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Abstract

The present work deals with the modeling of the cyanobactcria blooms phenomenon
from Lake Taihu in China by a 3D hydro-ecological model and the implementation of
this model for the simulation.

The model is composed of: (1) a model of the lake hydrodynamics in two di-
mensions: we used the Shallow Water equations which are a particular case of Navier-
Stokes equations, where the vertical dimension is neglected; (2) a Water Quality Model
(WQM): we used the Water Quality Analysis Simulation Program(WASP) model in
which are represented the reactions between ecological variables such as phytoplankton,
oxygen, nitrogen and phosphorus, and the transport and diffusion of these substances
by the fluid (in our case the water).

For the numerical resolution of the partial differential equations involved, the finite
volume method was used with a non-uniform triangular mesh of the lake. The Navier-
Stokes equations were solved independently in a first time to compute the current
values. For this purpose, the free software called Finite Volume Coastal Ocean Model
(FVCOM) was used. For the coupled hydro-ecological simulation, we developed a
programme that performs the numerical resolution of the reaction-convection-diffusion
equations, using the currents as inputs of the model. The simulations focus on the
current effect and the coupling between hydrodynamics and water quality variables.

Finally, to analyze the model, we applied the Morris method, which is a Sensitivity
Analysis method, to the water quality model. It gives us the most important param-
eters of the model which will be useful in the next step to calibrate the model for the
specific case of the lake Taihu.
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Chapter 1

Introduction

Lake Taihu, the third largest freshwater lake in China, is the main source of drinking
water supply for several millions of people of the Yangtze Delta plain and also pro-
vides water for the agriculture. During a long time, its water was known for its high
quality and cleanliness. However, due to the fast industrialization and urbanization of
the region, the quality of the water is now decreasing tragically. Indeed, the human
and industrial nutrient loadings are now so important that the lake doesn’t manage
to purify its water anymore. The pollution of the lake causes serious cutrophication
problems. One of the consequences of the lake eutrophication is the proliferation of
cyanobacteria (also known as “blue-green algae”) whose periods of quick growth, called
blooms, occur more and more often. During these blooms, the cyanobacteria form a
thick green foam, disgraceful and foul. which floats on the surface of the water and
which can have important economic consequences, especially in touristic arcas. But
the consequences may be more serious. Some cyanobacteria (like Mycrocystis) produce
cyanotoxins that are toxic to animals and humans. In May 2007, in Taihu, the blooms
led to a severe water crisis that let thousands of people without water for several days

il

In the case of Lake Taihu, we know that the cyanobacteria proliferation is one of the
conscquences of the lake eutrophication, that is of the oversupply of nutrients (phos-
phorus and nitrogen). The low predation pressure, the heat and the high residence
time also favor these phenomena. However, recent studies show that bacteria could
play an important role in cyanobacteria population dynamics. By decomposing organic
matter not assimilable by cyanobacteria into inorganic matter, bacteria promote the
growth of cyanobacteria. In exchange, cyanobacteria provide a protected environment
for bacteria when they agglomerate. Other assumptions are also made. It is com-
monly accepted that phosphorus is the limiting nutrient of cyanobacteria population
in lakes. This hypothesis, a priori realistic in the case of nitrogen-fixing cyanobacteria,
is questioned in other cases such as in lake Taihu where the dominant cyanobacteria
are Microcystis, a non-nitrogen-fixing species. This cyanobacterium has also developed
very efficient phosphorus acquisition strategies - storage of available phosphorus when
it is abundant, enzyme sccretion to degrade organic phosphorus - which could play an
important role in its population dynamics.

To study this problem, the French National Institute of Agricultural Research
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(INRA) in France and the Nanjing Institute of Geography and Limnology, Chinesc
Academy of Science (NIGLAS) in China have teamed up to carry out a project on the
effect of anthropogenic changes in C/N/P ratios on the cyanobacteria proliferations
in lakes: this project is called the ANSWER project (Analysis and Numerical Sim-
ulation of Water Ecosystems in Response to anthropogenic environmental changes).
This project involved teams of 6 institutes which are: the French National Institute
of Agricultural Research (INRA), the Nanjing Institute of Geography and Limnology,
Chinesc Academy of Science (NIGLAS), a French research institute dedicated to com-
putational sciences (INRIA), the Water - Environment - Urban Systems Laboratory
(LEESU), the Institute of Ecology and Environmental Sciences Paris (iEES), the Lab-
oratory of Environmental Biotechnology (LBE).



Chapter 2

Hydrodynamic

The hydrodynamics of a lake is the dynamics of the water of the lake (speed, lines of
current) which, in the case of Lake Taihu, is mainly affected by the effect of wind at
the surface of the lake. Hydrodynamics is described by the Navier-Stokes equations
composed of the continuity equation and the momentum equations for the current and
the equations of the other state variables that are the temperature and the salinity.
More details can be found in the following references: (2], 3], [4], [5], [6] and [7].

In the sequel, one part of the text was taken from the FVCOM user manual [2] and
also of the Numerical Methods for Shallow Water flow [7].

2.1 Navier-Stokes equations

2.1.1 General equations

The governing equations of the hydrodynamics

continuity, temperature and salinity equations:

consist in the following momentum,

Ju  O?)  J(uwv) I(uw) 1 Op
— = —— — 4+ A
ot Ox Oy + 0z po O e
v I(uwr)  I(?)  I(vw) 1 Jp
— + = ———+vA 2.1
ot Tor oy 0 5y TYAW) (2.1)
ow O(uw) Od(vw) I(uw?) 1 Op
- - ——— 4+ vA(w
ot T o oy | oz o0z AW
Jdu Jv  Ow
o e s == () 2.2
Jor Oy 0z (2:2)
oT 0 or .
(2.4)
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where x and y are the ecast and north coordinates, z is the vertical coordinate in the
cartesian coordinate system; u, v, and w are the z, y and z velocity components; T
is the temperature; S is the salinity, pg is the fluid’s density; p, is the air pressure at
fluid surface; py is the hydrostatic pressure; q is the nonhydrostatic pressure; ¢ is the
gravitational acccleration; v is the viscosity coefficient; and K, is the thermal vertical
eddy diffusion coefficient. Fr and Fg represent the thermal and salt diffusion terms.
The total water column depth is 7 = h + 2z, (see Figure 2.1), where 2, is the bottom
depth (relative to z = 0) and # is the height of the free surface (relative to z = 0).

z &
e Water Surface
Bottom
-] s =
7 xy

Figure 2.1. Water column in the lake; relationship between 7, h and zp: 7(x,y) = h(z,y) +
zp(z,y).

P = Pa + P, + q is the total pressure, it is express by a sum to remember what
kinds of pressure compose the total pressure, in this context the following equation
will use the total pressure. In the particular case of freshwater lake, the salinity S can
be considered equal to zero.

2.1.2 Boundary conditions

The Boundary Conditions are an important information that is necessary to solve a
PDE with a given initial condition. In order to reduce the Navier Stokes equations in
the next section to obtain the shallow water equations, we consider some conditions
in the vertical axis: at the bottom of the lake and at the surface of the water. We
use the kinematic conditions which say that water particles will not cross both of
these boundaries. At the bottom, the normal velocity component must vanish. At the
surface, it must be moving by itself, which mecan+ that the relative normal velocity
must vanish. We can write these physical conditions as follows:

Bottom Condition (z = 2(z,y))

The normal flow condition at the bottom is expressed by:

0z 2p 7
9% e =0, 2.5
u'zb ox vlzb dy w'% (2.5)
and the no slip condition at the bottom is expressed by:
ul, =v|, =0. (2.6)

2y Zp
Consider these conditions 2.5 and 2.6, we get also:

wl, =0
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Surface Condition (z = 7(z,y))
The relative normal flow condition at the surface is expressed by:
on on

on
" Ox 7 5; -

ot vl

+ uf wl|, = 0. (2.7)

n

Pressure
The pressure condition at the surface is expressed by:
p(z,y,1) = pa, (2.8)

where p, is the air pressure at surface.

2.1.3 Hydrostatic approximation

In the sequel, we will make the hydrostatic approximation to the total pressure which
relies on the following condition:

(2.9)

and we will consider the pg, 9 and p, as parameters independent of the x, y and z
components. Then, integrating equation (2.9) over depth n(z,y) — 2z and 7)(z,y) and
using the pressure condition at water surface (2.8), we get:

p(z,y,2) = pog(n(r,y) — 2) + pa

which after derivation with respect to xz and y leads to:

10 or 10 o,
_Lop_ 20 Lopi__ o (2.10)
po Ox Or o Y 9y

Using (2.9) and (2.10), the momentum cquations can be rewritten:

ou  d(u?)  I(uw) O(uw) o)

— = —g— A

ot " ox oy oz 9 VAN

v Ouwv)  O(w?)  O(vw) on

av = 4 UA (v _
0t+ o + by + P _(](,)y+l/ (v) (2.11)
ow O(uw) O(vw)  I(w?)
_— } = — A

T + — + Oy s g+ vA(w)

2.2 Shallow water model

In shallow waters, the vertical velocity is not as important as the horizontal velocities
because of the small depth. The idea is, therefore, to take advantage of that to make
some simplifications in order to obtain a model whose computational cost is less ex-
pensive than one of the Navier-Stokes equations. This is what is done in the Shallow
Water Equations (SWE). Before explaining how we obtain the SWE, we explain the
Leibniz’s rule.
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2.2.1 Leibniz’s rule

The following thcorem is a simple case of the Leibniz’s rule for two variables which will
be used to prove a version more complicated by the Leibniz’s rule in Theorem 2.2.2.

5}
Theorem 2.2.1. Let f : [a,b] x [c;d] = R a continuous function such that 8_5 exist

and is continuous. Let

, b
Fly) = /a f(z,y)dz, Yy € [c,d].

Then for all y € |c,d] there exists F'(y) and

F(y) = /b gi(y y)dr, Yy e[ d].

0
Proof. Consider yg € [c,d] and € > 0. By the uniform continuity of —f, there exist

oy
0 > 0 such that for all y,y’ € [c, d] such that |y — 3’| <4,
of of , €
’63/( y)—a—y(x,y) < b—at1) Vz € [a, ] (2.12)

Let 0 < |h| < 6, h € R. From the mean value theorem, there exist 6 €]0, 1[ such that

_ %(x, yo+ OR)h,  Vz € [a,b] (2.13)

Then, for 0 < |h| < 4 in the following expression

f(z,yo +h) — f(z,y0)

_ | F(yo +h) = F(yo) ®of
R_' . —/a By (5 W)z (2.14)
using cquations (2.12) and (2.13), we get
R — < .’L'y0+h f(l"y())‘g’f—(-'r,y())>d7‘
Yy
of
A R d
8y(a:, Yo + 6h) 9y (z,%)|dx
b €
—_———|d
< /a (b—a+ 1)’ ’
o boake
- (b—a+1)
a

Theorem 2.2.2. Let R := [a, b] X [c,d] C R? and consider
(i) a continuous function f : R — R such that %5(9", y) exists for all (x.y) € R.
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(it) two differentiable functions ¢, ¢ : [c,d] — [a, b].

¥(y)
Denote F(y) = /( ;l f(z,y)dz, Yy € [c.d]. Then, F is differentiable on [c,d] and
ol
satisfies !
) v) O f P :
F(y) = X gz + S gv)
W) = [ Gode+ FW.DG - few).v

w(y)
Proof. For all y € U the function F(y) = /( : f(z,y)dx exists because f is continuous.
oy

Consider the following notation: G : [a.b]? x [¢,d] = R a function defined by
Vi, ta € [a,b], Vi3 € [c,d].

We have
F(y) = G(e(y),¥(y),v), Yy € [¢,d].

Then, using the chain rule in the function F'in (¢:(u), ¢(y),y)

T = 5 )G + G () o), G + G ) ola),v) (215)

Now, using the mean value thcorem and continuity of f, we deduce

oG _ o G(y) + he(y) y) — G(y), v(y),y)
o, YW ely)y) = lim 5
[ gy [ fay)a
ey Y(y)+h Y(y)
h—0 h
Y(y)+h
Sy e
= i h
.y)-h
A L S MR RD
= —f@(),y) (2.16)
Similarity, by the same step we deduce
—gt—G(w(y),w(y),y) = f(¥(y),v). (2.17)
2
From Theorem 2.2.1, we get
oG vy Of
= — dzx. 2.18
W e0).y) = [ 5 @y (2.18)

Using equations (2.16), (2.17) and (2.18) in the equation (2.15) we get the result. W

In the following thcorem we will demonstrate a general version of the Leibniz’s rule
using Theorem 2.2.2:
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Theorem 2.2.3. Let U be an open subset of R"*, ¥,p : U — R some continuous
functions and

A:={(z,y) e R*™' 1y e U,z = th(y) + (1 — t)p(y); t € [0, 1]}

For a given continuous function f : A — R, considers

Y(y)
F(y)=/ f(z,y)dx, VyeU.
o(y)

Then F is continuous on U.

In addition, suppose that there exists an open set G such that A C G C U x R

0 3]
such that for any j € {1,...,n}, the partial derivatives é-f and 8—w exist on U and
Yj Y;

0 . . . F
that 8—f exists and is continuous on G. Then —— exists on U and takes the following

Y; Yj
eTpression:

do(y)
Oy;

OY(y)
Oy,

— fle(y),y)

OF vW) Af
i Ch d
il BN GV R (CIOORY

¥(v)

Proof. For all y € U the function F(y) = / f(z,y)dz exists because f is continu-
w(y)

ous. Consider yy € U and let’s prove that F' is continuous in yy. Let 0 < ¢ < 1 and

d; > 0 such that B(yp,d;) C U, where B(yg, é;) denoting the open ball of center y, and
radius 4;.

Consider the following notations:
Ks, = {(z,y) € A:y € B(yo,01)}
which is a compact subset of U, and let
M = sup{|f(z,y)| : (z,y) € K5} and M= [¢(y) — @(yo)l,

which satisfy 0 < M and M; < oo. Since f is continuous on A, f is uniformly
continuous on K because it is compact. As functions v, ¢ are morcover continuous
in yo, then there exists 0 < § < 4; such that for all h € R™ with |h| < d, we have for

all (z,yo + h), (z,9) € Ks, and |h| < 4:

€

[f(zy0+h) = flz.wo)l < 3757 (2.19)
o+ k) =¥ < 372 (2.20)
oo +h) =)l < 3743 (2:21)

Let |h| < é and suppose without loss of gencrality that

o(vo) < @(yo + k) < Plyo) < Y(vo+h).
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Then we have:

(yo+ Yo
Fo+n) ~Fw) = [“" @y 4wz — [*™ 5o yo)da

¥(vo+h) Jo(yo)
/1/’(.00)
) w(yo+h)[f($’y0 +h') f(.?',yo)]dl'
w(yo+h) w(yo+h)
+/ f(z,y0 + h)dx — / f(x,yo + h)dz(2.22)
Y¥(yo) w(wo)

From inequalities (2.19), (2.20), (2.21) and from the definition of Af and M, we can
then find some upper hounds for the three terms of the preceding expression:

e We have e < 1 then €2 < e <1

¥(wo)
‘ T,y0+ h) — f(r, dr| < —S _
|/W(y0+h)[f( Yo +h) — f(z,y)]dz M, [¥(yo) — w(yo + h)
< ¢ [M + 5
aMy +1 17 4M+4J
. A'[]( + (2
4(M, + }) 4(4M, + 1)(M +1)
< fefol
4 42
L
i/¢(?]0+h) f( / / A € €
T, Yo + n)dr| < —_—— < —
(vo) Pl 4M+1) " 1
/<p(yu+n) £ +h)d M € €
T, )dzr| < M——— < -.
(o) Yo AM+1) 4
By using these result in equation (2.22), we finally get:
€ € €
Fyo+ h) — F <-—4+-4-=
|E'(yo + 1) (vo) 2-1-4+4 ¢
For the addition of the theorem, we can apply the theorem (2.2.2) to the functions f
to verify for all y € U and cach i = 1,...,n the expression of the function ()i [ |
Y.

2.2.2 General equations

In order to obtain the SWE we will integrate over the depth A(x,y) = n(zx,y) — z(z, y)
the continuity equation (2.2) and momentum equations (2.1). We will denote the mean
velocities in the z and y components by # and v using the expressions:

U

1 v _ 1
= ud 1 v=— dz.
u_h/zuz and 1 h.vaz

b

These mean velocities satisfies
n n n _ "7 _
/ w?dz = hu® + / (u — u)*dz / v3dz = ho? + / (v—10)dz
T zp 2p 2p Jzp

7 n
and /’uvdz = huav +/ (u—u)(v —v)dz (2.23)
F1Y Zb
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In the sequel, we will use the notation
ug=u—u and vy=v-—7
Let us now integrate the continuity and momentum equations over the depth A:

e Continuity equation:
n(Ou Ov Ow
— 4+ — dz =0
/z,, ((’):r+i)y+ dz) 2=

/ / —dz—+—u| - wl,
2 2y

Using the Leibniz’s theorem (Theorem 2.2.3), we get:

o n Oz, O [ on Oz
5 /zb udz — ul, o + ul,, 3 T 3y /zb vdz — v|, — By i 3y + wl, —w|, =0

o 0 on I Ozp 0zp _
= %/ UdZH"a—y L: 'Ud2+<'w| |7) a r) 8 >+< lzb or +v Izb _a—y - lUIz,,) =0.

Using the conditions (2.5) and (2.7) we then obtain:

‘ (9
i/ udz-+—2 vdz il

=0
oz 0y Jz, 6t

which can be rewritten:

oy, o(ha) , (k) _

2.24
ot or oy ( )

¢ Momentum equation: We only present here the integration of the equation of
the velocity component u. We have:

ou  9(u?)  O(uwv) INuw)\ , (7 o
/z,,(at' oz oy | 62 /dz—-/zb< 95z TUA ))

" Ju 7 O(u?) " O(uv) n J(uw) , /n on /n
dz + —dz = —g—dz+ [ vA(u)dz
zp ()f P /zb Jrx dz+ zp () ‘ /zb Jz 2 or 2 ( )

p—

(1) (11 (11r) (1v)
Again we use here the Leibniz’s rule (Theorem 2.2.3) and get:

(I) Unsteady term:
n Qu

—dz =
. Ot
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(II) Advection term:

* X-component

) (')(u2) J n ()7’ (')zb
dz = —/ 24z — 2| G2
/;b 31’ g 61‘ 2p “ Z “ I + u Zb 01’
_ O(hw?) 0 /’7 . 5| O o Oz
N ox +% Zb(u—u)dz—una—{—u%%
o(hu®) o m , an 0z
= — dz — u?| — 2=
5e * g [, vade = ] 2 (229)
* y-component:
m O(uv) o M on Jzp
/Zb By dz = 3_y/zb uvdz — uv|"8 + uvl“c’)—y
O(huv) a [ _ _ on 0z
= oy +0—y/2b(u—u)(v—v)dz— uv("d +u |zb@
O(huv) 9 [ i on 0z ,
= oy - + a_y /Zb UqUqdz — uv|n Dy v|2b a—y (2.26)
* z-component )
m O(uw
/Zb 9% dz = uwl|, — uwl,, (2.27)
(ITI) Pressure term: 5 5
n n n
— dz = —gh— 2.28
/z., 95,92 = —ghm (2.28)
(IV) Momentum term:
7 n ., -
/IVA(u)dz = / vV - (Vu)dz
2y 2b
— n - 82,,
= V- /Zb s 9—1:
— -. 02(,
= V- (uv(hu)) —v- Vu’n g +v- U, s
= vA(ha) —v ﬁu‘" -In+v 6“'% - V2 (2.29)

Let us also make the following remarks:

e The following terms / u?dz and / uqvqdz in the (IT) Advection term the param-

eterization of these ﬁuctuatlon of velocities is based on the conc ept of dispersion:

n O(ha)

where vy is the dispersion coefficient (see [6]).
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e Let the fluid shear stress 7,, and 7, acting on the bottom and determined by
Newton's law:

- — Ti
—v Vu| Tz = = = Cpuvu? + 07, (2.30)
e Po
— — T
—v V| - Vz = 2 = Cgova? + 02, (2.31)
b Lo

where Cp is the bottom drag coefficient. Also Wind stress 7,, and 7, arc usually
expressed with a similar formulas to (2.30) and (2.31) except that the velocity of
the fluid is replaced by the wind speed. We note the wind stress by the equation:

3 - Tsz
v Vu'n -V = — = Cpuy\ui +v2 , (2.32)

Po
- - T
v V'vln -Vn = ;802 = Cpuyyud +v2 (2.33)

where (u, py )is the wind velocity and Cp is the wind stress coefficient. For
more details see [7] and (8].

Based on the preceding computations, we can rewrite the momentum equation given
by (I) + (II) = (III) + (IV ). The first member (I) + (II) is the sum of the unsteady
and advection terms:

i u? uv 0 0
a(ahtu) A d(hu?) . d(huv) u (87) L 9, ")

Bz Oy ot TGz TV gy

o 0 3 4 d fm
ful, ( Zb+u| ﬁ+ y Zb)+_/ 1d2+_/ Uugvqdz
zh

ot % Ox % 0 ox Oy
d(hu) O(hu?) O(hav) 0O [ , o [m
= — — dz.
ot + e S By + oz /s uydz + 5y /z i UqUqdz
d(hu) O(hu?) O(huv) O O(hu) 0 O(hu)
= 5t "oz tTay Taz\"ar ) Tay Moy
d(hu) O(hu?) O(huv)
= t -+ A(h 2.34
ot or Oy +vali(hu) ( )
The second member (III) + (IV) is given by:
s —ghgn +vA(ha) — v ﬁu’n .9+ v Vu . V2
0] ThT TZ[,T
= —ghd L un(ha) + 2= - 22 2.35
ghel + uA(hT) + T - (2.35)

Using the equations (2.34) and (2.35) we obtain for the equation of the x-component
of the velocity:

oha) | o(ha?) | O(hav) _ _ , 00 (, _yynha)+ 22 - Teml (2.36)
Ot Ox Oy Oz Po Po
by symmetry, the equation of the y-component of the velocity is given by:
d(hv) , O(hav)  O(he?) _ _ 00, Aha)+ T - T (2.37)
ot T Tor T oy Jdy Lo Ko

Finally, the Shallow Water equation are the equations (2.24), (2.36) and (2.37), for
more details see [6], [7] and [8].



Chapter 3

Water Quality Model

For the ccological part we use the water quality model (WQM) of the FVCOM [2] which
is derived from theWater Quality Analysis Simulation Program (WASP). In this model,
some organic and inorganic nutrients (nitrogen and phosphorus), the phytoplankton
and the dissolved oxygen are represented.

3.1 Transport Equation

In order to simulate the propagation of cyanobacteria in the Lake Taihu it is necessary
to simulate the transport and diffusion of this component in the lake whose domain is
denoted 2. To represent the advection and diffusion of a substance ¢(¢,z) with x in
the domain €2, we use the following equation:

)

ot
in which there is a source term S, that will include all the biological and chemical
reactions, and some terms for the advection and ditfusion through the fluid with the
current % = (u, v, w) which are detailed in the sequel, and I is the diffusion coetficient.

+ div(ppi) — div(I'grad(p)) = Sy (3.1)

3.1.1 Advection

It represents the fact that the substance is carried away by the currents: it is simply the
transport of the substance. If it was the only process taken into account, the substance
would travel at the same speed as the water and the arca occupied by the substance
would be constant. The advection term is given by:

O(ppu) | O(ppr) | O(ppw)

CHEAS ox + Oy '+t 76

3.1.2 Diffusion

If we deposit a drop of substance at a given point in a medium without flow and if we
observe it a few time later, the initial drop will have been broadened. The molecules of
the substance dissolved in the water will move from the points of greatest concentration
to those of lower concentration: they will follow the gradient of concentrations. This
process is called diffusion and occurs because of the continuous agitation of all the

13
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molecules of the fluid. In a liquid the flow of mass by diffusion is governed by the first
law of Fick: the second law of Fick includes also the time. The diffusion term is given

by:
. a 0 0 ‘ P ,
div(Tgrad(9)) = — (r%) += (r‘;_‘;’) + 2 (@f)

3.2 Biological processes

Advection Boundary Temperature Light
External
Loading & Dispersion Flux & Salinity
= -
Water

—{cBon |

Oxidation

Settling

Figure 3.1. Scheme of the Water Quality Model of FVCOM (FVCOM-WQM|2]).

=
-—
—
SOD
!.—
-

I i A
‘ Sediment

In the WQM model, there are 8 water quality variables:
1. Concentration dissolved oxygen (DO).
Concentration carbonaceous biochemical oxygen demand (CBOD).
Concentration phytoplankton as carbon (PHYT).
Concentration ammonium nitrogen (N Hy).

Concentration nitrate and nitrite nitrogen (NOz + NOy).

o o R W N

Concentration ortho-phosphorus or inorganic phosphorus (O 20,).

7. Concentration organic nitrogen (ON).

8. Concentration organic Phosphorus (OP).

The interaction between these variables are shown in Figure 3.1: it implies 11 biological

processes.
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e Death (or mortality) of phytoplankton.
e Passive respiration of phytoplankton;

e Uptake by phytoplankton of nutrients (or phytoplankton growth) NHy, NO3 +
NO3 and OPOy;

e Remineralization of OP in OPQO4 and of ON in N H, (of detritus in nutricnts);
e Nitrification;

e Denitrification:

e Settling of phytoplankton PHY T and OP and ON (detritus);

e Benthic flux;

e Sediment oxygen demand;

e Oxidation;

e Reaeration.

The dynamic of each biological variable is expressed by the following partial differential
equation:
oC ouC ovC owC 0 oC 0 oC 0 oC
Ap Ky

Bt T ar T oy T oz ax\"az) am\ ey &\

where C is the concentration of the water quality component; u, v and w are the water
velocity components corresponding to the conventional Cartesian coordinate system
(z,y,2); An and K}, are the coefficients of the horizontal viscosity and vertical eddy
diffusion respectively; S is the function that represents the internal source or sink of
the water quality component; Wy is the external loading from point (river discharge)
and non-point sources (ground water input and atmospheric deposition) of the water
quality components.

) = S+W, (3.2)

3.3 Chlorophyll a

The Phytoplankton are microorganisms which involve Diatoms, Cyanobacterias, Di-
noflagellates and other groups of algae. They are present in the freshwater ecosystems
and using Chlorophyll (Chlorophyll a and Chlorophyll b) to generate cnergy through
the photosynthesis. Chlorophyll a is a specific form of chlorophyll which is used to
transform the sunlight into the chemical energy and gives the green color to the phy-
toplankton. For more details see [1] and [9].

PHYT

Qcchla

we usually usc a proportional relationship between phytoplankton and chlorophyll a,
equation (3.3) where a., is the phytoplankton carbon to chlorophyll a ratio. There are
two reasons for that: first we know that phytoplankton is the most important provider
of chlorophyll a in the eccosystem; secondly, we also know that the phytoplankton
contains some chlorophyll a (that is needed for the photosynthesis) but obviously, it is
not only composed of chlorophyl! a

CChla = (33)
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3.4 Equation for the Water Quality Components

The equation of FVCOM-WQM are described in details in [2], it’s a modified version of
the EPA Water Quality Analysis Simulation Program(WASP [10]). The state variables
of the model are

Name Definition Unit

Cds Concentration of dissolved oxygen mgO,.L™!

Ceod  Concentration of carbonaccous biochemi-  mgQ,.L~!
cal oxygen demand

&y Concentration of phytoplankton mgC.L™!

Cnvu, Concentration of ammonium nitrogen mgN.L !

Cno; Concentration of nitrate and nitrite nitro- mgN.L™!
gen

Cip Concentration of inorganic phosphorus mgP.L™}

Con Concentration of organic nitrogen mgN.L™!

Cop Concentration of organic phosphorus mgP.L !

Cchie Phytoplankton chlorophyll concentration mgChla.L™}

T ‘Water temperature in Celsius degrees °C

Tx Water temperature in Kelvin K

5 Water salinity mg salt.[ !

Table 3.1. The state variable

The reaction term S, of the equations of the 8 water quality variables are given here
after. The parameters and some complementary equations are detailed in Appendix A
and in next Section 3.5 respectively.

e Dissolved oxygen (DO):

L. s
(r-Tv) _ 0(/ T,) ( C o )(
\krlerl £C9 r[(l) kdl AB()D +( hod
reacration -
0x1(lat1(m
. C
(1'—Ty) (=T " )
_rockTZH ' —27‘(mknz(}n, <A’N1TR + C ') C II‘J
phytoplankton nitrification
respiration
3 SOD -1,
= C', 0 —Kk, .
= “  bacterial
phytoplankton scdlmont demand respiration

growth
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e Carbonaceous biochemical oxygen demand (CBOD):

C'r 0 -
\Toc(kpar + kg"'s)er(n,r T )( kdle(l ) (K—"__l__’_"?-) ( '«'hud
BOD - do

oxidation

phytopYankton
dcath

w3s(1 — fp2) 3 (r=T) Kno
S 00 = 2ok g8l (BNOs )
Ds hod 4 onhdnVqn KN03 + C'do) ( NO (35)

~ )

settling denitrification

e "

e Phytoplankton (PHYT):
G,C —D,C, ) (3.6)
4 S — D.S

phytoplankton phytoplankton settling
groth death and respiration “¢"18

e Ammonium nitrogen (N H,)

r-Ty)
an(‘ ( fon) ;; +kml()(

phytoplankton death*®

c,
}\’mPc + ('p

n

mincralization

(3.7)

- L
phytoplankton growth Hitrification

e Nitrate and nitrite nitrogen (N0O;):

Tl
" Knitr + C

nitrification

do

(/'\'II, fancc;p(] - PNH4)('J

~

phytop‘lrankton
growth

Kno, B,
)___ANOs -~ _
Kno, + Cu, “1000D, (3:8)

[

denitrification benthic flux

kdn 0( =)

e Organic nitrogen (ON):
G, . wrs(1 = fp7)
k0T, -V (3.9
ml Km[lc + ( vp . Us ( )

phy tggﬁﬁktou mineralization settling

anchfzm('p
—— —

e Ortho-phosphorus (OP0,):
(V

~¢ (1 r P

Sip = apeDp(l — for)C' +km26m2 Kore +C,

( vn/;

-

e

phy tggélféﬂkton mineralization

B3
_ ' —_— 3.10
aGCy 000D, (3.10)

~——
phytoplankton po,thic flux
giowth
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e Organic phosphorus (OP)

C, . wss(l— fpg)
a,.D ' —k 0 Tr)_n_(,.m_ 85 D8) [ 311
Lp)‘;flll m2Ym2 1\’mpc+ Cvp ] Ds (,1( )
hytoplankton® ~ - >
i gga?ﬁ = mineralization settling

3.5 Complementary equations

To complete the equations of the 8 water quality variables we need the following com-
plementary equations:

e The average segment depth:

D:wa.

for a segment with depth between zx D and 2, D, where D is height of the water
column.

e Dissolved oxygen saturation concentration:

log(C,) = —139.34411 + (1.575701 x 10°)T' — (6.642308 x 107)Ty>
+(1.243800 x 10')T* — (8.621949 x 10'")T;*

—0.5535 x S x (0.031929 — 19.428T" + 3867.3T2)

e Growth rate of phytoplankton

Gp E kgre('lv_Tr)f] (C'NHH C'N(!_g; (/'1[;)/'2(1» fy D» C'(7}1/ 1)

ar

e Nutrient limitation factor of the phytoplankton growth rate

Cc Cl (v ) mn (' Hy + ('V() ('IV )
Jip) = mi ’ j
fl( N Hiy NO3) P KmN =+ C oy ", + K-,nP + ( op

e Light limitation factor of the phytoplankton growth rate, with two formulation:

1. Di Toro:

= ef 14(t) Ke( )D Iy (t
f2(17f,DaCV('hl«L) — (6 T © —e T )

K (Cona)D

2. Formulation of Smith:

e ( _Iptt) .~ Ke(C () D kio(_ﬂ)
e

— . - - Is —e b
foll, £, D, Cone) = e D
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where:
t = v C'p t]_) - tU
R(t) - mod (t’24) ) (("l[u == H f =
Qcchla 24
I( k.0 ~Tq,
I,(¢) =0.9ﬁ; 7, = =Zere Sochlat
f ¢"l(LII\Cfu
1l . _ )
Io(t) = { 5——5,9 sin (W_L%ftu if tr(t) e]t,,,tn[
0 clsewhere.

1. Di Toro : Kusna(C'onia) = 0.0088 x (1000 X C'rnr) + 0.054 x (1000 x Cy,)0 67

2. Smith : Kespg(Ceorin) = Ke x 1000 x gy,

e Death an respiration rate of phytoplankton
Dp = k20T + (Kpar + Kgrz)0SL T

e Ammonium preference form

e Reaeration rate
I'=Ty ~by—-c
ke = max(kiy, k%) 5 k= 047" x a9®D

(5.349,0.67,1.85) if D < 0.6906m (Owen's formulation)
(5.049,0.97,1.67) if D > 0.6906m, d < 0(Churchill’s formulation)

(a,b,¢) = {
(3.93,0.50, 1.50)
d= D - 4-41152'9135]11720.518'

if D > 0.6906mn, d > 0 (O'Connor — Dobbins's formulation)

| (”_om.)2/3 (p_a)‘” kL /T100W if W < 6m/s
=

Vw Pw
w _ 86400 1 + - if 6 < W < 20m/s
1 =1 773 3 D [igyres=es
100D (Du(‘)um }—(£a V2R /Tq100W (-,;‘-jéﬂ f:%:\/éd) V100W
if W > 20m/s

ch Puwlw

(D_O.u _e&\[c_d)m V100W
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where
Pa=129-102-40-10%x T,
v, =133-10714+9.0-107* x T,
Uy =1.64-1072-24514- 107 x T
D,,=12-10°4+458-107" xT

if /Cy100W > U,.
else

and zg is solution of

L, MvCal0OW yogoow 1k

VCu

Pl
£ Vg 1000



Chapter 4

Finite Volume Method

The Finite Volume Method (FVM) is a great alternative to other methods that enable
to solve partial differential equations numerically (finite difference method or finite
elements method for example). FVM is very efficient and often used to simulate fluid
dynamics and the advection, diffusion and reaction of substances evolving in aquatic
environment. In this work we want to simulate the PDE (3.1) and we choose the FVM
for that. In the sequel, we will show how to discretize a reaction-advection-diffusion

equation of the form (3.1) with the FVM.

4.1 Preliminary result

The next theorem is important to obtain the discretization of the equations with the
FVM. For more details, we can refer to (2], [3], [4] and [11].

Theorem 4.1.1. Divergent Theorem Suppose V' is a subset of R™ which is com-
pact and has a boundary Sy, also indicated with OV = S,. If F is a continuously
differentiable vector field defined on V' including the neighborhood Sy, then we have:

/ div(F)dV = / i FdA
Jv Sb

Proof. Not given here.

4.2 Numerical scheme for the unstructured grid

The idea of the method is to integrate the equation over a control volume and to use the
Divergence’s theorem (Theorem 4.1.1) to simplify the cquation. The control volume
is defined by the mesh of the domain and the point at which we will compute the
solution of the equation. If the mesh is a triangular mesh and if we want to compute
the solution at the center of cach triangle, then the control volume will be the arca
of the triangles (Figure 4.1(a)). If we want to compute the solution at each triangle
vertex then the control volume will depend on how many triangles have this point as

vertex (Figure 4.1(b)).

21
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(a) Center (b) Vertex

Figure 4.1. Control volumen in a triangle mesh.

In the sequel, we choose to compute the solution at the center of the triangle and
therefore consider as control volumes the areas of the triangles of the mesh. An example
of triangle is given in Figure 4.2. P is the centroid of the control volume AV'. For ecach
triangle’s side 0A; (i = 1,2,3) of AV, we denote An; the length of the triangle’s side,
¢; the center of the triangle’s side 0A;, A; the centroid of the second triangle which
also has 0A; as one of his sides, 7; the normal vector to dA, that is exterior to AV,
én, the vector of the A, direction and €, the vector in the direction of PA. We also
denote Ag; the distance between P and A, df; the distance between P and ¢, and d;
the distance between A and ¢; (Figure 4.2).

a, « x n

Figure 4.2. Elements of the triangle grid

Let us now integrate the transport cquation (3.1) over the control volume AV which
is the area of the triangle aba’ (sec Figure 4.2). We get:

0o o _
/Av [-07 + div(¢d — Fgmd(¢))J dv = /M SedV,

o9 (i — v = [ S,dv.
/Av o+ /AV div($ii — Tgrad()) /Av )

Then, using the divergence’s theorem, and assuming that the quantity ¢ and
constant in the control volume, we lobtain:

¢

ot

9% are
5 arc

3
AV +3 [ i (9~ Tgrad(9))dA = Se, AV,
r i=17"
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¢ - ¢p — PP

Then, discretizing o i i Az using finite difference, we get:
(4.1)
= r] 1 ]
P LA
@ — — S50 -
e ! — —sm(ﬁ)%ef
n n
— —
Op —
C()S(e)ggef
Figure 4.3. Inner product between gradient vector and normal vector.
We can then develop the advection and diffusion terms as follows:
e for the advection, we get:
(4.2)

e for the diffusion, we know that:

_ 0~ ¢~ _ 0. 09

—J) =N+ —¢€,.

grad(¢) = oz’ * Jy on e,

Using the Figure (4.3), we obtained the following expression:

o9 . 0p _ 0¢
; — —sin(f)— = —,
cos(H)(,)n sin( )Ben Dee
¢ 1 0¢ Op
— = ———— +tan(f)—
“ on  cos(0) Oe; + tan( )Ben’
which lcads to:
Op 1 0¢ 0
5. = = —_— 0 .
rgted(@) On  cost®) Oe¢ 4 )(")en

For the cos(#;) and tan(;), we can use the following expressions:

€n - €
cos(d) =71 -é and tan(f) = — (—————6) . (4.3)

- e
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Finally, using the previous expressions and the finite difference approximations:

0¢q - ¢A, - ¢P 0¢c, o ¢b, - (ba.
Oeg, AE Oen, - An

we obtain:

To compute @,, and ¢, it is nccessary to do an interpolation. The considered
interpolation uses the values of the centers of all the triangles that share the
triangle vertex a; or b;.

4.3 Conditions

To solve the cquation (3.1) it is necessary to put some condition on the time and
space boundary 9€2. In the sequel we will present the Initial Condition(IC), Dirichlet
Condition (DC) and Neumann Condition (NC) that can be used.

4.3.1 Definition

Initial Condition

The Initial condition for the equation is the values of ¢ in the internal domain at the
beginning of the simulation (also denoted time t = 0):

P(0,z) = F(z) , x € int(QQ)

Dirichlet Condition

The Dirichlet condition imposes the values that the solution ¢ will take on the bound-
ary:
ot,x) =G(t,x) , (t,z) € Ry x 0N

Neumann Condition

The Neumann condition for the equation (3.1) is the values of the partial derivative of
¢ along of the some or all point on the boundary

n-V()(z,y) =0 , (z,y)€ 0N

4.3.2 Numerical implementation

It is important to explain how the boundary conditions are implemented and which
conditions we will use because if we don’t choose the correct condition we will have

oscillations in the numerical solution.
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Figure 4.4. Edge ab is on the boundary of the mesh

In the Figure 4.4 we show how the boundary conditions are technically implemented
in the FVM. For each triangle abc that has a side ab on the boundary we create a tri-
angle abc’ which is symmetric of abc with respect to ab. The solution at point P is
then computed using the auxiliary center P’ of this new triangle.

We will now explain which boundary condition we should choose.

For the transport

We have the choice between the Dirichlet condition (DC) and the Neumann condition
(NC) but both of them can not be put at the same point. If we have some source or
sink on the boundary (some river for example) we will use the DC. If we have a natural
wall we will use the NC. In both case we use the center P’ to impose the condition on

the boundary.

¢p = input at the point /' (4.4)
¢p—¢p = 0 (4.5)
For the hydrodynamic
" ]
- I 1
N ’l.l,}x/ g\ A tyy °
e [ ] ,' ‘\\ .—-’ I’
\\\ [)/ S \\‘P, f[{/
\'I "’
c G

(a) With Neuman condition (b) With Boundary condition

Figure 4.5. Treatment of velocity on the boundary.
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For the velocity the treatment depend of the condition on the boundary for the hy-
drodynamics. If we use the NC which means that the normal velocity equals to zero
ou ~
(5% = O) on the boundary, then the velocity at the auxiliary triangle up: will be
1)
taken equal to the velocity of the triangle on the boundary 4p with opposite sign (see
equation (4.6) and Figure 4.5(a)).

If we use the DC, it means that we have some source (like a river) on the boundary
triangle with velocity u;,. In this case the velocity at the auxiliary triangle up will
be the sum of the velocity of the boundary triangle P in the opposite sign and the
velocity on the boundary u;, (sec equation (4.7) and Figure 4.5(b)).

’IIPI = —ﬁp. (46)

—

Up = —up+ 2Upy. (4.7)

The reason for use the equation (4.7) is because we approximate the velocity u;, as the
sum of ¥p and up/, which are at the same distance of the triangle’s edge.



Chapter 5

Simulation of the Coupled Model

In this chapter, we will work on the coupling of the hydro-ecological model composed
of the Navier-Stokes equations (Chapter 2) and the Water Quality model (chapter 3)
that is used to simulate the concentration of the cyanobacteria in the lake.

For the simulation of the hydro-ccological model we use the Finite Volume method
(chapter 4). We implemented the method with Python3(see [12]) and saved the re-
sults in the format of FVCOM software that is in netCDF (Network Common Data
Form [13]) files. netCDF is a set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data as it is explained in [13]. To visualize the results we used the
Paraview software which is an open source multiple-platform application in which we
can do interactive scientific visualization in many dimensions (for more details see [14]).

We used the following test cases to simulate: (1) The current effect part and (2)
hydro-ecological model, with different initial conditions:

1. To test the current effect
We do not consider the source terms in the equation (3.1), in others words we

impose S = 0 for all the simulation.

2. To test the coupled model
To simulate the whole hydro-ecological model, we need to solve the equation (3.1)

for the eight water quality components at the same time.

5.1 Simulations on a simplified square domain

The first simulations of the equation (3.1) were performed in a simplified square domain
to verify if the discretized equation was correctly implemented. It is important to do
this step becausc in this way we can identify the mistakes in the programme code and

also in the discretized equation.

5.1.1 Computation of the velocity field

In order to solve the equation (3.1) we need as input the current over all the simplified
square domain. For that, we considered a simplified current over the domain: the

27
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velocity was defined on the square domain ) by following equation:

o oY O
u = <‘W (5.1)

where ¥ (z, y) satisfies the Laplace’s equation:

P O
&g+%%=0 (z,y) € (5.2)
P(z,y) =0 (r,y) € {0} x [0, 10] U [0, 4] x {0, 10}, (5.3)
Y(a,y)=1 (z,y) € [6,10] x {0,10} U{10} x [0,10], (5.4)
Y(z,y) =sin(0.5(x — 5)1) + 0.5 (z,y) € [4,6] x {0,10}. (5.5)

Consider the general continuity equation for a fluid with density p (see [4], Section
2.1.1 Mass conservation in three dimensions) which is define by the following equation:

J
6—’; + div(pii) = 0. (5.6)
As our case is an incompressible fluid (i.e. Freshwater) the density p docs not change
with the time. In’this context, the equation (5.6) becomes:

div(id) = 0. (5.7)

The velocity field 4@ = (ug, uy) by his own definition (equation (5.1)) has the divergence
equal to zero:

. Py Py
div(w) = 520y + 50z 0.

As the function ¥ has the conditions (5.3), (5.4) and (5.5) on the boundary. At the
moment to compute the velocity field as we detine in the equation (5.1), the conditions
(5.3) and (5.4) give us that the velocity field does not get out of the domain, and the
condition (2.21) give us that the velocity field coming into the domain when y = 0
and coming out to the domain when y = 10. Using the sine into the interval [4, 5], the
y-component of the velocity continuously increases until x = 5, and into the interval
[5,6] the y-component of the velocity decrcase until £ = 6. This velocity simulates a
river coming into the simple squarc when y = 0 and a river coming out when y = 10,
in both case when z is between 4 and 6.

;

cvemanmeeeeeoid

/)

sod
)

s

S~~emsrenosst/
csececccscer

PR
.....
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N

Figure 5.1. Velocity field on a square domain Q = [0, 10)2.
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5.1.2 Simulation of the advection-diffusion of an inert compo-
nent

In this paragraph, we show the results obtained for the simulation of the advection-
diffusion of an inert component (no reaction term). We used a constant initial condition
on the square domain equal to zero and the velocity field is the one described in Section
5.1.1. The simulation is shown in Figure 5.2 with a time between to = 0 until ¢, = 200
and a partition with 400 points.

(a) Time: 0/399 (b) Time: 133/399

(c) Time: 266/399 (d) Time: 399/399

Figure 5.2. Simulation of the advection and diffusion of an inert component over the square
domain Q = [0, 10]2 with the velocity field shown in figure 5.1.

As we can see in Figure 5.2(a) the initial condition equal to zero in whole domain.
For each time t, we imposed that the river enter concentration of the inner component
into the square domain using the following expres-ion for cach time t between 0 and
200:
9.975 x sin’ (f—f), (5.8)

tL
this expression continuously increases up to ¢ = 100 with its highest value equal to
9,975, and after continuously decrease until zero. In this context, in Figures 5.2(b)
and 5.2(c) we can sce how the concentration move with the current Finally in Figure

5.2(d) the inner component’s concentration leaves the square domain by the river.

5.1.3 Simulation of the WASP model coupled with the hydro-
dynamics

In this paragraph, we show the results obtained for the sumulation of the advection-
diffusion and reaction of the water quality variables. We used a constant initial condi-
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tion on the square domain equal to 0 for all the variables and a source on the boundary
for the phytoplankton equal to equation (5.8) (the others are equal to zero). The ve-
locity field is the one described in Section 5.1.1. The simulation is shown in Figure 5.3
with a time between tg = 0 until ¢,, = 200 and a partition with 400 points.

(a) Time: 0/399 (b) Time: 133/399

(c) Time: 266/399 (d) Time: 399/399

Figure 5.3. Simulation of the coupled model.

As we can see in Figure 5.3(a) the initial condition equal to the zero in whole domain.
For each time t, we imposed that the river enter concentration of the phytoplankton
component into the square domain using the expression for cach time ¢ between 0 and
200 similar to equation (5.8) with its highest value equal to 0.1476. For the rest of
the water quality components we impose the conditions equal to zero. In this context,
in Figures 5.3(b) and 5.3(c) we can sce how the concentration move with the current.
Finally in Figure 5.2(d) the phytoplankton’s concentration leaves the square domain
by the river.

5.2 Simulation of the lake Taihu

In this section, we will present the results obtained by simulation of the coupled hydro-
ecological model on the Lake Taihu.
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Lake Tai or Lake Taihu is a large freshwater lake located in the Yangtze Delta plain
in Wuxi, China (Figure 5.4(a)). The lake belongs to the Jiangsu province and the
southern shore forms its border with the Zhejiang province. Tt has a surface arca of
2338km?2, which stretches from North to South over 68.5km, and from West to East
over 34km (mean value). Its mean depth is 1.9m and its maximal depth is 2.6m (vary-
ing a little bit depending on the scason): Lake Taihu is therefore a shallow lake.

5.2.1 Awvailable data of lake Taihu

For the computation of the initial and boundary conditions on the 2D hydro-ecological
model, we will use the data measured between May 2001 and May 2002 at several
observation stations located in the Lake Taihu. There are 14 stations (Figure 5.4(b))
and 17 rivers (Figure 5.4(a)) that are managed by:

“** OBSERVATION STATIONS

longitude

(a) Taibu's rivers (b) Taihu’s observation station

Figure 5.4. Stations and Rivers in the Lake Taihu.

e the NIGLAS: Nanjing Institute of Geography and Limnology, Chinese Academy
of Scicnces (CAS),

e and the TLLER: Taihu Laboratory for Lake Ecosystem Resecarch.

For cach of these stations. we have some measurements of:
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e physical variables such as water depth, temperature, secchi depth, SS, PH, con-
ductivity,

e dissolved oxygen (DO) and COD,

e nitrogen cycle: NH,;, NO,, NOj, total nitrogen (T'N), total dissolved nitrogen
(TDN)

phosphorus cycle: P(y, total phosphorus (TP), dissolved total phosphorus (DT P)

and other variables such as chlorophylia (Chla), K't, Na*, Ca®*t, Mg?*, F~ Cl,
SO;™ , Si0;,.

We also have access to other data sets:
e rivers data: inflow rates, outflow rates, nutrient concentration;
e meteorological data: wind, precipitation, light intensity;

e cxperimental data: for example, growth rate of phytoplankton.

5.2.2 Mesh

For the simulation it is important decide which mesh will be used how it was explained
in Chapter 4. Here we used two triangle meshes:

e a first mesh composed of 3741 nodes which form 6949 triangles as in Figure 5.5(a).

e a sccond mesh composed of 285 nodes which form 410 triangles as in Figure
5.5(b).

(a) Mesh 1: 3741 nodes. (WM e o L L

Figure 5.5. Triangle meshes of the lake Taihu.
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5.2.3 Time Period and boundary condition of the Simulation

For the simulation of the Lake Taihu, we used a time period of one year for the mesh
with 285 node (Figure 5.5(b)), between may 2001 until may 2002 to be able to use the
data described in Section 5.2.1. For the mesh with 3741 nodes (Figure 5.5(a)), we used
a time period of two months between may 2001 until jun 2002.

For the boundary condition, we considered the Neumann Condition on the whole
boundary (see Section 4.3): it means that for this first step, we neglected the rivers as
we know that the current are mainly induced to the wind in the case of Lake Taihu.

5.2.4 Initial condition

For the initial and boundary condition, we used the information of the 14 stations
and 17 rivers obtained by the NIGLAS (Section 5.2.1) to interpolate ditferent initial
conditions. The interpolation was made with a function of Scipy package, scipy/inter-
polate/griddata using the cubic method. The initial condition for the phytoplankton is
shown on Figure 5.6.

(a) 3741 nodes. (b) 285 nodes.

Figure 5.6. Initial conditien for the phytoplankton.

5.2.5 Velocity

To solve the equation (3.1)
consideration. To compute the velocity '
rivers. The FVCOM solve the Navier-Stokes cqnatl'onsv
field obtained for the two meshes are shown in Figures (

we need to know the velocity cver the period of time, under
, we used the FVCOM software [2], without the
(2.1), (2.2) and (2.3). The

5.7) ¢ 5.8).
velocity 5.7) and (5.8)
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Figure 5.7. Velocity with 3741 nodes.

Figure 5.8. Velocity with 285 nodes.

34
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5.2.6 Results

As it was explained in Section 5.2.4 all the inputs necessary to simulate the test cases
(current etfect and coupled model) were generating before running the simulations. In
Appendix B there is all the explanations necessary to generate the input and all the
command lines to run all the scripts. With the script, I simulated the two test cases.

Current effect simulation

The simulation of the coupled model is shown on Figure 5.9, for this simulation we
used the initial condition shown in Figure 5.6(b) and the velocity field shown in Figure
5.8.

The Time period used (as it was explained in Scction 5.2.3) is one year between
may 2001 and may 2002. The time partition has 582 points. The mesh used for the
simulation is the small mesh with 285 nodes as shown in Figure 5.5(b).

(a) Time : 0/582 (b) Time: 194/582

(c) Time : 388/582 (d) Time: 582/582

Figure 5.9. Phytoplankton concentration in the simulation to see the current effect using

the mesh with 285 nodes.

we sce the initial condition for the simulation with the small

In Figure 5.9(a),
& (2) we can sce how the current effect move

mesh. In the Figure 5.9(b), 5.9(c) and 5.9(d)
the phytoplankton concentration around the lake.
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Coupled Model simulation

The simulation of the coupled model is shown on Figure 5.10, for the simulation we
used the initial condition shown in Figure 5.6(a) and the velocity field shown in Figure

5.7.

The Time period used for this simulation is two months: between may 2001 and
jun 2001. The reason is that as we are using Python to simulate it take a long period
of time. the time period we have information of the lake’s station and the rivers to do
the interpolation of the initial condition is between may 2001 and may 2002, as was
explained in Section 5.2.1. The time partition The mesh used for the simulation is the
small mesh with 3741 nodes as shown in Figure 5.5(a).

(a) Time: 0/1476 (b) Time: 492/1476

(c) Time: 984/1476 (d) Time: 1476/1476

Figure 5.10. Phytoplankton concentration in the simulation of the coupled model using the
mesh with 3741 nodes.

For the water quality model simulation. in Figure 5.10(a) we see the initial condition
considered for this simulation. In Figure 5.10(b) we see how the phytoplankton concen-
tration is close to the boundary(concentration decrease). In Figure 5.10(c) we can sce
how the phytoplankton concentration growths again and in Figure 5.10(d) it growths
a lot in the last step, which this means the phytoplankton form a big concentration in

these areas.



Chapter 6
Sensitivity Analysis

The sensitivity analysis (SA) is the study of how the uncertainties on the outputs of a
mathematical model can he explained by the uncertainties of some specific inputs. In
others words as it is explained in the reference [16]: “we will able to answer questions
of the type “which of the uncertain input factors is more important in determining
the uncertainty in onec of the input factors, which factor should we choose to reduce
the most the variance of the output?”’, answering this question is important because
a few important factors are identified, the modeler may choose to simplify the model
structure by eliminating parts that appear to be irrclevant or be may decide to proceed
with model limping and extract a simpler model from the complex one”, for more details

see [16].

6.1 Morris Method

The sensitivity method proposed by Morris in [17](1991) and modified by Campo-
longo et al in [18](2003) take in account two scnsitivity mecasure for cach factor as it
is explained in [16]: “a measure p that estimates the overall effect of the factor on
the output, and a mecasure o that, according to Morris, estimates the ensemble of the
second and higher-order effects in which the factor is involved (including curvatures
and interaction effects)”. The measure p is the average of the output variations at
certainly number of inputs as we will explain in the following scctions, in the case of
Campolongo’s measure consider the measure pu* »hich is the average absolute of the
output variations at certain number of inputs consider for the measure p.

About the Morris method in the reference [17] explain that: “The guiding philos-
ophy in this work is that a major role of a preliminary cxperiment is to determine,
which inputs may be considered to have effects which are (a) ncgligible (b) lincar and
additive, (c¢) non-lincar or (d) involved in interactions with other factors” In the ref-
erence [17], they also propose to visualize the results with a graphical plot where we
can see both sensitivity measures (g, ). For the case of the Campolongo’s measures.

we considcer a graphical plot of the couple (p*, o).

37
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6.1.1 Discretization of the space

Let dfanote k the number of parameters to be considered in the SA. Each parameter
has his own definition interval [a;,b:] (¢ =1 : k). For cach input factor we consider
a partition of size p of the definition interval, that is a set of p discrete values in the
definition interval:

b, — a; 2(b; — a; — — a;

{ai’ai+‘t l’al+ ( l)a'---ai+(p 2)(()[ al)vbi .

(p—1) (p—1) (r—1)
The region of experimentation € is defined as the product of the definition intervals of
each parameter: it is therefore a k—dimensional hypercubic with p—Ilevel grid.

In the sequel, X will denote a k—dimensional vector with the model inputs X;,

=1 3k.

6.1.2 Random Trajectories

To perform a sensitivity analysis of a modcl, we need to run the model several times
with different input values. The input values have to be chosen randomly, but we also
want to explore the space {2 correctly. Morris proposed a method to generate the input
values. For that, we first have to choose a number of trajectories that is denoted r in
the sequel. As it is explained in the book [16], for each of the r trajectories, we will
generate a sct of k + 1 input parameter values vector { X7} with 7 = 1,... kK + 1 in
the region of experimentation §). To geuncrate this set, we start by randomly sclecting
a ‘basis’ vector X* in §2. The first input values vector, X!, is obtained by increasing
one component of X* by one level of the grid. The second sampling point is generated
from X!: it differs from X! only by its i** component that has been either increased
or decreased by one level of the grid. We choose the index i randomly in the set
{1,2,...,k} different to the index chosen to get the first input values. Mathematically,
it is written X2 = (X1.. ., XL, X} £4, X}, X)) = X" £eA; with A, = bﬁ
and e; the k-dimensional vector with zeros values except its 3" component that is equal
to 1. The following input values vector are generated with the recurrence equation,
Xl = X714 ei()Dig) (Figure 6.1). This method cnables to generate, for each of the
r trajectories, a set of (k + 1) input values vectors X', X2 ..., Xkt with the key
property that two consecutive input values vectors ditfer from each other by only one
component. Furthermore any component of the ‘tasis vector’ X has been sclected
at least once to be increased by one level of the grid; it will cnable to calculate one
elementary effect for each input factor as it will be explained in the sequel.

§

Figure 6.1. Random trajectories with k = 3, we can see how the trajectory changes only in
one component in each step.(Figure of [16]).
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Note that the vector X* is used to gencrate the other sampling points but it is
not onc of them and the model is never evaluated at X*. And that a sampling point
X! with 1 in {1,...,k}, may be different from X' in onc component because one
of its components has becn increcased or decrecased. The succession of sampling points
(X, X2, ..., X**1} defines what is called a trajectory in the input space.

6.1.3 Elementary effect

Once we have gencrated the 7 trajectories, we can simulate the model for cach of the
input values vectors X’ (j = 1 : k+ 1) of the r trajectories. The obtained outputs will
then be used to compute what is called “elementary cffect” in the sequel.

The elementary effect is the variation of the output between two consecutive ele-
ments of a random trajectory. The elementary effect for the 1** input is defined as it is
explained in the article [17]: consider the value A which is a predetermined multiple of
1/(p — 1) and the value A,, which is the real variation of the scale A in the parameters
it" values space (i.e. A, = (b; — a;)A). For cach clement X = (x),75,...,2¢) of a
random trajectory, the elementary effect of the ! input factor of X is defined as:

\ y(11712v-~ -TZ+A ) U(X)

di(X) = A ,
where y(X) is the output of the model obtained with input values equal to x. Note
that to compute this elementary effect, the input values vector (x;, rs,...,7:) € € has

to be such that the transformed input values vector.

By using the method introduced in Section 6.1.2 to gencrate the input values vec-
tors, we know that for any input factor ¢ = 1 : k and for any trajectory j =1 : r, there
exists one index number m(j) such that X" O+ _ = X" @ 1 e A,. And we have:

u(X;n(i)+l) o y(Xm(i))

d(xp0y = Lo =B

Remember that cach trajectory has k+ 1 clements; so we have r x k elementary effects.
Remark: In the reference [16], the authors use A; = A; it is because to illustrate the
method, they assume that the all input values have a definition interval equal to [0, 1]

(i.e. a;=0and b; = 1).

We will use r trajectories to compute the sensitivity measure for the ¢t* input of
the k parameters. The sensitivity measure is definite by:

(6.1)

(6.2)

[ ————

O; = J (63)

values vector of the j* trajectory. Remember cach trajec-

where X’" is the m!"* input
P ¢ will have r * k elementary effects.

tory has Ic + 1 elements, in that context, W
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In this work, we considered the sensitivity measure suggested by Campolongo be-
cause with our model the elementary effect can take positive and negative values. So,
when we compute the average, some terms may cancel cach other and the sensitivity
analysis will not give us any information.

In [17], a practical choice for the parameters p and A is given: they propose to

choose a value of p that is even and to take A equal to ﬂ_p-T With this choice,
. . p—
although the design sampling strategy does not guarantee an equal-probability for the

elementary effects of each trajectory, at least a certain symmetric treatment of inputs
is ensured.

6.2 Consideration for the WASP model

The Morris method has been developed for scalar real values models. In the case of
the WASP model, we have a model with 8 outputs where cach output is a function of
the time. To apply the Morris method in the case of the WASP model we propose to
adapt the method. We will apply the Morris method for cach water quality variable,
but as each output is a function of time, to compute the elementary effect we use the
I-norm for continuous functions instead of the absolute value. Then the elementary
effect is defined as follows:

A

with ¢ = 1,..., k and where the norm || - || is defined by

The sensitivity measures p* and o are then given by the same expression.
Finally, we will have 8 SA results, one for cach water quality components.

6.3 Implementation

For the implementation of the sensitivity analysis method, I used the scripts developed
by Julien Diot during his master (internship made during thL 2nd ‘yoar of I\"Iontpclli(.'r
SupAgro engineer school in 2016 under the supervision of Céline (‘HS(‘.Ilfd\./C-ln the llll'lf
MISTEA, INRA). I modified and improved the script to make the sensitivity analysis

of the WASP model.

For the implementation, it was necessary to use Python scientific pa(:l-{ages l.ike
Matplotlib, Bokeh, and SALib. The data that we usgd for the simulation
this files contained data of the years 2001 and
9 stations as we describe in Section 5.2.1.

Numpy, Scipy, _
are stored in a simple format .txt files;
2002 of the lake Taihu for each of the 1
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6.3.1 For WQM

For the sensitivity analysis, we consider a simple case without the advection-diffusion
effect, the external loading and the non-point sources:

dC

o S (6.4)
where C is the concentration of onc water quality component and S, the respective
reaction term as described in Section 3.4. To obtain a solution of this ordinary dif-
ferential equation we considered the initial condition given by the observation data at

one station in 2001. The values are given in Table 6.1 for cach component.

Component Initial Condition Unit

Cio 9.975 mgO2/L
Cbod 4.52 mgC /L
@; 0.011815*12.5 mgC/L
CNH4 0.0935 IllgN/L
Cnos 0.4405 mgN /L
Con 1.781 mgN /L
" C; 0.0015 mgP /L
Cop 0.068 ingP /L
Cou 0.011815 mgC/L

Table 6.1. Initial condition for the simulation at station 8

The simulation of equation (6.4) with the initial condition given in Table 6.1 lcads
to the results shown in Figure 6.2. When we compare the simulation results with the
real data we see a big difference with the reality (Figure 6.3). To improve the model,
we need to calibrate it by modifying the input parameters of the model. As therce is
a lot of parameters to identify, we will first use the sensitivity analysis to identify the
most important paramcters for cach cquation of the water quality components.

2 - |
10
00
;] CBOD
Phyto
NH4
6 NO3
— ON
»
4T | op
|
) }\

——

Figure 6.2. Water quality simulation

We perform the sensitivity analysis on a simple model without hydrodynamics
because it is less complex and computationally expensive than the coupled hydro-
ecological model that takes into account all the biological processes with the etfects of
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Figure 6.3. Compare with the real data

the diffusion, advection and the hydrodynamics. The code developed is organized in
several folders and files (see appendix B for more details):

e The Data folder contains all the measured data available at each station of the
lake Taihu during the years 2001 and 2002 as explained in Section 5.2.1.

e The fonctions.py script contains the equation of the water quality model as de-
scribed in Section 3.4, the complementary equation of Section 3.5 and the func-
tions necessary to obtain the data of the Data folder and make them usable in
the simulations. The script parametres.py contains the information about the
parameter values involved in the equations (sce Appendix A).

e The Modele WASP_ lac Tai v{.py script is the main script of the water quality
model implementation. It uses the functions of the script fonctions.py. This
script performs the import of the Data folder, the integration of the ordinary
differential equation with the ode() function of the Scipy package for onc station
and the plot of the real data and the results asing the Matplotlib packages.

ODE Method

In the first version developed by Julien Diot, the script was using the odeint() function
of the scientific packages Scipy for the integration, but when the scripts were running,
the odeint() function returned a warning: “ODEintWarning: Excess work done on this
call(perhaps wrong Dfun type). Run with full output=1 to get quantitative informa-
tion.”. This problem comes from the fact that the equations we wanted to simulate can
have strong variations in a short period of the time (it is a problem that is “stitf”) and
the function can’t do correctly the computation. To solve this problem, we replaced
the odeint() function by the ode() function of Scipy which hgs more options for the
integration but whose computational cost can be more expensive than the onc of the

odein() function.
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6.3.2 SA of WQM

For the SA of the WQM model, we considered 40 parameters which are given in Ap-
pendix A.4 with their respective lower and upper bounds (a; and b;) that arc necessary
for the SA. We adapted the WQM implemented in Section 6.3.1 to obtain the output
of cach water quality component. In python, there exists the SALib package to do
the SA, but the SA method that is implemented in this package only works with real
values function. In our case, as explained before, we needed to apply the SA for the
WQM that has 8 water quality variable outputs, cach of them is a function of the time.
The files for the SA implementation and all the files necessary for the simulation of
the WQM are explained in details in Appendix B.3. Here we will explain only a few
important files used for the simulation:

e The parameters. py script contains the number parameters and the definition in-
terval for each parameter. This is necessary to obtain the random trajectorics

for the Morris method.

e The morris_methode wv/{.py script generates 2 files: one for each sensitivy mea-
sure that are stored in a folder. This script takes the information about the
parameters in parameters.py, and then uses the sample function of the packages
SAlib to generate a random trajectories set which will be used to compute the
output of the model with the Model W ASP() function. Finally, the script com-
putes the elementary effect for each output and each input factor and compute
sensitivity measures mu* and ¢ which are stored in the corresponding files.

e The interactive plotting.py script enables to plot the sensitivity analysis results
for the Morris method. This script needs as input the name of the folder in
which the results are stored: then it imports the results and make an interactive

plotting using the Bokeh packages.

SAMPLE Method

As explained before, an important step of the SA is the generation of the random
trajectorics that can be performed as explained in Section 6.1.2. For the numerical
implementation, we used a function of the SAlib package which is optimized.

Verification of the results

In the literature, the authors usually consider between 4 and 10 random trajectories to
do the SA. This number depends on the inputs number, the computational model cost
and the choice of the level number. During my internship, I studied the effect of the
trajectories number on the result of the SA. I will now explain the script that I have

developed to do that:
o The morris methode v analysis boz.py script uscs the morris  methode v4.py

to do the SA with all the even number of trajectories between 2 until 100. More-
over, it generates a folder with all the values of the SA measures.
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e The interactive plotting analysis boz.py script uses the interactive_ plotting.py
script as template to plot the results of the morris methode v4 analysis bozx.py
with the Bokeh packages. It has three options to plot the SA results:

— Trajectories:
A plot of 4 and o value versus the number of trajectories for cach water
quality components and cach parameter.

— Box:
A box-plot of the SA measure versus the parameters fer cach water-quality
variable.

— Mean:
A plot of the mean value of y; versus the mean value of o, for each water
quality component.

6.4 Results

We performed the SA for the cquation (6.2) with r = 4 trajectories and compare
the results with the mean values of the SA results obtained with an even number of
trajectories between 2 and 100. For all the SA performed, the method used is the
Morris Method that is explained in the section 6.1. For all the simulations we used the
initial condition given in Table 6.1 and the SA is applied over the 40 parameters given
in Table A.8.

Sensitivity analysis using r = 4 trajectories

The SA results obtained with r = 4 trajectories are shown in Figures 6.4, 6.5, 6.6 and
6.7; it gives us the order of importance among all the 40 parameters through a plot of
o versus u for each water quality variable.
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Figure 6.4. SA of the Cy4o and Crpoq components
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Parameters
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k_dl
k 12
ke 78
k ni
k _dn
k _gr
k_par +k_grz
k ml
ke m2
temp_rl
temp_dl
temp nu
temp__12
temp dn
temp__gr
temp__mr
temp_ml
temp_m?2
temp_SOD
K BOD
K NITR
K NO3
K_mN
K mP
K _mPc
w_2s
w_3s
w_T7s
w__8s
f_D3
f_D7
f_Ds8
f_on
f_op
a_nc
a_pc
D b
I s
K_e_ prim
SOD

9
10
3

11

N

6

8
7
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10
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9
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11
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9

9

10

10
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Table 6.2. Order of importance of the in

In Table 6.2, the most important parat
one are given for cach wate
most important parametcr

put parameters using the SA with r = 4 trajectories

cters that have g and o values bigger than
r quality component. In the case of Cp, we obtained that the
s are (in this order) w_2s, k r2, temp 12, k_par + k,rz
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and temp_mr. For the other parameters, the corresponding i and ¢ values are near
zcro, which means that if we change a little the parameter’s value we will obtain a
similar output value for C,. But if we change a little bit any of the five important
parameters listed above, the output value of (), will change significantly. In the case
of Cepod, it is more complicated to identify the most important parameters because the
points in the plot of o versus p are scattered (Figure 6.4(b)). For example for f on
and temp_ dn, both paramecters are important but f on is more nonlinecar or has more
interactions than temp_dn, and the output value is more sensitivity to temp dn than
tof__on. In the same way, we can identify the parameters that are more important. for
all or almost all the water quality components like & 72, k__par + k_grz, temp 712,
w_2s, f_on, f _opand k_ml.

Impact of the number of trajectories in the SA results

In the Figures 6.8(a) and 6.8(b) we sce the values for u (blue) and o (red) obtained for
the parameters w_2s and k£ d1 and for the output variable C, for different number of
trajectories (even number between 2 and 100).

(a) Parameter: w_2s (b) Parameter: k& dl

Figure 6.8. Impact of the number of trajectories for (7,

In Figures 6.9 and 6.10 we sec the mean values of all SA measures that have been
obtained with even numbers of trajectories betwe: . 2 and 100 of trajectories, for the
output variable C, and the parameters wz, and ka. For cach parameter we use a box
plot where it is possible to identify the maximuin, minimum. and mean values and a.ISO
the interquartile range. For example, in the Figure 6.9 it is easy to idgntify the five
important parameters for p and in Figure 6.10 we identify the same five important

parameters for the o.
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Figure 6.9. Box plotting of the u of the impact of the number of trajectories for .

Figure 6.10. Box plotting of the o of the impact of the number of trajectories for C’,.

In Figures 6.11, 6.12, 6.13 and 6.14, we scc the plots of the mean value of o versus
the mean value of ¢ for cach water quality variable and each parameter, the mean value
being computed over the set of SA performed with ditferent number of trajectories r.
These plots give us the order of importance among all the 40 parameters for cach water

quality component.
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Figure 6.11. mean’s value of the SA of the SA analysis using the trajectories even number
between 2 and 100.
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Figure 6.12. mean’s value of the SA of the SA analysis using the trajectories even number
between 2 and 100.
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Figure 6.13. mean’s value of the SA of the SA analysis using the trajectories even number

between 2 and 100.
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Figure 6.14. mean’s value of the SA of the SA analysis using the trajectories even namber
between 2 and 100.
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f_ D7 11 10 3
f_D8 4 1
f_on 6 5 3 7
f_op 7 7
a_nc 4 3 2 2
a_pc 2 6
D b 5

I s
K_e_prim
SOD 2 '

Table 6.4. Order of importance using the mean values of the SA analysis.

In Table 6.4, we can see the order of the most importance parameters for each water
quality component, order that has been obtained with the mean values of the Sa
results. In the case of C, for example, the most important parameters are w 2s,
k_r2,temp_r2, k par + k_grz and temp mr.

6.5 Discussion

When looking at the results of the study of the impact of the number of trajectorics
on the sensitivity analysis results that are given in Figures 6.8(a) and 6.8(b), we sce
that the values are most of the time similar but that there can be some peaks for
certain number of trajectoriecs. When plotting the box graph for p in Figure 6.9 and
o in Figure 6.10, which include the maximum, minimum value and the average of the
values for each parameter, we can clearly identify the most important parameters for
each water quality component.

Then, when comparing for each water quality component the results through Ta-
bles 6.2 and 6.4, we sec that the most important parameters are similar except for one
variable and that for paramecters with very close values the order of importance can be
permuted between them. In the case of €' p the most important parameters are the
same and in the same order: w 2s, k r2, temp 2, k_par + k grz and temp mr.
In the case of Cyys we have almost the same parameters for both table except the
difference in the parameters k_r3 and f_D7. In the case of Coneos the three first most.
important parameters f on, w_2s and a_nc are the same but in different order for
both tables. But in the SA it does not consider the follow parameters as the first ten
most important: temp dn, w 3s, k ni, k par + k grz and temp r1, but the first
SA using just only four trajectorics takes in account these parameters.

Using the crror defined by the following expression:

|values — Mmeanyaiues|

error = -
|meanygues|

we can sce if the values obtained with both analysis are similar. The error calculated
for the five most important parameters for Cp are given in Table 6.5 for p and in Table
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6.6 for 0. In both cases, even the error values are high we still have the same order
of the parameters, which means that the sensitivity analysis performed with r = 4

trajectories is sufficient for C),.

Parameters 7 Uigban error
k_r2 1.272260e+-00 9.165082e-01 3.935783e-01
k_par +k_gr:z 3.587056¢-01 1.943630¢-01 8.455446¢-01
temp_r2 5.436709e-01 4.793158e-01 1.342645¢-01
temp_mr 1.301971¢-01 8.153164c-02 5.968904¢-01
w_2s 5.750091e+-00 3.169842e+-00 8.139992¢-01

Table 6.5. u’s error between the result of the SA with 4 trajectories and the mean values.

Parameters o Fnban error

| T 1.715766e+00 2.010826¢+-00 1.467357e-01
k_par+k_grz 3.921153¢-01 4.906442¢c-01 2.186515¢-02
temp_r2 3.932476e-01 1.095945¢+-00 6.411794e-01
temp mr -1.668047¢-01 2.429921¢-01 3.135385¢-01
WpeDs 3.661535¢+00 4.506207e+-00 1.874463e-01

Table 6.6. o’s error between the result of the SA with 4 trajectories and the mean values.




Chapter 7

Conclusions and Recommendations

The first topic, the computational time is so long for the simulation using I’ython,
the recommendation about this problem it is to change to one compiled programming
languages like C or Fortran. Python code is not well-adapted for such a real case, that
is why we will use a code such as FVCOM written in C and Fortran that is optimized
and parallelized for future simulation. Even when we try to work with a small mesh,
the result are fastest, we loss information about how the water quality components
move with the current effect. In this context it is not recommendable do finer the
mesh for the Lake Taihu, because the mesh is very small and the lake very tall as we

see in Figure 5.5(b).

The CBOD component takes negative values for the simulation. The same prob-
lem with CBOD, NH4, NO3, ON and O components when we use the rivers to
compute the velocity which is used for the simulation. For the moments the model
does not work using the velocity consider the rivers to gencrate the currents with the

FVCOM.

The coupling of the model was successful without consider the rivers on the bound-
ary neither the sediment and benthic flux. Then, it is necessary to do better the model
consider in 3D shallow water model (using layers) with the settling and benthic flux
at the water quality model which are the connection between the hydrodynamics and

ccological part.

About the Sensitivity Analysis, it was possibly tind the most important parame-
ters for the coupled model: & 72, k_par + k grz, temp 12, w _2s, f on, f op and
k__m1 which are the parameters more relevant for each water quality component as we
can see in Table 6.2. Even, it was possible do the analysis to show the independent of
trajectories number with the sensitivity analysis measure (Table 6.4).

With this information, we are able to do the calibration to improve the model for
the real case (the Lake Taihu). Even, it possible to do the sensitivity analysis with a set
of parameters to improve the knowledge of which parameters are the most important

to the model.

The next step for this work, it is add the condition of the rivers on the boundary

53
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an important part of the boundary condition and maybe improve the complementary
equations (Water Quality Model). After, it is make the calibration of the model for
the particular case of the Lake Taihu and also add the sediment and the benthic flux
to improve the model considering the 3D shallow water model.



Appendix A

Parameters

All the follow paramcters values are in the follow bibliography: [1], [8], [10], [19], [20],
[21] and [22].

A.1 Constant parameters of the model

Name "Description Unit FVCOM
notation
@ccnia Phytoplankton carbon to chloro- mgC - (mgChla)™! 80
phyll a ratio
Qne Phytoplankton nitrogen-carbon ra- mgN - (mgC)~! RATIO NC
tio
Qpe Phytoplankton phosphorus-carbon mgP - (mgC)~! RATIO PC
ratio
D Depth (or more precisely height) of m DEP
the water column (> 0)
D, Depth (or more precisely height) of m D(I)
the current model segment (> 0)
Dy Depth of benthic layer (> 0) m 0.7 in FVCOM
fps  Fraction of CBOD which is dis- FD2
solved
fpr  Fraction of organic nitrogen which - FD6
is dissolved
fps Fraction of organic phosphorus FD8
which is dissolved
fon  Fraction of dead and respired phy- - F_ONN(I)
toplankton recycled to organic ni-
trogen pool
fop Fraction of dead and respired - FOP or
phytoplankton recycled to organic F_OPP(I)
phosphorus pool
a unit conversion factor mole photons-m~? - ly~!
CBOD dcoxygenation rate d~! K_DEOX
d=* K_DENI

Denitrification rate

5]
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Wss
91“

9dﬂ

Phytoplankton optimum growth
rate at the reference temperature T
r and optimum light/nutrients
Organic nitrogen mineralization
rate

Organic phosphorus mineralization
rate

Nitrification rate

Phytoplankton basal loss rate

Phytoplankton endogenous respira-
tion rate at the reference tempera-
ture T,

Bacterial respiration rate

Half-saturation concentration for
oxygen limitation of CBOD oxida-
tion

Half-saturation concentration for
nitrogen uptake

Half-saturation concentration for
phosphorus uptake
Half-saturation concentration for
phytoplankton limitation of miner-
alization

Half-saturation concentration for
oxygen limitation of nitrification
Half-saturation concentration for
oxygen limitation of denitrification
the extinction coefficient per unit of
chlorophyll a

Non algal light attenuation

NH,

NO;3 + NO,

()PO4

Sediment oxygen demand rate
reference temperature

Settling velocity of PHYT

Settling velocity of CBOD

Settling velocity of particulate or-
ganic nitrogen

Settling velocity of particulate or-
ganic phosphorus

Temperature adjustment factor for
deoxygenation rate

Temperature adjustment factor for
denitrification rate

mgN - L1
mgP - L™}

mgC - L

mgQy - L}

m? - (mgChla)™!

K _GROW

K_MINE1
K _MINE2

K_NITRR(IL,K)
K_MORT

K_RESP

K_RESP1 * 32
* 24 * 1.0E-3
KBOD

KMN*1.0E-3
KMP*1.0E-3

KMPC

KNITR

KNO3

not used
RSEDI1(I)
RSED2(I)
RSED3(I)
SODD(I,K)

WSS3
WSS2
WSS3 (w75 =
Was)
WSS3 (wss =

W2S)
TEMP_DEOX

TEMP__DENI
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Ogr Temperature adjustment factor for - TEMP GROW
phytoplankton growth rate

Table A.2. Constant parameters of the model

A.2 Universal constants

Name Description i Value
€ the base of natural logarithm 2.718[—]

Ratio of dioxygen to carbon molar mass 32/12mg0y - (mgC)™!
Ratio of dioxygen to nitrogen molar mass 32/14mg0O, - (mgN)~!
molar mass of the carbon 12g - mol !
molar mass of dioxygen (O3) 329 - mol~!
molar mass of the nitrogen 149 - mol ™!
density of water lg - em™3
von Karman's cocfficient 0.4][—]

Table A.4. Universal constants

A.3 External inputs of the model

Name Description Unit FVCOM notation

I Daily average incident solar radiation ly-d-! SOLAR A

ty  sunrise hour in the day (between 0 and h TIME u
24)

Tp sunset hour in the day (between 0 and h time d
24)

w time-varying wind speed at 10m above
surface

v average water velocity m-s”!

T,  air temperature °C

Pa density of air: either measured or given g -cm™
expressed as a function of T,

Va viscosity of air: cither measured or
given expressed as a function of 7,

Table A.6. External inputs of the model

A.4 Parameter values for the sensitivity analysis



APPENDIX A. PARAMETERS 58

Names min max init
k_dl 0.02 0.3 0.2
k 12 0.02 0.6 0.1
k_r3 0.0199 0.201 0
k m 0.05 0.6 0.2
k_dn 0.09 0.16 0.11
k gr 1 3 1.28
k_par+k_grz 0.01 0.1 0.04
k ml 0.003 0.14 0.075
k_m2 0.18 0.22 0.2
temp rl 1.02 1.08 1.028
temp_dl 1.02 1.08 1.047
temp 1 1.02 1.08 1.06
temp 12 1.01 1re 1.05
temp dn 1.02 1.09 1.06
temp_ gr 1.01 1.2 1.066
temp mr 1 1.08 1.02
temp_ ml 1.02 1.09 1.06
temp_m?2 1.02 1.08 1.08
temp_SOD 1.02 1.08 1.07
K BOD 0.499 0.501 0.5
K_NITR 0.1 2 0.7
K NO3 0.099 0.101 0.1
K_mN 0.02 0.23 0.025
K _mP 0.0009 0.052 0.002
K_mPc 0.099 0.101 1.0
w_2s 0.7 18 0
w_3s 0.04 800 0
w_Ts 0.04 800 0
w_8s 0.04 800 400
f D3 0.499 0.501 0.5
f_D7 0.99 1 1.0
f D8 0.99 1 1.0
f_on 0.5 1 0.7
f_op 0.2 G.v 0.5
a_mnc 0.05 0.48 0.25
a_pc 0.01 0.047 0.025
D b 0.1 0.5 0.25
I s 200 500 300
K_e_prim 0.13 10 1.5
SOD 0 4 1

Table A.8. Parameters and definition interval of the parameters
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Implementation

All the implementation was performed in the programming language Python3 and
all the command lines presented hereafter are for suitable for running the scripts in

Ubuntu.

B.1 Data

All the data discrete in Section 5.2.1 are organized in the files into the folder Data.

l-E.-HData

I heat_flux_LakeTaihu_dat.txt
heat_flux_mean_LakeTaihu_dat.txt
longlat_heat_flux_LakeTaihu.txt
longlat_heat_flux_mean_LakeTaihu.txt
longlat_meteo_LakeTaihu.txt
longlat_water_obs_station_LakeTaihu.txt
meteo_LakeTaihu_dat.txt
obs_data_LakeTaihu_dat.txt
xy_heat_flux_LakeTaihu.txt
xy_heat_flux_mean_LakeTaihu.txt
xy_meteo_LakeTaihu. txt

xy_water_obs_station_LakeTaihu.txt

99
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B.2 Coupled Model

(Section B.1)

InitialCondition

For_Paraview
L 1c_x e

IC_*.txt

Mesh_3741
Mesh_small
Simulation
L' Simu2D_*.nc
Velocity
L Velocity*.nc

WASP

' fonctions.py

parametres.py

InitialCondition.py

Mesh.py
Model_Lake.py

Open_velocty.py

60

Let us now describe some important functions used in the code to understand how to

simulate the WQM:

e fonctions.Ecosystem(t, x, fT_w, fT__a, fuW, ftvW, ftU, ftD, fI, fS)

Return an array of length 8 in which cach component represents the variation
of one water quality component over a short variation of time. This function is
called in the integration method that numerically solves the model, that is in the

ode() function.

input : o t (array) : time.
o x (array) : water quality components.
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o
(o]
(o)
o

[e]

output :

[e]

fT__ w (function): interpolated water temperature function.

fT__a (function) : interpolated air temperature function.

fuW (function) : interpolated wind rate function in the x-coordinate.
fvW (function) : interpolated wind rate function in the y-coordinate.
ftU (function) : interpolated sunrise hour function in the day.

ftD (function) : interpolated sunset hour function in the day.

fT (function) : interpolate daily average incident solar radiation func-
tion.
fS (function) : interpolate water salinity function.

dx (numpy.array) : variation of water quality components.

Then, we implemented the FVM function that solves the transport equation in some
domain with some triangle mesh, initial condition, boundary condition and a given

velocity field.

e FVM(Ver, Tri, a'Tri, Tad, aTad, aAad, aCad, aCen, P__t, Bou, IC, BC,
NC, U, K, WQM, fT_w, fT__a, fuW, fvW, ftU, ftD, fI, fS)
Return the solution of the equation (3.1) solved with Finite Volume Method using
unstructurade grid

input : o
o

o

Ver (array) : Mesh nodes.
Tri (array) : Mesh triangles.
aTri (array) : Auxiliary Mesh triangles.

o Tad (array) : Triangles close for cach triangles

(e}

© 0 0O 0O 0O 00O 0O 0O OO OO 0 0 ©

aTad (array) : Triangles close for each triangles even the auxiliary
triangles.

aAad (array) : Edges close for cach triangle even the auxiliary edges.
aCad (array) : Centers close for cach triangle even the auxiliary centers.
aCen (array) : Center’s triangle in 2D.

P__t (array) : Partition of the time.

Bou (array) : Boundary nodes.

IC (array) : Initial condition.

BC (array) : Boundary condition.

NC (array) : Neumann condition.

U (array) : Velocity.

K (array) : Diffusion’s coefficient.

WQM (array) : Option to consider the ecological part.

fT__w (function): interpolated water temperature function.

fT__a (function) : interpolated air temperature function.

fuW (function) : interpolated wind rate function in the x-coordinate.
fvW (function) : interpolated wind rate function in the y-coordinate.

ftU (function) : interpolated sunrise hour function in the day.
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o ftD (function) : interpolated sunset hour function in the day.

o fI (function) : interpolate daily average incident solar radiation func-
tion.
o fS (function) : interpolate water salinity function.

output :

o phi (numpy.array) : variation of water quality components.

e save(t, Ver, Tri, Cen, u, phi, NAME)
Generate a netCDF file with the simulation result of the coupled model. Save
the results with the format compatible with FVCOM to be able to visualize the
result with Paraview.

input : o t (array) : Time.

o Ver (array) : The mesh nodes.

o Tri (array) : The mesh triangles.

o Cen (array) : The mesh center

o u (numpy.array) : Velocity.
phi (numpy.array) : Result of the water quality components.
Name (string) : Name of the netCDF file.

(o}

o

B.3 Sensitivity Analysis

I

Data
Results
[ﬁﬂsimu_v*
SALib_mu_star_*.txt

SALib_sigma_*.txt

fonctions.py

parametres.py
interactive_plotting.py
interactive_plotting analysis_box.py
morris_methode_v4.py

morris_methode_v4_analysis.py
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Now, we explain some important functions used in the code to understand how is
implemented the sensitivity analysis:

e morris__methode__v4.Model__WASP (X, dt=1, timeT=364)
Return a 2D-array where each component represents the output of the water qual-
ity model for a parameter’s values set. This function is like the implementation
of Section 6.3.1 for a parameter’s values set.

input : o X (array) : Parameters for the sensitivity analysis.

dt (float) : Time between 2 points of the time partition in days (default
1).

o timeT (int): Duration of the modelling in days (default 364).

o

output :

Y (array) : Solution of the WQM for X in a period of time for all water
quality components.

o

e interactive_ plotting.all__parameters()
Return a dictionary with the the parameters names, parameters number and

their deﬁnitipn intervals.

output :
o problem (dict) : Information about the parameters names. definition
intervals and number of paramcters.

e interactive_ plotting.all names(folder)
Return the ;2 data and o data that arc extracted from the naimne,,u and namegigma

file.

input : o folder (str) : File’s name.
output :
o name__mu (array) : Data of the mu’s result.

o name_si (array) : Data of the si’s result.

e interactive_ plotting.all data(name mu, name si)
Return the p data and o data which they a:¢ importing of the name mu and

name__sigma file.

input : o name__mu (str) : Name of the file which contained the data of mu.
o name_si (str) : Name of the file which contained the data of sigma.

output :
o mu (array) : Data of mu.
o si (array) : Data of sigma.

e SALib.sample.morris.sample(problem, N, num__levels, grid_ jump, op-
timal trajectories=None, local optimization=True)
Returns a NumPy matrix containing the model inputs required for Method
of Morris. The resulting matrix has (G+1)*T rows and D columns, where
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D is the number of parameters, G is the number of groups (if no groups are
selected, the number of parameters). T is the number of trajectories N, or
optimal__trajectories if sclected.

input : o problem (dict) : The problem definition.
o N (int) : The number of trajectories to gencrate.
o num__levels (int) : The number of grid levels.

o

grid__jump (int) : The grid jump size.
optimal__trajectories (int) : The number of optimal trajectories to
sample (between 2 and N).

o

o local_ optimization (bool) : Flag whether to use local optimization
according to Ruano et al. (2012) Speeds up the process tremendously
for bigger N and num_ levels. If set to False brute force method is used,
unless gurobipy is available (default=True).

output :

o

sample (array) :Returns a numpy.ndarray containing the model inputs
required for Method of Morris. The resulting matrix has (G/D+1)*N/T
rows and D columns, where D is the number of parameters.

B.4 Command line

To execute the model script in Ubuntu it is necessary to generate some input files that
will have to be stored in the folders described in Appendices B.1, B.2, B.3.

Mesh

To generate the mesh files, we use the script Mesh.py in which we just have to mod-
ify the file’s name with the nodes coordinates (name n) and the triangles vertex

(name_t).

name_n = 'LakeTaihu cor.dat’
name__t = 'LakeTaihu  clements.txt

Listing B.1. Script Mesh.py

$ python3 mesh.py

Initial Condition

For the generate the initial condition files are important to modify the files and folder
names: (1) The folder mesh with 3741 nodes which is used as reference to identify
the position of the rivers. (2) The rivers info file which include the rivers position
(it mecans the node’s number for each river in the mesh with 3741 nodes), (3) The
rivers and stations values which content the values for cach water quality component
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in each rivers and station respectively, and (4) The folder mesh which we will be
used in the simulation (for example the same mesh with 3741 nodes). This script
generate an interpolation for cach water quality component using the mesh which will
be used in the simulation and the rivers and stations values (for example 'Rivers.trt’
and ’Stations.txt’).

folder_m = "./Mesh/Mesh 3741
folder_m_s = './Mesh/Mesh  small

name_IC r = 'Rivers zecros.txt’
name_IC_s = 'Stations N3 p.txt’

name_save = '[C_small N3 p’

Listing B.2. Script InitialCondition.py

'$ python3 InitialCondition.py

Velocity

For the velocity we use the script @pen_ velocity.py that extracts the velocity field
from the file name__file in which the velocity values generated with FVCOM are stored
and saves the values in the tile with the name name save.

name__file = ’..\LakeTaihu simu 20012002 small mesh 0001 nc’

name_save = Vclocity small.nc’

Listing B.3. Script Open velocity.py

e p}t*hons Open_velocity.py

Main
To execute the script Model _Lake.py, we have to modify the input files necessary to

start the simulation like initial condition, mesh, etc.

# Time start
start = "01/05/2001"

## File’s names
# Mesh folder in the folder ./Mesh

name folder = ‘Mesh_small’
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# Velocity name in the folder ./ Velocity
name__velocity = 'Velocity small.nc¢’

# Initial Condition name in the folder ./ InitialCondition
name_IC = 'IC_small RecalData txt’

# Data

name__rivers = riv_info’ # File of the info rivers

name_ flux = 'rivers  LakeTaihu  dat.txt’ # File of the rivers

fileT_w = ‘obs_data LakeTaihu dat.txt’ # temperature de 'eau

fileT_a = 'mecteo_LakeTaihu dat.txt’ # temperature de Nair

fileWind= 'mctco LakeTaihu dat.txt’ # vitesse du vent

filel = 'heat_flux mean LakeTaihu dat.txt’ # radiation solaire cn
W/m™2

fileI2 = 'heat flux LakeTaihu dat.txt’

# station number
nostation = 8

# Name for save the result
NAME = 'Sim2D 1Y W RealData’

## Option of the simulation
# Rivers / Boundary Condition
RIVERS = Falsc

# Ecological part
WQM = True

Listing B.4. Script Model Lake.py

Finally, the command line to execute the main script of the coupled model and sensi-
tivity analysis arc given here-after:

$ python3 Model_Lake.py

Listing B.5. Execute the Coupled Model

i{ﬁoﬂs morris_methode_v4.py .
Listing B.6. Execute the Sensitivity Analysis
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