UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

"EVALUACIÓN DE RELAVERA ANTIGUA CON PROPÓSITO DE USARLO COMO BOTADERO DE DESMONTE DE MINA PARA UN PLAN DE CIERRE"

INFORME DE SUFICIENCIA

Para optar el Título Profesional de:

INGENIERO CIVIL

LUIS ALFREDO RIVAS SOTO

Lima-Perú

2013

Dedicatoria

Este trabajo se lo dedico a mis padres y a las personas que me apoyaron para el desarrollo del informe, a Dios por darme las fuerzas y el ímpetu para terminar el trabajo satisfactoriamente.

ÍNDICE

RESU	MEN		4
		S	
LISTA	DE TABLAS.		6
LISTA	DE SÍMBOLO	os	. 7
LISTA	DE SIGLAS		.8
INTRO	DUCCIÓN		9
CAPIT	ULO I: ES	TADO DEL ARTE - GENERALIDADES1	11
1.1	ANTECEDENT	TES 1	1
1.2	UBICACIÓN D	PEL PROYECTO 1	1
1.3		EL ESTUDIO	
1.4		N GENERAL DEL ESTUDIO1	
CAPIT		ARCO TEÓRICO Y CONCEPTUAL1	
2.1	GEOLOGÍA		4
2.1.1	Geología Regi	ional 1	4
2.1.2	Geología Loca	al 1	5
2.2			
2.3	INVESTIGACIO	ONES DE CAMPO 1	8
2.3.1		e Calicatas 1	
2.3.2	-	ensidad de Campo (Método del Cono de Arena) 1	
2.3.3	•	enetración Dinámica Ligera (DPL)	
2.3.4		Diamantinas	
2.3.5		enetración Estándar (SPT)	
2.3.6	-	enetración a Gran Escala (LPT)	
2.3.7		Piezómetros	
2.3.8	Caracterizació	on Geomecánica del Macizo Rocoso2	2
2.4		ESTABILIDAD DE TALUDES	
2.4.1		nes del Diseño Geotécnico	
2.4.2	J	lel Análisis de Estabilidad	
2.4.3		nálisis 2	
CAPIT		PLORACIÓN DE CAMPO Y ENSAYOS DE LABORATORIO2	
3.1		N DE CAMPO	
3.1.1		s 2	
3.1.2		e Calicatas	
3.1.3	_	ensidad de Campo (Método del Cono de Arena) 2	
3.1.4	Ensayos de Pe	enetración Dinámica Ligera (DPL)	9
3.1.5	Perforaciones	Diamantinas	2

3.1.6	Ensayos de Penetración Estándar (SPT)	36
3.1.7	Ensayos de Penetración a Gran Escala (LPT)	37
3.1.8	Medición del Nivel Freático	37
3.1.9	Mapeo Geológico Geotécnico	38
3.1.10	Unidades Geológicas – Geotécnicas	38
3.2	ENSAYOS DE DELABORATORIO	40
3.2.1	Generalidades	40
3.2.2	Ensayos Índice de Mecánica de Suelos	40
3.2.3	Ensayos de Contenido de Humedad	42
3.2.4	Peso Volumétrico y Densidad Natural	42
3.2.5	Ensayos de Compactación Proctor Estándar	43
3.2.6	Ensayo Triaxial Consolidado No drenado (CU)	43
3.2.7	Ensayo de Consolidación	44
3.2.8	Ensayo de Carga Puntual	44
3.2.9	Ensayo de Propiedades Físicas de la Roca	46
CAPIT	ULO IV: ANÁLISIS DE ESTABILIDAD FÍSICA Y QUÍMICA	.47
4.1	ANÁLISIS DE CONSOLIDACIÓN	47
4.1.1	Condiciones Analizadas	48
4.1.2	Resultados Obtenidos	49
4.2	ANÁLISIS DE ESTABILIDAD DE TALUDES	49
4.2.1	Metodología de Análisis	50
4.2.2	Criterios de Análisis	50
4.2.3	Condiciones Analizadas	51
4.2.4	Propiedades de los Materiales	51
4.3	RESULTADOS OBTENIDOS DEL ANÁLISIS DE ESTABILIDAD	55
4.4	ANÁLISIS DE ESTABILIDAD QUÍMICA	57
4.4.1	Generalidades	57
4.4.2	Resultado del Análisis de Metales Totales	57
4.4.3	Potencial Neto de Neutralización	58
4.5	MONITOREO GEOTÉCNICO	59
4.5.1	Instrumentos de Monitoreo	59
CAPIT	JLO V: CONSIDERACIONES DEL DISEÑO GEOTÉCNICO	60
5.1	GENERALIDADES	60
5.2	CIERRE DE LOS DEPÓSITOS DE RELAVES 1,2 Y 3	61
5.2.1	Movimiento de Tierras	61
5.2.2	Protección de Taludes	63
5.3	SUELO IMPERMEABILIZADO CON EMULSIÓN DE POLÍMERO	64
5.3.1	Generalidades	64
5.3.2	Materiales	64

CAPITUL	LO VI: CONCLUSIONES Y RECOMENDACIONES	65
6.1 CC	ONCLUSIONES	65
6.2 RE	ECOMENDACIONES	67
BIBLIOG	GRAFÍA	69
ANEXOS	S	70

RESUMEN

El área de estudio se encuentra ubicado dentro de la Unidad Minera Huarón de Panamerican Silver S.A. en el distrito de Huayllay, provincia de Pasco, departamento de Cerro de Pasco a una altitud promedio de 4 600 m.s.n.m. Dicha área cuenta con tres depósitos de relaves antiguos 1, 2 y 3 producto de la minería del tipo subterránea, estos depósitos se ubican en el orden de Este a Oeste respectivamente, los cuales han llegado a ocupar su capacidad máxima de almacenamiento hace aproximadamente 5 a 10 años. Como parte de la Factibilidad del Plan de Cierre de las relaveras, en el año 2010 se realizó el estudio geotécnico con fines de estabilidad de taludes para los tres depósitos de relaves, el cual consistió en trabajos de campo (Perforaciones diamantinas, excavación de calicatas, ensayos geofísicos y ensayos in situ), ensayos de laboratorio, mapeo geológico-geotécnico y procesamiento de datos. En marzo del 2012 se realizó el estudio geotécnico para la Revisión de la Factibilidad del Cierre de los Depósitos de Relaves 1, 2 y 3 y como complemento del estudio se propone el apilamiento adicional de material de desmonte de mina por encima de los depósitos de relaves 1, 2 y 3 actuales. El estudio actual comprende investigaciones de campo (perforaciones diamantinas, excavación de calicatas, ensayos de penetración dinámica ligera DPL, mapeo geológico-geotécnico y ensayos in situ), ensayos de laboratorio y procesamiento de datos.

En este trabajo de investigación tiene la finalidad de definir los parámetros físicomecánicos de los materiales involucrados en el botadero de desmonte de mina
(conformado por material de relave, material del cuerpo de los diques, suelo de
fundación y material de desmonte de mina que se apilará). Con la información de
campo y laboratorio se propondrán dos secciones geológicas - geotécnicas a lo
largo de los tres depósitos con los respectivos estratos que conforman la sección
de análisis y se realizará la evaluación física de estabilidad de taludes en las dos
condiciones en que se encuentran el botadero, una sin considerar el apilamiento
(condiciones actuales) y la otra considerando el apilamiento de desmonte de
mina por encima de los depósitos de relaves. Según los resultados del análisis
de estabilidad de taludes, los factores de seguridad en las condiciones estáticas
y pseudo-estáticas son mayores que la unidad, siendo estables las
configuraciones de diseño.

LISTA DE FIGURAS

Figura N°	1.1 Área correspondiente a los depósitos de relaves 1, 2 y 3	12
Figura N°	1.2 Área correspondiente al depósito de relaves 3	12
Figura N°	2.1 Litología entre el contacto relave – basamento rocoso	15
Figura N°	2.2 Vista de la excavación de calicata en el dique 3	19
Figura N°	2.3 Vista del ensayo de densidad de campo	19
Figura N°	2.4 Vista del ensayo DPL en la relavera	20
Figura N°	2.5 Vista del equipo de perforación	21
Figura N°	3.1 Ubicación de los sectores 1, 2, 3 y 4	31
Figura N°	3.2 Tendencia de la resistencia del relave en profundidad	32

LISTA DE TABLAS

Tabla N°	2.1 Clases de Macizo Rocoso a partir de las valoraciones totales	24
Tabla N°	3.1 Resumen de Calicatas y Trincheras	27
Tabla N°	3.2 Resumen de Ensayos de Densidad - Método del Cono de Arena	29
Tabla N°	3.3 Resumen de ensayos DPL	29
Tabla N°	3.4 Resumen de ensayos DPL, Profundidad y Número de Golpes	31
Tabla N°	3.5 Resumen de Perforaciones	32
Tabla N°	3.6 Resumen de Pozos Perforados	35
Tabla N°	3.7 Resumen de Ensayos SPT	36
Tabla N°	3.8 Resumen de Ensayos LPT	37
Tabla N°	3.9 Niveles de Agua Registrados	37
Tabla N°	3.10 Resumen de Ensayos de Clasificación SUCS	41
Tabla N°	3.11 Resumen de Ensayos de Contenido de Humedad	42
Tabla N°	3.12 Resumen de Ensayos de Peso Volumétrico y Densidad	43
Tabla N°	3.13 Resumen de Ensayos de Próctor Estándar	43
Tabla N°	3.14 Resumen de Ensayos Triaxiales-CU	44
Tabla N°	3.15 Resumen de Ensayos de Consolidación	44
Tabla N°	3.16 Resistencia de la Roca	45
Tabla N°	3.17 Resumen de Ensayos de Carga Puntual	45
Tabla N°	3.18 Propiedades Físicas de la Roca	46
Tabla N°	4 .1 Resultados de Análisis de Consolidación Unidimensional	49
Tabla N°	4.2 Valores de RMR Totales	54
Tabla N°	4.3 Resumen de Propiedades de Materiales	55
Tabla N°	4.4 Resultados de los Análisis de Estabilidad de Taludes	56
Tabla N°	4.5 Resultado de Análisis de Metales Totales	58
Tabla N°	4.6 Resultado de la muestra de Desmonte de mina	58
Tabla N°	5.1 Criterios de Diseño	60
Tabla N°	5.2 Material de Desmonte -Capacidad y Duración del Apilamiento	63

LISTA DE SÍMBOLOS

C: Cohesión (kPa)

C.H: Contenido de Humedad (%)

D.S: Densidad Seca (kN/m³)

Df: Nivel de Fundación (m)

Ha: Hectáreas (m²)

I.P: Índice de Plasticidad (%)

Km: Kilómetros

L.L: Límite Líquido (%)

m: Metros (m)

MDS: Máxima Densidad Seca (kN/m³)

OCH: Óptimo Contenido de Humedad (%)

Prof: Profundidad (m)

Φ: Ángulo de Fricción (°)

%: Porcentaje

* Coordenadas PSAD-56

LISTA DE SIGLAS

ASTM: American Society For Testing and Materials

AASHTO: American Association of State Highway and Transportation

Officials

DPL: Penetración Dinámica Ligera

LPT: Large Penetration Test

MD: Margen derecha

MI: Margen Izquierda

NP: No presentaN.M: No medidoN.D: No definido

SPT: Standar Penetration Test

SUCS: Sistema Unificado de Clasificación de Suelos

UTM: Sistema de Coordenadas Universal Transversal de Mercator

Z: Zona

INTRODUCCIÓN

La Unidad Minera Huarón, cuenta con los depósitos de relaves 1, 2, 3 y 4 en el orden de ubicación Este-Oeste, cada uno con sus respectivas presas de relaves. Mientras que los tres primeros depósitos de relaves 1, 2 y 3 están para la etapa de cierre, el depósito de relaves 4 ubicado al Oeste aguas debajo de los depósitos de relaves 1, 2 y 3, contínua en operación. El área y perímetro que abarca los tres depósitos de relaves son aproximadamente 17 Ha. y 2 Km respectivamente. La minera no cuenta con áreas disponibles para depositar material de desmonte de mina y se tiene como alternativa depositar el desmonte en los depósitos de relave antiguos 1, 2 y 3.

En el presente desarrollo del informe de suficiencia, de acuerdo a la información de los trabajos de campo y laboratorio se obtendrán los parámetros de resistencia de los materiales que conforman el botadero (relave, material de dique, material desmonte de mina, depósito aluvial y basamento rocoso). El análisis de estabilidad de taludes y esfuerzo deformación se representará mediante dos secciones geológicas-geotécnicas a lo largo los tres depósitos de relaves. Se analizará la estabilidad de taludes en las condiciones actuales y con apilamiento.

El informe de suficiencia consta de 6 capítulos: El primer capítulo describe las generalidades del estudio señalando los antecedentes, objetivos, ubicación, diagnóstico y descripción del estudio.

El segundo capítulo describe el marco teórico y conceptual empleado para la realización de los ensayos de campo, ensayos de laboratorio, correlaciones y metodologías para la determinación de los parámetros de resistencia de los materiales involucrados en el análisis. Así como también los datos de sismicidad y metodología para el análisis de estabilidad de taludes y esfuerzo-deformación

El tercer capítulo describe los trabajos de exploración de campo en todo el área del botadero de desmonte de mina básicamente en las relaveras y diques de las relaveras. También se detallan los ensayos de laboratorio y se obtienen los parámetros de resistencia de los materiales componentes del botadero de desmonte de mina.

En el cuarto capítulo se desarrolla el análisis de estabilidad de taludes y esfuerzo-deformación en el cual a partir de ensayos de laboratorio y correlaciones se asignan los parámetros de resistencia de los materiales involucrados se modela las secciones de análisis a lo largo de los tres depósitos de relaves. El análisis se realizará en las condiciones actuales y con apilamiento de desmonte. El análisis de esfuerzo-deformación se realizará en el caso de que el factor de seguridad en la condición pseudo-estática sea menor que la unidad.

En el quinto capítulo detalla las consideraciones del diseño geotécnico, el cual muestra la configuración que tendrá el apilamiento de desmonte de mina sobre los depósitos de relaves. Se detalla los taludes locales y globales del apilamiento, las inclinaciones de las banquetas, la altura de apilamiento, el coeficiente sísmico a usar y los criterios de análisis de estabilidad utilizados.

En el sexto se citan las conclusiones y recomendaciones propuestas como término del informe de suficiencia, en el cual se concluye que las alternativas propuesta para el apilamiento de material de desmonte encima de las relaveras antiguas 1, 2 y 3, garantizan las condiciones estables con factores de seguridad por encima de la unidad tanto en la condición estática como pseudo-estática.

Por último con la bibliografía y los anexos que incluyen registros de campo, resultados de laboratorio, análisis geotécnico, panel fotográfico y planos.

CAPITULO I: ESTADO DEL ARTE - GENERALIDADES

1.1 ANTECEDENTES

En Mayo del 2000, KLOHN CRIPPEN - SVS S.A, realizó el estudio de obras de estabilización y recrecimiento de la presa 4.

En agosto del 2009, GEMCO Ingeniería SAC realizó el estudio geotécnico para el crecimiento de la presa 4 y consistió en perforaciones ensayos de campo e instrumentación geotécnica.

En Septiembre del 2010, Viceversa Consulting SA, realizó el estudio de impacto ambiental en la zona de los depósitos de relaves 1, 2 y 3 y como parte del EIA se incluía el estudio geotécnico de toda el área el cual comprendió en trabajos de campo, ensayos de laboratorio, procesamiento de datos y análisis de estabilidad.

En marzo del 2012 se realizaron trabajos de investigación geotécnica para la revisión del Estudio de Factibilidad de Cierre del año 2010. En Abril del 2010 Vector Perú SAC realizó un estudio básico de crecimiento de la presa de relaves del depósito de relaves 4 que sigue en operación y se realizaron las investigaciones de campo cercanas al área que está al costado de dicho estudio.

Para el desarrollo del presente informe y con la información disponible en las citas anteriores, se tomará como patrón referencial el estudio del año 2012 y nos apoyándonos en los criterios de la información anterior.

1.2 UBICACIÓN DEL PROYECTO

Políticamente la zona de estudio en la unidad minera Huarón se encuentra situada a 320 km al noreste de Lima, a unos 40 km al sudoeste de la ciudad de Pasco en las coordenadas referenciales UTM-WGS 84: 346 000 a 346 800 E y 8 783250 a 8 448 500 N dentro de la divisoria continental de la Cordillera de los Andes, a una altitud entre 4 200 a 4 800 m.s.n.m. El acceso principal es a través de la carretera afirmada que conecta el distrito de Huayllay con la unidad minera a unos 7 km aproximadamente.

La Figura 1.1 muestra la zona de estudio y la Figura 1.2 muestra el depósito de relaves 3.

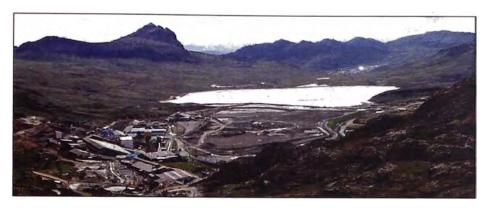


Figura N° 1.1 Área correspondiente a los depósitos de relaves 1, 2 y 3.

Figura N° 1.2 Área correspondiente al depósito de relaves 3.

1.3 OBJETIVO DEL ESTUDIO

Evaluar la estabilidad física del botadero de desmonte de mina, lo que involucra dar una buena caracterización física y mecánica de los materiales que conforma el botadero (material de desmonte de mina, relaves, cuerpo del dique y suelo de fundación), para realizar un análisis geotécnico riguroso ya que los materiales involucrados tienen comportamientos físico-mecánicos distintos en las diversas etapas de construcción del botadero.

Recopilar la información existente de las áreas que comprenden los tres depósitos de relaves para poder integrarlo con la información actual.

Dar una buena interpretación de los resultados obtenidos en campo (logueo de perforaciones en suelo y roca, ensayos in situ y comportamiento del nivel freático.

1.4 DESCRIPCIÓN GENERAL DEL ESTUDIO

El área de estudio que contempla los depósitos de relaves existentes 1, 2 y 3 se encuentra ubicado dentro de la Unidad Minera Huarón de Panamerican Silver SA, a una altitud promedio de 4 600 msnm. Dicha área de estudio cuenta con una topografía actualizada al metro. En la primera etapa del informe de suficiencia se determinó la estabilidad física de los depósitos de relaves en las condiciones actuales, y para esta etapa final del informe de suficiencia se propone apilar desmonte de mina encima de los depósitos de los tres depósitos de relaves actuales. Para ellos se han realizado las investigaciones geotécnicas a detalle en los elementos componentes de los depósitos existentes, también se cuenta con información de estudios anteriores que reforzarán el estudio.

Luego de caracterizar a los materiales involucrados se propondrá un diseño de apilamiento del desmonte de mina encima de los depósitos de relaves, teniendo que cumplir los requisitos mínimos de estabilidad y esfuerzo deformación del cuerpo del botadero.

CAPITULO II: MARCO TEÓRICO Y CONCEPTUAL

2.1 GEOLOGÍA

La Unidad Minera Huarón se desarrolla sobre un típico ambiente de alta puna, de relieve montañoso y de topografía variable, afectados por varias etapas de erosión glacial cuaternaria el cual ha ido modelando a una serie de valles encañonados de típico perfil en U. La actividad glaciar dio lugar a deposiciones morrénicas que se acumulan en lugares depresionados y que suavizan la superficie de algunas de las vertientes montañosas, así mismo, afloramientos rocosos o lugares depresionados encierran a lagunas de origen glacial.

2.1.1 Geología Regional

Geográficamente el área se ubica en el flanco oriental de la Cordillera Occidental de los Andes, entre las coordenadas UTM 346 000 a 346 800 E y 8 783250 a 8 448 500 N, geomorfológicamente en una superficie de ambiente glaciar, de clima frio y seco típico de puna.

La litología está comprendida de lo más antigua lo más reciente por las calizas y dolomitas de la formación Jumasha de edad Cretácico Superior; sobreyace una secuencia continental denominada "Capas Rojas" pertenecientes a la Formación Casapalca del Cretáceo Superior-Eoceno, constituidos por areniscas, limolitas de coloración rojiza o verde, con algunos lechos de conglomerados y horizontes de calizas grises. Discordante al Grupo Casapalca sobreyace una secuencia volcánica constituida por flujos piroclásticos de líticos y pómez de color gris amarillento con textura porfirítica de composición mayormente dacítico y riodacítico, pertenecientes a la Formación Huayllay.

La característica estructural más notoria lo constituye los esfuerzos compresivos en dirección Este-Oeste, plegando los sedimentos Terciarios a un rumbo NW-SE. Los esfuerzos tensiónales está manifestado por fracturamiento de dirección E-W y N-S, respectivamente.

Completan el marco geológico-geomorfológico regional una posterior erosión glaciar de edad pleistocénica, evidenciado por la creación de lagunas y depósitos cuaternarios como morrenas, aluviales y residuales.

2.1.2 Geología Local

Litológicamente está conformado por sedimentos consolidados que reflejan un periodo de emersión y una intensa denudación denominado "Capas Rojas", pertenecientes a la Formación Casapalca (Cretáceo Superior - Eoceno), se presentan cubriendo la mayor parte del área en estudio, y está parcialmente cubierto por materiales cuaternarios y recientes.

Figura N° 2.1 Litología entre el contacto relave – basamento rocoso

Geomorfología Local

Localmente el área de estudio presenta una topografía moderada a suave con una geomorfología de superficie de puna, relacionado a un ambiente glaciar de clima frio con altitudes que varían entre los 4 200 y 4 800 msnm.

La geomorfología del área es el resultado de un proceso erosivo que han sufrido las formaciones rocosas por acción de los agentes geológicos como la lluvia, el hielo y el viento, sin dejar de lado las características estructurales que juegan un papel importante en el modelamiento de la superficie.

En el área resaltan unidades geomorfológicas como cerros, lomas y colinas, con pendientes suaves a moderadas.

La acción antrópica está presente por la infraestructura y depósitos de relave minero que han ayudado a una variación de la morfología natural del área. De acuerdo a la observación de campo se ha determinado las siguientes unidades geomorfológicas:

Valle Glaciar.- Típico valle en sección U, con flancos de baja a mediana pendiente y fondo ligeramente subhorizontal, actualmente es el lecho del río San José donde se emplazan los depósitos de relaves.

Cerros.- Unidad morfológica ubicado en ambos flancos de la zona de estudio, presenta un relieve montañoso, con pendientes moderadas a fuertes con altitudes que varían entre 4500 y 4800 msnm.

Lomas y Colinas.- se extienden en ambas márgenes de la quebrada San Juan específicamente, estas unidades están conformadas por rocas sedimentarias, depósitos cuaternarios y materiales recientes aluviales, coluviales y cobertura representada por sedimentos residuales.

Intervenciones Antropogénicas.- La actividad humana está representada por la actividad minera, que ha remodelado de alguna manera el relieve y modificado la composición del terreno natural con materiales de desmonte de mina, relaves e infraestructura minera.

Estratigrafía

La secuencia estratigráfica en el área de interés está representado por rocas sedimentarias de la Formación Casapalca compuestos mayormente de areniscas, limolitas, conglomerados color rojo oscuro a purpura y niveles de calizas margosas con tonalidad gris pardo a gris verdosa respectivamente.

El Cuaternario está formado por depósitos morrénicos y depósitos más recientes aluviales y del tipo residual.

Formación Casapalca.- Conocido como Capas Rojas, se distribuye en la totalidad del área de estudio, consiste esencialmente de areniscas de grano fino a medio color rojo con tonalidades verdosas, limolitas y lutitas abigarradas, conglomerados con clastos subangulosos en una matriz arenosa y niveles de calizas margosas color gris a gris verdoso, en su nivel superior.

Geodinámica Externa

En el área del proyecto, desde el punto de vista de la geodinámica externa, no existe ningún riesgo significativo en cuanto a fenómenos naturales como huaycos, aluviones, inundaciones y otros, debido a la configuración del lugar, a la topografía de la zona y las condiciones geológicas-geotécnicas favorables del área.

2.2 SISMICIDAD

El marco de la sismicidad en el Perú es producto principalmente de la subducción de la Placa de Nazca bajo de la Placa Continental Sudamericana a lo largo de la costa peruana, con un índice de convergencia de aproximadamente 10 cm por año.

Según el Mapa de Zonificación Sísmica propuesto en la Norma de Diseño Sismorresistente E.030 del Reglamento Nacional de Edificaciones (2003), el área de estudio se encuentra comprendida en la Zona 2 y le corresponde una sismicidad media, con un factor de zona Z de 0,30, habiendo ocurrido en el área cercana al proyecto sismos de intensidades de VI hasta VII en la Escala de Mercalli Modificada, según la información de sismicidad histórica recopilada por Silgado (1978).

Por otro lado, según el mapa de iso-aceleraciones propuesto por Castillo y Alva (1993), correspondiente a un período de retorno del sismo máximo probable de 475 años, y a un porcentaje de excedencia de 10%, para el área en estudio los autores proponen una aceleración máxima de 0,30g. Según la referencia del mapa de isoaceleraciones propuesto por Gamarra (2009) considera una aceleración máxima entre 0,30 y 0,34 g en suelo firme tipo D para periodos de retorno de 475 años. El período de retorno antes indicado es conservador con respecto a lo estipulado por el Ministerio de Energía y Minas (DS N°046 - 2001 Reglamento de Seguridad e Higiene Minera) para el análisis sísmico de depósitos de relaves en operación, el cual sugiere 150 años de periodo de retorno, sin embargo, sí corresponde a lo estipulado por esta misma norma con relación al periodo de retorno de depósitos de relaves en condiciones de cierre.

De acuerdo con la literatura técnica existente ampliamente aceptada internacionalmente, se recomienda que el coeficiente sísmico a ser considerado en el análisis en la condición pseudo-estática de diseño de taludes, sea obtenido como una fracción que varía entre 1/3 a 1/2 de la máxima aceleración esperada. Esta recomendación es consistente con las recomendaciones del Cuerpo de Ingenieros del Ejército de los Estados Unidos (U.S. Army Corps of Engineers, Hynes y Franklin, 1984), quienes sugieren el uso de un coeficiente sísmico pseudo-estático igual o cercano al 50% de la aceleración pico de diseño.

La recomendación del Cuerpo de Ingenieros está basada en la aplicación del método de Newmark para calcular desplazamientos permanentes en presas de tierra utilizando más de 350 registros sísmicos, concluyéndose que estas estructuras analizadas con el método pseudo-estático con factores de seguridad mayores que 1,0 utilizando un coeficiente sísmico horizontal de 0,5xPGA no desarrollan deformaciones mayores a 1 m, que es un valor arbitrario que puede ser tolerado por presas de tierra, sin representar una amenaza a la integridad del reservorio.

Por otro lado, la empresa EMPSSA S.R.L. realizó un estudio de peligro sísmico en el año 2009 en el área del proyecto, el estudio citado propone un valor de aceleración horizontal máxima de diseño PGA de 0,25g para roca y 0,37g para suelo firme a denso, estimado para 475 años de periodo de retorno.

Por lo tanto, a partir de la información sísmica disponible de la zona, se recomienda utilizar un coeficiente sísmico de 0,13 para el análisis pseudo-estático de taludes a largo plazo, es decir, para las condiciones de cierre.

2.3 INVESTIGACIONES DE CAMPO

Con la finalidad de determinar las características físicas de los materiales que conforman los depósitos de relaves 1, 2 y 3, se realizaron trabajos de campo que comprenden: Excavación de calicatas, ensayos de penetración Dinámica Ligera (DPL), ensayos de Densidad de Campo por el método del Cono de Arena, Perforaciones Diamantinas con extracción de muestra por intermedio de ensayos SPT, LPT, tubo Shelby y valoración geomecánica del macizo rocoso RMR. También se contempla ensayos Geofísicos (Refracción y MASW). Los ensayos de campo son realizados bajo las normas internacionales ASTM. El levantamiento de los puntos de investigación corresponde al Sistema de Coordenadas UTM elipsoide PSAD 56 con una topografía de detalle al metro.

2.3.1 Excavación de Calicatas

En la excavación de calicatas se realizó una descripción detallada de los tipos de suelos encontrados en cada estrato de acuerdo a la norma ASTM D-2488. Posteriormente se tomaron muestras disturbadas y no disturbadas representativas, las cuales fueron identificadas y almacenadas en bolsas de

plástico con la finalidad de no alterar su estado natural y efectuar ensayos posteriores de caracterización física y mecánica en los laboratorios geotécnicos.

Figura N° 2.2 Vista de la excavación de calicata en el dique 3

2.3.2 Ensayos de Densidad de Campo (Método del Cono de Arena)

En las calicatas ubicadas en los diques o presas de relaves se realizaron ensayos in situ mediante el método del cono de arena, con la finalidad de determinar la densidad natural del material que conforman los diques de relaves. Para la ejecución de los ensayos, se siguieron los procedimientos de la norma ASTM D-1556.

Figura N° 2.3 Vista del ensayo de densidad de campo

2.3.3 Ensayos de Penetración Dinámica Ligera (DPL)

Previo a los trabajos de campo se identificaron en los depósitos de relaves 1, 2 y 3 suelos blandos y saturados que imposibilitaban la auscultación directa a través de calicatas, en estos sectores se realizaron ensayos de penetración dinámica ligera DPL para estimar de manera indirecta la resistencia del material.

El ensayo DPL consiste en auscultar los suelos a través de una punta cónica de 60° unida a unas varillas de 1,0 m de largo y 35,6 mm de diámetro, a través del impacto de una altura 50 cm de un martillo de 10 kg de peso, en el que se mide el número de golpes necesarios para penetrar cada 10 cm de profundidad (N10). Se contará con un registro de la resistencia del relave por cada punto de auscultación expresado en número de golpes.

Figura N° 2.4 Vista del ensayo DPL en la relavera

2.3.4 Perforaciones Diamantinas

Las perforaciones fueron ejecutadas por el método rotativo sistema "wire line", con tubería de perforación HQ3 y revestimiento HW. En cada una de las perforaciones se llevó a cabo una descripción de los tipos de suelos y roca encontrados. Asimismo, se realizó un registro geomecánico del basamento rocoso a fin de determinar la calidad y resistencia del macizo rocoso subyacente según el criterio de Bieniawski.

Figura N° 2.5 Vista del equipo de perforación

2.3.5 Ensayos de Penetración Estándar (SPT)

En las perforaciones diamantinas se realizaron ensayos SPT con el fin de evaluar de manera indirecta la resistencia del material de relave encontrado en los depósitos.

El ensayo SPT se realiza en el interior de la perforación conforme se va perforando un material blando o arenoso, se realiza por medio de la penetración de un tomamuestras tubular de acero, al tiempo que permite la recolección de muestras alteradas en su estructura para su identificación. La penetración del tomamuestras es producida por un una masa de 63,5 Kg que golpea repetidamente al caer desde una altura de 76,2 cm. El ensayo SPT se realiza en tramos de 45 cm. y se toma lectura de la cantidad de golpes por cada 15 cm de penetración. El valor total del número de golpes del SPT es considerando la sumatoria de golpes de los dos últimos tramos de 15 cm.

2.3.6 Ensayos de Penetración a Gran Escala (LPT)

A fin de conocer la resistencia de los materiales en profundidad, se realizaron ensayos LPT. El ensayo LPT se realiza en el interior de la perforación conforme se va perforando materiales arenosos y granulares de TM 2". Estos ensayos fueron efectuados en base al modelo americano, North American Large Penetration Testing (NLPT), comúnmente conocido como LPT.

Este ensayo se realiza de similar manera que el SPT, pero en este caso se usa un martillo de 136 kg, una cabeza de impacto de 36 cm de diámetro, un diámetro exterior de 7,62 cm, un diámetro interior de la zapata de 6,1 cm y un diámetro interior del barril de 6,4 cm.

De acuerdo a la literatura técnica vigente (Daniel, Howie and Sy, 2003), los números de golpes obtenidos con el LPT son aumentados 1,38 veces para obtener el número de golpes equivalentes al ensayo SPT.

2.3.7 Instalación de Piezómetros

La finalidad de la instalación de piezómetros es debido a la necesidad de un control o monitoreo de las condiciones de agua subterránea.

El procedimiento se basa en realizar un sondaje con la ayuda de la misma máquina perforadora hasta una profundidad determinada final de la perforación. Posteriormente y de acuerdo a la estratigrafía encontrada se propone la el diseño y colocación tuberías verticales ranuradas y lisas. El filtro del piezómetro es colocado en la base y alrededor de la tubería ranurada, luego se coloca un sello de bentonita sobre el filtro para aislar la presión de poros en la zona de medición del nivel piezométrico. El espacio entre la tubería vertical y la superficie por encima del sello de bentonita, es rellenado con una mezcla de cemento para prevenir el movimiento no deseado del agua hacia la superficie. Al final de la tubería se le colocará un protector con fines de proporcionar seguridad al piezómetro.

Cabe indicar que en cuanto se termine la instalación de las tuberías y el sellado respectivo se realizará el desarrollo del piezómetro que consiste en la inyección de presión de aire dentro del pozo para retirar cualquier resto de la perforación o materiales en suspensión incluido el agua de la perforación. Luego de 2 a 6 horas de desarrollado el pozo, recién se podrá tomar medidas reales del nivel de agua.7

2.3.8 Caracterización Geomecánica del Macizo Rocoso

A partir de los registros de perforaciones realizadas en los puntos de perforación y complementados con resultados de los ensayos de laboratorio de mecánica de rocas, se ha realizado la caracterización del macizo rocoso siguiendo el sistema de clasificación geomecánico RMR según la teoría de Bieniawski.

Para obtener las propiedades relevantes tales como el valor del RQD, la resistencia de la roca intacta, el grado de meteorización, el grado de fracturamiento, y la condición de las discontinuidades se siguieron las recomendaciones del ISRM (International Society of Rock Mechanics).

Los parámetros anteriores fueron utilizados para determinar la valoración del macizo rocoso según el sistema RMR (Rock Mass Rating) desarrollado por Bieniawski (1989). Este sistema de clasificación considera cinco (5) parámetros relacionados con la condición de la roca intacta y la calidad del macizo rocoso, asignando una valoración o puntaje a cada uno de dichos parámetros. Estos puntajes son sumados para obtener una valoración de la calidad del macizo rocoso (RMR básico). Los parámetros utilizados son:

- Resistencia de la roca intacta, obtenida a partir del índice de resistencia a la carga puntual.
- Calidad del testigo de perforación, RQD.
- Espaciamiento de las discontinuidades.
- Condición de las discontinuidades (persistencia, abertura, rugosidad, relleno y meteorización).
- Condición del agua subterránea.

Finalmente se utiliza un sexto parámetro para ajustar la valoración del RMR básico, que indica la influencia de la orientación de las discontinuidades en el macizo rocoso. Este parámetro es un número negativo que refleja en qué medida el rumbo y buzamiento de la familia de discontinuidades más crítica, presente en el macizo rocoso, resulta favorable o desfavorable para la aplicación considerada, tales como túneles, taludes o cimentaciones. En este caso el macizo rocoso servirá de cimentación para las cargas que transmiten los depósitos de relaves y posiblemente a un apilamiento adicional de desmonte de mina encima de las relaveras. Se ha estimado de manera conservadora un factor de ajuste de -7, el cual indica una condición ligeramente desfavorable debido a los buzamientos subverticales detectados en los sistemas de fracturamiento y fallamiento existentes.

"Evaluación de Relavera Antigua con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre" Bach. Rivas Soto Luis Alfredo El valor ajustado del RMR es utilizado finalmente para describir la calidad del macizo rocoso en cinco clases, las cuales se describen a continuación:

Tabla N° 2.1 Clases de Macizo Rocoso a partir de las valoraciones totales

Valoración RMR	Clase	Descripción
8-19	V	Roca muy mala
20 - 39	IV	Roca mala
40 - 59	III	Roca regular
60 - 79	Ш	Roca buena
80 - 99	I	Roca muy buena

Fuente: Anddes Asociados SAC, diciembre 2012

2.4 ANÁLISIS DE ESTABILIDAD DE TALUDES

Con la finalidad de evaluar la condición de estabilidad física de los tres depósitos de relave 1, 2 y 3 juntos en la condición actual se ha realizado el análisis geotécnico considerando 01 sección de análisis que representan las condiciones más críticas de los depósitos de relaves.

Para el análisis de estabilidad de los taludes existentes en la condición actual de los depósitos de relave 1, 2 y 3 se ha definido un modelo geotécnico que está conformado por material de relaves, presas de relaves, suelo residual, basamento rocoso. Se evaluará la estabilidad en condiciones actuales a corto plazo estático y largo plazo pseudo-estático, considerando fallas locales y globales.

2.4.1 Consideraciones del Diseño Geotécnico

Para garantizar la estabilidad física de la configuración actual de los depósitos de relaves se realizó el análisis de estabilidad de taludes. El análisis de estabilidad debe garantizar la condición estable en la condición estática y deberá verificarse la misma condición estable para la condición pseudo-estática.

A continuación se presenta los procedimientos que fundamentan el análisis de estabilidad.

2.4.2 Metodología del Análisis de Estabilidad

Para el análisis de estabilidad de taludes se utilizó el programa de cómputo Slide (Rocscience, 2010) versión 6.0, a través del método de Spencer según el concepto de equilibrio límite, analizando el talud de manera bidimensional en el estado de deformación plana. La superficie de falla crítica, definida como aquella que proporciona el menor factor de seguridad, fue determinada considerando superficie de falla circular.

Para el análisis pseudo-estático se considera que la masa involucrada en la falla está sometida a una fuerza horizontal igual al coeficiente sísmico multiplicado por el peso de la masa de la superficie de falla, de modo de tomar en cuenta el efecto de las fuerzas inerciales producidas por el sismo de diseño. Según el capítulo 2.2 el coeficiente sísmico horizontal utilizado en el análisis de estabilidad de los depósitos de relaves 1, 2 y 3 es 0,13.

Como hipótesis del análisis se considera que las propiedades de los materiales son homogéneas e isotrópicas y que el colapso se produciría como resultado de fallas simultáneas a lo largo de la superficie de deslizamiento.

2.4.3 Criterios de Análisis

Los factores de seguridad considerados en los análisis de estabilidad de taludes a corto plazo y largo plazo del presente estudio, cumplen con los mínimos requeridos según las recomendaciones de la guía ambiental para la estabilidad de taludes de residuos sólidos del MINEM y las agencias United States Society of Dam (USSD) y United States Bureau of Reclamation (USBR). En el análisis se considerará: Mínimo factor de seguridad estático a corto plazo igual a 1,35, mínimo factor de seguridad estático a largo plazo igual a 1,50, mínimo factor de seguridad pseudo-estático a largo plazo a 1,00.

Se debe indicar que un factor de seguridad pseudo-estático mayor que 1,0 no significa que el material apilado no se moverá durante un terremoto. Lo que probablemente ocurrirá es que los desplazamientos serán mínimos y no se producirán daños permanentes en la estructura del dique o superficie de los depósitos de relaves.

CAPITULO III: EXPLORACIÓN DE CAMPO Y ENSAYOS DE LABORATORIO

3.1 EXPLORACIÓN DE CAMPO

3.1.1 Generalidades

Para la realización del presente estudio en el 2012 llevó a cabo un programa de trabajos de campo que consistió en la ejecución de perforaciones diamantinas, excavación de calicatas, ensayos DPL, ensayos de SPT, extracción de muestras con tubo Shelby e instalación de piezómetros, también se incluyó el mapeo geológico-geotécnico del área de interés. Los trabajos mencionados se realizaron en el mes de marzo del 2012. Estos trabajos permitieron identificar las unidades geológicas-geotécnicas predominantes en el área del proyecto, caracterizar el macizo rocoso a profundidad, asimismo, se realizó el muestreo representativo de los materiales que lo conforman, con los cuales se realizaron ensayos de laboratorio para la determinación de parámetros de resistencia de los materiales.

Se ha revisado y utilizado la información de estudios geotécnicos anteriores al año 2012 desarrollado por varias empresas consultoras.

En el Anexo A, Anexo D y Anexo E, se presentan los registros de campo, registros fotográficos y planos de ubicación respectivamente de todas las investigaciones geotécnicas realizadas en el presente estudio.

A continuación se detalla los trabajos de campo realizados.

3.1.2 Excavación de Calicatas

La excavación de calicatas se realizó tanto en los vasos y diques de los 03 depósitos de relaves. Se ejecutó un total de 33 excavaciones entre calicatas y trincheras convenientemente distribuidas dentro las áreas de interés. Las profundidades de investigación varían entre 2,00 m a 7,00 m. En la Tabla 3.1 se presenta el resumen de las excavaciones ejecutadas.

Tabla N° 3.1 Resumen de Calicatas y Trincheras

Zona / Sector	Calicata / Trinchera	Coordenadas (m)		Nivel agua (m)	Suelo orgánico (m)	Df (m)	Nivel roca (m)	Prof. Tota (m)
		Norte	Este					, ,
Depósito de Relaves 1	CA-101	8 783 453	346 022	NE	NE	ND	NA	3,6
Dique de Depósito de	CA-201	8 783 408	346 472	NE	NE	2,5	NA	5,0
Relaves 2	CA -202	8 783 474	346 498	NE	NE	2,2	NA	5,5
	CA-203	8 783 418	346 441	1,6	NE	ND	NA	2,0
	CA-204	8 783 490	346 439	Superf.	NE	ND	NA	2,5
	CA-205	8 783 580	346 499	NE	NE	ND	NA	4,0
Depósito de Relaves 2	CA-206	8 783 440	346 310	1,2	NE	2,0	NA	3,5
Deposito de Relaves 2	CA-207	8 783 494	346 332	0,2	NE	ND	NA	2,4
	CA-208	8 783 466	346 260	1,2	NE	ND	NA	2,5
	CA-209	8 783 434	346 137	2,0	NE	1,5	NA	4,5
	CA-210	8 783 579	346 411	0,5	NE	ND	NA	3,6
Dique Dep. Relaves 3	CA-301	8 783 709	346 744	3,3	NE	2,5	NA	4,5
	CA-302	8 783 734	346 727	1,2	NE	ND	NA	2,0
Depósito de Relaves 3	CA-303	8 783 731	346 675	2,6	NE	ND	NA	3,0
Deposito de Nelaves o	CA-304	8 783 691	346 641	NE	NE	ND	NA	2,7
	CA-305	8 783 671	346 700	NE	NE	ND	NA	3,0
Dique de Depósito de	CA-306	8 783 490	346 671	3,0	NE	ND	NA	4,0
Relaves 3	CA-307	8 783 564	346 714	NE	NE	ND	NA	3,5
Depósito de Relaves 3	CA-308	8 783 544	346 672	0,5	NE	ND	NA	2,0
Dehosito de Kelaves 3	CA-309	8 783 446	346 526	NE	NE	2,0	NA	3,5
	CA-310	8 783 543	346 709	5,0	NE	ND	NA	5,5
Dique de Depósito de	CA-311	8 783 608	346 757	NE	NE	1,6	1,6	1,6
Relaves 3	CA-312	8 783 637	346 755	NE	NE	1,3	1,3	1,3
	CA-313	8 783 472	346 670	NE	NE	1,5	NA	4,0
Dique de Depósito de Relaves 3	T-301	8 783 458	346 672	1,7	NE	1,5	NA	1,7

Zona / Sector	Calicata / Trinchera	Coorde (rr		Nivel agua (m)	Suelo orgánico	Df (m)	Nivel roca	Prof. Total
	T-302	8 783 451	346 681	1,2	NE	1,2	NA	1,2
	T-303	8 783 473	346 683	1,4	NE	1,5	NA	1,5
	T-304	8 783 478	346 698	1,4	NE	1,5	NA	1,5
	T-305	8 783 507	346 717	NE	NE	1,3	NA	1,3
	T-306	8 783 535	346 734	NE	NE	ND	NA	2,2
	CA-a	8 783 372	346 185	NE	NE	1,0	NA	2,0
Dique Lateral de Depósito de Relaves 1 y 2	CA-b	8 783 387	346 290	NE	NE	1,0	NA	2,5
	CA-c	8 783 362	346 405	NE	NE	1,0	NA	2,0

Fuente: Elaboración propia

3.1.3 Ensayos de Densidad de Campo (Método del Cono de Arena)

Se realizaron 05 ensayos de densidad de campo por el método del cono de arena en los sectores de los diques de los depósitos de relave 1, 2 y 3. En la Tabla 3.2 se presenta un resumen de los ensayos realizados.

Tabla N° 3.2 Resumen de Ensayos de Densidad - Método del Cono de Arena

			- 30			
Zona/Sector	Descripción	Calicata	SUCS	Prof. (m)	C.H. (%)	Densida d seca (g/cm³)
Dique de presa de relaves 3 (MD)	Material fino entre 1,10 y 3,50 m por debajo y encima del desmonte de mina y relave respectivamente.	CA-HUA12- 306/D1/M1	SM	1,10	22,90	1,70
Dique de presa de relaves 3 (MI)	Material de desmonte de mina entre 0,00 y 0,75 de profundidad, debajo se encuentra la arena limosa hasta 1,90 m y debajo el relave.	CA-HUA12- 307/D2/M1	GP-GC	0,75	8,60	2,05
Dique de presa de relaves 2 (Z. central)	Material de desmonte de mina con potencia de 9,60m, debajo se encuentra el relave hasta los 16,50 m.	CA-HUA12- 202/D3/M2	GW	2,20	9,20	2,10
Dique de presa de relaves 3 (Z. central)	Material de roca descompuesta desde los 0,50 m hasta 1,60 m, luego continúa el basamento rocoso.	CA-HUA12- 311/D4/M1	GC	1,30	16,70	1,97
Dique de presa de relaves 3 (MD)	Material de desmonte de mina con potencia de 9,60m por encima del relave.	CA-HUA12- 313/D5/M1	GC	1,80	18,60	1,85

Fuente: Elaboración propia

3.1.4 Ensayos de Penetración Dinámica Ligera (DPL)

Se ejecutaron un total de 20 ensayos DPL distribuidos de manera conveniente, básicamente en las zonas donde se ubican los materiales de relave. Se determinará indirectamente la resistencia de acuerdo a los números de golpes. Las profundidades de investigación varían entre 3,00 m y 9,30 m. En la Tabla 3.3 se presenta el resumen de los ensayos DPL realizados.

Tabla N° 3.3 Resumen de ensayos DPL

Ubicación	DPL	Coordenadas (m) *		Coordenadas (m) *		Prof. Estrato Resistente (m)	Prof. Total (m)
		Norte	Este		(,		
	DPL-201	8 783 561	346 487	7,00	7,70		
Depósito de Relaves 2	DPL-202	8 783 566	346 538	5,00	6,30		
- L	DPL-203	8 783 529	346 506	6,40	7,80		
	DPL-204	8 783 500	346 477	6,70	7,30		

Ubicación	DPL	DPL Coordena		Prof. Estrato Resistente (m)	Prof. Total (m)	
		Norte	Este	,		
	DPL-301	8 783 713	346 730	8,70	9,20	
	DPL-302	8 783 730	346 709	8,00	8,40	
	DPL-303	8 783 732	346 638	5,00	5,00	
	DPL-304	8 783 706	346 640	5,10	5,10	
	DPL-305	8 783 695	346 706	8,10	9,30	
	DPL-306	8 783 659	346 726	6,50	6,70	
	DPL-307	8 783 595	346 702	6,50	6,60	
Depósito de Relaves 3	DPL-308	8 783 532	346 675	6,00	7,10	
	DPL-309	8 783 588	346 635	5,60	5,80	
	DPL-310	8 783 614	346 666	3,00	3,00	
	DPL-311	8 783 623	346 683	7,00 -	7,60	
	DPL-312	8 783 531	346 598	8,10	8,70	
	DPL-313	8 783 493	346 553	3,10	3,30	
	DPL-314	8 783 470	346 607	8,30	8,30	
	DPL-315	8 783 419	346 573	5,60	5,70	
	DPL-316	8 783 414	346 505	5,60	6,20	

Fuente: Elaboración propia

Para poder evaluar la resistencia del relave en base a los ensayos DPL, se ha visto conveniente sectorizar los depósitos de relave para definir a partir de qué profundidades el material adopta una condición más resistente. En la figura 3.1 se muestran los 04 sectores que se describen a continuación:

- Sector 1, ubicado en el depósito de relaves 3 en la margen izquierda, aguas debajo de la configuración general.
- Sector 2, ubicado en el depósito de relaves 3 en la zona central, aguas debajo de la configuración general.
- Sector 3, ubicado en el depósito de relaves 3 en la margen derecha, aguas debajo de la configuración general.
- Sector 4, ubicado en el depósito de relaves 2 en la margen izquierda, aguas debajo de la configuración general.

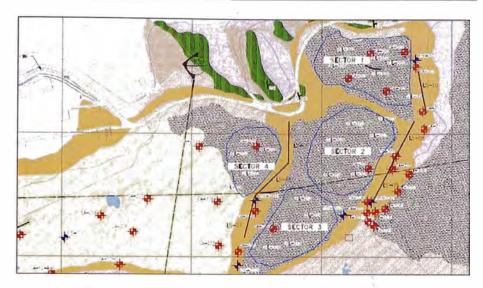


Figura Nº 3.1 Ubicación de los sectores 1, 2, 3 y 4

Se ha realizado la sectorización sólo de los 04 sectores ya que las demás zonas están cubiertas superficialmente por desmonte de mina y no es posible realizar los ensayos DPL. En el cuadro 3.4, se indican las zonas, los ensayos DPL realizados y el número de golpes en orden crecientes a medida que aumenta la profundidad de investigación en el ensayo DPL.

Tabla N° 3.4 Resumen de ensayos DPL, Profundidad y Número de Golpes

Zona	DPL	Profundidad (m)	N° Golpes
1	DPL-301, DPL-302, DPL-303, DPL-304,	0,00-6,00	0-13
	DPL-305, DPL-306	6,00-9,00	13-40
2		0,00-5,00	0-13
	DPL-307, DPL-308, DPL-309, DPL-310, DPL-311, DPL-312	5,00-7,00	13-25
	5. 2 5.1, 5. 2 5.2	7,00-9,00	25-35
	0	0,00-4,00	0-15
3	DPL-313, DPL-314, DPL-315, DPL-316	4,00-5,00	15-20
		5,00-8,00	25-45
		0,00-4,00	0-10
4	DPL-201, DPL-202, DPL-203, DPL-204	4,00-6,00	10-20
		6,00-8,00	20-35

Fuente: Elaboración propia

En la Figura 3.2, se muestra el comportamiento de la profundidad vs número de golpes realizado en los sectores 1, 2, 3 y 4, este comportamiento resistente es el que gobierna en general los depósitos de relaves.

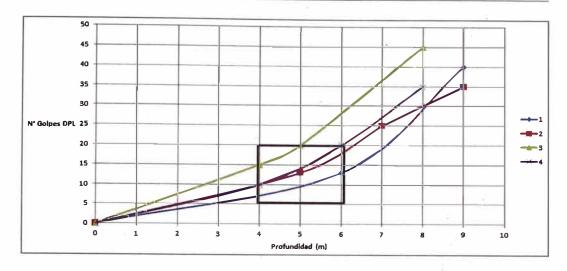


Figura N° 3.2 Tendencia de la resistencia del relave en profundidad

Por último y de acuerdo a la gráfica anterior, se puede concluir que a partir de aproximadamente 5,0 m de profundidad, el material de relave es resistente ya que el número de golpes entre 15 a más.

3.1.5 Perforaciones Diamantinas

El estudio comprende un total de seis perforaciones diamantinas, distribuidas de la siguiente manera: uno en el dique del depósito de relaves 1, dos en el dique del depósito de relaves 2 y tres en el dique y depósito de relaves 3. Las profundidades de perforación fueron entre 27 m y 33 m.

La Tabla 3.5 muestra el resumen de las características generales de las perforaciones realizadas.

Tabla N° 3.5 Resumen de Perforaciones

Ubicación	Perforación	Coordenadas (m) *		Nivel Agua (m)	Nivel Roca (m)	Prof. Total
		Norte	Este			(m)
Depósito de Relaves 1	PR-101	8 783 430	346 205	12,75	28,80	33,00
Dique Depósito de Relaves 2	PR-201	8 783 492	346 498	6,50	16,50	31,50
Dique Depósito de Relaves 2	PR-202	8 783 386	346 470	NM	17,90	20,00
Depósito de Relaves 3	PR-301	8 783 721	346 744	NM	15,35	27,30
Dique Depósito de Relaves 3	PR-302	8 783 489	346 677	NM	16,00	33,00
Depósito de Relaves 3	PR-303	8 783 468	346 634	7,50	16,95	28,50

Fuente: Elaboración propia

A continuación se presenta la descripción de cada una de las perforaciones realizadas en los depósitos de relaves 1,2 y 3.

SONDAJE PR-101: Esta perforación presenta un perfil de suelo consistente en material de desmonte mina desde la superficie hasta 1,40 m clasificado como un GW-GM, de 1,40 hasta 11,00 m atraviesa material de relave, clasificado como SP-SM y ML, de 11,00 hasta 16,50 m presenta suelo orgánico, luego atraviesa un estrato clasificado como ML hasta 19,60 m, de 19,60 hasta 21,00 m presenta nuevamente un suelo orgánico o turba, entre 21,00 hasta 29,80 m presenta un estrato arcilloso clasificados como CL de origen aluvial, subyaciendo se ha registrado material gravoso cuya clasificación le corresponde un GM de origen residual. Entre 28,80 m hasta el final de la perforación atraviesa una roca de origen sedimentario (limolita) color rojo oscuro, moderadamente fracturada (RQD de 43 a 90%), de resistencia frágil (R1.5 a R2.0) y de calidad geomecánica mala a regular según el cálculo del índice del RMR básico.

SONDAJE PR-201: Desde la superficie hasta 9,70 m de profundidad atraviesa un material de desmonte mina, correspondiéndole una clasificación GW. Entre 9,70 a 15,80 m se presenta relave clasificado como SP, SM y ML, entre 15,80 a 16,50 m atraviesa un suelo arcilloso, correspondiéndole una clasificación CL, de origen aluvial y residual. Entre 16,50 hasta el final de la perforación atraviesa una roca limolita con sedimentos calcáreos cerca a la superficie, de color gris a gris verdoso, fracturada (RQD de 15 a 100%), de resistencia frágil a medianamente resistente (R2.0 a R3.0) y de calidad geomecánica mala a regular según el cálculo del índice del RMR básico.

SONDAJE PR-202: De similares característica a la perforación PR-201, por su ubicación, presenta un material de desmonte conformado desde la superficie hasta 8,10 m de profundidad, clasificado como GW. De 8,10 hasta 11,50 m atraviesa material relave clasificado como SP-SM. Desde 11,50 hasta 17,90 m presenta un material clasificado como GW. Desde 18,00 m hasta el final de la perforación se registró roca sedimentaria (limolita) color rojo oscuro a gris verdoso en su tramo final, levemente fracturada (RQD de 85 a 100%), de resistencia frágil (R2.0) y de calidad geomecánica regular según el cálculo del índice del RMR básico.

SONDAJE PR-301: Desde la superficie hasta 1,50 m de profundidad atraviesa un estrato de desmonte de mina. De 1,50 a 13,45 m se presenta relave clasificado como CL y CL-ML, Entre 13,35 hasta 15,00 m atraviesa material orgánico clasificado como ML. De 15,00 a 15,35 m se presenta un suelo de origen residual clasificado como GC. Desde 15,35 m hasta el final de la perforación atraviesa roca arenisca color gris verdoso, intercalado con limolitas de similar coloración, se presenta levemente fracturada (RQD de 60 a 100%), resistente (R 3.0) y de calidad geomecánica regular a buena según el cálculo del índice del RMR básico.

SONDAJE PR-302: Esta perforación, se caracteriza por presentar un estrato de relleno hasta 3,00 m clasificándose como GM y CL-ML, seguido de material de relave hasta 13,00 m clasificado como CL-SM. De 13,00 hasta 15,90 m se presenta un tipo de suelo tipo SM, SP de origen aluvial. Desde 15,90 m hasta el final de la perforación presenta un perfil de roca calcárea color gris oscuro con alto contenido de venillas de calcita, seguido de un estrato de limolita color rojo oscuro, se presenta moderadamente fracturada a brechada (RQD de 0 a 100%), de resistencia extremadamente frágil a medianamente resistente (R0.0 a R3.0) y de calidad geomecánica muy mala a buena según el cálculo del índice del RMR básico.

SONDAJE PR-303: Desde la superficie hasta los 0,50 m de profundidad atraviesa un estrato de desmonte de mina clasificado como GM. Desde 0,50 a 9,45 m se presenta relave clasificado como SM y ML, desde 9,45 hasta 15,80 m atraviesa material de desmonte de mina clasificado como GW-GM; entre 15,80 a 16,40 se registró suelo orgánico clasificado como OL, desde 16,40 hasta 16,95 m atraviesa desmonte de mina tipo GM. Finalmente de 16,95 m hasta el final de la perforación atraviesa roca arenisca intercalada con estratos de limolita color rojo oscuro, se presenta moderadamente fracturada (RQD de 30 a 95%), frágil a moderadamente resistente (R2.0 a R3.0) y de calidad geomecánica regular a buena, según el cálculo del índice del RMR básico.

En La Tabla 3.6 se resume los pozos investigados.

Tabla N° 3.6 Resumen de Pozos Perforados

Perforación	Profundidad de estratos	Identificación de material	Nivel Roca (m)	Nivel Agua (m)	Prof. Tota (m)
	0,00-1,50	Grava bien gradada con limo y arena (GW-GM)			
	1,50-3,20	Arena mal gradada con limo (SP-SM)			
	3,20-5,20	Limo de baja plasticidad (ML)			
	5,20-10,90	Arena mal gradada con limo (SP-SM)			
	10,90-16,40	Turba (Pt)			
DD 404	16,40-19,60	Limo de baja plasticidad (ML)		12,75	
PR-101	19,60-21,00	Turba (Pt)	28,80		33,0
	21,00-22,70	Arcilla de alta plasticidad (CH)			
	22,70-24,00	Limo de baja plasticidad (ML)	1		
	24,00-27,20	Arcilla de alta plasticidad (CH)			
	27,20-28,80	Grava mal gradada con arena y limo (GP)			
	28,80-33,00	Roca (Limolita)			
PR-201	0,00-9,60	Grava bien gradada con arena y limo (GW)			
	9,60-11,00	Arena mal gradada con limo (SP)			
	11,00-11,60	Limo arcilloso de plasticidad baja (ML)			
	11,60-15,80	Arena limosa (SM)	16,50	6,50	31,50
	15,80-16,50	Arcilla limosa con gravas (CL)			
	16,50-31,50	Roca (Limolita)			
	0,00-8,10	Grava bien gradada con arena y limo (GW)			
	8,10-11,50	Arena mal gradada con limo (SP)			
PR-202	11,50-14,00	Grava limosa (GM)	17,90	NM	20,0
	14,00-17,90	Grava bien gradada con arena y limo (GW)			
	17,90-20,00	Roca (Limolita)			
	0,00-0,50	Grava limosa con arena (GM)			
	0,50-4,00	Arena limosa (SM)			
PR-301	4,00-13,60	Limo arenoso (ML)	15,35	NM	27,3
	13,60-15,35	Grava arcillosa (GC)			
	15,35-27,30	Roca (Arenisca / Limolita)			
	0,00-3,00	Grava limosa (GM)			
	3,00-10,00	Limo de baja plasticidad (ML)			
	10,00-11,50	Arena limosa (SM)			
PR-302	11,50-13,00	Limo de baja plasticidad (ML)	16,00	NM	33,0
	13,00-14,00	Arena limosa (SM)			
	14,00-16,00	Arena mal gradada (SP)			
	16,00-33,00	Roca (Limolita)			
	0,00-0,50	Grava bien grada con arena y limo (GW-GM)			
PR-303	0,50-2,00	Arena limosa (SM)	16,95	7,50	28,5
	2,00-3,00	Limo de baja plasticidad (ML)			

Perforación	Profundidad	Identificación de material	Nivel	Nivel	Prof
	3,00-9,45	Arena mal gradada con limo (SP-SM)	Buca	aniis	Inra
	9,45-15,80	Grava bien grada con limo y arena (GW-GM)			
	15,80-16,50	Turba (pT)			
	16,50-16,95	Grava limosa con arena (GM)			
	16,95-28,50	Roca (Arenisca / Limolita)			

Fuente: Elaboración propia

3.1.6 Ensayos de Penetración Estándar (SPT)

Conforme se profundizó la perforación y de acuerdo a los materiales blandos encontrados se realizaron los ensayos SPT como corresponden. La Tabla 3.7 presenta el resumen de los ensayos SPT realizados en cada perforación.

Tabla N° 3.7 Resumen de Ensayos SPT

Zona / Sector	Perforación	Ensayo SPT / Muestra	Profundidad (m)	Tipo de Suelo (SUCS)	N _{SPT}
İ		SPT-01 / M-1	3,70-4,15	ML	14
Depósito de	PR-101	SPT-02 / S/M	7,50-7,95	SP-SM	16
relaves 1	PR-101	SPT-03 / M-3	10,90-11,35	Pt	8
		SPT-04 / M-5	25,60-26,05	СН	6
	DD 004	SPT-01 / M-2	13,15-13,60	SM	14
Dique del	PR-201	SPT-02 / M-3	15,35-15,80°	SM	54
depósito de relaves 2	PR-202	SPT-01 / M-1	10,00-10,45	SP	19
-		SPT-02 / M-2	11,50-11,95	GM	17
		SPT-01 / M-1	1,50-1,95	SM	2
		SPT-02 / M-2	3,00-3,45	SM	2
	PR-301	SPT-03 / M-4	5,70-6,15	CL	2
Depósito de relaves 3		SPT-04 / M-6	8,40-8,85	CL	5
.0.0.00		SPT-05 / M-7	10,00-10,45	ML	2
		SPT-06 / M-8	13,00-13,45	ML	10
		SPT-07 / M-10	15,00-15,20	GC	40
		SPT-01 / M-2	4,00-4,45	ML	1
Dique del		SPT-02 / M-4	7,00-7,45	ML	11
depósito de	PR-302	SPT-03 / M-5	8,50-8,95	ML	1
relaves 3		SPT-04 / M-6	10,00-10,45	SM	3
		SPT-05 / M-7	13,00-13,45	SM	18
	*	SPT-01 / M-1	1,50-1,95	SM	2
Depósito de	DD 222	SPT-02 / M-2	3,00-3,45	SP-SM	22
relaves 3	I PR-3U3 F	SPT-03 / M-4	7,50-7,95	SP-SM	8
-		SPT-04 / M-5	9,00-9,45	SP-SM	8

Fuente: Elaboración propia

Los resultados de estos ensayos muestran en general que los suelos finos presentan consistencia blandas, mientras que los suelos granulares presentan compacidad suelta.

3.1.7 Ensayos de Penetración a Gran Escala (LPT)

Conforme se profundizó la perforación y de acuerdo a los materiales granulares encontrados se realizaron los ensayos LPT como corresponden. La Tabla 3.8 muestra el resumen de los resultados obtenidos del ensayo realizado en el sondeo.

Tabla N° 3.8 Resumen de Ensayos LPT

Zona	Perforación	Ensayo LPT	Profundidad (m)	Tipo de suelo (SUCS)	Nur	N _{SPT}
Dique de presa de relaves 3	PR-302	LPT-1	1,50-1,95	GM	21	29

Fuente: Elaboración propia

El resultado de este ensayo muestra que el estrato granular es medianamente denso.

3.1.8 Medición del Nivel Freático

Finalizada la instalación de cada piezómetro y luego de su desarrollo se procedió a tomar las lecturas del nivel piezométrico, para observar su variabilidad y el nivel que se va estabilizando con el paso del tiempo. Con esto se busca obtener el nivel estático en un determinado tiempo. En la Tabla 3.9 se presentan los registros de los niveles de agua después de 24 horas de haber realizado la instalación del piezómetro en cada perforación.

Tabla N° 3.9 Niveles de Agua Registrados

Perforación	Coordena	da UTM (m)*	Alicel Agus (m)	Prof. Total (m)	
Perioración	Este	Norte	Nivel Agua (m)	Pioi. Total (III)	
PR-101	8 783 430	346 205	12,75	33,00	
PR-201	8 783 492	346 498	6,50	31,50	
PR-303	8 783 469	346 634	7,50	28,50	

Fuente: Elaboración propia

3.1.9 Mapeo Geológico Geotécnico

Como parte de la investigación geotécnica de este estudio se realizó el mapeo geológico-geotécnico del área de estudio y de las áreas circundantes, con el fin de identificar los rasgos geológicos y unidades geológicas-geotécnicas presentes, las cuales se muestran en el Anexo E Plano de Investigaciones Geotécnicas y Mapeo Geológico-Geotécnico.

3.1.10 Unidades Geológicas – Geotécnicas

De acuerdo con el mapeo geológico-geotécnico, el área de proyecto se encuentra sobre una quebrada de origen glaciar de flancos de pendiente suave a moderada, está constituida por depósitos residuales sobreyaciendo a rocas sedimentarias que afloran en ambas márgenes de la quebrada. Asimismo, se presentan depósitos de suelo orgánicos, suelos residuales, depósito glaciar-fluvial, depósitos aluviales y depósito morrénicos.

Las seis unidades geotécnicas definidas en el área de estudio se describen a continuación:

Unidad Geológica-Geotécnica I

Están conformados Bofedales y Suelos Orgánicos, son suelos finos intercalados con suelos altamente orgánicos (turba) de espesores variables, se presentan muy húmedos a saturados debido al deficiente drenaje artificial que presenta. Se ha encontrado en algunas perforaciones con potencia variables de hasta 10 m. Se observan en gran magnitud al sur y en del área de interés.

Debido a sus características geotécnicas esta unidad no es apropiada como materiales de cimentación.

Unidad Geológica - Geotécnica II

Conformados por depósitos Glacial-fluvial, ccorresponden a los sedimentos transportados por los ríos y quebradas que se depositan en el fondo de los lagos. El sedimento es el resultado de los efectos de la erosión ocasionada por la acción del viento y el agua. Se han encontrado mayormente en la perforación PR-101 con una potencia de hasta 6 m. Estos suelos se comportan como suelos blandos consistentes en limos y arcillas de baja a alta plasticidad, muy húmedos

a saturados, generalmente estos materiales no son apropiados para fines de cimentación.

Unidad Geológica - Geotécnica III

Conformados por depósitos depósito aluviales, esta unidad está conformada que fueron erosionados y re-depositados rellenando la quebrada principal y sus tributarios, conformados en general por arenas, gravas, gravas limosas y arcillas limosas, plasticidad baja a media y de compacidad suelta a medianamente densa, la humedad varía de ligeramente húmeda a muy húmeda, la grava presenta formas subangulosas.

Esta unidad geotécnica se encuentra ubicada en ambas márgenes de la quebrada San José.

Unidad Geológica - Geotécnica IV

Depósito Morrénico, esta unidad geotécnica está compuesta íntegramente de suelos de naturaleza morrénica. En el área de estudio este depósito se presenta como grava arcillo limosa, grava limosa con arena y arena limosa con grava, con presencia de bolonería en toda su composición, la plasticidad varía de baja a media, variando su compacidad de medianamente densa a muy densa y húmeda.

Estos depósitos son competentes para propósitos de cimentación, debido a su grado de compacidad y a la presencia de un porcentaje considerable de grava en su estructura. Hay que señalar que debido a la naturaleza del material, estos materiales pueden ser utilizados como material de préstamo para relleno estructural y suelo de baja permeabilidad.

Unidad Geológica - Geotécnica V

Suelo Residual, esta unidad está conformada por basamento rocoso que ha sufrido una fuerte meteorización y/o alteración in situ. En la zona estudiada la roca limolita se ha meteorizado hasta el grado de limos y arenas limosas con la consiguiente pérdida de sus propiedades de resistencia que caracterizan a materiales rocosos.

Los suelos residuales varían su conformación entre un limo y arena limosa, lo cual hace que presente plasticidad variable desde baja a media, presenta

compacidad media a densa para los suelos más granulares y consistencia firme a rígida para suelos con mayor contenido de finos, se encuentran húmedos, de color generalmente rojizo y gris verdoso, con estructura homogénea.

Unidad Geológica - Geotécnica VI

Basamento Rocoso, esta unidad está conformada mayormente por limolitas, areniscas color rojo con tonalidades verdes y algunos niveles calcáreos color gris a gris verdoso, en general, estos afloramientos presentan resistencias promedio de R2 a R3 entre frágil a medianamente resistente, se presentan predominantemente en las márgenes de las presas de relaves.

En general, estos materiales pueden ser removidos con voladura y en algunos casos con tractor. Dada sus características, estos materiales pueden en general, soportar taludes de corte pronunciados.

3.2 ENSAYOS DE DELABORATORIO

3.2.1 Generalidades

Durante el desarrollo de la exploración geotécnica de campo se obtuvieron muestras representativas de las calicatas, trincheras y perforaciones realizadas en la zona de interés.

En los materiales indicados se llevaron a cabo ensayos de mecánica de suelos para su caracterización, para determinar los parámetros geotécnicos y así definir adecuadamente el modelo geotécnico de la sección de análisis. Los ensayos fueron realizados en los laboratorios de Lima.

Los ensayos de laboratorio fueron llevados a cabo siguiendo los procedimientos recomendados según las versiones actualizadas de los métodos de ensayo de la Sociedad Norteamericana de Ensayos y Materiales (ASTM). El detalle de los ensayos de laboratorio se presenta en el Anexo B. A continuación se muestran los ensayos realizados en el presente estudio.

3.2.2 Ensayos Índice de Mecánica de Suelos

En las muestras obtenidas en la exploración de campo, se llevaron a cabo ensayos estándar de laboratorio con fines de identificación y clasificación según el Sistema Unificado de Clasificación de Suelos (SUCS). Las propiedades

índices de los suelos ensayados se resumen en la Tabla 3.10 en términos de granulometría, límite de plasticidad y contenido de humedad.

Las normas correspondientes que rigen estos ensayos para clasificar muestras de suelo son:

- Análisis Granulométrico por Tamizado e Hidrómetro, ASTM D-422.
- Límite Líquido y Límite Plástico, ASTM D-4318.
- Contenido de Humedad, ASTM D-2216.

Tabla N° 3.10 Resumen de Ensayos de Clasificación SUCS

						1			
			Clasif.	G	ranulometr	ia	LL	l IP	C.H.
Investigación	Muestra	Prof.(m)	SUCS	Grava (%)	Arena (%)	Finos (%)	(%)	(%)	(%)
CA-202	M-1	0,0-2,2	GP-GC	61,0	27,5	11,4	22	14	8,0
CA-202	M-2	2,2-5,5	GC	53,9	33,0	13,1	22	7	7,8
CA-210	M-1	0,0-2,7	GC-GM	68,3	19,2	12,5	21	6	9,5
CA-301	M-2	2,5-4,0	GC	51,7	31,4	16,9	31	9	14,6
CA-304	M-1	0,0-0,7	ML	0,0	49,7	50,3	NP	NP	29,8
CA-306	M-1	1,1-2,1	SM	7,6	67,0	25,4	NP	NP	14,4
CA-307	M-1	0,0-0,7	GP-GC	61,7	26,5	11,8	28	8	8,5
CA-311	M-1	0,5-1,6	GC	39,6	29,9	30,5	35	14	16,7
CA-313	M-1	0,0-4,0	GC	54,2	19,6	26,2	37	15	15,6
Mezcla (CA-a)	M-1 /M-2	0,0-2,0	GC	57	27	16	22	7	2,7
Mezcla de desmonte mina	M-1 / M-2	Superficial	GP-GM	62,1	30,9	7	NP	NP	4,4
PR-101	SPT-1 / M-1	3,7-4,15	ML	1,0	47,2	51,8	NP	NP	20,5
PR-101	Shelby / M-2	5,2-5,8	ML	0,0	41,8	58,2	NP	NP	20,4
PR-101	M-5	22,0-22,6	СН	0,0	0,0	100,0	69	45	65,0
PR-101	SPT-4 / M-6	25,6-26,05	CL	0,0	3,2	96,8	47	28	39,9
PR-201	Shelby / M-1	12,5-13,15	SM	0,0	62,3	37,3	NP	NP	21,2
PR-201	M-3	7,8-7,95	SC	29,3	35,8	34,9	32	15	17,5
PR-202	SPT-1 / M-1	10,0-10,45	SP-SM	0,2	94,8	5,0	NP	NP	21,2
PR-202	SPT-2 / M-2	11,5-11,95	SP-SM	22,3	70,1	7,6	NP	NP	22,2
PR-301	Shelby / M-5	7,75-8,4	CL	0,0	9,3	90,7	30	10	35,6
PR-301	SPT-5 - M-7	10,0-10,45	CL / CL- ML	0,0	16,3	83,7	23	7	30,5
PR-301	SPT-7 / M-10	13,6-15,0	GC	31,9	29,5	38,6	32	15	14,8
PR-302	LPT -1 / M-1	1,5-1,95	CL-ML	1,3	14,2	84,6	23	7	36,5
PR-302	Shelby / M-3	5,3-5,95	CL	0,0	0,6	99,4	42	18	54,9

			Clasif	G	ranulometri	а	LL	IP	C.H.
Investigación	estigación Muestra Prof.(m) Clasif. SUCS	Grava (%)	Arena (%)	Finos (%)	(%)	(%)	(%)		
PR-302	SPT-3 / M-5	8,5-8,95	CL	0,0	0,0	100,0	47	23	54,8
PR-302	SPT-5 / M-7	13,0-13,45	SM	10,2	59,8	30,0	NP	NP	20,7
PR-303	SPT-1 / M-1	1,5-1,95	GW	90,0	9,4	0,6	NP	NP	4,1
PR-303	SPT-3 / M-4	7,5-7,95	SM	0,0	74,7	25,3	NP	NP	19,1

Fuente: Elaboración propia

3.2.3 Ensayos de Contenido de Humedad

De acuerdo a la necesidad de obtener datos de humedades para el remoldeo de los ensayos especiales de compresión triaxial CU. En las muestras obtenidas en la exploración de campo, se llevaron a cabo ensayos de contenidos de humedad. Los ensayos de Contenido de Humedad se realizaron bajo la norma, ASTM D-2216. Los resultados se resumen en la Tabla 3.11 en términos de contenido de humedad (%).

Tabla N° 3.11 Resumen de Ensayos de Contenido de Humedad

Investigación	ción Muestra Prof.(m)		C.H. (%)
CA-306	M-1/D-1	1,1	22,9
CA-307	M-1/D-2	0,7	8,6
CA-311	M-1/D-4	0,5-1,6	12,8
PR-202	M-2/D-3	2,2-5,5	9,2
PR-313	PR-313 M-1/D-5		18,6
PR-101	M-3/SPT-3	10,9-11,35	63,7 / 75,6 / 95,0 / 145,9

Fuente: Elaboración propia

3.2.4 Peso Volumétrico y Densidad Natural

De acuerdo a la necesidad de obtener datos de densidad para el remoldeo de los ensayos especiales de compresión triaxial CU. En las muestras obtenidas en la exploración de campo, se llevaron a cabo ensayos de densidad natural. Los resultados se resumen en la Tabla 3.12.

Densidad Densidad Natural Natural Investigación Muestra Prof.(m) C.H. (%) promedio promedio (gr/cm³) (gr/cm³) PR-101 M-4 11,35-12,20 1,32 0.992 33,2 PR-101 M-4 11,35-12,20 0,595 1,32 122,1 PR-201 M-1 12,50-13,15 2,23 1,81 22,9 PR-301 M-1 7,75-8,40 2 1,52 31.7

Tabla N° 3.12 Resumen de Ensayos de Peso Volumétrico y Densidad

Fuente: Elaboración propia

3.2.5 Ensayos de Compactación Proctor Estándar

Se realizó dos ensayos de compactación Proctor Estándar con la finalidad de hallar la variación de la máxima densidad seca (MDS) y el óptimo contenido de humedad (OCH) para caracterizar a los materiales básicamente de las presas de relaves (Diques) de acuerdo a los requerimientos citados en la Tabla 3.13. Los ensayos fueron ejecutados según los procedimientos indicados en la norma ASTM D-698.

Tabla N° 3.13 Resumen de Ensayos de Próctor Estándar

Zona	Investigación	Profundidad (m)	Muestra	SUCS	MDS (gr/cm³)	OCH (%)
Dique lateral de los depósitos de relave 1 y Mezcla CA-a 2		0,00-2,00	M-1 / M-2	GC	2,15	6,8
Cantera Narcizo	Mezcla desmonte de mina	Superficial	M-1 / M-2	GP-GM	2,42	5,9

Fuente: Elaboración propia

3.2.6 Ensayo Triaxial Consolidado No drenado (CU)

Se realizaron 05 ensayos triaxiales consolidados no drenados CU con especímenes de 2,8" a 6", según el requerimiento de la caracterización de los materiales componentes en los depósitos de relaves y presas de relaves, con medición de presión de poros y en condición saturada. Los ensayos triaxiales de acuerdo a la naturaleza de los materiales se realizaron tanto con muestras inalteradas (muestras ensayadas con la densidad y humedad natural) y alteradas (muestras remoldeadas al 95% de la máxima densidad seca obtenida del ensayo Proctor estándar con el óptimo contenido de humedad y en algunos casos remoldeado con la densidad obtenida del ensayo de densidad de campo por el

método del cono de arena. El ensayo fue ejecutado según los procedimientos indicados en las normas ASTM D-4767. Un resumen de los resultados de estos ensayos se presenta en la Tabla 3.14.

Tabla N° 3.14 Resumen de Ensayos Triaxiales-CU

					D.S. (kN/m3)	C. H. (%)	Parámetros			
				Clasif.			Efectivos		Totales	
Zona	Investigación	Muestra	Prof. (m)	SUCS			C' (kPa)	Φ' (°)	C (kPa)	Ф (°)
Depósito de relave 3	PR-301	M-5	7,75-8,40	CL	1,4	42,4	18,0	29,6	12,0	14,6
Dique de depósito de relave 2	CA-202	M-2	2,20-5,50	GC	2,0	7,8	0,0	41,7	95,0	15,8
Dique de depósito de relave 2	PR-201	M-1	12,50- 13,15	SM	1,8	22,9	2,0	38,3	314,0	34,0
Desmonte de Mina	Desmonte	-	Superficial	GP-GM	2,1	4,6	35,0	40,3	328,0	12,5
Dique lateral de depósitos de relave 1 y 2	Dique lateral	-	0,00-2,00	GC	2,1	5,4	11,0	41,0	167,0	11,9

Fuente: Elaboración propia

3.2.7 Ensayo de Consolidación

De las muestras de relave se realizó un ensayo de consolidación unidimensional en especímenes de muestras inalteradas obtenidas mediante tubos Shelby, los especímenes para los ensayos tienen un área de 50 cm2 y una altura de 2 cm. Un resumen de los resultados se presenta en la Tabla 3.15.

Tabla N° 3.15 Resumen de Ensayos de Consolidación

Sondaje	Muestra	Prof. (m)	Clasif. SUCS	σ' (Kg/cm2)	Cv (cm2/min)	σ'c (Kg/cm2)	Сс	Cs
PR-03	M-03	4,00 - 4,65	ML	0,1	0,8	0,5	0,081	0,012

Fuente: Elaboración propia

3.2.8 Ensayo de Carga Puntual

Se realizaron 10 ensayos de carga puntual con la finalidad de determinar por correlaciones existentes la resistencia a la compresión uniaxial de las muestras de roca obtenidas en la etapa de exploración de campo de este estudio. Los ensayos fueron ejecutados según los procedimientos indicados en la norma ASTM D-5731, a partir de estos resultados se le asignó el grado de dureza de la

roca intacta, según la Tabla 3.16. Un resumen de los resultados de estos ensayos se presenta en la Tabla 3.17

Tabla N° 3.16 Resistencia de la Roca

Resistencia ISMR	Descripción
R0.0	Roca extremadamente frágil (blanda)
R1.0	Roca muy frágil
R2.0	Roca frágil
R3.0	Roca medianamente resistente
R4.0	Roca resistente
R5.0	Roca muy resistente
R6.0	Roca extremadamente resistente

Fuente: Anddes Asociados SAC, 2012

Tabla N° 3.17 Resumen de Ensayos de Carga Puntual

Zona	Calicata Muest	Muestra	a Prof. (m)	Litalanía	Carga F	Grado de	
	Calicata	Muestra		Litología	I _{s(50)} (Mpa)	σ₀ (Mpa)	Dureza
Dique de depósito de relaves 1	PR-101	M-1	32,0-32,4	Limolita	1,98	48	R3
	PR-201	M-1	17,4-17,55	Limolita	2,3	55	R4
	PR-201	M-2	20,85-21,02	Limolita	1,67	40	R3
Dique de	PR-201	M-3	26,3-26,75	Limolita	1,84	44	R3
depósito de relaves 2	PR-201	M-4	30,9-31,2	Limolita	3,36	81	R4
	PR-202	M-1	18,2-18,5	Limolita	1,36	33	R3
	PR-202	M-2	19,2-19,9	Limolita	1,5	36	R3
	PR-301	M-11	19,95-21,35	Arenisca	1,73	41	R3
Depósito de relaves 3	PR-302	M-8	22,4-22,6	Limolita	1,78	43	R3
10144050	PR-303	M-6	24,5-25,14	Arenisca	1,42	34	R3

Fuente: Elaboración propia

Como se puede observar la resistencia a la carga puntual y el grado de dureza de la roca andesita varía entre medianamente resistente y resistente. Por lo tanto, los materiales sedimentarios serán zonificados y seleccionados de acuerdo a cada perforación.

3.2.9 Ensayo de Propiedades Físicas de la Roca

SE realizaron cuatro ensayos de ropiedades físicas en roca de los testigos extraídos de las perforaciones. Los ensayos de propiedades físicas se realizaron siguiendo la norma ASTM 2216-02.

Tabla Nº 3.18 Propiedades Físicas de la Roca

Perforación	Prof. (m)	Tipo de Roca	Densidad seca (gr./cm3)	Densidad húmeda (gr./cm3)	Porosidad aparente (%)	Absorción (%)	Peso especifico aparente (KN/m3)
PR-HUA-201 / M-2	20,85-21,02	Limolita	2,52	2,6	7,63	3,03	24,7
PR-HUA-101 / M-1	32,00-32,40	Limolita	2,62	2,67	4,94	1,,89	25,66
PR-HUA-201 / M-4	30,90-31,20	Limolita	2,61	2,66	4,35	1,66	25,62
PR-HUA-202 / M-2	19,20-19,90	Limolita	2,38	2,43	5,26	2,21	23,31

CAPITULO IV: ANÁLISIS DE ESTABILIDAD FÍSICA Y QUÍMICA

Para garantizar la estabilidad física de la configuración propuesta para el cierre de los depósitos de relaves 1, 2 y 3, se realizó el análisis de estabilidad de taludes de estos depósitos en condiciones actuales y con el apilamiento

proyectado con desmonte de mina.

El análisis realizado indica que las condiciones de estabilidad para el cierre de los depósitos de relaves 1, 2 y 3 están garantizados, considerando el recrecimiento y perfilado del desmonte de mina.

A continuación se presenta los procedimientos que fundamentan el análisis de estabilidad de taludes.

ANÁLISIS DE CONSOLIDACIÓN 4.1

Se realizaron los cálculos de los asentamientos por consolidación primaria y secundaria generados por el incremento de esfuerzos en el estrato de relave saturado debido a la colocación del desmonte de mina. Se utilizaron las soluciones de la ecuación diferencial de la consolidación primaria unidimensional (Terzaghi & Frohlich), para las condiciones en que el incremento de esfuerzos dentro del suelo es mayor que la presión de pre-consolidación se tiene:

 $s = \frac{C_s H}{1 + e_0} \log \frac{\sigma'_C}{\sigma'_0} + \frac{C_c H}{1 + e_0} \log \frac{(\sigma'_C + \Delta \sigma')}{\sigma'_0}$ Donde:

Asentamientos por consolidación primaria Sp

Índice de expansión C_{s}

Índice de compresión : C_{C}

Н Espesor del sub-estrato :

Presión efectiva inicial para el sub-estrato o'o

Presión de pre-consolidación

incremento de presión vertical en el sub-estrato

Relación de vacíos inicial e_o

Para los asentamientos de consolidación secundaria se tomó como referencia el intervalo de tiempo entre el tiempo necesario para llegar al 90% de consolidación y el tiempo de vida del proyecto, para lo cual se usó la siguiente expresión:

Donde: $s = \frac{C_{\alpha}H}{1 + e_{p}} \log \frac{t_{1}}{t_{2}}$

s_s : Asentamientos por consolidación secundaria

C_α : Índice de compresión secundaria

H : Espesor del sub-estrato

e_p : Relación de vacíos después de la consolidación primaria

 t_1/t_2 : Tiempos

4.1.1 Condiciones Analizadas

Se ha tomado en cuenta las siguientes condiciones para el análisis:

- Para estimar el máximo asentamiento de la cimentación se ha considerado la condición de apilamiento de una altura de 5 m de desmonte, considerando todas las cargas aplicadas generadas por la acumulación del material de desmonte de mina.
- De manera conservadora se asumió que la densidad del desmonte será de 20 kN/m3 (que originalmente es 22 kN/m3), el cual generará cargas en el relave en una sola fase del apilamiento.
- Se consideró un modelo geotécnico simplificado de tres estratos de suelo conformados por los siguientes materiales: relave y suelo residual sobre basamento rocoso. Se ha considerado al material que los relaves se encuentran en condiciones saturadas y no drenadas.
- El análisis de deformaciones verticales (asentamiento) de la cimentación, se realizó considerando un espesor de suelo (relave) de 15 m, el cual tiene es susceptible a la consolidación.
- Para determinar el incremento de esfuerzos verticales en el relave, se discretizó el espesor de 5 m de desmonte a fin de determinar los

incrementos de esfuerzos y asentamientos generados por consolidación primaria y secundaria.

4.1.2 Resultados Obtenidos

Para evaluar los asentamientos de la cimentación por consolidación, se realizó un análisis unidimensional, el cual proporciona resultados similares a los calculados con el análisis numérico bidimensional, debido a que se trata de un depósito de gran extensión, donde el flujo que genera la consolidación será predominantemente vertical, es decir, unidimensional.

El resumen de los resultados de los análisis asentamientos por consolidación de la cimentación se presentan en la Tabla 4.1.

Tabla N° 4 .1 Resultados de Análisis de Consolidación Unidimensional

Instalación		Consolidación		
	Fase	Consolidación Primaria (dlas)	Total (años)	
Deposito de relaves 1, 2 y 3	Fase 1	1689	4,7	

Según se observa en la tabla anterior el relave de los depósitos 1, 2 y 3 presenta un asentamiento máximo de 0,91 cm en un lapso de aproximadamente 5 años. Por lo tanto, para el análisis de estabilidad a largo plazo, se justifica la hipótesis de condiciones drenadas de los relaves.

4.2 ANÁLISIS DE ESTABILIDAD DE TALUDES

En el análisis geotécnico se ha considerado 02 secciones (la sección 1-1 en el sentido longitudinal a lo largo de los depósitos de relaves, y la sección 2-2 en el sentido transversal a los mismos), La sección 1-1 es la que representa la condición más crítica de los depósitos de relaves con la finalidad de evaluar la condición de estabilidad física de la configuración de cierre de estos depósitos de relave mediante el apilamiento de desmonte de mina.

Para el análisis de estabilidad de los taludes existentes y proyectados para cierre de estos depósitos, el modelo geotécnico está conformado por basamento rocoso, suelo residual, material de relave, presa de relave y material de apilamiento (desmonte de mina). Se ha evaluado la estabilidad en condiciones actuales, en condiciones a corto plazo y en condiciones a largo plazo estático y pseudo-estático, considerando fallas locales y globales.

Cabe indicar que el escenario a largo plazo correspondiente al cierre, involucra la consolidación del relave por las cargas de apilamiento de desmonte de mina en gran parte de los depósitos de relave 1, 2 y 3, lo cual mejorará las características del relave en un plazo de 04 años aproximadamente. Además, éste escenario mejora aún más debido a que en el espaldón del dique del depósito de relaves 3 será cubierto por relave grueso cicloneado producto del recrecimiento de los depósitos de relaves 4.

4.2.1 Metodología de Análisis

Para el análisis de estabilidad de taludes se utilizó el programa de cómputo SLIDE (Rocscience, 2010) versión 6.0, a través del método de Spencer según el concepto de equilibrio límite, analizando el talud de manera bidimensional en el estado de deformación plana. La superficie de falla crítica, definida como aquella que proporciona el menor factor de seguridad, fue determinada considerando superficie de falla circular.

Para el análisis pseudo-estático se considera que la masa involucrada en la falla está sometida a una fuerza horizontal igual al coeficiente sísmico multiplicado por el peso de la masa de la superficie de falla, de modo de tomar en cuenta el efecto de las fuerzas inerciales producidas por el sismo de diseño. El coeficiente sísmico horizontal utilizado para la ubicación de los depósitos de relaves es de 0,13.

Como hipótesis del análisis se considera que las propiedades de los materiales son homogéneas e isotrópicas y que el colapso se produciría como resultado de fallas simultáneas a lo largo de la superficie de deslizamiento.

4.2.2 Criterios de Análisis

Los factores de seguridad considerados en los análisis de estabilidad de taludes a corto plazo y largo plazo del presente diseño, cumplen con los mínimos requeridos según las recomendaciones de la guía ambiental para la estabilidad de taludes de residuos sólidos del MINEM y las agencias United States Society of Dam (USSD) y United States Bureau of Reclamation (USBR). En el análisis se considerará:

• Mínimo factor de seguridad estático a corto plazo igual a 1,35.

- Mínimo factor de seguridad estático a largo plazo igual a 1,50.
- Mínimo factor de seguridad pseudo-estático a largo plazo a 1,00.

Se debe indicar que un factor de seguridad pseudo-estático mayor que 1,0 no significa que el cuerpo del botadero con apilamiento no se moverá durante un sismo. Lo que probablemente ocurrirá es que los desplazamientos serán mínimos y no se producirán daños permanentes en la estructura del dique conjuntamente con el desmonte de mina.

4.2.3 Condiciones Analizadas

Se ha tomado en cuenta las siguientes condiciones para el análisis:

- El análisis en condiciones estáticas y pseudo-estáticas ha considerado la condición más crítica que corresponde a la sección de mayor altura y de mayor pendiente, representada por las secciones 1-1. La sección 2-2 será para verificar la estabilidad física en la sección transversal del botadero. En la parte final del análisis se ha considerado el crecimiento final del apilamiento a la cota 4 484 msnm, en condiciones de cierre.
- Para las secciones de análisis se asumió que las potenciales fallas a ocurrir son del tipo circular, a lo largo de material de apilamiento, relave actual, relave consolidado y presa de relaves (dique de contención).
- De acuerdo a la información del mapeo geológico-geotécnico, perforaciones diamantinas, excavación de calicatas y ensayos DPL, el área de los depósitos de relaves se encuentran yaciendo sobre basamento rocoso de limolitas y areniscas.

4.2.4 Propiedades de los Materiales

Las propiedades físicas y mecánicas de los materiales que conforman el modelo fueron obtenidas a partir de los ensayos de campo, ensayos de laboratorio y por correlaciones de ensayos de campo realizados, sustentadas en la literatura existente. Se ha obtenido convenientemente muestras representativas de cada uno de los materiales involucrados en los análisis. A continuación se detalla brevemente las consideraciones asumidas en la caracterización de cada tipo de material.

Desmonte de mina del material apilado y dique de contención

Se ha clasificado el material de desmonte de mina con características granulométricas gruesas como GW (grava bien gradada con arena y arcilla). Se considera que el material de desmonte proviene de la zona de explotación de la mina y este presenta buenas características geotécnicas para la configuración final de cierre de los depósitos de relaves. Las propiedades geotécnicas asignadas para este material de desmonte son: ángulo de fricción interna de 36°-37°, cohesión 2-3 KPa y un peso específico de 22 kN/m3.

Material de Relave

El material identificado como relave tiene características granulométricas finas con clasificación SUCS ML, CL y SM, es decir, limos, arcillas y arenas finas, con características geotécnicas no favorables debido a su consistencia o compacidad. Los resultados de los ensayos de clasificación indican que estos materiales poseen contenidos de 5 a 90% de arena y 5 a 90% de finos. La densidad del relave es 15,0 KN/m3. Los parámetros de resistencia cortante son los siguientes: Relave consolidado por su peso propio. Parámetros drenados: cohesión igual a 15 kPa y ángulo de fricción de 25°. Relave consolidado por peso propio del dique y material de desmonte de mina a ser apilado: Parámetros drenados (mediano y largo plazo): cohesión igual a 18 kPa y ángulo de fricción de 28°. Parámetros no drenados (análisis pseudo-estático): cohesión igual a 12 kPa y ángulo de fricción de 15°.

Turba o Topsoil

Los materiales identificados como topsoil en los depósitos de relaves presentan una clasificación SUCS de Pt y OH, en este último material se realizó un ensayo in situ de veleta de bolsillo. Cabe indicar que las propiedades geotécnicas de resistencia al corte variarán dependiendo del tipo de análisis con respecto al tiempo a realizar.

El ensayo de veleta que representa la condición actual de la turba indica una resistencia al corte no drenada (Su) para este material de 12 kPa y un peso específico de 15 kN/m3. En el caso de la verificación de la estabilidad física de los depósitos de relaves en su configuración final a largo plazo, los valores de los parámetros geotécnicos de resistencia al corte en condiciones drenadas son: ángulo de fricción interna de 10° y 2 kPa de cohesión.

Suelo Residual

El material identificado como suelo residual proviene de la meteorización de la limolita y arenisca, presenta una granulometría entre fina y semigruesa con características geotécnicas no favorables. La densidad del suelo residual es 18,0 KN/m3.Los parámetros de resistencia cortante son 10 kPa de cohesión y ángulo de fricción interna de 24°.

Basamento Rocoso

Valoración del Macizo Rocoso

En el Anexo A, Registros de Campo se indica la Valoración del Macizo Rocoso, se presenta el cálculo de los valores del RMR básico según el criterio de Bieniawski correspondiente a la descripción inicial de la calidad del macizo rocoso de acuerdo con la Tabla 3.14. En estas hojas de cálculo los valores del RQD fueron tomados directamente de la evaluación del registro de perforaciones. El espaciamiento de las discontinuidades se ha calculado en campo, la condición de las discontinuidades se ha estimado en forma global, considerando básicamente la rugosidad en las paredes de las fracturas, su grado de meteorización o alteración y la abertura de las discontinuidades, la resistencia de la roca ha sido estimada durante el registro geotécnico mediante apreciación con el martillo de geólogo, sin embargo, los ensayos de laboratorio de carga puntual, reportados en el Anexo B, sirvieron para calibrar los valores reportados. Finalmente para el parámetro correspondiente a la condición del agua subterránea se ha asumido que el macizo rocoso se encuentra en una condición húmeda.

La Tabla 4.1 resume los valores promedio del RMR total obtenidos para cada una de las perforaciones realizadas en el área de estudio, es decir, los valores ajustados en función de la influencia de la orientación de las discontinuidades. En general se puede observar que la calidad del macizo rocoso en el área del proyecto se clasifica en forma variable entre roca de calidad mala a regular de acuerdo con el valor RMR total.

Tabla N° 4.2 Valores de RMR Totales

					V
Zona / Sector	Perforación	Tramo	RMR Básico	RMR Total	Descripción
Dique del		28,90-30,40	51	44	Regular
depósito de relaves 1	PR-101	30,40-32,00	35	28	Mala
relaves 1		32,00-33,00	58	51	Regular
		16,50-17,20	48	41	Regular
		17,20-18,60	32	25	Mala
Dique del	PR-201	18,60-22,90	51	44	Regular
depósito de	FR-201	22,90-23,40	65	58	Buena
relaves 2		23,40-26,20	35	28	Mala
		26,20-31,50	63	56	Buena
	PR-202	18,00-20,00	55	48	Regular
	PR-301	15,35-24,35	69	62	Buena
Depósito de relaves 3		24,35-25,90	58	51	Regular
		25,90-27,30	68	61	Buena
		15,70-17,30	69	62	Buena
		17,30-24,95	51	44	Regular
		24,95-26,45	66	59	Buena
Dique del depósito de	PR-302	26,45-29,55	46	39	Regular
relaves 3	PR-302	29,55-31,05	16	9	Muy Mala
		31,05-31,45	33	26	Mala
		31,45-32,00	15	8	Muy Mala
		32,00-33,00	33	26	Mala
		16,95-22,80	50	43	Regular
Depósito de relaves 3	PR-303	22,80-25,60	64	57	Buena
		25,60-28,50	47	40	Regular

Fuente: Elaboración propia

La roca que subyace en profundidad variable a los depósitos de relave, fue identificada como limolita y arenisca. A partir de los registros obtenidos de las perforaciones, ensayos de carga puntual y la calidad de la roca que van de regular a buena, se obtuvo parámetros de resistencia para efectos del análisis de estabilidad de taludes mediante correlaciones de diversos autores en función al RMR (Bieniawski, 1 979), cuyos valores en promedio son de 125 kPa para cohesión y 35° para el ángulo de fricción interna. La densidad de la roca asumida es de 23,0 KN/m3.

La roca que subyace en profundidad variable a los depósitos de relave, fue identificada como limolita y arenisca. A partir de los registros obtenidos de las perforaciones, ensayos de carga puntual y la calidad de la roca que van de

regular a buena, se obtuvo parámetros de resistencia para efectos del análisis de estabilidad de taludes mediante correlaciones de diversos autores en función al RMR (Bieniawski, 1979), cuyos valores en promedio son de 125 kPa para cohesión y 35° para el ángulo de fricción interna. La densidad de la roca asumida es de 23,0 KN/m3.

En general, para la ejecución del análisis de estabilidad de taludes, las propiedades de resistencia cortante de los materiales han sido modificadas de manera conservadora para tomar en cuenta las incertidumbres propias de este tipo de análisis, relacionadas a la variabilidad espacial de los materiales, representatividad de las muestras obtenidas, limitaciones en los ensayos de laboratorio, etc.

En resumen, se recomienda usar los parámetros de resistencia mostrados en la Tabla 6.1 para el análisis de estabilidad de taludes en sus distintas situaciones a corto plazo y largo plazo.

Tabla N° 4.3 Resumen de Propiedades de Materiales

		Parámetros Drenados		Parámetros No Drenados	
Material	Y total (kN/m ³)	Cohesión (kPa)	Ángulo de Fricción grados)	Cohesión (kPa)	Ángulo de Fricción grados)
Desmonte de Mina	22	0	37	-	-
Material de Dique	21	0	35	-	-
Relave actual	15	8	18	-	-
Relave consolidado	15	0	22	-	-
Relave cicloneado	15	0	22	-	-
Turba	14	2	10	12	0
Depósito aluvial	18	0	25	-	-
Basamento Rocoso	23	125	35	-	_

Fuente: Elaboración propia

4.3 RESULTADOS OBTENIDOS DEL ANÁLISIS DE ESTABILIDAD

Se presentan las salidas del programa SLIDE 2010 v6.0, las cuales ilustran los análisis de estabilidad de taludes de los depósitos de relave. Dichas salidas contienen información sobre las secciones geotécnicas 1 y 2 analizadas, propiedades de los materiales y ubicación de la superficie de falla crítica con el menor factor de seguridad.

En la Tabla 4.4 se presenta el resumen de los resultados obtenidos de los análisis de estabilidad de taludes realizados en condiciones estáticas y pseudo-estáticas, en condiciones actuales, apilamiento final a corto plazo y apilamiento final a largo plazo pseudo-estático, según correspondan.

Tabla N° 4.4 Resultados de los Análisis de Estabilidad de Taludes

		Factor de Seguridad				
Sección	Condición	Estático	Estático	Pseudo-Estático		
		(Corto Plazo)	(Largo Plazo)	(k=0,13)		
Sección 2-2'	Condición actual	3,51	- 1	-		
	Con apilamiento final	2,32	2,48	1,57		
	Condición actual	1,36	- *-	-		
Sección 1-1'	Apilamiento final	1,48		0,97		
	Apilamiento final / relave ciclo.	-	-	1,16		

Fuente: Elaboración propia

Como se puede observar de los resultados obtenidos en las tres secciones analizadas, los factores de seguridad obtenidos son mayores que los mínimos recomendados en los criterios de diseño asumidos para este análisis, tanto para la condición estática y pseudo-estática, y para el tipo de superficie de falla circular analizada. Los resultados de análisis de estabilidad son resumidos a continuación:

Los análisis realizados en la sección 2-2' corresponden a la verificación de la estabilidad tanto en condiciones actuales como del apilamiento final a corto y largo plazo a la cota 4 480 msnm. Se han considerado superficies de falla circular y se observa que el factor de seguridad está por encima de los valores mínimos establecidos en los criterios de análisis. Para la condición estática actual (FS=3,51) la superficie de falla atraviesa el cuerpo del dique lateral e inferiormente cruza el suelo residual en contacto con el basamento rocoso. Para la condición estática a corto plazo con el apilamiento final con un FS=2,32, la superficie de falla cruza el cuerpo del apilamiento del desmonte de mina, el relave en condición actual y finalmente pasa por el suelo residual que está debajo del dique lateral. Para la condición pseudo-estática a largo plazo con sismo (coeficiente sísmico de 0,13) se obtiene un FS=1,57 con la superficie de falla cruzando el cuerpo del apilamiento del desmonte de

mina, el relave consolidado y finalmente el suelo residual debajo del dique lateral.

• En la sección 1-1', para la condición estática actual (FS=1,47) la superficie de falla atraviesa el cuerpo del dique 3 y el relave consolidado. Para la condición estática del apilamiento final a corto plazo (FS=1,45) la superficie de falla atraviesa el cuerpo del dique 3 y el relave consolidado. Para el escenario a largo plazo en condiciones estáticas y pseudo-estáticas con el apilamiento proyectado, los parámetros de resistencia mejoran significativamente, obteniéndose factores de seguridad de 3,17 y 1,38, respectivamente. A ello también se suma que la parte frontal aguas abajo del dique del depósito de relave 3 estará cubierta por relave grueso cicloneado del depósito de relaves en operación 4, mejorando las condiciones de estabilidad.

La colocación de desmonte de mina inducirá la consolidación de relave a largo plazo, mejorando sus características de resistencia cortante y también reduciendo el riesgo de ocurrencia de licuación durante un sismo severo. Asimismo, la disposición de relave en el depósito 4 actuará como un contrafuerte del talud del depósito 3, mejorando las condiciones de estabilidad estática y sísmica de los depósitos de relaves 1, 2 y 3 analizados. De acuerdo a esta solución ya no se realizará la evaluación de las deformaciones permanentes.

4.4 ANÁLISIS DE ESTABILIDAD QUÍMICA

4.4.1 Generalidades

Para predecir la posibilidad de generación de drenaje ácido del material de desmonte de mina dispuesto en los depósitos de relave 1, 2 y 3, se tomaron muestras representativa para la ejecución de ensayos de Balance Ácido Base ABA (Método EPA-600/2-054), los cuales fueron realizados en el Laboratorio de Espectrometría de la Facultad de Ingeniería Geológica, Minería y Metalurgia de la UNI. A continuación se presenta la interpretación de la prueba ABA.

4.4.2 Resultado del Análisis de Metales Totales

La distribución de metales determinada en las muestras por métodos de análisis espectral, es presentada en la tabla siguiente.

Tabla N° 4.5 Resultado de Análisis de Metales Totales

Fe	%Mn	%Cu	%Pb	%Zn	Cd%	As(ppm)
10,06	2,03	0,079	1,623	1,361	36	1 371

Fuente: Elaboración propia

Los valores de hierro se distribuyen formando óxidos y sulfuros, en el caso de magnesio corresponden a ocurrencias de pirolusita, los valores de cobre, plomo, zing, cadmio y arsénico están ligados fundamentalmente a los minerales sulfurados.

4.4.3 Potencial Neto de Neutralización

La evaluación del contenido de azufre como sulfuro y las pruebas ABA en las muestras de desmonte de mina nos permite determinar el potencial neto de neutralización como se indica en el tabla siguiente.

Tabla N° 4.6 Resultado de la muestra de Desmonte de mina

PH	%S	PN	PA	PNN	PN/PA
7,5	7,34	130	229,37	-99,37	0,57

Fuente: Elaboración propia

Donde:

PN = Potencial de neutralización

%S = Porcentaje de azufre como sulfuro

PA = Potencial de acidez

PNN = Potencial neto de neutralización

PN, PA y PNN están expresados en KgCaCO3/TM y evaluados según:

El Potencial Neto de Neutralización es la capacidad de un mineral para generar o consumir ácido. Considerando una regla general para la determinación de generación de drenaje ácido, podemos evaluarlo de la siguiente forma:

Como PNN = PN - PA

- Si PNN > +20 ; la muestra NO GENERA DRENAJE ÁCIDO
- Si PNN < -20 ; la muestra GENERA DRENAJE ÁCIDO
- Si -20 < PNN < +20, muestra de comportamiento INCIERTO (*)
- (*) Indica que el material de desmonte es potencialmente generador de ácido

De acuerdo al valor del Potencial Neto de Neutralización proporcionados en el ensayos y con los criterios indicados podemos indicar que las muestras de los depósitos de relaves 1, 2 y 3 presentan valores de PNN del orden de -99,37 y expresado en KgCACO3/TM indican tendencia a generar drenaje ácido en presencia de agua, oxígeno y actividad bacteriana.

4.5 MONITOREO GEOTÉCNICO

4.5.1 Instrumentos de Monitoreo

Se propone la instalación de los siguientes instrumentos de monitoreo geotécnico, los cuales deberán ser instalados convenientemente en las zonas dentro y alrededores de los depósitos de relaves 1, 2 y 3.

- inclinómetros a ser ubicados en la margen izquierda y derecha de los diques laterales de los depósitos de relaves 1, 2 y 3, también en el pie y la cresta del apilamiento. El inclinómetro permitirá medir las deflexiones o desplazamientos horizontales debido a la carga que trasmite el material apilado de desmonte de mina. Debe ser instalado antes de iniciar el apilamiento en la base del talud y luego del apilamiento se colocará en la cresta.
- Piezómetros hidráulicos para el monitoreo del agua subterránea. El primer piezómetro se instaló en la perforación PR-303 ubicado aguas abajo en el depósito de relaves 3. El segundo piezómetro se instaló en la perforación PR-201 ubicado aguas abajo en el dique 2, mientras que el tercero se ubica en el dique o depósito de relaves 1.
- Prismas para el control topográfico en la parte frontal del apilamiento, ubicados en el dique del depósito de relaves 3, estos fueron distribuidos en la base y en la cresta del apilamiento del primer banco de apilamiento.

En estas ubicaciones se deberá realizar las lecturas periódicas de la instrumentación con fines de monitoreo geotécnico. Las lecturas de los inclinómetros deberán ser bimensual durante los primeros 2 años, luego de lo cual puede realizarse controles semestrales. Los piezómetros y los prismas deben ser medidos sobre una base mensual.

CAPITULO V: CONSIDERACIONES DEL DISEÑO GEOTÉCNICO

El diseño de las estructuras contempladas en el estudio ha sido desarrollado sobre la base de criterios generales de diseño que se establecieron al inicio del estudio. La Tabla 4.1 presenta la descripción del criterio, la unidad de medida, el criterio utilizado en este estudio y la fuente que proporcionó el criterio.

Tabla Nº 5.1 Criterios de Diseño

Descripción	Unidad	Criterio	
Descripción	Unidad	usado	
PARÁMETROS DE PERFILADO	DE TALUD	ES	
Estabilidad Física			
Altura típica de banco	m	10 a 15 m	
Ancho de banquetas	m	30 a 50 m	
Talud para conformación de desmonte	H:1 V	3	
Período de retorno sismo de diseño ⁽¹⁾	años	475	
Aceleración sísmica de diseño ⁽¹⁾	g	0,25	
Coeficiente sísmico	adim.	0,13	
Estabilidad estática a corto plazo, mínimo	F.S.	1,3	
Estabilidad estática a largo plazo, mínimo	F.S.	1,5	
Estabilidad pseudo-estática, mínimo	F.S.	1	
Análisis de deformación	si FS pseudo-estático<1		

Fuente: Elaboración propia

La aceleración pico en el lugar a nivel de roca basal es 0,25 g. y 0,37g para suelo firme a denso, considerando un período de retorno de 475 años. El coeficiente sísmico utilizando en el análisis pseudo-estático es de 0,13.

5.1 GENERALIDADES

La configuración geométrica final del cierre de los depósitos de relaves 1, 2 y 3, ha tomado en consideración los criterios de diseño con base en los datos existentes y de acuerdo a la experiencia. En ese contexto los criterios de diseño en los que se ha basado el diseño de las estructuras a nivel de factibilidad.

El cierre de los depósitos de relaves 1, 2 y 3 involucra la nivelación de la superficie del depósito, la acumulación de desmonte seleccionado cuyos taludes se formarán al volteo, el perfilado final de taludes del desmonte acumulado, la colocación y conformación de una capa de suelo estabilizado con emulsión de polímero, la colocación y conformación de una capa de material orgánico para

cobertura vegetal y la construcción de estructuras destinadas al manejo de flujos de escorrentía superficial.

5.2 CIERRE DE LOS DEPÓSITOS DE RELAVES 1,2 Y 3

Los depósitos de relaves 1, 2 y 3, serán cubiertos con el material de desmonte seleccionado. La configuración final del depósito de desmonte, constará de tres bancos que poseen una altura que varía entre 10 y 15 m y taludes de banco de 3:1 (H:V). Las banquetas poseen un ancho variable entre 30 y 50 m, distancia suficiente para realizar las labores de mantenimiento durante la construcción y perfilado final para el cierre.

Para la conformación y perfilado final del depósito de desmonte que cubrirá los depósitos de relaves 1, 2 y 3, se realizarán labores de retiro de interferencias, trazo y replanteo topográfico permanente, nivelación del depósito de relaves, carguío, transporte y colocación del material de desmonte sobre el relave, perfilado final de taludes, colocación de una capa de suelo estabilizado que genere una capa de baja permeabilidad con emulsión de polímero, colocación de una capa de material orgánico para revegetación y la construcción de estructuras para el manejo del drenaje superficial. Las tareas mencionadas anteriormente, se describen a detalle en los párrafos siguientes.

5.2.1 Movimiento de Tierras

Posterior a la realización del retiro de interferencias, se procederá con la delimitación del área de trabajo así como al replanteo topográfico, el acondicionamiento del área de trabajo, nivelación de la cancha de relaves. Posterior a ello se continuará con el carguío, transporte y colocación de desmonte, perfilado final de taludes, conformación de banquetas, cobertura de suelo estabilizado con emulsión de polímero y cobertura de material orgánico.

Habilitación de Accesos Temporales

Previamente al inicio de las labores de movimiento de tierras, se deberá realizar el trazado y acondicionamiento de los accesos y rutas temporales para el transporte de material de desmonte hacia los puntos de disposición; para ello se deberá poner especial énfasis en la estabilización de los accesos situados en áreas cercanas a las zonas saturadas y las características geométricas tales como el ancho mínimo y radios de giro.

Trazo y Replanteo

Los límites del área de trabajo deberán ser replanteados por profesionales calificados, los mismos que en base a la información topográfica y puntos de control (Bench Mark) disponibles, determinarán la extensión del área de trabajo, así como los niveles indicados en los planos. Las labores de trazo y replanteo deberán ser permanentes y deberán ser efectuados sobre toda el área de trabajo el cual abarca una extensión de 19,8 ha, aproximadamente. En la etapa de Ingeniería de detalle los planos mostrarán el área que deberá ser replanteada colocando puntos de control sobre las estructuras que serán diseñadas.

Carguío, Transporte y Colocación de Material de Desmonte

Antes del inicio de las labores de movimiento de tierras, se deberá presentar un plan de ejecución de trabajos, donde debe estar incluido el trazo de los accesos y principales rutas a los componentes del proyecto. El documento incluirá también un plan de manejo en seguridad y medio ambiente, acorde a los estándares del cliente.

En base a la topografía proporcionada actual, Se estimó que el volumen de material de desmonte colocado sobre el depósito de relaves será 1 400 000 m3. El material de desmonte colocado cubrirá los depósitos de relaves 1, 2 y 3. Se estimó que durante los trabajos de nivelación y preparación del área, se removerá un volumen de 4 500 m3. El material de desmonte sobre los depósitos de relaves será colocado al volteo, no necesitando mayor compactación que el tránsito de los vehículos y equipos durante el acarreo, colocación y conformación del material. Para la determinación del volumen final de transporte y disposición, se deberá tomar en cuenta un factor de esponjamiento del 20% aproximadamente para el desmonte de mina.

Cabe mencionar que posterior a la disposición del material de desmonte y antes de la colocación de la cobertura de suelo estabilizado que genere una capa de baja permeabilidad con emulsión de polímero, deberán perfilarse los taludes de los bancos hasta llegar a taludes de 3:1 (H:V). Esta actividad se debe realizar de manera tal que, no sea necesaria la ejecución de labores complementarias de nivelación y/o reperfilado para el cierre. Las banquetas tendrán anchos que varían entre 30 y 50 m.

Con el objetivo de promover la consolidación del relave y asegurar la estabilidad física del depósito de desmonte, se han considerado varias fases de apilamiento, considerando una producción de aproximadamente 120 000 m3/año de material de desmonte. En la Tabla 8.1 se muestra la capacidad y la duración de cada fase de apilamiento de material de desmonte colocado sobre los depósitos de relaves 1,2 y 3.

Tabla N° 5.2 Material de Desmonte -Capacidad y Duración deL Apilamiento

Fase	Volumen (m³)	Tiempo (Años)
l I	255 450	2.1
II	185 000	1.5
HI	417 100	3.5
IV	207 550	1.7
V	128 350	1.1
VI	101 170	0.8
VII	118 200	1.0
TOTAL	1 412 820	11.8

Fuente: Elaboración propia

Compactación de la Superficie Perfilada

Con la finalidad de mejorar la calidad del área perfilada y nivelada de los bancos del material de desmonte colocado, se deberá ejecutar labores de compactación en los taludes y banquetas de manera tal que la superficie terminada quede lo suficientemente firme para la colocación de la capa de suelo estabilizado con emulsión de polímero en capas no menores a 300 mm de espesor.

5.2.2 Protección de Taludes

Con la finalidad de minimizar los procesos de erosión y generación de drenaje acido, se ha considerado un sistema de protección e impermeabilización que consiste en la cobertura de dichos taludes y banquetas con una capa de suelo estabilizado de 300 mm de espesor que permita generar una capa de baja permeabilidad, utilizado un polímero, el cual deberá ser complementado por otra capa de 300 mm de suelo de cultivo para posterior revegetación.

Suelo Estabilizado con Emulsión de Polímero

Los taludes y banquetas serán cubiertos por una capa de suelo estabilizado para generar una capa de baja permeabilidad utilizando una emulsión de

polímero de 300 mm de espesor. En este estudio se ha utilizado el polímero llamado Top Soii; sin embargo, se puede utilizar un producto similar.

Material Orgánico para Cobertura Vegetal

Posterior al tratamiento superficial con polímero, se tiene previsto colocar una capa de material orgánico para cobertura vegetal de 0.30 m de espesor en toda el área donde se colocará el suelo estabilizado. El suelo orgánico será colocado durante la etapa de cierre del depósito de material de desmonte emplazado sobre los depósitos de relaves 1,2 y 3.

5.3 SUELO IMPERMEABILIZADO CON EMULSIÓN DE POLÍMERO

5.3.1 Generalidades

Se deberá obtener el material seleccionado, procesar, colocar y compactar una capa de 300 mm de espesor (después de compactada) de suelo impermeabilizado con emulsión de polímero (Top Soil. Solamente se utilizarán materiales previamente aprobados ya sea in situ o provenientes de áreas de préstamo previamente identificadas.

5.3.2 Materiales

Material Seleccionado: El material usado en la conformación de la capa de suelo impermeabilizado con emulsión de polímero no deberá contener tamaños mayores a 3/4" y el porcentaje de finos debe estar entre 10 y 20%. Se tiene previsto que el material seleccionado sea producido a partir del desmonte de mina. El material será tamizado por debajo de la malla 3/4".

CAPITULO VI: CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- Las unidades geomorfológicas presentes en el área de estudios son, valles glaciares, cerros y lomas. Se encuentra sobre una quebrada de origen glaciar con flancos de pendiente suave a moderada a su alrededor.
- 2. Según los trabajos de investigación geotécnica y la información geológica, en el área de estudio se presentan depósitos antrópicos (relave, rellenos controlados y no controlados, diques de relaves), suelos residuales, depósito glaciar-fluvial y depósitos aluviales.
- 3. Con la información de los trabajos de campo, resultados de laboratorio e información existente, se definió la geometría y el modelo geotécnico del emplazamiento del botadero de desmonte de mina encima de los depósitos de relaves 1, 2 y 3.
- 4. Con la información de las pruebas de campo y resultados de laboratorio, el material de relave se clasifica como ML, CL y SM en donde según los ensayos DPL la resistencia del material mejora en cuanto más se profundiza. En el ensayo DPL a partir de los 5,0 m de profundidad el relave es más resistente ya que el número de golpes varía de 15 a más. Llegando hasta los 45 golpes a profundidades de 8 a 9 m.
- 5. Las perforaciones diamantinas permitieron identificar los substratos inferiores compuestos de la siguiente manera en forma vertical descendente: Dique de relave, relave, depósito aluvial y basamento rocoso. Se ha llegado a investigar hasta 33,0 m de profundidad.
- 6. Los datos geofísicos permitieron correlacionar las profundidades de estratos por intermedio de las velocidades de ondas P y S en las zonas donde no se realizaron perforaciones. Las velocidades de ondas encontradas en los tres estratos en estudio varían: Velocidades de ondas P (Vp) van desde 200 m/s hasta 800 m/s y las velocidades de ondas S (Vs) varían entre 135 m/s y 350 m/s.

- 7. El modelo geotécnico de la sección principal 1-1 analizada está definido por un estrato de relaves del orden de 10 a 15 m, subyaciendo por suelos orgánicos, suelos origen aluvial y suelo residual del orden de 2 m, hasta encontrar el basamento rocoso conformado por limolitas y areniscas, calcárea, de calidad que van de muy mala a regular, conforme se profundiza.
- 8. Las rocas que se encontraron en el área de estudio, están involucradas con la formación Casapalca con rocas de litología: areniscas, lutitas y limolitas en su mayoría.
- 9. Los parámetros empleados en el modelo geotécnico, fueron obtenidos a partir de los resultados o correlaciones de los ensayos de campo, ensayos de laboratorio e información existente como se muestra en el siguiente cuadro:

		Parámetros Drenados		Parámetros No Drenados	
Material	Y total (kN/m³)	Cohesión (kPa)	Ángulo de Fricción grados)	Cohesión (kPa)	Ángulo de Fricción grados)
Desmonte de Mina	22	0	37	-	-
Material de Dique	21	0	35	-	-
Relave actual	15	8	18	-	-
Relave consolidado	15	0	22	-	
Relave cicloneado	15	0	22	-	-
Turba	14	2	10	12	0
Depósito aluvial	18	0	25	-	-
Basamento Rocoso	23	125	35	-	-

- 10. Para el plan de cierre se considerará sismo con un periodo de retorno de 500 años con coeficiente sísmico 0,13 según los estudios de peligro sísmico en la zona.
- 11. Los resultados de los análisis de estabilidad de los taludes son analizados de la siguiente manera: en la situación actual en condición estática sin apilamiento el factor de seguridad (FS) es 1,36 siendo estable en esta condición. Considerando el apilamiento final a corto plazo en condición estática el FS es 1,48 siendo también estable. Considerando el apilamiento

final a largo plazo pseudo-estático el FS es 0,97 siendo inestable. Considerando el reforzamiento en el pie del talud aguas abajo del dique 3 con material de relave ciclorneado, el factor de seguridad en las mismas condiciones es 1,16. Por lo tanto se puede garantizar una condición estable del conjunto (botadero y relaveras). Se presenta el cuadro de resultados:

		Factor de Seguridad				
Sección	Condición	Estático	Estático	Pseudo-Estático		
		(Corto Plazo)	(Largo Plazo)	(k=0,13)		
Sección 2-2'	Condición actual	3,51	-	-		
	Con apilamiento final	2,32	2,48	1,57		
	Condición actual	1,36	- Ì	120		
Sección 1-1'	Apilamiento final	1,48	-	0,97		
	Apilamiento final / relave ciclo.	-		1,16		

- 12. Luego de colocar el relave cicloneado en la parte baja aguas abajo del dique 3, la condición es estable y el factor de seguridad es mayor a la unidad por tanto no será necesario el análisis esfuerzo-deformación.
- 13. La condición final de estabilidad de la configuración proyectada mejora en el tiempo debido al proceso de consolidación del relave por la carga del desmonte a ser colocado, generando asentamiento de los materiales de relave y mejorando sus parámetros de resistencia después de un lapso mayor a 5 años, según el ensayo de consolidación.
- 14. El apilamiento del desmonte minero, se realizará en etapas, por tanto el volumen apilado para la primera etapa es de 1 450 000 m3, este volumen será incrementado en la segunda etapa, después de 5 años que es el tiempo estimado para que el relave existente se consolide aproximadamente al 90%.
- 15. De acuerdo a los ensayos ABBA, se concluye que el material del desmonte minero es generador de drenaje ácido.

6.2 RECOMENDACIONES

 Se recomienda realizar ensayos geofísicos adicionales directamente en la zona de las relaveras ya que los ensayos solo se han realizado encima de los diques y del desmonte de mina depositado.

- Se recomienda realizar perforaciones adicionales por debajo de los 33 m para determinar a qué profundidad el basamento rocoso es de buena calidad.
- 3. Debido a que en la condición pseudo-estática el factor de seguridad está por debajo de la unidad por tanto es inestable, se recomienda reforzar con relave cicloneado en la zona aguas abajo del dique 3, de esta forma el factor de seguridad es 1,16 y es estable.
- 4. Se recomienda impermeabilizar la superficie del botadero para que el agua de las precipitaciones no esté en contacto con el material generador de ácido y así proteger a las zonas aledañas de la contaminación.
- 5. Para el recubrimiento de la superficie del apilamiento se recomienda la utilización de un polímero, con la finalidad de generar una capa estabilizada y de baja permeabilidad, mezclado con el material de desmonte y colocado mediante compactación.

BIBLIOGRAFÍA

- 1. BRAJA M. DAS, "Fundamentos de Ingeniería Geotécnica", México. Editora Patricia Pantoja Valdez, 1999.
- 2. MINISTERIO DE VIVIENDA CONSTRUCCIÓN Y SANEAMIENTO, "Reglamento Nacional de Edificaciones" Lima, 2006.
- 3. KLOHN CRIPPEN SVS S.A., "Obras de Estabilización y Control de Avenidas de la Presa N°5", Lima, 2000.
- 4. GEMCO INGENIERÍA S.A.C., "Estudio Geotécnico para el Crecimiento de la Presa", Lima, 2009.
- 5. VICEVERSA CONSULTING S.A., "Estudio de Impacto Ambiental (EIA) Unidad Minera Huarón.", Lima, 2010.
- 6. VICEVERSA CONSULTING S.A. "Análisis de Estabilidad Física Individual de los Depósito de Relaves Nro 1, 2 y 3", Lima, 2010.
- 7. VECTOR PERÚ S.A.C. "Ingeniería Básica Crecimiento Presa de Relaves Nº5 Unidad Minera Huarón", Lima, 2010.
- 8. ANDDES ASOCIADOS S.A.C. "Revisión Factibilidad Cierre Depósitos de Relaves 1, 2 y 3", Lima, 2012.

ANEXOS

ANEXO A: REGISTROS DE CAMPO

- Calicatas y Trincheras
- Densidad de Campo
- Penetración Dinámica Ligera DPL
- Perforaciones Diamantinas

ANEXO B: RESULTADOS DE LABORATORIO

- Clasificación SUCS
- Contenido de Humedad
- Peso Volumétrico y Densidad Natural
- Compactación Proctor Estándar
- Compresión Triaxial CU
- Consolidación
- Carga Puntual
- Propiedades Físicas
- Potencial Neto de Neutralización ABA

ANEXO C: ANÁLISIS GEOTÉCNICO

- Análisis de Estabilidad de Taludes (Software Slide v6.0)

ANEXO D: REGISTRO FOTOGRÁFICO

ANEXO E: PLANOS

- Plano 101: Plano de Ubicación y Lista de Planos
- Plano 102: Configuración General del Botadero de Desmonte de Mina
- Plano 103: Plano y Secciones Geológicas-Geotécnicas
- Plano 103-1: Sección Principal Geológica-Geotécnica 1-1
- Plano 103-2: Sección Secundaria Geológica-Geotécnica 2-2

Calicatas y Trincheras

E Pr Des	Faculta ivaluación opósito de monte de	de Rela Usarlo Mina pa	ponal de Ingeniería ageniería Civil avera Antigua Con como Botadero de ara un Plan de Cierre	Ubicación Fecha de inicio Fecha de término Tipo de excavación Tipo de equipo Dimensión calicata Registrado por Condición superficia	: Depósito de Relave : 12/03/2012 : 12/03/2012 : Mecánica : Hyundai 250 LC-7 : 1,5 x 3,0 m : L.R.S.	es 1	Norte Este Elevad Nivel	ción (m.s.n.m.) freático (m)	Página 1 de 1 : PSAD 56 : 8 783 453,0 : 346 022,0 : 4 487,0 : No encontrado
Profundidad (m)	SONS	Gráfico	Leyenda Disturba En bloqu		TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra	calicata (m)	: 3,6
ō_	GP SM		color pardo claro, est Grava = 80,0 %. Aren Arena limosa, plastici	adada con arena, plasticid ructura homogénea, grava na = 20,0 %. dad nula, medianamente o n claro, estructura homogé	angulosa de TM = 2". densa, ligeramente		S/M S/M	Relave	
2	ML		Limo con arena, plas	= 20,0 %. Arena = 70,0 %.	da a firme, muy húmeda a		S/M		
5									

Universidad Nacional de Ingeniería Facultad de Ingeniería Civil F Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre				Ubicación Fecha de inicio Fecha de término Tipo de excavación Tipo de equipo Dimensión calicata Registrado por Condición superficial	Dique de Depósito de Relaves 3 : 09/03/2012 : 09/03/2012 : Mecánica : Hyundai 250 LC-7 : 1,5 x 5,0 m : L.R.S. : Plana	e	Norte Este Elevad Nivel 1	calicata na de coordenadas ción (m.s.n.m.) freático (m)	Página 1 de 1 : PSAD 56 : 8 783 474,0 : 346 498,0 : 4 492,0 : No encontrado
AC	lualizacion	de Cor	Leyenda			_	Prof. (alicata (m)	5,5
Profundidad (m)	s	ico	Disturbace En bloqu		TM: Tamaño Máximo S/M: Sin Muestra	stra	Código muestra		
Profu	sncs	Gráfico		Descripción		Muestra	Códi	Com	entarios
1	GP-GC		densa, seca, color ma de TM = 2,5", con pre volumen total. Grava	adada con arcilla y arena, urrón claro, estructura estra sencia de boloneria de TN = 61.0 %. Arena = 27,5 %.	atificada, grava angulosa I = 6" en un 15% del Finos = 11,4 %.		M-1		
3	GC		húmeda, color pardo, con presencia de bolo 25% del volumen tota	rena, plasticidad nula a ba estructura homogénea, gr pneria de TM= 10* y bloqu al. Grava = 53,9 %. Arena	ava angulosa de TM = 3*, les de TM= 25* en un		M-2		

U	niversida Faculta	d Nacio ad de In	nal de Ingeniería geniería Civil	Ubicación Fecha de inicio Fecha de término Tipo de excavación	Dique de Depósito de Relaves 3 : 09/03/2012 : 09/03/2012 : Mecánica	le	Sistem	CALICATA na de coordenadas	Página 1 de 1
Pr Des	opósito de monte de	Usarlo Mina pa	vera Antigua Con como Botadero de ra un Plan de Cierre	Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 1,5 x 2,5 m Registrado por : L.R.S. Condición superficial : Plana			Norte Este Elevad Nivel f	ción (m.s.n.m.) reático (m)	: 8 783 418,0 : 346 441,0 : 4 487,0 : 1,6
	tualizacion	de Cor	Leyenda Disturbac	la	TM: Tamaño Máximo			calicata (m)	: 2,0
Profundidad (m)	sncs	Gráfico	En bloque	Descripción	S/M: Sin Muestra	Muestra	Código muestra	Come	entarios
1-	G W -GM	Ŋ	saturada, color gris os TM= 3", con presencia	on limo, plasticidad baja, n curo, estructura estratifica de boloneria de TM = 10 lumen total. Grava = 80.0	ida, grava angulosa de " y bloques de TM =	M	S/M	Contract	entarios
-	CL			dia, blanda, saturada, colo a. Arena = 10.0 %. Finos =			S/M		
3			See al.						

U			onal de Ingeniería geniería Civil	Ubicación Fecha de inicio Fecha de término Tipo de excavación	de	Sisten	CALICATA na de coordenadas	Página 1 de 1	
Pr Des	opósito de monte de	e Usarlo Mina pa	avera Antigua Con como Botadero de ara un Plan de Cierre nocimimientos 2012	Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 1,5 x 2,5 m Registrado por : L.R.S. Condición superficial : Plana			Norte Este Elevad Nivel t	ción (m.s.n.m.) freático (m)	: 8 783 490,0 : 346 439,0 : 4 431,0 : Superficial
Profundidad (m)	SOOS	Gráfico	Leyenda Disturbac En bloqu	е	TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra	calicata (m)	: 2,5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GW-GM	- Gr	saturada, color gris os TM = 3", con presenci	Descripción on limo, plasticidad baja, m scuro, estructura estratifica a de boloneria de TM = 10 umen total. Grava = 80.0 %	da, grava angulosa de ' y bloques de TM =	ML	S/M	Come	ntarios
2-	CL			dia, blanda, saturada, coloi a. Arena = 10.0 %. Finos =			S/M		
3 4 5 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			N See Town						
6				×					

	cional de Ingeniería Ingeniería Civil	Ubicación : Depósito de Relaves Fecha de inicio : 12/03/2012 Fecha de término : 12/03/2012				CALICATA	CA-207 Página 1 de 1
Propósito de Usa Desmonte de Mina	delavera Antigua Con urlo como Botadero de para un Plan de Cierre Conocimimientos 2012	Tipo de excavación : Mecánica Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 1,5 x 2,5 m Registrado por : L.R.S. Condición superficial : Plana			Sistema de coordena Norte Este Elevación (m.s.n.m.) Nivel freático (m) Prof. calicata (m)		
Profundidad (m) SUCS Gráfico	Leyenda Disturba En bloqu		TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra	Com	entarios
0	Grava bien gradada, saturada, color marró de TM = 3", con prese	plasticidad nula, medianam in claro, estructura homogé encia de bolonería de TM = volumen total. Grava = 85.0	nea, grava angulosa 20" y bloques de TM		S/M		
	Limo con arena, plas	ticidad baja a media, bland mogénea. Arena = 20,0 %.			S/M	Relave.	
3		**					

U			nal de Ingeniería geniería Civil	Ubicación Fecha de inicio Fecha de término Tipo de excavación	de	CALICATA CA-208 Página 1 de 1 Sistema de coordenadas : PSAD 56			
Pri Desi	opósito de monte de	e Usarlo Mina pa	avera Antigua Con como Botadero de ara un Plan de Cierre	Tipo de equipo Dimensión calicata Registrado por Condición superficia	: Mecánica : Hyundai 250 LC-7 : 1,5 x 2,5 m : L.R.S. I : Plana		Norte Este Elevad Nivel I	ción (m.s.n.m.) freático (m) calicata (m)	: 8 783 466,0 : 346 260,0 : 4 484,0 : 1,2 : 2,5
Profundidad (m)	sncs	Gráfico	Leyenda Disturbace En bloque		TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra		entarios
1	GW		muy húmeda muy hún grava angulosa a suba de TM = 12" y bloques	olasticidad nula, medianar neda a , color gris claro, e angulosa de TM = 3", con 6 de TM = 18"en un 15 % a = 15.0 %. Finos = 5.0 %	estructura estratificada, presencia de bolonería del volumen total.		S/M	profundidad.	es a partir de los 1,2 de
2-	ML			a media, firme, muy húm homogėnea. Arena = 10			S/M	No presenta filtración	
3									

U			nal de Ingeniería geniería Civil	Ubicación : Depósito de Relaves 2 Fecha de inicio : 12/03/2012 Fecha de término : 12/03/2012				CALICATA	Página 1 de 1
ProDes	opósito de monte de	e Usarlo Mina pa	vera Antigua Con como Botadero de ra un Plan de Cierre	Tipo de excavación : Mecánica Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 1,5 x 3,0 m Registrado por : L.R.S. Condición superficial : Plana			Sistema de coordenada Norte Este Elevación (m.s.n.m.) Nivel freático (m)		: PSAD 56 : 8 783 434,0 : 346 137,0 : 4 481,0 : 2,0
Ac	tualizació	n de Cor	nocimimientos 2012				Prof. o	calicata (m)	: 4,5
Profundidad (m)	g		Leyenda Disturbac En bloqu		TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra		
	sncs	Gráfico		Descripción		Mue	Cé	Com	entarios
0_	GW		ligeramente húmeda	on arena, plasticidad nula, a húmeda, color marrón cla agulosa de TM = 2,5°. Grav	aro, estructura		S/M	T.	
3	GW-GC		a densa, muy húmeda estratificada, grava a de bolonería de TM =	on arcilla, plasticidad baja, a a saturada, color marrón, igulosa a subangulosa de 10"y bloques de TM = 25" = 80.0 %. Arena = 5.0 %. I	, estructura TM = 3", con presencia en un 20 % del		S/M	Paredes inestables y inorgánicos	oresencia de desperdicios
5—				G					

			Ubicación : Depósito de Relaves Fecha de inicio : 12/03/2012 Fecha de término : 12/03/2012 Tipo de excavación : Mecánica Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 1,5 x 2,5 m Registrado por : L.R.S. Condición superficial : Plana			CALICATA CA-210			
opósito de	Usarlo	como Botadero de				Norte Este Elevació	Página 1 de de coordenadas : PSAD 56 : 8 783 579,0 : 346 411,0 on (m.s.n.m.) : 4 486,0 eático (m) : 0,5		
Actualización de Conocimimientos 2012							licata (m) : 3,6		
sncs	Gráfico			TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra	Comentarios		
GC-GM		medianamente densa grava angulosa de TM bloques de TM = 25°	, húmeda, color marrón, e 1 = 3°, con presencia de b en un 15% del volumen to	estructura homogénea, poloneria de TM = 10" y		M-1			
ML	NOVE 19	Limo con arena, plast oscuro, estructura ho	icidad baja a media, blan nogėnea. Arena = 20,0 %	da, saturada, color gris 6. Finos = 80,0 %.		S/M			
	valuación popósito de nonte de ualización	GC-GM	GC-GM Leyenda Disturbact En bloqu Grava arcillo-limosa comedianamente densa grava angulosa de TM bloques de TM = 25° Arena = 19,2 %. Finos	Fecha de inicio Fecha de término Tipo de excavación Tipo de equipo Dimensión calicata Registrado por Condición superficia Leyenda Leyenda Disturbada En bloque Grava arcillo-limosa con arena, plasticidad nula medianamente densa, húmeda, color marrón, o grava angulosa de TM = 3°, con presencia de t bloques de TM = 25° en un 15% del volumen to Arena = 19,2 %. Finos = 12,5 %. Limo con arena, plasticidad baja a media, blan oscuro, estructura homogénea. Arena = 20,0 %	Fecha de inicio : 12/03/2012 Fecha de término : 12/03/2012 Fecha d	Fecha de inicio 12/03/2012 Fecha de término 12/03/2012 Fecha de visualisto 12/03/2012 Fecha de visu	Fecha de inicio : 12/03/2012 Fecha de término : 12/03/2012 Fecha d		

U			onal de Ingeniería geniería Civil	Ubicación Fecha de inicio Fecha de término Tipo de excavación	Dique de Depósito (Relaves 3 : 08/03/2012 : 08/03/2012 : Mecánica	de	Sistem	CALICATA na de coordenadas	Página 1 de 1
Pr Des	opósito de monte de	Usarlo Mina pa	avera Antigua Con como Botadero de ara un Plan de Cierre nocimimientos 2012	Tipo de equipo Dimensión calicata Registrado por Condición superficial	: Hyundai 250 LC-7 : 2,0 x 4,0 m : L.R.S.		Norte : 8 783 490, Este : 346 671,0 Elevación (m.s.n.m.) : 4 477,0 Nivel freático (m) : 3,0		: 8 783 490,0 : 346 671,0 : 4 477,0 : 3,0
AC	tualizacion	i de Cor					Prot. o	calicata (m)	: 4,0
Profundidad (m)	SS	fico	Leyenda Disturbac En bloque		TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra		
Prof	sncs	Gráfico		Descripción		Mue	90	Come	entarios
1-	GW-GM		medianamente densa, estratificada, grava su	on limo y arena, plasticidac ligeramente húmeda, colo bangulosa a subredondea e TM =5" en un 5% del vo %. Finos = 15,0 %.	or pardo, estructura da con presencia		S/M	1 2 1	
2-	SM			lad baja a media, suelta a estructura homogėnea. Gra %.			M-1	Paredes inestables y fil	tración de agua.
3-	SM		oscuro, estructura hor	lad baja a media, suelta, s nogėnea. Arena = 60.0 %.	Finos = 40.0 %.		S/M		
	CL			ticidad media a alta, bland nogénea. Arena = 20,0 %.			S/M	Relave.	
5									S

E: Pro Desi	Universidad Nacional de Ingeniería Facultad de Ingeniería Civil Fecha de inicio : 08/03/2012 Fecha de término : 08/03/2012 Tipo de excavación : Mecánica Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 1,5 x 4,0 m Registrado por : L.R.S. Condición superficial : Plana			s 3	CALICATA CA-308 Página 1 de 1 Sistema de coordenadas : PSAD 56 Norte : 8 783 544,0 Este : 346 672,0 Elevación (m.s.n.m.) : 4 487,0 Nivel freático (m) : 0,5 Prof. calicata (m) : 2,0				
Profundidad (m)	sncs	Gráfico	Leyenda Disturbac En bloqu		TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra	Con	nentarios
1	CL			a a baja, muy blanda, satu a. Arena = 15,0 %. Finos =			S/M	Relave, paredes inest	ables.
3—4—							des des		

U	Universidad Nacional de Ingeniería Facultad de Ingeniería Civil			Ubicación : Depósito de Relaves Fecha de inicio : 09/03/2012				CALICATA	CA-309
Pr Desi	valuaciór opósito d monte de	n de Rela le Usarlo e Mina pa	vera Antigua Con como Botadero de ra un Plan de Cierre	re Registrado por : L.R.S. Condición superficial : Plana			Sistema de coordenadas Norte Este Elevación (m.s.n.m.) Nivel freático (m)		Página 1 de 1 PSAD 56 8 783 446,0 346 526,0 4 486,0 No encontrado
Profundidad (m)			Leyenda Disturbad En bloque		TM: Tamaño Máximo S/M: Sin Muestra	ıtra	Código muestra go	calicata (m)	: 3,5
	sncs	Gráfico		Descripción		Muestra	Códic	Come	ntarios
1	SM		color gris oscuro, estru%.	ad media a alta, suelta, m ictura homogénea. Arena	= 70,0 %. Finos = 30,0		S/M		
3-	GC		oscuro, estructura hom bolonería de TM = 4" y	idad media, blanda, satur. nogénea, grava subangulo / bloques de TM = 15° en l Arena = 10,0 %. Finos = 4	sa con presencia de un 20 % del volumen		S/M	Paredes inestables y filt	ración.
5				S#1					

E	Universidad Nacional de Ingeniería Facultad de Ingeniería Civil Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre			Ubicación Relaves 3 Fecha de inicio : 09/03/2012 Fecha de término : 09/03/2012 Tipo de excavación : Mecánica Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 2,0 x 2,0 m Registrado por : L.R.S. Condición superficial : Talud pronunciado			CALICATA CA-310 Página Sistema de coordenadas : PSAD 56 Norte : 8 783 543,0 Este : 346 709,0 Elevación (m.s.n.m.) : 4 483,0		
Ac	ualización	de Cor	nocimimientos 2012	Condición superficial	: Talud pronunciado			freático (m) : 5,0 calicata (m) : 5,5	
			Leyenda				101.0	Zancaia (III)	
Profundidad (m)	SS	Gráfico	Disturbace En bloqu		TM: Tamaño Máximo S/M: Sin Muestra	Muestra	Código muestra		
Pro	sncs	Grá		Descripción		Σ	<u>8</u>	Comentarios	
0_	GW		seca a ligeramente hú grava angulosa de TM	on arena, plasticidad nula, meda, color marrón claro, l= 2.5", con presencia aisla lumen total. Grava = 70,0	estructura homogénea, ada de boloneria de TM		S/M		
1-	GW-GM		marrón, estructura est = 3", con presencia ai	on limo, plasticidad nula, s ratificada, grava angulosa slada de boloneria de TM = 60,0 %. Arena = 15,0 %.	a subangulosa de TM = 8" en un 10% del		S/M	Presencia de residuos inorgánicos.	
3	SM			dad nula a baja, blanda, sa nogėnea. Arena = 60,0 %.			S/M	Relave, paredes inestables.	
6-		ी कर 13 ; क्र						71	

U			onal de Ingeniería geniería Civil	Ubicación Fecha de inicio Fecha de término	: Dique de Depósito (Relaves 2 : 23/03/2012 : 23/03/2012	de		CALICATA	A CA-c
Pr Des	opósito de monte de	e Usarlo Mina pa	ivera Antigua Con como Botadero de ra un Plan de Cierre	Tipo de excavación : Mecánica Tipo de equipo : Hyundai 250 LC-7 Dimensión calicata : 1,5 x 2,5 m Registrado por : L.R.S. Condición superficial : Plana			Sistema de coordenadas Norte Este Elevación (m.s.n.m.) Nivel freático (m)		: 8 783 362,0 : 346 405,0 : 4 502,0 : No encontrado
Ac	tualizació		nocimimientos 2012				Prof. c	alicata (m)	: 2,0
Profundidad (m)	လ		Condición de la muesi Disturbac En bloqu	da	+	stra	Código muestra		
Profi	sons	Gráfico		Descripción		Muestra	Cód	Come	ntarios
1 - 1 - 1 - 1 - 1	GM		color gris, estructura l grava subangulosa a presencia aislada de aislada de bolonería y	na, plasticidad nula, densa nomogénea, arena de gran subredondeada de tamaño bolonería de tamaño máxir r bloques de tamaño máxir Grava = 70.0 %. Arena = 20	no medio a grueso, o máximo = 3", con mo = 6", con presencia mo = 13". Bloques y	479	S/M		
1 1 1 1 1	GC-GM		ligeramente húmeda,	a con arena, plasticidad ba color beige oscuro, estruci a angulosa de tamaño máz inos = 20.0 %.	tura homogénea, arena		S/M		
-		100 6		Ř		d			
3-			2 <u>2</u>						

U	niversida Faculta	d Nacio ad de In	nal de Ingeniería geniería Civil	Ubicación Fecha de inicio Fecha de término	Dique de Depósito de Relaves 3 : 15/03/2012 : 15/03/2012	le		TRINCHER	Página 1 de 1
Des	opósito de monte de	Usarlo Mina pa	overa Antigua Con como Botadero de ra un Plan de Cierre	Tipo de excavación Tipo de equipo Dimensión calicata Registrado por Condición superficial	: Manual : Pico y pala : 1,5 x 2,5 m : L.R.S. : Inclinada		Norte Este Elevad Nivel f	na de coordenadas ción (m.s.n.m.) freático (m)	: 8 783 507,0 : 346 717,0 : 4 472,0 : No encontrado
Ac	tualización	n de Cor	nocimimientos 2012			_	Prof. c	calicata (m)	: 1,3
Profundidad (m)	ω	00	Condición de la muest Disturbac En bloqu	da		stra	go muestra		
Profu	sncs	Gráfico		Descripción		Muestra	Código	Com	entarios
1-	GM		húmeda, color marrón medio, grava subangu tamaño máximo = 6",	na, plasticidad nula, muy d claro, estructura homogér llosa de tamaño máximo = con bloques de tamaño m Grava = 70.0 %. Arena = 10	nea, arena de grano 3", con bolonería de áximo = 30". Bloques y	2		Paredes estables y filt	ración en paredes
3-									

U			onal de Ingeniería geniería Civil	Ubicación Fecha de inicio Fecha de término	Dique de Depósito de Relaves 3 : 15/03/2012 : 15/03/2012	de		TRINCHER	Página 1 de 1
Pro	opósito de monte de	e Usarlo Mina pa	overa Antigua Con como Botadero de ara un Plan de Cierre	Tipo de excavación Tipo de equipo Dimensión calicata Registrado por Condición superficial	: Manual : Pico y pala : 1,5 x 2,5 m : L.R.S. : Inclinada		Norte Este Elevad	na de coordenadas ción (m.s.n.m.) freático (m)	PSAD 56 : 8 783 535,0 : 346 734,0 : 4 473,0 : No encontrado
Ac	tualización	de Cor	nocimimientos 2012				Prof. o	calicata (m)	: 2,2
Profundidad (m)	sncs	Gráfico	Condición de la muestr Disturbad En bloque	la	*	Muestra	Código muestra	Come	entarios
1	Relleno	الم الما الما الما الما الما الما الما	color marrón oscuro, e	o, plasticidad nuIa, firme, lig estructura homogènea, arei de tamaño máximo = 3°. G) %.	na de grano medio,	~	4	Desechos orgánicos e relativamente estables.	inorgánicos. Paredes
3		Ī							

Densidad de Campo

DENSIDAD DE CAMPO - MÉTODO DEL CONO DE ARENA

Prueba Por: L.R.S.

Comprobado Por: L.G.H.

Actualización de Conocimientos 2012	Evaluación de Relavera Antigua con propósito de Usarlo como Botadero de desmonte de Mina para un Plan de Cierre							
Fecha:	08/03/2012	08/03/2012	09/03/2012	09/03/2012	09/03/2012			
N° de Calicata/Ensayo:	CA-306/D1	CA-307/D2	CA-202/D3	CA-311/D4	CA-313/D5			
Profundidad (m):	1,10	0,70	2,20	1,30	3,00			
Localización de la Prueba:	Dique de presa de relaves 3 (MD)	Dique de presa de relaves 3 (C)	Dique de presa de relaves 2 (C)	Dique de presa de relaves 3 (C)	Dique de presa de relaves 3 (MD)			
Densidad Arena (g/cm³) Nivel	1,550	1,550	1,550	1,550	1,550			
Peso de Arena en el Cono (g)	0,00	0,00	0,00	0,00	0,00			
DENSIDAD				-				
Peso de Recipiente (g)	0,04	0,04	0,04	0,04	0,04			
Recip + Suelo Húmedo (g)	1.735,00	2.295,00	1.485,00	1.710,00	1.415,00			
Peso Suelo Húmedo (g):	1.734,96	2.294,96	1.484,96	1.709,96	1.414,96			
Cono + Arena Inicial (g)	3.270,00	2.950,00	2.760,00	2.220,00	1.850,00			
Cono + Arena Final (g)	1.980,00	1.350,00	1.755,00	1.070,00	850,00			
Arena Usado (Cono + Hueco) (g)	1.290,00	1.600,00	1.005,00	1.150,00	1.000,00			
Arena Usado (Hueco) (g)*	1.290,00	1.600,00	1.005,00	1.150,00	1.000,00			
olumen del Hueco (cm³)	832,26	1.032,26	648,39	741,94	645,16			
Densidad Húmeda (g/cm3)	2,085	2,223	2,290	2,305	2,193			
CONTENIDO DE AGUA								
N° de Recipiente		-		-				
Peso de Recipiente (g):		<u>-</u>		-	-			
Recip + Suelo Húmedo (g):	-			-	-			
Recip + Suelo Seco (g):					<u>-</u>			
Peso del Agua (g)		-	-	-	-			
Peso del Suelo Seco (g):	-	-	-	-	-			
Contenido de Humedad (%):	22,90	8,60	9,20	16,70	18,60			
Densidad Seca (g/cm³):	1,70	2,05	2,10	1,97	1,85			
Compactación (%)	-		-		-			
Diferencia de Humedad (%)		-	-	-	-			
Notas								

^{*}Arena Usado (Net) = Arena Usado (Gross) - Peso de Arena en el Cono

MD/MI/C: Margen derecha/margen izquierda/Centro del dique

^{**} Densidad Húmeda = Peso Suelo Húmedo / (Arena Usado (Net)/Densidad Arena)

Penetración Dinámica Ligera DPL

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

UBICACIÓN Depósito de Relaves 2

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

FECHA : 13/03/2012

SIST. DE COORDENADAS

PROFUNDIDAD TOTAL (m)

NORTE (m)

PSAD 56

PESO DEL MARTILLO : 10 Kg : 8 783 529,0

DPL-203

ALTURA DE CAÍDA (m) : 0.5 m ESTE (m)

: R.C.F.

346 506,0 7,80 m

actualización de Conocimimientos 2012	REGISTRADO POR

	DDOE	L 1/4	1		2005	I			250.0	-1	_
o <u>i</u>	PROF.	N,		PES GRÁFICO	PROF.	N°				RÁFICO	Н
判上	(m)	GOLPES	5 10	15 20 25 30	(m)	GOLPES	1 5	10	15 20	25 30	4
	5,0	15		1	10,0						1
	5,1	16)	10,1						-1
	5,2	16			10,2						-
	5,3	20			10,3		7	8			-
11	5,4	20)	10,4	MOSEGOAMAN					-
1 77	5,5	17			10,5						- 1
1 1	5,6	17			10,6						-
11	5,7	18)	10,7						- 1
1	5,8	16			10,8	4					-
11	5,9	17			10,9						-
1000	6,0	20			11,0						-
	6,1	20)	11,1						-
11	6,2	19		(11,2						-
	6,3	20			11,3						-
1100	6,4	26			11,4						-
1100	6,5	27)	11,5						-
122	6,6	25			11,6						-
1	6,7	27			11,7						-
1	6,8	27)	11,8						-
1	6,9	22			11,9	1012111111					-
1)77.04	7,0	26			12,0						-
	7,1	26		1	12,1	710 <u>7 - 11</u> 00					-
	7,2	30			12,2						-
100	7,3	29		1	12,3	rosiii-					-
	7,4	28		/	12,4						-
0.00	7,5	26			12,5						-
	7,6	29			12,6						-
11	7,7	29		1	12,7	and the state of					-
1		33		N. Contraction	12,8	PERSONAL PROPERTY.					-1
1	7,8]	12,9	3.00.00.00.00.00.00.00.00.00.00.00.00.00					-
100	7,9 8,0		Fin de	el ensayo.	13,0	14.00011711					-
			_	203	13,1						-
	8,1				13,2	\$111					-
1	8,2				13,3						-
11000	8,3				13,4	1276140000.0					-
1,41,41	8,4	ima a			13,5	0.0000000000000000000000000000000000000					-
	8,5	Joon Green		1	13,6						-
0.00	8,6			1	13,7						-
	8,7	03.600000000000000000000000000000000000		1	13,8						-
	8,8				13,9	**********					-
1 1	8,9			1	14,0						-
	9,0				14,0	ļ					-
	9,1				14,1						-
11	9,2										-
11	9,3	nessum o			14,3	2002411-04					- 1
1	9,4			- 1	14,4	104011(****)					-
	9,5				14,5	***************************************					
	9,6				14,6						
	9,7				14,7						
	9,8				14,8	141010101010					
	9,9				14,9						
	10,0				15,0			_			_

PROF.	N.	N° GOLPES GRÁFICO
(m)	GOLPES	5 10 15 20 25 30
0,0	0	1
0,1	1	1
0,2	2	1
0,3	3	1
0,4	3	
0,5	4	j
0,6	3	
0,7	3	
0,8	3	
0,9	47 12272348423447	\
1,0	5	1
1,1	7	
1,2	4	
1,3	4	
1,4	4	
1,5	4	
1,6	4	
1,7	4	
1,8	5	
1,9	5	l <i>1</i>
2,0	4	(
2,1	5	
2,2	9	
2,3	7	l (
2,4	7	
2,5	7	
2,6	6	(
2,7	7	l \
POCH BED BOOK 6	OF CHICKOROUSES	
2,8	7]
2,9	. 7	1
3,0	6	\
3,1	8	
3,2	7	1 1
3,3	8	
3,4	8	
3,5	8	
3,6	8	l /
3,7	7	
3,8	7	
3,9	7	
4,0	12	
4,1	11	(
4,2	12	
4,3	11	
4,4	11)
4,5	10	
4,6	10	
4,7	10	1 (2)
4,8	10	77
7,0		1

4,9 5,0

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

Actualización de Conocimimientos 2012

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

UBICACIÓN : Depósito de Relaves 2

FECHA : PSAD 56 : 13/03/2012 SIST. DE COORDENADAS

PESO DEL MARTILLO 8 783 500,0 : 10 Kg NORTE (m)

DPL-204

ALTURA DE CAÍDA (m) 346 477,0 : 0.5 m ESTE (m) REGISTRADO POR : R.C.F. PROFUNDIDAD TOTAL (m) 7,30 m

PROF.	N°	N° GOLPES GRÁFICO	PROF.	N°	N° GOLPES GRÁFICO	PROF.	N.	N° GOLPES GRÁFICO
(m)	GOLPES	5 10 15 20 25 30	(m)	GOLPES	5 10 15 20 25 30	(m)	GOLPES	5 10 15 20 25 30
0,0	0	1	5,0	17		10,0	History	
0,1	0		5,1	21		10,1		
0,2	2		5,2	17		10,2		
0,3	2	1	5,3	16	1	10,3		
0,4	4)	5,4	15	/	10,4		
0,5	3		5,5	15		10,5		
0,6	3	1	5,6	16	\	10,6		
0,7	2		5,7	17	1	10,7		
0,8	2	A l	5,8	17		10,8		
0,9	3		5,9	18		10,9		
1,0	2		6,0	28		11,0		
1,1	5)	6,1	26		11,1		
1,2	3		6,2	24	/	11,2		
1,3	5	l / I	6,3	23		11,3		
1,4	4		6,4	23		11,4	m-++000000	
1,5	5	/	6,5	23		11,5		
1,6	3		6,6	23	\	11,6		
1,7	3		6,7	25	<i>)</i>	11,7		
1,8	3	 	6,8	23	(11,8		
1,9	4		6,9	25		11,9 12,0		
2,0	5	1	7,0	30 29		12,0	11124111	
2,1	6	(7,1 7,2	26		12,1		
2,2	5 6	- 1	7,3	32		12,3		
2,3	6		7,4	32		12,4		· ·
2,5	5	(7,5		Fin del ensayo.	12,5		
2,6	6		7,6		204	12,6		
2,7	7)	7,7			12,7		
2,8	6		7,8	011, 85 123		12,8		
2,9	12		7,9	Party Colores		12,9		
3,0	10		8,0			13,0		
3,1	9	(8,1			13,1		
3,2	9	<i> </i>	8,2			13,2		
3,3	8		8,3			13,3		
3,4	8	\ \ \ \	8,4			13,4		
3,5	9	<i> </i>	8,5	Tarrie present		13,5		
3,6	8	/	8,6	100 Hillson		13,6		
3,7	7		8,7			13,7		
3,8	9		8,8	-11:17:00:01		13,8		
3,9	9		8,9			13,9		
4,0	12		9,0			14,1		
4,1	8		9,1	наните	7,0	14,1		
4,2	11		9,2	**********		14,3		
4,3	11		9,3 9,4			14,4		
4,4	11		9,5			14,5	100000000000000000000000000000000000000	
4,5	11		9,5	++		14,6		
4,6	11	-	9,7			14,7	115531113357734	9
4,7	12	1	9,8			14,8		
4,8	11 12		9,9	HONORES		14,9		
5,0	17		10,0			15,0		
5,0	.,					***		

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

Actualización de Conocimimientos 2012

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

DPL-302

346 709,0

UBICACIÓN : Depósito de Relaves 3

: 0.5 m

: 07/03/2012 SIST. DE COORDENADAS : PSAD 56

PESO DEL MARTILLO : 8 783 730,0 : 10 Kg NORTE (m) ALTURA DE CAÍDA (m)

ESTE (m)

REGISTRADO POR PROFUNDIDAD TOTAL (m) 8,40 m : A.R.P.

PROF. N° N° GOLPES GRÁFICO	PROF. N° N° GOLPES GRÁFICO	PROF. N° N° GOLPES GRÁFICO
(m) GOLPES 5 10 15 20 25 30	(m) GOLPES 5 10 15 20 25 30	(m) GOLPES 5 10 15 20 25 30
0,0 0	5,0 8	10,0
0,1 0	5,1 7	10,1
0,2 0	5,2 8	10,2
0,3 0	5,3 8	10,3
0,4 0	5,4 6	10,4
0,5	5,5 7	10,5
0,6 0	5,6 8	10,6
0,7 1	5,7 12 5,8 12	10,7
0,9 6	5,9 10	10,9
1,0 7	6,0 19	11,0
1,1 10	6,1 19	11,1
1,2 3	6,2 20	11,2
1,3 2	6,3 18	11,3
1,4 3	6,4 16	11,4
1,5 2	6,5 16	11,5
1,6 5	6,6 18	11,6
1,7 11 1 3	6,7 17 6,8 17	11,7
1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	6,9 20	11,9
1,9 2 2,0 3	7,0 17	12,0
2,1 4	7,1 21	12,1
2,2 4	7,2 25	12,2
2,3 3	7,3 23	12,3
2,4 3	7,4 22	12,4
2,5 3	7,5	12,5
2,6 2 2	7,6 24 7,7 22	12,7
2,8 3	7,8 24	12,8
2,9 4	7,9 23	12,9
3,0 5	8,0 25	13,0
3,1 6	8,1 30	13,1
3,2 5	8,2 28	13,2
3,3 5	8,3 29	13,3
3,4 5	8,4 28 8,5	13,5
3,5 5 3,6 4	8,6 Fin del ensayo.	13,6
3,7 5	8,7302	13,7
3,8 4	8,8	13,8
3,9 4	8,9	13,9
4,0 6	9,0	14,0
4,1 7	9,1	14,1
4,2 7	9,2	14,2
4,3 5	9,3	14,4
4,4 6 4,5 6	9,5	14,5
4,6 5	9,6	14,6
4,7 5	9,7	14,7
4,8 6	9,8	14,8
4,9 6	9,9	14,9
5,0 8	10,0	10,0

UBICACIÓN

: Depósito de Relaves 3

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

NORTE (m)

DPL-307

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

FECHA : 08/03/2012

: A.R.P.

SIST. DE COORDENADAS PSAD 56

PESO DEL MARTILLO ; 10 Kg 8 783 595,0

Actualización de Conocimimientos 2012

ALTURA DE CAÍDA (m) : 0.5 m REGISTRADO POR

346 702,0 ESTE (m)

PROF.	N°	N° GOLPES GRÁFICO
(m)	GOLPES	5 10 15 20 25 30
0,0	0	î
0,1	0	
0,2	0	
0,3	0	
0,4	0	
0,5	0	
0,6	0	
0,7	1	
0,8	6	
0,9	5	
1,0	1	
1,1	0	
1,2	0	
1,3	2	
1,4	4	
1,5	4	<i> </i>
1,6	3	Y 1
1,7	4	
1,8	2	
1,9	2	1
2,0	3	
2,1	3	1
2,2	2	1
2,3	3	
2,4	3	
2,5 2,6	3	
2,7	5	1
2,8	5	1
2,9	8	
3,0	10	
3,1	6	
3,2	6	
3,3	5	
3,4	5	
3,5	5	
3,6	4	
3,7	4	
3,8	4	
3,9	4	
4,0	6	
4,1	9)
4,2	8	
4,3	8	/
4,4	7	
4,5	7	
4,6	8	
4,7	8	2. pag
4,8	8	
4,9	7 17	
5,0	17	

PROF.	N.	N° GOLPES GRÁFICO
(m)	GOLPES	5 10 15 20 25 30
5,0	17	\
5,1	20)
5,2	18	/ /
5,3	17	/ /
5,4	15	(
5,5	16)
5,6	14	
5,7	14	1 1
5,8	14	
5,9	14	
6,0	15	1
6,1	15	
6,2	18	
6,3	22	
6,4	23	
6,5	28	
6,6	55	V
6,7	100000000000000000000000000000000000000	
6,8	D-14-7-14-7-1-4-7	Fin del ensayo.
11.00 - 147-11-		307
6,9		1
7,0	41	
7,1		
7,2		1
7,3		
7,4	processor de la	
7,5		
7,6		
7,7	010000000	
7,8		
7,9		1
8,0	per par galling	
8,1		
8,2		
8,3	*********	
8,4		
8,5		
8,6		
8,7		
8,8		
8,9		
9,0		
9,1	promise	
9,2		
9,3		
9,4	6000000000	
9,5		
9,6		
9,7		
9,8	2220 (144)	
9.9		

10,0

	PROFUNI	AL (m) : 6,60 m							
¬ l	PROF.	N° GOLPES GRÁFICO							
1	(m)	N° GOLPES	1	5		15		25	30
11	According to Commerce	cateorio i	-	70.0	Č.				- 6
Ш	10,0	(****************							
Ш	10,1								
Ш	10,2								
Ш	10,3								
Ш	10,4	excessor.							
Ш	10,5								
П	10,6								
	10,7								
Ш	10,8	A THE STATE OF							
Ш	10,9								
11	11,0								
П	11,1	2.02.01.20							
Ш	11,2								
П	11,3								
Ш	11,4								
Ш	11,5	0.0119-11.000000							
۷I	11,6								
П	11,7								
П	11,8								
Ш	11,9								
Ш		0014620000000							
Н	12,0	11							
Ш	12,1								
Ш	12,2								
Ш	12,3								
Ш	12,4								
Ш	12,5	(13-1-1111-1-1							
Ш	12,6	maneturosco							
Н	12,7								
Ш	12,8								
Ш	12,9								
Ш	13,0	11112-111414-1							
Ш	13,1	14,000,000,000,000							
Ш	13,2	[=====================================							
Ш	13,3	in in its in the second							
Ш	13,4								
Ш	13,5								
Ш	13,6	H-1100							
Ш	120000000000000000000000000000000000000								
Ш	13,7								
Ш	13,8								
Ш	13,9								
Ш	14,0								
Ш	14,1								
Ш	14,2								
П	14,3								
	14,4								
	14,5								
	14,6								
	14,7								
	14,8	ļ							
	14,9								
Ш	15,0								

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

Actualización de Conocimimientos 2012

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

DPL-308

UBICACIÓN : Depósito de Relaves 3

FECHA 09/03/2012 SIST. DE COORDENAD

FECHA : 09/03/2012 SIST. DE COORDENADAS : PSAD 56

 PESO DEL MARTILLO
 10 Kg
 NORTE (m)
 : 8 783 532,0

 ALTURA DE CAÍDA (m)
 : 0.5 m
 ESTE (m)
 : 346 675,0

ALTURA DE CAÍDA (m) : 0.5 m ESTE (m) : 346 675,0

REGISTRADO POR : A.R.P. PROFUNDIDAD TOTAL (m) : 7,10 m

PROF.	N°	N° GOLPES GRÁFICO	PROF.	N°	N° GOLPES GRÁFICO	PROF.	N°	N° GOLPES GRÁFICO
(m)	GOLPES	5 10 15 20 25 30	(m)	GOLPES	5 10 15 20 25 30	(m)	GOLPES	5 10 15 20 25 30
0,0	0	i	5,0	25	1	10,0		
0,1	0		5,1	25		10,1		
0,2	0		5,2	21		10,2		
0,3	0		5,3	21		10,3		
0,4	0		5,4	22		10,4		
0,5	0		5,5	24)	10,5	***************************************	
0,6	0		5,6	22	(10,6		
0,7	1	1	5,7	23)	10,7		
8,0	1	1	5,8	22		10,8		
0,9	2		5,9	22		10,9		
1,0	5		6,0	31		11,0		
1,1	2		6,1	29		11,1		52.1
1,2	2	1	6,2	28		11,2		
1,3	3		6,3	26		11,3		
1,4	2		6,4	28		11,4		
1,5	2		6,5	30		11,5		
1,6	3		6,6	28		11,6		
1,7	8		6,7	27 26	/ /	11,7		
1,8	14 12		6,8 6,9	27)	11,9		
1,9 2,0	15		7,0	25		12,0		
2,1	15		7,1	30		12,1	***************************************	
2,2	19		7,2	restriction (c)	Fin del ensayo.	12,2		
2,3	17		7,3		308	12,3		
2,4	15	(7,4	(12,4		
2,5	17)	7,5	(400.1111.7)10		12,5		
2,6	14		7,6	1201-19930-191		12,6		
2,7	15		7,7			12,7		
2,8	.18		7,8			12,8		
2,9	19		7,9	la procession		12,9		
3,0	24	1	8,0			13,0		
3,1	25		8,1	Part Control of		13,1		
3,2	27		8,2			13,2		
3,3	23	1	8,3			13,3		
3,4	24		8,4			13,4		
3,5	24		8,5 8,6			13,6		:
3,6	24)	8,7	(11((10+10+0+1)		13,7	*************	
3,7	25 22		8,8			13,8		
3,8 3,9	23		8,9			13,9		
4,0	29		9,0			14,0		
4,1	33		9,1			14,1		
4,2	25		9,2	0	2.5	14,2	1.0000000000000000000000000000000000000	
4,3	27)	9,3	1000.668353469		14,3	12410012104	
4,4	25	(9,4	22222277		14,4		
4,5	25	/ /	9,5			14,5		
4,6	22		9,6			14,6		
4,7	20	- /	9,7	60000000000		14,7		
4,8	18		9,8			14,8		
4,9	22		9,9			14,9	ļ	
5,0	25	•	10,0			15,0		

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

UBICACIÓN : Depósito de Relaves 3 **DPL-313**

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de

10/03/2012

SIST. DE COORDENADAS

: PSAD 56

Mina para un Plan de Cierre

PESO DEL MARTILLO

10 Kg

R.C.F.

NORTE (m) ESTE (m)

: 8 783 493,0 346 553,0

REGISTRADO POR

ALTURA DE CAÍDA : 0.5 m

PROFUNDIDAD TOTAL (m)

; 3,30 m

Actualización	de	Conocimimiento	s 20	112

			IKEGIOTI	ADO FOR	R.C.F.	PROF
PROF.	N.	N° GOLPES GRÁFICO	PROF.	N.	N° GOLPES GRÁFICO	PROF.
(m)	GOLPES	5 10 15 20 25 30	(m)	GOLPES	5 10 15 20 25 30	(m)
0,0	0		5,0	***********		10,0
0,1	8		5,1	entre entre		10,1
0,2	10		5,2			10,2
0,3	10		5,3	***********		10,3
0,4	11		5,4	************		10,4
0,5	14		5,5	0.4.4.0		10,5
0,6	12	/	5,6			10,6
0,7	11		5,7			10,7
0,8	10	(5,8	*t-ntioyer		10,8
0,9	11		5,9	harmina.		10,9
1,0	14)	6,0			11,0
1,1	10		6,1	(6-10-1-0-10-0		11,1
1,2	11)	6,2	144		11,2
1,3	8		6,3	estrement.		11,3
1,4	7	(6,4	+		11,4
1,5	8	1 1	6,5			11,5
1,6	8		6,6	****		11,6
1,7	8		6,7	ertus-const		11,7
1,8	7	{	6,8			11,8
1,9	8	\	6,9			11,9
2,0	10		7,0			12,0
2,1	8		7,1	II CALLETT AND		12,1
2,2	8		7,2			12,2
2,3	9	1	7,3	MIII 20 (1216)		12,3
2,4	10)	7,4	1-1111/7-1111		12,4
2,5	9		7,5			12,5
2,6	9		7,6			12,6
2,7	11)	7,7	DO#71144011AA		12,7
2,8	10	(7,8	10060100		12,8
2,9	11		7,9	**********		12,9
3,0	21		8,0			13,0
3,1	36		8,1			13,1
3,2	36		8,2			13,2
3,3	36		8,3			13,3
3,4		Fin del ensayo.	8,4	A12-1-1-1-1-1		13,4
3,5		Till del elledye.	8,5			13,5
3,6		313	8,6			13,6
3,7	10011111		8,7			13,7
3,8	***************************************		8,8	minumen		13,8
3,9			8,9			13,9
4,0	7,0000000000000000000000000000000000000		9,0	*********		14,0
4,1			9,1			14,1
4,2			9,2			14,2
4,3	************		9,3			14,3
4,4	Lanna III		9,4			14,4
4,5			9,5			14,5
4,6			9,6			14,6
4,7		7 ±	9,7	minimi		14,7
4,8			9,8			14,8
4,9			9,9	E(()(()()()))		14,9
5.0	1		10,0			15,0

PROF.	l N°	N° GOLPES GRÁFICO
(m)	GOLPES	5 10 15 20 25 30
10,0	* * * * * * * * * * * * * * * * * * * *	
10,1		
10,2 10,3		
10,4		
10,5		
10,6		
10,7		
10,8		
10,9		
11,0		
11,1		
11,2		
11,3)
11,4		
11,5		
11,6		
11,7		
11,8		
11,9		
12,0		
12,1	100000000000000000000000000000000000000	
12,2	100000000000000000000000000000000000000	
12,3		
12,4	(The second section)	
12,5		
12,6		
12,7		
12,8	Territoria	
12,9		
13,0	-	
13,1		
13,2		
13,3		
13,4	in the same	
13,5		
13,6		
13,7		
13,8		
13,9		
14,0		
14,1		
14,2		
14,3		
14,4	The same	
14,5		
14,6		
14,7		
14,8		
14,9		
15,0		

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

Actualización de Conocimimientos 2012

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

DPL-314

UBICACIÓN Depósito de Relaves 3

10/03/2012

PESO DEL MARTILLO

10 Kg

ALTURA DE CAÍDA 0.5 m REGISTRADO POR R.C.F. SIST. DE COORDENADAS

NORTE (m)

: PSAD 56 8 783 470,0

346 607,0 ESTE (m)

PROF.	N.	N° GOLPES GRÁFICO
(m)	GOLPES	5 10 15 20 25 30
0,0	0	î
0,1	0	
0,2	0	
0,3	0	
0,4	0	
0,5	0	
0,6	2	1
0,7	2	
0,8	7	
0,9	6	
1,0	6	
1,1	3	
1,2	5	1
1,3	5	
1,4	4	(
1,5	4	
1,6	3	1
1,7	3	
1,8	3	
1,9	4	1
2,0	5)
2,1	4	1
2,2	4	
2,3	4	
2,4	4	
2,5	7	
2,6	12	
2,7	8	
2,8	6	
2,9	5	
3,0	10	
3,1	10	
3,2	14	
3,3	14	
3,4	14	
3,5	14	1
3,6	13	
3,7	9	
3,8	9	
3,9	11	1
4,0	12	
4,1	13)
4,2	12	
4,3	15)
4,4	15	
4,5	14	
4,6	14	
4,7	13	
4,8	12	
4,9	14	
5,0	16	\

PROF.	N°	N° GOLPES GRÁFICO
(m)	GOLPES	
5,0	16	/
5,1	13	(
5,2	16	
5,3	16	
5,4	15	/
5,5	14	
5,6	14	
5,7	16)
5,8	15	Í
5,9	15	
6,0	16)
6,1	16	
6,2	18	1
6,3	18)
6,4	14	
6,5	13	
6,6	13	(
6,7	15)
6,8	15	
6,9	15	
7,0	17	
7,1	20)
7,2	20	
7,3	20	
7,4	20	
7,5	20	
7,6	20	
7,7	19	/ /
7,8	18	()
7,9	18	
8,0	18	,
8,1	17	
8,2	22	
8,3	30	
8,4		Fin del ensayo.
8,5		
8,6		314
8,7		
8,8		
8,9		
9,0		
9,1		
9,2		
9,3	×1000 11	
9,4		
9,5		
9,6		
9,7		
9,8		
9,9		
10,0		

	PROFUN	DIDAD YOTA	AL (m) : 8,30 m
Ţ	PROF.	N°	N° GOLPES GRÁFICO
0	(m)	GOLPES	5 10 15 20 25 30
	10,0	******	
	10,1	0.0000000000000000000000000000000000000	
	10,2		
- 1	10,3		
- 1	10,4	+	
	10,5	District hard	
	10,6	POCHE-DOLLARS	
	10,7		
-1	10,8		
- 1	10,9		
	11,0		
	11,1	(F-10-111-1-111-1	
-1	11,2		
	11,3		
	11,4	4-11111-0111	
	11,5	144(4):::::::::	
- 1	11,6	11 (19)	
	11,7		
	11,8		
	11,9	in mar	
- 1	12,0		
	12,1		
	12,2		
	12,3		
- 1	12,3	144	
	12,4		
- 1	12,6		
-1	12,7	************	
	12,7		
- 1	12,9		
	13,0	***************************************	
-1			
	13,1		
	13,2	-convey	
	13,3	44.00	
-1	13,4		
1	13,5		
J [13,6		
- 1	13,7		
- 1	13,8	de description in the	
- 1	13,9		
-1	14,0		
- 1	14,1		
	14,2		
	14,3	***************************************	
	14,4		
	14,5		
	14,6		
	14,7		
	14,8	-,	
	14,9		
	15,0		

Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

Actualización de Conocimimientos 2012

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA (DPL)

UBICACIÓN : Depósito de Relaves 3

SIST. DE COORDENADAS : PSAD 56 12/03/2012

PESO DEL MARTILLO : 10 Kg NORTE (m) 8 783 414,0

DPL-316

ALTURA DE CAÍDA : 0.5 m 346 505,0 ESTE (m) REGISTRADO POR : R.C.F. PROFUNDIDAD TOTAL (m) 6,20 m

Face I in I is a section 1		
PROF. N° N° GOLPES GRÁFICO	PROF. N° N° GOLPES GRÁFICO	PROF. N° GOLPES GRÁFICO
(m) GOLPES 5; 10; 15; 20; 25; 30;	(m) GOLPES 5 10 15 20 25 30	(m) GOLPES 5 10 15 20 25 30
0,0	5,0 18	10,0
MRXXXXVIA99800408880 299800998401-	**************************************	40434000044040440
0,1 0	5,1 18	10,1
0,2 0	5,2 18	10,2
0,3 1	5,3 17	10,3
0,4 3	5,4 18	10,4
0,5 2	5,5 19	10,5
	000000000000000000000000000000000000000	1014-00-1100-00-0 Personal August 1014-00-00-00-00-00-00-00-00-00-00-00-00-00
0,6 3	5,6 22	10,6
0,7 13 7	5,7 24	10,7
0,8 11	5,8 22	10,8
0,9 10	5,9 28	10,9
1,0 13	6,0 29	11,0
1,1 10	6,1 31	11,1
FINAL CONTRACTOR OF THE PROPERTY OF THE PROPER	THE PARTY OF THE P	11,2
A CONTRACTOR OF THE PROPERTY O	Fin dol oneguo	And the control of th
1,3	0,3	11,3
1,4 11	6,4 —316	11,4
1,5 12	6,5	11,5
1,6 13	6,6	11,6
1,7 13	6,7	11,7
1,8 12	6,8	11,8
	Const. Const. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	11,9
1,9 12	6,9	Line and the state of the state
2,0 10	7,0	12,0
2,1 10	7,1	12,1
2,2 12	7,2	12,2
2,3 17	7,3	12,3
2,4 15	7,4	12,4
CONTRACTOR OF THE PROPERTY OF	7,5	12,5
	1 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12,6
2,6 11	7,6	#37000COHE00#111
2,7 12	7,7	12,7
2,8 11	7,8	12,8
2,9 11	7,9	12,9
3,0 12	8,0	13,0
3,1 11	8,1	13,1
14400011-0101	8,2	13,2
3,2 12	0.110.00+60+4.0+4+1 max/24444770	13,3
3,3 13	8,3	1-11-12-12-12-12-12-12-12-12-12-12-12-12
3,4 13	8,4	13,4
3,5 13	8,5	13,5
3,6 14	8,6	13,6
3,7 14	8,7	13,7
***************************************	8,8	13,8
3,8 13	8,9	13,9
3,9 14	14 X	14,0
4,0 12	9,0	440144910344410111 (0.1044410444
4,1 13	9,1	14,1
4,2 14	9,2	14,2
4,3 15	9,3	14,3
4,4 13	9,4	14,4
	9,5	14,5
4,5 13	9,6	14,6
4,6 12		14,7
4,7 14	9,7	14,8
4,8 12	9,8	The state of the s
4,9 14	9,9	14,9
5,0 18	10,0	15,0

Perforaciones Diamantinas

Ur			nal de Ingeniería geniería Civil	Ubicación : Depósito de Fecha de inicio : 20/03/2012 Fecha de término : 21/03/2012	P	PERFORACIÓN PR-101 Página 1							
	arlo como	Botader	Antigua Con Propósito o de Desmonte de Mina n de Cierre	Tipo de excavación : Mecánica Tipo de equipo : LY 38 Diámetro exc. : HQ Registrado por : L.R.S. Condición superficial : Plana	Norte Este Eleva	: ción (m.s.n.m.)	PSAD 56 8 783 430,0 346 205,0 4 490,0 12,8						
A	ctualizac	ión de Co	nocimientos 2012			• •	33,0						
Profundidad (m)	sncs	Gráfico	Condición de la mues Disturbad En bloqu	da	Código muestra	Comentarios							
0 1	GW-GM		densa, ligeramente hú	on limo y arena, plasticidad nula, medianame meda, color gris claro, estructura homogénea angulosa de tamaño máximo = 3", con bolone	а,	S/M							
2-	SP-SM		de tamaño máximo = 1 Bloques y Bolonería =	inguiosa de tamano maximo = 3 , con boione 12" , con bloques de tamaño máximo = 20". 15.0 %. Grava= 70.0 %. Arena= 20.0 %. Fin	1	S/M							
4-	ML		10.0 %.			M-1	Ensayo SPT-01 de 3,70 a Nº de golpes: 14	a 4,15 m.					
8-	SP-SM		color gris oscuro, estru %. Limo de baja plasticida oscuro, estructura hon 51,8 %. Arena mal gradada co color gris oscuro, estru	n limo, plasticidad nula, suelta, muy húmeda, actura homogénea. Arena = 90.0 %. Finos = ad arenoso, muy blanda, muy húmeda, color nogénea. Grava = 1 %. Arena = 47,2 %. Finos in limo, plasticidad nula, suelta, muy húmeda, actura homogénea. Arena = 90.0 %. Finos =	gris ps =		Tubo Shelby de 5,20 a 5, Ensayo SPT-02 de 7,50 a № de golpes: 16						
2	Pt		%. Turba				Ensayo SPT-03 de 10,90 Nº de golpes: 8 Extracción de muestra co 11,35 a 12,20 m.						
8-	ML		oscuro, con olor, estru %.	id, muy blanda, muy húmeda, color marrón ctura homogénea. Arena = 2.0 %. Finos = 98	8.0	S/M							
0-	Pt		Turba muy blanda	ad, firme, húmeda, color beige oscuro, estru	rtura	S/M							
2-	СН		homogénea. Finos = 1			M-5	Extracción de muestra. D	esde 22,00 a 22,60 n					
4-1-1-1	ML CL		homogénea. Arena = 5	nd, muy blanda, saturada, color beige, estruction %. Finos = 95.0 %. lad, firme a rigida, saturada, color beige osci a. Arena = 3,2 %. Finos = 96,8 %.	/	S/M M-6	Ensayo SPT-04 de 25,60 Nº de golpes: 6	a 26,05 m.					
28-	GP		Grava mal gradada co	n arena y limo, plasticidad nula, medianamer beige oscuro, estructura homogénea, grava no máximo = 2". Grava = 70.0 %. Arena = 25		S/M							

IDENTIFICACIÓN DEL PROYECTO

UBICACIÓN: Depósito de Relaves 1

SISTEMA DE COORDENADAS (UTM)

ORIENTACIÓN DEL COLLAR

DATOS DEL SONDAJE

DATUM: PSAD 56 DIRECCIÓN: ___ NOMBRE DEL SONDAJE: PR-101

NORTE: 8 783 430

INCLINACIÓN: -90°

COMPAÑÍA DE PERFORACIÓN: Suelos y Sondajes FECHA:

21/03/2012

PROYECTO: Evaluación de Relavera Antigua Con Propósito de Usario como Botadero de Desmonte de Mina para un Plan de Cierre

ESTE: 346 205

TIPO DE BROCA: ---

DIÁMETRO: HQ3

NIVEL DEL AGUA (m): 12,75

L.R.S.

ELEVACIÓN: 4490

PROFUNDIDAD FINAL (m): 33,00

REGISTRADO

PARÁMETROS DEL RMR (1989)

-	-			_
2	≰		3	

VALORACIÓN DEL RMR (1989)

N* DE CORRIDA	DESDE (m)	HASTA (m)	AVANCE (m)	LITOLOGÍA	RECUPERADO (m)	RECUPERADO (%)	RQD (m)	RQD (%)	N° JUNTAS POR CORRIDA	ESPACIAMIENTO (m)	UCS (Mpa)	PERSISTENCIAE (m)	ABERTURA (mm)	RUGOSIDAD (valoración)	MATERIAL DE RELLENO 1	MATERIAL DE RELLENO 2	MATERIAL DE RELLENO 3	TIPO DE RELLENO (valoración)	METEORIZACIÓN (valoración)	CONDICIÓN DEL AGUA (valoración)	RMR (1)	RMR (2)	RMR (3) ESPACIAMIENTO	RMR (4-1) PERSISTENCIA	RMR (4-2) ABERTURA	RMR (4-3) RUGOSIDAD	RMR (4-4) RELLENO	RMR (4-5) METEORIZACIÓN	RMR (5) AGUA	RMR, 1989 (BÁSICO)	TIPO DE ROCA
1-23a	0,00	28,90	0 28,90	Suelo																										0	
23b	28,90	29,20	0 0,30	Limolita	0,30	1.00	0,25	83,33	2	0,10	10,0	5.0	1.0	3	Ca	(4)		4	3	7	2	17	8	2	3	3	4	3	7	49	REGULAR
24	29,20	30,4	0 1,20	Limolita	1,20	1,00	1.00	83,33	4	0,24	20,0	5.0	1.0	3	Ca	4	1	4	5	7	2	17	10	2	3	3	4	5	7	53	REGULAR
25	30.40	32,0	0 1,60	Limolita	1,60	1,00	0.70	43,75	9	0,16	15,0	3.0	5,0	2	Ca	Ску	-0	2	3	7	2	8	8	2	1	2	2	3	7	35	MALA
26	32,00	33,0	1,00	Limolita	1,00	1,00	0,90	90,00	3	0,25	25,0	3,0	1.0	3	Ca			4	5	7	4	20	10	2	3	3	4	5	7	58	REGULAR
	1	1					-	-																							
E	1	1																													

Evalua de Usa	Facult ación de arlo como pa	Relavera Botadero	enal de Ingeniería geniería Civil Antigua Con Propósito o de Desmonte de Mina n de Cierre	Fecha de inicio Fecha de término Tipo de excavación Tipo de equipo Diámetro exc.	Dique de Depósito Relaves - Zona Cer : 16/03/2012 : 18/03/2012 : Mecánica : LY 38 : HQ : L.R.S.		Sister Norte Este Eleva Nivel	ción (m.s.n.m.) freático (m)	Página 1 de 1 : PSAD 56 : 8 783 492,0 : 346 498,0 : 4 256,0 : 6,5
- ^	ctualizac	ión de Co	nocimientos 2012			_	Prof.	excavación (m)	: 31,50
Profundidad (m)	S	Gráfico	Condición de la mues Disturbac En bloqu	da		Muestra	Código muestra		,
Pro	sncs	Grá		Descripción		Mue	8 0	Come	entarios
0 հավասիակավակակակակակակակակակակակակակակակական 5 6 7 8 8 9 9 1	GW		medianamente densa, estructura homogénea bolonería de TM = 12" total. Grava = 70,0 %. Arena	on arena y limo, plasticidad ligeramente húmeda, color a, gravas angulosas de TM y bloques de TM = 30" en a = 20,0 %. Finos = 10,0 %	r gris claro a oscuro, = 3" con presencia de un 25% del volumen .		S/M		
10	SP		color gris oscuro a ver Finos = 5,0 %.	dada con limo, plasticidad doso, estructura homogéne	ea, Arena = 95,0 %.		S/M		
["]	ML			dad baja a media, blanda, h nogénea, Arena = 5,0 %. F			S/M		
12				a = 5,0 %. Finos = 20,0 %.	/		M-1	Tubo Shelby de 12,5 a	13,15 m.
10 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	SM		verdoso. Arena = 62,3	<i>a</i> =	*:		M-2	Ensayo SPT-1 de 13,15 N° de golpes: 14 Ensayo SPT-2 de 15,35 N° de golpes: 54	
16-11	CL		oscuro a narania, estr	vas, plasticidad baja, firme, uctura homogénea. gravas . Grava = 10,0 %. Arena = 9	angulosas a sub				3
17-3			%.	· 	/				
18-			Basamento rocoso						1

DUTTO DE ESST UNUMETITOS I SUFFICIES DEFINITIVADOS TIRAS

IDENTIFICACIÓN DEL PROYECTO

SISTEMA DE COORDENADAS (UTM)

ORIENTACIÓN DEL COLLAR

DATOS DEL SONDAJE NOMBRE DEL SONDAJE: PR-2 01 HOJA:

REGISTRAD(

DE:

PROYECTO: Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

NORTE: 8 783 492

DATUM: PSAD 56

INCLINACIÓN: -90°

DIRECCIÓN: ___

COMPAÑÍA DE PERFORACIÓN: Suelos y Sondajes FECHA:

18 /03/2012

UBICACIÓN: Dique del Depósito de Relaves 2

ESTE: _346 498_ ELEVACIÓN: 4256

TIPO DE BROCA: ---DIAMETRO: HQ3

NIVEL DEL AGUA (m): 8,50 PROFUNDIDAD FINAL (m): 31,5 0

L.R.S.

							PA	RAME	ETROS	DEL R	MR (1	98 9)													٧	ALORA	ACIÓN I	DEL RA	IR (198	3 9)		
N° DE CORRIDA	DESDE (m)	HASTA (m)	(m) a Citation	AVANCE (m)	LITOLOGÍA	RECUPERADO (m)	RECUPERADO (%)	RQD (m)	RQD (%)	N° JUNTAS POR CORRIDA	ESPACIAMIENTO (π)	UCS (Mpa)	PERSISTENCIAE (m)	ABERTURA (mm)	RUGOSIDAD (valoración)	MATERIAL DE RELLENO 1	MATERIAL DE RELLENO 2	MATERIAL DE RELLENO 3	TIPO DE RELLENO (valoración)	METEORIZACIÓN (valoración)	CONDICIÓN DEL AGUA (valoración)	RMR (1) RESISTENCIA DE LA ROCA INTACTA	RMR (2) RQD	RMR (3) ESPACIAMIENTO	RMR (4-1) PERSISTENCIA	RMR (4-2) ABERTURA	RMR (4-3) RUGOSIDAD	RMR (4-4) RELLENO	RMR (4-5) METEORIZACIÓN	RMR (5) AGUA	RMR, 1989 (BÁSICO)	TIPO DE ROCA
-22	0.00	16,5	0 16	6,50	Suelo																										0	
23	16,50	17,2	20 0	0.70	Limolita	0,60	0,86	0.45	75,00	4	0,12	60,0	10,0	5.0	2	Ox	Cly		2	3	7	7	17	8	1	1	2	2	3	7	48	REGULAR
24	17.20	18,6	50 1	1.40	Limolda	1,40	1,00	0,16	11,43	7	0,18	40,0	5.0	5,0	2	Ox	Cly	-	2	3	7	4	3	8	2	1	2	2	3	7	32	MALA
25	18,60	19,1	15 0	0,55	Limokta	0,55	1,00	0.30	54,55	2	0,18	30,0	3,0	1.0	3	Са	s	-	4	5	7	4	13	8	2	3	3	4	5	7	49	REGULAR
26	19,15	20,3	30 1	1,15	Limokta	1,15	1,00	0,70	60,87	2	0,38	40,0	3.0	1.0	3	Ca	4	-	4	5	7	4	13	10	2	3	3	4	5	7	51	REGULAR
27	20,30	0 21.7	70	1,40	Limolita	1,40	1,00	0,90	64,29	2	0.47	50,0	3,0	1.0	3	Ca	Cly	s	2	3	7	7	13	10	2	3	3	2	3	7	50	REGULAR
28	21,70	0 22.9	90	1,20	Limolda	1,20	1,00	1,10	91.67	4	0.24	50,0	3.0	5.0	3	Ca	Cly	s	2	3	7	7	20	10	2	1	3	2	3	7	55	REGULAR
29	22,90	0 23.	.40	0,50	Limolta	0,50	1,00	0,50	100,00	2	0,17	50,0	2.0	0,1	5	Ca		s	4	5	7	7	20	8	4	5	5	4	5	7	65	BUENA
30	23.4	0 24	.60	1,20	Limolta	1,20	1,00	0.85	70.83	2	0.40	40,0	5,0	6,0	0	Cly	Ca		0	1	7	4	13	10	2	0	0	0	1	7	37	MALA
31	24,6	0 26.	.20	1,60	Limolita	1,40	0,88	0,48	34,29	7	0,18	40.0	10,0	6,0	2	Ca	Cly	s	2	2	7	4	8	8	1	0	2	2	2	7	34	MALA
32	26,2	20 27	.40	1.20	Limolta	1,20	1,00	1.05	87.50	3	0.30	50,0	3.0	1.0	5	Ca	Ox	s	4	5	7	7	17	10	2	3	5	4	5	7	60	BUENA
33	27.4	10 29	0.00	1,60	Limolita	1,60	1,00	1,60	100,0	0 2	0,53	50,0	3,0	0,1	5	Ca	Ca	1.	4	5	7	7	20	10	2	5	5	4	5	7	65	BUENA
34	29,0	00 30	0.20	1,20	Limolita	1,20	1,00	1,10	91.67	3	0,30	60,0	2,0	1,0	3	Ca			4	5	7	7	20	10	4	3	3	4	5	7	63	BUENA
35	30,2	20 31	1,50	1,30	Limolita	1,30	1,00	1,30	100,0	0 2	0,43	60,0	2,0	0,1	3	Ca	4	-	4	5	7	7	20	10	4	5	3	4	5	7	65	BUENA
		1						-																								
	F	+				1																										
	1	1						-																								
	-	-				-	-	-	1																							
	-	1						1	1	İ		İ																			1	

Evalu de Usa	Faculta ación de l arlo como par	Relavera Botadera a un Plar	onal de Ingeniería geniería Civil Antigua Con Propósito o de Desmonte de Mina n de Cierre	Tipo de equipo	: Depósito de f : 08/03/2012 : 10/03/2012 : Mecánica : LY 38 : HQ : L.R.S. : Plana	Relave	es 3	Sister Norte Este Eleva	PERFORACIÓN PR-301 Página 1 de 1 ma de coordenadas : PSAD 56 : 8 783 721,0 : 346 744,0 ción (m.s.n.m.) : 4 475,0 freático (m) : No medido
A	Actualizaci	ón de Co	onocimientos 2012					Prof.	excavación (m) : 27,3
Profundidad (m)	sncs	Gráfico	Condición de la mues Disturbac En bloqu	da	,		Muestra	Código muestra	Comentarios
			Pollono, grava limosa	con arena, plasticidad baja	color aris oscuro				
1 1 2 mlmlmlmlmlm	SM	0 0	medianamente densa, homogénea. Grava = 70,0 %. Aren Arena limosa, plasticio	seca a ligeramente húmeo a = 15,0 %. Finos = 15,0 % lad baja a media, suelta, co da, estructura homogénea.	da, estructura	/	\boxtimes	S/M M-1	Ensayo SPT-1 de 1,5 a 1,95 m. Nº de golpes: 2
Juntuni	SM		Arena limosa, plasticio estructura homogénea	lad baja a media, suelta, co	olor gris, saturada,	_/		M-2	Ensayo SPT-2 de 3,0 a 3,45 m. N° de golpes: 2
0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10	CL		Arena = 55,0 %. Finos	s = 45,0 %. dad, muy blanda a blanda, ı.	saturada, color gri	is,		M-5	Tubo Shelby de 4,0 a 4,65 m. Ensayo SPT-3 de 5,7 a 6,15 m. N° de golpes: 2 Tubo Shelby de 7,75 a 8,4 m. Ensayo SPT-4 de 8,4 a 8,85 m. N° de golpes: 5
11 12 12 13 14 15 15 15 15 15 15 15	CL/CL-ML			dad con arena, plasticidad r gris, estructura homogéno os = 83,7 %.		3			Ensayo SPT-5 de 10,0 a 10,45 m. N° de golpes: 2 Ensayo SPT-6 de 13,0 a 13,45 m. N° de golpes: 10
13 14 14 15 11 15 11 15 11 15 11 15 15 15 15 15	ML GC	0 0	homogénea. Arena = 5,0 %. Finos Grava arcillosa con arc húmeda, color gris par	blanda, húmeda, color neg = 95,0 %. ena, plasticidad media, me doso, estructura homogéni = 29,5 %. Finos = 38,6 %	dianamente densa ea.	/			Extracciòn de muestra desde 13,35 a 13,60 Ensayo SPT-7 de 13,6 a 15,0 m. Nº de golpes: 40
15 ml 16 ml 17 ml 18 ml 19 ml 19 ml 10 ml			Basamento rocoso	20,0 78.1 11100 00,10 70	•			-	

SISTEMA DE COORDENADAS (UTM)

ORIENTACIÓN DEL COLLAR

DATOS DEL SONDAJE NOMBRE DEL SONDAJE: PR-301 HOJA:

REGISTRADO

DE:

PROYECTO; Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para un Plan de Cierre

NORTE: 8 783 721 ESTE: 346 744

DATUM: PSAD 56

INCLINACIÓN: -90°

DIRECCIÓN: ---

TIPO DE BROCA: ---

COMPAÑÍA DE PERFORACIÓN: Suelos y Sondajes FECHA:

21/03/2012

UBICACIÓN: Depósito de Relaves 3

ELEVACIÓN: 4 475_

DIÁMETRO: HQ3

NIVEL DEL AGUA (m): No medido PROFUNDIDAD FINAL (m): 27,30

L.R.S.

DAPÁMETROS DEL PMP (1989)

							PA	RÁME	ETROS	DEL RI	MR (1	989)													٧	ALORA	CIÓN	DEL RN	1R (198	39)		
N* DE CORRIDA	DESDE (m)	HASTA (m)		AVANCE (m)	LITOLOGÍA	RECUPERADO (m)	RECUPERADO (%)	RQD (m)	RQD (%)	N° JUNTAS POR CORRIDA	ESPACIAMIENTO (m)	UCS (Mpa)	PERSISTENCIAE (m)	ABERTURA (mm)	RUGOSIDAD (valoración)	MATERIAL DE RELLENO 1	MATERIAL DE RELLENO 2	MATERIAL DE RELLENO 3	TIPO DE RELLENO (valoración)	METEORIZACIÓN (valoración)	CONDICIÓN DEL AGUA (valoración)	RMR (1) RESISTENCIA DE LA ROCA INTACTA	RMR (2) RQD	RMR (3) ESPACIAMIENTO	RMR (4-1) PERSISTENCIA	RMR (4-2) ABERTURA	RMR (4-3) RUGOSIDAD	RMR (4-4) RELLENO	RMR (4-5) METEORIZACIÓN	RMR (5) AGUA	RMR, 1989 (BÁSICO)	TIPO DE ROCA
1-11a	0,00	15,3	35 1	15,35	Suelo											1						1									0	
11b	15,35	15.9	90 0	0.55	Arenisca	0,65	1,18	0.40	61,54	4	12,00	80,0	5,0	1,0	5	Ca	Ох	1	4	3	7	7	13	20	2	3	5	4	3	7	64	BUENA
12	15,90	17.	35	1.45	Arenisca	1,45	1,00	1,30	89,66	6	20.00	70,0	3,0	1,0	3	Ca	Ox	Ру	2	5	7	7	17	20	2	3	3	2	5	7	66	BUENA
13	17,35	18,	35	1,00	Arenisca	1,00	1,00	0,95	95.00	3	25.00	70,0	3.0	0,1	3	Ca	Ox	Ру	4	5	7	7	20	20	2	5	3	4	5	7	73	BUENA
14	18,35	19.	95	1,60	Arenisca	1,60	1,00	1.60	100,00	1	0,80	80.0	2,0	0,1	5	Py	Q	-	4	5	7	7	20	15	4	5	5	4	5	7	72	BUENA
15	19,95	21.	35	1,40	Arenisca	1.40	1,00	1.40	100,00	0	1,40	70,0	2,0	0,0	6	4			6	6	7	7	20	15	4	6	6	6	6	7	77	BUENA
16	21,3	5 22.	.95	1,60	Arenisca	1.60	1,00	1,50	93,75	4	30,00	60,0	10,0	1,0	3	Ox	-		2	3	7	7	20	20	1	3	3	2	3	7	66	BUENA
17	22,9	5 24.	.35	1,40	Arenisca	1.40	1.00	1.40	100,00	2	0,40	70,0	2.0	1,0	5	Py			4	3	7	7	20	10	4	3	5	4	3	7	63	BUENA
18	24,3	5 25.	.90	1,55	Arenisca/limolita	1,55	1,00	1,55	100,00	5	0,20	60,0	3,0	1.0	2	Ох			2	5	7	7	20	10	2	3	2	2	5	7	58	REGULAR
19	25,9	0 27	.30	1,40	limolita/arenisca	1.40	1,00	1,40	100,00	1	0,70	70,0	3.0	0,1	3	Ca		4.	4	5	7	7	20	15	2	5	3	4	5	7	68	BUENA
																																+

Evalua de Usa	Faculta ación de la arlo como par	Relavera Botadera a un Plai	Antigua Con Propósito de Desmonte de Mina de Cierre	Diámetro exc.	: LY 38 : HQ : L.R.S.	to de	Sister Norte Este Eleva Nivel	Página 1 de 1 ma de coordenadas : PSAD 56				
			Condición de la mues	stra		T -	1 101.	excuración (m)				
Profundidad (m)	sncs	Gráfico	Disturbation En bloqui	da		Muestra	Código muestra	Comentarios				
0 1	Ŋ					Σ	ŏ	Contentatios				
mhmhm	GM	0 0 0	marrón claro, estructu	na, plasticidad nula a baja, ra homogénea, grava angu ncia de boloneria de TM = 9	losa a subangulosa		S/M					
2 milimilin	CL-ML	0.00	Gravas = 50,0 %. Are	nas = 20,0 %. Finos = 30,0 dad con limo y gravas, blar omogénea, grava subangul	nda, seca, color pardo		M-1	Ensayo LPT-1 de 1,5 a 1,95 m. N° de golpes: 21				
3 mmmmmm		h = 10' h	de TM = 2" con preser volumen total.	ncia de boloneria de TM = 9 as = 14,2 %. Finos = 84,6 9	5" en un 10% del		M-2	Ensayo SPT-1 de 4,0 a 4,45 m. N° de golpes: 1				
5 rulumluml			Arcilla de baja plasticion estructura homogénea Arena = 0,6 %. Finos		muy húmedo, gris,		M-3	Tubo Shelby de 5,3 a 5,95 m.				
6 mlumlum	CL						M-4	Ensayo SPT-2 de 7,0 a 7,45 m. N° de golpes: 11				
, 8 ծ Հահահակադեսու							M-5	Ensayo SPT-3 de 8,5 a 8,95 m. Nº de golpes: 1				
10 mm	SM			dad nula a baja, suelta a moscuro, estructura homogér s = 25,0 %.			M-6	Ensayo SPT-4 de 10,0 a 10,45 m. N° de golpes: 3				
12 1111111111	ML		Limo, plasticidad baja oscuro, estructura hon Arena = 15,0 %. Finos	•	úmedo, color gris		S/M					
14-1	SM		húmeda, color marrón subangulosa de TM =				M-7	Ensayo SPT-5 de 13,0 a 13,45 m. N N				
15 mmmulmilm	SP		Arena pobremente gra	a = 59,8 %. Finos = 30 %. adada, plasticidad nula, sue on claro, estructura homogé 3*.			S/M					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 12 20 20 20 20 20 20 20 20 20 20 20 20 20		, , ,	_	a = 85,0 %. Finos = 5,0 %.								

IDENTIFICACIÓN DEL PROYECTO

SISTEMA DE COORDENADAS (UTM)

DATUM: PSAD 56

ESTE: 346 677

ORIENTACIÓN DEL COLLAR

DATOS DEL SONDAJE NOMBRE DEL SONDAJE: PR-302 HOJA:

REGISTRADO

PROYECTO: Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para

NORTE: 8 783 489

INCLINACIÓN: --9°

DIRECCIÓN: ____

TIPO DE BROCA: ---

COMPAÑÍA DE PERFORACIÓN: Suelos y Sondajes FECHA:

13/03/2012

un Plan de Cierre UBICACIÓN: Dique del depósito de Relaves 3

ELEVACIÓN: 4 478

DIÁMETRO: HQ3

NIVEL DEL AGUA (m): No medido PROFUNDIDAD FINAL (m): 33,00

L.R.S.

							PA	RÁMI	ETROS	DEL R	MR (1	989)													٧	ALOR	ACIÓN	DEL RN	/R (198	39)		
N* DE CORRIDA	DESDE (m)	HASTA (m)	AVANCE (m)		LITOLOGÍA	RECUPERADO (m)	RECUPERADO (%)	RQD (m)	RQD (%)	N° JUNTAS POR CORRIDA	ESPACIAMIENTO (m)	UCS (Mpa)	PERSISTENCIAE (m)	ABERTURA (mm)	RUGOSIDAD (valoración)	MATERIAL DE RELLENO 1	MATERIAL DE RELLENO 2	MATERIAL DE RELLENO 3	TIPO DE RELLENO (valoración)	METEORIZACIÓN (valoración)	CONDICIÓN DEL AGUA (valoración)	RESISTENCIA DE LA ROCA INTACTA	RMR (2) RQD	RMR (3) ESPACIAMIENTO	RMR (4-1) PERSISTENCIA	RMR (4-2) ABERTURA	RMR (4-3) RUGOSIDAD	RMR (4-4) RELLENO	RMR (4-5) METEORIZACIÓN	RMR (5) AGUA	RMR, 1989 (BÁSICO)	TIPO DE ROCA
1-12	0,00	15,7	0 15,	70	Suelo																										0	
13	15,70	17,3	30 1.6	50	Caliza margosa	1,40	0,87	1,40	100,00	4	28,00	50,0	5,0	5,0	5	Ca	Ox	-	4	3	7	7	20	20	2	1	5	4	3	7	69	BUENA
14	17,30	18,5	55 1.2	25	Caliza margosa	1,25	1,00	0.48	38,40	8	14,00	30,0	10,0	6,0	2	Ca	Ох	Cly	2	3	7	4	8	20	1	0	2	2	3	7	47	REGULAR
15	18,55	20,1	15 1.0	50	Caliza margosa	1,60	1,00	1,35	84,38	7	20,00	20,0	5.0	5,0	2	Ca	Cly	-	2	3	7	2	17	20	2	1	2	2	3	7	56	REGULAR
16	20,15	21,7	75 1.0	00	Caliza margosa	1,55	0,97	1,28	82,58	4	31,00	20,0	3,0	5,0	2	Ca	Cly	Ox	2	3	7	2	17	20	2	1	2	2	3	7	56	REGULAR
17	21,75	23,2	25 1.	50	Caliza margosa	1,50	1,00	0,65	43,33	10	13,60	20,0	5.0	5,0	2	Ca	Ox	Cly	2	3	7	2	8	20	2	1	2	2	3	7	47	REGULAR
18-19	23.25	24.9	95, 1,	70	Caliza margosa	1,75	1,03	0,46	26,29	16	10,30	20,0	10,0	1.0	3	Ca	*	-	4	5	7	2	8	20	. 1	3	3	4	5	7	53	REGULAR
20	24,95	26,4	45 1.	50	Caliza margosa	1,50	1,00	1,42	94,67	6	21,40	20,0	3,0	1.0	3	Ca	Ох	-	4	5	7	2	20	20	2	3	3	4	5	7	66	BUENA
21	26,45	27.	75 1.	30	Caliza margosa	1,30	1,00	0,66	50,77	8	14,50	20,0	3,0	1,0	2	Ca	Ox	Cly	2	3	7	2	13	20	2	3	2	2	3	7	54	REGULAR
22	27,75	28,	,85 1.	10	Caliza margosa	1,10	1,00	0,21	19,09	19	9,60	20,0	10,0	5.0	2	Ca	Ox	Cly	2	3	7	2	3	20	1	1	2	2	3	7	41	REGULAR
23	28,85	5 29.	.55 0	.70	Limolita	0,70	1,00	0.28	40,00	8	0.70	20,0	10,0	5,0	3	Ca	Ох		2	3	7	2	8	15	- 1	1	3	2	3	7	42	REGULAR
24a	29.5	5 30.	35 0	.80	Caliza margosa	0.80	1.00	0.00	0,00	16	0.06	1,0	20.0	6,0	0	Cly	Ох		0	1	4	1	3	8	0	0	0	0	1	4	17	MUY MALA
24b	30,3	5 31.	.05 0	.70	Caliza margosa	0,00	0.00	0,00	0,00	14	0,06	0.9	21.0	6,0	0	Cly		-	0	0	4	0	3	8	0	0	0	0	0	4	15	MUY MALA
25a	31,0	5,31,	.45 0	.40	Caliza margosa	0,40	1,00	0.40	100,00	8	0,06	0.9	20,0	6,0	0	Cly	Ox		0	1	4	0	20	8	0	0	0	0	1	4	33	MALA
25b	31,4	5 32	2,00	.55	Caliza margosa	0,00	0,00	0,00	0,00	1.	0,06	0,9	21,0	6,0	0	Cly	+		0	0	4	0	3	8	0	0	0	0	0	4	15	MUY MALA
26	32.0	0 33	3,00 1	.00	Caliza margosa	0,70	0,70	0.70	100,00	14	0,06	0,9	20,0	6,0	0	Cly	Ox	4	0	1	4	0	20	8	0	0	0	0	1	4	33	MALA
		1	1																													
		1																														
		1	1																		H											
		1	1					1																								

Evalu de Us	Faculta ación de F arlo como par	Relavera Botaden a un Pla	onal de Ingeniería Igeniería Civil Antigua Con Propósito Igeniería de Mina In de Cierre Igeniería Civil	Ubicación : Depósito de Re Fecha de inicio : 13/03/2012 Fecha de término : 15/03/2012 Tipo de excavación : Mecánica Tipo de equipo : LY 38 Diámetro exc. Registrado por Condición superficial : Plana	laves 3	Sister Norte Este Eleva Nivel	PERFORACIÓN PR-303 Página 1 de 1 ma de coordenadas : PSAD 56 : 8 783 468,0 : 346 634,0 : 346 634,0 : 4 476,0 freático (m) : 7,5 excavación (m) : 28,5
Profundidad (m)	sncs	Gráfico	Condición de la mues Disturbac En bloqu	da	Muestra	Código muestra	Comentarios
0_	GW-GM		Grava bien gradada co	on limo y arena, plasticidad nula, medianamente		S/M	
1 1 1 1 2 1	GW		angulosa de TM = 3", bloques de TM = 18" e	pardo oscuro, estructura homogénea, grava con presencia de boloneria de TM = 12" y en un 30% del volumen total. a = 20,0 %. Finos = 10,0%.		M-1	Ensayo SPT-1 de 1,5 a 1,95 m. Nº de golpes: 2
=	ML		Grava bien gradada, p	lasticidad nula, medianamente densa,	J	S/M	
4			ligeramente humeda, o Grava = 90. Arena = 9	color beige oscuro, estructura homogénea.		M-2	Ensayo SPT-2 de 3,0 a 3,45 m. N° de golpes: 22
5 6 7 8 9 9	homogènea. Arena = 5,0 %. Finos Arena limosa, plastici estructura homogène Arena = 74,7 %. Fino			lad nula, suelta, húmeda, color gris oscuro, : = 25,3 %.		M-4 M-5	Tubo Shelby de 4,5 a 5,5 m. Ensayo SPT-3 de 7,5 a 7,95 m. N° de golpes: 8 Ensayo SPT-4 de 9,0 a 9,45 m. N° de golpes: 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 10 11 12 13 14 15 16 17 18 19 19 19 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	GW-GM		medianamente densa, estructura homogénea bolonería de TM = 12* volumen total. Gravas = 65,0 %. Arei	on limo y arena, plasticidad baja a media, húmeda, color verdoso a marrón oscuro, , grava angulosa de TM =2", con presencia de y bloques de TM = 20" en un 20,0 % del ma = 15,0 %. Finos = 20,0 %.		S/M	
16-	OL			ula a baja, firme, húmedo, color marrón verdoso, , grava angulosa a subangulosa de TM = 2".		S/M	
17-	GM	0:0:		na = 5,0 % Finos = 55,0 %	1	S/M	
18-111111111111111111111111111111111111			húmedo, color marrón subangulosa de TM =	na, plasticidad baja, medianamente densa, claro, estructura homogénea, grava 2". nas = 20,0 %. Finos = 20,0 %.			
18 19 19 20			húmedo, color marrón subangulosa de TM =	claro, estructura homogénea, grava 2°.			

IDENTIFICACIÓN DEL PROYECTO

SISTEMA DE COORDENADAS (UTM)

ORIENTACIÓN DEL COLLAR

DATOS DEL SONDAJE NOMBRE DEL SONDAJE: PR-303

NIVEL DEL AGUA (m): 7, 50

HOJA:

REGISTRADO

DE:

PROYECTO: Evaluación de Relavera Antigua Con Propósito de Usarlo como Botadero de Desmonte de Mina para DATUM: PSAD 56 NORTE: 8 783 468 ESTE: 346 634

INCLINACIÓN: -90°

DIRECCIÓN: -

COMPAÑÍA DE PERFORACIÓN: Suelos y Sondajes FECHA:

15/03/2012

UBICACIÓN: Depósito de Relaves 3

un Plan de Cierre

ELEVACIÓN: 4 476

TIPO DE BROCA: ---

PROFUNDIDAD FINAL (m): 28,50

L.R.S.

DIÁMETRO: HQ3

VALORACIÓN DEL RMR (1989)

						PA	KAME	IKUS	DEL R	MK (1:	989)									
N* DE CORRIDA	DESDE (m)	HASTA (m)	AVANCE (m)	LITOLOGÍA	RECUPERADO (m)	RECUPERADO (%)	RQD (m)	RQD (%)	N* JUNTAS POR CORRIDA	ESPACIAMIENTO (m)	UCS (Mpa)	PERSISTENCIAE (m)	ABERTURA (mm)	RUGOSIDAD (valoración)	MATERIAL DE RELLENO 1	MATERIAL DE RELLENO 2	MATERIAL DE RELLENO 3	TIPO DE RELLENO (valoración)	METEORIZACIÓN (valoración)	CONDICIÓN DEL AGUA (valoración)
-15a	0,00	16,95	16,95	Suelo																
5b	16,95	18,00	1.05	Arenisca / Limolita	1,05	1,00	1,00	95,24	2	0,30	30,0	5.0	1,0	3	Ca	Ох		4	5	7
6-17	18,00	19,55	1,55	Limolita	1.55	1,00	0,65	41,94	8	0,80	20.0	5.0	5.0	3	Ca			4	5	7
18	19,55	21.05	1,50	Limolta / Arenisca	1,50	1,00	1,35	90,00	5	0,25	30.0	3.0	1.0	3	Ca	-		4	5	7
19	21,05	22,20	1,15	Arenisca	1,15	1,00	0.55	47,83	6	0.17	40,0	3,0	1,0	3	Ca			4	3	7
20	22,20	22,80	0,60	Arenisca	0.60	1,00	0,18	30.00	4	0,12	40,0	3,0	1,0	3	Ох	Ca		4	5	7
21	22,80	24,00	1,20	Arenisca	1.20	1,00	0.88	73,33	5	0,20	50.0	2,0	0,1	5	Ca		1.3	4	5	7
22	24,00	25,60	1,60	Arenisca	1,60	1.00	1.47	91,88	3	0.40	50.0	2.0	0,1	5	Ca	140	(2)	4	5	7
23	25,60	27.00	1,40	Limolita	1.40	1,00	0.87	62,14	4	0.28	20,0	5.0	5,0	3	Ca	Ox	-	4	3	7
24	27,00	28,50	1,50	Limolita	1,50	1,00	1,30	86.67	3	0,37	20,0	5.0	5,0	3	Ca	Ох		4	3	7

RMR (1) RESISTENCIA DE LA ROCA INTACTA	RMR (2) RQD	RMR (3) ESPACIAMIENTO	RMR (4-1) PERSISTENCIA	RMR (4-2) ABERTURA	RMR (4-3) RUGOSIDAD	RMR (4-4) RELLENO	RMR (4-5) METEORIZACIÓN	RMR (5) AGUA	RMR, 1989 (BÁSICO)	TIPO DE ROCA
									0	
4	20	10	2	3	3	4	5	7	58	REGULAR
2	8	15	2	1	3	4	5	7	47	REGULAR
4	20	10	2	3	3	4	5	7	58	REGULAR
4	8	8	2	3	3	4	3	7	42	REGULAR
4	8	8	2	3	3	4	5	7	44	REGULAR
7	13	10	4	5	5	4	5	7	60	BUENA
7	20	10	4	5	5	4	5	7	67	BUENA
2	13	10	2	1	3	4	3	7	45	REGULAR
2	. 17	10	2	1	3	4	3	7	49	REGULAR
										j.
	_41									
*										
					-	-			-	

ANEXO B: RESULTADOS DE LABORATORIO

Clasificación SUCS

LABORATORIO GEOTÉCNICO

22/03/2012

Сс

Solicitado por: LRS

Nº de proyecto: 1

N° de Informe de Lab: P

Fecha:

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra:

CA-202

% Acumulado

que pasa

100,0

100,0

100,0

85,0

74,5

61,5

54,3

39,0

29,7

23,6

20.0

14,8

11,4

Nº de muestra: M-1

Profundidad (m): 0,0-2,2

Abertura

(mm)

76,200

50,300

38,100

25,400

19,050

12,500

9,525

4,760

2,000

0,850

0,425

0,150

0,075

Zona:

Descripción:

Tamiz

3"

2"

1 1/2"

1"

3/4"

1/2"

3/8"

Nº4

Nº10

Nº20

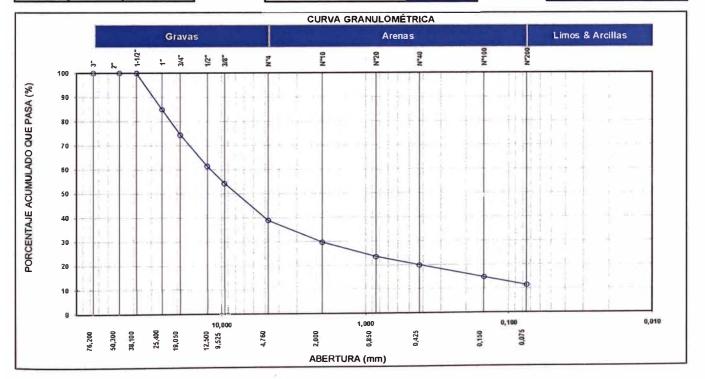
Nº40

Nº100

N°200

ם	iaue	Depósit	o de l	Relave 2

Partículas >3" (%)	
Grava (%)	61,0
Arena (%)	27,5
Limos y Arcillas (%)	11,4


Limites de Atterberg:	
LL (%)	22
LP (%)	14
IP (%)	. 8

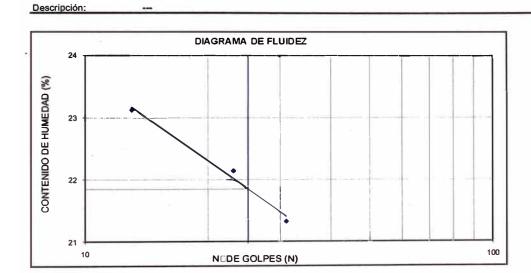
sucs	GP-GC

D₁₀ D₃₀ 2,05 D₆₀ 11,97 Cu

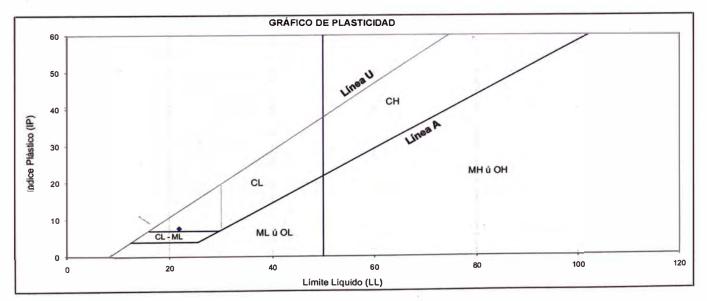
Humedad (%)	7,0

Grava pobremente gradada con arcilla y arena

Observación:


Realizado por:	Ingresado por:		Revisado por:	Nº de informe:
BT/EH		CJ		JA

LÍMITES DE ATTERBERG


ASTM - D4318

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A.C. Ubicación del proyecto: Cerro de Pasco Cód, de muestra: CA202 Solicitado por: LRS Nº de muestra: M-1 Nº de proyecto: 1 0,0-2,2 Profundidad (m): Nº de Informe de Lab: P Zona: Dique Depósito de Relave 2 Fecha: 22/03/2012

Límites d	e Atterberg
LL (%)	22
LL (%) LP(%)	14
IP(%)	8

Observación:

Realizado por:	Ingresado por:		Revisado por:		Nº de informe:
вт		CJ		JA	

LABORATORIO GEOTÉCNICO

22/03/2012

Solicitado por: LRS

Nº de proyecto: 1

N° de Informe de Lab: P

Fecha:

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: CA-202

Nº de muestra: M-2

Profundidad (m):

Abertura

(mm)

76,200

50,300

38,100

25,400

19,050

12.500

9,525

4,760

2,000

0,850

0,425

0.150

2,2-5,5 Zona:

Descripción:

Tamiz

3"

2"

1 1/2"

1"

3/4"

1/2"

3/8"

Nº4

Nº10

N°20

Nº40

Nº100

Dique Depósito de Relave 2

% Acumulado

que pasa

100,0

100,0

90,0

78.6

73,6

65.8

60,2

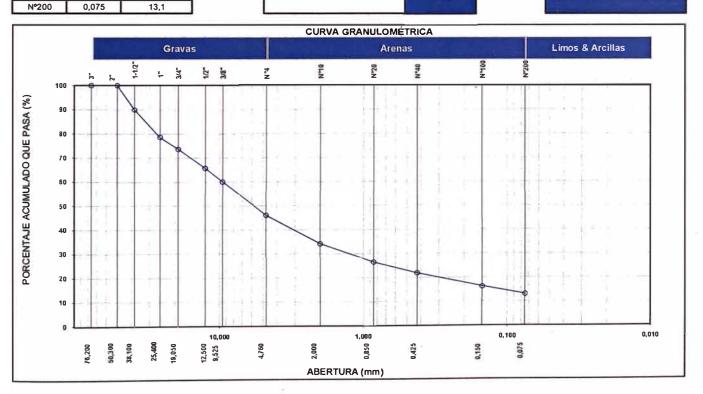
46,1

34,2 26,5

21,9

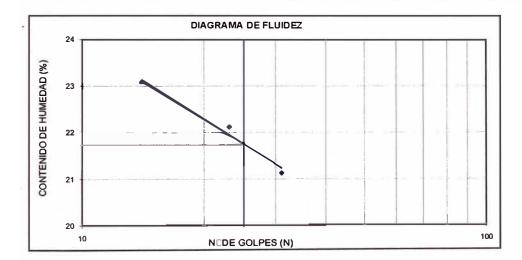
16,3

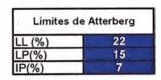

Partículas >3" (%)	
Grava (%)	53,9
Arena (%)	33,0
Limos y Arcillas (%)	13,1

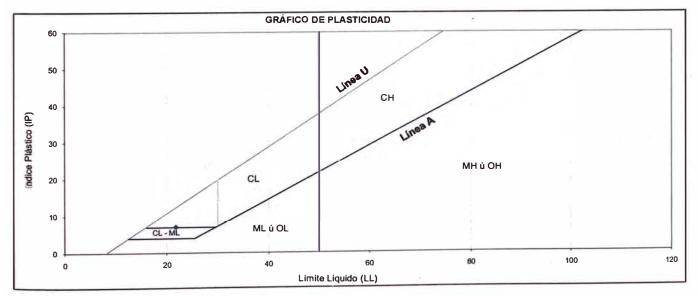

Límites de Atterberg:		
LL (%)	. 22	
LP (%)	15	
IP (%)	. 7	

SUCS GC

Humedad (%)	7,8
-------------	-----


Observación:


Realizado por:	Ingresado por:		Revisado por:		Nº de informe:
BT/EH		CJ		JA	


LÍMITES DE ATTERBERG ASTM - D4318

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A.C. Ubicación del proyecto: Cerro de Pasco Cód. de muestra: CA-202 Solicitado por: LRS M-2 Nº de muestra: Nº de proyecto: 1 Profundidad (m): 2,2-5,5 Nº de Informe de Lab: P Zona: Dique Depósito de Relave 2 Fecha: 22/03/2012 Descripción:

Observación:

Realizado por:	Ingresado por:		Revisado por:		Nº de informe:
noonzado por:	ingrounds por	CJ		JA	
BI					

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ASTM - D422

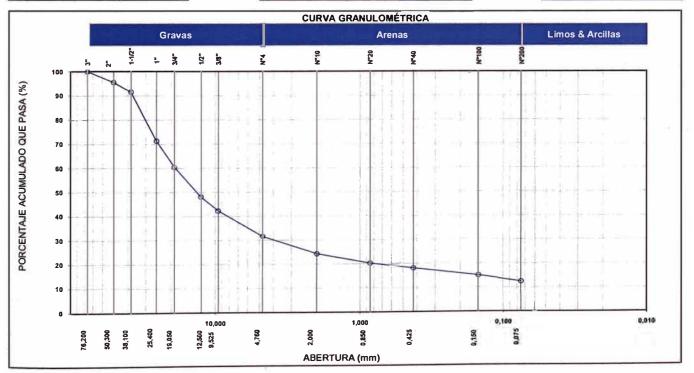
LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A.C Cerro de Pasco Ubicación del proyecto: Cód. de muestra: CA-210 Solicitado por: LRS M-1 Nº de muestra: Nº de proyecto: 1 Profundidad (m): Nº de Informe de Lab: P Zona: Depósito de Relave 2 Fecha: 31/03/2012

Descripción: ---

Tamiz	Abertura (mm)	% Acumulado que pasa
3"	76,200	100,0
2"	50,300	95,6
1 1/2"	38,100	91,6
1"	25,400	71,4
3/4"	19,050	60,4
1/2"	12,500	48,1
3/8"	9,525	42,3
Nº4	4,760	31,7
Nº10	2,000	24,4
N°20	0,850	20,4
N°40	0,425	18,1
Nº100	0,150	15,0
N°200	0,075	12,5

Partículas >3" (%)	
Grava (%)	68,3
Arena (%)	19,2
Limos y Arcillas (%)	12,5


Limites de Atterberg:		
LL (%)	- 21	
LP (%)	15	
IP (%)	. 6	

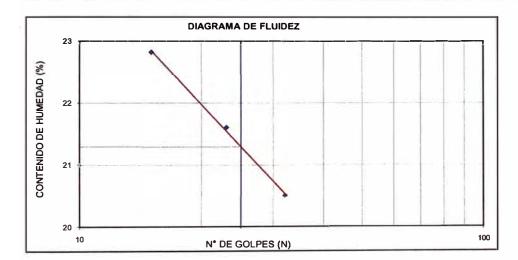
C-GM

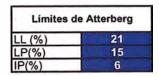
D ₁₀	
D ₃₀	3,88
D ₆₀	3,88 18,78
Cu	
Сс	

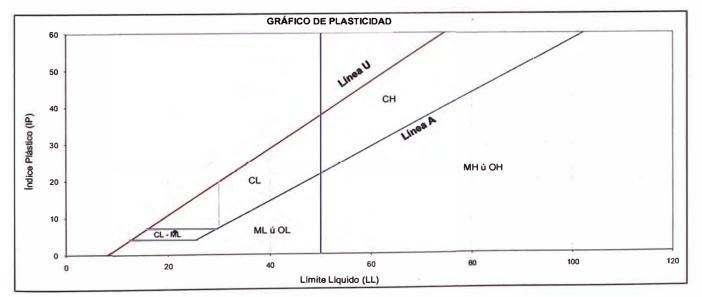
Humedad (%)	9,5

Grava arcillo-limosa con arena

Observación:


Realizado por:	Ingresado por:	Revisado por:		Nº de informe:
вт	CJ		J	


LÍMITES DE ATTERBERG


ASTM - D4318

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A.C Ubicación del proyecto: Cerro de Pasco Cód. de muestra: CA-210 Solicitado por: LRS Nº de muestra: M-1 Nº de proyecto: 1 Profundidad (m): Nº de Informe de Lab: P Zona: Fecha: 24/03/2012 Depósito de Relave 2 Descripción:

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante.

Presenta gravillas que se disgregan.

Realizado por:	Ingresado por:		Revisado por:		N° de informe:
Measure por		CJ		JA	
BI					

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: Nº de muestra:

CA-306

M-1

Nº de proyecto: 1

Profundidad (m):

1,1-2,1

Nº de Informe de Lab: P

Solicitado por: LRS

Zona:

Dique Depósito de Relave 3

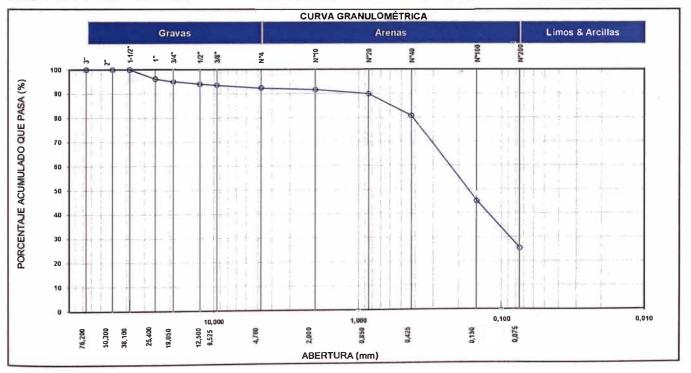
Fecha:

22/03/2012

es			

Tamiz	Abertura (mm)	% Acumulado que pasa
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	96,3
3/4"	19,050	95,1
1/2"	12,500	94,1
3/8"	9,525	93,6
N°4	4,760	92,4
Nº10	2,000	91,7
N°20	0,850	89,9
N°40	0,425	80,8
Nº100	0,150	45,1
Nº200	0,075	25,4

Partículas >3" (%)	
Grava (%)	7,6
Arena (%)	67,0
Limos y Arcillas (%)	25,4


D ₁₀	Tanger Land
D ₃₀	0,09
D ₆₀	0,09 0,23
Cu	
Сс	

Limites de Atterberg:	
LL (%)	NP
LP (%)	NP
IP (%)	NP

14,4 Humedad (%)

Arena limosa

Observación:

Realizado por:	Ingresado por:		Revisado por:		Nº de informe:
BT/EH		CJ		JA	

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.

Ubicación del proyecto:

Cérro de Pasco

Cód. de muestra:

Mezcla(CA-a) M-1, 2

Solicitado por: LRS

Nº de muestra:

Nº de proyecto: 1

Profundidad (m):

0,00-2,00

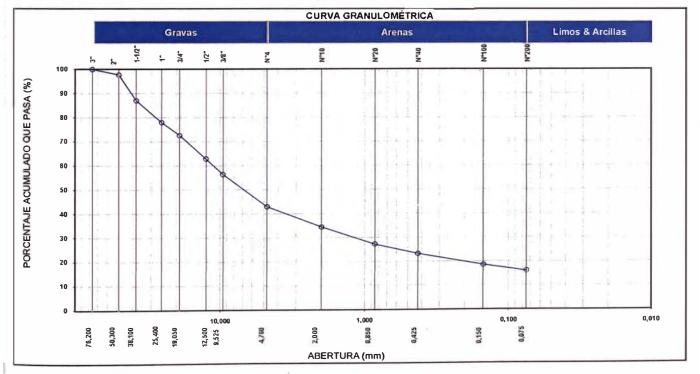
Nº de Informe de Lab: P

Zona: Dique lateral de depósitos de relaves 1 y 2 Fecha: 13/04/2012

Descripción: --

Tamiz	Abertura (mm)	% Acumulado que pasa		
3*	76,200	100,0		
2"	50,300	97,7		
1 1/2"	38,100	87,0		
1"	25,400	78,0		
3/4"	19,050	72,6		
1/2"	12,500	62,9		
3/8"	9,525	56,4		
N°4	4,760	43,0		
Nº10	2,000	34,5		
Nº20	0,850	27,3		
Nº40	0,425	23,3		
N°100	0,150	18,6		
Nº200	0,075	16,1		

Partículas >3" (%)	
Grava (%)	57,0
Arena (%)	27,0
Limos y Arcillas (%)	16,1

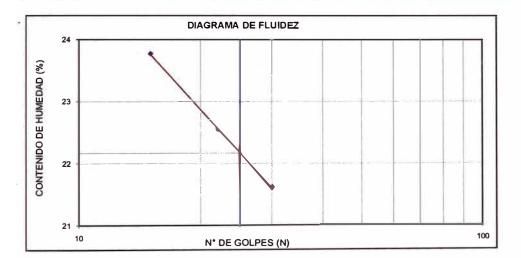

D ₁₀	
D ₃₀	1,17
D ₆₀	1,17 11,16
Cu	
Сс	

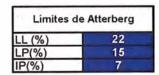
LL (%)	-22
LP (%)	15
IP (%)	. 7

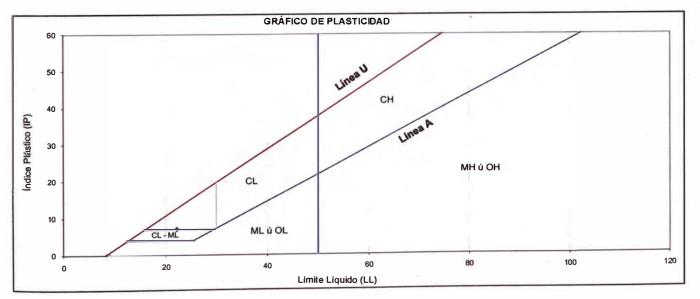
Humedad (%)

Grava arcillosa con arena

Observación:


Las muestras han sido proporcionadas e identificadas por el solicitante. Suelo residual gravas deleznable.


Realizado por:	Ingresado por:		Revisado por:		Nº de informe:
ВТ		Cl		JA	


LÍMITES DE ATTERBERG ASTM - D4318

LABORATORIO GEOTÉCNICO

Nombre del proyecto:	Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.		
Cliente:	Pan American Silver S.A.		
Ubicación del proyecto:	Cerro de Pasco		
Cód. de muestra:	Mezda(CA-a) M-1, 2	Solicitado por: LRS	
Nº de muestra:	***	Nº de proyecto: 1	
Profundidad (m):	0,00-2,00	N° de Informe de Lab: P	
Zona:	Dique lateral de depósitos de relaves 1 y 2	Fecha: 13/04/2012	
Descripción:			

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C

Ubicación del proyecto:

Cód. de muestra:

Mezcla(Desmonte de mina)

Solicitado por: LRS

de muestra:

M-1, M-2

Nº de proyecto: 1

Profundidad (m): Supericial

Número Lab: P

Zona:

Desmonte de Mina

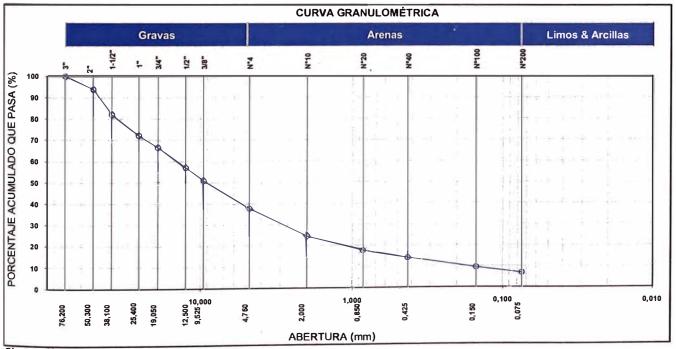
Cerro de Pasco

Fecha: 26/03/2012

Descripción:

Tamiz	Abertura (mm)	% Acumulado
3*	76,200	100,0
2"	50,300	93,9
1 1/2"	38,100	82,0
1"	25,400	72,3
3/4"	19,050	66,5
1/2"	12,500	57,0
3/8"	9,525	51,0
Nº4	4,760	37,9
N°10	2,000	24,6
N°20	0,850	17,8
N°40	0,425	14,3
N°100	0,150	9,6
Nº200	0,075	7,0

Partículas >3" (%)	
Grava (%)	62,1
Arena (%)	30,9
Limos y Arcillas (%)	7,0


D ₁₀	0,16
D ₃₀	2,84
D ₆₀	14,43
Cu	87,64
Cc	3,39

Límites de Atterberg:		
LL (%)	NP	
LP (%)	NP	
IP (%)	NP	

Humedad (%) 4,4

SUCS GP-GM

Grava pobremente gradada con limo y arena

Observación:

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

PR-101

Solicitado por: LRS

Nº de muestra:

Nº de proyecto: SPT-1 / M-1

Profundidad (m): 3,70-4,15

Número Lab: P

Zona:

Dique de depósito de relaves 1

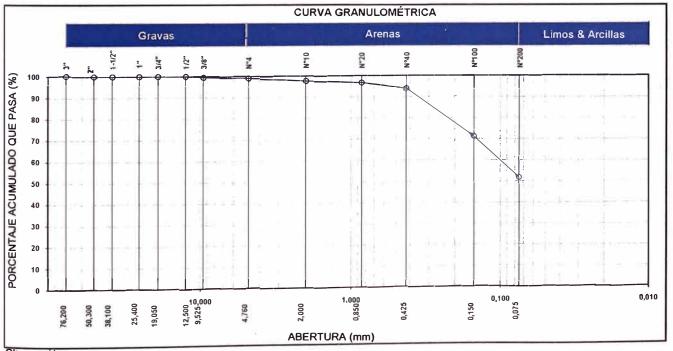
Fecha: 11/04/2012

Descripción:

	Tamiz	Abertura (mm)	% Acumulado
Γ	3"	76,200	100,0
Γ	2"	50,300	100,0
Γ	1 1/2"	38,100	100,0
	1"	25,400	100,0
L	3/4"	19,050	100,0
Г	1/2"	12,500	100.0

2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	100,0
3/4"	19,050	100,0
1/2"	12,500	100,0
3/8"	9,525	99,5
N°4	4,760	99,0
N°10	2,000	97,7
N°20	0,850	96,7
Nº40	0,425	94,0
N°100	0,150	71,2
Neson	0.075	51.8

Partículas >3" (%)	
Grava (%)	1,0
Arena (%)	47,2
Limos y Arcillas (%)	51,8


D ₁₀	
D ₃₀	
D ₆₀	0,10
Cu	
Сс	

Limites de Atterberg:		
LL (%)	NP	
LP (%)	NP	
IP (%)	NP	

SUCS	ML
SUCS	ML

Limo de baja plasticidad arenoso

Observación:

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

PR-101

Solicitado por: LRS

Nº de muestra:

Tubo Shelby / M-2

Nº de proyecto: 1

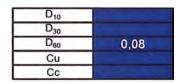
Profundidad (m): 5,20-5,80

Número Lab: P

Zona:

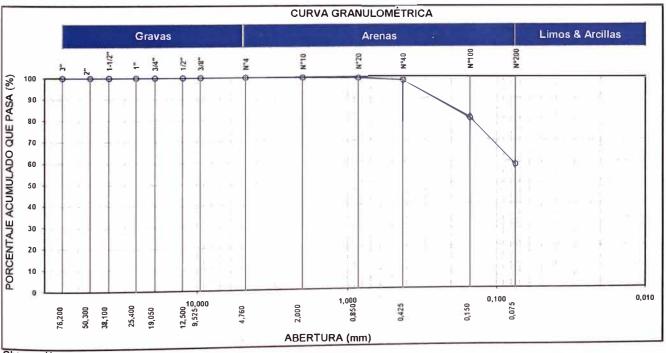
Dique de depósito de relaves 1

Fecha: 11/04/2012


Descripción:

Tamiz	Abertura (mm)	% Acumulado
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	100,0
3/4"	19,050	100,0
1/2"	12,500	100,0
3/8"	9,525	100,0
Nº4	4,760	100,0
Nº10	2,000	99,9
N°20	0,850	99,6
N°40	0,425	98,4
N°100	0,150	80,3
N°200	0,075	58,2

Partículas >3" (%)	
Grava (%)	
Arena (%)	41,8
Limos y Arcillas (%)	58,2


Limites de Atterberg:	
LL (%)	NP
LP (%)	NP
IP (%)	NP

Humedad (%)	20,4
-------------	------

Limo de baja plasticidad arenoso

Observación:

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

PR-101

Solicitado por: LRS

Nº de muestra: M-5

Nº de proyecto: 1

Profundidad (m): 22,00-22,60

Número Lab: P

Zona:

Dique de depósito de relaves 1

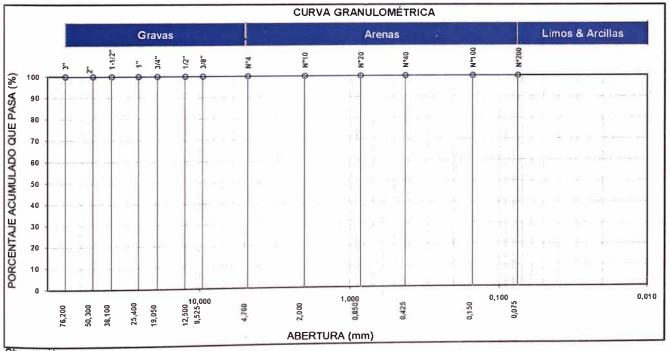
Fecha: 11/04/2012

De

escri	pción:	_

Tamiz	Abertura (mm)	% Acumulado
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	100,0
3/4"	19,050	100,0
1/2"	12,500	100,0
3/8"	9,525	100,0
Nº4	4,760	100,0
Nº10	2,000	100,0
Nº20	0,850	100,0
Nº40	0,425	100,0
Nº100	0,150	100,0
N°200	0,075	100,0

Particulas >3" (%)	
Grava (%)	
Arena (%)	
Limos y Arcillas (%)	100,0


D ₁₀	
D ₃₀	
D ₆₀	
Cu	
Cc	

Limites de Atterberg:	
LL (%)	69
LP (%)	24
IP (%)	45

ı	Humedad (%)	

SUCS CH Arcilla de alta plasticidad

65.0

Observación:

LÍMITES DE ATTERBERG ASTM - D4318

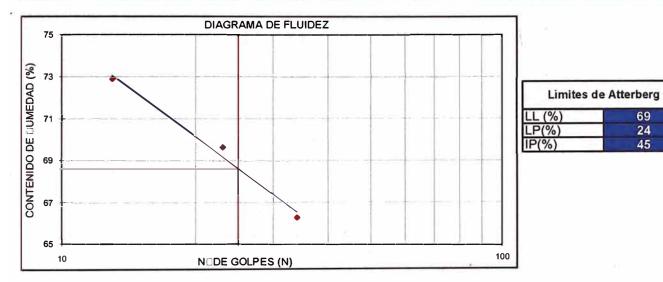
LABORATORIO GEOTÉCNICO

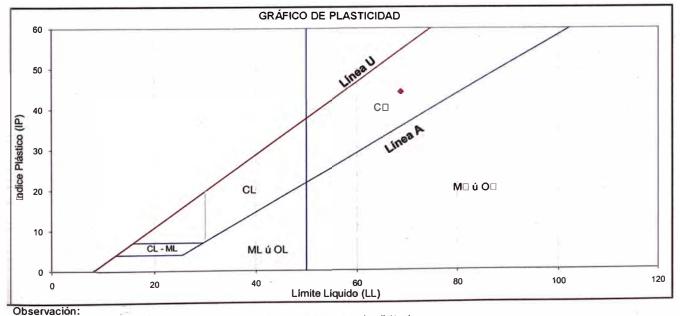
Solicitado por: LRS

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Ubicación del proyecto: Cerro de Pasco


Cód. de muestra: PR-101


N° de muestra: M-5 N° de proyecto: 1

Profundidad (m): 22,00-22,60 Número Lab: P

Zona: Dique de depósito de relaves 1 Fecha: 12/04/2012

Descripción: -

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

№ de muestra:

PR-101

Solicitado por: LRS

SPT-4 / M-6

Nº de proyecto: 1

Profundidad (m): 25,60-26,05

51 1 47 111 0

Número Lab: P

Zona:

Dique de depósito de relaves 1

Fecha: 11/04/2012

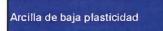
Descripción:

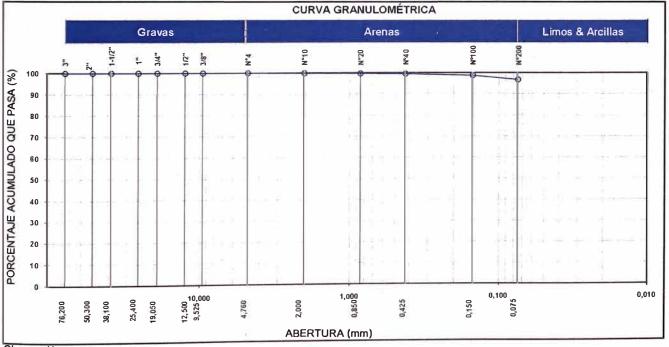
Tamiz	Abertura (mm)	% Acumulado
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	100,0
3/4"	19,050	100,0
1/2"	12,500	100,0
3/8"	9,525	100,0
N°4	4,760	100,0
Nº10	2,000	99,9
N°20	0,850	99,7
N°40	0,425	99,6
Nº100	0,150	98,8
N°200	0,075	96,8

Partículas >3" (%)	
Grava (%)	
Arena (%)	3.2
Limos y Arcillas (%)	96,8

r morrial (70)	U, E	Ou
Limos y Arcillas (%)	96,8	Cc
Limites de Atterberg:		
11 (0/)		

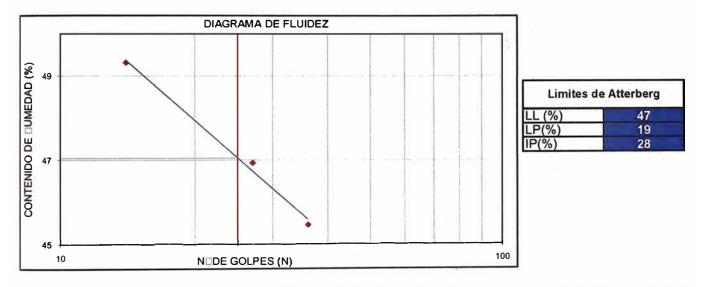
19 28

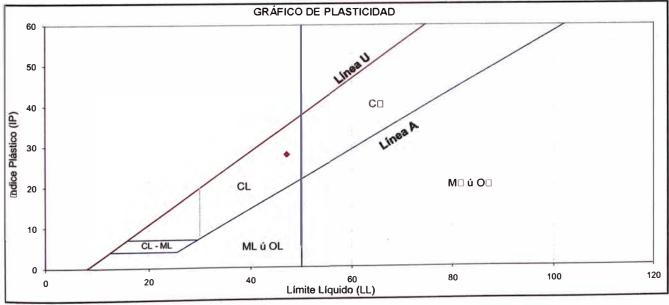

SUCS	CL


LP (%)

IP (%)

39,9




Observación:

LÍMITES DE ATTERBERG ASTM - D4318

LABORATORIO GEOTÉCNICO

Nombre del proyecto:	Revisión de Factibilidad Cierre Depósitos de	Relaves 1,2 y 3.	
Cliente:	Pan American Silver S.A.		
Ubicación del proyecto:	Cerro de Pasco		
Cód. de muestra:	PR-101	Solicitado por: LRS	
Nº de muestra:	SPT-4 / M-6	Nº de proyecto: 1	
Profundidad (m):	25,60-26,05	Número Lab: P	
Zona:	Dique de depósito de relaves 1	Fecha: 12/04/2012	
Descripción:		9	

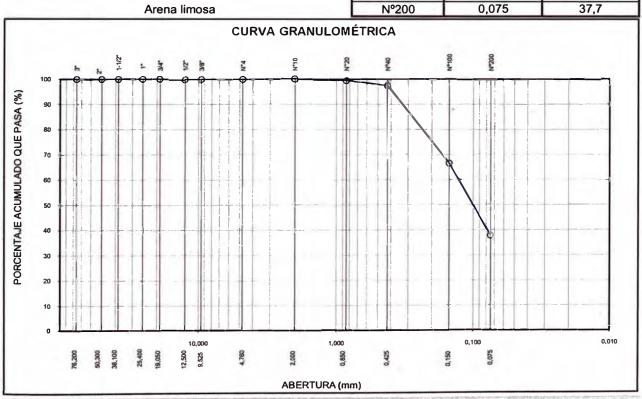
Observación:

37,7

LABORATORIO GEOTÉCNICO

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Pan American Silver S.A. Cliente:


Nº de muestra / Prof. (m): PR-201 / M-1 N° Informe Lab : A

Descripcion / Zona: Dique de depósito de relaves 2 N° de Proyecto: 1(PEVC00276)

Solicitado por: LRS Fecha: 21-abr-12

Ubicación: Cerro de Pasco

				Tamiz	Abertura	% Acumulado
Partículas >3" (%):				Tarriiz	(mm)	que pasa
		D10:		3"	76,200	100,0
Grava (%):		D30:		2"	50,300	100,0
Arena (%):	62,3	D60:	0,13	1 1/2"	38,100	100,0
Limos y Arcillas (%):	37,7	Cu:		1"	25,400	100,0
		Cc:		3/4"	19,050	100,0
Límites de Atterberg:				1/2"	12,500	100,0
	LL (%): NP)		3/8"	9,525	100,0
	LP (%): NP)		N°4	4,760	100,0
	IP (%): NP)		Nº10	2,000	99,9
				N°20	0,850	99,5
Humedad (%):	21,2			Nº40	0,425	97,4
Clasificación SUCS:	SM			Nº100	0,150	66,6

Notas: Las muestras han sido proporcionadas e identificadas por el solicitante.

Laboratorio: Revisado por: Ingresado por: Realizado por: JCA **CSM** NCh

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

PR-201

Solicitado por: LRS

Nº de muestra: M-3

Nº de proyecto: 1

Profundidad (m): 7,8-7,95

Número Lab: P

Zona:

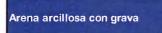
Dique de Relave 2

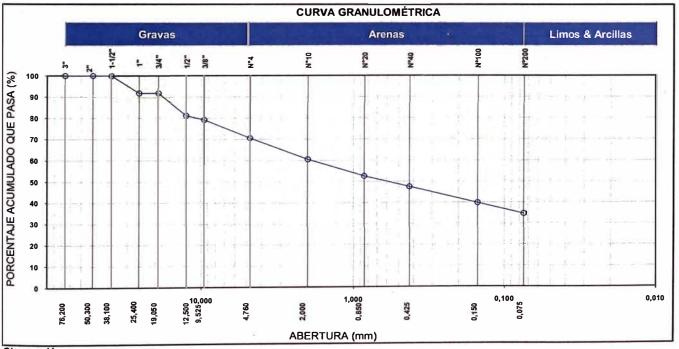
Fecha: 09/04/2012

D

Descripción:	
--------------	--

Tamiz	Abertura (mm)	% Acumulado
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	92,0
3/4"	19,050	92,0
1/2"	12,500	81,3
3/8"	9,525	79,3
Nº4	4,760	70,7
Nº10	2,000	60,6
N°20	0,850	52,6
Nº40	0,425	47,5
Nº100	0,150	39,9
N°200	0,075	34,9


Partículas >3" (%)	
Grava (%)	29,3
Arena (%)	35,8
Limos y Arcillas (%)	34,9


Límites de Atterberg:			
LL (%)	32		
LP (%)	17		
IP (%)	15		

SUCS	sc

D ₁₀	
D ₃₀	
D ₆₀	1,87
Cu	
Cc	

Humedad (%)	17,5

Observación:

LIMITES DE ATTERBERG **ASTM - D4318**

LABORATORIO GEOTÉCNICO

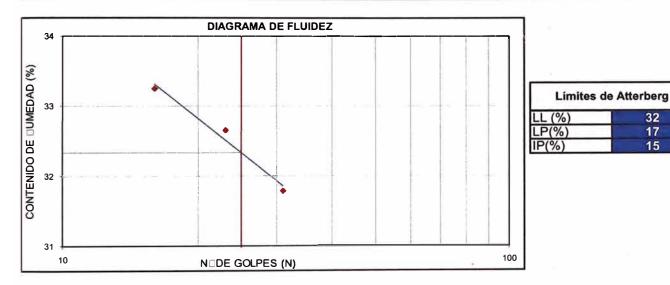
32

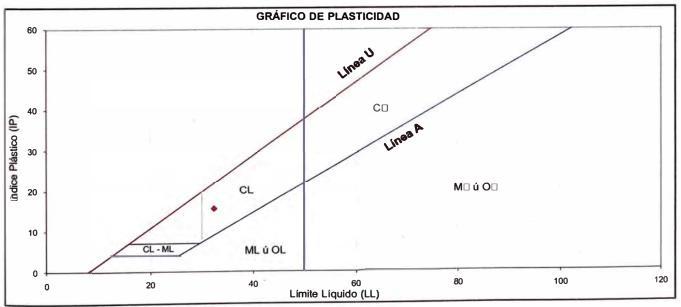
17 15

Solicitado por: LRS

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.C


Ubicación del proyecto: Cerro de Pasco


Cód. de muestra: PR-201

Nº de muestra: M-3 Nº de proyecto: 1 Profundidad (m): 7,8-7,95 Número Lab: P

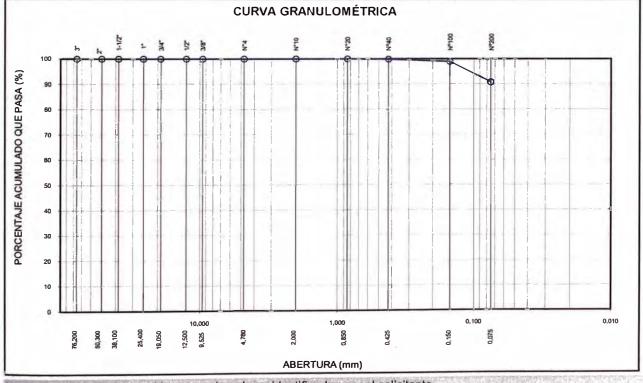
Zona: Dique de Relave 2 Fecha: 26/03/2012

Descripción:

LABORATORIO GEOTÉCNICO

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.


N° de muestra / Prof. (m): PR-301 / M-5 / 7,75 - 8,40 N° Informe Lab : A

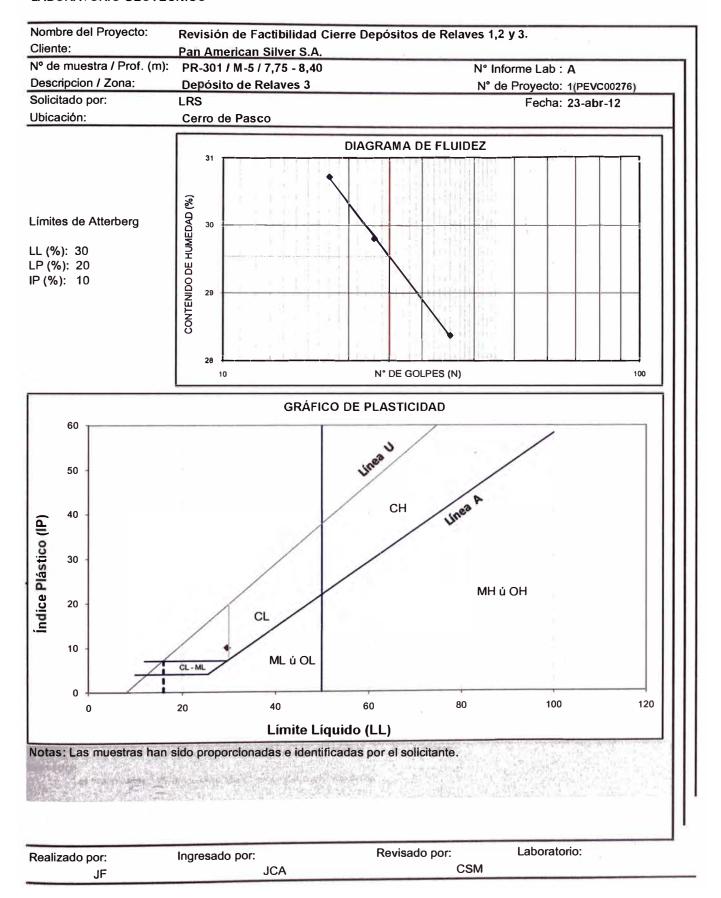
Descripcion / Zona: Depósito de Relaves 3 N° de Proyecto: 1(PEVC00276)

Solicitado por: LRS Fecha: 23-abr-12

Ubicación: Cerro de Pasco

Partículas >3" (%):	-		Tamiz	Abertura (mm)	% Acumulado que pasa
		D10:	3"	76,200	100,0
Grava (%):		D30:	2"	50,300	100,0
Arena (%):	9,3	D60:	1 1/2"	38,100	100,0
Limos y Arcillas (%):	90,7	Cu:	1"	25,400	100,0
		Cc:	3/4"	19,050	100,0
Límites de Atterberg:			1/2"	12,500	100,0
	LL (%): 30	0	3/8"	9,525	100,0
	LP (%): 20	0	N°4	4,760	100,0
	IP (%): 10	0	Nº10	2,000	100,0
			N°20	0,850	100,0
Humedad (%):	35,6		Nº40	0,425	99,9
Clasificación SUCS:	CL		Nº100	0,150	98,9
Arcill	a de baja plasti	cidad	N°200	0,075	90,7

Notas: Las muestras han sido proporcionadas e identificadas por el solicitante.


Realizado por: Ingresado por: Revisado por: Laboratorio:

JET JCA CSM

LÍMITES DE ATTERBERG

ASTM - D4318

LABORATORIO GEOTECNICO

LABORATORIO GEOTÉCNICO

22/03/2012

Solicitado por: LRS

Nº de proyecto: 1

Nº de informe de Lab: P

Fecha:

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: PR-301/SPT-5

Abertura

(mm)

76,200

50,300

38,100

25,400

19,050

12,500

9,525

4,760

2,000

0,850

0,425

0.150

Nº de muestra: M-7

% Acumulado

que pasa

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

100,0

96,4

Profundidad (m):10,0-10,45

Zona: Depósito de Relave 3

Descripción:

Tamiz

3"

2"

1 1/2"

1"

3/4"

1/2"

3/8"

Nº4

Nº10

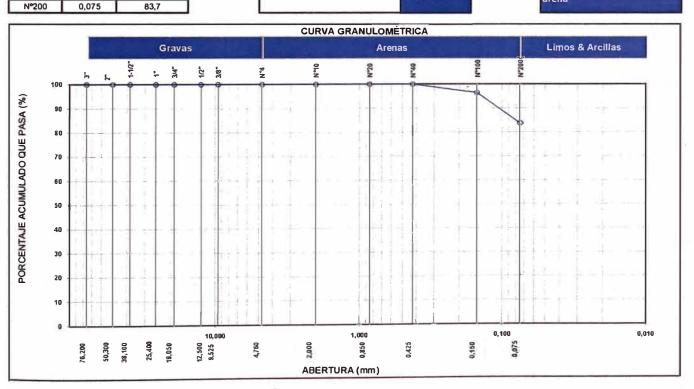
N°20

N°40

Nº100

Partículas >3" (%)	***
Grava (%)	

Limos y Arcillas (%)


Limites de Atterberg:	
LL (%)	23
LP (%)	16
IP (%)	. 7

CL/CL-ML **SUCS**

D ₁₀	DESCRIPTION OF THE PARTY.
D ₃₀	MARKET STATE
D ₆₀	
Cu	SHIP OF DE

Humedad (%)	30,5
110111111111111111111111111111111111111	

Arcilla de baja plasticidad con arena

Observación:

Realizado por:	Ingresado por:	Revisado por:		Nº de informe:
ВТ/ЕН		CJ	JA	

LÍMITES DE ATTERBERG

ASTM - D4318

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco

Depósito de Relave 3

Cód. de muestra:

PR-301/SPT-5

Nº de muestra:

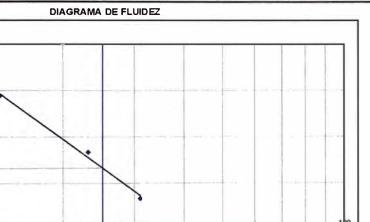
M-7

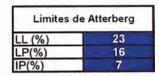
Nº de proyecto: 1

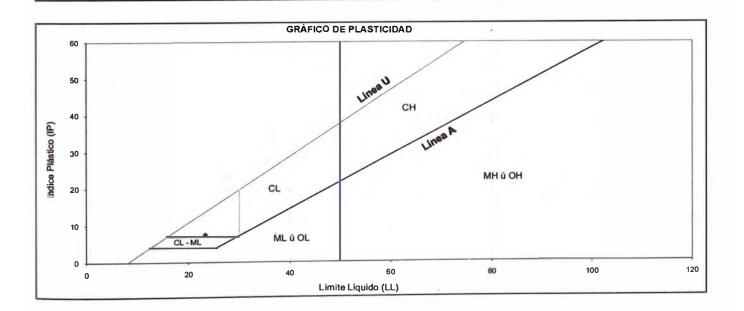
Profundidad (m): Zona:

10,0-10,45

Nº de Informe declata: 22/03/2012


Solicitado por: LRS


26


CONTENIDO DE HUMEDAD (%)

22

Descripción:

Observación:

Realizado por:	Ingresado por:		Revisado por:		N° de informe:
O.T.		CJ	JA		

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: Nº de muestra:

PR-301/SPT-7

Solicitado por: LRS

Nº de proyecto: 1 Nº de Informe de Lab: P

Profundidad (m):13,6-15,0 Zona:

Depósito de Relave 3

38,6

Fecha:

22/03/2012

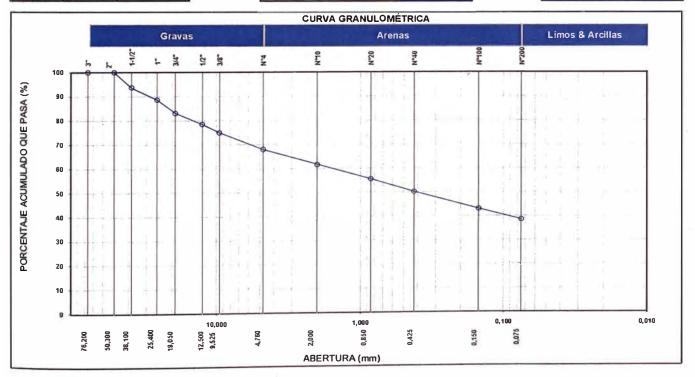
Descripción:

N°200

Tamiz	Abertura (mm)	% Acumulado que pasa
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	93,8
1*	25,400	88,7
3/4"	19,050	83,2
1/2"	12,500	78,6
3/8"	9.525	75,1
Nº4	4,760	68,1
Nº10	2,000	61,7
Nº20	0,850	55,6
Nº40	0,425	50,2
N°100	0,150	43.0

0,075

Partículas >3" (%)	
Grava (%)	31,9
Arena (%)	29,5
Limos y Arcillas (%)	38,6


D ₁₀	
D ₃₀	THE REAL PROPERTY.
D ₆₀	1,57
Cu	
Сс	

LL (%)	32
LP (%)	17
IP (%)	15

Humedad (%) 14,8

SUCS GC

Grava arcillosa con arena

Realizado por:	Ingresado por:		Revisado por:		Nº de informe:
BT/EH		CJ		JA	
BIJEII					

LÍMITES DE ATTERBERG

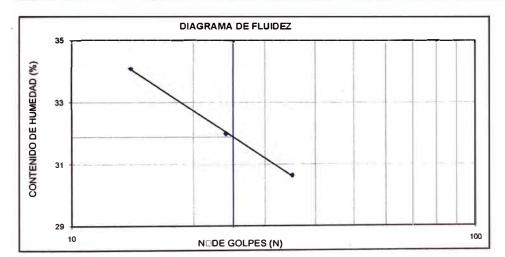
ASTM - D4318

LABORATORIO GEOTÉCNICO

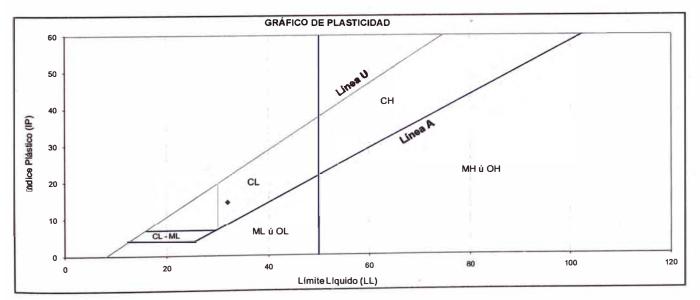
Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco


Cód. de muestra: PR-301/SPT-7 Solicitado por: LRS

Nº de muestra: M-10 Nº de proyecto: 1


Profundidad (m): 13,6-15,0 Nº de Informe de Lab: P

Zona: Depósito de Relave 3 Fecha: 22/03/2012

Descripción: ---

Límites d	e Atterberg
LL (%)	32
LL (%) LP(%)	17
IP(%)	15

Observación:

Realizado por:	Ingresado por:		Revisado por:		Nº de informe:
realizado por:	ingresado por.	61		JA	
ВТ		CJ			

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C

Ubicación del proyecto:

Cód. de muestra:

PR-302

Cerro de Pasco

Solicitado por: LRS

Nº de muestra: M-1

Nº de proyecto: 1

Profundidad (m): 1.50-1.95

Número Lab: P

Zona:

Dique Depósito de Relave 3

Fecha: 09/04/2012

Descripción:

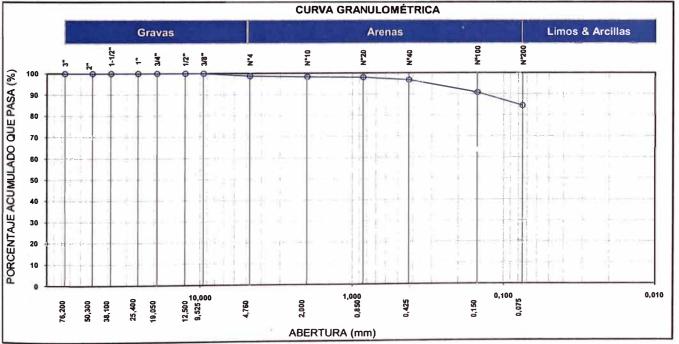
N°200

Tamiz	Abertura (mm)	% Acumulado
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	100,0
3/4"	19,050	100,0
1/2"	12,500	100,0
3/8"	9,525	100,0
N°4	4,760	98,7
N°10	2,000	98,3
N°20	0,850	98,0
N°40	0,425	96,7
Nº100	0,150	90,8

0,075

84,6

Partículas >3" (%)	
Grava (%)	1.3
Arena (%)	14,2
Limos y Arcillas (%)	84,6


D ₁₀	
D ₃₀	
D ₆₀	
Cu	
Сс	

Límites de Atterberg:	
LL (%)	23
LP (%)	16
IP (%)	7

Humedad (%)	36,5
-------------	------

SUCS CL-ML

Arcilla limosa con arena

Observación:

Realizado por:	Ingresado por:	Revisado por:	N° de informe:
ВТ	CJ	JA	PE-024-12

LÍMITES DE ATTERBERG ASTM - D4318

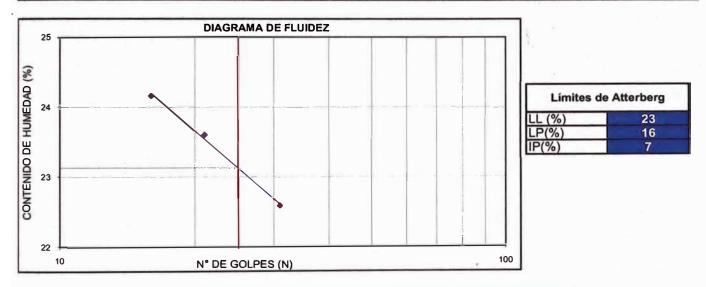
LABORATORIO GEOTÉCNICO

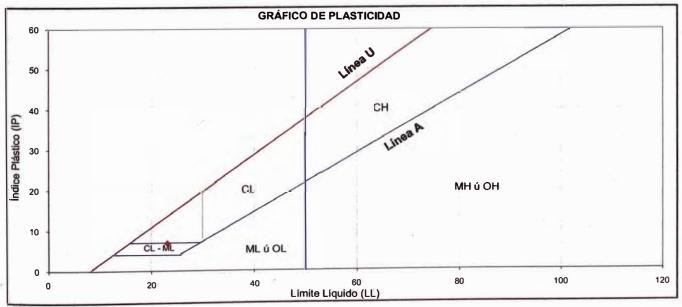
Solicitado por: LRS

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.C

Ubicación del proyecto: Cerro de Pasco


Cód. de muestra: PR-302


N° de muestra: M-1 N° de proyecto: 1

Profundidad (m): 1.50-1.95 Número Lab: P

Zona: Dique Depósito de Relave 3 Fecha: 26/03/2012

Descripción: --

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

PR-302

Solicitado por: LRS

muestra:

M-3

Profundidad (m): 5,3-5,95

Nº de proyecto: 1

Número Lab: P

Dique Depósito de Relave 3

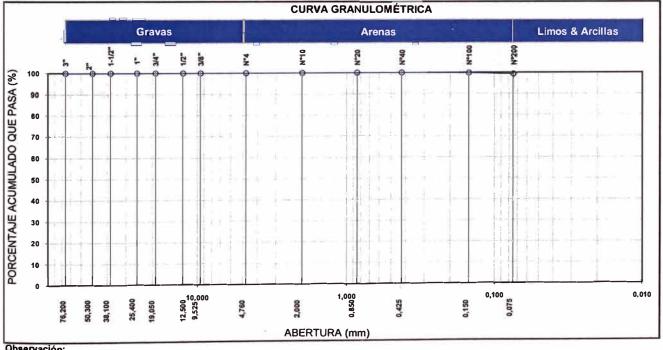
Fecha: 09/04/2012

D

escripción:	
escripcion.	

Tamiz	Abertura (mm)	% Acumulado
3"	76,200	100,0
2"	50,300	100,0
1 1/2"	38,100	100,0
1"	25,400	100,0
3/4"	19,050	100,0
1/2"	12,500	100,0
3/8"	9,525	100,0
Nº4	4,760	100,0
Nº10	2,000	100,0
N°20	0,850	100,0
Nº40	0,425	99,9
Nº100	0,150	99,9
N°200	0,075	99,4

Partículas >3" (%)	
Grava (%)	
Arena (%)	0,6
Limos y Arcillas (%)	99.4

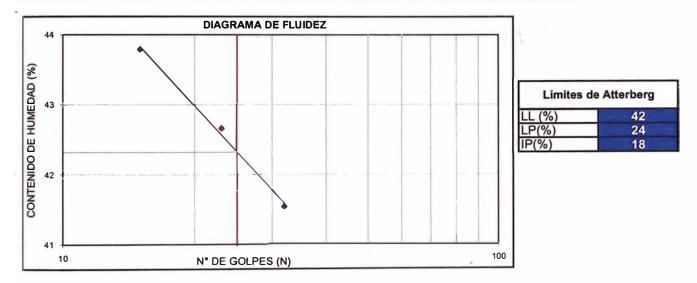

D ₁₀	
D ₃₀	
D ₆₀	
Cu	July 1
Сс	

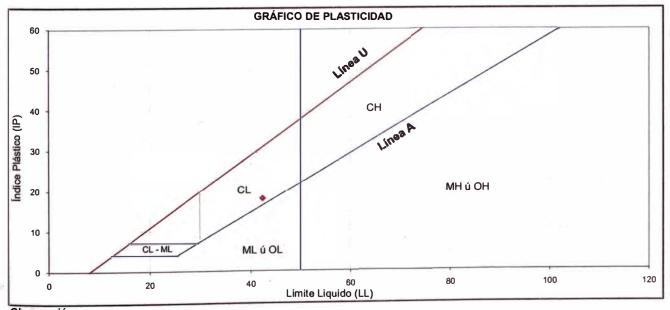
Límites de Atterberg:	
LL (%)	42
LP (%)	24
IP (%)	18

54,

SUCS CL

Arcilla de baja plasticidad




Observación:

LÍMITES DE ATTERBERG ASTM - D4318

LABORATORIO GEOTÉCNICO

Nombre del proyecto:	Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.			
Cliente:	Pan American Silver S.A.C			
Ubicación del proyecto:	Cerro de Pasco			
Cód. de muestra:	PR-302	Solicitado por: LRS		
Nº de muestra:	M-3	Nº de proyecto: 1		
Profundidad (m):	5,3-5,95	Número Lab: P		
Zona:	Dique Depósito de Relave 3	Fecha: 26/03/2012		
Descripción:	·	,		

Contenido de Humedad

Contenido de Humedad ASTM - D2216

LABORATORIO GEOTÉCNICO

Nombre del proyecto:	Revisión de Factibilidad Cierre Depós	itos de Relaves 1,2 y 3.			
Cliente:	Pan American Silver S.A.C.				
Ubicación del proyecto:	Cerro de Pasco				
Cód. de muestra:	CA-202 Solicitado por: LRS				
Nº de muestra:	M-2	Nº de proyecto: 1			
Profundidad (m):	2,2-5,5	Nº de Informe de Lab: P			
Zona:	Dique Depósito de Relave 2	Fecha: 22/03/2012			
Descripción:		F.			

N° de Prueba	3	5	2
(1) Peso Recip + Suelo Húmedo (g)	664,6	646,4	
(2) Peso Recip + Suelo Seco (g)	615,4	597,6	PASI.
(3) Peso Recipiente (g)	78,2	73,3	149
(4) Peso del Agua (1) - (2)	49,2	48,8	
(5) Peso Suelo Seco (2) - (3)	537,2	524,3	
(6) Humedad (4/5)*100 %	9,2	9,3	
Humedad Promedio (%)	1	9,2	

Observación:

Realizado por:	Ingresado por:	Revisado por:	Nº de Informe:	
BT/EH	CJ	JA	U-1	

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra:

CA-306

Solicitado por: LRS

Nº de muestra: Profundidad (m): D-1 1,10 Nº de proyecto: 1

Nº de Informe de Lab: P

Zona:

Dique Depósito de Relave 3

Fecha: 22/03/2012

Descripción:

N° de Prueba		j	3
(1) Peso Recip + Suelo Húmedo (g)	746,7	734,3	
(2) Peso Recip + Suelo Seco (g)	622,4	611,8	
(3) Peso Recipiente (g)	79,0	75,5	
(4) Peso del Agua (1) - (2)	124,3	122,5	
(5) Peso Suelo Seco (2) - (3)	543,4	536,3	
(6) Humedad (4/5)*100 %	22,9	22,8	
Humedad Promedio (%)	100	22,9	

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante.

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
BT	CJ	JA	

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A. Ubicación del proyecto: Cerro de Pasco PR-101 Cód. de muestra: Solicitado por: LRS Nº de muestra: SPT-3 / M-3 Nº de proyecto: 1 Profundidad (m): 10,90-11,35 N° de Informe de Lab: P Zona: Dique de depósito de relaves 1 Fecha: 12/04/2012 Material orgánico Descripción:

N° de Prueba	1	2	3
(1) Peso Recip + Suelo Húmedo (g)	379,9	387,3	
(2) Peso Recip + Suelo Seco (g)	261,6	266,7	
(3) Peso Recipiente (g)	76,4	76,8	
(4) Peso del Agua (1) - (2)	118,3	120,6	
(5) Peso Suelo Seco (2) - (3)	185,2	189,9	
(6) Humedad (4/5)*100 %	63,9	63,5	
Humedad Promedio (%)	63,7		

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante.

ngresado por:	Revisado por:	Nº de informe:
CJ	JA	
	ngresado por: CJ	igrobado por

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A. Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-101 Solicitado por: LRS Nº de muestra: SPT-3 / M-3 Nº de proyecto: 1 Profundidad (m): 10,90-11,35 Nº de Informe de Lab: P Zona: Dique de depósito de relaves 1 12/04/2012 Fecha: Descripción: Material orgánico

N° de Prueba	1	2	3
(1) Peso Recip + Suelo Húmedo (g)	379,9	387,3	
(2) Peso Recip + Suelo Seco (g)	232,5	235,6	
(3) Peso Recipiente (g)	76,4	76,8	
(4) Peso del Agua (1) - (2)	147,4	151,7	
(5) Peso Suelo Seco (2) - (3)	156,1	158,8	
(6) Humedad (4/5)*100 %	94,4	95,5	
Humedad Promedio (%)	BANK TO THE	95,0	

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante,

lizado por:	Ingresado por:	Revisado por:	Nº de informe:
вт	CJ	JA	

LABORATORIO GEOTÉCNICO

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Nombre del proyecto: Cliente: Pan American Silver S.A. Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-101 Solicitado por: LRS Nº de muestra: SPT-3 / M-3 Nº de proyecto: 1 Profundidad (m): 10,90-11,35 Nº de Informe de Lab: P Zona: Dique de depósito de relaves 1 Fecha: 12/04/2012 Descripción: Material orgánico

N° de Prueba	1	2	3
(1) Peso Recip + Suelo Húmedo (g)	379,9	387,3	1
(2) Peso Recip + Suelo Seco (g)	200,2	202,7	
(3) Peso Recipiente (g)	76,4	76,8	
(4) Peso del Agua (1) - (2)	179,7	184,6	
(5) Peso Suelo Seco (2) - (3)	123,8	125,9	
(6) Humedad (4/5)*100 %	145,2	146,6	
Humedad Promedio (%)		145,9	Total

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante,

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
ВТ	CJ	JA	

Peso Volumétrico y Densidad Natural

PESO VOLUMETRICO

LABORATORIO GEOTÉCNICO

Solicitado por: LRS

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: PR-101

Nº de muestra: M-4 Nº de proyecto: 1 =

Profundidad (m): 11,35-12,20 N° de Informe de Lab: P

Zona: Dique de depósito de relaves 1 Fecha: 13/04/2012

Descripción: ----

Nº de Prueba			1	2	3
1) Peso de Muestra humeda (gr)			260,0	234,2	297,4
2) Peso de Muestra humeda + Parafin	a en aire	(gr)	308,0	272,2	358,9
Peso de Muestra humeda + Parafin	a en agua	(gr)	50,6	52,3	67,0
4) Volumen Muestra con parafina	(2) - (3)	(cm³)	257,4	219,9	291,9
5) Peso de la parafina	(2) - (1)	(gr)	48,0	38,0	61,5
6) Densidad de la parafina		(gr/cm³)		0,87	
7) Volumen de la parafina	(5) / (6)	(cm³)	55,2	43,7	70,7
8) Volumen de la muestra	(4) - (7)	(cm³)	202,2	176,2	221,2
9) Densidad de la muestra humeda	(1)/(8)		1,29	1,33	1,34
10) Contenido de Humedad		(%)	32,9	37,0	29,6
11) Densidad de la muestra seca	(9)/(1+((1	0)/100))	0,97	0,97	1,04
Densidad natural prome	edio (gr/cm³)		THE REAL PROPERTY.	1,32	
Densidad seca promed	io (gr/cm³)			0,992	

Humedad promedio (%)	33,2

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante.

Suelo orgánico Secado al ambiente

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:	
ВТ	CJ	JA		

PESO VOLUMETRICO

LABORATORIO GEOTÉCNICO

Nombre del proyecto:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

PR-101

Solicitado por: LRS

Nº de muestra:

M-4

Nº de proyecto: 1

Profundidad (m):

11,35-12,20

Nº de Informe de Lab: P

Zona:

Dique de depósito de relaves 1

Fecha:

13/04/2012

Descripción:

Nº de Prueba			1	2	3
1) Peso de Muestra humeda (gr)			260,0	234,2	297,4
2) Peso de Muestra humeda + Parafina	a en aire	(gr)	308,0	272,2	358,9
3) Peso de Muestra humeda + Parafina	a en agua	(gr)	50,6	52,3	67,0
4) Volumen Muestra con parafina	(2) - (3)	(cm³)	257,4	219,9	291,9
5) Peso de la parafina	(2) - (1)	(gr)	48,0	38,0	61,5
6) Densidad de la parafina		(gr/cm³)		0,87	
7) Volumen de la parafina	(5) / (6)	(cm³)	55,2	43,7	70,7
8) Volumen de la muestra	(4) - (7)	(cm³)	202,2	176,2	221,2
9) Densidad de la muestra humeda	(1)/(8)		1,29	1,33	1,34
10) Contenido de Humedad		(%)	133,2	118,2	115,0
11) Densidad de la muestra seca	(9)/(1+((10)/100))	0,55	0,61	0,63
Densidad natural promed	dio (gr/cm³)			1,32	
Densidad seca promedi	o (gr/cm³)			0,595	100
Humedad promedi	0 (%)			122.1	

Humedad promedio (%)	122,1

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante.

Suelo orgánico Secado al ambiente

Realizado por:		Ingre	sado por:	Revisado por:	Nº de informe:	
ВТ	200	-	CJ	JA		

DENSIDAD NATURAL

Método geométrico

LABORATORIO GEOTECNICO

ente cación:		Cierre Deposi	tos de Relaves	1,2 y 3	•	
cación:	Pan American Silver S.A	١.				
	Cerro de Pasco		N° Informe de	Lab :	Α	
icitado por:	LRS		N° de Proyecto:		1	
	PR-201 M-1 / 12,5 - 13,1		Fecha:		28-abr-12	
scripcion / Zona:	Dique de depósito de re	laves 2				
1	N⁰ de Prueba			1	2	
1) Peso de Muestra h	umeda	(gr)	4	16,5		
2) Diametro de la mue		(cm)		4,8		
3) Altura de la muestr		(cm)		0,3		
4) Area de la muestra		(cm²)	1	8,2		
5) Volumen de la mue	estra	(cm³)	1	86,8		
6) Densidad húmeda	1-2-2	(gr/cm³)	2	2,23		
7) Contenido de Humo	edad	(%)	2	22,9		
8) Densidad de la mu	(gr/cm³)	1	,81			
	ensidad natural promedio (gr/ensidad seca promedio (gr/			1,8		
		/cm³)			31	

DENSIDAD NATURAL

Método geométrico

LABORATORIO GEOTECNICO

Nombre del Proyecto:	Revisión de Factibilidad Ci	erre Depósi	tos de Relaves 1,2	y 3.	
Cliente	Pan American Silver S.A.				
Jbicación:	Cerro de Pasco		N° Informe de Lab :	Α	
Solicitado por:	LRS		N° de Proyecto:	1	
lº de muestra / Prof. (m):	PR-301 / M-5 / 7,75 - 8,40		Fecha:	23-abr-1	2
escripcion / Zona:	Depósito de Relaves 3			**	
		ží.		4	
				`	_
	№ de Prueba		1	2	_
1) Peso de Muestra h		(gr)	792,2		_
2) Diametro de la mue	estra	(cm)	6,1		
3) Altura de la muestra	a	(cm)	13,8		
4) Area de la muestra		(cm²)	28,7		
5) Volumen de la mue	estra	(cm³)	395,9		
6) Densidad húmeda		(gr/cm³)	2,00		
7) Contenido de Hume	edad	(%)	31,7		
8) Densidad de la mue	estra seca	(gr/cm³)	1,52		
	ensidad natural promedio (gr/cm			2,00	7
	- (g				
	Humedad promedio (%)			31,7	
Observaciones:	85				
tas: Las muestras han sido proporcionadas	e identificadas por el solicitante				74
Realizado por:	Ingresado por: JCA	Δ	Revisado por:	SM	Laboratorio:
ТВ	JUF	1		1141	

Compactación Proctor Estándar

PROCTOR ESTÁNDAR

ASTM - D698 (C)

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: Mezcla(CA-a) M-1, 2

Nº de muestra:

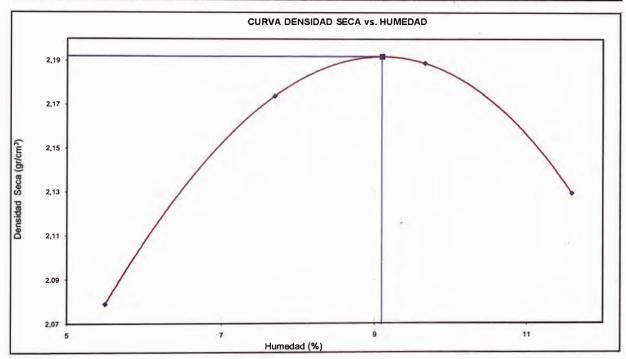
Profundidad (m):

0,00-2,00

Dique lateral de depósitos de relaves 1 y 2

Descripción:

Zona:


Solicitado por:	LRS
-----------------	-----

Nº de proyecto: 1

Nº de informe de Lab: P

Fecha:	13/04/2012
--------	------------

Prueba Nº	1	2	3	4	5	6	7
Densidad seca (gr/cm3)	2,079	2,174	2,189	2,129			_
Humedad(%)	5,5	7,7	9,7	11,6	4		

Máxima Densidad Seca (gr/cm³)	2,192
Optimo Contenido de Humedad (%)	9,1

Fraccion Sobre tamaño				
GS (Bulk)	=	2,03		
w(%)	=	0,7		

Máx. Dens. Seca Corregida (gr/cm³)	2,145
Opt. Cont. de Humedad Corregida (%)	

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante.

Proctor fuera de método

En el tercer punto se acolchona el material y en el cuarto punto esta muy humedo.

BT CJ	JA

PROCTOR ESTÁNDAR

ASTM - D698 (C)

LABORATORIO GEOTÉCNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente:

Pan American Silver S.A.C

Ubicación del proyecto:

Cerro de Pasco

Cód. de muestra:

Mezcla(Desmonte de mina)

Solicitado por: LRS

Nº de muestra:

M-1, M-2

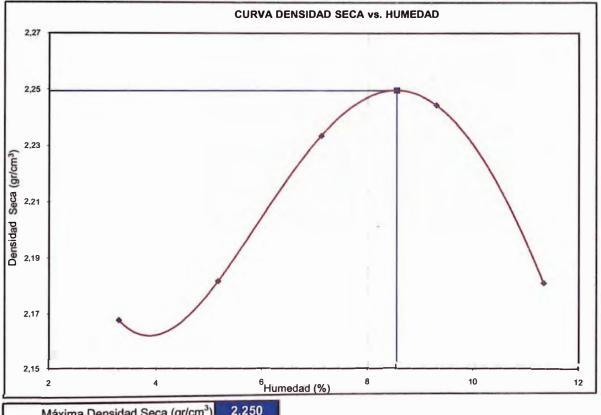
Nº de proyecto: 1

Profundidad (m):

Superficial

Número Lab: P

Zona:


Desmonte de Mina

Fecha:

26/03/2012

Descripción:

Prueba Nº	1	2	3	4	5	6	7
Densidad seca (gr/cm3)	2,168	2,181	2,233	2,244	2,180		
Humedad(%)	3,3	5,2	7,1	9,3	11,3		

2,250 Máxima Densidad Seca (gr/cm³) 8,6 Optimo Contenido de Humedad (%)

Fraccion Sobre	tamaño
GS (Bulk) =	2,85
w(%) =	0,6

2,420 Máx. Dens. Seca Corre gida (gr/cm³) 5,9 Opt. Cont. de Humedad Corregida (%)

Observación:

Las muestras han sido proporcionadas e identificadas por el solicitante.

Compresión Triaxial CU

LABORATORIO GEOTÉCNICO

Consolidado - No drenado (CU) **ASTM - D4767**

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Nº de muestra / Prof (m): CA-202 / M-2 / 2,2 - 5,5 Nº Informe de Lab: A

Descripción / Zona: Dique Depósito de Relaves 2 Nº de Proyecto: 1

LRS Solicitado por: Fecha: 21-abr-12

Ubicación: Cerro de Pasco

Estado: Remoldeado (D.S. = 2,015gr/cm³, w = 7,8%

Etapa de consolidación		Inicial	Final
Altura	(cm)	21,40	21,29
Diámetro	(cm)	10,17	10,02
Humedad	(%)	7,80	12,13
Densidad seca (gr/cc)		2,015	2,088

Clasificación SUCS: GC	
------------------------	--

Velocidad	(pulg/min)	0,01
Parámetro "B"		0,95
Presión de celda	kPa	607
Contra presión	kPa	207
Esf. Efect. Inicial	kPa	400

Deformación (%)	Esf. Desv. kPa	μ kPa	s₃ kPa	ਾਂ ਤੌਂ। kPa	¯p kPa	¯q kPa	~q/p	Oblicuida
0,00	0.00	0,00	400,00	400,00	THE RESERVE AND ADDRESS OF THE PARTY NAMED IN		0.00	(\$1/\$3)
					400,00	0,00	0,00	1,00
0,05	77,98	5,74	394,26	472,24	433,25	38,99	0,09	1,20
0,10	133,82	12,87	387,13	520,95	454,04	66,91	0,15	1,35
0,20	235,70	35,41	364,59	600,30	482,45	117,85	0,24	1,65
0,35	331,94	64,29	335,71	667,64	501,68	165,97	0,33	1,99
0,50	418,83	95,97	304,03	722,86	513,45	209,41	0,41	2,38
0,75	495,89	136,27	263,73	759,62	511,68	247,95	0,48	2,88
1,00	533,37	159,52	240,48	773,85	507,17	266,69	0,53	3,22
1,25	563,93	185,57	214,43	778,36	496,39	281,97	0,57	3,63
1,50	577,40	197,97	202,03	779,43	490,73	288,70	0,59	3,86
1,75	586,17	210,88	189,12	775,30	482,21	293,09	0,61	4,10
2,00	584,80	220,29	179,71	764,51	472,11	292,40	0,62	4,25
2,50	578,59	230,76	169,24	747,84	458,54	289,30	0,63	4,42
3,00	575,74	237,28	162,72	738,46	450,59	287,87	0,64	4,54
3,50	573,38	242,49	157,51	730,89	444,20	286,69	0,65	4,64
4,00	563,85	245,73	154,27	718,12	436,19	281,93	0,65	4,66
4,50	557,54	248,47	151,53	709,07	430,30	278,77	0,65	4,68
5,00	557,51	251,86	148,14	705,65	426,90	278,76	0,65	4,76
6,00	562,95	254,72	145,28	708,23	426,75	281,48	0,66	4,87
7,00	547,18	259,57	140,43	687,61	414,02	273,59	0,66	4,90
8,00	544,12	260,28	139,72	683,84	411,78	272,06	0,66	4,89
9,00	546,62	262,65	137,35	683,96	410,65	273,31	0,67	4,98
10,00	538,50	264,16	135,84	674,34	405,09	269,25	0,66	4,96
11,00	538,92	265,35	134,65	673,57	404,11	269,46	0,67	5,00
12,00	541,15	264,71	135,29	676,44	405,86	270,58	0,67	5,00
13,00	539,12	265,77	134,23	673,35	403,79	269,56	0,67	5,02
14,00	534,06	266,63	133,37	667,43	400,40	267,03	0,67	5,00

Nota: Los especimenes fueron remoldeados con una Densidad Seca = 2,015gr./cm², humedad = 7,8%. No se pudo remoldear con la Humedad = 9,2% por estar muy humedo.

_							
_	bse	200	2	210	no	٠.	
_	USE	31 V		. U	n ie	30.	

HEV

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Las muestras han sido proporcionadas e identificadas por el solicitante

Grado de compactación Bajo	Medio Alto	[<u>Elevado</u>]	
Realizado por:	Ingresado por:	Revisado por:	Fecha:
HEV	JCA	CSM	21-abr-12

LABORATORIO GEOTÉCNICO

Consolidado - No drenado (CU) ASTM - D4767

Nombre del Proyecto:	Revisión de Factibilidad Cierre	Depósitos de Relaves 1,2 y 3.
----------------------	---------------------------------	-------------------------------

Cliente: Pan American Silver S.A.

N° de muestra / Prof (m): CA-202 / M-2 / 2,2 - 5,5

Descripción / Zona: Dique Depósito de Relaves 2 Nº de Proyecto: 1

Solicitado por: LRS Fecha: 21-abr-12

Ubicación: Cerro de Pasco

Estado: Remoldeado (D.S. = 2,015gr/cm³, w = 7,8%

Etapa de consolidación		Inicial	Final
Altura	(cm)	21,40	21,31
Diámetro	(cm)	10,17	10,03
Humedad	(%)	7,80	12,67
Densidad seca (gr/cc		2,015	2,080

Clasificación SUCS: GC

Nº Informe de Lab: A

Velocidad	(pulg/min)	0,01
Parámetro "B"		0,94
Presión de celda	kPa	407
Contra presión	kPa	207
Esf. Efect. Inicial	kPa	200

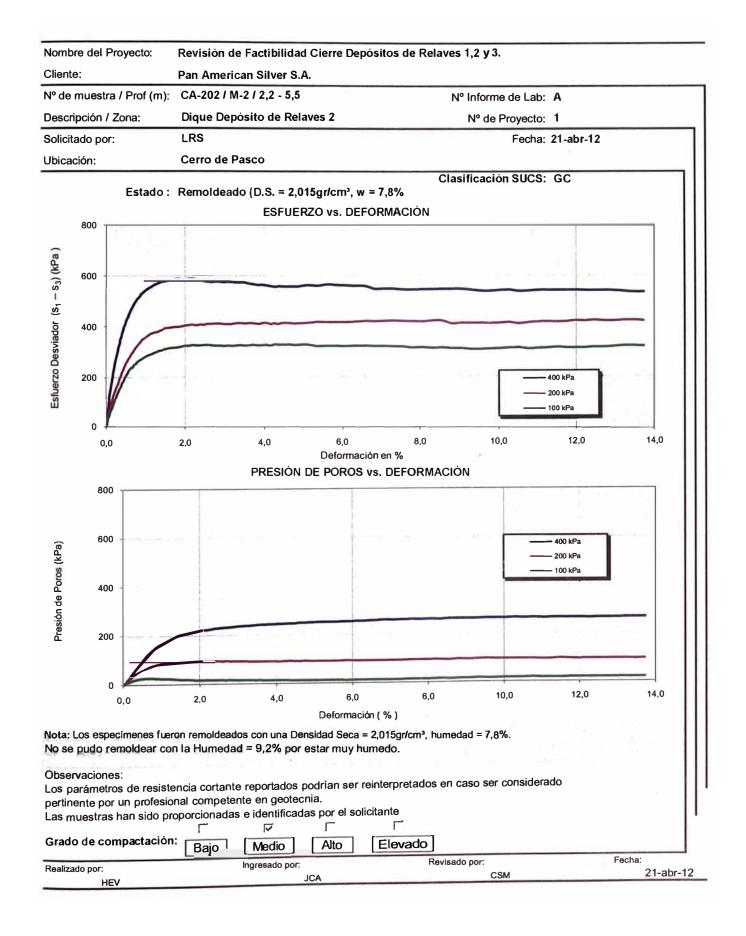
Deformación (%)	Esf. Desv.	μ	S ₃	S1	р	q	-q/p	Oblicuidad
0.00	kPa	kPa	kPa	kPa	kPa	kPa		(\$1/\$3)
0,00	0,00	0,00	200,00	200,00	200,00	0,00	0,00	1,00
0,05	50,58	5,11	194,89	245,47	220,18	25,29	0,11	1,26
0,10	80,72	11,83	188,17	268,89	228,53	40,36	0,18	1,43
0,20	137,42	28,87	171,13	308,55	239,84	68,71	0,29	1,80
0,35	197,57	46,56	153,44	351,01	252,23	98,78	0,39	2,29
0,50	256,65	61,78	138,22	394,87	266,54	128,32	0,48	2,86
0,75	316,41	75,42	124,58	440,99	282,79	158,21	0,56	3,54
1,00	351,35	83,63	116,37	467,72	292,05	175,68	0,60	4,02
1,25	377,08	89,04	110,96	488,04	299,50	188,54	0,63	4,40
1,50	393,55	92,19	107,81	501,36	304,58	196,78	0,65	4,65
1,75	398,26	94,17	105,83	504,09	304,96	199,13	0,65	4,76
2,00	404,47	94,99	105,01	509,48	307,24	202,23	0,66	4,85
2,50	407,64	95,42	104,58	512,22	308,40	203,82	0,66	4,90
3,00	409,34	94,38	105,62	514,96	310,29	204,67	0,66	4,88
3,50	412,70	93,21	106,79	519,49	313,14	206,35	0,66	4,86
4,00	412,98	93,08	106,92	519,90	313,41	206,49	0,66	4,86
4,50	413,62	93,11	106,89	520,50	313,69	206,81	0,66	4,87
5,00	411,63	93,39	106,61	518,24	312,43	205,82	0,66	4,86
6,00	415,63	93,84	106,16	521,79	313,98	207,81	0,66	4,91
7,00	418,52	93,10	106,90	525,42	316,16	209,26	0,66	4,92
8.00	418,72	94,00	106,00	524,72	315,36	209,36	0,66	4,95
9,00	409,83	95,47	104,53	514,35	309,44	204,91	0,66	4,92
10,00	411,30	95,74	104,26	515,56	309,91	205,65	0,66	4,94
11,00	413,79	95,33	104,67	518,46	311,57	206,90	0,66	4,95
12,00	421,30	95,13	104,87	526,17	315,52	210,65	0,67	5,02
13,00	420,07	96,13	103,87	523,94	313,91	210,03	0,67	5,04
14,00	420,43	95,62	104,38	524,81	314,59	210,21	0,67	5,03

Nota: Los especimenes fueron remoldeados con una Densidad Seca = 2,015gr/cm³, humedad = 7,8%. No se pudo remoldear con la Humedad = 9,2% por estar muy humedo.

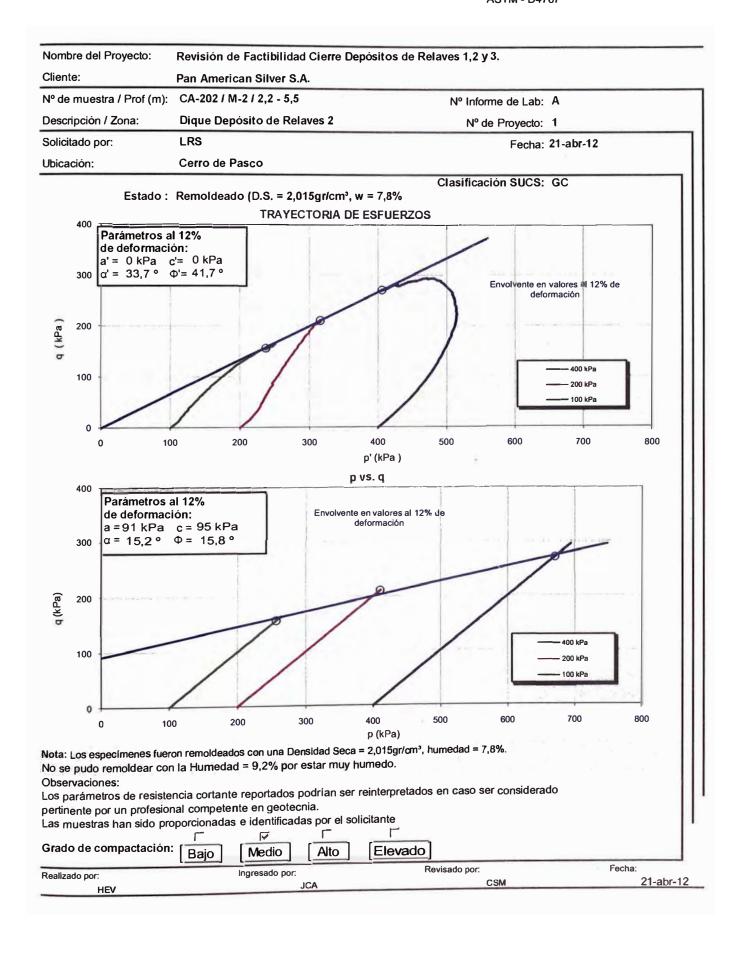
Observaciones:

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Las muestras han sido proporcionadas e identificadas por el solicitante


Grado de compactación:	ajo Medio Alto	Elevado	
Realizado por:	Ingresado por:	Revisado por:	Fecha:
HEV	JCA	CSM	21-abr-12

LABORATORIO GEOTÉCNICO


HEV

Cliente: Nº de muestra / Prof (m):		Factibilida	d Cierre De	pósitos de	Relaves 1,2	y 3.		
Nº de muestra / Prof (m):	Pan America	an Silver S	.A.					
	CA-202 / M-	2 / 2,2 - 5,5			Nº Info	rme de Lab:	A	
Descripción / Zona:	Dique Depá	sito de Re	laves 2		Nº (de Proyecto:	1	
Solicitado por:	LRS						21-abr-12	
Ubicación:	Cerro de Pa	sco						
			_		Clasifica	ción SUCS:	GC	
	Remoldeado	(D.S. = 2,	015gr/cm³, v	v = 7,8%	Oldoniou	cion odoo.	00	
Etapa de consolidación		Inicial	Final	1	Velocidad		(pulg/min)	0,01
Altura	(cm)	21,40	21,33		Parámetro "B			0,95
Diámetro	(cm)	10,17	10,09		Presión de ce		kPa	307
Humedad	(%)	7,80	13,50		Contra presid		kPa	207
Densidad seca (gr/cc)		2,014	2,052		Esf. Efect. In	cial	kPa	100
D-1	Esf. Desv.	μ	S 3	S1	Т "р	Q		Oblicuidad
Deformación (%)	kPa	kPa	kPa	kPa	kPa	kPa	-q/p	(S ₁ /S ₃)
0,00	0,00	0,00	100,00	100,00	100,00	0,00	0,00	1,00
0,05	38,15	3,79	96,21	134,36	115,28	19,07	0,17	1,40
0,10	59,53	7,74	92,26	151,78	122,02	29,76	0,24	1,65
0,20	97,05	14,02	85,98	183,03	134,50	48,52	0,36	2,13
0,35	154,86	21,10	78,90	233,75	156,33	77,43	0,50	2,96
0,50	206,90	25,67	74,33	281,23	177,78	103,45	0,58	3,78
0,75	253,11	27,09	72,91	326,02	199,47	126,56	0,63	4,47
1,00	276,51	25,71	74,29	350,80	212,54	138,25	0,65	4,72
1,25	296,68	23,96	76,04	372,72	224,38	148,34	0,66	4,90
1,50	306,79	22,09	77,91	384,71	231,31	153,40	0,66	4,94
1,75	315,73	20,01	79,99	395,72	237,85	157,87	0,66	4,95
2,00	323,86	18,11	81,89	405,75	243,82	161,93	0,66	4,95
2,50	326,96	17,48	82,52	409,48	246,00	163,48	0,66	4,96
3,00	322,08	17,02	82,98	405,06	244,02	161,04	0,66	4,88
3,50	323,53	15,67	84,33	407,86	246,10	161,77	0,66	4,84
4,00	324,79	15,08	84,92 85,82	409,71 412,65	247,31 249,23	162,40 163,41	0,66 0,66	4,82 4,81
4,50 5,00	326,82 325,39	14,18 13.23	86,77	412,03	249,47	162,69	0,65	4,75
6,00	321,01	13,23	86,99	408,00	247,50	160,50	0,65	4,69
7,00	319,77	14,12	85.88	405,65	245,77	159,89	0,65	4,72
8,00	313,65	15,28	84,72	398,38	241,55	156,83	0,65	4,70
9,00	311,29	15,83	84,17	395,46	239,82	155,64	0,65	4,70
10,00	308,01	16,90	83,10	391,11	237,11	154,01	0,65	4,71
11,00	308,89	18,82	81,18	390,07	235,62	154,44	0,66	4,81
12,00	312,40	19,25	80,75	393,15	236,95	156,20	0,66	4,87
13,00	317,15	19,33	80,67	397,82	239,25	158,58	0,66	4,93
14,00	318,36	19,07	80,93	399,29	240,11	159,18	0,66	4,93

LABORATORIO GEOTÉCNICO

LABORATORIO GEOTÉCNICO

LABORATORIO GEOTÉCNICO

Nombre del Proyecto:	Revisión de Factibilidad Cierre De	pósitos de Relaves 1,2 y 3.	
Cliente:	Pan American Silver S.A.		
Nº de muestra / Prof (m):	CA-202 / M-2 / 2,2 - 5,5	Nº Informe de Lab: A	
Descripción / Zona:	Dique Depósito de Relaves 2	Nº de Proyecto: 1	
Solicitado por:	LRS	Fecha: 21-abr-1	2
Jbicación:	Cerro de Pasco	8	
Estado: PANEL FOTOGRAFICO Los especimenes fuel No se pudo remoldear con Disservaciones: Los parámetros de resiste pertinente por un profesio	Remoldeado (D.S. = 2,015gr/cm², v. Bronsina de Petableta de l'estableta de l'esta	AUSORCO AP-066-12E Bewision de l'ectibilidad Clayre CA-HUAI2-202 / M-2 CU 200 kPa AP-066-12E Bewision de Pertibilidad Clayre CA-HUAI2-202 / M-2 200 kPa AP-066-12E Bewision de Pertibilidad Clayre CA-HUAI2-202 / M-2 CA-	
Grado de compactación			
Stado de compactación	Balo [Nedio] [7tio	Elevado	Fecha:
Realizado por:	Ingresado por:	Revisado por: CSM	21-abr-1

LABORATORIO GEOTÉCNICO

Ubicación:

Consolidado - No drenado (CU) **ASTM - D4767**

Nombre del Proyecto:	Revisión de Factibilidad Cierre Depósitos de R	elaves 1,2 y 3.	
Cliente:	Pan American Silver S.A.		
Nº de muestra / Prof (m):	Mezcla(Desmonte de Mina) M-1_M-2 / Superficial	Nº Informe de Lab: A	
Descripción / Zona:	Desmonte de Mina	Nº de Proyecto: 1	
Solicitado por:	LRS	Fecha: 21-abr-12	

Estado: Remoldeado (M.D.S. = 2,250gr/cm³, O.C.H. = 8,6%)

			_,
Etapa de consolidación		Inicial	Final
Altura	(cm)	31,00	30,87
Diámetro	(cm)	15,15	14,98
Humedad	(%)	4,60	9,54
Densidad seca (gr/cc)		2,138	2,196

Cerro de Pasco

70,0		
Velocidad	(pulg/min)	0,01
Parámetro "B"		0,95
Presión de celda	kPa	607
Contra presión	kPa	207
Esf. Efect. Inicial	kPa	400

Deformación (%)	Esf. Desv. kPa	μ kPa	s₃ kPa	ड, kPa	−p kPa	-q kPa	-d/b	Oblicuida (S1/S3)
0,00	0,00	0,00	400,00	400,00	400.00	0,00	0,00	1,00
0,05	80,39	4.77	395.23	475,62	435,42	40,19	0,09	1,20
0,10	167,94	13,30	386,70	554,64	470,67	83,97	0,18	1,43
0,20	290,56	34,79	365,21	655,77	510,49	145,28	0,28	1,80
0,35	448,16	65,03	334,97	783,13	559,05	224,08	0,40	2,34
0,50	572,43	92,98	307,02	879,46	593,24	286,22	0,48	2,86
0,75	708,98	128,67	271,33	980,31	625,82	354,49	0,57	3,61
1,00	767,34	150,18	249,82	1017,16	633,49	383,67	0,61	4,07
1,25	801,47	167,84	232,16	1033,63	632,90	400,73	0,63	4,45
1,50	804,75	175,11	224,89	1029,65	627,27	402,38	0,64	4,58
1,75	813,84	183,41	216,59	1030,43	623,51	406,92	0,65	4,76
2,00	821,82	186,93	213,07	1034,89	623,98	410,91	0,66	4,86
2,50	830,04	192,71	207,29	1037,33	622,31	415,02	0,67	5,00
3,00	835,45	196,66	203,34	1038,78	621,06	417,72	0,67	5,11
3,50	844,60	198,04	201,96	1046,55	624,25	422,30	0,68	5,18
4,00	860,31	197,86	202,14	1062,45	632,30	430,15	0,68	5,26
4,50	864,28	197,33	202,67	1066,95	634,81	432,14	0,68	5,26
5,00	872,08	195,92	204,08	1076,17	640,13	436,04	0,68	5,27
6,00	893,22	193,78	206,22	1099,44	652,83	446,61	0,68	5,33
7,00	924,47	189,46	210,54	1135,01	672,77	462,23	0,69	5,39
8,00	952,35	183,14	216,86	1169,21	693,03	476,17	0,69	5,39
9,00	967,39	177,52	222,48	1189,87	706,18	483,69	0,68	5,35
10,00	984,16	173,31	226,69	1210,85	718,77	492,08	0,68	5,34
11,00	1005,36	170,18	229,82	1235,18	732,50	502,68	0,69	5,37
12,00	1015,30	165,88	234,12	1249,42	741,77	507,65	0,68	5,34
13,00	1028,62	158,39	241,61	1270,24	755,92	514,31	0,68	5,26
14,00	1037,40	153,87	246,13	1283,53	764,83	518,70	0,68	5,21

Nota: Los especimenes fueron remoldeados al 95% de la Máxima Densidad Seca = 2,138gr/cm³, Humedad = 4,6% No se pudo remoldear con el Optimo Contenido Humeda = 8,6%, por ser muy Humedo. Los datos fueron proporcionados por el cliente.

Observaciones:

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Alto

Las muestras han sido proporcionadas e identificadas por el solicitante Grado de compactación Bajo

Medio

Realizado por:	Ingresado por:	Revisado por:	Fecha:
Realizado por.	•	CSM	21-abr-12
HEV	JCA	CSM	21-401-12
TIL V			

Elevado

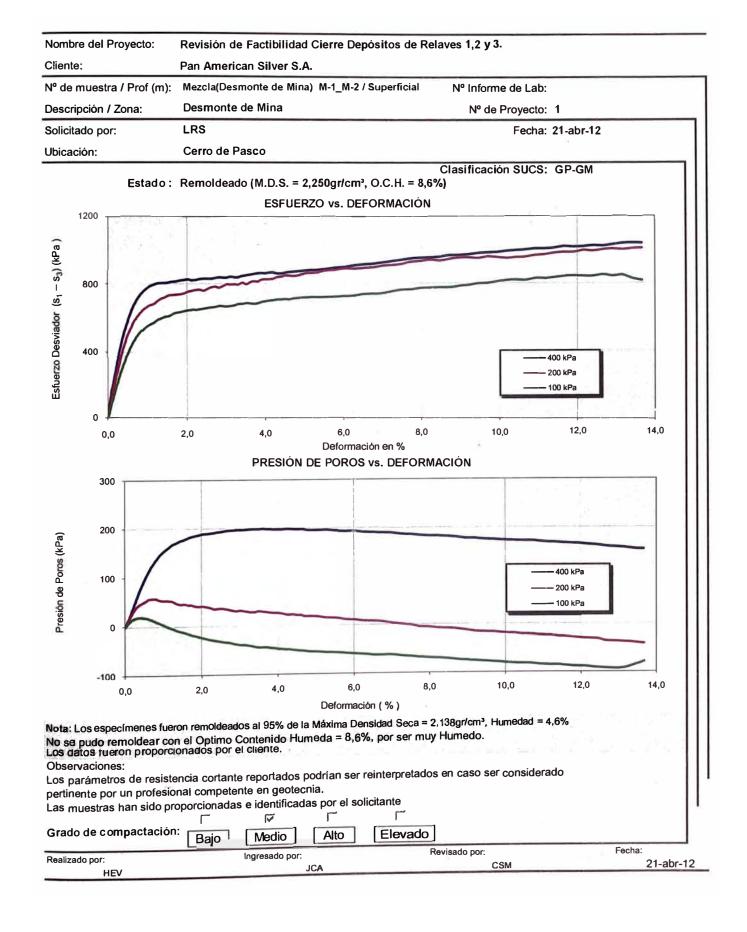
LABORATORIO GEOTÉCNICO

	i actibilità	ad Cierre De	positos de	Relaves 1,2	y 3.		
Pan America	an Silver S	s.A.					
Mezcla(Desm	onte de Mi	na) M-1_M-2	/ Superficial	Nº Info	rme de Lab:		
Desmonte d	le Mina			Nº (de Proyecto:	1	
LRS					Fecha:	21-abr-12	
Cerro de Pa	sco						
				Clasifica	ción SUCS:	GP-GM	
Remoldeado	(M.D.S. =	2,250gr/cm ³	o.C.H. = 8		cion occo.	01 -0111	
	Inicial	Final		Velocidad		(pulg/min)	0,01
(cm)	31,00	30,94		Parámetro "B	P .		0,95
(cm)	15,15	15,06	I	Presión de ce	elda	kPa	407
(%)	4,60	9,69		Contra presió	n	kPa	207
	2,137	2,168		Esf. Efect. Ini	icial	kPa	200
5.45				1 -			
	μ					"q/p	Oblicuidad
						L'INDE	(\$1/\$3)
					0,00	0,00	1,00
							1,28
							1,68
						0,41	2,39
							3,40
						0,62	4,30
609,23						0,68	5,28
							5,50
		147,04				0,70	5,63
				-			5,66
							5,73
							5,67
759,55							5,63
786,53							5,65
807,18							5,72
823,30	26,85						5,75
848,98							5,76
847,13							5,68
880,46	11,45						5,67
904,54	3,24						5,60
931,80	-5,46					0,69	5,54
952,80	-12,66					0,69	5,48
954,96							5,37
967,31							5,33
984,29	-29,18	229,18				0,68	5,29
1004,08							5,24
1008,75	-41,77	241,77	1250,52	746,15	504,37	0,68	5,17
	LRS Cerro de Pa Remoldeado (cm) (cm) (%) (%) Esf. Desv. kPa 0,00 55,07 127,68 240,56 377,30 495,14 609,23 660,00 681,22 721,60 737,42 745,38 759,55 786,53 807,18 823,30 848,98 847,13 880,46 904,54 931,80 952,80 954,96 967,31 984,29 1004,08	Cerro de Pasco Remoldeado (M.D.S. = Inicial (cm) 31,00 (cm) 15,15 (%) 4,60 2,137 Esf. Desv. μ kPa kPa 0,00 0,00 55,07 3,53 127,68 12,64 240,56 27,19 377,30 42,79 495,14 50,12 609,23 57,61 660,00 53,33 681,22 52,96 721,60 45,20 737,42 43,98 745,38 40,51 759,55 35,95 786,53 30,90 807,18 28,84 823,30 26,85 848,98 21,66 847,13 19,01 880,46 11,45 904,54 3,24 931,80 -5,46 952,80 -12,66 954,96 -18,74 967,31 -23,26 984,29 -29,18 1004,08 -37,05	LRS Cerro de Pasco Remoldeado (M.D.S. = 2,250gr/cm²	LRS Cerro de Pasco Remoldeado (M.D.S. = 2,250gr/cm³, O.C.H. = 8	Cerro de Pasco Remoldeado (M.D.S. = 2,250gr/cm², O.C.H. = 8,6%) Inicial Final (cm) 31,00 30,94 (cm) 15,15 15,06 (%) 4,60 9,69 2,137 2,168 Esf. Desv.	Cerro de Pasco Clasificación SUCS: Remoldeado (M.D.S. = 2,250gr/cm², O.C.H. = 8,6%) Velocidad Parámetro "B" Presión de celda Contra presión Esf. Efect. Inicial Contra presión Esf. Efect. Inicial Contra presión Esf. Efect. Inicial Esf. Desv. μ kPa kP	Esf. Desv. μ

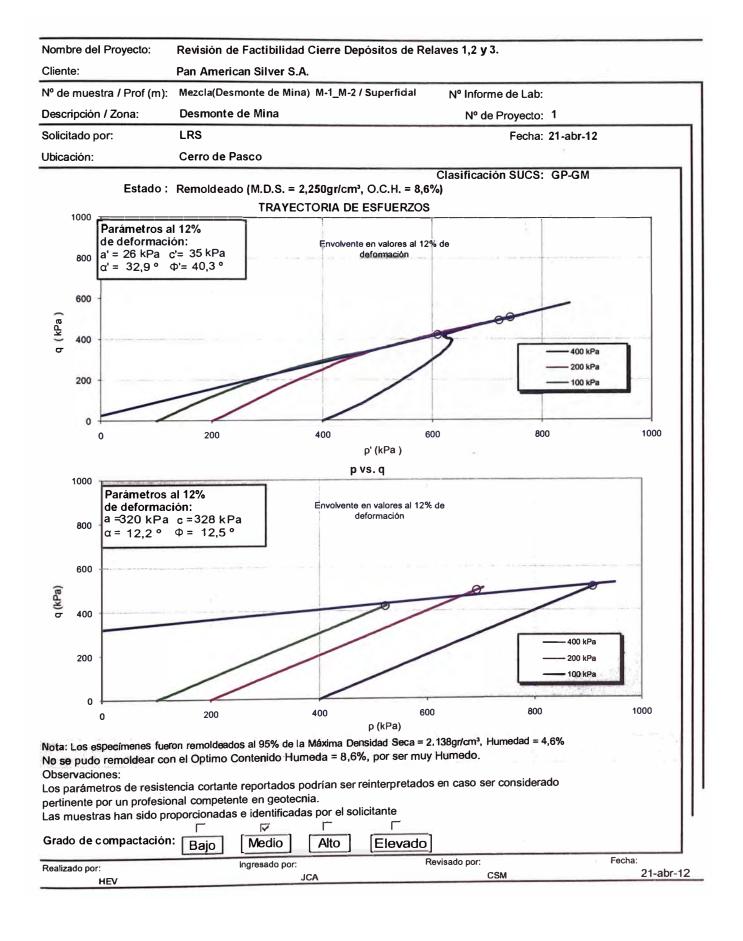
LABORATORIO GEOTÉCNICO

HEV

Consolidado - No drenado (CU) ASTM - D4767


21-abr-12

CSM


zcia(Desn smonte d S erro de Pa	de Mina asco	2,250gr/cm ³ Final 30,97 15,09 10,24		Nº d Clasificad 3,6%) Velocidad Parámetro "B	ción SUCS:	21-abr-12	0,01
esmonte de RS erro de Pa moldeado (cm) (cm) (%)	de Mina asco o (M.D.S. = Inicial 31,00 15,15 4,60	2,250gr/cm³ Final 30,97 15,09		Nº d Clasificad 3,6%) Velocidad Parámetro "B	e Proyecto: Fecha: ción SUCS:	21-abr-12 GP-GM	0,01
esmonte de RS erro de Pa moldeado (cm) (cm) (%)	de Mina asco o (M.D.S. = Inicial 31,00 15,15 4,60	2,250gr/cm³ Final 30,97 15,09		Nº d Clasificad 3,6%) Velocidad Parámetro "B	e Proyecto: Fecha: ción SUCS:	21-abr-12 GP-GM	0,01
moldeado (cm) (cm) (%)	o (M.D.S. = Inicial 31,00 15,15 4,60	Final 30,97 15,09	, O.C.H. = 8	Clasificad 8,6%) Velocidad Parámetro "B	Fecha:	21-abr-12 GP-GM	0,01
(cm) (cm) (%)	o (M.D.S. = Inicial 31,00 15,15 4,60	Final 30,97 15,09	, O.C.H. = 8	Velocidad Parámetro "B		- Control of the Cont	0,01
(cm) (cm) (%)	Inicial 31,00 15,15 4,60	Final 30,97 15,09	O.C.H. = 8	Velocidad Parámetro "B		- Control of the Cont	0,01
(cm) (cm) (%)	Inicial 31,00 15,15 4,60	Final 30,97 15,09	O.C.H. = 8	Velocidad Parámetro "B		(pulg/min)	0,01
(cm) (%)	31,00 15,15 4,60	30,97 15,09		Parámetro "B		(pulg/min)	0,01
(cm) (%)	15,15 4,60	15,09					
(%)	4,60						0,95
f. Desv.		10,24		Presión de ce		kPa	307
	2,136			Contra presió		kPa	207
		2,155		Esf. Efect. Inic	cial	kPa	100
kPa	μ	\$3	Sı	тр 1	a		Oblicuidad
KI G	kPa	kPa	kPa	kPa	kPa	-q/p	(S ₁ /S ₃)
0,00	0,00	100,00	100,00	100,00	0,00	0,00	1,00
41,77	2,63	97,37	139,13	118,25	20,88	0,18	1,43
98,26	8,44	91,56	189,82	140,69	49,13	0,35	2,07
67,39	15,04	84,96	252,35	168,65	83,70	0,50	2,97
85,44	19,06	80,94	366,38	223,66	142,72	0,64	4,53
81,26	18,79	81,21	462,47	271,84	190,63	0,70	5,69
91,74	12,92	87,08	578,82	332,95	245,87	0,74	6,65
46,35	4,64	95,36	641,70	368,53	273,17	0,74	6,73
72,48	-2,35	102,35		388,59	286,24	0,74	6,59
06,65	-10,53	110,53				0,73	6,49
24,71	-14,96	114,96					6,43
39,66	-21,42	121,42		-	-		6,27
53,31	-30,16						6,02
66,76							5,85
							5,76
							5,74
							5,71
_							5,66
							5,58
							5,56 5,58
							5,49 5,51
							5,51
							5,47
							5,36
							5,54
	67,39 85,44 81,26 91,74 46,35 72,48 66,65 624,71 39,66 53,31	67,39 15,04 885,44 19,06 881,26 18,79 91,74 12,92 46,35 4,64 72,48 -2,35 106,65 -10,53 124,71 -14,96 139,66 -21,42 53,31 -30,16 66,76 -37,37 81,42 -43,17 92,36 -46,15 104,91 -49,78 14,26 -53,30 21,67 -57,46 138,59 -61,94 72,27 -68,54 83,99 -74,53 10,54 -79,65 30,45 -84,26 42,71 -88,41 41,51 -93,17	67,39 15,04 84,96 85,44 19,06 80,94 81,26 18,79 81,21 91,74 12,92 87,08 46,35 4,64 95,36 472,48 -2,35 102,35 406,65 -10,53 110,53 24,71 -14,96 114,96 39,66 -21,42 121,42 53,31 -30,16 130,16 66,76 -37,37 137,37 81,42 -43,17 143,17 92,36 -46,15 146,15 04,91 -49,78 149,78 14,26 -53,30 153,30 21,67 -57,46 157,46 38,59 -61,94 161,94 72,27 -68,54 168,54 83,99 -74,53 174,53 10,54 -79,65 179,65 30,45 -84,26 184,26 42,71 -88,41 188,41 41,51 -93,17 193,17	67,39 15,04 84,96 252,35 885,44 19,06 80,94 366,38 81,26 18,79 81,21 462,47 91,74 12,92 87,08 578,82 46,35 4,64 95,36 641,70 472,48 -2,35 102,35 674,82 406,65 -10,53 110,53 717,18 24,71 -14,96 114,96 739,67 39,66 -21,42 121,42 761,08 53,31 -30,16 130,16 783,47 66,76 -37,37 137,37 804,13 81,42 -43,17 143,17 824,59 92,36 -46,15 146,15 838,51 04,91 -49,78 149,78 854,69 14,26 -53,30 153,30 867,56 21,67 -57,46 157,46 879,14 38,59 -61,94 161,94 900,52 72,27 -68,54 168,54 940,81	67,39 15,04 84,96 252,35 168,65 885,44 19,06 80,94 366,38 223,66 81,26 18,79 81,21 462,47 271,84 991,74 12,92 87,08 578,82 332,95 46,35 4,64 95,36 641,70 368,53 472,48 -2,35 102,35 674,82 388,59 406,65 -10,53 110,53 717,18 413,86 24,71 -14,96 114,96 739,67 427,31 39,66 -21,42 121,42 761,08 441,25 53,31 -30,16 130,16 783,47 456,82 66,76 -37,37 137,37 804,13 470,75 81,42 -43,17 143,17 824,59 483,88 92,36 -46,15 146,15 838,51 492,33 04,91 -49,78 149,78 854,69 502,24 14,26 -53,30 153,30 867,56 510,	67,39 15,04 84,96 252,35 168,65 83,70 885,44 19,06 80,94 366,38 223,66 142,72 81,26 18,79 81,21 462,47 271,84 190,63 991,74 12,92 87,08 578,82 332,95 245,87 46,35 4,64 95,36 641,70 368,53 273,17 472,48 -2,35 102,35 674,82 388,59 286,24 406,65 -10,53 110,53 717,18 413,86 303,33 24,71 -14,96 114,96 739,67 427,31 312,35 39,66 -21,42 121,42 761,08 441,25 319,83 33,31 -30,16 130,16 783,47 456,82 326,66 66,76 -37,37 137,37 804,13 470,75 333,38 81,42 -43,17 143,17 824,59 483,88 340,71 92,36 -46,15 146,15 838,51	667,39 15,04 84,96 252,35 168,65 83,70 0,50 885,44 19,06 80,94 366,38 223,66 142,72 0,64 81,26 18,79 81,21 462,47 271,84 190,63 0,70 91,74 12,92 87,08 578,82 332,95 245,87 0,74 46,35 4,64 95,36 641,70 368,53 273,17 0,74 46,35 4,64 95,36 641,70 368,53 273,17 0,74 46,35 4,64 95,36 674,82 388,59 286,24 0,74 406,65 -10,53 110,53 717,18 413,86 303,33 0,73 24,71 -14,96 114,96 739,67 427,31 312,35 0,73 33,31 -30,16 130,16 783,47 456,82 326,66 0,72 53,31 -30,16 130,16 783,47 456,82 326,66 0,72 81,42

JCA

LABORATORIO GEOTÉCNICO

LABORATORIO GEOTÉCNICO

LABORATORIO GEOTÉCNICO

Consolidado - No drenado (CU)

ASTM - D4767

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A. Nº de muestra / Prof (m): Mezcla(Desmonte de Mina) M-1_M-2 / Superficial Nº Informe de Lab: Desmonte de Mina Descripción / Zona: Nº de Proyecto: 1 LRS Solicitado por: Fecha: 21-abr-12 Cerro de Pasco Ubicación: Clasificación SUCS: GP-GM Estado: Remoldeado (M.D.S. = 2,250gr/cm3, O.C.H. = 8,6%) PANEL FOTOGRAFICO 200 kPa Nota: Los especímenes fueron remoldeados al 95% de la Máxima Densidad Seca = 2,138gr/cm³, Humedad = 4,6% No se pudo remoldear con el Optimo Contenido Humeda = 8,6%, por ser muy Humedo. Observaciones: Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia. Las muestras han sido proporcionadas e identificadas por el solicitante V Grado de compactación: Alto Elevado Bajo Medio Revisado por: Ingresado por: Realizado por: 21-abr-12 JCA HEV

Consolidado - No drenado (CU)

ASTM - D4767

LABORATORIO GEOTÉCNICO

Cantera / Zona:

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Nombre del Proyecto:

Cliente: Pan American Silver S.A.

Nº de muestra / Prof.(m): PR-201 / M-1

> Dique de depósito de relaves 2 Nº de Proyecto: 1

Solicitado por: LRS Fecha: 23-abr-12

Ubicación: Cerro de Pasco

Estado: Inalterado

Clasificacion	SUCS:	SM	

Nº Informe de Lab:

Etapa de consolid	ación		Inicial	Final
Altura		(cm)	10,31	10,19
Diámetro		(cm)	4,87	4,81
Humedad		(%)	22,93	21,16
Densidad seca	(gr/cc)		1,912	2,434

Velocidad	(pulg/min)	0,01
Parámetro "B"		0,97
Presión de celda	kPa	676
Contra presión	kPa	276
Esf. Efect. Inicial	kPa	400

Deformación (%)	Esf. Desv.	μ	Sa	<u>\$1</u>	P	q	q/p	Oblicuida
	kPa	kPa	kPa	kPa	kPa	kPa		(\$1/\$3)
0,00	0,00	0,00	400,00	400,00	400,00	0,00	0,00	1,00
0,05	34,20	15,86	384,14	418,34	401,24	17,10	0,04	1,09
0,10	88,38	36,54	363,46	451,83	407,65	44,19	0,11	1,24
0,20	173,65	80,67	319,33	492,98	406,16	86,82	0,21	1,54
0,35	260,08	137,90	262,10	522,19	392,15	130,04	0,33	1,99
0,50	300,54	170,99	229,01	529,55	379,28	150,27	0,40	2,31
0,75	370,12	208,22	191,78	561,90	376,84	185,06	0,49	2,93
1,00	416,37	221,32	178,68	595,05	386,86	208,18	0,54	3,33
1,25	468,16	224,77	175,23	643,40	409,31	234,08	0,57	3,67
1,50	491,77	226,84	173,16	664,94	419,05	245,89	0,59	3,84
1,75	527,98	222,70	177,30	705,28	441,29	263,99	0,60	3,98
2,00	578,85	214,43	185,57	764,42	475,00	289,42	0,61	4,12
2.50	639,03	202,02	197,98	837,02	517,50	319,52	0,62	4,23
3.00	718,01	186,16	213,84	931,85	572,85	359,01	0,63	4,36
3,50	822,55	163,41	236,59	1059,15	647,87	411,28	0,63	4,48
4.00	912,84	137,90	262,10	1174,94	718,52	456,42	0,64	4,48
4,50	970,86	121,35	278,65	1249,51	764,08	485,43	0,64	4,48
5.00	1085.80	91,70	308,30	1394,10	851,20	542,90	0,64	4,52
6.00	1214,96	55,16	344,84	1559,80	952,32	607,48	0,64	4,52
7.00	1377,26	6,21	393,79	1771,05	1082,42	688,63	0,64	4,50
8,00	1529.72	-41,37	441,37	1971,09	1206,23	764,86	0,63	4,47
9,00	1675,43	-89,63	489,63	2165,06	1327,35	837,72	0,63	4,42
10,00	1797,34	-135,14	535,14	2332,48	1433,81	898,67	0,63	4,36
11,00	1917,66	-177,88	577,88	2495,54	1536,71	958,83	0,62	4,32
12,00	2013,96	-215,81	615,81	2629,76	1622,79	1006,98	0,62	4,27
13,00	2096.74	-250,28	650,28	2747,02	1698,65	1048,37	0,62	4,22
14,00	2139,05	-271,65	671,65	2810,70	1741,18	1069,53	0,61	4,18
15,00	2168,81	-285,44	685,44	2854,25	1769,85	1084,40	0,61	4,16

Nota: Muestra inalterada

Observaciones:

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Las muestras han sido proporcionadas e identificadas por el solicitante

V Grado de compactación: Elevado Medio Alto Bajo

Fecha: Ingresado por: Revisado por: Realizado por: CSM 23-abr-12 JCA **TBP**

Consolidado - No drenado (CU) ASTM - D4767

LABORATORIO GEOTÉCNICO

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Nº de muestra / Prof.(m): PR-201 / M-1 Nº Informe de Lab:

Cantera / Zona: Dique de depósito de relaves 2 Nº de Proyecto: 1

Solicitado por: LRS Fecha: 23-abr-12

Ubicación: Cerro de Pasco

Estado: Inalterado

Etapa de consolid	lación		Inicial	Final
Altura		(cm)	10,36	10,00
Diámetro		(cm)	4,98	4,97
Humedad		(%)	18,11	21,10
Densidad seca	(gr/cc)		1,871	2,300

Velocidad	(pulg/min)	0,01
Parámetro "B"		0,97

Clasificación SUCS: SM

(pulg/IIIII)	0,01
	0,97
kPa	476
kPa	276
kPa	200
	kPa kPa

Deformación (%)	Esf. Desv.	μ	Sı	Si	7	٦	q/p	Oblicuidad
Beloimación (70)	kPa	kPa	kPa	kPa	kPa	kPa	4/р	(\$1/\$3)
0,00	0,00	0,00	200,00	200,00	200,00	0,00	0,00	1,00
0,05	26,60	15,17	184,83	211,43	198,13	13,30	0,07	1,14
0,10	46,52	24,82	175,18	221,70	198,44	23,26	0,12	1,27
0,20	100,50	55,16	144,84	245,35	195,09	50,25	0,26	1,69
0,35	136,01	75,84	124,16	260,17	192,17	68,01	0,35	2,10
0,50	166,40	90,32	109,68	276,07	192,88	83,20	0,43	2,52
0,75	204,23	101,35	98,65	302,88	200,76	102,11	0,51	3,07
1,00	234,37	103,42	96,58	330,95	213,77	117,19	0,55	3,43
1,25	267,76	102,04	97,96	365,72	231,84	133,88	0,58	3,73
1,50	308,89	97,91	102,09	410,98	256,54	154,44	0,60	4,03
1,75	336,27	93,08	106,92	443,20	275,06	168,14	0,61	4,15
2,00	371,61	86,18	113,82	485,43	299,62	185,81	0,62	4,27
2,50	439,72	75,15	124,85	564,57	344,71	219,86	0,64	4,52
3,00	512,24	56,54	143,46	655,70	399,58	256,12	0,64	4,57
3,50	592,39	37,92	162,08	754,47	458,27	296,19	0,65	4,65
4,00	734,45	18,62	181,38	915,83	548,61	367,22	0,67	5,05
4,50	749,02	-2,07	202,07	951,09	576,58	374,51	0,65	4,71
5,00	832,05	-24,13	224,13	1056,19	640,16	416,03	0,65	4,71
6,00	981,79	-66,19	266,19	1247,98	757,08	490,89	0,65	4,69
7,00	1128,36	-111,70	311,70	1440,06	875,88	564,18	0,64	4,62
8.00	1257,63	-156,51	356,51	1614,14	985,33	628,82	0,64	4,53
9.00	1350,84	-207,53	407,53	1758,38	1082,95	675,42	0,62	4,31
10.00	1356,23	-244,76	444,76	1801,00	1122,88	678,12	0,60	4,05
11,00	1335,45	-254,42	454,42	1789,86	1122,14	667,72	0,60	3,94
12,00	1327,71	-253,73	453,73	1781,44	1117,58	663,85	0,59	3,93
13,00	1317,61	-251,66	451,66	1769,27	1110,46	658,81	0,59	3,92
14,00	1287,67	-246,83	446,83	1734,50	1090,67	643,83	0,59	3,88
15,00	1256,12	-236,49	436,49	1692,61	1064,55	628,06	0,59	3,88

Nota: Muestra inalterada

\sim L		:	ones	_
\sim	301	vacı	01103	

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Las muestras han sido proporcionadas e identificadas por el solicitante

Destination of		Ingresado no	r.	Revisado	oor:
Grado de compactación:	Bajo	Medio	Alto	Elevado	

Realizado por:	Ingresado por:	Revisado por:	Fecha:
TBP	JCA	CSM	23-abr-12

Consolidado - No drenado (CU)

ASTM - D4767

LABORATORIO GEOTÉCNICO

Cliente:

Pan American Silver S.A.

Nº de muestra / Prof.(m):

Etapa de consolidación

Nombre del Proyecto:

PR-201 / M-1

1 11-201 / WI-1

Nº Informe de Lab:

Cantera / Zona:

Dique de depósito de relaves 2

Inicial

10,28

4,81

22,85

1,815

Nº de Proyecto: 1

Clasificación SUCS: SM

Esf. Efect. Inicial

Solicitado por:

LRS

Fecha: 23-abr-12

Ubicación:

Altura

Diámetro

Humedad

Densidad seca

Cerro de Pasco

(cm)

(cm)

(%)

Estado: Inalterado

(gr/cc)

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Final

10,22

4,78

23,89

2,269

 Velocidad
 (pulg/min)
 0,01

 Parámetro "B"
 0,97

 Presión de celda
 kPa
 376

 Contra presión
 kPa
 276

kPa

100

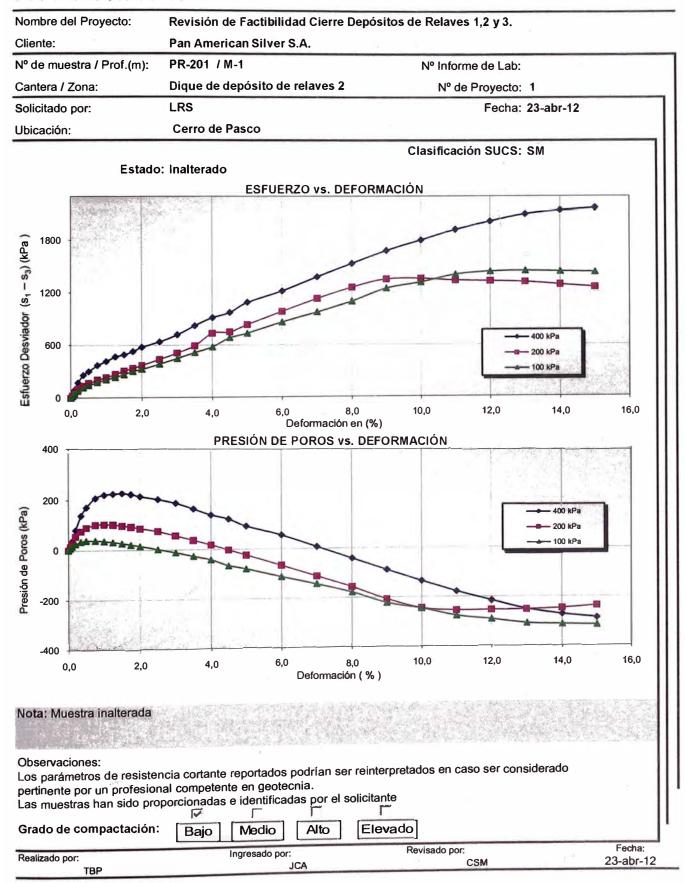
Deformación (%)	Esf. Desv.	μ kPa	s₃ kPa	sī kPa	₽ kPa	ী kPa	q / p	Oblicuidad (\$1/\$3)
0.00	0.00	0.00	100,00	100.00	100.00	0.00	0.00	1.00
0.05	20.05	8,27	91.73	111.78	101.75	10.02	0.10	1,22
0.10	52,45	15.86	84,14	136,59	110.37	26,22	0,24	1,62
0,20	80,32	24,82	75,18	155,50	115,34	40,16	0,35	2,07
0,35	117,71	34,47	65,53	183.24	124,38	58,86	0,47	2,80
0,50	142,43	37,92	62,08	204,50	133,29	71,21	0,53	3,29
0,75	174,76	38,61	61,39	236,15	148,77	87.38	0,59	3,85
1,00	205,21	35,85	64,15	269.36	166,75	102.60	0.62	4,20
1,25	234,53	31,72	68,28	302,81	185,55	117,26	0,63	4,43
1,50	263,94	26,89	73,11	337,05	205,08	131,97	0,64	4,61
1,75	301,22	20,68	79,32	380,54	229,93	150,61	0,66	4,80
2,00	325,45	15,17	84,83	410,29	247,56	162,73	0,66	4,84
2,50	384,40	2,07	97,93	482,33	290,13	192,20	0,66	4,93
3,00	447,05	-11,72	111,72	558,77	335,24	223,52	0,67	5,00
3,50	514,76	-26,89	126,89	641,65	384,27	257,38	0,67	5,06
4,00	577,71	-42,06	142,06	719,77	430,92	288,86	0,67	5,07
4,50	681,37	-66,19	166,19	847,56	506,87	340,68	0,67	5,10
5,00	730,97	-79,29	179,29	910,26	544,78	365,49	0,67	5,08
6,00	859,23	-112,38	212,38	1071,61	642,00	429,61	0,67	5,05
7,00	973,53	-143,41	243,41	1216,94	730,18	486,77	0,67	5,00
8,00	1096,81	-178,57	278,57	1375,38	826,98	548,40	0,66	4,94
9,00	1244,44	-222,70	322,70	1567,14	944,92	622,22	0,66	4,86
10,00	1312,78	-246,14	346,14	1658,93	1002,54	656,39	0,65	4,79
11,00	1402,23	-276,48	376,48	1778,71	1077,59	701,12	0,65	4,72
12,00	1436,82	-291,65	391,65	1828,46	1110,06	718,41	0,65	4,67
13,00	1443,97	-308,20	408,20	1852,17	1130,18	721,99	0,64	4,54
14,00	1435,68	-312,33	412,33	1848,01	1130,17	717,84	0,64	4,48
15.00	1429,51	-315,09	415,09	1844,60	1129,85	714,76	0,63	4,44

Nota: Muestra inalterada

Observaciones:

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

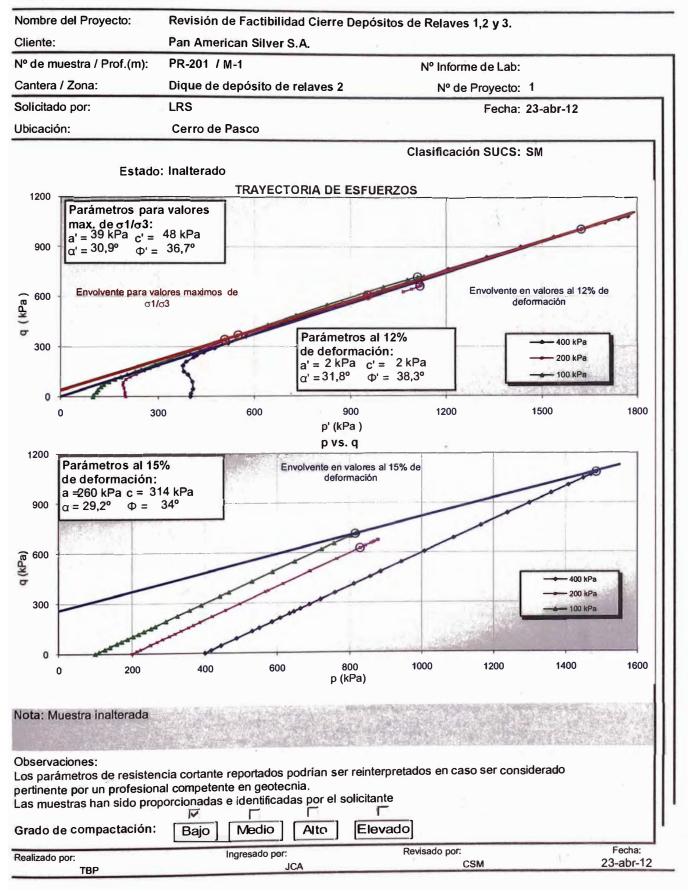
Las muestras han sido proporcionadas e identificadas por el solicitante


Grado de compactación: Bajo Medio Alto Elevado

Realizado por:	Ingresado por:	Revisado por:	Fecha:
TBP	JCA	CSM	23-abr-12

Consolidado - No drenado (CU)

ASTM - D4767


LABORATORIO GEOTÉCNICO

Consolidado - No drenado (CU)

ASTM - D4767

LABORATORIO GEOTÉCNICO

Consolidado - No drenado (CU)

ASTM - D4767

LABORATORIO GEOTÉCNICO

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Nombre del Proyecto:

Cliente: Pan American Silver S.A.

Nº de muestra / Prof.(m): PR-201 / M-1 Nº Informe de Lab:

Cantera / Zona: Dique de depósito de relaves 2 Nº de Proyecto: 1

Solicitado por: **LRS** Fecha: 23-abr-12

Ubicación: Cerro de Pasco

Estado: Inalterado

Ausenco Vector

PANEL FOTOGRAFICO

Nota: Muestra inalterada

Grado de compactación:

Observaciones:

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Medio

AP-067-12E

100 kPa

12,50 - 13,15

Las muestras han sido proporcionadas e identificadas por el solicitante

V

Bajo

Revisado por: Fecha: Ingresado por: Realizado por: 23-abr-12 CSM **JCA**

Elevado

Alto

Consolidado - No drenado (CU)

LABORATORIO GEOTÉCNICO

ASTM - D4767

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

N° de muestra / Prof.(m): PR-301 / M-5 / 7,75 - 8,40 N° Informe de Lab:

Cantera / Zona: Depósito de Relaves 3 Nº de Proyecto: 1

Solicitado por: LRS Fecha: 24-abr-12

Ubicación: Cerro de Pasco

Estado: Inalterado

Clasificación	SUCS:	CL
---------------	-------	----

Etapa de consolidación		Inicial	Final
Altura	(cm)	13,24	12,21
Diámetro	(cm)	6,18	5,87
Humedad	(%)	42,44	27,89
Densidad seca (gr/cc)		1,431	2,451

Velocidad	(pulg/min)	0,01
Parámetro "B"		0,97
Presión de celda	kPa	676
Contra presión	kPa	276
Esf. Efect. Inicial	kPa	400

Deformación (%)	Esf. Desv.	'n	S ₃	S ₁	P	q	q/p	Oblicuidad
	kPa	kPa	kPa	kPa	kPa	kPa		(\$1/\$3)
0,00	0,00	0,00	400,00	400,00	400,00	0,00	0,00	1,00
0,05	30,58	30,34	369,66	400,25	384,95	15,29	0,04	1,08
0,10	69,85	57,92	342,08	411,93	377,01	34,92	0,09	1,20
0,20	102,61	93,77	306,23	408,85	357,54	51,31	0,14	1,34
0,35	129,51	133,07	266,93	396,44	331,69	64,75	0,20	1,49
0,50	146,50	159,27	240,73	387,23	313,98	73,25	0,23	1,61
0,75	163,28	188,92	211,08	374,36	292,72	81,64	0,28	1,77
1,00	173,78	208,22	191,78	365,56	278,67	86,89	0,31	1,91
1,25	181,46	224,08	175,92	357,38	266,65	90,73	0,34	2,03
1,50	188,62	235,11	164,89	353,51	259,20	94,31	0,36	2,14
1,75	193,80	243,38	156,62	350,41	253,51	96,90	0,38	2,24
2,00	197,66	250,28	149,72	347,38	248,55	98,83	0,40	2,32
2,50	204,51	261,31	138,69	343,20	240,94	102,25	0,42	2,47
3,00	211,44	268,90	131,10	342,54	236,82	105,72	0,45	2,61
3,50	217,65	274,41	125,59	343,24	234,41	108,83	0,46	2,73
4.00	223.79	278,55	121,45	345,24	233,35	111,89	0,48	2,84
4,50	230,79	281,31	118,69	349,49	234,09	115,40	0,49	2,94
5.00	234,58	283,37	116,63	351,21	233,92	117,29	0,50	3,01
6.00	244,95	286,13	113,87	358,82	236,34	122,48	0,52	3,15
7,00	254,74	286,82	113,18	367,92	240,55	127,37	0,53	3,25
8.00	265,17	286.82	113,18	378,34	245,76	132,58	0,54	3,34
9.00	273,81	285,44	114,56	388,37	251,46	136,91	0,54	3,39
10.00	281,46	284,06	115,94	397,40	256,67	140,73	0,55	3,43
11,00	288.58	281,31	118,69	407,28	262,99	144,29	0,55	3,43
12,00	296,20	280.62	119,38	415,58	267,48	148,10	0,55	3,48
13,00	302,71	277,86	122,14	424,85	273,50	151,35	0,55	3,48
14.00	308,28	275,79	124,21	432,49	278,35	154,14	0,55	3,48
15.00	313,23	273,03	126.97	440.20	283,58	156,61	0,55	3,47

A	-6-	
N	\mathbf{o}	ı
ы.	-	•

Observaciones:

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Las muestras han sido proporcionadas e identificadas por el solicitante

Grado de compactación: Bajo Medio Alto Elevado

Realizado por:	Ingresado por:	Revisado por:	Fecha:
TRP	JCA	CSM	24-abr-12

Consolidado - No drenado (CU) ASTM - D4767

LABORATORIO GEOTÉCNICO

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

N° de muestra / Prof.(m): PR-301 / M-5 / 7,75 - 8,40 N° Informe de Lab:

Cantera / Zona: Depósito de Relaves 3 Nº de Proyecto: 1

Solicitado por: LRS Fecha: 24-abr-12

Ubicación: Cerro de Pasco

Estado: Inalterado

Velocidad	(pulg/min)	0,0

Clasificación SUCS: CL

Etapa de consolidación		Inicial	Final
Altura	(cm)	13,77	13,36
Diámetro	(cm)	6,05	6,03
Humedad	(%)	31,72	30,27
Densidad seca (gr/cc)		1,519	2,079

elocidad (pulg/min)		0,01
Parámetro "B"		0,97
Presión de celda	kPa	476
Contra presión	kPa	276
Esf. Efect. Inicial	kPa	200

Deformación (%)	Esf. Desv.	μ	S3	Si	ъ	٦	q/p	Oblicuida
	kPa	kPa	kPa	kPa	kPa	kPa		(\$1/\$3)
0,00	0,00	0,00	200,00	200,00	200,00	0,00	0,00	1,00
0,05	40,38	24,82	175,18	215,56	195,37	20,19	0,10	1,23
0,10	59,69	37,92	162,08	221,77	191,92	29,84	0,16	1,37
0,20	90,45	64,81	135,19	225,64	180,42	45,23	0,25	1,67
0,35	103,07	80,32	119,68	222,74	171,21	51,53	0,30	1,86
0,50	115,64	95,84	104,16	219,80	161,98	57,82	0,36	2,11
0,75	124,02	107,56	92,44	216,46	154,45	62,01	0,40	2,34
1,00	131,89	117,90	82,10	213,99	148,05	65,95	0,45	2,61
1,25	136,64	124,80	75,20	211,85	143,53	68,32	0,48	2,82
1,50	138,91	128,24	71,76	210,67	141,21	69,45	0,49	2,94
1,75	141,47	131,69	68,31	209,78	139,04	70,73	0,51	3,07
2,00	144,01	134,45	65,55	209,56	137,56	72,01	0,52	3,20
2,50	147,54	137,21	62,79	210,33	136,56	73,77	0,54	3,35
3,00	148,90	138,58	61,42	210,31	135,86	74,45	0,55	3,42
3,50	152,35	141,34	58,66	211,00	134,83	76,17	0,56	3,60
4,00	156,20	142,03	57,97	214,17	136,07	78,10	0,57	3,69
4,50	157,77	142,72	57,28	215,05	136,16	78,88	0,58	3,75
5,10	161,23	143,41	56,59	217,82	137,20	80,61	0,59	3,85
6,00	164,97	143,41	56,59	221,56	139,07	82,48	0,59	3,92
7.00	169,74	143,41	56,59	226,33	141,46	84,87	0,60	4,00
8,00	173,08	142,72	57,28	230,36	143,82	86,54	0,60	4,02
9,00	176,31	142,03	57,97	234,28	146,12	88,16	0,60	4,04
10.00	179,43	140,65	59,35	238,78	149,06	89,72	0,60	4,02
11,00	181,32	139,96	60,04	241,36	150,70	90,66	0,60	4,02
12,00	180,93	139,27	60,73	241,66	151,19	90,47	0,60	3,98
13.00	181,46	137,90	62,10	243,56	152,83	90,73	0,59	3,92
14,00	181,92	137,21	62,79	244,71	153,75	90,96	0,59	3,90
15,00	181,79	136.52	63,48	245,28	154,38	90,90	0,59	3,86

NI	\mathbf{a}	ra
10	v	ш

Observaciones:

Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia.

Las muestras han sido proporcionadas e identificadas por el solicitante

Grado de compactación: Bajo Medio Alto Elevado

Realizado por:	Ingresado por:	Revisado por:	Fecha:
TRP	JCA	CSM	24-abr-12

Consolidado - No drenado (CU) ASTM - D4767

LABORATORIO GEOTÉCNICO

TBP

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Nº de muestra / Prof.(m): PR-301 / M-5 / 7,75 - 8,40 Nº Informe de Lab:

Cantera / Zona: Depósito de Relaves 3 Nº de Proyecto: 1

Solicitado por: LRS Fecha: 24-abr-12

Ubicación: Cerro de Pasco

Estado: Inalterado

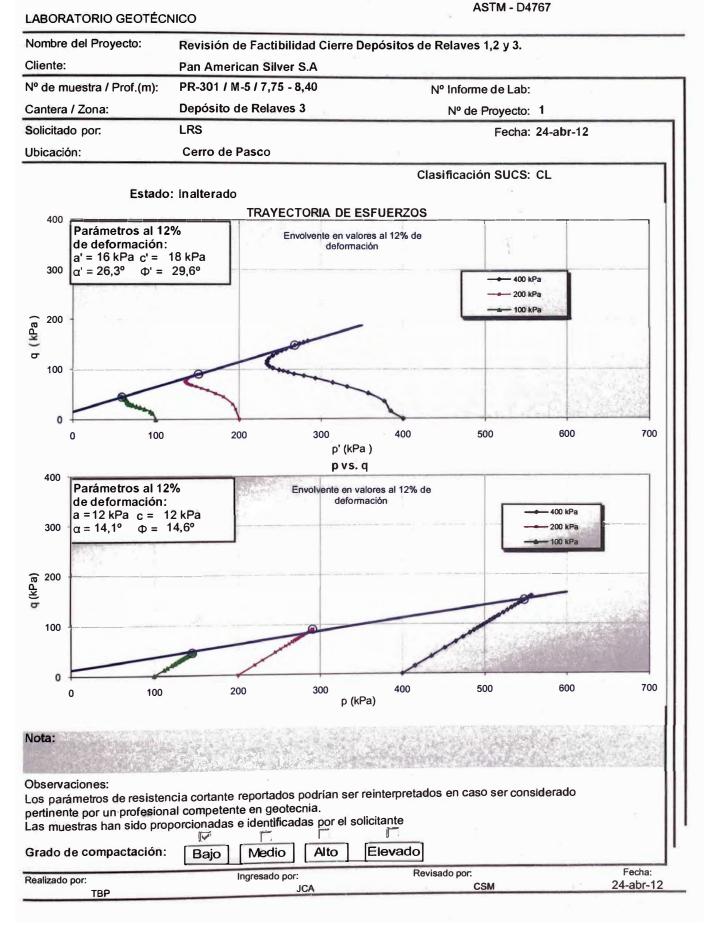
Clasificación	SUCS:	CL

Etapa de consolidación	Inicial	Final
Altura (cm)	13,77	13,41
Diámetro (cm)	6,05	5,92
Humedad (%)	31,72	30,27
Densidad seca (gr/cc)	1,519	2,149

Velocidad	(pulg/min)	0,01
Parámetro "B"		0,97
Presión de celda	kPa	376
Contra presión	kPa	276
Esf. Efect. Inicial	kPa	100

Deformación (%)	Esf. Desv.	μ kPa	S ₃	Si	7	₹q kPa	q/p	Oblicuidad (s ₁ /s ₃)
	kPa		kPa	kPa	kPa			
0,00	0,00	0,00	100,00	100,00	100,00	0,00	0,00	1,00
0,05	23,77	15,86	84,14	107,92	96,03	11,89	0,12	1,28
0,10	31,36	22,06	77,94	109,30	93,62	15,68	0,17	1,40
0,20	41,83	34,47	65,53	107,35	86,44	20,91	0,24	1,64
0,35	47,89	42,75	57,25	105,14	81,20	23,94	0,29	1,84
0,50	51,52	48,95	51,05	102,57	76,81	25,76	0,34	2,01
0,75	56,37	55,85	44,15	100,52	72,34	28,18	0,39	2,28
1,00	59,27	59,98	40,02	99,29	69,65	29,64	0,43	2,48
1,25	61,36	63,43	36,57	97,93	67,25	30,68	0,46	2,68
1,50	64,23	65,50	34,50	98,73	66,62	32,12	0,48	2,86
1,75	65,50	66,88	33,12	98,62	65,87	32,75	0,50	2,98
2,00	67,39	68,26	31,74	99,14	65,44	33,70	0,51	3,12
2,50	69,73	69,64	30,36	100,10	65,23	34,87	0,53	3,30
3,00	73,30	71,02	28,98	102,28	65,63	36,65	0,56	3,53
3,50	74,51	72,39	27,61	102,12	64,86	37,26	0,57	3,70
4,00	76,58	73,77	26,23	102,81	64,52	38,29	0,59	3,92
4,50	78,63	75,15	24,85	103,47	64,16	39,31	0,61	4,16
5.00	80,64	76,53	23,47	104,11	63,79	40,32	0,63	4,44
6,00	82,20	77,91	22,09	104,29	63,19	41,10	0,65	4,72
7.00	83,70	79,29	20,71	104,41	62,56	41,85	0,67	5,04
8.00	85,15	80,67	19,33	104,48	61,91	42,58	0,69	5,40
9,00	86,55	82,05	17,95	104,51	61,23	43,28	0,71	5,82
10.00	87.90	83,43	16,57	104,48	60,52	43,95	0,73	6,30
11.00	89,20	84,81	15,19	104,40	59,80	44,60	0,75	6,87
12,00	90,45	86,18	13,82	104,26	59,04	45,22	0,77	7,55
13.00	91,65	87,56	12,44	104,08	58,26	45,82	0,79	8,37
14,00	92.79	88,94	11,06	103,85	57,45	46,40	0,81	9,39
15,00	93,88	90,32	9,68	103,56	56,62	46,94	0,83	10,70
16,00	94,93	91,70	8,30	103,23	55,76	47,46	0,85	12,44

Nota:	le parte de la companya de la compan		
Observaciones:	EXAMINET SEAS DEVIN MELL AND THE		SACRETAR SHIP I SHARE THE SACRETARY
pertinente por un profesiona	cia cortante reportados podrían s al competente en geotecnia. porcionadas e identificadas por el	er reinterpretados en caso ser cor solicitante	ISIDERADO
Grado de compactación:	Bajo Medio Alto	[Elevado]	
Realizado por:	Ingresado por: JCA	Revisado por: CSM	Fecha: 24-abr-12


Consolidado - No drenado (CU)

CSM

ASTM - D4767 LABORATORIO GEOTÉCNICO Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A. Nº de muestra / Prof.(m): PR-301 / M-5 / 7,75 - 8,40 Nº Informe de Lab: Depósito de Relaves 3 Cantera / Zona: Nº de Proyecto: 1 LRS Solicitado por: Fecha: 24-abr-12 Cerro de Pasco Ubicación: Clasificación SUCS: CL Estado: Inalterado ESFUERZO vs. DEFORMACIÓN 400 400 kPa Esfuerzo Desviador (s₁ - s₃) (kPa) 100 kPa 300 200 100 16,0 12,0 14,0 8,0 10,0 0,0 2,0 4,0 Deformación en (%) PRESIÓN DE POROS vs. DEFORMACIÓN 400 200 kPa 100 kPa 300 Presión de Poros (kPa) 200 100 10,0 12,0 14,0 16,0 8,0 4,0 2,0 0,0 Deformación (%) Nota: Observaciones: Los parámetros de resistencia cortante reportados podrían ser reinterpretados en caso ser considerado pertinente por un profesional competente en geotecnia. Las muestras han sido proporcionadas e identificadas por el solicitante Grado de compactación: Elevado Bajo Medio Alto Revisado por: Fecha: Ingresado por: Realizado por: 24-abr-12

TBP

Consolidado - No drenado (CU)

ENSAYO DE COMPRESIÓN TRIAXIAL

Consolidado - No drenado (CU)

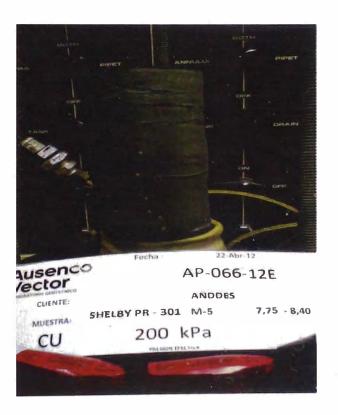
ASTM - D4767

LABORATORIO GEOTÉCNICO

Nombre del Proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

N° de muestra / Prof.(m): PR-301 / M-5 / 7,75 - 8,40 N° Informe de Lab:


Cantera / Zona: Depósito de Relaves 3 N° de Proyecto: 1

Solicitado por: LRS Fecha: 24-abr-12

Ubicación: Cerro de Pasco

Clasificación SUCS: CL Estado: Inalterado

PANEL FOTOGRAFICO

Nota:				
portinente por un profesiona	cia cortante reportados podrían se al competente en geotecnia. orcionadas e identificadas por el	er reinterpretados en caso ser consid solicitante	derado	The College Assert College Col
Grado de compactación:	Bajo Medio Alto	[Elevado]		
Realizado por:	Ingresado por: JCA	Revisado por: CSM	γ.	Fecha: 24-abr-12

Consolidación

FACULTAD DE INGENIERÍA CIVIL

CENTRO PERUANO JAPONÉS DE INVESTIGACIONES SÍSMICAS Y MITIGACIÓN DE DESASTRES LABORATORIO GEOTÉCNICO

Av Túpac Amaru Nº 1150, Lima 25, Perú - Telf (51-1) 482-0804, 481-0170, 482-0777 - Correo labgeoc@uni.edu.pe - Página http://www.cismid-uni.org

ENSAYOS DE CARACTERIZACIONES FISICAS

(ASTM - D4426; D422; D4318; D427; D2487; D-3282)

Informe

: LG12-093

, LG12-0.

: ANDDES ASOCIADOS S. A. C.

Solicitante Proyecto

: Revisión de Factibilidad Cierre Depósitos de Relaves 1, 2 y 3

100.0

100.0

99.8 80.3

74.0

Ubicación

: Cerro de Pasco, Dpto. Pasco

Sondaje Muestra : PR - 301 : M - 03

Profundidad (m)

Nº 20

Nº 40

Nº 60

Nº 140

Nº 200

: 4.00 - 4.65

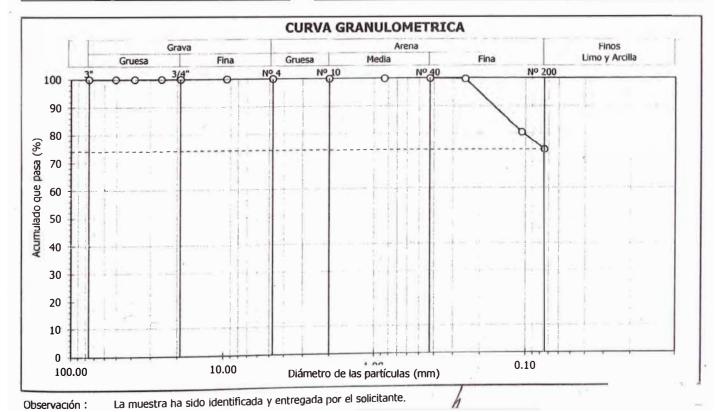
Hoja: 1 de 1

Fecha: Abril, 2012

Granulometría por	tamizado	44
Tamiz	Abertura (mm)	Acum. q' Pasa (%)
3°	76.200	100.0
2"	50.800	100.0
11/2"	38.100	100.0
1"	25.400	100.0
3/4"	19.050	100.0
3/8"	9.525	100.0
Nº 4	4.750	100.0
Nº 10	2.000	100.0

0.850

0.425


0.250

0.106

0.075

Contenido de hum	nedad	(%)	26.4
	Límite Líquido	(%)	21
Límites de	Límite Plástico	(%)	NP
consistencia	Índice de Plasticidad	(%)	NP
	Límite de Contracción	(%)	~~~
	Coeficiente de Uniformidad (Cu)		
Resultados de	Coeficiente de Curvatura (Cc)		
granulometría	Grava [Nº 4 < φ < 3"]	(%)	0.0
por tamizado	Arena [N° 200 < φ < N° 4]	(%)	26.0
	Finos [ϕ < No 200]	(%)	74.0

Clasificación			
AASHTO	SUCS		
A-4 (0)	ML.	Limo con arena	

FACULTAD DE INGENIERÍA CIVIL

CENTRO PERUANO JAPONÉS DE INVESTIGACIONES SÍSMICAS Y MITIGACIÓN DE DESASTRES LABORATORIO GEOTÉCNICO

Av. Túpac Amaru. № 1150, Lima 25, Perú - Tell' (51-1) 482-0804- 481-0170, 482-0777 - Correo labgeoci@uni edu pe - Página http://www.cismid-uni.org

CONSOLIDACION UNIDIMENSIONAL

(ASTM-D2435)

INFORME

: LG12-093 \

Fecha: Abril, 2012

SOLICITANTE

: ANDDES ASOCIADOS S. A. C.

PROYECTO

: Revisión de Factibilidad Cierre Depósitos de Relaves 1, 2 y 3

UBICACION

: Cerro de Pasco, Dpto. Pasco

Sondaje

: PR - 301

Hoja: 1 de 3

Muestra

: M - 03

Estado: Inalterado

Profundidad (m) : 4.00 - 4.65

SUCS: ML

DATOS DEL ESPECIMEN		
Altura	(cm)	1.89
Diámetro	(cm)	6.00
Gravedad de Sólidos (G₅)		3.02

Humedad inicial	(%)	24.0
Humedad final	(%)	20.4
Saturación inicial	(%)	98.6
Saturación final	(%)	99.7

Carga	Lectura	Acont		Altura		Densidad	Relación	Deform.	Coefic. de
Aplicada	Final	Asent.	Final	Promedio	Drenada	Seca	de Vacíos	Vertical	consolid.
(kg/cm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(g/cm³)	(e)	(%)	(cm²/min)
0.00	8.948	0.000	18.900	18.900	9.450	1.739	0.734	0.00	
0.05	8.872	0.076	18.824	18.862	9.431	1.746	0.727	0.40	1.57
0.10	8.791	0.157	18.743	18.784	9.392	1.753	0.720	0.83	0.51
0.20	8.698	0.250	18.650	18.697	9.348	1.762	0.711	1.32	0.91
0.40	8.538	0.410	18.490	18.570	9.285	1.777	0.697	2.17	0.94
0.80	8.395	0.553	18.347	18.419	9.209	1.791	0.683	2.93	1.02
1.60	8.181	0.767	18.133	18.240	9.120	1.812	0.664	4.06	0.86
3.20	7.922	1.026	17.874	18.004	9.002	1.838	0.640	5.43	0.80
6.40	7.657	1.291	17.609	17.742	8.871	1.866	0.616	6.83	0.69

Carga	Lectura	Annah	Altura			Densidad	Relación	Deform.	Coefic. de
Aplicada	Final	Asent.	Final	Promedio	Drenada	Seca	de Vacíos	Vertical	consolid.
(kg/cm²)	(mm)	(mm)	(mm)	(mm)	(mm)	(g/cm³)	(e)	(%)	(cm²/min)
6.40	7.657	1.291	17.609	17.609	8.805	1.866	0.616	6.83	
3,20	7.720	1.228	17.672	16.995	8.498	1.859	0.622	6.50	***
1.60	7.749	1.199	17.701	17.041	8.521	1.856	0.624	6.34	
0.80	7.779	1.169	17.731	17.071	8.535	1.853	0.627	6.19	
0.40	7.822	1.126	17.774	17.107	8.554	1.849	0.631	5.96	
0.20	7.871	1.077	17.823	17.153	8.577	1.844	0.635	5.70	
0.10	7.900	1.048	17.852	17.192	8.596	1.841	0.638	5.54	
0.10	,,,,,,								

Observaciones: La muestra ha sido proporcionada è identificada por el solicitante.

FACULTAD DE INGENIERÍA CIVII.

CENTRO PERUANO JAPONES DE INVESTIGACIONES SISMICAS Y MITIGACION DE DESASTRES LABORATORIO GEOTÉCNICO

Av. Tupac Amaru. Nº 1150, Lima 25, Peru - Telt. (51-1) 482-0804, 481-0170, 482-0777 - Correo labgeoci@uni edu pe - Página http://www.cismid-uni.org

CONSOLIDACION UNIDIMENSIONAL

(ASTM-D2435)

INFORME

: LG12-093

Fecha: Abril, 2012

SOLICITANTE

: ANDDES ASOCIADOS S. A. C.

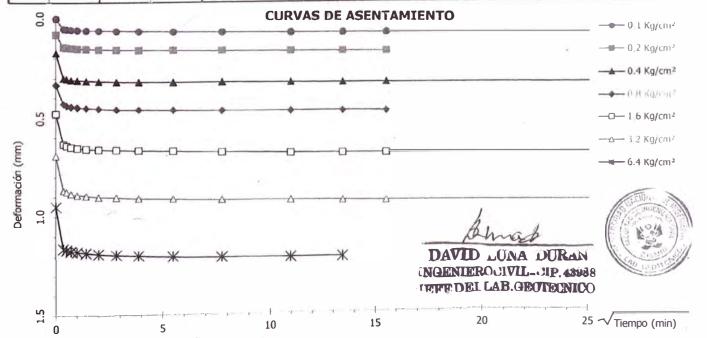
PROYECTO

: Revisión de Factibilidad Cierre Depósitos de Relaves 1, 2 y 3

UBICACION

: Cerro de Pasco, Dpto. Pasco

Sondaje Muestra : PR - 301


: M - 03

Hoja: 2 de 3 Estado: Inalterado

SUCS : ML

Profundidad (m) : 4.00 - 4.65

0.1 K	g/cm²	0.2 Kg	ı/cm²	0.4 Kg		LLE DE LA 0.8 Kd			g/cm²	3.2 Kg	ı/cm²	6.4 Kg	a/cm²
Tiempo (min)	Def. (mm)	Tiempo (min)	Def. (mm)	Tiempo (min)	Def. (mm)	Tiempo (min)	Def. (mm)	Tiempo (min)	Def. (mm)	Tiempo (min)	Def. (mm)	Tiempo (min)	Def. (mm)
0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.13	0.053	0.13	0.063	0.13	0.126	0.13	0.095	0.13	0.155	0.13	0.175	0.13	0.209
0.25	0.055	0.25	0.066	0.25	0.130	0.25	0.103	0.25	0.163	0.25	0.182	0.25	0.215
0.5	0.057	0.5	0.069	0.5	0.135	0.5	0.109	0.5	0.170	0.5	0.192	0.5	0.221
1	0.059	1	0.071	1	0.137	1	0.113	1	0.175	1	0.199	1	0.225
2	0.061	2	0.073	2	0.140	2	0.116	2	0.180	2	0.203	2	0.231
4	0.063	4	0.076	4	0.143	4	0.120	4	0.184	4	0.210	4	0.237
8	0.065	8	0.078	8	0.146	8	0.125	8	0.187	8	0.213	8	0.243
15	0.067	15	0.080	15	0.148	15	0.127	15	0.190	15	0.219	15	0.247
30	0.070	30	0.082	30	0.150	30	0.130	30	0.194	30	0.223	30	0.253
60	0.073	60	0.086	60	0.151	60	0.135	60	0.202	60	0.230	60	0.259
120	0.077	120	0.089	120	0.155	120	0.139	120	0.210	120	0.236	120	0.265
180	0.079	180	0.091	180	0.157	180	0.140	180 ^	0.212	180	0.240	180	0.265
240	0.080	240	0.093	240	0.158	240	0.143	240	0.213	240	0.243		
1210	0.081			1205	0.160			1215	0.214	4305	0.259		
Î		To any other seasons and the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons as the seasons are seasons are seasons as the seasons are seas											
				10 mg		191		A.					
2 -													

FACULTAD DE INGENIERÍA CIVIL

CENTRO PERUANO JAPONES DE INVESTIGACIONES SISMICAS Y MITIGACIÓN DE DESASTRES

Fecha: Abril, 2012

LABORATORIO GEOTÉCNICO

Av Tupac Amaru № 1150. Luma 25. Perú - Telf (🤼 1) 482-0804. 481-0170. 482-0777 - Corred labgeoç@uni edu pe - Página bitip zwww.cismid-uni org

CONSOLIDACION UNIDIMENSIONAL

(ASTM-D2435)

INFORME

: LG12-093 *

: ANDDES ASOCIADOS S. A. C.

SOLICITANTE **PROYECTO**

: Revisión de Factibilidad Cierre Depósitos de Relaves 1, 2 y 3

UBICACION

Profundidad (m)

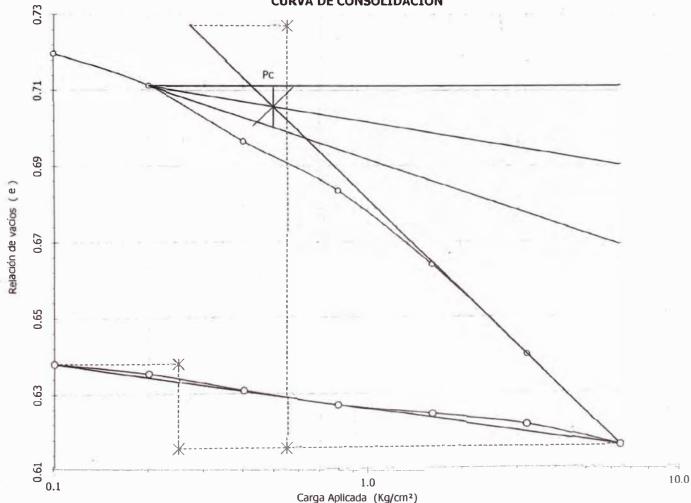
: Cerro de Pasco, Dpto. Pasco

Sondaje

: PR - 301

Muestra

: 4.00 - 4.65


: M - 03

Hoja: 3 de 3

Estado: Inalterado

SUCS: ML

CURVA DE CONSOLIDACION

$$\Delta \mathbf{e}_{\mathsf{C}} = \mathbf{0.111}$$

$$=>$$
 $C_C = 0.081$

$$\Delta \mathbf{e_s} = 0.022$$

$$=>$$
 $C_S = 0.012$

RESULTADOS

 $Pc = 0.5 \text{ Kg/cm}^2$

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: PR-101

Profundidad (m):

Descripción:

Zona:

Nº de muestra: M-1

10

32,00-32,40

Dique de depósito de relaves 1

Solicitado por:

Nº de proyecto:

Mean (MPa)

Nº de Informe de Lab: Fecha: 13/04/2012

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	ls	F	Is(50) (MPa)	σc (MPa)	ISRM
1	а	400,00	60,60	6.250	3.672,36	60,60	1,70	1,09	1,86	45	R3
2	а	170,00	60,60	6.930	3.672,36	60,60	1,89	1,09	2,06	49	R3
3	а	220,00	60,60	8.550	3.672,36	60,60	2,33	1,09	2,54	61	R4
4	а	100,00	60,60	4.940	3.672,36	60,60	1,35	1,09	1,47	35	R3
5	а	110,00	60,60	7.110	3.672,36	60,60	1,94	1,09	2,11	51	R4
6											
7											
8											
9											

Is(50): Indice de Carga Puntual Corregido Resistencia a la compresión No Confinada OC:

Resistencia ISRM	Descripción
R0	Roca Extremadamente Frágil (blanda)
R1	Roca muy Frágil (Blanda)
R2	Roca Fragil
R3	Roca medianamente Resistente
R4	Roca Resistente
R5	Roca muy Resistente
R6	Roca Extremadamente Resistente

Tipo de falla :	
(a) Ensayo diametral válido	
(b) Ensayo axial válido	
(c) Ensayo de bloque válido	
(d) Ensayo diametral inválido	
(e) Ensayo axial inválido	
(f) Falla diametral/axial a través de una	
fractura curada	

1,98

48

R3

Observación:

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
вт	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A. Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-201 Solicitado por: Nº de muestra: M-1 Nº de proyecto: Profundidad (m): 17,40-17,55 Nº de Informe de Lab: Dique de depósito de relaves 2 Zona: Fecha: 13/04/2012 Descripción:

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	ls	F	Is(50) (MPa)	σc (MPa)	ISRM
1_	а	170,00	60,90	7.790	3.708,81	60,90	2,10	1,09	2,30	55	R4
2											
3											
4											
5											
6											
7											
8											
9											
10											
							Mear	l _(MPa)	2,30	55	R4

Is(50): Indice de Carga Puntual Corregido

c: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción
R0	Roca Extremadamente Frágil (blanda)
R1	Roca muy Frágil (Blanda)
R2	Roca Fragil
R3	Roca medianamente Resistente
R4	Roca Resistente
R5	Roca muy Resistente
R6	Roca Extremadamente Resistente

Tipo de falla :
(a) Ensayo diametral válido
(b) Ensayo axial válido
(c) Ensayo de bloque válido
(d) Ensayo diametral inválido
(e) Ensayo axial inválido
(f) Falla diametral/axial a través de una
fractura curada

Observación:

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
BT	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A. Ubicación del proyecto: Cerro de Pasco PR-201 Cód. de muestra: Solicitado por: Nº de muestra: M-2 Nº de proyecto: 20,85-21,02 Profundidad (m): Nº de Informe de Lab: Zona: Dique de depósito de relaves 2 Fecha: 13/04/2012 Descripción:

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	ls	F	ls(50) (MPa)	σc (MPa)	ISRM
1	а	190,00	60,90	5.660	3.708,81	60,90	1,53	1,09	1,67	40	R3
2											
3											
4											
5											
6											
7											
8											
9											
10											
							Mear	1 _(MPa)	1,67	40	R3

Is(50): Indice de Carga Puntual Corregido

cc: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción
R0	Roca Extremadamente Frágil (blanda)
R1	Roca muy Frágil (Blanda)
R2	Roca Fragil
R3	Roca medianamente Resistente
R4	Roca Resistente
R5	Roca muy Resistente
R6	Roca Extremadamente Resistente

Tipo de falla :	
(a) Ensayo diametral válido	
(b) Ensayo axial válido	
(c) Ensayo de bloque válido	
(d) Ensayo diametral inválido	
(e) Ensayo axial inválido	
(f) Falla diametral/axial a través de una	
fractura curada	

Observación:

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
BT	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: PR-201

Nº de muestra:

Profundidad (m):

Descripción:

Zona:

M-3

26,30-26,75

Dique de depósito de relaves 2

Solicitado por:

Nº de proyecto:

Nº de Informe de Lab:

Fecha: 13/04/2012

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	Is	F	ls(50) (MPa)	σc (MPa)	ISRM
1	а	470,00	60,90	6.700	3.708,81	60,90	1,81	1,09	1,97	47	R3
2	а	190,00	60,90	5.180	3.708,81	60,90	1,40	1,09	1,53	37	R3
3	а	220,00	60,90	8.220	3.708,81	60,90	2,22	1,09	2,42	58	R4
4	а	80,00	60,90	4.850	3.708,81	60,90	1,31	1,09	1,43	34	R3
5											
6											
7											
8											
9											
10											
							Mear	l (MPa)	1,84	44	R3

Is(50): Indice de Carga Puntual Corregido

oc: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción				
R0	Roca Extremadamente Frágil (blanda)				
R1	Roca muy Frágil (Blanda)				
R2	Roca Fragil				
R3	Roca medianamente Resistente				
R4	Roca Resistente				
R5	Roca muy Resistente				
R6	Roca Extremadamente Resistente				

Tipo de falla :	
(a) Ensayo diametral válido	
(b) Ensayo axial válldo	
(c) Ensayo de bloque válido	
(d) Ensayo diametral inválido	
(e) Ensayo axial inválido	
(f) Falla diametral/axial a través de una	Ì
fractura curada	Ĭ

Observación:

	27			
Realizado por:		ngresado por:	Revisado por:	Nº de informe:
AT		CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Solicitado por:

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3.

Cliente: Pan American Silver S.A.

Ubicación del proyecto: Cerro de Pasco

Cód. de muestra: PR-201

Nº de muestra: M-4

N° de proyecto: 30,90-31,20

Zona: Dique de depósito de relaves 2 Nº de Informe de Lab:

Fecha: 13/04/2012

Descripción: -

Profundidad (m):

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	ls	F	Is(50) (MPa)	σc (MPa)	ISRM
1	а	160,00	60,90	12.460	3.708,81	60,90	3,36	1,09	3,67	88	R4
2	а	100,00	60,90	10.370	3.708,81	60,90	2,80	1,09	3,06	73	R4
3											
4											
5											
6											
7											
8											
9											
10											
							Mear	1 _(MPa)	3,36	81	R4

Is(50): Indice de Carga Puntual Corregido

oc: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción					
R0	Roca Extremadamente Frágil (blanda)					
R1	Roca muy Frágil (Blanda)					
R2	Roca Fragil					
R3	Roca medianamente Resistente					
R4	Roca Resistente					
R5	Roca muy Resistente					
R6	Roca Extremadamente Resistente					

(c) Ensayo de bloque válido (d) Ensayo diametral inválido (e) Ensayo axial inválido (f) Falla diametral/axial a través de una	Tipo de falla :	
(b) Ensayo axial válido (c) Ensayo de bloque válido (d) Ensayo diametral inválido (e) Ensayo axial inválido (f) Falla diametral/axial a través de una	(a) Ensayo diametral válido	
(d) Ensayo diametral inválido (e) Ensayo axial inválido (f) Falla diametral/axial a través de una	(b) Ensayo axial válido	
(e) Ensayo axial inválido (f) Falla diametral/axial a través de una	(c) Ensayo de bloque válido	
(f) Falla diametral/axial a través de una	(d) Ensayo diametral inválido	
	(e) Ensayo axial inválido	
fractura curada	(f) Falla diametral/axial a través de una	
naotara ourada	fractura curada	

Observación:

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
BT	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Nombre del proyecto: Cliente: Pan American Silver S.A. Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-202 Solicitado por: M-1 Nº de muestra: Nº de proyecto: Profundidad (m): 18,20-18,50 Nº de Informe de Lab; Zona: Dique de depósito de relaves 2 Fecha: 13/04/2012 Descripción:

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	ls	F	ls(50) (MPa)	σc (MPa)	ISRM
1	а	230,00	61,20	3.700	3.745,44	61,20	0,99	1,10	1,08	26	R3
2	а	130,00	61,20	5.610	3.745,44	61,20	1,50	1,10	1,64	39	R3
3											
4											
5											
6											
7											
8											
9											
10											
							Mear	(MPa)	1,36	33	R3

Is(50): Indice de Carga Puntual Corregido

OC: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción
R0	Roca Extremadamente Frágil (blanda)
R1	Roca muy Frágil (Blanda)
R2	Roca Fragil
R3	Roca medianamente Resistente
R4	Roca Resistente
R5	Roca muy Resistente
R6	Roca Extremadamente Resistente

Tipo de falla :	
(a) Ensayo diametral válido	
(b) Ensayo axial válido	
(c) Ensayo de bloque válido	Ξ
(d) Ensayo dlametral inválido	
e) Ensayo axial inválido	
(f) Falla diametral/axial a través de una	
fractura curada	

Observación:

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
вт	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A. Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-202 Solicitado por: Nº de muestra: M-2 Nº de proyecto: Profundidad (m): 19,20-19,90 Nº de Informe de Lab: Zona: Dique de depósito de relaves 2 Fecha: 13/04/2012 Descripción:

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	Is	F	Is(50) (MPa)	σc (MPa)	ISRM
1	а	170,00	61,40	3.410	3.769,96	61,40	0,90	1,10	0,99	24	R2
2	а	110,00	61,40	4.250	3.769,96	61,40	1,13	1,10	1,24	30	R3
3	d	440,00	61,40	6.360	3.769,96	61,40	1,69	1,10	1,85	44	R3
4	d	175,00	61,40	6.540	3.769,96	61,40	1,73	1,10	1,90	46	R3
5	d	210,00	61,40	4.920	3.769,96	61,40	1,31	1,10	1,43	34	R3
6											
7											
8											
9											
10											
							Mear	l _(MPa)	1,50	36	R3

Is(50): Indice de Carga Puntual Corregido

CC: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción
R0	Roca Extremadamente Frágil (blanda)
R1	Roca muy Frágil (Blanda)
R2	Roca Fragil
R3	Roca medianamente Resistente
R4	Roca Resistente
R5	Roca muy Resistente
R6	Roca Extremadamente Resistente

Tipo de falla	
(a) Ensayo diametral válido	
(b) Ensayo axial válido	
(c) Ensayo de bloque válido	
(d) Ensayo diametral inválido	
(e) Ensayo axial inválido	
(f) Falla diametral/axial a través de una	
fractura curada	

Observación:

97			
Realizado por:	Ingresado por:	Revisado por:	N° de informe:
ВТ	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A.C. Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-301 Solicitado por: Nº de muestra: M-11 Nº de proyecto: Profundidad (m): 19,95 - 21,35 N° de Informe de Lab: Zona: Depósito de Relave 3 Fecha: 23/03/2012 Descripción: Muestra de roca

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	ls	F	Is(50) (MPa)	σc (MPa)	ISRM
1	а	310,00	61,10	4.800	3.733,21	61,10	1,29	1,09	1,41	34	R3
2	а	160,00	61,10	6.750	3.733,21	61,10	1,81	1,09	1,98	47	R3
3	а	140,00	61,10	6.750	3.733,21	61,10	1,81	1,09	1,98	47	R3
4	а	250,00	61,10	5.240	3.733,21	61,10	1,40	1,09	1,54	37	R3
5	а	125,00	61,10	5.320	3.733,21	61,10	1,43	1,09	1,56	37	R3
6	а	124,00	61,10	6.390	3.733,21	61,10	1,71	1,09	1,87	45	R3
7											
8											
9											
10											
							Mear	1 _(MPa)	1,73	41	R3

Is(50): Indice de Carga Puntual Corregido

oc: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción
R0	Roca Extremadamente Frágil (blanda)
R1	Roca muy Frágil (Blanda)
R2	Roca Fragil
R3	Roca medianamente Resistente
R4	Roca Resistente
R5	Roca muy Resistente
R6	Roca Extremadamente Resistente

Tipo de falla :	
(a) Ensayo diametral válido	
(b) Ensayo axial válido	
(c) Ensayo de bloque válido	
(d) Ensayo diametral inválido	
(e) Ensayo axial inválido	
(f) Falla diametral/axial a través de una	
fractura curada	

Observación:

Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
ВТ	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A.C Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-302 Solicitado por: Nº de muestra; M-8 Nº de proyecto: 22,4-22,6 Profundidad (m): Nº de Informe de Lab: Dique Depósito de Relave 3 Zona: Fecha: 09/04/2012 Descripción:

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	Is	F	ls(50) (MPa)	σc (MPa)	ISRM
1	а	200,00	61,00	8.750	3.721,00	61,00	2,35	1,09	2,57	62	R4
2	а	100,00	61,00	2.170	3.721,00	61,00	0,58	1,09	0,64	15	R2
3	а	100,00	61,00	7.230	3.721,00	61,00	1,94	1,09	2,12	51	R4
4											
5											
6											
7			v .								
8											
9											
10											
							Vrear	1 _(MPa)	1,78	43	R3

Is(50): Indice de Carga Puntual Corregido

Oc: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción			
R0	Roca Extremadamente Frágil (blanda)			
R1	Roca muy Frágil (Blanda)			
R2	Roca Fragil			
R3	Roca medianamente Resistente			
R4	Roca Resistente			
R5	Roca muy Resistente			
R6	Roca Extremadamente Resistente			

Tipo de falla :	
(a) Ensayo diametral válido	
(b) Ensayo axial válido	
(c) Ensayo de bloque válido	
(d) Ensayo diametral inválido	
(e) Ensayo axial inválido	
(f) Falla diametral/axial a través de una	
fractura curada	

Observación:

Realizado por:	Ingresado por:	Revisado por:	N° de informe:
ВТ	CJ	JA	

ASTM D-5731

LABORATORIO GEOTECNICO

Nombre del proyecto: Revisión de Factibilidad Cierre Depósitos de Relaves 1,2 y 3. Cliente: Pan American Silver S.A.C Ubicación del proyecto: Cerro de Pasco Cód. de muestra: PR-303 Solicitado por: Nº de muestra: M-6 Nº de proyecto: Profundidad (m): 24,5-25,14 Nº de Informe de Lab: Zona: Depósito de Relave 3 Fecha: 09/04/2012 Descripción:

Nro	Tipo falla	W(mm)	D (mm)	Fuerza (N)	De² (mm²)	De (mm)	Is	F	Is(50) (MPa)	σc (MPa)	ISRM
1	а	140,00	61,00	5.620	3.721,00	61,00	1,51	1,09	1,65	40	R3
2	а	120,00	61,00	4.030	3.721,00	61,00	1,08	1,09	1,18	28	R3
3											
4											
5											
6											
7											
8											
9											
10											
							Mear	1 (MPa)	1,42	34	R3

Is(50): Indice de Carga Puntual Corregido

oc: Resistencia a la compresión No Confinada

Resistencia ISRM	Descripción					
R0	Roca Extremadamente Frágil (blanda)					
R1	Roca muy Frágil (Blanda)					
R2	Roca Fragil					
R3	Roca medianamente Resistente					
R4	Roca Resistente					
R5	Roca muy Resistente					
R6	Roca Extremadamente Resistente					

Tipo de falla :	
(a) Ensayo diametral válido	
(b) Ensayo axial válido	
(c) Ensayo de bloque válido	
(d) Ensayo diametral inválido	
(e) Ensayo axiat inválido	
(f) Falla diametral/axial a través de una	
fractura curada	

Observación:

H-1			
Realizado por:	Ingresado por:	Revisado por:	Nº de informe:
BT	Cl	JA	

Propiedades Físicas

Facultad de Ingeniería Geológica, Minera y Metalúrgica Laboratorio de Mecánica de Rocas

ENSAYOS DE PROPIEDADES FISICAS.

Los ensayos se realizaron según la norma ASTM 2216-02

Los resultados son los siguientes:

Calicata /Muestra Profundidad (m)	Diámetro (cm.)	Altura (cm.)	Densidad Seca (gr./cm³)	Densidad Húmeda (gr./cm³)	Porosidad Aparente (%)	Absorción (%)	Peso Especifico Aparente (KN/m³)
PR-HUA-201 / M-2 20.85 - 21.02	6.06	1.94	2.52	2.60	7.63	3.03	24.70
PR-HUA-101 / M-1 32.00 - 32.40	6.05	1.93	2.62	2.67	4.94	1.89	25.66
PR-HUA-201 / M-4 30.90 - 31.20	6.08	1.95	2.61	2.66	4.35	1.66	25.62
PR-HUA-202 / M-2 19.20 - 19.90	6.12	1.99	2.38	2.43	5.26	2.21	23.31

Nota:

> La empresa solicitante es responsable de la toma de muestra en campo.

La información correspondiente a las muestras fue proporcionada por el cliente.

Ing. Elvis Valencia Chavez Jefe del Laboratorio de Mecánica de Rocas Universidad Nacional de Ingeniería Potencial Neto de Neutralización ABA

Facultad de Ingeniería Geológica, Minera y Metalúrgica Laboratorio de Espectrometría

POTENCIAL NETO DE NEUTRALIZACIÓN DE MUESTRA DE DIQUE DEPÓSITO DE RELAVE 3- PRESA 3-HUARÓN - PASCO

SOLICITADO: ANDDES ASOCIADOS S.A.C.

Procedencia de muestra: Dique Depósito de Relave 3 - Presa 3-

Huarón - Pasco

RECEPCIÓN DE MUESTRA: Lima, 18 de Abril del 2012

1.- MUESTRA EVALUADA

Cantera/Zona	Calicata/Nº Muestra	Prof. (m)
Dique Depósito de Relave 3	CA-HUA12-307/M-1	0,0-0,7

2. COMPOSICIÓN MINERALÓGICA DE MUESTRA

Determinado por observaciones microscópicas y análisis espectral de la muestra; cuyos resultados se indican a continuación.

Av. Túpac Amarú N° 210, Lima 25, Apartado 1301-Perú

Teléfono: (511) 4824427 , Central Telefónica (511) 4811070, Anexo 386

e-mail: labespectro@uni.edu.pe

Muestra	
CA-HUA12-307/M-1	Y

Corresponde a fragmentos de roca fuertemente silicificada con presencia de sulfuros como pirita, calcopirita, esfalerita y galena con óxidos de hierro y manganeso, además de escasos carbonatos. Su composición y abundancia mineralógica se indica en la tabla siguiente:

Minerales / CA-HUA12-307/M-1	Formula	% en Peso
Cuarzo	SiO ₂	55,20
Calcita	CaCO ₃	11,06
Dolomita	CaMg(CO ₃) ₂	0,38
Ortoclasa	K(AlSi ₃ O ₈)	0,80
Albita	Na(AlSi ₃ O ₈)	1,40
Anortita	Ca(Al ₂ Si ₂ O ₈)	1,20
Pirita	FeS ₂	11,865
Calcopirita	CuFeS ₂	0,228
Esfalerita	ZnS	2,028
Galena	PbS	1,874
Hematita	Fe ₂ O ₃	10,10
Pirolusita	MnO ₂	3,21
Montmorillonita	Na _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ xH ₂ O	0,56

3.- RESULTADO DEL ANALISIS DE METALES EN MUESTRA CA-HUA12-307/M-1

La distribución de metales en muestra CA-HUA12-307/M-1determinado por métodos de análisis espectral se indica en la tabla siguiente.

Muestras	%Fe	%Mn	%Cu	%Pb	%Zn	Cd (ppm)	As (ppm)
CA-HUA12- 307/M-1	10,06	2,03	0,079	1,623	1,361	36	1371

Los valores de hierro se distribuyen formando óxidos y sulfuros; en el caso del manganeso corresponden a ocurrencias de pirolusita, los valores de cobre, plomo, zinc, cadmio y arsénico están ligados fundamentalmente a los minerales sulfurados.

4.- POTENCIAL NETO DE NEUTRALIZACIÓN EN MUESTRA CA-HUA12-307/M-1

La evaluación del contenido de azufre como sulfuro y la prueba ácido-base de la muestra CA-HUA12-307/M-1 nos permite determinar el potencial neto de neutralización cuyos resultados se indica en el cuadro siguiente:

Muestra	pH en pasta	%S	PN	PA	PNN	PN/PA
CA-HUA12- 307/M-1	7,5	7,34	130	229,37	- 99,37	0,57

Donde:

PN = Potencial de neutralización

%S = Porcentaje de azufre como sulfuro

PA = Potencial de acidez

PNN = Potencial neto de neutralización

PN, PA y PNN están expresados en KgCaCO₃/TM y evaluados según:

EXTRACTS FROM FIELDS AND LABORATORY METHODS APPLICABLE TO OVERBURDENS AND MINE SOILS, U.S. EPA, 600/2 – 78-054, 1978

4.1 Posibilidad de drenaje ácido de muestra CA-HUA12-307/M-1

Determinado en base al resultado del potencial neto de neutralización de la muestra CA-HUA12-307/M-1que depende del balance de minerales neutralizantes y sulfuros, considerando:

Que PNN = PN - PA

Si PNN > +20 ; la muestra NO GENERA DRENAJE ÁCIDO

Si PNN < -20 ; la muestra GENERA DRENAJE ÁCIDO

Si -20 < PNN < +20, muestra de comportamiento INCIERTO

De acuerdo a estas consideraciones podemos establecer el comportamiento de la muestra CA-HUA12-307/M-1en presencia de agua, oxígeno y actividad bacterial, como se indica en la tabla siguiente.

Muestra	Predomina	PN/PA	PNN KgCaCO₃/TM	Drenaje Acido
CA-HUA12- 307/M-1	Sulfuros	0,57	- 99,37	Si

Lima, 14 de Mayo del 2012

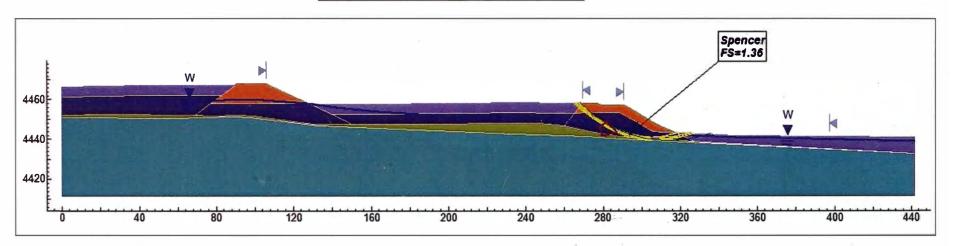
MSc. Atilio Mene 24 A. Jefe Lab. ESPECTROME IN PROTECTION OF THE P

Se adjunta la fotografía de la muestra CA-HUA12-307/M-1, indicando sus principales características mineralógicas.

FOTOGRAFÍA DE MUESTRA CA-HUA12-307/M-1

Muestra CA-HUA12-307/M-1

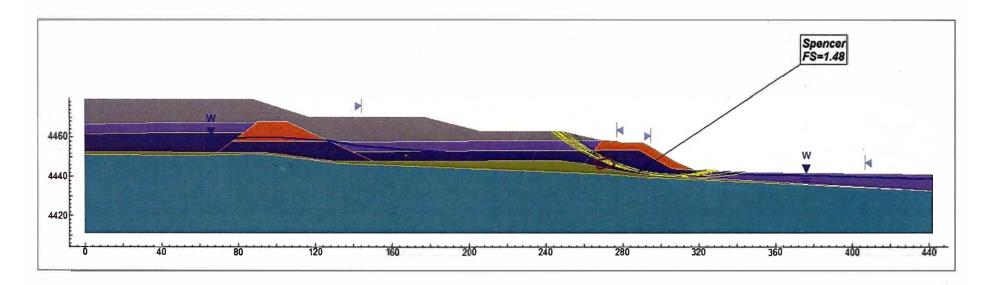
Fragmentos de rocas silicificadas con sulfuros, óxidos de hierro con manganeso y escasos carbonatos.


ANEXO C: ANÁLISIS GEOTÉCNICO

Análisis de Estabilidad de Taludes (Software Slide v6.0)

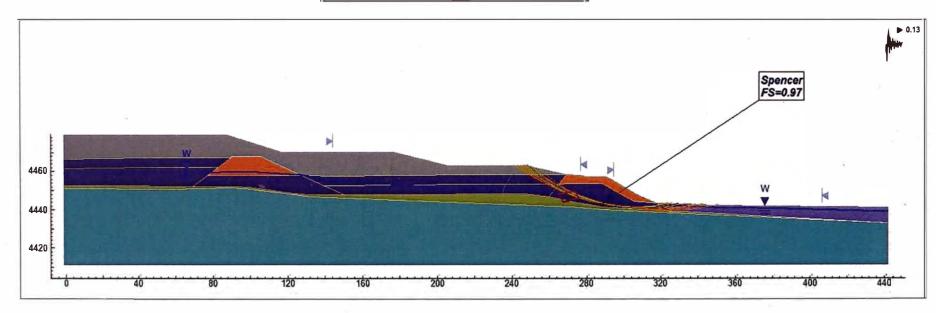
Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3

Sección 1-1: Falla circular, Análisis Estático. Condición Actual, FS=1,36


Matalian		γ	С	φ
Materiales		(kN/m^3)	(kN/m^2)	(°)
Material de Dique		21	0	35
Basamento Rocoso		23	125	35
Relave Actual		15	8	18
Relave Consolidado	H	15	0	22
Relave Cicloneado		15	0	22
Desmonte de Mina		22	0	37
Suelo Aluvial		18	0	25

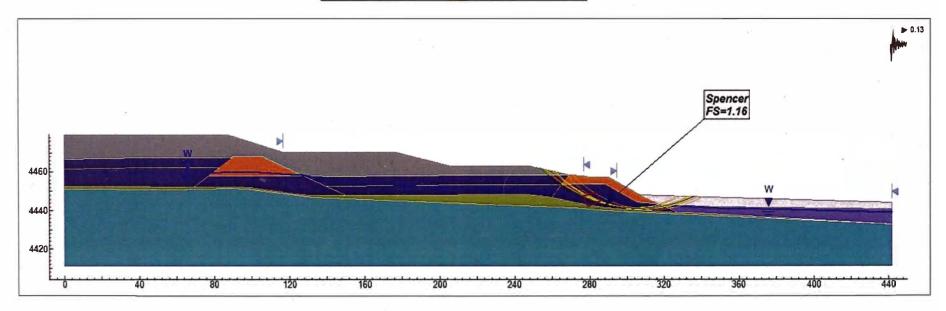
Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3

Sección 1-1: Falla circular, Análisis Estático. Apilamiento final a corto plazo, FS=1,48


Materiales		γ	С	φ
ivialcriales		(kN/m^3)	(kN/m^2)	(°)
Material de Dique		21	0	35
Basamento Rocoso		23	125	35
Relave Actual		15	8	18
Relave Consolidado	T	15	0	22
Relave Cicloneado		15	0	22
Desmonte de Mina		22	0	37
Suelo Aluvial		18	0	25

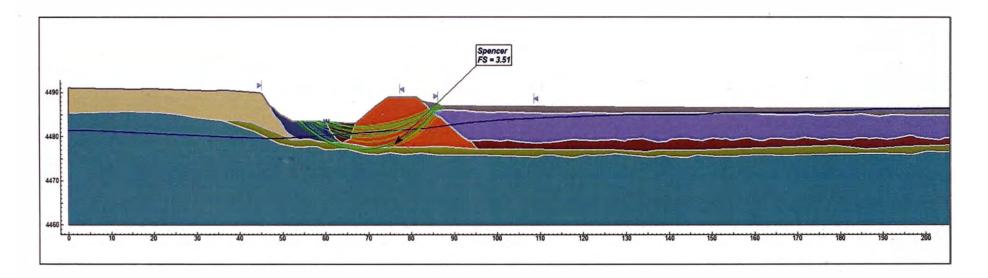
Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3

Sección 1-1: Falla circular, Pseudo-Estático. Apilamiento final a largo plazo, FS=0,97

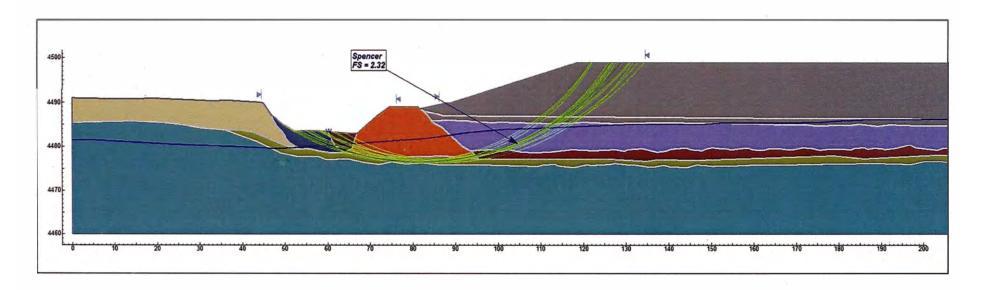

Materiales		γ	C	φ
Iviateriales		(kN/m^3)	(kN/m^2)	(°)
Material de Dique		21	0	35
Basamento Rocoso		23	125	35
Relave Actual		15	8	18
Relave Consolidado		15	0	22
Relave Cicloneado		15	0	22
Desmonte de Mina	10	22	0	37
Suelo Aluvial		18	0	25

Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3

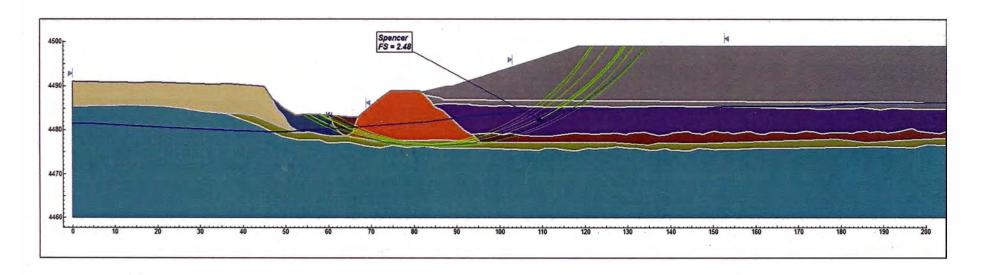
Sección 1-1: Falla circular, Análisis Pseudo-Estático. Apilamiento final a largo plazo con refuerzo, FS=1,16


Materiales	γ	С	φ
ivialeriales	(kN/m^3)	(kN/m^2)	(°)
Material de Dique	21	0	35
Basamento Rocoso	23	125	35
Relave Actual	15	8	18
Relave Consolidado	15	0	22
Relave Cicloneado	15	0	22
Desmonte de Mina	22	0	37
Suelo Aluvial	18	0	25

Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3

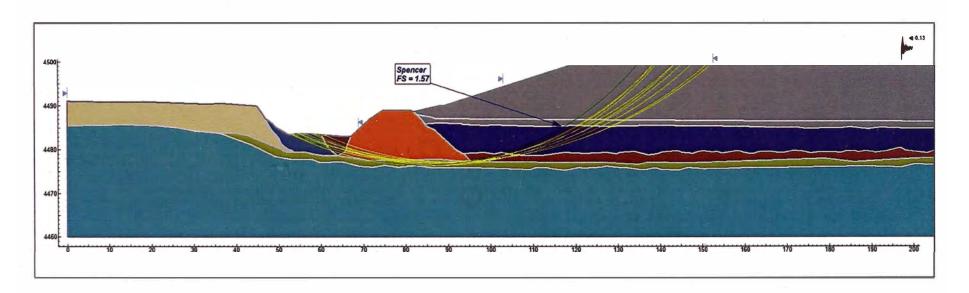

Sección 2-2: Falla circular, Análisis Estático. Condición actual, FS=3,51

Materiales	γ	С	φ
ivialeriales	(kN/m^3)	(kN/m^2)	(°)
Material de Dique	21	0	35
Basamento Rocoso	23	125	35
Relave Actual	15	8	18
Relave Consolidado	15	0	22
Relave Cicloneado	15	0	22
Desmonte de Mina	22	0	37
Suelo Aluvial	18	0	25


Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3 Sección 2-2: Falla circular, Análisis Estático. Apilamiento final a corto plazo, FS=2,32

Materiales	γ	С	φ
	(kN/m^3)	(kN/m^2)	(°)
Material de Dique	21	0	35
Basamento Rocoso	23	125	35
Relave Actual	15	8	18
Relave Consolidado	15	0	22
Relave Cicloneado	15	0	22
Desmonte de Mina	22	0	37
Suelo Aluvial	18	0	25

Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3 Sección 2-2: Falla circular, Análisis Estático. Apilamiento final a largo plazo, FS=2,48


Materiales	γ (kN/m³)	C (kN/m²)	φ (°)
Material de Dique	21	0	35
Basamento Rocoso	23	125	35
Relave Actual	15	8	18
Relave Consolidado	15	0	22
Relave Cicloneado	15	0	22
Desmonte de Mina	22	0	37
Suelo Aluvial	18	0	25

Análisis de Estabilidad – Depósitos de Relaves 1, 2 y 3

Sección 2-2: Falla circular, Análisis Pseudo-Estático. Apilamiento final a largo plazo, FS=1,57

Materiales		γ	С	φ
Iviateriales		(kN/m^3)	(kN/m^2)	(°)
Material de Dique		21	0	35
Basamento Rocoso	E	23	125	35
Relave Actual		15	8	18
Relave Consolidado		15	0	22
Relave Cicloneado		15	0	22
Desmonte de Mina		22	0	37
Suelo Aluvial		18	0	25

ANEXO D: REGISTRO FOTOGRÁFICO

ANEXO D: REGISTRO FOTOGRÁFICO

Foto N° 1: Vista Panorámica de la Unidad Minera Huarón y los depósitos de relaves 1, 2 y 3.

Foto N° 2: Vista Panorámica, aguas arriba del depósito de relaves 3.

Foto N° 3: Calicata CA-101, depósito de relaves 1.

Foto N° 4: Calicata CA-201, dique del depósito de relaves 2.

Foto N° 5: Calicata CA-203, depósito de relaves 2.

Foto N° 6: Calicata CA-205, depósito de relaves 2.

Foto N° 7: Calicata CA-210, depósito de relaves 2.

Foto N° 8: Calicata CA-301, dique del depósito de relaves 3.

Foto N° 9: Calicata CA-302, depósito de relaves 3.

Foto N° 10: Calicata CA-305, depósito de relaves 3.

Foto N° 11: Calicata CA-306, dique del depósito de relaves 3.

Foto N° 12: Calicata CA-307, dique del depósito de relaves 3.

Foto N° 13: Calicata CA-309, depósito de relaves 3.

Foto N° 14: Calicata CA-310, dique del depósito de relaves 3.

Foto N° 15: Calicata CA-311, dique del depósito de relaves 3.

Foto N° 16: Calicata CA-313, dique del depósito de relaves 3.

Foto N° 17: Calicata T-01, dique de depósito de relaves

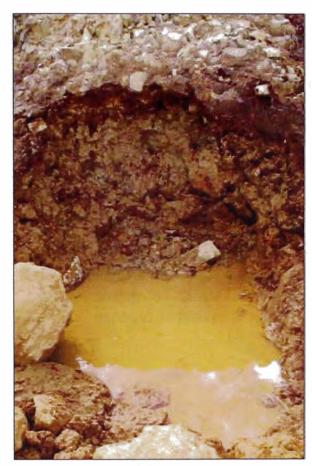


Foto N° 18: Calicata T-03, dique de depósito de relaves 3.

Foto N° 19: Ensayo de densidad de campo (Método del Cono de Arena) en la Calicata CA-307, dique del depósito de relaves 3.

Foto N° 20: Ensayo de densidad de Campo (Método del Cono de Arena) en la Calicata CA-311, dique del depósito de relaves 3.

Foto N° 21: Ensayo DPL-304, depósito de relaves 3.

Foto N° 22: Ensayo DPL-305, depósito de relaves 3.

Foto N° 23: Ensayo DPL-309, depósito de relaves 3.

Foto N° 24: Ensayo DPL-312, depósito de relaves 3.

Foto N° 25: Perforación PR-101 de 0,00 a 33,00 m, depósito de relaves 1.

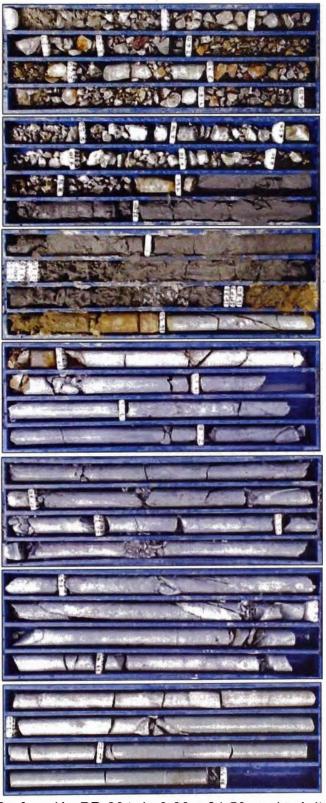


Foto N° 26: Perforación PR-201 de 0,00 a 31,50 m, depósito de relaves 1.

Foto N° 27: Perforación PR-202 de 0,00 a 20,00 m, depósito de relaves 1.

Foto N° 28: Perforación PR-301 de 0,00 a 27,30 m, depósito de relaves 1.

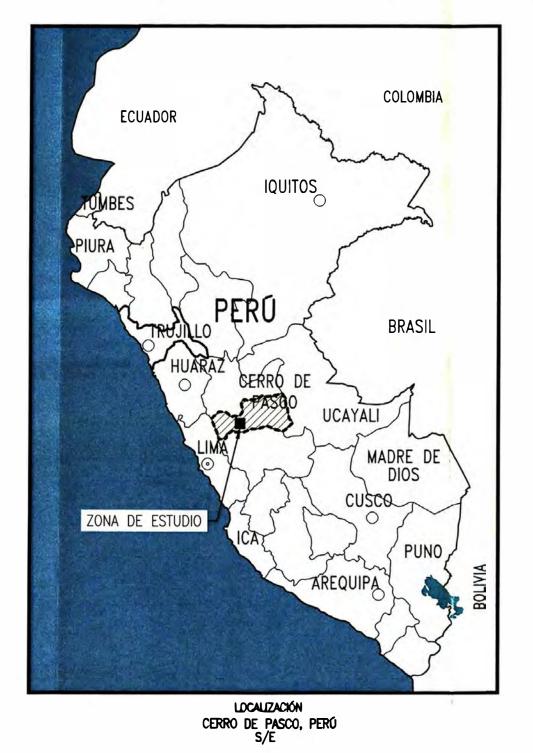

Foto N° 29: Perforación PR-302 de 0,00 a 33,00 m, depósito de relaves 1.

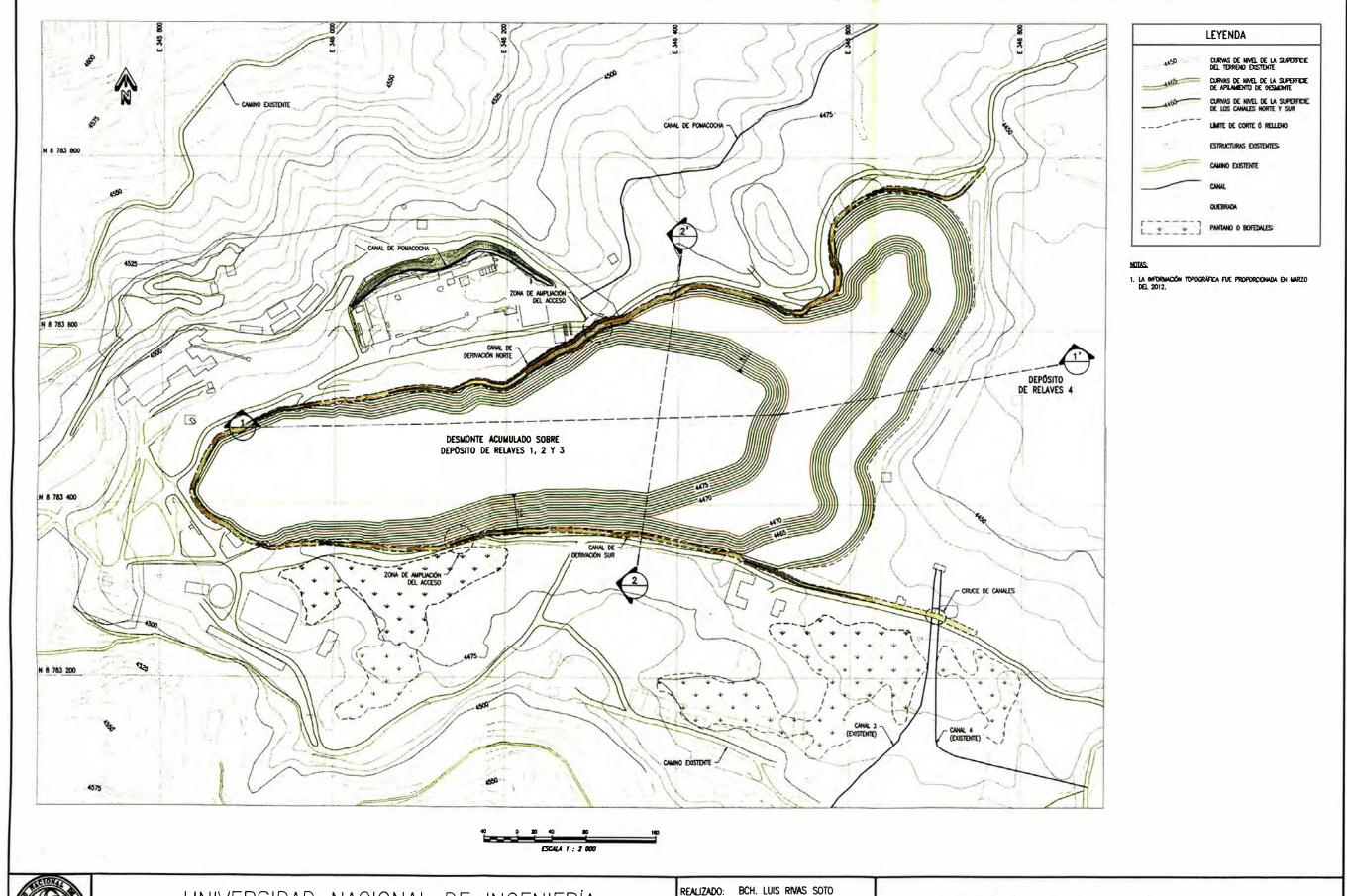
Foto N° 30: Perforación PR-303 de 0,00 a 28,50 m, depósito de relaves 1.

ANEXO E: PLANOS

PLANO DE UBICACIÓN Y LISTA DE PLANOS

LISTA DE PLANOS

NÚMERO DE PLANO


UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL TITULACIÓN PROFESIONAL-ACTUALIZACIÓN DE CONOCIMIENTOS 2012

 REALIZADO:	BCH. LUIS RIVAS SOTO		
REVISADO:	ING. LUIS GONZALES HUAR	PROYECTO:	
ESCALA:	INDICADA		
FECHA:	MARZO 2013	PLANO:	

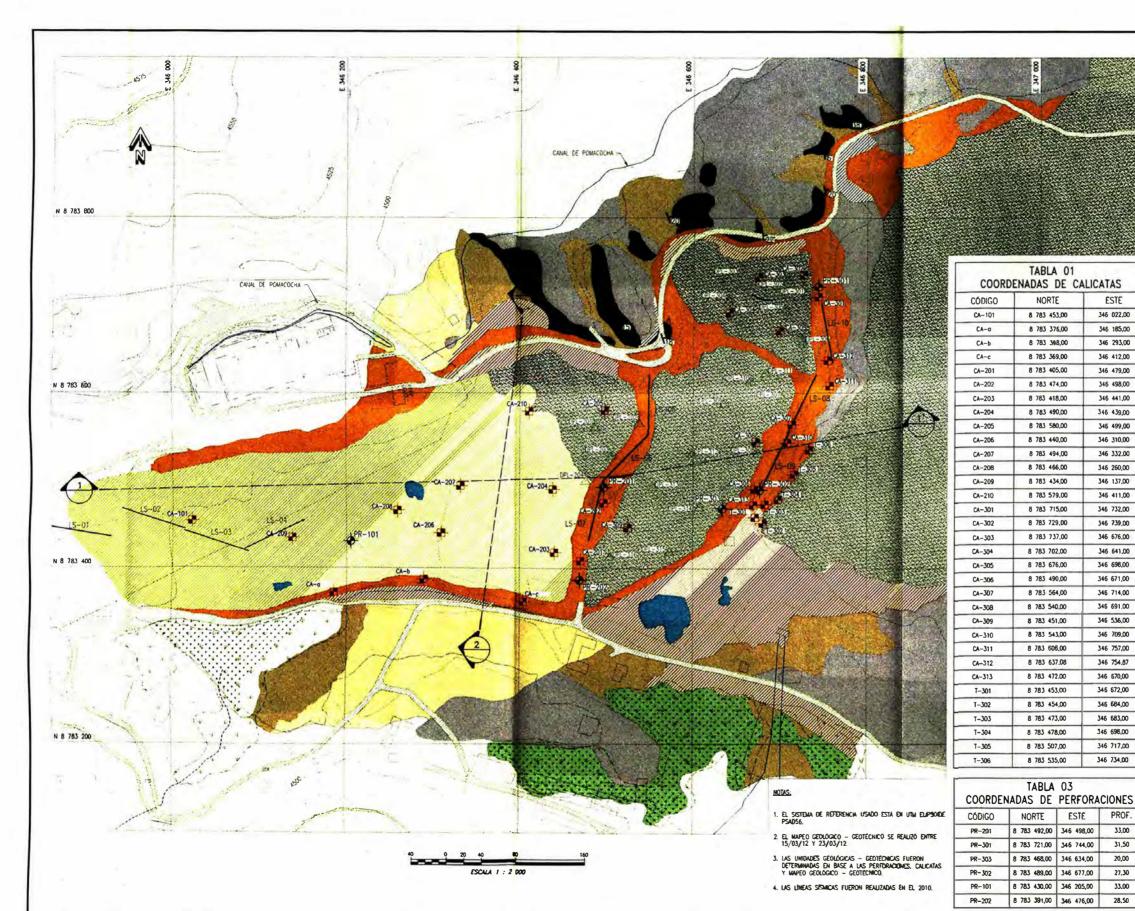
EVALUACIÓN DE RELAVERA ANTIGUA CON PROPÓSITO DE USARLO COMO BOTADERO DE DESMONTE DE MINA PARA UN PLAN DE CIERRE

PLANO DE UBICACIÓN Y LISTA DE PLANOS PLANO:

N*: 101

UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA CIVIL


TITULACIÓN PROFESIONAL-ACTUALIZACIÓN DE CONOCIMIENTOS 2012

١	REALIZADO:	BCH. LUIS RIVAS SOTO		
	REVISADO:	ING. LUIS GONZALES HIJAR	PROYECTO:	
	SCALA:	INDICADA		
	FECHA: MARZO 2013		PLANO:	

EVALUACIÓN DE RELAVERA ANTIGUA CON PROPÓSITO DE USARLO COMO BOTADERO DE DESMONTE DE MINA PARA UN PLAN DE CIERRE

CONFIGURACIÓN GENERAL DEL BOTADERO DE DESMONTE DE MINA

N*: 102

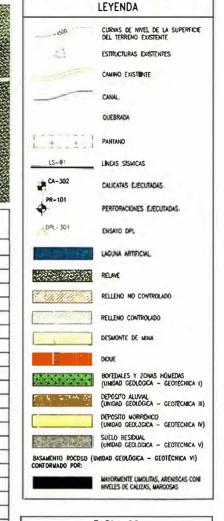


TABLA 01

NORTE 8 783 453,00

8 783 376,00

8 783 398,00

8 783 369.00 8 783 405.00

8 783 474,00

8 783 418,00

8 783 490,00

8 783 580,00

8 783 440,00

8 783 494,00

8 783 466,00

8 783 434,00

8 783 579,00

8 783 715,00

8 783 729,00

8 783 737,00

8 783 702,00

8 783 676,00

8 783 490,00

8 783 564,00 8 783 540.00

8 783 451,00

8 783 543,00

8 783 606,00

8 783 637,08

8 783 472.00

8 783 453,00 8 783 454,00

8 783 473,00

8 783 478,00

8 783 507,00

8 783 535,00

TABLA 03

NORTE 783 492,00 ESTE

346 634,00

346 022,00

346 185,00

346 293,00 346 412.00

346 479.00

346 498,00

346 441,00

346 439,00

346 499,00

346 310,00

346 332.00

346 260,00

346 137,00

346 411.00

346 732 00

346 739,00

346 676,00

346 641,00

346 698,00

346 671,00

346 691,00

346 536,00

346 709,00

346 757,00

346 754.87

346 670,00 346 672,00

346 684,00

346 683,00 346 698,00

346 717,00

346 734,00

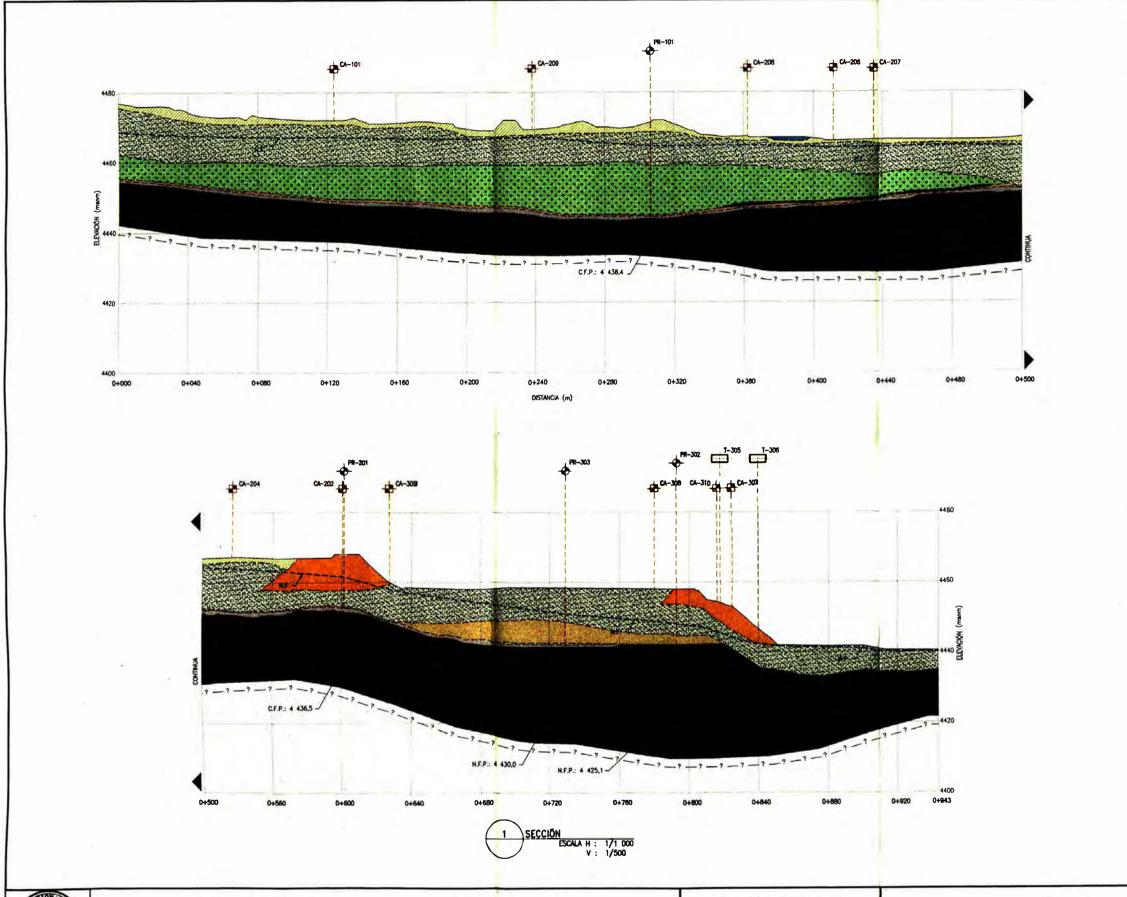
31,50

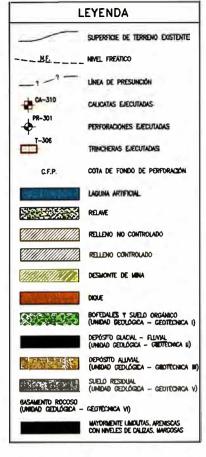
20,00

27.30 33.00

28,50

COOR	TABLA 02 DENADAS DE	DPL
CÓDIGO	NORTE	ESTE
DP1201	8 783 561,00	346 487,00
DPL-202	8 783 566,00	346 538,00
DP1203	8 783 529,00	346 506,00
DP1204	8 783 500.00	346 477,00
DPL-301	8 783 713,00	346 730,00
DPL-302	8 783 730,00	346 709,00
DP1303	8 783 732,00	346 638.00
DPL-304	8 783 706,00	346 640,00
DPL-305	8 783 695,00	346 706,0
DPL-306	8 783 659,00	346 726,00
DPL-307	8 783 595,00	346 702,00
DPL-308	8 783 532,00	346 675,00
DPL-309	8 783 588,00	346 635,00
DPL-310	8 783 614,00	346 666,00
DPL-311	8 783 623,00	346 683,00
DPL-312	8 783 531,00	346 598,00
DPL-313	8 783 493,00	346 553.00
DPL-314	8 783 470,00	346 607,00
DPL-315	8 783 419,00	346 573,00
DP1316	8 783 413,70	346 505,32


UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL TITULACIÓN PROFESIONAL-ACTUALIZACIÓN DE CONOCIMIENTOS 2012 REALIZADO: BCH. LUIS RIVAS SOTO REVISADO: ING. LUIS GONZALES HIJAR ESCALA: INDICADA PLANO: FECHA: MARZO 2013

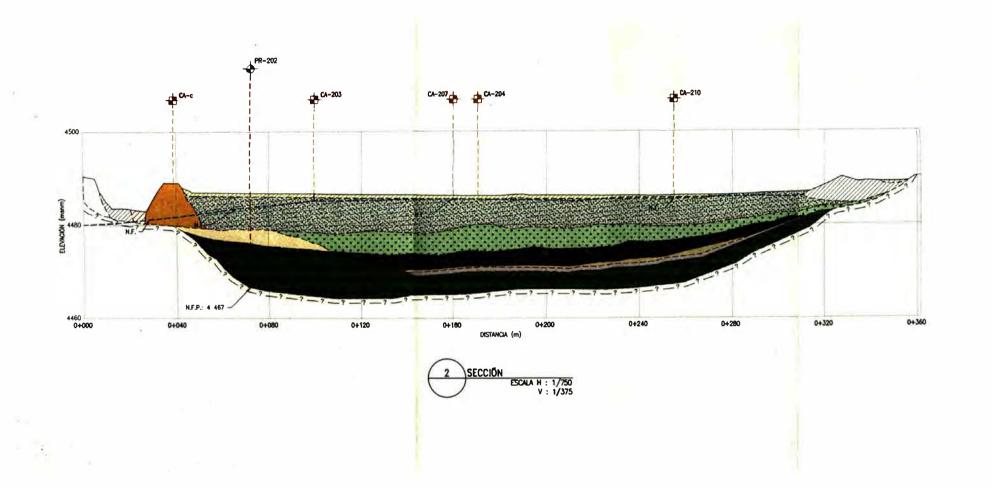

PROYECTO:

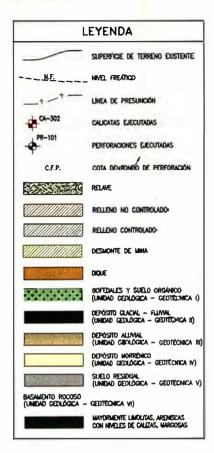
EVALUACIÓN DE RELAVERA ANTIGUA CON PROPÓSITO DE USARLO COMO BOTADERO DE DESMONTE DE MINA PARA UN PLAN DE CIERRE

PLANO Y SECCIONES GEOLÓGICAS-GEOTÉCNICAS

N°: 103

- El sistema de referencia usado está en utim elipporde psads6.


UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL TITULACIÓN PROFESIONAL-ACTUALIZACIÓN DE CONOCIMIENTOS 2012


			The second	
	REALIZADO:	BCH. LUIS RIVAS SOTO	PROYEC	
	REVISADO:	ING. LUIS GONZALES HUAR		
	ESCALA:	A: INDICADA		
	FECHA:	MARZO 2013	PLANO:	

EVALUACIÓN DE RELAVERA ANTIGUA CON PROPÓSITO DE USARLO COMO BOTADERO DE DESMONTE DE MINA PARA UN PLAN DE CIERRE

SECCIÓN PRINCIPAL GEOLÓGICA-GEOTÉCNICA 1-1

N°: 103-1

NOTAS

- LA PIFORMACIÓN TOPOGRÁFICA FUE PROPORCIONADA EN MARZO
 DEL 2012
- 2. EL SISTEMA DE REFERENCIA USADO ESTÁ EN UTIA ELIPSORDE PSAOS6.
- 3, El MAPEO GEDLÓGICO GEDTÉCHICO SE REALIZÓ EN MARZO DEL 2012.
- 4. LAS SECCIONES GEDLÁGICAS—GEUTED-MEAS HAN SIDO DETERMINADAS EN BASE A LAS CALICATAS Y TRINCHEI ENSAYOS DPL, PERFORACIONES Y AL MAPED GEDLÁGIED—GEUTED-MED DE CAMPO.

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

TITULACIÓN PROFESIONAL-ACTUALIZACIÓN DE CONOCIMIENTOS 2012

REALIZADO:	BCH. LUIS RIVAS SOTO	
REVISADO:	ING. LUIS GONZALES HWAR	PROY
ESCALA:	INDICADA	\vdash
FECHA:	ECHA: MARZO 2013	

PROYECTO:

EVALUACIÓN DE RELAVERA ANTIGUA CON PROPÓSITO DE USARLO COMO BOTADERO DE DESMONTE DE MINA PARA UN PLAN DE CIERRE

SECCIÓN SECUNDARIA GEOLÓGICA-GEOTÉCNICA 2-2

N: 103-2