UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CAÑETE - YAUYOS – CHUPACA CON VIGA BENKELMAN MÉTODO MATEMÁTICO TRAMO km 59+000 - km 64+000

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

JULIO CESAR PEDRO GRIMANI VILLASANTE

Lima – Perú

AÑO 2009

Dedicatoria

"También sabemos que Dios dispone todas las cosas para bien de los que lo aman, a quienes él ha escogido y llamado." Romanos 8, 28

Dedico el presente a Papá Dios porque todo viene de él, a Dilma mi mamá por creer en mí, por su amor, su lucha y perseverancia, a Pedro mi papá por lo que soñó para mí, a mis hermanos por su comprensión, preocupación y ánimos, a Yanina por su amor y a mi comunidad Verbum Dei por sus oraciones y buenos deseos.

ÍNDICE

ÍNDICE	·	1
RESUN	1EN	3
LISTA	DE CUADROS	4
LISTA	DE FIGURAS	5
LISTA	DE SÍMBOLOS Y DE SIGLAS	7
INTRO	DUCCIÓN	10
CAPÍTI	JLO I GENERALIDADES	11
1.1	ANTECEDENTES	11
1.2	TRAMO EVALUADO km 59+000 – km 64+000	
CAPÍTI	JLO II ESTADO DEL ARTE	19
2.1	SISTEMAS DE ANÁLISIS	19
2.1.1	Sistemas elásticos de capas	19
2.1.2	Sistemas no lineales de capas	19
2.1.3	Sistemas lineales Viscoelásticos	19
2.2	ENSAYOS NO DESTRUCTIVOS	20
2.2.1	Viga Benkelman	20
2.2.2	Dynaflec	20
2.2.3	Road Rater	21
2.2.4	RDD	21
2.2.5	FWD	22
2.2.6	KUAB – FWD	22
CAPÍT	ULO III MARCO TEÓRICO	24
3.1	VIGA BENKELMAN	24
3.2	CARACTERIZACIÓN DEL MATERIAL	27
3.2.1	Definiciones previas	27
3.2.2	Modelo Básico	

3.2.3	Modelo de Maxwell	29
3.2.4	Modelo de Kelvin	29
3.2.5	Modelo de Burgers	29
3.2.6	Modelo Generalizado	30
3.3	MODELOS PARA DETERMINAR ESFUERZOS Y DEFORMACION	NES
		30
3.3.1	Modelo de Boussinesq	30
3.3.2	Modelo de Hogg	31
3.3.3	Modelo de Westergaard	32
3.3.4	Modelos bicapas	33
3.3.5	Modelos multicapas (Burmister, 1943)	33
3.4	MÉTODOS DE SOLUCIÓN DE PAVIMENTOS	33
3.4.1	Fórmulas de Boussinesq	33
3.4.2	Fórmula de Westergaard	34
3.4.3	Fórmula de Palmer y Baber generalizada	34
3.4.4	Fórmula de Odemark	35
3.4.5	Modelo de elementos finitos	36
CAPÍTU	JLO IV APLICACIÓN TRAMO km 59+000 – km 64+000	37
4.1	APLICACIÓN DE LA VIGA BENKELMAN.	37
4.2	APLICACIÓN DEL MODELO DE HOGG	42
CAPÍTU	JLO V ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	52
CONCL	USIONES	54
RECON	IENDACIONES	55
BIBLIO	GRAFÍA:	56
ANEXC)S	

RESUMEN

El presente Informe de Suficiencia contiene estudios para evaluar el comportamiento estructural del pavimento, de la carretera Cañete – Yauyos – Chupaca del tramo km 59+000 – km 64+000. La evaluación estructural del pavimento se ha llevado a cabo mediante Ensayos No Destructivos (END), empleando la medición de deflexiones usando el deflectógrafo conocido como Viga Benkelman, que permite medir las deformaciones que se genera en un pavimento flexible bajo la acción de una carga rodante estándar, de una manera sencilla y práctica. El procesamiento de datos de la medición de deflexiones y el análisis de sus resultados será interpretado mediante el método matemático de Hogg, que permitirá obtener los esfuerzos del pavimento para calcular el módulo elástico de la subrasante.

Se espera que al realizar la evaluación estructural en la vía en estudio, se encuentre valores aceptables de los módulos de elasticidad de la sub-rasante, ya que en este tramo se han realizado trabajos de mantenimiento y conservación vial (capa base estabilizada y carpeta asfáltica monocapa), entre febrero y marzo del 2009.

LISTA DE CUADROS

Cuadro N° 1.1. Tramos y longitudes de la carretera en estudio
Cuadro Nº 1.2. Clasificación del Clima en la Carretera
Cuadro Nº 4.1 Ubicación del eje posterior del Volquete en el punto marcado41
Cuadro N° 4.2 Cuadro de deflexiones tomadas en campo42
Cuadro N° 4.3 Valores obtenidos de Lo apartir de los abacos
Cuadro Nº 4.4 Valores obtenidos de Lo apartir de aplicación de subrutina48
Cuadro N° 4.5 Valores obtenidos de E ₀ 49
Cuadro N° 4.6 Valores obtenidos de E_0 apartir de la ecuación de regresión50
Cuadro N° 4.7 Valores obtenidos de E_0 y CBR
Cuadro N° 4.8 Valores obtenidos de E_0 y CBR como solucion de la ecuacion de Hogg
Cuadro N° 4.9 Comparación de Valores obtenidos de E_0 y CBR52
Cuadro Nº 4.10 Rango de valores de CBR
Cuadro Nº 4.11 Estado de la subrasante según rango de valores de CBR del
MTC

LISTA DE FIGURAS

Figura Nº 1.1. Mapa de Ubicación12
Figura Nº 1.2. Plano Clave de la Ruta 2214
Figura Nº 1.3. Plano de Trazo del Tramo Evaluado16
Figura Nº 1.4. Perfil Estratigráfico del Sub – Tramo evaluado
Figura Nº 1.5. Sección del Tramo17
Figura N° 2.1 Viga Benkelman20
Figura N° 2.2 Equipo Dynaflec
Figura N° 2.3 Road Rater
Figura N° 2.4 Equipo RDD22
Figura N° 2.5 Equipo Dynaflec22
Figura N° 2.6 Equipo KUAB FWD23
Figura N° 3.1 Esquema y principio de operación de la Viga Benkelman24
Figura N° 3.2 Configuración geométrica del sistema de carga en Ensayos de Viga Benkelman
Figura N° 3.3 Esquematización del proceso de medición de la Viga Benkelman *26
Figura N° 3.4 Modelos Mecánicos para materiales viscoelásticos
Figura Nº 3.5 Esfuerzos Provocados en un punto de una masa de suelo por una carga concentrada
Figura Nº 3.6 Modelo de Hogg
Figura N° 3.7 Modelo de Westergaard
Figura N° 3.8 Modelo multicapas
Figura Nº 3.9 Representación de un masivo semi infinito
Figura Nº 3.10 Multicapa Propuesto con la Fórmula de Palmer y Barber Generalizada
Figura Nº 3.11 Multicapa propuesto con la Fórmula de Odemark
Figura N° 3.12 Modelo de Elementos Finitos

Figura N° 4.1 Ubicación del eje posterior del volquete en el punto marcado	. 38
Figura N° 4.2 Lectura de las deflexiones con dial.	.39
Figura N° 4.3 Toma de temperatura al Pavimento.	. 39
Figura N° 4.4 Medición del espesor de la Carpeta	.40
Figura N° 4.5 Medición del Ahuellamiento	.40
Figura N° 4.6 Curva de Deflexiones	44
Figura N° 4.7 Nomograma de Deflexiones	.45
Figura N° 4.8 Uso de Nomograma de Deflexiones	.46

LISTA DE SÍMBOLOS Y DE SIGLAS

LISTA DE SÍMBOLOS

а	Radio del área de la huella de la llanta
CBR	California Bearing Ratio
Do	Deflexión máxima
D _c	Deflexión de Campo
Dt	Deflexión teórica
D _(z=0,R)	Deflexión a una distancia R, a nivel Z=0
E	Módulo de Young
E*	Módulo de elasticidad del pavimento
Ei	Módulo de elasticidad del modelo de Kelvin
E1	Módulo de elasticidad de la capa 1
E ₂	Módulo de elasticidad de la capa 2
E。	Módulo de elasticidad de la Subrasante, o módulo de elasticidad
	del modelo de Maxwell
Es	Módulo de elasticidad del masivo semiinfinito
F	Fuerza
н	Espesor de pavimento más espesor de subrasante del modelo de Hogg
h ₁	Espesor del pavimento
h ₂	Espesor de la subrasante
h _n	Espesor de la capa n
J ₀	Función de Bessel de primera especie y orden 0
J_1	Función de Bessel de primera especie y orden 1
K ₁	Coeficiente no lineal del material granular
K ₂	Exponente no lineal del material granular
kN	Kilo Newton
L	Longitud
m	Variable de Integración del Modelo de Hogg
MPa	Mega Páscales
Mr	Módulo Resilente
Ρ	Carga
р	Carga distribuida, en Modelo de Hogg es igual a presion de inflado de llanta

\mathbf{q}_0	Presión Uniforme
R	Radio desde el CG de las llantas hasta donde se mide D_c
t	Tiempo
To	Tiempo de retardo del modelo de Maxwell
T1	Tiempo de retardo del modelo de Kelvin
Ti	Tiempo de retardo del i-ésimo modelo de Maxwell
W ₁₈	Número estimado de ejes simples equivalentes a 8.2t.
δ	Desplazamiento vertical unitario
3	Deformación unitaria
∇	Operador Nabla
λ	Viscosidad
σ	Esfuerzo
μ	Ratio de Poisson
μο	Ratio de Poisson de la capa subarasante
μ	Ratio de Poisson del Pavimento

LIST	A DE	SIGL	AS

AASHTO	American Association of State Highway and Transportation Officials
AYESA	Asociación Aguas y estructuras
Dv.	Desviación
EAL	Número de ejes equivalentes
MEF	Métodos de Elementos Finitos.
FWD	Falling Weight Deflectomer
IMDA	Índice Medio Diario Anual
LVDT	Transformador Diferencial Variable Lineal
m.s.n.m.	Metros sobre nivel del mar
MDS	Máxima Densidad Seca
МТС	Ministerio de Transportes y Comunicaciones
N.T.P.	Norma Técnica Peruana
осн	Óptimo Contenido de Humedad
PERT	Proyecto Especial Rehabilitación de Transportes
PROMCEPRI	Promoción de Concesiones Privadas
RDD	Deflectógrafo dinámico del balanceo
S.U.C.S.	Sistema Unificado de Clasificación de Suelos
SC-SM.	Arena arcillosa y limosa
TSB	Tratamiento Superficial Bicapa
WASHO	Western Association of State Highway Organizations

INTRODUCCIÓN

El desarrollo del presente Informe tiene por objetivo evaluar en carretera Cañete - Yauyos – Chupaca tramo km 59+000 - km 64+000, la condición de la capacidad estructural del pavimento, mediante la medición de deflexiones usando el deflectógrafo conocido como Viga Benkelman. La elección de la Evaluación Estructural de un pavimento mediante la Viga Benkelman permite medir las deformaciones elásticas que sufre un pavimento flexible bajo la acción de una carga rodante estándar, de una manera sencilla y práctica, y usando métodos matemáticos para interpretar los resultados, es posible evaluar el debilitamiento progresivo de la estructura del pavimento, debido a que los pavimentos durante la serviciabilidad y transitabilidad, presentan deterioros en su estructura, por una serie de causas que contribuyen a su mal estado.

Lo que se describe en este informe, es una muestra de cómo se puede evaluar la condición de la capacidad estructural de un pavimento, usando una metodología sencilla, práctica y no destructiva. Para lo cual este informe se ha dividido en cinco capítulos.

El capítulo I describe las generalidades de la carretera y el tramo en estudio, sobre la carretera Cañete – Yauyos – Chupaca se describe el estado actual, su ubicación y las características más importantes del tramo km 64+000 – km 69+000, así mismo sus características más relevantes.

En el capítulo II se detalla el estado del arte de la metodología a emplearse para realizar la evaluación estructural.

En el capítulo III se explican conceptos relacionados a la evaluación estructural con Viga Benkelman mediante métodos matemáticos, como son las deformaciones, módulos de elasticidad, CBR, etc.

El capítulo IV describe todo lo referente a la recopilación y procesamiento de las deflexiones medidas en campo. En el capítulo V se hace el análisis de resultados y la interpretación de las fórmulas matemáticas del Método de Hogg.

CAPÍTULO L- GENERALIDADES

1.1 **ANTECEDENTES**

La carretera Cañete-Yauyos-Huancayo, fue proyectada y ejecutada por partes durante el gobierno del Sr. Augusto B. Leguía entre la década de 1920 a 1930, en estos años se avanzan los trabajos de construcción en el lado de la sierra; y por el lado de la costa durante el gobierno del Dr. Manuel Prado Ugarteche, entre los años 1940 y 1944 se avanzan los trabajos de la carretera desde Cañete, llegando a Yauyos en abril de 1944; quedando postergado todo trabajo de la carretera entre Yauyos-Huancayo. Hasta que en febrero de 1957 se prosiguieron los trabajos de la carretera en los tramos faltantes, terminándose los trabajos de la carretera y puesta en servicio en mayo de 1957.

En el año 1998 la Comisión de Promoción de Concesiones Privadas adjudicó la buena Pro al Consorcio AYESA - ALPHA CONSULT para realizar el Servicio de Consultoría a Nivel de Estudio Definitivo de la Carretera Lunahuaná - Huancayo.

En el año 2003, el Ministerio de Transportes y Comunicaciones (MTC) encargó al consultor Ing. Floriano Palacios León, la elaboración del Estudio de Pre inversión a Nivel de Perfil de la Carretera Ruta 22, Tramo: Lunahuaná – Yauyos – Chupaca de 245.15 km de longitud. Y en el año 2005, PROVIAS NACIONAL – MTC realizó el Estudio de Pre Inversión a nivel de Factibilidad del Proyecto Mejoramiento y Rehabilitación de la Carretera Ruta 22, enfatizando el tema de Diseño Vial.

El Estado Peruano Mediante Resolución Ministerial N° 223-2007-MTC-02. modificada por Resolución Ministerial Nº 408-2007-MTC/02, creó el Programa "Proyecto Perú", viniendo a ser un programa de infraestructura vial diseñado para mejorar las vías de integración de corredores económicos, conformando ejes de desarrollo sostenido con el fin de elevar el nivel de competitividad de las zonas rurales, en la Red Vial Nacional, Departamental y vecinal.

El Programa "Proyecto Perú" aspira a establecer políticas de mantenimiento para la conservación de la infraestructura vial del país, mediante contratos en los que

las prestaciones se controlen por niveles de servicio y por plazos iguales o superiores a tres años, que implican el concepto de "transferencia de riesgo" al Contratista.

Mediante el Contrato: Nº 288-2007-MTC/20, del 27 de Diciembre del 2,007 celebrado con PROVIAS NACIONAL, el Consorcio Gestión de Carreteras asume la responsabilidad de efectuar el servicio de Conservación del Corredor Vial Cañete – Lunahuaná – Pacarán – Dv. Yauyos – Ronchas – Chupaca (con una extensión de 271 km) y el Mejoramiento del Tramo Zúñiga - Dv. Yauyos -Ronchas a nivel de solución básica.

UBICACIÓN DE LA CARRETERA

La carretera de penetración y enlace entre Cañete-Yauyos-Chupaca, se encuentra ubicada en el:

Departamento	•	Lima-Junín
Provincia	•	Cañete -Yauyos - Chupaca

Figura Nº 1.1. Mapa de Ubicación (Fuente: MTC - Provias Nacional - Proyecto Perú)

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE - YAUYOS - CHUPACA CON VIGA BENKELMAN - MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 12 El tramo evaluado, tiene origen en Zúñiga (km 59+000) y destino en las proximidades de San Juan (km 64+000) con una longitud de 5 km.

La altitud de este sub-tramo a varía entre los 821m.s.n.m. y 928 m.s.n.m.

CARACTERÍSTICAS DE LA CARRETERA

La carretera Cañete - Yauyos - Chupaca es una carretera de tercer orden y pertenece al corredor vial Nº13, que atraviesa diferentes poblados y regiones del Perú, los poblados principales se pueden observar en la Figura Nº 1.1. Se considera como punto de inicio de la carretera, la ciudad de Cañete km 1+805 con una altitud de 71 m.s.n.m. y como punto de término el poblado de Chupaca Km 273+531 con una altitud de 3270 m.s.n.m.

Esta carretera tiene una longitud de 271.73 km y se encuentra dentro de la cuenca del rio Cañete, presentando una pendiente promedio de 2%, sin embargo, presenta sectores en donde la pendiente es más pronunciada llegando hasta 8%, especialmente en la zona alta.

La carretera se encuentra dividida en seis tramos, de los cuales dos se encuentran pavimentadas con una infraestructura vial apropiada, y los otros 4 tramos se encuentran con tratamiento superficial, en el Cuadro Nº 1.1 se detalla las condiciones de los tramos antes y después de la intervención del mantenimiento.

Tramo	Longitud (km)	Tipo de superficie de rodadura (antes)	Tipo de superficie de rodadura (actual)
Cañete - Lunahuaná	40.950	Carpeta Asfáltica	Carpeta Asfáltica
Lunahuaná - Pacarán	11.907	Tratamiento Superficial	Tratamiento Superficial
Pacarán - Zúñiga	3.743	Afirmado	Slurry Seal
Zúñiga - Dv. Yauyos	70.400	Afirmado	Monocapa
Dv. Yauyos - Roncha	128.185	Afirmado	Monocapa (33 km) - Afirmado (91.185 km)
Roncha - Chupaca	16.541	Afirmado	Afirmado

Cuadro Nº 1.1. Tramos y longitudes de la carretera en estudio

(Fuente: Elaboración Propia)

PLANO CLAVE

CARRETERA CAÑETE-LUNAHUANA-PACARAN-ZUÑIGA-DV. YAUYOS-RONCHA-CHUPACA

Figura Nº 1.2. Plano Clave de la Ruta 22

(Fuente: MTC - Provias Nacional - Proyecto Perú)

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE - YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 14 El clima que se presenta en la carretera en estudio es variable, pues el área comprometida se ubica en diferentes regiones, según la clasificación del Dr. Javier Pulgar Vidal (expuesta en su libro "Geografía del Perú"). En el siguiente Cuadro Nº 1.2 se señalan las temperaturas típicas y precipitaciones que se dan en estas regiones.

Begión	Tem.	Tem.	Tem.	Dresinitasián	Consistentias	
Region	mínima	media	Máxima	Precipitación	Característica	
Yunga		20º a 27ºC		Pprom=100-	Sol dominante	
(500-2300				150 mm	casi todo el	
m.s.n.m.)					año.	
Quechua	-4 a 7⁰C	11º a 16ºC	22º a 29ºC	Pprom=800-	Clima	
(2300-3500				1200 mm	templado	
m.s.n.m.)						
Suni o Jalca	-1 a -16⁰C	7º a 10ºC	>20°C	Pprom.= 800	Clima frío	
(3500-4000				mm por año.		
m.s.n.m.)						
Puna	-25° a -9°C	0º a 7ºC	22°C	Pprom entre	Clima muy frío	
(4000- 4800				200 mm y		
m.s.n.m.)				1000 mm al		
				аño.		

Cuadro Nº 1.2. Clasificación del Clima en la Carretera

(Fuente: Recopilación del informe del cambio estándar y estudios de pre inversión a nivel de perfil para el rehabilitación y mejoramiento de la carretera)

La carretera tiene una topografía bastante sinuosa transformándose en agreste en la medida que se interna en la cordillera de los andes; mientras que se vuelve a ampliar, ya en la cima de la cordillera. El ancho de la actual plataforma vial es variable entre 3.5m a 8.00m.

La geomorfología de la zona en estudio, se encuentra conformada sobre las unidades sedimentarias volcánicas y metamórficas, en cuanto a las formaciones geológicas de la ruta se encuentran las formaciones de Cañete, Cerro Negro, Torán, Cocachacra y Pariatambo. La composición de los suelos tiene un 49% de material suelto, 33% de roca suelta y 18% de roca fija, en el tramo de Lunahuaná a Yauyos y en el Tramo Yauyos Chupaca se tiene 53% de material suelto, roca suelta 32% y roca fija 15%.

1.2 TRAMO EVALUADO km 59+000 - km 64+000

El tramo evaluado, tiene origen en Zúñiga (Km. 59+000) y destino en las proximidades de San Juan (Km 64+000) con una longitud de 5km.

ZÚÑIGA (Km. 59 + 000) – SAN JUAN (Km. 64 + 000) Figura N°1.3

Departamentos : Lima – Junín

Región natural : Yunga

Altitud : 821 m.s.n.m.

Temperatura Mínima: 20° C - Temperatura Máxima: 27° C

Época de Lluvias : Diciembre – Marzo

Figura Nº 1.3. Plano de Trazo del Tramo Evaluado Fuente: Empresa Consultora Ayesa

Perfil Estratigráfico del Sub - Tramo evaluado:

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CAÑETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 16 La solución aplicada en la actualidad, para el tramo evaluado:

SLURRY SEAL (ligante asfáltico + arena)

Figura Nº 1.5. Sección del Tramo (Fuente: Expediente de Provias)

La longitud del sub-tramo tiene una Altitud promedio de 821 m.s.n.m., presentando una variación de Temperatura entre 16 °C y 26 °C. Las épocas de lluvia se dan de Diciembre a Marzo.

La topografía en este tramo se desarrolla sobre media ladera y terrenos deleznables, cuya plataforma consta de una calzada con un solo carril de dos sentidos de circulación y con un ancho que varía de 3.5 a 5.0m, y pendientes en el rango de 7 % a 10 %. Este tramo se encuentra geológicamente en la quebrada del río cañete, conformado por material aluvional, terrazas de depósitos fluviales y cortes en rocas macizas.

El tiempo de servicio es más de 50 años; y la capacidad portante a nivel de terreno natural expresado en número de CBR es 20% (al 95% de la MDS).

La solución aplicada en la actualidad para el tramo evaluado, esta dado por el Slurry Seal, que es una solución básica en la que se estabiliza la plataforma con material granular y recubrimiento, estos trabajos fueron ejecutados entre febrero y marzo del 2009 por la concesionaria CGC. Como otros datos importantes se puede mencionar, que de acuerdo al estudio técnico para el Cambio estándar de afirmado a solución básica de la concesionaria CGC proyectado para el periodo del 2009 al 2013 son:

EAL (Número de ejes equivalentes a 8.2tn) =1.69 E+06.

IMDA =53 veh/día

Tasa de Crecimiento = 3.6%

CBR (al 95% del MDS) = 20

Módulo Resilente Mr=13,201 psi

Coeficiente de Drenaje (CD) =1.

CAPÍTULO II.- ESTADO DEL ARTE

2.1 SISTEMAS DE ANÁLISIS

A fin de representar las propiedades y características de los suelos en modelos matemáticos es necesario idealizar que tipo de comportamiento tendrá el suelo, a continuación se indica los principales sistemas de análisis.

2.1.1 Sistemas elásticos de capas

La teoría de capas elástica se desarrolla por la necesidad de predecir la respuesta estructural del pavimento a cargas exteriores. En este desarrollo Burmister asumió que cada capa es representada por un material homogéneo, isotrópico y linealmente elástico. Las capas son asumidas extensas infinitamente en la dirección horizontal y en la capa inferior se asume infinitamente extensa en profundidad. Las demás capas tendrán espesores pequeños.

2.1.2 Sistemas no lineales de capas

Es bien conocido que los materiales granulares y la subrasante de los suelos son materiales no lineales, con un módulo de elasticidad que varía con los niveles de presión. El módulo que representa al módulo de elasticidad es el de resilencia obtenido a partir de un ensayo triaxial.

$$E = K_1 \theta^{K2} \tag{2.1}$$

2.1.3 Sistemas lineales Viscoelásticos

Ciertos materiales pueden presentar combinaciones de características solidas como líquidas, incluso bajo presiones pequeñas. Si tal material es sometido a un esfuerzo constante, la deformación continua lentamente con el tiempo.

Los sistemas viscoleásticos lineales han tenido amplio desarrollo en las últimas décadas. La temperatura, la humedad son usadas como variables aleatorias en el modelo. El sistema de pavimento generalmente es un sistema tricapa en el cual cada capa tiene propiedades que varían determinísticamente.

2.2 ENSAYOS NO DESTRUCTIVOS

Son aquellos ensayos que se realizan sin necesidad de realizar excavaciones (calicatas) en la vía, mediante el uso de equipos especializados en medir las deformaciones del terreno producidas por cargas estáticas y/o dinámicas.

2.2.1 Viga Benkelman

La Viga Benkelman es un instrumento manual que consta de de 02 brazos, uno que va en contacto con el terreno y el otro que sirve de pivote donde se realizan las mediciones producidas por la carga estática normalizada (8200 kg). Este equipo se verá con más detalle en el capítulo 3.

Figura N° 2.1 Viga Benkelman (Fuente: Internet, <u>http://strongfamilytree.org</u>, Nov 2009)

2.2.2 Dynaflec

Es un sistema acoplado, montado y puede ser remolcado por un vehículo estándar. Cuenta con un peso estático de 2000 a 2100 libras (8.9 KN a 9.3 KN), se aplica al pavimento con un par de ruedas de acero rígidas. Un generador dinámico se utiliza para producir una fuerza de hasta 4.45-kN. Para más detalle revisar (HUANG, Yang H. "Pavement analysis and design")

Figura N° 2.2 Equipo Dynaflec

2.2.3 Road Rater

Existen varios modelos; los que varían sobre todo en la magnitud de las cargas, que se aplican al pavimento; emplea cuatro sensores para medir la deflexión base; el dispositivo se mueve a la localización de la prueba, donde se coloca la placa de carga y los sensores de deflexión sobre el pavimento. Después de termina la prueba, la placa y los sensores se levantan de la superficie, y el dispositivo está listo para moverse al siguiente punto de prueba.

Figura N° 2.3 Road Rater

2.2.4 RDD

El deflectógrafo dinámico de balanceo (RDD) es relativamente una nueva herramienta para determinar las condiciones del pavimento. Su principal característica es que trabaja con perfiles continuos de deflexiones.

Figura N° 2.4 Equipo RDD.

2.2.5 FWD

El FWD empleado frecuentemente en los Estados Unidos es el sistema Dynatest modelo 8000. La fuerza de impulso es creada soltando un peso al pavimento. Este aparato mide las deflexiones del pavimento producidos por una carga senoidal, que impacta al mismo en una placa de carga, esta última posee 07 transductores de medida.

Figura Nº 2.5 Equipo Dynaflec

2.2.6 KUAB – FWD

La fuerza de impulso es producida por dos pesos soltados de diferentes alturas. El sistema de pesos se emplea para generar una subida gradual de un pulso de fuerza sobre el pavimento, para detectar la rigidez adecuada de la subrasante.

Figura N° 2.6 Equipo KUAB FWD

CAPÍTULO III.- MARCO TEÓRICO

3.1 **VIGA BENKELMAN**

El deflectógrafo Viga Benkelman funciona mediante el principio de palanca, es un instrumento completamente mecánico y de diseño simple, según se esquematiza en la Figura 3.1a. A su vez la viga consta principalmente de dos partes. Un brazo móvil y un brazo fijo que giran sobre un pivote.

Para la toma de medidas de las deflexiones se debe tener presente que el extremo del brazo móvil (D), es el que se mueve verticalmente producto de la carga del vehículo, esta variación es medida con el extensómetro.

Figura Nº 3.1 Esquema y principio de operación de la Viga Benkelman

METODOLOGÍA DE MEDICIÓN DE DEFLEXIONES CON VIGA BENKELMAN

La carga aplicada al pavimento para la realización de ensayos de deflexiones ha sido estandarizada 8200 kg. Previamente a la realización de los ensayos deberá verificarse que se cumpla esta condición, así como que la presión de las llantas sea la requerida. Una vez localizado el lugar donde se realizará el ensayo (usualmente los puntos de medición se localizan en la mitad exterior de un carril), se coloca la llanta a usarse sobre el punto de manera tal que éste coincida aproximadamente con el eje vertical del centro de gravedad del conjunto (ver figura 3.1.2a, punto "D"). Estacionados los neumáticos se inserta entre ellos el extremo del brazo móvil de la viga colocándolo nuevamente sobre el punto de ensayo seleccionado. Tomando como punto de referencia una varilla vertical adosada a la parte trasera del camión (ver figura 3.1.2.b), se hace coincidir (las marcas de la viga con la varilla). Para medir las deflexiones del pavimento.

Figura N° 3.2 Configuración geométrica del sistema de carga en Ensayos de Viga Benkelman.

Para la metodología de análisis se requiere de por lo menos tres lecturas, pero se pueden obtener más con fines de verificación, lo cual es recomendable si se desea tener una idea gráfica del tipo de curva de deflexión que se produce.

Como norma se realiza la primera marca adicional a una distancia tal que la deflexión que se obtenga en ese punto sea la mitad de la deflexión máxima. La segunda marca adicional se realiza al doble de la distancia de la primera marca adicional.

Una vez instalada la viga en el punto de medición haciendo coincidir con la varilla vertical y la marca inicial (ver figura 3.3a), se verifica que ésta se encuentre alineada longitudinalmente con la dirección del movimiento del camión. Se pondrá el dial del extensómetro en cero, se activará el vibrador y mientras el camión se desplaza muy lentamente se procederá a tomar lecturas conforme la varilla vertical vaya coincidiendo con las marcas (figuras 3.3b, c), se tomará una lectura más cuando el camión se haya alejado lo suficiente del punto

de ensayo de modo que el indicador del dial ya no tenga movimiento (aproximadamente 5.00 m.).

Figura N° 3.3 Esquematización del proceso de medición de la Viga Benkelman

Para la realización de esta rutina será necesario del concurso de tres operadores:

Un técnico calificado que lea y dicte las lecturas, un operador que anote las mediciones y un ayudante que coordine con el conductor del camión y a la vez de aviso al técnico que realiza las lecturas.

EQUIPO REQUERIDO

El equipo mínimo para la realización de ensayos de medición de deflexiones es el siguiente:

- a) Deflectógrafo Viga Benkelman, con relación de brazos 1:4
- b) Extensómetro con dial indicador de divisiones cada 0.01 mm
- c) Camión cargado, cuyo eje tenga un peso de 18000 libras y un par de llantas dobles infladas a una presión de 75 a 85 psi.
- d) Vehículo auxiliar para transportar al personal y equipo (camioneta).
- e) Balanza portátil para pesaje del camión, con capacidad de 10 toneladas.
- f) Accesorios de medición como: Cinta métrica de 3 m, plumones de punta gruesa, plomada, destornillador, alicates, hojas de campo, lápices, señales de seguridad, termómetro, cincel, martillo, varilla de metal o madera de 2m, alambre de amarre.

3.2 CARACTERIZACIÓN DEL MATERIAL

Para la caracterización del material .se emplea diversos modelos que se definen en los siguientes párrafos.

3.2.1 Definiciones previas

Módulo Resilente

Es el módulo elástico a ser utilizado con la teoría de la elasticidad.

$$M_r = \frac{\sigma_d}{\varepsilon_r} \tag{3.2}$$

Donde:

 σ_d : Es el esfuerzo desviador, el cual es el esfuerzo axial en un ensayo no confinado.

εr: Deformación recuperable

Ratio de Poisson

Dado un cuerpo elástico sometido a un esfuerzo longitudinal, es la relación que existe entre la deformación lateral y la correspondiente deformación longitudinal.

Módulo de elasticidad

Se le designa por E. Está asociado directamente con los cambios de longitud que experimenta el pavimento, cuando está sometido a la acción de esfuerzos de tracción o de compresión.

Peso unitario

Es el peso por unidad de volumen

CBR

El número CBR (o simplemente CBR), se obtiene de la relación de la carga unitaria (PSI) necesaria para lograr una cierta profundidad de penetración del pistón de penetración (19.4 cm) dentro de la muestra compactada de suelo a un contenido de humedad y densidad dadas con respecto a la carga unitaria patrón (PSI) requerida para obtener la misma profundidad de penetración en una muestra estándar de material triturado.

Coeficiente de expansión térmica

Cambio en las dimensiones de un material por variación de temperatura. También llamado dilatabilidad.

Modelos Matemáticos

Se cuenta con varios modelos mecánicos para caracterizar al material. Los modelos mecánicos se forman de dos elementos básicos un resorte y un amortiguador hidráulico, como se muestra a continuación:

Figura N° 3.4 Modelos Mecánicos para materiales viscoelásticos

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MĒTODO MATEMÁTICO TRAMO km 59 + 000 – km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 28

3.2.2 Modelo Básico

Un material elástico se caracteriza por un resorte, según lo indicado en Figura 3.4. (a), y obedece la ley de Hooke, y la tensión es proporcional a la deformación:

$$\sigma = E\varepsilon \tag{3.3}$$

Un material viscoso es representado por un amortiguador hidráulico, según lo indicado en Figura 3.4. (b), y obedece la ley de Newton, según la cual la tensión es proporcional a la variación de la deformación en el tiempo:

$$\sigma = \lambda \, \frac{\partial \varepsilon}{\partial t} \tag{3.4}$$

Modelo de Maxwell 3.2.3

Es la combinación de resorte y de amortiguador hidráulico en serie, tal como indica en la Figura 3.4. (c)

$$\varepsilon = \frac{\sigma}{E_0} + \frac{\sigma t}{\lambda_0} = \frac{\sigma}{E_0} \left(1 + \frac{t}{T_0} \right)$$
 (3.5)

3.2.4 Modelo de Kelvin

Es una combinación de resorte y amortiguador hidráulico en paralelo, según lo indicado en la figura 3.4. (d). El resorte y el amortiguador hidráulico tienen la misma deformación. Se usa el subíndice 1 para indicar un modelo de Kelvin.

$$\sigma = E_1 \varepsilon + \lambda_1 \frac{\partial \varepsilon}{\partial t}$$
(3.6)

3.2.5 Modelo de Burgers

Un modelo de Burgers es una combinación del modelo del Maxwell y de Kelvin, según lo indicado en la Figura 3.4. (e).

$$\varepsilon = \frac{\sigma}{E_0} \left(1 + \frac{t}{T_0} \right) + \frac{\sigma}{E_1} \left[1 - \exp\left(\frac{t}{T_1}\right) \right]$$
(3.7)

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE - YAUYOS - CHUPACA CON VIGA BENKELMAN - METODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 29

3.2.6 Modelo Generalizado

La Figura 3.4. (f) muestra un modelo generalizado que se pueda utilizar para caracterizar cualquier material viscoelástico.

$$\varepsilon = \frac{\sigma}{E_0} \left(1 + \frac{t}{T_0} \right) + \sum_{i=1}^n \frac{\sigma}{E_i} \left[1 - \exp\left(\frac{t}{T_i}\right) \right]$$
(3.8)

3.3 MODELOS PARA DETERMINAR ESFUERZOS Y DEFORMACIONES

3.3.1 Modelo de Boussinesq

Con el modelo de Boussinesq se puede determinar el desplazamiento o deflexión de un punto debido a cargas verticales distribuidas sobre el pavimento, generadas por dos llantas cuya área de contacto son dos circunferencias de radio "a".

Figura Nº 3.5 Esfuerzos Provocados en un punto de una masa de suelo por una carga concentrada

En el problema de Boussinesq se plantea las siguientes expresiones para la determinación de los esfuerzos del punto "A":

$$\sigma_z = \frac{3P}{2\pi} \frac{\cos^5 \Psi}{z^2} \tag{3.9}$$

$$\sigma_r = \frac{P}{2\pi z^2} \left[3 + \cos^2 \Psi \sin^2 \Psi - (1 - 2\mu) \frac{\cos^2 \Psi}{1 + \cos \Psi} \right]$$
(3.10)

$$\sigma_{i} = -\frac{\left(1-2\mu\right)P}{2\pi z^{2}} \left[\cos^{3}\Psi - \frac{\cos^{2}\Psi}{1+\cos\Psi}\right]$$
(3.11)

3.3.2 Modelo de Hogg

Este modelo caracteriza al pavimento con dos capas, La calzada que es una placa de espesor delgado con rigidez a la flexión y una subrasante representada por un medio elástico, lineal, homogéneo e isotrópico.

Dado que es difícil de obtener la solución de las ecuaciones de elasticidad, los problemas de flexión adoptan ciertas hipótesis simplificadas (hipótesis de Navier sobre capas delgadas), lo que lleva a suponer lo siguiente de la calzada.

- El plano medio se confunde con la fibra neutra.
- Las secciones planas permanecen inalterables durante la deformación.
- Los esfuerzos normales que siguen una deformación transversal pueden despreciarse.
- Los desplazamientos verticales de la fibra neutra de la placa satisfacen la ecuación de Lagrange para placas delgadas.

La ecuación que resuelve Hogg es:

$$DP \cdot \nabla^2 w = p \tag{3.12}$$

Donde

$$DP = \frac{E_1 H^3}{12(1 - \mu_1^2)}$$
(3.13)

DP = rigidez de la placa.

w = desplazamiento vertical de la fibra neutra.

p = suma de presiones verticales $p = \sigma_z - q_0$ o $p = \sigma_z$ en el exterior del circulo.

$$\nabla^2 = \left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}\right)$$
(3.14)

Al resolver la ecuación 3.14 con ayuda de la transformada de Hankel para z=0 resulta.

$$\mathsf{D}_{(0;r)} = \frac{(1+\mu_o)(3-4\mu_o)p.a}{2(1-\mu_o)E_0} \int_0^\infty \frac{J_0(\frac{mr}{L_0}).J_1(\frac{ma}{L_0})}{m^4 + m\phi(\frac{mh}{L_0})} dm$$
(3.15)

Donde:

$$\phi(k) = \frac{senh(k) \times \cosh(k) + \frac{k}{3 - 4.\mu_0}}{senh^2(k) - \frac{k^2}{(3 - 4.\mu_0)^2}}$$
(3.16)

Figura Nº 3.6 Modelo de Hogg

3.3.3 Modelo de Westergaard

Partiendo del principio de la hipótesis de un masivo de Boussinesq para el soporte de la vía, se obtiene una hipótesis simplificatoria. Westergaard aporta otra variable que facilita los cálculos: el suelo se representa por una serie de resortes, en los cuales el desplazamiento vertical " ϖ " es proporcional a la presión vertical "v".

Figura N° 3.7 Modelo de Westergaard

3.3.4 Modelos bicapas

El comportamiento del suelo no es homogéneo, en el caso de los pavimentos es difícil caracterizar la transmisión de esfuerzos del pavimento a la subrasante, por lo que es necesario incluir una capa que represente esta transmisión.

3.3.5 Modelos multicapas (Burmister, 1943)

Los modelos de n capas facilitan la esquematización de la estructura del pavimento y la subrasante. Una estructura tradicional se representa mejor mediante un esquema tricapa (suelo, cuerpo granular y capa asfáltica).

Figura N° 3.8 Modelo multicapas.

3.4 MÉTODOS DE SOLUCIÓN DE PAVIMENTOS

3.4.1 Fórmulas de Boussinesq

El masivo semi infinito de Boussinesq se supone lineal, isotrópico, elástico, con módulo de Young E_s y de coeficiente de poisson μ .

Figura Nº 3.9 Representación de un masivo semi infinito.

La fórmula de Boussinesq para hallar el desplazamiento de un punto en el suelo provocado por una carga puntual es:

$$\delta = \frac{P}{2\pi E_s} \left(1 + \mu\right) \left[2\left(1 - \mu\right) + \left(\frac{z}{K}\right)^2 \right] \frac{1}{K}$$
(3.17)

3.4.2 Fórmula de Westergaard

La carga P se aplica sobre un área elíptica. La calzada es una placa homogénea, isotrópica y elástica con módulo de young E y coeficiente de Poisson μ , su espesor h es constante, el suelo está en contacto con la placa constantemente y se caracteriza por el módulo de reacción k. Una manera de encontrar la rigidez del pavimento es con la siguiente ecuación:

$$\ell = 4 \frac{Eh^3}{12(1-\mu^2)k}$$
(3.18)

k es el módulo de reacción.

3.4.3 Fórmula de Palmer y Baber generalizada

La carga sobre la calzada se esquematiza por una presión unitaria q, aplicada sobre un área circular de radio a. La calzada está compuesta por n-1 capas
horizontales de espesor h_i de módulo de Young E_i y de coeficiente de Poisson

μ_i igual a:

Figura Nº 3.10 Multicapa Propuesto con la Fórmula de Palmer y Baber Generalizada.

3.4.4 Fórmula de Odemark

La carga sobre la calzada se esquematiza por una presión uniforme q aplicada sobre un área circular de radio a.

La calzada está compuesta por n-1 capas horizontales, de espesor h_i , módulo de Young E_i y de coeficiente de Poisson v_i , la caracterización de la base es como un masivo semi infinito de características mecánicas E_n y rigidez infinita.

$$h_e = 0.8 \sum_{i=1}^{n-1} h_i \sqrt[3]{\frac{E_i}{E_n}}$$
(3.20)

Figura Nº 3.11 Multicapa propuesto con la Fórmula de Odemark

3.4.5 Modelo de elementos finitos

Este modelo resuelve las ecuaciones constitutivas y de compatibilidad mediante la división del medio continuo en un conjunto de subdominios denominados elementos finitos, en este método se cumple principalmente las condiciones de frontera en los nodos del sistema que se resuelve.

Los puntos interiores a los elementos se aproximan con funciones de interpolación. En el caso de pavimentos existen programas MICHIPAVE y EVERSTRESS FE que ayudan a resolver este problema.

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 36

CAPÍTULO IV.- APLICACIÓN TRAMO km 59+000 – km 64+000

APLICACIÓN DE LA VIGA BENKELMAN. 4.1

La deflectometría consistió en el estudio de las deformaciones verticales de la superficie de la calzada debido a la acción de una carga estándar de 8.2 toneladas aplicada al pavimento a través de un camión con movimiento lento.

Durante la evaluación de campo se cumplió con las siguientes pautas:

- Se hicieron las medidas desde el km 59+000 en forma creciente terminando • en el km 60+300, se obtuvieron registros en 11 puntos (estacas).
- Se utilizó la Viga Benkelman de brazo simple.
- Se utilizó un camión de un solo eje posterior, que transmitía una carga de 8.2 toneladas controladas por una balanza electrónica adecuada.
- La presión de inflado de las llantas fue de 80 PSI. •
- Se registró la temperatura de las capas asfálticas con termómetro digital de • precisión.
- Se midió el espesor de las capas asfálticas en cada punto.
- Se registró la lectura de las deflexiones.

Procedimiento de medición.

La toma de medidas hechas durante el ensayo de campo se basó en el siguiente procedimiento:

- Se deben marcar con anticipación los puntos de medición en el pavimento a ser ensayado de manera que permita agilizar el proceso.
- Antes de empezar a medir se colocará en la parte trasera del camión una regla de metal que sirva de plomada para saber en qué momento el camión pasa por los puntos donde se debe hacer lecturas.
- Se marcarán en la viga previamente con papel adhesivo los puntos previstos, • en nuestro caso se ubicaron a 0, 25, 40 y 70 centímetros.
- La rueda dual externa del camión deberá ser colocada sobre el punto seleccionado, quedando éste ubicado entre ambas llantas.

- Se coloca la regla sobre el pavimento, detrás del camión perpendicularmente al eje de carga de modo que la punta de prueba (de la viga) coincida con el punto de ensayo y la regla no roce contra las cubiertas de la rueda dual.
- Se retira la traba de la regla y la base se ajusta por medio del tornillo trasero de modo tal que el brazo de medición quede en contacto con el vástago del dial.
- El extensómetro se ajusta de modo tal que el vástago tenga un recorrido libre comprendido entre 4 y 6 mm. Se gira la esfera del extensómetro hasta que la aguja quede en cero y se verifica la lectura golpeando suavemente con un lápiz y poniendo en marcha el vibrador de la regla. Se deberá girar la esfera si es necesario y repetir la operación hasta obtener la posición "0" (cero).
- El ensayo comenzará cuando se compruebe que dicha lectura permanece constante, asegurando el equilibrio del pavimento bajo carga.
- Establecida la lectura inicial en cero, un operador indicará al conductor del camión que inicie el movimiento lento mientras que indicará a los operadores encargados de las lecturas el momento exacto cuando la regla colocada en el camión coincida con los puntos marcados previamente en la viga.

Figura Nº 4.1 Ubicación del eje posterior del volquete en el punto marcado.

Al escuchar las indicaciones los lectores dirán en voz fuerte y clara las medidas indicadas por el extensómetro, mientras que otro operador las anotará, esto se hace con el fin de que no se presente problema alguno en la toma de medidas.

Figura N° 4.2 Lectura de las deflexiones con dial.

Se procede a la medición de la temperatura que presenta el asfalto en el punto en medición. Se toma una pequeña muestra del espesor del pavimento haciendo una pequeña incisión en el costado del pavimento más cercano al punto de toma.

Figura N° 4.3 Toma de temperatura al Pavimento.

Figura Nº 4.4 Medición del espesor de la Carpeta.

Se anota la medida del Ahuellamiento en el punto de ensayo y se hacen anotaciones y tomas de fotografías generales de las fallas superficiales aledañas.

Figura Nº 4.5 Medición del Ahuellamiento

- Con el objetivo de ahorrar tiempo terminadas las anotaciones de las lecturas • el camión se trasladará al siguiente punto.
- Todo el proceso deberá ser supervisado por un ingeniero de campo experimentado quien verificara los valores que se vayan obteniendo así

como las anotaciones de fallas, tipo de material, superficie, abolladura entre otras características.

Finalmente, obtenida toda la información de campo se procede a calcular los valores de las deflexiones de cada sub tramo, para definir la poder intervención necesaria con fines de rehabilitación.

De acuerdo a los formatos establecidos para la anotación de las deflexiones encontradas, a continuación se indican las medidas por cada sub tramo de 100m.

N°	Estaca (km)		Lecturas o (10 ⁻³	de Campo mm)		Espesor (m)	Temperat. (°C)
		L ₂₅	L ₄₀	L ₇₀	L _{max}		
1	59+300	6	12	16	28	0.01	29.0
2	59+400	8	14	16	18	0.01	38.0
3	59+500	8	12	16	18	0.01	44.0
4	59+600	8	10	16	20	0.01	44.0
5	59+700	10	14	14	20	0.01	46.0
6	59+800	12	20	22	26	0.01	48.0
7	59+900	8	12	18	20	0.01	48.0
8	60+000	12	16	24	26	0.01	49.0
9	60+100	14	32	34	36	0.01	49.0
10	60+200	14	34	36	38	0.01	48.0
11	60+300	16	32	44	48	0.01	40.0

Cuadro Nº 4.1 Ubicación del eje posterior del Volquete en el punto marcado.

Cálculo de las Deformaciones del tramo

Se procede a calcular la Deflexión Di de cada punto, a partir de las lecturas de recuperación, considerando para el punto Ri la lectura máxima Lmax menos la lectura Li, multiplicando a dicho valor por 4, que es el brazo de palanca de la viga.

De esta manera se llega al cuadro siguiente:

N°	Estaca	I	_ecturas o (10 ⁻³	de Campo mm)	þ	Espesor	Temperat.	RESULTADOS DEFLECTOMÉTRICOS			
N	(km)	L ₂₅	L ₄₀	L ₇₀	L _{max}	(m)	(°C)	D ₀	D ₂₅	D ₄₀	D ₇₀
1	59+300	6	12	16	28	0.01	29.0	112	88	64	48
2	59+400	8	14	16	18	0.01	38.0	72	40	16	8
3	59+500	8	8 12 16			0.01	44.0	72	40	24	8
4	59+600	8	10	16	20	0.01	44.0	80	48	40	16
5	59+700	10	14	14	20	0.01	46.0	80	40	24	24
6	59+800	12	20	22	26	0.01	48.0	104	56	24	16
7	59+900	8	12	18	20	0.01	48.0	80	48	32	8
8	60+000	12	16	24	26	0.01	49.0	104	56	40	8
9	60+100	14	14 32 34		36	0.01	49.0	144	88	16	8
10	60+200	14	14 34 36		38	0.01	48.0	152 96		16	8
11	60+300	16	32	44	48	0.01	40.0	192 128		64	16

Cuadro Nº 4.2 Cuadro de deflexiones tomadas en campo.

APLICACIÓN DEL MODELO DE HOGG 4.2

La aplicación del Modelo de Hogg se basa principalmente en la solución de dos ecuaciones señaladas en el Marco Teórico:

$$D_{(z=0,R)} = \left(\frac{(1+\mu_0)(3-4\mu_0).p.a}{2(1-\mu_0).E_0}\right) \int_0^\infty \frac{J_0(\frac{m.R}{L_0}).J_1(\frac{m.a}{L_0})}{m^4 + m.\phi(\frac{m.h}{L_0})} dm \quad (4.1)$$

$$\phi(k) = \frac{\operatorname{senh}(k) \times \cosh(k) + \frac{k}{3-4.\mu_0}}{\operatorname{senh}^2(k) - \frac{k^2}{(3-4.\mu_0)^2}} \quad (4.2)$$

La carga en el ensayo con la Viga Benkelman proviene del eje trasero simple con llanta doble de un camión. La carga del eje es del orden de los 8.2 ton. y la presión de inflado es de 80psi. En el modelo de carga se asume que la presión de inflado es igual a la presión de contacto, la huella de contacto de cada llanta es circular de radio a y la distancia entre los ejes de las dos llantas es 3a.

Para la aplicación de la teoría se consideran los siguientes parámetros:

$$a = \sqrt{\frac{PLL}{\pi p}}$$

(4.3)

a= Radio de la huella circular de contacto PLL= Carga sobre una llanta = P/2 p= Presión de Inflado

Cálculo de Longitud Elástica o Característica (Lo)

Para el cálculo de Lo se empleará la Ecuación 1, en ella se desconoce el valor de E_0 , pero se tienen los valores de campo de las Deflexiones D_R y D_0 .

Se define D_R como la deflexión en el punto R, y R es la distancia del centro de carga hacia el punto de lectura.

D₀ es la deflexión máxima que ocurre en el punto R=0 cm.

La ecuación 4.1 para la determinación de D_R depende de E₀, Lo y R.

 $D_0 \ y \ D_R$ son datos conocidos de campo, para valores de R iguales a 25, 40 y 70 cm.

Si se divide los valores de D_R entre D_0 utilizando la ecuación 4.1, de la siguiente manera:

$$\frac{(\frac{(1+\mu_{0})(3-4\mu_{0}).p.a}{2(1-\mu_{0}).E_{0}})\int^{\circ}_{0}\frac{J_{0}(\frac{m.R}{L_{0}}).J_{1}(\frac{m.a}{L_{0}})}{m^{4}+m.\phi(\frac{m.h}{L_{0}})}dm}{(\frac{(1+\mu_{0})(3-4\mu_{0}).p.a}{2(1-\mu_{0}).E_{0}})\int^{\circ}_{0}\frac{J_{0}(\frac{m.0}{L_{0}}).J_{1}(\frac{m.a}{L_{0}})}{m^{4}+m.\phi(\frac{m.h}{L_{0}})}dm}$$
(4.3)

De donde simplificando resulta la siguiente expresión:

$$\frac{D_R}{D_0} = \frac{\int_0^0 \frac{J_0(\frac{m.R}{L_0}) J_1(\frac{m.a}{L_0})}{m^4 + m.\phi(\frac{m.h}{L_0})} dm}{\int_0^0 \frac{J_0(\frac{m.0}{L_0}) J_1(\frac{m.a}{L_0})}{m^4 + m.\phi(\frac{m.h}{L_0})} dm}$$
(4.4)

Una ecuación que depende directamente de Lo y de h.

Siendo h la profundidad del estrato rocoso, se asume que la relación h/Lo=10. Para cada R se tiene su D_R respectivo, entonces la solución de la ecuación 4.3, nos dará el valor de Lo para cada punto R.

Generalizando la Solución

Otra posibilidad de la solución de la Ecuación 3, es que para una distancia R con un valor de Lo conocido se determine el valor de D_R/D₀, este valor es menor de la unidad. De esta manera se puede construir un gráfico de valores D_R/ D₀ para valores de R variables en un rango de 0 cm a una distancia R de acuerdo al trabajo de campo, asumiendo valores de Lo, como ejemplo para Lo=20 cm.

Figura N° 4.6 Curva de Deflexiones

La aplicación de esta metodología para diferentes valores de Lo permite construir un nomograma de valores D_R/D_0 para valores de R considerando una relación h/Lo=10.

Figura N° 4.7 Nomograma de Deflexiones

Primer alcance para determinar el valor de Lo

Como primera aproximación, para la determinación del valor de Lo se usa el nomograma con el valor de R y la relación D_R/D₀.

De acuerdo al trabajo de campo en el cuadro 4.2, para un punto existen 5 lecturas de deflexiones considerando la D_{100} que es 0.

De acuerdo a la metodología del Modelo de Hogg por aproximación estadística se considera el R y D_R donde $D_R=0.50 \times D_0$.

Por Ejemplo,para el primer punto del Cuadro 4.2 se tiene: $D_0=112$ $D_{25}=88$ $D_{40}=64$ $D_{70}=48$ $D_{100}=0$ D_0 , D_{25} , D_{40} , D_{70} D_{100} (x10⁻²mm) y R (cm)

El par R, D_R que cumple la aproximación a D_R/D₀=0.50 es R=70 y D_R=48, para el cual D_R/D₀=48/112=0.4286.

Con estos valores se realiza la proyección de R=70 cm y la relación $D_R/D_0=0.4286$, su intersección determina la curva Lo a la que pertenece dicho punto, esta intersección se puede apreciar en la figura 4.8.

Figura N° 4.8 Uso de Nomograma de Deflexiones

Se ve que el valor de Lo está ubicado entre las curvas Lo=30 cm y Lo=40 cm, por lo que le corresponde un valor entre 30 y 40 cm, que se obtiene por interpolación gráfica, determinando así Lo=33.00 cm; se continúa de manera similar para los demás datos. Los que se indican en el cuadro 4.3.

	Estaca	Lecturas de Campo (10 ⁻³ mm)					RE DEFLE	SULTAD CTOMÉT	IOS FRICOS				
N°	(km)		(105				Deflex	iones(x1))-2 mm)				
		L ₂₅	L40	L70	Lmax	D ₀	D ₂₅	D40	D70	D ₁₀₀	R ₅₀	D _R /D ₀	Lo
1	59+300	6	12	16	28	112	88	64	48	0	70	0.4286	33.0
2	59+400	8	14	16	18	72	40	16	8	0	25	0.5556	19.9
3	59+500	8	12	16	18	72	40	24	8	0	25	0.5556	12.3
4	59+600	8	8 10 16 20			80	48	40	16	0	40	0.5000	20.0
5	59+700	10	14	14	20	80	40	24	24	0	25	0.5000	9.8
6	59+800	12	20	22	26	104	56	24	16	0	25	0.5385	12.0
7	59+ 9 00	8	12	18	20	80	48	32	8	0	40	0.4000	16.0
8	60+000	12	16	24	26	104	56	40	8	0	25	0.5385	12.0
9	60+100	14	14 32 34 36				88	16	8	0	25	0.6111	15.0
10	60+200	14 34 36 38			152	96	16	8	0	25	0.6316	16.0	
11	60+300	16	32	44	48	192	128	64	16	0	25	0.6667	18.0

Cuadro Nº 4.3 Valores obtenidos de Lo apartir de los abacos.

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CAÑETE - YAUYOS - CHUPACA CON VIGA BENKELMAN - MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 46 La aplicación del Modelo de Hogg ha quedado limitada por mucho tiempo al empleo del nomograma de la Figura 4.7, para la obtención del Lo, debido a la dificultad de la solución matemática de las ecuaciones 4.1, 4.2 y 4.4 compuestas de integrales infinitas de funciones Bessel y funciones angulares hiperbólicas.

Además de la limitación de disponer solo de nomogramas para h/Lo=10, y valores de R hasta 260 cm.

Segundo alcance para determinar el valor de Lo

Debido a las limitaciones gráficas, la determinación del valor de Lo queda sesgada por la aproximación de una interpolación gráfica.

Como segundo alcance y el más importante se presenta a continuación, la generalización del Modelo de Hogg, al plantear la solución matemática de dichas ecuaciones, por una secuencia de programación desarrollada en Matlab, cuyas subrutinas se presentan en el Anexo N°02.

Se tiene la ecuación 4.4 de la cual se conoce los valores de D_R/D_0 , y el factor h/Lo=10.

Una estrategia de solución de dicha ecuación, es definir una función F(Lo) que dependa de Lo, como sigue.

$$F(Lo) = \frac{\int_{0}^{\infty} \frac{J_{0}(\frac{m.R}{L_{0}}) J_{1}(\frac{m.a}{L_{0}})}{m^{4} + m.\phi(\frac{m.h}{L_{0}})} dm}{\int_{0}^{\infty} \frac{J_{0}(\frac{m.0}{L_{0}}) J_{1}(\frac{m.a}{L_{0}})}{m^{4} + m.\phi(\frac{m.h}{L_{0}})} dm}$$
(4.5)

Entonces el cálculo de Lo se determinará encontrando la raíz de F(Lo). Para esto se desarrollo una subrutina para graficar F(Lo) vs Lo, donde se verifica que existe un punto de corte para el cual la función es cero.

Se plantea la ecuación

$$F(Lo) = 0$$
 (4.6)

Cuya solución se encuentra con el método de bisección.

Se desarrolló una subrutina para aplicar el método de bisección a la función F(Lo), y para cada D_R/D_0 cercano a 0.50 y su respectivo R, se determina la raíz de la función que equivaldría al valor de Lo, que satisface la ecuación 4.6 y en consecuencia la ecuación 4.4.

Por Ejemplo, para el primer punto del Cuadro 4.2 tenemos: $D_0 = 112$ D₂₅=88 D₄₀=64 D₇₀=48 D₁₀₀=0 D_0 , D_{25} , D_{40} , D_{70} D_{100} (x10⁻²mm) y R (cm)

El par R, D_R que cumple la aproximación a D_R/ D₀=0.50 es R=70 y D_R=48, para el cual D_R/D₀=48/112=0.4286

$$F(Lo) = \frac{\int_{0}^{\infty} \frac{J_{0}(\frac{m.70}{L_{0}}) J_{1}(\frac{m.11.5}{L_{0}})}{m^{4} + m.\phi(m.10)} dm}{\int_{0}^{\infty} \frac{J_{0}(\frac{m.0}{L_{0}}) J_{1}(\frac{m.11.5}{L_{0}})}{m^{4} + m.\phi(m.10)} dm}$$

Con estos valores se aplica la subrutina de bisección obteniendo el valor de Lo=34.31 cm, se hace lo mismo con los demás datos.

	Estaca	Lecturas de Campo (10 ⁻³ mm)					RE DEFLE	SULTAD CTOMÉ1	IOS FRICOS				
N°	(km)		(10-				Deflex	ones(x1	0-² mm)		R ₅₀	D_R/D_0	Lo
		L25 L40 L70 Lmax				Do	D25	D40	D70	D100	(cm)		(cm)
1	59+300	6	12	16	28	112	88	64	48	0	70	0.4286	34.307
2	59+400	8	14	16	18	72	40	16	8	0	25	0.5556	14.365
3	59+500	8	12	16	18	72	40	24	8	0	25	0.5556	14.365
4	59+600	8	10	16	20	80	48	40	16	0	40	0.5000	21.885
5	59+700	10	14	14	20	80	40	24	24	0	25	0.5000	12.607
6	59+800	12	20	22	26	104	56	24	16	0	25	0.5385	13.779
7	59+900	8	12	18	20	80	48	32	8	0	40	0.4000	17.647
8	60+000	12	16	24	26	104	56	40	8	0	25	0.5385	13.779
9	60+100	14	14 32 34 36				88	16	8	0	25	0.6111	16.455
10	60+200	14	14 34 36 38				96	16	8	0	25	0.6316	17.354
11	60+300	16	32	44	48	192	128	64	16	0	25	0.6667	19.053

Cuadro Nº 4.4 Valores obtenidos de Lo apartir de aplicación de subrutina.

Cálculo del módulo de elasticidad del pavimento (E₀)

El modelo de Hogg plantea la ecuación 4.1 para calcular las deflexiones del pavimento.

$$D_{(z=0,R)} = \frac{(1+\mu_0)(3-4\mu_0).p.a}{2(1-\mu_0).E0} \int_0^\infty \frac{J_0(\frac{m.R}{L_0}).J_1(\frac{m.a}{L_0})}{m^4 + m.\phi(\frac{m.h}{L_0})} dm$$
(4.1)

De la ecuación 4.1 se despeja el producto D₀xE₀

$$D_{(z=0,R)}.E_{0} = \frac{(1+\mu_{0})(3-4\mu_{0}).p.a}{2(1-\mu_{0})} \int_{0}^{\infty} \frac{J_{0}(\frac{m.R}{L_{0}}).J_{1}(\frac{m.a}{L_{0}})}{m^{4}+m.\phi(\frac{m.h}{L_{0}})} dm$$
(4.7)

La solución de esta ecuación para un valor de Lo conocido representa el producto D_0xE_0 , para una relación h/Lo=10.

Para la solución de la ecuación 4.7, se despeja la ecuación dependiente de Lo:

$$E_{0} = \left(\frac{(1+\mu_{0})(3-4\mu_{0}).p.a}{2(1-\mu_{0}).D_{(0)}}\right) \int_{0}^{\infty} \frac{J_{0}(\frac{m.0}{L_{0}}).J_{1}(\frac{m.a}{L_{0}})}{m^{4}+m.\phi(\frac{m.h}{L_{0}})} dm$$
(4.8)

Con el valor conocido de Lo se encuentra el respectivo E₀.

N° Estaca			RE: DEFLE	SULTAD CTOMÉT	OS TRICOS						
N° N°	(km)		Deflexi	ones(x10)-2 mm)		R ₅₀	D _R /D ₀	Lo	D ₀ xE ₀	Eo
		D ₀	D ₂₅	D40	D70	D ₁₀₀	(cm)		(cm)	(10^-3 kg/cm)	(kg/cm2)
1	59+300	112	88	64	48	0	70	0.4286	34.307	18.1738	162.2661
2	59+400	72	40	16	8	0	25	0.5556	14.365	39.4043	547.2819
3	59+500	72	40	24	8	0	25	0.5556	14.365	39.4043	547.2819
4	59+600	80	48	40	16	0	40	0.5000	21.885	27.5098	343.8725
5	59+700	80	40	24	24	0	25	0.5000	12.607	43.6621	545.7763
6	59+800	104	56	24	16	0	25	0.5385	13.779	40.7324	391.6577
7	59 + 900	80	48	32	8	0	40	0.4000	17.647	33.2129	415.1613
8	60+000	104	56	40	8	0	25	0.5385	13.779	40.7324	391.6577
9	60+100	144	88	16	8	0	25	0.6111	16.455	35.2441	244.7507
10	60+200	152	96	16	8	0	25	0.6316	17.354	33.7012	221.7184
11	60+300	192	128	64	16	0	25	0.6667	19.053	31.0840	161.8958

Cuadro N° 4.5 Valores obtenidos de E_0 .

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CAÑETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 – km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 49

Cálculo del módulo de elasticidad de la Subrasante (E₀) por curva de regresión

El método de Hogg simplificado plantea una ecuación de regresión para hallar el valor de E_{0.}

$$E_0 = 1091314.96 (D_0 x R_{50})^{-0.939}$$
 (4.9)

	Estaca		RE	SULTAD CTOMÉ1	OS TRICOS					
N°	(km)		Deflexi	iones(x1	0² mm)		_			
		D ₀	D25	D40	D70	D100	R ₅₀ cm	Lo,cm	Eo	
1	59+300	112	88	64	48	0	59.8	32.2	278.9	
2	59+400	72	40	16	8	0	40.0	19.9	616.0	
3	59+500	72	40	24	8	0	28.3	12.2	853.9	
4	59+600	80	48	40	16	0	40.0	19.9	558.0	
5	59+700	80	40	24	24	0	25.0	9.8	867.5	
6	59+800	104	56	24	16	0	27.2	11.5	626.4	
7	59+900	80	48	32	8	0	32.4	15.1	679.3	
8	60+000	104	56	40	8	0	27.2	11.5	626.4	
9	60+100	144	88	16	8	0	32.0	14.8	395.9	
10	60+200	152	96	16	8	0	33.6	15.8	359.8	
11	60+300	192	128	64	16	0	36.6	17.8	266.9	

Cuadro N° 4.6 Valores obtenidos de E₀ apartir de la ecuación de regresión.

Significado de E₀ y su relación con el CBR

El parámetro E₀ representa el módulo de elasticidad de la masa de subsuelo que participa en la deformación del sistema pavimento-subrasante.

Esta relación ha sido establecida experimentalmente, comparando los valores de E₀ obtenidos de la metodología de evaluación estructural, usando deflexiones medidas con la Viga Benkelman y valores de CBR obtenidos en sitio.

De numerosas comparaciones de este tipo se ha podido establecer la siguiente relación:

 $E_0 = (100 \text{ a} 160) \times CBR$

Para E₀ expresado en kg/cm2 y CBR en porcentaje.

El coeficiente numérico (100 a 160) se denomina "factor de CBR" y se recomienda utilizar un factor de 100 a 110 para ensayos rutinarios a menos que exista alguna razón que justifique su cambio.

Para la solución del presente se uso un coeficiente de 110

	5.11.1		RE DEFLE	SULTAD CTOMÉT	OS TRICOS		Ecuación del modelo de Hogg							
N°	Estaca (km)	km)					R ₅₀	D _R /D ₀	Lo	D ₀ xE ₀	Eo	CBR		
		Do	D ₂₅	D40	D70	D100	(cm)		(cm)	(10^-3 kg/cm)	(kg/cm2)	(%)		
1	59+300	112	88	64	48	0	70	0.4286	34.307	18.1738	162.2661	1.48%		
2	59+400	72	40	16	8	0	25	0.5556	14.365	39.4043	547.2819	4.98%		
3	59+500	72	40	24	8	0	25	0.5556	14.365	39.4043	547.2819	4.98%		
4	59+600	80 48 40 16 0					40	0.5000	21.885	27.5098	343.8725	3.13%		
5	59+700	80	40	24	24	0	25	0.5000	12.607	43.6621	545.7763	4.96%		
6	59+800	104	56	24	16	0	25	0.5385	13.779	40.7324	391.6577	3.56%		
7	59+900	80	48	32	8	0	40	0.4000	17.647	33.2129	415.1613	3.77%		
8	60+000	104	56	40	8	0	25	0.5385	13.779	40.7324	391.6577	3.56%		
9	60+100	144	88	16	8	0	25	0.6111	16.455	35.2441	244.7507	2.23%		
10	60+200	152 96 16 8 0					25	0.6316	17.354	33.7012	221.7184	2.02%		
11	60+300	192	128	64	16	0	25	0.6667	19.053	31.0840	161.8958	1.47%		

Cuadro N° 4.7 Valores obtenidos de E_0 y CBR.

CAPÍTULO V.- ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

Los valores de E₀ del cuadro N° 4.8 resultan bajos, y consecuentemente también los valores de CBR.

	Estaca		RE DEFLE	SULTAD CTOMÉT	IOS FRICOS		Ecuación del modelo de Hogg						
N°	Estaca (km)		Deflexi	ones(x1	0-2 mm)		R ₅₀	D _R /D ₀	Lo	D ₀ xE ₀	E ₀	CBR	
		Do	D ₂₅	D40	D70	D100	(cm)		(cm)	(10^-3 kg/cm)	(kg/cm2)	(%)	
1	59+300	112	88	64	48	0	70	0.4286	34.307	18.1738	162.2661	1.48%	
2	59+400	72	40	16	8	0	25	0.5556	14.365	39.4043	547.2819	4.98%	
3	59+500	72	40	24	8	0	25	0.5556	14.365	39.4043	547.2819	4.98%	
4	59+600	80 48 40 16 0				0	40	0.5000	21.885	27.5098	343.8725	3.13%	
5	59+700	80	40	24	24	0	25	0.5000	12.607	43.6621	545.7763	4.96%	
6	59+800	104	56	24	16	0	25	0.5385	13.779	40.7324	391.6577	3.56%	
7	59+900	80	48	32	8	0	40	0.4000	17.647	33.2129	415.1613	3.77%	
8	60+000	104	56	40	8	0	25	0.5385	13.779	40.7324	391.6577	3.56%	
9	60+100	144	88	16	8	0	25	0.6111	16.455	35.2441	244.7507	2.23%	
10	60+200	152 96 16 8 0					25	0.6316	17.354	33.7012	221.7184	2.02%	
11	60+300	192	128	64	16	0	25	0.6667	19.053	31.0840	161.8958	1.47%	

Cuadro Nº 4.8 Valores obtenidos de E₀ y CBR como solucion de la ecuacion de Hogg.

Existe una diferencia entre los valores de Eo obtenidos de las ecuaciones del modelo de Hogg, y los obtenidos de acuerdo a la ecuación de regresión como se aprecia en el cuadro Nº 4.9.

	F -4	Ecuación del modelo de Hogg										
N°	Estaca (km)	R ₅₀	D _R /D ₀	Lo	D ₀ xE ₀	Eo	CBR					
		(cm)		(cm)	(10^-3 kg/cm)	(kg/cm2)	(%)					
1	59+300	70	0.4286	34.307	18.1738	162.2661	1.48%					
2	59+400	25	0.5556	14.365	39.4043	547.2819	4.98%					
3	59+500	25	0.5556	14.365	39.4043	547.2819	4.98%					
4	59+600	40	0.5000	21.885	27.5098	343.8725	3.13%					
5	59+700	25	0.5000	12.607	43.6621	545.7763	4.96%					
6	59+800	25	0.5385	13.779	40.7324	391.6577	3.56%					
7	59+900	40	0.4000	17.647	33.2129	415.1613	3.77%					
8	60+000	25	0.5385	13.779	40.7324	391.6577	3.56%					
9	60+100	25	0.6111	16.455	35.2441	244.7507	2.23%					
10	60+200	25	0.6316	17.354	33.7012	221.7184	2.02%					
11	60+300	25	0.6667	19.053	31.0840	161.8958	1.47%					

Regresión									
R ₅₀	Eo	CBR							
(cm)	(kg/cm2)	(%)							
59.8	278.9	2.54%							
40.0	616.0	5.60%							
28.3	853.9	7.76%							
40.0	558.0	5.07%							
25.0	867.5	7.89%							
27.2	626.4	5.69%							
32.4	679.3	6.18%							
27.2	626.4	5.69%							
32.0	395.9	3.60%							
33.6	359.8	3.27%							
36.6	36.6 266.9 2.43%								

Cuadro Nº 4.9 Comparación de Valores obtenidos de E₀ y CBR.

	RANGO DE VALORES DE CBR ESTABLECIDOS POR EL MTC										
So	SUB RASANTE MUY POBRE	CBR < 3%									
S1	SUB RASANTE POBRE	CBR = 3% - 5%									
S2	SUB RASANTE REGULAR	CBR = 6% - 10%									
S3	SUB RASANTE BUENA	CBR = 11% - 19%									
S4	SUB RASANTE MUY BUENA	CBR > 20%									

Cuadro Nº 4.10 Rango de valores de CBR

(Fuente : Manual para el Diseño de caminos no pavimentados de Bajo Volumen de Tránsito del MTC.)

Se aplica la clasificación propuesta por el MTC a nuestros valores de CBR, como lo muestra el siguiente cuadro:

	N° Estaca		Мо	delo de Ho	99		Regresión				
N°	(km)	R50	Eo	CBR	ESTADO DE	1	R50	Eo	CBR	ESTADO DE	
		(cm)	(kg/cm2)	(%)	SUBRASANTE		(cm)	(kg/cm2)	(%)	SUBRASANTE	
1	59+300	70	162.2661	1.48%	MUY POBRE		59.8	278.9	2.54%	MUY POBRE	
2	59+400	25	547.2819	4.98%	POBRE		40.0	616.0	5.60%	POBRE	
3	59+500	25	547.2819	4.98%	POBRE		28.3	853.9	7.76%	REGULAR	
4	59+600	40	343.8725	3.13%	POBRE		40.0	558.0	5.07%	POBRE	
5	59+700	25	545.7763	4.96%	POBRE		25.0	867.5	7.89%	REGULAR	
6	59+800	25	391.6577	3.56%	POBRE		27.2	626.4	5.69%	POBRE	
7	59+900	40	415.1613	3.77%	POBRE		32.4	679.3	6.18%	REGULAR	
8	60+000	25	391.6577	3.56%	POBRE		27.2	626.4	5.69%	POBRE	
9	60+100	25	244.7507	2.23%	MUY POBRE		32.0	395.9	3.60%	POBRE	
10	60+200	25	221.7184	2.02%	MUY POBRE		33.6	359.8	3.27%	POBRE	
11	60+300	25	161.8958	1.47%	MUY POBRE		36.6	266.9	2.43%	MUY POBRE	

Cuadro Nº 4.11 Estado de la subrasante según rango de valores de CBR del MTC

Del cual se puede interpretar lo siguiente:

- Los valores del estado de subrasante de acuerdo al CBR obtenido del modelo de Hogg, varían de muy pobres a pobres.
- Los valores del estado de subrasante de acuerdo al CBR obtenido de la ecuación de regresión, varían de muy pobres a regular.

En el tramo del km 59 + 300 al km 60 + 300 según los rangos de valores del CBR de ambos resultados, se muestran muy bajos, lo que indica algún tipo de deficiencia en el proceso constructivo o en la mala calidad de los materiales utilizados.

CONCLUSIONES

- El Modelo de Hogg, permite calcular los valores de Lo, E₀ y CBR, que son parámetros útiles para la evaluación de pavimentos, la obtención de estos valores no está limitado solo al empleo de nomogramas existentes, sino que se ha desarrollado una subrutina para la solución matemática de las ecuaciones que dan origen a los nomogramas, de esta manera los datos presentados tienen mayor precisión.
- La aplicación de subrutinas para la solución de las ecuaciones del modelo posibilita la creación de nuevos ábacos o nomogramas para diferentes escenarios, esto constituye una herramienta para la evaluación estructural de manera general, debido a la posibilidad de adecuar los nomogramas o subrutinas a condiciones definidas por el usuario.
- Las lecturas tomadas en campo han llegado hasta un R de 100 cm (D₁₀₀), si bien en otros países se toman lecturas en un tramo mayor, existe el limitante de que los nomogramas existentes solo llegan hasta un R de 260 cm; este inconveniente fue superado con el planteamiento matemático desarrollado en el Capítulo IV, debido a la posibilidad de manipular el rango del valor de R, cuando se resuelven las ecuaciones del modelo de Hogg.
- Los valores numéricos de E₀ CBR, y la clasificación del estado de la subrasante no reflejan cualitativamente el estado real de la vía, debido a que las ecuaciones dependen de los valores de R, de Lo, de D_R, los cuales presentan errores debido a la suposición de que D_R es igual a cero cuando el valor de R= 100 cm.
- La cantidad de lecturas para las deflexiones ha sido insuficiente para la aplicación del método, por lo que no se puede garantizar su confiabilidad.

RECOMENDACIONES

- El uso del Método Matemático del Modelo de Hogg, aplicado para la evaluación de pavimentos depende de manera directa de la toma de datos, de su calidad y de una cantidad adecuada de puntos, para el correcto procesamiento, por lo que se recomienda su ejecución con personal calificado y en condiciones estables.
- En los nomogramas D₀xE₀ del anexo N°4 se aprecia que algunas curvas no se muestran evaluadas en todos los valores, esto ocurre debido a que la solución de la ecuación principal del Modelo de Hogg, está compuesta de integrales infinitas de funciones Bessel y funciones angulares hiperbólicas, cuyo procesamiento directo genera valores fuera del rango del programa, por lo que se recomienda el procesamiento de datos de forma logarítmica.
- Las lecturas tomadas en campo solo se realizaron para los puntos R = 25, 40, 70 cm. y se asumió que para el R=100 cm. el pavimento se recuperó completamente; esta suposición es limitante para los cálculos desarrollados, por lo que se recomienda la toma de lectura en R=100 y un punto adicional R=300 u otro para su recuperación total.
- Para realizar una correcta aplicación del método, se recomienda tomar una mayor cantidad de puntos que permitiría un mejor ajuste y la eliminación de datos errados.

BIBLIOGRAFÍA:

- 1. DASHKO R.E., A.A. Kagán "Mecánica de Suelos en la Práctica de la Geología Aplicada a la Ingeniería", MIR. RUSIA 1980.
- 2. HAZZARD, James F. and Yacoub Tramer E. "Stresses under footing in multilayered soils: a comparative study", University of Toronto, Canada, 2007.
- HOFFMAN, Mario S. Louis Berger Internacional Inc., Pablo m. Del Águila, B.Sc. Lagesa Ingenieros Consultores. "Estudios de Evaluación Estructural de Pavimentos Basados en La Interpretación de Curvas de Deflexiones (Ensayos No Destructivos)" Octubre, 1985.
- 4. HUANG, Yang H. "Pavement Analysis and Design", Prentice Hall. United States of America, 1993.
- REYES, Fredy L. "Diseño de Pavimentos por Métodos Racionales". Tomo I. Universidad de Los Andes. Bogotá, 1999.
- TIMOSHENKO S., Woinowosky-Krieger S. "Teoría de Placas y Láminas", URMO SA, España, 1975
- U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION "Guidelines for Review and Evaluation of Backcalculation Results" - PUBLICATION NO. FHWA-HRT-05-152

ANEXOS

ANEXO Nº01: CURVAS DE DEFLEXIONES DE ENSAYOS CON VIGA BENKELMAN
ANEXO Nº02: DIAGRAMAS DE FLUJO DE LAS SUBRUTINAS EMPLEADAS PARA LA SOLUCIÓN DEL MODELO DE HOGG
ANEXO N° 03: NOMOGRAMAS D_R/D_0 VS R DEL MODELO DE HOGG
ANEXO N ⁰ 04: NOMOGRAMA Lo vs D_0xE_0 PARA CALCULAR E_0
ANEXO Nº05: DIAGRAMAS DE FLUJO DE LAS SUBRUTINAS EMPLEADAS PARA LA CONSTRUCCIÓN DE NOMOGRAMA D _R /D ₀ vs R DEL MODELO DE HOGG

ANEXO Nº01: CURVAS DE DEFLEXIONES DE ENSAYOS CON VIGA BENKELMAN

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CAÑETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 – km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 60

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CAÑETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 – km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 61

ANEXO Nº02: DIAGRAMAS DE FLUJO DE LAS SUBRUTINAS EMPLEADAS PARA LA SOLUCIÓN DEL MODELO DE HOGG.

CÁLCULO DE Lo

SUBRUTINA BISECCIÓN:

SUBRUTINA f (r,Lo,a,factor,b,n,dr_do)

SUBRUTINA integra(r,Lo,a,factor,b,n)

SUBRUTINA g (x,r,Lo,a,factor)

ANEXO N° 03: NOMOGRAMAS D_R/D₀ VS R DEL MODELO DE HOGG

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 69

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE - YAUYOS - CHUPACA CON VIGA BENKELMAN - MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 70
ANEXO Nº04: NOMOGRAMA Lo vs D₀xE₀ PARA CALCULAR E₀

Nomogramas D₀xE₀ vs Lo para h/Lo=10 con diferentes valores de D_R/D₀

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE - YAUYOS - CHUPACA CON VIGA BENKELMAN - METODO MATEMÁTICO TRAMO km 59 + 000 -- km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 71

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE - YAUYOS - CHUPACA CON VIGA BENKELMAN - MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 72

ANEXO Nº05: DIAGRAMAS DE FLUJO DE LAS SUBRUTINAS EMPLEADAS PARA LA CONSTRUCCIÓN DE NOMOGRAMA D_R/D_O vs R DEL MODELO DE

EVALUACIÓN ESTRUCTURAL DE LA CARRETERA CANETE – YAUYOS - CHUPACA CON VIGA BENKELMAN – MÉTODO MATEMÁTICO TRAMO km 59 + 000 - km 64 + 000 JULIO CESAR PEDRO GRIMANI VILLASANTE 74

