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RESUMEN

En esta tesis damos un primer acercamiento al problema de construir rutas de ve-
hiculo para optimizar el recojo de informacién generada en las estaciones, via fisica y
wireless. Construimos un primer modelo matematico MIP y se propone tres posibles
funciones objetivos, las cuales seran comparadas. Para este primer modelo asumimos
que no es posible enviar la informacién por partes, es decir, se envia toda la informa-
cién o no se envia nada, ademads veremos que este modelo solo puede resolver de forma
exacta hasta un maximo de 10 estaciones y con un tiempo T = 30, lo cual sugiere en-
contrar mejores modelos.

En este trabajo construimos también otros tres modelos mateméticos, modelo dis-
creto, modelo visitas, modelo evento, todos ellos permiten enviar una parte de la in-
formacion acumulada en una estacion cercana hacia el vehiculo, estos modelos serdn
comparados de acuerdo a su velocidad, en estos modelo podemos exhibir algunas in-

stancias de 20 estaciones y un tiempo de T igual a 72 y otra de 8 estaciones y un tiempo
de 240.

Debido a que en los problemas reales el nimero de estaciones es mayor necesitamos
de métodos no exactos llamado heuristicas, las cuales nos permite obtener soluciones
cercanas a la exacta, en este trabajo daremos algunas heuristicas como heuristica greedy,
heuristica de insercién, heuristica fix and relax, heuristica de intercambio, y por dltimo
haremos comparaciones entre ellas de acuerdo a la velocidad y a la calidad de la solu-
cion.
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Abstract

The vehicle routing problem is one of the most studied problems in Operations Re-
search. Different variants have been treated in the past 50 years and with technological
advances, new challenges appear. In this thesis, we introduce a new variation of the
VRP appearing in wireless networks. The new characteristic added to this well-know
problem is the possibility of pick-up information via wireless transmissions. In the con-
text considered here, a unique base station is connected with the outside and a vehicle
is responsible for collecting information via wireless connection to the vehicle when it is
located in another sufficiently close station. Simultaneous transmissions are permitted.
Time of transmission depends on the distance between stations, the amount of infor-
mation transmitted, and other physical factors (e.g obstacles along the way, installed
equipment). Information to be sent outside of the network is continuously generated
in each station at a constant rate. The first contribution of this thesis is the introduction
of a mixed ILP formulation for a variation in which it is only possible to send all the
information or nothing during a wireless transmission. For this model three different
strategies are investigated: maximizing total amount of information extracted an the
end of the time horizon; maximizing the average of the information in the vehicle at
each time point; and maximizing the satisfaction of each station at the end of the time
horizon. Each strategy is translated as a different objective function for the mixed ILP
formulation. The problem is then reformulated by accepting the option of sending only
part of the information during a wireless transmission and considering only the first
strategy,(i.e. maximizing the amount of information extracted at the end of the horizon
time). For this new version, we present three mixed ILP formulations, each one with
advantages and disadvantages. These mixed ILP models are compared according to the
CPU time, amount of information collected, gap of unresolved instances, etc. Because
in real life we need to solve problems with a large number of stations, in this thesis,
we also propose heuristics methods for the second version of the problem introduced.
We build some heuristics that do not depend on the mixed ILP model (as for example
Greedy heuristics) and also matheuristcs. In our matheuristics our best model (a vehi-
cle event model) is used as a base for the development of construction of Heuristics as
well as local search heuristics.
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Introduction

"The beauty of mathematics
only shows itself to more patient
followers. "

Maryam Mirzakhani.

The intensive research on VRP is due not only to its computational complexity but
also to the numerous applications in fields such as logistic, maritime transportation,
telecommunications, production, among many others. Different variants of the VRP
have been treated in the past 50 years Among the best known we can cite the VRP with
Heterogeneous fleet (Baldacci et al., 2008), the VRP with Multiple Depots (Montoya-
Torres et al., 2015), the Pickup-and-delivery VRP (Dethloff, 2001), the Stochastic VRP
(Gendreau et al., 1996), the VRP with Time Windows (Agra et al., 2013; Braysy et Gen-
dreau, 2005), the VRP with Backhauls (Toth et Vigo, 1997), the Dynamic VRP (Psaraftis,
1995). Several hybrid variants of the problem are also described in the literature, most
of them inspired by real-life scenarios

Technological advances in network architectures add new features and applications
to routing problems (An et al., 2015; Kavitha et Altman, 2009; Veldsquez-Villada et al.,
2014; Placzek, 2012). In this thesis, we are interested in adding to this well-know prob-
lem the possibility of pick-up information via wireless transmission, this new problem
has many applications,for example in underwater surveillance, (Basagni et al., 2014),
they address an application of underwater monitoring involving a set of S surfacing
nodes and |S| underwater stations, see figure 1 from (Basagni et al., 2014). They look
for a routing to an autonomous underwater vehicle (AUV) during a time period T.
The AUV must leave and return to a surface node while information generated by the
set of underwater nodes is collected along a path that physically visits each underwa-
ter station where information is collected. The strategy adopted by the authors is the
maximization of the value of the information collected considering that the value of
the information reduces along the time. They propose an Integer Linear Programming
(ILP) formulation able to solve the problem with |S| € {4,5,9,12} in a time that varies
from a few hours to a few days.

Another application of this work is in the area of delay tolerant network (DTN) (Fall,
2003; Jain et al., 2004), DTN are wireless networks designed to tolerate long delays or
disruptions. In a DTN, disconnections can occur due to mobility of nodes and/or fail-
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Figure 1 — Maximizing the Value of Sensed Information in Underwater Wireless Sensor Networks
via an Autonomous Underwater Vehicle.

ures of energy, which means a communication path between a source node and a des-
tination node is not guaranteed to exist. Such network architecture was proposed to
provide connectivity in difficult environments, which include, discontinuous connec-
tivity, variable transmission rate, restrictions of energy or other resources. One of the
applications of DTN’s that has gained popularity is to provide web service to remote
locations. For example, Daknet (Pentland et al., 2004) is a network for rural connectiv-
ity that uses buses and local transport to carry messages and web connection to small
and remote villages. Daknet establishes small kiosks in rural villages without web con-
nectivity, allowing people to send email and information in an off-line manner. The
existent transport infrastructure is used to provide data transmission between a remote
village and the connected world. Another important application of DTN is to provide
connection for remote military stations which dispose of a set of vehicles to pick-up
and deliver wireless information (Malowidzki et al., 2016; Redi et Ramanathan, 2011).

This work could be applied in Wireless Sensor Networks (WSN) (Akyildiz et al.,
2002),WSN are often used in critical applications such as habitat monitoring, war surveil-
lance, submarine surveillance and monitoring, detection of biological, chemical and
nuclear attack (Mainwaring et al., 2002; Winkler et al., 2008; Basagni et al., 2014; Vieira
et al., 2015). In these applications, sensors are deployed in a area and are used to store
information to be sent it the future to a control center via base stations. Classically,
data is retransmitted by the sensors to the base stations through a multi-hop routing
protocol (Biswas et Morris, 2004). However, problems can occur with multi-hop rout-
ing. First, an excessive number of jumps reduces the lifetime of sensors in applications
where network failure is a critical factor. Second, as the number of base stations is lim-
ited, nodes near the base stations are left without much energy before the other sensors
causing a non-uniformity in energy consumption. Mobile elements, such as unmanned
aerial vehicles, have been incorporated in the WSN design to solve these two problems
(Teh et al., 2008).

The last two applications mentioned here from both technologies, DTN and WSN,
need to provide vehicle routing strategies with wireless information transmission to
the vehicles involved. Innovation and research appears most in the development of



routing protocols (Bhoi et al., 2017; Celik et Modiano, 2010; Moghadam et al., 2011;
Veldsquez-Villada et al., 2014) while there is still a gap in the development of vehicle
routing strategies. When developing efficient routing protocols, many authors con-
sider that the vehicle route is already defined which is justified by applications taking
advantage of an existing transportation infrastructure (Velasquez-Villada et al., 2014).
In (Celik et Modiano, 2010), the vehicle route is assumed to exist but authors suppose
vehicles can adjust their position (in order to receive information from some stations)
and study the delay performance in the network. Other works, like (Kavitha et Altman,
2009), suppose an architecture is defined for the vehicle routing (cycle path or zig-zag
path) and study the best placement for such architecture. To the best of our knowledge,
the authors in (Basagni et al., 2014) are the only ones to investigate the vehicle routing
problem from scratch together with the wireless transmission planning. They address
an application of underwater wireless sensor networks for submarine monitoring. The
authors considered a scenario with a set of S surfacing nodes and |S| underwater nodes
where they look for a routing to an autonomous underwater vehicle (AUV) during a
time period T. The AUV must leave and return to a surface node while information
generated by the set of underwater nodes is collected along a path that physically visits
each station where information is collected. The information generated in a given un-
derwater node i at a time point t; which arrives to a surface node at a time point ; has a
given value vj; ;,. The strategy adopted by the authors is the maximization of the value
of the information collected. The authors in (Basagni et al., 2014) propose an Integer
Linear Programming (ILP) formulation able to solve the problem with |S| € {4,5,9,12}
in a time that varies from a few hours to a few days.



Organization of the thesis

The thesis is organized as follows : In the first part of this thesis an introduction pre-
sented our motivation to study the problem considered in this thesis. Also, the state of
the art and the applications of the problem have been presented.

In the first chapter a MILP formulation to the problem is presented in Section 1.3
with three different objective functions being discussed at this section. Computational
experiments are presented on Section 1.4. Periodicity on the remaining information at
the stations after a sequence of vehicle routings is solved is discussed in Section 1.4.1.

The chapter two is organized as follows. Section 2.2 formally describes the VRP
being solved while notations and assumptions are presented. Three MILP formulations
to the problem are presented in Section 2.3 with the discussion on how the models can
be strengthened. Computational experiments are presented on Section 2.4. Finally,
some conclusions and research directions are presented at Section 3.3.2.

In the third and last chapter we construct heuristics that will allow giving approx-
imate solutions to the optimum in a considerably low time, most of the heuristics dis-
cussed in this chapter work with the vehicle model event seen in chapter two.

Finally, we present the conclusions of the thesis and some perspectives.
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Vehicle routing problem for
information collection in wireless
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Contents
11 Introduction . ... ... ... ... i 6
1.2 Descriptionof theproblem . .. ... ... ................ 6
1.3 Mathematical formulation . .................. ... ... 8
1.3.1 Problem constraints . ... ... ... ... ... ... .. ... 8
1.3.2 Objective function . . ... ... ... ... ... ... ... ... 11
1.4 Computational experiments . ....... ... ... ... ... 14
141 Objective functions comparison . . ... ... ... .... ... 16




1.1 Introduction

Advances in computer network architecture add continuously new features to vehicle
routing problems. In this work, the Wireless Transmission Vehicle Routing Problem
(WT-VRP) is studied. It looks for a route to the vehicle responsible for collecting infor-
mation from stations as well as an efficient information collecting planning. The new
feature added here is the possibility of picking up information via wireless transmis-
sion, without visiting physically the stations of the network. The WT-VRP has applica-
tions in underwater surveillance and environmental monitoring. We discuss three cri-
teria for measuring the efficiency of a solution and propose a mixed integer linear pro-
gramming formulation to solve the problem. Computational experiments were done
to access the numerical complexity of the problem and to compare solutions under the
three criteria proposed.

1.2 Description of the problem

The wireless network is modeled by a directed graph D = (V,A). The node set
V = {1,...,n} represents the n stations of the network and the arc set A represents
m directed paths connecting pair of stations in V. A base station is regarded as node 1.
Weights t;; and d,; are associated to each arc (path) (i, j) € A representing, respectively,
the time it takes to travel from station i to station j and the distance among these two
stations. Let T = {1,2,..., T} be the time horizon considered. At the beginning of the
time horizon, each station j € V' \ {1} contains an amount C; of information. For each
station i € V'\ {1}, information is generated at a rate of ; units per time point in T.
Thus, the amount of information at station j at each time point k € T, denoted by g, is
proportional to the elapsed time from the last extraction (either physically or through a
wireless connection), i.e.,

Ci+ kr]-, if station j has not been visited before time point k,
ik = . . . .
i (k — tiaet)rj, otherwise, where t, is the time of the last extraction.

Only the base station is appropriated equipped to sending information outside the
network. A unique vehicle is in charge of collecting data from all the stations in V' \ {1}
and of transporting it to the base station. There is no capacity limit associated to the
vehicle. At the beginning of the time horizon, the vehicle is located at the base station
and at the end of the time horizon, it must return to the base station. Multiple visits
are allowed to each node in V. Information can only be transmitted when the vehicle is
located in one of the stations in V, i.e., no transmission is allowed while the vehicle is
moving onan arc (i,j) € A. We also assume that, once a station i starts a transmission to
the vehicle, all the current information located in i at that moment must be transmitted.

Wireless transmission can be used to transfer data from a station j € V to the vehicle
located in a stationi € V'\ {j}. However, wireless transmission is only possible for close



enough stations. Let ., be the maximum distance allowing wireless transmission. A
station j can wireless transfer its data to (the vehicle located in) station i whenever
dij < 7cop. We defineaset W = {(i,j) € V x V | djj < 7eop}

We assume that a transmission occurs with a fixed transmission power of P;. The
received power P, is given by
P, = aPD7"

where 7 is the pathloss parameter (which we shall take in this paper to be equal 2
but our results carry on to arbitrary positive value of #) and where D is the distance
between the receiver and transmitter. We shall assume that the vehicle have an antenna
with an elevation of 1 unit. The coordinates of a sensor are given by (x;,ys,0) and
that of the vehicle are (xp,yp, 1), which means, the antenna on the vehicle is elevated

by one unit with respect to the sensors. Thus, if d = \/ (xs — xp)% + (ys — yp)? then

D = v/1+ d?. We use a linear approximation of the Shannon capacity (as a function of
the power) for the data transmission rate (Tse et Viswanath, 2005) and write it as

_ abr\ BEr _ BPipo PP oy
Thp(d)—log<l—|— (7> = 2UD = 20_(1+d) :

Here B is the Antenna’s gain and ¢ is the noise at the receiver (we assume independent
channels and thus there are no interferences of other transmissions on the received
signal from our sensor).

Thus, the time necessary for a wireless transmission of § units of data between sta-
tions j and i is
aji(1+d3)q, (1.1)

pP:

with a;; = =—
LY

depending on physical factors in stations i and ;.

Simultaneous transmission is possible from a set of at most M stations to the vehicle
located in a station i € V. In this case, the simultaneous data transfer finishes only
when each individual wireless transmission finishes. As a consequence, the time of a
simultaneous transmission corresponds to the highest maximum individual wireless
transmission.

The version of the VRP treated in this paper, denoted as Wireless Transmission VRP
(WT-VRP), consists of finding a feasible routing for the vehicle together with an efficient
planning for collecting information from stations V' \ {1}. The criteria for measuring
the efficiency of a collection planning will be discussed in the next section.

1.3 Mathematical formulation

In this section, we introduce a mixed integer linear programming (MILP) formulation to
the WT-VRP. Let us define an artificial arc set A’ = {(i,i) € V}. Foreach (i,j) € AU A°



and k € T, we define the following decision variables.

1, if the vehicle crosses path (i, j) and arrives to node j at time point k,
Xijk = .
4 0, otherwise.

We observe that the action of crossing an artificial arc (i,i) € A” models the follow-
ing action: the vehicle is located at node i without neither moving nor transferring data.
Let t = (t;j) be the weight matrix associated with A. We also define f =  + I the weight

matrix associated with A U A°. For each (j,i) € W,k € Tand ! € Sy = {1,..., T —k},
we also define,

1, ifnode jis sending data to the vehicle while it is located in
o node i, with transmission starting at time point k
Wikt = and lasting / time units,
0, otherwise.

Linear constraints defining the MILP formulation are presented next, divided in
three sets according to their modeling purposes.

1.3.1 Problem constraints

The first set, the Routing Constraints, characterizes the way the vehicle moves around
the set of stations.

Y Xis(in) =L (1.2)
s:(1,8)EAUAD
Xqr =1, (1.3)
(s,1) EAUA
g <) ip(k+ty,) T Yo Y wu, (i,j) e AUAL VK €T,
(f/P)GAUAO (u,j) €W 1€k
(1.4)
k—1
Tijtrty) <), Xkt ), Y Wugeny V(i j) € AU Ak k+t; €T,
(u,i)€e AUAD n|(n,i)eW I=1
(1.5)
Z w]lkl < Z Z xli’l k+5+t1n l € V’ v] s.t. (]’ Z) € WI Vk S TI
1€S; (in)€EAUAL s€S;
(1.6)



Y xp <1, VkeT, (17)
(ij)eA
k+tij—1

Y Yo v < (1= Xjjgers), (i) €A VKET k+t; €T,  (18)
s=k+1 (mn)c AUAO
xijk S {0/1}/ V(l,]) S A/ Vk € T, (19)

Wy € {0,1}, Y(u,v) €W, Vke T, VleS,. (1.10)

Equations (1.2) and (1.3) ensure, respectively, that the vehicle starts and ends the
routing at the base station. Inequalities (1.4) ensure that, if at a time point k € T the
vehicle arrives at station j € V crossing arc (i,j) € AU AY, it either goes immediately
to a neighboring station (crossing an appropriate path (j,p) € AU AY), or it stays at
node j for a data transfer from another station u € V. Likewise, if at a time point
k + tij € T the vehicle arrives to station j € V coming from station #, inequalities (1.5)
impose that either the vehicle has arrived to station i at time point k, or a data transfer
from at least one another station was occurring and it has finished at time point k. Once
the vehicle has arrived to station i € V, at a time point k € T, if data transfer happens,
inequalities (1.6) force the vehicle to leave i, in a future time point k + s, by crossing
anarc (i,n) € AU AL, Inequalities (1.7) and (1.8) are responsible for the elimination of
simultaneous paths. On one hand, inequalities (1.7) force the vehicle always to leave a
given station along a unique path. On the other hand, if the vehicle cross the arc (i, j),
leaving i at time point k, an inequality in (1.8) will prevent the vehicle from moving from
time point k + 1 to k + t;; — 1. Constraints (1.9) and (1.10) impose binary conditions on
the variables defined.

Inequalities defining the second set of constraints are the Data Transfer Constraints.

% Z E Wiik <1, VkeT, (1.11)
(ji)eW LSy
Wi < Y X, V(j,i)EW,VkeT, VieS,  (112)
(pi)eA
-1
Y Y s <A —wi), V(i) €W, VKT, VI€S.  (113)
(in)eAs=0

Inequalities (1.11) define a bound of M simultaneous data transfers. Inequalities
(1.12) impose that, at each time point k € T, in order to start sending information to
a station i € V, the vehicle must previously arrive to this station. Inequalities (1.13)
prevent the vehicle to leave station i € V while a data transfer is occurring: if wjy
equals to 1, the vehicle cannot leave station i from time point k to time point k + [ — 1.
When simultaneous data transfers occurs, this set of inequalities will be in charge of
defining the total duration of the simultaneous transfer.



Before presenting the last set of constraints, we need to define the continuous vari-
ables of the MILP formulation. For each j € V and k € T, let g, represent the amount
of data accumulated at station j (waiting for transfer out of the network) at time point
k. The last set of constraints is presented next and they are the Amount of Information
Constraints.

qp = Cj, Vie V\ {1}, (1.14)

g1 = qu(l— Y Y wjw) +7j, Vke T\{T},VjeV, (1.15)
i|(j,i)eW €S

ai(1+ d3) ;g <1, V(j,i) € W, Yk € T, VI € Sj. (1.16)

Equations (1.14) set the initial load of each station j € V \ {1}. Equations (1.15)
are in charge of update the load of stations along the time horizon. The amount of
data accumulated in node j, at time point k 41, Dj(k+1)/ is set to 7; in the case a data
transfer started at time point k, otherwise it equals to gj; + 7;. Finally, inequalities (1.16)
define the time necessary for transferring ¢ data units (as defined by (1.1)) whenever
Wik = 1.

Constraints (1.15) and (1.16) are quadratic ones and could be linearized by applying
a classical change of variables (Wolsey, 1998). An alternative way of linearizing these
constraints is by replacing them with the following big-M inequalities:

Gitkes1) = Qe +77— M Y, Y Wi, Vke T\{T},VjeV, (1.17)
jlGid)ewW 1Sk
Qjk = 1), VieV,VkeT  (1.18)
aji(1+ d3)qj — Nj(1 — wjig) <1, V(j,i) EW,Vke T, VI€ S,  (1.19)
where

Mjk:rj(k—l—l), jEV,kET,
Niix = aji(1+ d]Zi)Tjk, (j,i) e W, Vk € T.

Consider anode j € V and a time point k € T. If a transfer occurs from station j at
time point k, the associated inequality in (1.17) becomes redundant and the associated
inequality in (1.18) defines the valid lower bound gjk = rj. On the other hand, if no
transfer occurs, the associated inequality in (1.18) becomes redundant and a valid lower
bound g1y > gjx + 1; is defined by (1.17). A minimization objective function of the
WT-VRP (discussed in the next subsection) together with inequalities (1.17) and (1.18)
will be in charge of appropriately setting the value of variables gj;. In the same way, an
inequality in (1.19) is either redundant (wj;; = 0) or it becomes an inequality in (1.16)
(Wjirr = 1).

10



1.3.2 Obijective function

As it has been described in Section 2.2, the WI-VRP looks for an efficient way of collect-
ing data located in the set of remote stations. We discuss in this section three different
criteria to measure the efficiency of a collection planning, each one giving birth to a dif-
ferent linear objective function. The first one maximizes the total amount of informa-
tion extracted at the end of the time horizon T; the second one maximizes the average
of the information in the vehicle at each time point; while the third one maximizes the
satisfaction of each station at the end of the time horizon T.

Let us analysis the first criteria. Consider first that our goal is the extraction of as
much information as possible from all the stations, at the end of the finite time horizon
T. Let 7, be the quantity of information extracted from a given station j € V' \ {1}, i.e.,

nj=Ci+ri(T—-1) = qr.

The amount of information extracted from all stations in V' \ {1} is

Yo ni= Y G+ Y on(T-1)— ) ar

jeVA{1} jevA{l} jeVA{1} jeVA{1}

Since, in this equation, the only variables from our MILP formulation, introduced
in Section 1.3, are the qir variables, for j € V, we have that

max¢ Y mip= Y, C+ )Y r(T—1)—ming Y g7
jeVA{1} jevA{1} jevA{l} jeVA{1}

The first objective function, denoted FO1, minimizes the remaining amount of in-
formation in the end of the time period, over the set of stations, i.e.,

Minimize ) g;r- (1.20)
jeV\{1}

For the first criterion, no assumption is made about data location security: only the
amount of information collected at the end of the time horizon matters. The second
efficiency criterion is motivated by environments where information is safer once they
leave the station to be stored at the vehicle (Basagni et al., 2014). Among the factors be-
hind this supposition we have failures in station equipments, attack in case of military
applications and energy resources limited. Let vy be the amount of information in the
vehicle at a time pointk € T,

U = 2 C]+ 2 T’j(k—l)— 2 qjk-

jevA{1} jeVA{1} jeVA{1}

11



We look for a solution, i.e., a routing and a collection planning, that maximizes the
average over time of the amount of information in the vehicle, i.e.,

max{%ka}:max iz Y G+ ) rik—1)— ) gi
T keT T keT \jeVv\{1} jeV\{1}

jevi\{1}
1 _ T—-1T
max{T (( 2 C]-)T+( Z 7’]’)(2)_2 Z ij)}
jevV\{1} jeV\{1} keT jev\{1}
T—1 1
max{( Y, G+( X rj)( > )—TZ )y ‘h‘k>}
jev\{1} jev\{1} keT jeVv\{1}
T—1 1 .

— Z Ci+( Z rj)( > >Tm1n{z Z q]-k}.

jeV\{1} jeV\{1} keT jeV\{1}

The second objective function, denoted FO2, minimizes the total amount of remain-
ing information on the set of stations, over the hole time horizon, i.e.,

Minimize ) Y g (1.21)
keT jev\{1}

In the third criterion, the satisfaction of each station will be taken into account. Let
us define the satisfaction of a station j € V as the total amount of information extracted

from j over the amount of information generated at j during the time horizon consid-
ered, i.e.,

S_:Cj+rj(T_1)_‘1jT: B qir
J C]'—|—7’]'(T—1) C]'—|—7’]'(T—1).

The maximization of the satisfaction over the hole set of stations is

1 1 q;t
max { —— Z S; » = max Z <1 — _>
{nljev\{l} ]} {nl].ev\{l} Ci+ri(T-1) }

1 . q;t
SRR N B DS
n—1 {jEV\{l} C]+T](T1)}

For the particular case where C; = r;, we have

1 1 . qit
max Z sj¢ =1— ——=min Z - 5.
{” ~Lieniy } (n=1)T {]’eV\{l} ’j }

Finally, the third objective function, denoted FO3, which maximizes the satisfaction
of the stations, is define as,

Minimize air . (1.22)
jevi(1y i
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Consider the instance of the WI-VRP depicted in Figure 1.1 with five non-base sta-
tions. Figures 1.2-1.4 illustrate the solutions obtained by solving the MILP formula-
tion, with the three different objective functions, assuming a;; = 0.03, for each i,j € V,
Teow = 2, T = 20 and M = 3. The movement of the vehicle is illustrated in each one
of these figures by a time expanded network. Each set of nodes aligned horizontally is
associated to a same station i € V in different time points. Each set of nodes aligned
vertically represents the hole set of stations in a unique time point k € T. Let us denote
a node in the time expanded network by a pair ik, withi € V and k € T. The scalar
value inside a node ik gives us the amount of information in station i at time point k. A
filled arrow from a node ik to a node jI represents a movement of the vehicle, leaving
station i at time point k and arriving to station j at time point . A dashed arrow from a
node ik to a node jk indicates a data transfer occurs from station i to station j, starting
in a time point after k. A weight associated with a dashed arc indicates the duration of
the transfer.

NN TN
W N OB
R NN O RN U
N R=N ST NN
N O Ul W N
O N~ =N

I

I
O O Ul
O WO N R
— NN = N U
_, O =N O
N~ O N WO

Figure 1.1 — Directed (symmetric) graph describing an instance with 6 stations, data rates r =
(0,4,1,5,3,2), time matrix [ and distance matrix d.

The vehicle routing depicted in Figure 1.2is1 — 2 — 3 — 6 — 4 — 1. The
vehicle leaves the base station 1 at time point 1 and arrives to station 2 at time point
5 with transmission from stations 2 and 3 starting immediately, each lasting 1 time
unit. Then, the vehicle leaves station 2 at time point 6 arriving at station 6 at time
point 9 for data transfer from stations 4, 5 and 6; data transfer at station 6 has lasts
max{5,3,3} time units. The vehicle leaves station 6 at time point 14 and continues its
routing and data transfers until returning at time point 20 to the base station 1. The
total amount of information generated during the hole time horizon at each station,
respectively from station 2 to 6, is 80, 20,100, 60, 40. For the solution depicted in 1.2, the
remaining information at each station is, respectively, 60, 15, 25, 33, 10 which means, the

13



base :
station;

initial final
Information Information

Figure 1.2 — Solution obtained for the instance depicted in Figure 1.1 by the MILP formulation with
objective function FO1 defined in (1.20).

total amount of information collected from each station is, respectively, 20, 5,75, 26, 30.
For this solution, the value of the three different objective functions are: 143 for FO1,
1575 for FO2 and 51 for FO3.

The vehicle routing depicted in Figure 1.3 choses for not visiting stations 2 and 5;
wireless transmissions are used to collected information from these stations. For this
solution, the value of the three different objective functions are: 162 for FO1, 1536 for
FO2 and 48 for FO3. The vehicle routing depicted in Figure 1.4 choses for visiting
each station in the network. This improves the satisfaction over the hole set of stations
though it increases the amount of remaining information in the network. For this solu-
tion, the value of the three different objective functions are: 145 for FO1, 1598 for FO2
and 45 for FO3.

1.4 Computational experiments

In this section, we report computational experiments carried out with the formulation
presented in Section 1.3 comparing the solutions obtained with the different objective
functions proposed. The MILP problems were solved by IBM CPLEX Optimizer 12.6.1.0
on a server with a 16 processor Intel®Xeon® Processor E5640 12M Cache, 2.67 GHz
and 32 GB of RAM memory. The CPU time limit was set to 1h for all instances. Before
presenting the obtained results, we briefly describe the set of instances used in our
experiments.

14
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Figure 1.3 — Solution obtained for the instance depicted in Figure 1.1 by the MILP formulation with
objective function FO2 defined in (1.21).

Instances

We evaluate the MILP formulation on a set of 80 instances. Each instance is defined
by a random graph D = (V, A) and a given value T. A set of 40 random graphs were
generated as follows.

Let n and A be, respectively, the total number of vertices and a border on the density
of the graph to be generated. On a square of length B, the base station is located in
the bottom-left vertex and the other n — 1 stations are placed randomly on the square
of length B — 2 in the upper-right (as shown in the figure (1.5)). We define A as the
adjacency matrix associated with the complete graph defined by the n stations. Let
A(D) denote the density of the graph D = (V, A). We randomly select an arc (i,j) € A
such that D = (V, A\ (4,])) is a connected graph. We define A = A\ (i,). In case A —
A(D) > 0.01 we proceed with the random elimination of arcs; otherwise we stop and
return the graph D = (V, A). Finally, a rate r; is randomly generated for each j € V'\
{1}. The distance matrix d is defined by using the euclidean distance between each pair
of vertices located in the square of side B. The time matrix t is defined according to the
adjacent matrix considering a vehicle of speed equal to 1 which means, t;; = d;; if (i,) €
A, tij = 0 otherwise. We generate graphs with number of vertices n ¢ {6,8,10,12} and
upper bounds on the graph density A € {0.5,0.7}. For each combination of n and A,
five random graphs are generated according to the procedure just described. In our
experiments we considered the set of graphs just described together with f € {24,28}.
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Figure 1.4 — Solution obtained for the instance depicted in Figure 1.1 by the MILP formulation with
objective function FO3 defined in (1.22).

1.4.1 Objective functions comparison

Tables 1.1 and 1.2 exhibit the results obtained with the three objective functions on the
set of 80 random instances. In both tables, the first multicolumn exhibits information
about the instances: |V| is the number of stations, d is the graph density, T is the size of
the time horizon considered. The fourth column informs the total amount of informa-
tion generated in the network during the hole time horizon. The next five multicolumns
display information about the solutions obtained with each different objective function:
"CpuTime" is the time, in seconds, spent to solve the instance to optimality ("—" means
the instance was not solved in the time limit); Gap is the MILP gap calculated between
the best integer solution found and the final lower bound (a Gap = 0 means the solution
was solved to optimality in the time limit); "Inf.collected" display the total amount of
information collected by the vehicle during the hole time horizon; "Av.Vehicle" display
the average amount of information in the vehicle over time; "Av.Satis faction" display
the average satisfaction over the set of stations.

Table 1.1 presents results obtained on instances with 6 and 8 stations and show, as
we expected, the sensibility of the ILP formulation to the total number of stations in
the network. In general, instances with more than eight stations cannot be solved in
one hour of computation. Looking the optimal solutions obtained, data transmissions
took no more than three time units. Thus, we solved a set of instances with 8,10 and
12 stations by limiting data transmissions to four time units which reduces the number
of binary variables in the formulation: variables wj;; are defined for I < 4. Table 1.2
presents the results obtained on instances with 10 and 12 stations.

From results on these two tables, we conclude that the WI-VRP problem became
more difficult as the number of stations increases as well as the time horizon increases.
From Table 1.2, a total of 2 and 17 MILP problems were not solved to optimality, re-
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Figure 1.5 — Schema used for random graph generation: the base station is located in the bottom-left
vertex; the other stations are randomly placed in the square located in the upper-right.

spectively, for T = 24 and T = 28 with gaps arriving to 30% when T = 28. From Table
1.1, a total of 7 and 29 MILP problems were not solved to optimality, respectively, for
T =24 and T = 28 with gaps arriving to 69% when T = 28. The graphics in Figure
1.6 displays the results obtained on the 47 instances solved to optimality by all three
objective functions. In each graphic, the instances are ordered in increasing order of the
average of the time spent to solve the three ILP problems. The three graphics from the
top compare the optimal solutions obtained according to the value of "Inf.Collected",
"Av.Vehicle" and "Av.Satis faction". We can observe that, in fact, the WT-VRP problem
became more difficult as the total amount of information collected from the network
increases. From our results, we conclude the MILP formulation defined with objective
function FO2 is computationally easier: less instances not solved to optimality and, in
average, less time spending and smaller gaps. From both tables, the total number of
MILP not solved to optimality in the time limit is equal to 22, 11 and 22, respectively,
for objective functions FO1, FO2 and FO3. We can also observe that, on one hand, the
solutions maximizing the average satisfaction of the network impacts almost equally
the average amount of information in the vehicle and the total amount of information
collected. On the other hand, the solutions maximizing the average amount of infor-
mation in the vehicle over time, impacts slightly more the average satisfaction of the
network than the solutions maximizing the total amount of information collected.
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Figure 1.6 — Results obtained on the set of 47 instances solved to optimality with all objective
functions.

Periodicity

We compare now the optimal solutions obtained with each objective function with re-
spect to the information left in the network at the end of a time period T. Let C° =
[Cg, CO, e, Cg] be a vector with the amount of information stored in each stationi € V.
By considering the vector C° as the initial conditions in the MILP formulation, we ob-
tain a routing for the vehicle, a collection planning and the amount of remaining infor-
mation in each station, denoted here as C' = [C},C},...,Cl]. In that way, the MILP
formulation associated with an instance can be seen as a function F : R" — R”"
such that F(C?) = C!. In order to study the dynamics of function F, let us define
C™ = F"™(C%) where F*(C) = F(F*1(C)). We experimentally investigate the existence
of values k, 7 € N such that F*(C*) = CF starting with the initial conditions C° = 0.
When such values exist, we say that the function F is periodic.

For this experiment, we use all the instances solved in less than 300s by our MILP
formulation (with all three different objective functions). Consider an instance of the
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problem and a MILP formulation, i.e. a function F : R" — R". Starting with c’=o,
we solve this instance and obtain F(C?) = C!. Then, we continue to iterate until we
discover that the function is periodic or we have solved the MILP formulation 30 times.

Table 1.3 displays the results obtained. The first multicolumn exhibits information
about the instances used in this experiment as defined for the previous tables. The
other three multicolumns inform us the results obtained for each objective function:
the values obtained for k, T and the number of isolated stations #isol. An isolated sta-
tion 7 is a station such that, in the successive applications of function F, we arrive to a

given k, such that Cl]f/ > CF, for each k' > k. That means, the amount of information
accumulated at station i at iteration k arrives to a value that the optimal solution of the
MILP formulation (due to the size of the time period T and the assumption that once
a transmission starts all the information in the station must be transmitted) is not able
to reduce it. Thus, station i became isolated from outside of the network. The entry
“—"for k and T means the solution became periodic for a subset of stations but with
the presence of isolated stations. Likewise, the entry “+" for k and T means after the
limit of 30 iterations no periodicity was achieved. From the results in Table 1.3, we can
conclude that the formulation maximizing the average satisfaction of stations is more
suitable to achieve periodicity and with smaller values of k.

Table 1.3 — Results obtained when the periodicity of the solutions obtained by the ILP formulations
is studied.

- FO1 FO2 FO3
M d T k T #isol | k T #isol |k T #isol
6 050 28| - - 1 - - 1 - - 1
- - 1 - - 1 - - 1
7 5 0 7 2 0 5 3 0
- - 1 - - 1 - - 1
4 2 0 3 2 0 3 1 0
6 05 30| 2 3 0 3 3 0 2 3 0
- - 1 - - 1 - - 1
2 1 0 5 1 0 2 5 0
6 4 0 - - 1 6 3 0
4 1 0 3 2 0 5 1 0
8 053 32| - - 1 - 1 - - 1
oo 0 o 0 5 3 1
* * 0 * * 0 * * O
3 2 0 0 5 2 0
12 4 0 o 0 1 2 0
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2.1 Introduction

In this chapter we study a routing-collecting problem where a system of n stations is
considered. A vehicle is responsible for collecting information generated continuously
in the stations and to deliver it to the base station. The objective is to determine the vehi-
cle route and the collection operations, both physical and wireless, in order to maximize
the amount of information collected during a time horizon.

In the chapter 1 it is assumed that, once a station starts a transmission to the ve-
hicle, all the current information accumulated in this stations at that moment must be
transmitted. This assumption is justified in a scenario where information is safer once it
leaves the stations. However, we observed that this imposition contributes for the dis-
connection of some stations. In this chapter, we do not make this assumption and we
set as a strategy for the vehicle routing problem the maximization of the total amount
of information extracted at the end of the time horizon T. Adding new aspects to a
problem can impact the mathematical modeling choices (Cancela et al., 2015) and our
assumptions allowed us to develop differents MILP formulations to the problem.

We develop three different MILP formulations to the problem, one based on a time
discretization, where each decision is a multiple of the time unity, and two using con-
tinuous time and based on events. The two formulations based on continuous time
differ in the type of events considered. One formulation assumes the events are visits
to stations and transfer operations, and the other assumes that events are the vehicle
stops. We will see that each such model proposed in this chapter have pros and cons
making it more suitable for a particular instance. To the best of our knowledge these
models have never been introduced for a VRP with information collection in wireless
networks. The most related work is the comparison of discrete time models with con-
tinuous time models presented in (Agra et al., 2017) for a maritime inventory routing
problem; although the conclusions are not coincident to the ones in this paper as the
problems are different.

The problem treated in this chapter is very close to the problem defined in chapter 1.
In order to make clear the differences, In the next section we give the complete problem
definition of the problem considere in this chapter.

2.2 Description of the problem

The wireless network is modeled by a directed graph D = (V, A). The node set V =
{1,...,n} represents the n stations of the network and the arc set A represents the
directed paths connecting pairs of stations in V. The base station is regarded as node 1.
Weights t;; and d;; are associated to each arc (path) (i, j) € A representing, respectively,
the time it takes to travel from node (station) i to node (station) j and the distance among

these nodes (stations). Let T = {1,2,..., T} be the time horizon considered divided in
m time periods. At the beginning of the time horizon, each nodej € V' \ {1} contains
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an amount C; of data. For each node i € V'\ {1} data is generated at a rate of r; units
per time period in T. Thus, the amount of information at node j at each time period
k € T, denoted by gy, is proportional to the elapsed time from the last extraction (either
physically or by radio), i.e.,

G+ kr]-, if node j has not been visited before time period k,
ik (k — tiast)rj, otherwise, where t,; is the time of the last extraction.

Only the base node is properly equipped to send information outside the network.
A unique vehicle is in charge of collecting data from all the stations in V' \ {1} and of
transporting it to the base node. There is no capacity limit associated to the vehicle.
At the beginning of the time horizon, the vehicle is located at the base node and at the
end of the time horizon, it must return to the base node. Multiple visits are allowed to
each node in V. Data can only be transferred to the vehicle once it is located in one of
the stations in V, i.e., no data transfer is allowed while the vehicle is moving on an arc
(i,j) € A.

Wireless transmission is used to transfer data from a node j € V to the vehicle lo-
cated in a node i € V. Wireless transmission is only possible for close enough nodes.
Let 7c0o be a maximum distance allowing wireless transmission. A node j can wire-
less transfer its data to (the vehicle in) node i whenever d;; < r,,. We define the set
of nodes that can send information to node i as range(i) = {j € V : djy < 70}
We make the same physical and technical assumptions as in chapter 1. Thus, we as-
sume transmission speed inversely proportional to the square of the distance between
nodes depending on two additional factors: the amount of information transmitted and
physical factors (as equipments used or obstacles between nodes). Let a;; be a param-
eter representing the physical limitations of sending information among nodes i and

j. The amount of information that can be sent per time unit from node j to node i is
1

ai(1+d2)
Jt . . .
assume nodes are free to transfer only part of their information to the vehicle.

. As we have mentioned in the introduction, different from chapter 1, we

Simultaneous transmissions are possible. Parameter M denotes the maximum num-
ber of nodes that can transfer information simultaneously to the vehicle in each time
period and R denotes the maximum amount of information that can be transferred in
each time period. In this case, the simultaneous data transfer finishes only when each
individual wireless transmission finishes. As a consequence, the time of a simultaneous
transmission corresponds to the highest time among individual wireless transmissions.

The version of the VRP treated in this chapter, called Wireless Transmission VRP
(WT-VRP), consists of finding a feasible routing for the vehicle (i.e., a routing leaving at
the beginning and returning at the end to the base node) and an efficient planning for
collecting data from nodes V' \ {1}. The criteria for measuring the efficiency of a collect
planning is the total amount collected.
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2.3 Mathematical models

Next, we introduce three MILP formulations to the WT-VRP. First, a time discrete model
(Section 2.3.1) is developed where each decision is a multiple of the time unity. Second,
an event model is proposed (Section 2.3.2) where visits to stations and transfer opera-
tions are considered as events. Finally, another event model is presented (Section 2.3.3)
in which the considered events are the vehicle stops.

2.3.1 Discrete time model

Discrete time models have been used for related problems as maritime inventory rout-
ing problems (see (Agra et al., 2013a,b)). In this model the time horizon is discretized
in a number of time periods T = {1,2,..., T}. We assume that, at each time period in
T, the vehicle is either traveling or waiting at a node and this behavior is modeled by
the following two sets of binary variables.

For each (i,j) € Aand k € T, let

1 if the vehicle crosses the arc (i, j) (going directly from node i to node j) and arrives
Xijk = at the end of time k,
0 otherwise.

Foreachjc Vandk € T, let

o 1 if the vehicle is waiting at node j during time period k,
K70 otherwise.

A third set of binary variables controls the wireless transmissions occurring at each
time unit. For each pair of vertices j € V,i € range(j) and k € T, let

0;

~J1 ifnode j sends information to node i during time period k,
o 0 otherwise.

Finally, continuous variables are used to describe the amounts of information at the
nodes and the amounts of information transmitted. For each j € V and k € T, let g
be the amount of information in node j at the end of time period k. For each j € V,
i € range(j) and k € T, let f;; be the amount of information transmitted from node j to
node i during time period k.

The Discrete Time (DT) model follows.

Minimize Z Gim (2.1)
jev
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t Yy xiyy =1 (2.2)

(1] JEA

Y, xir=1 (2.3)
(ji1)eA

Yoz t+ Y, wp <1, VieV,VkeT, (24)
JEV (ij)eA
Zigt+ Y, Xig= ), X Xip(k+t,) T Zj(k+1)s VieV,VvkeT, (2.5)

(ij)eA (jip)eA
Y. Bk < Mz, VieV,keT, (2.6)
jerange(i)
Bjik . . .

ik < ———, Viev,v L VEET, (27

fiix < l’éji(1+d]2-i) i€ i € range(j) € (2.7)
Y. fix <R, VieV,keT, (28)
je€range(i)
Jik = Gjk—1+71j — Z f]zk, VieV, keTlk>1, (29)
icrange(j

70 = Cj, VjieV, (2.10)
qik = 0, VieV, keT, (211)
fiik = 0, VjieV,ierange(j), ke T, (2.12)
0;ix € {0,1} Vj €V, icrange(j), k€ T, (2.13)
zj € {0,1}, VieV, keT, (2.14)
xijx € 10,1}, V(i,j) € A,k € T. (2.15)

The objective function (2.1) minimizes the total amount of information remaining at
the nodes at the end of the time horizon T, i.e., at time period T. Constrains (2.2)-(2.5)
are the Routing Constraints. Equations (2.2) and (2.3) ensure that the vehicle starts and
ends its route at the base node. Inequality (2.4) ensures that at most one of the following
cases can occur at time period k: the vehicle arrives at a node or the vehicle is waiting
at a node to receive information. Equations (2.5) ensure that if either the vehicle arrives
at node j or it is waiting at this node at time period k, then, at the next time period
k + 1, either it travels to a neighbor node or it keeps waiting at node j (see Figure 2.1).
Inequalities (2.6) and (2.8) are variable upper bound constraints imposing the Transfer
Constraints. Constraints (2.6) guarantees that at most M nodes send information to
the vehicle simultaneously. Also, this inequality ensures that, whenever variable 60 is
positive, for some j € V, i € range(j) and k € K (i.e. at time period k, a node j sends
information to the vehicle at node i) then z;; must be one (i.e. the vehicle must be located
at i at time period k). Similarly, inequalities (2.7) ensure that the maximum amount of
information sent from node j to node i, at a time period k, is obeyed. Additionally,
this set of inequalities ensure that if fj; is positive, then the binary variable 6;; must
be one. Equations (2.8) ensures that during each time period the maximum amount of
information that can be transferred to a node i cannot exceed R. Constraints (2.9) and
(2.10) are the Amount of information Constraints. Equations (2.10) set the initial amount
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of information at each node. Equations (2.9) are the equilibrium constraints for the
amount of information at each node. They impose that the amount of information at
a node in time period k is equal to the amount information in the time k — 1 plus the
rate of that node minus the amount information extracted in the previous time period.
Finally, inequalities (2.11)—(2.15) establish the domain of the variables.

Example 2.3.1 Consider an example with six nodes, where node 1 is the base station, and with
T = 30 time periods. The data generation rates for nodes 2 to 6 are given respectively by
3,4,2,2 and 4. The parameters R and M are set to 20 and 3, respectively. We define aj; = 1/20
for j = iand aj; = 1/6, otherwise. The initial amount of information at each node is zero. The
following matrices are considered.

0 45477 0 4 o© 4 o© o©
4 0 2 4 3 6 4 0 2 oo 3 o
d:520221t200202001
4 4 2 051 4 o0 2 0 o 1
7 3 25 0 2 0o 3 oo o 0 2
|7 6 1 1 2 0 | | 00 0 1 1 2 0 |
1 0 0 0 0 07
011010
011111
W_001101
011011
001 1 1 1]

where d is the distance matrix, t is the travel times matrix, and W is the matrix indicating
whether j € range(i) (Wj; = 1) or j € range(i) (W;; = 0). For example, node 2 can receive
information from nodes 2, 3 and 5, while node 3 can receive information from nodes 2, 3,4, 5, 6.

The optimal solution obtained with the DT model is depicted in Figure 2.1. The vehicle
leaves the base station (node 1) at the beginning of the time horizon and arrives at node 2 at
the end of period 4. It stays in node 2 during time periods 5 and 6, receiving information from
nodes 2, 3 and 5. Next, the vehicle moves to node 3 where it spends one time period to receive
information from nodes 2, 3 and 6. Then it moves to node 6 to receive information from nodes 3,
4 and 6. At the end of time period 12 the vehicle moves to node 5 where it stays for four periods.
It receives information from nodes 3 and 5 during four time periods and from nodes 2 and 6
during two time periods. Then the vehicle moves again to node 6 where it stays for two periods,
receiving information from nodes 3, 5 and 6. At the end of time period 22 it moves to node 4 to
receive information from nodes 3, 4 and 6 during three time periods. Finally, the vehicle returns
to the base station.

Strengthening the model Here we discuss several enhancements that allow to tighten
the model, that is, to derive a new model whose linear relaxation value is closer to the
optimum value. Exact methods based on the linear relaxation such as branch-and-
bound and branch-and-cut will haver smaller enumeration trees when the model is
tight (Wolsey, 1998).
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Base
node

Initial ; sending time Final
Information Information

Figure 2.1 — Optimal solution of the instance in Example 2.3.1 obtained with the Discrete Time
model for T = 30. Objective function value = 183.8.

The first enhancement is to disaggregate inequalities (2.6) as follows:
Oiik < zik, VieV,jerange(i), k € T. (2.16)

Although inequalities (2.16) are more in number, they are tighter than (2.6).

Another improvement is to replace inequalities (2.8) by the following variable upper
bound constraints.

Y fix<Rzy, VieV,keT. (2.17)

jerange(i)

Next we define a set of valid inequalities that impose a limit on the amount trans-
ferred, for a subset of time periods. Let

t* = min {t
A
denote the minimum traveling time between nodes. The following proposition estab-
lishes an inequality based on the fact that, during the subset of time periods ¢ < t* +1,
only one node can be visited.

Proposition 2.3.1 For | < t* + 1, the following inequality is satisfied by each feasible solution
of the DT model.

1+1
YN )Y fis<)Y G+ max{rx}l (2.18)
s=1jeVierange(j) jev

Proof The proof is straightforward.
The DT model has O(xT) variables and constraints, where x =| )_ range(i) | .

iev
When 7.y, is larger than the greatest distance between two nodes, the size becomes
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o(v ]2 T), while in the opposite case, when 7.y, is smaller than the minimum distance,
it becomes O(| V | T). Hence, the main components with impact on the number of
variables and constraints are the number of nodes (stations), the number of time periods
considered, and the number of possible pairs of nodes for wireless transfer.

The DT model provides detailed information on the visits, normally leading to tight
models (Agra et al., 2017). However, as the model depends on the time discretization,
and since a fine discretization may be required to model the traveling times and the
transfer operations, it tends to increase with the increase of the time horizon.

2.3.2 Node event model

The DT model includes many variables that are null in each possible solution since
some nodes are not visited, and those that are visited receive few visits during the time
horizon T = [0, T]. In order to avoid the use of so many null variables, we introduce a
flow model where only events are modeled, see (Agra et al., 2017). Two types of events
are considered. A first set of events is denoted by A" and includes all the possible
physical node visits, which are defined by a pair (i, 1) that represents the n'" visit of
the vehicle to the node i. The second set of events, denoted by A%, include events (j, k)
representing the k™ time information is sent from node j. A feasible vehicle route is
defined by a combination of events from A" and A”.

Next, we define the set of binary variables to be used in this section. For each pair
(i,n),(j,m) € A", with (i,]) € A,

N 1 if the vehicle goes directly from node visit (i, 1) to node visit (j, m),
i 0 otherwise.

For each (j,m) € A7,

o 1 if the node visit (j, m) belongs to the vehicle route,
10 otherwise.

For each (i, k) € AY,

1 if at least k transfers occur from node i,
Zix =
o 0 otherwise.

For each (j, k) € A¥ and (i,n) € A,

0 1 if the k™ transfer from node j to the vehicle occurs at its n'* stop at node i,
jkin = .
J 0 otherwise.

The following set of continuous and integer variables will be also necessary. For

29



(j,k) € AV and (i,n) € A",

fjkin : amount of information sent during the k' transfer from node j to the vehicle,
occurred at its 1" stop at node i.
Gjkin : duration, in number of time periods, of the k' transfer from node j to the vehicle,

occurred at its 1" stop at node i.

For (i,n) € A,

Yin : duration, in number of time periods, of the n'" visit to node i.

ti, : time period at which the node visit (i, n) starts.
For (j, k) € AY,

gjx - amount of information in node j at the beginning of the k' information transfer.

“ . time period at which the the k" transfer from node i starts.

The Node Event (NE) model is described in the follows.

minimize Z C+T Z r— Z Z fimin (2.19)

icV icV (jm)eAv (in)eAr
Y. xmp=1, (2.20)
jevi{1}
Y. o = (2.21)
(jm)eAr
Z Ximjn = Wim, V(l, m) e N, (2.22)
(jm)ear|(ij)eA
Yo Xjuim = Wim, V(i,m) € AT, (2.23)
(jm)enr|(ji)eA
Wi < Wim—1, V(i,m) e AN,m>1, (2.24)
) fikin < Riin, Y(i,n) € A, (2.25)
(jk)eve|jerange(i)
fikin < @ik +7i(Eixin — 1), V(j, k) € AY, (i,n) € A',j € range(i), (2.26)
fikin < Gk V(i,n) € N, (j,k) € AY,j € range(i), (2.27)

Dé]'i(l + djzl) !
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Z g]kli’l S M f)/in/ v(l/n) 6 AT’/ (2'28)
(jk)eAv|jerange(i)

Cikin < TOjkin, V(j, k) € AY, (i,n) € N, € range(i),
(2.29)
Y. Oikin < Win, V(i,n) € AV, j €range(i), (2.30)
k| (jk)eA®
Zik < Zik-1, Y(j k) e AV k>1, (2.31)
zig =Y, Oikims V(j, k) € A", (2.32)
(i,m)enr
k=1
qj = Cj + ity — ), Y fitins Y(j, k) € AV, (2.33)
(in)eAr|ierange(j) {=1
t;"m > tzrn + Yin + tij - (T + tij)(l - xinjm)/ V(i,i’l), (]/ m) enN, (], 1) €A
(2.34)
th> Y. taxua, V(i,1) e A, (2.35)
i|(i1)eAr
o + YVjm + tpXjm2 < T, V(j,m) € N, (2.36)
i =ty — T(1 = Ojkin), Y(i,n) € A, (j,k) € A,  (2.37)
Eig + Cikin <ty + Yin + T(L = Ojpin), Y(i,n) € A", (j,k) € AY,  (2.38)
Xjmin € {0/ 1}/ V(],m), (i,n) < Ar/ (]/ Z) €4,
(2.39)
Oikin € {0,1}, V(j,k), € AY, (i,n) € A",  (2.40)
qik € RT, Y(j,k) € AY, (2.41)
fikin € RT, V(j, k), € AY, (i,n) € N, (2.42)
Yk €EZT, Y(j, k) € AY, (2.43)
Cikin € Z7, V(j, k), € AY, (i,n) € A",  (2.44)
WEZT, V(i,n) € A, (2.45)
hezr, V(j, k) € A, (2.46)

The objective function (2.19) minimizes the amount of information kept in the nodes
at the end of the time horizon. This amount is computed by removing the extracted in-
formation from the total information generated through the entire time horizon. Con-
straints (2.20)—(2.24) are the Routing Constraints. Equations (2.20) and (2.21) ensure,
respectively, the vehicle leaves and ends its route in the node base 1. Equations (2.22)
and (2.23) ensure the flow conservation, stating thatif the m v isit to node i occurs,
then there must exist an arc entering and leaving that node. Constraints (2.24) state
that if the m'" visit to node i occurs, so the previous m — 1" visit must have occurred.
The set of Information Transfer Constraints is defined by constraints ( 2.25)—(2.33). Con-
straints (2.25) limit the transfer amount considering the maximum transfer quantity
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per period. Constraints (2.26) ensure that the amount that can be transferred cannot
exceed the information available at the corresponding node. Constraints (2.27) limit
the transfer amount taking into account the transfer rate. Constraints (2.28) ensure that
during the k" visit of node i, the total duration of all transfers to node i cannot ex-
ceed the maximum allowed number of transfers per period, M, times the duration of
the visit. Constraints (2.29) link the variables indicating the duration of the transfer
operations (variables §j;,) to the binary variables 0j;, indicating whether a transfer
occurs. Constraints (2.30) ensure that an information transfer occurs only if a visit oc-
curs. Constraints (2.31) state that if the m"* transfer occurs so the previous m — 1" must
have occurred. Constraints (2.32) relate the binary transfer variables. Constraints (2.33)
define the amount of information at each node at the beginning of each information
transfer. Constraints (2.34)—(2.38) are the Time Constraints. The start time of each k"
visit is defined by constraints (2.34) and (2.35). Constraints (2.34) takes into account the
start time of the previous visit plus the traveling time between the two locations and the
time spent on the last visit. Notice that this inequality is redundant whenever x;,j, = 0.
Constraints (2.35) restrict the start time of the first visit. Constraints (2.36) force all the
visits to end early enough so the vehicle can return to the base station before the end of
the time horizon. Constraints (2.37) and (2.38) relate the start and end times of an infor-
mation transfer from node j to node i, with the start and end times of the visit to node
i. Notice that these inequalities are redundant whenever 6j;, = 0. Finally, constraints
(2.39) - (2.46) define the variables domain.

Example 2.3.2 Figure 2.2 depicts the solution of the instance used in Example 2.3.1, with the
solution representation of the NE model. In this figure, two different set of nodes represent the
two different types of events: circles represent events in A" while squares represent events in A”.
For instance, we can see that station 6 is visited twice while the other stations are visited once;
during the event (6,2) € A" (second visit to station 6), occur the events (3,5), (5,2), (6,4) €
A" corresponding to transfer operations.

Information

Figure 2.2 — Optimal solution of the instance in Example 2.3.1 obtained with the Node Event model.
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Strengthening the model. The NE model can be strengthened with a valid inequality
that bounds the transfer amount Z fjmin With the maximum transfer rate R times the
number of periods the vehicle can receive information, i.e., the number of periods the
vehicle is not traveling.

Proposition 2.3.2 The following inequality is satisfied by each feasible solution of the NE
model.

Z Z fimin < R(T - Z Z tiiXinjm)- (2.47)

(jk)eAv (in)eAr:jerange(i) (in)eAr (jm)eAr:(ij)€eA
J ] 8 J ]

Proof The proof is straightforward.

Model NE has O( Z Z riw; + Z rirj) variables and constraints, where the
i€V jerange(i) (i,j)eA
values r;, w; represent the maximum number of allowed visits to node i and the maxi-
mum number of allowed transfers from station j, respectively.

2.3.3 Vehicle event model

Typically, a vehicle route includes only a small number of nodes visited. Since the
events in the NE model were defined on the set of nodes, most of the variables in this
model will have null value. In this section we define a set of events associated with the
vehicle: each event is a vehicle stop. This formulation resembles the layered formula-
tion for the vehicle routing problems, see (Agra et al., 2012) and the references therein.
Let N = {1,..., N} denote the set of possible events where N is an upper bound on the
number of events. The new routing variables indicate the node visited at the k' vehicle
stop, indexed by the event k € N.

Next we define the new set of binary variables. For eachi € V,k € N,

1 if the k' vehicle event occurs at node i,
ik = .
0 otherwise.

The following continuous and integer variables are also defined. For each k € N,

ti : time period at which the k”* event occurs,

Yk : time (in time periods) spent at the k" event.

Foreachje V,k e N,

gjx - amount of information in node j at the beginning of event k.
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Foreachi,je€ V,k € N,

Gjix : duration (in time periods) of the information transfer from node j to node i at event k,

fjix : amount of information transmitted from node j to node i during event k.

The Vehicle Event (VE) model is as follows.

Minimize ¢ Y (Q; + Tri) — ) fiik (2.48)
ieV i€V, jerange(i), ke N
Y, xui=1, (2.49)
j:(1,))eA
Y xu=1, (2.50)
neN
Y xj, <1, Vi e N, (2.51)
jev
X <Y Xigot, VjeV,keN, (2.52)
i:(ij) €A
k=1
X <1—Y xyy, Vie V\{1}L,keN, (2.53)
=1
te > b1+ k1 + ti]'(xi,k,1 + Xjk — 1), V(i,j) €A keN, (2.54)
> ) hjxy, (2.55)
j(1,/)eA
b <T, Vk €N, (2.56)
k=1
gk =Qj+ritk— Y, Y. fii VjeV,keN, (2.57)
{=1ierange(j)
fiik < qix +7i(Ciix — 1), VjeV,icrange(j), k€ N, (2.58)
Gjik . . .
e < —= VieV,icrange(j), k€ N, (2.59
fjik < 1+ &) j ge(j) (2.59)
Y fix <R VieV,keN, (2.60)
jerange(i)
Yo Gk < VieV,keN, (2.61)
icrange(j)
Y. Gk < My, Vk € N, (2.62)
jeV,ierange(j)
Ciir < Txig, VieV,jerange(i),k € N, (2.63)
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fiik >0, VieV,jerange(i), k € N, (2.64)

gk >0, Vi€V, keN, (2.65)

te e Z* Vk € N, (2.66)

v € ZT, Vk € N, (2.67)
Gjix € Zt, VieV,jerange(i), k € N, (2.68)
xi € {0,1}, VieV,keN. (2.69)

The objective function (2.48) minimizes the amount of information kept in the nodes
at the end of the time horizon. Constraints (2.49)-(2.53) are the Routing Constraints.
Equations (2.49) and (2.50) ensure, respectively, the vehicle leaves and ends its route at
the base node. Inequalities (2.51) state that at most one visit labeled 7 is made. Inequal-
ities (2.52) ensure that, if the k' visit is made to node j, then the k — 1t visit occurred in
one of the predecessors of node j. Constraints (2.53) ensure that all the routing variables
are null after the vehicle has returned to the base node. Constrains (2.54)—(2.56) are the
Time Constraints. Inequalities (2.54) impose that the start time of the k" visit takes into
account the start time of the previous visit, the time spent on the last visit and the trav-
eling time between the two locations visited. Constraints (2.55) restrict the start time
of the first visit while constraints (2.56) force all the visits to start during the time hori-
zon (this includes the last visit which is the return to the base station). The Information
Transfer Constraints are constraints (2.57)—(2.63). Constraints (2.57) define the amount of
information at each node at the beginning of each visit. Constraints (2.58) ensure that
the amount that can be transferred cannot exceed the information available at the cor-
responding node. Constraints (2.59) limit the transfer amount taking into account the
transfer rate, while constraints (2.60) limit the transfer amount considering the maxi-
mum transfer quantity per period. Constraints (2.61) ensure that, during a visit to node
i, the time used to transfer information from each node j to node i, cannot exceed the
time the vehicle has spent at node i. Constraints (2.62) ensure that during each visit, the
total transfer time to node i cannot exceed the maximum number of transfers per pe-
riod, M, times the duration of the visit. Constraints (2.63) link the transfer variables to
the routing variables, ensuring that a node j can transfer information to a node i during
the k" visit if the k™ visit occurred at node i. Finally, Constraints (2.64)—(2.69) define the
variables domain.

Example 2.3.3 Figure 2.3 depicts the solution of the instance used in Example 2.3.1, with
the solution representation of the VE model. A node (i, k) in this network representation of a
solution is associated with the event k € N occurring at node i € V. A dotted line from a
node (j, k) to a node (i, k) represents an information transfer occurring from j to i during the
k™" wvisit. For instance, we can see that the 5™ visit of the vehicle occurs at node 6 to receive
information from nodes 3, 5 and 6.

Model VE has O(xN) variables and constraints, where x =| Y range(i) | . As
eV

for the NE model, the size of the VE model depends on the size of the event set, i.e.,

from N. Let ¢(N) denote the value of the objective function of the vehicle event model

considering a maximum of Nevents occur. The following statements hold true.
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Figure 2.3 — Optimal solution of the instance in Example 2.3.1 obtained with the Vehicle Event
model.

(i) @ is non increasing in the maximum number of events, that is, Ny > N, then
¢(N1) < @(N2).

(ii) 3N € N such that ¢(N;) = ¢(N), VN3 > N.

(iii) Let N* denote the lowest N satisfying statement (ii), that is, the lowest possible
value for the number of visits that gives the optimal solution. If N < N*, then
@(N’) gives an upper bound on the optimal value ¢(N*).

Clearly, N* is not known. By underestimating it the model becomes easier to solve but
the solution cost will increase. Overestimating N* may lead to longer running times.

2.4 Computational experiments

In this section, we report the computational tests conducted to evaluate the three mod-
els presented in the previous section. All the results were performed using a server
with 15 CPU’s Intel ®Xeon (R) E5540@ 2.53Ghz X4, with 16 GB of RAM. To solve the
several MILP models, the IBM CPLEX Optimizer 12.6.1.0 solver was used with a time
limit equal to 3600 seconds.

A set of instances was randomly generated as described in chapter 1. The vertices in
V are located on a square grid of length ¢ = 8. The base station is located on the bottom
left vertex and the remaining stations are placed randomly on a square of length ¢’ = 6
in the upper right of the grid. The distance matrix is given by the euclidean distance
between the stations. The graph edges are selected randomly. In order to obtain a
certain graph density d, starting from a complete graph, edges are removed randomly,
while ensuring connectivity, until the desired graph density is obtained. In this work,
we generate instances varying | V| in {8,10,12,20} and with d = 0.4. We considered the

values of T € {72,120, 240} and the data generation rates r;are randomly generated in
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VI T DT Model NE Model VE Model

r=lLw=2|r=lLw=3|r=2w=2|r=2w=3|N=7|N=8|K=9

10 | 50 | variables 7101 374 524 765 1038 743 849 955
constraints 4142 597 838 1236 1682 1678 | 1927 | 2176

100 | variables 14201 374 524 765 1038 743 849 955
constraints 8292 597 838 1236 1682 1678 | 1927 | 2176

20 | 50 | variables 33701 1769 2543 3709 5200 3655 | 4177 | 4699
constraints | 16032 3002 4273 6230 8696 8168 | 9365 | 10562

100 | variables 67401 1769 2543 3709 5200 3655 | 4177 | 4699
constraints | 32082 3002 4273 6230 8696 8168 | 9365 | 10562

Table 2.1 — Number of variables and constraints used in each model for different parameters.

the interval [1,5]. The values of a;; were randomly generated in {1/12,1/13,1/14}
ifi = jand in {1/5,1/6,1/7} otherwise. The following values parameters were set:
Teoo =4, R=20and M = 3.

First, in Table 2.1, we compare the size of the three models for the combination of
the parameters defining the instances and the models used in our e xperiments. For
model NE, the values 7, w in the top of the four columns represent, respectively, the
maximum number of allowed visits to and the maximum number of allowed transfers
from each station. We can observe that DT model is the largest model, while NE model
is the smallest one. The VE model is an intermediate model in terms of size. Next, we
will describe the results obtained with each one of the three models.

In Table 2.2, we report the computational results obtained with the DT model. The
table is split into two parts accordingly to the time horizons. For each part, the first
three columns give the number of stations (|V|), the density of the graph, d (since the
data generation process may generate graphs with density slightly different from 0.4),
and the size of the time horizon T. The fourth column gives the total amount of in-
formation generated during the time horizon. The fifth column gives the value of the
best feasible solution found, that is, the amount of information remaining in the nodes
at the end of time horizon T. The following three columns give: (Cpu) is the running
time (in seconds); (Gap) is the final integrality gap reported by the solver at the end of
running time; and (Nodes) is the number of nodes of the branch-and-bound algorithm.
An instance with * * * in the (Cpu) and with (Gap) superior to zero is not solved to
optimality in the time limit.

The results show that for T = 72 all except one instance with |V| € {10,15,20} are
solved to optimality within the one hour time limit. When T is increased, the number

of solved instances decreases. For T = 240, even when |V| = 8, no instance is solved to
optimality with final gap arriving to 28%.

Next, in Table 2.3 we report the results obtained with the NE model. The four first
columns are similar to the ones of Table 2.2. The following four sets of columns give
the same information as the corresponding ones in Table 2.2; namely the best feasible
solution value (best sol), the running time (Cpu), the final gap (Gap) and the number
of nodes (Nodes). Again, the values r, w in the top of the four multicolumns represent,
respectively, the maximum number of allowed visits to and the maximum number of
allowed transfers from each station.
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Table 2.2 — Results obtained with the Discrete Time model.

[Vl | d | T | Total | bestsol. Cpu | Gap | Nodes || |V| | d m | Total | best sol. Cpu | Gap | Nodes
10 | 042 | 72 | 2392 | 1676.64 63.69 0 6809 || 10 | 0.42 | 120 | 3832 | 2453.21 | 443.63 0 24423
2220 | 1538.64 81.23 0 8589 3564 | 2216.67 | 515.01 0 28669
1744 | 1128.11 5755 | 0 8685 2752 | 1550.53 | 748.32 0 206814
2006 | 1337.79 96.86 0 11171 3206 | 1876.88 *** | 3.64 | 261685
1797 | 112711 | 146.49 0 18012 2853 | 1581.25 *** 028 | 254528
2073 | 1413.24 8564 | 0 9085 3321 2063.8 | 515.77 0 23966
2286 | 1620.57 106.2 0 11851 3678 | 2407.19 | 505.97 0 29222
1952 | 1250.58 | 107.18 0 32751 3104 | 1726.78 | 636.26 0 24311
2339 1671.6 | 102.15 0 9232 3731 | 2423.72 | 483.33 0 25211
1734 | 1083.79 99.88 0 11483 2742 | 1422.04 | 75243 0 42202
15 | 04 | 72 | 3808 3059.5 | 271.19 0 8477 || 15 | 0.4 | 120 | 5477 | 4086.59 247 21649
3205 | 2468.17 | 487.51 0 27490 5638 | 4280.33 07 25301
2753 | 2051.69 | 277.88 0 12014 4915 3602.7 07 31131
3112 2390.6 | 20324 | 0 10785 5140 | 3758.86 * 3.85 22132
2738 2059.6 | 24873 | 0 11993 4899 | 3637.02 0 1.84 | 22524
2876 | 2173.72 *** 1 218 | 360579 5068 | 3633.39 ***1.0.45 29757
3213 | 2473.69 | 139.26 | 0 6694 5616 | 4138.39 1023 24494
3669 | 291256 | 212.09 | 0 9233 5626 4258.6 0.6 28796
3112 | 2324.19 | 259.58 0 6046 6224 | 4791.89 1 1.76 29075
2797 | 2123.41 | 192.35 0 11900 6234 | 4811.39 | 3382.54 0 45284
20 | 04 | 72| 5149 4301.5 | 1001.32 0 151612 8 | 0.42 | 240 | 5216 | 2385.33 *** 1 6.39 97091
4574 3838.6 | 1033.39 | 0 16072 4976 | 2037.34 ***110.34 | 87142
4239 3528.7 | 507.27 | 0 11944 5700 | 2895.91 47 | 100844
4924 | 4167.57 | 483.79 0 9344 3764 | 1242.85 *e028.32 | 74207
4657 | 3904.39 | 963.63 | 0 10171 4960 2297.1 ***17.09 71848
5097 | 4315.39 | 1094.51 0 21540 4965 | 2190.77 e 8.42 55845
4928 4180.5 905.1 0 26529 4977 | 2127.55 *** 115,57 | 46945
4175 | 3448.59 587.1 0 12830 5910 | 2896.44 *** 1 3.71 | 110735
5650 | 4844.29 | 410.95 0 8962 5223 | 2572.06 ** 75 87638
5007 | 4239.89 | 45194 | 0 10770 5448 | 2700.38 *** 1 5.65 | 114550

*** time limit: 3600 sec.
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Table 2.3 — Results obtained with the Node Event model.

VI d T | Total r=lw=2 r=1lw=3 r=2w=2 r=2w=3
best sol. Cpu  Gap Nodes | best sol. Cpu  Gap Nodes | best sol. Cpu  Gap Nodes | bestsol. Cpu Gap Nodes
10 | 042 | 72 | 2392 | 1724.19 8.54 0 31450 | 1721.78 28.54 0 172659 | 1697.38 * 29549 1149888 | 1758.86  *** 290.6 929083
2220 | 1966.41 0.85 0 646 | 1966.41 1.83 0 768 | 1601.85 *** 27252 1194195 | 1581.05 *** 30323 789375
1744 | 1159.59 4.76 0 18794 | 1155.89 20.81 0 95069 | 1149.74 *** 28746 2025411 | 1166.71 3223 1208221
2006 | 1341.99 13.44 0 39759 1337.8 31.84 0 116451 | 1366.89 **310.23 1298188 | 1357.49 33279 717590
1797 | 1168.92 10.01 0 41684 | 1160.55 39.14 0 283311 | 1168.92 *#** 31043 2049193 | 120348  *** 32445 1101298
2073 | 142442 10.49 0 30478 1413.7 3245 0 153478 | 1426.85 0 277.62 1513668 | 1437.75 *** 30621 581914
2286 | 1656.6 559 0 20531 | 1656.07  18.39 0 94219 | 1665.86 ** 26526 1800753 | 1661.51  ** 29346 794190
1952 | 1262.28 10.41 0 30769 | 1250.58 224 0 87726 | 1284.89 27144 1697986 | 125058  ***  306.25 1035625
2339 1680.4 11.02 0 34742 1671.6 34.81 0 139798 1680.4 27455 1268322 | 1721.29 0 299.58 677665
1734 | 1085.61 7.58 0 33221 1083.8 52.09 0 537229 | 1085.61 w0 31749 1350680 | 1097.39 33125 1029658
15 | 04 | 72 | 3808 | 3116.19 ** 15649 1575724 3102 0 189.56 1229423 | 3116.32 *** - 267.5 723499 | 3083.19 0 297.82 316754
3205 | 2471.59 1266 1791434 | 2468.19 0.2 2588204 2530 28242 753328 | 252338  *** 299.28 362158
2753 | 2051.69 **179.04 1601614 | 2073.99 o 256.7 772934 | 2110.82 ** 27847 1377724 2200.1 0 296.77 364035
3112 | 239447 14219 1704099 | 2446.69 * 22583 900202 | 2110.82 *** 27847 1377724 | 2457.59 *** 29895 580941
2738 | 2061.09 * 1067 2133380 | 2071.79 w2282 986031 | 2110.82 27847 1377724 | 2089.71 ***308.15 615913
2876 2190.5 1313.04 0 1254393 | 2211.21 *166.47 1146607 | 2280.23 ***269.12 1081001 | 2282.35 ** 29827 520333
3213 | 2473.69 9144 1545789 | 2533.69 ***139.5 1114749 | 2509.69 ***288.28 1124570 | 2678.04  ** 29555 350887
3669 | 3007.84 ** 15448 2402603 | 3006.35 1857.92 0 2977964 | 2981.45 = 276.06 1181722 | 31004  *** 2857 438971
3112 2329.7 9223 2044297 2324.4 *131.22 1256214 | 2487.69 ***267.66 1100911 | 2468.39 29415 399204
2797 | 212341 1990.16 0 2049539 | 2127.94 ** 108.63 1840108 | 2216.57 ***269.82 1509651 | 2239.27  *** 297.04 509990
10 | 0.42 | 120 | 3832 | 2499.63 17.59 0 110862 | 2482.61 344.1 0 4142786 | 2534.36 w0 28497 1956508 | 2542.55 33134 804639
3564 3137.7 0.95 0 654 3137.7 147 0 480 | 2269.92 **288.32 1328581 | 2286.49 3437 812161
2752 | 1564.61 317 0 498781 | 1555.61 57.25 0 593308 | 1612.34 *** 33878 1646827 | 161397  *** 37598 1267842
3206 | 188473  19.03 0 96745 | 1876.88  95.86 0 694556 | 1939.38 34634 1151266 | 1923.56  *** 379.44 750328
2853 | 1590.94 9.26 0 49145 | 1580.01 76.96 0 694533 | 1616.08 *** 34098 2382438 | 1617.72  ** 37525 1129317
3321 | 2079.21 22.02 0 172610 | 2070.82  180.89 0 1977811 | 2079.21 *** 31036 1628539 | 2138.64  *** 327.01 627780
3678 2433.1 20.54 0 224393 | 2422.67 84.69 0 792202 | 2444.45 30622 1148285 | 247952 *** 3168 853670
3104 | 1763.53 17.09 0 89928 | 1738.93 78.33 0 589494 | 1763.53 *#** 3109 2057964 | 175272 ***  369.19 880102
3731 | 243451 29.58 0 339080 | 242372  232.72 0 3082140 | 2434.51 o 289.3 1658307 | 249578  *** 336.14 654701
2742 1474  545.26 0 12937921 | 1448.57 08 22348921 | 1470.29 **390.93 1095967 | 1480.79 39228 842943
8 | 0.42 | 240 | 5216 | 2579.93 2.06 0 14880 | 2568.52 4.02 0 37643 | 245739 1677.24 0 10470801 | 2365.66 ~ *** 3295 8250829
4976 | 2298.28 2.6 0 25218 | 2231.32 27.81 0 420200 | 2171.69 1891.87 0 16504873 | 2107.25 0 46.09 6450978
5700 | 3122.77 193 0 14116 | 3104.08 3.61 0 26239 | 298294 1070.25 0 3981748 | 2950.09 w2881 3987428
3764 | 1444.09 2.35 0 15559 | 1426.74 13.28 0 150225 | 1355.23 1818.86 0 13223040 | 1273.45 ***71.07 3283058
4960 | 2495.54 1.97 0 15098 | 2460.07 4.38 0 44873 | 237144 21134 0 10704389 | 2338.73 3928 8278251
4965 | 3784.35 0.27 0 0| 3784.64 0.27 0 0| 228532 27053 2539042 | 2242.18  ** 316.28 1944104
4977 | 2398.77 2.05 0 12741 2357.5 7.46 0 77238 | 2198.97  557.91 0 3896604 | 2164.77  *** 3731 7336873
5910 | 4704.82 0.26 0 0| 4704.82 0.49 0 0| 2956.79 2550.54 0 7059293 | 2907.28  *** 2742 6743235
5223 | 2661.92 2.78 0 22127 | 2624.35 13.02 0 178347 | 2640.83 1411 9554160 | 2619.68  *** 229.23 2290740
5448 | 2765.27 3 0 23710 | 2730.17 21.31 0 284750 | 2765.37 *** 176 22104402 | 2711.08  ** 3626 6839767

*** time limit : 3600 sec.

The results in Table 2.3 show that the model can only be solved to optimality for
very small values of r and w. The average values of the best solutions obtained with

the NE Model on the set of instances with |V| = 8, T = 240 are compared in Figure 2.4
with the average value of the best solutions found by the VE Model.

Finally, in Table 2.4, we report the results obtained using the VE Model. The mean-
ing of the columns is the same as for the two previous tables. The last four sets of
columns are grouped accordingly to the maximum number of vehicle events N. The
bold numbers mean that the corresponding value N is probably N*: the objective value
did not change for N > N.

As depicted in Figure 2.5, for the particular case with |V| = 15and T = 120, running

times increase when N increases. However, as it can be seen from Figure 2.6 that de-
picts the average amount of information at the end of time T at all nodes (for the same

instances of Figure 2.5), the solution quality also increases when N increases, until the
value of N*is obtained.
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Table 2.4 — Results obtained with the Vehicle Event model.

VIT d | T | Total N=5 N=6 N=7 N=38
bestsol. Cpu Gap Nodes | bestsol. Cpu Gap Nodes | bestsol. Cpu Gap Nodes | bestsol. Cpu Gap Nodes
10 | 042 | 72 | 2392 | 1713.68 0.29 0 0| 1676.64 0.41 0 0| 1676.64 0.9 0 882 | 1676.64 228 0 2776
2220 | 171262 0.17 0 18 | 1549.64  0.22 0 0| 1538.64 0.58 0 335 | 1538.64 0.9 0 1401
1744 | 115589 031 0 0| 112811 0.62 0 201 | 1128.11 0.76 0 0| 112811 177 0 1711
2006 | 1372.78 03 0 0| 1337.80 044 0 0| 1337.80 1.07 0 932 | 1337.80 19 0 2882
1797 11651 028 0 0| 1157.84 041 0 0| 1127.11 1.04 0 1112 | 1127.11 216 0 3156
2073 | 145227 028 0 0| 141324 057 0 229 | 141324 1.03 0 854 | 1413.24 216 0 3019
2286 | 1656.07 0.72 0 133 | 1620.57 057 0 476 | 1620.57 1.09 0 1633 | 1620.57 221 0 5228
1952 | 1250.58 043 0 0| 125058 096 0 577 | 1250.58 145 0 1420 | 1250.58 293 0 3380
2339 | 167443 0.52 0 119 | 1671.60 0.91 0 624 | 1671.60 1.65 0 1241 | 1671.60 271 0 3736
1734 | 114844 0.22 0 0 1104 045 0 0 | 1083.80 111 0 855 1083.8 2.32 0 2585
15 | 04 | 72 | 3808 | 3059.50 16 0 660 | 3059.50 292 0 3090 | 3059.50 186 0 18411 | 3059.50 6074 0 60499
3205 | 2468.19 1.37 0 472 | 246819 255 0 2675 | 246826 2122 0 18452 | 2468.17 7649 0 72026
2753 | 2084.17 158 0 613 | 2051.69 269 0 2869 | 2051.69 2397 0 20167 | 2051.69 5597 0 55522
3112 | 2390.60 1.04 0 254 23906 195 0 1752 2390.6 398 0 6506 2390.6 2641 0 24096
2738 | 2066.72 1.28 0 233 | 2059.60 243 0 1518 2059.6 608 0 7493 | 2059.69 5514 0 42246
2876 | 219254 1.14 0 672 | 217599  2.08 0 2944 | 217119 16.71 0 17109 | 2171.19 35.73 0 46246
3213 | 2473.69 151 0 587 | 247369 248 0 3392 | 2473.69 1363 0 7894 | 2473.69 5647 0 39081
3669 | 3004.91 0.9 0 463 | 2912.56 1.58 0 1366 | 2912.56 4.57 0 6191 | 2912.56 39.16 0 27267
3112 | 232419 1.63 0 228 | 232419 219 0 1676 | 2324.19 605 0 9176 | 2324.19 3671 0 29815
2797 | 212341 123 0 354 | 212341 214 0 2541 | 2123.41 104 0 7976 | 2123.41 5936 0 54844
20 | 04 | 72 | 5149 | 431639 216 O 1705 | 4301.50 554 0 9258 | 430150 43.89 0 47785 | 4301.50 21099 0 206763
4574 | 3838.59 242 0 1280 | 383859 20.03 0 16696 | 383859 69.96 0 65746 38386 586.09 0 565564
4239 | 3528.70 2.51 0 2004 | 3528.70 178 0 16840 | 3528.70 6147 0 57857 | 3528.70 3107 0 311865
4924 | 4167.57 207 0 782 | 4167.57  4.68 0 5245 | 4167.57  38.34 0 35146 | 416757 175.14 0 176522
4657 39321 288 0 1475 | 390439 6.35 0 9768 3904.7  69.72 0 59977 3904.4  427.21 0 359717
5097 43632 249 0 1803 4329 1724 0 13732 | 431539 63.97 0 64688 | 431539 29342 0 290607
4928 4182.1 23 0 1886 4180.5 20.06 0 20270 41805 5679 0 57610 41805 367.51 0 331521
4175 | 3448.59 227 0 1147 34486 1485 0 13423 34486 5002 O 47950 3448.6 2881 0 288411
5650 | 4849.23 283 0 1826 | 4844.30 1816 0 17795 48445 5756 0 56213 48443 43415 0 450813
5007 | 4268.09 153 0 302 | 423989 314 0 2577 | 4239.89 2374 0 18533 | 4239.89 112.68 0 90607
N=7 N= N=9 N=10
10 | 0.42 | 120 | 3832 | 245324 109 0 875 | 245321 174 0 3326 | 2453.21 488 0 9513 | 2453.24 2288 0 30409
3564 | 2285.05 036 0 0| 2216.67 088 0 783 | 2216.67 168 0 2986 | 2216.67 10.06 0 18917
2752 | 1553.01  0.99 0 518 | 1553.01 1.41 0 1957 | 1550.53 3.52 0 6987 | 1550.53 17.23 0 22289
3206 | 1876.88 1.08 0 1117 | 187688 194 0 2423 | 1876.88 506 0 9128 | 1876.88 2274 0 27025
2853 | 1580.01 097 0 0| 1580.00 196 0 3570 | 1580.01 1045 0 15240 | 1580.01 3326 0 47042
3321 | 2070.82 1.15 0 912 20638 201 0 4126 | 2063.79 1318 0 20640 2063.8 2466 0 32398
3678 | 240719 137 0 1840 | 2407.19 201 0 5523 | 2407.19 13.07 0 23340 | 2407.19 332 0 59857
3104 | 1726.78 1.35 0 1061 | 1726.78 29 0 3004 | 1726.78  13.12 0 13193 | 1726.78 29.73 0 31667
3731 | 2423.72 159 0 1285 | 242372 244 0 4980 | 2423.72 6.65 0 13129 | 2423.72 28.22 0 34909
2742 | 148529 1.13 0 510 | 1462.19  1.55 0 2066 1423.4 43 0 7205 1422.2 20.13 0 24431
15 | 04 | 120 | 5477 | 407359 2321 0 20588 | 4073.59 7338 0 92031 40727 519.72 0 470363 | 4072.61 2840.06 0 2262717
5638 | 4272.14 183 0 18636 | 4272.14 51.74 0 58017 | 4271.98 24395 0 231793 | 427198 172886 0 1673800
4915 36154 511 0 8722 35952 60.25 0 58169 35952 17251 0 128756 35952 82535 0 639380
5140 | 3732.38 1851 0 19351 | 373238 40.68 0 50219 | 3732.38 209.33 0 196023 | 373238 1091.8 0O 895180
4899 3613.1 12.04 0 15090 | 361299 3467 0 44224 3613 15747 0 168952 36132 767.76 0 744047
5068 | 363049 573 0 9184 | 363049 584 0 48098 36305 16173 0 165570 3630.6 1161.39 0 988048
5616 | 4134.70 22.83 0 19123 | 4134.70 56.16 0 56547 | 4134.70 404.05 0 274153 | 4134.70 1658.43 0 850429
5626 | 4256.64 16.9 0 17250 | 4256.64 48.83 0 67235 | 4256.64 2815 0 296837 | 4256.64 170287 0 1579158
6224 | 4761.89 16.81 0 17767 | 47619 60.87 0 76541 | 4761.89 282.65 0 314020 | 4761.89 12703 0 1253523
6234 48116 1197 0 15453 | 481139 4246 0 63248 | 481139 179.98 0 239578 | 4811.39 83228 0 978057
N=9 N =10 N=11 N=12
8 | 0.42 | 240 | 5216 2400.8 148 0 1893 | 2351.82 2.8 0 4295 | 2351.82 1243 0 15321 | 2351.82 1977 0 29151
4976 | 2106.46 2 0 3661 | 203521 4.36 0 10006 20155 16.15 0 23014 | 2003.14 2887 0 44288
5700 | 289517 2.09 0 3473 | 287224 823 0 17204 | 2865.99 29.32 0 56577 | 2865.99 2592 0 49879
3764 | 1262.58 148 0 1967 | 124832 328 0 6283 | 1207.12 1265 0 24800 | 1187.08 20 0 36982
4960 | 2290.94 1.88 0 2531 | 2268.63 2.88 0 6461 | 2268.47 1065 0 18714 | 2268.47 2532 0 51113
4965 22055 143 0 1253 | 218072 252 0 4830 | 2164.96 412 0 8662 | 2164.96 316 0 40639
4977 | 2139.89 191 0 2953 | 2086.69 10.05 0 13276 | 2042.67 1993 0 29649 | 2042.72 6489 0 86681
5910 | 289795 1.13 0 2093 | 2897.29 268 0 5835 | 2890.55 14 0 22165 | 2890.55 3638 0 70890
5223 | 2570.32 1.9 0 2523 | 2557.37 24 0 6838 | 2544.78  14.81 0 26109 | 2544.78 37.16 0 63157
5448 | 2684.69 198 0 3319 | 2659.17 419 0 9936 | 2659.17 1546 0 25578 | 2659.17 4429 0 78339

*** time limit : 3600 sec.
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Figure 2.4 — Average values of the best solutions obtained using NE model on the set of with |V| =
8, T = 240.
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Figure 2.5 — Average running times obtained by the Vehicle Event Model on the instances with
|V| = 15and T = 120, for different values of N.
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Figure 2.6 — Average amount of information at time T at all nodes using the Event Vehicle Model
with |V| =15, T = 120 versus different values of N.
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3.1 Introduction

Wireless Networks (WN) have recently received great attention from the operations re-
search (OR) community; as an example, we refer to the edition of a special issue in 2015
dedicated to reliable deployment techniques in Wireless Sensor Networks (Gomez-
Pulido et Lanza-Gutierrez, 2015). Some applications defined on WN need to provide
vehicle routing strategies with wireless information transmission to the vehicles in-
volved. However, in these applications, innovation and research appears most in the
development of routing protocols (Bhoi et al., 2017; Celik et Modiano, 2010; Moghadam
et al., 2011; Velasquez-Villada et al., 2014) while there is still a gap in the develop-
ment of vehicle routing strategies. Some very recent works helped filling this gap
with the development of Mixed Integer Linear Programming (MILP) based exact meth-
ods (Basagni et al., 2014) and also one heuristic approach (Basagni et al., 2014). In this
work, we contribute with the development of heuristics and heuristic strategies to a
version of the VRP defined on WN. The problem treated in this chapter is exactly the
problem described in Section 2.2, see figure (3.1).

Figure 3.1 — The wireless transfer vehicle routing problem.

For the best of our knowledge, the authors in (Basagni et al., 2014) were the first ones
to treat a variant of the WTVRP appearing in underwater wireless sensor networks. The
authors considered a scenario with a set of surfacing and underwater nodes where they
look for a routing to an autonomous underwater vehicle (AUV) during a given time pe-
riod. The AUV must leave and return to a surface node while information generated by
the set of underwater nodes is collected along a path that physically visits each station
where information is collected. The information generated in a given underwater node
i at a time point t; which arrives to a surface node at a time point ¢, has a given value
Uitt,- The strategy adopted in (Basagni et al., 2014) is the maximization of the value of
the information collected. The authors proposed two solution approaches: an Integer
Linear Programming (ILP) formulation able to solve the problem with up to 12 under-
water nodes in a time that varies from a few hours to a few days; a greedy adaptive
heuristic able to provide solutions to the problem with up to 35 underwater nodes.

A variant of the WTVRP is treated in chapter 1, which differs in only one additional
imposition: if a transfer starts in a station, then all the information available at that sta-
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tion at the beginning of the transmission needs to be extracted. In the chapter 1, three
different objective functions are discussed and experiments are used to access how one
strategy, i.e., the optimization of one objective function, affects the others and impacts
the periodicity of the remaining information. In chapter 2, the exact solution of the
WTVRP defined here is i nvestigated. The adoption of the strategy that maximizes the
amount of information collected at the end of time horizon allowed the introduction of
three different MILP models: one discrete time model and two event based models. The
discrete time model, that discretizes the routing and transfer times, provides the best
results for small size instances. However, when the size of the instances increases a ve-
hicle event model, where the size of the model depends on a parameter establishing a
maximum number of visits, provided the best results. As we could expect, all the mod-
els fail to solve the problem to optimality for large size instances. In the present work,
we use the vehicle event model and discuss several matheuristic based approaches with
the aim of solving large instances of the WTVRP.

The development of commercial solvers and the increasing processing capacity of
computers are making possible to optimally solve increasingly larger size MILP prob-
lems. When the instances are too large or too hard to solve new approaches based
on matheuristics are becoming more popular. For matheuristics applied to complex
routing problems see for instance (Agra et al., 2014; Wang et al., 2017). For surveys on
matheuristics we refer to (Archetti et Speranza, 2014; Ball, 2011; K.F. et V., 2010).

Our contribution is as follows. We introduce three heuristics that construct an initial
solution to the WTVRP. Two of them are matheuristics based on the computational effi-
cient mathematical model introduced in chapter 2, and one is a greedy heuristic. Taking
into account the specificities of these constructive heuristics, two improvement heuris-
tics are discussed. As the size of the MILP model depends on the possible number of
visits, the two matheuristics use the MILP model by setting a small number of visits.
Hence, a firstimprovement h euristic, called best i nsertion, tests the insertion o f new
visits in the vehicle route obtained with the matheuristic. In order to improve the solu-
tion obtained from the greedy heuristic, a fix-and-optimize heuristic is p rovided. This
heuristic fixes the vehicle route in the MILP model and solve the resulting restricted
model. Finally, a general exchange heuristic that exchanges a number of consecutive
visits is presented. The combination of constructive and improvement heuristics will
lead to different heuristic strategy approaches. Computational results are conducted to
test each heuristic strategy approach.

In Section 3.2 the constructive, the improvement heuristics and the strategies com-
bining different types of heuristics are described. In Section 3.3 we describe the com-
putational experiments carried out to compare the heuristic strategies.

3.2 Heuristics

When the number of stations is large, solving the vehicle event model to optimality
requires to overestimate N*, since N* is not known. This implies to solve the vehicle
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event model for large values of N, leading to large size MILP models that, in general,
cannot be solved within reasonable running time. We refer the reader to section 2.4,
for a deep discussion on the performance of the MILP model. Here we discuss several
heuristic strategies combining different types of heuristics that we will classify into
constructive (Section 3.2.1) and improvement heuristics (Section 3.2.2). Most of these
heuristics use the MILP vehicle event model.

3.2.1 Constructive heuristics

Here we describe three constructive heuristics designed to derive good initial feasible
solutions: a simple combinatorial relaxation heuristic (Section 3.2.1), a fix-and-relax
heuristic (Section 3.2.1); and a greedy heuristic (Section 3.2.1).

N-MILP heuristic

As discussed above, the size of the vehicle event model depends on the parameter N
indicating the maximum number of vehicle stops. For small values of N, the MILP
model can be quickly solved using a commercial solver. However, imposing a small
value for this parameter forces the solution procedure to act as a heuristic. The N-MILP
heuristic consists in using the vehicle event model considering a relatively small value

of N. This will give the optimal solution, i.e., a vehicle route, with a maximum of N
vehicle visits.

Fix-and-relax heuristic

This heuristic also uses the vehicle event model in order to define an initial r oute. In
contrast with the N-MILP heuristic, a large value for N will be assumed. In each iter-
ation k, all variables are relaxed except the path variables xj for j € V, which remain
binary. The resulting relaxed MILP is solved. Constraints (2.51) ensure there must exist
at most a ji such that x; is equal to 1. We fixx;; = 1and x = 0 forj # ji, and the
process is repeated until jy = 1 (i.e. until the vehicle returns to the base station). With
this procedure a path R = (Xj11, Xj2s-+s x15) is obtained for s < N. Finally, the route
variables are fixed and the resulting restricted vehicle event model is solved (with the
time variables restricted to be integer). The process is detailed in Algorithm 1.

Greedy heuristic

In the following, we present a greedy algorithm that constructs a vehicle route. Starting
at the base station, in each iteration, the next visit is chosen in order to maximize the
amount of information that can be extracted. Each iteration involves several choices: (i)
which neighbor node to visit next; (ii) how long the vehicle shall stay in that node; (iii)

46



Algorithm 1: Fix-and-relax

k1.
repeat
Relax all integer variables except xj, for j € V.
Solve the relaxed model, and let ¥ denote the resulting vector solution.
Let jx be the node index such that %, = 1.
Set xj x < 1and xj; < 0 for all j # ji.
Setk « k+ 1.
until jr = 1;
Solve the restricted model with all x; variables fixed.

which nodes will be selected to transfer information; (iv) how much information shall
be collect from each node.

First, we consider a criterion to calculate the time of permanence at a given station
j- This criterion depends upon the information that will be collected from each node.
Let (B(j)) denotes the vector (B(j)) ordered in decreasing order. Let coll(j) denote the
maximum amount of information that can be collected by a vehicle positioned in node
j, assuming that station j and the stations in range(j) (stations in the transfer range of
j) have sufficient quantity of information to transfer at the maximum rate. That is, the
maximum amount of information that can be collected from node j depends only on the
transfer constraints (2.59) and multi-transfer constraints (2.60) and not of the quantity
available at the nodes:

min{M,|range(j)|}

coll(j) = min{R, Z (B(7)) e}

=1

Let coll(j, t) denote the maximum amount of information collected in time period # if
the vehicle arrives at the end of time period k — 1 and collects the maximum information
during periods k to t — 1. If the amount of information at the stations in range(j) is large
enough, colli(j, k) will be equal to coll(j). During the stop at station j, the amount of
information collected at each consecutive period will decrease over time. If the vehicle
arrives at the beginning of time period k at station j, the time spent at j will be denoted
by t;(k), and it is obtained as follow:

ti(k) = min{argmax;>i{collc(j,t) > I« coll(j)}, (T —th —k)"}

where [ is a parameter satisfying 0 < < 1 and (z)" = max{0,z}. In the numerical
results we consider [ = 0.8. That is, the first argument in the min function ensures that
the vehicle stays in node j while it can extract at least 80% of the maximum information
that can be extracted from that node. As one of the problem restrictions enforces the
vehicle to be at the base station at the end of the time horizon T, one needs to ensure
(second argument of the min function) that a node can be visited at time k only if the

minimum time needed to return to the base station, t;, is less than or equal to T —k.
The traveling times t;; are computed by solving the shortest path problem from j to 1.
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Now we consider the decision of which node to visit next. Assume that at the be-
ginning of period k the vehicle is leaving station i, as shown in the Figure 3.2. The
next station is chosen accordingly to the following average speed information transfer
parameter:

ket (k) — 1 .
Zt:kiti]'] ! COllk+t1] (]’ t)
ti + ti(k+ 1)

transf(i,j, k) =

The station with largest value of transf (i, j, k) is selected.

arrive

trans(i,j,k) . @ t=kertij(k+ty)

t=k
trans(i,j",k)\‘~\

@ t=k+tij"+tj"(k+tiju)

Figure 3.2 — Choice of the neighbor station according to criterion of the greatest transfer.

The algorithm stops when there is no candidate station to visit due to time lim-
itations, since the vehicle needs to return to the base station. This situation can be
identified when the vehicle is leaving node i, by verifying that ¢;(k + t;;) = 0 for all
j € range(i). The full description of the greedy algorithm is given in Algorithm 2.

Algorithm 2: Greedy algorithm
i+ 1
k<1
STOP < false
repeat

Let j* < argmax{transf(i,j k)|j € range(i)};

if £ (k+ ti]‘*) > 0 then

i
end

else
\ STOP <« true

end
until STOP = true;
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3.2.2 Improvement heuristics

In this section, we present heuristics that aim to improve an initial solution of the
WTVRP; each heuristic developed to upgrade a given criteria. In that way, each heuris-
tic will be suitable for a particular type of initial solution, for example, solutions based
on short routes (with a small number of vehicle visits), or solutions obtained with a
specific constructive a lgorithm. Hence, the improvement heuristics will be combined
with the different constructive methods described in the previous section. Three im-
provement heuristics will be presented: a Fix-and-optimize heuristic (Section 3.2.2); a
best insertion heuristic (Section 3.2.2); and an exchange heuristic (Section 3.2.2).

Fix-and-optimize

This heuristic finds the optimal transmission planning for a given (fixed) route; thus it
finds a local optima of the WTVRP.

Let X denote a vector with the value of the routing variables in the given solution.
The improvement is done by fixing the routing variables x j = Xj, for each pairi € V
and k € N, in the vehicle event model. Then the resulting restricted model is solved.
The restricted model allows to adjust the time spent during each stay, at each of the
visited nodes, as well as the quantities to transfer from each node during the stay at
each node. Although the restricted model is a mixed integer program, it can be solved
to optimality quickly (see results on Section 3.3).

This heuristic is suitable when the routing decisions were taken without considering
the mathematical model. In our case, it will be more suitable to be combined with the
greedy heuristic.

Best insertion heuristic

Consider a feasible route R with nodes i; = 1,iy,...,1,k,...,i, = 1 where r is the route
length and 7; represents the node visited in position /. The process of inserting a node
j into position I consists of adding a node to the path at position I, as shown the Fig-
ure 3.3.

After the insertion, a new route that includes one more node (with length r + 1) is
obtained. To obtain the best insertion in position / of a given route, the MILP vehicle
event model is used by setting N = r + 1 and fixing all the positions of the route except
the 1" visit. The routing variables are fixed as follows:x ; y= 1,k < landx; ;1= 1
for k > 1. To find the best possible insertion, all the possible positions from 1 to r are
examined and the best one is chosen.

The insertion process is repeated until no improvement on the objective function is
observed. This algorithm is detailed in Algorithm 3.
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Figure 3.3 — Insertion of the node j in the I'" position of the route.

This heuristic is suitable to improve initial solutions considering a short route (with
small number of visits). Thus it may be combined with constructive heuristics whose
computational effort depends on the number of visits, which is, for instance, the case
of the N-MILP heuristic.

Exchange heuristic

Consider an initial route R. In the exchange heuristic, at each iteration, a position k of
the current route solution and a number [ of nodes are selected. Then the nodes of route
Rvisited in positions k, k41, ...,k +1 — 1 are exchanged, using the following exchange
procedure.

Exchange(k,1): Given a route R with nodes i1 = 1,iy,...,i, = 1, the procedure
exchanges | nodes starting from the position k (nodes visited in the position k, k +
1,...,k+1—1) with a new set of nodes. In order to perform the nodes exchange, the
routing variables x;, ; are fixed toone, fort =1,...,k—1andt = k+1,...,r,and the
restricted vehicle event model is solved.

The optimal solution for this MILP will give a new route R with objective function
value Z, gee Figure 3.4 for an example with [ = 2). As the initial route R is a feasible

route for the restricted MILP model, then z < z.

In each iteration of the exchange heuristic a route R is considered. The integer k is
randomly generated between 1 and r — I + 1 and the exchange procedure Exchange(k, 1)
is used to obtain a new route. This process is repeated a certain number of iterations.
The value of k is selected so that the same node is not repeated in two consecutive
iterations. This algorithm is detailed in Algorithm 4.

On one hand, when [ is large, the restricted MILP model becomes large and the
solution approach becomes slow. On the other hand, with I = 1 there is the possibility
of the Exchange(k,1) procedure obtain the initial route R because the graph may not
be complete. Thus, there may be few nodes that are simultaneously neighbors from

50



Algorithm 3: Best insertion heuristic

Consider an initial feasible solution obtained with r visits
LetR < (iy = 1,ia,...,i,_1,i, = 1) denote the route of the solution
Let z denote the value of the objective function of the solution
repeat
N+r+1
25«7z
R* + R
Z < oo for [ from2tor —1do
Using R*, set x; = 1,k < land x;, 11 = 1fork > I
Solve the restricted MILP model if the optimal value, z, of the restricted
model is lower than z then
zZ+ 7
Set R as the vehicle route of the solution obtained
end
end
r<r+1
until No improvement in the objective function is observed (z > z*);

Algorithm 4: Exchange heuristic

Consider an initial route R < (i = 1,1p,...,i, = 1)
k1« r
for i from 1 to iter do
k < Random(1,r — 1) with k # k1
k1 <k
Let R’ be the routing solution obtained when applying Exchange(k, 1) to the
route R
Update R + R’
end

the nodes visited in the k — 1" and k + 1" positions. In the computational results, we
consider [ equal to 2 and iter equal to 20.

3.2.3 Heuristic strategies

By combining different constructive and improvement heuristics, we face the possi-
bility of deriving different heuristic strategies. However, as explained above, some
improvement heuristics were designed to improve solutions with particular character-
istics, thus obtained through particular constructive heuristics.

The N-MILP and fix-and-relax heuristics use the vehicle event m odel. Thus, they
provide solutions which are optimal for the considered route (local optimum solutions).
Conversely, the greedy heuristic is a combinatorial algorithm that doesn’t use the MILP
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Figure 3.4 — Heuristic Exchange(n,2): exchange of two neighboring nodes by nodes j and j' starting
at position n.

model and provides solutions that may not be optimal for the route obtained. Hence,
the fix-and-optimize heuristic will be used only to improve the greedy algorithm, since
it cannot be effective in improving routing solutions from the two other constructive
heuristics.

The best insertion heuristic is useful to improve solutions using a small number of
visits. It may have a greater impact when combined with the heuristics based on the
MILP vehicle event model, since the running times of those heuristics will depend on
the number of visits N, and for small values of N they are in general fast. Hence, we
will apply the best insertion heuristic to improve solutions obtained with the N-MILP
and fix-and-relax heuristics.

The exchange heuristic is suitable to be applied to solutions obtained from any
heuristic procedure. Here, we will use this heuristic to improve solutions already im-
proved with the other improvement heuristics.

A general overview of the heuristics and their relations in order to derive full heuris-
tic strategies is given in Figure 3.5.

Constructive heuristics Improvement heuristics

N-MILP ) ]
Best insertion

Fix-and-relax Exchange

Greedy Fix-and-optimize

Figure 3.5 — Combination of the heuristics procedures in order to derive different heuristic strategies.

From this discussion, we can derive several heuristic strategies that combine con-
structive with improvement heuristics:

¢ N-MILP followed by Best insertion,

¢ Fix-and-relax followed by Best insertion,
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Greedy followed by Fix-and-optimize,

N-MILP followed by Best insertion followed by Exchange,

Fix-and-relax followed by Best insertion followed by Exchange,

Greedy followed by Fix-and-optimize followed by Exchange.

In the next section, we provide a computacional comparison of these strategies in
order to identify the best approach for an instance of a given size.

3.3 Computational experiments

In this section, we report the computational tests conducted to evaluate heuristics and
compare the several heuristic strategies that combine constructive with improvement
heuristics introduced in Section 3.2.

All the experiments were performed using a server with 15 CPU’s Intel ®Xeon (R)
E5540@ 2.53Ghz X4, with 16 GB of RAM.

A set of instances was randomly generated as described in chapter 1 and 2. The
vertices in V are located on a square grid of length ¢ = 8. The base station is located
on the bottom left vertex and the remaining stations are placed randomly on a square
of length ¢/ = 6, in the upper right of the grid. The distance matrix is given by the eu-
clidean distance between the stations. The graph edges are selected randomly. In order
to obtain a certain graph density d, starting from a complete graph, edges are removed
randomly, while ensuring connectivity, until the desired graph density is obtained. In
this work, we generate instances varying |V| in {20,50,100} to cover different size in-
stances and with d = 0.4. We considered the values of T € {72,120,240} and the data
generation rates r; are randomly generated in the interval [1,5]. The values of &;; were
randomly generated in {1/12,1/13,1/14} if i = j and in {1/5,1/6,1/7} otherwise.
The following values parameters were set: 7.y = 4, R =20 and M = 3.

3.3.1 Basic computational results for the heuristic approaches

In each table presented in this section, column (MILP) provides information on the
solution obtained by solving the vehicle event model with CPLEX solver in a time limit
of one hour.

Table 3.1 reports the results obtained with N-MILP heuristic. The first column gives
the parameters used in the instance generation. The next three columns present the
results obtained by solving the MILP vehicle event model. The second column (Z) gives
the objective function value of the best solution found, the third column (Cpu) gives the
running time in seconds (the asterisks mean the running time limit was attained) and
the fourth column (DGap) gives the duality gap at the end of the execution (DGap=
Z—z

x 100, where z is the best lower bound known). The last four columns report
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the results obtained with the N-MILP heuristic, where for 20 and 50 nodes we consider
N = 5 and for 100 nodes we consider N = 4. The fifth column gives the objective
function value of the best solution, the sixth column gives the corresponding vehicle
route, column (Gap) shows the gap, in percentage, between the values obtained with
the MILP model and the N-MILP heuristic (Gap =

Zmip — 2
ng Ny 100, where z;,;;, is the
mi

value presented in the second column and zy is the value presented in the fifth column).
A negative value means that the solution obtained with the N-MILP heuristic is better
than the solution obtained with the MILP model. The last column gives the running

time (in seconds).

Table 3.1 — Computational results for the MILP model with a run time limit of one hour and the
N-MILP heuristic.

MILP N-MILP heuristic

Parameter z Cpu | DGap z Route Gap | Cpu
|V] =20 | 488091 | 173,24 0 4944,66 | 5-18-8-12-1 1,31 6,62
T =120 | 553805 | 69,80 0 5596,26 | 18-14-2-6-1 1,05 4,58
M=38 772255 | 61,77 0 778796 | 20-13-16-6-1 | 0,84 3,32
R =30 6103,32 | 204,44 0 6170,30 | 19-10-16-5-1 | 1,10 7,69
6002,21 | 131,28 0 6068,65 | 11-16-12-7-1 1,11 4,71

5190,95 | 301,47 0 5253,14 | 8-20-17-13-1 | 1,20 7,13

4880,42 | 96,17 0 4928,08 | 9-6-13-19-1 0,98 4,56

4750,10 | 101,54 0 4889,72 3-4-17-7-1 2,94 3,69

4459,60 | 41,69 0 4691,88 9-6-19-2-1 5,21 3,92

6548,51 | 175,71 0 6661,82 | 12-2-17-14-1 | 1,73 6,25
|V| =50 | 17776,60 112,23 || 17722,30 | 17-41-44-18-1 | -0,30 | 96,49
T =120 | 16140440 14,36 || 16128,70 | 30-5-11-16-1 | -0,07 | 237,55
M=38 16757,80 *** 1 13,45 || 16737,60 | 31-46-19-7-1 | -0,12 | 246,64
R =30 15009,50 *** 114,30 || 15068,40 | 42-17-6-25-1 | 0,39 | 258,63
15985,20 ** 1 14,12 || 16016,00 | 5-34-45-12-1 | 0,19 | 214,92
16578,10 *** 114,14 | 16565,40 | 30-25-44-39-1 | -0,07 | 291,98
16174,60 %1 15,06 || 16285,10 | 6-14-22-31-1 | 0,68 | 242,99
17997,70 *** 113,66 | 18012,00 | 4-16-47-2-1 0,08 | 335,79
17554,00 *** 112,69 || 17611,30 | 28-49-48-46-1 | 0,32 | 329,39
17557,00 *** 1 13,76 || 17588,60 | 33-4-11-37-1 | 0,18 | 244,82
|[V|=100 | 55740,40 %945 || 56406,79 | 11-60-26-1 1,19 | 180,65
T =200 | 56446,00 *** 1926 || 57207,39 | 37-35-54-1 1,35 | 135,81
M =12 | 52327,00 *** 1994 | 5320240 83-65-7-1 1,67 | 170,38
R =50 56939,80 *** 1985 || 5767549 | 32-99-43-1 1,29 | 972,52
55578,00 *** 1924 | 56094,60 | 39-17-70-1 0,93 | 154,89
57665,20 %1940 || 58206,40 | 21-53-48-1 0,94 | 149,71
51226,00 *** 1997 | 51860,80 | 67-31-42-1 1,24 | 227,07
53887,20 *** 19,40 || 54514,99 | 19-100-52-1 1,16 | 94,75
56568,20 19,71 57131,80 27-90-3-1 0,99 | 104,99
56449,40 *** 1945 || 57122,60 | 48-80-24-1 1,19 | 673,39

We can see that only for two instances the value of the best solution obtained with
the N-MILP heuristic was more than 2% higher than the best solution obtained with the
MILP model. In four instances (all with 50 nodes) the N-MILP heuristic provided the
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best solution. As we exepcted, the N-MILP heuristic runs fast: always below 8 seconds
for 20 nodes, 6 minutes for 50 nodes, and 12 minutes for 100 nodes.

Table 3.2 reports the results obtained with the greedy heuristic. The first two columns
repeat information given in the corresponding column of Table 3.1. The following three
columns give the objective function value, the gap and the route of the best solution
obtained with the greedy algorithm. Again, the gap measures the relative difference,
in percentage, between the value of the greedy solution and the value given in column
MILP. The last two columns give the objective function value and the corresponding
gap of the solution obtained with the greedy heuristic followed by the fix-and-optimize
heuristic.

Table 3.2 — Computational results obtained with the greedy heuristic and with the greedy heuristic
followed by the fix-and-optimize improvement.

MILP Greedy heuristic Greedy+FO
|V] z z Gap Route z Gap
20 | 488091 || 4897,49 | 0,34 5-18-8-17-8-1 4881,07 | 0,01

5538,05 || 5713,06 | 3,16 6-17-2-16-1 5598,44 | 1,09
7722,55 7818,96 | 1,25 20-7-13-18-1 7776,75 | 0,70
6103,32 6294,46 | 3,13 16-10-6-5-11-1 6241,89 | 2,27
6002,21 6278,63 | 4,60 7-10-3-14-7-1 6258,21 | 4,27
5190,95 || 5358,59 | 3,23 8-15-20-13-20-1 5276,09 | 1,64
4880,42 | 5080,04 | 4,09 9-13-19-12-1 4980,57 | 2,05
4750,10 || 4872,56 | 2,58 7-17-4-3-5-19-1 4868,97 | 2,50
4459,60 | 465510 | 4,38 10-15-18-4-16-2-1 4636,90 | 3,98
6548,51 6772,08 | 3,41 2-17-9-10-6-1 6684,60 | 2,08
50 | 17776,60 || 17779,20 | 0,01 18-44-41-17-1 17737,40 | -0,22
1614040 || 16260,20 | 0,74 14-50-49-30-24-19-1 1618540 | 0,28
16757,80 || 16951,04 | 1,15 7-11-16-31-1 16924,64 | 1,00
15009,50 || 1522590 | 1,44 7-10-6-10-1 1518540 | 1,17
15985,20 || 16250,20 | 1,66 12-9-31-36-1 16177,30 | 1,20
16578,10 || 16673,00 | 0,57 39-22-25-44-39-1 16574,30 | -0,02
16174,60 || 16502,20 | 2,03 6-4-18-31-1 16483,20 | 1,91
17997,70 | 18311,70 | 1,74 40-35-18-23-14-1 1825590 | 1,43
17554,00 || 17672,60 | 0,68 28-48-27-22-1 17629,20 | 0,43
17557,00 || 17676,60 | 0,68 32-5-11-37-1 17655,10 | 0,56
100 | 55740,40 || 56027,20 | 0,51 34-64-60-11-40-65-78-19-1 55969,60 | 0,41
56446,00 || 56713,40 | 0,47 37-21-19-12-95-5-35-97-1 56601,00 | 0,27
52327,00 || 53073,40 | 1,43 7-83-51-37-22-16-8-91-7-1 52818,20 | 0,94
56939,80 || 57395,60 | 0,80 | 40-38-84-99-43-47-25-99-32-1 || 57318,70 | 0,67
55578,00 || 56274,40 | 1,25 | 59-20-40-17-29-89-91-92-26-1 || 56095,40 | 0,93
57665,20 || 58063,40 | 0,69 | 48-41-67-53-94-60-40-4-85-1 || 57868,40 | 0,35
51226,00 || 51750,40 | 1,02 15-45-58-65-55-54-29-4-1 51674,20 | 0,87
53887,20 || 54245,80 | 0,67 | 52-17-31-63-72-32-100-67-75-1 || 54017,40 | 0,24
56568,20 || 56849,00 | 0,50 31-32-74-24-67-78-9-31-1 56615,10 | 0,08
56449,40 || 57315,40 | 1,53 42-25-73-24-78-54-8-38-1 57180,80 | 1,30

We can see that the fix-and-optimize heuristic always improve the greedy solution.
The combination of the two heuristics provide solutions whose objective function val-
ues are very close to the one given in column MILP, specially for large size instances
with 50 and 100 nodes. For 100 nodes, the relative difference is always below 1% except
for one instance. We can also observe that for 100 nodes the greedy solution tends to
add more visits than the N-MILP heuristic.

In Table 3.3, we report the results obtained with the fix-and-relax heuristic. For
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20,50 and 100 nodes, parameter N was set to 6,7 and 8, respectively. The last four
columns give the values of the best solution, the corresponding vehicle route, the gap
between the objective function value and the value of the best solution (presented in
the second column), and the running time (in seconds), respectively, obtained with the
fix-and-relax heuristic.

Table 3.3 — Computational results obtained with the fix-and-relax heuristic.

MILP fix-and-relax

V] z b4 route Gap cpu

20 | 4880,91 4953,04 12-8-18-11-12-1 1,48 7,27
5538,05 5636,80 6-12-11-18-4-1 1,78 6,59
7722,55 7875,96 19-7-13-3-19-1 1,99 6,29
6103,22 6180,02 16-10-6-5-14-1 1,26 9,68
6002,21 6097,97 7-12-16-2-7-1 1,60 8,14
5190,95 5247,81 8-15-17-20-13-1 1,10 11,00
4880,42 5059,50 9-14-12-19-12-1 3,67 7,72
4750,10 4993,72 4-5-3-4-3-1 5,10 7,84
4459,60 5154,30 11-9-2-9-11-10-1 15,58 6,36
6548,51 6664,75 2-17-12-14-8-1 1,77 8,36

50 | 17776,60 | 17761,60 18-41-44-41-17-4-1 -0,08 | 173,18
16140,40 || 16119,10 16-5-11-43-30-40-1 -0,13 49,84

16757,80 || 16796,10 7-15-31-7-10-7-1 0,22 73,18
15009,50 || 15152,00 10-27-15-7-43-30-1 0,95 44,39
15985,20 || 15990,60 12-45-40-11-12-1 0,03 45,72
16578,10 || 16556,20 39-25-44-39-13-1 -0,13 52,57
16174,60 || 16378,50 6-4-24-36-2-1 1,26 51,43
17997,70 || 18022,60 40-16-47-30-2-1 0,14 49,04
17554,00 || 17618,90 28-48-3-27-3-1 0,37 48,63

17557,00 || 17663,70 32-34-11-4-35-43-1 0,61 | 103,81
100 | 5574040 || 55974,60 | 34-28-68-40-11-10-26-1 | 0,42 | 1774,37
56446,00 || 56600,11 | 22-95-37-35-54-20-95-1 | 0,27 | 1988,06
52327,00 || 52827,40 7-61-65-83-58-92-1 0,96 | 1446,43
56939,80 || 57010,90 | 40-43-99-32-25-47-69-1 | 0,12 | 1404,87
55578,00 || 55395,40 | 39-17-62-59-70-39-83-1 | -0,33 | 1929,53
57665,20 || 57853,00 53-67-41-7-10-89-1 0,33 | 1210,01
51226,00 || 51244,90 | 42-45-58-4-35-15-38-1 0,04 | 1786,29
53887,20 || 54163,80 | 2-48-100-19-36-74-37-1 | 0,51 | 1620,97
56568,20 || 56513,30 | 31-53-32-93-39-3-27-1 | -0,10 | 1604,13
56449,40 || 56843,60 | 46-13-94-24-80-78-12-1 | 0,70 | 1447,75

From the Gap column, we can see that for the easiest instances (with 20 nodes),
the performance of the fix-and-relax heuristic is clearly worst than solving the MILP
model with a time limit of one hour. However for 50 and 100 nodes, the heuristic
provides solutions with a gap below 1% in all but one instance, and for five instances
it provides a better solution than the one obtained with the MILP model. The running
times increase with the increase of the number of nodes. However, even for the 100
nodes case, the running times are always below the 2000 seconds.

In Table 3.4, we report the results obtained with the two constructive heuristics
based on the event vehicle model combined with the best insertion heuristic. From
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the third to sixth column, we report the results obtained with the constructive N-MILP
heuristic. Column (N-MILP) gives the value of the solution obtained with the N-MILP
heuristic, and the following three columns give the information (objective function
value, gap, and running time) corresponding to the solution obtained with the heuris-
tic approach combining the N-MILP heuristic (used to obtain the initial solution) with
the best insertion heuristic (used to improve the initial solution). The last four columns
report similar information obtained with the fix-and-relax heuristic combined with the
best insertion heuristic. In this case, the initial solution is obtained with fix-and-relax
heuristic and its objective function value is reported in column (fix&relax).

Table 3.4 — Computational results with the N-MILP heuristic and the fix-and-relax heuristic com-
bined with the best insertion heuristic.

MILP N-MILP + best insertion fix-and-relax + best insertion

V| z N-MILP z Gap | Cpu fix&relax z Gap | Cpu
20 | 4880,91 5145,95 | 4918,15 | 0,76 26,77 5165,59 5021,14 | 2,87 14,66
5538,05 5718,10 | 5622,62 | 1,53 12,13 5674,89 5622,62 | 1,53 11,93
7722,55 7927,39 | 7768,47 | 0,59 10,35 8019,82 7789,89 | 0,87 12,29
6103,32 6283,85 | 6103,32 | 0,00 9,65 6295,59 6226,46 | 2,02 14,11
6002,21 6189,77 | 6050,54 0,8 9,78 6326,21 6192,29 | 3,17 9,74
5190,95 5374,00 | 5190,97 | 0,00 12,50 5295,01 5253,89 | 1,21 11,43
4880,42 5002,92 | 4906,61 | 0,54 10,55 5049,03 | 4986,19 | 2,17 12,74
4750,10 5001,32 | 4809,34 | 1,25 11,75 5143,65 | 4932,49 | 3,84 12,86
4459,60 4560,40 | 4560,40 | 2,26 11,94 5165,28 | 4578,02 | 2,66 | 21,02
6548,51 6737,40 | 6657,30 | 1,66 10,13 6785,39 6637,74 | 1,36 12,96
50 | 17776,60 || 17829,20 | 17736,10 | -0,23 | 43,65 17763,00 | 177249 | -0,29 | 43,88
16140,40 || 16252,40 | 16119,80 | -0,13 | 30,89 16282,10 | 16198,40 | 0,36 | 47,22
16757,80 || 16852,90 | 16750,40 | -0,04 | 36,64 16771,30 | 16757,60 | 0,00 65,63
15009,59 || 15170,70 | 15038,70 | 0,19 | 46,78 15109,90 | 15076,50 | 0,45 | 48,79
15985,20 || 16115,70 | 15970,20 | -0,09 | 48,93 15989,70 | 15940,30 | -0,28 | 61,73
16578,10 || 16697,40 | 16540,00 | -0,23 | 35,45 16615,99 | 16610,20 | 0,19 58,71
16174,60 || 16448,20 | 16305,80 | 0,81 34,62 16380,13 | 16361,60 | 1,16 | 55,17
17997,70 || 18127,30 | 18049,30 | 0,29 37,19 18102,40 | 18093,60 | 0,53 | 52,18
17554,00 || 17690,50 | 17611,80 | 0,33 36,94 17612,70 | 17612,70 | 0,33 | 35,08
17557,00 || 17737,90 | 17640,50 | 0,48 32,82 17680,70 | 17654,70 | 0,56 71,66
100 | 55740,40 || 56985,20 | 55639,80 | -0,18 | 267,91 56087,20 | 55538,00 | -0,36 | 1580,41
56446,00 || 57729,40 | 56326,00 | -0,21 | 446,72 || 56682,70 | 56343,30 | -0,18 | 1267,04
52327,00 || 53827,60 | 52333,80 | 0,01 | 155,84 || 52467,40 | 52158,50 | -0,32 | 918,25
56939,80 || 58219,40 | 56947,40 | 0,01 | 285,15 || 57185,80 | 56941,60 | 0,00 | 1252,38
55578,00 || 56568,60 | 55255,40 | -0,58 | 331,53 || 55454,20 | 55319,39 | -0,47 | 1091,69
57665,20 || 58592,60 | 57582,40 | -0,14 | 221,79 || 57789,40 | 57255,20 | -0,71 | 1029,93
51226,00 || 52186,20 | 50988,10 | -0,46 | 1150.93 || 51393,40 | 51013,40 | -0,42 | 1954,06
53887,20 || 55275,80 | 53896,00 | 0,02 | 391,52 || 54426,70 | 53824,00 | -0,12 | 1033,62
56568,20 || 57680,60 | 56383,00 | -0,33 | 362,81 56774,70 | 56375,50 | -0,34 | 873,65
56449,40 || 57611,80 | 56511,20 | 0,11 | 235,50 || 56850,00 | 56421,30 | -0,05 | 1027,11

Again, the gaps show that for the easiest instances (with 20 nodes), the perfor-
mance of the two heuristic strategies tested (N-MILP combined with best insertion and
fix-and-relax combined with best insertion) provide w orst s olutions than solving the
MILP model with a time limit of one hour. However for 50 and 100 nodes, both heuris-
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tic strategies are very competitive in terms of quality of the solution when compared
against solving the MILP model. Both approaches are better in ten instances and worst
in the remaining ten. However, the running times are much lower than the one hour
spent in solving the MILP model. Between the two approaches it is not clear which one
provides the best solutions. However, considering the running times for 100 nodes,
the strategy based on the fix-and-relax is clearly slower than the one using the N-MILP
heuristic.

Table 3.5 compares the greedy solution improved with the exchange heuristic against
the greedy solution improved with the best insertion heuristic and the exchange heuris-
tic.

Again, when the number of nodes increases, the greedy heuristic combined with the
improvement heuristics becomes more competitive than solving the vehicle event MILP
model with a time limit of one hour. The running times are always lower (always below
1500 seconds) and, for 100 nodes, the objective function values are in general better than
the ones obtained with the MILP model. Between the two tested approaches, none of
the approaches is clear better than the other.

3.3.2 Graphical comparison of the best heuristic approaches

In this section, we compare the constructive heuristics as well as the constructive heuris-
tics combined with the improvement heuristics. The comparison is done with respect
to two parameters: the quantity of information remaining in the stations at time m
(corresponding to figures (a)) and the running time (corresponding to figures (b)). The
comparison is performed for m € {20,50,100} The results report average values ob-
tained over all the tested instances.

Figures 3.6-3.8 compare the constructive heuristics with the exception that the greedy
heuristic includes the fix-and-optimize procedure that allows to obtain an initial local
optimum solution (since, as explained in Section 3.2.2, the solution is optimal for the
given route). From these figures we can see that for | V |=20and | V |= 50 the N-MILP
heuristic gives the best results. Even for | V |= 50 the N-MILP heuristic generates solu-
tions with average running time of 50 seconds, whose value is close to the best solution

with time limit of one hour. However, for | V |= 100 the greedy heuristic provides
better solutions than the N-MILP heuristic and spends less computational time. The
fix-and-relax heuristic provides poor results for | V | =20. However, for | V | =100

it generates the best solutions among the constructive heuristics but the running times
are very hight.

Next, based on the previous results, we compare the best heuristic approaches com-
bining the constructive and improvement heuristics. This includes the following heuris-
tic strategies: N-MILP followed by Best insertion; fix-and-relax followed by Best inser-
tion; N-MILP followed by Best insertion followed by Exchange; and Greedy followed
by fix-and-optimize followed by E xchange. The strategy S5, i.e., the fix-and-relax fol-
lowed by Best insertion followed by Exchange, is not presented since the running times
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without the Exchange heuristic are already too hight. Figures 3.9-3.11 present this com-
parison.

In these graphics, we denote the N-MILP heuristic combined with the best insertion
heuristic as (N+best); the fix-and-relax combined with the best insertion as (fix+best),
the greedy heuristic combined with the fix-and-optimize and the exchange heuristic
as (Gr+Exch) and the N-MILP heuristic followed by the best insertion heuristic and
combined with the exchange heuristic as (N+Ins+Exch).

We can observe that, for the easiest instances, with | V |= 20, the MILP model
provides the best solutions although all the heuristic approaches are quite fast. How-
ever, when | V | increases, the quality of the MILP solution decreases and the heuristic
strategies become more competitive. For | V |= 100, all the heuristic strategies pro-
vide better solutions than the MILP model within a time limit of one hour. The greedy
heuristic combined with the fix-and-optimize and the exchange heuristic provides the
best solutions while the N-MILP heuristic combined with the best insertion is the fastest
approach.
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Table 3.5 — Computational results with the greedy heuristic combined with the best insertion and
the exchange heuristic

MILP Greedy + Exchange N-MILP+B.Ins+Exchange
|V] z z Cpu | Gap z Cpu | Gap
20 | 4880,91 4880,91 12,37 0,00 4918,15 21,02 | 0,76
5538,05 5538,06 12,08 0,00 5557,67 14,01 | 0,35
7722,55 7729,48 15,07 0,09 7774,60 15,16 | 0,67
6103,32 6103,32 13,38 0,00 6103,32 22,04 | 0,00
6002,21 6029,38 12,12 0,45 6050,53 23,40 | 0,81
5190,95 5190,97 16,53 0,00 5190,97 29,22 | 0,00
4880,42 4980,55 8,93 2,05 4900,00 19,51 | 0,40
4750,10 4756,01 13,99 0,12 4750,15 23,98 | 0,00
4459,60 4515,21 13,40 1,25 4442,00 33,83 | -0,39
6548,51 6572,84 15,82 0,37 6555,12 22,59 | 0,10
50 | 17776,60 || 17737,40 | 43,96 | -0,22 || 17736,10 63,72 | -0,23
16140,40 || 16093,90 | 51,85 | -0,29 || 16114,90 65,12 | -0,16
16757,80 || 16737,60 | 49,84 | -0,12 || 16750,40 45,00 | -0,04
15009,50 || 15089,40 | 41,23 0,53 || 15009,00 | 118,43 | 0,00
15985,20 || 16037,00 | 55,30 0,32 || 15964,70 | 101,91 | -0,13
16578,10 || 16516,90 | 55,61 | -0,37 || 16496,30 | 139,28 | -0,49
16174,60 || 16289,30 | 40,56 0,71 || 16196,10 87,83 | 0,13
17997,70 || 17937,50 | 57,51 | -0,33 || 18012,00 93,27 | 0,08
17554,00 || 17611,30 | 45,42 0,33 || 17599,60 | 112,63 | 0,26
17557,00 || 17588,60 | 51,82 0,18 || 17555,70 87,50 | -0,01
100 | 55740,40 || 55516,80 | 557,92 | -0,40 || 55500,60 | 846,60 | -0,43
56446,00 || 56305,40 | 660,80 | -0,25 || 56256,20 | 993,86 | -0,34
52327,00 || 52021,60 | 1011,37 | -0,58 || 52192,00 | 605,40 | -0,26
56939,80 || 56693,80 | 918,44 | -0,43 || 56727,60 | 911,75 | -0,37
55578,00 || 55238,40 | 1145,41 | -0,61 || 55255,60 | 1268,06 | -0,58
57665,20 || 57383,40 | 502,63 | -0,49 || 57450,80 | 626,73 | -0,37
51226,00 || 51075,20 | 730,26 | -0,29 || 50954,40 | 1420,84 | -0,53
53887,20 || 53647,00 | 582,47 | -0,45 || 53885,80 | 376,26 | 0,00
56568,20 || 56253,00 | 448,97 | -0,56 || 56256,50 | 979,76 | -0,55
56449,40 || 56362,60 | 429,55 | -0,15 || 56278,90 | 729,45 | -0,30
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Figure 3.6 — Comparison of constructive heuristic approaches on instances with | V |= 20,T =
120.
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Figure 3.7 — Comparison of constructive heuristic approaches on instances with | V |= 50, T =
120.
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Figure 3.8 — Comparison of constructive heuristic approaches on instances with | V |= 100, T =
200.
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Figure 3.9 — Comparison of heuristic strategies on instances with | V |= 20, T = 120.
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Figure 3.10 — Comparison of heuristic strategies on instances with | V |= 50, T = 120.
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Figure 3.11 — Comparison of heuristic strategies on instances with | V |= 100, T = 200.
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Conclusion

In this thesis, we have introduced the WT-VRP, a version of the VRP defined on wireless
networks. The new characteristic added here to this well studied problem is the fact
that information can be delivered without physically visiting a node in the network. A
MILP formulation was provided to model the feasible space of the WT-VRP.

In the first chapter we discussed three different criteria to measure the efficiency of
a solution which results in three different objective functions for the MILP formulation.
Computational experiments were conducted on random instances. We conclude that
the WT-VRP becomes more difficult as the total amount of information collected in-
creases and, as we could expect, as the size of the time period increases. Our MILP
formulation is computationally easier to solve when the average (over time) of the
amount of information collected is maximized (FO2). However, we saw that the opti-
mal solutions obtained with this criteria impacts the average satisfaction of the network
(FO3). We have also studied the periodicity of the solutions obtained by each different
efficiency c riteria. In a verage, the solutions obtained with FO3 are more suitable to
achieve periodicity. The results obtained in the first chapter are important to access the
hardness of the WT-VRP.

In the second chapter three mixed integer programming models are introduced. The
tirst model DT is based on a time discretization, where each decision is a multiple of the
time unity. The second model NE is an event model, where the visits to stations and
transfer operations are modeled as events. Finally, the third model VE considers the
vehicle stops as events. A computational study based on randomly generated instances
was conducted to compare the three models. The DT model presents a high number
of both variables and constraints while the NE and VE models need to be feed with
parameters for the maximum number of events permitted. The results show that the
NE model is always the worst and that the best model (DT or VE) depends on the
instance. For shorter time horizons the DT model performs well, while for longer time
horizons the VE is usually faster. The performance of the VE model is better when the
optimal number of vehicle stops can be estimated.

Since most of the practical instances cannot be solved to optimality within a reason-
able amount of computational time (see chapter 1,1), we propose in the last chapter sev-
eral heuristic approaches that combine both constructive and improvement heuristics.
In order to derive initial feasible solutions, three constructive heuristics are proposed.
Two of them use the MILP model and the other is a greedy heuristic. Three improve-
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ment heuristics are also proposed. These heuristics were derived to improve the initial
solutions and take into account the particularities of the constructive algorithm used to
obtain the initial solution. A fix-and-optimize heuristic fixes the routing decisions of the
initial solution and solves the resulting restricted MILP model. This heuristic is used
to improve the initial solution obtained with the greedy algorithm since this algorithm
doesn’t take into account the MILP model. As the size of the MILP model depends
on the maximum possible number of visits, N, the constructive heuristics based on the
MILP model are fast for small values of N. Thus an improvement heuristic that starts
form an initial route with a small number of vehicle visits and iteratively tests the in-
clusion of another visit is proposed. Finally an exchange heuristic that exchanges a
consecutive set of nodes by new ones is proposed. This heuristic is combined with all
the constructive heuristics.

Computational tests have shown that for the easiest instances, with a small number
of nodes and time periods, good quality solutions can, in general, be obtained by solv-
ing the MILP model using a solver with a running time limit of one hour. However,
when the instances are larger, this approach tends to be poor and to be outperformed
by the heuristic strategies that combine the constructive heuristics with the improve-
ment heuristics. In particular, for the largest instances with | V' |= 100 nodes and
m = 200, periods the greedy heuristic combined with a fix-and-optimize and an ex-
change heuristics provided the best solutions with average running times close to 10
minutes.
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Perspectives

This section proposes some ways to complete the studies we have done or to improve
the methods proposed. These tracks essentially concern four complementary aspects:

Sending information from the vicinity of a station: The vehicle could send informa-
tion not only when it is located in a station but also when the vehicle is in a position
near a station, which means, in a defined station neighborhood.

Increase the number of vehicles: One of the ways in which the work could be con-
tinued is adding more vehicles for the collection of information. This is necessary if we
consider that some vehicles, for example drones, have limited energy. In this case, by
imposing that only one vehicle collects the information, it would cause an accumulation
of information not collected in the stations.

Add uncertainties: The work can be improved by adding uncertainty in the time it
takes a vehicle to travel from one station to another and/or in the generation of infor-
mation in each station.

Add more base stations: In this work we have only considered a single base station,
we could improve the model by considering more than one base station. In this case,
the vehicles could start at one base station and end the route in another.
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