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ABSTRACT

Forecast modeling of spatio-temporal raster data using

principal component analysis and a neural networks - wavelet

decomposition model

Christian Amao Suxo

Advisor: Oswaldo José Velásquez Castañón

Nowadays spatio-temporal forecasting has been drawing more and more attention from aca-

demic researchers and industrial practitioners for its great utility to plan and develop contingency

measures against future adverse conditions. In this thesis, a methodology to forecast maps in spatio-

temporal raster datasets is proposed. Following a summarize-predict-and-rebuild methodology, it

1) first suggests a reduction in the dimensionality of data using a principal component analysis,

then 2) individual forecasts on the most significant components or eigenvectors are calculated using

a neural networks - wavelet decomposition model. Finally, 3) a recursive algorithm, applied on the

spectral inverse reconstruction of the individual forecasts, provides the final forecast maps.

The devised methodology led to three models according: the spatial principal component anal-

ysis (SPCA) model, the temporal principal component analysis (TPCA) model and the spatio-

temporal principal component analysis (STPCA) model. In order to evaluate their forecasting

accuracy, a simulation study was carried out by considering datasets with pure temporal, pure

spatial and spatio-temporal variability. The results suggest using a TPCA (or SPCA) model when

the temporal (or spatial) variability is predominant. For datasets with similar spatial and temporal

variability information, the STPCA model provides the best forecast results. The research culmi-

nates with a real-world case study in monthly sea surface temperature anomalies of the Tropical

Pacific Ocean.

Key-words: Raster dataset; forecast maps; forecasting accuracy; prediction.



RESUMEN

Modelado de pronóstico en datos espacio-temporales tipo

raster usando un análisis de componentes principales y un

modelo de redes neuronales con descomposición de ond́ıculas

Autor: Christian Amao Suxo

Asesor: Oswaldo José Velásquez Castañón

En la actualidad, el pronóstico de datos espacio-temporales ha sido de especial interés para

investigadores académicos y profesionales de la industria por su gran utilidad para planificar y

desarrollar medidas de contingencia contra futuras condiciones adversas. En este trabajo se pro-

pone una metodoloǵıa para el pronóstico de mapas tipo raster. Siguiendo una metodoloǵıa de

resumir-predecir-y-reconstruir, el método sugiere reducir la dimensionalidad de los datos usando

un análisis de componentes principales para luego realizar pronósticos individuales sobre las com-

ponentes o autovectores más significativos. Finalmente, un algoritmo recursivo, aplicado sobre la

reconstrucción inversa espectral de los pronósticos individuales, brinda el pronósticos final de los

mapas.

La metodoloǵıa propuesta da lugar a tres modelos: el modelo espacial de componentes princi-

pales (ECP), el modelo temporal de componentes principales (TCP) y el modelo espacio-temporal

de componentes principales (ETCP). Con el fin de evaluar su capacidad de pronóstico, se real-

iza un estudio de simulación considerando datos con una estructura de variabilidad espacial pura,

temporal pura y espacio-temporal. Los resultados sugieren usar un modelo TCP (o ECP) cuando

la variabilidad temporal (o espacial) es predominante. Para datos con similar información en la

variabilidad espacial y temporal, el modelo ETCP brinda los mejores resultados de pronóstico. El

trabajo culmina con una aplicación real en datos mensuales de anomaĺıas de temperatura superficial

del mar del océano Paćıfico Tropical.

Palabras clave: Datos raster; pronóstico de mapas; precisión de pronóstico, predicción.
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Chapter 1

Introduction

Spatio-temporal forecasting models for raster datasets have gained widespread popularity in recent

years due to its great applicability in different fields such as agriculture, economics and oceanog-

raphy (Cressie and Majure, 1997; Pace et al., 1998). Indeed, spatio-temporal forecasting has been

developing from individual spatial or temporal forecasting and gained vast attention recently for

its promising performance in handling complex data, in which not only spatial but also temporal

characteristic must be taken into account. This juxtaposition of space and time into the data has

made the spatio-temporal forecasting a challenging task that requires models to take into account

the interaction of these complex dinamycs. Furthermore, spatio-temporal datasets are often large

and therefore require substantial computing resources to fit even simple models.

A brief review in literature shows that models for spatio-temporal data are usually built by in-

tegrating time series models with variogram-based models from spatial statistics. In the time series

context, popular approaches include ARMA models (Box and Jenkins, 1976) for stationary data,

and state-space models (Migon et al., 2005), which permit to model nonstationary components

such as temporal trends and seasonality. In the spatial field, much of the literature goes around

isotropic models (Cressie and Wikle, 2015) for spatial stationary datasets. Various methods also

exist for nonstationary spatial processes, where the correlation depends on location as well as dis-

tance. For example, (Sampson and Guttorp, 1992) developed approaches based on transformations

of the coordinate system.
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The first spatio-temporal models often relied on the assumption of temporal stationarity. For

example, the STARMA (Pfeifer and Jay Deutsch, 1980) and STARMAX (Stoffer, 1986) models

were built by adding a spatial covariance structure to standard vector ARMA models. Later

models proposed methods to deal with nonstationarity and spatial anisotropy. An example of this

is the work of Guttorp et al. (1994), where with the use of the deformation technique of Sampson

and Guttorp (1992) they could capture spatial anisotropy in a series of ozone readings. Wikle

et al. (1998) used a hierarchical bayesian model with CAR priors for spatial effects for modeling

monthly maximum atmospheric temperatures. Other approaches involving hierarchical bayesian

models using CAR priors are also found in Cressie and Wikle (2015).

The main contribution of this thesis is a flexible, efficient and simple-to-manage methodology

for spatio-temporal forecasting. Following this path, this work has as main objective to evaluate the

forecast performance of a proposed summarize-predict-and-rebuild methodology. This methodology

suggest, as first step, to reduce the dimensionality of data using a principal component analysis.

This summary of information allows to work with the essential spatio-temporal variability. At

a second step, individual forecasts on the most significant components or eigenvectors are found

using a neural networks - wavelet decomposition model. This prediction part of the methodology

allows to model only the significant information of a complex spatio-temporal dataset. Finally, the

last step consists of applying a recoursive algorithm, on the spectral inverse reconstruction of the

individual forecasts of the previous step, to provide the resulting forecast maps.

As a result of the summarize-predict-and-rebuild methodology, three models are induced: the

temporal principal component analysis (TPCA) model, the spatial principal component analysis

(SPCA) model and the spatio-temporal principal component analysis (STPCA) model. The TPCA

and SPCA model differ in the second step of the devised methodology. While the TPCA model

applies the forecasting model on the significant principal components, the SPCA model applies the

model on the significant eigenvectors. For its side, the STPCA model behaves as an hybrid of the

TPCA and SPCA models. In fact, it integrates the good forecasting results of both models in order

to get an enhanced forecast accuracy.

The main advantage of the devised methodology is that it provides forecast maps without the

need of geostatistics methods and, on the contrary, it works with methods that are more flexible and

13



simple to deal with. The proposed model works under the philosophy of understanding the whole

knowing its parts. Indeed, the method works with the most relevant spatio-temporal variability of

the raster dataset and seeks to model, in a detailed way, the different variability components in

order to obtain an improved forecast.

This thesis is organized as follows. In chapter 2, a brief summary of the principal concepts and

statistical techniques used in this work are explained. Concepts such as raster datasets, stationarity,

spatial auto-covariance function, isotropy, and others are developed. Likewise, statistical methods

such as the principal component analysis, the autoregressive neural network model and the discrete

wavelet transform are also presented here. Chapter 3 displays the devised methodology of this

thesis. An explicit mathematical and algorithmic description of the three proposed models are

carried out here. Chapter 4 shows the results of a simulation study for checking the prediction

and forecast performance of the proposed models. Chapter 5 develops a real-world case study in

monthly sea surface temperature anomalies of the Tropical Pacific Ocean with the purpose to check

the forecast and prediction performance of the methods with real datasets. Finally, chapter 6 gives

the conclusions and future directions of this research.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter introduces some concepts and statistical techniques which will be used in the de-

velopment of this thesis. Section 2.2 gives a description of raster datasets. Section 2.3 describes

meaningful concepts to manage spatio-temporal raster datasets. Next, section 2.4 provides the

mathematical development of the principal component analysis (PCA) technique and shows a

brief literature review considering the use of the PCA to analyze spatio-temporal raster datasets.

Thereby, section 2.5 introduces autoregressive neural network (AR-NN) models and section 2.6

deals with topics related to wavelet decomposition methods and their properties.

2.2 Raster datasets

In general, a raster dataset, or simply called raster, consists of a matrix of cells (or pixels) organized

into rows and columns (or a grid) where each cell contains a value representing information. All

cells in a raster set must be the same size, determining the resolution. The cells can be of any size,

but they should be small as possible in order to accomplish a detailed analysis. In that way, a cell

can represent a square kilometer, a square meter, or even a square centimeter. Figure 2.1 shows an

example of how this process is done.

In raster datasets, each cell has a value. The cell values represent the phenomenon portrayed
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Figure 2.1: Representation of a scanned map with a raster dataset.

by the raster dataset such as a category, magnitude, height, or a spectral value. The category could

be a land-use class such as grassland, forest or road. A magnitude might represent gravity, noise

pollution or air temperature. Height (distance) could represent surface elevation above mean sea

level, which can be used to derive slope, aspect and watershed properties. Spectral values are used

in satellite imagery and aerial photography to represent light reflectance and color. For purposes

of this work, the cell values will represent a magnitude.

Cell values can be either positive or negative, integer, or floating point. Integer values are used

to represent categorical (discrete) data, and floating point values to represent continuous surfaces.

Cells can also have a missing value to represent the absence of data. Figure 2.2 gives an idea what

can represent the cell values. A cell value could represent the magnitude value in the center point

of the cell or the entire area of the cell. For experimental and empirical analysis of this thesis the

second option is considered.

The dimension of the cells must be chosen according to the analysis necessities. In fact, the

cells can be as large or as small as needed to represent the surface conveyed by the raster dataset

and the features within the surface. The size of the cell determines how coarse or fine the patterns

or features will appear in the raster. The smaller the cell size, the smoother or more detailed the
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Figure 2.2: An example of how are built the cell values in raster data.

raster will be. However, the greater the number of cells, the longer it will take to process all the

available information and it will increase the demand for storage space. If a cell size is too large,

information may be lost or subtle patterns may be obscured. For example, if the cell size is larger

than the width of a road, the road may not exist within the raster dataset. Figure 2.3 shows how

a simple polygon feature will be represented by a raster dataset at various cell sizes.

As it was described, process of raster clearly results in a loss of information, from the real-valued

coordinates of the points, through the integer cell counts. However, there are multiple gains. First

one, the data structure is more compact and easy to visualize. Furthermore, it can be related

to other rasters provided the locations and resolutions are properly conflated wherewith complex

spatial statistical analysis could be performed.

2.3 Qualitative analysis of spatio-temporal raster datasets

Spatio-temporal raster datasets are raster datasets with an intrinsic temporal component, i. e. the

cell values of raster data have a temporal dimension as well. The sea surface temperature, for a
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Figure 2.3: An example of how a simple polygon feature is read through raster dataset at different

resolutions.

region collected over a period of time is an example of this kind of data. Figure 2.4 displays how

the spatial and temporal dimensions are portrayed in spatio-temporal raster datasets.

𝑿 
𝒀 

𝒁 

𝒕𝟏 

𝒕𝟐 

𝒕𝟑 

Figure 2.4: Visual representation of spatio-temporal raster datasets. X and Y axes represent

the coordinate system for the spatial location and the Z axis represents the temporal evolution of

rasters.
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Due to the intrinsic spatial and temporal dimensions, the spatio-temporal statistical analysis is

concerned with data variation in space and time. Hence the statistical effort will be concentrated

in the analysis of temporal variability, spatial variability and its possible interactions. In order to

deal with these problems, next subsections describe some necessary statistical concepts.

2.3.1 Analysis of time series: the temporal variability

Definition 1. For a given probability space (Ω,F ,P) and a measurable space (S,S), a stochastic

process is a collection of S−valued random variables which can be written as

{X(t) : t ∈ P}. (2.1)

Where S and P are known as the state space and parameter space of the stochastic process. If T is

discrete (continuous), equation 2.1 is called a discrete (continuous) stochastic process.

A time series can be seen as a realization of a stochastic process with a discrete-time observation

support. In other words, a time series is a collection of observations made sequentally in time and

indexed by integers. A time series shall be represented by the discrete stochastic process {xt}Tt=1,

where T represents the length of the series. According to the number of variables analyzed through

time, a time series can be either univariate (xt ∈ R) or multivariate (xt ∈ Rn, n > 1).

Two of the main goals of the analysis of time series are modeling and forecasting. The aim of

modeling is to find a mechanism to describe the data generation process. In theory, this requires

a complete knowledge of the laws of physics, biology, etc., which govern the evolution of the

environment related to the involved time series. However, in practice there is little or no prior

knowledge about all the factors that influence the evolution. In that case, it is possible to build

a model using only the information coming from the time series, by studying its behavior in the

past. In general, a good model should capture essential features of the long-term behavior of the

system. On the other hand, the goal of forecasting, or predicting, is mainly to predict the future

short-term evolution of the system. These two goals are not necessarily intersecting: a model that

properly describes long-term governing mechanisms may fail in giving reliable short-term forecasts;

and a model that is accurate in terms of short-term predictions may not give (and does not need to
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give) a good insight into the long-term properties of the system (Qi and Zhang, 2001). The present

thesis has as main objective the forecast.

Traditionally, methods of time series analysis are mainly concerned with decomposing the total

variation of a series into four components of variability: trend, seasonal variation, cycle, and

irregular fluctuations (see figure 2.5). These variation components do not usually occur alone; in

fact, they can occur in any combination or can occur all together (Qi and Zhang, 2001).

Figure 2.5: A time series with the four traditional variations: trend, seasonal variations, cycle

and irregular fluctuations.

The crucial difference between time series, and situations usually considered in classical statis-

tics, is that the measurements xm and xn; m 6= n, will be stochastically dependent. Indeed, almost

always a sequence of measurements made in equally spaced time instants is regarded as a realiza-

tion of a process which, in principle, has continuous sample paths {xt}t∈R. Then, as s and t get

close, the variables xs and xt tend to be dependent. However, the way how they depend defines

the stationarity of the time series.

Definition 2. A time series {xt}∞t=1 is weak stationary (or simply called stationary) if:

1. E(xt) = µ for all t,

20



2. V (xt) = σ2 for all t,

3. γ(xt1 , xt2) = f(t2 − t1) for t1 < t2,

where V (.) and γ(., .) denote the variance and the auto-covariance function, respectively.

Condition 1 defines first-order stationarity and conditions 2 and 3 define second-order stationar-

ity. Both concepts give place to the stationarity. This concept is important since most forecasting

methods assume that involved time series are stationary. An absence of stationarity can cause un-

expected or bizarre behaviors, like t-ratios not following a t-distribution or high R-squared values

assigned to variables that are not correlated at all. However, in real applications time series are

not stationaries but data can be stationarized through mathematical transformations.

Statistical performance measures

In this study, several measures to evaluate the performance of different forecasting models are

employed. Given a time series {xt}Tt=1 and corresponding predicted values x̂t, the performance

measures to evaluate in-sample (adjustment) and out-sample (forecast) results are defined as

1. The Mean Absolute Error (MAE)

MAE =
1

T

T∑

t=1

|xt − x̂t|. (2.2)

2. Mean Absolute Percentage Error (MAPE)

MAPE =
1

T

T∑

t=1

|xt − x̂t|
|xt|

× 100%. (2.3)

2.3.2 Analysis of spatial datasets: the spatial variability

Spatial data are geo-referenced attribute measurements (continuous or discrete) where each mea-

surement is associated with a location (point) or an entity (region or object) in a geographical

space. Sample locations can have a regular or irregular spatial arrangement, i.e. data locations
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on a regular lattice (rasters) or scattered in space (see figure 2.6). The domain informed by a

measurement is called the sample unit, e.g. pixels (or cells) for raster datasets.

C. Funk Geog 210C Spring 2010

1
9

Point Pattern Data

Characteristics
Series of point locations with recorded “events", e.g., locations of 
trees, disease or crime incidents
Point locations correspond to all possible events (mapped point 
pattern), or to a subset (sampled point pattern)
Attribute values also possible at same locations, e.g., tree 
diameter, magnitude of earthquakes (marked point pattern)

Figure 2.6: Measures of earthquake magnitudes (in Richter scale) at different point locations in a

bay area since 1962 to 1981. This is an example of spatial data measured in specific point locations

in a continuous space.

Formally, spatial statistics deals with the analysis of realizations of a stochastic process

{Zs : s ∈ D ⊂ Rp, p > 0}; (2.4)

where s is the location in the p-dimensional Euclidean space and Zs is a random variable in the

location s. In this thesis, the interest is concentrated when p = 2.

According to the nature of D in equation (2.4), spatial statistics is subdivided into three large

fields:

1. Geostatistics: It studies data of stochastic processes in which the parameter space D ⊂ R2 is

continuous. However, in practice it depends on the researcher to select in which sites of the

region of interest the measurement of the variables is made, that is, the researcher can select

points of the space at convenience or follow some probabilistic sampling scheme. In that way,
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it is said that the set D is fixed. It is important to highlight that in geostatistics the essential

purpose is interpolation due to the spatial continuity.

2. Aerial data analysis: In this case the involved stochastic process has a discrete parameter

space D ⊂ R2 and the selection of the measurement sites depends on the researcher, i.e. D

is fixed. The sampling locations may be regularly (such as rasters) or irregularly spaced (see

figure 2.7). The essential purpose of the analysis is to detect and model spatial patterns or

trends in area values. Spatial interpolation is meaningless in this context unless it is necessary

to input missing values.

Figure 2.7: Measurements of an atributte in the different states of the United States. This is an

example of aerial data irregularly spaced.

3. Point patterns: The main difference of the point pattern analysis with the two fields mentioned

above lies in the fact that D ⊂ R2 is not fixed. D can be discrete or continuous but the site

locations where the phenomenon to be studied occurs is given by nature. In general, here the

main purpose is to determine if the distribution of individuals within the region is random,

aggregate or uniform. Figure 2.6 shows an example of spatial point pattern.

A very important stage in the analysis of spatial data is the determination of the spatial auto-

correlation structure. Analogous to how it happens in the case of time series, the establishment of
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the association or similarity of the values according to the distance between them is by itself a result

that allows to characterize the population in study and is also fundamental in the development of

prediction models. So, the concept of spatial autocovariance function is introduced next.

Definition 3. Given a spatial process {Zs : s ∈ D ⊂ R2}, the spatial auto-covariance function is

defined as

C(s1, s2) = Cov(Zs1 , Zs2) = E[(Zs1 − E(Zs1))(Zs2 − E(Zs1))] ,∀s1, s2 ∈ D. (2.5)

The spatial auto-covariance function, referred onwards as the spatial covariance function, com-

pletely determines the joint dispersion structure implied by the spatial process. To be precise, for

any n and any arbitrary collection of sites D = {s1, s2, . . . , sn}, the n × 1 vector of realizations

Z = (Zsj )j=1,...,n will have the covariance matrix given by ΣZ = (C(si, sj))i,j=1,...,n, where by

property ΣZ is symmetric and positive-definite.

Definition 4. The spatial process {Zs : s ∈ D ⊂ R2} is said to be stationary if

E(Zs) = µ, ∀s ∈ D; (2.6)

V (Zs) = σ2, ∀s ∈ D; (2.7)

C(s1, s2) = g(s1 − s2),∀s1 6= s2, s1 ∈ D, s2 ∈ D; (2.8)

where g : R→ R is a function depending only on s1 − s2.

Particularly, two stationary spatial processes will be used in the present work: The isotropic

and anisotropic processes.

Definition 5. A spatial process {Zs : s ∈ D ⊂ R2} is called isotropic if it is stationary and

C(s1, s2) = g(‖s1 − s2‖); (2.9)

where ‖.‖ is a norm operator and g(.) is a function similar to definition 4.
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Definition 6. A spatial process {Zs : s ∈ D ⊂ R2} is called anisotropic if it is stationary and

C(s1, s2) = g
(∥∥∥A−1/2(s1 − s2)

∥∥∥
)

; (2.10)

where ‖.‖ is a norm operator, g(.) is a function similar to definition 4 and A is a 2 × 2 positive

definite matrix, often called the anisotropy matrix.

Note that for stationary processes, the spatial covariance function can be written as C(h) =

C(s, s + h). So, in order to specify an stationary process a valid covariance function must be

provided, i.e. ΣZ must be symetric and positive-definite. In particular, three spatial auto-covariance

functions are of interest: The exponential, the spherical and the Mátern form. Chapter 4 deals

with more details of them.

2.3.3 Analysis of spatio-temporal datasets: the spatio-temporal variability

Spatio-temporal datasets are characterized by having measures of variables in an specific geograph-

ical and temporal location. In contrast with non spatio-temporal datasets, spatio-temporal data

can therefore be separated into three distinct components: geographic space, temporal space and

attribute space. The spatio-temporal data can consist of a p-dimensional variable space, two dimen-

sional geographic space, and one-dimensional temporal space, where the space–time components

provide the framework for attribute space. Figure 2.4 shows an example of this structure.

Formally spatio-temporal data can be modeled through the stochastic process

{Z(s, t) : s ∈ D ⊂ R2, t ∈ [0,+∞)}; (2.11)

where s is the location in the bidimensional Euclidean space, t is the time position and Z(s, t) is a

random variable in the location s at time t.

Suppose a realization of a spatio-temporal model withD = {s1, s2, . . . , sn} and t ∈ {t1, t2, . . . , tT }.
Traditionally, the ultimate goal of spatio-temporal analysis is the optimal prediction (in space and
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time) of the unobserved parts of the process, based on the observations

Z = (Z(s1, t1), . . . , Z(sn, tT ))′. (2.12)

To achieve this goal, a complete study of the space-time sources of variability is needed. Spa-

tial and temporal heterogeneity and spatial and temporal autocorrelation are properties than make

a difference between spatio-temporal and traditional datasets. Spatial (temporal) heterogeneity

refers to the non-stationarity of geographic (temporal) processes, meaning that processes can vary

locally and are not necessarily the same at each spatial (temporal) location. Commonly, this non-

stationarity is modeled as a first-order (mean response) or second-order (auto-covariance) effect.

Spatial (temporal) autocorrelation is the tendency of attributes at some location in space to be

related. Spatial (temporal) autocorrelation, as it was mentioned before, is a second-order effect.

Definition 7. Given the spatio-temporal process {Z(s, t) : s ∈ D ⊂ R2, t ∈ [0,+∞)}, the spatio-

temporal covariance function is defined as

C(s1, s2, t1, t2) = Cov(Z(s1, t1), Z(s2, t2)) ,∀s1, s2 ∈ D, ∀t1, t2 ∈ [0,+∞). (2.13)

If the spatio-temporal process is first-order stationary (i.e. E(Z(s, t)) = µ, ∀s, t) then the process

can have:

1. Temporal stationarity, if

C(s1, s2, t1, t2) = f(s1, s2, t2 − t1) ,∀s1, s2 ∈ D, ∀t1, t2 ∈ [0,+∞). (2.14)

2. Spatial stationarity, if

C(s1, s2, t1, t2) = f(s1 − s2, t1, t2) ,∀s1, s2 ∈ D, ∀t1, t2 ∈ [0,+∞). (2.15)

3. Spatio-temporal stationarity, if

C(s1, s2, t1, t2) = f(s1 − s2, t1 − t2) , ∀s1, s2 ∈ D, ∀t1, t2 ∈ [0,+∞). (2.16)
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4. Separability, if

C(s1, s2, t1, t2) = f1(s1, s2)f2(t1, t2) , ∀s1, s2 ∈ D, ∀t1, t2 ∈ [0,+∞). (2.17)

Valid spatial covariance and temporal covariance models are readily available in the literature

(see e.g., Ver Hoef and Cressie, 1993). They can be combined in a product form via the separability

property (equation (2.17)) to give valid spatio-temporal covariance models.

Many of the problems of space and time modeling can be overcome by using separable processes.

This subclass of spatio–temporal processes has several advantages, including rapid fitting and

simple extensions of many techniques developed and successfully used in time series and classical

geostatistics. Furthermore, this class of spatio–temporal processes offers enormous computational

benefits, because the covariance matrix of Z (equation (2.12)) can be expressed as the Kronecker

product of two smaller matrices that arise separately from the temporal and purely spatial processes,

and then its determinant and inverse are easily determinable. Thus, separability is a desirable

property for spatial–temporal processes.

2.4 Principal Component Analysis

The central idea of principal component analysis (PCA) is to reduce the dimensionality of a dataset

consisting of a large number of interrelated variables, retaining the meaningful variability present

in the dataset (Jolliffe, 2002). This goal is achieved by transforming the original data into a new

set of variables, the principal components, which are uncorrelated. They are ordered is such a way

that few ones retain most of the variation present in all of the original variables (see Figure 2.8).

More generally, in PCA a few linear combinations which can be used to summarize the data

information, losing in the process as little information as possible. This attempt to reduce dimen-

sionality can be described as “parsimonious summarization” of the information data. For example,

figure 2.8 shows how a group of trivariate observations is transformed through PCA in other group

of bivariate observations in order to get a better interpretation of a dataset.

The theory of PCA can be seen from the population and the sample perspectives. The math-
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Figure 2.8: An example of how principal component analysis works.

ematical background of population and sample PCA are studied in subsections 2.4.1 and 2.4.2,

respectively. Subsection 2.4.3 presents a brief discussion about PCA applied on a spatio-temporal

raster dataset and finally subsection 2.4.4 discusses about some methods to retain the optimal

number of principal components.

2.4.1 Population principal components

Algebraically, principal components are particular linear combinations of the p random variables

x1, x2, . . . , xp. Geometrically, these linear combinations represent the selection of a new coordi-

nate system obtained by rotating the original system with x1, x2, . . . , xp as the coordinate axes.

The new axes represent the directions with maximum variability and provide a simpler and more

parsimonious description of the covariance (or correlation) structure.

Principal components depend only on the covariance matrix Σ (or the correlation matrix ρ) of

x1, x2, . . . , xp, and their development does not require a multivariate normal assumption. Let Σ be

the variance-covariance matrix of the random vector x′ = (x1, x2, . . . , xp). Let {λ1, . . . , λp} dentote

th eigenvalues of Σ, such that λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Consider the linear combinations yi = a′ix, for i = 1, 2, . . . , p. Then, their respectives variances
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and covariances are given by

V ar(yi) = a′iΣai for i = 1, 2, . . . , p ; (2.18)

Cov(yi, yk) = a′iΣak for i, k = 1, 2, . . . , p. (2.19)

The principal components are those uncorrelated linear combinations y1, y2, . . . , yp whose vari-

ances in equation (2.18) are as large as possible.

The first principal component is the linear combination with maximum variance. That is, it

maximizes V ar(y1) = a′1Σa1. It is clear that V ar(y1) can be increased by multiplying any a1 by

some constant. To eliminate this indeterminacy, it is convenient to restrict attention to coefficient

vectors of unit length.

Definition 8. Given a set of p random variables x = (x1, . . . , xp)
′, the population principal com-

ponents are the variables y1, . . . , yp obtained through the process:

First principal component (y1) = linear combination a′1x that maximizes

V ar(a′1x) subject to a′1a1 = 1.

Second principal component (y2) = linear combination a′2x that maximizes

V ar(a′2x) subject to a′2a2 = 1 and Cov(a′1x,a
′
2x) = 0.

At the ith step, for i = 3, . . . , p

ith principal component (yi) = linear combination a′ix that maximizes

V ar(a′ix) subject to a′iai = 1

and Cov(a′ix,a
′
kx) = 0 for k < i.

With this definition, it is possible to get a characterization of the population principal compo-

nents through the eigenvalues and eigenvectors of Σ. The next lemma will help to demonstrate

this characterization.

Lemma 1. Let Bp×p be a positive definite matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and

associated normalized eigenvector e1, e2, . . . , ep. Then

max
x 6=0

x′Bx

x′x
= λ1 (attained when x = e1). (2.20)
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Moreover,

max
x⊥e1,...,ek

x′Bx

x′x
= λk+1 (attained when x = ek+1, k = 1, 2, . . . , p− 1); (2.21)

where the symbol ⊥ is read “is orthogonal to.”

Proof. For details of the proof, see Johnson et al. (2014)

Theorem 1. Let Σ be the covariance matrix associated with the random vector x′ = (x1, x2, . . . , xp).

Let (λ1, e1), (λ2, e2), . . . , (λp, ep) denote the eigenvalue-eigenvector pairs of Σ, such that λ1 ≥ λ2 ≥
· · · ≥ λp ≥ 0. Then the ith principal component is given by

yi = e′ix, for i = 1, 2, . . . , p. (2.22)

With these choices,

V ar(yi) = e′iΣei = λi for i = 1, 2, . . . , p; (2.23)

Cov(yi, yk) = e′iΣek = 0 for i 6= k. (2.24)

Proof. By lemma 1, with B = Σ, gives

max
a6=0

a′Σa

a′a
= λ1 (attained when a = e1).

But e′1e1 = 1 since the eigenvectors are normalized. Thus,

λ1 =
e′1Σe1

e′1e1
= e′1Σe1 = V ar(y1).

Similarly, using lemma 1 again, it follows that

max
a⊥e1,...,ek

a′Σa

a′a
= λk+1 for k = 1, 2, . . . , p− 1.
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For the choice a = ek+1 with e′k+1ei = 0, for i = 1, 2, . . . , k and k = 1, 2, . . . , p− 1,

e′k+1Σek+1

e′k+1ek+1
= e′k+1Σek+1 = V ar(yk+1).

However, e′k+1(Σek+1) = λk+1e
′
k+1ek+1 = λk+1, therefore V ar(yk+1) = λk+1. It remains to show

that if ei and ek are orthogonal vectors (for i 6= k) gives Cov(yi, yk) = 0. Now, the eigenvectors of

Σ are orthogonal if all the eigenvalues λ1, . . . , λp are distinct. If the eigenvalues are not all distinct,

the eigenvectors corresponding to common eigenvalues may be chosen to be orthogonal. Therefore,

for any two eigenvectors ei and ek, e′iek = 0 for i 6= k. Since Σek = λkek, premultiplication by ei

gives

Cov(yi, yk) = e′iΣek = λke
′
iek = 0;

for any i 6= k, and the proof is complete.

Due to this characterization of principal components, some observations must be taken into

account. An enumeration of them are shown below:

1. If some λi are equal, the choices of the corresponding coefficient vectors, ei, and hence yi, are

not unique.

2. Principal components may also be obtained for standardized variables zi = (xi−µi)/
√
σii (i =

1, . . . , p) where µi and σii are the corresponding mean and variance of xi. If so, z =

(z1, z2, . . . , zp)
′ would be

z = D−1/2(x− µ); (2.25)

where µ = E(x) and D−1/2 = diag(1/
√
σii)i=1,...,p. Clearly, Cov(z) = D−1/2ΣD−1/2 = ρ,

which is the correlation matrix of x. Thus, the principal components of standardized variables

are associated to eigenvalues - eigenvectors of its correlation matrix.

3. The total population variance (the trace of population covariance matrix) remains constant
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in the principal components. It means

p∑

i=1

V ar(xi) =

p∑

i=1

V ar(yi). (2.26)

To get this is enough to realize that tr(Σ) =
∑p

i=1 λi.

For a complete review of the PCA methodology and other details see for example Jolliffe (2002)

and Mardia et al. (1980).

2.4.2 Sample principal components

This subsection deals with properties of principal components obtained from a random sample

x1,x2, . . . ,xn representing n independent drawings from some p−dimensional population with mean

vector µ and covariance matrix Σ. This dataset yields the sample mean vector x, the sample

covariance matrix S and the sample correlation matrix R. The principal components obtained from

the sample covariance matrix (or sample correlation matrix) are called sample principal components.

The process to obtain the sample principal components is analogous to the population PCA

process but with subtle details. To see this, let

X = (x1 : x2 : · · · : xn)′; (2.27)

be the data matrix due to the n p−variate observations. As PCA works with the information

of variables, a partition of X by columns is necessary. Let X = (x(1) : x(2) : · · · : x(p)) be the

matrix X partitioned by columns, then the sample principal components are defined as those linear

combinations ŷi = ai1x(1) + ai2x(2) + · · · + aipx(p) = Xai which have maximum sample variance,

constrained to a′iai = 1. Next definition formalize this concept.

Definition 9. Given a set of n independent observations of p−dimensional random variables,

x1,x2, . . . ,xn, and the data matrix X defined as equation (2.27). Then, the sample principal

components are the vectors ŷ1, . . . , ŷp obtained through the process:

• First sample principal component: ŷ1 = Xa1 that maximizes the sample variance of Xa1
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subject to a′1a1 = 1.

• Second sample principal component: ŷ2 = Xa2 that maximizes the sample variance of Xa2

subject to a′2a2 = 1 and sample covariance(Xa1,Xa2) = 0.

• At ith step, from i = 3 to p:

ith sample principal component: ŷi = Xai that maximizes the sample variance of Xai subject

to a′iai = 1 and sample covariance(Xai,Xak) = 0, k < i.

Theorem 2 solves the optimization problem involved in definition of sample principal compo-

nents and gives an explicit characterization of them.

Theorem 2. Let S be the sample covariance matrix associated with a data matrix X = (x1 : x2 :

· · · : xn)′ formed by n independent drawings from some p−dimensional population. Let (λ̂1, ê1),

(λ̂2, ê2), . . . , (λ̂p, êp) be the eigenvalue-eigenvector pairs of S, where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0. Then

the ith sample principal component is given by

ŷi = Xêi for i = 1, 2, . . . , p. (2.28)

Also, it follows that

sample variance(ŷi) = sŷi,ŷi = λ̂i i = 1, 2, . . . , p; (2.29)

sample covariance(ŷi, ŷk) = sŷi,ŷk = 0 i 6= k. (2.30)

Proof. The proof is similar as its analogous population PCA process (See theorem 1).

Given the sample principal components structure, it will be convenient to define the matrix of

sample principal components in this way

(ŷ1 : ŷ2 : · · · : ŷp) = (Xê1 : Xê2 : · · · : Xêp) = X(ê1 : ê2 : · · · : êp);

Z = XP; (2.31)
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where Zn×p is called the matrix of sample principal components, also known as the component score

matrix, and P the eigenvector matrix of S (o R), also known as the component loading matrix.

From now onwards, the sample principal components and the sample PCA process will be referred

as merely principal components and PCA respectively.

Remark 1. Observe that one can choose either the sample covariance (S) or the sample correlation

(R) matrix to find the principal components. However, in this project the use of sample correlation

matrix is preferred to the sample covariance matrix, because the sample covariance matrix will not

provide very informative principal components if there are variables with widely higher variance

than the others; furthermore, when using the sample covariance matrix it is more complicated to

compare the results from different analyses (Jolliffe, 2002).

2.4.3 PCA in a spatio-temporal context

As it was seen before, PCA maps the original n observations of a p−variate population in the data

matrix X onto a new orthogonal space, such that the new axes are oriented in directions of largest

variance in the dataset. This structure of dataset is considered traditional data; that is, the n

measurements have a constant and specific position in space and time. So, what would happen if a

PCA is used in a dataset with an explicit space and time structure?, would it be possible to apply

a PCA over a spatio-temporal dataset?, if so, how would the results of a PCA be interpreted?. In

the next paragraphs, a brief analysis of the consequences when using a PCA in a spatio-temporal

dataset is shown.

A review in literature has shown that PCA was applied over a dataset with a space-time struc-

ture, especially in climatology and meteorology fields (see for example Richman, 1986; Preisendorfer

and Mobley, 1988). When dealing with spatio-temporal structures three subdimensions need to be

considered: temporal, spatial dimension and the attribute (or variable) dimensions, respectively.

According to this, Richman (1986) established six different operational modes of use of PCA to

deal with space-time series data: O, P, Q, R, S and T (see table 2.1). These modes are classified by

having the data matrix X for PCA defined by two out of the three subdimensions of the space–time

dataset. The six modes are shown in table 2.1.
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Table 2.1: The six mode of decomposition and how is related to the structure of its respective

data matrix X (equation (2.27)).

PC
mode

Columns
representation

Rows
representation

Fixed
dimension

O time attribute space
P attribute time space
Q space attribute time
R attribute space time
S space time attribute
T time space attribute

Different modes provide different insight results and interpretations of them (Richman, 1986).

In particular, for purposes of this project only the S and T modes are of interest. Observe that both

modes work only with one variable which is measured at a specific time position and space raster

location. A brief discussion of the S and T mode in a spatio-temporal raster dataset is carried out

below.

The S mode considers the sampling raster locations as variables and sampling times as data

elements (see figure 2.9). Because of this, covariance/correlation matrix is calculated between each

pair of sampling raster locations and not between two measured variables as traditional PCA.

Therefore, location does play a role in calculation of the PCs. Also, the data elements are not

more independent and interpretation of PCs must consider this intrinsic temporal characteristic.

Mathematically, consider a bidimensional geographic location given by the latitude and longitude

position. A spatio-temporal raster dataset could be seen as an array containing for each vertical

level a three-dimensional, two-dimensional in space and one-dimensional in time, field X. This field

is a function of time t, latitude θ, and longitude φ. Suposse that the horizontal coordinates are

discretised to yield latitudes θj , j = 1, 2, . . . , p1, and longitudes φk, k = 1, 2, . . . , p2, and similarly

for time, i.e. ti, i = 1, 2, . . . , n. This yields a total number of grid points p = p1p2. The discretised

field reads:

Xijk = X(ti, θj , φk); (2.32)

for 1 ≤ i ≤ n, 1 ≤ j ≤ p1, and 1 ≤ k ≤ p2. In order to improve the management of the field, for
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applying PCA, the field X is transformed into a two-dimensional array: the data matrix X where

the two spatial dimensions are concatenated together. Figure 2.9 summarizes this process.

  

t 1

t 2

t 3

t n

     X =

1.- In a given raster location, the 
variable is observed over a given 
regular period of time. 

2.- Spatio-temporal raster data is taken 
to a matrix where rows and columns 
give information about maps and time 
series respectively. 

Figure 2.9: Scheme of how the data matrix is obtained when working with a spatio-temporal

raster dataset.

When PCA is applied to X, the S mode gives as results the spatial patterns of variability, their

time variation, and gives a measure of the “importance” of each pattern. It finds spatial patterns

of variability because each PC is a linear combination of all locations and a map of its weights

can be produced for each PC. Here the calculated component loadings, of the respective PCs, at

each sampling location are spatially interpolated to form a contour map, which is then inspected

for detecting significant spatial patterns. Next, The PC attached to the corresponding eigenvector

provides the sign and the overall amplitude of the component loadings as a function of time. Finally,
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the corresponding proportion of variance explained gives a measure of its “importance” as spatial

variability pattern.

Remark 2. By construction, the eigenvectors of the S mode are stationary structures, i. e. they

do not evolve in time. The PC attached to the corresponding eigenvector provides a simplified

representation of the state of the spatio-temporal field at that time along that eigenvector. In other

words, the eigenvector matrix do not change structure in time, they only change sign and overall

amplitude to represent the state of the measured variable.

On the other hand, working in a T mode gives different insight results. In this case, the sampling

raster locations are considered as data elements and the sampling times as variables. Compared

to the matrix X of the S mode, the T mode would be equivalent to apply a PCA over X′. As a

consequence, the component loadings (eigenvectors) would be time series whereas the PCs would

plot up as a geographical map of PC scores. Therefore, it is expected that the T mode isolates

subgroups of time observations with similar spatial patterns and, thereby, simplify the time series.

This is contrary to the S mode that isolates subgroups of locations which covary similarly.

To end this discussion, what type of mode of decomposition, S or T, would one use? It would

depend on what is the initial goal. For example, if the goal is to get a regionalization of a spatio-

temporal dataset, the S mode would be better. On the other hand, if the aim is to summarize the

information of the time dimension, the T mode would be chosen.

2.4.4 How many principal components to retain?

Up to now, PCA can be seen as a tool that retains meaningful information in the early axes

whereas variation associated to “noise”, measurement inaccuracy, is summarized in later axes.

PCA has the ability to identify relationships by generating linear combinations of variables showing

common trends of variation that can contribute substantially to the recognition of patterns even

in datasets with a space-time structure. However, the issue of determining whether or not a given

axis summarizes meaningful variation (i.e., non-trivial versus trivial components) remains unclear

in many cases.

Going back at theorem 2, equation (2.29) shows that the sample variance corresponding to the
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ith component is the ith ordered eigenvalue corresponding to S (or R). Adding the fact that the

sample total variability (trace of sample covariance matrix) fulfills that

Sample total variability = tr(S) =

p∑

i=1

λ̂i ; (2.33)

then, the contribution of variability corresponding to the ith component is given by

Proportion of explained variation by ŷi =

(
λ̂i∑p
i=1 λ̂i

)
× 100%. (2.34)

Equation 2.34 gives a measure of the “importance” of each component. So, is it of interest

to know how many PCs to retain? When the correct number of non-trivial PCs is not retained

for subsequent analysis, either relevant information is lost (underestimation) or noise is included

(overestimation), causing a distortion in underlying patterns of variation/covariation (Ferré, 1995).

Therefore, determining the number of non-trivial principal components is very important because

it provides a meaningful interpretation of multivariate data.

How many PCs are required to adequately explain variance shared by the variables? A variety of

techniques to estimate the number of meaningful components have been proposed (see for example

Jackson, 1995; Jolliffe, 2002). For example, there exist empirical tests such as Kaiser’s rule (Kaiser,

1960), which takes the number of components that have corresponding eigenvalue greater than +1.

Also there exist approaches using simulation such as parallel analysis (Peres-Neto et al., 2005),

which replaces the threshold +1 given by the Kaiser’s rule with the mean eigenvalues generated

from independent normal variates through Monte Carlo simulations. Graphical tests that focus on

the elbow of the eigenvalue plot and are not based on a statistical hypothesis test are also found

in literature. These tests are known as the Cattell’s scree tests (Cattell, 1966). These tests are

useful and simple, but they do not enable a clear decision-making about the number of components

to retain since the chose depends on the visualization of a graph. To address this limitation, the

scree test optimal coordinate and the scree test acceleration factor are proposed by Râıche et al.

(2013). These methods consist in numerical solutions to deal with the acceleration of the plot of

the eigenvalues and to get formally and explicitly with the scree part of the plot. For purposes of
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this work, the scree test optimal coordinate is chosen due to its simplicity and its better results

(Râıche et al., 2013).

Scree Test Optimal Coordinate

This test attempts to determine the location of the elbow by measuring the gradients associated

with eigenvalues and their preceding coordinates. This strategy is done by computing p − 2 two-

point regression models, and verifying if the observed eigenvalue is, or is not, greater than or equal

to the one estimated by these models. The last of these positive verifications, beginning at the

second eigenvalue, and without interruption of the verification, is used to determine the number

of principal components to retain. In order to make the verifications, two criteria could be taken.

First, following the idea of Kaiser’s rule, as in equation (2.35), or to the location statistics criteria

based on the idea of parallel analysis, as in equation (2.36):

noc =

p∑

i=1

1{λi≥1 & λi≥λ̂i}; (2.35)

noc =

p∑

i=1

1{λi≥LSi & λi≥λ̂i}; (2.36)

where noc is the number of components retained by the optimal coordinate method, LSi is the

location statistic which is usually given by the 95th quantile of a simulation of eigenvalues from

independent normal variates, and λ̂i is referred as the the optimal coordinate. This is obtained

according to linear regression using only the last eigenvalue and the (i+ 1)th eigenvalue as follows:

λ̂i = ai+1 + i× bi+1; (2.37)

where bi+1 =
λp−λi+1

p−i−1 and ai+1 = λi+1 − bi+1 × (i+ 1) for i = 1, 2, . . . , p− 1.
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2.5 Autoregressive Neural Network model

The aim of time series analysis is to extract information of a given data series, consisting of

observations over time. This information is used to build a model of the dynamics, called process,

which determines the data series. Such a model can be used for prediction of future values of the

time series. For identification of the process, linear models like linear autoregressive processes (AR)

and autoregressive moving average processes (ARMA) are a standard tool of econometrics (Box and

Jenkins, 1976). However empirical experience shows that linear models are not always the best way

to identify a process and do not always deliver the best prediction results. In this context Granger

et al. (1993) speak of “hidden nonlinearity”, which requires the adoption of nonlinear methods.

Since the early 1990’s a lot of nonlinear methods have arisen. They can be divided into parametric

models, characterized by a fixed number of parameters in a known functional form, and the more

general nonparametric models.

The method for nonlinear time series analysis discussed in this section - autoregressive neural

network (AR-NN) model - is parametric. As will be seen later, due to its parametric nature and

ability to approximate any function and therefore any nonlinearity, the AR-NN model is suitable

to analyze time series with non-linear dynamics. Below, subsection 2.5.1 explains the mechanism of

artifical neural networks. Then, subsection 2.5.2 deals with the theory of autoregressive processes.

Finally, subsections 2.5.3 and 2.5.4 develops the mathematical theory of AR-NN models.

2.5.1 Artificial Neural Networks

Inspired by biological neural networks, Artifical Neural Networks (ANNs) are groups of elemen-

tary processing units called artificial neurons connected together to form a directed graph. These

elementary processing units are called neurons. Figure 2.10 illustrates a single neuron in a simple

neural network model. Nodes of the graph represent biological neurons and connections between

them represent synapses. Unlike in biological neural networks, connections between artificial neu-

rons are not usually added or removed after the network was created. Instead, connections are

weighted and the weights are adapted by learning algorithms.

In figure 2.10, each of the inputs xi has a weight wi that represents the strength of that particular
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Chapter 2

Neural Network

In this chapter, we will provide a brief introduction to the neural network
approach. We will start with a general description of the artificial neuron model
and then introduce the topology and the training of the neural networks.

2.1 Processing Unit

A neural network is a set of interconnected neural processing units that imitate
the activity of the brain. These elementary processing units are called neurons.
Figure 2.1 illustrates a single neuron in a neural network.

Figure 2.1: Artificial Neuron Model

In the figure, each of the inputs xi has a weight wi that represents the strength
of that particular connection. The the sum of the weighted inputs and the bias
b is input to the activation function f to generate the output y. This process
can be summarized in the following formula:

y = f(
n∑

i=1

xiwi + b) (2.1)

A activation function controls the amplitude of the output of the neuron. Neu-
ral Networks supports a number of activation functions: a linear activation
function (i.e.identity function) returns the same number as was fed to it. This

11

Figure 2.10: Artificial Neuron Model.

connection. The sum of the weighted inputs and the bias b are input to the activation function f

to generate the output y. This process can be summarized with the following formula:

y = f

(
n∑

i=1

wixi + b

)
(2.38)

An activation function controls the amplitude of the output of the neuron. Examples of acti-

vation functions are:

1. Linear activation function (f(x) = x) returns the same number as was fed to it. This is

equivalent to having no activation function.

2. Log-sigmoid activation function
(
f(x) = (1 + e−x)−1

)
, sometimes called unipolar sigmoid

function, squashes the output to the range between 0 and 1. This function is the most

widely used sigmoid function.

3. Hyperbolic tangent activation function
(
f(x) = ex−e−x

ex+e−x

)
, also called bipolar sigmoid function,

is similar to a log-sigmoid function, but it generates outputs between −1 and 1.

4. Symetric saturating linear function
(
f(x) = −1{x<−1} + x1{−1≤x≤1} + 1{x>1}

)
is a piecewise

linear version of sigmoid function which provides outputs between −1 and +1.
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5. Hard limit function
(
f(x) = 1{x≥0}

)
converts the inputs into 1 if the summed input is bigger

than or equal to 0.

12 Chapter 2. Neural Network

is equivalent to having no activation function. A log-sigmoid activation func-
tion (sometimes called unipolar sigmoid function) squashes the output to the
range between 0 and 1. This function is the most widely used sigmoid function.
A hyperbolic tangent activation function (also called bipolar sigmoid function)
is similar to a log-sigmoid function, but it generates outputs between -1 and 1.
A symmetric saturating linear function is a piecewise linear version of sigmoid
function which provides output between -1 and 1. And a hard Limit function
converts the inputs into a value of 0 if the summed input is less than 0, and
converts the inputs into 1 if the summed input is bigger than or equal to 0.
Figure 2.2 shows these activation functions and their mathematical definitions
can be found in Table 2.1.
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Linear
Symmetric Saturating Linear
Hyperbolic Tangent Sigmoid
Hard Limit
Log−Sigmoid

Figure 2.2: Activation Functions

Table 2.1: Mathematical Definitions of the Activation Functions

Function Definition Range

Linear f(x) = x (-inf,+inf)

Symmetric Saturating Linear f(x) =





−1 x < −1

x − 1 6 x 6 +1

+1 x > +1

[-1,+1]

Log-Sigmoid f(x) = 1
1+e−x (0,+1)

Hyperbolic Tangent Sigmoid f(x) = ex−e−x

ex+e−x (-1,+1)

Hard Limit f(x) =

{
0 x < 0

1 x > 0
[0,+1]

Figure 2.11: Different types of activation functions.

2.5.2 Autoregressive processes

Definition 10. An autoregressive process (AR, in short) of order p is defined by

xt = F (Xt−1) + εt; (2.39)

where Xt−1 = (xt−1, xt−2, . . . , xt−p)′, F : Rp → R, Xt−1 and εt are independent and εt
i.i.d.∼ N (0, σ2)

(Gaussian white noise assumption).

From definition 10, the first term on the right hand side of equation (2.39) is called the predictable

part, and the second term the stochastic part. Also if F (Xt−1) is a linear function, it is said that
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xt follows a linear AR, but when F (Xt−1) is nonlinear, xt is known as a nonlinear AR.

A linear AR(p) is written as

xt = φ0 + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + εt. (2.40)

Applications show that in most cases the residuals hardly match the Gaussian white noise

assumption. A linear solution of this problem are the ARMA processes proposed by Box and

Jenkins (1976). They assume that the process does not only consist of a linear predictable part

and an additive Gaussian white noise. Rather the stochastic part itself may be determined by

a moving average (MA) process of the Gaussian white noise εt. So, an ARMA(p, q) process is

represented by the following equation (q indicates the maximum lag of the MA part):

xt = φ0 + φ1xt−1 + · · ·+ φt−pxt−p + εt + θ1εt−1 + · · ·+ θqεt−q. (2.41)

Until today ARMA are the most frequently applied process models in time series analysis.

The Wold decomposition theorem (introduced in Wold, 1938) justifies theoretically that one can

estimate any covariance stationary process by an ARMA process.

Nonlinear AR models, on its side, try to overcome the problem of observed nonstandard features

(hidden nonlinearity) in linear models. For this purpose, neural networks are able to approximate

any (not specified) function, linear or not, arbitrary accurately. Next subsection links up the neural

networks with a nonlinear AR in a detailed way.

2.5.3 The AR-NN structure

The AR-NN model contains a linear and a nonlinear part. The architecture of an AR-NN model

with one hidden layer is shown in figure 2.12. According to the figure, yellow circles represent

the input and output neurons (the variables), the black circle is the bias term (the constant of

the model) and the red lines represent the shortcut weights (parameters) corresponding to the

linear part. Furthermore, the nonlinear part is captured in the hidden layer with h hidden neurons

represented by h orange diamonds which are responsible for returning a nonlinear transformation
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of the weighted input neurons. The blue and green lines represent the weights between the input -

hidden and hidden - output neurons respectively.

𝐼𝑛𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟 

𝑥𝑡−1 
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𝑥𝑡−𝑝 

1 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟 

𝑥 𝑡 

 𝐻𝑖𝑑𝑑𝑒𝑛  
𝐿𝑎𝑦𝑒𝑟 

1 

2 

𝒉 

Figure 2.12: Architecture of an AR-NN model with one hidden layer.

Once knowing the architecture of an AR-NN model from graphs, the mathematical representa-

tion can be seen as follows:

x̂t = φ0 +

p∑

i=1

φixt−i +H(Xt−1); (2.42)

where Xt−1 is the same of equation (2.39) andH(.) is a nonlinear function determined by a nonlinear

activation function in the hidden layer and the weights of the input-hidden neurons. So, given the

h hidden neurons - which transform the input variables - weighted by parameters ηij plus a bias
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η0j , via a nonlinear activation function Ψ(.), then H has the equation:

H(Xt−1) =

h∑

j=1

βjΨ

(
η0j +

p∑

i=1

ηijxt−i

)
; (2.43)

where βj ’s are the weights between the hidden-output neurons. Replacing equation (2.43) in (2.42)

and including the stochastic part, the AR-NN model is presented as

xt = φ0 +

p∑

i=1

φixt−i +

h∑

j=1

βjΨ

(
η0j +

p∑

i=1

ηijxt−i

)
+ εt. (2.44)

In the literature (see for example Granger et al., 1993) sometimes neural networks without a

linear part can be found. If the process does not show evidence of hidden nonlinearity, a linear AR

(or ARMA) model must be preferable.

Particularly for estimation, it makes sense to write equation (2.44) in vector representation with

vector input and scalar output. Therefore the following notations are introduced:

Φ = (φ1, φ2, . . . , φp)
′;

Γj = (η1j , η2j , . . . , ηpj)
′ for j = 1, 2, . . . , h;

Θ = (φ0,Φ
′, η01,Γ

′
1, β1, . . . , η0h,Γ

′
h, βh)′.

The dimension of Θ is r×1 with r = (p+2)h+p+11. The first version of the vector representation

of equation (2.44) is

xt = φ0 + Φ′Xt−1 +
h∑

j=1

βjΨ(η0j + Γ′jXt−1) + εt. (2.45)

Using Θ the short representation of the AR−NN in equation (2.44) is

xt = G(Θ,Xt−1) + εt. (2.46)

Some considerations concerning the optimal number of hidden neurons: A usual approach is

1Note that if the parameter σ2 is added, then there would be a total of (p+ 2)(h+ 1) parameters.
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to specify the network using an arbitrary number of hidden neurons and later test the significance

of each hidden neuron (Anders, 1997). A common rule of thumb is to set the number of hidden

neurons equal to the median of input and output variables (it is h = (p+ 1)/2), (see Anders, 1997,

for details). Of course this method does not take account for any technical needs like data specific

behavior or the reaction of the activation function on the inputs. A method consistent with the

procedure to augment a linear AR for a nonlinear part - if the data are nonlinear - is to extent the

number of hidden neurons step by step: At the first step, only one hidden neuron is considered and

then hidden neurons are added one by one until reaching the optimal model. White (1992), on its

side, says that the number of observations of the input variables should not exceed the number of

parameters by the factor 10 (it is r ≥ T/10, so h ≥ 1
p+2( T10 + 1)− 1) to avoid overparametrization.

In this thesis, the criterion proposed by White is used due to its simplicity, its power to reduce

overparametrization and to keep the computational effort straightforward.

Finally, some considerations about the selection of the activation function are considered. The

universal approximation theorem states that any nonlinear function can be approximated by an

activation function that is locally Riemann integrable, nonpolynomial and, for a matter of sta-

tionarity, bounded. In fact, the universal approximation property does not depend on any certain

activation function (Hornik, 1993). Furthermore, the theorem says nothing about the existence of

a unique solution of the approximation problem or about the estimation procedures for the neural

network (Widmann, 2000). Therefore, is inessential which function is used. However, according to

Dutta et al. (2005), sigmoid functions reduce the effect of outliers because they compress the data

at the high and low end. For this reason, sigmoid activation functions are chosen for this work.

2.5.4 Modelling univariate AR-NN processes

Only estimating the parameters is certainly not sufficient to receive an appropiate model. The

usual steps are the same as Box and Jenkins (1976) proposed: Variable selection, parameter es-

timation and model validation (parameter tests). As the objective of this work is to develop a

computationally efficient learning algorithm, the concentration is focused on the variable selection

and the parameter estimation steps.

46



Variable selection

Given a stationary time series with hidden nonlinearity in at least some lags, the next step is to

decide the number of lags and detecting the number of hidden units. The second problem is solved

using the White (1992) criterion (see subsection 2.5.3). For the first problem, the general procedure

is carried out according to the Occam’s razor principle, which meand to prefer the simplest model

from a set of models with the same performance. In other words, only those lags and parameters

should be included, which significantly improve the model.

In this work, the selection of lag order is detected by calculating information criteria (IC) for

several lags and choosing the lag order belonging to the smallest IC. These criterion consider not

only the absolute quality of the model (like the variance of the residuals which should be minimized)

but also account for the amount of computation effort if the models becomes more complicated.

The most common IC is used, the Akaike Information Criterion (AIC), which is defined as

AIC = T · log(σ̂2) + 2r; (2.47)

where T is the length of the time series, σ̂2 =
∑T

i=1
ε̂2t
T−r and r = (p + 2)(h + 1) − 1 with p as

the number of lags and h as the number of hidden neurons. In order to adapt this strategy in a

learning algorithm, a restriction like fixing the number of maximum evaluated lags is added.

Parameter Estimation

The most important step to concretize the AR-NN is the estimation of the weights (parameters).

This equals the estimation of the parameters in linear time series analysis and is called learning

or training in neural network theory. Many procedures exist to estimate the parameters of neural

networks. Thus it has to be distinguished between supervised learning methods and unsupervised

methods (Haykin et al., 2009). Supervised methods means that the estimation output is compared

to a desired output and estimation takes the error signal into account. The error signal is defined

as the difference between estimation and desired output. Unsupervised methods use no criteria

to control the learning process, so they seem not applicable to statistics and especially time series

analysis. Hence in the following the atention is concentrated on supervised learning procedures
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only.

In general it can be said that there are two different classes of supervised learning procedures

concerning the estimation of the parameters (Haykin et al., 2009). Batch learning is an iterative

procedure where the weights are adjusted in each iteration after the presentation of all T inputs,

while during on - line learning (sometimes referred to as stochastic learning) the weights are

adjusted on element-by-element basis. This means that for each set of input and output neurons

from 1 to T the weights are newly adjusted. The AR-NN process is estimated for the inputs

and outputs at a certain time t only, for time t + 1 the weights are adjusted again. The main

advantages of on-line over batch learning methods are the lower computational complexity and the

better adaptability to integrate new values if data arrive sequentially, but concerning the precision

of the results it performs poorly (Bottou, 2003). Furthermore, on-line algorithms do not really

converge because they are adjusted after each new input of a variable set. On the other hand,

batch learning algorithms give accurate estimations of the gradient vector for a finite input dataset,

which guarantees the convergence of the algorithms. Hence, due to its efficiency from a statistical

point of view the batch learning algorithms are chosen in this thesis and are explained below.

To apply a batch algorithm, a performance function must be determined first. Like in the

well known least square procedures the goodness of fit of an AR-NN model , and one possible

performance function, can be determined by

Q(Θ) =
1

2

T∑

t=1

(xt −G(Θ,Xt−1))2 ; (2.48)

where G(Θ,Xt−1) is the same as in equation (2.46). If this performance function is used, the

parameter estimation procedures in the following are referred to as nonlinear least squares (NLS)

method in literature and are not restricted to neural network only. Of course it is possible to use

other performance functions like the likelihood function (Anders, 1997), but they are less common.

As the performance function should also be valid for future values of the time series, the expec-

tation of function 2.48 has to be minimized. Therefore an optimal nonlinear least squares estimator
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for Θ, Θ̂, can be found by solving the problem

Θ̂ = arg min
Θ∈Θ

E(Q(Θ)); (2.49)

where Θ denotes the network weight space.

Theorem 3. Let Q(Θ) be as in equation (2.48), F (Xt−1) as in equation (2.39) and G(Θ,Xt−1)

as in equation (2.46), then

E(Q(Θ)) =
1

2
E[

T∑

t=1

ε2
t ] +

1

2
E[

T∑

t=1

(F (Xt−1)−G(Θ,Xt−1))2]; (2.50)

where εt is the corresponding Gaussian white noise of the model 2.39.

Proof.

E(Q(Θ)) =
1

2
E[

T∑

t=1

(xt −G(Θ,Xt−1))2] =
1

2
E[

T∑

t=1

(xt − F (Xt−1) + F (Xt−1)−G(Θ,Xt−1))2]

=
1

2
E[

T∑

t=1

(xt − F (Xt−1))2] + E[
T∑

t=1

(xt − F (Xt−1))(F (Xt−1)−G(Θ,Xt−1))]+

1

2
E[

T∑

t=1

(F (Xt−1)−G(Θ,Xt−1))2]

Due to equation (2.39), (xt−F (Xt−1)) = εt. It remains to show that E[
∑T

t=1(xt−F (Xt−1))(F (Xt−1)−
G(Θ,Xt−1))] = 0. Indeed,

E[

T∑

t=1

(xt − F (Xt−1))(F (Xt−1)−G(Θ,Xt−1))] =

T∑

t=1

E[(xt − F (Xt−1))(F (Xt−1)−G(Θ,Xt−1))]

=

T∑

t=1

E[E[(xt − F (Xt−1))(F (Xt−1)−G(Θ,Xt−1))|Xt−1]]

=

T∑

t=1

E[E[(xt − F (Xt−1))|Xt−1](F (Xt−1)−G(Θ,Xt−1))]
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=
T∑

t=1

E[E[εt|Xt−1](F (Xt−1)−G(Θ,Xt−1))]

Since E(εt|Xt−1) = 0, the proof is completed.

Theorem 3 says important features about Θ̂. The first term of equation (2.50) states that Θ̂

minimizes the errors of the stochastic part. The second term states that, on order to find Θ̂, a

minimum is reached if G(Θ,Xt−1) = F (Xt−1). In this case, equation (2.48) reduces to

Q(Θ) =
1

2

T∑

t=1

ε2
t ; (2.51)

where εt is the same as equation (2.39). Moreover, Note that εt can be seen as a function of Θ

because

εt = εt(Θ) = (xt −G(Θ, Xt−1)). (2.52)

Given a performance function, all numeric parameter estimation algorithms for neural networks

work the same way: Starting with a random initial parameter vector Θ0 and then iteratively finding

the optimal parameter vector by minimizing the performance function. However, not always the

global minimum is reached. In fact, the batch learning algorithms only lead to local minima. In

addition the choice of the initial weight vector Θ0 influences the outcome of the algorithm.

In general, the algorithm is carried out according to the flow chart in figure 2.13. The weights

are updated after each iteration and the performance function is calculated. If a stopping criterion

is reached, the algorithm is quitted. The stopping criterion can be a restriction concerning the

performance function, for example the difference between the value of performance function in two

consecutive iterations should be below a certain value (Anders, 1997). Alsa the maximal number of

iterations, imax can be used as a stopping criterion and the optimal parameter vector is calculated

by the following steps:

1. Start the algorithm with the initial weight vector Θ0.

2. After each iteration, save Q(Θi) and Θi.

3. Quit the algorithm after imax iterations.
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Figure 3.3: Iterative parameter estimation
Source: Authors' design, based on Bishop (1995) p.255 �gure 7.2

Figure 3.4: Flow chart iterative parameter estimation
Source: Authors' design, based on the �gures in Anders (1997) p.37 and pp.127-132

Figure 2.13: Flow chart of the iterative parameter estimation process.

4. Among the saved values, search i∗ such that

Q(Θi∗) = arg min
i∈{0,1,...,imax}

Q(Θi).

5. Θi∗ is the optimal parameter vector.

Such a procedure can be interpreted as search for a global minimum within a finite horizon of

iterations. Often the performance function converges to a certain constant within a finite number

of iterations. Therefore a good local minimum within a finite number of iterations, imax, often is

in fact a global minimum. In order to complete the algorithm the method is adapted with the

Levenberg-Marquardt algorithm.
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The Levenberg-Marquardt algorithm is considered as one of the most powerful learning methods

for neural networks, especially when the performance functions are of the error-sum-of-squares form

(Bishop, 1995). The algorithm combines the steepest descent algorithm of Rumelhart et al. (1985)

and Newton’s method. As a consequence, the advantages of this method are that it converges

rapidly like Newton’s method and it can not diverge because of the steepest descent algorithm

influence (Haykin et al., 2009). For these reasons, this algorithm is used for the experimental and

empirical results of this work.

The algorithm works by looking for a suitable representation of the Hessian matrix if the

performance function ∇2Q(Θ) =
(
∂2Q(Θ)
∂θi∂θj

)
i,j=1,...,r

. In that way, it is possible to show that ∇2Q(Θ)

can be estimated by the cross product of the Jacobian matrices of εt(Θ) (see equation (2.52)),

J(εt(Θ)) =
(
∂εt(Θ)
∂θi

)
t=1,...,T
i=1,...,r

. Indeed

∇2Q(Θ) = ∇2

(
1

2

T∑

t=1

εt(Θ)2

)
= ∇(J(εt(Θ))′E); (2.53)

where E = (ε1, ε2, . . . , εT )′. On element by element basis, for the ith row of equation (2.53) and

the jth weight, for i, j = 1, . . . , r, by using the product rule of differentiation:

∂
(∑T

t=1 εt
∂εt
∂θi

)

∂θj
=

T∑

t=1

(
∂εt
∂θj

∂εt
∂θi

+ εt
∂2εt
∂θj∂θi

)
. (2.54)

The second term on the right hand of equation (2.54) is approximately zero (see Bishop (1995)).

Due to this fact, is showed that:

∇2Q(θ) ≈ J(εt(Θ))′J(εt(Θ)). (2.55)

According to the second order gradient descent method (a Newton’s method), it consider the next

learning algorithm:

Θi+1 = Θi − (∇2Q(Θi))
−1∇Q(Θi). (2.56)
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Replacing equation (2.55) and the fact that ∇Q(Θ) = J(εt(Θ))′E in equation (2.56):

Θi+1 = Θi − [J(εt(Θ))′J(εt(Θ))]−1J(εt(Θ))′Ei. (2.57)

The fact that the pure crossproduct of the Jacobian matrices sometimes leads to singularities,

as application shows, might be problematic. However, this problem can be reduced by adding a

positive definite symetric matrix to the Hessian matrix which includes the identity matrix Ir and

a sufficient large parameter λ. This extra term for the Hessian matrix of Q(Θ) gives the final

representation of the Levenberg - Marquardt algorithm as follows

Θi+1 = Θi − [J(εt(Θ))′J(εt(Θ)) + λIr]−1J(εt(Θ))′Ei. (2.58)

λ is multiplied by a factor τ if an iteration results in an increased of Q(Θ). If an interation reduces

Q(Θ), λ is divided by τ . For computational reasons the parameter λ should at least be different

from zero such that the matrix [J(εt(Θ))′J(εt(Θ)) + λIr] is positive definite (Haykin et al., 2009).

The flowchart in figure 2.14 explains how the algorithm runs.

2.6 Wavelet decomposition of discrete time series

Wavelets can be casually described as oscillatory basis functions, cleverly constructed to posses

several attractive features not enjoyed by “big waves” (sines and cosines); for example multiscale

structure, ability to represent a variety of functions in a sparse manner, or simultaneous localisation

in time and frequency. Since their invention in the early eighties; wavelets have received enormous

attention both in mathematical community (Hernández and Weiss, 1996) and in applied sciences

(Jaffard et al., 2001). Particularly, in the statistics field, wavelets are used to analyze continuous

and discrete time series in order to get information about the behavior of its corresponding high and

low frequency signals. Nowadays, wavelets could be also applied within a stage of modeling by using

wavelet decomposition method in discrete time series. Basically, the wavelet decomposition uses a

pair of filters to decompose iteratively the original discrete time series. It results in subcomponents

of the original time series at different frequency bands that are easier to model and predict. Next
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Figure 3.5: Flow chart Levenberg-Marquardt algorithm
Source: Authors' design, based on the �rgures in Anders (1997) p.37 and pp.127-132

Figure 2.14: Flow chart of the Levenberg-Marquardt algorithm.
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subsections formalize the concept of wavelets until arriving to the wavelet decomposition process

for discrete time series.

2.6.1 Wavelets

In order to formalize wavelets, some previous notations are necessary. Given f, g : R → C, the

inner product of functions f and g is defined as

< f, g >=

∫

R
fgdλ;

where the integral is taken using the traditional λ - Lebesgue measure. This inner product

induces naturally the norm ||f ||2 =< f, f >1/2. Then, the L2(Ω) space is defined as

L2(Ω) = {f : Ω→ C/
∫

Ω
||f ||2dλ < +∞}. (2.59)

Definition 11. {fn}n∈Z is an orthonormal basis for L2(R) if {fn}n∈Z is an orthonormal system;

i.e. < fi, fj >= δij where δij is the Kronecker delta function for i, j ∈ Z, and for every f ∈ L2(R),

f =
∑

k∈Z
ckfk (2.60)

Now it is possible to give a formal definition of a wavelet. It is important to emphasize that

wavelets can be defined in multiple ways (see e.g., Hernández and Weiss, 1996). Definition given

by Haar (1910) is used because it fits better with our application purposes.

Definition 12. A function ψ ∈ L2(R) is an orthonormal wavelet (or simply a wavelet) provided

the system {ψj,k : j, k ∈ Z} is an orthonormal basis for L2(R), where

ψj,k(x) = 2j/2ψ(2jx− k) for all j, k in Z (2.61)

Definition 12 says a wavelet is a function whose dyadic dilations and translations form an

orthonomal basis of L2(R). Indices j and k are commonly called scale (or dilation) and location

(or translation) parameters, respectively. Next is detailed how a wavelet could be obtained.
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2.6.2 Multiresolution Analysis

The multiresolution analysis (Mallat, 1989) is used for two reasons. From an applied approach,

it allows to give an appropriate decomposition of high and low frequency signals to discrete time

series. From a theoretical approach, it permits to find wavelets according to definition 12. The

applied approach will be discussed in subsection 2.4.4 and here is discussed briefly the theoretical

use.

Definition 13. A multiresolution analysis (MRA) of L2(R) consists of a sequence of closed sub-

spaces Vj, j ∈ Z, de L2(R) satisfying the following conditions:

• C1: Vj ⊂ Vj+1 for all j ∈ Z.

• C2: f ∈ Vj if and only if f(2(.)) ∈ Vj+1 for all j ∈ Z.

• C3:
⋂
j∈Z

Vj = {0}.

• C4:
⋃
j∈Z

Vj = L2(R).

• C5: ∃ϕ ∈ V0 such that {ϕ(.− k) : k ∈ Z} is an orthonormal basis for V0.

The function ϕ of condition C5 is called a scaling function of the given MRA.

Let ϕj,k(x) = 2j/2ϕ(2jx−k); since ϕ0,k = ϕ(x−k) then ϕ0,k ∈ V0 for all k ∈ Z due to condition

C5. Moreover, if j ∈ Z, condition C2 implies that {ϕj,n : n ∈ Z} is an orthonormal basis for Vj .

Taking this fact, how to build an orthonormal wavelet from a MRA?

Let W0 be the orthogonal complement of V0 in V1; i.e., V1 = V0 ⊕W0. Then, by dilating the

elements of W0 by 2j , a closed subspace Wj of Vj+1 is obtained such that

Vj+1 = Vj ⊕Wj for each j ∈ Z. (2.62)

Since Vj → {0} as j → −∞, it follows that

Vj+1 = Vj ⊕Wj =

j⊕

l=−∞
Wl for all j ∈ Z. (2.63)
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Since Vj → L2(R) as j →∞, then

L2(R) =
∞⊕

j=−∞
Wj . (2.64)

To find an orthonormal wavelet, therefore, only is needed to find a function ψ ∈ W0 such that

{ψ(.− k) : k ∈ Z} is an orthonormal basis for W0. In fact, if this is the case, then {2j/2ψ(2j .− k) :

k ∈ Z} is an orthonormal basis for Wj for all j ∈ Z due to condition C2 and the definition of Wj .

Hence {ψj,k : j, k ∈ Z} is an orthonormal basis for L2(R), which shows that ψ complies definition

12. So, how to find such a function ψ?.

Consider V0 = W−1 ⊕ V−1 and observe that 1
2ϕ( .2) ∈ V−1 ⊂ V0. By condition C5, this function

can be expressed in terms of the basis {ϕ(.+ k) : k ∈ Z} to obtain

1

2
ϕ(

1

2
x) =

∑

k∈Z
αkϕ(x+ k); (2.65)

where αk = 1
2

∫
R ϕ(1

2x)ϕ(x+ k)dx; the convergence in (2.65) is in L2(R) and
∑

k∈Z ‖αk‖2 < ∞.

Taking Fourier transforms, it follows

ϕ̂(2η) = ϕ̂(η)
∑

k∈Z
αke

ikη = ϕ̂(η)m0(η); (2.66)

where i = 2
√
−1, ϕ̂ is the Fourier transform of ϕ given by

f̂(ω) =

∫ ∞

−∞
f(t)e−iwtdt; (2.67)

and

m0(η) =
∑

k∈Z
αke

ikη (2.68)

is a 2π-periodic function in L2([−π, π)). The function m0 is called the low pass filter associated

with the scaling function ϕ. The next proposition finally gives a characterization of ψ.

Proposition 1. Suppose ϕ is a scaling function for an MRA {Vj}j∈Z, and m0 is the associated
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low-pass filter; then a function ψ ∈W0 = V1 ∩ V ⊥0 is an orthonormal wavelet for L2(R) if and only

if

ψ̂(2η) = eiηv(2η)m0(η + π)ϕ̂(η) a.e. on R; (2.69)

for some 2π - periodic measurable function v such that

‖v(η)‖ = 1 a.e. on [−π, π)

Proof. For the proof see Hernández and Weiss (1996).

For simplicity, consider v(η) = 1 and ψ of equation (2.69). ψ is a wavelet if and only if

ψ̂(2η) = eiηm0(η + π)ϕ̂(η). (2.70)

By replacing m0(η), equation (2.68), and αk, equation (2.65), it follows that

ψ̂(η) =

(∑

k∈Z
(−1)kαke

−i(k−1) η
2

)
ϕ̂(

1

2
η). (2.71)

Taking the inverse Fourier transform this finally gives

ψ(x) = 2
∑

k∈Z
(−1)kαkϕ(2x− (k − 1)). (2.72)

Two remarks must be taken into account. First, it is possible to find a wavelet that not

necessarily comes from a MRA (for examples, see Hernández and Weiss, 1996). However, these

kind of wavelets are in general “rare” and they are not useful for applications. Second, any wavelet

of compact support comes from a MRA (for a proof see Hernández and Weiss, 1996). Compact

support results in a finite multiplication in the discrete wavelet transform (see subsection 2.6.3),

what consequently yields to simple practical implementation of wavelet analysis. Since there is no

need to approximate the wavelet function (to have a compact support), all computations are exact.

For this reason, in practical applications it is usual to use compactly supported wavelets satisfying
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the next admissibility conditions2:

∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω <∞. (2.73)

It could be proved that equation (2.73) implies that

∫ ∞

−∞
ψ(x)dx = 0 (2.74)

It means, while the admissibility condition can be viewed as a requeriment that ψ should be

localised in frequency, equation (2.74) can be interpreted as both, localisation in time (as it implies

ψ ∈ L1(R)) and oscillation.

Definition 14. The wavelet ψ has p vanishing moments if

∫ ∞

−∞
xkψ(x)dx = 0 for k ∈ {0, 1, . . . , p}. (2.75)

The vanishing moments property (definition 14), together with localisation properties (equation

(2.73) and (2.74)), implies that wavelets are often capable of representing signals in a sparse manner.

Next subsection deals with the traditional method to decompose discrete time series in its different

frequency signals, the discrete wavelet transform.

2.6.3 Discrete Wavelet Transform (DWT)

Before further explanation of the Discrete Wavelet Transform (DWT), some important prelimi-

naries are necessary. See Frazier (2006) for further details on any of them. First, in favor to work

with discrete time series of length N , it is essential to give them a formal metric space. This space

is given by

`2(ZN ) = {(z[0], z[1], . . . , z[N − 1]) : z[j] ∈ R, 0 ≤ j ≤ N − 1}. (2.76)

`2(ZN ) has the usual componentwise addition and scalar multiplication over R, so l2(ZN ) is an

2This admissibility condition is an alternative definition for a wavelet given by Daubechies (1992)
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N -dimensional vector space over R. The inner product on `2(ZN ) is

〈z, w〉 =
N−1∑

k=0

z[k]w[k] ∀z, k ∈ `2(ZN ) (2.77)

with the associated norm

‖z‖2 =

(
N−1∑

k=0

z2[k]

)1/2

∀z ∈ `2(ZN ). (2.78)

Observe that since `2(ZN ) has a well defined inner product and ‖z‖2 ,∞, ∀z ∈ `2(ZN ), then

`2(ZN ) is a Hilbert space, i.e. `2(ZN ) is a real inner product space that is also a complete metric

space.

For the sake of simple notation, it is worth to make a convention by defining a periodic extension

of a vector to be defined at all integers. To do this, define the periodic extension of the vector

z = (z[0], z[1], . . . , z[N − 1]) ∈ `2(ZN ) as z[t+N ] = z[t]∀t ∈ Z.

Definition 15. Suppose z ∈ `2(ZN ). Then, ẑ is the Discrete Fourier Transform (DFT) of z if

each component of ẑ is given by

ẑ[k] =
N−1∑

t=0

z[t]e−2πikt/N for k = 0, 1, . . . , N − 1; (2.79)

where i =
√
−1.

Furthermore, some additional operators are defined.

Definition 16. Suppose z ∈ `p(ZN ) and k ∈ Z. Then Rk is the translation by k operator if

Rkz[t] = z[t− k] for t ∈ Z. (2.80)

Rkz is called translate of z by k.
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Definition 17. For z, w ∈ `2(ZN ), the convolution z ∗ w ∈ `2(ZN ) is the vector with components

z ∗ w[k] = (z ∗ w)[k] =
N−1∑

t=0

z[k − t]w[t], ∀k. (2.81)

Definition 18. For any z ∈ `2(ZN ), z̃ is called the reflection of z if

z̃[t] = z[−t] = z[N − t], ∀t. (2.82)

Given these definitions, two important properties are met

z ∗ w[k] = 〈z,Rkw̃〉; (2.83)

z ∗ w̃[k] = 〈z,Rkw〉. (2.84)

The main idea of the DWT is to decompose the original Hilbert space `2(ZN ) into two subspaces,

a space of approximations V and a space of details W. This is known as analysis at the 1st level.

Since the Hilbert space of approximations is closed and has countable basis, it is separable and can

be decomposed further (Frazier, 2006). In general, this is known as analysis at the J th level. Let

Vj and Wj denote space of approximations and details at the jth level, respectively. Then, from

the MRA and without loss of generality

`2(ZN ) = V1 ⊕W1,

V1 = V2 ⊕W2,

...

VJ−1 = VJ ⊕WJ ;

or in more compact form

`2(ZN ) = VJ ⊕WJ ⊕WJ−1 ⊕ · · · ⊕W1. (2.85)
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Both subspaces Vj andWj for some j have the same dimensions, what consequently means that

spaces Vj andWj have dimension N/2j . That is the reason why N has to be dividable by 2J , where

J is the maximum level of analysis. Note that the nomenclature space of approximations and space

of details has its origin in two essential wavelet properties. The first of them is the possibility to

construct the best approximation of any vector by orthogonal projection (what the DWT does)

and the second is, concerning the wavelets on a particular level of analysis, mutual exclusivity of

wavelets in a frequency domain (Kölzow, 1994).

Now, given the necessary definitions a brief sketch of the DWT theory is introduced. Full DWT

theory can be found in Frazier (2006) and Kölzow (1994), together with proofs of propositions

stated here. Let N = 2M and ϕ,ψ ∈ `2(ZN ). Then the set B = {R2kϕ}M−1
k=0 ∪ {R2kψ}M−1

k=0 is an

orthonormal basis in `2(ZN ) if and only if the matrix

A[n] =
1√
2


 ϕ̂[n] ψ̂[n]

ϕ̂[n+M ] ψ̂[n+M ]


 (2.86)

is orthogonal for all n = 0, 1, . . . , N − 1. Such an orthonormal basis B is called wavelet basis at

the 1st level, and vectors ϕ,ψ are called its generators. Vector ϕ is called a father wavelet and

vector ψ is called a mother wavelet. Furthermore, let ϕ be a vector such that the set {R2kϕ}M−1
k=0

is orthonormal. Thereafter, ψ could be constructed as:

ψ[n] = (−1)nϕ[N + 1− n] for n = 1, 2, . . . , N ; (2.87)

and then B = {R2kϕ}M−1
k=0 ∪ {R2kψ}M−1

k=0 is a wavelet basis at the 1st level for `2(ZN ). So, given a

finite discrete time series z ∈ `2(ZN ), its coefficients in the basis B can be expressed as the inner

products of z with the basis vectors. This is

[z]B = (z ∗ ϕ̃[0], z ∗ ϕ̃[2], . . . , z ∗ ϕ̃[N − 2], z ∗ ψ̃[0], z ∗ ψ̃[2], . . . , z ∗ ψ̃[N − 2]). (2.88)

Definition 19. Let z ∈ `2(ZN ), w ∈ `2(ZM ) with N = 2M . Define a downsampling operator
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D : `2(ZN )→ `2(ZM ) where

D(z)[t] = z[2t] for t = 0, 1, . . . ,M − 1; (2.89)

and an upsampling operator U : `2(ZM )→ `2(ZN ) where

U(w)[t] =




w[t/2] , if t is even

0 , if t is odd
for t = 0, 1, . . . , N − 1. (2.90)

These operators allows to express [z]B as

[z]B = [D(z ∗ ϕ̃), D(z ∗ ψ̃)]. (2.91)

Equation (2.91) illustrates a representation of the signal z by the vectors of approximations and

details and it is also in accordance with the idea of the best approximation. To construct the

wavelet bases for the whole analysis at the J th level seems to be very complex. However, the

wavelet basis has one important property, that it can be constructed only from generators at the

1st level. This will be described in the following proposition.

Proposition 2. Let N be divisible by 2J , J ∈ N and let ϕ1, ψ1 ∈ `2(ZN ) be a pair generators of

wavelet basis at the 1st level. Construct the sequence of pairs of vectors ϕj , ψj for j = 2, . . . , p as

follows:

ϕj [n] =

2j−1−1∑

k=0

ϕ1

[
n+

kN

2j−1

]
, ψj [n] =

2j−1−1∑

k=0

ψ1

[
n+

kN

2j−1

]
, for n = 0, . . . ,

N

2j−1
− 1. (2.92)

Then the set {ϕj , ψj}Jj=1 is a sequence of wavelet basis generators for analysis up to the J th level.

The wavelet analysis is now performed in accordance to the MRA through a pyramidal algo-

rithm. Firstly, the representation of z ∈ `2(ZN ) as in equation (2.91) allows to obtain vectors of

approximation a1 = D(z ∗ ϕ̃1) and detail d1 = D(z ∗ ψ̃1) on the 1st level, both from `2(ZN/2).

Then continue with analysis of the vector a1 by repeating the procedure with ϕ2 and ψ2, so vectors

a2 = D(a1 ∗ ϕ̃2) and d2 = D(a1 ∗ ψ̃2) are obtained, both from `2(ZN/22). The procedure continues
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up to the J th level, where the final approximation aJ and final detail dJ are found, both from

`2(ZN/2J ). The N − 1 coefficients that are associated with changes on various scales, [d1, . . . , dJ ]

,are called wavelet coefficients and aJ is called a scaling coefficient. Furthermore, dj are coefficients

associated with changes in z at scale τj = 2j−1 for j = 1, . . . , J , and aJ is the coefficient associated

with an average at scale 2J .

Definition 20. Let N be divisible by 2J , J ∈ N and suppose ϕj , ψj ∈ `2(ZN/2j−1) is a pair of

generators of a wavelet basis of `2(ZN/2j−1), j = 1, 2, . . . , J . Then the vector [d1, d2, . . . , dJ , aJ ],

obtained as described above, is called the Discrete Wavelet Transform (DWT) of the vector z ∈
`2(ZN ) at the J th level.

So far the theory of DWT for discrete time series was developed. Now, a brief look at the

reconstruction of a discrete time series from its DWT is shown below.

Proposition 3. Let M ∈ N, N = 2M and let ϕ1, ψ1 ∈ `2(ZN ) be the generators of wavelet basis of

`2(ZN ). Let D(z ∗ ϕ̃1) = x1 ∈ `2(ZM ), D(z ∗ ψ̃1) = y1 ∈ `2(ZM ). Then the following equation holds

ϕ1 ∗ U(x1) + ψ1 ∗ U(y1) = z, ∀z ∈ `2(ZN ). (2.93)

Proposition 3 gives a equation for a perfect reconstruction of the original discrete time series

z ∈ `2(ZN ). If the DWT of z at the J th level, [d1, d2, . . . , dJ , aJ ], is given, then the original time

series z is found through a backward procedure:

ϕJ ∗ U(aJ) + ψJ ∗ U(dJ) = aJ−1,

...

ϕj ∗ U(aj) + ψj ∗ U(dj) = aj−1,

...

ϕ1 ∗ U(a1) + ψ1 ∗ U(d1) = z.

Next subsection will deal with more details about how to find the wavelet coefficients from an

algorithmic approach.
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2.6.4 Pyramid Algorithm: the filtering approach

Previous subsection made a treatment of the formal DWT theory and a formal process to obtain

the DWT of a discrete time series was studied. However, in practice the DWT needs a more

suitable way to obtain its parameters. From an algorithmic perspective, vectors of wavelet (detail)

and scale (approximation) coefficients are computed using a pyramid algorithm that makes use of

a filtering approach.

Definition 21. A filter {hl : l = 0, 1, . . . , L− 1} of even width L is called a wavelet filter if

L−1∑

l=0

hl = 0 (2.94)

L−1∑

l=0

hlhl+2n =





1 , if n = 0

0 , if n 6= 0
(2.95)

In words, a wavelet filter must have mean zero, in order to preserve the addmisibility condition

(2.74); and must be orthonormal respect to its even shifts. Equation (2.95) is referred as the

orthonormality property of wavelet filters.

Definition 22. The scaling filter {gl : l = 0, 1, . . . , L − 1} is defined in terms of the wavelet filter

via the quadrature mirror relationship (QMR) as

gl = (−1)l+1hL−1−l (2.96)

A wavelet filter is also known as a low-pass filter because it removes all frequencies that are

above half of the highest frequency in the discrete time series. On the other hand, a scaling filter

is known as a high-pass filter because it retains all frequencies that are above half of the highest

frequency in the discrete time series. Due to each filter has a nominal pass-band covering half the

full band of frequencies, both {hl} and {gl} are usually called half-band filters.

Intuitively, the pyramid algorithm using the filtering approach works as follows. Suppose a

discrete time z ∈ `2(ZN ) where N is divisible by 2J , J ∈ N and whose maximum frequency is p.

After passing z through a half-band lowpass filter, half of the samples can be eliminated, since the
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z[n] f = [0, p]

f = [p/2, p] f = [0, p/2]

f = [p/4, p/2] f = [0, p/4]

f = [p/8, p/4] f = [p/8, p/4]

Wavelet coefficients

– Level 1

Wavelet coefficients

– Level 2

Wavelet coefficients

– Level 3

Scaling coefficients

– Level 3

Figure 2.15: DWT process following a pyramid algorithm of a discrete time series z with three

levels of decomposition. The maximum frequency of z is p.

signal now has a highest frequency of p/2 instead of p. Simply discarding every other sample will

subsample the signal by two, and the signal will then have half the number of points. The scale of

the signal is now doubled. Note that the lowpass filter removes the high frequency information, but

leaves the scale unchanged. Only the subsampling process changes the scale. Resolution, on the

other hand, is related to the amount of information in the signal, and therefore, it is affected by the

filtering operations. The low-pass filter removes half of the frequencies, which can be interpreted as

losing half of the information. Therefore, the resolution is halved after the filtering operation. Note,

however, the subsampling operation after filtering does not affect the resolution, since removing half
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of the spectral components from the signal makes half the number of samples redundant anyway.

Half the samples can be discarded without any loss of information. In summary, the low-pass filter

halves the resolution, but leaves the scale unchanged. The signal is then subsampled by 2 since half

of the number of samples are redundant. This doubles the scale. Figure 2.15 shows an example of

this process.

The wavelet and scale coefficients are obtained explicitly in the following way. Suppose {hl} and

{gl} are the wavelet and scale filters respectively. Let dj and aj be the vectors of wavelet and scaling

coefficients at the jth level, respectively. For j = 1, . . . , J , let δj,n be the nth component of vector

dj for n = 0, 1, . . . , N/2j − 1, and αj,n as the nth component vector aj , for n = 0, 1, . . . , N/2J − 1.

Suppose α0,n = z[n], then the wavelet and scale coefficients at the jth level are found through the

formulas (Percival and Walden, 2000):

δj,n =
L−1∑

k=0

hkαj−1, (2n+1−k) mod N/2j−1 ; (2.97)

αj,n =

L−1∑

k=0

gkαj−1, (2n+1−k) mod N/2j−1 ; (2.98)

where p mod q represents the remainder of p/q. Therefore, the DWT coefficients are composed by

the vectors d1, . . . , dJ and aJ .

An alternative way to construct the DWT coefficients is through the formulas

δj,n =

Lj−1∑

k=0

hj,k · z[(2j(n+ 1)− 1− k) mod N ];

αj,n =

Lj−1∑

k=0

gj,k · z[(2j(n+ 1)− 1− k) mod N ];

(2.99)

where {hj,l} and {gj,l} are the jth level wavelet and scaling filters, each having width Lj =

(2j − 1)(L− 1) + 1 and built through the relation (Percival and Walden, 2000):

hj,l =

Lj−1−1∑

k=0

gl−2khj−1,k and gj,l =

Lj−1−1∑

k=0

gl−2kgj−1,k; (2.100)
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for l = 0, 1, . . . , Lj − 1.

Equation (2.99) gives an alternative way of representing the DWT through matrices. Indeed,

equation (2.99) permits to represent the approximation and detail coefficients as linear transfor-

mations of the original signal z. Explicitly, considering dj and aJ as column vectors, then

dj = Djz, for j = 1, . . . , J ; (2.101)

aJ = Az; (2.102)

where Dj are matrices of order N/2j ×N and A is a matrix of order N/2J ×N . Following this

nomenclature, the vector of detail and approximation coefficients, W = [d′1, d
′
2, . . . , d

′
J , a
′
J ]′, can be

expressed as

W =Wz; (2.103)

where W = [D′1 : D′2 : · · · : D′J : A′]′ is an orthogonal matrix of order N ×N .

Moreover, equation (2.99) enables to reconstruct the original time series given its DWT coeffi-

cients. It suffices to use equation (2.103) and the orthogonality of W to get:

z =W ′W = [D′1 : D′2 : · · · : D′J : A′]




d1

d2

...

dJ

aJ




z =
J∑

i=1

D′idi +A′aJ

z =
J∑

i=1

Di + A; (2.104)

where Di = D′idi is an N dimensional column vector whose elements are associated with changes
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in z at scale τi = 2i−1; i.e., Di is the portion of the synthesis z =W ′W attributable to scale τi; and

A = A′aJ is an N dimensional vector whose elements are associated with an average at scale 2J .

2.6.5 Maximal Overlap Discrete Wavelet Transform (MODWT)

As it was seen, the DWT maps a discrete time series from its original representation in the time

domain into an alternative representation in the time-scale domain by recursively applying two

filters: the low-pass filter and the high-pass filter. The first reconstructs the smooth and low

frequency parts of a discrete signal, whereas the latter describes the detailed and high-frequency

parts of a signal. However, although its popularity due to its intuitive approach, the classic DWT

suffers from an important drawback: the sample size must be divisible by 2J , J ∈ N. In order to

address this drawback, the Maximal Overlap Discrete Wavelet Transform (MODWT) gives up the

orthogonality property of the DWT to gain other features such as (Percival and Walden, 2000):

• the ability to handle any sample size of a discrete time series regardless of whether dyadic or

not;

• increased resolution at coarser scales as the MODWT oversamples the data;

• invariant to circularly shifting the original time series; i.e., shifting the time series by an

integer unit will shift the MODWT wavelet and scaling coefficients the same amount.

To build the MODWT coefficients a rescaling of the defining half-band filters are required to

conserve energy, that is, if {hl} and {gl} are the high-pass and low-pass filter associated to a DWT

(see definition 21 and 22), then the associated filters to the MODWT are defined as

h̃l = hl/
√

2 and g̃l = gl/
√

2 for l = 0, 1, . . . , L− 1. (2.105)

These MODWT filters are still quadrature mirror filters since the QMR holds (see equation

(2.96)). Furthermore,

L−1∑

l=0

h̃l = 0 (2.106)
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L−1∑

l=0

h̃lh̃l+2n =





1/2 , if n = 0

0 , if n 6= 0.
(2.107)

The scaling MODWT filter {g̃l} is also required to satisfy equation (2.107) and
∑L−1

l=0 g̃l = 1.

Then, analogous to the construction of DWT coefficients, the MODWT coefficients are built using

the pyramid algorithm. So, given a discrete time series z ∈ `2(ZN ), let d̃j and ãj be the vectors

of wavelet and scaling MODWT coefficients at the jth level, respectively. For j = 1, . . . , J , let δ̃j,n

and α̃j,n be the nth component of vector d̃j and ãj respectively, for n = 0, 1, . . . , N − 1. Suppose

α̃0,n = z[n], then the wavelet and scaling MODWT coefficients at the jth level are built through

the formulas (Percival and Walden, 2000):

δ̃j,n =

L−1∑

k=0

h̃kα̃j−1, (n+2j−1k) mod N ; (2.108)

α̃j,n =
L−1∑

k=0

g̃kα̃j−1, (n+2j−1k) mod N ; (2.109)

for n = 0, 1, . . . , N − 1. Equation (2.108) can also be formulated as circular filter operations of the

original time series z using the filters {h̃j,l = hj,l/2
j/2} and {g̃j,l = gj,l/2

j/2} (see equation (2.100)),

namely,

δ̃j,n =

Lj−1∑

k=0

h̃j,k � z[(n− k) mod N ];

α̃j,n =

Lj−1∑

k=0

g̃j,k � z[(n− k) mod N ];

(2.110)

where Lj = (2j − 1)(L− 1) + 1 for j = 1, . . . , J .

Equation (2.110) allows to build a matrix representation of MODWT coefficients. Indeed,

denote d̃j = (δ̃j,n)n=0,1,...,N−1 as the vector of MODWT wavelet coefficients at the jth level (associ-

ated with changes on scale τj = 2j−1) and ãJ = (α̃J,n)n=0,1,...,N−1 as the vector of MODWT scaling
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coefficients (associated with averages on scale 2J). Then, equation (2.110) gives

d̃j = D̃jz for j = 1, . . . , J ; (2.111)

ãJ = Ãz; (2.112)

where D̃j and ÃJ are N ×N matrices.

Definition 23. Let z ∈ `2(ZN ), where the sample size N is any positive integer. Given the filters

{h̃l}L−1
l=0 and {g̃l}L−1

l=0 where L is an even number, then the vector [d̃′1, . . . , d̃
′
J , ã
′
J ]′, obtained as

described above, is called the Maximal Overlap Discrete Wavelet Transform (MODWT) of z at the

J th level.

The original signal can be recovered by using equations (2.111) and (2.112). In fact, Percival

and Walden (2000) showed that

z =
J∑

j=1

D̃′j d̃j + Ã′ãJ

z =
J∑

j=1

D̃j + Ã (2.113)
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Chapter 3

Proposed methods for spatio-temporal

modeling of raster datasets

3.1 Introduction

The objective of this research is to demonstrate an effective method to forecast spatio-temporal

raster datasets. To achieve this objective, three methods based on the use of PCA, MODWT and

an AR-NN model are proposed. The general idea behind the proposed models is to summarize the

essential spatio-temporal variability and then apply a prediction model over it. For this purpose,

a PCA summarizes the essential spatio-temporal variability considering a dimensionality reduction

on the raster dataset. Then a prediction model, using an AR-NN model over the decomposed series

by a MODWT, is used to get forecasts of the significant information (PCs or eigenvectors). Finally

the forecast maps are obtained through a spectral reverse reconstruction and a recursive algorithm.

The next sections describe the three proposed models. Sections 3.2 and 3.3 develop the temporal

and spatial principal component analysis model respectively. Finally, section 3.4 presents the

spatio-temporal principal component analysis model, which behaves as an ensembled model of

the two previous models since it ponderates the forecast results of both according to its forecast

performance.
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3.2 The Temporal Principal Component Analysis model

This model analyzes the dataset Xn×p (see figure 2.9) that summarizes the temporal and spatial

information in rows and columns respectively. As the temporal structure is the dimension whose

variability must be summarized by a PCA, this model is called the TPCA model. In fact, X follows

an S mode structure according to Richman (see table 2.1) and as a result of a PCA application,

the PCs are time-varying and they can be modeled using an AR-NN model.

Suppose that X induces the sample correlation matrix R. According to PCA theory, the

principal components associated to X, the matrix Z, are obtained through the orthonormalized

eigenvectors of R, such that

Z = XP;

where P is the p×p matrix of orthonormalized eigenvectors of R. Since P is an orthogonal matrix,

X can be reconstructed (spectral reverse reconstruction) as

X = ZP′. (3.1)

If the scree test optimal coordinate (see subsection 2.4.4) is applied and gives k(< p) as the

number of retained components, then Z and P are partitioned as

Z = [Z1 : Z2] and P = [P1 : P2] ; (3.2)

where Z1,Z2,P1 and P2 are of orders n×k, n×(p−k), p×k and p×(p−k) respectively. Replacing

equation (3.2) in equation (3.1), then

X = Z1P
′
1 + Z2P

′
2. (3.3)

Since the significant variability of X is concentrated into the first right term of equation (3.3),

it is reasonable to suppose that the second right term is related to noise signals and is, in terms of
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variability, “negligible”1. Therefore, Z2P
′
2 ≈ 0 and equation (3.3) can result in

X ≈ Z1P
′
1. (3.4)

The next step is to forecast the time-varying significant PCs. In the ideal case, the forecast

of the k first PCs would be enough; however, if the rule underestimates the number of significant

components there may be hidden essential information in the last p−k PCs that would be important

to model and; conversely, if the rule overestimates the number, there would be innecesary PCs to

forecast in the first k PCs. In order to cope with this, the forecast of non significant PCs are also

considered using the historical mean. Explicitly, forecasts considering significant and non significant

components are obtained as follows:

1. Forecasted values of the significant components: Due to the uncorrelatedness of the k time

series, the forecasted values are gathered by forecasting each of the k time series separately.

For this purpose, the MODWT-AR-NN model is used. The MODWT-AR-NN applies a

MODWT decomposition as a preprocessing method before to prepare an AR-NN model. It

is, a MODWT decomposition using a Coifflets (6) wavelet filter (Percival and Walden, 2000)

decomposes each PC into a series of approximation and two of details so that a different

AR-NN model is applied to each time series component. Figure 3.1 explains this process.

2. Forecasted values of the non significant components: The respective mean of the p − k time

series is taken as a simple summary forecast of the last p− k uncorrelated components. The

forecast of “negligible” components should be considered as a preventive measure in the case

that some significant information is not considered by the scree test optimal coordinate.

Denote Ẑ1 and F1 as the predicted time series of the first k PCs using the MODWT-AR-NN

model and the forecast values of the first k PCs respectively. Then, let Z
(1)
1 be

Z
(1)
1 =

[
Ẑ′1 : F1

]′
. (3.5)

1Negligible with respect to the test to select components.
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Figure 3.1: Operating scheme of the MODWT-AR-NN model.

Furthermore, let F2 be the forecast of the non significant PCs. Then, define

Z
(1)
2 =

[
Z′2 : F2

]′
. (3.6)

Thereafter the forecast map corresponding to the period n+ 1 is obtained by using the spectral

reverse reconstruction of principal components (equation (3.3)), namely

X(1) = Z
(1)
1 P′1 + Z

(1)
2 P′2; (3.7)

where the first n rows of X(1), given by

X̂ =: Ẑ1P
′
1 + Z2P

′
2 (3.8)
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compose the predicted values of X, and the (n+ 1)th row of X(1), given by

ŷ1 =: F ′1P
′
1 + F ′2P

′
2 (3.9)

is the forecast map corresponding to the period n+ 1.

For a general case, let h > 1 be the forecast horizon. Then the predicted maps in-sample and

the h forecast maps out-sample are gathered through a recursive algorithm as follows:

1. Calculate the sample correlation matrix R corresponding to the matrix X.

2. Calculate the matrix of orthonormalized eigenvectors, P, and PCs, Z, corresponding

to the matrix R.

3. Select the k significant components and to partition

Z = [Z1 : Z2] and P = [P1 : P2]

where Z1 and P1 are of orders n× k and p× k respectively.

4. Get the k predicted time series corresponding to the significant PCs using the

MODWT-AR-NN model and save them in the matrix Ẑ1

5. Get X̂ = Ẑ1P
′
1 + Z2P

′
2, the n predicted maps in-sample.

6. Get the forecasts, with an horizon h, of the k significant components using the

MODWT-AR-NN model and save them as vectors

F
(1)
1 , F

(2)
1 , . . . , F

(h)
1 ;

where F
(t)
1 represents the forecast of the first k components at time n+t, for

t = 1, . . . , h.

7. Get the forecasts, with an horizon 1, of the p−k non significant components calculating

the historical mean of these PCs and save it as vector F
(1)
2 .
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8. Create matrices Z
(0)
1 =

[
Z′1 : F

(1)
1

]′
and Z

(0)
2 =

[
Z′2 : F

(1)
2

]′
to get the matrix

X(1) = Z
(0)
1 P′1 + Z

(0)
2 P′2.

9. Save the (n+ 1)th row of X(1) as y1, the forecast map at time n+ 1.

10. For j from 2 to h.

10.1. Calculate the sample correlation matrix R(j−1) corresponding to the matrix

X(j−1).

10.2. Calculate the matrix of orthonormalized eigenvectors, P(j−1), and PCs, Z(j−1),

corresponding to the matrix R(j−1).

10.3. Partition P(j−1) and Z(j−1) as

Z(j−1) =
[
Z

(j−1)
1 : Z

(j−1)
2

]
and P(j−1) =

[
P

(j−1)
1 : P

(j−1)
2

]

where Z
(j−1)
1 and P

(j−1)
1 are of orders (n+ j − 1)× k and p× k respectively.

10.4. Calculate the average of the last p − k components, and save it in vector

F
(j)
2 .

10.5. Create matrices Z
(j)
1 =

[
Z

(j−1)′
1 : F

(j)
1

]′
and Z

(j)
2 =

[
Z

(j−1)′
2 : F

(j)
2

]′
to get the matrix

X(j) = Z
(j)
1 P

(j−1)′
1 + Z

(j)
2 P

(j−1)′
2 .

10.6. Save the (n+ j)th row of X(j) as ŷj, the forecast map at time n+ j.

End for.

3.3 The Spatial Principal Component Analysis model

This model functions analogous to the previous one but it works with the matrix X′ instead. This

structure takes the raster locations as data elements and the sampling times as variables. Since the
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spatial structure is the dimension whose variability must be summarized by a PCA, this model is

called the spatial principal component analysis (SPCA) model. Different from the TPCA model,

the SPCA model works with a space-time data with a T mode structure according to Richman (see

table 2.1) and as a consequence of a PCA application, the loadings (eigenvectors) are time-varying.

This induces that the AR-NN model is applied over the time-varying loadings (eigenvectos) and

not over the PCs. Next paragraphs exhibit the process behind the SPCA model.

The SPCA model works with the matrix X′ that induces the sample correlation matrix H. The

principal components corresponding to X′, the matrix N, are related with the orthonormalized

eigenvectors of H through

N = X′Q; (3.10)

where Q is the n × n matrix of eigenvectors of H. Since Q is an orthogonal matrix, X′ may be

reconstructed as

X′ = NQ′. (3.11)

A simple transpose operation in both sides of equation (3.11) gives the reconstruction of X,

X = QN′. (3.12)

If the scree test optimal coordinate gives m (< n) as the number of retained components, then Q

and N are partitioned as

N = [N1 : N2] and Q = [Q1 : Q2] ; (3.13)

where N1,N2,Q1 and Q2 are of orders p×m, p× (n−m), n×m and n× (n−m) respectively. If

these partitions are replaced in equation (3.12), then

X = Q1N
′
1 + Q2N

′
2. (3.14)

The next step is to forecast the summarized information of the significant loadings. Similar to the

TPCA model, the first m eigenvectors are forecasted separately using the MODWT-AR-NN model

and for the last n − m non significant eigenvectors the historical average is calculated. For the
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predicted maps in-sample, let Q̂1 be the predicted time series of the first m eigenvectors using the

MODWT-AR-NN model.

Let G1 and G2 be vectors with the forecasts of the first m and the last n − m eigenvectors

respectively. Define Q(1) and Q(2) as

Q(1) =
[
Q̂′1 : G1

]′
and Q(2) =

[
Q′2 : G2

]′
. (3.15)

Replacing Q(1) and Q(2) in equation (3.14) then

X(1) = Q(1)N′1 + Q(2)N′2; (3.16)

where the first n rows of X(1), given by

X̂ =: Q̂1N
′
1 + Q2N

′
2, (3.17)

compose the n predicted maps in-sample for X, and the (n+ 1)th row of X(1),

ŷ1 =: G′1N
′
1 +G′2N

′
2, (3.18)

corresponds to the forecast map at time n+ 1.

For a general case, if h > 1 is the forecast horizon, the predicted maps in-sample and the h

forecast maps out-sample are found through a recursive algorithm analogous to the TPCA model:

1. Calculate the sample correlation matrix H corresponding to the matrix X′.

2. Calculate the matrix of orthonormalized eigenvectors, Q, and PCs, N, corresponding

to the matrix H.

3. Select the m significant eigenvectors and to partition

Q = [Q1 : Q2] and N = [N1 : N2] ;
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where Q1 and N1 are of orders n×m and p×m respectively.

4. Get the m predicted time series corresponding to the significant eigenvectors

using the MODWT-AR-NN model and save them in the matrix Q̂1.

5. Calculate X̂ = Q̂1N
′
1 + Q2N

′
2, the n predicted maps in-sample.

6. Get the forecast, with an horizon h, of the m significant eigenvectors using the

MODWT-AR-NN model. Save them as vectors

G
(1)
1 , G

(2)
1 , . . . , G

(h)
1 ;

where G
(t)
1 represents the forecast of the first m eigenvectors at time n+t, for

t = 1, . . . , h.

7. Get the forecast, with an horizon of 1, of the n−m non significant eigenvectors

using the average of each eigenvector. Save it as vector G
(1)
2 .

8. Create matrices Q
(0)
1 =

[
Q′1 : G

(1)
1

]′
and Q

(0)
2 =

[
Q′2 : G

(1)
2

]′
to get the matrix

X(1) = Q
(0)
1 N′1 + Q

(0)
2 N′2.

9. Save the (n+ 1)th row as y1, the forecast map at time n+ 1.

10. For j from 2 to h.

10.1. Calculate the sample correlation matrix H(j−1) corresponding to the matrix

X(j−1)
′
.

10.2. Get the matrix of orthonormalized eigenvectors, Q(j−1), and PCs, N(j−1),

corresponding to the matrix H(j−1).
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10.3. Partition N(j−1) and Q(j−1) as

N(j−1) =
[
N

(j−1)
1 : N

(j−1)
2

]
and Q(j−1) =

[
Q

(j−1)
1 : Q

(j−1)
2

]

where N
(j−1)
1 and Q

(j−1)
1 are of orders (p+ j−1)×m and n×m respectively.

10.4. Calculate the average of the last n−m eigenvectors and save it in a vector

G
(j)
2 .

10.5. Create matrices Q
(j)
1 =

[
Q

(j−1)′
1 : G

(j)
1

]′
and Q

(j)
2 =

[
Q

(j−1)′
2 : G

(j)
2

]′
to get the

matrix

X(j) = Q
(j)
1 N

(j−1)′
1 + Q

(j)
2 N

(j−1)′
2 .

10.6. Save the (n+ j)th row as ŷj, the forecast map at time n+ j.

End for.

3.4 The Spatio - Temporal Principal Component Analysis model

This model consists of an hybridization of the TPCA and SPCA model. In fact, the spatio-temporal

PCA model (in short STPCA model) tries to capture the spatial and temporal variability in a pro-

portional way according to its importance. It means that if it is supposed that total variability

is composed, separately, by spatial and temporal variability, then one kind of variability can be

considered more important than the other for modeling purposes. This is developed mathemati-

cally by using a convex combination of results in the TPCA and SPCA model. Indeed, a convex

combination of equations (3.1) and (3.12) leads to

X = α · ZP′ + (1− α) ·QN′; (3.19)

where α ∈ [0, 1].

Let F and G be the corresponding forecast maps at time n+ 1 by using the TPCA and SPCA
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𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑝𝑒𝑟𝑖𝑜𝑑:  𝑛 

𝑆𝑡𝑒𝑝 1 

𝑆𝑡𝑒𝑝 𝑀  

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑: 𝐿 ℎ 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑: 𝐿 ℎ 

𝑆𝑡𝑒𝑝 2 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑: 𝐿 ℎ 

Figure 3.2: An sketch of how to use the training period to calculate the “importance” weights.

n,L and h represent the lengths of total period, training period and forecast horizon respectively.

model respectively, thus define

T =
[
PZ′ : F

]′
and S =

[
NQ′ : G

]′
; (3.20)

then with equation (3.19) the first forecast map is obtained through

X∗ = α · T + (1− α) · S with α ∈ [0, 1]; (3.21)

where the first n rows compose the original dataset X and the (n+ 1)th row is the forecast map at

time n+ 1 belonging to the STPCA model. Since the terms T and S correspond to the TPCA and

SPCA model respectively, then α (and 1 − α) represents a weight measuring the “importance” of
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TPCA (and SPCA) model forecast results. The calculation of this “importance” measure depends

on the forecast performance of each model. For this purpose, let h be the forecast horizon and a

training period of length L < n is chosen. Figure 3.2 shows an sketch of how the training period

helps to find an estimation for α. The idea is to use the training period L as a mobile window that

moves through the complete length period, at each movement by dropping the first map and adding

the one following its last current one. At each step, get the h forecast maps with a TPCA and a

SPCA model and save the respective performance measures. If ETij (ESij) denotes a global forecast

error measure with the TPCA (SPCA) model at horizon j and step i, for i = 1, . . . ,M = n−L−h
and j = 1, . . . , h. Then, the training “importance” weights are defined as

αTij =
1/ETij

1/ETij + 1/ESij
and αSij = 1− αTij ; (3.22)

for i = 1, . . . ,M and j = 1, . . . , h. Note that since ETij and ESij represent measures of forecast error

and “importance” weights are related with the good forecast performance, then the “importance”

weights must have an inverse relation with the forecast errors. Furthermore, the “importance”

weight is not constant in all the forecast horizon, it means that the weights change according to

the forecast horizon position. In order to handle the operations, the training “importance” weights

are put into the matrices:

AT =




αT11 αT12 . . . αT1h

αT21 αT22 . . . αT2h
...

...
. . .

...

αTM1 αTM2 . . . αTMh




and AS =




αS11 αS12 . . . αS1h

αS21 αS22 . . . αS2h
...

...
. . .

...

αSM1 αSM2 . . . αSMh



.

Matrix AT (AS) saves the training “importance” weights of the TPCA (SPCA) model. This

notation allows to estimate the forecast importance “weights” of both models and for each forecast

horizon time. To achieve this, note that since αTij + αSij = 1, ∀i, j, then

(αT1 , α
T
2 , . . . , α

T
h ) + (αS1 , α

S
2 , . . . , α

S
h) = (1, 1, . . . , 1); (3.23)
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where αTi (αSi ) represents the median of the M training weights at forecast horizon i for the TPCA

(SPCA) model, for i = 1, . . . , h.

Once the forecast “importance” weights of each model and for each horizon position are found,

the h forecast maps are found making the corresponding ponderation of TPCA and SPCA forecasts

according to its “importance”. The next algorithm explains how:

1. Define L, h and n.

2. For i from 1 to M = n− L− h.

2.1. Calculate the forecast ‘‘importance’’ weights αTi and αSi .

End for

3. For j from 1 to h.

3.1. Get the forecast maps ŷTj and ŷSj using the TPCA and SPCA

model respectively.

3.2. Calculate

ŷSTj = αTj ŷTj + αSj ŷSj ;

where ŷj is the forecast map at time n+ j.

End for

The process to obtain the predicted maps in-sample through a STPCA model is simpler and

makes use of prediction “importance” weights. Indeed, let X̂S and X̂T be the predicted maps in-

sample for X using the SPCA and TPCA model respectively. If εTi (εSi ) represents a global prediction

error measure corresponding to the TPCA (SPCA) model at time position i, for i = 1, . . . , n, then

the prediction “importance” weights at each time position is determined by

βTi =
1/εTi

1/εTi + 1/εSi
and βSi = 1− βTi for i = 1, . . . , n. (3.24)
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In order to get a compact formula for the predicted maps, define the matrices of prediction “im-

portance” weights as

MT =




βT1 0 . . . 0

0 βT2 . . . 0
...

...
. . .

...

0 0 . . . βTn




and MS =




βS1 0 . . . 0

0 βS2 . . . 0
...

...
. . .

...

0 0 . . . βSn




;

where MT and MS represent the matrix of prediction “importance” weights of the TPCA and

SPCA model respectively. The predicted maps in-sample for X using the STPCA model are found

through the formula

X̂ST = MT X̂T +MSX̂S ; (3.25)

where the ith row of X̂ST is the predicted map at time position i, for i = 1, . . . , n.
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Chapter 4

Simulation study

In order to verify the forecast performance of the three proposed models, a simulation study is

carried out. For this purpose, three type of processes are simulated. These simulations consist in

a regular spatial grid of 30 × 30 scattered into a square of 1u2 (where u is any unit of length),

represented by D, and a temporal period of length 250 m (where m is any unit of time). The

processes are divided according to the type of variability they possess. Subsection 4.1 describes the

experiments with a pure spatial variability process, subsection 4.2 the pure temporal variability and

the experiment using a spatio-temporal process is described in Subsection 4.2. Finally, subsection

4.4 shows the results of the simulation study.

4.1 The pure spatial variability process

The pure spatial variability process (PSV process, in short) consists in a simulated process of the

form

y(s, t) = µ+ ε(s) for s ∈ D and t = 1, 2, . . . , 250; (4.1)

where y(s, t) denotes the spatio-temporal observation, µ represents the structured spatial mean and

ε(s) denotes the space residual field which saves the spatial covariance structure. Observe that this

process does not have a temporal variability component and only the spatial variability is present.

Furthermore, spatial covariance models based on isotropic processes are chosen due to its simplicity
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and interpretability (Banerjee et al., 2014).

For the simulated PSV processes, the parameters are fixed in µ = 10, E = [ε(s)]s∈D ∼ N (0,Σs),

where Σs is determined by using the most common spatial auto-covariance functions based on

isotropic structures:

• The exponential auto-covariance function:

C(s1, s2) =




τ2e−φ‖s2−s1‖, if ‖s2 − s1‖ > 0

τ2 + σ2, otherwise

;

where σ2 and τ2 are known as the nugget and partial sill parameters and φ is called the

decay parameter. The decay parameter is related with the degree of smoothness of the

auto-covariance function. The nugget and partial sill parameters are characteristic of every

well-defined spatial auto-covariance function. The nugget parameter is related to the nugget

effect, which is attributed to measurement errors or spatial sources of variation at distances

smaller than the sampling interval or both. For this reason the nugget parameter is viewed

as a “nonspatial effect variance”. On the other hand, the partial sill parameter is a measure

of the observed auto-covariance at an infinitesimally small separation distance and is viewed

as a “spatial effect variance” (for more ditails see Banerjee et al., 2014). For purposes of this

simulation, the values τ2 = 0.25, σ2 = 0.1 and φ = 1 are taken. Hereafter, this simulated

process is referred as the PSV-Exponential process.

• The Mátern auto-covariance function:

C(s1, s2) =





τ2

2v−1Γ(v)
(2
√
v ‖s2 − s1‖φ)vKv(2

√
v ‖s2 − s1‖φ), if ‖s2 − s1‖ > 0

τ2 + σ2, otherwise

;

where Γ(.) is the standard gamma function and Kv(.) represents the modified Bessel function

of second kind with order v (for more details see Banerjee et al., 2014). The parameter φ > 0

controls the rate of decay of the auto-covariance according to the distance ‖s2 − s1‖, and

the parameter v controls smoothness of the spatial process (Banerjee et al., 2014). For this
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simulation study, the values v = 1, τ2 = 0.25 and σ2 = 0.1 are used. φ takes the solution of

the equation C(s1, s2) = 0 when ‖s2 − s1‖ = 0.15. From now on, this simulated process is

called the PSV-Mátern process.

• The spherical auto-covariance function:

C(s1, s2) =





0, if ‖s2 − s1‖ ≥ 1/φ

τ2
(
1− 3

2 ‖s2 − s1‖φ+ 1
2(‖s2 − s1‖φ)3

)
, if 0 < ‖s2 − s2‖ ≤ 1/φ

τ2 + σ2, otherwise

.

For this simulated process, the next values are used: τ2 = 0.25, σ2 = 0.1 and φ as the

solution of the equation C(s1, s2) = 0 when ‖s2 − s2‖ = 0.15. Onwards, this simulated

process is referred as the PSV-Spherical process.

4.2 The pure temporal variability process

The pure temporal variability process (PTV process, in short) consists in a simulated autoregressive

of order 1 process of the form

y(s, t) = µ+ ρ · y(s, t− 1) + ε(t) for s ∈ D and t = 1, 2, . . . , 250; (4.2)

where µ represents the structured temporal mean, ρ is the AR(1) coefficient and ε(s) denotes

the time residual field. This process does not have a spatial variability component and only the

temporal variability is present.

For the simulated PTV processes, the parameters are fixed in µ = 10, ε(t)
iid∼ N (0, 0.01) and,

in order to study the influence in the forecast performance of the AR(1) coefficients, the following

values are used:

• ρ = 0.50, this simulated scenario is called in short the PTV - ρ = 0.50 process.

• ρ = 0.75, this simulated scenario is called in short the PTV - ρ = 0.75 process.
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• ρ = 0.95, this simulated scenario is called in short the PTV - ρ = 0.95 process.

4.3 The spatio - temporal variability process

The spatio - temporal variability process (STV process, in short) consists in a simulated process

based on a dinamyc structure of the form

y(s, t) = O(s, t) + ε(t)

O(s, t) = µ+ ρ ·O(s, t− 1) + η(s);

for s ∈ D and t = 1, 2, . . . , 250. This hierarchical AR model has µ as the structured spatio-temporal

mean, ρ as the unknown temporal correlation parameter, ε(t) as the time residual field and η(s) as

the space redisual field. Note that the temporal and spatial variability are merged in one process

through the hierarchical structure.

For the simulated STV processes, the parameters are fixed in µ = 10, ρ = 0.95, ET =

[ε(t)]t=1,...,250
iid∼ N (0, 0.1 · I250) and ES = [ε(s)]s∈D ∼ N (0,Σs) where Σs has a structure according

to the spatial auto-covariance functions used in section 4.1:

• The exponential auto-covariance function, hereafter this process is called the STV - Expo-

nential process.

• The Mátern auto-covariance function, hereafter this process is called the STV - Mátern

process.

• The spherical auto-covariance function, hereafter this process is called the STV - Spherical

process.

The simulated processes are summarized in table 4.1. In total, there are nine simulated sce-

narios. With the goal of obtaining statistically reliable estimates of the results, each scenario is

replicated 50 times. Next section shows the most significant results.
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Table 4.1: Table with the nine simulated processes used in the simulation study.

PSV processes PTV processes STV processes

Simulated
processes

PSV - Exponential PTV - ρ = 0.50 STV - Exponential
PSV - Mátern PTV - ρ = 0.75 STV - Mátern

PSV - Spherical PTV - ρ = 0.95 STV - Spherical

4.4 Simulation results

This section shows the results to verify the forecast performance of the three proposed models in

simulated data. For this purpose, nine scenarios were simulated with 50 replications each one.

To get a simple summary of these data, simple statistics as the average and standard deviation

are calculated. Figure 4.1 shows the averaged maps, with the standard deviation contoured, of

one replication in the nine simulated scenarios. The first three maps (figures 4.1a, 4.1b and 4.1c)

correspond to PSV processes; figures 4.1d, 4.1e and 4.1f correspond to PTV processes and the last

three (figures 4.1g, 4.1h and 4.1i) belong to STV processes. The PSV processes have an average

value ranging from 9.97 to 10.03 and they have deviations lower than 0.2. For its part, the PTV

processes exhibit different range of means and deviations. For the PTV − ρ = 0.50 process, the

mean value ranges from 19.95 and 20.05 with deviations lower than 0.12; the PTV − ρ = 0.75

process presents mean values ranging from 39.9 to 40.1 with deviation lower than 0.18; and the

PTV − ρ = 0.95 process shows a spatial mean varying from 199.4 to 200.5 with deviations less

than 0.45. Finally, the STV processes show similar ranges of mean, fluctuating between 199.5 and

200.3, but they present greater deviations than the PSV and PTV processes (varying from 0.45 to

0.6).

In order to evaluate the prediction performance in-sample of the three proposed models, an

estimation of the global median MAPE in-sample is calculated in the nine simulated processes. To

achieve this, given a replication of any simulated process, the MAPE in-sample is calculated period

by period, by comparing the predicted map with the real map, over the 250 units of time. Then,

the median of these MAPE values is calculated and represents a global measure of prediction

performance in-sample for the replication. Finally the median of MAPEs is found for the 50

replications process and the median of these value is considered as the global median MAPE
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Figure 4.1: Spatial distribution of averaged maps of one replication in scenario: (a) PSV -

Exponential, (b) PSV - Matérn, (c) PSV - Spherical, (d) PTV - ρ = 0.5, (e) PTV - ρ = 0.75, (f)

PTV - ρ = 0.95, (g) STV - Exponential, (h) STV - Matérn, (i) STV - Spherical. The standard

deviation is contoured in black.

in-sample for each process. Table 4.2 exhibits the global median MAPE in-sample for the nine

simulated processes using the three proposed models. As it is observed, for the SPCA model, the

values of the global median MAPE range from 0.6% to 1.3%. For the TPCA and STPCA model,

the values are slightly lower, with global median MAPEs varying between 0.001% to 0.05%.

To evaluate the forecast performance of the three proposed models, an estimation of the evolu-

tion of the global median of the spatial MAPE (figure 4.2) in a forecast horizon of six time units

is performed from the nine simulated processes. To do this, in the 50 replications of each process

a training period of length 244 is chosen and the last six time units are taken as the forecast val-
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Table 4.2: Global median MAPE in-sample of the nine simulated processes using the SPCA,

TPCA and STPCA model.

Variability Simulated process
SPCA
model

TPCA
model

STPCA
model

Pure
spatial

variability

PSV - Exponential 0.729% 0.045% 0.051%
PSV - Mátern 0.818% 0.041% 0.043%

PSV - Spherical 0.767% 0.042% 0.046%

Pure
temporal
variability

PTV - ρ = 0.50 1.233% 0.005% 0.007%
PTV - ρ = 0.75 0.875% 0.004% 0.004%
PTV - ρ = 0.95 0.647% 0.001% 0.001%

Spatio
temporal
variability

STV - Exponential 0.751% 0.003% 0.004 %
STV - Mátern 0.782% 0.004% 0.007%

STV - Spherical 0.707% 0.004% 0.006%

idation period. Then, the spatial MAPE corresponding to the ith replication and the jth forecast

horizon is denoted by MAPEi,j (for i = 1, . . . , 50; j = 1, . . . , 6) and is calculated as the median of

the MAPEs of all the grids in the forecast map. Finally, the global median of the spatial MAPE

in the forecast horizon k, denoted by MAPEk (for k = 1, . . . , 6), is found as

MAPEk = Mediani=1,...,50(MAPEi,k)

and is interpreted as a global measure of forecast error at a specific forecast horizon position. Figure

4.2 schematizes this process.

Figure 4.3 exhibits the evolution of the global median of the spatial MAPE with a forecast

horizon of length six in the nine simulated processes using the SPCA, the TPCA and STPCA

model. It can be noted that forecast results belonging to the PSV processes (figures 4.3a, 4.3b and

4.3c) show that the SPCA ans STPCA model provide good global forecast errors (lower than 20%

in all the forecast horizon) while the TPCA model displays greater global forecast errors, more

specifically, beginning from the fourth forecast horizon position the MAPE reachs values ranging

from 20% to 160%. On the other side, in the PTV processes (figures 4.3d, 4.3e and 4.3f) the SPCA

model has the worst forecast results for these processes, attaining MAPEs that exceed 80% in some
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Figure 4.2: An sketch of how to calculate the evolution of the global median of the spatial MAPE

with a forecast horizon of length six.

cases. The TPCA model, for its part, shows the lowest global forecast errors in the PTV −ρ = 0.50

and PTV − ρ = 0.75 processes, but not in the PTV − ρ = 0.95 where the STPCA model has the

best forecast performance in all the forecast horizon. Finally, in the STV processes (figures 4.3g,

4.3h and 4.3i) it is observed that the SPCA and STPCA models obtain the best forecast results. In

the STV processes, the TPCA model presents the worst forecast performance, displaying MAPEs

from the third forecast horizon position ranging from 60% to 160%.

To analyze the forecast performance from a spatial perspective, the spatial distribution of the

median MAPE in the six forecast periods is calculated for each simulated process and using the
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Figure 4.3: Evolution of the global median of the spatial MAPE using the SPCA, TPCA and

STPCA model in the simulated processes: (a) PSV-Exponential, (b) PSV-Matérn, (c) PSV-

Spherical, (d) PTV-ρ = 0, 5, (e) PTV-ρ = 0, 75, (f) PTV-ρ = 0, 95, (g) STV-Exponential, (h)

STV-Matérn, (i) STV-Spherical.

three proposed models. For each simulated process, the spatial distribution of the median MAPE is

a map that results from calculating the median of the MAPE maps estimated in the 50 replications.

In this case, the PSV - Spherical, the PTV - ρ = 0.5 and the STV - Mátern processes are chosen to
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represent the general results found for the PSV, PTV and STV processes respectively. The spatial

distribution of the averaged MAPE of the other processes can be found in appendix A.
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Figure 4.4: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV- Spherical process using the SPCA model.

Figures 4.4 and 4.5 exhibit the spatial distribution of the median MAPE in all the forecast

horizon for the PSV-Spherical process using the SPCA and TPCA model respectively. As it is

observed, using a SPCA model gives spatially distributed MAPEs that do not surpass the 20%

in all the forecast horizon. This result is consistent with figure 4.3c, where the evolution of the

global median of the spatial MAPE shows values lower than 20%. On the other hand, using a

TPCA model gives contrary results. As shown in figure 4.5, only in the first and second forecast

periods the spatial distribution of the median MAPE presents low values (less than 20%) and from

the third forecast period onwards, the values increase dramatically in different specific regions,

with median MAPEs greater than 60%. The results of the PSV - Exponential and PSV - Mátern

processes (figures A.1, A.2, A.4 and A.5) manifest identical results. The spatial distribution of the
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median MAPE in the PSV processes using the STPCA model (figures A.3, A.6 and A.7) behave

as a ponderation of the error maps observed in the SPCA and TPCA model.
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Figure 4.5: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV- Spherical process using the TPCA model.

Figures 4.6 and 4.7 display the spatial distribution of the median MAPE in all the forecast

horizon for the PTV - ρ = 0.5 process using the SPCA and the TPCA model respectively. Looking

at the results, when a SPCA model is applied over the PTV - ρ = 0.5 process, it gives spatially

distributed MAPEs that augment gradually as the forecast period increases and showing values

greater than 40% since the first forecast period. However, when a TPCA model is used the results

are totally different. Figure 4.7 exhibits a uniform spatial distribution of the averaged MAPE in

all the forecast horizon and with values lower than 20%. The results corresponding to the PTV -

ρ = 0.75 (figures A.9 and A.10) exhibit identical results. The results corresponding to the PTV-

ρ = 0.95 process (figures A.12, A.13 and A.14), show that the STPCA model offers the best spatial

performance forecast in all the forecast horizon with respect to the SPCA and TPCA models.
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Figure 4.6: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.5 process using the SPCA model.

With regard to the STV processes, figures 4.8, 4.9 and 4.10 show the spatial distribution of the

median MAPE in all the forecast horizon for the STV-Mátern process using the SPCA, the TPCA

and the STPCA model respectively. When the SPCA model is used, the spatial distribution of the

median MAPE (figure 4.8) shows a uniform distributions and with MAPE values lower than 20%.

For its side, when the TPCA model is applied the spatial distribution of the median MAPE (figure

4.9) presents values that augment gradually in specific regions, as the forecast period increases.

The MAPE values begin with low quantities in the two first forecast periods (with values lower

than 10%) and they increase gradually over all the map, reaching values of 200%. Finally, when

one performs the STPCA model, the spatial distribution of the median MAPE (figure 4.10) has

the similar pattern observed in the TPCA model, but with a decrease in the MAPE values.
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Figure 4.7: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.5 process using the TPCA model.

4.5 Final comments

This chapter has described three new methodologies - the SPCA, TPCA and STPCA models -

for modeling spatio-temporal raster datasets and has developed a simulation study to evaluate the

prediction and forecast performance of the proposed models. The results for the prediction of raster

maps in-sample (table 4.2) has shown that the three proposed models have an excellent prediction

performance in-sample. Particularly, if predictions with greater accuracy are needed, one can use

the TPCA or the STPCA model which, according to the simulated scenarios, present global median

MAPE lower than 0.1%.

The results related to the forecast performance of the proposed models in the simulated scenarios

have shown that, in general, the models provide good forecasts in a short-term forecast period. To

analyze the global forecast performance of the proposed models, the median of the MAPEs are

calculated in the nine simulated processes using each model. This measure can be seen as a global
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Figure 4.8: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Matérn process using the SPCA model.

measure of forecast performance in all the forecast horizon. Table 4.3 shows these values and an

analysis separated by the type of process according to the type of predominant variability they

posses is carried out:

1. For the PSV - processes: As it is observed, the STPCA model has the best performances

for the PSV-Exponential and PSV-Mátern processes, except for the PSV-Spherical process,

where the SPCA model has the best performance. For the PSV - Exponential and PSV -

Spherical the TPCA model gives the worst global forecast results except for the PSV-Mátern

process. Looking at the evolution of the global error maps using the TPCA model in PSV

processes (figures A.2, A.5 and 4.5) it is noted that while the forecast horizon moves away,

the error increases gradually in specific spatial regions. Thus, when the spatial variability

is predominant, the TPCA model does not capture the necessary patterns corresponding to

the spatial variation that allows to get a good forecast performance. Also, remark that when
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Figure 4.9: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Matérn process using the TPCA model.

the lines of evolution of MAPE cross at the middle part of the forecast horizon, then the

STPCA model gives an improvement of the global forecast results. Thereby, in these cases

the STPCA model captures temporal and spatial patterns, in a balanced way, in order to

improve the overall forecast.

2. For the PTV - processes: Table 4.3 displays that, for these processes, the TPCA model

exhibits the best forecast performance except for the PTV − ρ = 0.95 process, where the

STPCA model is the model with the best result. On the other hand, the SPCA model

produce the worst global forecast results without exceptions. Moreover, if the evolution of

the global error maps using the SPCA model in PTV processes (figures 4.6, A.9 and A.12)

is seen, it is observed that after a short forecast horizon (no more than two units of time)

the error is dramatically high over all the spatial region. So, when the temporal variability is

predominant, the SPCA model does not capture the necessary patterns corresponding to the
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Figure 4.10: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Matérn process using the STPCA model.

temporal variation that allows to get good forecast results.

3. For the STV - processes: Looking at table 4.3, it is remarkable that for theses processes the

SPCA model produces the best global forecast performances and, on the other hand, the

TPCA model provides the worst. The STPCA model shows an intermediate performance.

Taking a look at the the evolution of the global error maps using the STPCA model in

STV processes (figures A.17, 4.10 and A.20), it is noted that the error increases in certain

spatial regions as the forecast horizon is extended. This happens since the STPCA model

gives a forecast taking a convex combination of the forecast maps given by the SPCA and

TPCA models. As the TPCA model produces maps with great forecast errors, this feature

is inherited to the STPCA model in a certain way.

Based on the previous discussion about the global forecast performance of each model, it is
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Table 4.3: Median of the MAPEs in the nine simulated processes using the SPCA, TPCA and

STPCA model.

Variability Process
SPCA
model

TPCA
model

STPCA
model

Pure
spatial

variability

PSV - Exponential 11.532% 12.406% 8.725%
PSV - Mátern 15.577% 13.284% 11.611%

PSV - Spherical 14.096% 111.194% 17.009%

Pure
temporal
variability

PTV - ρ = 0.5 82.164% 17.851% 32.400%
PTV - ρ = 0.75 69.409% 27.145% 32.801%
PTV - ρ = 0.95 34.732% 24.982% 21.939%

Spatio
temporal
variability

STV - Exponential 19.796% 118.940% 31.124%
STV - Mátern 16.837% 127.007% 37.668%

STV - Spherical 18.595% 75.129% 31.640%

important to determine under what statistical conditions one model would be preferable than the

others for forecasting purposes. Following this path, table 4.4 summarizes the median “importance”

weights of the SPCA and TPCA model for each simulated process. For each simulated process, the

median “importance” weights are calculated as the median of all the “importance” weights of all

the forecast horizon. Note that the median “importance” weights corresponding to both models

are complementary since they always sum one. As it is shown in table 4.4, for the PSV processes

the SPCA “importance” weights have values greater than 0.53. On the other hand, for the PTV

processes the TPCA “importance” weights are predominant with weights greater than 0.55. For

the STV processes the SPCA “importance” weights show greater values than 0.66. These results

agree with the results described in the previous discussion. Indeed, relating the results, when the

SPCA “importance” weight is predominant, with values greater than 0.65, the SPCA model would

give better overall forecast results. However, when the TPCA “importance” weights present values

greater than 0.6, a TPCA model would have a better overall forecast performance. Finally, in the

rest of cases the chose would depend on the evolution of the MAPEs in both models. It is, if the

lines of evolution of MAPEs of both models do not intersect (as in figure 4.3d), then the model

with better “importance” weight could be the chosen one, but if the lines of evolution of MAPEs
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intersect like in figures 4.3a and 4.3b, then the STPCA model would be preferable.

Table 4.4: Median“importance” weights of the SPCA and TPCA model in the nine simulated

processes.

Variability Process
SPCA

importance
TPCA

importance

Pure
spatial

variability

PSV - Exponential 0.594 0.406
PSV - Mátern 0.538 0.462

PSV - Spherical 0.864 0.136

Pure
temporal
variability

PTV - ρ = 0.5 0.385 0.615
PTV - ρ = 0.75 0.379 0.621
PTV - ρ = 0.95 0.414 0.586

Spatio
temporal
variability

STV - Exponential 0.712 0.288
STV - Mátern 0.667 0.333

STV - Spherical 0.68 0.320
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Chapter 5

Empirical application

In this chapter an application of the proposed methodology introduced in Chapter 3 is considered.

The monthly sea surface temperature anomalies corresponding to the Tropical Pacific Ocean (see

figure 5.1) is analyzed with the objective to obtain accurate forecast maps of this climatological

variable.

Figure 5.1: Map of the Pacific Ocean indicating, with red lines, the location of the Tropical Pacific

Ocean.
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The importance of skilful climate forecasts of climatological variables provide useful scientific

information to planners and operational agencies to plan and develop contingency measures and

strategies to deal with the adverse conditions. In particular, the sea surface temperature (SST) is

considered the most influential climatological variable because it provides fundamental information

on the global climate system. Even more important, SST data are especially useful for identifying

the onset of El Niño and La Niña cycles. During El Niño, temperatures in the Pacific near the

equator are warmer than normal. During La Niña, the same area experiences colder than normal

ocean temperatures. These cycles are caused by multiyear shifts in pressure and wind speeds, and

affect ocean circulation, global weather patterns, and marine ecosystems (Wang and Weisberg,

2000).
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Figure 5.2: Spatial distribution of the averaged SST (in ◦C) of the Tropical Pacific Ocean. The

value of the standard deviation of SST is contourned in black.

Statistical and dynamical models have been developed to forecasting sea surface temperature

anomalies (SSTA) fields over the Tropical Pacific Ocean (for more details see Barnston and Ro-

pelewski, 1992; Chen et al., 1997). In this applicated study the skill potential of the three proposed

methods in forecasting SSTA maps is examined. Section 5.1 develops a brief description of the SST

dataset and section 5.2 shows the principal results of the application.
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5.1 Description of the sea surface temperature dataset

The empirical application is based on the data set estimated by the Extended Reconstructed Sea

Surface Temperature (ERSST ) (Smith et al., 2008). It is a global monthly SST dataset derived

from the International Comprehensive Ocean-Atmosphere Dataset (ICOADS ), published online by

U.S. National Oceanic and Atmospheric Administration (NOAA1). It is produced on a 2◦× 2◦ grid

with spatial completeness enhanced using statistical methods (for details see Smith et al., 2008).

This monthly analysis begins in January 1854 continuing to the present and includes anomalies

computed with respect to a 1971-2000 monthly-climatology.

For purposes of this application, the study is limited to the grid bounded by 10◦S − 10◦N and

120◦E − 70◦W (see figure 5.2), which corresponds to the Tropical Pacific Ocean. This dataset

consists in 884 grid nodes in which a monthly SST was estimated, limited to the months from

January 1950 and January 20152. SSTA have been calculated by subtracting from each datum the

average of the same month of the year along the corresponding time series limited to the period

January 1980-December 2010, approximately the same considered by Ashok et al. (2007). Hereafter

it is referred as the SSTA dataset.

To get some descriptive summaries of the SST dataset, figure 5.2 shows the averaged (over

the complete period) map of SST with the standard deviation contoured. It is observed that the

average values of SST fluctuates between 20◦C and 32◦C. The spatial distribution of the average

SST shows the highest values on the west of the Tropical Pacific Ocean but it presents the lowest

deviations (with values lower than 0.3◦C). In fact, this spatial region is known by climatologists as

the warm pool (Kug et al., 2009) and is characterized for producing the warmer temperatures, in

normal conditions, of the Tropical Pacific Ocean. On the other hand, the region corresponding to

the east of the Tropical Pacific Ocean, specifically in the northern coastal of Peru, the SST mean

values are the lowest but the deviations are the highest in all the studied region (with values greater

than 0.9◦C). These highest deviations occur due to El Niño and La Niña events which cause an

1https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surfacetemperature-
ersst-v4. Accessed: 15 - 04 - 2017.

2This period was chosen to evaluate the forecast performance with the presence of El Niño 2015-2016. This will
allow to evaluate the forecast habilities of the model with the presence of extreme values.
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increase and decrease of the normal conditions of SST in the central and east-central equatorial

Pacific Ocean (Wang and Weisberg, 2000).

5.2 Principal results of the application

The three reviewed methods, the SPCA, TPCA and STPCA model, are applied over the SSTA

dataset considering the same parameters of the simulation study. For the forecast horizon, a period

of six months is taken. More specifically, the validation forecast period belongs to the months from

2014 - August to 2015 - January. With respect to the error measures, it is used the MAE instead

of the MAPE since the SSTA dataset has values very close to zero. Moreover, for the calculus of

the “importance” weights, a training period of 768 months is chosen.
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Figure 5.3: Evolution of the median of the spatial MAE using the TPCA, the SPCA and STPCA

model over the SSTA dataset.

In order to evaluate the forecast performance, from a temporal perspective, of the proposed

models over the SSTA dataset, figure 5.3 exhibits the evolution of the global median of the spatial
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MAE in the six months of forecast horizon. As it is observed, the three models provide global

absolute errors lower than 0.6◦C. For the months of 2014 - August and 2014 - September, the

STPCA model displays a better forecast performance than the others. However, since 2014 -

October until 2015 - January, the TPCA model shows the best performance compared with the

others.
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Figure 5.4: Spatial distribution of the median MAE when the SPCA model is used over the SSTA

dataset.

Figures 5.4, 5.5 and 5.6 display the spatial distribution of the median MAE in the six evaluated

months using the SPCA, TPCA and STPCA model respectively.As it is shown, when the SPCA

model is applied over the SSTA dataset, the highest global absolute errors are concentrated over

the eastern Tropical Pacific Ocean (with values greater than 0.4◦C). This pattern is repeated from

2014-August to 2014 - December. For the months going from 2014-October and 2015-January, the

highest global absolute errors are located in the central Tropical Pacific Ocean, with values ranging

from 0.4◦C to 1.2◦C. On the other hand, when a TPCA model is used, the global absolute errors
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produce high values over the warm pool region and the northeast of the Tropical Pacific Ocean for

the months corresponding to 2014 - August, 2014 - September, 2014 - October and 2015 - January.

For the months 2014 - November and 2014 - December the highest global absolute errors moves

to the eastern Tropical Pacific Ocean, presenting values greater than 0.5◦C. Finally, the results

provided by the STPCA model shows that for the first two months of the forecast horizon, the

global errors have lower values than 0.5◦C uniformily over all the studied region. In the month

2014 - October, the errors increase on the west, reaching absolute error values of 1◦C. Nevertheless,

for the last three months, it is marked an increase of the errors in the eastern and central regions

of the Tropical Pacific Ocean (with values greater than 0.5◦C). This low forecast performance over

these specific regions from 2014 - November to 2015 - January could be due to the occurrence of

El Niño 2015 - 2016 event, which according to the NOAA began over those months.
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Figure 5.5: Spatial distribution of the median MAE when the TPCA model is used over the

SSTA dataset.

In order to get extra information to decide what model to use, table 5.1 shows the global

109



2014 − August

10°S

5°S

0

5°N

10°N

La
tit

ud
e

120°E 160°E 160°W 120°W 80°W
Longitude

 0.1 

 0
.1

 

 0.1 

 0.1 

 0.1 

 0
.1

  0.1 

 0.1 

 0.2 

 0.2 

 0.2 

 0.2  0
.3

 

 0
.3

 

 0.3 

 0.4 

 0.4 
 0

.5
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2014 − September

10°S

5°S

0

5°N

10°N

La
tit

ud
e

120°E 160°E 160°W 120°W 80°W
Longitude

 0.2 
 0.2 

 0.2 

 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2014 − October

10°S

5°S

0

5°N

10°N

La
tit

ud
e

120°E 160°E 160°W 120°W 80°W
Longitude

 0.2 

 0
.2

 

 0
.2

  0.2 

 0
.2

 

 0
.2

 

 0
.4

 

 0
.4

 

 0.4 

 0.4 

 0.4 

 0.6 

 0
.8

 
 1

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2014 − November

10°S

5°S

0

5°N

10°N

La
tit

ud
e

120°E 160°E 160°W 120°W 80°W
Longitude

 0
.2

 

 0.2 

 0
.2

 

 0.2 

 0
.2

 

 0.2 

 0
.4

 

 0.4 

 0.4  0.4 

 0.4 

 0.6 

 0.6 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2014 − December

10°S

5°S

0

5°N

10°N

La
tit

ud
e

120°E 160°E 160°W 120°W 80°W
Longitude

 0.2 

 0
.2

 
 0

.2
 

 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

 0.4 
 0.6 

 0.6 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2015 − January

10°S

5°S

0

5°N

10°N

La
tit

ud
e

120°E 160°E 160°W 120°W 80°W
Longitude

 0
.2

 
 0

.2
 

 0.2 

 0.2 

 0.4 

 0.4 

 0.4 

 0.6 

 0
.8

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5.6: Spatial distribution of the median MAE when the STPCA model is used over the

SSTA dataset.

prediction and forecast MAE3 for the SPCA, TPCA and STPCA model. For prediction purposes,

the three models exhibit a similar performance. However, if the global forecast performance of

the three models is compared, then the TPCA model produce the best results. Furthermore, the

TPCA “importance” has a value of 0.6, which gives more evidence in favor of selecting the TPCA

model as the model with best performance.

Table 5.1: Global prediction and forecast results of the SPCA, TPCA and STPCA applied over

the SSTA dataset.

Model Global prediction MAE Global forecast MAE

SPCA model 0.0127 0.526
TPCA model 0.0113 0.313
STPCA model 0.0115 0.376

3These values are obtained with the same process followed in the simulation study.
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Chapter 6

Conclusions and future developments

The major goal of this thesis was to study the forecasting accuracy of a proposed methodology

to model spatio-temporal raster datasets. The devised methodology consists in summarizing the

essential spatio-temporal variability through a PCA and then applies a forecasting model over

the significant PCs or eigenvectors, ending with a spectral reverse reconstruction and a recoursive

algorithm to get the forecast maps. As a result, three different models have been proposed and

each one presented diverse advantages and shortcomings:

• The TPCA model : It was discovered that in terms of global forecast performance, this model

provides good results in datasets with a predominant temporal variability. As a drawback,

this model does not achieve to capture the necessary spatial variability patterns to get the

best overall forecast results. With respect to the prediction accuracy, this model produces the

best prediction performance in-sample independent of the type of variability is predominant

in the dataset.

• The SPCA model : It was found that when the dataset has a predominant spatial variability,

then the model provides the best overall forecast performance. However, when the model has

a predominant temporal variability, it does not achieve to capture the necessary temporal

variability patterns to get the best forecasting accuracy. With regard to the prediction accu-

racy, this model provides a good prediction accuracy but it is not better than the produced
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by the TPCA model.

• The STPCA model: This is an hybrid model that integrates the good prediction and forecast-

ing results of the two previous models in order to improve the global prediction and forecasting

performance. It was showed that datasets with similar spatial and temporal variability in-

formation, this model improves the forecasting accuracy substantially. Finally, for prediction

purposes, the STPCA model produced a similar prediction accuracy than the TPCA model,

which is the model with the best prediction accuracy.

It was also found a measure that allows to determine what type of variability (temporal or

spatial) is predominant in raster datasets. The “importance” weights can be used as indicators

for this purpose. Indeed, the results of the simulation study showed that the TPCA (SPCA)

“importance” weights (table 4.4) could be interpreted as a measure of the amount of temporal

(spatial) variability presented in the dataset. Thus, if the global SPCA (TPCA) “importance”

weight is greater than 0.6, it is claimed that the spatial (temporal) variability is predominant in

the dataset.

The empirical application carried out had as objective to check the prediction and forecast

accuracy of the three devised models with a concrete dataset. The three models were applied over

the SSTA of the Tropical Pacific Ocean from 1950 - January to 2015 - January. The results of

the application lead to conclude that the three models provided an excellent prediction accuracy

wherewith any of them can be chosen for prediction studies. For forecasting purposes, the TPCA

model showed the best performance; however, no model was able to accurately capture the extreme

values of SSTA produced by the onset of El Niño 2015 - 2016. This suggests an evaluation of the

devised methodology with the presence of extreme values in the dataset.

6.1 Future research directions

This investigation has revealed a number of interesting results through the simulation study and the

empirical application results. Now, next paragraphs give suggestions about future investigations

that can be carried out as a result of these discoveries.
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1. To consider possible extensions of the method. Extensions of the devised methodology can

be made in different lines. One of them is to consider the modeling of aerial data irregu-

larly spaced. Indeed, the results found in this thesis have shown that without an explicit

specification of the spatial and temporal covariance structure, the models work flexibly and

provide good prediction and forecast results for different raster dataset structures. Thus, an

study of the modeling in aerial data using the three models would be interesting. Another

important extension is to consider modeling raster datasets with categorical variables instead

of continuous. To achieve this, slight changes can be made in the internal techniques used

for the three models. For example, a categorical PCA (Niitsuma and Okada, 2005) could

be used instead of the traditional PCA and forecasting models for categorical data (Agresti,

2013) would be more suitable than the MODWT-AR-NN model used in this thesis.

2. Doing simulation studies by fine-tuning the internal settings of the model. The developed

models in this work have internally a lot of steps that involve the use of two main tecniques:

the PCA and MODWT-AR-NN model. Both tecniques have some internal settings as the

optimal number of components to retain for the PCA or the type of mother wavelet and the

levels of decomposition to use in the MODWT-AR-NN model. However, this thesis does not

prove whether these features influence or not in the forecast and prediction performance of

the models. So, a future work proving the influence or not of these internal features in the

global forecast accuracy would answer the question.

3. Doing simulation studies evaluating the performance of the models with different dataset char-

acteristics. This thesis has performed a simulation study considering three types of scenarios:

PSV, PTV and STV processes. Whithin the PSV processes, only isotropic auto-covariance

structures were considered. Thus, a simulation study considering anisotropic processes to

compare forecast performances would be appealing. For its side, whithin the PTV processes,

only AR(1) stationary processes were simulated and other structures were not considered.

So, one study considering nonstationary temporal processes could be carried out. For the

STV processes, a hierarchical arrangement was developed varying only the spatial structure

and making constant the temporal variation with an AR(1) structure. For these simulated
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scenarios the interaction between the spatial and temporal component was not controlled

sistematically. In that way, another simulation study controling the amount of interaction

between the spatial and temporal component would help to expand the scope of the proposed

models.

4. Comparing the proposed methods with other existing spatio-temporal models. An investigation

displaying the differences in prediction and forecast accuracy of the proposed models against

other existing statistical spatio-temporal models would make the devised methodology more

reliable. Models such as the spatial autoregressive (SAR) model, the conditional autoregres-

sive (CAR) model and its bayesian versions (Gamerman, 2010; Cressie and Wikle, 2015) may

be used for this purpose.

5. The use of more datasets for application purposes. This thesis exhibited a simple application

study over a SSTA dataset in order to verify the accuracy of the proposed models. Other

application studies, that involve the spatio - temporal modeling of any raster variable, using

the devised methods would enable to check the accuracy of the models in other branches.
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Appendix A

Complementary results

This section shows some complementary results of the simulation study.
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Figure A.1: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV-Exponential process using the SPCA model.
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Figure A.2: Spatial distribution of the averaged MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV-Exponential process using the TPCA model.
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Figure A.3: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV-Exponential process using the STPCA model.
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Figure A.4: Spatial distribution of the averaged MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV-Matérn process using the SPCA model.
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Figure A.5: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV-Matérn process using the TPCA model.
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Figure A.6: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV-Matérn process using the STPCA model.
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Figure A.7: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PSV- Spherical process using the STPCA model.
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Figure A.8: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.50 process using the STPCA model.
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Figure A.9: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.75 process using the SPCA model.
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Figure A.10: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.75 process using the TPCA model.
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Figure A.11: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.75 process using the STPCA model.
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Figure A.12: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.95 process using the SPCA model.
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Figure A.13: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.95 process using the TPCA model.
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Figure A.14: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the PTV - ρ = 0.95 process using the STPCA model.
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Figure A.15: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Exponential process using the SPCA model.
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Figure A.16: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Exponential process using the TPCA model.
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Figure A.17: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Exponential process using the STPCA model.
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Figure A.18: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Spherical process using the SPCA model.
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Figure A.19: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Spherical process using the TPCA model.
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Figure A.20: Spatial distribution of the median MAPE (of the 50 replications) corresponding to

the six forecasted periods of the STV - Spherical process using the STPCA model.
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