UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA

INCREMENTO DE LA CONFIABILIDAD EN SISTEMAS DE FAJAS TRANSPORTADORAS PARA EVITAR FALLAS REPETITIVAS

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO MECANICO

ERIC IVAN ESCALANTE AEDO

PROMOCION 2007-II

LIMA - PERU

2011

DEDICATORIA

El presente informe está dedicado a mi padre Eric Escalante Cárdenas y a mi madre Gloria Aedo Choque, quienes me brindaron siempre su apoyo incondicional. Así como a mis hermanos Diana y Dante.

TABLA DE CONTENIDOS

PROLOGO				
CAPITULO 1: INTRODUCCION				
1.1	Antecedentes			
1.2	Objetivo			
1.3	Alcance			
1.4	Limitaciones			
1.5	Justificación			
CAPITULO 2: GENERALIDADES DEL PROCESO DE CHANCADO Y				
SISTEMA DE FAJAS TRANSPORTADORAS				
2.1	Descripción del proceso de chancado y carga de camiones.			
	2.1.1	Etapas del proceso de chancado y carga de camiones		
	2.1.1.1	Primera etapa: Chancado primario		
	2.1.1.2	Segunda etapa: Apilamiento		
	2.1.1.3	Tercera etapa: Chancado secundario		
	2.1.1.4	Cuarta etapa: Carga de camiones		

de

2.1.2 Ed	quipos asociados al proceso de chancado y carga			
	camiones.			
2.1.2.1	Chancadora giratoria			
2.1.2.2	Rompedor de rocas hidráulico			
2.1.2.3	Alimentador de placas			
2.1.2.4	Fajas transportadoras			
2.1.2.5	Faja magnética motorizada			
2.1.2.6	Detector de metales			
2.1.2.7	Balanza de faja			
2.1.2.8	Alimentador vibratorio			
2.1.2.9	Zarandas vibratorias			
2.1.2.10	Chancadora secundaria cónica			
Generalidades del sistema de Fajas Transportadoras.				
2.2.1	Transporte de una Variedad de Materiales			
2.2.2	Amplia gama de capacidades			
2.2.3	Adaptabilidad al terreno			
2.2.4	Angulo de inclinación de transporte			
2.2.5	Carga, Descarga, y Capacidades de Almacenamiento			
2.2.6	Las Funciones del proceso			
2.2.7	Confiabilidad y Disponibilidad			
2.2.8	Ventajas Ecológicas			
2.2.9	Seguridad			
2.2.10	Menores Costos de Trabajo y Potencia y Mantenimiento			

2.2

CAPITULO 3: PLANTEAMIENTO DEL PROBLEMA

- 3.1 Análisis de la problemática previa.
- 3.2 Aplicación de Metodología Método de dispersión logarítmica (Jack-knife)
- 3.3 Priorización de sistemas con mayor cantidad de horas paradas no programadas

CAPITULO 4: ANALISIS Y PRESENTACION DE TIPOS DE FALLAS PRESENTES EN EL SISTEMA

- 4.1 Análisis causa raíz (ACR)
- 4.2 Análisis de tipos y modos de falla en sistema de fajas transportadoras.
 - 4.2.1 Análisis del modo de falla por corte por segmento desprendido
 - 4.2.2 Análisis del modo de falla por fuga de mineral
 - 4.2.3. Análisis del modo de falla por roce con estructura / side travel
 - 4.2.4 Análisis del modo de falla por rotura de manguito
 - 4.2.5 Análisis del modo de falla por desempalme.
- 4.3 Análisis de tipos y modos de falla en sistema de transmisión.
 - 4.3.1 Análisis del modo de falla en reductor

CAPITULO 5: PLANES DE ACCION Y RESULTADOS

- 5.1 Planteamiento de acciones de control para evitar fallas repetitivas
 - 5.1.1 Subsistema faja

- 5.1.1.1 Análisis de modificación de Polea Snub para incrementar confiabilidad y evitar el desempalme improvisto.
- 5.1.1.2 Requerimientos Básicos de Potencia
- 5.1.1.3 Calculo de los Factores:
- 5.1.3.1Kt Factor de Corrección de temperatura ambiente
- 5.1.3.2 Kx Factor de Fricción del Rodillo
- 5.1.3.3 Ky Factor para Calcular la Fuerza en la Faja y la Carga de Flexión sobre los Rodillos
- 5.1.1.4 Calculo de la Tensión Efectiva
- 5.1.1.5 Calculo del Incremento de tensión.
- 5.1.1.6 Calculo de los Esfuerzos de Tracción en poleas
- 5.1.1.7 Calculo de los Esfuerzos de Flexión en poleas
- 5.1.1.8Estudio Analítico Para Diferentes Ángulos de Envoltura y

 Diferentes Distancias
- 5.1.1.9 Presentación de Configuración Actual y Opciones
- 5.1.1.10 Comportamiento de las tensiones, esfuerzos y ángulos de envoltura en la polea de cabeza.
- 5.1.1.11 Comportamiento de las tensiones, esfuerzos y ángulos de envoltura en la polea Snub
- 5.1.1.12 Determinación de Opción óptima
- 5.1.1.13 Análisis de esfuerzos en polea de cabeza con el uso de software en el método de Elementos Finitos.
- 5.1.1.13.1 Análisis en la Polea de Cabeza configuración Actual.
- 5.1.1.13.1.1 Información de cargas y restricciones

- 5.1.1.13.1.2 Propiedad del estudio
- 5.1.1.13.1.3 Resultados Predeterminados
- 5.1.1.13.1.4 Tensiones
- 5.1.1.13.1.5 Desplazamientos Estáticos
- 5.1.1.13.1.6 Deformaciones Unitarias Estáticas
- 5.1.1.13.2 Análisis en la Polea de Cabeza Propuesta de Modificación.
- 5.1.1.13.2.1 Información de cargas y restricciones:
- 5.1.1.13.2.2 Propiedad del estudio:
- 5.1.1.13.2.3 Resultados Predeterminados:
- 5.1.1.13.2.4 Tensiones
- 5.1.1.13.2.5 Desplazamientos Estáticos
- 5.1.1.13.2.6 Deformaciones Unitarias Estáticas
- 5.1.2 Subsistema de transmisión
- 5.1.2.1Análisis de conteo acumulativo de partículas y definición de alarmas.
- 5.2 Resultados de los planes de acción
 - 5.2.1 Incremento en la disponibilidad del sistema de chancado.

CAPITULO 6: EVALUACION ECONOMICA

- 6.1 Calculo del valor por hora de chancado.
- 6.2 Estimación de costos
- 6.3 Análisis costo beneficio

Conclusiones

Recomendaciones

Bibliografía

Apéndice.

PROLOGO

El sistema de fajas transportadoras es una parte crítica dentro de los procesos de chancado de una operación minera, por tanto una parada de este significa una reducción importante en la disponibilidad de todo el sistema de chancado traduciéndose en una perdida en la producción. Es así que el presente informe tiene por finalidad evidenciar la importancia del sistema de fajas transportadoras en el sistema integral de chancado de manera tal que se puedan implementar acciones correctivas a los problemas encontrados a fin de garantizar su disponibilidad y confiabilidad.

Por tanto la estructura del trabajo consta primeramente de la Introducción, la cual nos dará el alcance del presente informe y a su vez una visión rápida de la metodología a ser utilizada, la cual se encuentra dentro del capítulo uno.

El capitulo dos consta de las generalidades del proceso de chancado y del sistema de fajas transportadoras, el marco teórico donde se basa el trabajo y sobre todo se define los términos técnicos que son importantes para el entendimiento del estudio realizado.

En el capitulo tres se detalla el planteamiento del problema, inicialmente se realizara un estudio para identificar los elementos más críticos dentro del sistema de chancado en base al método de dispersión logarítmica conocido como Jack Knife.

En el capitulo cuatro se desarrolla el análisis y presentación de tipos de fallas presentes en el sistema, definiendo los siguientes pasos para enfrentar este problema:

Priorizar los sistemas con mayor cantidad de horas paradas

Analizar los modos de falla y definir acciones de control y/o correctivas que eviten la repetición de las fallas

Continuar con la mejora continua y revisión cíclica de los ítems anteriores.

En el capitulo cinco se plantea de una manera clara y concisa los resultados obtenidos en el presente trabajo.

En el capitulo seis se realiza un análisis de costos del desarrollo del problema cabe mencionar que este punto es de vital importancia para entender el impacto económico y analizar el costo beneficio.

Por último, se describen conclusiones y observaciones que son resultado del desarrollo de este trabajo así como puntos de vistas y criterios importantes.

Al final de este informe también se muestra la bibliografía y fuentes que se usaron para el desarrollo de este. Así mismo se adjuntan los anexos que complementan el trabajo desarrollado.

CAPITULO 1

INTRODUCCION

1.1 ANTECEDENTES

El yacimiento minero donde se desarrolla el presente trabajo, es un yacimiento de oro del tipo cielo abierto, y está ubicada en la sierra del Perú a 4200 msnm. Las condiciones climáticas muchas veces son adversas, por tanto los equipos, la fuerza laboral y las gestiones de estas deben de estar acorde con tal requerimiento.

Esta operación minera actualmente lleva mas de 6 años de operación, es importante resaltar que durante las primeras semanas de operación se observó un desgaste acelerado de liners y corazas debido a la alta dureza y abrasividad del mineral, situación que no se esperada hasta ese momento, mas aun por requerimiento corporativo se decide incrementar la cantidad de producción por su alta ley encontrada, esto genero un gran problema pues la planta comenzó a trabajar a mas de su capacidad de diseño.

No tardaron en presentarse los primeros problemas, equipos fallados, roturas inesperadas, paradas generales, disminución de la disponibilidad y una muy baja confiabilidad y claro todo esto se reflejaba en una perdida importante de dinero.

1.2 OBJETIVO

Bajo este contexto todas las fuerzas estaban centradas en afrontar no solo el desgaste prematuro sino en implementar mejoras que permitan que el comportamiento de los equipos y el sistema en general sea el adecuado, que se mantenga en los rangos esperados de disponibilidad. El sistema de fajas transportadoras comenzó a presentar fallas que originaban paradas importantes superiores a 60 horas y en muchos casos mayores a 100 horas, los problemas en varios componentes se volvieron repetitivos y a su vez críticos, hacia este objetivo está dirigido el presente informe, que es mejorar la confiabilidad de este sistema, aumentar su disponibilidad y evitar paradas imprevistas.

1.3 ALCANCE

Las exigencias de un nivel alto de confiabilidad en todos los equipos en general para una planta de procesamiento de mineral demandan a los encargados de mantenimiento mejorar continuamente para poder entregar resultados que estén alineados a los objetivos planteados por la organización. Bajo este contexto el alcance del siguiente informe es al área

principalmente de ingeniería de mantenimiento y secundariamente a la de producción, quienes juegan roles importantes en el proceso productivo, pues tanto mantenimiento quien debe asegurar una alta disponibilidad en sus equipos y operaciones quienes utilizan estos a fin de cumplir con las metas de producción. Para poder cumplir con lo mencionado líneas arriba es importante optar por algunas de las diferentes herramientas de la ingeniería de confiabilidad que más se adecuen a las necesidades de la operación.

1.4 LIMITACIONES

En base a una estrategia planteada por etapas iniciales de estudio, implementación y pruebas, se logró reducir importantemente y en algunos casos evitar las fallas repetitivas en los componentes que causaban más horas de paradas al sistema de chancado. Pero se encontró con la limitación de que no todo el sistema de fajas transportadoras tenía la misma configuración, lo que significo un estudio específico para cada uno de ellos.

1.5 JUSTIFICACIÓN

Después de los primeros años de operación, mejorar inicialmente la situación de excesiva agresividad del mineral y de reducir sustancialmente las fallas ocurridas en los equipos aun existían fallas puntuales y repetitivas que ocasionaban paradas en muchos casos mayores a tres días.

Ante esta situación se decidió atacar las fallas que mas perdidas nos causaban, en la planta de chancado, tanto primario como secundario.

CAPITULO 2

GENERALIDADES DEL PROCESO DE CHANCADO Y SISTEMA DE FAJAS TRANSPORTADORAS

Éste capítulo describe brevemente la operación del circuito de chancado detallando los procesos unitarios asociados, las etapas, los equipos asociados así como su principio de operación.

2.1 DESCRIPCIÓN DEL PROCESO DE CHANCADO Y CARGA DE CAMIONES.

La operación de chancado consiste en la reducción de tamaño de rocas grandes a mas pequeñas, utilizando fuerzas de compresión, fricción, flexión, cizallamiento u otras en menor proporción.

La planta de chancado tiene por función reducir el tamaño de mineral en dos etapas: la primera denominada chancado primario, donde el mineral ROM (1) de mina es reducido hasta un tamaño máximo de 6" y la segunda denominada chancado secundario, donde el mineral es reducido de 6" a un tamaño final de 1 1/2" que permita la lixiviación (2).

La finalidad de la reducción del tamaño es liberar el material valioso para que en el proceso de lixiviación el oro y la plata se liberen y se pueda recuperar con mayor facilidad.

El término conminución es aquel con que se designa a la reducción de tamaño de rocas grandes en fragmentos pequeños.

2.1.1 Etapas del proceso de chancado y carga de camiones

El proceso de chancado está dividido en cuatro etapas. Desde chancado primario pasando por apilamiento, chancado secundario y terminando en carga de camiones.

2.1.1.1 Primera etapa: Chancado primario

El mineral es sometido a una primera reducción por medio de una chancadora giratoria. (*giratory crusher*).

Y esta, a su vez está compuesta de tres fases de operación que se describen a continuación:

Descarga y recepción del mineral

El mineral a razón de 42 000 t/d es transportado por medio de camiones mineros de 190 toneladas de capacidad y descargado en la tolva de alimentación a la chancadora primaria (dump hooper) de 285 toneladas de capacidad. Un rompedor de rocas hidráulico se encarga de reducir los fragmentos de ingreso mayores a 49".

Chancado Primario

El mineral es chancado por medio de una chancadora giratoria (gyratory crusher) de 50" x 65" y 500 HP de potencia. El mineral chancado es descargado en una tolva de almacenamiento (surge pocket) de 380 t. de capacidad. El producto del chancado primario es aproximadamente 80% menor a 7" aproximadamente.

Transporte al acumulador de almacenamiento (stockpile)

El mineral del surge pocket descarga en un alimentador de placas (apron feeder) de 6' de ancho por 23' de longitud, con motor hidráulico de velocidad variable. El apron feeder permite dosificar el tonelaje de manera gradual.

El apron feeder descarga en la faja transportadora No.1 de 60" de ancho, 185 kW de potencia, que alimenta el stockpile.

2.1.1.2 Segunda etapa: Apilamiento

El mineral producto del chancado primario es transportado por medio de la faja transportadora No.1 hasta un acumulador de almacenamiento (stockpile), donde por medio de un sistema de chutes y alimentadores vibratorios el mineral es descargado en la faja transportadora No.2 de alimentación a chancado secundario.

Está compuesta de 3 fases de operación que se describen a continuación:

Apilamiento

El mineral alimentado por la faja transportadora No. 1 es almacenado en la pila de compensación de chancado secundario de 11000 toneladas de capacidad total. La pila permite tener un stock de mineral de alimentación al chancado secundario en paradas parciales o programadas del chancado primario.

La densidad de mineral en la pila es de 1,5 t/m3.

El ángulo de reposo de la pila es de 38°.

Descarga

El mineral descarga de la pila por medio de 4 chutes vibratorios de 0,55 kW, con sus collares de descarga respectivos y a un ángulo de descarga de 70°.

La descarga cae en 4 alimentadores vibratorios, de 1,22 x 2,54 m de ancho, 4 kW de potencia y de velocidad variable. Estos alimentadores vibratorios (3 en operación y 1 en stand by) alimentan a la faja transportadora No.2.

Transporte ha chancado secundario

La faja transportadora No.2 de 60" de ancho (1,5 m), 450 kW de potencia y 241 m de longitud, transporta el mineral hacia el chancado secundario.

La faja dispone de un electroimán estacionario, un detector de y una balanza de faja.

12

2.1.1.3 Tercera etapa: Chancado secundario

El mineral es sometido inicialmente a una separación por medio de

un partidor de carga, luego es clasificado por medio de dos

zarandas vibratorias, y a una segunda y última reducción por medio

de dos chancadoras cónicas. La descarga cae en dos fajas

transportadoras (No. 3 y 4) las que alimentan a su vez a la faja

transportadora No 5 que alimenta a la tolva de carga de camiones.

Está compuesta de 4 fases de operación que se describen a

continuación:

Distribución

El mineral, alimentado por la faja transportadora No. 2, es

descargado en un partidor de carga de dos vías operadas

hidráulicamente y con un distribuidor ajustable.

Zarandeo

El mineral cae en dos zarandas vibratorias de 2,4 x 7,3 m, de doble

piso, dispuestas en paralelo y de 30 kW de potencia cada una.

1er. deck: 4" (100 mm).

2do. deck: 1 ½" (38 mm).

Chancado Secundario

El chancado secundario es realizado por dos chancadoras cónicas dispuestas en paralelo de 800 HP (600 kW) de potencia, con un ajuste del setting de 34 mm.

Transporte a tolva de camiones

Las descargas de las chancadoras cónicas junto con el undersize de ambas zarandas caen en las fajas No. 3 y 4 respectivamente. Estas fajas de 54" de ancho y 37 kW de potencia, alimentan a la faja No. 5 de 60" de ancho, 370 kW de potencia y 199 m de longitud, esta última alimenta a la tolva de carga para camiones.

Colector de polvos en chancado secundario

Se dispone también de un sistema colector de polvo para el chancado secundario. Los polvos acumulados en el colector son descargados por un tornillo sin fín hacia la faja transportadora No. 5.

2.1.1.4 Cuarta etapa: Carga de camiones

La tolva de carga de camiones que dispone de tres compuertas, descarga directamente en camiones de transporte minero los cuales llevan el mineral ya reducido hacia las pilas de lixiviación.

Está compuesta de 2 fases de operación que se describen a continuación:

Almacenamiento

El mineral alimentado por la faja No. 5 cae en la tolva de carga de camiones de 1000 toneladas de capacidad viva y 1,5 t/m3 de densidad de mineral.

El ángulo de reposo del mineral en la parte superior de la tolva es 38°.

La tolva es de 12 m. de diámetro por 14 m. de altura.

Carga de camiones

La tolva para la descarga dispone en su parte inferior de 3 chutes de descarga dispuestos con lanzas de aire para remoción y limpieza y de sus respectivos collares de descarga. Cada collar en su boca inferior dispone de su respectiva compuerta de arco operada hidráulicamente.

Los conductos de salida disponen además de vibradores electromecánicos que permiten la descarga del mineral. El mineral descargado por las compuertas cae en camiones de acarreo de 190t. de capacidad, los cuales transportan el mineral hacia las pilas de lixiviación.



Figura 2.1: Chancado primario, apilamiento, chancado secundario y descarga de mineral chancado.

2.1.2 Equipos asociados al proceso de chancado y carga de camiones

Los equipos asociados al proceso de chancado y carga de camiones son:

2.1.2.1 Chancadora giratoria

Cumple la función de reducir el tamaño del mineral proveniente de mina de 49" a un tamaño menor a 6". El chancador es de tipo superior de 1270 mm por 1 650 mm (50 por 65 pulgadas). La dimensión de 1270 mm (50 pulgadas) corresponde a la abertura de alimentación en su punto más ancho y la dimensión de 1650 mm (65 pulgadas) corresponde al ancho del manto en su base. En una instalación típica, un 80 por ciento de la alimentación a la chancadora debe ser inferior a dos tercios del tamaño de la abertura de alimentación, o, en este caso, de 838 mm (33 pulgadas). Al alimentar mineral inferior a 838 mm (33 pulgadas) en cualquier dimensión, reduce la posibilidad de bloquear la abertura de la chancadora y permite un mejor llenado de la cámara de chancado, lo cual distribuye en forma pareja las presiones en los cojinetes.

Principio de operación.

En una chancadora giratoria, el extremo superior del eje principal se sujeta en la araña y el extremo inferior pasa por un buje de excéntrica. Cuando el tren de accionamiento hace girar la excéntrica, la parte inferior del conjunto del eje principal realiza un movimiento giratorio. El manto del eje principal se acerca y se aleja alternadamente de la superficie de chancado estacionario exterior, o cóncavas. Cuando el manto se aleja del casco, cae mineral a la abertura. Cuando la cabeza de la chancadora vuelve a acercarse al casco, se chanca el mineral.

El tamaño del producto chancado puede cambiarse subiendo o bajando el conjunto del eje principal y del manto. Al subir el eje principal disminuye la distancia entre las cóncavas y el manto y, por lo tanto, se entrega un producto más fino. Al bajar el eje principal aumenta la distancia entre las cóncavas y el manto y, por lo tanto, se entrega un producto más grueso. La distancia menor entre el manto en movimiento y las cóncavas es el ajuste del lado cerrado (CSS). Del mismo modo, la distancia mayor entre el manto y las cóncavas es el ajuste del lado abierto (OSS). El tamaño del producto de una chancadora giratoria es aproximadamente un 90 por ciento más pequeño que una abertura cuadrada equivalente al ajuste del lado abierto.

El ajuste del lado abierto debe regularse periódicamente para compensar el desgaste de las cóncavas y del manto durante la operación normal de la chancadora. El eje principal también puede bajarse para aliviar la chancadora cuando chatarra de acero queda

atrapada entre las cóncavas y el manto y causa una detención por sobrecarga.

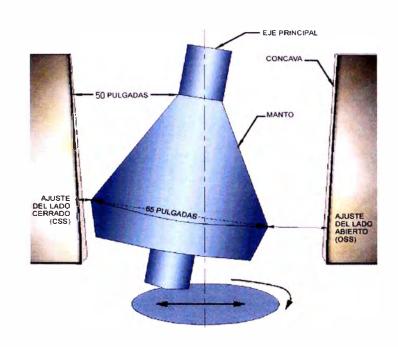


Figura No. 2.2 Movimiento de la chancadora giratoria

El cuerpo de la chancadora consta de un conjunto de cascos superior e inferior. El tren de accionamiento consta del motor, el eje del piñón y el piñón; que hace girar la excéntrica. Excéntrico significa descentrado, y la excéntrica proporciona el movimiento oscilatorio (o giratorio) del manto y del eje principal. El manto es la cabeza chancadora de la chancadora giratoria. El interior del casco superior forma la cámara de chancado cónica, cubierta de revestimientos cóncavos de acero y resistentes al desgaste (o cóncavas).

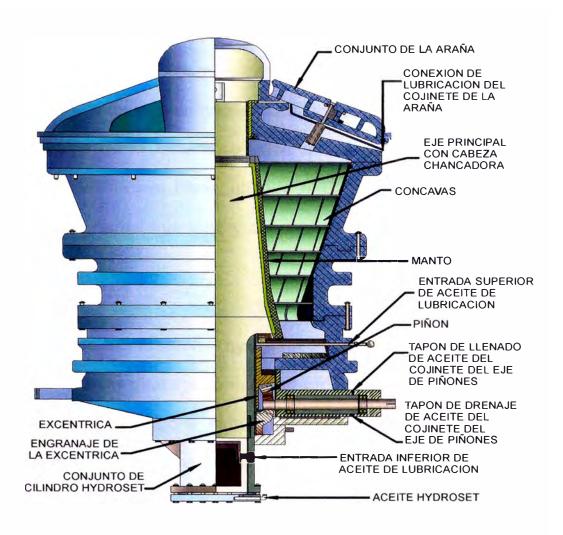


Figura No 2.3 Componentes de chancadora giratoria

El eje principal va inserto en la excéntrica en la parte inferior de la chancadora y se sostiene en la parte superior mediante el conjunto de la araña. El conjunto de la araña incorpora un buje torneado que posiciona el extremo superior del eje principal e impide que éste se mueva en forma lateral. Los brazos de la araña se extienden por la abertura de alimentación de la chancadora y junto con la tapa de la araña, protegen el buje de la araña y el eje principal ante daños por el impacto de bolones grandes. El eje principal está cubierto de un manto fabricado de acero resistente al desgaste.

El extremo inferior del eje principal pasa por el buje de la excéntrica. El alineamiento del eje principal está descentrado con respecto a la línea central de la chancadora. Debido al alineamiento descentrado, la rotación de la excéntrica hace que el extremo inferior del eje principal se mueva hacia atrás y hacia adelante en un pequeño recorrido circular, que abre y cierra la abertura entre las cóncavas y el manto.

Sistema de lubricación e hydroset de la chancadora giratoria

La chancadora giratoria cuenta con un sistema de lubricación y con un conjunto de soporte hidráulico que posiciona y sostiene el eje principal. Este conjunto de soporte se llama sistema hydroset. La Figura No.2.4 ilustra la circulación de aceite del sistema de lubricación e hydroset. La temperatura del aceite lubricante se controla mediante un ventilador y un intercambiador de calor de aire a aceite para enfriamiento, más un calentador por inmersión en el depósito de aceite para el calentamiento.

Principio de operación

El sistema de lubricación de la chancadora giratoria, consta de un estanque de almacenamiento de aceite, una bomba de aceite lubricante, un filtro de aceite y un enfriador de aceite, proporciona aceite a los engranajes y a los bujes de la excéntrica. La chancadora giratoria cuenta con un conjunto de soporte hidráulico

que posiciona y sostiene el eje principal. Este conjunto se llama hydroset. Las piezas principales del sistema hydroset incluyen un conjunto de cilindro, un conjunto de cilindro de equilibrio y un sistema de suministro de aceite. El conjunto de cilindro para el sistema hydroset incluye las piezas de la base del eje principal de la chancadora, entre las que se cuentan el pistón de soporte, el sello de aceite y la placa de abrazadera.

El sistema hydroset realiza dos funciones: (1) Sube o baja el eje principal según sea necesario para realizar el ajuste de la chancadora o para despejar una chancadora obstruida y (2) absorbe impactos cuando el eje principal salta en respuesta a materiales de gran tamaño de la alimentación en la cámara de chancado.

Trozos grandes y duros de alimentación en la cámara de chancado pueden forzar el conjunto del eje principal a saltar hacia arriba. Cuando se produce esta situación, el cilindro de equilibrio de la tubería de aceite impide que el eje principal caiga en forma demasiado repentina y posiblemente cause daños. El cilindro de equilibrio contiene un pistón, con aceite en la parte superior y nitrógeno en la parte inferior.

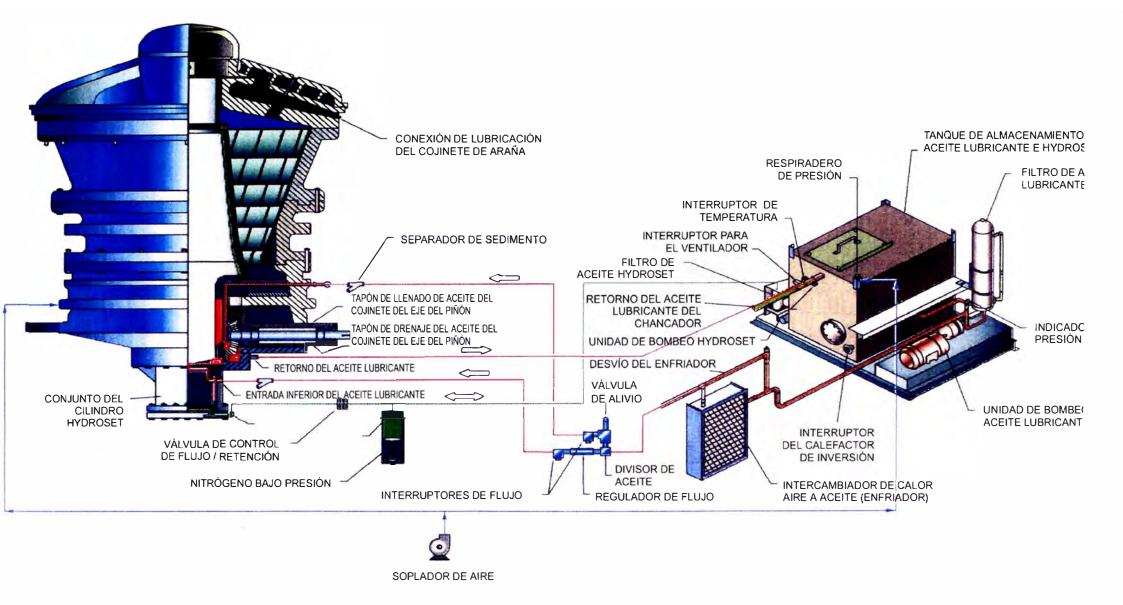
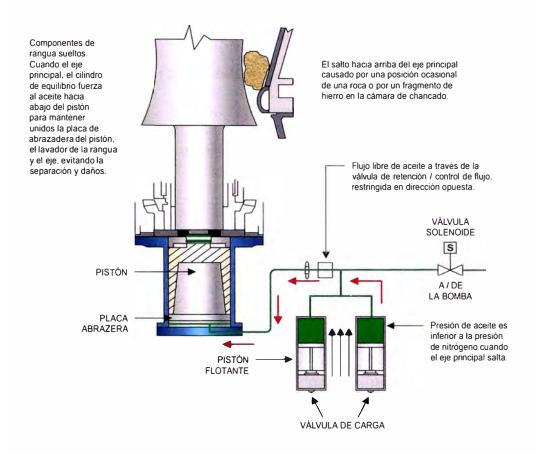



Figura No 2.4. SISTEMA DE LUBRICACIÓN E

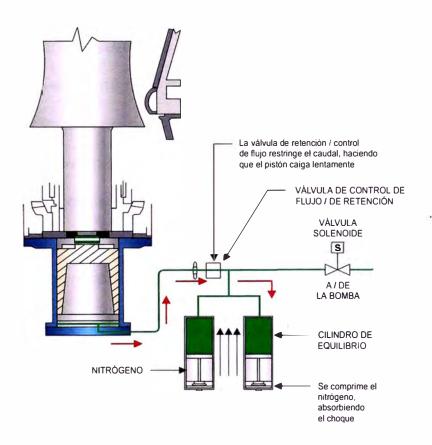


Figura No.2.5 ACCIÓN DE ABSORCIÓN DE CHOQUE DEL HIDROSET

2.1.2.2 Rompedor de rocas hidráulico

El rompedor de rocas tiene por función mover o romper los bolones y las rocas grandes y gruesas, que obstruyen temporalmente la abertura de alimentación de la chancadora primaria.

La unidad tiene un pedestal fijo donde va conectado el brazo. El brazo tiene una rotación oscilatoria de 180 grados y se controla mediante dos cilindros hidráulicos. El brazo puede subirse con dos cilindros de levantamiento y el picador puede articularse en forma vertical. El martillo hidráulico también puede articularse para que la punta del martillo se ubique e impacte efectivamente la superficie de las rocas. El martillo hidráulico está calibrado a 5 150 joules (4 000 libras por pie) y tiene una tasa de impacto de 600 golpes por minuto. El brazo es de un diseño para labores pesadas que puede soportar algo de fuerza lateral para mover rocas con el martillo. El rompedor de rocas puede operarse desde dos ubicaciones. Los controles principales están montados en una cabina sobre el pedestal del rompedor de rocas y consta de cuatro palancas que proporcionan un control independiente de todas las funciones del brazo. interruptor de pie pone en marcha el rompedor. Además, una estación de control remoto en la sala de control primaria permite al operador controlar el rompedor de rocas mediante dos bastones de mando que controlan las funciones del brazo y un botón en el bastón de mando derecho pone en marcha el rompedor.

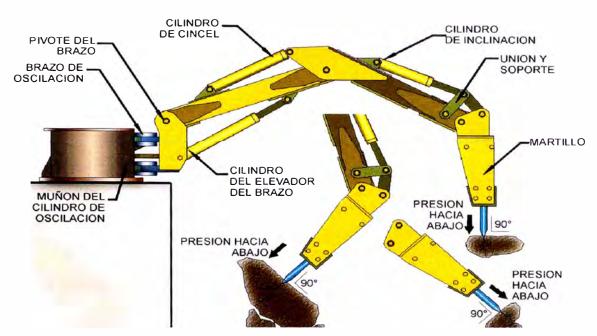


Figura No.2.6 Componentes y acción del rompedor de rocas hidráulico

2.1.2.3 Alimentador de placas

El alimentador de placas se ubica directamente debajo de la tolva de sobre carga (surge pocket) de la chancadora primaria. Su función es extraer el mineral chancado a un flujo de 2 225 t/h. para transferirlo a la faja transportadora No. 1 que descarga en el stockpile de alimentación a chancado secundario. El alimentador de placas tiene 6' de ancho x 23' de largo, es accionado mediante un sistema hidráulico.

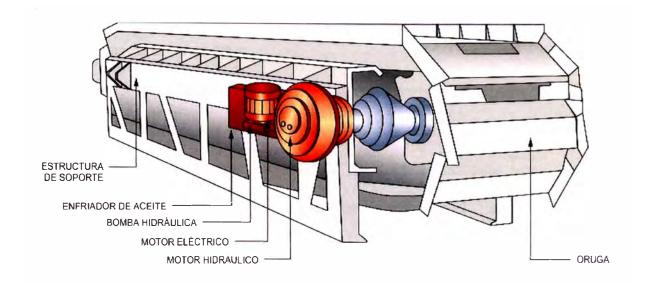


Figura No.2.7 Apron feeder

Este equipo opera usando dispositivos hidráulicos que permiten un alto par de torsión para el arrastre de las orugas cargadas de mineral. El alimentador esta equipado con interruptores de parada de emergencia (cordones de emergencia o pull cord). Todos estos interruptores, cuando están activados, hacen que el alimentador se detenga por enclavamiento.

Accionamiento hidráulico del alimentador de orugas

Es un sistema de mando hidráulico que contiene principalmente un motor hidráulico de 75 kW, una unidad de energía hidráulica denominada TADS, un sistema de control electrónico denominado Spider, elementos de seguridad y protección así como una unidad de enfriamiento de aceite circulante que impide que el aceite hidráulico se sobrecaliente.

2.1.2.4- Fajas transportadoras

Faja transportadora Nº 1

Esta faja transportadora de 60 pulgadas de ancho, traslada el mineral descargado por el alimentador de placas y alimenta al stockpile que abastece a chancado secundario. La faja es accionada por un motor de 185 kW, con una capacidad de tratamiento de 2 225 t/h, y en ella esta montada una faja magnética motorizada para la extracción de metales.

Faja transportadora Nº 2

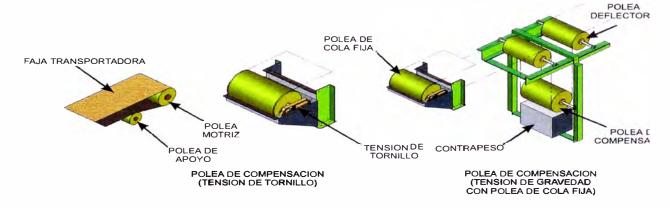
Es una faja de 60 pulgadas de ancho, traslada el mineral descargado por los alimentadores vibratorios hacia un chute distribuidor de dos vías que alimenta a dos zarandas vibratorias. La faja es accionada por un motor de 450 kW, con una capacidad de tratamiento de 2 155 t/h. En esta faja se encuentran instalados un electromagneto estacionario, un detector de metales y una balanza.

Faja transportadora Nº 3 y 4

Es una faja de 54 pulgadas de ancho, traslada el mineral descargado por las chancadoras cónicas, transfiriéndolo a la faja transportadora No.5 que alimenta a la tolva de carga de camiones. Cada faja es accionada por un motor de 37 kW, con una capacidad de tratamiento de 1 078 t/h.

Faja transportadora N°5

Es una faja transportadora de 60 pulgadas de ancho, traslada el mineral fino menor a 38 mm (1½ pulgadas) producto del zarandeo y descarga de las chancadoras cónicas, y alimenta a la tolva de carga de camiones de 1 000 t. vivas de capacidad. La faja es accionada por un motor de 370 kW. con una capacidad de tratamiento de 2 155 t/h. Esta faja es alimentada con cal viva por intermedio de un alimentador de tornillo de velocidad variable, el cual extrae la cal de una tolva de 450 toneladas de capacidad. En la faja también se encuentra instalado un brazo muestreador de 5 kW de potencia.


Principio de operación

Las fajas transportadoras se usan comúnmente para trasladar material grueso y relativamente seco. El diseño y configuración de las fajas transportadoras varía significativamente.

El mineral es transportado sobre una faja fabricada generalmente con capas de tela, cuerdas de acero y goma adherida o vulcanizada. La capa superior e inferior son de goma de un espesor adecuado para resistir la abrasión. La faja transportadora se mueve sobre polines planos, o más comúnmente, sobre polines cóncavos. La figura No. 2.8 muestra las partes principales comunes en una faja.

POLEAS

FAJA Y POLINES DE CARGA

Figura No. 2.8 Faja transportadora típica

Componentes típicos de una faja transportadora

Polea de cabeza

Se encuentra en el extremo de descarga de la faja transportadora. En la mayoría de los casos, la polea de cabeza es la polea motriz conectada con un motor. Sin embargo, algunas fajas transportadoras pueden usar múltiples poleas de accionamiento. Las poleas motrices pueden ubicarse en la polea de cabeza, en las poleas deflectoras o en la polea de cola.

En la mayoría de los casos, al accionar una polea deflectora, se requiere que una o más poleas de apoyo aumenten el ángulo de enrollamiento (arco de contacto) haciendo en accionamiento efectivo.

Polea de apoyo (tensora)

Se usa para aumentar el arco de contacto en la o las poleas motrices o de cabeza.

Polea deflectora (curvadora)

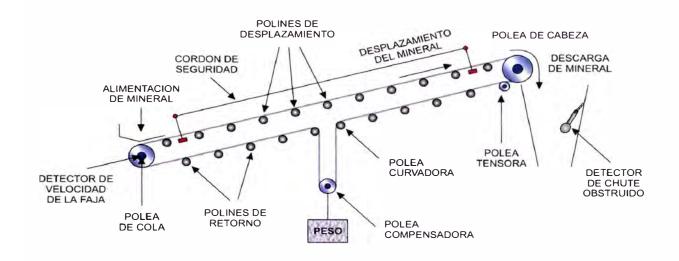
Se usa para cambiar la dirección de desplazamiento de la transportadora.

Polea de compensación

Se usa para tensionar la faja transportadora. Es una polea por gravedad debido al contrapeso que se usa. Las poleas de cola,

curvadora y tensora también pueden usarse como poleas de compensación.

Polea de cola


Se usa para hacer girar (cambiar) la faja desde la dirección de retorno hacia la dirección de desplazamiento con carga.

Polines de carga

Son rodillos que se encuentran debajo de la faja cargada y sostienen la faja transportadora y su carga. Los rodillos ubicados directamente debajo del punto de alimentación de material se conocen como polines de impacto porque, como lo dice su nombre, están diseñados para soportar cargas de impacto en el punto de carga de la faja transportadora.

Polines de retorno

Son rodillos que se ubican debajo del lado de retorno de la faja, que soportan el peso de la faja transportadora vacía durante su retorno.

FAJA Y POLINES DE DESPLAZAMIENTO

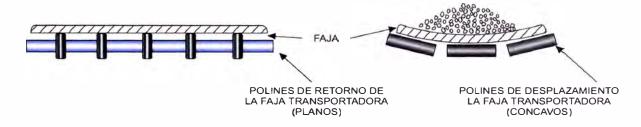


Figura No. 2.9 Componentes típicos de faja transportadora

Dispositivos de seguridad

Los dispositivos de seguridad protegen tanto a la faja como a los operadores. Entre estos tenemos los cordones de seguridad con sus interruptores emergencia, de parada de los sensores de desalineamiento de la faja transportadora (desplazamiento lateral), el detector de velocidad cero y un sensor de faja rota o desgarrada. La activación de cualquiera de estos dispositivos provoca una alarma que se registra en el sistema de control distribuido (DCS). Para activación también alarmas, detiene la faja enclavamiento.

Cordón de seguridad

Los cordones de seguridad se encuentran a lo largo de todas las fajas (los encontramos en casi todas las fajas y a ambos lados).

Los cordones están conectados en cada extremo a un switch o interruptor de bloqueo que al ser activados detienen automáticamente la faja.

Los cordones de seguridad están diseñados para detener las fajas en casos de emergencia.

Para accionarlos es necesario jalarlos hacia abajo.

Para el reseteo de los cordones de los pull cords se debe jalar el switch hacia dentro y regresarlo a la posición anterior e inspeccionar que la faja pase a modo automático.

Sensor de desalineamiento de faja

Es un interruptor que se conecta cuando es movido su accionamiento. El accionamiento es constituido por una palanca cilíndrica ubicada costado de la faja y desplazado por la acción de la faja en desalineamiento.

El desalineamiento de faja se produce en las fajas por varias razones:

Las poleas tanto de cola, cabeza o contrapeso pueden tener mucho barro o suciedad.

Si los polines de carga o retorno están parados.

Si los polines de carga o retorno se encuentran con mucho barro.

Si los polines de carga no están bien sujetados o empernados.

Detector de velocidad cero

Cumple la función de detectar una velocidad mínima en el eje de la polea de cola de una faja transportadora que es un indicador de resbalamiento de la faja sobre los polines o de sobrecarga.

Detector de rotura de faja

Consiste de dos interruptores colocados a ambos lados de una faja cuyos accionamientos respectivos están unidos por un cordón que cuelga por la parte inferior de la faja, de tal manera que al producirse una rotura de la faja, esta se descolgará cayendo sobre el cordón que accionará los interruptores laterales.

2.1.2.5 Faja magnética motorizada (motorized belt magnet)

La faja magnética motorizada ubicada sobre la faja transportadora No 1. de alimentación al stockpile, tiene por función remover restos de metal antes de que llegue a las chancadoras secundarias.

Posee un mecanismo autolimpiante accionado por un motor de 7,5 kW y está equipado con un interruptor para detectar un resbalamiento o funcionamiento defectuoso del mecanismo de

limpieza del imán; este interruptor detiene el imán por enclavamiento.

Principio de operación FAJA MAGNÉTICA MOTORIZADA

El electroimán autolimpiante o electromagneto es un poderoso separador electromagnético que saca fragmentos metálicos del mineral chancado que están siendo transferidos a través de la faja transportadora. El electroimán va montado directamente sobre la faja en forma perpendicular a ésta. El imán tiene un núcleo de hierro enrollado con alambre y cuando pasa una corriente directa a través del alambre se genera un gran campo magnético. Este campo magnético es lo suficientemente fuerte como para sacar fragmentos de metal presentes en el flujo de mineral chancado.

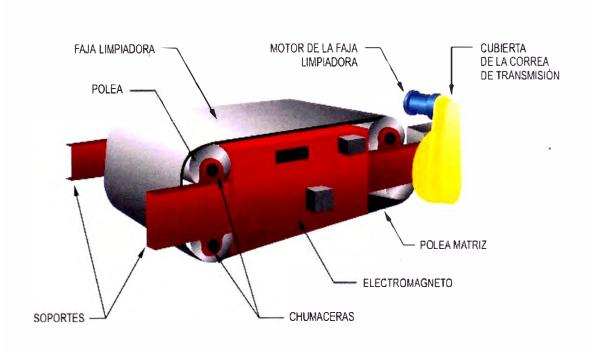


Figura No. 2.10 Partes del Belt magnet

El mecanismo autolimpiante consta de una faja transportadora de limpieza accionada por motor que se mueve alrededor del imán para sacar los fragmentos de metal del imán. La faja de limpieza se mueve a través de la cara del imán, de forma que cuando un fragmento de metal es sacado del flujo del mineral, la correa queda atrapada entre el fragmento de metal y el imán.

De esta forma, a medida que la faja de limpieza se mueve al extremo del imán, la fuerza magnética mantiene el fragmento de metal en contacto con la faja de limpieza de manera que el fragmento de metal es transportado junto con la correa.

A medida que la faja de limpieza se mueve más allá del borde de la correa transportadora, la fuerza magnética se vuelve más débil y, finalmente llega a ser lo suficientemente débil una tolva para metales ubicada debajo.

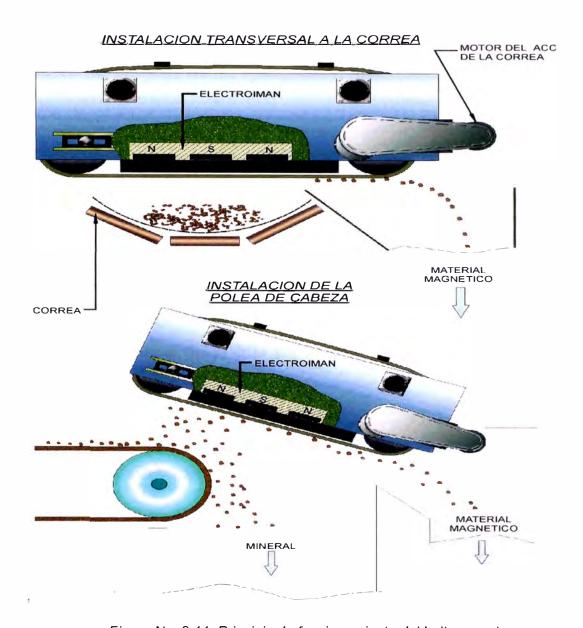


Figura No. 2.11 Principio de funcionamiento del belt magnet

2.1.2.6 <u>Detector de metales</u> (metal detector)

Tiene por función detectar metales que puedan estar enterrados muy por debajo del mineral como para ser sacado por el imán estacionario. El detector de metales se ubica en la faja transportadora No.2.

Principio de operación

Un detector de metales es un instrumento electrónico que detecta la presencia de objetos metálicos en una corriente de mineral.

Todo metal en la faja transportadora tiene una conductividad mayor que el mineral que se transporta; por lo tanto, el detector es capaz de detectar la presencia de metales en movimiento debido a que el metal causa un cambio de la señal electromagnética que se transmite desde arriba de la faja transportadora y se recibe debajo de ésta.

El detector de metales se calibra usando otro objeto metálico como referencia. Entonces puede detectar cualquier trozo metálico más grande que el objeto de referencia. Si detecta algún metal, suena una alarma y se desvía el flujo de mineral alrededor de los chancadores mientras el metal va pasando. La sensibilidad del detector de metales es ajustable.

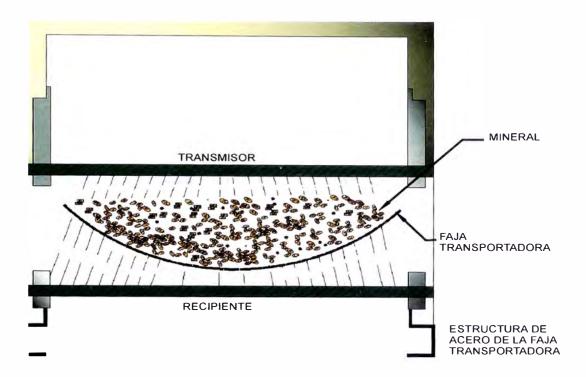


Figura No.2.12 Detector de metales

2.1.2.7 Balanza de faja

La faja de alimentación al chancado secundario esta equipada con una balanza que mide la cantidad total de mineral chancado; esta información se registra en la sala de control para el monitoreo del proceso y contabilidad metalúrgica.

Principio de operación

Una balanza va montada sobre el soporte de acero de la faja transportadora. El equipo de medición consiste en polines de pesaje y una celda del extensómetro de precisión que detecta el peso que pasa sobre el conjunto. La carga sobre la correa transportadora es transferida a los polines de pesaje y luego a la celda de carga. La salida de la celda de carga es proporcional al peso en la balanza.

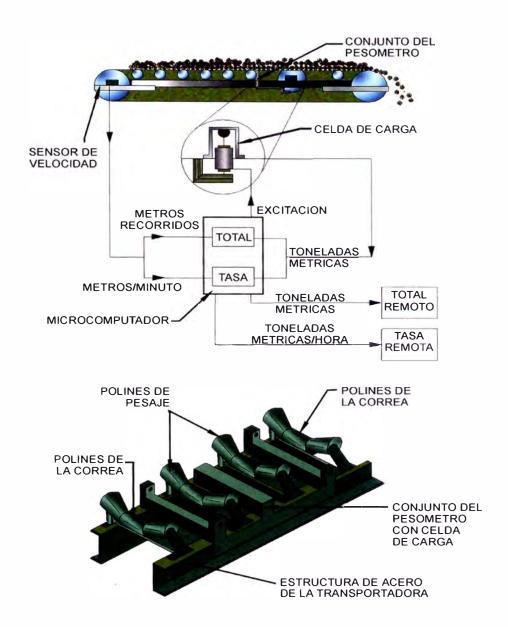


Figura No. 2.13 Principio de operación y partes de la balanza de faja

Un sensor de velocidad para la faja transportadora está directamente conectado a la polea de cola o a uno de los polines de retorno de diámetro mayor de la faja transportadora. Los elementos electrónicos de la balanza aceptan dos señales de entrada (una para la velocidad de la faja transportadora y otra para la lectura de la celda de carga). Estas señales se convierten en señales eléctricas

equivalentes al número total de toneladas que pasan a través de la correa transportadora y a la razón instantánea de toneladas por hora. Una señal que representa el tonelaje es enviada al DCS, donde se muestra tanto la razón de tonelaje instantánea como el tonelaje acumulativo de los turnos y a la fecha.

2.1.2.8 Alimentador vibratorio

Los alimentadores vibratorios tienen por función extraer el mineral del stock pile por intermedio de chutes vibratorios y transferirlo a la faja transportadora No.2 a razón de 718 t/h. estos alimentadores tiene una dimensión de 48" de ancho x 100" de largo. Cada alimentador es accionado por un motor de 4 kW.

Principio de operación

Durante su funcionamiento la energía es suministrada a la bobina del vibrador, desde un control electrónico. Este control consta de un rectificador, tarjeta electrónica, llave de alimentación, portafusibles, fusibles y una resistencia variable de control. El rectificador es usado para convertir la corriente alterna en un conjunto de pulsos de corriente.

Estos pulsos de corriente provocan que la bobina atraiga de manera intermitente un conjunto de placas montadas en una armadura, provocando el efecto vibratorio. El espacio libre existente entre la

bobina y la armadura, se denomina "apertura o luz", y su calibración es esencial para su correcta operación.

2.1.2.9 Zarandas vibratorias (vibrating screen)

Se encargan de clasificar el mineral alimentado por el partidor de carga de dos vías proveniente de chancado primario. El tonelaje de mineral que recibe cada zaranda es de 1 078 t/h. El 20% (215 t/h) del mineral alimentado a la zaranda sale por el undersize del primer deck (piso) como producto final para lixiviación con un tamaño de partícula de 1½ pulgadas; y el 80% (863 t/h) sale por el oversize de los dos decks para ser reducidos de tamaño en las chancadoras secundarias.

Las zarandas vibratorias, tienen 2 400 mm (8 pies) de ancho y 7 300 mm (24 pies) de largo. El material más fino que 38 mm (menos de 1½ pulgadas) pasa por el deck inferior de la zaranda y se descarga por un chute directamente sobre la faja transportadora que transporta el producto de la chancadora secundaria. El deck superior está hecho de caucho y tiene aberturas cuadradas de 100 mm. (3 pulgadas). El deck inferior también está hecho de caucho y tiene aberturas cuadradas de 38 mm (1½ pulgadas).

Principio de operación

El zarandeo es una operación mecánica que separa partículas en función del tamaño usando una superficie de zarandeo para aceptar o rechazar dichas partículas. Estas pasan sobre una superficie de zarandeo que contiene numerosos agujeros de un tamaño específico. Las partículas más pequeñas que los agujeros pasan a través de la superficie de zarandeo. Este material es conocido como undersize, o mineral de menor tamaño. Las partículas más grandes que los agujeros no atraviesan el tamiz y se identifican como oversize, o mineral de mayor tamaño.

Las zarandas vibratorias están equipadas con un mecanismo vibratorio de eje excéntrico y resortes de compensación que hacen vibrar la superficie de zarandeo para estratificar las partículas y hacer más eficiente la clasificación. Como el material cae sobre la superficie de la caja de alimentación, las partículas pierden velocidad y tienden a expandirse sobre la superficie de zarandeo. Como la superficie es vibrada, el lecho de material tiende a desarrollar características similares a los fluidos. Las partículas más grandes permanecen en la parte superior y las pequeñas se separan a través de los orificios llegando a la base del lecho. Las partículas que son lo suficientemente pequeñas pasarán por los agujeros como undersize y las partículas más grandes no pasarán y serán rechazadas como oversize (mineral de mayor tamaño).

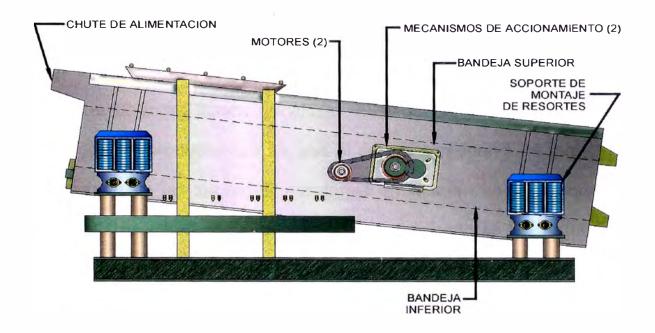


Figura No. 2.14 Zaranda vibratoria de doble bandeja

2.1.2.10 Chancadora secundaria cónica

Las chancadoras secundarias cónicas convencionales para trabajo pesado reducen el material de tamaño grueso de ambos decks (pisos) de cada una de las zarandas. El tamaño de la partícula que alimenta a la chancadora es el 100% pasante de:

- -175 mm +100 mm. que corresponde al rechazo del 2do deck.
- -100 mm a + 38 mm que corresponde al rechazo del 1er deck.

La carga alimentada a cada la chancadora secundaria es de 1 078 t/h con una humedad de 3 %. El mineral es chancado a un tamaño menor a 38 mm. y descargado en las fajas transportadoras 3 y 4 respectivamente, para luego ser trasferido a la faja transportadora

No.5, que se encarga transportar el mineral hasta la tolva de carga de camiones de 1 000 t. vivas de capacidad.

Las chancadoras tienen un ajuste del lado cerrado de 34 mm. y entregan un producto que se une al producto menor a 38 mm (1 ½ pulgadas.) de las zarandas vibratorias en la faja transportadora del producto de chancado secundario. Las chancadoras funcionan con motores de 600 kW.

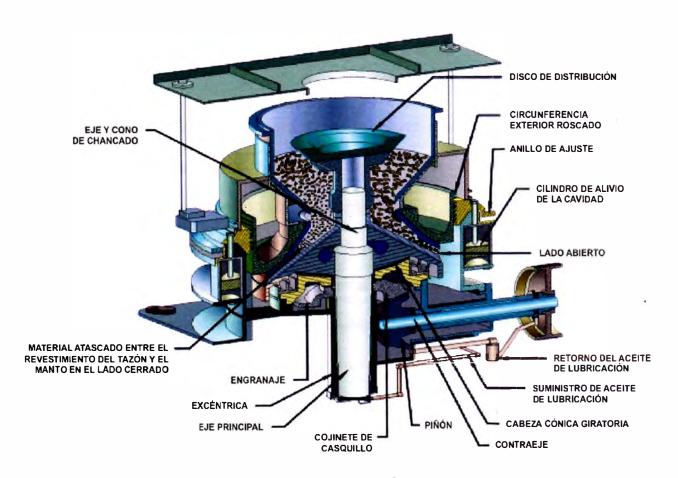
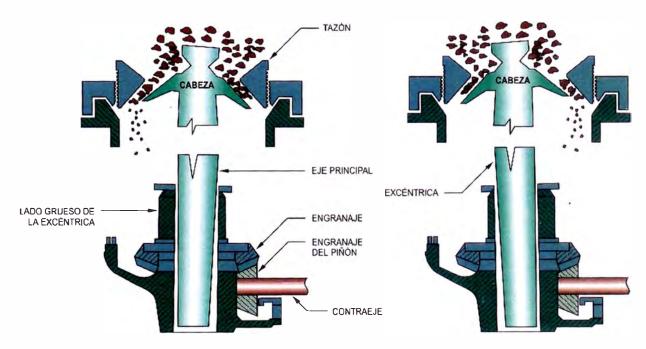


Figura No.2.15 Chancadora cónica


Principio de operación

En una chancadora cónica convencional, el mineral se chanca entre una cabeza chancadora (manto o mantle) y un tazón curvo (taza o bowl). La cabeza (o cono chancador) va completamente apoyada en el cojinete de un receptáculo esférico. El eje cónico de la cabeza encaja en un orificio de la excéntrica (un cilindro giratorio vertical que está perforado en forma excéntrica y en ángulo con respecto a la vertical). El buje se hace girar (mediante un motor) a través de un contraeje y una disposición biselada de engranajes de corona y piñón. A medida que va girando, imparte un movimiento giratorio a la cabeza.

El mineral se alimenta a la chancadora a través del chute de alimentación al disco de distribución, el cual gira con la cabeza (cono) y distribuye la alimentación alrededor de la cavidad de chancado. El mineral cae a la separación entre el tazón y el cono y se atrapa y fractura durante la parte de la rotación en la que la cabeza está cerca del revestimiento del tazón. A medida que la cabeza se aleja, el material fracturado (más pequeño) se asienta más abajo en el tazón, donde la separación es más angosta. El material se vuelve a fracturar cuando la cabeza retorna a su posición original.

Ajuste de la separación

El tamaño del producto descargado desde la chancadora se determina ajustando la abertura entre los revestimientos de la chancadora de manera que el lado cerrado sea levemente menor al tamaño del producto deseado. (La abertura debe ajustarse en forma continua durante la vida útil de los revestimientos debido a que la abertura aumenta a medida que el material de revestimiento se desgasta). Al subir el tazón en relación al cono aumenta la abertura; al bajarlo, se cierra la abertura. Un anillo de ajuste, roscado en el interior, descansa sobre la estructura principal. El tazón, roscado en la parte externa, puede atornillarse hacia arriba o hacia abajo dentro del anillo de ajuste para cambiar el tamaño de la abertura.

 El mineral grueso entra al lado abierto. El mineral grueso se chanca en el lado cerrado. Después de una rotación de 180º, el lado abierto está ahora cerrado. El mineral grueso cae en el lado abierto.

Figura No.2.16 Ajuste del chancador conico

Mecanismo de liberación hidráulico

Si el tazón estuviera rígidamente adherido a la estructura, la chancadora podría dañarse, quizás seriamente, si un objeto que no puede romperse (como un trozo de acero) quedara atrapado entre el cono y el tazón. Para permitir que el tazón ceda, el tazón y el conjunto de anillos de ajuste se mantienen abajo en la estructura principal mediante una serie de pistones. El líquido hidráulico, desplazado de los pistones por el movimiento del tazón, comprime gas de nitrógeno en un acumulador. La resistencia cada vez mayor de este sistema de liberación hidráulico absorbe los impactos. Simultáneamente, permite que el tazón se levante lo suficiente para que aumente la separación y permitir que pase la chatarra de acero. Una vez que la chatarra de acero ha pasado y se han normalizado las fuerzas de chancado, el anillo de ajuste se reestablece automáticamente. Luego de eso, la chancadora sigue funcionando como antes. La Figura 2.17 ilustra este principio.

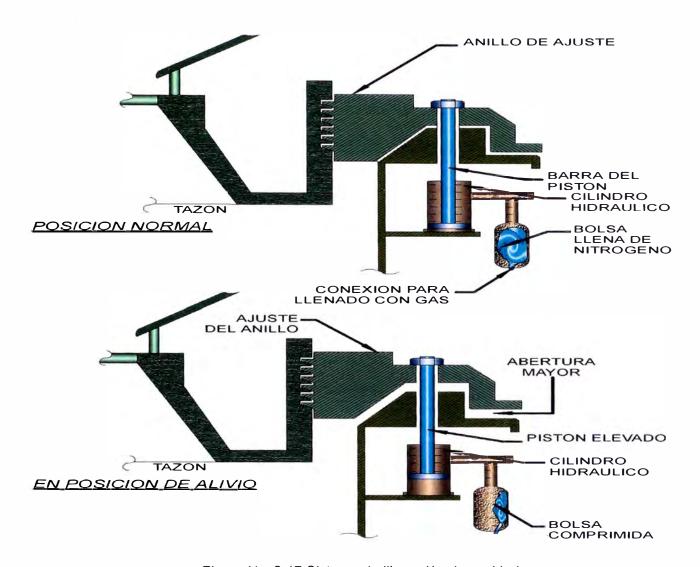


Figura No. 2.17 Sistema de liberación de cavidad

Mecanismo de despeje hidráulico

Si un trozo grande de material que no puede fracturarse queda obstruido en la chancadora y si se desconecta el motor de la chancadora, el mecanismo de despeje hidráulico se usa para despejar la obstrucción. Los pistones hidráulicos levantan el tazón hasta que se despeje la obstrucción o hasta que el tazón pueda bloquearse y el objeto pueda removerse sin riesgos.

Sistema de lubricación de la chancadora cónica

El sistema de lubricación del chancador bombea aceite a través de un filtro e intercambiador de calor, para luego ser empujado hacia arriba a través de conductos interconectados en el eje principal, hacia las superficies de rodamiento del buje de la excéntrica, bujes de cabeza y finalmente hacia arriba a través de la quicionera y superficie de rozamiento del revestimiento de la quicionera.

El flujo excesivo de aceite desde el revestimiento de la quicionera permite que el aceite fluya a través de los agujeros en el manto y se derrame sobre el engranaje y los dientes del piñón. Observe las de aceite en el revestimiento de la quicionera. ranuras Simultáneamente, una línea separada empuja aceite a través de la caja del contraeje hacia los descansos del contraeje. Finalmente el aceite se recoge en un sumidero en la parte inferior de la estructura principal y vuelve por gravedad a través de tuberías hacia el tanque de suministro.

2.2 GENERALIDADES DEL SISTEMA DE FAJAS TRANSPORTADORAS

El tema de fajas transportadoras es de interés primordial para todos los ingenieros, gerentes, y otros que son responsables en la selección del equipo para manejar materiales a granel. Las fajas transportadoras han logrado una posición dominante transportando los materiales a granel,

debido a ventajas inherentes tales como su economía y seguridad de funcionamiento, fiabilidad, versatilidad, y el rango prácticamente ilimitado de capacidades. Además, son convenientes para realizar las numerosas funciones del proceso en relación con su propósito normal de proporcionar un flujo continuo de material mientras funciona.

Recientemente, su conformidad a los requisitos medioambientales ha mantenido un incentivo extenso para la selección de fajas transportadoras por encima de otros medios de transporte. Los requisitos de trabajo y energía bajos son fundamentales con las fajas transportadoras en comparación con otros medios de transporte.

Los fabricantes de fajas transportadoras se han anticipado a las necesidades de la industria de forma consistente con mejoras en los diseños y con componentes que han excedido todos los requerimientos conocidos. La disponibilidad y la seguridad son ahora excelentes debido a que las fajas disponibles son más resistentes y durables, así como las partes mecánicas grandemente mejoradas y mandos eléctricos, dispositivos de seguridad muy sofisticados.

Se ilustran y describen en este capítulo algunas de las ventajas de las fajas transportadoras que realizan una amplia variedad de funciones al interior de la planta, mejor y/o de la manera más innovadora posible con otros medios de transporte de los materiales a granel. También se incluyen ejemplos de

sistemas de faja transportadora de distancia relativamente larga que están usándose extensivamente porque combinan los importantes beneficios tales como la fiabilidad, seguridad, y el bajo costo por tonelada de material transportado.

2.2.1 <u>Transporte de una Variedad de Materiales</u>

El tamaño de materiales que pueden llevarse está limitado por el ancho de la faja. Debido a que las fajas de caucho son muy resistentes a la corrosión y abrasión, los costos de mantenimiento son comparativamente menores al manejar materiales muy corrosivos o que son sumamente abrasivos, como la alúmina y los materiales sinterizados.

Materiales que podrían adherirse o pegarse por otros medios son manejados a menudo con éxito en las fajas transportadoras. Incluso los materiales calientes como arena de fundición, coque, materiales sinterizados, y gránulos de mineral de hierro son transportados con éxito.

2.2.2 Amplia gama de capacidades

Las fajas transportadoras actualmente disponibles son capaces de manejar capacidades horarias que exceden cualquier requisito práctico.

Aunque también se usan económicamente en plantas para transportar materiales entre unidades del proceso en una gama amplia de proporciones

Las fajas transportadoras operan continuamente el tiempo y los días necesarios cuando se requiere, sin pérdida de tiempo, cargar y descargar o vaciar tramos de retorno. La programación del tiempo y despachado son innecesarios porque el material se carga y descarga automáticamente de la faja transportadora. Los costos de operación difieren poco, sin tener en cuenta los rangos de globales capacidad. Los costos por tonelada disminuyen dramáticamente, sin embargo, cuando el tonelaje anual manejado aumenta. Por estas razones, las fajas transportadoras son capaces de manejar toneladas de materiales a granel que serían más costosos y a menudo menos práctico de transportar por otros medios.

2.2.3 Adaptabilidad al terreno

Los sistemas de la faja transportadora proporcionan los medios de transportar los materiales vía la distancia más corta entre los puntos de carga y descarga. Ellos pueden seguir el terreno existente en las inclinaciones de 30 a 35%, comparadas con las de 6 a 8%, límites efectivos para el transporte de camión.

Pueden proporcionarse con estructuras que previenen el escape de polvo a la atmósfera circundante y son protectores del ambiente. Tales estructuras son económicas y son adaptables a requisitos especiales.

Las fajas transportadoras proporcionan un flujo continuo de material mientras evitan la confusión, retrasos, y riesgo de seguridad y el tráfico en las plantas y otras áreas congestionadas.

Las rutas de viaje pueden ser bastante flexibles, y la longitud de las rutas puede extenderse repentinamente, como sea requerido. En algunas operaciones mineras de tajo abierto transportadores de miles de pies de largo tramos son intercambiados lateralmente en la plataforma para seguir el progreso de excavación en la superficie.

La tecnología ha avanzado substancialmente en el diseño y aplicación de fajas transportadoras con curvas horizontales. Como la longitud total de un transportador aumenta, hace que probable que se requieran estaciones de transferencia para evitar algún obstáculo en su recorrido lineal recto. Las curvas horizontales eliminan las restricciones del transportador de línea recta y reducen sus costos de instalación y operación

fajas Los transportadores con curvas horizontales usan transportadoras abarquilladas convencionales componentes У normales. La faja cargada y vacía pasa a través de los tramos de conducción y retorno de la curva horizontal, a falta de equilibrio, mediante una su elevación extra de los rodillos. Las curvas horizontales también pueden combinarse con las verticales convexas y/o cóncavas, para ajustar el transportador a la alineación del contorno más económica.

Los transportadores curvos realzan más la fiabilidad, disponibilidad y ventajas medioambientales de la faja transportadora standard eliminando la infraestructura y requisitos de control de polvo en las estaciones de transferencia.

2.2.4 Angulo de inclinación de transporte

Las características de materiales a granel tales como la densidad, ángulo efectivo de fricción interior, tamaño del trozo y forma, son todos los factores que indican el ángulo de inclinación máximo con el cual, el material puede ser transportado por la faja transportadora standard sin tener que rodar o resbalar sobre la faja. En la Tabla 2.1 se lista los límites de ángulos de sobrecarga y ángulos de reposo de materiales.

Tabla 2.1: Angulo de sobrecarga

Fluidez - Angulo de sobrecarga - Angulo de reposo

Fluidez muy libre 1*	Fluidez libre 2*	Fluidez promedio 3*		Pesada 4*
ángulo de	Angulo de	Angulo de	Angulo de	Angulo de
sobrecarga de 5°	sobrecarga de 10°	sobrecarga de 20°	sobrecarga de 25°	sobrecarga de 30°
55	10°	20°	250	30'
0° - 19°	20° - 29°	30° - 34°	35° - 39°	40° - a más
augulo de reposo	angulo de reposo	angulo de reposo	angulo de reposo	angulo de reposo
Características del material				
Tamaño uniforme,	Partículas pulidas,	Materiales	Materiales comunes	Materiales
particulas	redondeadas, secas,	Irregulares.	tipicos: carbón	irregulares, fibrosos,
redondeadas muy	de peso medio:	granulares o en	bitumimoso, piedra,	que se pueden
pequeñas, tanto si	granos sin pelar y	trozos de peso	mayoria de	atorar: astillas de
están húmedas o	frejoles	medio, tales como	minerales	madera, bagazo,
muy secas: piedra		antracita y carbón		arena de fundición
silice seca, cemento.		de piedra, semilla de		templada.
concreto húmedo		algodón, arcilla, etc.		l

^{*} Los diseños de código conforman las características gráficas de los materiales a granel.

Estos ángulos máximos generalmente van de 10 - 18 grados dependiendo del material a granel. Los recientes desarrollos aumentan este ángulo de inclinación debido al recorrido flexible que las fajas transportadoras standard pueden lograr ahora.

Simplemente, haciendo las cubiertas de faja irregulares se aumentará su capacidad para llevar materiales a inclinaciones ligeramente mayores con la mayoría de fabricantes de modelos de faja con espesores de ¼" a 1- 3/8" en la cubierta superior. Los fabricantes de fajas quieren sin embargo, para algunos materiales, que sólo aumente las recomendaciones de inclinación máxima a cinco grados por encima de la cubierta de la faja plana.

Los soportes más grandes pueden estar conformadas en caliente o frío unido, o mecánicamente sujetos en la cubierta superior después de la fabricación. Estos grandes soportes permiten que el ángulo de transporte aumente aproximadamente 45 grados. La capacidad de transporte disminuye rápidamente con el incremento del ángulo. Los soportes de faja están disponibles en varias medidas, formas y configuraciones, permitiendo a la mayoría de las fajas correr tanto en una posición abarquillada como plana. Las fajas con abrazadera son usualmente restringidas para transportadores cortos donde algunos o ningún rodillo de retorno sea necesario y/o el material no se pega a la superficie o donde la devolución es aceptable. Para mejorar en el aprovechamiento del soporte, pueden agregarse paredes laterales corrugadas al soporte transversal de la faja para formar los compartimentos rectangulares completos. Estas paredes laterales y la estructura rígida transversal de la faja permiten que corra en forma llana sin rodillos abarquillados. Las paredes laterales también aumentan la capacidad de transporte de carga en comparación con los diseños de soporte sólo y permiten llevar la carga a ángulos mayores de 90 grados.

2.2.5 Carga, descarga, y capacidades de almacenamiento

Las fajas transportadoras son muy flexibles en sus capacidades para recibir material de uno o más lugares y para entregarlo a puntos o áreas, requeridas por las rutas de flujo de planta. Pueden

proporcionar la arteria de transporte principal mientras la faja se carga en varios puntos o en cualquier lugar a lo largo de su longitud por equipos que proporcionan una alimentación uniforme a la faja. Ellos son particularmente útiles en los túneles subterráneos a canchas de almacenamiento, desde los cuales pueden recuperar y, donde sea requerido, mezclar materiales de varios montones. El material simplemente puede descargarse encima del extremo de la polea de cabeza de cada transportador o en cualquier parte a lo largo de su longitud por medio de desviadores o volteadores móviles.

2.2.6 Las Funciones del proceso

Aunque generalmente se usan las fajas transportadoras para transportar y distribuir los materiales, también se usan con equipo auxiliar para realizar numerosas funciones durante varias etapas del proceso. Un grado alto de mezcla se acompaña en los materiales que descansan en y son recuperadas de canchas de reserva.

Las muestras exactas del material llevado pueden obtenerse por dispositivos que atraviesan el flujo del material desde un transportador al siguiente. Pueden eliminarse objetos magnéticos del material.

Mientras se transportan en el transportador, también pueden pesarse con precisión y en forma continua además de ordenarse, escogerse, o rociarse. En muchos casos, tales operaciones no se

realizan de la forma más eficaz estando en contacto con las fajas transportadoras, pero son los únicos medios prácticos.

2.2.7 Confiabilidad y Disponibilidad

La confiabilidad de las fajas transportadoras ha sido probada durante décadas y en prácticamente cada industria. Ellas operan con una confiabilidad absoluta, muchos que sirven a unidades de proceso vitales cuyo éxito depende del funcionamiento continuo.

Las fajas transportadoras se operan al toque de un botón en cualquier momento del día o de la semana. Cuando se requiera, pueden y a menudo operan continuamente, turno tras turno. Pueden alojarse para que ambos, los transportadores y el material transportado, sean protegidos de elementos que impidan el movimiento de camiones y otros medios de transporte.

2.2.8 <u>ventajas ecológicas</u>

Las fajas transportadoras son ecológicamente más aceptadas que otros medios de transporte de materiales a granel; no contaminan el aire, ni ensordecen. Ellos operan silenciosamente, a menudo en sus propios ambientes que, cuando se desea, puede localizarse en situaciones de confusión y que comprometen la seguridad, en superficies de tráfico o en pequeños túneles fuera del alcance de la vista y el oído. Además, no contaminan el aire con polvo o

hidrocarburos. En las transferencias, el polvo puede contenerse dentro de los chutes de transferencia o recolectado con el equipo conveniente, si fuera necesario.

Finalmente, los sistemas de faja por encima del nivel del suelo pueden diseñarse para adaptarse en el paisaje, produciendo una operación tranquila, silenciosa y libre de polución.

2.2.9 Seguridad

Las fajas transportadoras operan con un grado sumamente alto de seguridad. Se requiere poco personal para el funcionamiento y ellos se exponen a menores riesgos que con otros medios de transporte. El material esta contenido en la faja y el personal no se pone en peligro por la caída de trozos o el funcionamiento defectuoso de vehículos de transporte grande y pesado. Tales vehículos también involucran la obligación pública, si ellos operan en carreteras o en otras áreas accesibles al público. También, los transportadores ofrecen menos riesgos al personal descuidado que es inherente en otros medios de transporte de materiales a granel. Puede protegerse el propio equipo transportador de la carga excesiva y funcionamiento defectuoso mediante la construcción con dispositivos de seguridad eléctricos y mecánicos.

2.2.10 Menores Costos de Trabajo, Potencia y Mantenimiento

Las horas hombre por la tonelada requerida para operar el sistema de fajas transportadoras normalmente son mas que cualquier otro transporte de materiales a granel. Como otros método de dispositivos de trabajo, con operaciones altamente poco automatizadas, las fajas transportadoras tienen bajos costos de operación y proporcionan un mayor retorno de la inversión que los métodos competitivos. La mayoría de las funciones del sistema puede supervisarse por un tablero de mando central o controlado por computadora, mientras dejando un número mínimo de operarios para inspeccionar el equipo y las condiciones de reporte que pueden requerir atención por la sección de mantenimiento.

El creciente costo de la energía enfatiza la importancia de la potencia y su relación con el costo por tonelada en el transporte de los materiales a granel. Debido a que las fajas transportadoras funcionan gracias a la energía eléctrica, son menos afectadas por el precio, la escasez, y otras limitaciones del combustible líquido. Además, sólo consumen energía cuando están en funcionamiento. No hay necesidad en los tramos vacíos de retorno o alinear los rodillos para la siguiente carga. En los sistemas de gran longitud los tramos en declive ayudan a menudo a propulsar los tramos inclinados u horizontales. Algunos sistemas transportadores son completamente regeneradores. El costo de la energía para los

sistemas transportadores de faja siempre ha contribuido a disminuir sus costos de operación, y esta ventaja se ha incrementado substancialmente con el aumento en el costo de los combustibles líquidos.

Los costos de mantenimiento para las fajas transportadoras son sumamente bajos comparados con la mayoría medios de transporte de materiales a granel. Las vías de apoyo extensas, tales como las que normalmente se asocian con el transporte en camión, no se requieren. Las partes componentes se guardan y tienen una vida útil mayor en comparación con las de los vehículos sólo Normalmente. necesitan inspecciones lubricación programadas. Cualquiera reparación o reemplazo puede realizarse anticipadamente y evitar tiempos fuera de servicio no programados. Las partes son pequeñas y accesibles para que los reemplazos puedan realizarse rápidamente en el sitio y con el equipo de servicio mínimo. También, pueden tenerse inventarios adecuados de partes de repuesto a un costo bajo y requerir un espacio relativamente pequeño para el almacenamiento.

CAPITULO 3 PLANTEAMIENTO DEL PROBLEMA

3.1 ANÁLISIS DE LA PROBLEMÁTICA PREVIA

Las paradas de planta por mantenimientos correctivos eran cada vez mas repetitivas, por lo que en los años del 2007 al 2009 se vinieron observando reducciones importantes en la disponibilidad del sistema de chancado.

Por tanto se decide realizar un estudio y análisis de las fallas para poder evitarlas inicialmente y luego eliminarlas. La situación previa antes de realizar dicho estudio se refleja en un análisis de la data de horas planificadas y las horas no planificadas en cada área de la planta de chancado.

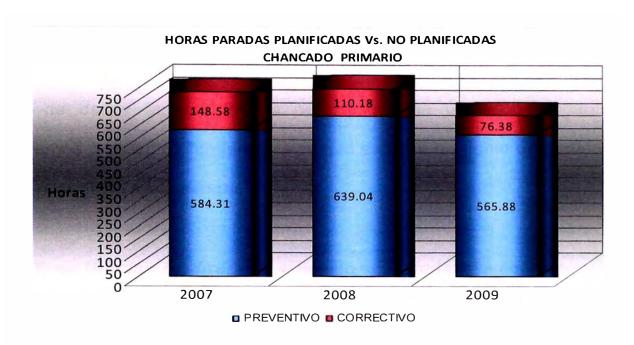


Figura: Horas paradas planificadas VS No planificadas - Chancado Primario

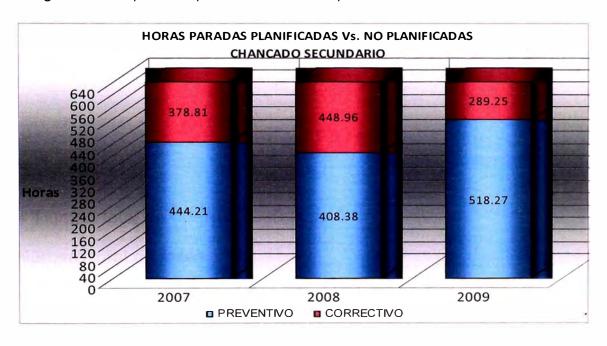


Figura 3.1: Horas paradas planificadas VS No planificadas - chancado secundario

Por tanto podemos afirmar que las paradas correctivas en chancado primario y secundario eran un porcentaje importante en las horas totales de paradas.

3.2 APLICACIÓN DE METODOLOGÍA SEGÚN MÉTODO DE DISPERSIÓN LOGARÍTMICA (JACK-KNIFE)

Antes de definir la metodología de gráficos de dispersión logarítmica, definiremos conceptos fundamentales que servirán de punto de partida para desarrollar dicha metodología.

TBF (Time Betuing Faulire).- Es el tiempo entre cada falla ocurrida.

MTBF (Mean Time Between Failures).- Es el tiempo promedio que un equipo, maquina, línea o planta cumple su función sin interrupción debido a la falla funcional. Se obtiene dividiendo el tiempo total de operación entre en numero de paradas por fallas ocurridas.

MTBF = TTO / #F

Dónde:

TTO = Tiempo total de operación en el período.

#F = Número total de fallas.

TTR (Time To Repair) Es el tiempo que se toma para restaurar una falla y que el equipo entre nuevamente en funcionamiento.

MTTR (Mean Time To Repair) Es el tiempo promedio para restaurar la función de un equipo, maquina, línea o proceso después de una falla funcional. Incluye tiempo para analizar y diagnosticar la falla, tiempo para conseguir la refacción, tiempo de planeamiento, etc. Es una medición de

66

mantenibilidad de un equipo y se obtiene dividiendo el tiempo total de las reparaciones entre el numero total de fallas en un sistema.

MTTR = TTR / #F

Por tanto si consideramos que la disponibilidad de un equipo esta definido por:

El MTBF es por consiguiente un indicador de la confiabilidad de un sistema o equipo, y el MTTR será un indicador de la eficiencia de mantenibilidad ofrecida al sistema o equipo.

La metodología de Gráficos de Dispersión Logarítmica (Diagramas de Jack-knife) es una metodología para la priorización en los planes de mantenimiento. Esta toma como criterios de priorización los costos de mantención asociados a los códigos de falla, la frecuencia de falla, o bien, el tiempo medio para reparar (razón entre el tiempo fuera de servicio y el número de fallas).

Es así que sobre la base de los tipos de falla se realizo el análisis, teniendo en cuenta los sistemas y sub sistemas de chancado primario y secundario.

Para poder luego tomar planes de acción sobre dichos tipos de fallas de acuerdo al objetivo deseado: mejorar la disponibilidad (disminuir el tiempo fuera de servicio), su confiabilidad (frecuencia de falla) y su mantenibilidad, lo que se traduce en una disminución directa de los costos de mantención.

El tiempo total fuera de servicio (TFS) para un determinado código de falla (i), es producto de dos factores: uno de ellos es el número de fallas imprevistas asociadas a ese código (ni) y el otro es el tiempo medio asociado al diagnóstico y reparación (MTTRi).

TFSi = ni x MTTRi

Al graficar las curvas de TFS resultan hipérbolas, y por lo tanto se aplica el logaritmo a esta con lo que se obtiene lo siguiente:

$$log (TFS)i = log (n)i + log (MTTR)i$$

Esta metodología consiste en construir un gráfico de dispersión con los ejes x e y ajustados a escala logarítmica. El gráfico de dispersión ubica en el eje x número de fallas vs. Valores del MTTR que se ubican en el eje y.

La clasificación de los tipos de falla en los gráficos de dispersión logarítmica provee una sencilla manera de identificar problemas de confiabilidad, disponibilidad y mantenibilidad.

Si consideramos que aquellas fallas que tienen un tiempo medio de reparación muy largo son del tipo agudas, mientras que aquellas fallas que presentan un alto nivel de ocurrencia son del tipo crónicas, mediante la determinación de valores límites para el MTTR y n, el gráfico de dispersión logarítmica puede ser dividido en cuatro cuadrantes:

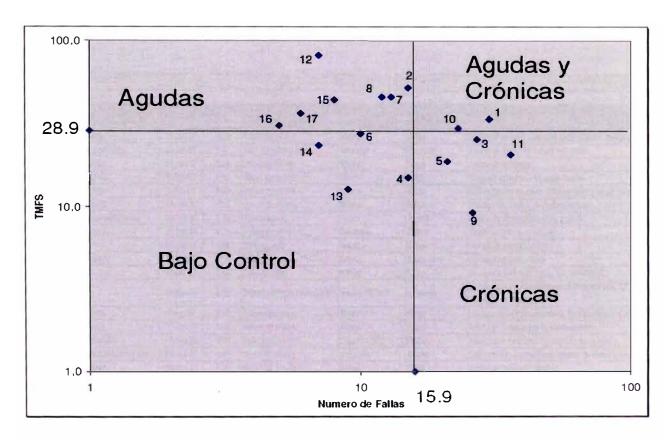


Figura 3.2: Grafico de dispersión logarítmica mostrando valores limite (fuente: [Knights04]).

Los cuadrantes superiores representan la zona de fallas agudas, mientras que los cuadrantes del lado derecho representan una zona de fallas crónicas. El cuadrante superior derecho representa una zona de fallas agudas y crónicas simultáneamente.

3.3 PRIORIZAR LOS SISTEMAS CON MAYOR CANTIDAD DE HORAS PARADAS NO PROGRAMADAS

Se trabajó con la información necesaria de la base de datos asignando a cada componente un sistema, esto con el fin de asociar modos de fallas similares de distintos equipos y poder analizarlos.

	B16	▼ f Faja 1							
	Α	В	С	D	Ε	F	G	Н	. I
3									
	te 🗸	Equipo	Componente	Fecha 🖵	Tiempo Parad *	Falla	Modo de Falla	Causa 🖵	Solución
	1	Apron Feeder	Bandejas	17-Jan-07		Rotura de pernos	Rotura	Fatiga	Soldeo de eslabón y plancha chute exterior, cambio polin 136C F1
	2	Surge Pocket	Instrumentacion	28-Jan-07	0.32	Falla Instrumentacion	Sn señal	Averiado	Sensor de nivel - Till Switch malogrado
	3	Apron Feeder	Bandejas	31-Jan-07	0.54	Rotura de pernos	Rotura	Fatiga	Soldeo de eslabones
I	4	Apron Feeder	Bandejas	6-Feb-07	5.14	Rotura de pernos	Rotura	Fatiga	Rajadura de eslabón de apron feeder.
1	5		Bandejas	8-Feb-07	0.47	Rotura de pernos	Rotura	Fatiga	Soldeo de liner en chute. Bandeja floja en oruga del apron feeder.
1	6	Apron Feeder	Bandejas	14-Feb-07	0.11	Rotura de pernos	Rotura	Fatiga	Rajadura de estabón de cadena, soldeo
1	7	Chancadora Giratoria	Sistema Lubricación	22-Feb-07	0.73	Filtro saturado	Parada	Alarma	cambio de filtros chancadora giratoria
2	8	Apron Feeder	Bandejas	23-Feb-07	0.21	Ajuste de pernos	Desajuste	Soltura	Ajuste de pernos en bandeja.
1	9	Faja 1	Polin	26-Feb-07	0.19	Daño en polin	Rotura	Fatiga	Cambio de polines de Faja 1
	10	Apron Feeder	Bandejas	18-Mar-07	0.31	Rotura de pernos	Rotura	Fatiga	Soldeo de estabon rajado
i	- 11	Faja 1	Polin	23-Mar-07	0.44	Daño en polin	Rotura	Fatiga	Se cambia polines de carga 137, [polin B y C.
5			Faja	24-Mar-07	3.36	Desprendimiento raspador V	Desprendimiento	Desgaste	La faja tenia un corte transversal de aproximado 12", Raspador en V se retiro.
7	13	Apron Feeder	Bandejas	7-Apr-07	1.95	Rotura de pernos	Rotura	Fatiga	Fractura de eslabón de cadena. Se consideró 1º 1.98916666666667hr
	14	Apron Feeder	Bandejas	12-Apr-07	0.38	Rotura de pernos	Rotura	Fatiga	Soldeo de 3 eslabones de lado izquierdo.
1	15	Chancadora Giratoria	Sistema MPS	13-Apr-07	2.22	Falla valvula relief	Fuga de aceite	Fatiga	Chancadora Giratoria - Cambio de valvula relief
1	16	Apron Feeder	Elementos de desgaste	18-Apr-07	0.46	Ajuste de pernos	Desajuste	Soltura	Colocación de liner en Chute exterior de Apron feeder
İ	17	Apron Feeder	Bandejas	26-Apr-07	0.15	Rotura de pernos	Rotura	Fatiga	Soldeo de fuisura en eslabón
1	18	Rock Breaker	Sistema Electrico	29-Apr-07	0.33	Falla electrica	Sin señal	Averiado	Reparación por falla eléctrica
3	19	Apron Feeder	Bandejas	1-May-07	1.04	Rotura de pernos	Rotura	Fatiga	Soldeo de eslabones y colocación de pernos fallantes de bandejas.
I	20	Apron Feeder	Bandejas	11-May-07	1.17	Rotura de pernos	Rotura	Fatiga	Soldeo de eslabón de cadena
i		Rock Breaker	Instrumentacion	11-May-07	0.22	Falla Instrumentacion	Sin señal	Averiado	Falla de joystick
5	22	Apron Feeder	Bandejas	24-May-07	0.36	Rotura de pernos	Rotura	Fatiga	Soldeo de eslabón 78i
7	23	Surge Pocket	Instrumentacion	26-May-07	0.52	Falla Instrumentacion	Sin señal	Averiado	Falla de sensor de nivel
8	24	Apron Feeder	Bandejas	31-May-07	0.77	Rotura de pernos	Rotura	Fatiga	Soldeo de eslabón de cadena, se sprovechó para cambio de liners en chute exterior
9	25	Apron Feeder	Bandejas	3-Jun-07	0.24	Ajuste de pernos	Desajuste	Soltura	Reposición de pernos en bandeja.
0	26	Apron Feeder	Bandejas	12-Jun-07	3.47	Cadena trabada con chute	Roce con estructura	Diseño	Trabamiento de bandejas, se corto parte de la estructura
1	27	Chancadora Giratoria	Elementos de desgaste	28-Jun-07	0.95	Ajuste de pernos	Desajuste	Soltura	Colocacion de pernos en Bottom Shell side liner
2	28	Faja 1	Polin	12-Jul-07	0.03	Daño en polin	Rotura	Fatiga	Cambio de polín de carga
3	29	Apron Feeder	Chute	13-Ju⊦07	1.88	Fuga de mineral	Fuga mineral	Desgaste	Cambio de liners en chute exterior, por fuga, en total 12 liners
4	30	Rock Breaker	Elementos de desgaste	15-Jul-07	0.79	Ajuste de pernos	Desajuste	Soltura	Reparación de base de motores hidráulicos.
5	31	Apron Feeder	Chute	31-Jul-07	0.83	Fuga de mineral	Fuga mineral	Desgaste	Soldeo de chule de descarga de apron
6	32	Faja 1	Instrumentacion	10-Sep-07	0.48	Falla Instrumentacion	Sin señal	Averiado	Falla de zero speed
7	33	Belt Magnet Faja 1	Sistema Detector de Metale	21-Sep-07	0.12	Magneto fuera de posicion	Fuera de posicion	Sobrecarga	Sale de su posición (ladea) por caida de piedras (sobrecarga)
0	34	Faja 1	Faja	1-0ct-07	0.47	Fuga de mineral	Fuga mineral	Daño	Se pego un parche rombo en el borde izquierdo de la faja, el corte no afecto la
4		Chancado Primario 20	007 / Chancado Secuni	dario 2007	Resume	en Componente Primario	Resumen Compo	nente Secundario	Resumen Chancado Total Result

Figura 3.3: Data recopilada por año y por sistema (ejemplo año 2007)

Y obteniendo por tanto data clasificada y analizada por año, que acontinuacion mostraremos en diferentes tablas:

Tabla 3.1: Diagrama de dispersión logarítmica para el año 2007

CHANCADO PRIMARIO 2007						
Componente	TFS	Frecuencia	MTTR	%TFS Acumulado		
Reductor de faja 1	38.80	9.00	4.31	30.21		
Faja 1	20.12	1.00	20.12	45.88		
Chumaceras de poleas	16.76	3.00	5.59	58.93		
Elementos de desgaste	16.52	2.00	8.26	71.80		
Eje principal de chancadora	15.90	10.00	1.59	84.18		
Rompedor de roca	12.04	2.00	6.02	93.55		
Motor eléctrico	2.82	6.00	0.47	95.75		
Polines de retorno y carga	2.80	7.00	0.40	97.93		
Instrumentación	1.24	3.00	0.41	98.89		
Chancadora giratoria	0.86	2.00	0.43	99.56		
Chute de descarga	0.56	1.00	0.56	100.00		
TOTAL	128.42	46.00	48.16			

Tabla 3.2: Diagrama de dispersión logarítmica para el año 2007

TFS Totales [Hrs]	128.42
Frecuencia Total	46.00
Cantidad de componentes	11
Intersección en eje Y (TFS/Frc)	2.79
Intersección en eje X (Frc/Cnt)	4.18

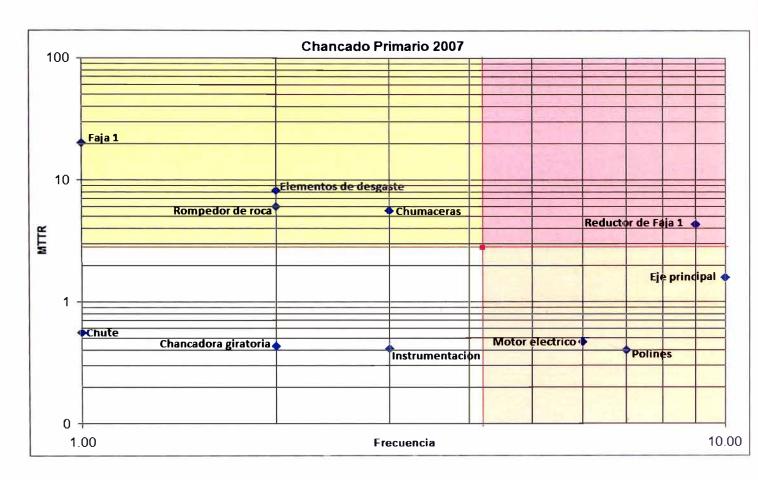


Figura 3.4: Jacknife Chancado Primario 2007

CHANCADO PRIMARIO 2008						
Componente	TFS	Frecuencia	MTTR	%TFS Acumulado		
Reductor de faja 1	14.80	5.00	2.96	23.82		
Elementos de desgaste	10.62	3.00	3.54	40.92		
Faja 1	9.43	1.00	9.43	56.10		
Eje principal de chancadora	8.54	1.00	8.54	69.85		
Rompedor de roca	8.31	8.00	1.04	83.23		
Chumaceras de poleas	6.02	2.00	3.01	92.92		
Motor electrico	1.50	4.00	0.38	95.33		
Polines de retorno y carga	1.34	5.00	0.27	97.49		
Instrumentacion	0.82	2.00	0.41	98.81		
Chancadora giratoria	0.47	1.00	0.47	99.57		
Chute de descarga	0.27	1.00	0.27	100.00		
TOTAL	62.12	33.00	30.31			
TFS Totales [Hrs]	62.	12				

Frecuencia Total 33.00

Cantidad de componentes 11

Intersección en eje Y (TFS/Frc) 1.88

Intersección en eje X (Frc/Cnt) 3.00

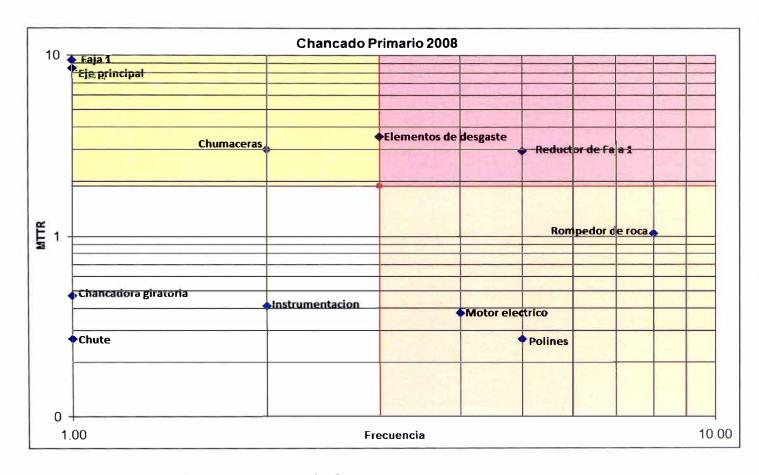


Figura 3.5: Jacknife Chancado Primario 2008

CHANCADO PRIMARIO 2009						
Componente	TFS	Frecuencia	MTTR	%TFS Acumulado		
Faja 1	19.54	4.00	4.89	26.57		
Reductor de faja 1	14.00	5.00	2.80	45.61		
Elementos de desgaste	9.32	3.00	3.11	58.28		
Eje principal de chancadora	9.00	1.00	9.00	70.52		
Rompedor de roca	8.65	8.00	1.08	82.28		
Chumaceras de poleas	7.34	2.00	3.67	92.26		
Motor electrico	2.43	4.00	0.61	95.57		
Polines de retorno y carga	1.31	5.00	0.26	97.35		
Instrumentacion	0.82	2.00	0.41	98.46		
Chancadora giratoria	0.51	1.00	0.51	99.16		
Chute de descarga	0.39	1.00	0.39	99.69		
Sistema MPS	0.23	1.00	0.23	100.00		
TOTAL	73.54	37.00	26.95			

TFS Totales [Hrs]	73.54
Frecuencia Total	37.00
Cantidad de componentes	12
Intersección en eje Y (TFS/Frc)	1.99
Intersección en eje X (Frc/Cnt)	3.08

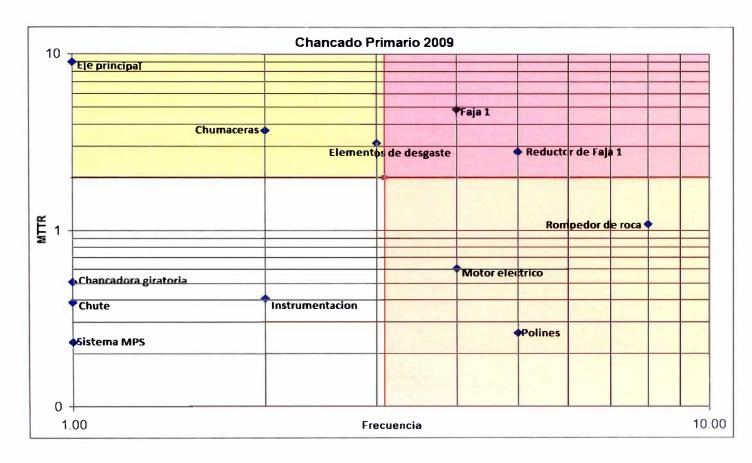


Figura 3.6: Jacknife Chancado Primario 2009

CHANCA				
Componente	TFS	Frecuencia	MTTR	%TFS Acumulado
Faja 2, 3, 4 y 5	133.67	28	4.77	57.38
Reductor de faja 2 y 5	36.21	16	2.26	72.93
Chumaceras de poleas	21.76	3	7.25	82.27
Chute	11.45	9	1.27	87.19
Polines de retorno y carga	6.30	15	0.42	89.89
Caja de rodamientos	6.14	4	1.54	92.53
Delta V	5.87	17	0.35	95.05
Balanza	4.74	12	0.40	97.08
Cilindros hidraulicos compuertas	2.90	1	2.90	98.33
Elementos de desgaste	2.46	3	0.82	99.38
Motor electrico	0.74	3	0.25	99.70
Insrtumentacion	0.70	2	0.35	100.00
TOTAL	232.94	113.00	22.57	

TFS Totales [Hrs]	232.94
Frecuencia Total	113.00
Cantidad de componentes	12
Intersección en eje Y (TFS/Frc)	2.06
Intersección en eje X (Frc/Cnt)	9.42

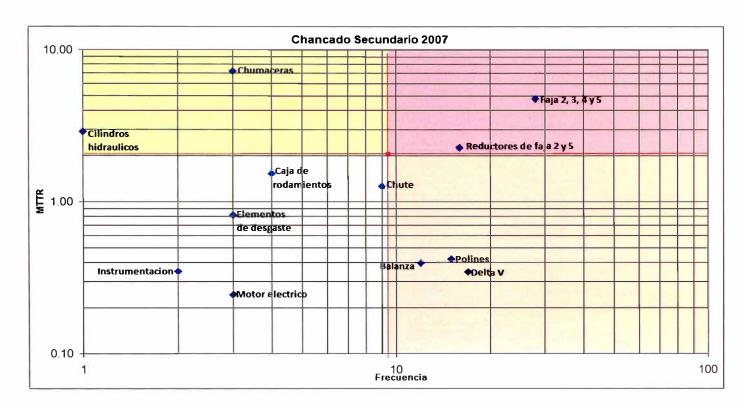


Figura 3.7: Jacknife Chancado Secundario 2007

CHANCA	DO SECL	JNDARIO 2008	. " <u></u>	cano.
Componente	TFS	Frecuencia	MTTR	%TFS Acumulado
Faja 2, 3, 4 y 5	145.98	23	6.35	54.11
Reductor de faja 2 y 5	41.05	12	3.42	69.32
Instrumentacion	19.22	3	6.41	76.45
Chumaceras de poleas	16.34	3	5.45	82.50
Polines de retorno y carga	15.50	2	7.75	88.25
Delta V	9.32	15	0.62	91.70
Chute	7.12	6	1.19	94.34
Caja de rodamientos	5.22	13	0.40	96.28
Elementos de desgaste	4.22	15	0.28	97.84
Cilindros hidraulicos compuertas	2.50	2	1.25	98.77
Balanza	2.00	3	0.67	99.51
Motor electrico	1.32	2	0.66	100.00
TOTAL	269.79	99.00	34.44	

TFS Totales [Hrs]	269.79
Frecuencia Total	99.00
Cantidad de componentes	12
Intersección en eje Y (TFS/Frc)	2.73
Intersección en eje X (Frc/Cnt)	8.25

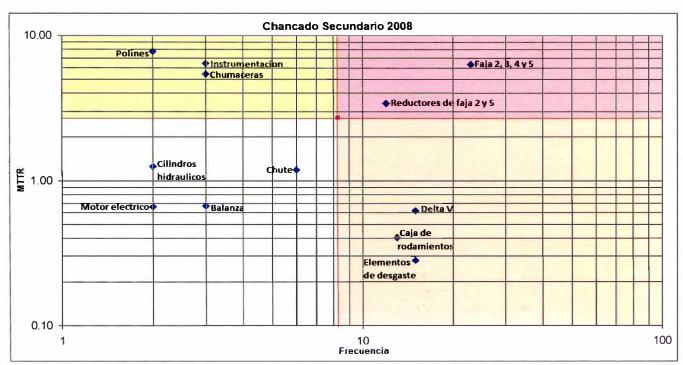


Figura 3.8: Jacknife Chancado Secundario 2008

CHANCADO SECUNDARIO 2009					
Componente	TFS	Frecuencia	MTTR	%TFS Acumulado	
Faja 2, 3, 4 y 5	150.00	25.00	6.00	54.35	
Reductor de faja 2 y 5	28.43	15.00	1.90	64.65	
Chumaceras de poleas	27.23	5.00	5.45	74.52	
Polines de retorno y carga	15.32	6.00	2.55	80.07	
Delta V	14.21	2.00	7.11	85.22	
Caja de rodamientos	11.00	8.00	1.38	89.21	
Chute	10.70	13.00	0.82	93.08	
Balanza	5.11	4.00	1.28	94.93	
Cilindros hidraulicos compuertas	5.43	17.00	0.32	96.90	
Instrumentacion	4.73	12.00	0.39	98.62	
Elementos de desgaste	2.50	1.00	2.50	99.52	
Motor electrico	1.32	3.00	0.44	100.00	
TOTAL	275.98	111.00	30.13		

TFS Totales [Hrs]	275.98
Frecuencia Total	111.00
Cantidad de componentes	12
Intersección en eje Y (TFS/Frc)	2.49
Intersección en eje X (Frc/Cnt)	9.25

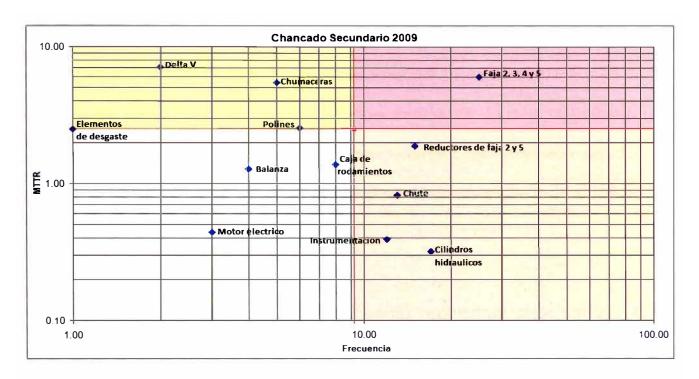


Figura 3.9: Jacknife Chancado Secundario 2009

Por tanto haciendo un análisis de estos tipos de falla y su evolución podemos identificar que existen dos grandes eventos tanto en chancado primario como secundario, los cuales analizaremos a continuación.

En chancado primario, el problema principal fue las paradas ocasionadas con el eje del reductor, esta ocasiono paradas anuales de 38.8, 14.8 y 14 horas durante el 2007, 2008 y 2009 respectivamente. Así mismo la faja transportadora número uno, ocasionó paradas de 20.12, 9.43 y 19.54 horas durante los años 2007, 2088 y 2009 respectivamente.

Par	adas principales	en Chancado Prin	nario	
Componente 2007 TFS [Hr] 2008 TFS [Hr] 2009 TFS [Hr]				
Reductor de faja 1	38.80	14.80	14.00	
Faja 1	20.12	9.43	19.54	
Porcentaje	45.88%	39.01%	45.61%	
MTTR	24.43	6.50	7.69	

De lo indicado anteriormente podemos ver que ambos equipos, representaron en porcentajes totales paradas de 45.88%, 39.01% y 45.61% durante los años 2007, 2008 y 2009 respectivamente; lo cual significaba un importante porcentaje en tan solo 2 componentes, se volvieron agudos y críticos, y fue el punto de partida para realizar el análisis que indicamos en el capitulo siguiente.

En chancado secundario, se identifico como problemas principales y que estuvieron ubicados en el cuadrante de agudo y crónico según el grafico de Jacknife, las paradas ocasionadas por las fajas del sistema, vale decir faja dos, tres, cuatro y cinco, pero principalmente fueron las fajas dos y cinco ya que estas tienen mayor longitud, así mismo los reductores ocasionaron paradas, aunque en menos cantidad de horas que en chancado primario. Por tanto si cuantificamos estas paradas tendríamos el siguiente cuadro.

Paradas principales en Chancado Secundario			
Componente	2007 TFS [計]	2008 TFS [Hr]	2009 TFS [Hr]
Fajas 2, 3, 4 y 5	133.67	145.98	150.00
Reductores de fajas 2 y 5	36.21	41.05	28.43
Porcentaje	72.93%	69.32%	64.65%
MTTR	19.38	19.64	7.90

Por tanto el punto de partida fue la identificación de estas fallas las que representan un porcentaje importante en el tiempo de paradas de ambos sistemas de chancado.

Es así que en el capitulo siguiente analizaremos a detalle dichos modos de falla, plantearemos en base a dicho estudio medidas de solución para poder incrementar la confiabilidad del sistema.

CAPITULO 4

ANALISIS Y PRESENTACION DE TIPOS DE FALLAS PRESENTES EN EL SISTEMA

Los sistemas que se encuentran en el cuadrante agudo y crónico son los que representan las fallas que impactan directamente en la disponibilidad, por tanto estos serán aquellos los cuales analizaremos.

4.1 ANÁLISIS CAUSA RAÍZ (ACR)

Para la detección de problemas y planteamiento de soluciones, en este caso utilizaremos el método de análisis causa raíz, el cual podemos definirla como una herramienta utilizada para identificar la causa de la falla, de manera de evitar sus consecuencias. Un análisis más profundo es mejor para ayudar a comprender los eventos y mecanismos que actuaron como raíz del problema, los cuales se pueden clasificar de la siguiente forma:

 Análisis de falla de componentes (AFC), la cual implica el estudio de los modos de falla que son los fenómenos responsables del evento o condición de falla.

- Investigación de causa de raíz (ICR), ésta herramienta incluye a la anterior, e investiga las causas físicas
- Análisis de causa raíz (ACR), ésta herramienta incluye a los dos anteriores, y estudia además el error humano.

El análisis causa raíz básicamente está conectada a través de tres preguntas, las cuales serán la estructura de esta metodología a ser utilizada.

4.2 ANÁLISIS DE TIPOS Y MODOS DE FALLA EN SISTEMA DE FAJAS TRANSPORTADORAS.

Se analizan los modos de falla de este sistema mediante varios métodos, el nuestro es análisis causa raíz por medio de cuadros, donde pondremos las causas del modo de falla y la acción específica a realizar para poder evitarlas o disminuirlas.

4.2.1 <u>Análisis del modo de falla por corte por segmento</u> <u>desprendido.</u>

Se produjeron paradas de fajas por alarma de nivel alto de los chutes de carga, esto debido a que normalmente se desprenden planchas y estas dañan la faja y los polines.

Estos daños llegan rallar el cover a lo largo de toda la faja con una profundidad en el rango de 2 a 15 mm; así como ocasionar roturas de faja por toda la sección longitudinal de esta. Las acciones correctivas en esta caso, eran las reparaciones en caliente de no ser el corte muy extenso, en caso contrario se precede al cambio de faja o re empalme.

Una oportunidad de mejora fue identificar que el kit de reparación en frio no se encontraba como ítem de stock, por tanto la reparación correctiva demoraba mucho más, se procedió a introducir este como ítem de stock.

Modo de falla	Causas	Actividades realizadas
	Inspección no adecuada.	Realización de cartillas de seguimiento de estado de fajas y segmentos.
		Inspección detallada en cada parada de mantenimiento.
		Implementación de ventanas de inspección ubicadas en los chutes.
	Estado de tornillo no es inspeccionado antes de la instalación.	Procedimiento de inspección de estado de tornillo y establecimiento de límites.
Corte de segmento desprendido.		Inspección y reforzamiento de fijación del tornillo periódicamente.
	Falta de fijación del tornillo, provoca pivoteo.	Rediseño en sistema de fijación; colocación de protección en la parte del tornillo que sostiene segmentos
	Breacker detiene la faja luego de mucho tiempo.	Se implementó enclavamiento lógico en sistema Delta V por pico de corriente.

En las figuras siguientes podemos observar los daños ocasionados por este modo de falla. (Ver Anexo:: CORTE SEGMENTO)

4.2.2 Análisis del modo de falla por fuga de mineral

El rango de operación normalmente va desde 2200 Tm/h hasta un máximo de 2800 Tm/h, en las paradas por fuga de mineral la sobrecarga llego a un máximo de carga de 3300 Tm/h. Estas paradas van desde una hora hasta un máximo de 4.5 horas de parada, con este tipo de paradas el que se ve directamente afectado es el empalme pues se intentó repetidas veces arrancar la faja sobre cargando, exigiendo al empalme y logrando que este se comience a abrir.

Podemos observar la cantidad de arranques que ha tenido la faja en los meses más críticos en el siguiente cuadro:

Mes	Arranques	Con Carga	Sin Carga
ene-07	59	47	12
mar-08	95	74	21
sep-09	61	50	11

Modo de falla	Causas	Actividades realizadas	Actividades planeadas
	Inspección no adecuada	Implementación de video cámaras a fin de tener un control desde en cuarto de control.	
Fuga de	Falla en detector de metales, por roce de exceso de mineral.	,	Instalación de segundo detector en línea que valide señal del primero
mineral.	Arranques de faja no responden	Debido a sobre carga, se implanto procedimiento de liberación de carga.	
	Perdida de señal de control de setpoint de la velocidad de alimentadores	Calibración de setpoint. Mejora de lógica de control en alimentadores vibratorios.	

En las figuras siguientes podemos observar los daños ocasionados por este modo de falla. (Ver Anexo: FUGA DE MINERAL)

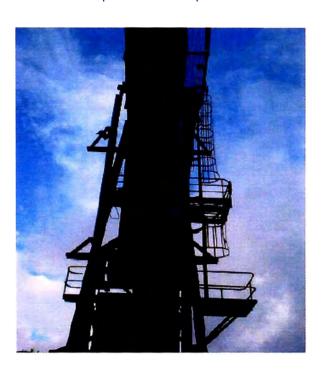
4.2.3. Análisis del modo de falla por roce con estructura / side travel

El desgaste de las fajas se da normalmente por desalineamiento, roce con estructuras o material más duro que esta. Las actividades realizadas mostraron un gran avance en la reducción de paradas por

este modo de falla. Estas causas estudiadas y analizadas se presentan en el siguiente cuadro de análisis de fallas.

Modo de falla	Causas	Actividades realizadas	Actividades planeadas
		Alineamiento de polea de contrapeso con contrapeso.	Compra de alineadores de faja.
	Desalineamiento de faja.	ineamiento de faja. Corrección en alineamiento de polines de retorno	
		Instalación de polines guía Instalación de poleas autoalineantes.	Instalación de side travel que detecte desalineamiento y pare faja.
	Velocidades de alimentadores no son iguales.	Regulación y programación para tener velocidades iguales en los 4 alimentadores.	
	Soltura de pernos en	Implementación de procedimiento de inspección de estado de pernos en chumaceras.	Control de calidad (NDT) del empalme por un tercero.
	chumaceras.	Dar mayor carrera a los pernos reguladores de las chumaceras.	
Roce con estructura / side travel	Humedad de mineral, ya que al ser alimentado material fino por alimentadores 1 y 2, se aumenta el peso en el lado izquierdo de la faja.		Realizar incremento de diámetros a poleas restantes
	Estavatura da la faia a	Realización de estudio de ingeniería para reforzar puntos y alinear estructura.	
	Estructura de la faja se encuentra desalineada por el paso del tiempo y sobrecarga.	Ubicación de prismas topográficos y su respectivo seguimiento a fin de determinar si inclinación es progresiva.	¥
	Incrustación de algún elemento metálico entre las	Implementación de detector de metales	
	estructuras y la faja.	Programa de inspección periódica.	
	Rotura de polin	Alineamiento de polines no alineados, ya que estos se someten a mayores cargas	Realizar la modificación de ubicación y diámetro de polea snub faja 2
	Mal procedimiento de empalme.	Estandarización en corte, presentación y alineamiento al cerrar los 2 extremos de la faja.	
	Material del faldón de chutes de descarga es de mayor dureza que la faja	Cambio de material de faldón.	

(Ver Anexo: Fotografía: Roce con estructura / side travel)


Condición inicial del desalineamiento la faja esta afuera de la polea aprox. 3.5", rozaba ligeramente con la faja

Después de la secuencia 4, se producierón desgarros en el borde izquierdo de la faja

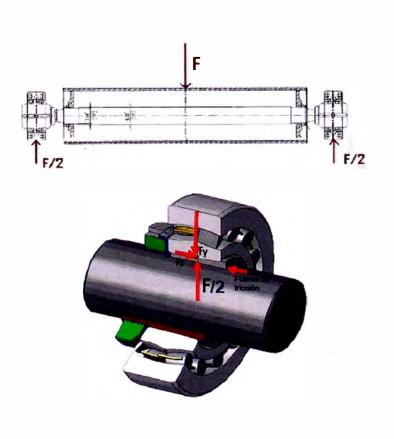
Condición final de la faja el cual esta a nivel de la polea de contrapeso en el extremo izquierdo

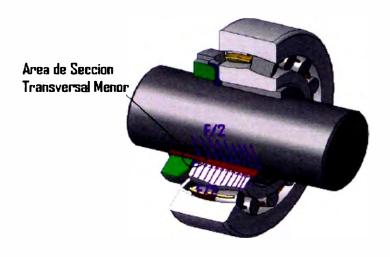
Vista de la faja desde el edificio, obsérvese que a pesar de estar centrada la faja en las poleas de volteo, permanece descentrada en la polea de contrapeso.

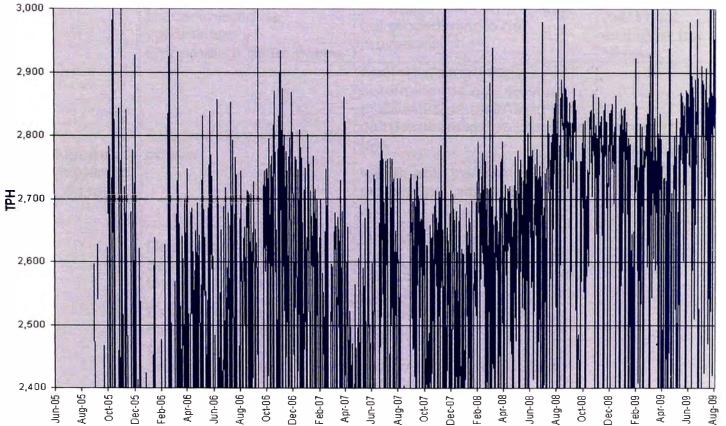
4.2.4 Análisis del modo de falla por rotura de manguito

Manguitos de fijación en poleas de cola y cabeza se rompen de manera extraña en la operación, lo que ocasionaba una cantidad considerable de horas de parada, por tanto se hace el estudio de este modo de falla.

Modo de falla	Causas	Actividades realizadas
	Inadecuado procedimiento de montaje	Se verifico que proveedor no enviaba el equipo con el montaje correcto. Se realizó procedimiento para
-4		cambio de manguitos.
Rotura de	Sobrecarga	Se evalúo las capacidades de las chumaceras. Están dentro de su rango de operación.
manguito	Inadecuado material del manguito	Se encontró descripción pero no marca en los manguitos, en forma similar algunas marcas conocidas solo colocan la descripción.
		Se verifico que proveedor utilizaba manguitos hechizos. Se cambió de proveedor.




Las cargas a la que está sometida el manguito están dadas por la siguiente gráfica


Debido a que cada chumacera del rodamiento recibe la fuerza F/2, y teniendo en cuenta que el manguito es cónico y si descomponemos

la fuerza del rodamiento sobre el manguito esta fuerza en el plano del manguito tendremos la fuerza paralela al asiento del rodamiento Fx y la fuerza perpendicular Fy, cabe mencionar que la fuerza Fy es mucho más grande que la fuerza Fx.

Si esta carga la llevamos a la realidad es una carga distribuida en ambos lados del manguito y se observa que de toda la zona sometida a la carga, el inicio de la rosca es la zona que presenta menor espesor por lo tanto es la zona más frágil y vulnerable a fallar cuando existan valores de carga que sobrepasen los cálculos de diseño.

4.2.5 Análisis del modo de falla por desempalme.

El modo de falla que más horas paradas produjo fue el desempalme de toda las horas paradas el desempalme representa en promedio un 30% pues está relacionado a las paradas directamente de fajas, por tanto se analizó la causa raíz de la siguiente manera:

Modo de falla	Causas	Actividades realizadas	Actividades planeadas
	Inspección no adecuada	Realización de cartillas de seguimiento de longitud del empalme	
		Inspección detallada en cada parada de mantenimiento	
	Longitud de empalme muy corto	Incremento de longitud de empalme de 1.15 m a 1.525 m	
	Incumplimiento de procedimiento de vulcanizado y enfriamiento de empalme	Validación del cumplimiento del procedimiento del proveedor	Control de calidad (NDT) del empalme por un tercero.
Puntura en	Subdimensionamiento de	Análisis de ingeniería determinando que existían problemas de diseño en los diámetros de las poleas de la faja	
Ruptura en poleas empalmes de faja	poleas	Incremento de diámetro de poleas de contrapeso de faja 2	Realizar incremento de diámetros a poleas restantes
	Deslizamiento de polea	Disminución de tonelaje	
	de cabeza con faja en temporadas de lluvia	Evitar arranques excesivos Cambio de recubrimiento de poleas, de ruber a cerámicos	
	Excesivos arranques directos, debido a	Instalación de acople hidráulico	
	paradas por desalineamientos, metales detectados y fallas de side travel.	Incremento de sensibilidad del magneto en faja 2	
	Incremento de esfuerzos de tracción y flexión en faja, debido a la sobrecarga de mineral	Estudio de ingeniería sobre modificación de ubicación y dimensión de polea snub	Realizar la modificación de ubicación y diámetro de polea snub faja 2

Figura 4.1: Desempalme – Chancado Primario

Figura 4.2: Desempalme - Chancado Secundario

4.3 ANÁLISIS DE TIPOS Y MODOS DE FALLA EN SISTEMA DE TRANSMISIÓN.

4.3.1 Análisis del modo de falla en reductor

El principal modo de falla fue la rotura del eje del reductor, analizándose a través de la herramienta diagrama de espina de pescado se realizaron planes de acción, como se puede apreciar en la Tabla

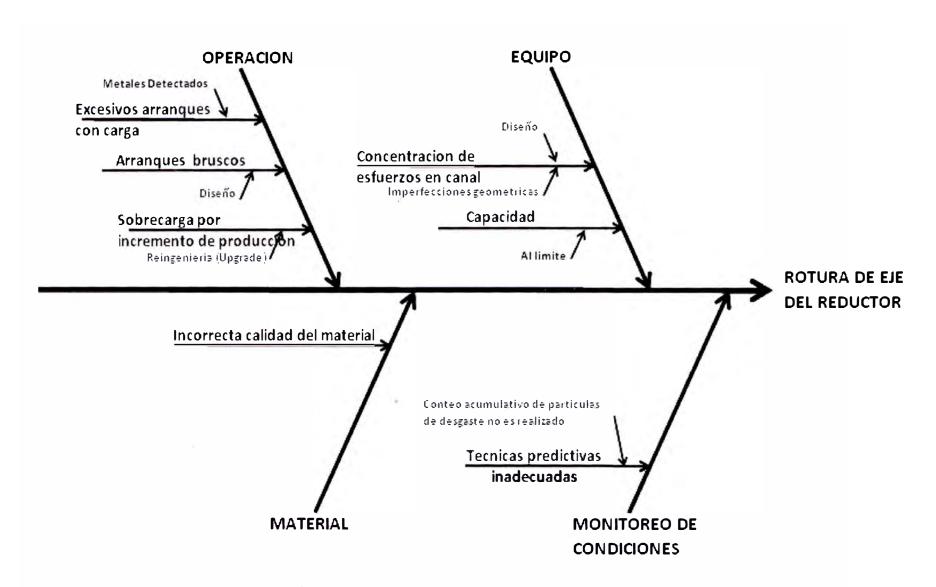


Figura 4.3: Diagrama de espina de pescado para falla en el reductor

Tabla 4.1: Planes de acción para el modo de falla en el reductor

ID İtem	Plan de acción	
Monitoreo de condiciones	Se implementó y se definió alarmas para el conteo	
	acumulativo de partículas de desgaste	
Sobrecarga por	Se realizó estudio de las estructuras para evaluar	
incremento de producción	un up grade en los equipos	
Arranques bruscos	Se intentó poner operativo el soft starter (variador	
	de frecuencia)	
Concentración de	Se continua buscando opciones en incremento de	
esfuerzos en canal	capacidad del reductor sin incrementar el peso del	
chavetero	mismo	

Figura 4.4: Falla de reductor en faja 1 chancado primario

Figura 4.5: Falla de reductor en faja 1 chancado primario

CAPITULO 5 PLANES DE ACCION Y RESULTADOS

5.1 PLANTEAMIENTO DE ACCIONES DE CONTROL PARA EVITAR FALLAS REPETITIVAS

Después del estudio realizado se determina que la falla que ocasiona más paradas es la rotura de faja por desempalme, este tipo de falla ocasiono la siguiente cantidad de paradas:

CHANCADO PRIMARIO 2007-2009			
Componente	TFS	Porcentaje	
Faja 1	49.09	18.59	
Reductor de faja 1	67.60	25.60	
Total de horas en sistema	264.08	44.19	

CHANCADO SECUNDARIO 2007-2009			
Componente	TFS	Porcentaje	
Faja 3 y 4	429.65	55.17	
Reductor de faja 2 y			
5	105.69	13.57	
Total de horas en	778.71	68.75	
sistema			

SISTEMA CHANCADO TOTAL 2007-2009			
Componente	TFS	Porcentaje	
Fajas	478.74	45.91	
Reductores	173.29	16.62	
Total de horas en sistema	1042.79	62.53	

Por tanto desde el 2007 al 2009 aproximadamente el 46% de las paradas del sistema de chancado fue ocasionado por este modo de falla.

5.1.1 Subsistema faja

5.1.1.1 Análisis de modificación de Polea Snub para incrementar confiabilidad y evitar el desempalme improvisto.

Del análisis de falla realizado la tarea principal era reducir los esfuerzos que se producen en el empalme al momento que recorre todo el sistema, por tanto se desarrollo un estudio de tensiones en esta y se planteo diferentes formas de reducirlo que se verán a continuación.

Cabe señalar que el sistema fue diseñado para trabajar con una carga de 2155 ton/hr pero esta vino incrementándose gradualmente y en el momento que se realiza el estudio (2009) se llego a trabajar con una carga constante de 2900 ton/hr.

Por tanto la tensión efectiva no era la de diseño, y como primer paso fue calcular dicha tensión en base a la norma CEMA (Conveyor Equipment Manufacturers Association)

5.1.1.2 Requerimientos Básicos de Potencia

La potencia requerida, en el accionamiento de la faja 02, se deducirá del valor de la tensión efectiva Te, requerida en la polea motriz para impulsar o frenar la faja cargada a la velocidad de diseño de la faja (2.5 m/seg.)

$$hp = -------------------------------(1)$$

Para determinar la tensión efectiva Te, se identifico y evaluó cada una de las fuerzas individuales que actúan en la faja y que contribuyen a la tensión requerida para su accionamiento mediante la polea motriz.

Te es la sumatoria final de las tensiones de la faja producidas por fuerzas tales como:

La carga gravitatoria para elevar el mineral.

La fuerza de fricción de los componentes del transportador, transmisión, y todos los accesorios, cuando se opera a la capacidad actual de 2900 tph.

La fuerza de fricción del material cuando se transporta.

La fuerza requerida para acelerar continuamente el material que se carga al transportador desde un chute o alimentador.

La fórmula básica para calcular la tensión efectiva, Te es:

$$T_e = LK_t (K_x + K_y W_b + 0.015 W_b) + W_m (LK_y \pm H) + T_p - T_{am} + T_{ac}$$
 (2)

Donde:

Te = Tensión efectiva de accionamiento de la faja [lbs]

L = Longitud del transportador [pies]

H = Distancia vertical que el mineral es elevado [pies].

Wb = Peso de la faja [lbs/pie].

Wm = Peso del material [lbs/pie].

Tam = Tensión que resulta de la fuerza para acelerar el material continuamente mientras es alimentada la faja [lbs]

Tp = Tensión resultante de la resistencia de faja a la flexión alrededor de las poleas y de la resistencia de las poleas a la rotación sobre sus rodamientos, total para todas las poleas [lbs]

Tac = Total de las tensiones de los accesorios del transportador [lbs]

$$Tac = Tsb + Tpl + Ttr + Tbc$$

Tbc = Tensión que resulta de la tracción de la faja requerida por los dispositivos limpiadores de faja [lbs]

Tpl = Tensión resultante de la resistencia de fricción de los desviadores [lbs]

101

Tsb = Tensión resultante de la fuerza para superar la fricción de faldones [lbs]

Ttr = tensión resultante de la resistencia de fricción adicional de las poleas y la flexión de la faja sobre unidades como los volteadores [lbs]

Son usados tres factores:

Kt = Factor de corrección de la temperatura ambiente

Kx = Factor usado para calcular la fuerza de fricción de los rodillos y la resistencia al deslizamiento entre la faja y los rodillos [lbs/pie].

Ky = Factor de transporte usado para calcular la resistencia de la faja en combinación con la resistencia de la carga en flexión, cuando la faja y la carga están en movimiento sobre los rodillos. Para el tramo de retorno usar la constante 0.015 en lugar de Ky

V = velocidad de diseño de la faja [pies/min]

Ai = Tensión de faja, requerida para superar la fuerza de fricción y la rotación de los rodillos [lbs]

Q = toneladas por hora transportadas [tph]

Si = espaciamiento entre los rodillo, [pies]

Tx = tensión resultante de la resistencia de fricción de los rodillos de transporte y de retorno [lbs]

Tx = L * Kx * Kt

102

Tyb = sumatoria total de las tensiones resultantes de la resistencia de la faja a la flexión cuando corre tanto sobre de los rodillos de transporte como sobre los de retorno [lbs]

$$Tyb = Tyc + Tyr$$

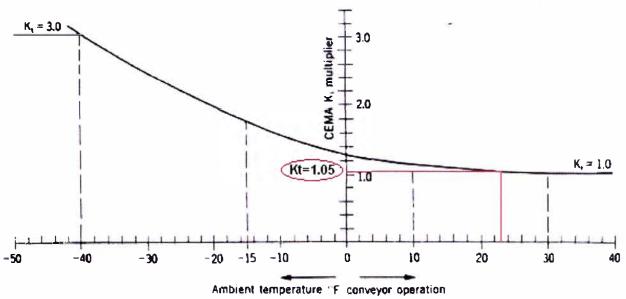
Tyc = tensión que resulta de la resistencia de la faja a la flexión cuando corre sobre los rodillos de transporte, en lbs,:

Tyc =
$$L * Ky * Wb * Kt$$

Tym = tensión resultante de la resistencia del material a la flexión cuando corre sobre los rodillos de transporte, en lbs,:

$$Tym = L * Ky * Wm$$

Tyr = tensión resultante de la resistencia de la faja a al flexión cuando corre sobre los rodillos de retorno, en lbs,:


$$Tyr = L * 0.015 * Wb * Kt$$

5.1.1.3 Cálculo de los Factores:

5.1.1.3.1 Kt - Factor de Corrección de temperatura ambiente

Temperatura ambiente [-5 a 15° C] = [22°F a 59° F]

$$Kt = 1.05$$

Variacion del Factor Kt, de Correccion de Temperatura.

5.1.1.3.2 Kx - Factor de Fricción del Rodillo

$$K_x = 0.00068 (W_b + W_m) + \frac{A_i}{1 + \frac{1}{2}}$$
, tensión en lbs por pie de longitud de la faja (3)

A_i = 1.5 para rodillos de 6 pulgadas de diam., CEMA C6, D6,

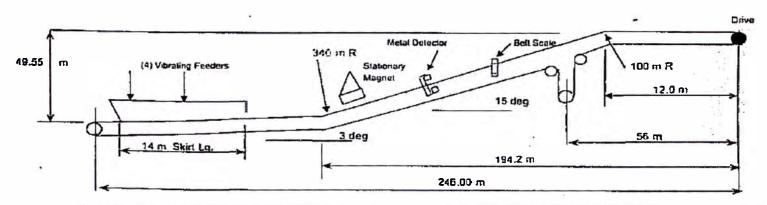
$$Kx = 0.6848$$

La resistencia de los rodillos a la rotación es principalmente función de los rodamientos, la grasa, y la resistencia de los sellos.

Bajo condiciones normales, la fricción de la grasa y los sellos en un rodillo bien lubricado variará de 0.1 a 2.3 lbs por cada rodillo, dependiendo del tipo de rodillo, sellos, y condición de la grasa.

La resistencia al deslizamiento entre la faja y los rodillos se genera cuando los rodillos de los arreglos no están exactamente a 90° de la

dirección del movimiento de la faja. Después de la instalación inicial, el desalineamiento deliberado de los rodillos es a menudo una ayuda en la guía de la faja. Incluso en las mejores instalaciones hay un pequeño requerimiento de este tipo. Sin embargo, el desalineamiento excesivo del rodillo produce un aumento muy alto en la fuerza de fricción y debe evitarse.


5.1.1.3.3 Ky - Factor para Calcular la Fuerza en la Faja y la Carga de Flexión sobre los Rodillos

Tanto la resistencia de la faja a flexionarse cuando corre sobre los rodillos como la fuerza de la carga transportada a flexionar la faja, desarrollan esfuerzos de tensión en la faja. Ky es un factor multiplicador usado en el cálculo de estas fuerzas que tensionan la faja.

La Tabla da valores de Ky para rodillos de transporte que varían con los diferentes valores en los pesos por pie de faja, Wb, y de carga, Wm; del espaciamiento de los rodillos, Si; y el porcentaje de pendiente o ángulo de inclinación que el transportador forma con la horizontal. Al aplicar otros espaciamientos entre rodillos, Si, no especificados en la Tabla 2, use la Tabla 3 para determinar un valor de K y corregido.

Peso de la faja	Wb [lb/pie]	23.2
Peso del mineral	Wm[lb/pie]	196.4
Peso Total	Wb+Wm	219.6

Interpolando a 3° y 15° para sus respectivas pendientes:

	V alores del Factor K									
Longitud del	$W_b + W_m$			Porcent	aje de pe	ndiente				
transportador	(lbs por	0	3	6	9	12	24	33		
	pie)		3°—	Grado	s aproxir	nados		7		
		0	(2	3.5	5	7	(14	18)		
	20	0.035	0.031	0.030	0.029	0.029	0.029	0.029		
	50	0.032	0.029	0.028	0.026	0.025	0.021	0.018		
	75	0.031	0.029	0.026	0.024	0.022	0.016	0.016		
	100	0.031	0.028	0.025	0.022	0.020	0.016	0.016		
800	150	0.034	0.028	0.02260	8).019	0.017	0 d10.0	16 016		
219.5	200	0.035	0.027	0.021	0.016	0.016	0.016	0.016		
	250	0.035	0.026	0.020	0.017	0.016	0.016	0.016		
	300	0.035	0.025	0.018	0.018	0.018	0.018	0.018		

Factor Corregido K_y, cuando se usan otros espaciamientos distintos a los tabulados.

$W_b + W_m$	Si,			Valore	s de Refe	erencia d	e K, para	la interp	olación		
(lbs por pie)	(ft)	(0.016)	0.018	0.020	0.022	0.024	0.026	0.028	0.030	0.032	0.034
	3.0	0.016	0.016	0.016	0.0168	8.0183	0.0197	0.0212	0.0227	0.0242	0.0257
Menor	3.5	0.016	0.0160	0.0169	0.0189	0.0207	0.0004		0.0257	0.0274	0.0291
de	4.0	0.016	0.0165	0.0182	0.0204	0.0223	0.022	6089	0.0278	0.0297	0.0316
50	4.5	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.030	0.032	0.034
	5.0	0.0.74	0.0195	0.0213	0.0236	0.0254	0.0273	0.0291	0.0031	0.0329	0.0348
	3.0	0.016	0.0162	0.0173	0.0186	0.0205	0.0221	0.0239	0.026	0.0274	0.029
50	3.5	0.016	0.0165	0.0185	0.0205	0.0222	0.024	0.0262	0.0281	0.030	0.03.21
a	4.0	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.030	0.032	0.034
99	4.5	0.0 75	0.0193	0.0214	0.0235	0.0253	0.0272	0.0297	0.0316	0.0335	0.035
	5.0	0.0 84	0.021	0.023	0.0253	0.027	0.029	0.0315	0.0335	0.035	0.035
	3.0	0.016	0.0164	0.0186	0.0205	0.0228	0.0246	0.0267	0.0285	0.0307	0.0329
100	3.5	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.030	0.032	0.034
2	4.0	0.0175	0.0197	0.0213	0.0234	0.0253	0.0277	0.0295	0.0312	0.033	0.035
149	4.5	0.0188	0.0213	0.0232	0.0253	0.0273	0.0295	0.0314	0.033	0.0346	0.035
	5.0	0.0201	0.0228	0.0250	0.0271	0.0296	0.0316	0.0334	0.035	0.035	0.035
	3.0	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.030	0.032	0.034
150	3.5	0.0172	0.0195	0.0215	0.0235	0.0255	0.0271	0.0239	0.031	0.0333	0.0345
2	4.0	0.0187	0.0213	0.0235	0.0252	0.0267	0.0283	0.0303	0.0325	0.0347	0.035
199	4.5	0.0209	0.023	0.0253	0.0274	0.0289	0.0305	0.0323	0.0345	0.035	0.035
	5.0	0.0225	0.0248	0.0272	0.0293	0.0311	0.0328	0.0348	0.035	0.035	0.035
	(3.0)	0.016	0.018	0.020	0.022	0.024	0.026	0.028	0.030	0.032	0.034
200	3.5	0.0177	0.0199	0.0216	0.0235	0.0256	0.0278	0.0295	0.031	0.0327	0.0349
2	4.0	0.0192	0.0216	0.0236	0.0256	0.0274	0.022	2608	0.0322	0.0339	0.035
249	4.5	0.021	0.0234	0.0253	0.0276	0.0298	0.0017	0.0001	0.0347	0.035	0.035
	5.0	0.0227	0.0252	0.0274	0.0298	0.0319	0.0338	0.035	0.035	0.035	0.035

Para usar esta tabla para corregir el valor de K, para el espaciamiento del rodillo que se muestra en negrita, aplicar el procedimiento en los dos ejemplos anteriores.

Factor de Fricción con el Faldón, C.

1 actor the likelon con ell auton, C ₃								
Material	Factor C;	Material	Factor C;	Material	Factor C,			
Alúmina, puly., seca	0.1210	Coque, molido fino	0.0452	Piedra de cal, pulv., seca	0.1280			
Ceniza, de carbón de piedra, seca	0.0571	Coque, en trozos y fino	0.0186	Cloruro de Magnesio , seco	0.0276			
Bauxita, molida	0.18\$1	Copra, en trozos	0.0203	Avenas	0.0219			
Frijoles, Navy, secos	0.0798	Cullet	0.0836	Fosfato roca, seca, partida	0.1086			
Borax	0.0734	Trigo, harina	0.0265	Sal. común. seca fina	0.0814			
Bran, granulado	0.0238	Grano, trigo maiz o centeno	0.0433	Arena, seca de cantera	0.1378			
Cemento, Portland, seco	0.2120	Grava, extraida de mina	(0.1145)	Aserrin, seco	0.0086			
Cemento clinker	0.1228	Yeso, cernido hasta 1/2"	0.0900	Ceniza de soda,pesada	0.0705			
Afcilla, ceramica, seca fina	0.0924	Mineral de hierro, 200 lbs por cada pie	0.2760	Almidón en trozos grandes	0.0623			
Carbón de piedra, antracita, medida	0.0538	Cal, quemada, 1/8"	0.1166	Azücar, granulada seca	0.0349			
Carbón de piedra, bituminoso, extraído de mina	0.0754	Cal, hidratada	0.0490	Viruta de madera, hogged combustible	0.0095			

5.1.1.4 Cálculo de la Tensión Efectiva

A partir de estos valores se cálcula los componentes de la tensión de la faja como sigue:

Valores Conocidos:

Definición	Símbolo	Valor
Velocidad de diseño de la faja	V [pies/m]	492.062
Longitud de Faja (área que transporta mineral)	L [pies]	854.465
Peso de la faja	Wb [lb/pie]	23.183
Toneladas por hora transportadas	Q [tph]	2900
Distancia vertical que el mineral es elevado	H [pies]	162.566
Cantidad de Polines de carga		305
Espaciamiento entre polines de carga	Si [pies]	2.802

Valores Calculados:

Definición	Símbolo/Formula	Valor	Comentarios
Tensión de la faja, requerida para superar la fuerza de fricción y la rotación de los rodillos	Ai [lbs]	1.5	Para rodillos de 6 pulg de diam. CEMA C6, D6
Peso del mineral	Wm[lb/pie]	196.433	
Peso Total	Wb+Wm [lb/pie]	219.616	
Factor de corrección temp. ambiental	Kt	1.0500	Grafico
Factor de fuerza de fricción de rodillos y resistencia al deslizamiento entre la faja y rodillos	Kx [lbs-pie]	0.6848	
Factor de transporte para calcular la resistencia de faja en combinación con resistencia de la carga en flexión, cuando la faja y la carga están en movimiento sobre los rodillos.	Ку	0.039	
Tensión de la fuerza de fricción de los rodillos de transporte y retorno	Tx=L*Kx*Kt	614.3597541	
Tensión para los rodillos de transporte	Tyc=L*Ky*Wb*Kt	803.0272758	
Tensión para los rodillos de retorno	Tyr=L*0.015*Wb*Kt	311.9925699	
Tensión de la Resistencia de la Faja a la Flexión cuando se mueven sobre los rodillos	Tyb=Tyc+Tyr	1115.019846	
Tensión de la Resistencia del material a Flexión cuando la faja corre sobre los rodillos	Tym=L*Ky*Wm	6480.146834	
Tensión de la fuerza necesaria para elevar la carga	Tm=+-H*Wm	3768.767578	
Tensión total de la faja requerida para el rodamiento de c/u de las poleas en el Transportador.	Тр	1200	200 lbs por polea son 6 poleas
Tensión de la fuerza para acelerar el material continuamente mientras se alimenta hacia la faja.	Tam	398.744	
Masa del material acelerado	M	50.035	A
Peso del material acelerado	W [lbs/seg]	1611.111	$v_F = v_o \pm gt$
Cambio de velocidad pps	Vc	7.969	
Velocidad inicial cuando cae el material a la faja	Vo [pie/min]	13.89964028	1.1
Tiempo en que descarga		0.431665847	$h = v_0 t \pm \frac{1}{2} g t^2$
Distancia de chute de descarga a Faja 2	[Pie]	3	
Tensión total de accesorios del transportador	Тас	2890	
Tensión de la fricción de los faldones.	Tsb	2290	
Factor de fricción con el Faldón	Cs	0.1145	*
Longitud del Faldón	pulg	50	
Profundidad del material en contacto	pulg	20	
Tensión de la fuerza de fricción de los desviadores.	ТрІ	0	
Tensión de los volteadores y apiladoras.La fuerza necesaria para elevar el material por encima de la unidad puede ser calculada por la fórmula = H * W m, el lbs.	Ttr	0	
Tensión de los dispositivos de Limpieza de la Faja (2 limpiadores)	Tbc	600	5 lbs por pulg de ancho de contacto de la hoja del rascador para cada hoja
Requerimiento Básico de Potencia	HP	754.982	
	Te[lbs]	50632.653	Valor de Te de diseño 2800 tph = 40240 lbs
Tensión efectiva de accionamiento de faja	Te[N]	232253.550	Valor de Te de diseño 2800 tph = 178996.44 N

5.1.1.5 Cálculo del Incremento de tensión.

Por consiguiente existe un:

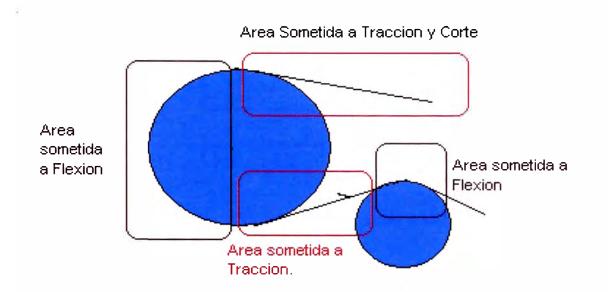
Incremento = $(Te|_{2900 \text{ tph}} - Te|_{2155 \text{ tph}}) / Te|_{2155 \text{ tph}} \times 100$

Incremento = 29.75 % en la Tensión Efectiva de la Faja 2

Estudio Analítico de Esfuerzos y Momentos Flectores en la Faja N° 2

	CARACTERISTICAS DE LA FAJA Nº 2									
MARCA	ARCA MATERIAL		LONGITUD (L) [mts]	ESPESOR (h) [mts]	N° LONAS	DURACION [días]	Modulo de Young [Pa]			
		(b) [mts]	(E) [iiits]	[iiit3]	LONAS	[ulas]	roung (Fa)			
PHOENIX (actual)	POLYESTER / NYLON	1.524	514	0.0193	4	196 DIAS	3000000000			

CARACTERISTICAS DEL MATERIAL Y LA OPERACIÓN							
Capacidad de diseño	2800 TPH	Densidad aparente	1.6 Kg/m3				
Angulo de Reposo Mineral	36°	Angulo de Carga	26.64°				
	175 mm						
Tamaño del material	(80%)	Velocidad	2.5 m/s				
Humedad	1% @ 3%	Horas de Operación	24 horas				
		Angulo de polines					
Ancho de Faja	1524 mm	Carga	35°				

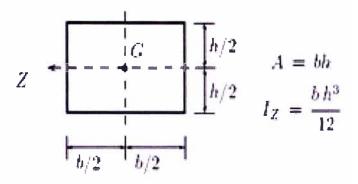

Longitud de la faja [mts] parte superior que carga material	260.441
Velocidad de Faja [m/s]	2.50
Tiempo [s]	104.176
Flujo de Carga [tph]	2900
Carga [ton]	86.814

CARACTERISTICAS NOMINALES DE LAS POLEAS										
	T1 [Newton]	T2 [Newton]	Diámetro Selecc. [mts]							
Polea de Cabeza	268997.31	90000.87	1.0668							
Polea Snub	91001.72	91001.72	0.6096							
Poleas de volteo	91001.72	91001.72	0.6096							
Polea de										
Contrapeso	87999.17	87999.17	0.6096							
Polea de Cola	80001.27	80001.27	0.6096							

CARACTERISTICAS ACTUALES DE LAS POLEAS									
	T1 [Newton]	T2 [Newton]	Diámetro Selecc. [mts]						
Polea de Cabeza	349032.53	116778.98	1.0668						
Polea Snub	118077.61	118077.61	0.6096						
Poleas de volteo	118077.61	118077.61	0.6096						
Polea de									
Contrapeso	114181.71	114181.71	0.6096						
Polea de Cola	103804.18	103804.18	0.6096						

5.1.1.6 Cálculo de los Esfuerzos de Tracción en poleas

En la faja existen esfuerzos tanto de tracción como de flexión como se muestra en la siguiente figura.

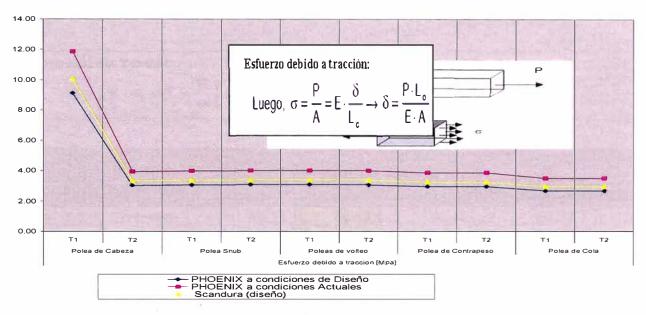


Por tanto determinaremos cuanto son estos esfuerzos y la manera de reducirlos afín de disminuir las fallas por desempalme.

Los esfuerzos de tracción se determinan por:

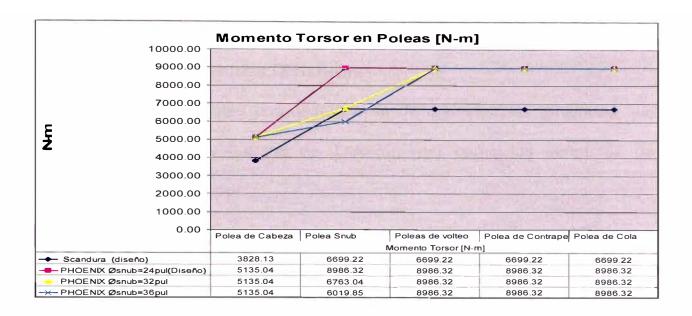
Luego,
$$\sigma = \frac{P}{A} = E \cdot \frac{\delta}{L_c} \rightarrow \delta = \frac{P \cdot L_c}{E \cdot A}$$

Y el momento de inercia según el área transversal de la faja se calcula de la siguiente manera:


Si designamos por C la distancia máxima a la fibra neutra:

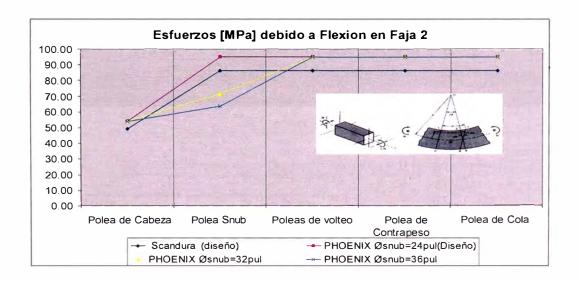
$$w = \frac{1}{c}$$
, módulo resistente

$$\sigma_{\text{max}} = \frac{M \cdot c}{l} = \frac{M}{w}$$


MARCA:	Esfuerzo debido a tracción [N/m2] x 10 ⁶ = MPa									
	Polea de Cabeza		Polea Snub		Poleas de volteo		Polea de Contrapeso		Polea de Cola	
	σ1	σ2	σ1	σ2	σ1	σ2	σ1	σ2	σ1	σ2
SCANDURA (diseño)	10.09	3.37	3.41	3.41	3.41	3.41	3.30	3.30	3.00	3.00
PHOENIX a condiciones de Diseño	9.14	3.06	3.09	3.09	3.09	3.09	3.00	3.00	2.72	2.72
PHOENIX a condiciones Actuales	11.87	3.97	4.01	4.01	4.01	4.01	3.89	3.89	3.53	3.53

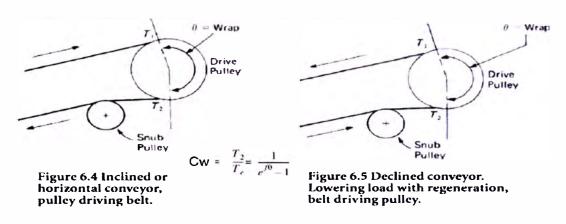
Esfuerzos [N/m2] debido a Traccion en Faja 2

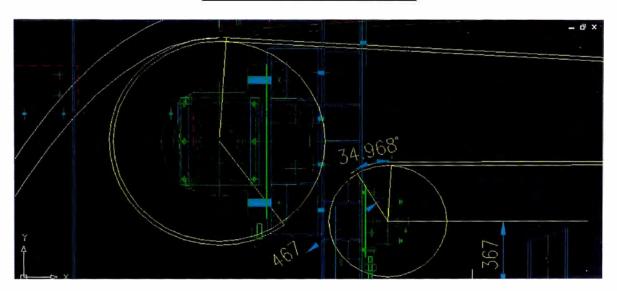
5.1.1.7 Cálculo de los Esfuerzos de Flexión en poleas


		Momento [N-m]				
MARCA:	Momento de Inercia	Polea de Cabeza	Polea Snub	Poleas de volteo	Polea de Contrapeso	Polea de Cola
Scandura (Diseño)	6.80641E-07	3828.13	6699.22	6699.22	6699.22	6699.22
PHOENIX Øsnub=24pul(Actual)	9.1301E-07	5135.04	8986.32	8986.32	8986.32	8986.32
PHOENIX Øsnub=32pul	9.1301E-07	5135.04	6763.04	8986.32	8986.32	8986.32
PHOENIX Øsnub=36pul	9.1301E-07	5135.04	6019.85	8986.32	8986.32	8986.32

Momento Torsor:

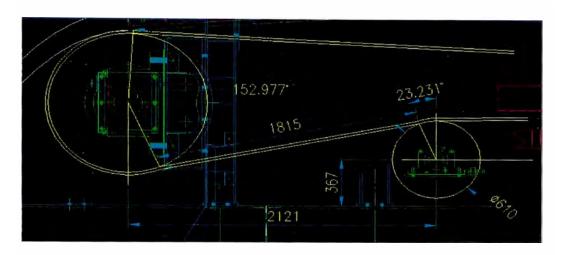
$$M = \int_A y \cdot \sigma \cdot dA = \frac{E}{\rho} \int_A y^2 \cdot dA = \frac{E}{\rho} \cdot I$$


		Esfuerzo Máximo debido a Flexión [Mpa]				
MARCA:	Modulo Resistente	Polea de Cabeza	Polea Snub	Poleas de volteo	Polea de Contrapeso	Polea de Cola
Scandura (diseño)	7.77875E-05	49.21	86.12	86.12	86.12	86.12
PHOENIX Øsnub≂24pul(Diseño)	9.46125E-05	54.27	94.98	94.98	94.98	94.98
PHOENIX Øsnub=32pul	9.46125E-05	54.27	71.48	94.98	94.98	94.98
PHOENIX Øsnub=36pul	9.46125E-05	54.27	63.63	94.98	94.98	94.98

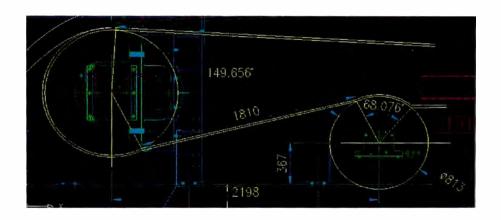

$$\sigma_{\text{max}} = \frac{M \cdot c}{I} = \frac{M}{w}$$

5.1.1.8 Estudio Analítico para Diferentes Ángulos de Envoltura y Diferentes Distancias

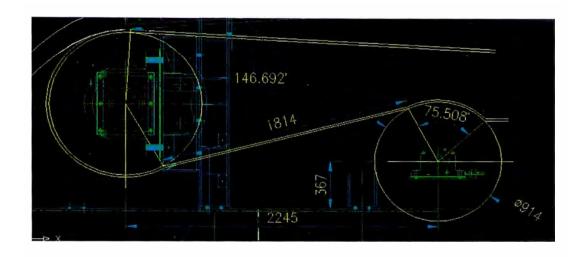
Existen diferentes propuestas a fin de disminuir las tensiones que originan los esfuerzos de Tracción, así como los esfuerzos de Torsión, estas son



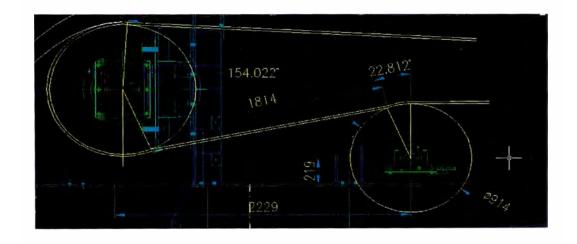
CONFIGURACION ACTUAL


Opción 1

Diámetro del Snub	24 pulg
Distancia entre Snub y Polea	2.121 mts
cabeza	
Elevación Snub	0.367 mts

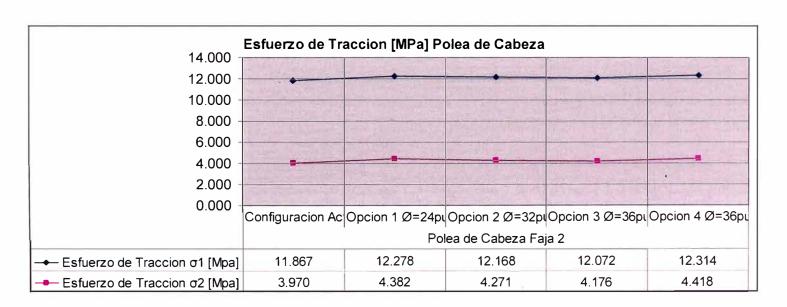

Opción 2

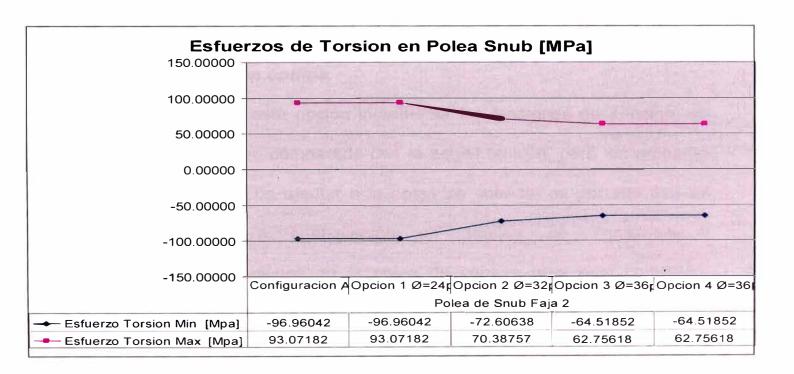
Diámetro del Snub	32 pulg
Distancia entre Snub y Polea	2.198 mts
cabeza	
Elevación Snub	0.367 mts

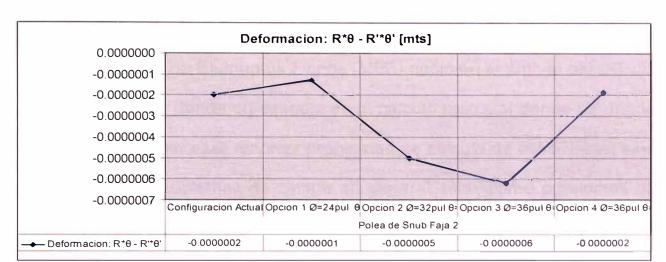

Opción 3

Diámetro del Snub	36 pulg
Distancia entre Snub y Polea	2.245 mts
cabeza	
Elevación Snub	0.367 mts

Opción 4


Diámetro del Snub	36 pulg
Distancia entre Snub y Polea	2.229 mts
cabeza	
Elevación Snub	0.219 mts


5.1.1.9 Presentación de Configuración Actual y Opciones


Para estas 4 opciones, se analizó el comportamiento de las tensiones y esfuerzos en la polea de cabeza.

	Polea de Cabeza Faja 2					
Medidas	Configuración Actual a 2900 tph	Opción 1	Opción 2	Opción 3	Opción 4	
Angulo de envoltura [θ] (Degrees)	220	207.0	210.3	213.3	206.0	
Angulo de envoltura [θ] (Radians)	3.828	3.602	3.660	3.712	3.584	
Tensión Efectiva [Te] N	232253.55	232253.55	232253.55	232253.55	232253.55	
Tensión 1 [T1] N	349032.53	361147.01	357891.27	355078.69	362195.11	
Tensión 2 [T2] N	116778.98	128893.46	125637.72	122825.14	129941.56	
Coeficiente de Fricción	0.28602	0.28602	0.28602	0.28602	0.28602	
Factor de envoltura [Cw]	0.503	0.555	0.541	0.529	0.559	
Esfuerzo de Tracción σ1 [Mpa]	11.867	12.278	12.168	12.072	12.314	
Esfuerzo de Tracción σ2 [Mpa]	3.970	4.382	4.271	4.176	4.418	

	Polea de Snub Faja 2				
Medidas	Configuración Actual	Opción 1 Ø=24pul	Opción 2 Ø=32pul	Opción 3 Ø=36pul	Opción 4 Ø=36pul
Longitud de la Superficie Curva R*θ	0,1913	0,1271	0,4911	0,6104	0,1844
Deformación: R*θ - R'*θ'	-0,000000197	-0,0000001	-0,0000005	-0,0000006	-0,000000188
Radio de superficie Neutra R=h/(ln(r2/r1))	0,31435	0,31435	0,41458	0,46458	0,46458
rı	0,3048	0,3048	0,405	0,455	0,455
r2	0,3241	0,3241	0,4243	0,4743	0,4743
Centroide (radio	0,31445	0,31445	0,41465	0,46465	0,46465
Distancia desde el centroide al eje neutro	0,00010	0,00010	0,00007	0,00007	0,00007
Esfuerzo Torsión Min [Mpa]	-96,96042	-96,96042	-72,60638	-64,51852	-64,51852
Esfuerzo Torsión Max [Mpa]	93,07182	93,07182	70,38757	62,75618	62,75618
Delta θ rad	0,0000063	0,00000042	0,0000012	0,0000013	0,0000004
θ deg	34,968	23,231	68,076	75,508	22,812
θ rad	0,61	0,40	1,18	1,31	0,40

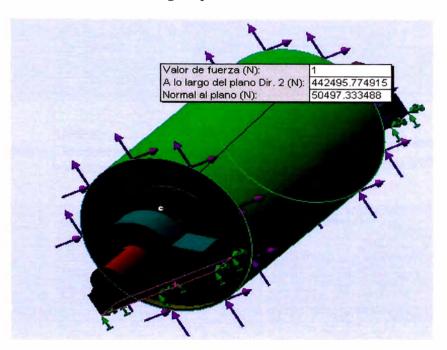
5.1.1.10 Determinación de Opción óptima

Determinación de Opción óptima

- La opción 4, debido a que reduce los momentos de Torsión y la deformación en la faja cuando esta pasa por la polea Snub, es la opción óptima.
- Aunque esta opción incrementa las tensiones de Tensión, no es mucho comparado con la actual tensión, pero sin embargo esta podría afectar a la polea de cabeza, es por eso que se realiza a continuación un análisis de Tensiones y Deformaciones en la polea de cabeza para esta condición, comparándola con la condición actual.

5.1.1.11 Análisis de esfuerzos en polea de cabeza con el uso de software en el método de Elementos Finitos.

El Método de Elementos Finitos (MEF) nació en el ámbito del cálculo estructural donde su esencia es el cálculo matricial donde se puede usar no solo para resolver problemas de cálculo de estructuras, sino también problemas de campo en general, tales como problemas de elasticidad o de conducción de calor.


La idea básica es: la división del dominio de cálculo en pequeños subdominios y la aproximación en ellos de la variable de campo en función de su valor en puntos privilegiados llamados nodos.

5.1.1.11.1 Información de cargas y restricciones Características de los Materiales:

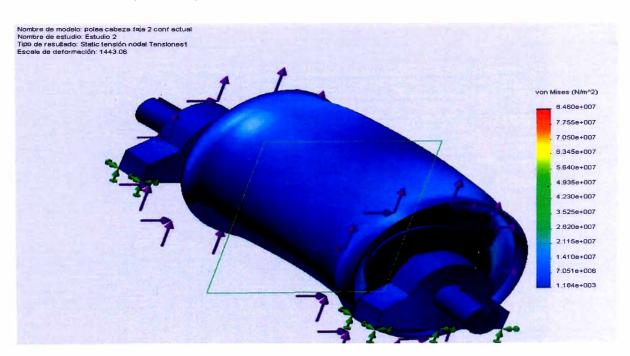
Nº	Nombre de pieza	Material	Masa	Volumen
1	Eje	Acero al carbono A36	2101.68 kg	0.134723 m^3
3	Rodamiento-1	Acero al carbono A36	448.244 kg	0.0574672 m^3
4	Rodamiento-2	Acero al carbono A36	448.244 kg	0.0574672 m^3
5	Polea cabeza faja	Acero al carbono A36	1042.64 kg	0.133672 m^3

Análisis en el Eje de la Polea – configuración Actual.

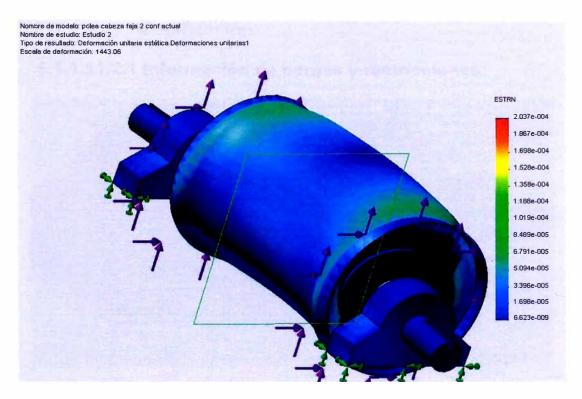
Información de cargas y restricciones:

Restricción			
Descripción:	Las restricciones se aplicaron a las chumaceras de los rodamientos en ambos lados.		

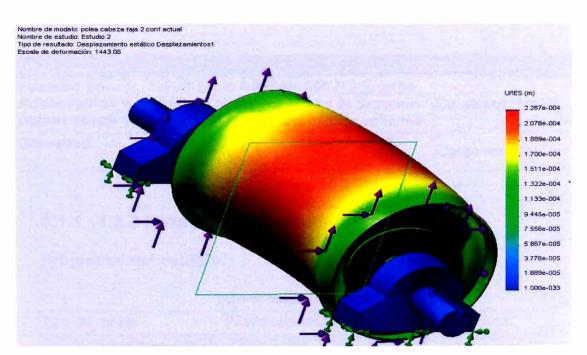
Carga		
Fuerza-1 en Rodamientos y polea cabeza	Fuerza de 4.425e+005 N a lo largo del eje X. Fuerza 50497 N dirección eje Y, utilizando distribución uniforme	
Gravedad	Aceleración de la gravedad -9.81 m/s^2 a lo largo del eje Y	•


5.1.1.11.1.2 Propiedad del estudio

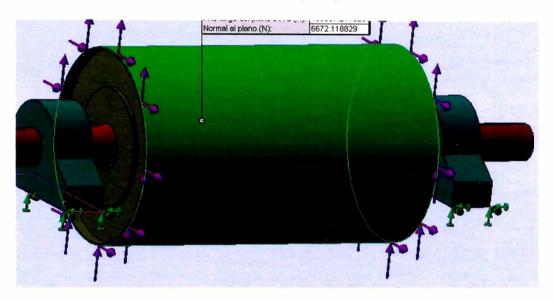
Información de malla		
Tipo de malla:	Malla con elementos sólidos tetraédricos	
Tamaño de elementos:	72.645 mm	
Tolerancia:	3.6322 mm	
Calidad:	Alta	
Número de elementos:	15997	
Número de nodos:	29430	


5.1.1.11.3 Resultados Predeterminados

Nombre	Tipo	Mín.	<u>Ubicación</u>	Máx.	Ubicación
Tensiones	VON: Tensión de von Mises	1183.96 N/m^2 Nodo: 5500	(1612.13 mm, 92.3918 mm, 63.0511 mm)	8.46018e+007 N/m^2 Nodo: 1091	(-1003.52 mm, 67.8554 mm, -98.0711 mm)
Desplazamientos	URES: Desplazamientos resultantes	0 m Nodo: 6156	(-1041.97 mm, -182.145 mm, -416 mm)	0.000226687 m Nodo: 4103	(-56.6042 mm, 194.855 mm, -5.55135e-006 mm)
Deformaciones unitarias1	ESTRN: Deformación unitaria equivalente	6.62266e- 009 Elemento: 308	(-1637.96 mm, 138.594 mm, 48.7324 mm)	0.000203727 Elemento: 189	(-1017.56 mm, 74.6534 mm, -82.2336 mm)


5.1.1.11.1.4 Tensiones

5.1.1.11.1.5 Desplazamientos Estáticos



5.1.1.11.1.6 Deformaciones Unitarias Estáticas

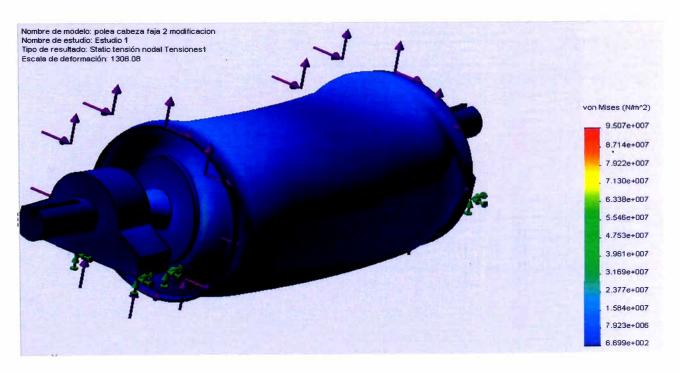
5.1.1.11.2 Análisis en la Polea de Cabeza – Propuesta de Modificación.

5.1.1.11.2.1 Información de cargas y restricciones:

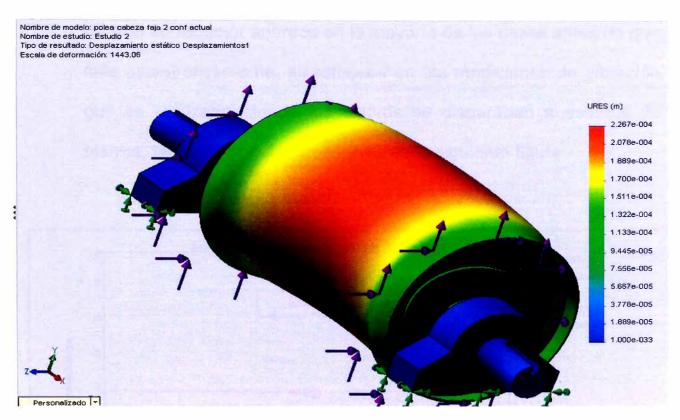
Restricción				
Descripción:	Las restricciones se aplicaron a las chumaceras de los rodamientos en ambos lados.			

Carga				
Fuerza-1 en Rodamientos y polea cabeza	Fuerza de 4.8894e+005 N a lo largo del eje X. Fuerza 6672.1 N dirección eje Y, utilizando distribución uniforme	Carga secuencial		
Gravedad	Aceleración de la gravedad -9.81 m/s^2 a lo largo del eje Y	Carga secuencial		

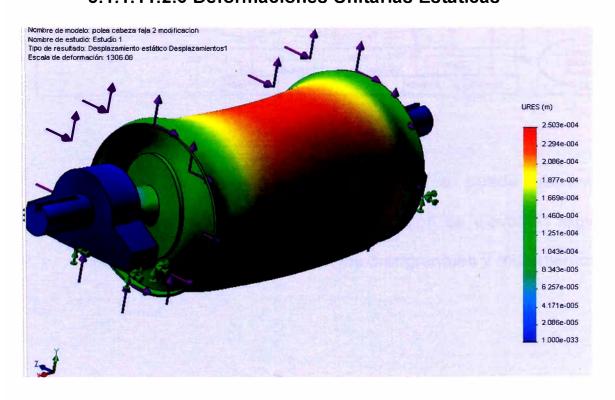
5.1.1.11.2.2 Propiedad del estudio:


Propiedad del estudio:

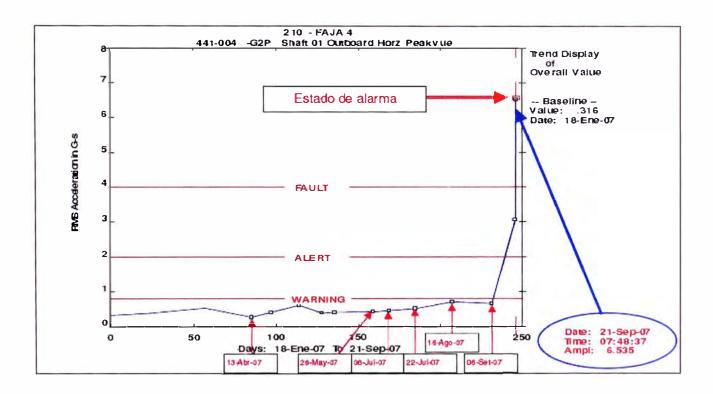
Información de malla				
Tipo de malla:	Malla con elementos sólidos tetraédricos			
Tamaño de elementos:	72.645 mm			
Tolerancia:	3.6322 mm			
Calidad:	Alta			
Número de elementos:	15997			
Número de nodos:	29430			


5.1.1.11.2.3 Resultados Predeterminados:

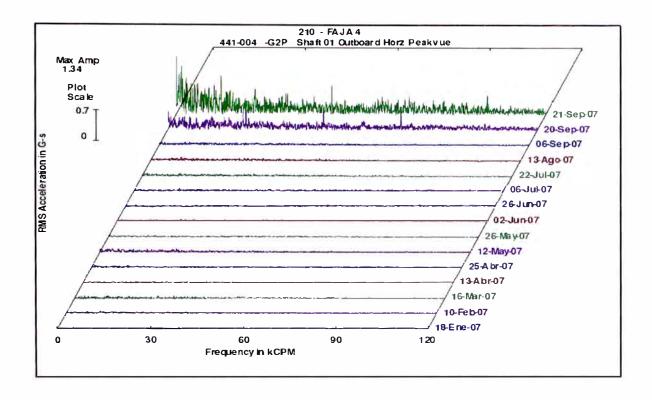
Nombre	Tipo	Mín.	Ubicación	Máx.	Ubicación
Tensiones	VON: Tensión de von Mises	669.861 N/m^2 Nodo: 92	(-1654.09 mm, 2.93388 mm, 77.3705 mm)	9.50663e+007 N/m^2 Nodo: 1091	(-1003.52 mm, 67.8554 mm, -98.0711 mm)
Desplazamientos	URES: Desplazamientos resultantes	0 m Nodo: 6156	(-1041.97 mm, -182.145 mm, -416 mm)	0.000250284 m Nodo: 4103	(-56.6042 mm, 194.855 mm, -5.55135e-006 mm)
Deformaciones unitarias	ESTRN: Deformación unitaria equivalente	6.48926e- 009 Elemento: 495	(-1645.42 mm, 90.9053 mm, -3.55268 mm)	0.000224784 Elemento: 189	(-1017.56 mm, 74.6534 mm, -82.2336 mm)


5.1.1.11.2.4 Tensiones

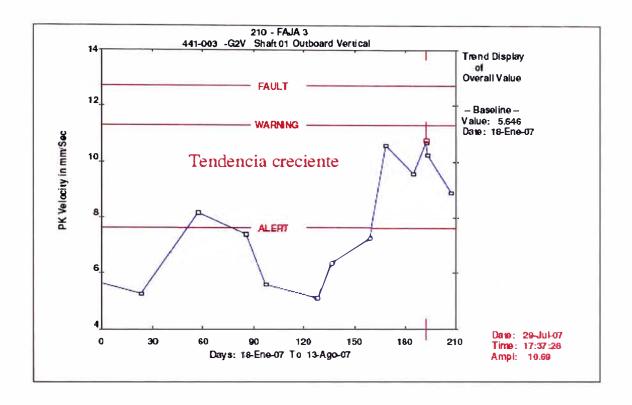
5.1.1.11.2.5 Desplazamientos Estáticos



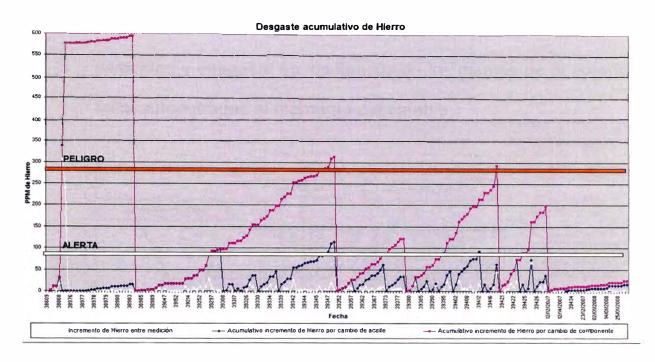
5.1.1.11.2.6 Deformaciones Unitarias Estáticas

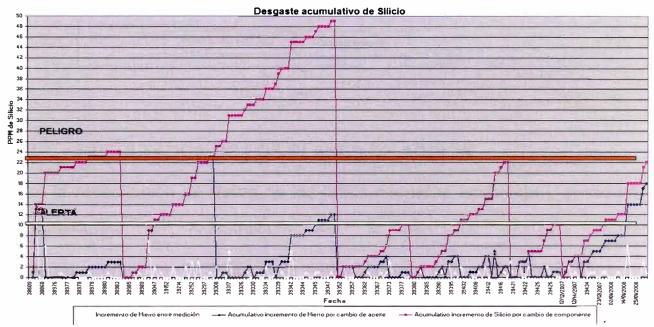


5.1.2 Subsistema de transmisión


La falla en reductor aparece en la mayoría de los casos antes de que falle catastróficamente, se reflejaba en las mediciones de vibración que se realizaba, donde los valores se disparaban a estados de alarma, tal como podemos observar en la siguiente figura:

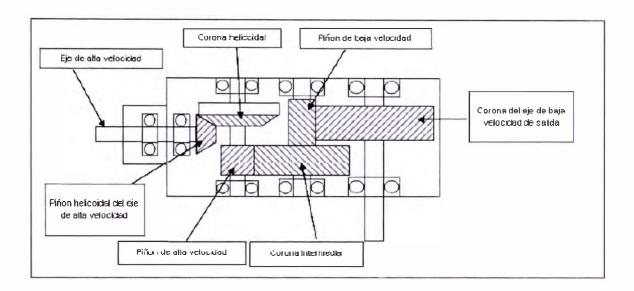
En los espectros de tipo cascada se puede observar como repentinamente los valores de vibración se elevaban rápidamente, determinando el desgaste en los 3 engranajes y rodamientos.


Es así que se implementan el monitoreo por medio del análisis de vibración, que fue de gran ayuda, pero sin embargo las alarmas de vibración se presentaban repentinamente y en algunas oportunidades era imposible con este monitoreo anticipar la falla catastrófica, por tanto se procedió a realizar muestreos de aceite, al verificar los resultados se determino que se podía definir alarmas a fin de poder anticiparnos a la falla y confirmar la criticidad del estado del reductor.



5.1.2.1 Análisis de conteo acumulativo de partículas y definición de alarmas.

Se definió alarmas para Hierro y Silicio en cuanto al histórico de muestras, así mismo se implanto que como frecuencia de muestreo debería ser cada quince días pues el cambio de aceite determinado por el fabricante del reductor Falk es cada 6 meses, siendo su frecuencia de muestreo de aceite cada 2 meses.


Así mismo los rangos determinados de alarmas para el hierro y silicio se muestran en las figuras siguientes:

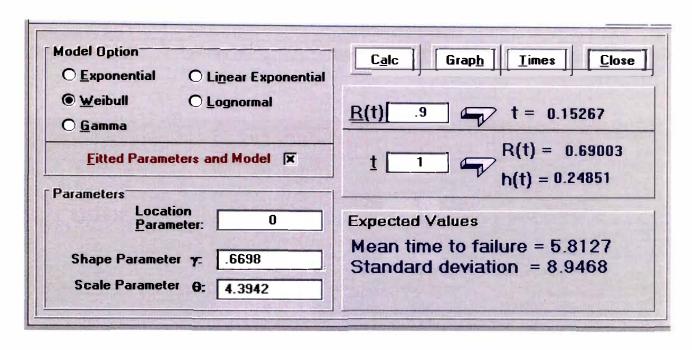
En estado crítico o de peligro la recomendación es cambio de componente, el análisis de hierro es el que predomina para tomar una decisión pues el histórico de fallas se observaba desprendimiento de partículas ferrosas, así mismo una acción a realizar era el hacer el flushing en el reductor. El excesivo desgaste en algunas situaciones era en los rodamientos del segundo eje

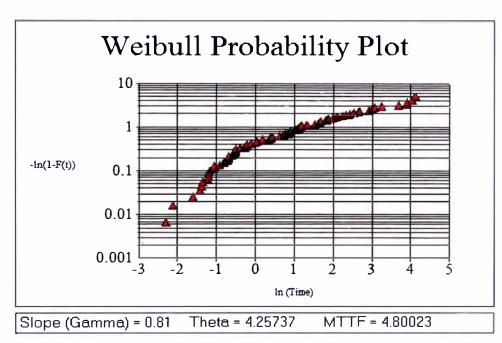
intermedio, así mismo la rotura de un diente del piñón de alta velocidad y desgaste en los flancos de los dientes de la corona eran fallas encontradas al momento del cambio.

5.2 RESULTADOS DE LOS PLANES DE ACCIÓN

Con la recopilación de datos de las fallas ocurridas en la faja y el reductor estudiaremos su confiabilidad con el uso del software Relest, determinaremos la distribución de mejor ajuste y sus parámetros, así como sus curvas de supervivencia.

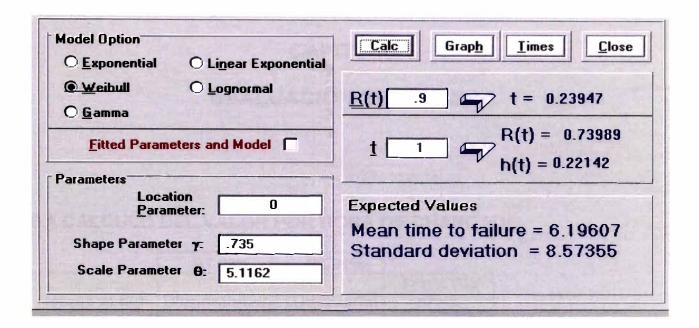
5.2.1 <u>Incremento en la disp</u>onibilidad del sistema de chancado.

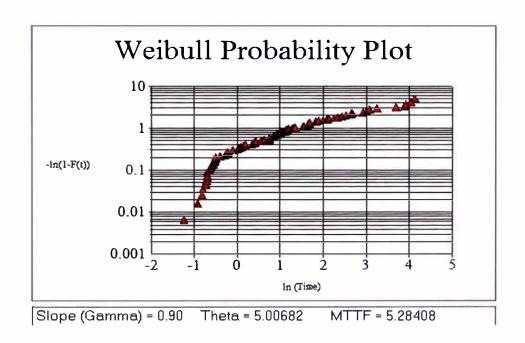

Se recopilaron los datos entre las fechas 01-Ene-2007 a 31-Dic-2009 para luego compararlo con el año 2010. Estos datos se muestran en las siguientes tablas.


5.2.1 Incremento en la disponibilidad del sistema de chancado

Se recopilaron los datos entre las fechas 01-Ene-2007 a 31-Dic-2009 para luego compararlo con el año 2010. Estos datos se muestran en las siguientes tablas.

Componente	Fecha	Tiempo Parada	Falla
Faja 1	16-Nov-07	20.12	Desempalme de faja
Reductor de faja 1	14-Jan-07	14.20	Rotura de eje de reductor
Reductor de faja 1	19-May-07	0.30	Desalineamiento
Reductor de faja 1	24-Jun-07	0.25	Desalineamiento
Reductor de faja 1	28-Jul-07	0.75	Desalineamiento
Reductor de faja 1	19-Oct-07	11.30	Rotura de eje de reductor
Reductor de faja 1	13-Sep-07	8.00	Rotura de eje de reductor
Reductor de faja 1	4-Nov-07	3.00	Rotura de eje de reductor
Reductor de faja 1	16-Nov-07	0.80	Desalineamiento
Reductor de faja 1	14-Dec-07	0.20	Desalineamiento
Faja 1	26-Feb-08	9.43	Desprendimiento raspador V
Reductor de faja 1	24-Mar-08	12.6	Rotura de eje de reductor
Reductor de faja 1	12-Jul-08	0.59	Desalineamiento
Reductor de faja 1	10-Sep-08	0.48	Desalineamiento
Reductor de faja 1	1-Oct-08	0.55	Desalineamiento
Reductor de faja 1	2-Nov-08	0.58	Desalineamiento
Faja 1	19-Apr-09	14.54	Desempalme
Faja 1	15-May-09	0.49	Rotura de faja
Faja 1	18-May-09	3.30	Fuga de mineral
Faja 1	19-May-09	0.44	Falla Instrumentacion
Faja 1	27-May-09	0.77	Fuga de mineral
Reductor de faja 1	22-Apr-09	7.34	Rotura de eje de reductor
Reductor de faja 1	13-Jun-09	0.35	Desalineamiento
Reductor de faja 1	16-Aug-09	0.29	Desalineamiento
Reductor de faja 1	21-Sep-09	5.42	Rotura de eje de reductor
Reductor de faja 1	15-Dec-09	0.60	Desalineamiento
Faja 2	26-Jan-07	61.66	Desempalme de faja
Faja 2	2-Feb-07	2.72	Reparación de detector de metales
Faja 2	18-Apr-07	5.32	Corte en faja por metal suspendido
Faja 2	30-May-07	25.54	Desempalme de faja
Faja 2	3-Jun-07	10.23	Desprendimiento raspador V
Faja 3	18-Jun-07	1.2	Falla electrica
Faja 4	4-Jul-07	4.6	Falla electrica
Faja 5	9-Nov-07	20.1	Desempalme de faja
Faja 5	28-Dec-07	2.30	Corte en faja por metal suspendido
Reductor de faja 2	14-Jan-07	2.10	Desalineamiento
Reductor de faja 2	19-May-07	1.20	Desalineamiento
Reductor de faja 2	24-Jun-07	12.40	Rotura de eje de reductor
Reductor de faja 2	28-Jul-07	1.00	Desalineamiento
Reductor de faja 5	19-Oct-07	11.30	Rotura de eje de reductor
Reductor de faja 5	13-Sep-07	0.80	Desalineamiento
Reductor de faja 5	4-Nov-07	6.61	Rotura de eje de reductor
Reductor de faja 5	16-Nov-07	0.80	Desalineamiento
Faja 2	14-Jan-07	18.43	Corte en faja por metal suspendido
Faja 2	25-Jan-08	5.09	Falla electrica
Faja 2	2-Feb-08	2.3	Falla electrica
Faja 2	14-Mar-08	2.12	Daño en polin
Faja 2	14-Mar-08	56.19	Desempalme de faja
Faja 3	16-Mar-08	2.1	Daño en polin Falla electrica
Faja 5	18-Apr-08	5.12	
Faja 5	27-Apr-08	6.4	Daño en polin
Faja 5 Reductor de faja 2	19-May-08 14-Jan-08	48.23 8.12	Desempalme de faja Rotura de eje de reductor
Reductor de faja 2		1.5	Desalineamiento
Reductor de faja 2	25-Jan-08 2-Feb-08	2.3	Desalineamiento


Reductor de faja 2	14-Mar-08	1.87	Desalineamiento
Reductor de faja 2	14-Mar-08	2.5	Desalineamiento
Reductor de faja 2	16-Mar-08	2.1	Fuga de aceite
Reductor de faja 2	18-Apr-08	3.8	Rotura de eje de reductor
Reductor de faja 2	27-Apr-08	1.5	Desalineamiento
Reductor de faja 5	19-May-08	8.34	Rotura de eje de reductor
Reductor de faja 5	20-May-08	3.19	Fuga de aceite
Reductor de faja 5	21-May-08	3	Desalineamiento
Reductor de faja 5	22-May-08	1.04	Desalineamiento
Reductor de faja 5	23-May-08	0.59	Desalineamiento
Reductor de faja 5	24-May-08	1.2	Desalineamiento
Faja 2	11-Jan-09	3.7	Daño en polin
Faja 2	22-Jan-09	5.3	Falla electrica
Faja 2	12-Feb-09	2.4	Falla electrica
Faja 2	11-Mar-09	2.5	Daño en polin
Faja 2	24-Mar-09	49.65	Desempalme de faja
Faja 2	25-Mar-09	2.5	Daño en polin
Faja 2	8-Apr-07	6.1	Falla electrica
Faja 2	18-Apr-09	4.6	Daño en polin
Faja 2	19-May-09	39.9	Desempalme de faja
Faja 2	2-Jul-09	3.1	
Faja 3	3-Jul-09	0.9	Corte en faja por metal suspendido
Faja 3	6-Jul-09	0.5	Daño en polin Falla electrica
Faja 4			
	7-Jul-09	0.3	Daño en polin
Faja 4	7-Jul-09	0.6	Daño en polin
Faja 4	8-Jul-09	1.54	Corte en faja por metal suspendido
Faja 5	18-Jul-09	0.59	Falla electrica
Faja 5	28-Jul-09	1.02	Corte en faja por metal suspendido
Faja 5	1-Aug-09	21.44	Desempalme de faja
Faja 5	3-Aug-09	1.4	Daño en polin
Faja 5	10-Aug-09	0.9	Falla electrica
Faja 5	21-Aug-09	0.1	Falla electrica
Faja 5	21-Aug-09	0.31	Daño en polin
Faja 5	26-Aug-09	0.26	Falla electrica
Faja 5	31-Aug-09	0.12	Daño en polin
Faja 5	8-Sep-09	0.24	Falla electrica
Reductor de faja 2	18-Oct-09	0.4	
Reductor de faja 2	1-Nov-09	0.32	
Reductor de faja 2	5-Dec-09	0.34	
Reductor de faja 2	5-Jan-09	6.2	
Reductor de faja 2	1-Mar-09	0.5	
Reductor de faja 2	17-Apr-09		Rotura de eje de reductor
Reductor de faja 2	19-Apr-09	1.5	
Reductor de faja 2	19-Sep-09	2.81	Desalineamiento
Reductor de faja 5	20-Sep-09	5.24	
Reductor de faja 5	31-Oct-09	0.45	
Reductor de faja 5	12-Feb-09	0.57	Desalineamiento
Reductor de faja 5	17-Feb-09	2.7	Desalineamiento
Reductor de faja 5	7-Mar-09	0.5	Desalineamiento
Reductor de faja 5	16-Apr-09	0.67	
Reductor de faja 5	22-Apr-09	3.16	Fuga de aceite



Componente	Fecha	Tiempo Parada	Falla
Reductor de faja 1	22-Apr-10	5.1	Rotura de eje de reductor
Reductor de faja 1	13-Jun-10	0.54	Desalineamiento
Faja 3	23-Mar-10	13.91	Corte en faja por metal suspendido
Faja 3	31-Jul-10	1.75	Fuga de mineral
Faja 3	2-Aug-10	2.1	Fuga de mineral
Faja 3	7-Aug-10	1.09	Daño en polin
Faja 4	17-May-10	1.14	Fuga de mineral
Faja 4	1-Oct-10	3.53	Fuga de mineral
Faja 4	17- May -10	2.51	Falla eléctrica
Faja 4	1-Oct-10	4.74	Fuga de mineral
Reductor de faja 1	22-Apr-10	0.52	Fuga de aceite

Reductor de faja 1	23-Jun-10	0.29	Desalineamiento	
Reductor de faja 1	24-Jun-10	0.54	Desalineamiento	

CAPITULO 6

EVALUACION ECONOMICA

6.1 CALCULO DEL VALOR POR HORA DE CHANCADO.

	91.98%	96.91%	*
Horas al día	Disponibilidad	Utilización	Ton x Día prom
24	22.07	21.39	56,593

Total de onzas de oro producidas por mes

Ton/hr op	Horas chancadas/dí a	Días x mes	Ton chancadas x mes	Ley	Oz Chancad as x mes	Oz Recuper a-bles
2,646	21.39	30	1,697,782	1.734932719	94,701	75761

Ingreso neto mensual

12	Precio x onza US \$	Onzas vendidas US \$	Costo x onza producida US \$	Costo Operativo US \$	Ingreso Bruto x mes US \$	% Impuestos	Ingreso Neto x mes US \$
ì	1,200	90,913,103	133	10,076,202	80,836,901	30%	56,585,830

Ingreso Neto por hora

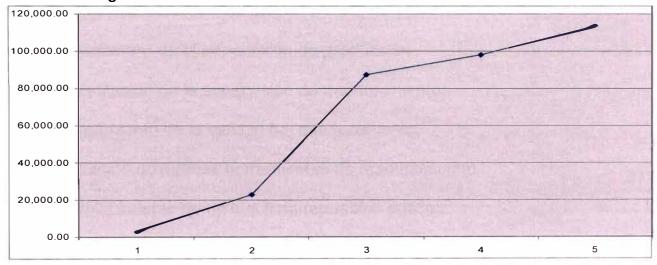
Ingreso Neto x mes US	Ingreso Neto x hora US \$
56,585,830	78,591

Al final del proyecto:

Ingreso Neto x hora US \$	Años para cierre	Interés	Valor Futuro US \$
78,591	9	10%	185,314

Valor por hora de chancado

Valor Futuro US \$	Ingreso Neto x hora (Fin de Proyecto) US \$	Valor Futuro - Ingreso Neto x hora US \$	Valor por hora de chancado Presente US \$
185,314	78,591	106,723	45,261


6.2 ESTIMACIÓN DE COSTOS

	6.2 ESTIMACIÓN DE COS						
It e m	Descripción	Unid.	Cantidad	P. Unit. (US\$)	Parcial (US\$)	Costos Directos (US\$)	Costos Indirectos (US\$)
Ma	teriales	*				THE RESERVE	
	Cambio Polea Snub Faja 2						
	Chumaceras modelo Shurlok 3.4375"			-	-		
1	ZAFS6307-F Marca REXNORD	Unid	2.00	828.00	1,656.00	1,656.00	
2	Polea snub, tambor de 36" de Ø x 68.00" de largo. Marca PPI	Unid	1.00	16,768.00	16,768.00	16,768.00	
3	Plancha de 3/4" x 4" x 8" ASTM A36	Unid	1.00	478.00	478.00	478.00	
4	Plancha de 1/2" x 4" x 8" ASTM A36	Unid	1.00	250.00	250.00	250.00	
5	Perfiles de 1/8"x2"x6MT ASTM A36	Unid	5.00	17.20	86.00	86.00	
6	Soldadura Cellocord 6011 de 1/8"	Kg	20.00	4.18	83.60	83.60	
7	Raspador primario QC#1 XHD segmentado marron para faja de 60"	Unid	1.00	4,505.80	4,505.80	4,505.80	
8	Raspador secundario SQC2 con tensionador para faja 60"	Unid	1.00	3,988.40	3,988.40	3,988.40	
	Kit para empalme para Faja 1524 EP2000/4 –8 + 3					0,000.10	
9	Caucho de Cubierta Superior 6mm	Unid	4.00	190.00	760.00	760.00	
10	Caucho de Cubierta Inferior 3mm	Unid	4.00	175.00	700.00	700.00	
11	Cemento Vulcanizante	MI	5.00	85.00	425.00	425.00	
12	Cintas de relleno 1mm	Unid	10.00	47.00	470.00	470.00	
13	Solución de Limpieza	Unid	2.00	115.00	230.00	230.00	
14	Tela de Vulcanizado	М	8.00	145.00	1,160.00	1,160.00	
15	Trapo industrial	Kg	20.00	1.50	30.00	30.00	
16	<u>Faja Nueva</u>	Mt	244.00	200.00	48,800.00	48,800.00	
Her	ramientas						
	Empalme Faja 2						
1	Mesa para empalmes de fajas transportadoras de 60" (01 pieza de 2000 mm y 12000 mm rectangular con sus clamps y 01 pieza de 2000 mm x 1200 mm angular)	Unid	6.00	1,183.00	7,098.00	7,098.00	
2	Alquiler equipo vulcanizador SHAW ALMEX	Unid	1.00	1,856.29	1,856.29	1,856.29	
3	Guateros de Máquina de Vulcanizado - Fajas transportadoras SV3P 9398 Bolsa de presión de 31" x 84" para equipo vulcanizador Shaw- Almex	Unid	2.00	2,306.00	4,612.00	4,612.00	
4	Cuchillo angular (cuchillo paleta)	Unid	5.00	42.80	214.00	214.00	
5	Cuchillo cartonero	Unid	6.00	3.20	19.20	19.20	
6	Cuchillo p/cortar goma de 6"	Unid	5.00	31.10	155.50	155.50	
7	Cuchillo universal (marca Stanley) c/5 hojas (ex 838 3853)	Unid	2.00	7.20	14.40	14.40	
8	Despegalonas	Unid	2.00	21.90	43.80	43.80	
9	Escobilla con fibras naturales (ex 036 0269)	Unid	3.00	1.73	5.19	5.19	
10	Lápiz especial para marcar caucho	Unid	1.00	6.46	6.46	6.46	
11	Maletín de herramientas (ex 839 4763)	Unid	1.00	341.60	341.60	341.60	
12	Polvo para tiza de recambio (ex 595 0014)	Unid	2.00	3.16	6.32	6.32	
13	Repuestos para 999 9077 caja x 10	Unid	5.00	4.60	23.00	23.00	

Alojamiento y alimentación en terreno para 7 personas durante 06 días (Total 42 H-Día). Hr/dia 42.00 17.21 722.70 722.70 Gastos Generales 1 Costo equipo parado (desarmado e instalación) Hr 20.00 0.99 905,219.85					ă.				말
Boligrafo para firmar blanco	14	Hoja de recambio para 595 2108	Unid	5.00		13.08	65.40	65.40	
Minas de recambio para 595 0179 caja x 12	15	Tenazas de corte 300mm, con palanca	Unid	2.00		63.02	126.04	126.04	
18	16	Boligrafo para firmar blanco	Unid	2.00		13.26	26.52	26.52	
19 Cuerda para trazar con polvo de tiza Unid 3.00 9.14 27.42 27.42	17	Minas de recambio para 595 0179 caja x 12	Unid	1.00		12.46	12.46	12.46	
Cocontenedor	18	Cuchillo p/cortar goma de 5" (hoja angosta)	Unid	5.00		25.19	125.95	125.95	
21 Brocha de 30mmØ pelo natural largo Unid 5.00 7.30 36.50 36.50 25 25 25.00 25.00 25 25 25 25 25 25 25	19		Unid	3.00		9.14	27.42	27.42	
22 Brocha de 40mmØ pelo de fibras corto Unid 5.00 10.12 50.60 50.60 39.100 39.100 39.20	20	Brocha de 25mmØ pelo de fibras corto	Unid	5.00		5.14	25.70	25.70	
Brocha de 60mmØ pelo de fibras largo Unid 5.00 18.20 91.00 91.00	21	Brocha de 30mmØ pelo natural largo	Unid	5.00		7.30	36.50	36.50	
24 Brocha especial p/aplicación en trazos grandes Unid 2.00 19.60 39.20 39.20 25 Rodillo de 4 mm. Unid 4.00 6.25 25.00 25.00 25.00 26 Rodillo de 12 mm. Unid 4.00 6.25 25.00 25.00 25.00 27 Termómetros digitales Unid 6.00 126.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00	22	Brocha de 40mmØ pelo de fibras corto	Unid	5.00		10.12	50.60	50.60	
Variable Variable	23	Brocha de 60mmØ pelo de fibras largo	Unid	5.00		18.20	91.00	91.00	
26 Rodillo de 12 mm. 27 Termómetros digitales 18 Tecle cadena de 1,5 ton 28 Tecle cadena de 1,5 ton 29 Tecle cadena de 3 ton 20 Cadenas para fijación de prensas tensoras 20 Unid 20 Deja de 1,5 ton 20 Cadenas para fijación de prensas tensoras 21 Unid 22 Deja de 1,5 ton 23 Prensas tensoras 25 Unid 26 Servicio de Empalme 27 Descricio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. 28 Movilización de personal Lima / Mina / Lima 29 Cadenas para fijación de prensas tensoras 20 Unid 40 Servicio de Servado (desarmado e instalación) 20 Prensa carpintera 20 Unid 40 Servicio de Empalme 40 Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. 41 Costo equipo parado (desarmado e instalación) 42 Prensa carpintera 43 Alojamiento y alimentación en terreno para 7 personas duranta (desarmado e instalación) 44 Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 17.24 Jin 1680 62 2.362 24 2.362 24 2.362 24 1 Costo equipo parado (desarmado e instalación) 45 Castos Generales 46 Costo equipo parado (desarmado e instalación en terreno para 7 personas durante 06 dias (Total 42 H-Dia). 47 Castos Generales 48 Costos Generales 49 Costo equipo parado (desarmado e instalación) 40 Castos Generales 40 Cadena de 1,5 ton 10 184 60 20 20 20.00 20 20 20.00 20 20 20.00 20 20 20 20.00 20 20 20 20 20 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 20 00 20 00 20 20 00 20 00	24		Unid	2.00		19.60	39.20	39.20	
Termómetros digitales	25	Rodillo de 4 mm.	Unid	4.00		6.25	25.00	25.00	
Tecle cadena de 1,5 ton	26	Rodillo de 12 mm.	Unid	4.00		6.25	25.00	25.00	
Tecle cadena de 3 ton	27	Termómetros digitales	Unid	6.00		126.00	756.00	756.00	
Cadenas para fijación de prensas tensoras Unid 4.00 50.00 200.00 200.00 31 Mordaza auto prensora Unid 1.00 25.00 25.00 25.00 25.00 32 Prensas tensoras Unid 8.00 37.00 296.00 296.00 32 Prensa carpintera Unid 8.00 37.00 296.00 296.00 33 Prensa de empalme Unid 1.00 145.00 145.00 145.00 145.00 145.00 35 Carpa para la protección de la zona de empalmes Unid 1.00 650.00 6	28	Tecle cadena de 1,5 ton	Unid	2.00		92.30	184.60	184.60	
31 Mordaza auto prensora Unid 1.00 25.00 25.00 25.00 25.00 296.00 296.00 296.00 296.00 296.00 37.00 296.00 296.00 296.00 37.00 296.00 296.00 296.00 37.00 296.00 296.00 37.00 296.00 296.00 37.00 296.00 37.00 296.00 37.00 296.00 37.00 296.00 37.00 296.00 37.00 296.00 37.00 296.00 37.00 296.00 37.00 296.00 37.00 37.00 296.00 37.00	29	Tecle cadena de 3 ton	Unid	2.00		92.30	184.60	184.60	
32 Prensas tensoras Unid 8.00 37.00 296.00 296.00 296.00 33 Prensa carpintera Unid 8.00 37.00 296.00 296.00 296.00 34 Mesa de empalme Unid 1.00 145.00 145.00 145.00 145.00 145.00 35 Carpa para la protección de la zona de empalmes Unid 1.00 650.00	30	Cadenas para fijación de prensas tensoras	Unid	4.00		50.00	200.00	200.00	
33 Prensa carpintera Unid 8.00 37.00 296.00 296.00 296.00 34 Mesa de empalme Unid 1.00 145.00	31	Mordaza auto prensora	Unid	1.00		25.00	25.00	25.00	
34 Mesa de empalme Unid 1.00 145.00 145.00 145.00 35 Carpa para la protección de la zona de empalmes Unid 1.00 650.00 650.00 650.00 Mano de Obra Desarmado de Polea 24" con chumacera 1 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 2 2 Soldador Javfrank HH 20.00 17.24 344.80 344.80 3 2 Soldadores Javfrank HH 24.00 17.24 413.76 413.76 Ensamble de polea y chumaceras HH 8.00 10.00 80.00 80.00 Instalación de Polea 36" ensamblada HH 30.00 10.00 80.00 80.00 5 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 6 2 Soldador Javfrank HH 30.00 17.24 344.80 344.80 7 Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. Serv	32	Prensas tensoras	Unid	8.00		37.00	296.00	296.00	
Carpa para la protección de la zona de empalmes Unid 1.00 650.00 650.00 650.00 650.00	33	Prensa carpintera	Unid	8.00		37.00	296.00	296.00	
Mano de Obra Desarmado de Polea 24" con chumacera 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 300.00 2 Soldador Javfrank HH 20.00 17.24 344.80 344.80 344.80 Ensamble de polea y chumaceras 2 Mecánicos Multifuncionales MBM HH 8.00 10.00 80.00	34	Mesa de empalme	Unid	1.00		145.00	145.00	145.00	
Desarmado de Polea 24" con chumacera 1 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 300.00 2 2 Soldador Javfrank HH 20.00 17.24 344.80 344.80 344.80	35		Unid	1.00		650.00	650.00	650.00	
1 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 2 2 Soldador Javfrank HH 20.00 17.24 344.80 344.80 Fabricación e Instalación de estructura y soporte para polea Snub 3 2 Soldadores Javfrank HH 24.00 17.24 413.76 413.76 Ensamble de polea y chumaceras HH 8.00 10.00 80.00 80.00 Instalación de Polea 36" ensamblada 0.00 300.00 300.00 300.00 300.00 5 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 6 2 Soldador Javfrank HH 20.00 17.24 344.80 344.80 7 Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. Serv 2.00 31 10.680.62 10.680.62 8 Movilización de personal Lima / Mina / Lima Unid 1.00 24 2,362.24 2,362.24 9 Alojamiento y alimentación en terreno para 7 personas durante 06 días (Total 42 H-Dia). Hr/dia 42.00 17.21 722.70 722.7	Ma	no de Obra							
2 2 Soldador Javfrank		Desarmado de Polea 24" con chumacera							
Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. Serv Servicio de Empalme de personal Lima / Mina / Lima Movilización de personal Lima / Mina / Lima Servicio de Empalme de Gias (Total 42 H-Dia). Total de Costo equipo parado (desarmado e instalación) Hr 20.00 0.99 905,219.85 905,219.85 10.680.62 10.680.6	1	3 Mecánicos Multifuncionales MBM	НН	3	0.00	10.00	300.00	300.00	
Soporte para polea Snub 3 2 Soldadores Javfrank HH 24.00 17.24 413.76 413.76	2	2 Soldador Javfrank	НН	2	0.00	17.24	344.80	344.80	
Ensamble de polea y chumaceras 4 2 Mecánicos Multifuncionales MBM									
Ensamble de polea y chumaceras 2 Mecánicos Multifuncionales MBM HH 8.00 10.00 80.00 80.00 0.00 Instalación de Polea 36" ensamblada 0.00 0.00 0.00 0.00 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 300.00 0.	3	2 Soldadores Jayfrank	нн	2	4.00	17.24	413.76	413.76	
4 2 Mecánicos Multifuncionales MBM HH 8.00 10.00 80.00 80.00 Instalación de Polea 36" ensamblada 0.00 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 6 Zoldador Javfrank HH 20.00 17.24 344.80 344.80 7 Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. Serv 5,340 10,680.62 10,680.62 8 Movilización de personal Lima / Mina / Lima Unid 1.00 2,362 2,362.24 2,362.24 9 Personas durante 06 días (Total 42 H-Día). Hr/dia 42.00 17.21 722.70 722.70 Gastos Generales Costo equipo parado (desarmado e instalación) Hr 20.00 0.99 905,219.85 905,219.85									
Instalación de Polea 36" ensamblada 0.00 300.00 3	4		НН		8.00	10.00	80.00	80.00	
5 3 Mecánicos Multifuncionales MBM HH 30.00 10.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 344.80 346.80 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>, , , , ,</td><td></td><td></td><td></td></t<>						, , , , ,			
6 2 Soldador Javfrank HH 20.00 17.24 344.80 344.80 7 Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. Serv 5,340 10,680.62 10,680.62 8 Movilización de personal Lima / Mina / Lima Unid 1.00 .24 2,362.24 9 Alojamiento y alimentación en terreno para 7 personas durante 06 días (Total 42 H-Día). Hr/dia 42.00 17.21 722.70 722.70 Gastos Generales 1 Costo equipo parado (desarmado e instalación) Hr 20.00 0.99 905,219.85 905,219.85	5	***	НН	3	0.00	10.00	300.00		
7 Servicio de Empalme de Faja 1524 / 4PLY / EP 2000 / 8 x 3mm vulcanizado en caliente. 8 Movilización de personal Lima / Mina / Lima 9 Alojamiento y alimentación en terreno para 7 personas durante 06 días (Total 42 H-Día). 1 Costo equipo parado (desarmado e instalación) 1 Costo equipo parado (desarmado e instalación) 1 Costo equipo parado (desarmado e instalación) 1 Serv 2.00 2.00 3.1 10,680.62 2,362 2,362.24 42.00 17.21 722.70 722.70 722.70 722.70			нн						
EP 2000 / 8 x 3mm vulcanizado en caliente. Serv 2.00 .31 10,680.62 10,680.62 2,362 2,362.24 9 Alojamiento y alimentación en terreno para 7 personas durante 06 días (Total 42 H-Día). Hr/dia 42.00 17.21 722.70 722.70 Gastos Generales 1 Costo equipo parado (desarmado e instalación) Hr 20.00 0.99 905,219.85 905,219.85 905,219.85 10,680.62 2,362.24 2,362.2		2 Solucio Cavilalia							
Movilización de personal Lima / Mina / Lima Unid 1.00 .24 2,362.24 2,362.24 9 Alojamiento y alimentación en terreno para 7 personas durante 06 días (Total 42 H-Día). Hr/dia 42.00 17.21 722.70 722.70 722.70	7		Serv		2.00		10,680.62	10,680.62	
personas durante 06 días (Total 42 H-Día).	8	Movilización de personal Lima / Mina / Lima	Unid		1.00		2,362.24		2,362.24
1 Costo equipo parado (desarmado e instalación) Hr 20.00 0.99 905,219.85 905,219.85	9		Hr/dia	4	2.00	17.21	722.70		722.70
1 instalación) Hr 20.00 0.99 905,219.85 905,219.85	Gas	stos Generales							
TOTAL DE COSTO ESTIMADO 110 664 53 908 304 79	1		Hr	2	0.00		905,219.85		905,219.85
		TOTAL DE COSTO ESTIMADO						110,664.53	908,304.79

Descripción	Porcentaje u Hr.	P. Unit. (US\$)	Parcial (US\$)
Costos Directos			110,664.53
Costos Indirectos			908,304.79
Administración del proyecto	36.00	15.00	540.00
Gastos de logística (12% de las adquisiciones)	0.12		108,996.57
Gastos de mantenimiento (9%	0.09		0.00
Asignaciones (6% Contingencia (10% del subtotal costos directos e	0.06		61,138.16
indirectos)	0.10		108,010.75
PRESUPUESTO TOTAL			1,297,654.80

Se tiene la siguiente curva S:

6.3 ANÁLISIS COSTO BENEFICIO

La parada del circuito de chancado, en este caso de la faja implica pérdidas económicas, de tiempo y de eficiencia, para diferentes actores del proceso productivo. Mediante la evaluación de las pérdidas que se pueden cuantificar se pretende crear alternativas de trabajo para mejorar el performance de su desempeño.

Los factores que afectan son de distinto tipo, en ello están involucrados los operadores, los mecánicos, los supervisores y los ejecutivos para ayudar a

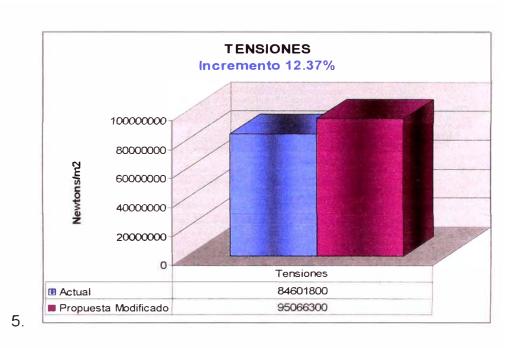
solucionar el problema. Mediante el estudio, se pretende delinear acciones que eviten las paradas imprevistas de los equipos. Estas acciones involucran la mejora de operadores, supervisores, mecánicos y ejecutivos en busca de mejores rendimientos de todo el equipo productivo. Las acciones para reducir las paradas imprevistas de los equipos se resumen de la siguiente manera:

- Capacitación de los operadores.
- Capacitación de los mecánicos.
- Capacitación de la supervisión de producción.
- Capacitación de la supervisión de mantenimiento.
- Mejoramiento de la calidad del mantenimiento.
- Utilización de nuevas herramientas de mantenimiento
- Establecimiento de un stock de repuestos críticos.
- Establecimiento de elementos stand by para no parar la operación.
- Establecimiento de equipos stand by para el mismo propósito.

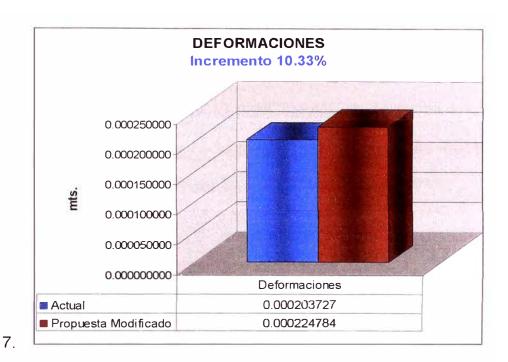
Al cuantificar las pérdidas producidas por las paradas imprevistas de los equipos, se llega a la conclusión de que es necesario establecer una serie de acciones destinadas al mejoramiento global del sistema de mantenimiento. Evitando las paradas imprevistas se generara una espiral de eficiencia y crecimiento que repercutirá directamente en la disponibilidad de los equipos y mejores condiciones de producción para la industria de la minería subterránea.

	Total Saldo	(US\$)	Horas paradas	Horas	Disponibilidad
	28,081,979.54	29379634.3	0.00	8760	100.00%
	26,099,548.07	27397202.9	43.80	8716.2	99.50%
	24,117,116.60	25414771.4	87.60	8672.4	99.00%
	22,134,685.14	23432339.9	131.40	8628.6	98.50%
2	20,152,253.67	21449908.5	175.20	8584.8	98.00%
Ahorro	18,169,822.20	19467477	219.00	8541	97.50%
¥	16,187,390.73	17485045.5	262.80	8497.2	97.00%
	14,204,959.27	15502614.1	306.60	8453.4	96.50%
	12,222,527.80	13520182.6	350.40	8409.6	96.00%
	10,240,096.33	11537751.1	394.20	8365.8	95.50%
1	8,257,664.87	9555319.67	438.00	8322	95.00%
	6,275,233.40	7572888.2	481.80	8278.2	94.50%
	4,292,801.93	5590456.74	525.60	8234.4	94.00%
	2,310,370.47	3608025.27	569.40	8190.6	93.50%
į.	327,939.00	1625593.8	613.20	8146.8	93.00%
	50,398.59	1348053.4	619.33	8140.668	92.93%
	-68,547.30	1229107.51	621.96	8138.04	92.90%
Ì	-465,033.59	832621.216	630.72	8129.28	92.80%
	-861,519.88	436134.923	639.48	8120.52	92.70%
	-1,258,006.18	39648.6293	648.24	8111.76	92.60%
	-1,297,654.80	0	649.12	8110.884	92.59%
1	-3,636,923.94	-2339269.1	700.80	8059.2	92.00%
1	-5,619,355.40	-4321700.6	744.60	8015.4	91.50%
	-7,601,786.87	-6304132.1	788.40	7971.6	91.00%
-	-9,584,218.34	-8286563.5	832.20	7927.8	90.50%
Perdida	-11,566,649.80	-10268995	876.00	7884	90.00%
erd	-13,549,081.27	-12251426	919.80	7840.2	89.50%
ο.	-15,531,512.74	-14233858	963.60	7796.4	89.00%
	-17,513,944.20	-16216289	1,007.40	7752.6	88.50%
	-19,496,375.67	-18198721	1,051.20	7708.8	88.00%
	-21,478,807.14	-20181152	1,095.00	7665	87.50%
	-23,461,238.61	-22163584	1,138.80	7621.2	87.00%
	-25,443,670.07	-24146015	1,182.60	7577.4	86.50%
	-27,426,101.54	-26128447	1,226.40	7533.6	86.00%
	-29,408,533.01	-28110878	1,270.20	7489.8	85.50%
	-31,390,964.47	-30093310	1,314.00	7446	85.00%
	-33,373,395.94	-32075741	1,357.80	7402.2	84.50%
	-35,355,827.41	-34058173	1,401.60	7358.4	84.00%

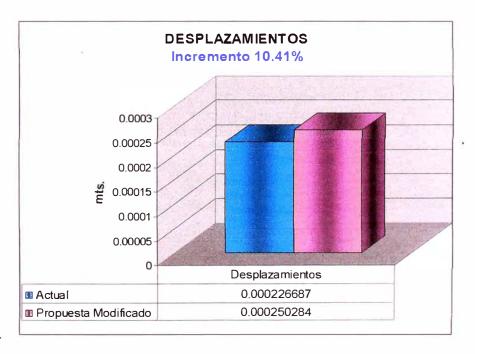
Se espera que existe una mejora en la disponibilidad como
mínimo de 0.34%


Esta se traduce en aproximadamente (US\$):

50,398.59


CONCLUSIONES

- Los resultados muestran una disminución en las horas paradas por fallas en el sistema de fajas transportadoras en ambos circuitos de chancado, lo que se tradujo en un claro aumento de disponibilidad.
- 2. La aplicación de esta metodología permitió identificar modos de fallas de alto impacto y propone una nueva grafica de toma de decisiones para priorizar equipos según su categorización en el grafico de Jack-knife, así mismo permitió identificar mejoras en la gestión del mantenimiento, las cuales una vez aplicadas se tradujeron en una disminución sustancial del número de horas por falla.
- 3. La técnica propuesta y la búsqueda de diferentes soluciones planteadas a la causa raíz de estas fallas situadas en el cuadrante de agudo y crónico, como la aplicación de diferentes formas de analizar las causas raíces, fortalece el análisis para explorar oportunidades de mejora y decidir políticas eficientes de mantenimiento.
- 4. Existe un incremento de 10464500 N/m2 lo que hace un total del 12.37%. En el estudio por elementos finitos y comparando con las propiedades del Acero al carbón, su límite elástico (donde el material empieza a comportarse plásticamente) es igual a 2.4817e+008 N/m2,


y observando el grafico de la polea, no falla incrementando esta tensión.

6. Existe un incremento de 0.000021057 mts. lo que hace un total del 10.33%. Observando el grafico de la polea, en la sección cilíndrica parte central, es donde sufre deformaciones mayores, lo que podría ser una sección critica para considerar un posible refuerzo.

8. Los desplazamientos están relacionados con las deformaciones, como podemos observar en el estudio de Elementos finitos, para este caso existe un incremento de 0.000023597 mts. lo que hace un total del 10.41%.

9.

RECOMENDACIONES

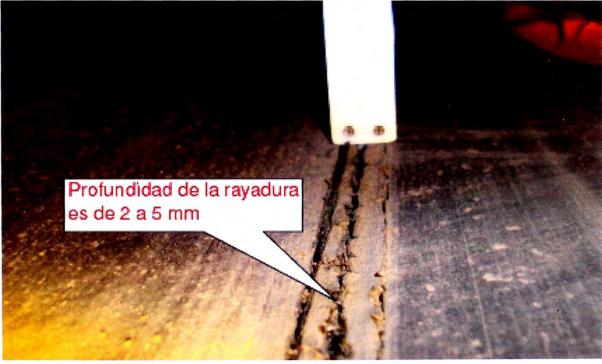
- Se recomienda implementar la modificación de la polea snub en las fajas 1 y 5 a fin de poder reducir aún más las paradas imprevistas y aumentar la disponibilidad del sistema.
- Se recomienda estandarizar los diámetros de las poleas a fin de poder reducir el stock y generar ahorro.

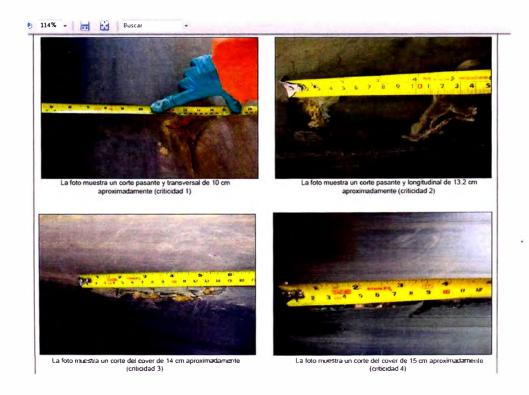
BIBLIOGRAFIA.

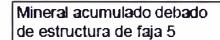
- 1. Manual CEMA (Belt Conveyors for Bulk Materials).
- 2. Mecánica de Materiales Beer-Johnston.
- 3. Conveyor Belt Design Manual Bridgestone
- 4. Belt Conveyor Design Dunlop
- 5. Información Scandura y Phoenix
- 6. Diseño de elementos de máquina Fortunato Alva Dávila

ANEXOS

(Ver Anexo: Fotografia: CORTE SEGMENTO






La foto muestra un corte pasante y transversal de 10 cm aproximadamente (criticidad 1)

(Ver Anexo: Fotografía: FUGA DE MINERAL)

Observese la foto comparativa entre la sobrecarga de ayer y una condicion con carga de aprox. 2890 TPH.

30 de Ney, Faja en operación, 16:55, carga aprox. 2890 TPH

29 de Noy, Faja parada por el evento de sobrecarga

(Ver Anexo: Fotografía: Roce con estructura / side travel)

