UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA MECANICA

IMPLEMENTACIÓN DE UN PLAN DE INSPECCIÓN, PARA REDUCIR LOS COSTOS POR NO CALIDAD EN UN 80% EN EL MONTAJE DE UN MOLINO SAG 38'X21' EN EL PROYECTO EXPANSIÓN ANTAMINA (PEA)

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO MECANICO

JUAN ALEJANDRO GONZALES ESTRADA

PROMOCION 2009 - II

LIMA-PERU

2012

DEDICATORIA

Dedico el presente trabajo a mis padres Moisés y Rosalina por la educación que me dieron, a las personas que me estiman y me han apoyado en la realización del informe, gracias a todos por las buenas enseñanzas.

INDICE

PRÓLOGO

CAPÍTULO I.	
INTRODUCCIÓN	
1.1ANTECEDENTES DEL PROYECTO EXPANSIÓN ANTAMINA PEA)	2
1.2OBJETIVO	3
1.3JUSTIFICACIÓN.	3
1.4ALCANCE.	4
1.5LIMITACIONES	5
CAPITULO II.	
GENERALIDADES DE UN MOLINO SAG 38'X21':	
2.1DESCRIPCIÓN DEL EQUIPO	5
2.2INFORMACIÓN TÉCNICA DEL EQUIPO Y COMPONENTES	5
2.3-DIAGRAMA DE FLUJO Y DISTRIBUCIÓN DE EQUIPOS EN	
MOLIENDA	8
2.4DESCRIPCIÓN Y FUNCIÓN DEL EQUIPO Y COMPONENTES	9
2.4 1Principio de operación	13
2.5SISTEMA DE LUBRICACIÓN DEL MOLINO	15
2.5.1Principio de operación	15
2.6SISTEMA DE FRENOS DEL MOLINO	17
2.6.1Principio de operación	18

55

CAPITULO III.	
IDENTIFICACIÓN DEL PROBLEMA Y GENERACIÓN DE LA HIPÓTESIS	21
CAPITULO IV.	
MARCO TEÓRICO:	
4.1DEFINICIONES BÁSICAS DE CALIDAD	22
4.2COSTOS RELATIVOS A LA CALIDAD	24
4.3COSTOS DE CALIDAD (CDC)	26
4.3.1Costos de Calidad de Prevención (CDP) 29	26
4.3.2Costos de Calidad de Evaluación (CDE) 30	28
4.4COSTOS DE NO CALIDAD (CNC)	28
4.4.1Costos por fallos internos (CFI)	29
4.4.2Costos por fallos externos (CFE)	29
4.5DIAGRAMA DE PARETO	30
4.6DEFINICIÓN DE PLAN DE PUNTOS DE INSPECCIÓN	31
CAPITULO V.	
ANÁLISIS DE COSTOS Y SOLUCIÓN DEL PROBLEMA.	32
5.1CALCULO DE COSTOS DEL MONTAJE DEL MOLINO SAG POR HH	32
5.2CALCULO DE COSTOS DE CALIDAD (CDC) DEL MONTAJE	
DEL MOLINO SAG	35
5.3CALCULO DE COSTOS DE NO CALIDAD (CNC) DEL	
MONTAJE DEL MOLINO SAG	49
5.4GRAFICAS DE COSTOS DEL PROYECTO VS COSTOS	
DE CALIDAD Y COSTOS DE NO CALIDAD	54

5.5.-DIAGRAMA DE PARETO DE LOS PRODUCTOS NO CONFORMES

5.6GENERACION DE UN PLAN DE PUNTOS DE INSPECCION	
PARA EL MONTAJE DEL MOLINO SAG	61
5.6.1Instalacion del SolePlate, Cojinetes principales y soleplate de los Frenos	s.61
5.6.2Instalacion del Shell (casco)y tapas del molino	64
5.6.3Instalacion de los turnion de alimentación y descarga.	66
5.6.4Instalacion de los cojines de levantamiento liftpad (se realizara por un debe ser aplicado a los 8) y riel de empuje.	cojín 67
5.6.5Instalación de tapas de cojinetes, cubiertas y sellos y Torque final de Pocríticos.	ernos 70
5.6.6Instalación de sello epóxico de juntas y revestimiento interior de goma.	72
CONCLUSIONES Y RECOMENDACIONES	
BIBLIOGRAFÍA	
ANEYOS	

PRÓLOGO

El presente informe de Suficiencia pretende ser un aporte en el área de Ingeniería Mecánica para los profesionales que se desenvuelven en el rubro de construcción electromecánico.

El informe se ha desarrollado en seis capítulos, los cuales son:

En el Capítulo I, Introducción, se indica cual es el objetivo del informe, especificando el alcance y limitaciones de las actividades que se desarrollarán.

En el Capítulo II, Generalidades del concepto de un Molino SAG.

En el Capítulo III, Identificación del problema y generalización de la hipótesis.

En el Capitulo IV, Definiciones básicas de calidad.

En el Capitulo V, Análisis de Costos y solución del problema.

En el Capitulo VI, Conclusión y Recomendaciones.

CAPÌTULO I INTRODUCCIÒN

Debido al aumento de la demanda de minerales en el mundo y siendo el Perú uno de los países polimetálico, el crecimiento del sector minero es notable, por tal motivo ANTAMINA se realizó el Proyecto de Expansión el cual generara un aumento en su producción de 90,000TPD a 130,000TPD para esto se Electromecánicos, como por ejemplo:

Molino SAG, Molino Bolas, Fajas Transportadoras, Bombas, Celdas, etc.

Este informe esta enfocado en el montaje del Molino SAG el cual debido que por la falta de un Plan de Puntos de Inspección se cometieron varios re trabajos y estos generó costos innecesarios llamados costos por no calidad en el presente informe se realizara un análisis de los costos relativos a la calidad y la generación de un Plan de Puntos de Inspección.

1.1.-ANTECEDENTES DEL PROYECTO EXPANSIÓN ANTAMINA (PEA):

Antamina es la mina polimetálica más grande del Perú y se encuentra en funcionamiento desde el 28 de mayo 2001 siendo inaugurada formalmente el 14 de noviembre del 2001 la cual tiene como socios: Bhpbilliton, Xstrata, Teckcominco, Mitsubishi.

La planta concentradora se encuentra ubicada aprox. 440 Km al noreste de lima a 4185msnm de altura perteneciente al departamento de ANCASH la planta

concentradora cuenta con el Área de Staker, Área de Molienda, Área de Flotación, Área de Remolienda, Área de espesamiento, Área de Minero ducto, antamina produce: Cobre, Zinc, Molibdeno, Bismuto, Plata.

Antamina Antes de la expansión Contaba con un molino SAG de 38'x21' y tres molinos de bola de 24'x36' en el área de molienda.

Para lograr el Proyecto Expansión Antamina (PEA) se contrato a la empresa extranjera AkerSolutions para la supervisión y realización de toda la ingeniería, y al consorcio GYM-

COSAPI como Contratista para el Montaje de los equipos principales.

1.2.-OBJETIVO

Implementar un Plan de Puntos de Inspección durante el montaje, de un Molino SAG 38'x21' para reducir los costos por no calidad en un 80% y aplicarlo en otros proyectos.

1.3.-JUSTIFICACION.

Debido a la poca cantidad de Molinos SAG con tales dimensiones o mayo en el país no existe personal con mucha experiencia en el Perú el cual realice correctamente su instalación, esto trajo como consecuencia la contratación de personal extranjero para que realice dicho trabajo, por eso el objetivo principal de este informe es la generación de un Plan de Puntos de Inspección basado en la experiencia, el cual ayudara en un futuro a la correcta instalación de este tipo de molinos y así reducirá los costos de no calidad.

1.4.-ALCANCE.

El alcance del presente informe de suficiencia, es realizar la Implementación de un Plan de Puntos de Inspección para el montaje del Molino SAG en el Proyecto Expansión Antamina.,

El alcance del Montaje de un Molino SAG 38'x21':

- Montaje de las Tapas y Shell.
- Montaje de Trunions.
- Montaje de Lifpad y thrustPad.
- Montaje de Frenos.
- Montaje de Cojinetes.
- Montaje de Sellos, Goma, etc.

1.5.-LIMITACIONES

- El informe no considera la ingeniería ni la fabricación de las partes del Molino.
- No incluye Suministro
- No incluyen las Obras Civiles
- No incluye montaje de tuberías ni bandejas, cables u otros elementos de electricidad e instrumentación, solo la parte mecánica.
- No incluye los trabajos realizados por el Proveedor del equipo (Vendor¹)
 como unidades hidráulicas ni de lubricación.
- No incluye los trabajos realizados en el estator por ser realizado por otros contratistas y otro vendor.

CAPÌTULO II

GENERALIDADES DE UN MOLINO SAG 38'x21'

2.1.-DESCRIPCIÓN DEL EQUIPO

El molino SAG es una maquina de molienda que reduce el tamaño de partícula del mineral preparándolo para los circuitos descendentes de molienda. El mineral se alimenta al molino con agua y la molienda se realiza en un medio de pulpa. El termino SAG es un acrónimo para "semiautogenousgrindingmill" que significa molino semiautogeno de molienda. Es el molino Primario de molienda

El molino SAG de Antamina es de 11.58 m[38 pies] de diámetro y 6.40m[19 pies] de largo. Es un molino de descarga de parrillas con un diámetro interior de 11,582 mm y una Longitud de molienda de 5,640 mm .El molino esta accionado por un motor wrap-around de 20,142 Kilowatts.

2.2.-Informacion Técnica Del Equipo y Componentes.

1.-Especialista o representante de la marca del equipo

Tabla N°2.1.-Informacion General Del Molino SAG

Especificación	Información
Tamaño del Molino	11.582m [38 pies] diámetro x 6.40m [21
	pies] de largo.
Tipo de Molino	Molienda húmeda descarga por parrillas
Tamaño del motor de accionamiento del	21,142KW
molino	
Tipo de motor de accionamiento del	Wraparound
molino	

Tabla N°2.2.- Datos Del Casco Del Molino SAG

Especificación	Información
Diámetro Interior	11,582mm
Longitud	6,400mm
Longitud efectiva de molienda(EGL)	5,640mm
Espesor de Placa	105mm
Especificación de la Placa	Casco (Shell) ASTM A36 y Pletinas
	Normalizadas ASTM A516 Gr.60 Z25
Configuración de Pletina	Exterior apernado(casco/cabeza)

Tabla N°2.3.- Datos De Cabeza/ Trunnion (Muñón)

Especificación	Información
Diámetro Interior del muñón	3,420mm
Tipo de muñón	Tipo desmontable para apernar a las cabezas
Especificación de material	Hierro dúctil ASTM A536 Gr 70-50-05
Cabeza/Muñón	

Tabla N°2.4.- Datos De Cojinetes Principales

Especificación	Información
Tipo de cojinete	Hidrostático segmentada,4 cojines(pad) por cojinetes
Tamaño del cojinete	4,060 mm diámetro por 900 mm de ancho
Material del Cojinete	Bronce
Tipo de lubricación del cojinete	Hidrostática
Flujo de aceite de lubricación del cojinete	117 litros por minuto por cojín 45 litros por minuto por carril de empuje (2 thrust)
Construcción del cojinete	Placas de asiento elaboradas Base de cojinete Tapa/cubierta y Bloques de soporte de cojinete (Todos en ASTM A36 con rellenos de elevación de bronce)

2.3.- DIAGRAMA DE FLUJO.

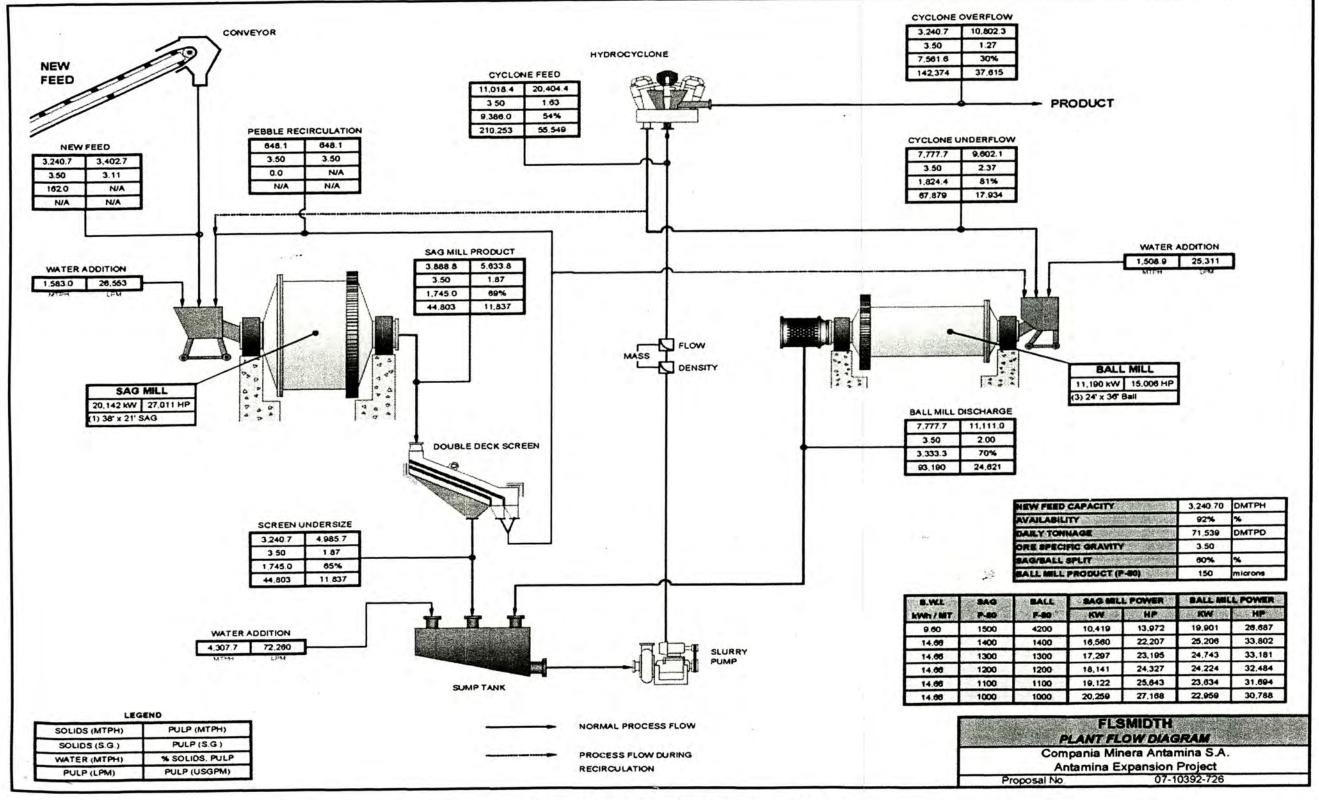


Figura N°2.1.-Distribución de Equipos en Molienda

2.4.-DESCRIPCION Y FUNCIÓN DEL EQUIPO Y COMPONENTES.

El proceso de molienda de mineral está diseñado para reducir el tamaño del mineral chancado/triturado en preparación para el proceso de flotación de concentrado. El proceso de molienda consume energía eléctrica en cantidades extremadamente altas. El molino Primario (SAG) es una fase del proceso de trituración.

El molino SAG está diseñado como un sistema de circuito cerrado de molienda. Esto significa que las partículas de mineral no pueden abandonar el molino SAG hasta que su tamaño haya sido reducido lo suficiente para permitirle atravesar las parrillas de descarga y los harneros ubicados en el extremo de descarga del molino. La clasificación de la descarga del molino es realizada por el harnero rotatorio del trómel, todo el material de mayor tamaño que las aberturas del harnero se retornan al molino SAG a través de trasportadores de retorno (y luego por un chancador de cono) para mayor trituración. Al material que es regresado a un molino de molienda se le llama carga circulante.

El termino SAG viene de las siglas "semiautogenousgrinding mil" que significa molino semiautogeno de molienda. El término autógeno significa que toda la acción de molienda será realizada por la frotación del mineral en sí. El tamaño de reducciones se logra por acción de la trituración de mineral y molienda de otras partículas de mineral. En los molinos completamente autógenos no existen bolas de molienda de acero. En los molinos semiautogenos una proporción de la molienda es autógena y otra es realizada por las bolas de molienda; de ahí el término "semiautogeno". En la figura 1 Se ilustra un molino SAG típico.

El molino no tiene engranaje y es accionado por un motor de retorno (wrap-around) enfriado por ventiladores de velocidad variable y frecuencia ajustable (motor de

anillo). El rotor de este motor esta unido al molino y el estator se construye en un círculo alrededor de molino. La velocidad del molino SAG puede variarse. Esto regula la acción de cascada (caída) en el molino y proporciona un medio de controlar la tasa de molienda de las partículas de mineral.

El mineral, las bolas de molienda y el agua caen en cascada en el molino y el tamaño del mineral es reducido hasta que rebalse a través de las parrillas ranuradas de en el extremo de descarga del molino. El agua del molino SAG se agrega al chute de alimentación con el mineral siendo alimentado desde una pila de acopio. Esto proporciona la densidad de lechada deseable (también conocida como porcentaje de sólidos) en el molino.

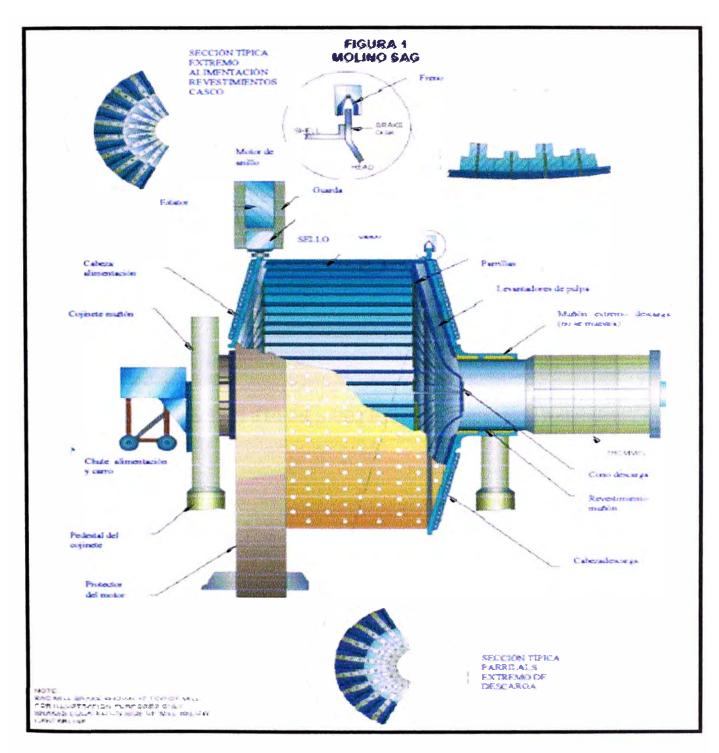


Figura N°2.2.-MOLINO SAG

Figura N°2.3.-Molino SAG 310-MLS-002 Proyecto Expansión Antamina.

Figura N°2.4.-Molino SAG 310-MLS-002 Proyecto

Expansión Antamina

2.4.1Principio De Operación.

La carga del molino SAG consiste de mineral nuevo, bolas de molienda de acero, mineral de gran tamaño reciclado en SAG y agua. La carga total ocupa hasta el 30% del volumen del molino. Las bolas de molienda por sí mismas ocupan alrededor del 8 al 15% del volumen del molino. El molino está diseñado para contener un volumen máximo de 18%. Estos volúmenes de llenado son aproximados y el volumen óptimo depende de los resultados de la experiencia real de la planta.

El molino rota y al hacer caer su contenido violentamente causa la acción de trituración. El molino está cubierto con revestimientos (lainers) de acero cromomolibdeno resistentes al desgaste para proteger el casco. Los revestimientos (lainers) se ajustan con levantadores que ayudan a elevar la carga durante la rotación del casco antes de dejarla caer. La molienda dentro del molino es una combinación de rompimiento de mineral a través de la acción de caída, roce o golpe del mineral entre las bolas y la abrasión del roce de partículas contra ellas o contra las bolas. En un molino SAG la molienda por abrasión es mínima. (La Figura 2.4 ilustra la acción de cascada o catarata).

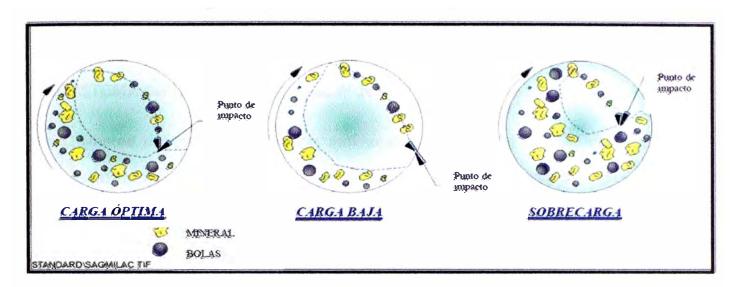


Figura N°2.4.-Acción de Cascada o catarata en el Molino SAG.

La velocidad del molino genera gran parte de la acción de levantamiento del molino. El molino SAG esta accionado por un motor de velocidad variable y se opera generalmente en el rango del 10 al 85% de su velocidad critica. La velocidad critica es la velocidad del molino a la que la fuerza centrifuga mantiene todo el material en las paredes del molino y evita la acción de caída en cascada que se requiere para la molienda.

Mantener el nivel adecuado de carga en el molino es uno de los elementos más importantes para una molienda eficiente. La variación de velocidad del molino es una importante variable de control de la operación de molienda.

El molino tiene un extremo falso en la cabeza de descarga que está formado por parrillas de metal duro y filtros de pulpa. La cavidad entre este extremo y la cabeza del molino está protegida con un revestimiento de acero de cromo-molibdeno. La pulpa fluye a través de parrillas y dentro de la cavidad donde los levantadores de pulpa (de hecho, paletas muy pesadas) elevan la pulpa mientras el molino rota.

Mientras la pulpa alcanza la parte superior de su rotación, se descarga del muñón hacia los harneros de clasificación.

2.5.-SISTEMA DE LUBRICACIÓN DEL MOLINO.

Los Cojinetes del muñón/Empuje del molino están equipados con un sistema de lubricación dedicado. El sistema de lubricación se alimenta desde el depósito de aceite de lubricación dedicado.

2.5.1.-Principio De Operación.

Sistema de Lubricación del cojinete del Muñón.

Cojinetes del Molino: El molino está soportado sobre sus muñones (postes huecos pesados apernados a las cabezas del molino) a través de los cuales pasa la carga y descarga. Las superficies de soporte de muñón rotatorio son suaves y casa muñón se asienta sobre cuatro cojinetes hidrostáticos.

Un cojinete hidrostático es uno en el que el aceite presurizado proveniente de un sistema de lubricación independiente es forzado a ingresar en la holgura existente entre las superficies que se deslizan. La Figura 2.5 ilustra los cojines de los cojinetes.

El cojinete en el extremo de alimentación del molino tiene caras de empuje (carriles) contra las cuales el muñón puede soportarse para evitar el movimiento paralelo al eje del molino. Esto es conocido como el cojinete fijo. El muñón del extremo de descarga puede moverse a lo largo del eje para permitir la expansión térmica o pequeños movimiento en las bases del molino o de sus componentes. Esto es conocido como el cojinete flotante.

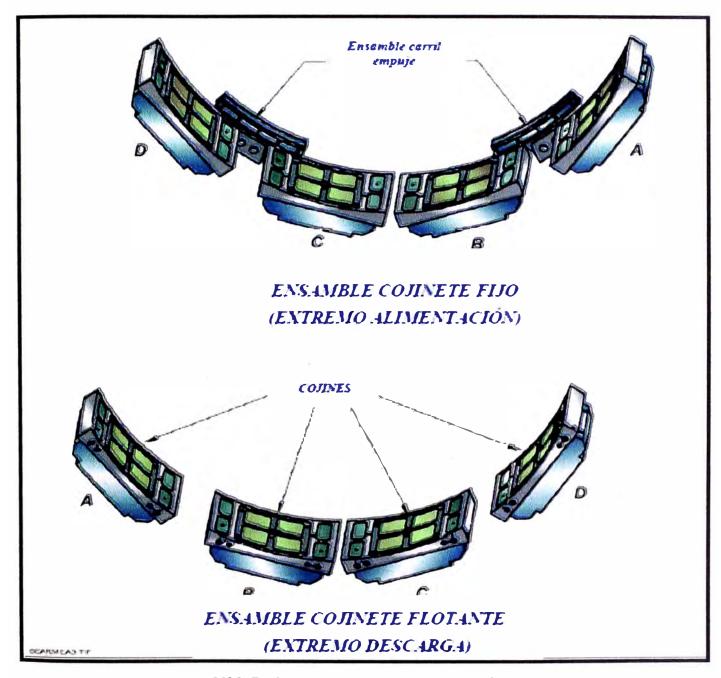


Figura N°2.5.-Cojines Hidrostáticos Del Cojinete

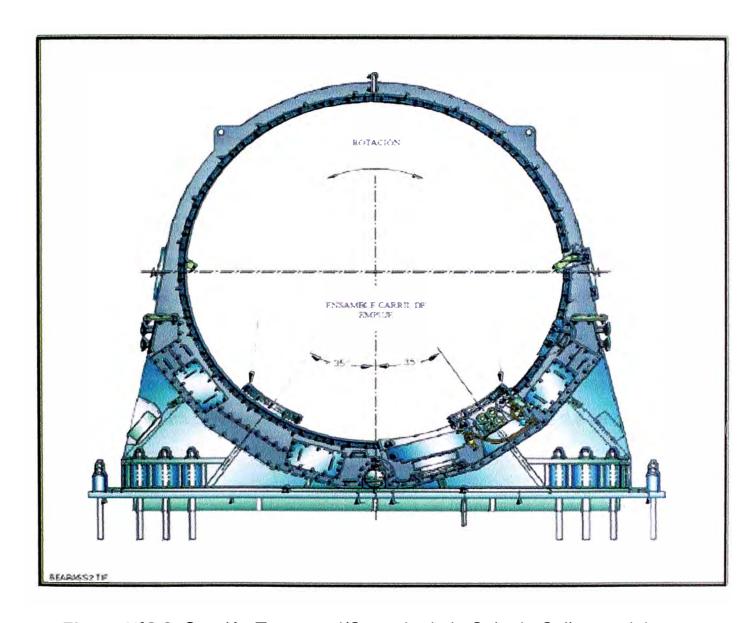


Figura N°2.6.-Sección Trasversal/Cruzada de la Caja de Cojinetes del Muñón Del Extremo De Alimentación

2.6.-SISTEMA DE FRENOS DEL MOLINO.

El molino esta equipado con frenos de calibración que se utilizan para llevar al molino a una detención rápida y evitar que se mueva durante los trabajos de

mantención. Los frenos funcionan de manera similar al sistema de frenos de disco de un automóvil al aplicarlos de reversa, es decir, los frenos del molino se enganchan al soltar la presión hidráulica del freno. Sin embargo, en un automóvil los frenos se enganchan aplicando presión hidráulica. El siguiente principio de operación revisa en detalle el sistema de frenos del molino SAG.

2.6.1.-Principio De Operación.

El molino SAG está equipado con dos juegos de frenos de calibración con calibradores de resortes en cada juego. Estos se utilizan para impedir que el molino oscile durante la mantención y para detener el molino en caso de emergencia. En la Figura 6 se ilustra un diagrama del sistema hidráulico de frenos del molino SAG.

Los calibradores se sujetan a las estructuras a cada costado del molino. Abrazaderas de resortes sujetan firmemente cada calibrador a la parte mecanizada exterior de la pletina principal de la cabeza de descarga. En la figura 2.8 se ilustra el ensamble del freno.

Para liberar los frenos se aplica presión hidráulica de manera de superar la presión del resorte. Para suministrar esta presión se usa una unidad hidráulica (consiste de una bomba, filtro y un juego de acumuladores de nitrógeno). Los acumuladores almacenan líquido hidráulico presurizado de frenos y cuando los frenos son liberados, las válvulas dirigen el fluido presurizado a los frenos soltándolos. La presión del acumulador es mantenida por la bomba que se inicia y detiene a solicitud. Para aplicar los frenos y detener el molino, se purga el fluido hidráulico del sistema, permitiendo que los resortes se abracen a las zapatas del freno sobre el disco de frenos (pletina). La taza de liberación de aceite (aplicación de los frenos) puede ser controlada. Para una detención normal a partir de la velocidad de

operación, se utiliza un método de detención gradual controlada. Cuando se usan los modos de movimiento de ajuste lento o Deslizamiento, los frenos se aplican o liberan rápidamente

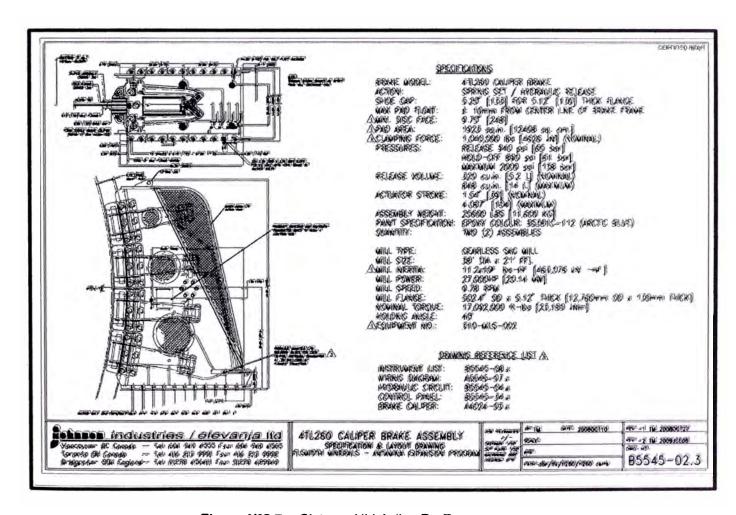


Figura N°2.7.-.-Sistema Hidráulico De Frenos.

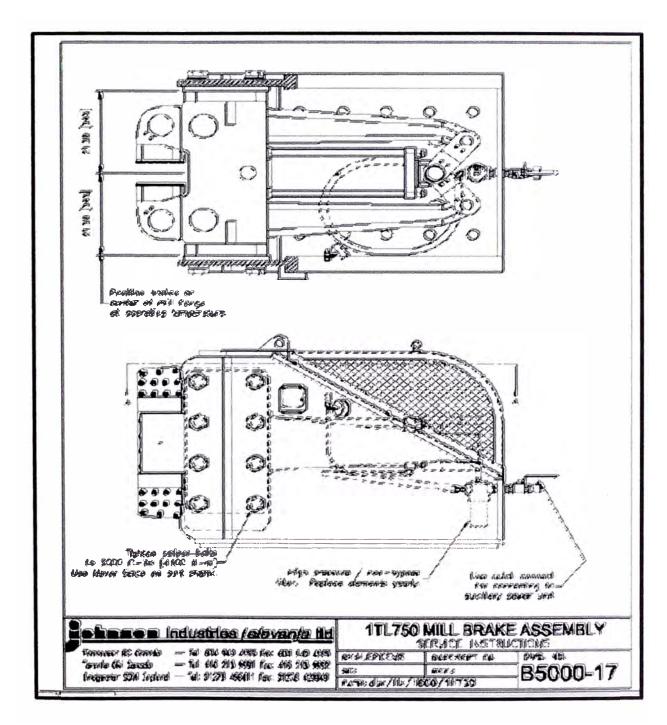


Figura N°2.8.- Arreglo Típico De Ensamble De Frenos.

CAPÌTULO III

IDENTIFICACIÓN DEL PROBLEMA Y GENERACIÓN DE LA HIPÓTESIS

Cuando se obtuvo la información del estado situacional inicial se observó lo siguiente:

- El molino SAG se instaló sin haber seguido un Plan de Inspección de Ensayo basado sólo en la experiencia de los supervisores y operarios.
- Los costos originados por los trabajos correctivos necesarios durante dicho montaje fue de 322,858 soles, estos costos son conocidos como los costos por no calidad.

De las observaciones anteriores podemos identificar el problema mediante la siguiente pregunta:

¿Implementando un Plan de puntos de Inspección, se podrá reducir los costos por no calidad en un 80% en el montaje de un Molino SAG 38'x21'PEA''?

CAPÌTULO IV

MARCO TEÓRICO

4.1.- DEFINICIONES BASICAS DE CALIDAD

De acuerdo a la norma técnica peruana NTP ISO 8402, edición 1995 se entiende por:

- a. Calidad.- La totalidad de las características de una entidad que le confieren la aptitud para satisfacer las necesidades explícitas e implícitas.
- b. Requisitos para la calidad.- Expresión de las necesidades o su traducción en un conjunto de requisitos, establecidos en términos cuantitativos o cualitativos, para las características de una entidad, con el fin de permitir su realización y su examen.
- c. Control de calidad.- Técnicas y actividades de carácter operativo,
 utilizadas para satisfacer los requisitos para la calidad.
- d. Registros.- Documentos que proveen evidencias objetivas de las actividades efectuadas o de los resultados obtenidos.

Las definiciones a y b, deben aplicarse en la etapa de la concepción (diseño) del proyecto, en especial la definición de calidad. La finalidad, es determinar aquellas características de calidad del producto de la construcción, que le darán la aptitud para satisfacer las necesidades explícitas (expresadas y definidas por escrito) e implícitas (expectativas) del cliente.

Una vez que se agotan las conversaciones entre el proyectista y el cliente, se inicia el diseño del proyecto, el profesional responsable deberá definir los requisitos cuantitativos o cualitativos de calidad a cumplirse durante la etapa de construcción. Esto debe hacerse previamente a la construcción bajo condiciones planificadas, y controladas sistemáticamente. El profesional responsable tiene ésta obligación, ya que es "el padre de la criatura" (el producto de la construcción).

La única forma segura de que el producto de la construcción satisfaga lo pactado será planificando lo siguiente:

- a. La ejecución obligatoria de ensayos, controles, pruebas, verificaciones,
 etc., que deberán aplicarse durante el proceso de construcción.
- b. Definiendo o citando los criterios de aceptación sobre la base de determinados códigos, normas de productos, y normas de métodos de ensayo aplicables a los diferentes procesos constructivos.
- c. Planificando el uso de registros que demuestren que lo planificado se cumplió, y que los resultados cumplen los criterios de aceptación previstos.

los temas señalados en (a, b y c), son parte de las actividades de carácter operativo, que deben realizarse para comprobar la satisfacción de los requisitos de calidad. Entonces según lo expresado, es aquí donde surge "La aplicación de los costos relativos de calidad a la construcción", ya que tales actividades son factores de costo muy importante.

Es prioritario establecer la aplicación de los CRC como medio seguro para el cumplimiento de los requisitos de calidad establecidos.

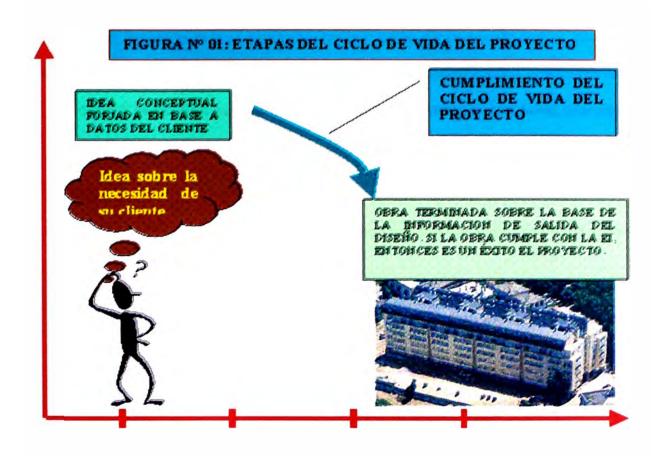


Figura N°4.1.- Etapas del Proyecto

4.2.-COSTOS RELATIVOS A LA CALIDAD

Para aplicar la definición de CRCse tendrá la siguiente ecuación simple:

CRC = CDC + CNC

donde:

CRC = Costos relativos a la calidad, CRC

CDC = Costos de calidad, CDC

CNC = Costos de no calidad, CNC

La aplicación requiere que la empresa responsable de la construcción, planifique y cumpla con los controles, ensayos, pruebas, análisis, planificados previamente; sólo así, se logrará la calidad satisfactoria. Es necesario cumplir con tales premisas, ya que de no hacerlo, no se alcanzará la calidad satisfactoria, lo cual significa lo siguiente:

- a. Efectuar reprocesos, rehacer los trabajos correspondientes a una partida.
- b. Remplazar materiales e insumos adquiridos, ya que los análisis realizados demuestran la existencia de no conformidades.
- c. El tiempo empleado para completar los trabajos retrasados, debido al no cumplimiento de los requisitos de calidad en el momento de ejecución de la partida analizada.

Todas estas actividades y otras afines son las que forman parte de los CNC, generándose así el inicio de las pérdidas como resultado de una ejecución no planificada apropiadamente.

En conclusión para evitar tales problemas será necesario planificar la aplicación de la calidad, y luego poner en práctica el control de calidad, es aquí donde surge la pregunta ¿En qué momento deben efectuarse?, ¿Cómo y en qué consiste?, ¿Qué se debe controlar?, ¿Qué debe registrarse y quién debe hacerlo?

Para responder a todas éstas preguntas es necesario prever:

- a. La elaboración de procedimientos o instrucciones escritas, para la ejecución de las actividades de control de calidad.
- b. Los puntos de inspección, es importante identificar y definir el momento oportuno de su ejecución, siendo la premisa: "cumplir con un punto de

26

control, para evitar un CNC, el cual retrasa la ejecución y aumenta los

costos de la construcción".

4.3.-COSTOS DE CALIDAD (CDC)

Los CDC, son todos aquellos costos en que debe incurrir la organización ejecutora,

para asegurar el logro de la calidad satisfactoria de la obra resultante del proyecto

de la construcción. Es claro, que tal resultado, es el efecto de que los productos de

los procesos constructivos han cumplido con los requisitos de calidad aplicables,

definidos en forma explícita en los planos y especificaciones técnicas contractuales.

Los CDC a su vez se desagregan en:

CDC = CDP + CDE

Donde:

CDC = Costos de calidad

CDP = Costos de calidad de prevención

CDE = Costos de calidad de evaluación

4.3.1.-Costos de calidad de prevención (CDP)

Son los costos de calidad de prevención, y tienen como finalidad las

siguientes:

Prever las calificaciones, evaluaciones, etc.

Prever las necesidades de capacitación del personal.

Ensayos, pruebas y/o análisis a ejecutar como parte de los diferentes

procesos constructivos.

Calibraciones de equipos, instrumentos, etc.

- Adquisición de instrumentos metrológicos o de control, etc.
- Sueldos del personal de la función calidad es necesarios para la ejecución de obra
- Todos aquellos costos que resulten de la aplicación de las normas de productos, métodos de ensayo a los procesos constructivos inherentes a la obra.

Los CDC deben ser previstos en mayor parte por el Ingeniero de Proyecto; es decir, por los encargados del diseño y como resultado de las coordinaciones de éste con el ingeniero de calidad.

Por otro lado, es claro que todo diseñador debería tomar en cuenta en su diseño, lo siguiente:

- Hipótesis de cálculo y/o comportamiento
- Factores de seguridad para efectos de los cálculos
- Propiedades mecánicas, químicas de materiales
- Factores de tolerancias, acabados.
- Seguridad en cuanto a determinados niveles de calidad aplicables a los diferentes proceso constructivos.
- Requerimientos del uso de ensayos, pruebas y análisis que permitan asegurar el cumplimiento de los niveles de calidad.

En consecuencia, para fines del presente trabajo es implícito, que el diseñador debe prever todas las actividades involucradas como parte de los CDP. Para determinar su magnitud total tendría que intervenir el ingeniero de calidad y el ingeniero de costos.

28

De acuerdo a los lineamientos expuestos, el ingeniero de diseño y el ingeniero de

calidad deberán hacer explícitas todas las actividades que sustentarán más

adelante los CDP, y de acuerdo a tales premisas los ingenieros de costos deberán

convertir y/o valorizar, a priori, tales actividades.

4.3.2.-Costo de calidad de evaluación (CDE)

• Es el resultado de haber cumplido los costos de calidad de evaluación y las

actividades establecidas como parte de los CDP. Permiten comprobar que

los resultados cumplan con los requisitos de calidad aplicables.

Dan confianza de que se ha cumplido con la calidad satisfactoria

Finalmente entonces, los CDC son todos aquellos costos en que se debe

incurrir para asegurar el logro de la calidad satisfactoria y dar confianza de

ello, es la suma de los CDP y CDE.

4.4.-COSTOS DE NO CALIDAD (CNC)

Por otro lado los CNC son todos aquellos costos y/o pérdidas relativas a la calidad

resultante por no haber ejecutado las previsiones de los CDC o simplemente por no

cumplir con los requisitos de calidad inherentes a la obra.

Los CNC a su vez se desagregan en:

CNC = CFI + CFE

Donde:

CNC = Costos de calidad

CFI = Costos por fallos internos

CFE = Costos por fallos externos

4.4.1.-Costos por fallos internos (CFI)

Son los costos correspondientes a los fallos internos resultantes por:

- Fundamentalmente de los reprocesos que se originan por no cumplir con los requisitos de calidad.
- Uso de recursos debido al no cumplimiento de los niveles de calidad aprobados y contractuales.
- Materiales que se pierden debido a todos aquellos productos que no han cumplido con los requisitos de calidad aprobados.
- Costos del levantamiento de observaciones, en general, son todos aquellos costos perdidos relacionados con la calidad, y que son generados dentro del plazo de ejecución de obra incluyendo el período de tiempo de la recepción de obra.

4.4.2.-Costo de fallos externos (CFE)

Son todos aquellos costos correspondientes a los fallos externos resultantes de:

- Todas aquellas actividades y/o productos no conformes respecto de los requisitos de calidad que han sido detectados por el cliente.
- Levantamiento de observaciones detectadas por el cliente.
- La valorización de la pérdida de imagen debido a problemas de calidad detectados por el cliente.
- Penalidades.

4.5.-DIAGRAMA DE PARETO

Según el PMBOK la definición del Diagrama de Pareto es la siguiente:

Un diagrama de Pareto es un tipo específico de histograma, ordenado por frecuencia de ocurrencia. Muestra cuantos defectos se generaron por tipo o categoría de causa identificada (**Grafico 8-15**). El ordenamiento por categoría se emplea para guiar la acción correctiva. El equipo del proyecto debería atender en primero lugar las causas que provocan el mayor número de defectos.

Los diagramas de Pareto están relacionados conceptualmente con la ley de Pareto, que establece que un número relativamente pequeño de causas provocara generalmente la mayoría de los problemas o defectos. Esto se denomina comúnmente principio 80/20, donde el 80% de los problemas se debe al 20% de las causas. Los diagramas de Pareto también se pueden usar para resumir diversos tipos de datos y analizarlos según el principio 80/20.

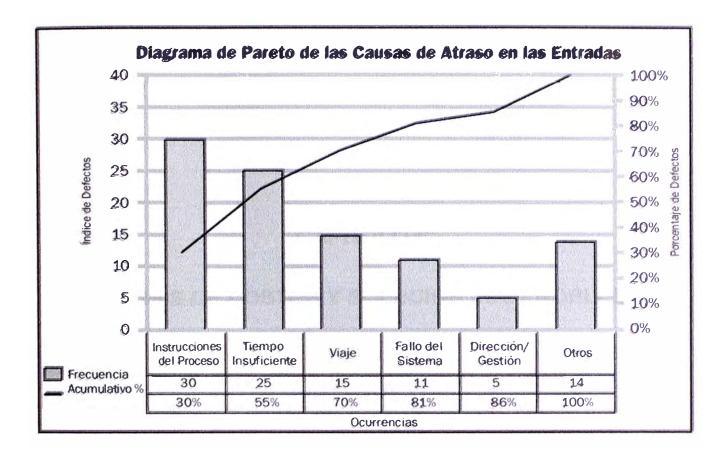


Figura N°4.2.-Diagrama de Pareto

4.6.-DEFINICION DE PLAN DE PUNTOS DE INSPECCIÓN.

Plan en el que quedan reflejadas las diferentes inspecciones a realizar para un determinado suministro en el proyecto indicado, como mínimo, la empresa a inspeccionar, el objeto de la inspección y el tipo de ensayo.

CAPITULO V

ANÀLISIS DE COSTOS Y SOLUCIÓN DEL PROBLEMA

5.1.-CALCULO DE COSTOS DEL MONTAJE DEL MOLINO SAG POR HH

Consideraciones:

Cuadril latípica:

Cargo		Ctd	Costo HH (soles)
1.1	Capataz(CA)	1	13.7
1.2	1.2 Operario(OP)		23.1
1.3	Oficial(OF)	2	19.8

- **1.** Trabajando 10h diarias.
- 2. Trabajando 70h a la semana.

Item	Camanaa	Fecha	Fecha	НН	CA	OP	OF	COSTOS
iteiii	Semanas	inicio	final	utilizadas	нн	нн	нн	(SOLES)
1	Sem 18	01/10/2010	07/10/2010	370.0	61.7	185	123.3	7560.33333
2	Sem 19	08/10/2010	14/10/2010	401.5	66.9	201	133.8	8203.98333
3	Sem 20	15/10/2010	21/10/2010	295.5	49.3	148	98.5	6038.05
4	Sem 21	22/10/2010	28/10/2010	948.5	158	474	316.2	19381.0167
5	Sem 22	29/10/2010	04/11/2010	1036.5	173	518	345.5	21179.15
6	Sem 23	05/11/2010	11/11/2010	1648.5	275	824	549.5	33684.35
7	Sem 24	12/11/2010	18/11/2010	2095.5	349	1048	698.5	42818.05
8	Sem 25	19/11/2010	25/11/2010	2282.5	380	1141	760.8	46639.0833
9	Sem 26	26/11/2010	02/12/2010	2303	384	1152	767.7	47057.9667

CAPITULO V

ANÀLISIS DE COSTOS Y SOLUCIÓN DEL PROBLEMA

5.1.-CALCULO DE COSTOS DEL MONTAJE DEL MOLINO SAG POR HH

Consideraciones:

Cuadrilla típica:

	Cargo	Ctd	Costo HH (soles)
1.1	Capataz(CA)	1	13.7
1.2	Operario(OP)	3	23.1
1.3	Oficial(OF)	2	19.8

- **1.** Trabajando 10h diarias.
- **2.** Trabajando 70h a la semana.

14		Fecha	Fecha	НН	CA	OP	OF	COSTOS
ltem	Semanas	inicio	final	utilizadas	нн	нн	нн	(SOLES)
1	Sem 18	01/10/2010	07/10/2010	370.0	61.7	185	123.3	7560.33333
2	Sem 19	08/10/2010	14/10/2010	401.5	66.9	201	133.8	8203.98333
3	Sem 20	15/10/2010	21/10/2010	295.5	49.3	148	98.5	6038.05
4	Sem 21	22/10/2010	28/10/2010	948.5	158	474	316.2	19381.0167
5	Sem 22	29/10/2010	04/11/2010	1036.5	173	518	345.5	21179.15
6	Sem 23	05/11/2010	11/11/2010	1648.5	275	824	549.5	33684.35
7	Sem 24	12/11/2010	18/11/2010	2095.5	349	1048	698.5	42818.05
8	Sem 25	19/11/2010	25/11/2010	2282.5	380	1141	760.8	46639.0833
9	Sem 26	26/11/2010	02/12/2010	2303	384	1152	767.7	47057.9667

10	Sem 27	03/12/2010	09/12/2010	3235.5	539	1618	1079	66112.05
11	Sem 28	10/12/2010	16/12/2010	3884	647	1942	1295	79363.0667
12	Sem 29	17/12/2010	23/12/2010	6714.5	1119	3357	2238	137199.617
13	Sem 30	24/12/2010	30/12/2010	5590	932	2795	1863	114222.333
14	Sem 31	31/12/2010	06/01/2011	3880	647	1940	1293	79281.3333
15	Sem 32	07/01/2011	13/01/2011	6015	1003	3008	2005	122906.5
16	Sem 33	14/01/2011	20/01/2011	8332	1389	4166	2777	170250.533
17	Sem 34	21/01/2011	27/01/2011	4776	796	2388	1592	97589.6
18	Sem 35	28/01/2011	03/02/2011	5177.5	863	2589	1726	105793.583
19	Sem 36	04/02/2011	10/02/2011	4763	794	2382	1588	97323.9667
20	Sem 37	11/02/2011	17/02/2011	6039	1007	3020	2013	123396.9
21	Sem 38	18/02/2011	24/02/2011	4363	727	2182	1454	89150.6333
22	Sem 39	25/02/2011	03/03/2011	3063	511	1532	1021	62587.3
23	Sem 40	04/03/2011	10/03/2011	2763	461	1382	921	56457.3
24	Sem 41	11/03/2011	17/03/2011	2804	467	1402	934.7	57295.0667
25	Sem 42	18/03/2011	24/03/2011	2957	493	1479	985.7	60421.3667
26	Sem 43	25/03/2011	31/03/2011	2745	458	1373	915	56089.5
27	Sem 44	01/04/2011	07/04/2011	2576	429	1288	858.7	52636.2667
28	Sem 45	08/04/2011	14/04/2011	3167.5	528	1584	1056	64722.5833
29	Sem 46	15/04/2011	21/04/2011	2217	370	1109	739	45300.7
30	Sem 47	22/04/2011	28/04/2011	2253.5	376	1127	751.2	46046.5167
31	Sem 48	29/04/2011	05/05/2011	2565.5	428	1283	855.2	52421.7167
32	Sem 49	06/05/2011	12/05/2011	2030	338	1015	676.7	41479.6667
33	Sem 50	13/05/2011	19/05/2011	1463	244	732	487.7	29893.9667
34	Sem 51	20/05/2011	26/05/2011	993	166	497	331	20290.3

35	Sem 52	27/05/2011	02/06/2011	1002	167	501	334	20474.2
36	Sem 53	03/06/2011	09/06/2011	1347	225	674	449	27523.7
37	Sem 54	10/06/2011	16/06/2011	1459	243	730	486.3	29812.2333
38	Sem 55	17/06/2011	23/06/2011	1761	294	881	587	35983.1
39	Sem 56	24/06/2011	30/06/2011	2404.5	401	1202	801.5	49131.95
40	Sem 57	01/07/2011	07/07/2011	1870	312	935	623.3	38210.3333
41	Sem 58	08/07/2011	14/07/2011	1115	186	558	371.7	22783.1667
42	Sem 59	15/07/2011	21/07/2011	1333	222	667	444.3	27237.6333
43	Sem 60	22/07/2011	28/07/2011	1831	305	916	610.3	37413.4333
44	Sem 61	29/07/2011	04/08/2011	1718	286	859	572.7	35104.4667
45	Sem 62	05/08/2011	11/08/2011	1316	219	658	438.7	26890.2667
46	Sem 63	12/08/2011	18/08/2011	1594	266	797	531.3	32570.7333
47	Sem 64	19/08/2011	25/08/2011	1672	279	836	557.3	34164.5333
48	Sem 65	26/08/2011	01/09/2011	1358	226	679	452.7	27748.4667
49	Sem 66	02/09/2011	08/09/2011	1304	217	652	434.7	26645.0667
50	Sem 67	09/09/2011	15/09/2011	1743	291	872	581	35615.3
51	Sem 68	16/09/2011	22/09/2011	2015	336	1008	671.7	41173.1667
52	Sem 69	23/09/2011	29/09/2011	2622	437	1311	874	53576.2
53	Sem 70	30/09/2011	06/10/2011	2684	447	1342	894.7	54843.0667
54	Sem 71	07/10/2011	13/10/2011	2315	386	1158	771.7	47303.1667
55	Sem 72	14/10/2011	20/10/2011	4498	750	2249	1499	91909.1333
56	Sem 73	21/10/2011	27/10/2011	2025	338	1013	675	41377.5
57	Sem 74	28/10/2011	03/11/2011	1714	286	857	571.3	35022.7333
58	Sem 75	04/11/2011	10/11/2011	1435	239	718	478.3	29321.8333
59	Sem 76	11/11/2011	17/11/2011	1092	182	546	364	22313.2

60	Sem 77	18/11/2011	24/11/2011	1747	291	874	582.3	35697.0333
61	Sem 78	25/11/2011	01/12/2011	1956	326	978	652	39967.6
62	Sem 79	02/12/2011	08/12/2011	1438	240	719	479.3	29383.1333
63	Sem 80	09/12/2011	15/12/2011	383	63.8	192	127.7	7825.96667
64	Sem 81	16/12/2011	22/12/2011	57	9.5	28.5	19	1164.7
65	Sem 82	23/12/2011	29/12/2011	100	16.7	50	33.33	2043.33333
66	Sem 83	30/12/2011	05/01/2012	20	3.33	10	6.667	408.666667
67	Sem 84	06/01/2012	12/01/2012	319	53.2	160	106.3	6518.23333
68	Sem 85	13/01/2012	19/01/2012	630	105	315	210	12873
69	Sem 86	20/01/2012	26/01/2012	122	20.3	61	40.67	2492.86667
70	Sem 87	27/01/2012	02/02/2012	13	2.17	6.5	4.333	265.633333
71	Sem 88	03/02/2012	09/02/2012	0	0	0	0	0
72	Sem 89	10/02/2012	16/02/2012	71	11.8	35.5	23.67	1450.76667
73	Sem 90	17/02/2012	23/02/2012	35	5.83	17.5	11.67	715.166667

Suma total=	3,225,749.03
-------------	--------------

5.2.-CÀLCULO DE COSTOS DE CALIDAD (CDC) DEL MONTAJE DEL MOLINO SAG

1.-Costos de Calidad CDC:

Total:

303,708 soles

SUMATORIA DE LOS COSTOS de CDP y CDE

CDC=CDP+CDE

Donde:

CDC:Costos de Cali dad.

CDP:Costos de Calidad de Prevención.

CDE:Costos de Calidad de Evaluación.

Desarrollo de los CDC:

1.1.-Costos de Calidad de Prevención (CDP).

Lo dividiremos en 2 Ítem A y B donde:

A.-Capacitaciones del personal involucrado:

Consideraciones:

1.-Regimen de trabajo: 21x7

2.-Jornada de trabajo diaria: 10 horas

3. Analizando mano de obra directa por 21dias trabajados:

Cargo del puesto	Salario(soles)x10 horas diarias	HH(soles)
Operario Mecánico	4860	23.1
Oficial Operario	4148.61	19.8

4. Analizando personal de empleados por 30 días trabajados:

Cargo del puesto	Salario(soles)x10 horas diarias	HH(soles)
Supervisor de mecánico de construcción	15000	50.0
Capataz Mecánico	4102	13.7
Supervisor de Calidad	9000	30.0

De acuerdo a los registros de las capacitaciones realizadas en el PEA se tiene lo siguiente:

Costos de capacitaciones por HH del mes de NOV. 2010-ENE 2011:

1.-Nombre de la Capacitación: Instructivo de instalación de estructura temporal

Fecha: 10/11/2010

Tiempo de duración: 30 minutos

Cargo del puesto	cantidad	Costo de capacitación(soles):
Capataz Mecánico	3	20.5
Operarios Mecánico	8	92.6
Oficial Mecánico	4	39.5
Supervisor Mecánico	1	25.0

Costo de HH:177.6

2.-Nombre de la Capacitación: Instructivo de instalación de estructura temporal

Fecha: 12/11/2010

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de Capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	11	127.3
Oficial Mecánico	10	98.8

Costo de HH: 232.9

3.-Nombre de la Capacitación: Instructivo de Procedimientos de topografía

Fecha: 14/11/2010

Cargo del puesto	cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	9	104.1

Oficial Mecánico	6 59.3
------------------	--------

Costo de HH:170.2

4.-Nombre de la Capacitación: Instructivo de instalación de estructura temporal

Fecha: 14/11/2010

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	9	104.1
Oficial Mecánico	5	49.4

Costo de HH:160.4

<u>5.-Nombre de la Capacitación:</u> Instructivo de montaje de Shell y tapas del molino SAG

Fecha: 14/11/2010

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	12	138.9
Oficial Mecánico	12	118.5
Supervisor de Calidad	1	15.0

Costo de HH:286.1

<u>6.-Nombre de la Capacitación:</u> Instructivo de montaje de Shell y tapas del molino SAG

Fecha: 14/11/2010

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
operarios Mecánico	4	46.3
oficial Mecánico	6	59.3

Costo de HH:119.2

7.-Nombre de la Capacitación:Procedimiento de Montaje Mecánico

Fecha: 15/11/2010

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	12	138.9
oficial Mecánico	12	118.5

Costo de HH:271.1

8.-Nombre de la Capacitación:Procedimiento de Montaje Mecánico

Fecha: 15/12/2010

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
operarios Mecánico	7	81.0
oficial Mecánico	2	19.8

Costo de HH:107.6

9.-Nombre de la Capacitación: Instructivo de montaje de los soleplate

Fecha: 15/12/2010

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	10	115.7
Oficial Mecánico	14	138.3

Costo de HH:260.8

10.-Nombre de la Capacitación:Instructivo de montaje de los soleplate

Fecha: 15/12/2010

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	6	69.4
Oficial Mecánico	6	59.3

Costo de HH:142.4

<u>11.-Nombre de la Capacitación:Instructivo</u> de limpieza de las tapas, Shell, Soleplate

Fecha: 09/01/2010

Tiempo de duración: 30 minutos

Cargo del puesto	cantidad	Costo de Capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	8	92.6
Oficial Mecánico	6	59.3

Costo de HH:165.5

<u>12.-Nombre de la Capacitación:Instructivo</u> de limpieza de las tapas, Shell, Soleplate

Fecha: 09/01/2010

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	7	81.0
Oficial Mecánico	6	59.3

Costo de HH:153.9

Costos de capacitaciones por HH del mes de FEB. -ABR 2011:

1.-Nombre de la Capacitación: Procedimiento de Vaciado de grout en sole Plate.

Fecha: 02/02/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	4	27.3
Oficial Mecánico	3	20.5

Costo de HH:54.7

2.-Nombre de la Capacitación:Instructivo medición de aislamiento de los liftpads del molino SAG

Fecha: 07/02/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	2	13.7
Oficial Mecánico	1	6.8

Costo de HH:27.3

3.-Nombre de la Capacitación:Instructivo medición de aislamiento de los liftpads del molino SAG

Fecha: 07/02/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Operarios Mecánico	1	6.8
Oficial Mecánico	1	6.8

Costo de HH: 13.7

4.-Nombre de la Capacitación:Hoja Técnica del groutembeco

Fecha: 13/03/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	6	41.0
Oficial Mecánico	3	20.5

Costo de HH:68.4

5.-Nombre de la Capacitación: Colocación de groutcementicio

Fecha: 29/03/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	8	54.7
Oficial Mecánico	6	41.0

Costo de HH: 102.6

6.-Nombre de la Capacitación: Colocación de groutcementicio

Fecha: 14/04/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	8	54.7
Oficial Mecánico	6	41.0

Costo de HH: 102.6

Costos de capacitaciones por HH del mes de MAY - JUL 2011:

1.-Nombre de la Capacitación: Instructivos de torque y elongación de pernos

Fecha: 20/05/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	12	82.0
Oficial Mecánico	8	54.7

Costo de HH:150.4

2.-Nombre de la Capacitación: Instructivos de torque y elongación de pernos

Fecha: 28/06/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	15	102.6
Oficial Mecánico	4	27.3

Costo de HH:143.6

3.-Nombre de la Capacitación:Instructivos de torque y elongación de pernos

Fecha: 28/06/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	2	13.7
Operarios Mecánico	12	82.0
Oficial Mecánico	2	13.7

Costo de HH:109.4

4.-Nombre de la Capacitación:Instructivos de torque y elongación de pernos

Fecha: 28/06/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	9	61,5
Oficial Mecánico	4	27.3

Costo de HH:95.7

Costos de capacitaciones por HH del mes de AGO- JUL 2011:

1.-Nombre de la Capacitación: Hoja Técnica GroutEmbeco 885

Fecha: 05/09/2011

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	4	27.3
Oficial Mecánico	2	13.7

Costo de HH:47.9

2.-Nombre de la Capacitación:Procedimiento NS GROUT cementicio

Fecha: 20/10/2011

Tiempo de duración: 30 minutos

Cargo del puesto	Cantidad	Costo de capacitación(soles):
Capataz Mecánico	1	6.8
Operarios Mecánico	6	41.0
Oficial Mecánico	4	27.3

Costo de HH:75.2

El Costo total de las capacitaciones es:3239 soles

B.-Costos por equipos calibrados.

Consideraciones:

1.-Tipo de cambio: 2.85

- 2.-Se considera el costo de los equipos para la utilización en el montaje del molino.
- 3.-El equipo de torque y elongación por ultrasonido es suministrado con el molino.

4.-Precios Incluye IGV

Listado de equipos a usar para prevención		
Nombre del equipo(CTD)	costo de alquiler(dólares)	costo de alquiler(Soles)
1Torquimetros calibrados(7)	2451.22	6986.0
2Medidor de espesor de pintura(2)	2343.52	6679.0
3Pirometro(2)	554	1578.9

	i u	
4Nivel de Precisión(1)	1618.55	4612.9
5Estacion total(1)	8415	23982.8
6Nivel automático(1)	528	1504.8
7Micrometro P/Interior Mitutoyo(1)	5395.5	15377.2
8Bomba y llave enerpac (1)	2234	6366.9
9Bomba y llave Hytorc (1)	2300	6555.0
10Reloj Comparador(4)	900 700	2565.0 1995.0

El Costo total por los equipos es: 78203.4 soles

EL COSTO TOTAL DE CALIDAD DE PREVENCION (CDP)=81442.4 Soles

1.2.-Costos de Calidad de evaluación (CDE).

Lo dividiremos en 3 Ítems A, B y C donde:

A.-Costos por ensayos no destructivos.-

Costos por tintes penetrantes

Consideraciones:

- 1.-Costo por metro lineal 7 dólares.
- 2.-Costos por permanencia por día 245 dólares.
- 3.-Tipo de cambio 2.85

Descripción	Metrado(m)	Costo(soles)	Fecha
1Ensayo en orejas de izaje1	10.7	911.715	17/12/2010
2Ensayo en orejas de izaje2	16.9	1035.405	18/12/2010
3Ensayo en orejas de izaje2	6.2	821.94	19/12/2010
4soporte temporal	10	897.75	22/12/2010

Costos Total: 3666.8Soles

B.-Costos por ensayos destructivos.-

B.1.-Costos por rotura de grout

Consideraciones:

1.-Precio unitario por ensayo de rotura de probetas de grout14.49 dólares Incluye IGV.

2.-Tipo de cambio 2.85

Ctd. De Probetas	Descripción de las probetas	Costo total	Fecha:
6	Soleplate alimentación	247.8	04/01/2011
6	Soleplate descarga	247.8	04/01/2011
6	unidad hidráulica frenos	247.8	15/08/2011
6	Soleplate freno izquierda	247.8	28/08/2011
6	Soleplate freno derecha	247.8	30/08/2011
12	Unidad de lubricación	495.6	07/04/2011

Costos Total:1734.5Soles

B.2.- Costos por prueba de adherencia y dureza del revestimiento interno del molino SAG

Fecha: 25/09/2011

Costos Total: 1700 Soles

C.-Costos por Inspección.-

Consideraciones:

1.-El tiempo aplicado solamente para el molino SAG

C.1Para la inspección de la unión de tapas-tapas;Shell-Shell;tapas-trunnion se utilizaron:						
Cargo Cantidad Horas totales de inspección HH Costo total:						
Operarios	2	80	160.0	3702.9		

C.2Para la verificación de las uniones torqueadas					
Cargo Cantidad Horas totales de inspección HH Costo total					
Operarios 2 1000 2000.0 46285.7					

C.3Para la	verificación c	le la colocación de sello	os,epóxido	
Cargo	Cantidad	Horas totales de inspección	НН	Costo total:
Operarios	2	20	40.0	925.7

C.4Considerando un supervisor de Calidad durante todo el proceso de montaje					
Cargo	Cargo Cantidad Tiempo(semanas) Costo/semana Costo total				
Sup.de Calidad	1	73	2250	164250.0	

Total: 323181 Soles

EL COSTO TOTAL DE CALIDAD DE EVALUACION (CDE)=222265.5 Soles

Aplicando lo siguiente:

sumatoria de los costos de CDP y CDE

CDC=CDP+CDE

Se obtiene:CDC=303,708 soles

5.3.-Calculo de Costos de No Calidad (CNC) del montaje de un molino SAG

2.-Costos de no Calidad CNC:

SUMATORIA DE LOS COSTOS CFI+CFE

CNC=CFI+CFE

Donde:

CNC:Costos de no Calidad. CFI:Costos por fallos internos. CFE:Costos por fallos externos.

2.1.-Costos por fallos internos (CFI)

Consideraciones:

- 1.-Tipo de Cambio 2.85
- 2.-Regimen:21x7
- 3.-Horas Trabajadas al día: 10hr
- 4.-Los precios incluyen IGV.
- 5.-Analizando mano de obra directa por 21dias trabajados:

Cargo del puesto	Salario(soles)x10 horas diarias	HH(soles)	
Operario Mecánico	4860	23.1	
Oficial Operario	4148.61	19.8	

5. Analizando personal de empleados por 30 días trabajados:

Cargo del puesto	Salario(soles)x10 horas diarias	HH(soles)
Supervisor de mecánico de construcción	15000	50.0
Capataz Mecánico	4102	13.7
Supervisor de Calidad	9000	30.0

LISTADO DE OBSERVACIONES DE FALLOS INTERNOS

Descrinción	Recursos utilizados Descripción		Tipo de	FECHA
Descripcion	en el reproceso	(soles)	Falla	ILONA
1Esparragos pasantes de 2 1/2x15 de las tapas del molino dañados por manipuleo(8)		4560.0	Falta de protección	13/01/2010
SAG,debido a esto se rompen al momento del	b10HHSup.QC c20HH Capataz c80 HH. Opera.	4698	Falta de Capacitación	20/12/2010
3Se observo la falta de perforaciones en descanso del lado de la carga del molino SAG.	b20HH Capataz	7732	Mala supervisión	22/12/2010

4Se observo que se estaba realizado el torque con un torquimetro sin certificado en el lugar de trabajo	aparalizacio actividad has el ce b30 perdido operarios.		35	Falta de PPI	23/12/2010
5Se observa falta de limpieza en los flanges del molino		l Sup Sup.QC Capataz	1805	Falta de protección	15/01/2011
6se verifico en campo errónea enumeración de tapas molino de SAG en secuencia de montaje, lo que origino retraso en tapas a montar.	a60HH b30HHIng. c40HH d480HH C e220HH Of		19902	Mala supervisión	19/01/2011
7Desalineamiento de ThrustPad antes de comenzar el giro de molino SAG	A10HH b10HHIng.0 c20HH d80HH e120 Ofic	Sup. QC Capataz Oper.	5296	Falta de PPI	22/02/2011
8En inspección del montaje de liners Molino SAG, se observo la interferencia de los pernos de fijación de las tapas en lado de carga y descarga con los pernos de unión de los flanges.	a20HH b10HHIng. c20HH c120HH d50 Oficial	Sup. QC Capataz Operario	5338	Diseño	25/06/2011
9En inspección de molino de SAG se observo que durante el montaje de las corazas los FillerstripforShelllength Gap presentan un espesor que ocasionan un desplazamiento de las corazas, lo cual no permite la instalación de	a10HH b8HH c15HH c100HH d60Ofic	Sup. Ing.QC Capataz Operario	4445	Diseño	06/07/2012

los pernos de sujeción.	The state of the s			
10En el molino SAG2, durante el proceso de instalación de los Filler block se observo que no se tiene un adecuado asentamiento del mismo sobre la superficie del Shell debido a la irregularidad del Shell en la sección de descarga, esto origina que al momento de la instalación de los Liners estos no coincidan con los agujeros de sujeción.	b5HH Ing.QC c15HH Capataz	4255	Diseño	10/07/2012
11En inspección en Molino SAG 310-MLS-002 se observa que en el lugar donde se colocaron los FillerRine entre los lainers de la tapa y el Shell, queda un vacío.	c10HH Capataz	4223	Diseño	20/07/2012
12Se realizo el torque de los cojinetes, después de verifico que los lifpad y thrustpad estaban desalineados	a desajustar los pernos con 50HH de operarios y 30HH de oficiales. bAlquiler de la maquina de torquearhytorc	8305	Falta de PPI	24/09/2011
13Se colocaron pernos de los anillos del molino muy cortos no sobresalen ni 1 hilo de rosca		3292	Falta de PPI	20/08/2011

14 Se entrego un valor de torque a las uniones de anillos corta gotas menor al de la tabla	a10HH Sup. b5HH Sup.QC c10HHCapataz c40HH OP d20HH de OF	2108	Falta de PPI	30/09/2011
15Se observa que las uniones de las juntas de las tapas no han sellado bien, por la mala aplicación del SIKADUR 52.	b120HH Sup. c60HH Sup.QC d120HH Capataz	247188	Falta de PPI	08/10/2011

EL COSTO TOTAL POR FALLOS INTERNOS (CFI)=323,180.8 Soles

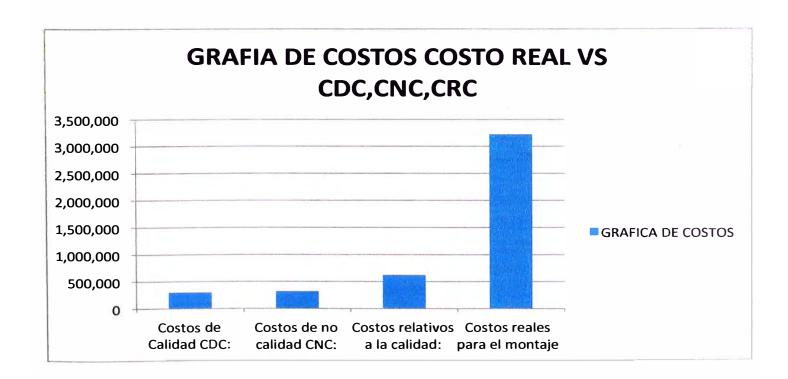
2.2.-Costos por fallos Externos (CFE)

A.-Penalizaciones: 0 Soles

B.-Indemnización por garantía:0 Soles

C.-Pérdidas de ventas: 0 Soles

EL COSTO TOTAL POR FALLOS EXTERNOS (CFE)=0 Soles


Aplicando lo siguiente:

sumatoria de los costosCFI+CFE CNC=CFI+CFE

Se obtiene:CNC=322,858 Soles

5.4 .-Graficas

Descripción	Costo	Porcentaje
Costos de Calidad CDC:	303,708	9%
Costos de no calidad CNC:	323,181	10%
Costos relativos a la		400/
calidad:	626,889	19%
Costos reales para el	3,225,749.0	4000/
montaje	3	100%

5.5.-Diagrama de Pareto de los productos no conformes.

Listado de productos no conformes

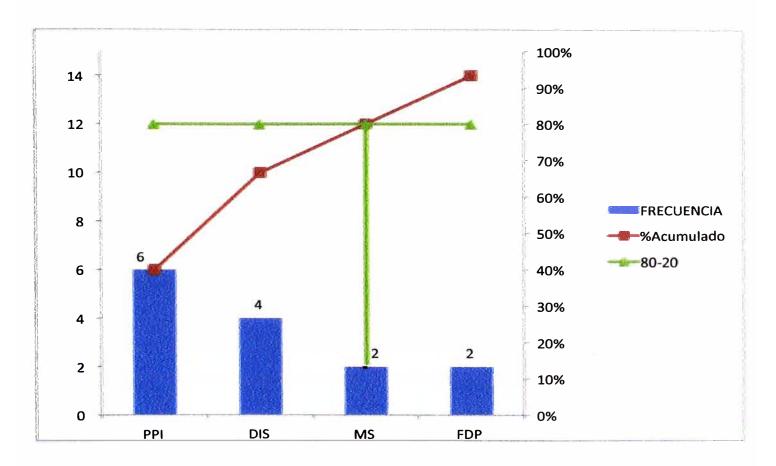
ITEM	Descripción	Recursos utilizados en el reproceso	COSTO (soles)	Tipo de Falla	FECHA
1	Espárragos pasantes de 2 1/2x15 de las tapas del molino dañados por manipuleo(8)	acomprar 8 espárragos	4560	Falta de protección	13/01/2010
2	No se completo el tiempo de curado del grout en placas de nivelación de frenos del molino SAG, debido a esto se rompen al momento del ajuste de pernos de anclaje.	b10HHSup.QC c20HH Capataz c80 HH.opera.	4698	Falta de Capacitación	20/12/2010
3	Se observo la falta de perforaciones en descanso del lado de la carga del molino SAG.	·	7732	Mala supervisión	22/12/2010
4	Se observo que se estaba realizado el torque con un torquimetro sin certificado en el lugar de trabajo	actividad hasta tener el certificado.	35	Falta de PPI	23/12/2010

5	Se observa falta de limpieza en los flanges del molino	a 10HH Sup b5HH Sup.QC c10HH Capataz d40HH e30 OF	1805	Falta de protección	15/01/2011
6	se verifico en campo errónea enumeración de tapas molino de SAG en secuencia de montaje, lo que origino retraso en tapas a montar.	a60HH Sup. b30HHIng.QC c40HH Capataz d480HH Operarios. e220HH Oficiales	19902	Mala supervisión	19/01/2011
7	Desalineamiento de TrustPad antes de comenzar el giro de molino SAG	a10HH Sup. b10HHIng.QC c20HH Capataz d80HH Oper. e120 Ofic	5296	Falta de PPI	22/02/2011
8	En inspección del montaje de liners Molino SAG, se observo la interferencia de los pernos de fijación de las tapas en lado de carga y descarga con los pernos de unión de los flanges.	b10HHlng.QC c20HH Capataz c120HH Oper.	5338	Diseño	25/06/2011
9	En inspección de molino de SAG se observo que durante el montaje de las corazas los FillerstripforShelllength Gap presentan un espesor que ocasionan un desplazamiento de las corazas, lo cual no	a10HH Sup. b8HHIng.QC c15HH Capataz c100HH Oper. d60Ofic	4445	Diseño	06/07/2012

	permite la instalación de los pernos de sujeción. En el molino SAG2, durante el proceso de instalación de los				
10	Filler block se observo que no se tiene un adecuado asentamiento del mismo sobre la superficie del Shell debido a la irregularidad del Shell en la sección de descarga, esto origina que al momento de la instalación de los Liners estos no coincidan con los agujeros de sujeción.	a8HH Sup. b5HHIng.QC c15HH Capataz c100HH Oper. d60 Ofic	4255	Diseño	10/07/2012
11	En inspección en Molino SAG 310-MLS-002 se observa que en el lugar donde se colocaron los FillerRine entre los lainers de la tapa y el Shell, queda un vacío.	a15HH Sup. b10HHIng.QC c10HH Capataz c80HH Oper. d60 Ofic	4223	Diseño	20/07/2012

		part			
12	Se realizo el torque de los cojinetes, después de verifico que los lifpad y thrustpad estaban desalineados	a desajustar los pernos con 50HH de operarios y 30HH de oficiales. bAlquiler de la maquina de torquearhytorc	8305	Falta de PPI	24/09/2011
13	Se colocaron pernos de los anillos del molino muy cortos no sobresalen ni 1 hilo de rosca	aRetirar los 12 pernos, suministrar los 12 pernos volver a torquear. b10HHSup. c5HH Sup.QC d80HH operarios e 40HH de oficiales	3292	Falta de PPI	20/08/2011
14	Se entrego un valor de torque a las uniones de anillos corta gotas menor al de la tabla	a10HH Sup. b5HH Sup.QC c10HHCapataz c40HH OP d20HH de OF	2108	Falta de PPI	30/09/2011
15	Se observa que las uniones de las juntas de las tapas no han sellado bien, por la mala aplicación del SIKADUR 52.	aSe realizo un retrabajo de 2 meses b120HH Sup. c60HH Sup.QC d120HH Capataz e7200HHoperarios f3600HH de oficiales	247188	Falta de PPI	08/10/2011

Análisis de Pareto


Tipo de Rechazo	Código	FRECUENCIA	%Acumulado
FALTA DE PPI	PPI	6	40%
DISEÑO	DIS	4	67%
MALA SUPERVISION	MS	2	80%
FALTA DE PROTECCION	FDP	2	93%
FALTA DE CAPACITACION	FDC	1	100%

TOTAL: 15

Tipo de Rechazo	Código	80-20	∑Costos Total
FALTA DE PPI	PPI	80%	266223 =82%
DISEÑO	DIS	80%	18261
MALA SUPERVISION	MS	80%	27634
FALTA DE PROTECCION	FDP	80%	6365
FALTA DE CAPACITACION	FDC	80%	4698

TOTAL:323181

Grafica de Pareto.

"Se observa que para eliminar el 80% de productos no conformes se tendrá que mejorar el diseño, implementar un Plan de Puntos de Inspección y mejorar la supervisión, como en nuestro alcance no se encuentra el diseño o ingeniería se realizara un Plan de puntos de Inspección, y en lo que corresponde a la supervisión se realizaran mas capacitaciones al personal de supervisión"

5.6.-GENERACION DE UN PLAN DE PUNTOS DE INSPECCIÓN PARA EL MONTAJE DEL MOLINO SAG

De acuerdo a lo obtenido en el diagrama de Pareto se realizara un PPI para disminuir los costos de no calidad, se realizara un PPI interno el cual el contratista debe trabajar.

A continuación se detallaran las diferentes etapas del montaje del Molino SAG y su plan de puntos de inspección.

5.6.1.-Instalacion del SolePlate, Cojinetes principales y soleplate de los Frenos.

			CARACTERISTICA	METODO DE	DOCUMENTO	REGISTR	INSPE	CCION
Nº	ETAPA A IN	SPECCIONAR	S A INSPECCIONAR	INSPECCION	DE REFERENCIA	APLICAB LE	CONT RATI STA	CLIE
		REVISIÓN DE DOCUMENTACIÓN CONTRACTUAL	Alcance contractual Manuales.	Documental	Especificacione s técnicas del cliente.		x	
01	DOCUMENTOS Y PLANOS	REVISIÓN DE PLANOS DE INGENIERÍA.	Dimensiones básicas y complementarias Arreglos generales Verificación de emisión para construcción	Documental	Especificacione s Técnicas. Manual Vendor.	٠	x	
02	VERIFICACIÓN TOPOGRÁFICA	FUNDACIÓN DONDE SERÁ INSTALADO LOS COJINETES. FUNDACIÓN DONDE SERÁ INSTALADO LOS FRENOS	Elevaciones. Alineamiento. Coordenadas de pernos.	Visual. Dimensional	Planos civiles. Manual Vendor	FCC-TOP- 01-A	x	x
03	LIMPIEZA MECÁNICA	SUPERFICIES MECANIZADAS	Planitud. Imperfecciones de Mecanizado.	Visual.	Manual Vendor	FCC- MEC-01- B	x	x
04	INSTALACIÓN DE PLACAS DE NIVELACIÓN	ELEVACIONES DE LAS PLACAS DE NIVELACION	No exceder de 0.083mm/m sobre la placa de nivelación en longitud trasversal ni longitudinal. Colocación de trapos húmedos para el curado.	Visual Dimensional	Manual Vendor Especificacione s Técnicas del Cliente. Especificacione s Técnicas del Grout.	FCC-TOP- 01-A	x	
05	REALIZAR LAS	CUADRATURA	Verificar que los	Dimensional	Manual Vendor	FCC-TOP-	х	X

	MEDICIONES ENTRE	ENTRE SOLE	valore se		Especificacione	01-A		
	SOLE PLATE DE	PLATES	encuentre en las		s Técnicas del			
	ALIMENTACIÓN		siguientes		Cliente.			
	,DESCARGA Y		tolerancias:					
	FRENOS		L1=L2±0.8mm;D1					
			=D2±0.8mm;					
			H1=H2±[L(m)x0.0					
			83mm/m];					
			w1=w2±0.8mm					
	LIMPIEZA	SUPERFICIES	Planitud.			FCC-		
06	MECÁNICA	MECANIZAD DE	Imperfecciones	Visual.	Manual Vendor	MEC-01-	x	X
	MECANICA	LOS COJINETES	de Mecanizado.			В		
	VACIADO DE	APLICACIÓN DEL	Microclima.		Especificacione	FCC-		
07	VACIADO DE			Visual	s Técnicas	MEC-02-	x	X
	GROUT	GROUT	Temperaturas.		S recilicas	A		

5.6.2.-Instalacion del Shell (casco)y tapas del molino.

			CARACTERISTICA	METODO DE	DOCUMENTO	REGISTRO	INSPE	CCION
Nº	ETAPA A IN	ISPECCIONAR	S A INSPECCIONAR	INSPECCION	DE REFERENCIA	APLICABLE	CONT RATIS TA	CLIENT E
		REVISIÓN DE DOCUMENTACIÓN CONTRACTUAL	Alcance contractual Manuales.	Documental	Especificacione s técnicas del cliente.		x	
01	DOCUMENTOS Y PLANOS	REVISIÓN DE PLANOS DE INGENIERÍA.	Dimensiones básicas y complementarias Arreglos generales Verificación de emisión para construcción	Documental	Especificacione s Técnicas. Manual Vendor.		x	
02	LIMPIEZA MECÁNICA	SUPERFICIES MECANIZADAS	Planitud. Imperfecciones de Mecanizado.	Visual.	Manual Vendor	FCC-MEC- 01-B	х	x
03	END DE FABRICACION DE CUNAS (SOPORTES TEMPORALES)	INSPECCIÓN EN CORDONES DE SOLDADURA	Verticalidad. END.	Visual. END	AWS D1.1-2008 Especificacione s Técnicas del Cliente.	FCC-END- 03-B	x	
04	VERIFICACIÓN TOPOGRÁFICA	LEVANTAMIENTO TOPOGRÁFICO DE LA UBICACIÓN AXIAL Y ALINEAMIENTO DE LAS CUNAS DONDE SE COLOCARAN EL SHELL DEL MOLINO	Los soportes temporales deben estar ubicados de tal manera que la elevación final de la línea de centro de la primera sección del shell debe estar de 100 a 150 mm sobre la del proyecto.	Dimensional.	Manual Vendor	FCC-TOP- 01-A	x	x
05	TORQUE DE LAS UNIONES DEL SHELL Y TAPAS	TORQUE DE LAS UNIONES. MEDICIÓN DE ELONGACIONES.	Considerar el apriete a la elongación inicial indicada en la tabla de elongación del manual. Verificar el apriete en Cruz Usar el equipo de medición de ultrasonido. Antes de Instalar las tapas debe estar torqueado	Dimensional.	Manual Vendor	FCC-MEC- 03-A	x	×

			los Shell.					
06	VERIFICACIÓN DEL ÁREA DE CONTACTO	UNIONES EMPERNADAS	Realizar la medición con un feller Gauge. Antes de Instalar las tapas hay que verificar las uniones de los Shell.	Dimensional	Manual Vendor	Vendor	x	х
07	VERIFICACIÓN TOPOGRÁFICA	VERIFICACION AXIAL	El eje axial del molino debe estar aprox.140 mm por encima de su posición final	Dimensional	Manual Vendor Planos de montaje	FCC-TOP- 01-A	x	

5.6.3.-Instalacion de los turnion de alimentación y descarga.

Nº	ETAPA A INSPECCIONAR		CARACTERISTICA S A INSPECCIONAR	METODO DE	DOCUMENTO	REGISTRO APLICABLE	INSPECCION	
				METODO DE INSPECCION	DOCUMENTO DE REFERENCIA		CONT RATIS TA	ČLIENT, E
01	DOCUMENTOS Y PLANOS	REVISIÓN DE DOCUMENTACIÓN CONTRACTUAL	Alcance contractual Manuales.	Documental	Especificacione s técnicas del cliente.		x	
		REVISIÓN DE PLANOS DE INGENIERÍA.	Dimensiones básicas y complementarias Arreglos generales Verificación de emisión para construcción	Documental	Especificacione s Técnicas. Manual Vendor.	*5	x	
02	LIMPIEZA MECÁNICA	SUPERFICIES MECANIZADAS	Planitud. Imperfecciones de Mecanizado.	Visual.	Manual Vendor	FCC-MEC- 01-B	×	x
05	TORQUE DE LAS UNIONES DEL TAPAS TRUNION	TORQUE DE LAS UNIONES. MEDICIÓN DE ELONGACIONES.	Considerar el apriete a la elongación inicial indicada en la tabla de elongación del manual. Verificar el apriete en Cruz Usar el equipo de medición de ultrasonido.	Dimensional. Visual	Manual Vendor	FCC-MEC- 03-A	х	х
06	VERIFICACIÓN DEL ÁREA DE CONTACTO	UNIONES EMPERNADAS	Realizar la medición con un feller Gauge.	Dimensional	Manual Vendor	Vendor	x	х
07	VERIFICACIÓN TOPOGRÁFICA	VERIFICACION AXIAL		Dimensional	Manual Vendor Planos de montaje	FCC-TOP- 01-A	х	

5.6.4.-Instalacion de los cojines de levantamiento liftpad (se realizara por un cojín debe ser aplicado a los 8) y riel de empuje.

ews.			CARACTERISTICA	METODO DE	DOCUMENTO	REGISTRO	INSPI	CCION
N ₈	ETAPA A II	NSPECCIONAR	S A INSPECCIONAR	INSPECCION	DE REFERENCIA	APLICABLE	CONT RATIS TA	CLIENT E
		REVISIÓN DE DOCUMENTACIÓN CONTRACTUAL	Alcance contractual Manuales.	Documental	Especificacione s técnicas del cliente.		x	
01	DOCUMENTOS Y PLANOS	REVISIÓN DE PLANOS DE INGENIERÍA.	Dimensiones básicas y complementarias Arreglos generales Verificación de emisión para construcción	Documental	Especificacione s Técnicas. Manual Vendor.	¥	x	
02	LIMPIEZA MECÁNICA	SUPERFICIES MECANIZADAS	Planitud. Imperfecciones de Mecanizado.	Visual.	Manual Vendor	FCC-MEC- 01-B	х	х
05	TORQUE	VERIFICAR EL TORQUE DE LOS PERNOS AL VALOR INDICADO EN EL PLANO VENDOR.	Verificar que el torque sea en forma de cruz.	Visual Dimensional.	Manual Vendor	FCC-MEC- 03-A	x	x
07	VERIFICACIÓN TOPOGRÁFICA	VERIFICACIÓN AXIAL	Verifique que al descender el ensamble del molino a 10 mm de su posición normal de operación.	Dimensional	Manual Vendor Planos de montaje	FCC-TOP- 01-A	x	
08	VERIFICACIÓN TOPOGRÁFICA	VERIFICACION DIASTANCIAS DE TRUNION	Verifique las distancias radiales entre los trunions y los radios de las placas laterales del cojinete que se mantengan relativamente constantes. Las diferencias significativas de mas de 8 mm indican que el molino y las líneas centro del cojinete no están alineadas, lo que provocara problemas de ajuste en el sello	Dimensional	Manual Vendor Planos de montaje	FCC-TOP- 01-A	x	x
09	VERIFICACIÓN DEL ÁREA DE CONTACTO	ENTRE LOS DOS TRUNION Y LOS 8 COJINETES DE LEVANTAMIENTO.	La distancia no debería exceder los 0.03mm.	Dimensional	Manual Vendor Planos de montaje	FCC-MEC- 01-B	x	x

			la presión de aceite en cada		*************************************			
10	VERIFICACIÓN DE PRESIONES	MEDIR PRESIONES EN CADA COJÍN	cojín debe ser aproximadament e igual, las lecturas de estas presiones se obtienen en los manometros, las presiones de suministro varían de cojín a cojín; sin embargo, una diferencia significativa superior al 10% con el molino detenido es indicación de una mala repartición de carga y debe ser corregida.	Dimensional	Manual Vendor Planos de montaje	FCC-MEC- 01-B	x	x
11	VERIFICAR MEDIDAS OPERATIVAS	VERIFICAR LAS MEDIDAS SEGÚN MANUAL	Todas las medidas deben arrojar un valor de al menos 0.15mm	Dimensional	Manual Vendor Planos de montaje	FCC-MEC- 01-B Vendor	x	х
12	VERIFICAR MEDIAS DE HOLGURAS ENTRE RIEL DE EMPUJE Y RANURA (LATERALES SEGÚN MANUAL- ANTES DE LA INSTALACION)	VERIFICAR LAS MEDIDAS EN EL LADO DE ALIMENTACIÓN.	se calculara el espesor de las lainas de inoxidable que serán colocadas para obtener una distancia axial total de 0.35 ± 0.05 mm en el sistema de empuje estas lainas deben estar entre el cojín y el soporte del carril Verificar que la distancia entre la parte superior del carril de empuje y el fondo de la ranura del trunion.	Dimensional	Manual Vendor Planos de montaje	FCC-MEC- 01-B	x	x
13	VERIFICAR MEDIAS DE HOLGURAS ENTRE RIEL DE EMPUJE Y RANURA	VERIFICAR LAS MEDIDAS EN EL LADO DE ALIMENTACIÓN.	Verificar que la distancia entre la parte superior del carril de empuje y el fondo de la	Dimensional	Manual Vendor Planos de montaje	FCC-MEC- 01-B	х	х

	(SUPERIOR)		ranura del trunion. La medida debe ser de 20 ± 5 mm,esto debe ser en su posición final,también verificar la aplicación de aceite					
14	VERIFICAR DISTANCIAS AXIALES DEL COJÍN DE EMPUJE DESPUÉS DE LA INSTALACIÓN	REGISTRAR LAS DISTANCIAS AXIALES DEL COJÍN DE EMPUJE	las medidas deben ser de 0.35 ± 0.05 mm	Dimensional	Manual Vendor Planos de montaje	Vendor	×	x

5.6.5.-Instalación de tapas de cojlnetes,cubiertas y sellos y Torque final de Pernos críticos.

			CARACTERISTICA	METODO DE	DOCUMENTO	projetno	INSPI	ECCION
Ne	ETAPA A II	NSPECCIONAR	S A INSPECCIONAR	METODO DE INSPECCION	DOCUMENTO DE REFERENCIA	REGISTRO APLICABLE	CONT RATIS TA	CLIENT
		REVISIÓN DE DOCUMENTACIÓN CONTRACTUAL	Alcance contractual Manuales.	Documental	Especificacione s técnicas del cilente.		x	
01	DOCUMENTOS Y PLANOS	REVISIÓN DE PLANOS DE INGENIERÍA.	Dimensiones básicas y complementarias Arregios generales Verificación de emisión para construcción	Documental	Especificacione s Técnicas. Manual Vendor.		x	
02	VERIFICACIÓN EN LA INSTALACIÓN DE SELLOS	SELLOS	Verificar el ajuste de los sellos de lablo, estos 3 sellos son recubiertos la parte externa con grasa, para luego ensamblarse juntos con tubos de grasa, elementos de fijación y retenes a cada lado de las cajas de cojinetes. a holgura radial en el fondo es de 0.0 a 0.15 mm y 0.15 a 0.30 mm en la parte superior del trunion	Visual	Manual Vendor	FCC-MEC- 01-B	x	
05	TORQUE DE LAS UNIONES	TORQUE DE LAS UNIONES.SHELL, TAPAS Y ENSAMBLE DE TRUNION	CONSIDERAR EL APRIETE A LA MITAD DEL RANGO MÍNIMO/MÁXIM O ESPECIFICADO EN LA TABLA DE ELONGACIÓN DE PERNOS.VERIFIC AR EL APRIETE EN CRUZ USAR EL EQUIPO	Dimensional. Visual	Manual Vendor	FCC-MEC- 03-A	х	х

			DE MEDICIÓN DE ULTRASONIDO.					
06	VERIFICACIÓN DEL ÁREA DE CONTACTO	UNIONES EMPERNADAS	Después de completar el 100%de pre-carga y con el ensamble del molino soportado en los cojinetes principales Verificar el apriete de las juntas con los feeler gauge	Dimensional	Manual Vendor	Vendor	x	x

5.6.6.-Instalación de sello epóxico de juntas y revestimiento interior de goma.

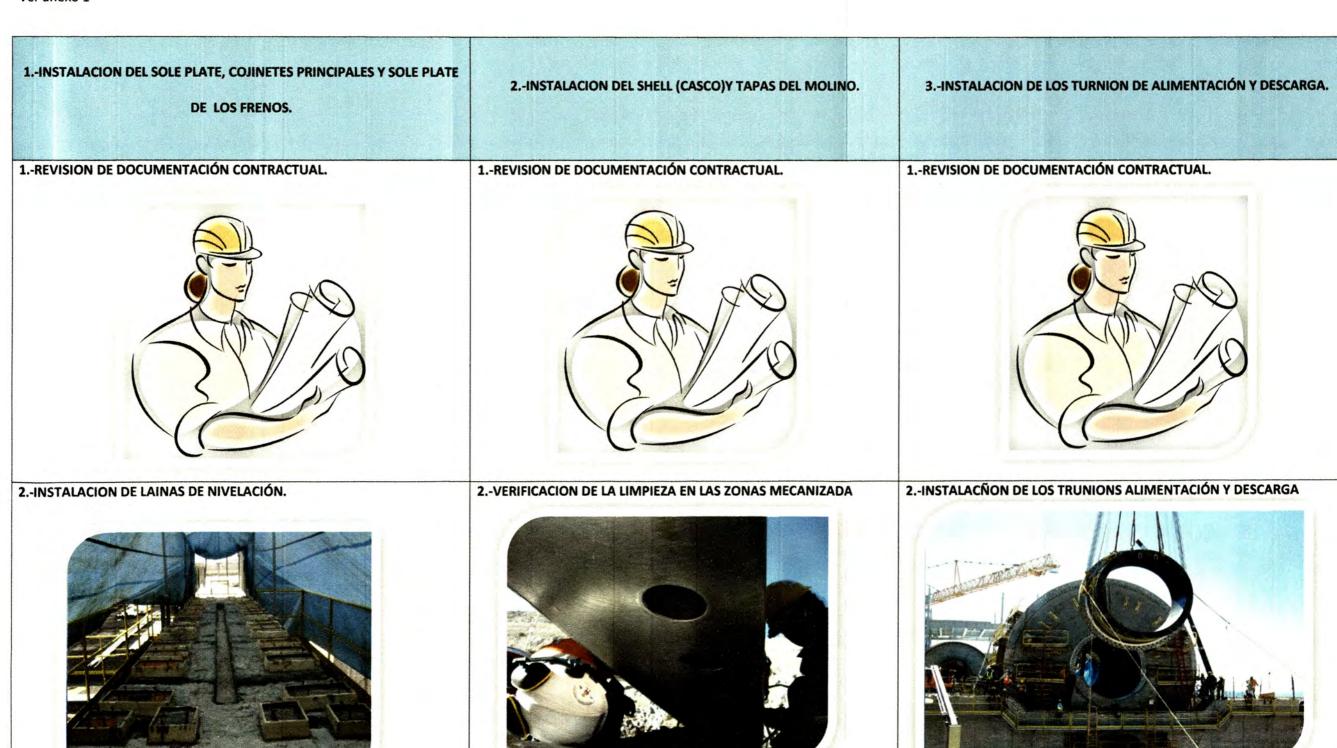
				METODO			INSPE	CCION
Nº.	ETAPA A	INSPECCIONAR	CARACTERISTICAS A INSPECCIONAR	DE INSPECCIO N	DOCUMENTO DE REFERENCIA	REGISTRO APLICABLE	CONT RATIS TA	CLIEN TE
		REVISIÓN DE DOCUMENTACIÓN CONTRACTUAL	Alcance contractual Manuales.	Documental	Especificacione s técnicas del cliente.		x	
01	DOCUMENTO S Y PLANOS	REVISIÓN DE PLANOS DE INGENIERÍA ESPECIFICACIONES	Dimensiones básicas y complementarias Verificación de emisión para construcción	Documental	Especificacione s Técnicas. Manual Vendor.	O#2	x	
02	APLICACIÓN DE EPOXICO EN JUNTAS DE UNION	APLICACÓN EN LAS JUNTAS INDICADAS EN LOS PLANOS	Verificar que se use resina epoxicaSikadur 52 y limpiador Sikacolma en el sello de las juntas. Se recomienda colocar una cinta metálica en el extremo.	Visual	Especificacione s Técnicas del epoxico. Planos Vendor.	FCC-MEC- 01-B	x	x
03	REVESTIMIEN TO INTERNO DEL MOLINO	SE DEBE REALIZAR DESPUÉS DE LA APLICACIÓN DEL SIKADUR 52	Verificar la limpieza completa de la superficie metálica interior del molino eliminando polvo, rastros de óxidos y aceite con un cepillo de alambre y/o solvente. Verificar que el adhesivo seque un poco hasta que se adhiera al dedo aprox. 5 minutos después de la aplicación. Realizar la prueba de Adherencia Realizar la prueba de chispa.	Visual	Especificacione s técnicas. Manual Vendor	FCC-MEC- 01-B	x	x

				METODO DE		PEGISTRO	INSPEC	:CIÓN
Nº	ETAPA A IN	SPECCIONAR	CARACTERISTICAS A INSPECCIONAR	METODO DE INSPECCIÓN	DOCUMENTO DE REFERENCIA	REGISTRO APLICABLE	CONT RATIS TA	CLIE
		REVISIÓN DE DOCUMENTACIÓN CONTRACTUAL	Alcance contractual Manuales.	Documental.	Especificacione s técnicas del cliente.		x	
01	DOCUMENTOS Y PLANOS	REVISIÓN DE PLANOS DE INGENIERÍA ESPECIFICACIONES	Dimensiones básicas y complementarias Verificación de emisión para construcción	Documental.	Especificacione s Técnicas. Manual Vendor.		x	
02	INSTALACIÓN DE CORAZAS (LAINERS)	SE DEBEN INSTALAR LOS LAINERS DESPUÉS DE LA INSTALACION DEL REVESTIMIENTO INTERIOR.	Verificar que las corazas se instale en estrella. Se debe realizar la instalacion después de haber realizado las pruebas correspondientes al revestimiento.	Visual.	Manual Vendor Planos Vendor.	FCC-MEC- 01-B	x	x
03	TORQUE DE LAINERS	UNA VEZ INSTALADO LOS LAINERS	Realizar el torque según lo indicado por el Vendor y especificaciones del perno	Visual. Dimensional.	Especificacione s técnicas. Manual Vendor	FCC-MEC- 03-A	x	x
04	INSTALACIÓN DE FRENOS	SE RECOMIENDA INSTALARLO EN PARALELO CON LAS CORAZAS O ANTES.	Verificar el alineamiento del freno con el flange del molino. Verificar el gap entre las zapatas del freno y el flange según plano del freno.	Visual Dimensional	Especificacio nes técnicas. Manual Vendor	FCC-MEC- 01-B FCC-TOP- 01-A	x	x
05	VACIADO DE GROUT	DESPUÉS DE VERIFICAR LA UBICACIÓN DEL FRENO SE REALIZARA SU VACIADO DE GROUT	Después de realizar el alineamiento correcto del freno se realizara el vaciado Se controlara las temperaturas	visual	Especificacione s técnicas del grout.	FCC-MEC- 02-A	x	x

CONCLUSIONES Y RECOMENDACIONES

- 1. En el Proyecto Expansión Antamina se implementó el plan de puntos de inspección para el montaje del molino SAG sin embargo su implementación fue tardía debido a la poca experiencia en el área de calidad para la instalación de este equipo y no logrando reducir los costos por no calidad en un porcentaje significativo.
- 2. Este proyecto sirvió de experiencia para realizar un estudio de costos encontrando que los costos de no calidad es el 10% del costo total del proyecto y de estos el 80% es debido a la falta de un plan de puntos de inspección ,además se calculo los costos de calidad siendo el 9% como se demuestra en el capitulo 5.
- 3. Es importante que en todos los proyectos se realice un plan de puntos de inspección desde el inicio para no llegar a las cifras que llegamos en este proyecto, para esto se debe comprometerse el gerente de proyecto, el gerente de calidad y el ingeniero de calidad.

4. Implementar desde el inicio de cada proyecto un plan de puntos de inspección y poder reducir los costos por no calidad, o eliminarlos


RECOMENDACIONES.

- Se recomienda la inducción constante del PPI al personal involucrado durante todo el periodo de montaje.
- 2. Se recomienda la generación de procedimientos escritos para cada proceso constructivo y su inducción constante.
- 3. Se recomienda realizar una base de datos de las observaciones
- 4. Se recomienda realizar una base de datos de las no conformidades.

BIBLIOGRAFÍA.

- 1. Norma Técnica Peruana NTP ISO 8402.
- 2. Norma ISO 9001: Versión 1998
- Libro Principios de los Costes de la Calidad, autor Comité de Costos de la Calidad de la ASQC.
- 4. Apuntes del curso: Elaboración de Informe de Suficiencia
- 5. PMBOK 4 edición.
- 6. Manual del fabricante.
- 7. Los costos relativos a la calidad, como herramienta para mejorar la eficiencia de las inversiones públicas en la Construcción en el Perú
- 8. Base de dados del Proyecto Expansión Antamina.
- 9. Clasificación de los costes de calidad en la Gestión de la calidad Total
- 10. Listado de términos sobre gestión de proyectos.

ANEXOS

Antes de la instalación se debe verificar la limpieza.

Antes de colocar las lainas se debe verificar la nivelación y alineamiento de la fundación.

3.-LIMPIEZA DE MECÁNICA.

3.-INSPECCION EN LAS SOLDADURAS DE LAS CUNAS

3.-TORQUE DE LAS UNIONES DE LAS TAPAS CON LOS TRUNION.

Después del torque se debe verificar la unión con un feller gauge

4.-INSTALACION DE LOS SOLE PLATE

4.-INSTALACION DE LOS SHELLS

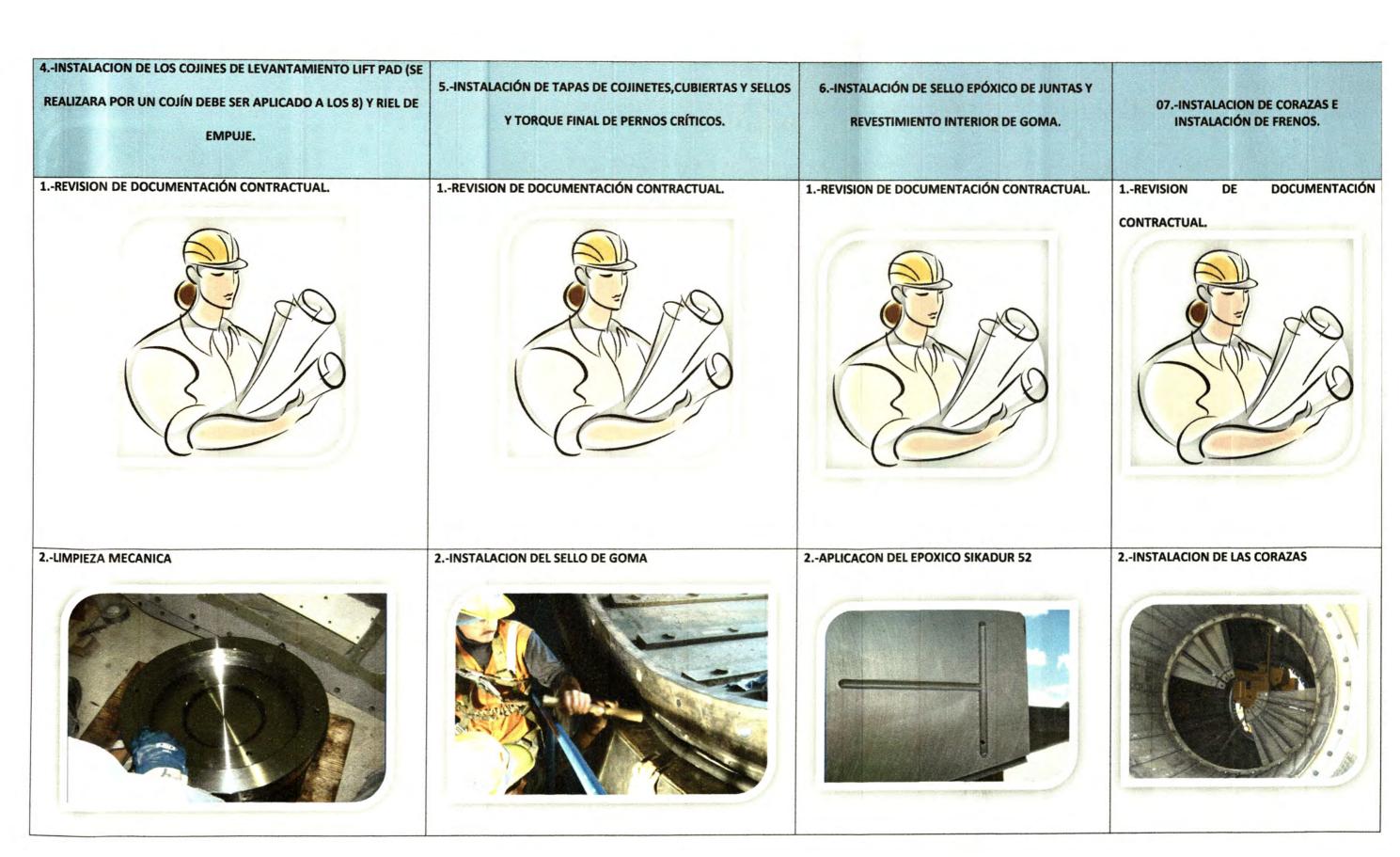
4.-VERIFICACION TOPOGRÁFICA

Se debe realizar la cuadratura de los sole plate una vez instalados

5.-VACIADO DE GROUT

5.-INSTALACION DE LAS TAPAS

6.-INSTALACION DE LOS DESCANSOS


Antes se debe verificar la limpieza de las bases

6.-TORQUE DE LAS UNIONES

Después del torque se debe verificar la unión con un feller gauge 7.-VERIFICACION TOPOGRÁFICA

3.-INSTALACION DE LOS LIFT PAD 3.-INSTALACION DELOS SELLOS Y TAPAS 3.-PREPARACIÑÓN DEL SIKADUR 3.-VERIFICACION DEL TORQUE DE LAS **CORAZAS** Se debe realizar la preparación según especificaciones 4.-INSTALACION DE LOS LIFT PAD-VERIFICACION TOPOGRAFICA 4.-APLICACIÓN DEL SIKADUR SEGUN PLANOS 4.-INSTALACION DE LOS FRENOS. Una vez instalados los descansos en el molino se debe verificar topográficamente. Se realiza en paralelo o antes de la instalación de las corazas. 5.-INSTALACION DE LOS RIELES DE EMPUJE

Una vez instalados se debe verificar el torque.

6.-INSTALACION DE LOS COJINES DE EMPUJE

Una vez instalados se debe verificar la holgura entre los cojines y el trunion además de las presiones.

Anexos

8.1.-Formatos del contratista

CONSORCIO								FCC-MEC	3-03-A
		RE	GISTRO	DE INSPEC	CION		Rev	isión:	0
GyM COSAPI		R	EPOR TE	DE TORQ	UEO		Fec	ha·	ago-10
E AkerSolutions			_, _,,						de 1
sac 2 min									
Proyecto :Program Estructural y Electr		sion- Montaje		Cliente:	Aker	Solutions	Rep	orte Nº:	
Preparado por:				Ubicación:	Antamina		Fech	ıa.	
Area:				Nro.:	rimanina		Sector/Are		
Sistema :	Nombre :			Subsis	stema	Nomi			
Docum	nento de Re	eferencia Nº		Rev. Nº		Observac	iones del L	Documento	,
				†					
CORRESPON	IDE A			DAT	OS DEL TO	RQUIMETR	20		
Equipo:		Marca:				Certi	ficado Nº:		
Estructura:		Modelo:							
Tubería:		Nº Serie:							
E&I		Rango:							
METODO DE APR	IETE								
Llave Calibrada	Si	No		Tension C	ontrolada	Si	☐ No		
Giro de la Tuerca	Si 🗌	No		Otros		Si	☐ No		
	DATOS	DE TORQUEO	Elevacion	T Eio	Diametro	Pernos Cantidad	Material	Torque Lb-pie	Resultado
Item	Unión / Líne	ea	Elevacion	Eje	Diametro	Carilluau	iviateriai	Lo-pie	1
				-					
•									
 									
									
 									
 									
								†	
 				-					
OBSERVACIONE	S ·					<u> </u>			
OBSERVACIONE									
		- COLUMN TO LET	ICTA				AKFE	SOLUTION	NS
0011	CTRUCCIO	CONTRAT	CO	NTROL DE	CALIDAD			STRUCCIO	
	STRUCCIO	IN	Nombre:			Nomb	re		
Nombre: Firma:			Firma.			Firma			
Fosha:			Fecha			Fecha			
Fecha:									

REGISTRO DE INSPECCION

REPORTE TOPOGRAFICO

FCC-TOP-01-A Revisión: 0

Fecha :

ago-10 Página 1 de

	ma de Expansion- ral y Electromecanico	Cliente	e : Aker Solution	18		Reporte No.
Preparado por:		Ubica	ción : <i>Antamina</i>			Fecha:
Disciplina:	Civil _ Monta			Montaje Elect		
Агеа:				Nro.:		//Area :
Sistem a:	Nombre :		Subs	istema :	Nom	bre :
Docume	ento de Referencia Nº		Rev. Nº	(Observacio	nes del Documento
Descripcion:						
Observaciones						
TOPOGR	AFO				EQUIP	0
Nombre:			Marca/Modelo :			
Firma:			N° de Serie : N° Certificado			
<u></u>		_	F.V.	*		
Fecha:	CO	NTRAT				AKER SOLUTIONS
CON	ISTRUCCION	T	CONTROL	DE CALIDAD		CONSTRUCCION
Nombre:	STRUCCION	Nomb			Nomb	
Firma:		Firma	_		Firma	i.
Fecha:		Fecha			Fech	a:

REGISTRO DE INSPECCION DE CAMPO

FCC-MEC-01-B

Revisión: 0

Fecha: ago-10

Página: 1 de 1

Proyecto : Programa de Expansion- Montaje Estructural y Electromecani	Clier	nte: Aker Solution	ıs		Reporte No.		
Elaborado por:	Ubic	ación : Antamina			Fecha :		
Area:		Nro.:			Sector/Area :		
Sistema: Nombre:		Subsiste	ema ·	Nom			
Documento de Referenc	nia Nº	Rev. Nº	Jilla .		Observaciones		
Documento de referenc	21 4	IVEV. IV			Diservaciones		
Descripción :							
CORRESPONDE A: Equipo:	Es	tructura:	Tuberia:		E&I:	Civil:	
TIPO DE INSPECCION:	Dimer	nsional:	Visual:		Otro:		
RESULTADOS:							
						_	
							_
OBSERVACIONES :		-0:					
observitorones :							
	CONTRATIS	TA			AKER SOL	UTIONS	
CONSTRUCCION		CONTROL DE CA	LIDAD		CONSTRU		
Nombre:	Nombre:			Nomb			
Firma:	Firma:			Firma			
Fecha:	Fecha:			Fecha	1:		

Fecha:

REGISTRO DE INSPECCION

REPORTE DE GROUT

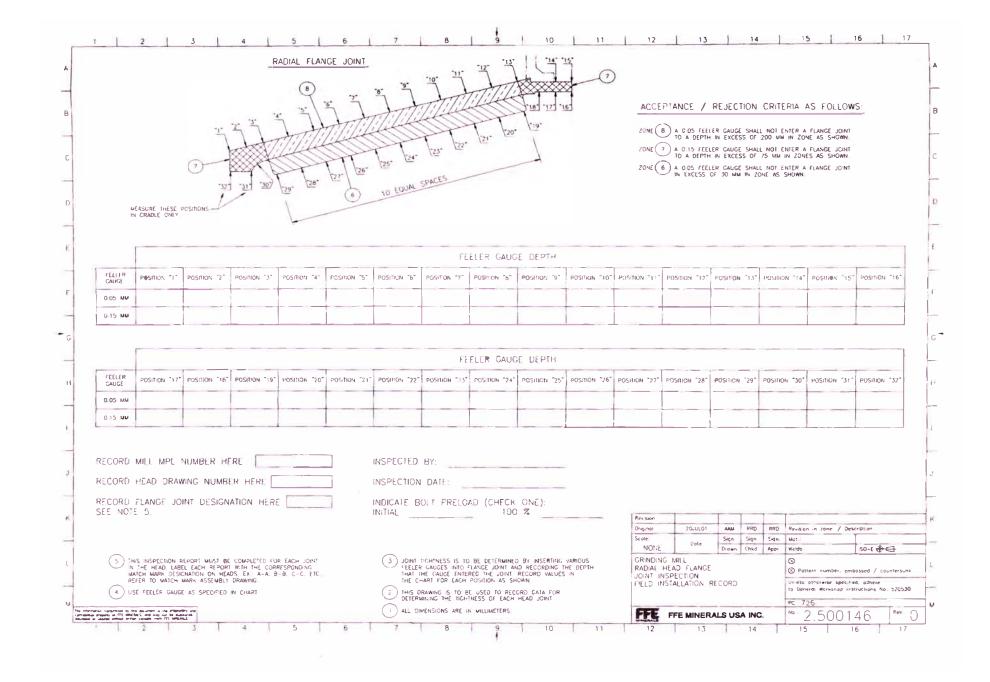
FCC-MEC-02-A

Revisión :

Fecha Página :

ago-10 1 de

	cto :Programa de Expansion- ie Estructural y Electromecanico	Clier	nte: Aker	Solutions		Reporte No	Reporte No.		
Elabo	rado por:	Ubic	ación : <i>An</i>	tamina		Fecha:			
Area:		•	Nro.:			Sector/Are	a :		
	stema : Nombre :			stema	Non	nbre :			
	Documento de Referencia Nº		Rev. Nº			Observacion	nes		
ITEM	DESCRIPCION			ACEPTA	RECHAZ	A N/A	COMENTARIOS		
1	Grout fabricado es un producto Tipo de Grout :	aprob	ado.						
2	Superficies preparadas adecuado	lamer	nte						
3	Método de aplicación:								
4	Item a ser grouteado está posici	onado	о у						
	soportado en forma adecuada.		Datinadas						
5	Lainas deben ser: Dejadas		Retiradas						
6	Moldaje para el grout es el adec								
7	Preparación de la fundación cor)						
8	Grout apropiadamente mezclad					1			
9	Temp. dentro de rango especifi	cado							
	Item a groutear °C Aire		°C						
}	Grout Seco °C Agua Grout Mezclado °C	_	°C						
	Grout Mczciaud								
10	Grout aplicado en forma adecua	nda							
	Fecha :								
11	Método de curado:								
12	Curado finalizado, moldaje retir retoque finalizado	ado, a	acabado y						
	Fecha:								
13	Limpieza terminada								
14	Vaciado de Grout terminado y a	cepta	ble						
15	Codificacion de las probetas de	arout	:						
'	·	_				_			
	Resistencia a los 7 dias					_			
						_			
	Resistencias a los 28 dias :	_				_			
	CONTRAT						SOLUTIONS		
	CONSTRUCCION		NTROL DE	CALIDAD			STRUCCION		
Nombr		e:			Nom Firm				
Firma:	Firma					u.			
Fecha	Fecha				Fech	na:			

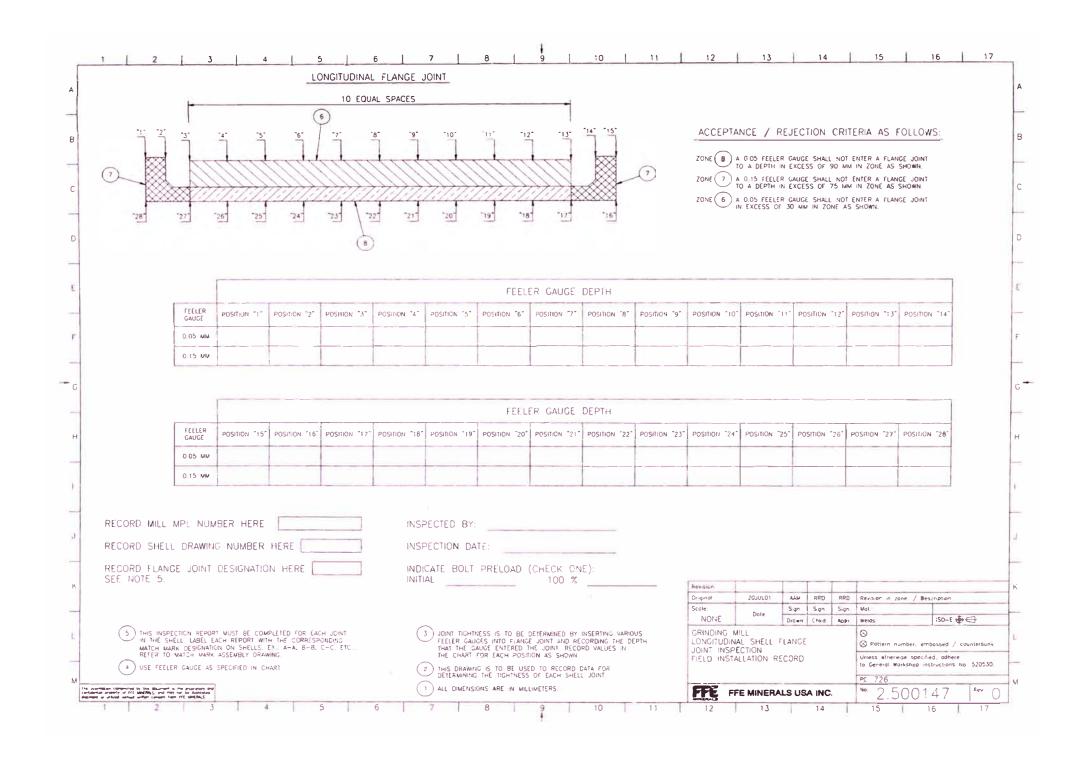

8.2.-Formatos del Fabricante

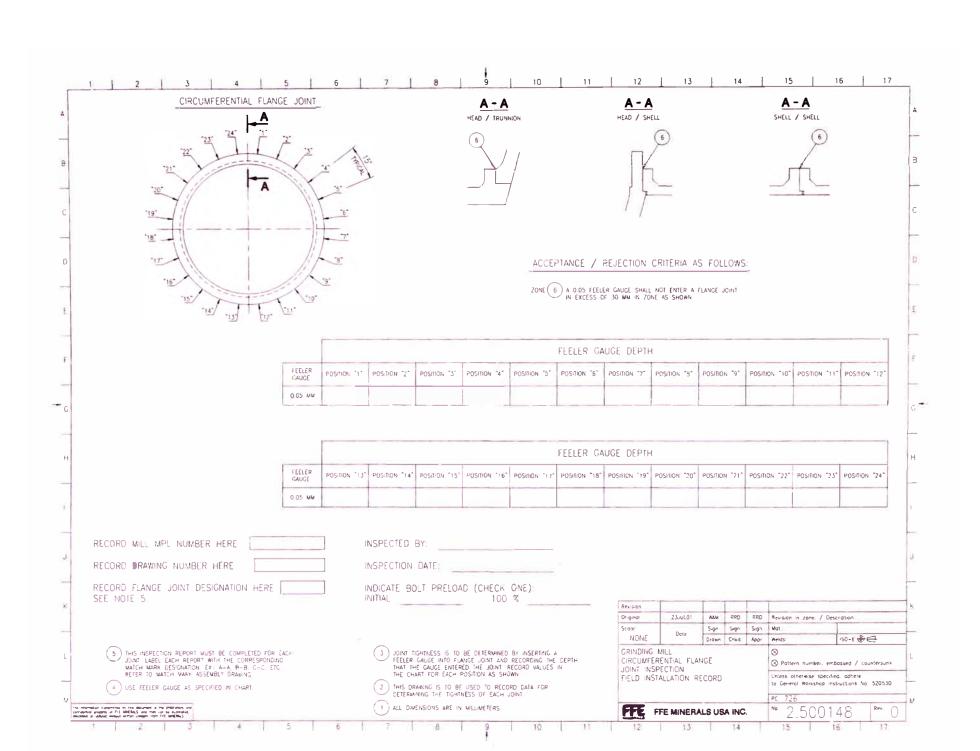
GRINDING MILL BEARING PRESSURES

EQUIPMENT IDENTIFICATION

PRESSURE MEASUREMENTS

	FIXED	END		FREE	END		THRU	ST
PAD	LOCATION	PRESSURE	PAD	LOCATION	PRESSURE	PAD	LOCATION	PRESSURE
Α	1		Α	1		E	6	
Α	2		Α	2		E	8	
Α	3		Α	3		F	6	
Α	4		Α	4		F	8	
Α	5		Α	5				
В	1		В	1			DESCRIP	PTION
В	2		В	2				
В	3		В	3				
В	4		В	4				
В	5		В	5	: #/E			
С	1		С	1				
С	2		С	2				
С	3		С	3				
С	4		С	4				
С	5		С	5		PRES	SURE UNITS	
D	1		D	1			DATE	
D	2		D	2			TIME	
D	3		D	3			NAME	
D	4		D	4]		
D	5	1	D	5		7 18111	AL HERE X	




GRINDING MILL BEARING CLEARANCES

EQUIPMENT IDENTIFICATION

CLEARANCE MEASUREMENTS

FIXED END			FREE	END	THRUST			
PAD	LOCATION	CLEARANCE	PAD	LOCATION	CLEARANCE	PAD	LOCATION	CLEARANCE
Α	9		Α	9		E	6	
Α	10		A	10		E	7	
Α	2		A	2		E	8	
Α	3		A	3		F	6	
Α	4		A	4		F	7	
Α	5		Α	5	_ =	F	8	
В	9		В	9				
В	10		В	10				
В	2		В	2				
В	3		В	3			DESCRIP	PTION
В	4		В	4				
В	5		В	5				
С	9		С	9				
С	10		С	10				
С	2		С	2				
С	3		С	3				
С	4		С	4				
С	5		С	5				
D	9		D	9		CLEAR	ANCE UNITS	
D	10		D	10			DATE	
D	2		D	2			TIME	
D	3		D	3			NAME	
D	4		D	4		INIT	ALHERE X	
D	5		D	5		1 18111	AL HERE X	

LOP			INITIAL		FINAL			ELONGATION		REFERENCE ONLY
ITEM	DESCRIPTION	ELONGATION PRELOAD		MINIMUM		MAXIMUM		LIMIT (MM)	COMMENTS	TORQUE VALUE (N·m) LUBRICATED @ μ = 0.15
NUMBER EE NOTE 4)		(MM)	(N)	(MM)	(N)	(MM)	(N)	(SEE NOTE 2)		(SEE NOTES 3 & 6)
2010104	2 1/2"-4UNC-2A X 16 1/2" LONG ASTM-A354BC 4 1/2" THREAD LENGTH	0 370	646,287	0 739	1,292,573	0.887	1,551,088	1 100	FEED HEAD TO FEED HEAD (FITTED) STUD DRAWING 7,500041	27,100
2 01 01 05	2 1/2"-4UNC-2A X 16 1/2" LONG ASTM-A354BC 4 1/2" THREAD LENGTH	0.387	646.287	0 774	1,292,573	0 928	1,551,088	1 160	FEED HEAD TO FEED HEAD STUD DRAWING 7.500042	27,100
2.01 01.06	M64 x 6.6g X 190 LONG, CLASS 8.8 ISO 4014 / ASTM-F568 100 THREAD LENGTH	0 154	511.311	0.307	1,022,621	0,369	1,227,145	0 527	FEEDHEAD TOFEEDHEAD BOLT DRAWING 7 500010	21.600
2 01 01 07	2 1/2"-4UNC-2A X 18 3/8" LONG ASTM-A354BC 4 1/2" THREAD LENGTH	0,413	646,287	0 825	1,292 573	0.990	1,551.088	1 238	FEED HEAD TO SHELL STUD DRAWING 7.500042	27,100
2 01 01 08	2 1/2" BUNC 2A X 8 1/2" LONG ASTM A354BC 4" THREAD LENGTH	0.194	628,191	0 387	1.256,382	0.465	1,507,658	0 664	FEED HEAD TO SHELL BOLT CRAWING 7.500 138	25,900
2 01 01 19	M64 x 6-6g X 280 LONG, CLASS 8.8 ISO 4014 / ASTM-F568 100 THREAD LENGTH	0.219	511,311	0 438	1,022,621	0.525	1 227,145	0.750	FEED TRUNNION TO FEED HEAD BOLT DRAWING 7 500010	21,600
3 01 01 04	2 1/2"-4UNC-2A X 16 1/2" LONG ASTM-A354BC, 4 1/2" THREAD LENGTH	0.370	646,287	0 739	1,292,573	0.887	1,551,088	1 109	DISCHARGE HEAD TO DISCHARGE HEAD (FITTED) STUD DRAWING 7,500041	27,100
3 01 01 05	2 1/2"-4UNC-2A X 16 1/2" LONG ASTM-A354BC. 4 1/2" THREAD LENGTH	0.387	646.287	0 774	1 292,573	0 928	1,551,088	1 160	DISCHARGE HEAD TO DISCHARGE HEAD STUD DRAWING 7.500042	27,100
3 01 01 06	M64 x 6-6g X 190 LONG, CLASS 8 8 ISO 4014 / ASTM-F568, 100 THREAD LENGTH	0,154	511,311	0 307	1,022,621	0.369	1.227 145	0.527	DISCHARGE HEAD TO DISCHARGE HEAD BOLT DRAWING 7 500010	21,600
03 01 01 07	2 1/2"-4UNC-2A X 18 3/8" LONG ASTM-A354BC 4 1/2" THREAD LENGTH	0 413	646,287	0 825	1,292,573	0.990	1,551,088	1,238	DISCHARGE HEAD TO SHELL STUD DRAWING 7 500042	16.400
3 01 01 08	2 1/2"-8UNC-2A X 8 1/2" LONG ASTM-A354BC 4" THREAD LENGTH	0 194	628,191	0 387	1,256,382	0 465	1,507,658		DISCHARGE HEAD TO SHELL BOLT DRAWING 7 500138	25,900
3.01.01_19	M64 X 6 X 280 LONG CLASS 8.8 ISO 4014 ASTM-F568M 100 THREAD LENGTH	0 219	511,311	0 438	1,022,621	0.525	1,227,145		DISCHARGE TRUNNION TO DISCHARGE HEAD BOLT DRAWING 7.500010	21,600
3 02 03 01	M48 x 5 X 140 LONG, CLASS 8 8 ASTM-F568M. HEX. SOCKET HEAD	- q	34	H	- 2	i i	i i	×	DISCHARGE TRUNNION TO TROMMÉI. ADAPTER	6,500
3 02 03 05	2" -4 1/2UNC-2A X 8 1/2" LONG ASTM-A354BC 4" THREAD LENGTH	0.218	403,761	0.437	807,522	0 524	969,026		TROMMEL ADAPTOR TO TROMMEL SCREEN BOLT DRAWING 7.500071	13,600
5 01 01 07	2 1/4" -4 1/2UNC-2A X 14 1/2" LONG ASTM-A354BC 4 1/2" THREAD LENGTH	0 319	524,888	0 637	1,049,777	0.765	1.259,732		SHELL TO SHELL (FITTED) STUD DRAWING 7.500043	19.800
5,01.01,08	2 1/4" -4 1/2UNC-2A X 14 1/2" LONG ASTM-A354BC 4 1/2" THREAD LENGTH	0 335	524.888	0 671	1,049.777	0 805	1,259.732		SHELL TO SHELL STUD DRAWING 7,500055	19,800
5 01 01 09	2 1/4" -4 1/2UNC-2A X 17 1/4" LONG ASTM-A354BC 4 1/2" THREAD LENGTH	0 405	524,888	0.810	1,049.777	0 972	1,259,732		SHELL TO SHELL STUD DRAWING 7 500055	19.800
05 01 01 10	2 1/4" -8UNC-2A X 7 1/2" LONG ASTM-A354BC 4" THREAD LENGTH	0.189	503,061	0 377	1,006,121	0 453	1,207,346		SHELL TO SHELL BOLT DRAWING 7 500139	18 700

NOTES

- 1.) CRITICAL FASTENERS SHALL BE INSTALLED USING A CALIBRATED HYDRAULIC TORQUE WRENCH IN ACCORDANCE WITH 70008599. THE SPECIFIED PRELOAD IS TO BE VERIFIED BY BOLT ELONGATION MEASUREMENTS. VERIFICATION OF PRELOAD BY BOLT TORQUE MEASUREMENT IS NOT ACCEPTABLE.
- 2) ELONGATION LIMIT CORRESPONDS WITH THE MELD STRENGTH OF THE BOLT.
- 3) THE TORQUE VALUE NOTED IS FOR REFERENCE ONLY AND IS TO BE USED FOR SELECTION OF A SUITABLE HYDRAULIC TORQUE WRENCH ONLY
- 4) LOP NO 5 402933
- 5) ALL METRIC DIMENSIONS ARE IN MILLIMETERS. CUSTOMARY U.S. DIMENSIONS (INCH) ARE PEPRESENTED WITH AN INCH MARK (*)
- 6) BOLTS AND WASHERS ARE TO BE LUBRICATED WITH INEVER SEEZ! BLUE MOLY OR EQUAL PRIOR TO CRITICAL FASTENER INSTALLATION.

Scale	Drawn	Judy	Appr. Date Zone/Descr	
1.1	DBM	DBM	12JAN2010 S Pattern no	embossed/countersunk
SAG MILL			·	
38'-0" DIA.				

LIST OF CRITICAL FASTENERS

Mat	Weight	Welds	ISO A D
Unless otherwise	specified, adhere to Gener	al Workshop Instructions N	0, 520530.

The information transmitted by this document is the proprietary and contributing property of FLSmidth, and may not be duplicated, disclosed, or utilized without written consent from FLSmidth.

No 29004033 Ver 2.