UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

PROYECTO INMOBILIARIO DE VIVIENDAS DE INTERÉS SOCIAL COMPLEJO HABITACIONAL "LAS AMAPOLAS" SISTEMA DE ALBAÑILERÍA ARMADA CON BLOQUES DE ARCILLA

INFORME DE SUFICIENCIA Para optar el Titulo Profesional de:

INGENIERO CIVIL

MATILDE MARÍA ESCUDERO AGÜERO

Lima- Perú

INDICE

		Página
RES	SUMEN	4
INT	TRODUCCIÓN	6
	APÍTULO 1	
_	TECEDENTES	
1.1	Ubiqueión y vía de gagge	0
1.1	Ubicación y vía de acceso	
1.2		
1.3	, , , , , , , , , , , , , , , , , , , ,	
1.5	. •	
1.6		
1.7		
1. /	Arquitectura	20
CA	APÍTULO 11	
	ORMULACIÓN Y EVALUACIÓN DE PROYECTOS	
		•
2.1	Resumen ejecutivo	30
2.2	! Identificación del proyecto	33
2.3	Planteamiento del problema	35
	Alternativas del proyecto	
	Vialidad del proyecto de inversión	
	Análisis de mercado	
	Análisis técnico operativo	
2.8	3 Análisis económico - Financiero	56
СД	APÍTULO 111	
	EMORIA DESCRIPTIVA DEL PROYECTO	
	Estructuración	
	2 Normas consideradas	
	3 Cargas	
	Procedimientos de análisis	
3.5	5 Cimentación	64

3.6 N	Лuros	64
3.7 L	.osas	65
3.8 E	Escaleras	66
.CA	PÍTULO IV	
	LISIS SÍSMICO	
4.1	Parámetros de sitio	
4.2	Requisitos generales	69
4.3	Procedimiento de análisis	74
4.4	Análisis estático	75
4.5	Análisis dinámico por combinación modal espectral	77
CA	PÍTULO V	
ANÁ	ÁLISIS Y DISEÑO ESTRUCTURAL	
5. 1	Consideraciones generales	
5.2	Análisis estructural	
5.3	Diseño para el sismo moderado	
5.4	Diseño para el sismo severo	
5.5	Albañilería armada	
5.6	Memoria de cálculo	89
•	RTE VI	
PRES	SUPUESTO GENERAL	
6.1	Consideraciones generales 1	10
6.2	Metrados 1	
6.3	Presupuesto1	11
6.4	Programación de obra 1	
CON	NCLUSIONES 1	23
REC	COMENDACIONES 1	24
BIBL	LIOGRAFÍA1	25
ANE	EXOS 1	26
PLA	NOS	

RESUMEN

El Proyecto Inmobiliario de Viviendas de Interés Social que se propone en este informe comprende la construcción de un complejo habitacional y la posterior comercialización de 200 viviendas económicas en el Distrito de Cercado Callao de la Provincia Constitucional del Callao equipado con parques y jardines públicos, áreas habilitadas para colegio, puestos de salud y locales comerciales, en un área de terreno total de 6.00 ha. Además, el proyecto contempla la instalación de los servicios de energía eléctrica, alumbrado público, redes de distribución de agua potable y sistema de alcantarillado con conexiones domiciliarias, así como vías públicas (pistas y veredas) con tratamiento apropiado a las características del lugar.

Las viviendas serán construidas con 5 tipos de sistemas: 01 convencional y 04 no convencionales, que cumplen con las especificaciones técnicas y reglamentos competentes, asegurando una vivienda resistente, antisísmica y funcional. Por consiguiente, el proyecto esta conformado por:

- 38 viviendas construidas con albañilería confinada y ladrillos de arcilla (Sistema Convencional)
- 36 viviendas construidas con viguetas pretensadas y bloques de concreto (Sistema Firth),
- 36 viviendas construidas con viguetas, y bloques de albañilería armada (Sistema Italcerámica),
- 52 viviendas construidas con viguetas y ladrillos sílico calcáreos (Sistema La Casa), y
- 38 viviendas construidas con placas de mallas electrosoldadas (Sistema UNICON).

El Proyecto se encuentra ubicado en el Ex-Fundo Oquendo jurisdicción del Distrito de Cercado de la Provincia Constitucional del Callao, en el límite con el distrito de San Martín de Porras.

El informe de suficiencia a presentar desarrollará el sistema constructivo de viviendas de albañilería armada con bloques de arcilla por ser un sistema que emplea materiales no convencionales, los cuales permiten la ejecución de viviendas de bajo costo por la reducción del tiempo de construcción.

Con el desarrollo del proyecto se busca brindar a la población una alternativa de vivienda económica contribuyendo con el acondicionamiento y la infraestructura urbana, dotando a la zona de amplias áreas de recreación, educación, salud y comercio y convirtiendo a esta propuesta en un proyecto piloto, fomentando este tipo de proyectos a fin de reducir el tráfico ilícito de tierras y la informalidad en la venta de terrenos, brindando una vivienda saneada física y legalmente.

Se desarrollará un módulo de vivienda con materiales no convencionales, contando con acabados mínimos: muros interiores y exteriores acabados, pisos de cemento pulido, acabado impermeabilizado en la zona de ducha, lavadero de cocina y lavadero de ropa, ventanas de fierro y vidrio crudo, puertas contraplacadas de madera e instalaciones sanitarias y eléctricas empotradas.

El proyecto incluye el análisis y diseño estructural de la vivienda con muros de albañilería armada con bloques de Arcilla y losa aligerada con viguetas pretensadas, cumpliendo con las normas técnicas del Reglamento Nacional de Edificaciones; en particular la Norma Técnica de Albañilería E-070 aprobada recientemente.

El desarrollo de este proyecto beneficiará a 200 familias de los sectores sociales C y D, contribuyendo en la reducción del déficit de vivienda de la zona norte de Lima y Callao.

El resultado de este informe podrá ser empleado por personas naturales o jurídicas interesadas en desarrollar proyectos de carácter social y masivo. Asimismo, servirá como elemento de consulta para los interesados en conocer algo más de estos sistemas no convencionales.

INTRODUCCIÓN

La vivienda juega un decisivo papel en la calidad de vida de las personas y representa la principal inversión y el patrimonio más importante de las familias de clase media a baja; y, en algunos casos, constituye una fuente importante de ingresos económicos. No obstante, el déficit habitacional de gran parte de las familias peruanas se expresa tanto en la carencia absoluta de vivienda propia como en la habitación de viviendas muy deterioradas o que no ofrecen los servicios básicos. La falta de una oferta inmobiliaria al alcance de los niveles socio-económicos más bajos y la necesidad de obtener una vivienda trae consigo la proliferación de viviendas sobre terrenos inadecuados, sin servicios básicos que aseguren un nivel de vida aceptable en la población, creando a su vez un desorden urbano al establecerse en zonas sin previa habilitación urbana.

El presente Informe de Suficiencia forma parte del desarrollo de un Proyecto de Viviendas de Interés Social, el cual fue elaborado con el objetivo de mejorar las condiciones de vida de un sector de la población, ampliando la zona urbana y la continuidad de los servicios básicos existentes en la zona para contribuir con la reducción del déficit de vivienda existente en nuestro país.

El informe incluye un primer capítulo que resume el Proyecto detallando los aspectos mas importantes de cada estudio o diseño: Formulación y Evaluación de Proyectos, Topografía, Estudio de Suelos con fines de Cimentación, Estudio de Impacto Ambiental, Habilitación Urbana, Arquitectura, Estructuras, Instalaciones Sanitarias, Instalaciones Eléctricas y el Presupuesto General de la Obra.

En el segundo capítulo se desarrolla en forma mas detallada el estudio Formulación y Evaluación de Proyectos que se realizó previamente al desarrollo del proyecto con la finalidad de buscar la inversión más conveniente y rentable.

En el tercer, cuarto y quinto capítulo se pasa a desarrollar el procedimiento de diseño del Sistema de Albañilería Armada con Bloques de Arcilla dentro del

UNIFIC

Introducción

cual se analizarán los temas de análisis sísmico, análisis estructural y diseño de los elementos de concreto armado.

En el sexto capítulo se presenta el presupuesto general del sistema constructivo desarrollado para la construcción de uno y dos pisos.

Finalmente se incluyen los anexos del proyecto con las conclusiones y recomendaciones finales.

CAPITULO 1

ANTECEDENTES

1.1 UBICACIÓN Y VIAS DE ACCESO

El Proyecto "Complejo Habitacional Las Amapolas" se ubica en el extremo este del Ex-Fundo Distrito del Callao Cercado, jurisdicción de la Provincia Constitucional del Callao, en el límite con el distrito de San Martín de Porres.

(Figura **N**° 01)

Parcela U.C. Nro. 05776 Área del Terreno 6.00 ha Perímetro 1029.97 m

Figura Nº 01: UNcación de la zona de estudio

Geográficamente el área de estudio se ubica a 250m de la vía arterial Los Alisos, a 350 m de la vía arterial Carlos Izaguirre, a 300 m de la vía Sub-Regional Canta Callao y a 500m de la vía Colectora Pacasmayo.

1.2 CARACTERISTICAS DEL PROYECTO

1.2.1 TAMAÑO

⊟ Proyecto Inmobiliario de Viviendas de Interés Social Complejo Habitacional "Las Amapolas", agrupa 200 viviendas económicas, parques y jardines públicos, áreas habilitadas para colegio, puestos de salud y locales comerciales, sobre un área de terreno total de 6.00 ha. Con la instalación de los servicios de energía

eléctrica, alumbrado público, redes de distribución de agua potable y sistema de alcantarillado con sus respectivas conexiones domiciliarias, vías públicas (pistas y veredas) con tratamiento apropiado a las características del lugar. Para responder a los objetivos de una vivienda económica, el proyecto prevé la construcción de módulos de vivienda, integrado al casco urbano y al sistema vial de Lima Metropolitana y la Provincia Constitucional del Callao.



Figura Nº 02: Plano de Ubicación de las vías de acceso a la zona de estudio

1.2.2 INGENIERÍA

Para la elaboración del proyecto se efectuaron estudios de Impacto Ambiental, Levantamiento Topográfico del terreno y el respectivo Estudio de Suelos con fines de cimentación. Siendo tomados en cuenta en la concepción arquitectónica, el diseño estructural, el procediemiento constructivo planteado. Los métodos constructivos y la tecnología a emplear deberán aprovechar al máximo los recursos disponobles para no elevar los costos del proyecto y contar con la aceptación del mercado objetivo asegurando las ventas por consiguiente la rentabilidad de la inversión.

1.3 FORMULACIÓN Y EVALUACION DEL PROYECTO

1.3.1 OBJETIVOS DEL PROYECTO

OBJETIVO GENERAL

Construir un complejo habitacional de 200 viviendas de interés social en el Ex-Fundo Oquendo Callao, brindando a la población la oportunidad de acceder a una vivienda funcional estética y económica rodeada de amplias áreas verdes y de recreación que ofrezca un ambiente grato a sus residentes.

OBJETIVOS ESPECÍFICOS

- Brindar a la población una vivienda económica de 90 m2 de área, con 91.12
 m2 de área construida en dos niveles.
- Colaborar con el ordenamiento y la infraestructura urbana, dotando a la zona de amplias áreas de recreación y comercio.
- Convertir esta propuesta en un proyecto piloto, fomentando este tipo de proyectos, a fin de acabar con el tráfico de tierras y con la informalidad, brindando una vivienda saneada física y legalmente.

1.3.2 DEFINICIÓN GENERAL DEL PROYECTO

El Proyecto Inmobiliario de Viviendas de Interés Social, **Complejo Habitacional Las Amapolas**, comprenderá el desarrollo de 200 viviendas económicas con terrenos de 90 m2, rodeado de amplias áreas con parques y jardines públicos, áreas habilitadas para colegio y locales comerciales, accesos, pistas y veredas, en un área de terreno total de 6.00 ha. Contará con todos los servicios básicos, energía eléctrica, redes de agua potable y sistema de alcantarillado, un completo equipamiento urbano y un tratamiento adecuado a las características del lugar. Las viviendas ubicadas en lotes de 90 m2 serán de dos niveles y con la capacidad de ampliación a un tercer nivel. Cada vivienda contará en el primer nivel con sala-comedor, cocina, baño completo, cuarto de estudio, lavandería tendal y patio interior; el segundo nivel tendrá 01 un dormitorio principal y un baño compelto, el área construida de vivienda típica sera de 86.50 m2 entre el primer y segundo nivel.

1.3.3 PRODUCTO OFRECIDO

Para responder a los objetivos de una vivienda económica, el proyecto prevé la construcción de viviendas independientes integrado al casco urbano y al sistema vial de Lima Metropolitana y el Callao.

Las viviendas se desarrollan en lotes de 90 m² en promedio, serán de dos niveles y con la capacidad de ampliación a un tercer nivel. (Área construida de vivienda típica: 86.50 m²). Serán construidas con 5 tipos diferentes de materiales, 4 tipos de vivienda con material no convencional de bajo costo y un tipo de vivienda de albañilería confinada.

La distribución de las viviendas determinada luego de los diferentes estudios realizados se encuentra plasmada en los planos de detalle de la siguiente forma:

- 38 viviendas construidas con Albañilería confinada.
- 36 viviendas construidas con bloques de concreto (Sistema Firth) y viguetas pretensadas.y ladrillos Firth.
- 36 viviendas construidas con albañilería armada bloques de arcilla (Sistertia Italcerámica), viguetas y ladrillos Firth,
- 52 viviendas construidas con viguetas y ladrillos Firth, y ladrillos Sílice
 Calcáreos (Sistema La Casa), y
- 38 viviendas construidas con placas de mallas electrosoldadas (Sistema UNICON).

Estas viviendas contarán con acabados de acuerdo al tipo de sistema a construir, muros interiores y exteriores acabados, pisos de cemento pulido, acabado impermeabilizado en la zona de ducha, lavadero de cocina y lavadero de ropa, ventanas de fierro y vidrio crudo, puertas contraplacadas de madera e instalaciones sanitarias y eléctricas empotradas. Cumpliendo con las especificaciones técnicas y reglamentos competentes. Asegurando una vivienda resistente, antisísmica y funcional.

Complejo Habitacional "Las Amapolas"

1.3.3 MERCADO POTENCIAL

Lima metropolitana zona norte y la Provincia Constitucional del Callao. El sistema está dirigido fundamentalmente al nivel socioeconómico C y D.

1.3.5 VENTAJAS COMPETITIVAS

- La ubicación del Complejo Habitacional Las Amapolas a importantes Vías Arteriales, Sub-Regionales y la cercanía a grandes centros comerciales e instituciones públicas.
- Se ofrece un espacio agradable con amplias áreas de parques y jardines, completamente saneado y con un equipamiento urbano completo.
- En las zonas aledañas al Complejo Habitacional Las Amapolas no existe ningún otro proyecto de características similares, solo encontramos ofertas de venta de lotes informales sin habilitación urbana encaminada.

1.3.6 VIALIDAD TÉCNICA

Para responder a los objetivos de una vivienda económica, el proyecto prevé la construcción de viviendas con materiales y sistemas no convencionales de bajo costo, contando con acabados mínimos: muros interiores y exteriores acabados, pisos de cemento pulido, acabado impermeabilizado en la zona de ducha, lavadero de cocina y lavadero de ropa, ventanas de fierro y vidrio crudo, puertas contraplacadas de madera e instalaciones sanitarias y eléctricas empotradas. Este estudio se encuentra acorde con los reglamentos técnicos para la construcción, así como su estudio previo de factibilidad para el uso del suelo. Asegurando una vivienda resistente, antisísmica y funcional. El proyecto estará conformado por:

- 36 viviendas construidas con viguetas pretensadas y bloques de concreto (Sistema Firth),
- 36 viviendas construidas con viguetas y ladrillos Firth, y bloques de albañilería armada (Sistema Italcerámica),
- 52 viviendas construidas con viguetas y ladrillos Firth, y ladrillos sílico calcáreos (Sistema La Casa).
- 38 viviendas construidas con placas de mallas electrosoldadas (Sistema LINICON), y
- 38 viviendas construidas con albañilería confinada con viguetas pretensadas y ladrillos Firth.

1.3.7 ANÁLISIS DE MERCADO

De acuerdo a estadísticas del Ministerio de Vivienda, Construcción y Saneamiento, en Lima se han otorgado un total de 13,899 créditos a Septiembre del 2004. Siendo el valor promedio de la vivienda de LIS\$ 26,479.00. Esta modalidad exige una cuota inicial y un saldo cancelado a través del crédito hipotecario. Estos indicadores son muy importantes dentro del planteamiento del proyecto, de acuerdo al costo de la vivienda, el proyecto está dentro del promedio con LIS\$ 24,500.00.

1.3.8 ANÁLISIS DE DEMANDA

Cualquier estudio sobre vivienda generalmente se enfoca en los sectores sociales mayoritarios ya que son los que más demanda concentran y más atención requieren, a las que llamamos uviviendas de interés social", destinadas al sectores socioeconómicos C, D y E Existen otras categorías de vivienda ubicadas generalmente en zonas residenciales, sectores socioeconómicos A y B; donde la oferta supera a la demanda. En el país, según estudios del Ministerio de Vivienda, Construcción y Saneamiento, la demanda insatisfecha; es decir, la comparación entre la oferta real y la demanda efectiva de quienes quieren adquirir es de 90 mil viviendas, de las cuales el 90% desea viviendas cuyo costo sea menor a 30 mil dólares, y el 70% de este último grupo desea comprar casas de menos de 10 mil dólares.

UN/ FIC Capitulo I: Antecedentes

1.3.9 ANÁLISIS DE OFERTA

Hasta mediados de los noventa, la oferta formal comercializable, más

preponderante por sus volúmenes, ha estado a cargo del Estado: barrios

fiscales, barrios obreros, unidades vecinales, conjunto habitacionales, conjuntos

residenciales, unidades populares de interés social, lotes tizados, lotes con

servicios, etc.

En lo que respecta al proceso de producción residencial formal, a cargo del

sector privado, habría que hacer una diferenciación entre los propietarios que

contratan pequeñas o micro empresas para la construcción de su vivienda

unifamiliar y el grupo de promotores inmobiliarios que edifican viviendas para su

colocación en el mercado. Este último, es bastante incipiente, debido, entre otras

razones, a la no-incorporación de los necesitados a la economía de mercado, a

la desequilibrada relación calidad - precio, y al actuar del beneficiario

condicionado a la existencia de regímenes promocionales.

1.3.10 ESTUDIO DE MERCADO

Para realizar el estudio de mercado utilizamos como herramienta indispensable

la información obtenida a través de encuestas realizadas previamente al

desarrollo del proyecto y datos estadísticos de instituciunes relacionadas con el

tema inmobiliario, en nuestro caso datos del Ministerio de Vivienda Construcción

y Saneamiento, el INEI y Municipalidades involucradas.

1.3.11 COMERCIALIZACIÓN

Las ventas de las viviendas serán adelantadas a la construcción y paralelas a

ella. El valor de la vivienda asciende al monto de 24,500.00 Dólares Americanos

con una cuota inicial de 5,000.00 Dólares Americanos. El pago es al contado, se

promoverá para ello el acceso al crédito hipotecario a través de los Bancos.

Complejo Habitacional "Las Amapolas Sistema de Albañileria Armada con Bloques de Arcilla Escudero Aqüero Mali/de Maria

Pagina № 14

1.3.12 ANÁLISIS ECONÓMICO FINANCIERO

PRESUPUESTO BASE DEL PROYECTO

☐ presupuesto base del proyecto asciende al monto de **4'881,307.00 Dólares Americanos**, considerando dentro del cual todos los gastos necesarios para la ejecución del Proyecto en cuanto a las edificaciones, servicios básicos, equipamiento urbano, gastos de publicidad y el saneamiento físico legal respectivo.

El resumen del presupuesto base se muestra en el cuadro adjunto de la pagina siguiente.

FLUJO DE CAJA PROYECTADO

目 flujo de caja se proyecta a un periodo de un año, durante el cual se efectuará la venta total de las 200 viviendas. Asimismo durante este tiempo se habrá cancelado la deuda total adquirida con el Banco, que financiará el proyecto con US \$ 3'000,000.00 pagaderos en 6 meses dentro de este tiempo st∷. ha proyectado culminar con la totalidad de las obras.

Luego de finalizado las obras de construcción y de efectuarse la liquidación respectiva se suprimirán algunos desembolsos como es la mano de obra del personal obrero, que representa un alto porcentaje mensual por parte de la Empresa.

☐ cuadro siguiente muestra el resumen de los ingresos y egresos que tendrá el Proyecto durante 12 meses.

1.4 TOPOGRAFÍA

1.4.1 LINDEROS Y MEDIDAS (Ver Anexo Planos Lámina PT-01)

Por el Norte: Colinda con el Programa de Vivienda "Manuel Aquino" **U.C.** N° 10640, en línea recta de 269.64 m.

Por el Este : Colinda con el Programa de Vivienda ULas Poncianas 11" U.C. Nº 10086, en línea recta de 276.70 m.

Por el Sur : Colinda con el límite de la Provincia Constitucional del Callao con el distrito de San Martín de Porres, en líneas quebrabas de 11.92 m, 13.96 m, 18.55 m, 29.01 m, 38.76 m, 13.87 m, 9.73 m, 28.49 m, 11.28 m, 13.09 m, 13.08 m, 7.34 m.

Por el Oeste: Colinda con el Programa de Vivienda ULas Orquídeas" U.C. Nº 10675, en línea recta de 289.27.

 \Box terreno presenta tres lados rectos bien definidos y un cuarto lado formado por varios tramos cortos haciendo un perímetro de 1,029.97 metros y un área de 6.00 Ha.

1.4.2 TOPOGRAFÍA DEL TERRENO

∃ terreno presenta una topografía plana con ligeros d<.:sniveles no mayores de 50 cm. Se ha considerado los Bench Marks ubicados uno en la Avenida Néstor Gambetta a la altura de la Empresa Sudamericana de Fibras con una Cota de 12.20 m.s.n.m. y en la Avenida Carlos Izaguirre en la tapa de un buzón de alcantarillado con una cota de24.54 m.s.n.m.

1.4.3 ALTITUD

La cota de mayor altura dentro del terreno es de 26.50 m.s.n.m. y una cota mínima de 25.60 m.s.n.m.

1.4.4 COORDENADAS

Las coordenadas del plano topográfico están referenciadas al sistema PSAD 56 (PROVISIONAL SOUTH AMERICA DATUM OF 1956).

1.5 ESTUDIO DE SUELOS

1.5.1 MARCO GEOLÓGICO

El proyecto en estudio se encuentra dentro del área urbana de Lima metropolitana, que en general tiene un relieve suave y una pendiente baja. La zona se encuentra en la margen derecha del cono aluvial de Río Rímac, (y cercano al cono aluvial del Río Chillón), el mismo que está compuesta por gravas, arenas y arcillas limosas en los que subrayase una capa de relleno de espesor variable.

Los depósitos predominantes son gravas con un relleno de matriz limo arcilloso, con gravas y boleos, es decir, esta compuesta por Depósitos Cuaternarios los que se han depositado dentro del geosinctinat de Lima (Según et Boletín del Cuadrángulo de Lima y del Cuadrángulo de Chancay).

1.5.2 SISMICIDAD

Para el estudio de la zona se tiene los factores del Cuadro Nº 1(De la NTE-E030 Diseño Sismorresistente).

CUADRO N° 1 FACTORES SISMICOS				
FAC	TORES	SUELO		
Zona	3	0.40		
Uso	u	1.00		
Suelo	S	1.00		
Sísmico	е	2.50		
Periodo Predo	minante T _P	0.40 s		

1.5.3 INVESTIGACION DE CAMPO

Excavaciones

Se realizó un programa de investigación en un total de tres (03) exploraciones con una profundidad promedio de 2.00m. En los cuadros siguientes se tienen las exploraciones de campo ejecutadas con su progresiva y coordenadas:

CUADRO N° 2 UBICACIÓN DE CALICATAS			
Nombre	Prof.	Cota aprox.	
C-1	2.00	-0.60	
C - 2	2.00	-0.60	
C - 3	2.00	0.00	

Ver Anexo A-1

Ensayos In Situ

Se realizó un ensayo de densidad de cono en el fondo de la calicata C-3, se realizaron estos ensayos en calicatas a fin de obtener la densidad natural de muestras.

1.5.4 ENSAYOS DE LABORATORIO

Los ensayos fueron realizados en cumplimiento de las normas de la American Society for Testing and Materials (ASTM) de acuerdo al siguiente detalle:

- Análisis granulométrico por tamizado ASTM D 422.
- Contenido de humedad ASTM D-2216.
- Límite Líquido y Plástico ASTM D-4318.
- Corte Directo ASTM D-3080.

0fer Anexo A-4)

UNIFIC

1.5.5 CLASIFICACION DE SUELOS

Con los resultados obtenidos en los ensayos de laboratorio se han clasificado los tipos de suelos de acuerdo a su textura y características principales, las mismas que corresponden a la zona investigada. Los suelos encontrados corresponden a los siguientes tipos:

CL Arcilla de baja a media plasticidad

SM Arena limosa

GP Grava pobremente graduada

GW Grava bien graduada

1.5.6 PERFIL DE SUELOS

De acuerdo a las exploraciones realizadas y a los resultados en laboratorio, el perfil de suelos inferido consta en primer lugar de una capa superficial de terreno de cultivo limo arcilloso, de color beige y con porosidades, siendo de un espesor entre 0.90 a 1.50 m que es a partir de donde aparece un suelo gravoso de formación aluvional de río con matriz arena fina, color beige y presentando boleos de regular tamaño, semidenso. Existe sólo en la calicata C-1 un lente de arena limosa de unos 0.20 m de espesor entre la capa arcillosa con limo y la grava (Ver Anexo A-2). No se detectó el nivel freático n ninguna calicata hasta la profundidad de exploración)

1.5.7 ANALISIS Y OBTENCION DE LA CAPACIDAD ADMISIBLE Y ASENTAMIENTOS

La cimentación de las edificaciones será sobre el suelo de grava con matriz arena fina (GW/GP). El ángulo de fricción interna es de 35°, obtenido del Ensayo de Corte Directo. Debido a esta fricción se obtiene una capacidad portante alta, según los diferentes dimensionamientos de la base y la profundidad de la cimentación.

Considerando el perfil de suelos, se establece diferentes niveles de cimentación

variando entre 0.90 metros y 1.50 metros de profundidad; así se hará un análisis de cimentación considerando la capacidad portante y teniendo en consideración los asentamientos instantáneos.

FOR MA		ES DE CAPA DE CARGA	CIDAD	FACTORES DE FORMA		
PIA	Ne	Ng	Nq	Se	Sg	Sq
Continua	46.12	48.03	33.30	1.00	1.00	1.00
Cuadrada	40.12	40.00	00.00	1.72	0.60	1.70

No existe nivel freático en el terreno, sin embargo para futuros problemas que se puedan suscitar por humedecimiento del suelo por rotura de tuberías o en el caso de riego de jardines, se ha optado por lo siguiente:

- Peso especifico del suelo por debajo del nivel de cimentación: 1.9 t/m³
 (grava)
- Peso especifico del suelo por encima del nivel de cimentación: 1.3 t/m³ (material fino)

∃ peso especifico del material de la grava es de 2.22 t/m³ y del suelo fino es· 1.7 t/m³. Estos valores han sido reducidos por las referencias que se tienen de este tipo de material (grava) en otros estudios realizados en 'a zona.

Lo que se requiere en todo momento, es que los asentamientos instantáneos no superen 1" (2.54 cm), por lo que los valores de capacidad portante en todos los casos están por debajo de este valor. Finalmente, concluimos que para cimentaciones cuadradas, se tiene una capacidad portante de 3,80 kg/cm² con una profundidad mínima de cimentación de 1,20 m y ancho de zapatas de 1,00 m x 1,00m. Para cimentaciones corridas, se tiene una capacidad portante de 2,20 kg/cm², con una profundidad mínima de cimentación de 1,00 m y 0,50 m de ancho.

Los valores de capacidad de carga, han sido calculados considerando que el nivel de cimentación esta siempre en la grava. Si es que el nivel de cimentación esta apoyado en suelo fino, este se debe profundizar hasta encontrar la grava.

1.5.8 CONCLUSIONES Y RECOMENDACIONES

- 1.- La zona se encuentra dentro del cono aluvial del río Rímac y las exploraciones efectuadas han determinado que el suelo base es grava entre pobremente graduada a bien graduada (GW/GP).
- El material gravoso de cimentación se encuentra entre los 0.90 metros y 1.50 metros de profundidad.
- 3.- Las cimentaciones cuadradas, tienen una capacidad portante de 3,80 kg/cm2 con una profundidad mínima de cimentación de 1,20 m y ancho de zapatas de 1,00m x 1,00m, pudiendo incrementar el ancho de la zapata como su profundidad de cimentación.
- 4.- Para cimentaciones corridas, se tiene una capacidad portante de 2,20 kg/cm2, con una profundidad mínima de cimentación de 1.00 m y ancho mínimo de 0.50 m.
- 5.- El nivel de cimentación, debe estar siempre dentro de la grava o al t1ivel de la misma. Si el nivel de cimentación, está sobre suelo fino, entonces la excavación debe profundizarse hasta encontrar el suelo gravoso.
- 6.- El suelo que volverá a usarse como relleno sobre la cimentación debe tener una adecuada compactación (95% MDS).
- 7.- En el caso de hacer la construcción junto a la cimentación de otras construcciones vecinas considerar el uso de calzaduras de acuerdo a la zona de influencia de la cimentación cercana. Así también ejecutar protección de la zona perimétrica de la construcción y en contacto con las vías de circulación (veredas y avenidas, frontis o fachada del terreno).
- 9.- Las conclusiones y recomendaciones hechas en este estudio, son de aplicación exclusiva al área estudiada.

1.6 IMPACTO AMBIENTAL

1.6.1 LINEA BASE AMBIENTAL

AREA DE INFLUENCIA

El Área de Influencia Directa comprende las áreas, donde de acuerdo a un análisis cualitativo, se ha previsto la ocurrencia directa, inmediata y de mayor intensidad de impactos ambientales durante el proceso de construcción y operación del Complejo Habitacional "Las Amapolas".

Durante las etapas de construcción y operación del proyecto, el Área de Influencia Directa se circunscribe a un radio de 250 m del terreno en estudio, lo cual abarcaría una superficie aproximada a 20 ha. Esta zona encierra a las manzanas colindantes con el predio, las que se verán afectadas directamente durante las actividades contempladas en el proceso de construcción, así como se beneficiarán del desarrollo urbano y socio - económico de la zona en la etapa de operación, aprovechando directamente las áreas de recreación, comercio, salud y educación.

Dentro de este ámbito, se construirán las obras proyectadas, y se ha previsto ocurrirá la mayor afluencia de vehículos, tránsito de maquinarias y equipos, entre otros. Asimismo, comprende las áreas donde se instéAlarán los campamentos, patios de máquinas, depósitos de materiales excedentes, áreas de servicio etc.

El Área de Influencia Indirecta estará comprendida por el distrito del Callao (Cercado).

Para su determinación se han considerado diversos elementos y criterios tales como situación geográfica, vías principales de acceso a la zona, características climáticas y zonas de vida, integración socio cultural, entre otras. Esta área permite tener mejor visión del ecosistema donde se desarrollará el proyecto; así como, permitirá determinar las posibles implicancias y efectos que pudieran ocasionar la interacción proyecto - medio ambiente. De acuerdo a esta consideración, la superficie total considerada sería aproximadamente

UNIFIC

4,878.75ha.El Área de Influencia Directa del proyecto se circunscribe a un radio de 250 m del terreno en estudio, lo cual abarcaría una superficie aproximada de 20 ha, mientras que el Área de Influencia Indirecta estará comprendida por el distrito del Callao (Cercado).

DESCRIPCIÓN DEL MEDIO FÍSICO

En cuanto al medio físico se logra saber que el clima del Callao es templado, desértico y oceánico.

La zona del proyecto se encuentra en la margen derecha del cono aluvial de Río Rímac, (y cercano al cono aluvial del Río Chillón), el *mismo* que está compuesta por gravas, arenas y arcillas limosas en los que suprayace una capa de relleno de espesor variable.

La napa freática en el área de influencia tiene su origen en la confluencia de las napas provenientes de los valles de los ríos Rímac y Chillón.

Los mejores suelos para producción y edificación se encuentran en el sector centro - sur, desde la margen izquierda del río Rímac hasta el límite de la provincia. A su vez el Ex - Fundo mantiene a la fecha áreas de cultivo, asimismo se encuentra diferenciado a través de la Av. Néstor Gambeta en dos zonas de distintos usos: hacia el lado Oeste se encuentra la zona industrial que agrupa a importantes empresas de producción; y hacia el lado Este de esta vía se encuentra la zona urbana que agrupa a diferentes programas, asociaciones y cooperativas de vivienda.

DESCRIPCIÓN DEL MEDIO BIOLÓGICO

En el área de influencia del Complejo Habitacional "Las Amapolas", el ciclo biológico, en general, esta afectado por la *influencia* de los factores característicos del clima desértico semi-cálido, que impera en el territorio, en el que se destaca la ausencia casi general de la vegetación, y que limita, en consecuencia el desarrollo de la vida animal.

DESCRIPCIÓN DEL MEDIO SOCIOECONÓMICO Y CULTURAL

En el período 1995-2000, la Provincia Constitucional del Callao ha tenido mayor crecimiento, generado por el crecimiento del distrito de Ventanilla y el Cercado del Callao. El Sistema Educativo del Callao se organiza administrativamente en base a una Dirección de Educación, ubicada en el distrito del Callao, con cobertura provincial.

⊟ servicio de salud que se brinda a la población del Callao, proviene en gran parte del sector público. ⊟ sistema de prestación de servicios de salud no incluye a la totalidad de la población, existe una minoría que tiene acceso a los servicios de salud por su capacidad adquisitiva y nivel de vida, y grandes sectores de la población que no cuentan con servicios suficientes.

Con los servicios básicos, el abastecimiento de agua en el Callao se brinda mediante el sistema de red pública, abastecida en un 70% por aguas provenientes de pozos subterráneos. La cobertura del servicio de electrificación de Callao, es del 82% a nivel global. El alcantarillado tiene una cobertura de 73.5%, mientras que el alumbrado publico cubre a un 84% del Callao (cercado).

La delincuencia en la Provincia Chalaca, registra índices significativos, resaltando delitos contra el patrimonio en las modalic'.ades de robo agravado contra las empresas, vehículos ligeros y pesados, transeúntes y domicilios.

⊟ nivel económico encontrado en las zonas aledañas a la ubicación del Complejo Habitacional "Las Amapolas", y a aquellas familias que mostraron interés por el proyecto, residentes en San Martín de Porres y el distrito del Callao (Cercado), reflejado en un ingreso promedio es de 1,080.00 nuevos soles ó 320.00 dólares americanos, ubica a estas familias en el nivel socioeconómico C.

En cuanto a la infraestructura económica, la Provincia del Callao concentra 423 plantas industriales, 129 principales locales comerciales, el puerto del Callao, el Aeropuerto Internacional del Callao, así como 63 vías principales entre: regionales-nacionales, semi-expresas, arteriales y colectoras.

1.6.2 IDENTIFICACIÓN Y EVALUACIÓN DE LOS IMPACTOS SOCIO-AMBIENTALES DEL PROYECTO

Etapa de Planificación:

- Expectativa de obtención de empleo durante la elaboración del proyecto.
- Posibles deterioro de las relaciones con la población local y con el propietario del terreno.

Etapa de Construcción:

- Afectación en la fluidez del tránsito vehicular particular y público debido al tránsito de maquinaria pesada y camiones.
- Perturbación de la tranquilidad en la población local.
- Probable afectación a la salud y/o accidentes del personal de obra.
- Probable afectación a la salud de la población aledaña.
- Posible contaminación de los suelos
- Expectativa de obtención de empleo durante la elaboración del proyecto.
- Bienestar económico de los trabajadores contratados.
- Posible generación de focos infecciosos.

Etapa de Operación:

- Mejora en la actividad comercial de la población local.
- Posible inicio de procesos de expansión urbana.
- Mejora en la calidad de vida.
- · Mejora en la calidad paisajística
- Ingresos económicos a las arcas municipales.

1.7 ARQUITECTURA

☐ Proyecto Inmobiliario de Viviendas de Interés Social, **Complejo Habitacional** Las Amapolas, comprenderá el desarrollo de 200 viviendas con terrenos de 90 m2, rodeado de amplias áreas con parques y jardines públicos, áreas habilitadas para colegio y locales comerciales, accesos, pistas y veredas, en un área de terreno total de 6.00 ha. Contará con todos los servicios básicos, energía

eléctrica, redes de agua potable y sistema de alcantarillado, un completo equipamiento urbano y un tratamiento adecuado a las características del lugar.

Las viviendas desarrolladas en lotes de 90 m2 serán de dos niveles y con la capacidad de ampliación a un tercer nivel. Cada vivienda contará en el primer nivel con sala-comedor, cocina, baño completo, cuarto de estudio, lavandería tendal y patio interior; el segundo nivel tendrá 01 un dormitorio principal y un baño compelto, el área construida de vivienda típica sera de 86.50 m2 entre el primer y segundo nivel.

1.7.1 ZONIFICACIÓN

Para determinar la zonificación del proyecto se tomará en cuenta los criterios en los cuadros adjuntos.

(CUADRO	N	1.	ZONIFICACION	RESIDENCIAL

Zonificación	Usos	Densidad Neta Hab./Ha. máxima	Lote Mínimo M2	. Frente Mínimo ML.	Altura de Edif. Máxima (Pisos)	Área Libre %
	Unifamiliar	330 - 560	90	6	3	10
R-DM	Multifamiliar	830 - 1,400	150	8	5	30-40
(R3 - R4)	Conjunto Residencial	1,000 - 1,400	800	20	5	SO

CUADRO N° 02: ZONIFICACION COMERCIAL

Zonificación	Nivel de Servicio (Hab)	Lote Mínimo	Altura de Edificación	Residencial Compatible
Zona Comercio Vecinal - CV (C2)	De 2,500 a 7,500	Existente/ según Proyecto	4 pisos	R - D M (R3 - R4)

1.7.2 DENSIDAD

El Reglamento de Zonificación para el uso R - DM (R3 - R4) especifica una Densidad Neta **Máxima** de habitantes por Hectárea (330-560 Hab/Ha), cuyo análisis es el siguiente:

USO R - DM (R3 - R4): Zona Residencial de Densidad Media.

Reglamento:

10,000.00 m2 _____ 330 Hab. / ha 60,000.00 m2 ____ x
$$X = \frac{60.000.00 \text{ m}^2 x 330 \text{ Hab/Ha}}{10,000.00 \text{m}^2}$$

$$X = \frac{1980.00}{7} = 282.85 \text{ Lotes}$$

Según el plano de lotización se considera 200 lotes

1.7.3 LOTIZACION

El Plano de Lotización respeta la Zonificación y las Normas del Reglamento Nacional de Construcciones y Habilitaciones Urbanas.

La Habilitación Urbana "Las Amapolas" se estructura en base a la futura Avenida Los Olivos la cual ha sido proyectada en el plan vial de la Municipalidad del Callao, habiéndose considerado 09 manzanas siendo estas: A, B, C, O, E, F, G, H, e I las cuales se detallan en el plano de Habilitación urbana, en ella se contempla la construcción de 200 viviendas con zonas para pistas, veredas, parques y jardines, así mismo hay zonas destinadas a Comercio, Salud y Educación.

Las áreas destinadas para la habilitación urbana son las siguientes:

CUADRO DE AREAS	S	
Área útil de viviendas	18000.00	m2
Comercio	2028.88	m2
Educación	2102.08	m2
Salud	462.63	m2
Parques y áreas verdes	3713.34	m2
Vías	20659.08	m2
Áreas para etapa posterior	13033.00	m2
Total	60000.00	m2

1.7.4 FACTIBILIDAD DE SERVICIOS

La Factibilidad de Servicios de Agua Potable y Alcantarillado esta acreditada por la Gerencia de Servicios Norte Equipo Técnico de SEDAPAL, al haber otorgado que es factible. Que se cuente con los servicios de Agua potable y Alcantarillado, en la oportunidad en que se desarrolle y ejecute a nivel de obra, el estudio definitivo del Sector 256, del Estudio denominado "Factibilidad para el Mejoramiento y Ampliación de los Sistemas de Agua Potable y Alcantarillado de los Ex -Fundos Oquendo Santa Rosa, Naranjal, Chuquitanta y Parque Porcino en los Distritos de San Martín de Porres y Callao.

1.7.5 VIVIENDA

Las viviendas están donformadas por 02 pisos:

- a.- Primer piso: sala-comedor, cocina, baño completo, cuarto de estudio, y patio lavandería
- b.- Segundo piso: consta de 01 dormitorio principal, 01 dormitorio de una cama,
 01 dormitorio de dos camas, y dos baños completo.
- c.- Tercer Piso: consta de 01 dormitorio de servicio, 01 lavandería, 01 baño y azotea.

Las áreas libres se encuentran en el entorno de la vivic:nda en este caso es la zona de retiro frontal y la parte posterior del terreno donde esta ubicado el patio lavandería.

PISO 1

N°	Nombre de Ambiente
1	SALA
2	COMEDOR
3	COCINA
4	DORMITORIO
5	BAÑO COMPLETO
6	ESCALERA
7	PATIO-LAVANDERIA

PISO 2

N°	Nombre de Ambiente
1	DORMITORIO PRINCIPAL
2	DORMITORIO 2
3	DORMITORIO 3
4	BAÑO COMPLETO
5	BAÑO COMUN

PISO 3

N°	Nombre de Ambiente
1	DORMITORIO SERVICIO
2	BAÑO COMPLETO
3	LAVANDERIA
4	AZOTEA

CUADRO DE AREAS TOTALES

AREA TOTAL DEL TERRENO	90.00 M2
AREA CONSTRUIDA TOTAL	127.22 M2
PRIMER PISO	
AREA CONSTRUIDA	47.27 M2
SEGUNDO PISO	
AREA TOTAL CONSTRUIDA	46.99 M2
TERCER PISO	
AREA TOTAL CONSTRUIDA	32.96 M2
AREA LIBRE (47.470%)	42.73 M2

CAPITULO 11

FORMULACIÓN Y EVALUACIÓN DE PROYECTOS

2.1 RESUMEN EJECUTIVO

2.1.1 NOMBRE DEL PROYECTO

CONSTRUCCIÓN DEL COMPLEJO HABITACIONAL LAS AMAPOLAS

2.1.2 PROPIETARIO

ALPHA GROUP BUILDINGS

2.1.3 PROGRAMA

CONSTRUCCIÓN DE 200 VIVIENDAS DE INTERÉS SOCIAL

2.1.4 LOCALIZACIÓN

DEPARTAMENTO : PROV. CONSTITUCIONAL DEL CALLAO

PROVINCIA: PROV. CONSTITUCIONAL DEL CALLAO

DISTRITO : CALLAO CERCADO

LOCALIDAD : EX - FUNDO OQUENDO

2.1.5 DESCRIPCIÓN DEL PROYECTO

Elaboración de un Proyecto Inmobiliario de Viviendas de Interés Social Complejo Habitacional "Las Amapolas", que comprenderá el desarrollo de 200 viviendas económicas independientes, parques y jardines públicos, áreas habilitadas para colegio, puestos de salud y locales comerciales, sobre un área de terreno total de 6.00 ha. Con la instalación de los servicios de energía eléctrica, alumbrado público, redes de distribución de agua potable y sistema de alcantarillado con sus respectivas conexiones domiciliarias, vías públicas (pistas y veredas) con tratamiento apropiado a las características del lugar.

2.1.6 PRODUCTO OFRECIDO

Para responder a los objetivos de una vivienda económica, el proyecto prevé la construcción de viviendas independientes, integrado al casco urbano y al sistema vial de Lima Metropolitana y el Callao.

Las viviendas se desarrollan en lotes de 90 m2 en promedio, serán de dos niveles y con la capacidad de ampliación a un tercer nivel. (Área construida de vivienda típica: 86.50 m2). Serán construidas con materiales no convencionales, de 5 tipos diferentes de bajo costo:

- 38 viviendas construidas con Albañilería confinada.
- 36 viviendas construidas con bloques de concreto (Sistema Firth) y viguetas pretensadas. y ladrillos Firth.
- 36 viviendas construidas con albañilería armada bloques de arcilla (Sistema Italcerámica), viguetas y ladrillos Firth,
- 52 viviendas construidas con viguetas y ladrillos Firth, y ladrillos Sílico Calcáreos (Sistema La Casa), y
- 38 viviendas construidas con placas de mallas electrosoldadas (Sistema UNICON).

Muros interiores y exteriores acabados, pisos de cemento pulido, acabado impermeabilizado en la zona de ducha, lavadero de cocina y lavadero de ropa, ventanas de fierro y vidrio crudo, puertas contraplacadas de madera e instalaciones sanitarias y eléctricas empotradas. Cumpliendo con las especificaciones técnicas y reglamentos competentes. Asegurando una vivienda resistente, antisísmica y funcional.

2.1.7 MERCADO POTENCIAL

LIMA METROPOLITANA ZONA NORTE Y LA PROVINCIA CONSTITUCIONAL DEL CALLAO.

2.1.8 PÚBLICO OBJETIVO

🛘 sistema está dirigido fundamentalmente a los niveles socioeconómicos C y D.

2.1.9 VENTAJAS COMPETITIVAS

- La ubicación del Complejo Habitacional Las Amapolas a importantes Vías Arteriales, Sub-Regionales y la cercanía a grandes centros comerciales e instituciones públicas.
- Se ofrece un espacio agradable con amplias áreas de parques y jardines, completamente saneado y con un equipamiento urbano completo.
- En las zonas aledañas al Complejo Habitacional Las Amapolas no existe ningún otro proyecto de características similares, solo encontramos ofertas de venta de lotes informales sin habilitación urbana encaminada.

2.1.10 PLAN DE IMPLEMENTACIÓN

Se tendrá 5 módulos de exposición para cada sistema constructivo la venta de las 200 viviendas se hará con 3 meses de anticipación al inicio de la obra y paralelamente a la construcción de las mismas, asimismo se proyecta efectuar el total de las ventas en 24 meses. El precio de la vivienda asciende al monto de \$ 25,000.00, la venta se hará al contado con una cuota inicial de \$ 2,500.00 Dólares Americanos. Por otro lado se prevé la culminación total de las Obras del Complejo Habitacional Las Amapolas dentro de un plazo de 18 meses.

2.1.11 EQUIPO DE TRABAJO

JEFE DE PROYECTO: Responsable de liderar y coordinar todos los temas del proyecto con una fuerte capacidad de ejecución y con un amplio manejo y visión global de los diversos temas del negocio

GERENTE ADMINISTRATIVO: Un responsable que manejará los temas económico-financiero. Será responsable de planificar, desarrollar y controlar las variables económicas del desarrollo.

INGENIERO RESIDENTE: Ingeniero responsable de toda la ejecución del proyecto. Comprende las tareas de supervisión y gestión de contratos de servicios.

2.1.12 INVERSIÓN REQUERIDA

La inversión requerida asciende al monto de 5'000,000.00 de Dólares Americanos, la ejecución se iniciará con un financiamiento de 3'000,000.00 de Dólares Americanos.

2.2 IDENTIFICACIÓN DEL PROYECTO

2.2.1 ANTECEDENTES GENERALES

El déficit de viviendas en el Perú es mayor entre las familias de menores ingresos, lo que se expresa tanto en la carencia absoluta de vivienda (déficit cuantitativo) como en la habitación de viviendas de calidad muy deteriorada o que no ofrecen los servicios básicos (déficit cualitativo).

La falta de una oferta inmobiliaria en Lima y Callao al alcance de los niveles socio-económicos más bajos y la necesidad de obtener una vivienda trae consigo la proliferación de viviendas sin habilitación urbana, sin servicios básicos que aseguren un nivel de vida aceptable en la población, creando a su vez un desorden urbano al establecerse en zonas sin previa habilitación urbana aprobada por la municipalidad correspondiente para el caso del Callao y en el caso de San Martín de Porres que si cuenta con habilitación urbana pero sólo con el servicio de alumbrado eléctrico definitivo y ningún otro tipo de obra, ni equipamiento urbano alguno que lo diferencie del caso anterior.

El Estado de la República del Perú, a través del Ministerio de Vivienda, Construcción y Saneamiento, viene desarrollando programas de adquisición de viviendas como el Crédito Mi Vivienda y Techo Propio, con el objetivo de promover, facilitar y establecer mecanismos adecuados y transparentes que permitan el acceso de los sectores populares a un vivienda digna en concordancia con sus posibilidades económicas; así como estimular la efectiva participación del sector privado en la construcción masiva de viviendas de interés social.

Dentro de este contexto, el presente documento corresponde al Estudio de Prefactibilidad para la ejecución del Proyecto Inmobiliario "Las Amapolas".

2.2.2 UBICACIÓN

El Proyecto "Complejo Habitacional Las Amapolas" se ubica en el extremo Este del Ex - Fundo Oquendo distrito del Callao Cercado jurisdicción de la Provincia Constitucional del Callao; el área del terreno es de 6.00 Ha. presenta una topografía relativamente plana con ligeros desniveles no mayores a los 50 cm. Asimismo el proyecto se ubica a 250 metros de la vía arterial Los Alisos, a 350 metros de la vía arterial Carlos Izaguirre; a 300 metros de la vía Sub-Regional Canta Callao y a 500 metros de la vía Colectora Pacasmayo.

2.2.3 OBJETIVOS DEL PROYECTO

OBJETIVO GENERAL

Construir un complejo habitacional de 200 viviendas de interés social en el Ex-Fundo Oquendo Callao, brindando a la población la oportunidad de acceder a una vivienda funcional estética y económica rodeada de amplias áreas verdes y de recreación que ofrezca un ambiente grato a sus residentes.

OBJETIVOS ESPECÍFICOS

- Brindar a la población una vivienda económica de 90 m2 de área, con 94.26
 m2 de área construida en dos niveles.
- Colaborar con el ordenamiento y la infraestructura urbana, dotando a la zona de amplias áreas de recreación y comercio.

 Convertir esta propuesta en un proyecto piloto, fomentando este tipo de proyectos, a fin de acabar con el tráfico de tierras y con la informalidad, brindando una vivienda saneada física y legalmente.

2.2.4 ÁRBOL CAUSA - EFECTO

Se ha elaborado el gráfico correspondiente al árbol CAUSA-EFECTO, que resume el problema existente de la vivienda en Lima y Callao, señalando como problema central el Déficit de la vivienda, las causas del mismo, las causas que la preceden, y las consecuencias del problema central con sus consiguientes efectos.

La figura N[°] 03 muestra el gráfico correspondiente al Árbol Causa-Efecto, para el caso nuestro sobre Déficit de la Vivienda en Lima Metropolitana y el Callao.

2.3 PLANTEAMIENTO DEL PROBLEMA

En la medida que la distribución de la población tiene una gran concentración en la provincia de Lima y en la del Callao, sus densidades poblacionales adquieren en dichos ámbitos una característica similar. El distrito de mayor densidad .de ocupación es La Perla, con 240 hab/ha y el menos denso Ventanilla con 18 hab/ha, los distritos con mayor crecimiento poblacional, tienen menor densidad de ocupación por la extensión de su territorio. En Ventanilla se ubican la mayor cantidad de terrenos eriazos, mientras que en el Callao se localizan tierras de uso agrícola. La presión por la ocupación de estos territorios no se genera a partir del crecimiento poblacional de la Provincia, es decir desde su casco antiguo sino más bien desde el proceso de crecimiento de Lima Metropolitana. Por ejemplo un caso típico es la permanente presión de Lima Metropolitana por ocupar el Fundo Oquendo y la masiva ocupación del asentamiento Pachacútec que se realiza por la reubicación de población excedente de Villa El Salvador. El desarrollo básicamente urbano de la provincia, constituye un gran centro de atracción poblacional, habida cuenta que allí se encuentran posibilidades de desarrollo.

Para la planificación del proyecto se ha construido la matriz del Marco lógico a fin de hacer una evaluación del mismo, el cual se resume en el *cuadro EP*�01.

ARBOL CAUSA - EFECTO

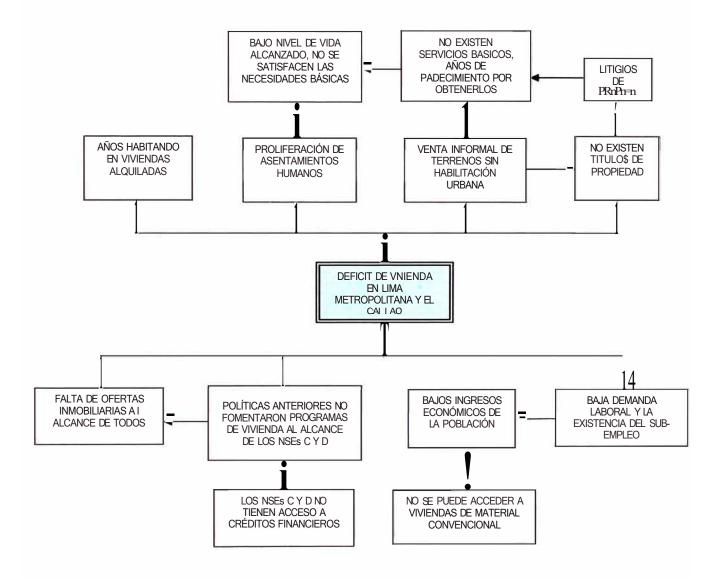


Figura N'03

CUADRO EP-01 :MARCO LÓGICO DEL PROYECTO

JEDADOUTA DE		IVIANCO LOGICO DEL	FUENTES DE	
JERARQUIA DE OBJETIVOS	METAS	INDICADORES	VERIFICACION	SUPUESTOS
.E.ffi: CONTRIBUIR CON LA REDUCCIÓN DEL DÉFICIT DE VIVIENDA EN LA ZONA NORTE DE LIMA METROPOLITANA Y CALLAO	BRINDAR UNA VIVIENDA DIGNA ACORDE A LAS NECESIDADES DE LOS CLIENTES	NÚMERO DE FAMILIAS QUE ADQUIEREN ESTAS VIVIENDAS	* ESTADÍSTICAS DEL MINISITERIO DE VIVIENDA Y COSTRUCCIÓN. * VISITAS AL COMPLEJO HABITACIONAL.	ESTE PRODUCTO TENDRÁ BUENA ACEPTACIÓN POR LA BUENA UBICACIÓN Y POR LA DEMANDA INSATISFECHA
PROPÓSITO: * DOTAR DE UNA VIVIENDA DIGNA A UN TOTAL DE 200 FAMILIAS REDUCIENDO EL DÉFICIT DE VIVIENDA EN LA ZONA NORTE DE LIMA Y CALLAO. *INCREMENTARLA OFERTA INMOBILIARIA EN LIMA Y CALLAO. * MEJORAR LA CALIDAD DE VIDA DE 200 FAMILIAS EN LIMA Y CALLAO.	VENDER EN MENOS DE UN AÑO UN TOTAL DE 200 VIVIENDAS	* AUMENTO DE HABITANTES CON VIVIENDAS DIGNAS * VIVIENDAS INDEPENDIENTES OFERTADAS A PRECIOS SIN COMPETENCIA EN EL MERCADO	* REGISTRO TRIBUTARIO DE LA MUNICIPALIDAD. * REGISTRO DE VENTAS DEL GRUPO ALPHA. * ENCUESTA DE SATISFACCIÓN.	* SE HA VENDIDO EL 100 % DE LAS VIVIENDAS DEL PROYECTO. * EL CRECIMIENTO DEMOGRÁFICO SE MANTIENE BN LOS TERMINOS ACTUALES.
RI;S.II.TA¢O: * HA SIDO IDENTIFICADO EL MERCADO DE OFERTA INMOBILIARIA. * CON,STRUCCIÓN DE VIVIENDAS UNIFAMILIARES ECONOMICAS. * SE CUENTA CON PERSONAL CALIFICADO PARA JRABAJAR CON MATERIALES NO CONVENCIONALES. EL M,ERCADO ESTA INTERESADO EN VIVIENDAS ECONOMICAS CON MATERIALES NO CONVENCIONALES.	200 FAMILIAS AD9UIEREN VIVIENDAS ECONOMICAS DE 5 SISTEMAS CONSTRUCTIVOS DIFERENTES	* CANTIDAD DE VIVIENDAS ENTREGADAS * MARGEN DEL PROYECTO	* REGISTROS DE VENTAS Y ESTADOS FIANCIEROS DEL PROYECTO * RELACIÓN DE VENTAS	* LI POBLACIÓN TIENE ACCESO AL CREDITO. * EXISTEN PROVEEDORES DE BIENES CAPACES DE SUMINISTRARLOS A TIEMPO * LA ECONOMÍA SERÁ ESTABLE DURANTE. LOS PRÓXIMOSA AÑOS. * LAS AUTORIDADES MUNICIPALES CONCEDEN PERMISOS DE OBRA CORRESPONDIENTES.
REALIZAR UN ESTUDIO SOCIAL, ECONÓMICO Y CULTURAL DE LA ZONA NORTE DE LIMA METROPOLITANA Y CALLAO. *REALIZAR EL ESTUDIO TÉCNICO CON EL ANÁLISIS DE L(?S SISTEMAS A UTILIZAR. ****ANALISIS FI©ANCIERO DEL PROYECTO *** HABILITACION URBANA DEL TERRENO ****CAPACITAR AL PERSONAL EN TÉCNICAS PARA EL USO DE MATERIALES NO CONVENCIONALES. ***,CONSTRUCCIÓN DE UN MÓDULO DE VIVIENDA TIPICA.	* CONOCIENDO LAS PREFERENCIAS DEL MERCADO OBJETIVO LOGRAR OFERTAR VIVIENDAS ECONÓMICAS * SE DEFINEN LOS SISTEMAS CONSTRUCTIVOS A UTILIZAR * SE CUENTA CON EL ESTUDIO FINAL PARA BUSCAR EL FINANCIAMIENTO * SE INICIAN LAS OBRAS DE A ASTECIMIENTO DE SERVICIOS BASICOS Y EQUIPAMIENTO URBANO DEL PROYECTO	* DEMANDA DEL PRODUCTO, CONOCEMOS A LA COMPETENCIA * CONCLUSIONES DEL ESTUDIO TÉCNICO ECONÓMICO	*ENCUESTAS REALIZADAS BN LIMA Y CALLAO. * EXPEDIENTE TÉCNICO DEL PROYECTO * ESTUDIO FINANCIERO * CERTIFICACIÓN DE OBRAS EMITIDAS POR LAS AUTORIDADES MUNICIPALES. * REGISTROS DE OBRA	* EL GOBIERNO DE TURNO FAVORECE LAS INVERSIONES DE ESTE TIPO DE PROYECTOS. * EL MERCADO SE INTERESA POR ESTE TIPO DE VIVIENDAS NO CONVENCIONALES. * EL PERSONAL OBRERO PODRÁ SER CAPACITADO PARA TRABAJAR CON MATERIALES NO CONVENCIONALES. * LAS _DEFICIENCIAS INESPERADAS PODRA SER CUBIERTA CON LAS ACCIONES Y RECURSOS PREVISTAS EN EL PRESUPUESTO

Complejo Habitacional "Las Amapolas" Sistema de Albañilerla Armada con Bloques de Arcilla Escudero AgiJero Matilde Maria

24 ANÁLISIS DE LAS A I TERNATIVAS DE SOLUCIÓN

A fin de alcanzar los objetivos del presente Proyecto de Viviendas de Interés social, se analizaron varias alternativas de solución para el desarrollo del Complejo Habitacional "Las Amapolas". Dentro de las alternativas analizadas encontramos tres terrenos de posible ubicación del proyecto. Para la alternativa A, tenemos un terreno ubicado en el límite del Callao con el distrito de San Martín de Porres, dentro del Ex - Fundo Oquendo, jurisdicción del Callao. La alternativa B corresponde a un terreno ubicado en Ventanilla, en la zona denominada Pampa de los Perros y la alternativa C se trata de un terreno ubicado en la zona denominada Chuquitanta muy cerca al Cerro Candela distrito de San Martín de Porres. El cuadro adjunto resume el análisis de las alternativas consideradas para la decisión final en cuanto a la ubicación más conveniente y atractiva del proyecto.

CUADRO EP-02: ALTERNATIVAS PARA LA UBICACIÓN DEL PROYECTO

ALTERNATIVAS	UBICACIÓN	DISTRITO	DESCRIPCIÓN
Α	Ex - Fundo Oquendo	Callao	200 viviendas en wn área de 6.00 ha
В	Pampa de los perros	Ventanilla	200 viviendas en un área de 4.00 ha
С	E x - Fundo Chuquitanta	S.M.P.	200 viviendas en un área de 3.50 ha

Fuente: Elaboración propia

24.1 INDICADORES DE ALTERNATIVAS

Para el respectivo análisis de alternativas se ha tomado en cuenta factores que inciden en la decisión de optar por una alternativa específica. Tanto para el inversionista como para el futuro comprador final. El monto de la inversión de acuerdo al cuadro adjunto, se ha separado en dos medidas, una con un precio de mercado y el otro con un precio social ajustado para el alcance del mercado objetivo. Asimismo la localización del terreno es un factor muy importante que el

comprador considera antes de elegir una vivienda, por su cercanía a vías principales e importantes y a la distancia que hay hasta el Centro de Lima y zonas comerciales. Finalmente el costo de la vivienda es el factor determinante en la elección del comprador, por esta razón se ha considerado la construcción de dos módulos de un piso y dos pisos para el análisis respectivo.

Del cuadro adjunto EP-03, el resultado de cada indicador por alternativa nos muestra, considerando el monto de inversión la alternativa B tiene el menor monto a diferencia de la alternativa A con un monto mayor que el resto. En cuanto a localización la alternativa A es la mejor entre todas, sin competencia alguna, por la distancia cercana a centros de administración pública y a importantes zonas comerciales. Pero tomando en cuenta el indicador costo por vivienda el resultado se inclina hacia la alternativa B. Cada alternativa presenta ventajas y desventajas comparativas, finalmente comparando los resultados obtenidos con los indicadores considerados encontramos la alternativa mas favorable para el desarrollo del Proyecto Inmobiliario.

CUADRO EP-03: INDICADORES DE ALTERNATIVAS

INDICA	DORES		ALTERNATIVA	
		Α	В	С
Monto de la Inversión Total	A Precio de Mercado	5'000,000.00	4'000,500.00	4'800,200.00
(Dólares)	A Precio Social	4'800,228.00	3'850,000.00	4'500,000.00
Localización del terreno	Cercanía a vías Arteriales y Sub-regionales	Los Alisos, Izaguirre Canta-Callao	Néstor Gambetta	Av. Sol de Naranjal
(Medio Social)	Tiempo al centro de Lima	40 minutos	60 minutos	45 minutos
Costo por	1 piso de A.C.=44.50 m2	24,000.00		22,500.00
(Dólares)	2 pisos de A.C.= 86.50 m2	30,000.00	25,500.00	28,500.00

Fuente: Elaborac1on propia

Asimismo, es importante para el Proyecto, conocer los parámetros comparativos que toman en cuenta los futuros clientes potenciales. Para esto se tomó información obtenida del Ministerio de Vivienda, Construcción y Saneamiento para el Programa Mi Vivienda y se resume en el siguiente cuadro EP-04.

CUADRO EP-04: CRITERIOS USADOS POR LOS CLIENTES

Rango valor viviendas	8-18 mil dólares	18-30 mil dólares	30-45.9 mil dólares	Total
Zona céntrica	4 6 %	4 6 %	5 5 %	4 8 %
Precio de la vivienda	19%	16%	7 %	14%
Número de dormitorios	8 %	7%	6 %	7 %
Seguridad	3 %	7 %	7 %	6 %
Casa Propia	3 %	6 %	4 %	5 %
Modelo de Vivienda	3 %	3 %	5 %	4 %
Áreas verdes	7 %	3 %	3 %	3 %
Otros	11%	13%	13%	13%

Fuente: Ministerio de V1v1enda, Construcción y Saneamiento

Del cuadro anterior, para un cliente objetivo, los factores determinantes para la elección de una vivienda recaen en mayor porcentaje en la ubicación de la vivienda y el precio del mismo. Consideramos esta información como base para encaminar nuestra elección final de la alternativa más conveniente.

Del cuadro EP-03 luego del respectivo análisis de alt@rnativas se optó por la Alternativa A pero con un módulo de sólo un piso construido, proyectado a la ampliación de un segundo y tercer nivel. Asimismo la elección de esta alternativa se hace tomando en cuenta que nuestros clientes potenciales pertenecen a los niveles socioeconómicos C y D. Si bien es cierto en cuanto a costo la alternativa B es la más favorable y menor que la alternativa A, pero de acuerdo a un sondeo realizado por la zona de Lima Norte, el distrito de Ventanilla no resulta atractivo como lugar para vivienda; quedando así las alternativas A y C, la ubicación de la alternativa C muy cerca a la zona denominada Cerro Candela, la convierte en una opción descartada, debido a los antecedentes negativos de esa zona por presentar alto índice delincuencial, de acuerdo a información obtenida a través de la Comisaría de Sol de Oro.

Finalmente la alternativa A es la más conveniente tanto por su ubicación atractiva para el comprador tanto para el inversionista por la distancia a distribuidores de materiales para la ejecución del proyecto en sí.

2.4.2 ESTRATEGIAS DE PLANIFICACIÓN, DISEÑO E IMPLEMENTACIÓN

La elección del terreno para el desarrollo del Proyecto de Interés Social "Complejo Habitacional Las Amapolas" recayó en este predio del Ex - Fundo Oquendo como resultado del análisis de las zonas aledañas, donde no existe ningún otro complejo habitacional de características similares, encontramos ofertas de venta de lotes de manera informal, sin tener habilitación urbana encaminada. Asimismo la próxima ejecución de obras de agua potable y alcantarillado en la zona norte de la cuenca del río Chillón convierte a este proyecto inmobiliario en una opción muy atractiva de obtener una vivienda a un precio económico y con facilidades de pago. A diferencia de otros proyectos inmobiliarios de interés social donde se ofertan departamentos con áreas menores a 90.00 m², el proyecto mencionado brinda la oportunidad de acceder a una vivienda unifamiliar propia independiente con amplias áreas de recreación y comercio con el equipamiento urbano respectivo.

Para cumplir con el ordenamiento e infraestructura urbana, el terreno destinado para el Complejo Habitacional será zonificado con las áreas mostradas en el siguiente cuadro.

CUADRO EP-05: DISTRIBUCIÓN DEL AREA DEL TERRENO

ZONIFICACIÓN	AREA (m²)
Viviendas (200 lotes de 90 m²)	18 000.00
Áreas Verdes (parques y jardines)	3 713.34
Educación	2 102.08
Salud	463.62
Comercio	2 028.88
Vías de Circulación (pistas y veredas)	14077.17
Área libre (para posterior expansión)	19 614.91

2.5 VIALIDAD DEL PROYECTO DE INVERSIÓN

Para responder a los objetivos de una vivienda económica, el proyecto prevé la construcción de viviendas con materiales y sistemas no convencionales de bajo costo, contando con acabados mínimos: muros interiores y exteriores acabados, pisos de cemento pulido, acabado impermeabilizado en la zona de ducha, lavadero de cocina y lavadero de ropa, ventanas de fierro y vidrio crudo, puertas contraplacadas de madera e instalaciones sanitarias y eléctricas empotradas. Este estudio se encuentra acorde con los reglamentos técnicos para la construcción, así como su estudio previo de factibilidad para el uso del suelo. Asegurando una vivienda resistente, antisísmica y funcional. El proyecto estará conformado por:

- 36 viviendas construidas con viguetas pretensadas y bloques de concreto (Sistema Firth),
- 36 viviendas construidas con viguetas y ladrillos Firth, y bloques de albañilería armada (Sistema Italcerámica),
- 52 viviendas construidas con viguetas y ladrillos Firth, y ladrillos sílico calcáreos (Sistema La Casa).
- 38 viviendas construidas con placas de mallas electrosoldadas (Sistema UNICON), y
- 38 viviendas construidas con albañilería confinada c0n viguetas pretensadas y ladrillos Firth.

CUADRO EP-06: CUADRO DE AREAS DE LA VIVIENDA

AMBIENTES	AREAMINIMA NETA SEGÚN R.N.C. (m²)	AREASEGÚN PROYECTO (m²)
Dormitorio principal (con closet)	9.00	14.95
Dormitorio con 2 camas (con closet)	7.50	10.73
Dormitorio con 1 cama (con closet)	5.00	5.06
Sala - Comedor	16.00	17.06
Cocina	5.00	7.15
Lavandería - Tendal	2.50	4.86
Baño	2.85	3.08
Area de Trabajo	5.00	5.06

Para cumplir con el ordenamiento *e* infraestructura urbana, el complejo habitacional "Las Amapolas" contará con 3,713.34 m² de áreas verdes (parques y jardines públicos), 2,028.88m² de áreas comerciales, 2,102.08m² para infraestructura educativa, y 463.62m² para centro de salud pública. Además, el proyecto contempla la instalación de los servicios de energía eléctrica, alumbrado público, redes de distribución de agua potable y sistema de alcantarillado con conexiones domiciliarias, así como vías públicas (pistas y veredas) con tratamiento apropiado a las características del lugar. Las vías públicas tendrán una sección transversal de 14.30 mi para las vías prinicipales locales y de 9.60 mi para las vías secundarias locales, cubriendo un área de 14,077.17 m².

2.5.1 VIALIDAD AMBIENTAL

Se ha realizado el estudio de impacto ambiental respectivo con las incidencias favorables y desfavorables del proyecto al medio ambiente.

El proyecto contempla una serie de medidas de manejo ambiental relacionadas con aspectos tales como emisiones de ruido, emisiones atmosféricas, seguridad vial, interrupción de servicios, etc., las cuales en su conjunto tienen por objetiv? disminuir al máximo posible la interferencia que las actividades del proyecto pudieran tener con el normal desarrollo de la vida y rutina de los habitantes de los sectores poblados cercanos proyecto.

Se proporcionará conocimientos técnicos al personal que permitan afrontar las situaciones de emergencia relacionadas con los riesgos ambientales y/o desastres naturales, que se puedan producir durante las etapas de construcción y operación del Complejo Habitacional "Las Amapolas". Asimismo, esto permitirá establecer los lineamientos para evitar retrasos y sobre costos que puedan interferir con el normal desarrollo del Proyecto.

2.5.2 VIABILIDAD SOCIO-CULTURAL

Permitirá contribuir con el ordenamiento y la infraestructura urbana, dotando a la zona de amplias áreas de recreación, educación, salud y comercio. Mejorando la actividad comercial de la población local, gracias a la implementación de nuevas

y mayores zonas comerciales.

Esta obra se convertiría en un proyecto piloto, fomentando este tipo de proyectos a fin de reducir el tráfico ilícito de tierras y la informalidad en la venta de terrenos, brindando una vivienda saneada física y legalmente.

Mejora en la calidad de vida. La próxima ejecución de obras de agua potable y alcantarillado en la zona norte de la cuenca del río Chillón convierte a este proyecto inmobiliario en una opción muy atractiva de obtener una vivienda unifamiliar independiente. Asimismo mejora la calidad paisajística, dado que el área donde se emplaza es una zona descampada rodeada de terrenos sin construcción, viviendas de construcción precaria y otras de material noble, encontrándose las calles que circundan al terreno a nivel de trochas carrozables.

2.6 ANÁLISIS DE MERCADO

De acuerdo a datos del Ministerio de vivienda, en Lima se han otorgado un total de 13,899 créditos a Septiembre del 2004. Siendo el valor promedio de la vivienda de US\$ 26,479.00. Esta modalidad exige una cuota inicial y un sald? cancelado a través del crédito hipotecario. Estos indicadores son muy importantes dentro del planteamiento del proyecto, de acuerdo al costo de la vivienda, el proyecto está dentro del promedio con US\$ 24,500.00.

Cuadro N° 07 Oferta de viviendas en Lima (monto mínimo entre \$15,000 y \$33,000)

CUADRO EP-07: OFERTA DE WIENDAS EN LIMA

Nombre del Proyecto	Distrito	Total Estacionamientos	Precio Mínimo US\$	Precio Máximo US\$	Nro Viviendas Disponibles
CONDOMINIO RESIDENCIAL		Total Estacionalmichtos	100\$	l COSP	Disportibles
TOMAS VALLE	LOS OLIVOS	250	21,900.00	33,000.00	28
EDIFICIO LOMA VERDE	MIRAFLORES	42	28,300.00	45,900.00	2:
CONDOMINIO BOLIVAR	SAN MIGUEL	15	28,900.00	28,900.00	2!
CONDOMINIO EL MIRADOR	LA MOLINA	0	15,000.00		2
EDIFICIO EL MARQUEZ 1	LAMOLINA	3	25,000.00		
RESIDENCIAL CAMPODONICO	LA VICTORIA	4	31,500.00		1!
RESIDENCIAL CENTAURO 11	SURQUILLO	10	26,000.00	39,000.00	1
RESIDENCIAL HUIRACOCHA	JESUS MARIA	21	34,000.00	43,500.00	
RESIDENCIAL CEREZO 11	SURQUILLO	10	26,000.00		
RESIDENCIAL HUIRACOCHA	JESUS MARTA	21	34,000.00		
RESIDENCIAL CEREZO 11	SURQUILLO			43,500.00	
Residencial Eliz Mari	LINCE	4	34,000.00		(
Residencial KAZUMI	LIMA	1	22,500.00	32,500.00	
EDIFICIO EN CALLE AYACUCHO	LA MOLINA	8	24,000.00	35,000.00	18
		4	30,500.00	32,500.00	4
Edificio Santa Luisa	SAN JUAN DE MIRAFLORES	0	12,500.00	32,000.00	7
CONDOMINIO DEL PARQUE	LIMA	34	26,500.00	36,000.00	80
CONDOMINIO PARQUE DE LAS L		33	33,100.00	41,959.00	99
RESIDENCIAL RICARDO PALMA	LA MOLINA	3	32,000.00	32,000.00	5
Edificio Juan Pablo 11	MAGDALENA DEL MAR	10	20,000.00	32,000.00	20
Edificio Heraud	LAMOLINA	4	34,000.00	39,000.00	3
Vista Bonita	SAN MIGUEL	8	23,000.00	35,000.00	16
RESIDENCIAL OASIS	SAN MIGUEL	19	35,000.00	35,000.00	44
RESIDENCIAL PARQUE	OANI MIGUEL				
SERENZZA 11	SAN MIGUEL	7	32,000.00	36,700.00	14
Residencial Sucre	MAGDALENA DEL MAR	10	18,600.0C	37,800.0(
CONDOMINIO AGUARICO	BREÑA	1	28,800.00	33,400.00	I
INCLAN 111	MIRAFLORES	35	28,000.00	45,000.00	1
LOS PATRIOTAS CASA CLUB 11	SAN MIGUEL	10	29,500.0C	45,000.0C	4
EDIFICIO ESCARDO	SAN MIGUEL	4	27,000.0C	32,000.0C	
RESIDENCIAL LAS PALMERAS	PUEBLO LIBRE	e	28,600.0C	39,800.0C	
Residencial Mayorazgo	ATE	8	28,000.00	32,000.00	1
RESIDENCIAL BLANCA LUISA	BREÑA	4	24,000.00	33,000.00	3
EDIFICIO MULTIFAMILIAR	SAN MIGUEL		25 000 05	22 000 00	
ESCARDO	ATE	9 48	26,900.0C	33,900.0C 24,160.00	48
EL BOSQUE DE SANTA CLARA		14			12
Edificio Multifamiliar Huascar	BARRANCO		27,000.00	31,000.00	7
MARANGA	SAN MIGUEL	5	24,000.00	35,500.00	
Edificio Multifamiliar La Capilla	LA MOLINA	4	29,500.00	33,500.00	2
LA ENSENADA DE SURCO	SANTIAGO DE SURCO	6.6	31,000.00	45,000.00	73
CONDOMINIO LAS BUGANVILIAS	SAN MIGUEL	5	25,900.00	31,200.00	6 31
RESIDENCIAL LOS ALAMOS	SAN MIGUEL	13	37,000.00	40,000.00	
RESIDENCIAL "LOS DIAMANTES"	JESUSMARIA	27	30,500.00	42,000.00	73
Residencial El Roble	UNCE	4	21,500.00	32,000.00	14
Condominio los Sauces de Villa	CHORRILLOS	25	25,000.00	28,990.0C	25
CONDOMINIO LOS SAUCES DE SAN MIGUEL	SAN MIGUEL	99	29,900.00	45,000.00	20
				Total	1067

Fuente: Fondo Mi Vivienda (página Web)

2.6.1 PERFIL DEL CLIENTE

El cuadro adjunto muestra las características de nuestros clientes potenciales de acuerdo al sexo, a la edad y al grado de instrucción. Siendo en promedio del sexo masculino de 40 años de edad y con grado de instrucción superior.

Los clientes potenciales tienen un hogar conformado por 4 miembros, 2 niños por familia de acuerdo a los datos obtenidos del Ministerio de Vivienda Construcción y Saneamiento. La participación de personas de condición civil solteros es mínima mas aún de los matrimonios sin hijos.

El cuadro adjunto confirma los resultados obtenidos en la encuesta realizada (Ver cuadro EP-1 O) en el distrito de San Martín y el Callao. Los futuros clientes mantienen una condición laboral dependiente, pero no debemos descartar a los prósperos comerciantes que para cada rango de valor de vivienda se presentan con un 14% constante.

Estimamos una cuota inicial para la venta de las viviendas la suma de US\$ 2,500.00 (Dólares Americanos), de acuerdo a las estadísticas este monto es financiado directamente por el cliente a través de cuentas de ahorros.

La publicidad es un factor muy importante para la venta de las viviendas, datos del cuadro adjunto nos da la respuesta a la elección del medio de comunicación a utilizar para dar a conocer las ventajas del Proyecto Con 1plejo Habitacional Las Amapolas. Se puede anunciar en televisión, caseta de ventas y a través de los bancos interesados en ofrecer el crédito para la compra de las viviendas.

El mercado potencial, está conformado por administradores de empresas públicas que bien podrían ser administradores de sus propias empresas, como en el caso de los pequeños empresarios quienes actualmente adquieren mayor presencia dentro de la economía del país.

CUADRO EP-08: OCUPACIÓN DE LOS CLIENTES

Rango valor de las viviendas	8-18	18-30	30-45.9	Total	
Rango valor de las viviendas	mil dólares	mil dólares	mil dólares	Total	
Administradores de empresas	6 %	9 %	9 %	9 %	
Contadores	8 %	6 %	8 %	7 %	
Médicos y profesionales afines	3 %	6 %	9 %	7 %	
Empleados de servicios administrativos	9 %	6 %	6 %	6 %	
Empresarios (pequeñas empresas)	0 %	9 %	0 %	5 %	
Profesionales de la informática	3 %	5 %	6 %	5 %	
Abogados	4%	4%	6 %	4%	
Secretarias, mecanógrafas	3 %	4 %	3 %	3 %	
lng. electricista y/o electrónico telecom.	3 %	3 %	4 %	3 %	
Ingeniero Industrial	1%	3 %	5 %	3 %	
Prof. universidades, esep y otros centros de educac.	2 %	3 %	3 %	2 %	
Ingenieros civiles	3 %	2 %	3 %	2 %	
otros	5 5 %	44%	39%	44%	

Fuente. Ministerio de V1v1enda, Construcc1on y Saneamiento

2.6.2 ANÁLISIS DE DEMANDA

La masiva inmigración del campo a la ciudad y la inexistencia de una oferta formal comercializable de viviendas, concordante con los niveles de ingreso y expectativas poblacionales, ha propiciado la construcción informal. Esta resulta onerosa en términos sociales y económicos, en perjuicio de los supuestos beneficiarios: elevadas tasas de morbilidad y mortalidad infantil (infecciones agudo-respiratorias y diarreicas) frustraciones infantiles, violencia familiar, costo excesivo, desahorro familiar (si se compara con las cosas dejadas de hacer o atender durante una o más generaciones).

a. El total de viviendas particulares, según el Censo de 1993, alcanzó la cifra de 5'099,592 unidades habitacionales. Esta cifra evidencia, en relación con la obtenida en el Censo de 1981, un crecimiento anual de 121,249 unidades habitacionales con ocupantes presentes. De éstas, según el Colegio de Arquitectos del Perú, la absoluta mayoría fueron producidas al margen de la formalidad y carentes de condiciones mínimas de habitabilidad.

b. A nivel departamental, el mayor porcentaje de viviendas con ocupantes presentes se encuentra en el departamento de Lima (28,3%) siguiéndole en importancia los departamentos de Puno (6,1%), Piura (5,9%), Cajamarca (5,7%), La Libertad (5,6%), Cusco (5,0%) y Junín (4,8%)

Cualquier estudio sobre vivienda generalmente se enfoca en los sectores sociales mayoritarios ya que son los que más demanda concentran y más atención requieren, a las que llamamos "viviendas de interés social", destinadas al sectores socioeconómicos C, D y E Existen otras categorías de vivienda ubicadas generalmente en zonas residenciales, sectores socioeconómicos A y B; donde la oferta supera a la demanda. En el país, según estudios del Ministerio de Construcción y Saneamiento, la demanda insatisfecha; es decir, la comparación entre la oferta real y la demanda efectiva de quienes quieren adquirir es de 90 mil viviendas, de las cuales el 90% desea viviendas cuyo costo sea menor a 30 mil dólares, y el 70% de este último grupo desea comprar casas de menos de 10 mil dólares.

De acuerdo a la encuesta realizada (Ver cuadro EP-1 O) en las zonas aledañas a la ubicación del Proyecto y aquellas familias que mostraron interés por el proyecto residentes en San Martín de Porres y el Callao se obtuvo un promedio de ingreso familiar de 1,080.00 Nuevos Soles o 320 dólares ubicando a estas familias dentro del nivel socioeconómico C, incluido dentro mercado que el proyecto tiene fijado, los niveles C y D. Dentro de estos núcleos familiares encontramos empleados del estado como policías, profesores, empleados ediles, trabajadores independientes y otros.

La situación actual de la vivienda en el país es motivo de gran preocupación, no solamente debido a que muchos habitantes de los centros poblados en desarrollo tienen viviendas deficientes, sino también porque la situación está empeorando. De acuerdo al Instituto Nacional de Estadística e Informática INEI, según los datos del último Censo proyectado al 2002, el 14,2% de las familias del país habitan en edificaciones inadecuadas y otro 17,8% tiene problemas de hacinamiento. Por todo ello se llega a la conclusión que el déficit nacional de

viviendas es de más del 30% del total (más de 1,2 millones de viviendas), lo cual contrasta negativamente con la capacidad acumulada entre el sector público y privado que asciende a 15,000 viviendas por año.

Según el organismo Habitat for Humanity International, en Perú casi una de cada tres familias vive en albergues inadecuados, es decir sin los mínimos requerimientos de habitabilidad (área construida, área libre, materiales y procesos adecuados de construcción, agua potable y alcantarillado, energía eléctrica, etc.).

De acuerdo al /NE/ el déficit nacional de viviendas es de más de 1,2 millones de viviendas; recientes investigaciones afirman que podría estar oscilando entre 1,5 y 2.0 millones de viviendas.

En el 2002 el déficit habitacional ya había alcanzado 1 200 000 viviendas (300 000 eran viviendas faltantes y 900 000 existentes pero inadecuadas por características físicas o hacinamiento). El 41% del déficit se concentra en Lima. Le siguen Puno (6.6%), Cuzco (5.4%), Callao (4.8%) y Junín (4.8%). A ello se agrega que cada año se forman 90 000 nuevos hogares con demanda que es necesario atender.

A 1993, el stock de viviendas era de 5,1 millones de ur.idades con el 96% de ocupación. Hoy en día, el 87.3% de las viviendas es una casa independiente. Sólo el 4% es departamento en edificio. El 45% posee dos o menos habitaciones. Además, el 78.7% de viviendas es propia totalmente pagada y el 8% es alquilada.

2.6.3 ANÁLISIS DE OFERTA

Hasta mediados de los noventa, la oferta formal comercializable, más preponderante por sus volúmenes, ha estado a cargo del Estado: barrios fiscales, barrios obreros, unidades vecinales, conjunto habitacionales, conjuntos residenciales, unidades populares de interés social, lotes tizados, lotes con servicios, etc.

En lo que respecta al proceso de producción residencial formal, a cargo del sector privado, habría que hacer una diferenciación entre los propietarios que contratan pequeñas o micro empresas para la construcción de su vivienda unifamiliar y el grupo de promotores inmobiliarios que edifican viviendas para su colocación en el mercado. Este último, es bastante incipiente, debido, entre otras razones, a la no-incorporación de los necesitados a la economía de mercado, a la desequilibrada relación calidad - precio, y al actuar del beneficiario condicionado a la existencia de regímenes promocionales.

A título referencial se puede señalar que en Lima Metropolitana, donde se concentra el 29% de la población nacional y que resulta ser el mercado inmobiliario más activo, la oferta formal comercializable durante los años 1999, 2000 y 2001 fue de 4998, 5266 y 5138 viviendas respectivamente. Esta producción formal representa sólo el 4.2% con respecto al promedio anual de viviendas particulares con ocupantes presentes "construidas" durante el período 1981-1993.

La oferta formal de viviendas durante el año 2001, en Lima Metropolitana, se caracteriza por el predominio de viviendas multifamiliares sobre unifamiliares, tanto en unidades como área construida: diez unidades de departamentos por una unidad unifamiliar construida; precio medio unitario ce la oferta de unidades unifamiliares, US \$52,647, con un área promedio de 93 m2 y un precio promedio por metro cuadrado de US \$ 385; precio medio unitario de la oferta de departamentos US \$64,621, con un área promedio 105 m2 y un precio promedio por metro cuadrado de US\$ 565. La mayor frecuencia se presenta en los rangos de precio de US\$ 20,001 a 30,000 dólares (23,7%).

2.6.4 PRECIOS DE MERCADO

La oferta formal de viviendas durante el año 2005, en Lima Metropolitana, se caracteriza por el predominio de viviendas multifamiliares sobre unifamiliares, tanto en unidades como área construida: diez unidades de departamentos por una unidad unifamiliar construida; precio medio unitario de la oferta de unidades

unifamiliares, US \$ 52,647, con un área promedio de 93 m² y un precio promedio por metro cuadrado de US \$ 385; precio medio unitario de la oferta de departamentos US \$64,621, con un área promedio 105 m² y un precio promedio por metro cuadrado de US\$ 565. La mayor frecuencia se presenta en los rangos de precio de US\$ 20,001 a 30,000 dólares (23,7%).

⊟ Valor de la vivienda dentro del Proyecto Complejo Habitacional Las Amapolas es de 25,000.00 Dólares Americanos, este valor se encuentra dentro del promedio de viviendas ofrecidas en el mercado inmobiliario, al igual que nuestra cuota inicial que asciende al monto de US\$ 2,500.00, es importante resaltar que la gran diferencia con las ofertas de otros proyectos de venta de departamentos es que el Proyecto Complejo Habitacional Las Amapolas ofrece viviendas independientes con terreno propio y está integrado al sistema vial del distrito Chalaco.

CUADRO EP-09: VALORES DE VIVIENDA, CRÉOITO Y CUOTA INICIAL POR ESTRATO

Rango valor viviendas	8 - 18 mil dólares	·18- 30 mil dólares	30- 45.9 mil dólares	Total
En dólares				
Valor de Vivienda	15,648	24,548	34,786	26,479
Cuota Inicial	2,827	5,611	7,999	5,978
Valor del Crédito	12,821	18,936	26,787	20,501
En Porcentaje				
Valor de Vivienda	100%	100%	100%	100%
Cuota Inicial	18%	23%	23%	23%
Valor del Crédito	82%	77%	77%	TT¾

2.7 ESTUDIO DE MERCADO

Para realizar el estudio de mercado utilizamos como herramienta indispensable la información obtenida a través de encuestas realizadas previamente por el proyecto y datos estadísticos de instituciones relacionadas con el rubro inmobiliario, en nuestro caso datos del Ministerio de Vivienda Construcción y Saneamiento, el INEI y Municipalidades respectivas.

CUADRO EP-10: RESULTADO DE ENCUESTA REALIZADO EN CALLAO Y S.M.P.

PROGRAMA DE VIVIENDA	UBICACIÓN DE PREDIO	PROP	IEDAD	TIPO DE M	ATERIAL	SERV	ICIOS BÁ	sicos	TRA	ВАЈА	INGRESO PROM. FAM.
		Propia	Nb Propia	Material noble	Rústico	Agua	Desa- Q.e	Energía eléctrica	Si	Nb	Nuevos
Santa María del Valle	MZ H LOTE 05	Х		Х		Х	X	х	Х		180
LOS JARDINES DE STA ROSA	MZ A LOTE 10	Х		Х		Х	Х	Х	Х		120
	MZ A LOTE 15	х		х		Х	Х	х	Х		90
LOS OLIVOS DE SAN VICENTE	MZ B LOTE 15	Х		х				х	х		80
	MZ B LOTE 16		Х	Х			Х	Х	Х		100
LOS OLIVOS DE STA ROSA	MZ H LOTE 20	Х		Х		Х	Х	Х	Х		95
	MZC LOTE 20	Х		х		Х	Х	х	х		120
	MZC LOTE 25	Х		Х		Х	Х	Х	Х		120
	MZ A LOTE 02	Х		Х		Х	Х	Х	Х		95
	MZD LOTE 12	Х		х		Х	х	х	Х		120
	MZA LOTE04	Х		х		Х	х	х	Х		100
	MZ E LOTE OL	Х		Х		Х	Х	Х	Х		95
	MZ FLOTE OL	Х		х		Х	Х	Х	Х		140
	MZ G LOTE 12	Х		х		Х	х	х	Х	İ	120
	MZ B LOTE 02	Х		Х		Х	Х	Х	Х		150
	MZ O LOTE 39	Х		Х		Х	Х	Х	Х		120
	MZR LOTE 04	х		х		Х	х	х	Х		100
	MZB LOTE 10	Х		х		y	Х	х	Х		200
	MZ B LOTE 12	Х		Х		Х	Х	Х	Х		85
	MZ FLOTE 32	Х		х		Х	Х	х	Х		100
	MZA LOTE (1	Х		х		Х	Х	х	Х		120
	MZ C LOTE 08	Х		х		Х	Х	Х	Х		135
	MZ V LOTE 19	Х		Х		Х	Х	Х	Х		85
A.P.V. LOS JARDINES	MZPLOTEOS	Х		х		Х	х	х	Х	Ţ	95
	MZ LL LOTE 06	Х		Х		Х	Х	X	Х		100
	MZ L LOTE 13	Х		Х		Х	Х	X	Χ		90
	MZ KLOTE08	Х		х	1	Х	Х	х	Х		100
	MZD LOTE 06	Х		х		Х	Х	х	Х		100
	MZ C LOTE 25	Х		Х		Х	Х	Х	Χ		100
	MZJ LOTE 18	Х		х		Х	Х	х	Х		95
	MZ PLOTE 18	Х	,	Х		Х	Х	x	Х		95
	MZ B LOTE OL	Х		Х		Х	Х	Х	Χ		140
	MZ B LOTE 09	X		X		Х	Х	Х	Χ		120
	MZPLOTE 19	Х		х		Х	Х	х	Х		85
	MZGLOTE 42	Х		х		Х	Х	х	Х		100
	MZG LOTE 36	Х		Х		Х	Х	X	Х		100
	MZ C LOTE21	Х		х		Х	Х	х	Х		120
	MZH LOTE 08	Х		х		Х	Х	х	Х		85
	MZ R LOTE 12	Х		Х		X	X	Х	Х		1000
	MZG LOTE 35	Х		Х		Х	Х	Х	Х		950
	MZC LOTE 27	х		Х		X	Х	Х	Х		1000

PROGRAMA DE VMENDA	UBICACIÓN DE PREDIO	PROP	IEDAD	TIPO DE M	ATERIAL	SERV	ICIOS BÁ	sicos	TRABAJA		INGRESO PROM. FAM.	
		Propia	No Propia	Material noble	Rústico	Agua	Desa- gue	Energía eléctrica	Si	No	Nuevos soles	
	MZ 8 LOTE 02	Х	Поріа	X		Х	X	X	Х		150	
	MZ A LOTE 19	Х	_	Х		Х	X	X	Х		100	
JUAN CARLOS NORIEGA	MZ A LOTE 17	Х		х		Х	Х	х	Х		80	
	MZD LOTE QL	Х		х		Х	Х	X	X		100	
	MZ A LOTE 07	X		Х		X	Х	Х	X		120	
	MZ C LOTE 14	Х		X		X	Х	X	X		140	
	MZ C LOTE 25	Х		х		X	Х	Х	X		140	
	MZC LOTE 23	Х		X		X	X	X	X	V	120	
	MZ C LOTE 04	X		X		X	X	X	X		120	
	MZALOTE 07	X		X			X	X	Х		90	
A.P.V. LAS BRISAS	MZ C LOTE 12	X		X			X	X	Х		85	
A.F.V. LAS DRISAS	MZ J LOTE 05	X		X			X	X	X		100	
	MZ LL LOTE 02	X		X			X	X	X		95	
	MZA LOTE 16	X		X			X	X	X		100	
	-			X			X	X	X		120	
	MZ B LOTE 15	X		X			X	X	X		120	
	MZ N LOTE 09	X					X	X	X		120	
	MZ L LOTE 08	X		X			X	X	X			
	MZ ILOTE 20	X		X			_				100	
	MZ H LOTE 19	X		X			X	X	X		120	
	MZ R LOTE 10	X		X			X	X	X			
	MZGLOTE 44	X		X		-	X	X	X		85	
	MZ FLOTE 04	X		X			X	X	X		100	
	MZ J LOTE 02	X		X			X	X	X	-	-	
	MZ C LOTE 01	Х		X			X	X	X		100	
	MZ J LOTE22	X		X			X	X	X		100	
_	MZ P LOTE 04	X		X			X	X	X		85	
	MZ I LOTE 04	X		Х			X	X	X	_	95	
	MZR LOTE 08	Х		Х			X	X	X	-	120	
	MZILOTE 19	Х		Х			X	X	X		90	
A.P.V. MI TERRUÑO	MZ D LOTE 10	Х		Х		Х	X	X	X	-	110	
_	MZL LOTE 10	Х		Х		X	X	X	X		95	
	MZ ILOTE 04-05	Х		Х		X	X	X	X		140	
	MZ M LOTE 03	Х		Х		X	X	X	X		100	
	MZ E LOTE 33	Х		Х		X	X	X	X		95	
	MZ H LOTE 34	X		Х		X	X	X	X		150	
	MZ M LOTE 46	Х		Х		X	X	X	X		100	
	MZA LOTE12	X		Х		X	X	X	X	_	-	
	MZD LOTE 25	X	-	X		X	X	X	X		100 95	
	MZ FLOTE 26	X		X		X	X	X	X		95	
	MZ LL LOTE 12	X		X		X	X	X	X		95	
	MZMLOTE 08	X		X	-	X	X	X	X		95	
	MZ P LOTE 04	X		X		X	X	X	X	_	85	
	MZ H LOTE 16	X		X		X	X	X	X	-	1200	
	MZI LOTE 06	Х	1	Х		Х	Х	Х	X		1200	

PROGRAMA DE VMENDA	UBICACIÓN DE PREDIO	PROPIEDAD		PROPIEDAD		OPIEDAD TIPO DE MATERIAL		SERVICIOS BÁSICOS		ERVICIOS BÁSICOS			INGRESO PROM. FAM.	
		Propia	No Propia	Material noble	Rústico	Agua	Des&- QUe	Energía eléctrica	Si	No	Nuevos soles			
	MZC LOTE 27	Х		Х		Х	Х	Х	Χ		1350			
	MZG LOTE 33	Х		Х		Х	Х	Х	Χ		850			
A.P.V. MI TERRUÑO	MZ FLOTE 25	Х		Х		Х	Х	Х	Χ		1400			
	MZ D LOTE 18	Х		Х		Х	Х	Х	Х		950			
	MZJ LOTE 01	Х		Х		Х	Х	Х	Х		1200			
	MZ J LOTE 21	Х		х		Х	Х	х	Χ		1200			
	TOTAL	90	1	90		69	90	91	91		1080.77			

6.5.1 POBLACIÓN Y HOGARES

- Lima tiene una población de aproximadamente 8'217, 700 personas.
- En total, 1'826,100 hogares.
- Distribuidos en los NSEs objetivo:

NSE B	NSE C	NSE D
297,654	485,743	630,005

DEMANDA EN HOGARES NO PROPIETARIOS

- La <u>demanda potencial</u> de viviendas nuevas a nivel agregado en los NSEs B, C y Des de <u>417.594 vivjendas</u>.
- Distribuidas por grupos objetivos: (aprox.)

NSE B	NSE C	NSE D
60 mil	158 mil	200 mil
(20.0%)	(32.6%)	(31.7%)

DEMANDA EFECTIVA DE VIVIENDAS

- La <u>demanda efectiva</u> total en Lima asciende a <u>225 mil viviendas</u>.
- La distribución para los segmentos objetivo es:

NSE B	NSE C	NSE D	
35 mil	88 mil	102 mil	

CUADRO EP-11: CARACTERÍSTICAS DE LA VIVIENDA IDEAL POR NS Es

	Área Dormitorios. (actual) Baños (actual)		Meses para comprar	
NSE B		3.2	15	
		(2.4. 1.2)		
NSEC	100	3. 1.5	15	
	(68)	(1 .8. 1)		
NSED	90	3, 1.5	15	
	(68)	(1.7.1)		

COMERCIALIZACIÓN

Las ventas de las viviendas serán adelantadas a la construcción y paralelas a ella. El valor de la vivienda asciende al monto de 25,000.00 Dólares Americanos con una cuota inicial de 2,500.00 Dólares Americanos. El pago es al contado, se promoverá para ello el acceso al crédito hipotecario a través de los Bancos.

2.7 ANÁLISIS TÉCNICO OPERATIVO

Para responder a los objetivos de una vivienda económica, el proyecto prevé la construcción de viviendas independientes con terreno propio, integrado al sistema vial de Lima Metropolitana y el Callao.

Con materiales y sistemas no convencionales de bajo costo, contando con acabados mínimos: muros interiores y exteriores acabados, pisos de cemento pulido, acabado impermeabilizado en la zona de ducha, lavadero de cocina y lavadero de ropa, ventanas de fierro y vidrio crudo, puertas contraplacadas de madera e instalaciones sanitarias y eléctricas empotradas.

□ Proyecto Inmobiliario de Viviendas de Interés Social, **Complejo Habitacional**"Las Amapolas", comprenderá el desarrollo de 200 viviendas económicas, rodeado de amplias áreas con parques y jardines públicos, áreas habilitadas para colegio y locales comerciales, accesos, pistas y veredas, en un área de terreno total de 6.00 ha.

☐ Conjunto Residencial tendrá una densidad neta máxima de 667 hab/ha y una densidad bruta máxima de 200 hab/ha. Cada vivienda podrá albergar a 06 habitantes.

Las viviendas se desarrollan en lotes de 90 m2 en promedio, serán de dos niveles y con la capacidad de ampliación a un tercer nivel. (Área construida de vivienda típica: 86.50 m2). Serán construidas con materiales no convencionales, de 5 tipos diferentes que cumplen con las especificaciones técnicas y reglamentos competentes. Asegurando una vivienda resistente, antisísmica y funcional. Por consiguiente, el proyecto estará conformado por:

- 36 viviendas construidas con viguetas pretensadas y bloques de concreto (Sistema Firth),
- 36 viviendas construidas con viguetas y ladrillos Firth, y bloques de albañilería armada (Sistema Italcerámica),
- 52 viviendas construidas con viguetas y ladrillos Firth, y ladrillos sílico calcáreos (Sistema La Casa).
- 38 viviendas construidas con placas de mallas electrosoldadas (Sistema UNICON), y
- 38 viviendas construidas con albañilería confinada con viguetas pretensadas y ladrillos Firth.

Cabe aclarar que en las zonas aledañas donde se desarrollará el Proyecto de Interés Social "Complejo Habitacional Las Amapolas" **no existe ningún otro proyecto de características similares,** solo encontramos ofertas de venta de lotes informales, sin habilitación urbana encaminada.

2.8 ANÁLISIS ECONÓMICO FINANCIERO

目 presupuesto base del proyecto se resumen en los cuadros EP-13 y EP-14, para módulos de 1 y 2 niveles; considerando dentro del cual todos los gastos necesarios para la ejecución del Proyecto en cuanto a las edificaciones, servicios básicos, equipamiento urbano, gastos de publicidad y el saneamiento físico legal respectivo.

	EGRESOS	DOLARES	DOLARES
1	Terreno		1,802,500.0
	Precio del terreno	1,800,000.00	
	Estudio de suelos	1,000.00	
	Reaistros Públicos	1,000.00	
	Otros paaos v imprevistos	500.00	
11	Habilitación Urbana		2,438,549.3
A	Costos de construcción		2,077,950.7
	Costo Directo de construcción	1,406,351.87	
	Costo Directo Pistas v veredas	144,357.60	
	Gastos aenerales de constructora	232,606.42	
	IGV constructora	294,634.80	
_			
В	Conexión de servicios	004 :====	348,598.6
_	Desa1:1üe	204,435.78	
	A1:1ua	124,162.87	
	Electricidad	20,000.00	
c	Costos de Desarrollo de orovecto		12,000.0
	Honorarios de arauitectura		
	Honorarios de estructuras		
	Honorarios de sanitarias		
	Planos		
	Asesoría vio aerencia de provectos		
	IGV costos de desarrollo del provecto		
111	Gastos municioales		3,000.0
111	Derecho de trámite de anteProvecto		5/0000
	Derecho Por revisión anteProvecto		
	Derecho de trámite para construcción		
	Derecho de revisión de orovecto por especialidad		
	Licencia de construcción		
	Control de obra de la municioalidad		
	Otros imPrevistos		
	Conformidad de Obra		
	Memoria v Plano de declaratoria de fábrica		
	Arbitrios, serenazao V otros		
	IndePendización		
	Certificado de numeración		
	Gastos reaistrales vio notariales		
_	Impuesto predial		
	IGV Costos de desarrollo de orovecto (trámites municipales)		
	Control de la cuemateur (angustius et al. de la cuemateur)		21,500.0
IV	Costos de la oromotora (operativos v administrativos)	18,000.00	21,500.0
	Publicidad Comisiones con ventos	1,000.00	
	Comisiones oor ventas	500.00	
	Folletos V reuniones	1,000.00	
	Carteles de venta Maauetas v otros	1,000.00	

ГЕМ	EGRESOS	COSTO DOLARES	SUB-TOTAL DOLARES
1	Terreno		1,802,500.0
	Precio del terreno	1,800,000.00	-,,
	Estudio de suelos	1,000.00	
1	Reaistros Públicos	1,000.00	
	Otros paaos v imprevistos	500.00	
11	Habilitación Urbana		4,283,800.21
Α	Costos de construcción		3,923,201.5
-	Costo Directo de construcción	2,783,404.75	
	Costo Directo Pistas v veredas	144,357.60	
	Gastos aenerales de constructora	439,164.35	
	IGV constructora	556,274.85	
В	Conexión de servicios		348,598.6
	Desaaüe	204,435.78	
	Agua	124,162.87	
	Electricidad	20,000.00	
С	Costos de Desarrollo de provecto		12,000.0
	Honorarios de arquitectura		
	Honorarios de estructuras		
	Honorarios de sanitarias		
	Planos		
	Asesoría <i>vio</i> aerencia de provectos		
	IGV costos de desarrollo del orovecto		
111	Control municipales		3,000.0
111	Gastos municipales		3,000.0
	Derecho de trámite de anteprovecto		
-	Derecho por revisión anteprovecto		
-	Derecho de trámite para construcción		
-	Derecho de revisión de provecto por especialidad		
	Licencia de construcción		
	Control de obra de la municipalidad		
	Otros imprevistos		
	Conformidad de Obra		
	Memoria v Plano de declaratoria de fábrica		
	Arbitrios, serenazqo y otros		
	Indeoendización		
	Certificado de numeración		
	Gastos reaistrales vio notariales		
	Impuesto predial IGV Costos de desarrollo de orovecto (trámites municipales)		
			21,500.0
IV	Costos de la promotora (operativos y administrativos)	19,000,00	21,300.00
	Publicidad	18,000.00	
	Comisiones por ventas	1,000.00	
	Folletos v reuniones	1,000.00	
	Carteles de venta	1,000.00	
	Maauetas v otros	1,000.00	

2.8.1 FLUJO DE CAJA PROYECTADO

El flujo de caja se proyecta a un periodo de 3 años, durante el cual se efectuará la venta total de las 200 viviendas. Asimismo durante este tiempo se habrá cancelado la deuda total adquirida con el Banco, que financiará el proyecto con US \$ 3'000,000.00. El cuadro EP-15 muestra el flujo de caja para el caso de viviendas de un solo piso y el cuadro EP-16 muestra el flujo de caja para viviendas de 2 pisos.

Los costos o egresos que tendrá el proyecto (Ver Cuadro EP-13 y EP-14) serán desembolsados a medida que el proyecto lo requiera, el mismo que se resume en el cuadro adjunto EP-15 y EP-06.

Los ingresos que percibirá el proyecto están relacionados directamente con la velocidad de venta y el precio ofertado por vivienda que asciende a 25,000.00 Dólares americanos. Se estima venderse antes de iniciarse las obras un promedio de 30 viviendas, y en los siguientes años un promedio de 50, 70 y 50 viviendas.

Los Beneficios que tendrá la inversión para los dos casos considerados, viviendas de 1 piso a un precio de 25,000.00 Dólares americanos y viviendas de 2 pisos a 35,000.00 Dólares americanos, que se muestra:, en el cuadro EP-15 y Ep-16 donde, de acuerdo al análisis y al indicador Beneficio/Costo resulta más rentable llevar a cabo el Proyecto con viviendas de 1 sólo nivel, asimismo podemos avalar este resultado con la demanda del mercado objetivo los niveles C y D. Si optamos por viviendas de 2 pisos obtendremos un menor beneficio y tendremos mayor dificultad en la venta del producto por el precio elevado escapando del alcance de nuestro mercado objetivo.

Se ha tomado en cuenta el VAN (Valor Actual Neto), el TIR (Tasa Interna de Retorno) y el Beneficio/Costo como criterios para la evaluación del presente proyecto, los mismos que son expuestos e incluidos en el cuadro EP-15 y EP-16.

CUADRO EP-15: ANÁLISIS BENEFICIO COSTO MODULOS DE 1 PISO

FLUJO DE CAJA PROYECTADO (1Nive/)

ITEM	MOVIMIENTO	Total	AÑO0	AÑO1	AÑO2	AÑO3
1	Egresos	\$ 4,265,549.35	\$ 2,828,323.51	\$1,310,172.63	\$ 63,526.61	\$ 63,526.61
	Terreno	\$ 1,801,500.00	\$ 1,801,500.00			
	Licencias y RR.PP.	\$ 4,000.00	\$ 4,000.00			
	Desarrollo del proyecto	\$ 12,000.00	\$ 12,000.00			o o
	Conexión de servicios	\$ 348,598.65	\$ 209,159.19	\$ 139,439.46		
	Publicidad y ventas	\$ 21,500.00	\$ 5,375.00	\$ 5,375.00	\$ 5,375.00	\$ 5,375.00
	Construcción	\$ 1,845,344.27	\$ 738,137.71	\$ 1,107,206.56		
	Gastos administrativos	\$ 232,606.42	\$ 58,151.61	\$ 58,151.61	\$ 58,151.61	\$ 58,151.61
₁₁ I	Ingresos	\$ 5,994,821.60	\$ 750,000.00	\$ 1,250,000.00	\$2,744,821.60	\$ 1,250,000.00
	Por venta	\$ 5,000,000.00	\$ 750,000.00	\$ 1,250,000.00	\$1,750,000.00	\$ 1,250,000.00
	Otros	\$ 994,821.60			\$ 994,821.60	
111	Flujo neto efectivo	\$ 1,729,272.25	-\$ 2,078,323.51	-\$ 60,172.63	\$ 2,681,294.99	\$1,186,473.39
N	Valor Actual Neto		-\$ 2,078,323.51	-\$ 53,725.56	\$2,137,511.95	\$ 844,508.33

FLUJO NETO EFECTIVO DESCONTADO

VAN de Egresos
VAN de Ingresos
Valor Actual Neto (1-E)

Año O	Año 1	Año2	Año3
2,828,323.51	1,169,796.99	50,643.02	45,216.98
750,000.00	0.00 1,116,071.43 2,188,154.97		889,725.31
-2,078,323.51	-53,725.56	2,137,511.95	844,508.33

i (%)	12.00%
VAN	\$ 849,971.21
TIR	30.05%
BIC	1.21
Tretomo	2.00

CUADRO EP-16: ANÁLISIS BENEFICIO COSTO MODULOS DE 2 PISOS

FLUJO DE CAJA PROYECTADO (2 Niveles)

ПЕМ	MOVIMIENTO	Total	AÑO0	AÑO1	AÑO2	AÑO3
1	Egresos	\$6,110,800.21	\$ 3,535,440.16	\$2,345,027.87	\$ 115,166.09	\$ 115,166.09
	Terreno	\$ 1,801,500.00	\$ 1,801,500.00			
	Licencias y RR.PP.	\$ 4,000.00	\$ 4,000.00			
	Desarrollo del proyecto	\$ 12,000.00	\$ 12,000.00			
	Conexión de servicios	\$ 348,598.65	\$ 209,159.19	\$ 139,439.46		
	Publicidad y ventas	\$ 21,500.00	\$ 5,375.00	\$ 5,375.00	\$ 5,375.00	\$ 5,375.00
	Construcción	\$ 3,484,037.20	\$ 1,393,614.88	\$ 2,090,422.32		
	Gastos administrativos	\$ 439,164.35	\$ 109,791.09	\$ 109,791.09	\$ 109,791.09	\$ 109,791.09
11	Ingresos	\$ 7,994,821.60	\$ 1,050,000.00	\$ 1,750,000.00	\$ 3,444,821.60	\$1,750,000.00
	Por venta	\$ 7,000,000.00	\$ 1,050,000.00	\$1,750,000.00	\$ 2,450,000.00	\$ 1,750,000.00
	Otros	\$ 994,821.60			\$ 994,821.60	
111	Flujo neto efectivo	\$ 1,884,021.39	- -\$ 2,485,440.16	-\$ 595,027.87	\$ 3,329,655.51	\$ 1,634,833.91
N	Valor Actual Neto		-\$ 2,485,440.16	-\$ 531,274.88	\$ 2,654,380.99	\$1,163,642.49
						<u> </u>

FLUJO NETO EFECTIVO DESCONTADO

VAN de Egresos VAN de Ingresos Valor Actual Neto (1E)

Año O	Año 1	Año2	Año3
3,535,440.16	2,093,774.88	91,809.70	81,972.95
1,050,000.00	1,562,500.00	2,746,190.69	1,245,615.43
-2.485.440.16	-531.274.88	2,654,380,99	1,163,642.49

i (%)	12.00%
VAN	\$ 801,308.43
TIR	25.13%
B/C	1.14
Tretorno	2.00

CAPITULO 111

MEMORIA DESCRIPTIVA DEL PROYECTO

3.1 ESTRUCTURACIÓN

En el proyecto se han considerado cinco distintas soluciones estructurales:

- Muros de albañilería armada con bloques de concreto y losas aligeradas con viguetas prefabricadas pretensadas.
- Muros de albañilería armada con bloques de arcilla y losas aligeradas con viguetas prefabricadas pretensadas.
- Muros de albañilería armada con bloques sílico calcáreos y losas aligeradas con viguetas prefabricadas pretensadas.
- 4. Muros de albañilería confinada y losas aligerado1s convencionales.
- 5. Muros y losas conformando una estructura celular de concreto armado.

En todos los casos, las estructuras son definidas como estructuras de muros portantes con diafragmas rígidos.

3.2 NORMAS CONSIDERADAS

El proyecto estructural se ha desarrollado sobre la base del Reglamento Nacional de Edificaciones. En particular, se han considerado las normas técnicas vigentes de Cargas E-20, Suelos y Cimentaciones E-050, Diseño Sismo Resistente E-030, Concreto Armado E-060 y Albañilería E-070.

3.3 CARGAS

Las cargas consideradas son las especificadas la Norma Técnica E-020. Éstas incluyen:

Complejo Habitacional "Las Amapolas Sistema de Albañilerla Armada con Bloques de Arcilla Escudero Agüero Matilde María

Cargas Permanentes

Los pesos de columnas, vigas y losas macizas de concreto armado se han

estimado considerando una densidad de 2400 kg/m³.

Para las losas aligeradas de 17 cm de espesor con viguetas prefabricadas

separadas a OSO m entre ejes se ha supuesto un peso de 245 kg/m².

Para la tabiquería se ha supuesto un peso determinado como un promedio

ponderado del peso de las unidades y del concreto en los alvéolos.

Adicionalmente a las cargas antes indicadas, se ha incluido entre las cargas

permanentes el peso de acabados de piso y techo, estimado en 100 kg/m².

Cargas Vivas

Para las áreas de vivienda se ha supuesto una carga viva de 200 kg/m². En las

azoteas la carga viva de diseño es de 100 kg/m². No debe permitirse el uso de

las azoteas para almacenamiento de materiales de cualquier tipo.

Acciones de Sismo

Las acciones sísmicas se han estimado con los siguientes parámetros:

Z = 0.4 (Lima, zona sísmica 3).

U = 1.0 (Vivienda, categoría C).

C = 2.5 (todos las viviendas son de baja altura).

S = 1.0 (según indicaciones del estudio de suelos).

R = 6 (para diseño en condiciones de servicio).

R = 3 (para diseño por resistencia última).

Complejo Habitacional "Las Amapolas-Sistema de Albañi/erla Annada con Bloques de Arcilla Escudero Agüero Matilde Maria

3.4 PROCEDIMIENTOS DE ANÁLISIS

En la mayor parte de los casos las estructuras serán analizadas con hipótesis de

comportamiento lineal y elástico. En el caso de estructuras de muros portantes

de albañilería, los análisis se basan en modelos seudo tridimensionales, lo que

se justifica por ser las deformaciones axiales despreciables y porque en

dirección longitudinal (es decir, perpendicular a la fachada) los efectos de flexión

son también poco importantes.

Para la solución en concreto armado se ha realizado un modelo de elementos

finitos, lineal y elástico. Sin embargo, las losas serán diseñadas con el método

de líneas de fluencia.

3.5 **CIMENTACIÓN**

De acuerdo con las recomendaciones del estudio de suelos, se ha adoptado una

solución basada en cimientos corridos, con una profundidad mínima de

cimentación de 1.00 m.

Los cimientos corridos son de 40 cm. y 60 cm. de espesor, sin refuerzo. El ancho

del cimiento es de 50 cm., dependiendo del elerrento soportado. Los

sobrecimientos son del mismo espesor que el muro. En todos los casos se ha

supuesto un esfuerzo admisible en el terreno de 2.2 kg/cm², conforme se indica

en el estudio de suelos para la alternativa de cimentación adoptada (Ver Parte 111

Estudio de Suelos).

3.6 **MUROS**

El proyecto incluye tres soluciones con muros de albañilería armada, una con

muros de albañilería confinada y una con muros de concreto de ductilidad

limitada.

Complejo Habitacional "Las Amapolas-Sistema de Albañilerla Armada con Bloques de Arcilla Escudero Agüero Mali/de Maria

Pagina N° 64

En la alternativa con muros de albañilería armada de bloques de concreto se han previsto unidades de 14 cm x 19 cm x 39 cm, con juntas de 1 cm. Para el caso de bloques de arcilla, las unidades consideradas son de 12 cm x 18.5 cm x 38.7 cm, con juntas de horizontales de 1 cm y verticales de 1.3 cm. En el caso de bloques sílice calcáreos se tiene un sistema apilable, sin mortero en las juntas, con unidades de 15 cm x 30 cm x 15 cm.

Todos los alvéolos de los muros que resisten las cargas sísmicas, tengan o no refuerzo, serán llenados con concreto líquido. Las instalaciones eléctricas serán empotradas en los muros, pero en ningún caso se permitirá colocar duetos en los alvéolos con refuerzo vertical.

Para la alternativa en concreto, los muros se diseñan como de concreto simple, en cuanto a su capacidad de esfuerzos de corte y tracción directa. El refuerzo provisto en la mayoría de los muros responde casi exclusivamente a las necesidades de control de fisuración ocasionada por los esfuerzos de tracción generados por los cambios de temperatura y los efectos adicionales de contracción de fragua. Para minimizar los efectos de estas deformaciones, el concreto de los muros deberá incluir fibras de polipropileno (aproximadamente 1 kg/m³).

En previsión de la futura construcción de un tercer piso, df:berá dejarse refuerzo vertical de longitud suficiente para los empalmes. Siendo necesario proteger este refuerzo por un tiempo indefinido, se ha decidido que el refuerzo sea doblado por encima de la losa, protegiéndose con mezcla. Para proceder a la construcción en el tercer nivel, deberá picarse la mezcla de protección y enderezarse el refuerzo.

3.7 LOSAS

Para las cuatro alternativas con muros de albañilería armada y confinada, se han proyectado losas aligeradas con viguetas prefabricadas. El espesor total de la losa es 17 cm. El espaciamiento de viguetas es 50 cm. En el análisis se ha supuesto que las viguetas serán apuntaladas al centro de la luz y que se

seguirán estrictamente las instrucciones del fabricante.

La resistencia a la compresión del concreto a los 28 días, determinada según la norma E-060, no será menor que 175 kg/cm².

3.8 ESCALERAS

Todas las escaleras serán prefabricadas de estructura metálica y pasos de madera, apoyándose en anclajes previstos en las losas y mediante pernos de anclaje en los muros.

En la zona correspondiente a la escalera se ha proyectado un techo de pequeño espesor, previendo que pueda ser demolido para agregar un segundo tramo de escalera que permita el acceso al tercer piso.

٠

CAPITULO IV

ANALISIS SÍSMICO

4.1 PARÁMETROS DE SITIO

4.1.1 Zonificación

 \boxminus territorio nacional se considera dividido en tres zonas, como se muestra en la Figura N° 01.

Fig. N° 01: Zonificación

A cada zona se asigna un factor Z según se indica en la Tabla N° 01. Este factor se interpreta como la aceleración máxima del terreno con una probabilidad de 10 % de ser excedida en 50 años.

Tabla N° 01	
FACTORES	DE ZONA
ZONA	Z
3	0,4
2	0,3
1	Q, 15

☐ Complejo Habitacional "Las Amapolas" se encuentra ubicado en la Zona 3.

4.1.2 Condiciones Geotécnicas

Los perfiles de suelo se clasifican tomando en cuenta las propiedades mecánicas del suelo, el espesor del estrato, el período fundamental de vibración y la velocidad de propagación de las ondas de corte.

⊟ suelo correspondiente al terreno donde se ubica el proyecto corresponde a un suelo tipo S,.

Perfil tipo S1: Roca o suelos muy rígidos

A este tipo corresponden las rocas y los suelos muy rígidos con velocidades de propagación de onda de corte similar al de una roca, en los que el período fundamental para vibraciones de baja amplitud no excede de 0,25 s, incluyéndose los casos en los que se cimienta sobre:

- Roca sana o parcialmente alterada, con una resistencia a la compresión no confinada mayor o igual que 500 kPa (5 kg/cm²).
- Grava arenosa densa.
- Estrato de no más de 20 m de material cohesivo muy rígido, con una resistencia al corte en condiciones no drenadas superior a 100 kPa (1 kg/cm²), sobre roca u otro material con velocidad de onda de corte similar al de una roca.
- Estrato de no más de 20 m de arena muy densa con N > 30, sobre roca u
 otro material con velocidad de onda de corte similar al de una roca.

4.1.3 Factor de Amplificación Sísmica

De acuerdo a las características de sitio, se define el factor de amplificación sísmica (C) por la siguiente expresión:

Este coeficiente se interpreta como el factor de amplificación de la respuesta estructural respecto de la aceleración en el suelo.

4.2 REQUISITOS GENERALES

4.2.1 Aspectos Generales

Toda edificación y cada una de sus partes son diseñadas y construidas para resistir las solicitaciones sísmicas determinadas la Norma E-030.

Por ser una estructura regular, el análisis ha considerado que el total de la fuerzasísmica actúa independientemente en dos direcciones ortogonales. Se considera que la fuerza sísmica vertical actúa en los elementos simultáneamente con la fuerza sísmica horizontal y en el sentido más desfavorable para el análisis.

4.2.2 Categoría de las Edificaciones

Cada estructura debe ser clasificada de acuerdo con las categorías indicadas en la Norma E-030. Para el proyecto en desarrollo, el factor de uso U es igual a 1, correspondiente a la Categoría C para edificaciones comunes.

<u>Categoría C:</u> Edificaciones comunes, cuya falla ocasionaría pérdidas de cuantía intermedia como viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios, fugas de contaminantes, etc.

4.2.3 Configuración Estructural

Las estructuras deben ser clasificadas como regulares o irregulares con el fin de determinar el procedimiento adecuado de análisis y los valores apropiados del factor de reducción de fuerza sísmica.

- **a Estructuras Regulares.** Son las que no tienen discontinuidades significativas horizontales o verticales en su configuración resistente a cargas laterales.
- **b.** Estructuras Irregulares. Se definen como estructuras irregulares aquellas que presentan una o más de las características indicadas en la Tabla N° 02 o Tabla N° 03.

Tabla N° 02 IRREGULARIDADES ESTRUCTURALES EN ALTURA

Irregularidades de Rigidez - Piso blando

En cada dirección la suma de las áreas de las secciones transversales de los elementos verticales resistentes al corte en un entrepiso, columnas y muros, es menor que 85 % de la correspondiente suma para el entrepiso superior, o es menor que 90 % del promedio para los 3 pisos superiores. No es aplicable en sótanos. Para pisos de altura diferente multiplicar los valores anteriores por (h;/h_d) donde h_d es altura diferente de piso y h; es la altura típica de piso.

Irregularidad de Masa

Se considera que existe irregularidad de masa, cuando la masa de un piso es mayor que el 150% de la masa de un piso adyacente. No es aplicable en azoteas

Irregularidad Geométrica Vertical

La dimensión en planta de la estructura resistente a cargas laterales es mayor que 130% de la correspondiente dimensión en un piso adyacente. No es aplicable en azoteas ni en sótanos.

Discontinuidad en los Sistemas Resistentes.

Desalineamiento de elementos verticales, tanto por un cambio de orientación, como por un desplazamiento de magnitud mayor que la dimensión del elemento.

Tabla N° 03 IRREGULARIDADES ESTRUCTURALES EN PLANTA

Irregularidad Torsional

Se considerará sólo en edificios con diafragmas rígidos en los que el desplazamiento promedio de algún entrepiso exceda del 50% del máximo permisible.

En cualquiera de las direcciones de análisis, el desplazamiento relativo máximo entre dos pisos consecutivos, en un extremo del edificio, es mayor que 1,3 veces el promedio de este desplazamiento relativo máximo con el desplazamiento relativo que simultáneamente se obtiene en el extremo opuesto.

Esquinas Entrantes

La configuración en planta y el sistema resistente de la estructura, tienen esquinas entrantes, cuyas dimensiones en ambas direcciones, son mayores que el 20 % de la correspondiente dimensión total en planta.

Discontinuidad del Diafragma

Diafragma con discontinuidades abruptas o variaciones en rigidez, incluyendo áreas abiertas mayores a 50% del área bruta del diafragma.

La estructura de la vivienda del complejo habitacional cumple con las características de una vivienda regular.

4.2.4 Sistemas Estructurales

Los sistemas estructurales se clasificarán según los materiales usados y el sistema de estructuración sismorresistente predominante en cada dirección tal como se indica en la Tabla N° 04.

Para el diseño por resistencia última las fuerzas sísmicas internas deben combinarse con factores de carga unitarios. En caso contrario podrá usarse como (R) los valores establecidos en Tabla N° 04 previa multiplicación por el factor de carga de sismo correspondiente.

Tabla N° 04		
SISTEMAS ESTRUCTURALES		
Sistema Estructural	Coeficiente de Reducción, R	
	Para estructuras regulares (*) (**)	
Acero		
Pórticos dúctiles con uniones resistentes	0.5	
a momentos.	9 , 5	
Otras estructuras de acero.	6.5	
Arriostres Excéntricos	6 , 5	
Arriostres en Cruz	6,0	
Concreto Armado		
Pórticos [∢] >.	8	
Da1 ⁻² _	7	
De muros estructurales ^a l_	6	
Muros de ductilidad limitada ⁴>_	4	
Albañilería Armada o Confinada ⁵>_	3	
Madera (Por esfuerzos admisibles)	7	

- 1. Por lo menos el 80% del cortante en la base actúa sobre las columnas de los pórticos que cumplan los requisitos de la NTE E.060 Concreto Armado. En caso se tengan muros estructurales, éstos deberán diseñarse para resistir una fracción de la acción sísmica total de acuerdo con su rigidez.
- 2. Las acciones sísmicas son resistidas por una comuinación de pórticos y muros estructurales. Los pórticos deberán ser diseñados para tomar por lo menos 25% del cortante en la base. Los muros estructurales serán diseñados para las fuerzas obtenidas del análisis según Artículo 16 (16.2) de la Norma E.030.
- Sistema en el que la resistencia sísmica está dada predominantemente por muros estructurales sobre los que actúa por lo menos el 80% del cortante en la base.
- 4. Edificación de baja altura con alta densidad de muros de ductilidad limitada.
- 5. Para diseño por esfuerzos admisibles el valor de R será 6
- (*) Estos coeficientes se aplicarán únicamente a estructuras en las que los elementos verticales y horizontales permitan la disipación de la energía

manteniendo la estabilidad de la estructura. No se aplican a estructuras tipo péndulo invertido.

(**) Para estructuras irregulares, los valores de R deben ser tomados como¾ de los indicados.

Para construcciones de tierra referirse a la NTE E.080 Adobe. Este tipo de construcciones no se recomienda en suelos 8₃, ni se permite en suelos 8₄.

Para al análisis sísmico de las edificaciones de albañilería se empleará un factor de reducción R=3 para el diseño por resistencia última y un valor de R=6 para el diseño por esfuerzos admisibles.

Para el análisis sísmico de viviendas con muros de ductilidad limitada se empleará un factor de reducción R=4.

4.2.5 Desplazamientos Laterales Permisibles

 $oxed{oxed{oxed{\Box}}}$ máximo desplazamiento relativo de entrepiso no deberá exceder la fracción de la altura de entrepiso que se indica en la Tabla N° 05.

Tabla N° 05 LIMITES PARA DESPLAZAMIENTO LATERAL DE ENTREPISO							
Material Predominante	(≟ \/he₁)						
Concreto Armado	0,007						
Acero	0,010						
Albañilería	0,005						
Madera	0,010						

Cumpliendo con lo dispuesto por la norma, se tiene para las viviendas proyectadas en albañilería armada:

he; = 260 cm

 $D_{i} = 1.30 \text{ cm}$

4.2.6 Junta de Separación sísmica (s)

Toda estructura debe estar separada de las estructuras vecinas una distancia mínima "s" para evitar el contacto durante un movimiento sísmico. Esta distancia mínima no será menor que los 2/3 de la suma de los desplazamientos máximos de los bloques adyacentes ni menor que:

$$s = 3 + 0.004 (h - 500)$$
 (h y s en centímetros)
s > 3 cm

Donde h es la altura medida desde el nivel del terreno natural hasta el nivel considerado para evaluar s.

Por tanto, para las viviendas proyectadas en albañilería armada se tiene:

$$h = 850 \text{ cm}$$

 $s > 4.40 \text{ cm}$

y para las viviendas de muros de concreto de ductilidad limitada:

$$h = 820 \text{ cm}$$

s > 4.28 cm

4.3 PROCEDIMIENTO DE ANÁLISIS

4.3.1 Solicitaciones Sísmicas y Análisis

Las edificaciones tendrán incursiones inelásticas frente a solicitaciones sísmicas severas. Por tanto, las solicitaciones sísmicas de diseño se consideran como una fracción de la solicitación sísmica máxima elástica.

□ análisis se desarrolla usando las solicitaciones sísmicas reducidas con un modelo de comportamiento elástico para la estructura.

4.3.2 Modelos para Análisis de Edificios

El modelo para el análisis considera una distribución espacial de masas y rigideces adecuada para calcular los aspectos más significativos del comportamiento dinámico de la estructura.

Se ha supuesto que los sistemas de piso funcionan como diafragmas rígidos, empleando un modelo con masas concentradas y tres grados de libertad por diafragma, asociados a dos componentes ortogonales de traslación horizontal y una rotación. Las deformaciones de los elementos compatibilizan mediante la condición de diafragma rígido y la distribución en planta de las fuerzas horizontales está en función a las rigideces de los elementos resistentes.

4.3.3 Peso de la Edificación

El peso (P) se calcula adicionando a la carga permanente y total de la Edificación un porcentaje de la carga viva o sobrecarga. En edificaciones de la categoría C, se tomará el 25% de la carga viva.

4.3.4 Desplazamientos Laterales

Los desplazamientos laterales se calculan multiplicando prr 0,75R los resultados obtenidos del análisis lineal y elástico con las solicitaciones sísmicas reducidas.

4.4 ANÁLISIS ESTÁTICO

4.4.1 Generalidades

Este método representa las solicitaciones sísmicas mediante un conjunto de fuerzas horizontales actuando en cada nivel de la edificación.

Complejo Habitacional "Las Amapolas Sistema de Albañilerla Armada con Bloques de Arcilla Escudero Agüero Matilde María

4.4.2 Período Fundamental

El periodo fundamental para cada dirección se estima con la siguiente expresión:

$$T = \frac{h_n}{C_T}$$

Donde:

C_T = 60 para estructuras de mampostería y para todos los edificios de concreto armado cuyos elementos sismorresistentes sean fundamentalmente muros de corte.

4.4.3 Fuerza Cortante en la Base

La fuerza cortante total en la base de la estructura, correspondiente a la dirección considerada, se determina por la siguiente expresión:

$$V = ZUCS .p$$
 R

Donde C/R 0.125

4.4.4 Efectos de Torsión

Se supondrá que la fuerza en cada nivel (F_i) actúa en el centro de masas del nivel respectivo, considerando además el efecto de excentricidades accidentales como se indica a continuación.

Para cada dirección de análisis, la excentricidad accidental en cada nivel (e_i) se considera como 0,05 veces la dimensión del edificio en la dirección perpendicular a la de la acción de las fuerzas.

En cada nivel además de la fuerza actuante se aplica el momento accidental denominado Mt_i que se calcula como:

$$Mt_i = \pm F_i e_i$$

UNIFIC

4.5 ANÁLISIS DINÁMICO POR COMBINACIÓN MODAL ESPECTRAL

El análisis dinámico de las edificaciones del proyecto en estudio se ha realizado mediante procedimientos de combinación modal espectral.

4.5.1 Modos de Vibración

Los periodos naturales y modos de vibración podrán determinarse por un procedimiento de análisis que considere apropiadamente las características de rigidez y la distribución de las masas de la estructura.

4.5.2 Aceleración Espectral

Para cada una de las direcciones horizontales analizadas se utilizará un espectro inelástico de pseudo-aceleraciones definido por:

Para el análisis en la dirección vertical podrá usarse un espectro con valores iguales a los 2/3 del espectro empleado para las direcciones horizontales.

4.5.3 Criterios de Combinación

Mediante los criterios de combinación que se indican, se podrá obtener la respuesta máxima esperada (r) tanto para las fuerzas internas en los elementos componentes de la estructura, como para los parámetros globales del edificio como fuerza cortante en la base, cortantes de entrepiso, momentos de volteo, desplazamientos totales y relativos de entrepiso.

La respuesta máxima elástica esperada (r) correspondiente al efecto conjunto de los diferentes modos de vibración empleados (r) podrá determinarse usando la siguiente expresión.

Complejo Habítacional "Las Amapolas· Sistema de Albañilerla Armada con Bloques de Arcilla Escudero Agüero Matilde Maria

$$r = 0.25 \cdot \prod_{i=1}^{m} r + 0.75 \cdot \prod_{i=1}^{m} ?$$

Alternativamente, la respuesta máxima podrá estimarse mediante la combinación cuadrática completa de los valores calculados para cada modo.

En cada dirección se considerarán aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa de la estructura, pero deberá tomarse en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

4.5.4 Fuerza Cortante Mínima en la Base

Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en la base del edificio no podrá ser menor que el 80 % del valor calculado según el Artículo 17 (17.3) para estructuras regulares, ni menor que el 90 % para estructuras irregulares.

Si fuera necesario incrementar el cortante para cumplir los mínimos señalados, se deberán escalar proporcionalmente todos los otros resultados obtenidos, excepto los desplazamientos.

4.5.5 Efectos de Torsión

La incertidumbre en la localización de los centros de masa en cada nivel, se considerará mediante una excentricidad accidental perpendicular a la dirección del sismo igual a 0,05 veces la dimensión del edificio en la dirección perpendicular a la dirección de análisis. En cada caso deberá considerarse el signo más desfavorable.

CAPITULO V

ANÁLISIS Y DISEÑO ESTRUCTURAL

5.1 CONSIDERACIONES GENERALES

Para propósitos del análisis y diseño estructural de la vivienda con elementos de albañilería armada y albañilería confinada se ha hecho uso de la Nueva Norma Técnica de Albañilería E-070, la cual establece que el diseño de los muros cubra todo su rango de comportamiento, desde la etapa elástica hasta su probable incursión en el rango inelástico, proveyendo suficiente ductilidad y control de la degradación de resistencia y rigidez. El diseño es por el método de resistencia, con criterios de desempeño. El diseño está orientado, en consecuencia, a proteger a la estructura contra daños ante eventos sísmicos frecuentes (sismo moderado) y a proveer la necesaria resistencia para soportar el sismo severo, conduciendo el tipo de falla y limitando la degradación de resistencia y rigidez con el propósito de limitar el nivel de daños en los muros, de manera que éstos sean económicamente reparables mediante procedimientos sencillos.

Para cumplir con ello, se ha proporcionado a la edificación de albañilería una adecuada Densidad de Muros y los elementos que lo refuerzan son capaces de absorber la energía que la albañilería disipa al fracturarse.

Para el análisis y diseño estructural, se han adoptado los siguientes criterios:

- a. B "sismo moderado" no debe producir la fisuración de ningún muro portante.
- b. Los elementos de acoplamiento entre muros deben funcionar como una primera línea de resistencia sísmica, disipando energía antes de que fallen los muros de albañilería, por lo que esos elementos deberán conducirse hacia una falla dúctil por flexión.
- c. El límite máximo de la distorsión angular ante la acción del "sismo severo" se fija en 1/200, para permitir que el muro sea reparable pasado el evento sísmico.

Complejo Habitacional "Las Amapolas Sistema de Albañilería Armada con Bloques de Arcilla Escudero Agüero Matilde **Maria**

- d. Los muros deben ser diseñados por capacidad de tal modo que puedan soportar la carga asociada a su incursión inelástica, y que proporcionen al edificio una resistencia a corte mayor o igual que la carga producida por el "sismo severo".
- e. Se asume que la forma de falla de los muros confinados ante la acción del "sismo severo" será por corte, independientemente de su esbeltez.
- f. La forma de falla de los muros armados es dependiente de su esbeltez. Los procedimientos de diseño tienden a orientar el comportamiento de los muros hacia una falla por flexión, con la formación de rótulas plásticas en su parte baja.

5.2 ANÁLISIS ESTRUCTURAL

- 1. El análisis estructural de los edificios de albañilería se realizó sometiéndolos a la acción del "sismo moderado" mediante métodos elásticos que contemplan las deformaciones por flexión, fuerza cortante y carga axial de los muros. Además se considera la acción de diafragma rígido que brindan las losas de techo y la participación de aquellos muros no portantes que no hayan sido aislados de la estructura principal.
- 2 La rigidez lateral de un muro confinado se ha evah ado transformando el concreto de sus columnas en área equivalente de albañilería (multiplicando su espesor real por la relación de módulos de elasticidad Ec / Em). Tanto para los muros armados como para los confinados, se agregó a su sección transversal el 25% de la sección transversal de aquellos muros que ortogonalmente concurren al muro en análisis o 6 veces su espesor, lo que sea mayor.
- ∃ módulo de elasticidad (Em) y el módulo de corte (Ga) empleados para la albañilería son:

Ladrillos de arcilla:

 $E_{\rm m} = 500 \, {\rm f}_{\rm m}$

Ladrillos y bloques Silico-calcáreos:

 $E_{\rm m} = 600 \, f_{\rm m}$

Ladrillos y Bloques de concreto vibrado: $E_m = 700 f_m$

Para todo tipo de unidad de albañilería: $G_m = 0.4 E_m$

Donde f_m es la resistencia característica a compresión axial de la albañilería.

5.3 DISEÑO PARA EL SISMO MODERADO

- 1. Empleando los resultados del "sismo moderado", el efecto de las cargas gravitacionales y los factores de amplificación de carga y de reducción de resistencia especificados en la Norma de Concreto Armado E-060, se diseñan: 1) los elementos aislados de concreto armado (dinteles, placas, etc.) en condiciones de rotura por flexión, controlando la falla por corte mediante estribos (vigas) y refuerzo horizontal (placas); y, 2) la cimentación, dimensionada bajo condiciones de servicio (por esfuerzos admisibles del suelo).
- 2. Con los resultados del "sismo moderaao", se verifica que en cualquiera de los entrepisos "i" los muros no se agrieten por corte, mediante la siguiente expresión en la que se permite hasta 5% de error:

V_e ≤ 0.55 V_m Fuerza Cortante Admisible

Donde " V_e " es la fuerza cortante producida por el "sismo moderado" en el muro en análisis y ' V_m " es la fuerza cortante asociada al agrietamiento diagonal de la albañilería.

3. La resistencia al corte Vm de los muros de albañilería se calcula en cada entrepiso mediante las siguientes expresiones:

Unidades de Arcilla y de Concreto: $V_m = 0.5 V_m V t L + 0.23 P_q$

Donde:

Vm = resistencia característica a corte de la albañilería

Pg = carga gravitacional de servicio, con sobrecarga reducida (Norma E-030)

t = espesor efectivo del muro

 Iongitud total del muro (incluyendo el peralte de las columnas en el caso de muros confinados)

V = factor de reducción de resistencia al corte por efectos de esbeltez, calculado como:

$$1/3 \text{ sV} = V_e L / M_e \text{ s} 1$$

Donde "Ve" es la fuerza cortante del muro obtenida del análisis elástico; y, "Me" es el momento flector del muro obtenido del análisis elástico.

5.4 DISEÑO PARA EL SISMO SEVERO

Para el diseño de los muros confinados ante acciones coplanares, podrá suponerse que los muros son de sección rectangular (t x L). Cuando se presenten muros que se intercepten perpendicularmente, se tomará como elemento de refuerzo vertical común a ambos muros (sección transversal de columnas, refuerzos verticales, etc.) en el punto de i;1tersección, al mayor elemento de refuerzo proveniente del diseño independiente de ambos muros.

Para el diseño por flexo compresión de los muros armados que tengan continuidad en sus extremos con muros transversales, podrá considerarse la contribución de las alas. Para el diseño a corte se considerará que la sección es rectangular, despreciando la contribución de los muros transversales.

5.4.1 Verificación de la Resistencia al Corte del edificio

Con el objeto de proporcionar una adecuada resistencia y rigidez al edificio, en cada entrepiso "i" y en cada dirección principal del edificio deberá cumplirse la siguiente expresión:

"i...Vmi 🛊 VEi

La sumatoria de resistencias al corte ("i..V_mi) se realizará contemplando sólo el aporte de los muros reforzados (confinados o armados) y el aporte de las placas de concreto armado (si existiesen).

El valor ∇d corresponde a la fuerza cortante actuante en el entrepiso "i" del edificio, producida por el "sismo severo".

Cumplida la expresión " $i.V_m$; \diamondsuit VE; por los muros portantes de carga sísmica, el resto de los muros que componen al edificio podrán ser no reforzados para la acción sísmica coplanar (muros armados con albañilería parcialmente rellena, muros sin columnas o con una columna de borde, etc).

En el caso de que los muros de albañilería reforzados y las placas de concreto armado (si existiesen) proporcionasen una resiscencia al corte en todos los entrepisos "i" del edificio: "i.V_m; mayor o igual a 3 V_E; se considerará que el edificio se comporta elásticamente, bajo e:sa condición, se empleará refuerzo mínimo, capaces de funcionar como arriostres y de soportar las acciones perpendiculares al plano de la albañilería. En este paso culminará el diseño de estos edificios ante cargas sísmicas coplanares.

5.5 ALBAÑILERÍA ARMADA

Los muros de albañilería armada tendrán un comportamiento dúctil ante sismos severos, propiciando una falla final de tracción por flexión, evitando fallas frágiles que impidan o reduzcan la respuesta dúctil del muro ante dichas solicitaciones. Para cumplir con este objetivo, los muros satisfacen los siguientes requisitos dados por la norma:

 Todos los muros llevarán refuerzo horizontal y vertical. La cuantía mínima de refuerzo en cualquier dirección será de Q,1%.

- 2. El refuerzo horizontal se colocará preferentemente en el eje del muro, alojado en la cavidad horizontal de la unidad de albañilería.
- 3. El refuerzo horizontal de los muros se diseñará para el cortante asociado al mecanismo de falla por flexión, es decir para el cortante debido al sismo severo, sin considerar ninguna contribución de la albañilería.
- 4. El espaciamiento del refuerzo horizontal en el primer piso de la vivienda no excederá de 45₀ mm.
- 5. El refuerzo horizontal en los muros del primer piso debe ser continuo sin traslapes. En los pisos superiores, el refuerzo horizontal no será traslapado dentro de los 600 mm o 0,2L del extremo del muro. La longitud de traslape será la requerida por tracción y los extremos de las barras en el traslape deberán amarrarse.
- 6. Todos los alvéolos de las unidades qué se utilicen en los muros portantes de carga sísmica, de los dos primeros pisos deberán estar totalmente rellenos de concreto líquido. Para los muros del tercer piso podrá emplearse muros parcialmente rellenos, si el esfuerzo cortante ante sismos severos no excede de 0,5 Vm / An, donde An es el área neta del muro.
- 7. Cuando el esfuerzo último por compresión, resultante de la acción de las cargas de gravedad y de las fuerzas de sismo coplanares, exceda de 0.3 fm los extremos libres de los muros (sin muros transversales) se confinarán para evitar la falla por flexocompresión.
- 8. Los muros secundarios (tabiques, parapetos y muros portantes no contabilizados en el aporte de resistencia sísmica) podrán ser hechos de albañilería parcialmente rellena. En estos casos, la cuantía de refuerzo vertical u horizontal no será menor que 0,07%.
- 9. En las zonas del muro donde se formará la rótula plástica (primer piso), se

tratará de evitar el traslape del refuerzo vertical. Cuando no se posible evitar el traslape, la longitud de empalme será de 60 y 90 veces el diámetro de la barra en forma alternada.

10. Para evitar las fallas por deslizamiento en el muro (cizalle), el refuerzo vertical por flexión se concentrará en los extremos del muro y en la zona central se utilizará una cuantía no menor que 0,001, espaciando las barras a no más de 45 cm. Adicionalmente, en la interfase cimentación - muro, se añadirán espigas verticales de 3/8" que penetre 30 y 50 cm, alternadamente, en el interior de aquellas celdas que carecen de refuerzo vertical.

5.5.1 Resistencia a compresión y flexo compresión en el plano del muro

El diseño por flexión de muros sometidos a carga axial actuando conjuntamente con fuerzas horizontales coplanares se basa en las suposiciones siguientes:

- La deformación unitaria en el acero de refuerzo y en la albañilería es asumida directamente proporcional a la distancia medida desde el eje neutro.
- 2. La deformación unitaria máxima de la albañilería, em, en la fibra extrema comprimida se asume igual a 0.002 para albañilería de unidades apilables e igual a 0.0025 para albañilería de unidades asentada-:; cuando la albañilería no es confinada y de 0.0055 cuando la albañilería es confinada.
- 3. Los esfuerzos en el refuerzo por debajo del esfuerzo de fluencia, fy, se toman iguales al producto del módulo de elasticidad Es por la deformación unitaria del acero. Para deformaciones mayores que la correspondiente a fy los esfuerzos en el acero se consideran independientes de la deformación e iguales a fy.
- 4. La resistencia a la tracción de la albañilería es despreciada.
- 5. El esfuerzo de compresión máximo en la albañilería, 0.85 fm, es asumido uniformemente distribuido sobre una zona equivalente de compresión,

limitada por los bordes de la sección transversal y una línea recta paralela al eje neutro de la sección a una distancia "a" igual a 0.85c, donde "c" es la distancia del eje neutro a la fibra extrema comprimida.

- 6. El momento flector actuante Me se determina del análisis estructural ante sismo moderado.
- 7. El momento flector y la fuerza cortante factorizado son Mu = 1.25 Me y Vu = 1.25 Ve respectivamente. La resistencia en flexión, de todas las secciones del muro es igual o mayor al momento de diseño obtenido del diagrama de momentos modificado, de manera que el momento hasta una altura igual a la mitad de la longitud del muro es igual al momento de la base y luego se reduce de forma lineal hasta el extremo superior.

5.5.2 Evaluación de la Capacidad Resistente "M_n"

 Para todos los muros portantes se cumple que la capacidad resistente a flexión M_n, considerando la interacción carga axial - momento flector, reducida por el factor 0, es mayor o igual que el momento flector factorizado M_u:

$$\emptyset M_n \ge M_u$$

☐ factor de reducción de la capacidad resistente a flexocompresión 0, se calcula mediante la siguiente expresión:

$$0.65 \text{ S} = 0.85 - 0.2 \text{ P}_{\text{u}} / \text{P}_{\text{o}} \text{ $0.85}$$

Donde:

$$P_0 = 0.1 f_m t L$$

2 Para muros de sección rectangular, la capacidad resistente a flexión Mn se calcula aplicando la fórmula siguiente:

$$M_n = A_5 fy O + P_u L/2$$

Donde:

D = 0.8 L

As área del refuerzo vertical en el extremo del muro

Para calcular el área de acero "A/ a concentrar en el extremo del muro, se utiliza la menor carga axial: $P_u = 0.9 P_9$.

- 3. Por lo menos se colocará 203/8" en los bordes libres del muro y en las intersecciones entre muros.
- 4. En la zona central del muro el refuerzo vertical mínimo es el requerido por corte fricción.
- 5. ☐ valor "Mn" se calcula sólo para el primer piso (Mn1), debiéndose emplear para su evaluación la máxima carga axial posible existente en ese piso: Pu = 1.25 Pm, contemplando el 100% de sobrecarga.

5.5.3 Verificación de la necesidad de confinamiento de los extremos libres del muro

 Se verifica la necesidad de confinar los extremos libres (sin muros transversales) comprimidos, evaluando el esfuerzo d') compresión último (s_u) con la fórmula de flexión compuesta:

$$S_u = P_u / A + M_u y / 1$$

En la que P_u es la carga total del muro, considerando 100% de sobrecarga y amplificada por 1.25.

2 Toda la longitud del muro donde se tenga su 0.3 fm se debe confinar. El confinamiento se hará en toda la altura del muro donde los esfuerzos calculados sean mayores o iguales al esfuerzo límite indicado. El refuerzo vertical existente en el borde libre tendrá un diámetro Db s/13, donde "s" es el espaciamiento entre elementos de confinamiento.

5.5.4 Resistencia a corte

- 1. El diseño por fuerza cortante se realiza para el cortante "Vu" asociado al mecanismo de falla por flexión producido en el primer piso. El diseño por fuerza cortante se realiza suponiendo que el 100% del cortante es absorbido por el refuerzo horizontal. El valor "Vur" considera un factor de amplificación de 1.25, que contempla el ingreso de refuerzo vertical en la zona de endurecimiento.
- 2. El valor "Vuf' se calcula con las siguientes fórmulas:

Primer Piso: $V_u f1 = 1.25 V_u 1 \text{ (Mn1 / Mu 1)}$ no menor que Vm1 Pisos Superiores: $V_u f = 1.25 V_u i \text{ (Mn1 / Mu1)}$ no mayor que Vmi

El esfuerzo de corte $V_i = V_u r / t$ L no excederá de 0.1 Ofm en zonas de posible formación de rótulas plásticas (primer piso) y de 0.20 fm en cualquier otra zona.

3. En cada piso, el área del refuerzo horizontal (Ash) se calcula con la siguiente expresión:

$$A_sh = V_urs/(fy D)$$

Donde:

- s espaciamiento del refuerzo horizontal
- D 0,8 L para muros esbeltos, donde: Me/ (Ve L) 2 1
 L para muros no esbeltos, donde: Me/ (Ve L) < 1

5.6 MEMORIA DE CALCULO

DATOS PARA EL ANÁLISIS

MATERIALES

Concreto	fe =	175.00 kQ/cm ²
	Ec =	$1.98E+05 \text{ kQ/cm}^2$
	=	2.400.00 kg/m ³
Acero	fy =	4,200.00 kQ/cm ²
	fs =	2,800.00 kQ/cm ²
	Es =	2.00E+06 kQ/cm ²

Albañilería

Bloques de arcilla - Italcerámica		12cm x 38.67 cm x 18	.5 cm	
Dimensiones	a =	12.00	cm	
	=	38.67	am	
	h =	18.50	cm	
	fo =	180.00	kg/cm ²	
	r m =	90.00	kg/cm ²	
Ĭ.	/'m =	9.49	kg/cm ²	
	m =	2.040.00	kg/m ³	
I	E _m =	500 fm=	4.50E+04	kg/cm²
	3 _m =	$0.4 E_{m} =$	1.80E04	kg/cm ²

PARÁMETROS SÍSMICOS

Zona sísmica	3 (Costa)	Z =	0.40	
Categoría	C (Vivienda)	U =	1.00	2
Ordenada espectral		C =	2.50	(viviendas de baja altura)
Tipo de suelo	S1	S =	1.00	(factor de amplificación del suelo)
•		Tp =	0.40	(periodo del suelo)
Sistema estructural		R=	3.00	(albañilería armada)
		R=	6.00	(para diseño por esfuerzos admisiblf
Elementos resistentes	3	Ct =	60.00	

CARACTERÍSTICAS DE LA VIVIENDA

Niveles:	N =	3.00
Altura de muros:	1er nivel= 2do nivel= 3er nivel=	2.40 m 2.40 m 2.40 m
Area de losa:	1er nivel= 2do nivel = 3er nivel =	47.47 m ² 47.13 m ² 37.39 m ²
Altura de entrepisos	1er nivel= 2do nivel= 3er nivel=	3.30 m 2.60 m 2.60 m

METRADO DE CARGAS

Peso de acabados

100.00 *k9tm* ²

Peso de losa aligerada Firth

245.00 k9/m²

altura 17cm y viguetas cada 50 cm

Sobrecarga

1er y 2do nivel

200.00 **k9/m**²

3er **nivel**

100.00 **kg/m**²

PESO DE LA MAMPOSTERIA

Peso específico del muro de albañilería (k9/m³)

2,040.00

Nivel	Muro	Eje	L	t	Н	V	W,
			(m)	(m)	(m)	(m¹)	(kg)
1er Nivel	M - 1	Α	8.12	0.12	2.40	2.34	4,773 60
	M - 2	В	3.32	0.12	2.40	0.96	1,958.40
	M- 3	В	2.52	0.12	2.40	0.73	1,489.20
	M - 4	e	4.92	0.12	2.40	1.42	2,896.80
	M - 5	e	3.07	0.12	2.40	0.88	1,795.20
	M - 6	1	1.47	0.12	2.40	0.42	856.80
	M - 7	1	1.33	0.12	2.40	0.38	775.20
	M - 8	2	1.47	0.12	2.40	0.42	856.80
	M - 9	3	1.47	0.12	2.40	0.42	856.80
	M - 10	4	1.47	0.12	2.40	0.42	856.80
	M - 11	4	1.47	0.12	2.40	0.42	856.80
						Total	17,972.40

Nivel	Muro	Eje	L	t	Н	V	W,
			(m)	(m)	(m)	(m³)	(kg)
2do Nivel	M - 1	А	8.12	0.12	2.40	2.34	4,773.60
	M - 2	В	3.32	0.12	2.40	0.96	1,958.4
	M-3	В	2.52	0.12	2.40	0.73	1,489.2
	M - 4	e	4.92	0.12	2.40	1.42	2,896.8
	M - 5	e	3.07	0.12	2.40	0.88	1,795.2
	M- 6	1	1.47	0.12	2.40	0.42	856.8
	M - 7	1	1.33	0.12	2.40	0.38	775.2
	M - 8	2	1.47	0.12	2.40	0.42	856.8
	M - 9	3	1.47	0.12	2.40	0.42	856.8
	M - 10	4	1.47	0.12	2.40	0.42	856.8
	M - 11	4	1.47	0.12	2.40	0.42	856.8
						Total	17,972.40

							.,,,,,,
Nivel	Muro	Eje	L	t	Н	V	W,
			(m)	(m)	(m)	(m³)	(kg)
3er Nivel	M - 1	А	8.12	0.12	2.40	2.34	4,773.60
	M-2	В	3.32	0.12	2.40	0.96	1.958.40
	M - 3	В	2.52	0.12	2.40	0.73	1,489.20
	M - 4	e	4.92	0.12	2.40	1.42	2,896.80
	M - 6	1	1.47	0.12	2.40	0.42	856.80
	M - 8	2	1.47	0.12	2.40	0.42	856.80
	M - 9	3	1.47	0.12	2.40	0.42	856.80
	M - 10	4	1.47	0.12	2.40	0.42	856.80
	M - 11	4	1.47	0.12	2.40	0.42	856.80
						Total	15,402.00

PESO DE VIGAS

Peso especifico del concreto (ki::/m³) 2

2,400.00

Nivel	Eje	Cantidad	L	b	h	V	W;
			(m)	(m)	(m)	(m ^J)	(kg)
1er Nivel	Α	1	8.12	0.12	0.37	0.36	864.00
	A'	1	2.28	0.12	0.17	0.05	120.00
	A"	1	3.08	0.12	0.17	0.06	144.00
	В	1	8.12	0.12	0.37	0.36	864.00
	e	1	7.99	0.12	0.37	0.35	840.00
	1	1	2.38	0.12	0.37	0.11	264.00
	1'	1	3.21	0.12	0.37	0.14	336.00
	2	1	5.59	0.30	0.17	0.29	696.00
	2"	1	0.40	0.12	0.17	0.01	24.00
	3	1	5.59	0.30	0.17	0.29	696.00
	4	1	5.59	0.12	0.37	0.25	600.00
						Total	5,448.00
Nivel	Eje	Cantidad	L	t	Н	٧	W,
			(m)	(m)	(m)	(m ¹)	(kg)
2do Nivel	Α	1	8.12	0.12	0.37	0.36	864.00
	A'	1	2.28	0.12	0.17	0.05	120.00
	A"	1	308	0.12	0.17	0.06	144.00
	В	1	8.12	0.12	0.37	0.36	864.00
	B'	1	2.28	0.12	0.17	0.05	120.00
	e	1	7.99	0.12	0.37	0.35	840.00
	1	1	2.38	0.12	0.37	0.11	264.00
	1'	1	3.21	0.12	0.37	0.14	336.00
	2	1	5.59	0.30	0.17	0.29	696.00
	2'	1	0.40	0.12	0.17	0.01	24.00
	2"	1	0.40	0.12	0.17	0.01	24.00
	3	1	5.59	0.30	0.17	0.29	696.00
	4	1	5.59	0.12	0.37	0.25	600.00
						Total	5,592.00
Nivel	Eje	Cantidad	L	t	Н	V	WI
			(m)	(m)	(m)	fm ³)	(kg) ••
3er Nivel	Α	1	8.12	0.12	0.37	0.36	864.00
	A'	1	2.28	0.12	0.17	0.05	120.00
	В	1	8.12	0.12	0.37	0.36	864.00
	B'	1	2.28	0.12	O 17	0.05	120.00
	e	1	7.99	0.12	0.37	0.35	840.00
	1	1	2.38	0.12	0.37	0.11	264.00
	2	1	5.59	0.30	0.17	0.29	696.00
	2'	1	0.40	0.12	0.17	0.01	24.00
		1	0.40	0.12	0.17	0.01	24.00
	2"						
	2" 3	1	5.59	0.30	0.17	0.29	696.00
				0.30 0.12	0.17 0.37	0.29 0.25	696.00 600.00

PESO DE LA TABIQUERIA

Peso especifico del muro de albañilería (kg/m³) 1,632.00

Nivel	Eje	Cantidad	L	t	Н	V	W,
			(m)	(m)	(m)	(m ^J I	(kg)
1er Nivel	A-B	1	0.60	0.12	2.40	0.17	277.44
		1	0.50	0.12	2.40	0.14	228.48
		1	1.20	0.12	1.00	0.14	228.48
	8-C	1	1.90	0.12	1.00	0.23	375.36
		1	2.25	0.12	2.40	0.65	1,060.80
		1	1.00	0.12	1.00	0.12	195.84
	2 - 3	1	2.25	0.12	2.40	0.65	1,060.80
						Total	3,427.20
Nivel	Eje	Cantidad	L	t	Н	V	W,
			(m)	(m)	(m)	(m ^J 1	(kg)
2do Nivel	A-B	1	0.90	0.12	0.60	0.06	97.92
		1	1.50	0.12	2.40	0.43	701.76
		1	0.50	0.12	2.40	0.14	228.48
		1	1.20	0.12	1.00	0.14	228.48
	B-C	1	1.90	0.12	1.00	0.23	375.36
		1	3.25	0.12	2.40	0.94	1,534.08
		1	1.05	0.12	2.40	0.30	489.60
		1	1.90	0.12	1.00	0.23	375.36
	1 - 2	1	0.60	0.12	2.40	0.17	277.44
	2 - 3	1	0.80	0.12	2.10	0.20	326.40
		1	1.35	0.12	2.40	0.39	636.48
		1	0.15	0.12	2.40	0.04	65.28
		1	0.30	0.12	2.40	0.09	146.88
		1	0.60	0.12	2.40	0.17	277.44
	3 - 4	1	0.60	0.12	2.40	0.17	277.44
						Total	6,038.40
Nivel	Eje	Cantidad	L	t	Н	V	w,
			(m)	(m)	(m)	(m ^J)	(kg)
3er Nivel	A-B	1	0.90	0.12	0.60	0.06	97.92
		1	1.50	0.12	2.40	0.43	701.?t
		1	0.50	0.12	2.40	0.14	228.48
		1	1.20	0.12	1.00	0.14	228.48
	8-C	1	1.90	0.12	1.00	0.23	375.36
		1	3.25	0.12	2.40	0.94	1,534.08
	2 - 3	1	0.80	0.12	2.10	0.20	326.40
		1	1.35	0.12	2.40	0.39	636.48
		1	0.60	0.12	2.40	0.17	277.44
		11	1.05	0.12	2.40	0.30	489.60
						Total	4,896.00

PESO DE LA LOSA ALIGERADA FIRTH

Peso propio de la losa aliqerada (kq/m²) 245.00 Peso acabados (kq/m²) _ _ _ _ _ _ _ _ _ _ _ _ _ 100.00 345.00

Nivel	Eje	Cantidad	A	В	Α	W;
			(m)	(m)	(m2)	(kg)
1er Nivel	A-8 / 1-2	1	0.86	3.20	2.75	948.7
	A-8 / 2-3	1	2.38	2.28	5.43	1,873.3
	A-8/3-4	1	2.38	2.28	5.43	1,873.3
		-1	0.40	0.80	-0.32	-110.4
	B-C / 1'-2	1	3.21	2.95	9.47	3,267.1
	8-C / 2-3	1	3.21	2.28	7.32	2,525.4
	8-C / 3-4	1	3.21	2.28	7.32	2,525.4
					Total	12,903.0
Nivel	Eje	Cantidad	Α	В	Α	W;
			(m)	(m)	lm2)	(kg)
2do Nivel	A-8 / 1-2	1	0.86	3.20	2.75	948.7
	A-8 / 2-3	1	2.38	2.28	5.43	1,873.3
	A-8 / 3-4	1	2.38	2.28	5.43	1,873.3
		-1	0.40	0.80	-0.32	-110.4
	B-C/1'-2	1	3.21	2.95	9.47	3,267.1
	8-C / 2-3	1	3.21	2.28	7.32	2,525.4
	8-C / 3-4	1	3.21	2.28	7.32	2,525.4
		-1	0.40	1.21	-0.48	-165.6
					Total	12,737.4
Nivel	Eje	Cantidad	Α	В	A	WI
			(m)	(m)	(m²)	(kg)
3er Nivel	A-8 / 1-2	1	2.38	3.20	7.62	2,628.9
	A-8 / 2-3	1	2.38	2.28	5.43	1,873.3
	A-8 / 3-4	1	2.38	2.28	5.43	1,873.3
		-1	0.40	0.80	-0.32	-110.4
	8-C / 2-3	1	3.21	2.28	7.32	2,525.4
	8-C / 3-4	1	3.21	2.28	7.32	2,525.4
		-1	0.40	1.21	-0.48	-165.6
					Total	11,150.4

METRADO DE PESOS POR NIVEL

		1er Nivel	2do Nivel	3er Nivel
Mampostería		17,972.40	16,687.20	7,701.00
Vigas		5,448.00	5.592.00	5.112.00
Tabiquería		6,038.40	4,896.00	0.00
Losa Aligerada		12,903.00	12,737.40	11,150.40
	P_0 (kg) =	42,361.80	39,912.60	23,963.40
	P _L (kg) =	9.494.00	9.426.00	3,739.00
	A (m2) =	47.47	47.13	37.39
Γ	W_0 (kg/m ²) =	892.39	846.86	640.90
	$W_L (kg/m^2) =$	200.00	200.00	100.00

6 -.: aı 🖏

CÁLCULO DE LA RIGIDEZ LATERAL Y DENSIDAD DE MUROS

Albañilería armada

 $f_m =$ 90.DD kg/cm²

Em = $500 \text{ fm} = 4.5 \text{DE+D4 kg/cm}^2$

L

(m)

v′ m--

9.49 kg/cm²

Altura de muros:

1er nivel= 2.40 m 2do nivel= 2.40 m

Ky

(t/m)

Z =0.40 U= 1.00

AREA DE CORTE

3er nivel=

t

(m)

2.40 m

h

(m)

S = N= 1.00

Área de la planta:

Muro Eje

47.47 m² 1er nivel=

Α,

Ax

 $\mathbf{m}^2 \mathbf{l}$

3 DO

Ау m^2 l

2do nivel= 47.13 m² A_2 A3

RIGIDEZ LATERAL

Κx

(t/m)

37.39 m² 3er nivel=

	CENTRO DE RIGIDEZ								
X1	Ку х	Υſ	Kx Y ₁						
{rn}		(m)	(t)						

			1er N	livel				
M - 1	Α	8.12	0.12	2.40		54,546.46		0.97
M - 2	В	3.32	0.12	2.40		14,675.00		040
M - 3	В	2.52	0.12	2.40		8,554.46		0.30
M - 4	e	4.92	0.12	2.40		28,012.45		0.59
M-5	e	3.07	0.12	2.40		12,686.91		0.37
M - 6	1	1.59	0.12	2.40	2,953 30	- 1	0.19	
M - 7	1'	1.45	0.12	2.40	2,337.31		0.17	
M - 8	2	1.59	0.12	2.40	2,953 30		D 19	
M - 9	3	1.59	0.12	2.40	2,953.30		0.19	
M-10	4	1.59	0.12	2 40	2,953.30	1	0.19	- 1
M-11	4	1.59	0.12	2.40	2,953.30		0.19	
					17,103.81	118,475.29 j	1.12	2.63

		567 8.12 8 12	16,745.22 23,980 80 23,980.80
			16,745.22
		567	
		3.32	9,804.96
		O32	747 94
		007	206 73
5.87	74,472.16		
5.87	164,433.08		
2.57	21,984.97		
2.57	37,714.76		
0.07	3,818.25		
	2.57 2.57 5.87	2.57 37,714.76 2.57 21,984.97 5.87 164,433.08	2.57 37,714.76 2.57 21,984.97 5.87 164,433.08 5.87 74,472.16

YdR

4.412

2.553

XdR

0.0554 1_Lt/A, 0.0236 ZUSN / 56 0.0214 0.0214

VRESISTENTE (t) 106.25 249.50

á	Qi	•!
: g a ••• •• •• ••	° a is o 13 o o o o 8 : 26 s es	52 OOD - 10 (1) A 30 OO = 1
	2	1.
	£	i

□agina ∨° 95

M (/) (")

					RIGIDEZ	LATERAL	AREA D	E CORTE			CENTRO DE	RIGIDEZ	
Muro	Eje	L	t	h	Кх	Ку	Ax	Ау	X.	,	Ky X ₁	Y,	KxY ₁
		(m)	(m)	(m)	(tlm)	(tlm)	lm ² 1	Im ² 1	(m)	(t)	jm)	- ill
	_		2do l	Nivel									
M-1	A	8.12	0.12	2.40		54,546.46		0.97	0.0	7	3,818.25		
M - 2	В	3.32	0.12	2.40		14,675.00		0.40	2.5	7	37,714.76		
M - 3	В	2.52	0.12	2.40		8,554.46		0.30	2.5	7	21,984.97		
M - 4	e	4.92	0.12	2.40		28,012.45		0.59	5.8	7	164,433.08		
M - 5	e	3.07	0.12	2.40		12,686.91		0.37	5.8	7	74,472.16		
M - 6	1	1.59	0.12	2.40	2,953.30		0.19					0.07	206.73
M - 7	1'	1.45	0.12	2.40	2,337.31		0.17					0.32	747.94
M - 8	2	1.59	0.12	2.40	2,953.30		0.19					3.32	9,804.96
M - 9	3	1.59	0.12	2.40	2,953.30		0.19					5.67	16,745.22
M-10	4	1.59	0.12	2.40	2,953.30		0.19					8.12	23,980.80
M-11	4	1.59	0.12	2.40	2,953.30		0.19					8.12	23,980.80
					17,103.81	11 8 ,47 5.29	1.12	2.63			302,423.22		75,466.45
						LLt/ A2	0.0238	0.0558		XcR	2.553	Y c R	4.412
						ZUSN / 56	0.0214	0.0214					
					v	RESISTENTE (t)	106.25	249.50					

					RIGIDEZ	LATERAL	AREA D	E CORTE			CENTRO DE	RIGIDEZ	
Muro	Eje	L	t	h	Kx	Ку	Ax	Ау	X,		Ky χ ₁	Y,	KiY ₁
		(m)	(m)	(m)	(t/m)	(t/m)	lm ² 1	lm ² 1	(m)		(t)	(m)	(t)
			3er N	livel									
M - 1	Α	8.12	0.12	2.40		54,546.46		0.97	0.07	7	3,818.25		
M - 2	В	3.32	0.12	2.40		14,675.00		0.40	2.57	7	37,714.76		
M - 3	В	2.52	0.12	2.40		8,554.46		0.30	2.57	7	21,984.97		
M - 4	e	4.92	0.12	40,خ		28,012.45		0.59	5.87	7	164,433.08		
M - 6	1	1.59	0.12	2.40	2,953.30		0.19					0.07	206.73
M - 8	2	1.59	0.12	2.40	2,953.30		0.19					3.32	9,804.96
M - 9	3	1.59	0.12	2.40	2,953.30		0.19					5.67	16,745.22
M-10	4	1.59	0.12	2.40	2,953.30		0.19					8.12	23,980.80
M-11	4	1.59	0.12	2.40	2,953.30		0.19					8.12	23,980.80
					14,766.51	105,788.38 I	0.95	2.26	J		221 951 ps		14.748521
						LLt/A ₃	0.0254	0.0604	1	XdR	2.155	Y c R	5.060
						ZUSN / 56	0.0214	0.0214					
					1	/RESISTENTE (t)	90.12	214.40					

.

CALCULO DE EXCENTRICIDAD

6.44

6.44

6.44

M - 9

M - 10

M-11

3

4

						tricidad rica			Excentr accide		Excentricidad total			
Nivel	XcM	YcM	XdR	YcR	ех	8y	Lx	Lv	eAX	eAv	ex + eAX	&y+ eAv	ex·eAX	8y • eAv
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
1er Nivel	3.186	4.470	2.553	4.412	0.63	0.06	5.95	8.12	0.60	0.81	1 23	0.87	0.04	-0.75
2do Nivel	3.127	4.508	2.553	4.412	0.57	0.10			-		1.17	0.91	-0.02	-0.72
3er Nivel	2.264	4.689	2.155	5.060	0.11	-0.37					0.70	0.44	-0.49	-1.18

DISTRIBUCION DE FUERZAS CORTANTES EN MUROS

		Vo(t) =	37.30														
										ev =	0.87	8y =	-0.75	ex =	1.23	ex =	0.04
		CORTANTE	DIRECTO							Mr(t-m) =	-32.44	Mr (t-m) =	28.13	Mr(t-m) =	45.82	M_1 (t-m)=	1.43
1 Muro	Eje	Vox	Vov	dk	dy	dv2	dy ²	Kd	K d2	Vrex	Vrev	Vrex	Vrev	Vrex	Vrev	Vrex	Vrev
		(t)	(t)	(m)	(m)	{m21	${m^21}$	(t)	(t-m)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
M-1	Α		17.17	2.48		6 16		1.35E+05	3.36E+05		-4.54		3.93		6.41		0.20
M-2	В	1	4.62	O 02		000		-2 55E+02	4.43E+00	l'i	0.01		-0.01		O.01		0.00
M-3	В	1	2.69	-0.02		0.00		-1 49E+02	2.58E+OO	į.	0.00		0.00		-0.01		0.00
M-4	e	1	8.82	-3 32		11 DO		-9 29E+04	3.08E+05		3.11		-2.70		-4.40		-0.14
M - 5	e		3.99	-3 32		11.00		-4 21 E+04	1.40E+05	1)	1.41		-1.22		-1.99		-0.06
M-6	1	6.44			4.34		18.86	1.28E+04	5.57E+D4	-0.43		0.37		0.61		0.02	
M - 7	1'	5.10			4.09		16.75	9.56E+03	3.91 E+04	-0.32		O28		0.45		0.01	
M-8	2	6.44			1.09		1.19	3.23E+03	3.52E+03	-0.11		0.09		0.15		0.00	

4.67E+03

4.06E+04

0.12

0.37

0.37

-0.11

-0.32

-0.32

-0.18

-0.52

-0.52

-0.01

-0.02

-0.02

4 06E+D4 13.75 -1.10E+04 37.30 37.30 9.68E+05

1.58

-3 71 E+03

13.75 -1.10E+04

-1.26

-3.71

-3.71

DISEÑO DE MUROS DE ALBAÑILERIA

DATOS: Grout Parámetros sísmicos fe= 140.00 kj:;/cm2 **Z** = 0.40 $Ec = 1.77E+05 \text{ kj:j/cm}^2$ 1.00 e = Acero de refuer20 2.50 $fy = 4,200.00 lq; fcm^2$ Es = $2.00E+06 \text{ k} \Omega \text{icm}^2$ Albañilería $_{\rm m}$ = 2,040.00 kg/m³ $f_b = 180.00 \text{ kg/cm}^2$ $Em = 600 f_m = 5.40E+04 kg/cm^2$ f ... = 90.00 kg/cm²

Espesor Efectivo para zonas sísmicas 2 y 3

Esfuerzo Axial Máximo

$$\sigma_m = P_m / (L t) \le 0.2 f_m (1 - (h / 35t)^2) \le 0.15 f_m = 135.00 \text{ Um}^2$$

Control de Fisuración

$$\rm v$$
 . <= 0.55 $\rm V_m$ = Fuerza cortante admisible

 $Qm = 0.4 E_m = 2.16E+04 kgicm^2$

Resistencia al Agrietamiento Diagonal

$$V_m = 0.5 \text{ V}_m \text{ n t L} + 0.23 \text{ P} \cdot$$
 para unidad'ils de arcilla 1/3 < = a = V. L/M. <= 1

Verificación de la resistencia al corte del edificio

V"" >= Ve, Si V_m , >= 3VE,

se considera que el edificio se comporta elásticamente

bajo esta condición se emplea refuerzo mínimo capaz de funcionar como arriostres

y de soportar las acciones perpendiculares al plano de la albañilería

9 49 kgicm²

venne

Cuantia mínima de refuerzo horizontal y vertical

Para muros portantes contabilizados en el aporte de la resistencia sísmica μ_{nm} = 0.10%

t = 12.00 cm Para 01/4": As-,= μ""' s t Para 03/8":

26 cm 0.71 cm² As= s = 59 cm Para 01/2". As = 1.27 cm² 106 cm

As=

0.31 cm[>]

Para muros secundarios (tabiques. parapetos y muros portantes no contabittzados en el aporte de la r, sistencia sísmica) 0.07%

/Jm!" = t = 12.00 cm As_{nw'l} = IJ_{rr-n}st Para 03/8": As= 0.71 cm² s= 85 cm

Refuerzo horizontal

Se diseñará para el cortante debido al sismo severo V_E,

Espaciamiento del refuer20 horizontal en el primer piso de muros de 3 pisos en zonas sisimicas 2 y 3

45 cm

El refuerzo vertical por flexión se concentrará en los extremos del muro Refuerzo vertical

En la zona centra, se ub;csra una cusnUa no menor que 0.001

s <= 45 cm

En la inteñace cimentación - muro se anadirán espigas verticales de 3/8" que penetre 30 y 50 cm alternadamente en el interior de aijuellas celdas ijue carecen de refuerzo vertical

Relleno de los alvéolos con concreto liquido

Para los dos primeros pisos de un edificio de 3 \acute{o} más pisos, todos los alvéolos de las unidades de albanileria deberán ser totalmente rellenos de concreto liquido

Para los pisos superiores podrá emplearse muros parcialmente rellenos si se cumple:

 $0.5 V_m/A,.>= V_E/(L t)$

RESISTENCIA A COMPRESIÓN Y FLEXOCOMPRESIÓN EN EL PLANO DEL MURO

Suposiciones de diseño

¿m· 0.0025 deformación unitaria máxima de la albañile<ia

El esfuerzo de compresión máximo en la albañilería 0.85 fm será asumido unrtormemenle distribuido en una zona equivalente de compresión limitada por los bordes de la sección transversal y una linea recta paralela al eje neutro de la sección a una distancia "a"

e es la d'Istanc'ia del efe neutro a la fibra extrema mas compnm1da

El momento M. actuante en un nivel determinado será el obtenido por el análisis estructural ante un sismo moderado

 $Mu = 1.25 M_{\odot}$ Vu · 1.25 V_O

Evaluación de la Capacidad Resistente "Mn"

```
i Mn >= Mu
0.65 \Leftarrow += 0.8!HJ.2 Pu/P_0 \Leftarrow 0.85
Po: 0.1fmtL
Mn = As fy D + Pu U2
                                            As · área del refuerzo vertical en el extremo del muro
D = 0.8 L
                                           Pu = 0 9 P
```

Por lo menos se colocará 203/8" o su equivalente en los bordes libres del muro y en las intersecciones entre muros

Verificación de la necesidad de confinamiento de los extremos libres del muro

Cuando el esfuerzo último por compresión resultante de la acción de las cargas de gravedad y de las fuerzas de sismo coplanares > 0.3 fm los extre<nos libres de los muros se confinarán para evitar la falla por nexocompresión

RESISTENCIA A CORTE

El diseño por fuerza cortante se realizará para el cortante Vu, asociado al mecanismo de falla por fiexión producido en el primer piso El diseño por fuerza cortante se realizará suponiendo que el 100% del cortante es absorbido por el refuerzo horizontal

Prime< piso: Vu,₁ · 1.25 Vu, (Mn //M u₁) >= V_m, Pisos superiores: Vu, · 1.25 Vu, (Mn,/Mu,) <= V

Esfuerzo de corte:

v, = Vu, / (t L) <= 0 10 fm= $V_i = Vu_i / (t \mid i) \le 0.20 f_m = 180.00 \text{ Um}^2$

90 00 Um²

en zonas de posible formación de rótulas plásticas

en cualquie< otra zona

Área del refuerzo horizontal:

Ash = Vu, s/ (fy D)

O = 0.8L para muros esbeltos. donde 0 · L para muros no esbeltos, donde $M_0 / (V_0 L) > 1$ $M_{O}/(V.L) < 1$

DISEÑO PARA CARGAS ORTOGONALES AL PLANO DEL MURO

Los muros portantes y no portantes deberán verificarse para las acciones perpendiculares a su plano provenientes de sismo. viento o de fuerzas de inercia de elementos puntuales o lineales que se apoyan en el muro en zonas intermedias entre sus extremos superior e inferior

2.40 m h· 0.12 m

Esfuerzo admisible de tracción por flexión de la albañilería

para albañilería 3,mada rellena de concreto líquido 30.00 Lm² 15.00 um² para a\bañilerla simple f. =

Momento Flector distribuido por unidad de longitud

(t-m/m) $M_a = m w a^2$

m = coeficiente de momento (adimensmnal)

a · dimensión critica del paño de albai\ile<ia (m)

w = 0.8 Z U C 1mt · 0.19584 Um2

Esfuerzo axial producido por la carga gravitacional

fa = Pa/Lt

Esfuerzo normal producido por el momento ftector

```
fm = 6 Ms/t2
```

Se deberá cumplir:

```
En el primer piso: f_{a} + t_{m} <= 0.25 \text{ f m} = 225.00 \text{ t/m}^{2} En el útimo piso: f_{m} - f_{a} <= f_{t} En cualQuier piso: f_{,/} F_{a} + f_{m} / \text{Fm} <= 1.33 F_{,} = 0.20 \text{ r}_{m} (1 - (h/35t/) = 121.22 \text{ t/m}^{2} F_{m} = 0.40 \text{ f/m} = 360.00 \text{ t/m}^{2}
```

Los muros portantes armados amostrados en sus cuatro bordes y Que cumplen con el espesor efectivo y el esfuerzo axial máximo no necesitarán ser diseñados ante cargas sísmicas perpendiculares al plano de la albañilería. a no ser Que exista excentricidad de la carga gravitacional

Complejo Habitacional "Las Amapolas Sistema de Albañilería Armada con Bloques de Arcilla Escudero Agüero Mali/de María

COMBINACIONES DE CARGA

		LOAD COM	BINATIONS		
Combo	Tvpe	Case	Factor	CaseTvpe	SortID
COMB1	ADD	D	1.5	Static	1
COMB1		L	1.8	Static	2
COMB2	ADD	D	1.25	Static	3
COMB2		L	1.25	Static	4
COMB2		SX	1	Spectrum	5
COMB3	ADD	D	1.25	Static	6
COMB3		L	1.25	Static	7
COMB3		SX	-1	Spectrum	8
COMB4	ADD	D	1.25	Static	9
COMB4		L	1.25	Static	10
COMB4		SY	1	Spectrum	11
COMB5	ADD	D	1.25	Static	12
COMB5		L	1.25	Static	13
COMB5		SY	-1	Spectrum	14
COMB6	ADD	D	0.9	Static	15
COMB6		SX	1	Spectrum	16
COMB7	ADD	D	0.9	Static	17
COMB7		SX	-1	Spectrum	18
COMB8	ADD	D	0.9	Static	19
COMB8		SY	1	Spectrum	20
COMB9	ADD	D	0.9	Static	21
COMB9		SY	-1	Spectrum	22
COMB10	ENVE	COMB1	1	Combo	23
COMB10		COMB2	1	Combo	24
COMB10		COMB3	1	Combo	25
COMB10		COMB4	1	Combo	26
COMB10		COMB5	1	Combo	27
COMB10		COMB6	1	Combo	28
COMB10		COMB7	1	Combo	29
COMB10		COMB8	1	Combo	30
COMB10		COMB9	1	Combo	31

ANÁLISIS ESTÁTICO Método de Fuerzas Estáticas Equivalentes (SISMO MODERADO)

		Factor
Zona	3 Costa	Z = 0.40
Categorfa	C Comunes	U= 1.0
Tipo de suelo	1 Roca o muy rlgido	S = 1.0
Sistema estructural	6 (Concr) de Muros Estructurales	R = 6.0
Regularidad	R Regular	R = 1.00
Element. Resistentes	3 Albañilería y sólo muros	Ct = 60
		Tp = 04

Zon•	Z		Sistema E1tructunil	R
1 Selva	0 15		1 (Acero) Pórticos dúctitea	95
2 Sierra	0.3		2 (Acero) Arriostres ExcénIrIcos	65
3 Costa	0.4		3 (Acero) Arriostres en Cruz	60
Catnaorfa	u	%SIC	4 (Conc:r) Portlcos	8.0
A Esenciales	15	50%	5 (Concr) Dual	70
B Imponantes	13	50%	6 (Conc:r) de Muros Estructurales	6.0
C Comunes	10	25%	7 (Concr) Muros de Duct Limitada	40
Tino de auelo	Tn	S	e (Alba.1) Armada o Confinada	30
, Roca o muy rlgldo	04	,	9 (Madera\ esfuerzos admisibles	7.0
2 Intermedio	0.6	12	Elem1nto1 RKlat1nte1	Ct
3 Fle>Oble	09	14	, Sólo pórticos	35
Re11u1ertdad	RI		2 Pórticos mtls ascensor	45
1 Irregular	075		3 Albarulerla y sólo muros	60
R Regular	1 00			

Cálculo de Masas

N° pisos

Nivel i	Area	H de piso	Wb	Wt	%SIC	wtotal	Po	pl	Pl,	P,	Masa
	(m²)	(m)	(kg/m²)	(kg/m²)		(kg/m²)	(Ton)	(Ton)	dato(")	(Ton)	(Ton-s ² /m)
3	37.39	2.60	640.90	100.00	25%	665,90	23.963	0.935		24.90	2.54
2	47.13	2.60	846.86	200,00	25%	896,86	39.913	2.357		42.27	4.31
	47.47	3.30	892.39	200.00	25%	942.39	42.362	2.374		44.74	4.56

ì	Penado	T=	0.14 s	1
	Ordenada espectral	C=	2.60	
	Coeficiente sísmico	Cs=	0.17	ZUSC/R
	Aceleración espectral	Sa=	1.64 mis'	
	Cortante basal	V=	18.66 Ton	

Fuerzas Sismicas. Método de Fuerzas Estáticas Equivalentes

Cortante a d1stnbu1r	18 65 t
Fuerza en último piso	0.00 t

n,	altura piso	P, calc	P ₁ dato	P ₁	P,h ₁	F, t		V, (t)
So -	H-218.0-111	:12uo- ;		200	2f1 6.L	s '48		-
	2.60	42.27,		42.27	249.39	7.64	,a7a.t	
		44.74::i		44.74	147.63	4.62	4.52	
	8 50			Suma	608.65	18.66		

,

102

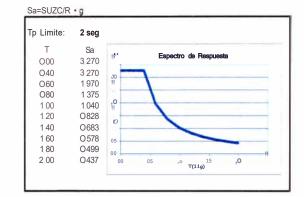
ANÁLISIS ESTÁTICO

Método de Fuerzas Estáticas Equivalentes (SISMO SEVERO)

		Factor
Zona	3 Costa	Z = 040
Categorfa	C Comunes	U = 1.0
Tipo de suelo	1 Roca o muy rlgido	S = 10
Sistema estructural	8 (Alba/) Armada o Confinada	R = 30
Regularidad	R Regular	R1 = 1.00
Element. Resistentes	3 Alba/\ilerla y sólo muros	Ct = 60
		Tp = 04

Zon,	Z		Sistema E1tructur1I	R
1 Selva	O 15		1 (Acero) Pórticos dúctiles	95
2 Sierra	0.3		2 (Acero) Arriostres Excéntricos	65
3 Costa	04		3 (Acero) Arriostres en Cruz	6 0
CatMorla	u	%SIC	4 ¡Concr) Ponlcos	80
A Esenciales	15	50%	5 (Concr) Dual	70
8 Imponantes	13	50%	6 (Concr) de Muros Estructurales	6 0
C Comunes	10	25%	7 (Concr) Muros de Duct Ilm1tada	40
Tino d i suelo	TD	S	8 (Albafl) Armada o Conlinada	30
1 Roca o muy rlgldo	0.4	1	9 ¡Madera\ esfuerzos adm1s1btes	70
2 Intermedio	06	12	Elom,ntoe RNI1t1nte1	Ct
3 Flexible	0.9	14	1 SOio pórticos	35
Reaularfdad	RI		2 Pórticos más ascensor	45
1 Irregular	075		3 Albal'Illerla y sólo muros	60
R Regular	1 00			

Cálculo de Masas


N' pisos

Nivel I	Area	H de piso	Wb	W ,	% SIC	wtotal	Po	P,	P1, dato(•)	Pi	Masa
	(m ²)	1mJ	i 1m 1 j	jkjtm2j		<u>//m</u>	fTanJ_	¡Tan)	uato(*)	(Ton)	(Ton-s ² /m)
3	37,39	2.60	640.90	100 00	1:25%;i6	6690 11	23 w; 1	_		2 .90	:2.5 4.1
2	47.13	2.60	346 86	200 00	26%,	89 .86	39.91 ""			42.27	4.31
1	47.47	J.J0	892.39	200.00	lllfln	942.39	42.362	2474		144 74	4.56.
		hn= 8 5			_				<u>IĒ</u>	P= 111 90 1	!
Penodo		T=	S		7						
Ordenada e	spectral	C=	2,60		1						
Coeficiente	sísmico	Cs=	0.33		1 ZUSC/R						
Aceleración	espectral	Sa=	3.27	mis'	4						
Cortante ba	eal	V =	37.30	Ton	1						

Fuerzas Sismicas. Método de Fuerzas EstAticas Equivalentes

Cortante a d'Istribuir 37 30 t
Fuerza en último piso 000 l

Nivel I	altura piso	h,	P, calc	- 1	Pl	P 1 h 1	F₁, t		V ₁ (t)
) f	2. & 07	á.so	2ü 10		7. 124 BOTTH	211.63 12	.97		12.97
2 · 「			(For the party)		142.27	249.39	15 28	1821	28.25
	3 301íi'11.	3.30	44.74		44.74	t47 &3	D.06		37,30
	8 50				Suma	608 65	37.30		

FOR CLOSING STATES TO A LOCAL STATES TO STATES

ANALISIS DINAMICO Método por Combinación Modal Espectral

_				
ſ	RESI	PONSE SPI	ECTRUM FUNCT	ION
İ	Name	Perlod	Acceleration	SortID
ĺ	E030R3	0.0	3.270	1
١	E030R3	0.4	3.270	2
١	E030R3	0.6	1.970	3
١	E030R3	8.0	1.375	4
١	E030R3	1.0	1.040	5
	E030R3	1.2	0.828	6
	E030R3	1.4	0.683	7
	E030R3	1.6	0.578	8
	E030R3	1.8	0.499	9
	E030R3	2.0	0.437	10

	DIAPHRAGM ACCELERATIONS												
Story Dlaphragm Load UX UY UZ RX RY													
STORY3	D3	SX	5.07760	0.27960	1.56250	0.16830	1.39537	0.07310					
STORY3	D3	SY	1.23330	5.00670	1.79040	0.93813	0.79993	0.27003					
STORY2	D2	SX	3.24360	0.16550	1.07730	0.10817	1.02631	0.04122					
STORY2	D2	SY	0.63700	3.29560	1.51230	0.79679	0.10,35	0.14371					
STORY1	D1	SX	2.01230	0.10280	0.76770	0.15515	0.91009	0.02888					
STORY1	D1	SY	0.70570	2.19800	0.96290	0.64175	0.51951	0.17569					

	DIAPHRAGM CM DISPLACEMENTS													
Storv	Dlaphragm	Load	ux	UY	UZ	RX	RY	RZ	Point	Х	У	Z		
STORY3	D3	SX	0.00660	0.00010	0.00000	0.00000	0.00000	0.00001	215	2.264	4.689	8.5		
STORY3	D3	SY	0.00010	0.00100	0.00000	0.00000	0.00000	0.00004	215	2.264	4.689	8.5		
STORY2	D2	SX	0.00430	0.00000	0.00000	0.00000	0.00000	0.00001	216	3.127	4.508	5.9		
STORY2	D2	SY	0.00010	0.00070	0.00000	0.00000	0.00000	0.00003	216	3.127	4508	5.9		
STORY1	D1	SX	0.00180	0.00000	Q00000	0.00000	0.00000	0.00000	217	3.186	4.47	3.3		
STORY1	D1	SY	0.00000	Q00040	0.00000	0.00000	0.00000	0.00002	217	3.186	4.47	3.3		

dux (m)	duy (ml
0.01485	0.00023
0.00023	0.00225
0.00968	0.00000
0.00023	0.00158
0.00405	0.00000
0.00000	0.00090

	CENTER MASS RIGIDITY													
Story	Dlaohragm	MassX	MassY	XCM	YCM	CumMassX	(CumMass'I	XCCM	YCCM	XCR	YCR			
STORY1	D1	4.8223	4.8223	3.1860	4.4700	4.8223	4.8223	3.1860	4.4700	2.8980	4.2190			
STORY2	D2	4.4191	4.4191	3.1270	4.5080	4.4191	4.4191	3.1270	4.5080	2.8760	4.2640			
STORY3	D3	2.5185	2.5185	2.2640	4.6890	2.5185	2.5185	2.2640	4.6890	2.5400	4.4870			

			STO	RY SHEAR				
Storv	Load	Loe	р	VX	VY	T	MX	MY
STORY3	SX	Тор	0.00	13.18	0.25	60.63	0.00	0.00
STORY3	SX	Bottom	0.00	13.18	0.25	60.63	0.64	34.32
STORY3	SY	Top	0.00	0.24	12.48	33.16	0.00	0.00
STORY3	SY	Bottom	0.00	0.24	12.48	33.16	32.45	0.62
STORY2	SX	Top	0.00	26.98	0.51	118.62	0.64	34.32
STORY2	SX	Bottom	0.00	26.98	0.51	118.62	1.92	103.06
STORY2	SY	Top	O.DO	0.47	27.16	76.05	32.45	0.62
STORY2	SY	Bottom	O.DO	0.47	27.16	76.05	102.27	1.63
STORY1	SX	Top	O.DO	34.39	0.67	149.65	1.92	103.05
STORY1	SX	Bottom	0.00	34.39	0.67	149.65	4.06	213.85
STORY1	SY	Top	0.DO	0.67	35.90	101 .97	102.27	1.63
STORY1	SY	Bottom	0.00	0.67	35.90	101.97	218.'.16	3.68

FUERZA CORTANTE EN LA BASE

Vo1NAVICO >= 80% VESTATICO

	Vo1NAMCO (t)	VesTATICO (t)
EJE X	34.39	37.30
EJE Y	35.90	37.30

VDNAMICO / VESTATICO: 92% VdNAMICO / VesTATICO = 96%

Pagna Nº 18

DIMENSIONAMIENTO DE LAS CIMENTACIONES

Esduerzo admisible del terreno para una cimentación corrida de 50 cm ancho

22 Lm² U1 =

para 1.00 m de profundidad en el terreno

b = ancho de la cimentación

100 fe= 4200 fy =

Nivel	Muro	Eje	L	t	h	Po	PL	Pm	b	0	db	ldb	h
			(m)	(m)	(m)	(t)	(<u>t</u>)	(t)	lm)		(cm)	(cml	
1er Nivel	M - 1	Α	8.12	0.12	2.40	27.75	2.24	29.99	0.16	203/8"	0.95	32.00	0.39
	M - 2	В	3.32	0.12	2.40	21.82	4.28	26.10	C.30	203/8"	0.95	32.00	0.39
	M - 3	В	2.52	0.12	2.40	16.10	3.40	19.50	0.29	203/8"	0.95	32.00	0.39
	M -4	e	4.92	0.12	2.40	19.84	3.13	22.97	0.18	203/8"	0.95	32.00	0.39
	M - 5	e	3.07	0.12	2.40	10.97	1.66	12.63	0.16	203/8"	0.95	32.00	0.39
	M - 6	1	1.59	0.12	2.40	5.99	0.64	6.63	0.17	105/8"	1.59	53.34	0.60
1	M - 7	1'	1.45	0.12	2.40	3.66	0.33	3.99	0.11	203/8"	0.95	32.00	0.39
	M - 8	2	1.59	0.12	2.40	5.51	0.55	6.06	0.16	203/8"	0.95	32.00	0.39
	M - 9	3	1.59	0.12	2.40	7.70	1.23	8.93	0.22	203/8"	0.95	32.00	0.39
	M -10	4	1.59	0.12	2.40	6.36	0.96	7.32	0.18	105/8"	1.59	53.34	0.60
	M - 11	4	1.59	0.12	2.40	6.60	0.82	7.42	0.19	203/8"	0.95	31.92	0.39

DISEÑO DE VIGAS

 $fe = 175 \text{ kg/cm}^2$ fy = 4,200 ko/cm'DATOS: fe= 085 090

DISEÑO POR FLEXION

Viga simplemente reforzada ACI 10 5 1

Cuantia máxima | 1 ms, = o 75 / , = fl mu = 0.01328 j, • = /i, O85 **fc/fy** (6000/(6000+fy)) = **o** 017708 W m " = 0,31876 f', = 0.00336 0.08057

Vigas según sección	b	h	d	As _m ,n	As _{n,,,}	Mumm	Mu _m	
	lcml	lcml	(cm)	(cm')	(cm')	11-ml	(t-m)	
V 15X17	15	17	13	067	2 67	0325	1 096	
V 15X32	15	32	28	1 43	5.66	1461	4 928	
V 30X17	30	17	13	1.35	5.33	0.650	2.192	

EJE	VIGA	b	h	d	Mu(+)	Mu(-1	w(+)	w(-1	Asmn	As(+)	As(-)	0(+)	0(-1
	7	(cm)	(cm)	(cml	11-ml	11-m)		(-	(cm')	(cm')	(cm²)	0(.)	0(-1
Α	101	12 00	37 00	33	009	O 14	O00428	O00667	1 35	0 10	015	203/8"	203/8"
		12.00	37.00	33	0.08	-0.11	0.00381	O00524	1.35	0.08	0.12	203/8"	203/8
- 1		12.00	37.00	33	O33	-0.61	0.01581	O02946	1.35	0.35	0.66	203/8"	203/8
	201	12.00	37 00	33	008	-0.17	O 00381	000811	1.35	008	0.18	20318"	203/8
		12.00	37.00	33	0.11	-O 11	O00524	0.00524	1.35	0.12	0.12	203/8"	203/8'
		1200	37 00	33	O 34	-061	O01629	O02946	1 35	O36	066	203/8"	203/8"
	301	12 00	37 00	33	O 54	O 94	O02603	O04585	1 35	O 58	1 02	203/8"	203/8"
		12 00	37 00	33	020	O 16	O00955	000763	1 35	021	O 17	203/8"	203/8"
		12.00	37.00	33	0.27	-0.51	001291	0.02456	1.35	0.29	0.55	203/8"	203/8"
A'	109	12.00	17.00	13	0.03	-0.06	O00890	0.01790	0.54	0.08	0.16	103/8"	103/8"
	209	12.00	17.00	13	0.04	-0.06	001189	0.01790	0.54	0.11	0.16	103/8"	103/8"
	309	12.00	17.00	13	0.03	-0.05	0.00890	0.01489	0.54	0.08	0.13	103/8"	10318"
Α"	110	12	17 00	13	O29	O 44	O09040	O 14168	u 54	061	095	101/2"	101/2"
	210	12 00	17 00	13	O29	O 45	O09040	O 14523	0.54	061	0.97	101/2"	10112"
В	102	12 00	37 00	33	O68	-1 33	O 03291	O06566	1 35	073	1 35	203/8"	203/8"
		12.00	37.00	33	0.70	-1 36	O03390	0.06720	1.35	0.75	1.35	203/8"	203/8"
		12.00	37.00	33	0.67	-1.31	0.03242	0.06463	1.35	0.72	1.35	203/8"	20318"
	202	12.00	37 00	33	068	-1.34	O03291	0.06617	1.35	0.73	1.35	203/8"	203/8"
		12.00	37.00	33	0.60	-1 14	0.02897	O05595	1.35	0.64	1.25	203/8"	203/8"
		12 00	37 00	33	067	-1 32	O03242	O 0 6 5 1 5	1 35	072	1 35	203/8"	203/8"
	302	12 00	37 00	33	O 51	O 96	O02456	O04685	1 35	O 55	1 04	203/8"	203/8"
		12 00	37 00	33	024	O 57	001147	O02750	1 35	026	O61	203/8"	203/8"
		12.00	37 00	33	O 58	-1 05	0.02799	O05139	1 35	062	1 14	203/8"	203/8"
В	211	12.00	17.00	13	0.21	-0.59	0.06443	0.19697	0.54	0.54	1.32	101/2"	101/2"
	311	12.00	17.00	13	0.11	O 30	0.03311	0.09371	0.54	0.30	0.63	103/8"	103/8"
е	103	12.00	37.00	33	0.66	-1 37	0.03192	0.06772	1.35	0.71	1.35	203/8"	203/8"
		12 00	3700	33	O 56	-1 08	002701	O 05290	1 35	060	1 18	203/8"	203/8"
		12 00	37 00	33	042	-0.75	O02017	O03637	1 35	045	081	203/8"	203/8"
	203	12 00	37 00	33	O85	-1 66	O04135	O08282	1 35	0 92	1.38	203/8"	203/8"
		12 00	37.00	33	004	-008	000190	O00381	1 35	ou	0.08	203/8"	203/8"
-		12.00	37.00	33	0.41	-0.76	0.01969	0.03687	1.35	0.44	0.82	203/8"	203/8"
	303	12.00	37.00	33	0.08	-0.02	0.00381	O00095	1.35	0.08	0.02	203/8"	203/8"
		12.00	37.00	33	0.38	-0.60	0.01823	0.02897	1.35	0.41	0.64	203/8"	203/8"
1	107	12.00	37 00	33	1 78	-2 07	O08916	O 10469	1 35	1 49	1 75	20112-	20112
	207	12 00	37 00	33	1.79	-2 25	O 08969	O 11450	1.35	1.50	1 91	201/2"	201/2"
	307	12 00	37 00	33	1 29	-1 72	O06360	O08598	1 35	1 35	1 44	203/8"	203/8"
1'	108	12 00	37 00	33	077	1 77	O03737	O08863	1 35	O83	1 48	201/2"	20112"
	208	12.00	37.00	33	0.72	-1 96	0.03489	0.09876	1.35	0.78	1.65	201/2"	201/2"
2	106	30.00	17.00	13	0.98	-163	0.12488	0.22124	1.35	2.09	3.70	205/8"	205/8"
		30.00	17.00	13	0.30	-0.81	0.03619	0.10172	1.35	0.81	1.70	201/2"	20112"
	206	30.00	17 00	13	1.02	-1 67	O 13043	022765	1 35	2 18	3 81	205/8"	20518"
		30.00	17 00	13	047	O 70	O05743	O 08711	1 35	1 28	146	203/8"	203/8"
	306	30 00	17 00	13	O 34	-061	0 04114	O07536	1 35	O92	1 35	203/8"	203/8"
		30 00	1700	13	O 30	-065	O03619	O 08056	1 35	081	1 35	203/8"	203/8"
2'	212	12.00	17.00	13	0.15	-0.85	0.04549	0.30595	0.54	0.41	2.05	20112-	201/2"
	312	12.00	17.00	13	0.07	-0.44	0.02092	0.14168	0.54	0.19	0.95	203/8"	203/8"
2"	113	12.00	17.00	13	0.00	-0.20	0.00000	0.06124	0.54	0.00	0.54	103/8"	103/8"
	213	12.00	17.00	13	0.00	-0.21	0.00000	0.06443	0.54	0.00	0.54	103/8"	103/8"
	313	12 00	17 00	13	o 00	O 12	O00000	O 03619	O 54	000	O32	103/8"	103/8"
3	105	30 00	17 00	13	O 52	O 85	O06379	O 10710	1 35	1 35	1 79	201/2"	20112"
		30 00	17 00	13	O 12	O 26	O01429	O 03127	1.35	032	070	203/8"	203/8"
	205	30.00	17.00	13	0.54	-0.82	0.06634	0.10306	1.35	1 35	1.72	201/2"	201/2"
		30.00	17.00	13	0.28	-0.99	0.03373	0.12626	1.35	0.75	2.11	201/2"	201/2"
	305	30.00	17.00	13	0.37	-069	0.04487	0.08579	1.35	1.00	1.44	203/8"	203/8"
		30.00	17.00	13	0.18	-062	0.02152	0.07666	1.35	0.48	1.35	203/8"	203/8"
4	104	12 00	37 00	33	1 56	-2 25	007758	O 11450	1 35	1 35	1 91	20112"	201/2"
		12 00	37 00	33	O <u>95</u>	-1 92	O04635	O 09662	1 35	103	1 61	20112"	201/2"
	204	12 00	37 00	33	1 41	-2 46	O06978	O 12611	1 35	1 35	2 11	201/2"	201/2"
		12.00	37.00	33	1.02	-2 30	0.04987	O 11725	1.35	111	1.96	20112"	201/2"
	304	12.00	37.00	33	1.06	-1 84	0.05189	0.09234	1.35	1.16	1.54	201/2"	20112·
	1	12.00	37.00	33	1.01	-1 96	0.04937	0.09876	1.35	1 10	1.65	201/2"	201/2"

DISEÑO POR CORTE

DATOS: fe= 175 kli/cm ² ty = \$= 4.200 kli/cm ²

0.85

ACI 11.1

Vn =Ve+ Vs Vu **⇔ i**ţVn

Resistencia del concreto a la fuerza cortante (Ve)

Ve= 0.53 rc^{0 5} bd

Vigas según sección	b	h	d	Ve	Av _{min}	s
	lcm\	(cm)	(cm)	(t)	(cm')	(cm)
V 14X17	14	17	13	1.31	0.62	53
V 14X37	14	37	33	3.28	0.62	53
V 30X17	30	17	13	2.82	0.62	25
					1 01/4	1

Requerimientos mínimos de refuerzo ACI-11.5

SI Vu < 0.5 4,Vc no se require de refuerzo transversal

SI 0.5 It/We \Leftarrow Vu \Leftarrow qVc : Av \spadesuit " = 3.5 b s/fy

SIVu>qVea

₃Ver SIVs ← 1.1 re^{0 5}bd SIVs > 11 re^{0 5}bd y Vs ← 21 re^{0 5}bd SIVs > 21 re^{0 5}bd entonces s **⇔** d/2 s ← 60 cm entonces s **⇔** d/4 s 🗢 30 cm

entonces incrementar las dimensiones de la sección del elemento o

aumentar la resistencia del concreto

Α	VIGA	b	h	d	Vu	Ve	Vs	Av	
Α		fcm)	(cm)	(cm)				(cm²)	s (cm)
	101	12.00	37.00	33	(t)	(t) 2.81	(t)	0.62	0
		12.00	37.00	33	0.27	2.81	-2.49	0.62	0
		12.00	37.00	33	1.56	2.81	-0.97	0.62	62
	201	12.00	37.00	33	0.28	2.81	-2.48	0.62	0
		12.00	37.00	33	0.28	2.81	-2.48	0.62	Ö
		12.00	37.00	33	1.56	2.81	-0.97	0.62	62
	301	12.00	37.00	33	1.78	2.81	-0.72	0.62	62
		12.00	37.00	33	0.38	2.81	-2.36	0.62	0
		12.00	37.00	33	1.29	2.81	-1.29	0.62	62
A'	109	12.00	17.00	13	0.11	1.13	-1.00	0.62	0
	209	12.00	17.00	13	0.12	1.13	-0.99	0.62	0
	309	12.00	17.00	13	0.09	1.13	-1.02	0.62	0
Α"	11 0	12.00	17.00	13	0.68	1.13	-0.33	0.62	62
	210	12.00	17.00	13	0.68	1.13	-0.33	0.62	62
В	102	12.00	37.00	33	2.55	2.81	0.19	0.62	17
		12.00	37.00	33	3.01	2.81	0.73	0.62	17
	- 000	12.00	37.00	33	3.30	2.81	1.07	0.62	17
	202	12.00	37.00	33	2.55	2.81	0.19	0.62	17
		12.00	37.00	33	2.70	2.81	0.37	0.62	17
	202	12.00 12.00	37.00	33	3.31	2.81	1.08	0.62	17
	302		37.00	33	1.76	281	-0.74	0.62	62
		12.00	37.00	33	1.23	2.81	-1.36	0.62	62
B	211	12.00 12.00	37.00 17.00	33 13	2.69 1.76	2.81 1.13	0.36	0.62	17
Ь	311	12.00	17.00	13	0.90	1.13	0.94 -0.07	0.62	7
e	103	12.00	37.00	33	2.56	2.81	0.20	0.62 0.62	62 17
C	103	12.00	37.00	33	2.88	2.81	0.20	0.62	17
		12.00	37.00	33	1.94	2.81	-0.53	0.62	62
	203	12.00	37.00	33	3.15	2.81	0.90	0.62	17
		12.00	37.00	33	0.40	2.81	-2.34	0.62	0
		12.00	37.00	33	1.94	2.81	-0.53	0.62	62
	303	12.00	37.00	33	0.29	281	-2.47	0.62	0
		12.00	37.00	33	1.60	281	-0.93	0.62	62
1	107	12.00	37.00	33	3.64	2.81	1.47	0.62	17
	207	12.00	37.00	33	4.02	2.81	1.92	0.62	17
	307	12.00	37.00	33	1.93	2.81	-0.54	0.62	62
1	108	12.00	37.00	33	1.60	2.81	-0.93	0.62	62
	208	12.00	37.00	33	1.85	2.81	-0.63	0.62	62
2	106	30.00	17.00	13	3.58	2.82	1.40	0.62	7
		30.00	17.00	13	1.37	2.82	-1.20	0.62	25
	206	30.00	17.00	13	3.53	2.82	1.34	0.62	7
	000	30.00	17.00	13	0.79	2.82	-1.89	0.62	0
	306	30.00	17.00	13	1.24	2.82	-1.3u	0.62	25
~	240	30.00	17.00	13	0.65	2.82	-2.05	0.62	0
2'	212 312	12.00	17.00	13 13	1.56 0.81	1.13 1.13	0.71 -0.17	0.62 0.62	7 62
2"	113	12.00 12.00	17.00 17.00	13	0.81	1.13	-0.17	0.62	62
2	213	12.00	17.00	13	0.54	1.13	-0.49	0.62	62
	313	12.00	17.00	13	0.35	1.13	-0.47	0.62	0
3	105	30.00	17.00	13	1.70	2.82	-0.71	0.62	25
	1.50	30.00	17.00	13	0.34	2.82	-2.42	0.62	0
	205	30.00	17.00	13	1.63	2.82	-0.90	0.62	25
		30.00	17.00	13	0.87	2.82	-1.79	0.62	0
	305	30.00	17.00	13	1.22	2.82	-1.38	0.62	25
		30.00	17.00	13	1.11	2.82	-1.51	0.62	0
4	104	12.00	37.00	33	2.90	2.81	0.60	0.62	17
		12.00	37.00	33	1.87	2.81	-0.61	0.62	62
	204	12.00	37.00	33	3.28	2.81	1.05	0.62	17
		12.00	37.00	33	2.30	2.81	-0.10	0.62	62
ĺ	304	12.00	37.00	33	2.35	2.81	-0.04	0.62	62
		12.00	37.00	33	1.84	2.81	-0.64	0.62	62

DISEÑO DE LOSA ALIGERADA FIRTH

DATOS:

re = 175.00 kg/crrl fy = 4,200.00 ka/cm' o = 090

b,.. = 11 00 cm h = d = 17 00 cm 15 00 cm

SERIE DE LA VIGUETA

NIVEL	LOSA	Ln	SIC	VIGUETA	Wu		MOM	ENTO UL	TIMO 1-1 Ik	a-ml	
		1ml	IkQ/m'l	SERIE	lkQ/ml	NUDO 1	1 NUOO 2 i	NUDO 3 i	NUDO Ai	NUDO Bi	NUDOC
ler Nivel	A 8 - 1 2	3.08	200	V101	551 25	217 89	581 04	10			
	A 8 - 2 3	2 28	200	V100	551 25	0	119 40	318			
	A B - 34	2.38	200	V100	551 25				130 10	346 94	
	B C - 1'2	3.21	200	V101	551 25					631 13	236 67
	BC-23	3 21	200	V101	551 25					631 13	236 67
	8 C - 3 4	3.21	200	V101	551.25					631_13	236.67
2do Nivel	A 8 - 12	3.08	200	V101	551.25	217 89	581 04				
	A B - 2 3	2.28	200	V100	551.25		119,40	318 40			
	A 8 - 3 4	2.38	200	V100	551.25				130,10	34694	
	BC-12	3 21	200	V101	551 25					631 13	236 67
	B C - 23	3 21	200	V101	551 25					631 13	236 67
	B C - 3 4	3.21	200	V101	551 25					631 13	236 67
3er Nivel	A B - 12	2 38	100	V100	348 75	82 31	82 31				
	A8-23	2.28	100	V100	348 75		75.54	201 44			
	A8-34	2.38	100	V100	348 75				62.31	219 50	
	8 C - 2 3	321	100	V101	348.75					399.28	149 73
	8 C - 3 4	3 21	100	v,01	348 75					399 28	149 73

CALCULO DEL ACERO NEGATIVO

Asmm = Q70 re sb_d/fy =

o 36 cm'

NIVEL	LOSA			AsI-I	lcm'l						01-1		
		NUDO 1	1 NUDO 2	1 NUDO 3 f	NUDO Af	NUDO Bf	NUDO C	NUDO 1	1 NUDO 2 f	NUDO 3	1 NUDO A 1	NUD08	1 NUDOC
ler Nivel	A B - 12	0 40	1 13					03/8"	01/2"				
	A B - 2 3	1	O 36	O 59					03/8"	03/8"			
	AB-34				O 36	O65					03/8"	03/8"	
	8 C - 1 2					1 2 5	043					0112	03/8"
	8 C - 2 3					1 2 5	043					0112	03/8"
	8 C - 3 4					125	043					0112	03/8"
2do Nivel	A 8 - 12	0.40	1.13					03/8"	0 1 t r				
	AB-23		O 36	O 59					03/8"	03/8"			
	AB-34				O 36	O65					03/8"	03/8"	
	BC-12					1 25	043					01/2"	03/8"
	BC-23					1.25	043	e,				01/2"	03/8"
	BC-34					1 2 5	043					0112	03/8"
3er Nivel	A 8 - 1 2	0.36	O 36					03/8"	03/8"				
	A8-23		0.36	0.37					03/8"	03/8"			
	A8-34	ļ			036	040					03/8"	03/8"	
	BC-23					O 75	O 36					03/8"	03/8"
	BC-34					O 75	O 36					03/8"	03/8"

CÁLCULO DE LA CORTANTE ÚLTIMA DE LA LOSA

. Ve = +0.53 fc⁰⁵ b_x d x 1.1

b w = 12 00 cm "SOCM 085 d= 0=

oVc = 1140 66 kg Vu > \$Ve

NIVEL	LOSA	Ln	SIC	VIGUETA	Wu		CC	RTANTE	ŮLTIMO ·	fkal	
		fm I	(kalrn²,	SERIE	lkQ/ml	NUDO 1 i	NUDO 2 f	NUDO 3 f	NUDO A	f NUDO B f	NUDO C
1er Nivel	A8-12	3.08	200	V101	55125	848 93	976 26				
	A B - 2 3	2.28	200	VIOO	551 25		628 43	722 69			
	A B - 3 4	2 38	200	V100	551 25				655 99	754 39	
	BC-12	3 21	200	V101	551 25					1017 47	884 76
	8 C - 2 3	3 21	200	V101	551 25	l				1017 47	884 76
	8 C - 3 4	3.21	200	V101	551.25					1017 47	68-4.76
2do Nivel	A 8 - 1 2	3.08	200	V101	551.25	848.93	976.26				
	A 8 - 2 3	228	200	V100	551.25		628 43	722 69			
	A 8 - 3 4	2.38	200	V100	55125	1			65599	75'4.39	
	B C - 12	3 21	200	V101	551 25					1017 47	884 76
	BC-23	3 21	200	V101	551 25					1017 47	884 76
	B C - 34	3.21	200	V101	551 25					1017 47	884 76
3er Nivel	A B - 12	2 38	100	V100	348 75	415 01	415 01				
001 111101	A 8 - 23	2.28	100	V100	348 75		397 58	457 21			
	A 8 - 3 4	2.38	100	V100	348.75				415 01	4 n . 2 6	
	8 C - 2 3	3.21	100	V101	348.75					643 71	559 74
	8 C - 3 4	3.21	100	V101	348 75					643 71	559 74

CALCULO DEL ACERO DE TEMPERATURA

Para barras lisas·

b = h = 100 cm 5 cm 1.25 cm¹

Asb= 031 cm¹ s" 25 cm 01/4" 0.25 m 01/4"

Ast = 0.0025 b h =

UNIFIC

Capitulo VI: Presupuesto General

CAPITULO VI

PRESUPUESTO GENERAL

6.1 CONSIDERACIONES GENERALES

Los costos unitarios directos de cada una de las partidas y sub-partidas que

integran el Presupuesto de Obra, se ha tratado de hallar el justo valor que

representa en obra la ejecución de las diferentes dichas actividades, para lo cual

se ha tenido presente los rendimientos de la mano de obra y el equipo mecánico

que intervendrá en la obra de acuerdo a la localización y los factores climáticos

de la misma.

6.1.1 Mano de obra

Los costos de la mano de obra que intervendrá en la ejecución de cada una de

las partidas es la vigencia en el territorio nacional al mes de Octubre de 2005.

6.1.2 Materiales

Los costos de los materiales que serán utilizados en cada una de las partidas

han sido determinados teniendo en cuenta los gastos que requieren hacerse

para ser colocados a pie de obra. El costo en fábrica sin incluir el IGV de los

mismos, han sido afectados de los costos adicionales, como el Costo de

transporte (flete) de los materiales, Costo del manipuleo y almacenamiento en

obra, asimismo se ha considerado mermas de los mismos.

Los costos unitarios base de cada uno de los materiales que intervienen en las

partidas, han sido obtenidos de los fabricantes o los principales distribuidores

tanto en Lima como en otras localidades. Los costos de los materiales están

vigentes a Octubre del 2005.

6.1.3 Equipo mecánico

Se ha elaborado un listado de los equipos mecánicos que intervendrán en las

Complejo Habitacional "Las Amapolas" Sistema de Albañilerla Armada con Bloques de Arcilla Escudero Agüero Matilde Maria UNIFIC

Capitulo VI: Presupuesto General

diferentes partidas y sub-partidas de la obra. Para determinar el cargo o pago

por éste concepto sobre el costo directo de cada partida, se han tenido en

cuenta los rendimientos para el equipo mecánico nuevo según las condiciones

de emplazamiento de la obra.

Los costos utilizados corresponden a los costos de alquiler horario del equipo

mecánico vigentes a Octubre del 2005 en el mercado nacional, según

publicaciones especializadas (Revista Costos - Grupo S10). Los costos de

alquiler horario han sido descompuestos en costos de posesión y costos de

operación.

6.2 METRADOS

Los metrados considerados son desarrollados según las unidades propias de

medición para cada partida específica.

6.3 PRESUPUESTO

El Presupuesto de Obra se ha confeccionado considerando la ejecución de la

obra por el Sistema de Precios Unitarios en base a los metrados y precios

unitarios, afectando al costo directo por los porcentajes correspondientes a

Gastos Generales y Utilidad, además del Impuesto General a las Ventas.

Los presupuestos están elaborados para los 2 niveles, pero debido a su elevado

costo se opta por elaborar el presupuesto y la programación de obra en su 1er

nivel, para que se pueda ajustar el proyecto a un programa de vivienda de

interés social.

6.4 PROGRAMACIÓN DE OBRA

Se ha elaborado el cronograma de ejecución de obra considerando la

construcción de las 36 viviendas del sistema de albañilería armada Italcerámica.

Complejo Habitacional "Las Amapolas Sistema de Albañilerfa Armada con Bloques de Arcilla Escudero Aqüero Mali/de Maria

Paqina N° 111

RESUMEN DE METRADOS - ESTRUCTURAS ler Nivel									
PROYECTO	COMPLEJO HABITACIONAL "LAS AMAPOLAS"	PLANON °	Eo, .Ero						
	SISTEMA CONSTRUCTIVO "C" ALBAÑILERIA ARMADA CON BLOQUES Œ ARCILLA	METRAOO POR	MMEA						
FECHA :	MARZO DEL 2006	REVISADO POR	GRUPO ALPHA						

PARTIDA N	DESCRIPCION	UNO 1	METRAOO	MITRADO I TOTAI	OBSERVACIONES
		NÚMERO DE	VIVIENDAS=	36	
1 00 00	··oaR.ifs PRELIMINARES				
1.00.00	Oak.iis PRELIMINARES	- 1			
1.01.00	TRAZO. NIVELES Y REPLANTEO PRELIMINAR	M2	90.00	324D.oo1	
01.02.00	TRAZO DURANTE LA EJECUCIÓN DE LA OBRA	M2	9000	3240.00	
77.02.00	THE DESTRICT IT EDECOCION IL IN CANT	1			
2.00.00	MOVIMIENTO DE TIERRILS				
22 01 00	EXCAVACION DE ZANJAS PARA CIMIENTOS CORRIDOS	M3	26 94	969 84	
2.02 00	CORTE SUPERFICIAL DEL TERRENO H= 0.05 M	M3	3.15	113.51	
	RELLENO QIMA TERIAL PROPIO	M3	14.81	533.06	
02.03.00 = 02.04.00	NIVELACION INTERIOR Y COMPACTACION	M3	52.76	1899.34	
02.04.00 02.03 M	ACARREO DE MA TERAL EXCEDENTE	- M3	19 87	715 37	
12.03 W 12.04 00	ELIMINACION DE MATERIAL EXCEDENTE	M3	19 87	715 37	
12 U4 UU	ELIVIN VACION DE MATERIAL DIOLDENTE	IVIO			
03.00.00	CONCRETO SIMPLE			1	
03.01.00	SOLADO DE 2º MEZCLA 1:12 CEMENTO:HORMIGÓN	t M2	2694	969.84	
03.02.00	CONCRETO PREMEZCLADO fe = 100Kg,tm2 PICIMIENTOS	мз	11.83	425.88	
3 B 00	CONCRETO PREMEZCLADO fe = 100Kglem2 PISOBRECIMIENTOS	M3	6 01	216 23_	
03 04 00	ENCOFRADO Y DESENCOFRADO NORMAL PISOBRECIMIENTOS	M2	86 13	3100 54	
03 05 00	CONCRETO EN FALSO PISO MEZCLA 18 CEMENTO-HORMIGÓN E=4"	M2	46 22	1663 97	
04 00 00	CONCRETO ARMADO		-	1	
0 1.0 0.0 0	CONTONETO YUMANA				
!!!.:!!!00	tv1G45				
04 01 01	CONCRETO PRE-MEZCLADO fe = 175 Kglem2	M3	2 25	80 99	
04 01 02	ENCOFRADO Y DESENCOFRADO NORMAL EN VIGAS	M2	36 02	1296 69	
O4 01 03	_!,CERO GRADO 60 EN VIGA®	KG	266 70	9601 10	
IU.02.00	LOSAS AUGERADAS				
04.02.01	CONCRETO PRE-MEZCLADO fe= 175 Kg,tm2	м3	2 16	7790!	•
04 02 02	-COLOCACIÓN DE VIGUETAS PRETENSADAS (FIRTH)	M	62 36	2244 96	
	ENCOFRADO Y DESENCOFRADO (FIRTH)	M2	36 06	1298 26_	
04 02 04	COLOCACIÓN DE BOVEDILLAS (FIRTH)	IVI2	36 06	1298 26	
0.00	ACERO GRADO 60 EN LOSAS ALIGERADAS	KG	34.56	12«.11L	
IU.03.00	LOSAS MACIZA	i	1		
04 03 01	CONCRETO PRE-MEZCLADO fc=175 Kg,tm2	мз *	0.23	8 12:	
04 03 02	ENCOFRADO Y DESENCOFRADO DE LOSA	M2	4 51	162 34	
04 CB CB	ACERO GRADO 60 EN LOSAS MACIZAS	KG	19 53	703 13	
IU.IU.00	MUROS DE ALBAÑILERIA ARMADA	1		Γ 1	
04.04.01	CONCRETO LIQUIDO PRE-MEZCLADO EN MUROS	M3	3.34	120.10	
04.04.01	ACERO EN MUROS DE ALBAÑILERIA ARMADA	KG	53914	19409.04	
04.04.02	BLOQUE DE ARCILLA ITAFS I RAMICA O 12-0 3867"0 185	M2	82 51	2970 22	

RESUMEN DE METRADOS - ARQUITECTURA ler Nivel								
PROYECTO	COMPLEJO HABITACIONAL -LAS AMAPOLAS"	PLANO N'	AOI-AOL					
	SISTEMA CONSTRUCTIVO "C" ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA	METRAOO POR	MMEA					
FECHA	MARZO DEL 2006	REVISADO POR	GRUPO ALPHA					

PARTIDA N°	OESCRIPCION	UNO	MITRADO	VTVIENDAS	MITRADO TOTAL.	OBSERVACIONES
		NÚMERO DE	E VTVIENOAS =	36		
01.00.00	REYQQUES YENj.UG_IDOS					
1.0 1.00	SOLAQUEADO EN MUROS INTERIORES		97 48	1	2500 40	
0 1.0 2.00	SOLAQUEADO EN VIGAS EXTERIORES	M2 M2	4 87	1	3509 10 175.25	
7.02.00	OCE IQUEADO EN VIGILO EXTENIONES	MZ	4 07	1	173.23	
02.00.00	CIELO RASOS	1				
02.01.00	CIELO RASO CIMEZCLA C A 15	M2	37 88		136364	
03.00.00	t'sos					
			1			
03 61 \$ s o	DE CERAMICO 20 X 20	M2	15 16		5456-4	
03 0 2 0 0	PISO DE CEMENTO PULIDO Y COLOREADO	M2	33 51		1206 52	
03 03 00	PISO DE ADOQUINES DE CONCRETO	M2	4 63		166 68	
03. 0 4 00	SARDINEL SUMERGIDO DE CONCRETO fc=175 Kglcm2	М	9 26		333 36	
04.00.00	+ CONTRAZOCALQS					
			06.40		/	
040100 -	CONTRAZOCALO DE CEMENTO PULIDO (H=O 10 m/	M	33 46		1204 56_	
04 02 00	CONTRAZOCALO DE CERAMICO (H=0 10 m)	М	11 92		429 12	
0s.00.00 ∳ Z	OCALOS		t-			
0.	ZOCALO DE CERAMICO DE 20 x 20 cm	M2	15 40		554.26	
0 5.0 1.00 05.02 �	ZOCALODE CEMENTO PULIDO IMPERMEABILIZADO	M2	5 58		200.88	
06.00.00	CARPINTERIA DE MADERA					
	TIPO PO / HOMA PE O MAGO	UND	100		36.00	
06.01.00	;PUERTA TIPO P-2 (1 HOJA/ DE 0.9 1m X 2.20m	UND	1 100	i	36001	
o 6.02% -	NPUERTA TIPO P-3 (1 HOJA) DE 0.71m X 220 m	UND	100		36001	
07.00.00	CARPINTERIA METALICA	-				
07.0100	-i,UERTA TIPO P-1 (1 HOJA) DE 091m X 2 20m	UND	2 0 0		72 00	
07 02 00	VENTANA TIPO V-1 DE 19 1m X 120 m	UND	1 0 0		36 00	
07.03.00	VENTANA TIPO V-2 DE 1.11 m X 1.20 m	UND	100	f	36.00	
0 7.0 4.00	VENTANA TIPO V-3 DE o 91m X 1.60 m	UND	000	1	000	
0 7.0 5.00	VENTANA TIPO V4 DE 1.00m X 1.00 m	UND	100		36.00	
0 7.06.00	1 V/TROVEN DE ALUMINIO H = O30 m	UND	080		28 801	
07. 0 7.00	ESCALERA METAL/CA TIPO CARACOL	GLB	000		000	
08.00.00	PINT_URA_					
0.1	IDINITUDA TEMPLE EN CIELADAS O	M2	37 88	t	1363 64	
08.01.00 08.02.QQ	IPINTURA TEMPLE EN CIEL ØBA5_O JULI_TURA LATEX EN MUROS INTERIORES	M2	96 76		3483.32	
09.00.00	APARATOS YACG 5SORIOS♦ANITARIOS			+		
		Desa	4.00	х -	00.00	
09.01.00	INODORO COLOR BLANCO ECONÓMICO	PZA	1 00		36 00	
09.02.00	ILAVATORIO DE PARED COLOR BLANCO C/0 1 LLAVE	PZA	100	+	36.00- 3600	
09. o 3.00	LAVADERO DE ACERO INOXIDABLE CID/LLAVE GITATORIA	PZA	100			
09.04.00	TLAVADERO DE GRANITO C/0 1 LLAVE	PZA PZA	1.00	1	36.00l	
090500	DUCHA CROMADA DE CABEZA GIRATORIA	P4A	100	Ý.	30 00	
10.00.00	VABIOS					
10.0 1.00	IMESA DE CONCRETO DE 3.70 m X o 60m H = O90 m	UND	1 0 0		3600	
10.0 1.00	JUNTAS DE POLIURETANO	M	3030	Ÿ.	1090.80	
	SEMBRADQ DE GRASS	M2	28.76		1035 52	
10.03.00			90 00		3240 00	

RESUMEN DE METRADOS - INSTALACIONES ELECTRICAS

PROYECTO: COMPLEJO HABITACIONAL "LAS AMAPOLAS"

PLANO N° A 01 • A 02 METRADO POR M M E A

SISTEMA CONSTRUCTIVO "C" ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA

METRADO POR MMEA
REVISADO POR GRUPO ALPHA

FECHA MARZO DEL 2006

TEII	DESCRIPCION	UND	CANTIDAD
	SALIDA DE TECHO C/CABLE AWG TW 25MM(14)+0 PVC SEL 15MM(5/8)	PTO	20.00
	SALIDA DE PARED C/CABLE AWG TW 4 OMM(12)+0 PVC SEL 15MM(5/8)	PTO	5 DO
	SALIDA PARA TOMACORRIENTES BIPOLARES SIMPLES CON PVC	PTO	26.00
	SALIDA PARA TOMACORRIENTES BIPOIARES DOBLE CON PVC	PTO	2.00
	CAJA DE FIERRO GALVANIZADO 200X200XJO MM INC TAPA	UNO	1 00
	SALIDA PARA TELEFONO	PTO	1 00
	SALIDA PARA INTERCOMUNICADOR	PTO	1 00
	CABLE ELECTRICO 3X10MM2+1WM2	М	11.00
	SALIDA PARA TIMBRE TIPO GONG CON PVC	PTO	1.00
	TUBERIAS PVC SAP (ELECTRICAS) 0=35 nm	M	11.00
	TUBERIAS PVC SAP (ELECTRICAS) D= 15 mm	M	1
	POZO A TIERRA	UND	1 00
	TABLERO DE DISTRIBUCION 12 POLOS	UNO	1.00
	MURETE PARA CONECCION DE MEDIDOR DE LUZ	UNO	1.00

RESUMEN DE METRADOS - INSTALACIONES SANITARIAS

PROYECTO COMPLEJO HABIT ACIONAL "LAS AMAPOLAS"

PLANON° A01-A02 METRADO POR MMEA

SISTEMA CONSTRUCTIVO "C" ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA MARZO DEL 2006

REVISADO POR GRUPO ALPHA

ITEM	DESCRIPCION	UNO	CANTIDAD
	SISTEMA DE DESAGUE		
	SALIDAS DE PVC SAL PARA DESAGUE DE 2:	PTO	15.00
	SALIDAS DE PVC SAL PARA DESAGUE DE 4	PTO	4.00
	SALIDAS DE PVC SAL PARA VENTILACION DE 2'	PTO	4.00
	TUBERIA DE PVC SAL 2'	м	9.65
	TUBERIA DE PVC SAL 4'	M	27.40
	CODO PVC SAL 2'X45°	PZA	6.00
	CODO PVC SAL 2"X90°	PZA	23.00
	CODO PVC SAL 4•X90•	PZA	3.00
	YEE PVC SAL 4'	PZA	10.00
	YEE PVC SAL 2'	PZA	3.00
	REDUCCION PVC DE 4' a 2	PZA	8.00
	REGISTRO DE BRONCE DE 2'	UND	4.00
	SOMBRERO VENTILACION PVC DE 2'	PZA	2.00
	CAJA DE REGISTRO DE DESAGUE 30 x 60 cm	PZA	3.00
	SISTEMA DE AGUA FRIA		
	SALIDA DE AGUA FRIA CON TUBERIA DE PVC-SAP 1/2'	PTO	16.00
	RED DE DISTRIBUCION TUBERIA DE 1/2" PVC-SAP	м	40.49
	VALVULAS DE COMPUERTA DE BRONCE DE 1/2"	PZA	6.00

ROVECTO ECHA	COMPLEJO HABITACIONAL "'LAS AMAPOLAS- AGUA POTABLE Y ALCANTARILLADO MARZO DEL 2006					PLANO N' METRADOPOR REVISADO FOR		PA01-P0 MMEA GRUPO AL	
PARTIDA	DESTRC	N	ANCHO	ALTO	LARGO	PARCIAL	TOTAL	UNID	OBSERVCIONES
		VECES	(m)	jm)	(m)			-	
00	<i>IR®º DE DISTRIBUCH)N DE</i> AGUA POTAB	μ							
1.01.00	METRADO DE TUBERIAS								
1	UBERIA PVC SERIE 13	100		, 00	1819 50	1819 50			
						TOTAL	1,819.50	M	
1.02.0_0	METRADO DE VALVULAS								
	VALVJLA DE COMPUERTA	9 00		, 00	1 Qi	9 00		-	
	VALVULA DE COIVII CENTA	900		, w	1 0				
						TOTAL	9.00	UND	
2.01.00	METRADO DE ACCESORIOS	_							
2.07.00									
	CODO 22 5 ° x 100 mm	10 00	100	100		1000 5 00			-
	CODO 90° x 100 mm CRUZ 90 mm x 90 mm	5 00 1 00	100	100		100			
	CROZ 90 HIII X 90 HIII	17 00	1 , 00	100		17 00			
e	GRIFps CONIBAIN_fENDIOS	, 00	, 00	1 00		1 00			
03.01.	CONEXIONES D ICILIARIAS							-	
	CONEXIONES DOMICILIARIAS INDIVIDUALES	200 00	100		1 00	200 00			
	CONEXIONES DOMICIEIARIAS INDIVIDUALES	200 00						1 4	0
					1	TOTAL	1 200.00		
				-	1				
<u>1LIOOOO -</u>	ADDE ALCANTARILLADO			-	-				
04.01.00	METRADO DE TUBERIAS								
		, 00			181950	1819 50			
		, w							
					-	TOTAL	1,819.50	1	
04.02.00	METRADO DE B'-!! ONE5 Y BUZONETAS		+	-					
04.02.00					28 00	28 00	-	-	
	BUZONES TIPO 1	, 00			28 00	26 W		+	
						TOTAL	25.	od u	
05.01.00	CONEXIONES DOMC/UARIAS							-	t
05.01.00				0.0	1 00	200 00			
f	CANTIDAD DE CONEXIONES DOMICILIARIAS	200 00		,	100	200 00			
-			T .	1 = =		TOTAL	2 .	♦ I D	ļ
						4		+ -	

PRECIOS Y CANTIDADES DE RECURSOS REQUERIDOS

Obra SISTEMA "C" • ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA

Fecha 01/02/2006

Lugar EX · FUNDO OQUENDO . CALLAO

Código	Recurso	Unidad	Cantidad	Precio S/.	Parcial SI.	Presup. Sl.
	MA	NO DE OBRA	Δ			
0147000037	OPERADOR DE EQUIPO	hh	949.1600	11 30	10.725.52	10,714.12
0147010001	CAPATAZ	hh	4,374 8900	14 69	64,267 19	64,496 35
0147010002	OPERARIO	hh	37 289 0300	11 30	421,365 99	421,290 01
0147010003	OFICIAL	hh	8,1597100	10 13	82,657 83	82,424 3
0147010004	PEON	hh	27,688 9700	9.15	253,354.12	253,364.44
					832.370.66	832.28923
	м	IATERIALES				
0202000010	ALAMBRE NEGRO# 16	kg	1,962 7600	4.73	9.283 86	9.530 86
0202000015	ALAAI!RE NEGRO# 8	kg	1,484.4100	3.36	4,987.62	5,005.44
0202010002	CLAVOS PARA MADERA CON CABEZA DE 21/2"	lg	22.7300	3.50	79.55	79.55
0202010005	CLAVOS PARA MADERA CON CABEZA DE 3	lg	1,683.7600	3.81	6,415.14	6,417.05
0202010022	CLAVOS PARA MADERA	lg	207 3600	381	790 04	790 20
0202080008	PERNO DE ANCLAJE PARA INODORO	pza	216 0000	3 50	756	756.00
0202080010	PERNO DE ANCLAJE PARA SUJECION DE INODORO	pza	216 0000	3 50	756 00	756 00
0202990001	CLAVOS	lg	106 5100	38	406.20	410.16
0203020003	ACERO CORRUGADO ty-4200 kg/cm2 GRADO 60	lg	58,951 9700	2.66	156,812.25	156,834.49
0204000000	ARENA FINA	m8	212.8500	21 01	4,471.93	4,489.06
0204010003	TIERRA DE CHACRA O VEGETAL	m8	50 4000	26.00	1,310 40	1,310 40
0204010005	THOR GEL	lg	180 0000	12.81	2,30508	2,305 08
0205000003	PIEDRA CHANGADA DE 1/2'	m8	10 0000	37 82	378 23	376 70
0205000004	PIEDRA CHANGADA DE 314	n8	63.8-400	35.80	2,285.51	2,293.55
0205010004	ARENA GRUESA	m8	61.3200	21.85	1,339.88	1,344.35
0206500070	CONECTOR TIPO AB COPPERWELD	pza	72.0000	8.73	628.56	628.58'
0206700009	VARILLA DE COBRE D=20mmX2 40	pza	36 0000	105_51	3,798 36	3,798 .36
0207010000	CABLE TW # 14 AWG 2.5 mm2	m	9.151 2000	09	8,327 59	8,331 _12
0207010001	CABLE TW # 12 AWG · 4 mm2	m	20,952 0000	O89	18,647 28	18,647 28
0207020017	CONDUCTOR DE COBRE 1x10mm2	m	72.0000	1.00	72.00	72.00
0210020067	INODORO BLANCO	u	108.0000	·15.60	12,484.80	12,484.80
0210040098	LAVA TORIO BLANCO	pza	108.0000	35.00	3,780.00	3,780.00
0210060008	DUCHA CROMADA INCLUYE GRIFERIA 1 LLAVE	u	108 0000	72.50	7,830 00	7,830 00
0210090003	LAVADERO DE ACERO INOXIDABLE 13º X 20'	u	36 0000	115 00	4,140 00	4,140 00
0210110004	DESAGUE PARA LAVATORIO BLANCO 11/4" PVC	· u	108 0000	21 00	2,268.00	2 268 00
0210130064	LLAVE PARA LAVATORIO CROMADA 1/2"	u	108.0000	35.00	3,780.00	3,780.00
0210130107	LLAVE DE CAÑO DE 1/2"	pza	36.0000	22.00	792.00	792.00
0210140077	TUBO DE ABASTO DE ACERO 718'	u	108.0000	6.50	702.00	702.00
0210160003	LAVADERO DE GRANITO	pza	36,0000	49.00	1,764 00	1,764 00
0210200037	TUBO ABASTO 112	u ·	108 0000	6.30	680 40 1,447 20	680 40
0210230001	REGISTRO DE BRONCE DE 2	U	144 0000 216.0000	10 05 3.50	756.00	1,447 20 756.00
021034000J	UNAS PARA LAVATORIO	pza	936.0000	4.27	3,996.72	3,996.72
0212010001	TOMACORRIENTE SII.PLE PIANO BAKEUTA	pza	72.0000	9.64	69408	694.08
0212010039	TOMACORRIENTE BIPOLAR DOBLE + TOMA A TIERRA INTERRUPTOR TERMOMAGNETICO DE 2 X 20A X 240V	pza U	36 0000	77 51	2,790 36	2,790 36
0212020025	INTERRUPTOR BIPOLAR	pza	144 0000	7.58	1,091 52	1,091 52
0212030040 0212030045	INTERRUPTOR BIPOLAR INTERRUPTOR CONMUTACION	pza	72.0000	7.58	545.76	545. 76
0212050045	TIMBRE	u	36.0000	4.96	178.56	178.56
0212080004	Wali socket de Bakeuta	u	720.0000	521	3,751 20	3,751 20
0212090003	CAJA OCTOGONAL GALVANIZADA LIVIANA 4 X4' X2 12	u.	1,441 4400	3 44	4,958 55	4,959 36
0212090004	CAJA RECTANGULAR GALVANIZADA LIVIANA DE 4' X 2 1/8'	ш	252 0000	3 44	866 88	866 88
0212090030	CAJA RECTANGULAR GALVANIZADA PESADA 4 X 2 18' X 2 18	u	36 0000	11 08	398 88	398 88
0212090043	CAJA DE PASO CON TAPA CIEGA 100 mm X 40 mm	u	36.0000	40.00	1,440.00	1,440.00
02120900-49	CAJA OCTOGONAL GALVANIZADA LMANA 4 X 2 18 •	u	900.0000	3.44	3,096.00	3,096.00
0212090101	CAJA DE FIERRO GALVANIZADIL 200 X 200 X 30 mm INCLUYE TAPA	esl	36.0000	54.42	1,959.12	1,959 12
0212220009	PLACA ALUMINIZADA CIEGA	pza	36 0000	5 25	189 00	189 00

Obra SISTEMA "C" • ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA

Fecha 01/02/2006

Lugar EX • FUNDO OQUENDO - CALLAO

Código	Recurso	Unidad	Cantidad	Precio SI.	Parcial SL	Presup. SI.
0212700022	TABLERO DE DISTRIBUCION T-2	u	36.0000	208.94	7.521.84	7.521.84
0217000023	LADRIUO KING KONG DE ARCIUA 9 X 14 X 24 cm	u	9.onoooo	0.31	2.812.32	2.812.32
0217010020	LADRILLO 12X40X25	и	20.605 0400	1 20	24. 726 05	24.726 05
021i640001	LADRILLO DE ARCILLA ITALCERAMICA	mil	86 5300	1.250 00	108.164_63	108.198 10
0219010039	CABLE ELECTRICO 3X 10mm2+ 10mm2	m	1,247 4000	132	1.646.57	1.647 36
0221000001	CEMENTO PORTIAND TIPO 1(42.5 kg)	bis	3.892.1900	15.13	58.888.84	58.924.47
0221010000	CONCRETO PREMEZCLAOO fc=100 kg/cm2	m8	654.9500	205.00	134.265 20	134.265.20
0221010034	CONCRETO PREMEZCLAOO fc=175 kg/cm2	m8	336.3600	220.00	73.998.50	73.998.49
0221010035	CONCRETO LIQUIDO PRE MEZCLADO	m8	275 8400	214 50	59.168 60	59,169.94
0221030005	VIGUETAS PRETENSADAS TIPO V-101	m	9,608 5400	10 50	100.889 71	100,889 71
0221030006	MESAS DE CONCRETO	u	36 0000	220 00	7.920 00	7,920 00
0221070001	AOOQUIN DE CONCRETO 10X20X3.5 GRIS	m2	175.0100	22.50	3.937.82	3.938.65
0229030100	CAL HIDRATADA DE 30 Kg	bis	130.8000	10.08	1,318.50	1.341.58
0229040003	CINTA AISLANTE	u	232.2000	3.05	708.21	717.84
0229050011	MASILLA	kg	1 0800	2	2 16	2 16
0229120063	TECKNOPORT E= 1:	m2	351 8900	5 50	1.935 41	1.935 41
0229150009	OORE	kg	801 5600	10.85	8.696 91	8.701.29
0229180001	FRAGUA	kg	796.9800	240	1.912.74	1.911.03
0229350002	ABONO INORGANICO	kg	1.035.3600	3.80	3.934.37	3.934.37
0229350003	GRASS NACIONAL SELECTO	m2	1.087.1300	2.55	2.772.18	2.774.76
0230060019	MORTERO EMBOLSADO 14	bis	2.515 4600	6 50	16.350 46	16.367.23
0230160036	ADITIVO IMPERMEABILIZANTE	gal	14.0600	21.84	307.11	307.35
0230160066	ADITIVO SELLADOR DE JUNTAS SIKAFLEX GRIS	u	87 9700	54.00	4.750 55	4.750 55
0230460011	PEGAMENTO PARA PVC AGUA FORDUIT	L	90.5000	21.75	1.968.42	1.967.84
0230460036	PEGAMENTO PARA PVC	L	48.5300	30.23	1.467.00	1.466.64
0230480032	CINTA TEFLON NIVEL TOPOGRAFICO	pza	5.4000	1.50	8.10 70.88	8.64
0230550005 0230990019	LIJA	hm	8 1000 1.078 9600	8.75 0.98	1.057.38	64 80 1.078 95
0230990019	WINCHA	plg	8 1000	15 00	121 so	129 60
0231810001	WRETE DE CONCRETO (INCL TUBERIA Y CABLEADO)	u u	36.0000	155.00	5,580.00	5.580.00
O238000000	HORMIGON	m8	358.0400	18.27	6,541.40	6.538.4-
0239020071	COLA SINTETICA	gal	48.2400	13.56	654.13	653.76
0239030000	TIZA	kg	567 0000	040	226.80	226.80
0239050000	AGUA	m8	462 6100	6 00	2.775 67	2.805 96
0239160011	CORDEL	kg	324 0000	280	907 20	907 20
0239800002	ESTACAS DE FIERRO	u	324,0000	0.60	194.40	194.40
0239990018	VENTANA DE FIERRO V-1 1.91m x 1.20m	u	108,0000	343.55	37.103.40	37.103.40
0239990052	VENTANA DE FIERROV-2 1.11m x 1.20m	u	72.0000	199.65	14.374.80	14.374.80
0239990053	VENTANA DE FIERRO V-3 091m x 160m	· u	36 0000	218 24	7,856 64	7,856 64
0239990054	VENTANA DE FIERRO V-4 100m, 1.00m	u	36 0000	149 89	5.396.04	5,396 04
0240130001	CERAMICA CELIMA VITRIFICADA 20 X 20 cm	m2	2.193 8400	17 95	39,379 36	39.385 66
0243040000	MADERA TORNIUO	p2	21,919.4600	2.96	64,881.59	64.885.60
0243040005	MADERA TORNIUO CEPIUADA	p2	6.759.1800	3.10	20.953.45	20.959.65
0243160004	REGLA DE MADERA	p2	621.3300	3.48	2.162.22	2.153.84
0243550002	MADERA ANDAMIAJE	p2	8,200 3900	272	22.305 05	22.361 77
0244050001	TABLERO MELAMINICO e= 15mm	m2	230.0400	24.66	5,672 79	5.672.52
02500100,3	TAPA CON MARCO FIERRO FUNDIDO DE DESAGUE 30cmX60cm	u	108 0000	54 75	5.913 00	5.913 00
0252850003	VITROVENT DE ALUMINIO H=30cm	m	99.3600	15.17	1.506.79	1.507.29
0253000002	PETROLEO DIESSEL # 2	gal	254.2400	5.86	1.489.87	1.488.26
0254030000	PINTURA LATEX	gal	558.6100 1,1970200	24.28 20 00	13.563.01 23,940 36	13.566.20 23,940 36
0254100019	BASE IMPRIMANTE	gal	814 7500	080	651 80	651 80
0254130004	IMPRIMANTE PINTURA AL TEMPLE SIMPLE	kg kg	8147500	O50	407 38	407.38
0255000001		u u	72.0000	288.65	20.782.80	20.782.80
0256990022	PUERTA METALICA P1 (1 HOJA) DE 0.91m x2.20m UNION UNIVERSAL DE FIERRO GALVANIZADO DE 1/2"	u	432.0000	4.83	2.086.56	2.086.56
0265050011 0265130064	NIPLE DE FIERRO GALVANIZADO DE 1/2" NIPLE DE FIERRO GALVANIZADO DE 1/2" X 1 1/2"	u u	432.0000	261	1.127.52	1.127.52
0265250002	ESCALERA DE CARACOL H=2.40 m	glb	36 0000	915 00	32.940 00	32.940 00
0200200002	TUBERIA PVC SAP PRESION C-10 SIR 112 X Sm	m	1,933 7200	6 09	11,77637	11 768 08
0272000029	TEE PVC SAP EMBONE 112'	pza	2.497 8500	4 00	9,991 40	9 991 40
0272020022	REDUCCION PVC SAP PARA AGUA SIMPLE PRESION 4 A 7	u	324.0000	19.68	6,376.32	6,376.32
0272170003	TEE SANITARIA SIMPLE PVC SAL DE 4	u	288.0000	7.50	2.160.00	2.160.00

Obra SISTEMA "C" · ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA

Fecha 01102/2006

Lugar EX · FUNDO OQUENDO . CALLAO

Código	Re-curso	Unidad	Cantidad	Precio SL	Parcial SL	Presup. St.
0272170019	TEE SANITARIA SIMPLE CON REDUCCION PVC SAL 4°A 2°	u	540.0000	8.35	4.509.00	4,509.00
0272300000	CODO PVC PARA AGUA DE 112 X 90+	u	2,653_3700	12	3,210.58	3,215.97
0272310006	ADAPTADOR PVC SAP 1/T	u	576.0000	0.81	465.98	466.56
0272320001	YEE PVC SAL4•	u	216.0000	18.69	4,037.04	4,037.76
0272320002	YEE PVC SAL 2'	u	567.0000	5.14	2,914.38	2.916.00
0273010007	TUBERIA PVC SAL 2 X 3 m	pza	471.3300	12 34	5,816.21	5,816.07
0273010009	TUBERIA PVC SAL 4' X 3 m	piza	395 6400	31 30	12,383.53	12.389.18
0273110002	CODO PVC SAL 2' X 90+	pza	975.3300	1.82	1,775 10	1,77563
0273110004	CODO PVC SAL 4 X 90.	piza	496.4400	7.52	3.733.23	3.731.83
0273110052	CODO PVC SAL 2' X 45°	pza	156.3300	1.82	284.52	284.87
0273110054	CODO PVC SAL 4 X 45	pza	345.2400	7.52	2.596.20	2,594.23
0273130003	TEE PVC SAL 2' X 2'	pza	156 3300	3.82	597.18	597.53
0273130006	TEE PVC SAL 4' X 4'	pza	345 2400	13 60	4,695.26	4,695.26
0273200012	TRAMPA ·p· DE PVC	pza	144.0000	15 00	2,160 00	2,160.00
0273230001	S0"'3RERO DE VENTILACION PVC SAL 2'	pza	216.0000	4.72	1,019.52	1,019.52
0274010005	TUBO PVC SAP EC PARA INSTALACIONES ELECTRICAS 11/T X3	pza	138.6000	18.65	2.584.89	2,585.88
0274010011	TUBERIA PVC SAP PARA INSTALACIONES ELECTRICAS DE 1/4'	pza	1,512.0000	4.09	6,184.08	6,189.12
0274010012	TUBERIA PVC SAP PARA INSTALACIONES ELECTRICAS DE 1'	m	236.5200	274	646.06	648.00
0274010013	TUBERIA PVC SAP PARA INSTALACIONES ELECTRICAS DE 2'	m	407.8800	8 43	3,436.39	3,437.28
0274010032	TUBERIA DE PVC SAP 3/4'	u	1,528.2000	4.09	6,250.34	6,253.56
0274020005	CURVA PVC SAP PARA INSTALACIONES ELECTRICAS 11/T	pza	43.0500	10.11	435.19	435.60
0274020006	CURVA PVC SAP PARA INSTALACIONES ELECTRICAS 2'	pza	792.0000	11.90	9,424.80	9,424.80
0274020008	CURVA PVC PARA INSTALACIONES ELECTRICAS 1º	pza	7?0000	4.04	291.17	291.24
0274020014	CURVA PVC SAP PESADO PARA INSTALACIONES ELECTRICAS DE	u	3,168.0000	095	3,009.60	3,009.60
0274030005	UNION PVC SAP PARA INSTALACIONES ELECTRICAS DE 3/4'	u	1,476 0000	065	959 40	959.40
0274030009	UNION PVC SAP PARA INSTALACIONES ELECTRICAS DE 2'	u	792.0000	1.52	1,203 84	1,203.84
0274030013	UNION SI PVC SAP PARA INSTALACIONES ELECTRICAS 1 112	pza	131.9900	1.20	158.38	158.40
0274040002	CONEXIONA CAJA PVC SAP I/4'	pza	5,184.0000	0.81	4,199.04	4,199.04
0274040003	CONEXIONA CAJA PVC SAP 1	pza	36.0000	1.07	38.52	38.52
0274040006	CONEXION A CAJA PVC SAP 2'	pza	792.0000	1.45	1,148.40	1,148.40
0277000002	VALVULA COMPUERTA DE BRONCE DE 112	u	216.0000	23 35	5,043 60	5,043.60.
					4 0 4 0 4 4 0 0 0	
					1,318,446.02	1,319,029.36
		EQUIPOS				
		LQUIFUS				
0337010001	HERRAMIENTAS MANUALES	%MO			29,055.56	29,055.56
0337520087	HOJAS DE SIERRA	ü	10.8000	4 50	48.60	48.60
0337630053	DOBLADORA	lh	346.3700	3.50	1,212.29	1,307 05
0337030035	CAMION VOLQUETE 6 X 4 330 HP 10 m8	hm	71.5400	160.20	11,460.23	11,460.23
0348900001	SIERRA CIRCULAR	lm	1,008.0000	6.78	6,834.24	6,834.24
0348960009	CIZALLA	lm	580.3400	4.95	2.672.70	2.780.75
0349030003	COMPACTADOR VIBRATORIO TIPO PLANCHA 58 HP	hm	261.8300	26.96	7,058.81	7,065.66
0349040010	CARGADOR SOBRE LLANTAS 125-155 HP 3 yd3	lm	71.5400	160 28	11,465.95	11,467.38
0349070001	VIBRADOR DE CONCRETO 4 HP 1.35	lm	58.2800	5.32	310.06	309 77
0349070004	VIBRADOR DE CONCRETO 4 HP 2.40'	hm	186.9000	6.40	1,196.17	1,196.60
0349070005	VIBRADOR DE CONCRETO 4 HP 2.40'	d	8.3300	6.40	53.34	53.34
0349100007	MEZCLADORA DE CONCRETO TAAEOR 18 HP 11 p8	hm	1,148.9500	15.05	17,291.71	17,308.02
0349100011	MEZCLADORA DE CONCRETO TROMPO 8 HP 9 p8	lm	96.9800	15.05	1,459.61	1,464.46
0349510011	BOMBA DE CONCRETO 10 m8h	hm	1,236 4800	30.00	37,094.40	37,094 40
0349860003	TEODOLITO	lm	36.9400	9 82	362 71	356.40
0349900012	CEPILLADORA ELECTRICA	hm	1,008.0000	7.02	7,076.16	7,076.16
					134,852.55	134,878.62

PRESUPUESTO PISTAS Y VEREDAS

PROYECTO: COMPLEJO HABITACIONAL "LAS AMAPOLAS"

FECHA: MARZO DEL 2006

fTEM	OESCRIPCION	UNO	CANTIDAD	P.UNfT	P.PARCIAL
010000	OBRAS PRELIMINARES				
01.01.00	TRAZO Y REPLANTEO	KM	1.48	711.43	1,052.92
02.00.00	MOVIMIENTO DE TIERRAS				
020200	RELLENO	1			V
02.02.01	TRANSPORTE DE MATERIAL DE PRESTAVIO	MB	2,980 00	27.67	82,456.60
02.02.03	RELLENO Y COMPACTACION	MB	2,292.00	34 00	77,928 00
02.03.00	CONFORMACION DE SUBRASANTE				1
02.03.01	CONFORMACION DE SUBRASANTE	M2	9,171.90	1.65	15,133.64
03.0000	PAVIMENTOS				
03.01 .00	SUBBASE GRANULAR				
03.01.02	SUB-BASE E=0.20 M FACTOR COMPACT = 1.20	M2	9,171.90	5.24	48,060.76
03.02.00	BASE GRANULAR				
03.0202	BASE GRANULAR E=0.20 M FACT. COMPACT.=1 20	M2	9,171.90	5.86	53,747.33
03.03.00	IMPRIMACION				
03.03.01	IMPRIMADO	M2	9,171.90	1.11	10,180.81
03.04.00	CARPETA ASFALTICA				
030401	CARPETA ASFALTICA EN CALIENTE DE 2'	M2	9,171.90	166	15,225.35
04.00.00	OBRAS DE ARTE	1			
04.01.00	SARDINELES				
04.01 .02	SARDINELES DE CONCRETO	M	2,968.00	14.97	44,430.96
04.02.00	VEREDAS				
04.02.03	VEREDA DE CONCRETO DE 4'	M2	3,642.00	26.09	95,019.78
04.03.00	IMPRIMACION				(
04.03.01	IMPRIMACION BITUMINOSA MANUAL	M2	728.00	2.73	1,987.44
04.04.00	CONFORMACION DE SUBRASANTE				
04.04 01	CONFORMACION DE SUBRASANTE PARA VEREDAS	M2	1,228.00	139	1,706.92
04.05.00	BASE GRANULAR				E.
04.05.01	AFIRMADO DE 4" PARA VEREDAS	M2	1,228.00	8.27	10,155.56
04.06.00	SEÑALIZACION				
04.06.02	PINTADO DE PAVIMENTOS(LINEA RECTA)	M	1,484.00	171	2,537 64
	COSTO DIRECTO				459,623.70
	GASTOS G + UT Y DIRECCION TECNICA (15%)				68,943 56
					F00 F07 6
	SUB-TOTAL				528,567.26
	IGV(19%)				100427 7794
		C/			620 00E 04
	PRESUPUESTO TOTAL	S/.			628,995.04

PRESUPUESTO FINAL (1 nivel)			
Descripción	Precio	Sub Total	Total
SISTEMA CONSTRUCCION "A" (36 viviendas)			
ALBAÑILERIA ARMADA CON BLOQUES DE CONCRETO			
ESTRUCTURAS	850,483.36		
ARQUITECTURA	294,192.33		
INSTALACIONES SANITARIAS	181,435 92		
INSTALACIONES ELECTRICAS	145,265.76		
		1,471,377.37	
SISTEMA CONSTRUCCION "B" (52 v1v1endas)			
SISTEMA CONSTRUCCION "B" (52 v/v/lendas) ALBAÑILERIA ARMADA CON BLOQUES SILICO-CALCAREOS			
ESTRUCTURAS	1, 198,892.38		
ARQUITECTURA	460,990.60		
INSTALACIONES SANITARIAS	262,07411		
INSTALACIONES ELECTRICAS	209,828.32		
		2,131,78541	
SISTEMA CONSTRUCCION "C" (36 viviendas)			
ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA	0.40.050.00		
ESTRUCTURAS	818,356.88		
ARQUITECTURA	320,761 17		
INSTALACIONES SANITARIAS	181,435.92		
INSTALACIONES ELECTRICAS	1"5.265.76	1,465,819.73	
SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS	803,961.78 396,010.72 191,515 70 153,336.08	1 544 924 20	
		1,544,824.28	
SISTEMA CONSTRUCCION "E"			
MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas)			
ESTRUCTURAS	746,847.25		
ARQUITECTURAS	342,559.81		
INSTALACIONES SANITARIAS	191,515.70		
INSTALACIONES ELECTRICAS	153,336.08	1,434,258.84	
		1,434,236.64	
HABILITACION URBANA (200 v1v1endas)			
ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE		145,605.24	
COOTO DIDECTO			8,193,670.87
COSTO DIRECTO			804,140.22
GASTOS GENERALES (10.22%) UTILIDAD (5%)			409,683.54
0.11.5.15 (0/0)			
SUBTOTAL			9,407,494.63
IGV (19%)			1787423.98
TOTAL PRESUPUESTO			11,194,918.61

GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 1,332,480 651,898.3	PRESUPUESTO FINAL (2 niveles)			
ALBANILERIA ARMADA CON BLOQUES DE CONCRETO	Descripción	Precio	Sub Total	Total
ALBANILERIA ARMADA CON BLOQUES DE CONCRETO	SISTEMA CONSTRUCCION "A" (36 viviendas)			
ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "B" (52 viviendas) ALBAÑILERIA ARMADA CON BLOQUES SILICO-CALCAREOS ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "C" (36 viviendas) ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA ARQUITECTURA INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "B" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ARGUITECTURAS ARQUITECTURAS ARQ				
ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SELECTRICAS SISTEMA CONSTRUCCION "B" (52 viviendas) ALBAÑILERIA ARMADA CON BLOQUES SILICO-CALCAREOS ESTRUCTURAS ARQUITECTURA BISTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "C" (36 viviendas) ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA ARQUITECTURAS ARQUITECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SIBTEMA CONSTRUCCION "E" ARQUITECTURAS ARQU		1,326,484.57		
INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "B" (52 viviendas) ALBAÑILERIA ARMADA CON BLOQUES SILICO-CALCAREOS ESTRUCTURAS ARQUITECTURA 961,112.16 INSTALACIONES SANITARIAS 296,113.83 INSTALACIONES ELECTRICAS 317,203 12 SISTEMA CONSTRUCCION "C"_ (36 viviendas) ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS 670,931.27 INSTALACIONES SANITARIAS 1,260.662 29 ARQUITECTURA 670,931.27 INSTALACIONES SANITARIAS 205,001.88 INSTALACIONES SANITARIAS 205,001.88 INSTALACIONES SANITARIAS 219,602.16 SISTEMA CONSTRUCCION "D"_ (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS 400,158.78 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES SELECTRICAS 231,802.28 LABAÑILERIA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 695,620.31 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES SANITARIAS 216,390.89 I	ARQUITECTURA			
SISTEMA CONSTRUCCION "B" (52 viviendas) ALBARILERIA ARMADA CON BLOQUES SILICO-CALCAREOS	INSTALACIONES SANITARIAS	205,001.88		
SISTEMA CONSTRUCCION "B" (52 viviendas) ALBAÑILERIA ARMADA CON BLOQUES SILICO-CALCAREOS ESTRUCTURAS	INSTALACIONES ELECTRICAS	219,602.16		
ALBAÑILERIA ARMADA CON BLOQUES SILICO-CALCAREOS			2,392,162.36	
ALBAÑILERIA ARMADA CON BLOQUES SILICO-CALCAREOS	SISTEMA CONSTRUCCION "B" (52 viviendas)			
ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "C" (36 viviendas) ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS ARQUITECTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES GANITARIAS INS				
INSTALACIONES SANITARIAS 17,203 12 3,387,199.95 3,387,199.		1,812,770.84		
SISTEMA CONSTRUCCION "C" (36 viviendas)	ARQUITECTURA	961,112.16		
SISTEMA CONSTRUCCION "C" (36 viviendas) ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS 1,260,662 29 ARQUITECTURA 670,931.27 INSTALACIONES SANITARIAS 205,001.88 INSTALACIONES ELECTRICAS 219,602.16 SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS 40,158.78 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES SANITARIAS 231,802.28 SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 494,122.04 SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 695,620 31 INSTALACIONES ELECTRICAS 231,802.28 INSTALACIONES ELECTRICAS 231,802.28 INSTALACIONES ELECTRICAS 216,390 88 INSTALACIONES ELECTRICAS 231,802.28 INSTALACIONES ELECTRICAS 231,802.28 INSTALACIONES ELECTRICAS 216,390 88 INST	INSTALACIONES SANITARIAS	296,113.83		
SISTEMA CONSTRUCCION "C" (36 viviendas) ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS 1,260,662 29 ARQUITECTURA 670,931,27 INSTALACIONES SANITARIAS 205,001.88 INSTALACIONES ELECTRICAS 219,602.16 2,356,197.60 SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS 205,770.10 ARQUITECTURA 840,158.78 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES ELECTRICAS 231,802.28 ESTRUCTURAS 2,494,122.04 SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 695,620 31 INSTALACIONES SANITARIAS 1,118,866.31 ARQUITECTURAS 695,620 31 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES ELECTRICAS 231,802.28 INSTALACIONES ELECTRICAS 2494,122.04 INSTALACIONES ELECTRICAS 2494,122.04	INSTALACIONES ELECTRICAS	317,203 12		
ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MURCS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS INSTALACIONES ELECTRICAS L1,118,866.31 ARQUITECTURAS ARQUITECT			3,387,199.95	
ALBAÑILERIA ARMADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS ARQUITECTU	SISTEMA CONSTRUCCION "C" (26 Viviendes)			
ESTRUCTURAS ARQUITECTURA (570,931.27 INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS ARQUITECT				
ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS ARQUITECTURAS INSTALACIONES SANITARIAS (216,390.88 INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS INSTALACIONES SANITARIAS (216,390.88 INSTALACIONES ELECTRICAS HABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 670,931.27 205,001.88 201,802.16 2,356,197.60 2,356,197.60 2,349,122.04 2,494,122.04		1 260 662 29		
INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS ARQUITECTURAS ARQUITECTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS HABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL				
SISTEMA CONSTRUCCION "D" (38 viviendas) ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS 205,770.10 ARQUITECTURA 840,158.78 INSTALACIONES SANITARIAS 216,390.88 INSTALACIONES ELECTRICAS 231,802.28 SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 695,620 31 INSTALACIONES SANITARIAS 118,866.31 ARQUITECTURAS 695,620 31 INSTALACIONES ELECTRICAS 231,802.28 INSTALACIONES ELECTRICAS 216,390 88 INSTALACIONES ELECTRICAS 231,802.28 INSTALACIONES ELECTRICAS 2,262,679.78 HABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE 145,605.24 COSTO DIRECTO GASTOS GENERALES (10.22%) 1,332,480 G51,898.3 SUBTOTAL 15,022,345 15,022,345 2,864.245 COSTO ALBORATICA 15,022,345 COSTO ALBORA				
2,356,197.60				
ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA ESTRUCTURAS ARQUITECTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS HABILITACION URBANA ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 2.05,770.10 844,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 3.494,122.04 2.494,122.04 3.494,122.04		·	2,356,197.60	
ALBAÑILERIA CONFINADA CON BLOQUES DE ARCILLA ESTRUCTURAS ARQUITECTURA B40,158.78 INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA ESTRUCTURAS ARQUITECTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS HABILITACION URBANA ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 205,770.10 840,158.78 216,390.88 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 1.118,866.31 695,620.31 2.16,390.88 231,802.28 1.418,605.24 145,605.24 15,022,348 651,898.3	SISTEMA CONSTRUCCION "D" (38 viviendas)			
ESTRUCTURAS ARQUITECTURA BRAUTECTURA BRAUTECTURA BRAUTECTURA BRAUTECTURA BRAUTECTURA BRAUTECTURAS BRAUTECTURA				
ARQUITECTURA INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA ESTRUCTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS HABILITACION URBANA ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE SUBTOTAL 840,158.78 216,390.88 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 1.118,866.31 695,620.31 2.16,390.88 231,802.28 2.262,679.78 145,605.24 13,037,966 651,898.3		.205.770.10		
INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA ESTRUCTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS HABILITACION URBANA ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE (200 viviendas) ABASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 2.494,122.04 1.118,866.31 695,620 31 2.16,390 88 231,802.28 2.262,679.78 145,605.24 15,022,345 651,898.3				
SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas)		216,390.88		
SISTEMA CONSTRUCCION "E" MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 1,118,866.31 695,620 3 1,118,390 88 1,18,390 88 1,	INSTALACIONES ELECTRICAS	231,802.28		
MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 1,118,866.31 ARQUITECTURAS 695,620 31 INSTALACIONES SANITARIAS 216,390 88 INSTALACIONES ELECTRICAS 231,802.28 HABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE 145,605.24 COSTO DIRECTO 13,037,966 GASTOS GENERALES (10.22%) UTILIDAD (5%) 15,022,3480 SUBTOTAL 1,332,480			2.494,122.04	
MUROS DE DUCTIBILIDAD LIMITADA (38 viviendas) ESTRUCTURAS 1,118,866.31 ARQUITECTURAS 695,620 31 INSTALACIONES SANITARIAS 216,390 88 INSTALACIONES ELECTRICAS 231,802.28 HABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE 145,605.24 COSTO DIRECTO 13,037,966 GASTOS GENERALES (10.22%) UTILIDAD (5%) 15,022,3480 SUBTOTAL 1,332,480				
ESTRUCTURAS ARQUITECTURAS INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS HABILITACION URBANA ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 1,118,866.31 695,620 3I 216,390 88 231,802.28 2,262,679.78 145,605.24 145,605.24 13,037,966 11,332,480 651,898.3				
ARQUITECTURAS 695,620 31 INSTALACIONES SANITARIAS 216,390 88 INSTALACIONES ELECTRICAS 231,802.28 HABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE 145,605.24 COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) 15,022,345 SUBTOTAL 15,022,345		1 110 000 21		
INSTALACIONES SANITARIAS INSTALACIONES ELECTRICAS 216,390 88 231,802.28 2,262,679.78 HABILITACION URBANA ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 216,390 88 231,802.28 145,605.24 145,605.24 145,605.24 15,022,345 15,022,345				
MSTALACIONES ELECTRICAS 231,802.28 2,262,679.78				
### ABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL (200 viviendas) 145,605.24 145,605.24 13,037,966 1,332,480 651,898.3				
HABILITACION URBANA (200 viviendas) ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE 145,605.24 COSTO DIRECTO 13,037,966 GASTOS GENERALES (10.22%) 1,332,480 UTILIDAD (5%) 651,898.3 SUBTOTAL 15,022,345	INSTALACIONES ELECTRICAS	201,002.20	2.262.679 78	
ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 145,605.24 13,037,966 1,332,480 651,898.3			, , , , , , , , ,	
ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE COSTO DIRECTO GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 145,605.24 13,037,966 1,332,480 651,898.3	TO ADILLITY COLOR OLLOW			
GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 1,332,480 651,898.3 15,022,345	ABASTECIMIENTO DE AGUA POTABLE Y DESAGUE		145,605.24	
GASTOS GENERALES (10.22%) UTILIDAD (5%) SUBTOTAL 1,332,480 651,898.3 15,022,345	COSTO DIRECTO			13,037,966.9
UTILIDAD (5%) SUBTOTAL 15,022,345				1,332,480.22
2,954,245	· · · · · · · · · · · · · · · · · · ·			651,898.35
2,954,245	CUPTOTAL			15,022,345.5
,				2,854,245.65
47.000.004	•		,-	17,876,591.20

CONCLUSIONES

- 1. El Proyecto planteado es una alternativa económica para la construcción masiva de viviendas, que mejorará la calidad de vida de 200 familias mediante la oferta de una vivienda económica independiente con al capacidad para futuras ampliaciones. Asimismo cuenta con una excelente ubicación próxima a principales vías de transporte.
- 2 La calidad del suelo encontrado en la zona del proyecto contribuye a que su construcción sea económica, ya que la cimentación estará formada por cimientos corridos de concreto ciclópeo a 1.00 m de profundidad y ancho mínimo de 0.50 m. La capacidad portante del terreno para esta cimentación es de 2,20 kg/cm². Además, el material proveniente de excavaciones podrá ser empleado en los rellenos con una adecuada compactación (95% MDS).
- 3. Este sistema permite la construcción de edificaciones en corto tiempo dado al alto rendimiento de la mano de obra calificada. Además, el menor consumo de mortero, la facilidad en la colocación de la armadura en lbs muros, el acabado caravista de los muros, y la disminución de desperdicios de materiales, reducen el costo de la vivienda.
- 4. El impacto social ambiental que se presentará durante la planificación, operación y ejecución podrá ser controlado si se siguen las recomendaciones expuestas en el estudio realizado.
- 5. En la albañilería de concreto se debe diseñar y construir teniendo en cuenta la modulación, tanto en planta como en elevación. Por tanto, se debe compatibilizar los planos de estructuras, arquitectura, instalaciones sanitarias e instalaciones eléctricas. Las tuberías debe ubicarse en alvéolos que no contengan barras de refuerzo.

RECOMENDACIONES

- 1. En el desarrollo del Plan de Manejo Ambiental, se plantean medidas que permiten potenciar los impactos positivos generados por el proyecto; así como, controlar, prevenir y/o mitigar los impactos ambientales negativos generados por el proyecto, de forma directa e indirecta en el ámbito de influencia del Complejo Habitacional en sus distintas etapas. Por lo tanto se recomienda seguir con los lineamientos del Estudio de impacto de ambiental.
- El nivel de cimentación debe estar siempre dentro de la grava o al nivel de la misma. Si el nivel de cimentación está sobre suelo fino entonces la excavación debe profundizarse hasta encontrar el suelo gravoso.
- 3. En las construcciones, generalmente se tienen ambientes con dimensiones pequeñas que varían entre 3 a 4 m; entonces es recomendable que los elementos verticales que sirven para limitar los espacios tengan también funciones estructurales.
- 4. Para el diseño de viguetas pretensadas, considerar el uso de la doble vigueta cuando el aligerado va paralelo a un tabique. Colocar doble malla de temperatura en el último techo, debido a las contracciones del concreto por temperatura.
- 5. Es muy importante que durante la ejecución de la obra se lleve un control de calidad adecuado. En los materiales que se cumpla lo indicado en las especificaciones técnicas, y en el proceso constructivo hacer necesariamente las pruebas exigidas en las normas técnicas.
- 6. Para las futuras ampliaciones deberá dejarse refuerzo vertical con la longitud para los empalmes indicada en los planos. Estos empalmes serán debidamente protegidos doblados por encima de la losa y cubiertos con mortero para evitar su deterioro.

BIBLIOGRAFÍA

ALVA HURTADO, Jorge (2005)

"Mecánica de Suelos Aplicada a Cimentaciones" Seminario Taller de Geotecnia Universidad Nacional de Ingeniería, CISMID Lima - Perú

DAS, Braja M. (2001)

"Principios de Ingeniería de Cimentaciones"

1nternacional Thomson Editores

Mexico D.F. - México

SAN BARTOLOMÉ, Ángel (1994)

"Construcciones de Albañilería, Comportamiento Sísmico y Diseño Estructural" Pontificia Universidad Católica del Perú, Fondo Editorial Lima - Perú

SAN BARTOLOMÉ, Ángel (2003)

"Albañilería Armada Construida con Bloques de Concreto Vibrado" XIV Congreso Nacional de Ingeniería Civil Colegio de Ingenieros del Perú, Consejo Departamental de Loreto Iquitos - Perú

CASTILLO ARAVENA, María Inés (2004)

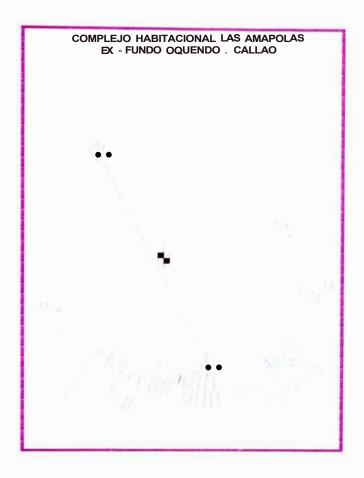
"Manual de Diseño, Proceso Constructivo y de Detalles" FIRTH, Departamento Técnico Lima - Perú

FIRTH Industries Perú S.A. (2002)
"Albañilería de Concreto"
FIRTH, Departamento Técnico
Lima - Perú

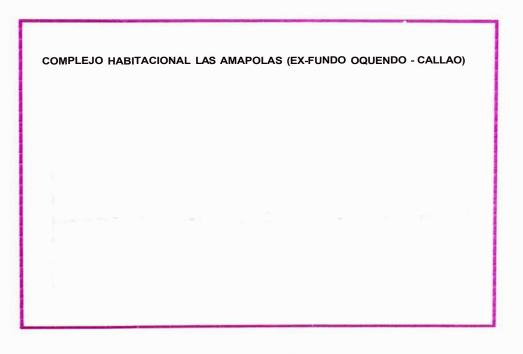
REGLAMENTO NACIONAL DE EDIFICACIONES

Normas Técnicas Vigentes: Cargas E-20, Suelos y Cimentaciones E-050, Diseño Sismo Resistente E-030, Concreto Armado E-060 y Albañilería E-070.

ANEXOS

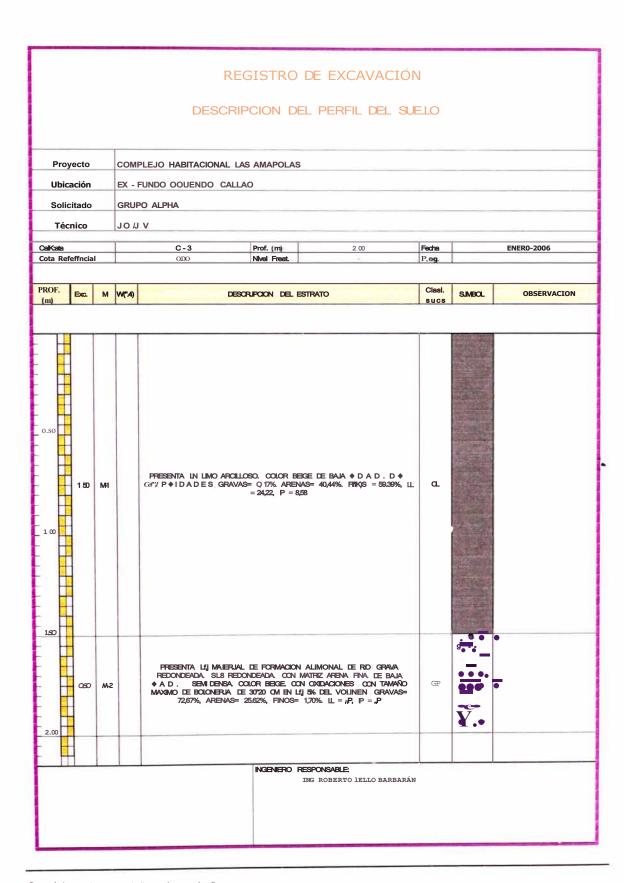

ANEXO A:

A-1	Ubicación de calicatas
A-2	Perfil de suelos
A-3	Registro de excavaciones
A-4	Ensayos de laboratorio
A-5	Panel Fotográfico


ANEXO B:

3-1	Bloques de Albañil ría Italcerámica
8-2	Procedimiento Constructivo con Bloques Italcerámica
8-3	Losa Aligerada con Viguetas Pretensazas Firth

Anexo A-1: Ubicación de Calicatas



Anexo A-2: Peñil de Suelos

Anexo A-3: Registro de Excavaciones

						E EXCAVACIÓN PcRt-IL Of:L SU				
Pre	Proyecto COMPLEJO HABITACIONAL LAS AMAPOLAS									
Ub	icación		EX -	FUNDO OQUENDO CA	LLAO					
	licitado)		PO ALPHA						
	écnico		JDA		1					
Cota R	a telereoci	al		C-1 -0.60	PTof. (m) Nivel Freat.	2 00	Pfog.		ENER0-2006	
PROF.	Exc.	М	W(%)		DESCRIPCION DEL ESIR	RATO	Clasif. sucs	SIMBOL	OBSERVACTON	
0.50	0.80	M4 M-2		PRESENTA UN LETTE AMARILLENTA. COO OI POROSIDADES GRAVAS PRESENTA UN TERR REDONDEADA A SU3 RE OE BAJA & A O . SE 1505 EN UN 5% DEL V.	A UN TERRENO DE CLLITIVO LIMO ARCILLOSO OOGANICO. COLCR D. SLELTO. COO POROSIDADES Y RESTOS DE RAICILLAS GRAVAS (A) AREN')S = 28.089%, FINOS= 65,97%, IL = 30.80. IP = 1331 INTA UN LETITE DE ARENA BIEN FINA LIMOSA. COLCR MARRON. ENTA. COO OXIDACICI-ES DE BAJA HLLEDAO. SEMIDENSA. CON DES GRAVAS= 0.02% ARENAS= 99.80%, FINOS= 40.: 8% LL=NP. IP=P IP=P INTA UN TERRENO DE FORÇAACION ALINIONAL DE RIO. GRAVA DA A SU3 REDOI'OEAOA. CON MATRIZ ARENA FINA. COLCR BEIGE. (A) O. SEMIDENSA. PRESENTE TAMAKJ. INAROMO BOLEOS DE ILN 5% DEL VOLLLEN; EL RESTATITITA CLASIFICAR GRAVAS= 197%, ARENAS= 16.79%, FINOS= 2,23%, IL = PP. IP = 1,p					
2.00					INGENERO RESI	Ponsable: 1. Roberto Tello Barbarán				

Anexo A-4: Ensayos de Laboratorio

LABORATORIO GEOTECNICO

PROYECTO

COMPLEJO HABITACIONAL LAS AMAPOLAS

SOLICITADO

GRUPOALPHA

UBICACIÓN

EX - FUNDO OQUENDO. CALLAO

HECHO POR

J.O./J.F.

FECHA.

ENER0-2006

CONTENIDO DE I-IUMEDAD

ASTM D - 2216

!MUESTRAS	!ML	IES	IRA	1S
-----------	-----	-----	-----	----

7

CALICATA		e -1	e -1	e -1	
MUESTRAN°		M- 1	M- 2	M - 3	
PROFUNDIDAD (m)		0.00-0.80	0.80-1.00	1.00-2.00	
FRASCO No		4	58	19	
1. Peso recipiente + suelo húmedo	gr	105.03	120.74	174.29	
2 Peso recipiente + suelo seco	gr	98.51	113.56	171.15	
3. Peso de aaua	(1) - (2) gr	6.52	7.17	3.13	
4. Peso de recioiente	gr	16.38	17.70	17.14	
5. Peso de suelo seco	(2) -(4) gr		95.87	154.0·1	
6. Contenido de humedad	(3)/(5)'100 %	7.94	7.48	2.03	

! MUESTRAS

CALICATA		e - 2	C-2		
MUESTRAN°		M- 1	M - 2		
PROFUNDIDAD (m)		0.00-0.90	0.90-2.00		
FRASCO No		26	89		
1. Peso recioiente + suelo húmedo	grs	111.78	179.33		
2 Peso recioiente + suelo seco	grs	102.68	176.06		
3. Peso de aaua	(1) - (2) grs	9.10	3.28		
4. Peso de recioiente	grs	15.57	16.60		
5. Peso de suelo seco	(2) -(4) grs	87.11	159.45		
6. Contenido de humedad	(3)/(5)'100 %	10.44	2.05		

! MUESTRAS

CALICATA		e -3	C-3		
MUESTRAN°		M- 1	M - 2		
PROFUNDIDAD (m)		0,00-1,50	1.50-2.00		
FRASCO No		84	29		
1. Peso recioiente + suelo húmedo	grs	95.85	158.89		
2 Peso recioiente + suelo seco	grs	90.15	155.14		
3. Peso de aaua	(1) - (2) grs	5.70	3.75		
Peso de recioiente	grs	15.39	15.43		
5. Peso de suelo seco	(2) -(4) grs	74.76	139. 70		
6. Contenido de humedad	(3)/(5)*100 %	7.62	2.69		

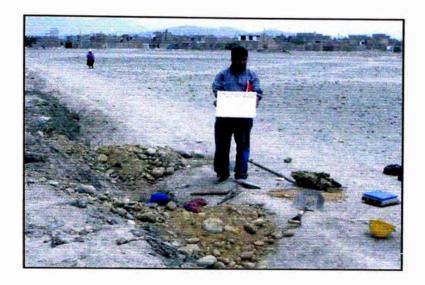
ENSAYO DE DENSIDAD DE CAMPO METODO DEL CONO DE ARENA ASTM 01556

PROYECTO COMPLEJO HABITACIONAL LAS AMAPOLAS

SOLICITADO GRUPOALPHA

EX - FUNDO OQUENDO. CALLAO J.D./J.V. UBJCACJÓN

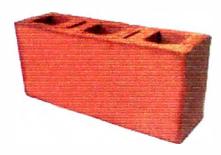
HECHO POR FECHA: DIC-2005


DENSIDAD DE **CAMPO**

CALICATA		e - 1	
MUESTRAN°		M- 3	
PROGRESIVA		2.00	
Peso del frasco + arena	grs	13360.00	
2. Peso del frasco+ arena que queda	grs	8500.00	
3. Peso de arena etTDleada	grs	4860.00	
4. Peso de arena en el cono	grs	1343.00	
5. Peso de arena en excavación	grs	3517.00	
6. Densidad de la arena	gr/ce	1.32	
7. Volumen de material extraído	œ	2670.46	
8. Peso de la m1estra	grs	5940.00	
9. Densidad húmeda	grslcc	2.22	
10. Humedad	%	2.45	
11. Densidad seca	grs/cc	2.17	

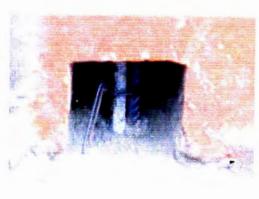
CONTENIDO DE HUIIEDAD

TARAN°		66	
Peso recipiente + suelo húmedo	grs	161.67	
Peso recipiente + suelo seco	grs	158.21	
3. Peso de aciua	grs	3.46	
4. Peso de recioiente	grs	17.03	
5. Peso de suelo seco	grs	141.18	
6. Contenido de humedad	%	2.45	

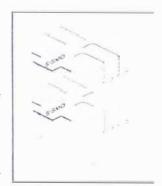

Anexo A-5: Panel Fotográfico

Anexo B-1: Bloques de albañilería Italcerámica

Dimensiones:	12 an x 38.67 an x 18.5 an
Espesor de jl.11ta vertical:	1.33cm
Espesor de jl.11ta luizontal:	1.5cm
Uidades por m2:	12.5
Área de vados:	30%
Resistercia a la corrpesión de la Dila (fm):	00kg/an2
Densidad:	2040kg/m3
Peso por unidad:	12.36kg



Anexo B-2: Procedimiento constructivo con Bloques Italcerámica



Anexo B-3: Losa Aligerada con Viguetas Pretensazas FIRTH

l.a lr"a e, un demcl11u imporal111,1110 dl ln ron11 '"no11 ,le e/l/l< "'|Olln 10 oto porque lra11,mile la; carga1 de gran•dnd hnr,a ''", 1cn, , 111cclir/l lile lu e1r11ctura "e dc,placc 11111fummcnlclltc ante ta, VIH 11ac1011c, ,l,n11ca_, (dtafrng111a rígido). sino ql reprn;11111 do, fae1or.-, qlc p1ttdc11 deler11in111 la pr11gramarin11 y la ca/1dctd de la 11/n11 1tc111po, c11,10

Jii fu hIi,qileda de dar Ii{lcriiaiii:a, e, dilimilcii, e IIIIImad0111, f-Irih ltilli' lli Illo< ado la., I:gliciai prcfahrtcada, pr,•lcii ,ada,

otorga una , enr de , cntaja, , a conocula, en relaciáll a etiti! llicr otru , igileta pre; fah, , cada e('l'Ollcreio armado. Fn efcClo. la c11a/zdad de , er pretc11, adll, de toillilli/ nlic 111", 1, a, tilietil, "' 11le"lin; 11 dl ca; u1cidad de ahorcar c, pnc, o., nla, 1!, rande, con lnellor CyfCOr de /(J, a. lo c; ue <-lena lener Illello, pe, o tilicilo, collcre/O till2 Ademci., el hecho de ler prelc1!, c11fa, delorillilla qlic <-lena lener Illellor, , lcfh'\0/le, . G.r.: fahricada cun materwln nle a/te re, 11lellria (l'C11lorello de 3,0 ti/20 K!!, III2 table de /8000 /. :g cm] tilderc11cla de lo, /200 }, 'g cm:! de un til"</ri>
llialor capaculad de carga., nlic letti mú, d11rahh, t", 1, te·111e, ; ille r11ah, 11lel l·lglicla prefahnccula de e011crc10 ur111ado.

\1 n-1111i11110, la., bolld,11lc, ηlle ofrecen''" dell1<\11ld\\ j.refahr,r"""', /01 prcl,*11,11do, "'puede 1/e]!.ar 1 ohlen.·1 ahorro., ill1porlantt'\\ de 14('')#Ψ\\\ 11/11,\1/\[1/('\\\ j.\ j.lr1ldo t'\\c'c'c (CH\(1 ele''' 1/g)!dl rtRT/1.


:VIEMORIA DESCRIPTIVA GENER.\L DEL SIST FMA

Con el "Sisrt'ma de VII,IK'U" l'rcll:'11wd11, Ftrth'_ ll' lmffa rccmplaz//r III "I,Iel11a de /orn a/Ifler11da 1rm/1cl0nal. p11die11do c11hn1 pa,io. má fl.rondl:') con meno, npew,r de lo a. dada la) læt11h11 Ifl</br>

/:/ ,IHella etá collillillído por l·lgllct//; prefahricada., prelcll,acla s. bm·cdil/a,- de //ri/1/a + IIII /01a nlCl//dl III va· &i 5 c/11.

l', *,panallli,·llto < lllrc 1·lll,llcla h ≮ a eje es de 50 cm. la., ngw:/(1) lienen IIIa forma do ; i · III, rncla. en cu\'(11 alas ff apoyan las hm·cdi/1//) de arcilla. c·l·f(IIGOW el fonda de encofrado Stilo ,e 1lec,",l/a ,·o/orar ,o/era, a |\(\)(00111 _ puma/,•,: a 1.50m. Snhre las hon·di/1//) ,, cu/oca la /0l·ll0 dr 5 cm. q, w forma una .,ecnon aillif(II
\)(1 en collillato con la, l'glielli, eti la n w l 1·all clll/didli, '"' lrlllll/acwne, e/ó·lnca\(\), allllaria ; lll0/a de lellIpcratllar y acero mgall10. /a lo
\)(1 final. ntci collforlllad" por t'i[ill<'U de 1,·cc,011 comptu;t// en bill
\)(1 de \(\)T" que forman w, diaf'glill1 rígido y cllyo, rml\(\)willelliel están illtcgradol lllatallit IIII adhcrell, w mecánica.

La, al///ra., de la, losas pueden ,,·r dl' dī\/t1II/I, dī!1!;1!;41!;1 '<' I, IHI "''"'d, 17, 20. 2' 1 30 011

VENTAJAS DELSIST:MA

· ECO.VOMICAS:

- * Se cubren pañoc, n1ás gran<k, con 111clu, c,pc nr tk 11,a
- * F.limin;, el u,-o de enlabiad(). s(ilo ,e 11.:cc,1tan ,0lcra,- \ puntale,
- · Se reduce el consumn de concreto p(r m
- * Dada la ,..:paraci(in entre pun1alc, ,e tiene un arca m,i, limpia, apn)\"echablc
- Se reduce el tiempo de ejecuciún de la obra
- Reduce la cantidad de fierro 1 u,-i, en obra (,e climma la colo caci, n del acL" cn,ndo). s(llo ,..: c,il rc.111 '"' h:1,-lnne,- en lo,- apoyns.
- Puede eliminar e \'iga, de CL1\'um cuandu la,- luce \"11 me11 \Leftrightarrow 1t;" $_{i,m}$ 6 $\mathbb H$ m ddlld<1 a que lo, desplazamienl<h relativo,- entre , i $_{g}$ ueta, preten, ada, ,,, n 111";\'lm\'ftea111c,
- Se permite lograr techos e,pL1<:,10, que puc:Jen ,cr u,adns en ,<11:1nn,,," renda, ed11101111a, etc.

· TECNICAS:

- Se garnntiza una vigueta de calidad. "k anch<1" rouhnm1e111<1, cnn..:cll". dímin,111d1 pr<>hkma, de oxidacuín. 111is aún por tr;Har,e tk un cnncrelo mu, Jcn,n
- 1a \'igueta,c compone de ma1eriale,- Je ah,, re...,1e11c1a.
- La 1, a como ecciún compuc, ta. 11 inc mayor capacidad de carga ma, 1cj.-1e11c1a al o irle, mcn, is 11 cer, negativo que una losa de c, rncrelo armado.
- Se disminu en deslex1nne, que mucha, , ccc, cau, an fi"ura, en la pllpl<1 lo, a, en j.,... 1al,1quc, de ladr nl,1

C01'STRUCTIVAS:

- Pueden eliminarse d prDbkma Je! commu:n1n d= lo, lad11ll0, =n d m111H111" tri ,aC1acln
- L₁,-up.:rficie plana d.: la ,·igucta pcm11: 4uc pu.:da lra11111re f,1crlm.:n1c <11ra,,, Jl' ella

COMPONENTES DEL SISTEMA

- · Viguetas prctcnsada,-. (4ue rc:cmplaLan el acero cornd,1)
- B"vc<lilla, de arcilla> ,u accc·s"rn"·

Bandi.:ja;, sani1arias

Bandejas para viga co,1ura o en,anche,

Caja;. eléctricas

- · Acero (sólo para los basmne. malla de 1empcra1ura)
- · Ins1alaciones eléctricas y aniiaria
- Loa de concreto de 5 cm

\IGUETAS PRETE \1SADAS:

C0n tituídas por los sgtc, matcr1ak,

Cemento:

CementO Ponland Sol upn 1 ,u1111ni,tmdn pur l c·mcnt,,, Lima -A . 1 n1.il Lumplc c,,n IJ, especificaciones de la norma AS1 \ti C-150 ... Standard Spcc1f1c11wn It1 Pmtlaml Ccmcnt ...

Ar.coa gruesa:

La arena gruesa pro, ienc de la can1era L1 Gloria Esta arena cumple con las c,pec1ficac1onc, de 1 IHHIId ASTM C-33 --standard Specific.11ion for Concrete .l\ggregatc, "

Confitillo:

11 agregado grueso ullli/aJn cnrre,pnnde al confItdlu (hu,u N·x) de la norma ASTM C-33 pro, enfc111 de la cantera FlOr de Nievc fs1e conii11lln cumple con la, c,pcc1!1cacionc, de la norma AST\1 C.__,\sqrt{sandard Specifica1ion fnr C,mcrctc \grcgarga1e,···

Acero .PCT!ensado

Cables de 3 x 3 mm

Acern tic haja rela3ación

Cumplen con la nnrma AST\tl 4 16) li:--Jr.,<,-ll'Jh

Atambres de 3mm) 4 mm

/\cem de baja relajaci,,n

Tritlentados.

Cumplen c0n la Norma ASTM 4: I \ U, NF-3<,-09:i

Las l'iguetas pretensadas Firrh cumplen con los requerimientos de la .\arma Pe ruana de F:1/ructura". capítulo 18- Concreto Preesfor:ado y con e/ACl 318-99

BOVEDILL'-\S DE ARCILLA:

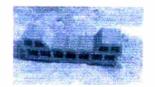
L"s ladrillo cumplen con los req"-1:sito, e,pccificad," en li \$>1m1 récmca Peruana l1intcc 31 017 en cuan!</br>
a lo que e refiere a ma1cria prima y con la Norma l1in1cc 33 1 04fl pdra 1echo, y cntrep1,n, aligerado.

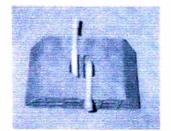
Se admitirá una 1olcranci ele+· 2', de la d1m'n inlll::, nominak, l.n ladnllo cn,a adns a la ficoii.1Cc11H1 según la ", "rma Técnica lTINTFC ,;;t.OlR deberán cumpli1 m1 h", alore g tc,

Rc"1s1cncia mínima por ladrillo= 2.00 da cm2

CARJAITI:.RI STICAS

AI.TI'R¡\ DF LOS.\ (cm)	AITL:RA Dr HO\'FDIU .4	1-VRCO	\POYO°'	\>(110 lc -	1'1 \'\ � C
	(cm)	102)	(Ca)		1"-i.!1
17	12	3'J	1.7-1	5.	1 011
211	15	7	1		V_"11
2	2(1	1,	1.7 i	2	111 :,()
=,()	:5	;))	1.4	2	. 111


H\ \'I)JJ-\.\ S4:\'!7ARIA.\. /'AI?.-\ \/(,'.\ (0 .\/I 'JI\ U J\/.\.\/ 111_\


Tienen las mismas dimensiones. salvo en los anc11os

Bandeja sanitaria:

25 cm

Bandeja para viga costura e ensanches 10cm

(41. \\ | | | | (//OC. \\

)"n la, 1111ma, hnnlill.i, que 1ncill cil un cap li, 1atti on1h(b1ta (11 n1trLIP (1n tuhi:ria,)

LOS,\DECONCRETODE 5 cm

HESISTE:-: CI.A DEI. CO, C'RETO

Longitud tic-, igueta	r e mio	
1 ← < C/m en ,i,1cma Je mur,1- pnrt.1111,	; ; K Clll	
1 > :: 110m	2ltl Ku. m2	

ESPECIFIC.\CI01'F S

Agregado grueso: n/= 1/_ T\I♦♦ 12 Piedra 1!() 7 _cnn1u11n1c1H..: COllPC1da cnnit, piL"\h--t J e 1 $2^{\bullet \bullet}$

Slump Je di,610 m;íx·

cgull la d,.:n,1J.1J J e ,!L'!!rt) ,c: di.:h ,.1 ,iiltar cnn un :ldltl\tl , u p-rpl:l!--tllic,1nlc

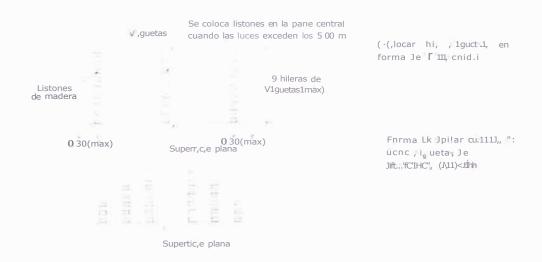
LSPECIFICACIONES TF:C\fJC\S DI·I SIS fI::M\

PESO DE LOS ELEMENTOS DE LA. LOSA X 11. IKgimlJ

	Al n; RA DI: 10SA (cm)			
	17	20	25	_0
Vigueta	17.85	17.85	17.85	17.X:-
Concreto vaciado in situ	68	3-1	0_11	126
Ladrillo (complemento)	36	18	-12	2
Piso terminado	50	ş()	50	_';0
C'arga vi, a	Sg1111 plano			
Tabiquería	Según plano			

:\1<\TERUL	CANTID.\D in2	
Vigueta a :'iücm	2.U7 un	
Ladrillo�	♦ un	

CUADRO COMPARATIVO DE PESOS DE LOS.\

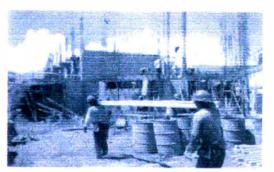

		SISTE:\IA DE LOSA CON VIGUETAS FIHTH				
	LOSA TRAIIIUONAL	LOSA CO:S \'ICI ETA SEOJPLE		LOSA CO'S; \'lc;n::T.\ 110BU.		
ALTUIA OE			l'ULIE.\llKr,o	\RCILL•\	POl ll·<;·nKF,o	
LOS\ lcml	ARCILLA (Kg m21	\RCILL-\ (r,g. 1112)	(Kg.m:!)	1kg m(⊳	tKg.m.:,	
17	270	245	180	295	2-15	
20	300	280	210	3-W	=,;;,	
21	350	335	250	-120]5-)	
30	. W O	400	295	_';00	-110	

CI'-\DRO co:vtPAR·\TI\'O DE CO:\SI'I\10S DE CO!\CRETO

	SISTE:O.IA IJE LOS\ CO	/\'\T(; 1 1 1 \ \\\ 1 IR 111	LO\\ 1KAIJIC'JO'.;.\l.	7 \IIORRO
\l.Tl'RA 01:	, 1d. 1– r , mill. 1	\1(;1 CT\ SI\IPLf 1\1\\121	\I\1PLE 1\f, \121	
17	0_07	0.06	0.08	2:(
20	()_()')	0.07	0.09	F
-)	0.12	0.09	0.1	10r-;
3()	0.15	0.11	0.1125	2 - 44 1 r

PROCESO CONSTRUCTIVO

I. :\PILAC ION



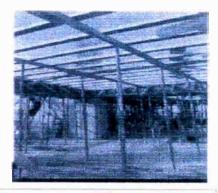
? IZ.\JE

.\. \I\'\II'I' FO

El iLaJ puede ,cr manual. c0n p,,lca . plataflll ma. etc.

l.d, , LUCa' deben ;cr nl.1nipulada, en p<,.lcit.ll de " i " III\ Criid;i

· .\PIIT.-\L-\:\HENTO


		1 F	-'l Ht 1'1'0 < 21	II J, II(EJ'J∳c I > ∳.SII Ⅲ	
FL,E\l.	01,,1 HII'('10'\	ľU< \1 H	'1·(TIO'\ (11{(11\1{	',H 1 10'\ IU.C í \'\CL L\11	, re (10, 11 (1,.\:',(;t 1 \R
1	>OLI R∖			'.; "; 1	. " " J
-	11 ' 1 AI	17,111	=	4	1
		:11 . m	. Au,-1"	';	' J
		2, ,m	ī	,-1-	1
	(1')			21 13	3.41
4	\RIIII!>1H		'\() 1,	\I (!, \RI <i< td=""><td>1</td></i<>	1
3	R Ilit R/Il HOKI/ <i'\ 1\1<="" td=""><td></td><td>10</td><td>\I <1, I()</td><td>Det</td></i'\>		10	\I <1, I()	Det
Ď.	t '\10'1 '- IL '\I \1 ">I 1; \			1	1 5 8 6 2 1 5

Condiciones:

- Madera tornillo en hu<'ll e,tado > d,· \\'U wf1 continua.
- Sobrecarga de trabajo hasta 250 f,Rlm2 (11pro1. 3 hilera de ladrillos efi l m2)
- u1 pun1alcs de los techos inclinad<,,. ab<>,·cdad,,) rampa deberán arrio trar c horizomalmente o c11 cruces para ahsor.•er esfuerzo horizontale.

Se recomienda usar apun1alamien10 metalico:

- Fn alturas de entrcpin > 2.80 m con arrio,ues l:iterales.
- En luces mayc,re d lo 6.00 m.
- En lo as de altura > 25 cm.

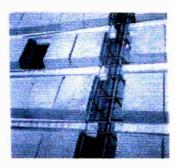
NOTA:

Si <11 ohra ex/W<II otra, cmul1cw11n: e11/011,el ,/ ap1111111/W111cb \ el 1111111/W odi', o/era, ,·anara $_{cg1111}$ el 11/20 d. madera, la S<coión y <1tado <1e los elem<1nto, <1ntrura d<1lltrt'pito, cte.

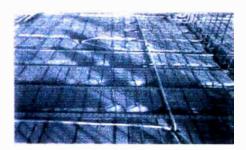
/.as contraflechas son necesarias para luces > 6.00 my terán entre 3 y 5 mm por mi de 1-igueta.

5. COLOCACION DE LAS VIGUETAS Y BOVEOILLJ\S

Colocar las bovedillas en 10, extremos como elementos distanciadores de las , il..lucta,_


'-lota:

Se suniere no a courar ni atortolar los e,1nhos de la, vigas:in antes co ocer la posición de las ,1guetas.

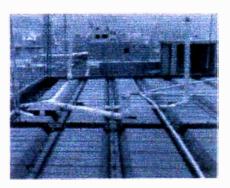


Luego de apu111alar) n.ivelar el lechn e procede a colocar las bo\'cdillas restantes.

6. COLOCACION DEL ACERO NEGATIVO, MALI.A OE TEMPERATURA E INSTAL\CONES ELECTRICAS.


El acero negativo es el mismo 4ue se calcula para una losa aligerada convencional (espaciado a 40 cm). con la diferencia que el espaciamiento ahora e, de 50 cm (sobre \vec{a} vigueta pretch da).

Se dchc u,ar malla de temperatura en doble sentido cuando las luce, exceden IP, 1 00 m) en la, a;,otea.. Las in;talaciones eléctrica se Clllocan n,mo


Las in,talaciones eléctrica se Clllocan n,mo en un aligerado convencional.

7. COLOCACION DE LAS INSTALJ\CIONES SANITARIAS

Tubería Je dcsaguc. atravc,andn la, , iueta'> proton adas.


Se recomienda que las tuberías de desagüe vayan paralelas a la dirección de las viguetas (entre la, h,n-edilla)- A,imismo æ, ugicre 4ue en la zona de baños donde van la, montantes. por lo general muy cercanas a lo borde. æ empiece con ladrillo.

En caso de que la tuhería tenga 4ue atravesar la vigueta. ésta e pod rá picar hasL ? cm. (máx) como e v 41 Li figura.

.\\orac
Sólo la ligllela V/00 110 dehe pluir,-,, Fll
t'>le raso xerá reenlpla=udtl por una
"Iglwta \\'/()/.

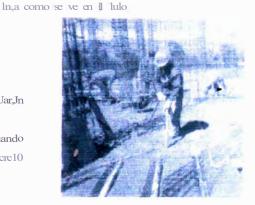
Cuando el recubrimiento de la cubería de desague es menor a Ju 2.5 cm. entonces e n:cnm1endJ u,ar losa maci7a. falso cecho o crear un de nivcl en la losa (cipo handcja)

8 LIMrtEZA Y MOJADO

Se Jebe evitar cortar lo, ladrillo, snbre la,, gue la, para no cu uciarlas.

llay 4ue barrer 10 limpiar Gn 411 comp, lnucin indo residuo 4ue afecle la adherencia ngu.:-ia-1,,,a Je cnncre10.

Se debe mantener húmeda, fa, ,i uetis y lo, ladrillos hasla el momemo de ,aclar la ln,a de concre1n.



9 VACIADO DE CON CRETO

Vaciar en forma paralela a la, vigueta,, vibra, , o ,cglear comp<lUar,In obre todo en la zona donde van la, , iguelas

Curar la losa immediatamente termine el prince,o de exudac,nn (cuando pierde el brillo superficial y se torna <paco) hasta 4ue el cincico quando de concreto de co

10 DESENCOFRADO

DIAS PARA DESENCOFRAR

LUCES	TECHOS NO CONSECUTIVOS	
O@ 4.00 m	4 d1as	
4 @ 5.50 m	5 dias	
5.50 @6.50 m	6 d1as	
6.S0@más	7 días	

Nota: Los techos no consecutivos son aquellos en los que solo se llena un nivel Caso contrario deberán desapuntalarse con fas mismas consideraciones que se tiene para con un techo convencional.

DITTALLES CONSTRUCTIVOS

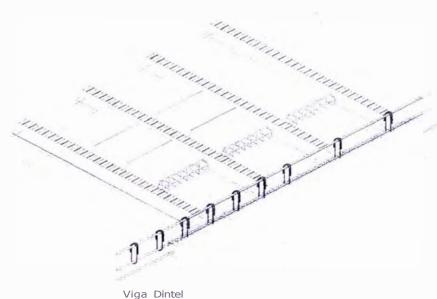
APU "TAL,\MIE:\'TO

El apuntalamiento debe le, antarse hasla establecer éimplemente contacto con las , iguetas

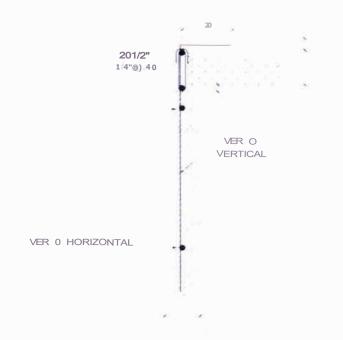
APOYO DE VIGUETA DEFECTUOSO

Viguetas que no llegan a entrar a las vigas.

BORDE DE LOSA

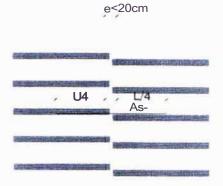


Fisuras en borde lateral de voladizo

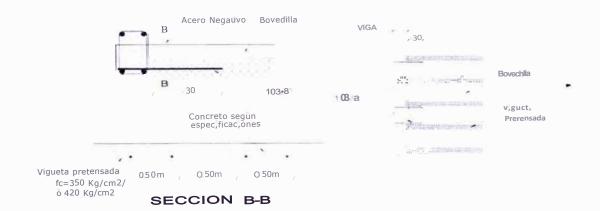


Fi ura, en hnnJc tic punia tlcl , "I,1Juo

CONEXIÓN VIGUETA-ALBAÑILERIA ARMADA



Viga Dintel Cver detalle A)


Detalle A

TRASLAPE DE VIGUETAS

Cullido el e,pe,or Je la \'Íga. donJe ,,: ap
-Han I," ,·lguela, e meno, a 20 cm. é;ta, ,,: tra
lapan , ;l nllInln acero negativo. ya c;ilculad (l. \a cnrrc I
i $_{\rm f}$, juutct. como \'C ,·e en la fi $_{\rm g}$.

DETALLE DE APOYO DE VIGUETAS EN VIGA INVERTIDA Y.O \'IGA CHATA CON ESFUERZOS ALTOS Y/O CUA NOO LA VIGUETA NO E:-TRA A LA VIGA.

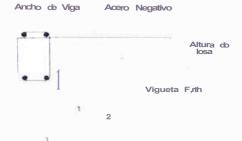
COL UMNETA QUE LLEGA A DOBLE \JGL ETA

Doble vigueta

Tabique

Se debe , crificar la ,cric de la vigueta a u,ar, determinar si e nece ario colne;ir dohlr , igueta Se puede usar una carga c4uivalente o ct,n,uhar enn nue,tro Departame11to Tt:enico

DETALLE DE VIGAS DE COSTURA (O TRANSVERSALES)



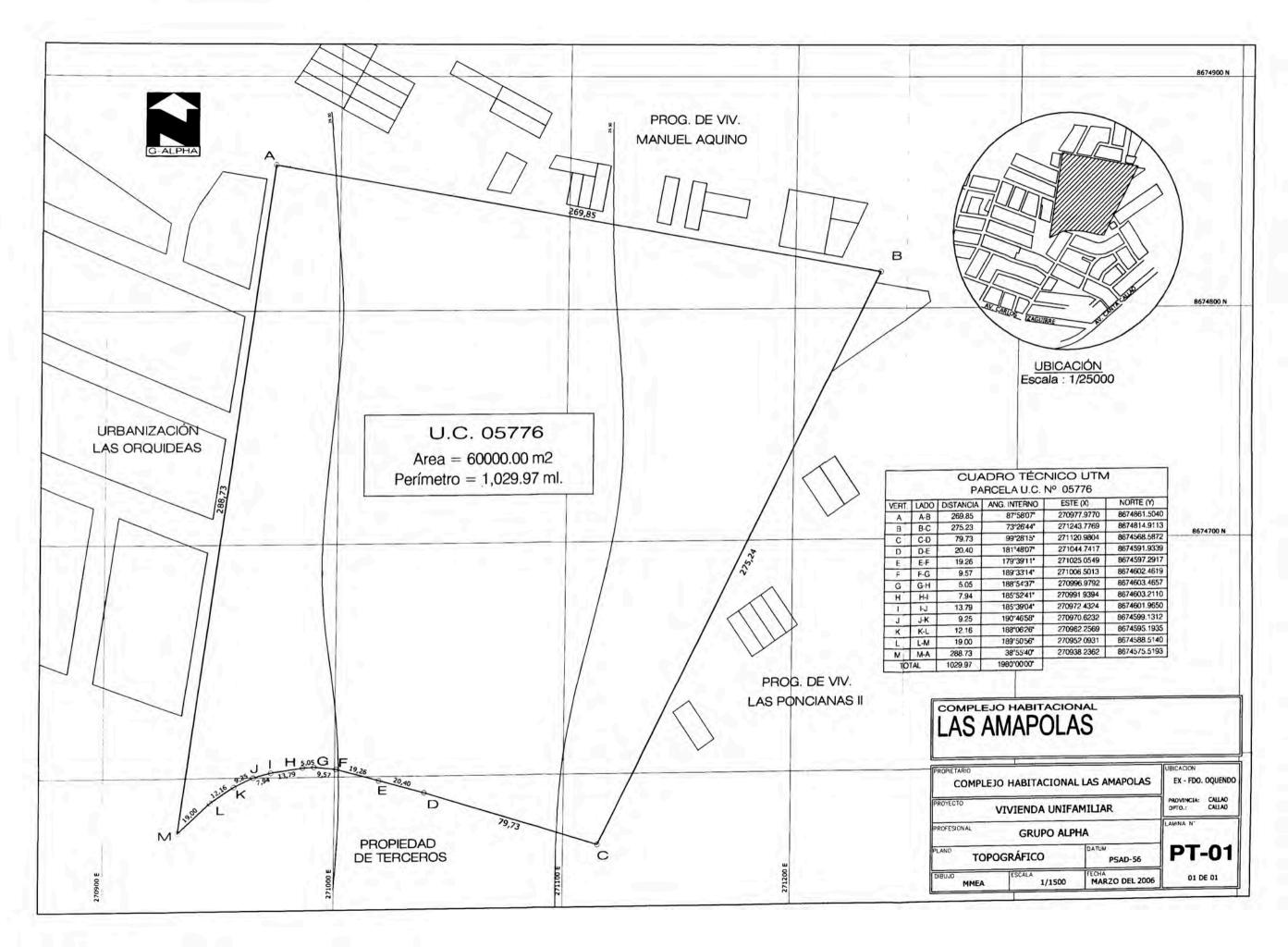
Vigueta pretensada

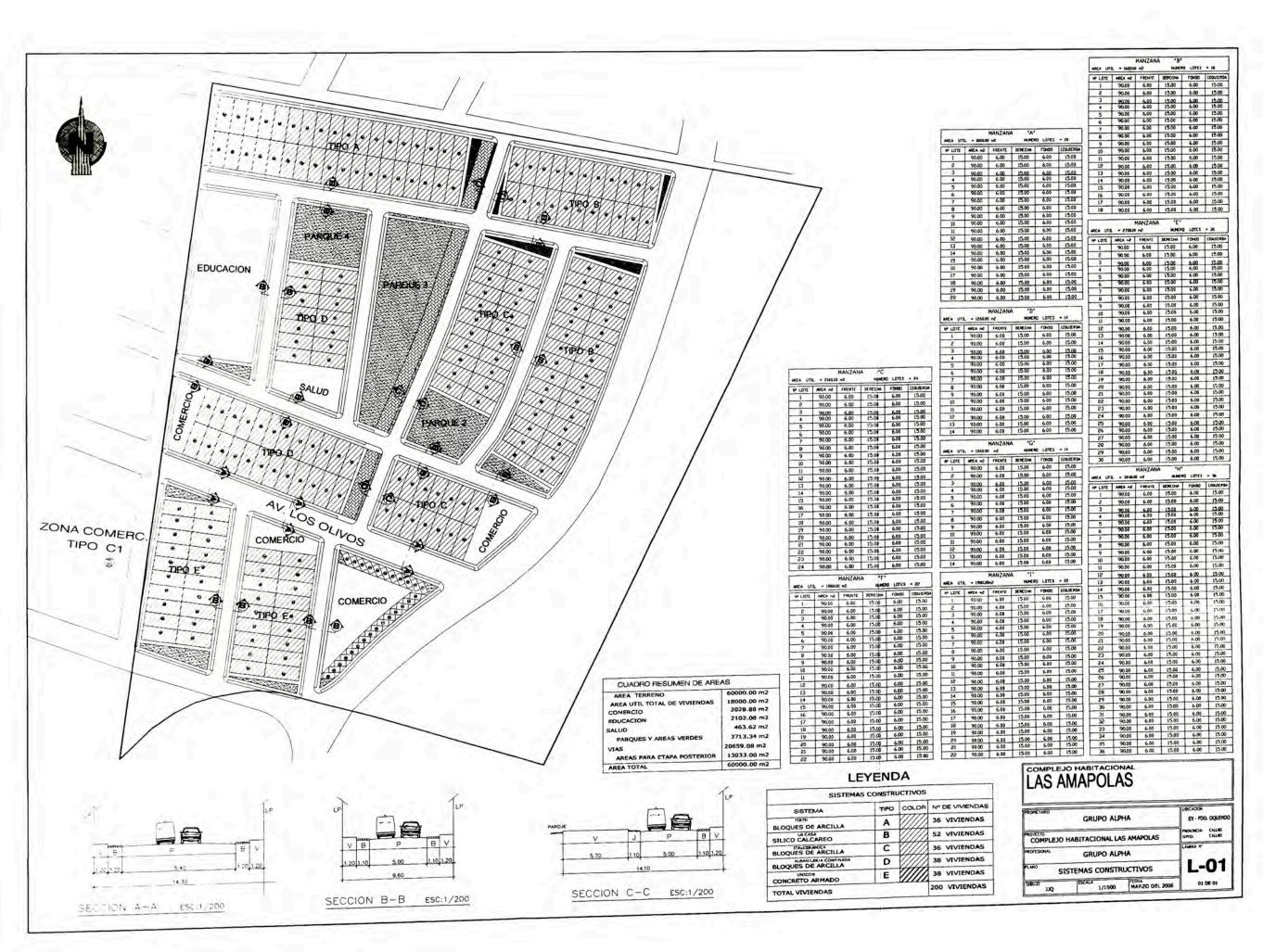
Se recomiendan u,ar cuando la longitud de la viguel.
i e mayor a ó $O\!U\!m$

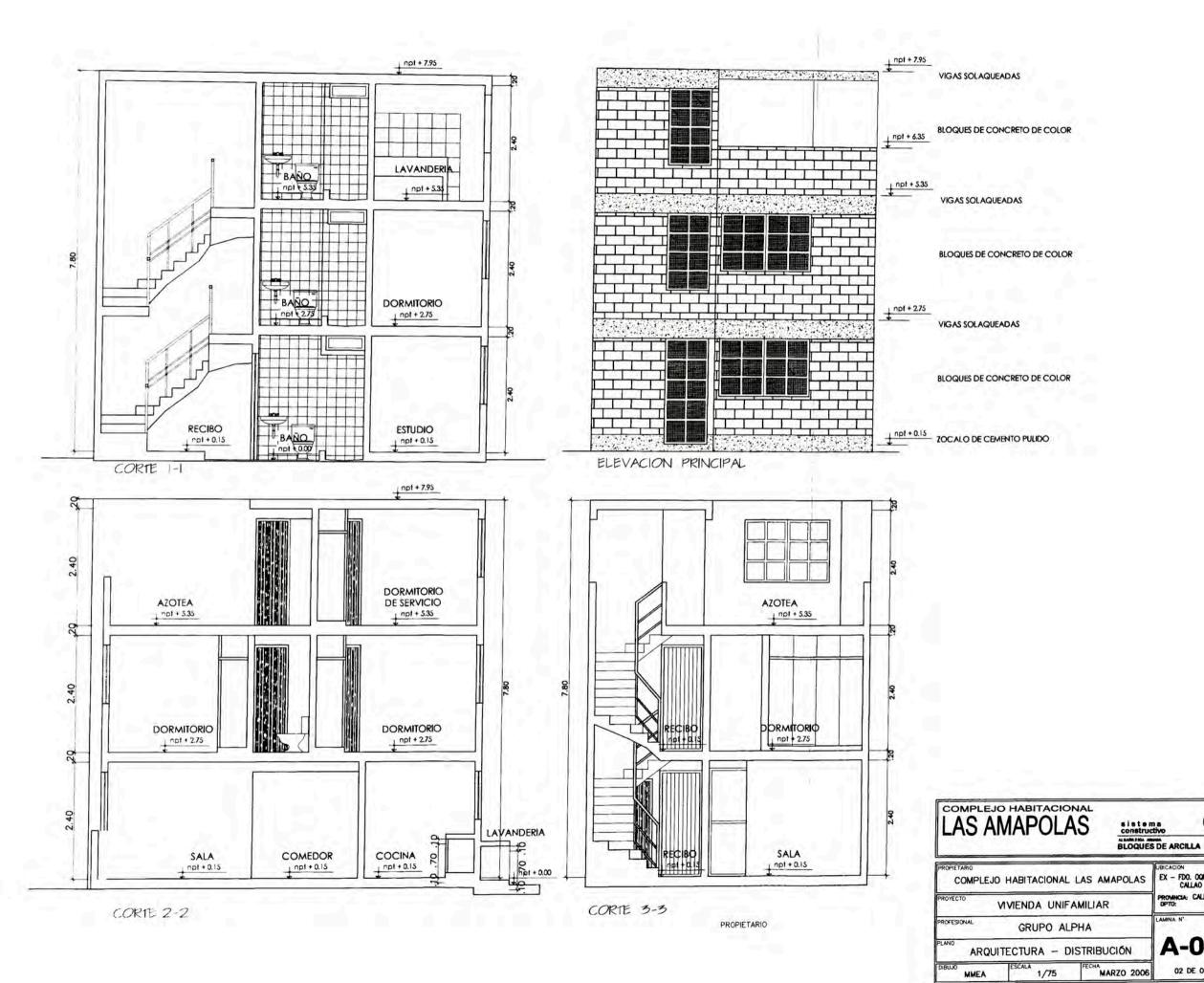
DETALLES DE APU №TAL'\MIENTO EN \ÎCAS

Cuando el elemento 1 e un panel. la vigueta puede ap<l\'ar,c in neceidad de un puntal (elemento 2).
,in embargo e recomienda rcfnr7ar mejor el apuntalamiento del elemento:,} a que recibe el pc,n del techo

Se rccon'licn<la apuntalar en !u, xtn:nH,, pn>xlmo a la viµa (ckmcnll>2) cuandll el elemento I e, una tabla de 1-(ml])

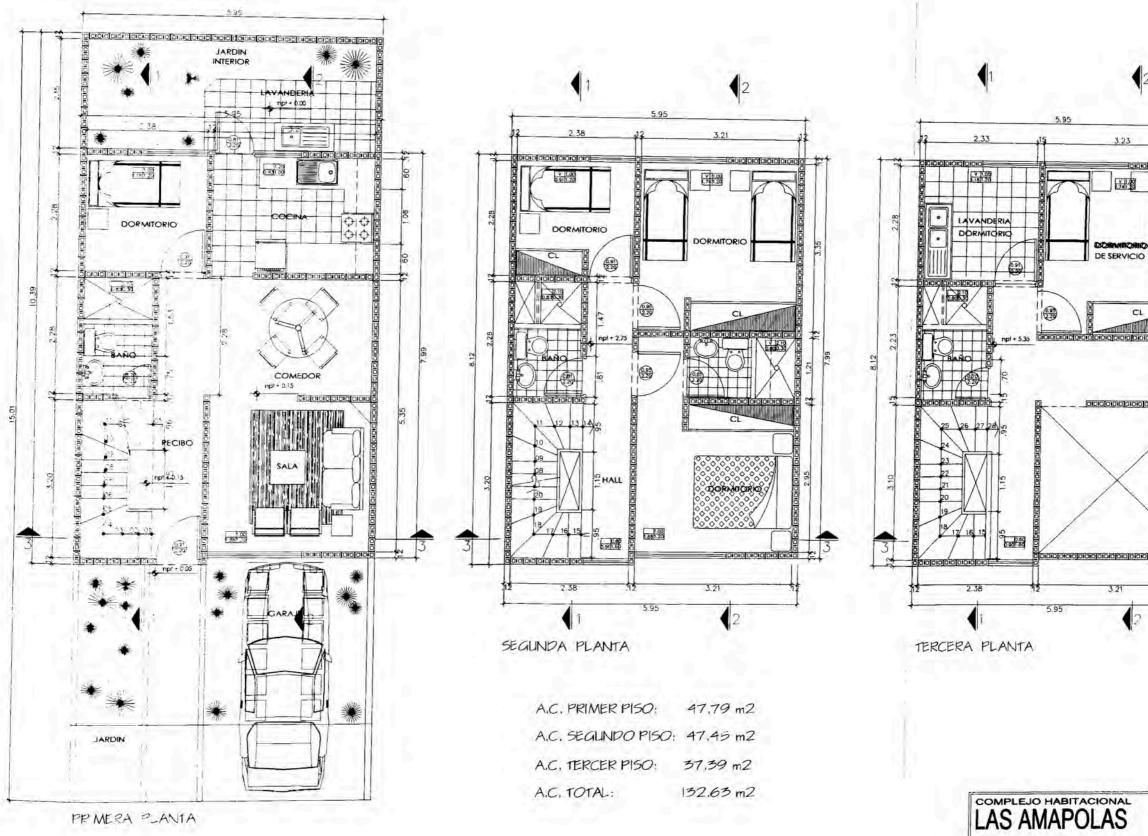

DETALLE CUANDO LA IJLTI MA IIILERA NO E'.'ICAJA CON IL'IA BOVEDILLA ENTERA




Coloc.ir dohle viguela

Cnrtar $\downarrow i$ btl\'Cdilla. ascgurándol,1 con cla,' " para que durante el transito,. n el ,ac1adll n o ". mue, a.

PLANOS


C

EX - FDO. OQUENDO CALLAO

PROVINCIA: CALLAO DPTO:

A-02

02 DE 02

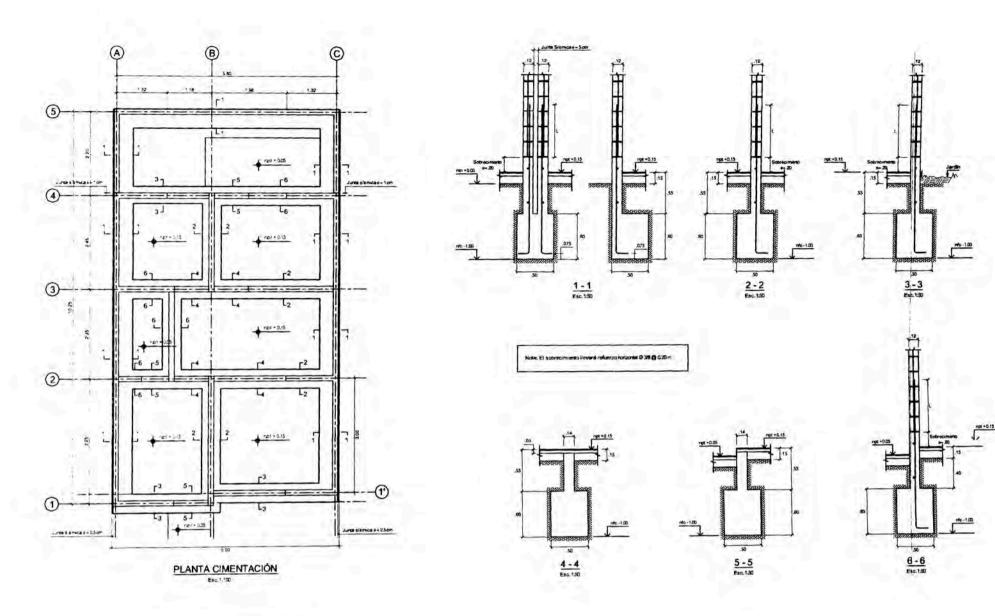
COMPLEJO HABITACIONAL
LAS AMAPOLAS

COMPLEJO HABITACIONAL
ROPIETARIO
COMPLEJO HABITACIONAL LAS AMAPOLAS

ROVECTO
VIVIENDA UNIFAMILIAR

ROFESIONAL
GRUPO ALPHA

ANO
ARQUITECTURA — DISTRIBUCIÓN


ARQUITECTURA — DISTRIBUCIÓN

MMEA

SESCALA
1/75

FECHA
MARZO 2006

Q1 DE 02

LONGITUDES DE EMPALME Y GANCHOS

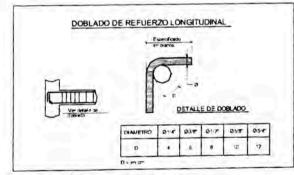
u)	(DANG)	MUROS (cm)	(IZM)	PLACAS (cm)	(mm)	(am)
	114	40	30	h (Aller	60	15
П	3/8"	60	45	35	105	25
	1/2	80	\$5	45	D-	30
H	50	95	75	50	rio - c m	35
d	3/4"	115	85	80	(×	40
		田	L	巨	3	H
	-	1	_		_	_

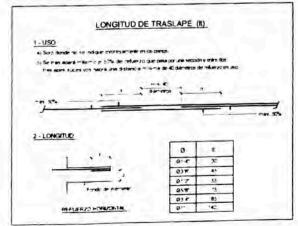
ALBARILERIA ARMADA

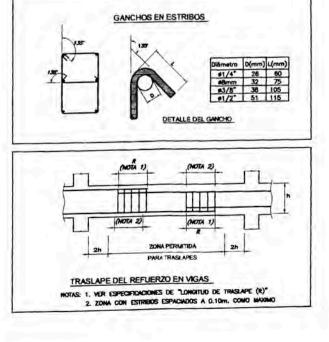
ALBANIL EXIA, ARMAND.

Le impérime or trastiges serán de 50 veces di démeto de la tarre

Le impérime de empaine en el primer paso será de 50 veces di démeto

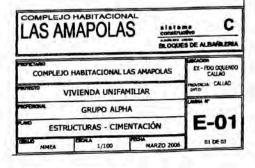

de la burra y 80 veces el démeto de la burra enforma alternate

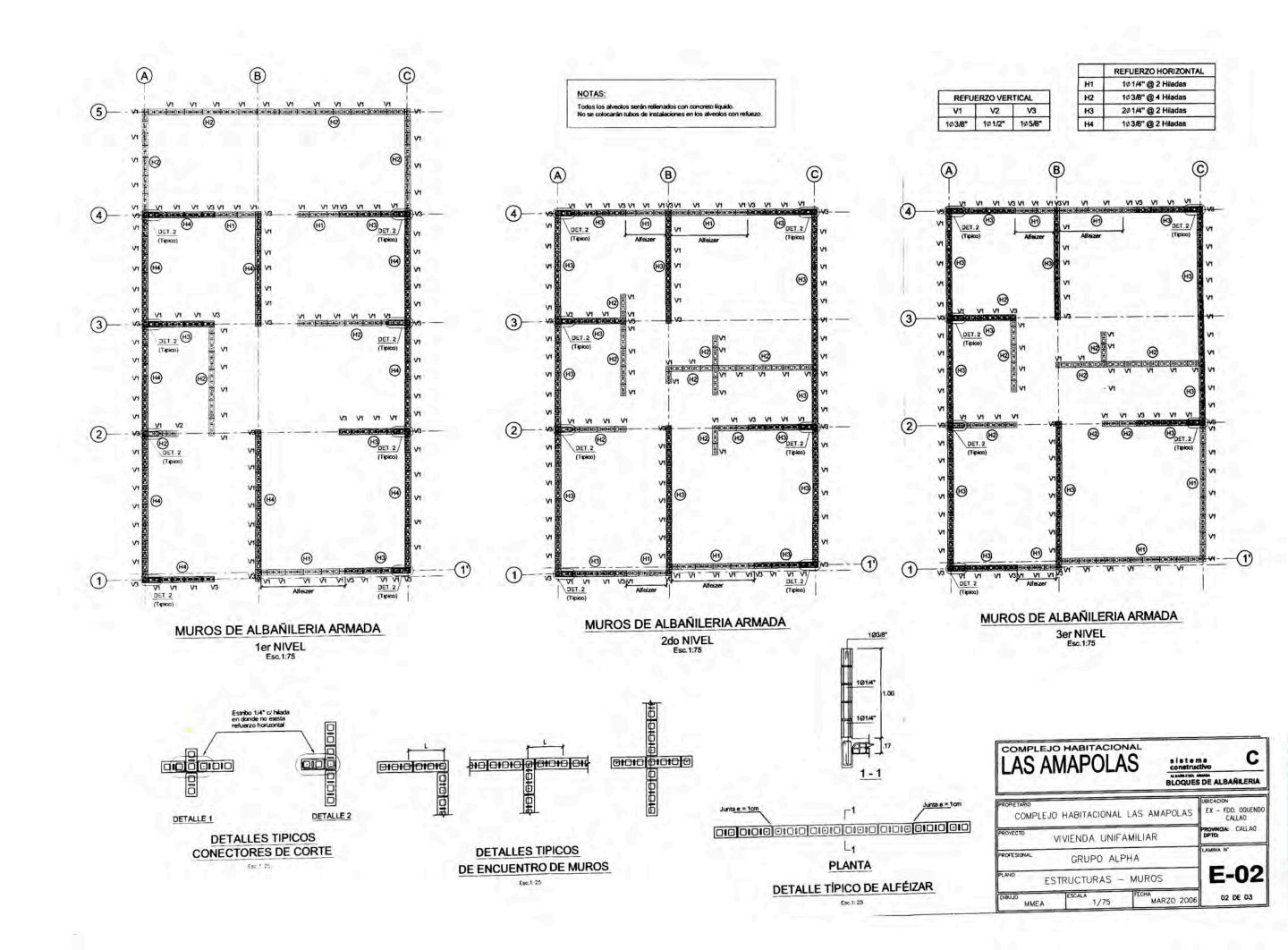

Fin la referênce momentación - munto se alternate enforma alternate

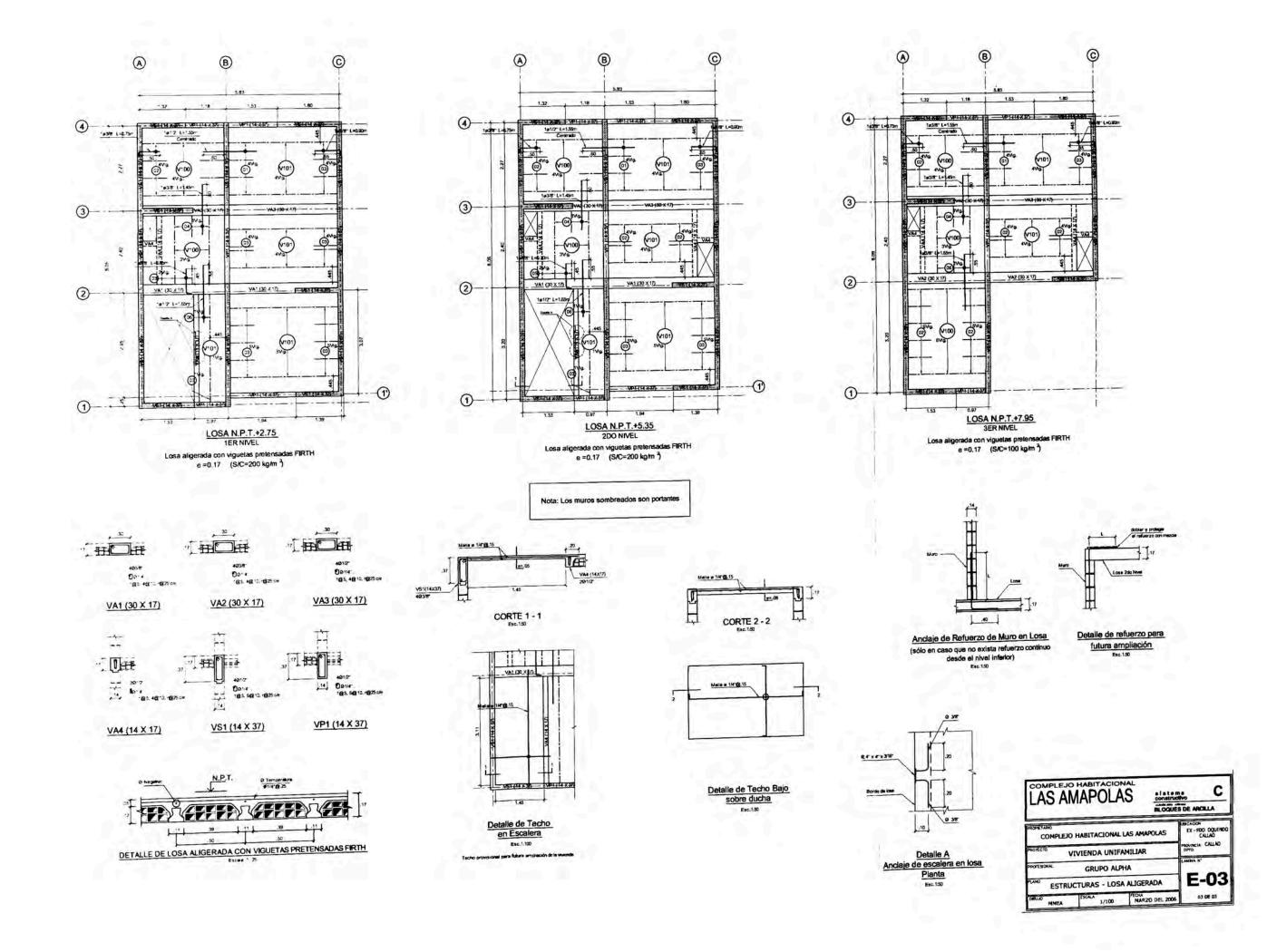

que cercia no de refuerzo vector

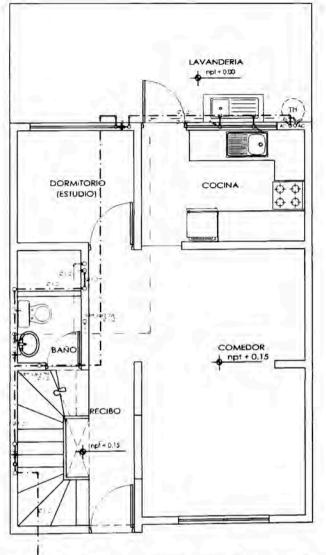
El métarza horizontal debe ser continuo y arcateb en la estrete do co

control de superior de 10 cm en la code activamente.

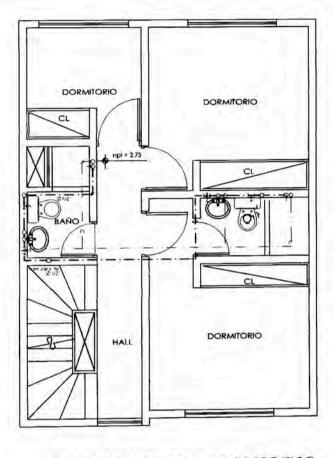







CELERACIÓN ESPECTRAL	Se-7USC g	
CTOR DE AMPLIFICACIÓN SÍSMICA	C=2.5x(Tp/T) Cx(25	
CTOR DE ZONA	Z=0.4 (Zom-3)	
ACTOR DE CATEGORÍA DE EDIFICACIÓN	U=1.0 Categoris °C* Edificaciones Comunes	
ARÁMETRO DE SUBLO	S=1.0 (Suelo tipo S.)	
ERIODO LÍMITE DE LA PLATAFORMA DEL SPECTRO EN SEGUNDOS	T, +0.4 (Suela Iça S.)	
DEFICIENTE DE REDUCCIÓN	R=3.0 Albahveria Armada R=5.0 Ossario por enfuerzos admisibles	
CELERACIÓN DE LA GRAVEDAD	6.81 m/s ²	
ERIODO FUNDAMENTAL DE LA ESTRUCTURA	0.1434	
ESPLAZAMIENTOS MÁXIMOS PERMISIBLES	4.30 cm Total máximo del último mud (Ar) 1.30 cm Máximo relativo de mámpiao (Gr)	
PUERZAS CORTANTES (Sismo Simero)	Andreas Estate (Vx = 37.30) Vy = 37.30)	
	Andreas Disabratico Vx = 34.301 Vy = 35.601	
ESPLAZAMIENTOS (Siemo Severo)	Unimo and dux = 1.49 cm day = 0.23 cm	
	dex = 0.55 cm dey = 0.07 cm	
	Junes de separación sistaca - 5.00 cm	

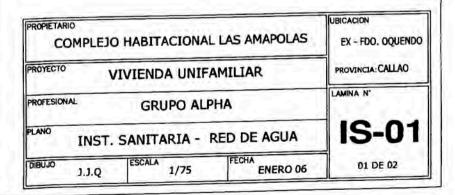
RESUMEN DE CONDIC	CIONES DE CIMENTACIÓN
De souerdo al Estudio de Mecánico de Suelos del Proye se lionen las siguientes condiciones de Omerániolos	icio "Complejo Habilacional Las Amazolas"
TIPO DE CIMENTACION	Superficial por medio de omentos combin
ESTRATO DE APOYO DE CIMENTACIÓN	Suelo natural, grava pobrememente graduade a tuen graduade (GWIGP)
PROFUNDIDAD MINIMA DE CIMENTACIÓN	O(= 1,00 m con respecto al revel actual del terreso
PRESIÓN ADMISIBLE DE TERRENO	2,20 kg/cm ²
FACTOR DE SEGURIDAD POR CORTE	1
ASENTAMIENTO MÁXIMO PERMISIBLE	2.54 on
AGRESIVIDAD DEL SUELO	No maste agressyded de sullatar y dource.
CEMENTO DE CONCRETO EN CONTACTO CON EL SUBSUELO	Portland Tipo I

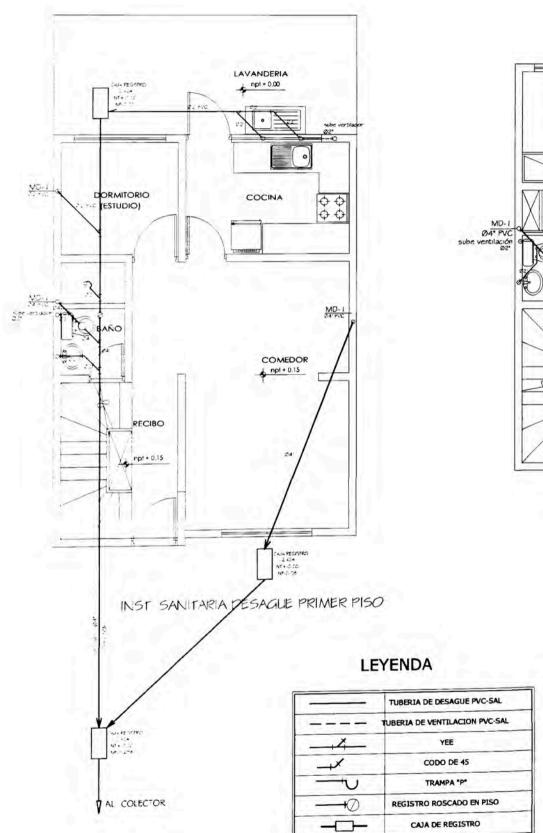


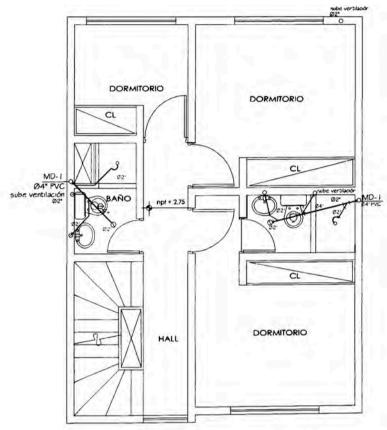
INST. SANITARIA AGUA PRIMER PISO

LEYENDA

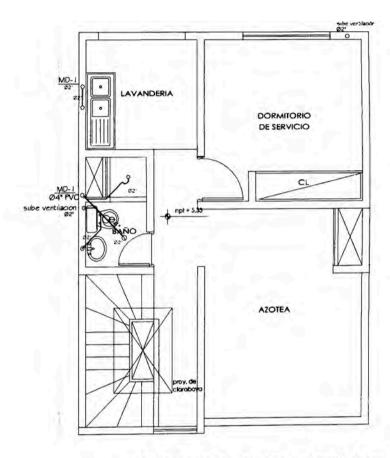
LEYENDA	DESCRIPCION	
- FW-	MEDIDOR DE AGUA	
	TUBERIA DE AGUA PVC C-10	
	TUBERIA DE AGUA CALIENTE C-PVC	
	CODO DE 90	
علت	TEE	
7	GRIFO DE RIEGO	
	VALVULA COMPUERTA DE BRONCE	
	VALVULA CHECK DE BRONCE	
(TH)	CALENTADOR DE AGUA ELECTRICO	

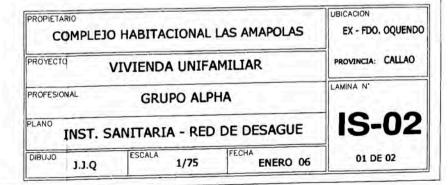

INST. SANITARIA AGUA SEGUNDO PISO

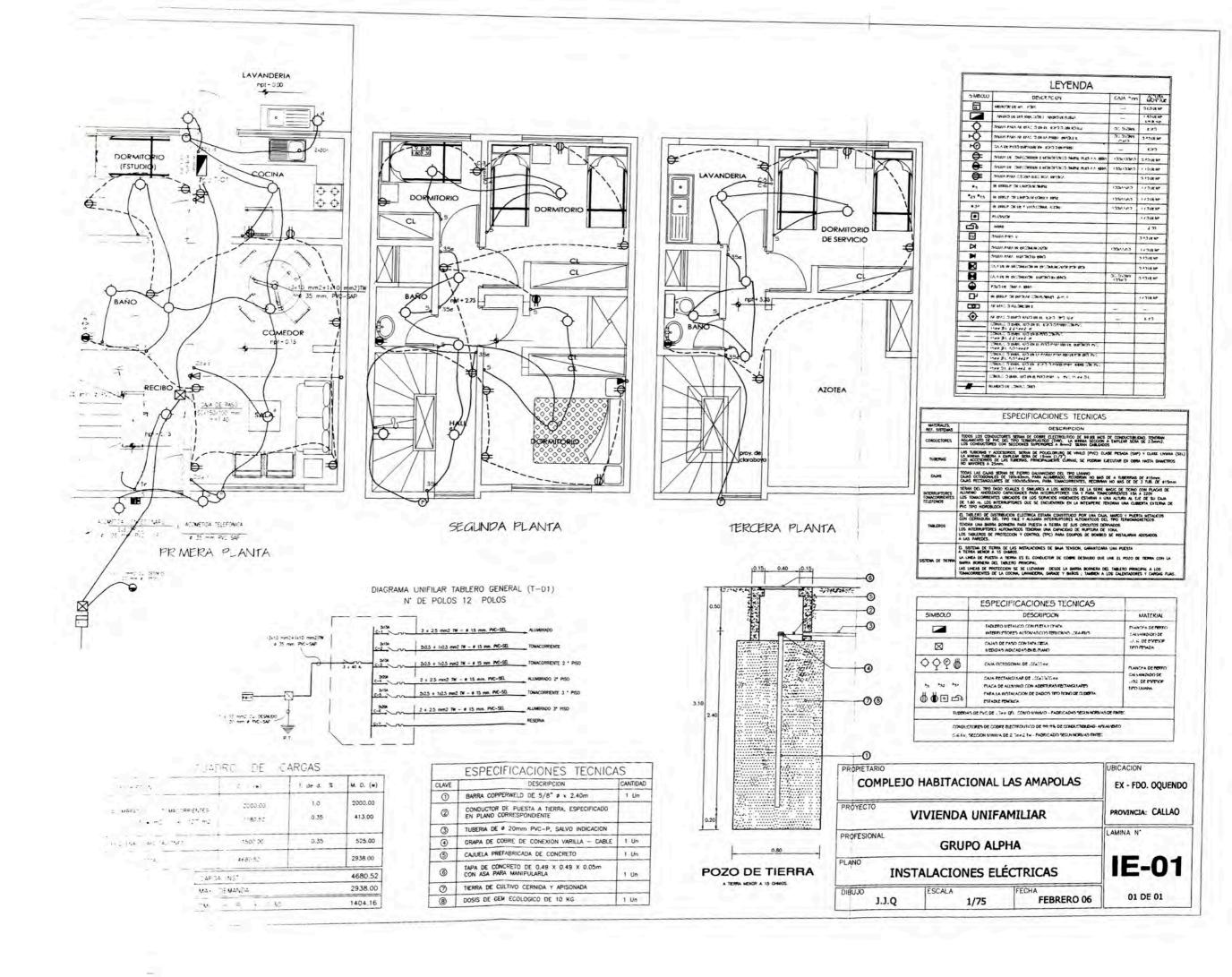

DORMITORIO DE SERVICIO CI Proy, del cigroboro


INST, SANITARIA AGUA TERCER PISO

ESPECIFICACIONES


- 1.- LA TUBERIA DE AGUA FRIA SERA DE PVC-CLASE 10 CON UNIONES Y CONEXIONES ROSCADAS
- LA TUBERIAS DE AGUA CALIENTE SERAN DE PLASTICO
 ESPECIAL CPVC. LA DISTANCIA MINIMA ENTRE TUBERIA
 DE AGUA FRIA Y CALIENTE SERA DE 0.15 m.
- 3.- LAS VALVULAS DE COMPUERTA ESTARAN PROTEGIDAS DENTRO DE CAJAS DE 0.25x0.25x0.12 cm.
- 4.- LAS PRUEBAS DE LAS TUBERIAS DE AGUA SERAN A PRESION CON BOMBA DE MANO DEBIENDO SOPORTAR UNA PRESION DE 100 Lb/puig2 DURANTE 30 MIN.
- LAS TUBERIAS DE VENTILACION TERMINARAN EN SOMBRERO DE VENTILACION Y A NO MENOS DE 0.30 m DEL NIVEL DE TECHO.
- 6.- LAS PRUEBAS DE LAS TUBERIAS DE DESAGUE SERAN A TUBO LLENO DESPUES DE TAPONEAR LAS SALIDAS BAJAS, DEBIENDO PERMANECER LLENOS SIN PRESENTAR ESCAPES DURANTE 24 HORAS.


INST. SANITARIA DESAGUE SEGUNDO PISO



INST. SANITARIA DESAGUE TERCER PISO

ESPECIFICACIONES TECNICAS GENERALES DESAGUE

- TODA LA TUBERIA Y ACCESORIOS DE DESAGUE Y VENTILACIÓN
 SERAN DE PVC DE MEDIA PRESIÓN, UNIÓN SIMPLE PRESIÓN
 LA TUBERIA DE VENTILACIÓN SE PROLONGARA A 0.30 m.
- 2 LA TUBERIA DE VENTILACION SE PROLONGARA A 0.30 M SOBRE EL NIVEL DE AZOTEA O MURO Y TERMINARA EN SOMBRERETE DE PROTECCION CON MALLA A PRUEBA DE INSECTOS
- 3 LOS REGISTROS ROSCADOS SERAN DE BRONCE E IRAN AL RAS DEL PISO TERMINADO.
- 4 LA PENDIENTE MINIMA DE LA TUBERIA DE DESAGUE SERA S=1%

