UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTADAD DE INGENIERÍA MECÁNICA

"DISEÑO DE LOS SISTEMAS DE TRANSPORTE DE RELAVE DE 60M3/HR A SOCAVÓN DE MINA Y A CANCHA DE RELAVE DE PLANTA CONCENTRADORA DE MINERALES, LA LIBERTAD"

INFORME DE SUFICIENCIA PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO MECÁNICO ELECTRICISTA

WILMER FRANCISCO VILLA ARANDA

PROMOCIÓN 2008-I

LIMA-PERÚ

2011

Con mucho cariño a mis padres Adrián y Nancy por su apoyo incondicional, a mis abuelitos Manuel y Tomasa por cuidarme, a mi esposa Margot y mi hijito William por ser mi inspiración para seguir adelante.

TABLA DE CONTENIDOS

		Página
PRÓLO	0GO	1
<u>CAPÍT</u>	<u>'ULO I</u>	3
INTRO	DDUCCIÓN	3
1.1.	Antecedentes	4
1.2.	Objetivo General	
1.3.	Objetivos Específicos	
1.4.	Alcances y Limitaciones	5
1.5.	Justificación	
	NERALIDADES DE TRANSPORTE DE REL	
2.1.	pee de pue y eur eur un en eur	
_	2.1.1. Pulpa	
_	2.1.2. Tipos de Pulpas	
2	2.1.3. Características de la Pulpa	
	2.1.3.1. Densidad de Fulpa	
	2.1.3.2. Concentración de sólidos en volumer	
	2.1.3.4. Viscosidad relativa	
	2.1.3.5. Viscosidad cinemática	
	2.1.3.6. Número de Reynolds	
2.2.	•	
2	2.2.1. Gravedad específica	
2	2.2.2. Análisis Granulométrico	18

2.3.	Aplicaciones del relleno Hidráulico	19
2.4.	Sistemas de transporte	20
2.5.	Componentes principales del sistema de transporte por tubería	20
2.6.	Transporte de sólidos por tuberías	21
2.7.	Características técnicas de las tuberías	22
2.8.	Ventajas y desventajas de las tuberías para sólidos	23
2.9.	Materiales para tuberías que transportan pulpas	
2.	9.1. Tubería de alta densidad HDPE	25
2.	.9.2. Tubería de acero	28
2.10.	Válvulas	29
2.	10.1. Válvula tipo pantalón	29
2.	.10.2. Válvulas Pinch	30
2.	.10.3. Válvula de compuerta	3 1
2.11.	Bombas para sólidos en suspensión	31
	Tipo de bombas	
2.	.12.1. Bombas centrífugas	33
2.	.12.2. Parámetros que se deben tener en cuenta para la selección de bombas	36
2.	.12.3. Pasos básicos para la selección de cualquier tipo de bomba	36
2.13	Parámetros que se deben tener en cuenta para la selección de tuberías	36
2	.13.1. Velocidades recomendadas en transporte de pulpas	37
2	.13.2. Velocidad límite para pulpas (VL)	38
2	.13.3. Pérdidas por fricción para pulpas	39
2	.13.4. Pérdidas por fricción en fluidos limpios (agua)	40
2	.13.5. Factor de fricción en fluidos limpios (f)	41
2.14	. Factor de corrección para pulpa	42
2.	14.1. Corrección de la columna en pulpa a columna de agua	42
2.	14.2. Factor de corrección HR	42
2.15	. Cálculo de la potencia de la bomba	43
2.16	. Cálculo de la potencia al eje del motor	43
2.17	. Cálculo del NPSH	44
CAPÍT	<u>ULO III</u>	46
2 DE	CODIDCIÓN DEL DOCCECO DE ODEDACIÓN DE LA DIANTA	
3. DE	SCRIPCIÓN DEL PROCESO DE OPERACIÓN DE LA PLANTA	
	DE RELAVE	46
3.1.	Envió de relave total, de Planta de procesamiento a Planta RH 100% relave	
3.1.	y retorno del OverFlow a la chanca de relaves	16
2.2	•	
3.2. 3.3.	Planta de Procesamiento.	
3.3. 3.4.	Recepcionista cancha de relaves.	
3.4.	Recepcionista planta RHEnvió de pulpa, desde planta de RH hacia mina	
3.6.	Operador planta RH	
3.6.	Procedimiento en caso suceda rebalse de pulpa en la planta RH	
3.1.	i roccumiento en caso succua revaise de purpa en la pianta Kri	50

3.8.	Planteamiento del problema	51
<u>CAPÍT</u>	ULO IV	52
4. DIS	SEÑO DE LOS SISTEMAS DE TRANSPORTE	52
4.1.	Determinación del caudal de operación	55
4.2.	Sistema de bombeo 01	57
4.3.	Sistema de bombeo 02	68
4.4.	Sistema de bombeo 03	
4.5.	Sistema de relave grueso	81
4.6.	Sistema de bombeo vertical	84
CAPÍT	<u>'ULO V</u>	91
5. EV	ALUACIÓN DE COSTOS	91
5.1.	Costos de los sistemas de bombeo	92
CONC	LUSIONES	96
BIBLIC	OGRAFÍA	97
PLAN	OS	101
ANEX	os	104

PRÓLOGO

Cada vez es mayor la demanda de que los relaves mineros sean manejados de forma de que no se produzcan derrames, que no estos residuos no sean vertidos en los ríos o lagunas cuyas aguas son utilizadas para el riego, y consumo humano.

El presente trabajo trata del manejo de relave mediante tuberías con la finalidad de reducir al mínimo el impacto al medio ambiente que produce la explotación de minerales de la mina auríferas localiza en el departamento de la Libertad.

Se ha recopilado información proveniente de la mina, trabajos de tesis, fabricantes de tuberías HDPE y accesorios, fabricantes de bombas y motores existentes en el mercado nacional.

El primer capítulo, del presente informe de suficiencia profesional, presenta el antecedente, el objetivo general, los objetivos específicos, el alcance, limitaciones y la justificación.

En el segundo capítulo, se estudia las generalidades de transporte de relave, definiciones características, tablas y fórmulas que permitan realizar los cálculos para seleccionar el material y el diámetro de las tuberías, selección de bombas y motores eléctricos.

En el tercer capítulo se hace la descripción del proceso de operación de la planta de relave, el cuarto capítulo es el más importante de este trabajo donde se ha dividido en cuatro sistemas de bombeo y un sistemas de relave grueso por gravedad. En este capítulo se realiza el diseño, cálculo y selección de los componentes de los sistemas de transporte de relave, finalizando con los planos y especificaciones del material de la tubería, bombas y motores a utilizar.

En el quinto capítulo se realiza la evaluación de costos que involucran cada uno de los sistemas de transporte, así como la determinación de los costos unitarios \$/(Ton/año)xKm para comparar con los estándares internacionales.

CAPÍTULO I INTRODUCCIÓN

La minería peruana explota una amplia gama de recursos minerales, por ello el estudio para optimizar el manejo de relaves cada vez es más usada por las mineras ya que todo esto tiene como finalidad la solución del problema ambiental ocasionado por el actual sistema de manejo de relaves y llenar las cavidades originadas por las explotaciones de los yacimientos subterráneos de minerales ya que estos se comportan como un potencial peligro bajo tierra y en superficie.

Una presentación, dentro del proyecto minero, del manejo de relaves debe contribuir a dar confianza que los efectos de contaminación del medio ambiente han sido mitigados; por lo que las observaciones al respecto serán mínimas por parte de las comunidades nativas y gobiernos regionales

1.1 ANTECEDENTES

El relleno hidráulico en el sector minero juega un papel muy importante.

El relleno hidráulico se aplicó por primera vez en el año 1864 en la mina Shenandoah en Pennsylvania, Estados Unidos como control de la subsidencia (hundimiento progresivo de la superficie respecto a un nivel de referencia), posteriormente se fue mecanizando y optimizando su uso en la explotación en la minería subterránea.

En el Perú se aplicó relleno hidráulico en el año 1937 en la mina Lourdes de Cerro de Pasco con la finalidad de controlar incendios, implementándose luego al ciclo de minado.

Con el diseño de los sistemas de transporte de relave se reducirá considerablemente el impacto al medio ambiente que éste produce en la superficie, ya que al estar en pozas corre el riesgo de sufrir derrames ya sea por deslizamientos por lluvias o por desborde.

1.2 OBJETIVO GENERAL

Diseñar el sistema de transporte de 60 m³/h de relave grueso al socavón de la mina, y el transporte de 136 m³/h de relave fino a cancha de relave, proveniente de planta procesadora de mineral, ubicada a 3918 m.s.n.m.

1.3 OBJETIVOS ESPECÍFICOS

- Especificar el material de la tubería a utilizar, así como el diámetro nominal y su número de referencia.
- Diseñar el sistema de transporte de relave grueso al socavón de la mina, y
 el transporte de relave fino a cancha de relaves.

1.4 **ALCANCE Y LIMITACIONES**

El presente informe abarca las líneas de transporte de relave hacia el socavón de la mina y hacia la cancha de relave. La selección de equipo de bombeo para impulsar la pulpa de relave, que es una mezcla de material sólido y agua. Se usan tuberías de acero y polietileno de alta densidad HDPE.

No trata de la obra civil, de la fabricación y montaje de la tubería, tableros eléctricos.

1.5 <u>JUSTIFICACIÓN</u>

Este trabajo se justifica, desde el punto de vista ambiental, porque permite mitigar la contaminación del medio ambiente relativo a la flora y fauna; así como la protección contra la toxicidad metálica de los pobladores asentados en zonas cercanas a la explotación y procesamiento minero, que hacen uso del agua del rio, aguas abajo.

El transporte por tuberías es mucho más económico, eficiente y rápido que con otro tipo de transporte, tal como la utilización de camiones, canaletas.

Así mismo, la empresa aurífera dejará de pagar multas por concepto de derrames de relaves.

CAPÍTULO II

GENERALIDADES DE TRANSPORTE DE RELAVE

2.1 TIPOS DE PULPAS Y SUS CARACTERÍSTICAS

2.1.1 **Pulpa**

En mineralurgia o procesamiento de minerales, la pulpa se define como la mezcla constituida por una fase sólida y una líquida, donde la fase líquida transporta a la fase sólida en suspensión¹.

La naturaleza, tamaño, forma y cantidad de las partículas sólidas, junto con la densidad y viscosidad del líquido de transporte, determinan las características de la pulpa².

¹ LAZARO HUAMÁN MONTES, 2007. Tesis "Aplicación de Relleno Hidráulico en la Mina Jimena de Compañía Minera Ponderosa S.A.". Lima Perú, pag.23.

² JUAN LUIS, BOUSO, 1993."Manual de Bombeo de Pulpas". Toledo Madrid. Pag.5.

2.1.2 <u>Tipos de pulpas</u>

De un modo muy general las pulpas podrían dividirse, de acuerdo a su comportamiento en dos grupos.

a) Pulpa homogénea.

Están formadas por partículas finas (menores de 50 micras)³, se comportan como un fluido plástico de Bingham (fluido No – Newtoniano), es decir que las propiedades del agua se afectan por la presencia de los sólidos⁴.

A este tipo de pulpas también se les conoce como pulpas sin sedimentación. Ejemplos típicos de este tipo de pulpas son las arcillas, lechadas de cemento, pulpas de Coalín y lodos de perforación³.

En la figura 2.1 se muestran las características de este tipo de flujo, el cual muestra la concentración en peso de los sólidos uniforme a cualquier altura de escurrimiento del canal⁵.

⁴ LAZARO HUAMÁN MONTES, 2007. Tesis "Aplicación de Relleno Hidráulico en la Mina Jimena de Compañía Minera Ponderosa S.A.". Lima Perú, pag. 23.

³ JUAN LUIS, BOUSO, 1993."Manual de Bombeo de Pulpas". Toledo Madrid, Pag.5.

⁵ HENRY NUÑES, CARMONA, 2008."Diseño de la Línea de Relaves para el Proyecto de instalación de una Planta Concentradora de Mineral". Lima Perú. Pag.12.

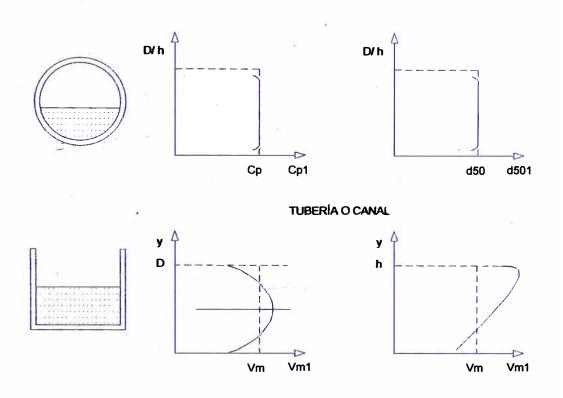


Figura 2.1. Flujo de sólidos en suspensión homogénea Fuente: Henry Nuñes, Informe de suficiencia 2008

Donde:

y : Altura relativa sobre el fondo de la tubería o canal (m).

D : Diámetro interno de la tubería (m).

h : Altura de escurrimiento del canal (m).

Cp1 : Concentración local en peso de sólidos en la mezcla (%).

Cp : Concentración media en peso de sólidos en la mezcla (%).

h : Altura de escurrimiento del canal (m).

d501 : Tamaño medio local de partículas sólidas (μm).

d50 : Tamaño medio de los sólidos en la mezcla (μm).

Vm1 : Velocidad puntual de la mezcla (m/s).

Vm : Velocidad media de la mezcla (m/s).

b) Pulpa heterogénea.

Es aquella que está constituida por partículas gruesas (mayores a 50 micras) y se caracteriza por presentar gradientes de concentración a lo largo de un eje vertical de la sección transversal en las tuberías horizontales⁶.

Constituyen la mayoría de las aplicaciones de transporte de pulpas, ya que los sólidos no se distribuyen regularmente, en conducciones horizontales a lo largo de su eje vertical⁷.

Este régimen de flujo se diseña con velocidades bajas para lograr una mínima abrasión, ya que tienen como inconveniente que el arrastre de fondo de las partículas gruesas provoca un desgaste muy pronunciado en la parte de la tubería⁸.

Debido a su tendencia a sedimentar ocasionan bloqueos en las tuberías, las fases sólida y líquida mantienen su propia identidad, de ahí que también se le denomina pulpa sedimentaria. Ejemplos típicos de este tipo de pulpas son los relaves, arenas y concentrados de minerales⁷.

⁶ MSc. Ing. NATANIEL, LINARES, 2011. Exposición "Planta Concentradora y manejo de Menas en eco y húmedo". Tacna Perú. Diapositiva 63.

⁷ JUAN LUIS, BOUSO, 1993."Manual de Bombeo de Pulpas". Toledo Madrid. Pag.5.

⁸ HENRY NUÑES, CARMONA, 2008."Diseño de la Línea de Relaves para el Proyecto de instalación de una Planta Concentradora de Mineral". Lima Perú. Pag. 15.

En la figura 2.2 se muestra las características de este tipo de flujo, el cual muestra una concentración en peso mucho mayor en la base del canal.

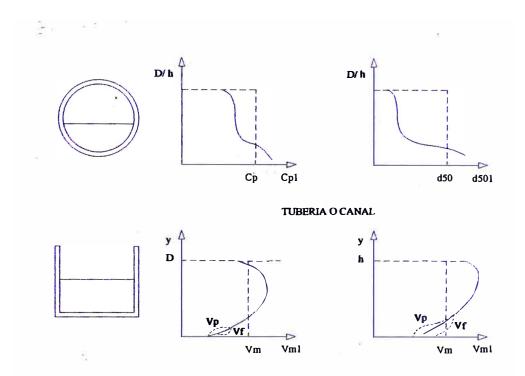


Figura 2.2. Flujo de sólidos en suspensión heterogénea. Canal circular y canal rectangular Fuente: Henry Nuñes, Informe de suficiencia 2008

2.1.3 Características de la pulpa

La caracterización de una pulpa no es tan simple como la de un líquido, porque superpuestas sobre las propiedades del líquido están la de las partículas sólidas y su efecto sobre la mezcla⁹.

⁹ JUAN LUIS, BOUSO, 1993."Manual de Bombeo de Pulpas". Toledo Madrid. Pag.5.

2.1.3.1 Densidad de pulpa

Densidad Pulpa (compuesta mineral y agua). Se considera una tonelada pulpa y $\rho H2O = 1 \ (ton/m^3)^{10}.$

La densidad de una pulpa se puede calcular usando las siguientes fórmulas:

$$\rho_{\rm p} = \rho_{\rm l} + \frac{C_{\rm v} (\rho_{\rm s} - \rho_{\rm l})}{100}$$
 [2.1]

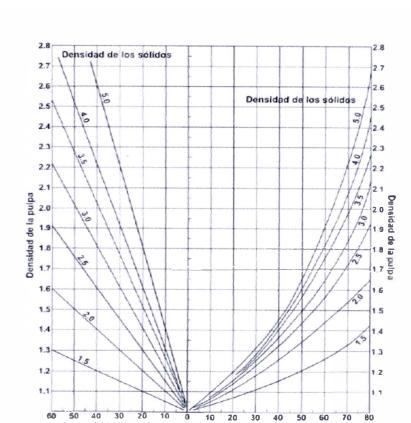
Otra manera de determinar la densidad de la pulpa, es haciendo uso de la fórmula 2.2 haciendo uso del porcentaje en peso C_w^{11} .

$$\rho_{p} = \frac{100}{\frac{C_{w}}{\rho_{s}} + (\frac{100 - C_{w}}{\rho_{l}})}$$
 [2.2]

Donde:

 ρ_p : Densidad de la mezcla (kg/m3).

 ρ_s : Densidad del sólido (kg/m3).


ρ₁ : Densidad del líquido (kg/m3).

C_w : Concentración en peso (%).

C_v : Concentración volumétrica (%).

¹⁰ Escuela de Ingeniería – Centro de minería, "SIMULA v1.0". Pontifica Universidad Católica de Chile. Pag. 1

¹¹ Chanchala Ariyaratne, BEng (Hons), 2005. Tésis" Design and optimization of swirl pipes and transition geometries for slurry transport". University of Nottingham. Pag. 21.

Gráficamente se puede hallar la densidad de la pulpa de la figura 2.3.

Figura 2.3. Densidad de pulpa en función del porcentaje de sólido en volumen¹².

% de solidos en paso

2.1.3.2 Concentración de sólidos en peso (C_w)

% de sólidos en volumen

Corresponde al porcentaje que tiene el peso o flujo másico del mineral, respecto del peso o flujo másico de la pulpa, es decir¹³:

$$C_w = \frac{\text{Peso o Flujo Másico del Mineral}}{\text{Peso o Flujo Másico de la Pulpa}} 100\%$$
 [2.3]

¹² Prof. ADOLFO, NUÑES FERNANDEZ, "Transporte de pulpas

¹³Ivan, CERDA BERNAL, Caracterización de pulpas.

2.1.3.3 Concentración de sólidos en Volumen (C_v)

Corresponde al porcentaje que tiene el volumen o flujo volumétrico del sólido, respecto del flujo o flujo volumétrico de la pulpa. Es decir¹⁴:

$$C_{v} = \frac{\text{Volumen o Flujo Volumétrico del Mineral}}{\text{Volumen o Flujo Volumétrico de la Pulpa}} 100\%$$
 [2.4]

2.1.3.4 Viscosidad relativa

Al igual que en la densidad, al agregar sólidos al agua pueden existir grandes variaciones en el valor de la viscosidad, tanto dinámica como cinemática. Las variaciones de estos parámetros influyen notoriamente en el comportamiento físico de la pulpa, por esto, el valor de la viscosidad de la pulpa debe ser medido o estimado en forma lo más exacta posible¹⁵.

Alguna de las formulas tradicionales para evaluar el valor de la viscosidad de la pulpa es la fórmula de Thomas (estudio con esferas uniformes, sin restricción para $C_{\mathbf{v}}$).

$$\mu_{\rm r} = \frac{\mu_{\rm p}}{\mu} = 1 + 2.5C_{\rm v} + 10.05C_{\rm v}^2 + 0.00273 \,{\rm e}^{16.6C_{\rm v}}$$
 [2.5]

¹⁴IVAN, CERDA BERNAL, Caracterización de pulpas.

¹⁵ JUAN RAYO, PRIETO, 1993. Tesis "Transporte Hidráulico de Sólidos a grandes Distancias". Lima Perú. Pag.71. (Biblioteca FIGMM).

Donde

 μ_r : Viscosidad relativa,

μ_p : Viscosidad dinámica de la pulpa (Pa.s).

μ : Viscosidad dinámica del fluido (agua) (Pa.s).

El comportamiento predicho por Thomas se muestra en la Fig. 2.4.

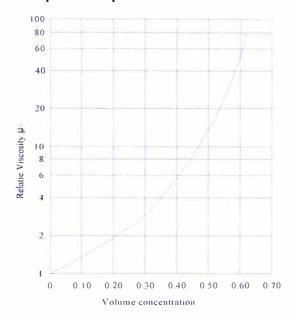


Figura 2.4. Viscosidad de suspensión en función de la concentración volumétrica 16.

Fuente: Facultad de ciencias, Universidad de Chile

Otra forma de obtener un valor más exacto de la viscosidad relativa es usando la fórmula de Wellman 1997 (basada en experiencias con flujos de relaves chilenos) ¹⁷:

$$\mu_{r} = \frac{\mu_{p}}{\mu} = \frac{\exp{(-10.4C_{v})}}{(1 - \frac{C_{v}}{0.62})^{8}}$$
 [2.6]

¹⁶ Facultad de Ciencias Físicas y Matemáticas. 2003"Capítulo 3 Otros Sistemas de Flujo" Universidad de Chile. Pag.8

¹⁷ JUAN RAYO, PRIETO, 1993. Tesis "Transporte Hidráulico de Sólidos a grandes Distancias". Lima Perú. Pag.72. (Biblioteca FIGMM).

La ecuación anterior sólo depende de C_v , no consideran otras variables que afectan de manera importante como la viscosidad y el pH.

La empresa Betehel, con amplia experiencia en transporte de pulpas, recomienda valores para la viscosidad en los cuales considera el PH, ver tabla 2.1 y han dado buenos resultados en las pulpas de las mineras chilenas¹⁸.

Tabla 2.1 valores de la viscosidad en función del pH

	Viscosidad Cinemática (10 ⁻⁶ x m ² /s)						
C _p (%)	pH = 10,0	pH = 11,0					
30	1,7	1,8					
35	2,0	2,2					
40	2,4	2,5					
45	2,8	3,1					
50	3,5	4,1					
55	4,8	5,6					
57,5	6,3	7,6					
60	7,3	8,5					
65	17,5	19,3					

Fuente: Juan Rayo Prieto, Tesis 1993

2.1.3.5 <u>Viscosidad cinemática</u>(θ)

Este término se utiliza frecuentemente y corresponde al cociente entre la viscosidad absoluta y la densidad del fluido¹⁹.

$$\vartheta = \frac{\mu}{\rho} \tag{2.7}$$

¹⁸ JUAN RAYO, PRIETO, 1993. Tesis "Transporte Hidráulico de Sólidos a grandes Distancias". Lima Perú. Pag. 72. (Biblioteca FIGMM).

¹⁹ MI42C – Ing. Minas U. Chile, Presentación "Transporte de pulpas".

Donde:

θ : Viscosidad cinemática (m²/s).

ρ : Densidad del fluido (kg/m³).

2.1.3.6 <u>Número de Reynolds</u>

Permite caracterizar la naturaleza del escurrimiento. En un flujo en tuberías se puede expresar como²⁰:

$$Re = \frac{VD}{V}$$
 [2.8]

Donde:

V : Velocidad (m/s).

D : Diámetro (m).

 ν : Viscosidad cinemática del fluido (m²/s).

Para flujo de líquidos:

• Re < 2000 Flujo laminar

• 2000 ≤ Re ≤ 4000 Flujo de transición (inestable)

• Re > 4000 Flujo turbulento

²⁰ MI42C – Ing. Minas U. Chile, Presentación "Transporte de pulpas".

2.2 Características del sólido (mineral)

2.2.1 Gravedad específica

La gravedad específica de los sólidos es la relación entre el peso específico del sólido y el peso específico del agua. Por ejemplo los sólidos que con mayor frecuencia se transportan son²¹:

Tabla 2.2 Gravedad específica de algunos materiales Sólidos

Material sólido	Gravedad específica
Asfalto.	1,05
Carbón.	1,04
Fosfatos.	2,07
Caliza.	2,07
Concentrado de cobre.	4,30
Mineral de hierro.	4,90

Fuente: Wilder Huamán montes, Tesis 2007

2.2.2 Análisis Granulométrico

Determina la distribución del tamaño de las partículas o granos que constituyen un material. Esta distribución se analiza en base a su porcentaje de su peso total.

La fracción muy gruesa consiste de fragmentos de rocas compuestas de uno o más minerales, pudiendo estas ser angulares, redondeados o planos. Pueden ser frescos o mostrar signos de alteración, resistentes o deleznables. Esta fracción recibe el nombre genérico de grava²¹.

²¹ LÁZARO WILDER, HUAMÁN MONTES, 2007. Tesis "Aplicación de relleno hidráulico en Mina Jimena de Compañía Minera Poderosa S.A.". Lima Perú. Pag.23, 24.

En las fracciones finas y muy finas, cada grado está constituido de un solo mineral. Las partículas pueden tener formas angulares, tubulares o escamas, pero nunca redondeadas²².

A continuación se presenta los rangos de tamaño en que varían las partículas:

Tabla 2.3 Rango de tamaño de partículas de los materiales

	TAMAÑO					
MATERIAL	DESDE	HASTA				
Finas		0,075 mm				
Arenas	0,075 mm	0,085 mm				
Gruesos	0,085 mm	5 mm				

Fuente: Wilder Huamán montes, Tesis 2007

2.3 Aplicaciones del relleno Hidráulico

El relleno hidráulico tiene las siguientes aplicaciones²²:

- Minimizar la deposición de los relaves o material rocoso en la superficie ayudando al control ambiental.
- Evitar el movimiento y caída de rocas.
- Proveer una plataforma de trabajo.
- Estabilizar el macizo rocoso en las minas, reduciendo la posibilidad de estallidos de roca.
- Facilitar la recuperación de pilares.
- Evitar o minimizar la subsidencia.
- Controlar y prevenir incendios.

²² LÁZARO WILDER, HUAMÁN MONTES, 2007. Tesis "Aplicación de relleno hidráulico en Mina Jimena de Compañía Minera Poderosa S.A.". Lima Perú. Pag.21, 29.

2.4 <u>Sistemas de transporte</u>

Los sistemas de transporte son un elemento clave para el desarrollo de toda actividad minera. Además de que el transporte como actividad económica es uno de los principales sectores que utilizan directa o indirectamente grandes cantidades de productos minerales, también constituye uno de los factores decisivos en cuanto a la factibilidad económica de los proyectos mineros²³.

Los medios de transporte de relave más usados en la minería son:

		Costo Relativo
•	Las tuberías de acero y las tuberías de polietileno de alta densidad HDPE.	1
•	Camiones	100
•	Cinta transportadora	10
•	Andarivel	300

2.5 Componentes principales del sistema de transporte por tubería

Los componentes principales de un sistema de transporte son:

- Tubería.
- Estación de bombeo.
- Estación de disipación.
- Estación de válvulas.
- Tanques de almacenamiento.
- Estación terminal.
- Medidores y control de flujo.

²³ Cap3 La Problemática Esencial de la Minería en OAXACA "El Transporte y el Impacto Ambiental.". Pag.1.

2.6 Transporte de sólidos por tuberías

Esta técnica se empleó ya en el decenio de 1850 en los campos auríferos de California y en otras partes del mundo. Sin embargo, recientemente el acarreo a largas distancias de minerales sólidos por medio de tuberías ha sido objeto de una especial atención como consecuencia de los costos crecientes del transporte de mineral a granel y de la necesidad cada vez mayor de poner en explotación yacimientos de minerales en zonas de dificil acceso.

Lo más importante de todo es que el transporte por tuberías de minerales sólidos encierra posibilidades especialmente grandes para el aprovechamiento de los recursos mineros en las naciones en desarrollo, porque sus características técnicas y económicas son sumamente favorables cuando no existen otros medios de transporte a los que se pueda recurrir.

El requisito fundamental para el transporte por tuberías para sólidos es preparar una suspensión de partículas minerales en líquido de viscosidad suficientemente baja para que pueda ser bombeada por la tubería a una velocidad bastante grande con el fin de impedir que se depositen las partículas bloqueando la línea²⁴.

²⁴ Cap3 La Problemática Esencial de la Minería en OAXACA "El Transporte y el Impacto Ambiental.". Pag. 192, 193.

2.7 Características técnicas de las tuberías

Para transportar los sólidos por tuberías, se debe disponer de un líquido adecuado como vehículo portador, lo que se utiliza más comúnmente es el agua.

La capacidad de una tubería depende de su diámetro y de la velocidad del material que pasa por ella. En el caso de las tuberías para sólidos, el factor fijo es comúnmente la velocidad.

Las pérdidas por fricción, que en parte se hallan en función de la viscosidad, y están también relacionadas con la corrosión interna de la tubería. Estas pérdidas afectan a su vez a la potencia de bombeo requerida para mantener la velocidad conveniente de la mezcla, así como el espaciamiento y número de las estaciones de bombeo²².

En terrenos abruptos las tuberías tienen ventajas sobre otros modos de transporte que podrían competir. Uno de los motivos de ello es el grado máximo de pendiente que puede salvarse con una tubería²⁵.

El factor crítico de diseño es el ángulo de pendiente que haga que las partículas que se han sedimentado debido a una parada empiecen a deslizarse y a acumularse en los puntos bajos, con lo que bloquearían la línea, muy posiblemente hasta un punto en que haga preciso penetrar en la tubería y proceder a la limpieza física. El ángulo variará según las características tanto de la mezcla como de la tubería²⁵.

²⁵ Cap3 La Problemática Esencial de la Minería en OAXACA "El Tran porte y el Impacto Ambiental.". Pag. 196, 197.

A continuación en la tabla 2.4 mostraremos los valores de las pendientes de las tuberías según la concentración de solidos de la pulpa²⁶.

Tabla 2.4 Variación de la pendiente límite con la concentración de sólidos en una pulpa de relaves

Pendiente Límite (%)	Porcentaje de Sólido en Peso (%)					
< 2	< 50					
2-3	55-66					
3-5	60-63					
4-6	63-65					
> 6	> 65					

Fuente: N. Ramírez, Guía técnica 2007

2.8 <u>Ventajas y desventajas de las tuberías para sólidos</u>

Ventajas

Las tuberías para el transporte de sólidos en suspensión líquida ofrecen varias ventajas²⁷

- Pueden cruzar la mayor parte de los terrenos a bajo costo y directamente.
- Simplicidad de la instalación.
- Tienen unos gastos bajos de explotación y mantenimiento.
- Pueden funcionar continuamente y ofrecen seguridad.
- Facilidad para vencer obstáculos naturales o artificiales.
- El transporte puede ser en dirección horizontal, vertical o inclinada.

²⁶ Ing. NELSON A., RAMÍREZ MORANDE, 2007. "Guía técnica de operación y control de depósitos de Relaves." Chile. Pag.7.

²⁷ Cap3 La Problemática Esencial de la Minería en OAXACA "El Transporte y el Impacto Ambiental.". Pag. 198. 199.

- Las tuberías son menos afectados por las condiciones meteorológicas, salvo el frío extremado.
- Ocupan espacio reducido en comparación con otros modos de transporte.

Desventajas.

El transporte por tubería tiene también ciertas desventajas²⁸.

- La imposibilidad de sobrepasar la capacidad de diseño. En relación con este hecho está la necesidad de adoptar las disposiciones precisas, para que exista un cierto exceso de capacidad para su utilización en caso de emergencia.
- La tubería es un sistema de transporte en una dirección única y virtualmente de un solo producto.
- Las tuberías para pulpa no son compatibles en su mayor parte con otros modos de transporte.
- Las tuberías tienen escaso valor, en caso de que llegaran a tenerlo, como material de recuperación. Es dudoso justificar los trabajos de excavación para recuperar la tubería propiamente dicha.

²⁸ Cap3 La Problemática Esencial de la Minería en OAXACA "El Transporte y el Impacto Ambiental.". Pag. 199.

2.9 Materiales para tuberías que transportan pulpas

Los materiales de las tuberías seleccionas para aplicaciones de servicio de diferentes fluidos están indicados en las especificaciones de materiales para tuberías.

Algunos de los materiales más usados en tuberías para el transporte de pulpas son las tuberías de alta densidad HDPE y las tuberías de acero.

2.9.1 Tubería de alta densidad HDPE

Proviene de sus siglas en Ingles High-density polyethylene. El polietileno de alta densidad es un polímero de adición, conformado por unidades repetitivas de etileno. En la figura 2.4 se muestra una tubería de polietileno de alta densidad empleado para minería.

Figura 2.5. Polietileno de alta densidad

a) Características

Las tuberías de Polietileno de Alta Densidad (HDPE) superan largamente en tiempo de vida útil, en muchas condiciones de uso a las tuberías de acero, hierro fundido, asbesto-cemento, fibra-vidrio, etc. debido a:

- Alta resistencia a la abrasión.
- Flexibilidad.
- Gran resistencia y estabilidad frente a la radiación ultravioleta.
- Insensibilidad a la congelación.
- Fácil de transporte por su bajo peso.
- Gran resistencia a los agentes corrosivos.
- Buena resistencia al impacto.

b) Aplicaciones de las tuberías de polietileno de HDPE

Se utilizan principalmente en:

- Transporte Hidráulico de Relaves en Minería.
- Transporte de agua potable.
- Encamisado de tuberías existentes (relinning).
- Transporte de Líquidos Corrosivos en Plantas Químicas.
- Tuberías para Transporte de Gas.
- Protección de cables Eléctricos y Telefónicos.
- Conducción de líquidos o gases a baja temperatura.

c) Las ventajas que tienen las tuberías HDPE

- Cantidad de accesorios mínimos.
- No hay pérdidas por evaporación.
- Costo de mantenimiento menor que el de otros materiales.
- Tiempo de instalación rápida en comparación con el concreto.
- Garantía de vida entre 50 a 70 años.
- Generalmente son producidos en largos que van hasta los 12 metros, por lo que requiere menos uniones y por ende menor tiempo de instalación.

d) Sistemas de unión de las tuberías HDPE

Según las aplicaciones de las tuberías HDPE, permiten varios tipos de uniones, que también pueden utilizarse en forma complementaria según el tipo de proyecto, las condiciones del terreno, así como la resistencia mecánica.

Además las tuberías HDPE pueden ser conectadas fácilmente a sistemas o redes de otro tipo de material utilizando bridas y flanges de conexión, según sea el caso.

- Termo fusión con aporte de material.
- Electro fusión.
- En algunos casos unión roscada.

2.9.2 <u>Tubería de acero</u>

La Tubería de acero al carbón es utilizada en gran cantidad de aplicaciones Industriales manejando fluidos abrasivos, algunos corrosivos, agua entre muchos otros, pero también es utilizado en la construcción en ductos de agua, y dentro de las viviendas para conducción de agua y gas. Existen dos tipos básicos de tubería de acero al carbón con sus diferentes características cada una:

- Tuberías de acero al carbón con costura:
- Tuberías de acero al carbón sin costura:

 Tabla 2.5
 Características tubería de acero al carbono

Diametro Nominal		Diametro Exterior		Espesor de Pared Identificación		ficación	Peso del Tubo		ASTM AS3 PRESION DE PRUEBA				
NPS DN		Real		Pulgadas	Milimetros	Weight		1 4 50 (14) 1 (10)					
Palgadas	Milmetto:	(in.)	mm.	(in.)	(000.)	Class	Schedule	Ib pie	kem	Grado A		Ctado R	
in.	mm.	,,,						-		psi	Kg cm2	bei	Kg cm.
1/2	15	0.840	21.3	0.109	2.77	SID	40	0.85	1.27	700	49	700	49
-	-			0.147	3.73	ZZ	80	1.09	1 62	850	60	850	60
2.0		1		0.113	2.87	STD	40	1 13	1 69	700	49	700	19
3.4	20	1 050	26.7	0.154	3.91	XS	80	1.47	2.20	850	60	850	60
		1		0.133	3.38	SID	40	1.68	2.50	700	19	700	49
1	25	1.315	33.4	0 179	4.55	XS	80	2 17	3,24	850	60	850	60
,		T	(0.)	0.154	3.91	STD	40	3 65	5.44	2300	162	2500	176
2	50	2.375	60 3	0.218	5.54	XS	80	5 02	7 48	2500	176	2500	176
	1	1	3,500 88.9	0 125	3 18		- 1	4.51	6.72	1290	91	1500	105
	1			0.156	3 96			5 57	8.29	1600	112	1870	131
				0 188	4.78		· ·	6 65	9 92	1930	136	2260	159
3	80	3,500		0.216	5.49	SID	40	7.58	11.29	2220	156	2500	176
				0.250	6.35			8 68	12.93	2500	176	2500	176
				0 281	7.14		-	9.66	14 40	2500	176	2500	176
				0 300	7 62	XS	80	10,25	15.27	2500	176	2500	176
				0.125	3.18	-	-	5.84	S 71	1000	70	1170	82
		4,500	4,500 114.3	0 156	3 96	-		7 24	10.78	1250	S8	1460	103
				0.188	4.78	× .	- 1	\$ 66	12 91	1500	105	1750	123
				0 219	5.56	- 5	-	10.01	14.91	1750	123	2040	143
				0.237	6.02	SID	40	10.79	16.07	1900	134	2210	155
				0.250	6 35		-	11.35	16.90	2000	141	2330	164
4	100			0.281	7.14	* ±	1 × 1	12.66	18.87	2250	158	2620	154
				0.312	7.92		- F	13.98	20.78	2500	176	2800	197
1				0.337	8.56	XS	80	14.98	22.32	2700	190	2800	197
				0.438	11.13	4	120	19 00	28.32	2800	197	2800	197
				0.531	13 49	-	160	22.51	33.54	2800	197	2800	197
				0.674	17.12	XXS		27.54	41.03	2800	197	2800	197

Ver en anexo L catálogo completo

2.10 Válvulas

Las válvulas se utilizan para controlar y direccionar el flujo de la pulpa, estas se puede controlar de manera manual o neumática, según sea el diseño.

Las válvulas que usualmente se usan para el control de flujo de pulpa son:

- Válvula tipo pantalón.
- Válvula Pinch y
- Válvula de compuerta.

2.10.1 Válvula tipo pantalón

Es una válvula de desvío, con accionamiento manual o neumático. DE DOBLE CLAPETA Válvula de extracción y descarga de material. Para hacer la estanqueidad en sistemas con presión o depresión. Ideal para aplicaciones en las que puedan llegar cuerpos de gran tamaño. ROTATIVA

Figura 2.6. Válvula tipo pantalón

2.10.2 Válvulas Pinch

Son diseñadas principalmente para la industria minera y química, que pueden resistir el efecto de abrasión y corrosión causado por la pulpa o agente químicos.

Son los medios más simples y seguros para controlar el flujo en un ducto, ejecutando por la simple acción de comprimir o descomprimir una manga tubular y flexible, normalmente fabricado de elastómeros como caucho natural o sintético como: neopreno, poliuretano, hypalon, etc. Dependiendo de la severidad del medio abrasivo y/o corrosivo.

Esta válvula no tiene componentes mecánicos expuestos a la acción del fluido controlado, pues la manga tubular es el único componente en contacto con el fluido.

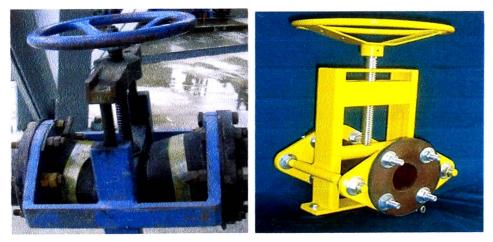


Figura 2.7. Válvulas Pinch

2.10.3 Válvula de compuerta

Diseñada para aplicaciones difíciles en operaciones mineras, tiene una resistencia excelente contra la abrasión y es ideal para aplicaciones con un alto porcentaje de materias sólidas.

El diseño único de esta válvula previene que el material se escape, reduciendo los peligros ambientales y de seguridad.

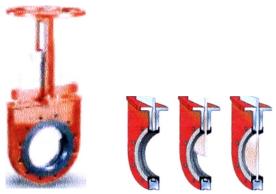


Figura 2.8. Válvula de compuerta

2.11 Bombas para sólidos en suspensión

Se utilizan para impulsar las pulpas. Para materiales abrasivos (áridos silíceos, graníticos, etc.), las partes de la bomba en contacto con la pulpa (cámara y rodete) deben construirse o estar revestidas de material resistente, tales como:

- Elastómeros: Caucho natural, poliuretano y caucho sintético.
- Aceros aleados, etc.

Los elastómeros se emplean como revestimiento para bombear materiales menores de unos 6mm. No son recomendados para áridos de aristas vivas porque lo cortan. El poliuretano tiene buena resistencia a la abrasión y mejor comportamiento ante partículas cortantes que el caucho natural.

Los cauchos sintéticos (neopreno, butilo, etc.) son menos resistentes a la abrasión, pero tienen mayor resistencia al ataque químico, que los cauchos naturales. Tienen más aplicación en la industria química.

Aceros aleados: Se utilizan cuando las condiciones de operación no sean adecuadas para los elastómeros (Sólidos gruesos > 6mm o con aristas cortantes)

2.12 Tipo de bombas

Las bombas hace posible transportar material pastoso, como también de grano grueso y bajo contenido de agua, sobre grandes distancias verticales y horizontales a través de sistemas de transporte cerrado hasta el lugar de relleno, independientemente del entorno y sin obstaculizar la explotación en curso.

Las bombas utilizadas en áridos son:

- Centrífugas.
- De membranas.
- De pistón.

2.12.1 Bombas centrífugas

Pueden ser horizontales o verticales.

a) Bomba centrífuga horizontal.

El eje de accionamiento y el desarrollo de la bomba son horizontales. Es la bomba más utilizada. Se construyen normalmente en tamaños de 25mm (1pulg.) a 400mm (16pulg.). Estas dimensiones corresponden al diámetro de la boca del impulsor (descarga).

Figura 2.9. Bomba horizontal

b) Bomba centrífuga Vertical.

La posición del eje de giro de la bomba es vertical tienen, casi siempre, el motor por encima de la bomba y en otros casos se encuentran a la misma altura y la transmisión del motor hacia la bomba se realiza a través de fajas.

Figura 2.10. Bomba vertical

c) Bombas de membrana (diafragma)

Estas bombas, de una o dos membranas, suelen estar accionadas por aire comprimido de modo que en una parte del aspiran la pulpa y en otra la impulsan si solo tiene una membrana.

Mientras que en las de dos membranas, una está aspirando y otra impulsando, alternativamente. Para ello disponen de válvulas de bola tanto en la aspiración como en la impulsión.

Tiene poca altura de elevación unos 76m de c/a (7.7kg/cm2).

El caudal del agua oscila entre 10 y 260 l/minuto. Son bombas de pequeño caudal.

El consumo de aire comprimido a 7kg/cm2 (100KPa), oscila entre 300 y 1500 litros. Estas bombas se utilizan para el manejo de lodos de tanques y llenado de filtros prensa a baja presión²⁹.

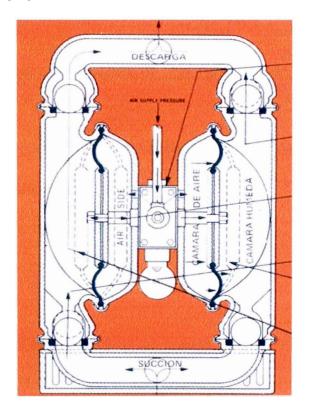


Figura 2.11. Bomba de membrana (diafragma)

²⁹ Prof. ADOLFO, NUÑE FERNANDEZ, "Tran porte de pulpas

2.12.2 Parámetros que se deben tener en cuenta para la selección de bombas

Para seleccionar una bamba para pulpa, el primer paso es escoger si la bomba será horizontal (la más usada) o vertical, en función al trabajo a realizar.

Una vez realizada esta selección, los datos necesarios son:

- Caudal (lt/s).
- Altura manométrica de la pulpa.
- NPSH.

2.12.3 Pasos básicos para la selección de cualquier tipo de bomba

- Elaborar un diagrama de la disposición de bomba y tuberías.
- Determinar el caudal de bombeo.
- Calcular la altura manométrica total.
- Elegir la clase y tipo de bomba.

2.13 Parámetros que se deben tener en cuenta para la selección de tuberías

Las líneas de tuberías serán dimensionadas considerando su longitud relativa, Cabeza disponible, velocidad límite y su economía.

En general el diámetro será escogido en base a las perdidas por fricción. Las velocidades límites se usarán para verificación y para una selección preliminar³⁰.

Roberto Samuel, Zevallos Cruz. Diseño, Selección y ejecución del sistema de bombeo para la deposición de relaves en la Cancha
 6.Mina de Aracata S.A.

2.13.1 Velocidades recomendadas en transporte de pulpas

Exceptuando las líneas de succión para bombas y algún caso de diseño especial, las velocidades de los fluidos en las líneas de tubería se deben mantener dentro de los siguientes rangos³¹.

Tabla2.6 Velocidades recomendadas en transporte de pulpas

Finos (Malla 200 (0,074 mm))	3 – 5 pies/s (0,91 – 1,52 m/s)
Arenas (Mallas 20 a 200 (0,074 – 0,85 mm)	5 – 7 pies/s (1,52 – 2,13 m/s)
Gruesos (Malla 4 a 20 (0,85 – 4,75 mm)	7 – 11 pies/s (2,13 – 3,35 m/s)
Lodos (Dragado) ($\Box \frac{1}{4}$ (6,35 mm))	11 – 14 pies/s (3,35 – 4,27 m/s)

Fuente: R. Zevallos, "Diseño, Selección y ejecución del sistema de bombeo para la deposición de relaves"

Estas velocidades toman en cuenta que debemos procurar un flujo más o menos turbulento para mantener las partículas en suspensión, pero no con una velocidad tan alta como para aumentar las pérdidas por fricción.

Para determinar la velocidad crítica de la pulpa, es decir la velocidad límite a la cual aseguramos que no se produzca la sedimentación de los sólidos en suspensión, Puede hacer uso de la fórmula de Durand y Condolios [2.9].

Roberto Samuel, Zevallos Cruz. Diseño, Selección y ejecución del sistema de bombeo para la deposición de relaves en la Cancha 6.Mina de Aracata S.A.

2.13.2 Velocidad límite para pulpas (VL)

Se entiende por velocidad límite de transporte o critica a aquella a la cual empiezan los sólidos a sedimentar en el seno de la conducción³².

Las pulpas homogéneas con baja concentración de sólidos, no requieren especial cuidado en cuanto al cálculo de la velocidad límite, si bien con altas concentraciones estas pulpas por su reología No- Newtoniana requieren consideraciones especiales.

Las pulpas heterogéneas conteniendo partículas mayores de 50micras deben transportarse a velocidades superiores a la límite para evitar problemas de bloqueo. La mayoría de los estudios están basados en la fórmula de Durand Condolios presentado en 1952.

$$V_{L} = F_{L} \sqrt{2 g D \frac{(GE_{S} - GE_{L})}{GE_{L}}}$$
 [2.9]

Dónde:

 V_{L}

: Velocidad límite (m/s).

 F_L : Factor adimensional que depende de la concentración de los sólidos en volumen (C_V) y d₅₀. Se obtiene del gráfico de

Mc Elvain y Cave (ver Anexo A).

³² JUAN LUIS, BOUSO, 1993."Manual de Bombeo de Pulpas". Toledo Madrid. Pag.7

g : Gravedad (m/s²).

D : Diámetro interno de la tubería (m).

GE_L : Gravedad específica del líquido.

GE_S : Gravedad específica del sólido.

La velocidad real de la pulpa necesariamente debe ser mayor que la velocidad límite, para asegurarse que los sólidos no se van a asentar y bloquear la tubería.

2.13.3 Perdidas por fricción para pulpas

Se calcularan empleando la relación de Hanzen Williams con la variante que el valor obtenido se multiplica por un factor que depende del factor C.

$$H_{fp} = 10,643. L. \left(\frac{Q}{C}\right)^{1.86}. D^{-4.87}. f_c$$
 [2. 10]

Donde:

H_{fp}: Pérdida de presión debido a fricción en la tubería (m).

L : Longitud de la tubería (m).

Q : Caudal (m3/s).

D : Diámetro interno de la tubería (m).

C : Coeficiente a dimensional que depende de la naturaleza de las paredes del tubo y de la concentración en peso de la pulpa.

f_c : Coeficiente a dimensional que depende de C.

Tabla 2.7 Valores del coeficiente adimensional "C"

Materiales de	C _W (Porcentaje de Sólidos en Peso)						
Tuberías	30 %	30 % - 40%	40 % - 50%	+ 50%			
PVC, HDPE, PP	150	140	130	120			
Acero	140	130	120	110			
Forrado con jebe	130	120	110	100			
Madera	120	110	100	90			

Tabla 2.8 Valores del coeficiente adimensional "fc"

FACTOR "C"	150	140	130	120	110	100	90
FACTOR "fc"	0,47	0,54	0,62	0,62	0,84	1,00	1,22

2.13.4 Pérdidas por fricción en fluidos limpios (agua)

Las pérdidas por fricción en tuberías para fluidos limpios, como el agua, serán calculadas empleando la relación de Darcy-Weisbach:

$$H_f = f \frac{L}{d} \cdot \frac{V^2}{2g}$$
 [2.11]

Donde:

H_f Pérdida de cabeza debido a fricción en la tubería (m).

f Factor de fricción.

L : Longitud equivalente de la tubería (m).

d : Diámetro interno de la tubería (m).

V : Velocidad del fluido (m/s).

g : Gravedad (m/s²).

Nota

Para evaluar factor de fricción " **f** " se puede utilizar la Tabla de Warman, (ver anexo B) o también se puede determinar con formula [2.12].

2.13.5 Factor de fricción en fluidos limpios (f)

Los factores de fricción para tubería serán calculados utilizando la relación de Moody:

f = 0,0055
$$\left[1 + \left(20000 \frac{e}{D} + \frac{10^6}{Re} \right)^{\frac{1}{3}} \right]$$
 [2. 12]

Donde:

e : Rugosidad absoluta (m).

e/d : Rugosidad relativa.

Re : Número de Reynolds.

Como alternativa se podrá usar la relación de Colebrook- White

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{e}{3.7 \text{ d}} + \frac{2.51}{\text{Re }\sqrt{f}}\right)$$
 [2.13]

Estas relaciones son válidas para:

- Flujo turbulento donde Re es mayor de 4000.
- Flujo laminar hasta Re 2000.
- Región de transición entre Re 2000 y 4000, se hace una interpolación en línea recta entre el laminar y el turbulento.

2.14 Factor de corrección para pulpa

2.14.1 Corrección de la columna en pulpa a columna de agua (agua fluido que transporta el sólido)

$$Hw = \frac{Hm}{HR}$$
 [2.14]

Donde:

Hw : Altura en metros de agua.

Hm : Altura en metros de pulpa.

HR : Factor de corrección.

2.14.2 Factor de corrección HR

HR = 1 - 0,000385(GE_s - 1)
$$\left(1 + \frac{4}{GE_s}\right)$$
. C_w. Ln $\left(\frac{d_{50}}{22,7}\right)$ [2. 15]

Donde:

GE_s : Gravedad específica del sólido.

C_w : % Sólido en peso.

d₅₀ : Tamaño de la partícula en micras.

2.15 Cálculo de la potencia de la bomba

$$P_B = Q. Hw. \gamma_p (W)$$
 [2.16]

Donde:

Q : Caudal (m³/s)

Hw : Altura en metros de agua (m).

 γ_p Peso específica de la pulpa. $(\frac{N}{m^3})$

2.16 Cálculo de la potencia al eje del motor

Se puede calcular de dos formas:

1.
$$P_{eje} = \frac{P_B}{ew}$$
 (Kw)

2.
$$P_{eje} = \frac{Q.H_w.GE_p}{1,02 \text{ ew}}$$
 (Kw)

Donde:

Q : Caudal (lt/s)

Hw : Altura en metros de agua (m).

GE_p: Gravedad específica de la pulpa.

ew : Eficiencia de la bomba, en las curvas características de la bomba.

Cálculo de la potencia corregida

$$P_{\text{corregida}} = \frac{P_{\text{eje}} (1 + C_{\text{p}}) (1 + C_{\text{i}})}{C_{\text{t}}}$$
[2.19]

Donde:

C_p : Corrección por pérdidas de potencia en la transmisión.

C_i: Corrección por incremento de carga.

C, : Corrección por temperatura.

Nota

 $C_p = 10\%$ Valor estimado.

 $C_i = 20\%$ Valor estimado.

C, Este valor se halla de tablas de motores eléctricos.

2.17 Cálculo del NPSH

Para calcular la NPSH disponible para una instalación de bombeo se puede emplear la formula siguiente:

$$NPSH = \frac{P_{atm} - P_{vap}}{\gamma_{pulpa}} + Z_s - hL_{Suc}$$
 [2.20]

Donde:

P_{atm} Presión atmosférica (Kgf/m2).

P_{vap} Presión de vapor del líquido a la temperatura de bombeo (Kgf/m2).

 γ_{pulpa} Peso específico de la pulpa (Kgf/m).

Z_s Altura estática de aspiración (m).

(+): Para aspiración positiva (bomba por sobre la superficie libre del líquido aspirado.

(-): En caso contrario (aspiración negativa).

CAPÍTULO III

DESCRIPCIÓN DEL PROCESO DE OPERACIÓN DE LA PLANTA DE RELAVE

3.1 Envió de relave total, de Planta de procesamiento a Planta RH 100% relave y retorno del OverFlow a la chanca de relaves

Para abastecer de relave grueso el silo de 340 m³ en la Planta de RH 100% Relave, se necesitará que la Planta de procesamiento bombee durante 12 horas/día (340 m³/ 28 m³/h), a una altura 25 m por encima, luego el relave total desciende por tubería por 750m, hasta el cajón de recepción cota (3918) en la Planta RH 100% relave.

Para realizar este procedimiento se recomienda lo siguiente:

Nota:

BPP: Bomba de pulpa de procesamiento.

BPR: Bomba de pulpa de recepción.

BPO: Bomba de pulpa overflow.

BPV: Bomba de pulpa vertical.

3.2 Planta de Procesamiento

 Se comunica tanto al operador en la cancha de relaves y de la planta RH que esté atento al corte y llegada del flujo del relave respectivamente.

2. En la planta de procesamiento se pone en marcha la bomba BPP cota (3918).

3. Se hace el cambio del flujo de pulpa en el punto de reparto cota (3943) hacia la planta RH mediante la válvula tipo pantalón.

3.3 Recepcionista cancha de relaves

Una vez que termina la descarga de la tubería de conducción del relave total, desde la planta de procesamiento hacia Cancha de Relaves cota (3940), procede a apagar la bomba BPA cota (3920).

3.4 Recepcionista planta RH

- Poner en marcha la bomba BPR cota (3918) para levantar la pulpa 18m hasta el hidrociclón cota (3935).
- La descarga (Underflow) del hidrociclón, va hacia el silo cota (3918) a razón de 28m³/h.
- Encender la bomba centrífuga de agua para los sellos de las bombas BPR y BPO.
- 4. El rebose del hidrociclón (Overflow) va hacia el cajón de retorno del Overflow.
- 5. Poner en marcha la bomba BPO cota (3934) para el retorno de pulpa fina hacia cancha de relaves, elevando una altura de 26m, para luego descender 20m hasta la cancha de relaves cota (3940).
- **6.** Antes de completado los 340 m³ de relave grueso en el silo, se debe comunicar a la planta de procesamiento, que realice los cambios respectivos y proceda hacer el corte del envío de relave hacia la planta RH.
- 7. Completado la descarga de la tubería de conducción desde Planta de procesamiento hacia RH, proceder a apagar las bombas BPR, BPO y la bomba centrifuga de agua.

3.5 Envió de pulpa, desde planta de RH hacia mina

Si el silo de 340 m³ de acumulación de relave grueso, está como mínimo al 50% de su capacidad (170 m³) y el tanque de agua de 100 m³ esté al 80% de su capacidad (80 m³). Luego de la coordinación previa con el operador de mina para la labor que se va rellenar, se procede de la siguiente forma:

3.6 Operador planta RH

- 1. Llenar el silo agitador de pulpa con agua.
- Verificar que no haya obstrucción a la salida de los inyectores de agua hacia silo de 340 m³.
- 3. Comunicarse con el recepcionista de interior mina que se va a dar inicio el relleno.
- **4.** Esperar la confirmación del recepcionista que está todo listo para iniciar el envío de la pulpa al tajeo.
- 5. Abrir completamente las válvulas hacia los inyectores.
- **6.** Encender bomba centrífuga (BAS), para dar presión a los inyectores de agua.
- 7. Abrir válvula de descarga del silo de 340 m³ (válvula Pinch).

- 8. Abrir la válvula de descarga del silo agitador cota (3909) (válvula Pinch) hacia mina, tubería de conducción.
- 9. Conforme va normalizando el flujo por gravedad (levantando la densidad, hasta alcanzar el flujo a tubo lleno), se va reduciendo el caudal de los inyectores de agua regulando las válvulas.
- 10. Una vez completado el ciclo de relleno, se procede a lavar la tubería de conducción hacia mina con agua, o soplar con aire comprimido de la red de Mina.
- 11. Luego se apaga la bomba BAS, agitador y se cerrar las válvulas.

3.7 Procedimiento en caso suceda rebalse de pulpa en la planta RH

- a) Toda el rebalse de la pulpa es acumula en la cisterna de concreto adyacente al silo de 300 m3, que se encuentra debajo del cajón de recepción.
- **b)** Encender la bomba vertical (BPV), ubicada en la cisterna, levantado 5 m, hacia el cajón de recepción.
- c) Realizar la limpieza de la cisterna.
- d) En caso que el derrame exceda la capacidad de la cisterna y de la bomba vertical (BPV). El exceso es enviado hacia mina por la red auxiliar (tubería).

3.7.0 Planteamiento del problema

En la mina aurífera se está buscando mitigar la contaminación de relaves y reducción de costos por transporte de estos hacia socavón de mina.

¿Cómo disminuir el impacto ambiental originado por la disposición de relave depositado en la superficie de la propiedad minera y que los gastos por transporte de relaves sean bajos?

CAPITULO IV

DISEÑO DE LOS SISTEMAS DE TRANSPORTE.

El esquema de la figura 4.1 muestra los diferentes sistemas de transporte que ocupa el presente trabajo de ingeniería.

El primer sistema de bombeo ha de movilizar de la planta procesadora de minerales cota (3918), un flujo de 164 m³/h de pulpa hacia un punto ubicado a 25 m de altitud cota (3943), una longitud de tubería de 100 m es utilizada. De allí mediante una válvula tiene dos opciones, descargar flujo total hacia el cajón de recepción cota (3918) o enviar todo el flujo a la cancha de relaves, descargando previamente en un cajón cota (3923,8).

Un segundo sistema de bombeo, a de movilizar 164 m³/hr desde la cota (3918) hacia la cota (3935) (entrada del hidrociclón); tubería HDPE, una longitud de 24,4. Por requerimiento del cliente ha de instalarse dos líneas de tubería, gemelas.

De los hidrociclones por gravedad se debe hacer circular 28 m³/hr hacia el silo de relave de capacidad 340 m³ cota (3918).

La diferencia 136 m³/hr se hace circular por gravedad utilizando una tubería de acero SCH80, longitud 20 m hacia el cajón de retorno ubicado en la cota (3934).

Un tercer sistema de bombeo impulsa, los 136 m³/hr desde la cota (3934) hacia la cancha de relaves cota (3940), utilizando tubería HDPE, una longitud de 1580m.

El cuarto sistema de relave grueso, es el que descarga el relave grueso en el interior de la mina, pasando previamente por un silo agitador en donde se agregan cemento y otras sustancias que permite que las paredes de la mina no se desprendan.

La longitud de la tubería es de 1000 m, por requerimientos del cliente esta tubería es de acero íntegramente.

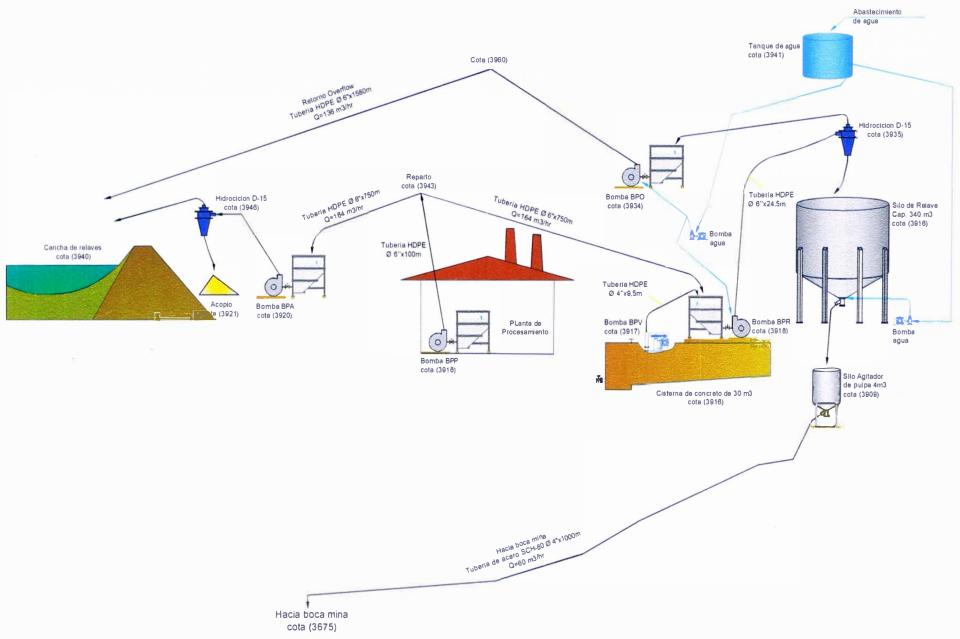


Figura 4.1 Esquema general de los sistemas de bombeo

Fuente: propia

4.1 Determinación del caudal de operación

Para determinar el caudal de operación utilizaremos los datos de relave.

Tonelaje horario (TMS/H)

Capacidad de alimentación de la planta = $14500 \frac{TMS}{día}$

Radio de concentración = $\frac{TM \text{ mineral}}{TM \text{ concentrad o}} = 11$

Relave de flotación = 1318,2 $\frac{TMS}{día}$

Tonelada de relave de flotación por hora TRF= 54,93 $\frac{TMS}{h}$

Volumen del sólido: $\frac{54,93}{2,70} = 20,34$ TMS

Masa de agua en suspensión (Ma)

$$M_a = TRF. R^{l}/_{S} \quad (TMS)$$
 [4.1]

Donde:

TRF : Tonelada de relave de flotación.

R l/s: Relación líquido sólido.

$$R I/s = \frac{(1-C_W)}{C_W}$$
 [4.2]

Reemplazando en ecuación [4.2] \Rightarrow $C_W = 31,63\%$

$$R l/_S = 2.16$$

Reemplazando R I/s en ecuación [4.1]

$$M_a = 118,65$$
 TMS

Volumen de la pulpa

$$V_p = V_a + \frac{TMS}{GE_s}$$
 (m³) [4.3]

Reemplazando

$$V_p = 118,65 + \frac{54,93}{2.7} = 138,99 \text{ (m}^3\text{)}$$

Masa total de la pulpa a transportar

$$M_p = TRF + M_a (m^3)$$
 [4.4]

$$M_p = 54,93 + 118,65 = 173,58 \, (m^3)$$

Gravedad específica de la pulpa
$$GE_p = \frac{173,58}{138,99} = 1,25$$

Porcentaje de sólido en volumen
$$%C_{V} = \frac{20,34}{138,99} = 14,6\%$$

El caudal de la pulpa
$$Q_p = 138,99 \frac{m^3}{h}$$

Para el diseño se toma un caudal de 164 m³/h, tomando un porcentaje de 17,99 % más del caudal de pulpa.

4.2 Sistema de bombeo 01

Parámetros de diseño

Gravedad específica del sólido $E_S = 2,7$

Porcentaje de sólido en peso : $%C_w = 31,63 \%$

Gravedad específica de la pulpa \Rightarrow GE_p = 1,25

Diámetro de la partícula : $d_{50} = 212 \mu m$

Caudal de diseño $Q_{d} = 164 \frac{m^{3}}{h} = 45,56x10^{-3} \frac{m^{3}}{h}$

Temperatura ambiental de operación: -15°C a 15°C

Altura de la planta : 3918 m.s.n.m.

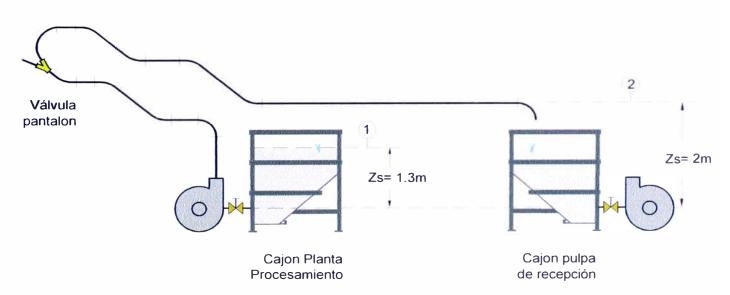


Figura 4.2: Esquema del Sistema de Bombeo 01

Fuente: Propia

Cálculo del diámetro de la tubería.

Cálculo de la velocidad límite de la pulpa (V_L)

Del gráfico de Mc Elvain y Cave, en figura 4.3:

Con
$$C_V = 14.7 \% \text{ y d}_{50} = 212 \mu m \implies F_L = 1.03$$

En ecuación [2.9]:

La velocidad límite $V_L = 1.03 \sqrt{2 \times 9.81D \frac{(2.7-1)}{1}}$, resulto:

$$V_{L} = 5.94 \sqrt{D}$$
 [4.5]

Para que no exista sedimentación en las tuberías la velocidad de la pulpa (V) tiene que ser mayor que la velocidad límite (V_L) .

Cálculo de la velocidad de la pulpa (V)

$$V = \frac{Q \, 1,273}{D^2} \binom{m}{s} \tag{4.6}$$

Donde: $Q(m^3/s) y D(m)$

Con el caudal de diseño $Q_d = 164 \frac{m^3}{h} (45,56 \times 10^{-3} \frac{m^3}{s})$, se obtiene:

$$V = \frac{0.05799}{D^2}$$
 [4.7]

Utilizando las ecuaciones [4.5] y [4.7] se elabora el siguiente cuadro N 4.1.

Cuadro N 4.1
SELECCIÓN DEL DIAMETRO DE TUBERIA HDPE

(De la tabla 2.6 la velocidad recomendada = 2,13 a 3,35 m/s)

D _{Nominal} ('')	D _{Nominal} (m)	V _{pulpa} (m/s)	V _{límite} (m/s)	
4''	0,102	5,57	1,90	
4 1/2''	4 ½" 0,114		2,0	
5''	5'' 0,127 3,59		2,11	
6"	0,152	2,51	2,32	
8''	0,203	1,40	2,67	

Del cuadro, se tiene que la tubería a utilizar es de diámetro 6".

Cálculo de la altura dinámica (HDT) de la bomba BPP

Aplicamos ecuación de energía entre los puntos 1 y 2 de la figura 4.2

$$E_{bomba} = E_{k2} - E_{k1} + E_{p2} - E_{p1} + E_{pot2} - E_{pot1} + E_{\Delta}$$

HDT =
$$\frac{V_2^2 - V_1^2}{2 g} + \frac{V_2^2 - V_1}{\gamma_p} + Z_d - Z_s + h_L$$
 [4.8]

Calculando:

a) Altura de pérdidas en la descarga.

$$\frac{V_2^2}{2g} = \frac{2.51^2}{2 \times 9.81} = 0.32 \text{ m}$$

b) Altura estática

$$Z_d - Z_s = 2 - 1.3 = 0.7 \text{ m}$$

c) Cálculo de las pérdidas por fricción.

Longitud Equivalente. (En figura 4.4)

Accesorios	Unidades	L. Equivalente
Codos de 90°(4,27 m/codo)	2	8,54 m
Codos de 90° de radio amplio (3,35 m/codo)	8	26,8 m
válvula seccionadora	1	1,2 m

Longitud de tubería = 850 m

Longitud equivalente (Leq) = 886,54 m

Cálculo de pérdidas por fricción en la tubería H_f

Número de Reynolds ecuación [2.8].

$$Re = \frac{VD}{U} = \frac{2,51 \times 0,152}{0.495262 \times 10^{-6}} = 0,770343 \times 10^{6}$$

Rugosidad de tubería HDPE $\frac{e}{D} = 0.0015$

Reemplazando en ecuación [2.13] método de Colebrook-White

$$f = 0.0220234$$

Reemplazando en ecuación de Darcy-Weisbach [2.11]

$$H_f = 0.0220234 \frac{886.54}{0.152} \cdot \frac{2.51^2}{2 \times 9.81} = 41.25 \text{ m}$$

Los valores obtenidos reemplazando en ecuación [4.8]

$$HDT = 0.32 + 0.7 + 41.25 = 42.27 \text{ m de pulpa}$$

HDT = 42,27 m de pulpa.

Cálculo de la presión de operación (bar)

$$P_{op} = HDT.GE_{p.} 0,098 \text{ (bar)}$$
 [4.9]

Reemplazando

 $P_{op} = 5.18\,$ bar, para seleccionar la tubería tomamos la presión nominal de PN= 6 bar (ver anexo K) tabla $5.1.1\,$

Cálculo del factor de corrección HR

Reemplazando en ecuación [2.15]

HR = 1 - 0,000385 (2,7 - 1)
$$\left(1 + \frac{4}{2,7}\right)$$
 31,63 Ln $\left(\frac{212}{22,7}\right)$

HR = 0.8852

Conversión a columna de agua (Hw) ecuación [2.14]

$$Hw = \frac{HDT}{HR} = \frac{42,27}{0.8852} = 47,75 \text{ m de agua}$$

Hw = 47,75 m de agua

Selección de la bomba (BPP)

La selección de la bomba se hace con el requerimiento del caudal de 45,56 lt/s y la altura total de 47,75 m en la **figura 4.5**.

En este caso, se selecciona una Warman 4/3 AH de 5 álabes.

Cálculo de la potencia de la bomba (BPP)

Reemplazando en ecuación [2.16]

Peso específico de la pulpa
$$\gamma_p = 12262,5 \frac{N}{m^3}$$

$$P_{BPP} = 0.04556 \text{ x } 47,75 \text{ x } 12262,5 = 26,68 \text{ KW}$$

Potencia del motor que entrega la bomba

De la figura 4.7, la eficiencia de la bomba es de 66% y 2300 rpm.

Reemplazando en ecuación [2.17]

$$P_{eje} = \frac{26,68}{0.66} = 40,42 \text{ KW} = 54,20 \text{ HP}$$

Cálculo de la potencia corregida

De la figura 4.6 por interpolación

 $C_t = 0.95$ Para una altitud de 3918 m.s.n.m.

Reemplazando en ecuación [2.19]

$$P_{\text{corregida}} = \frac{54,20 (1+0,10) (1+0,20)}{0.95} = 75,31 \text{ HP}$$

Por lo tanto seleccionamos un motor de 100 HP

Cálculo del NPSH de la bomba

De la tabla **figura 4.8** hallamos el valor de la presión de vapor mediante una interpolación para una temperatura de 15°C

$$P_{\text{vap}} = 1723 \text{Pa} = 175,6 \frac{\text{Kgf}}{\text{m}^2}$$

De la tabla **figura 4.9** hallamos la presión atmosférica a 3918m.s.n.m.

$$P_{atm} = 6355 \frac{Kgf}{m^2}$$

De la figura 4.2 $Z_s = 1,22m$ de pulpa.

Peso específico de la pulpa $\gamma_p = 1250 \frac{\text{Kgf}}{\text{m}^3}$

$C\'{a}lculo de hL_{Suc}$ usamos la formula

$$hL_{suc} = f \frac{L}{d} \cdot \frac{V^2}{2g}$$

f	0,0220234
L~=	1m
d	0,152 m
V	2,51m/s

Reemplazando en ecuación [2.20]

$$hL_{suc} = 0.0220234 \frac{1}{0.152} \cdot \frac{2.51^2}{2 \times 9.8} = 0.047 \text{ m}$$

$$NPSH = \frac{6355 - 175,6}{1250} + 1,3 - 0,047$$

$$NPSH = 6,20 \text{ m}$$

De la figura 4.7 el NPSH es de 6m

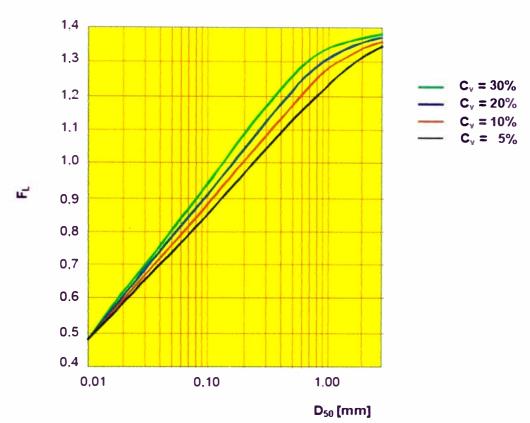


Figura 4.3: Gráfico Mc Elvain y Cave (1972) Fuente: H. Nuñes, Informe de Suficiencia

	Radius More Than 3 x N B.	Radius is 2 x N B.			Minimum Radius 10 x N.B.				0
INTERNAL DIAMETER or N.B.	90° Long Radius Bend	90° Short Radius Bend	Elbo*	Tee	Rubber Hose	Diaphragm Valve Full Open	Full Bore Valve Round Way	Plug-Lub Valve Rect Way	* "Toch- Taylor" Valve Ball Type
mm	EC	QUIV. LENG	THIN m	OF STRAIG	HT PIPE GIVE	NG EQUIVAL	ENT RESIST	ANCE TO FLO	w
25	0.2	0.70	0-82	1-77	0 - 30	2 - 56		0.37	
32	0 · 73	0.91	1-13	2 · 38	0 · 40	3 - 29		0.49	
40	0.85	1.10	1-31	2.74	0 - 49	3.44	1.19	0.58	
50	1 · 07	1.40	1-68	3 - 35	0 - 5 5	3 · 66	1-43	0.73	
65	1 - 28	1.65	1-98	4.27	0.70	4-60	1-52	0.85	
80	1 - 5 5	2.07	2.47	5-18	0 - 8 5	4.88	1.92	1.04	0.20
90	1-83	2.44	2.90	5.79	1 - 01			1-22	
100	2 · 13	2.77	3.35	6 - 71	1 - 1 6	7 · 62	2 - 19	1.40	0 · 2 3
115	2 · 41	3 - 05	3.66	7 - 3 2	1 - 28			1.58	
1 2 5	2 - 71	3 · 66	4 · 27	8 - 23	1 - 43	13.11	3.05	1.77	0.30
150	3 · 35	4 · 27	4-68	10.06	1 - 5 5	18 - 29	3-11	2-13	0.37
200	4.27	5-49	6-40	13-11	2 - 41	19-81	7.92	2.74	0.82
250	5 - 18	6.71	7.92	17.07	2 · 99	21.34	10.67	3 47	0.61
300	6 -10	7-92	9.75	20-12	3 - 35	28.96	15-85	4 08	0.76
350	7 - 01	9.45	10 - 97	23-16	4 - 27	28-96		4.88	0.91
400	8 - 2 3	10 .67	12.80	26-52	4 88			5 · 49	1 · 04
450	9-14	12 - 19	14.02	30-48	5 - 49			6 - 2 2	1 - 16
5 0 0	10 · 36	13 - 11	15 - 85	33.23	6-10	<u> </u>		7 - 32	1 - 25

*"TECH-TAYLOR" VALVE IS A BALL TYPE CHANGEOVER DEVICE USED ONLY ON THE DELIVERY SIDE OF THE PUMP

NOTE: 1. FOR 135° BEND, USE 50 % OF EQUIVALENT LENGTH FOR 90° BEND.

2. L_q IS THE AGGREGATE OF EQUIVALENT LENGTHS FOR ALL PIPELINE FITTINGS

AND VALVES IN A GIVEN PIPELINE

Figura 4.4: Longitudes equivalentes de accesorios para tubería y válvulas

Fuente: Warman, Manual de bombeo de pulpa

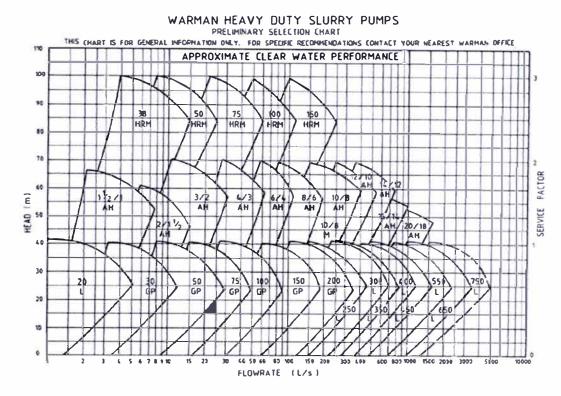
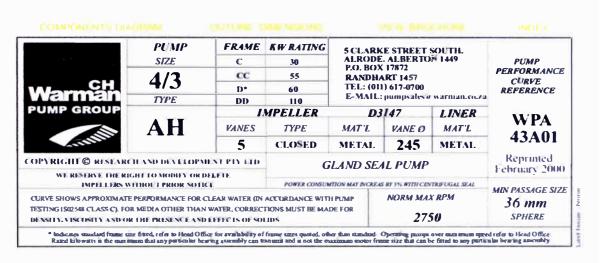



Figura 4.5: Tabla de selección preliminar de la bomba Fuente: Warman, Manual de bombeo de pulpa

T (°C)		Altitud (m)								
1 (6)	1000	1500	2000	2500	3000	3500	4000	4500	5000	
10							0,97	0,92	0,88	
15			1	1		0,98	0,94	0,90	0,86	
20					1,00	0,95	0,91	0,87	0,83	
25				1,00	0,95	0,93	0,89	0,85	0,81	
30			1,00	0,96	0,92	0,90	0,86	0,82	0,78	
35		1,00	0,95	0,93	0,90	0,88	0,84	0,80	0,75	
40	1,00	0,97	0,94	0,90	0,86	0,82	0,80	0,76	0,71	
45	0,95	0,92	0,90	0,88	0,85	0,81	0,78	0.74	0,69	
50	0,92	0,90	0,87	0,85	0,82	08,0	0,77	0,72	0,67	
55	0,88	0.85	0,83	0,81	0,78	0.76	0.73	0,70	0,65	
60	0,83	0,82	0,80	0,77	0.75	0,73	0.70	0,67	0,62	
65	0,79	0,76	0,74	0,72	0,70	0,68	0,66	0,62	0,58	
70	0,74	0,71	0,69	0,67	0,66	0,64	0,62	0,58	0,53	
75	0,70	0,68	0,66	0,64	0,62	0,60	0,58	0,53	0,49	
80	0,65	0,64	0.62	0,60	0,58	0,56	0.55	0,48	0.44	

Figura 4.6: Tabla de factores de corrección para altitud y temperatura ambiente

Fuente: Catálogo Técnico, Mercado Latinoamericano.

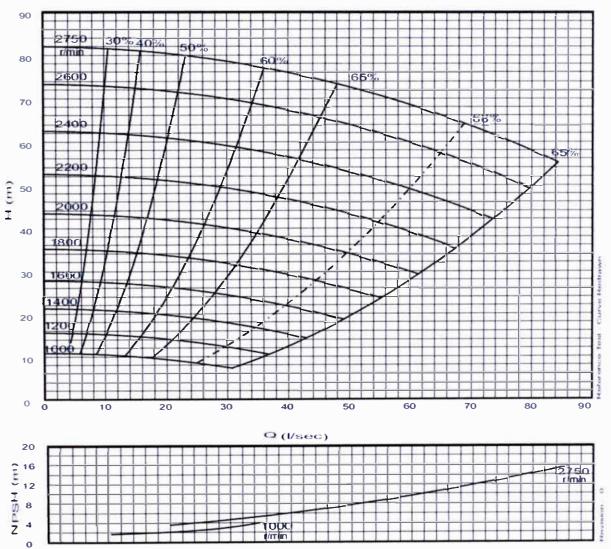


Figura 4.7: Curva característica de la bomba 4/3 AH Fuente: Ch Warman Group.

Temperatura (°C)	Peso Especifico 7 (N/m²)	Densided (kg/m²)	Viscosidad Cinemática — v. 18 ⁵ (m²/s)	Presión del vapor P _v (kPa)	Módulo de elasticidad volumétrico K (MPa)
0.0	9800	1000	1,79	0.55	1991.4
4.4	9800	1000	1.4	0,755	2039.6
10.0	9800	1000	1.31	1.166	2101,6
15.6	9800	1000	1.07	1.79	2149.8
21.1	9790,2	999	0.94	2.48	2179.8
26.7	9751	995	0.85	3.51	2239.4
32.2	9741.2	994	0.75	4.82	2266,9
37.8	9731,4	993	0.684	6.615	2280.7
49.0	9672.6	987	0.567	11,71	2294.5
66.0	9604	980	0.442	25.5	2260
82.0	9506	970	0.358	51.67	2191.2
100.0	9388,4	958	0.296	101.28	2087,8

Figura 4.8: Tabla para encontrar la presión atmosférica y la presión de vapor del agua Fuente: Internet.

Altura m.s.n.m. (m)	Temperatura °C	Presión Atmosférica Kgf/m2
0	15,0	10326
250	13,3	10026
500	11,7	9732
750	10,1	9444
1000	8,5	9163
1250	6,8	8888
1500	5,1	8620
1750	3,5	8359
2000	1,9	8104
2250	0,2	7856
2500	-1,4	7614
2750	-2,8	7378
3000	-4,6	7146
3250	-6,3	6924
3500	-7,8	6706
3750	-9,4	6493
4000	-11,2	6286

Figura 4.9: Tabla de la atmosfera normal Fuente: Juan Rayo Prieto, Tesis 1993.

4.3 Sistema de bombeo 02

Parámetros de diseño

Gravedad específica del sólido $E_S = 2.7$

Porcentaje de sólido en peso : $\%C_w = 31,63 \%$

Presión de entrada del hidrociclón $P_E = 15 \text{ PSI}$

Gravedad específica de la pulpa \qquad : $GE_p = 1,25$

Diámetro de la partícula : $d_{50} = 212 \mu m$

Caudal de diseño $Q_d = 164 \frac{m^3}{h} = 45,56 \times 10^{-3} \frac{m^3}{s}$

Temperatura ambiental de operación: -15°C a 15°C

Altura del cajón de recepción : 3918 m.s.n.m.

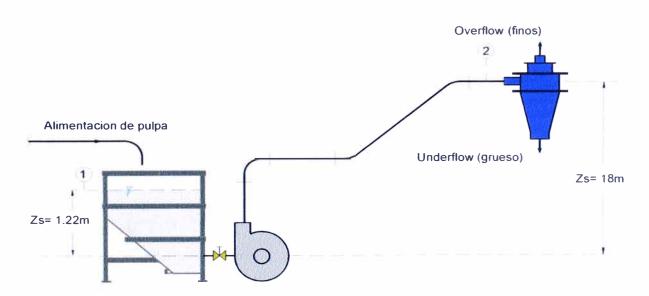


Figura 4.10: Esquema del Sistema de Bombeo 02

Fuente: Propia

Los parámetros de diseño de este sistema son similares al del sistema 01

Por eso los de la velocidad de la pulpa y el diámetro de la tubería son iguales a:

$$V = 2.5 \text{ m/s y } \Phi = 6$$
" = 0.152 m

Cálculo de la altura dinámica (HDT) de la bomba BPR

Aplicamos ecuación de energía entre los puntos 1 y 2 de la figura 4.10

$$E_{bomba} = E_{k2} - E_{k1} + E_{p2} - E_{p1} + E_{pot2} - E_{pot1} + E_{\Delta}$$

HDT =
$$\frac{V_2^2 - y_1^2}{2g} + \frac{P_2 - p_1}{\gamma_p} + Z_d - Z_s + h_L$$
 [4.10]

Calculando:

a) Altura de pérdidas en la descarga.

$$\frac{V_2^2}{2 g} = \frac{2.51^2}{2 \times 9.81} = 0.32 \text{ m}$$

b) Altura o caida de presión en el hidrociclón

Presión en el hidrociclón 15psi = 103421,4 Pa;
$$\gamma_p = 12262,5 \frac{N}{m^3}$$

Reemplazando

$$\frac{P_2}{\gamma_p} = \frac{103421.4}{12262.5} = 8,43 \text{ m}$$

c) Altura estática

$$Z_d - Z_s = 18 - 1.22 = 16,78 \text{ m}$$

d) Cálculo de las pérdidas por fricción.

Longitud equivalente. Ver anexo C

Accesorios	Unidades	L. Equivalente
Codos de 90°(4,27 m/codo)	1	4,27 m
Codos de 90° de radio amplio (3,35 m/codo)	2	6,7 m
válvula seccionadora	1	1,2 m

Longitud de tubería = 24,4 m

Longitud equivalente (Leq) = 36,57 m

Cálculo de pérdidas por fricción en la tubería H_f

Número de Reynolds ecuación [2.8].

$$Re = \frac{VD}{v} = \frac{2,51 \times 0,152}{0,495262 \times 10^{-6}} = 0,770343 \times 10^{6}$$

Rugosidad de tubería HDPE $\frac{e}{D} = 0,0015$

Reemplazando en ecuación [2.13] método de Colebrook-White

$$f = 0.0220234$$

Reemplazando en ecuación de Darcy-Weisbach [2.11]

$$H_{\rm f} = 0.0220234 \frac{36,57}{0,152} \cdot \frac{2,51^2}{2 \times 9,81} = 1,70 \text{ m}$$

Los valores obtenidos reemplazando en ecuación [4.10]

$$HDT = 0.32 + 8.43 + 16.78 + 1.70 = 27.23 \text{ m de pulpa}$$

HDT = 27,23 m de pulpa.

Cálculo de la presión de operación (bar)

Reemplazando en ecuación [4.9]

 $P_{op} = 3,34$ bar, para seleccionar la tubería tomamos la presión nominal de PN= 4 bar (ver anexo K) tabla 5.1.1

Cálculo del factor de corrección HR

Reemplazando en ecuación [2.15]

HR = 1 - 0,000385 (2,7 - 1)
$$\left(1 + \frac{4}{2,7}\right)$$
 31,63 Ln $\left(\frac{212}{22,7}\right)$

HR = 0.8852

Conversión a columna de agua (Hw) ecuación [2.14]

$$Hw = \frac{HDT}{HR} = \frac{27,23}{0,8852} = 30,76 \text{ m de agua}$$

Hw = 30,76 m de agua

Selección de la bomba (BPR)

La selección de la bomba se hace con el requerimiento del caudal de 45,56 lt/s y la altura total de 30,76 m en la gráfica del anexo D.

En este caso, se selecciona una Warman 100GP de 5 álabes.

Cálculo de la potencia de la bomba (BPR)

Peso específico de la pulpa
$$\gamma_p = 12262,5 \frac{N}{m^3}$$

Reemplazando en ecuación [2.16]

$$P_{BPP} = 0.04556 \times 30.76 \times 12262.5 = 17.19 \text{ KW}$$

Potencia del motor que entrega la bomba

Del anexo E la eficiencia de la bomba es de 78% y 1575 rpm.

$$P_{eje} = \frac{17,19}{0.78} = 22,04 \text{ KW} = 29,6 \text{ HP}$$

Cálculo de la potencia corregida

De la tabla (anexo H) por interpolación

 $C_1 = 0.95$ Para una altitud de 3918 m.s.n.m.

Reemplazando en ecuación [2.19]

$$P_{\text{corregida}} = \frac{29.6 (1 + 0.10) (1 + 0.20)}{0.95} = 41.13 \text{ HP}$$

Por lo tanto seleccionamos un motor de 50 HP

Cálculo del NPSH de la bomba

De la tabla (anexo I) hallamos el valor de la presión de vapor mediante una interpolación para una temperatura de 15°C

$$P_{\text{vap}} = 1723 \,\text{Pa} = 175,6 \, \frac{\text{Kgf}}{\text{m}^2}$$

De la tabla (anexo J) hallamos la presión atmosférica a 3918m.s.n.m.

$$P_{atm} = 6355 \frac{Kgf}{m^2}$$

De la figura $4.10 \, \mathbf{Z}_{\mathrm{s}} = 1,22 \, \mathrm{m}$ de pulpa.

Peso específico de la pulpa $\gamma_p = 1250 \frac{\text{Kgf}}{\text{m}^3}$

Calculo de hL_{Suc} usamos la formula

$$hL_{suc} = f \, \frac{L}{d}. \frac{V^2}{2\,g}$$

f	0,0220234
L~=	1 m
d	0,152 m
V	2,51m/s

Reemplazando en ecuación [2.19]

$$hL_{suc} = 0.0220234 \frac{1}{0.152} \cdot \frac{2.51^2}{2 \times 9.8} = 0.047 \text{ m}$$

$$NPSH = \frac{6355 - 175,6}{1250} + 1,22 - 0,048$$

$$NPSH = 6,12 \text{ m}$$

4.4 Sistema de bombeo 03

Parámetros de diseño

Gravedad específica del sólido $E_S = 2.7$

Gravedad específica de la pulpa : $GE_p = 1,11$

Diámetro de la partícula : 80 μm

Caudal de diseño : $Q_d = 136 \frac{m^3}{h} = 37,778 \times 10^{-3} \frac{m^3}{s}$

Temperatura ambiental de operación: -15°C a 15°C

Altura de la planta: 3934 m.s.n.m.

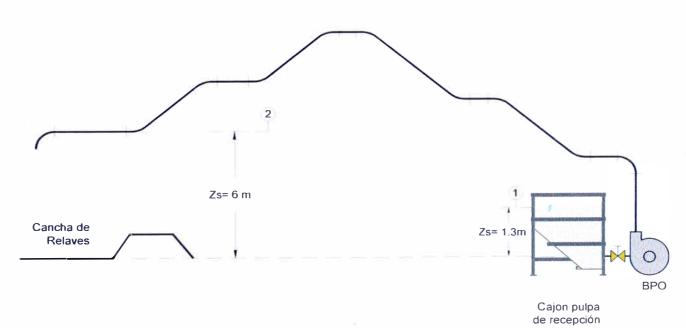


Figura 4.11: Esquema del Sistema de Bombeo 03 Fuente: Propia

Cálculo del porcentaje de sólido en volumen ($%C_v$)

Usamos la siguiente formula:

$$%C_v = \frac{(GE_p - 1)}{(GE_s - 1)}$$

Reemplazando $\Rightarrow \%C_v = 6,47\%$

Cálculo del diámetro de la tubería.

Cálculo de la velocidad límite de la pulpa (V_L)

Del gráfico de Mc Elvain y Cave, anexo A:

Con
$$C_V = 6,47 \% \text{ y d}_{50} = 80 \mu\text{m}$$
 \Rightarrow $F_L = 0.81$

En ecuación [2.9]:

La velocidad límite $V_t = 0.81 \sqrt{2 \times 9.81 D \frac{(2.7-1)}{1}}$, resulto:

$$V_{L} = 4,68 \sqrt{D}$$
 [4.11]

Para que no exista sedimentación en las tuberías la velocidad de la pulpa (V) tiene que ser mayor que la velocidad límite (V_L) .

Cálculo de la velocidad de la pulpa (V)

Reemplazamos el caudal de diseño $Q_d = 136 \frac{m^3}{h} (37,778 \times 10^{-3} \frac{m^3}{s})$, en ecuación

[4.6] se obtiene:

$$V = \frac{0.04809}{D^2}$$
 [4.12]

Utilizando las ecuaciones [4.11] y [4.12] se elabora el cuadro siguiente N 4.2.

Cuadro N 4.2
SELECCIÓN DEL DIAMETRO DE TUBERIA HDPE

(De la tabla 2.6 la velocidad recomendada = 1,52 a 2,13 m/s)

D _{Nominal} ('')	D _{Nominal} (m)	V _{pulpa} (m/s)	V _{límite} (m/s)	
4''	4'' 0,102		4,62	
4 1/2''	0,114	1,58	3,70	
5''	0,127	1,67	2,98	
6" 0,152		1,82	2,08	
8'' 0,203		2,11	1,17	

Del cuadro, se tiene que la tubería a utilizar es de diámetro 6".

Cálculo de la altura dinámica (HDT) de la bomba BPR

Aplicamos ecuación de energía entre los puntos 1 y 2 de la figura 4.11

$$E_{bomba} = E_{k2} - E_{k1} + E_{p2} - E_{p1} + E_{pot2} - E_{pot1} + E_{\Delta}$$

$$HDT = \frac{V_2^2 - V_1^2}{2g} + \frac{P_2 - P_1}{\gamma_p} + Z_d - Z_s + h_L$$
 [4.13]

Calculando:

a) Altura de pérdidas en la descarga.

$$\frac{V_2^2}{2 \text{ g}} = \frac{2,08^2}{2 \times 9,81} = 0,22 \text{ m}$$

b) Altura estática

$$Z_d - Z_s = 6 - 1.22 = 4,78 \text{ m}$$

c) Cálculo de las pérdidas por fricción.

Longitud equivalente. Ver anexo C

Accesorios	Unidades	L. Equivalente
Codos de 90°(4,27 m/codo)	3	12,81 m
Codos de 90° de radio amplio (3,35 m/codo)	8	26,8 m
válvula seccionadora	l	1,2 m

Longitud de tubería = 1580 m

Longitud equivalente (Leq) = 1620,81 m

Cálculo de pérdidas por fricción en la tubería H_f

Número de Reynolds [2.8]

$$Re = \frac{VD}{V} = \frac{2,08 \times 0,152}{0.557658 \times 10^{-6}} = 0,566942 \times 10^{6}$$

Rugosidad de tubería HDPE $\frac{e}{D} = 0.0015$

Reemplazando en ecuación [2.13] método de Colebrook-White

$$f = 0.0221266$$

Reemplazando en ecuación de Darcy-Weisbach [2.11]

$$H_f = 0.0221266 \frac{1620.81}{0.152} \cdot \frac{2.08^2}{2 \times 9.81} = 52.03 \text{ m}$$

Los valores obtenidos reemplazando en ecuación [4.13]

$$HDT = 0.22 + 4.78 + 52.03 = 58.82 \text{ m de pulpa}$$

HDT = 57,03 m de pulpa.

Cálculo de la presión de operación (bar)

Reemplazando en ecuación [4.9]

 $P_{op} = 6.2\,$ bar, para seleccionar la tubería tomamos la presión nominal de PN= 8 bar (ver anexo K) tabla 5.1.1

Cálculo del factor de corrección HR

Porcentaje de solido en peso $%C_w = %C_v \frac{GE_s}{GE_p}$

$$\Rightarrow$$
 %C_w = 6,47 $\frac{2,7}{1,11}$ = 15,74%

Reemplazando en ecuación [2.15]

$$HR = 1 - 0.000385(2.7 - 1)\left(1 + \frac{4}{2.7}\right) 15,74 \operatorname{Ln}\left(\frac{80}{22.7}\right)$$

$$HR = 0.9678$$

Conversión a columna de agua (Hw) ecuación [2.14]

$$Hw = \frac{HDT}{HR} = \frac{57,03}{0,9678} = 58,93 \text{ m de agua}$$

Hw = 58,93 m de agua

Selección de la bomba (BPO)

La selección de la bomba se hace con el requerimiento del caudal de 37,77 lt/s y la altura total de 58,93 m en la gráfica del anexo D.

En este caso, se selecciona una Warman 4/3 AH de 5 álabes.

Cálculo de la potencia de la bomba (BPO)

Peso específico de la pulpa
$$\gamma_p = 10889, 1 \frac{N}{m^3}$$

Reemplazando en ecuación [2.16]

$$P_{BPP} = 0.037778 \times 58.93 \times 10889,1 = 24.24 \text{ KW}$$

Potencia del motor que entrega la bomba

Del anexo F la eficiencia de la bomba es de 63% y 2450 rpm.

Reemplazando en ecuación [2.17]

$$P_{eje} = \frac{24,24}{0.63} = 38,48$$
 KW = 51,6 HP

Calculo de la potencia corregida

De la tabla (anexo H) por interpolación

$$C_t = 0.95$$
 Para una altitud de 3934 m.s.n.m. a 15 °C

Reemplazando en ecuación [2.19]

$$P_{\text{corregida}} = \frac{51,6 \ (1+0,10) \ (1+0,20)}{0.95} = 71,70 \ HP$$

Por lo tanto seleccionamos un motor de 75 HP

Cálculo del NPSH de la bomba

De la tabla (Anexo I) hallamos el valor de la presión de vapor mediante una interpolación para una temperatura de 15°C

$$P_{\text{vap}} = 1723 \text{Pa} = 175,6 \frac{\text{Kgf}}{\text{m}^2}$$

De la tabla (Anexo J) hallamos la presión atmosférica a 3934msnm

$$P_{atm} = 6340,6 \frac{Kgf}{m^2}$$

De la figura 4.11 $Z_s = 1,22$ m de pulpa.

Peso específico de la pulpa $\gamma_p = 1110 \frac{\text{Kgf}}{\text{m}^3}$

Calculo de hL_{Suc} usamos la formula

$$hL_{suc} = f \frac{L}{d} \cdot \frac{V^2}{2g}$$

f	0,0221266
L~=	l m
d	0,152 m
V	2,08 m/s

Reemplazando en ecuación [2.20]

$$hL_{suc} = 0.0221266 \frac{1}{0.152} \cdot \frac{2.08^2}{2 \times 9.8} = 0.032 \text{ m}$$

$$NPSH = \frac{6340,6 - 175,6}{1110} + 1,22 - 0,032$$

$$NPSH = 6,74 \text{ m}$$

4.5 <u>Sistema de relave grueso</u>

Parámetros de diseño

Gravedad específica del sólido

 $: GE_S = 2,69$

Gravedad específica de la pulpa

 $E_{\rm p} = 1.9$

Diámetro de la partícula

: 212 μm

Caudal de diseño

 $Q_{d} = 60 \frac{m^{3}}{h} = 16,67 \times 10^{-3} \frac{m^{3}}{s}$

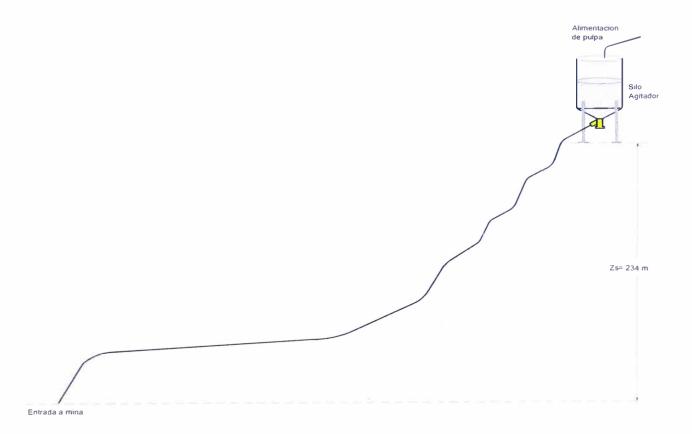


Figura 4.12: Esquema del Sistema de Bombeo 04

Fuente: Propia

Cálculo del porcentaje de solido en volumen ($%C_v$)

Usamos la siguiente formula:

$$%C_{v} = \frac{(GE_{p} - 1)}{(GE_{s} - 1)}$$

Reemplazando $\Rightarrow \%C_v = 53,25\%$

Cálculo del diámetro de la tubería.

Cálculo de la velocidad límite de la pulpa ($\boldsymbol{V}_{\!\scriptscriptstyle L}$)

Del gráfico de Mc Elvain y Cave, anexo A:

Con
$$C_V = 53,25 \% \text{ y d}_{50} = 212 \mu\text{m} \implies F_L = 1,01$$

En ecuación [2.9]:

La velocidad límite $V_L = 1.01 \sqrt{2 \times 9.81 \times D} \frac{(2.69-1)}{1}$, resulto:

$$V_{L} = 5.82 \sqrt{D}$$
 [4.14]

Cálculo de la velocidad de la pulpa (V)

Reemplazamos el caudal de diseño $Q_d = 60 \frac{m^3}{h} (16,67 \times 10^{-3} \frac{m^3}{s})$, en ecuación

[4.6] se obtiene:

$$V = \frac{0.02122}{D^2}$$
 [4.15]

Utilizando las ecuaciones [4.14] y [4.15] se elabora el cuadro siguiente N 4.3.

Cuadro N 4.3
SELECCIÓN DEL DIAMETRO DE TUBERIA HDPE

(De la tabla 2.6 la velocidad recomendada = 1,52 a 2,13 m/s)

D _{Nominal} ('')	D _{Nominal} (m)	V _{pulpa} (m/s)	V _{límite} (m/s)		
2''	0,051	8,16	1,31		
3''	0,076	3,67	1,60		
3 1/2''	0,089	2,67	1,74		
4"	0,102	2,039	1,86		
5''	0,127	1,32	2,07		

Del cuadro, se tiene que la tubería a utilizar es de diámetro 4".

Del **anexo** L seleccionamos una tubería de aceros SCH-80 Φ4" de 8,56 mm de espesor.

4.6 <u>Sistema de bombeo vertical</u>

Parámetros de diseño

Gravedad específica del solido : $GE_S = 2,71$

Gravedad específica de la pulpa : $GE_p = 1,31$

Porcentaje de solido en peso : $%C_w = 37,34 \%$

Diámetro de la partícula : 212 μm

Caudal de diseño : $Q_d = 90.85 \frac{m^3}{h} = 25.236 \times 10^{-3} \frac{m^3}{s}$

Temperatura ambiental de operación: -15°C a 15°C

Altura de la planta : 3917 m.s.n.m.

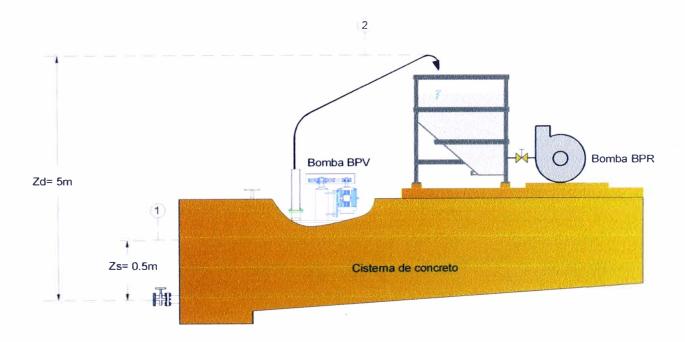


Figura 4.13: Esquema del Sistema de Bombeo Vertical.

Fuente: Propia

Cálculo del porcentaje de solido en volumen ($\%C_{_{\scriptscriptstyle \mathrm{V}}}$)

Usamos la siguiente formula:

$$%C_v = \frac{(1,31-1)}{(2,71-1)}$$

Reemplazando $\Rightarrow \%C_v = 17.9\%$

Cálculo del diámetro de la tubería.

Cálculo de la velocidad límite de la pulpa (V_L)

Del gráfico de Mc Elvain y Cave, anexo A:

Con
$$C_V = 17.9\% \text{ y d}_{50} = 212 \,\mu\text{m}$$
 \Rightarrow $F_L = 1.03$

En ecuación [2.9]:

La velocidad límite $V_L = 1.03 \sqrt{2 \times 9.81 \text{ D} \frac{(2.71-1)}{1}}$, resulto:

$$V_{L} = 5.97 \sqrt{D}$$
 [4.16]

Cálculo de la velocidad de la pulpa (V)

Reemplazamos el caudal de diseño $Q_d = 72 \frac{m^3}{h} = 20 \times 10^{-3} \frac{m^3}{s}$, en ecuación

[4.6] obtiene:

$$V = \frac{0.02546}{D^2}$$
 [4.17]

Utilizando las ecuaciones [4.16] y [4.17] se elabora el cuadro siguiente N 4.4.

Cuadro N 4.4
SELECCIÓN DEL DIAMETRO DE TUBERIA HDPE

(De la tabla 2.6 la velocidad recomendada = 2,13 a 3,35 m/s)

D _{Nominal} ('')	D _{Nominal} (m)	V _{pulpa} (m/s)	V _{límite} (m/s)
3 1/2"	0,089	3,21	1,78
4"	0,102	2,45	1,9
4 1/2''	0,114	1,96	2,02
5"	0,127	1,58	2,12

Del cuadro, se tiene que la tubería a utilizar es de diámetro 4".

Cálculo de la altura dinámica (HDT) de la bomba BPV

Aplicamos ecuación de energía entre los puntos 1 y 2 de la figura 4.13

$$E_{bomba} = E_{k2} - E_{k1} + E_{p2} - E_{p1} + E_{pot2} - E_{pot1} + E_{\Delta}$$

$$HDT = \frac{V_2^2 - V_1^2}{2g} + \frac{V_2 - V_1}{V_P} + Z_d - Z_s + h_L$$
 [4.18]

Calculando:

a) Altura de perdidas en la descarga.

$$\frac{V_2^2}{2 \text{ g}} = \frac{2.45^2}{2 \times 9.81} = 0.31 \text{ m}$$

b) Altura estática

$$Z_d - Z_s = 5 - 0.5 = 4.5 \text{ m}$$

c) Cálculo de las pérdidas por fricción.

Longitud equivalente. Ver anexo C

Accesorios	Unidades	L. Equivalente
Codos de 90°(4,27 m/codo)	1	4,27 m
Codos de 90° de radio amplio (3,35 m/codo)	l	3,35 m

Longitud de tubería = 9,5 m

Longitud equivalente (Leq) = 17,12 m

Cálculo de pérdidas por fricción en la tubería H_f

Número de Reynolds [2.8].

$$Re = \frac{VD}{v} = \frac{2,45 \times 0,102}{0.47252 \times 10^{-6}} = 0,528867 \times 10^{6}$$

Rugosidad de tubería HDPE $\frac{e}{D} = 0,0015$

Reemplazando en ecuación [2.13] método de Colebrook-White

$$f = 0.0221544$$

Reemplazando en ecuación de Darcy-Weisbach [2.11]

$$H_f = 0.0221544 \frac{17.12}{0.102} \cdot \frac{2.45^2}{2 \times 9.81} = 1.14 \text{ m}$$

Los valores obtenidos reemplazando en ecuación [4.18]

$$HDT = 0.31 + 4.5 + 1.14 = 5.95 \text{ m de pulpa}$$

HDT = 5,95 m de pulpa.

Cálculo de la presión de operación (bar)

Reemplazando en ecuación [4.9]

 $P_{op} = 0.76\,$ bar, para seleccionar la tubería tomamos la presión nominal de PN= 2,5

bar (ver anexo K) tabla 5.2

Cálculo del factor de corrección HR

Porcentaje de sólido en peso $%C_w = %C_v \frac{GE_s}{GE_p}$

$$\Rightarrow$$
 %C_w = 17.9 $\frac{2.71}{1.31}$ = 37.03%

Reemplazando en ecuación [2.15]

$$HR = 1 - 0.000385 (2.71 - 1) \left(1 + \frac{4}{2.71} \right) 37,03 \ln \left(\frac{212}{22.7} \right)$$

HR = 0.8651

Conversión a columna de agua (Hw) ecuación [2.14]

$$Hw = \frac{HDT}{HR} = \frac{5,95}{0,8651} = 6,88 \text{ m de agua}$$

Hw = 6,88 m de agua

Cálculo de la potencia de la bomba (BPV)

Peso específico de la pulpa
$$\gamma_p = 12851, 1 \frac{N}{m^3}$$

Reemplazando en ecuación [2.16]

$$P_{BPP} = 0.02 \times 6.88 \times 12851,1 = 1.77 \text{KW}$$

Potencia del motor que entrega la bomba

Del anexo G la eficiencia de la bomba es de 66,5 %

Reemplazando en ecuación [2.17]

$$P_{eje} = \frac{1,77}{0.665} = 2,66 \text{ KW} = 3,6 \text{ HP}$$

Cálculo de la potencia corregida

De la tabla (anexo H) por interpolación

 $C_{\rm t}$ = 0,95 Para una altitud de 3917 m.s.n.m. a 15 °C

Reemplazando en ecuación [2.19]

$$P_{\text{corregida}} = \frac{3.6 (1 + 0.10) (1 + 0.20)}{0.95} = 5 \text{ HP}$$

Por lo tanto seleccionamos un motor de 5 HP

Del anexo G el NPSH es de 9 ft = 2.7m

CUADRO N°4.5 REQUERIMIENTO DE LOS SISTEMAS DE BOMBEO

			TUBER	IA HDPE	PE 100		RINIRA		MOTOR WEG			ACCESORIO	os	
N°	ITEM	Diámetro nominal pulgadas (mm)	Presión nominal PN (bar)	Espesor mínimo (mm)	Peso medio (Kg/m)	Longitud (m)	Marca -Modelo	Potencia (Kw)	Potencia (HP)	Codo de 90° R= 2xNB (Unidades)	Codo de 90° radio amplio R= 3xNB (Unidades)	Acoplamiento Victaulic (Unidades)	Válvula seccionadora (compuerta) 8 pulg. (Unidades)	Válvula tipo Pantalón 6 pulg. (Unidades)
1	SITEMA DE BOMBEO 01	6 (180)	6	6,6	3,72	3200	Warman 4/3 AH 8X6 (5 VANES)	26,68	100	4	16	258	2	2
2	SITEMA DE BOMBEO 02	6 (180)	4	4,4	2,52	48.8	Warman 100 GP 8X6 (5 VANES)	17,19	50	2	4	2	2	
3	SITEMA DE BOMBEO 03	6 (180)	8	8,6	4,78	3160	Warman 4/3 AH 8X6 (5 VANES)	24,24	75	6	16	264	2	
4	SISTEMA DE BOMBEO VERTICAL	4 (110)	2,5	2,7	0,95	9.5	Goulds modelo VJC 3X4-11	1,77	5	1	1			

	i i	TUBERIA DE FIERRO SCH-80			ACCESORIOS			
N°	ITEM	Diámetro nominal pulgadas (mm)	Espesor mínimo (mm)	Longitud (m)	Codo de 90° R= 2xNB (unidades)	Codo de 90º radio amplio R= 3xNB (unidades)	Acoplamientos Victaulic (Unidades)	
5	SITEMA DE RELAVE GRUESO	4 (110)	8,5	1000	6	Ĩ	167	

Nota: Para garantizar el abastecimiento de pulpa las 24 h/día, es que en el diseño se está considerando líneas gemelas para los sistemas de bombeo N°01, N°02 y N°03.

CAPÍTULO V

EVALUACIÓN DE COSTOS

En este capítulo se muestran los costos asociados a cada uno de los sistemas de transporte de este proyecto, así como la determinación de los costos unitarios \$/(Ton/año)xKm para comparar con los estándares internacionales.

Para hacer la evaluación de los costos, se hacen uso de los planos de la línea de relave, así como las cotizaciones estimadas de los equipos.

Los cuadros 5.1, 5.2, 5.3, 5.4 y 5.5 muestran el costo de cada uno de los sistemas de transporte.

5.1 <u>Costos de los sistemas de bombeo</u>

Cuadro 5.1 Costo del sistema de bombeo Nº 01

ITEM	LONGITUD	COSTO UNITARIO	UNIDADES	COSTO TOTAL
	m	\$		\$
TUBERÍA HDPE				
Diámetro 6 pul, 12 m, SDR 27,6	3 200	237.4	275	65 206
ACCESORIOS				
Codos 90°		39	6	234
Codo de 90° radio amplio		55	18	990
Acoples Victaulic		88	280	24 640
VALVULAS				
Válvula seccionadora, D=8"		1 282	2	2 564
Válvula tipo pantalón, D=6"		700	2	1 400
BOMBAS				
Warman 4/3 AH (5 vanes)		23 000	2	46 000
MOTORES				
100НР		8 163	2	16 326

TO COLUMN A STATE OF THE PARTY	155 340
TOTAL	157 360

Cuadro 5.2 Costo del sistema de bombeo Nº 02

ITEM	LONGITUD	COSTO UNITARIO	UNIDADES	COSTO TOTAL
	m	\$		\$
TUBERÍA HDPE				
Diámetro 6 pul, 12 m, SDR 41,0	48.8	151.2	4	615
ACCESORIOS				
Codos 90°		28	2	56
Codo de 90° radio amplio		38	4	152
Acoples Victaulic		88	2	176
VALVULAS				
Válvula seccionadora, D=8"		1 282	2	2 564
BOMBAS		-		
Warman 100GP (5 vanes)		22 000	2	44 000
MOTORES				
50HP		3 526	2	7 052

TOTAL	54 615

Cuadro 5.3 Costo del sistema de bombeo Nº 03

ITEM	LONGITUD	COSTO UNITARIO	UNIDADES	COSTO TOTAL
	m	\$		\$
TUBERÍA HDPE				
Diámetro 6 pul, 12 m, SDR 11,0	3 160	286.8	265	76 098
ACCESORIOS				
Codos 90°		48	7	336
Codo de 90° radio amplio		67	18	1 206
Acoples Victaulic		88	270	23 760
VÁLVULAS				
Válvula seccionadora, D=8"		1 282	2	2 564
BOMBAS				
Warman 4/3 AH (5 vanes)		23 000	2	46 000
MOTORES				
75HP		5 819	2	11 638

TOTAL	161 602
TOTAL	161 602

Cuadro 5.4 Costo del sistema de bombeo Vertical

ITEM	LONGITUD	COSTO UNITARIO	UNIDADES	COSTO TOTAL
	m	\$		\$
TUBERÍA HDPE				
Diámetro 4 pul, 12 m, SDR 41,0	9.5	57.12	1	50
ACCESORIOS				
Codos 90°		8.9	l.	9
Codo de 90° radio amplio		18.5	1	19
BOMBAS				
Goulds modelo VJC		7 000	1	7 000
MOTORES				
5HP		500	11	500

TOTAL	7 577

Cuadro 5.5 Costo del sistema de relave grueso

ITEM	LONGITUD COSTO UNITARI		UNIDADES	COSTO TOTAL	
	m	\$		\$	
TÜBERÍA ACERO SCH-80. Grado B					
Diámetro 4 pul, 6 m	1 000	189	85	16 128	
ACCESORIOS					
Codos 90°		30	1	30	
Codo de 90° radio amplio		50	8	400	
Acoples Victaulic		88	170	14 960	
VÁLVULAS					
Válvula Pinch, D=4"		1 700	1	1 700	

TOTAL	33 218
	00 210

En el cuadro siguiente se muestra el resumen de los costos y el porcentaje de cada uno de los sistemas de transporte con respecto al costo total del proyecto.

Cuadro 5.6 Resumen de costos de los sistemas de transporte

TEEM	TUBERIAS	ACCESORIOS	VALVULAS	BOMBAS	MOTORES	TOTAL	
ITEM	\$	\$	\$	\$	\$	\$	%
Sistema de Bombeo N I	65 206	25 864	3 964	46 000	16 326	157 360	38
Sistema de Bombeo N 2	615	384	2 564	44 000	7 052	54 615	13
Sistema de Bombeo N 3	76 098	25 302	2 564	46 000	11 638	16 1602	39
Sistema de relave grueso	16 128	15 390	1 700			33 218	8
Sistema de Bombeo Vertical	50	27	00	7 000	500	7 577	2

TOTAL 414 372

Cuadro 5.6 Costos unitarios

ITEM	LONGITUD L m	DIAMETRO D PULG	CAUDAL Q M3/S	CAUDAL Q TON/año	COSTO TOTAL	\$/(TON/ANO) X km
Sistema de Bombeo N I	850	6"	0.04556	1 795 800	78 680	0.0372
Sistema de Bombeo N 2	24.4	6"	0.04556	1 795 800	27 307	0.0004
Sistema de Bombeo N 3	1 580	6"	0.03778	1 322 410	80 801	0.0965
Sistema de relave grueso	1 000	4"	0.01667	998 640	33 218	0.0333
Sistema de Bombeo Vertical	9.5	4"	0.02524	1 042 558	7 577	0.0001

TOTAL	227 583
-------	---------

CONCLUSIONES

Al finalizar el presente trabajo de ingeniería se llegó a las siguientes conclusiones

- Tuberías de HDPE, accesorios, válvulas, así como el equipo impulsor del relave se encuentran varios proveedores en el medio.
- 2. El transporte de relave por tuberías es el sistema más eficiente desde el punto de vista de protección del medio ambiente.
- 3. El costo en \$/ (TON/año)xKm varia de [0,0001 0,09]; esto está dentro de los valores estándares.

BIBLIOGRAFIA

Manuales

- BOUSO, Juan Luis. Manual de Bombeo de Pulpas. Editado por ERAL, Equipos y Procesos, S.A. Toledo Madrid, 1993.
- WARMAN INTERNATIONAL LTD: Manual Slurry Pumping Handbook, Australasian Versión: Feb 2000.

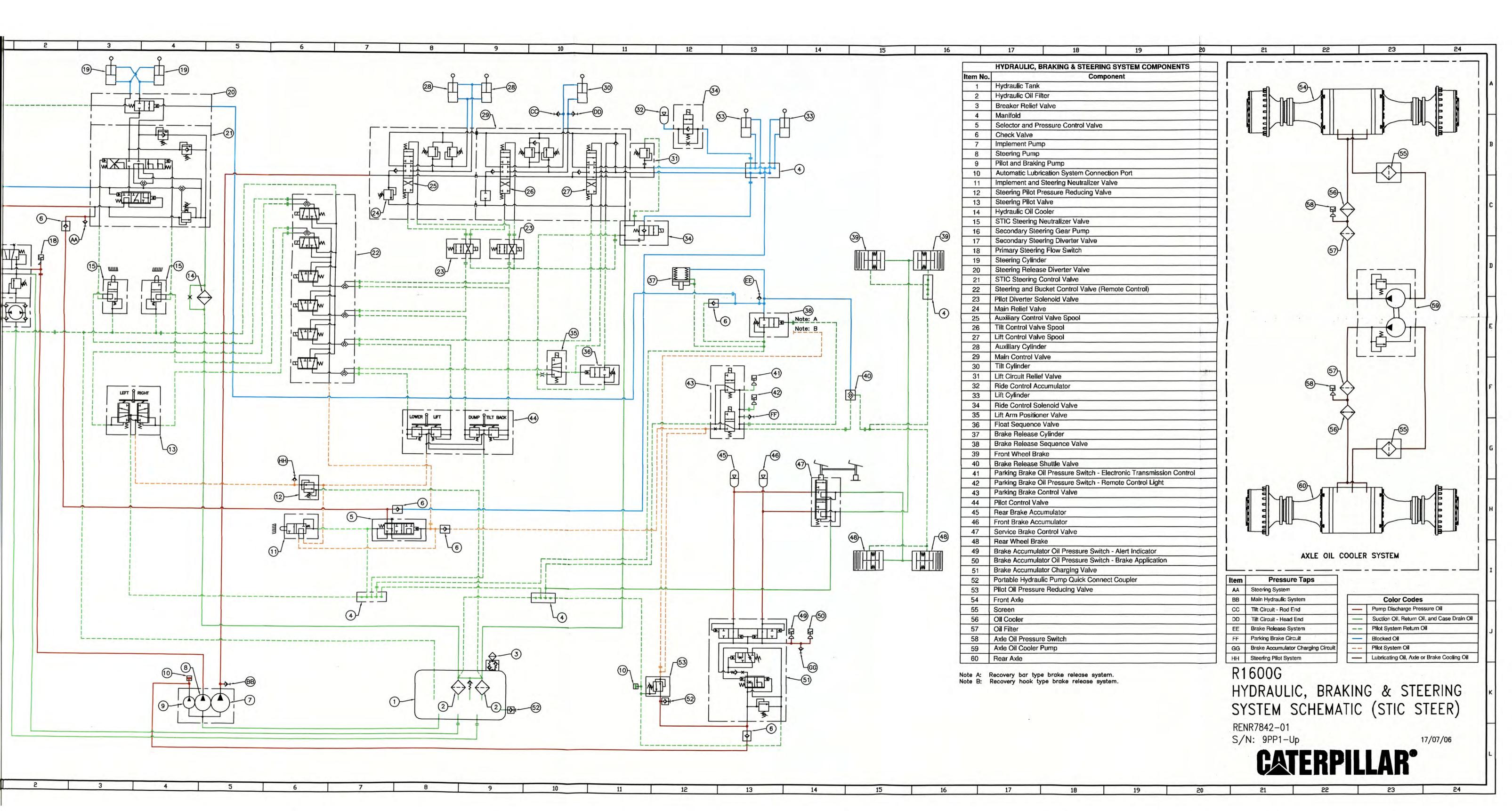
Tesis

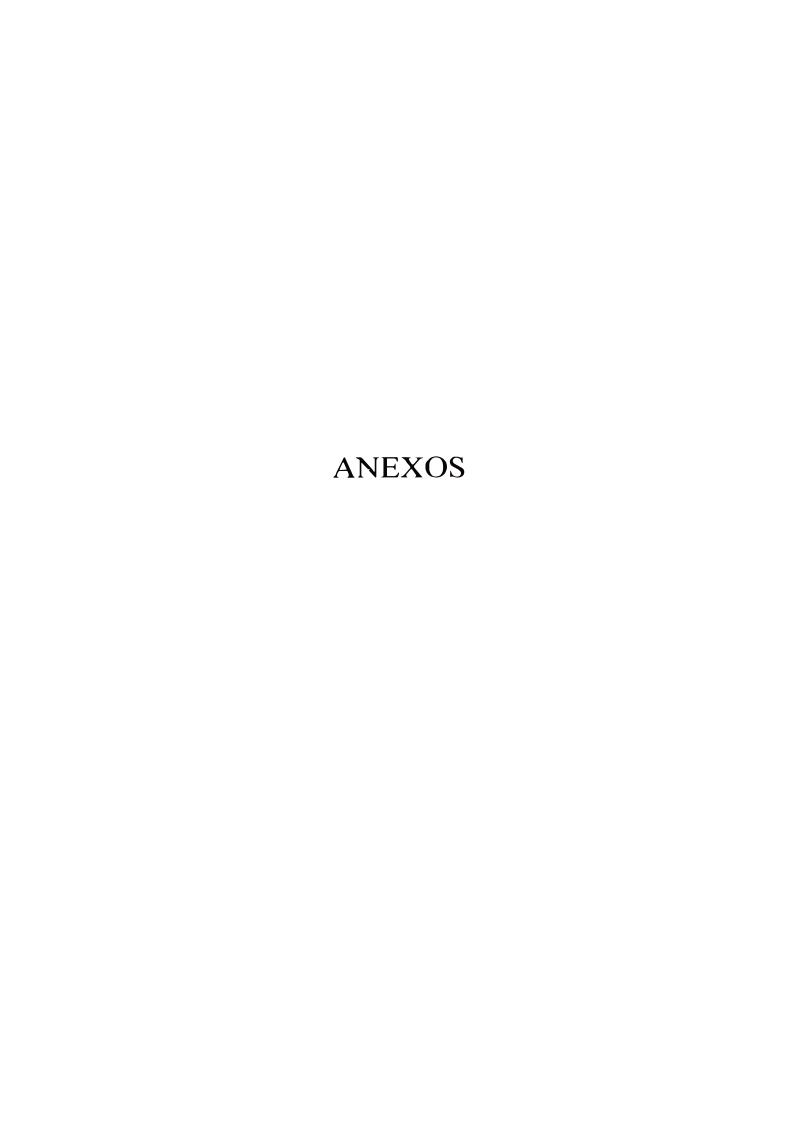
- HUAMÁN MONTES, Lázaro W. Aplicación de Relleno Hidráulico en la Mina Jimena de Compañía Minera Ponderosa S.A. Lima Perú, Tesis, FIGMMG – UNMSM, 2007.
- NUÑES CARMONA, Henry. Diseño de la Línea de Relaves para el Proyecto de instalación de una Planta Concentradora de Mineral. Lima Perú, Informe de Suficiencia, FIM – UNI, 2008.

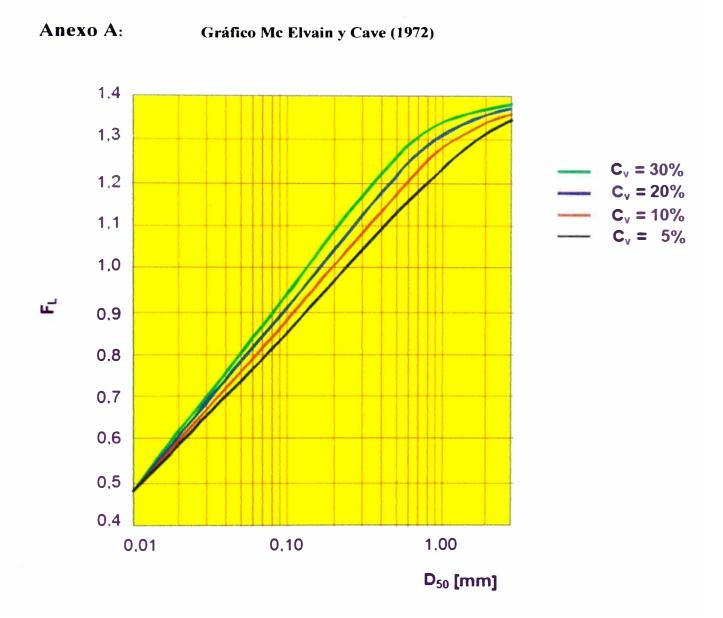
- 5. RAYO PRIETO, Juan. Transporte Hidráulico de Sólidos a grandes Distancias. Lima Perú. Tesis, FIGMM – UNI, 1993.
- 6. ZEVALLOS CRUZ, Roberto Samuel. Diseño, Cálculo, Selección y Ejecución del Sistema de Bombeo para la Deposición de Relaves en la Cancha Nº6 Minas de Arcata S.A. Lima Perú 1997. Informe de Ingeniería.

Información de Internet.

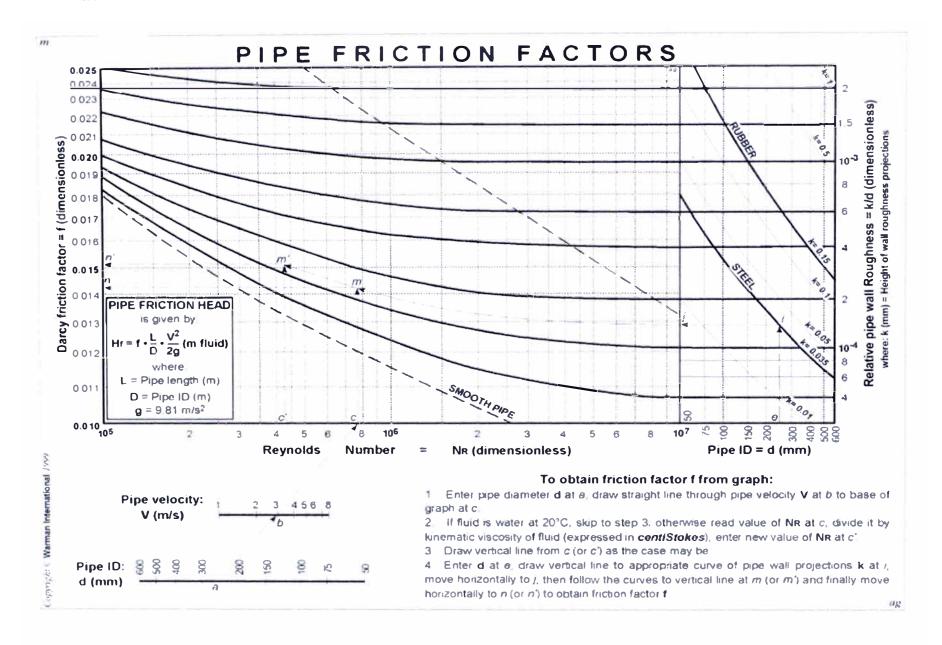
- LINARES GUTIÉZ, Nataniel. Planta Concentradora y manejo de Menas en seco y húmedo". Tacna Perú, 2010. Disponible en: http://www. authorstream.com/Presentation/nlinaresg6-780988-mineralurgia-ii/ [Consulta: 6 abril 2011].
- 8. ESCUELA DE INGENIERÍA CENTRO DE MINERÍA, "SIMULA v1.0".


 Pontifica Universidad Católica de Chile. Disponible en: http://www
 .uc.cl/sw_educ/simula/pdf/sagparam/ecuaciones.pdf [Consulta: 6 abril 2011].
- CHANCHALA ARIYARATNE, BEng (Hons). Design and optimisation of swirl pipes and transition geometries for slurry transport. University of Nottingham. Disponible en: http://etheses.nottingham.ac.uk/1570/1/ Ariyaratne Thesis.pdf [Consulta: 6 abril 2011].
- CERDA BERNAL, Iván. Caracterización de pulpas. Disponible en: http://www.sonami.cl/images/stories/pdf/Caracterizacion_de_Pulpas.p df [Consulta: 6 abril 2011].

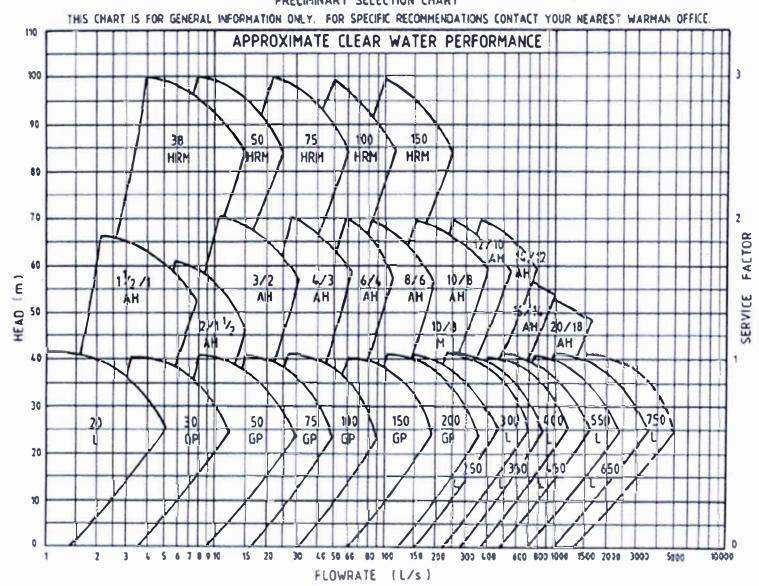

- 11. NUÑES FERNANDEZ, Adolfo. Transporte de pulpas. Disponible en:
 http://ww2.minas.upm.es/catedra-anefa/Nunez-M3/Transporte-pulpas04.pdf. [Consulta: 8 abril 2011].
- 12. IVAN, CERDA BERNAL, Caracterización de pulpas. Disponible en: http://www.sonami.cl/images/stories/pdf/Caracterizacion_de_Pulpas.p df [Consulta: 8 abril 2011].
- 13. MI42C ING. MINAS U. Chile. Transporte de pulpas. Disponible en:


 https://www.u-cursos.cl/ingenieria/2008/1/MI42C/1/material_docente/
 bajar?id_material=177848. [Consulta: 8 abril 2011].
- 14. HUAMÁN MONTES, Lázaro Wilder. Aplicación de relleno hidráulico en Mina Jimena de Compañía Minera Poderosa S.A. Disponible en: http://www.cybertesis.edu.pe/sisbib/2007/huaman_ml/pdf/huaman_ml.pdf. [Consulta: 8 abril 2011].
- 15. JAMIE FETTIG, AJISH NAMBIAR, AND ADAM MICKEL; PARSONS
 Preliminary Slurry Pipeline Hydraulic Analysis (Onondaga Lake Sediment Management Intermediate Design Submittal). January 22, 2010. Disponible en: http://www.onondaga-lake-initiatives.com/publicdocs/docs/2afd19c5-7869-42d5-888e-dcf132bba04c.pdf
 [Consulta 25 setiembre 2011]
- 16. Dpto. Ingeniería Nuclear y Mecánica de fluidos (Escuela Universitaria Politécnica de Donostia- San Sebastián) Cuadros y Ábacos. Disponible en: http://www.ehu.es/inwmooqb/ing.fluidomecanica/I.F .%20cuadros %20y%20abacos.pdf [consulta 25 setiembre 2011]

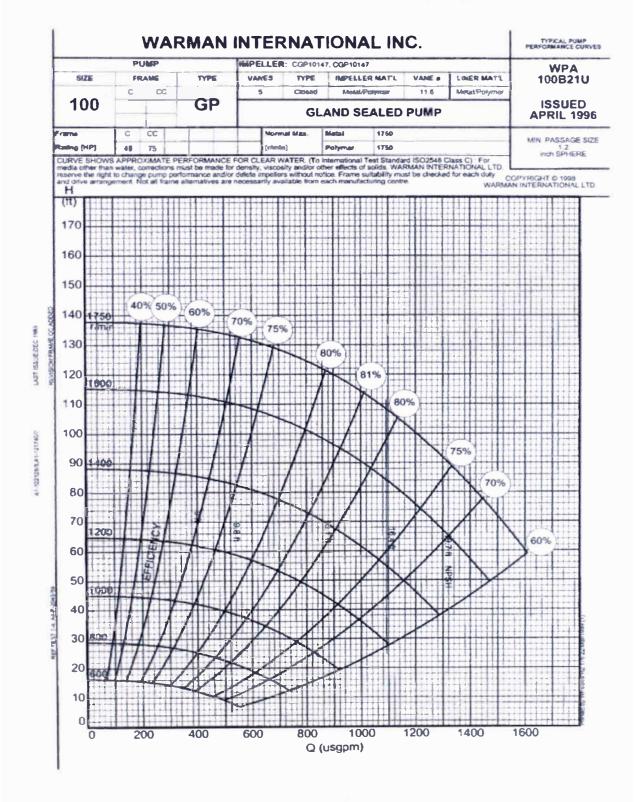
- 17. Catálogo Técnico Mercado Latinoamericano. Disponible en: http://catalogo.weg.com.br/files/wegnet/WEG-w22-motor-trifasico-tecnico-mercado-latinoamericano-50024297-catalogo-espanol.pdf [consulta 27 setiembre 2011]
- 18. Desarrollo y Análisis Técnico Transporte Especializado Sector Minería Países Andinos - Cuentas Chile y Perú. Disponible en: http://www.lgfd. com.pe/downloads/ConsultingServices.pps[consulta 27 setiembre 2011]



Anexo B

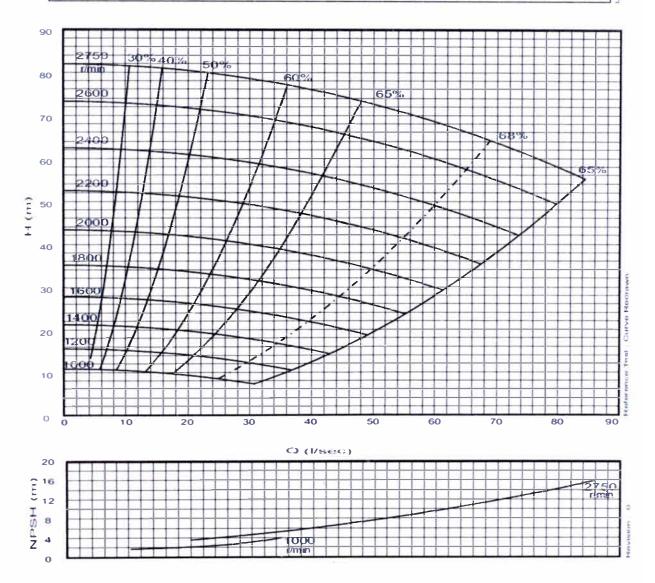

		E.	P						
	Radius More Than 3 x N.B.	Radius is 2 x N B.			Minimum Radius 10 x N.B.				
INTERNAL DIAMETER or N.B.	90° Long Radius Bend	90° Short Radius Bend	Elbow	Tee	Rubber Hose	Diaphragm Valve Full Open	Full Bore Valve Round Way	Plug-Lub Valve Rect. Way	*"Tech- Taylor" Valve Ball Type
mm	EC	QUIV, LENG	THIN m	OF STRAIG	HT PIPE GIVE	NG EQUIVAL	ENT RESIST	ANCE TO FLO	w
25	0.52	0.70	0.82	1.77	0 · 30	2.56		0.37	
32	0.73	0.91	1.13	2.38	0.40	3.29		0.49	
40	0.85	1.10	1.31	2.74	0.49	3.44	1.19	0.58	
50	1.07	1.40	1.68	3.35	0 · 55	3 · 66	1.43	0.73	
65	1.28	1.65	1.98	4.27	0.70	4.60	1.52	0.85	
80	1.55	2.07	2.47	5 · 18	0.85	4.88	1.92	1.04	0 · 2 0
90	1.83	2.44	2.90	5.79	1 - 01			1.22	
100	2.13	2.77	3.35	6.71	1 - 1 6	7.62	2 · 1 9	1.40	0.23
115	2.41	3.05	3.66	7.32	1 · 28			1.58	
1 2 5	2.71	3.66	4.27	8.23	1 · 43	13.11	3.05	1.77	0 · 3 0
150	3.35	4-27	4.88	10.06	1 - 5 5	18.29	3 · 11	2 · 13	0.37
200	4.27	5. 49	6.40	13-11	2 · 41	19.81	7.92	2.74	0.82
250	5 -18	6.71	7.92	17-07	2.99	21 · 3 4	10.67	3 47	0.61
300	6.10	7.92	9.75	20.12	3 - 35	28.96	15.85	4 08	0.76
350	7 .01	9.45	10.97	23.16	4 · 27	28.96		4.88	0.91
400	8.53	10 .67	12.80	26.52	4 88			5.49	1.04
450	9.14	12.19	14.02	30.48	5 - 49			6 · 2 2	1 · 16
500	10 · 36	13 - 11	15 · 85	33.53	6.10			7 · 32	1 · 25

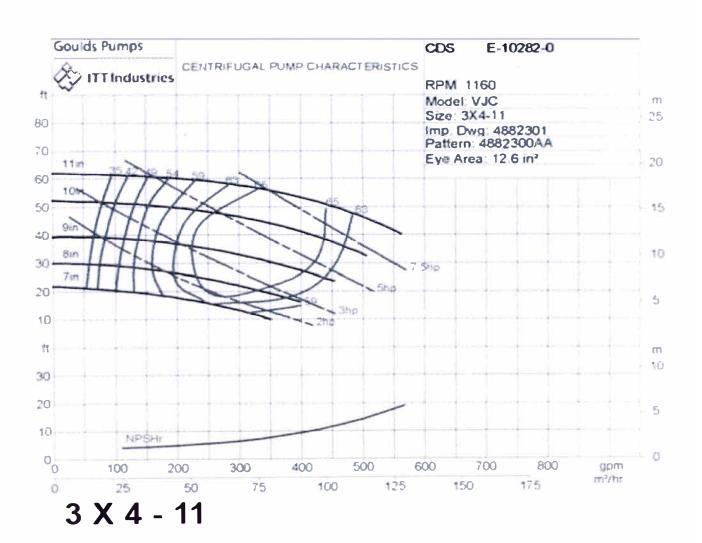
^{*&}quot;TECH-TAYLOR" VALVE IS A BALL TYPE CHANGEOVER DEVICE USED ONLY ON THE DELIVERY SIDE OF THE PUMP NOTE: 1. FOR 135° BEND, USE 50 % OF EQUIVALENT LENGTH FOR 90° BEND.


^{2.} L IS THE AGGREGATE OF EQUIVALENT LENGTHS FOR ALL PIPELINE FITTINGS AND VALVES IN A GIVEN PIPELINE

WARMAN HEAVY DUTY SLURRY PUMPS

PRELIMINARY SELECTION CHART


Anexo E Curva característica de la bomba 100GP


Anexo F

Curva característica de la bomba 4/3 AH

COMPONENTS (%)	A(LALL						
	PUMP	FRAME	KW RATING	5 CLARK	E STREET	SOUTH.	
	SIZE	C	30		ALBERTO	N 1449	PUMP
	4/3	cc	55	P.O. BOX RANDH	PERFORMANCE		
Marine	60 IEEE (1917-97) 100 or argue of the	CURVE REFERENCE					
Warman	TYPE	DD	110	E-MAIL:	pumpales a	warman.co.za	
PUMP GROUP		I.	MPELLER	D3	147	LINER	N N 7 E D A
	\mathbf{AH}	VANES	ТҮРЕ	MAT'L	VANE Ø	MAT'L	WPA
THIN!		5	CLOSED	METAL	245	METAL	43A01
OPYRIGHT © RESEAR			G	LAND SE	L PUMP		Reprinted February 2000
	IGHT TO MODIFY OR D VITHOUT PRIOR SOTI		POWER CONSUM	ITION MAY INCREA	S BY 5% WITH CEN	TRIFUGAL SEAL	
CLIRVE SHOWS APPROXIMATE TESTING (S0254) CLASS C), FO		-	TIONS MUST BE MA		NORM MAX		36 mm SPHERE

Anexo G Curva característica de la bomba Goulds modelo VJC

Anexo H Tabla de factores de corrección para altitud y temperatura ambiente

T (9C)				John W	Altitud (r	n)			
T (°C)	1000	1500	2000	2500	3000	3500	4000	4500	5000
10							0,97	0,92	0,88
15						0,98	0,94	0,90	0,86
20					1.00	0,95	0,91	0,87	0,83
25				1,00	0,95	0,93	0,89	0,85	0,81
30			1,00	0,96	0,92	0,90	0,86	0,82	0.78
35		1,00	0,95	0,93	0,90	0,88	0,84	0,80	0,75
40	1,00	0,97	0,94	0,90	0,86	0,82	0,80	0,76	0,71
45	0,95	0,92	0,90	0,88	0,85	0,81	0,78	0,74	0,69
50	0,92	0,90	0,87	0,85	0,82	08,0	0,77	0,72	0,67
55	0,88	0,85	0,83	0,81	0.78	0,76	0,73	0.70	0,65
60	0,83	0,82	0.80	0,77	0.75	0,73	0.70	0,67	0,62
65	0,79	0,76	0,74	0,72	0.70	0,68	0,66	0,62	0,58
70	0,74	0,71	0,69	0,67	0.66	0,64	0,62	0,58	0,53
75	0,70	0.68	0,66	0,64	0,62	0,60	0,58	0,53	0,49
80	0,65	0,64	0,62	0,60	0,58	0.56	0,55	0.48	0,44

Anexo I Tabla para encontrar la presión atmosférica y la presión de vapor del agua.

Temperatura (°C)	Peso Específico 7 (N/m³)	Densidad (kg/m²)	Viscosidad Cinemática v. 10 ² (m²/s)	Presión del vapor P _v (ItPa)	Módulo de elasticidad volumético K (MPa)
0.0	9800	1000	1,79	0.55	1991,4
4.4	9800	1000	1,4	0.755	2039.6
10.0	9800	1000	1,31	1.166	2101.6
15,6	9800	1000	1.07	1,79	2149,8
21,1	9790.2	999	0.94	2.48	2179.8
26.7	9751	995	0.85	3.51	2239.4
32.2	9741.2	994	0.75	4.82	2266,9
37.8	9731.4	993	0.684	6.615	2280,7
49.0	9672.6	987	0.567	11,71	2294.5
66.0	9604	980	0.442	25,5	2260
82.0	9506	970	0.358	51.67	2191.2
100.0	9388.4	958	0.296	101,28	2087.8

Anexo J Tabla de la atmosfera normal

Altura	Temperatura	Presión
m.s.n.m.	°C	Atmosférica
(m)		Kgf/m2
0	15,0	10326
250	13,3	10026
500	11,7	9732
750	10,1	9444
1000	8,5	9163
1250	6,8	8888
1500	5,1	8620
1750	3,5	8359
2000	1,9	8104
2250	0,2	7856
2500	-1,4	7614
2750	-2,8	7378
3000	-4,6	7146
3250	-6,3	6924
3500	-7,8	6706
3750	-9,4	6493
4000	-11,2	6286
4250	-12,6	6082
4500	-14,2	5885
4750	-15,8	5695
5000	-17,4	5508
5250	-19,0	5327
5500	-20,6	5151
5750	-22,3	4978
6000	-23,9	4812

ANEXO K

5. Dimensiones para tuberías

De acuerdo a la normativa ISO, la designación del material (por ejemplo, PE 100) se relaciona con el nivel de Resistencia Mínima Requerida, MRS (Minimum Required Strength) que se debe considerar en el diseño de tuberías para la conducción de agua a 20°C, por un tiempo de servicio de al menos 50 años.

La tensión de diseño σ_s se obtiene al aplicar un coeficiente de diseño «C» sobre el valor MRS del material (C=1,25 para PE, norma ISO 12162).

$$\sigma_s = \frac{MRS}{C}$$

En la siguiente tabla se especifican los valores MRS y sus σ_s correspondientes.

Designación	MRS a 50 años y 20°C	Tensión de diseño, σ _s
del material	MP a	MPa
PE 100	10	8,0
PE 80	8	6,3
PE 63	6,3	5,0

Todas las tuberías para servicios a presión se diseñan para resistir una presión hidrostática interna específica. Esta es la presión nominal PN, que indica la máxima presión de trabajo a la cual la línea (sistema) completa puede ser sometida en operación continua a una determinada temperatura.

Cuando la tubería es sometida a una presión interna, se induce una tensión hidrostática en la pared de la cañería, de acuerdo a la siguiente ecuación:

$$\sigma = \frac{\mathbf{p} \, (\mathbf{D} \cdot \mathbf{e})}{2\mathbf{e}} \tag{5.1}$$

Donde:

σ = tensión inducida, MPap = presión interna, MPa

D = diámetro externo de la tubería, mm

e = espesor de pared mínimo, mm

Como para tuberías de la misma clase (presión de trabajo), la relación diámetro/espesor es igual, se está difundiendo la clasificación de las tuberías en función de esta relación. Esta es la relación dimensional estándar (SDR), un número

adimensional que identifica una clase de presión (a menor SDR, mayor presión).

$$SDR = \frac{D}{e}$$

Así, la ecuación (5.1) también se puede escribir como:

$$\sigma = \frac{\mathbf{p} (\mathsf{SDR-1})}{2}$$

A continuación, en la tabla 5.1.1 se presentan las dimensiones de tuberías fabricadas con HDPE (polietileno de alta densidad) PE 100, de acuerdo a la norma ISO 4427. En la tabla 5.2.1 se muestra las dimensiones de tuberías según la norma DIN 8074, versión 1999, con una tensión de diseño de 50 Kgf/cm².

Las dimensiones de tuberías PE 80 de acuerdo a la norma ISO 4427 y PE80 según la norma DIN 8074 se presentan en el Anexo A del catálogo, en las tablas A.1 y A.2 respectivamente.

Consideramos de interés señalar el procedimiento de cálculo para la determinación del espesor de pared de las tuberías a presión.

A partir de la ecuación (5.1) se obtiene la fórmula para calcular el espesor de pared.

$$e = \frac{PN D}{2\sigma_c + PN}$$

Donde:

PN = presión nominal, MPa

D = diámetro externo de la tubería, mm

σ_s = tensión de diseño, MPa

 $(1 \text{ MPa} = 10 \text{ bar} \approx 10 \text{ Kgf/cm}^2)$

Con esta fórmula y con las curvas de regresión (Cap. 10), es posible calcular para una tubería de un determinado diámetro externo el espesor de pared necesario para la vida útil y temperatura de trabajo deseadas.

Ejemplo: ¿Cuál es el espesor de pared necesario para una tubería de HDPE PE 100 de diámetro 200 mm, para un tiempo de vida útil de 50 años, operando a 20°C, a una presión de 16 bar y que conduce aqua?

Considerando que para los requerimientos de tiempo de vida útil (50 años) y temperatura de servicio de 20°C, la tensión de diseño para PE 100

es σ_s = 8 MPa = 80 bar (ver tabla anterior), se calcula el espesor de pared de acuerdo a la fórmula anterior:

$$e = \frac{16 \cdot 200}{2 \cdot 80 + 16} = 18,2 \text{ mm}$$

Si observamos la tabla 5.1.1, vemos, en efecto, que para tuberías de HDPE PE 100, diámetro 200 mm, clase de presión PN 16, el espesor de pared mínimo es de 18,2 mm.

5.1 Tubería HDPE PE 100 norma ISO 4427

Tabla 5.1.1: Dimensiones tubería HDPE-Duratec PE 100 (norma ISO 4427)

DIÁMETRO	DIÁMETRO					RE	LACIÓN	DIMENSI	ONAL E	STÁNDAI	R SDR ²⁾				
NOMINAL	NOMINAL	SDF	41	SDR	27,6	SDF	21	SDR	17	SDR	13,6	SDF	R 11	SDI	R 9
D	EQUIVALENTE ¹						PRE	SIÓN NO	MINAL I	N 3)					
		PN	14	PN	16	PN	18	PN	10	PN	12,5	PN	16	PN	20
		Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso
		mínimo	medio	mínimo	medio	mínimo	medio	mínimo	medio	mínimo	medio	mínimo	medio	mínimo	medio
mm	pulgadas	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m
16	3/8	_	_	_	_	_	_	_	_	_	_	_	_	2,3	0,10
20	1/2	2:	_	_	_	_	_	_	_	_	_	_	_	2,3	0,14
25	3/4	~	-	_	_	_	_	_	_	_	_	2,3	0,17	2,8	0,20
32	1	_	_	_	_	_	_	2,3 ⁴⁾	0,23	2,4	0,24	3,0	0,28	3,6	0,33
40	1 1/4		_	_	_	2,3 ⁴⁾	0,29	2,4	0,30	3,0	0,36	3,7	0,44	4,5	0,52
50	1 1/2		_	2,3 ⁴⁾	0,37	2,4	0,38	3,0	0,46	3,7	0,56	4,6	0,68	5,6	0,81
63	2	_	_	2,3	0,47	3,0	0,59	3,8	0,73	4,7	0,89	5,8	1,07	7,1	1,28
75	2 1/2			2,8	0,66	3,6	0,84	4,5	1,03	5,6	1,26	6,8	1,51	8,4	1,81
90	3	2,3	0,68	3,3	0,94	4,3	1,20	5,4	1,49	6,7	1,82	8,2	2,18	10,1	2,61
110	4	2,7	0,96	4,0	1,38	5,3	1,80	6,6	2,21	8,1	2,68	10,0	3,23	12,3	3,88
125	5	3,1	1,25	4,6	1,80	6,0	2,32	7,4	2,83	9,2	3,45	11,4	4,20	14,0	5,01
140	5 1/2	3,5	1,57	5,1	2,24	6,7	2,91	8,3	3,55	10,3	4,33	12,7	5,24	15,7	6,30
160	6	4,0	2,03	5,8	2,91	7.7	3,81	9,5	4,65	11,8	5,66	14,6	6,86	17,9	8,35
180	6	4,4	2,52	6,6	3,72	8,6	4.78	10,7	5,89	13,3	7,18	16,4	8,83	20,1	10,57
200	8	4,9	3,12	7,3	4,57	9,6	5.94	11,9	7,25	14,7	8,84	18,2	10,90	22,4	13,07
225	8	5,5	3,95	8,2	5,79	10,8	7,53	13,4	9,21	16,6	11,43	20,5	13,80	25,2	16,55
250	10	6,2	4,93	9,1	7,13	11,9	9,19	14,8	11,30	18,4	14,06	22,7	17,00	27,9	20,36
280	10	6,9	6,15	10,2	8,96	13,4	11,62	16,6	14,46	20,6	17,65	25,4	21,30	31,3	25,59
315	12	7,7	7,71	11,4	11,27	15,0	14,61	18,7	18,32	23,2	22,35	28,6	27,00	35,2	32,38
355	14	8,7	9,83	12,9	14,35	16,9	18,89	21,1	23,30	26,1	28,35	32,2	34,26	39,7	41,16
400	16	9,8	12,44	14,5	18,15	19,1	24,09	23,7	29,49	29,4	35,96	36,3	43,50	44,7	52,22
450	18	11,0	15,72	16,3	23,41	21,5	30,46	26,7	37,38	33,1	45,58	40,9	55,13	50,3	66,10
500	20	12,3	19,52	18,1	28,92	23,9	37,64	29,7	46,19	36,8	56,28	45,4	68,01	55,8	81,49
560	22	13,7	24,34	20,3	36,29	26,7	47,14	33,2	57,84	41,2	70,59	50,8	85,25		
630	24	15,4	30,82	22,8	45,87	30,0	59,55	37,4	73,27	46,2	89,08	57,2	108,01	_	
710	28	17,4	39,94	25,7	58,30	33,9	75,86	42,1	93,03	52,2	113,41	•	·	_	_
800	32	19,6	50,78	29,0	74,06	38,1	96,15	47,4	117,96	58,8	143,93	_	_	_	_
900	36	22,0	64,02	32,6	93,77	42,9	121,73		149,26		,	_	_	_	_
1000	40	24,5	79,23		115,68	47,7	150,44		184,51	_	_	_	_	_	_
1200	48		114,12	•	166,32	57,2	216,43	,-		_	-	_	_	_	_
1400	54		155,30	•	226,23	,-	,,,	_	_	_	_	_	_	_	_
1600	64		202,81		295,58	_	-	_	_	_	_	_	_		

¹⁾ Diámetro nominal equivalente en pulgadas, como referencia con la norma ASME B36.10.

Esta tabla se basa en las normas ISO 4427 e ISO 4065.

Los pesos estánicalculados en base a valores medios de diámetro y espesor, según tolerancias especificadas en la norma ISO 11922-1.

Las cifras coloreadas en azul indican los diámetros (con sus respectivas presiones nominales) que actualmente puede fabricar **Duratec**.

Tubería	suministrada	en rollos	o tira

²⁾ La relación dimensional estándar SDR corresponde al cuociente entre el diámetro externo y el espesor de pared de la tubería. Es adimensional.

³⁾ La presión nominal PN corresponde a la máxima presión de operación admisible de la tuberla a 20°C, en bar.

⁴⁾ Valores no cubiertos por la norma ISO 4427. En base a nuestra experiencia, recomendamos un espesor mínimo de 2,3 mm para estas medidas

5.2 Tubería HDPE norma DIN 8074

Tabla 5.2.1: Dimensiones tuberia HDPE-Duratec, norma DIN 8074 (tensión de diseño Os = 50 Kgf/cm²)

DIÁMETRO	DIÁMETRO				REI	L <mark>ACIÓN</mark> D	IMENSI	ONAL EST	TANDAR	SDR ²⁾			
NOMINAL	NOMINAL	SDF	R 41	SDF	₹ 33	SDR		SDR		SDR	11	SDR	7,4
D	EQUIVALENTE ¹					PRES	IÓN NO	MINAL P	N ³⁾				
		PN	2,5	PN	3,2	PN	PN 4 PN 6		6	PN	10	PN	16
		Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso	Espesor	Peso
		mínimo	medio	mínimo	medio	mínimo	medio	mínimo	medio	mínimo	medio	mínimo	media
mm	pulgadas	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m	mm	Kg/m
16	3/8	_	_	_	_	_	_	_	_	_	_	2,2	0,10
20	1/2	_		_	_	_	_	_	_	1,9	0,11	2,8	0,16
25	3/4	_	_	_	_	_	_	_	_	2,3	0,17	3,5	0,24
32	1	_	_	_	_	_	_	1,8	0,18	2,9	0,27	4,4	0,39
40	1 1/4	_			_	1,8	0,23	2,3	0,29	3,7	0,43	5,5	0,61
50	1 1/2	_	_	1,8	0,29	2,0	0,32	2,9	0,45	4,6	0,67	6,9	0,95
63	2	1,8	0,37	2,0	0,40	2,5	0,50	3,6	0,70	5,8	1,06	8,6	1,49
75	2 1/2	1,9	0,46	2,3	0,56	2,9	0,68	4,3	0,99	6,8	1,48	10,3	2,12
90	3	2,2	0,65	2,8	0,80	3,5	0,99	5,1	1,40	8,2	2,14	12,3	3,03
110	4	2,7	0,95	3,4	1,19	4,2	1,45	6,3	2,10	10,0	3,18	15,1	4,54
125	5	3,1	1,25	3,9	1,53	4,8	1,86	7,1	2,69	11,4	4,12	17,1	5,84
140	5 1/2	3,5	1,56	4,3	1,90	5,4	2,35	8,0	3,37	12,7	5,13	19,2	7,33
160	6	4,0	2,02	4,9	2,45	6,2	3,07	9,1	4,40	14,6	6,74	21,9	9,54
180	6	4,4	2,51	5,5	3,10	6,9	3,83	10,2	5,53	16,4	8,51	24,6	12,06
200	8	4,9	3,08	6,2	3,88	7,7	4,74	11,4	6,85	18,2	10,49	27,4	14,91
225	8	5,5	3,90	6,9	4,82	8,6	5,95	12,8	8,64	20,5	13,28	30,8	18,85
250	10	6,2	4,88	7,7	5,98	9,6	7,37	14,2	10,66	22,7	16,33	34,2	23,26
280	10	6,9	6,04	8,6	7,47	10,7	9,19	15,9	13,33	25,4	20,46	38,3	29,17
315	12	7,7	7,58	9,7	9,46	12,1	11,70	17,9	16,87	28,6	25,90	43,1	36,92
355	14	8,7	9,64	10,9	11,96	13,6	14,78	20,1	21,38	32,2	32,86	48,5	46,80
400	16	9,8	12,21	12,3	15,22	15,3	18,74	22,7	27,15	36,3	41,72	54,7	59,44
450	18	11,0	15,39	13,8	19,16	17,2	23,68	25,5	34,30	40,9	52,81	61,5	75,16
500	20	12,3	19,14	15,3	23,61	19,1	29,20	28,4	42,42	45,4	65,14	68,3	92,73
560	22	13,7	23,82	17,2	29,70	21,4	36,58	31,7	52,98	50,8	81,58	_	_
630	24	15,4	30,12	19,3	37,45	24,1	46,34	35,7	67,09	57,2	103,33	win	_
710	28	17,4	38,31	21,8	47,58	27,2	58,88	40,2	85,14	64,5	131,22	_	_
800	32	19,6	48,55	24,5	60,23	30,6	74,53	45,3	108,02	_	_	_	_
900	36	22,0	61,20	27,6	76,25	34,4	94,21	51,0	136,63	_	_	_	_
1000	40	24,5	75,74	30,6	93,88	38,2	116,20	56,7	168,74	_	_	_	_
1200	48	29,4	109,00	36,7	135,02	45,9	167,33	68,0	242,72	_	_	_	_
1400	54	34,4	148,65	42,9	183,93	53,5	227,47	_	_	_	_	_	_
1600	64	39,2	193,51	49,0	239,95	61,2	297,28		550			10	

¹⁾ Diámetro nominal equivalente en pulgadas, como referencia con la norma ASME B36.10.

Esta tabla se basa en las normas DIN 8074, versión 1999.

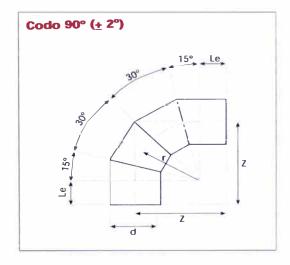
Los pesos están calculados en base a valores medios de diámetro y espesor, según tolerancias especificadas en la norma DIN 8074.

Las cifras coloreadas en azul indican los diámetros (con sus respectivas presiones nominales) que actualmente puede fabricar **Duratec**.

	Tuberia	suministrada	en rollos o	tiras
--	---------	--------------	-------------	-------

²⁾ La relación dimensional estándar SDR corresponde al cuociente entre el diámetro externo y el espesor de pared de la tubería. Es adimensional.

³⁾ La presión nominal PN corresponde a la máxima presión de operación admisible de la tuberla a $20^{\circ}\text{C}_{\circ}$ en bar.

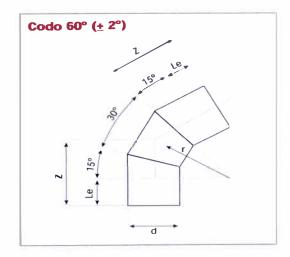
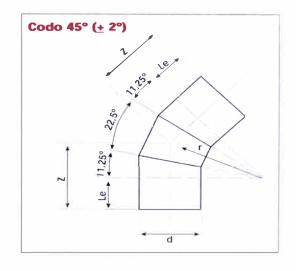

6. Dimensiones para fittings

Codos segmentados para soldadura por termofusión

Tabla 6.1.1: Codo 90° (± 2°) y codo 60° (± 2°).

d	Le min	r ¹⁾	Z n	nin
			90°	60°
mm	mm	mm	mm	mm
110		165	315	245
125		188	338	258
140		210	360	271
160	150	240	390	288
180		270	420	305
200		300	450	323
225		338	488	345
250	250	375	625	466
280	230	420	670	492
315		473	773	576
355	300	533	833	608
400	300	600	900	646
450		675	975	689
500		750	1100	783
560		840	1190	835
630	350	945	1295	896
710		1065	1415	965
800		1200	1550	1043
900		1350	1750	1179
1000		1500	1900	1266
1200 ²⁾	400	1800	2200	1439
1400 ²⁾		2100	2500	1612
1600 ²⁾		2400	2800	1786

La Tabla 6.1.1 se basa en la norma DIN 16963 Parte 1.

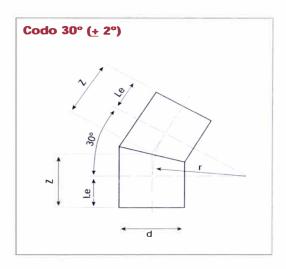
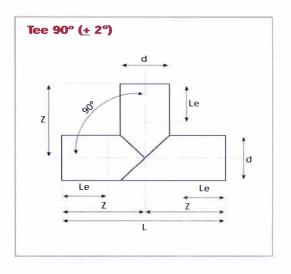


Tabla 6.1.2: Codo 45° (± 2°) y codo 30° (± 2°)

d	Le min	r ¹⁾	z,	min
			45°	30°
mm	mm	mm	mm	mm
110		165	218	194
125		188	228	200
140		210	237	206
160	150	240	249	214
180		270	262	222
200		300	274	230
225		338	290	241
250	250	375	412	350
280	230	420	424	362
315		473	498	428
355	300	533	520	443
400	300	600	548	461
450		675	580	481
500		750	665	551
560		840	698	575
630	350	945	741	603
710		1065	792	636
800		1200	847	672
900		1350	960	762
1000		1500	1022	802
1200 ²⁾	400	1800	1146	882
1400 ²⁾		2100	1270	963
1600 ²⁾		2400	1394	1043
1) r = 1,5	d s no cubier			

La Tabla 6.1.2 se basa en la norma DIN 16963 Parte 1.

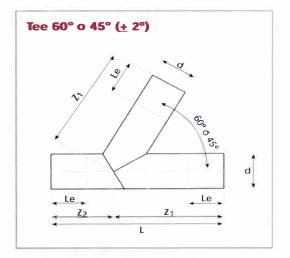
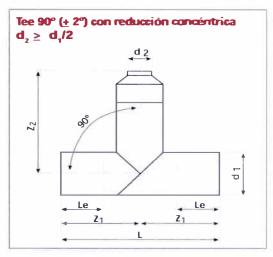


6.2 Tees segmentadas para soldadura por termofusión

Tabla 6.2.1: Tee 90° (± 2°) y Tee 60° ó 45° (± 2°)

Ь	Le min	90	o°		60° ó 4	5°1)
		L min	Z _{min}	L _{min}	Z _{1min}	Z _{2min}
mm	mm	mm	mm	mm	mm	mm
110		410	205	500	325	175
125		430	215	545	355	190
140		440	220	581	375	206
160	150	460	230	642	412	230
180		480	240	700	450	250
200		500	250	759	487	272
225		530	265	830	530	300
250	250	750	375	905	580	325
280	250	780	390	995	630	365
315		920	460	1090	690	400
355	300	960	480	1155	730	425
400	300	1000	500	1250	800	450
450		1050	525	1325	850	475
500		1200	600	1400	900	500
560		1260	630	1480	950	530
630	350	1330	665	1545	1000	545
710		1410	705	1670	1090	580
800		1500	750	1810	1180	630
900		1700	850	1990	1320	670
1000		1800	900	2070	1360	710
1200	400	2000	1000	2400	1540	860
1400 ²⁾		2200	1100	2650	1670	980
1600 ²⁾		2400	1200	2900	1830	1070
1) Tee 45	° se fabric	a como pie	za especial			
2) Valore	s no cubie	rtos por no	orma DIN 16	5963.		

La Tabla 6.2.1 se basa en la norma DIN 16963 Parte 2. Tee 45° se fabrica como pieza especial, dimensiones no cubiertas por norma DIN 16963.

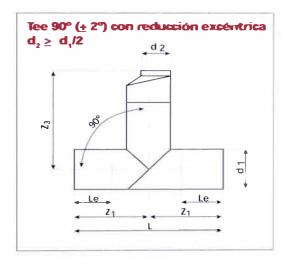
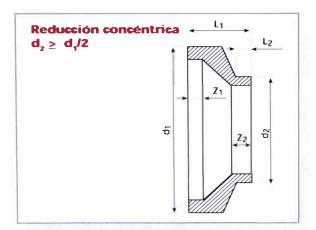
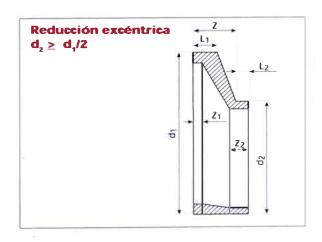


Tabla 6.2.2: Tee 90° (+2°) con reducción concéntrica/excéntrica

d ₁ mm	d ₂ mm	Le min	L _{min} mm	Z _{1 min} mm	^Z 2 min mm	Z _{3 min} mm
110	63 a 90		410	205	263	273
125	63 a 110		430	215	313	323
140	75 a 125		440	220	318	328
160	90 a 140	150	460	230	328	338
180	90 a 160		480	240	341	356
200	110 a 180		500	250	351	366
225	125 a 200		530	265	366	381
250	125 a 225	250	750	375	476	491
280	140 a 250	230	780	390	491	506
315	160 a 280		920	460	579	594
355	180 a 315	300	960	480	599	614
400	200 a 355	300	1000	500	624	644
450	225 a 400		1050	525	649	669
500	250 a 450		1200	600	722	742
560	280 a 500		1260	630	752	772
630	315 a 560	350	1330	665	797	817
710	355 a 630		1410	705	847	867
800	400 a 710		1500	750	912	937
900	450 a 800		1700	850	1035	1085
1000	500 a 900		1800	900	1085	1135
1200	630 a 1000	400	2000	1000	1210	1240
1400 ¹⁾	710 a 1200		2200	1100	1340	1385
1600 ¹⁾	800 a 1400		2400	1200	1490	1510

La Tabla 6.2.2 se basa en la norma DIN 16963 Partes 2 y 13.

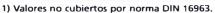

6.3 Reducciones para soldadura por termofusión


Tabla 6.3.1: Reducción concéntrica

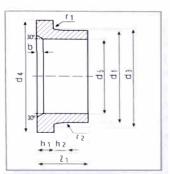
	Reducción concéntrica										
d ₁	d ₂ L ₁ L ₂	Z ₁	Z ₂								
mm	mmmm	mm	mm	mm							
63	32 a 50										
75	40 a 63	60									
90	50 a 75	00									
110	63 a 90		10	10	20						
125	63 a 110										
140	75 a 125	100									
160	90 a 140										
180	90 a 160										
200	110 a 180										
225	125 a 200	105	15	15							
250	125 a 225				30						
280	140 a 250										
315	160 a 280	125									
355	180 a 315	125									
400 ¹⁾	200 a 355										
450 ¹⁾	225 a 400	130									
500 ¹⁾	250 a 450	130	20	20	40						
560 ¹⁾	280 a 500		20	20	40						
630 ¹⁾	315 a 560	140									
710 ¹⁾	355 a 630	150									
800 ¹⁾	400 a 710	170									
900 ¹⁾	450 a 800	195	25	25	50						
1000 ¹⁾	500 a 900	133									
1200 ¹⁾	630 a 1000	220	30	30	60						
1400 ¹⁾	710 a 1200	250	35	35	70						
1600 ¹⁾	800 a 1400	300	45	45	90						
1) Valores r	no cubiertos por	norma D	IN 16963	l.							

Tabla 6.3.2: Reducción excéntrica

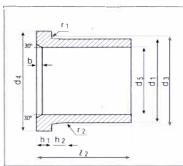
	Reducción excéntrica											
d ₁	d ₂	L ₁	L ₂	Z ₁	Z							
mm	mm	mm	mm	mm	mm							
63	32 a 50											
75	40 a 63	40			60							
90	50 a 75	40			00							
110	63 a 90		10	10								
125	63 a 110											
140	75 a 125	66			100							
160	90 a 140											
180	90 a 160											
200	110 a 180											
225	125 a 200	70			105							
250	125 a 225		15	15								
280	140 a 250											
315	160 a 280	83			125							
355	180 a 315	03			123							
400 ¹⁾	200 a 355											
450 ¹⁾	225 a 400	0.5			420							
500 ¹⁾	225 a 450	86	20	20	130							
560 ¹⁾	280 a 500		20	20								
630 ¹⁾	315 a 560	93			140							
710 ¹⁾	355 a 630	100			150							
800 ¹⁾	400 a 710	113			170							
900 ¹⁾	450 a 800		25	25								
1000 ¹⁾	500 a 900	146			220							
1200 ¹⁾	630 a 1000		30	30								
1400 ¹⁾	710 a 1200	166	45	45	250							
1600 ¹⁾	800 a 1400	183			275							
1) Valores n	o cubiertos por	norma D	IN 16963.									


Tablas 6.3.1 y 6.3.2 se basan en la norma DIN 16963 Parte 13.

6.4 Porta flanges (stub ends) para soldadura por termofusión

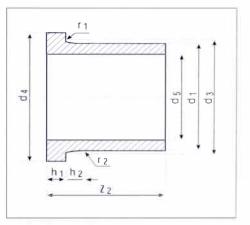

Tabla 6.4.1: Porta flange corto/largo para empaquetadura plana

Diámetro	d ₃	d ₄	d ₄ 2)	h ₁ mm ³⁾		h ₂	r ₁	r ₂	Z ₁ 4)	Z ₂ 4)	
nominal					PN 6	PN 12,5			min.	min.	min.
				PN 3,2	PN 8	PN 16					
mm	mm	mm	mm	PN 4	PN 10	PN 20	mm	mm	mm	mm	mm
20	27	45	_	_	7	7					
25	33	58	_	_	9	9	13	3	20	50	85
32	40	68	64	10	10	10					
40	50	78	-	11	11	18	15	3			85
50	61	88	_	12	12	19	15	3	20	50	85
63	75	102	102	14	14	21	20	4			95
75	89	122	=	16	16	23	20			50	125
90	105	138	132	17	17	24	20	4	20	80	140
110	125	158	158	18	18	26	25			80	160
125	132	158	_			33	20				170
140	155	188	_	18	25	33	28	4	20	80	200
160	175	212	-			45	28				200
180	1881)	212	212		30	50	30			80	
200	232	268	= :	18	32	52	40	4	20	100	200
225	235	268	268		32	52	30			100	
250	285	320	_				40				
280	291	320	330	20	35	65	30	4	20	100	
315	335	370	400				40				
355	373	430	442	23	40	65	40				
400	427	482	504	26	46	65	45	6	20	120	_
450	4821)	585	540	38	60	70	60				
500	530	585	597	38			50				
560	615	685	656	40	60	70	60	6	20	120	_
630	642	685	708	40			40				
710	737	800	822	40	50	70	50				
800	840	905	930	42	52	70	50	8	20	120	_
900	944	1005	1039	46	55	_	50				
1000	1047	1110	1152	50	60	25	70			140	
1200	1245	1330	1374	60	60	_	70	8	20	140	_
1400¹)	1445	_	1552	70	70	-	90			170	
16001)	1640	_	1716	70	70	_	90			170	



²⁾ Valores de d₄ recomendados para instalación de flanges ANSI B16.5.

⁴⁾ Z₁ y Z₂, valores mínimos.



Stub end corto para instalación de válvula mariposa.

Stub end corto para empaquetadura plana

Stub end largo para empaquetadura plana

La Tabla 6.4.1 se basa en la norma DIN 16963 Parte 4.

d₅ : diámetro interno del stub end. Corresponde al diámetro interno de la tubería a unir.

Cuando se instalan válvulas mariposa, normalmente el disco topa internamente con el stub end, por lo cual es necesario biselar el borde interno a fin de permitir el libre giro del disco de la válvula. En el anexo C.4 se muestra un ejemplo y el procedimiento recomendado para este cálculo.

Stub end largo para instalación de válvula mariposa.

³⁾ h₁ para PN mayor.

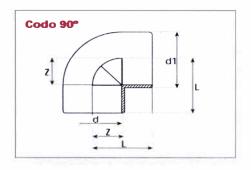
6.5 Fittings inyectados para soldadura tipo soquete

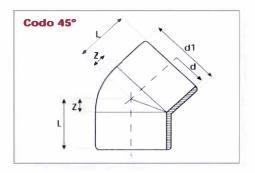
Dimensiones según catálogo George Fischer, PE 80, SDR 11 (PN 12,5)

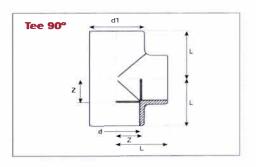
Tabla 6.5.1: Codo 90°

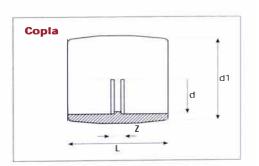
d	d 1	Z	L
mm	mm	mm	mm
20	30,5	14	28
25	36	16	32
32	43,5	20	38
40	53,5	24	44
50	66	28	51
63	82	35	62
75	92,5	44,5	75,5
90	110	53	88
110	134	65	106

Tabla 6.5.2: Codo 45°


d	d 1	Z	L
mm	mm	mm	mm
20	30,5	7	21
25	36	8	24
32	43,5	10	28
40	53	13	33
50	64	13	36
63	82	16	43
75	92,5	20	51
90	114	23	58
110	134	27	68


Tabla 6.5.3: Tee 90°


d	d 1	z	L
mm	mm	mm	mm
20	30,5	14	28
25	36	16	32
32	43,5	20	38
40	53,5	24	44
50	66	28	51
63	82	35	62
75	92,5	44,5	75,5
90	114	53	88
110	134	65	106


Tabla 6.5.4: Copla

•			
d	d 1	Z	L
mm	mm	mm	mm
20	30,5	7	35
25	36	7	39
32	43,5	7	43
40	53,5	8	48
50	66	8	54
63	82	8	62
75	93	8	69,5
90	112	10,5	80,5
110	134,5	14	96

TUBERIA DE ACERO AL CARBONO API 5L / ASTM A53 / A106

www.vemacero.com

DI		Diámetro	Exterior	Conces	do Dored	Idan4	ficación		77.5					
NPS NPS	Nominal DN		eal	Pulgadas	de Pared Milímetros		licación	Peso de	l Tubo	AST	M A53 PRES	SION DE P	RUEBA	
Pulgadas	Milimetros	(i-)				Weight	Schedule			Gra	do A	Gr	ado B	
in.	mm.	(in.)	mm.	(in.)	(mm.)	Class		lb/pie	kg/m	psi	Kg/cm2	psi	Kg/cm2	
1/2	15	0.840	21.3	0.109	2.77	STD	40	0.85	1.27	700	49	700	49	
				0.147	3.73	XS	80	1.09	1.62	850	60	850	60	
3/4	20	1.050	26.7	0.113	2.87	STD	40	1.13	1.69	700	49	700	49	
3/1	1 20	1.050	1 2017	0.154	3.91	XS	80	1.47	2.20	850	60	850	60	
1	25	1.315	33.4	0.133	3.38	STD	40	1.68	2.50	700	49	700	49	
	2.9	1,515	33,4	0.179	4.55	XS	80	2.17	3.24	850	60	850	60	
1.1/4	22	1.440	42.2	0.140	3.56	STD	40	2.27	3.39	1200	84	1300	91	
1-1/4	32	1.660	42.2	0.191	4.85	XS	80	3.00	4.47	1800	127	1900	134	
	1			0.145	3.68	STD	40	2.72	4.05	1200	84	1300	91	
1-1/2	40	1.900	48.3	0.200	5.08	XS	80	3.63	5.41	1800	127	1900	134	
			<u> </u>	0.154	3.91	STD	40	3.65	5.44	2300	162	2500	176	
2	50	2.375	60.3	0.134	5.54	XS	80	5.02	7.48	2500	176	2500	176	
								1						
			1	0.203	5.16 7.01	XS XS	80	5.79 7.66	8.63	2500 2500	176	2500 2500	176	
2-1/2	65	2.875	73	0.276	9.52	_ A3	160	7.00	11.41	2500	176	2500	176	
				0.552	14.02	XXS	-	(C		2500	176	2500	176	
	-					7.07.0		1.51	4 72	1290	91	1500	105	
				0.125 0.156	3.18		-	4.51 5.57	8.29	1600	112	1870	131	
				0.130	4.78		-	6.65	9.92	1930	136	2260	159	
3	80	3.500	88,9	0.216	5.49	STD	40	7.58	11.29	2220	156	2500	176	
						0.250	6.35	TE	-	8.68	12.93	2500	176	2500
				0.281	7.14	. —	- 1	9.66	14.40	2500	176	2500	176	
	<u> </u>			0.300	7.62	XS	80	10.25	15.27	2500	176	2500	176	
	T			0.125	3.18	-	-	5.84	8.71	1000	70	1170	82	
				0.156	3.96	-	-	7.24	10.78	1250	88	1460	103	
				0.188	4.78	*	-	8.66	12.91	1500	105	1750	123	
	100				0.219	5.56			10.01	14.91	1750	123	2040	143
					0.237	6.02	STD	40	10.79	16.07	1900 2000	134	2210	164
4		4.500	114,3	0.250	6.35	-	-	12.66	18.87	2250	158	2620	184	
				0.281	7.14		- 1	13.98	20.78	2500	176	2800	197	
				0.337	8.56	XS	80	14.98	22.32	2700	190	2800	197	
				0.438	11.13	-	120	19.00	28.32	2800	197	2800	197	
				0.531	13.49	-	160	22.51	33.54	2800	197	2800	197	
				0.674	17.12	XXS	<u> </u>	27.54	41.03	2800	197	2800	197	
				0.188	4.78		[·	10.79	16.09	1220	86	1420	100	
				0.219	5.56			12.50	18.61	1420	100	1650	116	
_				0.258	6.55	STD	40	14.62	21.77	1670	117	1950 2120	137	
5	125	5.563	141,3	0.281	7.14	1 -		15.85	23.62	1820 2020	142	2360	166	
				0.312	7.92 8.74			19.17	28.57	2230	157	2600	183	
				0.375	9.52	XS	80	20.78	30.94	2430	171	2800	197	
		+		-		1		12.92	19.27	1020	72	1190	84	
				0.188	4.78 5.56	-	-	14.98	22.31	1190	84	1390	98	
				0.219	6.35	-		17.02	25.36	1360	96	1580	111	
				0.280	7.11	STD	40	18.97	28.26	1520	107	1780	125	
				0.312	7.92	1 3	·	21.04	31.32	1700	120	1980	139	
6	150	6.625	168,3	0.344	8.74	-	1	23.08	34.39	1870	131	2180 2380	153	
				0.375	9.52	l ve	- 00	25.02	37.28	2040	143	2740	193	
				0.432	10.97	XS	80	28.57 36.39	42.56 54.20	2800	197	2800	197	
				0.562	14.27		160	45.35	67.56	2800	197	2800	197	
	1			0.864	21.95	XXS	-	53.16	79.22	2800	197	2800	197	

TUBERIA DE ACERO AL CARBONO API 5L / ASTM A53 / A106

www.vemacero.com

Diámeter	Nominal	Diámetro Exterior		Espesor	de Pared	Identi	ficación																				
NPS	DN	Real					licación	Peso de	el Tubo	AST	M A53 PRES	SION DE P	RUEBA														
Pulgadas	Milimetros			Pulgadas	Milímetros	Weight Schedule Grado A		Schedule		Grado A		Gr	ado B														
in.	mm.	(in.)	mm.	(in.)	(mm.)	Class	Julia	lb/pie	kg/m	psi	Kg/cm2	psi	Kg/cm2														
				0.188	4.78	7.	_	16.94	25.26	780	55	920	65														
)				0.203	5.16	¥.	-	18.26	27.22	850	60	1000	70														
					r i	0.219	5.56			19.66	29.28	910	64	1070	75												
)				0.250	6.35	÷1	20	22.36	33.31	1040	73	1220	86														
				0.277	7.04	±1	30	24.70	36.81	1160	82	1350	95														
				0.312	7.92	+1.		27.70	41.24	1300	91	1520	107														
				0.322	8.18	STD	40	28.55	42.55	1340	94	1570	110														
				0.344	8.74	•	-	30.42	45.34	1440	101	1680	118														
8	200	8.625	219,1	0.375	9.52	†1	-	33.04	49.20	1570	110	1830	129														
				0.406	10.31	•	60	35.64	53.08	1700	120	2000	141														
				0.438	11.13		-	38.30	57.08	1830	129	2130	150														
				0.500	12.70	XS	80	43.39	64.64	2090	147	2430	171														
				0.594	15.09		100	50.95	75.92	2500	176	2800	197														
				0.719	18.26		120	60.71	90.44	2800	197	2800	197														
				0.812	20.62	•	140	67.76	100.92	2800	197	2800	197														
							0.875	22.22	XXS	-	72.42	107.88	2800	197	2800	197											
				0.906	23.01	====	160	74.69	111,27	2800	197	2800	197														
				0.188	4.78		-	21,21	31.62	630	44	730	51														
		10.750											0.203	5.16	-	-	22.87	34.08	680	48	800	56					
																		0.219	5.56		-	24.63	36.67	730	51	860	60
U													0.250	6.35	-	20	28.04	41,75	840	59	980	69					
				0.279	7.09	-	-	31.20	46.49	930	65	1090	77														
				0.307	7.80	-	30	34.24	51,01	1030	72	1200	84														
_ []			10.750	10.750	10.750		0.344	8.74	-	-	38.23	56.96	1150	81	1340	94											
10	250					10.750	10.750	10.750	10.750	273,0	0.365	9.27	STD	40	40.48	60.29	1220	86	1430	101							
1														0.438	11.13			48.19	71.87	1470	103	1710	120				
								0.500	12.70	XS	60	54.71	81.52	1670	117	1950	137										
												0.594	15.09	-	80	64.43	95.97	1990	140	2320	163						
	1			0.719	18.26	-	100	77.03	114.70	2410	169	2800	197														
		1 1		0.844	21.44	- VVC	120	89.29	133.00	2800	197	2800 2800	197														
				1 000	25.40 28.57	XXS	140	104.13	155.09	2800 2800	197	2800	197														
				1,125			100																				
				0.203	5.16	-	-	27.20	40.55	570	40	670	47														
				0.219	5.56	-	-	29.31	43.63	620	44	720	51														
				0.250	6.35	-	20	33.38	49.71	710	50	820	58														
				0.281	7.14		-	37.42	55.75	790 880	56	930	65 72														
				0.312	7.92	-	- 20	41.45	61.69	930	62	1030	77														
				0.330	8.38		30	43.77	65.18	970	65	1130	79														
				0.344	8.74 9.52	STD		45.58 49.52	67.90 73.78	1060	75	1240	87														
12	200	12.750	222.0				- 40		79.70		81	1340	94														
12	300	12.750	323,8	0.406	10.31	-	40	53.52 57.59	85.82	1150	87	1440	101														
				0.438	11.13	XS		65.42	97.43	1410	99	1650	116														
			1	0.562	14.27	-	60	73.15	108.92	1590	112	1850	130														
		- 2		0.562	17.28		80	88.63	132.04	1940	136	2270	160														
				0.844	21.44		100	107.32	159.86	2390	168	2780	195														
			1	1.000	25.40	XXS	120	125.49	186.91	2800	197	2800	197														
				1.125	28.57	-	140	139.68	208.00	2800	197	2800	197														
			3	1.312	33.32		160	160.27	238.68	2800	197	2800	197														
	1			1,512	22.22		.50	.00.21	223.00																		