al molino (ver Figura 4).

% Sólidos en Descarga Ciclón

Figura 4: La "Cuarta Ley" indica que el mínimo contenido de finos en la descarga del molino se obtiene al operar con el mínimo % de sólidos en el rebalse de los hidrociclones y máximo % de sólidos en su descarga. El grafico ilustra también el beneficio de operar a altas cargas circulantes.

En la práctica, esta recomendación implica simplemente utilizar ápices (apex) suficientemente cerrados para mantener la alta densidad de pulpa deseada; justo por debajo de la condición límite de "acordonamiento" o "roping". La Figura 5 muestra que un leve aumento del contenido de sólidos en la descarga de los clasificadores de 76.5% a 78.2% representa un incremento en tratamiento de 156.2 ton/hr a 158.6 ton/hr (1.5%) (Condición 6), manteniendo la demanda de la bomba fija en 537 m³/hr.

Es perfectamente entendible que los operadores prefieran mantener una descarga más diluida, puesto que ello les demanda una menor atención en cuanto a estabilidad operacional; pero a medida que aumenta el cortocircuito, aumenta consecuentemente la

carga circulante y por lo tanto, la exigencia sobre la bomba. Como la gran mayoría de las instalaciones cuentan con bombas de velocidad fija, un aumento en carga circulante sólo puede ser absorbido con una reducción del ritmo de alimentación fresca al circuito (ver Figura 5). Aún en la eventualidad de que la instalación esté dotada con una bomba de velocidad variable con capacidad adicional disponible, es claramente más recomendable no copar esta disponibilidad con finos circulantes sino como se indica en el punto siguiente.

Figura 5: Efecto del porcentaje de sólidos en la descarga de los hidrociclones sobre la productividad del molino, con bomba de velocidad fija.

Mandamiento Nº 7

Maximizar la dosificación de agua al cajón de la bomba

De la "Cuarta Ley" y su correspondiente representación gráfica en la Figura 4, queda en evidencia la ventaja de operar el circuito con un mínimo contenido de sólidos en el rebalse de los hidrociclones; lo cual en términos prácticos significa simplemente adicionar el máximo de agua disponible, en compatibilidad con las etapas de concentración subsecuentes.

Dependiendo de la configuración del circuito, la mayor parte de la dosificación total de agua se adiciona normalmente al cajón de la bomba (Figura 6, flujo 4) y la menor diferencia restante directamente al molino, a fin de mantener adecuadas condiciones reológicas de la pulpa en su interior (48% a 54% sólidos, en volumen)

En el caso hipotético en consideración, la Figura 7 adjunta ilustra el significativo efecto de la dilución del rebalse sobre la productividad del circuito, para una tarea de molienda dada. A modo de ejemplo, estas simulaciones indican que, un aumento en la dosificación total de agua de 222 m³/hr (40.8% sólidos en el rebalse) a 309 m³/hr (35% sólidos en el rebalse) representa un importante aumento marginal de capacidad de tratamiento de 158.6 ton/hr a 171.3 ton/hr (8.0%) (Condición 7). Precisamente, esta variable ha sido siempre la de mayor incidencia en los diversos proyectos concretos de optimización, en los cuales este autor ha tenido la valiosa oportunidad de participar.

Figura 6: Configuraciones típicas de circuitos industriales de Molienda / clasificación.

Figura 7: Efecto del porcentaje de sólidos en el rebalse de los hidrociclones sobre la productividad del molino.

Mandamientos Nº 8

Incrementar la capacidad de la bomba

Implantar la recomendación anterior irremediablemente implica un aumento considerable en el nivel de carga circulante en el circuito (Figura 8). Resulta lógico por lo tanto tomar las precauciones pertinentes para evitar que la capacidad de la bomba pueda ser el "cuello de botella" de la instalación.

Considerando el importante beneficio marginal normalmente asociado a un incremento de productividad alcanzable por esta vía, la adquisición de una nueva bomba de mayor capacidad es siempre justificable desde el punto de vista económico. Eventualmente, un simple cambio de las poleas de transmisión o modificaciones menores en el diseño y ubicación de la batería de hidrociclones pueden ser suficientes para obtener un mayor caudal de la bomba.

Figura 8: Efecto de la dosificación total de agua al circuito sobre el flujo de pulpa circulante.

Mandamiento Nº 9

Implantar un Sistema de Control Experto

Desde el punto de vista estrictamente operacional, acatar fielmente los "mandamientos" anteriores, particularmente en lo referente a la optimización de las clasificadores, se traduce necesariamente en condiciones demasiado exigentes; incluso para operadores experimentados. De ahí la necesidad de apoyar la operación con sistemas automáticos de control supervisor que hagan factible mantener la vigencia en el tiempo de las condiciones óptimas previamente seleccionadas como referencia; esto es, detectar las fluctuaciones naturales en las propiedades del mineral tratado y adoptar las debidas acciones correctivas.

La efectividad del sistema de control requerido depende de una justo balance entre los tres elementos base que lo componen: sensores, hardware y estrategia. Los sensores deben ser seleccionados para proporcionar suficiente información en línea, oportuna y confiable. El hardware debe cumplir el crítico rol de conversor y transmisor de la información desde los sensores al nivel supervisor donde reside la estrategia de control (software) y también el rol inverso de comunicaciones desde el nivel supervisor hacia los

actuadores del sistema. La estrategia debe ser de preferencia del tipo "experto", modalidad que permite integrar al sistema el máximo de experiencia relevante, acumulada por usuarios y especialistas, en la forma de reglas decisionales orientadas a la optimización continua de la operación. En tal sentido, la disponibilidad de modelos matemáticos, capaces de describir adecuadamente las fluctuaciones dinámicas del proceso, frente a las perturbaciones naturales del mismo, aporta considerablemente al éxito de la gestión

Aún cuando el control de circuitos de molienda / clasificación no es una tarea trivial de fácil ejecución, los especialistas sobre la materia coinciden en reconocer a los circuitos de molienda semiatógena, de creciente aceptación por parte de los diseñadores de nuevas instalaciones de beneficio, como el mayor desafío desde el punto de vista de su control operacional. Producto de la alta inestabilidad que naturalmente exhiben, los sistemas tradicionales de control distribuido (DCS) no han sido eficaces en tales aplicaciones.

Al respecto, es destacable el trabajo de Fuenzalida y Cubillos que en 1991, guiados por la experiencia pionera de Herbst en Dizon – Benguet, fueron también exitosos en el desarrollo e implantación de un sistema experto para el control supervisor de los molinos semiautógenos de la División Chuquicamata de CODELCO – Chile; experiencia que ha sido posteriormente replicada en otras diversas instalaciones, incluyendo por cierto circuitos convencionales de molienda / clasificación

Deneficio, Lon/hr

Figura 9: Histogramas comparativos de la capacidad de operación de un molino SAG bajo control convencional DCS vs Sistema Experto Super SAG de Control Internacional.

La Figura 9 adjunta es una ilustración típica de los beneficios asociados a la debida implantación de una sistema experto. Los histogramas allí presentados, representativos de varias semanas de operación alternada con sistema experto o DCS estabilizante, demuestran un impactante aumento promedio de 10% en la productividad del molino. El área sombreada representa el control apoyado en el DCS previamente existente, con mayor intervención ocasional del operador. La distribución bimodal observada es precisamente el reflejo del comportamiento típico del operador que frente a una emergencia por sobrecarga opta por reducir drásticamente el ritmo de alimentación. Por el contrario, ante la misma emergencia, el sistema experto toma medidas preventivas de manera que la sobrecarga no ocurra. Asimismo, cuando aumenta la moliendabilidad del

mineral, el sistema experto está mejor preparado para detectar el cambio y tomar debida ventaja de ello.

Mandamiento Nº 10

Establecer alianzas estratégicas con Consultores y Proveedores (Partnering)

Una vez tomada la decisión de avanzar por las líneas arriba indicadas, se abre un basto universo de alternativas de acción que abarcan desde el desarrollo de las actividades pertinentes con los recursos existentes en cada instalación hasta la contratación de servicios de consultoría externa, para estudios o proyectos "llave en mano". Como en tantos otros aspectos del quehacer diario, el camino más adecuado será siempre la búsqueda de un justo equilibrio entre ambas alternativas extremas; esto es, estructuras equipos de trabajo integrados primeramente por los recursos internos disponibles, cuyo conocimiento de las fortalezas y debilidades de su operación particular es clave para el éxito final de la tarea, complementados éstos con profesionales externos, cuyas experiencias en áreas fines, como por ejemplo, la especificación de un producto o la automatización del proceso, representan un aporte fresco de alto valor agregado. En otras palabras, se sugiere combinar estratégicamente empresas y profesionales de variados roles y disciplinas, buscando la suma sinergística de la diversidad de bases de conocimiento de cada una de las partes involucradas. En estos días de acelerado desarrollo tecnológico, la alta especialización es una necesidad pragmática impuesta por la realidad ambiental y ya no es del todo aconsejable pretender desarrollar todas las capacidades requeridas "in-house", opción que fuera plenamente justificable en el pasado, en reconocimiento al alto grado de aislamiento geográfico y comunicacional en que la mayoría de las faenas mineras debian desenvolverse.

Este nuevo estilo de relaciones constructivas entre clientes y proveedores - que va más allá de negociar un precio o concordar en un adecuado soporte técnico a sus productos. será imperante en las décadas por venir. A modo de ejemplo, G. S. Technologies Co. (ex Armco Worldwide Grinding Systems), proveedor internacional de insumos estratégicos para la industria minera, tales como bolas, revestimientos y reactivos, ha afrontado ya el desafío de modernizar sus prácticas comerciales; en directa consecuencia con los planteamientos anteriores. A través de la modalidad referida como "Induced Partnering Approach" (IPA), este proveedor aporta no sólo los productos de su mejor calidad sino también la experiencia y capacidad de su subsidiaria Control Internacional Inc.; la que basada en Salt Lake City, EE. UU. Cuenta con destacados especialistas en tecnología mineral, distribuidos en las principales unidades productivas de G.S. Technologies en el mundo minero internacional. El objetivo central de este nuevo tipo de relación cliente / proveedor es la generación de beneficios económicos marginales, como resultado de aumentos reales en la productividad de las instalaciones suministradas. La compensación al proveedor es eminentemente variable en función del grado de optimización alcanzado por esfuerzos conjuntos de ambas partes; compartiendo así riesgo y beneficios. De ahí la denominación inglesa "partnering", que en traducción libre se interpreta como "simulando ser socios".

7.2 Balance ajustado de materiales Método de Lagrange (Solución General)

Tomado de "Análisis Crítico del Proceso de Molienda / Clasificación" (CIMM – Control Internacional).

El primer paso hacia la caracterización de un determinado proceso es la obtención de un balance detallado de materiales, representativo de su operación a estado estacionario.

Al respecto, cada vez que el conjunto de información experimental disponible exceda al mínimo requerido para el cálculo del balance, se detectarán inconsistencias entre los datos que obligarán a tomar decisiones en tal sentido. El exceso de datos es una condición que debidamente aprovechada, lejos de ser una inconveniencia, favorece la confiabilidad del balance a calcular.

Antes que ignorar por completo aquellas mediciones consideradas en primera instancia redundantes, se recomienda en cambio proceder a un ajuste de todos los datos disponibles tomando en cuenta la calidad (o error) asociada a cada uno de ellos y minimizando la magnitud total de las correcciones.

Ilustraciones Práctica del Problema de Ajuste

Considérese el sistema de molienda/clasificación cuyos resultados operacionales se resumen en la Tabla A.1. Se dispone de mediciones de granulometría y porcentajes de sólidos en los flujos de alimentación fresca, descarga molino, descarga ciclones y rebalse ciclones. Se dispone además del tonelaje seco alimentado a la sección (444.1 tph) y los caudales de agua alimentados al molino (25 m³/h) y al cajón e la bomba (360 m³/h)

Puesto que las granulometrías deben satisfacer la relación de balance:

$$F_{i1} MS_1 + F_{i2} MS_2 = F_{i4} MS_4 + F_{i5} MS_5$$
(A.1)

i = 1, 2,, n

Donde:

F_ik=porcentaje pasante la malla i en el flujo kMS_k=tonelaje seco en el flujo k

Al dividir la Ecuación A.1 por MS₁ resulta:

$$CC_i = \frac{(F_{i1} - F_{i1})}{(F_{i1} - F_{i5})}$$
, para malla i = 1, 2,..., n (A.2)

Luego, es posible estimar la carga circulante como un promedio de los valores obtenidos para cada malla:

$$CC = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{F_{i4} - F_{i1}}{F_{i1} - F_{i5}} \right\}$$
(A.3)

En este caso particular, la estimación de carga circulante es CC = 2.7. En este tipo de cálculos, se acostumbra descartar las mallas más gruesas, considerando que le denominador en la Ecuación A.2 es relativamente pequeño y afecto a mayores errores.

En las ecuaciones anteriores es permisible, aunque no recomendable, reemplazar los porcentajes pasantes F_{ik} por los porcentajes parciales retenidos f_{ik} .

Conocida la carga circulante CC y el tonelaje de alimentación fresca MS₁, resulta sencillo evaluar los demás tonelajes: (Ver tabla A.1)

MS ₂	=	CC x MS₁	=	2.7 x 441.4	=	1191.8 tph
MS₃	=	$MS_1 + MS_2$	=	441.4 + 1191.8	=	1633.2 tph
MS₄	=	MS ₁	=	441.4 tph		
MS₅	=	MS ₂	=	1191.8tph		
MS_6	=	MS ₆	=	1191.8tph		

Sin embargo, los cálculos anteriores no resuelven todavía el problema de inconsistencia de los datos. Por ejemplo, los porcentajes pasantes la malla 200 (ver Tabla A.1) no satisfacen la condición de balance impuesta por la Ecuación A.1:

24.2 x 44	41.4 + 20	.4 x 1191.8	=	34.994.6
≠ 11.2 x	1191.8 +	50.5 x 441.4	4 =	35.638.9

Es en estos casos donde antes que ignorar alguna medición específica y recalcularla a partir de las restantes, es preferible buscar un nuevo set de valores ajustados F_{ik} ; tales que la función objetivo:

$$\phi_{i} = \sum_{k=1}^{k} w_{ik} (F_{ik} - F_{ik})^{2} \qquad i = 1, 2, \dots, n \qquad (A.5)$$

sea minima para cada malla y que además se satisfaga el balance de materiales del sistema. En este caso particular, que se cumpla:

$$F_{11} MS_1 + F_{12} MS_2 = F_{14} MS_4 + F_{15} MS_5$$
 (A.6)

i = 1, 2,...., n

En la Ecuación A.5, w_{ik} es el factor de ponderación correspondiente a la i-ésima malla en el k-ésimo flujo. Un alto valor de w_{ik} indica que la medición es altamente confiable y por lo tanto, se espera que el ajuste de esta medición sea relativamente menor. Contrariamente, las malas mediciones, con un bajo factor de ponderación, están afectas a mayores ajustes como la lógica indica. En estricto rigor, el factor de ponderación w_{ik} en la ecuación A.5 debiera corresponder en magnitud al recíproco de la varianza e la medición. En la práctica dicho valor es normalmente desconocido y por tal motivo se recomienda utilizar la siguiente expresión:

$$\mathbf{w}_{ik} = \frac{u_k}{F_{ik}^2 (1 - F_{ik})^2}$$
(A.7)

Donde:

 u_k = factor de calidad correspondiente a la muestra obtenida en el flujo k

En la ecuación A.7, el término F_{ik}^2 cumple el rol de transformar la función objetivo (Ecuación A.5), planteada originalmente en términos de los cuadrados de las

correcciones absolutas $(F_{ik} - F_{ik})^2$, a una nueva expresión en base a los cuadrados de las fracciones (o porcentajes) de ajuste de cada medición $(F_{ik} - F_{ik}) / F_{ik}^2$. Por otra parte, el término $(1 - F_{ik})^2$ en la Ecuación A.7 en alguna medida representa la disminución natural observada en la variabilidad de los valores acumulados F_{ik} a medida que estos se aproximan al 100% pasante. Finalmente, el factor de calidad u_k es inversamente proporcional al cuadrado del coeficiente de variación de la muestra obtenida y se recomienda aproximarlo por la expresión:

$$u_k = \frac{100}{(\% error)_k^2} \tag{A.8}$$

donde el factor 100 ha sido arbitrariamente seleccionado por conveniencia. Así por ejemplo, un factor de calidad $u_k = 4$ corresponde a una medición cuyo error asociado es cercano al 5%.

Retornando ahora al problema de minimización constituido por las Ecuaciones A.5 y A.6

min
$$\phi_i' = \sum_{k=1}^k w_{ik} (F_{ik} - \overline{F}_{ik})^2$$
; $i = 1, 2, ..., n$ (A.5)

sujeto a:

$$\overline{F}_{i1} + CC \cdot \overline{F}_{i2} = \overline{F}_{i4} + CC \cdot \overline{F}_{i5}$$
(A.6)

cabe señalar que este problema es soluble por el Método de los Multiplicadores de Lagrange para lo cual es preciso plantear la nueva función objetivo:

$$\min \phi_{1}^{\prime} = \sum_{k=1}^{k} w_{ik} (F_{ik} - \overline{F}_{ik})^{2}$$

$$+ 2 \lambda_{i} (\overline{F}_{i1} + CC_{i}, \overline{F}_{i2} - \overline{F}_{i4} - CC_{i}, \overline{F}_{i5})$$
(A.9)

Donde:

 λ_i = multiplicador de Lagrange

Es decir, la nueva función objetivo ϕ_i se define igual a la verdadera ϕ_i más 2 λ_i veces el lado izquierdo de la restricción (ecuación A.6) igualada a cero.

A continuación, los valores ajustados F_{ik} para cada malla i se obtienen al resolver el sistema lineal de ecuaciones constituido por:

$$\frac{\partial \varphi_i}{\partial \lambda_i} = 0 \qquad \qquad \frac{\partial \varphi_i}{\partial F_{ik}} = 0 \qquad \qquad k = 1, \dots, k \qquad (A.10)$$

que para la aplicación particular en estudio se reduce a:

 $\frac{\partial \phi_{i}}{\partial F_{i1}} = -2 w_{i1} (F_{i1} - \overline{F}_{i1}) + 2 \lambda_{i} = 0$ $\frac{\partial \phi_{i}}{\partial \overline{F}_{i2}} = -2 w_{i2} (F_{i2} - \overline{F}_{i2}) + 2 \lambda_{i} CC = 0$ $\frac{\partial \phi_{i}}{\partial \overline{F}_{i4}} = -2 w_{i4} (F_{i4} - \overline{F}_{i4}) - 2 \lambda_{i} = 0$ (A.11)

$$\frac{\partial \phi_{1}}{\partial F_{15}} = -2 w_{15} (F_{15} - \overline{F}_{15}) + 2 \lambda_{1} CC = 0$$

$$\frac{\partial \phi_{1}}{\partial \lambda_{1}} = 2 (\overline{F}_{11} + CC \overline{F}_{12} - \overline{F}_{14} - CC \overline{F}_{15}) = 0$$

Nótese que esta última ecuación es la que impone el cumplimiento de la restricción del balance a los valores ajustados.

La solución del sistema de Ecuaciones A.11 está dada por:

F_{11}	$= F_{i1} - \lambda_i / W_{i1}$;	
F_{12}	$= F_{i2} - \lambda_I CC / W_{i2}$	i.	(A.12)
\overline{F}_{14}	$= F_{i4} + \lambda_i / W_{i4}$;	
\overline{F}_{15}	= $F_{15} - \lambda_1 CC / w_{15}$		

donde:

$$\lambda_{i} = \frac{(F_{i1} + CCF_{i2} - F_{i4} - CCF_{i5})}{(\frac{1}{w_{i1}} + \frac{CC^{2}}{w_{i2}} + \frac{1}{w_{i4}} + \frac{CC^{2}}{w_{i5}})}$$
(A.13)

; para i = 1, 2,..., n

Nótese también que el numerador de la expresión para λ_i (Ecuación A.13) corresponde precisamente al desajuste de las mediciones de granulometrías pasantes la malla i.

La tabla A.2 contiene los resultados del ajuste de las granulometrías presentadas en la Tabla A.1, suponiendo igual factor de calidad (u_k) para cada flujo.

El Método de Lagrange (Solución General)

El método de ajuste recién descrito puede ser extendido a otros sistemas de mayor complejidad. En general, para un conjunto de mediciones y_k , es posible plantear la función objetivo:

$$\min \phi = \sum_{k=1}^{k} w_{ik} (y_k - y_k)^2$$
(A.14)

sujeta a restricciones del tipo:

 $a_{11} y_{1} + a_{12} y_{2} + \dots + a_{1k} y_{k} = 0$ $a_{21} y_{1} + a_{22} y_{2} + \dots + a_{2k} y_{k} = 0$ (A.15) $a_{j1} y_{1} + a_{j2} y_{2} + \dots + a_{jk} y_{k} = 0$

que en notación matricial se expresan:

$$A \bar{Y} = \underline{0} \tag{A.16}$$

En este caso, la función objetivo de Lagrange es:

$$\min \phi' = \phi + \sum_{j=1}^{j} \lambda_j \left[\sum_{k=1}^{k} \alpha_{jk} \overline{y}_k \right]$$
(A.17)

Donde:

 λ_i

~ ...

= multiplicador de Lagrange para la j-ésima restricción

La aplicación del método propuesto por Lagrange resulta en el sistema lineal de (j + k) ecuaciones e incógnitas:

$$\frac{\partial \phi}{\partial y_k} = 0 \qquad ; \qquad k=1,...,k$$

$$\frac{\partial \phi}{\partial \lambda_j} = 0 \qquad ; \qquad j = i,...,j$$
(A.18)

el que, a partir de las Ecuaciones A.14 y A.17 se reduce en términos matriciales a:

$$\begin{bmatrix} w & A' \\ = & = \\ A & 0 \\ = & = \end{bmatrix} \qquad \begin{bmatrix} \underline{Y} \\ - \\ \underline{\lambda} \end{bmatrix} = \begin{bmatrix} w & \underline{Y} \\ = \\ \underline{0} \end{bmatrix}$$
(A.19)

cuya solución para el vector de valores ajustados \tilde{Y} está dada por:

$$\underline{\bar{Y}} = \underline{Y} - w^{-1} A' (A w^{-1} A')^{-1} A \underline{\bar{Y}}$$
(A.20)

En esta expresión, la matriz *A* es la que define la configuración del circuito. Las columnas representan los distintos flujos y las líneas los nodos que los enlazan.

Así por ejemplo, para el caso particular analizado anteriormente (ver Tablas A.1 y A.2), la configuración del circuito queda totalmente definido por la matriz:

$$A = [1 \quad CC \quad 0 \quad -1 \quad -CC]$$
(A.21)

Se deja al lector interesado el ajuste de los tonelajes de pulpa en el sistema de la Tabla A.1 en base a los porcentajes de sólido y caudales de agua allí indicados.

* Confiduración de Circuito Inverso

* Resultados Operacionales :

			% Bajo la Malla						
មភា	Alim. Fresca	Descarga Molino	Descarga Ciclones	Rebalse Ciclones					
2360.	94.5	97.3	95.3	100.0					
1700.	89.3	35.5	91.5	100.0					
1180.	74.2	<u>88.2</u>	78.0	100.0					
850 .	63.3	30.5	56.J	99.8					
5CO.	53.7	69.3	·· 52.4	99.0					
425.	46.3	58.0	39.2	95.7					
300.	39.7	46.1	28.5	36.9					
212.	34.3	37.4	21.7	75.3					
150.	30.5	29.6	16.3	56.4					
106.	27.3	24.5	13.3	53.4					
74.	24.2	20.4	11.2	50.5					
53.	21.9	17.7	3.3	44.5					
45.	20.5	16.2	9.2	41.2					
OS	77.3	77.9	79.1	46.0					
	2360. 1700. 1180. 850. 600. 425. 300. 212. 150. 106. 74. 53. 45.	Um Fresca 2360. 94.6 1700. 89.8 1180. 74.2 850. 63.3 5CO. 53.7 425. 46.3 300. 39.7 212. 34.3 150. 30.5 106. 27.3 74. 24.2 53. 21.9 45. 20.5	Lm Fresca Molino 2360. 94.6 97.3 1700. 89.3 95.5 1180. 74.2 68.2 850. 63.3 80.5 500. 53.7 69.3 425. 46.3 58.0 300. 39.7 46.1 212. 34.3 37.4 150. 30.5 29.6 106. 27.3 24.5 74. 24.2 20.4 53. 21.9 17.7 45. 20.5 16.2 0s 77.3 77.9	Lm Fresca Molino Ciciones 2360. 94.6 97.3 95.3 1700. 89.3 95.5 91.5 1180. 74.2 68.2 78.0 650. 63.3 80.5 56.3 500. 53.7 69.3 52.4 425. 46.3 56.0 39.2 300. 39.7 46.1 28.5 212. 34.3 37.4 21.7 150. 30.5 29.6 16.3 106. 27.3 24.5 13.3 74. 24.2 20.4 11.2 53. 21.9 17.7 9.9 45. 20.5 16.2 9.2					

Malla		Al to:	Cescarga	Cescarga	Retalse
Tyler	μл	Fresca	Malino	Ciclones	Ciclones
з	2360.	94,60	97.30	95.30	100.00
10	1700.	39.69	95.54	91.72	100.00
14	1130.	74.01	38.05	73.41	100.00
20	850.	53.14	30.30	56.71	99.30
23	5CC.	53.58	69.56	52.73	99.00
35	425.	46.21	57.77	39.43	95.70
48	300.	39.68	45.04	23.54	36.90
65	212.	34.77	37.32	21.74	75.32
100	150.	30.50	29.50	15.30	66.40
150	105.	27.38	24.58	13.23	53.23
200	74.	24.34	20.69	11.09	50.24
270	53.	22.05	18.01	9.73	14.27
325	45.	20.53	15.53	3.07	40.31

 Tabla A.2: Balance Ajustado de Materiales en un Circuito de Molienda / Clasificación

7.3 Código del programa de Simulación

Como se mencionó ya anteriormente el programa se desarrollo en Visual Basic 5.0, se adjunta líneas abajo el código de cada uno de los formularios y módulos.

Modulel - 1

```
Public Al() As Double
Public A2() As Double
Public Abertura() As Double
Public Mallas As Double
Public Iteracion As Double
Public Suma As Double
Public FMI As Double
Public DMI As Double
Public DD1 As Double
Public FM2 As Double
Public DM2 As Double
Public DD2 As Double
Public DB3 As Double
Public DV4 As Double
Public DA4 As Double
Public DD5 As Double
Public ACUAl() As Double
Public FS1() As Double
Public ACUF1() As Double
Public F1() As Double
Public ACUA2() As Double
Public FS2() As Double
Public ACUF2() As Double
Public F2() As Double
Public F12() As Double
Public DM12 As Double
Public F123() As Double
Public F3() As Double
Public FUNDER As Double
Public FOVER As Double
Public Pulpal As Double
Public Pulpa2 As Double
Public DM123 As Double
Public DMUNDER As Double
Public Aqual As Double
Public Agua? As Double
Public Agua3 As Double
Public AguaUnder As Double
Public PulpaHidro As Double
Public AquaFCajon As Double
Public AguaHidro As Double
Public Solidospalimento As Doub_e
Public Presion As Double
Public AguaOverl As Double
Public AguaOver As Double
Public D5Corregido As Double
Public EE1 As Double
Public EE2 As Double
Public EE3 As Double
Public N1 As Double
Public N2 As Double
Public N3 As Double
Public Rsc As Double
Public Rs As Double
Public Aberturadd5() As Double
Public Ycorregido() As Double
Public Yreal() As Double
Public Bypass As Double
```

Module1 - 2 Public Alfa As Double Public FalimentoCiclon As Double Public UHidro() As Double Public OHidro() As Double Public ACUA3() As Double Public FS3() As Double Public ACUF3() As Double Public CargaCirculante As Double Public ProporcionUnder As Double Public Infol As Double Public Info2 As Double Public Info3 As Double Public Info4 As Double Public Info5 As Double Public Info6 As Double Public Info7 As Doubla Public Info8 As Double Public Info9 As Double Public Infol0 As Double Public Infoll As Double Fublic Info12 As Double Public Infol3 As Double Public Infol4 As Double Public Info15 As Double Public D3 As Double Public L3 As Double Public Cholas3 As Double Public Pholas3 As Double Public TiempoCte3 As Double Public Svol3 As Double Public TResidencia3 As Double Public Holdup3 As Double Public D2 As Double Public L2 As Double Public Cholas2 As Double Public Pholas2 As Double Public TiempoCte2 As Double Public Svol2 As Double Public TResidencia2 As Double Public Holdup2 As Double Public D1 As Double Public LI As Double Public Cholasl As Double Public Pholas1 As Double Public TiempoCtel As Double Public Svoll As Double Public TResidencial As Double Public Holdupl As Double Public Alfa0 As Double Public Alfal As Double Public Malla200 As Double Public MallaUnder As Double Public MallaOver As Double Public MallaAlimento As Double

```
FrmFendo - 1
Private Sub CmdBomba Click()
    'Unload Me
    Load FrmBomba
    FrmBomba. Show
End Sub
Private Sub CmdHidro_Click()
    'Unload Me
    Load FrmHidro
    FrmHidro.Show
End Sub
Private Sub CmdMallas_Click()
    'Unload Me
    Load FrmMallas
    FrmMallas.Show
End Sub
Private Sub CmdMolinol_Click()
    'Unload Me
    Load FrmMolinol
    FrmMolino1.Show
End Sub
Private Sub CmdMolino2 Click()
    'Unload Me
    Load FrmMolino2
    FraMolino2. Show
End Sub
Private Sub CmdMolino5 Click()
    'Unload Me
    Load FrmMolino5
    FrmMolino5.Show
End Sub
Private Sub CmdSalir Click()
    End
End Sub
Private Sub Label1_Click()
End Sub
Private Sub CmdSimular_Click()
    Load Frasimular
    FrmSimular.Show
```

```
End Sub
```

```
FrmMallas - 1
Private Sub CmdAberturas Click()
    Dim DatoNuevo As String: Dim s As String
    ReDim Abertura (Mallas)
    Abertura(Mallas) = 0
    For x = 1 To (Mallas - 1)
         s = "Abertura de Malla (" & x & ") micrones"
DatoNuevo = InputBox(s, "Ingreso de Datos")
         Abertura(x) = Val(DatoNuevo)
    Next x
    CmdAceptar.Enabled = True
    CmdAceptar.SetFocus
End Sub
Private Sub CmdAceptar_Click()
    Unload Me
    Load FrmFondo
    FrmFondo.Show
    FrmFondo.CmdMolinol.SetFocus
End Sub
Private Sub Form Load()
    Left = (Screen.Width - Width) / 2
Top = (Screen.Height - Height) / 1.2
    CmdAberturas.Enabled = False
    CmdAceptar.Enabled = False
End Sub
```

```
Private Sub TxtNMallas_KeyPress(XeyAscii As Integer)
    If KeyAscii = 13 Then
        Mallas = Val(TxtNMallas.Text)
        CmdAberturas.Enabled = True
        CmdAberturas.SetFocus
    End If
End Sub
```

```
FranMolinol - 1
Private Sub CmdAl Click()
     Dim DatoNuevo As String: Dim s As String
     ReDim Al(Mallas)
     For x = 1 To Mallas
          s = "Peso Malla (" ≤ x ≤ ") %"
DatoNucvo = InputBox(s, "Ingreso de Datos")
          Al(x) = Val(DatoNuevo)
     Next x
     CodAceptar.SetFocus
End Sub
Private Sub CmdAceptar Click()
     ReDim ACUAI (Mallas)
     ReDim FS1(Mallas)
     ReDim ACUF1 (Mallas)
     ReDim Fl(Mallas)
'Se dan valores a EE1 y Ni
     EE1 = 7.11
     NI = 1.25
     D1 = 8
     L1 = 10
     Cbolas1 = 0.44

Pbolas1 = 0.39
                                     'o/l volúmen de carga de bolas
'o/l porosidad carga de bolas
     TicmpoCtel = 0.080667
                                    'Tiempo de residencia
     Svoll = (1 / 1000) * (DD1 - 1000) / (DM1 - 1)
Holdupl = 3.14159265358979 * ((D1 / 2) ^ 2) * Cbolasl * Pbolasl * Svoll * CM1 * 0.0283168 *
L1
     TResidencial = Holdup1 / FM1
'Se cálcula Ac(+)
     Suma = 0
     For I = 1 To Mallas
     SUBRA = SUBRA + Al(I)
ACUAL(I) = SUBRA
'Opcional valores de la Función Selección reales
FS1(1) = 15.54: FS1(2) = 3.871: FS1(2)
FS1(4) = 0.176: FS1(5) = 0.117: FS1(6)
                                                           FS1(3) . 0.694
                                                           FS1(6) = 0.089
     FS1(7) = 0.072:
                                                           ES1(9) = 0.043
                                FS1(0) = 0.053:
     For I = 1 To (Mallas - 1)
ACUF1(I) = ACUA1(I) * (1 + (TResidencial / N1) * (FS1(I) * BE1 / TiempoCtel)) ^ (-N1)
     ACUF1(Mailas) = 100
'Cálculo del & pego de la descarga del molino
For I = 1 To Mallas
ACUF1(0) = 0
          F1(I) = ACUF1(I) - ACUF1(I - 1)
     Next I
'Se cálcula agua fresca al molino y densidad de pulpa en la descarga
Agual = ((EMI * 1000000) - DDI * (EMI * 1000 / DMI)) / (DDI * 60 - 60000)
```

```
FrmMolinol - 2
    Pulpal = (FM1 * 100) / (6 * DM1) + Agual
    Unload Me
    Load FrmFondo
    FIREondo. Show
    FrmFondo.CmdMolino2.SetFocus
End Sub
Private Sub Form Load()
    Left = (Screen.Width Width) / 2
Top = (Screen.Height - Height) / 1.2
End Sub
Private Sub TxtDDL KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
         DD1 = Val(TxtDD1.Text)
         CmdAl.SetFocus
     End If
End Sub
Private Sub TxtDMl KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
         DM1 = Val(TxtDM1.Text)
         TxtDD1.SetFocus
     End If
End Sub
Private Sub TxtFM1 KeyPress(KeyAscii As Integer)
    lf KeyAscii = 13 Then
         FM1 = Val(TxtFM1.Text)
         TxtDMl.SetFocus
     End If
End Sub
```

```
FimMolino2 - 1
 Privace Sub OndA2 Click()
     Dim DatoNuevo As String: Dim s As String
      ReDim A2(Mallas)
      For x = 1 To Mallas
         s \Rightarrow "Peso Malla (* & x & ") \delta"
DatoNuevo = InputBox(s, "Ingreso de Datos")
         A2(x) = Val(DatoNuevo)
     Next x
      CadAceptar.SetFocus
End 3ub
Private Sub OmdAceptar_Click()
     ReDim ACUA2 (Mallas)
ReDim FS2 (Mallas)
      ReDim ACUF2 (Mallas)
      ReDim F2(Mallas)
      ReDim F12(Mallas)
  'Se dan valores a EE2 y N2
     EE2 = 6.674
N2 = 1.25
      D2 = 8
      L_2 = 10
      Cbolas2 = 0.44
                                'o/l volumen de carga de bolas
      Pbolas2 = 0.39
                                'o/l porosidad carga de bolas
      TiempoCte2 = 0.074596 'Tiempo de residencia
     Svol2 = (1 / 1000) * (DD2 - 1000) / (DM2 - 1)
Holdup2 = 3.14159265358979 * ((D2 / 2) ^ 2) * Cbolas2 * Pbolas2 * Svol2 * DM2 * 0.0283168 *
 L2
      TResidencia2 = Holdup2 / FM2
  'Se cálcula Ac(+)
      Suma = 0
      For I = 1 To Mallas
      Suma = Suma + A2(I)
      ACUA2(I) = Suma
      Next I
  'Opcional valores de la Función Selección reales
      P32(1) = 3.272:
P52(4) = U.162:
P52(7) = 0.055:
                         F32(2) = 1.745:
F32(5) = 0.1:
                                               Fs2(3) = 0.557
                                                 FS2(6) = 0.073
FS2(9) = 0.031
      Next I
      ACUF2(Mallas) = 100
  'Cálculo del 8 peso de la descarga del molino
      For I = 1 To Mallas
          ACUF2(0) = 0
          F2(I) = ACUF2(I) - ACUF2(I - 1)
      Next I
```

'Se cálcula agua fresca al molino y densidad de pulpa en la descarga

```
FIMMOLINO2 - 2
    Agua2 = ((FM2 * 1000000) - DD2 * (FM2 * 1000 / DM2)) / (DD2 * 60 - 60000)
Pulpa2 = (FM2 * 100) / (6 * DM2) + Agua2
'Composición descarga molino1 y molino2: densidad de mineral
    For 1 = 1 To Mallas
         F12(I) = (FM1 + F1(I) + FM2 + F2(I)) / (FM1 + FM2)
    Next I
    DM12 = (FM1 * DM1 + FM2 * DM2) / (FM1 + FM2)
    Unload Me
    Load FrmFondo
    FrmFondo. Show
    FimFondo.CmdMolino5.SetFocus
End Sub
Private Sub Form_Load()
    Left = (Screen.Width - Width) / 2
    Top = (Screen.Height - Height) / 1.2
End Sub
Private Sub TxtDD2_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
         DD2 = Val(TxtDD2.Text)
         CmdA2.3etFocus
     End IF
End Sub
Private Sub TxtDM2 KeyPress(KeyAscii As Integer)
    If KeyAscii = \overline{13} Then
         DM2 = Val(TxtDM2.Text)
         TxtDD2.SetFocus
     End If
End Sub
Private Sub TxtFM2_KeyPress(KeyAscii As Integer)
     If KeyAscii = \overline{13} Then
         FM2 = Val(TxtFM2.Text)
         TxtDM2.SetFocus
     End If
End Sub
```

```
FrmBomba - 1
Private Sub CmdAceptar_Click()
     Unload Me
    Load FrmFondo
    FrmFondo.Show
    FrmFondo. CmdHidro. Set Pocus
End Sub
Private Sub Form_Load()
    Left = (Screen.Width - Width) / 2
Top = (Screen.Height - Height) / 2
Bnd Sub
Private Sub TxtDB3_KeyPress(KeyAscii As Integer)
    If KeyAscii = 13 Then
         AquaFCajon = Val(TxtDB3.Text)
    CondAceptar.SetFocus
End If
End Sub
FrmHidro - 1
Private Sub CmdAceptar_Click()
    Unload Me
     Load FrmFondo
    FinPondo. Show
    FrmFondo.CmdSimular.SetFocus
End Sub
Private Sub Form_Load()
    Left = (Screen.Width - Width) / 2
Top = (Screen.Height - Height) / 2
End Sub
Private Sub TxtDA4_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
         DA4 = Val(TxtDA4.Text)
         CandAceptar.SetFocus
    Ind If
End Sub
Private Sub TxtDV4_KeyPress(KeyAscii As Integer)
     If KeyAscii = 13 Then
         DV4 = Val(TxtDV4.Text)
         TxtDA4.SetFocus
     End If
End Sub
Frankolino5 - 1
Private Sub CmdAceptar_Click()
     Unload Me
     Load FrmFondo
     FrmFondo.Show
     FrmFondo. CmdBcmba. SetFocus
End Sub
Private Sub Form_Load()
     Left = (Screen.Width - Width) / 2
Top (Screen.Height - Height) / 2
End Sub
```

```
Private Sub TxtDD5 KeyPress(KeyAscii As Integer)

If KeyAscii = 13 Then

Agua3 = Val(TxtDD5.Text)

CmrAceptar.SetFocus

End If
```

```
End Sub
```

```
Private Sub CmcdGrabrar Click()
Open "A:\Imprimir.xls" For Cutput As #1
Print #1, ""
Print #1, "Alimento"
Print #1, "8'x 10' A"
For I = 1 To Mallas
     Print #1, Al(I)
Next I
Print #1, ""
Print #1, "Descarga"
Print #1, "8'x 10' A"
For I = 1 To Mallas
    Print #1, Fl(I)
Next I
Print #1, ""
Print #1, "Alimento"
Print #1, "8'x 10' B"
For I = 1 To Mallas
    Print #1, A2(I)
Next I
Print #1, ""
Print #1, "Descarga"
Print #1, "B'x 10' B"
For I = 1 To Mallas
     Print #1, F2(I)
Next I
Print #1, """
Print #1, "Almto. Fresco"
Print #1, "al Cajón"
For I = 1 To Mallas
      Print #1, F12(1)
Next I
Print #1, ""
Print #1, "Descarga"
Print #1, "8'x 8' B"
For I = 1 To Mallas
      Print #], F3(I)
Next I
Print #1, ""
Print #1, "Alimento"
Print #1, "Hidrociclón"
For I = 1 To Mallas
      Print #1, F123(I)
Next I
Print #1, mm
Print #1, "Under Flow"
Print #1, "Hidrociclón"
For I = 1 To Mallas
      Print #1, UHidro(I)
 Next I
Print #1, ""
Print #1, "Over Flow"
Print #1, "Hidrociclón"
For I = 1 To Mallas
       Print #1, OHidro(I)
 Next I
 Print #1, ""
 Print #1, "MOLINO 8'x 10'A"
Print #1, "F. Selección"
Print #1, "Específica"
For I = 1 To Mallas
      Print #1, FS1(I)
```

FrmSimular - 1

```
Frm9imular - 2
Next I
Print #1, "T. de Residencia (min)", TResidencial * 60
Print #1, "Hold-up (ton)", Holdupl
Print #1, ""
Print #1, "MOLINO 8'x 10'B"
Print #1, "F. Selección"
Print #1, "Específica"
For I = 1 To Mallas
    Print #1, F52(I)
Next I
Print #1, "T. de Residencia (min)", TResidencia2 * 60
Print #1, "Hold-up (ton)", Holdup2
Print #1, ""
Print #1, "MOLINO 8'x 8'8"
Print #1, "?. Selección"
Print #1, "Especifica"
For I = 1 To Mallas
    Print #1, FS3(1)
Next I
Print #1, "T. de Residencia (min)", TResidencia3 * 60
Print #1, "Hold-up (ton)", Holdup3
Print #1, ""
Close #1
End Sub
Private Sub CmdTerminar_Click()
End Sub
Private Sub Form_Load()
Left = (Screen.Width - Width) / 2
Top = {Screen.Height - Height) / 2
'Inicializa matrices para símulación
ReDim F123 (Mallas)
ReDim Aberturadd5(Mallas)
ReDim Ycorregido (Mallas)
ReDim Yreal (Mallas)
ReDim UHidro(Mallas)
ReDim OHidro (Mallas)
 ReDim ACUA3 (Mallas)
 ReDim FS3(Mallas)
 ReDim ACUF3(Mallas)
 ReDim #3 (Mallas)
 Iteracion = 0
 00
 Iteracion = Iteracion + 1
 'Composición alimento molinol, molino2 y molino3
 For I = 1 To Mallas
     F123(I) = (F12(I) + (FM1 + FM2) + F3(I) + FUNDER) / (FM1 + FM2 + FUNDER)
 Next I
 'Densidad de mineral compuesto
CMI23 = (DM12 * (FM1 + FM2) + FUNDER * DMUNDER) / (FM1 + FM2 + FUNDER)
 'Caudal de agua alimento al hidrociclón
```

FrmSimular - 3 AquaHidro = Aqual + Aqua2 + Agua3 + AquaUnder + AquaFCajon 'Caudal pulpa alimento hidrocición PulpaRidro = (FM1 + FM2 + FUNDER) * 100 / (6 * DM123) + Agual + Agua2 + Agua3 + AguaUnder + Agua FCaion 'Cálculo de la densidad de bombeo DB3 = (AguaHidro * 60000 + 1000000 * (FM1 + FM2 + FUNDER)) / ((FM1 + FM2 + FUNDER) * 1000 / DM12 3 + AguaHidro * 60) 'Modelo Lynch - Rao 'Ec. de presión f(%s peso almto., caudal pulpa almto., diámetro vorlex)
ECPO = 6.734495 'Función del mineral y equipo ECP1 = 0.5ECP2 = 1 ECP3 . 0.125 Solidospalimento = (DB3 - 1000) * DM123 * 100 / (DB3 * (DM123 - 1)) Presion = (PulpaHidro * 0.06 / ((DV4 * ECP2) * ((100 - Solidospalimento) * ECP3) * ECP0)) * (1 / ECPLI 'Ec. de distribución de agua f(caudal agua almto., diámetro de apex)
ECAO = -5.323399 'Función del mineral y equipo ECA1 = 1.1ECA2 = -10AquaOver1 = SCA0 + ECA1 * (AquaHidro * 0.06) + ECA2 * (DA4) 'ton/br AguaOver = AguaHoverl / 0.06 'lt/min AguaUnder = AguaHidro - AguaOver 'Ec. d50 corregido f(diàmetro vortex y apex, presión, caudal de agua over)
ECD0 = 5.648579 'Función del mineral y equipo ECD1 = 1 / 2.6ECD2 = -1 /3.5 ECD3 = 1 / 10.7 ECD4 - - 1 / 52 D5Corregido = Exp(ECD0 + ECD1 • DV4 + ECD2 • DA4 + ECD3 • Presion + ZCD4 • AquaOverl) 'Ec. del By-pass f(caudal agua almto., diámetro apex) Bypass = 1 - ECAl - ECAO / (AguaHidro * 0.06) - ECA2 * (DA4 / (AguaHidro * 0.06)) 'Cálculo de la Eficiencia Corregida y Eficiencia Real Alfa = 1.98465 'Constante que depende del modelo del hidrociclón Summe = 0 For I = 1 To Mallas If I = Mallas Then Aberturadd5(I) 🚊 ((Abertura(I = 1)) ^ 0.5) / D5Corregido End If If I <> Mallas Then Aberturadd5(I) = Abertura(I) / D5Corregido End If Next I For I = 1 To Mallas
Ycorregido(I) = 100 * (Exp(Alfa * Aberturadd5(I)) - 1) / (Exp(Alfa * Aberturadd5(I)) + Exp(A Yreal(I) = 100 + ((Ycorregido(I) / 100) + (1 - Bypass) + Bypass)Suma = Suma + (Ycorregido(I) / 100) * (F123(I) / 100) Next I 'Cálculo de tonelaje de mineral al over y under Rsc = Suma Rs = (1 - Bypass) * Rsc + Bypass FalimentoCiclon - FM1 + FM2 + FUNDER FUNDER = Rs * (FalimentoCiclon) FOVER = FalimentoCiclon - FUNDER 'Cálculo de densidad del mineral under 'Factor determinado experimentalmente DMINDER - DM12 * 1.10448 'Càlculo de anal. gran. del under y over For 1 = 1 To Mallas UHidro(I) = Yreal(I) * F123(I) / (Rs * 100) CHidro(I) = 100 + ((1 / (1 - Rs)) + (F123(I) / 100 - Rs + UHidro(I) / 100))

Fraginular - 4 'UHidro(I) = (Yreal(I) / 100) * FalimentoCiclon * P123(I) / FUNDER 'OHidro(I) = (FalimentoCiclon / FOVER) * (F123(I) - Rs * UHidro(I)) Next I 'Cálculo Ac(+) alimento al molino secundario Summa = 0 For I = 1 To Mallas Suma = Suma + URidro(I) ACUAJ(I) = Suma Next I 'Calculo de la carga circulante y proporción al under CargaCirculante = 100 * FUNDER / (FML + FM2) ProporcionUnder = 100 * FUNDER / FalimentoCiclon 'Cálculo de densidad de descarga del molino DD5 = ((AguaUnder + Agua3) * 60000 + 1000000 * FUNDER) / (FUNDER * 1000 / DMUNDER + (AguaUnder + Aqua3) * ⁻60) 'Se dan valores a EE3 y N3; molino secundario EE3 = 2.714N3 = 1 D3 = 9 L3 = 8Cbolas3 = 0.4'o/l volumen de carga de bolas Pbolas3 = 0.39'o/l porosidad carga de bolas 'Tiempo de residencia TiempoCte3 = 0.034415Svol3 = (1 / 1000) * (DD5 - 1000) / (DMUNDER - 1) Holdup3 = 3.14159265350979 * ((D3 / 2) * 2) * Cbolas3 * Pbolas3 * Svol3 * DMUNDER * 0.028316 9 * L3 TResidencia3 = Holdup3 / FUNDER 'Opcional valores de la Función Selección reales FS3(7) = 0.102: F33(8) = 0.078: F33(9) = 0.064 For I = 1 To (Mallas - 1) ACUF3(I) = ACUA3(I) * (1 + (TResidencia3 / N3) * (FS3(I) * EE3 / TiempoCte3)) ^ (-N3) Next I ACUF3(Mallas) = 100'Cálculo del 8 peso de la descarga del molino For I = 1 To Mallas ACUF3(0) = 0F3(I) = ACUF3(I) - ACUF3(I - 1)Next I 'Presenta datos en FrmSimila LblSimulal.Caption = Iteracion LblSimula2.Caption = Format\$(FM1 + FM2, ".###") LblSimula3.Caption * Format\$(FOVER, ".###") 'Condición máxima para el número de iteraciones If Iteracion = 100 Then Exit Do 'Condición de convergencia Loop Until Abs(((FM1 + FM2) - (FOVER))) <= 0.0000000001</pre> Load FraReporte FrmReporte. Show Ind Sub

100

```
FinReporte - 2
LblDPHU6.Caption = Format$(DpulpaU, "####0.00")
LblDPHO6.Caption = Format$(DpulpaO, "####0.00")
LblDMRO6.Caption = Format$(DM12 * FOVER + DMUNDER * PUNDER) / (FOVER + FUNDER), ".##")
LblDMRO6.Caption = Format$(DMUNDER, "####0.00")
LblDMRO6.Caption = Format$(DM12, "####0.00")
LblPresion6.Caption = Format$(Presion, "####0.00")
JblCC6.Caption = Format$(CargaCirculante, "####0.00")
LblPUF.Caption = Format$(ProporcionUnder, "####0.00")
LblBypass.Caption = Format$(Bypass * 100, "####0.00")
'Cálculo de % -m200 en el overflow
For I = 1 To (Mallas - 1)
  If (Abertura(I) > 70 And Abertura(I) < 90) Then
           Malla200 = I
      End If
Next I
Suma = 0
 For I = 1 To Maila200
      Suma \tau Suma + OHidro(I)
MallaOver = Suma
Next I
 LblmHO6.Caption = Format$(100 - MallaOver, "####0.00")
 'Calculo de 3 -m200 en el underflow
 Suma = 0
 For I = 1 To Malla200
      Suma = Suma + UHidro(I)
MallaUnder = Suma
 Next 1
 LblmHU6.Caption = Format$ (100 - MallaUnder, "####0.00")
 'Cálculo de % -m200 en el alimento hidrocición
 Suma = 0
 For I = 1 To Malla200
      Suma = Suma + F123(I)
      MallaAlimento = Suma
 Next I
 LblmHA6.Caption = Format$(100 - MallaAlimento, "####0.00")
 'D50Corregido
 Lbld50.Caption = Format$(D5Corregido, *####0.00")
```

End Sub

BIBLIOGRAFIA

IV SISTEM SAMARCO MINERACAO

Belo Horizonte, Noviembre 25, 1994. Optimo, Diez Mandamientos para Mejorar la Productividad de sus Molinos Dr. J. Sepúlveda. Moly-Cop Chile

Dimensionamiento y Optimización de Plantas Concentradoras mediante Técnicas de Modelación Matemática.

Dr. J. Sepúlveda, Ing. L. Gutiérrez. C. I. M. M.

Tópicos Especiales de Conminución de Minerales.

J. Menacho, Y. Zivkovic y J. Jofré. CYTED 1995.

Diseño y Simulación de Circuitos de Molienda y Clasificación. L. Austin, F. Concha.

CYTED.

Mineral Comminution Circuits Their Operation and Optimisation T. J. Napier-Munn, S. Morrell, R. D. Morrison, T. Kojovic.

Julius Kruttschnitt Mineral Research Centre (JKMRC), 1999.

Comminution Practices

S. Komar Kawatra, editor Society for Mining, Metallurgy, and Exploration Inc., 1997.

Il Simposio Internacional de Mineralurgia.

TECSUP 1996. Optimización y Simulación de Circuitos de Molienda / Clasificación mediante Software de Sistema Integrado. *Ing. R. Muranda. Moly-Cop Chile S. A.*

Curso Un Análisis Crítico del Proceso de Molienda / Clasificación

Relator Dr. J. Sepúlveda. C. I. M. M. Control International Inc.

Metodología de Optimización de Circuitos de Molienda / Clasificación mediante Aplicación de Modelos Matemáticos.

J. Castro, L. Guzmán. ADESUR S. A.

Manual de Cálculos de Ingeniería Química.

N. P. Chopey, T. G. Hicks. 1986 Mc. Graw Hill. Reducción de Tamaño, Capítulo 13 Ross W. S. Ph. D.

Curso Modelos Matemáticos de Conminución y sus Aplicaciones en la Industria Mineral.

A. E. Oblad. U. N. M. S. M. 1994.

Curso Modelos de Molienda Clasificación y Optimización.

L. M. Ortega (Universidad de Santiago de Chile). Universidad de Lima 1993.

Circuitos de Trituración y Molienda de Minerales.

Su Simulación, Optimación, Diseño y Control.

A. J. Lynch. Editorial Rocas y Minerales 1980.

Curso Estado del Arte en Clasificación de Partículas en Hidrociclones.

J. C. Miranda P. MSc. U. N. M. S. M. 1995

SME Mineral Processing Handbook.

Norman L. Weiss. Volume 1, 1985. Simulation and Modelling. A. J. Lynch and M. J. Lees.

Design and Installation of Comminution Circuits.

A. L. Mular, G. V. Jergensen.
1982.
Chapter 19. Simulation of Grinding Circuits for Design.
L. G. Austin, R. R. Klimpel, P. T. Luckie and R. S. C. Rogers.
Chapter 20. Developing a Simulator for Ball Mill Scale-up - A Case Study.
J. A. Herbst and K. Rajamani.

XI Int. Min. Proc. Cong. II.

Cagliari 1975. Modelling and Scale-up of Hydrocyclone Classifiers. A. J. Lynch, T. C. Rao.

Mineral Processing and Environment.

Volume I.
Concepción, Chile, 1994.
S. Castro and F. Concha.
University of Concepcion.
Optimization of Rod Grinding at CVRD-CARAJÁS Trough's Simulation of Mathematical Models.
M. A. S. Martins and I. Montenegro.
Study of Simulation of Grinding from CVRD-IGARAPÉ BAHIA Trough Simulation by Mathematical Models.
M. A. S. Martins and G. S. Lopes.
Modelling of Large Cone Angle Hydrocyclones.
H. Delboni.

Process Engineering of Size Reduction : Ball Milling.

L. G. Austin, R. R. Klimpel and P. T. Luckie. AIME, 1984.

Taller Conminución de Minerales.

TECSUP 1998. Optimización de la Recarga de Bolas Mediante la Metodología del Molino de Torque y su Aplicación a Nivel Industrial. Ing. L. Guzmán R. Moly-Cop ADESUR S. A

Mineral Processing Technology

B. A. Wills. Pergamon Press.

Vista parcial de la sección molinos, se observa el molino 8' x 10' A.

Al fondo los molinos 8' x 10' A y 8' x 10'B, se aprecia también parte de la sección de flotación de zinc.