UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA MECANICA

EVALUACIÓN DE DISCONTINUIDADES PLANAS EN JUNTAS CIRCUNFERENCIALES PARA GASODUCTOS TERRESTRES

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO MECANICO

RICHARD ZACARIAS SANZ DURAND

PROMOCION 2001-II
LIMA-PERU
2010

Dedicado a mi madre Ana María, hermana Pamela y mi sobrino el Grande Sebastian. Y a todos los estudiantes de ingeniería, a quienes digo que nunca es tarde para alcanzar los sueños.

Agradecimientos

A Dios quien siempre hace parte y es guía en cada decisión en mi vida.

A mi madre por su apoyo incondicional, comprensión y por sus consejos y palabras de ánimo en todo momento.

A mi hermana Pamela por enseñarme que parte de crecer es aprender de los otros y a mi sobrino Sebastian que con su inocencia y cariño me hace ver que lo extraordinario de la vida se encuentra en la alegría de las cosas simples.

Al Ingeniero Enrique Sarmiento por brindarme su amistad y apoyo en el desarrollo del presente trabajo.

A todos los profesores que compartieron su conocimiento y experiencia, contribuyendo a mi desarrollo profesional y formaron la base para poder alcanzar otros estudios con mayor facilidad.

A los amigos de facultad, por la convivencia en las aulas de clase, así como, por su apoyo y amistad en la vida cotidiana. Así también a los funcionarios de la Facultad de Ingeniería Mecánica, por su apoyo de forma anónima sin la cual no hubiera sido fácil culminar los estudios.

A todos mis amigos, familiares y colegas de trabajo en la PUC-Rio que siempre me motivaron para la superación continua y desarrollo profesional.

Indice

Pr	ólogo	1
1.	Introducción	4
	1.1. Objetivo	
	1.2. Justificativa	6
	1.3. Alcance	6
	1.4. Limitaciones	7
2.	Construcción de ductos	8
	2.1. Procesos de soldadura utilizados en una unión circunferencial	11
	2.1.1. Defectos en construcción de ductos	12
	2.1.1.1. Fallas en ductos	14
	2.1.2. Discontinuidades en soldaduras	15
	2.1.2.1. Influencia de las discontinuidades	17
	2.1.2.2. Interacción entre discontinuidades	19
	2.1.3. Tensiones actuantes en las discontinuidades	19
	2.2. Evaluación de la soldadura circunferencial	20
	2.2.1. Normas de evaluación de defectos	21
	2.2.2. Inspección por ensayos no destructivos	22
	2.2.2.1. Radiografía industrial	2 3
	2 2 2 2 Ultrasonido	23

	2.2.3. Prueba hidrostática	25
3.	Integridad estructural en un ducto	27
	3.1. Cargas que actúan en un ducto	28
	3.1.1. Tensiones primarias y secundarias	29
	3.1.2. Cargas activas y reactivas	30
	3.1.3. Cálculo de Tensiones para un ducto terrestre	31
	3.2. Formación de discontinuidades planas	33
	3.2.1. Influencia del material de aporte	34
	3.2.2. Influencia de vicios en la construcción	35
	3.3. Caracterización de discontinuidades planas	37
4.	Evaluación de los procedimientos alternativos de aceptación para	39
	discontinuidades planas	
	4.1. Diagrama de evaluación de falla	41
	4.2. Comparación Cualitativa de las normas de criterio alternativo	43
	4.2.1. API 1104:2005 Apéndice A	44
	4.2.2. API 1104:2007 Apéndice A	45
	4.2.3. CSA Z662:1999 Apéndice K	47
	4.2.4. BS7910:2007 Sección 7 – Evaluación por resistencia a la fractur	ra 48
	4.2.5. API STD 579:2007 Sección 9	51
	4.3. Comparación Cuantitativa de las normas de criterio alternativo	58
	4.3.1. Primer caso de comparación	60
	4.3.2. Segundo caso de comparación	64

	4.4. Deter	minación del procedimiento de mayor practicidad	66
5.	Evaluació	n del procedimiento de mayor practicidad	70
	5.1. Limita	aciones del procedimiento	71
	5.2. Tend	encias durante la variación de los parámetros de evaluación	73
	5.2.1.	Influencia del espesor de pared del tubo y el valor de CTOD	74
	5.2.2.	Relación entre las dimensiones de la discontinuidad y el valor de	77
	(CTOD	
	5.2.3.	Relación entre la longitud de la discontinuidad y diámetro de la	81
	t	ubería	
	5.3. Gene	ralización de los gráficos de límites permisibles adimensionales	83
6.	Evaluació	n del beneficio económico de aplicación del procedimiento de	88
	mayor pra	acticidad	
	6.1. Costo	os de construcción y reparación de una unión circunferencial	89
	6.2. Cost	os de elaboración de una curva de límites adimensionales	92
	6.3. Bene	ficio económico de la aplicación del procedimiento	94
Сс	nclusiones	;	97
Bil	oliografía		99
Аp	éndice A -	- Cálculos de esfuerzos actuantes en un ducto	
Аp	éndice B -	Procedimientos de los criterios alternativos de aceptación	
Αp	éndice C -	- Cálculos de comparación entre los procedimientos alternativos	
Αp	éndice D -	- Algoritmo de rutina de cálculo según API 1104:2007 Apéndice A	

Opción 2

Apéndice E – Uso de curvas de límites permisibles adimensionales

Apéndice F – Evaluación de costos para una unión soldada

Lista de Tablas

Tabla 2.1. Ciclo de desarrollo de un proyecto para el transporte de hidrocarburos [8]	9
Tabla 2.2. Comparación de los procesos de soldadura aplicables en la soldadura circunferencial de ductos.	12
Tabla 2.3. Discontinuidades encontradas en una unión soldada circunferencial a tope.	18
Tabla 2.4. Discontinuidades que se tornan críticas ante las tensiones propias de un ducto.	20
Tabla 2.5. Normas aplicables para la evaluación de la sanidad de una unión soldada circunferencial.	21
Tabla 3.1. Cargas que actúan en un ducto de transporte en servicio [20, 26, 29]	29
Tabla 3.2. Cargas activas y reactivas para ductos enterrados [29]	31
Tabla 3.3. Algunas Normas utilizadas para el cálculo de tensiones que actúan en un ducto.	33
Tabla 4.1. Resumen comparativo de las limitaciones y grado de dificultad para las normas API 1104, API STD 579, BS 7910 y CSA Z662.	55
Tabla 4.2. Resumen comparativo del tipo de discontinuidades a las cuales son aplicables las normas API 1104, API STD 579, BS 7910 y CSA Z662.	56
Tabla 4.3. Resumen comparativo de la información mínima necesaria para evaluación de una discontinuidad para las normas API 1104, API STD 579, BS 7910 y CSA Z662.	57
Tabla 4.4. Parámetros de evaluación para dos casos de comparación.	60
Tabla 4.5. Resumen de los resultados obtenidos por cada una de las normas de acuerdo al primer grupo de parámetros de comparación. Dimensiones en milímetros.	63
Tabla 4.6. Resumen de resultados de cálculos para cada una de las normas de	66

- acuerdo al segundo grupo de parámetros de evaluación. Dimensiones en milímetros.
- Tabla 5.1. Rangos de variación para cada uno de los parámetros de evaluación. 71
- Tabla 5.2. Variación K_r y L_r en función de la longitud para una altura constante (a 72 = 6,35 mm). Condiciones de evaluación: D = 24", t = 0,5", σ_y = 70 ksi, σ_a = 56 ksi (0,80 σ_v) e CTOD = 0,005" (0,127 mm).
- Tabla 5.3. Dimensiones 2c y a en función de la variación del do CTOD. Material 75 API 5L X80, D=24", t=0.5" y $\sigma_a/\sigma_y=0.85$. Sin factor de corrección de la longitud.
- Tabla 5.4. Dimensiones 2c y a en función de la variación del do CTOD. Material 75 API 5L X80, D = 24", t = 0.75" y σ_a/σ_y = 0,85. Sin factor de corrección de la longitud.
- Tabla 5.5. Variación de β en función del CTOD. Material API 5L X80, D =20", t 78 =0,5" y σ_d/σ_v = 0,70.
- Tabla 5.6. Variación de β en función del CTOD. Material API 5L X80, D =20", t 78 =0,5" y σ_a/σ_v = 0,75.
- Tabla 5.7. Variación de β en función del CTOD. Material API 5L X80. D =20". t 79 =0.5" y σ_a/σ_v = 0.80.
- Tabla 5.8. Variación de β en función del CTOD. Material API 5L X80. D =20". t 79 =0.5" y σ_d/σ_v = 0.85.
- Tabla 5.9. Variación de β en función del CTOD. Material API 5L X80. D =20". t =0.5" y σ_d/σ_v = 0.90.
- Tabla 5.10. Variación de β en función del CTOD. Material API 5L X80. D =20". t 80 =0.5" y σ_d/σ_v = 0.95.
- Tabla 5.11. Variación de β en función del diámetro. Material API 5L X80. t =0.5". 82 CTOD = 0.010" y σ_d/σ_v = 0.85.
- Tabla 5.12. Variación de β en función del diámetro. Material API 5L X80. t 82 =0.75". CTOD = 0.010" y σ_a/σ_y = 0.85.

Lista de Figuras

Figura 2.1. Secuencia de construcción de un ducto terrestre. 1) Traza de detalle, 2) Abertura de pista, 3) Abertura de zanja, 4) Distribución de tubos, 5) Curvado de tubos, 6) Soldadura de tubos, 7a) Inspección de soldaduras, 7b) Recubrimiento de juntas, 8) Protección anticorrosiva, 9) Bajada de tubos, 10) Tapada de zanja, 11) Prueba hidrostática, 12) Protección de pista. Adaptado de Enbridge TM , [10].	11
Figura 2.2. Frecuencia de incidentes para diferentes sistemas de ductos y/o tuberías en los Estados Unidos. Adaptado de DOT [13].	14
Figura 2.3. Descripción de una discontinuidad plana en una junta soldada.	16
Figura 2.4. Metodologia de ultrasonido. a) TOFD, Adaptado de Richter [22] b) Phase array, Adaptado de Saavedra [23].	25
Figura 2.5. Cabezal para prueba hidrostática, [25].	26
Figura 3.1. Variación del tamaño de longitud (2c) de una fisura generada por la aplicación de una carga en función del material de aporte y proceso de soldadura. Adaptado de Kiral [31].	34
Figura 3.2. Influencia del ángulo entre el refuerzo de soldadura y el metal de base, pie de la unión, en el factor de concentración de tensiones. Adaptado de Fosca [32].	36
Figura 3.3. Influencia del desalineamiento para la determinación de las dimensiones máximas aceptables de una discontinuidad plana de acuerdo a los criterios de la BS 7910, [33].	36
Figura 3.4. Esquematización de la caracterización de las dimensiones relevantes de una discontinuidad plana en una unión soldada.	38
Figura 3.5. Primer caso de interacción según las consideraciones de la API 1104:2007 Apéndice A. Adaptado de la API 1104:2007 [15]	38
Figura 4.1. Curva de dimensiones máximas permisibles para un tubo de acero API 5L X80, 30" de diámetro y 0.421" de espesor de pared, según la API 1104:2005 y CSA Z662:99. Adaptado de Fazackerly et al. [4	41
Figura 4.2. Diagrama esquemático de evaluación de la falla. Adaptado de Antaki	42

Figura 4.3. Resultados de ensayos de impacto Charpy V para una unión soldada por GMAW de corriente controlada y FCAW en material base API 5L X80. ZTA: Zona Térmicamente Afectada, LF: Línea de fusión, MS Raíz: Material de soldadura raíz, MS Topo Material de soldadura de refuerzo, MB Long: Material base sentido longitudinal. Adaptado de Sanz [36].	54
Figura 4.4. Comparación de las dimensiones aceptables para cada norma para el primer caso de evaluación. ASE/I: Axial-Superficial Externa/Interna, CSI: Circunferencial-Superficial Interna, CSE: Circunferencial-Superficial Externa.	62
Figura 4.5. Comparación de las dimensiones aceptables para el método CSA Z662:99 Apéndice N y los criterios de Workmanship de la API 1104:2007 punto 9.6.2. Criterio de aceptación para ensayos de ultrasonido, tanto para indicación individual y múltiple.	63
Figura 4.6. Comparación de las dimensiones aceptables para cada norma para el segundo caso de evaluación. ASE/I: Axial-Superficial Externa/Interna, CSI: Circunferencial-Superficial Interna, CSE: Circunferencial-Superficial Externa.	65
Figura 5.1. Posicionamiento de los puntos de evaluación en función de la longitud y la altura de una discontinuidad determinada para las condiciones de evaluación de la Tabla 5.2.	73
Figura 5.2. Diagramas de evaluación de falla para un acero API 5L X80. La variación de los puntos de evaluación en la medida en que el valor de CTOD es mayor para dos condiciones de espesor de pared, $t = 0.5$ " y $t = 0.75$ ".	76
Figura 5.3. Límites permisibles adimensionales para un tubo de acero API 5L X70 de D = 24". t = 0.5" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.	85
Figura 5.4. Límites permisibles adimensionales para un tubo de acero API 5L X70 de D = 24". t = 0.75" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.	86
Figura 5.5. Límites permisibles adimensionales para un tubo de acero API 5L X70 de D = 38". t = 0.5" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.	86
Figura 5.6. Límites permisibles adimensionales para un tubo de acero API 5L X70 de $D=38$ ". $t=0.5$ " y CTOD = 0.005" (0.13 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.	87
Figura 5.7. Límites permisibles adimensionales para un tubo de acero API 5L X80 de D = 38". t = 0.5" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a	87

1.5 en la longitud de la discontinuidad.	
Figura 6.1. Estimativa del costo de construcción de una junta soldada en material API 5L X80 de 20" de diámetro y 0.750" de espesor.	90
Figura 6.2. Estimativa del costo de reparación por discontinuidad localizada en el pase de raíz de una junta soldada en material API 5L X80 de 20" de diámetro y 0.750" de espesor.	91
Figura 6.3. Estimativa de costos para la elaboración de un análisis de integridad de una unión soldada circunferencial.	93
Figura 6.4. Cuadro comparativo proporcional de los costos de fabricación y reparación de una junta soldada; y del costo de elaboración de curvas de dimensiones máximas aceptables para discontinuidades planas.	95
Figura 6.5. Economía en el costo de juntas soldadas no rechazadas por kilometro de tubería soldada.	96

Simbología

а	Altura de la discontinuidad, mitad de la altura para una discontinuidad interna.
a*	Parámetro del tamaño de la fisura
a_b	Mitad de la altura de una discontinuidad interna
a_s	Altura permisible de la discontinuidad superficial
c	Mitad de la longitud de la discontinuidad
c_p	Mitad de la longitud determinado por colapso plástico
D	Diámetro externo del tubo
D_i	Diámetro interno del tubo
d	Menor distancia desde la discontinuidad a la superficie de la unión soldada.
E	Módulo de Elasticidad
F	Fuerza axial
F_b	Factor de corrección en el cálculo do K_L
G	Factor de corrección de σ_{ref}
J_e	Integral-J elástica
K_I	Factor de intensidad de tensiones
K_I^P	Factor de intensidad de tensiones para la tensión primaria de membrana
K_I^Q	Factor de intensidad de tensiones para la tensión primaria de flexión
K_{mat}	Factor de intensidad de tensiones del material evaluado
K_r	Razón de tenacidad en el FAD
L_r	Razón de tensión en el FAD
$L_r^{\ c}$	Razón de tensión de corte en el FAD
L_r^P	Razón de tensión primaria de membrana en el FAD
L_r^Q	Razón de tensión para la tensión primaria de flexión en el FAD
n	Coeficiente de endurecimiento por trabajo a frio

P	Presión interna
P_b	Tensión primaria de flexión
P_m	Tensión primaria de membrana
P_r	Nivel de carga, razón entre el esfuerzo máximo axial del proyecto y el esfuerzo de elasticidad
r_i	Radio interno del tubo
S_r	Razón de esfuerzo en el FAD
S_{srf}	Factor de reducción del esfuerzo residual
T	Temperatura de operación
T	Espesor de pared del tubo
W	Ancho de la estructura
α	Razón del diámetro externo y el espesor de pared del tubo, α = D/t
β	Razón de la longitud de la discontinuidad y la longitud circunferencial del tubo, β = 2c/ π D
δ_{mat}	CTOD del material evaluado
δ_e	CTOD parte elástica
ε	Deformación uniforme
\mathcal{E}_{θ}	Deformación axial máxima
€ _{res}	Deformación residual máxima
Φ	Factor de interacción plástica
λ	Factor de corrección de superficie
η	Razón de la altura de la discontinuidad y el espesor de la pared del tubo, $\eta = a/t$.
σ_{a}	Tensión axial máxima del proyecto
σ_c	Tensión de colapso plástico
σ_{t}	Tensión de flujo
σ_{ref}	Tensión referencial
$\sigma_{ref}^{\;\;P}$	Tensión referencial de la tensión primaria de membrana
$\sigma_{ref}^{}Q}$	Tensión referencial de la tensión primaria de flexión
$\sigma_{\!\scriptscriptstyle y}$	Limite de elasticidad mínimo especificado

- σ_t Limite de resistência mínimo especificado
- $_{\it \upsilon}$ Coeficiente de Poisson

NOTA: El sistema de unidades utilizado por cada variable es descrito en el texto, una vez que varía conforme la norma abordada.

PRÓLOGO

La alta demanda de energía para el desarrollo industrial de un país hace el uso del gas natural como una alternativa limpia y económica que permitirá reducción de costos con mayor eficiencia. El medio más barato de transportarlo hacia los puntos de mayor demanda es por medio de ductos de acero al carbono, lo cual obliga a garantizar su integridad mecánica, confiabilidad y disponibilidad. Siendo las uniones soldadas las que presentan mayor criticidad y sobre las cuales se debe tener un mayor cuidado durante la construcción de un gasoducto.

Actualmente la construcción de gasoductos se realiza con procedimientos de soldadura semiautomáticos, lo cual permite mayores aportes de metal de soldadura en menor tiempo. Estas uniones soldadas pueden presentar discontinuidades típicas propias del proceso utilizado, sin embargo, los criterios de aceptación utilizados descritos en las normas están basados en el uso del proceso de soldadura por electrodo revestido y en base a la inspección por radiografía, sin considerar las propiedades mecánicas del material, geometría de la unión ni los esfuerzos que se den en el gasoducto durante su operación, tornándose un criterio de aceptación conservador.

En el Capítulo 1 se expone el objetivo del presente trabajo, el cual consiste en evaluar los criterios alternativos de aceptación para discontinuidades planas en juntas soldadas circunferenciales, descritas en las normas API 1104:2005, API 1104:2007, API STD 579:2007, BS7910:2007 y CSA Z662:99. La evaluación permitió determinar la metodología de mayor practicidad de aplicación.

En el Capitulo 2 se expone las etapas de la construcción de un ducto de transporte de gas, los procesos de soldadura mayormente utilizados y la caracterización de las discontinuidades propia de la soldadura en función de su naturaleza, orientación, posición y localización en la unión soldada.

En el Capítulo 3 se detalla las cargas actuantes en un ducto y su interacción con las discontinuidades propias de la construcción de un gasoducto visto desde el punto de vista de integridad mecánica.

En el Capítulo 4 se detalla la evaluación de forma cualitativa y cuantitativa de las metodologías descritas en las normas antes mencionadas, las cuales basan sus principios en criterios de la mecánica de la fractura aplicable a discontinuidades planas, debido a que las discontinuidades volumétricas (porosidad e inclusión de escoria) presentan menor probabilidad de falla.

Luego de aplicar las metodologías para dos casos representativos se observaron las limitaciones que cada una de las normas presenta para su aplicación. Determinándose que la metodología descrita en la API 1104:2007 Apéndice A Opción 2 es la más adecuada para la evaluación de juntas soldadas circunferenciales, debido a que es aplicable a tuberías de pared fina y posee un análisis por colapso plástico,

adecuado para su aplicación en los nuevos aceros desarrollados para la industria del gas, permitiendo obtener dimensiones de discontinuidades planas medianamente conservadoras.

En el Capítulo 5 se muestra de forma resumida las iteraciones realizadas haciendo uso de la metodología descrita en la API 1104:2007 Apéndice A Opción 2, donde fue observado que posee ciertas limitaciones, tales como, que no aplica a discontinuidades donde la longitud sea menor a la altura, y no poseer un método para determinar la tensión máxima axial actuante en un ducto. Así también, se observó que el desarrollo de una curva de límites permisibles adimensionales para discontinuidades planas es aplicable a cierto rango de parámetros de evaluación, permitiendo su uso para diversas geometrías de tubos soldados (diámetro y espesor de pared) siempre y cuando los materiales sean de límite de elasticidad próximos, se haya utilizado el mismo proceso de soldadura y valores de tenacidad a la fractura próximos.

En el Capítulo 6 se muestra la evaluación económica, donde se determinó que el costo de inversión para la elaboración de curvas de límites permisibles adimensionales para discontinuidades planas, para un determinado proyecto, es recuperable en un caso mediamente conservador a partir de la construcción de un tramo de 31 km. Siendo el uso de criterios alternativos de aceptación para uniones soldadas circunferenciales adecuadas para la construcción de ductos de grandes distancias en el orden de cientos de kilómetros.

CAPITULO I

Las discontinuidades generadas en las uniones soldadas circunferenciales durante la construcción de ductos de transporte de hidrocarburos han sido evaluadas durante muchos años por normativas internacionales (API 1104, BS 4515, CSA Z662, entre otras), de amplia aplicación que han desarrollado sus criterios de aceptación a través de la experiencia (conocido también como criterio de workmanship); teniendo en consideración al proceso de soldadura por electrodo revestido (SMAW) y al ensayo no destructivo de radiografía, [1-2]. Estos criterios de aceptación, muchas veces conservadores, no consideran las propiedades mecánicas del metal base ni del metal de aporte, así como también, no consideran las condiciones de operación a las que se verá exigido el ducto, ni las características de la discontinuidad (altura, posición y localización).

La aplicación de estos criterios de aceptación tradicionales puede algunas veces determinar la remoción de una discontinuidad que no compromete a la integridad estructural de la unión soldada circunferencial, ocasionando realizar una reparación innecesaria e incrementando el costo del proceso de construcción, posibles retrasos y en ciertos casos comprometer a la integridad de la soldadura debido a cambios

microestructurales en el metal base como consecuencia de los ciclos térmicos generados en la etapa de reparación de la unión soldada, deteriorando sus propiedades mecánicas. Por otro lado, hoy en día con la aplicación de procesos de soldadura semi-automáticos y el desarrollo de los métodos de inspección por ultrasonido automatizado, lo que ha incrementado la probabilidad de detectar un mayor número de discontinuidades en la soldadura, hacen cuestionable continuar aplicando los criterios de aceptación tradicionales para la evaluación de las uniones soldadas circunferenciales, [3-4].

En el Perú las construcciones de ductos de transporte de hidrocarburos han venido utilizando los criterios de aceptación tradicionales, mientras que en el exterior ciertas construcciones desde los años 70 a la actualidad han utilizado criterios de aceptación alternativos con base a cálculos de la mecánica de la fractura, [4-5]. Estos criterios de aceptación están descritos en diferentes normas internacionales (API 1104, API STD 579, BS 7910, CSA Z662), las cuales difieren unas de otras en sus metodologías de evaluación y criterios de aceptación, permitiendo obtener resultados conservadores o poco conservadores en función de las características de la discontinuidad evaluada.

1.1. OBJETIVOS

Evaluar las discontinuidades planas de uniones soldadas circunferenciales utilizando los criterios de aceptación alternativos disponibles en la literatura. Así como, analizar el alcance y limitaciones del procedimiento de mayor aplicación ante diferentes condiciones de evaluación.

1.2. JUSTIFICATIVA

En el Perú la creciente demanda energética ha motivado la aprobación de la ampliación de la capacidad de transporte de gas de Camisea (Loop de Costa de 24" y Loop de Selva 32"), así como también la ejecución de nuevos proyectos como el de Perú LNG y el Gasoducto Andino del Sur (proyectado para la región sur del Perú), para incrementar la capacidad existente de 300 MMpcd a 450 MMpcd en una primera etapa y alcanzar los 1118 MMpcd en una segunda etapa, respectivamente, [6-7]. Por ello, la aplicación de criterios de aceptación alternativos junto a procedimientos de soldadura semi-automáticos e inspecciones por ultrasonido, puede reducir los costos de construcción, debido a un menor número de uniones soldadas rechazadas y por entregar los proyectos dentro de los plazos programados, sin perder la calidad de las uniones soldadas que aseguren la integridad estructural del ducto.

1.3. ALCANCE

El desarrollo del análisis comparativo será haciendo uso de las siguientes normas:

- API 1104 Welding of Pipelines and Related Facilities 19th 2005.
- API 1104 Welding of Pipelines and Related Facilities 20th, Addendum July 2007.
- API STD 579 Fitness for Service, June 2007.
- BS 7910 Guide to methods for assessing the acceptability of flaws in metallic structures 2007.
- CSA Z662 Oil and Gas Pipeline Systems 1999.

Estas normas serán aplicadas para la evaluación de discontinuidades planas superficiales e internas en uniones soldadas circunferenciales de tubos de acero al carbono utilizados en la construcción de gasoductos u oleoductos terrestres. Las discontinuidades volumétricas tales como porosidad e inclusión de escoria no serán contempladas, salvo las mismas sean asumidas como discontinuidades planas para su evaluación.

1.4. LIMITACIONES

Los resultados obtenidos para determinados parámetros de evaluación de cada caso particular presentados en el presente trabajo no podrán ser generalizados o extrapolados ante otras condiciones diferentes de las indicadas, salvo indicación expresa en los resultados obtenidos.

La aplicación de la metodología práctica de evaluación resultante del presente trabajo para otras condiciones de evaluación, deberán ser siguiendo las indicaciones y restricciones de la norma que contiene la metodología adoptada. Así mismo, las consideraciones que se asuman deberán ser hechas por una persona especialista en el tema.

CAPITULO II CONSTRUCCIÓN DE DUCTOS

La forma más económica, segura, conveniente y confiable para realizar el transporte de grandes volúmenes de gas natural o petróleo atravesando largas distancias es por medio de ductos, los cuales pueden ser terrestres, aéreos o submarinos. La construcción y montaje de un ducto consiste en la unión de varios tubos de longitudes y diámetros variables, el cual operará a una presión de diseño determinada por la resistencia del material y la geometría del tubo (diámetro y espesor de pared), así como de otros parámetros que considere la norma de diseño utilizada.

Un emprendimiento para el transporte de hidrocarburos por medio de un ducto comprende de tres fases: Fase de pre-inversión, Fase de inversión y Fase de operación, tal como mostrado en la Tabla 2.1., y dentro de la fase de inversión se encuentra la sub-fase de construcción y montaje.

Tabla 2.1. Ciclo de desarrollo de un proyecto para el transporte de hidrocarburos [8]

FASE	SUBFASE
	 Identificación de oportunidades de inversión.
Pre-inversión	Estudio de prefactibilidad
Pre-inversion	Estudio de factibilidad técnico-económica
	Evaluación y decisión
	Negociación y contratación
Inversión	Concepción del proyecto
inversion	Construcción y Montaje
	Puesto en operación
Operación	

Cuando el emprendimiento de un ducto se encuentra en la etapa de inversión, el diseño se hace siguiendo los lineamientos de las normas técnicas competentes para cada tipo de servicio (hidrocarburos líquidos o gaseosos) y el medio donde será instalado con la finalidad de incrementar la seguridad pública y reducir la probabilidad de fallas. La sub-fase de construcción y montaje de un gasoducto u oleoducto, ver Figura 2.1, comprende de las siguientes etapas, [9]:

- Conformación del derecho de vía (trazado de detalle).
- Almacenamiento y transporte de materiales.
- Abertura de pista (supresión vegetal y abertura de pista).
- Abertura de zanja (desmonte de roca y abertura de zanja).
- Distribución de tubos (desfile de tuberías).
- Curvado de tubos.

- Hormigonado de tubos (cuando la traza del ducto atraviesa ríos o regiones pantanosas).
- Soldadura de tubos.
- Inspección de soldaduras.
- Recubrimiento de uniones soldadas (se utiliza manta de protección termocontraíble).
- Protección anticorrosiva (ánodos de sacrificio, utilizados temporalmente).
- Bajada de tubos / Tapada (aproximadamente entre 1,0 a 1,6 m de tapada).
- Limpieza interna de la tubería (restos de la construcción).
- Prueba hidrostática.
- Limpieza interna de tubería (secado de agua en el interior del ducto).
- Unión de tramos de tubos soldados probados hidrostáticamente.
- Protección de pista.

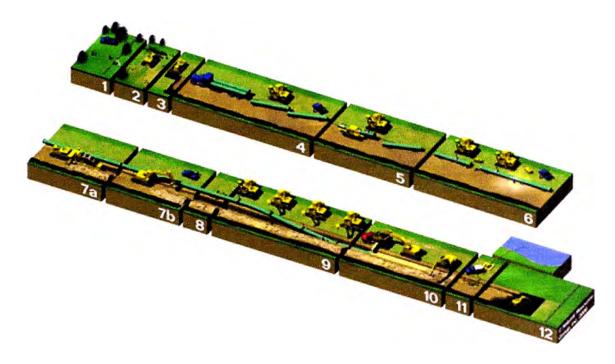


Figura 2.1. Secuencia de construcción de un ducto terrestre. 1) Traza de detalle, 2) Abertura de pista, 3) Abertura de zanja, 4) Distribución de tubos, 5) Curvado de tubos, 6) Soldadura de tubos, 7a) Inspección de soldaduras, 7b) Recubrimiento de uniones soldadas, 8) Protección anticorrosiva, 9) Bajada de tubos, 10) Tapada de zanja, 11) Prueba hidrostática, 12) Protección de pista. Adaptado de Enbridge TM, [10].

2.1. PROCESOS DE SOLDADURA UTILIZADOS EN UNA UNIÓN CIRCUNFERENCIAL

Los procesos de soldadura mayormente utilizados para la construcción de ductos son por arco eléctrico, debido a la facilidad y control de la fuente de calor. Los procesos más comúnmente utilizados son el de electrodo revestido (SMAW), alambre tubular con o sin protección gaseosa (FCAW-S, FCAW-G), MIG/MAG (GMAW), TIG (GTAW) y arco sumergido (SAW), este último mayormente utilizado en talleres de construcción que en campo. Existen otros procesos que aún se encuentran en investigación, que han mostrado buenos resultados pero que aún no pueden ser

aplicados en obra, como el proceso de soldadura por fricción (FSW) y el de haz de electrones (EBW), [11]. En la Tabla 2.2., se presenta la comparación de cada uno de estos procesos indicando su aplicación en cada una de las capas del cordón de soldadura, su uso en campo o taller y las discontinuidades que mayormente están asociadas a cada uno de los procesos de soldadura descritos.

Tabla 2.2. Comparación de los procesos de soldadura aplicables en la soldadura circunferencial de ductos.

Proceso de Soldadura	Aplicación			Us	Uso T		ipo de Discontinuidad				
	PR	P C	PRe	PA	Campo	Taller	LF	Р	SI	IC	Ti
FCAW		•	•	•	•	•		•	•		
SMAW	•	•	•	•	•	•	•	•	•	•	
GTAW	•	E 🐽	(•):	(•)		•	•				
GMAW	200				5 .	•	•	•			
SAW	•	•	9 5			•	•	•	•	*	
FSW	•	•		•		1		•			
EBW	•	٠	•	•		•		•			
PR: Pase de raíz			PRe: Pas	e de relle	no LF: Fa	alta de fusió	n	IC: Co	oncavida	ad Inter	na
PC: Pase en calie	ente		PA: Pase	de acaba	ido P: Po	rosidad		TI: Ind	lusión d	de Tung	steno
					SI: Ind	clusión de es	scoria				

Fuente elaboración propia

2.1.1. Defectos en Construcción de Ductos

Los defectos que pueden ser encontrados en un ducto, se pueden haber generado durante la etapa de fabricación de los materiales, durante la construcción o durante la operación [12]. Los defectos según cada etapa puede ser:

- Durante la fabricación: laminaciones en la planchas para la fabricación de los tubos o defectos en los cordones longitudinales, estos podrán ser detectados y eliminados durante la etapa de inspección post fabricación.
- Durante la construcción: abolladuras durante el transporte de los tubos, desalineamiento entre dos tubos soldados, defectos propios de la soldadura circunferencial (falta de fusión, falta de penetración, fisuras, porosidades e inclusión de escoria), estos podrán ser detectados antes y durante las inspecciones de las soldaduras o en la etapa de post construcción por medio de la prueba de presión hidrostática.
- Durante el montaje: abolladuras, raspones del revestimiento tricapa durante la bajada del ducto (estos daños en el revestimiento pueden ser puntos de inicio de corrosión sobre la superficie del tubo). Estos defectos pueden ser detectados mediante el pase de herramientas de inspección inteligentes (pigs) y por inspecciones por DCVG (Direct Current Voltage Gradient), respectivamente.
- Durante la operación del ducto: los defectos que pueden ser generados en la operación del ducto son defectos que no pudieron ser detectados, pero que pueden haber crecido en la etapa de puesto en operación o de operación. Estos defectos pueden ser detectados mediante el pase de herramientas inteligentes.

Por lo anterior, se puede decir que es en la etapa de construcción y montaje donde se debe tener el mayor cuidado para evitar la generación de defectos que puedan afectar la integridad estructural del ducto durante su operación.

2.1.1.1. Fallas en Ductos

La ocurrencia de una falla durante el servicio de un gasoducto u oleoducto es un evento de baja probabilidad, cuando comparado con la ocurrencia de las fallas producidas en los sistemas de distribución de gas. Según las estadísticas presentadas por la Oficina de Seguridad de Ductos (The Office of Pipeline Safety – OPS) del Departamento de Transporte en los Estados Unidos (U.S. Department of Transportation – DOT), Figura 2.2., muestra que el índice de fallas con fatalidades no ha presentado variaciones apreciables durante los últimos veinte años [13].

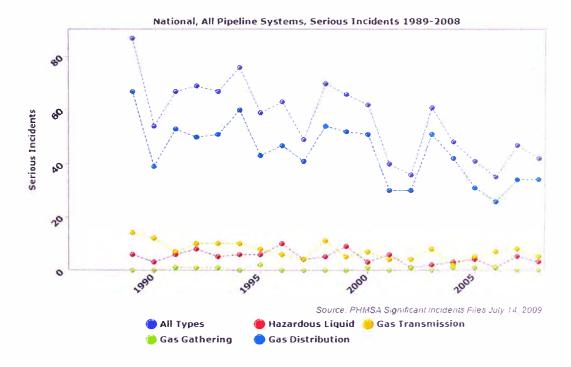


Figura 2.2. Frecuencia de incidentes para diferentes sistemas de ductos y/o tuberías en los Estados Unidos. Adaptado de DOT [13].

2.1.2. Discontinuidades en Soldaduras

De acuerdo a la AWS A3.0 [14] se define a una discontinuidad como "una interrupción de la estructura típica de un material, tal como la falta de homogeneidad en las características mecánicas, metalúrgicas o físicas". Una discontinuidad no necesariamente es un defecto. Una discontinuidad es considerada un defecto, de acuerdo a la AWS A3.0 [14] cuando "la discontinuidad o discontinuidades que por naturaleza o efecto acumulado inutiliza una parte o incapacita el producto de reunir las mismas condiciones aceptables según una norma o especificación de evaluación".

Una discontinuidad, en una unión soldada, puede ser caracteriza por su naturaleza (volumétrica o plana), por su orientación (longitudinal o transversal al eje del cordón de soldadura que la contiene), por su posición (superficial o interna) y por su localización (metal de soldadura (MS), zona afectada por el calor (ZAC) o metal base (MB). En la Figura 2.3. se presenta de manera esquemática la orientación, localización y posición para una discontinuidad plana.

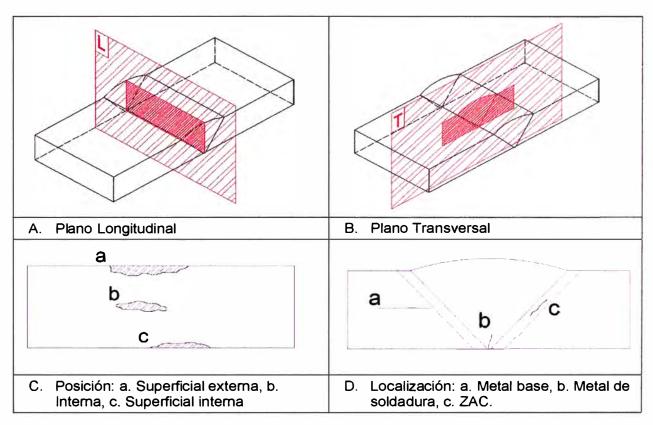


Figura 2.3. Descripción de una discontinuidad plana en una unión soldada.

Las inclusiones de escoria y porosidades son consideradas como discontinuidades volumétricas, las cuales presentan menor probabilidad de causar una falla cuando contenidas en materiales de alta tenacidad a la fractura [15]. Existe otro tipo de falla inherente al incorrecto alineamiento del bisel, el cual puede ser un concentrador de tensiones de existir un desalineamiento no permisible. Cada norma establece la tolerancia máxima de desalineamiento permisible entre uniones soldadas, por ejemplo la API 1104:2007 establece un máximo de 3 mm y en el caso de la CSA Z662 establece un máximo de 1,6 mm.

2.1.2.1. Influencia de las discontinuidades

Las discontinuidades reducen la sección que se verá expuesta a las cargas aplicadas en la estructura y son concentradoras de tensiones en sus alrededores; el grado con el cual puede afectar a la integridad de una estructura depende de los siguientes factores, [16]:

a. Naturaleza y longitud de la discontinuidad

Fisuras agudas son concentradoras de tensiones disminuyendo la resistencia del material que las contiene. Las porosidades e inclusiones de escoria acarrean concentración de tensiones menores. En la medida en que la discontinuidad sea de mayor longitud o coexistan varias discontinuidades, la resistencia del material se verá más afectada debido a la posibilidad de propagación de una discontinuidad individual o a la coalescencia entre discontinuidades.

b. Propiedades del material

Para materiales dúctiles la reducción de la resistencia será proporcional a la reducción del área de la sección resistente. Para materiales menos dúctiles las discontinuidades tienen un efecto más importante pudiendo generar un colapso por fractura frágil. Ya en el caso de materiales propiamente dicho frágiles, si el tamaño de la discontinuidad excede a un tamaño critico, dará inicio a una fractura inestable a partir de la discontinuidad.

c. Tipo de carga

La presencia de una discontinuidad se toma más crítica cuando se encuentra contenida en estructuras sometidas a cargas de impacto o cíclicos, de que cuando se encuentran en estructuras sometidas a cargas estáticas.

Las discontinuidades que pueden ser consideradas como planas y que pueden encontrarse en una unión circunferencial son listadas en la Tabla 2.3., las cuales pueden ser encontradas en el plano transversal o longitudinal al eje del cordón de la soldadura.

Tabla 2.3. Discontinuidades encontradas en una unión soldada circunferencial a tope.

Posición		Localización	
	Metal de soldadura	ZAC	Metal Base
Superficial externa	Relleno incompletoFisura longitudinalFisura TransversalFisura de cráter	MordeduraFisura en el margen de la soldadura	Fisura LongitudinaFisura TransversalSobreposición
Superficial Interna	 Concavidad Falta de fusión Fisura en la raíz Fisura longitudinal Fisura Transversal 	• Mordedura en la raíz	
Interna	 Falta de fusión entre pases Fisura Longitudinal Fisura Transversal 	• Fisura bajo el cordón	Laminaciones

Fuente: Elaboración propia.

2.1.2.2. Interacción de discontinuidades

Las discontinuidades localizadas próximas unas de otras, pueden interactuar cuando una tensión de intensidad crítica sea aplicada a la estructura, es decir, una alta concentración de tensiones se da en el área comprendida entre las discontinuidades pudiendo generar la coalescencia de ellas, haciendo fallar al elemento inclusive ante la aplicación de cargas menores a su límite de elasticidad [17]. Las nomas de criterios alternativos contemplan ciertas premisas para evaluar si dos ó más discontinuidades interactúan, determinando una discontinuidad de dimensiones equivalentes.

2.1.3. Tensiones actuantes en las discontinuidades

Una unión de soldadura circunferencial, básicamente, se ve expuesta a dos cargas principales: tensión circunferencial y tensión longitudinal o axial. Estas tensiones hacen que las discontinuidades se tornen críticas cuando el área que las contiene se encuentra en un plano normal a la tensión aplicada, reduciendo la tensión máxima admisible para dicha área. En una unión soldada circunferencial las discontinuidades críticas asociadas a cada una de las tensiones presentes son descritas en la Tabla 2.4.

Tabla 2.4. Discontinuidades que se tornan críticas ante las tensiones propias de un ducto.

Carga	Discontinuidad	
Tensión Circunferencial	Fisura transversalFisura de cráterFisura interlaminar	
Tensión Longitudinal o axial	 Mordedura Fisura en el margen de la soldadura Fisura bajo el cordón Fisura longitudinal Fisura de cráter Falta de fusión en la raíz y entre pases Falta de penetración Fisura en la raíz Fisura bajo el cordón Sobreposición 	

Fuente: Elaboración propia.

2.2. EVALUACIÓN DE LA SOLDADURA CIRCUNFERENCIAL

La ejecución de una unión soldada debe ser inspeccionada antes, durante y después de la realización de la soldadura, con la finalidad de garantizar que cumpla con los criterios de aceptación de la norma utilizada para su evaluación. La inspección visual es fundamental en el acompañamiento del proceso de construcción, pero posee limitaciones para determinar la sanidad interna de la unión soldada cuando se encuentra totalmente terminada, por lo cual es necesario utilizar los métodos de inspección por ensayos no destructivos de mayor aplicación, tales como, ultrasonido ó radiografía.

2.2.1. Normas de Evaluación de Defectos

En la literatura se dispone de varias normas de evaluación de discontinuidades en la soldadura circunferencial para la construcción de un ducto, ver Tabla 2.5., las cuales son de aplicación regional y algunas de ellas adoptadas para aplicación internacional. En el caso del Perú, la norma adoptada para la evaluación de uniones circunferenciales para la construcción de ductos es la norma API 1104 [15] de procedencia estadounidense.

Tabla 2.5. Normas aplicables para la evaluación de la sanidad de una unión soldada circunferencial.

	· · · · · · · · · · · · · · · · · · ·	
AS 2885.2 P	Pipelines - Gas and liquid petroleum - Welding	Australia
API 1104 V	Velding of pipelines and related facilities	Estados Unidos
BS 4515-1 la	Specifications for welding of steel pipelines on and and offshore. Carbon and Carbon nanganese steel pipelines	Reino Unido
CSA Z662 C	Dil and Gas Pipeline Systems	Canada

Todas estas normas establecen su metodología para la calificación de un procedimiento de soldadura y para la calificación de soldadores, la cual consiste en la elaboración de un cupón de prueba para posteriormente ser evaluado por ensayos destructivos de tracción, doblamiento, Nick-break y otros ensayos adicionales propios de cada norma. Cuando el procedimiento de soldadura

cumple con los criterios de aceptación, este se encuentra apto para su aplicación en la construcción de un ducto.

La evaluación de una unión soldada realizada por un procedimiento de soldadura calificado, debe ser realizada mediante ensayos de inspección no destructivos, contrastando las dimensiones de las discontinuidades encontradas con los criterios de aceptación de la norma aplicada.

2.2.2. Inspección por ensayos no destructivos

Los ensayos no destructivos permiten determinar la sanidad de la unión soldada sin destruir o introducir alguna alteración en sus características, constituyendo su uso indispensable para el control de la calidad del proceso de construcción de un ducto, [18]. Siendo los ensayos de mayor utilización para la evaluación de defectos internos en una unión circunferencial en ductos los métodos de radiografía y de ultrasonido.

La inspección por radiografía ha sido ampliamente utilizada, pero en los últimos años la inspección por ultrasonido ha venido siendo preferentemente utilizada, debido a que ha su metodología ha evolucionado y es posible de ser automatizada, permitiendo realizar un control del proceso de construcción de forma inmediata, reduciendo el tiempo de detección de uniones no aceptables, [19]

2.2.2.1. Radiografía Industrial

Una radiografía es una imagen permanente creada por rayos X o rayos gamma pasando a través del material. Los elementos esenciales son la fuente de radiación, una película y personal especializado en operación, seguridad e interpretación. Después de un cierto tiempo de exposición, la imagen del material es capturada sobre una película radiográfica [20].

Las ventajas que presenta este ensayo son: a) Detecta defectos superficiales y volumétricos, b) Cubre relativamente una gran área, c) Produce un registro visual permanente. Las desventajas son: a) Requiere personal con experiencia en interpretación, b) Requiere de acceso a ambas superficies a inspeccionar, c) Es difícil para descifrar radiografías de formas complejas, d) Detecta la longitud de un defecto tipo fisura, pero no puede caracterizar su profundidad, e) Discontinuidades planas alineadas entre sí y perpendicular a los rayos emitidos por la fuente son difíciles de interpretar, f) Los resultados no son inmediatos por la necesidad de realizar el revelado de las películas, g) Presenta un riesgo a la salud por exposición, [20-21].

2.2.2.2. Ultrasonido

El ensayo por ultrasonido consiste en el uso de un transductor en contacto con la superficie, a través de un líquido para acoplar el transductor con la superficie del material a inspeccionar, el cual emite ondas ultrasónicas a través del espesor del metal. Las ondas, normales a la superficie o con un determinado ángulo, indican la presencia de una discontinuidad, permitiendo determinar su

localización, altura y longitud, [20]. Esta técnica ha sido automatizada, lo cual facilita su aplicación para inspección en campo de las uniones soldadas circunferenciales, [19]. La aplicación de la técnica de inspección por ultrasonido es la más adecuada para el relevamiento dimensional de las discontinuidades y por ende para la aplicación de criterios alternativos de evaluación de discontinuidades.

Las ventajas que presenta este ensayo son: a) Alta sensibilidad a la presencia de pequeñas discontinuidades, b) Sólo se requiere acceso a una de las superficies del material inspeccionado, c) Excelente resolución inmediata para determinar tamaño y ubicación del defecto, d) No requiere de elementos de seguridad personal especiales, e) Útil para formas complejas. Las desventajas son: a) Alta capacitación del personal operador, b) requiere de un medio acoplador entre el transductor y superficie del material, c) Difícil interpretación en superficies muy delgadas, rugosas. d) Necesita de un sistema adicional para el registro de las inspecciones, e) El equipo de inspección es costoso cuando comparado con el ensayo por radiografía. [20 - 21].

Los variaciones del ensayo de ultrasonido más utilizados en la inspección de uniones soldadas circunferencial son el TOFD (Time of Flight Difraction) y el Phase Array, ver Figura 2.4., los cuales permiten realizar barridos de inspección rápidos y sobre todo el espesor de la unión soldada. Los cuales pueden ser automatizados mediante arreglos de configuración y guardar los registros de inspección digitalmente.

a) TOFD - Time of Flight Difraction

b) Phase array

Figura 2.4. Metodologia de ultrasonido. a) TOFD, Adaptado de Richter [22] b) Phase array, Adaptado de Saavedra [23].

2.2.3. Prueba hidrostática

Una vez que la unión de varios tubos haya formado un tramo de ducto de una longitud aproximada de 1 km, deberá ser ensayado por prueba hidrostática, donde la presión de prueba y el tiempo al cual estará sometido el tramo del ducto, es definida por el código de construcción. Para ello se hace uso de cabezales de prueba hidráulica los cuales se unirán de forma temporal a los tramos a ser probados, ver Figura 2.5.

La finalidad de la prueba hidrostática es detectar las fisuras que pueden estar localizadas en la unión circunferencial o inclusive en el material base, las cuales alcanzan un tamaño crítico de fisura catastrófica durante la prueba. Sin embargo, fisuras sub-críticas pueden permanecer y bajo ciertas condiciones crecer durante el servicio. El crecimiento de la fisura en operación puede ser por

fatiga, fluencia o mecanismo asistido por el medio, tipo corrosión bajo tensión [24].

a) Cabezales para prueba hidrostática

b) Cabezal soldado a tramo de ducto para iniciar prueba hidrostática.

Figura 2.5. Cabezal para prueba hidrostática, [25].

Una recomendación práctica para garantizar el éxito de la prueba hidrostática es realizar una limpieza previa del tramo, mediante aire comprimido entrando por la válvula de carga de uno de los cabezales y saliendo la suciedad por el otro extremo del tramo. Luego se procederá al llenado con agua tratada por el extremo de nivel más bajo con la finalidad de expulsar el aire contenido en el tramo del ducto y asegurar que no queden colchones de aire y genere una prueba hidráulica inadecuada. El bombeo deberá continuar hasta que observar que comienza a salir agua por el otro extremo, cerrando la válvula de ese extremo sin dejar de bombear asegurando que no existe aire en el interior. El bombeo deberá continuar hasta la presión definida en el procedimiento utilizado y verificar que no existen fugas o goteos a lo largo del tramo de ducto probado.

CAPITULO III INTEGRIDAD ESTRUCTURAL EN UN DUCTO

Se entiende como integridad estructural, al comportamiento confiable, previsible, repetitivo y de probabilidad mínima de falla de un componente cuando se ve expuesto a la solicitación de las cargas para el cual fue proyectado o reacondicionado, durante su vida estimada de servicio.

La integridad estructural de un ducto se verá afectada cuando exista un esfuerzo que haga perder su estanqueidad, generando una fisura en el espesor de pared por donde fuga el fluido que contiene. Este esfuerzo puede ser superior ó inferior al máximo permisible que se asocia a una o más discontinuidades producto de un mecanismo de daño químico (corrosión) o mecánico (pérdida de espesor de pared por desgarre, rajaduras, fatiga, entre otras) [26].

Por ello la necesidad de determinar las cargas que actuarán sobre el ducto y las discontinuidades que se puedan presentar asociadas a la estructura o unión soldada. Las uniones soldadas representan una discontinuidad estructural debido a que existe disimilaridad microestructural y de propiedades mecánicas [27].

Así también, el acabado superficial (refuerzo y exceso de penetración) y desalineamiento de la unión soldada, pueden actuar como concentradores de tensión,

haciendo que la unión soldada pueda fallar a cargas inferiores al límite de elasticidad [28]. Esta situación se puede ver aún más agravada de existir discontinuidades internas o superficiales reduciendo su capacidad para resistir las cargas para la cual fue proyectada [16].

3.1. CARGAS QUE ACTÚAN EN UN DUCTO

Las cargas que actúan sobre un ducto son diferentes en función de la sub-fase del proyecto: Etapa de montaje y Etapa de servicio. Durante la etapa de montaje se dan las cargas generadas por su propio peso durante el izado (debido a que durante la bajada de un tramo de ducto, este se comporta como un tubo flexible generando cargas máximas en los extremos del punto de izado) y cargas del medio (viento, maniobras de montaje, presión de prueba hidráulica, entre otras); durante la etapa de servicio, un ducto se encuentra expuesto a cargas propias de la operación, así como a cargas esporádicas de valores desconocidos, tales como deslizamiento de suelo, movimientos sísmicos, daños por terceros, entre otros. Muchas de las cargas propias de la operación no son de magnitud constante y varían durante el servicio (por ejemplo cambios en la presión y temperatura de operación), pudiendo generar fallas por fatiga. En la Tabla 3.1. se presentan un resumen de las principales cargas que pueden actuar sobre un ducto debido a diferentes tipos de solicitación.

Tabla 3.1. Cargas que actúan en un ducto de transporte en servicio [20, 26, 29]

Cargas de operación

- Peso propio de los componentes (tubo, válvulas, entre otras).
- · Peso del fluido.
- Presión interna y/o externa (carga por tapada, carga del tráfico de vehículos en la superficie, presión hidrostática para ductos submarinos).
- Presión hidrostática externa (travesias de represas, rios y lagos profundos).
- Variaciones normales en el caudal del flujo.
- Variaciones normales de temperatura del sistema.
- Descarga de la válvula de alivio para quemadores en gasoductos o venteos.
- Vibración de baja amplitud (por ejemplo pulsación de bombas alternativas)
- Vientos normales (para ductos aéreos)
- Ondas y corrientes marinas (para ductos submarinos)

Cargas esporádicas

- Presión por golpe de ariete (por ejemplo cierre rápido de una válvula check o válvula de control)
- Flujo de dos fases transitorias
- Temperatura y presiones fuera de los parámetros del proyecto
- Altas variaciones de temperatura
- Vibraciones de gran amplitud
- Vientos, oleaje o corrientes extremas (para ductos aéreos o submarinos)
- Deslizamientos de terreno y hundimiento del terreno (ducto sin sostenimiento del suelo).
- Ondas de impacto de explosión (actividad minera o construcción de nuevos ductos).
- Debido a la naturaleza: Terremotos y huaycos.

3.1.1. Tensiones primarias y secundarias

Las tensiones que actúan en una estructura se clasifican como primarias y secundarias, y los ductos no escapan a la regla. La tensión primaria es definida como una tensión que (siendo elevada lo suficiente) contribuye para el colapso plástico. Las tensiones primarias son subdivididas en tensión de membrana P_m (tensión media a lo largo del espesor que es necesario para asegurar el equilibrio de la estructura) y tensión de flexión P_b (componente de tensión debido al cargamento impuesto que varía

linealmente a lo largo del espesor). Estas tensiones surgen tanto de cargas y momentos aplicados externamente, así como de la presión interna en el caso de los ductos. Si estas cargas son lo suficientemente elevadas pueden conducir a la estructura a un colapso plástico (en el caso de material dúctiles), fallas por fractura, fatiga, desgarre del material o corrosión bajo tensión (Stress Corrosion Cracking), [30].

La tensión secundaria es definida como una tensión auto-limitante, por el hecho de que su valor es reducido en la medida en que la estructura se deforma. Tensiones térmicas y residuales son usualmente tratadas como secundarias. Las tensiones secundarias no pueden causar colapso plástico, pero pueden contribuir en la fractura si estas ocurren cerca de alguna fisura. En algunos casos las tensiones secundarias deben ser consideradas como tensiones primarias, como por ejemplo, en el caso de tensiones térmicas alternadas para el análisis de fatiga, [30].

3.1.2. Cargas activas y reactivas

Cargas impuestas directamente a través de fuerzas y/o momentos son llamados de cargas activas. La carga resultante de movimientos impuestos, como por ejemplo movimientos causados por expansión térmica, son llamados de cargamentos reactivos [20, 29]. En la Tabla 3.2. son presentados las cargas actuantes en un ducto terrestre y los esfuerzos que generan.

Tabla 3.2. Cargas activas y reactivas para ductos enterrados [29]

Carrage Actives	[footo
Cargas Activas	Efectos
Presión interna	 Tensión circunferencial
r lesion interna	 Tensión longitudinal
Peso del ducto y del fluido	Poco significativo
Peso de válvulas, bridas y accesorios	Poco significativo
Peso de tapada	 Flexión
Sobrecarga de tráfico (en los cruces ferroviarios)	 Flexión
Variación de temperatura	 Tensión longitudinal
Cargas Reactivas	Efectos
Reacción de apoyo del suelo	 Flexión
Reacción de fricción	Tensión longitudinal
Reacción de anclaje	Tensión longitudinal

3.1.3. Cálculo de tensiones para un ducto terrestre

Como visto anteriormente, las cargas que actúan sobre un ducto son diversas y los esfuerzos que ellas causan también. En todos los casos de diseño se considera que el material del ducto es continuo, sin presencia de fisuras u otros defectos y de comportamiento elástico; así como que el ducto tiene espesores de pared fina, en una relación de $D/t \ge 20$ y operan en el régimen elástico de los materiales.[26]

La determinación de los esfuerzos generados principalmente por la presión interna (así como por otros generados por la dilatación o contracción térmica y por flexión por cargas externas o por el propio peso del ducto), serán determinados en función de las condiciones a las cuales se verá expuesta la totalidad o parte del ducto, y a las consideraciones establecidas en la norma aplicable para cada tipo de servicio del ducto. Cada una de las normas de construcción aplica factores de diseño, en

función de la clase de localización por donde pasará el ducto, garantizando la integridad estructural del ducto. Las normas de mayor uso para el cálculo de las tensiones son listadas en la Tabla 3.3.

Consideraciones tales como cruces de ríos, zonas de alta probabilidad de lluvia que generan deslizamiento o hundimiento de suelos, entre otras, deberán ser tomadas en cuenta para el cálculo de esfuerzos y determinar la carga máxima posible al que puede verse expuesto el ducto, y por ende sus uniones soldadas circunferenciales. Es finalmente la determinación de la carga máxima principal a la que se verá expuesta el ducto o unión soldada, la que permitirá delimitar las dimensiones máximas permisibles de una discontinuidad plana en una unión soldada.

Otras consideraciones que se deberán tener en cuenta para la determinación de la tensión máxima que actúa sobre un ducto, son las actividades esporádicas que puedan exponerlo a una tensión máxima por flexión o a esfuerzos que se puedan de forma particular en alguna actividad de mantenimiento, tal como cuando se realiza el movimiento de un ducto en servicio o la realización de calicatas de inspección, donde las uniones soldadas circunferenciales se ven expuestas a esfuerzos propios de la actividad. Debido a que el presente documento no tiene por finalidad establecer las consideraciones para el cálculo de diseño, pero si a determinar los esfuerzos máximos que puedan darse en una unión soldada circunferencial, en el Apéndice A se podrá encontrar el cálculo de los principales esfuerzos a tener en consideración.

Tabla 3.3. Algunas Normas utilizadas para el cálculo de tensiones que actúan en un ducto.

Noma	Título					
ASME B31.4	Pipeline Transportation Systems for Liquid Hydrocarbons and othe Liquids					
ASME B31.8	Gas Transmission and Distribution Systems					
CSA Z662	Oil & Gas Pipeline Systems					
API RP 1117	Recommended Practice for Movement in In-service Pipelines					
API STD 579	Fitness-for-Service					
BS PD 8010	Code of Practice for Pipelines. Subsea pipelines					
DNV OS-F101	Submarine Pipe Systems					

3.2. FORMACIÓN DE DISCONTINUIDADES PLANAS

La formación de una discontinuidad plana o volumétrica en una unión soldada circunferencial tiene diversos orígenes los cuales pueden estar asociados principalmente a la aplicación de un procedimiento de soldadura inadecuado para el material base utilizado (por ejemplo temperatura de precalentamiento inadecuado), consumibles inadecuados o en mal estado (por ejemplo revestimiento de electrodos con contenido de hidrógeno), problemas en el diseño o en la construcción (por ejemplo alto grado de embridamiento de la unión soldada), y de otros factores que se ven asociados con la pericia y técnica del soldador u operador, el medio donde se desarrolla la actividad o debido a una inspección de soldadura inadecuada [27 – 28].

3.2.1. Influencia del Material de Aporte

Kiral [31] demostró que las dimensiones aceptables para una discontinuidad plana se ven influenciadas por el proceso de soldadura utilizado y las características del consumible utilizado. Como se muestra en la Figura 3.1., para un mismo material base soldado por dos procesos de soldadura diferentes que utilizaron un material de aporte de igual límite de elasticidad teórico, se obtienen diferentes longitudes críticas de fisura ante la aplicación de una misma carga. En este caso la unión soldada con el proceso de electrodo revestido presentó una igual resistencia ante la aplicación de una carga, aún conteniendo fisuras de mayor longitud al ser comparado al proceso de alambre tubular.

Por lo anterior, las dimensiones máximas aceptables de una discontinuidad plana de una unión soldada con un proceso de soldadura específico son únicas para dicho procedimiento de soldadura, limitando su aplicación para otro procedimiento de soldadura.

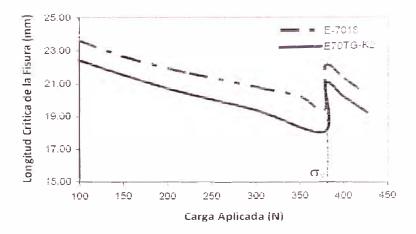


Figura 3.1. Variación del tamaño de longitud (2c) de una fisura generada por la aplicación de una carga en función del material de aporte y proceso de soldadura. Adaptado de Kiral [31].

3.2.2. Influencia de alteraciones en la construcción

Algunas discontinuidades en una unión soldada, tales como, mordeduras, refuerzo excesivo o desalineamiento pueden ser considerados como un generador de discontinuidades planas o se influyente en reducir la resistencia del material ante la presencia de la discontinuidad.

Las mordeduras dependiendo de su profundidad y del espesor de pared, puede ser considerada como una discontinuidad plana que puede reducir la sección del espesor de pared considerablemente. Un refuerzo con un gran ángulo entre el material base y el pie de la soldadura es un concentrador de tensiones y generador de fisuras en la zona afectada por el calor cuando se ve sometido a una carga de fatiga, agravándose cuando el ángulo es mayor [27, 32]. El desalineamiento de la unión soldada es una discontinuidad estructural que reduce las dimensiones máximas aceptables de una discontinuidad plana debido a que es un alto concentrador de esfuerzos [33].

En la Figura 3.2. se observa como la presencia de un refuerzo excesivo, mayor ángulo con respecto a la superficie externa del metal base incrementa el factor de concentración de esfuerzo, y en la Figura 3.3. se observa como la presencia de un desalineamiento, línea discontinua en color rosado, reduce la longitud máxima aceptable de una discontinuidad plana cuando mayor es la altura de la discontinuidad.

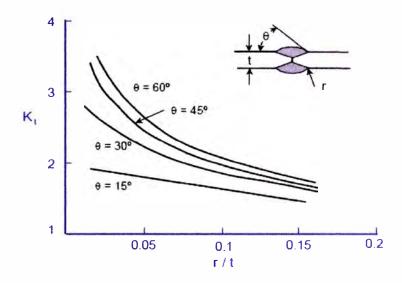


Figura 3.2. Influencia del ángulo entre el refuerzo de soldadura y el metal de base, pie de la unión, en el factor de concentración de tensiones. Adaptado de Fosca [32].

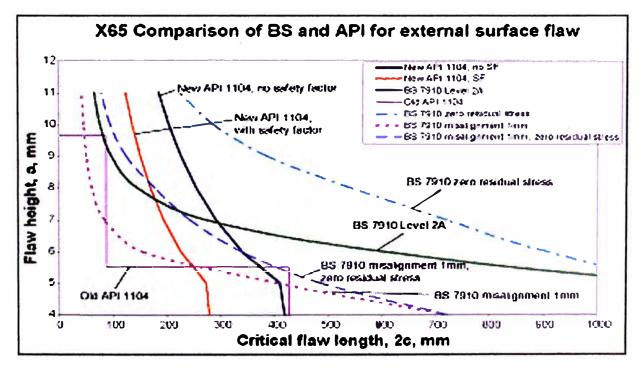


Figura 3.3. Influencia del desalineamiento para la determinación de las dimensiones máximas aceptables de una discontinuidad plana de acuerdo a los criterios de la BS 7910, [33].

3.3. CARACTERIZACIÓN DE DISCONTINUIDADES PLANAS

La caracterización de una discontinuidad consiste en determinar sus dimensiones, su posición y su localización en referencia de la unión soldada que la contiene, así como también, determinar si existe interacción con otras discontinuidades.

Cada una de las normas o procedimientos que se encuentran asociados a la evaluación de discontinuidades planas especifica los procedimientos para determinar la interacción entre discontinuidades y establecer las dimensiones equivalentes que representen a las interacciones encontradas.

La caracterización dimensional de una discontinuidad se define por su altura (a), longitud (2c) y su profundidad (d) con respecto al espesor de pared (t) de la tubería de diámetro externo (D). En la Figura 3.4. se muestra esquemáticamente las dimensiones representativas de una discontinuidad plana. Y en la Figura 3.5. se muestra esquemáticamente un caso de evaluación para la interacción entre dos discontinuidades planas próximas en una unión soldada.

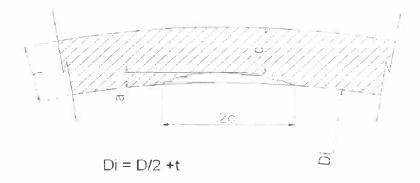


Figura 3.4. Esquematización de la caracterización de las dimensiones relevantes de una discontinuidad plana en una unión soldada.

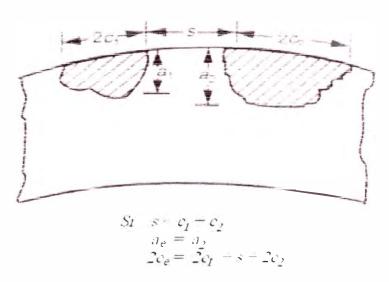


Figura 3.5. Primer caso de interacción según las consideraciones de la API 1104:2007 Apéndice A. Adaptado de la API 1104:2007 [15]

CAPITULO IV

EVALUACIÓN DE LOS PROCEDIMIENTOS ALTERNATIVOS DE ACEPTACIÓN PARA DISCONTINUIDADES PLANAS

Como indicado las discontinuidades presentes en las uniones soldadas en la construcción de ductos son evaluadas mediante normas competentes que establecen criterios de aceptación adquiridos a través de la experiencia, sin considerar la resistencia mecánica del material, geometría de la unión soldada, ni las condiciones de operación del ducto.

Criterios de análisis por mecánica de la fractura, denominado Evaluación Crítica de Ingeniería (Engineering Critical Assessment – ECA), tienen en consideración las propiedades mecánicas del material evaluado, dimensiones de la discontinuidad, las tensiones aplicadas a la estructura y las dimensiones geométricas del tubo.

La utilización de estos criterios ha permitido minimizar el número de reparaciones innecesarias debido a que determina de forma analítica las dimensiones máximas permisibles de discontinuidades planas potencialmente críticas que puedan afectar la integridad de la unión soldada, reduciendo el índice de uniones soldadas rechazadas por el criterio adquirido en base a la experiencia.

El procedimiento de análisis mayormente utilizado es el Diagrama de evaluación de Falla (Failure Assessment Diagram – FAD), existiendo en la literatura la descripción de varios procedimientos de análisis basados en este concepto, con resultados no necesariamente coincidentes para una misma discontinuidad en una unión soldada. Este hecho genera un cuestionamiento sobre cual procedimiento confiere una mayor precisión en la determinación del tamaño crítico de una discontinuidad o es de mayor practicidad.

En la aplicación práctica se sugiere la evaluación de varios métodos y determinar el método que permite obtener mejores resultados de aceptación, tal como presentado por Fazackerly et al. [4] para la aplicación de la soldadura de un ducto en acero API 5L X80, ver Figura 4.1. Si bien los métodos pueden tener principios similares de cálculo, las consideraciones realizadas por cada uno hacen que su aplicación sea limitada y que no sea simplemente la transposición de resultados para obtener las mejores ventajas constructivas de un ducto de transporte de gas. En el ejemplo presentado, fue adoptado los resultados obtenidos por la API 1104:2005.

Figura 4.1. Curva de dimensiones máximas permisibles para un tubo de acero API 5L X80, 30" de diámetro y 0.421" de espesor de pared, según la API 1104:2005 y CSA Z662:99. Adaptado de Fazackerly et al. [4].

En el presente trabajo, los procedimientos que fueron considerados para su evaluación de forma cualitativa y cuantitativa son los descritos en las normas API 1104 en sus versiones 2005 y 2007, la API STD 579: 2007, la BS 7910:2007 y la CSA Z662:99 por ser los de mayor aplicación. Esta comparación permitió determinar los métodos de mayor alcance para ductos de transporte y practicidad de cálculo.

4.1. DIAGRAMA DE EVALUACIÓN DE FALLA

Este concepto de análisis tiene en consideración la interacción de las fallas por fractura frágil y por colapso plástico. En este análisis gráfico el eje de las ordenadas representa la razón de tenacidad, K_r , la cual define la probabilidad de falla por fractura frágil, y el eje de las abscisas la razón de la tensión, S_r o L_r , la cual define la probabilidad de falla por colapso plástico. La interacción de estas dos razones define una curva de evaluación de falla (FAC – Failure Assessment Curve), la cual en la forma

generalizada es independiente de las propiedades mecánicas del material, posición y tamaño del defecto, y de la geometría de la estructura evaluada [34].

Un diagrama esquemático de evaluación de falla, es representado en la Figura 4.2. donde la interacción entre las dimensiones de una discontinuidad y los esfuerzos aplicados en una estructura, son relacionados y representada por el punto de evaluación (L_r , K_r). Si el punto de evaluación se encuentra dentro del área descrita por la curva, la discontinuidad es considerada como segura sin riesgo de afectar la integridad de la estructura. Cuando el punto de evaluación se encuentra sobre la curva o fuera del área descrita por la curva, la discontinuidad es considerada como insegura con riesgo de afectar la integridad de la estructura. Mediante este análisis se evaluará si la aplicación de un esfuerzo máximo principal asociado a las dimensiones de la discontinuidad evaluada afectará a la integridad de la estructura.

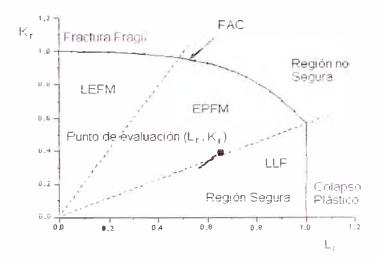


Figura 4.2. Diagrama esquemático de evaluación de la falla. Adaptado de Antaki [20]

En el área descrita por la FAC se determinan tres regiones delimitadas por las líneas discontinuas, descritas a seguir:

- Zona de fractura lineal elástica (Linear Elastic Fracture Mechanics LEFM). En la región proyecta arriba de la FAC la falla puede ocurrir por fractura frágil.
- Zona de fractura lineal elasto-plástica (Elastic Plastic Fracture Mechanics –
 EPFM). En la región proyectada arriba de la FAC la falla puede ocurrir por la interacción de la fractura elástica y plástica.
- Zona de carga límite a la fractura (Limit Load Fracture LLF). En la región proyectada arriba de la FAC la falla puede ser por fractura dúctil del material remanente donde propagará la fisura.

4.2. COMPARACIÓN CUALITATIVA DE LAS NORMAS DE CRITERIO ALTERNATIVO

La primera etapa adoptada para la comparación de las normas que poseen un criterio alternativo de evaluación: API 1104:2005, API 1104:2007, API STD 579, BS7910 y CSA Z662 fue determinar para que tipos de discontinuidades planas son aplicables, sus variables esenciales necesarias para la evaluación y sus rangos permisibles de aplicación.

A continuación se detallarán de manera resumida la aplicación y el tipo de análisis que utiliza para determinar las dimensiones máximas permisibles de una discontinuidad plana. La Tabla 4.1. presenta las limitaciones y el grado de dificultad de

cada uno de los procedimientos descritos en las normas antes indicadas. La Tabla 4.2. presenta las diferencias que existen con respecto a su aplicación con respecto a la discontinuidad y las consideraciones que tiene para la evaluación de interacción entre discontinuidades. La Tabla 4.3. presenta la información mínima necesaria (variables esenciales) para la evaluación de una discontinuidad. Una descripción de cada uno de los métodos de forma más amplia se presenta en el Apéndice B.

4.2.1. API 1104:2005 Apéndice A

El criterio de evaluación alternativo del Apéndice A del API 1104:2005 no especifica el criterio de fractura utilizado para la determinación de las dimensiones permisibles de una discontinuidad plana no aceptada por el criterio de "workmanship". Este procedimiento alternativo toma únicamente en consideración la geometría del tubo (diámetro y espesor de la pared) y la tenacidad a la fractura del material sin considerar las propiedades mecánicas del material de base (σ_y, σ_t) .

Este procedimiento es aplicable bajo las siguientes condiciones:

- Es aplicable solo para circunferencias de soldadura entre tubos de igual espesor de pared nominal.
- No es aplicable para soldadura con deformación axial, ε_a , superior a 0.5%.
- El valor de CTOD debe estar entre 0.005" y 0.010".
- La deformación por tensión residual debe ser igual a 0.002.

- Válido para D/t ≥ 3.
- Altura máxima permisible de la discontinuidad, a, igual a 0.5t.
- Longitud máxima permisible de la discontinuidad, 2c, igual a 0.4D, cuando a/t
 < 0.25 o igual a 4t, cuando a/t se encuentra entre 0.25 a 0.50, si la razón D/t
 > 17. Cuando la razón D/t ≤ 17, se debe hacer uso de un gráfico.

4.2.2. API 1104:2007 Apéndice A

Posee tres criterios de evaluación para una discontinuidad en una unión soldada. El valor del CTOD del material evaluado debe de ser conocido. Los criterios de evaluación utilizados son por colapso plástico y por fractura frágil. Las dimensiones de las discontinuidades están limitadas a una longitud máxima de $0.125 \pi D$ y una altura máxima de 0.5t. Para todos los casos la relación de $D/t \ge 10$. Los métodos descritos no aplican para materiales con una relación de $\sigma_y/\sigma_t > 0.95$, salvo sean hechos ensayos adicionales que validen la utilización de este apéndice.

La elección de una de las opciones va depender de un previo análisis de los esfuerzos y cargas actuantes en el ducto. Este apéndice no es aplicable para soldaduras circunferenciales sometidas a una razón de deformación mayor a 10° segundos (una razón de esfuerzo de 0.32 MPa/mm²-seg [30ksi/in²-seg] para el acero).

El uso del apéndice A esta limitado a las siguientes condiciones:

- Soldaduras circunferenciales entre tubos de igual espesor de pared nominal.
- Inspección no destructiva realizada para toda la unión soldada.
- Soldaduras sin alta disimilaridad de límites de elasticidad entre el material base y metal de aporte muy marcado
- La máxima tensión axial de diseño no mayor que el límite mínimo de elasticidad especificado.
- Deformación axial máxima del proyecto, no debe ultrapasar el 0.5%.
- Soldaduras en estaciones de bombeo y compresión, accesorios y válvulas en la línea principal y reparación de soldaduras.

Opción 1

El criterio de análisis es de colapso plástico haciendo uso de gráficos basados en conceptos teóricos y evaluados experimentalmente, que consideran la tenacidad del material obtenida por el ensayo de CTOD. Es aplicable para cargas de fatiga baja o moderada. El cálculo del esfuerzo residual no es requerido porque un factor de seguridad está incorporado en los criterios de evaluación.

Opción 2

El criterio de análisis es de fractura frágil y colapso plástico, consideradas de forma simultánea generando un diagrama de evaluación de falla. Ofrece un análisis más amplio en función de las propiedades mecánicas del material y la geometría de la discontinuidad. Para cada longitud calculada asociada a cada

altura de las discontinuidades, es aplicado un factor de seguridad de 1.5. Estos valores finales pueden ser modificados en función del grado de agudeza del método de inspección para detectar pequeñas discontinuidades y del grado de calidad deseado.

Opción 3

Aplicable cuando el crecimiento de una discontinuidad puede suceder durante el montaje u operación de ductos "offshore". No es indicado un procedimiento de análisis, pero es recomendado el uso de los procedimientos de evaluación de la BS 7910. Cualquier otro procedimiento adoptado debe tener en consideración factores de seguridad. Este criterio es utilizado cuando el análisis de fatiga exceda los límites establecidos para las dos primeras opciones.

4.2.3. CSA Z662:1999 Apéndice K

El apéndice K utiliza el criterio de análisis por fractura frágil y por colapso plástico. Considera la tenacidad del material obtenida por el ensayo de CTOD a la menor temperatura de ensayo, y un cálculo de las deformaciones de todas las cargas actuantes en el tubo, no considera el análisis por esfuerzos residuales para la evaluación de las discontinuidades. El método de evaluación es simple y hace uso de gráficos para determinar longitudes y alturas máximas permisibles de una discontinuidad.

La altura máxima aceptable para una discontinuidad depende del tipo de servicio al cual está destinado el material evaluado. Para servicios con gas está limitado a 0.5*t* y para servicios con líquidos está limitado a 0.25*t*. Y la longitud

máxima aceptable para de la discontinuidad es el menor valor encontrado con el uso de los gráficos ó $0.1\pi l$).

Una explicación que descrita en uno de sus apéndices se especifica que una discontinuidad será aceptable bajo el análisis de mecánica de la fractura, si se garantiza que el crecimiento de la discontinuidad durante el servicio no resultará en una imperfección que sea mayor del tamaño máximo aceptable.

4.2.4. BS7910:2007 Sección 7 – Evaluación por resistencia a la fractura

Posee tres niveles de evaluación con métodos similares donde el criterio de análisis es por fractura y colapso plástico para cada uno de los niveles. El nivel seleccionado va depender del material, de la información disponible y cuan conservativos son los requisitos³. Todos los niveles tienen en consideración la tenacidad del material obtenido por el ensayo de CTOD o el factor de intensidad de esfuerzo, *K*. Para el cálculo de la razón de fractura es considerado la geometría de la unión soldada y la geometría de la discontinuidad.

Nivel 1 – Evaluación simplificada

Es aplicable cuando se posee información limitada de las propiedades mecánicas del material o de los esfuerzos aplicados. Existen dos métodos, Nivel 1A y Nivel 1B, los cuales son métodos de evaluación conservativos.

Nivel 1A – Hace uso de un diagrama FAD limitado a una razón de tenacidad, K_r , menor a $1/\sqrt{2}$ (0,707) y una razón del esfuerzo referencial de colapso

plástico y del esfuerzo de elasticidad, S_r , menor a 0.8. El factor de seguridad de este nivel es de aproximadamente 2 en el tamaño de la discontinuidad.

 Nivel 1B – El método de evaluación es simple y hace uso de gráficos para determinar las longitudes y alturas máximas permisibles de una discontinuidad. El criterio de análisis es por colapso plástico.

Nivel 2 – Evaluación normal

Se trata de la evaluación de aplicación general y posee dos métodos, donde el criterio de análisis por colapso plástico es utilizado. Un único valor de tenacidad es necesario para el análisis. Caso no pueda ser medido el valor de la tenacidad (resultante de un ensayo de CTOD), puede ser estimado de un ensayo de impacto Charpy-V.

En el cálculo de la tensión deben ser considerados las tensiones primarias y secundarias. Las tensiones pueden ser consideradas uniformes o no uniformes. El procedimiento presenta una guía de cálculo de las tensiones residuales no uniformes en uniones soldadas.

- Nivel 2A FAD generalizado que no necesita de la información de tensión/deformación. El valor de la razón de fractura está en función del valor de la razón de carga proyectada dividido por el límite de elasticidad del material, L_L. Adecuado para evaluar zonas afectadas por el calor.
- Nivel 2B Aplicable para todo tipo de metal base y metal de aporte. Ofrece mayor precisión al ser comparado con el Nivel 2A, pero requiere

significativamente de mayor información. Requiere una curva de tensióndeformación en la temperatura de servicio del metal base y/o metal de aporte. No es aplicable para evaluación de zonas afectadas por el calor.

Nivel 3 – Evaluación por desgarre dúctil

Apropiado para materiales dúctiles que presentan desgarre estable. Este nivel posee tres métodos de análisis, y cada uno usa una línea diferente de análisis. Es necesario los valores de tenacidad a la fractura, obtenidos por el ensayo de CTOD ó Integral-J. Deben ser utilizados factores de seguridad basados en probabilidad.

- Nivel 3A FAD generalizado del Nivel 2A.
- Nivel 3B Curva deformación del material, derivado del Nivel 2B, requiere datos de tensión-deformación, especialmente en deformaciones menores de 1%.
- Nivel 3C Utiliza los valores obtenidos por el ensayo Integral-J, para un análisis elástica y elasto-plástico bajo cargas de servicio. Valor de la razón de fractura y el valor de la Integral-J obtenido por el análisis elástica dividido por el valor de la Integral-J.

Las discontinuidades no planas pueden ser tratadas como planas, teniendo en consideración los siguientes requisitos:

Límite mínimo de elasticidad especifico menor a 450 N/mm².

- Energía media de impacto Charpy-V, obtenido de tres ensayos, en la temperatura mínima de servicio ≥ 40J.
- Valor de energía de impacto Charpy-V mínimo individual en la temperatura mínima de servicio de 28J.

4.2.5. API STD 579:2007 Sección 9

Método para evaluar la integridad de un componente presurizado en servicio que puede contener una discontinuidad o daño. Los grados de degradación como consecuencia de daños múltiples son: fractura frágil, corrosión/erosión, fisuras como defectos, daño por fuego, daño por fluencia y daño mecánico.

Cada técnica de criterio de evaluación, para cada uno de los grados de degradación posee tres niveles de evaluación, siendo el Nivel 1 más conservador y de mayor facilidad de uso. El Nivel 2 evalúa en mayor detalle produciendo resultados más exactos que los obtenidos en el Nivel 1. Y el Nivel 3 es una evaluación más detallada donde el análisis recomendado está basado en métodos numéricos tales como el método de elementos finitos.

De forma general para la metodología de evaluación en cada sección es necesario poseer la siguiente información:

- Proyecto del equipo
- Historia de mantenimiento y operación

- Propiedades mecánicas (limite de elasticidad, limite de rotura, tenacidad a la fractura, constantes físicas del material – módulo de elasticidad, razón de Poisson).
- Medidas y datos específicos para una evaluación por Aptitud para el Servicio
 (Fitness-for-Service FFS) de cada sección.

Sección 9 – Evaluación de fisuras como defectos

El criterio de evaluación es basado en el método FAD. Donde las dimensiones de la fisura están limitadas a una altura máxima de 0.25t y una longitud de 6 veces la altura máxima (1.5t), siendo t el espesor de pared nominal del tubo.

Este método de evaluación posee tres niveles de análisis. Para los dos primeros procedimientos de análisis son aplicables si el componente opera en el rango de elasticidad, si el efecto de cargas dinámicas no es significativo (terremoto, golpe de ariete, impacto, otros.).

Para el Nivel 1, las siguientes limitaciones deben ser consideradas:

- El espesor del componente donde se encuentra la discontinuidad no debe ser mayor a 38 mm (1.5").
- Las cargas aplicables en el componente fueron consideradas en el proyecto.
- El límite de elasticidad de metal base es menor o igual a 276 MPa (40 ksi), el límite de rotura del metal base es menor o igual a 483 MPa (70 ksi), y las

uniones soldadas fueron hechas con material de soldadura compatible con el metal base.

Antes de iniciar la comparación cuantitativa fue necesario tener ciertas consideraciones para acotar los métodos a seleccionar en función de la comparación cualitativa, siendo los mismos descritos a seguir:

- Los materiales utilizados en la actualidad para los tubos para transporte de gas según la especificación API 5L son de alta tenacidad presentando fractura dúctil o por colapso plástico aún a baja temperatura [35-36]. Ver Figura 4.3. Por lo cual los métodos Nivel 3A, 3B y 3C de la BS7910 no fueron considerados para la evaluación debido a que los mismos son utilizados para materiales de fractura frágil después de una rotura dúctil.
- El método descrito en la CSA Z662 es muy similar al método Nivel 1B de la BS7910, por lo cual se consideró evaluar el método descrito en la CSA Z662.
- Debido a que no se cuenta con ensayos de tracción para obtener la gráfica de tensión-deformación de los materiales considerados a evaluar y siendo el presente trabajo un estudio teórico, se prescindió de utilizar el método Nivel 2B de la BS7910, además de ser un método similar al descrito en el Nivel 2A, el cual considera únicamente los valores de límite de elasticidad y límite de rotura del material ensayado. Y por otro lado el Nivel 2B no es aplicable para la evaluación de zonas afectadas por el calor.

El método Nivel 1 de la API STD 579 presenta una metodología simple, pero limita su utilización para cargas influencias únicamente por la presión interna del tubo, así como para discontinuidades de longitud igual a 1.5t y altura igual a 0.25t. Así también, el método de Nivel 2 y 3 se torna complejo por la utilización de tablas e iteraciones sucesivas, para lo cual se tienen en consideración los parámetros de operación del ducto, tales como temperatura, presión, entre otros que dificultaron asumir condiciones para su evaluación numérica.

Por lo cual se determinó para la evaluación cuantitativa a los métodos: API 1104:2005, API 1104:2007, CSA Z662:99 y BS 7910:2007 Nivel 2A.

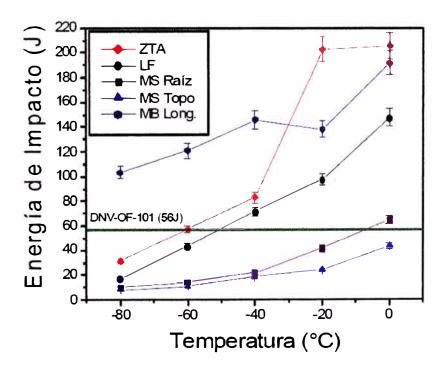


Figura 4.3. Resultados de ensayos de impacto Charpy V para una unión soldada por GMAW de corriente controlada y FCAW en material base API 5L X80. ZTA: Zona Térmicamente Afectada, LF: Línea de fusión, MS Raíz: Material de soldadura raíz, MS Topo Material de soldadura de refuerzo, MB Long: Material base sentido longitudinal. Adaptado de Sanz [36].

Tabla 4.1. Resumen comparativo de las limitaciones y grado de dificultad para las normas API 1104, API STD 579,

Norma	Método	Características y Limitaciones	Grado de dificultad	Hace uso de		
API 1104		 Solamente aplicable para soldaduras circunferenciales entre tubos de igual espesor de pared nominal. No aplicable para una deformación axial, ε₀, superior de 0.5%. CTOD ≥ 0.13 mm (0.005") y ≤ 0.25 mm (0.010"). 	Simple	Gráficos Cálculo numério		
(2005)		 Altura de la discontinuidad ≤ 0.5t. Longitud de la discontinuidad, 2c, ≤ 0.4D cuando α/t < 0.25 o ≤4t cuando α/t ≥ 0.25 y < 0.50. Válido para D/t ≥ 3 ω_m = 0.2%, 				
API 1104	Opción 1	CTOD ≥ 0.10 mm (0.004"). Para Opción 2 o CTOD ≥ 0.05 mm (0.002"). Válido para D⁄1 ≥ 10				
(2007)	Opción 2	Longitud de la discontinuidad < 0.125 πD Altura de la discontinuidad < 0.51 La Opción 2 hace uso de un FAD	Medianamente somplejo	Cálculo numéri		
	Opción 3	• CTOD ≥ 0.05 mm (0.002").	No especificado. Sugiere hacer uso de la BS 7910 o metodología similar que posea factores de seguridad.	No especificad		
CSA Z662	Apéndice K	Longitud de la discontinuidad < 0.1 xD Altura de la discontinuidad < 0.5/ para transporte de gas y < 0.25t para transporte de líquidos.				
BS7910 Niv	Nivel 1A	• σ_l no debe ser mayor que 1.2 σ_s . • Hace uso de un FAD, limitand o el valor de S_r = 0.8 γ K_r < 0.707.	Simple	Cálculo numér Gráficos		
	Nivel 1B	No hace uso de un FAD.	• Simple, manual haciendo uso del Apéndice N.			
	Nivel 2A	Hace uso de un FAD Limitado a D/1 S 18, debido al factor de intensidad de tensión.	Medianamente complejo on.			
	Nivel 28	 Hace uso de un FAD Requiere del diagrama de tensión-deformación del material evaluado Limitado a D/s 518, debido al factor de intensidad de tensión. No aplicable para la evaluación de zonas afectadas por el calor. 	Medianamente complejo	Gráficos		
	Nivel 3A	Aplicable para materiales que exhiben un mecanismo de fractura frágil después de una rotura dúctil. Hace uso del método Nivel 2A aplicando factores de seguridad descritos en el Anexo K.	Medianamente complejo			
	Nivel 3B	Aplicable para materiales que exhiben un mecanismo de fractura frágil después de una rotura dúctil. Haces uso del método Nivel 2B aplicando factores de seguridad descritos en el Anexo K.	Medianamente complejo			
	Nivel 3C	 Aplicable para materiales que exhiben un mecanismo de fractura frágil después de una rotura dúctil. Requiere ensayos de Integral J para el material evaluado. 	Complejo			
API	Nivel 1	 Espesor menor que 38 mm (1.5"). Válido para D/t ≥ 5. Válido para altura de discontinuidad ≤ 0.25t y para longitudes de discontinuidad ≤ 1.5t. La distancia de una discontinuidad a otra discontinuidad mayor debe ser ≥ 1.8 {D/t}^{1/2}. Garantizar que las cargas y condiciones del contorno no hacen crecer a la dissentinuidad. El tubo no deberá trabaja r en la región de elasticidad. Cargas dinámicas no significativas. 	• Simple	Cálculo numéri Tablas Gráficos		
STD 579		 Aplicable solo para cargas debido a la presión interna del tubo. Para materiales con σ, ≤ 276 MPa (40 ksi) e σ: ≤ 483 MPa (70 ksi). Material de soldadura compatible con el material base. 				
	Nivel 2	Garantizar que las cargas y condiciones del contorno no hacen crecer a la discontinuidad El tubo no deberá trabajar en la región de elasticidad. Cargas dinamicas no significativas.	Complejo			
	Nivel 3	Presenta cinco métodos	Complejo			

Tabla 4.2. Resumen comparativo del tipo de discontinuidades a las cuales son aplicables las normas API 1104, API STD 579, BS 7910 y CSA Z662.

		Discontinuidad								
Norma	Método	Naturaleza	Orientación	Posición	Localización	Interacción entre discontinuidades				
API 1104 (2005)		Especificado, para el caso de discontinuidades volumétricas hace uso de la Tabla A-1 y Tabla A-2.	Especificado de forma implícita para discontinuldades en el plano del espesor de pared del tubo.	No especificado.	No especificado.	S casos de Interacción coplanaria. Un caso contempla un caso no-coplanaria. Figura A-6.				
API 1104 (2007)	Opción 1 Opción 2 Opción 3	Especificado, para el caso de discontinuidades volumétricas hace uso de la Tabla A-3 y Tabla A-4.	Especificado de forma implícita para discontinuidades en el plano del espesor de pared del tubo.	No especificado.	No especificado.	 5 casos de Interacción coplanaria. Un caso contempla un caso no-coplanaria. Figura A-11. 				
CSA Z662	Apéndice K	 Especifica que el área máxima de porosidades es de 5% al área proyectada en la radiografía. La compañía puede decidir se trata la porosidad como una discontinuldad plana. 	Especificado de forma implicita para discontinuidades en el plano del espesor de pared del tubo.	Es considerada en la evaluación de discontinuidad, Item K5.3.3, Figura K5.	No especificado.	Las discontinuidades interactúan cuando la distancia entre ellas es inferior a la longitud de la menor discontinuidad. Para tales discontinuidades la longitud es la sumatoria de las longitudes de ellas y la distancia entre ellas. Ítem K7.2.				
BS7910	Nivel 1A Nivel 1B Nivel 2A Nivel 2B Nivel 3A Nivel 3B Nivel 3C	Especificado para el caso de discontinuidades volumétricas hace uso de la Tabla 1.	 Es considerado para determinar el σ_{ref} (Apéndice P), y para determinar el K, (Apéndice M). 	 Es considerado para determinar el σ_{ref} (Apéndice P), y para determinar el K, (Apéndice M). 	Especificado, sugiere que le Nivel 2A es más apropiado para discontinuidades localizados en la ZAC.	6 casos de interacción coplanaria. 3 casos de interacción no coplanaria. Figura 9.				
	Nivel 1	Discontinuidades volumétricas deben ser evaluadas según la Sección 9 o según la Sección 7.	Define la reorientación de la discontinuidad al plano normal a la	Modifica las dimensiones de la discontinuidad	 Sugiere su uso para metal base y metal de soldadura. 	8 casos de interacción coplanaria, considerando que estas ya fueron				
API STD 579	Nivel 2	-	tensión principal máxima. Metodología	encontrada según la posición, por factores	 Puede ser utilizado para evaluación de la ZAC. 	proyectadas en el plano de evaluación.				
	Nivel 3		descrita en el item 9.3.6.2.	de seguridad parcial, Tabla 9.2.	 El método B del nivel 3 no debe ser usado para evaluar discontinuidades en la ZAC. 	• Figura 9.8.				

Tabla 4.3. Resumen comparativo de la información mínima necesaria para evaluación de una discontinuidad para las normas API 1104, API STD 579, BS 7910 y CSA Z662.

	Método	Información Requerida						rida	Cálculo de las tensiones de evaluación			
Norma		Material					Geometría		Operativo	Calculo de las tensiones de evaluación		
		δ	o,	σ _y	E	υ	D	t	T			
API 1104 (2005)		•					•	•		 Hace uso de la deformación axial máxima, ε_σ. El valor máximo permisible de la ε_σ es 0.5%. No existe un procedimiento de cálculo, dejando en abierto la metodología para determinara ε_σ. No toma en consideración el desalineamiento ni tensiones residuales. 		
API 1104 (2007) Opt	Opción 1	•	•	•			•	•		Hace uso de la tensión axial máxima, σ₀,		
	Opción 2	•	•	•	•	•	•	•		 No existe un procedimiento de cálculo, dejando en abierto la metodologia para determinara σ_o. No toma en consideración el desalineamiento ni tensiones residuales. 		
	Opción 3											
CSA Z662	Apéndice K	•	•					•		Hace uso de la tensión máxima efectiva de curvado, determinad por el procedimiento descrito en el ítem 4.6. con las indicacion establecidas en el K2.1. No considera las tensiones residuales.		
	Nivel 1A	•	•	•	•		•	•		Hace uso de la tensión máxima normal aplicada al plano de discontinuidad.		
	Nivel 1B	•	•	•	•		•	•		La tensión máxima es determinada según los apéndices M y Considera el desalineamiento y tensiones residuales.		
	Nivel 2A	•	•	•	•		•	•				
BS7910	Nivel 2B	•	•	•	•	•	•	•				
1	Nivel 3A	•	•	•	•		•	•				
	Nivel 3B	•	•	•	•	•	•	•				
	Nivel 3C	•	•	•	•	•	•	•				
API STD 579	Nivel 1		•					•	•	Determina las tensiones principales en la estructura, según গ্র Apéndice A.		
	Nivel 2	•	•	•	•	•	•	•	•	Determina la tensión primaria de referencia según el apéndir de Company		
	Nivel 3	•	•	•	•	•	•	•	•			

4.3. COMPARACIÓN CUANTITATIVA DE LAS NORMAS DE CRITERIO ALTERNATIVO

La etapa de comparación cuantitativa fue para determinar las diferencias que existen en la determinación de las dimensiones máximas aceptables para una discontinuidad plana que pueden ser obtenidos por cada uno de los métodos. Para ello se evaluaron dos situaciones, una primera donde los parámetros de evaluación satisfacen todas las condiciones establecidas por lo métodos seleccionados en la etapa cualitativa, considerando una relación D/t = 18; y una segunda donde los parámetros de evaluación sólo satisfacen a algunos métodos, considerando una relación D/t = 48. Ambas condiciones son de aplicación práctica en la industria de la construcción de ductos. Es necesario estar familiarizado con los procedimientos de cálculo descritos en el Apéndice B, antes de realizar la evaluación de cada uno de los métodos.

Con la finalidad de uniformizar los resultados y tener un mismo referente de comparación al evaluar ambas condiciones, fue necesario tomar ciertas consideraciones que se describen a seguir:

- El valor de la tenacidad a la fractura, δ_{mal} , fue igual a 0.011" (0,28 mm), tomando como referencia un valor promedio para el material API 5L X70 según ensayos anteriormente realizados por DENYS [40] y SILVA [41].
- Para todos los métodos de evaluación fue considerado la tensión máxima axial, σ_a , como la resultante de todas las tensiones actuantes en un sistema de transporte de gas por ductos.

- Para el análisis de acuerdo a los métodos de la BS7910 el valor de la tensión primaria de membrana, P_m, se igualó a la tensión máxima axial, σ_a, y la tensión primaria de flexión, P_b, y las tensiones secundarias y residuales se igualaron a cero.
- En el caso particular del método de la BS7910 Nivel 2A, los valores de los factores de concentración de esfuerzo para las tensiones primarias de membrana y de flexión fueron considerandos como unitarios para maximizar la tensión máxima axial.
- No se consideraron las tensiones residuales ni desalineamiento en la unión soldada evaluada.

Por otro lado, no fueron considerados algunos métodos de evaluación seleccionados en la etapa de comparación cualitativa, debido a ciertas condiciones que se describen a seguir:

- El método descrito en la BS7910 Nivel 1A no permitió validar los parámetros de evaluación, antes indicados, para ambos casos. Debido a que el valor resultante de S_r fue superior, en todas las dimensiones de discontinuidad plana asumidas, al valor máximo permisible establecido por el método ($S_r = 0.8$).
- Las metodologías de la API STD 579 no fueron evaluadas por necesitar de parámetros de operación (presión, fuerza axial, temperatura) para obtener resultados de mayor exactitud y el simple hecho de asumir ciertos valores, conduciría a obtener resultados dispersos que no serían comparables con los otros métodos.

En la Tabla 4.4 se presentan los parámetros de evaluación para cada una de las situaciones. Y todos los cálculos y resultados de cada uno de los métodos considerados a ser evaluados son presentados en forma detalla en el Apéndice C.

Tabla 4.4. Parámetros de evaluación para dos casos de comparación.

Parámetro –	Magnitud ó	característica
raiailleii0 —	Primer Caso	Segundo Caso
Material	API 5	L X70
Diámetro nominal del tubo, D	18" (475.2 mm)	24" (609.6 mm)
Espesor de pared, t	1" (25.4 mm)	0.5" (12.7 mm)
Relación D/t	18	48
Límite de elasticidad, $\sigma_{\!\scriptscriptstyle y}$	70 ksi (48	2.65 MPa)
Límite de resistencia, σ_{t}	82 ksi (56	65.4 MPa)
Tenacidad (CTOD), δ_{mat}	0.011" (0,28 mm)
Tensión axial máxima, ♂₄	61.5 ksi ((424 MPa)
Módulo de elasticidad, E	30 000 ksi (206,85 GPa)
Módulo de Poisson, υ	0.	30

4.3.1. Primer caso de comparación

Los parámetros de evaluación descritos en la Tabla 4.4. fueron evaluados para cada uno de los métodos considerados por lo descrito en el punto 4.3., siendo los resultados expuestos en la gráfica de la Figura 4.4. y en la Tabla 4.5. De estos resultados se pueden obtener las siguientes observaciones:

Las opciones 1 y 2 de la API 1104:2007 Apéndice A determinaron dimensiones
 de longitud muy próximos para discontinuidades de altura similar. Sin

embargo, la Opción 2 ofrece valores menos conservadores en la medida que la altura de la discontinuidad es menor, en este último caso no se ha considerado el factor de seguridad de 1.5. Por ejemplo para la altura igual a 2,54 mm la longitud aceptable para la Opción 2 excede aproximadamente en 100 mm al valor obtenido con la Opción 1.

- Los resultados obtenidos por la CSA Z662 determinó dimensiones muy conservadoras cuando comparado con los demás métodos, pudiendo ser en este caso más conservador que las dimensiones máximas permisibles establecidas en los criterios basados en la experiencia (workmanship). Por ejemplo, los criterios de aceptación de la API 1104:2007 punto 9.6.2. para inspección por ultrasonido, establece que la dimensión máxima para una discontinuidad individual superficial extema o intema es de 0.251 de altura como máximo y una pulgada como longitud máxima. En la Figura 4.5. se gráfica las consideraciones del workmanship de la API 1104:2007 punto 9.6.2. comparado con la CSA Z662 con los parámetros de evaluación descrita en la Tabla 4.4. observándose los resultados de la CSA Z662 muy conservadores.
- Se observa que cuando una discontinuidad superficial se encuentra orientada en el plano transversal (axial) de la unión soldada circunferencial, el método BS7910 Nivel 2A permite obtener valores dimensionales más conservadores pero menos conservadores a los obtenidos con la CSA Z662. Como consecuencia de que el esfuerzo circunferencial es el doble del esfuerzo axial.
- El método BS7910 Nivel 2A para una discontinuidad orientada en el plano circunferencial de la unión soldada, permite obtener dimensiones menos

conservadoras que cualquier otro método evaluado en la presente comparación. Recordando que se ha considerado la ausencia de tensiones residuales y desalineamiento de la unión soldada.

• El método presentado por la API 1104:2005 Apéndice A presenta para ciertos casos ser muy conservador y en otros no, por ejemplo para alturas de la discontinuidad próxima a la mitad del espesor de pared del tubo, donde los valores se presentan menos conservadores que la API 1104:2007 Opción 1 y 2 para el caso de discontinuidades internas y más conservador para el caso de discontinuidades externas.

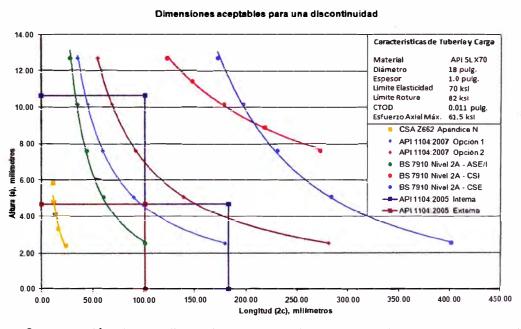


Figura 4.4. Comparación de las dimensiones aceptables para cada norma para el primer caso de evaluación. ASE/I: Axial-Superficial Externa/Interna, CSI: Circunferencial-Superficial Interna, CSE: Circunferencial-Superficial Externa.

Tabla 4.5. Resumen de los resultados obtenidos por cada una de las normas de acuerdo al primer grupo de parámetros de comparación. Dimensiones en milímetros.

	API 11	04:2007			API 110	04:2005		CSA	Z662	
Орс				Supe	erficial	Inte	ma	Apéndice N		
2c	а	2c	2c a		a	2c	а	2c	а	
35.91	12.70	55.55	12.70	101.60	0.00	182.88	0.00	11.68	5.84	
45.96	10.16	69.32	10.16	101.60	4.70	182.88	4.70	12.19	4.83	
60.33	7.62	92.46	7.62	0.00	4.70	101.60	4.70	13.46	4.06	
90.49	5.08	139.19	5.08	0.00	4.70	101.60	10.67	16.51	3.30	
179.54	2.54	281.18	2.54	0.00	4.70	0.00	10.67	24.13	2.41	

			BS 7910	Nivel 2A						
	Ax	rial		Circunferencial						
Superficia	al Interna	Superficia	al Externa	a Superficial Interna Superficial Ext						
2c	2c a 2c			2c	а	2c	а			
28.37	12.70	28.37	12.70	123.44	12.70	172.47	12.70			
35.15	10.16	35.15	10.16	148.01	11.43	197.87	10.16			
44.73	7.62	44.73	7.62	178.66	10.16	230.89	7.62			
61.06	5.08	61.06	5.08	218.44	8.89	283.46	5.08			
101.60	2.54	101.60	2.54	272.90	7.62	401.32	2.54			

Dimensiones aceptables para una discontinuidad

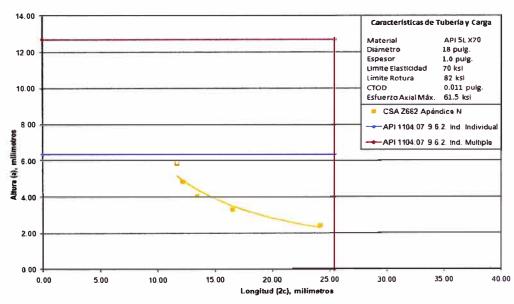


Figura 4.5. Comparación de las dimensiones aceptables para el método CSA Z662:99 Apéndice K y los criterios de Workmanship de la API 1104:2007 punto 9.6.2. Criterio de aceptación para ensayos de ultrasonido, tanto para indicación individual y múltiple.

4.3.2. Segundo caso de comparación

Los parámetros de evaluación descritos en la Tabla 4.4. fueron evaluados para cada uno de los métodos considerados según lo descrito anteriormente, siendo los resultados expuestos en la gráfica de la Figura 4.6. y en la Tabla 4.6. De estos resultados se pueden obtener las siguientes observaciones:

- Las tendencias de los resultados representados en las gráficas muestran características similares a la evaluación realizada en el primer caso. Sin embargo, las dimensiones obtenidas por los métodos BS7910 son poco conservadores obteniéndose dimensiones de longitud aceptables en el orden de 700 mm, representando el 48.74% del perímetro del tubo (xl) = 1436 mm. Lo cual se encuentra en una relación de 3,9 a 1, si se compara este valor porcentual con los límites máximos de longitud descrito por la API 1104:2007 que menciona como máximo el 12.5% del perímetro del tubo.
- Se observa que el resultado obtenido con el método CSA Z662:99 Apéndice K presenta resultados menos conservadores a la API 1104 Apéndice A en sus versiones 2005 y 2007. Pero al ser comparados sus resultados con respecto a la gráfica de la Figura 4.4. era de esperarse que sus dimensiones sean aún más conservadoras debido a que el espesor de la tubería para el segundo caso es la mitad del primer caso. Como se puede observar en su método de evaluación, Apéndice B, el diámetro de la tubería no interfiere en el cálculo para determinar las dimensiones máximas permisibles de una discontinuidad debido a que es un método gráfico, participa únicamente para limitar la longitud máxima aceptable, $L_{max} = 0.1 \, \pi D$.

debido a que es un método gráfico, participa únicamente para limitar la longitud máxima aceptable, L_{max} = 0.1 π D.

De igual forma como en el primer caso de evaluación, los resultados obtenidos por la API 1104:2005 Apéndice A son medianamente menos conservadores cuando comparado con los resultados de las opciones de la API 1104:2007 Apéndice A. Sin embargo, en la medida que el diámetro de la tubería es mayor, las opciones de la API 1104:2007 Apéndice A presenta mejores resultados. Lo cual permitirá aceptar dimensiones de mayor longitud para discontinuidades de altura próximas a la mitad del espesor de la tubería.

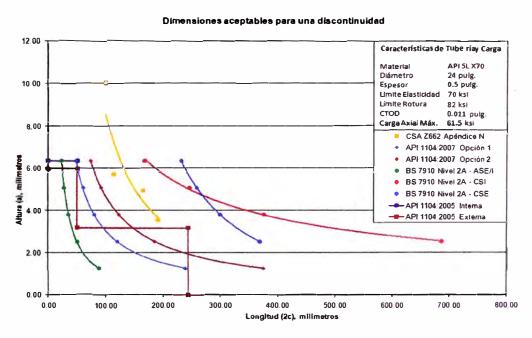


Figura 4.6. Comparación de las dimensiones aceptables para cada norma para el segundo caso de evaluación. ASE/I: Axial-Superficial Externa/Interna, CSI: Circunferencial-Superficial Interna, CSE: Circunferencial-Superficial Externa.

Tabla 4.6. Resumen de resultados de cálculos para cada una de las normas de acuerdo al segundo grupo de parámetros de evaluación. Dimensiones en milímetros.

	API 110	04:2007			API 110	04:2005		CSA	Z662	
Opci	Opción 1 Opción 2				rficial	Inte	rna	Apéndice N		
2c	а	2c	а	2c	а	2c	а	2c	а	
47.88	6.35	73.91	6.35	243.84	0.00	243.84	0.00	100.33	10.03	
61.28	5.08	92.46	5.08	243.84	3.18	243.84	3.18	114.30	5.72	
80.43	3.81	123.44	3.81	50.80	3.20	50.80	3.20	165.10	4.95	
120.65	2.54	185.67	2.54	50.80	5.97	50.80	6.35	191.51	3.56	
239.39	1.27	374.80	1.27	0.00	5.97	0.00	6.35			

			BS 7910	Nivel 2A					
	Ax	cial			Circunf	erencial			
Superfici	al Interna	Superficia	al Externa	na Superficial Interna Superficial Ext					
2c	а	2c	а	2c	а	2c	а		
23.88	6.35	23.88	6.35	167.64	6.35	231.14	6.35		
27.94	5.08	27.94	5.08	246.38	5.08	259.08	5.08		
35.56	3.81	35.56	3.81	375.92	3.81	299.72	3.81		
50.80	2.54	50.80	2.54	685.80	2.54	368.30	2.54		
88.90	1.27	88.90	1.27	1905.00	1.27	1778.00	1.27		

4.4. Determinación del procedimiento de mayor practicidad

En base a las observaciones realizadas en la comparación cualitativa y a los resultados obtenidos en la evaluación cuantitativa de cada uno de los métodos considerados bajo las dos situaciones de comparación, una primera con relación de D/t = 18 y la segunda con relación D/t = 48, además de la practicidad del desarrollo de cálculo, interrelación entre la geometría de la estructura, propiedades mecánicas del material base y rango de aplicación para la evaluación de discontinuidades planas de uniones soldadas circunferenciales, ha permitido determinar que el método más adecuado de utilización dentro de los métodos expuestos es el descrito en la API 1104:2007 Apéndice A Opción 2, por las siguientes razones:

 El uso del método descrito en la CSA Z662 Apéndice K, método gráfico, no toma en consideración para la determinación de la dimensión máxima de altura de una discontinuidad superficial (interna o externa) al diámetro de la tubería, únicamente toma en consideración las características mecánicas del material base. Así por otro lado, se observó que en la medida que el espesor de pared de la tubería se hace menor, las dimensiones máximas permisibles para la altura de una discontinuidad plana superficial se hacen mayores.

- El uso del método descrito en la CSA Z662 Apéndice K, para ductos con espesor de pared gruesa, relación de D/t < 20, hace que las dimensiones máximas aceptables para una discontinuidad plana sean más conservadores que los criterios de aceptación de workmanship, lo cual podría generar una elevación en el número de uniones soldadas rechazadas.</p>
- El uso del método del Nivel 2A establecido en la BS 7910 presenta buenos resultados para tuberías de pared gruesa. Limitando su aplicación para aquellos ductos de pared delgada, que en la actualidad preferencialmente tienen una relación D/t > 20 [26]. Su aplicación es más adecuada para tuberías en estaciones, las cuales son diseñadas con un factor de diseño igual a 0.5 ó 0.6 [42]. Esto se debe a que muchos de los factores de intensidad de tensión, Apéndice M de la norma BS7910:2007, limitan sus cálculos la para una relación D/t ≤ 18 [30].
- El uso del método del Nivel 1A establecido en la BS 7910, para ambos casos de evaluación, limitó su aplicación debido a que la relación S_r fue mayor a 0.80, limitando su aplicación a un amplio rango de parámetros de evaluación.

- El método descrito por la API STD 579 Sección 9, si bien es posible aplicarlo para la evaluación de discontinuidades planas en una soldada circunferencial, es más aplicado para la evaluación de la aptitud para el servicio de una fisura, por lo cual considera parámetros de operación tales como presión y temperatura para validar a la discontinuidad en su Nivel 1 y es necesario realizar cálculos de mayor complejidad para el uso del Nivel 2, para cual hace necesario utilizar procesos de cálculos sistematizados [43].
- El método de la versión API 1104:2005 Apéndice A resulta muy conservador cuando se trata de discontinuidades planas superficiales (internas: pase de raíz y externas: pase de acabado) cuando comparado con la Opción 1 u Opción 2 de la API 1104:2007 Apéndice A. Además de carecer de una metodología que permita visualizar su interacción con el esfuerzo máximo principal y el colapso plástico.
- El método de la API 1104:2007 Apéndice A Opción 1 si bien posee un método gráfico de fácil aplicación no toma en consideración valores de CTOD inferiores a 0,1 mm (0.004"), a diferencia del método descrito en la Opción 2 que es aplicable para cualquier valor de CTOD mayor a 0,05 mm (0.002"). Así también el uso de una gráfica generalizada puede ser conservadora para valores de CTOD que sean superiores al menor valor de CTOD establecido en la gráfica para ser utilizado, es decir, la gráficas pueden haber sido generadas para los casos de mayor criticidad, donde el valor de CTOD es el menor aceptable.

Si bien otros estudios determinan que la aplicación de la BS7910 Nivel 2A es el método más adecuado debido a que considera las tensiones residuales y desalineamiento de la unión soldada para determinar las dimensiones máximas

permisibles de una discontinuidad plana [33], no se hace mención a que dichos procedimientos poseen limitaciones para relaciones mayores de D/t > 20 y que por otro lado no establece una longitud máxima permisible, pudiendo alcanzar para el ejemplo presentado en el trabajo de Smith et al. [33], ver Figura 3.3, una longitud igual a 700 mm si consideramos una altura igual a 4 mm, cuando se observa la curva desalineamiento sin esfuerzo residual, en color verde, lo que representa un 21% del perímetro de la unión circunferencial, aproximadamente.

Por lo anterior, y como indicado en un inicio, el método descrito en la API 1104:2007 Apéndice A Opción 2 es el más adecuado para la evaluación de discontinuidades planas en una unión soldada circunferencial. Factores no considerados en su metodología tales como tensiones residuales o desalineamiento excesivo de la unión soldada, pueden ser superados debido a que el método aplica un factor de seguridad igual a 1.5 sobre las dimensiones máximas determinadas para un conjunto de parámetros de evaluación; y a su vez un incremento porcentual del valor del esfuerzo máximo principal determinado e introducir compensaciones dimensionales por errores de medición en los equipos de inspección (ambos puntos bajo criterios de un especialista), pueden determinar dimensiones máximas aceptables medianamente conservadoras pero de mayor magnitud a las consideradas en el criterio de workmanship descritos en la API 1104:2007.

CAPITULO V

EVALUACIÓN DEL PROCEDIMIENTO DE MAYOR PRACTICIDAD

Como se determinó en el Capitulo 4, el método de mayor practicidad resulta ser el descrito en la API 1104:2007 Apéndice A Opción 2, debido a que a diferencia de la Opción 1, toma en consideración la geometría del tubo (diámetro y espesor de pared) para realizar los cálculos iterativos y determinar las dimensiones máximas permisibles de una discontinuidad.

El método de evaluación fue evaluado numéricamente y de forma teórica para los siguientes materiales: API 5L X65, X70 y X80. En todos los casos los valores de límite de elasticidad y de rotura para todos los materiales fueron los mínimos especificados en la API 5L [44]. La determinación de las dimensiones máximas permisibles (2c, a) para una discontinuidad plana fueron según la variación de los parámetros de evaluación especificados en la Tabla 5.1., totalizando 36 000 puntos de evaluación por cada material. Para todos los casos fue considerado el módulo de elasticidad igual a 30 000 ksi (206,85 GPa) y el coeficiente de Poisson igual a 0.30.

Los cálculos fueron utilizando el programa Microsoft Excel ® 2007, para lo cual se hizo uso de una rutina de cálculo escrita en lenguaje Visual Basic ®, en base al

procedimiento descrito en el método Opción 2 de la API 1104:2007 Apéndice A. La descripción del código utilizado es presentada en el Apéndice D.

Tabla 5.1. Rangos de variación para cada uno de los parámetros de evaluación.

Parámetro de Evaluación	Variación	Paso	Número de variables
Diámetre D	20" a 48"	2"	16
Diámetro, D	(508 mm a 1219 mm)	(50,8 mm)	15
Ecocordo nama 4	0.5" a 0.75"	0.25"	2
Espesor de pared, t	(12,7 mm a 19,1 mm)	(6,35 mm)	2
2 Lair atam Lab COTO	0.004" a 0.013"	0.001"	10
CTOD del material, δ_{mat}	(0,10 mm a 0,33 mm)	(0,025 mm)	10
Razón de la tensión máxima axial y el límite de elasticidad, σ_a/σ_y	0.700 a 0.975	0.025	12
Altura de la discontinuidad, a	0.05 <i>t</i> a 0.50 <i>t</i>	0.05 <i>t</i>	10

La variación de CTOD fue adoptado en este intervalo por ser lo más cercano a valores obtenidos para este tipo de aceros de acuerdo a los trabajos realizados por Denys [40] en aceros API 5L X65 y X70, y Silva [41] en acero API 5L X80.

5.1. LIMITACIONES DEL PROCEDIMIENTO

En base a los cálculos iterativos determinados por el método de la Opción 2 fue encontrado que el factor de corrección, F_b (utilizado para el cálculo del factor de intensidad de tensiones, K_l) se hace negativo para longitudes (2c) menores a la dimensión de la altura (a) de una discontinuidad plana. Lo que llevaría a valores de K_l negativos, introduciendo un error en el cálculo. Por lo cual el método de evaluación es

válido únicamente para discontinuidades con longitudes (2c) mayores o iguales a su altura (a).

En la Tabla 5.2. se presenta el cambio del valor que sufre el factor de corrección, F_b , como resultado de la variación de la longitud de la discontinuidad para una altura determinada, los cuales permiten obtener los puntos de evaluación (K_r , L_r). La posición de estos puntos son mostrados en la Figura 5.1., donde la línea recta son los puntos de evaluación obtenidas cuando F_b se hace negativo.

Tabla 5.2. Variación K_r y L_r en función de la longitud para una altura constante (a = 6.35 mm). Condiciones de evaluación: D = 24", t = 0.5", $\sigma_y = 70$ ksi, $\sigma_a = 56$ ksi (0.80 σ_y) e CTOD = 0.005" (0.127 mm).

Item	2c (mm)	a (mm)	$\alpha = D t$	$\beta = 2c/(\pi E)$	$\eta = a t$	F_b	K_I (N/mm ^{3/2})	K_r	L_r	F.4C (L,)
1	2,29	6,35	48	0,001194	0,5	-1,9821	-3418,20	0,7941	0,80538	0,8057
2	2,54	6,35	48	0,001326	0,5	-1,6697	-2879,45	0,6689	0,80603	0,8052
3	3,81	6,35	48	0,001989	0,5	-0,7282	-1255,80	0,2917	0,80929	0,8022
4	6,22	6,35	48	0,003249	0,5	0,0127	21,90	0,0051	0,81546	0,7965
5	6,35	6,35	48	0,003316	0,5	0,0365	62,95	0,0146	0,81578	0,7962
6	12,70	6,35	48	0,006631	0,5	0,6389	1101,80	0,2560	0,83191	0,7806
7	25,40	6,35	48	0,013263	0,5	0,9913	1709,53	0,3971	0,86356	0,7475
8	50,80	6,35	48	0,026526	0,5	1,2484	2152,91	0,5001	0,92338	0,6762
9	76,20	6,35	48	0,039789	0,5	1,3915	2399,69	0,5575	0,97661	0,6050
10	86,87	6,35	48	0,045359	0,5	1,4394	2482,29	0,5766	0,99652	0,5772

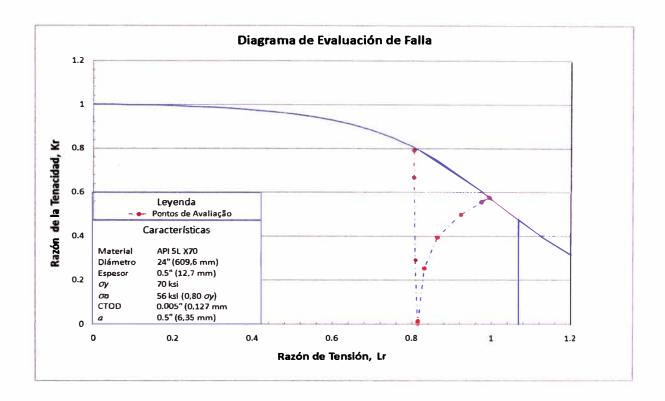


Figura 5.1. Posicionamiento de los puntos de evaluación en función de la longitud y la altura de una discontinuidad determinada para las condiciones de evaluación de la Tabla 5.2.

5.2. TENDENCIAS DURANTE LA VARIACIÓN DE LOS PARÁMETROS DE EVALUACIÓN

Cuando se realizaron los cálculos iterativos de evaluación, se observó que si uno de los parámetros (D, t, CTOD, σ_a y σ_y) variaba dentro del rango de valores establecido en la Tabla 5.1. y los demás parámetros se mantenían constantes, existen tendencias que pueden permitir generar gráficas de aplicación generalizada para un rango de valores de los otros parámetros. Las tendencias encontradas se discuten a continuación:

5.2.1. Influencia del espesor de pared del tubo y el valor de CTOD

Para un determinado material si las variables D, t, CTOD y σ_a $I\sigma_y$ permanecen constantes, la dimensión de la longitud (2c) de la discontinuidad asociada a una determinada altura (a) permanece constante para cualquier valor de CTOD superior o igual al valor de CTOD en el cual el valor de K_r es menor a K_r evaluado para el L_c , predominando un análisis por colapso plástico, dado que K_r es inversamente proporcional al CTOD. Denominaremos a dicho valor de K_r como K_r para el L_c .

En la Tabla 5.3. se observa que para las condiciones de evaluación: D=24", t=0.5", $\sigma_a/\sigma_y=0.85$ y $\sigma_y=80$ ksi, las dimensiones de la discontinuidad permanecen constantes para un valor de CTOD mayor o igual a 0.010". Así también, la presencia de discontinuidades con dimensiones constantes se da para mayores valores de CTOD en la medida que el espesor de pared es incrementado, tal como puede ser observado en la Tabla 5.4. para las condiciones de evaluación: D=24", t=0.75", $\sigma_a/\sigma_y=0.85$ y $\sigma_y=80$ ksi.

En la Figura 5.2. se presentan los diagramas de evaluación de falla para los resultados dimensionales mostrados en la Tabla 5.3 y Tabla 5.4. Se observa que los puntos de evaluación se localizan en la zona de colapso plástico en la medida que se incrementa el valor de CTOD sin influenciar el tamaño de la discontinuidad.

Tabla 5.3. Dimensiones 2c y a en función de la variación del do CTOD. Material API 5L X80, D = 24", t = 0.5" y σ_a/σ_y = 0,85. Sin factor de corrección de la longitud.

		CTOD	= 0,005" (0,127 mm)			CTOD	=0,010" (0),254 mm)			CTOD	=0,013" (0,381 mm)	
Item	2c (mm)	a (mm)	L_r	K,	FAC(L,)	2c (mm)	a (mm)	L_r	Kr	FAC(L _r)	2c (mm)	a (mm)	L _r	K,	FAC(L _r)
1	54,10	6,35	0,9890	0,5877	0,5877	82,30	6,35	1,0500	0,4643	0,5014	82,30	6,35	1,0500	0,4072	0,5014
2	64,52	5,72	0,9980	0,5751	0,5751	91,44	5,72	1,0500	0,4415	0,5015	91,44	5,72	1,0500	0,3872	0,5015
3	79,25	5,08	1,0101	0,5569	0,5579	102,87	5,08	1,0500	0,4160	0,5015	102,87	5,08	1,0500	0,3648	0,5015
4	101,85	4,45	1,0273	0,5335	0,5335	117,60	4,45	1,0499	0,3876	0,5015	117,60	4,45	1,0499	0,3400	0,5015
5	136,40	3,81	1,0488	0,5032	0,5032	136,91	3,81	1,0495	0,3561	0,5021	136,91	3,81	1,0495	0,3123	0,5021
6	164,85	3,18	1,0500	0,4548	0,5015	164,85	3,18	1,0500	0,3216	0,5015	164,85	3,18	1,0500	0,2821	0,5015
7	206,50	2,54	1,0500	0,3994	0,5014	206,50	2,54	1,0500	0,2824	0,5014	206,50	2,54	1,0500	0,2477	0,5014
8	276,35	1,91	1,0500	0,3193	0,5014	276,35	1,91	1,0500	0,2258	0,5014	276,35	1,91	1,0500	0,1980	0,5014
9	418,34	1,27	1,0499	0,2425	0,5015	418,34	1,27	1,0499	0,1714	0,5015	418,34	1,27	1,0499	0,1504	0,5015
10	888,24	0,64	1,0500	0,1714	0,5014	888,24	0,64	1,0500	0,1212	0,5014	888,24	0,64	1,0500	0,1063	0,5014

Tabla 5.4. Dimensiones 2c y a en función de la variación del do CTOD. Material API 5L X80, D = 24", t = 0.75" y σ_a/σ_y = 0,85. Sin factor de corrección de la longitud.

		CTOD	= 0,005" (0,127 mm			CTOD	=0,010" (0,254 mm)		CTOD =0,013" (0,381 mm)					
Item	2c (mm)	a (mm)	L_r	K _r	FAC(L _r)	2c (mm)	a (mm)	L_r	К,	FAC(L _r)	2c (mm)	a (mm)	L_r	K,	FAC(L,)	
1	47,50	9,53	0,9735	0,6094	0,6094	81,03	9,53	1,0473	0,5052	0,5052	82,30	9,53	1,0500	0,4451	0,5014	
2	54,10	8,59	0,9761	0,6051	0,6058	91,19	8,59	1,0496	0,4879	0,5019	91,19	8,59	1,0496	0,4279	0,5019	
3	64,77	7,62	0,9833	0,5957	0,5957	102,87	7,62	1,0500	0,4644	0,5015	102,87	7,62	1,0500	0,4073	0,5015	
4	81,28	6,68	0,9952	0,5780	0,5790	117,60	6,68	1,0497	0,4365	0,5019	117,60	6,68	1,0497	0,3828	0,5019	
5	107,70	5,72	1,0129	0,5515	0,5540	136,65	5,72	1,0493	0,4043	0,5024	136,65	5,72	1,0493	0,3546	0,5024	
6	153,92	4,78	1,0388	0,5157	0,5172	164,59	4,78	1,0496	0,3679	0,5020	164,59	4,78	1,0496	0,3226	0,5020	
7	206,50	3,81	1,0500	0,4615	0,5014	206,50	3,81	1,0500	0,3263	0,5014	206,50	3,81	1,0500	0,2862	0,5014	
8	275,08	2,87	1,0493	0,3875	0,5024	275,08	2,87	1,0493	0,2740	0,5024	275,08	2,87	1,0493	0,2403	0,5024	
9	418,34	1,91	1,0499	0,2958	0,5015	418,34	1,91	1,0499	0,2092	0,5015	418,34	1,91	1,0499	0,1834	0,5015	
10	872,24	0,97	1,0476	0,2092	0,5048	872,24	0,97	1,0476	0,1479	0,5048	872,24	0,97	1,0476	0,1297	0,5048	

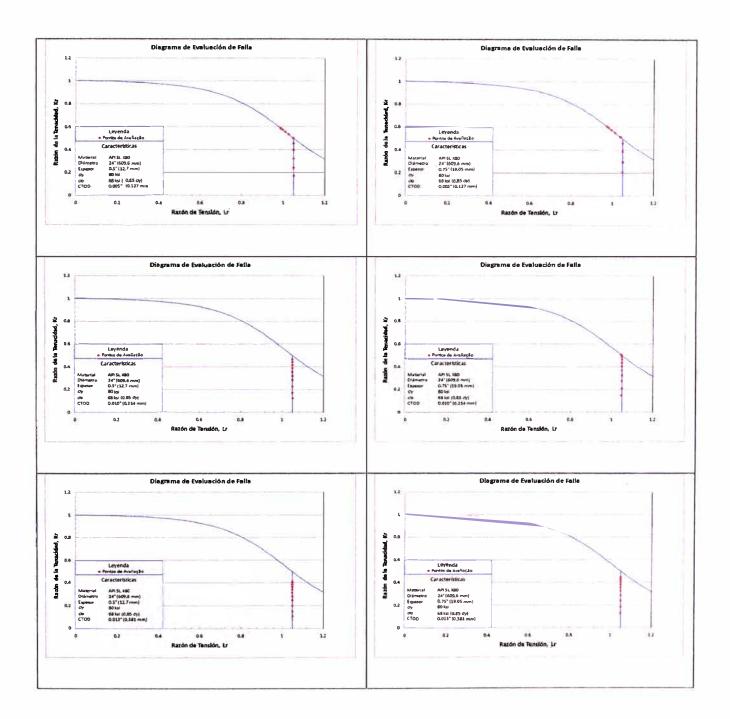


Figura 5.2. Diagramas de evaluación de falla para un acero API 5L X80. La variación de los puntos de evaluación en la medida en que el valor de CTOD es mayor para dos condiciones de espesor de pared, t = 0.5" y t = 0.75".

5.2.2. Relación entre las dimensiones de la discontinuidad y el valor de CTOD

Para determinadas condiciones de evaluación (D, t, σ_y) , en la medida en que σ_a/σ_y es mayor, el valor de β ($\beta = 2c/\pi D$) asociado a cada valor de η ($\eta = alt$) permanece constante para los valores de CTOD mayores o iguales al valor de CTOD en el cual el valor de K_r es mayor o igual a K_r^c . Desde la Tabla 5.5. hasta la Tabla 5.10, se muestran los resultados para diferentes parámetros de evaluación, donde se puede observar la tendencia.

De las Tablas antes indicadas se observa que cuando la altura (a) de la discontinuidad es un cuarto del espesor de pared $(\eta = alt = 0.25)$ o menor, la longitud (2c) de la discontinuidad es constante para todo valor de CTOD dentro del rango evaluado. Así también, los valores de β se toman tempranamente constantes en la medida que σ_a/σ_v presenta mayores valores.

Tabla 5.5. Variación de β en función del CTOD. Material API 5L X80. D =20". t =0.5" y σ_d/σ_y = 0.70.

(TOD	0,004"	0,005"	0,006"	0,007"	0,008"	0,009"	0,010"	0,011"	0,012"	0,013"
CTOD	(0,10 mm)	(0,13 mm)	(0,15 mm)	(0,18 mm)	(0,20 mm)	(0,23 mm)	(0,25 mm)	(0,28 mm)	(0,30 mm)	(0,33 mm)
η						3				
0,500	0,04902	0,06211	0,07603	0,08854	0,09969	0,10967	0,11866	0,12627	0,12627	0,12627
0,450	0,06187	0,08031	0,09750	0,11261	0,12596	0,13788	0,14218	0,14218	0,14218	0,14218
0,400	0,08285	0,10761	0,12909	0,14789	0,16345	0,16345	0,16345	0,16345	0,16345	0,16345
0,350	0,11803	0,15186	0,19325	0,19123	0,19123	0,19123	0,19123	0,19123	0,19123	0,19123
0,300	0,21186	0,24264	0,24264	0,24264	0,24264	0,24264	0,24264	0,24264	0,24264	0,24264
0,250	1,18225	1,18225	1,18225	1,18225	1,18225	1,18225	1,18225	1,18225	1,18225	1,18225
0,200	1,27942	1,27942	1,27942	1,27942	1,27942	1,27942	1,27942	1,27942	1,27942	1,27942
0,150	1,41612	1,41612	1,41612	1,41612	1,41612	1,41612	1,41612	1,41612	1,41612	1,41612
0,100	2,55646	2,55646	2,55646	2,55646	2,55646	2,55646	2,55646	2,55646	2,55646	2,55646
0,050	4,30928	4,30928	4,30928	4,30928	4,30928	4,30928	4,30928	4,30928	4,30928	4,30928

Tabla 5.6. Variación de β en función del CTOD. Material API 5L X80. D =20". t =0.5" y $\sigma_{\alpha}/\sigma_{y}$ = 0.75.

CTOD	0,004"	0,005"	0,006"	0,007"	0,008"	0,009"	0,010"	0,011"	0,012"	0,013"
CIOD	(0,10 mm)	(0,13 mm)	(0,15 mm)	(0,18 mm)	(0,20 mm)	(0,23 mm)	(0,25 mm)	(0,28 mm)	(0,30 mm)	(0,33 mm)
η		v				3				
0,500	0,03365	0,04079	0,04760	0,05451	0,06184	0,06955	0,07509	0,07509	0,07509	0,07509
0,450	0,04096	0,04990	0,05879	0,06834	0,07853	0,08384	0,08384	0,08384	0,08384	0,08384
0,400	0,05165	0,06347	0,07623	0,09020	0,09489	0,09489	0,09489	0,09489	0,09489	0,09489
0,350	0,06817	0,08578	0,10587	0,10888	0,10888	0,10888	0,10888	0,10888	0,10888	0,10888
0,300	0,09708	0,12820	0,12964	0,12964	0,12964	0,12964	0,12964	0,12964	0,12964	0,12964
0,250	0,16113	0,16113	0,16113	0,16113	0,16113	0,16113	0,16113	0,16113	0,16113	0,16113
0,200	0,21694	0,21694	0,21694	0,21694	0,21694	0,21694	0,21694	0,21694	0,21694	0,21694
0,150	1,29714	1,29714	1,29714	1,29714	1,29714	1,29714	1,29714	1,29714	1,29714	1,29714
0,100	1,47394	1,47394	1,47394	1,47394	1,47394	1,47394	1,47394	1,47394	1,47394	1,47394
0,050	3,88797	3,88797	3,88797	3,88797	3,88797	3,88797	3,88797	3,88797	3,88797	3,88797

Tabla 5.7. Variación de β en función del CTOD. Material API 5L X80. D =20". t =0.5" y σ_d/σ_y = 0.80.

CTOD.	0,004"	0,005"	0,006"	0,007"	0,008"	0,009"	0,010"	0,011"	0,012"	0,013"
CLOD	(0,10 mm)	(0,13 mm)	(0,15 mm)	(0,18 mm)	(0,20 mm)	(0,23 mm)	(0,25 mm)	(0,28 mm)	(0,30 mm)	(0,33 mm)
η						3				
0,500	0,02388	0,02878	0,03318	0,03722	0,04104	0,04234	0,04234	0,04234	0,04234	0,04234
0,450	0,02854	0,03450	0,03984	0,04479	0,04709	0,04709	0,04709	0,04709	0,04709	0,04709
0,400	0,03535	0,04270	0,04935	0,05301	0,05301	0,05301	0,05301	0,05301	0,05301	0,05301
0,350	0,04554	0,05488	0,06065	0,06065	0,06065	0,06065	0,06065	0,06065	0,06065	0,06065
0,300	0,06148	0,07086	0,07086	0,07086	0,07086	0,07086	0,07086	0,07086	0,07086	0,07086
0,250	0,08527	0,08527	0,08527	0,08527	0,08527	0,08527	0,08527	0,08527	0,08527	0,08527
0,200	0,10689	0,10689	0,10689	0,10689	0,10689	0,10689	0,10689	0,10689	0,10689	0,10689
0,150	0,14479	0,14479	0,14479	0,14479	0,14479	0,14479	0,14479	0,14479	0,14479	0,14479
0,100	0,22633	0,22633	0,22633	0,22633	0,22633	0,22633	0,22633	0,22633	0,22633	0,22633
0,050	1,46931	1,46931	1,46931	1,46931	1,46931	1,46931	1,46931	1,46931	1,46931	1,46931

Tabla 5.8. Variación de β en función del CTOD. Material API 5L X80. D =20". t =0.5" y σ_a/σ_y = 0.85.

CTOD	0,004"	0,005°	0,006"	0,007"	0,008"	0,009"	0,010"	0,011"	0,012"	0,013"			
0100	(0,10 mm)	(0,13 mm)	(0,15 mm)	(0,18 mm)	(0,20 mm)	(0,23 mm)	(0,25 mm)	(0,28 mm)	(0,30 mm)	(0,33 mm)			
η		β											
0,500	0,01706	0,02061	0,02380	0,02668	0,02866	0,02866	0,02866	0,02866	0,02866	0,02866			
0,450	0,01995	0,02431	0,02817	0,03163	0,03184	0,03184	0,03184	0,03184	0,03184	0,03184			
0,400	0,02433	0,02972	0,03443	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583			
0,350	0,03107	0,03778	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095			
0,300	0,04168	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769			
0,250	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742			
0,200	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191			
0,150	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621			
0,100	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566			
0,050	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922			

Tabla 5.9. Variación de β en función del CTOD. Material API 5L X80. D =20". t =0.5" y σ_d/σ_y = 0.90.

0,012" 0,013") (0,30 mm) (0,33 mm)											
) (0,30 mm) (0,33 mm)											
β 0,01230 0,01479 0,01711 0,01925 0,01925 0,01925 0,01925 0,01925 0,01925 0,01925 0,01925											
5 0,01925 0,01925											
6 0,02136 0,02136											
0,02406 0,02406											
3 0,02743 0,02743											
3 0,03208 0,03208											
1 0,03851 0,03851											
3 0,04818 0,04818											
2 0,06432 0,06432											
1 0,09681 0,09681											
0,19682 0,19682											

Tabla 5.10. Variación de β en función del CTOD. Material API 5L X80. D =20". t =0.5" y σ_d/σ_y = 0.95.

0,004"	0,005"	0,006"	0,007"	0,008"	0,009"	0,010"	0,011"	0,012"	0,013"
(0,10 mm)	(0,13mm)	(0,15 mm)	(0,18 mm)	(0,20 mm)	(0,23 mm)	(0,25 mm)	(0,28 mm)	(0,30 mm)	(0,33 mm)
				-	В				: 1
0,00906	0,01072	0,01181	0,01181	0,01181	0,01181	0,01181	0,01181	0,01181	0,01181
0,00974	0,01185	0,01311	0,01311	0,01311	0,01311	0,01311	0,01311	0,01311	0,01311
0,01097	0,01375	0,01475	0,01475	0,01475	0,01475	0,01475	0,01475	0,01475	0,01475
0,01322	0,01687	0,01687	0,01687	0,01687	0,01687	0,01687	0,01687	0,01687	0,01687
0,01737	0,01961	0,01961	0,01961	0,01961	0,01961	0,01961	0,01961	0,01961	0,01961
0,02362	0,02362	0,02362	0,02362	0,02362	0,02362	0,02362	0,02362	0,02362	0,02362
0,02950	0,02950	0,02950	0,02950	0,02950	0,02950	0,02950	0,02950	0,02950	0,02950
0,03939	0,03939	0,03939	0,03939	0,03939	0,03939	0,03939	0,03939	0,03939	0,03939
0,05910	0,05910	0,05910	0,05910	0,05910	0,05910	0,05910	0,05910	0,05910	0,05910
0,11891	0,11891	0,11891	0,11891	0,11891	0,11891	0,11891	0,11891	0,11891	0,11891
	0,00906 0,00974 0,01097 0,01322 0,01737 0,02362 0,02950 0,03939 0,05910	0,00906 0,01072 0,00974 0,01185 0,01097 0,01375 0,01322 0,01687 0,01737 0,01961 0,02362 0,02362 0,02950 0,02950 0,03939 0,03939 0,05910 0,05910	(0,10mm) (0,13mm) (0,15mm) 0,00906 0,01072 0,01181 0,00974 0,01185 0,01311 0,01097 0,01375 0,01475 0,01322 0,01687 0,01687 0,01737 0,01961 0,01961 0,02362 0,02362 0,02362 0,03939 0,03939 0,03939 0,05910 0,05910 0,05910	(0,10mm) (0,13mm) (0,15mm) (0,18mm) 0,00906 0,01072 0,01181 0,01181 0,00974 0,01185 0,01311 0,01311 0,01097 0,01375 0,01475 0,01475 0,01322 0,01687 0,01687 0,01687 0,01737 0,01961 0,01961 0,01961 0,02362 0,02362 0,02362 0,02362 0,02950 0,02950 0,02950 0,03939 0,05910 0,05910 0,05910 0,05910	(0,10mm) (0,13mm) (0,15mm) (0,18mm) (0,20mm) 0,00906 0,01072 0,01181 0,01181 0,01181 0,01311 0,01311 0,01311 0,01311 0,01311 0,01475 0,01475 0,01475 0,01475 0,01687 0,01687 0,01687 0,01687 0,01687 0,01961 0,01961 0,01961 0,01961 0,01961 0,02362 0,02362 0,02362 0,02362 0,02362 0,02950 0,02950 0,03939 0,03939 0,03939 0,03939 0,05910 <td< td=""><td>(0,10mm) (0,13mm) (0,15 mm) (0,18 mm) (0,20 mm) (0,23 mm) σ 0,00906 0,01072 0,01181 0,01181 0,01181 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01475 0,01475 0,01475 0,01475 0,01687 0,01687 0,01687 0,01687 0,01687 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,02362 0,02362 0,02362 0,02362 0,02950 0,02950 0,02950 0,03939 0,03939 0,03939 0,03939 0,03939 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910</td><td>(0,10mm) (0,13mm) (0,15 mm) (0,18 mm) (0,20 mm) (0,23 mm) (0,25 mm) σ 0,00906 0,01072 0,01181 0,01181 0,01181 0,01181 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01475 0,01475 0,01475 0,01475 0,01475 0,01687 0,01687 0,01687 0,01687 0,01687 0,01687 0,01687 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,02362 0,02362 0,02362 0,02362 0,02362 0,02950 0,02950 0,02950 0,02950 0,03939 0,03939 0,03939 0,03939 0,03939 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td<>	(0,10mm) (0,13mm) (0,15 mm) (0,18 mm) (0,20 mm) (0,23 mm) σ 0,00906 0,01072 0,01181 0,01181 0,01181 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01475 0,01475 0,01475 0,01475 0,01687 0,01687 0,01687 0,01687 0,01687 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,02362 0,02362 0,02362 0,02362 0,02950 0,02950 0,02950 0,03939 0,03939 0,03939 0,03939 0,03939 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910	(0,10mm) (0,13mm) (0,15 mm) (0,18 mm) (0,20 mm) (0,23 mm) (0,25 mm) σ 0,00906 0,01072 0,01181 0,01181 0,01181 0,01181 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01311 0,01475 0,01475 0,01475 0,01475 0,01475 0,01687 0,01687 0,01687 0,01687 0,01687 0,01687 0,01687 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,01961 0,02362 0,02362 0,02362 0,02362 0,02362 0,02950 0,02950 0,02950 0,02950 0,03939 0,03939 0,03939 0,03939 0,03939 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910 0,05910	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

5.2.3. Relación entre la longitud de la discontinuidad y diámetro de la tubería

Para un determinado material con los parámetros CTOD, t y σ_a/σ_y constantes, el valor de β (β = $2c/\pi D$) no presenta variación hasta un determinado diámetro. Después de dicho diámetro el valor de β comienza a disminuir en la medida que la magnitud del diámetro va aumentando. Denominaremos a dicho diámetro como D_{β} .

Se evidencia que en la medida que se incrementa el espesor de pared, t, los valores obtenidos para D_{β} disminuye. En la Tabla 5.11. y Tabla 5.12. se muestra numéricamente estas variaciones tomando como ejemplo el material API 5L X80 para tubos de espesor de pared de 0.5" y 0.75", respectivamente.

Tabla 5.11. Variación de β en función del diámetro. Material API 5L X80. t =0.5". CTOD = 0.010" y σ_d/σ_y = 0.85.

Diâmetro	20" (508 mm)	22" (5 5 8,8 mm)	24" (609,6 mm)	26° (660,4 mm)	28" (711,2 mm)	30" (762 mm)	32" (812,8 mm)	34" (863,6 mm)	36" (914,4mm)	38" (965,2 mm)	40" (1016 mm)	42" (1066,8 mm)	44" (1117,6 mm)	46" (1168,4 mm)	48" (1219,2 mm)
η								β							16
0,500	0,02866	0,02866	0,02866	0,02866	0,02866	0,02866	0,02844	0,02774	0,02708	0,02646	0,02588	0,02533	0,02481	0,02431	0,02384
0,450	0,03184	0,03184	0,03184	0,03184	0,03184	0,03184	0,03184	0,03184	0,03184	0,03184	0,03128	0,03065	0,03006	0,02949	0,02895
0,400	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583
0,350	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095	0,04095
0,300	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769	0,04769
0,250	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742	0,05742
0,200	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191
0,150	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621	0,09621
0,100	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566
0,050	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922	0,30922

Tabla 5.12. Variación de β en función del diámetro. Material API 5L X80. t =0.75". CTOD = 0.010" y $\sigma_{\alpha}/\sigma_{y}$ = 0.85.

Diâmetro	20" (508 mm)	22° (558,8 mm)	24" (609,6 mm)	26" (660,4 mm)	28" (711,2 mm)	30° (762 mm)	32° (812,8 mm)	34" (863,6 mm)	36" (914,4 mm)	38" (965,2 mm)	40° (1016 mm)	42" (1066,8 mm)	44° (1117,6 mm)	46" (1168,4 mm)	48" (1219,2 mm)
η		β													
0,500	0,02866	0,02866	0,02818	0,02729	0,02649	0,02575	0,02506	0,02443	0,02384	0,02328	0,02276	0,02227	0,02181	0,02136	0,02094
0,450	0,03178	0,03178	0,03178	0,03178	0,03123	0,03044	0,02970	0,02902	0,02838	0,02778	0,02721	0,02667	0,02616	0,02567	0,02520
0,400	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03583	0,03570	0,03498	0,03431	0,03366	0,03305	0,03247	0,03192	0,03139
0,350	0,04089	0,04089	0,04089	0,04090	0,04089	0,04089	0,04089	0,04090	0,04090	0,04089	0,04089	0,04090	0,04090	0,04076	0,04013
0,300	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761	0,04761
0,250	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729	0,05729
0,200	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191	0,07191
0,150	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578	0,09578
0,100	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566	0,14566
0,050	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365	0,30365

5.3. GENERALIZACIÓN DE LOS GRÁFICOS DE LÍMITES PERMISIBLES ADIMENSIONALES

Otras tendencias se evidenciaron en la elaboración de las curvas de límites permisibles adimensionales β versus η , elaborados a partir de los parámetros de evaluación de la Tabla 5.1. y haciendo uso de la rutina de cálculo descrito en la Opción 2 del API 1104:2007 Apéndice A. Estas curvas fueron elaboradas punto a punto en base al programa Microsoft Excel ® 2007. Rutina de cálculo descrita en el Apéndice D. Y las observaciones realizadas son descritas a continuación:

- 1. Para tubos de igual material con parámetros de evaluación D y CTOD iguales, los valores de β son menores para aquel tubo de mayor espesor de pared, siendo más evidente en la medida que el valor de $\sigma_a I \sigma_y$ es menor y para los mayores valores de η . En las Figuras 5.3. y 5.4., para un tubo de acero API 5L X70 de D = 24", CTOD = 0.010" y espesores de 0.5" y 0.75" respectivamente. Se observó. Figura 5.3., que para η = 0.40 en la curva $\sigma_a I \sigma_y$ = 0.800 el valor de β = 0.059 para el tubo de t = 0.5"; y bajo las mismos parámetros en la Figura 5.4. el valor de β = 0.057 para el tubo de t = 0.75". Así también, bajo las mismos parámetros pero siendo $\sigma_a I \sigma_y$ = 0.750 en la Figura 5.3. el valor de β = 0.107 para el tubo de t = 0.5"; y en la Figura 5.4. el valor de β = 0.099 para el tubo de t = 0.75". Para valores de η inferiores de 0.30 no existe una notoria variación cuando existe una variación del espesor de pared.
- 2. Para tubos de igual material con parámetros de evaluación t y CTOD iguales. los valores de β son menores para aquel tubo de mayor diámetro, siendo más

evidente en la medida en que el valor de de σ_a / σ_y es menor y para los mayores valores de η . En las Figuras 5.3. y 5.5., para un tubo de acero API 5L X70 de t = 0.5". CTOD = 0.010" y diámetros de 24" y 38", respectivamente.

Se observó, Figura 5.3., que para $\eta=0.45$ en la curva $\sigma_a J \sigma_y=0.800$ el valor de $\beta=0.052$ para el tubo de D=24"; y bajo las mismos parámetros en la Figura 5.5. el valor de $\beta=0.048$ para el tubo de D=38". Así también, bajo las mismos parámetros pero siendo $\sigma_a J \sigma_y=0.750$ en la Figura 5.3. el valor de $\beta=0.085$ para el tubo de D=24"; y en la Figura 5.4. el valor de $\beta=0.075$ para el tubo de D=38". Para valores de η inferiores de 0.30 no existe una notoria variación cuando existe una variación del espesor de pared.

- 3. Para tubos de igual material con parámetros de evaluación D y t iguales. los valores de β son menores para aquel tubo con menor valor de CTOD. siendo más evidente en la medida que el valor de $\sigma_a l \sigma_y$ es menor y para los mayores valores de η . En las Figuras 5.5 y 5.6., para un tubo de acero API 5L X70 de D = 38", t = 0.5" y CTODs de 0.010" y 0.005", respectivamente. Se observó, Figura 5.5., que para η = 0.40 en la curva $\sigma_a l \sigma_y$ = 0.800 el valor de β = 0.053 para el tubo de CTOD = 0.010"; y bajo las mismos parámetros en la Figura 5.6. el valor de β = 0.037 para el tubo de CTOD = 0.005".
- 4. Para tubos con parámetros de evaluación D, t y CTOD iguales, los valores de β son menores para aquel tubo de acero con mayor límite de elasticidad, σ_y , para todo valor de η . En las Figuras 5.5. y 5.7., para tubos de D = 38", t = 0.5" y

CTOD = 0.010" para aceros API 5L X70 y X80, respectivamente. Se observó, Figura 5.5., que para η = 0.40 en la curva σ_a/σ_y = 0.800 el valor de β = 0.055 para el tubo de acero API 5L X70; y bajo las mismos parámetros en la Figura 5.7. el valor de β = 0.049 para el tubo de acero API 5L X80.

Teniendo en consideración las observaciones antes descritas es posible afirmar que una curva de límites permisibles adimensionales puede ser utilizado para parámetros de evaluación diferentes para la cual fue preparada. Es decir, para los parámetros D, t y CTOD es válido para todo diámetro y espesor de pared igual o menor de D y t, respectivamente. Y aplicable para todo valor de CTOD mayor o igual al CTOD para la cual fue elaborada la curva de límite permisible adimensional.

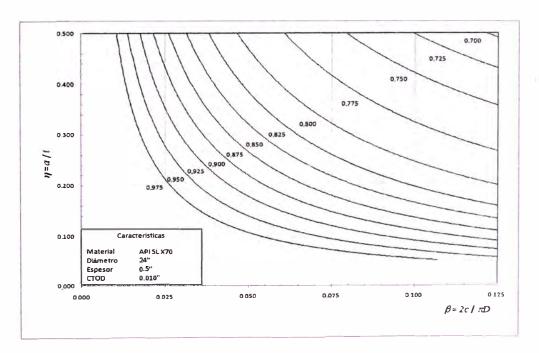


Figura 5.3. Límites permisibles adimensionales para un tubo de acero API 5L X70 de D = 24", t = 0.5" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.

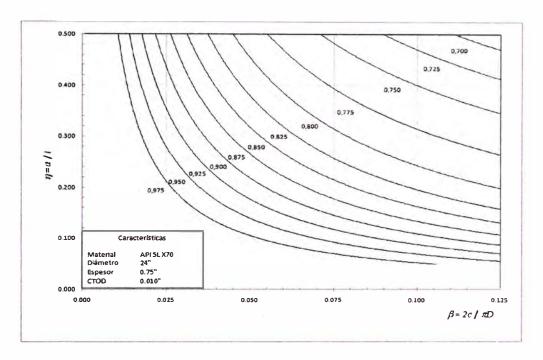


Figura 5.4. Límites permisibles adimensionales para un tubo de acero API 5L X70 de D = 24". t = 0.75" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.

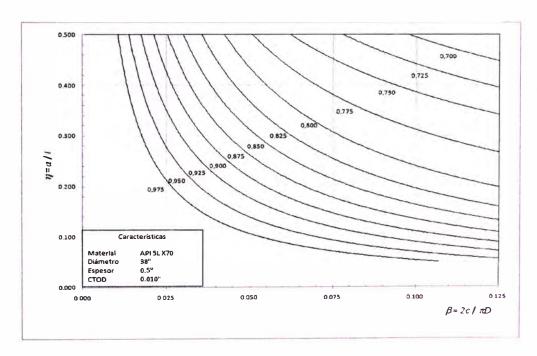


Figura 5.5. Límites permisibles adimensionales para un tubo de acero API 5L X70 de D=38", t=0.5" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.

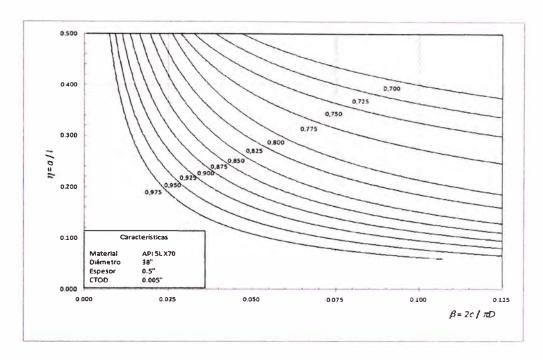


Figura 5.6. Límites permisibles adimensionales para un tubo de acero API 5L X70 de D=38", t=0.5" y CTOD = 0.005" (0.13 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.

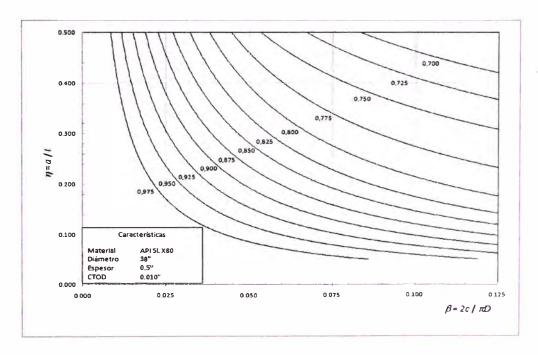


Figura 5.7. Límites permisibles adimensionales para un tubo de acero API 5L X80 de D=38", t=0.5" y CTOD = 0.010" (0.25 mm). Factor de seguridad igual a 1.5 en la longitud de la discontinuidad.

CAPITULO VI

EVALUACIÓN DEL BENEFICIO ECONÓMICO DE APLICACIÓN DEL PROCEDIMIENTO DE MAYOR PRACTICIDAD

Los costos de fabricación de una unión soldada en campo son variables y estarán en función de las condiciones geográficas en las cuales será ejecutada la unión soldada (logística de traslado de personal, equipos y consumibles, Alimentos, entre otros), el proceso de soldadura a utilizar (manual. semi-automático u automático), las dimensiones geométricas de la unión soldada (diámetro y espesor de pared de la tubería), los consumibles (electrodos. gas de protección, entre otros), personal (soldadores calificados e inspectores certificados), ensayo no destructivo de inspección y entre otras variables que deberán ser tomadas en consideración para una estimación correcta de la fabricación de una unión soldada.

El costo de fabricación de una unión soldada se puede ver incrementando si se determina la necesidad de realizar una reparación de la misma por la presencia de un defecto. En la industria de la construcción de ductos el porcentaje de reparaciones de uniones soldadas estará en función del tipo de proceso de soldadura utilizado, diámetro de la tubería y las condiciones del medio donde se desarrollan las actividades. En la práctica se ha observado que la tasa de uniones rechazadas es

aproximadamente de 3 a 5% del total de uniones soldadas [45], sin embargo, algunas veces este porcentaje de uniones soldadas rechazadas puede llegar al orden de 25% [4], sobre todo en la primera semana de ejecución de la construcción. Las causas que pueden generar el rechazo de las uniones son debido a diversas índoles, tales como, falta de limpieza, consumibles en mal estado, etapa de adaptación del soldador, un mal ajuste en los parámetros de soldadura o un desalineamiento, entre otras causas.

La evaluación de la integridad estructural de una unión soldada por ensayos no destructivos adecuados (tal como el ensayo de ultrasonido que permite validar la unión in-situ) y por criterios de aceptación basados en mecánica de la fractura permitirán reducir el porcentaje de uniones rechazadas innecesariamente y por ende los costos de construcción de un ducto.

6.1. COSTOS DE CONSTRUCCIÓN Y REPARACIÓN DE UNA UNIÓN SOLDADA CIRCUNFERENCIAL

El análisis de costo se realiza en base a una determinada especificación de procedimiento de soldadura (EPS), lo cual lo hace particular. De la EPS se tomarán las variables a tener en consideración para una buena estimativa de los costos de soldadura, y con base a la experiencia se definirán los costos fijos y variables, así como, si los mismos serán considerados de forma detallada o global [46]. Por ejemplo si se decidiera alquilar los equipos, no se tendrá que considerar costos de depreciación o de mantenimiento de equipos. Las consideraciones a detalle que se deben tener para la evaluación de costo de una unión soldada son descritas en el Apéndice F.

Para efectos de una apreciación numérica se ha tomado como referencia una EPS desarrollada para la soldadura de aceros API 5L X80 con procesos de soldadura SMAW y FCAW [47] y los costos están referenciados al mercado brasileño del año 2008. En la Figura 6.1. se aprecia los costos de fabricación de una unión soldada circunferencial realizada en campo, no se ha considerado gastos de transporte de personal y de alimentación. Los costos de equipo de protección personal están incluidos en el costo de horas hombre. Una distribución porcentual de los costos muestran que el alquiler de equipos representa el 79.45% seguido del costo de mano de obra (14.21%). Lo que demuestra que el costo de construcción radica en la disponibilidad de equipo y personal.

ltem	Descripción	Unidad	Cant		Valor nitario	Valor Parcial		Sub Total	
1.0	Alquiler de Equipos / Servicios							S	492.20
	1.1 Side boom	h	3.1	5	140.00	5	427.52		
	1.2 Metosoldadora	n	3 1	Ş	20.00	Ş	61.07		
	1.3 Inspección de Unión Soldada por ensayo de Ultrasonido	h	0.3	5	12.00	5	3.60		
2.0	Metal Depositado							5	38 04
	2.1 Consumo de electrodos (SMAW + FCAW)	m	1.5	S	23.07	S	36,91		
	2.2 Consume de gas para FCANV	m	1,6	5	0.71	5	1 13		
3.0	Mano de Obra							S	88 03
	3.1 Soldador/Operador Clase 1	ורו	16	S	26,94	S	43.11		
	3.2 EsmerHador / ayudante	711	1 Ó	5	11.28	S	17.96		
	3.3 Inspector	m	<u> </u>	5	16,84	5	26 94		
4.C	Gastos varios							\$	1.26
	4.1 Escobillas, discos de desbaste	m	1.6	5	0.57	5	0.91		
	4.2 Consumibles para equipo de orecalentamiento	h	1.0	S	0,35	5	0.35		

TOTAL S 619.51

Figura 6.1. Estimativa del costo de construcción de una unión soldada en material API 5L X80 de 20" de diámetro y 0.750" de espesor.

Lo que hace pensar que los costos de reparación se verán afectados principalmente por disponibilidad de equipos y de mano de obra calificada. En la Figura 6.2. se muestra los costos estimados para la reparación de una discontinuidad

localizada en el pase de raíz con una longitud igual 30 mm, lo que hace necesario desbastar el cordón de soldadura hasta encontrar la raíz y eliminar el defecto. Nuevamente se observa que los costos por equipo (56.53%) y mano de obra (41.11%) son los dos grandes costos.

tem	Descripcion	Unidad	Can:		valor Sitaclo	Valor Parcia		Sym Total	
1-0	Alguiler de Equipos / Equipos							5	88 00
	1.1 Motosoldadora	h	0.00	\$	20.00	S	10.00		
	1.2 Inspeccion de Union Soldada por ensayo de UT / PT 1	- 5	4.09	5	12.66	S	48.00		
2.0	Reparación de discontinuidad							5	2.98
	2.1 Retiro de discontinuidad con disco de desbaste	เมาเป	1.00	5	0.50	\$	0.50		
	2.2 Reparación por soldadura								
	Consumo de electrodos (SMAW.)	Jind	1.00	3	2 48	5.	2 48		
3.0	Mano de Obra							5	64.06
	3.1 Soldador/Operador Clase 1	in in	2.00	5	12.00	5	24.00		
	3.2 Esmerilador / ayudante	. 6	2 00	S	5 00	5	10 00		
	3.3 Inspector	F	2.00	5	15.00	5	30.00		
4.0	Gastos varios							5	0.70
	4.1 Escobillas, discos de desbaste	Urld	1 00	S	0.35	S	0.35		
	4.2 Consumibles para equipo de oxicorte	Ung	1.00	5	0.35	5	0.35		

TOTAL 5 155.68

Notas

1 El costo por hora es de USS 12,00, sin embargo se considera tras ado al punto de inspección equilira ente a 4 horas

Figura 6.2. Estimativa del costo de reparación por discontinuidad localizada en el pase de raíz de una unión soldada en material API 5L X80 de 20" de diámetro y 0.750" de espesor.

Posterior a la reparación se realizará una inspección por ultrasonido, donde de encontrarse nuevamente alguna discontinuidad será necesario reparar. De acuerdo a la normativa utilizada o procedimientos internos de la empresa constructora determinará cuando se han realizado una reparación y se evidencia nuevamente una discontinuidad no aceptable en la misma región previamente reparada será necesario cortar la unión soldada y realizar nuevamente. Esto hace que el costo de fabricación

de esa unión soldada sea igual o mayor al doble de su costo inicial, debido a la movilización de personal y equipo sólo para dar atención a esa unión soldada.

6.2. COSTOS DE ELABORACIÓN DE UNA CURVA DE LÍMITES ADIMENSIONALES

Como apreciado en el Capitulo 5 para la utilización del método Opción 2 de la API 1004:2007 Apéndice A es necesario contar con las propiedades mecánicas de la unión soldada, para ello es necesario determinar su tenacidad a la fractura (CTOD), resistencia al impacto y ensayo de tracción; siendo este último para estimar el valor real del límite de fluencia y de rotura de la unión soldada y no del material base.

En la Figura 6.3. se muestra los costos de forma detallada de las etapas que involucra el desarrollo del análisis de integridad de una unión soldada para determinar las dimensiones máximas permisibles de una discontinuidad plana. Se observa que el mayor costo se encuentra en los ensayos de caracterización mecánica (87.32%) seguido del costo de análisis (6.53%).

Es recomendable realizar estos ensayos de caracterización para cada EPS y no tomar los valores de referencia obtenidos en ensayos anteriores, a no ser que las variables esenciales se encuentren dentro de los rangos permisibles según la norma de aplicación utilizada.

Item		Descripcion	Unidad	Cant	U	Valor Unitario		Valor Parcial	Si	o Tota
1.C	Prepa	aración de Niple de Ensayo							S	596 00
	1.1	Niples de Material Base 1	kg	1440	\$	2 50	S	360.00		
	1 2	Ejecución de Especificación de Procedimiento de Soldadura 2	Und	1 C	S	188.00	\$	188.00		
	1.3	Inspección de Unión Soldada por ensayo de Ultrasonido 3	Und	10	S	48.00	5	-18 CC		
2.0	Carac	terización de Propiedades Mecanicas							5.8	454.35
	2.1	Determinacion de regiones a ensayar								
		Ingeniero Junior	77	1.C	S	25.00	Ş	25 00		
	2.2	Extración de Chapas								
		Determinación de regiones de corte 4	n	C 5	\$	5.00	Ş	2.50		
		Corte par oxicorte (250 mm x 350 mm @ 4)								
		Consumibles	393	5.0	5	0.57	5	2.85		
		Operardor calificado	BY	2.0	S	S 00	5	16.00		
		Traslado de material a Laboratorio	Und	10	5	30.00	S	50.00		
	2.3	Preparación de muestras								
		Mecanizado de muestras para ensayo de CTOD	Und	15 C	5	60.00	5	900.00		
		Mecanizado de muestras para ensayo de tracción	Und	4.0	S	30.00	\$	120.00		
		Mecanizado de muestras para ensayo de impacto	Und	15 C	S	22 00	Š	330,00		
		Control de Calidad								
		Supervision por Ingeniero Junior	15	2.0	S	20.00	5	40.00		
	2.4	Ensayo de muestras								
		Ensayo de CTOD Material Base	Und	3 C	S	100 00	S	1,200,00		
		Ensayo de CTOD Union Soldada	Und	12 C	5	100 00	\$	4 800 00		
		Ensayo de impacto de Material Base	Und	3 C	5	40.00	5	120.00		
		Ensayo de impacto de Union Soldada	Und	12/0	S	40.00	S	480.00		
		Ensaye de tracción de Unión Soldada	Und	40	5	28.00	Ś	112 00		
		Control de Calidad								
		Supervisión por Ingeniero especialista	h	S C	5	32.00	5	256 CC		
3.C	Anál	isis de Integridad de la Unión Soldada							S	632.00
	3.1	Validación de información								
		Ingeniero Junior	6	16.0	S	20.00	S	320 00		
	3.2	Elaboración de curvas de dimensiones permisibles								
		Ingeniero Senior	ñ	4.0	S	32,00	5	128 CC		
	3 3	Elaboración de Informe Técnico								
		Ingeniero Junior	H	4.0	5	46.00	S	184 CO		

TOTAL \$9,682,35

Notes

Figura 6.3. Estimativa de costos para la elaboración de un análisis de integridad de una unión soldada circunferencial.

¹ Tubo de 20° de diametro y 0.750° de espesor. Longitud de niple igual a 300 mm. Cantidad de niples igual a 1 $^{\circ}$

² Se considera el costo un camente de consumibles y mano de obra. Alquiller de motosoldadolla está considerado 3 El costo por hora es de USS 12.00, sin embargo se considera traslado al punto de inspección equivalente a 4 horas

[∴] Involucra e trazado con marcador para meta y tipeo de codificación

6.3. BENEFICIO ECONÓMICO DE LA APLICACIÓN DEL PROCEDIMIENTO

Por lo anterior se puede observar que el costo de análisis para la elaboración de curvas o tablas de dimensiones máximas aceptables para discontinuidades planas, representa un costo mínimo en comparación al costo de construcción de un gasoducto, los cuales están en el orden de millones de dólares.

De las Figura 6.1 y 6.2 se podría que el costo total de una unión soldada con una discontinuidad no aceptable reparada es de US\$ 775.19 (costo de fabricación de una unión soldada mas su costo de reparación), es decir aproximadamente un 25% de su costo inicial. Una forma de visualizar el beneficio que se podría obtener al aplicar estos criterios de aceptación alternativo es tomando un kilometro de ducto construido. Cada tubo posee una longitud promedio igual a 12 m. lo que representa tener 84 uniones soldadas (se ha considerado la unión de empalme con el siguiente tramo). Como indicado anteriormente existe entre 3 a 5% [45] de uniones rechazadas en la construcción de ductos de transporte, lo que quiere decir que en un kilometro se rechazarán entre 2 a 4 uniones soldadas. Lo que representa en términos monetarios el costo de fabricación de una unión soldada, aproximadamente, de considerar 4 uniones En la Figura 6.4. se aprecia esta proporción de costos entre la rechazadas. fabricación, reparación de una unión soldada y de análisis de discontinuidades, donde se ha considerado al costo de fabricación como la unidad, siendo como 15.63 veces el costo de análisis y como un cuarto el costo de reparación.

Figura 6.4. Cuadro comparativo proporcional de los costos de fabricación y reparación de una unión soldada; y del costo de elaboración de curvas de dimensiones máximas aceptables para discontinuidades planas.

Si se considera que la aplicación de criterios alternativos de evaluación de discontinuidades planas permitiera reducir en un 50% el número de uniones soldadas rechazadas en un tramo construido igual a un kilometro su costo sería pagado luego de 31 km de construcción, Aproximadamente, tal como se puede apreciar en la Figura 6.5., resultando su aplicación posterior en beneficio para la compañía constructora del gasoducto. Por ejemplo, si para el ducto de Transportadora de Gas del Perú de 730 km en la línea de gas se hubiera aplicado este criterio de aceptación alternativo se hubiera podido economizar aproximadamente unos US\$ 227,293.00 en el peor de los casos de no rechazar dos uniones por kilometro de tubería soldada.

Figura 6.5. Economía en el costo de uniones soldadas no rechazadas por kilometro de tubería soldada.

CONCLUSIONES

- 1. El uso de criterios de aceptación alternativos para la validación de la integridad estructural de una unión soldada permite aceptar dimensiones de discontinuidades que serían rechazadas por los criterios de aceptación conservadores adquiridos a través de la experiencia, reduciendo el porcentaje de uniones rechazadas innecesariamente.
- 2. La API 1104:2007 Apéndice A Opción 2 es el método de mayor practicidad para la evaluación de integridad de unión soldadas circunferenciales, debido a su amplia aplicación para tubos de pared delgada y facilidad de cálculo, permitiendo obtener dimensiones máximas de aceptación medianamente conservadoras cuando comparado con los resultados de la BS7910:2007 Nivel 2A y poco conservadoras cuando se comparan con los resultados de la API 1104:2005 aplicado a discontinuidades de amplia longitud y pequeñas alturas. Siendo su aplicación limita únicamente para discontinuidades con longitudes (2c) mayores o iguales a su altura (a).
- Curvas de límites máximos permisibles adimensionales para un determinado material son validos para todo material de menor o igual límite de elasticidad al

considerado; y aplicable para todo diámetro y espesor de pared igual o inferior al diámetro y espesor de pared, considerados en el análisis para la elaboración de dicha curva. Así como, para todo valor de tenacidad a la fractura (CTOD) mayor o igual al valor utilizado en dicho análisis.

4. El desarrollo de curvas de límites permisibles adimensionales para discontinuidades planas es recomendable para proyectos donde la geografía dificulte y encarezca la logística de disponibilidad de equipo, maquinaria y personal para la realización de uniones soldadas. Resultando su aplicación beneficiosa para ductos de gran longitud por economizar recursos debido a la reducción de uniones soldadas rechazadas.

BIBLIOGRAFÍA

- [1] DENYS. R.M.; LEFEVRE. T.; Alternative Acceptance Criteria of Girth Weld Defects. PR-202-9328 Pipeline Research Council International. 1997.
- [2] LEE. K.; Reducing Pipeline Construction Costs with Girth Weld ECA. Pipeline & Gas Journal. Sept. 2008.
- [3] MOLES. M.; DUBÉ. N.; GINZEL. E.; Pipeline Girth Weld Inspections Using Ultrasonic Phased Arrays. Pan American Conference for NDT. June 2 6. 2003. Rio de Janeiro Brazil. p. 1 -16
- [4] FAZACKERLY. W.J.; MANUEL. P.A.; CHRISTENSEN. L.; First X80 HSLA Pipeline in the USA. The Joint Conference of HSLA steels 2005 and ISUGS 2005. Nov. 8 10. 2005. Sanya. Hainan. China. p. 1 8.
- [5] HILTON. P.D.; MAYVILLE. R.A.; An Evaluation of Girth Weld Defect Acceptance Criteria. Final Report. U.S. Department of Transportation Research and Especial Projects Administration.
- [6] http://www.osinerg.gob.pe/newweb/pages/GFGN/1636.htm Acceso el 11.10.09.
- [7] http://www.kuntur.attachmedia.com/sobre-el-proyecto Acceso 11.10.09
- [8] RENNÓ. M.; Implementação de Empreendimentos Dutoviários. Projeto Mecânico de Dutos. Engenharia de Dutos 2009. Notas de clase 2009. DEM PUC-Rio. Rio de Janeiro. Brasil.
- [9] FONTES. E.S.; Apoio Logístico Integrado para Construção e Montagem de Dutos. Dissertação de Mestrado. DEI PUC-Rio. Rio de Janeiro. Brasil. 2008.
- [10] http://www.enbridge-expansion.com/expansion/main.aspx?id=1254&tmt=1 Acceso 04.11.09

- [11] YAPP. D. and Blackman. S.A.; Recent developments in high productivity pipeline welding. Journal of Brazilian Society of Mech. Sci. and Eng. 26 (2004). p. 89 97.
- [12] MACAW Engineering Ltd.; MACAW's pipeline defects. Ed. Yellow Pencil Marketing Co. Ltd. Hampshire. UK. June 2005.
- [13] http://primis.phmsa.dot.gov/comm/reports/safety/SerPSI.html Acceso 04.11.09
- [14] AWS A3.0:2001 Standard Welding Terms and Definitions. AWS A3.0:2001.
- [15] API 1104 Welding of Pipelines and Related Facilities. API Standard 1104. 20th Oct. 2005. Addendum July 2007.
- [16] MASUBUCHI. K.; Analysis of Welded Structures: Residual Stresses, Distortion, and their Consequences. Oxford: Pergamon Press. 1980 Chapter 15. Effects of weld defects on service behavior.
- [17] BOTT. I. De S.; Ciência e Tecnologia dos Materiais. Notas de clase 2009.1 DEMa PUC-Rio. Brasil.
- [18] ANDREUCCI. R.; Radiologia Industrial. Associação Brasileira de Ensaios Não Destrutivos e Inspeção. ABENDI Julho 2009.
- [19] STETSON. J.T.; Advancements in pipeline girth weld inspection. 17th World Conference on Nondestructive Testing. 25 – 28 Oct. 2008. Shanghai. China. Págs. 7.
- [20] ANTAKI. G.; Fitness-for-service and Integrity of Piping, Vessels and Tanks. Ed. McGraw-Hill. 2005.
- [21] OTEGUI. J.L.; RUBERTIS. E. Cañerías y recipientes de presión Tomo II Daño en Servicio. Universidad Nacional de Mar de Plata. Argentina. Ed. Eudem. 2008.
- [22] RICHTER. M.R.; Construção e Montagem de Dutos. Engenharia de Dutos 2004. Notas de clase 2004. DEM PUC-Rio. Rio de Janeiro. Brasil.
- [23] SAAVEDRA. J.R.; Nuevas Tendencias en los Códigos en la Predicción de Vida de los equipos. Seminario. Junio 2009. Lima. Perú.
- [24] TEXEIRA. J.C.; Teste Hidrostático em Dutos de Alta Tenacidade. Comunicación por correo electrónico.
- [25] De SOUZA. R.D.; Projeto Mecânico de Dutos. Engenharia de Dutos 2009. Notas de clase 2009. DEM PUC-Rio. Rio de Janeiro. Brasil.
- [26] FREIRE. J.L. França.; Engenharia de Dutos, Rio de Janeiro, ABCM Associação Brasileira de Engenharia e Ciências Mecânicas. 2009.

- [27] LANCASTER. J.F.; Metallurgy of Welding Sixth Edition. Ed. Woodhead Publishing Limited. Cambridge. England Reprinted 2006.
- [28] LANCASTER. J.F.; Handbook of Structural Welding. Ed. Abington Publishing. Cambridge. England Reprinted 2003.
- [29] BRAGA. A.; Projeto Mecânico de Dutos. Engenharia de Dutos 2009. Notas de clase 2005. DEM PUC-Rio. Rio de Janeiro Brasil.
- [30] BS 7910:2007 Guide to methods for assessing the acceptability of flaws in metallic structures.
- [31] KIRAL. B. G.; Effects of the Weld Electrode on the Fracture Behavior of Welded Steel Beam-to-Column Joints. Mathematical and Computational Applications. Vol. 9. No 3. pp. 449 456. 2004.
- [32] FOSCA. C.; Mecanismos de daño vinculados a las uniones soldadas. Fundamentos del Análisis de Falla en Componentes Mecánicos. Pontificia Universidad Católica del Perú. 2010.
- [33] SMITH. S.E.; PISARSKI. H.G.; Comparison of API 1104 Appendix A and BS 7910 Procedures for the Assessment of Girth Weld Flaws. 5th International Pipeline Technology Conference. Ostend. Belgium. 12 – 14 October 2009.
- [34] ANDERSON. T.L.; Fracture Mechanics. Fundamentals and Applications. CRC Press. United States 1995.
- [35] BOTT. I.; DE SOUZA. L.F.G.; TEXEIRA. J.C.G. and RIOS. P.R.; High-Strength Steel Development for Pipelines: A Brazilian Perspective. Metallurgical and materials transactions A. Feb 2005. p. 443 454
- [36] SANZ DURAND. R.; Avaliação da Microestrutura e Propriedades Mecânicas da Soldagem Circunferencial do Aço API 5L X80 por Processos de Soldagem Semi-Automáticos com Proteção Gasosa. Disertación de maestria. DCMM. PUC-Rio. Rio de Janeiro. Brasil. 2007.
- [37] API 1104:2005 Welding of Pipelines and Related Facilities. API Standard 1104. 20th Oct. 2005.
- [38] CSA Z662:99 Oil and Gas Pipeline Systems.
- [39] API STD 579 Fitness-For-Service 2007
- [40] DENYS. R.M.; LEFEVRE. A. A.; DE JAEGER C. & CLAESSENS S.; "Failure Characteristics and defect tolerance levels of girth welds in large diameter

- X65/X70 steel line pipes: experimental verification through wide plate testing and comparison with ECA prediction Models". Pipeline Technology. May 2000. Vol. 1.
- L*1] SILVA. M.C.; Determinação experimental da tenacidade a fratura da zona termicamente afetada de junta soldada de aço API 5L X80. Tesis de Doctorado. Escola Politécnica de São Paulo. Brasil. 2009.
- [42] ASME B31.8 Gas Transmission and Distribution Piping Systems 2007. American Society Mechanical Engineering.
- [43] ESCOE. A.K.; "Piping and Pipelines Assessment Guide". 1st Ed.Gulf Professional Publishing. Elsevier. Oxford United Kingdom. 2006.
- [44] API 5L Specification for Line pipe 2007
- [45] SPORTSMAN. L.; Tecnología en Inspección de Soldadura. Lima. Perú. 01 05 de Marzo de 2010. RAISEC.
- [46] BRITO. J; PARANHOS. R; Como Determinar os Custos da Soldagem. Campos dos Goytacazes. RJ. Brasil. 2005.
- [47] SANZ DURAND. R.; BATISTA. G. Z.; de Menezes. M.S.; HIPPERT JUNIOR. E. SOUZA. L. F. G.; BOTT. I. S.; Qualificação de Procedimentos Para Soldagem Circunferencial de Tubos API 5L X80. In: Rio Pipeline 2007. 2007. Rio de Janeiro. Rio Pipeline 2007. Rio de Janeiro: IBP. 2007. p. IBP_1267_07.
- [48] WANG, Y-Y.; CHEN Y.; Reliability Assessment Using the Improved ECA Procedure. GRI Contract No. 8510. February 2005.

Apéndice A

Cálculo de Esfuerzos que actuantes en un ducto

De acuerdo a Escoe [43] los esfuerzos que actúan sobre un tubo son básicamente cuatro, tal como se observa en la Figura 1. El tubo está sometido a una presión interna, p, y los esfuerzos son:

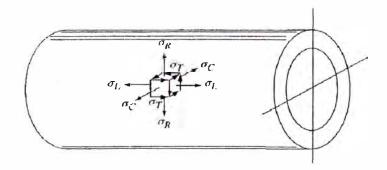


Figura 1. Esfuerzos que actúan en una tubería debido a la presión interna.

 σ_L = esfuerzo longitudinal

 σ_{C} = esfuerzo circunferencial

 σ_R = esfuerzo radial

 σ_T = esfuerzo de corte o de torsión

A1. Esfuerzo Longitudinal

El esfuerzo longitudinal es la suma de las siguientes componentes:

a. Esfuerzo debido al momento flector, M

$$\sigma_{LM} = \frac{M \cdot c}{I} = \frac{4M}{\pi D^2 t}$$

Ecuación 1

b. Esfuerzo debido a la presión interna, p.

$$\sigma_{L_p} = p \frac{A_i}{A_m} = p \cdot \frac{{d_i}^2}{D^2 - {d_i}^2} = \frac{p {d_i}^2}{4 d_m t} \approx \frac{p D}{4 t}$$

Ecuación 2

c. Esfuerzo debido a cargas axiales

$$\sigma_{LF} = \frac{F}{A_m} = \frac{4F}{\pi \cdot \left(D^2 - D_i^2\right)}$$

Ecuación 3

Se debe tener en consideración el esfuerzo debido al peso de la tubería, siempre y cuando la tubería no se encuentre completamente apoyada sobre el terreno.

$$\sigma_L = \sigma_{L_M} + \sigma_{L_p} + \sigma_{L_F}$$

Ecuación 4

A2. Esfuerzo Circunferencial

a. Esfuerzo debido a la presión interna, p.

$$\sigma_{C_p} = p \cdot \frac{d_i}{2t} \approx \frac{pD}{2t}$$

Ecuación 5

A3. Esfuerzo Radial

Para tuberías de pared delgada, el esfuerzo radial puede ser despreciado. Sin embargo, para tuberías de pared gruesa, la siguiente relación deberá ser utilizada para determinar el esfuerzo radial:

$$\sigma_R = \frac{r_i^2 p_{i-} r_o^2 p_o}{r_o^2 - r_i^2} - \frac{r_i^2 r_o^2 (p_i - p_o)}{(r_o^2 - r_i^2) r^2}$$

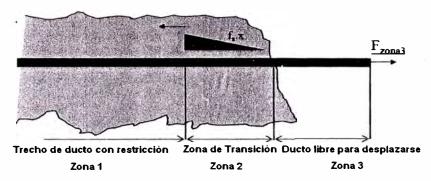
Ecuación 6

A4. Esfuerzo de corte o de torsión

a. El esfuerzo de corte máximo debido a una carga transversal, Q.

$$\sigma_T = \frac{2Q}{A_m}$$

Ecuación 7


b. Esfuerzo de corte máximo por torsión

$$\sigma_T = \frac{2T}{\pi D^2 t}$$

Ecuación 8

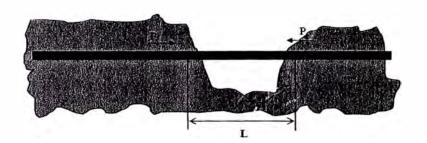
A5. Casos Particulares

1. Restricciones para ductos enterrados

Zona 1 $\sigma_L = \mu \cdot \sigma_C - E\alpha \cdot \Delta\theta$

$$\varepsilon_L = \frac{1}{E}(\sigma_L - \mu \cdot \sigma_C) + \alpha \cdot \Delta\theta = 0$$

Zona 2


$$f_a \cdot L_{tr} = A[\mu \cdot \sigma_C - E\alpha \cdot \Delta\theta] - F_{Zona3}$$

 $A \approx \pi \cdot Dt$

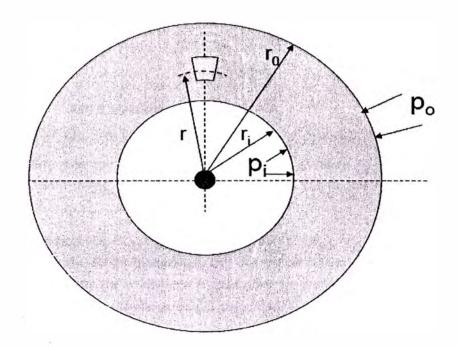
Zona 3

$$F_{Zona3} = A \cdot \sigma_L = (\pi \cdot Dt) \left(\frac{pD}{4t}\right) = \frac{\pi D^2}{4} p + otra fuerza externa axial$$

2. Flexión en ductos semi-libres

$$\begin{split} \Delta l &= L \bigg(\alpha.\Delta\theta - \frac{1}{E}\mu\sigma_c\bigg) \\ P &= A.E.\frac{\Delta l}{L} = -\mu.\sigma_{cp}.A + A.E.\alpha.\Delta\theta \\ P_{crt} &= \frac{C.\pi^2.E.I}{L^2} \end{split}$$

P = fuerza de anclaje causado por la restricción que el suelo ofrece al desplazamiento del ducto. P_{crt} = fuerza necesaria para provocar flexión en la longitud libre L del ducto.


L = longitud libre del ducto entre restricciones del terreno.

C = condiciones de anclaje del ducto en el terreno en las extremidades de la longitud libre: C = 4, 2, 1, 1/4.

Nota:

 $\Delta\theta$ > 0 origina ΔL > 0 si y solo si P < 0 Entonces comparar P con P_{crt} para verificar la posibilidad de flexión.

3. Esfuerzos para tuberías de pared gruesa bajo presión interna y externa

$$c_1 = \frac{p_i \cdot r_i^2 - p_o \cdot r_o^2}{r_o^2 - r_i^2}$$

$$c_2 = \frac{(p_i - p_o) \cdot r_i^2 \cdot r_o^2}{r_o^2 - r_i^2}$$

$$\sigma_C = C_1 + \frac{C_2}{r^2}$$

$$\sigma_R = C_1 - \frac{C_2}{r^2}$$

Apéndice B

Procedimientos de los Criterios Alternativos de Aceptación

B 1. API 1104:2007 – Apéndice A.

Define dos metodologías de evaluación, aunque no considera la posición y ubicación de la discontinuidad. Específica la orientación, de forma implícita, en la dirección del espesor del tubo.

En ambos los casos el esfuerzo máxima axial, σ_a , es considerado como la carga crítica de evaluación de la integridad del conducto antes de una discontinuidad. La selección de la metodología de análisis va a depender de los datos disponibles y del valor de la tenacidad del material, δ_{mat} , mayor que 0,05 mm (0,002").

Cuando estas metodologías no permiten evaluar una discontinuidad en particular, API 1104 sugiere utilizar el procedimiento específico en la BS 7910 u otra metodología que pueda proporcionar resultados de confianza utilizando factores de seguridad apropiados.

En ambos casos es necesario definir:

- Dimensiones geométricas del tubo (diámetro nominal y espesor de pared).
- Propiedades mecánicas de los materiales de base (límite de elasticidad, límite de rotura, tenacidad).
- El error permisible en la metodología de inspección no destructiva utilizada.
- Esfuerzo máximo axial, σ_a , aplicada en la estructura.

Opción 1 – La aplicación de esta metodología está asociada a un valor de la tenacidad del material, δ_{mat} , mayor que 0,10 mm (0,004"), conforme al procedimiento abajo indicado.

- 1. Determinar la tensión de fluencia, σ_f , fórmula 1.
- 2. Determinar el nivel de carga, Pr, fórmula 2.
- 3. Si el δ_{mat} es mayor que 0,10 mm (0,004") y menor que 0,25 mm (0,010") las razones β e η son determinadas por el gráfico de la Figura 1.
- 4. Si el δ_{mat} es mayor o igual que 0,25 mm (0,010") las razones β y η son determinadas por el gráfico de la Figura 2.

- 5. Las dimensiones aceptables para una discontinuidad son tabuladas y corregidas teniendo en consideración el error permisible en el procedimiento de inspección y longitud máxima aceptable para una discontinuidad igual a $0.125 \, \pi D$.
- 6. Toda discontinuidad evaluado con longitud, 2c, y altura, a, debe estar dentro de los límites dimensionados de aceptación.

Procedimiento de Cálculo

Tensión de fluencia – Definida como el valor medio entre el límite de elasticidad y el límite de rotura, 1a ecuación. Otra forma de cálculo para aceros de grado X52 a X80 puede ser estimada por la ecuación 1b o 1c:

$$\sigma_f = \frac{\sigma_v + \sigma_t}{2} \tag{1a}$$

$$\sigma_f = \sigma_y \left[1 + \left(\frac{21,75}{\sigma_y} \right)^{2,30} \right]$$
 (1b)

Donde $\sigma_{\rm y}$ está en ksi.

$$\sigma_f = \sigma_y \left[1 + \left(\frac{150}{\sigma_y} \right)^{2,30} \right] \tag{1c}$$

Donde σ_y está en MPa.

Nivel de carga – Definida como la razón entre el esfuerzo máximo axial y el esfuerzo de fluencia, ecuación 2.

$$P_r = \frac{\sigma_a}{\sigma_f} \tag{2}$$

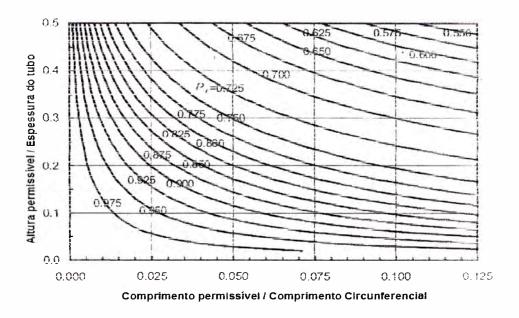


Figura 1. Dimensiones de la discontinuidad para 0,10 mm (0,004") ≤ CTOD < 0,25 mm (0,010")

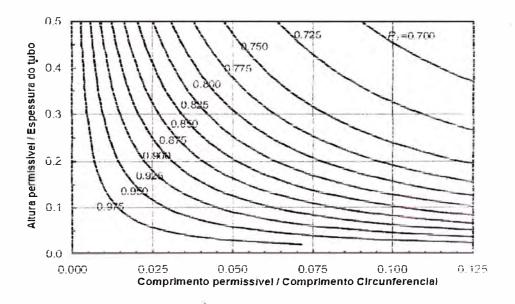


Figura 2. Dimensiones de la discontinuidad para CTOD ≥ 0,25 mm (0,010")

Opción 2 – La aplicación de esta metodología está asociada a un valor de tenacidad del material, δ_{mat} , mayor que 0,05 mm (0,002"). Las dimensiones de la discontinuidad son consideradas tanto para el cálculo de la tensión de colapso plástico, σ_{c_1} como para el cálculo del factor de intensidad de tensiones, K_l . El punto de evaluación de una discontinuidad debe estar dentro del área descrita por la curva FAD, Figura 3, para ser considerada como una discontinuidad que no afectará la integridad del conducto. Este procedimiento fue aprobado en el trabajo desarrollado por Wang, Y. et al [48], siendo el procedimiento de cálculo indicado a seguir:

- 1. Dimensionar la discontinuidad (longitud, 2c, y altura, a). Siendo la altura máxima permisible igual a 0.5t, donde la longitud de la discontinuidad es asumido.
- 2. Determinar la tensión de disposición, σ_f , fórmula 1.
- 3. Determinar la curva de evaluación de falla (FAC), fórmula 3.
- 4. Determinar la razón de tensión de corte, L_r^c , fórmula 4.
- 5. Determinar la tensión de colapso plástico, σ_c , fórmula 5.
- 6. Determinar la razón de tensión, L_r, fórmula 6.
- 7. Determinar la razón de la tenacidad, K_r .
- 8. Si el punto de evaluación (L_r, K_r) se encuentra dentro de la región descrita por la FAC, la longitud de discontinuidad, 2c, debe ser agregado y volver al paso 5, en caso contrario la longitud de discontinuidad debe ser reducido.
- 9. Si el punto de evaluación (Lr, Kr) se encuentra sobre la curva FAC, este punto representa un estado crítico de la interacción de la carga aplicada en la estructura, en función de las propiedades del material y tamaño de discontinuidad. Estos valores de longitud y altura de la discontinuidad deben de ser registrados.
- 10. La altura de la discontinuidad debe ser reducida de 0,05 ($\Delta \eta = 0,05$). Definir la longitud de la discontinuidad con el valor obtenido en el paso 9 y volver al paso 5.
- 11. Realizar una tabla de dimensiones críticas para una discontinuidad.
- 12. Aplicar un factor de seguridad de 1,5 en las dimensiones determinadas en el paso 15 y realizar una tabla de dimensiones corregidas.
- 13. Ajustes necesarios pueden ser hechos en esta tabla final, en la cual puede ser considerado el error admisible en la inspección.

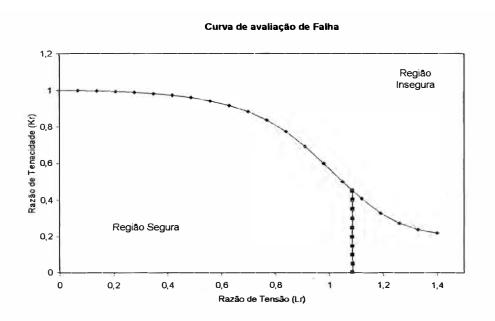


Figura 3. Curva de Evaluación de Falla (FAC), para una determinada razón de tensión de corte , L_r^c .

Procedimiento de Cálculo

El criterio de evaluación está basado en la curva de evaluación de falla (La Curva de Evaluación de Falla – FAC) que define el área de la región segura e insegura que está delimitada por las siguientes ecuaciones, una curva definida por la ecuación 3;

$$f(L_r) = (1 - 0.14L_r^2)[0.3 + 0.7 \exp[-0.65L_r^6]]$$
(3)

Y por la perpendicular trazada a la curva, dada por la ecuación:

$$L_r^C = \frac{\sigma_f}{\sigma_y} \tag{4}$$

La FAC, $f(L_r)$, es generada sin tomar en cuenta las propiedades del material evaluado, siendo limitada por el valor de L_r .

Tensión de colapso plástico, σ_c .

$$\sigma_{c} = \begin{cases} \left[\frac{\pi}{4} + 385(0,05 - \eta\beta)^{2,5}\right] \left[\cos\left(\frac{\eta\beta\pi}{2}\right) - \frac{\eta sen(\beta\pi)}{2}\right] \sigma_{y} ; & \eta\beta < 0,05 \\ \frac{\pi}{4} \left[\cos\left(\frac{\eta\beta\pi}{2}\right) - \frac{\eta sen(\beta\pi)}{2}\right] \sigma_{y} ; & \eta\beta \ge 0,05 \end{cases}$$
(5)

Razón de la tensión, Lr.

$$L_r = \frac{\sigma_a}{\sigma_c} \qquad . \tag{6}$$

Razón de la tenacidad, K_r .

$$K_r = \sqrt{\frac{\delta_e}{\delta_{max}}} \tag{7}$$

La fuerza motríz de la componente elástica de la tenacidad (CTOD), δ_{e} , puede ser calculada por:

$$\delta_e = d_n \frac{J_e}{\sigma_y} \tag{8}$$

El factor de conversión de la Integral J para la tenacidad (CTOD), es calculado por la siguiente relación:

$$d_n = 3,69 \left(\frac{1}{n}\right)^2 - 3,19 \left(\frac{1}{n}\right) + 0,882 \tag{9}$$

Donde n es el coeficiente de endurecimiento por trabajo a frio.

El coeficiente de endurecimiento puede ser estimado de la razón σ_i/σ_i :

$$n = \frac{\ln(\varepsilon_t/0,005)}{\ln[1/(\sigma_y/\sigma_t)]} \tag{10}$$

Para Aceros de Grado X52 a X80, la razón σ_v/σ_t puede ser calculada por la siguiente relación:

$$\frac{\sigma_{y}}{\sigma_{t}} = \frac{1}{2 + \left(\frac{21,75}{\sigma_{y}}\right)^{2,3}}$$
 (11.a)

Donde σ_{v} está en ksi.

$$\frac{\sigma_y}{\sigma_t} = \frac{1}{2 + \left(\frac{150}{\sigma_y}\right)^{2,3}} \tag{11.b}$$

Donde σ_y está en MPa.

La deformación uniforme es estimada como:

$$\varepsilon_{t} = -0.0017 \, \text{fr}_{y} + 0.22 \tag{12.a}$$

Donde σ_v está en ksi.

$$\varepsilon_{i} = -2.54 \times 10^{-4} \sigma_{y} + 0.22$$
 (12.b)

Donde σ_y está en MPa.

La integral J elástica es dada como:

$$J_e = \frac{K_I^2}{E/(1-v^2)} \tag{13}$$

Factor de intensidad de tensiones (K1)

$$K_I = \sigma_a \sqrt{\pi a} F_b \tag{14}$$

$$F_{bo}(\alpha, \beta, \eta) = \begin{cases} F_{bo}(\alpha, \beta, \eta), & \eta \ge 0, 1 \quad y \quad \beta \le \frac{80}{\pi} \frac{\eta}{\alpha} \\ F_{bo}(\alpha, \beta, \eta) = \begin{cases} F_{bo}(\alpha, \beta) = \frac{80}{\pi} \frac{\eta}{\alpha}, \eta, \eta, \eta, \eta \ge 0, 1 \quad y \quad \beta > \frac{80}{\pi} \frac{\eta}{\alpha} \\ F_{bo}(\alpha, \beta) = \frac{80}{\pi} \frac{0, 1}{\alpha}, \eta, \eta, \eta, \eta \ge 0, 1 \end{cases}$$
(15)

$$F_{bo}(\alpha, \beta, \eta) = \left(1,09 + 2,31\alpha^{0,791}\beta^{0,906}\eta^{0,983} + \frac{m_1}{\alpha\beta} + \alpha^{0,806}\beta m_2\right)$$
(15.a)

$$m_1 = -0.00985 - 0.163\eta - 0.345\eta^2$$
 (15.b)

$$m_2 = -0.00416 - 2.18\eta + 0.155\eta^2$$
 (15.c)

En el trabajo de Wang [19], se ha establecido que estas ecuaciones son aplicables para un factor de $0.1 \le \eta \le 0.8$, $4 \le \alpha \le 162$, e $2\eta/\pi\alpha \le \beta \le 32\eta/\pi\alpha$. Estos factores de validez no son mencionadas en la norma API 1104.

B 2. API 1104:2005 – Apéndice A

El criterio de evaluación alternativo del Apéndice A del API 1104:2005 no especifica o criterio de fractura utilizado para la determinación de las dimensiones permisibles de una discontinuidad plana no aceptada por el criterio de workmanship. Este procedimiento alternativo tiene únicamente en consideración la geometría del tubo (diámetro y espesor de pared) y la tenacidad a la fractura del material sin considerar las propiedades mecánicas del material de base (σ_y , σ_t).

Este procedimento es aplicable para determinadas condiciones listadas a seguir:

- Es aplicable solo para circunferencias de soldadura entre tubos de igual espesor de pared nominal.
- No es aplicable para soldadura con deformación axial, ε_a, superior a 0.5%.
- El valor de CTOD debe estar entre 0.005" y 0.010".
- La deformación por tensión residual debe ser igual a 0.002".
- Válido para D/t ≥ 3.
- Altura máxima permisible de la discontinuidad,a, igual a 0.5t.

Longitud máxima permisible de la discontinuidad, 2c, igual a 0.4D, cuando a/t < 0.25 o igual a 4t, cuando a/t se encuentra entre 0.25 a 0.50, si La razón D/t > 17. Cuando la razón D/t ≤ 17, se debe hacer uso de un gráfico.

Procedimiento de Cálculo

- 1. Definido el valor de, ε_a , de la Figura 4 es determinado el valor de a^* para un valor de CTOD entre 0.005" y 0.010".
- 2. Las dimensiones de las discontinuidades planas son determinadas según lo siguiente:
 - Para discontinuidades superficiales: a_s = a*
 - Para discontinuidades internas: $2a_b = 2a^*$ Siendo la altura máxima permisible para ambos de los casos 0.5t.
- 3. En función de las alturas de las discontinuidades son definidos las longitudes para cada una según la Tabla 1 y Figura 5 en caso de ser necesario.

Tabla 1. Límites de longitud de la discontinuidad. API 1104:2005 Apéndice A.

2c
0.40
0.4D
4t (ver nota 2)
0

Notas:

- 1. Los límites proporcionado em esta tabla son aplicables para niveles mínimos de CTOD de 0.005" o 0.010", mas solamente de ntro del alcance de este apéndice.
- 2. Este valor es aplicable cuando D/t es mayor a 17; cuando D/t es menor o igual a 17 la Figura 2 debe ser aplicada.

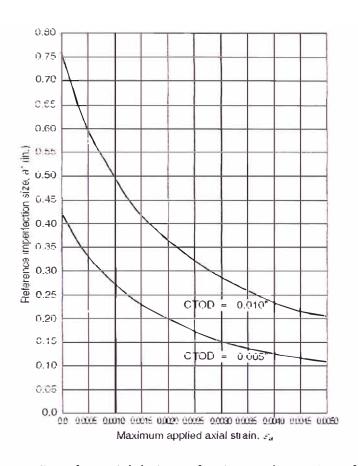


Figura 4. Tamaño referencial de imperfecciones planas circunferenciales

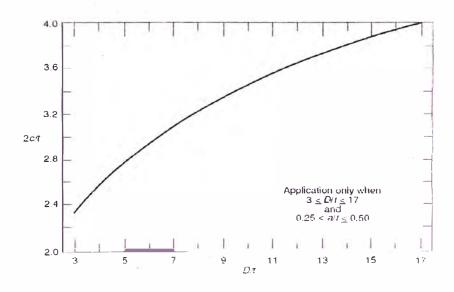


Figura 5. Límite de longitud para discontinuidades profundas en tubos de paredes gruesas.

Nota: Esta figura es aplicable solamente cuando $3 \le D/t \le 17$ y $0.25 \le a/t \le 0.50$

B 3. CSA Z662:99 – Apéndice K

La aplicación de esta metodología está asociada al valor de CTOD de material de base. Las dimensiones permisibles de una discontinuidad, tienen en cuenta una posición de defecto en la dirección del espesor de pared del tubo, siendo para discontinuidades de superficie el uso del gráfico en la Figura 6, es para discontinuidades internas el uso del gráfico en la Figura 7.

Este procedimiento es similar al indicado en la BS 7910 Nivel 1B. La altura de la discontinuidad está limitada a 0.5t para transporte de gas y 0.25t para transporte de líquidos.

Los CSA Z662, difiere de las otras normas evaluadas, definiendo que la interacción de dos discontinuidades ocurre cuando la distancia entre ellas es inferior a la longitud de la menor discontinuidad. Siendo la longitud efectiva, la suma de longitudes de las dos discontinuidades incluyendo la distancia entre ellas.

El análisis es el segundo de los pasos a seguir:

- 1. Obtener las dimensiones geométricas del tubo (diámetro nominal y espesor de pared).
- 2. Obtener propiedades mecánicas del material base (límite de elasticidad, límite de rotura, tenacidad, módulo de elasticidad).
- 3. Determinar la tensión axial máxima aplicada, σ_a , en la estructura, que deberá ser segundo especificado en el punto K2.1 de la norma CSA Z662.
- 4. Determinar el parámetro del tamaño efectivo de la discontinuidad, fórmula 18, por criterio de fractura frágil.
- Dependiendo de la ubicación de la discontinuidad (interna o superficial), es determinada una altura aceptable de la discontinuidad, a, y la longitud, 2c, de las Figuras 6 o 7.
- Las dimensiones críticas de la discontinuidad deben de ser registradas para determinar una tabla de dimensiones aceptables.
- 7. Determinar la longitud máxima de una discontinuidad por El Criterio de Falla Plástica, 2c_p, fórmula 21, para una determinada altura de la discontinuidad.
- 8. La longitud máxima aceptable será el menor valor obtenido en los pasos 6, 7 o inferior a $0.1\pi D$.

Cálculo del parámetro de tamaño efectivo de discontinuidad, ā.

$$\overline{a} = C \frac{\delta_{mat}}{\varepsilon_y} \tag{16}$$

Donde:

$$\varepsilon_{y} = \frac{\sigma_{y}}{E} \tag{17}$$

У

$$C = \begin{cases} \frac{1}{2\pi \left(\frac{\sigma_a}{\sigma_y}\right)^2} & donde \quad \frac{\sigma_a}{\sigma_y} \le 0,5\\ \frac{1}{2\pi \left(\frac{\sigma_a}{\sigma_y} - 0,25\right)} & donde \quad \frac{\sigma_a}{\sigma_y} > 0,5 \end{cases}$$
(18)

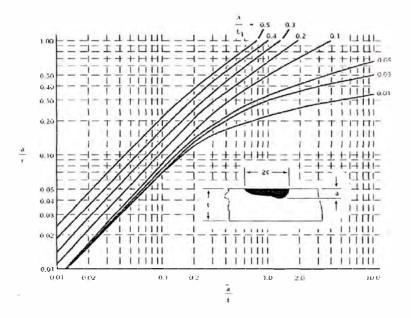


Figura 6. Relación entre la dimensión actual y \bar{a}/L_1 para discontinuidades superficiales

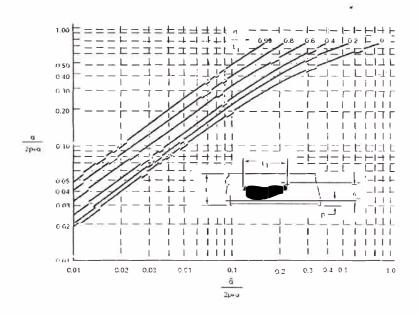


Figura 7. Relación entre la dimensión actual y $\bar{a}/(2p+a)$ para discontinuidades internas.

Longitud máxima de una discontinuidad por falla plástica, 2cp.

$$2c_p = \pi D(1.03 - \sigma_a/\sigma_v)(18a/t) \tag{19}$$

B 4. BS7910:2007

La metodología de la BS7910 está compuesta por tres niveles, donde los dos primeros niveles poseen dos subniveles y el tercer nivel posee tres subniveles.

En cada uno de los niveles la orientación y posición de la discontinuidad son adoptadas en consideración para el cálculo de la tensión de referencia, σ_{ref} , y el factor de intensidad de tensiones, K_I . Estos cálculos y factores de desalineación o de forma son definidos en los anexos M y P de la BS7910. La ubicación de la discontinuidad es tomada en consideración en la determinación del nivel del análisis.

Para el cálculo de la tensión máxima es necesario determinar las tensiones primarias y secundarias (térmicas y residuales). Esta norma, no hay una metodología para definir el plano de la discontinuidad, siendo necesario proyectar la discontinuidad en un plano equivalente en el que la tensión máxima es aplicada. La interacción entre dos discontinuidades es evaluada tanto de forma coplanaria como no-coplanaria, considerando las diferentes longitudes y alturas de cada una de ellas.

Nivel 1A — Evaluación simplificada que hace uso de un gráfico delimitado por los valores de K_r = 0,707 (V2/2) y S_r = 0,8. Los puntos de evaluación para una discontinuidad que se encuentran dentro del área delimitada, especifican que esta discontinuidad no tiene riesgo de falla. Figura 8.

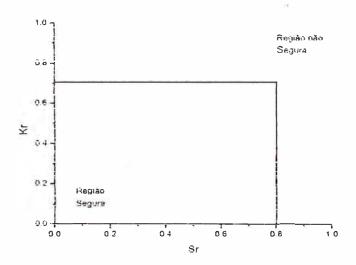


Figura 8. FAD para o nível 1A.

El procedimiento de cálculo es descrito a continuación:

Razón de carga, S_{r.}

$$S_r = \frac{\sigma_{ref}}{\sigma_f} \tag{20}$$

Donde el σ_{ref} es determinado según las ecuaciones descritas en el anexo P de la BS 7910, teniendo en consideración la orientación y posición de la discontinuidad. El σ_f é determinado por la ecuación 3a, siendo el valor máximo permisible menor o igual a 1,2 σ_y .

Razón de fractura (K_r ou δ_r)

$$K_r = \frac{K_I}{K_{mat}} \tag{21}$$

o

$$\sqrt{\delta_r} = \sqrt{\frac{\delta_I}{\delta_{mat}}} \tag{22}$$

Donde

$$K_{I} = (M f_{w} M_{m}) \sigma_{a} \sqrt{\pi \alpha}$$
 (23)

Donde los factores de corrección M y f_w , son por abultamiento y ancho finito en la obra evaluada, respectivamente, y son determinados en el anexo M de la BS 7910. Un resumen de la localización de cada uno de estos factores asociados a la posición de la discontinuidad es dada en la Tabla 2.

El K_{mat} es definido como:

$$K_{mai}^{2} = \frac{EJ_{mai}}{1 - \nu^{2}}$$
 (24)

El CTOD aplicado (δ_1) es determinado a partir de K_1

Para Aceros (incluidos los aceros inoxidables) y las aleaciones de aluminio a razón σ_{max}/σ_y é \leq 0,5, y para todas las razones σ_{max}/σ_y para otros materiales.

$$\delta_I = \frac{{K_I}^2}{\sigma_y E} \tag{25}$$

Para Aceros (incluidos los aceros inoxidables) y aleaciones de aluminio cuando la razón σ_{max}/σ_{y} es > 0,5:

$$\delta_{I} = \frac{K_{I}^{2}}{\sigma_{y} E} \left(\frac{\sigma_{y}}{\sigma_{\text{max}}}\right)^{2} \left(\frac{\sigma_{\text{max}}}{\sigma_{y}} - 0.25\right)$$
(26)

Tabla 2. Factores de corrección para determinar el factor intensificador de tensión.

	Discontinuidad	Offentación	101	Jw	/V/m	INIP	
Superficial interna		Circunferencialmente	1	1	Tabla M5 ^a		
		Axialmente	1	1	Tabla M4 ⁶		
Superficial externa		Circunferencialmente	1	Ecuación ²	Ecuación M8 ^{3,c}	Ecuación M10 ^{6,c}	
		Axialmente	1	1	Tabla M8**		
	Interna	No indicada	1	Ecuación ⁴	Ecuación M13 ^{5.d}	Ecuación M14 ^{7,e}	
2. 3. 4. 5. 6. 7.	Ecuación encontrada en el item M.3.2.1. de BS 7910. Ecuación encontrada en el item M.3.2.2.2. de BS 7910. Ecuación encontrada en el item M.3.4.1. de BS 7910. Ecuación encontrada en el item M.3.4.2. de BS 7910. Ecuación encontrada en el item M.3.2.3. de BS 7910. Ecuación encontrada en el item M.3.4.3. de BS 7910.						
b	0.1 Factor de aplicación 0:0.00 0.01	≤ a/c ≤ 1.0 ≤ t/(D/2-t) ≤ 0.20		d Factor de aplica	ción $0 \le a/2c \le 1.0$ a/t < 1.25 ($a/c + 0.6$) a/t < 1.0 ción $0 \le a/2c \le 1.0$ 2c/W < 0.5 ción $0 \le a/2c \le 0.5$) para 0 ≤ <i>a/2c</i> ≤ 0.1 para 0.1 ≤ <i>a/2c</i> ≤ 1	

Nivel 2A – Utiliza un FAD generalizado donde no es necesario el uso del diagrama tensióndeformación. La curva de evaluación está definido por la ecuación (3) y limitada por la razón de tensión de corte, L_r^c , en el eje de las abcisas por la perpendicular trazada, dada por la ecuación (4).

$$f(L_r) = (1 - 0.14L_r^2) [0.3 + 0.7 \exp[-0.65L_r^6]]$$
(3)

$$L_r^C = \frac{\sigma_f}{\sigma_y} \tag{4}$$

Donde el σ_f é determinado por la ecuación 3a, siendo el valor máximo permisible menor o igual que 1,2 σ_y .

Razón de la fractura ($K_r \circ \delta_r$)

Discontinuidad

$$K_r = \frac{K_I}{K_{mat}} + \rho \tag{27}$$

Cuando las tensiones secundarias están presentes el factor de corrección de la plasticidad, ρ , será determinado por el procedimiento de cálculo especificado en el anexo R del BS 7910.

Donde K_{mat} está determinado por la ecuación (26), y K_{i} está determinado por la ecuación:

$$K_{I} = \left[\left(Y\sigma \right)_{p} + \left(Y\sigma \right)_{s} \right] \sqrt{\pi a} \tag{28}$$

Donde:

$$(Y\sigma)_p = Mf_w[k_{tm}M_{km}M_mP_m + k_{tb}M_{kb}M_b\{P_b + (k_m - 1)P_m\}]$$
(28.a)

$$(Y\sigma)_s = M_m Q_m + M_b Q_b \tag{28.b}$$

Donde los factores de corrección M y f_w , son determinados en el anexo M de BS 7910. M_{km} e M_{kb} se aplican cuando la discontinuidad o fisura está en la región de concentración de tensión local y son dadas en la Tabla M5 y Tabla M6 de BS 7910. k_{tm} , k_{tb} y k_m será determinado como especificado en el anexo D de BS 7910. Un resumen de localización de cada uno de estos factores asociados a la posición de la discontinuidad está dado en la Tabla 2.

$$\sqrt{\delta_r} = \sqrt{\left(\frac{\delta_I}{\delta_{mat}}\right)} + \rho \tag{29}$$

Cuando tensiones secundarias están presentes en el factor de corrección de la plasticidad, ρ , será determinado por el procedimiento de cálculo especificado en el anexo R de BS 7910.

Donde:

$$\delta_I = \frac{K_I^2}{X\sigma_x E'} \tag{30}$$

Para tensión plana y materiales de bajo endurecimiento, X y E', son respectivamente, 1 y E. Para deformación plana y materiales de bajo endurecimiento, son respectivamente, 1 y $E/(1-\upsilon^2)$ [22]. X también puede ser determinada por la siguiente ecuación:

$$X = \frac{J_{mat}}{\sigma_{v} \delta_{mat} (1 - v^{2})} \tag{31}$$

Razón de tensión, L_r.

$$L_r = \frac{\sigma_{ref}}{\sigma_y} \tag{32}$$

Donde el σ_{ref} es determinado según las ecuaciones descritas en el anexo P de BS 7910, teniendo en consideración la orientación y posición de la discontinuidad.

El punto de evaluación para una discontinuidad debe estar dentro del área descrita por la curva de evaluación para ser considerada como sin riesgo de falla.

Nivel 2B – Método recomendado tarito para el metal de base como para el metal de soldadura. Requiere la curva de tensión-deformación y es recomendado que la curva de evaluación, Figura 11, sea definida con precisión en las siguientes razones de tensión aplicada, σ , y σ_y : $\sigma/\sigma_y = 0.7$, 0.9, 0.98, 1.0, 1.02, 1.1, 1.2 e intervalos de 0,1 hasta σ_t , y limitada por la razón de tensión de corte, L_r^c , en el eje de las abcisas por la perpendicular trazada, dada por la ecuación (6).

$$f(L_r) = \left(\frac{E\varepsilon_{ref}}{L_r\sigma_y} + \frac{L_r^3\sigma_y}{2E\varepsilon_{ref}}\right)^{-0.5}$$
(33)

Donde ε_{ref} es la deformación real obtenida de la curva de tensión-deformación de carga uniaxial.

$$L_r^C = \frac{\sigma_f}{\sigma_y} \tag{4}$$

Donde σ_f es determinado por la ecuación 1.a, siendo el valor máximo permisible menor o igual que 1.2 σ_V .

La razón de la fractura (K_r o $\sqrt{\delta_r}$) y la razón de carga (L_r), son determinadas según el nivel 2A. El punto de evaluación para una discontinuidad debe estar dentro del área descrita por la curva descrita por la ecuación 33.

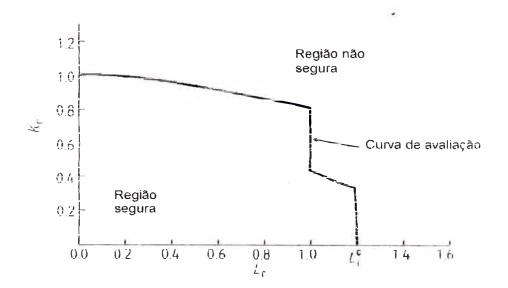


Figura 9. Curva FAD de avaliação para o Nível 2B da BS 7910.

Cálculo de la tensión de referencia, σ_{ref}

Resumen del anexo P de BS 7910, sólo para discontinuidades localizadas en estructuras curvas o tubulares.

A) Discontinuidad superficial interna o externa en un cilindro orientado axialmente. Figura 10 y Figura 11.

$$\sigma_{ref} = 1.2M_s P_m + \frac{2P_b}{3(1-a'')^2} \tag{34}$$

$$a'' = \frac{a}{t} \left(1 + \frac{t}{c} \right)^{-1} \qquad W \ge 2c + 2t$$

$$a'' = 2 \left(\frac{a}{t} \right) \left(\frac{\dot{c}}{\varpi_i} \right) \qquad W < 2c + 2t$$
(34.a)

$$M_s = \frac{1 - a/(tM_T)}{1 - a/t} \tag{34.b}$$

$$M_T = \left[1 + 1.6 \left(\frac{c^2}{r_i t} \right) \right]^{1/2}$$
 (34.c)

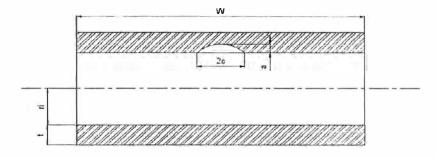


Figura 10. Discontinuidad superficial interna en el cilindro orientado axialmente.

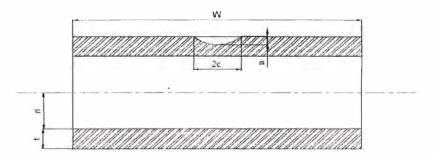


Figura 11. Discontinuidade superficial externa en el cilindro orientado axialmente.

B) Discontinuidade superficial interna o externa en un cilindro orientado circunferencialmente. Figura 12.

$$\sigma_{ref} = \frac{P_m \left\{ \pi \left(1 - \frac{a}{t} \right) + 2 \left(\frac{a}{t} \right) sen \left(\frac{c}{r} \right) \right\}}{\left(1 - \frac{a}{t} \right) \left\{ \pi - \left(\frac{c}{r} \right) \left(\frac{a}{t} \right) \right\}} + \frac{2P_h}{3(1 - a^n)^2}$$
(35)

$$a'' = \frac{a/t}{1 + t/c} \quad para \quad \pi r \ge c + t$$

$$a'' = \left(\frac{a}{t}\right) \left(\frac{c}{\pi}\right) \quad para \quad \pi r < c + t$$
(35.a)

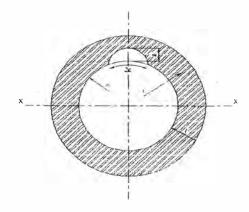


Figura 12. Discontinuidad superficial interna en el cilindro orientado circunferencialmente.

C) Discontinuidades internas. Figura 13.

$$\sigma_{ref} = \frac{P_b + 3P_m a'' + \left[\left(P_b + 3P_m a'' \right)^2 + 9P_m^2 \left\{ \left(1 - a'' \right)^2 + 4 \left(\frac{pa''}{t} \right) \right\} \right]^{0.5}}{3 \left\{ \left(1 - a'' \right)^2 + 4 \left(\frac{pa''}{t} \right) \right\}}$$
(36)

$$a'' = \left(\frac{2a}{t}\right) / (1 + 2t/c) \quad para \quad W \ge c + 2t$$

$$a'' = \left(\frac{4a}{t}\right) \left(\frac{c}{W}\right) \quad para \quad W < c + 2t$$
(36.1)

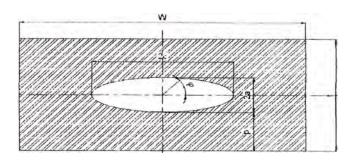


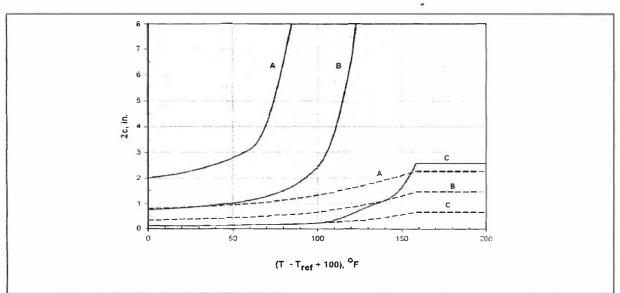
Figura 13. Discontinuidad interna.

B 5. API STD 579:2007

La sección 9 especifica el procedimiento de evaluación para discontinuidades tipo fisuras, por tres métodos de análisis. Cada uno de estos métodos, a medida en que el nivel aumenta es menos conservador, pero los cálculos son de mayor complejidad. Diferente de las otras normas, API STD 579 define un procedimiento de reorientación de la discontinuidad, esta debe estar en el plano normal a la tensión principal máxima, conforme a la metodología descrita en el item 9.3.6.2 de API STD 579. Y corrige las dimensiones de la discontinuidad en función de la posición utilizando factores de seguridad parciales, conforme a la Tabla 9.2 de API STD 579. También presenta una metodología para evaluar la interacción entre dos discontinuidades, tras la proyección en el plano de evaluación (plano normal a la tensión principal máxima).

Análisis preliminar para todos los niveles.

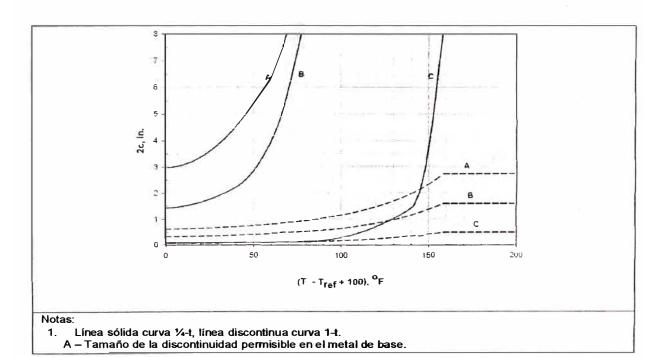
- Caracterización de la discontinuidad (Modificar la geometría de la discontinuidad para una geometría simplificada, Figura 9.1 de API STD 579).
- Caracterización de la longitud de la discontinuidad (Proyectar la discontinuidad en el plano normal sobre el cual actúa la tensión máxima, Item 9.3.6.2 de API STD 579).
- Caracterización de la altura de la discontinuidad (Item 9.3.6.3 de API STD 579).
- Caracterización de discontinuidades que interactúan (Item 9.3.6.5 de API STD 579).


Nivel 1 - Limitaciones

- Espesor menor que 38 mm (1.5").
- Válido para Di/t ≥ 5.

- La distancia de una discontinuidad a otra discontinuidad mayor debe ser $\geq 1.8 \sqrt{(D_i t)}$.
- Garantizar que las cargas y condiciones del entorno no genere el crecimiento de la discontinuidad.
- El tubo se encuentre trabajando en el límite de elasticidad.
- Cargas dinámicas no significativas.
- Aplicable solo para cargas debido a la presión interna del tubo.
- Para materiales con $\sigma_y \le 276$ MPa (40 ksi) y $\sigma_t \le 483$ MPa (70 ksi). Material de soldadura compatible con el material de base.

Procedimiento


- Determinar las cargas y temperatura de operación y del proyecto. La temperatura de exposición crítica (Critical Exposure Temperature – CET) deberá ser establecida según La sección 3 de API STD 579.
- Determinar la curva de evaluación tomando en consideración del material (de base o de soldadura con o sin tratamiento térmico post-soldadura), espesor del tubo y el ensayo no destructivo utilizado para determinar las dimensiones de la discontinuidad.
- Si la profundidad de la discontinuidad en el espesor está determinada por procedimientos de ensayos no destructivos calificados, la curva ¼-t puede ser utilizada; en otros casos la curva 1-t deberá ser usado.
- Si el espesor del tubo $t \le 25.4$ mm, a curva %-t deberá ser usada limitando a profundidad de la discontinuidad a 0.25t.
- Si el espesor del tubo t > 25.4 mm, a curva %-t deberá ser usada limitando a profundidad de la discontinuidad a un valor inferior o igual que 6.3 mm (0.25").
- La curva 1-t puede ser usada para todos los espesores de las paredes hasta 38 mm.
- Las curvas utilizadas para tubos con soldadura circunferencial son:
 - Discontinuidad en el plano transversal, Figura 14
 - Discontinuidad en el plano longitudinal, Figura 15.

Notas:

- 1. Línea sólida curva 1/4-t, línea discontinua curva 1-t.
 - A Tamaño de la discontinuidad permisible en el metal de base.
 - B Tamaño de la discontinuidad permisible en el metal de soldadura con tratamiento térmico possoldadura
 - C Tamaño de la discontinuidad permisible en metal de soldadura sin tratamiento térmico pos-soldadura
- 2. Dimensiones de la fisura para o 1-t e 1/4-t son presentados en el apéndice C, Figuras C.10 y C.14 de API STD 579
- 3. La longitud máxima permisible para esta curva es de 2c = 203,2 mm.

Figura 14. Gráfico de evaluación de la longitud permisible de una discontinuidad en el plano transversal.

- B Tamaño de la discontinuidad permisible en el metal de soldadura con tratamiento térmico postsoldadura.
- C Tamaño de la discontinuidad permisible en el metal de soldadura sin tratamiento térmico postsoldadura.
- 2. Dimensiones de la fisura para o 1-t e ¼-t son presentados en el apéndice C, Figuras C.10 y C.14 de API STD 579
- 3. La longitud máxima permisible para esta curva es de 2c = 203.2 mm.

Figura 15. Gráfico de evaluación de La longitud permisible de una discontinuidad en el plano longitudinal.

- 3. Las curvas consideran como temperatura de referencia, T_{ref} , igual a 38 °C y este valor puede ser usado en una evaluación. Para chapas normalizadas a T_{ref} = -9.4 °C. De modo alternativo, esta temperatura de referencia puede ser determinada por la Sección 3 de API STD 579, siendo necesario satisfacer al espesor del material.
- 4. Del gráfico es determinada La longitud máxima aceptable de la discontinuidad.
- 5. Si el tamaño permisible determinado en el paso 4 es mayor o igual a la longitud de la discontinuidad, la estructura es aceptable para entrar en servicio.

Nivel 2 - Limitaciones

- Garantizar que las cargas y condiciones del contorno no llevan al crecimiento de la discontinuidad.
- El tubo este trabajando en la región de elasticidad.
- Cargas dinámicas no significativas.

Procedimiento

- 1. Determinar las condiciones de operación (Distribución de tensiones, propiedades del material).
- Modificación de la tensión primaria, tenacidad de la fractura y tamaño de la discontinuidad, usando los factores de seguridad parcial, definidos en la Tabla 9.2 de API STD 579.
- 3. Determinar las tensiones referencias asociadas de las tensiones primarias, $\sigma_{ref}^{\ \ \ \ \ \ \ }$, y tensiones secundarias y residuales, $\sigma_{ref}^{\ \ \ \ \ \ \ }$. Metodología de cálculo descrito en el Apéndice D de API STD 579.
- 4. Determinar la razón de tensión, L_r , asociado de las tensiones primarias (ecuación 34), L_r^P , y tensiones secundarias y residuales, L_r^Q . (ecuación 39) Metodología de cálculo descrito en el apéndice D de API STD 579.
- 5. Determinar la razón de tenacidad, K_n según la ecuación 40. Donde los factores de concentración de esfuerzo asociados a las tensiones primarias, K_i^ρ , y tensiones secundarias y residuales. K_i^Q , son definidos en el apéndice C de API STD 579.
- secundarias y residuales, K_I^Q , son definidos en el apéndice C de API STD 579. 6. El punto de evaluación (L_r^P, K_r) , es determinado en el FAD descrito por la curva de la ecuación 5 donde $L_r = L_r^P$, y L_r^C es determinado por:

 $L_r^c = 1.00$ para materiales con coeficiente de endurecimiento > 15.

 $L_r^c = 1.25$ para aceros al carbono-manganeso.

 $L_r^c = 1.80$ para aceros inoxidables austeníticos.

 $L_r^c = \sigma_r / \sigma_v$, para otros materiales.

Razón de tensión, L_r .

$$L_r^Q = \frac{\sigma_{ref}^Q}{\sigma_y} S_{sef} \tag{37}$$

Donde:

$$S_{srf} = \min \left[\left\{ 1.4 - \frac{\sigma_{ref}^{P}}{\sigma_{f}} \right\}, 1 \right] \quad para \quad \sigma_{ref}^{Q} > \sigma_{y}$$

$$S_{srf} = 1 \quad para \quad \sigma_{ref}^{Q} \le \sigma_{y}$$
(37.a)

Razón de tenacidad, K_r .

$$K_r = \frac{K_I^P + \Phi K_I^Q}{K_{max}} \tag{38}$$

Donde el factor de interacción plástica, Φ , está determinado por la sección 9 de API STD 579, tomando en consideración el valor de L_r^{α} .

Nivel 3

Presenta casos específicos de evaluación en uso del nivel 2, indicados a continuación:

Método A: Uso del nivel 2, donde los factores de seguridad parcial están tomando en consideración el análisis de risco y análisis de probabilidad.

Método B: Metodología de análisis similar al nivel 2B de BS 7910.

Método C: Uso del nivel 2, donde el FAD está realizado por las condiciones de carga reales, geometría de la estructura y propiedades del material, según lo indicado en el Apéndice B de API STD 579.

Método D: Análisis de rasgamento dúctil. Es necesaria la curva JR.

Método E: Hacer uso de otra metodología que garantiza factores de seguridad o un análisis de probabilidades de falla.

Cálculo de tensión de referencia $\sigma_{ref.}$

A) Discontinuidad superficial interna o externa en un cilindro orientado axialmente. Figura 10 y Figura 11.

$$\sigma_{ref} = \frac{gP_b + [(gP_b)^2 + 9(M_sP_m)^2]^{0.5}}{3}$$
(39)

Donde

$$g = 1 - 20 \left(\frac{a}{2c}\right)^{0.75} \left(\frac{a/t}{1 + t/c}\right)^3$$
 (39.a)

$$M_{s} = \frac{1}{1 - \frac{a}{t} + \frac{a}{t} \left(\frac{\sqrt{r_{i}a}}{1.818cM_{t}} \right)}$$
(39.b)

$$M_{t} = \left(\frac{1.02 + 0.441 \,\mathcal{U}^{2} + 0.006124 \mathcal{U}^{4}}{1 + 0.02642 \mathcal{U}^{2} + 1.533 (10^{-6}) \mathcal{U}^{4}}\right)^{0.5}$$
(39.c)

$$\lambda = \frac{1.818c}{\sqrt{r_i t}} \tag{39.d}$$

Para mayores detalles leer el item D.2.3. Factor de corrección superficial de API STD 579.

B) Discontinuidad superficial interna o externa en un cilindro orientado circunferencialmente. Figura 12.

$$\sigma_{ref} = \frac{P_b + [P_b^2 + 9(ZP_m)^2]^{0.5}}{3}$$
(40)

Donde:

$$P_{m} = \frac{\Pr_{i}^{2} + F}{(D/2)^{2} - r_{i}^{2} + \pi((D/2)^{2} - r_{i}^{2})}$$
(40.a)

$$P_h = 0$$

$$Z = \left[\frac{2a''}{\pi} - \frac{\eta c}{4r_i} \left(\frac{2 - 2\tau + \eta \tau}{2 - \tau}\right)\right]^{-1} \quad \text{para trincas internas}$$

$$Z = \left[\frac{2a''}{\pi} - \frac{\eta c}{2D} \left(\frac{2 - 2\tau + \eta \tau}{2 - \tau}\right)\right]^{-1} \quad \text{para trincas externas}$$
(40.b)

$$a'' = \arccos\left(Asen\left(\frac{\pi c}{4r_i}\right)\right)$$
 para trincas internas
$$a''' = \arccos\left(Asen\left(\frac{\pi c}{2D}\right)\right)$$
 para trincas internas

$$A = \eta \frac{\left(1 - \tau\right)\left(2 - 2\tau + \eta\tau\right) + \left(1 - \tau + \eta\tau\right)^{2}}{2\left\{1 + \left(2 - \tau\right)\left(1 - \tau\right)\right\}}$$
(40.d)

$$\tau = \frac{2t}{D}$$
 (40.e)

Para mayores detalles leer el item D.5.13. Factor de corrección superficial de API STD 579.

C) Discontinuidades internas. Figura 13.

$$\sigma_{ref} = \frac{P_b + 3P_m a'' + \left[\left(P_b + 3P_m a'' \right)^2 + 9P_m^2 \left\{ \left(1 - a'' \right)^2 + 4 \left(\frac{pa''}{t} \right) \right\} \right]^{0.5}}{3 \left\{ \left(1 - a'' \right)^2 + 4 \left(\frac{pa''}{t} \right) \right\}}$$
(41)

$$a'' = \left(\frac{2a}{t}\right) / (1 + 2t/c) \tag{41.1}$$

Apéndice C

Cálculos de comparación entre los procedimientos alternativos

A continuación se presentan los resultados obtenidos para el primer y segundo caso de acuerdo a los parámetros mostrados en la Tabla 1, haciendo uso de los métodos descritos en la API 1104:2005, API 1104:2007, BS7910:2007 Nivel 2A y CSA Z662:99 Apéndice N. Todos los casos fueron desarrollados haciendo uso del programa Microsoft Excel 2007 .

Para el caso del método BS7910:2007 Nivel 1A se muestra que no es aplicable para los parámetros de evaluación de ambos casos, debido a que supera sus límites de aplicación.

Tabla 1. Parámetros de evaluación para dos casos de comparación.

Parámetro -	Magnitud ó (característica
ratameno	Primer caso	Segundo Caso
Material	API 5	L X70
Diámetro nominal del tubo, D	18"	24"
Espesor de pared, t	1"	0.5 "
Relación D/t	18	48
Límite de elasticidad, 🛭 y	70	ksi
Límite de resistencia, 🛚 t	82	ksi
Tenacidad (CTOD), ☐ _{mat}	0.0	11"
Tensión axial máxima, 🗓 🛮	61.5	5 ksi
Módulo de elasticidad, E	30 00	00 ksi
Módulo de Poisson, 🛭	0.	30

C 1. BS7910:2007 Nivel 2A

Primer caso

En las Figuras 1 a 4 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

85 2918									1						
evei ZA	ii				********					-					
Internal Surface	flaws in c	o ersbedly	riented an	ialty	P.11					STEED STORY	*101-01000			**********	
Ourside Diamet	ar	**	irch.	2m			61.5	XXX		Unitations					
Tritokness	-			26				xs:	3 9	G s a/: 5 0.8					
5305		70		Qm				ior:		aca s a/c s :					
SATE		02		Qb				ks:		0.1 s th: s 0.2	•				
CEOD	· · · · · · ·	0.011	*****	Wwwds.	tolane (2)	ni	STATE OF STREET	inch		2c/W ±0.15	-				
Maximum avial	decien ch	62.5		internat ra				inch	A) 10000119	20,0000		*********			
Alexance for 8		0.05		Mean she		:		inch							
5		50000			,,	·									
										54		,			
								September 1	52.226 NOT	a bacormos	anteriorizman.	es 1			
								MAX.				X	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***********	
mentaniana.	111151111					Haranteni.		:		E & J ,		1	************		43-44-1110-4-111
							71.7		200			1			
							3	1				3			
							4.1	1				-			
	Actions.						to save	STATE OF	(A)			and the			
11518112125111						1122211282	·	: 11.11.11		MAAAAA	MAAAAA	W.			
		-												SEATON AND ADDRESS	
				100	100	Asses							der operated as	cally	
	Item	20		√5r	U	Kr	v	ALCORDIN.	5(4)	172 2 c+1;	(V = 2/c+1)		160	35	ore!
	1	1117	Ç.5					1 885714	C 452057	0.179178697	0.022222009	0.279276697	1.030730555	1.029004743	75.39955001
	2	1.242	C 43	0.35028	:.CE3093	0,14018	1.000000	1 385714	C 452075	C 1723C791	0.622222029	C 1723C793	2.637768000	1.029792729	75,99002901
	3	1 384	CA	0.320735		0.920725	1.565703	1 885714	C A53666	0.163593381	0.623037044	0.163593351	1.34679167	1.629600037	75.99974586
	1	1.553	G.33			0.300011	1.005701	1.085714			0.021627167	0.152993394	1.059579449	1.629797272	75.99903871
	3	1.76:	6.8			0.277756	1.065706	1.085714	0.45206		0.625020389	0.140467962	1.07473554	1.029802157	75.99939918
	ė į	2.01	0.25		1 58571	2 253555	1.04571	1.085714			0.500192785	0.125930521	1.698200001	1.029800571	75 99972496
	7	2.404	9.2		1 0857C2	3.226787	1.065732				C 039130434	0.109073473	£155324095	1.02979856	75 99913376
	8	2,392	0,43		1.345 702	2.19E-03	1,083732	1,083724	0.43 2063	0.039903646	C. 017837185	D. D. D. D. S. G.	7.303793678	1.029798469	75 55912704
	8	4	0.1	G 160842	1 734115	a 160362	1,021115	1.085TLA	2.454211		5.025915694	G.000066667	1.3/1640764	1.028299779	75 3AF-6686
	10		0.65	G.115595	1.235635	0.113395	1.055623	2.095724	0.493534	C.016666667	0.001585457	0.016666667	1.024685677	1.001266417	75.89360919
	bann .										5.3.2	-			
		F. 50 11	17.27		1		17.7	-			Values .		e 544		ia M5
	den	gt	15	779	35	KT.		YERTIN 3			Ny	Min	1,36	Mich	V0.5
	1	76	0.003414	C	1	77 97882	62.5			1	1	1	1	1	1
	2	76	2.001273	C	1	73 12339	62.5	€1.5		1	1	1	1	1	1
	3	78	0.001132	C	1	68 94139	61.5	61.9			1	1	1	1	-
	4	44	6.00033	C	1	64.43877	61.5	61.5		1	1		1	1	1
	5	76	\$ CCC849	C	1	59.763		67.5		1	1.		- 1	1	1
	5	76	3 000707		3	34.30296		80.5			3	1	1	1	1
			C CCC 500	ş	1	48,74893	61.5			1	1	1	1	1	1
	7	76				42.23783	61.5	61.5		1	1	1	1	1	1
	7 8	76	0.000478	3	1					1		1	1	1	1
	7 8 9	76 76	0.000383	0	1	34.4707	62.5				1				1
	7 8	76				34.4707 24.57446	62.5 C1.5	61.5			1	1	1	1	
	7 8 9	76 76	0.000141	0 e	1					ı				1	
	7 R 9	76 76 76	0.000141 Anexo D	c	1 1	21 57446	62.5	61.5		t sivis	1			1	
	7 8 9 10	76 76 76 76	0.000363 0.000141 Anexo D	0 e	1 1 P Anex 8	24 57446 G ≤ 6/	62.5 1 5 G 8	Q.G5 S	F.C 2 1	zintr z 20	20W5G25				-1-1-1-1-1-1-1
	7 8 9 10	76 76 76 76 8170	0.000263 0.000141 Anexo D	0 c	P AREAR G	24 57446 G ≤ 6/	625 1 5 G B	Q,G3 S	F(C 2 I	01 s Vri s 325 TAUS	20/W S G 2A TRUE				
	7 8 9 10 10 10 11 11 11 11 11 11 11 11 11 11	76 76 76 76	0.000263 0.000141 Anexo D	500 500 1 1	P AREAR C	G S 6/	62.5 1 5 9 8 12 6 12 6	Q,Q4 S	E/C S I	1 01 s Vri s 225 TRUS TRUE	20/W S G 15 TRUE				-1
	7 8 9 10 10 10 11 1 2 5	76 76 76 817a 1	Anexo D	500 I	P AREAR G G	G ≤ 6./ TS TS	62.5 1 5 G B WE UE	0,G3 ≤	6/6 5 I	E IV 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20/W S G 2A TRUE TRUE TRUE				-1
	7 8 9 10 10 11 11 11 11 11 11 11 11 11 11 11	76 76 76 847A 1	0.000141 20.000141 20.000141 10.000141	500 500 1 1 1	P AREAR C C C	G ≤ 6.7 TS TS	62.5 1 5 G B 128 128 128 128 128 128 128 128 128 128	0,04 S	10E 10E 10E 10E 10E 10E 10E	01 S Uri S 3.20 TRUS TRUE TRUE TRUE	ZCWSG2A TRUE TRUE TRUE TRUE				-1-1-1-1-1-1
	7 8 9 10 10 11 11 12 15 15 15 15 15 15 15 15 15 15 15 15 15	76 76 76 76 76 8578 1 1	0.000141 20.0001	501 1 1 1 1	P AREAR C C C	G S 6,7 TS TS TS TS TS TS TS TS	CLS SSGB UE UE UE UE UE	0.03 S	E'C S I	61 S Vri S 320 TRUS TRUE TRUE TRUE TRUE	ZCWSG 2A TRUE TRUE TRUE TRUE TRUE				
	7 8 9 10 10 10 11 1 2 5 4 5 5 5 5	76 76 76 76 76 1 1 1 1	0.000263 0.000141 Anexo D 110 1 1 1	509 1 1 1 1 1	P AREAR C C C B	G S 6,7	ELS S S Q B UE UE UE UE UE VE	0.03 S	FIG S I	61 S Vri S 225 TRUS TRUE TRUE TRUE TRUE TRUE	ZOWSGRA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	ł.		1	
	7 8 9 10 10 10 1 1 2 2 5 4 5 5 5 7	76 76 76 76 76 1 1 1 1	0.000141 2nexp D 119 1 1 1 1	509 1 1 1 1 1 1 1	PAREAR CG GG BG GG BG	G S 8/ TS TS TS	CLS US GB US US US US US US US US US US US US US	0.04 S	E/C S I	C S Wri S 222 TRUS TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	ZOWSGIA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	ł.			
	7 8 9 10 10 10 1 1 2 5 4 5 5 7 8	76 76 76 76 76 76 76 76 76 76 76 76 76 7	0.000141 0.000141 Anexo D 110 1 1 1 1 1	509 1 1 1 1 1 1 1	PARENT C C C C C C C C C C C C C C C C C C C	23:57446 G S 6/ TS TS TS TS TS TS TS TS	CLS I S G B UE UE UE UE UE UE UE UE UE U	0.G4 S	E/C S I	CS S VII S A 20 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	ZOW SR 2A TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	ł.			
	7 8 9 10 10 10 1 1 2 2 5 4 5 5 5 7	76 76 76 76 76 1 1 1 1	0.000141 2nexp D 119 1 1 1 1	509 1 1 1 1 1 1 1	PAREAR CG GG BG GG BG	23: 574.46 G S 6/ TS TS TS TS TS TS TS TS TS	CLS US GB US US US US US US US US US US US US US	0.64 S	E/C S I	C S Wri S 222 TRUS TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	ZOWSGIA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	ł.		1	

Figura 1. Resultados de la evaluación por el método BS 7910:07 Nivel 2A para un tubo de 18" de diámetro y 1" de espesor. Discontinuidad superficial interna en el sentido axial.

IS 7630 Level 2A	_		Г		-													
xtemal Surface				Jiy	P.11		********	******									SALITA (10-111)	
Unide Damet	er	18:0	nch s	ru.			61.5 ks	P. I		Limitations								
NCO.ess		2.10	nch a	b			C KS			3 5 0/: 5 0	8				. *			
vics		7C: X	s: 'C	l:n			C ks			7.05 5 a/c	S à							
215		BZ X	s: 0	5			C 1888			a.: 5 6/r. 1	C.25			3				
rop		C.C.2	net l	witten o	5454-8 155	;	36 174	·		25.44 × 4.15								
asimum asia:	dessen sti	6:.5 4	s: ?	nemetra	dius (rt)		8 (5)	and the same						2				
dowerce for in	roitson	6.05 1	ich A	laan she:	rad:us tr:		8.5 (50	25						T				
		30000 x	b							. *								
	konsonon.					:	200							I				
										*********		++++++++++	***					
							4						1					
***************************************				Tirror s	eucon		-1					<i>1822</i>	ğ					

	Item	20:		181	.,	Ki		thetus	516.6	U. 1 W. 1	· 1 · · ·		ice fram in cy-		O SYIS			34
	106-91	2417		C 334581					F(Lr)	C 1791786		2222009	0.179178697	1.5467253		565 1 329804741	ciel	_
	2	1.242	0.43		1.085695				C 432073	0.172307		22220019	6 1723C733	1.057735			75.30339001	76 76
	1	1,394							0.452061	C-1835933		22220019	0.163373331	1.044792		1.029900012	75.99862962 75.99924866	76
	2	2.553							£452007			2627267	0.153583334	1.0565792				76
	3	2,762						185734	0.45206	0.1529633 0.1406679		2020389	G.140467961			1.029797272	75.99903872	_
	6	2.03		0.25355					2,552004	0.1259301		0172753	G 12593(32)	1.074735		1.029002157	75.999379:8	76
	7													1.098 NGG		1,029806573	75 99972A90	
**********	1	2.992		0,236767 0,236403					3,412061	0.009073		9153434	C 129173479	1.1353240	_	2.02979856	75 9992 5576	76
	1	2.992										7937193		2.2031636		1,029798369	75 99912704	.76
	20	3		0,1 0010 2 6.113393			05512 2		3,459222	0.025		3575574	£ 30066600T	1.151625		1.00+505741	74 13542765	70
		-4	0.00	4.1.5323	A GOSTAN	0.223333	- 00312	CRO FEE	3,40004	3.023	1 8.00	37/00/-	***	1 : (33.42)	91	1.004303741	14 140-2/03	10
					1	4				-	20.4	3.3.1	1					
						1					Fixed	Values		Table M	4		Tageta M5	
	Sem	of.	31	TP	50	K:	Vskgme	Ystern	AP YSE	me Q	5,0	fw	1 4	(tra	Mig		Akm 6	(20)
	1	76	0 005454	0	1	77 0788	61.	5 4	61.5	0	1	1		1	1		1	1
	1	76	£ 561273	6	2	79 12333	61	3 4	62.5	8	1	1		1	1		1	1
	3	79	0 33:132	0	- 1	58 941 35	61.	5 1	61.6	C	:	:		1			1	:
	4	76	0.00099	0	1	64 4857			62.5	C		1	-	1	:		1	-
	Name and Address of the Owner, where	76	C.222849		1	59.705			54.5	C	1	1		:	1		1	1
	5		1	9	1 5	54.50396	61	5 6	55.5	0	1	1		2	£		1	4
**********	6	76	0.0007B7			48.74695	64	5 0	EL S	0	1	1		1	á		4	i
		75 76	6.000566	1 c	1 1	-4. A4930									1		1	1
	6	A	G.000566				+	SI I	0.5	oi	1	1 4					2	1
	8	76	0.000566	0	1	42.21783	61		£.5	0	1	1	_	1	_	. 45		
	8	76 76	0.000566 0.000324 0.600183	6		42.21783 84.4703	61	5 (62.5	0	1	1	_	1	-		:	1
	8	76	0.000566 0.000424 0.000143 0.000143	6	1 1	42.21783	61	5 (_	e e	1	1	_	1	1			1
	6 7 8 9	76 76 76	6.000566 0.000324 0.000183 0.000141 Arexo D	6	1 2 2	42.23.783 84.4703 24.37444	61 61 61 61	3 6	62.3	0.1	1 1 5 vit 5	1 1		1	1			1
	6 7 8 9 10 Nem	76 76 76	6.000566 0.000324 0.000324 0.000342 Arexo 3	6 6	i i i	42.21783 84.4703 24.37444 6 0 ≤ 8	61 61 61 71 s C 8	3 6	62.5 62.3	0 0.1	1 1 5 v/i: 5 0.25	30/W s	0.15	1	1			
	8 9 10 Nem	76 76 76 ktm 1	6.000566 0.000324 0.000342 0.000342 Arexo 3	6 6 6	i i i	42.21787 54.4707 24.37444 6 0 5 a	61. 61. 62. 71 s C 8	3 6	62.5 62.5 5 £ & c 1	0.1	S Wit S C 25 TAUE	Jow s	0.15	1	1			1
	8 3 10 Xem 2 2	76 76 76 76	6.000566 0.000324 0.000323 0.000142 Arexo 3	6 6 6 i	2 Arek	42.21785 54.4701 24.37444 6 0 5 a	61 61 61 62 71 5 C 8 RUE RUE	3 6	62.5 62.5 5 £ &/c t	0 0 0.1	S WIT S G 25 TAUE	JOW S TAU	0.15 E	1	1			1
**********	6 7 8 5 10 Nem 2 2 5	76 76 76 76	6.000566 0.000324 0.000324 0.000342 Arexo 3	6 6 2 2 1	2 2 2 2 2 2 2 0 0	42.21787 54.4707 24.37444 6 0 5 a 7.1	61 61 62 62 63 64 64 64 64 64 64 64 64 64 64 64 64 64	3 6	62.5 62.5 5 \$ \$/6 1 TRUE TRUE	e e e e e e e e e e e e e e e e e e e	S WITS G 25 TAUE TAUE TAUE	20/W S TAU TAU	0.55 £ B	1	1			
	6 7 8 5 10 Nem 2 2 5 4	76 76 76 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.000566 0.000324 0.000324 0.000341 Arexo 3 416 1	6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 3 0 0	42.217E	61 64 64 64 64 64 64 64 64 64 64 64 64 64	3 6	62.5 62.5 78.02 78.02 78.02 78.02 78.02	0.1	S WIT S C 25 TRUE TRUE TRUE	I I I I I I I I I I I I I I I I I I I	0.15 £	1	1			
	8 9 10 Nem 2 2 5 4 5	76 76 76 Ktm 2 1 1 1 1 1	G.000566 0.000324 0.000324 0.000342 Arexo D ath	6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Ares: 0 0 0	42.21785 54.4701 24.3744 8 0 5 a Ti	61 61 62 62 62 62 62 62 62 62 62 62 62 62 62	3 6	62.5 62.5 54.5 TRUE TRUE TRUE TRUE	0 0.1	S virt S G 25 TAUE TAUE TAUE	I I I I I I I I I I I I I I I I I I I	0.15 E E E	1	1			1
	8 9 10 Nem 2 2 5 5 6	76 76 76 76 10 11 11 11 11	6.000566 0.000324 0.000243 0.000243 Arexo 3 ath 1 1	6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 3 0 0 0 0 0	42.21785 54.4701 24.3744 6 0 5 a 71 71	61 61 62 62 63 64 64 64 64 64 64 64 64 64 64 64 64 64	3 6	62.5 62.5 TRUE TRUE TRUE TRUE TRUE TRUE TRUE	0 0.1	S vir. S G 25 TAUE TAUE TAUE TAUE	I I I I I I I I I I I I I I I I I I I	0.15 £ £ £	1	1			1
	7 8 3 40 Xem 2 2 5 6 7	76 76 76 11 1 1 1 1 1 1 1	G.C00566 0.E00323 0.E00323 0.E00323 0.E00323 0.E00323 1 1 1 1 1 1 1 1	6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42.21785 54.4702 24.3744 6 0 5 8 71 71 71 71	61. 61. 61. 61. 61. 61. 61. 61. 61. 61.	3 6	62.3 62.3 62.3 FRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T	1.0	S WIT S G 25 TAUS TAUS TAUS TAUS TAUS TAUS TAUS TAUS	I I I I I I I I I I I I I I I I I I I	0.15 £ £ £	1	1			
	5 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	76 76 76 76 76 1 1 1 1 1 1 1 1	6.000566 0.000324 0.00034 0.00034 0.00034 0.00034 0.00034 0.00034	6 6 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Arek 9 0 0 2 0 0	42.21787 54.4702 24.37444 6 0 5 0 TI TI TI TI TI	61. 62. 63. 64. 65. 65. 65. 65. 65. 65. 65. 65. 65. 65	3 6	SELS SELS TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	0.0	S WIT S G 22 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	JOSW STAU TAU TAU TAU TAU TAU TAU TAU TAU TAU	0.13 £ £ £ £	1	1			
	7 8 3 40 Xem 2 2 5 6 7	76 76 76 11 1 1 1 1 1 1 1	G.C00566 0.E00323 0.E00323 0.E00323 0.E00323 0.E00323 1 1 1 1 1 1 1 1	6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42.21785 54.4707 24.37446 6 0 5 a 10 11 11 11 11 11 11 11 11 11	61. 61. 61. 61. 61. 61. 61. 61. 61. 61.	3 6	62.3 62.3 62.3 FRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE T	0.1	S WIT S G 25 TAUS TAUS TAUS TAUS TAUS TAUS TAUS TAUS	I I I I I I I I I I I I I I I I I I I	0.x5	1	1			

Figura 2. Resultados de la evaluación por el método BS 7910:07 Nivel 2A para un tubo de 18" de diámetro y 1" de espesor. Discontinuidad superficial externa en el sentido axial.

95 7010											4.1		
Level 2A													
Internal Surface	flausine	Allogers s	riented cir	cumferent	P. 12								
La Paris de la Co	***************************************	Simmery	I STREW LI	- PHILLIE GIM	100	*********	17/11/1-11-2	VALOUE INChes	-141-010437	*************	Account to the state of	ile (and the latest of the lat	
: Dutside Diamete		***	-net-	Pay			61.5	he.		Daniel Control		1	
tuiquez	E1									Difficultions			
				Pa		*****		ks		8031/6≥6		***********	-77 77717-16
SAARS			451	<i>π</i> D				¥5j		3 5 5 8/c 5 1			
SAITS		62	KSi	Q2			3	ksi		0.1 S titl S 0.2			
CTOD		0.011	:nch	W width o	f prane (#1))	56.54867	inch					
Maximust axial o	d-25:gn 511	61 5	kst	Internal ra			8	Inch	***************************************			- the model and	
Allowance for in	specilos	0.05	inch	Mean she	racius (r.)		35	Inch					
E		30000								Sec. 350.			
										140 TON	226		
	*******		+++++++						. 1				
									500	1 1 m	1990		
											100		
									350	3	3.00		
									100	\$2	A427		
imminimi					***************************************	******			- 9	M. mount	8.7		
						- 3				140000	11		
												0.00	
													111111111111111111111111111111111111111
						Accas	street		7	Surface fo	au in Oilinder o	riented circumf	Econoriation
ī	item	2c	а	v8r		Kr	i.r	ica:toff	#(i.e)	πr≥c+t	25 < C - 1		
investment	_					STATE OF THE PARTY						a"	cref
1	1	4.66		C 358581	1.3857		1 0657		3.45 NG66	C 354227405	0.04549959	0.354227405	75 9989797
	2	5.927	0.45	0.34018	1.085679	0.54018	1.085679	1.085714	0.452097	0.235023415	0.049097428	0.335013415	75.9975±00
	3	7.634	6.5	G.320724	1.085696	3.320725	2 C85626	1.043714	0.452036	0.31144563	0.032683159	G.31244563	75.992G534
	3	8.6	3 35	C 30631:	1.085702	3 300011	1,085702	1.085714	3.453065	C 283962264	0.056359574	0.283962264	75.9991393
1	4	10.744	0.3	0.277756		0.277756		1.085714		0.252919021	0.060332554	0.252919021	
-													75.9993152
1	6	Ti;	3.35	0.353555	1.030252	3.253555	2.030252	1.005754		G.200333535	C.C4681G277	0.202333333	72.11/oue2
	7	δ	G.2	C 226787	0.971065	Q 22678?	G.971063	3.085714	0.612701	G.16	0.023958378	0 15	67.9744134
and the same of th	8	6	0.15	G.1964G3	0.926533	0.196403	0 926331	1.685714	6,66985	2.1125	0.0166517	C 1125	64.9833065
1	9	4	C.2	0.360362	0.899799	3.160362	0.899799	1.065714	3,705568	3.066666557	0.007489644	0.066666667	62.98590805
	26	7	0.05	C 113393	0.883681	0 113393	6.893681	2.085714		0.025	0.001872411	0.025	61.857693L
THE PARTY OF THE P	.0		- 00	C 110200	0.003002	0 110220	0.033001	1.00.1720	0,724707	0.023	0.001012#21	6.623	C1.63/C9.13
												1	
											332		
										FIXEC	Values	Table M5	Tabela Mil
			51	TP	92	KS	Mark Views						Mkip
	men	⇒f	54				Ysig.ma	Ysigma P	Ysigma Q	M	N	No.	
					2								4
	3	76	0.002614	£.	1	77.67882	63.5	67-5	£.	1	1	1	- 1
	1 2	76 76	0.061273	e G	1	77.67882 73.12539	62.5 65.5	61.5	E G	1	1 1	1	1
	2	76 76 76	0.001614 0.061273 3.501132	Ω 6 ε	1	77.67882 73.12539 69.94139	61.5 61.5	62.3 62.5	6 6	1 1	1 1	1	1
	1 2	76 76	0.001414 0.061273 0.001132 0.00098	e G	1	77.67882 73.12539	61.5 61.5 61.5	61.5	E G	1	1 1	1	1
	2	76 76 76	0.001614 0.061273 3.501132	Ω 6 ε	1	77.67882 73.12539 69.94139	61.5 61.5	62.3 62.5	6 6	1 1	1 1	1	1
21242276218271	1 2 3 -4-5	76 76 76 76 76	0.065273 0.065273 0.005232 0.00098 0.00098	0 6 0	1 1 1	77.67882 73.12539 68.94139 64.48877 59.705	61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5	6 6 0 0	1 1 2 1 1 2	\$ \$ \$ \$	1 1 1 1	1 1 2
	1 2 3 4 5	76 76 76 76 76 76	0.061273 0.061273 0.001132 0.00098 0.060849 0.000707	6 8 0 0	1 1 1 1	77.67882 73.12539 68.94139 64.48877 59.705 54.50296	61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 62.5	6 6 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2 3 4 5 6 7	76 76 76 76 76 76 76 76	0.061273 3.501132 0.0098 0.00098 0.000797 0.000366	6 6 6 6 7	1 1 1 1	77.67882 73.12539 68.94139 64.48877 59.705 54.50296 46.74893	61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5	6 0 0 5 0	1 1 1 2 1 1 1	1 1 1	1 1 1 1 1 1	1 1 2 1 1
	2 3 4 5 6 7	76 76 76 76 76 76 76 76 76	0.061273 0.061273 0.061273 0.00099 0.000849 0.000707 0.000566 0.060424	6 6 7 8 9 0 0	1 1 1 1	77.67882 73.12339 69.94139 64.49877 59.705 54.50296 46.74893 42.21781	61.5 61.5 61.5 61.5 61.5 61.5 61.5	62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5	0 0 0 0	1 1 2 2 1 1 1 1 1	1 5 1 1 1	1 1 1 1	1 1 1
	2 3 4 5 6 7 8	76 76 76 76 76 76 76 76 76 76	0.061273 0.061273 0.061273 0.001132 0.00099 0.060849 0.000707 0.000566 0.060424 0.000283	6 8 0 0 0 0	1 1 1 1	77.67882 73.12539 68.94139 64.48877 59.705 54.50296 46.74893 42.21781 58.6767	61.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62	61.5 61.5 61.5 61.5 61.5 61.5 61.5	0 0 0 0 0 0	1 1 1 2 1 1 1	1 1 1	1 1 1 1 1 1	1 1 2 1 1
	2 3 4 5 6 7	76 76 76 76 76 76 76 76 76	0.061273 0.061273 0.061273 0.00099 0.000849 0.000707 0.000566 0.060424	6 6 7 8 9 0 0	1 1 1 1	77.67882 73.12339 69.94139 64.49877 59.705 54.50296 46.74893 42.21781	61.5 61.5 61.5 61.5 61.5 61.5 61.5	62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5	0 0 0 0	1 1 2 2 1 1 1 1 1	1 5 1 1 1	1 1 1 1	1 1 1
	2 3 4 5 6 7 8	76 76 76 76 76 76 76 76 76 76	0.061273 0.061273 0.061273 0.001132 0.00099 0.060849 0.000707 0.000566 0.060424 0.000283	6 8 0 0 0 0	1 1 1 1 1 1	77.67882 73.12539 68.94139 64.48877 59.705 54.50296 46.74893 42.21781 58.6767	61.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62	61.5 61.5 61.5 61.5 62.5 62.5 61.5 61.5 61.5	0 0 0 0 0 0	1 1 2 2 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 8	76 76 76 76 76 76 76 76 76 76	0.00141 0.061273 0.001132 0.00098 0.000849 0.000707 0.000566 0.000141	6 8 0 0 0 0	1 3 1 1 1 1 2 2	77.67882 73.12539 68.94139 64.48877 59.705 54.50296 46.74893 42.21781 58.6767	61.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62	61.5 61.5 61.5 61.5 62.5 62.5 61.5 61.5 61.5	0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 8 3	76 76 76 76 76 76 76 76 76 76 76	0.061213 0.061273 0.061273 0.001332 0.00098 0.000207 0.000566 0.060424 0.000343 Anexo D	8 C E E E E E E E E E E E E E E E E E E	1 1 1 1 1 1 1 2 1	77.67882 73.12539 68.94139 64.48877 59.705 54.50296 46.74893 42.21781 58.4707 24.37446	61.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62	62.3 62.5 62.5 62.5 62.3 63.5 62.5 62.5 62.5	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 8 3	76 76 76 76 76 76 76 76 76 76 76	0.0612613 0.061273 0.001132 0.00098 0.00098 0.000707 0.000566 0.000143 0.000141	8 C E B O C C E C C C C C C C C C C C C C C C C	i i i i i i i i i	77.67882 73.12539 68.94139 64.48877 59.705 54.50296 46.74893 42.21781 54.87676 24.37446	61.5 62.5 62.5 62.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5	62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 8 3 10	76 76 76 76 76 76 76 76 76 76 76	0.065273 0.065273 0.561132 0.00998 0.006849 0.900707 0.000566 0.060424 0.000343 0.000344	8 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i i i i i i i i i i i i	77.07882 73.12539 56.94139 56.42877 39.703 54.50296 46.74833 42.21781 58.4767 24.37445	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 8 3 10	76 76 76 76 76 76 76 76 76 76 76 76	0.061412 0.065275 0.061332 0.061332 0.06098 0.060849 0.000356 0.003565 0.003565 0.000143 Anexo D	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i i i	77.67882 73.12539 58.94139 54.62877 59.705 54.50296 42.21781 58.4707 24.37446	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 8 3 10	76 76 76 76 76 76 76 76 76 76 76	0.065273 0.065273 0.561132 0.00998 0.006849 0.900707 0.000566 0.060424 0.000343 0.000344	8 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i i i i i i i i i i i i	77.67882 73.12539 58.94139 54.48877 59.705 54.50296 42.21781 58.4707 24.37446	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 8 3 10	76 76 76 76 76 76 76 76 76 76 76 76 76 7	D.061273 9.061132 G.0099 0.000566 0.000346 0.000343 0.000343 Anexo D 41b 1	0 C C C C C C C C C C C C C C C C C C C	i i i i i i i i i i i i i i i i i i i	77.07882 73.12539 66.94139 66.42877 59.7025 46.74893 42.22781 58.4707 24.37446	61.5 61.5 61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 5 6 7 8 3 10	76 76 76 76 76 76 76 76 76 76 76 76 76	0.061273 0.061273 0.061132 0.061232 0.00098 0.00098 0.000366 0.000366 0.000344 0.00038 0.00034 0.00038 0.00034 0.00038 0.000	6 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.07882 73.12539 56.94139 56.48877 59.705 54.50296 46.74893 42.22781 58.4767 24.37446	61.5 61.5 61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1
	2 3 4 5 6 7 8 3 10	76 76 76 76 76 76 76 76 76 76 76 76 76 1	D.DE161a 0.065273 0.061132 0.065273 0.061132 0.06132 0.060132 0.000366 0.000366 0.000366 ATHEO D 41b 1 1	6 6 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i i i i i i i i i i i i	77.67882 73.12539 58.94139 64.48877 59.7025 46.74893 42.21781 0 5 a/ TR TR TR	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 6 7 8 8 3 10 Em 1 2 9 9 4 5 5 6 6	76 76 76 76 76 76 76 76 76 76 76 72 2 2 1	D.DE261a 0.065273 0.061232 0.061232 0.061234 0.060849 0.060849 0.060645 0.0	E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.67882 73.12339 58.94139 59.703 54.50296 54.50296 42.21781 58.4767 24.37446 0 ≤ af 78.765	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5 62.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5	日 日 日 日 日 日 日 日 日 日 日 日 日 日	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 6 7 8 8 3 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 76 76 76 76 76 76 76 76 76 76 76 71 11 11 11 11 11 11	D.DE1618 0.065273 0.001873 0.001873 0.00189 0.000860 0.000366 0.000181 0.000181 0.000181 1.000181 1.000181 1.000181 1.000181 1.000181 1.000181	E G G G G G G G G G G G G G G G G G G G	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.67882 73.12539 56.94139 56.94139 55.705 54.50296 46.74893 42.21781 58.4707 24.37446 0 \$ of TR TR TR TR	61.5 61.5 61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5	61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5 62.5 78 78 78	R G G G G G G G G G G G G G G G G G G G	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1
	2 3 4 5 6 6 7 8 8 3 10 Em 1 2 9 9 4 5 5 6 6	76 76 76 76 76 76 76 76 76 76 76 72 2 2 1	D.DE261a 0.065273 0.061232 0.061232 0.061234 0.060849 0.060849 0.060645 0.0	E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.67882 73.12539 56.94139 56.94139 55.705 54.50296 46.74893 42.21781 58.4707 24.37446 0 \$ of TR TR TR TR	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5 62.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5	R G G G G G G G G G G G G G G G G G G G	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1
	2 3 4 5 6 6 7 8 8 3 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 76 76 76 76 76 76 76 76 76 76 76 71 11 11 11 11 11 11	D.DE1618 0.065273 0.001873 0.001873 0.00189 0.000860 0.000366 0.000181 0.000181 0.000181 1.000181 1.000181 1.000181 1.000181 1.000181 1.000181	E G G G G G G G G G G G G G G G G G G G	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.07882 73.12339 66.94139 66.42877 39.7025 54.50296 46.7483 42.21781 58.6707 78.770 7	61.5 61.5 61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5	61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5 62.5 62.5 78 78 78	R 6 8 0 0 0 0 0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
	2 3 4 5 6 7 7 8 3 10 Em 1 2 9 4 5 6 7 8 8	76 76 76 76 76 76 76 76 76 76 76 71 1 1 1	D.DE261a D.DE261a D.DE261a D.DE261a D.DE2627a D.DE2626	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.67882 73.12339 56.94139 56.428877 59.7029 54.50296 42.21781 58.6707 24.37445 0 \$ of TR TR TR TR	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	の	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1

Figura 3. Resultados de la evaluación por el método BS 7910:07 Nivel 2A para un tubo de 18" de diámetro y 1" de espesor. Discontinuidad superficial interna en el sentido circunferencial.

BS 7918													
evel 2A													
atemal Surfa	ce flaws in c	ylinders o	riented d	rcumferent	P.12								
uz.de Diach	eter	28	·rict.	920			62.5	k51		umitations		1	
nidiness		1	:ech	Po				ksi		0 s a/2t s t		1	
WYS			456	Qm				160		0 3 8/20 2 3		1.0	
ASTS			75	Qb				ksi					
COT		0.011		W winth o	forana i er	\ '	55 54867						
dax:mud akt	al daeran sa	61.5		Internal ra		,,		toen					
Mowance for	_		inch	Wear she									
CITIZA LE 101	13:50ec:test	30000		wear, sue.	s radssas (r.)		8.5	inch		10000	r.e.		
		30000	72:							1911			
	(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0										**************************************		
									47	100 m			
									* 95	×.	1000		
									33.00		4.00		
										A			
										61.00 112	The state of the s		
											100		
					-	Asses	sment			Surface f	avv in cylinder o	riented circumf	erencially
	itiem	2c	а	v8r	LF.	×r.	i.e	scartoff.	F(Lc)	πr≥c+t	7F < C + :	a"	cref
	1	5.79	0.5	0 456186	1 078075	3 456186	1.078075		3.462427	0 366234357	0.068568337	0.386234357	81.93372937
	2	7.28	0.45		1.048562			2.085734	0.503457	0.353027302	0.002340287	0.353017241	79.69068893
	3	7.79	0.4	G.520995	1.020698				6.54235	6.318283363	0 03834433	0.318233963	79.57229336
	4	6.38	Ç 35	C 552258	0.995229					3.28256262	0.054917817	0 28256262	75.62978137
	à	9.09	0.3	0.620693	0.971325		0.971315	1.085714	0.612354	0.245897205	0.051060651		73.81392354
		9.97		-								0.245897205	the same and the s
	8		6.25	0.54/61	0.938511	0.54761	0.948512	1.685754	3.643337	0.208228906	0.046669847	0.208228906	72.08586745
	7	11.16	0,2	0.504232	0.926536		6,926336		0.672163	0 169604863	0.041792216	0,169654863	70,41674911
	8	12.9	0.15	0.515006	0.904536				0.699796	0.129665772	0.036233155	9.129865772	68.74469865
	9	15.8	0.1	0.308551	0.881143					G.GS2764045	0.029534095	0.088764045	66.96685871
no no con	10	22.36	C 03	0 015408	0.853307	0 615408	6.853367	1.085714	0.758553	0.04589491	0.020932556	0 04539491	64.85131671
oles and a second										14.	3.2.		
													Tabeta Mt3
	ttern	ət	50	15	92	K3	Ysigma	Ysisma 9	Ysigma Q	.v:	tw	Men	2280
	2	76	0.002289	£.	7	98.05937		78.34206	D	1	2.804391509	0.705655472	3
	2	76	0.062752	G	1	167 5132			0	1	2.344898394	0.627031667	2
	3	76	3.302986	8	1	111.9905	99.90245	39,90245	2	1	1.9528928C3	3.550114799	1
	4	76	0.003355	e	2	118.7105	-	-	e	1	3 97972432	0.474464849	- 1
	5	76	0.003333	G	1	131 2585			6	2	5,490147884	0.401166425	1
****	- 6	76	3.303299	0	1	117.7114	-	-	0	1	6.515801566	0.331500415	2
	7		0.002797	e		108.387	136.7374		0		1	0.36576425	1
		76		6	2					3	8.365957965 12.8566366S	0.263955906	1
	8	76	5.562918		1	116.703	151,3645	1	5	1	The second second second	A CONTRACTOR OF THE PARTY OF TH	
	9	76	0.001647	3	3	66 32457	118 3313	118.5315	C	1	13.29571674	0.144714689	1
	10	76	0.00-166	0	2	192.2649	333.7724	333,7724	e	1	64.71649213	0.003861062	3
								i					
			Anexo D										
		kim	<:b	₹m	ρ		20 5 2						
	1tem		2	2.	C	TR	30						
	1	1				19	UE	11110					
		1	1	1	B								
	1		1	1	8		υ€						
	1 2	1				16	UE UE						
	1 2 3 4	1	1 2	1	8	TR							
	3 4 5	1 1	1 1	1 1	0 0	TA TR	WE WE	7/33300144					
	3 4 5 6	1 1 1	1 2 1	1 1 1	0 0 0	TA TA	UE UE						
	3 4 5 6	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0	78 78 75	105 106 106 106 106	711111111111					
	3 4 5 6 7 8	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0	78 78 75 75	GE GE GE GE	-//					
	3 4 5 6	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0	16 18 18 16 18	OE OE OE						

Figura 4. Resultados de la evaluación por el método BS 7910:07 Nivel 2A para un tubo de 18" de diámetro y 1" de espesor. Discontinuidad superficial externa en el sentido circunferencial.

Segundo caso

En las Figuras 5 a 8 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

BS 7918 Level 2A	(=)		4		H					11111					
stemal Surface	flaws in c	ylinders o	riented ad	yftei	2.22										
hrotoe Diamet	er	28	(ecn	Port			61.3	ks;	1	Limitations		İ			
hickness		1	men	95			c	ks.		3.0 2 1/a 2 C					
wars.		23	be.	Qm			С	ks.		3.05 - a/c - 1					
ACTS				Qδ				ks)	1111111-	3.1 ± 1/n ± 0.2	ž.				
739		3.011		wwidte o	(,	56	och.		20/14/2015	-	ker a real real			
(axonium axia)	dacion en	01.5		(51641:9) IP		"		onch.		26/1/2013					
Howance for in		0.03		Mean shei				inco							
· Oxante rot :	120650	39000		Negar, siner	. Factories (F	1	0.5	San Co							
		30516	KS					2.00				555			
					Territor										0.000
								1.00	HAM.	11.23/1	X.11.11.11.11.11.11.11.11.11.11.11.11.11				
							-	A 144							
							4								
							Š	3182 WY	9730133136	*55*55*55*55*55	-367500-57350-55	rat.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
								11.11.11.	200	ETTER.	しんはんべん				
			í			Assess	mert				S. ref	aca flavor culo	der orientad ax	12114	
- 1	cem	25		√ċr	(r	<r></r>	UF.	er cutoff	F(Lr)	W 226 + 11	Willett	m'	141	his	are:
arayees b	4	0.94	0.25		3.005267	0.253555	1.055267	1.085714			2.013029187	D.N2268841	2.030275607	1.02936593	73.9683816
	2	0,54	6.225	3.243544	3.002809	0.240544				The second second second	A CONTRACTOR OF THE PARTY OF TH				
		- 1			1 002221		1.052009	4.685144		6.225	0.012455664	6.225	2.034237862	2.027053851	75.7966479
	3	- 11	2.2			C 226787	1 082121		0.456935		0.012178815	0.20952382	2.041236725	1.0264004	75.7482972
	4	1.3	6.175	6.21214	2 024975	0 2,214	109-975	L 055714			0.012594	0 197826037	1 057149572	1 029109264	75.9482637
	5	1.4	0.15	0.196403	1 082259	C 1964C1	1 582259	£ 585714		0.175	C G12625231	0.175	1 865996166	1 825532995	75.7501350
	6	-17	0.125	0.179291	1 085045	C 179291	1.085045	L 085714	3,452953	C 157007407	C 311763626	C 157407407	1 335921292	1 329175230	75.954; 125
	7	2	3.2	0.560 362	1 084712	C 260352	1.084732	1.0EST14	3.453376	C 233353333	C.01.1071648	C 233333333	£ 13060:994	1 028679662	75.931.2599
	8	2.3	2.1075	6.138678	1 585612	6.138676	1.085012	1.083714	5.452937	C 107147857	0.01037967	5.257142837	1.197614114	1.0337cce55	75.5565735
	9	3.3	2.03	0.115593	1 085354	G.115395	1.083334	1.085714	C-252535	6.67777778	0.009657692	5.677777778	1.360965963	1.039468552	75 976 779
	:0	7.8	č 025	0.060181	5.085556	6.086153	1.085516	:.CE37:4	0.457326	5.044355582	5.016794857	D.044315187	2.387452584	1.02362256	75.9561449
	6									1,14.	3.5.1				
				12.		1				=(xed	Values	Tao	:e k65	Tabe	a MS
	hem '	o!	38	TP	32	8.	esigna.	isigma?	is email	No.	5w	Wa	859	363.79	100
	1	76	G 2007767	0	1	54 56796	65.5	65.5		- 1			1		- 1
4.1	2	76	G.200636	e	-	SI 70604	62.5	62.5			- 1	- 1	1	1	- 1
	3	76	0.000566	e	1	45.74593	625	61.5		1	1			1	
	-	76	0.000366	0		45.00044	015	61.5							
	5	76		c	1							_ A	1	A .	
	_		0.000424		1	42.22781	SE S	61.5					1	- 4	. A.
	8	76	0.000353	C	1	38,53933	87.7	103.5			1	- 1	- 1-	1	- 1
	7	76	G CCC583	6	1	34.4707	62.5	62.3						1	
	8	76	0.000575	- 6		29.8525	62.5	6:3	0		1				1
	9	76	C 000 P4T	0	1	24 37446	61.5	61.5			1	1	1	1	1
	£C	76	7 37E-35	0	:	17 23525	61.5	61.5		1	1	1	1	1	1
	diam.		Areso S		-					213275					
	Rem	-	State of	šm.	Anexa	C S a		006	nie s :	6.25	20/W 50 15				
		Siro	1		J	TR			ayc s i		TRUE				
	4	1		1					eve	FALSE					
	2	1	1	1	3	TR			UE .	FALSE	TRUE				
	- 5	- 5	1	1	0	18			UE	FALSE	1905	-11			
	4	1	1	1	0	TR:			U≤	74:5E	TSUE				
	5	1	1	:	C	127	7.E	To	52	FALSE	1275				
		1	:	:	0.	TA	U€	Te	2.5	FALSE	TAUE				
	5			:	0	Te:	UE .	TA	UE 30	FGLSE	TRUE				
	7														
		1 1	1	- :	0	16	U€	Te	65	FALSE	Taue				
(SCHI-CHICA)	7								102 303	FALSE	TRUE				
=[214=[2314]; [244=[2314];	7	1.	- 1	1	0	16	UE	TS							

Figura 5. Resultados de la evaluación por el método BS 7910:07 Nivel 2A para un tubo de 24" de diámetro y 0.5" de espesor. Discontinuidad superficial interna en el sentido axial.

85 7910															
evel 2A aternal surface	Slave in	orlindam.	riested to	1111110											
		· jiniaei i	NICINEU 4	yani.A	5 75										
hitside Diame:	er	15	hoch	250			61.5	fre:		contrations					
hodiness		1		250				ks-		0 ± a/t ≤ 0.8					
satrs		79	kr:	Qm				ks		3.05 c a/c c 1		1			
SACTS		92	ks:	QL				ks		0.1 = 174 = 0.3					
CUDO			inen	ww.dtnc	intane (2)	2:		424		2014 50.13		10-11-			
Maximum axia:	055:00 51			ISTERSAL FE		-1		roch		Extres at 15					
Aboveace for s				Mean she		3		(4XC))							
		58900		A-50 2.75		•	22								
								3830				90			
								const.	cherry.	47.5	the second	95.40			
								100			# 1 x x x	36			
										Cont.					
							1	OCCUPATION OF		*** ****** ****		000 000 2000			
							165								
							1		2002/1009/10	PROFESSION	erosenske potest til	7.0			
							- 1			77277	30 30 THE	A			
			0			Citan					2.7				
	260	2:		V5r	· U	40	attention.		Mar.	1444 0.044		uce flace or type			
	126/23	0.94		The second second			- 0	createff		W22(611)	N (2(c+t)	-	-i/ti	No.	oref
	-	0.94	_		1.005267		:_C652E7	1.00571.4			9.023009287	5.2422688kg	1.036275607	: 02936593	7.95868ac
00.000 000 00 H 1000 (3	-	€ 225		1.002809			1.065714		0.225	0.00.3457.0054	G 225	1.012197862	1.02700 480:	75.7968-796
	_	1,5			1.000123	0.726787		1,085710			0.010178813	0.26952381	1.012236723	2.0263024	73.7381971
	4	1.3			2.082975	0.21214		2.055724			0.012594	0.197826087	1.057143573	1.029109264	75.9482637
	3	14			1.082239		L-082259	i-055714			C-011623231	6.173	1.065996266	1.025332995	73.758:3505
	6	4.7	_		1 083045	C 179291	1.085043	1555714			C \$1170 3626	0 157407467	1 295922293	1 023175258	73.95313253
	7	2	-	0.260362	1 084732	C 160362	1 084732	£395714		C 233533333	C 311C71648	C 139999933	1 230601994	1 328878863	25.93125999
	3	2.3		0.136676	1 585C1.	C 138676	1 085012	1.383714	0.452997	C 157141637	0.02537967	C 167142837	1 197614114	1 323144623	75.95067332
	9	3.5			1 085354		1.085354	1.085714	11. 44.		C 003657697	C 577777772	1 360945963	1 825465552	75 97477914
	20	7.8	2.025	0.080181	1 085516	C 086151	1.285516	1.035714	3.452326	0.044519182	C.810794857	0.044519192	7.287452594	1.02562756	75 98614493
											3.3.3				
											Values	Tab	e 500	Tage	ia M5
	Nem.	Q ⁷	3	TO	253	- 63	Vsigma	Visignia P	Yangma Q	1,3	or or	#ilda	Mo	368.00	100
	1	76	C CGC 7C7	0		54.58296	6:.5	6: 3	C						
	2	76	0 000636	0	-:	51 70604	6:3	6:.5		- 24		1	:	1	:
	3	76	0.000366	0	1	48 74893	61.5	61.5	0	1	1	1	4	1	
	4	76	5.333495	0	:	45 66644	6:5	92.5	0		:	- 1	- 1		
	5	76	G.200424	C	1	42 21791	615	61.5	0	1	1		12	1	1
	6	75	0.000154	T.	1	35.53541	61.5	51.5	0	- 1	Ä	*	i.	À	i i
	7	76	0,000285	0		34,4707	625	61.5	0			1	1		
	8	76	0.000212	Q	i.	29.8525	61.5	61.5			1	k.	1.	i.	i.
	9	76	0.000141	3	- 5	20.17445	62.5	€2.5	0	1	1	1	1	1	1
	10	76	3.07E-05	- 8		17.23535	62.5	62.5		1		- 1	1.0	1	
						-14				1					
			Areso 2		3					0.2 5 57: 5		1			
	hem	kten	stb	Km.	Ariex R	0 5 0	: 5 6 8	0.05 5	0/c : :	C 25	2c/W ± 0.15				
	1	1	1		0		335		30	FALSE	TRUE				
	2	1	1		0		UE	TS	UE	FALSE	TAUS				
	5	1		1	0		UE		uz.	SALSE	TAUE				
	1 4	1	1 1	1	3		NS		33	2 A156	1305				
	3	1	11	1	3		NE SU		474	SALSE	TRUS	1			
	6	1	1	1	3		NE		tue.	PALSE	TSUE	1			
		1	1	1	2		e sur	-	US	FALSE	TSUE				
	7					10		10	184	- Maria	LINE	deliner in the			
	7		1 .		t.	175	*15		100	EATE	TSHE				
	8	-1	1	3	0		WE.		nie nie	FALSE	TSUE				
			1	1	0	17	ME ME KUE	Ta	NUS NUS	74155 74155 74155	TSUE TSUE TSUE				

Figura 6. Resultados de la evaluación por el método BS 7910:07 Nível 2A para un tubo de 24" de diámetro y 0.5" de espesor. Discontinuidad superficial externa en el sentido axial.

S 7910													
evel 2A													
otennal Surface	flaws in c	ylinders o	riented cir	cumferent	P. 12								
Jubide Diamen	er	10	met.	9/11			62.5	ks;	-	umitations		1	
rickness		2	:೧೮%	PD CG				ks:		0 5 8/t 5 Q.S		1	
¥:YS			K51	Qm				450		3 ± ≤ a/c ≤ 1			
NSTS			252	Qp.								-	
								ksi		$0.1 \le t/r! \le 0.2$		Į.	
TOD		0.011		M winth of		13	56.54867	inch					
lax:muci aklalı	design sti	61.5	45:	internal ra	dius (r:)		8	inch					
Howance for in	spection.	0.05	inch.	Mean shell	racius (r;		8.5	inch					
		30000	vsi.							2009 100 00			
										- C. S	100		
									- 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11		
											3233		
									- e 25		23.0		
									- 50	2	2039		
										97	State of		
										and the same of the	30°34		
										WALL THE	2		
										The same			
						Assass	smeot			Surface fo	aw in cylinder o	rientea circumf	erencia:lv
	them	2c	а	V&c	ir	Kr	9.7	troutet!	2000	πc≥c+t	3F < C+1	a"	cref
	1					_	_	_		-			
-		6.6	3 25	0.353555	1.081961	3 253555	1.083961	1.065714		0 434210526	0.044698835	0.4341:0516	75 7372967
	2		3.725	C-24C544	1.084236	0.240544	E.C84236	1.085714	0.454047	0.4	0.048762866	5.4	75.8855190
	3	9.7	C 2	G.22G757	1.625151	0.226787	1 085181	1.083714	0.452769	6.362616822	0.032534994	0.362616822	75.90265-464
	- 4	11.8	0.175	0.22214	1.084272	0.23226	1.084:72	1.085714	0.454134	9.32265625	0.055943269	0 32265625	75.6920438
	5	≥4.8	0.15	0.196403	1.085005		1.005005	1.085714		0.281012658	0.060140251	0.2810±2658	75.9503265
	_												
	5	39.2	0.125	6.179291	1.085052	3.279291	1.085052	L085714		0.237623762	0.065016487	0.237623762	75,9535447
	7	27	6.1	0.366362	1.085542	0 160362	1.689342	2.085714	0.457282	0 193857143	0.073143548	0.192857141	75.9879282
	8	75	3.975	6.138878	1.630711	0.138878	1.030731	1.085714	0.5287:6	0.148025316	0.152382392	0.152382392	72.14974607
	9	75	3.35	0.513393	0.974466	0.113393	0.974466	1.005714	3.6090CI	0.098684211	0.101588262	0.101598262	68.21263026
	20	75	3.025	0 086181	0.934039		0.924039	1.085714	-	0 049342105	0.050794231	0.050794131	64.68277645
	-0	73	0.003	r coorer	0.934039	A REOTET	0.924039	1.085714	U.673303	0 049342103	0.000794231	0.000/94131	04.0327.043
												1	
in its most treat to me										93.4	332		
										=:xec	Values	Table MS	Tabela Mil
	trem	≂f	50	TP	92	K)	Ysigma	Ysigma P	Ysigma Q	144	ħv:	Mai	Mko
	1	76	0.003707	£.	2	54.50296	62.5	67.5	2	- 3	1		3
	2	76	0.000536	G	1	51.70604	61.5	61.5	0	1	1		
	3	76	3.300566	8	1	48.74893	6:.5	62.5	3	3	1		2
						25 20022	62.5					1	3
	4	76	0.003495	C	2	45.60044	24.3	625	C	1	1		
		76 76										1	2
	5	76	0.000434	G	1	42.21781	615	62.5	0	2	1	2	
	5	76 76	0.000434 0.000354	0	1	42.21781 38.53941	61.5 61.5	61.5 61.5	8	2	1	1	1
	5 6 7	76 76 76	0.000424 0.000354 0.000283	6 8 0	1 1	42.21781 38.53941 34.4767	61.5 61.5	61.5 61.5 61.5	0 8 0	2 5	1	1 1	3
	5 6 7 8	76 76 76 76	0.000434 0.000354 0.000283 0.000212	6 0 6	1 1 1	42.21781 38.53941 34.4767 29.8525	61.5 61.5 61.5 61.5	61.5 61.5 61.5 62.5	0 8 0	1 1	1 1 1	1 1	1 1
	5 6 7	76 76 76	0.000424 0.000354 0.000283	6 8 0	1 1	42.21781 38.53941 34.4767	61.5 61.5	61.5 61.5 61.5	0 8 0	2 5	1	1 1	3
	5 6 7 8	76 76 76 76	0.000434 0.000354 0.000283 0.000212	6 0 6	1 1 1	42.21781 38.53941 34.4767 29.8525	61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5	0 8 0	1 1	1 1 1	1 1	1 1
	5 6 7 8	76 76 76 76 76	0.000434 0.000354 0.000285 0.000212 0.500141	6 0 6	1 1 1 1	42.21781 38.53941 34.4767 29.8525 24.37446	61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 62.5	0 8 0 0	1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8	76 76 76 76 76	0.000424 0.000354 0.000215 0.000212 0.500141 7.07E 05	6 0 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.21781 38.53941 34.4767 29.8525 24.37446	61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5	0 8 0 0	1 1 1 1 3	1 1 1	1 1 1	1 1 1
	5 6 7 8 9	76 76 76 76 76 76 76	0.000424 0.000554 0.000283 0.000212 0.500141 7.07E 05	6 6 8 0	1 1 1 1 1 1	42.21781 38.53941 34.4767 29.8525 26.37446 17.23535	61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 62.5 62.5 62.5	0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 10 Mem	76 76 76 76 76 76 76	0.000424 0.000354 0.0003203 0.000212 0.500141 7.07E 05 Anexo D	0 0 0 0 0 0	i i i i i i	42.21.781 38.53941 34.4767 29.5525 26.57446 17.23535 C s a/	61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5	0 0 0 0 0 0	2 3 1 1 1 3 3 3 3 6 2	1 1 1	1 1 1	1 1 1
	5 6 7 8 9	76 76 76 76 76 76 76	0.000424 0.000554 0.000283 0.000212 0.500141 7.07E 05	6 6 8 0	1 1 1 1 1 1 1 1 Arex F	42.21.781 38.53941 34.4767 29.5525 26.57446 17.23535 C s a/	61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5	0 8 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 10 Mem	76 76 76 76 76 76 76	0.000424 0.000354 0.0003203 0.000212 0.500141 7.07E 05 Anexo D	0 0 0 0 0 0	i i i i i i	42.21.781 38.53941 34.4767 29.5525 26.57446 17.23535 C s a/	61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5	0 0 0 0 0 0	2 3 1 1 1 3 3 3 3 6 2	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 10 Mem	76 76 76 76 76 76 76 76	0.000424 9.000354 0.000205 0.000212 9.500142 7.07E-05 Anexo D Ktb	6 6 0 C C C C C C C C C C C C C C C C C	1 1 1 1 1 1 1 1 Arex F	42.21781 38.53941 34.4767 29.8525 24.37446 17.23535 C s o/	61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5	62.5 62.5 62.5 62.5 62.5 62.5	0 8 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 10 11 11 11 11 11 11 11 11 11 11 11	76 76 76 76 76 76 76 76 76	0.000424 9.900354 0.009285 0.000212 9.500142 7.07E-05 Anexo D Kib	6 6 0 0 ×m	i i i i i i i i i	42.21.781 38.53941 34.4767 29.8525 24.57446 17.23535 G s of	61.5 61.5 61.5 61.5 61.5 62.5 62.5 62.5 62.5	62.5 62.5 62.5 62.5 62.5 62.5 78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 1 1 1 1 3 0 i s of t s 0 2 FALSE FALSE FALSE	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	76 76 76 76 76 76 76 1	0.000424 0.000554 0.000205 0.000212 0.500141 7.076 05 Anexo D 4:b 1	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i	42.21.781 38.53941 34.4767 29.8525 26.57446 17.23535 C s of	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 62.5 62.5 78	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 16 Eem 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 76 76 76 76 76 76 76 76	0.000424 0.000354 0.0003203 0.000212 0.500141 7.076 05 Anexo D Kib	6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i i i i	42.21.781 38.53941 39.4767 29.5525 26.57446 17.23535 C 5 a/	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	62.5 62.5 62.5 62.5 62.5 62.5 75 75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 1 1 1 3 0 is the s 0 2 FAISE FAISE FAISE FAISE FAISE FAISE	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	76 76 76 76 76 76 76 1	0.000424 0.000554 0.000205 0.000212 0.500141 7.076 05 Anexo D 4:b 1	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i	42.21.781 38.53941 39.4767 29.5525 26.57446 17.23535 C 5 a/	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	62.5 62.5 62.5 62.5 62.5 62.5 75 75	0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 16 Eem 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 76 76 76 76 76 76 76 1	0.000424 0.000354 0.000203 0.000212 0.500141 7.076 05 Anexo D Kib 1 1	6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i i i i i i i i i i i	42.2:781 38.53941 34.707 29.5525 26.37466 17.23535 0 5 o/ 188 189 189 189 189 189 189 189 189 189	61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	61.5 61.5 61.5 61.5 61.5 61.5 61.5 78 78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 1 1 1 3 0 is the s 0 2 FAISE FAISE FAISE FAISE FAISE FAISE	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 EEM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 76 76 76 76 76 76 1	0.000424 2.000354 0.000325 0.000325 5.000142 7.076 05 419 1 1 1 1 1	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	42.2:781 38.53941 39.4767 29.3525 29.3526 17.23535 C 5 a/ 18 19 17 17 17	615 61.5 61.5 61.5 61.5 61.5 61.5 61.5 6	61.5 61.5 61.5 61.5 61.5 61.5 61.5 75 75 75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8 3 5 10 10 10 10 10 10 10 10 10 10 10 10 10	76 76 76 76 76 76 1 1 1 1 1	0.000424 0.000354 0.000325 0.000212 0.000212 7.07E 05 ATHEO D 1 1 1 1 1 1	6 8 0 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 2 2 Anex F 0 0 0 0	42.2:781 38.53901 39.4767 29.5525 26.37466 17.23535 C 5 a/ 17.7767 176 177 177 177 177 177 177	615 613 615 615 615 615 615 615 615 616 616 616	61.5 61.5 61.5 61.5 61.5 61.5 62.5 75 75 75 75 75	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1
	5 6 7 8 9 10 EEM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 76 76 76 76 76 76 1	0.000424 2.000354 0.000325 0.000325 5.000142 7.076 05 419 1 1 1 1 1	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	42.21781 38.53901 39.4767 29.5323 26.37446 17 23535 C S a/ 18 18 18 18 18 18 18 18 18 18	615 61.5 61.5 61.5 61.5 61.5 61.5 61.5 6	61.5 61.5 61.5 61.5 61.5 61.5 78 78 78 78 78 78 78	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1	1 1 1

Figura 7. Resultados de la evaluación por el método BS 7910:07 Nivel 2A para un tubo de 24" de diámetro y 0.5" de espesor. Discontinuidad superficial interna en el sentido circunferencial.

S 7910													
evel 2&													
ictemal Surface	rialys in c	ilinalers o	rientesi cir	clanterent	2.52								
ubide Diamen	er	12	net-	9. 70			61.5	NS1	ſ	uttettens			
mideness			:ech	PD				ksi		3 ≤ a/2c ≤ 2		Υ	
WYS							1.7	100		0 2 8/20 2 2		J	
			451	Qm				hso					
ASTS		62	15:	Qp			3	ksi					
act.		0.011	tent	W winth o	figrane (±0	3	56.54867	inch					
Aaxtenuet axlat	das:07:51	61.5	250	Internal ra	dies tre	1	n	toctt					
Allowance for:			inct:		fractus (r:								
	1125/00/1661			W64.1 24F	* 140/35 (1 ;		3.3	inch		1 1 1 1 1 1	No.		
		30600	:53:								\$6.75 m		
									1				
									2,2	865 B	300		
									27	1	7 37		
									200	i.	ALC: NO		
									55.00	2.	11/25		
***************										d'a	2.00		
4166111301110111									2.00	A Branch St.	2012		
										26 1 BV.	The same of the sa		
										" all of the	,		
								000000000					
						Asses	sment			Surface fo	aw in cylinder o	riemed circum!	erentially
	ttem	2c	a	v8r	27	Kr	- 1	ur cutoff	25(4)		Trece:	a"	cref
	THE REAL PROPERTY.	5.2	C 25										
	- 1			0 315576		3 335576		1.005714		0.45049505	0.061630212	0.45049505	81.29520349
	2	9.ó	0.225	0.264657	1.037346	0.264657	3,037346	1.085714	0.529300	0.40754717	0.058514839	0.40754737	78.83631324
	3	¥C 2	G. 2	G.231092	1.009426	0.231089	2 203426	1.095714	0.359336	6.364285716	0.055264024	0.364293714	76.71039364
	4	20.9	0.175	0 174118	0.984466					0 320588235	0.051674562	0.120568235	74.79663455
	5	3,22	0.15	0.154784	0.961579		0.961579	1.085714	0.525699	0.2765625	0.047949659	C.2765625	73.07998307
	5	12.9	C.225	0.097477	0.939867	3.397477	C.939667	3.085714	3.6548:1	0.232014386	0.043683952	0.232624368	71.4298643
	7	24.5	0.1	2 172804	0.919862	9 127804	6.939862	1.085714	0.680683	0 187095774	0.039280794	0.187096774	69,96953664
	8	25	0.075	0.019743									
					0.936242		E 936242	1.085714		0.144230769	0.050794131	0.144230769	71 15439307
	9	70	0.05	0.0359	0.904327	0.0055	0.934227	1.0257:4	3.700174	0.092591549	0.094815711	0.098592549	68.72274499
	10	70	0.025	0.06396	0.854098	0.00396	6.854099	2.085714	C 75772	0 049295775	0.047407855	0.049295775	64.91144512
									1	727		1	
	Harrison -									. 76.	3.2.		
			3		- 0	11 1							Tabela NO
	ttem	⇒t .	50	TP	92	Y , y	Ysig.ma	Ysisma P	Ysigma Q	₩.	tvi	10m	Mko
	3	76	0.001095	c	1	67.83463	76.54318	76.54.128	£.	1	2.2:5138999	0.561862993	1
	_				_						The second second		
	2	76	0 00677	6	1	56.88937	67.56513	67 65513	0	1	2.30777297	0.476756613	1
	3	76	3.500587	2	1	49 67543	62.66552	62,66632	3	1	2.554991952	3.398913196	
	4	76	0.000333	C	2	37 42753	50.47743	50,47743	e .	1	2.492197	0.329336404	1
	3	76	0.000264	0	1	35.27251		48 45765	6	1	2.942385068	0.267932238	1
	1						-		-				
	6	76	0.000105	8	1	20 95528	33.43644	33.43644	U	1	2.528330525	6,23503598	1
	7	76	0.000166	e	- 2	26.39728	47.09502	47.09602	e	1	4.546033547	0.168422456	1
	9	76	4.29£-06	6	2	4.243785	8.742752	8.742752	5	1	1,357899178	5.16459CC73	1
************	3	76	3.78-07	0	3	1.245634	3.145424	3.145424	0	1	1 04818155	0.048794124	3
	10	76	1.73E-07	0	1	0.651325	3 837736	3.037738	0	1	1.472968063	0.033535725	1
							120						
	1		Алеков		D.								
		24			restriction of								
	44.00	etm.	<:₽	≺m	Anex F		20 € 1	1					
	ttem	11.0	2.	2		TR	EUE SUI						
	i i	1	-			10	UE						
				i.			A CONTRACT OF THE PARTY OF THE						
eviete Ettes Pro-	2	:	1	1			347						
	2 3	1	1	1	0	14	υ t						
	1 2 3 4	:	1 1	1		TA	:GE						
erekaren era	2 3	1	1	1	0	TA							
	1 2 3 4	1 1	1 1 1	1 1	0 C	TA TA	IGE IGE	- (n) (lin)		· COMPANY CALLES			
	3 4 5 6	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	0 0	TA TA TA	IOE IOE IOE	= 0 (m) 0 (m/s)		Contract Colors			
	3 4 5 6	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0	78 78 78 78	OE OE OE	=+(m)+lln(x)		oxente l'elect			
	3 4 5 6	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	0 0	78 78 78 78	IOE IOE IOE	=+(m)+100)		Contract (Nices			
	3 4 5 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0	T6 T8 T6 T8	OE OE OE	-1(a)4100)		Coccession (California			
	3 4 5 6 7 8	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0	78 78 76 76	IGE IGE IGE IGE	-+(m)+10-x)		Contract (Colors			

Figura 8. Resultados de la evaluación por el método BS 7910:07 Nivel 2A para un tubo de 24" de diámetro y 0.5" de espesor. Discontinuidad superficial externa en el sentido circunferencial.

C 2. CSA Z662:99 Apéndice K

Primer caso

En la Figuras 9 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

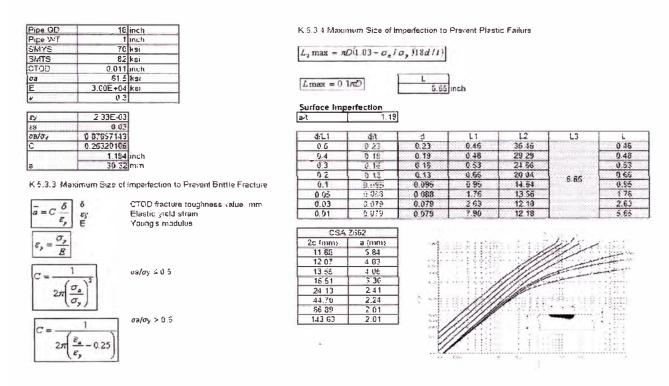


Figura 9. Resultados de la evaluación por el método CSA Z662:99 Apéndice K para un tubo de 18" de diámetro y 1" de espesor. Discontinuidad superficial.

En la Figuras 10 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

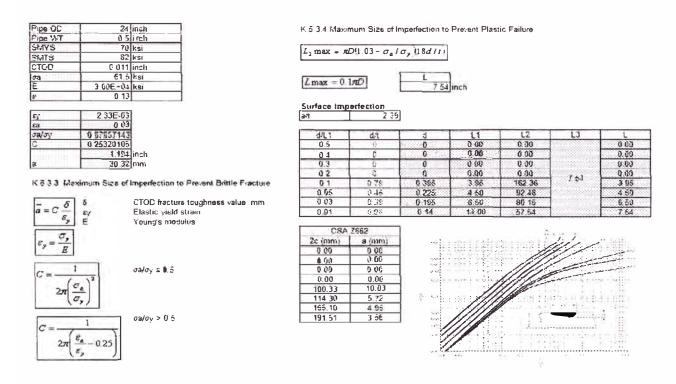


Figura 9. Resultados de la evaluación por el método CSA Z662:99 Apéndice K para un tubo de 24" de diámetro y 0.5" de espesor. Discontinuidad superficial.

C 3. API 1104:2007 Apéndice A Opción 1

Primer caso

En la Figuras 11 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

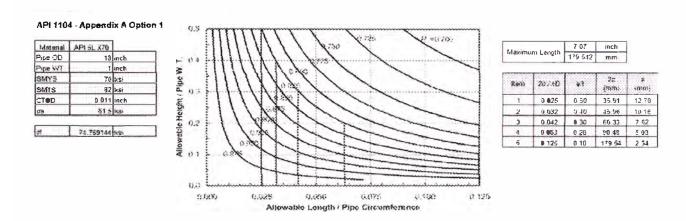


Figura 11. Resultados de la evaluación por el método API 1104:2007 Apéndice A Opción 1 para un tubo de 18" de diámetro y 1" de espesor. Discontinuidad superficial.

Segundo caso

En la Figuras 12 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

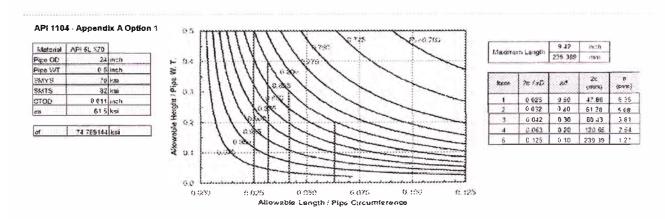


Figura 12. Resultados de la evaluación por el método API 1104:2007 Apéndice A Opción 1para un tubo de 24" de diámetro y 0.5" de espesor. Discontinuidad superficial.

C 4. API 1104:2007 Apéndice A Opción 2

Primer caso

En la Figuras 13 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

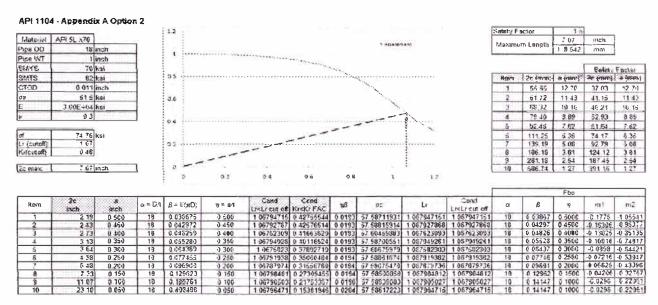


Figura 13. Resultados de la evaluación por el método API 1104:2007 Apéndice A Opción 2 para un tubo de 18" de diámetro y 1" de espesor. Discontinuidad superficial.

Segundo caso

En la Figuras 14 se presentan los resultados obtenidos para los parámetros establecidos en la Tabla 1. Los procedimientos de cálculo están descritos en el Apéndice B.

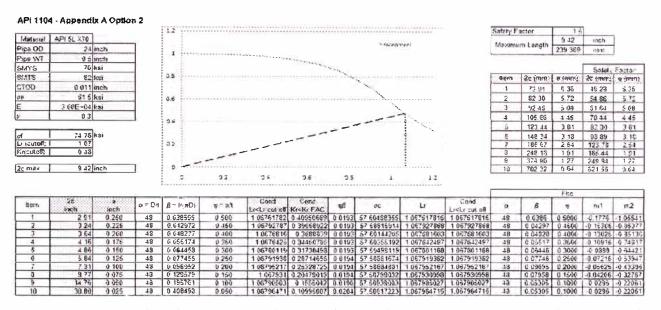


Figura 14. Resultados de la evaluación por el método API 1104:2007 Apéndice A Opción 2para un tubo de 24" de diámetro y 0.5" de espesor. Discontinuidad superficial.

C 5. API 1104:2005

Primer caso

En base a los parámetros establecidos en la Tabla 1 fueron determinadas dimensiones máximas de la discontiuidad. Los procedimientos de cálculo están descritos en el Apéndice B.

- 1. Determinación del parâmetro de tamaño de la fisura, a*.
 - a. Determinación de la deformación axial máxima aplicada, ε_{o} .

$$arepsilon_a = rac{\sigma_a}{E}$$

$$arepsilon_a = rac{61.5ksi}{30000ksi} = 0.0021'' ext{ por pulgada}$$

- b. El valor del δ_{mat} fue considerado como 0.010", dado que la Figura 15 considera valores de CTOD entre 0.050" hasta 0.010". Tornando las dimensiones de las discontinuidades a determinar mas conservadoras.
- c. Utilizando a Figura 15 y la curva para δ_{mat} igual a 0.010" por pulgada:

$$\varepsilon_a = \varepsilon_a + \varepsilon_{residual}$$

Según la API 1104:2005 Apéndice A, el valor del $\varepsilon_{residual}$ es igual a 0.002" por pulgada. Tornándose el $\varepsilon_{a}' = 0.0041"$ por pulgada.

El valor
$$a^* = 0.235"$$

- 2. Determinación de las dimensiones de las discontinuidades planas
 - a. Alturas permisibles

Para discontinuidades superficiales: $a_s = a^* \rightarrow a_s = 0.235''$ Para discontinuidades internas: $2a_b = 2a^* \rightarrow 2a_b = 0.470''$ Altura máxima de la discontinuidade: $a_{max} = 0.5t \rightarrow a_{max} = 0.250''$

Por tanto:

Para discontinuidades superficiales: $a_s = 0.235''$ Para discontinuidades internas: $2a_b = 0.470''$

b. Longitudes permisibles

Tabela 2. Dimensiones permisibles para uma discontinuidad plana según la API 1104:2005. Sin considerar error de inspección 0.05".

Descontinuid	ades Superficiais	Descontinuida	des Internas		
Altura	Comprimento	Altura	Comprimento		
0 – 0.235"	4.00"	0-0.235"	7.20"		
> 0.235"	0	0.236" - 0.500"	4.00"		
		> 0.500"	0		

Segundo caso

En base a los parámetros establecidos en la Tabla 1 fueron determinadas dimensiones máximas de la discontiuidad. Los procedimientos de cálculo están descritos en el Apéndice B.

- 1. Determinación del parâmetro de tamaño de la fisura, a*.
 - a. Determinación de la deformación axial máxima aplicada, ε_{o} .

$$\varepsilon_a = \frac{\sigma_a}{E}$$

$$\varepsilon_a = \frac{61.5ksi}{30000ksi} = 0.0021$$
" por pulgada

- b. El valor del δ_{mat} fue considerado como 0.010", dado que la Figura 15 considera valores de CTOD entre 0.050" hasta 0.010". Tornando las dimensiones de las discontinuidades a determinar mas conservadoras.
- c. Utilizando a Figura 15 y la curva para δ_{mat} igual a 0.010" por pulgada:

$$\varepsilon_a^{\dagger} = \varepsilon_a + \varepsilon_{residual}$$

Según la API 1104:2005 Apéndice A, el valor del $\varepsilon_{residual}$ es igual a 0.002" por pulgada. Tornándose el $\varepsilon_{a'}$ = 0.0041" por pulgada.

El valor
$$a^* = 0.235$$
"

- 2. Determinación de las dimensiones de las discontinuidades planas
 - a. Alturas permisibles

Para discontinuidades superficiales:

 $a_s = a^* \rightarrow a_s = 0.235''$

Para discontinuidades internas:

 $2a_b = 2a^* \rightarrow 2a_b = 0.470$ "

Altura máxima de la discontinuidade:

 $a_{max} = 0.5t \rightarrow a_{max} = 0.250"$

Por tanto:

Para discontinuidades superficiales:

 $a_s = 0.235''$

Para discontinuidades internas:

 $2a_b = 0.250$ "

b. Longitudes permisibles

Tabela 3. Dimensiones permisibles para uma discontinuídad plana según la API 1104:2005. Sin considerar error de inspección 0.05".

Descontinuid	ades Superficiais	Descontinuida	des Internas
Altura	Comprimento	Altura	Comprimento
0-0.125"	9.60"	0-0.125"	9.60"
0.126" - 0.235"	2.00"	0.126" - 0.250"	2.00"
> 0.235"	0	> 0.250"	0

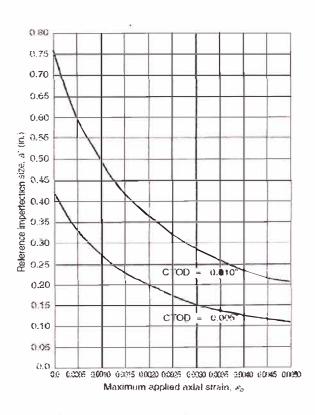


Figura 15. Tamaño referencial de imperfecciones planas circunferenciales

Apéndice D

Algoritmo de rutina de cálculo según API 1104:2007 Apéndice A Opción 2

El algoritmo de rutina de cálculo fue desarrollada haciendo uso del programa Microsoft Excel® 2007 y escrito en lenguaje de Visual Basic. El mismo hace referencias a ciertas celdas identificadas como fila y columna, conde se ingresan los datos a evaluar, ver Figura 1. Los resultados son presentados bajo los encabezados de lista, luego estos valores son usados para el dibujo de las curvas de límites permisibles adimensionales.

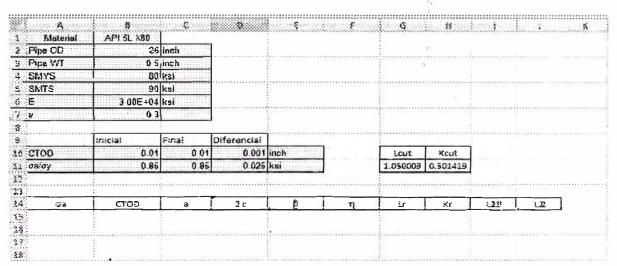


Figura 1. Máscara de ingreso de datos γ presentación de resultados para la rutina iterativa para la determinación de las dimensiones máximas permisibles

Algoritmo

Dim D As Single
Dim t As Double
Dim SMYS As Single
Dim SMTS As Single
Dim E As Single
Dim v As Single

Dim CTODi As Single Dim CTODf As Single Dim CTODd As Single Dim CTOD As Single

Dim sayi As Double Dim sayf As Double Dim sayd As Double

```
Dim a As Single
Dim L As Single
Dim ai As Single
Dim Li As Single
Dim Lc As Single
Dim Lr As Single
Dim Kc As Single
Dim Kr As Single
Dim L1 As Single
Dim Lmin As Single
Dim Lmax As Single
Dim L2 As Single
Dim L21 As Single
Dim L22 As Single
Dim Lf As Single
Public Const PI As Single = 3.14159265358979
Function Ln(x) As Single
Ln = Log(x) / Log(Exp(1))
End Function
Function FAC(x) As Single
FAC = (1 - 0.14 * x^2) * (0.3 + 0.7 * Exp(-0.65 * x^6))
End Function
Function Lcutoff(x) As Single
Lcutoff = 1 + (21.75 / x)^2
End Function
Function spcollapse(x, y) As Double
'x representa beta
'y representa nu
Dim z As Single
z = x * y
If z \ge 0.05 Then
  spcollapse = (PI/4) * ((Cos(z * PI/2) - y * Sin(x * PI)/2))
  spcollapse = (PI/4 + 385 * (0.05 - z) ^ 2.5) * ((Cos(z * PI/2) - y * Sin(x * PI)/2))
End If
End Function
Function Fbo(x, y, z) As Double
'x representa alfa
' y representa beta
' z representa nu
Dim m1 As Single
Dim m2 As Single
m1 = -0.00985 - 0.163 * z - 0.345 * z ^ 2
m2 = -0.00416 - 2.18 * z + 0.155 * z ^ 2
Fbo = 1.09 + 2.31 * (x ^ 0.791) * (y ^ 0.906) * (z ^ 0.983) + m1 / (x * y) + (x ^ 0.806) * y * m2
End Function
Function Fb(x, y, z) As Double
If z \ge 0.1 And y \le (80 * z / PI / x) Then
   Fb = Fbo(x, y, z)
```

Dim Say As Single

```
End If
If z \ge 0.1 And y \ge (80 * z / PI / x) Then
  Fb = Fbo(x, (80 * z / Pl / x), z)
End If
If z < 0.1 Then
  Fb = Fbo(x, (8 / PI / x), 0.1)
End If
End Function
Function dfactor(x) As Double
'x representa o valor do SMYS
Dim N As Single
N = Ln((-0.00175 * x + 0.22) / 0.005) / Ln(1 + 2 * (21.75 / x) ^ 2.3)
dfactor = 3.69 * (1 / N) ^ 2 - 3.19 * (1 / N) + 0.882
End Function
Function dforce(sa, sy, a, L, D, t, E, v) As Double
'sa representa a MADS
'sy representa a SMYS
' a representa a altura do defeito
'I representa o comprimento
' d representa o diametro
't representa a espessura
' e representa E
'v representa o poisson
Dim k As Single
Dim j As Single
k = sa * Fb(D/t, L/PI/D, a/t) * (PI * a) ^ 0.5
j = k * k * (1 - v ^ 2) / E
dforce = dfactor(sy) * j / sy
End Function
Sub API()
D = Worksheets("Sheet1").Cells(2, 2)
t = Worksheets("Sheet1").Cells(3, 2)
SMYS = Worksheets("Sheet1").Cells(4, 2)
SMTS = Worksheets("Sheet1").Cells(5, 2)
E = Worksheets("Sheet1").Cells(6, 2)
v = Worksheets("Sheet1").Cells(7, 2)
sayi = Worksheets("Sheet1").Cells(11, 2)
sayf = Worksheets("Sheet1").Cells(11, 3)
sayd = Worksheets("Sheet1").Cells(11, 4)
CTODi = Worksheets("Sheet1").Cells(10, 2)
CTODf = Worksheets("Sheet1").Cells(10, 3)
CTODd = Worksheets("Sheet1").Cells(10, 4)
'Razões proprias do material
Lc = Lcutoff(SMYS)
Kc = FAC(Lc)
'Dimensões iniciais arbitrarias
ai = 0.6 * t
Li = 0.0625 * PI * D
fila = 15
```

```
'Inicio de iterações
Say = sayi
Do Until Say = sayf + sayd
  CTOD = CTODi
  Worksheets("sheet1").Cells(fila, 1) = Say
  Worksheets("sheet1").Cells(fila, 2) = Round(Say * SMYS, 3)
  fila = fila + 1
  col = 2
  Do Until CTOD = CTODf + CTODd
    a = ai
    Worksheets("sheet1").Cells(fila, col) = CTOD
    filaux = fila + 1
    Do While a > 0.000000001
       L1 = Li
       Lmin = 0
       Lmax = 0
       Do
         Lr = Say / spcollapse(L1 / D / Pl, a / t)
         If Lr < Lc Then
           Lmin = L1
           If Lmax <> 0 Then
              L1 = (Lmax + Lmin) / 2
              Else
              L1 = L1 * 1.25
            End If
         End If
         If Lr > Lc Then
           Lmax = L1
            L1 = (Lmax + Lmin) / 2
         End If
       Loop Until Abs(Lr - Lc) < 0.0001
       'Inicio da precissão de L1
       Lr = Say / spcollapse(L1 / D / Pl, a / t)
       If Lr > Lc Then
         Do
           L1 = L1 - 0.0001
           Lr = Say / spcollapse(L1 / D / Pl, a / t)
         Loop Until Lr < Lc
       End If
       'Fim da precissão de L1
       Lf = L1
       'Inicio da Avaliação para os Kr maiores de Kc
       Kr = (dforce(Say * SMYS, SMYS, a, L1, D, t, E, v) / CTOD) ^ 0.5
       L2 = 0.001
       If Kr > Kc Then
          'Limita os valores de L para Kr<1
            Kr = (dforce(Say * SMYS, SMYS, a, L2, D, t, E, v) / CTOD) ^ 0.5
            If Kr >= 1 Then
              L2 = L2 + 0.001
            End If
```

```
Loop Until Kr < 1
      'Determina o primeiro valor de L que da um valor de Kr inferior de FAC(Lr)
      'No caso que L2>=L1 entao para o Loop
        Lr = Say / spcollapse(L2 / D / Pl, a / t)
        Kr = (dforce(Say * SMYS, SMYS, a, L2, D, t, E, v) / CTOD) ^ 0.5
        If Kr > FAC(Lr) Then
          L2 = L2 + 0.001
        End If
      Loop Until Kr < FAC(Lr) Or L2 >= L1
      If Kr < FAC(Lr) Then
        'Isto só cumple-se quando L2 não é superior de L1
        L21 = L2
        L2 = L2 + 0.001
        'Determina o segundo valor de L que da um valor de Kr superior de FAC(Lr)
        Do
          Lr = Say / spcollapse(L2 / D / Pl, a / t)
          Kr = (dforce(Say * SMYS, SMYS, a, L2, D, t, E, v) / CTOD) ^ 0.5
           If Kr < FAC(Lr) Then
             L2 = L2 + 0.001
          End If
        Loop Until Kr > FAC(Lr)
        'Inicio do Apurado de L2
        Lr = Say / spcollapse(L2 / D / Pl, a / t)
        Kr = (dforce(Say * SMYS, SMYS, a, L2, D, t, E, v) / CTOD) ^ 0.5
        If Kr > FAC(Lr) Then
           Dο
             L2 = L2 - 0.0001
             Lr = Say / spcollapse(L2 / D / Pl, a / t)
             Kr = (dforce(Say * SMYS, SMYS, a, L2, D, t, E, v) / CTOD) ^ 0.5
           Loop Until Kr < FAC(Lr)
         End If
        'Fim do Apurado de L2
        L22 = L2
        Lf = L2
         Else
         Lf = 0
      End If
    End If
    'Fim da Avaliação dos Kr maiores a Kc
    Worksheets("sheet1").Cells(filaux, 1) = a
    Worksheets("sheet1").Cells(filaux, col) = Lf
    a = Round(a - 0.05 * t, 3)
    filaux = filaux + 1
  CTOD = Round(CTOD + CTODd, 3)
  col = col + 1
Loop
fila = filaux + 1
Say = Round(Say + sayd, 3)
```

Loop

End Sub

Apéndice E

Uso de curvas de límites permisibles adimensionales

A continuación se describe el uso de curvas de limites permisibles adimensionales para ciertos parámetros de evaluación con la finalidad de demostrar que se puede utilizar para diferentes diámetros, espesores o materiales, siempre y cuando dichas junta soldadas hayan sido realizadas por la misma especificación de procedimiento de soldadura ó sus variables esenciales se encuentren dentro del rango permisible. Estos ejemplos fueron desarrollados para mostrar la practicidad del uso del metodo API 1104:2007 Apéndice A Opción 2.

Exemplo 1. Determinar as dimensões máximas permissíveis de uma descontinuidade para um tubo de aço API 5L X70 de 24" de diâmetro, 0,5" de espessura, 0,010" de CTOD, para $\sigma_{\alpha}/\sigma_{\nu} = 0,800$ e $\eta = 0,40$.

Na Tabela 1. é apresentado os valores das dimensões máximas para uma descontinuidade planar fazendo uso do gráfico para os parâmetros de avaliação descritos e fazendo uso de outros gráficos válidos para outros parâmetros de avaliação, mas que permitem determinar as dimensões da descontinuidade para as condições dadas no exemplo 1. As dimensões da descontinuidade foram obtidas multiplicando pelas condições de avaliação descritas no exemplo e não pelos parâmetros de avaliação descritos em cada gráfico.

Tabela 1. Determinação das dimensões máximas para uma descontinuidade planar, segundo as condições do exemplo 1. Todas as dimensões em polegadas.

~		•	•			•				
ltem	Gráfico	Pai		os de avaliaç Gráfico	ão	Aval	;ões de iação = 0,80		isões da tinuldade	Erro (%)
i i		Material	D	t	СТОД	η	β	A (mm)	2c (mm)	(20)
1	Figura 1	API 5L X70	24"	0,50" (12,7 mm)	0,010" (0,25 mm)	0,4	0,059	5,08	112,98	0,00
2	Figura 2	API 5L X70	24"	0,75" (19,1 mm)	0,010", (0,25 mm)	0,4	0,057	5,08	109,17	-3,39
3	Figura 3	API 5L X70	38"	0,50" (12,7 mm)	0,010" (0,25 mm)	0,4	0,055	5,08	105,33	-6,78
4	Figura 4	API 5L X70	38"	0,75" (19,1 mm)	0,010" (0,25 mm)	0,4	0,052	5,08	99,59	-11,86

Observa-se que os gráficos das Figuras 2, 3 e 6 fornecem valores de β próximos ao valor obtida pela gráfica da Figura 1, a qual corresponde às condições de avaliação. Gráficas de maiores diâmetros ou espessuras às de avaliação podem ser utilizadas, mas as dimensões da descontinuidade obtidas são conservadoras.

Exemplo 2. Determinar as dimensões máximas permissíveis de uma descontinuidade para um tubo de aço API 5L X70 de 24" de diâmetro, 0,5" de espessura, 0,005" de CTOD, para $\sigma_{\alpha}/\sigma_{v} = 0,800$ e $\eta = 0,40$.

A Tabela 2 apresenta os valores obtidos utilizando os gráficos das Figuras 1 e 7. No primeiro caso foi utilizado a Figura 1, observa-se que quando se usa gráficos com condições geometricas e de material iguais, mas de CTOD maior à condição de avaliação, o valor de β é maior ao valor máximo que poderia ser aceito, neste caso 31% maior. Se hubesse sido o caso oposto, no qual a condição para avaliar fosse um CTOD = 0,010 o valor de β determinado no gráfico da Figura 7 sería menor do valor máximo permissível (31% menor). O que permite afirmar os gráficos só podem ser utilizados para CTODs maiores ou iguais ao CTOD para o qual o gráfico foi preparado.

Tabela 2. Determinação das dimensões máximas para uma descontinuidade planar, segundo

as condições do exemplo 2. Todas as dimensões em polegadas.

Item	Gráfico	Parâmetros de avaliação do Gráfico				Condições de Avaliação $\sigma_a/\sigma_v = 0,80$		Dimensões da descontinuidade		Erro (%)
		Material	D	t	стор	η	β	a (mm)	2c (mm)	(20)
1	Figura 1	API 5L X70	24"	0,50" (12,7 mm)	0,010" (0,25 mm)	0,4	0,059	5,08	112,98	31,11
2	Figura 7	API 5L X70	24"	0,50" (12,7 mm)	0,005" (0,13 mm)	0,4	0,045	5,08	86,18	0,00

Exemplo 3. Determinar as dimensões máximas permissíveis de uma descontinuidade para um tubo de aço API 5L X65 de 38" de diâmetro, 0,5" de espessura, 0,010" de CTOD, para σ_{ay} = 0,800 e η = 0,40.

A Tabela 3 apresenta os valores de β determinados pelos gráficos das Figuras 3, 5 e 8. É obsevado que pode ser utilizado gráficos de materiais com limite de escoamento superior ao material a ser avaliado, mas não no caso contrario.

Tabela 3. Determinação das dimensões máximas para uma descontinuidade planar, segundo

as condições do exemplo 3. Todas as dimensões em polegadas.

Item	Gráfico	Parâmetros de avaliação do Gráfico				Condições de Avaliação $\sigma_{a}/\sigma_{v} = 0.80$		Dimensões da descontinuidade		Erro (%)
		Material	D	t	стор	η	β	a (mm)	2c (mm)	(70)
1	Figura 8	API 5L X70	38"	0,50" (12,7 mm)	0,010" (0,25 mm)	0,4	0,059	5,08	178,89	0,00
2	Figura 3	API 5L X70	38"	0,50" (12,7 mm)	0,010 " (0,25 mm)	0,4	0,055	5,08	166,78	-0,07
3	Figura 5	API 5L X70	38"	0,50" (12,7 mm)	0,010" (0,25 mm)	0,4	0,053	5,08	160,71	-0,10

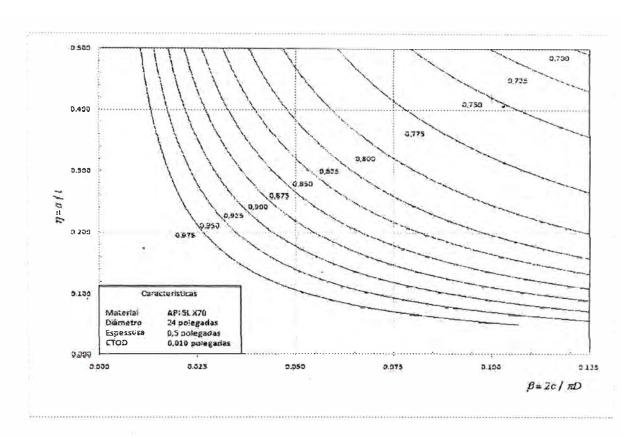


Figura 1. Limites permissívies adimensionais para um tubo de aço API 5L X70, de D = 24", t = 0.5" e CTOD = 0.010" (0.25 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

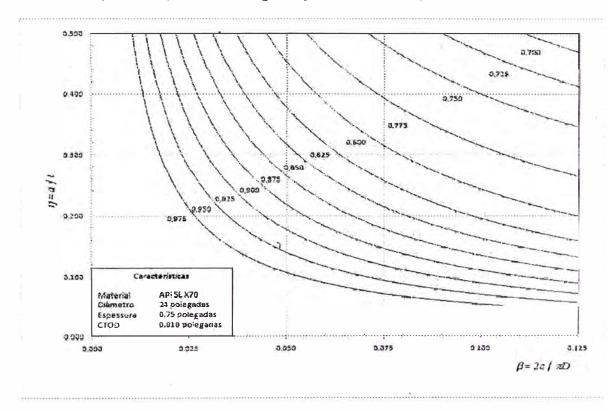


Figura 2. Limites permissívies adimensionais para um tubo de aço API 5L X70, de D = 24", t =0,75" e CTOD = 0,010" (0,25 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

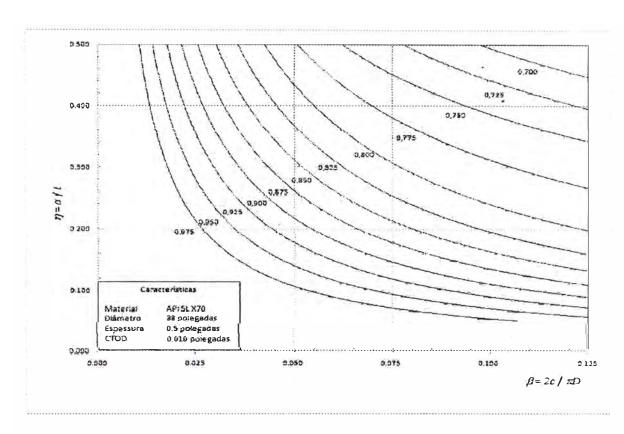


Figura 3. Limites permissívies adimensionais para um tubo de aço API 5L X70, de D = 38", t = 0.5" e CTOD = 0.010" (0.25 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

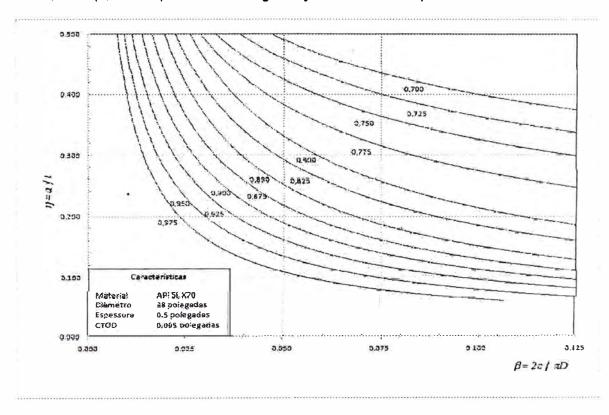


Figura 4. Limites permissívies adimensionais para um tubo de aço API 5L X70, de D = 38", t = 0.5" e CTOD = 0.005" (0.13 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

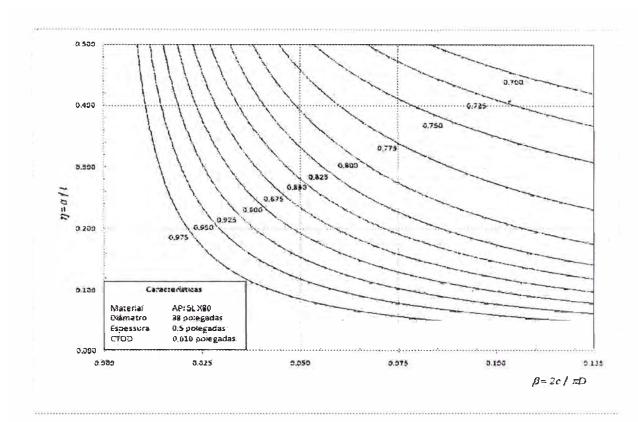


Figura 5. Limites permissívies adimensionais para um tubo de aço API 5L X80, de D = 38", t = 0.5" e CTOD = 0.010" (0.25 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

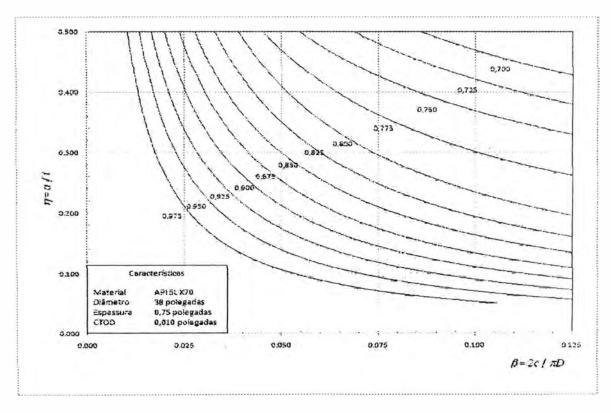


Figura 6. Limites permissívies adimensionais para um tubo de aço API 5L X70, de D = 38", t = 0.75" e CTOD = 0.010" (0.25 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

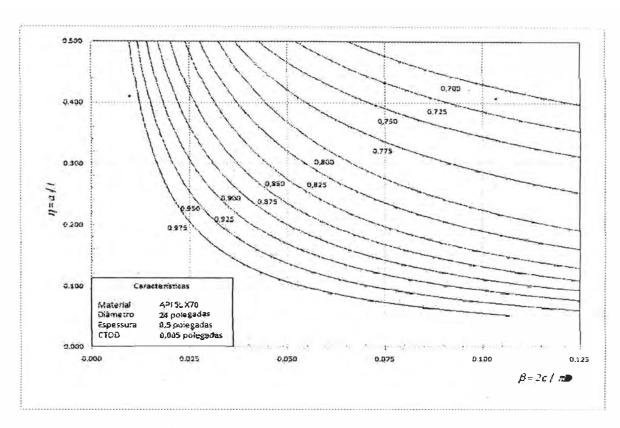


Figura 7. Limites permissívies adimensionais para um tubo de aço API 5L X70, de D = 24", t =0, 5" e CTOD = 0.005" (0.13 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

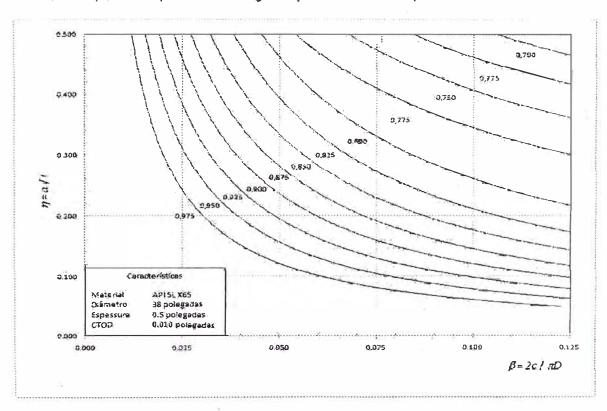


Figura 8. Limites permissívies adimensionais para um tubo de aço API 5L X70, de D = 38", t =0, 5" e CTOD = 0.010" (0.25 mm). Fator de segurança de 1.5 no comprimento da descontinuidade.

5. Produtividade em Soldagem

Há 3 variáveis que podem ser analisadas como indicativos de produtividade em soldagem. Todas têm atribuição importante no cálculo dos custos de uma operação de soldagem. São elas:

- ☐ Fator de Operação.
- ☐ Taxa de Deposição.
- Velocidade de Soldagem.

5.1 Fator de Operação

O soldador deveria permanecer a mator parte de seu tempo soldando. Entretanto, quase sempre Isso não acontece. Lógico, gostaríamos que os soldadores "soldassem" todo o tempo, mas na prátice verifica-se que isto ocorre bem menos que imaginamos.

Sempre que o arco elétrico não está estabelecido, é tempo em que o processo de fabricação por soldagem não está progredindo. Quando o soldador está preparando a junta, montando es peças, ponteando, removendo a peça do posicionador ou limpando a junta de solda, sem dúvida está realizando operações necessárias, mas improdutivas sob o ponto de viste de progressão da soldagem. Enquanto está trocando eletrodos, movendo-se de um lugar para outro, ou tomando um cafezinho, ele não está soldando.

O fator de operação é definido como a razão entre o tempo que o soldador permanece com o arco aberto (Tempo de Arco Aberto, TAA) e o Tempo Total de Soldagem, TTS, equação 1. Determina o rendimento da operação de soldagem. É um fator básico em fórmulas de custo de soldagem, e deve ser determinado com precisão de forma a proporcionar avaliações seguras e corretas.

Como o Tempo Total de Soldagem (TTS) é igual ao Tempo de Arco Aberto (TAA) mais o Tempo de Parada (TP), equação 2, o Fator de Operação pode ser reescrito conforme a equação 3.

Tempo Total de Soldagem (s) = Tempo de Arco Aberto (s) + Tempo de Parada (s) Equação 2

TTS = TAA + TP

$$FO = \frac{TAA}{TAA + TP} \times 100$$

O Tempo Total de Soldagem, assim como o Fator de Operação, dependem do processo, da organização da empresa, do empenho do soldador e do envolvimento deste com outras atividades, como esmerilhamento, reabastecimento de material, etc. Depende também da linha de produtos da empresa, devido às diferentes condições de trabalho e diferentes tipos de produtos. A Tabela 3 apresenta valores típicos do fator de operação. Um fator de operação de 50% significa que metade do tempo o soldador se dedica à solda e a outra metade a outras atividades como preparação, esmerilhamento, troca de eletrodo, reposição de fluxo, alinhamento, posicionamento da peça, limpeza, etc. O baixo fator de operação para o processo eletrodo revestido é justificado pelas freqüentes paradas para troca de eletrodos e limpeza do cordão de solda.

Tabela 3 Valores típicos para o fator de operação.

- Processo	Alporeti Saldagam	FROMED COMP to (A)
Eletrodo Revestido Arco Submerso	Manual Automática	10 a 30 20
Mig-Mag Arame Tubular	Semi-automática Semi-automática	20 a 45 32 20 a 45 32

As seguintes medidas pocem contribuir para melhorar o fator de operação:

- ☐ Empregar mão-de-obra especializada para montagem e ponteamento.
- ☐ Empregar um programa eficaz de supervisão.
- Utilizar procedimentos de soldagem documentados.
- ☐ Empregar dispositivos de fixação e posicionadores.
- Montar o almoxarifado de consumíveis próximo ao posto de trabalho.
- Estabelecer condições de trabalho cômodas no que se refere à temperatura ambiente, ventiliação e roupas de proteção para o soldador.

5.1.1 Tempo de Arco Aberto

O Tempo de Arco Aberto é definido como o tempo efetivo que foi gasto para a deposição da solda. Pode ser cronometrado ou calculado conforme a equação 4.

Tempo de Arco Aberto (min) = <u>Comorimento da Solda (cm)</u> Velocidade de Soldagem (cm/min)

TAA = <u>CS</u> VS

valuación de costos para una unión soldada

Apéndice

П

Imágenes

del libro "Como determinar

20

custos de soldagem"

por José de Deus Brito

Equação 4

5.1.2 Tempo de Soldagem

O Tempo de Soldagem também pode ser cronometrado ou calculado através da equação (5), quando expresso em horas por metro de solda, ou pela equação (6), quando expresso em horas por quilo de metal depositado.

Exemplo 1:

Uma empresa produz, em uma de suas máquinas, 25 tubos de 6 metros por turno de trabalho de 8 horas, com uma velocidade de soldagem de 50 cm/min. Calcular o fator de operação, sabendo-se que é dado, nessa máquina, apenas 1 passe de solda por tubo.

Solucão:

Para a solução deste problema, serão usadas as equações (1) e (4).

$$FO = \frac{TAA}{TS} \times 100$$

$$TS$$

$$TAA (min) = \frac{CS (cm)}{VS (cm/min)} \Leftrightarrow TAA = \frac{600}{50} \Leftrightarrow TAA = 12 minutos$$

Portanto, oTempo de Arco Aberto para a soldagem dos 25 tubos é de 300 minutos (25 x 12). O Tempo de Soldagem é igual ao periodo de trabalho = 8h = 480min. Logo, o fator de operação será:

$$FO = 300 \times 100 \Rightarrow FO = 62,5\%$$

Exemplo 2:

Em uma empresa, determinado produto para ser fabricado o soldador gasta: Tempo de Arco Aberto: TAA = 16min; Tempo de Parada: TP = 24min. Pede-se calcular o fator de operação e o número de peças produzidas por turno de 8h.

10

Fator de Operação:
$$FO = \frac{TAA}{TAA + TP} \times 100 \Leftrightarrow FO = 40\%$$

Unidades Produzidas (dia 8h) =
$$\frac{60 \times 8}{16 + 24}$$
 = 12 peças/dia

Agora, suponha que esta empresa conseguiu reduzir o tempo de parada de 24 para 16min. Qual o novo fator de operação e número de peças produzidas por turno de 8 horas?

Solucão:

Fator de Operação:
$$FO = \underline{TAA} \times 100 \Rightarrow FO = 50\%$$

 $TAA + TP$

Agora, suponha que esta empresa adquiriu processo de soldagem automático, que duplicou a velocidade de soldagem, mas manteve o mesmo tempo de parada. Qual o novo fator de operação e número de peças produzidas por turno de 8 horas?

Solucão:

Tempo de Arco Aberto: TAA = 8min.

Tempo de parada: TP = 16min.

Fator de Operação:
$$FO = \frac{TAA}{TAA + TP} \times 100 \Rightarrow FO = 33\%$$

Unidades Produzidas (dia 8h) =
$$\underline{60 \times 9}$$
 = 20 peças/dia $8 + 16$

É desejável, sem dúvida, trabalhar com um fator de operação o mais alto possivel, significando que a maior parte do tempo do soldador seja gasto soldando. Isto é válido para uma empresa que usa processo manual ou semi-automático, que consegue aumentar o fator de operação de 40 para 50%. Se fossem fabricadas 12 peças por dia com o fator de 40%, este número subiria para 15 peças por dia com o fator de 50%, como mostra o exemplo 2.

Entretanto, se for introduzido nesta empresa um processo de soldagem automático, que trabalha com uma velocidade de soldagem duas vezes superior, mas mantendo o mesmo tempo de parada conseguido anteriormente, o exemplo 2 conclui que o fator de operação seria reduzido para 33%, mas a produção cresceria para 20 peças/dia. Neste caso, a velocidade de soldagem (veja seção 5.3) foi o fator predominante para o aumento da produtividade, e não o fator de operação.

5.2 Taxa de Deposição

É um dos fatores que determina uma maior ou menor produtividade da operação de soldagem. É definido como o peso do metal depositado por unidade de tempo. Entretanto, não deve ser o único fator predominante na escolha do processo de soldagem. Também devem ser avaliados outros fatores, como eficiência de deposição, posição de soldagem, qualidade da solda, penetração requerida, disponibilidade de equipamento e pessoal qualificado.

É o principal fator que determina a produtividade da soldagem quando o volume de metal de solda a ser depositado é elevado, como no enchimento de chanfros profundos e o revestimento de rolos de lingotamento contínuo.

A seguir são discutidas as principais variáveis que influenciam na taxa de deposição para um determinado processo de soldagem.

☐ Intensidade de corrente: Quanto maior a intensidade de corrente, maior a taxa de deposição. É o caso de processos com arames múltiplos em tandem-arc, onde alguns arames podem usar intensidade de corrente de até 1500A.

Densidació de corrente no eletrodo: É definido como a razão entre a intensidade de corrente e a área da seção do arame sendo usado. Quanto maior, maior a taxa de deposição. É o caso de processos com arco gêmeo, onde o uso de 2 arames finos associados a uma elevada intensidade de corrente, permite aumento significativo na taxa de deposição. Observe que para uma mesma densidade de corrente, a taxa de deposição é maior para o eletrodo de maior diâmetro.

☐ Tipo de corrente e polaridade: Polaridade negativa no eletrodo deposita mais que polaridade positiva, embora a primeira tenha maior dificuldade em se controlar o formato do cordão de solda. Corrente alternada tem um comportamento intermediário entre polaridade negativa e positiva.

□ Diâmetro do eletrodo: Quanto malor, maior a capacidade de conduzir corrente, e então malor taxa de deposição. Note que para um mesmo valor de intensidade de corrente, um eletrodo mais fino terá maior taxa de deposição que um eletrodo de malor diâmetro, devido a maior densidade de corrente no arame mais fino.

Extensão do eletrodo: é definida como a distância entre a extremidade do bico de contato e a peça de trabalho. Toda a extensão do eletrodo é submetida ao aquecimento por resistência elétrica durante a passagem de corrente. Portanto, quando se aumenta a extensão do eletrodo, aumenta a taxa de deposição e reduz a penetração.

□ Posição de soldagem: A posição plana é a que oferece melhor condição para se obter maior taxa de deposição. O efelto da gravidade mantém o metal fundido na junta, aceitando uma maior intensidade de corrente. Logo, deve-se sempre procurar posicionar a peça na posição plana de forma a encher mais rapidamente a junta de solda. A soldagem "fora de posição", i.e. dlferente da posição plana, requer emprego de bitolas e intensidade de corrente menores, e conseqüentemente uma menor taxa de deposição.

Em termos de taxa de deposição, é sempre preferível usar um processo mecanizado no lugar de um processo semi-automático, e este no lugar de um processo manual. Os processos de soldagem Mig-Mag, Arame tubular e Arco Submerso aceitam trabalhar com uso de múltiplos arames, que aumentam substancialmente a taxa de deposição, embora essa escolha possa gerar necessidade de Investimento em equipamentos. A Tabela 4 compara taxas de deposição tipicas para vários processos de soldagem a arco elétrico.

Tabela 4 Taxa de deposição típica para os principais processos de soldagem a arco elétrico.

Yaxa de Deposição of plea	
Processo de Soldagem	((X9/h))
Eletrodo Revestido	1,0 a 3,0
MIG-MAG	2,0 a 6,0
Arame Tubular Argo Submerso 1 arame	3,0 a 8,0
Twin-Arc (Arco Submerso ou Mig/Mag)	5,0 a 12.0 10,0 a 25,0
Ta ndem-Arc (Arco Submerso ou Mlg/Mag)	12.0 a 30.0

A taxa de deposição pode ser determinada depositando uma quantidade conhecida de material numa chapa de peso conhecido. A diferença entre o peso final e o peso inicial da chapa, dividido pelo tempo de arco aberto é o valor da taxa de deposição, equação 7. Como o peso final menos o peso inicial da chapa é igual ao peso de metal depositado, equação 8, a taxa de deposição pode ser expressa como indicado na equação 9. Ainda, catálogos de fornecedores indicam valores de taxa de deposição em função do diâmetro do eletrodo e da intensidade de corrente empregada.

Taxa de Deposição (kg/h) = <u>Peso Final da Chapa (kg) - Peso Inicial da Chapa (kg)</u> Equação 7
Tempo de Arco Aberto (h)

$$TD = \frac{\rho F - \rho_l}{TAA}$$

Peso de Meta\ Depositado (kg) = Peso Final da Chapa(kg) − Peso Inicial da Chapa (kg) Equação 8

PMD = PF - PI

Taxa de Deposição (kg/h) = Peso de Metal Depositado (kg) x 60
Tempo de Arco Aberto (min)

$$TD = \frac{PMD \times 60}{TAA}$$

(kg) x 60 Equação 9

Um método rápido e aproximado para calcular a taxa de deposição, expresso em quilo de eletrodo fundido por hora, é apresentado na equação 10.

Taxa de Deposição (kg/h) = Tensão do Arco (V) x Intensidade de Corrente (A) Equação 10

$$TD = \underbrace{E \times I}_{2000}$$

Este método fornece resultados bastante próximos aos reais para eletrodos revestidos e arames sólidos. Para arames tubulares a taxa de deposição pode ser estimada em 2/3 da velocidade de alimentação de arame.

Quando o procedimento de soldagem é conhecido, particularmente para processos semi-automáticos ou automáticos, que usam arame sólido, a taxa de deposição pode ser calculada multiplicando-se a velocidade de alimentação do arame (VA) pela área da seção transversal do arame (A) e pelo seu peso específico (ρ), equação 11. Neste caso, note que a taxa de deposição é expressa em g/mln.

Taxa de Deposição (g/min) = Velocidade de Alimentação de Arame (mm/min) x Área Seção Equação 11
Transversal do Arame (mm²) x Densidade (g/mm²)

$$TD = VA \times A \times D$$

O peso do metal depositado pode ser calculado dividIndo-se a taxa de deposição pela velocidade de soldagem, e multiplicando pelo comprimento a ser soldado, equação 12. Note que neste caso temos o peso do metal depositado por passe de solda.

Peso Metal Depositado (g) = <u>Taxa de Deposicão (g/min)</u> x Comprimento da Solda (mm) Equação 12 Velocidade de Soldagem (mm/min)

Taxa de Deposição Efetiva (TDE): Quando se calcula a taxa de deposição, esta normalmente é indicada com fator de operação 100% (veja seção 5.1). Uma vez conhecido ou estimado o fator de operação, este deve ser multiplicado pela taxa de deposição, obtendo-se a taxa de deposição efetiva, equação 13, que é definida como a quantidade de metal depositado por hora de trabalho (ko/h), considerando, inclusive, os tempos de parada.

Taxa de Deposição Eletiva (kg/h) = Taxa de Deposição (kg/h) x Fator de Operação (%)

TDE = TD x FO

Equação 13

Exemplo 3:

Calcular a taxa de deposição efetiva de um processo de soldagem que deposita 2kg de metal de solda em 30 minutos de arco aberto, sabendo-se que o fator de operação desse processo, nessa empresa, é de 30%.

Solução:

Numa operação matemática, o tempo (minutos) deve ser expresso em centésimos de hora. Assim 30 minutos é igual a meia hora, ou seia. 0.50 horas.

Empregando a equação 9 obtém-se a taxa de deposição a 100% de fator de operação:

$$TD = \underline{PMD} \Leftrightarrow \underline{2} \Leftrightarrow TD = 4 \text{ kg/h}$$

$$TAA \qquad 0.5$$

Empregando a equação 13 obtém-se a taxa de deposição efetiva com fator de operação real de 30%:

TDE = TD x FO
$$\Rightarrow$$
 TDE= 4 x 0,30 \Rightarrow TDE= 1,2 kg/h

O exemplo 3 mostra que, apesar da taxa de deposição ser de 4kg/h, a taxa de deposição efetiva é de apenas 1,2 kg/h.

5.3 Velocidade de Soldagem

A velocidade de soldagem deve sempre ser ajustada para controlar o tamanho do cordão de solda. De uma forma geral, quanto maior a taxa de deposição, torna-se necessário imprimir maior velocidade de soldagem.

Na soldagem de passe único, como é o caso de grande parte de produtos seriados, é evidente que o uso de velocidade de soldagem elevada é a principal variável que controla a produtividade da operação de soldagem.

Geralmente os processos de soldagem automáticos aceltam velocidade de soldagem maior que os processos semi-automáticos, que por sua vez trabalham mais rápidos que os processos manuais. A Tabela 5 apresenta velocidade de soldagem típica para uma solda de topo em chapa com espessura de 10mm.

Processos de soldagem que utilizam arames múltiplos, como o "twin-aro" e "tandem-aro" são os que permitem trabalhar com maior velocidade de deslocamento. A Tabela 6 apresenta limites máximos de velocidade para esses processos.

Tabela 5 Velocidade de soldagem tipica para solda de topo em chapa de 10mm de espessura.

Processo (In St. Idage)	AND GOLD (CONTIN)
Eletrodo Revestido	10
Arame Tubular Semi-Automático	25
Arco Submerso Semi-Automático	37
Arco Submerso Automático (1 arat	ne) 45
Twin-Arc	55
Tandem-Arc 2 arames	75
Tandem-Arc 3 arames	115

Tabela 6 Velocidade de soldagem máxima para processos com arames múltiplos.

Processo de Soldagem	Velocidade Máxima (cm/min):
Tandem-Arc Mig	500
Tandem-Arc Arco Submerso	250
Twin-Arc Mig	200
Twin-Arc Arco Submerso	250

6. Custo do Projeto

Quando o fabricante se envolve com a análise dos custos da soldagem, sua primeira alitude é eliminar perdas na oficina. Em seguida, promove uma modemização sistemática das práticas de soldagem e dos equipamentos e define padrões de qualidade para seu produto. O próximo ponto que deve ser observado é o projeto da peça ou equipamento, que definirá como esta será fabricada, os tipos de juntas a serem usadas, etc, com signilicativo impacto sobre os custos.

Os pontos abalxo devem ser considerados para um adequado projeto envolvendo processo de labricação por soldagem e serão discutidos a seguir.

- □ Reduzir ao mínimo o número de soldas.
- ☐ Reduzir ao mínimo o volume de uma solda.
- Usar o menor número possível de partes.
- Preferir soldas de ángulo ao Invés de soldas de penetração total.
- Usar juntas sobrepostas ao invés de juntas de topo.
- ☐ Elaborar o projeto de fabricação livre de situações históricas.
- Projetar a malor parte das soldas na posição plana.
- ☐ Facilitar a montagem, a sequência de soldagem e tolerância dimensional.

Reduzir ao mínimo o número de soldas: O projetista deve sempre procurar eliminar soldas desnecessárias. Além de custar dinheiro, a ação da soldagem cria problemas adicionais relativos às propriedades do material, à formação de trincas, porosidade e empenamento. Ainda, requer controle como inspeção e ensaios, o que também custa dinheiro. A figura 3 mostra uma

situação onde cordões de solda foram eliminados. Apesar de nem sempre isso ser possível, deve-se sempre valorizar este pensamento, e considerar que, onde não há solda, elimina-se os problemas de soldagem e reduz-se o custo da peca ou equipamento.

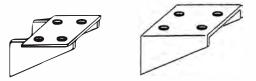
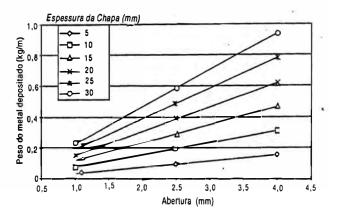



Figura3 Ellminação de soldas no projeto.

Reduzir ao mínimo o volume de uma solda: O tipo de junta é um ponto importante a ser considerado pelo projetista. As figuras 4, 5 e 6 mostram a Influência da abertura da raiz, do ângulo do chanfro e da altura do reforço, respectivamente, no peso do metal depositado. A primeira constatação é que quando a oficina erra (ou o projetista não avaliou corretamente) e se trabalha com abertura de raiz, ângulo do chanfro ou reforço maior que o necessário, ocorre um aumento significativo no peso do metal depositado, gerando desperdício. Como exemplo, numa solda em ângulo, um acréscimo de 1mm na dimensão da perna pode aumentar o volume da solda em 15%, quando a dimensão passar de 14 para 15mm, e em até 78%, quando a dimensão da perna passar de 3 para 4mm.

Floura 4 Influência da abertura da raiz no peso do metal depositado. Espessura da chapa de 5 a 30mm.

Usar juntas sobrepostas ao invés de juntas de topo: Há várias vantagens em se usar juntas sobrepostas, se a construção permitir. As tolerâncias das peças podem ser maiores; as peças tornam-se mais baratas, pois é possível utilizar materiais padronizados, como chapas e perfiis; facilita a montagem das peças, que pode ser felta mais rapidamente; as distorções produzidas podem ser controladas mais facilmente.

Elaborar o projeto de fabricação livre de situações históricas: Multas vezes nos deparamos comfrases do tipo: "mas sempre foi felto assim", ou "há 15 anos fazemos assim e nunca tivemos problemas". Livre-se dessa situação e pergunte-se se não haverla uma forma alternativa que facilite e ao mesmo tempo reduza os custos. Não se limite a repetir o que sempre foi feito. Consulte as normas e específicações, entenda-as e crie novas soluções. Grande parte de nossa indústria perde competitividade por não conseguir inovar e reduzir o custo de seus produtos.

Projetar a malor parte das soldas na posição plana: Como já visto na seção 5.2, a posição plana é a que oferece melhor condição para se obter maior taxa de deposição. Logo, o projetista deve sempre ter em mente posicionar as juntas para que as soldas sejam feitas na posição plana. Como vantagens adicionais, a soldagem na posição plana permite o uso de processos mecanizados e mais rápidos, faz com que o soldador sinta-se mais confortável durante a soldagem, e facilita a Instalação de equipamento de extração de fumos, quando necessário.

Facilitar a montagem, a seqüência de soldagem e tolerência dimensional: Grande parte do tempo de fabricação é gasto na montagem e preparação das peças para soldagem. Quando a margem de tolerência dimensional é muito pequena, os custos de preparação serão elevados. Quando a margem de tolerências é muito grande, não se consegue uniformidade entre peças fabricadas. Ambos os casos devem ser evitados, e a empresa deve adotar práticas que mantenham o nível médio de qualidade requerido, com risco de aumentar o custo de qualidade (veja seção 4). A seqüência de soldagem deve ser prevista de forma a se evitar tempos de parada, ou permitindo que mais de uma operação de soldagem possa ser feita simultaneamente.

7. Informações sobre Processos de Soldagem

A abordagem deste trabalho dará Importância aos principals processos de soldagem a arco elétrico utilizados pela Indústria metal mecânica, que são:

- ☐ Soldagem manual com eletrodo revestido (SMAW)
- □ Soldagem a arco submerso (SAW).
- Soldagem Mlg-Mag (GMAW).
- □ Soidagem com arame tubular (FCAW).

Abaixo são fornecidas informações e características destes processos importantes para a análise de produtividade e custos.

20

7.1 Soldagem com Eletrodos Revestidos

O eletrodo consiste de um núcleo de arame sólido revestido por um fluxo. O fluxo reage durante a soldagem gerando gases que protegem a região do arco e a poça de solda líquida, e forma ainda uma escória protetora durante o resfriamento do metal. A escória também produz reações metalúrgicas com o metal de solda líquido, limpando-o e protegendo-o de contaminações da atmosfera. O eletrodo é fixado ao porta-eletrodo pela ponta de pega, por onde é transferida a corrente de soldagem. A figura 8 mostra esquematicamente a soldagem com eletrodos revestidos.

Os eletrodos revestidos são especificados e classificados conforme as seguintes especificações AWS (vela secão 17, referências bibliográficas):

AWS A5.1 para acos carbono.

AWS A5.3 para alumínio e ligas de alumínio.

AWS A5.4 para acos inoxidáveis.

AWS A5.5 para aços balxa liga.

AWS A5.6 para cobre e ligas de cobre.

AWS A5.11 para níquel e ligas de níquel.

AWS A5.15 para ferros fundidos.

Figura 8 Diagrama esquemático da soldagem com eletrodos revestidos.

Taxa de deposição para o processo SMAW: É um processo de baixa taxa de deposição. Os eletrodos podem ser divididos em três grupos, quanto a sua produtividade:

- ☐ Baixa deposição: Eletrodos com revestimento celulósico.
- ☐ Média deposição: Eletrodos com revestimento rutílico.
- ☐ Alta deposição: Eletrodos com revestimento básico e alguns eletrodos com revestimento rutilico. Contém elevada quantidade de pó de ferro (até 50%).

A figura 9 apresenta taxas de deposição típicas para o processo SMAW, em função do tipo de eletrodo e corrente de soldagem. Observa-se que, na maioria dos casos, este processo trabalha com taxa de deposição entre 1 e 4 kg/h.

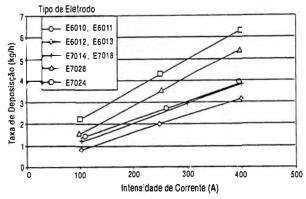


Figura 9 Taxa de deposição típica do processo SMAW para os principais eletrodos comerciais.

7.2 Soldagem a Arco Submerso

Processo normalmente mecanizado, onde o arco permanece coberto por uma camada de fluxo granulado que protege a região do arco e a solda de contaminações da atmosfera. A parte fundida do fluxo produz reações metalúrgicas com a poça de solda fundida, limpando-a e protegendo-a. O eletrodo é um arame sólido que é alimentado automaticamente para manter um comprimento de arco constante. A figura 10 mostra esquematicamente a soldagem ao arco submerso.

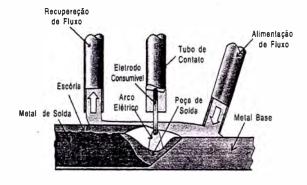


Figura 10 Diagrama esquemático da soldagem a arco submerso

Os consumíveis para soldagem a arco submerso são especificados e classificados conforme as seguintes especificações AWS:

AWS A5.17 para aços carbono.

AWS A5.23 para aços baixa liga.

AWS A5.9 para aços inoxidáveis

Taxa de deposição para o processo SAW: Pode ser determinada pela equação 14, expressa em kg/h, e ilustrada graficamente na Figura 11. A taxa de deposição típica do processo arco submerso com 1 arame varia de 5 a 12 kg/h.

$$TD = 0.02724 \times I \left\{ 0.35 + \frac{g^2}{645.16} + 2.08 \times 10^7 \left[\frac{I \times L \times 25.4}{d^2} \right]^{1.22} \right\}$$
 Equação 14

Onde: I = Intensidade de corrente (A); d = Diâmetro do arame, (mm);

L = Extensão do eletrodo, (mm).

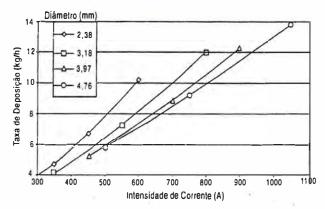


Figura 11 Taxa de deposição para o processo SAW. Aço C-Mn, extensão do eletrodo de 38mm. Diâmetro do arame de 2,38 a 4,76mm. Conforme equação 14.

Exemplo 4:

Calcular a taxa de deposição para o processo SAW, dadas as variáveis abaixo, empregando arames de diâmetros 2,38; 3,18; 3,97 e 4,76mm.

Intensidade de Corrente = 600A Extensão do eletrodo = 25mm

Solucão:

Com o auxílio da equação 14, chega-se aos seguintes resultados:

 \emptyset 2,38mm \Rightarrow TD = 8,50 kg/h \emptyset 3,18mm \Rightarrow TD = 7,28 kg/h \emptyset 3.97mm \Rightarrow TD = 6,88 kg/h \emptyset 4,76mm \Rightarrow TD = 6,78 kg/h

O exemplo 4 serve para mostrar que, para um mesmo valor de intensidade de corrente, o arame com menor diāmetro confere maior taxa de deposição. Isto se explica por causa da densidade de corrente, que é a razão entre a intensidade de corrente e a área da secção transversal do arame (I/A). Para uma mesma Intensidade de corrente em arames de diferentes bitolas, a maior densidade de corrente será para o arame de menor área de seção transversal, ou seja, de menor diāmetro. A tabela 7 apresenta a faixa de corrente adequada para cada bitola de arame. Caso se use uma corrente de soldagem malor que a apresentada, o arame poderá "quelmar", em vez de derreter. Por isso, multas vezes, quando se deseja aumentar a taxa de deposição, é necessário aumentar a bitola do arame, para poder usar maior intensidade de corrente. Além disso, deve-se avaliar outras influências, como penetração e largura do cordão, que a mudança na bitola do arame pode causar.

Tabela 7 Faixa de Intensidade de Corrente versus Diâmetro do Arame e Extensão do Eletrodo Recomendada para o processo Arco Submerso. Aco C-Mn.

Diámetro do Araño (mm.)	Faixa de Corrente	Extensão do Eletrodo
1,98	200 a 500	25 a 75
2,38 3,18	300 a 600 300 a 600	28 a 75 30 a 75
3,97	400 a 900	32 a 125
4,76 5,56	500 a 1200 600 a 1300	35 a 125 38 a 125

Exemplo 5:

Calcular a taxa de deposição para o processo SAW, dadas as variáveis abaixo, empregando extensão do eletrodo de 19; 25; 32 e 38mm.

Dados: Diâmetro do arame = 3,97mm Intensidade de Corrente = 600A

Solucão:

Com o auxílio da equação 14, chega-se aos seguintes resultados:

Para extensão do eletrodo 19mm

TD =6,66kg/h
Para extensão do eletrodo 25mm

TD = 6,66kg/h
TD = 6,86kg/h
Para extensão do eletrodo 32mm

TD = 7,13kg/h
Para extensão do eletrodo 38mm

TD = 7,39kg/h

O exemplo 5 mostra que, mantendo-se outras variáveis constantes, uma maior extensão do eletrodo confere maior taxa de deposição. A Figura 12 mostra a Influência da extensão do eletrodo na taxa de deposição, para o arame de diāmetro 3,97mm, em função da intensidade de corrente.

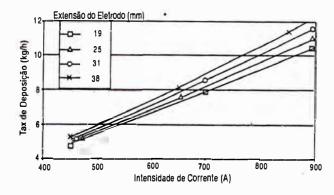


Figura 12 Influência da extensão do eletrodo na taxa de deposição. Processo SAW, arame diâmetro 3,97. Extensão do eletrodo de 19 a 38mm. Conforme equação 14.

7.3 Soldagem MIG-MAG

O arco e a região de soldagem são protegidos por um gás fornecido de um cilindro ou central de gás. O gás pode ser ativo, como o CO₂ (soldagem MAG) ou inerte, como o argônio e hélio (soldagem MIG). Pode também ser uma mistura desses gases com pequenas adições de oxigênio. Devido a essas várlas possibilidades de proteger a soldagem por meio de gases ativos e inertes a AWS denominou o processo como Soldagem a Arco Elétrico com Proteção Gasosa (GMAW - Gas Metal Arc Welding). O eletrodo é um arame sólido contínuo ou tubular com núcleo metálico (Metal Cored), acondicionado em uma bobina e alimentado por um motor para manter o comprimento do arco constante. O processo MIG-MAG é normalmente semi-automático, produzindo maior eficiência que o processo com eletrodo revestido, pols o soldador não tem que interromper a solda freqüentemente para trocar de eletrodo. O gás de proteção é alimentado através de uma tocha de soldagem adequada. A Figura 13 mostra esquematicamente a soldagem MIG-MAG.

Os consumiveis para soldagem MIG-MAG são especificados e classificados conforme as sequintes especificações AWS:

AWS A5.7 para cobre e ligas de cobre. AWS A5.9 para acos inoxidáveis. AWS A5.10 para aluminio e ligas de aluminio.

AWS A5.14 para níquel e ligas de níquel.

AWS A5.16 para titânio e ligas de titânio.

AWS A5.18 para aços carbono.

AWS A5.24 para zircônio e ligas de zircônio.

AWS A5.28 para aços baixa liga.

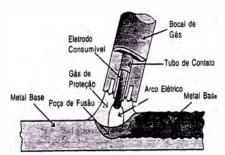


Figura 13 Diagrama esquemático da soldagem MIG-MAG

Taxa de Deposição para o Processo GMAW: Pode ser determinada pela equação 15, e ilustrada graficamente na figura 14. Observa-se que quanto malor a velocidade de alimentação do arame, maior será a taxa de deposição.

$$TD = k \times d^2 \times VA$$

Equação 15

Onde:

TD ⇒ Taxa de deposição, (kg/h)

k ⇒ Constante do material para taxa de deposição, (g/mm³).

d ⇒ Diâmetro do arame, (mm).

VA ⇒ Velocidade de alimentação do arame, (m/min).

A constante k é função do tipo de material, e pode ser calculada pela equação 16, ou obtida diretamente na tabela 8 para alguns tipos de materiais.

$$k = \frac{\pi}{4} \times 60 \times \rho$$

Equação 16

Onde:

k ⇒ Constante do material (g/mm³). Veja também a tabela 8.

 $\rho \implies \text{Densidade do material, (g/mm}^3).$

60 ⇒ Fator de conversão de kg/min para kg/h.

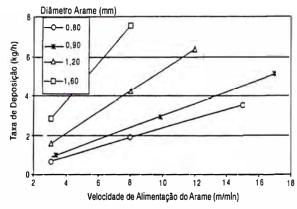


Figura 14 Velocidade de alimentação do arame e Taxa de Deposição para o processo GMAW, Aço C-Mn. Diâmetro do arame de 0.80 a 1.60mm. conforme equação 15.

Tabela 8 Valores de k já calculados para diversos tipos de metais.

A	Anoid	
	Aço C-Mn	0,370
5 1	Aluminio	0,126
	Cobre	0,422
Eurige Berge	Niquel	0,419

Exemplo 6:

Determinar a taxa de deposição para o processo GMAW, dadas as variáveis abaixo, para arames de diâmetros 0,80; 0,90; 1,20 e 1,60mm de aço C-Mn.

Dado: Velocidade do arame = 7m/min

Solucão:

Consultando a tabela 8: k = 0,370g/mm³. Com o auxílio da equação 15, obtém-se os seguintes resultados:

 \emptyset 0,80 \Rightarrow TD = 1,66kg/h

 \emptyset 0,90 \Rightarrow TD = 2,10kg/h

 \emptyset 1,20 \Rightarrow TD = 3,73kg/h

 \emptyset 1.60 \Rightarrow TD = 6.63kg/h

O exemplo 6 mostra que para uma mesma velocidade de arame, a taxa de deposição aumenta com o aumento do diâmetro do arame. Em um equipamento de tensão constante, a intensidade de corrente aumenta com a velocidade de alimentação do arame, como pode ser visto na figura 15, e cada bitola de arame possui uma falxa de intensidade de corrente

adequada, Tabela 9. A intensidade de corrente é um dos fatores que determina o tipo de transferênciametálica. O tipo de transferência que obtém maior taxa de deposição é o "sprayaro", seguido do "globular" e por último o tipo curto-circuito.

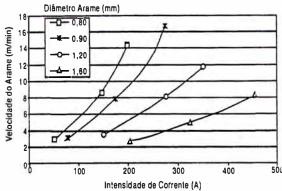


Figura 15 Correspondência entre intensidade de corrente e velocidade de alimentação do arame, processo GMAW, Aço C-Mn. Diámetro do arame de 0,80 a 1,60mm

Tabela 9 Faixa de Intensidade de corrente em função do diâmetro do arame para o processo GMAW, Aço C-Mn.

	de corrente (A)
0,80	50 a 200
0.90	50 a 275
1.20	125 a 350
	200 a 450

Vazão de Gás: É determinada em função da intensidade de corrente e do tipo do material sendo soldado. A Tabela 10 apresenta valores típicos da vazão de gás para o processo GMAW, em função do tipo de material sendo soldado e da intensidade de corrente. Veja também a seção 9.2.2.2.

Tabela 10 Vazão típica do gas de proteção (Ar, CO, e misturas). Processo GMAW.

THUU-UU MAIDIIAITE	ALC: NO PERSONS	OA Vazão adicional para cada acréscimo de 50A
19. 00 M 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	(/min)	(I/mln)
Aço C-Mn e baixa liga Aluminio, Niquel e suas ligas	10	1,5
Cobre e suas ligas	18	0,5
Magnésio e suas ligas	20	1,5

Os gases de proteção para soldagem são normalmente comercializados em m³. Com o objetivo de padronizar as unidades é importante convertê-los para quilograma. A Tabela 11 fornece pesos e volumes, a 21°C, dos principais gases que formam, puros ou misturados, os gases de proteção.

Exemplo: 1m3 de argônio pesa 1,656kg, e 1kg de argônio corresponde a 0,604m3.

Tabela 11 Pesos e volumes dos principais gases de proteção.

Argônio	Ar	1 0,604	1,656
Dióxido de Carbono	co,	0,504 1 0,546	1,832
Hélio	He	1 6,052	0,165 1
Hidrogenio	H **	11,969	0,083
Nitrogênio	N N	1 0.862	1,160
Oxigênio	0	0.754	1,326

7.4 Soldagem com Arame Tubular

Processo similar à soldagem MIG-MAG, com a diferença que o eletrodo é um arame oco cujo interior contém um fluxo de proteção. Este fluxo ao se queimar gera gás de proteção e uma fina camada de escórla. Há duas variações do processo:

☐ (FCAW-GS) Arames tubulares com proteção gasosa – "Gas Shielded", onde torna-se necessário o uso de um gás de proteção extra para uma proteção adequada da solda.

☐ (FCAW-SS) Arames tubulares auto-protegido) – "Self Shielded", onde o fluxo interno gera gases e escória suficiente para proteger a solda, não necessitando de qualquer proteção adicional.

Os consumíveis para soldagem com arame tubular são especificados e classificados de acordo com as seguintes especificações AWS:

AWS A5.20 para acos carbono

AWS A5.22 para aços inoxidáveis

AWS A5.29 para aços balxa liga

A Figura 16 mostra esquematicamente a soldagem com arame tubular auto-protegido.

Floura 16 Diagrama esquemático da soldagem com arame tubular auto-protegido.

Taxa de deposição para o processo FCAW: Pode ser calculada através da equação 17 e ilustrada graficamente na Figura 17. O fator 0,06 na equação 17 serve de conversão de g/min para kg/h. As taxas de deposição típicas variam de 2 a 8 kg/h.

Taxa de Deposição(kg/h) = Peso do Arame(g/m) x Velocidade do Arame(m/min) x 0,06 x Equação 17 Eliciência de Deposição (%)

 $TD = PA \times VA \times 0.06 \times ED$

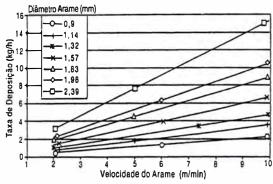


Figura 17 Taxa de deposição típica para o processo FCAW, Aço C-Mn.Diâmetro de arame entre 0,9 a 2.39mm.

A Figura 18 apresenta a correspondencia entre intensidade de corrente e velocidade de alimentação do arame para o processo FCAW-GS, polaridade positiva, Aço C-Mn. Para uma dada velocidade de alimentação do arame, a intensidade de corrente varia com a extensão do eletrodo. Quando a extensão do eletrodo aumenta, a intensidade de corrente diminui e viceversa. Para este processo deve-se adotar uma extensão do eletrodo de 19 a 38mm.

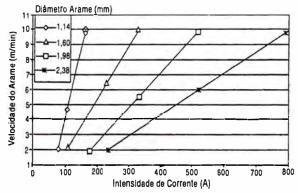


Figura 18 Correspondência entre corrente e velocidade do arame, Aço-C, FCAW-GS, CCEP. Diâmetro de arame entre 1.14 a 2.39 mm.

Uma informação importante, no caso de arames tubulares, é o seu peso por metro. Quanto maior for o seu peso por metro, maior será a taxa de deposição e a eficiência de deposição. A Tabela 12 mostra o peso típico do arame por metro para diversas bitolas, para um valor de eficiência de deposição de 85%. Porém, multas outras relações entre o peso do arame e o comprimento podem ser encontradas, inclusive para uma mesma bitola de uma mesma classificação conforme a norma AWS A5.20, A5.22 ou A5.29.

Tabela 12 Peso típico do arame por unidade de comprimento.

Ø do arame (mm)	⇔ 0,90	1,14	1,32	1,60	1,73	1,83	1,98	2,39
Peso do arame	4,24	6,81	9,13	12,92	15,68	17,55	20,56	29,93

Vazão de Gás: Para o processo FCAW-GS, a vazão de gás deverá ser fornecida pelo fabricante do arame tubular. No entanto, na maioria das vezes varia entre 12 a 26 l/min em função das variáveis de soldagem como: Ø do arame, Ø do bocal, extensão do eletrodo, posição de soldagem e intensidade de corrente.

8. Composição dos Custos da Soldagem

O custo da soldagem é composto dos vários fatores descritos abaixo sendo determinado pelo somatório desses fatores:

- Custo do metal depositado.
- ☐ Custo da mão-de-obra.

Depreciação do equipamento.
 Custo de manutenção.
 Custo de energia elétrica.
 Despesas gerais.

É bom ter em mente que poupando metal de solda no projeto (veja capítulo 6), automaticamente reduz a quantidade de consumívels, mão-de-obra, custos de energia e despesas gerais.

Uma metodologia ampiamente adotada considera que os custos são formados basicamente pelo custo do metal depositado mais o custo da mão-de-obra. De fato, a figura 1 indica que o somatório de apenas esses 2 itens representa até 92% do custo da soldagem. Neste caso, o somatório dos outros Itens (depreciação do equipamento, custo de manutenção e energia elétrica) são considerados como despesas gerais.

Os custos aqui apresentados serão sempre expressos em \$/kg e em \$/m, pois podem ser úteis para calcular o custo de um equipamento ou produto com uma simples operação aritmética de multiplicação, quando se sabe a quantidade de metal depositado num equipamento, ou o comprimento total da solda em uma obra, como por exemplo tubos ou perfis.

9. Custo do Metal Depositado

É obtido pelo produto entre o peso do metal depositado e o custo do consumível, equação 18:

Custo do Metal Depositado (\$/m) = Peso do Metal Depositado (kg/m) x Custo do Consumível (\$/kg)

Equação 18

 $CMD = PMD \times CC$

9.1 Peso do Metal Depositado

É obtido pelo produto entre o volume do metal de solda e a densidade (peso específico) do materiai, equação 19. O volume pode ser calculado conhecendo-se a área da seção transversal e o comprimento a ser soldado, equação 20.

Peso do Metal Depositado (g) = Volume (mm²) x Densidade (g/mm²) Equação 19
PMD = V x p

Volume (mm³) = $Area (mm²) \times Comprimento (mm)$

Equação 20

 $V = A \times L$

A Tabela 13 apresenta a densidade de alguns elementos, e a densidade de uma liga contendo esses elementos pode ser obtida por média ponderada, como mostrado no exemplo 7.

Tabela 13 Densidade, ρ, dos principais elementos de ligas metálicas.

Material	Simbolo Químico	Densidade (g/mm²)
Alumínio .	A.	0,00270
Carbono	C	0,00351
Cobalto	Co	0,00885
Cobre	Cu	0,00896
Cromo	Cr	0,00719
Ferro	Fe	0,00787
Magnésio	Mg	0,00174
Molibidênio	Mo	0,01020
Niquel	NI	0,00890
Titanio	1	0,00451
Aço	(Fe + C)	C,00785

Exemplo 7:

Calcular a densidade de uma liga de níquel (inconel) com a seguinte composição nominal: Ni = 58%; Cr = 17%; Fe = 8%; Mo = 17%.

Solução:

Neste caso, a média ponderada é obtida pela soma dos produtos da densidade de cada elemento, multiplicada pela sua porcentagem na composição da liga. É bom relembrar que, numa operação matemática, o valor em porcentagem deve ser trabalhado em números decimais. Como exemplo: 3%= 3/100+ 0,03 ou 33% = 33/100 = 0,33

 $\rho = 0.58 \times 0.00896 + 0.17 \times 0.00719 + 0.08 \times 0.00787 + 0.17 \times 0.0102$ $\rho = 0.00875 \text{ g/mm}^3$

Área da seção transversal: Pode ser facilmente calculada, conhecendo-se a geometria da junta. A geometria da junta deve ser decomposta em figuras geométricas que permitam o cálculo da área de cada uma dessas figuras, inclusive o reforço de solda. A área da seção transversal será o somatório das áreas de todas as figuras obtidas. A área total multiplicada pelo comprimento da junta é o volume de solda que, por sua vez, se multiplicado pelo peso específico resultará no peso do metal depositado.

Um outro método que pode ser aplicado para calcular o peso total do metal depositado é calcular separadamente o peso de um metro linear de cada fatia, com auxílio do Apêndice 2. Assim teríamos, por exemplo, para uma junta com 20mm de espessura e 3mm de abertura, uma fatia transversal retangular com 0.471kg/m, representando a fatia de metal depositado responsável pela abertura. O peso, por metro, de outras fatias também pode ser determinada similarmente, e o peso total por metro será o somatório de todas as fatias envolvidas. Sabendo-se o comprimento total da junta, multiplica-se este valor pelo valor do metal depositado, obtido para um metro da junta.

As formas usuais, que se encontram nas seções transversais das juntas, e as fórmulas de cálculo da área são apresentadas na figura 19. As formas quadrada e retangular podem ser associadas à abertura da raiz, a triangular ao chanfro, o segmento circular ao reforço e o semicirculo à porção de uma junta em "U" ou em "J". Uma solda em ângulo está associada a uma forma triangular.

Em caso de passes simples de cada lado da junta, a geometria da junta não tem qualquer influência, porque é necessária uma certa intensidade de corrente de cada lado, para que haja uma sobreposição dos cordões na raiz da solda. Neste caso, a área do reforço de solda é usada para se determinar o peso do metal depositado.

9.2 Custo do Consumível

O custo do consumível é obtido pelo produto do preço do consumível multiplicado pela quantidade do mesmo, equação 21. Em processos que usam gás de proteção (MIG-MAG, FCAW-GS), o custo do gás é obtido pelo produto do preço do gás multiplicado pela vazão e pelo tempo de arco aberto, equação 22. Em processos que usam fluxo (SAW), o custo do fluxo é obtido conforme a equação 23.

$$CC_{pl} = PC_{pl} \times VG \times TAA$$

$$CC_{\text{Max}} = PC_{\text{Max}} \times QC_{\text{Max}} \times 1,20$$

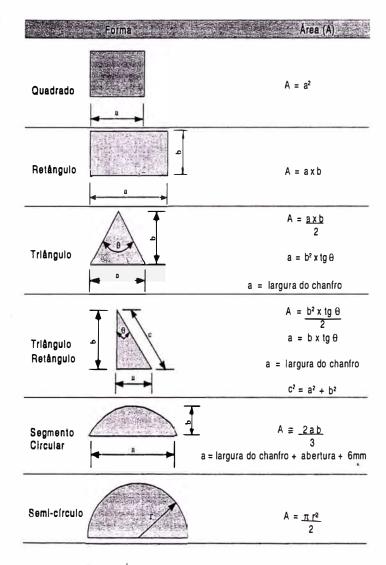


Figura 19 Área da seção transversal de algumas formas geométricas

9.2.1 Preço do Consumívei

É o valor em moeda do consumível por quilograma. O preço do consumível pode ser obtido por consulta comercial ou através de lista de preços. Entende-se por consumível todo material empregado na deposição ou proteção da solda, portanto, não se pode esquecer de considerar o custo do gás de proteção, para os processos GMAW, FCAW-GS e GTAW, e do fluxo para o processo SAW. É bom ter em mente que eletrodos e arames com menores diâmetros são mais caros que aqueles com maiores diâmetros. Quanto aos gases de proteção, deve-se procurar utilizar tanques em vez de cilindros. Os gases vendidos na forma líquida, abastecido em pontos fixos, custam menos que os gases vendidos em cilindros (na forma gasosa), sem contar que há uma perda de gás da ordem de 10 a 20% que não são utilizados devido á perda de pressão, o que não ocorre com a utilização de tanques, pois o reabastecimento do produto é felto sem a troca do recipiente.

9.2.2 Quantidade de Consumível

A quantidade de consumível é obtida multiplicando-se o peso do metal depositado pelo comprimento de solda desejado e dividindo-se pela eficiência de deposição, equação 24.

A quantidade calculada é de eleirodo para o processo SMAW, arame sólido para os processos SAW e GMAW, e arame tubular para o processo FCAW.

Quantidade de Consumível (kg) = <u>Peso do Metal Dapositado (kg/m) x Comprimento (m)</u> Equação 24

Eficiência de Deposição (%)

$$OC = PMD \times L$$
 ED

Os processos SMAW e FCAW-SS não requerem consumíveis adicionais. Entretanto, o processo SAW requer fluxo e, os processos GMAW e FCAW-GS requerem gás de proteção.

9.2.2.1 Consumo de Fluxo

O consumo teórico de fluxo é aproximadamente igual ao consumo de arame. Entretanto, durante a operação de soldagem, sempre há perdas de fluxo durante a recirculação da parte não fundida e devido à quebra de partículas do fluxo. Em geral é razoável considerar o consumo de fluxo como sendo 1,2 vezes o consumo de arame, ou seja, para cada quilo de arame (ou peso do metal depositado) é necessário 1,20kg de fluxo.

O consumo de fluxo depende muito da forma como é tratado e recirculado. Logo, deve-se estabelecer um método para a reciclagem de fluxo que permita que pouco fluxo seja desperdiçado e jogado fora. O uso de recirculadores automáticos reduz o consumo de fluxo em até 10%, e quando é utilizado, a relação fluxo arame pode ser considerada de 1,1 vezes o consumo de arame.

9 2 2 2 Consumo de Gás

O consumo de gás depende do tempo de arco aberto, que por sua vez é função da taxa de deposição. O processo ou procedimento de soldagem com maior taxa de deposição exigirá menor quantidade final de gás. Para determinar a relação gás/arame recomenda-se adotar a equação 25 e 26. Veja também a seção 7.3 tabela 10, com valores típicos de vazão de gás para o processo MiG-MAG.

Equação 25

Consumo de Gás (I/kg) = 60 x Vazão do Gás (I/min)

Taxa de Deposição (kg/h) $CG = \underline{VG \times 60}$ TD

Na equação 25, 60 é o fator de conversão de l/mln para l/h

Consumo de Gás (I/m) = 100 x Vazão do Gás (I/min) Equação 26

Velocidade de Soldagem (cm/min)

Na equação 26, 100 é o fator de conversão de I/cm para I/m

Para se calcular o consumo total de gás para uma determinada obra, adotar a equação 27.

Consumo Gás (I) = Comprimento da Solda (cm) x Vazão de Gás (I/min) x Número de Passes Equação 27

Velocidade de Soldagem (cm/min)

Nota: Nos cálculos de consumo de gás não estão incluídos perdas por vazamentos, picos de vazão quando do acionamento da pistola, pré e pós vazãode gá. Entretanto, é possível estabelecer uma relação entre o consumo teórico e o consumo real. O consumo real pode ser determinado através de um levantamento do consumo de gás e de arame nos últimos meses. Podese então adotar um fator de correção a ser aplicado nas equações 25, 26 e 27, ou simplesmente multiplicar a relação entre o consumo real de gás/kg de arame pela quantidade de arame a ser gasta. Costuma-se, também, adotar a relação 1:1, ou seja 1 m³ de gás para 1 quilo de arame.

9.3 Eficiência de Deposição

Em toda operação de soldagem parte do material consumido não é aproveitado devido a perda das pontas, formação de escória e respingos. No processo SMAW esses três fatores estão presentes. A eficiência de deposição é importante para se calcular a quantidade, em peso, de material necessário para a soldagem de uma junta. Analogamente, a eficiência de deposição é para o custo do metal depositado, a mesma relação que o Fator de Operação é para o custo da mão-de-obra. A Tabela 14 fornece valores típicos da eficiência de deposição para os processos de soldagem abordados neste trabalho. Por exemplo, para se depositar 650g de metal pelo processo SMAW, é necessário 1kg de eletrodos revestidos, ou seja, a quantidade de metal depositado necessária para o trabalho dividida pela eficiência de deposição.

Tabela 14 Eficiência de deposição típica para alguns processos de soldagem.

Processo	Metal de Adição	Eliciencia de Deposição	Valor Médio
SMAW	Eletrodo revestido	0,55 a 0,75	0,65
SAW	Arame sólido	0,95 a 0,99	0.97
GMAW	Arame sólido	0,90 a 0,96	0.93
FCAW-GS	Arame tubular	0,84 a 0,90	0,87
FCAW-6S	Arame tubular	0,80 a 0,86	0.83

A extensa faixa de eficiência de deposição para o processo SMAW deve-se à variação do comprimento do eletrodo revestido que são fornecidos (de 350 a 700mm), dependendo alnda do tipo de revestimento e bitoia. A menor eficiência de deposição mostrada aplica-se ao eletrodo de menor comprimento.

No processo GMAW, a menor eficiência mostrada é para o tipo de transferência metálica por curto-circuito, devido a maior perda por respingo. A maior eficiência é para a transferência metálica do tipo "spray-arc".

Por definição, a eficiência de deposição é a razão entre o peso do metal depositado e o peso do material consumido para esse depósito, equação 28. Pode ser determinada experimentalmente depositando uma quantidade conhecida de material numa chapa também de peso conhecido. A eficiência de deposição é a relação entre o peso final e o peso Inicial da peça, dividido pelo peso do material consumido. Multiplicando o resultado da equação 28 por 100, tem-se a eficiência de deposição em porcentagem.

O peso do metal depositado é então determinado pela diferença entre o peso final da peça soldada e o seu peso inicial, equação 29.

Exemplo 8:

Com os dados abaixo, determinar a eficiência de deposição:

Peso inicial da chapa: 1000g Peso de 10 eletrodos: 1000

Peso final da chapa com o depósito: 1090g

Solução:

- Calcular o PMD empregando a equação 29 ⇒ PMD = 1090 1000 = 90g
- Calcular a ED empregando a equação 28 ⇒ ED = 90 = 0,90 ou 90%

9.4 Carga Tributária em um Produto

Este capítulo tem como objetivo fornecer ao lettor uma visão simplificada de como funciona a carga tributária em um produto. Entretanto, devido a mudanças que ocorrem de tempos em tempos na legislação, assim como a existência de casos específicos, recomenda-se consultar um contador semore que se tiver dúvidas.

Na aquisição de consumiveis, equipamentos, ferramentas e materiais de soldagem, incidem vários tipos de Impostos. Há alguns impostos que, apesar de pagos, podem ser recuperados e descontados na carga tributária que incide sobre o produto final que a empresa vende. Estes devem ser descontados quando se avaliam os custos dos insumos de soldagem.

Assim, surgem duas definições quanto ao que se paga por um produto:

- Preço do Produto: É quanto a empresa efetivamente paga pelo produto, incluindo impostos.
- ☐ Preço Líquido do Produto: É o preço !íquido de venda do produto, isento de carga tributária. É quanto o fornecedor recebe efetivamente pela venda do produto.

A Nota Fiscal de todo produto industrializado discrimina o preço do produto e a Incidência de impostos, como ICMS e IPI. Estes cois Impostos normalmente não devemser considerados nos custos de aquisição dos consumiveis de soldagem, energia elétrica e material de segurança. Abaixo segue uma breve discussão sobre o ICMS e IPI, e como devem ser interpretados na avaliação dos custos de soldagem.

ICMS: Imposto sobre circulação de mercadorias e serviços. Este imposto <u>vem incluído</u>, ou seja, dentro do preço do produto industrializado que se adquire. Isto significa que para se calcular o preço liquido do produto deve-se remover a alíquota equivalente ao ICMS.

A alíquota do ICMS (expressa em porcentagem sobre o preço do produto) varia conforme a região do Brasil. Consulte o forneedor ou a nota fisal do produto qual a alíquota do ICMS que se aplica ao seu caso.

Permite-se o crédito de ICMS na aquisição de:

- Mercadoria destinada à comercialização, desde que a saída subsequente seja tributada.
- Matéria-prima ou produto intermediário para emprego na industrialização de produto cuja saida seja tributada.
- ☐ Material de embalagem ou acondicionamento, para utilização em mercadoria ou produto tributado na saída
- ☐ Na aquisição de energia elétrica e servicos de telecomunicações.
- Nos serviços de transportes interestadual ou intermunicipal, relativos às aquisições de mercadorias com direito à crédito.
- Nas aquisições de materials destinados ao ativo permanente, desde que vinculados à atividade fim da empresa.

Na maiorla das vezes deve-se descontar o ICMS que incide sobre o preço do produto para se determinar o preço líquido do produto. A Tabela 15 indica como se acrescenta o ICMS ao preço líquido de um produto cujo fornecedor deseja vende-lo a \$7,60. A Tabela 16 indica como se remove o ICMS do preço de um produto que foi adquirido por \$7,60, obtendo-se então o preço líquido do produto.

É interessante verificar como o preço do produto varia em função da alíquota de ICMS. A Tabela 15 mostra que para um mesmo preço líquido do produto vendido pelo fornecedor por \$7,60, este chega em diferentes regiões do pals com preço do produto entre \$8,17 e \$9,27.

IPI: Imposto sobre produto industrializado. É calculado sobre o preço do produto, já incluido os outros impostos. Há várlas allquotas de IPI, dependendo de sua classificação fiscal. Permite-se o crédito do IPI:

- Quando a mercadorla é destinada à comercialização e revenda.
- Matéria-prima, produto intermediário e material de embalagem para emprego na industrialização de produtos.

Tabela 15 Acrescentando ICMS ao preço líquido de um produto cujo fornecedor deseja vendé-lo a \$7,60.

Allquota (%)	Preço Líquido do Produto (\$)	Dividir por	Preço do Produto
7 %	\$ 7,60	0,93	\$ 8,17
12 % 17%	\$ 7 ,60 \$ 7.60	0,88	\$ 8,64
18%	\$ 7,60	0,83 0,82	\$ 9,16 \$ 9.27

Tabele 16 Retirando o ICMS do preço de um produto adquirido por \$7,60

Aliquota (%)	Preço do Produto	Multiplicar por P	reço Líquido do Produto (S)
7 %	\$ 7,60	0,93	\$ 7,07
12% 17%	\$ 7,60 \$ 7,60	0,88 0,83	\$ 6,69 \$ 6.31
18%	\$ 7 ,60	0,82	\$ 6.23

10 Custo da Mão-de-Obra e "Overhead"

Como visto na figura 1, o custo de mão-de-obra representa até 80% do custo da soldagem, sendo então de suma importância sua determinação com precisão.

O Valor da Mão-de-Obra é definido como o valor do salário do soldador acrescido dos encargos sociais. Deve ser incluido o "overhead", ou seja, salário de supervisores, gerentes, contabilidade e administração como mostrado no exemplo 9.

As empresas devem determinar previamente o valor da mão-de-obra e "overhead", para facilitar a análise dos custos. O valor da mão-de-obra é expresso em valor da moeda por hora de trabalho (\$/h).

Também costuma-se considerar o valor da mão-de-obra (\$/h) como sendo a média horária dos salários envolvidos diretamente na soldagem, como engenheiros, supervisores, encarregados, caldeireiros, soldadores e ajudantes.

Exemplo 9:

Calcular o valor da mão-de-obra de uma pequena empresa que possui 10 soldadores, 2 supervisores, 1 gerente e 2 funcionários administrativos, cujos salários, com encargos, estão descritos na tabela 17.

Tabela 17 Exemplo de função e salário para cálculo da valor da mão-de-obra.

Função Salário (\$/h)		
Soldador	10.00	
Supervisor	Attached to the second of the	
Gerente	30,00	
Administrativo	25.00	

Solução:

O valor da mão-de-obra será obtido por média ponderada, isto é, o valor da mão-de-obra de cada funcionário multiplicado peto número de funcionários de cada função, dividido peto número total de funcionários.

VMO =
$$(10 \times 10) + (2 \times 20) + (1 \times 30) + (2 \times 25) = 100 + 40 + 30 + 50 = 14,67/h$$

O custo da mão-de-obra pode ser expresso em \$/kg de metal depositado ou \$/m de solda. No primeiro caso (\$/kg), é calculado dividindo-se o valor da mão-de-obra/hora pela taxa de deposição efetiva, equação 30. No segundo (\$/m), é calculado multiplicando o tempo de soldagem (h/m) pelo valor da mão-de-obra/hora, equação 31.

Custo da Mão-de-Obra (\$/m) = Tempo de Soldagem (h/m) x Valor da Mão-de-Obra (\$/h) Equação 31

CMO = TS x VMC

11. Custo da Energia Elétrica

Conforme a figura 1, o custo da energia alétrica representa cerca de 3% do custo da soldagem. Pode ser calculado com o auxilio da equação 32.

onde,

W = Preço do kWh (\$/kwh)

1000 = Conversão do quilowatt para watt.

E = Tensão no arco, (V).

Intensidade de corrente de soldagem, (A).

TS = Tempo de soldagem, (h/m ou h/kg)

Ef _ Eficiência do processo: 0,5 para SMAW; 0,8 para SAW, GMAW e FCAW.

A unidade de medida de CEE será \$/m se o tempo de soldagem (TS) for expresso em horas por metro de solda. Caso TS seja expresso em horas por kg de solda, a unidade de CEE será \$/kg.

Alguns autores consideram o consumo de energia em 4kWh por kilo de metal depositado para uma estimativa de cálculo rápido do custo de energia elétrica.

12. Depreciação do Equipamento

O custo da depreciação do equipamento é fornecido pela equação 33, dividindo-se a depreciação mensal pela produção mensal.

Depreciação do Equipamento (\$) = Depreciação Mensal (\$/més) Equação 33

Produção Mensal (mês)

DE = DM

A depreciação mensal pode ser calculada considerando-se 10% ao ano do valor do equipamento novo, equação 34. Considera-se que um equipamento é totalmente amortizado ao fim de 10 anos.

Depreciação Mensal (\$/més) = 10% do Valor do Equipamento(\$) Equação 34

12 (més)

DM = 0.1YE

Para se calcular o valor do equipamento, deve ser considerado o custo de aquisição de todos os equipamentos de soldagem envolvidos com o produto que está sendo fabricado.

A produção mensal é uma informação que normalmente é de conhecimento da empresa, ou pode ser calculada por meio da equação 35.

Produção Mensal (kg) = <u>Número de Horas Trabalhadas (h) x Peso do Metal Decositado (kg)</u> Equação 35

Tempo de Soldagem (h)

13. Custo de Manutenção do Equipamento

O custo de manutenção deve ser levantado pela empresa. É difícii prever, neste trabalho, os custos de manutenção dos equipamentos, que envolvem basicamente consertos e/ou substituição de peças com desgaste e mão-de-obra empregada. Todavia, uma vez feito esse levantamento, ter-se-á um custo de manutenção que poderá ser dado em \$/m ou em \$/kg. Considerando as despesas de manutenção por mês e a produção mensal, pode-se calcular o custo de manutenção através da equação 36. Se a produção mensal for expressa em kg/més, tem-se o custo de manutenção em \$/kg. Se a produção mensal for expressa em m/mês, tem-se o custo de manutenção em \$/m.

A produção mensal, no entanto, pode ser dada em número de peças, em kg ou em metros, dependendo de como foi orçado ou como será vendido.

Custo de Manutenção (\$/kg ou \$/m) = Despesa Mensal com Manutenção (\$)
Produção Mensal (kg/mês ou m/mês)

Equação 36

CM = DMM PM

14. Despesas Gerais

Nas despesas gerais podem ser considerados todos os outros custos necessários para a execução da soldagem, tais como gastos com pré-aquecimento, pós-aquecimento, endireitamento, ensaios não-destrutivos, tratamento térmico, corte, usinagem, esmerilhagem, testes de produção, qualificação de procedimentos de soldagem, qualificação de soldadores, anti-respingos, material de proteção individual, porta eletrodos, bico de contato, bocais, goivagem e outros. Alguns desses custos podem ser obtidos facilmente multiplicando-se a quantidade gasta no més pelo preço unitário e dividindo-se por metro de solda ou por quilo de metal depositado.

No entanto, esses custos não serão abordados aqui além dessa pequena Introdução, pols variam multo de empresa para empresa, assim como a metodologia adotada para a distribulção desses custos.

15. Cálculo do Número de Passes

Neste capítulo, será dada énfase a um cálculo preditivo, combase nas equações definidas nos capítulos anteriores. Imagine a seguinte situação: há uma chapa espessa a ser soldada, e deseia-se estimar o número de passes e o tempo necessário a esta operação de soldagem.

Sabendo-se o peso do metal depositado e o peso de um cordão de solda, por unidade de comprimento, é possível estimar o número de passes da junta, dividindo o primeiro pelo segundo, equação 37.

Número de Passes = Peso do Metal Depositado (kg/m)
Peso de um Passe (kg/m)

Equação 37

NP = <u>PMD</u>

O peso de um passe pode ser determinado pela relação entre a taxa de deposição do processo que será usado e a velocidade de soldagem, equação 38.

Peso de um Passe (kg/m)

Taxa de Deposição (kg/h)

Equação 38

0,60 x Velocidade de Soldagem (cm/min)

Na equação 38, 0,60 é o fator de conversão de cm/min para m/h.

O tempo de soldagem de um passe pode ser estimado dividindo o comprimento da peça pela velocidade de soldagem, equação 39.

Tempo de Soldagem de um passe(min)

Comorimento da Peca (cm)

Equação 39

Velocidade de Soldagem (cm/min)

O tempo total de soldagem pode então ser calculado multiplicando o tempo de soldagem de um passe pelo número de passes e pelo fator de operação do processo, equação 40.

Tempo de Soldagem (min) = Tempo de Soldagem de um passe (min) x Número de Passes x Equação 40 Fator de Operação.

Este dadó é importante, pols é possível prever o tempo de soldagem de uma junta felta com multipasses, considerando-se o tempo de soldagem de um passe.

16. Casos Práticos

Neste capítulo você aprenderá, passo a passo, a calcular os custos da soldagem através de dois exemplos práticos. Para calcular esses custos você terá que conhecer alguns valores, que poderão ser obtidos através de consultas de preços, para os dados comercials, ou através dos capítulos deste livro, para os dados técnicos. No caso dos dados técnicos obtidos de tabelas onde existe uma faixa de valores, o valor adotado é o valor tiplco, apresentado na última coluna dessas tabelas. No entanto, para se obter resultados mais precisos é necessário usar números também reals, antes de aplicá-los nas fórmulas de cálculo. Os dados mais precisos, para serem aplicados nessas fórmulas, são aqueles obtidos pela experiência das empresas, de seus funcionários, ou obtidos em outros capítulos deste livro. Ao se realizar esses cálculos multas variáveis têm de ser estimadas, tais como: ângulo do chanfro, abertura da raiz e a altura do reforço da solda.

É preciso ter em mente que será felto apenas uma estimativa de custos, pols qualquer variação no detalhe da junta soldada modifica os resultados obtidos.

16.1 Caso Prático 1

Neste exemplo, a tarefa é calcular o custo total da soldagem, incluindo de mão-de-obra, consumíveis, energia elétrica, manutenção e depreciação dos equipamentos com os dados