UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

ACCIONAMIENTO DEL MOLINO DE BOLAS DE UN MOTOR DE 1 250 HP GARANTIZANDO QUE LA VARIACIÓN DE TENSIÓN EN LA BARRA NO SEA MAYOR DEL 5%.

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO MECÁNICO ELECTRICISTA

CRISTIAM VICTOR, VILLAJUAN MONTES

PROMOCION 2010-II

LIMA-PERU

2 014

A Dios, por haberme dado la vida y permitirme el haber llegado hasta este momento profesional. A mi madre, por ser el pilar más importante y por demostrarme siempre su cariño y apoyo incondicional. A mi tío, a quien quiero como a un padre, por compartir momentos significativos conmigo y ayudarme sin importar nuestras diferencias de opiniones.

AGRADECIMIENTO

Agradezco a Dios por protegerme durante todo mi camino y darme fuerzas para superar obstáculos y dificultades a lo largo de toda mi vida.

A mi madre, que con su demostración de una madre ejemplar me ha enseñado a no desfallecer ni rendirme ante nada y siempre perseverar a través de sus sabios consejos.

A mis compañeros de estudio que me apoyaron durante todo este arduo camino y compartir conmigo alegrías y fracasos.

Gracias a todas las personas que ayudaron directa e indirectamente en la realización de este proyecto.

El autor

ÍNDICE

CAP	ITULO I: INTRODUCCIÓN	3
1.1	ANTECEDENTES	3
1.2	PRESENTACIÓN DE OBJETIVOS	4
	1.2.1 OBJETIVO PRINCIPAL	4
1.3	CONDICIONES GENERALES	4
	1.3.1 UBICACIÓN	4
	1.3.2 CONDICIONES AMBIENTALES	6
1.4	DEFINICIONES DEL PROYECTO	8
	1.4.1 WBS DEL PROYECTO	8
	1.4.2 LISTADO DE EQUIPOS MECÁNICOS	9
	1.4.3 LISTADO DE EQUIPOS ELÉCTRICOS	9
CAP	ITULO II: DESCRIPCIÓN DEL PROCESO Y DEL PRODUCTO	10
2.1	DESCRIPCIÓN DEL PROCESO	10
	2.1.1 PROCESO DE MOLIENDA	10
2.2	DESCRIPCIÓN DEL PRODUCTO	11
	2.2.1 SISTEMA ELECTRICO	11
	2.2.2 ACCIONAMIENTO DE MOLINO DE BOLAS	12

2.3	FORMULACIÓN DEL PROBLEMA 1			
2.4	DETERMINACIÓN DE LA HIPOTESIS DEL TRABAJO	12		
CAPI	ITULO III: MARCO TEÓRICO	13		
3.1	MOTOR DE INDUCCIÓN (DE ANILLOS ROZANTES)	13		
3.2	FLUJO DE POTENCIA	23		
CAP	ITULO IV: DESARROLLO DE LA SOLUCIÓN DEL PROBLEMA	26		
4.1	COMPONENTES DEL ACCIONAMIENTO DEL MOLINO	26		
	4.1.1 MOTOR ELÉCTRICO	26		
4.2	ESTUDIO DE FLUJO DE CARGA	27		
	4.2.1 SISTEMA ELÉCTRICO	27		
CON	CLUSIONES	34		
BIBL	LIOGRAFÍA	35		
ANE	xos	36		

ÍNDICE DE FIGURA

FIGURA 1.1 Mapa de Ubicación	5
FIGURA 1.2 Localización Geográfica	5
FIGURA 1.3 Ubicación Geográfica	6
FIGURA 3.1 Flujo Variable	13
FIGURA 3.2 Motor de Inducción	18
FIGURA 3.3 Componentes del motor de inducción	19
FIGURA 3.4 Motor inducción - carcasa	20
FIGURA 3.5 Estator de un motor de inducción	21
FIGURA 3.6 Entrehierro (a)	22

ÍNDICE DE TABLAS

TABLA 1.1	Ubicación de Estaciones Meteorológicas	7
TABLA 1.2	Table WBS Alpamarca	8
TABLA 4.1	Potencia de Cortocircuito en el año 2012 y 2022	29
TABLA 4.2	Barras Principales	29
TABLA 4.3	Datos del Transformador	30
TABLA 4.4	Datos de Líneas de Distribución 4.16 kV	30
TABLA 4.5	Líneas de Distribución 4.16 kV	31
TABLA 4.6	Principales Motores 4.16 kV	31
TABLA 4.7	Cargas Fijas	32
TABLA 4.8	Banco de Condensadores	32
TABLA 4.9	Resultados Análisis de Flujo de Carga	33
TABLA 4.10	Capacidad de los Transformadores y	
	Posición de Taps	33

PRÓLOGO

El presente trabajo de informe de suficiencia se desarrolla el tema de el "ACCIONAMIENTO DE MOLINO DE BOLAS CON UN MOTOR DE 1 250 HP GARANTIZANDO QUE LA VARIACIÓN DE TENSIÓN EN LA BARRA NO SEA MAYOR DEL 5%"

En el capítulo I, se presenta la introducción al informe de suficiencia, los antecedentes a este trabajo, la descripción del objetivo principal que guiará todo el proceso de investigación y desarrollo del tema, también están las condiciones generales, ubicación y condiciones ambientales y definiciones requeridas necesarias para el presente informe.

En el capítulo II, abarco la descripción del proceso, se habla del procesamiento de minerales a grandes rasgos, de la etapa del proceso donde está involucrado el trabajo, también se presenta la descripción del producto, de las condiciones de los sistemas eléctricos, las características del accionamiento de molino de bolas y se formulan la problemática y se determina la hipótesis de trabajo del informe de suficiencia.

En el capítulo III se presenta el marco teórico que se empleará para la demostración y realización de las actividades.

En el capítulo IV, como último capítulo se presenta el desarrollo de la solución del problema, los componentes del accionamiento del motor y el estudio de flujo de carga para determinar la variación de la tensión en la barra que se encuentra alimentada el molino de bolas.

CAPÍTULO I

INTRODUCCIÓN

1.1. ANTECEDENTES

En el presente informe de suficiencia se presenta el análisis de flujo de carga para la Compañía Minera Alpamarca S.A.C. (CMA) que se encuentra desarrollando un proyecto de "Ingeniería y Gerencia de la Construcción (ECM) Proyecto – Alpamarca", ubicado en el paraje Cerro Alpamarca, Distrito de Santa Bárbara de Carhuacayan, provincia de Yauli y departamento de Junín a 371 km al Este de Lima siguiendo la ruta Lima – La Oroya – Cerro de Pasco y a 182 km siguiendo la ruta Canta – La Viuda, a una altura aproximada de 4 770 msnm, con temperaturas promedio anuales que oscilan entre -13°C y 17°C.

El proyecto "Ingeniería y Gerencia de la Construcción (ECM) Proyecto – Alpamarca" consistirá en el desarrollo de una planta concentradora, sus instalaciones auxiliares y la presa de relaves para el procesamiento de minerales polimetálicos a razón de 2 000 toneladas métricas por día con la finalidad de producir concentrados de cobre, plomo, zinc y plata como subproducto. El mineral será extraído a través de un sistema de minado de tajo abierto y procesado a través de operaciones unitarias típicas como trituración, molienda, flotación, espesamiento y filtrado de concentrado.

- 4 -

En el proceso se requiere de múltiples equipos mecánicos-eléctricos, molinos,

fajas transportadoras, bombas, zarandas, tolvas, etc.

Por tal motivo, se presenta el estudio de flujo de carga de la planta concentradora

enfocado en el accionamiento del molino de bolas que se encuentra en el proceso

de molienda de la planta.

1.2. PRESENTACIÓN DE OBJETIVOS

1.2.1 OBJETIVO PRINCIPAL

o El objetivo principal del presente trabajo es el accionamiento del molino de

bolas con un motor de 1 250 HP garantizando que la variación de tensión en

la barra no sea mayor del 5%.

1.3. CONDICIONES GENERALES

1.3.1 UBICACIÓN

La ubicación del proyecto estimada está definida por las siguientes coordenadas

UTM WGS-84 aproximadas y altitud:

Este

: 341150

Norte

: 8760450

Altitud de Sitio : 4 770 m.s.n.m.

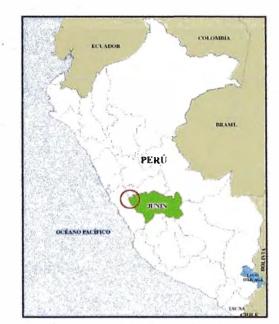


Figura 1.1. Mapa de ubicación

Figura 1-2: Localización geográfica

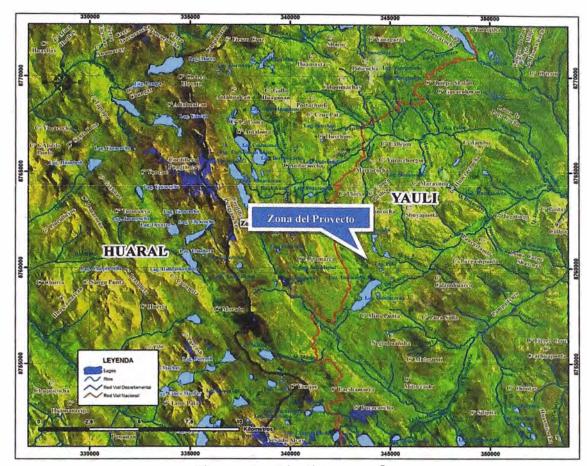


Figura 1-3: Ubicación geográfica

1.3.2 CONDICIONES AMBIENTALES

Los datos meteorológicos y climáticos indicados en el presente documento corresponden a los valores más críticos tomados de las estaciones meteorológicas adyacentes al sitio del proyecto y pertenecientes a la red del SENAMHI. Las ubicaciones de estas estaciones se muestran a continuación en la Tabla 1-1.

Tabla 1-1:

Ubicación de estaciones meteorológicas

Estación	Longitud	Latitud	Altitud (m.s.n.m.)
Animón	76°25'	11°01'	4 620
Marcapomacocha	76°19'	11°24'	4 479
Yantac	76°24'	11°20'	4 650

Clima

Corresponde al clima frío y seco, propio de la región Puna, con baja humedad relativa y presencia estacional de grandes precipitaciones.

Se destacan dos estaciones claramente diferenciadas: una temporada de lluvias que se extiende entre los meses de diciembre a marzo, concentrando cerca del 80% de la precipitación media anual, y una época de estiaje que se extiende entre los meses de mayo a noviembre, con un período bastante seco entre junio y agosto.

<u>Altitud</u>

Promedio

: 4 770 m.s.n.m.

Temperatura del sitio

Temperatura máxima

: 17,0 °C

Temperatura mínima

: -13,0 °C

Humedad relativa (Fuente: Estación Animón, período: 2 002 – 2 008)

Máxima

: 96,0 % (mes de Marzo)

Mínima

: 49,1 % (mes de Agosto)

Viento (Fuente: Estación Animón, período: 2 008)

Velocidad máxima

: 38,6 m/s (mes de Julio)

Velocidad promedio : 7,01 m/s
 Dirección predominante de vientos : Sur a Norte

Precipitaciones pluviales

• Máxima anual : 1 534,1 mm/año (Fuente: Estación

Marcapomacocha, período: 1 989-2 010)

• Máxima diaria (24 horas) : 35.6 mm (Fuente: Estación Yantac, período:

2 002 - 2 008)

1.4. DEFINICIONES DEL PROYECTO

1.4.1 WBS DEL PROYECTO

Estructura de desglose del trabajo del proyecto se muestra en la siguiente tabla (siglas en ingles WBS: *Work Breakdown Structure*), el área de trabajo del presente informe es el Área 430: Zona de Molienda.

Tabla 1-2: Table WBS Alpamarca

AREA	DESCRIPCION DEL AREA			
000	General			
100	Presa de Relaves			
200	Zona Espesador Relaves			
400	Zona de Chancado Iario., 2ario., 3ario., Planta de lavado, Sistema de colección de polvos			
430	Zona de Molienda			
510	Circuitos de Flotación			
530	Zona de Espesamiento y Filtrado de Concentrados			
560	Zona de Preparación y Dosificación de Reactivos			
561	Almacen de Reactivos			
562	Planta de Cal			
570	Zona de Distribución de Aire a Planta e Instrumentación			
710	Distribución de Agua			
712	Sistema Contra Incendios			
800	Facilidades			
900	Línea y SE Alpamarca			
980	S.E. Alpamarca Planta Concentradora			

1.4.2 LISTADO DE EQUIPOS MECANICOS

Durante el desarrollo del presente informe se mencionaran equipos en la zona de molienda (Zona 430), por ende, se muestra en el Anexo 1 el listado de equipos mecánicos.

1.4.3 LISTADO DE EQUIPOS ELÉCTRICOS

En el Anexo 2 se muestra el listado de equipos eléctricos principales descritos por áreas, involucradas en el proyecto.

CAPÍTULO II

DESCRIPCIÓN DEL PROCESO Y DEL PRODUCTO

2.1 DESCRIPCIÓN DEL PROCESO

El procesamiento del mineral comprende las siguientes etapas:

- Chancado primario;
- Planta de Lavado;
- Chancado secundario y terciario;
- Molienda y flotación en celda flash;
- Flotación bulk;
- Flotación de separación cobre-plomo;
- Flotación de zinc;
- Espesamiento y filtración de concentrados;
- Preparación y dosificación de reactivos;
- Suministro y distribución de aire;
- Suministro y distribución de agua;
- Disposición de relaves;
- Suministro de energía.

Estas etapas mencionadas se elaboraron el diagrama general de bloques del proceso y el diagrama general de flujo del proceso (ver Anexo 2).

2.1.1 PROCESO DE MOLIENDA

El mineral proviene del circuito de chancado primario, chancado secundario y terciario y pasa por fajas transportadoras a dos silos de finos y este a su vez alimentan a la molienda primaria.

- 11 -

La molienda primaria se realizará en un molino de barras (430-ML-001) de 10½'

x 14' (nominal) que será alimentado por el mineral fino proveniente de los silos

de finos. El contenido de sólidos de la alimentación al molino será regulado

mediante una línea de agua de proceso que ingresa al molino.

El mineral pasa por una etapa de clasificación según el tamaño del mineral, el

mineral grueso o underflow ingresarán a la molienda secundaria, la cual tendrá

una configuración de circuito cerrado inverso en conjunto con el nido de ciclones

(430-CY-001).

La molienda secundaria contará con un molino de bolas (430-ML-002), de 12' x

12' (nominal). De la misma forma que el molino de barras, la descarga del

molino de bolas será por rebose, el cual pasará por un trommel que evitara el

paso de las bolas gastadas a la etapa posterior. El trommel recibirá una aspersión

a presión de agua que evitara los atoros de mineral que puedan producirse en la

malla del mismo (ver Anexo 3).

2.2 DESCRICIÓN DEL PRODUCTO

2.2.1 SISTEMA ELECTRICO

Sistema : Trifásico;

o Frecuencia : 60 Hz;

o Tensión de distribución : 4,16 kV;

Valor de diseño de cortocircuito : 25 kA;

o Voltaje calefactores : 220 Vac, 60 Hz;

o Voltaje de control : 120 Vac, 60 Hz

O Variación de la Tensión en operación normal: ± 5 % (*)

(*)CÓDIGO NACIONAL DE ELECTRICIDAD (SUMINISTRO 2011) – Sección 1 - 017.D.

2.2.2 ACCIONAMIENTO DE MOLINO DE BOLAS

El accionamiento del molino de bolas se debe contar con un motor con potencia efectiva de salida de 1 250 HP, de alta eficiencia, con factor de servicio de 1,15, un correcto encerramiento aplicable para las condiciones de servicio (ver apartado 1.3). El tipo de rodamiento será antifricción y un tiempo de vida de 100 000 horas para acoplamiento directo.

Contará con accesorios necesarios para este tipo de motor, calefacción, RDT's para bobinados y para rodamiento, etc.

2.3 FORMULACIÓN DEL PROBLEMA

Será factible el accionamiento del molino de bolas con un motor eléctrico de 1 250 HP para la etapa de molienda de un proceso minero, el cual garantizara que la variación de tensión en la barra no sea mayor del 5% y no afectara al flujo eléctrico del sistema de la mina.

2.4 DETERMINACIÓN DE LA HIPOTESIS DEL TRABAJO

Es factible el accionamiento del molino de bolas con un motor eléctrico de 1 250 HP el cual garantizara que la variación de tensión en la barra no sea mayor del 5% y no afectara al flujo eléctrico del sistema de la mina.

CAPÍTULO III MARCO TEORICO

3.1 MOTOR DE INDUCCIÓN (DE ANILLOS ROZANTES) LEY DE FARADAY – HENRY

A principios de la década de 1830, Faraday en Inglaterra y J. Henry en U.S.A., descubrieron de forma independiente, que un campo magnético induce una corriente en un conductor, siempre que el campo magnético sea variable. Las fuerzas electromotrices y las corrientes causadas por los campos magnéticos, se llaman fuerzas electromotrices (f.e.m.) inducidas y corrientes inducidas. Al proceso se le denomina inducción magnética.

Enunciado de la Ley de Faraday-Henry

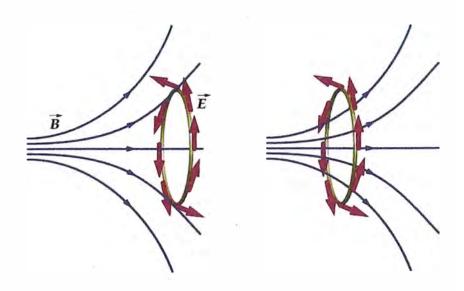


Figura 3.1. Flujo variable

Un flujo variable produce una fem inducida en una espira. Como esta fem es el trabajo realizado por unidad de carga, esta fuerza por unidad de carga es el campo eléctrico inducido por el flujo variable. La integral de línea de este campo eléctrico alrededor de un circuito completo será el trabajo realizado por unidad de carga, que coincide con la fem del circuito.

$$\varepsilon = \oint_{c} E d\vec{l} = -\frac{d\phi_{m}}{dt}$$

La fem inducida en un circuito es proporcional a la variación temporal del flujo magnético que lo atraviesa. [1]

Motores asíncronos

La máquina asíncrona o de inducción trifásica, como toda máquina rotativa, puede operar tanto como motor o como generador; sin embargo, las máquinas asíncronas trifásicas o de inducción son usadas generalmente como motor.

Es la más común de todas las máquinas, ya que el motor asíncrono trifásico o de inducción trifásico es el más usado en la industria (es el motor industrial por excelencia).

El motor asíncrono o de inducción trifásico se usa para accionar: Bombas, ventiladores, fajas transportadoras, máquinas de carpintería, centrífugas, molinos, etc.

El motor asíncrono trifásico está formado por un rotor, que puede ser de dos tipos: a) de jaula de ardilla; b) bobinado, y un estátor, en el que se encuentran

^[1]MARCO TEORICO – CURSO DE MÁQUINAS ELÉCTRICAS ROTATIVAS Dictada por el profesor Gregoria Aguilar Robles

las bobinas inductoras. Estas bobinas son trifásicas y están desfasadas entre sí 120° en el espacio. Según el Teorema de Ferraris, cuando por estas bobinas circula un sistema de corrientes trifásicas equilibradas, cuyo desfase en el tiempo es también de 120°, se induce un campo magnético giratorio que envuelve al rotor. Este campo magnético variable va a inducir una tensión en el rotor según la Ley de inducción de Faraday: La diferencia entre el motor a inducción y el motor universal es que en el motor a inducción el devanado del rotor no está conectado al circuito de excitación del motor sino que está eléctricamente aislado. Tiene barras de conducción en todo su largo, incrustadas en ranuras a distancias uniformes alrededor de la periferia. Las barras están conectadas con anillos (en cortocircuito como dicen los electricistas) a cada extremidad del rotor. Están soldadas a las extremidades de las barras. Este ensamblado se parece a las pequeñas jaulas rotativas para ejercitar a mascotas como hamsters y por eso a veces se llama "jaula de ardillas", y los motores de inducción se llaman motores de jaula de ardilla.

El campo magnético giratorio, a velocidad de sincronismo, creado por el bobinado del estátor, corta los conductores del rotor, por lo que se genera una fuerza electromotriz de inducción.

La acción mutua del campo giratorio y las corrientes existentes en los conductores del rotor, originan una fuerza electrodinámica sobre dichos conductores del rotor, las cuales hacen girar el rotor del motor.

La diferencia entre las velocidades del rotor y el campo magnético se denomina deslizamiento o resbalamiento.

Constitución del motor asíncrono

Circuito magnético

La parte fija del circuito magnético (estátor) es un anillo cilíndrico de chapa magnética ajustado a la carcasa que lo envuelve. La carcasa tiene una función puramente protectora. En la parte interior del estátor van dispuestos unas ranuras donde se coloca el bobinado correspondiente.

En el interior del estátor va colocado el rotor que es un cilindro de chapa magnética fijado al eje. En su periferia van dispuestas unas ranuras en las que se coloca el bobinado correspondiente.

El entrehierro de estos motores es constante en toda su circunferencia y su valor debe ser el mínimo posible.

Circuitos eléctricos

Los dos circuitos eléctricos van situados uno en las ranuras del estátor (primario) y otro en las del rotor (secundario), que está cortocircuitado. El rotor en cortocircuito puede estar formado por bobinas que se cortocircuitan en el exterior de la maquina directamente o mediante reóstatos; o bien, puede estar formado por barras de cobre colocadas en las ranuras, que han de ser cuidadosamente soldadas a dos anillos del mismo material, llamados anillos de cortocircuito. Este conjunto de barras y anillos forma el motor jaula de ardilla.

También existen motores asíncronos monofásicos, en los cuales el estátor tiene un devanado monofásico y el rotor es de jaula de ardilla. Son motores de pequeña

potencia y en ellos, en virtud del *Teorema de Leblanc*, el campo magnético es igual a la suma de dos campos giratorios iguales que rotan en sentidos opuestos. Estos motores monofásicos no arrancan por si solos, por lo cual se debe disponer algún medio auxiliar para el arranque (fase partida: resistencia o condensador, polo blindado).

La velocidad de rotación del campo magnético o *velocidad de sincronismo* está dada por:

$$n_{sinc} = \frac{60f_e}{p}$$

Donde:

o f_e es la frecuencia del sistema, en Hz, y p es el número de par de polos en la máquina. Estando así la velocidad dada en revoluciones por minuto (rpm).

El voltaje inducción:

$$\mathcal{E}_{ind} = (\vec{v} \times \vec{B}).\ell$$

Donde:

- o \vec{v} : velocidad de la barra en relación con el campo magnético
- \circ $ec{B}$: vector de densidad de flujo magnético
- l: longitud del conductor en el campo magnético
- o X: representa la operación "producto vectorial"

Lo que produce el voltaje inducido en la barra del rotor es el movimiento relativo del rotor en comparación con el campo magnético del estátor.

Estructura de una máquina de inducción o asíncrona trifásica

El motor de inducción o asíncrono trifásico está conformado por:

- a) La carcasa.
- b) El estator.
- c) El entrehierro.
- d) El rotor

Figura 3.2. Motor de inducción

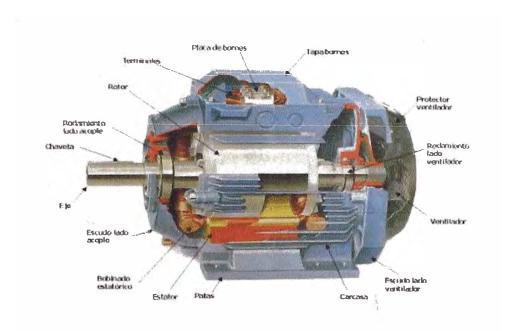


Figura 3.3. Componentes del motor de inducción

a) La carcasa.

La carcasa es la parte que protege y cubre al estator y al rotor, el material empleado para su fabricación depende del tipo de motor, de su diseño y su aplicación. Así pues, la carcasa puede ser:

- Totalmente cerrada
- Abierta
 - A prueba de goteo
- A prueba de explosiones

Las carcasas de los motores eléctricos trifásicos para uso industrial son fabricadas en los tamaños de carcasa 71 a 355, de acuerdo a las Normas IEC 72.

Las carcasas tamaños 56 y 63, son fabricadas en una aleación de aluminio inyectado a presión, proporcionando unidades compactas, livianas y de elevada

resistencia mecánica. Del tamaño 71 a 355 inclusive, son de fundición de hierro gris, de construcción sólida y robusta.

A fin de facilitar su manipuleo e instalación los motores construidos a partir del tamaño de carcasa 112 y hasta el 355 inclusive se proveen con cáncamo de izaje.

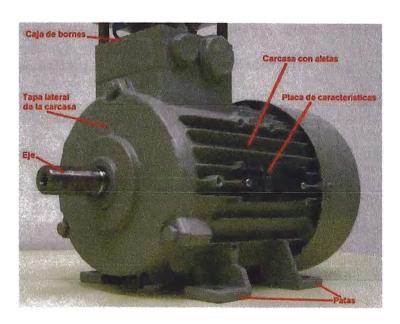


Figura 3.4. Motor inducción - carcasa

b) El estator.

El estator está formado por un apilamiento de chapas de acero al silicio que disponen de unas ranuras en su periferia interior en las que se sitúa un devanado trifásico distribuido, alimentado por una corriente del mismo tipo (corrientes trifásicas), de tal forma que se obtiene un flujo giratorio de amplitud constante distribuido senoidalmente por el entrehierro, que es el espacio que existe entre el estator y el rotor de la máquina eléctrica.

La masa magnética esta construido con chapas de acero de bajo tenor de carbono (con tratamiento térmico) o por chapas de hierro silicio, garantizando bajas perdidas y gran permeabilidad magnética.

Los materiales aislantes y los cables utilizados en el bobinado se encuentran dentro de las aislaciones clase "B" (130°C), clase "F"(155°C) o clase "H"(180°C), de acuerdo a lo establecido por la norma IEC 34.1.

Los estatores bobinados son impregnados doblemente con barniz aislante de la clase "H", siendo polimerizados en equipamientos adecuados, otorgando a los arrollamientos gran resistencia mecánica alta rigidez dieléctrica, protección a la abrasión, mejor transmisión de calor y resistencia a las vibraciones y cambios de temperatura.

Figura 3.5. Estator de un motor de inducción

c) El entrehierro.

Es el espacio que existe entre el diámetro interior del paquete estatórico y el diámetro exterior del rotor. La longitud del entrehierro (g) varía entre 0,2 a 1,5 mm para motores de potencia hasta 300 HP.

El entrehierro es muy importante porque ahí es donde se realiza la conversión de energía. La longitud del entrehierro debe ser lo más pequeño posible y generalmente viene limitada por consideraciones mecánicas (dilataciones, pandeos, etc.).

Si a un motor se le aumenta el entrehierro éste consume más energía reactiva en su operación y, por lo tanto, su factor de potencia disminuye.

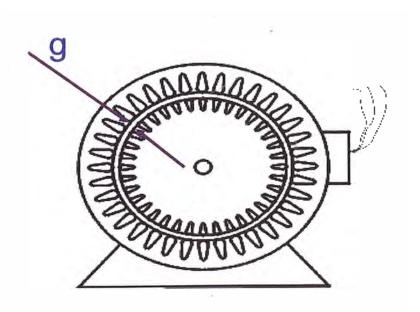


Figura 3.6. Entrehierro (g)

d) El rotor

Es la parte giratoria del motor de inducción o asíncrono trifásico, está fabricado de una estructura cilíndrica magnéticamente activa, montada en un eje (apilamiento de laminaciones del rotor), también construida de lámina de acero eléctrico troquelada con ranuras equidistantemente espaciadas localizadas en la periferia exterior, los cuales sirven para alojar los conductores del "devanado del rotor" que puede ser de dos tipos: Jaula de Ardilla o Rotor Bobinado.

El Rotor es el componente que gira (rota) en una máquina eléctrica. El Rotor esta construido por chapas, jaula rotórica o bobinado rotórico y el eje. Las chapas son de acero de bajo tenor de carbono o por chapas de hierro silicio, estampadas con herramientas progresivas de gran precisión. Los ejes son de acero SAE 1045 / 1060, siendo mecanizados y rectificados. El conjunto es balanceado dinámicamente, formando una unidad rígida y compacta.

3.2 FLUJO DE POTENCIA

El problema de flujo de carga consiste en el cálculo de flujo de potencia y tensiones de una red para condiciones específicas dadas, Es conveniente una representación monofásica desde que los sistemas de potencia son balanceados.

Para poder desarrollar un problema de flujo de carga deben existir 2 valores por cada barra, además, en una de las barras debeos especificar la magnitud de tensión y el ángulo de fase, y esta barra con estas características se llamara barra holgura y sirve para proveer la potencia activa y reactiva adicional para abastecer las pérdidas de transmisión, de acuerdo a lo anterior tenemos:

a. Una barra de holgura donde se especifica la magnitud de tensión y ángulo de

fase. Las incógnitas son las potencias activas y reactivas.

b. Barra PV o de tensión controlada donde se especifica la magnitud de tensión

y la potencia activa neta. Las variables desconocidas son la potencia reactiva

neta y el ángulo de fase.

c. Barra PQ o de carga donde se especifican las potencias activa y reactivas

netas. Las variables desconocidas son la magnitud de tensión y el ángulo de

fase. [2]

El análisis matemático de flujo de carga resulta ser una sistema de ecuaciones

algebraicas no lineales, debido a esto, la solución del problema se usan técnicas

de métodos numéricos.

Caso de Estudio: Los problemas de flujo de potencia se utilizan para analizar

grandes redes de transmisión y la compleja interacción entre estas y el mercado

de energía.

Para tener una operación exitosa de los sistemas de potencia en condiciones

normales balanceadas de estado estable trifásico, se requiere lo siguiente:

1. La generación abastece la demanda (carga) más las perdidas.

2. Las magnitudes de voltaje en las barras permanecen cercanas a sus valores

nominales.

^[2]RAFAEL PUMACAYO C. y RUBEN ROMERO L. Análisis de Sistemas de Potencia – Teoría y Problemas Resueltos

- Los generadores operan dentro de límites especificados de potencia real y reactiva.
- 4. Las líneas de transmisión y os transformadores no están sobrecargados. [3]

Existen diversos métodos de solución de flujo de potencia, como por ejemplo:

- o Soluciones directas de ecuaciones algebraicas lineales: Eliminación de Gauss
- Soluciones iterativas de ecuaciones algebraicas lineales: Jacobi y Gauss-Seidel
- o Soluciones iterativas de ecuaciones algebraicas no lineales: Newton-Raphson

Marco teórico: Curso de Maquinas Eléctricas Rotativas – Dictada por el Profesor Gregorio Aguilar Robles

^[3] J. DUCAN GLOVER MULUKUTLA Y S. SARMA. Sistemas de Potencia – Analisis y Diseño. 3ra Edicion.

CAPÍTULO IV

DESARROLLO DE LA SOLUCIÓN DEL PROBLEMA

4.1 COMPONENTES DEL ACCIONAMIENTO DEL MOLINO

4.1.1 MOTOR ELÉCTRICO

El motor seleccionado para el proyecto es de marca Siemens Industry, Inc mediante METSO (encargado del suministro y montaje del molino de bolas), de 1250 HP, tensión 2,300/4,000, trifásico, 60 Hz (ver Anexo 4).

Motor de molino de bolas

Sistema de accionamiento : Arrancador con autotransformador;

o Tag del motor : 430-ML-002;

o Potencia efectiva de salida : 1,250 HP;

o Factor de servicio a 4,770 msnm : 1.15;

o Clase de aislamiento : F;

o Incremento de la temperatura : F(a plena carga)

o Encerramiento : IP 24

o Nivel de eficiencia : NEMA Premium

o Nivel de potencia acústico : 84 dB (máximo)

Rodamientos

o Tipo : Antifricción

Método de lubricación : Auto lubricado

o Tiempo de vida : L-10, minimo de 100,000 h para

acoplamiento directo

Accesorios

o Calefactores de espacio : Tensión 230 Vac

o RTDs para bobinados : 6-2 por fase

o RTDs para rodamiento : 2-1 por fase

4.2 ESTUDIO DE FLUJO DE CARGA

4.2.1. SISTEMA ELÉCTRICO

Descripción general de las subestaciones

La subestación eléctrica servirá para realizar la transformación de 50 kV a 22,9 kV a fin de alimentar el sistema de distribución de media tensión. La capacidad instalada de esta subestación es de 14 MVA pudiendo ser 18 MVA si se utiliza ventilación forzada en el transformador principal.

Dos circuitos del switchgear de 22,9 kV que se encuentran en dicha subestación alimentan al proyecto mediante 2 celdas aisladas en gas a la subestación eléctrica Planta Concentradora.

La subestación eléctrica Planta Concentradora cuenta con celdas en 22,9 kV las cuales alimentan al sistema de distribución de la planta concentradora compuesta por tres subestaciones transformadoras, las cuales se describen a continuación:

La primera subestación transformadora (980-TXD-001) tiene una capacidad máxima de 3 MVA y transforma la tensión de 22,9 a 0,48 kV para su uso en

alimentación de los CCM's siguientes: 400-MCL-001 (chancado colección de polvos), 430-MCL-001 (molienda), 510-MCL-001 (flotación bulk), 510-MCL-002 (flotación cobre-plomo distribución de aire a planta de instrumentación).

La segunda subestación transformadora (980-TXD-002) tiene una capacidad máxima de 3 MVA y transforma la tensión de 22,9 a 0,48 kV para su uso en alimentación de los CCM's 510-MCL-003 (flotación zinc), 530-MCL-001 (espesamiento, filtrado de concentrado, planta de cal y balanza de camiones), 560-MCL-001 (preparación de reactivos), 530-MCL-001 (cargas críticas).

La tercera subestación transformadora (980-TXD-003) tiene una capacidad máxima de 5 MVA y transforma la tensión de 22,9 a 4,16 kV para su uso en alimentación de las cargas 980-CQM-001(banco de condensadores), 430-DV-001M (transmisión molino de barras), 430-DV-002M (transmisión molino de bolas), 400-CR-002M (chancadora secundaria), 400-CR-003M (chancadora terciaria), 570-BL-001M (soplador de aire), 570-BL-002M (soplador de aire reserva), además de la línea aérea en 4,16 kV que alimentan el área de espesamiento de relaves y las estaciones de bombeo de agua y filtraciones de relaves.

Los niveles de cortocircuito trifásico y monofásico en el punto de conexión en 50 kV fueron proporcionados por CMA para un periodo estimado de máxima generación al año 2022:

Tabla 4-1: Potencia de cortocircuito en el año 2012 y 2022

	Año 2012		Año 2022	
	Corriente (kA)	Potencia de cortocircuito (MVA)	Corriente (kA)	Potencia de cortocircuito (MVA)
Trifásica	2,29	198,46	2,90	251,03
Monofásica	1,89	54,46	2,68	77,31

Datos de los equipos principales

Los datos de los principales equipos usados en el presente estudio se describen en las tablas siguientes.

Tabla 4-2: Barras principales

Barra	Tensión (kV)	Descripción
		Punto de conexión al sistema
Deriv PALPA50	50	interconectado.
B-01	22,9	Barra de 22,9 kV alimentación a GIS 22,9 kV 980-SGM-001.
B-02	22,9	Barra de 22,9 kV alimentación a transformadores 980-TXD-001 y 980-TXD-002.
B-03	22,9	Barra de 22,9 kV alimentación a transformador 980-TXD-003.
B-04	0,48	Barra de 0,48 kV alimentación a CCM's de baja tensión (400-MCL-001, 430-MCL-001, 510-MCL-001, 510-MCL-002).
B-05	0,48	Barra de 0,48 kV alimentación a CCM's de baja tensión (510-MCL-003, 530-MCL-001, 560-MCL-001, 980-ATL-001).
B-06	4,16	Barra de 4,16 kV alimentación a CCM de media tensión (430-DV-001M, 430-DV-002M, 400-CR-002M, 400-CR-003M, 570-BL-001M, 570-BL-002M).

Tabla 4-3: Datos del transformador

Tag.	Potencia (MVA)	Relación de transform. (kV)	Regulación (%)	Grupo de conexión	Z% (Nota 1)	Resistencia neutro	Descripción
980-TXD- 001	3	22,9 / 0,48	±2x2,5	Dynl	6	No	Transformador alimentador Switchgear BT 980-SGL-001
980-TXD- 002	3	22,9 / 0,48	±2x2,5	Dyn1	6	No	Transformador alimentador Switchgear BT 980-SGL-002
980-TXD- 003	5	22,9 / 4,16	±2x2,5	Dyn1	6	2,4 kV 50 A	Transformador alimentador Switchgear MT 980-SGM-002
200-TXD- 001	0,5	4,16/0,48	±2x2,5	Dynl	4	No	Transformador alimentador CCM BT 200-MCL-001
200-TXD- 002	0,075	4,16/0,48	±2x2,5	Dynl	4	No	Transformador alimentador CCM BT 200-MCL-002
710-TXD- 001	0,15	4,16/0,48	±2x2,5	Dynl	4	No	Transformador alimentador CCM BT 710-MCL-001
710-TXD- 002	0,045	4,16/0,48	±2x2,5	Dynl	4	No	Transformador alimentador CCM BT 710-MCL-002

Nota

1.- Valores típicos usados.

Tabla 4-4: Datos de líneas de distribución 4,16 kV

Descripción	R1	X1	R0	X0	Capacidad
	(ohm/km)	(ohm/km)	(ohm/km)	(ohm/km)	(A) (*)
AAAC- 70mm²	0,484	0,425	0,4783	1,0688	161

(*) Valores de conducción aproximados para temperatura del conductor de 75 °C, temperatura ambiente de 25°C, con sol y viento.

Tabla 4-5: Líneas de distribución 4,16 kV

Tramos	Código	Longitud (m)	Desde	Α
L.T. N°	AAAC-70 mm²	445	Salida circuito C-8 de CCM de media tensión 980-MCM-001	Derivación a sala eléctrica 200-ER-001 espesamiento de relaves
L.T. N° 2	AAAC-70 mm²	770	Derivación a sala eléctrica 200-ER-001 de espesamiento de relaves	Derivación a subestación unitaria 200-US-001 agua de filtraciones
L.T. N°	AAAC-70 mm²	330	Derivación a subestación unitaria 200-US-001 agua de filtraciones	Derivación a subestación unitaria 710-US-002 Agua potable
L.T. N° 4	AAAC-70 mm²	490	Derivación a subestación unitaria 710-US-002 Agua potable	Subestación unitaria 710- US-002 Agua fresca

Tabla 4-6: Principales motores 4.16 kV

Carro	Barra	Voltaje	HP	Efici.	fdp	X"	X'	X/R	PC
Carga	Darra	, (kV)	пР	(%)	(%)	(%)	(%)	A/K	(%)
430-DV-001M	B06	4,16	1 250	93,7	92,46	15,39	23,1	26,23	85
430-DV-002M	B06	4,16	1 250	93,7	92,46	15,39	23,1	26,23	85
400-CR-002M	B06	4,16	300	92,96	92,0	18,46	46,2	13,49	80
400-CR-003M	B06	4,16	400	93,1	92,46	15,39	23,1	26,23	80
570-BL-001M	B06	4,16	300	93,1	92,0	18,46	46,2	13,49	80
570-BL-002M	B06	4,16	300	93,1	92,0	18,46	46,2	13,49	80

Tabla 4-7: Cargas fijas

Centro control de motores	Barra	Voltaje (kV)	P. activa (kW)	P. Reactiva (kVAr)	% PC
400-MCL-001	B04	0,48	534	335	85
430-MCL-001	B04	0,48	420	264	85
510-MCL-001	B04	0,48	507	320	85
510-MCL-002	B04	0,48	351	229	84
510-MCL-003	B05	0,48	481	307	84
530-MCL-001	B05	0,48	596	383	84
560-MCL-001	B05	0,48	409	281	85
530-MCL-002	B06	0,48	273	179	84

%PC: Porcentaje de plena carga

Tabla 4-8: Banco de condensadores

Código	Barra	Capacidad (MVAr)	Descripción
980-CQM-001	B06	1,6	Banco de condensadores conectado a la barra de 4.16 kV del CCM de media tensión 980-MCM-001

La máxima demanda se muestra en el Anexo 7.

Herramienta computacional

Las simulaciones de operación del sistema eléctrico materia del presente estudio se efectuaron con la ayuda del programa de análisis de sistemas eléctricos ETAP V7.5.2, dicho programa está especializado en simulación de flujo de carga y de corrientes de cortocircuito bajo diversos escenarios y condiciones de las cargas.

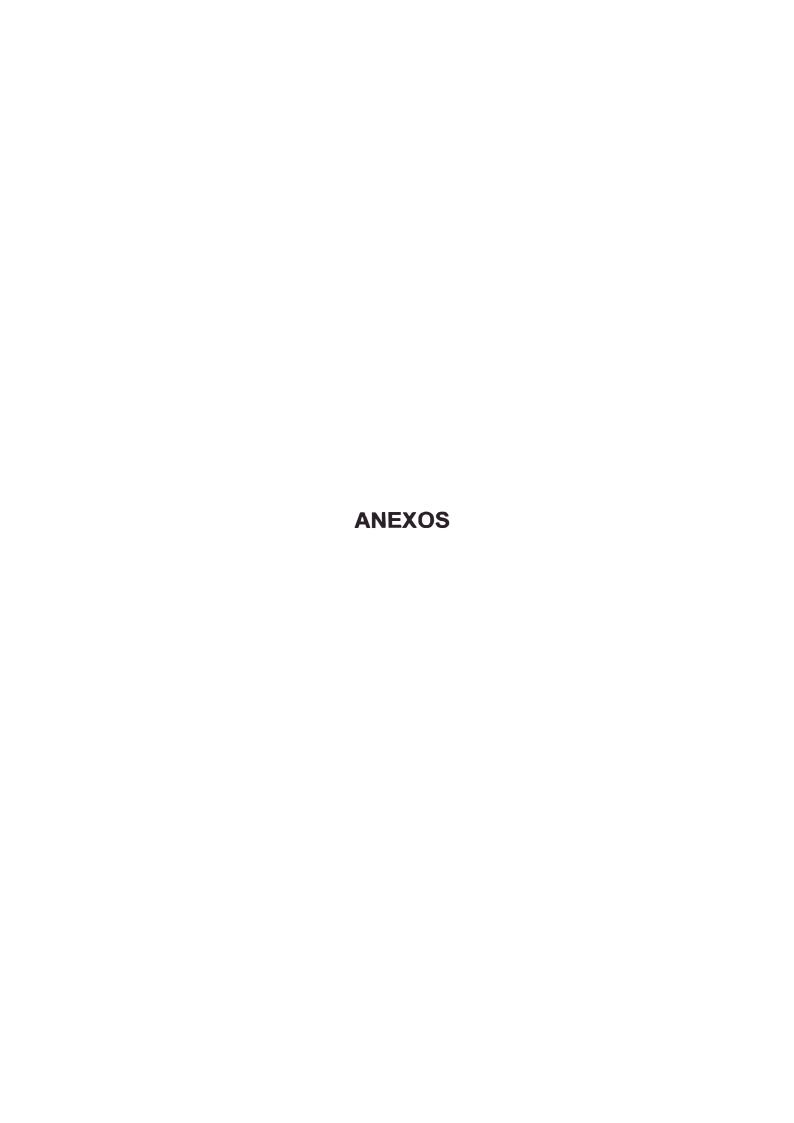
Resultados del análisis de flujo de carga

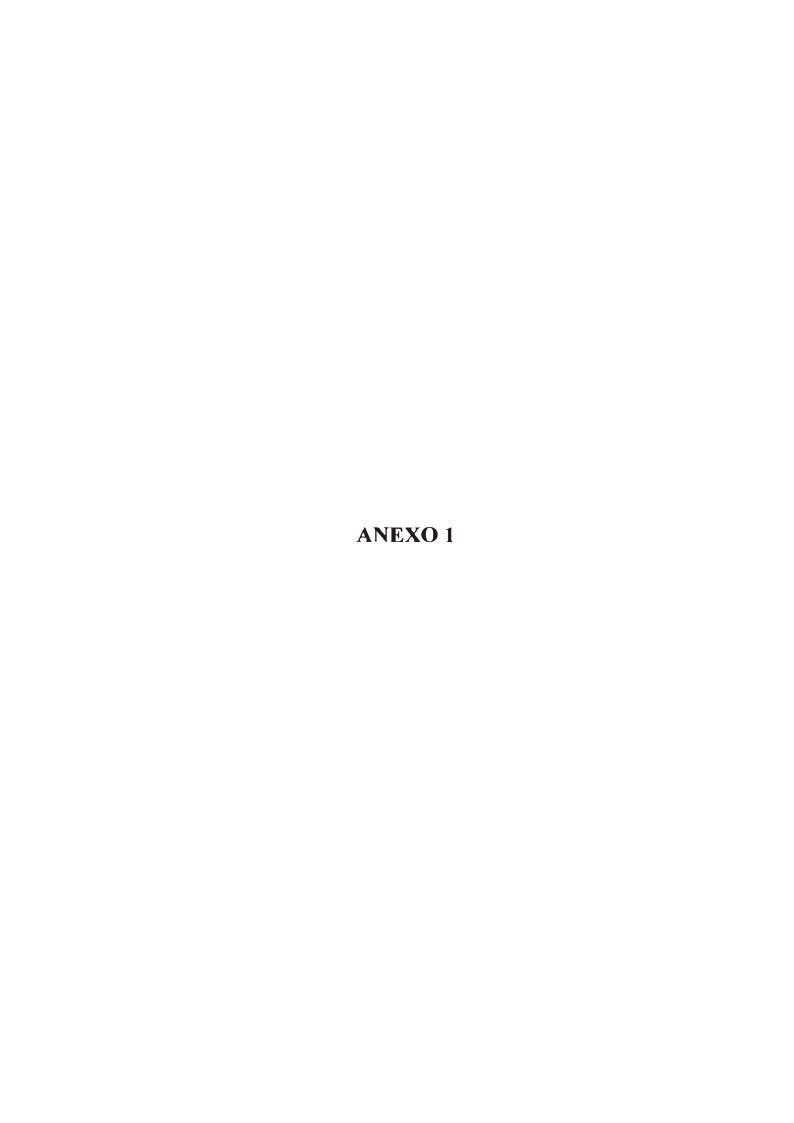
En la siguiente tabla se resume los niveles de tensión obtenidos en las diferentes barras del sistema eléctricos (para visualizar los resultados del programa ETAP ver Anexo 5):

Tabla 4-9: Resultados análisis de flujo de carga

Barra	Tipo	Voltaje (kV)	Factor de potencia (%)	% V
Deriv PALPA50	Swing bus	50	91,7	0
B-01	Node/Busbar	22,693	93,2	0,205
B-02	Node/Busbar	22,685	81,9	0,213
B-03	Node/Busbar	22,689	100,0	0,209
B-04	Node/Busbar	0,471	84,4	0,009
B-05	Node/Busbar	0,472	84,0	0,008
B-06	Node/Busbar	4,106	90,4	0,053
Vértice A5	Node/Busbar	4,064	83,8	0,094
200-ER-001	Node/Busbar	0,469	84,7	0,011
Vértice A8	Node/Busbar	4,038	84,3	0,118
200-US-001	Node/Busbar	0,471	84,9	0,009
Vértice A8-1	Node/Busbar	4,031	84,2	0,125
710-US-002	Node/Busbar	0,471	85,0	0,009
Vértice A8-2	Node/Busbar	4,024	84,1	0,132
710-US-001	Node/Busbar	0,469	84,9	0,011

Tabla 4-10: Capacidad de los transformadores y posición de taps


Nombre	Código	Capacidad máxima	Car		<i>Tap</i> Primario	Tap Secundario	
		(MVA)	(MVA)	%			
	TRAFO	3	2,307	76,9 %	-2,500	1,000	
980-TXD-001	22,9/0,48 kV	3	2,507	70,5 70	-2,500	1,000	
	TRAFO	3	2,042	68,1 %	-2,500	1,000	
980-TXD-002	22,9/0,48 kV	3	2,042	00,1 /0	-2,500	1,000	
	TRAFO	5	3,264	65,3 %	1,000	1,000	
980-TXD-003	22,9/4,16 kV)	3,204	05,5 70	1,000		
	TRAFO	0,5	0,359	71,9 %	-2,500	1,000	
200-TXD-001	4,16/0,48 kV	0,5	0,559	71,9 70	-2,500	1,000	
	TRAFO	0,2	0,051	68,4 %	-2,500	1,000	
200-TXD-002	4,16/0,48 kV	0,2	0,031	00,4 70	-2,500	1,000	
	TRAFO	0,2	0,103	69,0 %	-2,500	1,000	
710-TXD-001	4,16/0,48 kV	0,2	0,103	09,0 70		1,000	
	TRAFO	0,045	0,022	49,1 %	-2,500	1,000	
710-TXD-002	4,16/0,48 kV	0,043	0,022	77,1 70		1,000	


CONCLUSIONES

- o De la Tabla 4-9 se tiene que el nivel de tensión en todas las barras se encuentran en el rango de caída de tensión (5%). Por lo tanto, concluimos que si se puede implementar un accionamiento de molinos de bolas, garantizando que la variación de tensión en la barra no sea mayor que el 5%.
- De acuerdo a lo mostrado en la Tabla Nº 4-10 no se observa problemas de sobrecarga en los transformadores.
- La capacidad del conductor de aleación de aluminio (AAAC) de 70 mm² de la línea aérea que sale del CCM MT 4.16 kV y que alimenta a la sala eléctrica espesamiento de relaves, subestación unitaria de agua de filtraciones, agua potable y agua fresca es de 161 A que corresponde a una potencia de 1.16 MVA en 4.16 kV, la demanda considerada para el escenario de análisis es de 598 kVA (51.5%) con lo cual se deja reserva para futuras ampliaciones, sin embargo durante el arranque de la carga más alejada se tiene una caída de tensión de 15 %.

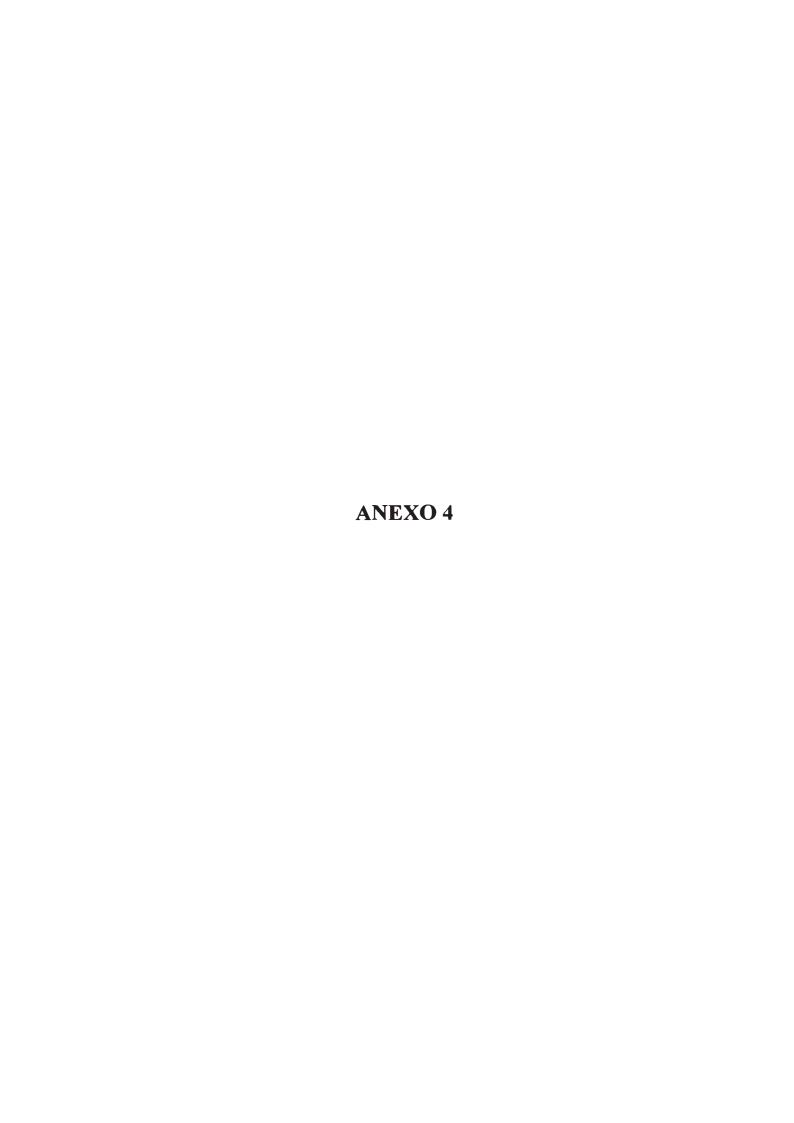
BIBLIOGRAFÍA

- 1. Análisis de Sistemas de Potencia Teoría y Problemas Resueltos Rafael Pumacayo C. y Ruben Romero L.
- 2. Sistemas de Potencia Analisis y Diseño 3ra Edicion J. Duncan Glover Mulukutla y S. Sarma
- 3. Curso de Maquinas Eléctricas Rotativas Dictada por el Profesor Gregorio Aguilar Robles
- 4. Código Nacional de Electricidad Suministro 2 011
- 5. http://es.wikipedia.org/wiki/Motor_s%C3%ADncrono
- 6. http://www.tuveras.com/motorsincrono/motorsincrono.htm

	MER QUII	O DE PO	DESCRIPCIÓN	POTENCIA ESTIMADA (hp)		CARACTERÍSTICAS	OBSERVACIONES
430	DC	001	COLECTOR DE POLVOS INSERTABLE	5.00	3.73	MODELO: GS4/BINVENT MARCA: FARR APC	UBICADO SOBRE TOLVA DE FINOS
430	DC	002	COLECTOR DE POLVOS INSERTABLE	5.00	3.73	MODELO: GS4/BINVENT MARCA: FARR APC	UBICADO SOBRE TOLVA DE FINOS
430	СВ	001	FAJA TRANSPORTADORA	40.00	29.83	ANCHO: 30" LONGITUD: 33 m ALTURA: 8.3 m	ALIMENTA A FAJA TRANSPORTADORA 430-CB-002
430			FAJA TRANSPORTADORA (REVERSIBLE)	10.00	7.46	ANCHO: 36" LONGITUD: 12 m ALTURA: 0 (HORIZONTAL)	ALIMENTA A LOS SILOS DE FINOS
$\overline{}$	FE		ALIMENTADOR DE FAJA	15.00	11.19	DIMENSIONES: 36" x 9.495 m	ALIMENTA A FAJA 430-CB-003
	FE		ALIMENTADOR DE FAJA	15.00	11.19	DIMENSIONES: 36" x 9.495 m	ALIMENTA A FAJA 430-CB-003
_	FE	_	ALIMENTADOR DE FAJA	15.00	11.19	DIMENSIONES: 36" x 9.495 m	ALIMENTA A FAJA 430-CB-003
	FE CB	004	ALIMENTADOR DE FAJA FAJA TRANSPORTADORA	15.00	7.46	DIMENSIONES: 36" x 9.495 m ANCHO: 36" LONGITUD: 10 m	ALIMENTA A FAJA 430-CB-003 ALIMENTA A MOLINO DE BARRAS
430	СВ	004	FAJA TRANSPORTADORA	10.00	7.46	ANCHO: 36" LONGITUD: 16 m	ALIMENTA A MOLINO DE BARRAS
				-		ALTURA: 1 m	
430	ВА	001	BALANZA	0.03	0.02	MARCA: MERRICK MODELO: 375 PRECISIÓN: ±0.5.	UBICADA EN FAJA TRANSPORTADORA N°430-CB-004
430	DV	001	TRANSMISIÓN MOLINO DE BARRAS	1250.00	932.12		INCLUYE: - UN MOTOR DE 1250 HP - ACOPLE FLEXIBLE - REDUCTOR DE VELOCIDAD - ACOPLE NEUMÁTICO (AIR CLUTCH) - INCHING DRIVE
430	LS	001	SISTEMA DE LUBRICACIÓN DE LOS TRUNNIONS MOLINO DE BARRAS	86.71	64.66		INCLUYE: -2 MOTORES DE 5 HP (1 en operación + 1 stend by) -1 MOTOR DE 5 HP -1 MOTOR DE 4 HP -4 RESISTENCIAS DE 1 KW C/U -1 RESISTENCIA DE 1 KW -1 MOTOR DE 30 HP -1 MOTOR DE 7.5 HP -1 CALEFACTOR DE 3 HP -1 MOTOR DE 10 HP -1 MOTOR DE 3 HP
430	LB	001	LANZADOR DE BARRAS	10.00	7.46		T MOTOR BEST
430		001A	BOMBA ALIMENTACIÓN NIDO DE CICLONES	200.00	149.14	MARCA: WARMAN MODELO: 150 MCC TIPO: CENTRIFUGA HORIZONTAL	
430	PU	00 IB	BOMBA ALIMENTACIÓN NIDO DE CICLONES (EN ESPERA)	200,00	149.14	MARCA: WARMAN MODELO: 150 MCC TIPO: CENTRIFUGA HORIZONTAL	
430	SA	001	MUESTREADOR DESCARGA MOLINO DE BARRAS	3.49	2.60	MARCA: TECPROMIN MODELO: H2H500	INCLUYE: - 1 MOTOR DE 1.5 KW - 1 MOTOR DE 1.1 KW
430	DV	002	TRANSMISIÓN MOLINO DE BOLAS	1250.00	932.12		INCLUYE: - UN MOTOR DE 1250 HP - ACOPLE FLEXIBLE - REDUCTOR DE VELOCIDAD - ACOPLE NEUMÁTICO (AIR CLUTCH) - INCHING DRIVE
430	LS	002	SISTEMA DE LUBRICACIÓN DE LOS TRUNNIONS MOLINO DE BOLAS	43.71	32.59		INCLUYE: - 2 MOTORES DE 5 HP (1 en operación + 1 stand by) - 1 MOTOR DE 5 HP - 1 MOTOR DE 4 HP - 4 RESISTENCIAS DE I KW C/U - 1 RESISTENCIA DE 1 KW - 1 MOTOR DE 7.5 HP - 1 CALEFACTOR DE 7.5 HP - 1 CALEFACTOR DE 3 HP
430	FC	001	CELDA FLASH	40.00	29.83	MODELO: SK - 240	INCLUYE UN (01) MOTOR DE 40 HP
	CN		GRÚA PUENTE MOLIENDA PRIMARIA Y SECUNDARIA	57.13	42.60	LUZ: 18.7 m CARRERA: 44 m ALT. IZAJE: 22.4 m	INCLUYE: 4 MOTORES DE 1.1 KW 1 MOTOR DE 36.0 KW 2 MOTORES DE 1.1 KW
430	PU	002	BOMBA SUMIDERO ÁREA DE MOLIENDA	20.00	14.91	MARCA: WARMAN MODELO: SHW 75-350 TIPO: SUMERGIBLE	

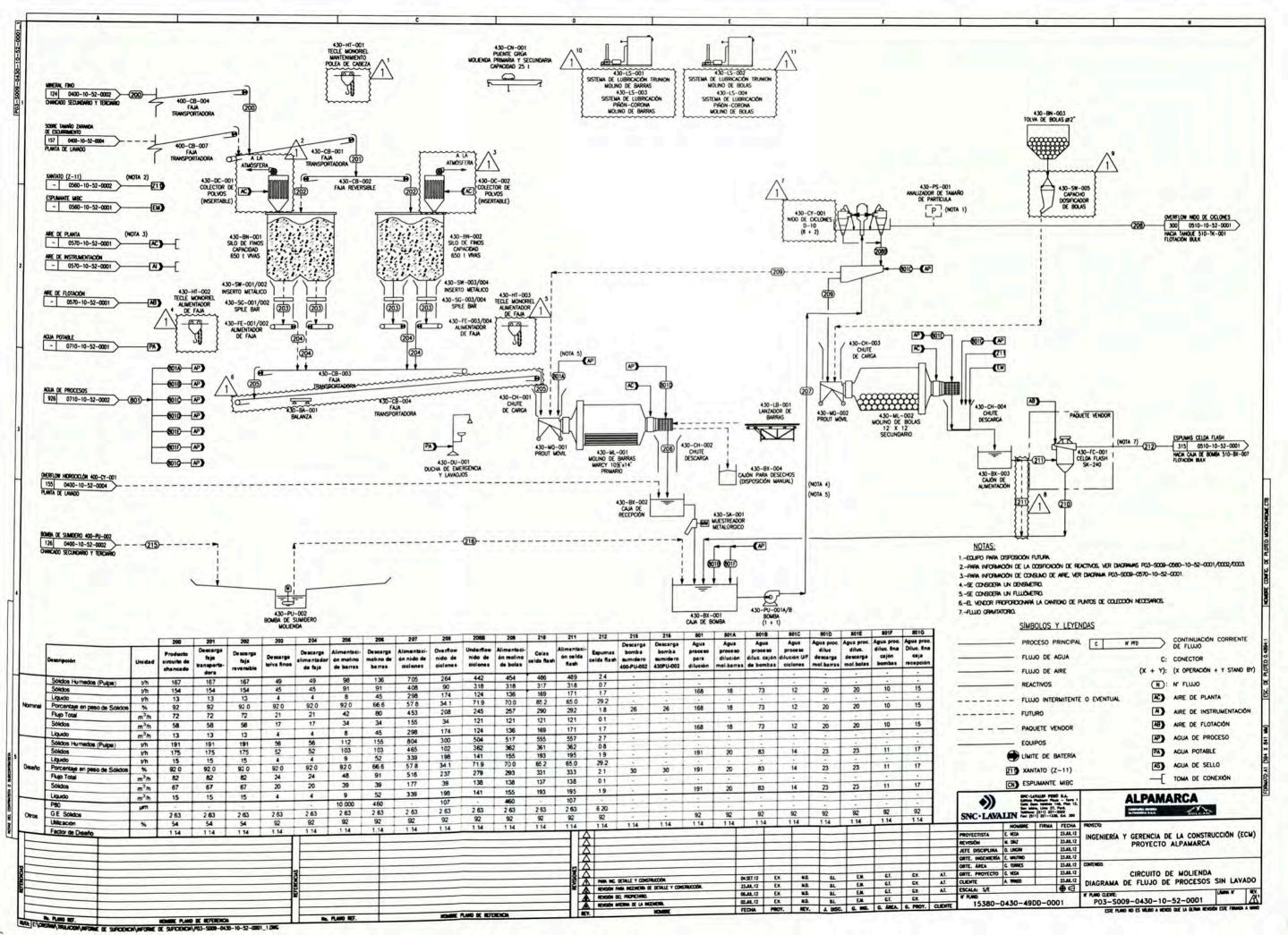
Nº	Número de equipo	Descripción	Cant.	Un.	Características eléctricas
	ÁREA 980	Área de subestación eléc	ctrica pl	anta co	ncentradora
1.01	980-ER-001	Sala eléctrica prefabricada tipo contenedor de 2 niveles	1	Un	Long. 27 m, ancho 5.5 m, altura 8.5 m
1.02	980-SGM-001	Celdas aisladas en gas SF6, tipo metal- enclosed	1	Glb	22.9 kV, 25 kA, 1,200 A, 60 Hz
1.03	980-TXD-001	Transformador de distribución sumergido en aceite	1	Un	3 MVA, Tipo ONAN, 22.9 / 0.48 kV, 60 Hz, Dyn1
1.04	980-TXD-002	Transformador de distribución sumergido en aceite	1	Un	3 MVA, Tipo ONAN, 22.9 / 0.48 kV, 60 Hz, Dynl
1.05	980-TXD-003	Transformador de distribución sumergido en aceite	1	Un	5 MVA, Tipo ONAN, 22.9 / 4.16 kV, 60 Hz, Dyn1
1.06	980-GRO-001	Resistencia de puesta a tierra	1	Un	2.4 kV, 50 A, 10 s
1.07	980-SGM-002	Switchgear en media tensión aislado en aire tipo metal-clad	1	Un	4.16 kV, 1,200 A, 60 Hz, 25 kA
1.08	980-MCM-001	Centro de control de motores de media tensión	1	Glb	4.16 kV, 1,200 A, 60 Hz, 25 kA
1.09	980-CQM-001	Banco de compensación reactiva	1	Un	4.16 kV, 60 Hz, 1,600 kVAR
1.10	980-SGL-001	Switchgear en baja tensión aislado en aire tipo metal-enclosed	1	Un	480 V, 4,000 A, 60 Hz, 65 kA
1.11	980-SGL-002	Switchgear en baja tensión aislado en aire tipo metal-enclosed	1	Un	480 V, 4,000 A, 60 Hz, 65 kA
1.12	980-GE-001	Grupo diesel de emergencia	1	Un	480 V, 350 kW @ 4,770 msnm, 60 Hz
1.13	980-ATL-001	Tablero de transferencia	1	Un	800 A, 480 V, 65 kA
1.14	980-BSM-001	Ducto de barras	1	Glb	480 V, 4,000 A, 60 Hz
1.15	980-BSM-002	Ducto de barras	1	Glb	480 V, 4,000 A, 60 Hz
1.16	400-MCL-001	Centro de control de motores 480 V	1	Glb	480 V, 1,200 A, 65 kA, NEMA 12

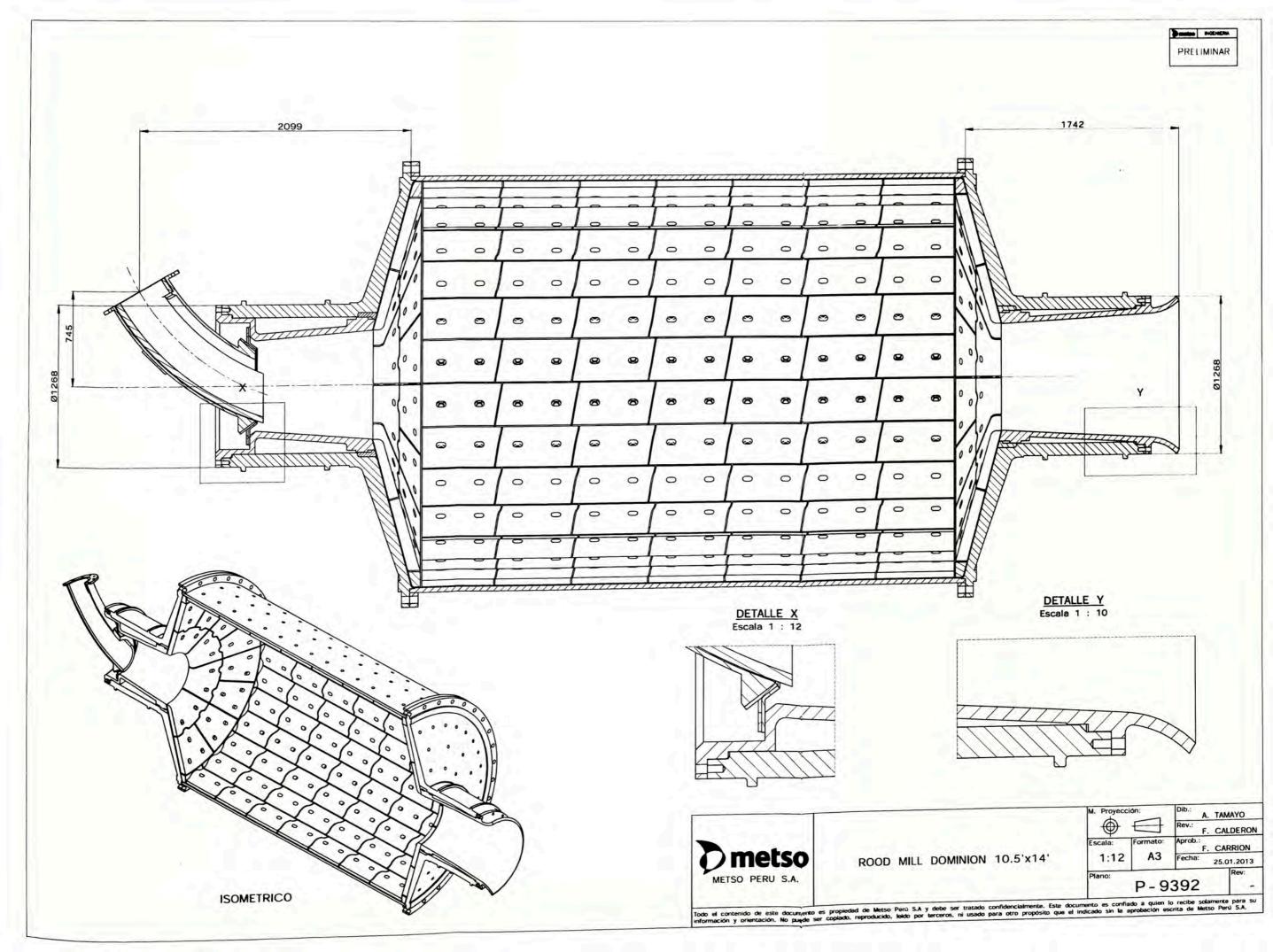
1.17	430-MCL-001	Centro de control de motores 480 V	1	Glb	480 V, 1,200 A, 65 kA, NEMA 12
1.18	510-MCL-001	Centro de control de motores 480 V	1	Glb	480 V, 1,200 A, 65 kA, NEMA 12
1.19	510-MCL-002	Centro de control de motores 480 V	1	Glb	480 V, 1,200 A, 65 kA, NEMA 12
1.20	510-MCL-003	Centro de control de motores 480 V	1	Glb	480 V, 1,200 A, 65 kA, NEMA 12
1.21	530-MCL-001	Centro de control de motores 480 V	1	Glb	480 V, 1,200 A, 65 kA, NEMA 12
1.22	530-MCL-002	Centro de control de motores 480 V	1	Glb	480 V, 800 A, 65 kA, NEMA 12
1.23	560-MCL-001	Centro de control de motores 480 V	1	Glb	480 V, 1,200 A, 65 kA, NEMA 12
1.24	980-TXA-001	Transformador seco de servicios auxiliares	1	Un	300 kVA, 480 / 400-230 V, 3Ø
1.25	980-TD-001	Tablero de servicios auxiliares C.A.	1	Glb	400/230 V, 60 Hz, 300 A, 14 kA, NEMA 12
1.26	980-TD-002	Tablero de cargas auxiliares y alumbrado exterior	1	Glb	400/230 V, 60 Hz, 150 A, 14 kA, NEMA 12
1.27	980-PDC-001	Tablero de distribución de corriente continua	1	Un	125 Vdc, 100 A, 14 kA, NEMA 12
1.28	980-BAC-001	Cargador de baterías	1	Un	Entrada 400 V trifásico, salida 125 Vdc, 40 A.
1.29	980-BAT-001	Banco de baterías	1	Un	125 Vdc, 140 Ah, libre de mantenimiento, encerramiento, NEMA 4, Tipo Ni-Cd
	ÁREA 400	Área de chancado prima	ario, sec	undario)
2.01	400-LPA-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 30 A
2.02	400-LPA-002	Tablero de distribución	1 F.	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 50 A

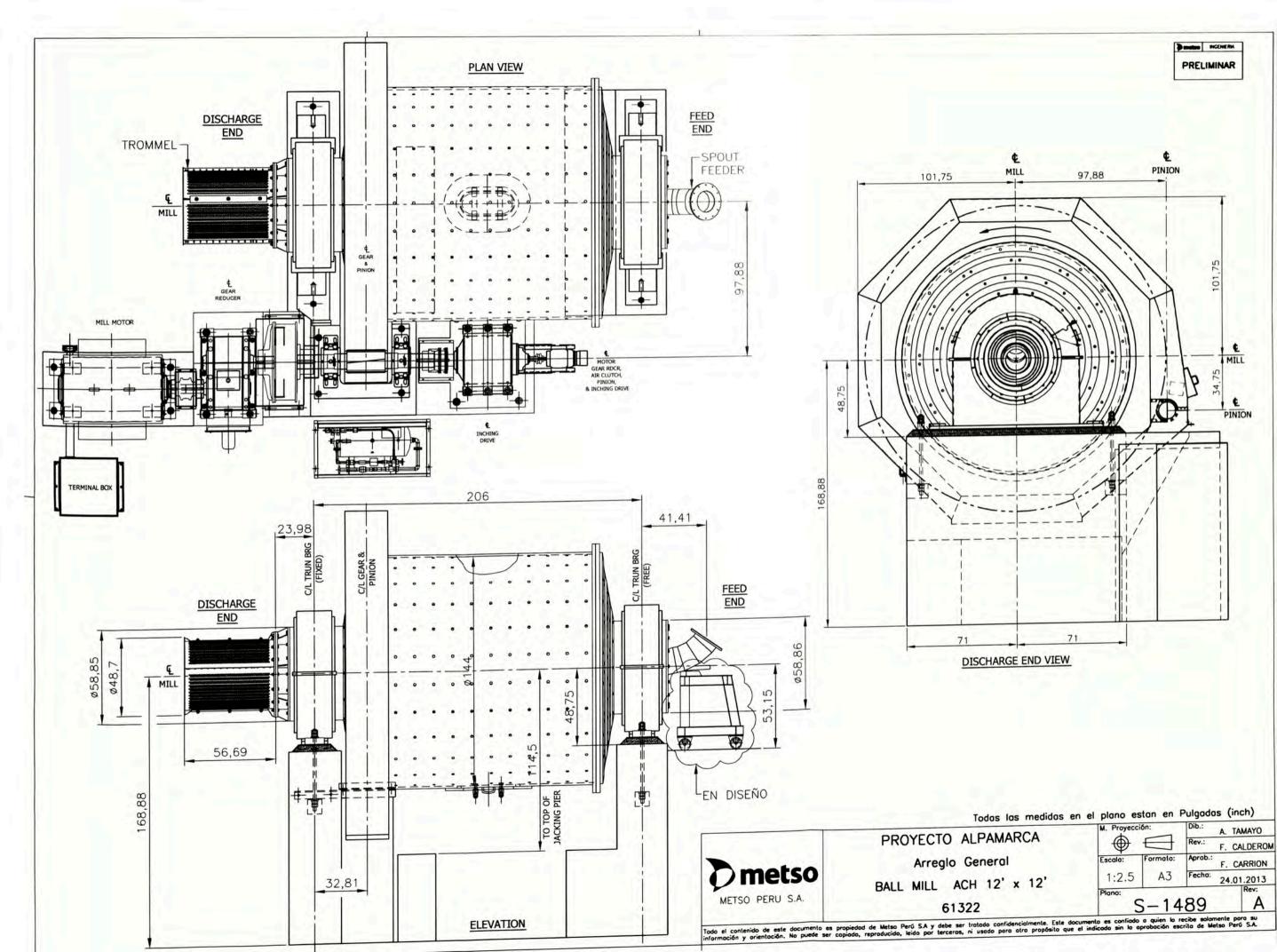

	<u> </u>	·						
2.03	400-LPA-003	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 30 A			
	ÁREA 430	Área de molienda y clas	ificacióı	ficación				
3.01	430-LPA-001	Tablero de distribución 400/230 V, 60 Hz, 100 A, 14 Ka	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 40 A			
	ÁREA 430	Área de tolva de finos						
4.01	430-LPA-002	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 30 A			
	ÁREA 510	Área de flotación						
5.01	510-LPA-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x50 A			
5.02	510-LPA-002	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x30 A			
	ÁREA 530	Área de espesamiento y camiones y taller de ma			centrados, balanza de			
6.01	530-TXA-001	Transformador tipo seco	1	Glb	75 kVA, 480 / 400-230 V, 3Ø			
6.02	530-LPA-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 40 A			
6.03	530-LPA-002	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 30 A			
6.04	530-LPA-003	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 12 Interruptor principal 3 x 20 A			

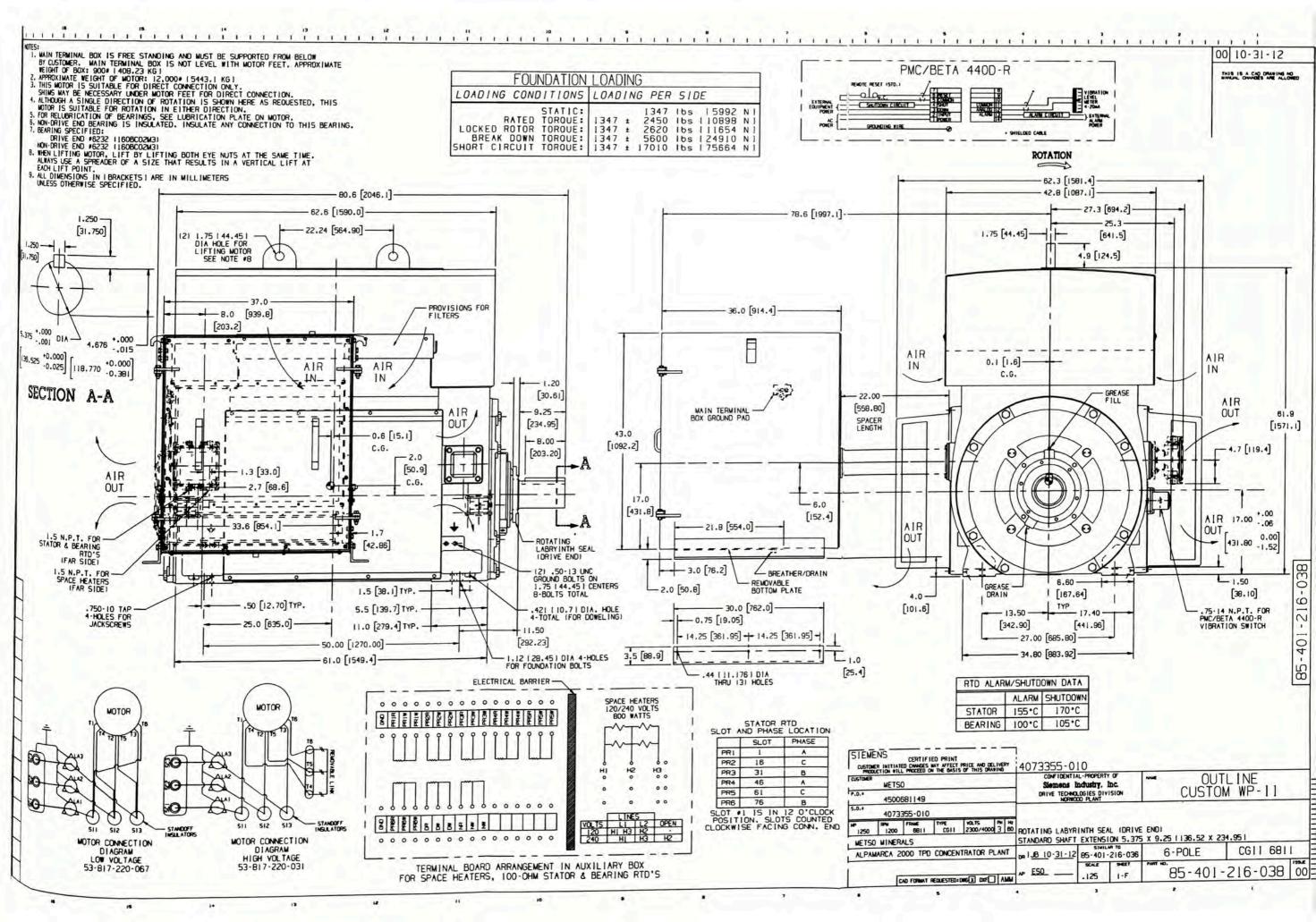
6.05	000-LPA-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 12 Interruptor principal 3 x 30 A
	ÁREA 560	Área de preparación y o	losificac	ión de 1	reactivos
7.01	560-TXF-001	Transformador tipo seco	1	Glb	15 kVA, 480 / 400-230 V, 3Ø
7.02	560-TD-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4X, Interruptor principal 3 x 30 A
7.03	560-LPA-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4X, Interruptor principal 3 x 30 A
7.04	560-LPA-002	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4X, Interruptor principal 3 x 25 A
	ÁREA 561	Área de almacén de rea	ctivos		•
8.01	561-LPA-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 30 A
	ÁREA 562	Área planta de cal			
9.01	562-LPA-001	Tablero de distribución	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 4, Interruptor principal 3 x 30 A
	ÁREA 200	Área de espesador de re	elaves		
10.01	200-TXD-001	Transformador de distribución sumergido en aceite	1	Un	500 KVA, 4.16 / 0.48 kV, ONAN, 60Hz, Dyn1
10.02	200-ER-001	Sala electrica prefabricada tipo contenedor	1	Un	Long. 7.5 m, ancho 2.5 m, altura 3 m
10.03	200-MCL-001	Centro de control de motores 480 V	1	Un	480 V, 800 A, 65 kA, NEMA 4.
10.04	200-TXA-001	Transformador seco	1	Un	20 KVA, 480 / 400-230 V

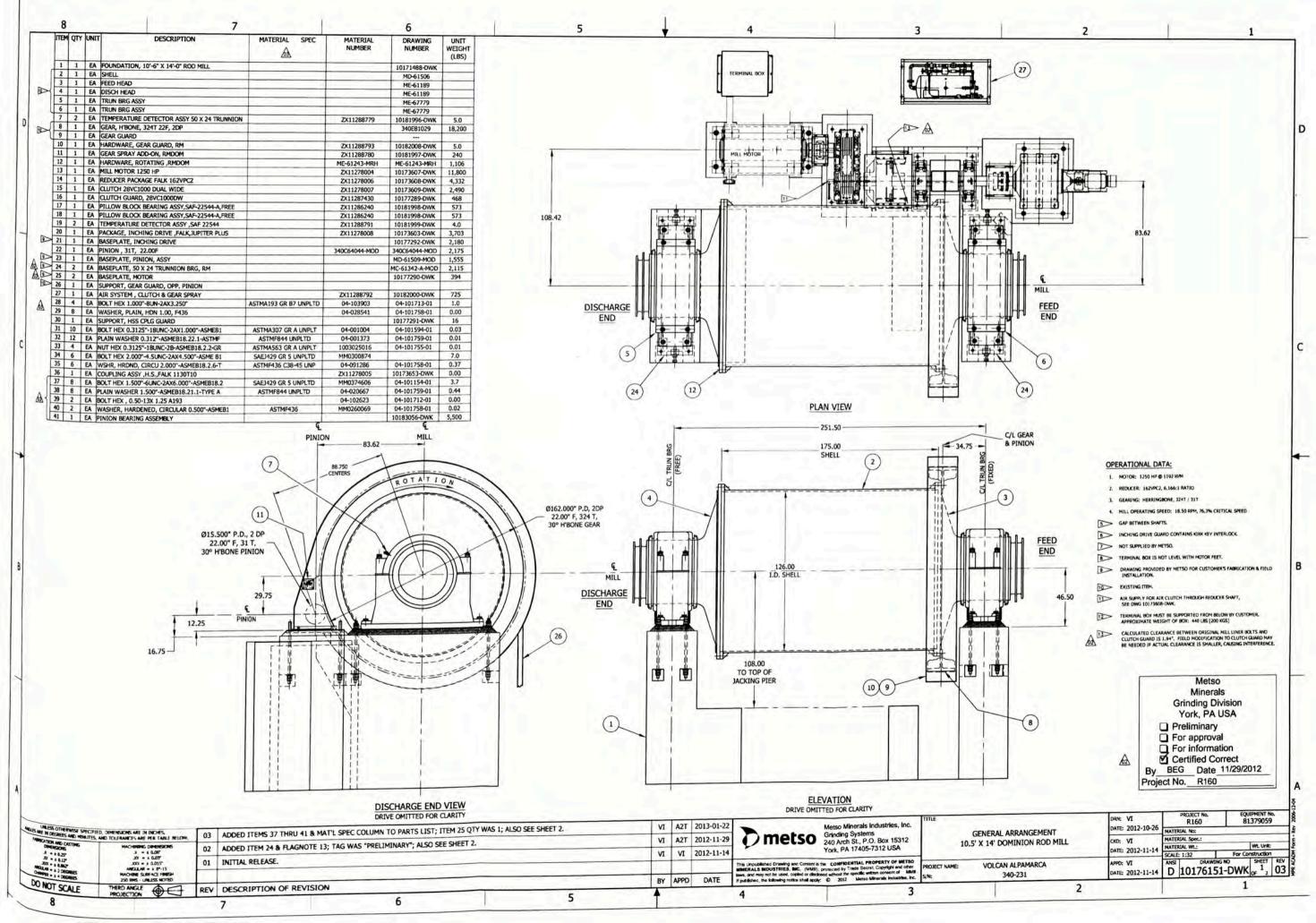
10.05	200-LPA-001	Tablero de fuerza y alumbrado	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, NEMA 12, Interruptor principal 3 x 30 A
	ÁREA 710	Área de distribución de	agua	,	
11.01	200-US-001	Subestacion Unitaria de Agua de Filtraciones de la Relavera	1	Un	200 KVA, 4.16 / 0.48 kV
11.02	200-TXD-002	Transformador de distribución	1	Un	200 KVA, 4.16 / 0.48 kV, ONAN, 60Hz, Dynl
11.03	200-MCL-002	Centro de control de motores 480 V	1	Un	480 V, 600 A, 65 kA
11.04	200-TXA-002	Transformador seco de 5 kVA	1	Un	5 KVA, 480 / 400-230 V
11.05	200-LPA-002	Tablero de fuerza y alumbrado	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, Interruptor principal 3 x 20 A
11.06	710-US-001	Subestacion Unitaria de Agua Fresca	1	Un	200 KVA, 4.16 / 0.48 kV
11.07	710-TXD-001	Transformador de distribución	1	Un	200 KVA, 4.16 / 0.48 kV, ONAN, 60Hz, Dyn1
11.08	710-MCL-001	Centro de control de motores 480 V	1	Un	480 V, 600 A, 65 kA, NEMA 4.
11.09	710-TXA-001	Transformador seco de 5 kVA	1	Un	5 KVA, 480 / 400-230 V
11.10	710-LPA-001	Tablero de fuerza y alumbrado	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, Interruptor principal 3 x 20 A
11.11	710-US-002	Subestacion Unitaria de Agua Potable	1	Un	45 KVA, 4.16 / 0.48 kV
11.12	710-TXD-002	Transformador de distribución	1	Un	45 KVA, 4.16 / 0.48 kV
11.13	710-MCL-002	Centro de control de motores 480 V	1	Un	480 V, 600 A, 65 kA, NEMA 4.
11.14	710-TXA-002	Transformador seco de 5 kVA	1	Un	5 KVA, 480 / 400-230 V
11.15	710-LPA-002	Tablero de fuerza y alumbrado	1	Glb	400/230 V, 60 Hz, 100 A, 14 kA, Interruptor principal 3 x 20 A


	ANEXO 3	






PLANO 2



INDUCTION MOTOR DATA

Siemens Industry, Inc. Norwood, Ohio

Customer: METSO

Order Number: 3004073355-000010

SPECIFIED REQUIREMENTS

FRAME DATA

5503

70.1

1847

Horsepower: 1250 Frame: 6811 Service Factor: 1.15 Type: CGII

Voltage: 2300 / 4000 Rotor Construction: Fabricated Copper Bar

Number of Phases: 3 Load Inertia (wk2), lb-ft2: 2500 Rotor Inertia (wk2), lb-ft2: 1203 Frequency, hertz: 60 Ambient, deg C: 40 Rotor Weight, lbs: 2693 Enclosure: WPII Motor Weight, lbs: 12000

Synchronous Speed, RPM: 1200 Temp. Rise: 80 by RES @ 1SF

Percent Starting Voltage: 90 Sound Pressure Level: 86dBA @ 3ft, unloaded

Elevation (ft): 14764 Insulation Class: F-VPI Bearing Type: Anti-Friction

PERFORMANCE DATA

Full Load Speed, RPM: Full Load Torque, lb-ft: Current, Amps: 278 / 161 Starting Torque, %FLT: 107 Locked Rotor Current, % FLA: 664 Breakdown Torque, %FLT: 229 kVA/Hp: 5.91 **NEMA Design:** Code: G 0.25 0.50 0.75 Full 1.15 Locked No Load Load Load Load Load Rotor Load 91.4 94.4 Percent Efficiency: 95.0 95.0 94.8 N/A N/A Percent Power Factor: 64.1 81.8 86.8 88.2 88.3 6.9 18.6 57.4 87.2 122.4 160.6 184.9 40.5 1067 Current, Amps:

Shutdown 100 90 % Voltage RTD Settings (°C): Alarm 33 Seconds 155 170 Safe Stalled Time, Motor Hot: 24 Stator: Seconds 100 105 38 Bearings: Safe Stalled Time, Motor Cold: 28 Acceleration Time: Seconds

212.0

278.0

320.3

150.9

1.675 Seconds Open Circuit Time Constants:

99.5

1193

0.067 Seconds Short Circuit (AC)

13.162 X/R Ratio:

Current, Amps:

Prepared by WILLIAM DIXON on 10/23/12

Please Note:

1. All values are typical.

2. Guaranteed values are indicated in (GUAR)

Proyecto: Ubicación:

Contrato:

Ingeniero:

Archivo:

Análisis de flujo de carga

ETAP 7.5.2C

Página:

Fecha:

12-10-2012 SNCLAVPERU

SN:

Basc Normal

Revisión: Config.:

Caso de Estudio: LF

CORTO 3 TRIFAS Y 1 MONOF

Electrical Transient Analyzer Program

Análisis Flujo de Carga

Categoria de Carga (1): Design

Categoría de Generación (1): Design

Factor de Diversidad de Carga: Ninguno

	Infinita	V-Control	Carga	Total				
Número de Barras:	ī	0	14	15				
	XFMR2	XFMR3	Reactor	Linea/Cable	Impedancia	PD-Enlace	Total	
Número de Ramas:	8	0	0	6	0	0	14	-

Método de Solución:

Método Newton-Raphson

Máximo No. de Iteraciones:

Precisión de Solución:

0.0001000

Frecuencia del Sistema:

60.00 Hz

Sistema de Unidades:

Metric

Archivo de Proyecto:

CORTO 3 TRIFAS Y I MONOF

Archivo de Salida:

C:\Users\MACHJ2\Desktop\Borrador 06-Dic\Reporte de flujo de carga Rev. B\Caso 1\Untitled.lfr

Proyecto: Ubicación;

Contrato:

Ingeniero:

Archivo:

Análisis de flujo de carga

ETAP 7.5.2C

Caso de Estudio: LF

Página:

2

Fecha:

12-10-2012 SNCLAVPERU

SN:

Base

Revisión:

Config.: Norma

CORTO 3 TRIFAS Y 1 MONOF

<u>Ajustes</u>

Tolerancia	Aplicar Ajustes	Individual /Global	Porciento
Impedancia del Transformador:	Sí	Individual	
Impedancia del Reactor:	Sí	Individual	
Resistencia de Relé Térmico de Sobrecarga:	No		4
Longitud de Linea de Transmisión:	No		
Longitud del Cable:	No		
	Aplicar	Individual	
Corrección de Temperatura	Ajustes	/Global	Grados C
Resistencia de Linea de Transmisión:	Si	Individual	
Resistencia del Cable:	Sí	Individual	

Análisis de flujo de carga

ETAP

Página:

3

Ubicación:

7.5.2C

Fecha: SN: 12-10-2012 SNCLAVPERU

Contrato:

Archivo:

Ingeniero:

CORTO 3 TRIFAS Y 1 MONOF

Caso de Estudio: LF

Revisión: Basc

Config.: Normal

Datos de Entrada de Barra

#7							Car	ga				
Barra			Tensión I	nicial	Constant	c kVA	Consta	nte Z	Cons	iante I	Gené	rico
ID	kV	Sub-sist	% Mag.	Áng.	MW	Mvar	MW	Mvar	MW	Mvar	MW	Myar
200-ER-001	0.480	1	100.0	0.0			0.313	0,196		8:		
200-US-001	0.480	3	100.0	0.0			0,045	0.028				
710-US-001	0.480	1	100,0	0.0			0.090	0.056				
710-US-002	0.480	1	100.0	0.0			0.020	0.012				
B-01	22.900	1	100.0	0.0								
B-02	22.900	1	100.0	0.0								
3-03	22,900	1	100.0	0.0								
B-04	0.480	1	100.0	0.0			1.944	1.229				
B-05	0.480	1	100.0	0.0			1.708	1.099				
B-06	4.160	1	100.0	0.0	2.791	1.163	0.000	-1.600				
Deriv. PALPA50	50.000	1	100.0	0.0								
Vértice A5	4.160	1	100.0	0.0								
Vértice AB	4.160	1	100.0	0.0								
Vértice A8-1	4.160	1	100.0	0.0								
Vértice A8-2	4,160	1	0.001	0.0								
Número Total de Barvas: 15					2.791	1.163	4.119	1.020	0.000	0.000	0.000	0,00

Bar	ra de Generac	ión		Tensi	ón	17	Generación		Mvar	Limites
ID	kV	Tipo	Sub-sist	% Mag.	Ángulo	MW	Mvar	% PF	Max	Min
Deriv. PALPA50	50.000	Infinita	1	100.0	0.0					
						0.000	0.000			

Proyecto: Ubicación: Análisis de flujo de carga

ETAP

Página:

4

7.5.2C

Fecha:

12-10-2012 SNCLAVPERU

SN:

Basc

Revisión:

Config.: Norm

Contrato: Ingeniero:

Archivo:

CORTO 3 TRIFAS Y 1 MONOF

Caso de Estudio: LF

Datos de Entrada Línea/Cable

Ohms o Siemens/1000 m por Conductor (Cable) o por Fase (Línea)

	Linea/Cable			Longitud	i					
	ID	Libreria	Tamaño	Adj. (m)	% Tol.	#/Fasc	T (°C)	R	x	Y
Cable3		35NCUS1	250	120.0	0.0	1	75	0.190880	0.237861	
Cable4		35NCUS1	250	120.0	0.0	1	75	0.190880	0.237861	
Line2			77.3	450.0	0.0	1	75	0.468000	0.440791	0.0000038
Line3			77.3	770.0	0.0	1	75	0.468000	0.440791	0.0000038
Line4			77.3	330.0	0.0	1	75	0.468000	0.440791	0.0000038
Line5			77.3	450.0	0.0	1	75	0.468000	0.440791	0.0000038

Las resistencias de la linea/del Cable se muestran a las temperatums especificadas.

Análisis de flujo de carga

ETAP 7.5.2C

Página:

12-10-2012

Fecha: SN:

SNCLAVPERU Base

Revisión:

Config.:

Ubicación:

Contrato:

Ingeniero:

Archivo:

CORTO 3 TRIFAS Y 1 MONOF

Caso de Estudio: LF

Datos de Entrada de Transformador de 2 Devanados

Transformador			Rating			2	Z variación		% Ajust	e Toma	Ajustado	Desfa	ase
ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Tipo	Ángulo
200-TXD-001	0,500	4.160	0,480	4.00	3.09	2.50	2,50	0	-2.500	0	4,0500	Std Pos. Seq.	0.000
200-TXD-002	0.200	4.160	0.480	4.00	2.47	2.50	2,50	0	-2.500	0	4.0500	Std Pos. Scq.	0,000
710-TXD-001	0,200	4.160	0.480	4.00	3.45	2.50	2.50	0	-2.500	0	4.0500	Std Pos. Seq.	0.000
710-TXD-002	0.045	4.160	0,480	2.60	1.69	0	0	0	-2.500	0	2.6000	Std Pos. Seq.	0.000
980-TXD-001	3.000	22.900	0.480	6.75	10,67	2.50	2.50	0	-2.500	0	6.8344	Std Pos, Seq.	0.000
980-TXD-002	3.000	22.900	0.480	7.00	10.67	2.50	2.50	0	-2.500	0	7.0875	Std Pos. Seq.	0.000
980-TXD-003	5.000	22.900	4,160	6,50	12.14	2.50	2.50	0	0	0	6.5000	Std Pos. Seq.	0,000
T5	14.000	50.000	22.900	8,00	18.60	2.50	2.50	0	0	0	8,0000	Std Pos. Seq.	0.000

Ajustes de Cambiador de Tomas en Carga de Transformador de 2 Devanados

					Ajuste de	el Cambiad	or de T	oma en Carga del Tra	nsformador	
Transformador		Barras Conec	% Min.	% Max.						
ID		ID Barra Primaria	ID Barra Secundaria	Toma	Toma	% Paso		ID Barra Regulada	% V	kV
T5		* Dariv. PALPA50	B-01	-5.00	5.00	1,000	B-01		99.00	22.671

Análisis de flujo de carga

7.5.2C

Página:

6

Fecha: 12-10-2012

SNCLAVPERU

SN:

Basc

Revisión: Config.:

Normal

Ubicación:

Contrato:

Ingeniero:

Archivo: CORTO 3 TRIFAS Y 1 MONOF

Caso de Estudio: LF

Conexiones de Rama

Circui	ito/Rama	ID B	arra Conectada	% Impedancia Sec. Pos., Base 100 MVA					
ID	Тіро	Barra Origen	Barra Destino	R	х	Z	Υ		
0-TXD-001	2W XFMR	Vértice A5	200-ER-001	243.17	751.38	789.75			
0-TXD-002	2W XFMR	Vértice A8	200-US-001	740.92	1830,08	1974.38			
0-TXD-001	2W XFMR	Vértice A8-2	710-US-001	549.66	1896.32	1974.38			
0-TXD-002	2W XFMR	Vértice A8-1	710-US-002	2868.74	4848,17	5633.33			
0-TXD-001	2W XFMR	B-02	8-04	20,73	221.15	222.12			
0-TXD-002	2W XFMR	B-02	B-05	21.49	229.34	230,34			
D-TXD-003	2W XFMR	B-03	B-06	10,67	129.56	130,00			
	2W XFMR	Deriy, PALPA50	B-01	3.07	57.06	57.14			
ble3	Cable	B-01	B-02	0.44	0,54	0,70			
blc4	Cable	B-01	B-03	0.44	0,54	0.70			
nc2	Line	B-06	Vértice A5	121.69	114.62	167,17	0.0000299		
ne3	Line	Vértice A8	Vértice A5	208.23	196,13	286,05	0.0000512		
104	Line	Vértice A8-I	Vértice A8	89.24	84.05	122.59	0.0000219		
ല	Line	Vértice A8-2	Vértice A8-1	121.69	114,62	167.17	0,0000299		

ALPAMARCA

ETAP 7.5.2C

Página:

1

Fecha:

12-10-2012 SNCLAVPERU

SN:

Revisión: B

Config.: No

Ubicación:

Contrato:

Ingeniero:

Archivo: A

ANÁLISIS DE FLUJO DE CARGA

Caso de Estudio: LF

Informe de Flujo de Carga

Barra		Tens	sión	Genera	ación	Cai	ga		Flujo de Carga				
1D	kV	% Mag.	Áng.	MW	Mvar	MW	Myar	ID	MW	Mvar	Атр	% PF	% Tap
200-ER-001	0.480	98.280	-5.8	0	0	0,302	0,189	Vértice A5	-0.3	02 -0.189	436.2	84.8	
200-US-001	0.480	99.157	-5.2	0	0	0.044	0.027	Vértice A8	-0.0	-0.027	63.1	85.0	
710-US-001	0.480	98.095	-5.7	0	0	0.086	0.054	Vértice A8-2	-0.0	-0.054	125.1	84.7	
710-US-002	0.480	98.692	-5.2	0	0	0.019	0.012	Vértice A8-I	-0.0	-0.012	27.3	85.1	
B-01	22.900	99.270	-2.2	0	0	0	0	B-02	3.:	76 2.478	110,5	82.2	
								B-03	3,3	0,037	82.9	100,0	
								Deriv. PALPA50	-6.8	-2.516	185,1	93.9	
B-02	22.900	99.241	-2.2	0	0	0	0	B-01	-3.:	75 -2.477	110.5	82.2	
								B-04	1.3	1.310	58.6	82.3	-2.500
								B-05	1,	1.167	51.9	82.1	-2.500
B-03	22,900	99.255	-2.2	0	0	0	0	B-01	-3,:	264 -0.037	82.9	100.0	
								B-06	3.	264 0.037	82.9	100.0	
B-04	0.480	98.549	-4.5	0	0	1.888	1.194	B-02	-1.	388 -1.194	2726.3	84,5	
B-05	0.480	98. 7 91	4.3	0	0	1.667	1.073	B-02	-1,	667 -1.073	2413.3	84.1	
B-06	4.160	98.948	4.7	0	0	2.791	-0.403	Vértice A5	0.	0,300	77.1	83.8	
								B-03	-3.	252 0,103	456.4	-99.9	
Deriv, PALPA50	50,000	100.000	0.0	6.856	2.825	0	0	B-01	6.	356 2.825	85.6	92.5	-1.000
Vértice A5	4.160	98.034	4.8	0	0	0	0	B-06	-0.	457 -0.297	77.1	83.9	
								Vértice A8	0.	152 0.097	25.5	84.2	
								200-ER-001	0.	305 0.199	51.6	83,7	-2.500
Vértice A8	4,160	97.517	4.8	0	0	0	0	Vértice A5	-0.	151 -0.097	25,5	84.2	
								Vértice A8-I	0.	106 0,069	18.0	84.0	
								200-US-001	0.	0.028	7.5	84.7	-2.500
Vértice A8-1	4.160	97.361	-4.8	0	0	0	0	Vértice A8	-0.	106 -0.069	18.0	84.1	
								Vértice A8-2	0.	0.056	14.8	83.9	
								710-US-002	0.	0.012	3.2	84.8	-2.500
Vértice A8-2	4.160	97.185	-4.9	0	0	0	0	Vénice A8-I	-0.	087 -0.056	14.8	83.9	
								710-US-001	0.	0.056	14.8	83.9	-2.500

^{*} Indica una barra con tensión regulada (con máquinas de tensión controlada o máquinas de referencia conectadas)

[#] Indica una barra con un error de convergencia superior a 0,1 MVA

Proyecto: Ubicación:

Archivo:

ALPAMARCA

ETAP

Caso de Estudio: LF

Página:

2

Normal

Fecha:

12-10-2012 SNCLAVPERU

SN:

Revisión: B

Config.:

7.5.2C

Contrato: Ingeniero:

ANÁLISIS DE FLUJO DE CARGA

Informe Resumen de Carga en Barras

*		Carga Conectada Directamente								Carga Total en Barra				
В	arra		Constante kVA		Constante Z		Constante I		Genérico					Porciento
iD ID	kV	Amp Nominal	MW	Mvar	MW	Mvar	MW	Myar	MW	Mvar	MVA	% PF	Amp	Carga
200-ER-001	0.480		0	0	0.302	0,189	0	0	0	0	0.356	84.8	436.2	
200-US-001	0.480		0	0	0.044	0.027	0	0	0	0	0.052	85.0	63.1	
710-US-001	0.480		0	0	0.086	0.054	0	0	0	0	0.102	84.7	125.1	
710-US-002	0.480		0	0	0.019	0.012	0	0	0	0	0.022	85.1	27.3	
B-01	22.900		0	0	0	0	0	0	0	0	7.288	93.9	185,1	
B-02	22.900		0	0	0	0	0	0	0	0	4.349	82.2	110.5	
B-03	22,900		0	0	0	0	0	0	0	0	3.264	100.0	82.9	
B-04	0.480		0	0	1.888	1.194	0	0	0	0	2,234	84,5	2726.3	
B-05	0.480		0	0	1.667	1.073	0	0	0	0	1.982	84,1	2413.3	
B-06	4.160		2.791	1.163	0	-1.567	0	0	0	0	3.610	90,1	506.3	
Deriv. PALPA50	50.000		0	0	0	0	0	0	0	0	7.415	92.5	85.6	
Vértice A5	4.160		0	0	0	0	0	0	0	0	0.545	83.9	77,1	
Vértice A8	4,160		0	0	0	0	0	0	0	0	0,179	84.2	25.5	
Vértice A8-1	4,160		0	0	0	0	0	0	0	0	0,127	84.1	18.0	
Vértice A8-2	4.160		0	0	0	0	0	0	0	0	0.104	83.9	14.8	

[•] Indica que la carga de un barra excede el limite crítico (100.0% de la corriente nominal continua).

[#] Indica que la carga operativa en una barra excede el limite marginal (95.0% de la corriente nominal continua).

Análisis de flujo de carga

CORTO 3 TRIFAS Y I MONOF

ETAP

Página:

Fecha:

12-10-2012 SNCLAVPERU

SN:

Revisión: Base

Config.:

7.5.2C

Contrato: Ingeniero:

Ubicación:

Archivo:

Caso de Estudio: LF

Informe Resumen de Carga en Ramas

				Transformador						
Circuito / Rama			ble y Reactor							
		Ampacidad	Carga		Capacidad	Carga (c	entrada)	Carga (salida)		
1D	Tipo	(Amp)	Amp	%	(MVA)	MVA	%	MVA	%	
	Transformer				0,500	0.365	72.9	0.356	71.3	
	Transformer				0,075	0.053	70.0	0.052	69.4	
	Transformer				0.150	0.104	69.1	0.102	68.0	
	Transformer				0.045	0.023	50.4	0.022	49.9	
	Transformer				3.000	2.307	76.9	2.234	74.5	
	Transformer				3.000	2.042	68,1	1.982	66,1	
	Transformer				5.000	3.264	65.3	3.254	65.1	
	Transformer				18,000	7.415	41.2	7.288	40.5	
		Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer	Ampacidad (Amp) Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer	1D Tipo Ampacidad (Amp) Carga Amp Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer	Ampacidad (Amp) Carga (Amp) % Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer	Transformer Carga (MVA) Carga (MVA) Capacidad (MVA)	Carbon Carbon Carga Capacidad (MVA) MVA	Care Care Care Care Care Capacidad (MVA) MVA %	Carpa Carp	

Indica que existe una rama cuya carga excede su capacidad de carga.

ETAP

Proyecto: Análisis de flujo de carga

Ubicación:

Contrato:

Ingeniero: Archivo:

CORTO 3 TRIFAS Y 1 MONOF

7.5.2C

Caso de Estudio: LF

Página:

12-10-2012

Fecha: SN:

SNCLAVPERU

Revisión:

Base Normal

Config.:

Informe Resumen de Pérdidas en Ramas

Circuito / Rama	Flujo Orige	n-Destino	Flujo Destir	10-Origen	Pérdi	das	% Tensio	Vd % Caida	
1D	MW	Mvar	MW	Mvar	kW	kvar	Origen	Destino	en Vmag
200-TXD-001	-0.302	-0.189	0.305	0.199	3.3	10.1	98.3	98.0	0.25
200-TXD-002	-0.044	-0.027	0.044	0.028	0.2	0.5	99.2	97.5	1.64
710-TXD-001	-0.086	-0,054	0.087	0.056	0.6	2.1	98.1	97.2	0.91
710-TXD-002	-0.019	-0.012	0.019	0.012	0.2	0.3	98.7	97.4	1.33
Cable3	3.576	2.478	-3.575	-2.477	0.8	1.0	99,3	99.2	0.03
Cable4	3.264	0.037	-3.264	-0.037	0,5	0.6	99.3	99.3	0.01
T5	-6.840	-2.516	6.856	2,825	16.6	309.1	99.3	100.0	0.73
980-TXD-001	1.899	1.310	-1.888	-1.194	10.9	116.5	99,2	98,5	0.69
980-TXD-002	1.676	1.167	-1.667	-1.073	8.9	94.7	99.2	98.8	0.45
980-TXD-003	3.264	0.037	-3.252	0.103	11.5	140.1	99,3	98.9	0.31
Line2	0.461	0.300	-0.457	-0.297	3.8	3.5	98.9	98.0	0.9
Line3	0.152	0.097	-0.151	-0.097	0.7	0.6	98.0	97.5	0,52
Line4	0,106	0.069	-0,106	-0.069	0.2	0.1	97.5	97.4	0.10
Line5	0.087	0.056	-0,087	-0.056	0.1	0.1	97.4	97.2	0.1
					58.3	679.4			

Análisis de flujo de carga

ETAP

Proyecto:

Ubicación:

Contrato:

Ingeniero:

CORTO 3 TRIFAS Y I MONOF Archivo:

7.5.2C

Caso de Estudio: LF

Página:

Fecha: SN:

12-10-2012 SNCLAVPERU

Revisión:

Base

Config.:

Informe Resumido de Alertas

% Ajustes de Alertas

	Crítico	Marginal
Carga		
Вагта	100.0	95.0
Cable	100.0	95.0
Reactor	100.0	95.0
Linea	100.0	95.0
Transformador	100.0	95.0
Tabla	100.0	95.0
Dispositivo de Protección	100.0	95.0
Generador	100.0	95.0
Tensión de Barra		
Sobretensión	105.0	102.0
Baja Tensión	95.0	98.0
Excitación del Generador		
Sobreexcitado (Q Max.)	0.001	95.0
Subexcitación (Q Min.)	100.0	

Informe Marginal

ID de Dispositivo	Tipo	Condición	Rating/Limit	Unidad	Operativa	% Operativo	Tipo de Fase
Vértice A8	Bus	Under Voltage	4,160	kV	4,057	97.5	3-Phase
Vértice A8-1	Bus	Under Voltage	4.160	kV	4.050	97.4	3-Phase
Vértice A8-2	Bus	Under Voltage	4.160	kV	4,043	97,2	3-Phase

Proyecto: Ubicación:

Contrato:

Ingeniero:

Archivo:

Análisis de flujo de carga

ETAP 7.5.2C

Página:

12

Fecha:

12-10-2012

SN:

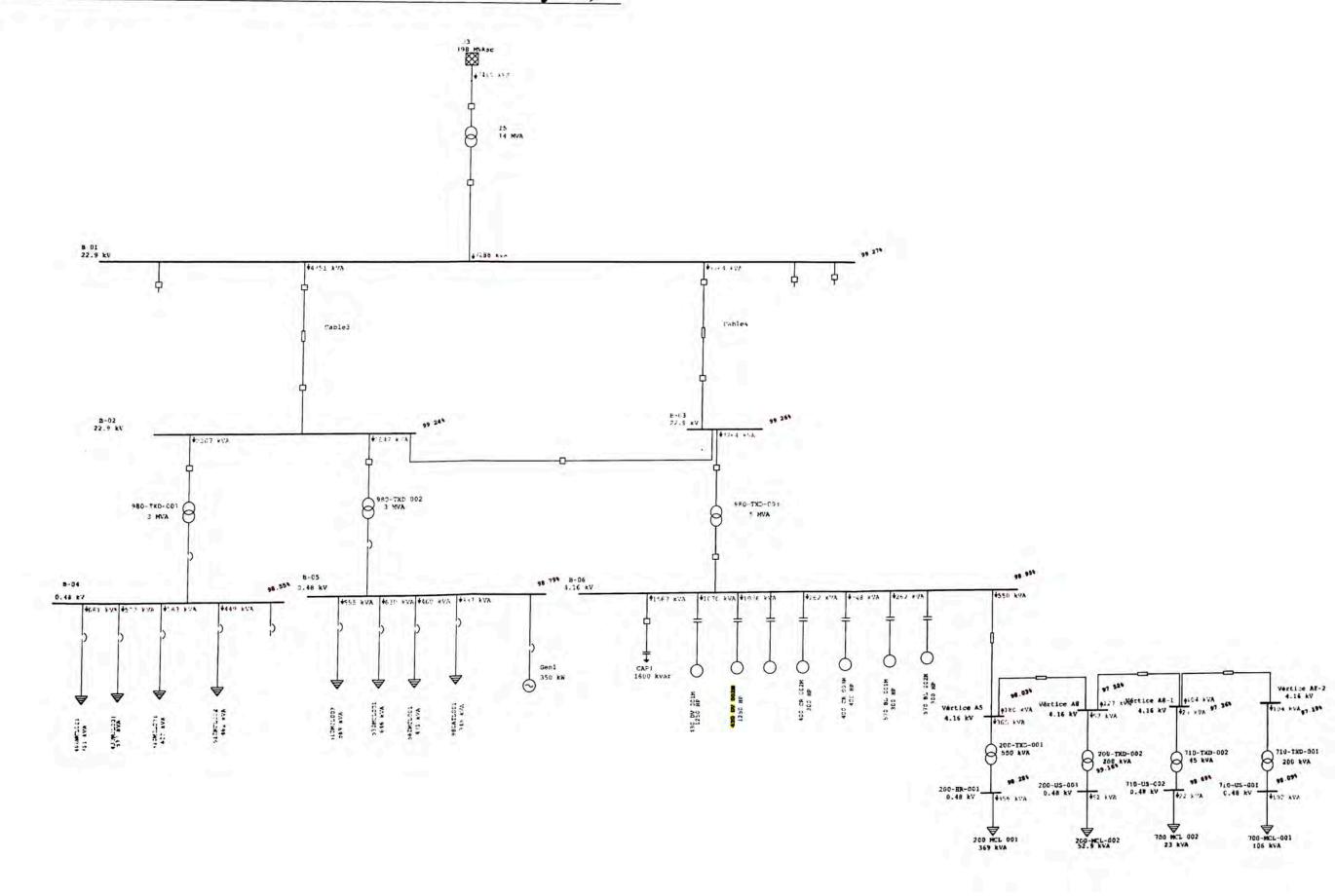
Normal

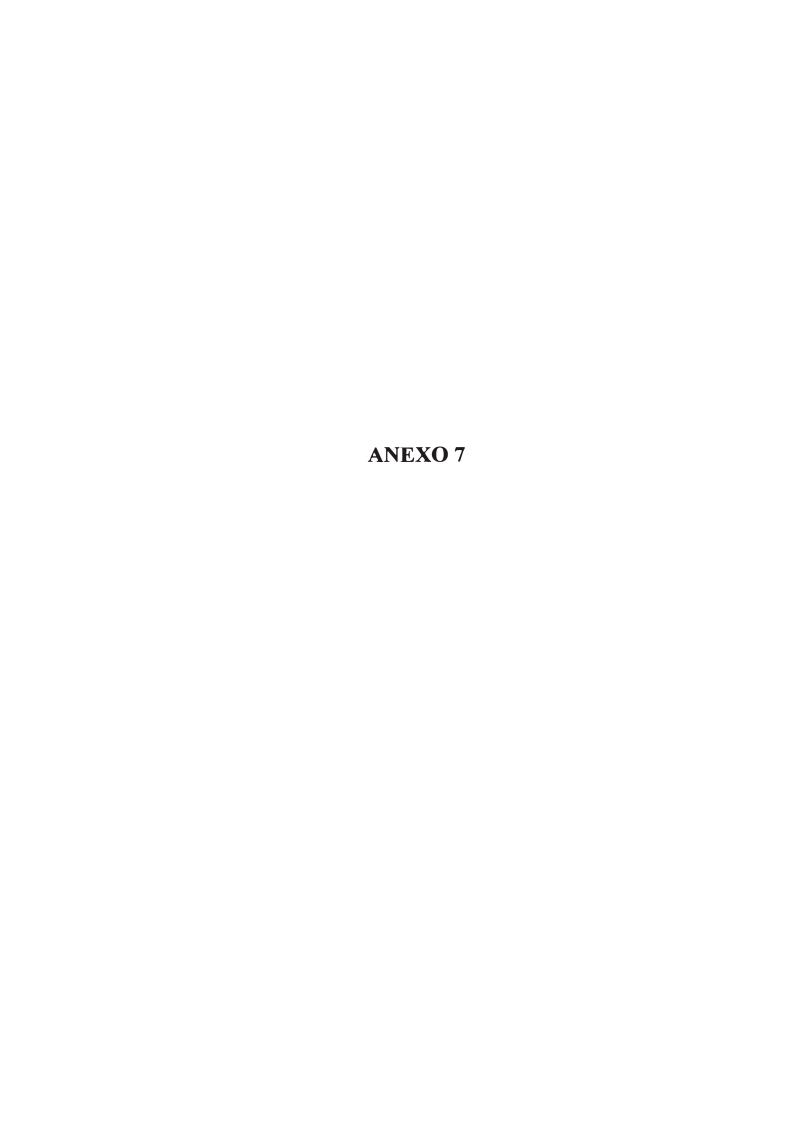
Revisión:

SNCLAVPERU

Config.;

Caso de Estudio: LF


CORTO 3 TRIFAS Y I MONOF


Resumen de Totales de Generación, Carga, y Demanda

	MW	Mvar	MVA	% PF
Fuente (Barras Infinitas):	6,856	2.825	7.415	92.46 Lagging
Fuente (Barras No Infinitas):	0.000	0,000	0.000	
Demanda Total:	6.856	2.825	7.415	92.46 Lagging
Carga Total de Motores:	2.791	1.163	3.024	92.31 Lagging
Carga Estática Total:	4.007	0.982	4.125	97.12 Lagging
Total de Carga I Constante:	0.000	0.000	0.000	
Carga Genérica Total:	0,000	0.000	0.000	
Pérdidas Aparentes:	0.058	0.679		
Error Convergencia:	0.000	0.000		
			1/2	

Número de Iteraciones: 3

One-Line Diagram - OLV1 (Load Flow Analysis)

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA P03-\$009-0000-06-47-0002 15380-0000-47EB-0002 Revisión Página Nº Fecha: 0 2013-01-22 7

•))	
SNC·LAVALIN	

N°	DESCRIPCIÓN	F	OTENCIA	INSTALADA	A MÁXIMA DEM		
14	DESCRIPCION	kW	kVAR	kVA	kW	kVAR	kVA
	RESUMEN			i			
Α	MEDIA TENSIÓN - 4.16 kV			_ i			
1.0	CENTRO DE CONTROL DE MOTORES MEDIA TENSIÓN (980-MCM-001)	2,962	1,862	3,499	2,291	1,437	2,704
2.0	LINEA AÉREA 4.16 kV - ESPESAMIENTO DE RELAVES Y DOSIFICACIÓN DE AGUA	1,089	679	1,284	523	327	617
	SUB-TOTAL 1:	4,052	2,541	4,783	2,814	1,764	3,321
=	Factor de simultaneidad (0.90)				2,533	1,588	
	Reserva 1 (20 %)				507	318	
	Reserva 2 (nota 1)				827	513	
	Capacidad del transformador 1				3,866	2,418	4,560
В	BAJA TENSIÓN						
3.0	CHANCADO PRIMARIO, SECUNDARIO Y TERCIARIO (400-ML-001)	797	502	942	599	378	708
.0	MOLIENDA (430-ML-001)	835	534	991	504	321	597
.0	FLOTACIÓN BULK (510-MCL-001)	657	419	779	507	320	599
.0	FLOTACIÓN COBRE PLOMO Y DISTRIBUCIÓN DE AIRE A PLANTA (510-MCL-002)	668	429	793	455	291	540
	SUB-TOTAL 2:	2,956	1,883	3,505	2,065	1,310	2,445
	Factor de simultaneidad (0.90)				1,858	1,179	
	Reserva (20 %)				372	236	-
	Capacidad del transformador 2				2,230	1,415	2,641
.0	FLOTACIÓN ZINC (510-MCL-003)	654	419	777	481	306	570
.0	ESPESAMIENTO Y FILTRADO DE CONCENTRADOS (530-MCL-001)	877	548	1,034	656	411	774
	CENTRO DE CONTROL DE MOTORES DE CARGAS CRÍTICAS (530-MCL-002)	344	228	412	265	174	317
0.0	DOSIFICACIÓN DE REACTIVOS Y PLANTA DE LAVADO 480 V (560-MCL-001)	692	465	833	502	339	606
	SUB-TOTAL 3:	2,566	1,660	3,056	1,904	1,229	2,266
	Factor de simultaneidad (0.90)				1,714	1,106	
	Reserva (20 %)				342.8	221.1	
_	Capacidad del transformador 3			-	2,057	1,327	2,448
	MÁXIMA DEMANDA TOTAL DEL PROYECTO:				6,105	3,872	7,230
	MÁXIMA DEMANDA TOTAL DEL PROYECTO (con reserva):				8,153	5,160	9,648

•))
SNC·LAVALIN

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO'	TENCIA	NSTALA	ADA T	MÁXIMA DEMANDA			
IN.	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
1.0	CENTRO DE CO	NTROL DE MOTORES MEDIA TENSIÓN (980-MCM-001)											-				
1.1	CHANCADO - MEI	DIA TENSIÓN															
1.101	400-CR-002	Motor chancadora cónica (secundaria)	MOTOR	C	300	223.7	84.0%	95%	80%	234.5	151.5	279.2	38.7	187.6	121.2	223.3	31.0
1.102	400-CR-003	Motor chancadora cónica (terciaria)	MOTOR	C	400	298.3	84.0%	95%	80%	312.7	202.0	372.2	51.7	250.1	161.6	297.8	41.3
1.2	MOLIENDA - MEDI	I IA TENSIÓN														-	
1.201	430-DV-001	Transmisión molino de barras	MOTOR	C	1250	932.1	85.0%	96%	85%	973.0	603.0	1144.7	158.9	827.0	512.6	973.0	135.0
1.202	430-DV-002	Transmisión de molino de bolas	MOTOR	С	1250	932.1	85.0%	96%	85%	973.0	603.0	1144.7	158.9	827.0	512.6	973.0	135.0
1.3	ZONA DE DISTRIE	UCIÓN DE AIRE A PLANTA E INSTRUMENTACIÓN															
1.301	570-BL-001	Soplador de aire	MOTOR	C	300	223.7	84.0%	95%	85%	234.5	151.5	279.2	38.7	199.3	128.7	237.3	32.9
1.302	570-BL-002	Soplador de aire (en espera)	MOTOR	S	300	223.7	84.0%	95%	85%	234.5	151.5	279.2	38.7				
			SUE	B-TOTAL :						2,962	1,862	3,499		2,291	1,437	2,704	
		NIVEL	DE TENS	SIÓN (kV):	4.16												-
		CORRIENTE EN MÁXI			375.32		FP:	0.847				- 5					T i
Notas:																	
1	Los valores de po	tencia son obtenidos de los proveedores y en otros casos	de cotizaci	iones segúr	n lo indicad	o en el	docume	ento P03	-S009-0	000-04-	45-0001	: Listado	de Equi	pos Mec	ánicos		
FP:	Factor de potenci	a															
EF:	Eficiencia																
FD:	Factor de demand	da															0

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA Nº Fecha: 9

SNC·LAVALIN

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Fecha: 2013-01-22

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD			DA	ı	NÁXIMA D	EMANDA	A	
	EQUIPO	52051W 5151X	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	A	kW	kVAR	kVA	Α
2.0	LINEA AÉREA 4.	16 kV - ESPESAMIENTO DE RELAVES Y DOSIFICACIÓN D	E AGUA														
2.1	ÁREA DE ESPESA	MIENTO DE RELAVES - 480 V															
2.101	200-TH-0001A	Espesador de relaves (nota 4)	MOTOR	С	15.0	11.2	85.0%	91.0%	75%	12.3	7.6	14.5	17.4	9.2	5.7	10.8	13.0
2.102	200-TH-0001B	Espesador de relaves (nota 4)	MOTOR	С	1.5	1.1	50.0%	84.0%	80%	1.3	2.3	2.7	3.2	1.1	1.8	2.1	2.6
2.103	200-TH-0001C	Espesador de relaves - calefactor (nota 4)	FDR	С		1.0	85.0%	100.0%	90%	1.0	0.6	1.2	1.4	0.9	.6	1.1	1.3
2.104	200-PU-0001A	Motor de bomba de transportes de relaves (nota 4)	MOTOR	С	75.0	55.9		94.1%	80%	59.4	36.8	69.9	84.1	47.5	29.5	55.9	67.3
2.105	200-PU-0001B	Motor de bomba de transportes de relaves (nota 4)	MOTOR	С	75.0	55.9	85.0%	94.1%	80%	59.4	36.8	69.9	84.1	47.5	29.5	55.9	67.3
2.106	200-PU-0001C	Motor de bomba de transportes de relaves (en espera) (nota 4)	MOTOR	S	75.0	55.9	85.0%	94.1%	80%	59.4	36.8	69.9	84.1				
2.107	200-PU-0001D	Motor de bomba de transportes de relaves (en espera) (nota 4)	MOTOR	S	75.0	55.9	85.0%	94.1%	80%	59.4	36.8	69.9	84.1				1
2.108	200-PK-001	Planta de preparación de floculante de relaves (nota 4)	FDR	С		5.2	80.0%	87.5%	90%	6.0	4.5	7.5	9.0	5.4	4.0	6.7	8.1
2.109	200-PU-0002A	Motor de bomba de transporte de relaves (nota 4)	MOTOR	С	150.0	111.9	85.0%	95.0%	80%	117.7	73.0	138.5	166.6	94.2	58.4	110.8	133.3
2.110	200-PU - 0002B	Motor de bomba de transporte de relaves (en espera) (nota 4)	MOTOR	S	150.0	111.9	85.0%	95.0%	80%	117.7	73.0	138.5	166.6				
2.111	200-PU-0005	Motor de bomba sumidero planta de relaves (nota 4)	MOTOR	С	15.0	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
2.112	200-CM-001	Compresor de aire (nota 4)	FDR	С	5.0	3.7	80.0%	87.5%	90%	4.3	3.2	5.3	6.4	3.8	2.9	4.8	5.8
2.113	200-PU-0003A	Motor de bomba de transferencia agua de procesos (nota 2)	MOTOR	C	125.0	93.2	85.0%	94.5%	80%	98.6	61.1	116.0	139.6	78.9	48.9	92.8	111.7
2.114	200-PU-0003B	Motor de bomba de transf. agua de proc. (en espera) (nota 2)	MOTOR	S	125.0	93.2	85.0%	94.5%	80%	98.6	61.1	116.0	139.6				
2.115	200-LPA-001	Tablero de SS.AA.	FDR	C		12.8	85.0%	100.0%	90%	12.8	7.9	15.0	18.0	11.5	7.1	13.5	16.2
2.116	0200-UDP-0001	Tablero de Instrumentación	FDR	C		4.3	85.0%	100.0%	90%	4.3	2.6	5.0	6.0	3.8	2.4	4.5	5.4
2.117	200-TD-001	Tablero de aire acondicionado y presurización (nota 2)	FDR	C	1	25.0	85.0%	100.0%	90%	25.0	15.5	29.4	35.4	22.5	13.9	26.5	31.8
2.2	ESTACIÓN DE BO	MBEO ÁREA DE ESPESAMIENTO DE RELAVES - 480 V															
2.201	200-PU-0004A	Motor de bomba de transferencia	MOTOR	С	100.0	74.6	85.0%	94.5%	80%	78.9	48.9	92.8	111.7	63.1	39.1	74.3	89.3
2.202	200-LPA-002	Tablero de SS.AA.	FDR	C		10.0	85.0%	100.0%	90%	10.0	6.2	11.8	14.2	9.0	5.6	10.6	12.7
2.203	0710-UDP-0002	Tablero de Instrumentación	FDR	C		2.7	85.0%	100.0%	90%	2.7	1.7	3.2	3.8	2.4	1.5	2.9	3.4
2.3	ÁREA DE DISTRIE	UCIÓN DE AGUA FRESCA - 480 V							V					7			
2.301	710-PU-001A	Bomba de transferencia de agua fresca	MOTOR	С	125.0	93.2	85.0%	94.5%	80%	98.6	61.1	116.0	139.6	78.9	48.9	92.8	111.7
2.302	710-PU-001B	Bomba de transferencia de agua fresca (en espera)	MOTOR	S	125.0	93.2	85.0%	94.5%	80%	98.6	61.1	116.0	139.6				
2.303	710-PU-003	Bomba sumidero de agua fresca	MOTOR	C	1.0	0.75	50.0%	82.5%	80%	0.9	1.6	1.8	2.2	0.7	1.3	1.4	1.7
2.304	710-LPA-001	Tablero de SS.AA.	FDR	C		10.0	85.0%	100.0%	90%	10.0	6.2	11.8	14.2	9.0	5.6	10.6	12.7
	0710-UDP-0004	Tablero de Instrumentación	FDR	C		2.7	85.0%	100.0%	90%	2.7	1.7	3.2	3.8	2.4	1.5	2.9	3.4
2.4	ÁREA DE DISTRIE	SUCIÓN DE AGUA POTABLE - 480 V															
2.401	710-PU-002A	Bomba de transferencia de agua potable Nº 1	MOTOR	С	15.0	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
2.402	710-PU-002B	Bomba de transferencia de agua potable N° 1 (en espera)	MOTOR	S	15.0	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	1			
2.403	710-LPA-004	Tablero de SS.AA.	FDR	С		10.0	85.0%	100.0%	90%	10.0	6.2	11.8	14.2	9.0	5.6	10.6	12.7

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Revisión Página N° Fecha: 0 2013-01-22

NIº.	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO'	TENCIA I	NSTALA	DA	N	MÁXIMA D	EMANDA	
"	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
2.404	0710-UDP-0003	Tablero de Instrumentación	FDR	С		2.7	85.0%	100.0%	90%	2.7	1.7	3.2	3.8	2.4	1.5	2.9	3.4
	SUB-TOTAL									1,089	679	1,284		523	327	617	

NIVEL DE TENSIÓN (kV): 0.48

CORRIENTE EN MÁXIMA DEMANDA (A): 742.3 FP: 0.85

Notas:

- 1.- Los valores de potencia son obtenidos de los proveedores y en otros casos de cotizaciones según lo indicado en el documento P03-S009-0000-04-45-0001: Listado de Equipos Mecánicos
- 2.- Valor estimado
- 3.- Las cargas de cada área indicada se alimentarán en 0.48 kV desde transformadores 4.16/0.48 kV.
- 4.- Potencias de equipos obtenidas de cotizaciones, no es potencia certificada.
- FP: Factor de potencia
- EF: Eficiencia
- FD: Factor de demanda

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA P03-\$009-0000-06-47-0002 15380-0000-47EB-0002 Revisión Página N° Fecha: 2013-01-22

•))	
SNC · LAVALIN	

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO.	TENCIA I	NSTALA	DA	M	ÁXIMA D	EMANDA	A
N	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	A
3.0	CENTRO DE CO	NTROL DE MOTORES (400-MCL-001)	•														
3.1	CHANCADO PRIM	ARIO - BAJA TENSIÓN															
3.101	400-RB-001	Rompedor de rocas (ver nota 2)	FDR	С		78.0	85.0%	100%	75%	78.0	48.3	91.8	110.4	58.5	36.3	68.8	82.8
3.102	400-FE-001A	Alimentador de placas	FDR	С		29.8	85.0%	100%	85%	29.8	18.5	35.1	42.2	25.4	15.7	29.8	35.9
3.103	400-FE-001B	Alimentador de placas	MOTOR	С	5	3.7	80.0%	88%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
3.104	400-MG-001	Electroimán limpieza manual N°1 (ver nota 2)	FDR	С		20,0	85.0%	92%	75%	21.6	13.4	25.5	30.6	16.2	10.1	19.1	23.0
3.105	400-GZ-001	Motor grizzly vibratorio	FDR	С	30.4	22.7	85.0%	92%	75%	24.5	15.2	28.9	34.7	18.4	11.4	21.6	26.0
3.106	400-CR-001	Motor chancadora primaria	MOTOR	С	125	93.2	85.0%	95%	80%	98.6	61.1	116.0	139.6	78.9	48.9	92.8	111.7
3.107	400-CB-001	Motor faja transportadora	MOTOR	С	30	22.4	85.0%	92%	80%	24.2	15.0	28.5	34.3	19.4	12.0	22.8	27.4
3.108	400-MG-002	Electroimán limpieza manual N° 2 (ver nota 2)	FDR	С		10.0	80.0%	90%	80%	11.2	8.4	14.0	16.8	8.9	6.7	11.2	13.4
3.109	400-CN-001	Grúa puente - Chancado primario 7.5 t	FDR	С		16.5	85.0%	91%	75%	18.1	11.2	21.3	25.7	13.6	8.4	16.0	19.2
3.110	400-PU-001	Bomba sumidero área de chancado primario	MOTOR	С	7.5	5.6	80.0%	90%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
3.2	CHANCADO SECU	JNDARIO Y TERCIARIO - BAJA TENSIÓN									i						
3.201	400-SC-001	Motor zaranda vibratoria	FDR	С	40	29.8	85.0%	93%	80%	32.1	19.9	37.7	45.4	25.7	15.9	30.2	36.3
3.202	400-LS-001	Sistema de lubricación chancadora secundaria	FDR	С		30.3	85.0%	93%	85%	32.6	20.2	38.3	46.1	27.7	17.2	32.6	39.2
3.203	400-CB-002	Motor faja transportadora	MOTOR	С	50	37.3	85.0%	93%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
3.204	400-HT-004	Tecle monorriel mantenimiento (ver nota 2)	FDR	С		9.8	80.0%	90%	85%	10.9	8.2	13.7	16.5	9.3	7.0	11.6	14.0
3.205	400-CB-003	Motor faja transportadora	MOTOR	С	50	37,3	85.0%	93%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
3.206	400-SC-002	Zaranda vibratoria	FDR	С	40	29.8	85.0%	93%	75%	32.1	19.9	37.7	45.4	24.1	14.9	28.3	34.0
3.207	400-LS-002	Sistema de lubricación chancadora terciaria	FDR	С		34.2	85.0%	93%	85%	36.7	22.8	43.2	52.0	31.2	19.3	36.7	44.2
3.208	400-MG-003	Electroimán autolimpiante N° 3 (ver nota 2)	FDR	С		9.7	80.0%	90%	80%	10.8	8.1	13.5	16.3	8.7	6.5	10.8	13.0
3.209	400-CB-004	Motor faja transportadora	MOTOR	С	25	18.6	85.0%	92%	80%	20.2	12.5	23.7	28.6	16.1	10.0	19.0	22.8
3.210	400-CN-002	Grúa puente 10 t - chancado secundario y terciario	FDR	С	İ	17.5	85.0%	91%	75%	19.2	11.9	22.6	27.2	14.4	8.9	17.0	20.4
3.211	400-PU-002	Bomba sumidero chancado secundario y terciario (ver nota 2)	MOTOR	С	7.5	5.6	80.0%	90%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
3.212	400-WR-001/002	02 tomas para máquina de soldar de 30 kW c/u	FDR	С	i	60.0	85.0%	100%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
3.213	400-WR-003/004	02 tomas para máquina de soldar de 30 kW c/u	FDR	С	i	60.0	85.0%	100%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
3.214	400-WR-005	01 tomas para maquina de soldar de 30 kW	FDR	С	i	30.0	85.0%	100%	100%	30.0	18.6	35.3	42.5	30.0	18.6	35.3	42.5

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA Po3-S009-0000-06-47-0002 15380-0000-47EB-0002 Revisión Página N° Fecha: 2013-01-22

SNC·LAVALIN

Factor de demanda

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA I	NSTALA	DA	M	ÁXIMA D	EMANDA	
N	EQUIPO	DESCRIFCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	A
3.2	SISTEMA DE COL	ECCIÓN DE POLVOS															
3.201	400-BL-001	Motor de ventilador	MOTOR	С	40	29.8	85.0%	93%	60%	32.1	19.9	37.7	45.4	19.2	11.9	22.6	27.2
3.202	400-RV-001	Motor de válvula rotativa	MOTOR	С	1	0.75	50.0%	83%	90%	0.9	1.6	1.8	2.2	0.8	1.4	1.6	2.0
3.203	400-CM-001	Compresor de aire	FDR	С	15	11.2	85.0%	91%	90%	12.3	7.6	14.5	17.4	11.1	6.9	13.0	15.7
3.204	400-DC-002	Colector de polvos insertable	MOTOR	С	. 5	3.7	80.0%	88%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
			CLID	TOTAL						707	502	042		500	270	700	$\overline{}$

	SUB-TOTAL:					797	502	942	599	378	708
Notas:	: NIVEL DE TENSIÓN (kV):	0.48									_
	CORRIENTE EN MÁXIMA DEMANDA (A) :	851.5	FP:	0.85							
1	Los valores de potencia son obtenidos de los proveedores y en otros casos de cotizaciones según lo	indicado	en el documen	to P03-S009	9-0000-04-	45-00	01: Lista	ado de Equi	pos Mecánico	s	
2	Potencias de equipos obtenidas de cotizaciones, no es potencia certificada.										
FP:	Factor de potencia										
EF:	Fficiencia										

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Revisión Página N° Fecha: 2013-01-22

•))	
SNC·LAVALIN	

			-														
N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO.	TENCIA I	NSTALA	DA	M	ÁXIMA D	EMAND	A
N	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
4.0	CENTRO DE CON	NTROL DE MOTORES (430-MCL-001)															
4.1	MOLIENDA BAJA	TENSIÓN															
4.101	430-CB-001	Motor de faja transportadora	MOTOR	C	40	29.8	85.0%	93%	80%	32.1	19.9	37.7	45.4	25.7	15.9	30.2	36.3
4.102	430-CB-002	Motor de faja transportadora (reversible)	MOTOR	С	10	7.5	80.0%	90%	80%	8.3	6.2	10.4	12.5	6.7	5.0	8.3	10.0
4.103	430-FE-001	Motor de alimentador de fajas	MOTOR	С	15	11.2	85.0%	91%	90%	12.3	7.6	14.5	17.4	11.1	6.9	13.0	15.7
4.104	430-FE-002	Motor de alimentador de fajas	MOTOR	С	15	11.2	85.0%	91%	90%	12.3	7.6	14.5	17.4	11.1	6.9	13.0	15.7
4.105	430-FE-003	Motor de alimentador de fajas	MOTOR	С	15	11.2	85.0%	91%	90%	12.3	7.6	14.5	17.4	11.1	6.9	13.0	15.7
4.106	430-FE-004	Motor de alimentador de fajas	MOTOR	С	15	11.2	85.0%	91%	90%	12.3	7.6	14.5	17.4	11.1	6.9	13.0	15.7
4.107	430-CB-003	Motor de faja transportadora	MOTOR	С	10	7.5	80.0%	90%	85%	8.3	6.2	10.4	12.5	7.1	5.3	8.9	10.6
4.108	430-CB-004	Motor de faja transportadora	MOTOR	С	10	7.5	80.0%	90%	85%	8.3	6.2	10.4	12.5	7.1	5.3	8.9	10.6
4.109	430-LS-001	Sistema de lubricación molino de barras (ver nota 3)	FDR	С	86.71	64.7	85.0%	94%	90%	68.7	42.6	80.8	97.2	61.8	38.3	72.8	87.5
4.110	430-LB-001	Motor de lanzador de barras (ver nota 3)	MOTOR	С	10	7.5	80.0%	90%	90%	8.3	6.2	10.4	12.5	7.5	5.6	9.4	11.3
4.111	430-PU-001A	Motor de bomba de alimentación de nido de ciclones (nota 3)	MOTOR	С	250	186.4	84.0%	95%	85%	195.4	126.2	232.6	279.8	166.1	107.3	197.7	237.8
4.112	430-PU-001B	Motor de bomba de alim. de nido de ciclones (en espera)(nota 3)	MOTOR	S	250	186.4	84.0%	95%	85%	195.4	126.2	232.6	279.8				
4.113	430-SA-001	Motor de muestreador de descarga molino de barras (nota 3)	FDR	С		2.6	80.0%	88%	90%	3.0	2.2	3.7	4.5	2.7	2.0	3.4	4.0
4.114	430-LS-002	Sistema de lubricación molino de bolas (ver nota 3)	FDR	С	43.71	32.6	85.0%	93%	90%	35.0	21.7	41.2	49.6	31.5	19.5	37.1	44.6
4.115	430-FC-001	Motor de celda flash	MOTOR	С	40	29.8	85.0%	93%	90%	32.1	19.9	37.7	45.4	28.9	17.9	34.0	40.8
4.116	430-PU-002	Motor de bomba de sumidero (nota 3)	MOTOR	С	20	14.9	85.0%	91%	80%	16.4	10.2	19.3	23.2	13.1	8.1	15.4	18.6
4.117	430-CN-001	Grúa puente 25 t	FDR	С		42.6	85.0%	93%	75%	45.8	28.4	53.9	64.8	34.4	21.3	40.4	48.6
4.118	430-DC-001	Colector de polvos insertable (Ver nota 2)	MOTOR	С	5	3.7	80.0%	88%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
4.119	430-DC-002	Colector de polvos insertable (Ver nota 2)	MOTOR	С	5	3.7	80.0%	88%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
4.120	430-WR-001/2	02 tomas para máquina de soldar de 30 kW c/u	FDR	С	İ	60.0	85.0%	100%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
4.121	430-WR-003/4	02 tomas para máquina de soldar de 30 kW c/u	FDR	С		60.0	85.0%	100%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
		·	SUB	-TOTAL :						835	534	991		504	321	597	

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Revisión Página N° Fecha: 2013-01-22

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA I	NSTALA	DA	M	ÁXIMA D	EMAND	Α
N	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	A,	kW	kVAR	kVA	Α
Notas:		NI NI	VEL DE TENS	IÓN (kV):	0.48					7							
		CORRIENTE EN M	ÁXIMA DEMA	NDA (A):	718.5		FP:	0.84					_				
1	Los valores de pot	encia son obtenidos de los proveedores y en otros casos o	e cotizaciones	según lo i	ndicado	en el de	ocumen	to P03-S	009-000	0-04-45	-0001: Li	stado de	e Equipo	s Mecá	nicos		
2	Equipos del área d	le colección de polvos															
3	Potencias de equip	oos obtenidas de cotizaciones, no es potencia certificada.															
FP:	Factor de potencia																
	Eficiencia																
EF:	LIICICIICIa																

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA Página N° Fecha: 15 P03-S009-0000-06-47-0002 15380-0000-47EB-0002

A I O	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA	INSTALA	DA	M	ÁXIMA D	EMAND	A
N°	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
5.0	CENTRO DE CON	TROL DE MOTORES (510-MCL-001)															
5.1	FLOTACIÓN BULK																
5.101	510-AG-001	Motor de agitador de tanque acondicionador de bulk (nota 2)	MOTOR	С	30	22.4	85.0%	92.4%	80%	24.2	15.0	28.5	34.3	19.4	12.0	22.8	27.4
5.102	510-FC-001	Motor de celdas Rougher de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.103	510-FC-002	Motor de celdas Rougher de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.104	510-FC-003	Motor de celdas Rougher de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.105	510-FC-004	Motor de celdas Rougher de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.106	510-FC-005	Motor de celdas Rougher de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.107	510-FC-006	Motor de celdas Rougher de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.108	510-FC-007	Motor de celdas Rougher de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.109	510-FC-008	Motor de celdas Scavenger de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.110	510-FC-009	Motor de celdas Scavenger de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.111	510-FC-010	Motor de celdas Scavenger de bulk	MOTOR	С	50	37.3	85.0%	93.0%	90%	40.1	24.8	47.2	56.7	36.1	22.4	42.4	51.1
5.112	510-PU-001A	Motor de bomba de espumas Scavenger de bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
5.113	510-PU-001B	Motor de bomba de esp. Scavenger de bulk (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4				
5.114	510-PU-002A	Motor de bomba de colas Scavenger de bulk (nota 2)	MOTOR	С	50	37.3	85.0%	93.0%	85%	40.1	24.8	47.2	56.7	34.1	21.1	40.1	48.2
5.115	510-PU-002B	Motor de bomba de colas Scavenger de bulk (en espera)(nota 2)	MOTOR	S	50	37.3	85.0%	93.0%	85%	40.1	24.8	47.2	56.7				
5.116	510-PU-021A	Motor de bomba de espumas Rougher de bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
5.117	510-PU-021B	Motor de bomba de espum. Rougher de bulk (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4				
5.118	510-PU-019	Motor de bomba sumidero de flotación bulk (nota 2)	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
5.119	510-FC-011	Motor de celda cleaner I de bulk	MOTOR	С	7.5	5.6	80.0%	89.5%	90%	6.2	4.7	7.8	9.4	5.6	4.2	7.0	8.5
5.120	510-FC-012	Motor de celdas cleaner I de bulk	MOTOR	С	15	11.2	85.0%	91.0%	90%	12.3	7.6	14.5	17.4	11.1	6.9	13.0	15.7
5.121	510-PU-003A	Motor de bomba de colas cleaner I de bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
5.122	510-PU-003B	Motor de bomba de colas cleaner I de bulk (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
5.123	510-PU-004A	Motor de bomba de espumas cleaner I de bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
5.124	510-PU-004B	Motor de bomba de espumas cleaner I de bulk (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4				
5.125	510-FC-014	Motor de celdas cleaner II de bulk	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
5.126	510-PU-005A	Motor de bomba de espumas de cleaner II de bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
5.127	510-PU-005B	Motor de bomba de esp. de cleaner II de bulk (en espera) (nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4			Î	

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Revisión Página N° Fecha: 0 2013-01-22

11.7 85.0% 91.0%

75%

12.9

657

8.0

419

15.1

779

18.2

9.6

507

6.0

320

11.4

599

13.7

15.7

SNC·LAVALIN

A.10	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA	INSTAL	ADA	M	ÁXIMA D	EMAND	A
N°	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
5.128	510-FC-016	Motor de celdas cleaner III de bulk	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
5.129	510-PU-006A	Motor de bomba de espumas de cleaner III de bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
5.130	510-PU-006B	Motor de bomba de esp. de cleaner III de bulk (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
5.131	510-FC-018	Motor de celdas cleaner IV de bulk	MOTOR	С	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
5.132	510-PU-007A	Motor de bomba de espumas de cleaner IV de bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
5.133	510-PU-007B	Motor de bomba de esp. de cleaner IV de bulk (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
5.134	510-PU-024A	Motor de bomba de retorno de muestra de O/F ciclones (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
5.135	510-PU-024B	Motor de bomba de ret. de muestra de O/F ciclones (espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
5.136	510-PU-025A	Motor de bomba de retorno de muestra de concentrado bulk (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
5.137	510-PU-025B	Motor de bomba de retorno de muestra de conc. bulk (espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				

NIVEL DE TENSIÓN (kV): 0.48

Notas: CORRIENTE EN MÁXIMA DEMANDA (A): 721.1 FP: 0.85

SUB-TOTAL:

- Los valores de potencia son obtenidos de los proveedores y en otros casos de cotizaciones según lo indicado en el documento P03-S009-0000-04-45-0001: Listado de Equipos Mecánicos

FDR

2.- Potencias de equipos obtenidas de cotizaciones, no es potencia certificada.

Grúa puente de 5 t

- FP: Factor de potencia
- EF: Eficiencia

5.138 510-CN-001

FD: Factor de demanda

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) – PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA Nº Fecha: 17

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Fecha: 17 2013-01-22

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	POT	ENCIA	INSTAL	ADA	M	ÁXIMA D	DEMAND	A
	EQUIPO	DESCRIPTION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
6.0	CENTRO DE CO	NTROL DE MOTORES (510-MCL-002)															
6.1	FLOTACIÓN COBI	RE-PLOMO						4									
6.101	510-AG-002	Motor agitador de tanque acond. de flotación de Cu/Pb (nota 3)	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
6.102	510-AG-003	Motor agitador de tanque acond. de flotación de Cu/Pb (nota 3)	MOTOR	С	15	11.2	85.0%	91.0%	90%	12.3	7.6	14.5	17.4	11.1	6.9	13.0	15.7
6.103	510-FC-019	Motor de celdas de flotación Rougher de cobre - plomo	MOTOR	С	7.5	5.6	80.0%	89.5%	85%	6.2	4.7	7.8	9.4	5.3	4.0	6.6	8.0
6.104	510-FC-021	Motor de celdas de flotación Rougher de cobre - plomo	MOTOR	С	7.5	5.6	80.0%	89.5%	85%	6.2	4.7	7.8	9.4	5.3	4.0	6.6	8.0
6.105	510-FC-023	Motor de celdas de flotación Rougher de cobre - plomo	MOTOR	С	3	2.2	80.0%	87.5%	85%	2.6	1.9	3.2	3.8	2.2	1.6	2.7	3.3
6.106	510-FC-024	Motor de celdas de flotación Scavenger de cobre - plomo	MOTOR	С	7.5	5.6	80.0%	89.5%	85%	6.2	4.7	7.8	9.4	5.3	4.0	6.6	8.0
6.107	510-FC-026	Motor de celdas de flotación Scavenger de cobre - plomo	MOTOR	С	7.5	5.6	80.0%	89.5%	85%	6.2	4.7	7.8	9.4	5.3	4.0	6.6	8.0
6.108	510-FC-028	Motor de celdas de flotación Scavenger de cobre - plomo	MOTOR	С	3	2.2	80.0%	87.5%	85%	2.6	1.9	3.2	3.8	2.2	1.6	2.7	3.3
6.109	510-SA-003	Muestreador matalúrgico colas scavenger Cu-Pb (nota 3)	FDR	C		1.1	85.0%	100.0%	85%	1.1	0.7	1.3	1.6	1.0	.6	1.1	1.3
6.110	510-PU-008A	Motor de bomba colas de Scavenger de Cu-Pb (nota 3)	MOTOR	C	5	3.7	80.0%	87.5%	90%	4.3	3.2	5.3	6.4	3.8	2.9	4.8	5.8
6.111	510-PU-008B	Motor de bomba colas de Scavenger de Cu-Pb(en espera)(nota 3)	MOTOR	S	5	3.7	80.0%	87.5%	90%	4.3	3.2	5.3	6.4	1			
6.112	510-PU-009A	Motor bomba espumas Rougher de Cu-Pb (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
6.113	510-PU-009B	Motor bomba espumas Rougher de Cu-Pb (en espera)(nota 3)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	- 1			
6.114	510-AG-004	Motor agitador de tanque acondicionador de celdas (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
6.115	510-FC-029	Motor de celda cleaner I de cobre-plomo	MOTOR	С	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
6.116	510-PU-010A	Motor de bomba de espumas cleaner I de Cu-Pb (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
6.117	510-PU-010B	Motor de bomba de espumas cleaner I de Cu-Pb (en espera)(nota 3)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4		1		
6.118	510-PU-011A	Motor de bomba de colas de cleaner I de Cu-Pb (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
6.119	510-PU-011B	Motor de bomba de colas de cleaner I de Cu-Pb (en espera)(nota 3)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
6.120	510-FC-030	Motor de celda cleaner II de cobre-plomo	MOTOR	С	3	2.2	80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3.1
6.121	510-SA-004	Motor de muestreador espumas cleaner II de Cu-Pb (nota 3)	FDR	С		1.1	50.0%	84.0%	80%	1.3	2.3	2.7	3.2	1.1	1.8	2.1	2.6
6.122	510-PU-012A	Motor de bomba espumas cleaner II de Cu-Pb (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
6.123	510-PU-012B	Motor de bomba espumas cleaner II de Cu-Pb (en espera)(nota 3)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
6.124	510-PU-023	Motor de bomba de sumidero de flotación Pb-Cu (nota 3)	MOTOR	С	15	11.2	85.0%	91.0%	85%	12.3	7.6	14.5	17.4	10.4	6.5	12.3	14.8
6.125	510-PU-026A	Motor de bomba de muestra de concentrado de plomo (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
6.126	510-PU-026B	Motor de bomba de muestra de concentrado de plomo (espera)(nota 3)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
6.127	510-PU-027A	Motor de bomba de muestra de concentrado de Cu (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
6.128	510-PU-027B	Motor de bomba de muestra de concentrado de Cu (espera)(nota 3)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
6.125	510-WR-001/002	02 tomas para máquina de soldar de 30 kW c/u	FDR	С		60.0	85.0%	100.0%	85%	60.0	37.2	70.6	84.9	51.0	31.6	60.0	72.2

Revisión

Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002

Nº

Fecha: 2013-01-22

18

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA	INSTAL	ADA	M	IÁXIMA D	DEMAND	A
14	EQUIPO	BESSIAII SIGN	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	A	kW	kVAR	kVA	Α
6.2	ZONA DE DISTRIE	UCIÓN DE AIRE A PLANTA E INSTRUMENTACIÓN															
6.201	570-CM-001A	Compresora de aire	FDR	С	100	74.6	85.0%	94.5%	80%	78.9	48.9	92.8	111.7	63.1	39.1	74.3	89.3
6.202	570-CM-001B	Compresora de aire (en espera)	FDR	S	100	74.6	85.0%	94.5%	80%	78.9	48.9	92.8	111.7				
6.3	SISTEMA DE HVA	C Y PRESURIZACIÓN - SALA ELÉCTRICA 980-ER-001 (Nota 2)															
6.301	000-AC-001	Unidad HVAC - Primer piso	FDR	С		70.0	85.0%	100.0%	80%	70.0	43.4	82.4	99.1	56.0	34.7	65.9	79.2
6.302	000-AC-002	Unidad presurización - Primer piso	FDR	С		40.0	85.0%	100.0%	80%	40.0	24.8	47.1	56.6	32.0	19.8	37.6	45.3
6.303	000-AC-003	Unidad HVAC - Segundo piso	FDR	С		70.0	85.0%	100.0%	80%	70.0	43.4	82.4	99.1	56.0	34.7	65.9	79.2
6.304	000-AC-004	Unidad presurización - Segundo piso	FDR	С	1	40.0	85.0%	100.0%	80%	40.0	24.8	47.1	56.6	32.0	19.8	37.6	45.3
6.4	SISTEMA DE HVA	C Y PRESURIZACIÓN - SALAS DE CONTROL EN ÁREA DE FLOTACIÓN															
6.401	800-PK-001	Sistema HVAC de Sala de Servidores y Control (nota 3)	FDR	С	80	59.7	85.0%	94.1%	80%	63.4	39.3	74.6	89.7	50.7	31.4	59.7	71.8
6.402	800-PK-002	Sistema HVAC de Sala de Analizadores en Línea (nota 3)	FDR	С	30	22.4	85.0%	92.4%	80%	24.2	15.0	28.5	34.3	19.4	12.0	22.8	27.4
			SUE	3-TOTAL:	-					668	429	793		455	291	540	

NIVEL DE TENSIÓN (kV): 0.48

CORRIENTE EN MÁXIMA DEMANDA (A): 650.1

FP:

0.84

Notas:

- Los valores de potencia son obtenidos de los proveedores y en otros casos de cotizaciones según lo indicado en el documento P03-S009-0000-04-45-0001: Listado de Equipos Mecánicos
- Valores referenciales usados solo para estimación de demanda, deberán ser verificadas por el proveedor de la sala eléctrica.
- Potencias de equipos obtenidas de cotizaciones, no es potencia certificada.
- Factor de potencia
- Eficiencia
- Factor de demanda

Revisión Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 N° O Fecha: 2013-01-22

A10	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA I	NSTALA	NDA		MÁXIMA DE	MANDA	
N°	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
7.0	CENTRO DE CONT	FROL DE MOTORES (510-MCL-003)															
7.1	FLOTACIÓN ZINC																
7.101	510-AG-005	Motor agitador de tanque acondicionador de zinc (nota 2)	MOTOR	С	40	29.8		93.0%	85%	32.1	19.9	37.7	45.4	27.3	16.9	32.1	38.6
7.102	510-AG-006	Motor agitador de tanque acondicionador de zinc (nota 2)	MOTOR	С	40	29.8		93.0%	85%	32.1	19.9	37.7	45.4	27.3	16.9	32.1	38.6
7.103	510-AG-007	Motor agitador de tanque acondicionador de zinc (nota 2)	MOTOR	С	40	29.8	85.0%	93.0%	85%	32.1	19.9	37.7	45.4	27.3	16.9	32.1	38.6
7.104	510-FC-031	Motor de celdas Rougher de zinc	MOTOR	С	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.105	510-FC-032	Motor de celdas Rougher de zinc	MOTOR	С	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.106	510-FC-033	Motor de celdas Rougher de zinc	MOTOR	C	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.107	510-FC-034	Motor de celdas Rougher de zinc	MOTOR	С	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.108	510-FC-035	Motor de celdas Rougher de zinc	MOTOR	C	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.109	510-FC-036	Motor de celdas Rougher de zinc	MOTOR	C	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.110	510-PU-022A	Motor de bomba de espumas Rougher de zinc (nota 2)	MOTOR	C	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.111	510-PU-022B	Motor de bomba de esp. Rougher de zinc (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	T			
7.112	510-FC-037	Motor de celdas Scavenger de zinc	MOTOR	C	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.113	510-FC-038	Motor de celdas Scavenger de zinc	MOTOR	С	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.114	510-FC-039	Motor de celdas Scavenger de zinc	MOTOR	С	50	37.3	85.0%	93.0%	80%	40.1	24.8	47.2	56.7	32.1	19.9	37.7	45.4
7.115	510-PU-013A	Motor de bomba espumas Scavenger de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.116	510-PU-013B	Motor de bomba esp. Scavenger de zinc (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
7.117	510-SA-006	Muestreador colas Scavenger de zinc (nota 2)	FDR	С		2.6	80.0%	87.5%	80%	3.0	2.2	3.7	4.5	2.4	1.8	3.0	3.6
7.118	510-FC-040	Motor de celdas cleaner I de zinc	MOTOR	С	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
7.119	510-FC-041	Motor de celdas cleaner 1 de zinc	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
7.120	510-PU-014A	Motor de bomba de colas de <i>cleaner</i> I de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
7.121	510-PU-014B	Motor de bomba de colas de cleaner I de zinc (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4				
7.122	510-PU-015A	Motor de bomba de espumas de cleaner I de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.123	510-PU-015B	Motor de bomba de esp. de cleaner I de zinc (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
7.124	510-FC-043	Motor de celdas cleaner II de zinc	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
7.125	510-PU-016A	Motor de bomba de espumas cleaner II de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.126	510-PU-016B	Motor de bomba de esp. cleaner II de zinc (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	- 1		i	

Revisión Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 N° O Fecha: 2013-01-22

20

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA I	NSTALA	DA	N	MÁXIMA DE	EMANDA	
N	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
7.127	510-FC-045	Motor de celdas cleaner III de zinc	MOTOR	С	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
7.128	510-PU-017A	Motor de bomba de espumas cleaner III de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.129	510-PU-017B	Motor de bomba de esp. cleaner III de zinc (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
7.130	510-FC-046	Motor de celda cleaner IV de zinc	MOTOR	С	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
7.131	510-SA-007	Muestreador espumas cleaner IV de zinc	FDR	С	1.5	1.1	50.0%	84.0%	80%	1.3	2.3	2.7	3.2	1.1	1.8	2.1	2.6
7.132	510-PU-018A	Motor de bomba de espumas cleaner IV de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.133	510-PU-018B	Motor de bomba de esp. cleaner IV de zinc (en espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
7.134	510-PU-020	Motor de bomba de sumidero flotación de zinc (nota 2)	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
7.135	510-PU-028A	Motor de bomba de muestra de concentrado de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.136	510-PU-028B	Motor de bomba de muestra de concentrado de zinc (espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
7.137	510-PU-029A	Motor de bomba de muestra de relave final (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4	3.6	2.7	4.5	5.4
7.138	510-PU-029B	Motor de bomba de muestra de relave final (espera)(nota 2)	MOTOR	S	5	3.7	80.0%	87.5%	85%	4.3	3.2	5.3	6.4				
7.139	510-WR-003/004	02 tomas para máquina de soldar de 30 kW c/u	FDR	С		60.0	85.0%	100.0%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
			SUE	3-TOTAL :						654	419	777		481	306	570	

NIVEL DE TENSIÓN (kV): 0.48

CORRIENTE EN MÁXIMA DEMANDA (A): 685

FP:

0.84

Notas:

- 1.- Los valores de potencia son obtenidos de los proveedores y en otros casos de cotizaciones según lo indicado en el documento P03-S009-0000-04-45-0001: Listado de Equipos Mecánicos
- 2.- Potencias de equipos obtenidas de cotizaciones, no es potencia certificada.
- FP: Factor de potencia
- EF: Eficiencia
- FD: Factor de demanda

Revisión

Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 N° 0

Fecha: 2013-01-22

															-	-	
A 10	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA	INSTALA	DA	M	ÁXIMA D	EMAND	A
N°	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	A	kW	kVAR	kVA	Α
8.0	CENTRO DE C	ONTROL DE MOTORES (530-MCL-001)															
8.1	ZONA DE ESPES	SAMIENTO Y FILTRADO DE CONCENTRADOS															
8.101	530-FL-001	Filtro prensa zinc , bomba alim., bomba lav., bomba presur. (notas 1 y 4)	FDR	С	182	135.7	85.0%	95.0%	80%	142.9	88.5	168.1	202.2	114.3	70.8	134.5	161.7
8.102	530-PU-005	Motor de bomba sumidero espesamiento de zinc (nota 4)	MOTOR	C	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
8.103	530-FE-001	Motor de alimentador de faja concentrado de zinc	MOTOR	C	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
8.104	530-FL-002	Motor de bomba de alimentación filtro prensa de plomo (nota 2 y 4)	FDR	C	182	135.7	85.0%	95.0%	80%	142.9	88.5	168.1	202.2	114.3	70.8	134.5	161.7
8.105	530-PU-007	Motor de bomba sumidero de espesamiento de cobre (nota 4)	MOTOR	C	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
8.106	530-FE-002	Motor de alimentador de fajas (reversible) concentrado Pb/Cu	MOTOR	C	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
8.107	530-CM-001	Compresor de aire filtro prensa zinc	FDR	C	125	93.2	85.0%	94.5%	80%	98.6	61.1	116.0	139.6	78.9	48.9	92.8	111.7
8.108	530-CM-002	Compresor de aire filtro prensa Pb/Cu	FDR	C	125	93.2	85.0%	94.5%	80%	98.6	61.1	116.0	139.6	78.9	48.9	92.8	111.7
8.109	530-HT-001	Tecle monorriel área de filtrado	MOTOR	C		9.8	80.0%	89.5%	80%	10.9	8.2	13.7	16.5	8.8	6.6	10.9	13.2
8.110	530-WR-001/002	02 tomas para máquina de soldar de 30 kW c/u	FDR	С		60.0	85.0%	100.0%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
8.2	PLANTA DE TRA	ATAMIENTO DE AGUAS SERVIDAS															
8.201	710-PK-001	Planta de tratamiento de aguas servidas	FDR	С		7.5	80.0%	100.0%	80%	7.5	5.6	9.3	11.2	6.0	4.5	7.5	9.0
8.3	LAVADO DE LLA	ANTA DE CAMIONES															
8.301	530-PK-001	Sistema de lavado de llantas de camiones (nota 4)	FDR	С	150	111.9	85.0%	100.0%	80%	111.9	69.3	131.6	158.3	89.5	55.5	105.3	126.6
8.4	PLANTA DE CAI																
8.401	562-PK-001	Alimentador de faja, agitador, bomba de transf. lechada de cal (nota 4)	FDR	C		23.9	85.0%	92.4%	80%	25.8	16.0	30.4	36.5	20.7	12.8	24.3	29.2
8.402	562-PU-002A	Motor bomba de transferencia de lechada de cal (nota 4)	MOTOR	C	20	14.9	85.0%	91.0%	80%	16.4	10.2	19.3	23.2	13.1	8.1	15.4	18.6
8.403	562-PU-002B	Motor bomba de transferencia de lechada de cal (en espera)	MOTOR	S	20	14.9	85.0%	91.0%	80%	16.4	10.2	19.3	23.2		1		
8.404	562-HT-001	Tecle monorriel planta de cal	FDR	C		4.7	80.0%	87.5%	80%	5.4	4.0	6.7	8.1	4.3	3.2	5.4	6.5
8.405	562-PU-003	Motor de bomba sumidero	MOTOR	C	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
8.406	562-WR-001/002	02 tomas para máquina de soldar de 30 kW c/u	FDR	C		60.0	85.0%	100.0%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
8.5	-	ARGAS AUXILIARES E ILUMINACIÓN EXTERIOR).)								
8.501	980-TD-002	Cargas auxliares e iluminación exterior	FDR	C		40.0	85.0%	100.0%	90%	40.0	24.8	47.1	56.6	36.0	22.3	42.4	50.9
			SUE	-TOTAL :						877	548	1,034		656	411	774	

Revisión

Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 N° O Fecha: 2013-01-22

					1						_		
	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	POTENCIA INSTALADA	M	ÁXIMA DEMAND	DA
N°	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW kVAR kVA A	kW	kVAR kVA	A
		NIVE	L DE TENS	IÓN (kV):	0.48								
		CORRIENTE EN MÁX	IMA DEMA	NDA (A):	931		FP:	0.85					
Notas:													
1	Paquete filtro de	prensa de zinc.											
2	Paquete filtro de	prensa de cobre/plomo,											
3	Los valores de p	otencia son obtenidos de los proveedores y en otros casos de cotizac	iones segúr	n lo indicad	lo en el	docum	ento P03	3 - S009-00	00-04-4	45-0001: Listado de Equipos Me	cánicos		
4	Potencias de eq	uipos obtenidas de cotizaciones, no es potencia certificada.											1
FP:	Factor de poten	cia											
EF:	Eficiencia												
FD:	Factor de dema	nda											

Revisión

Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 N° O Fecha: 2013-01-22

	NÚMERO	DECODIDATÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	POT	TENCIA I	NCIA INSTAL			MÁXIMA [DEMAND	A
N°	EQUIPO	DESCRIPCIÓN	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
9.0	CENTRO DE C	ONTROL DE MOTORES - CARGAS CRITICAS (530-MCL-002)															
9.1	ZONA DE ESPES	SAMIENTO Y FILTRADO DE CONCENTRADOS											1				
9.101	530-TH-001	Espesador de zinc (nota 3)	MOTOR	С	15	11.2	85.0%	91.0%	75%	12.3	7.6	14.5	17.4	9.2	5.7	10.8	13
9.102	530-PU-001A	Motor de bombas underflow del espesador de zinc (nota 3)	MOTOR	C	10	7.5	80.0%	89.5%	85%	8.3	6.2	10.4	12.5	7.1	5.3	8.9	10
9.103	530-PU-001B	Motor de bombas underflow del espesador de zinc (en espera)(nota 3)	MOTOR	S	10	7.5	80.0%	89.5%	85%	8.3	6.2	10.4	12.5				
9.104	530-AG-001	Motor de agitador de holding tank de zinc (nota 3)	MOTOR	C	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	
9.105	530-TH-002	Espesador de plomo (nota 3)	MOTOR	С	10	7.5	80.0%	89.5%	75%	8.3	6.2	10.4	12.5	6.2	4.7	7.8	9
9.106	530-PU-002A	Motor de bomba underflow de espesador de plomo (nota 3)	MOTOR	С	10	7.5	80.0%	89.5%	85%	8.3	6.2	10.4	12.5	7.1	5.3	8.9	10
9.107	530-PU-002B	Motor de bomba underflow de espes. de plomo (en espera)(nota 3)	MOTOR	S	10	7.5	80.0%	89.5%	85%	8.3	6.2	10.4	12.5				
9.108	530-AG-002	Motor de agitador de holding tank de plomo (nota 3)	MOTOR	С	20	14.9	85.0%	91.0%	80%	16.4	10.2	19.3	23.2	13.1	8.1	15.4	18
9.109	530-PU-006	Motor de bomba de sumidero de espesamiento de plomo (nota 3)	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13
9.110	530-TH-003	Espesador de cobre (nota 3)	MOTOR	С	10	7.5	80.0%	89.5%	75%	8.3	6.2	10.4	12.5	6.2	4.7	7.8	9
9.111	530-PU-003A	Motor de bomba underflow de espesador de cobre (nota 3)	MOTOR	С	10	7.5	80.0%	89.5%	85%	8.3	6.2	10.4	12.5	7.1	5.3	8.9	10.
9.112	530-PU-003B	Motor de bomba underflow de espesador de cobre (espera)(nota 3)	MOTOR	S	10	7.5	80.0%	89.5%	85%	8.3	6.2	10.4	12.5				
9.113	530-AG-003	Motor de agitador de holding tank de cobre (nota 3)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.
9.2	SISTEMA CONTI	RAINCENDIOS					U.S.										
9.201	712-TD-001	Bomba jockey	FDR	С		3.9	80.0%	87.5%	90%	4.4	3.3	5.5	6.7	4.0	3.0	5.0	6.
9.3	PLANTA DE CAL																1
9.301	562-AG-001	Motor agitador de tanque preparación lechada de cal	MOTOR	C	10.0	7.5	80.0%	89.5%	80%	8.3	6.2	10.4	12.5	6.7	5.0	8.3	10.
9.302	562-AG-002	Motor agitador de almacen. y dosific. de lechada de cal	MOTOR	С	15.0	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.
9.4	TABLEROS DE S	SERVICIOS AUXILIARES E INSTRUMENTACIÓN												==			
9.401	980-TD-001	Tablero de servicios auxiliares - !luminación	FDR	С		125.0	84.0%	100.0%	85%	125.0	80.7	148.8	179.0	106.3	68.6	126.5	152.
9.402	980-TD-001	Servicios auxiliares - tomacorrientes (Ver nota 2)	FDR	С		18.7	84.0%	100.0%	85%	18.7	12.1	22.2	26.7	15.9	10.2	18.9	22.
9.403	980-UPS-001	UPS N° 1 (sala eléctrica 980-ER-001)	FDR	С	Ì	25.5	85.0%	100.0%	85%	25.5	15.8	30.0	36.1	21.7	13.4	25.5	30.
9.404	980-UPS-002	UPS N° 2 (sala de servidores-flotación)	FDR	С		25.5	85.0%	100.0%	85%	25.5	15.8	30.0	36.1	21.7	13.4	25.5	30.
			SUE	-TOTAL :						344	228	412		265	174	317	

Revisión Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Fecha: 2013-01-22

N٥

0

cha: 24 -01-22

	NÚMERO	DECEDIDATA	Tipo de San, (s, San	FP	-	FD	РО	TENCIA	INSTAL	ADA	MÁXIMA DEMANDA						
N°	EQUIPO	DESCRIPCIÓN			HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
			EL DE TENS				FD .	0.04	16								
Notas		CORRIENTE EN MÁ	XIMA DEMA	NDA (A):	381.2		FP:	0.84	-								
1		otencia son obtenidos de los proveedores y en otros casos de cotiz	aciones seg	ún lo indica	ado en	el docun	nento P	03-S009-	0000-04	45-00	01: Lista	do de E	quipos	Mecáni	icos		
2	Valor de demand	a considerado solo para dimensionamiento del tablero, no será us	ado como ca	rga crítica.													
3	Potencias de equ	uipos obtenidas de cotizaciones, no es potencia certificada.															
FP:	Factor de potenc	ia															
EF:	Eficiencia																
FD:	Factor de deman	da															

Revisión Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Fecha: 2013-01-22

Nº

A10	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	POT	TENCIA	INSTALA	ADA	М	ÁXIMA D	EMAND	4
N°	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
10.0	CENTRO DE COI	NTROL DE MOTORES (560-MCL-001)															
10.1	PLANTA DE LAVA	DO (Ver nota 2)															
10.101	400-CB-005	Motor faja transportadora de alimentacion planta de lavado (nota 2)	MOTOR	С	25	18.6	85.0%	92.4%	80%	20.2	12.5	23.7	28.6	16.1	10.0	19.0	22.8
10.102	400-WD-001	Tambor lavador, zaranda vibratoria, bomba de pulpa (nota 2)	FDR	С	206	153.6	85.0%	95.0%	80%	161.7	100.2	190.2	228.8	129.4	80.2	152.2	183.1
10.103	400-PU-005A	Motor bomba booster (nota 2)	MOTOR	С	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4	5.0	3.7	6.2	7.5
10.104	400-PU-005B	Motor bomba booster (en espera)(nota 2)	MOTOR	S	7.5	5.6	80.0%	89.5%	80%	6.2	4.7	7.8	9.4				
10.105	400-CB-006	Motor faja transportadora (nota 2)	MOTOR	С	25	18.6	85.0%	92.4%	80%	20.2	12.5	23.7	28.6	16.1	10.0	19.0	22.8
10.106	400-CB-007	Motor faja transportadora (nota 2)	MOTOR	С	10	7.5	80.0%	89.5%	80%	8.3	6.2	10.4	12.5	6.7	5.0	8.3	10.0
10.107	400-CN-003	Grúa puente planta de lavado (nota 2)	FDR	С		11.7	85.0%	91.0%	80%	12.9	8.0	15.1	18.2	10.3	6.4	12.1	14.6
10.108	400-PU-003	Motor bomba sumidero planta compacta (nota 2)	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
10.109	400-AG-002	Motor de agitador holding tank (nota 2)	MOTOR	С	75	55.9	85.0%	94.1%	85%	59.4	36.8	69.9	84.1	50.5	31.3	59.4	71.5
10.110	400-PU-007A	Motor bomba de pulpa (nota 2)	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
10.111	400-PU-007B	Motor bomba de pulpa (en espera) (nota 2)	MOTOR	S	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4		11 - 1		
10.112	400-PU-004	Motor bomba sumidero (nota 2)	MOTOR	С	15	11.2	85.0%	91.0%	80%	12.3	7.6	14.5	17.4	9.8	6.1	11.6	13.9
10.113	400-WR-006/007	02 tomas para máquina de soldar de 30 kW c/u	FDR	С		60.0	85.0%	100.0%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
10.2	PREPARACIÓN DE	REACTIVOS - 480 V															
10.201	560-AG-001	Motor de agitador tanque de preparación de carbón activado (nota 2)	MOTOR	С	3	2.2	80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3.1
10.202	560-AG-002	Motor de agitador tanque de preparación de sulfato de cobre(nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
10.203	560-PU-002	Motor de bomba transferencia de sulfato de cobre (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
10.204	560-PU-034	Motor de bomba de trasvase de espumante MIBC (nota 2)	MOTOR	С	1	0.7	50.0%	82.5%	80%	0.9	1.6	1.8	2.2	0.7	1.3	1.4	1.7
10.205	560-AG-007	Motor de agitador de tanque preparación silicato de sodio (nota 2)	MOTOR	С	2	1.5	65.0%	84.0%	80%	1.8	2.1	2.7	3.3	1.4	1.7	2.2	2.6
10.206	560-PU-007	Motor de bomba transferencia de silicato de sodio (nota 2)	MOTOR	С	3	2.2	80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3.1
10.207	560-AG-010	Motor de agitador de tanque de preparación de xantato (z-11)(nota 2)	MOTOR	С	1	0.7	50.0%	82.5%	80%	0.9	1.6	1.8	2.2	.0.7	1.3	1.4	1.7
10.208	560-PU-010	Motor de bomba de transferencia de xantato (z-11) (nota 2)	MOTOR	С	2	1.5	65.0%	84.0%	80%	1.8	2.1	2.7	3.3	1.4	1.7	2.2	2.6
10.209	560-AG-013	Motor de agitador tanque de preparación de xantato (z-6) (nota 2)	MOTOR	С	1	0.7	50.0%	82.5%	80%	0.9	1.6	1.8	2.2	0.7	1.3	1.4	1.7
10.210	560-PU-013	Motor de bomba de transferencia de xantato (z-6) (nota 2)	MOTOR	С	2	1.5	65.0%	84.0%	80%	1.8	2.1	2.7	3.3	1.4	1.7	2.2	2.6
10.211	560-AG-017	Motor de agitador tanque de preparación de sulfato de zinc (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1
10.212	560-PU-017A	Motor de bomba de transferencia de sulfato de zinc (nota 2)	MOTOR	С	2	1.5	65.0%	84.0%	80%	1.8	2.1	2.7	3.3	1.4	1.7	2.2	2.6
10.213	560-PU-017B	Motor de bomba de transferencia de sulfato de zinc (nota 2)	MOTOR	С	3	2.2	80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3.1
10.214	560-AG-019	Motor de agitador tanque de preparación de cianuro (nota 2)	MOTOR	С	3		80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3.1
10.215	560-PU-019A	Motor de bomba de transferencia de cianuro de sodio (nota 2)	MOTOR	С	3	2.2	80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3.1
	560-PU-019B	Motor de bomba de transferencia de cianuro de sodio (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.1

Revisión Página

SNC·LAVALIN

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002

Fecha: 2013-01-22

N°

26

A10	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	POT	ENCIA	INSTALA	ADA	MÁXIMA DEMANDA			
N°	EQUIPO	DESCRIPCION	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
10.217	560-AG-021	Motor de agitador de tanque de almacenamiento (nota 2)	MOTOR	С	3	2.2	80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3
10.218	560-AG-024	Motor de agitador de tanque de preparación de RCS (nota 2)	MOTOR	С	3	2.2	80.0%	87.5%	80%	2.6	1.9	3.2	3.8	2.0	1.5	2.6	3.
10.219	560-PU-024	Motor de bomba de transferencia de RCS (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.
10.220	560-PK-002	Planta de floculante de concentrados (nota 2)	FDR	С	9	6.7	80.0%	89.5%	80%	7.5	5.6	9.4	11.3	6.0	4.5	7.5	9.
10.221	560-PU-030	Motor de bomba sumidero del área de reactivos (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.
10.222	560-PU-031	Motor de bomba sumidero sulfato de cobre (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.
10.223	560-PU-032	Motor de bomba sumidero cianuro de sodio (nota 2)	MOTOR	С	5	3.7	80.0%	87.5%	80%	4.3	3.2	5.3	6.4	3.4	2.6	4.3	5.
10.224	560-CN-001	Grúa puente reactivos (nota 2)	MOTOR	С		5.2	80.0%	87.5%	80%	6.0	4.5	7.5	9.0	4.8	3.6	6.0	7.:
10.225	560-HT-001	Tecle monorriel área de cianuro de sodio (nota 2)	FDR	С	6	4.5	80.0%	87.5%	80%	5.1	3.8	6.4	7.7	4.1	3.1	5.1	6.2
10.226	560-WR-001/002	02 tomas para máquina de soldar de 30 kW c/u	FDR	С		60.0	85.0%	100.0%	50%	60.0	37.2	70.6	84.9	30.0	18.6	35.3	42.5
10.3	SISTEMA DE HVA	Y PRESURIZACIÓN - SALAS DE CONTROL EN ÁREA DE FLOTAC	ÓN														
10.301	560-PK-003	Sistema de ventilación (nota 2)	FDR	С	30	22.4	85.0%	92.4%	80%	24.2	15.0	28.5	34.3	19.4	12.0	22.8	27.4
10.4	TABLEROS DE DIS	STRIBUCIÓN PARA BOMBAS DE DOSIFICACIÓN															
10.401	560-TD-001	Tablero de preparación y dosificación de reactivos	FDR	C		9.3	80.0%	89.5%	50%	10.4	7.8	13.0	15.7	5.2	3.9	6.5	7.8
10.402	560-TD-002	Tablero de preparación y dosificación de reactivos	FDR	C		0.7	50.0%	82.5%	50%	0.9	1.6	1.8	2.2	0.5	.8	.9	1.1
10.5	TALLER DE MANT	ENIMIENTO										1					
10.501	530-TD-001	Tablero de fuerza de taller de manteniemieno	FDR	С		100.0	80.0%	89.5%	80%	111.7	83.8	139.7	168.0	89.4	67.0	111.7	134.4
			SUI	B-TOTAL :						692	465	833		502	339	606	

NIVEL DE TENSIÓN (kV): 0.48

FP:

0.83

CORRIENTE EN MÁXIMA DEMANDA (A): 728.6

Notas:

- Los valores de potencia son obtenidos de los proveedores y en otros casos de cotizaciones según lo indicado en el documento P03-S009-0000-04-45-0001: Listado de Equipos Mecánicos
- Potencias de equipos obtenidas de cotizaciones, no es potencia certificada.
- Factor de Potencia
 - Eficiencia
- Factor de demanda

INGENIERÍA Y GERENCIA DE LA CONSTRUCCIÓN (ECM) — PROYECTO ALPAMARCA CÁLCULO DE MÁXIMA DEMANDA Nº Fecha: 27

SNC·LAVALIN

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 Fecha: 2013-01-22

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PO	TENCIA II	NSTALAD	A	М	ÁXIMA C	EMAND	A
	EQUIPO	DESCIVII GIGIT	Carga	Cont (C)	HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
11.0	TABLERO DE DI	STRIBUCIÓN DE FUERZA															
11.1	TABLERO DE PRE	EPARACIÓN Y DOSIFICACIÓN DE REACTIVOS															
11.101	560-PU-001A	Motor de bomba dosificadora de carbón activado	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.102	560-PU-001B	Motor de bomba dosificadora de carbón activado	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.103	560-PU-003A	Motor de bomba dosificadora de sulfato de cobre N°1 (nota 2)	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.104	560-PU-003B	Motor de bomba dosificadora de sulfato de cobre N° 2 (nota 2)	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.105	560-PU-004A	Motor de bomba dosificadora de espumante MIBC	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.106	560-PU-004B	Motor de bomba dosificadora de espumante MIBC	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.107	560-PU-004C	Motor de bomba dosificadora de espumante MIBC	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.108	560-PU-004D	Motor de bomba dosificadora de espumante MIBC	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.109	560-PU-008	Motor de bomba dosificadora de silicato de sodio	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.110	560-PU-011A	Motor de bomba dosificadora de xantato (z-11)	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.111	560-PU-011B	Motor de bomba dosificadora de xantato (z-11)	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.112	560-PU-011C	Motor de bomba dosificadora de xantato (z-11)	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11,113	560-PU-014A	Motor de bomba dosificadora de xantato (z-6) N° 1	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.114	560-PU-014B	Motor de bomba dosificadora de xantato (z-6) N° 2	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.115	560-PU-014C	Motor de bomba dosificadora de xantato (z-6) N° 3	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.116	560-PU-016	Motor de bomba dosificadora de tionocarbamato (SF 323)	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.117	560-PU-018A	Motor de bomba dosificadora de sulfato de zinc	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.118	560-PU-018B	Motor de bomba dosificadora de sulfato de zinc	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.119	560-PU-018C	Motor de bomba dosificadora de sulfato de zinc	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.120	560-PU-018D	Motor de bomba dosificadora de sulfato de zinc	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.121	560-PU-021A	Motor de bomba dosificadora de complejo NaCN/ZnSO ₄	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.122	560-PU-021B	Motor de bomba dosificadora de complejo NaCN/ZnSO ₄	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.123	560-PU-021C	Motor de bomba dosificadora de complejo NaCN/ZnSO ₄	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.124	560-PU-025A	Motor de bomba de dosificación de RCS	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.125	560-PU-025B	Motor de bomba de dosificación de RCS	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.2	TABLERO DE PRE	EPARACIÓN Y DOSIFICACIÓN DE REACTIVOS			Ì												
11.201	560-PU-020A	Motor de bomba dosificación de cianuro de sodio	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
11.202	560-PU-020B	Motor de bomba dosificación de cianuro de sodio	MOTOR	С	0.5	0.37	50.0%	80.0%	80%	0.47	0.81	0.93	1.94	0.37	0.65	0.75	1.55
			SUE	3-TOTAL :						12.58	21.80	25.17		10.07	17.44	20.13	

Revisión

Página

CÁLCULO DE MÁXIMA DEMANDA

P03-S009-0000-06-47-0002 15380-0000-47EB-0002 N° O Fecha: 2013-01-22

N°	NÚMERO	DESCRIPCIÓN	Tipo de	Stby (S)	Pot	Pot	FP	EF	FD	PC	OTENCIA I	NSTALA)A	N	MÁXIMA (EMAND	Α
N	EQUIPO	DESCRIPCION	Carga Co		ont (C) HP	kW	%	%	%	kW	kVAR	kVA	Α	kW	kVAR	kVA	Α
	•			,													
		NIV	EL DE TENS	SION (kV):	0.48												
		CORRIENTE EN MÁ	XIMA DEMA	NDA (A):	24.22		FP:	0.5									
Notas:		0															
1	Los valores de pot	encia son obtenidos de los proveedores y en otros casos	de cotizacio	nes según	lo indica	ado en el	documen	to P03-S	009-000	-04-45-00	001: Lista	lo de Equ	ipos Me	cánicos			
2	Potencias de equip	oos obtenidas de cotizaciones, no es potencia certificada.															
FP:	Factor de potencia	· · · · · · · · · · · · · · · · · · ·															
EF:	Eficiencia																7.
FD:	Factor de demanda	a							1								