UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO

INFORME DE SUFICIENCIA

Para optar el Titulo Profesional de:

INGENIERO CIVIL

KATIA DEL PILAR ROJAS RODRIGUEZ

Lima-Perú

2010

INDICE	Pág
RESUMEN	2
LISTA DE CUADROS	3
LISTA DE GRAFICOS	4
INTRODUCCION	5
CAPITULO 1: ASPECTOS GENERALES	
1.1 RESUMEN	6
1.2 NOMBRE DEL PROYECTO	6
1.3 UBICACIÓN DEL PROYECTO	6
1.4 PARTICIPACION DE LAS ENTIDADES INVOLUCRADAS	8
CAPITULO 2: IDENTIFICACION	
2.1 DIAGNOSTICO DE LA SITUACION ACTUAL	9
2.1.1 CARACTERISTICAS DEMOGRAFICAS, SOCIALES Y	
ECONOMICAS DE LA POBLACION	9
2.2 DEFINICION DEL PROBLEMA Y SUS CAUSAS	12
2.2.1 PROBLEMA CENTRAL	12
2.3 OBJETIVO DEL PROYECTO	14
CAPITULO 3 : SISTEMA DE AGUA POTABLE	
3.1 OBRAS GENERALES	16
3.2 OBRAS SECUNDARIAS	17
CAPITULO 4 : SISTEMA DE ALCANTARILLADO Y AGUAS RESIDUALE	ES
4.1 OBRAS GENERALES	19
4.2 OBRAS SECUNDARIAS	20
4.3 ANALISIS DE LA DEMANDA DE AGUA POTABLE	22
4.4 ANAÑISIS DEL FLUJO DE AGUAS SERVIDAS	31
4.5 ANALISIS DE LA OFERTA	33
4.6 BALANCE OFERTA DEMANDA	33
CAPITULO 5 : COSTOS Y PRESUPUESTOS	
5.1 COSTOS DE INVERSION	37
5.2 BENEFICIOS DEL PROYECTO	51
5.3 EVALUACIÓN	51
CONCLUSIONES	57
RECOMENDACIONES	58
BIBLIOGRAFIA	59
ANEXOS.	

RESUMEN

El presente informe presenta los aspectos más importantes que se han tomado en cuenta para la instalación del Sistema de Agua Potable y Alcantarillado para la nueva Habilitación Urbana "Las Praderas de Lurín.

El objetivo principal ó propósito principal del proyecto, es la "Disponibilidad del suministro de agua potable y disposición de aguas residuales" para la Nueva Habilitación Urbana, en el Distrito de Lurín.

Para el abastecimiento de agua se plantea la perforación de un pozo tubular 21" de diámetro y 80 m de profundidad, equipado con una bomba turbina vertical (Qb=17.7 l/s y 124.6 m de HDT), que impulsará el agua hacia un reservorio elevado de 600 m3, mediante una línea de impulsión de 4,755.5 m de longitud, DN 200 mm y de material HD K-7, desde el reservorio elevado se alimentará a las redes de distribución que esta compuesta por 244 m de tubería de 200 mm; 1,991 m de 160 mm y 3,415 m de 110 mm; todas de material de PVC A-10; además se instalarán 571 conexiones domiciliarias.

En cuanto al sistema de alcantarillado, la configuración topográfica del área de estudio facilita la evacuación de los desagües íntegramente por gravedad hasta una cámara de bombeo proyectada de 9 m3 de volumen útil, ubicado en la parte baja de la habilitación, para luego impulsar los desagües hacia la planta de tratamiento San Bartolo, mediante una línea de impulsión de 1,820 m de DN 200 mm de HD; así mismo se proyecta la instalación del colector de rebose del reservorio elevado compuesto por 1,198 m de tubería de PVC SN-2.5 de DN 300 mm, y del colector principal compuesto por 176 m de 250 mm y 189 m de 200; además de 43 buzones tipo I. Cabe mencionar que los desagües antes de ingresar a la cámara de bombeo, pasarán por un sistema de pre tratamiento mecanizado compuesto por una cámara de reja gruesa, tamiz y desarenador.

Tanto para el componente de agua como para el de alcantarillado, no se cuantifican los beneficios en forma monetaria para su evaluación, debido a que no hay población asentada en el área de estudio, y se estima que los futuros compradores de los lotes, ya estén gozando con los servicios de agua potable y alcantarillado, por lo que la ejecución del proyecto no generará beneficios que se pueda cuantificar.

LIS	TA DE CUADROS	Pág
•	Cuadro Nº 2.1: Distribución de población futura	09
•	Cuadro Nº 2.2: Estratos de niveles socioeconómicos por	
	Rango de ingreso y distribución	10
•	Cuadro Nº 3.1: Programación de tendido de tuberías	17
•	Cuadro Nº 4.1: Programación de tendido de tuberías	20
•	Cuadro Nº 4.2: Crecimiento poblacional	23
•	Cuadro Nº 4.3: Niveles de consumo previstos	24
•	Cuadro Nº 4.4: Proyecciones de la cobertura	
	micromedicion y nivel de pérdida de agua	25
•	Cuadro Nº 4.5: Volúmenes de almacenamiento para	
	el periodo de diseño	26
•	Cuadro Nº 4.6: Conexiones domiciliarias por categoría	27
•	Cuadro Nº 4.7: Información de base y parámetros	27
•	Cuadro Nº 4.8: Calculo de dimensionamiento de reservorio	28
•	Cuadro Nº 4.9: Calculo de dimensionamiento de línea de	
	Aducción	28
•	Cuadro Nº 4.10: Proyección de la demanda total de agua	29
	Potable	
•	Cuadro Nº 4.11: Periodo optimo de diseño	30
•	Cuadro Nº 4.12: Proyección de la demanda total	
	Alcantarillado	32
•	Cuadro Nº 4.13: Balance oferta demanda por componente	
	Del agua potable	34
•	Cuadro Nº 4.14: Balance oferta demanda por componente	
	De alcantarillado	35
•	Cuadro Nº 5.1: Equipamiento de pozo tubular	37
•	Cuadro № 5.2: Línea de impulsión	37
•	Cuadro № 5.3: Línea de impulsión – accesorios	38
•	Cuadro № 5.4: Volumen de reservorio	38
•	Cuadro Nº 5.5: línea de impulsión – accesorios	38
•	Cuadro № 5.6: Periodo optimo de diseño	39
•	Cuadro Nº 5.7: Programación y reposición de medidores	40

•	Cuadro Nº 5:8: Línea de rebose y colectores principales	39
•	Cuadro № 5.9: Buzones	40
•	Cuadro Nº 5.10: Costos de inversión del sistema de	
	Agua potable y alcantarillado – precios privados	42
•	Cuadro Nº 5.11: Costos de inversión del sistema de	
	Agua potable y alcantarillado – precios sociales	43
•	Cuadro Nº 5.12: Cronograma de inversión del sistema de	
	Agua potable y alcantarillado – precios privados	44
•	Cuadro Nº 5.13: Cronograma de inversión del sistema de	
	Agua potable y alcantarillado – precios sociales	45
•	Cuadro Nº 5.14: Metas del sistema de Agua potable y	
	Alcantarillado	46
•	Cuadro Nº 5.15: Resumen de costos de inversión del	
	Sistema de agua potable y alcantarillado	47
•	Cuadro Nº 5.16: Resumen de costos de inversión por	
	Etapas – año 0	47
•	Cuadro Nº 5.17: Resumen de costos de inversión por	
	Etapas – año 1 al 20	47
•	Cuadro Nº 5.18: Costos unitarios de O&M de agua potable	48
•	Cuadro Nº 5.19: Costos unitarios de O&M de alcantarillado	49
•	Cuadro Nº 5.20: Costos de O&M	50
•	Cuadro Nº 5.21: Factores de corrección	52
•	Cuadro Nº 5.22: Evaluación de económica agua potable	54
•	Cuadro Nº 5.23: Evaluación de económica alcantarillado	55
•	Cuadro Nº 5.24: Evaluación económica	56
•	Cuadro Nº 5.25: Costos	56
1	LISTA DE GRAFICOS	Pág.
•	Grafico Nº 1.3: Macro locación del área de estudio	07
•	Grafico Nº 2.1: Árbol de causas y efecto	13
•	Grafico Nº 2.2: Árbol de medios y fines	15
•	Grafico Nº 3.1: Sistema de agua potable proyectada	18
•	Grafico Nº 4.1: Sistema de alcantarillado proyectado	21

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

INTRODUCCION

INTRODUCCION

El tema que sustenta el presente Informe de Suficiencia para optar el título

profesional de Ingeniería Civil forma parte de un Proyecto Integral que tiene por

nombre "Proyecto Inmobiliario de Viviendas Unifamiliares Las Praderas de Lurín"

Este proyecto plantea la solución para la disponibilidad del suministro de agua

potable y disposición de aguas residuales y así establecer las condiciones de

habitabilidad suficiente para incrementar el interés por la adquisición de terrenos

en el área de estudio.

En el Capítulo 1 se describe los aspectos generales del área de estudio y del

proyecto.

En el Capítulo 2 se identifica el diagnostico de la situación actual, se definen las

causas de la falta de disponibilidad de servicio de Agua y Alcantarillado y el

objetivo del presente proyecto.

En el Capítulo 3 y 4 se describen las obras generales y secundarias a ejecutar,

para el Sistema de Agua y el Sistema de Alcantarillado y Aguas Servidas

respectivamente.

Finalmente, en el Capitulo 5 se describe las consideraciones generales y

supuestos tomados en cuenta para realizar la formulación y evaluación

económica del proyecto. Se evalúa los costos de inversión del proyecto, costos

de operación y mantenimiento, y los beneficios del proyecto donde se concluye

que el proyecto es viable.

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO Katia del Pilar Rojas Rodríguez

5

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

CAPITULO I: ASPECTOS GENERALES

CAPITULO I
ASPECTOS GENERALES

1.1 RESUMEN

El área de estudio esta ubicada en las Pampas de Lurín en el Distrito del mismo

nombre, esta zona aún no está habitada, y se tiene proyectado la construcción

de 2192 lotes, de los cuales 2186 son para uso de vivienda unifamiliares y 6 son

de otros usos, todo ellos distribuidos en 4 etapas.

La habilitación es propiedad de la Inmobiliaria Masías, la cual ocupa un área de

52.44 Has; y se encuentra fuera de los limites de los servicios de agua potable y

alcantarillado de Sedapal.

1.2 NOMBRE DEL PROYECTO

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS

PRADERAS DE LURÍN" - SISTEMA DE ABASTECIMIENTO DE AGUA Y

ALCANTARILLADO

1.3 UBICACIÓN DEL PROYECTO

El Proyecto se desarrollará en la Región de Lima, Departamento y Provincia de

Lima y Distrito de Lurín.

El área de estudio, se encuentra ubicada en el Distrito de Lurín, sobre la margen

izquierda de la Panamericana Sur Antigua Km 38.5.

La nueva Habilitación Urbana Masías tiene un área aproximada de 52.44 Has, y

tiene acceso principal a la Prolongación del Jr. Martín Olaya de la Urb. Nuevo

Lurin.

Sus límites son:

Por el Norte Propiedad de tercero (terrenos baldíos)

Por el Sur Propiedad de tercero y Proyecto Mesias

Por el Este

Propiedad de tercero

Por el Oeste

Avícola San Fernando y Fabrica Exsa

Gráfico 1.3

Macrolocalización del Área del Proyecto

1.4 PARTICIPACIÓN DE LAS ENTIDADES INVOLUCRADAS Y POBLACIÓN BENEFICIARIA

La entidad involucrada y los beneficiarios del proyecto son:

SEDAPAL: En su calidad de empresa prestadora de servicios de saneamiento, tiene como misión el contribuir al mejoramiento de la calidad de vida de la comunidad que atiende, brindando un eficiente servicio de agua potable y recolección de desagües.

POBLACIÓN BENEFICIARIA: Son los futuros compradores de los lotes a habitar en la nueva habilitación ubicadas en las Pampas de Lurin en el Distrito de Lurin.

Los beneficiarios serán un aproximado de 10,886 habitantes comprendidos en 2186 lotes de viviendas unifamiliares de la nueva habilitación actualmente no habitada.

CAPITULO II IDENTIFICACION

2.1 DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

2.1.1 Características Demográficas, Sociales y Económicas de la Población

Población afectada

El área de estudio aún no esta habitada, por lo que no hay población afectada actual.

Sin embargo teniendo en cuenta los planos de lotización, el área de estudio albergará una población futura aproximada de 10,886 habitantes, distribuidos en 4 etapas de la siguiente manera:

Cuadro N° 2.1

Distribución de Población Futura

	Etapa	Viviendas Unifamiliares	Población
1	1ra Etapa	569	2,834
2	2da Etapa	472	2,350
3	3ra Etapa	541	2,694
4	4ta Etapa	604	3,008
	Total	2186	10,886

Fuente: Elaboración Propia.

El número de viviendas se ha obteniendo de los planos de lotización de las habilitaciones comprendidas en el área de estudio.

La población se obtiene del producto del número de viviendas y la densidad poblacional de 4.98 hab./viv.

Tasa de crecimiento

Para este estudio el crecimiento poblacional se dará por el plan de venta de lotes y el porcentaje de ocupación de los mismos, ya que en la habilitación no hay población asentada al que se le pueda aplicar una tasa de crecimiento.

Número de viviendas y sus características

El área de estudio contará con 2186 lotes de vivienda, y la posibilidad de expansión es muy limitada o casi nula, ya que los lotes ya están definidos.

El porcentaje de ocupación de los lotes comprados irá incrementando progresivamente desde un 80% hasta el 100% anualmente, según experiencias en desarrollo de habilitaciones urbanas por las inmobiliarias Masias S.A.

El área de los lotes es en promedio 120 m2, según los planos de lotización de la habilitación.

Empleo

Los futuros moradores del área de estudio, serán personas que trabajan de manera independiente o dependiente, desempeñándose como comerciantes, dueños de pequeñas y medianas empresas, trabajadores del sector público, etc.

Nivel de Ingreso

Se estima que los futuros moradores tendrán un ingreso mínimo de S/ 2000, con una disponibilidad de endeudamiento de hasta el 30% que les permita acceder al financiamiento en la compra de un lote. En términos de estratos socioeconómicos, los propietarios estarán incluidos en el estrato B.

Cuadro N° 2.2
Estratos de Niveles Socioeconómicos por Rango de Ingreso y Distribución

Estrat o NSE	Sub Estrato NSE	Ingreso mensual promedio en US\$ (1)	Límite inferior entre estratos en US\$ (2)	Rango de ingreso mensual promedio en S/. (3)	Distribución de población según NSE (4)
_	B1	US\$ 912		[3000 – mas[0.0%
В	B2	US\$ 608	US\$ 912	[2000 – 3000[100.0%
				TOTAL	100.0%

NOTAS:

- (1) Valores calculados por Apoyo Opinión y Mercado S.A. en "Niveles Socioeconómicos en Lima Metropolitana". Lima, 1998.
- (2) Se calcula como el promedio aritmético de los ingresos promedio de los NSE correspondientes.
- (3) Se estructuran aplicando tipo de cambio = 3.29 S/./US\$ y redondeando a los límites propuestos.
- (4) Distribución estima por las inmobiliarias, según experiencias pasadas.

Nivel de educación

Según datos de habilitaciones en crecimiento progresivo similares, la población futura del área de estudio estará conformada por un 80% de personas con nivel de educación secundario y el 20% restante con estudio superiores. Cabe mencionar que en el Distrito de Lurin, existen colegios estatales de educación inicial, primaria y secundaria, además de dos Instituciones Superiores Tecnológicas; todas estas instituciones educativas perteneces a la Unidad de Gestión Educativa Local 01 (UGEL 01).

Accesibilidad y medios de transporte

El acceso para la futura urbanización es de la siguiente manera: En transporte público existen las siguientes líneas: SO-18 (San Miguel – Lurín – San Bartola), SM – 26 (Lima – Lurín – San Bartola), SCR – 01 (San Juan de Miraflores – Lurín); con los vehiculo públicos llegamos hasta la Urb. Nuevo Lurín, luego nos trasladamos con vehículos particulares siguiendo el Jr. Martín Olaya.

Servicios Públicos

El proyecto contará con los servicios de agua potable y alcantarillado sanitario, así como alumbrado público y telefonía fija.

El servicio de alumbrado público será otorgado por la Empresa Luz del Sur.

El servicio de telefonía fija será otorgado por la Empresa Telefónica del Perú.

Estado de los Sistemas de Agua y Saneamiento

La Nueva Habilitación Urbana ubicada en las Pampas de Lurín, no cuenta con sistemas de agua ni de alcantarillado sanitario.

2.2 DEFINICIÓN DEL PROBLEMA Y SUS CAUSAS

2.2.1 Problema central

Se define como Problema Central al "Limitado suministro de agua potable y disposición de aguas residuales" para la Nueva Habilitación Urbana, en el distrito de Lurín.

Causas

Las causas directas de esta situación radican en:

- Insuficiente producción de agua potable
- Insuficiente capacidad de recolección y disposición de aguas residuales

Las causas indirectas de todo esto corresponden a:

- Ausencia de estructuras de captación de agua de una fuente cercana.
- Ausencia de redes existentes de agua cercanas.
- Ausencia de redes existentes de alcantarillado
- Insuficiencia capacidad de tratamiento de aguas residuales.

Efectos

El efecto directo que se genera con este problema es:

Condiciones de habitabilidad insuficiente.

Como efecto final se tiene el desinterés por la adquisición de terreno en la zona de estudio, atribuible a la deficiente disponibilidad de servicios de saneamiento básico. Ver **Gráfico 2.1**: Árbol de Causas y Efectos.

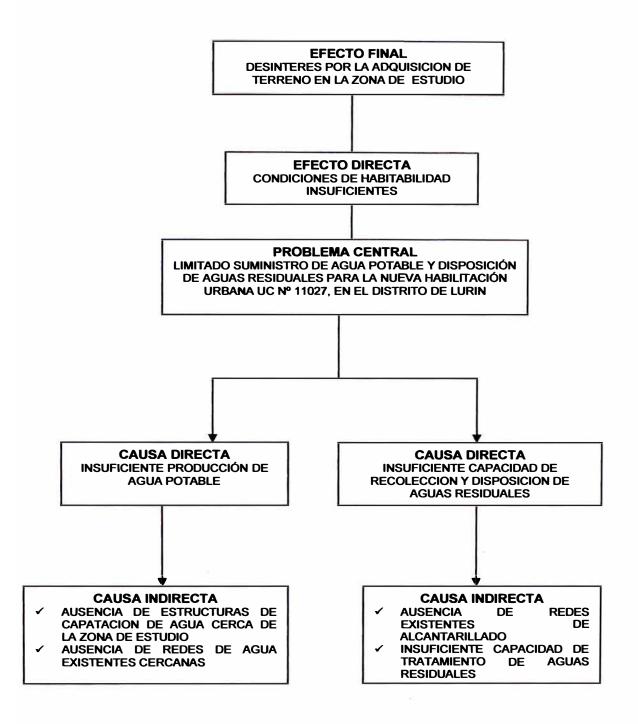


Gráfico 2.1 – Árbol de causas y efectos

2.3 OBJETIVO DEL PROYECTO

El objetivo principal ó propósito principal del proyecto, es la "Disponibilidad del suministro de agua potable y disposición de aguas residuales" para la Nueva Habilitación Urbana, en el Distrito de Lurín.

Medios

Los medios de primer orden que permitirán alcanzar este objetivo son:

- Suficiente producción de agua potable
- Suficiente capacidad de recolección y disposición de aguas residuales.

Como medios fundamentales se tienen:

- Disponibilidad de estructuras de captación de agua de una fuente cercana.
- Disponibilidad de redes de agua existente cercanas.
- Disponibilidad de redes de alcantarillado existente cercanas.
- Suficiente capacidad de tratamiento de aguas residuales.

Fines

El Fin directo que se persigue con el objetivo central consiste en:

Condiciones de habitabilidad suficientes

El fin último es el Interés por la adquisición de terrenos en la zona de estudio, con la adecuada prestación de servicios de saneamiento básico. Ver **Gráfico** 2.2: Árbol de Medios y Fines.

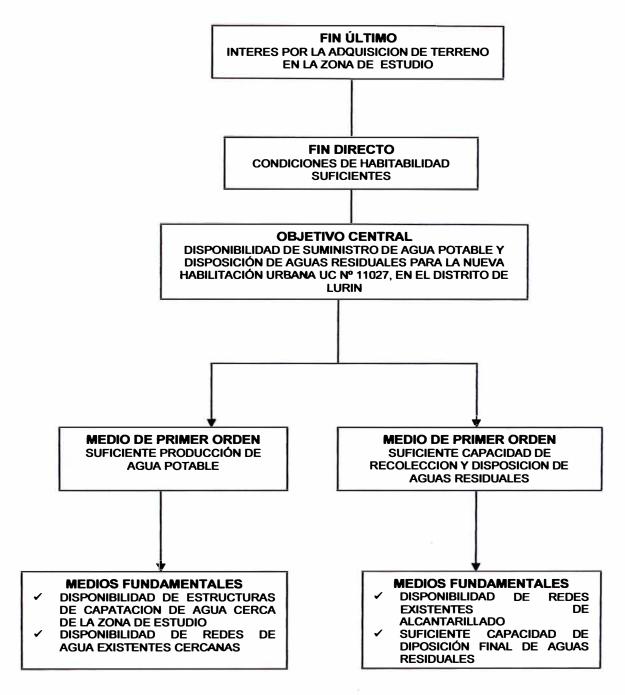


Gráfico 2.2 - Árbol de medios y fines

CAPITULO III SISTEMA DE AGUA POTABLE

Para el abastecimiento de agua se plantea la perforación de un pozo tubular, que impulsarán el agua hacia un reservorio elevado, desde aquí se alimentarán a las redes de distribución. **Ver Plano AP-1 (Anexo 03)**

Además cabe mencionar que se ha realizado un estudio hidrogeológico denominado "Memoria Descriptiva para la Perforación de un Pozo Tubular con Fines de Abastecimiento de Agua", en la cual se puede apreciar que el rendimiento del acuífero y la calidad del agua subterránea, están acorde con los requerimientos del estudio. (Anexo 02)

Así mismo según Resolución de Intendencia N° 370-2008-INRENA-IRH se autoriza perforación del pozo tubular con fines domésticos.(Anexo 04)

3.1 OBRAS GENERALES

Ver cálculos en el Anexo 01

Perforación de 1 pozo tubular de 21" de diámetro y 80 mts de profundidad, equipado con una bomba turbina sumergible de las siguientes características:

Qb = 17.68 l/s, HDT=124.58 mts y Potencia = 50 HP

Tendido de Líneas de impulsión, todas de material de Hierro Dúctil K – 7, además de sus accesorios:

- Línea del Pozo Nº 1 al Reservorio Elevado RP-1, con 4755.5 m de tubería DN 200 mm.
- 5 Válvulas Compuertas de DN 200 mm, 5 Válvulas de aire de DN 50 mm y
 5 Válvulas de purga de DN 50 mm.

Construcción de 1 reservorio elevado de concreto armado, tipo cilíndricos RP-1, con un volumen de 600 m3; incluyendo cerco perimétrico, equipamiento e instalaciones hidráulicas.

Tendido de 1 Líneas de Aducción de PVC UF A – 10:

Línea del RP-1 con 5 m de tubería DN 200 mm.

3.2 OBRAS SECUNDARIAS

Las redes de distribución son del tipo convencional.

Para determinar el metrado de las redes de distribución, se ha considerado un ratio de 7.0 m/lote, en base a los frentes de lote de los planos proporcionados. (Anexo 01)

Tendido de tuberías de material de PVC UF A-10, programadas en 4 etapas:

Cuadro N° 3.1
Programación de Tendido de Tuberías

Etapa y año de ejecución	Tendido de Tuberías (m)					Conexiones Domiciliarias
	DN 200	DN 160	Ø 1⁄2"			
1ra Etapa (Año 0)	244	1991	3415	571		
2da Etapa (Año 2)	-	-	2829	473		
3ra Etapa (Año 4)	-	-	3241	542		
4ta Etapa (Año 6)	-	-	3624	606		

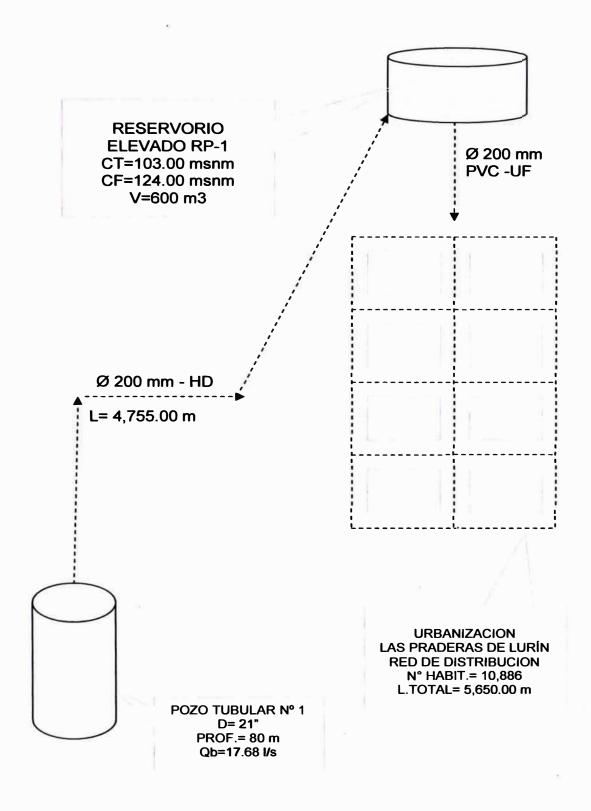


Gráfico 3.1 - Sistema de Agua Potable Proyectada

CAPITULO IV SISTEMA DE ALCANTARILLADO Y AGUAS RESIDUALES

La configuración topográfica del área de estudio facilita la evacuación de los desagües íntegramente por gravedad, permitiendo además que con los diámetros mínimos reglamentarios, se tenga capacidad suficiente para evacuar toda el área de drenaje de la habilitación. Además el estudio propone la instalación de una planta compacta de pre tratamiento mecánico y una cámara de bombeo en la parte baja de la habilitación, para luego impulsar los desagües hacia la planta de tratamiento San Bartolo. Ver Plano AL – 01 (Anexo 03).

4.1 OBRAS GENERALES

Ver cálculos en el Anexo 01

Tendido de colectores principales del área de drenaje que incluyen el rebose del reservorio RP-1, con 1198 m de DN 300 mm, 176 m de DN 250 mm y 189 m de DN 200 mm, PVC-UF; y la instalación de 43 buzones tipo I de profundidad promedio de 1.5 m.

Sistema de pre tratamiento, el cual consta de una planta compacta mecánica compuesta por:

- Tamiz integrado con compactador de sólidos R09, de diámetro de canastilla 400mm y espaciamiento de barras 6 mm.
- Tomillo compactador de diámetro 273 mm y de 8 m de longitud.
- Clasificador de arena de 273 mm y de 10 m de longitud.
- Tanque de acero inoxidable AISI 304 y compresor de aire.

Construcción de una Estación de Bombeo de 9 m3 de volumen útil, equipado con una bomba sumergible de las siguientes características:

- Qb = 23.79 l/s, HDT = 45 m y Potencia = 25 HP
 Construcción de obras complementarias, tales como:
- Caseta de grupo electrógeno Y Caseta de tableros eléctricos.
- Casa de vigilancia y Cerco perimétrico.
- Cisterna v tanque hidroneumático

Tendido de Línea de impulsión de material de Hierro Dúctil, con una longitud de 1820 m de DN 200 mm.

4.2 OBRAS SECUNDARIAS

Los colectores de servicios son del tipo convencional.

Para determinar el metrado de los colectores de servicios, se ha considerado un ratio de 6.0 m/lote, en base a los frentes de lote de los planos proporcionados por la inmobiliaria; y al cálculo hidráulico de los colectores principales. Ver **Anexo 01**

- Tendido de 11,590 m de tubería de DN 200 mm de PVC UF en el periodo de diseño.
- Instalación de 212 buzones tipo I de profundidad promedio 1.5 mts.
- Instalación de 2192 conexiones domiciliarias del tipo convencional en el periodo de diseño.

El tendido de colectores de servicio, serán programadas en 4 etapas:

Cuadro N° 4.1
Programación de Tendido de Tuberías

Etapa y año de	Tuberías DN 200	Buzones	Conexiones
ejecución	(m)	tipo I	Domiciliarias
1ra Etapa (Año 0)	3019	55	571
2da Etapa (Año 2)	2501	46	473
3ra Etapa (Año 4)	2866	52	542
4ta Etapa (Año 6)	3204	59	606

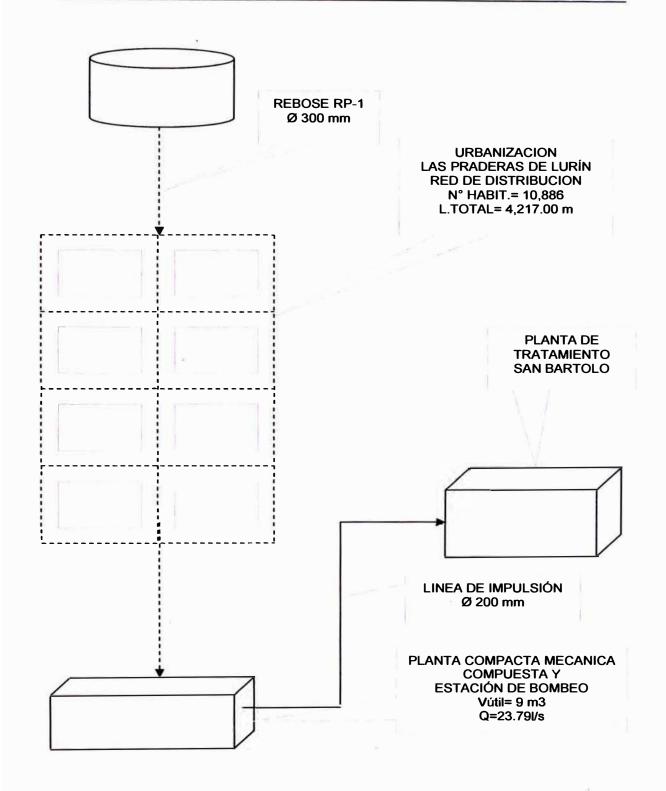


Gráfico 4.1 - Sistema de Alcantarillado Proyectada

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

CAPITULO IV : SISTEMA DE ALCANTARILLADO Y AGUAS RESIDUALES

4.3 ANÁLISIS DE LA DEMANDA DE AGUA POTABLE

Las consideraciones generales y supuestos tomados para la determinación de la

demanda en el ámbito del proyecto son los siguientes:

Población Futura

Debido a que la habilitación urbana por desarrollar aún no está habitada, el

crecimiento poblacional se dará de acuerdo a la venta de lotes y porcentaje de

ocupación de los mismos.

Para determinar la población futura, se considera como información básica, la

contenida en el plano de lotización de la urbanización, y una densidad

poblacional de 4.98 hab./viv., además se proyecta que la urbanización empezará

habitarse en el año 2009, año en el que se estima, estén ejecutadas todas las

obras y los futuros propietarios hayan cancelado por lo menos el 30% del costo

de sus lotes. Ver Cuadro Nº4.2

Horizonte de evaluación del proyecto

Según los criterios de evaluación para los proyectos de saneamiento, el

horizonte del proyecto se ha fijado en 20 años, por lo que el período de análisis

se extiende hasta el año 2030, debido a que se tendrá como momento de

inversión inicial el año 2010 (año 0 del proyecto) e inicio de la operación el

segundo semestre del año 2011.

Para cumplir con ese objetivo y de acuerdo a lo coordinado con la Inmobiliaria,

se parte en que durante el primer semestre del año 2010 se tiene previsto el

desarrollo de los estudios, iniciándose la ejecución de obras en el año 2011 con

una duración de 18 meses, por lo que el inicio de las operaciones se estima en

el segundo semestre del año 2011.

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO Katia del Pilar Rojas Rodríguez

Cuadro Nº 4.2

Crecimiento Poblacional en las Nuevas Urbanizaciones

Año		Las	Praderas de Lu	ırin
		Venta de lotes	lotes ocupados	Población Urbana
0	2010	0	0	0
1	2011	470	376	1872
2	2012	590	472	2351
3	2013	710	568	2829
4	2014	830	664	3307
5	2015	950	808	4024
6	2016	1070	910	4532
7	2017	1190	1012	5040
8	2018	1310	1179	5871
9	2019	1430	1287	6409
10	2020	1550	1395	6947
11	2021	1670	1587	7903
12	2022	1790	1701	8471
13	2023	1910	1815	9039
14	2024	2030	1929	9606
15	2025	2150	2043	10174
16	2026	2186	2186	10886
17	2027	2186	2186	10886
18	2028	2186	2186	10886
19	2029	2186	2186	10886
20	2030	2186	2186	10886

Fuente: Elaboración Propia

Densidad por vivienda

Se esta considerando una densidad por vivienda de 4.98 hab./viv.

Consumos

Teniendo en consideración que en la actualidad no se registran consumos en el área de estudio, se ha procedido a utilizar los consumos utilizados en el Estudio a Nivel Perfil de Ampliación y Mejoramiento de los Sistemas de Agua Potable y Alcantarillado del Distrito de Lurín.

Cuadro 4.3

Niveles de Consumo Previstos

Categoría	Consumos previstos en l/hab/d
Doméstico	135
Comercial	16
Estatal	21

Fuente: "Diseño de acueductos y Alcantarillado", Ricardo López Cualla

Pérdidas de Agua

Se considera un nivel de pérdidas del 25% en todo el horizonte de planeamiento, ya que los materiales y tecnología de fabricación de las tuberías y uniones que se utilizan actualmente en los sistemas de agua potable, hacen que se tenga bajos niveles de pérdidas en las redes de distribución.

Cobertura de Agua

El porcentaje de cobertura en el área de estudio es 0% al año 2010, se estima que con la implementación del proyecto la cobertura sea del 100% año a año durante todo el horizonte de planeamiento.

Micromedición

Para el caso del proyecto se ha considerado que para optimizar el uso y consumo de agua potable es necesario instalar conexiones con sus respectivos medidores (100% de medición).

En el Cuadro Nº 4.4 se resume los valores adoptados para los porcentajes de proyección de la cobertura, nivel de pérdidas de agua y micromedición.

Cuadro 4.4

Proyecciones de la Cobertura, Micromedición y Nivel de Pérdidas de Agua

Año	Cobertura de Agua (%)	Cobertura de Alcantarillado (%)	Pérdidas de Agua (%)	Micromedición (%)
-1	0%	0%	0%	0%
0	0%	0%	0%	0%
1	100%	100%	25%	100%
2	100%	100%	25%	100%
3	100%	100%	25%	100%
4	100%	100%	25%	100%
5	100%	100%	25%	100%
6	100%	100%	25%	100%
7	100%	100%	25%	100%
8	100%	100%	25%	100%
9	100%	100%	25%	100%
10	100%	100%	25%	100%
11	100%	100%	25%	100%
12	100%	100%	25%	100%
13	100%	100%	25%	100%
14	100%	100%	25%	100%
15	100%	100%	25%	100%
16	100%	100%	25%	100%
17	100%	100%	25%	100%
18	100%	100%	25%	100%
19	100%	100%	25%	100%
20	100%	100%	25%	100%

Volumen de Almacenamiento

El volumen de almacenamiento se ha determinado para el periodo de diseño según el momento óptimo de inversión, y teniendo en consideración las áreas de servicio que comprenderá el área de estudio, con la finalidad de mantener las presiones de servicio dentro de los valores máximo y mínimo reglamentarios.

Para determinar el volumen de almacenamiento se ha utilizado la siguiente fórmula:

Donde:

Qp = Caudal doméstico promedio

Qmd = Caudal doméstico máximo diario = Qp x K1

Vol. CI = Volumen contra incendio (50 m3 para uso doméstico)

De acuerdo a la proyección de la demanda de agua potable, en el Cuadro Nº 4.1-4 se muestra el requerimiento global de volumen de almacenamiento:

Cuadro 4.5
Volúmenes de Almacenamiento para el Período de Diseño

Volumen de	Volumen de	Volumen contra	Volumen total de
regulación	reserva	incendio	almacenamiento
(m3)	(m3)	(m3)	(m3)
345	125	50	520

Fuente: Elaboración Propia

Conexiones por tipo de usuario

En el Cuadro Nº 4.6 se muestra el número de conexiones por tipo de usuario o por categoría, previsto en el plano de lotización:

Cuadro Nº 4.6
Conexiones Domiciliarias por Categoría

Categoría	1ra Etapa	2da Etapa	3ra Etapa	4ta Etapa	Total
Doméstico	569	472	541	604	2186
Comercial					0
Estatal	2	1	1	2	6
Total	571	473	542	606	2192

Fuente: Elaboración propia

El incremento de las conexiones por tipo de usuario en todo el horizonte de evaluación se ha estimado de la siguiente manera:

- Doméstica: Crece paralelamente a la población servida.
- No Doméstica: Se parte de los lotes no domésticos ocupados, y se va incrementado gradualmente hasta alcanzar el número total de lotes con fines no domésticos de acuerdo a lo indicado en los respectivos planos de lotización.

Proyección de la Demanda

Para estimar la proyección de la demanda se ha considerado los siguientes parámetros:

Cuadro 4.7
Información de Base y Parámetros de Proyección

Parámetros	Sin proyecto	Con Proyecto
Población actual (habitantes)	0	10,886*
Densidad por lote (hab./lote)	4.98	4.98
Porcentaje de pérdidas	25%	25%
Aporte de aguas residuales	80%	80%

(*) Corresponde a la población proyectada para el periodo de diseño En el Cuadro Nº 4.10 se detalla el cálculo de la proyección de la demanda total de agua potable para el área del proyecto.

Si bien es cierto que la demanda se expresa generalmente como caudal promedio, es necesario determinar los caudales máximo diario y máximo horario, ya que de ellos depende el dimensionamiento de los diferentes componentes de la infraestructura sanitaria, tales como reservorios, líneas de aducción, impulsión, redes de distribución, colectores, pozos y plantas de tratamiento.

Los coeficientes de variación diaria y horaria utilizados en el presente perfil son K1=1.3 y K2=2.5 respectivamente; éste último se encuentra dentro del rango fijado por el Reglamento Nacional de Edificaciones - RNE (1.8 a 2.5).

Metodología para el dimensionamiento de las infraestructuras:

1. Reservorio: 0.25xQp + 0.07xQmd + Vol. Cl

Cuadro 4.8

Calculo de dimensionamiento de reservorio

	Qp Dom	Qmd (I/s)		Vreg.		Vtotal.
Reservorio	(a)	(b)	Vci (c)	(d)	Vres. (e)	(m3)
	l/s	(ax1.3)	m3	m3	m3	c+d+e
RP-1	16.0	20.8	50	345.6	125.8	521.4

Fuente: Elaboración propia

2. Línea de Aducción y Redes de Distribución: Se diseñan con la cifra que resulte mayor al comparar el gasto máximo horario, con la suma del gasto máximo diario más el gasto contra incendio.

Cuadro 4.9

Calculo de dimensionamiento de línea de aducción

	Qp Dom	Qmd (l/s)			Qmd+Qci
Línea de	(a)	(b)	Qci (c)	Qmh (l/s)	(l/s)
Aducción	l/s	(ax1.3)	l/s	(ax2.5)	(b+c)
RP-1	16.0	20.8	15	40.0	35.8

Cuadro 4.10
Proyección de la Demanda Total de Agua Potable

										Cone	xiones							Consumos					
	Año	Población Urbana	Cobert.	Poblac. Servida	Viviendas Servidas	Domés	tico	Com	ercial		Estata		То	tal	Microm.	Pérdidas de Agua	Cona. Dom.	Cona. Com.	Cona. Estatal	Cona. Total	Caudal perdida de	Demanda Total	Daman Total
		Urballa		Serviua	Selvings	CM	Total	CM	Total	CM	Total	% Micr.	CM	Total	(%)	(%)	m³/año	m³/año	m³/año	m³/Año	agua (I/dia)	m³/año	(Va)
-1	2007	0	0%	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0	0.0
0	2008	0	0%	0	0	0	0	0	0	0	0	0%	0	0	0.0	0.0	0	0	0	0	0	0	0.0
1	2009	1.872	100%	1.872	376	376	376	0	0_	_1_	1	100%	377	377	100.0	25.0	69,124	0	113	69,237	63,230	92,316	2.9
2	2010	2,351	100%	2,351	472	472	472	0	0	1	1	100%	473	473	100.0	25.0	86,772	0	113	86,886	79,348	115,848	3.7
3	2011	2,829	100%	2,829	568	568	568	0	0	2	2	100%	570	570	100.0	25.0	104,421	0	227	104,648	95,569	139,530	4.4
4	2012	3,307	100%	3,307	664	664	664	0	0	2	2	100%	666	666	100.0	25.0	122,070	0	227	122,296	111,686	163,062	5.2
5	2013	4,024	100%	4,024	808	808	808	0	0	3	3	100%	811	811	100.0	25.0	148,543	0	340	148,883	135,966	198,510	6.3
6	2014	4,532	100%	4,532	910	910	910	0	0	3	3	100%	913	913	100.0	25.0	167,294	0	340	167,634	153,091	223,512	7.1
7	2015	5,040	100%	5,040	1,012	1,012	1,012	0	0	4	4	100%	1,016	1.016	100.0	25.0	186,046	0	453	186,499	170,319	248,666	7.9
8	2016	5,871	100%	5,871	1,179	1,179	1,179	0	0	4	4	100%	1,183	1,183	100.0	25.0	216,747	0	453	217,200	198,357	289,601	9.2
9	2017	6,409	100%	6,409	1,287	1,287	1,287	0	0	5	5	100%	1,292	1,292	1000	25.0	236,602	0	566	237,168	216,592	316,225	10.0
10	2018	6,947	100%	6,947	1,395	1,395	1,395	0	0	6	6	100%	1,401	1,401	100.0	20.0	256,457	0	680	257,136	176,121	321,421	10.2
11	2019	7,903	100%	7,903	1,587	1,587	1,587	0	0	6	6	100%	1,593	1,593	100.0	20.0	291,754	0	680	292,434	200,297	365,542	11.6
12	2020	8,471	100%	8,471	1,701	1,701	1,701	0	0	6	6	100%	1,707	1,707	100.0	20.0	312,712	0	680	313,392	214,652	391,739	12.4
13	2021	9,039	100%	9,039	1,815	1,815	1,815	0	0	6	6	100%	1,821	1,821	100.0	20.0	333,670	0	680	334,349	229,006	417,937	13.3
14	2022	9,606	100%	9,606	1,929	1,929	1,929	0	0	6	6	100%	1,935	1,935	100.0	20.0	354,627	0	680	355,307	243,361	444,134	14.1
15	2023	10,174	100%	10,174	2,043	2,043	2,043	0	0	6	6	100%	2,049	2,049	100.0	20.0	375,585	0	680	376,265	257,716	470,331	14.9
16	2024	10,886	100%	10,886	2,186	2,186	2.186	0	0	6	6	100%	2,192	2.192	100.0	20.0	401,874	0	680	402,554	275.722	503,192	16.0
17	2025	10,886	100%	10,886	2,186	2,186	2,186	0	0	6	6	100%	2,192	2,192	100.0	20.0	401,874	0	680	402,554	275,722	503,192	16.0
18	2026	10,886	100%	10,886	2,186	2,186	2,186	0	0	6	6	100%	2,192	2,192	100.0	20.0	401,874	0	680	402,554	275,722	503,192	16.0
19	2027	10,886	100%	10,886	2,186	2,186	2,186	0	0	6	6	100%	2,192	2,192	100.0	20.0	401,874	0	680	402,554	275,722	503,192	16.0
20	2028	10,886	100%	10,886	2,186	2,186	2,186	0	0	6	6	100%	2,192	2,192	100.0	20.0	401,874	0	680	402,554	275,722	503,192	16.0

Período Óptimo de Diseño

El período óptimo de diseño es el período de tiempo en el cual la capacidad de un componente del sistema de agua potable o de alcantarillado cubre la demanda proyectada, minimizando el valor actual de los costos de inversión, operación y mantenimiento durante el período de análisis del proyecto.

Los factores de importancia en esta determinación son:

- Durabilidad o vida útil de las instalaciones
- Facilidad de construcción y posibilidades de ampliaciones
- Tendencias de crecimiento de la población
- Posibilidades de financiamiento y tasa de interés.

Para el presente perfil se ha determinado los períodos óptimos de diseño de los principales componentes de los sistemas de agua potable y alcantarillado, cuyo cálculo se resume en el Cuadro Nº 4.11

Cuadro 4.11
Período Óptimo de Diseño

Ítem	Componente	Período de Diseño (años)	Período de Diseño Adoptado (años)		
1	Redes de agua	14.3	14		
2	Línea de aducción	14.3	14		
3	Línea de impulsión	16.2	16		
4	Reservorio Elevado	18.9	19		
5	Equipo de Bombeo Agua	6.9	10		
6	Equipo de Bombeo Desagüe	15.5	16		
7	Redes de Alcantarillado	20.9	20		
8	Planta de tratamiento	20.0	20		

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL CAPITULO IV : SISTEMA DE ALCANTARILLADO Y AGUAS RESIDUALES

Para los cálculos correspondientes se ha considerado el período de déficit de la

curva de demanda, la tasa de descuento del 11% establecida por las normas del

Sistema Nacional de Inversión Pública y el factor de economía de escala para

cada componente, recomendado por la DNS. Ver Anexo 01

Para el caso de los equipo de bombeo de agua se considera 10 años como

período de diseño, debido a la vida útil de los equipos y al mantenimiento

predictivo que se les da en SEDAPAL.

4.4 Análisis del flujo de aguas servidas

Para determinar la demanda de aguas servidas, se ha tomado en cuenta los

mismos supuestos y consideraciones respecto a la población, horizonte del

proyecto y densidad por lote que han sido aplicados en las proyecciones para el

abastecimiento de agua potable.

Para los fines del proyecto, la cobertura del alcantarillado por conexiones

domiciliarias será la misma que la cobertura de agua potable; siendo así, porque

con el proyecto cada familia al tener una mayor disponibilidad de agua potable,

requiere una conexión de alcantarillado para conducir sus flujos de desagüe.

La tasa de contribución de agua a las redes de alcantarillado se estima en un

80%, que es un parámetro técnico estándar que se asume y que se mantendrá a

lo largo del horizonte del proyecto.

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO Katia del Pilar Rojas Rodríguez

Cuadro 4.12
Proyección de la Demanda Total de Alcantarillado

Año	Pob.	Cobert.	Población servida		lúmero de C	Volumen de desague				
	Total	(%)	(hab)	Domestico	Comercial	Estatel	Total	ita/dia	l/s	m3/año
0	0	0%	0	0	0	0		0	0.00	
1	1.872	100%	1.872	376	0	1	377	151.753	1.76	55.390
2	2.351	100%	2.351	472	0	1	473	190.435	2.20	69.509
3	2.829	100%	2.829	568	0	2	570	229.365	2.65	83.718
4	3.307	100%	3.307	664	0	2	666	268.047	3.10	97.837
5	4.024	100%	4.024	808	0	3	811	326.318	3.78	119.106
6	4.532	100%	4.532	910	0	3	913	367.418	4.25	134.107
7	5.040	100%	5.040	1.012	0	4	1.016	408.765	4.73	149,199
8	5.871	100%	5.871	1.179	o	4	1.183	476.056	5.51	173.760
9	6.409	100%	6.409	1.287	o	5	1.292	519.821	6.02	189.735
10	6.947	100%	6.947	1.395	0	6	1.401	563.587	6.52	205,709
11	7.903	100%	7.903	1.587	0	6	1.593	640.951	7.42	233,947
12	8.471	100%	8.471	1.701	0	6	1.707	686.886	7.95	250.713
13	9.039	100%	9.039	1.815	0	6	1.821	732.820	8.48	267.479
14	9.606	100%	9,606	1,929	0	6	1.935	778.755	9.01	284.246
15	10.174	100%	10.174	2.043	0	6	2.049	824.690	9.55	301,012
16	10.886	100%	10.886	2.186		6	2.192	882.310	10.21	322.043
_17	10.886	100%	10,886	2.186	0	6	2.192	882,310	10.21	322.043
18	10.886	100%	10.886	2.186	o	6	2.192	882.310	10.21	322.043
_19	10.886	100%	10.886	2.186		6	2.192	882.310	10.21	322.043
20	10.886 : Elaboraci	100%	10,886	2.186	0	6	2.192	882.310	10.21	322.043

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

CAPITULO IV : SISTEMA DE ALCANTARILLADO Y AGUAS RESIDUALES

4.5 Análisis de la Oferta

Agua Potable

Actualmente no existe infraestructura instalada de agua potable en la zona de

estudio, por lo tanto se considera la oferta de agua potable igual a cero (0).

Alcantarillado

Actualmente no existe infraestructura instalada de alcantarillado en la zona de

estudio, por lo tanto se considera la oferta de alcantarillado igual a cero (0).

4.6 Balance Oferta Demanda

Agua Potable

De los análisis de demanda y oferta se determinó el balance oferta – demanda

de agua potable para los componentes proyectados en el horizonte del proyecto.

Como la oferta de todos los componentes es cero, el resultado del balance oferta

demanda es igual a la demanda.

A continuación se presenta los caudales de diseño por componente en todo el

horizonte del proyecto. Ver Cuadro N° 4.13

Alcantarillado

De los análisis de demanda y oferta se determinó el balance oferta – demanda

del alcantarillado por componente en todo el horizonte del proyecto.

Como la oferta de todos los componentes es cero, el resultado del balance oferta

demanda es igual a la demanda.

A continuación se presenta los caudales de diseño por componente en todo el

33

horizonte del proyecto. Ver Cuadro Nº 4.14

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" - SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO

Cuadro Nº 4.13

Balance Oferta Demanda por Componente del Agua Potable

	Pozo	Línea de	Reservorio	Línea de	Redes
	(Qb -	impulsión (Qb-	(m3)	aducción (Qmh	(Qmh -
Año	l/s)	l/s)	()	- I/s)	I/s)
0	0.00	0.00	-50	0.00	0.00
1	-5.07	-5.07	-136	-7.32	-7.32
2	-6.37	-6.37	-158	-9.18	-9.18
3	-7.67	-7.67	-180	-11.06	-11.06
4	-8.96	-8.96	-202	-12.93	-12.93
5	-10.91	-10.91	-235	-15.74	-15.74
6	-12.29	-12.29	-259	-17.72	-17.72
7	-13.67	-13.67	-282	-19.71	-19.71
8	-15.92	-15.92	-321	-22.96	-22.96
9	-17.38	-17.38	-345	-25.07	-25.07
10	-17.67	-17.67	-350	-25.48	-25.48
11	-20.09	-20.09	-392	-28.98	-28.98
12	-21.53	-21.53	-416	-31.05	-31.05
13	-22.97	-22.97	-440	-33.13	-33.13
14	-24.41	-24.41	-465	-35.21	-35.21
15	-25.85	-25.85	-489	-37.29	-37.29
16	-27.66	-27.66	-520	-39.89	-39.89
17	-27.66	-27.66	-520	-39.89	-39.89
18	-27.66	-27.66	-520	-39.89	-39.89
19	-27.66	-27.66	-520	-39.89	-39.89
20	-27.66	-27.66	-520	-39.89	-39.89

Cuadro Nº 4.14

Balance Oferta Demanda por Componente del Alcantarillado

	PTAR	Pre	Colontors	Cámara de	Línea de
	(Qp -	Tratamiento	Colectores	bombeo	impulsión (Qb-
Año	l/s)	(Qmh - I/s)	(Qmh - I/s)	(m3)	l/s)
0	0.00	0.00	0.00	0.00	0.00
1	-1.76	-4.39	-4.39	-1.47	-6.41
2	-2.20	-5.51	-5.51	-1.84	-8.04
3	-2.65	-6.64	-6.64	-2.22	-9.69
4	-3.10	-7.76	-7.76	-2.59	-11.32
5	-3.78	-9.44	-9.44	-3.16	-13.78
6	-4.25	-10.63	-10.63	-3.56	-15.52
7	-4.73	-11.83	-11.83	-3.96	-17.26
8	-5.51	-13.77	-13.77	-4.61	-20.11
9	-6.02	-15.04	-15.04	-5.03	-21.95
10	-6.52	-16.31	-16.31	-5.45	-23.80
11	-7.42	-18.55	-18.55	-6.20	-27.07
12	-7.95	-19.88	-19.88	-6.65	-29.01
13	-8.48	-21.20	-21.20	-7.09	-30.95
14	-9.01	-22.53	-22.53	-7.54	-32.89
15	-9.55	-23.86	-23.86	-7.98	-34.83
16	-10.21	-25.53	-25.53	-8.54	-37.26
17	-10.21	-25.53	-25.53	-8.54	-37.26
18	-10.21	-25.53	-25.53	-8.54	-37.26
19	-10.21	-25.53	-25.53	-8.54	-37.26
20	-10.21	-25.53	-25.53	-8.54	-37.26

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

CAPITULO V: COSTOS Y PRESUPUESTO

36

CAPITULO V
COSTOS Y PRESUPUESTO

Los costos estarán expresados en soles constantes a precios del 30 de Enero del 2010. Se está utilizando un tipo de cambio de S/. 3.00 nuevos soles por cada

dólar.

Costos de la situación "sin proyecto"

La situación "sin proyecto optimizada", se define como aquella en la que se

busca mejorar las condiciones actuales de operación y provisión de los servicios,

con los recursos corrientes disponibles, pero optimizando su uso.

En ese sentido se puede considerar gastos adicionales moderados en materiales

y personal, pero no de activos fijos o inversiones marginales para la ampliación

de los servicios.

Dado que actualmente SEDAPAL no brinda servicios de agua potable y

alcantarillado en el área de influencia del proyecto, no se consideran costos de

operación y mantenimiento en la situación "sin proyecto".

Costos de la situación "con proyecto"

Los costos en la situación "con proyecto", estarán compuestos por los costos de

inversión inicial y el costo futuro de las acciones y actividades previstas para

cada componente tanto en agua potable como en alcantarillado.

Así mismo, forman parte de estos costos, los costos de producción de agua,

distribución, mantenimiento de la infraestructura y de los equipos, otros costos

operativos, costos comerciales y gastos administrativos, que generará el

proyecto a SEDAPAL en el período 2010-2030.

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" - SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO

5.1 Costos de inversión

Los costos de inversión del proyecto se determinan a partir de los componentes que constituyen cada una de los sistemas de agua potable y en alcantarillado.

Los costos para cada uno de los componentes del sistema convencional, se ha calculado a partir de la información actualizada de costos elaborada por la Gerencia de Proyectos y Obras de SEDAPAL; de los Costos de Inversión en Obras de Saneamiento del Departamento de Planes Maestros de la SUNASS y las estimaciones efectuadas por el consultor.

A continuación se detalla los componentes que comprende cada uno de los sistemas de abastecimiento de agua potable y alcantarillado en la situación "con proyecto", a partir de los cuales se definió los costos de inversión:

Agua Potable

Perforación de 1 pozo tubular de 21" de diámetro y 80 mts de profundidad, equipado con:

Cuadro Nº 5.1
Equipamiento de Pozo tubular

Nombre	Tipo de bomba	Unidades	Caudal	HDT	
		(*)	(l/s)	(m)	
Pozo Nº 1	Turbina vertical	1	17.68	124.6	

Fuente: Elaboración propia

Tendido de Líneas de impulsión:

Cuadro Nº 5.2 Línea de impulsión

Nombre	Longitud (m)	Diámetro (mm)	Tipo de terreno	Material	
Pozo № 1 al RP-1	4755.5	200	Normal	HD K-7	

Cuadro Nº 5.3 Línea de impulsión - Accesorios

Tipo de Válvula	DN	Número		
Compuerta	200	5		
Aire	50	5		
Purga	50	5		

Fuente: Elaboración propia

 Construcción de 1 reservorio, con su respectiva caseta de válvula, cerco perimétrico e instalaciones eléctricas y de automatización.

Cuadro Nº 5.4 Volumen del reservorio

Nombre	Volumen (m3)	Tipo		
RP-1	600	Elevado		

Fuente: Elaboración propia

Equipamiento hidromecánico:

La caseta de válvula del reservorio RP-1 contará con instalaciones hidromecánicas (medidor electromagnético, válvula compuerta, válvula de aire y accesorios).

La caseta de bombeo del Pozo Nº 1 contará con instalaciones hidromecánicas (medidor electromagnético, válvula compuerta, válvula de aire, válvula check, válvula anticipadora de ondas y accesorios).

Tendido de 1 líneas de aducción:

Cuadro Nº 5.5 Línea de impulsión - Accesorios

Nombre	Longitud	Diámetro	Tipo de	Material
	(m)	(mm)	terreno	
RP-1	5	200	Normal	PVC UF A-10

• Tendido de redes de distribución del tipo convencional, que serán ejecutadas en etapas durante todo el periodo de diseño, éstas serán de material de PVC UF A-10 e instaladas en terreno normal.

Cuadro Nº 5.6
Redes de Distribución

Etapa	Conexiones	Diámetro	Longitud
		(mm)	(m)
		200	244
1ra (año 0)	571	160	1991
		110	3415
2da (año 2)	473	110	2829
3ra (año 4)	542	110	3241
4ta (año 6)	606	110	3624

Fuente: Elaboración propia

- Instalación de 2192 conexiones domiciliarias convencionales en todo el periodo de diseño.
- Instalación de 8,162 medidores que incluye su reposición cada 5 años a lo largo del horizonte del proyecto. Ver Cuadro Nº 5.7.

Alcantarillado:

Tendido de la línea de rebose y colectores principales:

Cuadro Nº 5.8

Línea de rebose y colectores principales

Nombre	DN	L (m) – Material	Tipo de		
			terreno		
Reboses RP-1	300	1198 – PVC UF	Normal		
Colector principal	200	189 – PVC UF	Normal		
Colector principal	250	176 – PVC UF	Normal		

Cuadro Nº 5.7

Programación y Reposición de Medidores

	Medidor	Repo	Total			
Año	Cant.		Cant	idad		Medidores
		1ra	2da	3ra	Total	a instalar
0	571				0	571
1					0	0
2	473				0	473
3					0	0
4	542				0	542
5		571			571	571
6	606	0			0	606
7		473			473	473
8		0			0	0
9		542			542	542
10		0	571		571	571
11		606	0		606	606
12		0	473		473	473
13		0	0		0	0
14		0	542		542	542
15		0	0	571	571	571
16		0	606	0	606	606
17		0	0	473	473	473
18		0	0	0	0	0
19		0	0	542	542	542
20		0	0	0	0	0
Total	2,192	2,192	2,192	1,586	5,970	8,162

Fuente: Elaboración propia

Cuadro Nº 5.9 Buzones

Nombre	N°	Profundidad promedio	Tipo de terreno
Buzones Tipo I	43	1.5 mts	Normal

Tendido de redes de alcantarillado del tipo convencional de material PVC UF ejecutadas en etapas durante todo el periodo de diseño y serán instaladas en terreno normal.

Cuadro Nº 5.9 Buzones de tipo I

Etapa	Conexiones	Buzones	Diámetro (mm)	Longitud (m)
1ra (año 0)	571	55	200	3019
2da (año 2)	473	46	200	2501
3ra (año 4)	542	52	200	2866
4ta (año 6)	606	59	200	3204

Fuente: Elaboración propia

- Instalación de 2,192 Conexiones domiciliarias del tipo convencional, en todo el periodo de diseño
- Instalación de un sistema de pre tratamiento compuesta por una cámara de rejas gruesas, una planta compacta (tamiz, desarenador y clasificador de sólidos)
- Construcción de 1 Estación de Bombeo de 9 m3 de volumen útil, equipada con una bomba del tipo sumergible de las siguientes características:

Qb = 23.79 l/s, HDT = 44.81 m y Potencia = 25 HP

- Construcción de obras complementarias: Caseta de vigilancia, caseta de grupo electrógeno, caseta de tableros eléctricos, cisterna y tanque hidroneumático; y cerco perimétrico.
- Tendido de 1820 m de tubería DN 200 mm de material de HD.

Cuadro Nº 5.10

Costos de Inversión del Sistema de Agua Potable y Alcantarillado a Precios Privados: Alternativa 1 NUEVA HABILITACIÓN URBANA U.C. Nº 11027 (MASIAS)

1: AGUA POTABLE										Fecha: Diciembre 2007	
COMPONENTES DE INVERSION	UNIDAD	METRADO	COSTO UNITARIO	MATERIAL NACIONAL	MATERIAL IMPORTADO	MANO OBRA CALIFICADA	MANO OBRA NO CALIFICADA	EQUIPO NACIONAL	EQUIPO IMPORTADO	GASTOS GENERALES Y UTILIDAD	TOTALES
Obras provisionales y trabajos preliminares	Estimado	1.00	9,529.00	1,677	410	2,582	1,744	419	1,277	1,420	9,529
Construcción de Pozo Tubular y caseta	Und	1.00	325,912.00	124,824	22,488	30,636	58,676	22,084	20,663	48,561	325,912
Línea de Impulsión (DN 200 HD)	m	4.755.00	222.33	213,554	87.747	178,666	168,094	103,605	148,008	157,522	1.057.196
Reservorio elevado 600 m3, inc. caseta	Und	1.00	437,335.00	173,184	25,803	40,716	75,615	29,564	27,290	65,163	437,336
Equipamiento Hidrautico del RP-1 (DN 200)	Und	1.00	111.375.00	6,571	44,104	10,369	19,257	7,529	6,950	16,595	111,375
Equipamiento Hidraulicodel Pozo (DN 200)	Und	1.00	238,253.00	14.057	94,348	22,181	41,194	16,106	14,867	35,500	238,253
Suministro eléctrico del Pozo	Und	1.00	28.046.00	1.655	11.108	2,611	4.849	1,896	1,750	4,179	28.046
Línea de Aducción de DN 200 PVC UF A-10	m	5.00	269.60	272	112	228	214	132	189	201	1,348
Redes secund. Convenc. DN 200 PVC UF	m	244.00	166.87	8,225	3,380	6,881	6,474	3,990	5,700	6,067	40,717
Redes secund. Convenc. DN 160 PVC UF	m	1,991.00	106.32	42,759	17,569	35,773	33,657	20,744	29,635	31,540	211,677
Redes secund. Convenc. DN 110 PVC UF	m	3,415.00	73.36	50,603	20,792	42,337	39,831	24,550	35,072	37,328	250,511
Conexiones domiciliarias convencionales	Und	571	479.72	78,067	13,148	45,745	52,319	31,227	12,600	40,614	273,920
Medición individual, inc. Reposicón	Und	571	141.03	22,468	3,865	13,609	15,703	9,180	3,704	11,999	80,528
Supervisión de obra (Sedapal)	Und	1.00	17,850.00	3,159	0	6,248	2,213	3,570	0	2,660	17,850
Estudios y Diseños	Und	1.00	92,808,00	16,984	0	32,483	11.508	18,005	0	13.828	92,808
TOTALES				758,059	344,872	471,065	529,348	292,581	307,706	473,375	3,177,005

2: ALCANTARILLADO										Fecha: Diciembre	2007
COMPONENTES DE INVERSION	UNIDAD	METRADO	COSTO UNITARIO	MATERIAL NACIONAL	MATERIAL IMPORTADO	MANO OBRA CALIFICADA	MANO OBRA NO CALIFICADA	EQUIPO NACIONAL	EQUIPO IMPORTADO	GASTOS GENERALES Y UTILIDAD	TOTALES (incl. 19% IGV)
Obras provisionales y trabajos preliminares	Estimado	1	9,529.00	1.677	410	2,582	1,744	419	1,277	1,420	9,529
Construcción de cámara de bombeo	Und	1	154,456.00	20,386	5,252	30,426	35,966	14,982	24,404	23,014	154,466
Construcción de obras complementarias	Und	1	102,142.00	13,463	3,473	20,122	23,799	9,908	16,138	15.219	102,142
Equipamiento hidromecánico de cámara de bombeo	Glb	1.	118,118.00	0	47,011	4,252	1,063	0	46,074	17,718	118,118
Equipamiento hidromecánico de pre tratamiento	Glb	1	58,941.00	0	22,663	2,050	512	0	23,175	8,541	56,941
Pta compacta (tamiz, compactador, desarenador)	Glb	1	454,575.00	0	180,921	18,365	4,091	0	185.012	88,186	454.575
Eletrobomba sumergible	Und	2	79,879,50	0	63,584	5,751	1,438	0	85,022	23,964	159,759
Grupo Electrogeno	Glb	1	190,262.00	0	75,725	6,849	1,712	0	77,437	28.539	190,262
Línea de Impulsión DN 200 HD en ter. Normal	m	1,820	228.13	83,871	34,482	70,169	66,017	40,690	56,126	61,865	415,202
Colector de rebose DN 300 PVC UF SN 2.5	m	1,198	209.74	33,168	8,543	49.500	58.546	24,373	39,701	37,439	251,270
Colectores principales DN 200-250 PVC UF SN 2.5	m	365	144.29	6.952	1.791	10,375	12,271	5,109	8,321	7,847	52,686
Redes secund. Conven. DN 200 PVC UF	m	3,019	102.10	40.688	10,480	60,724	71.821	29.900	48,703	45,929	308,245
Conexiones domiciliarias convencionales	Und	571	753.53	122,195	20,853	72.715	81,750	49,050	19,792	64,109	430,264
Supervisión de obra (Sedapal)	Und	1.00	17,850.00	3,159	0	6.248	2,213	3,570	0	2,660	17,850
Estudios v Diseños	Und	1,00	92.808.00	16,984	0	32.483	11.508	18.005	0	13.828	92,808
TOTAL				342,585	474,968	390,613	374.473	196,006	615,184	420.278	2,814,087

Fuente: Elaboración propia

MONTO TOTAL DEL PROYECTO

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" - SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO Katia del Pilar Rojas Rodríguez

5,991,092

Cuadro Nº 5.11

Costos de Inversión del Sistema de Agua Potable y Alcantarillado a Precios Sociales: Alternativa 1
NUEVA HABILITACIÓN URBANA U.C. Nº 11027 (MASIAS)

1: AGUA POTABLE										Fecha: Diclembre 20	07
COMPONENTES DE INVERSION	UNIDAD	METRADO	COSTO UNITARIO	MATERIAL NACIONAL	MATERIAL IMPORTADO	MANO OBRA CALIFICADA	MANO OBRA NO CALIFICADA	EQUIPO NACIONAL	EQUIPO IMPORTADO	GASTOS GENERALES Y UTILIDAD	TOTALES
				0.8403	0.8802	0.9091	0.88	0.8403	0.8802	0.8403	
Obres provisionales y trabajos preliminares	Estimado	1	8,252.00	1,409	353	2,347	1,500	352	1,098	1,193	8,252
Construcción de Pozo Tubular y caseta	Und	1	277,946.00	104,890	19,344	27,851	48.741	18,540	17,774	40,806	277,948
Linea de Impulsión (DN 200 HD)	m	4,755	191.09	179,449	75,480	182,425	144,561	87,059	127,316	132,388	908,858
Reservorio elevado 800 m3, Inc. caseta	Und	1	372,841.00	145,527	22,196	37,015	65,029	24,843	23,475	54,758	372,841
Equipamiento Hidraulico del RP-1 (DN 200)	Und	1	95,697.00	5,522	37,938	9,428	18,561	8,327	5,978	13,945	95,697
Equipamiento Hidraulicodel Pozo (DN 200)	Und	1	204,718.00	11,812	81,158	20,165	35,427	13,534	12,789	29,831	204,716
Suministro eléctrico del Pozo	Und	1	24,098.00	1,391	9,553	2,374	4,170	1,593	1,505	3,512	24,098
Línea de Aducción de DN 200 PVC UF A-10	m	5	231.80	229	96	207	184	111	183	189	1,159
Redes secund. Convenc. DN 200 PVC UF	m	244	143.43	6,911	2,907	8,258	5,568	3,353	4,903	5,098	34,996
Redes secund, Convenc. DN 160 PVC UF	m	1,991	91.38	35,930	15,113	32,521	28,945	17,431	25,492	28,503	181,935
Redes secund, Convenc, DN 110 PVC UF	m	3,415	63.05	42,522	17,885	38,489	34,255	20,629	30,169	31,365	215,314
Conexiones domiciliarias convencionales	Und	571	411.32	65,600	11,310	41,587	44,994	26,240	10.839	34,296	234,868
Medición individual, inc. Reposicón	Und	571	127.00	18,880	3,325	12,372			3,186	10,063	89.085
Supervisión de obra (Sedapal)	Und	1	15,473.00			5,680	1,903	3,000	0	2,235	15,473
Estudios y Diseños	Und	1	80,449,00	14,272	0	29,530			0	11,620	80,449
TOTAL				838,999	298,868	428,245	455,240	245,858	284,887	397,778	2,725,483

			совто	MATERIAL	MATERIAL	MANO OBRA	MANO OBRANO	EQUIPO	EQUIPO	GASTOS	TOTALES
COMPONENTES DE INVERSION	UNIDAD	METRADO	UNITARIO	NACIONAL	IMPORTADO	CALIFICADA	CALIFICADA	NACIONAL	IMPORTADO	GENERALES Y UTILIDAD	
				0.8403	0.8802	0.9091	0.86	0.8403	0.8602	0.8403	
Obras provisionales v trabajos preliminares	Estimado	1	8,252.00	1,409	353	2,347	1,500	352	1,098	1,193	8,252
Construcción de cámara de bombeo	Und	1	133,182.00	17,132	4,518	27,662	30,950	12,589	20,992	19,339	133,182
Construcción de obras complementarias	Und	1	88,074.00	11,330	2,987	18,293	20,467	8,326	13,882	12,789	88,074
Equipamiento hidromecánico de cámara de bombeo	Glb	1	101,459.00	0	40,439	3,865	914	0	41,353	14,888	101,459
Equipamiento hidromecánico de pre tratamiento	Gib	1	48,911.00	0	19,495	1,864	440	0	19,935	7,177	48,911
Pta compacta (tamiz, compactador, desarenador)	GIb	1	390,467.00	0	155,628	14,877	3,518	0	159,147	57,297	390,467
Eletrobomba sumergible	Und	2	68,614.50	0	54.695	5,228	1,237	0	55,932	20,137	137,229
Grupo Electrogeno	GIb	1	163,429.00	0	65,139	6,226	1,472	0	66,611	23,981	183,429
Línea de Impulsión DN 200 HD en ter. Normal	m	1,820	196.08	70.477	29,644	63,791	56.775	34,192	50,002	51,985	358.888
Colectores principales DN 200-250 PVC UF SN 2,5	m	365	124.42	5.842	1.541	9.432	10.553	4.293	7,158	6,594	45,413
Redes secund. Conven. DN 200 PVC UF	m	3,019	88.04	34,190	9,015	55,204	61,766	25,125	41,894	38,594	265,788
Conexiones domiciliarias convencionales	m	571	646,18	102,680	17,766	66,105	70.305	41.217	17.025	53,871	388,969
Supervisión de obra (Sedapal)	Und	1	15,473.00	2,655	0	5.680	1,903	3.000	0	2.235	15,473
Estudios y Diseños	Und	11	80,449,00	14,272	0	29.530	9.897	15,130	0	11,620	80,449
TOTAL				259,987	401,220	310,104	271,697	144,224	495,029	321,700	2,203,961

Fuente: Elaboración propia

MONTO TOTAL DEL PROYECTO

4,929,424

Cuadro Nº 5.12

Cronograma de Inversión del Sistema de Agua Potable y Alcantarillado a Precios Privados: Alternativa 1

NUEVA HABILITACIÓN URBANA U.C. Nº 11027 (MASIAS)

COMPONENTES DE INVERSION	2008	2009	2010	2011	2012	2013	2014	2018	2018	2017	2018	2018	2020	2021	2022	2023	2024	2025	2028	2027	2028	Total
Obras provisionales y trabajos preliminares	9.529																					9,529
Construcción de Pozo Tubular y casata	325,912																					328,812
Línes de Impulsión (DN 200 HD)	1,057,198							()			1											1,067,19
Reservorio elevado 600 m3, inc. caseta	437,335																					437,33
Equipamiento Hidraulico del RP-1 (DN 200)	111,375											1										111,37
Equipamiento Hidraulicodel Pozo (DN 200)	238,253																					238,26
Suministro eléctrico del Pozo	28,048																					28,048
Linea de Aducción de DN 200 PVC UF A-10	1.349																					1,348
Redes secund, Convenc. DN 200 PVC UF	40,717																					40,717
Redes secund, Convenc. DN 160 PVC UF	211,677	-							/													211,877
Redes secund, Convenc, DN 110 PVC UF	250,511		207,535		237,760		265,867										V s	100		1		981,683
Conexiones domiciliarias convencionales	273,920		228,908		260,008		290.710															1,051,54
Medición individual, inc. Reposicón	80,528	0	66.707	0	76,438	80.528	85.484	68,707	0	76,438	80,528	85,464	68,707	0	76.438	80,528	85.464	66.707	0	76,438	٥	1,151,08
Supervisión de obra (Sedapal)	17.850		1		14.14	1																17,850
Estudios y Diseños	92.808							-							-							92.808
TOTA	3,177,008	0	501,150	0	574,208	80,528	842,031	88,707	0	78,438	80.626	88 484	66,707	0	70 430	80,528	85 494	88 707	0	78,438	0	6,738,33
COMPONENTES DE INVERSION	2008	2009	2010	2011	2012	2013	2014	2018	2018	2017	2018	2018	2020	2021	2022	2023	2024	2025	2028	2027	2028	Total
Obras provisionales y trabalos preliminares	9.529																					9,529
Construcción de cámera de bombeo	154,456																-					164,485
Construcción de obras complementarias	102.142										-											102,142
Equipamiento hidromecânios de câmara de bombeo	118,118																					118,118
Equipamiento hidromecánico de pre tratamiento	56,941																-					56,941
Pta compacta (tamiz, compactador, desarenador.)	454,675						-	4													1	464.676
Eletrobomba sumergible	159,759									1	79.880											239.839
Grupo Electroceno	190.262					1	1															190,282
Línea de impulsión DN 200 HD en ter. Normal	415,202												-									418.202
	II		1		1	1	7											1				251,270
Colector de rebose DN 300 PVC UF SN 2.5	251,270																					
Colector de rebose DN 300 PVC UF SN 2.5 Colectores principales DN 200-250 PVC UF SN 2.5	251,270 52,666																			T		62,666
			255,352		292.619		327,128															
Colectores principales DN 200-250 PVC UF SN 2.5	52 666		255,352 358,420		292,619 408,413																	1,183,34
Colectores principales DN 200-250 PVC UF SN 2.5 Redes secund. Conven. DN 200 PVC UF	52.688 308.245						327,128 456,639															

79,880

0 76,438 160,408 85,464 66,707

0 76,438 80,528 85,464 58,707

Fuente: Elaboración propia

2,814.087

6,991,092

TOTAL

Monto Total (8/.)

811,772 0 701,032 0 783,767

1,275,238 80,528 1,425,798 66,707

0 1,112,922

Cuadro Nº 5.13

Cronograma de Inversión del Sistema de Agua Potable y Alcantarillado a Precios Sociales: Alternativa 1 NUEVA HABILITACIÓN URBANA U.C. Nº 11027 (MASIAS)

COMPONENTES DE INVERSION	2008	2009	2010	2011	2012	2013	2014	2016	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	Total
Obras provisionales y trabajos preliminares	8,252																					8,252
Construcción de Pozo Tubular y caseta	277,946																					277,948
Linea de impulsión (DN 200 HD)	908,858																					908,656
Reservorio elevado 600 m3, inc. caseta	372,841															1						372,841
Equipamiento Hidraulico del RP-1 (DN 200)	95897																					95,697
Equipamiento Hidraulicodel Pozo (DN 200)	204,716											-										204,718
Suministro eléctrico del Pozo	24,098																					24,098
Linea de Aducción de DN 200 PVC UF A-10	1,159															1						1,159
Redes secund. Convenc. DN 200 PVC UF	34,996	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34,996
Redes secund. Convenc. DN 180 PVC UF	181,935	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	161,935
Redes secund, Convenc. DN 110 PVC UF	215,314	0	178,376	0	204,355	0	228,504	0	0	0	0	0	0	0	0	0	0	0	0	0	0	828,549
Conexiones domiciliarias convencionales	234,866	0	194,557	0	222,937	0	249,262	0	0	0	0	0	0	0	0	0	0	0	0	0	0	901,822
Medición individual, inc. Reposicón	72,517	0	60,071	0	68,834	72,517	78,962	80,071	0	88,834	72,517	76,962	80,071	0	68,834	72,517	76,962	60,071	0	88,834	0	1,038,574
Supervisión de obra (Sedapai)	15,473														1.							15,473
Estudios y Diseños	80,449															1						80,449
TOTALES	2,728,916	0	433,004	0	496,126	72.617	554,728	80,071	0	68,834	72.617	76,982	80,071	0	68,634	72.517	78.862	80,071	0	88,634	0	4,870,963

COMPONENTES DE INVERSION	2008	2009	2010	2011	2012	2013	2014	2018	2016	2017	2016	2019	2020	2021	2022	2023	2024	2028	2026	2027	2028	Total
Obras provisionales y trabajos preliminares	8,252																					8.252
Construcción de cámara de bombeo	133,182											- 1										133,182
Construcción de obres complementaries	88,074																					88,074
Equipamiento hidromecánico de cámara de bombeo	101,459				- "																	101,451
Equipamiento hidromecánico de pre tratamiento	48,911																					48.911
Pts compacts (temiz, compactsdor, desarenador)	390,487																					390,487
Eletrobomba sumergible	137,229								1		68,615											205,844
Grupo Electrogeno	183,429					5					00,010	-	7						1			163,429
Linea de impulsión DN 200 HD en ter. Normal	356,866																		1			356,886
Colectores principales DN 200-250 PVC UF SN 2.5	45,413								7													45,413
Redes secund. Conven. DN 200 PVC UF	285,788	0	220,180	0	252.314	0	282,070	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,02036
Conexiones domiciliaries convencionales	388,969	0	305,645	0	350,231	0	391,587	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,418,43
Supervisión de obra (Sedapal)	15,473																		(100000		16,473
Fetudios y Diseños	80.449												-	1	100				-			80,449
TOTAL	2,203,961	0	525,525	0	602545	0	673.657	0	0	0	66,615	0	0	0	0	0	0	0	0	0	0	4,074,80

Cuadro Nº 5.14

Metas del Sistema de Agua Potable y Alcantarillado: Alternativa 1 NUEVA HABILITACIÓN URBANA U.C. Nº 11027 (MASIAS)

COMPONENTES DE INVERSION	UND	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18	17	18	19	20	Tota
Obras provisionales v trabajos preliminares	Estim	_1_																					1
Construcción de Pozo Tubular y caseta	Und	1.00																					1.00
lnes de Impulsión (DN 200 HD)	Und	4,755	_																				4,755
Reservorio elevado 600 m3, inc. casata	Und	1																					1
Equipamiento Hidraulico del RP-1 (DN 200)	Und	1																					1_1_
Equipamiento Hidraulicodel Pozo (DN 200)	Und	1_1_																					1
Suministro eléctrico del Pozo	Und	1													-							-	1
Linea de Aducción de DN 200 PVC UF A-10	l m	5_																					_ 6_
Redes secund, Convenc, DN 200 PVC UF	m	244	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	244
Redes secund. Convenc. DN 160 PVC UF	m	1,991	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,991
Radas secund. Convenc. DN 110 PVC UF	m_	3,415	0	2,829	0	3,241	0	3,624	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13,10
Conexiones domiciliarias convencionales	Und	571	0	473	0	542	0	606	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,192
Medición individual, inc. Reposicón	Und	571	0	473	0	542	571	606	473	0	542	571	606	473	0	542	571	606	473	0	542	0	8,162
Supervisión de obra (Sedapal)	Und	1										1		100									1
Estudios v Diseños	Und	1																					1

COMPONENTES DE INVERSION	UNO	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18	17	18	19	20	Tota
Obras provisionales y trabalos preliminares	Estimado	1																					1
Construcción de cámara de bombeo	Und	_1_				-												-					1
Construcción de obras complementarias	Und	_1_																					1_1_
Equipamiento hidromecánico de cámara de bombao	Glb	_1_			_											0							1_1_
Equipamiento hidromecánico de pre tratamiento	Glb	1														0							1_1_
Pta comoacta (tamiz, compactador, desarenador)	Glb	1											355			0						3.3	1
Eletrobomba sumercible	Und	2										1_1_				0	15-57						3
Grupo Electrogeno	Glb	_1_			7								200			0							1
Linea de impulsión DN 200 HD en ter, Normal	m	1,820								- 3							= 3		= =	V			1,820
Colector de rebose DN 300 PVC UF SN 2.5	m	1,198														-40				(121)			1,198
Colectores principales DN 200-250 PVC UF SN 2-5	m	365								2													365
Redes secund, Conven. DN 200 PVC UF	m	3,019	0	2,501	0	2,866	0	3.204	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11.590
Conexiones domiciliarias convencionales	Und	571	0	473	0	542	0	606	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,192
Supervisión de obra (Sedapal)	Und	1	1=1-50			1	1																1
Estudios y Diseños	Und	1																					

Cuadro Nº 5.15

Resumen de Costos de Inversión de los Sistemas de Agua Potable y

Alcantarillado (S/. a Diciembre 2009)

Sistema	Cost	tos
	Privados	Sociales
Agua		<u>-¥</u>
Potable	5,736,339	4,970,963
Alcantarillado	4,990,538	4,074,603
Total	10,726,877	9,045,566

Fuente: Elaboración propia

Cuadro Nº 5.16

Resumen Costos de Inversión por Etapas en Sistemas de Agua Potable y

Alcantarillado Para el Año 0 (S/. a Diciembre 2009)

Sistema	Cos	tos
Sistema	Privados	Sociales
Agua		
Potable	3,177,005	2,728,915
Alcantarillado	2,814,087	2,203,961
Total	5,991,092	4,932,876

Fuente: Elaboración propia

Cuadro Nº 5.17

Resumen Costos de Inversión por Etapas en Sistemas de Agua

Potable y Alcantarillado Para el Año 1 al 20 (S/. a Diciembre 2009)

Sistema	Cos	tos
Sistema .	Privados	Sociales
Agua		
Potable	2,559,334	2,242,048
Alcantarillado	2,176,451	1,870,642
Total	4,735,785	4,112,690

• Costos de operación y mantenimiento

Para estimar los costos totales atribuibles a la operación y mantenimiento del proyecto, se analizan los costos por naturaleza y destino que tiene SEDAPAL. Cuadros Nº 5.18 y 5.19

Los componentes de los costos en agua potable son: costos de producción de agua, distribución, mantenimiento, costos de comercialización y gastos de administración en general y en el caso del alcantarillado son: costos de tratamiento, recolección y de mantenimiento de la infraestructura, costos comerciales y gastos administrativos en general.

CUADRO 5.18

Costos Unitarios de O&M de Agua Potable

Precios a Diciembre 2009 (S/. xm3 inc. IGV)

	Costos/m3 Precios	Estructura Porcentual	Factor de Corrección	Factor de Corrección
Rubro	Privados			Ponderado
Insumos	0.076	8.607	0.8403	0.0723
Manos de obra (a)	0.064	7.248	0.9091	0.0659
Electricidad	0.223	25.255	0.8403	0.2122
Mantenimiento (b)	0.034	3.851	0.8403	0.0324
Otros gastos				
operativos	0.241	27.293	0.8403	0.2293
Tributos	0.012	1.359	0.8403	0.0114
Aguas servidas	0.000	0.000	0.8403	0.0000
Colaterales	0.008	0.906	0.8403	0.0076
Administración	0.059	6.682	0.8403	0.0561
Ventas	0.088	9.966	0.8403	0.0837
Financieros	0.078	8.834	0.8403	0.0742
Total General	0.883	100.000		0.8453

a. Incluye: seguros de riesgo general, seguros de riesgo humano.

b. Contratación de servicios de terceros en las actividades de operación y mantenimiento

CUADRO 5.19
Costos Unitarios de O&M de Alcantarillado
Precios a Diciembre 2009 (S/. xm3 inc. IGV)

	Costos/m3	Estructura	Factor de	Factor de
A.	Precios	Porcentual	Correcció	Corrección
Rubro	Privados	Porcentual	n	Ponderado
Insumos	0.002	0.484	0.8403	0.0041
Manos de obra (a)	0.019	4.600	0.9091	0.0418
Electricidad	0.002	0.484	0.8403	0.0041
Mantenimiento (b)	0.020	4.843	0.8403	0.0407
Otros gastos				
operativos	0.068	16.465	0.8403	0.1384
Tributos	0.001	0.242	0.8403	0.0020
Aguas servidas	0.018	4.358	0.8403	0.0366
Colaterales	0.010	2.421	0.8403	0.0203
Administración	0.071	17.191	0.8403	0.1445
Ventas	0.107	25.908	0.8403	0.2177
Financieros	0.095	23.002	0.8403	0.1933
Total General	0.413	100.000		0.8435

- a. Incluye: seguros de riesgo general, seguros de riesgo humano.
- b. Contratación de servicios de terceros en las actividades de operación y mantenimiento

Fuente: Gerencia de Desarrollo e Investigación

Para determinar los costos de operación y mantenimiento a precios sociales, se ha multiplicado los precios privados (Cuadro Nº 5.18 y 5.19) por los factores de corrección ponderado; obteniéndose S/. 0.746 por m3 de agua potable y S/. 0.348 por m3 de desagüe recolectado y tratado.

Por lo tanto los costos de operación y mantenimiento "con proyecto" a precios privados y sociales a lo largo del horizonte de evaluación, se presenta a continuación en el Cuadro Nº 5.20

Cuadro Nº 5.20

Costos de Operación y Mantenimiento de Agua Potable y Alcantarillado
"Situación Con Proyecto" a precios de Diciembre 2009

	Agua Potable			Alc	antarillado)
	cu S/./m3	S/. 0.883	S/. 0.746	cu S/./m3	S/. 0.413	S/. 0.348
Año	Producción	Privados	Sociales	Recolección	Privados	Sociales
	(m3/año)	(S/.)	(S/.)	(m3/año)	(S/.)	(S/.)
1	92,316	81,515	68,904	55,390	22,876	19,295
2	115,848	102,294	86,467	69,509	28,707	24,213
3	139,530	123,205	104,144	83,718	34,576	29,163
4	163,062	143,984	121,707	97,837	40,407	34,082
5	198,510	175,284	148,166	119,106	49,191	41,491
6	223,512	197,361	166,827	134,107	55,386	46,716
7	248,666	219,572	185,601	149,199	61,619	51,974
8	289,601	255,717	216,154	173,760	71,763	60,530
9	316,225	279,226	236,026	189,735	78,360	66,094
10	321,421	283,814	239,905	205,709	84,958	71,659
11	365,542	322,774	272,836	233,947	96,620	81,496
12	391,739	345,906	292,390	250,713	103,545	87,336
13	417,937	369,038	311,943	267,479	110,469	93,177
14	444,134	392,170	331,496	284,246	117,393	99,017
15	470,331	415,302	351,049	301,012	124,318	104,858
16	503,192	444,319	375,577	322,043	133,004	112,184
17	503,192	444,319	375,577	322,043	133,004	112,184
18	503,192	444,319	375,577	322,043	133,004	112,184
19	503,192	444,319	375,577	322,043	133,004	112,184
20	503,192	444,319	375,577	322,043	133,004	112,184

CAPITULO V: COSTOS Y PRESUPUESTO

51

5.2 Beneficios del Proyecto

Para el caso de los componentes de agua y alcantarillado, no se cuantificarán

los beneficios en forma monetaria para su evaluación, debido a que no hay

población asentada en el área de estudio, y se estima que los futuros

compradores de los lotes, ya estén gozando con los servicios de agua potable y

alcantarillado, por lo que la ejecución del proyecto no generará beneficios

cuantitativos por lo tanto la metodología para la evaluación del proyecto, se

efectuará a través del Análisis Costo - Efectividad.

5.3 Evaluación

Evaluación Social

La evaluación social que se efectúa al presente proyecto, tiene por finalidad

establecer la bondad de la inversión marginal en términos del beneficio neto

económico que traerá a la población, durante el período de evaluación de dicho

proyecto.

En tal sentido, para efectuar la evaluación social del proyecto, se requiere definir

factores de corrección para ajustar los precios privados o de mercado a precios

sociales. Al respecto hay dos grandes grupos de estos factores:

Impuestos directos (impuesto a la renta), que no se considerarán como

costos adicionales del proyecto, dado que si bien es una salida de dinero para

SEDAPAL, es también un beneficio para el Estado, entonces su efecto se anula.

Con estas consideraciones para obtener los precios sociales en los diferentes

componentes del costo del proyecto, se aplica la siguiente relación:

Costo Social = (Factor de Corrección) * (Costo de Mercado)

Los factores de conversión o corrección han sido determinados por el Ministerio

de Economía y Finanzas. Los factores varían según la naturaleza de los bienes y

servicios que se utilizarán en el proyecto.

PROYECTO INMOBILIARIO DE VIVIENDAS UNIFAMILIARES "LAS PRADERAS DE LURIN" - SISTEMA DE ABASTECIMIENTO DE AGUA Y ALCANTARILLADO

Cuadro Nº 5.21

Factores de Corrección de Precios Privados a Precios Sociales

Componente	Factor
Bienes y Servicios No Transables o Nacionales	0.8403
Divisa / Bienes y Servicios Transables o Importados	0.8602
Mano de Obra Calificada	0.9091
Mano de Obra No Calificada*	0.8600

Fuente: Elaboración propia

*: Para el caso de Lima Metropolitana

El flujo de costos sociales totales se determina ajustando el flujo de costos a precios de mercado, para que reflejen sus valores sociales. En función a estos flujos, se estima el valor actual de los beneficios o costos sociales totales de cada componente del proyecto, considerando que el valor social de los recursos públicos (dinero) en el tiempo es del 11%, denominada tasa social de descuento, la cual refleja el costo de oportunidad social del capital para la ejecución de un proyecto de inversión pública. Para calcular los valores actuales se utilizan las siguientes ecuaciones:

Agua Potable:

$$VABSN = \sum_{i=1}^{n} \frac{FBSN_{i}}{(1 + TSD)^{i}} \dots (5.1)$$

VABSN: es el valor actual del flujo de beneficios sociales netos

Alcantarillado:

$$VACSN = \sum_{i=1}^{n} \frac{FCSN_{i}}{(1 + TSD)^{i}} \dots (5.2)$$

$$VAECS = VACSN \frac{TSD * (1 + TSD)^n}{(1 + TSD)^n - 1} \dots (5.3)$$

VACSN: es el valor actual del flujo de costos sociales netos

FBSNt: es el flujo de beneficios sociales netos del período t

FCSNt: es el flujo de costos sociales netos del período t

n: es el horizonte de evaluación del proyecto

TSD: es la tasa social de descuento

VAECS: valor actual equivalente del flujo de costos sociales netos

 Análisis Costo Efectividad del Componente Agua Potable y Alcantarillado

Para la evaluación económica mediante el método de costo - efectividad se ha considerado los costos de la inversión inicial, futuros y costos de operación y mantenimiento a precios sociales para todo el periodo de evaluación.

El Índice de Costo/Efectividad (ICE), consiste en expresar los costos de cada una de los componentes del proyecto a evaluar en términos de una cuota anual, cuyo valor actualizado es igual al VAC de los costos del proyecto. Para su cálculo se aplica la siguiente fórmula:

ICE = <u>VAC (INVERSION + COSTOS DE O&M)</u>

IE

Donde:

ICE = Indice Costo Efectividad

VAC = Valor Actual de Costos

IE = (Población beneficiada Año 1 + Población beneficiada Año 20)/2

Tasa de Descuento: 11%

En el Cuadro Nº 5.22, 4.7-3 y 4.7-4 se detalla la determinación del análisis costo - efectividad para Agua Potable, y para el Componente Alcantarillado, respectivamente.

Cuadro Nº 5.22
Evaluación Económica del Componente Agua Potable
(Precios Sociales a Diciembre del 2007)

		Pob.	Usuarios	Incremento		Cos	tos S/.	
Año	Pob. Urbana	Urbana Atendida	con	de usuarios Servidos anual	Inversión del Proyecto	Costo O&M	Inversión Futura S/.	Total
0	0	0	0	0	2,728,915			2,728,915
1	1,872	1,872	377	377		38,127	0	38,127
2	2,351	2,351	473	96		86,467	433,004	519,471
3	2,829	2,829	570	97		104,144	0	104,144
4	3,307	3,307	666	96		121,707	496,127	617,834
5	4,024	4,024	811	145		148,166	72,517	220,683
6	4,532	4,532	913	102		166,827	554,728	721,555
7	5,040	5,040	1,016	103		185,601	60,071	245,672
8	5,871	5,871	1,183	167		216,154	0	216,154
9	6,409	6,409	1,292	109		236,026	68,834	304,860
10	6,947	6,947	1,401	109		239,905	72,517	312,422
11	7,903	7,903	1,593	192		272,836	76,962	349,798
12	8,471	8,471	1,707	114		292,390	60,071	352,461
13	9,039	9,039	1,821	114		311,943	0	311,943
14	9,606	9,606	1,935	114		331,496	68,834	400,330
15	10,174	10,174	2,049	114		351,049	72,517	423,566
16	10,886	10,886	2,192	143		375,577	76,962	452,539
17	10,886	10,886	2,192	0	::	375,577	60,071	435,648
18	10,886	10,886	2,192	0		375,577	0	375,577
19	10,886	10,886	2,192	0		375,577	68,834	444,411
20	10,886	10,886	2,192	0		375,577	0	375,577
Valor	Actualizado	(11%)					S/.	5,423,823
Indica	dor de Efec	tividad (IE)					(*)	6,379
Costo	por Habita	nte Servido	- Costo Efe	ectividad			SI. (Hab	850.26

^{1/} Las Inversiones se proyectan para el año 2008

^{2/} La evaluación incluye las inversiones futuras en instalación redes, conexiones y medidores

Cuadro Nº 5.23

Evaluación Económica del Componente Alcantarillado

(Precios Sociales a Diciembre del 2007)

		Pob.		Incremento		Cos	tos S/.	
Año	Pob. Urbana	Urbana Atendid a	Usuarios con Conexión	de usuarios Servidos anual	Inversión del Proyecto	Costo O&M	Inversión Futura S/.	Total
								2,203,96
0	0	0	0	0	2,203,961			1
1	1,872	1,872	377	377		19,295	0	19,295
2	2,351	2,351	473	96		24,213	525,825	550,038
3	2,829	2,829	570	97		29,163	0	29,163
4	3,307	3,307	666	96		34,082	602,545	636,627
5	4,024	4,024	811	145		41,491	0	41,491
6	4,532	4,532	913	102		46,716	673,657	720,373
7	5,040	5,040	1,016	103		51,974	0	51,974
8	5,871	5,871	1,183	167		60,530	0	60,530
9	6,409	6,409	1,292	109		66,094	0	66,094
10	6,947	6,947	1,401	109		71,659	68,615	140,274
11	7,903	7,903	1,593	192		81,496	0	81,496
12	8,471	8,471	1,707	114		87,336	0	87,336
13	9,039	9,039	1,821	114		93,177	0	93,177
14	9,606	9,606	1,935	114		99,017	0	99,017
15	10,174	10,174	2,049	114	2	104,858	0	104,858
16	10,886	10,886	2,192	143		112,184	0	112,184
17	10,886	10,886	2,192	0		112,184	0	112,184
18	10,886	10,886	2,192	0	7	112,184	0	112,184
19	10,886	10,886	2,192	0		112,184	0	112,184
20	10,886	10,886	2,192	0		112,184	0	112,184
								3,851,12
Valor A	Actualizado (11%)					S/.	0.74
Indica	dor de Efecti	vidad (IE)					(*)	6,379
Costo	por Habitan	te Servido -	Costo Efect	ividad			S/. /Hab	603.72

1/ Las Inversiones se proyectan para el año 2008

2/ La evaluación incluye las inversiones futuras en instalación redes y conexiones

La evaluación económica arroja los siguientes resultados:

Cuadro Nº 5.24
Evaluación Económica

Componente	Precios Sociales
Componente	ICE (S/. x habitante)
Agua Potable	850.26
Alcantarillado	603.72

Fuente: Elaboración Propia

Cuadro Nº 5.25 Costos

		Población	Costo Per
Componente	Inversión Total	Beneficiaria	cápita
	(S/.)	(habitantes)	(S/. /Hab.)
Agua	5,736,339	10,886	526.95
Desagüe	4,990,538	10,886	458.44

Fuente: Elaboración Propia

De los resultados se puede concluir que el proyecto es viable, ya que el costo per cápita para el componente agua potable y alcantarillado se encuentran por debajo de la línea de corte establecida en el SNIP 08.

CONCLUSIONES

CONCLUSIONES

Este proyecto permitirá brindar servicios de agua potable y alcantarillado a un total de 10,886 habitantes distribuidos en 2,186 lotes unifamiliares al final del periodo de diseño, contribuyendo así a la mejora de la calidad de vida y a las condiciones sanitarias del Área de Estudio.

Para el componente agua potable la solución al problema es el abastecimiento de agua tomando fuente agua subterránea captada por 1 pozo tubular, y luego se conducidas por una línea de impulsión hasta un reservorio elevado, para desde aquí distribuir el agua a la habilitación.

Para el componente alcantarillado, se plantea la recolección de las aguas residuales mediante colectores de servicios hasta descargar a una cámara de bombeo y desde aquí impulsar los desagües hacia la planta de tratamiento San Bartolo.

El costo total de inversión es de S/.5'991,092; de los cuales S/. 3'177,005 corresponden a obras de agua potable y S/. 2'814,087 a obras de alcantarillado.

El Proyecto "Instalación del Sistema de Agua Potable y Alcantarillado para la Nueva Habilitación Urbana" es viable desde el punto de vista técnico, económico.

RECOMENDACIONES

Se recomienda culminar los estudios de sensibilidad, sostenibilidad e impacto ambiental, de este modo el proyecto debe ser viable no solo técnica y económicamente, sino social y ambiental también.

Respecto al costo de operación y mantenimiento se recomienda hacer el cálculo de manera que sea financiado por los mismos usuarios a través del pago de consumo.

En etapa de ejecución del proyecto, por las actividades propias como excavaciones, acumulación y eliminación de desmonte, ruidos de demolición y de la obra, se recomienda tener una gestión de mitigación a estos efectos negativos.

BIBLIOGRAFIA

- Fair Geyen y Okun; Abastecimiento de Agua y Remoción de Aguas Residuales, Edición 1998.
- 2. Lopez Cualla, Ricardo; Diseño de Acueductos y Alcantarillado, Edición 1999
- Velasquez, Arturo; Como hacer estudios de factibilidad de proyectos y negocios, Edición 1era 2000.
- Sedapal; Reglamento de Proyectos de Agua Potable y Alcantarillado para Habilitaciones Urbanas de lima Metropolitana y Callao, Resolución N°780-2005-GG.
- Reglamento Nacional de Edificaciones RNE, Resolución Ministerial N° 290-2005-Vivienda.

PRE DISEÑO DEL RESERVORIO RP-1

Datos:

Periodo de diseño = 19 años

Caudal promedio = 16 l/s (Proyección de la demanda)

Factor de regulación = 25 % Qp (según RNC)
Factor de reserva = 7 % Qmd (según RNC)
Volumen contra incendio = 50.0 m3 (según RNC)
K1 = 1.3 (según RNC)

Volumen de Regulación:

Vreg = 346 m3

Volumen Contra Incendio:

Vci = 50 m3

Volumen de Reserva:

Vres = 126 m3

Volumen de Almacenamiento:

Vt = 521 m3

Volumen Existente

Vexit = 0 m3

Volumen Requerido

V = 521 m3

V = 600 m3

HOJA DE CALCULO HIDRAULICO LINEA DE IMPULSION PROYECTADA

LOCALIDAD: UC. N 11027 (MASIAS)

TRAMO: POZO P-1 AL RESERVORIO ELEVADO

DATOS BASICOS DE DISEÑO:

Caudal Promedio diario (Qpd)	=	16.00	1/s
Horas de bombeo (HB)	=	18	Hrs.
Caudal de bombeo (Qb)	=	27.73	l/s
Valor de "C" (H.y W.)-Impulsión	=	140	
Valor de "C" (H.y W.)-Succión e ingreso al Reserv.	=	140	
Longitud de la linea de Succión (Ls)	=	35	m
Longitud de la línea de Impulsión (Li)	=	4,755.50	m
Longitud de la tuburía de Ingreso al RP-1. (Lr)	/ = / [30	m
Cota de ingreso al reservorio RP - 1	=	131.40	msnm.
Presión de llegada al Reservorio	I = 1	3.5	m
Nivel Dinámico del Pozo (NIV.D)	=	20.80	msnm,
Periodo de Diseño (n)	= -	19	años
Tasa de Interés (I)	=	11	%
Costo unitario de Potencia (Cu)	=	0.189	S/. Kw-hr.
Eficiencia de Equipo de bombeo	=	65	%
Factor para el cálculo de la Potencia Instalada	=	1.1	

CRITERIOS DE CALCULO:

Costo de tubería (Ctub.) = 1,141°D^1,618

Costo de equipamiento (Cequip.) = 6680°Potins.^0,55

Imversión Inicial (In) = Ctub. + Cequip.

Costo de Opera.(Costo Anual de Energia) (C.O) = 0,746°Pot.ins°H6°365°Cu

Costo de Operación al Valor Presente (V.P.) = C.O°((1+i)^n-1)/(i°(1+i)^n)

Costo Total (CT) = In + V.P.

Rango de velocidades (0,65 - 1,5) m/s

CALCULO DEL DIAMETRO (D):

Aplicando la fórmula de Bresse

 Dmax. (Diámetro teórico máximo)
 = 1,3*(HB/24)^(1/4)*(Qb)^0,5
 = 201.47
 mm

 Decon. (Diámetro teórico económico)
 = 0,96*(HB/24)^(1/4)*Qb^0,45
 = 177.99
 mm

ANALISIS PARA SELECCIONAR EL DIAMETRO COMERCIAL TECNICO-ECONOMICO

	Diámetro (mm)	Velocidad (V) (m/s)	Pérdida de Carga en la Linea de Succión (hfs) (m)	Pérdida en el arbol de descarga (hfa) (m)	Pérdida en la Linea de Impul. (hfi) (m)	hf accesorios L/D < 4000 25°V^2/(2°9,81)
12	300	0.38	1.37	1.70	2.30	0.18
10	250	0 55	1 39	1 50	5 59	0.38
8	200	0.86	1.47	1.20	16.56	0.93
8	160	1.52	1.84	1.00	67.24	2.95
	Diámetro (mm)	Pérdida de Carga en la Tubería de ingreso al Pto. (hfr) (m)	Pérdida de Carga Total hfs+hfa+hfi+hfaccesorio+hfr (m)	Gradiente Hidráulica S (‰)	Presión de Ingreso al Pto. (m)	Nivel Piezome. Reservorio NPZC (msnm.)
12	300	0.00	5.55	1.15	3.50	134.90
10	250	0.00	8 86	1.84	3 50	134 90
8	200	0.00	20 17	4 18	3.50	134.90
6	160	0.00	73.03	15.15	3.50	134 90
	Diámetro (mm)	Nivel Piezométrico Pozo P-1 NPZ=NPZA + hf total	Altura Dinámica Total HDT=NPZ-NIV.D	Pot. Bomba (HP)	Pot. Instal. (HP)	Costo de Tuberia (1) (S/.)
12						Tuberia (1) (S/.)
12	(mm)	NPZ=NPZA + hf total (msnm.)	HDT=NPZ-NIV.D (m)	(HP)	(HP)	Tuberia (1)
10	(mm) 300	NPZ=NPZA + hf total (msnm.) 140.45	HDT=NPZ-NIV.D (m) 119.65	(HP) 68.07	(HP) 74.87	Tuberia (1) (S/.) 1,334,143.69
10	(mm) 300 250	NPZ=NPZA + hf total (msnm.) 140 45 143 76	HDT=NPZ-NIV.D (m) 119 65 122 96	(HP) 68 07 69 95	(HP) 74 87 76 95	Tuberia (1) (S/.) 1.334.143.69 1.113,164.41
10	(mm) 300 250 200	NPZ=NPZA + hf total (msnm.) 140 45 143.76 155.07	HDT=NPZ-NIV.D (m) 119.65 122.96 134.27	(HP) 68.07 69.95 76.38	(HP) 74.87 76.95 84.02	Tuberia (1) (S/.) 1,334,143.69 1,113,164.41 891,882.62
10	300 250 200 160	NPZ=NPZA + hf total (msnm.) 140 45 143 76 155 07 207 93 Costo de Equipamiento	HDT=NPZ-NIV.D (m) 119.65 122.96 134.27 187.13 Imversion Inicial	(HP) 68. 07 69.95 76.38 106.46 Costo de Operación	74.87 76.95 84.02 117.10 Costo de Operación	Tuberia (1) (S/.) 1,334,143,69 1,113,164,41 891,882,62 670,220,63 Costo
10	300 250 200 160 Diámetro (mm)	NPZ=NPZA + hf total (msnm.) 140 45 143.76 155.07 207.93 Costo de Equipamiento (S/.)	HDT=NPZ-NIV.D (m) 119.65 122.96 134.27 187.13 Imversion Inicial (S/.)	(HP) 68.07 69.95 76.38 106.46 Costo de Operación (S/.)	74.87 76.95 84.02 117.10 Costo de Operación al V.P. (S/.)	Tuberia (1) (S/.) 1,334,143,69 1,113,164,41 891,882,62 670,220,63 Costo Total (S/.)
10 8 5	300 250 200 160 Diámetro (mm)	NPZ=NPZA + hf total (msnm.) 140 45 143.76 155.07 207.93 Costo de Equipamiento (S/.) 71,723.31	HDT=NPZ-NIV.D (m) 119 65 122 96 134 27 187 13 Inversion Inicial (SJ.) 1,405,867 01	(HP) 68 07 69 95 76 38 106 46 Costo de Operación (S/.) 69 358 60	74 87 76 95 84 02 117.10 Costo de Operación al V.P. (S/.) 543.722 48	Tuberia (1) (S/.) 1.334.143.69 1.113.164.41 891.882.62 670.220.63 Costo Total (S/.) 1.949.589.49

(1) : Precios de tuberias al 30/07/07

D = 200 mm

	DIAMETRO	SELECCIONAD	0
--	-----------------	-------------	---

HOJA DE CALCULO HIDRAULICO EQUIPO DE BOMBEO DEL POZO P-1

Potencia de la bomba	3 =	50 HP
Velocidad (m/s)	#	0.55
HDT	=	124.58 mts
Hft (total)	=	10.48
Hf(accesorios)	=	0.38 mts
Hf(impulsión)	=	7.20 mts
Hf(árbol de descarga)	· ==	1.5 mts
Hf (Succión)	=	1.40 mts
Diámetro de la tubería de imp.	=	8 pulg.
Qb	=	17.7 lps
Horas de bombeo	=	18 horas
K1	=	1.3 (RNC)
Qp (año 2018)	=	10.2 lps
Periodo de diseño (2019)	=	10 años

CAMARA DE BOMBEO DE DESAGUES

(Cálculo del volumen útil y el caudal de bombeo)

Nombre del proyecto : Especificación :

Empresa:

Instalación del Sistema de Agua y Alcantarillado de la Nueva Habilitación

Cámara de bombeo de aguas residuales - Año 10

IMNOBILIARIA MASIAS

1.	Caudale	s de Co	ntribución

Caudal Promedio (Qp)

6.52 It/seg

Caudal Máximo (Qmc)

16.30 lt/seg

2. Caudal Mínimo

% del Caudal Promedio (50% u otro) % del Caudal Máximo (15% u otro) 50.00%

Caudal Mínimo (Qmin)

3.26 lt/seg

3. Coeficientes de Variación de Caudal

Coeficiente de Variación Diaria (K1) Coeficiente de Variación Horaria (K2) 1.30 2.50

4. Períodos de Retención

Período de Retención Máximo (t1) Período de Retención Mínimo (t) 40.00 minutos 10.00 minutos

4. Cálculos

Relación Qmc / Qmin, (K)

5.00

Coeficiente de Cálculo : a' = t1 / t

4.00

Según la ecuación cuadrática : K' (K - a') + K' (a' - K^2) + K (K-1) (1+a') = 0

Desarrollando y adoptando constantes para calcular la determinante (b^2 - 4ac)

$$a = (K-a') = 1.00$$

 $b = (a'-K^2) = -21.00$
 $c = K(K-1)(1+a') = 100$

¿ Se obtienen resultados imaginarios para la variable K' ?:

NO

Raíces de la ecuación cuadrática :

K'1 = 13.702 K'2 = 7.298 K' = 7.298 (*

NOTA (*): Se recomienda tomar como resultado la raíz de menor valor por razones económicas.

5. Resumen

Caudal Mínimo de Contribución	8	3.26	lt/seg
Caudal Máximo de Contribución		16.30	it/seg
Caudal de Bombeo		23.79	lt/seg
/olumen Util de la Cámara de Bombeo		5.45	m3
/olumen Util Seleccionado		9.00	m3
iempo Mínimo de Arrangue	99	16.51	minutos
tmin retención		9.20	minutos
tmin bombeo		7.31	minutos
liempo Máximo de Arrangue		66.04	minutos
•		46.01	minutos
tmax bombeo		20.02	minutos
tmin bombeo Fiempo Máximo de Arranque tmax retención		9.20 7.31 66.04 46.01	

EQUIPO DE BOMBEO DE DESAGUES

1 DATOS

Caudal de bombeo Numero de horasde bombeo (N)

23.79	lt/seg
9	horas

2 CÁLCULO DEL DIÁMETRO DE LA LÍNEA DE IMPULSIÓN

La selección del diámetro de la línea de impulsión se hará en base a la fórmula de Bresse:

Diámetro de tub de impulsión

0.155 m

6.2 pulg

$$D = 1.3 \frac{N^{1/4}}{24} * (\sqrt{Q_b})$$

Diametro comercial

8 pulg

3 SELECCIÓN DEL EQUIPO DE BOMBEO

Caudal de bombeo (Qb)	23.79 lps
Cota nivel de bombeo	74.90 msnm
-Cota de nivel de terreno (CB)	78.9
-Prof de succión	4.00
Cota de llegada a la planta de tratamiento	112.0
-Cota de nivel de terreno (ingreso)	111.0
-Altura descarga	1.0
Altura estática (He)	37.1
Longitud de la tubería (L) HD	1820.0 m
Longitud de la tubería (L) F°F°	3.5 m

Cálculo de la perdida de carga

Perdida de carga por tubería (hft) HD Perdida de carga por tubería (hft) F°F°

4.741	m
0.017	m

Perdida de carga por tubería (hft)

4.76 m

$$hf = \frac{(1745155 .28 * L(Q_{imp}^{1.85}))}{C^{1.85}D^{4.87}}$$

Perdida de carga por acces (hfa)

0.95 m

hfa = 0.20*hfl

Pérdida de carga total (hft)

<u>5.71</u> m

Altura dinámica total (HDT)

44.81 m

HDT = He+hft

Potencia de la bomba

Potencia comercial a instalar

22.3	HP
25	HP

$$Pot.Bomba = \frac{PE * Q_{imp}Ht}{75 * n}$$

PE = Peso Especifico del agua

n = n1 * n2

n1 = Eficiencia del motor = 70%<n1<85%

n2 = Eficiencia de la Bomba = 85%<n2<90%

1000.00 | 6375.00 | 75.00 | 85.00 | %

HOJA DE CALCULO HIDRAULICO LINEA DE IMPULSION DE DESAGUES PROYECTADA

LOCALIDAD: UC. N 11027 - MASIAS

TRAMO: CAMARA DE BOMBEO DESAGUES A PLANTA DE TRATAMIENTO DE DESAGUES

DATOS BASICOS DE DISEÑO:

0 1111 1 1 (01)			
Caudal de bombeo (Qb)	=	37.26	l/s
Valor de "C" (H.y W.)-Impulsión	=	140	
Valor de "C" (H.y W.)- Succión EB	=	140	
Longitud de la linea de Succión (Ls)	=:	2	m
Longitud de la línea de Impulsión (Li)	=	1,820.00	m
Longitud de la tuburia de Ingreso	=	0	m
Accesorios del árbol de descarga (*)	:=:		
Nivel de terreno del ingreso a la Planta de Desagues	"= "	111.00	msnm.
Presión de llegada	=	1	m
Nivel de arranque de la EB	= [74.90	msnm.
Periodo de Diseño (n)	=	20	años
Tasa de Interés (i)	=	11	%
Costo unitario de Potencia (Cu)	=	0.189	S/. Kw-hr.
Eficiencia de Equipo de bombeo	=	60	%
Factor para el cálculo de la Potencia Instalada	=	1.1	

CRITERIOS DE CALCULO:

Costo de tuberia(Ctub.) = Costo de equipamiento(Cequip.) = Imversión Inicial (In) = Costo de Opera.(Costo Anual de Energia) (C.O) = Costo de Operación al Valor Presente (V.P.) = Costo Total (CT) = Rango de velocidades

1,141°D^1,618
6680*Potins.^0,55
Ctub. + Cequip.
0,746"Pot.ins"HB"365"Cu
C.O*((1+i)^n-1)/(i*(1+i)^n)
In + V.P.
(0,65 - 1,5) m/s

CALCULO DEL DIAMETRO (D):

Aplicando la fórmula de Bresse

Dmax. (Diámetro teórico máximo) Decon. (Diámetro teórico económico) = 1,3*(HB/24)^(1/4)*(Qb)^0,5 = 0,96*(HB/24)^(1/4)*Qb^0,45 193.86 mm 168.75 mm

ANALISIS PARA SELECCIONAR EL DIAMETRO COMERCIAL TECNICO-ECONOMICO

Г	Diámetro	Velocidad (V)	Pérdida de Carga en la	Pérdida en el	Pérdida en la	hf accesorios		
- 1	(mm)	(m/s)	Linea de Succión	arbol de descarga	Linea de Impul.	L/D < 4000		
			(hfs) (m)	(hfa) (m)	(hfi) (m)	25"V^2/(2"9,81)		
8	150	2.04	1.40	1.70	44.43	5.32		
1	200	1 15	1.36	1.50	10 95	1.68		
10	250	0.74	1.35	1.20	3.69	0.69		
12	300	0.51	1.35	1 00	1.52	0.33		
	Diámetro	Pérdida de Carga en la	Pérdida de Carga Total	Gradiente	Presión de	Nivel Piezome.		
100	(mm)	Tuberia de ingreso	hfs+hfa+hfi+hfaccesorio+hfr	Hidráulica	Ingreso al Res.	CB MBT		
		(hfr) (m)	(m)	S (‰)	(m)	NPZC (msnm.)		
	150	0.00	52.85	29.00	0.50	111.50		
8	200	0.00	15.49	6.50	0.50	111.50		
10	250	0.00	6 94	3.81	0.50	111.50		
12	300	0.00 4.20		2.31	0 50	111.50		
	Diámetro	Nivel Piezométrico Pozo P-11	Altura Dinámica Total	Pot. Bomba	Pot. Instal.	Costo de		
J. 119	(mm)	NPZ=NPZA + hf total	HDT=NPZ-NIV.D	(HP)	(HP)	Tuberia (1)		
-		(msnm.)	(m)			(S/.)		
6	150	164.35	89.45	74 06	81 47	254,895.32		
8	200	126.99	52.09	43.13	47.44	339,196.82		
10	250	118.44	43.54	36.05	39.65	423 353 72		
12	300	115.70	40.80	33.78	37.16	507,395.57		
	Diámetro	Costo de Equipamiento	Imversion Inicial	Costo de	Costo de	Costo		
000	(mm)	(S/.)	(S/.)	Operación	Operación	Total		
0				(S/.)	al V.P. (S/.)	(S/.)		
	150	75,131.02	330,026.34	35,846.49	285,457.33	615,483 67		
. 8	200	55,603.87	395,000.69	20,874.65	166,231,73	561,232.41		
10	250	50.560.25	473,913.97	17,446.21	138,929.86	612,843,83		
THE PERSON	***************************************		556,185.21	16.351.31	130.210.83	686,396.04		

(1): Precios de tuberias al 30/07/07

Cuadro N° 01
CALCULO HIDRAULICO DE LA LINEA DE REBOSE RP - 1 (MASIAS)

Perfil

Instalación del Sistema de Agua Potable y Alcantarillado de la Nueva Habilitación ubicada en las Pampas de Lurín U.C. № 11027

Distrito

Lurín

IIa	mo	Cota de Tapa (msnm)		Cota de Fondo (msnm)		Profundidad (msnm)		D	Longitud	S	A y/l	D=0,75
Del	Al	Ext.Sup	Ext.Inf	Ext.Sup	Ext.Inf	Ext.Sup	Ext.Inf	(mm)	(m)	(m/km)	Q _{0,75} (l/s)	V _{0,75} (m/s)
1	2	101.805	102.246	100.305	100.046	1.50	2.20	300	130.44	1.99	51.13	0.90
2	3	102.246	100.321	100.046	99.121	2.20	1.20	300	50.72	18.24	154.81	2.72
3	4	100.321	99.379	99.121	98.179	1.20	1.20	300	283.79	3.32	66.05	1.16
4	5	99.379	81.979	98.179	80.779	1.20	1.20	300	516.19	33.71	210.46	3.70
5	6	81.979	81.576	80.779	80.376	1.20	1.20	300	47.80	8.43	105.24	1.85
6	7	81.576	79.502	80.376	78.302	1.20	1.20	300	61.47	33.74	210.55	3.70
7	8	79.502	80.366	78.302	78.166	1.20	2.20	300	54.51	2.49	57.20	1.01
8	9	80.366	79.041	78.166	77.841	2.20	1.20	300	52.78	6.16	89.96	1.58
	1 2 3 4 5	1 2 2 3 3 4 4 5 5 6	1 2 101.805 2 3 102.246 3 4 100.321 4 5 99.379 5 6 81.979 6 7 81.576 7 8 79.502	1 2 101.805 102.246 2 3 102.246 100.321 3 4 100.321 99.379 4 5 99.379 81.979 5 6 81.979 81.576 6 7 81.576 79.502 7 8 79.502 80.366	1 2 101.805 102.246 100.305 2 3 102.246 100.321 100.046 3 4 100.321 99.379 99.121 4 5 99.379 81.979 98.179 5 6 81.979 81.576 80.779 6 7 81.576 79.502 80.376 7 8 79.502 80.366 78.302	1 2 101.805 102.246 100.305 100.046 2 3 102.246 100.321 100.046 99.121 3 4 100.321 99.379 99.121 98.179 4 5 99.379 81.979 98.179 80.779 5 6 81.979 81.576 80.779 80.376 6 7 81.576 79.502 80.376 78.302 7 8 79.502 80.366 78.302 78.166	1 2 101.805 102.246 100.305 100.046 1.50 2 3 102.246 100.321 100.046 99.121 2.20 3 4 100.321 99.379 99.121 98.179 1.20 4 5 99.379 81.979 98.179 80.779 1.20 5 6 81.979 81.576 80.779 80.376 1.20 6 7 81.576 79.502 80.376 78.302 1.20 7 8 79.502 80.366 78.302 78.166 1.20	1 2 101.805 102.246 100.305 100.046 1.50 2.20 2 3 102.246 100.321 100.046 99.121 2.20 1.20 3 4 100.321 99.379 99.121 98.179 1.20 1.20 4 5 99.379 81.979 98.179 80.779 1.20 1.20 5 6 81.979 81.576 80.779 80.376 1.20 1.20 6 7 81.576 79.502 80.376 78.302 1.20 1.20 7 8 79.502 80.366 78.302 78.166 1.20 2.20	1 2 101.805 102.246 100.305 100.046 1.50 2.20 300 2 3 102.246 100.321 100.046 99.121 2.20 1.20 300 3 4 100.321 99.379 99.121 98.179 1.20 1.20 300 4 5 99.379 81.979 98.179 80.779 1.20 1.20 300 5 6 81.979 81.576 80.779 80.376 1.20 1.20 300 6 7 81.576 79.502 80.376 78.302 1.20 1.20 300 7 8 79.502 80.366 78.302 78.166 1.20 2.20 300	1 2 101.805 102.246 100.305 100.046 1.50 2.20 300 130.44 2 3 102.246 100.321 100.046 99.121 2.20 1.20 300 50.72 3 4 100.321 99.379 99.121 98.179 1.20 1.20 300 283.79 4 5 99.379 81.979 98.179 80.779 1.20 1.20 300 516.19 5 6 81.979 81.576 80.779 80.376 1.20 1.20 300 47.80 6 7 81.576 79.502 80.376 78.302 1.20 1.20 300 61.47 7 8 79.502 80.366 78.302 78.166 1.20 2.20 300 54.51	1 2 101.805 102.246 100.305 100.046 1.50 2.20 300 130.44 1.99 2 3 102.246 100.321 100.046 99.121 2.20 1.20 300 50.72 18.24 3 4 100.321 99.379 99.121 98.179 1.20 1.20 300 283.79 3.32 4 5 99.379 81.979 98.179 80.779 1.20 1.20 300 516.19 33.71 5 6 81.979 81.576 80.779 80.376 1.20 1.20 300 47.80 8.43 6 7 81.576 79.502 80.376 78.302 1.20 1.20 300 61.47 33.74 7 8 79.502 80.366 78.302 78.166 1.20 2.20 300 54.51 2.49	1 2 101.805 102.246 100.305 100.046 1.50 2.20 300 130.44 1.99 51.13 2 3 102.246 100.321 100.046 99.121 2.20 1.20 300 50.72 18.24 154.81 3 4 100.321 99.379 99.121 98.179 1.20 1.20 300 283.79 3.32 66.05 4 5 99.379 81.979 98.179 80.779 1.20 1.20 300 516.19 33.71 210.46 5 6 81.979 81.576 80.779 80.376 1.20 1.20 300 47.80 8.43 105.24 6 7 81.576 79.502 80.376 78.302 1.20 1.20 300 61.47 33.74 210.55 7 8 79.502 80.366 78.302 78.166 1.20 2.20 300 54.51 2.49 57.20

n(coef. de rugosidad) =

0.010 P.V.C.

^{*} La fuerza tractriz o tensión tractiva es la fuerza de arrastre que produce el líquido sobre la superficie en contacto de la tubería.

Para conductos con "n"=0,010 (coeficiente de rugosidad), se recomienda una Fuerza Tractriz Media de t >0,6 N/m2.

Cuadro N° 02 CALCULO HIDRAULICO DEL COLECTOR PRINCIPAL

Perfil

Instalación del Sistema de Agua Potable y Alcantarillado de la Nueva Habilitación ubicada en las Pampas de Lurín U.C. Nº 11027

Distrito

Lurín

0-11-	Tra	mo	Cota de Tapa (msnm)		Cota de Fondo (msnm)		Profundidad (msnm)		D	Longitud	S	A y/D	=0,75
Calle	Del	Al	Ext.Sup	Ext.Inf	Ext.Sup	Ext.Inf	Ext.Sup	Ext.Inf	(mm)	(m)	(m/km)	Q _{0,75} (l/s)	V _{0,75} (m/s)
	12	11	81.475	79.829	80.275	78.629	1.20	1.20	200	145.51	11.31	41.35	1.64
	11	10	79.829	79.283	78.629	78.083	1.20	1.20	200	43.47	12.56	43.57	1.72
	10	9	79.283	79.041	78.083	76.641	1.20	2.40	250	175.56	8.22	63.91	1.62

n(coef. de rugosi

0.010

P.V.C.

^{*} La fuerza tractriz o tensión tractiva es la fuerza de arrastre que produce el líquido sobre la superficie en contacto de la tubería.

Para conductos con "n"=0,010 (coeficiente de rugosidad), se recomienda una Fuerza Tractriz Media de t >0,6 N/m2.

CÁLCULO DEL PERIODO ÓPTIMO DE DISEÑO

PROYECTO: PERFIL MASIAS

ESTRUCTURA: RESERVORIO ELEVADO

FACTOR DE ECONOMIA A ESCALA (a): 0.339
TASA DE DESCUENTO (r): 11%

PERIODO DE DÉFICIT (Xo): 3.7 años

PERIODO DE DISENO PARA EXPANSION	
SIN DÉFICIT INICIAL (X)	14.9 años
PERIODO DE DISENO PARA EXPANSION	
CON DÉFICIT INICIAL (Xop)	18.9 años

INDICACIONES:

- 1) Si se cuenta con información de costos y tamaños de obras de tipología similar, el Factor de Economía a escala "a" puede ser calculado empleando la hoja "CALCULO FEE"
- 2) En caso de no contar con la información indicada, se puede seleccionar el Factor de Economía a Escala "a" de la hoja FEE seleccionando una tipología de obra similar.
- 3) La tasa de descuento a emplear en proyectos de inversión pública es la señalada como Tasa Social de descuento por el MEF (14%)
- 4) El periodo de déficit es el número de años transcurridos desde el momento en que la oferta sin proyecto fue superada por la demanda hasta que se formuló el proyecto. Si se cuenta con datos de proyección de demanda, puede ingresarse dicha información en la hoja denominada "PERIODO DEFICIT"

CÁLCULO DEL PERIODO ÓPTIMO DE DISEÑO

PROYECTO:

PERFIL MASIAS

ESTRUCTURA:

LINEA DE IMPULSION

FACTOR DE ECONOMIA A ESCALA (a):

0.437

TASA DE DESCUENTO (r):

11%

PERIODO DE DÉFICIT (Xo):

3.7 años

PERIODO DE DISENO PARA EXPANSION	
SIN DÉFICIT INICIAL (X)	12.4 años
PERIODO DE DISENO PARA EXPANSION	
CON DÉFICIT INICIAL (Xop)	16.2 años

INDICACIONES:

- 1) Si se cuenta con información de costos y tamaños de obras de tipología similar, el Factor de Economía a escala "a" puede ser calculado empleando la hoja "CALCULO FEE"
- 2) En caso de no contar con la información indicada, se puede seleccionar el Factor de Economía a Escala "a" de la hoja FEE seleccionando una tipología de obra similar.
- 3) La tasa de descuento a emplear en proyectos de inversión pública es la señalada como Tasa Social de descuento por el MEF (14%)
- 4) El periodo de déficit es el número de años transcurridos desde el momento en que la oferta sin proyecto fue superada por la demanda hasta que se formuló el proyecto. Si se cuenta con datos de proyección de demanda, puede ingresarse dicha información en la hoja denominada "PERIODO DEFICIT"

PROYECTO: PERFIL MASIAS

ESTRUCTURA: EQUIPO DE BOMBEO DE AGUA

FACTOR DE ECONOMIA A ESCALA (a): 0.778

TASA DE DESCUENTO (r): 11%

PERIODO DE DÉFICIT (Xo): 3.7 años

PERIODO DE DISENO PARA EXPANSION	
SIN DÉFICIT INICIAL (X)	4.4 años
PERIODO DE DISENO PARA EXPANSION	
CON DÉFICIT INICIAL (Xop)	6.9 años

- 1) Si se cuenta con información de costos y tamaños de obras de tipología similar, el Factor de Economía a escala "a" puede ser calculado empleando la hoja "CALCULO FEE"
- 2) En caso de no contar con la información indicada, se puede seleccionar el Factor de Economía a Escala "a" de la hoja FEE seleccionando una tipología de obra similar.
- 3) La tasa de descuento a emplear en proyectos de inversión pública es la señalada como Tasa Social de descuento por el MEF (14%)
- 4) El periodo de déficit es el número de años transcurridos desde el momento en que la oferta sin proyecto fue superada por la demanda hasta que se formuló el proyecto. Si se cuenta con datos de proyección de demanda, puede ingresarse dicha información en la hoja denominada "PERIODO DEFICIT"

PROYECTO:

PERFIL MASIAS

ESTRUCTURA:

REDES DE AGUA

FACTOR DE ECONOMIA A ESCALA (a):

0.504

TASA DE DESCUENTO (r):

11%

PERIODO DE DÉFICIT (Xo):

3.7 años

PERIODO DE DISENO PARA EXPANSION	
SIN DÉFICIT INICIAL (X)	10.8 años
PERIODO DE DISENO PARA EXPANSION	
CON DÉFICIT INICIAL (Xop)	14.3 años

- 1) Si se cuenta con información de costos y tamaños de obras de tipología similar, el Factor de Economía a escala "a" puede ser calculado empleando la hoja "CALCULO FEE"
- 2) En caso de no contar con la información indicada, se puede seleccionar el Factor de Economía a Escala "a" de la hoja FEE seleccionando una tipología de obra similar.
- 3) La tasa de descuento a emplear en proyectos de inversión pública es la señalada como Tasa Social de descuento por el MEF (14%)
- 4) El periodo de déficit es el número de años transcurridos desde el momento en que la oferta sin proyecto fue superada por la demanda hasta que se formuló el proyecto. Si se cuenta con datos de proyección de demanda, puede ingresarse dicha información en la hoja denominada "PERIODO DEFICIT"

PERFIL MASIAS PROYECTO:

REDES DE ALCANTARILLADO ESTRUCTURA:

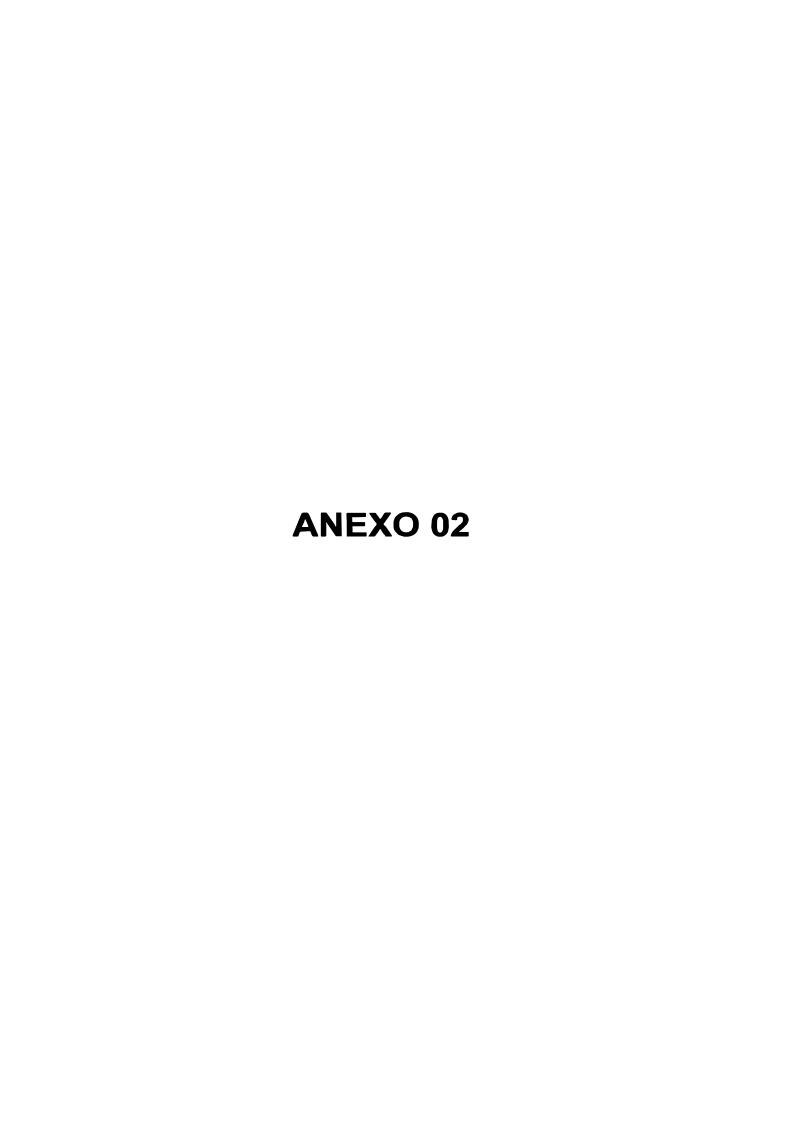
FACTOR DE ECONOMIA A ESCALA (a): 0.270 TASA DE DESCUENTO (r): 11%

PERIODO DE DÉFICIT (Xo): 3.7 años

PERIODO DE DISENO PARA EXPANSION		E THE PARTY
SIN DÉFICIT INICIAL (X)	16.6	años
PERIODO DE DISENO PARA EXPANSION		
CON DÉFICIT INICIAL (Xop)	20.9	años

- 1) Si se cuenta con información de costos y tamaños de obras de tipología similar, el Factor de Economía a escala "a" puede ser calculado empleando la hoja "CALCULO FEE"
- 2) En caso de no contar con la información indicada, se puede seleccionar el Factor de Economía a Escala "a" de la hoja FEE seleccionando una tipología de obra similar.
- 3) La tasa de descuento a emplear en proyectos de inversión pública es la señalada como Tasa Social de descuento por el MEF (14%)
- 4) El periodo de déficit es el número de años transcurridos desde el momento en que la oferta sin proyecto fue superada por la demanda hasta que se formuló el proyecto. Si se cuenta con datos de proyección de demanda, puede ingresarse dicha información en la hoja denominada "PERIODO DEFICIT"

PROYECTO: PERFIL MASIAS

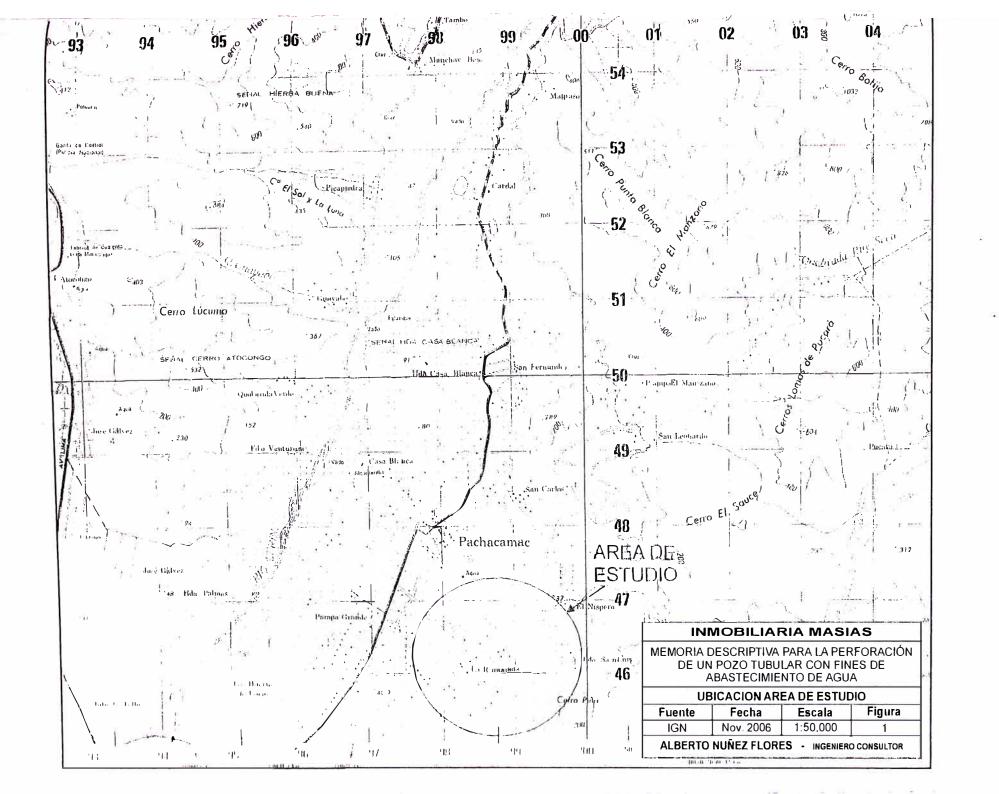

ESTRUCTURA: EQUIPO DE BOMBEO DE DESAGUES

FACTOR DE ECONOMIA A ESCALA (a): 0.462
TASA DE DESCUENTO (r): 11%

PERIODO DE DÉFICIT (Xo): 3.7 años

PERIODO DE DISENO PARA EXPANSION	
SIN DÉFICIT INICIAL (X)	11.8 años
PERIODO DE DISENO PARA EXPANSION	
CON DÉFICIT INICIAL (Xop)	15.5 años

- 1) Si se cuenta con información de costos y tamaños de obras de tipología similar, el Factor de Economía a escala "a" puede ser calculado empleando la hoja "CALCULO FEE"
- 2) En caso de no contar con la información indicada, se puede seleccionar el Factor de Economía a Escala "a" de la hoja FEE seleccionando una tipología de obra similar.
- 3) La tasa de descuento a emplear en proyectos de inversión pública es la señalada como Tasa Social de descuento por el MEF (14%)
- 4) El periodo de déficit es el número de años transcurridos desde el momento en que la oferta sin proyecto fue superada por la demanda hasta que se formuló el proyecto. Si se cuenta con datos de proyección de demanda, puede ingresarse dicha información en la hoja denominada "PERIODO DEFICIT"


INTOBANDARIA

MEMORIA DESCRIPTIVA PARA PERFORACIÓN DE UN POZO TUBULAR CON FINES DE ABASTECIMIENTO DE AGUA

DISTRITO DE LURIN PROVINCIA Y DEPARTAMENTO DE LIMA DICIEMBRE 2006

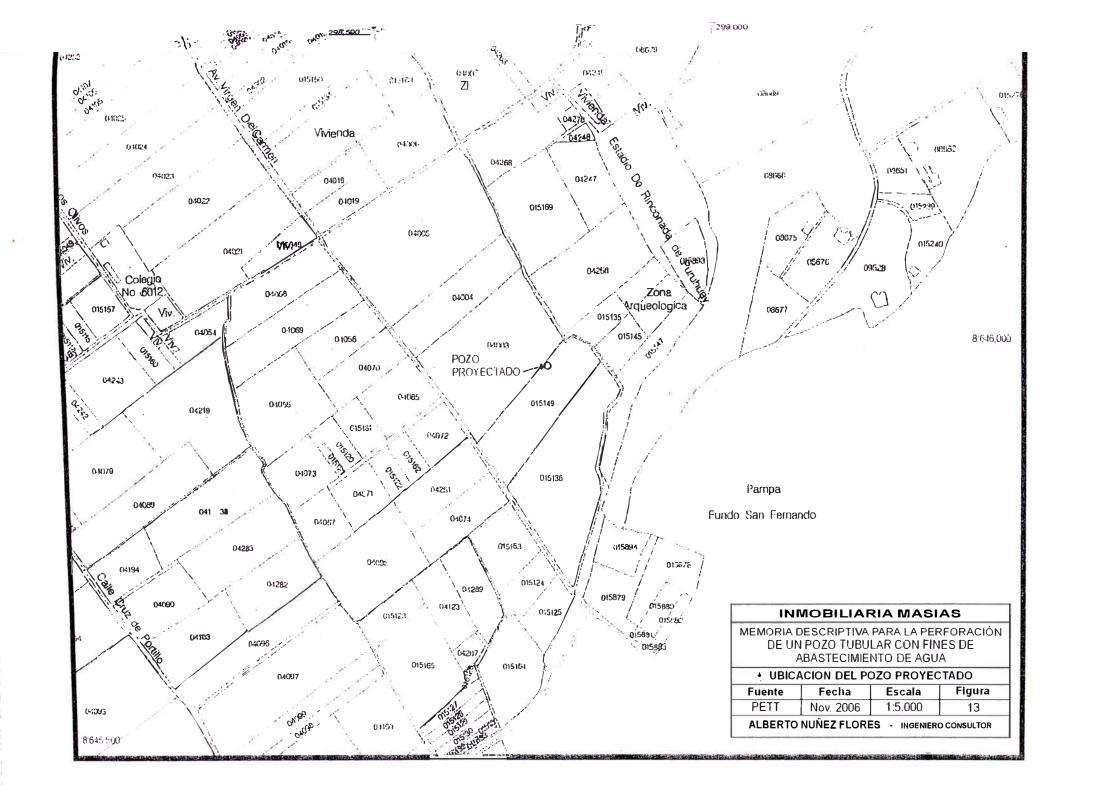
ALBERTO NUÑEZ FLORES Ingeniero Consultor

CUADRO Nº 3

RADIO DE INFLUENCIA RELATIVO DEL POZO PROYECTADO

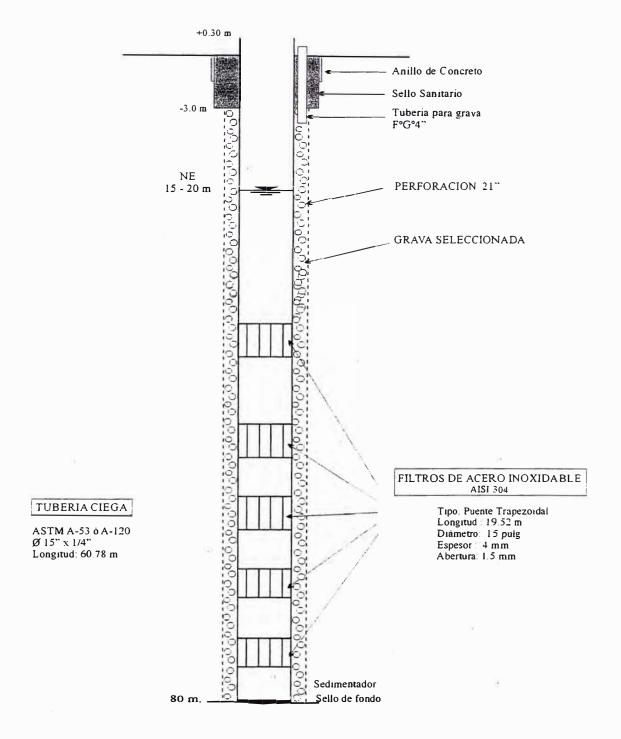
HORAS		
	RADIO DE INFLUENCIA RELATIVO	
DE	(metros)	
1 1	T: 0,0156 m2/seg S: 5%	
BOMBEO	Q= 0.030 m3/seg	
1	27.3	
2	38.6	
3	47.3	
4	54.6	
5	61.1	
6	66.9	
7	72.3	
8	77.2	
9	81.9	
10	86.4	
11	90.6	
12	94.6	
13	98.5	
14	102.2	
15	115.8	
16	109.2	
17	112.6	
18	115.9	

CUADRO N° 4


CARACTERISTICAS FISICO-QUIMICAS DEL AGUA SUBTERRANEA

Distrito: LURIN

Provincia: LIMA


Departamento: LIMA

Aniones Cationes Conectividad N° Dureza Realizado NO3 Tipos de Agua K CI SO4 HCO3 pН Fecha Mg Na Ca Eléctrica Total por Pozo me/l me/l me/l me/l me/l me/l me/l me/l 1,50 1.76 252.20 2.76 Clorurada Sódica LASA Ing. 14/11/2006 3.49 1.55 12.50 0.30 6.75 6.60 3.04 15/11/2006 6.26 1.08 11.04 0.10 7.40 5.95 4.30 0.25 1.75 367.00 6.56 Clorurada Sódica UNALAM 10 15/11/2006 8.32 2.83 13.43 0.12 10.30 9.27 4.60 0.69 2.33 557.00 7.39 Clorurada Sódica UNALAM

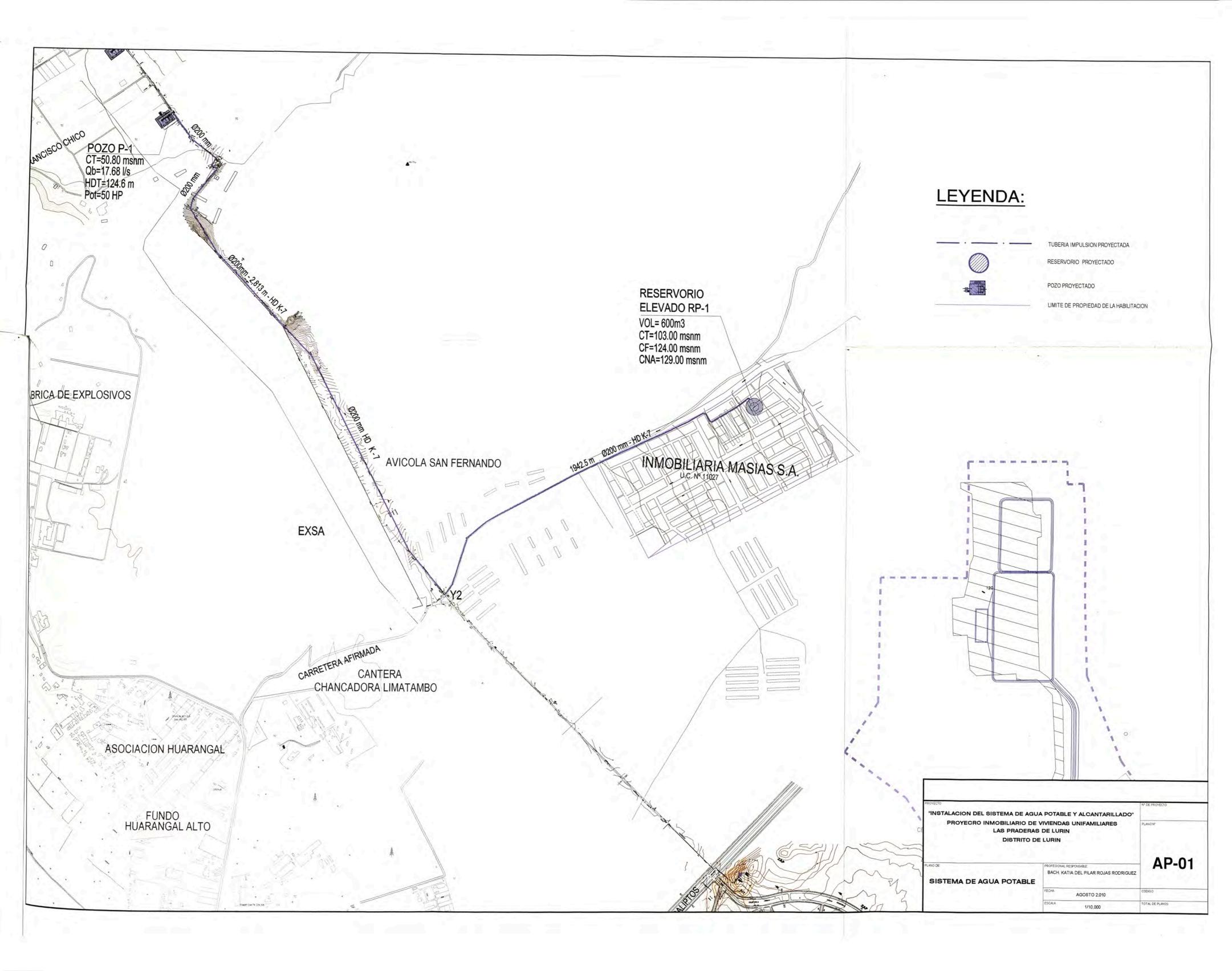
DISEÑO TECNICO PRELIMINAR TENTATIVO PARA EL POZO PROYECTADO PARA INMOBILIARIA MASIAS

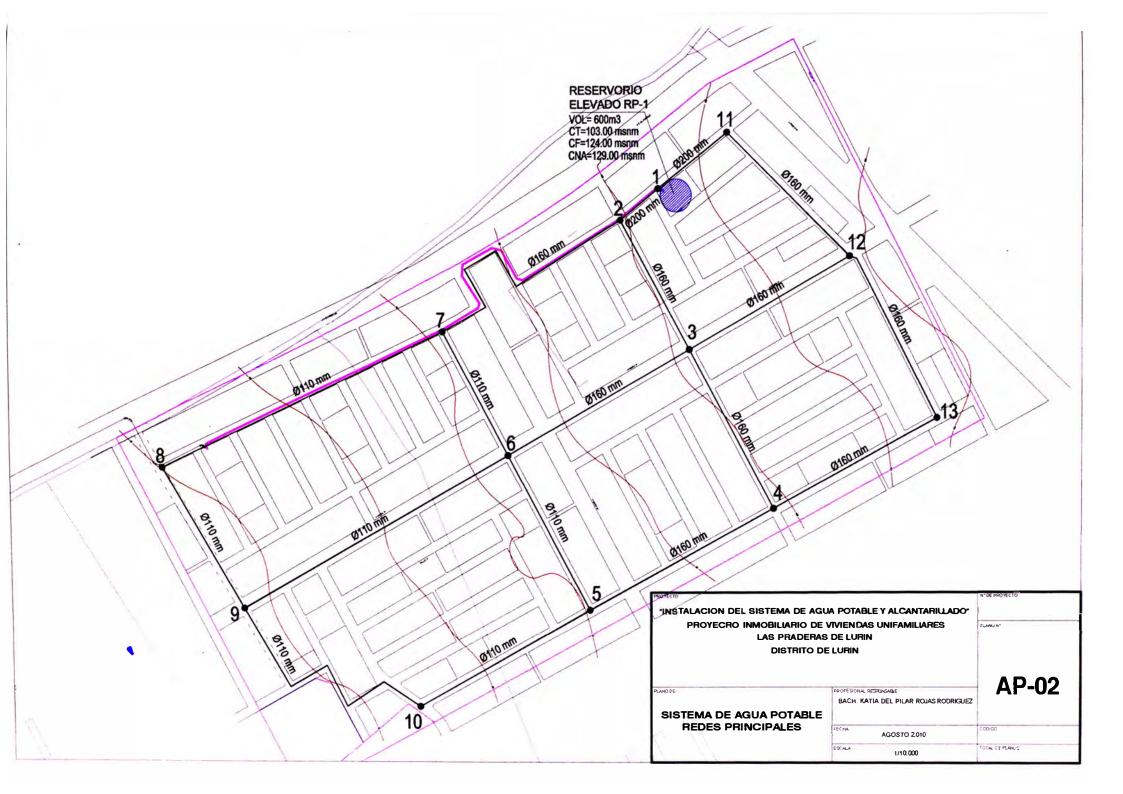
(Sector Rinconada - Puruhuay)

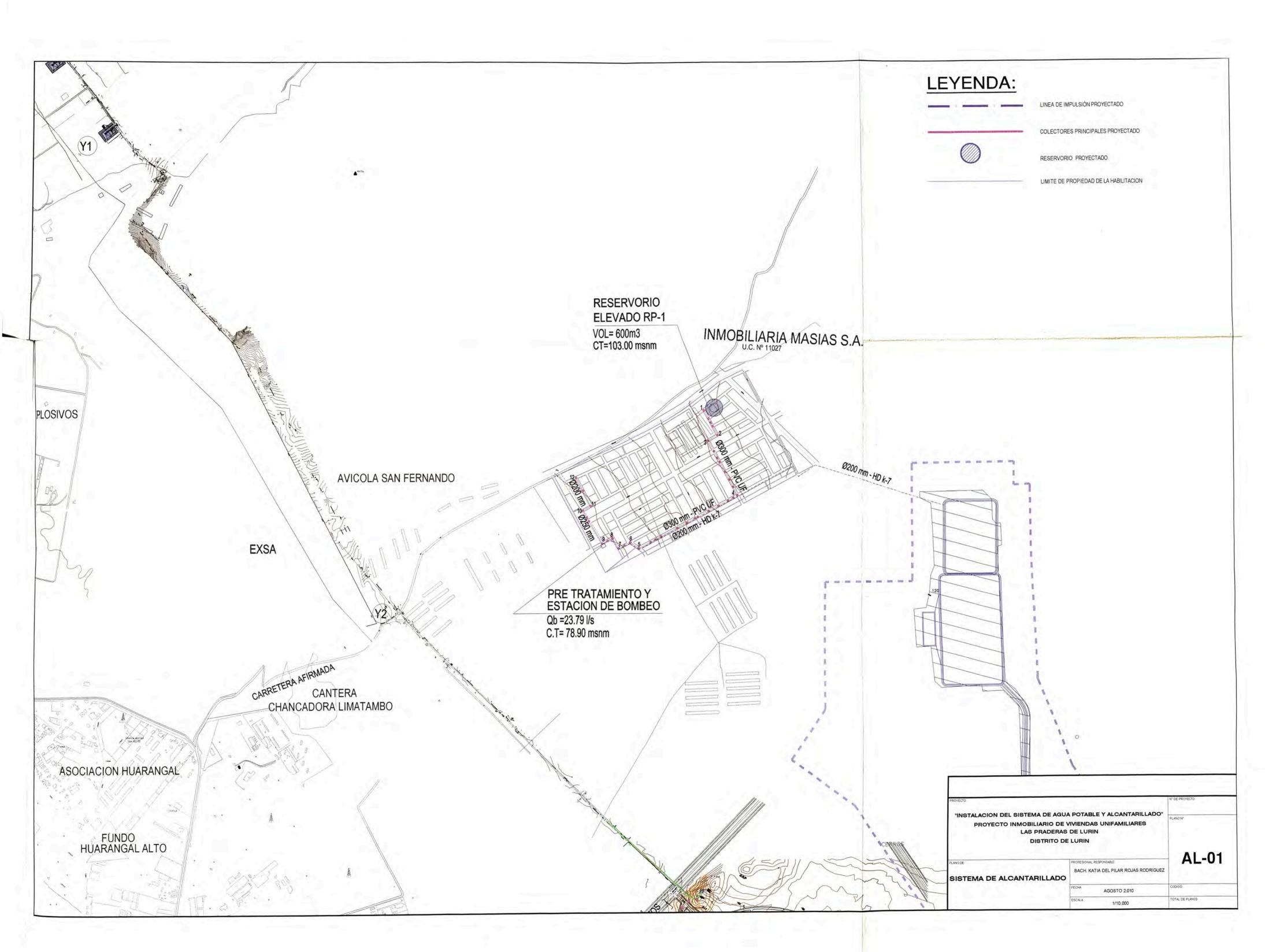
LA UBICACION DEFINITIVA DE LOS FILTROS SERA DE ACUERDO AL ANALISIS DE LAS MUESTRAS DEL TERRENO PERFORADO Y DE LOS RESULTADOS DE LA DIAGRAFÍA

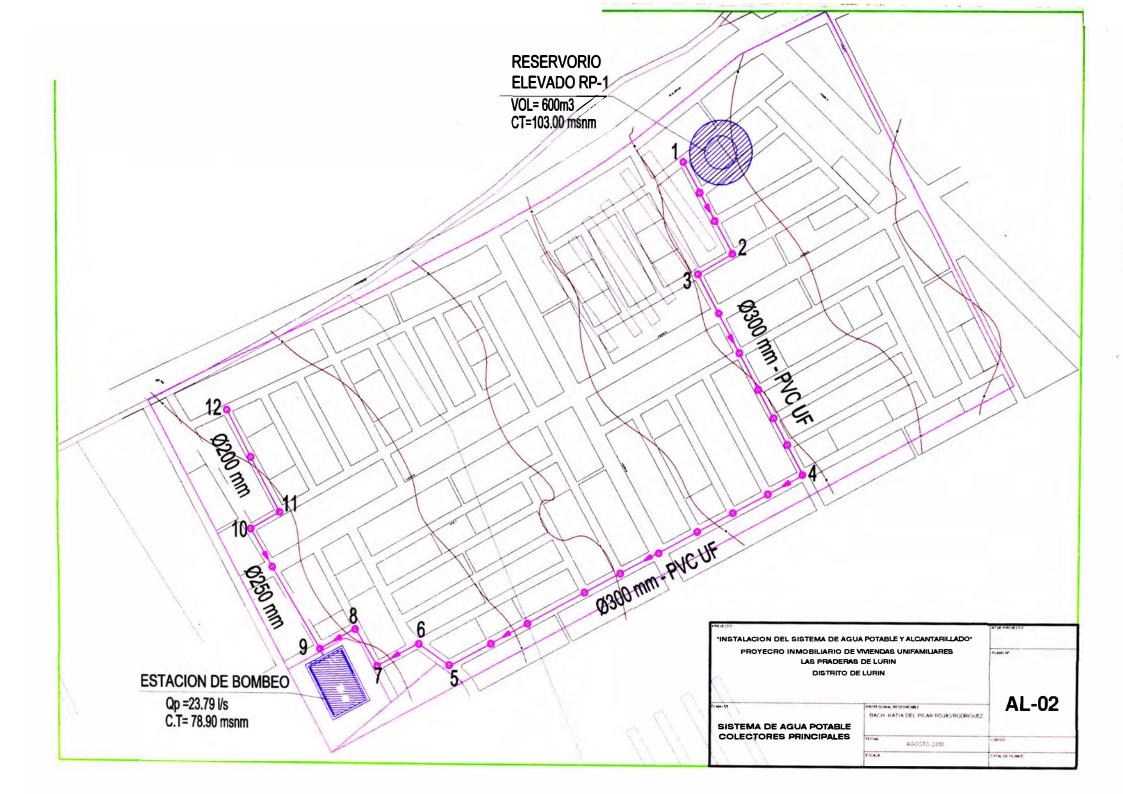
10.0.0 CONCLUSIONES Y RECOMENDACIONES

- El pozo proyectado se ubica en las inmediaciones donde se ejecuto el SEV N° 1 por ser el que mejor potencia de acuífero presenta y donde los valores de resistividad indican una permeabilidad aceptable. Se ubica en las coordenadas UTM:


Norte 8'645.975 m. Este: 298,725 m.


- El pozo proyectado de 80 m. se encuentra suficientemente distanciado de los pozos censados y se estima que no habrá problemas de interferencias, más aún si el nuevo pozo operará en forma intermitente.
- El diseño del pozo que se presenta en este estudio es solo preliminar y tentativo; de acuerdo a los resultados que se vayan encontrando durante la perforación, éste deber ser ajustado a uno definitivo y óptimo para obtener del pozo buen rendimiento acorde con las características del acuífero y eficiencia hidráulica.
- El éxito o fracaso de un pozo no depende exclusivamente de las características hidrogeológicas del acuífero, sino que también de la calidad técnica de su ejecución, por lo que se recomienda se contrate los servicios de una Compañía Perforadora de amplia experiencia para que ejecute el pozo en el menor tiempo posible y calidad adecuada.
- La ejecución de la obra debe ser supervisada por un Ingeniero Especialista en Ingeniería de Pozos.
- La contratación de la obra debe hacerse por el sistema de precios unitarios, basado en el diseño que se consigna.
- Si bien es cierto que cada etapa de perforación tiene su importancia para lograr un pozo eficiente y con la producción acorde con las condiciones hidrogeológicas, la fase de desarrollo es una de la más importante por lo que es necesario darle la importancia que se merece, tanto en el número de horas necesarias como en los equipos e insumos requeridos debiéndose emplear los métodos apropiados de acuerdo al tipo de perforación.
- Las condiciones mínimas que debe reunir los pozos para su aceptación son:
 - a) El contratista debe desarrollar, bombear el pozo con los métodos aprobados previamente por el **Supervisor de la Obra** hasta el máximo caudal de prueba y se encuentre substancialmente libre de arena, mínimo aceptable 10ml./lt.
 - b) Las perdidas de carga en el pozo sobre la base de las pruebas de bombeo deberán ser compatibles con la exigencia de una buena ingeniería.
 - c) La verticalidad y alineamiento del pozo ya acabado, debe ser tal que la bomba permanente a instalar, ingrese libremente al pozo sin posibilidad que deteriore y/o afecten el entubado o área filtrante del pozo.
 - d) Limpiar y desinfectar el pozo para su entrega.


Lima, Diciembre 2006


FELIX ALBERTO NUNEZ FLORES INGENIERO GEOLOGO REG. CIP. Nº 1544

ANEXO 04

RESOLUCIÓN DE INTENDENCIA № 370

-2008-INRENA-IRH

Lima,

1 2 MAYO 2008

VISTO:

El Expediente Administrativo tramitado ante la Administración Técnica del Distrito de Riego Chillón-Rímac-Lurín bajo Número de Registro 062-2007 e ingresado por Trámite Documentario del Instituto Nacional de Recursos Naturales con Hoja de Envío Nº 16318, organizado por el señor lago Masías Málaga en representación de la empresa INMOBILIARIA MASIAS S.A.C., sobre autorización para ejecutar estudios exploratorios de aguas subterráneas; y,

CONSIDERANDO:

Que, según el artículo 32º de la Ley General de Aguas, Decreto Ley Nº 17752, el otorgamiento de los usos de las aguas están condicionados entre otras condiciones, a que no se impida los requerimientos de usos otorgados, que no se alteren los usos públicos y que hayan sido aprobadas las obras de captación, alumbramiento, producción o regeneración, conducción, utilización, avenamiento, medición y las demás que fuesen necesarias;

Que, el artículo 62º de la citada Ley establece que el otorgamiento de los usos de las aguas subterráneas están sujetos, además de las condiciones señaladas en el artículo 32º, a que su alumbramiento no cause fenómenos físicos o químicos que alteren perjudicialmente las condiciones del reservorio acuífero, las napas allí contenidas, ni el área superficial comprendida en el radio de influencia del pozo cuando abarque terrenos de terceros y que no se produzca interferencias con otros pozos o fuentes de agua;

Que, el artículo 86º de la misma Ley dispone que las obras de carácter hidráulico en general se ejecutan ciñéndose estrictamente a las características, especificaciones y condiciones de los estudios y proyectos aprobados;

Que, conforme establece el Decreto Legislativo Nº 148 en la circunscripción comprendida dentro de las provincias de Lima y Constitucional del Callao, la Empresa de Saneamiento de Lima hoy Empresa de Servicio de Agua Potable y Alcantarillado de Lima – SEDAPAL, es la encargada de la distribución, manejo y control de las aguas subterráneas con fines poblacionales e industriales, cuyo uso se otorga mediante licencia siguiendo el procedimiento establecido en el Decreto Supremo Nº 044-84-AG;

Que, según el Decreto Supremo Nº 078-2006-AG la Intendencia de Recursos Hídricos del Instituto Nacional de Recursos Naturales tiene por función autorizar y aprobar la ejecución de estudios y obras para el otorgamiento de licencias de uso de aguas;

Que, en este contexto, el recurrente solicitó autorización para ejecutar estudios exploratorios de aguas subterráneas mediante la perforación de un (01) pozo tubular, adjuntado para tal fin la "Memoria Descriptiva para Perforación de un Pozo Tubular de Abastecimiento de Agua", ubicado en el predio de U.C. № 015149, distrito de Lurìn, provincia y departamento de Lima;

Que, según la copia literal de la Partida P03261860, la señora Gloria Telly Dergan Alcantara es la titular del predio signado con U.C. Nº 015149, debidamente inscrito en el

Registro de la Propiedad Inmueble de la Zona Registral Nº IX - Sede Lima, quien mediante autorización legalizada ante Notario Público de Lima, Dr. Luis Dannon Brender expresa su consentimiento a favor de la recurrente para realizar la perforación solicitada en el predio de su propiedad;

Que, la Administración Técnica del Distrito Riego Chillón-Rímac-Lurín y la Junta de Usuarios del Sub Distrito de Riego Lurín-Chilca con Informe Nº 020-2008-SGRA/ATDR.CHRL/LPP y Oficio Nº 427-2007-JUSDRLCH, respectivamente han opinado favorablemente sobre la autorización solicitada, asimismo la empresa Servicio de Agua Potable y Alcantarillado de Lima – SEDAPAL, en aplicación del Decreto Supremo Nº 044-88-AG, opina por la procedencia de lo solicitado, tal como es de verse de la Carta Nº 151-2007/GP:

Que, la Dirección de Recursos Hídricos de esta Intendencia mediante Informe Nº 199-2008-INRENA-IRH-DIRHI/JAH-EZT, concluye que es procedente autorizar la ejecución de estudios exploratorios de aguas subterráneas con fines de uso doméstico mediante la perforación de un (01) pozo de 80.00 metros de profundidad, ubicado en las coordenadas UTM PSAD 56: 8'645,973 metros Norte y 298,726 metros Este, dándosele un plazo de noventa (90) días para su ejecución;

Que, asimismo el citado informe recomienda que la empresa que realice la perforación debe contar con licencia vigente emitida por el Instituto Nacional de Recursos Naturales, que concluida la perforación del pozo, éste se someta a una prueba de rendimiento que permita determinar el caudal óptimo de explotación supervisado por algún representante de la Administración Técnica del Distrito de Riego Chillón-Rímac-Lurín y que el pozo a perforarse cuente con su respectivo dispositivo de medición (caudalómetro);

Que, en consecuencia, corresponde expedir el acto administrativo que autorice la ejecución de los estudios de exploración de aguas subterráneas; y.

En uso de las facultades conferidas en el artículo 6° del Decreto Supremo Nº 078-2006-AG.

SE RESUELVE:

ARTICULO 1º.- Autorizar a la empresa INMOBILIARIA MASIAS S.A.C., la ejecución e estudios de exploración de aguas subterráneas con fines domésticos, a través de la perforación de un (01) pozo tubular de 80.00 metros de profundidad, ubicado en las coordenadas UTM PSAD 56: 8'645,973 metros Norte y 298,726 metros Este, distrito de Lurín, provincia y departamento de Lima.

ARTICULO 2º.- Otorgar un plazo de noventa (90) días, contados a partir de notificada a presente resolución, para la ejecución del estudio autorizado en el artículo precedente.

ARTICULO 3°.- Precisar que la presente resolución no autoriza la utilización ni el provechamiento del recurso hídrico, siendo necesario para ello que el recurrente cuente con la aprobación de los estudios autorizados y que además acredite el cumplimiento de las condiciones concurrentes señaladas en el artículo 32° y 62° del Decreto Ley N° 17752 - "Ley General de Aguas", respectivamente.

ARTICULO 4º.- Disponer que la aprobación de los estudios autorizados se otorgará, a solicitud de parte, una vez que el beneficiario ejecute la perforación autorizada en el artículo

primero y acredite el cumplimiento de las recomendaciones indicadas en el décimo considerando, referidas a la licencia de la empresa perforadora, supervisión de prueba de rendimiento e instalación de caudalómetro.

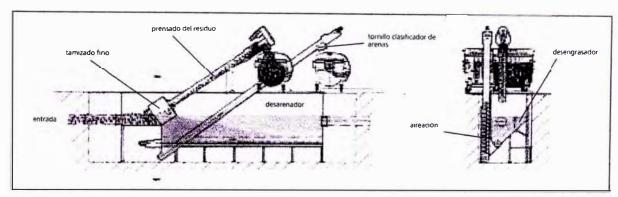
ARTICULO 5°.- Encargar a la Administración Técnica del Distrito de Riego Chillón-Rimac-Lurin la supervisión de los estudios autorizados, informando en forma oportuna a esta Intendencia sobre su avance y cumplimiento, así como la notificación a su titular y a la empresa

Servicio de Agua Potable y Alcantarillado de Lima – SEDAPAL, para cuyos efectos se les remitirá las copias certificadas correspondientes.

Planta compacta HUBER ROTAMAT®

Pretratamiento completo en un equipo

- Desbaste
- Prensado del residuo
- Desarenado (con aireación)
- Desengrasado
- Clasificado de arenas


El objetivo

HUBER suministra un equipo compacto para el pretratamiento mecánico del agua residual, incluyendo los siguientes procesos unitarios:

- ➤ Tamizado fino
- ➤ Lavado y prensado del residuo
- > Separación y clasificación de arenas
- > Separación y extracción de grasas.

HUBER suministró la primera planta compacta ROTAMAT® Ro 5 en los años 80. Desde entonces, cientos de ingenierías y contratistas han seleccionado nuestra planta compacta para caudales de hasta 220 l/s debido a su reducido mantenimiento y su fiabilidad de funcionamiento.

Procesos integrados en la planta compacta ROTAMAT®

1. Tamizado fino

Dependiendo de las condiciones de entrada (caudal punta, carga de sólidos, carga de arenas) se selecciona uno de los siguientes tamices:

- ➤ Tamiz de finos ROTAMAT® Ro 1 con luz de paso de 6 o 10 mm
- ➤ Tamiz de malla de perfil en cuña ROTAMAT® Ro 2 con luz de paso entre 0,5 y 6 mm
- ➤ Tamiz de chapa perforada ROTAMAT® RPPS con luz de paso 3 o 6 mm
- ➤ Tamiz Microstrainer ROTAMAT® Ro 9 con luz de paso entre 0,5 y 6 mm

Consulte los folletos disponibles de cada uno de estos tamices. Para otras luces de paso consulte con nuestros expertos.

También existe la posibilidad de suministrar una planta compacta Ro 5 con un tamiz escalera STEP SCREEN® SSF con una luz de paso de 3 o 6 mm, añadiendo además una prensa con lavado de residuos WAP

2. Tratamiento de residuos

- Prensado y deshidratación en un tornillo inclinado
- ➤ Lavado de residuos IRGA opcional
- > Sequedad de los residuos hasta el 40% MS

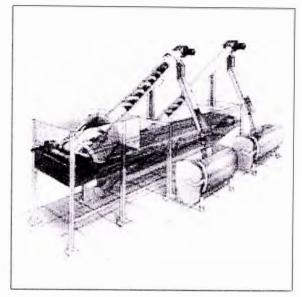
El lavado integrado del residuo IRGA se puede suministrar con cualquiera de los tamices anteriores. En este caso no es necesaria una prensa con lavado WAP.

3. Separación de arenas

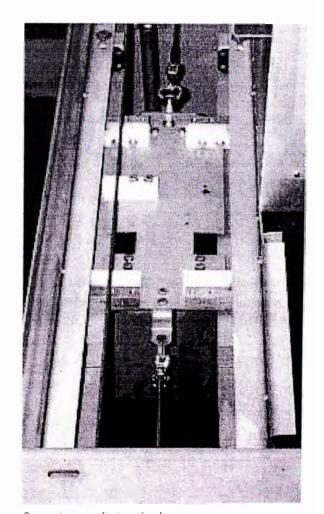
El diseño y dimensionamiento del canal desarenador cumple con las normativas internacionales. El canal desarenador se puede suministrar con o sin aireación, dependiendo de diferentes factores como por ejemplo la relación entre caudales punta (en tiempo húmedo y seco), o los criterios de tratamiento y reutilización de arenas.

4. Descarga y eliminación de arenas

La arena sedimentada se dirige por medio de un tornillo horizontal al fondo de un tornillo transportador inclinado, donde la arena se deshidrata durante el transporte. La arena se descarga en un contenedor.


S. Lavado de arenas opcional

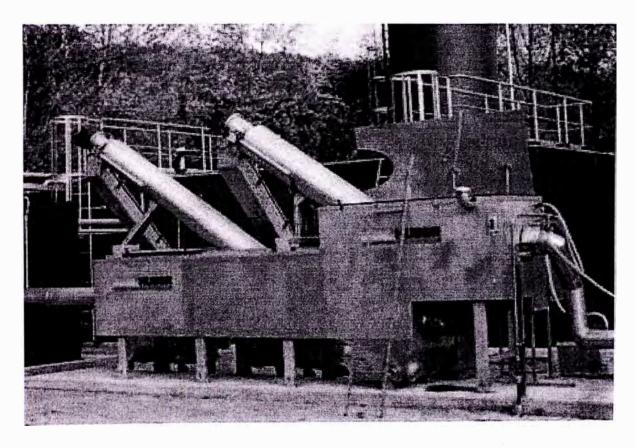
Debido a los costes que supone verter arenas con mucha materia orgánica, algunos contratistas y explotadores prefieren extraer un producto reutilizable. La arena puede utilizarse en la construcción siempre que su contenido en materia orgánica sea inferior al 5%. Nuestra planta de lavado de arenas ROSF 4 es capaz de obtenerlo. Para más detalles consulten el folleto de este equipo.


6. Separación y eliminación de grasas

La separación de flotantes y grasas es una opción disponible en los modelos con desarenador aireado. Se recogen en una trampa de grasas que esta separada del canal desarenador mediante una chapa con forma de peine. El flujo rotacional inducido en el desarenador por la aireación empuja las grasas a través de las aberturas de la chapa hacia el desengrasador, donde flotan en la superficie.

Una característica única de la planta compacta ROTAMAT® es el montaje de una rasqueta que desplaza las grasas por la superficie del desengrasador hacia la aspiración de la bomba de grasas. La rasqueta se acciona mediante un cable. Como se consiguen eliminar todas las grasas flotantes, se evita la degradación anaerobia y con ello los problemas de malos olores.

Esquema de una planta compacta ROTAMAT® Ro 5

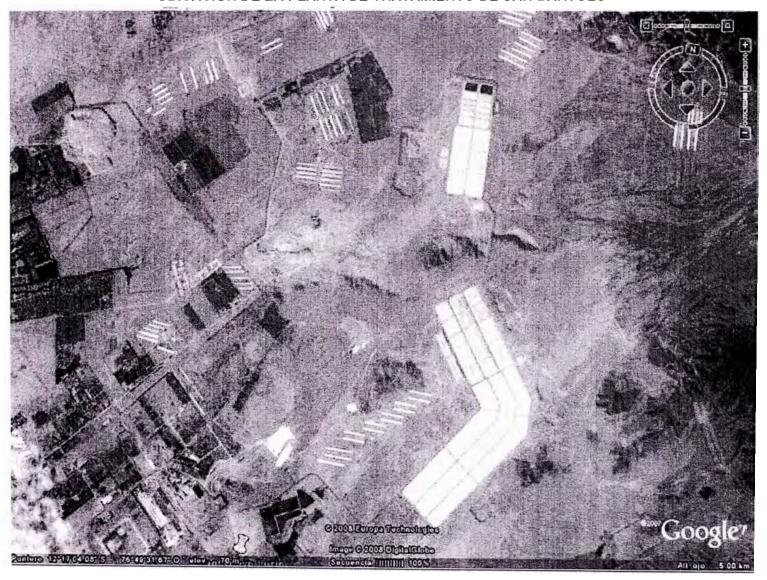

Rasqueta para eliminación de grasas.

Ventajas de la planta compacta HUBER ROTAMAT®

- Pretratamiento mecánico completo del agua residual en una planta compacta que comprende los siguientes procesos:
 - Tamizado fino
 - Lavado de residuos
 - Prensado de residuos
 - Deshidratación de residuos
 - Clasificación de arenas
 - Deshidratación de arenas
 - Lavado de arenas (equipo adicional)
 - Separación de grasas
 - Barrido de grasas en superficie

- ➤ Facilidad de instalación debido a su diseño compacto
- Instalación al aire libre con posibilidad de protección contra heladas
- ➤ Fiabilidad de funcionamiento, probada en cientos de instalaciones.
- Resistencia total a la corrosión gracias a la fabricación en acero inoxidable, decapado en baño ácido y pasivado
- ➤ Mínimo mantenimiento
- ➤ Óptima relación calidad-precio.

No duden en consultarnos si desean información adicional sobre nuestras plantas compactas HUBER ROTAMAT®.


Huber Technology España S.L.

c / Rufino Sánchez 78 E-28290 Las Matas (Madrid) Tel.: +34 91 630 4994 Fax: +34 91 630 4991 e-mail: info@huber.es

Internet: www.huber.es

Sujeto a modificaciones técnicas Planta compacta HUBER ROTAMAT® Ro 5

UBICACIÓN DE LA PLANTA DE TRATAMIENTO DE SAN BARTOLO

