UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

ANÁLISIS DE MEJORA DE LA CONFIABILIDAD DE LOS SISTEMAS DE DISTRIBUCIÓN ELÉCTRICA DE ALTA DENSIDAD DE CARGA

TESIS

PARA OPTAR EL GRADO DE MAESTRO EN CIENCIAS

MENCIÓN: SISTEMAS DE POTENCIA

PRESENTADO POR

RUBÉN SEGUNDO COLLANTES VÉLIZ

LIMA – PERÚ

2010

RESUMEN

La tesis presenta un análisis de mejora de la confiabilidad de los sistemas de distribución eléctrica de alta densidad de carga del Perú, con la finalidad de establecer sus indicadores System Average Interruption Frequency Index (SAIFI) y System Average Interruption Duration Index (SAIDI), que respondan a un equilibrio óptimo entre costo y confiabilidad.

El análisis se realiza sobre alimentadores en media tensión representativos de los sistemas mencionados, considerando como mejoras diversas opciones de colocación de equipos de protección y seccionamiento y alimentaciones alternativas.

Para la determinación de los indicadores se utiliza las técnicas básicas de evaluación de la confiabilidad con una extensión que divide el tiempo de reparación de una falla en función de las distintas operaciones que se llevan a cabo para reparar la misma y reponer el servicio eléctrico.

Con los resultados se configura la relación entre costo y confiabilidad, determinándose su equilibrio óptimo con la ayuda del método trade-off/risk. A partir de dicho equilibrio se establece los indicadores SAIFI y SAIDI óptimos, así como el costo que implica alcanzar los mismos.

ABSTRACT

In this thesis, an analysis of reliability improvement of Peruvian high load density electric distribution systems is presented with the aim of establishing their technical reliability indicators such as the System Average Interruption Frequency Index (SAIFI) as well as System Average Interruption Duration Index (SAIDI), focused on the optimal equilibrium that involves cost and reliability.

The analysis is performed on the representative medium voltage feeders of the previous mentioned systems, including improvements such as different options of protection and sectionalizing devices placement and alternative feeders.

In order to determine the indicators, basic techniques of reliability evaluation are used. Those techniques include an extension that divide a fail reparation time as a function of the different operations utilized for repairing it and putting back the electric service.

Taking into consideration the results, a relation between cost and reliability is established, determining its optimum equilibrium using the trade-off/risk method. From that equilibrium, optimal SAIFI and SAIDI indicators are established as well as the cost for achieving them.

TABLA DE CONTENIDO

1.	In	trod	lucci	ión	1
	1.1	Α	ntece	edentes	1
	1.2	С	alida	d de Suministro	2
	1.2	2.1	Indi	cadores Individuales o del Cliente	3
	1.2	2.2	Indi	cadores Globales o del Sistema	3
	1.2	2.3	Apli	cación de los Indicadores	7
	1.3	С	alida	d de Suministro en el Perú	.11
	1.4	Р	lante	amiento del Problema	.14
	1.5	0	bjetiv	/0	15
	1.6	A	lcand	ces y Limitaciones	.15
	1.7	M	letod	ología de Desarrollo	16
2.	M	arco	Ted	órico	18
	2.1	Ir	ntrodu	ucción	18
	2.2	S	istem	na de Distribución Eléctrica	.19
	2.2	2.1	Asp	ectos de Diseño y Construcción	.19
		2.2.	1.1	Sistema de Distribución Primaria	.21
		2.2.	1.2	Subestaciones de Distribución	23
		2.2.	1.3	Sistema de Distribución Secundaria	.24
	2.2	2.2	Asp	ectos Operativos y de Mantenimiento	.24
		2.2.	2.1	Operación	25
		2.2.	2.2	Mantenimiento	.25
		2.2.	2.3	Contingencias	.26
	2.2	2.3	Mer	cado Eléctrico	.28
	2.3	Ε	valua	ación de la Confiabilidad	.28

	2.3.1	Téc	nicas Básicas	28
	2.3.	.1.1	Teoría de los Procesos Continuos de Markov	29
	2.3.	1.2	Teoría de los Sistemas Serie	30
	2.3.	1.3	Técnicas de Frecuencia y Duración	31
	2.3.2	Téc	cnica de División del Tiempo de Reparación	33
	2.3.3	Det	erminación de los Indicadores SAIFI y SAIDI	35
	2.3.4	Mod	delamiento del Sistema de Distribución Eléctrica	36
	2.4 N	/létod	lo Trade-Off/Risk	36
	2.4.1	Def	iniciones	37
	2.4.2	Eta	pas	39
	2.4.	.2.1	Formulación del Problema	39
	2.4.	.2.2	Generación de Escenarios	40
	2.4.	.2.3	Análisis Trade-Off	41
	2.4.	2.4	Análisis Risk	44
3.	Análi	sis c	le Mejora de la Confiabilidad	46
	3.1 S	Selec	ción de Alimentadores Representativos	46
	3.1.1	Info	ormación Técnica y Comercial de los Alimentadores	47
	3.1.2	Est	ratificación de los Alimentadores	47
	3.1.3	Alin	nentadores Representativos	50
	3.2 E	valua	ación de la Confiabilidad	51
	3.2.1	Mod	delamiento del Sistema de Distribución Eléctrica	51
	3.2.2	Opo	ciones de Mejora de la Confiabilidad	53
	3.2.3	Par	ámetros de Cálculo	55
	3.3 F	Resul	tados Análisis de Confiabilidad	57
	3.3.1	Mu	y Alta Densidad de Carga	57
	3.3.2	Alta	a Densidad de Carga 1	60
	3.3.3	Alta	a Densidad de Carga 2	62
	3.3.4	Med	dia Densidad de Carga	64
	3.3.5	Baj	a Densidad de Carga	66
	3.4 F	Resul	tados Trade-Off/Risk	69
	3.4.1	Det	erminación del Equilibrio Óptimo	
	3.4.	1.1	Opciones	70

	3.4	4.1.2	Incertidumbres	70
	3.4	4.1.3	Escenarios	70
	3.4	4.1.4	Atributos	71
	3.4.2	Muy	Alta Densidad de Carga	71
	3.4.3	Alta	Densidad de Carga 1	74
	3.4.4	Alta	Densidad de Carga 2	75
	3.4.5	Med	lia Densidad de Carga	76
	3.4.6	Baja	Densidad de Carga	78
(3.5	Resum	nen	79
4.	Cond	clusio	nes, Aportes y Recomendaciones	81
4	4.1	Conclu	usiones	81
4	4.2	Aporte	S	83
4	4.3	Recom	nendaciones	83
5.	Bibli	iografi	ía	85
6.	Anex	xos		88
6 .			N° 1: Información Técnica y Comercial de los Alimentadores	
(6.1	Anexo	N° 1: Información Técnica y Comercial de los Alimentadores	88
(6.1 6.2	Anexo Anexo	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal	88 96
(6.1 6.2 6.3	Anexo Anexo Anexo	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos	88 96
(6.1 6.2 6.3	Anexo Anexo Anexo Anexo	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal	96 104
(6.1 6.2 6.3 6.4	Anexo Anexo Anexo Anexo Alim	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos N° 4: Opciones de Mejora de la Confiabilidad	8896104110
(6.1 6.2 6.3 6.4 6.4.1	Anexo Anexo Anexo Anexo Alim Alim	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos N° 4: Opciones de Mejora de la Confiabilidad	8896104110111
6	6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3	Anexo Anexo Anexo Alim Alim	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos N° 4: Opciones de Mejora de la Confiabilidad nentadores Subterráneos nentadores Aéreos nentadores Mixtos	96104110111112
6	6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3	Anexo Anexo Anexo Alim Alim Alim	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos N° 4: Opciones de Mejora de la Confiabilidad nentadores Subterráneos nentadores Aéreos nentadores Mixtos	8896110111112114
6	6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3	Anexo Anexo Anexo Alim Alim Alim Anexo Muy	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos N° 4: Opciones de Mejora de la Confiabilidad nentadores Subterráneos nentadores Aéreos nentadores Mixtos	8896110111112114118
6	6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 6.5.1	Anexo Anexo Anexo Alim Alim Alim Anexo Muy Alta	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos N° 4: Opciones de Mejora de la Confiabilidad entadores Subterráneos nentadores Aéreos entadores Mixtos N° 5: Parámetros de los Alimentadores Representativos Alta Densidad	8896110111112118118
6	6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.4.3 6.5 6.5.1	Anexo Anexo Anexo Alim Alim Alim Anexo Muy Alta Alta	N° 1: Información Técnica y Comercial de los Alimentadores N° 2: Alimentadores según su Densidad de Carga Lineal N° 3: Mapas de los Alimentadores Representativos N° 4: Opciones de Mejora de la Confiabilidad entadores Subterráneos nentadores Aéreos nentadores Mixtos N° 5: Parámetros de los Alimentadores Representativos Alta Densidad 1	8896110111112118118120

LISTA DE TABLAS

Tabla 1-1: Valores Límite SAIFI y SAIDI para Lima Metropolitana	_12
Tabla 3-1: Análisis Descriptivo de la Variable Densidad de Carga Lineal	48
Tabla 3-2: Análisis Descriptivo de la Variable Densidad de Carga Lineal por Estrato	49
Tabla 3-3: Rangos de los Estratos según la Variable Densidad de Carga Lineal	50
Tabla 3-4: Alimentadores Representativos	50
Tabla 3-5: Tasa de Falla (λ) de los Componentes	_56
Tabla 3-6: Tiempo de Reparación (r) de los Componentes	_56
Tabla 3-7: Parámetros de Otras Operaciones para la Reparación de una Falla	_56
Tabla 3-8: Costo de Equipos de Protección y Seccionamiento	57
Tabla 3-9: Evaluación de la Confiabilidad – Muy Alta Densidad de Carga	_58
Tabla 3-10: Evaluación de la Confiabilidad – Alta Densidad de Carga 1	60
Tabla 3-11: Evaluación de la Confiabilidad – Alta Densidad de Carga 2	63
Tabla 3-12: Evaluación de la Confiabilidad – Media Densidad de Carga	65
Tabla 3-13: Evaluación de la Confiabilidad – Baja Densidad de Carga	67
Tabla 3-14: Escenarios para la Evaluación de Costo y Confiabilidad	70
Tabla 3-15: Opciones Robustas – Muy Alta Densidad de Carga	. 73
Tabla 3-16: Opciones Robustas – Alta Densidad de Carga 1	. 75
Tabla 3-17: Opciones Robustas – Alta Densidad de Carga 2	. 76
Tabla 3-18: Opciones Robustas – Media Densidad de Carga	. 77
Tabla 3-19: Opciones Robustas – Baja Densidad de Carga	. 79
Tabla 3-20: Indicadores de Confiabilidad por Alimentadores Representativos	. 79
Tabla 3-21: Indicadores de Confiabilidad SAIFI y SAIDI – Lima Norte	. 80
Tabla 3-22: Indicadores de Confiabilidad SAIFI y SAIDI – Lima Sur	. 80
Tabla 3-23: Indicadores de Confiabilidad SAIFI y SAIDI – Total	. 80
Tabla 4-1: Indicador I del Equilibrio Óptimo entre Costo y Confiabilidad	82

LISTA DE FIGURAS

Figura 1-1: Porcentaje de Uso de Indicadores de Confiabilidad en los EEUU	8
Figura 1-2: Resultados del SAIFI en los EEUU	9
Figura 1-3: Resultados del SAIDI en los EEUU	9
Figura 1-4: Indicador NIEPI en España	10
Figura 1-5: Indicador TIEPI en España	11
Figura 1-6: Compensaciones por la Calidad de Suministro	12
Figura 1-7: SAIFI de Lima Metropolitana	13
Figura 1-8: SAIDI de Lima Metropolitana	13
Figura 1-9: SAIFI y SAIDI de Lima Metropolitana versus Valores Límite	14
Figura 2-1: Sistema de Distribución Eléctrica	20
Figura 2-2: Alimentador en Media Tensión	21
Figura 2-3: Topologías Típicas de Alimentadores en Media Tensión	23
Figura 2-4: Sistema de Distribución Secundaria	24
Figura 2-5: Ejemplos de Fallas en un Sistema de Distribución Eléctrica	26
Figura 2-6: Proceso Continuo de Markov de un Sistema con dos Estados	29
Figura 2-7: Sistema Serie de n Componentes	30
Figura 2-8: Ciclo de Operación-Falla de un Sistema	31
Figura 2-9: Modelamiento del Sistema de Distribución Eléctrica	36
Figura 2-10: Método Trade-Off/Risk o de Compromiso/Riesgo	37
Figura 2-11: Análisis Trade-Off – Relación Tipo A	42
Figura 2-12: Análisis Trade-Off – Relación Tipo B	42
Figura 2-13: Análisis Trade-Off – Relación Tipo C	43
Figura 2-14: Análisis Trade-Off – Relación Tipo D	44
Figura 2-15: Evaluación de Atributos con el Método Trade-Off/Risk	45
Figura 3-1: Histograma de Frecuencia de la Variable Densidad de Carga Lineal _	48
Figura 3-2: SAIFI, SAIDI y ENS versus Costo – Muy Alta Densidad de Carga	58
Figura 3-3: SAIFI, SAIDI y ENS versus Costo – Alta Densidad de Carga 1	61
Figura 3-4: SAIFI, SAIDI y ENS versus Costo – Alta Densidad de Carga 2	63

Figura 3-5: SAIFI, SAIDI y ENS versus Costo – Media Densidad de Carga	_ 65
Figura 3-6: SAIFI, SAIDI y ENS versus Costo – Baja Densidad de Carga	_ 67
Figura 3-7: Resultados – Muy Alta Densidad de Carga	_ 71
Figura 3-8: Resultados – Alta Densidad de Carga 1	_ 74
Figura 3-9: Resultados – Alta Densidad de Carga 2	_ 75
Figura 3-10: Resultados – Media Densidad de Carga	_ 77
Figura 3-11: Resultados – Baja Densidad de Carga	_ 78

1. Introducción

1.1 Antecedentes

En los años ochenta, a nivel mundial se inició un proceso de reestructuración y regulación de la industria eléctrica, a efectos de fomentar su desarrollo. Como parte de dicho proceso, en la actividad de generación se introdujo mecanismos de libre mercado o de competencia mientras que las actividades de transmisión y distribución, se consideraron como monopolios naturales que debían ser regulados. De esta forma, se desarrollaron esquemas de regulación que fomentaron la eficiencia, lo que originó un fuerte incentivo a la reducción de costos. En consecuencia, la calidad del servicio eléctrico, fuertemente relacionada con las inversiones y prácticas de mantenimiento de las empresas eléctricas, fue afectada. Así, se hicieron necesarias regulaciones específicas sobre la calidad del servicio eléctrico, estando las empresas eléctricas obligadas a ofrecer sus productos y servicios con unos niveles mínimos de calidad que, en caso de no ser cumplidos, dan lugar al pago de compensaciones y penalidades.

La calidad de servicio eléctrico comprende los siguientes aspectos: i) la calidad de suministro o confiabilidad del sistema eléctrico, relacionada con las interrupciones; ii) la calidad de producto, relacionada con el nivel de tensión y las perturbaciones de dicha tensión, tales como flicker, armónicos, etc.; y iii) la calidad comercial, relacionada con la facturación, atención comercial, reclamos, etc.

De estos, la calidad de suministro es el aspecto más inmediato y evidente, el que más se ha estudiado. Hasta hace poco tiempo era el único aspecto fundamental de la calidad del servicio eléctrico. Históricamente, se han destinado mayores recursos a los sistemas de generación y transmisión que a los sistemas de distribución, debido a que una interrupción en los primeros puede tener graves consecuencias, ya que la zona afectada suele ser muy

grande. En cambio, en los sistemas de distribución una interrupción no afecta a gran número de clientes. El resultado es que, actualmente, la mayoría de los problemas de confiabilidad son debidos a interrupciones en los sistemas de distribución.

La estrategia más seguida por las empresas distribuidoras para mejorar la confiabilidad de sus sistemas de distribución es la automatización. Las inversiones necesarias para mejorar la confiabilidad de un alimentador del sistema de distribución son relativamente pequeñas. Sin embargo, una mejora global del sistema de distribución implica un gran número de inversiones pequeñas que se convierten en una gran inversión.

1.2 Calidad de Suministro

La calidad de suministro está referida a la existencia o no de tensión en un punto de entrega¹. Cuando la tensión desaparece en el punto de entrega, se dice que hay una interrupción del suministro.

Un aspecto importante de la calidad de suministro es la forma de medirla, para lo cual se utilizan indicadores. No existe un indicador que sea capaz de medir la calidad de suministro total. Es necesario medir una característica de interés con un indicador asociado, lo cual conlleva a la existencia de multitud de indicadores. Dependiendo de la utilización que se quiera hacer del indicador, se puede calcular en modo histórico o predictivo.

En modo histórico, los indicadores se determinan a partir de registros de incidencias y/o a partir de información del funcionamiento del sistema eléctrico, permitiendo evaluar la calidad de suministro proporcionada y realizar análisis comparativos y de tendencias. En modo predictivo, se determinan los valores medios y/o máximos esperados, a través de modelos de confiabilidad aplicados al sistema eléctrico, permitiendo identificar zonas que requieren mejora de la calidad de suministro, realizar análisis de expansión del sistema eléctrico y

¹ Punto situado entre las instalaciones eléctricas de la empresa distribuidora y la acometida del cliente.

evaluar el impacto de inversiones. La información necesaria comprende datos de confiabilidad de los componentes, topología del sistema eléctrico, así como cantidad de clientes y su demanda.

La mayoría de indicadores definidos en las regulaciones de calidad de suministro, analizan individualmente la calidad de suministro proporcionada a un cliente o evalúan el comportamiento del sistema eléctrico desde un punto de vista global. En ese sentido, se distinguen indicadores individuales, que reflejan el nivel de calidad de suministro de un cliente en particular, e indicadores globales, que reflejan el nivel de calidad de suministro medio del sistema eléctrico, definido este como una parte de las instalaciones eléctricas, una zona, una región, etc.

1.2.1 Indicadores Individuales o del Cliente

Los indicadores individuales miden la calidad de suministro proporcionada a un cliente en particular. Recogen el número de veces que es interrumpido un cliente y el tiempo que está sin suministro. En ese sentido, los parámetros básicos son "número de interrupciones" y "duración de cada interrupción", a partir de los cuales es posible estimar los indicadores individuales propiamente dichos. Los más usados son:

- Número de interrupciones (fallas/periodo).
- Duración media de interrupciones (horas/interrupción).
- Duración total de interrupciones (horas/periodo).
- Energía no suministrada (kW.h/periodo).

Los indicadores individuales están orientados a controlar individualmente los excesos de cantidad y duración de interrupciones en los clientes.

1.2.2 Indicadores Globales o del Sistema

Los indicadores globales reflejan el nivel de calidad de suministro medio del sistema eléctrico, definido este como una parte de las instalaciones eléctricas, una zona, una región, etc., que involucra una cantidad determinada de clientes.

Estos indicadores globales suelen ser medias ponderadas de los indicadores

individuales de dichos clientes.

Al igual que los indicadores individuales, recogen el número de interrupciones y

la duración de las mismas. Los indicadores globales han sido y siguen siendo

los indicadores más utilizados para medir la calidad de suministro. Según se

basen en información de los clientes, de la potencia, de la carga, etc., estos se

pueden clasificar como se indica a continuación:

Indicadores basados en los clientes.

Indicadores basados en la potencia.

Indicadores basados en la energía.

Indicadores basados en los clientes

Son los más utilizados ya que ponderan equitativamente cada cliente. Son muy

usados por la entidades de regulación debido a que dan igual importancia a un

pequeño cliente residencial que a un gran cliente industrial. Generalmente, son

considerados como una buena medida de la confiabilidad del sistema eléctrico

y son a menudo utilizados para análisis comparativos y establecimiento de

objetivos. Los principales indicadores son:

System Average Interruption Frequency Index (SAIFI)

Ecuación 1-1: SAIFI = Número Total de Interrupciones de los Clientes

Número Total de Clientes

El indicador SAIFI representa la cantidad promedio de interrupciones que

experimenta un cliente durante un periodo de tiempo. Para una cantidad fija de

clientes, la única manera de mejorar el indicador SAIFI es reducir la cantidad

de interrupciones. Por ello, una mejora del indicador SAIFI implica una mejora

de la confiabilidad del sistema eléctrico.

System Average Interruption Duration Index (SAIDI)

Ecuación 1-2: SAIDI = Duración Total de Interrupciones de los Clientes

Número Total de Clientes

4

El indicador SAIDI representa la duración promedio de interrupciones que experimenta un cliente durante un periodo de tiempo. Para una cantidad fija de clientes, el indicador SAIDI puede ser mejorado reduciendo la cantidad de interrupciones o la duración de las mismas. Debido a que estos dos parámetros reflejan la mejora de la confiabilidad, una reducción del indicador SAIDI indica una mejora de la confiabilidad del sistema eléctrico.

Customer Average Interruption Frequency Index (CAIFI)

 $\textbf{Ecuación 1-3: CAIFI} = \frac{\text{N\'umero Total de Interrupciones de los Clientes}}{\text{N\'umero Total de Clientes Interrumpidos}}$

El indicador CAIFI representa la cantidad promedio de interrupciones que experimenta un cliente interrumpido durante un periodo de tiempo. Está orientado a evaluar la tendencia de la calidad de suministro de los clientes interrumpidos. El menor valor que puede tomar el indicador CAIFI es uno.

<u>Customer Average Interruption Duration Index (CAIDI)</u>

El indicador CAIDI representa la duración promedio de interrupciones de un cliente interrumpido durante un periodo de tiempo. También está asociado al tiempo de respuesta de la empresa distribuidora ante fallas. El indicador CAIDI puede ser mejorado reduciendo la duración de las interrupciones pero también incrementando el número de interrupciones. En ese sentido, una reducción del indicador CAIDI no necesariamente refleja una mejora de la confiabilidad del sistema eléctrico.

Average Service Availability Index (ASAI)

Ecuación 1-5: ASAI = Horas Disponibles del Servicio
Horas Demandadas

El indicador ASAI brinda la misma información que el indicador SAIDI pero de forma relativa. Un valor alto del indicador ASAI refleja altos niveles de

confiabilidad. A diferencia del indicador SAIDI que se expresa en horas por periodo, el indicador ASAI se expresa en por unidad o en tanto por ciento.

Average Service Unavailability Index (ASUI)

Ecuación 1-6:
$$ASUI = 1 - ASAI = \frac{Horas Indisponibles del Servicio}{Horas Demandadas}$$

El indicador ASUI es el complemento del indicador ASAI. También se expresa en por unidad o en tanto por ciento.

Indicadores basados en la potencia

Ponderan los clientes basándose en la potencia conectada en vez de equitativamente. Los principales indicadores son:

Average System Interruption Frequency Index

Average System Interruption Duration Index

Ecuación 1-8:

Los indicadores basados en la potencia fueron los primeros indicadores de calidad de suministro utilizados, debido a que en el pasado, las empresas distribuidoras conocían sólo la potencia de las subestaciones de distribución, es decir, no conocían la cantidad de clientes conectados a dichas subestaciones. Hoy en día, los sistemas de información, en especial, los sistemas de información georeferenciada (utilizan coordenadas geográficas), asocian los clientes con las subestaciones de distribución, permitiendo calcular fácilmente los indicadores basados en los clientes. Desde el punto de vista de las empresas distribuidoras, es probable que los indicadores ASIFI y ASIDI representen una mejor aproximación de la calidad de suministro en vez de los indicadores SAIFI y SAIDI, ya que mayor potencia implica mayores ingresos y

debe ser ponderada según su magnitud a la hora de tomar decisiones de inversión. Sin embargo, podría darse el caso que las inversiones se orienten a pocos clientes de gran demanda, perjudicando la calidad de suministro del sistema eléctrico.

Indicadores basados en la energía

Energy Not Supplied Index (ENS)

Ecuación 1-9: ENS = Total Energía No Suministrada por las Interrupciones

Average System Curtailment Index (ASCI)

Ecuación 1-10: ASCI = Total Energía No Suministrada por las Interrupciones

Número Total de Clientes

Average Customer Curtailment Index (ACCI)

Ecuación 1-11: ACCI = Total Energía No Suministrada por las Interrupciones

Número Total de Clientes Interrumpidos

Los indicadores basados en la energía toman en cuenta un parámetro no mensurable, implicando una estimación de los mismos. Por ello, es importante establecer una metodología de estimación de la energía no suministrada, ya sea por proyecciones de la energía consumida al momento de la interrupción, registros de consumo o diagramas de carga típicos, a efectos de análisis comparativos y de tendencias. Se utilizan principalmente para efectos de compensaciones por calidad de suministro.

1.2.3 Aplicación de los Indicadores

Dependiendo del aspecto que se requiera evaluar, se elegirán uno u otros indicadores para representar la calidad de suministro o confiabilidad del sistema eléctrico. En cualquier caso es importante tomar indicadores que tengan en cuenta la frecuencia y duración de las interrupciones, ya que permiten evaluar si el comportamiento medio del sistema eléctrico en términos de calidad de suministro, se debe a un único evento prolongado o a varios eventos de menor duración.

Tratándose de la evaluación del rendimiento del sistema eléctrico, los indicadores SAIFI y SAIDI son los más apropiados, ya que como se mencionó tienen la ventaja de ponderar equitativamente a los clientes, de esta forma se evalúa la calidad de suministro del conjunto de clientes del sistema eléctrico. Por otro lado, estos indicadores al evaluar el nivel de calidad de suministro promedio del sistema eléctrico, indirectamente evalúan la situación y funcionamiento de las instalaciones eléctricas (estado en términos de mantener las instalaciones eléctricas adecuadamente durante su vida útil; operación y selectividad de los equipos de protección y seccionamiento; acciones de reposición del servicio eléctrico; mantenimiento preventivo de las instalaciones eléctricas; etc.), lo cual es importante para velar por una prestación del servicio eléctrico que cubra la demanda con calidad y seguridad.

Cabe mencionar que los resultados de encuestas realizadas a empresas de los EEUU en los años 1995 y 1997 [IEEE04], mostraron que los indicadores SAIFI y SAIDI son los más utilizados. Las encuestas investigaron cuáles son los indicadores de confiabilidad de los sistemas de distribución más usados y sus valores típicos.

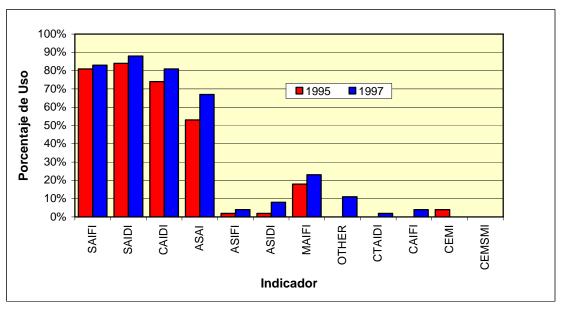


Figura 1-1: Porcentaje de Uso de Indicadores de Confiabilidad en los EEUU

Fuente: IEEE, "IEEE Guide for Electric Power Distribution Reliability Indices", IEEE Standards 1366-2003, May 2004.

5.0 Número de Interrupciones por Año 4.5 4.0 3.5 **1**995 **1**997 3.0 2.5 4.50 2.0 3.90 1.5 1.0 1.74 1.45 1.16 1.10 0.5 0.90 0.80 0.0 Q1 Q2 Q3 Q4 Cuartiles

Figura 1-2: Resultados del SAIFI en los EEUU

Fuente: IEEE, "IEEE Guide for Electric Power Distribution Reliability Indices", IEEE Standards 1366-2003, May 2004.

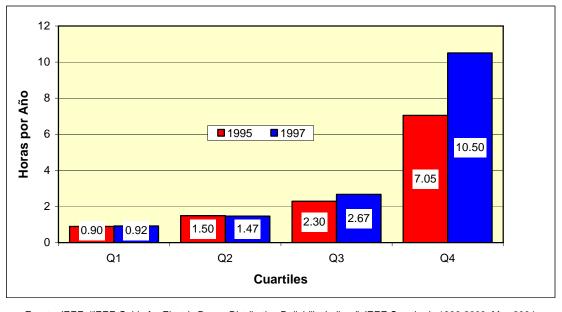


Figura 1-3: Resultados del SAIDI en los EEUU

Fuente: IEEE, "IEEE Guide for Electric Power Distribution Reliability Indices", IEEE Standards 1366-2003, May 2004.

Asimismo, en el Proyecto CIER 06 [CIER07], que evaluó los indicadores de calidad de servicio en empresas distribuidoras de energía eléctrica de Latinoamérica, se consideró indicadores basados en los clientes y en la potencia.

Los indicadores basados en los clientes utilizados son la Frecuencia Media de Interrupción por Cliente (FC) y el Tiempo Total de Interrupción por Cliente (TC), equivalentes a los indicadores SAIFI y SAIDI respectivamente. Los indicadores basados en la potencia utilizados son la Frecuencia Media de Interrupción del Sistema (FS) y el Tiempo Total de Interrupción del Sistema (TS), equivalentes a los indicadores ASIFI y ASIDI respectivamente. Los resultados de dicho proyecto muestran valores medios de 10.8 fallas/año y 13.2 horas/año para los indicadores FC y TC respectivamente.

También muestra resultados del año 2005 de los indicadores NIEPI (2.4 fallas/año) y TIEPI (2.2 horas/año), equivalentes a los indicadores ASIFI y ASIDI respectivamente, utilizados en España. De acuerdo a la información obtenida de [ESP09], en el año 2008 el resultado del indicador NIEPI fue de 2.1 fallas/año mientras que del indicador TIEPI fue de 1.6 horas/año.

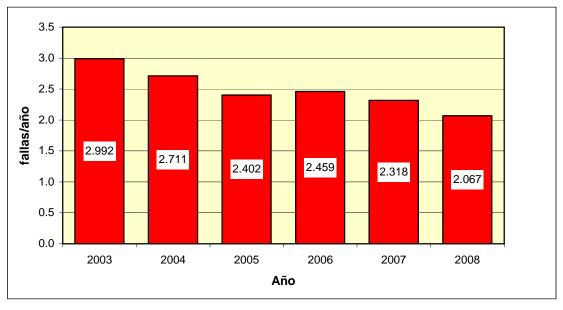


Figura 1-4: Indicador NIEPI en España

Fuente: Página web (www.mityc.es) del Ministerio de Industria, Turismo y Comercio de España, Sección Energía, Subsección Energía Eléctrica (Calidad de Servicio), Diciembre 2009.

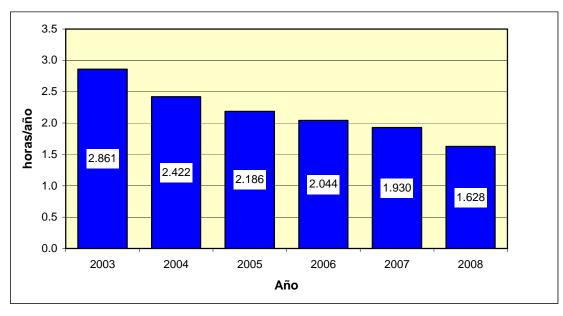


Figura 1-5: Indicador TIEPI en España

Fuente: Página web (www.mityc.es) del Ministerio de Industria, Turismo y Comercio de España, Sección Energía, Subsección Energía Eléctrica (Calidad de Servicio), Diciembre 2009.

1.3 Calidad de Suministro en el Perú

En octubre de 1997, mediante el Decreto Supremo N° 020-97-EM, se aprobó la Norma Técnica de Calidad de los Servicios Eléctricos (NTCSE) que establece los niveles mínimos de la calidad de producto (tensión, frecuencia y perturbaciones), calidad de suministro (interrupciones), calidad de atención comercial y calidad de alumbrado público.

La NTCSE dispone la evaluación de la calidad de suministro a través de dos indicadores individuales, Número Total de Interrupciones por Cliente por Semestre (N) y Duración Total Ponderada de Interrupciones por Cliente por Semestre (D). Cabe mencionar que la NTCSE define como interrupción a toda falta de suministro con una duración mayor o igual a los tres minutos, en un punto de entrega.

Actualmente, las empresas distribuidoras vienen efectuando compensaciones a favor de los clientes por la calidad de suministro, es decir, por el incumplimiento de los indicadores N y D.

Al respecto, durante el primer semestre de 2008, las compensaciones realizadas a nivel nacional alcanzaron un monto de 3 026 miles US\$. De este monto, 1 088 miles US\$ corresponden a compensaciones realizadas en Lima Metropolitana [OSI0408].

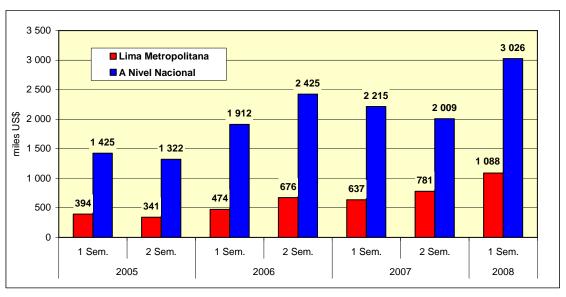


Figura 1-6: Compensaciones por la Calidad de Suministro

Fuente: OSINERGMIN, "Reportes Semestrales de la Gerencia de Fiscalización Eléctrica N° 2-2004, N° 1-2005, N° 2-2005, N° 1-2006, N° 2-2006, N° 1-2007, N° 2-2007 y N° 1-2008".

Adicionalmente a lo dispuesto por la NTCSE, el Organismo Supervisor de la Inversión en Energía y Minería (OSINERGMIN), como parte de sus funciones de fiscalización del sector eléctrico, estableció la evaluación de la operación de los sistemas de distribución eléctrica a nivel nacional a través de los indicadores globales SAIFI y SAIDI. Los valores límite de dichos indicadores establecidos para Lima Metropolitana se indican en la Tabla 1-1 [OSI04].

Tabla 1-1: Valores Límite SAIFI y SAIDI para Lima Metropolitana

۸ão	SAIFI	SAIDI	
Año	interrupciones/año	horas/año	
2008	3.0	7.5	
2009	3.0	7.5	
2010	3.0	7.0	
2011	3.0	6.5	

Fuente: OSINERGMIN, "Procedimiento para la Supervisión de la Operación de los Sistemas Eléctricos", Resolución OSINERG N° 074-2004-OS/CD, Abril 2004.

Para el primer semestre de 2008, los resultados de la evaluación de la operación de los sistemas que atienden Lima Metropolitana muestran un SAIFI de 2.91 interrupciones/semestre y un SAIDI de 7.19 horas/semestre [OSI0408].

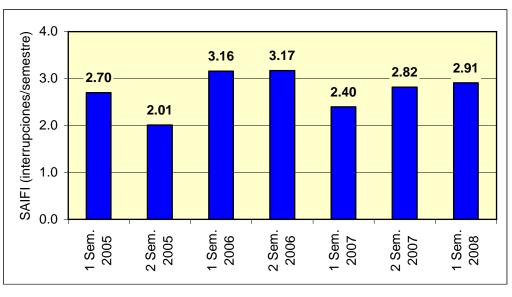


Figura 1-7: SAIFI de Lima Metropolitana

Fuente: OSINERGMIN, "Reportes Semestrales de la Gerencia de Fiscalización Eléctrica N° 2-2004, N° 1-2005, N° 2-2005, N° 1-2006, N° 2-2006, N° 1-2007, N° 2-2007 y N° 1-2008".

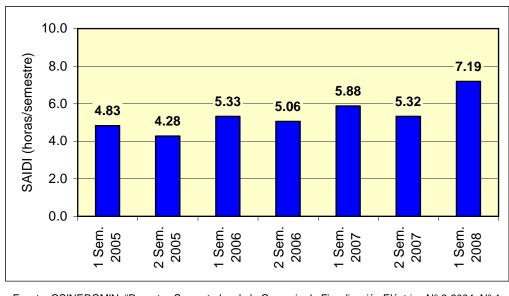


Figura 1-8: SAIDI de Lima Metropolitana

Fuente: OSINERGMIN, "Reportes Semestrales de la Gerencia de Fiscalización Eléctrica N° 2-2004, N° 1-2005, N° 2-2005, N° 1-2006, N° 2-2006, N° 1-2007, N° 2-2007 y N° 1-2008".

Estadísticas de operación de los sistemas que atienden Lima Metropolitana muestran que en la distribución eléctrica se originan de 80% a 90% de las

interrupciones. El resto de las mismas se atribuyen a la generación y transmisión eléctrica. Dentro de las interrupciones en la distribución eléctrica, se tienen 30% programadas y 70% no programadas [OSI0408]. Las no programadas se originan principalmente por factores climáticos, fallas de las instalaciones eléctricas, falsas maniobras y acciones de terceros.

1.4 Planteamiento del Problema

En los sistemas de distribución eléctrica que atienden Lima Metropolitana (Lima Norte y Lima Sur), calificados como de alta densidad de carga, se vienen incrementando las interrupciones, lo cual se evidencia en la evolución de las compensaciones por la calidad de suministro (Figura 1-6) y de los indicadores SAIFI y SAIDI (Figuras 1-7 y 1-8). Además, los valores resultantes de dichos indicadores tienen una desviación significativa respecto de los valores límite establecidos por el OSINERGMIN.

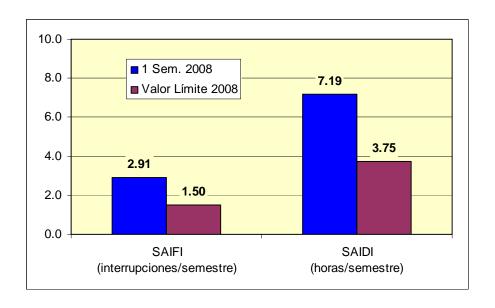


Figura 1-9: SAIFI y SAIDI de Lima Metropolitana versus Valores Límite

Por ello, surge la necesidad de mejorar la confiabilidad de los sistemas que atienden Lima Metropolitana a través de la renovación de las instalaciones eléctricas; la colocación de equipos de protección y seccionamiento como

seccionadores, interruptores o reconectadores² y alimentaciones alternativas, el perfeccionamiento de las actividades de operación y mantenimiento; entre otras. Estas acciones deben buscar un equilibrio óptimo entre su costo y la confiabilidad que se obtiene, no se puede alcanzar la mejor confiabilidad (ninguna interrupción) ya que implicaría un enorme costo, es decir, se debe alcanzar un punto donde el costo de las acciones no supere los beneficios de la confiabilidad obtenida.

Teniendo en cuenta lo mencionado, la presente tesis desarrolla una investigación orientada a determinar los indicadores SAIFI y SAIDI aplicables a los sistemas que atienden Lima Metropolitana, que respondan a un equilibrio óptimo entre costo y confiabilidad. De esta forma, tomando como referencia dichos indicadores, las acciones en mejora de la confiabilidad de los sistemas que atienden Lima Metropolitana, se orientarán adecuadamente.

1.5 Objetivo

La tesis tiene como objetivo determinar los indicadores SAIFI y SAIDI aplicables a los sistemas de distribución de alta densidad de carga del Perú (Lima Norte y Lima Sur), que respondan a un equilibrio óptimo entre costo y confiabilidad.

Asimismo, la tesis tiene como finalidad absolver las siguientes interrogantes:

- ¿Cuál es el equilibrio óptimo entre costo y confiabilidad, aplicable a sistemas de distribución de alta densidad de carga del Perú?
- ¿Cuál es el costo para alcanzar los indicadores SAIFI y SAIDI óptimos?

1.6 Alcances y Limitaciones

La investigación alcanza a los sistemas de distribución eléctrica de alta densidad de carga del Perú (Lima Norte y Lima Sur), que atienden Lima

² Para aislar instalaciones con fallas, para despejar fallas transitorias o para transferir cargas en caso de fallas.

15

Metropolitana, donde se concentra más del 60% de las ventas de energía eléctrica a nivel nacional y requiere mayores requerimientos de calidad de suministro.

Respecto a las acciones de mejora de la confiabilidad a evaluar, el análisis se limita a acciones vinculadas con la colocación de equipos de protección y seccionamiento y alimentaciones alternativas, por ser una estrategia que permite mejorar significativamente la confiabilidad de forma inmediata, así como permite establecer una relación directa entre costo y confiabilidad.

1.7 Metodología de Desarrollo

La metodología de desarrollo de la presente tesis es la siguiente:

- Descripción del marco teórico del análisis de mejora de la confiabilidad propuesto que comprende:
 - Revisión de los principales conceptos vinculados con los sistemas de distribución eléctrica y su confiabilidad.
 - Revisión de las técnicas básicas de evaluación de la confiabilidad de los sistemas de distribución eléctrica.
 - Revisión de los principales conceptos y método del análisis de decisión bajo incertidumbres (método trade-off/risk o de compromiso/riesgo), a efectos de evaluar y determinar el equilibrio óptimo entre costo y confiabilidad.
- Análisis de mejora de la confiabilidad de los sistemas de alta densidad de carga del Perú, que sigue los siguientes pasos:
 - Recopilación de información técnica y comercial, así como información georeferenciada (con coordenadas geográficas) de los alimentadores de los sistemas Lima Norte y Lima Sur.
 - Selección de alimentadores representativos para la evaluación de la confiabilidad a través de un análisis estadístico de la información técnica y comercial.

- Formulación de opciones de mejora de la confiabilidad, basadas en la colocación de equipos de protección y seccionamiento y alimentaciones alternativas.
- Evaluación de la confiabilidad de las opciones de mejora en los alimentadores representativos, a través de técnicas básicas, determinando los indicadores SAIFI y SAIDI, así como el costo que implica cada opción.
- Configuración de la relación entre costo y confiabilidad de las opciones de mejora para cada alimentador representativo.
- Determinación del equilibrio óptimo entre costo y confiabilidad con el método trade-off/risk, estableciéndose los indicadores SAIFI y SAIDI óptimos, así como el costo que implica alcanzar los mismos en los sistemas de distribución eléctrica de alta densidad de carga del Perú.
- Formulación de las conclusiones, aportes y recomendaciones de la tesis de acuerdo a los resultados obtenidos.

2. Marco Teórico

2.1 Introducción

En el presente capítulo se describe el marco teórico utilizado para el análisis de mejora de la confiabilidad de los sistemas de distribución eléctrica de alta densidad de carga del Perú.

En primer lugar, a partir de la revisión de los principales conceptos vinculados con los sistemas de distribución eléctrica y su confiabilidad, se describe las funciones, las características, los componentes, los aspectos operativos y de mantenimiento de dichos sistemas, así como las características de los mercados eléctricos que sirven, a efectos de un mejor entendimiento de los aspectos vinculados con la confiabilidad de los mismos.

La revisión tomó en cuenta las referencias [WEC64], [BIL84] y [BRO02] que corresponden a libros de mayor consulta sobre sistemas de distribución eléctrica y su confiabilidad.

Luego, se revisa los conceptos, criterios y metodología de la evaluación de la confiabilidad de los sistemas de distribución eléctrica, describiéndose las técnicas básicas de evaluación, del tipo probabilística analítica, a efectos de determinar los indicadores SAIFI y SAIDI. En este punto se revisó y adoptó una extensión de dichas técnicas, sensible a acciones de mejora como la colocación de equipos de protección y seccionamiento y alimentaciones alternativas. La extensión propone la división del tiempo de reparación de una falla en función de las distintas operaciones que se llevan a cabo para reparar la misma y reponer el servicio eléctrico. Se consideró las referencias [BIL82], [BIL84], [BRO02] y [CHO09], que desarrollan los aspectos básicos, así como, las referencias [ROM97] y [RIV99], estas últimas que formulan la extensión señalada.

Finalmente, se revisa el método trade-off/risk o de compromiso/riesgo utilizado para configurar la relación entre costo y confiabilidad, y determinar su equilibrio óptimo. Se consideró la revisión de las referencias [CRO92-1] y [CRO92-2] que formulan el método trade-off/risk. Dicho método permite tomar una decisión entre opciones con objetivos en conflicto como, por ejemplo, costo y confiabilidad, buscando aquella o aquellas que cumplen de la mejor manera con dichos objetivos.

2.2 Sistema de Distribución Eléctrica

En un sistema eléctrico es importante contar con un equilibrio entre sus distintas partes (generación, transmisión y distribución), a efectos de lograr una relación adecuada entre costo y confiabilidad total. De otro modo, la parte menos confiable condicionaría la calidad de suministro, impidiendo el aprovechamiento óptimo de la confiabilidad del resto de las partes.

De acuerdo a estadísticas de operación, en los sistemas de distribución eléctrica se originan la mayor cantidad de interrupciones, lo cual se explica por su naturaleza radial, su exposición al medio ambiente, la gran cantidad de sus componentes, así como su proximidad a los clientes.

En este contexto, es importante tener en cuenta los aspectos relevantes de dichos sistemas, tales como sus funciones, características, componentes, aspectos operativos y de mantenimiento, así como las características de los mercados eléctricos que sirven, a efectos de un mejor entendimiento de los aspectos vinculados con la confiabilidad de los mismos.

2.2.1 Aspectos de Diseño y Construcción

El sistema de distribución eléctrica es un conjunto de instalaciones eléctricas que sirven para distribuir y poner a disposición de los clientes, al mínimo costo posible, la energía eléctrica desde las salidas de las subestaciones de subtransmisión hasta los puntos de entrega de estos. La distribución de la energía eléctrica se efectúa a un nivel de tensión adecuado y de forma segura, con la capacidad necesaria para cubrir la demanda de los clientes y la conveniente calidad de suministro (frecuencia y duración de interrupciones).

El sistema de distribución eléctrica comprende:

- El sistema de distribución primaria que distribuye la energía eléctrica desde las salidas de las subestaciones de subtransmisión hasta las subestaciones de distribución, a un nivel de tensión mayor a 1 kV y menor a 30 kV, denominado tensión primaria o media tensión.
- Las subestaciones de distribución que transforman la tensión a un nivel menor a través de transformadores con capacidades entre 1,5 kVA hasta 700 kVA.
- El sistema de distribución secundaria que distribuye la energía eléctrica desde las subestaciones de distribución hasta los puntos de entrega de los clientes, a un nivel de tensión de hasta 1 kV, denominado tensión secundaria o baja tensión.

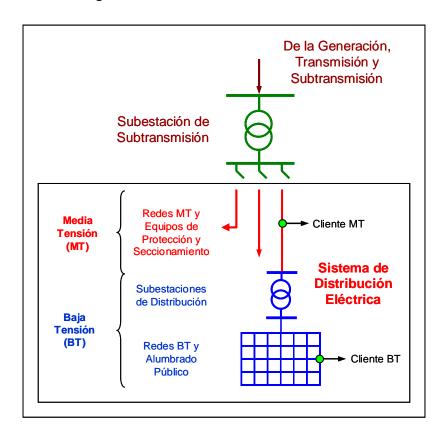


Figura 2-1: Sistema de Distribución Eléctrica

2.2.1.1 Sistema de Distribución Primaria

El sistema de distribución primaria está compuesto por alimentadores que distribuyen la energía eléctrica desde las salidas de las subestaciones de subtransmisión hasta las subestaciones de distribución.

Generalmente, la salida del alimentador es a través de una red subterránea, pasando a una red aérea, denominada troncal, que recorre el área de servicio del alimentador, pudiendo estar conectado a otro alimentador mediante puntos de conexión normalmente abiertos. También es posible tener como troncal una red subterránea, común en zonas de alta densidad de carga o zonas con restricciones de instalación de redes aéreas.

Derivaciones o laterales de la troncal son usados para una mayor cobertura del área de servicio del alimentador. Pueden ser conectados directamente a la troncal pero, normalmente, son protegidos con seccionadores fusible, seccionalizadores o reconectadores.

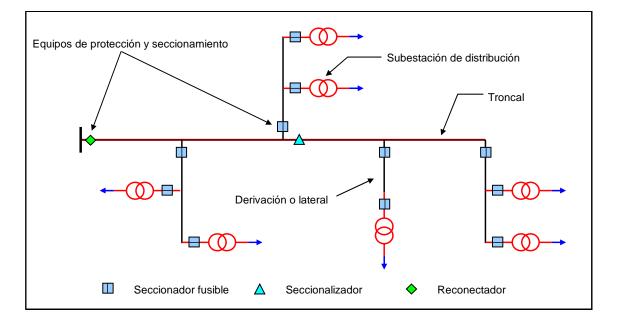


Figura 2-2: Alimentador en Media Tensión

La característica que diferencia los alimentadores o los tramos que los componen, es ser aéreos o subterráneos, sobre todo desde el punto de vista de la confiabilidad.

Los tramos aéreos son económicos en su instalación y mantenimiento pero están más expuestos al medio ambiente, resultando menos confiables. Sus principales componentes son: estructuras (formadas por postes, crucetas y aisladores), conductores o cables aéreos, seccionadores, seccionadores fusible, seccionalizadores, reconectadores, capacitores, reguladores de voltaje y pararrayos.

Los tramos subterráneos son más costosos pero más confiables por estar menos expuestos a factores externos. Sus principales componentes son: terminales, cables subterráneos, empalmes, seccionadores bajo carga, seccionadores bajo carga fusible limitador e interruptores.

Respecto a la topología o configuración de los alimentadores, es radial o por lo menos están operados de forma radial. La topología radial es una estructura en árbol, por lo tanto, habrá un único camino entre la fuente (inicio del alimentador) y cualquier carga.

En el inicio de cada alimentador, casi siempre, existe una protección contra fallas que es capaz de despejar todas las fallas transitorias y detectar las permanentes. Esta protección es esencial y se considera que siempre existe.

A pesar de la operación radial, los alimentadores pueden ser mallados, es decir, cuentan con puntos de conexión que durante la operación normal están abiertos. Las conexiones pueden ser a otros tramos del mismo alimentador, con otro alimentador de la misma subestación de subtransmisión o, en algunos casos, a otro alimentador de otra subestación de subtransmisión. La utilidad de estas conexiones es la posibilidad de reconfigurar el o los alimentadores y transferir cargas, reduciendo de esta forma los tiempos de reposición del servicio. Dependiendo de la zona que se sirva, se puede tener alimentadores mallados o totalmente radiales.

En zonas de alta densidad de carga, normalmente, son mallados, es decir, con alimentaciones alternativas, compuestos de tramos subterráneos y subestaciones de distribución conectadas en serie (sin uso de derivaciones o laterales).

En zonas con cargas bajas y dispersas, son totalmente radiales sin alimentaciones alternativas, compuestos de tramos troncales aéreos, así como derivaciones o laterales aéreos desde donde se conectan las cargas. Además, suelen ser de gran tamaño (longitud), lo cual hace que se vean afectados en mayor medida por factores externos como el medio ambiente.

En zonas con altas, medias y bajas densidades de carga, los alimentadores pueden ser mallados y radiales, debido a que atienden al mismo tiempo zonas con densidades variables.

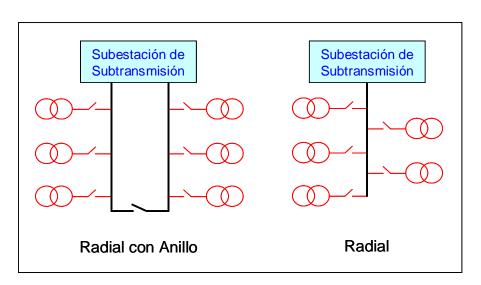


Figura 2-3: Topologías Típicas de Alimentadores en Media Tensión

2.2.1.2 Subestaciones de Distribución

Las subestaciones de distribución son componentes que transforman la tensión primaria a tensión secundaria. Se caracterizan por su relación de transformación y su capacidad (kVA). Están compuestas de transformadores, con sus respectivos equipos de protección como seccionadores fusible y pararrayos. Los transformadores pueden ser para tramos aéreos (subestaciones monoposte o biposte) o tramos subterráneos (subestaciones convencional, pedestal o bóveda). Pueden servir a clientes en media tensión, habiendo un cliente conectado por subestación, o servir a sistemas de distribución secundaria para la atención de clientes en baja tensión.

2.2.1.3 Sistema de Distribución Secundaria

Los sistemas de distribución secundaria conectan las subestaciones de distribución con los puntos de entrega de los clientes. Se componen de circuitos radiales que pueden ser tramos aéreos o subterráneos, con componentes similares a los del sistema de distribución primaria pero de uso en baja tensión. En algunos casos, los clientes se conectan directamente a la subestación de distribución, no siendo necesario un sistema de distribución secundaria. En la mayoría de los casos, los clientes se conectan a redes en baja tensión que recorren el área de servicio de la subestación. También, se conectan las cargas del alumbrado público para la iluminación de vías, plazas, parques, etc.

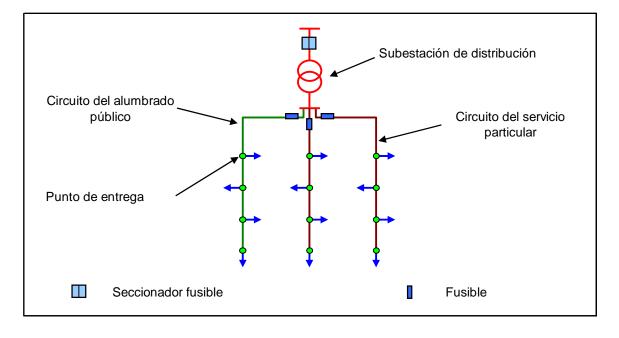


Figura 2-4: Sistema de Distribución Secundaria

2.2.2 Aspectos Operativos y de Mantenimiento

Un sistema de distribución eléctrica debe ser continuamente controlado, operado, mantenido, reparado y expandido. Estas actividades, referidas como actividades de operación y mantenimiento, juegan un rol importante en la confiabilidad.

2.2.2.1 Operación

La operación se realiza a través de operadores ubicados en los centros de control, normalmente ubicados en las subestaciones de subtransmisión, quienes monitorean la carga de los alimentadores y las alarmas de los equipos de protección y seccionamiento. También se encargan de atender las llamadas de emergencia de los clientes.

Después de una falla, los operadores se focalizan en reconfigurar el sistema con la finalidad de reponer el servicio a la mayor cantidad de clientes afectados. Esta tarea se realiza accionando los equipos de protección y seccionamiento, unos controlados remotamente y otros a través de las cuadrillas de emergencia, que son responsables de localizar las fallas, realizar las maniobras necesarias, reparar las instalaciones dañadas y reponer el servicio. En general, estas acciones están orientadas a disminuir los tiempos de reposición del servicio y, por lo tanto, la duración de las interrupciones.

2.2.2.2 Mantenimiento

La mayoría de las instalaciones de los sistemas de distribución eléctrica requieren ser inspeccionados, probados y/o mantenidos para asegurar una apropiada operación y reducir la probabilidad de falla.

Las estrategias de mantenimiento pueden ser correctivas, preventivas, basadas en la condición de las instalaciones eléctricas o centradas en la confiabilidad.

Las correctivas se llevan a cabo cuando una falla ocurre en las instalaciones eléctricas y son efectivas cuando se trata de componentes no críticos con mínimo mantenimiento. Las preventivas se hacen en forma periódica de acuerdo a recomendaciones de fabricantes o la experiencia propia de la empresa distribuidora. Las basadas en la condición de las instalaciones eléctricas se ejecutan según la condición de las mismas, es decir, su grado de deterioro. Las centradas en la confiabilidad se basan en la condición y criticidad de las instalaciones eléctricas, así como en el costo. Esta estrategia maximiza la confiabilidad al orientarse al mantenimiento de instalaciones eléctricas con mayores probabilidades de fallar pero su implementación es difícil.

Otra de las actividades que se consideran como parte de las acciones de mantenimiento, es la limpieza de la franja de servidumbre, que incide en gran medida en la confiabilidad de las redes aéreas.

El mantenimiento adecuado de los diferentes componentes del sistema de distribución eléctrica permite mantener y mejorar sus tasas de falla y, en consecuencia, tener control sobre las frecuencias de falla.

2.2.2.3 Contingencias

Las contingencias en los sistemas de distribución eléctrica son fallas que originan interrupciones del servicio a los clientes. Sistemas confiables permiten que las fallas se despejen automáticamente, minimizando el número de clientes afectados a través de la operación de los equipos de protección y seccionamiento y reconfiguración de los alimentadores. El entendimiento de este proceso es importante para entender la confiabilidad de los sistemas de distribución eléctrica.

Falla en derivación Alimentación alternativa D2 Falla en troncal S2 F1 T2 **T4** C1 F3 D3 D1 D4 Falla en derivación Seccionador Seccionador fusible Seccionalizador Reconectador

Figura 2-5: Ejemplos de Fallas en un Sistema de Distribución Eléctrica

Para el sistema de la Figura 2-5, una falla en el tramo troncal T3 origina la apertura del reconectador R1, que cierra después de un tiempo establecido. Si la falla no se detecta entonces se habrá despejado, experimentando los clientes del alimentador una interrupción momentánea. Si la falla persiste el

reconectador R1 se abre y cierra de nuevo. Después de un número establecido de recierres, si la falla persiste el reconectador R1 queda abierto, experimentando los clientes una falla permanente. Cuando la falla es localizada, esta se aísla abriendo el seccionador S1, luego, el reconectador R1 se cierra y se repone el servicio a los clientes aguas arriba del seccionador S1. Como se cuenta con una alimentación alternativa se abre el seccionador S2 y se repone el servicio a los clientes conectados aguas abajo de dicho seccionador. En este caso, se habrá efectuado una reconfiguración del alimentador. Después de reparar la falla, el sistema se retorna a su estado prefalla.

En el caso de una falla en la derivación D2, una opción del despeje de la falla es la apertura del reconectador R1 antes de que el fusible del seccionador F1 se funda. Después del cierre del reconectador R1, si la falla no se detecta se habrá despejado, experimentando los clientes una interrupción momentánea. En caso contrario, el reconectador R1 permitirá que el fusible del seccionador F1 se funda. En esa situación, los clientes de la derivación D2 experimentarán una falla permanente. Otra opción, es aislar la derivación D2 sin afectar el resto del alimentador. Esto se logra permitiendo que el fusible del seccionador F1 se funda ante la aparición de la falla, originando una interrupción permanente en los clientes de la derivación D2 pero sin afectar a los clientes del resto del alimentador.

En el caso de una falla en la derivación D1, el seccionalizador C1 detecta la falla e incrementa su contador a uno. El reconectador R1 apertura y cierra dando un tiempo para el despeje de la falla. Si la falla persiste, el contador se incrementa a dos. Cuando el contador alcanza un valor preestablecido, el seccionalizador C1 se abre la próxima vez que apertura el reconectador R1. Entonces, la falla es aislada la próxima vez que el reconectador R1 cierra. Esta alternativa de despeje de falla es utilizada cuando es difícil la coordinación de los seccionadores fusibles con la protección de cabecera (reconectador R1).

En conclusión, las diferentes opciones de colocación de equipos de protección y seccionamiento y alimentaciones alternativas, permiten reducir los tiempos de

reposición del servicio ante fallas permanentes, así como reducir la cantidad de clientes afectados hasta la reparación de las mismas.

2.2.3 Mercado Eléctrico

Los mercados eléctricos que atienden los sistemas de distribución eléctrica se pueden caracterizar por tipo de carga (residencial, comercial, industrial y alumbrado público), por cantidad de clientes (zona urbana, zona semiurbana y zona rural) o por densidad de carga (muy alta, alta, media y baja).

Las características de los sistemas de distribución eléctrica varían de acuerdo al mercado eléctrico que sirven. Así en zonas urbanas o zonas de muy alta y alta densidad de carga, la red suele ser subterránea y, aunque se opera de forma radial, cuentan con puntos de conexión a otros alimentadores que la hacen mallada. En zonas semiurbanas o zonas de media y baja densidad, la red es subterránea en zonas céntricas y es aérea en zonas periféricas, con posibilidad de contar con algunos puntos de conexión a otros alimentadores. En zonas rurales o de baja densidad, la red es aérea, operada exclusivamente de forma radial.

Desde el punto de vista de la confiabilidad, estas características de los sistemas de distribución eléctrica influenciadas por el mercado eléctrico, definen las opciones factibles de mejora de la calidad de suministro, así como los niveles alcanzables de confiabilidad y costo requerido. Por ello, la importancia del conocimiento de los diversos mercados eléctricos atendidos por dichos sistemas.

2.3 Evaluación de la Confiabilidad

2.3.1 Técnicas Básicas

Las técnicas básicas se desarrollan sobre la teoría de los procesos continuos de Markov, la teoría de los sistemas serie y las técnicas de frecuencia y duración.

2.3.1.1 Teoría de los Procesos Continuos de Markov

Los procesos continuos de Markov se utilizan para representar un sistema con un número finito y discreto de estados en los que se puede encontrar, funcionando en un espacio continuo de tiempo. Un sistema de distribución eléctrica presenta estas características, ya que está funcionando continuamente y se puede representar en un estado operativo o disponible y un estado averiado o indisponible. Entre los diversos estados se definen unas tasas de transición. En el caso de un sistema de distribución eléctrica, las tasas de transición son la tasa de falla (λ), expresada en fallas por unidad de tiempo. y la tasa de reparación (μ), expresada en reparaciones por unidad de tiempo.

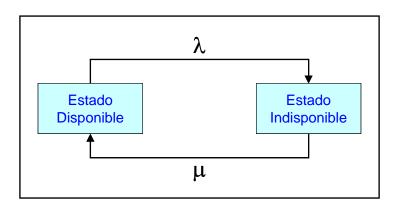


Figura 2-6: Proceso Continuo de Markov de un Sistema con dos Estados

Si las tasas de transición son constantes, implica que la probabilidad de falla o reparación del sistema es la misma independientemente del tiempo que lleve operando o este averiado, lo cual es válido si el sistema se encuentra en su periodo de vida útil. Se considera que los componentes de un sistema de distribución eléctrica se encuentran en su vida útil sobre todo teniendo en cuenta la larga duración de vida de los mismos.

Para tasas de transición constantes, las funciones de densidad de probabilidad de los estados disponible e indisponible obedecen a una distribución exponencial negativa, con lo cual la probabilidad de encontrar al sistema en un estado u otro en un instante dado es:

Ecuación 2-1:
$$P_{\text{dis}} = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} \, e^{-(\lambda + \mu)t}$$

Ecuación 2-2:
$$P_{ind} = \frac{\lambda}{\lambda + \mu} - \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

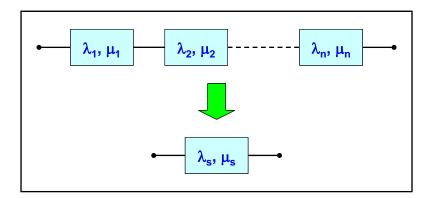
Donde:

 $P_{dis} o Probabilidad$ de encontrar al sistema en estado disponible

 $\mathsf{P}_{\mathsf{ind}} o \mathsf{Probabilidad}$ de encontrar al sistema en estado indisponible

Cuando el tiempo tiende al infinito, se obtiene las probabilidades límite de los dos estados.

Ecuación 2-3:
$$P_{dis} = \frac{\mu}{\lambda + \mu}$$


Ecuación 2-4:
$$P_{ind} = \frac{\lambda}{\lambda + \mu}$$

2.3.1.2 Teoría de los Sistemas Serie

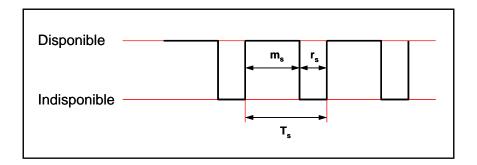
Un sistema de distribución eléctrica está conformado por componentes que están en serie desde el punto de vista de la confiabilidad, es decir, para la continuidad del servicio eléctrico, todos sus componentes, entre la fuente de alimentación y el punto de entrega del cliente, deben estar en operación.

Se busca representar los componentes que conforman un sistema en un único sistema con sus dos estados y sus tasas de transición de un estado a otro, lo cual se logra aplicando la teoría de los sistemas serie [BIL82].

Figura 2-7: Sistema Serie de n Componentes

Para un sistema de n componentes la tasa de falla (λ_s) y la tasa de reparación (μ_s) son:

Ecuación 2-5:
$$\lambda_s = \sum_{i=1}^n \lambda_i$$


Ecuación 2-6:
$$\mu_s = \frac{\displaystyle\sum_{i=1}^n \lambda_i}{\displaystyle\sum_{i=1}^n \frac{\lambda_i}{\mu_i}}$$

2.3.1.3 Técnicas de Frecuencia y Duración

Las ecuaciones señaladas hasta el momento permiten calcular la probabilidad de un sistema de estar en su estado disponible o indisponible. Para un mejor entendimiento del comportamiento de dicho sistema es necesario determinar otros indicadores de confiabilidad como la frecuencia de encontrarse en un determinado estado y la duración de permanecer en dicho estado, cuya evaluación se realiza a través de las técnicas de frecuencia y duración.

Para ello, se define el tiempo medio entre fallas o Mean Time Between Failures (MTBF), que es igual a la suma del tiempo medio de operación del sistema (m_s) o Mean Time to Failure (MTTF) y del tiempo medio de reparación del sistema (r_s) o Mean Time to Repair (MTTR).

Figura 2-8: Ciclo de Operación-Falla de un Sistema

La inversa del MTBF o periodo del sistema (T_s) es igual a la frecuencia de falla del sistema (f_s).

Ecuación 2-7: MTBF =
$$T_s = m_s + r_s = \frac{1}{f_s}$$

Para funciones de densidad de probabilidad de los estados disponible e indisponible con una distribución exponencial negativa, se tiene que la tasa de falla es la recíproca del MTTF y la tasa de reparación es la recíproca del MTTR.

Ecuación 2-8: MTTF =
$$m_s = \frac{1}{\lambda_s}$$

Ecuación 2-9: MTTR =
$$r_s = \frac{1}{\mu_s}$$

Si el MTTR es muy inferior al MTTF, entonces el MTBF es prácticamente igual al MTTF, lo cual significa que la tasa de falla del sistema es equivalente a la frecuencia de falla del sistema.

Ecuación 2-10:
$$\frac{1}{f_s} = MTBF \approx MTTF = \frac{1}{\lambda_s}$$

Ecuación 2-11:
$$f_s \approx \lambda_s$$

La indisponibilidad del sistema (U_s) es igual al producto de la frecuencia de falla por el tiempo medio de reparación. Se puede aproximar por el producto de la tasa de falla por el tiempo medio de reparación.

Ecuación 2-12:
$$U_s = f_s r_s \approx \lambda_s r_s = \frac{\lambda_s}{\mu_s}$$

Entonces los tres indicadores de confiabilidad del sistema de distribución eléctrica en función de los indicadores básicos de confiabilidad de sus componentes quedan como sigue:

Frecuencia de falla del sistema

Ecuación 2-13:
$$f_s = \lambda_s = \sum_{i=1}^n \lambda_i$$

Tiempo de indisponibilidad del sistema

Ecuación 2-14:
$$U_s = \sum_{i=1}^n \lambda_i r_i$$

Tiempo medio de falla del sistema

Ecuación 2-15:
$$r_s = \frac{1}{\mu_s} = \frac{U_s}{\lambda_s} = \frac{\displaystyle\sum_{i=1}^n \lambda_i r_i}{\displaystyle\sum_{i=1}^n \lambda_i}$$

2.3.2 Técnica de División del Tiempo de Reparación

Con la finalidad de modelar adecuadamente los aspectos geográficos diferenciales y el efecto de los equipos de protección y seccionamiento y alimentaciones alternativas durante todo el proceso de reparación de un tramo averiado, se utiliza la técnica de división del tiempo de reparación desarrollada y descrita en [ROM97] y [RIV99]. La división del tiempo de reparación toma en cuenta los siguientes tiempos:

- Tiempo de aviso: Tiempo para saber de la falla e identificar el alimentador con falla.
- Tiempo de acceso: Tiempo para llegar al alimentador con falla.
- Tiempo de localización: Tiempo para localizar la zona del alimentador con falla.
- Tiempo de recorrido: Tiempo para recorrer la zona del alimentador con falla e identificar el tramo averiado.
- Tiempo de seccionamiento: Tiempo para aislar el tramo averiado y reponer el resto del alimentador.
- Tiempo de reparación: Tiempo para reparar el tramo averiado y realimentar todo el alimentador.

En la Ecuación 2-14 se calcula el tiempo de indisponibilidad del sistema (U_s) como la suma de las tasas de falla de cada componente por su tiempo de reparación. Al colocar distintos equipos de protección y seccionamiento y alimentaciones alternativas, la Ecuación 2-14 no se puede aplicar directamente, ya que cada tipo de equipo reduce el tiempo de reparación que afecta a cada punto de suministro de forma distinta. Por ello, se divide el tiempo de reparación que permite analizar como se reduce el tiempo de indisponibilidad del sistema gracias a estos equipos y alimentaciones. De esta forma, el tiempo de indisponibilidad de cada componente (U_i) del alimentador se puede calcular como la suma de las subindisponibilidades asociadas a cada división del tiempo de reparación.

Ecuación 2-16:
$$U_i = U_i^{avi} + U_i^{acc} + U_i^{loc} + U_i^{rec} + U_i^{sec} + U_i^{rep}$$

Donde:

Ui : Subindisponibilidad del componente i asociada al tiempo de aviso

U_i : Subindisponibilidad del componente i asociada al tiempo de acceso

U_i^{loc} : Subindisponibilidad del componente i asociada al tiempo de localización

U_i^{rec} : Subindisponibilidad del componente i asociada al tiempo de recorrido

 U_{i}^{sec} : Subindisponibilidad del componente i asociada al tiempo de seccionamiento

U_i^{rep} : Subindisponibilidad del componente i asociada al tiempo de reparación

Cada subindisponibilidad tendrá su sistema serie que dependerá de la topología del alimentador y de los equipos instalados. De esta forma, se puede calcular el tiempo de indisponibilidad de cada punto de suministro o componente del sistema, así como cualquier indicador del sistema que se quiera calcular, a partir de la tasa de falla y tiempo de reparación de cada

componente. El cálculo de las subindisponibilidades asociadas a cada división del tiempo de reparación se describe en [RIV99].

2.3.3 Determinación de los Indicadores SAIFI y SAIDI

Aunque los tres indicadores de las Ecuaciones 2-13, 2-14 y 2-15 son importantes, ellos no dan una completa representación del comportamiento del sistema y su respuesta. Con la finalidad de reflejar la severidad o significancia de una interrupción, indicadores adicionales son evaluados como los indicadores SAIFI y SAIDI, que son los más utilizados en las evaluaciones de confiabilidad.

Ecuación 2-17: SAIFI =
$$\frac{\text{Número de interrupciones de clientes}}{\text{Número de clientes}} = \frac{\sum\limits_{i=1}^{n} \lambda_{i} N_{i}}{\sum\limits_{i=1}^{n} N_{i}}$$

Donde:

N_i: Número de clientes conectados al componente i

Además, de los indicadores orientados a los clientes SAIFI y SAIDI, es frecuente el uso de un indicador orientado a la energía como la Energía no Suministrada (ENS).

Ecuación 2-19: ENS =
$$\sum_{i=1}^{n} \lambda_i r_i P_i$$

Donde:

P_i: Potencia media demandada en el componente i

2.3.4 Modelamiento del Sistema de Distribución Eléctrica

Para aplicar todas las ecuaciones señaladas es necesario establecer hasta que punto se modelará los distintos componentes del sistema de distribución eléctrica. Es importante en el modelamiento tener en cuenta la representación de los principales componentes del sistema. En las evaluaciones de confiabilidad, se suele modelar el sistema de distribución eléctrica considerando los tramos aéreos y subterráneos y equipos de protección y seccionamiento y alimentaciones alternativas del sistema de distribución primaria, las subestaciones de distribución, los tramos aéreos y subterráneos del sistema de distribución secundaria y las cargas de media y baja tensión asociadas a los clientes. Este modelamiento es sencillo y representa muy bien el funcionamiento real del sistema de distribución eléctrica, permitiendo realizar análisis detallados de acciones de mejora de la confiabilidad.

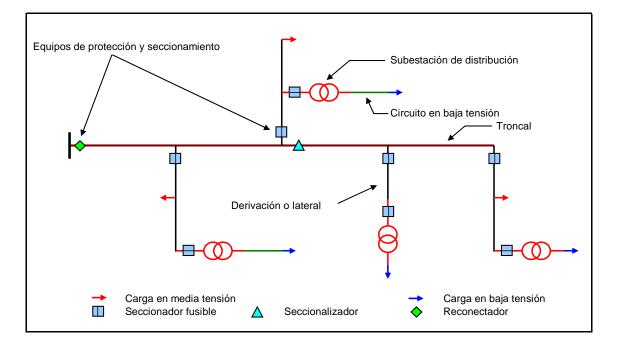


Figura 2-9: Modelamiento del Sistema de Distribución Eléctrica

2.4 Método Trade-Off/Risk

El método trade-off/risk o de compromiso/riesgo es un método de análisis de decisión. Incluye herramientas para evaluar compromisos entre objetivos múltiples que no se pueden alcanzar al mismo tiempo o están en conflicto e

identificar decisiones (planes) que cumplan de la mejor manera todos los objetivos.

El problema analítico del método es determinar planes donde exista equilibrio entre los objetivos considerados, medidos en términos de atributos, sobre la base de criterios que tengan en cuenta las incertidumbres, la robustez de la solución y la mitigación del riesgo de la decisión.

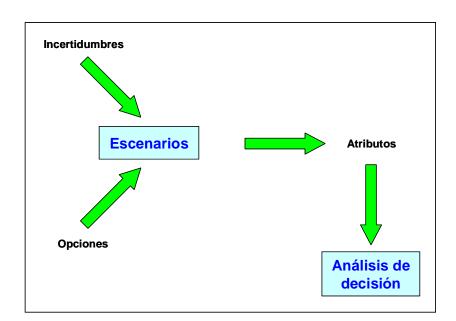


Figura 2-10: Método Trade-Off/Risk o de Compromiso/Riesgo

2.4.1 Definiciones

El método trade-off/risk toma en cuenta las siguientes definiciones para su aplicación.

- Opción: Es una alternativa que se puede optar y especificar. Por ejemplo, en un análisis de mejora de la confiabilidad de sistemas de distribución eléctrica, una opción puede ser utilizar equipos de seccionamiento, equipos de señalización de fallas, equipos de despeje de fallas o alimentaciones alternativas.
- Plan: Es un conjunto de opciones específicas que definen un proyecto sobre el cual se puede tomar una decisión. Por ejemplo, un plan puede ser un proyecto de mejora de la confiabilidad de sistemas de distribución eléctrica, que considere la colocación de seccionadores y señalizadores de corto

circuito en la troncal del alimentador y seccionadores fusible en sus laterales. Otro plan puede ser la colocación de un reconectador en la cabecera del alimentador con seccionalizadores en la troncal.

- Incertidumbre: Es una variable sobre la cual no se tiene control. Por ejemplo, el crecimiento del número de clientes o la demanda, la variación de las tasas de falla de los componentes del sistema de distribución eléctrica o el costo de los equipos. Las incertidumbres pueden modelarse con una distribución probabilística o variables desconocidas pero acotadas, es decir, pueden moverse entre un valor mínimo y un valor máximo.
- Futuro: Es un conjunto de resultados o realizaciones de todas las incertidumbres. Por ejemplo, 3% de crecimiento del número de clientes y 10% de variación de las tasas de falla.
- Escenario: Es un conjunto completo de opciones e incertidumbres específicas, es decir, es un plan particular combinado con un futuro específico.
- Atributos: Son medidas de la bondad de un plan de acuerdo con los objetivos considerados, pueden ser cuantitativos o cualitativos. Los atributos pueden ser minimizados o maximizados y miden si un plan es adecuado, a la luz de las incertidumbres. Por ejemplo, los atributos pueden ser el costo por kW.h, indicadores de confiabilidad como SAIFI o SAIDI, etc.
- Lista corta o conjunto de decisión: Es un conjunto de planes atractivos que podrían cumplir de la mejor manera con todos los objetivos considerados. Son planes que no son dominados, en términos de atributos, y se encuentran cerca del codo de la curva trade-off.
- Riesgo: Es una contingencia a la cual se está expuesta si se selecciona un plan en vez de otro, debido a las incertidumbres. El riesgo tiene que ver con los atributos pero aún más con las decisiones. Una medida del riesgo es la probabilidad que un plan sea inferior a otro. También es medido en términos de exposición.

- Plan robusto: Es un plan que sería seleccionado en cada futuro sin importar como se presenten las incertidumbres.
- Exposición: Es una medida del riesgo. Es una evaluación para la identificación de las condiciones (futuros) por las cuales un plan no está en la lista corta y del grado de arrepentimiento en caso de selección de dicho plan.

2.4.2 Etapas

El método trade-off/risk comprende cuatro etapas:

- Formulación del problema, en términos de opciones, incertidumbres y atributos.
- Generación de escenarios de solución al problema.
- Análisis trade-off o de compromiso entre objetivos de cada escenario, encontrando planes robustos, es decir, que cumplan de la mejor manera todos los objetivos.
- Análisis risk o de riesgo, en caso de no encontrar planes robustos.

2.4.2.1 Formulación del Problema

La formulación del problema comprende el establecimiento de las opciones, identificación de las incertidumbres y el planteamiento de los objetivos que serán medidos a través de atributos.

Las opciones son las alternativas específicas para la elaboración de un plan, estas se pueden reducir o ampliar durante el desarrollo de un análisis. Por ejemplo, para un planeamiento de un sistema de potencia, las opciones pueden ser diferentes tipos de centrales eléctricas, líneas de transmisión de distintos niveles de tensión y capacidad, etc.

Un plan es un conjunto de opciones específicas. En la aplicación del método trade-off/risk, una selección es hecha de un número grande de planes, cada uno consistente de un portafolio de opciones. La identificación de las opciones y planes relevantes es la clave para el éxito del análisis que se plantea.

Una incertidumbre es una variable sobre la cual no se tiene control y que generalmente está relacionada con factores exógenos. Dos aproximaciones para modelar una incertidumbre son:

- Probabilística: Distribuciones probabilísticas para todas las incertidumbres son asumidas.
- Desconocida pero acotada: Límites para las incertidumbres son asumidas sin considerar alguna distribución probabilística. Cada incertidumbre toma un valor que puede moverse entre un valor mínimo y un valor máximo.

El método trade-off/risk puede usar ambas aproximaciones para modelar incertidumbres.

Puede haber incertidumbres que no afectan la decisión óptima. Sin embargo, es difícil identificar dichas incertidumbres a priori, en consecuencia, es recomendable incluirlas en la fase de formulación del problema.

Los objetivos son expresados en términos de atributos o medidas de bondad, los cuales reflejan las perspectivas de los diferentes agentes. Ejemplos de atributos son: costos por kW.h, porcentaje de reserva, nivel de confiabilidad, etc.

2.4.2.2 Generación de Escenarios

El análisis trade-off/risk usa los siguientes conjuntos de información:

- Lista de planes.
- Lista de futuros.
- Lista de escenarios.
- Atributos para cada escenario.

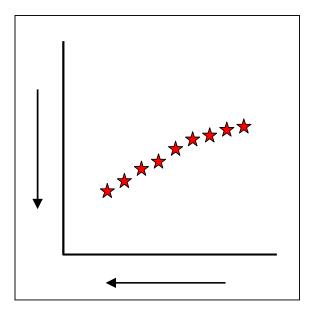
Una vez que se han identificado las opciones e incertidumbres, estas son usadas para representar planes y futuros discretos. Esto es realizado inicialmente tomando todas las combinaciones de las realizaciones de las

incertidumbres para desarrollar los futuros. En esta etapa es necesaria la participación del evaluador para establecer planes y futuros razonables.

Una vez los planes y futuros han sido desarrollados, el evaluador combina cada plan con cada futuro para crear escenarios. Los valores de los atributos para cada escenario, es decir, la medida del rendimiento de cada plan bajo cada futuro, pueden ser obtenidos por simulación.

2.4.2.3 Análisis Trade-Off

En la actualidad, muchos problemas requieren alcanzar objetivos que corresponden a diferentes perspectivas. Estos objetivos son a menudo inconmensurables, es decir, no se pueden reducir a un único parámetro como US\$/MW.h. Cuando entran en conflicto, no es posible hallar una solución que sea óptima para cada perspectiva.


Por ejemplo, los clientes pueden requerir una mejor confiabilidad del servicio eléctrico pero a la vez las empresas distribuidoras que los sirven pueden priorizar una reducción de costos. En este caso, se presenta un conflicto entre objetivos para los cuales hay que encontrar un equilibrio.

Estos objetivos, medidos en términos de atributos, pueden tener, en general, cuatro tipos de relación.

Tipo A: Sin conflicto

Este tipo de relación se presenta cuando se encuentra un plan que optimiza a la vez los dos atributos en evaluación. Si hay otros atributos a evaluar, uno de los dos puede ser descartado, simplificando el análisis trade-off.

Figura 2-11: Análisis Trade-Off - Relación Tipo A

Tipo B: Con compromisos atractivos

Este tipo de relación se presenta cuando no se encuentra un plan que optimice a la vez los dos atributos en evaluación. Sin embargo, se presentan una serie de planes que en cierto sentido son óptimos (se ubican en la curva trade-off), ya que dominan a los planes al interior de esta curva, en términos de ambos atributos.

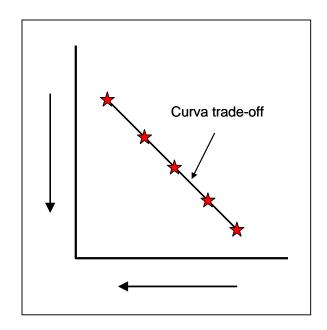
Curva trade-off

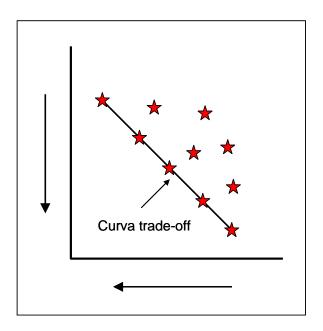
Figura 2-12: Análisis Trade-Off – Relación Tipo B

Los planes cerca del codo de la curva trade-off conforman una lista corta de planes atractivos, es decir, son los mejores planes teniendo en cuenta ambos atributos.

Tipo C: Sin compromisos atractivos

En este tipo de relación los planes se ubican en una curva trade-off que no presenta un codo, con lo cual no se tiene un plan que equilibre a la vez ambos atributos en evaluación.



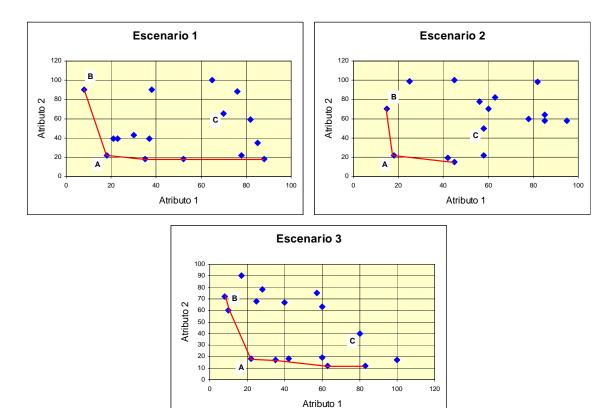

Figura 2-13: Análisis Trade-Off – Relación Tipo C

En ambos extremos se tienen planes que optimizan un atributo a la vez. Dada esta situación, la decisión pasaría por determinar cuál es el atributo más importante para seleccionar el plan que optimiza el mismo. Otra opción es transformar uno de los atributos de tal forma que en un nuevo análisis trade-off se obtenga una relación Tipo B, con lo cual se podrá elegir un plan que equilibre ambos atributos a la vez.

Tipo D: Sin opciones

Se presenta cuando se tiene planes dominados por una curva trade-off del Tipo C, incrementando el conflicto entre los atributos en evaluación y reduciendo las posibilidades de obtener una relación Tipo B, a través de transformación de atributos.

Figura 2-14: Análisis Trade-Off – Relación Tipo D



2.4.2.4 Análisis Risk

El riesgo es el azar al cual se expone una decisión debido a las incertidumbres, donde se puede tener dos dimensiones de riesgo: robustez y exposición (incluyendo arrepentimiento).

La primera dimensión de riesgo es la robustez. Si un plan está en la lista corta de planes atractivos para todos los futuros, entonces el plan es 100% robusto aunque a menudo no hay un plan 100% robusto. A modo de ejemplo, en la Figura 2-15 se presenta gráficamente la evaluación de dos atributos en tres escenarios (caso de minimización de atributos). Como se aprecia, la alternativa A es robusta debido a que se encuentra en el codo de la curva trade-off para todos los escenarios.

Figura 2-15: Evaluación de Atributos con el Método Trade-Off/Risk

La curva trade-off se construye de las opciones dominantes, es decir, de aquellas que son mejores al resto en por lo menos un atributo. Por ejemplo, en la Figura 2-15, la alternativa B domina a la alternativa C en el atributo 1 mientras que la alternativa A domina a la alternativa C en ambos atributos.

La curva trade-off representa la relación existente entre los atributos evaluados, sobre la cual se ubican las opciones que son factibles de seleccionar, permitiendo descartar las opciones que son dominadas. En el codo de la curva se ubican las opciones más interesantes. El método trade-off/risk incluye técnicas que permiten identificar la curva trade-off y su codo.

De no encontrarse una alternativa robusta, se procede a un análisis de riesgo o análisis risk de las opciones cercanas al codo de la curva trade-off. Dicho análisis pretende mitigar el riesgo asociado a una opción seleccionada. Se utiliza el método MINIMAX que trata de identificar las opciones que tienen menor exposición al riesgo.

3. Análisis de Mejora de la Confiabilidad

El presente capítulo presenta el análisis de mejora de la confiabilidad basado en la colocación de equipos de protección y seccionamiento por ser la estrategia más utilizada por las empresas distribuidoras, ya que sus resultados son inmediatos y su costo se asocia directamente con la mejora de la confiabilidad.

Se consideró alimentadores representativos de los sistemas de distribución eléctrica de alta densidad de carga del Perú, para los cuales se establecieron opciones de colocación de equipos de protección y seccionamiento, definidas de acuerdo al diseño estándar de los sistemas de distribución y la práctica usual de las empresas distribuidoras. Para cada opción se determinó los indicadores SAIFI y SAIDI, tomando en cuenta la metodología descrita en [ROM97] y [RIV99], la cual es del tipo probabilística analítica, aplicable a sistemas de distribución eléctrica y sensible a las acciones de mejora de la confiabilidad más importantes como la colocación de equipos de protección y seccionamiento y alimentaciones alternativas. La metodología toma en cuenta las técnicas básicas de evaluación de la confiabilidad con una extensión que divide el tiempo de reparación de una falla en función de las distintas operaciones que se llevan a cabo para reparar la misma y reponer el servicio eléctrico.

3.1 Selección de Alimentadores Representativos

Los sistemas de distribución eléctrica de alta densidad de carga del Perú tienen un total de 515 alimentadores, por lo que realizar un análisis de mejora de la confiabilidad para cada alimentador demandaría gran cantidad de tiempo y costo. Al respecto, es práctica usual en diversos análisis relacionados con los sistemas de distribución eléctrica, efectuar los mismos sobre la base de

alimentadores representativos, lo cual es factible ya que dichos sistemas están compuestos de instalaciones eléctricas estandarizadas de acuerdo a la densidad de carga, asociada al mercado eléctrico que atienden. Por lo mencionado, el análisis se realizó sobre alimentadores representativos.

Si bien se puede efectuar una selección de alimentadores representativos sobre la base del total de alimentadores, es adecuado efectuar dicha selección sobre la base de una estratificación simple de los mismos, a efectos de una mayor representatividad de los alimentadores que resulten seleccionados. Se consideró una estratificación por densidad de carga, a efectos de reflejar sus características técnicas, comerciales y de mercado eléctrico más relevantes.

3.1.1 Información Técnica y Comercial de los Alimentadores

La información técnica y comercial considerada para la selección de los alimentadores representativos comprende datos de longitud de las redes aéreas y subterráneas en media tensión, número y potencia instalada de subestaciones de distribución, redes aéreas y subterráneas en baja tensión, número de clientes en media y baja tensión, consumo de energía y demanda de potencia de cada alimentador. La información se incluye en el Anexo N° 1.

3.1.2 Estratificación de los Alimentadores

Para la estratificación de los alimentadores se utilizó la variable Densidad de Carga Lineal (kW/km), que refleja las características técnicas, comerciales y de mercado eléctrico de cada alimentador. Se consideró cinco estratos denominados de Muy Alta Densidad de Carga (MAD), Alta Densidad de Carga 1 (AD1), Alta Densidad de Carga 2 (AD2), Media Densidad de Carga (MD) y Baja Densidad de Carga (BD), dado que en los análisis tarifarios de los sistemas de distribución eléctrica Lima Norte y Lima Sur, las instalaciones eléctricas se estandarizan por cinco zonas de densidad de carga [OSI02], [OSI06].

Con la finalidad de establecer los límites de cada estrato, se efectuó un análisis descriptivo de la variable señalada, determinándose indicadores de tendencia central como la media y mediana, indicadores de dispersión como la desviación

estándar e indicadores de distribución como el coeficiente de curtosis y el coeficiente de asimetría.

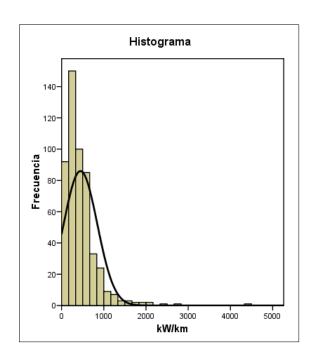


Figura 3-1: Histograma de Frecuencia de la Variable Densidad de Carga Lineal

Tabla 3-1: Análisis Descriptivo de la Variable Densidad de Carga Lineal

Indicador Descriptivo	Valor
Media	448
Mediana	352
Desviación estándar	398
Coeficiente de curtosis	24.4
Coeficiente de asimetría	3.5
Rango	4 486
Mínimo	1
Máximo	4 487
Datos	515

De los resultados mostrados en la Figura 3-1 y la Tabla 3-1, se aprecia que la distribución de la variable es asimétrica a la derecha con alta concentración de datos, es decir, una distribución no uniforme. De acuerdo a las referencias [COC82] y [COS08] un método para estratificar una población en función de una variable con distribución no uniforme, como se presenta en la variable de Densidad de Carga Lineal, es el método Dalenius y Hodges. Sus ventajas respecto a otros métodos son su rapidez y sencillez de cálculo ya que la estratificación se realiza en función de la sumatoria acumulativa de la raíz cuadrada de las frecuencias de los datos. El método tiene por finalidad

minimizar las variabilidades al interior de cada estrato conformado, es decir, conformar estratos homogéneos en su interior pero heterogéneos entre sí. La función objetivo a minimizar aplicando el método mencionado se indica en la Ecuación 3-1.

Ecuación 3-1:
$$\sum_i W_i \times \sigma_i$$

Donde:

W_i → Peso del estrato i

σ_i → Desviación estándar del estrato i

El paso siguiente fue un análisis descriptivo de la variable Densidad de Carga Lineal pero por estrato. Los resultados se muestran en la Tabla 3-2.

Tabla 3-2: Análisis Descriptivo de la Variable Densidad de Carga Lineal por Estrato

	MAD	AD1	AD2	MD	BD
Indicador Descriptivo	Valor				
Media	1 702	827	559	339	144
Mediana	1 466	814	565	340	156
Desviación estándar	725	130	54	59	70
Coeficiente de curtosis	9.2	-1.0	-1.1	-1.2	-0.9
Coeficiente de asimetría	2.7	0.4	-0.1	0.2	-0.5
Rango	3 341	440	196	199	248
Mínimo	1 146	651	453	250	1
Máximo	4 487	1 091	649	449	249
Datos	24	71	97	155	168

De los resultados mostrados en la Tabla 3-2, se aprecia que todos los estratos a excepción del estrato de MAD, presentan aproximadamente una distribución uniforme, es decir, una distribución simétrica con concentración normal de datos. El estrato de MAD presenta una distribución asimétrica a la derecha con alta concentración de datos, es decir, una distribución no uniforme. En ese sentido, se puede concluir que se efectuó una estratificación adecuada de los alimentadores.

En la Tabla 3-3 se indica los rangos de los estratos de acuerdo a la variable de Densidad de Carga Lineal, que sirven para agrupar los alimentadores.

Tabla 3-3: Rangos de los Estratos según la Variable Densidad de Carga Lineal

Estrato	Rango	
MAD	1100 kW/km < DL	
AD1	650 kW/km < DL ≤ 1100 kW/km	
AD2	450 kW/km < DL ≤ 650 kW/km	
MD	250 kW/km < DL ≤ 450 kW/km	
BD	DL ≤ 250 kW/km	
DL: Densidad de Carga Lineal		

3.1.3 Alimentadores Representativos

Previamente a la selección de los alimentadores representativos, se efectuó el agrupamiento de los alimentadores según su densidad de carga lineal y los rangos de cada estrato. Los resultados se muestran en el Anexo N° 2.

La selección tomó en cuenta el tipo de distribución de cada estrato. En los estratos AD1, AD2, MD y BD con distribución uniforme, se tomó aquel alimentador con variable de Densidad de Carga Lineal cercano a la media. En el estrado MAD con distribución no uniforme, dada su característica de distribución, se tomó aquel alimentador con variable de Densidad de Carga Lineal entre la mediana y la media. Se seleccionó un alimentador por cada estrato debido a que la mayoría de estratos presenta una distribución uniforme, lo cual garantiza su representatividad, así como a restricciones de tiempo y costo. En la Tabla 3-4 se indican los alimentadores seleccionados como representativos de cada estrato.

Tabla 3-4: Alimentadores Representativos

	MAD	AD1	AD2	MD	BD		
Sistema	Lima Sur	Lima Norte	Lima Sur	Lima Sur	Lima Sur		
Centro de Transformación	SAN ISIDRO	PERSHING	LIMATAMBO	CHORRILLOS	ÑAÑA		
Alimentador	SI15	Q18	C20	CH06	NA04		
km MT	2.085	5.137	7.769	19.481	20.359		
SED	5	9	13	55	73		
kVA SED	5 270	3 090	6 900	8 790	6 155		
km BT	4.638	18.331	24.174	54.922	124.242		
Usuarios MT	4	6	4	20	5		
Usuarios BT	747	3 818	1 950	2 386	11 325		
MW.h MT	7 252	7 664	4 998	19 334	974		
MW.h BT	10 063	13 939	16 818	16 225	13 676		
kW	3 330	4 219	4 388	6 631	3 058		
kW/km	1 597	821	565	340	150		
MT: M	MT: Media Tensión - BT: Baja Tensión - SED: Subestaciones de Distribución MT/BT						

En el Anexo N° 3 se incluyen mapas que muestran gráficamente el sistema de

distribución primaria y las subestaciones de distribución de cada alimentador

representativo.

3.2 Evaluación de la Confiabilidad

Para la evaluación de la confiabilidad de los alimentadores representativos, se

desarrolló una herramienta informática que permite representar gráficamente

los componentes de un sistema de distribución eléctrica, evaluando sus

indicadores de confiabilidad de acuerdo a la metodología descrita en el numeral

2.3.

La herramienta tiene un entorno gráfico que permite sobre la topología del

alimentador, configurar diferentes opciones de colocación de equipos de

protección y seccionamiento y alimentaciones alternativas, calculando la

frecuencia de falla y el tiempo de indisponibilidad de cada punto de suministro,

así como los indicadores SAIFI, SAIDI y ENS del alimentador.

3.2.1 Modelamiento del Sistema de Distribución Eléctrica

Para la evaluación de la confiabilidad se considera el modelamiento descrito en

el numeral 2.3.4.

El modelamiento puede llegar a representar hasta los circuitos en baja tensión.

Sin embargo, la incidencia de dichos circuitos en los indicadores de

confiabilidad no es significativa por lo que se considera solo el modelamiento

hasta las subestaciones de distribución, concentrando los clientes y carga en

baja tensión en la salida de las mismas.

Lo mencionado se sustenta en la estimación aproximada del SAIFI de los

sistemas Lima Norte y Lima Sur.

Para las redes en media tensión, el SAIFI se puede determinar con la

siguiente expresión:

Ecuación 3-2: $SAIFI_{MT} = \frac{\lambda_{MT} \times L_{MT}}{N_{MT}}$

51

Donde:

 $\lambda_{\text{MT}} \rightarrow \text{Tasa}$ de falla promedio de las redes en media tensión

 $L_{MT} \rightarrow Longitud de las redes en media tensión$

 $N_{\text{MT}} \rightarrow N$ úmero de alimentadores en media tensión

Si consideramos para los sistemas Lima Norte y Lima Sur, $\lambda_{MT}=0.20$ fallas/km-año, $L_{MT}=5\,488$ km y $N_{MT}=515$ alimentadores, se obtiene un SAIFI_{MT}= 2.13 fallas/año.

Para las subestaciones de distribución, el SAIFI se puede determinar con la siguiente expresión:

Ecuación 3-3: $SAIFI_{SD} = \lambda_{SD}$

Donde:

 $\lambda_{\text{SD}} \rightarrow \text{Tasa}$ de falla promedio de las subestaciones de distribución

Si consideramos para los sistemas Lima Norte y Lima Sur, $\lambda_{SD}=0.08$ fallas/año, se obtiene un SAIFI_{SD} = 0.08 fallas/año.

Para las redes en baja tensión, el SAIFI se puede determinar con la siguiente expresión:

$$\textbf{Ecuación 3-4: } SAIFI_{BT} = \frac{\lambda_{BT} \times L_{BT}}{N_{BT}}$$

Donde:

 $\lambda_{\rm BT}
ightarrow {
m Tasa}$ de falla promedio de las redes en baja tensión

 $L_{BT} \rightarrow Longitud de las redes en baja tensión$

 $N_{BT} \rightarrow N$ úmero de circuitos en baja tensión

Si consideramos para los sistemas Lima Norte y Lima Sur, $\lambda_{BT}=0.30$ fallas/km-año, $L_{BT}=16\,618$ km y $N_{BT}=38\,013$ circuitos, se obtiene un SAIFIMT = 0.13 fallas/año.

El SAIFI del sistema es la suma del SAIFI_{MT}, SAIFI_{SD} y SAIFI_{BT}. Para los sistemas Lima Norte y Lima Sur, se obtiene un SAIFI = 2.34 fallas/año, donde las redes en baja tensión participan con 6%.

Por lo explicado, el modelamiento de los sistemas de distribución eléctrica para evaluaciones de confiabilidad no consideran las redes en baja tensión. Además, en la práctica los esfuerzos de las empresas distribuidoras para la mejora de la confiabilidad de sus sistemas se concentran en las redes de media tensión.

En ese sentido, la presente tesis considera el modelamiento hasta las subestaciones de distribución.

3.2.2 Opciones de Mejora de la Confiabilidad

Previamente a la evaluación de la confiabilidad, se definieron las opciones de mejora de la confiabilidad a evaluar, las cuales consideraron la colocación de equipos de protección y seccionamiento y alimentaciones alternativas. Se diferenció opciones para alimentadores con redes subterráneas, aéreas o mixtas (subterráneas-aéreas), ya que los equipos que se utilizan en cada caso son distintos, es decir, una de sus características técnicas responden al tipo de red donde se los colocan.

Los equipos de protección y seccionamiento considerados son los siguientes:

- Seccionador: Equipo que puede ser abierto o cerrado sin carga para reconfigurar el alimentador.
- Seccionador fusible: Equipo que es capaz de despejar una falla aguas abajo de su ubicación, llevando la corriente a cero. Se conoce también como seccionador cut-out y se utiliza en redes aéreas.

- Seccionador bajo carga: Equipo que puede ser abierto o cerrado con carga para reconfigurar el alimentador. Se utiliza en redes aéreas.
- Seccionador bajo carga con fusible limitador: Equipo que puede ser abierto o cerrado con carga para reconfigurar el alimentador. Se utiliza en redes subterráneas.
- Seccionalizador: Equipo que detecta una falla aguas abajo de su ubicación y abre el circuito en forma coordinada con el equipo de protección y seccionamiento de cabecera (normalmente un reconectador). Se utiliza en redes aéreas.
- Reconectador: Equipo que detecta una falla aguas abajo de su ubicación, despeja las fallas transitorias y abre el circuito en caso de fallas permanentes. Se utiliza en redes aéreas.
- Interruptor: Equipo que detecta una falla aguas debajo de su ubicación y abre el circuito. Se utiliza principalmente en redes subterráneas.

Además, se consideraron equipos de señalización de corto circuito, con señal local y teleseñalizados, y alimentaciones alternativas, manuales con un seccionador bajo carga y automáticas con un interruptor automático.

Las opciones se definieron de acuerdo al diseño estándar de los sistemas de distribución y la práctica usual de las empresas distribuidoras, las cuales son:

- Para alimentadores subterráneos, se considera inicialmente la colocación de seccionadores bajo carga en la troncal y seccionadores bajo carga con fusible limitador en las laterales. Luego, se incorpora equipos de señalización de corto circuito con señal local y teleseñalizados. Después, estas opciones son evaluadas con alimentaciones alternativas manuales. Finalmente, se considera interruptores en la troncal y seccionadores bajo carga con fusible limitador en las laterales, evaluados sin y con alimentaciones alternativas manuales y automáticas.
- Para alimentadores aéreos, se considera inicialmente la colocación de seccionadores en la troncal y seccionadores fusible en las laterales. Luego,

se incorpora equipos de señalización de corto circuito con señal local y teleseñalizados. Después, opciones evaluadas estas son con alimentaciones alternativas manuales. Posteriormente. se considera seccionalizadores y seccionadores en la troncal y seccionadores fusible en las laterales, evaluados sin y con alimentaciones alternativas manuales. considera reconectadores. seccionalizadores Finalmente. se seccionadores en la troncal y seccionadores fusible en las laterales, evaluados sin y con alimentaciones alternativas manuales y automáticas.

Para alimentadores mixtos (subterráneos-aéreos), se considera las opciones señaladas para alimentadores subterráneos y aéreos pero teniendo en cuenta el tipo de red donde se colocan los equipos.

En el Anexo N° 4 se detalla las opciones de mejora de la confiabilidad para los tipos de alimentadores indicados.

En todas las opciones se considera como existente en la salida del alimentador un equipo protección y seccionamiento de cabecera, ya sea un interruptor o un reconectador dependiendo del tipo de red. Dicho equipo no se considera como parte del costo del equipamiento ya que pertenece a la subtransmisión. Asimismo, se considera que todas las subestaciones de distribución cuentan con el equipo de protección y seccionamiento del transformador, el cual forma parte del costo de instalación de las mismas.

3.2.3 Parámetros de Cálculo

Para la evaluación de la confiabilidad de los alimentadores representativos, se requiere establecer una serie de parámetros de cálculo o datos de entrada. En primer lugar, están los parámetros de los componentes modelados de dichos alimentadores, que reflejan su comportamiento desde el punto de vista de la confiabilidad, es decir, su tasa de falla y tiempo de reparación. En las Tablas N° 3-5 y N° 3-6 se indican dichos parámetros, establecidos tomando valores típicos señalados en las referencias [MER05] y [BRO02].

Tabla 3-5: Tasa de Falla (λ) de los Componentes

Elemento	Va	lor	Unidad	
Elemento	Mínimo	Máximo	Unidad	
Tramo aéreo	0.25	0.50	fallas/km-año	
Tramo subterráneo	0.10	0.20	fallas/km-año	
Subestación de distribución	0.08	0.16	fallas/unidad-año	

Tabla 3-6: Tiempo de Reparación (r) de los Componentes

Elemento	Valor	Unidad
Tramo aéreo	3	horas
Tramo subterráneo	10	horas
Subestación de distribución	6	horas

Además, se tiene otros parámetros que permiten reflejar el tiempo de otras operaciones que se realizan durante la reparación de una falla como las operaciones para identificar el alimentador con falla, acceder al mismo, localizar la zona con falla, recorrer dicha zona e identificar el tramo averiado y aislar el tramo averiado. Para ello, se consideran los parámetros de la Tabla N° 3-7.

Tabla 3-7: Parámetros de Otras Operaciones para la Reparación de una Falla

Parámetro	Valor	Unidad
Tiempo de aviso	0.1	horas
Tiempo de acceso	0.5	horas
Velocidad de localización	10.0	km/h
Velocidad de recorrido	3.0	km/h

Los parámetros de velocidad indicados se aplican considerando la longitud de los tramos que comprende el alimentador, obteniéndose los tiempos de localización de la zona con falla y de recorrido de dicha zona para identificar el tramo averiado.

Otros parámetros que intervienen en la evaluación de la confiabilidad, son la longitud de los tramos, número de clientes y demanda media de los alimentadores en evaluación. En el Anexo N° 5 se incluye los parámetros de los alimentadores representativos.

Finalmente, se tiene el costo de los equipos de protección y seccionamiento que se utiliza para determinar el costo del equipamiento de cada opción de mejora de la confiabilidad. El costo cubre la adquisición del equipo y su instalación.

Tabla 3-8: Costo de Equipos de Protección y Seccionamiento

Código	Descripción	Costo US\$
SEL	Señalizador local	1 000
TSE	Teleseñalizador	3 000
SEC	Seccionador	300
SEC-F	Seccionador fusible	400
SBC	Seccionador bajo carga	3 000
SBC-F	Seccionador bajo carga fusible limitador	4 500
SCC	Seccionalizador	8 000
REC	Reconectador	12 000
INT	Interruptor	12 000
AAM	Alimentación alternativa manual	2 000
AAA	Alimentación alternativa automática	8 000

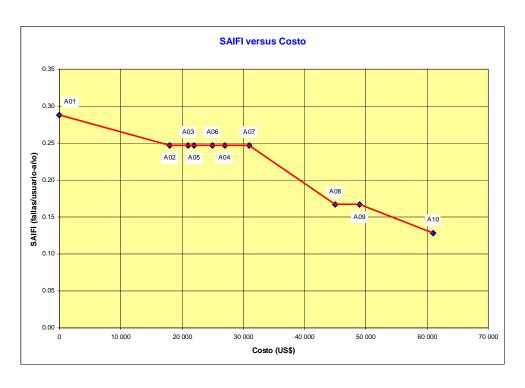
3.3 Resultados Análisis de Confiabilidad

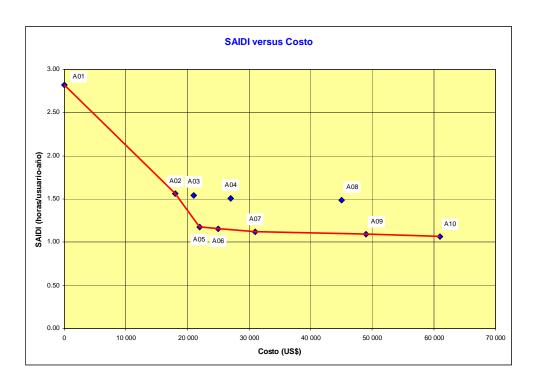
Los resultados comprenden los indicadores SAIFI, SAIDI y ENS de las opciones evaluadas para cada alimentador representativo. También comprenden el costo de equipamiento de cada opción. Las tasas de falla consideradas para los componentes corresponden a los valores mínimo señalados en la Tabla N° 3-5.

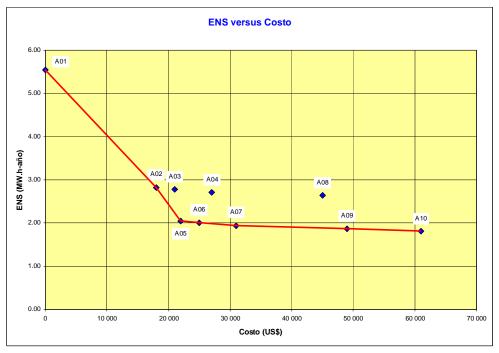
3.3.1 Muy Alta Densidad de Carga

De los resultados de la evaluación de la confiabilidad del alimentador representativo de muy alta densidad de carga, se tiene un SAIFI igual a 0,29 fallas/usuario-año, un SAIDI igual a 2,82 horas/usuario-año y una ENS de 5,55 MW.h/año sin considerar la colocación de equipos de protección y seccionamiento.

Con la colocación de dichos equipos, a través de diferentes opciones, se mejora los indicadores de confiabilidad llegándose a obtener un SAIFI igual a 0,13 fallas/usuario-año, un SAIDI igual a 1,06 horas/usuario-año y una ENS de 1,81 MW.h/año para una opción con un costo de US\$ 61 000.


Sin embargo, es necesario evaluar si esta opción es la óptima, es decir, si el beneficio en mejora de la confiabilidad es igual o mayor al costo de implementación de la misma.


Tabla 3-9: Evaluación de la Confiabilidad – Muy Alta Densidad de Carga

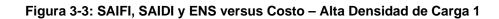

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	ENS MW.h-año	Costo Equipamiento US\$
A01	0.29	2.82	5.55	0
A02	0.25	1.56	2.82	18 000
A03	0.25	1.54	2.78	21 000
A04	0.25	1.51	2.71	27 000
A05	0.25	1.17	2.04	22 000
A06	0.25	1.15	2.00	25 000
A07	0.25	1.12	1.93	31 000
A08	0.17	1.48	2.65	45 000
A09	0.17	1.09	1.87	49 000
A10	0.13	1.06	1.81	61 000

A partir de los resultados mostrados en la Tabla 3-9, se pudo configurar la relación entre costo y confiabilidad, esta última evidenciada a través de los indicadores SAIFI, SAIDI y ENS.

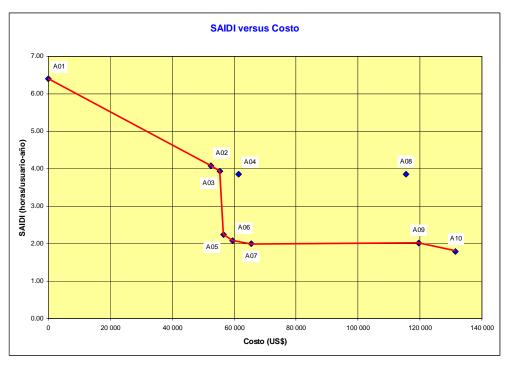
Figura 3-2: SAIFI, SAIDI y ENS versus Costo – Muy Alta Densidad de Carga

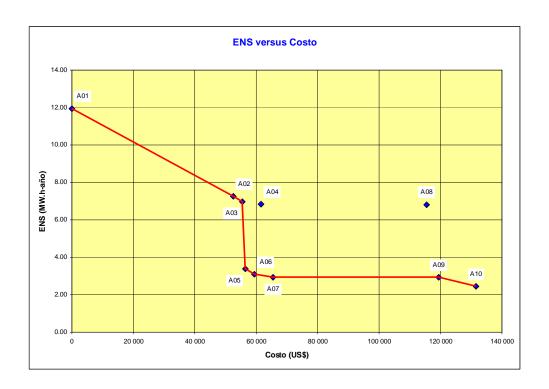
Como se puede apreciar en los gráficos de la Figura 3-2, la relación se configuró a través de las opciones que superan a las demás teniendo en consideración el costo y nivel de confiabilidad de cada opción, es decir, aquellas con menor costo y/o mejor confiabilidad. Dentro de este grupo de opciones se encontrará aquella que resulte la óptima.

3.3.2 Alta Densidad de Carga 1


De los resultados de la evaluación de la confiabilidad del alimentador representativo de alta densidad de carga 1, se tiene un SAIFI igual a 0,60 fallas/usuario-año, un SAIDI igual a 6,41 horas/usuario-año y una ENS de 11,94 MW.h/año sin considerar la colocación de equipos de protección y seccionamiento.

Con la colocación de dichos equipos, a través de diferentes opciones, se mejora los indicadores de confiabilidad llegándose a obtener un SAIFI igual a 0,19 fallas/usuario-año, un SAIDI igual a 1,78 horas/usuario-año y una ENS de 2,46 MW.h/año para una opción con un costo de US\$ 131 500.

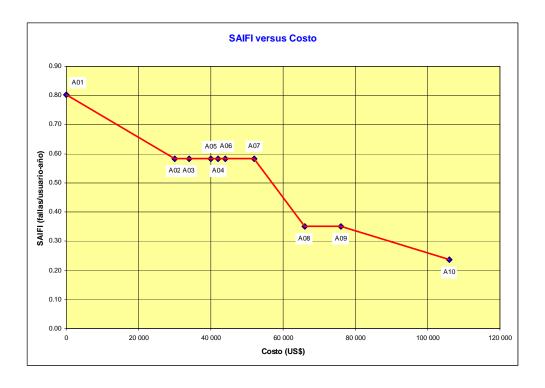

Tabla 3-10: Evaluación de la Confiabilidad – Alta Densidad de Carga 1


Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	ENS MW.h-año	Costo Equipamiento US\$
A01	0.60	6.41	11.94	0
A02	0.49	4.08	7.26	52 500
A03	0.49	3.93	6.97	55 500
A04	0.49	3.86	6.85	61 500
A05	0.49	2.24	3.39	56 500
A06	0.49	2.09	3.10	59 500
A07	0.49	2.00	2.93	65 500
A08	0.38	3.85	6.82	115 500
A09	0.38	2.01	2.94	119 500
A10	0.19	1.78	2.46	131 500

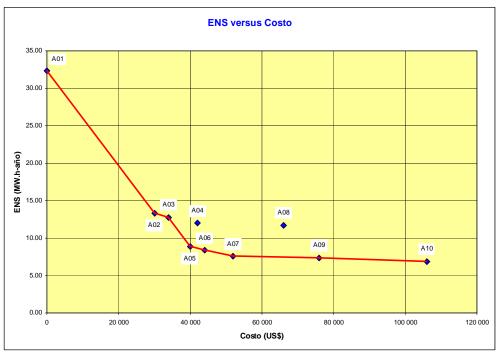
A partir de los resultados mostrados en la Tabla 3-10, se configuró la relación entre costo y confiabilidad, de igual forma que en el caso anterior.

De igual forma que en el caso anterior, la relación se configuró a través de las opciones que superan a las demás. Dentro de este grupo de opciones se encontrará aquella que resulte la óptima.

3.3.3 Alta Densidad de Carga 2


De los resultados de la evaluación de la confiabilidad del alimentador representativo de alta densidad de carga 2, se tiene un SAIFI igual a 0,80 fallas/usuario-año, un SAIDI igual a 9,07 horas/usuario-año y una ENS de 32,33 MW.h/año sin considerar la colocación de equipos de protección y seccionamiento.

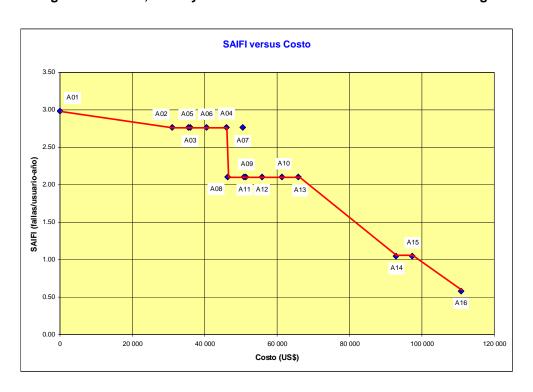
Con la colocación de dichos equipos, a través de diferentes opciones, se mejora los indicadores de confiabilidad llegándose a obtener un SAIFI igual a 0,24 fallas/usuario-año, un SAIDI igual a 2,31 horas/usuario-año y una ENS de 6,82 MW.h/año para una opción con un costo de US\$ 106 000.


Tabla 3-11: Evaluación de la Confiabilidad – Alta Densidad de Carga 2

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	ENS MW.h-año	Costo Equipamiento US\$
A01	0.80	9.07	32.33	0
A02	0.58	3.99	13.31	30 000
A03	0.58	3.84	12.78	34 000
A04	0.58	3.61	11.98	42 000
A05	0.58	2.84	8.89	40 000
A06	0.58	2.70	8.36	44 000
A07	0.58	2.47	7.55	52 000
A08	0.35	3.57	11.71	66 000
A09	0.35	2.44	7.33	76 000
A10	0.24	2.31	6.82	106 000

Figura 3-4: SAIFI, SAIDI y ENS versus Costo – Alta Densidad de Carga 2

3.3.4 Media Densidad de Carga


De los resultados de la evaluación de la confiabilidad del alimentador representativo de media densidad de carga, se tiene un SAIFI igual a 2,98 fallas/usuario-año, un SAIDI igual a 28,48 horas/usuario-año y una ENS de 139,38 MW.h/año sin considerar la colocación de equipos de protección y seccionamiento.

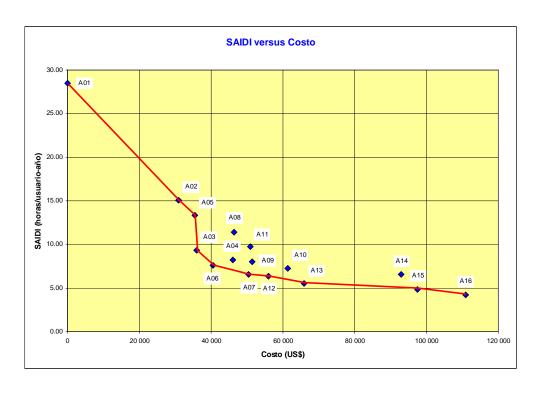
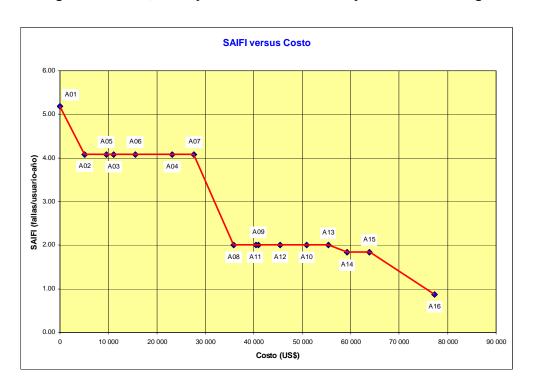

Con la colocación de dichos equipos, a través de diferentes opciones, se mejora los indicadores de confiabilidad llegándose a obtener un SAIFI igual a 0,58 fallas/usuario-año, un SAIDI igual a 4,21 horas/usuario-año y una ENS de 17,72 MW.h/año para una opción con un costo de US\$ 110 900.

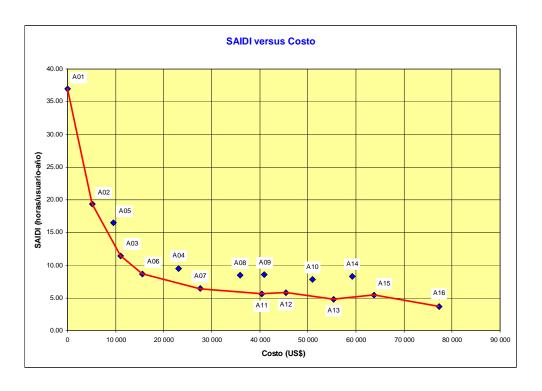

Tabla 3-12: Evaluación de la Confiabilidad – Media Densidad de Carga

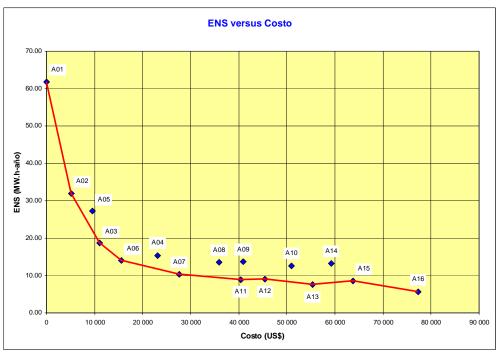
Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	ENS MW.h-año	Costo Equipamiento US\$
A01	2.98	28.48	139.38	0
A02	2.77	15.07	72.18	31 000
A03	2.77	9.33	43.84	36 000
A04	2.77	8.25	38.55	46 000
A05	2.77	13.36	63.12	35 500
A06	2.77	7.62	34.77	40 500
A07	2.77	6.55	29.49	50 500
A08	2.10	11.42	54.57	46 400
A09	2.10	8.03	37.90	51 400
A10	2.10	7.25	33.94	61 400
A11	2.10	9.72	45.51	50 900
A12	2.10	6.33	28.83	55 900
A13	2.10	5.55	24.87	65 900
A14	1.05	6.56	30.28	92 900
A15	1.05	4.86	21.21	97 400
A16	0.58	4.21	17.72	110 900

Figura 3-5: SAIFI, SAIDI y ENS versus Costo – Media Densidad de Carga

3.3.5 Baja Densidad de Carga


De los resultados de la evaluación de la confiabilidad del alimentador representativo de baja densidad de carga, se tiene un SAIFI igual a 5,18 fallas/usuario-año, un SAIDI igual a 36,96 horas/usuario-año y una ENS de 61,74 MW.h/año sin considerar la colocación de equipos de protección y seccionamiento.


Con la colocación de dichos equipos, a través de diferentes opciones, se mejora los indicadores de confiabilidad llegándose a obtener un SAIFI igual a 0,88 fallas/usuario-año, un SAIDI igual a 3,72 horas/usuario-año y una ENS de 5,65 MW.h/año para una opción con un costo de US\$ 110 900.


Tabla 3-13: Evaluación de la Confiabilidad – Baja Densidad de Carga

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	ENS MW.h-año	Costo Equipamiento US\$
A01	5.18	36.96	61.74	0
A02	4.07	19.32	31.88	5 100
A03	4.07	11.46	18.72	11 100
A04	4.07	9.47	15.40	23 100
A05	4.07	16.52	27.20	9 600
A06	4.07	8.66	14.04	15 600
A07	4.07	6.48	10.40	27 600
A08	2.01	8.45	13.54	35 900
A09	2.01	8.58	13.76	40 900
A10	2.01	7.79	12.52	50 900
A11	2.01	5.65	8.85	40 400
A12	2.01	5.78	9.08	45 400
A13	2.01	4.80	7.53	55 400
A14	1.83	8.27	13.26	59 300
A15	1.83	5.47	8.58	63 800
A16	0.88	3.72	5.65	77 300

Figura 3-6: SAIFI, SAIDI y ENS versus Costo – Baja Densidad de Carga

Hasta este punto se ha configurado la relación entre costo y confiabilidad de los alimentadores representativos, considerando los indicadores de confiabilidad SAIFI, SAIDI y ENS. Como se puede apreciar de las Figuras 3-2 a la 3-6, la relación entre SAIFI y costo no es muy sensible a las diferentes opciones de mejora de la confiabilidad, debido a que para diferentes opciones se obtiene la misma frecuencia de falla. En el caso de la relación entre SAIDI y costo, se obtiene una buena sensibilidad de las opciones de mejora de la confiabilidad, lo

cual permite la identificación de la opción óptima a través del método de compromiso/riesgo (trade off/risk).

Respecto a la relación entre ENS y costo, esta sigue la misma tendencia de la relación entre SAIDI y costo, por lo que es suficiente esta última para evaluar la opción óptima.

3.4 Resultados Trade-Off/Risk

Se considera la relación entre SAIDI y costo, que refleja una buena sensibilidad de las opciones de mejora de la confiabilidad, según se concluyó en el numeral anterior. Una vez que se selecciona la opción óptima, sus indicadores SAIFI y SAIDI asociados se constituirían en la referencia para el incentivo de la mejora de la confiabilidad. El costo de dicha opción permitiría evaluar el nivel de inversión económica requerido para la mejora de la confiabilidad de los sistemas de distribución eléctrica de alta densidad de carga del Perú.

3.4.1 Determinación del Equilibrio Óptimo

La determinación del equilibrio óptimo entre costo y confiabilidad del análisis de mejora de la confiabilidad de los sistemas de distribución eléctrica de alta densidad de carga del Perú, tomó en cuenta el método trade-off/risk descrito y los resultados de evaluación de la confiabilidad señalados en el numeral anterior.

Se establecieron las opciones, incertidumbres, escenarios y atributos para la aplicación del método señalado, determinándose las opciones óptimas para cada alimentador representativo de muy alta densidad de carga, alta densidad de carga 1, alta densidad de carga 2, media densidad de carga y baja densidad de carga.

A partir de dichas opciones óptimas se determinaron los indicadores SAIFI y SAIDI óptimos, así como el costo para alcanzar los mismos, considerando la mejora de confiabilidad basada en la colocación de equipos de protección y seccionamiento.

3.4.1.1 Opciones

Como opciones se tiene la utilización de diferentes tipos de equipos de protección y seccionamiento y de alimentaciones alternativas para la mejora de la confiabilidad. Se hace una diferenciación entre alimentadores subterráneos, aéreos y mixtos (subterráneos-aéreos), ya que la solución de mejora es distinta en cada caso por el tipo de equipo a utilizar. Las opciones consideradas se describen en el numeral 3.2.2.

3.4.1.2 Incertidumbres

En el caso de las incertidumbres, se consideran como relevantes el número de clientes y la demanda de cada alimentador representativo, ya que inciden en la determinación de los indicadores de confiabilidad SAIFI, SAIDI y ENS. En ese sentido, se toma la información de número de clientes y demanda de cada alimentador representativo de los años 2006, 2007 y 2008, a efectos de evaluar el impacto de dichas incertidumbres en las opciones de mejora de la confiabilidad.

Otra de las incertidumbres que afectan la evaluación de la confiabilidad, son las tasas de falla de los componentes de los sistemas de distribución eléctrica, ya que no se cuenta con información confiable de las mismas y su estimación es difícil. Para dichas tasas se considera un valor mínimo y un valor máximo que se indican en la Tabla 3-5.

3.4.1.3 Escenarios

Los escenarios surgen de la combinación entre las opciones consideradas y las incertidumbres señaladas. De esta forma, se tiene para cada alimentador representativo seis escenarios.

Tabla 3-14: Escenarios para la Evaluación de Costo y Confiabilidad

	MAD	AD1	AD2	MD	BD	
Escenarios	Cantidad de Opciones					Total
Información año 2006, tasas de falla valor mínimo	10	10	10	16	16	62
Información año 2006, tasas de falla valor máximo	10	10	10	16	16	62
Información año 2007, tasas de falla valor mínimo	10	10	10	16	16	62
Información año 2007, tasas de falla valor máximo	10	10	10	16	16	62
Información año 2008, tasas de falla valor mínimo	10	10	10	16	16	62
Información año 2008, tasas de falla valor máximo	10	10	10	16	16	62
Total	60	60	60	96	96	372

De acuerdo a la cantidad de opciones consideradas para cada alimentador representativo, se tiene un total de 372 evaluaciones de mejora de la confiabilidad.

3.4.1.4 Atributos

Para caracterizar cada una de las opciones en términos de costo y confiabilidad, se considera atributos relevantes. En el caso del costo, se considera el costo de equipamiento de cada opción, es decir, la inversión económica de los diferentes equipos y alimentaciones alternativas. En el caso de la confiabilidad, se considera el indicador SAIDI por las razones ya mencionadas.

3.4.2 Muy Alta Densidad de Carga

Se consideró como alimentador representativo el SI15, del centro de transformación San Isidro, del sistema de distribución eléctrica Lima Sur, que es un alimentador 100% subterráneo.

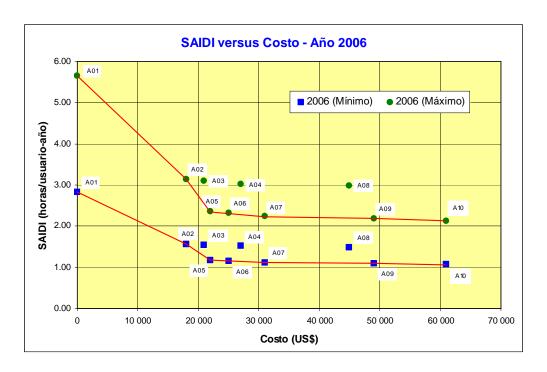
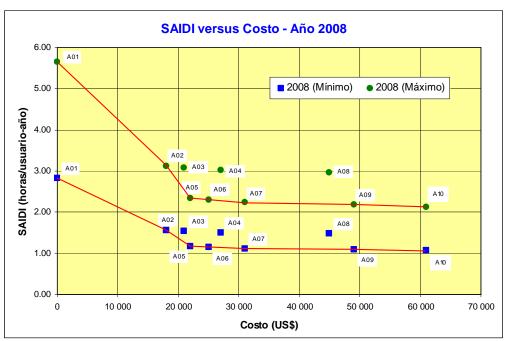



Figura 3-7: Resultados – Muy Alta Densidad de Carga

En la Figura 3-7, se muestra los resultados de los diversos escenarios de las 10 opciones de mejora de confiabilidad del alimentador representativo de muy alta densidad de carga. Como se puede concluir las opciones A02, A05 y A06 del codo de las curvas trade-off son robustas, teniendo en cuenta el número de clientes de los años 2006, 2007 y 2008, así como los valores mínimo y máximo de las tasas de falla de los componentes de los sistemas de distribución eléctrica.

El siguiente paso es determinar cual de las tres opciones robustas es la óptima, es decir, que refleja un equilibrio entre costo y confiabilidad. Para ello, se ha tomado en cuenta el indicador costo anual de la opción por unidad de energía que se evita no suministrar por la implementación de dicha opción (ver Ecuación 3-5).

Ecuación 3-5:
$$I = \frac{CAE}{EENS} = \frac{CE \times \frac{i \times (1+i)^n}{(1+i)^n - 1}}{ENS_{SF} - ENS_{CF}}$$

Donde:

I \rightarrow Costo anual de la opción por unidad de energía que se evita no suministrar CAE \rightarrow Costo anual de equipamiento de la opción que se calcula del producto entre el costo de equipamiento (CE) por el factor de recuperación de capital $(FRC = \frac{i \times (1+i)^n}{(1+i)^n-1})$, considerando una vida útil (n) de 30 años y una tasa efectiva anual (i) de 12%

EENS \rightarrow Energía que se evita no suministrar que se calcula de la diferencia entre la ENS que se obtiene sin considerar ningún equipamiento (ENS_{SE}) y la ENS que se obtiene con el equipamiento de la opción (ENS_{CE})

El indicador l representa el nivel de aprovechamiento de la inversión económica, cuanto menor sea el indicador mejor se aprovecha dicha inversión.

Tabla 3-15: Opciones Robustas - Muy Alta Densidad de Carga

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	EENS MW.h-año	Costo US\$	Costo Anual US\$	I US\$/kW.h
A02	0.25	1.56	2.73	18 000	2 235	0.82
A05	0.25	1.17	3.50	22 000	2 731	0.78
A06	0.25	1.15	3.55	25 000	3 104	0.87

De la Tabla 3-15, la opción óptima para el alimentador de muy alta densidad de carga es la A05, a partir de la cual se obtiene un SAIFI de 0.25 fallas/usuario-año y un SAIDI de 1.17 horas/usuario-año con un costo de equipamiento de US\$ 22 000 o 10 552 US\$/km. La opción A05 comprende la colocación de

seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales) y alimentaciones alternativas manuales.

3.4.3 Alta Densidad de Carga 1

Se consideró como alimentador representativo el Q18, del centro de transformación Pershing, del sistema de distribución eléctrica Lima Norte, que es un alimentador 99% subterráneo.

Figura 3-8: Resultados – Alta Densidad de Carga 1

En la Figura 3-8, se muestra los resultados de las 10 opciones de mejora de confiabilidad del alimentador representativo de alta densidad de carga 1. Como se puede concluir las opciones A05 y A06 del codo de las curvas trade-off son robustas, teniendo en cuenta los valores mínimo y máximo de las tasas de falla de los componentes de los sistemas de distribución eléctrica. Lo mismo se presenta considerando el número de clientes de los años 2006, 2007 y 2008.

La opción óptima se determina tomado en cuenta el indicador I señalado en el numeral 3.4.2.

Tabla 3-16: Opciones Robustas – Alta Densidad de Carga 1

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	EENS MW.h-año	Costo US\$	Costo Anual US\$	I US\$/kW.h
A05	0.49	2.24	8.55	56 500	7 014	0.82
A06	0.49	2.09	8.84	59 500	7 387	0.84

De la Tabla 3-16, la opción óptima para el alimentador de alta densidad de carga 1 es la A05, a partir de la cual se obtiene un SAIFI de 0.49 fallas/usuario-año y un SAIDI de 2.24 horas/usuario-año con un costo de equipamiento de US\$ 56 500 o 11 029 US\$/km. La opción A05 comprende la colocación de seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales) y alimentaciones alternativas manuales.

3.4.4 Alta Densidad de Carga 2

Se consideró como alimentador representativo el C20, del centro de transformación Limatambo, del sistema de distribución eléctrica Lima Sur, que es un alimentador 100% subterráneo.

SAIDI versus Costo - Año 2007 20.00 A01 18.00 2007 (Mínimo) 2007 (Máximo) 16.00 SAIDI (horas/usuario-año) 14.00 12.00 10.00 A03 8.00 A04 A06 6.00 A03 A05 4.00 A02 2.00 A05 A06 A07 0.00 0 20 000 40 000 60 000 80 000 100 000 120 000 Costo (US\$)

Figura 3-9: Resultados – Alta Densidad de Carga 2

En la Figura 3-9, se muestra los resultados de las 10 opciones de mejora de confiabilidad del alimentador representativo de alta densidad de carga 2. Como se puede concluir las opciones A05 y A06 del codo de las curvas trade-off son robustas, teniendo en cuenta los valores mínimo y máximo de las tasas de falla de los componentes de los sistemas de distribución eléctrica. Lo mismo se presenta considerando el número de clientes de los años 2006, 2007 y 2008.

La opción óptima se determina tomado en cuenta el indicador I señalado en el numeral 3.4.2.

Tabla 3-17: Opciones Robustas – Alta Densidad de Carga 2

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	EENS MW.h-año	Costo US\$	Costo Anual US\$	I US\$/kW.h
A05	0.58	2.84	23.44	40 000	4 966	0.21
A06	0.58	2.70	23.98	44 000	5 462	0.23

De la Tabla 3-17, la opción óptima para el alimentador de alta densidad de carga 2 es la A05, a partir de la cual se obtiene un SAIFI de 0.58 fallas/usuario-año y un SAIDI de 2.84 horas/usuario-año con un costo de equipamiento de US\$ 40 000 o 5 533 US\$/km. La opción A05 comprende la colocación de seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales) y alimentaciones alternativas manuales.

3.4.5 Media Densidad de Carga

Se consideró como alimentador representativo el CH06, del centro de transformación Chorrillos, del sistema de distribución eléctrica Lima Sur, que es un alimentador 64% subterráneo.

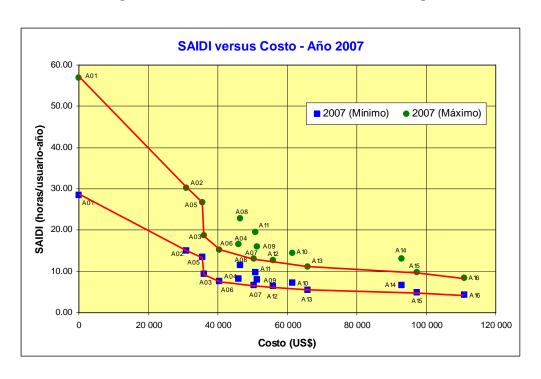


Figura 3-10: Resultados – Media Densidad de Carga

En la Figura 3-10, se muestra los resultados de las 16 opciones de mejora de confiabilidad del alimentador representativo de media densidad de carga. Como se puede concluir las opciones A03, A05 y A06 del codo de las curvas trade-off son robustas, teniendo en cuenta los valores mínimo y máximo de las tasas de falla de los componentes de los sistemas de distribución eléctrica. Lo mismo se presenta considerando el número de clientes de los años 2006, 2007 y 2008.

La opción óptima se determina tomado en cuenta el indicador I señalado en el numeral 3.4.2.

Tabla 3-18: Opciones Robustas - Media Densidad de Carga

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	EENS MW.h-año	Costo US\$	Costo Anual US\$	I US\$/kW.h
A03	2.77	9.33	95.55	36 000	4 469	0.047
A05	2.77	13.36	76.27	35 500	4 407	0.058
A06	2.77	7.62	104.61	40 500	5 028	0.048

De la Tabla 3-18, la opción óptima para el alimentador de media densidad de carga es la A03, a partir de la cual se obtiene un SAIFI de 2.77 fallas/usuario-año y un SAIDI de 9.33 horas/usuario-año con un costo de equipamiento de

US\$ 36 000 o 1 888 US\$/km. La opción A03 comprende la colocación de seccionadores bajo carga (troncal subterránea), seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y señalizadores de cortocircuito sin alimentaciones alternativas.

3.4.6 Baja Densidad de Carga

Se consideró como alimentador representativo el NA04, del centro de transformación Ñaña, del sistema de distribución eléctrica Lima Sur, que es un alimentador 97% aéreo.

Figura 3-11: Resultados - Baja Densidad de Carga

En la Figura 3-11, se muestra los resultados de las 16 opciones de mejora de confiabilidad del alimentador representativo de baja densidad de carga. Como se puede concluir las opciones A03 y A06 del codo de las curvas trade-off son robustas, teniendo en cuenta los valores mínimo y máximo de las tasas de falla de los componentes de los sistemas de distribución eléctrica. Lo mismo se presenta considerando el número de clientes de los años 2006, 2007 y 2008.

La opción óptima se determina tomado en cuenta el indicador I señalado en el numeral 3.4.2.

Tabla 3-19: Opciones Robustas - Baja Densidad de Carga

Opción	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	EENS MW.h-año	Costo US\$	Costo Anual US\$	I US\$/kW.h
A03	4.07	11.46	43.01	11 100	1 378	0.032
A06	4.07	8.66	47.70	15 600	1 937	0.041

De la Tabla 3-19, la opción óptima para el alimentador de media densidad de carga es la A03, a partir de la cual se obtiene un SAIFI de 4.07 fallas/usuario-año y un SAIDI de 11.46 horas/usuario-año con un costo de equipamiento de US\$ 11 000 o 752 US\$/km. La opción A03 comprende la colocación de seccionadores (troncal), seccionadores fusible (laterales) y señalizadores de cortocircuito sin alimentaciones alternativas.

3.5 Resumen

Los resultados obtenidos en la presente tesis están relacionados con la determinación de los indicadores SAIFI y SAIDI de los sistemas de distribución eléctrica de alta densidad de carga del Perú, que respondan a un equilibrio óptimo entre costo y confiabilidad. Dichos indicadores se constituyen en referencias para el incentivo de la mejora de la confiabilidad de los sistemas mencionados.

Para la determinación de los indicadores SAIFI y SAIDI se consideró alimentadores representativos y se tomó como mejoras diversas opciones de colocación de equipos de protección y seccionamiento y alimentaciones alternativas. Los resultados obtenidos se muestran en la Tabla 3-20.

Tabla 3-20: Indicadores de Confiabilidad por Alimentadores Representativos

Tipo	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	Costo US\$	Costo US\$/km	I US\$/kW.h
MAD	0.25	1.17	22 000	10 552	0.78
AD1	0.49	2.24	56 500	11 029	0.82
AD2	0.58	2.84	40 000	5 533	0.21
MD	2.77	9.33	36 000	1 888	0.05
BD	4.07	11.46	11 100	752	0.03

También se muestra el indicador I que representa el nivel de aprovechamiento de la inversión económica, constituyéndose en el equilibrio óptimo entre costo y confiabilidad.

A partir de los resultados mostrados en la Tabla 3-20, se determinó los indicadores SAIFI y SAIDI a nivel de los sistemas de distribución Lima Norte y Lima Sur, así como a nivel total, considerando como ponderador el número de clientes. Los resultados son los siguientes:

Tabla 3-21: Indicadores de Confiabilidad SAIFI y SAIDI – Lima Norte

Zona	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	Costo US\$/km	Clientes	km	Costo Total miles US\$
MAD	0.25	1.17	10 552	3 967	11	117
AD1	0.49	2.24	11 029	32 946	87	957
AD2	0.58	2.84	5 533	88 867	220	1 216
MD	2.77	9.33	1 888	349 244	834	1 575
BD	4.07	11.46	752	419 982	1 330	1 000
Total	3.07	9.39		895 006	2 482	4 864

Tabla 3-22: Indicadores de Confiabilidad SAIFI y SAIDI - Lima Sur

Zona	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	Costo US\$/km	Clientes	km	Costo Total miles US\$
MAD	0.25	1.17	10 552	8 567	41	429
AD1	0.49	2.24	11 029	93 778	231	2 549
AD2	0.58	2.84	5 533	176 923	422	2 333
MD	2.77	9.33	1 888	202 890	682	1 287
BD	4.07	11.46	752	291 906	1 631	1 226
Total	2.46	7.70		774 064	3 006	7 824

Tabla 3-23: Indicadores de Confiabilidad SAIFI y SAIDI - Total

Zona	SAIFI fallas/usuario- año	SAIDI horas/usuario- año	Costo US\$/km	Clientes	km	Costo Total miles US\$
MAD	0.25	1.17	10 552	12 534	52	546
AD1	0.49	2.24	11 029	126 724	318	3 506
AD2	0.58	2.84	5 533	265 790	641	3 548
MD	2.77	9.33	1 888	552 134	1 516	2 862
BD	4.07	11.46	752	711 888	2 961	2 226
Total	2.78	8.60		1 669 070	5 488	12 688

4. Conclusiones, Aportes y Recomendaciones

4.1 Conclusiones

- 4.1.1 De acuerdo a los resultados de la presente tesis, los indicadores SAIFI y SAIDI que responden a un equilibrio óptimo entre costo y confiabilidad y permitirían incentivar la mejora de la confiabilidad de los sistemas de distribución eléctrica son 2.78 fallas/usuario-año y 8.60 horas/usuario-año. La inversión económica estimada para alcanzar dichos indicadores asciende a 12 688 miles US\$.
- 4.1.2 Considerando como opción de mejora de la confiabilidad de los sistemas de distribución eléctrica de alta densidad de carga, la colocación de equipos de protección y seccionamiento, se tiene para alimentadores subterráneos que la opción óptima comprende el uso de seccionadores bajo carga en la troncal del alimentador, seccionadores bajo carga con fusible limitador en sus laterales y alimentaciones alternativas manuales. En el caso de alimentadores aéreos, la opción óptima comprende el uso de seccionadores en la troncal del alimentador, seccionadores fusible en sus laterales y señalizadores de cortocircuito sin alimentaciones alternativas. Cuando se trata de alimentadores mixtos (subterráneosaéreos), la opción óptima comprende el uso de equipos que resultan de una combinación de las opciones óptimas para alimentadores subterráneos y aéreos señaladas, sin alimentaciones alternativas.
- 4.1.3 Las opciones óptimas deben ser evaluadas teniendo en cuenta el equilibrio óptimo entre costo y confiabilidad, el cual se identifica a través del indicador ^I, denominado costo anual de la opción por unidad de energía que se evita no suministrar. Dadas las características de los sistemas de distribución eléctrica, el equilibrio óptimo se diferencia de acuerdo a la densidad de carga MAD, AD1, AD2, MD y BD. Así se tiene los siguientes valores:

Tabla 4-1: Indicador I del Equilibrio Óptimo entre Costo y Confiabilidad

Tipo	l US\$/kW.h
MAD	0.78
AD1	0.82
AD2	0.21
MD	0.05
BD	0.03

De esta forma, al evaluar opciones de mejora de la confiabilidad se deberá tener en cuenta el indicador I del equilibrio óptimo. Por ejemplo, para el tipo de densidad de carga MAD, opciones con un indicador I cercano a 0.78 US\$/kW.h serán las más apropiadas, para el tipo BD opciones alrededor de 0.03 US\$/kW.h serán las más adecuadas.

- 4.1.4 Los resultados obtenidos constituyen referencias para mejorar la confiabilidad de los sistemas de distribución eléctrica de alta densidad de carga. Desde el punto de vista de las empresas distribuidoras, se cuenta con opciones óptimas de colocación de equipos de protección y seccionamiento diferenciadas por tipo de alimentador y nivel de densidad de carga, así como un indicador para la evaluación del nivel de aprovechamiento de la inversión económica (costo anual por unidad de energía que se evita no suministrar). Desde el punto de vista del organismo supervisor, se cuenta con referencias de niveles de inversión económica para análisis tarifarios, así como con referencias de niveles de confiabilidad a efectos de fiscalizar el desempeño de los sistemas de distribución eléctrica.
- 4.1.5 Dada las características de los mercados eléctricos que sirven los sistemas de distribución eléctrica, es importante la tipificación de dichos sistemas para efectos de diversos análisis técnicos y económicos como el desarrollado en la presente tesis, lo cual permite mejorar la precisión de los resultados. En esta tarea, el análisis estadístico se constituye en una herramienta muy importante que facilita los análisis.
- 4.1.6 El modelamiento apropiado de los sistemas de distribución eléctrica, así como la selección correcta de una técnica de evaluación de la

confiabilidad permite sensibilizar los efectos de diversas opciones de mejora de la confiabilidad. Además, es importante el conocimiento del sistema en estudio, desde el punto de vista de su operación y mantenimiento.

4.2 Aportes

- 4.2.1 Se ha establecido niveles de confiabilidad SAIFI y SAIDI de referencia aplicables a los sistemas de distribución de alta densidad de carga del país, que responden a un equilibrio óptimo entre costo y confiabilidad.
- 4.2.2 Se ha establecido un indicador para la evaluación del nivel de aprovechamiento de la inversión económica (costo anual por unidad de energía que se evita no suministrar), aplicables a los sistemas de distribución de alta densidad de carga del país.
- 4.2.3 Se ha establecido una metodología de análisis de mejora de la confiabilidad para la determinación de indicadores de confiabilidad SAIFI y SAIDI óptimos, que toma en cuenta el análisis estadístico, técnicas de evaluación de la confiabilidad y un método de análisis de decisiones bajo incertidumbres. Dicha metodología representa una alternativa de análisis de mejora de la confiabilidad respecto a metodologías convencionales, donde se requiere la valoración de los niveles de confiabilidad desde el punto de vista de los clientes, de difícil estimación.

4.3 Recomendaciones

4.3.1 Dadas las limitaciones y alcances de la presente tesis, se recomienda complementar el análisis de mejora de la confiabilidad con otras opciones de mejora como la renovación de las instalaciones eléctricas y el perfeccionamiento de las actividades de operación y mantenimiento. Además, se recomienda considerar la ampliación de la cantidad de los alimentadores representativos para una mejor precisión de los resultados.

- 4.3.2 Un parámetro relevante del análisis desarrollado es el costo de las diferentes opciones de mejora de la confiabilidad, asociado principalmente al costo de los equipos de protección y seccionamiento, el cual se ha considerado constante. Dada la permanente variación de precios, se recomienda la evaluación de la incidencia del costo en los resultados obtenidos.
- 4.3.3 A efectos de completar el panorama respecto a los niveles de confiabilidad de los sistemas de distribución eléctrica del Perú, se recomienda extender el análisis de mejora de confiabilidad a sistemas de distribución eléctrica de media y baja densidad de carga.

5. Bibliografía

- [LCE92] Decreto Ley N° 25844, "Ley de Concesiones Eléctricas", Noviembre 1992.
- [RLCE93] Decreto Supremo N° 009-93-EM, "Reglamento de la Ley de Concesiones Eléctricas", Febrero 1993.
- [NTCSE97] Decreto Supremo N° 020-97-EM, "Norma Técnica de Calidad de los Servicios Eléctricos", Octubre 1997.
- [OSI02] OSINERGMIN, "Proceso de Cálculo de las Tarifas de Distribución Eléctrica, Fijación Noviembre 2001 Octubre 2005", Resolución OSINERG N° 001-2002-OS/CD, Enero 2002.
- [OSI04] OSINERGMIN, "Procedimiento para la Supervisión de la Operación de los Sistemas Eléctricos", Resolución OSINERG N° 074-2004-OS/CD, Abril 2004.
- [OSI06] OSINERGMIN, "Proceso de Cálculo de las Tarifas de Distribución Eléctrica, Fijación Noviembre 2005 – Octubre 2009", Resolución OSINERG N° 162-2006-OS/CD, Abril 2006.
- [OSI0408] OSINERGMIN, "Reportes Semestrales de la Gerencia de Fiscalización Eléctrica N° 2-2004, N° 1-2005, N° 2-2005, N° 1-2006, N° 2-2006, N° 1-2007, N° 2-2007 y N° 1-2008".
- [MEM09] Ministerio de Energía y Minas, "Criterios y Metodología para la Elaboración del Plan de Transmisión", Resolución Ministerial N° 129-2009-MEM/DM, Marzo 2009.
- [WEC64] Central Station Engineers, Westinghouse Electric Corporation, "Electrical Transmission and Distribution Reference Book", East Pittsburgh, Pennsylvania, 1964, Chapters 20 y 21.

- [BIL82] R. Billinton, R. N. Allan, "Reliability Evaluation of Engineering Systems: Concepts and Techniques", Pitman Advanced Publishing Program, London, 1982, Chapters 4, 9 y 10.
- [COC82] W. G. Cochran, "Técnicas de Muestreo", Editorial Continental, México, 1982, Capítulo 5, Páginas 169 a 174.
- [BIL84] R. Billinton, R. N. Allan, "Reliability Evaluation of Power Systems", Pitman Advanced Publishing Program, London, 1984, Chapter 7.
- [BRO02] R. E. Brown, "Electric Power Distribution Reliability", Marcel Dekker, New York, 2002, Chapters 1, 2 y 4.
- [CHO09] A. Chowdhury, D. Koval, "Power Distribution System Reliability, Practical Methods and Applications", IEEE Press Series on Power Engineering, IEEE Press, published by John Wiley & Sons, 2009.
- [ROM97] J. Román, J. Rivier, "Reliability analysis of distribution systems considering sub-unavailabilities", Proceedings of the International Conference on Safety and Reliability ESREL 1997, Vol. 2, pp. 1105-1113, Pergamon, Lisboa, 1997.
- [RIV99] J. Rivier, "Calidad del Servicio. Regulación y Optimización de Inversiones.", Tesis Doctoral, Universidad Pontificia Comillas de Madrid, Escuela Técnica Superior de Ingeniería, Junio 1999, Capítulos 4, 5 y 6.
- [CRO92-1] E. Crousillat, H. Merrill, "The Trade-off/Risk Method: A Strategic Approach to Power Planning", The World Bank, Industry and Energy Department, Working Paper Energy Series, Paper N° 54, May 1992, Chapter 2.
- [CRO92-2] E. Crousillat, P. Dörfner, P. Alvarado, H. Merrill, "Conflicting Objectives and Risk in Power System Planning", IEEE/PES 1992 Summer Meeting, Seattle, WA, July 1992.

- [MER05] Mercados Energéticos, "Supervisión del Estudio de Costos del Valor Agregado de Distribución del Sector Típico 1", Cuarto Informe, Diciembre 2005, Volumen 3, Numerales 2.2, 8.1, 8.2 y 10.6.
- [COS08] Cosanac, "Estudio de Determinación de los Sectores de Distribución Típicos", Agosto 2008.
- [IEEE91] R. Allan, R. Billinton, I. Sjarief, L. Goel, K. So, "A Reliability Test System For Educational Purposes Basic Distribution System Data and Results", IEEE Transactions on Power Systems, Vol. 6, N° 2, May 1991, pp. 813-820.
- [IEEE96] R. Billinton, S. Jonnavithula, "A Test System For Teaching Overall Power System Reliability Assessment", IEEE Transactions on Power Systems, Vol. 11, N° 4, November 1996, pp. 1670-1676.
- [IEEE04] IEEE, "IEEE Guide for Electric Power Distribution Reliability Indices", IEEE Standards 1366-2003, May 2004.
- [CIER07] Coordinación Internacional de Distribución y Comercialización, "Proyecto CIER 06, Informe de Resultados Año 2006, Sumario Ejecutivo, Indicadores de Calidad de Servicio en Empresas Distribuidoras de Energía Eléctrica", Comisión de Integración Energética Regional (CIER), Diciembre 2007.
- [ESP09] Página web (www.mityc.es) del Ministerio de Industria, Turismo y Comercio de España, Sección Energía, Subsección Energía Eléctrica (Calidad de Servicio), Diciembre 2009.

6. Anexos

6.1 Anexo N° 1: Información Técnica y Comercial de los Alimentadores

			Red	Media Tensión (k	km)	Subestacio	ones de Distribución (u	ınidad)	Subestaciones de D	istribuci	ión (kVA)	Baja Tens	ión Aérea	•	Tensión erránea	Baja Tensid Subter	•	Clien	tes al 31/12	/2007	Energía	Año 2007	(MW.h)	Demano	da Año 200	07 (kW)
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador Red Aérea	Red Subterránea	Total	Aéreas	Subterráneas	Total	Aéreas Subterrá	neas	Total	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total
				Cubicirunea								(km)	(km)	(km)	(km)	(km)	(km)	101101011	rension		101101011	Tension		101101011		
EDELNOR EDELNOR		ANCON ANCON	N01 4.464 N02 0.107	0.171 4.197	4.635 4.304		1 12	7 14	370 200	2 725	420	2.593 2.111	4.583 2.630	2.28		4.875 15.536	7.743 14.017	2	135 1 245	137 1 248		657 2 106	1 277 3 111	102 166	139 446	
EDELNOR	Lima Norte	ANCON	N04 10.191	1.206	11.397	23	·	26	2 090	2 725 285	2 925 2 375	14.560	18.355	13.42 12.03		26.594	30.006	6	2 157	2 163		3 352	4 936	262	710	
EDELNOR		ANCON	N05 1.003	1.820	2.823	5	2	7	560	380	940	6.076	6.655	11.32		17.396	16.546	0	1 297	1 297	0	1 918	1 918	0	406	
EDELNOR EDELNOR	Lima Norte Lima Norte	ANCON BARSI	N06 10.866 K01 2.229	8.061 2.923	18.927 5.152	24	6	30 25	2 580 1 570	710 510	3 290 2 080	16.332 5.405	20.289 6.852	31.172 1.64		47.504 7.046	57.295 7.886	6	2 841 1 042	2 847 1 049		3 167 4 588	4 750 25 418	262 3 441	671 972	
EDELNOR		BARSI	K01 2.229 K02 0.571	7.790	8.361	10	11	21	1 930	3 220	5 150	1.506	1.148			32.821	25.119	0	4 271	4 271	0	13 888	13 888	0	2 942	
EDELNOR	Lima Norte	BARSI	K03	4.091	4.091	0	2	2	0	650	650	0.086	1.419	1.562		1.648	1.871	3	58	61	7 393	469	7 863	1 221	99	1 321
EDELNOR EDELNOR	Lima Norte I Lima Norte I	BARSI BARSI	K07 0.987 K09 0.007	10.436 5.876	11.423 5.883	10	20	17 22	1 900 210	1 980 2 450	3 880 2 660	0.295 1.061	1.186 1.944	17.73 23.34		18.033 24.409	15.335 21.134	5	2 759 2 799	2 764 2 799		8 102 7 356	21 861 7 356	2 273	1 716 1 558	3 989 1 558
EDELNOR	Lima Norte	BARSI	K11 1.661	1.522	3.183	0	2	2	0	300	300			0.420		0.420	0.000	1	9	10	3 885	108	3 993	642	23	665
EDELNOR		BARSI	K12 1.955	5.865	7.820	20	7	27	1 145 100	1 745 740	2 890 840	5.965 0.147	6.402 1.143	17.913 7.180		23.878	22.704 7.016	4	2 622	2 626		6 770 2 564	11 467	776 210		
EDELNOR EDELNOR	Lima Norte I Lima Norte	BARSI BARSI	K13 0.006 K14 2.544	3.981 5.226	3.987 7.770	5	9	14	985	3 835	4 820	1.396	3.189	11.55		7.327 12.949	13.297	12	965 1 111	967 1 123			3 832 22 913	2 631	543 1 480	753 4 111
EDELNOR	Lima Norte	BARSI	K15 2.579	5.915	8.494	21	2	23	3 410	510	3 920	14.827	14.310	10.60	5.996	25.428	20.306	0	3 870	3 870	0	10 690	10 690	0	2 264	
EDELNOR EDELNOR	Lima Norte I	BARSI BARSI	K16 0.026	3.775 1.213	3.801 1.213	1	4	5	250	885 160	1 135 160	0.252	0.171 0.919	2.82° 0.25°		3.073 0.256	1.894 0.966	10	104	114	12 990	1 375 183	14 365 258	2 146 12		2 437
EDELNOR		BARSI	K20	1.050	1.050	0	1	1	0	220	220	0.205	0.553	0.23		0.882	1.513	3	59	62		178	3 686	580	38	
EDELNOR	Lima Norte	BARSI	K21 0.089	3.767	3.856	0	3	3	0	1 640	1 640		3.346	15.08	7 14.326	15.087	17.672	0	1 805	1 805	0	5 852	5 852	0	1 239	1 239
EDELNOR EDELNOR	Lima Norte I Lima Norte	BARSI BARSI	K23 1.817 K24 0.007	3.357 3.744	5.174 3.751	0	1 3	1 5	0 350	200 775	200 1 125	0.032 1.560	2.636	1.378 3.038		1.410 4.595	2.416 3.537	2	11 409	13 414	1 658 4 936	515 1 869	2 173 6 805	274 815		
EDELNOR	Lima Norte	CANTO GRANDE	CG02 6.850	4.479	11.329	28	1	29	3 310	160	3 470	17.620	18.036	21.23	18.362	38.856	36.398	3	4 750	4 753	1 459	7 220	8 679	241	1 529	1 770
EDELNOR	Lima Norte	CANTO GRANDE	CG03 11.721	7.379	19.100	45	18	63	5 395	3 390	8 785	26.125	26.684	60.142		86.267	72.100	3	8 699	8 702	5 870	20 647	26 517	970		5 343
EDELNOR EDELNOR	Lima Norte (Lima Norte (CANTO GRANDE CANTO GRANDE	CG04 13.861 CG05 9.336	7.991 6.684	21.852 16.020	58 58	4	62 64	6 160 7 845	905	7 065 9 255	49.311 18.326	55.786 19.494	38.572 36.732	2 27.980 2 27.528	87.883 55.058	83.766 47.022	1 14	10 428 4 617	10 429 4 631	2 246 18 233	17 178 18 747	19 424 36 979	371 3 012		4 010 6 983
EDELNOR	Lima Norte	CANTO GRANDE	CG06 14.580	6.531	21.111	49	-	54	6 325	1 060	7 385	21.787	22.527	50.56		72.349	60.432	6	6 549	6 555	2 189	15 083	17 272	362	3 195	3 557
EDELNOR	Lima Norte	CANTO GRANDE	CG08 5.588	8.072	13.660	7	20	27	1 360	4 175	5 535	0.827	4.155	51.44		52.275	45.162	1	4 945	4 946	602	16 272	16 874	99		3 546
EDELNOR EDELNOR	Lima Norte (CANTO GRANDE CANTO GRANDE	CG09 13.471 CG10 9.081	7.587 8.943	21.058 18.024	46		52 66	6 395 6 789	1 045 775	7 440 7 564	15.881 55.630	15.132 59.905	60.793 32.85	2 46.290 7 24.415	76.673 88.487	61.422 84.320	0	7 070 10 789	7 073 10 789	1 661	17 019 17 340	18 679 17 340	274	3 605 3 673	3 879 3 673
EDELNOR	Lima Norte	CANTO GRANDE	CG11 8.129	12.611	20.740	52	27	79	3 280	3 995	7 275	17.227	18.286	62.68	1 47.701	79.908	65.987	1	8 220	8 221	12	17 288	17 300	2	3 662	3 664
EDELNOR	Lima Norte	CANTO GRANDE	CG12 4.930	10.043	14.973	8	19	27 70	1 320	3 500 4 490	4 820	1.714	3.025	45.34		47.061	34.116	3	4 509	4 512		14 879	19 643	787		3 939
EDELNOR EDELNOR	Lima Norte (CAUDIVILLA CAUDIVILLA	CV01 6.341 CV02 8.823	19.829 6.739	26.170 15.562	22 15	48	32	1 340 1 251	2 045	5 830 3 296	8.410 5.591	12.047 7.814	75.85 36.98		84.267 42.577	69.629 34.884	4	6 970 3 855	6 972 3 859		14 917 9 547	16 528 11 928	266 393	3 160 2 022	3 426 2 416
EDELNOR	Lima Norte	CAUDIVILLA	CV03 13.723	7.453	21.176	55		65	6 190	2 995	9 185	45.807	49.639	63.93	5 54.062	109.742	103.701	3	9 118	9 121	906	17 225	18 131	150	3 649	3 798
EDELNOR EDELNOR	Lima Norte (CAUDIVILLA CAUDIVILLA	CV04 11.631 CV05 15.915	11.195 11.123	22.826 27.038	34 62		67 84	2 065 4 460	3 350 2 385	5 415 6 845	24.129 38.578	25.068 45.451	68.208 77.64		92.337 116.225	73.204 99.648	1 1	7 618 9 706	7 619 9 707	264		12 358 17 249	44 350		2 605 3 555
EDELNOR	Lima Norte	CAUDIVILLA	CV06 17.069	4.406	21.475	61		68	6 101	975	7 076	26.438	34.674	50.809		77.247	72.803	4	6 473	6 477			18 947	596	3 249	
EDELNOR	Lima Norte	CAUDIVILLA	CV07 9.424	8.529	17.953	31		50	2 695	1 865	4 560	24.811	26.913	52.21		77.030	64.920	0	6 171	6 171	0	10 910	10 910	0	2 311	2 311
EDELNOR EDELNOR	Lima Norte	CAUDIVILLA CAUDIVILLA	CV08 15.411 CV09 9.998	4.292 11.114	19.703 21.112	43 26	-	49 45	3 715 2 590	400 4 010	4 115 6 600	39.861 10.509	40.559 14.569	15.20 67.82		55.067 78.330	53.457 68.090	0	3 916 7 279	3 916 7 285		5 523 17 351	5 526 20 693	552	1 170 3 675	1 170 4 227
EDELNOR	Lima Norte	CHAVARRIA	CH01 4.669	7.075	11.744		10	17	1 120	1 690	2 810	0.168	3.802	27.42		27.595	26.097	0	2 977	2 977		9 240	9 240	0	1 957	
EDELNOR	Lima Norte	CHAVARRIA	CH02 CH03	3.082 0.795	3.082 0.795	0	5	5	0	2 980	2 980	0.245		5.080		5.080	0.000	9	84	93	12 982	3 791	16 774	2 145	803	2 948
EDELNOR EDELNOR	Lima Norte	CHAVARRIA CHAVARRIA	CH03 1.693	0.795	2.368	0	0	0	0	50 0	0	0.315		0.323)	0.638 0.000	0.000	0	1	<u></u> 1	0	7		0		1
EDELNOR	Lima Norte	CHAVARRIA	CH05 12.450	5.410	17.860	61	4	65	6 260	1 670	7 930	42.388	43.978			75.810	71.017	0	6 898	6 898		17 953	17 953	0	3 803	
EDELNOR EDELNOR	Lima Norte (CHAVARRIA CHAVARRIA	CH07 CH08	6.089 2.000	6.089 2.000	0	1 2	1	0	275 100	275 100	0.176		0.423	3	0.599 0.000	0.000	4	1	5	5 388 9 159	0	5 388 9 159	890 1 513	0	890 1 513
EDELNOR	Lima Norte	CHAVARRIA	CH10 0.992	7.160	8.152	11	16	27	1 980	3 220	5 200	1.882	3.080	26.29	1 18.535	28.173	21.615	13	2 472	2 485		9 381	16 163	1 120	1 987	3 108
EDELNOR	Lima Norte	CHAVARRIA	CH11 16.054	4.972	21.026	69		73	7 415	945	8 360	34.485	36.144	87.80	67.719	122.286	103.863	0	10 703	10 703	0	22 268	22 268	0	4 717	4 717
EDELNOR EDELNOR	Lima Norte (CHAVARRIA CHAVARRIA	CH12 1.093 CH13 1.959	16.630 2.762	17.723 4.721	21	33	54 11	3 120 1 770	4 055 980	7 175 2 750	5.372 5.623	8.118 6.023	56.93 4.21	39.893 3 2.692	62.307 9.841	48.011 8.715	5	6 055 786	6 059 791	9 447 2 356	18 640 3 787	28 087 6 142	1 561 389	3 948 802	5 509 1 191
EDELNOR	Lima Norte	CHAVARRIA	CH14 2.797	2.638	5.435	4	5	9	650	1 410	2 060	0.986	1.013	11.47		12.456	5.663	4	999	1 003	9 526	5 510	15 036	1 574	1 167	2 741
	Lima Norte		CH15 1.639 CH16 2.968	6.828	8.467 8.183	12	8	20 21	2 130 1 950	2 175 1 970	4 305	2.559 1.762	3.307 2.571			42.522 36.042	35.492 26.980	1	4 387 3 747			15 031		332	3 184 2 888	
EDELNOR	Lima Norte		CH16 2.968 CH17 2.649		9.791		8	17	1 770	2 300	3 920 4 070	0.531	1.862	34.280 17.250		17.781	14.801	11	1 457	1 468				315 1 521		
EDELNOR	Lima Norte	CHAVARRIA	CH18 3.859	11.022	14.881	20		32	1 945	3 210	5 155	10.162	15.544	51.20	1 38.175	61.363	53.719	5	5 580	5 585	5 917	14 199	20 116	978	3 008	3 985
	Lima Norte (CH20 2.640 CH21 2.115		9.094 12.033	17		19 27	1 495 3 310	2 755 3 125	4 250 6 435	2.234 1.246	5.710 3.021			24.511 57.811	20.102 46.570	4	2 213 6 397	2 217 6 400				1 392 300		
	Lima Norte		CH22 2.113 CH22 6.754		13.341			20	2 305	2 430	4 735	5.301	7.311			36.827	35.088	4	4 366	4 370			29 507	2 738		
	Lima Norte		CH23 2.030		6.142			12	1 605	825	2 430	2.968	5.550			28.376	25.937	3	3 082	3 085			10 556	462		
	Lima Norte I		CH24 1.050 ID02 0.681		8.659 1.093		20	32	1 250 0	2 880 650	4 130 650	5.063	6.556 0.158			43.007 1.373	35.564 1.340		4 087	4 088 25				101 794		
EDELNOR	Lima Norte	INDUSTRIAL	ID03 1.390	2.413	3.803	4		8	970	935	1 905	0.088	0.770	4.078	1.399	4.166	2.169		294	299	2 599	2 902	5 501	429	615	1 044
	Lima Norte I		ID04 1.030 ID05		2.596 1.228		2	4	650	350 275	1 000 275	0.108	0.611 0.286			2.602 1.162	1.370 0.934	12	145 72					2 905 296		
	Lima Norte		ID05 0.221	1.228 8.489	8.710		20	25	860	3 845	4 705	0.108	3.409			32.159		9	4 097					1 414		
EDELNOR	Lima Norte	INDUSTRIAL	ID08 0.338	3.234	3.572	1	1	2	160	220	380		1.958	0.77	0.243	0.772	2.201	7	7	14	13 646	86	13 733	2 255	18	2 273
	Lima Norte I Lima Norte I		ID09 I02 2.604	0.808 9.079	0.808 11.683		1 16	1 32	0 2 510	275 3 190	275 5 700	4.349	0.669 6.487			0.492 36.031	1.126 32.862	3	6 3 259	3 264	11 082 8 205		11 423 21 206	1 831 1 356		
	Lima Norte		103 7.524		11.662			37	4 220	935	5 155	7.506	7.484			48.547	34.290	4	3 572	3 576			10 346	211		
	Lima Norte		104 15.807		23.817		7	74		1 470	9 945	22.924	22.633			54.790	44.539	15	2 648					1 668		
	Lima Norte I		105 0.906 107 3.935		5.737 9.126		9 8	12 15	245 830	1 505 1 895	1 750 2 725	0.213 1.065	0.583 2.431			18.157 23.408	17.072 24.368	3	1 666 3 435	1 669 3 436			16 993 10 867	2 051 145		
	Lima Norte		I11 13.264		15.414	40		42	6 120	800	6 920	13.851	15.601	73.43		87.286	72.585		10 023	10 023		14 963		0	3 169	
EDELNOR	Lima Norte	INFANTAS	112 2.380	3.172	5.552	1	8	9	100	1 480	1 580	0.414	1.249	14.41	7 13.985	14.831	15.234	3	1 869	1 872	10 733	7 541	18 274	1 773	1 597	3 371

			Red	Media Tensión (k	m)	Subestacio	ones de Distribució	n (unidad)	Subestaci	iones de Distribu	ción (kVA)	Baja Tens	sión Aérea	Subte	Γensión erránea	Subte	ón (Aérea + rránea)	Client	tes al 31/12	/2007	Energía	Año 2007	(MW.h)	Demano	da Año 200	07 (kW)
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador Red Aérea	Red Subterránea	Total	Aéreas	Subterráneas	Total	Aéreas	Subterráneas	Total	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total
EDELNOR	Lima Norte	INFANTAS	113 3.068	11.972	15.040	10	27	37	1 520	3 840	5 360	(km) 7.518	(km) 8.979	(km) 53.509	(km) 41.115	(km) 61.027	(km) 50.094	1	6 127	6 128	1 300	15 436	16 737	215	3 270	3 484
EDELNOR	Lima Norte	INFANTAS	114 3.589	7.335	10.924	8	20	28	1 145	3 055	4 200	2.737	5.323	43.591	25.772	46.328		2	4 443	4 445	1 801	10 343	12 144	297	2 191	
EDELNOR EDELNOR	Lima Norte I	INFANTAS INFANTAS	I15 7.359 I16 3.272	7.977 4.385	15.336 7.657	14 5	20	34 13	1 310 770	2 820 2 020	4 130 2 790	5.823 0.432	7.363 3.123	65.889 28.547	43.777	71.712 28.979	51.140 24.977		5 208 2 455	5 208 2 455	5	10 568 8 928	10 568 8 928	3	2 238 1 891	2 238 1 891
EDELNOR	Lima Norte	INFANTAS	117 16.838	13.060	29.898	65	11	76	8 030	2 085	10 115	26.112	32.852	83.913	65.421	110.025	98.273	3	7 901	7 904		15 878	19 285	563		3 926
EDELNOR EDELNOR	Lima Norte	INFANTAS INFANTAS	I18 20.913 I19 2.435	5.311 10.803	26.224 13.238	77	6 26	83 35	7 025 1 330	1 045 4 830	8 070 6 160	46.206 7.457	46.598 8.933	69.245 48.789	53.720 39.113	115.451 56.246	100.318 48.046	6	10 062 6 053	10 068 6 054		18 893 19 415	26 202 19 875	1 208	4 002 4 112	5 209 4 188
EDELNOR	Lima Norte Lima Norte	JICAMARCA	J03 15.934	0.273	16.207	34		33		4 630	4 030	7.457	16.352	0.371	0.111	8.042		5	418	423		1 958	2 582	103		
EDELNOR	Lima Norte	JICAMARCA	J05 11.635	5.065	16.700	54		55	5 505	10	5 515	20.556	23.755	67.600		88.156	74.804		8 743	8 743		11 281	11 281		2 390	
EDELNOR EDELNOR	Lima Norte Lima Norte	JICAMARCA JICAMARCA	J06 18.335 J07 14.901	6.365 6.948	24.700 21.849	77 83		78 85	8 740 7 049	10 410	8 750 7 459	50.559 24.904	49.783 27.636	77.677 78.490	56.071 58.794	128.236 103.394	105.854 86.430	1 3	14 022 11 459	14 023 11 462		16 087 18 724	16 504 21 306	69 427		
EDELNOR	Lima Norte	MARANGA	MA01	5.613	5.613	00	7	7	7 040	3 175	3 175	0.663	3.608	14.885	13.810	15.548		2	1 910	1 912		6 066	17 883	1 952		
EDELNOR	Lima Norte	MARANGA	MA03 0.471	11.012	11.483	10	13	23	2 225	3 955	6 180	1.998	3.134	50.944		52.942		1	5 781	5 782		19 953	20 482	88	4 226	
EDELNOR EDELNOR	Lima Norte I	MARANGA MARANGA	MA04 MA05 2.147	4.302 1.771	4.302 3.918	4	2	7	850	525 2 160	525 3 010	0.101 0.262	1.451 0.150	2.365 4.580	3.332	2.466 4.842		5	140 432	144 437		911 4 976	7 143 11 649	1 030	193 1 054	
EDELNOR	Lima Norte	MARANGA	MA06 1.625	5.679	7.304	9	12	21	2 540	4 190	6 730	0.466	2.046	21.396	14.137	21.862	16.183	3	2 481	2 484	2 703	9 885	12 589	447	2 094	2 540
EDELNOR	Lima Norte	MARANGA	MA08 2.852	7.418	10.270	7	10	17	1 570	4 460	6 030	2.210	2.490		24.745	38.521	27.235	1	4 699	4 700		15 611	16 161	91	3 307	
EDELNOR EDELNOR	Lima Norte I Lima Norte I	MARANGA MARANGA	MA09 0.370 MA10 2.641	4.683 6.860	5.053 9.501	2	16	18	1 350 350	1 790 4 415	3 140 4 765	1.613 0.771	2.930 0.825	13.523 39.306		15.136 40.077	9.528 32.349	1	1 659 4 806	1 663 4 807		8 378 15 069	11 080 17 026	446 323		
EDELNOR	Lima Norte	MARANGA	MA11 0.687	3.989	4.676	3	5	8	660	2 160	2 820	0.351	1.051	23.650	22.499	24.001	23.550		2 626	2 626	6	8 945	8 945	i	1 895	1 895
EDELNOR EDELNOR	Lima Norte I	MARANGA MARANGA	MA12 1.141 MA13	5.953 3.857	7.094 3.857	6	6	12	1 030	3 540 160	4 570 160	0.084	1.185	42.777 0.414		42.861 0.414	32.483	3	4 247 52	4 250		15 273 363	18 369 9 953	511	3 235 77	
EDELNOR	Lima Norte	MARANGA	MA16 0.255	2.510	2.765		3	3		1 950	1 950	0.043	0.218			14.671	14.463	2	1 202	1 204		5 268	9 367	677		1 793
EDELNOR	Lima Norte	MIRONES	M01 0.128	4.646	4.774	4	5	9	800	1 600	2 400	0.012	0.315	8.769		8.781	5.828	6	635	641		5 361	14 111	1 446		2 581
EDELNOR EDELNOR	Lima Norte I	MIRONES MIRONES	M02 0.822 M03 0.477	9.009 1.779	9.831 2.256	14	15	29 6	3 110 850	6 160 750	9 270 1 600	3.765 0.135	1.655 0.175	27.734 4.892	17.255 2 2.024	31.499 5.027	18.910 2.199	5	6 847 323	6 852 329		17 591 3 437	20 090 13 412	413	3 726 728	
EDELNOR	Lima Norte	MIRONES	M04 0.685	3.096	3.781	4	5	9	1 000	1 320	2 320	1.156	3.028	5.846		7.002		7	510	517		5 137	13 111	1 317	1 088	
EDELNOR	Lima Norte	MIRONES	M05 0.730	7.452	8.182	3	7	10	960	3 240	4 200	6.004	4.450			20.833	14.937	5	3 267	3 272		9 444	13 765	714		
EDELNOR EDELNOR	Lima Norte I Lima Norte I	MIRONES MIRONES	M06 0.494 M07 1.495	5.657 3.250	6.151 4.745	1	13	13 5	400	2 970 2 010	2 970 2 410	1.739	1.548 0.141	10.944 2.634		12.683 2.634	11.209 0.558	12	1 570 51	1 582 59	8 509 10 880	5 348 3 789	13 857 14 669	1 406	1 133 803	
EDELNOR	Lima Norte	MIRONES	M08 0.027	1.064	1.091		2	2		550	550		0.794	2.055	2.063	2.055	2.857	3	13	16	3 243	447	3 690	536	95	
EDELNOR	Lima Norte	MIRONES	M09 0.809	4.797	5.606	8	6	14	1 730	3 340	5 070	0.272	0.851	20.025		20.297	15.349	5	1 559	1 564		8 308	19 083	1 780	1 760	
EDELNOR EDELNOR	Lima Norte I Lima Norte I	MIRONES MIRONES	M11 0.516 M12 2.768	8.389 9.617	8.905 12.385	25	13	13 38	1 720 2 910	2 625 2 520	4 345 5 430	0.464 11.613	1.312 11.211	21.566 33.057	10.105	22.030 44.670	11.417 34.250	5	2 511 5 488	2 513 5 493	2 525 3 7 523	10 241 15 411	12 765 22 934	417 1 243		2 586 4 507
EDELNOR	Lima Norte	MIRONES	M13 0.346	2.458	2.804	1	2	3	250	1 180	1 430	1.238	0.380	7.683	6.132	8.921	6.512		1 155	1 155	5	3 744	3 744		793	793
EDELNOR EDELNOR	Lima Norte I Lima Norte I	MIRONES MIRONES	M14 0.724 M15 0.402	6.199 6.613	6.923 7.015	13	6	13 21	1 330 1 590	2 510 1 940	3 840 3 530	1.906 1.911	5.078 1.784	27.011 23.447	14.514 6.037	28.917 25.358	19.592 7.821	4	3 687 3 536	3 691 3 536		9 958 9 779	13 901 9 779	652	2 109 2 071	2 761
EDELNOR	Lima Norte	MIRONES	M16 0.402	0.992	2.567	13	2	3	400	1 260	1 660	0.060	0.728	3.138		3.198		3	45	48		3 249	11 737	1 402	688	
EDELNOR	Lima Norte	MIRONES	M17	3.183	3.183		2	2		945	945	0.038	0.171	2.267	0.305	2.305	0.476	3	223	226		768	2 330	258	163	
EDELNOR EDELNOR	Lima Norte I Lima Norte I	MIRONES MIRONES	M18 0.218	1.792 4.101	1.792 4.319	2	5	7	350	2 240	2 590	0.156	0.521	10.740	7.974	10.896	8.495	2 8	1 164	1 172	2 347 2 8 243	264 7 497	2 611 15 740	388 1 362	56 1 588	1 777
EDELNOR	Lima Norte	MIRONES	M20	2.612	2.612		2	2	000	150	150	0.100	0.520	0.164		0.164		2	5	7	2 352	33	2 385	389	7	396
EDELNOR	Lima Norte	MIRONES	M21	5.637	5.637	2	7	9	320	2 800	3 120	0.316	2.222		20.404	26.237	22.626		3 354	3 354		9 555	9 555	005	2 024	
EDELNOR EDELNOR	Lima Norte I	MIRONES MIRONES	M22 M23 0.037	1.862 4.386	1.862 4.423	1	1 6	1 7	160	350 2 650	350 2 810	0.387 0.952	1.013 1.952	1.610 9.156	0.061	1.997 10.108	1.074	4	1 493	1 497	5 416 2 585	833 4 167	6 249 6 752	895 427	176 883	
EDELNOR	Lima Norte	MIRONES	M24 1.063	0.764	1.827		1	1		630	630		0.406	3.556	7.430	3.556	7.836		463	463	3	1 086	1 086	6	230	230
EDELNOR EDELNOR	Lima Norte I Lima Norte I	MIRONES MIRONES	M25 0.113 M26 2.374	5.091 10.340	5.204 12.714	5 17	3	30	1 780 2 865	1 560 4 290	3 340 7 155	1.170 3.538	3.450 8.698	8.313 60.125		9.483 63.663		1	1 227 7 351	1 227 7 352		5 283 22 052	5 283 22 120	11	1 119 4 671	1 119 4 682
EDELNOR	Lima Norte	MIRONES	M29 1.168	1.804	2.972	3	6	9	750	1 660	2 410	0.912	2.015	2.914		3.826	4.519	7	325	332		4 212	17 803	2 245	892	
EDELNOR	Lima Norte	NARANJAL	NJ01 13.101	8.516	21.617	95	9	104	7 420	2 030	9 450	26.483	26.006	54.856	42.873	81.339	68.879	2	6 996	6 998	1 003	18 549	19 552	166	3 929	4 095
EDELNOR EDELNOR	Lima Norte I Lima Norte I	NARANJAL NARANJAL	NJ02 0.761 NJ03 1.894	0.859 4.040	1.620 5.934	12	1 8	1 20	1 980	100 2 045	100 4 025	3.734	0.339 8.281	1.055 18.657	0.815 14.094	1.055 22.391	1.154 22.375		1 658	1 658	1	41 5 179	41 5 179		9 1 097	1 097
EDELNOR	Lima Norte	NARANJAL	NJ04 3.376	13.965	17.341	24	26	50		5 445	7 670	9.419	13.203	73.912	50.359	83.331	63.562	1	7 863	7 864	106	20 194	20 300	18	4 277	4 295
	Lima Norte		NJ05 0.921	8.716	9.637	8	17	25		2 850	4 700	0.250	0.593			18.944		9	1 740	_				2 742		
	Lima Norte I Lima Norte I		NJ07 20.611 NJ10 3.472	7.334 12.909	27.945 16.381	109 28		118 46		1 830 2 495	9 895 5 525	70.847 16.710	73.457 20.941			110.708 77.958			10 081 7 239	10 081 7 239		20 029 15 159	20 029 15 159		4 242 3 211	
EDELNOR	Lima Norte I	NARANJAL	NJ11 4.520	3.796	8.316	14	8	22	1 840	1 935	3 775	0.669	3.755	21.018	23.120	21.687	26.875	3	1 306	1 309	9 082	6 977	16 059	1 501	1 478	2 978
	Lima Norte I		NJ12 2.715 O01 0.280	3.633 0.056	6.348 0.336	13	7	20	2 105	2 070 100	4 175 100	0.491	2.232	17.774 0.357		18.265 0.357		6	1 789	1 795	8 176 3 558	11 211				3 725 589
EDELNOR	Lima Norte		O01 0.280 O03 5.127	12.382	17.509	21	5	26	2 720	1 045		27.093	27.645			31.521		12	3 169	3 181		Ü				
EDELNOR	Lima Norte	OQUENDO	O04	4.028	4.028		1	1		160	160			0.022	2	0.022			4	4	1	54	54		11	11
EDELNOR EDELNOR	Lima Norte		005 3.573 006 7.721	4.191 1.290	7.764 9.011	20	1	21 7	1 890 800	350 350	2 240 1 150	13.116 0.381	12.798 0.213	4.928 4.768		18.044 5.149		6	1 278 207			2 899 808	9 769 4 706	1 135		
EDELNOR	Lima Norte		O07 0.013	5.474	5.487		6	6	300	1 545	1 545	0.060	0.552		_	3.176		4	52							
	Lima Norte		009 10.653	4.962	15.615	49		52		640	4 230	23.263	23.534			42.948		. 5	4 407					444		
	Lima Norte I		O10 9.836 PA02 0.371	10.591 1.442	20.427 1.813	45	3	48	5 590	420 1 120	6 010 1 120	43.467	45.775 0.186		_	50.972 10.452			5 061 1 132							
	Lima Norte		PA03 1.438	4.179	5.617	4	8	12	610	2 640	3 250	5.611	5.148			21.633		<u> </u>	3 229	3 229		9 626	9 626		2 039	
	Lima Norte		PA05 1.047		6.340	3	11	14		4 040	4 790	5.115	5.930			34.201		1	5 171				15 169			
	Lima Norte I Lima Norte I		PA06 2.291 PA07 1.771	7.331 7.262	9.622 9.033	10 7	11	21 22		5 960 5 280	8 220 6 735	4.496 2.873	5.451 2.234			38.587 39.002		<u>6</u> ३	6 009 5 882	6 015 5 885			23 858 24 130			
	Lima Norte		PA09 2.864	2.609	5.473	1	6	7		2 355	2 605	0.274	0.671	19.969	_	20.243		5	2 976							4 189
	Lima Norte		PA10 2.183		6.654	8	10			3 870	5 750	2.672	2.986			21.547			4 262							
	Lima Norte I Lima Norte I		PA11 2.883 PA12 0.976	4.348 5.933	7.231 6.909	10		18 12		2 990 3 355	4 405 4 325	6.788 1.507	8.974 1.434			25.139 39.880			3 674 4 978				12 709 15 211	244	2 379 3 222	
			0.970	0.000	3.555			12	5,0	0 000	- 020	1.007	110-	. 00.070		. 00.000	20.042			+ 570	1		.5211		<u> </u>	~

			Red	Media Tensión (k	m)	Subestacio	ones de Distribución ((unidad)	Subestacion	nes de Distribuc	ción (kVA)	Baja Tens	ión Aérea		Tensión erránea	Baja Tensid Subter	•	Client	es al 31/12	/2007	Energía	Año 2007 ((MW.h)	Demand	da Año 200	07 (kW)
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador Red Aérea	Red Subterránea	Total	Aéreas	Subterráneas	Total	Aéreas S	Subterráneas	Total	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total
												(km)	(km)	(km)	(km)	(km)	(km)									
EDELNOR EDELNOR	Lima Norte F Lima Norte F	PANDO PANDO	PA13 1.192 PA14 0.541	4.816 2.625	6.008 3.166	9	8	17	2 130 250	2 390 2 520	4 520 2 770	1.801 0.258	0.720 1.155	15.214 6.555	7.589 3.456	17.015 6.813	8.309 4.611	6	2 525 309	2 531 314	12 024 8 833	8 754 3 397	20 779 12 231	1 987 1 459	1 854 720	
EDELNOR		PANDO	PA14 0.541	4.560	4.560	'	· '	0	250	2 320	2110	0.236	1.100	0.555	3.430	0.013	4.011	4	819	823		5 089	6 419	220		1 298
EDELNOR	Lima Norte	PERSHING	Q02 0.056	6.003	6.059	7	6	13	2 350	2 565	4 915	1.094	2.057	16.427	7.770	17.521	9.827	4	3 607	3 611	4 898	13 020	17 917	809	2 758	3 567
EDELNOR EDELNOR	Lima Norte F	PERSHING PERSHING	Q03 0.500 Q04 0.851	4.226 5.339	4.726 6.190	6	9	15 19	1 530 1 100	4 880 5 990	6 410 7 090	7.194 3.830	7.334 3.195	23.087 23.856	13.183 8.274	30.281 27.686	20.517 11.469	3	5 859 2 475	5 862 2 479	2 493 3 475	17 980 18 175	20 473 21 649	412 574		4 220 4 424
EDELNOR		PERSHING	Q04 0.851 Q06 1.051	8.162	9.213	10	13	23	2 850	5 510	8 360	8.195	8.543	29.998		38.193	22.127	-	7 011	7 011	3413	21 149	21 149	374	4 480	4 480
EDELNOR	Lima Norte	PERSHING	Q07 0.007	4.015	4.022	4	5	9	760	3 010	3 770	4.847	5.468	20.419	12.894	25.266	18.362		3 231	3 231		11 119	11 119		2 355	2 355
EDELNOR EDELNOR	Lima Norte F Lima Norte F	PERSHING PERSHING	Q08 1.569 Q11 0.013	7.383 4.776	8.952 4.789	5	16	21	1 230 600	5 595 1 660	6 825 2 260	3.686 0.808	7.759 1.576	26.327 13.135	19.409 5.283	30.013 13.943	27.168 6.859	2	2 794 1 908	2 796 1 912		16 897 7 087	18 180 14 120	212 1 162		3 791 2 663
EDELNOR	Lima Norte	PERSHING	Q12	7.273	7.273	1	18	19	100	7 670	7 770	1.279	3.618			23.021	21.796	2	2 865	2 867	910		18 050	150		3 781
EDELNOR		PERSHING	Q13 0.687	6.334	7.021	9	7	16	1 980	2 720	4 700	5.612	8.490			26.068	17.755	1	4 631	4 632	224		14 749	37		
EDELNOR EDELNOR	Lima Norte F	PERSHING PERSHING	Q14 1.295 Q15 0.172	10.180 6.307	11.475 6.479	10	17 13	24	1 550 2 470	5 720 6 160	7 270 8 630	4.745 1.413	4.889 2.240	37.559 21.713	20.566	42.304 23.126	25.455 16.112	3	7 074 3 153	7 075 3 156	3 226	19 562 15 456	19 566 18 682	533	4 144 3 274	
EDELNOR	Lima Norte F	PERSHING	Q16 1.083	5.387	6.470	8	5	13	2 800	2 620	5 420	5.138	8.384		8.084	25.774	16.468	2	3 271	3 273			13 735	246		
EDELNOR		PERSHING	Q17 1.914	6.352	8.266	5	7	12	1 310	3 415	4 725	3.162	5.154			32.332	20.562	1	3 487	3 488	_	10 231	10 240	1 000	2 167	
EDELNOR EDELNOR	Lima Norte F Lima Norte F	PERSHING PERSHING	Q18 0.066 Q20 0.626	5.071 7.324	5.137 7.950	5	8	12	1 320 1 300	1 770 3 000	3 090 4 300	1.561 0.341	1.660 1.813	16.770 25.856	8.761 17.700	18.331 26.197	10.421 19.513	6	3 818 174	3 824 174		13 939 525	21 603 525	1 266	2 952 111	4 219
EDELNOR	Lima Norte F	PUENTE PIEDRA	PP02 26.197	6.228	32.425	76		79	5 687	480	6 167	57.073	56.320	8.846	8.386	65.919	64.706	7	5 046	5 053	4 414	6 679	11 093	729	1 415	2 144
EDELNOR EDELNOR		PUENTE PIEDRA	PP04 31.334 PP05 6.152	4.722 4.508	36.056 10.660	129 15		133 24	8 765 1 780	580 1 215	9 345 2 995	80.904 5.220	78.479 7.960	22.769 14.102	16.235 8.854	103.673 19.322	94.714 16.814	8	7 665	7 673 901	5 298 14 671	17 414	22 712 18 806	875 2 424	3 689	4 564 3 300
EDELNOR		PUENTE PIEDRA PUENTE PIEDRA	PP05 6.152 PP06 12.899	8.357	21.256	88		93	4 195	1 215	2 995 5 485	57.742	56.873	21.001	14.030	78.743	70.903	1	881 6 879	6 880	4 875	4 135 12 079	16 955	805	876 2 559	3 364
EDELNOR	Lima Norte F	PUENTE PIEDRA	PP10 10.157	3.086	13.243	27	3	30	1 740	310	2 050	11.123	9.836	6.188	4.275	17.311	14.111	8	837	845		2 650	3 230	96		657
EDELNOR EDELNOR	Lima Norte S	SANTA ROSA SANTA ROSA	P01 3.414 P06 2.132	6.227 5.466	9.641 7.598	15	4	19	2 730 570	2 050 800	4 780 1 370	3.333 0.603	3.676 1.306	18.441 3.015	12.392 1.422	21.774 3.618	16.068 2.728	12	2 126 220	2 134 232		10 079 2 621	26 282 25 891	2 677 3 845	2 135 555	4 812 4 400
EDELNOR	Lima Norte	SANTA ROSA	P07 3.659	4.796	8.455	10	4	14	1 240	1 150	2 390	1.523	2.875	15.414		16.937	10.899	6	1 581	1 587	6 448	6 403	12 851	1 065	1 356	
EDELNOR	Lima Norte	SANTA ROSA	P13 3.555	9.323	12.878	24	11	35	3 065	2 655	5 720	5.449	11.529	55.522		60.971	54.562	3	6 420	6 423	1 315	16 109	17 424	217		3 629
EDELNOR EDELNOR	Lima Norte S	SANTA ROSA SANTA ROSA	P14 0.862 P15	5.059 3.514	5.921 3.514	2	6	8	320	3 410 1 700	3 730 1 700	2.866 0.296	4.407 2.559	22.990 9.869		25.856 10.165	15.565 9.325	1 2	5 027 1 488	5 028 1 491	2 114 3 649	9 614 3 134	11 727 6 783	349 603	2 036 664	
EDELNOR	Lima Norte	SANTA ROSA	P16 0.410	5.525	5.935	1	4	5	400	685	1 085	0.269	0.482	1.017	0.700	1.286	0.482	6	33	39	29 385	3 551	32 936	4 855	752	
EDELNOR	Lima Norte	SANTA ROSA	P18 2.491	3.037	5.528	4	4	8	520	1 050	1 570	1.930	2.505	8.848		10.778	10.275	3	1 145	1 148	1 959	3 716	5 675	324	787	
EDELNOR EDELNOR	Lima Norte S	SANTA ROSA SANTA ROSA	P19 11.286	3.665 8.373	3.665 19.659	30	3	3 47	6 645	1 610 1 755	1 610 8 400	1.862 26.235	2.482 30.240	10.765 37.967	3.519 27.016	12.627 64.202	6.001 57.256	5	1 717 7 558	1 717 7 563	3 514	3 521 18 999	3 521 22 514	581	746 4 024	
EDELNOR		SANTA ROSA	P22 1.138	1.951	3.089	- 55	2	2	0 043	570	570	0.155	1.413	4.573	4.627	4.728	6.040	4	489	493		1 998	13 910	1 968	423	
EDELNOR	Lima Norte	SANTA ROSA	P23 4.314	9.211	13.525	39	7	46	6 250	2 230	8 480	9.984	9.511	22.403		32.387	22.870	16	3 630	3 646	11 784	18 729	30 513	1 947	3 967	5 914
EDELNOR EDELNOR	Lima Norte S	SANTA ROSA SANTA ROSA	P24 1.030 P25 0.843	7.990 2.294	9.020 3.137	13	17	30 5	1 775 730	3 770 160	5 545 890	7.411 3.636	9.516 3.039	40.141 3.617	25.314 2.800	47.552 7.253	34.830 5.839	2	6 648 667	6 651 669	4 614 676	15 054 1 785	19 667 2 461	762 112		3 951 490
EDELNOR	Lima Norte	SANTA ROSA	P26 0.078	4.290	4.368	1	1	2	250	1 260	1 510	0.128	0.197	7.327	6.636	7.455	6.833		771	771		3 432	3 432		727	727
EDELNOR		SANTA ROSA	P27	6.743	6.743	4	17	21	410	10 890	11 300	3.622	5.471 11.666	25.524		29.146	17.772	2	5 563	5 565	839	18 522	19 361	139		4 062
EDELNOR EDELNOR	Lima Norte S	SANTA ROSA SANTA ROSA	P28 4.293 P29	5.821 3.057	10.114 3.057	20	5	25 5	3 280	1 590 3 980	4 870 3 980	11.222 0.032	0.719	40.104 9.770		51.326 9.802	38.414 3.261	1	6 319 1 824	6 319 1 825	533	13 733 8 547	13 733 9 080	88	2 909 1 810	2 909 1 898
EDELNOR	Lima Norte	SANTA ROSA	P31 3.580	9.587	13.167	21		32	3 205	3 570	6 775	9.364	12.004	39.586	29.459	48.950	41.463	6	4 709	4 715		18 470	22 429	654		4 566
EDELNOR EDELNOR	Lima Norte S	SANTA ROSA SANTA ROSA	P32 0.716 P33 5.861	9.462 10.908	10.178 16.769	14	12 18	16 32	470 2 090	2 705 3 445	3 175 5 535	4.035 5.309	3.499 6.839	23.676 47.676	17.364 36.566	27.711 52.985	20.863 43.405	3	2 603 5 702	2 606 5 702	7 754	8 130 17 184	15 884 17 184	1 281	1 722 3 640	3 003 3 640
EDELNOR		SANTA ROSA	P34 13.105	8.863	21.968	48		60	7 150	1 820	8 970	18.333	22.683	53.588		71.921	62.746	14	5 146	5 160	15 202	16 707	31 909	2 512		6 050
EDELNOR	Lima Norte	SANTA ROSA	SR40	0.092	0.092	1		1	10		10								2	2		245	245		52	52
EDELNOR EDELNOR		SANTA ROSA SANTA MARINA	SR51 F01 2.931	0.056 12.670	0.056 15.601	9	23	32	1 347	4 110	10 5 457	4.442	7.179	35.041	26.398	39,483	33.577	6	4 134	4 140	2 184	508 12 228	508 14 412	361	108 2 590	108 2 951
EDELNOR		SANTA MARINA	F03 4.030	4.617	8.647	26	9	35	2 430	1 415	3 845	7.987	13.299	5.638		13.625	15.565	4	2 082	2 086	4 598	5 010	9 608	760		1 821
EDELNOR	Lima Norte	SANTA MARINA SANTA MARINA	F04 7.312	7.346 1.484	14.658 1.491	31	11	42	3 170	2 205	5 375	18.651	19.661	16.321	11.985	34.972	31.646	1	5 051 922	5 052	3 145	12 237	15 381 2 968	520 179	2 592 399	3 111 578
EDELNOR EDELNOR		SANTA MARINA	F06 0.007 F07 1.921	6.848	8.769	19	7	26	2 240	750 1 690	850 3 930	0.814 7.731	2.867 7.714	6.825 13.797	5.348	7.639 21.528	8.215 22.957	3	2 370	2 373	1 084 9 065	1 884 8 251	17 316	1 498	1 748	3 245
EDELNOR	Lima Norte	SANTA MARINA	F08 2.428	4.998	7.426	23	5	28	2 180	1 445	3 625	10.441	11.682	2.043	0.906	12.484	12.588	9	1 531	1 540	4 291	3 098	7 389	709	656	1 365
EDELNOR EDELNOR		SANTA MARINA SANTA MARINA	F09 2.694 F11 2.510		7.234 5.912		5	38	1 795	1 175 1 820	2 970 1 820	8.128 0.037	9.969 0.245			14.642 8.317	15.404 6.554		2 083 660	2 084 665			6 684 8 410	121 840		
EDELNOR		SANTA MARINA	F12 9.962		11.436	14	2	16	1 760	300	2 060	7.506	7.533			7.534	7.548		2 178	2 178		3 048	3 048	040	646	
EDELNOR		SANTA MARINA	F14 0.685		12.762	13		28	1 760	3 500	5 260	8.108	10.184			41.068	37.646	5	4 737	4 742				320		
EDELNOR EDELNOR		SANTA MARINA SANTA MARINA	F16 3.582 F17 3.833		6.042 8.975	36 24		40 28	2 380 3 080	650 2 160	3 030 5 240	10.545 11.221	10.147 11.251	4.331 7.764		14.876 18.985	11.511 15.281	1 2	2 246 3 637	2 247 3 640				232 166		
EDELNOR	Lima Norte	SANTA MARINA	F18 5.244	7.740	12.984			39	4 645	2 415	7 060	11.760	11.101	19.765	14.533	31.525	25.634	2	4 619	4 621	1 358	13 909	15 267	224	2 946	3 171
EDELNOR		SANTA MARINA	F19 4.969		10.435	42	5	47	4 730	695	5 425	23.108	20.405			29.256	26.458		5 621	5 621		12 465		044	2 640	
EDELNOR EDELNOR	Lima Norte	SANTA MARINA TACNA	F21 0.033	3.292	3.325 3.383	2	5	8	260	1 880 3 090	2 140 3 090	2.878	3.452 0.418			18.320 8.801	17.954 4.733		2 175 2 155	2 177 2 155		5 369 5 937	7 253 5 937	311	1 137 1 258	
EDELNOR	Lima Norte	TACNA	T02	3.515	3.515		12	12		8 100	8 100		0.232	11.574	5.611	11.574	5.843	4	1 980	1 984	3 235	11 659	14 894	534	2 470	3 004
EDELNOR	Lima Norte		T03	2.847	2.847		8	8		4 230	4 230	0.008	0.359			17.548			3 479	3 479		8 628	8 628	47	1 827	
EDELNOR EDELNOR	Lima Norte		T04 T05 0.103	1.886 3.746	1.886 3.849	6	5	5 10	820	2 670 1 480	2 670 2 300	3.270	0.042 3.948			7.228 9.033	3.670 5.465	2	2 047 1 980	2 047 1 982				17 228		
EDELNOR	Lima Norte	TACNA	T06 0.525	4.967	5.492		5	10	600	2 170	2 770	3.939	4.629	6.689	4.221	10.628	8.850		2 944	2 947	3 007	7 995	11 002	497	1 693	2 190
EDELNOR	Lima Norte		T07	4.159	4.159	45	15	15	2.050	7 060	7 060	4744	0.263			16.612	6.038	2	3 487	3 489				242		
	Lima Norte		T08 1.311 T09	4.286 2.336	5.597 2.336	15	4 2	19 2	2 050	950 1 900	3 000 1 900	4.741	4.541	5.180 2.309		9.921 2.309	8.244 1.625	5	2 260 430	2 261 435			5 398 10 340	76 1 094		
EDELNOR	Lima Norte	TACNA	T10	1.694	1.694		4	4		2 900	2 900		0.012	6.063	3.359	6.063	3.371	3	1 035	1 038	5 065	5 944	11 009	837	1 259	2 096
EDELNOR EDELNOR	Lima Norte		T11 1.049		5.570	5		15	480	2 172	2 652	2.826	4.971			16.990	18.451	1	2 508	2 509			6 756	21		
EDELNOR EDELNOR	Lima Norte		T12 1.965 T13 0.134		8.908 4.397	23	7	30 8	2 560 250	2 150 4 100	4 710 4 350	15.153 1.989	17.091 1.269			32.226 15.445	26.217 8.044	3	5 216 2 334	5 218 2 337				130 647		
			3.104	200				٧.		50	. 550		50				0.0 17				, ,,,,,	07	. 5 001		. 555	_ 00_

			Red	Media Tensión (kı	n)	Subestacio	ones de Distribució	n (unidad)	Subestacio	ones de Distribu	ión (kVA)	Baja Tens	ión Aérea	Subte	Γensión erránea	Subte	ión (Aérea + rránea)	Client	es al 31/12	/2007	Energía	Año 2007 ((MW.h)	Demand	la Año 200)7 (kW)
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador Red Aérea	Red Subterránea	Total	Aéreas	Subterráneas	Total	Aéreas	Subterráneas	Total	Red Servicio Particular (km)	Red Alumbrado Público (km)	Red Servicio Particular (km)	Red Alumbrado Público (km)	Red Servicio Particular (km)	Red Alumbrado Público (km)	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total
EDELNOR	Lima Norte		T14	1.805	1.805		5	5		4 140	4 140		0.046	8.783	2.653	8.783	2.699	3	1 139	1 142		8 860	10 494	270	1 877	2 147
EDELNOR EDELNOR	Lima Norte Lima Norte	TACNA TACNA	T15	3.068 2.268	3.068 2.268	1	4	5 4	160	1 900 3 410	2 060 3 410	0.585	1.302	9.211 4.301	6.421 2.331	9.796 4.301	7.723 2.331	9	1 567 703	1 567 712		5 023 3 580	5 023 15 123	1 907	1 064 758	1 064 2 665
EDELNOR	Lima Norte	TACNA	T17	3.671	3.671	1	8	9	275	7 360	7 635		0.214		3.844	13.901	4.058	2	2 712	2 714		13 226	16 212	493	2 801	3 295
EDELNOR	Lima Norte	TACNA	T18	1.504	1.504		3	3		4 620	4 620			5.199	1.580	5.199	1.580	5	896	901		7 920	12 501	757	1 677	2 434
EDELNOR EDELNOR	Lima Norte Lima Norte	TACNA TACNA	T19 T21 1.908	2.109 7.120	2.109 9.028	17	8	25	2 210	3 990 2 480	3 990 4 690	10.144	11.171	7.559 22.396	3.002 14.003	7.559 32.540		2	828 4 415	830 4 417		5 906 12 396	8 914 13 107	497	1 251 2 626	1 748 2 743
EDELNOR	Lima Norte	TACNA	T22 1.593	13.201	14.794	13	20	33	2 720	5 855	8 575	7.667	15.512	52.991	32.036	60.658	47.548	4	9 869	9 873	2 694	23 381	26 075	445	4 952	5 397
EDELNOR EDELNOR	Lima Norte Lima Norte	TACNA TACNA	T23 3.117 T24 0.369	3.600 4.346	6.717 4.715	32	2	34	3 940 500	500 2 060	4 440 2 560	14.000 0.236	14.052 4.317	4.506 19.705	2.678 8.860	18.506 19.941	16.730 13.177		4 145 4 057	4 145 4 057		9 084 9 315	9 084 9 315		1 924 1 973	1 924 1 973
EDELNOR	Lima Norte	TACNA	T25 6.140	8.396	14.536	28	16	44	3 105	3 625	6 730	19.572	23.248	63.051	45.751	82.623	68.999	1	9 761	9 762		18 673	19 117	73	3 955	4 029
EDELNOR	Lima Norte	TACNA	T27	3.636	3.636		4	4		2 015	2 015	0.209	0.576	6.301	2.267	6.510	2.843	4	1 228	1 232		5 743	12 938	1 189	1 217	2 405
EDELNOR EDELNOR	Lima Norte Lima Norte	TOMAS VALLE TOMAS VALLE	TV01 3.131 TV02 4.146	7.175 3.720	10.306 7.866	12 20	10	22 26		2 890 1 630	5 680 6 230	1.425 6.845	2.127 6.160	44.920 24.645	38.765 18.793	46.345 31.490	40.892	2	5 512 3 394	5 512 3 396		15 895 11 715	15 895 13 019	216	3 367 2 481	3 367 2 697
EDELNOR	Lima Norte	TOMAS VALLE	TV03 2.520	6.901	9.421	13	10	23	2 350	3 025	5 375	0.584	1.049	54.297	32.804	54.881	33.853		6 409	6 409		17 481	17 481	210	3 703	3 703
EDELNOR	Lima Norte	TOMAS VALLE	TV04 1.678	2.164	3.842	2	1	3	410	100	510	0.341	0.234	1.202	1.136	1.543		5	38	43		1 186	10 366	1 517	251	1 768
EDELNOR EDELNOR	Lima Norte Lima Norte	TOMAS VALLE TOMAS VALLE	TV05 1.976 TV07 1.910	4.379 0.260	6.355 2.170		14	16 1	500	3 075 200	3 575 200	0.481	0.082 0.485	11.548	14.988	12.029 0.511	15.070	3	2 481	2 489	14 230	6 873 384	21 103 14 218	2 351	1 456 81	3 807 2 367
EDELNOR	Lima Norte	TOMAS VALLE	TV08 1.202	2.949	4.151		3	3		810	810	0.093	0.074	1.533	3.377	1.626	3.451	5	12	17	6 506	1 266	7 772	1 075	268	1 343
EDELNOR EDELNOR	Lima Norte	TOMAS VALLE	TV09 8.372 TV10 2.213	3.952	12.324	26	3	29		1 200 160	4 035	22.862	25.405	13.353		36.215		8	3 472 18	3 480		9 161 2 669	19 660	1 735	1 940 565	3 675 2 813
EDELNOR	Lima Norte Lima Norte	TOMAS VALLE TOMAS VALLE	TV13 1.643	2.111 5.114	4.324 6.757	7	11	18	1 100 785	2 300	1 260 3 085	0.073 1.981	6.202	1.354 32.478		1.427 34.459	31.608	2	3 519	27 3 521		11 227	16 274 11 750	86	2 378	2 464
EDELNOR	Lima Norte	TOMAS VALLE	TV14 9.078	7.550	16.628	39		57		3 940	7 455	23.686	21.791	36.206	32.720	59.892			7 090	7 090)	15 264	15 264		3 233	3 233
EDELNOR	Lima Norte	TOMAS VALLE	TV15 4.161 TV16 3.841	6.786	10.947	17 18		26		3 250	6 405	1.851 7.165	3.216		42.745	61.689	45.961	1	6 469	6 470		18 580	19 369	130	3 936	4 066
EDELNOR EDELNOR	Lima Norte Lima Norte	TOMAS VALLE TOMAS VALLE	TV16 3.841 TV17 6.080	6.044 10.342	9.885 16.422	28		32 47		2 840 6 610	5 570 11 190	2.006	8.772 9.744		42.342 55.386	55.886 78.895	51.114 65.130	1	6 019 8 826	6 022 8 827		15 541 25 733	16 297 25 739	125	3 292 5 451	3 417 5 452
EDELNOR	Lima Norte	VENTANILLA	V01 1.329	1.235	2.564	3	4	7	600	470	1 070		0.703	1.851	0.048	1.851	0.751	8	25	33	7 638	1 345	8 982	1 262	285	1 547
EDELNOR EDELNOR	Lima Norte Lima Norte	VENTANILLA VENTANILLA	V02 44.134 V04 15.135	0.379 3.593	44.513 18.728	121		121 62		425	12 550 6 265	119.587 40.665	125.234 43.888	0.333 35.944		119.920 76.609	125.234 80.426	4	11 114 8 681	11 118 8 682		8 698 10 320	8 783 10 387	14	1 842 2 186	1 856 2 197
EDELNOR	Lima Norte	VENTANILLA	V04 15.135 V05 0.730	4.294	5.024	60 7	3	10	820	910	1 730	3.358	5.198	25.727		29.085	24.941	1	2 213	2 214			4 806	31	978	1 009
EDELNOR	Lima Norte	VENTANILLA	V06 15.346	5.363	20.709	70		73		260	7 237	27.416	28.522	59.504		86.920	86.235	7	10 920	10 927	571	14 811	15 382	94	3 137	3 232
EDELNOR EDELNOR	Lima Norte Lima Norte	VENTANILLA ZAPALLAL	V07 15.279 W02 10.870	4.900 6.082	20.179 16.952	43 42		53 46	3 725 2 975	1 775 495	5 500 3 470	45.266 37.393	49.937 36.788	33.231 17.428	28.673 10.256	78.497 54.821	78.610 47.044	5	6 451 4 190	6 456 4 194		10 535 6 305	14 842 7 081	712 128	2 231 1 336	2 943 1 464
EDELNOR	Lima Norte	ZAPALLAL	W02 10.870 W03 31.286	5.892	37.178	128		129		100	7 080	68.343	66.612	10.205	5.016	78.548		9	4 033	4 042		8 024	10 833	464	1 700	2 164
EDELNOR	Lima Norte	ZAPALLAL	W04 21.405	2.440	23.845	81	1	82		10	8 695	73.117	71.133	65.045		138.162	125.593	2	11 278	11 280) 4	9 169	9 173	1	1 942	1 943
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	ZAPALLAL BALNEARIOS	W05 23.601 Z01 1.785	4.853 9.811	28.454 11.596	109	2	111 18	9 780 597	125 5 090	9 905 5 687	91.295 0.446	91.896 0.959	36.801 36.116	31.131 27.190	128.096 36.562	123.027 28.149	1	10 318 4 122	10 319 4 124	6 123	11 018 18 865	11 021 24 988	1 012	2 334 3 996	2 334 5 007
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z03 2.555	8.622	11.177	3	18	21		5 870	6 570	0.446	0.939	32.127	20.050	32.671	20.472	7	3 888	3 895		22 782	30 513	1 277	4 826	6 103
LUZ DEL SUR		BALNEARIOS	Z05	11.570	11.570	2	21	23		6 480	7 030	0.602	1.737	53.055	39.342	53.657	41.079	2	5 446	5 448		24 575	30 217	932	5 205	6 137
	Lima Sur Lima Sur	BALNEARIOS BALNEARIOS	Z06 0.389 Z07 0.418	7.114 9.139	7.503 9.557	1	11 19	15 20	850 150	5 070 5 940	5 920 6 090	0.627 0.376	1.522 0.681	37.511 29.910	25.411 27.444	38.138 30.286	26.933 28.125	2	4 542 4 208	4 544 4 212		20 940 18 245	22 647 26 496	282	4 435 3 865	4 717 5 228
LUZ DEL SUR		BALNEARIOS	Z08 1.111	16.929	18.040	7	24	31	1 470	7 417	8 887	0.842	0.401	50.561	38.022	51.403	38.423	4	3 547	3 551			22 271	429	4 167	4 596
LUZ DEL SUR		BALNEARIOS	Z10 0.737	7.801	8.538	4	12	16		5 190	6 265	0.111	0.488			32.461	23.005	1	2 871	2 872			15 580	126	3 139	3 265
LUZ DEL SUR		BALNEARIOS BALNEARIOS	Z11 0.712 Z13 0.333	12.528 1.565	13.240 1.898	/	24	31 7	1 245	7 595 4 630	8 840 4 630	0.388 0.082	0.876 0.309	35.472 9.534		35.860 9.616	23.240	6	2 950 1 163	2 953 1 169	727		16 257 14 589	120 741	3 290 2 140	3 410 2 881
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z14 0.514	8.052	8.566	3	16	19		4 710	5 360	0.012	1.251	27.656	18.690	27.668	19.941	2	1 864	1 866	1 864	11 533	13 397	308	2 443	2 751
LUZ DEL SUR		BALNEARIOS BALNEARIOS	Z15 0.131 Z16 0.345	7.276 10.514	7.407 10.859	2	10 15	12 22		3 960 5 100	4 260 6 136	0.582 0.152	1.083 1.586	29.845 39.466		30.427 39.618	22.321	2	3 284 2 010	3 286 2 011	933		19 299 16 167	449 154	3 512 3 227	3 961 3 381
		BALNEARIOS	Z17 3.060	6.124	9.184	4	14	18		5 460	6 342	0.132	0.622	44.243	31.619	44.822	32.241	2	5 434	5 436		22 624	25 018	396	4 792	5 188
LUZ DEL SUR		BALNEARIOS	Z18 0.296	9.962	10.258	3	18	21	700	4 910	5 610	0.797	1.349	21.261	18.317	22.058			3 049	3 049)	20 548	20 548		4 352	4 352
LUZ DEL SUR	Lima Sur	BALNEARIOS BALNEARIOS	Z19 0.588 Z20	11.258 5.252	11.846 5.252	3	18 12	21 13	825 82	7 830 2 980	8 655 3 062	0.815 0.776	1.272 1.854	54.562 17.782	2 37.706 2 14.949	55.377 18.558	38.978 16.803	5	7 075 2 861	7 076 2 866	5 7 5 7 474	32 494 9 761	32 500 17 235	1 235	6 883 2 068	6 884 3 302
LUZ DEL SUR		BARBABLANCA	BB01 49.461	0.640	50.101	17	12	17	902	2 300	902	10.804	11.034	0.124	0.054	10.928	11.088	4	582	586		781	1 404	103	166	268
LUZ DEL SUR			BB02 9.221	0.175	9.396	9	1	10		25	417	5.420	3.233			5.987		2	194				452		77 6 571	92
LUZ DEL SUR			B01 1.517 B02 0.674	12.292 6.800	13.809 7.474		28 13	36 18		9 340 3 710	10 187 4 140	8.151 4.367	9.037 4.447			58.530 24.902		1	7 428 3 081	7 431 3 082						6 907 2 995
LUZ DEL SUR	Lima Sur	BARRANCO	B03 2.706	8.338	11.044	15	15	30	1 398	3 195	4 593	9.221	9.849	33.069	24.820	42.290	34.669	5	5 289	5 294	11 978	16 974	28 952	1 979	3 595	5 574
LUZ DEL SUR			B04 1.591 B05 1.322	8.568 7.670	10.159 8.992	7	19 20	26 24		6 215 7 120	7 995 7 757	4.723 3.411	12.400 6.290			18.835 26.451		7	2 382 3 006	2 389 3 008						
LUZ DEL SUR			B05 1.322 B06 0.237	9.797	10.034	3	13	16		3 155	3 605	1.715	3.276			30.499		7	3 006	3 082			15 001			
LUZ DEL SUR			B07 2.192	6.877	9.069	12		19		2 840	4 810	4.845	9.331	30.603		35.448		1	3 929	3 930						3 762
LUZ DEL SUR			B08 4.498 B11 3.758	6.806 4.094	11.304 7.852	15	14	29 11		5 250 1 822	7 532 2 239	9.312 2.580	7.780 3.744			53.625 14.083		6	7 112 1 267	7 118 1 278						
LUZ DEL SUR	Lima Sur	BARRANCO	B11 3.758 B12 8.799	8.732	17.531	14	21	35		4 110	6 139	6.321	3.744 8.418			32.386		13	4 068	4 081						
LUZ DEL SUR	Lima Sur	BARRANCO	B13 2.273	9.677	11.950	7	8	15	515	2 420	2 935	5.458	9.887	18.088	13.193	23.546	23.080	6	2 198	2 204	3 889	8 724	12 613	642	1 848	2 490
LUZ DEL SUR			BJ01 15.951 BJ02 25.318	1.939 1.845	17.890 27.163	29 24		29 24			2 019 2 117	30.057 13.100	29.372 11.233			31.609 20.039		8	2 448 1 134	2 456 1 172					802 545	
LUZ DEL SUR			BJ03 59.020	1.768	60.788	68		68			3 662	36.310	31.576			38.843		14								
LUZ DEL SUR	Lima Sur	BUJAMA	BJ21 0.010	0.182	0.192		1	1		25	25	0.907	0.924	0.210	0.194	1.117	1.118	1	35	36	112	86	199	19	18	37
LUZ DEL SUR		BUJAMA CHORRILLOS	BJ22 27.369 CH01 9.854	2.644 8.520	30.013 18.374	19 51		19 57		1 665	1 115 7 061	17.412 24.960	17.560 23.596			18.967 84.494		45 5	1 057 7 817	1 102 7 822					475 3 976	
LUZ DEL SUR		CHORRILLOS	CH01 9.854 CH02 11.063	2.380	13.443	27		33		775	2 951	16.144	11.920			53.849			3 668	3 668		9 655			2 045	
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH03 11.112	6.127	17.239	22		31	2 335	1 270	3 605	7.669	8.331			46.154			4 888	4 896	1 894		18 305			
LUZ DEL SUR		CHORRILLOS CHORRILLOS	CH04 15.474 CH05 4.645	8.000 14.075	23.474 18.720	47 17			5 418 3 456	2 282 4 637	7 700 8 093	22.636 7.538	21.538 8.317			91.774 51.515				6 889 5 487						
LUZ DEL SUK	Lima Jui	O TOTALLOO	101.00 4.040	14.073	10.720	17		39	3 430	4 037	0 093	1.550	0.317	43.311	29.007	31.313	37.404	12	3413	3 407	1 003	20 000	20 000	1 203	7 3/4	5 045

			Re	d Media Tensión (km)	Subestacio	ones de Distribución (un	dad)	Subestaciones de	e Distribuc	ión (kVA)	Baja Tens	ión Aérea		Tensión erránea	Baja Tensić Subter	•	Clien	ntes al 31/12	/2007	Energía	a Año 2007	(MW.h)	Demand	da Año 200	07 (kW)
Nombre	Nombre Sistema	Centro de Transformación	Alimentador Red Aérea	Red Subterránea	Total	Aéreas	Subterráneas To	tal A	Aéreas Subter	rráneas	Total	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total
Empresa	Sistema	Transformación		Subterrailea								(km)	(km)	(km)	(km)	(km)	(km)	Tension	rension		rension	rension		rension	rension	1
LUZ DEL SUR		CHORRILLOS	CH06 7.50		19.481	30	25	55	4 670	4 120	8 790	9.817	8.449	45.105	27.990	54.922	36.439	20	2 386	2 406		16 225	35 559	3 194		6 631
LUZ DEL SUR	Lima Sur	CHORRILLOS CHORRILLOS	CH08 2.57 CH21 8.16		9.950 13.984	10	8	12 10	480 1 052	2 727	3 207 1 052	2.283 2.637	2.064 2.044	13.723 4.023	7.961 3 1.106	16.006 6.660	10.025 3.150	28	1 660 5 213	1 688 228	25 270 3 19 148	7 540 1 877	32 811 21 025	4 175		5 772 3 561
LUZ DEL SUR		CHOSICA	SR01 15.06		23.628	57		66	5 089	1 026	6 115	59.690	54.586	13.115	9.936	72.805	64.522	1 6	5 5 711	5 717	1 391	13 523	14 914	230		3 094
LUZ DEL SUR	Lima Sur	CHOSICA	SR02 0.09	8 0.269	0.367	2	2	2	130		130	0.973	1.051	0.793	0.012	1.766	1.063	1	1 152	153	347	279	625	57	59	116
LUZ DEL SUR		CHOSICA	SR03 12.81 SR05 10.89		13.535 13.437	29		30	2 305	100 492	2 405	20.615	19.441	6.344		26.959	23.163	2	2 2 066	2 068			5 576	31 794		1 172
LUZ DEL SUR	Lima Sur Lima Sur	CHOSICA CHOSICA	SR05 10.89 SR08 29.10		29,485	30		34 13	2 413 790	492	2 905 790	17.320 9.551	15.133 7.728	15.244 0.619	11.168	32.564 10.170	26.301 7.919	1 1	3 2 270 1 452	2 273 453		6 529 918	11 334 961	794	1 383 194	2 177 202
LUZ DEL SUR	Lima Sur	CHOSICA	SR09 8.17		15.480	28	11	39	3 903	961	4 864	29.749	29.109	11.930	8.098	41.679	37.207	3	3 4 151	4 154			12 895	287		2 651
LUZ DEL SUR		ÑAÑA	NA01 17.33		20.343	49		53	4 546	295	4 841	42.954	41.257	27.584		70.538	63.694	16	6 4 477	4 493		12 493	41 580	4 806		7 452
LUZ DEL SUR		NANA ÑAÑA	NA02 30.17 NA03 18.96		32.937 28.048	68		69 65	4 710 4 964	100 1 797	4 810 6 761	35.703 25.651	30.883 27.121	10.115 46.945	4.125 42.728	45.818 72.596	35.008 69.849	1	1 2 172 4 3 087	2 173 3 091	650		9 535 10 661	107	2 008 2 121	2 017 2 228
LUZ DEL SUR		ÑAÑA	NA04 19.80		20.359	72		73	6 130	25	6 155	54.760	57.021	69.482		124.242	110.373	5	5 11 325	11 330	974		14 650	161		3 058
LUZ DEL SUR		ÑAÑA	NA05 4.62		16.548	30		39	2 556	1 279	3 835	9.758	11.083	26.245		36.003	35.936	i	3 175	3 175		8 977	8 977	1	1 901	1 901
LUZ DEL SUR LUZ DEL SUR		ÑAÑA GALVEZ	NA06 24.00 G01 0.28		29.545 6.126	86	3	89	6 935	620 2 580	7 555 2 580	29.052	31.524 1.478	85.887 8.924	60.358 6.714	114.939 8.924	91.882 8.192	1 6	8 315 5 1 472	8 321 1 477	_	18 034 5 879	22 012 20 703	657		4 477 3 695
LUZ DEL SUR		GALVEZ	G02 0.26	3.274	3.274		5	6	150	3 340	3 490	0.993	2.814	8.888		9.881	7.158		1 801	1 801	14 024	7 642	7 642	2 449	1 619	1 619
LUZ DEL SUR	Lima Sur	GALVEZ	G03 0.02	0 2.166	2.186		2	2		1 280	1 280			0.373	3	0.373			159	159		2 261	2 261		479	479
LUZ DEL SUR		GALVEZ	G04 0.14		1.091		1	1		350	350	0.080	0.478	2.489		2.569	3.895	3	62	65		1 389	4 898	580		
LUZ DEL SUR		GALVEZ GALVEZ	G05 0.15 G06 2.53		2.199 5.206	10) 3	13	3 845	1 610 1 352	1 610 5 197	0.173 6.271	0.074 5.159	2.933 1.735		3.106 8.006	0.653 5.651	1 2	1 680 2 3 167	681 3 169		2 757 13 998	4 237 15 828	244		828 3 267
LUZ DEL SUR		GALVEZ	G07 3.86		7.209	23	5	28	6 664	3 180	9 844	9.051	3.116	2.568		11.619	5.485		4 007	4 007		19 747	19 747	,	4 183	4 183
LUZ DEL SUR		GALVEZ	G08 0.02		2.100		3	3	0.075	3 390	3 390	,_,,	,, ,,,	0.423		0.423	,,=:-		334	334		3 379	3 379)	716	716
LUZ DEL SUR		GALVEZ GALVEZ	G09 2.21 G10 0.12	9 5.273 5 4.739	7.492 4.864	11	8	19 10	2 975 90	1 950 4 460	4 925 4 550	15.182 1.931	13.440 3.007	2.571 13.440	1.297	17.753 15.371	14.737 6.532	1 1	1 4 469 1 2 550	4 470 2 551		13 425 11 076	14 441 11 647	168		3 011 2 440
LUZ DEL SUR		GALVEZ	G10 0.12		3.736	3	6	9	800	3 050	3 850	1.082	1.360	11.856		12.938	7.938	5	5 1 598	1 603		10 425	12 584			2 565
	Lima Sur	GALVEZ	G13 0.24		5.260	2	2 7	9	240	3 700	3 940	5.133	4.802	22.817	11.834	27.950	16.636	3	5 756	5 759	955	15 737	16 692	158		3 491
LUZ DEL SUR LUZ DEL SUR		GALVEZ GALVEZ	G14 0.00 G15 1.84		2.984 5.963	12	5	6 20	275 3 045	1 595 2 230	1 870	1.256 8.265	3.223 8.178	7.276 11.233		8.532 19.498	6.521 11.106	3	3 1 472 3 3 062	1 475 3 065		4 170 12 552	11 541 16 848	1 218 710		2 101 3 369
LUZ DEL SUR		GALVEZ	G16 1.64		4.157	12	5	6	375	3 340	5 275 3 715	4.571	3.930	14.704		19.498	12.968	7	7 3 294	3 301	7 122	12 043	19 165	1 177		3 728
LUZ DEL SUR		GALVEZ	G18 0.19		5.244	2	2 7	9	575	3 600	4 175	3.147	10.901	30.696	13.707	33.843	24.608	2	2 1 473	1 475			5 730	100		1 186
		GALVEZ	G19 0.14		7.090	2	2 3	5	550	1 980	2 530	1.534	0.825	5.642		7.176	3.816	3	1 326	1 329		7 093	10 900	629		2 131
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	GALVEZ GALVEZ	G20 G21 0.43	5.750 4 7.941	5.750 8.375	1 3	10 3 11	11 14	275 800	5 315 4 640	5 590 5 440	0.962 2.450	2.259 4.158	14.957 21.871	9.145 14.748	15.919 24.321	11.404 18.906	1 5	1 2 528 5 4 987	2 529 4 992		11 650 15 265	12 917 19 723	209		2 677 3 970
LUZ DEL SUR		GALVEZ	G22	4.235	4.235		7	7	000	3 275	3 275	0.238	2.573	13.178		13.416	12.382	2	2 1 403	1 405	1 226	8 548	9 774	203		2 013
LUZ DEL SUR		HUACHIPA	HP01 17.37		18.723	33		34	2 419	82	2 501	37.089	39.035	6.677		43.766	42.990	5	5 2 709	2 714			18 596	2 058		3 358
LUZ DEL SUR LUZ DEL SUR		HUACHIPA HUACHIPA	HP02 25.75 HP03 13.49		28.744 16.074	50 30		52 36	3 176 2 952	400 624	3 576 3 576	40.546 15.494	33.101 11.462	9.097	4.125 4.812	49.643 30.160	37.226 16.274	8	3 171 6 1 523	3 179 1 529		6 052 7 806	12 417 19 175	1 052		2 334 3 532
LUZ DEL SUR		HUACHIPA	HP04 11.59		18.086	33		34	3 843	25	3 868	13.434	22.966	14.792		28.670	23.350	13	3 946	959			17 064	1 069		
LUZ DEL SUR		HUACHIPA	HP05 2.01		2.381													14	4 930	944		4 302	23 314	3 141		4 052
LUZ DEL SUR LUZ DEL SUR		HUACHIPA HUACHIPA	HP06 12.36 HP07 9.73		15.160 15.958	32 19		38 31	4 177 1 909	677 1 650	4 854 3 559	7.701 11.489	12.716 10.017	9.785 27.864		17.486 39.353	15.138 27.436	10	364 1 4 501	374 4 512		7 359 12 396	20 728 21 077	2 209		3 768 4 060
LUZ DEL SUR		HUACHIPA	HP08 2.42		3.582	13	2	2	1 909	232	232	0.383	2.223	2.837	0.013	3.220	2.236	 '	49	4 3 1 2		667	667	1 434	141	141
	Lima Sur	INGENIEROS	IG11 10.32		15.349	42		49	7 975	1 595	9 570	3.076	1.084	81.429		84.505	60.808	4	4 8 856	8 860		30 771	33 024	372		6 890
LUZ DEL SUR LUZ DEL SUR		INGENIEROS	IG12 2.98		13.158 4.577	17	14	31	3 211 710	3 145 1 380	6 356 2 090	1.046 0.141	0.574	45.647 5.986	32.066	46.693	32.640	10	0 4 454 7 295	4 464 312		19 167 4 336	34 134 37 966	2 473		6 533
LUZ DEL SUR		INGENIEROS INGENIEROS	IG13 1.62		5.197	3	8	11	400	2 500	2 900	0.141	0.017 0.585	12.454	3.342 8.733	6.127 12.719	3.359 9.318	17	7 295	745		6 033	28 138	5 556 3 652		6 475 4 930
LUZ DEL SUR	Lima Sur	INGENIEROS	IG15 2.04		6.212	6	7	13	847	1 370	2 217	0.209	0.279	15.180		15.389	11.559	12	1 050	1 062		4 668	21 803	2 831	989	3 820
LUZ DEL SUR		INGENIEROS	IG22 0.01		0.956													1	1	1	150		150	25		25
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	INGENIEROS LA PLANICIE	IG23 PL01 0.69	0.052 6 10.033	0.052 10.729	7	16	23	1 285	2 682	3 967	0.331	2.697	30.850	21.933	31.181	24.630	3	3 1 387	1 390	1 412	12 384	1 412 13 457	233		233 2 800
LUZ DEL SUR		LA PLANICIE	PL02 2.42		9.287	5	5 7	12	812	1 220	2 032	1.078	0.922	17.317	13.883	18.395	14.805	5	5 553	558		5 932	8 549	432		1 689
LUZ DEL SUR			PL03 4.83		18.749	20	14	34	2 315	3 217	5 532	1.125	0.581	47.472		48.597	37.456	6	1 615			16 580		726	3 512	
LUZ DEL SUR		LA PLANICIE LA PLANICIE	PL04 6.56 PL05 1.85		11.544 13.135			30 29	2 815 2 002	1 380 4 195	4 195 6 197	3.433 1.997	2.849 4.176			49.618 29.052	38.209 24.939	1 11	1 4 458 1 1 520	4 459 1 531			16 041 23 634			
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL06 15.96		25.020	44		57	4 001	2 422	6 423	32.399	38.193			83.688	69.956		6 338	6 348						
LUZ DEL SUR		LA PLANICIE	PL07 6.99		13.269			18	1 567	1 705	3 272	0.685	0.454			25.334	20.178		2 117	2 117	_	11 719			2 482	
LUZ DEL SUR		LA PLANICIE LAS PRADERAS	PL08 69.82 PR11 7.55		91.030 12.616			139 21	7 232 1 511	2 273 1 525	9 505 3 036	97.626 6.079	102.665 6.372			154.048 27.777	121.356 24.710		1 6 798 4 1 129	6 809 1 153			18 162 18 768			
		LAS PRADERAS	PR12 11.49		15.292			33	3 140	245	3 385	23.805	27.787			49.897	48.522		3 006	3 012				205		
LUZ DEL SUR	Lima Sur	LAS PRADERAS	PR21 1.42	5 2.552	3.977	2		2	425		425	0.033	0.031	0.083	0.077	0.116	0.108	11	1 2	13	29 308	9	29 317	4 842	2	4 844
LUZ DEL SUR LUZ DEL SUR		LIMATAMBO LIMATAMBO	C01 0.66 C02 0.29		5.511 4.733		6	9	615 425	3 225 4 260	3 840 4 685	0.736 1.212	0.789 2.273			23.497 38.802	14.129 30.237		2 803 2 4 622	2 806 4 624				165		
LUZ DEL SUR		LIMATAMBO	C02 0.29 C05 2.79		4.733 6.834			18	3 162	4 260 2 740	4 685 5 902	1.212 5.697	1.952			23.803	30.23 <i>7</i> 17.278		2 4 622	4 624			16 889 19 295	129		
LUZ DEL SUR	Lima Sur	LIMATAMBO	C06 0.39	9 5.630	6.029	6		14	910	4 035	4 945	0.472	0.328	20.699	21.427	21.171	21.755	5	5 2 778	2 783	3 135	13 767	16 901	518	2 916	3 434
LUZ DEL SUR			C07 0.73		3.871		4	8	677	2 890	3 567	0.259	0.409			17.115	17.330		5 1 510	1 515			21 148			
LUZ DEL SUR LUZ DEL SUR		LIMATAMBO LIMATAMBO	C08 2.38 C09 0.75		6.244 8.860		12	16 15	1 370 1 415	3 480 4 405	4 850 5 820	1.308 0.093	1.776 0.822			10.128 26.282	9.944 21.410		4 1 648 7 3 736	1 652 3 743			17 225 24 001			
LUZ DEL SUR		LIMATAMBO	C10 0.85		3.698		5	8	615	2 930	3 545	0.033	0.022			15.718	13.073		3 2 751	2 754			23 808			
LUZ DEL SUR	Lima Sur	LIMATAMBO	C11	4.145	4.145		10	10		6 350	6 350			3.416	6	3.416		3	3 450	453	2 803	10 024	12 827	463	2 123	2 586
LUZ DEL SUR LUZ DEL SUR		LIMATAMBO LIMATAMBO	C12 0.29 C13	5 4.021 3.796	4.316 3.796		7	8	150 275	3 300 4 180	3 450 4 455		0.817 0.187			22.391 9.063	15.596 3.430		1 965 737	1 968 742			14 262 19 047			
LUZ DEL SUR		LIMATAMBO	C14	4.429	4.429		5	5	213	3 255	3 255		1.586			10.240	8.504		5 755				10 363			
LUZ DEL SUR	Lima Sur	LIMATAMBO	C15 0.54	1 3.215	3.756	1	4	5	375	3 440	3 815	0.033	3.441	5.771	4.401	5.804	7.842	7	7 360	367	14 044	6 169	20 213	2 320	1 307	3 627
LUZ DEL SUR	Lima Sur	LIMATAMBO	C16 0.09	7.160	7.257	7	11	18	2 210	5 590	7 800	1.292	1.204	13.736	5.274	15.028	6.478	7	7 2 247	2 254	6 143	25 882	32 026	1 015	5 482	6 497

			Red	Media Tensión (k	m)	Subestacio	ones de Distribución	(unidad)	Subestaciones de Distr	bución (kVA)	Baja Tens	sión Aérea	•	Tensión erránea	Baja Tensid Subter	•	Clien	tes al 31/12	/2007	Energía	Año 2007 ((MW.h)	Demand	la Año 200	07 (kW)
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador Red Aérea	Red Subterránea	Total	Aéreas	Subterráneas	Total	Aéreas Subterránea	s Total	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Red Servicio Particular	Red Alumbrado Público	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total	Media Tensión	Baja Tensión	Total
Ellipiesa	Sistema	Transformación		Subterranea							(km)	(km)	(km)	(km)	(km)	(km)	rension	rension		rension	rension		rension	rension	
LUZ DEL SUR L		LIMATAMBO	C17 0.337	4.528	4.865	1	10	11	275 62		0.667	2.091	12.007	7.856	12.674	9.947	2	800	802		14 458	15 362	149	3 062	
LUZ DEL SUR L	Lima Sur	LIMATAMBO LIMATAMBO	C18 0.264 C19 0.230	4.984 2.344	5.248 2.574	2	3	5	1 260 1 2 82 1 3			2.514 0.387	9.311 8.268	5.236 3.923	10.499 8.268	7.750 4.310	4	5 234 768	5 238		17 685 4 614	24 894 7 100	1 191 411	3 746 977	
LUZ DEL SUR L		LIMATAMBO	C19 0.230 C20	7.769	7.769	5	8	13	1 360 5 5			0.899	23.792		24.174	17.336	4	1 950	770 1 954		16 818	21 816	826	3 562	
LUZ DEL SUR L		LUIS NEYRA	U01 0.099	7.982	8.081	1	18	19	82 68			6.396	23.890	9.713	28.076	16.109	9	3 427	3 436	10 845	19 778	30 623	1 792	4 189	5 981
LUZ DEL SUR L		LUIS NEYRA	U03	4.381	4.381	_	7	7	3 2			1.774	9.819	2.965	11.628	4.739	5	2 004	2 009	12 273	9 947	22 220	2 028	2 107	
LUZ DEL SUR L	Lima Sur	LUIS NEYRA LUIS NEYRA	U04 1.717 U05 0.134	6.139 4.567	7.856 4.701	5	19	24 10	800 6 5 40 4 4			10.376 1.472	20.176 8.248	9.998 3 2.649	26.586 9.106	20.374 4.121	3	3 926 2 317	3 930 2 320	4 284 6 605	20 406 11 047	24 690 17 652	708 1 091	4 322 2 340	
LUZ DEL SUR L		LUIS NEYRA	U06 0.743	5.115	5.858		16	16	4 9			2.640			12.847	5.652	8	2 374	2 382	10 464	12 169	22 633	1 729	2 578	4 306
LUZ DEL SUR L		LUIS NEYRA	U07 0.369	7.216	7.585	2	23	25	242 93			4.016	14.885		20.268	7.434	5	4 295	4 300		23 108	24 962	306	4 895	
LUZ DEL SUR L		LUIS NEYRA LUIS NEYRA	U08 0.012 U10 0.338	4.379 3.552	4.391 3.890	2	8	10	300 3 4 275 2 3			7.195 1.905	12.683 8.067		16.177 9.478	13.673 3.158	6	2 945 1 218	2 951 1 222	3 664 1 416	14 053 9 628	17 717 11 044	605 234	2 977 2 039	3 582
LUZ DEL SUR L		LUIS NEYRA	U12 0.336	7.718	7.718	1	9	10	82 48			8.540		5.997	15.954	14.537	2	1 933	1 935	2 302	13 038	15 340	380	2 762	
LUZ DEL SUR L		LUIS NEYRA	U13 0.158	2.965	3.123	2	6	8	425 3 9	00 4 32	5 0.551	3.223	12.963	5.778	13.514	9.001	6	1 625	1 631	8 453	9 339	17 792	1 397	1 978	3 375
LUZ DEL SUR L		LUIS NEYRA	U14 0.255	5.987	6.242	1	17	18	275 57			5.403	12.345		17.430	10.838	4	3 253	3 257		15 938	19 902	655	3 376	4 031
LUZ DEL SUR L		LUIS NEYRA LUIS NEYRA	U15 1.018 U16	5.962 6.924	6.980 6.924	9	14 10	23 12	2 300 6 3 365 4 2	_		3.701 4.362	24.205 28.241	14.222 19.419	27.384 31.157	17.923 23.781	2	4 431 3 324	4 436 3 326	4 296 1 765	21 539 16 867	25 835 18 632	710 292	4 562 3 573	5 272
LUZ DEL SUR L	Lima Sur	LUIS NEYRA	U17 0.100	2.948	3.048	2	4	6	500 17			1.365	9.159		10.911	7.646	6	2 068	2 074		6 520	16 091	1 581	1 381	
LUZ DEL SUR L		LUIS NEYRA	U18	4.530	4.530	1	8	9	275 1 9			0.782			13.833	8.307	2	1 438	1 440		7 267	8 941	277	1 539	
LUZ DEL SUR L		LUIS NEYRA LUIS NEYRA	U19 0.299 U20 0.122	4.887 7.799	5.186 7.921	4	7 22	11 23	540 3 3 90 7 5			7.517 4.897	18.337 12.151		25.291 14.537	14.157 8.550	2	4 002 3 328	4 004 3 332	2 810 9 002	13 984 17 790	16 794 26 793	464 1 487	2 962 3 768	
LUZ DEL SUR L		LUIS NEYRA	U21 0.012	5.059	5.071	5	12	17	1 040 4 4			1.391	9.797	2.437	10.160	3.828	5	1 786	1 791	5 518	12 917	18 435	912	2 736	
	Lima Sur	LUIS NEYRA	U22 0.129	6.564	6.693	1	11	12	275 37			6.993	21.203	8.871	24.974	15.864	4	3 065	3 069	3 909	15 495	19 404	646	3 282	3 928
LUZ DEL SUR L		LUIS NEYRA	U23 0.002 U24	7.884	7.886	3	21	24	685 77			2.084	10.285		11.602	4.255	4	3 279	3 283	5 109	19 358	24 467	844	4 100	
LUZ DEL SUR L		LUIS NEYRA LURIN	L01 4.636	2.529 4.472	2.529 9.108	3	3	6		30 2 430 57 58		4.212 1.789	15.054 1.234		18.877 2.910	12.410 2.017	2	3 095 208	3 095 210	4 865	9 821 1 520	9 821 6 385	804	2 080 322	
	Lima Sur	LURIN	L02 50.604	8.755	59.359	110	11	121	6 660 1 1			49.589	34.949		84.785	58.285	36	3 667	3 703	9 202	10 481	19 683	1 520	2 220	
LUZ DEL SUR L		LURIN	L03 10.474	5.966	16.440	26		34	2 050 1 2			8.581	16.896		28.814	17.966	14	2 341	2 355		6 632	10 842	696	1 405	
LUZ DEL SUR L	Lima Sur	LURIN LURIN	L04 14.317 L05 17.052	3.080 3.285	17.397 20.337	36 21		38 27		32 3 930 64 1 434		18.857 14.880	35.144 3.470	13.338 1.451	47.567 18.195	32.195 16.331	10	2 310 1 080	2 318 1 099	5 724 12 954	8 767 2 796	14 491 15 750	946 2 140	1 857 592	
LUZ DEL SUR L		LURIN	L06 17.366	4.295	21.661	27		31		30 2 49		9.706	19.460		28.820	25.440	12	1 484	1 496	4 678	2 965	7 643	773	628	
	Lima Sur	LURIN	L21	0.886	0.886		1	1		50 15	0.130				0.130		2	4	6	11 137	154	11 291	1 840	33	
LUZ DEL SUR L	Lima Sur I Lima Sur I	LURIN MONTERRICO	L22 1.582 MO11 0.113	3.178 6.912	4.760 7.025	4	1	1	860 1.8	25 25 80 2 74	5 0 0.194	0.450	0.049 8.313		0.049 8.507	5.852	5	517	525	11 241 5 745	8 6 366	11 250 12 111	1 857 949	1 348	1 859
LUZ DEL SUR L		MONTERRICO	MO12 0.113	12.734	14.184	16	18	34	2 135 4 7			4.970	34.846		35.768	28.967	9	3 284	3 293	10 115	19 645	29 760	1 671	4 161	
LUZ DEL SUR L		MONTERRICO	MO13 2.748	10.965	13.713	24		40	3 985 3 6			5.108			27.196	23.439	10	3 242	3 252	4 246	17 349	21 595	702	3 675	4 376
LUZ DEL SUR L		MONTERRICO	MO14 0.178	12.423	12.601	11		34	3 020 6 3			1.708	30.082	23.318	30.747	25.026	7	3 890	3 897	5 443	23 458	28 902	899	4 969	5 868
LUZ DEL SUR L		MONTERRICO PACHACAMAC	MO22 9.166 PA03 13.538	11.487 2.143	20.653 15.681	32 60		44 62	4 186 4 2 4 631	20 8 40 64 4 79		3.589 13.264			73.349 85.581	55.592 48.759	3	6 818 7 652	6 828 7 655	10 393	25 529 13 195	35 922 13 526	1 717 55	5 407 2 795	
LUZ DEL SUR L		PACHACAMAC	PA04 13.551	9.212	22.763	71		75		00 7 74		49.932	62.727		109.870	97.351	5	11 853	11 858	2 161	16 967	19 128	357	3 594	
LUZ DEL SUR L		PACHACAMAC	PA05 13.431	13.578	27.009	41		72	3 263 3 4			31.459	71.895		103.726	80.642	9	7 005	7 014			17 785	430	3 216	
LUZ DEL SUR L		PACHACAMAC PUENTE	PA06 15.282 A01 3.137	6.824 2.986	22.106 6.123	61	2	63 14		25 6 420 50 2 37		30.335 1.225	68.979 8.925	56.236 6.955	98.366 11.165	86.571 8.180	11	10 014 761	10 017 772	396	15 815 5 071	16 211 25 335	65 3 348	3 350 1 074	3 415 4 422
	Lima Sur	PUENTE	A02 0.994	1.597	2.591	10	2	2		00 40		0.301	1.675	3.299	1.703	3.600	6	106	112	15 135	1 519	16 654	2 500	322	
LUZ DEL SUR L		PUENTE	A03 1.450	1.042	2.492												3		3	17 832		17 832	2 946		2 946
LUZ DEL SUR L		PUENTE PUENTE	A05 5.894 A06 4.169	7.394 8.836	13.288 13.005	4	15	19 12	372 4 6 540 2 2			0.464 4.013		36.217 3 10.103	50.342 16.501	36.681 14.116	2	4 358 1 695	4 360 1 703	3 982 9 252	17 346 9 124	21 328 18 376	658 1 529	3 674 1 933	
LUZ DEL SUR L		PUENTE	A07 2.257	4.888	7.145	12	8	20	2 947 2 5			2.705	18.608		20.373	19.337	18	1 553	1 571	20 513	12 941	33 455	3 389	2 741	
LUZ DEL SUR L		PUENTE	A08 5.894	2.394	8.288	5	2	7		00 2 27		0.550	3.503	1.972	3.623	2.522	6	136	142	7 086	4 804	11 890	1 171	1 018	2 188
LUZ DEL SUR L	Lima Sur	PUENTE	A09	1.831	1.831	4	1	1		60 160	0.040	2.500	0.754		0.794	0.488	3	39	42 1 655	8 017	295	8 312	1 325	62	1 387
LUZ DEL SUR L		PUENTE PUENTE	A10 A11 2.148	2.873 4.858	2.873 7.006	8	14	22	82 1 9 1 570 3 2			2.598 5.684	14.675 12.760	10.479 7.318	15.376 18.886	13.077 13.002	20	1 655 1 021	1 041		5 883 10 700	5 883 36 241	4 220	1 246 2 266	
LUZ DEL SUR L	Lima Sur	PUENTE	A12 0.002	1.300	1.302		2	2	(50 65	0.036	0.617	2.801	2.877	2.837	3.494	5	262	267	11 399	2 715	14 114	1 883	575	2 458
LUZ DEL SUR L		PUENTE PUENTE	A13 1.136 A14 1.217	3.451 2.740	4.587 3.957	3	6	9	840 2 ° 275 9	_		0.029 0.438			4.537 4.796	0.979 5.653	16	74 239				30 864		1 131 478	
LUZ DEL SUR L		PUENTE PUENTE	A14 1.217 A15 1.369	3.712	5.081	1 6	7	13	1 435 1 8			1.781			4.796 13.719	10.378		1 039			8 046	32 831 21 717			
LUZ DEL SUR L	Lima Sur	PUENTE	A16 1.085	7.143	8.228		12	21	1 865 3 4			2.152			23.763	16.779		1 336				28 840			
LUZ DEL SUR L		PUENTE	A17 2.380	2.607	4.987	5	6	11	1 335 2 1			0.653			4.479	3.253	18	67					3 781		
LUZ DEL SUR L		PUENTE PUENTE	A18 2.642 A20 3.982	3.978 8.562	6.620 12.544	12 12		17 34	2 382 1 3 1 392 3 3			2.747 8.461			14.537 58.177	9.397 45.899	11	1 026 5 511			9 420 15 962	22 222 15 962	2 115	1 995 3 381	
LUZ DEL SUR L		PUENTE	A21 10.761	2.589	13.350	28		32	3 343 1 2			3.646			47.973	34.109		4 107		12 754	15 292		2 107		
LUZ DEL SUR L		PUENTE	A22 1.519	5.326	6.845		7	13	1 205 2 1						11.280	7.551		861				17 634			
LUZ DEL SUR L		PUENTE SALAMANCA	A23 1.109 SL01 3.019	1.850 4.965	2.959 7.984		4	6 17	425 1 2 2 280 3 3			0.156 0.378			9.368 14.024	6.210 6.656		615 752				23 833		925 2 742	
LUZ DEL SUR L		SALAMANCA SALAMANCA	SL01 3.019 SL02 2.742	7.690	10.432		9	17	2 280 3 7 1 365 2 9						15.224			752 884				27 660			
LUZ DEL SUR L	Lima Sur	SALAMANCA	SL03 1.216	7.051	8.267	3	9	12	700 44	70 5 17	8.489	9.335	17.269	12.278	25.758	21.613	4	3 579	3 583	8 796	13 012	21 808	1 453	2 756	4 209
LUZ DEL SUR L		SALAMANCA	SL04 3.817	14.204	18.021	33		53	3 572 3 7			23.428			57.910	47.829	1	7 335	7 336				118		
LUZ DEL SUR L		SALAMANCA SALAMANCA	SL05 1.838 SL07 0.974	5.830 8.432	7.668 9.406		12 12	19 15	1 392 4 5 330 6 8			0.531 2.029			28.362 59.852	18.458 46.018	2	3 073 6 131	3 075 6 136						
LUZ DEL SUR L		SALAMANCA	SL08 1.031	6.180	7.211		11	14	455 27			1.330			17.571	18.483	1	2 492				11 353	0	2 405	
LUZ DEL SUR L		SALAMANCA	SL09 1.306	6.353	7.659		10	15	822 3 9			0.779			44.662	32.432		4 381	4 383			21 469			
LUZ DEL SUR L		SALAMANCA SALAMANCA	SL11 0.503 SL13 0.481	6.644 2.800	7.147 3.281		19	22 8	585 5 6 1 095 1 5			1.726	33.818 2.059		35.511 2.059	32.064 0.595		4 826 45		994		20 383 39 351			
LUZ DEL SUR L		SALAMANCA	SL13 0.481 SL14 1.031	3.424	4.455		3	5	335 1 (0.252			11.761	11.470		972			5 456			1 156	
LUZ DEL SUR L		SALAMANCA	SL15 0.853	4.676	5.529		8	12	1 370 2 6						12.471	8.282		705		13 685		23 372			

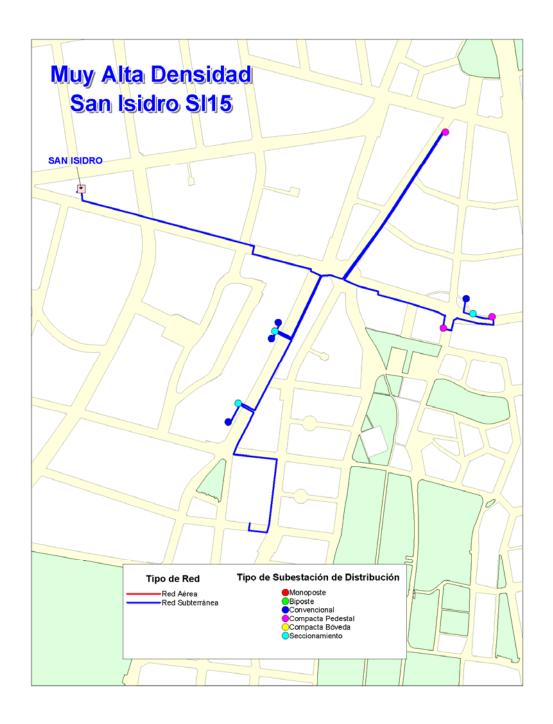
				Red	Media Tensión	(km)	Subestacio	nes de Distribuci	ón (unidad)	Subestac	ciones de Distribuci	ón (kVA)	Baja Tens	ión Aérea	-	ensión erránea	Baja Tensión Subterra		Clientes al 31/	12/2007	Energía	a Año 2007	(MW.h)	Demand	da Año 200	07 (kW)
													Red	Red	Red	Red	Red	Red								$\overline{}$
Nombre	Nombre	Centro de	Alimentador	Red Aérea	Red	Total	Aéreas	Subterráneas	Total	Aéreas	Subterráneas	Total	Servicio	Alumbrado	Servicio	Alumbrado	I	Alumbrado	Media Baja	Total	Media	Baja	Total	Media	Baja	Total
Empresa	Sistema	Transformación			Subterránea								Particular (km)	Público (km)	Particular (km)	Público (km)	Particular (km)	Público (km)	Tensión Tensió	n	Tensión	Tensión		Tensión	Tensión	'
LUZ DEL SUR	Lima Sur	SALAMANCA	SL16	0.774	3.357	4.131	4	2	6	1 015	1 400	2 415	0.213	0.193			7.050	6.369	5 24	2 247	17 478	5 681	23 159	2 888	1 203	4 091
LUZ DEL SUR	Lima Sur	SALAMANCA	SL17	2.402	3.745		9	10	19		2 535	4 375	0.880	0.950	18.749		19.629	13.233	7 15		8 827				2 509	3 968
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SAN BARTOLO SAN BARTOLO	S01 S02	12.502 30.711	5.276 9.686		18	7	25 45		561 1 501	2 251	12.384 22.601	11.679 23.754	29.319 48.282	26.192 44.954	41.703	37.871 68.708	6 1 79 13 4 13		386		3 535 8 468		667 1 636	731 1 759
LUZ DEL SUR	Lima Sur	SAN BARTOLO	S04	24.635	1.260		6	3	9	594		4 601 926		0.277	6.115		70.883 6.492	7.552	5 45	_			1 352	123 40	235	275
LUZ DEL SUR	Lima Sur	SAN BARTOLO	S05	53.006	16.956		57	29	86		3 866	7 777	34.727	34.197	52.756	38.446	87.483	72.643	45 3 98	6 4 031	7 315		15 649	1 209	1 765	2 974
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI02	0.138	2.327		1	5	6	275		3 665	1.322	2.042		2.051	8.753	4.093	3 1 32		3 959		14 211	654	2 171	2 826
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SAN ISIDRO SAN ISIDRO	SI04 SI06	0.005	4.796 5.502		1	12	14 15			5 185 6 525	1.008 1.183	1.892 3.820	15.307 23.932	8.327 10.577	16.315 25.115	10.219 14.397	4 1 28 3 2 38		4 216		16 231 18 845	697 280	2 545 3 633	3 241 3 913
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI07	0.143	12.529		5	33	38	1 080		12 450	1.325	2.667	24.889	11.808	26.214	14.475	2 2 82	28 2830	2 189	23 384	25 573	362	4 953	5 315
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI08		5.164		2	8	10	382		4 822	1.966	1.227	13.234	3.427	15.200	4.654	6 362		7 117	15 448			3 272	
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SAN ISIDRO SAN ISIDRO	SI09 SI10		8.997 6.591		1	14	15	160	6 200 3 580	6 360 3 580	5.409 0.873	3.306 2.317	24.212 13.761	10.895 12.021	29.621 14.634	14.201 14.338	1 5 08 1 2 22		6 437 2 566	19 423 13 850	25 860 16 415		4 114 2 934	5 178 3 357
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI11	0.084	5.112		3	7	10	1 165	4 600	5 765	0.835	1.277		3.551	8.824	4.828	8 87		15 904	10 867	26 771		2 302	4 929
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI12	1.411	5.722	7.133	3	11	14		4 980	6 067	5.140	7.864	28.153	13.129	33.293	20.993	1 6 33		1 406	20 542	21 948	232	4 351	4 583
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI14	0.229	4.520		2	7	9	790		4 120	3.968	4.089	13.145		17.113	10.655	3 154			12 014	13 731		2 545	
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SAN ISIDRO SAN ISIDRO	SI15 SI16		2.085 6.929		1	5 16	17	160	5 270 6 520	5 270 6 680	1.940	4.999	4.638 18.568		4.638 20.508	0.523 14.913	4 74		7 252	10 063 18 100	17 315 18 100		2 132 3 834	3 330 3 834
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI17	0.116	3.155			9	9		4 780	4 780	1.411	3.979	9.076		10.487	7.818	1 62	_		14 317	14 317		3 033	3 033
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI19	0.002	5.077		3	16	19			6 365	0.726	0.909	11.374		12.100	8.115	4 169				24 734		3 905	4 946
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SAN ISIDRO SAN ISIDRO	SI20 SI21	0.358	8.373 2.941		2	16	18	172	5 710 5 620	5 882 5 620	4.095	5.333	21.172 0.756		25.267 0.756	17.886	1 3 34		817 5 709		20 764 16 064		4 225 2 193	4 360 3 137
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ01	13.820	5.549		33	3	36	2 782		3 162	17.091	20.642	25.847	16.422	42.938	37.064	9 332		1 562		8 960	258	1 567	1 825
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ02	9.584	6.068		33	17	50	3 192	1 540	4 732	10.348	9.063	58.348		68.696	51.336	5 5 77	70 5 775	1 827	15 342	17 169	302	3 250	3 552
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ03	9.649	14.491			9	62	9 087	2 270	11 357	18.559	18.932	73.489	54.526	92.048	73.458	2 11 43		362		27 837	60	5 820	5 879
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SAN JUAN SAN JUAN	SJ04 SJ05	8.618 13.330	9.902 5.023		22		44 42		4 266 375	8 677 6 669	3.936 15.290	4.623 15.096	49.884 77.163	49.680 56.326	53.820 92.453	54.303 71.422	2 9 26 4 9 48	_	2 539		30 337 21 068	419 225	5 888 4 174	
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ06	3.277	3.061			1	20			1 715		12.219	7.021	6.300	20.061	18.519	3 2 52				6 130		844	1 198
LUZ DEL SUR	Lima Sur	SAN MATEO	SM11	7.098	0.296		6	3	9	302	1 130	1 432	7.118	7.341	0.574	0.202	7.692	7.543	2 74		1 764		2 885	291	237	529
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SANTA ANITA SANTA ANITA	ST11 ST12	2.983 12.947	1.378 10.122		13 46	1 14	14	1 549 4 182	82 2 115	1 631 6 297	3.340 22.986	4.748 22.527	13.606 52.078	10.373 39.973	16.946 75.064	15.121 62.500	1 1 15		5 511 6 519	5 472 18 011	5 983 24 530	84 1 077	1 159 3 815	1 244 4 892
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST13	5.966	7.140	_	14	16	30	2 197	4 110	6 307	8.118	6.789	43.648		51.766	41.358	7 4 45		2 589		22 871	428	4 296	
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST14	8.528	3.516		29	5	34		960	4 717	14.388	15.824	54.476	41.890	68.864	57.714	2 5 70	00 5 702	239	18 432	18 671	39	3 904	
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST15	5.232	2.769		18 38	7	25	2 774	1 339	4 113	1.448	0.535		14.347	22.522	14.882	4 1 54		9 927	11 047	20 974		2 340	
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SANTA ANITA SANTA ANITA	ST21 ST24	15.875 1.661	6.427 1.559		38	ь	44	4 882	1 650	6 532	16.940	17.273	38.043	28.223	54.983	45.496	17 3 73	3 756	14 361 1 089	16 860	31 221 1 089		3 571	5 944 180
LUZ DEL SUR	Lima Sur	SANTA CLARA	SC10	12.459	3.115		52	3	55	5 284	369	5 653	28.809	25.651	33.337	24.213	62.146	49.864	10 4 44	5 4 455	12 552	13 742	26 295		2 911	4 985
LUZ DEL SUR	Lima Sur	SANTA CLARA	SC11	12.342	7.341		41	9	50	4 107	1 169	5 276	34.072	35.425	24.206		58.278	52.944	9 4 85	4 866		8 533	15 544		1 807	
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SANTA CLARA SANTA CLARA	SC13 SC20	17.868	0.616 2.691		55	1	57	4 315	82 232	82 4 547	24.722	23.272	0.120 38.717	22.636	0.120 63.439	45.908	3 11 1 97	4 1 985	1 418 18 247	4 979	1 418 23 226	234 3 015	1 055	234 4 069
LUZ DEL SUR	Lima Sur	SANTA CLARA	SC21	5.558	3.397			3	14			1 374	6.430	5.734			11.176	8.348	1	4 5	1 064		1 166		21	
LUZ DEL SUR	Lima Sur	SURCO	SU01	33.385	1.954		12	8	20	702	558	1 260	10.291	9.473	8.064	5.794	18.355	15.267	1 1 29	9 1 300	60		1 680	10	343	353
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SURCO SURCO	SU02 SU03	29.438	0.056 1.115		12	2	15	655	285	940	10.339	9.586	3.621	2.075	13.960	11.661	2 6 5	30 536	920		920 1 084	152 32	189	152 221
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA12	11.181	1.552				32		263	3 041	7.165	7.026	53.545		60.710	37.670	2 476		545		8 674		1 722	
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA13	13.460	6.360		58		70		1 712	8 443	23.581	21.795			62.049	47.940	5 79	92 797	2 795		11 568		1 858	2 320
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA14	14.333	7.001			8	71		767	5 748		16.004			112.875	78.361	5 11 32	_	975		25 028	161	5 095	5 256
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	VILLA EL SALVADOR VILLA EL SALVADOR	SA15 SA16	9.549 13.500	4.345 9.742		57	14	44 71	4 870 4 976	1 449	4 870 6 425	3.036 20.961	17.630 29.379	57.190 56.599	3.754 31.111	60.226 77.560	21.384 60.490	4 4 57 7 6 27		1 096 2 536		15 418 18 879	181 419	3 033 3 462	3 215 3 881
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA17	13.102	1.151		52		52		1 440	4 325	2.772	12.706	81.396	21.209	84.168	33.915	674		3 2 000	17 232	17 232	710	3 650	3 650
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA18	10.416	2.577	12.993	44	1	45	3 517	25	3 542	4.820	5.437	62.616	14.474	67.436	19.911	5 23			10 693	10 693		2 265	2 265
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA19	13.770	1.198		23	3	26	1 992	189	2 181	9.007	8.483	3.281	0.120	12.288	8.603	17 47		8 062	3 262	11 324		691	2 023
LUZ DEL SUR		VILLA EL SALVADOR VILLA MARIA	VM01	10.317	2.996 3.521			3	52 8	5 082 1 032	150 1 870	5 232 2 902	6.872 1.292	11.133 1.229		33.359 15.341	101.223 26.533	44.492 16.570	3 8 56		2 4 546	17 035 9 082			3 608 1 924	
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM02	7.379	17.718	25.097	40		78	3 255	3 270	6 525	31.075	29.047	82.161	53.946	113.236	82.993	3 10 19	10 194	697	19 546	20 244	115	4 140	4 255
LUZ DEL SUR		VILLA MARIA	VM05	3.751	15.100				49			5 653	14.118	16.269		43.895	74.479	60.164	3 7 35			20 638			4 371	
LUZ DEL SUR LUZ DEL SUR		VILLA MARIA VILLA MARIA	VM07 VM10	10.333 2.888	10.645 8.768	_			61 36			5 917 4 206		28.566 8.951			96.270 61.865	78.853 39.703	3 9 59 1 5 59	_						
LUZ DEL SUR		VILLA MARIA	VM11	4.706								5 532		5.296			53.320	40.995	7 500			20 277				
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM12	4.600	6.955	11.555	16	6	22	3 287	3 295	6 582	3.677	5.317	35.229	24.638	38.906	29.955	9 2 97	9 2 988	5 885	15 319	21 203	972	3 245	4 217
LUZ DEL SUR		VILLA MARIA	VM13	3.986	9.186							3 930		13.129			50.564	41.351	2 4 34						1 826	
LUZ DEL SUR LUZ DEL SUR		VILLA MARIA VILLA MARIA	VM14 VM15	9.470 6.479	17.277 22.039				66 62			7 824 7 482		28.089 19.527		52.501 62.113	104.683 122.328	80.590 81.640	2 8 38 1 9 38			24 302 23 519				
LUZ DEL SUR		VILLA MARIA	VM16	4.614					29			5 447		3.970			70.487	55.073	5 683			19 782			4 190	
LUZ DEL SUR			VM17	1.384	4.753	6.137			12			1 885		4.133			18.884	19.018	2 266			11 916			2 524	

6.2 Anexo N° 2: Alimentadores según su Densidad de Carga Lineal

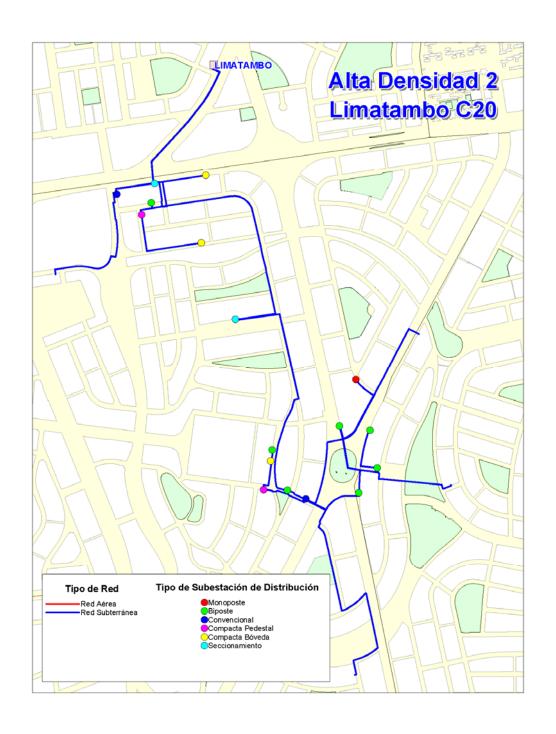
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador	Estrato	Densidad de Carga Lineal (kW/km)
LUZ DEL SUR	Lima Sur	INGENIEROS	IG23	MAD	4 487
LUZ DEL SUR	Lima Sur	SURCO	SU02	MAD	2 715
EDELNOR	Lima Norte	INDUSTRIAL	ID09	MAD	2 355
LUZ DEL SUR	Lima Sur	LURIN	L21	MAD	2 114
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	SALAMANCA SANTA ROSA	SL13 SR51	MAD MAD	2 066 1 920
LUZ DEL SUR	Lima Sur	PUENTE	A12	MAD	1 888
EDELNOR	Lima Norte	OQUENDO	001	MAD	1 753
LUZ DEL SUR	Lima Sur	HUACHIPA	HP05	MAD	1 702
EDELNOR	Lima Norte	TACNA	T18	MAD	1 619
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI15	MAD	1 597
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z13	MAD	1 518
LUZ DEL SUR	Lima Sur	INGENIEROS	IG13	MAD	1 415
LUZ DEL SUR LUZ DEL SUR	Lima Sur	PUENTE PUENTE	A23 A14	MAD MAD	1 399 1 397
LUZ DEL SUR	Lima Sur Lima Sur	LIMATAMBO	C10	MAD	1 317
EDELNOR	Lima Norte	INDUSTRIAL	ID04	MAD	1 275
EDELNOR	Lima Norte	TACNA	T10	MAD	1 237
LUZ DEL SUR	Lima Sur	LAS PRADERAS	PR21	MAD	1 218
EDELNOR	Lima Norte	TACNA	T14	MAD	1 189
LUZ DEL SUR	Lima Sur	PUENTE	A03	MAD	1 182
EDELNOR	Lima Norte	TACNA	T16	MAD	1 175
LUZ DEL SUR	Lima Sur	PUENTE	A13	MAD	1 166
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI02	MAD	1 146
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	TOMAS VALLE PUENTE	TV07 A02	AD1 AD1	1 091 1 089
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U13	AD1	1 089
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI21	AD1	1 066
EDELNOR	Lima Norte	MIRONES	M29	AD1	1 056
EDELNOR	Lima Norte	MIRONES	M03	AD1	1 053
LUZ DEL SUR	Lima Sur	LIMATAMBO	C07	AD1	1 020
LUZ DEL SUR	Lima Sur	PUENTE	A17	AD1	997
LUZ DEL SUR	Lima Sur	SALAMANCA	SL16	AD1	990
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI19	AD1	974
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U17	AD1	972
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	LIMATAMBO CHAVARRIA	C15 CH02	AD1 AD1	966 957
LUZ DEL SUR	Lima Sur	LIMATAMBO	C13	AD1	956
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI11	AD1	949
LUZ DEL SUR	Lima Sur	INGENIEROS	IG14	AD1	949
EDELNOR	Lima Norte	SANTA ROSA	P16	AD1	945
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U03	AD1	944
LUZ DEL SUR	Lima Sur	LIMATAMBO	C18	AD1	941
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI17	AD1	927
LUZ DEL SUR EDELNOR	Lima Sur	PUENTE TACNA	A11 T17	AD1	926 897
LUZ DEL SUR	Lima Norte Lima Sur	GALVEZ	G16	AD1 AD1	897
LUZ DEL SUR	Lima Sur	LIMATAMBO	C16	AD1	895
EDELNOR	Lima Norte	PERSHING	Q03	AD1	893
EDELNOR	Lima Norte	PANDO	PA02	AD1	891
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI08	AD1	861
LUZ DEL SUR	Lima Sur	PUENTE	A07	AD1	858
EDELNOR	Lima Norte	BARSI	K01	AD1	857
EDELNOR	Lima Norte	TACNA	T02	AD1	855
EDELNOR EDELNOR	Lima Norte	INDUSTRIAL	ID02	AD1	839
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	TACNA LUIS NEYRA	T19 U24	AD1 AD1	829 823
EDELNOR	Lima Sur Lima Norte	PERSHING	Q18	AD1	821
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U08	AD1	816
EDELNOR	Lima Norte	MIRONES	M16	AD1	814
LUZ DEL SUR	Lima Sur	SALAMANCA	SL01	AD1	808
EDELNOR	Lima Norte	TACNA	T09	AD1	806
LUZ DEL SUR	Lima Sur	GALVEZ	G04	AD1	801
LUZ DEL SUR	Lima Sur	SALAMANCA	SL15	AD1	780
LUZ DEL SUR	Lima Sur	PUENTE	A15	AD1	780
EDELNOR EDELNOR	Lima Norte	SANTA ROSA	P22	AD1	774 765
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	PANDO PUENTE	PA09 A09	AD1 AD1	765 758
EDELNOR	Lima Sur Lima Norte	CHAVARRIA	CH08	AD1	758 757
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U15	AD1	755
LUZ DEL SUR	Lima Sur	LIMATAMBO	C02	AD1	748
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U01	AD1	740
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U06	AD1	735
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U05	AD1	730
LUZ DEL SUR	Lima Sur	PUENTE	A01	AD1	722

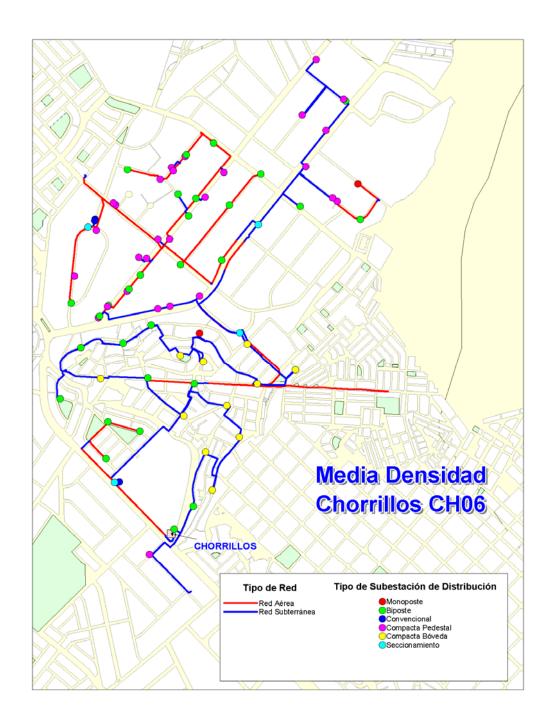
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador	Estrato	Densidad de Carga Lineal
LUZ DEL CUD			1104	A D4	(kW/km)
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	LUIS NEYRA PERSHING	U21 Q04	AD1 AD1	719 715
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI06	AD1	711
LUZ DEL SUR	Lima Sur	GALVEZ	G14	AD1	704
EDELNOR	Lima Norte	PANDO	PA14	AD1	688
LUZ DEL SUR	Lima Sur	GALVEZ	G11	AD1	687
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	LUIS NEYRA MIRONES	U07 M19	AD1 AD1	686 683
EDELNOR	Lima Norte	TACNA	T07	AD1	678
EDELNOR	Lima Norte	TACNA	T04	AD1	677
LUZ DEL SUR	Lima Sur	SALAMANCA	SL07	AD1	677
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI04	AD1	675
LUZ DEL SUR	Lima Sur	LIMATAMBO	C12	AD1	669
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	GALVEZ LUIS NEYRA	G13 U20	AD1 AD1	664 664
EDELNOR	Lima Norte	TACNA	T27	AD1	662
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U19	AD1	661
LUZ DEL SUR	Lima Sur	LIMATAMBO	C17	AD1	660
LUZ DEL SUR	Lima Sur	PUENTE	A16	AD1	651
EDELNOR	Lima Norte	TOMAS VALLE	TV10	AD1	651
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	MARANGA LUIS NEYRA	MA16 U14	AD2 AD2	649 646
LUZ DEL SUR	Lima Sur Lima Sur	SALAMANCA	SL17	AD2	645
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI12	AD2	643
EDELNOR	Lima Norte	TACNA	T03	AD2	642
EDELNOR	Lima Norte	BARSI	K16	AD2	641
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U04	AD2	640
EDELNOR	Lima Norte	PANDO	PA13	AD2	639
EDELNOR EDELNOR	Lima Norte	INDUSTRIAL MIRONES	ID08 M04	AD2 AD2	636
EDELNOR	Lima Norte Lima Norte	MIRONES	M09	AD2	636 631
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z20	AD2	629
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z06	AD2	629
LUZ DEL SUR	Lima Sur	GALVEZ	G06	AD2	628
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U23	AD2	627
LUZ DEL SUR	Lima Sur	LIMATAMBO	C11	AD2	624
EDELNOR EDELNOR	Lima Norte Lima Norte	PANDO SANTA BOSA	PA10	AD2 AD2	622 621
LUZ DEL SUR	Lima Sur	SANTA ROSA PUENTE	P29 A18	AD2	621
LUZ DEL SUR	Lima Sur	INGENIEROS	IG15	AD2	615
EDELNOR	Lima Norte	INFANTAS	l12	AD2	607
EDELNOR	Lima Norte	VENTANILLA	V01	AD2	603
LUZ DEL SUR	Lima Sur	GALVEZ	G01	AD2	603
EDELNOR	Lima Norte	SANTA ROSA	P27	AD2	602
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	TOMAS VALLE SALAMANCA	TV05 SL11	AD2 AD2	599 598
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI14	AD2	596
EDELNOR	Lima Norte	PERSHING	Q02	AD2	589
EDELNOR	Lima Norte	BARSI	K20	AD2	588
EDELNOR	Lima Norte	PERSHING	Q15	AD2	588
EDELNOR	Lima Norte	TACNA	T13	AD2	587
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	LIMATAMBO NARANJAL	C05 NJ12	AD2 AD2	587 587
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U22	AD2	587
EDELNOR	Lima Norte	PERSHING	Q07	AD2	586
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U10	AD2	584
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z19	AD2	581
LUZ DEL SUR	Lima Sur	GALVEZ	G07	AD2	580
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH08	AD2	580
EDELNOR EDELNOR	Lima Norte	SANTA ROSA MIRONES	P06 M08	AD2 AD2	579
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	SALAMANCA	SL09	AD2	578 577
EDELNOR	Lima Norte	MARANGA	MA01	AD2	577
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI09	AD2	575
EDELNOR	Lima Norte	MIRONES	M22	AD2	575
LUZ DEL SUR	Lima Sur	LIMATAMBO	C06	AD2	570
LUZ DEL SUR	Lima Sur	GALVEZ	G15	AD2	565
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z17	AD2	565 565
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	LIMATAMBO SANTA ROSA	C20 SR40	AD2 AD2	565 563
LUZ DEL SUR	Lima Norte	LUIS NEYRA	U16	AD2	558
EDELNOR	Lima Norte	PERSHING	Q11	AD2	556
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI16	AD2	553
EDELNOR	Lima Norte	MARANGA	MA05	AD2	550
EDELNOR	Lima Norte	MIRONES	M07	AD2	548

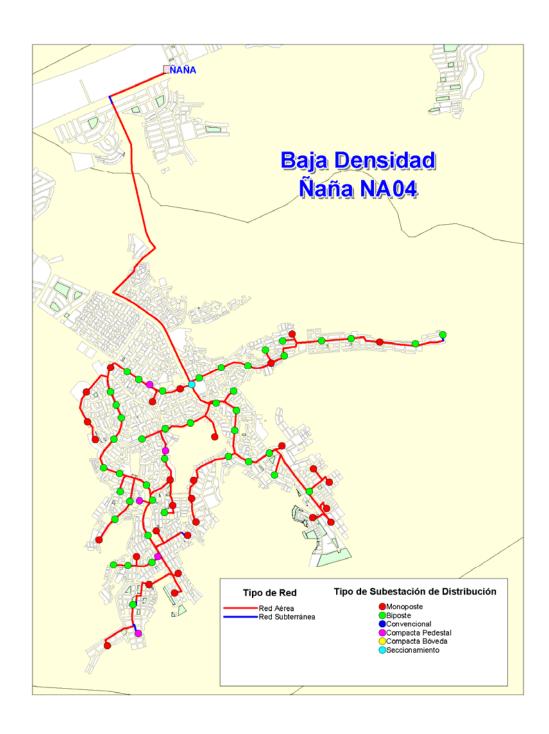
Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador	Estrato	Densidad de Carga Lineal (kW/km)
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z07	AD2	547
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z03	AD2	546
LUZ DEL SUR	Lima Sur	BARRANCO	B04	AD2	546
LUZ DEL SUR	Lima Sur	LIMATAMBO	C08	AD2	543
LUZ DEL SUR	Lima Sur	LIMATAMBO	C09	AD2	543
EDELNOR EDELNOR	Lima Norte Lima Norte	PANDO MIRONES	PA07 M01	AD2 AD2	542 541
LUZ DEL SUR	Lima Norte	LIMATAMBO	C01	AD2	541
LUZ DEL SUR	Lima Sur	LIMATAMBO	C19	AD2	539
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z15	AD2	535
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z05	AD2	530
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM01	AD2	529
EDELNOR	Lima Norte	BARSI	K14	AD2	529
EDELNOR	Lima Norte	MARANGA	MA12	AD2	528
EDELNOR	Lima Norte	INFANTAS	105	AD2	527
EDELNOR	Lima Norte	PERSHING	Q12	AD2	520
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI10	AD2	509
LUZ DEL SUR	Lima Sur	SALAMANCA	SL03	AD2	509
LUZ DEL SUR	Lima Sur	BARRANCO	B03	AD2	505
EDELNOR	Lima Norte	CALVEZ	CH14	AD2	504
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	GALVEZ BARRANCO	G10 B08	AD2 AD2	502 501
LUZ DEL SUR	Lima Sur	BARRANCO	B01	AD2	500
EDELNOR	Lima Norte	PANDO	PA06	AD2	499
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI20	AD2	499
EDELNOR	Lima Norte	SANTA ROSA	P01	AD2	499
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST15	AD2	497
LUZ DEL SUR	Lima Sur	INGENIEROS	IG12	AD2	496
EDELNOR	Lima Norte	PANDO	PA05	AD2	495
LUZ DEL SUR	Lima Sur	GALVEZ	G02	AD2	494
EDELNOR	Lima Norte	PERSHING	Q06	AD2	486
LUZ DEL SUR	Lima Sur	SALAMANCA	SL05	AD2	485
LUZ DEL SUR	Lima Sur	SALAMANCA	SL02	AD2	481
EDELNOR	Lima Norte	NARANJAL	NJ05	AD2	477
LUZ DEL SUR	Lima Sur	PUENTE	A22	AD2	476
LUZ DEL SUR	Lima Sur	GALVEZ	G22	AD2	475
LUZ DEL SUR	Lima Sur	GALVEZ	G21	AD2	474
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	PANDO	PA12 MO14	AD2 AD2	466
LUZ DEL SUR	Lima Sur	MONTERRICO GALVEZ	G20	AD2	466 466
EDELNOR	Lima Norte	TOMAS VALLE	TV04	AD2	460
LUZ DEL SUR	Lima Sur	LIMATAMBO	C14	AD2	453
EDELNOR	Lima Norte	INDUSTRIAL	ID07	MD	449
LUZ DEL SUR	Lima Sur	INGENIEROS	IG11	MD	449
EDELNOR	Lima Norte	PERSHING	Q13	MD	443
LUZ DEL SUR	Lima Sur	BARRANCO	B05	MD	441
EDELNOR	Lima Norte	MARANGA	MA09	MD	440
EDELNOR	Lima Norte	PERSHING	Q16	MD	439
EDELNOR	Lima Norte	SANTA ROSA	P24	MD	438
EDELNOR	Lima Norte	SANTA ROSA	P23	MD	437
EDELNOR	Lima Norte	CANTO GRANDE	CG05	MD	436
EDELNOR	Lima Norte	SANTA MARINA	F21	MD	436
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	PUENTE VILLA MARIA	A10 VM17	MD MD	434 432
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	BALNEARIOS	Z01	MD	432
EDELNOR	Lima Sur Lima Norte	MARANGA	MA13	MD	432
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM11	MD	431
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z18	MD	424
EDELNOR	Lima Norte	PERSHING	Q08	MD	423
EDELNOR	Lima Norte	MIRONES	M02	MD	421
LUZ DEL SUR	Lima Sur	SAN ISIDRO	SI07	MD	419
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM16	MD	419
EDELNOR	Lima Norte	TACNA	T24	MD	418
EDELNOR	Lima Norte	CHAVARRIA	CH15	MD	415
LUZ DEL SUR	Lima Sur	BARRANCO	B07	MD	415
EDELNOR	Lima Norte	MIRONES	M06	MD	413
LUZ DEL SUR	Lima Sur	MONTERRICO	MO12	MD	411
EDELNOR	Lima Norte	CHAVARRIA	CH22	MD	411
LUZ DEL SUR	Lima Sur	LUIS NEYRA	U12	MD	407
EDELNOR	Lima Norte	MARANGA	MA11	MD	405
EDELNOR	Lima Norte	SANTA ROSA	P14	MD	403
LUZ DEL SUR	Lima Sur	GALVEZ	G09	MD	402
	ll ima C				
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	LUIS NEYRA BARRANCO	U18 B02	MD MD	401 401


Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador	Estrato	Densidad de Carga Lineal (kW/km)
EDELNOR	Lima Norte	TACNA	T06	MD	399
EDELNOR	Lima Norte	MIRONES	M14	MD	399
EDELNOR	Lima Norte	TOMAS VALLE	TV03	MD	393
EDELNOR	Lima Norte	CHAVARRIA	CH16	MD	391
LUZ DEL SUR	Lima Sur	LURIN	L22	MD	391
EDELNOR	Lima Norte	CHAVARRIA	CH21	MD	388
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	SANTA MARINA BALNEARIOS	F06 Z10	MD MD	388 382
EDELNOR	Lima Norte	CHAVARRIA	CH10	MD	381
LUZ DEL SUR	Lima Sur	SANTA CLARA	SC13	MD	380
LUZ DEL SUR	Lima Sur	GALVEZ	G05	MD	377
EDELNOR	Lima Norte	MARANGA	MA03	MD	376
EDELNOR	Lima Norte	TACNA	T01	MD	372
EDELNOR	Lima Norte	TOMAS VALLE	TV15	MD	371
EDELNOR	Lima Norte	SANTA MARINA	F07	MD	370
EDELNOR	Lima Norte	MARANGA	MA10	MD	370
EDELNOR	Lima Norte	MIRONES	M26	MD	368
LUZ DEL SUR	Lima Sur	ÑAÑA	NA01	MD	366
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM12	MD	365
EDELNOR	Lima Norte	TACNA	T22	MD	365
EDELNOR	Lima Norte	TOMAS VALLE	TV13	MD	365
EDELNOR EDELNOR	Lima Norte	MIRONES	M12	MD MD	364
EDELNOR EDELNOR	Lima Norte Lima Norte	PANDO PANDO	PA03 PA11	MD MD	363 363
EDELNOR	Lima Norte	PERSHING	Q14	MD	361
EDELNOR	Lima Norte	INDUSTRIAL	ID05	MD	361
EDELNOR	Lima Norte	SANTA ROSA	P15	MD	360
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST13	MD	360
LUZ DEL SUR	Lima Sur	BARRANCO	B11	MD	360
EDELNOR	Lima Norte	MIRONES	M21	MD	359
EDELNOR	Lima Norte	NARANJAL	NJ11	MD	358
EDELNOR	Lima Norte	BARSI	K02	MD	352
EDELNOR	Lima Norte	INFANTAS	102	MD	352
EDELNOR	Lima Norte	BARSI	K07	MD	349
EDELNOR	Lima Norte	CHAVARRIA	CH17	MD	349
EDELNOR	Lima Norte	MARANGA	MA06	MD	348
EDELNOR	Lima Norte	TACNA	T15	MD	347
EDELNOR	Lima Norte	SANTA ROSA	P31	MD	347
EDELNOR	Lima Norte	TOMAS VALLE	TV16	MD	346
LUZ DEL SUR	Lima Sur	MONTERRICO	MO22	MD	345
EDELNOR EDELNOR	Lima Norte Lima Norte	TOMAS VALLE CHAVARRIA	TV02 CH23	MD MD	343 343
LUZ DEL SUR	Lima None	GALVEZ	G08	MD	343
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ04	MD	341
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH06	MD	340
EDELNOR	Lima Norte	CHAVARRIA	CH20	MD	339
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL05	MD	339
LUZ DEL SUR	Lima Sur	SALAMANCA	SL08	MD	333
EDELNOR	Lima Norte	TOMAS VALLE	TV17	MD	332
EDELNOR	Lima Norte	MIRONES	M05	MD	332
EDELNOR	Lima Norte	MARANGA	MA08	MD	331
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST14	MD	327
LUZ DEL SUR	Lima Sur	MONTERRICO	MO11	MD	327
EDELNOR	Lima Norte	TOMAS VALLE	TV01	MD	327
LUZ DEL SUR	Lima Sur	PUENTE	A05	MD	326
EDELNOR	Lima Norte	TOMAS VALLE	TV08	MD	324
EDELNOR	Lima Norte	BARSI	K24	MD	323
EDELNOR	Lima Norte	BARSI	K03	MD	323
EDELNOR LUZ DEL SUR	Lima Norte	BARSI	K21	MD MD	321
LUZ DEL SUR	Lima Sur	BALNEARIOS SANTA CLARA	Z14	MD	321 320
LUZ DEL SUR	Lima Sur Lima Sur	MONTERRICO	SC10 MO13	MD	320
LUZ DEL SUR	Lima Sur	CHOSICA	SR02	MD	319
EDELNOR	Lima Norte	INFANTAS	119	MD	316
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z16	MD	311
EDELNOR	Lima Norte	CHAVARRIA	CH12	MD	311
EDELNOR	Lima Norte	PUENTE PIEDRA	PP05	MD	310
EDELNOR	Lima Norte	TACNA	T21	MD	304
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH05	MD	301
LUZ DEL SUR	Lima Sur	GALVEZ	G19	MD	301
EDELNOR	Lima Norte	TACNA	T05	MD	299
EDELNOR	Lima Norte	TACNA	T12	MD	298
EDELNOR	Lima Norte	TOMAS VALLE	TV09	MD	298
LUZ DEL SUR	Lima Sur	BARRANCO	B06	MD	298
EDELNOR	Lima Norte	MIRONES	M23	MD	296


Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador	Estrato	Densidad de Carga Lineal (kW/km)
EDELNOR	Lima Norte	MIRONES	M15	MD	295
EDELNOR	Lima Norte	SANTA ROSA	P32	MD	295
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL04	MD	292
EDELNOR	Lima Norte	MIRONES	M11	MD	290
EDELNOR EDELNOR	Lima Norte Lima Norte	SANTA ROSA TACNA	P28 T23	MD MD	288 286
EDELNOR	Lima Norte	SANTA ROSA	P07	MD	286
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST11	MD	285
EDELNOR	Lima Norte	PANDO	PA15	MD	285
EDELNOR	Lima Norte	MARANGA	MA04	MD	284
LUZ DEL SUR	Lima Sur	BARRANCO	B12	MD	284
EDELNOR	Lima Norte	MIRONES	M13	MD	283
EDELNOR	Lima Norte	BARSI	K12	MD	283
EDELNOR EDELNOR	Lima Norte Lima Norte	SANTA ROSA CANTO GRANDE	P13 CG03	MD MD	282
EDELNOR	Lima Norte	TACNA	T25	MD	280 277
EDELNOR	Lima Norte	SANTA ROSA	P34	MD	275
EDELNOR	Lima Norte	INDUSTRIAL	ID03	MD	275
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA20	MD	272
EDELNOR	Lima Norte	CHAVARRIA	CH24	MD	271
LUZ DEL SUR	Lima Sur	PUENTE	A20	MD	270
EDELNOR	Lima Norte	CHAVARRIA	CH18	MD	268
EDELNOR	Lima Norte	BARSI	K15	MD	267
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST21	MD	267
LUZ DEL SUR	Lima Sur	PUENTE	A06	MD	266
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	CHORRILLOS BARSI	CH04 K09	MD MD	266 265
LUZ DEL SUR	Lima Norte	PUENTE	A08	MD	263
EDELNOR	Lima Norte	CANTO GRANDE	CG12	MD	263
EDELNOR	Lima Norte	PERSHING	Q17	MD	262
EDELNOR	Lima Norte	OQUENDO	O03	MD	262
LUZ DEL SUR	Lima Sur	LAS PRADERAS	PR11	MD	261
EDELNOR	Lima Norte	SANTA MARINA	F11	MD	261
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL01	MD	261
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM10	MD	260
EDELNOR	Lima Norte	SANTA MARINA	F14	MD	260
EDELNOR	Lima Norte	CANTO GRANDE	CG08	MD MD	260
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	SALAMANCA BALNEARIOS	SL14 Z11	MD	259 258
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA17	MD	256
EDELNOR	Lima Norte	TACNA	T11	MD	256
LUZ DEL SUR	Lima Sur	BALNEARIOS	Z08	MD	255
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH21	MD	255
LUZ DEL SUR	Lima Sur	HUACHIPA	HP07	MD	254
EDELNOR	Lima Norte	SANTA MARINA	F19	MD	253
EDELNOR	Lima Norte	CHAVARRIA	CH13	MD	252
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM05	MD	250
LUZ DEL SUR	Lima Sur	HUACHIPA	HP06	BD BD	249 248
EDELNOR EDELNOR	Lima Norte Lima Norte	INFANTAS NARANJAL	NJ04	BD	248
EDELNOR	Lima Norte	MIRONES	M18	BD	248
EDELNOR	Lima Norte	INFANTAS	116	BD	247
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA14	BD	246
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH01	BD	246
EDELNOR	Lima Norte	SANTA MARINA	F18	BD	244
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ03	BD	244
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ05	BD	240
LUZ DEL SUR	Lima Sur	SALAMANCA	SL04	BD	235
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	SANTA ROSA LA PLANICIE	P21 PL06	BD BD	234
EDELNOR	Lima Sur Lima Norte	INFANTAS	I13	BD	233 232
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA15	BD	231
EDELNOR	Lima Norte	INFANTAS	114	BD	228
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ02	BD	227
LUZ DEL SUR	Lima Sur	GALVEZ	G18	BD	226
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL03	BD	226
EDELNOR	Lima Norte	OQUENDO	O05	BD	225
EDELNOR	Lima Norte	CHAVARRIA	CH11	BD	224
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH03	BD	220
LUZ DEL SUR	Lima Sur	HUACHIPA	HP03	BD	220
EDELNOR	Lima Norte	SANTA MARINA	F16	BD	220
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	GALVEZ INFANTAS	G03 I04	BD BD	219 217
EDELNOR	Lima Norte	SANTA ROSA	P33	BD BD	217
		S. HTITTICOA	1 00	טט	417


Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador	Estrato	Densidad de Carga Lineal (kW/km)
EDELNOR	Lima Norte	CHAVARRIA	CH05	BD	213
EDELNOR	Lima Norte	SANTA MARINA	F04	BD	212
LUZ DEL SUR	Lima Sur	SANTA ANITA	ST12	BD	212
EDELNOR EDELNOR	Lima Norte Lima Norte	SANTA MARINA SANTA MARINA	F17 F03	BD BD	211 211
EDELNOR	Lima Norte	BARSI	K11	BD	209
LUZ DEL SUR	Lima Sur	BARRANCO	B13	BD	208
EDELNOR	Lima Norte	INFANTAS	l11	BD	206
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM14	BD	205
EDELNOR	Lima Norte	CANTO GRANDE	CG10	BD	204
EDELNOR	Lima Norte	SANTA ROSA	P19	BD	203
EDELNOR	Lima Norte Lima Norte	JICAMARCA	J07 P18	BD BD	201
EDELNOR EDELNOR	Lima Norte	SANTA ROSA VENTANILLA	V05	BD	201 201
EDELNOR	Lima Norte	TACNA	T08	BD	200
EDELNOR	Lima Norte	CAUDIVILLA	CV09	BD	200
EDELNOR	Lima Norte	INFANTAS	l18	BD	199
LUZ DEL SUR	Lima Sur	SANTA CLARA	SC20	BD	198
EDELNOR	Lima Norte	NARANJAL	NJ10	BD	196
EDELNOR	Lima Norte	TOMAS VALLE	TV14	BD	194
LUZ DEL SUR	Lima Sur	BUJAMA SANTA MARINA	BJ21	BD	192
EDELNOR	Lima Norte		F09	BD BD	191
EDELNOR EDELNOR	Lima Norte Lima Norte	NARANJAL SANTA MARINA	NJ01 F01	BD BD	189 189
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ06	BD	189
EDELNOR	Lima Norte	BARSI	K13	BD	189
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL07	BD	187
EDELNOR	Lima Norte	NARANJAL	NJ03	BD	185
EDELNOR	Lima Norte	CANTO GRANDE	CG09	BD	184
EDELNOR	Lima Norte	SANTA MARINA	F08	BD	184
EDELNOR	Lima Norte	CANTO GRANDE	CG04	BD	183
LUZ DEL SUR LUZ DEL SUR	Lima Sur Lima Sur	HUACHIPA VILLA MARIA	HP04 VM07	BD BD	183 183
EDELNOR	Lima Norte	INFANTAS	103	BD	183
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL02	BD	182
LUZ DEL SUR	Lima Sur	PACHACAMAC	PA03	BD	182
LUZ DEL SUR	Lima Sur	HUACHIPA	HP01	BD	179
EDELNOR	Lima Norte	CAUDIVILLA	CV03	BD	179
EDELNOR	Lima Norte	CAUDIVILLA	CV06	BD	179
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM15	BD	178
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	CANTO GRANDE VILLA EL SALVADOR	CG11 SA18	BD BD	177 174
LUZ DEL SUR	Lima Sur	PACHACAMAC	PA04	BD	174
LUZ DEL SUR	Lima Sur	CHOSICA	SR09	BD	171
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM02	BD	170
EDELNOR	Lima Norte	OQUENDO	O10	BD	169
EDELNOR	Lima Norte	CANTO GRANDE	CG06	BD	168
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA16	BD	167
EDELNOR EDELNOR	Lima Norte Lima Norte	CHAVARRIA	CH01 P26	BD BD	167
LUZ DEL SUR	Lima None	SANTA ROSA CHOSICA	SR05	BD	166 162
LUZ DEL SUR	Lima Sur	LURIN	L04	BD	161
LUZ DEL SUR	Lima Sur	VILLA MARIA	VM13	BD	160
EDELNOR	Lima Norte	PUENTE PIEDRA	PP06	BD	158
EDELNOR	Lima Norte	CANTO GRANDE	CG02	BD	156
EDELNOR	Lima Norte	SANTA ROSA	P25	BD	156
EDELNOR	Lima Norte	VENTANILLA	V06	BD	156
EDELNOR	Lima Norte	CAUDIVILLA	CV02	BD	155
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	OQUENDO PACHACAMAC	O07 PA06	BD BD	155 154
EDELNOR	Lima Norte	OQUENDO	O09	BD	154
LUZ DEL SUR	Lima Sur	CHORRILLOS	CH02	BD	152
EDELNOR	Lima Norte	NARANJAL	NJ07	BD	152
LUZ DEL SUR	Lima Sur	ÑAÑA	NA06	BD	152
EDELNOR	Lima Norte	MIRONES	M20	BD	151
LUZ DEL SUR	Lima Sur	SANTA CLARA	SC11	BD	151
LUZ DEL SUR	Lima Sur	NANA	NA04	BD	150
EDELNOR EDELNOR	Lima Norte	CHAVARRIA	CH07	BD	146
EDELNOR EDELNOR	Lima Norte Lima Norte	INFANTAS VENTANILLA	V07	BD BD	146 146
EDELNOR	Lima Norte	ANCON	N05	BD	146
EDELNOR	Lima Norte	JICAMARCA	J05	BD	143
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA12	BD	142
EDELNOR	Lima Norte	ANCON	N02	BD	142
EDELNOR	Lima Norte	JICAMARCA	J06	BD	141


Nombre Empresa	Nombre Sistema	Centro de Transformación	Alimentador	Estrato	Densidad de Carga Lineal (kW/km)
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA19	BD	135
LUZ DEL SUR	Lima Sur	PACHACAMAC	PA05	BD	135
LUZ DEL SUR	Lima Sur	LURIN	L05	BD	134
EDELNOR	Lima Norte	MIRONES	M17	BD	132
EDELNOR EDELNOR	Lima Norte Lima Norte	CAUDIVILLA INFANTAS	CV05	BD BD	131 131
LUZ DEL SUR	Lima Norte	CHOSICA	SR01	BD	131
EDELNOR	Lima Norte	CAUDIVILLA	CV01	BD	131
EDELNOR	Lima Norte	CAUDIVILLA	CV07	BD	129
LUZ DEL SUR	Lima Sur	LURIN	L03	BD	128
EDELNOR	Lima Norte	PUENTE PIEDRA	PP04	BD	127
EDELNOR	Lima Norte	MIRONES	M24	BD	126
LUZ DEL SUR	Lima Sur	LURIN	L01	BD	124
EDELNOR	Lima Norte	VENTANILLA	V04	BD	117
LUZ DEL SUR	Lima Sur	VILLA EL SALVADOR	SA13	BD	117
LUZ DEL SUR	Lima Sur	ÑAÑA	NA05	BD	115
EDELNOR	Lima Norte	CAUDIVILLA	CV04	BD	114
LUZ DEL SUR	Lima Sur	LAS PRADERAS	PR12	BD	101
LUZ DEL SUR	Lima Sur	SAN JUAN	SJ01	BD	94
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	OQUENDO CHOSICA	O06 SR03	BD BD	90 87
EDELNOR	Lima Sur Lima Norte	ZAPALLAL	W02	BD	
EDELNOR	Lima Norte	ANCON	N04	BD	86 85
EDELNOR	Lima Norte	ZAPALLAL	W05	BD	82
EDELNOR	Lima Norte	ZAPALLAL	W04	BD	81
LUZ DEL SUR	Lima Sur	HUACHIPA	HP02	BD	81
LUZ DEL SUR	Lima Sur	ÑAÑA	NA03	BD	79
EDELNOR	Lima Norte	BARSI	K23	BD	74
LUZ DEL SUR	Lima Sur	SAN MATEO	SM11	BD	72
LUZ DEL SUR	Lima Sur	BUJAMA	BJ01	BD	68
EDELNOR	Lima Norte	PUENTE PIEDRA	PP02	BD	66
LUZ DEL SUR	Lima Sur	LURIN	L06	BD	65
LUZ DEL SUR	Lima Sur	LURIN	L02	BD	63
LUZ DEL SUR	Lima Sur	ÑAÑA	NA02	BD	61
LUZ DEL SUR	Lima Sur	BUJAMA	BJ22	BD	60
EDELNOR	Lima Norte	CAUDIVILLA	CV08	BD	59
EDELNOR	Lima Norte	ZAPALLAL	W03	BD	58
EDELNOR LUZ DEL SUR	Lima Norte Lima Sur	SANTA MARINA SANTA ANITA	F12 ST24	BD BD	56 56
EDELNOR	Lima Norte	ANCON	N01	BD	52
EDELNOR	Lima Norte	PUENTE PIEDRA	PP10	BD	50
EDELNOR	Lima Norte	ANCON	N06	BD	49
LUZ DEL SUR	Lima Sur	SAN BARTOLO	S02	BD	44
LUZ DEL SUR	Lima Sur	BUJAMA	BJ02	BD	43
LUZ DEL SUR	Lima Sur	SAN BARTOLO	S05	BD	43
EDELNOR	Lima Norte	BARSI	K19	BD	42
LUZ DEL SUR	Lima Sur	LA PLANICIE	PL08	BD	42
EDELNOR	Lima Norte	VENTANILLA	V02	BD	42
LUZ DEL SUR	Lima Sur	SAN BARTOLO	S01	BD	41
LUZ DEL SUR	Lima Sur	HUACHIPA	HP08	BD	39
EDELNOR	Lima Norte	JICAMARCA	J03	BD	32
LUZ DEL SUR	Lima Sur	BUJAMA	BJ03	BD	27
LUZ DEL SUR	Lima Sur	INGENIEROS	IG22 SC21	BD	26
LUZ DEL SUR EDELNOR	Lima Sur Lima Norte	SANTA CLARA PERSHING	Q20	BD BD	22 14
LUZ DEL SUR	Lima Norte	SAN BARTOLO	S04	BD BD	11
LUZ DEL SUR	Lima Sur	SURCO	SU01	BD	10
LUZ DEL SUR	Lima Sur	BARBABLANCA	BB02	BD	10
LUZ DEL SUR	Lima Sur	SURCO	SU03	BD	7
LUZ DEL SUR	Lima Sur	CHOSICA	SR08	BD	7
LUZ DEL SUR	Lima Sur	BARBABLANCA	BB01	BD	5
EDELNOR	Lima Norte	NARANJAL	NJ02	BD	5
EDELNOR	Lima Norte	OQUENDO	O04	BD	3
EDELNOR	Lima Norte	CHAVARRIA	CH03	BD	1
EDELNOR	Lima Norte	CHAVARRIA	CH04	BD	1


6.3 Anexo N° 3: Mapas de los Alimentadores Representativos

6.4 Anexo N° 4: Opciones de Mejora de la Confiabilidad

6.4.1 Alimentadores Subterráneos

Onoián	Equipomiente		Tro	ncal		Laterales	Alimentació	n Alternativa
Opción	Equipamiento	SBC	INT	SEL	TSE	SBC-F	Manual	Automática
A01	Sin equipos. Sin alimentaciones alternativas.							
A02	Seccionadores bajo carga (troncal) y seccionadores bajo carga con fusible limitador (laterales). Sin alimentaciones alternativas.	Х				Х		
A03	Seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales) y señalizadores de cortocircuito. Sin alimentaciones alternativas.	Х		Х		Х		
A04	Seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales) y teleseñalizadores de cortocircuito. Sin alimentaciones alternativas.	Х			Х	Х		
A05	Seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales) y alimentaciones alternativas manuales.	Х				Х	Х	
A06	Seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales), señalizadores de cortocircuito y alimentaciones alternativas manuales.	Х		Х		Х	Х	
A07	Seccionadores bajo carga (troncal), seccionadores bajo carga con fusible limitador (laterales), teleseñalizadores de cortocircuito y alimentaciones alternativas manuales.	Х			Х	Х	Х	
A08	Interruptores (troncal) y seccionadores bajo carga con fusible limitador (laterales). Sin alimentaciones alternativas.		Х			Х		
A09	Interruptores (troncal), seccionadores bajo carga con fusible limitador (laterales) y alimentaciones alternativas manuales.		Х			Х	Х	
A10	Interruptores (troncal), seccionadores bajo carga con fusible limitador (laterales) y alimentaciones alternativas automáticas.		Х			Х		Х

6.4.2 Alimentadores Aéreos

Oncién	Equipomiento			Tronca	I		Laterales	n Alternativa	
Opción	Equipamiento	SEC	SCC	REC	SEL	TSE	SEC-F	Manual	Automática
A01	Sin equipos. Sin alimentaciones alternativas.								
A02	Seccionadores (troncal) y seccionadores fusible (laterales). Sin alimentaciones alternativas.	Х					Х		
A03	Seccionadores (troncal), seccionadores fusible (laterales) y señalizadores de cortocircuito. Sin alimentaciones alternativas.	Х			Х		Х		
A04	Seccionadores (troncal), seccionadores fusible (laterales) y teleseñalizadores de cortocircuito. Sin alimentaciones alternativas.	Х				Х	Х		
A05	Seccionadores (troncal), seccionadores fusible (laterales) y alimentaciones alternativas manuales.	Х		-			X	X	
A06	Seccionadores (troncal), seccionadores fusible (laterales), señalizadores de cortocircuito y alimentaciones alternativas manuales.	Х			Х	!	Х	Х	
A07	Seccionadores (troncal), seccionadores fusible (laterales), teleseñalizadores de cortocircuito y alimentaciones alternativas manuales.	х				Х	Х	Х	
A08	Seccionalizadores y seccionadores (troncal) y seccionadores fusible (laterales). Sin alimentaciones alternativas.	Х	Х				Х		
A09	Seccionalizadores y seccionadores (troncal), seccionadores fusible (laterales) y señalizadores de cortocircuito. Sin alimentaciones alternativas.	Х	Х		Х		Х		
A10	Seccionalizadores y seccionadores (troncal), seccionadores fusible (laterales) y teleseñalizadores de cortocircuito. Sin alimentaciones alternativas.	х	Х			Х	Х		

Opción	Equipamiento			Tronca			Laterales	Alimentació	n Alternativa
Орсіон	Equipalmento	SEC	SCC	REC	SEL	TSE	SEC-F	Manual	Automática
A11	Seccionalizadores y seccionadores (troncal), seccionadores fusible (laterales) y alimentaciones alternativas manuales.	Х	Х				Х	Х	
A12	Seccionalizadores y seccionadores (troncal), seccionadores fusible (laterales), señalizadores de cortocircuito y alimentaciones alternativas manuales.	Х	Х		Х		Х	Х	
A13	Seccionalizadores y seccionadores (troncal), seccionadores fusible (laterales), teleseñalizadores de cortocircuito y alimentaciones alternativas manuales.	Х	х			Х	Х	Х	
A14	Reconectadores, seccionalizadores y seccionadores (troncal) y seccionadores fusible (laterales). Sin alimentaciones alternativas.	Х	Х	Х			Х		
A15	Reconectadores, seccionalizadores y seccionadores (troncal), seccionadores fusible (laterales) y alimentaciones alternativas manuales.	Х	х	Х			Х	Х	
A16	Reconectadores, seccionalizadores y seccionadores (troncal), seccionadores fusible (laterales) y alimentaciones alternativas automáticas.	Х	Х	Х			Х		Х

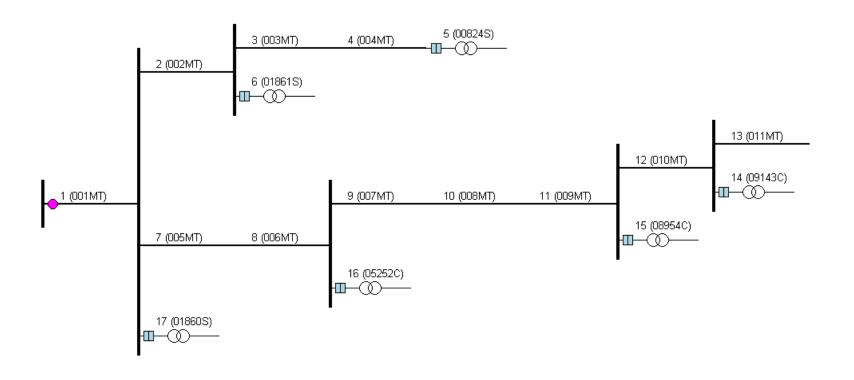
6.4.3 Alimentadores Mixtos

0 = = ! f =	Fordingsoft				Tronca	I			Late	rales	Alimentació	n Alternativa
Opción	Equipamiento	SEC	SCC	REC	SBC	INT	SEL	TSE	SEC-F	SBC-F	Manual	Automática
A01	Sin equipos. Sin alimentaciones alternativas.											
A02	Seccionadores bajo carga (troncal subterránea), seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas) y seccionadores fusible (laterales). Sin alimentaciones alternativas.	х			Х	-			X	X	-	
A03	Seccionadores bajo carga (troncal subterránea), seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y señalizadores de cortocircuito. Sin alimentaciones alternativas.	х			Х		х		X	×	-	
A04	Seccionadores bajo carga (troncal subterránea), seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y teleseñalizadores de cortocircuito. Sin alimentaciones alternativas.	х			Х			×	Х	Х		
A05	Seccionadores bajo carga (troncal subterránea), seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y alimentaciones alternativas manuales.	х			х				Х	Х	Х	
A06	Seccionadores bajo carga (troncal subterránea), seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales), señalizadores de cortocircuito y alimentaciones alternativas manuales.	х			Х		Х		X	X	Х	

Opción	Favinamianta				Tronca	I			Late	rales	Alimentació	Alimentación Alternativa Manual Automática X	
Opcion	Equipamiento	SEC	SCC	REC	SBC	INT	SEL	TSE	SEC-F	SBC-F	Manual	Automática	
A07	Seccionadores bajo carga (troncal subterránea), seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales), teleseñalizadores de cortocircuito y alimentaciones alternativas manuales.	X			Х			Х	Х	х	Х		
A08	Seccionadores bajo carga (troncal subterránea), seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas) y seccionadores fusible (laterales). Sin alimentaciones alternativas.	×	Х		X				Х	х			
A09	Seccionadores bajo carga (troncal subterránea), seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y señalizadores de cortocircuito. Sin alimentaciones alternativas.	Х	Х		Х		Х		Х	х			
A10	Seccionadores bajo carga (troncal subterránea), seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y teleseñalizadores de cortocircuito. Sin alimentaciones alternativas.	Х	Х		Х			Х	Х	Х			
A11	Seccionadores bajo carga (troncal subterránea), seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y alimentaciones alternativas manuales.	X	х		Х				X	X	X		
A12	Seccionadores bajo carga (troncal subterránea), seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales), señalizadores de cortocircuito y alimentaciones alternativas manuales.	X	Х		X		Х		X	Х	Х		

Onoión	Equipomiente				Tronca	I			Late	rales	Alimentación Alternativa	
Opción	Equipamiento	SEC	SCC	REC	SBC	INT	SEL	TSE	SEC-F	SBC-F	Manual	Automática
A13	Seccionadores bajo carga (troncal subterránea), seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales), teleseñalizadores de cortocircuito y alimentaciones alternativas manuales.	Х	Х		X			X	Х	X	Х	
A14	Interruptores y seccionadores bajo carga (troncal subterránea), reconectadores, seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas) y seccionadores fusible (laterales). Sin alimentaciones alternativas.	х	Х	х	Х	X		1	X	X		
A15	Interruptores y seccionadores bajo carga (troncal subterránea), reconectadores, seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y alimentaciones alternativas manuales.	Х	Х	Х	X	X			Х	Х	Х	
A16	Interruptores y seccionadores bajo carga (troncal subterránea), reconectadores, seccionalizadores y seccionadores (troncal aérea), seccionadores bajo carga con fusible limitador (laterales subterráneas), seccionadores fusible (laterales) y alimentaciones alternativas automáticas.	х	х	х	Х	Х		1	X	Х		Х

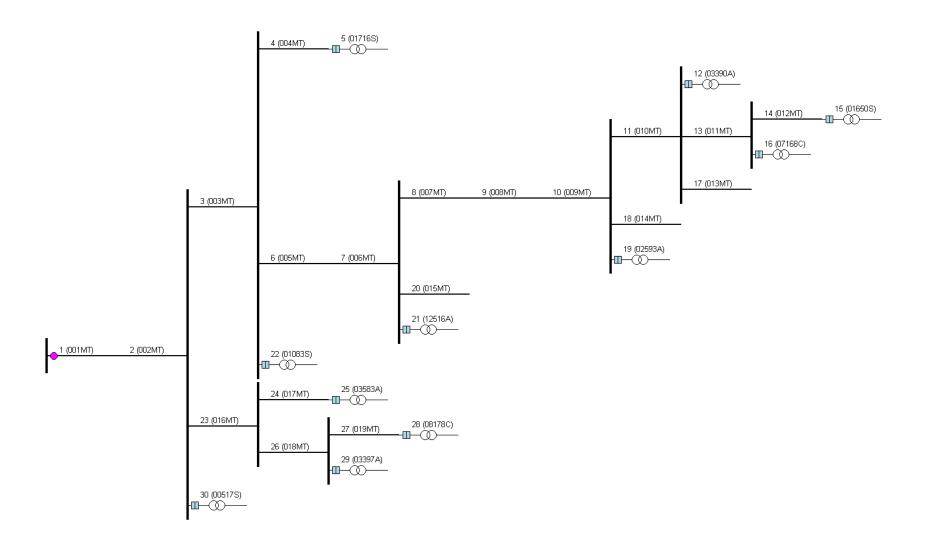
La descripción de los códigos utilizados es la siguiente:


- Señalizadores: Señalizador local (SEL), Teleseñalizador (TSE).
- Equipos: Seccionador (SEC), Seccionador fusible (SEC-F), Seccionador bajo carga (SBC), Seccionador bajo carga fusible limitador (SBC-F), Seccionalizador (SCC), Reconectador (REC), Interruptor (INT).
- Alimentaciones alternativas: Manual (AAM), Automática (AAA).

6.5 Anexo N° 5: Parámetros de los Alimentadores Representativos

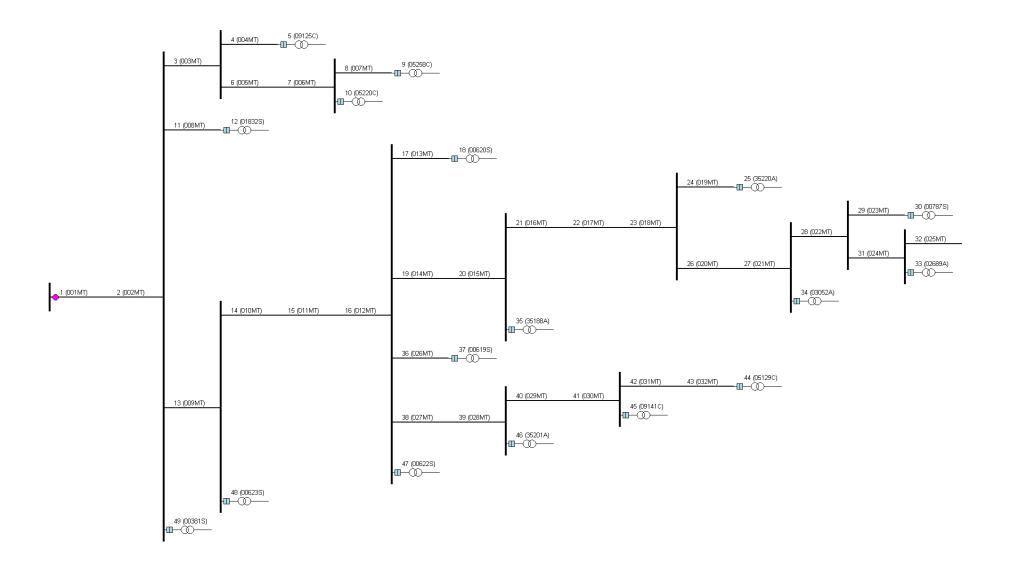
6.5.1 Muy Alta Densidad

Muy Alta Densidad de Carga Alimentador SI15, Centro de Transformación San Isidro, Lima Sur Red Subterránea 100% - Red Aérea 0%


Número	Código	Tipo	Longitud (km)	Número de clientes	Demanda media (kW)
1	001MT	mt	0.547	2	252
2	002MT	mt	0.236	1	486
3	003MT	mt	0.250	0	0
4	004MT	mt	0.060	0	0
5	00824S	sed	1.000	128	143
6	01861S	sed	1.000	282	364
7	005MT	mt	0.200	0	0
8	006MT	mt	0.230	0	0
9	007MT	mt	0.230	0	0
10	TM800	mt	0.160	0	0
11	009MT	mt	0.014	0	0
12	010MT	mt	0.118	0	0
13	011MT	mt	0.040	1	89
14	09143C	sed	1.000	52	136
15	08954C	sed	1.000	68	124
16	05252C	sed	1.000	95	83
17	01860S	sed	1.000	250	446

6.5.2 Alta Densidad 1

Alta Densidad de Carga 1 Alimentador Q18, Centro de Transformación Pershing, Lima Norte Red Subterránea 99% - Red Aérea 1%


Nómena	Cádina	Time	Lanatival (lens)	Número de	Demanda
Número	Código	Tipo	Longitud (km)	clientes	media (kW)
1	001MT	mt	0.820	0	0
2	002MT	mt	1.395	0	0
3	003MT	mt	0.494	2	547
4	004MT	mt	0.328	0	0
5	01716S	sed	1.000	101	117
6	005MT	mt	0.148	0	0
7	006MT	mt	0.071	0	0
8	007MT	mt	0.074	0	0
9	008MT	mt	0.021	0	0
10	009MT	mt	0.114	0	0
11	010MT	mt	0.172	0	0
12	03390A	sed	1.000	150	86
13	011MT	mt	0.302	0	0
14	012MT	mt	0.289	0	0
15	01650S	sed	1.000	200	99
16	07168C	sed	1.000	357	125
17	013MT	mt	0.023	1	127
18	014MT	mt	0.021	1	143
19	02593A	sed	1.000	1	0
20	015MT	mt	0.021	1	10
21	12516A	sed	1.000	104	50
22	01083S	sed	1.000	80	223
23	016MT	mt	0.068	0	0
24	017MT	mt	0.119	0	0
25	03583A	sed	1.000	139	72
26	018MT	mt	0.342	0	0
27	019MT	mt	0.301	0	0
28	08178C	sed	1.000	194	80
29	03397A	sed	1.000	263	93
30	00517S	sed	1.000	298	161

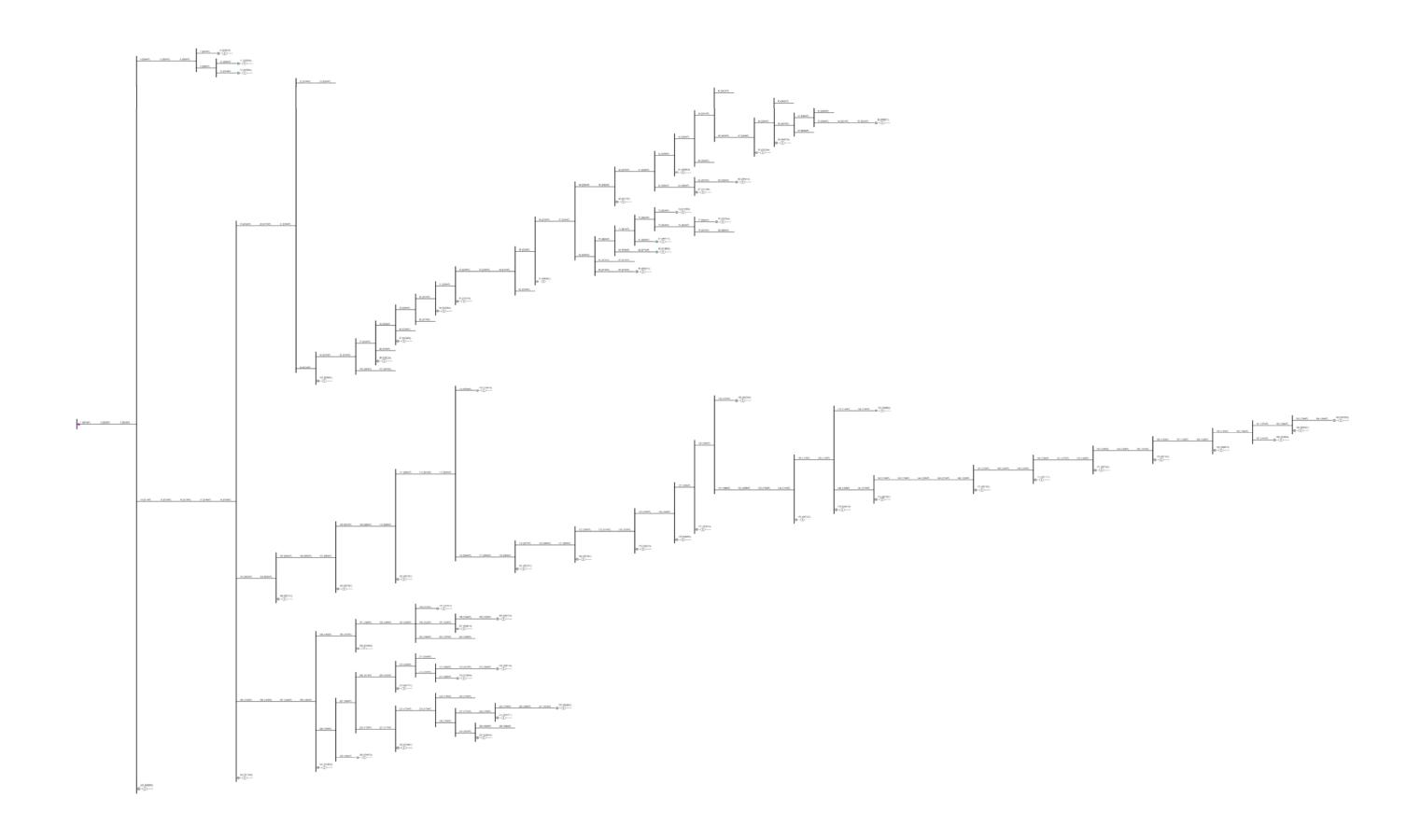
6.5.3 Alta Densidad 2

Alta Densidad de Carga 2 Alimentador C20, Centro de Transformación Limatambo, Lima Sur Red Subterránea 100% - Red Aérea 0%

Número	Código	Tipo	Longitud (km)	Número de clientes	Demanda media (kW)
1	001MT	mt	0.035	0	0
2	002MT	mt	0.505	1	19
3	003MT	mt	0.030	0	0
4	004MT	mt	0.160	0	0
5	09125C	sed	1.000	111	86
6	005MT	mt	0.170	1	243
7	006MT	mt	0.050	0	0
8	007MT	mt	0.310	0	0
9	05258C	sed	1.000	61	42
10	05220C	sed	1.000	119	90
11	008MT	mt	0.603	0	0
12	01832S	sed	1.000	107	92
13	009MT	mt	0.880	0	0
14	010MT	mt	0.659	0	0
15	011MT	mt	0.015	0	0
16	012MT	mt	0.264	0	0
17	013MT	mt	0.871	0	0
18	00620S	sed	1.000	603	338
19	014MT	mt	0.286	000	0
20	015MT	mt	0.016	0	0
21	016MT	mt	0.015	0	0
22	017MT	mt	0.180	0	0
23	018MT	mt	0.010	0	0
24	019MT	mt	0.246	0	0
25	35220A	sed	1.000	86	48
26	020MT	mt	0.010	0	0
27	020MT	mt	0.010	0	0
28	021MT			0	0
29		mt mt	0.237	0	_
	023MT	mt	0.259		0
30	00787S	sed	1.000	549	307
31	024MT	mt mt	0.027	0	0
32	025MT	mt	0.231	1	109
33	02689A	sed	1.000	132	162
34	03052A	sed	1.000	87	149
35	35188A	sed	1.000	24	38
36	026MT	mt	0.781	0	0
37	006198	sed	1.000	573	375
38	027MT	mt	0.090	0	0
39	028MT	mt	0.025	0	0
40	029MT	mt	0.025	0	0
41	030MT	mt	0.065	0	0
42	031MT	mt	0.120	1	199
43	032MT	mt	0.020	0	0
44	05129C	sed	1.000	40	75
45	09141C	sed	1.000	131	93
46	35201A	sed	1.000	6	42
47	00622S	sed	1.000	457	336
48	00623S	sed	1.000	385	344
49	00381S	sed	1.000	297	410

6.5.4 Media Densidad

Media Densidad de Carga Alimentador CH06, Centro de Transformación Chorrillos, Lima Sur Red Subterránea 64% - Red Aérea 36%


Número	Código	Tipo	Longitud (km)	Número de clientes	Demanda media (kW)
1	001MT	mt	0.102	0	Ó
2	002MT	mt	0.361	0	0
3	003MT	mt	0.055	1	0
4	004MT	mt	0.030	0	0
5	005MT	mt	0.232	0	0
6	006MT	mt	0.083	0	0
7	007MT	mt	0.119	0	0
8	20392A	sed	1.000	171	40
9	008MT	mt	0.137	0	0
10	009MT	mt	0.005	0	0
11	20393A	sed	1.000	146	40
12	010MT	mt	0.164	0	0
13	20394A	sed	1.000	100	25
14	011MT	mt	0.915	0	0
15	012MT	mt	0.015	0	0
16	013MT	mt	0.301	0	0
17	014MT	mt	0.322	0	0
18	015MT	mt	0.100	0	0
19	016MT	mt	0.100	0	0
20	017MT	mt	0.193	0	0
21	018MT	mt	0.050	0	0
22	019MT	mt	0.020	0	0
23	020MT	mt	0.011	1	431
24	021MT	mt	0.170	0	0
25	022MT	mt	0.010	0	0
26	023MT	mt	0.055	0	0
27	024MT	mt	0.380	0	0
28	025MT	mt	0.070	0	0
29	026MT	mt	0.138	0	0
30	027MT	mt	0.011	0	0
31	028MT	mt	0.092	0	0
32	029MT	mt	0.087	0	0
33	030MT	mt	0.035	0	0
34	031MT	mt	0.020	0	0
35	032MT	mt	0.025	0	0
36	033MT	mt	0.059	0	0
37	034MT	mt	0.072	0	0
38	035MT	mt	0.062	0	0
39	036MT	mt	0.026	0	0
40	037MT	mt	0.021	0	0
41	038MT	mt	0.174	0	0
42	039MT	mt	0.102	0	0
43	040MT	mt	0.007	0	0
44	041MT	mt	0.207	0	0
45	042MT	mt	0.040	1	76
46	043MT	mt	0.078	0	0
47	044MT	mt	0.114	0	0
48	045MT	mt	0.229	0	0
49	046MT	mt	0.002	1	196
50	047MT	mt	0.053	0	0

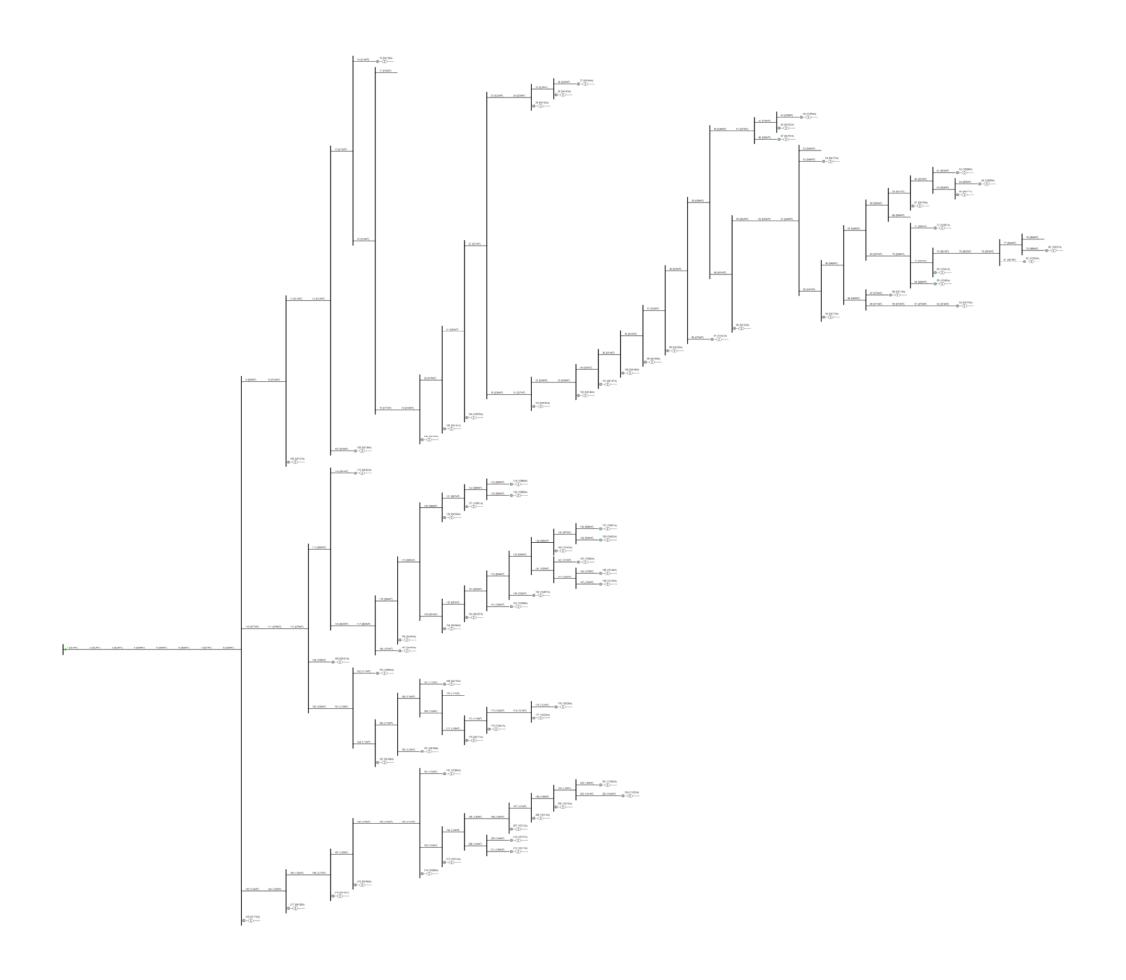
Número	Código	Tipo	Longitud (km)	Número de clientes	Demanda media (kW)
51	048MT	mt	0.056	0	o o
52	049MT	mt	0.002	1	55
53	050MT	mt	0.075	1	43
54	051MT	mt	0.015	0	0
55	052MT	mt	0.008	0	C
56	06907C	sed	1.000	41	31
57	053MT	mt	0.002	1	50
58	04473A	sed	1.000	24	54
59	03225A	sed	1.000	126	42
60	054MT	mt	0.002	1	49
61	20656A	sed	1.000	91	26
62	055MT	mt	0.025	0	(
63	056MT	mt	0.040	0	(
64	057MT	mt	0.035	0	(
65	058MT	mt	0.087	0	(
66	20941A	sed	1.000	17	14
67	21124A	sed	1.000	11	46
68	05178C	sed	1.000	31	95
69	059MT	mt	0.316	0	(
70	060MT	mt	0.098	0	
71	061MT	mt	0.163	0	(
72	062MT	mt	0.017	0	(
73	063MT	mt	0.045	2	562
74	01239S	sed	1.000	0	(
75	064MT	mt	0.035	0	
76	065MT	mt	0.258	0	
77	066MT	mt	0.158	0	(
78	20752A	sed	1.000	22	9
79	067MT	mt	0.010	0	(
80	068MT	mt	0.005	1	,
81	069MT	mt	0.036	0	(
82	06873C	sed	1.000	47	3
83	070MT	mt	0.145	0	(
84	071MT	mt	0.038	0	(
85	01480S	sed	1.000	272	117
86	072MT	mt	0.030	0	(
87	073MT	mt	0.004	1	18
88	074MT	mt	0.010	0	(
89	075MT	mt	0.019	0	(
90	06541C	sed	1.000	81	68
91	08696C	sed	1.000	10	3.
92	076MT	mt	0.002	1	156
93	21073A	sed	1.000	4	94
94	02028A	sed	1.000	71	18
95	077MT	mt	0.002	0	
96	078MT	mt	0.002	1	43
97	04348A	sed	1.000	4	28
98	079MT	mt	0.009	1	324
99	02822A	sed	1.000	95	169
100	080MT	mt	0.015	0	(
101	081MT	mt	0.012	1	
102	06389C	sed	1.000	96	15 ⁻
103	082MT	mt	0.102	0	10
104	083MT	mt	0.010	0	(
105	084MT	mt	0.010	0	(
106	085MT	mt	0.345	0	(
107	086MT	mt	0.010	0	(
108	087MT	mt	0.010	0	
109	087MT	mt	0.240	0	(
110	089MT	mt	0.240	0	

	0′ "			Número de	Demanda
Número	Código	Tipo	Longitud (km)	clientes	media (kW)
111	090MT	mt	0.010	0	0
112	091MT	mt	0.415	0	0
113	092MT	mt	0.010	0	0
114	093MT	mt	0.059	0	0
115	21041A	sed	1.000	92	24
116	094MT	mt	0.010	0	0
117	095MT	mt	0.190	0	0
118	096MT	mt	0.010	0	0
119	097MT	mt	0.010	0	0
120	098MT	mt	0.203	0	0
121	099MT	mt	0.010	0	0
122	100MT	mt	0.010	0	0
123	101MT	mt	0.266	0	0
124	102MT	mt	0.038	0	0
125	103MT	mt	0.010	0	0
126	104MT	mt	0.232	0	0
127	105MT	mt	0.284	0	0
128	106MT	mt	0.160	0	0
129	107MT	mt	0.175	0	0
130	20333A	sed	1.000	208	81
131	108MT	mt	0.101	0	0
132	109MT	mt	0.010	0	0
133	110MT	mt	0.104	0	0
134	111MT	mt	0.010	0	0
135	112MT	mt	0.010	0	0
136	113MT	mt	0.284	0	0
137	114MT	mt	0.017		0
138 139	115MT 20888A	mt	0.227 1.000	0 126	35
140		sed			
141	116MT 117MT	mt mt	0.301 0.010	0	0
142	117MT	mt mt	0.010	0	0
143	119MT	mt	0.206	0	0
144	120MT	mt	0.020	0	0
145	121MT	mt	0.173	0	0
146	122MT	mt	0.010	0	0
147	123MT	mt	0.010	0	0
148	124MT	mt	0.214	0	0
149	125MT	mt	0.010	0	0
150	126MT	mt	0.010	0	0
151	127MT	mt	0.334	0	0
152	128MT	mt	0.010	0	0
153	129MT	mt	0.010	0	0
154	130MT	mt	0.267	0	0
155	131MT	mt	0.010	0	0
156	132MT	mt	0.010	0	0
157	133MT	mt	0.282	0	0
158	134MT	mt	0.020	0	0
159	135MT	mt	0.020	0	0
160	136MT	mt	0.170	0	0
161	137MT	mt	0.236	0	0
162	138MT	mt	0.022	0	0
163	139MT	mt	0.026	0	0
164	140MT	mt	0.296	0	0
165	00705S	sed	1.000	221	106
166	08303C	sed	1.000	23	22
167	141MT	mt	0.040	0	0
168	20300A	sed	1.000	1	2
169	20887A	sed	1.000	46	14
170	05715C	sed	1.000	97	29

				Número de	Demanda
Número	Código	Tipo	Longitud (km)	clientes	media (kW)
171	05716C	sed	1.000	120	34
172	05717C	sed	1.000	112	33
173	05718C	sed	1.000	98	26
174	05720C	sed	1.000	125	36
175	02541A	sed	1.000	162	48
176	05722C	sed	1.000	116	41
177	20301A	sed	1.000	116	40
178	04685A	sed	1.000	84	29
179	20927A	sed	1.000	140	45
180	05726C	sed	1.000	84	30
181	05727C	sed	1.000	47	15
182	05729C	sed	1.000	165	45
183	05730C	sed	1.000	84	24
184	05731C	sed	1.000	74	27
185	142MT	mt	0.274	0	0
186	143MT	mt	0.220	0	0
187	144MT	mt	0.180	0	0
188	145MT	mt	0.140	0	0
189	146MT	mt	0.204	0	0
190	147MT	mt	0.130	0	0
191	148MT	mt	0.126	0	0
192	149MT	mt	0.040	0	0
193	150MT	mt	0.178	0	0
194	151MT	mt	0.022	0	0
195	04666A	sed	1.000	48	26
196	152MT	mt	0.129	0	0
197	153MT	mt	0.255	0	0
198	154MT	mt	0.194	0	0
199	155MT	mt	0.035	0	0
200	04531A	sed	1.000	42	36
201	04461A	sed	1.000	53	32
202	156MT	mt	0.061	0	0
203	157MT	mt	0.068	0	0
204	158MT	mt	0.090	1	12
205	03359A	sed	1.000	36	24
206	159MT	mt	0.226	0	0
207	160MT	mt	0.170	0	0
208	161MT	mt	0.252	0	0
209	162MT	mt	0.008	0	0
210	163MT	mt	0.036	0	0
211	164MT	mt	0.070	1	173
212	165MT	mt	0.164	0	0
213	166MT	mt	0.121	0	0
214	167MT	mt	0.040	0	0
215	168MT	mt	0.143	0	0
216	20911A	sed	1.000	27	12
217	169MT	mt	0.008	0	0
218	21069A	sed	1.000	290	61
219	06777C	sed	1.000	87	48
220	170MT	mt mt	0.080	0	0
221	171MT	mt	0.008	0	0
222	172MT	mt	0.008	0	0
223	173MT	mt	0.212	0	0
224	174MT	mt	0.012	0	0
225	175MT	mt mt	0.006	1	2
226	176MT	mt mt	0.234	0	0
227	177MT	mt mt	0.320	0	0
228	178MT	mt	0.008	0	0
229	179MT	mt mt	0.008	0	0
230	180MT	mt	0.408	0	0

Número	Código	Tipo	Longitud (km)	Número de clientes	Demanda media (kW)
231	181MT	mt	0.008	0	0
232	06458C	sed	1.000	54	47
233	06457C	sed	1.000	74	74
234	182MT	mt	0.012	0	0
235	183MT	mt	0.005	0	0
236	184MT	mt	0.005	1	13
237	02063A	sed	1.000	38	21
238	07448C	sed	1.000	67	84
239	185MT	mt	0.128	0	0
240	03497A	sed	1.000	31	44
241	01365S	sed	1.000	82	69
242	01129S	sed	1.000	170	122
243	00909S	sed	1.000	23	27

6.5.5 Baja Densidad


Baja Densidad de Carga Alimentador NA04, Centro de Transformación Ñaña, Lima Sur Red Subterránea 3% - Red Aérea 97%

Número	Código	Tipo	Longitud (km)	Número de clientes	Demanda media (kW)
1	001MT	mt	0.065	0	0
2	002MT	mt	0.164	0	0
3	003MT	mt	0.408	0	0
4	004MT	mt	0.076	0	0
5	005MT	mt	2.582	0	0
6	006MT	mt	0.352	0	0
7	007MT	mt	0.258	0	0
8	TM800	mt	0.032	0	0
9	009MT	mt	0.044	0	0
10	010MT	mt	0.107	0	0
11	011MT	mt	0.080	0	0
12	012MT	mt	0.062	0	0
13	013MT	mt	0.084	0	0
14	014MT	mt	0.111	0	0
15	04139A	sed	1.000	180	33
16	015MT	mt	0.058	0	0
17	016MT	mt	0.021	1	73
18	017MT	mt	0.062	0	0
19	018MT	mt	0.063	0	0
20	019MT	mt	0.127	0	0
21	020MT	mt	0.194	0	0
22	021MT	mt	0.092	0	0
23	022MT	mt	0.136	0	0
24	023MT	mt	0.126	0	0
25	024MT	mt	0.299	0	0
26	025MT	mt	0.185	0	0
27	04144A	sed	1.000	45	9
28	04143A	sed	1.000	149	21
29	04142A	sed	1.000	157	30
30	026MT	mt	0.039	0	0
31	027MT	mt	0.108	0	0
32	028MT	mt	0.040	0	0
33	029MT	mt	0.086	0	0
34	030MT	mt	0.124	0	0
35	031MT	mt	0.210	0	0
36	032MT	mt	0.298	0	0
37	033MT	mt	0.150	0	0
38	034MT	mt	0.068	0	0
39	035MT	mt	0.068	0	0
40	036MT	mt	0.028	0	0
41	037MT	mt	0.207	0	0
42	038MT	mt	0.197	0	0
43	039MT	mt	0.253	0	0
44	10394A	sed	1.000	108	15
45	04152A	sed	1.000	145	16
46	040MT	mt	0.018	0	0
47	04151A	sed	1.000	191	19
48	041MT	mt	0.141	0	0
49	042MT	mt	0.045	0	0
50	043MT	mt	0.044	0	0

Número	Código	Tipo	Longitud (km)	Número de clientes	Demanda media (kW)
51	044MT	mt	0.070	0	0
52	045MT	mt	0.109	1	7
53	046MT	mt	0.023	0	0
54	04172A	sed	1.000	73	8
55	047MT	mt	0.337	0	0
56	048MT	mt	0.143	0	0
57	049MT	mt	0.068	0	0
58	050MT	mt	0.025	0	0
59	051MT	mt	0.073	0	0
60	052MT	mt	0.152	0	0
61	053MT	mt	0.081	0	0
62	10008A	sed	1.000	122	16
63	054MT	mt	0.075	0	0
64	055MT	mt	0.132	0	0
65	10009A	sed	1.000	62	16
66	04177A	sed	1.000	187	21
67	04176A	sed	1.000	218	31
68	056MT	mt	0.006	1	5
69	057MT	mt	0.079	0	0
70	058MT	mt	0.139	0	0
71	059MT	mt	0.054	0	0
72	10367A	sed	1.000	172	19
73	060MT	mt	0.243	0	0
74	061MT	mt	0.100	0	0
75	062MT	mt	0.186	0	0
76	063MT	mt	0.055	0	0
77	064MT	mt	0.191	0	0
78	065MT	mt	0.002	1	1
79	066MT	mt	0.364	0	0
80	10537A			112	14
		sed	1.000		
81	067MT	mt	0.006	0	0
82	10342A	sed	1.000	372	30 12
83	10341A	sed	1.000	114	
84	068MT	mt	0.231	0	0
85	10345A	sed	1.000	85	9
86	069MT	mt	0.093	0	0
87	070MT	mt	0.136	0	0
88	04174A	sed	1.000	69	7
89	071MT	mt .	0.037	0	0
90	072MT	mt	0.071	0	0
91	073MT	mt	0.070	0	0
92	074MT	mt	0.088	0	0
93	04175A	sed	1.000	312	30
94	04173A	sed	1.000	183	22
95	04153A	sed	1.000	160	20
96	075MT	mt	0.166	0	0
97	10141A	sed	1.000	101	11
98	04150A	sed	1.000	150	23
99	04149A	sed	1.000	224	24
100	04148A	sed	1.000	222	35
101	04147A	sed	1.000	243	37
102	04146A	sed	1.000	234	40
103	04145A	sed	1.000	237	43
104	10978A	sed	1.000	2	4
105	04141A	sed	1.000	145	62
106	04140A	sed	1.000	239	49
107	076MT	mt	0.027	0	0
108	04138A	sed	1.000	181	57
109	04137A	sed	1.000	175	32
110	077MT	mt	0.035	0	0

Número	Cádigo	Tino	Longitud (km)	Número de	Demanda
Numero	Código	Tipo	Longitud (km)	clientes	media (kW)
111	078MT	mt	0.147	0	0
112	079MT	mt	0.075	0	0
113	7M080	mt	0.151	0	0
114	081MT	mt	0.148	0	0
115	04162A	sed	1.000	202	30
116	082MT	mt	0.078	0	0
117	083MT	mt	0.028	0	0
118	084MT	mt	0.196	0	0
119	085MT	mt	0.211	0	0
120	086MT	mt	0.062	0	0
121	087MT	mt	0.410	0	0
122	088MT	mt	0.177	0	0
123	089MT	mt	0.235	0	0
124	10888A	sed	1.000	60	8
125	090MT	mt	0.012	0	0
126	10886A	sed	1.000	75	8
127	10561A	sed	1.000	71	7
128	04165A	sed	1.000	269	39
129	091MT	mt	0.153	0	0
130	092MT	mt	0.233	0	0
131	093MT	mt	0.050	0	0
132	094MT	mt	0.074	0	0
133	095MT	mt	0.406	0	0
134	096MT	mt	0.015	0	0
135	097MT	mt	0.167	0	0
136	098MT	mt	0.135	0	0
137	10451A	sed	1.000	82	8
138	099MT	mt	0.105	0	0
139	10452A	sed	1.000	79	7
140	10142A	sed	1.000	237	19
141	100MT	mt	0.202	0	0
142	101MT	mt	0.135	0	0
143	10480A	sed	1.000	44	4
144	102MT	mt	0.080	0	0
145	103MT	mt	0.068	0	0
146	10144A	sed	1.000	121	8
147	104MT	mt	0.137	0	0
148	10143A	sed	1.000	153	12
149	105MT	mt	0.193	0	0
150	10497A	sed	1.000	331	29
151	106MT	mt	0.076	0	0
152	10398A	sed	1.000	102	15
153	04167A	sed	1.000	190	23
154	04166A	sed	1.000	83	14
155	04164A	sed	1.000	171	28
156	107MT	mt	0.018	0	0
157	04163A	sed	1.000	245	44
158	108MT	mt	0.069	0	0
159	04161A	sed	1.000	175	33
160	109MT	mt	0.083	0	0
161	110MT	mt	0.045	0	0
162	111MT	mt	0.238	0	0
163	10564A	sed	1.000	1	3
164	112MT	mt	0.145	0	0
165	113MT	mt	0.223	0	0
166	114MT	mt	0.065	0	0
167	115MT	mt	0.180	0	0
168	04170A	sed	1.000	332	46
169	116MT	mt	0.184	0	0
170	117MT	mt	0.011	1	26

Número	Código	Tipo	Longitud (km)	Número de	Demanda
171	110MT	mt	0.070	clientes	media (kW)
171 172	118MT 119MT	mt	0.070 0.231	0	0
173	120MT	mt mt	0.231	0	0
173	121MT		0.019	0	0
174		mt	_		
176	122MT	mt	0.145	0 201	0 22
176	10026A 10224A	sed sed	1.000	60	5
178	10224A 10441A	sed	1.000	99	13
178					32
180	04171A 123MT	sed	1.000	201 0	0
	_	mt	0.017 1.000		_
181 182	04169A	sed		305	43
	04168A	sed	1.000	237	31
183	124MT	mt	0.025	0	0
184	125MT	mt	0.093	0	0
185	126MT	mt	0.025	0	0
186	127MT	mt	0.218	0	0
187	128MT	mt	0.251	0	0
188	129MT	mt	0.036	0	0
189	130MT	mt	0.036	0	0
190	131MT	mt	0.152	0	0
191	132MT	mt	0.141	0	0
192	10380A	sed	1.000	214	19
193	133MT	mt	0.139	0	0
194	134MT	mt	0.217	0	0
195	135MT	mt	0.071	0	0
196	136MT	mt	0.154	0	0
197	137MT	mt	0.285	0	0
198	138MT	mt	0.278	0	0
199	139MT	mt	0.338	0	0
200	140MT	mt	0.045	0	0
201	11002A	sed	1.000	96	8
202	141MT	mt	0.250	0	0
203	142MT	mt	0.090	0	0
204	11003A	sed	1.000	73	7
205	10215A	sed	1.000	66	8
206	10214A	sed	1.000	109	9
207	10213A	sed	1.000	234	23
208	143MT	mt	0.031	0	0
209	144MT	mt	0.054	0	0
210	10727A	sed	1.000	97	13
211	145MT	mt .	0.111	0	0
212	10211A	sed	1.000	30	3
213	10212A	sed	1.000	132	14
214	10389A	sed	1.000	97	9
215	04160A	sed	1.000	188	27
216	04159A	sed	1.000	268	35
217	04158A	sed	1.000	207	35
218	01174S	sed	1.000	19	4

