# SÍNTESIS Y CARACTERIZACION ESTRUCTURAL Y MORFOLÓGICA DE NANOPARTÍCULAS DE ZNO<sub>2</sub> ASISTIDO CON UV PARA APLICACIONES BACTERICIDAS

# SYSTHESIS AND STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION OF ZnO<sub>2</sub> ASSISTED UV NANOPARTICLES FOR BACTERICIDAL APPLICATIONS

## Roberto Colonia<sup>1</sup>, Vanessa C. Martinez<sup>2</sup>, José L. Solís<sup>3</sup>, Mónica M. Gómez<sup>4</sup>

#### RESUMEN

El peróxido de zinc  $(ZnO_2)$  fue sintetizado en forma de nanopartículas por medio de la ruta sol-gel. Para la síntesis se empleó acetato de zinc di-hidratado  $(Zn(CH_3COO)_2.2H_2O)$  y peróxido de hidrogeno  $(H_2O_2)$  al 30% asistido de radiación UV. Las nanopartículas de ZnO<sub>2</sub> obtenidas fueron caracterizadas estructuralmente mediante la técnica de difracción de rayos-X. Mientras que el estudio de la morfología y tamaño de conglomerados cristalinos, se realizó por microscopía electrónica de barrido. Para explorar las propiedades bactericidas del ZnO<sub>2</sub>, se realizaron pruebas preliminares en las que se enfrentó este material a las cepas: Bacillus subtilis (ATCC 6051), Escherichia coli (ATCC 25922) y Staphylococcus aureus (ATCC 25923), y se observó que las nanopartículas presentan una notoria propiedad bactericida.

Palabras clave. - Peróxido de zinc, Nanopartículas, Bactericida.

## ABSTRACT

Zinc peroxide  $(ZnO_2)$  nanoparticles were synthesized by sol-gel technique. The chemicals used for the synthesis were zinc acetate di-hydrate  $(Zn(CH_3COO)_2.2H_2O)$  and hydrogen peroxide  $(H_2O_2)$  at 30% under UV radiation. The structure of the  $ZnO_2$  nanoparticles was characterized by X-ray diffraction. While the morphology and the cluster size, were determined using scanning electron microscopy. For a preliminary evaluation of the bactericidal properties of the  $ZnO_2$ , the material was exposed to Bacillus subtilis (ATCC 6051), Escherichia coli (ATCC 25922) y Staphylococcus aureus (ATCC 25923) and it was found that the material has notorious antibacterial activity.

Key words. - Zinc peroxide, Nanoparticles, Bactericidal.

# INTRODUCCIÓN

El  $ZnO_2$  es un polvo sin olor, de color blanco o ligeramente amarillento, casi insoluble en agua y soluble en ácido. El  $ZnO_2$  es un tipo de peróxido muy estable a condiciones normales, pero cuando llega a 150 °C empieza a descomponerse y generar oxígeno, para formar ZnO. El  $ZnO_2$  es un material semiconductor con un ancho de banda prohibida de 4.20 eV [1], además es ampliamente utilizado en la industria, tal como la industria del caucho [2-4], el procesamiento de plásticos [5], como oxidante para explosivos y mezclas pirotécnicas [6], y en los últimos años en la industria cosmética y farmacéutica, como un aditivo antiséptico en el tratamiento de las enfermedades de la piel [7-9]. También el  $ZnO_2$  puede usarse en procesos de fotocatálisis [10] y como precursor para la

<sup>1</sup>Ing. Físico, graduado de la Facultad de Ciencias de la Universidad Nacional de Ingeniería, <sup>2</sup>Estudiante de Maestría de la Facultad de Ciencias de la Universidad Nacional de Ingeniería. <sup>3</sup>Dr. Investigador de la Facultad de Ciencias de la Universidad Nacional de Ingeniería <sup>4</sup> Dra Investigadora de la Facultad de Ciencias de la Universidad Nacional de Ingeniería.

preparación de nanopartículas de ZnO [11-13].

La preparación de  $ZnO_2$  es producida principalmente a partir de los siguientes reactivos: ZnO,  $Zn(OH)_2$ ,  $ZnEt_2$ ,  $Zn(NO_3)_2$ ,  $ZnCl_2$  o  $ZnCO_3$ . En el presente artículo reportamos la síntesis del nanopartículas de  $ZnO_2$  mediante la técnica de solgel, empleando acetato de zinc di-hidratado  $(Zn(CH_3COO)_2.2H_2O)$  y peróxido de hidrógeno  $(H_2O_2)$  al 30% en un medio acuoso. Durante la síntesis, el sol fue expuesto a radiación UV a diferentes periodos de tiempo.

### PARTE EXPERIMENTAL

#### Síntesis de las nanopartículas de ZnO<sub>2</sub>

Para la síntesis de las nanopartículas de  $ZnO_2$  se utilizó el método sol-gel, para ello se diluyó inicialmente 5 ml de  $H_2O_2$  al 30 % con 50 ml de  $H_2O$  y se agitó hasta homogenizar la solución, luego se disolvió 1g de  $Zn(CH_3COO)_2.2H_2O$  en la solución antes de empezar a irradiarla con una lámpara de luz UV. La irradiación del sistema se realizó para diferentes tiempos empleando una lámpara de 300 W Ultra-Vitalux (Osram). La Figura 1 muestra el montaje empleado, todo el sistema de síntesis se colocó dentro de una cámara oscura para evitar cualquier daño ocasionado por la radiación UV. Luego de haber obtenido un gel particulado el medio se centrifuga, para separar y luego lavar, las partículas precipitadas. Las nanopartículas son secadas a una temperatura de 80°C durante 12 horas.



Fig. 1 Montaje de experimental empleado para la síntesis de nanopartículas de ZnO<sub>2</sub> usando radiación UV.

#### Análisis de las nanopartículas de ZnO<sub>2</sub>

La caracterización estructural y morfológica de las nanopartículas es de gran importancia para interpretar sus propiedades tanto físicas como químicas, y también lo será para poder explorar las aplicaciones microbiológicas que se puedan estudiar.

En esta sección presentamos el estudio estructural realizado mediante Difracción de Rayos-X (DRX), el estudio morfológico realizado por Microscopía Electrónica de Barrido (MEB) y finalmente se las pruebas preliminares presentan de microbiología realizadas exponiendo las nanopartículas de ZnO2 a las cepas Bacillus subtilis (ATCC 6051), Escherichia coli (ATCC 25922) y Staphylococcus aureus (ATCC 25923).

#### Difracción de rayos X

La caracterización estructural de las nanopartículas de  $ZnO_2$  se realizó por DRX empleando un difractómetro Rigaku Miniflex II Desktop operado con una fuente de radiación de CuK 1 (=0.15045 nm) a 30 kV, 20 mA y con una velocidad de barrido de 3°/min.

Para el análisis de los difractogramas se utilizó el programa TOPAS-Academic [14] que provee una aproximación general de la convolución y refinamiento de los datos con una variedad de perfiles numéricos, sin la necesidad de una convolución analítica. Esto se logra con funciones que representan, la fuente de rayos X, la aberración del difractómetro (diámetro del goniómetro, si usa monocromador, rejillas, etc.), así como la contribución de la muestra (tamaño del cristalito y microdeformación). Este método es conocido como aproximación por parámetros fundamentales (APF).

En el presente trabajo todos los difractogramas pudieron ajustarse satisfactoriamente usando una sola fase correspondiente al  $ZnO_2$ , que posee una estructura cúbica con grupo espacial Pa  $\overline{3}$  y parámetro de red de 4.874 Å, donde las posiciones del Zn y O están localizados en los sitios (0, 0, 0) y (0.413, 0.413, 0.413), respectivamente [1].

La Figura 2 muestra los difractogramas obtenidos para las nanopartículas sintetizadas con y sin radiación UV.





Se pueden observar notoriamente cinco picos anchos asignados a las reflexiones [111], [200], [220], [311] y [222] del ZnO<sub>2</sub> [1]. Débilmente se registran dos protuberancias que corresponderían a las reflexiones [210] y [211] también correspondientes al  $ZnO_2$  [1]. Mediante el Refinamiento de Rietveld [15] y el APF se obtuvo para las dos muestras analizadas con y sin radiación UV que el tamaño de cristalito promedio es de 6 nm y 9 nm, además poseen una microdeformación de 0.24 0.22, y respectivamente. La Figura 3 muestra los difractogramas obtenidos para las nanopartículas sintetizadas para diferentes tiempos de irradiación UV (30, 60, 120 min). De manera análoga a la figura anterior se presentan notoriamente los cinco picos anchos y las dos pequeñas protuberancias antes identificados y asignados al ZnO<sub>2</sub>. Mediante el Refinamiento de Rietveld se obtuvo, para las tres muestras analizadas (30, 60 y 120 min) los siguientes tamaños de cristalito con los respectivos valores de microdeformación indicados en paréntesis: 6 nm (0.19), 7 nm (0.19) y 8 nm (0.12).



Fig. 3 Difractograma de Rayos X de nanopartículas de ZnO<sub>2</sub> sintetizadas para diferentes tiempos de irradiación UV.

#### Microscopía electrónica de barrido

El análisis morfológico de las nanopartículas de  $ZnO_2$  se realizó mediante microscopía electrónica de barrido usando un microscopio electrónico marca Jeol JSM-6300 operado con una aceleración de electrones de 5 kV.

La Figura 4 muestra las imágenes de las nanopartículas obtenidas para 30 min de irradiación UV.

Las Figuras 4a y 4b muestran dos magnificaciones diferentes (100 KX y 200 KX respectivamente).

Las nanopartículas son conglomerados esféricos de entre 80 y 100 nm, de una apariencia racimosa (similar al que en la naturaleza se observa en la frambuesa).

Las pequeñas nanopartículas que constituyen cada uno de los conglomerados son cristalitos, que en tamaño no se pueden resolver por esta técnica.



Fig. 4 Micrografías electrónicas de barrido para nanopartículas obtenidas mediante 30 min de irradiación UV, tomadas a diferentes magnificaciones (a) 100 kX y (b) 200 kX.

## Evaluación de la actividad antimicrobiana

No se conoce una metodología para la evaluación de las propiedades bactericidas de los materiales semiconductores nanoestructurados. El método más comúnmente utilizado en laboratorio por su sencillez y rapidez, es el de difusión por discos en agar, que es utilizado para generar datos cualitativos [16]. Mediante este método se realizaron los estudios preliminares de la actividad antimicrobiana de las nanopartículas de  $ZnO_2$ , para lo cual se emplearon 3 cepas bacterianas: Bacillus subtilis (ATCC 6051), Escherichia coli (ATCC 25922) y Staphylococcus aureus (ATCC 25923). Todas las pruebas de actividad antimicrobiana se realizaron incubando las cepas con pequeñas cantidades de las nanopartículas de ZnO2, a una temperatura de 37°C en una estufa por un tiempo de 24 h, luego de ese tiempo se procedió a medir los halos de inhibición correspondientes.





(a) 0 min

(b) 30 min



(c) 60 min

(d) 90 min



(e) 120 min

Fig. 5 Análisis de la actividad antimicrobiana de las muestras de ZnO<sub>2</sub> en cepas de Bacillus subtilis. Las muestras corresponden a diferentes tiempos de irradiación UV.

Las Figuras 5 y 7 muestran las imágenes de los análisis microbiológicos realizados para diferentes cepas. Para cada uno de los cultivos se colocaron muestras de nanopartículas de  $ZnO_2$  obtenidas a diferentes tiempos de irradiación UV: (a) 0 min, (b) 30 min (c) 60 min y (d) tiene 120 min respectivamente.

La Figura 5 muestra los resultados obtenidos para las partículas de  $ZnO_2$  en cepas de *Bacillus subtilis*. Se pueden observar en todas las muestras halos ligeramente opacos y grandes (entre 5 y 7 mm). La opacidad es indicativa de un crecimiento parcial de bacterias dentro del halo.



(a) 0 min



(c) 60 min



(d) 90 min

(b) 30 min



(e) 120 min

Fig. 6 Análisis de la actividad antimicrobiana de las muestras de ZnO<sub>2</sub> en cepas de Escherichia coli. Las muestras corresponden a diferentes tiempos de irradiación UV.

La Figura 6 presenta la imagen del análisis obtenidos para las nanopartículas de  $ZnO_2$  en cepas de *Escherichia coli*.

En este caso se observan anillos muy pequeños (~ 2 mm) pero límpidos y transparentes. Lo que sería indicativo de un débil proceso bactericida del producto.

Finalmente la Figura 7 muestra la imagen de los análisis realizados para las nanoestructuras de  $ZnO_2$  en cepas de *Staphylococcus aureus*. En este caso se observan halos de inhibición transparentes y muy grandes (~ 10 mm), lo que claramente mostraría la propiedad bactericida de las nanopartículas de  $ZnO_2$  ante estas cepas.



(a) 0 min



(c) 60 min







(e) 120 min

Fig. 7 Análisis de la actividad antimicrobiana de las muestras de ZnO<sub>2</sub> en cepas de Staphylococcus aureus. Las muestras corresponden a diferentes tiempos de irradiación UV.

#### DISCUSIONES

De los estudios de rayos X se observa que conforme se incrementa el tiempo de irradiación UV el tamaño promedio de cristalito se incrementa y, la microdeformación disminuye. Por otro lado las imágenes de microscopía electrónica de barrido muestran que esta técnica produce una distribución de nanopartículas uniforme.

Si bien es cierto que los análisis microbiológicos, se han desarrollado considerando una evaluación cualitativa y no se ha estandarizado la metodología para el estudio de las nanopartículas para agentes patógenos; se tiene que las nanopartículas de ZnO<sub>2</sub> estudiadas, presentan una buena actividad bactericida.

No se observa una relación entre el tiempo de irradiación UV y su propiedad bactericida, solo hay una diferencia entre las muestras obtenidas sin irradiar UV y las irradiadas, la muestra obtenida sin irradiar tiene un halo de inhibición con bordes irregulares no muy definida, mientras que las muestras obtenidas con irradiación UV presentan halos con bordes irregulares y más límpidos. Aún desconocemos cuales son los sitios activos, que debido a la radiación UV, se generan en las nanopartículas. Y estas a su vez presentan mayor carácter bactericida Este tema es en definitiva de gran interés para un estudio posterior.

## CONCLUSIONES

Nanopartículas de  $ZnO_2$  fueron sintetizadas por la ruta sol-gel empleando como agente externo radiación UV. El tamaño de las cristalitos determinado por DRX fue entre 6 y 9 nm con una presencia de microdeformación entre 0.19 y 0.24. Los nanocristales se encuentran conglomeradas en esferas que muestras una apariencia racimosa, que presentan tamaños entre 80 y 100 nm. Las nanopartículas evaluadas cualitativamente ante las cepas bacterianas seleccionadas presentaron una gran actividad antimicrobiana para omitir el *Staphylococcus aureus*.

# AGRADECIMIENTOS

Los autores agradecen a la bióloga Kety León por los análisis microbiológicos y al Dr. Alec Fischer por los análisis de microscopía electrónica de barrido. Uno de nosotros (R.C.) agradece al Instituto General de Investigación de la Universidad Nacional de Ingeniería (IGI-UNI) por la beca otorgada. El presente trabajo fue desarrollado bajo el auspicio del Consejo Nacional de Ciencia, Tecnología e Innovación Tecnología del Perú (CONCYTEC) y del Instituto General de Investigación de la Universidad Nacional de Ingeniería (IGI).

# BIBLIOGRAFÍA

- Chen, W., et al., "Synthesis, Thermal Stability and Properties of ZnO<sub>2</sub> Nanoparticles". J. Phys. Chem. C., 2009. 113: p. 1320-1324.
- 2. **Ibarra, L., Alzorriz, M.,** "Effect of Temperature on the Crosslink Densities of Nitrile Rubber and Carboxylated Nitrile

Rubber with Zinc Peroxide". Journal of Applied Polymer Science, 2002. **86**: p. 335–340.

- Ibarra, L., Marcos-Fernández, A., Alzorriz, M., "Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide". Polymer, 2002. 43: p. 1649-1655.
- 4. **Ibarra, L., Alzorriz, M.,** "Ionic Elastomers Based on Carboxylated Nitrile Rubber (XNBR) and Zinc Peroxide: Influence of Carboxylic Group Content on Properties". J. of Appl. Polymer Science, 2002. **84**: p. 605-615.
- 5. Ohno, S., Aburatani, N., Ueda, N., "Blowing Composition". 1981: U.S.
- 6. **Hagel, R.**, "Verwendung von Zinkperoxid als Oxidationsmittel für Sprengstoffe und Pyrotechnische Gemische E". Patentschrift, Editor. 1984.
- Meleney, F. L., Harvey, H. D., "The Combined use of zinc peroxide and sulfanilamide in the treatmnet of chronic, undermining, burrowing ulcers due to the micro-Aerophilic Hemolytic Streptococcus". Annals of Surgery 1939: p. 1067-1094.
- 8. **Meleney, F. L.**, "Zinc Peroxide in Surgical Infections". The American Journal of Nursing, 1941. **41**(6): p. 645-649.
- Johnson, B. A., Meleney, F. L., "The antiseptic and detoxifying action of zinc peroxide on certain surgical aerobic, anaerobic and micro-Aerophilic Bacteria". Annals of Surgery, 1939. 109(6).
- Hsu, C.-C., Wu, N. L., "Synthesis and photocatalytic activity of ZnO/ZnO<sub>2</sub> composite". Journal of Photochemistry and Photobiology A: Chemistry, 2005. 172: p. 269–274.
- 11. **Sun, M., et al.**, "A simple and green approach for preparation of ZnO<sub>2</sub> and ZnO under sunlight irradiation". Chemical Physics Letters, 2007. **443**: pp. 342–346.
- 12. Uekawa, N., et al., "Synthesis of ZnO Nanoparticles by Decomposition of Zinc Peroxide". Chemistry Letters, 2001: pp. 606-607.
- Uekawa, N., et al., "Nonstoichiometric properties of zinc oxide nanoparticles prepared by decomposition of zinc peroxide". Phys. Chem. Chem. Phys., 2003. 5: pp. 929– 934.

- 14. Cheary, R. W., Coelho, A., "A Fundamental Parameters Approach to X-ray Line-Profile Fitting". J. Appl. Cryst, 1992. 25: p. 109-121.
- 15. Young, R. A., "The Rietveld Method". 2002, United States: Oxford University Press.
- 16. Chapman, J., Sullivan, T., Regan, F., "Nanoparticles in Anti-Microbial Materials"

2012, United Kingdom: The Royal Society of Chemistry.

Correspondencia: mgomez@uni.edu.pe

Recepción de originales: marzo 2013 Aceptación de originales: junio 2013