UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

TESIS:

"OPTIMIZACIÓN DEL DESEMPEÑO ENERGÉTICO DEL MOTOR DE INDUCCIÓN TRIFÁSICO MEDIANTE EL DIMENSIONAMIENTO DE LAS RANURAS DEL ROTOR, USANDO EL MÉTODO DE ELEMENTOS FINITOS Y EL CRITERIO DE ÓPTIMO DE PARETO"

PARA OPTAR EL GRADO ACADÉMICO DE DOCTOR EN CIENCIAS CON MENCIÓN EN ENERGÉTICA

ELABORADO POR:

MODESTO TOMÁS PALMA GARCIA

ASESORES:

Dr. JAIME EULOGIO LUYO KUONG

Dr. ENRIQUE QUISPE OQUEÑA

LIMA – PERÚ

2020

DEDICATORIA.

A mis padres María y Julio por ser el pilar fundamental de lo que soy.

A mi esposa Yudi y a mis hijos Mariam y Fernando porque ellos han dado razón a mi vida.

AGRADECIMIENTO

Mi agradecimiento a mis Asesores, Dr. Jaime Luyo Kuong quien desde el inicio del Doctorado me oriento para la elaboración de la Tesis, al Dr. Enrique Quispe Oqueña por los aportes y comentarios. Asimismo, a los Profesores del Doctorado que contribuyeron con el presente Trabajo.

INDICE GENERAL

RESUMENviii
ABSTRACTx
INTRODUCCIÓN1
CAPITULO I2
1 ANTECEDENTES Y DESCRIPCIÓN DEL PROBLEMA2
1.1. Antecedentes bibliográficos2
1.2. Descripción de la realidad problemática5
1.3. Formulación del problema6
1.4. Justificación e importancia de la investigación7
1.5. Objetivos
1.5.1. Objetivo general
1.5.2. Objetivos específicos
1.6. Hipótesis9
1.7. Variables e indicadores9
1.8. Unidad de análisis10
1.9. Tipo y nivel de investigación10
1.10. Técnicas de recolección y procesamiento de datos11
1.11. Aportes
1.12. Publicaciones
CAPITULO II
2 MARCO TEÓRICO Y MARCO CONCEPTUAL13
2.1. Principio de funcionamiento del Motor de Inducción y modelo con Vectores Espaciales13
2.1.1. Modelo del motor de inducción para análisis régimen permanente16
2.1.2. Características de operación del motor de Inducción en régimen permanente18
2.2. Estructura del Motor de inducción y Análisis de las Geometría de las ranuras del rotor25
2.3. Dimensionamiento de las ranuras del estator26
2.4. Las ecuaciones de Maxwell para el análisis del Motor de Inducción29
2.4.1. Modelamiento considerando el movimiento del rotor mediante el vector potencial magnético \overline{A}

2.5. El Método de Elementos Finitos para la Solución Numérica de las Ecuaciones de Maxwell
2.5.1. Introducción
2.5.2. Condiciones de frontera38
2.5.3. Método de Galerkin para la solución de problemas de campos40
2.6. Problemas de Optimización Multiobjetivo49
2.6.1. Optimización multiobjetivo49
2.6.2. Definiciones
CAPÍTULO III
3 DESARROLLO DEL TRABAJO DE LA TESIS
3.1. Determinación de los Parámetros del Circuito equivalente Motor de Inducción54
3.1.1. Descripción del motor a utilizar54
3.1.2. Características de las ranuras del estator y rotor
3.2. Determinación experimental de los parámetros del circuito equivalente del motor de inducción
CAPÍTULO IV
4 ANALISIS Y RESULTADUS
 4 ANALISIS Y RESULTADOS
 4 ANALISIS Y RESULTADOS
 4 ANALISIS Y RESULTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 4.1.2. Curvas características en régimen estacionario del motor experimental64
 4 ANALISIS Y RESULTADOS
 4 ANALISIS Y RESULTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 4.1.2. Curvas características en régimen estacionario del motor experimental 64 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 66 68
 4 ANALISIS Y RESULTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 4.1.2. Curvas características en régimen estacionario del motor experimental 64 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 66 4.1.4. Simulación del régimen transitorio. 68 4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental.
 4 ANALISIS Y RESULTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo
 4 ANALISIS Y RESULTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 4.1.2. Curvas características en régimen estacionario del motor experimental 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 4.1.4. Simulación del régimen transitorio. 4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental. 4.2. Optimización multiobjetivo para el mejoramiento del desempeño del motor de inducción. 4.2.1. Resultados del mejoramiento del desempeño del motor de inducción.
 4 ANALISIS Y RESOLTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 4.1.2. Curvas características en régimen estacionario del motor experimental 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 4.1.4. Simulación del régimen transitorio. 4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental. 4.2. Optimización multiobjetivo para el mejoramiento del desempeño del motor de inducción. 4.2.1. Resultados del mejoramiento del desempeño del motor de inducción. 75 4.2.2. Análisis paramétrico variando hs2 de la ranura del rotor.
 4 ANALISIS Y RESULTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 4.1.2. Curvas características en régimen estacionario del motor experimental 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 6.6 4.1.4. Simulación del régimen transitorio. 6.8 4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental. 69 4.2. Optimización multiobjetivo para el mejoramiento del desempeño del motor de inducción. 72 4.2.1. Resultados del mejoramiento del desempeño del motor de inducción. 75 4.2.2. Análisis paramétrico variando hs2 de la ranura del rotor. 79
 4 ANALISIS Y RESOLTADOS 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 4.1.2. Curvas características en régimen estacionario del motor experimental 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 4.1.4. Simulación del régimen transitorio. 4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental. 4.2. Optimización multiobjetivo para el mejoramiento del desempeño del motor de inducción. 4.2.1. Resultados del mejoramiento del desempeño del motor de inducción. 4.2.2. Análisis paramétrico variando hs2 de la ranura del rotor. 4.2.4. Análisis de las soluciones Pareto optimas de las Funciones Objetivos
4 ANALISIS Y RESULTADOS 60 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 60 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 62 4.1.2. Curvas características en régimen estacionario del motor experimental 64 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 66 4.1.4. Simulación del régimen transitorio. 68 4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental. 69 4.2. Optimización multiobjetivo para el mejoramiento del desempeño del motor de inducción. 72 4.2.1. Resultados del mejoramiento del desempeño del motor de inducción. 75 4.2.2. Análisis paramétrico variando hs2 de la ranura del rotor. 75 4.2.3. Conjunto Factible análisis paramétrico variando bs1, bs2 y hs2 79 4.2.4. Análisis de las soluciones Pareto optimas de las Funciones Objetivos 95 CONCLUSIONES. 102
4 ANALISIS Y RESULTADOS 60 4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos. 60 4.1.1. Distribución de las líneas de campo magnético y densidad de flujo 60 4.1.2. Curvas características en régimen estacionario del motor experimental 64 4.1.3. Simulación en régimen transitorio condición rotor bloqueado. 66 4.1.4. Simulación del régimen transitorio. 68 4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental. 69 4.2. Optimización multiobjetivo para el mejoramiento del desempeño del motor de inducción. 72 4.2.1. Resultados del mejoramiento del desempeño del motor de inducción. 75 4.2.2. Análisis paramétrico variando hs2 de la ranura del rotor. 75 4.2.3. Conjunto Factible análisis paramétrico variando bs1, bs2 y hs2 79 4.2.4. Análisis de las soluciones Pareto optimas de las Funciones Objetivos 95 CONCLUSIONES. 102

ANEXO I	
ANEXO II	

ÍNDICE DE FIGURAS

Figura 2.1 Modelo de una máquina de inducción trifásica	13
Figura 2.2 Modelo circuito equivalente de la máquina de inducción en régimen perman	ente.
Figura 2.3 Modelo clásico del motor de inducción incluyendo pérdidas.	18
Figura 2.4 Equivalente de Thévenin para la máquina de inducción visto desde el rotor	r19
Figura 2.5 Característica Par – Deslizamiento del motor de inducción	21
Figura 2.6 Efecto de la variación de la resistencia del rotor en el Par.	23
Figura 2.7 Efecto de la tensión aplica en la característica del Par	24
Figura 2.8 Ranura simple	25
Figura 2.9 Dimensiones de la ranura en el rotor.	27
Figura 2.10 Condiciones de contorno para la máquina de inducción	39
Figura 2.11 Elementos triangulares para la región del dominio	47
Figura 2.12 Ensamble de dos elementos triangulares de la región del dominio	48
Figura 3.1 Dimensiones de las láminas magnéticas de la Máquina (Student Demosti Set) [18]	ration 55
Figura 3.2 Dimensiones de las ranuras del estator [18]	56
Figura 3.3 Dimensiones de las ranuras del rotor. [18]	56
Figura 3.4 Determinación Experimental de Parámetros de la máquina generali operando como motor de inducción	izada 57
Figura 3.5 Registro de la Corriente arranque prueba sin carga	58
Figura 3.6 Característica del corriente estator (A)	59
Figura 3.7 característica del Par (N-m)	59
Figura 4.1 Característica B-H del material ferromagnético [18]	60
Figura 4.2 Geometría en el plano x-y (Student Demostration Set).	61
Figura 4.3 Mallado de las regiones para el motor de inducción	62
Figura 4.4 Distribución de las líneas de campo	63
Figura 4.5 Distribución de la densidad de flujo B (Tesla)	64
Figura 4.6 Corriente del estator (A) en función de la velocidad (RPM)	65
Figura 4.7 Par electromagnético (N-m) en función de la velocidad (RPM)	65
Figura 4.8 Distribución de las líneas de campo para la simulación rotor bloqueado	66

Figura 4.9 Distribución de la densidad de flujo para la simulación de rotor bloqueado67
Figura 4.10 Corriente transitoria del estator para la prueba de rotor bloqueado67
Figura 4.11 Corriente régimen transitorio
Figura 4.12 Par transitorio del motor de inducción trifásico69
Figura 4.13 Comparación de las características de corriente estator régimen estacionario.
Figura 4.14 Registro de la corriente transitoria de arranque70
Figura 4.15 Corriente de arranque obtenida por simulación utilizando el MEF71
Figura 4.16 Comparación de las características del Par obtenido por los tres métodos72
Figura 4.17 Detalle de ranura del rotor donde se indica las variables Bs0, Bs1, Bs2, Hs0, Hs1 y Hs274
Figura 4.18 Corriente de arranque cuando bs1= 7,4 mm, bs2=4,3mm y hs2 variable76
Figura 4.19 Par de arranque cuando bs1= 7,4 mm, bs2=4,3mm y hs2 variable76
Figura 4.20 Eficiencia cuando bs1= 7,4 mm, bs2=4,3mm y hs2 variable77
Figura 4.21 Corriente de arranque cuando bs1= 10 mm, bs2=6 mm y hs2 variable78
Figura 4.22 Par de arranque cuando bs1= 10 mm, bs2=6 mm y hs2 variable78
Figura 4.23 Eficiencia cuando bs1= 10 mm, bs2=6 mm y hs2 variable79
Figura 4.24 Geometría del motor con ranuras rotor tipo M181
Figura 4.25 Distribución de las líneas de campo magnético motor ranura tipo M182
Figura 4.26 Distribución de las líneas de campo magnético motor ranura tipo M182
Figura 4.27 Características corriente estator vs velocidad para los motores con ranuras Tipo M1), Tipo M2 y original MO83
Figura 4.28 Corriente de estator transitoria del motor ranura tipo M184
Figura 4.29 Par transitorio motor ranura tipo M184
Figura 4.30 Geometría del motor con ranuras rotor tipo M386
Figura 4.31 Distribución de las líneas de campo magnético motor ranura tipo M386
Figura 4.32 Distribución de la densidad de campo magnético motor ranura tipo M387
Figura 4.33 Característica del Par vs velocidad para los motores con ranuras Tipo M3 , Tipo M4 y original MO
Figura 4.34 Característica eficiencia vs velocidad para los motores con ranuras Tipo M3, Tipo M4 y original MO
Figura 4.35 Par transitorio para la maquina tipo M3 el cual produce el mayor par de arranque
Figura 4.36 Corriente transitoria del estator para la maquina tipo M390
Figura 4.37 Frente de Pareto Máxima eficiencia y máximo Par de arranque92
Figura 4.38 Grafico de Frente de Pareto Mínima corriente de arranque y Máximo Par de Arranque

Figura 4.39 Grafico de Frente de Pareto Máxima eficiencia y Mínima corriente de	arranque
Figura 4.40 Grafico Conjunto solución para las funciones objetivos Par de Corriente de arranque y eficiencia.	arranque, 95
Figura 4.41 Geometría para el motor tipo M4	96
Figura 4.42 Líneas de campo magnético para el motor tipo M4	97
Figura 4.43 Distribución del campo magnético para el motor tipoM4	97
Figura 4.44 Característica corriente vs velocidad motores tipo M4, M5 y M6	98
Figura 4.45 Característica Par vs velocidad para motores tipo M4, M5 y M6	98
Figura 4.46 Característica eficiencia vs velocidad para motores tipo M4, M5 y M6	399
Figura 4.47 Par régimen transitorio para el motor tipo ranura M4	100
Figura 4.48 Corriente transitoria para motor ranura tipo M4	100

ÍNDICE DE TABLAS

Tabla 3.1 Especificaciones Técnicas de la Máquina (Student Demostration Set) [1	8]55
Tabla 3.2 Medidas del ensayo de vacío	57
Tabla 3.3 Medidas de la prueba rotor bloqueado	58
Tabla 3.4 Parámetros del circuito equivalente	58
Tabla 4.1 Datos del rotor [18]	73
Tabla 4.2 Restricciones de las Variables de decisión	74
Tabla 4.3 Dimensiones ranuras Motor Tipo M1	80
Tabla 4.4 Dimensiones de la ranura del rotor Motor Tipo M1, Tipo M2 y Motor Origin	nal MO. 83
Tabla 4.5 Dimensiones ranuras Motor Tipo M3	85
Tabla 4.6 Dimensiones de las ranuras del rotor con dimensiones generadas para e tipoM3C, motor tipo M4 y el motor original MO.	l motor 87
Tabla 4.7 Motores con ranuras tipo M4, tipo M5 y tipo M6	95
Tabla 4.8 Características de desempeño de Motores con ranuras tipo M4 y tipo MC)101

RESUMEN

Uno de los objetivos de Desarrollo Sostenible establecidos por las Naciones Unidas en setiembre del 2015, es la respuesta mundial a la amenaza del cambio climático debido a la utilización de combustibles fósiles, y también asegurar el acceso y uso de las energías asequibles, fiables, sostenibles y modernas; siendo una de las tareas importantes la eficiencia energética y, principalmente en los motores eléctricos de inducción considerando que consumen cerca del 80 % del consumo energético industrial.

Las pequeñas mejoras en la eficiencia generan importantes ahorros en los costos, así como disminución del impacto ambiental, por lo que surge la necesidad y la importancia de mejorar la eficiencia de los motores de inducción.

En la presente Tesis se desarrolla una metodología para determinar las dimensiones y forma de las ranuras del rotor, para la optimización multiobjetivo y obtener la mínima corriente de arranque, el máximo par de arranque y la máxima eficiencia del motor de inducción trifásico tipo jaula de ardilla.

Se modela al motor de inducción trifásico mediante las ecuaciones de Maxwell para el campo magnético, considerando la no linealidad del material del núcleo y el efecto de las corrientes inducidas en los conductores.

Se realizo la validación experimental del modelado por las ecuaciones de Maxwell y la solución numérica utilizando el método de elementos finitos, para determinar las características en régimen estacionario y transitorio, para lo cual se utilizó la máquina Student Demostration Set del Laboratorio de Electricidad de la Facultad de Ingeniería Eléctrica y Electrónica, obteniéndose mejores resultados comparados con el modelo tradicional del circuito equivalente.

Se analiza el efecto de la resistencia del devanado del rotor en las características de corriente, par y eficiencia, buscando desempeños particulares según el tipo de aplicación de los motores de inducción trifásico introduciendo mejoras en el proceso de diseño. Es decir que se propone utilizar esta metodología, después del diseño del motor de inducción, para introducir mejoras que optimicen la operación.

viii

Se ha realizado el análisis paramétrico, utilizando el método de elementos finitos, variando solo una de las dimensiones de la ranura rotóricas del motor original, con la finalidad de predecir las características de corriente de arranque, par de arranque y eficiencia. Se muestra que no posible obtener en forma simultánea la máxima eficiencia, el máximo par de arranque y la minina corriente de arranque.

Utilizando el análisis paramétrico al variar de manera simultánea las variables de decisión bs1, bs2 y hs2 (que corresponde a 3 de las 6 dimensiones de la ranura del rotor), se genera 640 soluciones posibles. Utilizando el software Maxwell Ansys, se genera 640 características en régimen estacionario para la corriente del estator, el par y la eficiencia en función de la velocidad en RPM. Utilizando el criterio de Óptimo de Pareto se determina un conjunto de soluciones que sean buenos compromisos (trade-offs) entre los diversos objetivos.

Se ha desarrollado una metodología de optimización multiobjetivo, usando el criterio de Óptimo de Pareto, que permite determinar las dimensiones y forma de la ranura del rotor que maximizan el desempeño energético del motor de inducción, es decir que tenga de manera simultánea la máxima eficiencia, la mínima corriente de arranque y el máximo par de arranque.

ABSTRACT

One of the Sustainable Development goals established by the United Nations in September 2015, is the global response to the threat of climate change due to the use of fossil fuels, and it also guarantees access and use of affordable, reliable, sustainable energy and modern; energy efficiency being one of the important tasks and, mainly, in controlled induction electric motors that consume about 80% of industrial energy consumption.

Small improvements in efficiency generate significant cost savings, as well as less environmental impact, so there is a need and importance to improve the efficiency of induction motors.

In this Thesis, a methodology is developed to determine the dimensions and shape of the rotor grooves, for multi-objective optimization and to obtain the minimum starting current, maximum starting torque and maximum efficiency of the three-phase squirrel cage induction motor.

The three-phase induction motor was modeled using Maxwell's equations for the magnetic field, considering the nonlinearity of the core material and the effect of the induced currents in the conductors.

The experimental validation of the modeling was performed by Maxwell's equations and the numerical solution using the finite element method, to determine the characteristics in stationary and transient regime, for which the Student Demostration Set machine of the Faculty of Electricity Laboratory was used. of Electrical and Electronic Engineering, obtaining better results compared to the traditional model of the equivalent circuit.

The effect of the resistance of the rotor winding on current, torque and efficiency characteristics is analyzed, looking for particular performances according to the type of application of three-phase induction motors, introducing improvements in the design process. In other words, it is proposed to use this methodology, after the design of the induction motor, to introduce improvements that optimize operation.

The parametric analysis was carried out, using the finite element method, of the dimensions of the rotor groove of the original motor, in order to predict the characteristics

Х

of starting current, starting torque and efficiency. It is shown that it is not possible to simultaneously obtain maximum efficiency, maximum starting torque, and minimum starting current.

Using parametric analysis, 640 possible solutions of rotor grooves are generated, with dimensions and shapes by simultaneously varying decision variables bs1, bs2 and hs2. Using Maxwell Ansys software, 640 steady state characteristics are generated for stator current, torque, and speed-dependent efficiency in RPM. Using the Pareto Optimal criterion, a set of solutions is determined that are good trade-offs (trade-o ff s) between the various objectives.

A multiobjective optimization methodology has been developed, using the Pareto Optimal criterion, which allows determining the dimensions and shape of the rotor groove that maximize the energy performance of the induction motor, that is, that it simultaneously has maximum efficiency, minimum starting current and maximum starting torque

INTRODUCCIÓN

Entre los objetivos de Desarrollo Sostenible establecidos por las Naciones Unidas en setiembre del 2015, está la lucha contra el cambio climático y el incremento de los gases de efecto invernadero debido a la utilización de combustibles fósiles, y también asegurar el acceso y uso de las energías asequibles, fiables, sostenibles y modernas; por lo que una de las tareas importantes para alcanzar estos objetivos es la eficiencia energética y, principalmente en los motores eléctricos de inducción considerando que, cerca del 80 % del consumo energético industrial se debe a estos motores. Por lo que, es de suma importancia la selección de la potencia del motor para operar en puntos cercanos a la máxima eficiencia.

Los motores de inducción trifásicos se utilizan en diversos accionamientos de aplicaciones industriales que requieren una determinada característica, con un par de arranque elevado y una baja corriente de arranque, siendo estas dos características opuestas.

Las características del desempeño de los motores, en particular de los motores de inducción debe ser compatible con las características de la aplicación, por ejemplo, en los motores de vehículos eléctricos para uso en tráfico urbano, se requiere alto torque de arranque y alta eficiencia.

El desempeño del motor de inducción es afectado por la forma de la ranura del rotor, habiéndose realizado estudios para diseñar la configuración optima de la ranura del rotor para maximizar el torque del motor de inducción trifásico, pero no se ha estudiado el efecto de incluir a la corriente y la eficiencia de manera simultánea, que es lo que ocurre en la operación real de un motor.

En la actualidad el método de elementos finitos se está utilizando para el análisis del motor de inducción en régimen permanente y transitorio, con resultados más precisos en comparación con los métodos que utilizan el modelo circuito equivalente con parámetros concentrados y que adoptaremos en la presente Tesis.

En este trabajo se plantea optimización multiobjetivo para maximizar la eficiencia, el torque de arranque y minimizar la corriente de arranque, aplicando el criterio de Pareto Optimo para optimizar las dimensiones de la ranura del rotor

CAPITULO I

ANTECEDENTES Y DESCRIPCIÓN DEL PROBLEMA

1.1. Antecedentes bibliográficos

En la referencia [17] los autores mencionan que, debido al cambio climático y el incremento de los gases de efecto invernadero, el tema de la eficiencia energética y principalmente en los motores de inducción se hace cada vez más importante, por lo que se desarrollan diferentes estudios en esta área. Los autores comparan las diversas normas desarrolladas en los países de Latinoamérica incluyendo Perú revelando un retraso en la implementación.

En la referencia [25], el autor presenta diferentes opciones en la aplicación de la utilización racional de la energía eléctrica, que consumen los motores de inducción, en el sector industrial. Cerca del 80 % del consumo industrial es debido a la consumida por los motores. Siendo de mucha importancia la selección de la potencia del motor según el requerimiento de la carga para operar en puntos cercanos a la máxima eficiencia. Asimismo, se indica que los motores medianos representan el mayor consumo de energía eléctrica y se constituyen en un objetivo clave para que las se enfoquen en este tipo de motores eléctricos

Según [8], se utiliza el método de elementos finitos para evaluar las pérdidas de un motor de inducción trifásico cuando opera con tensión balanceada y desbalanceada siendo esta última que genera mayores pérdidas, asimismo determinaron que las pérdidas en el núcleo se mantienen constates al variar la carga, pero las perdidas en el devanado del rotor se incrementan.

En vista que la predicción de las características de operación del motor de inducción es de mucha importancia, se han desarrollado diversas investigaciones en este tema. En la referencia [3] los autores determinan las características del torque y corriente en función de la velocidad para lo cual utilizan corrección del circuito equivalente incorporando la temperatura y la saturación del circuito magnético, obteniéndose resultados los cuales se correlacionan con las pruebas experimentales.

Las aplicaciones industriales de los motores de inducción son realizadas utilizando accionamientos electrónicos (controlador) cuya eficiencia depende de los valores de los

parámetros, en la referencia [14] los autores, utilizando el método de elementos finitos, se identifica la inductancia del devanado del estator, la densidad de flujo las cuales son verificados con pruebas de laboratorio obteniéndose una buena correlación.

En la referencia [19], los autores utilizan el método de elementos finitos para analizar el motor de inducción de tres velocidades, con el cambio de polos por medio del arrollamiento del estator, mostrando que a mayor número de polos el torque de arranque se incrementa. El motor de inducción de tres velocidades ha sido diseñado para mantener constante el producto de pares de polos por número de fases.

Se ha realizado diversas investigaciones donde se presentan los métodos para determinar los parámetros del circuito equivalente del motor de inducción y así predecir el desempeño bajo diferentes condiciones de carga, en la referencia [29] los autores desarrollan dos métodos para determinar los parámetros mediante la utilización del método de elementos finitos, para la simulación utilizan la curva de magnetización del núcleo linealizada, muestra las ventajas de utilizar el circuito equivalente con parámetros que varían en cada punto de operación. No analiza las características en régimen transitorio.

Los motores de inducción con rotor tipo barra profunda tienen una característica del torque versus velocidad adecuada para proveer un alto torque de arranque que requieren algunas aplicaciones, en la referencia [26] se calcula los parámetros del circuito equivalente utilizando el método de elementos finitos, los valores determinados son comparados con pruebas experimentales obteniéndose resultados que validan el modelo, no desarrolla la simulación en régimen transitorio.

El núcleo de los motores de inducción se fabrica de material ferromagnético, el cual presenta un comportamiento no lineal de las variables intensidad de campo H y la densidad de flujo B, además presenta el fenómeno de histéresis los cuales afectan el desempeño y la determinación de pérdidas en el núcleo. En la referencia [33] los autores proponen un nuevo método para incluir la histéresis y simular el campo magnético en estado estable, así como la corriente del devanado del estator utilizando el método de elementos finitos. No desarrollan la simulación para determinar perdidas ni el comportamiento en régimen transitorio.

En la referencia [2] los autores investigan y analizan la optimización de un motor de inducción trifásico mediante el cambio de la configuración del devanado del rotor,

investigan la influencia del devanado del rotor en el desempeño utilizando el aluminio y cobre, obteniéndose una mayor eficiencia y un mejor factor de potencia. Utilizan para el análisis el método de elementos finitos, no analizan el par ni corriente de arranque.

El tipo de material utilizado en la fabricación de la jaula de ardilla del rotor afecta la eficiencia de los motores de inducción, en la referencia [32] los autores desarrollan un análisis comparativo para mejorar la eficiencia de una máquina de inducción utilizada para operar como motor o generador. Asimismo, muestran que reemplazando el tipo de material del núcleo se consigue una mayor eficiencia. Para el análisis utilizan el método de elementos finitos, y no evalúan el efecto en el torque y corriente de arranque.

En las referencias [22], [23] y [24], se utiliza el método de elementos finitos MEF aplicado a la solución numérica de las ecuaciones diferenciales del vector potencial magnético, para diferentes condiciones de operación del motor de inducción tanto en régimen estacionario como transitorio. Se obtiene una buena correlación con los resultados de la prueba de laboratorio principalmente con los valores obtenidos y medidos que corresponde a la corriente de arranque, en vacío y a plena carga.

El tipo de geometría de las ranuras del estator y rotor del motor de inducción influye en el desempeño, en la referencia [28]. Los autores analizan el efecto de la distancia de la ranura del rotor de un motor monofásico de inducción, el parámetro variable es la distancia del diámetro externo del rotor y el borde superior de la ranura. Utilizando el método de elementos finitos se determinan la velocidad, eficiencia, corriente y torque. Se demuestra que el desempeño mejora con una disminución de dicha distancia.

En la referencia [34] los autores analizan el efecto del área de las ranuras rotoricas en la eficiencia del motor de inducción tipo jaula de ardilla. Se analiza la saturación, la resistencia del rotor y la eficiencia. Se demuestra que la configuración geometría de las ranuras del rotor influye en la mejora de la eficiencia. No analizan el efecto en el torque y corriente de arranque.

En la referencia [9] se presenta la comparación de diferentes diámetros de ranura del rotor (se considera ranuras circulares), para el análisis se utiliza el software FEM. El motor de inducción trifásico de 0.5HP es investigado por las diferencias de par de arranque. Esto se debe a que el diseño con una ranura de rotor más pequeña puede producir un alto torque de arranque y esto es esencial para cargas de alta inercia, como punzonadoras, elevadores y elevadores equipados con volante de inercia, según lo

requiera el diseño NEMA D. El análisis de simulación muestra que la ranura de rotor con diámetro de 4 mm desarrolla un torque de arranque más alto que el resto de las ranuras del rotor, siendo el torque de 3.4Nm.

La característica del torque vs velocidad del motor de inducción trifásico es afectada por la forma de la ranura del rotor. En la referencia [13] se diseña la configuración optima de la ranura del rotor para maximizar el torque del motor de inducción trifásico, no analiza la corriente y la eficiencia de manera simultánea.

El diseño de vehículos eléctricos para movilidad urbana, debido al estilo del tráfico, tiene algunas dificultades debido al arranque y parada continua. En la referencia [30] analizan la influencia de la ranura del rotor en el torque de arranque y eficiencia de los vehículos eléctricos. Determinan las variables relacionadas a la ranura del rotor para conseguir el mejoramiento de la eficiencia y torque.

En la presente Tesis de desarrolla una metodología para optimizar la forma y dimensiones de la ranura del rotor de un motor de inducción trifásico (maquina generalizada Student Demostration [18]), utilizando el método de elementos finitos y mejoramiento de la eficiencia, torque de arranque máxima y mínima corriente de arranque utilizando el criterio de Optimo de Pareto como un problema de Optimización Multiobjetivo.

1.2. Descripción de la realidad problemática

El problema de reducción del consumo de energía en el sector industrial es de mucho interés en el mundo, siendo los motores eléctricos los principales consumidores de energía eléctrica, entonces las pequeñas mejoras en la eficiencia podrían generar importantes ahorros en los costos, así como disminución del impacto ambiental que causa el uso de recursos fósiles para la producción de energía eléctrica, por lo que surge la necesidad y la importancia de mejorar la eficiencia de los motores de inducción [32].

Asimismo, la utilización del motor en los accionamientos de diversas aplicaciones industriales que requieren una determinada característica del torque versus velocidad, con un par de arranque elevado y una baja corriente de arranque, siendo estas dos características opuestas. En los motores de rotor tipo bobinado se puede agregar resistencias externas para incrementar el torque de arranque, disminuir la corriente de

arranque y mejorar la eficiencia en el punto de operación. Esta disposición incrementa el costo, por lo que se prefiere la utilización del rotor tipo jaula de ardilla por ser más económica y de operación más versátil.

El motor de inducción con rotor tipo jaula de ardilla es más simple para su construcción, pero no es posible insertar resistencia externas para obtener un mejor desempeño en cuanto al torque de arranque, corriente de arranque y la eficiencia por lo que se debe investigar la forma de diseñar un tipo de rotor que permite un mejor desempeño, Dado que la configuración de la ranura del rotor tiene un gran impacto en las características electromagnéticas de velocidad y de torque, es necesario un proceso de optimización de diseño del rotor para mejorar el desempeño del motor.

Tradicionalmente el diseño de la ranura del rotor utiliza formas que no son radicalmente diferentes de los diseños existentes, por lo tanto, dependen de la intuición del diseñador con experiencia industrial. Sin embargo, muchos estudios se han llevado a cabo para mejorar el rendimiento de los motores de inducción considerando optimización de una sola función objetivo.

En esta Tesis se investigará y diseñará la forma geométrica de la ranura del rotor, utilizando el método de optimización multiobjetivo, para conseguir un alto torque de arranque, una mínima corriente de arranque y una mejor eficiencia. Se utilizará el modelado del motor de inducción utilizando las ecuaciones de Maxwell y para la solución numérica el método de elementos finitos FEM, se considera el efecto skin en el devanado del rotor y la no linealidad del núcleo ferromagnético, estos parámetros permiten analizar el comportamiento del motor con mayor precisión. En vista que el problema es una función multiobjetivo se utilizara el método del Optimo Pareto para encontrar la mejor solución. El objetivo es encontrar un conjunto solución (dimensiones de las ranuras del rotor) que optimice el comportamiento del motor, no existe una única solución que sea considerada la mejor, en cambio se tiene un conjunto de soluciones óptimas llamadas Pareto Óptimas o soluciones compromiso, para lograr el mejor diseño para un motor de inducción.

1.3. Formulación del problema

Las interrogantes de investigación se pueden formular:

¿Se puede optimizar simultáneamente la eficiencia, la corriente de arranque y el par de arranque del motor trifásico de inducción tipo jaula de ardilla, mediante el cambio de las dimensiones y la forma de las ranuras del rotor?

Problemas específicos

¿Cómo impacta, en la distribución del campo magnético en el motor de inducción, las dimensiones del motor y la característica B-H del material ferromagnético del núcleo?

¿El modelado del motor de inducción, utilizando el método de elementos finitos, permite obtener mejores resultados de las características en régimen permanente y transitorio?

¿Cómo influye las dimensiones y forma de las barras del rotor en el par, corriente y eficiencia en un motor de inducción trifásico?

¿Es posible encontrar un conjunto solución, conformado por las dimensiones de la ranura del rotor, que optimicen en forma simultánea el desempeño del motor de inducción trifásico?

1.4. Justificación e importancia de la investigación

En la presente Tesis desarrolla una investigación aplicada, se ha empleado la teoría electromagnética para el modelado del motor de inducción trifásico simétrico y balanceado. El motor está compuesto por una estructura estática y la otra en movimiento rotatorio sobre el eje, asimismo, se considera la no linealidad del material del núcleo y el efecto de las corrientes inducidas en los conductores.

Se formula el enlace de las ecuaciones de campos eléctricos y magnéticos dependientes del tiempo, asimismo se considera secciones de conductor Ω c (conductores en las ranuras) rodeados por dominios no-magnéticos y no conductores (aire) Ω n. La aplicación de las ecuaciones de Maxwell resulta en un modelado eléctromagneto dinámico.

Se analiza el efecto de la resistencia del devanado del rotor en las características de corriente, torque y eficiencia, buscando desempeños particulares según el tipo de aplicación de los motores de inducción trifásico introduciendo mejoras en el proceso de diseño. Es decir que se propone utilizar esta metodología, después del diseño del motor de inducción, para introducir mejoras que optimicen la operación.

Se propone una metodología que permita optimizar, la forma de las ranuras, de tal forma que la eficiencia, el par de arranque y la corriente de arranque, cumpla con restricciones que aseguren la mejora del desempeño energético del motor, es decir que optimice el diseño geométrico del rotor.

Desde el punto de vista académico y de investigación la presente Tesis, permitirá desarrollar una línea de desarrollo en nuestra Facultad aplicado al análisis de otros tipos de máquinas eléctricas tales como el motor síncrono de imanes permanentes, motores de reluctancia variable, generadores asíncronos para generación eólica entre otras máquinas, utilizando el método de elementos finitos FEM, así como las herramientas de optimización requeridos para el diseño y operación.

1.5. Objetivos

1.5.1. Objetivo general

Determinar las dimensiones y forma de las ranuras del rotor, para obtener la optimización multiobjetivo considerando la mínima corriente de arranque, el máximo par de arranque y eficiencia del motor de inducción trifásico tipo jaula de ardilla, cuando se alimenta con tensión nominal y balanceada.

1.5.2. Objetivos específicos

a.- Determinar la distribución de la intensidad de campo y la densidad de flujo, en toda la estructura del motor de inducción, considerando el efecto de incluir las dimensiones de la máquina y la característica B-H no lineal del núcleo ferromagnético.

b.- Validar experimentalmente el modelado del motor de inducción, mediante el método de elementos finitos, para la predicción de las características en régimen permanente y transitorio utilizando la maquina generalizada de Laboratorio

c.-Comprobar, mediante el método elementos finitos, la influencia de la geometría de las ranuras del rotor, del motor de inducción trifásico, sobre el par de arranque, corriente de arranque y la eficiencia.

d.-. Desarrollar una metodología, para determinar la geometría de la ranura del rotor, para la optimización multiobjetivo que permita obtener en forma simultánea la máxima eficiencia, mínima corriente de arranque y máximo par de arranque.

1.6. Hipótesis

Hipótesis Principal:

"El dimensionamiento adecuado de las ranuras del rotor del motor de inducción trifásico permite optimizar el torque de arranque, minimizar la corriente de arranque y maximizar la eficiencia de manera simultánea"

Hipótesis Secundarias:

"Si se aplica el método de Elementos Finitos para el análisis del motor de inducción, entonces será posible mejorar la predicción de las características de la corriente, torque y eficiencia con respecto a los métodos convencionales".

" La variación de la configuración de las barras rotor influyen en la distribución de los campos magnéticos en toda la estructura (estator, rotor, entrehierro, ranuras,) por lo tanto impactará en el desempeño del motor de inducción trifásico".

1.7. Variables e indicadores

Las variables que se consideran en la presente investigación son:

1.- Variables independientes: dimensiones y forma de las ranuras del rotor, la tensión aplicada al devanado del estator, frecuencia aplicada a los devanados del estator y la carga aplicada al eje del motor de inducción trifásico.

2.- Variables dependientes: La corriente absorbida por el devanado del estator, el par electromagnético, la eficiencia, la distribución y valores de la densidad de campo magnético en la estructura de la máquina.

En cuanto a los indicadores, los resultados son evaluados en base a la presentación gráfica de las variables dependientes y la observación de los parámetros significativos de la respuesta en el tiempo.

Los indicadores de la variable independientes son:

- Dimensiones ranuras del rotor (mm).
- La tensión aplicada al devanado del estator cuya unidad es el Volt (V)
- La frecuencia cuya unidad es el Hertz (Hz)
- La carga cuya unidad es Newton-m (N-m)

Los indicadores de las variables dependientes son:

- La intensidad de corriente: Ampere (A).
- El Par electromagnético: Newton-m (N-m)
- La eficiencia (adimensional)
- La intensidad de campo magnético: Ampere-metro (A-m)
- La densidad de flujo magnético: Tesla (T).

1.8. Unidad de análisis

La unidad de análisis es el motor de inducción trifásico simétrico y balanceado, el cual es un sistema electromecánico compuesto por el estator y rotor de material ferromagnético magnético de características no lineal, la interacción de los campos magnéticos generados por la fuente de corriente aplicada al devanado del estator y la corriente inducida en los devanados del rotor, convierte la energía eléctrica a mecánica.

1.9. Tipo y nivel de investigación

El tipo de investigación tiene las características de ser una investigación analítica y experimental, por la utilización de las ecuaciones de Maxwell en un sistema con comportamiento no lineal y el movimiento de un sistema real complejo. En cuanto al tratamiento y procesamiento de los datos y los resultados obtenidos corresponde a una investigación de tipo cuantitativa y aplicada, muy especialmente en lo relativo a la precisión de la técnica numérica utilizada como es el método de los elementos finitos y la optimización multiobjetivo utilizando el criterio de Pareto óptimo. Se utiliza un método hipotético-deductivo.

1.10. Técnicas de recolección y procesamiento de datos

La técnica de recolección de datos es de naturaleza experimental, son obtenidos de la información de todas las características físicas de la máquina en cuanto a las dimensiones, tipo de material de los devanados y la característica no lineal del material ferromagnético del cual está fabricado el núcleo, así como los resultados de las pruebas de laboratorio tanto para la determinación de los parámetros del circuito equivalente como para las características de operación con carga.

En relación con el procesamiento de los datos, estos son efectuados utilizando técnicas numéricas para la solución de las ecuaciones de Maxwell dentro la región de análisis utilizando el Método de Elementos Finitos, así como los métodos de optimización multiobjetivo con el criterio de Pareto Optimo.

1.11. Aportes

La presente Tesis contribuye con el método para modelar, las maquinas eléctricas tradicionales, así como las nuevas máquinas tales como el motor síncrono de reluctancia, de imanes permanentes y máquinas de flujo axial, mediante las ecuaciones de maxwell y la solución numérica utilizando el método de elementos finitos, que permite mayor exactitud en los resultados, así como mayor análisis en la distribución del campo magnético y su efecto en las diferentes partes de la máquina. Esta información permite un mejor conocimiento, un mejor diseño y mejoras de las deficiencias en los diseños convencionales.

La mejora en los diseños, utilizando la optimización paramétrica en las dimensiones y materiales de las maquinas, permite el mejoramiento del desempeño según el requerimiento de la aplicación industrial.

La metodología de optimización multiobjetivo es posible aplicar a las otras variables y diversos tipos de máquinas eléctricas, se puede utilizar para la optimización multiobjetivo de otras funciones diferentes a los utilizados en la presente Tesis.

11

1.12. Publicaciones

a.-Palma,M. and J. E. Luyo,(2016) Modeling of induction motor including the saturation effect using the finite element method, *IEEE ANDESCON*, 2016, pp. 1-4.

b.-Palma, M., F. V. Cáceres Cárdenas, J. L. Kuong and E. C. Quispe, "Transient Analysis of Induction Motors Considering the Saturation Effect Applying the Finite Element Method," *2018 IEEE ANDESCON*, Santiago de Cali, 2018, pp. 1-6.

CAPITULO II

MARCO TEÓRICO Y MARCO CONCEPTUAL

2.1. Principio de funcionamiento del Motor de Inducción y modelo con Vectores Espaciales

En el presente acápite se presenta el modelado del motor de inducción trifásico simétrico con alimentación balanceada, representado por tres devanados del estator y tres devanados del rotor, acoplados magnéticamente [21], [27]. Se alimenta a los devanados del estator con un sistema balanceado de tensiones trifásicas de secuencia positiva senoidales las cuales se representan por las siguientes expresiones:

Figura 2.1 Modelo de una máquina de inducción trifásica.

$$v_{as}(t) = \sqrt{2}V_s \cos \omega_s t \qquad \dots (2.1)$$

$$v_{bs}(t) = \sqrt{2}V_s \cos\left(\omega_s t - \frac{2\pi}{3}\right) \qquad \dots (2.2)$$

$$v_{cs}(t) = \sqrt{2}V_s \cos\left(\omega_s t - \frac{4\pi}{3}\right) \qquad \dots (2.3)$$

Asimismo, en vista que, para su operación como motor, los devanados del rotor están en cortocircuito (motores rotor bobinado), las tensiones de los bornes correspondientes son nulas:

$$v_{ar}(t) = v_{br}(t) = v_{cr}(t) = 0$$
 ... (2.4)

Las ecuaciones de tensión del estator y rotor se expresan utilizando la notación de vectores espaciales por las siguientes expresiones:

$$\bar{v}_{s} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & \alpha & \alpha^{2} \end{bmatrix} \begin{bmatrix} \sqrt{2}V_{s} \cos \omega_{s} t \\ \sqrt{2}V_{s} \cos \left(\omega_{s} t - \frac{2\pi}{3}\right) \\ \sqrt{2}V_{s} \cos \left(\omega_{s} t - \frac{4\pi}{3}\right) \end{bmatrix} \qquad \dots (2.5)$$

Las expresiones senoidales se expresan en la forma exponencial:

 \bar{v}_s

$$= \sqrt{2}V_{s}\sqrt{\frac{2}{3}} \begin{bmatrix} 1 & \alpha & \alpha^{2} \end{bmatrix} \frac{1}{2} \begin{bmatrix} e^{j\omega_{s}t} + e^{-j\omega_{s}t} \\ \alpha^{2}e^{j\omega_{s}t} + \alpha e^{-j\omega_{s}t} \\ \alpha e^{j\omega_{s}t} + \alpha^{2}e^{-j\omega_{s}t} \end{bmatrix}$$

$$\bar{v}_{s} = \sqrt{3}V_{s}e^{j\omega_{s}t} \qquad \dots (2.6)$$

$$\bar{v}_{r} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & \alpha & \alpha^{2} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0 = \bar{v}_{r}^{s}$$

$$\bar{v}_{r} = 0 \qquad \dots (2.7)$$

Cuando se alimenta, a los devanados estatóricos, con tensiones trifásicas balanceadas, las corrientes tanto del estator como del rotor también resultarán balanceadas y sus correspondientes expresiones por vectores espaciales serán:

$$\bar{\iota}_s = \sqrt{3} I_s e^{j(\omega_s t + \phi_s)} \qquad \dots (2.8)$$

$$\bar{\iota}_r^s = \sqrt{3} I_r e^{j(\omega_s t + \phi_r)} \qquad \dots (2.9)$$

Las ecuaciones de tensión-corriente, para el motor de inducción, considerando la velocidad del motor en régimen estable será constante $\dot{\theta} = \omega_m = cte$. El modelo de la máquina de inducción en vectores espaciales mostrado a continuación:

$$\begin{bmatrix} \bar{v}_s \\ \bar{v}_r \end{bmatrix} = \begin{bmatrix} R_s & 0 \\ 0 & R_r \end{bmatrix} \begin{bmatrix} \bar{\iota}_s \\ \bar{\iota}_r \end{bmatrix} + p \begin{bmatrix} L_s & M_{sr}e^{j\theta} \\ M_{sr}e^{-j\theta} & L_r \end{bmatrix} \begin{bmatrix} \bar{\iota}_s \\ \bar{\iota}_r \end{bmatrix} \qquad \dots (2.10)$$

Dónde:

Rs: Resistencia del devanado del estator.

R'r: Resistencia del devanado del rotor.

Ls: Inductancia de dispersión del devanado del estator.

L'r: Inductancia de dispersión del devanado del rotor.

Msr: Inductancia mutua entre el estator y el rotor.

Reemplazando las ecuaciones (2.6), (2.7), (2.8) y (2.9) en (2.10):

$$\begin{bmatrix} \sqrt{3}V_{s}e^{j\omega_{s}t} \\ 0 \end{bmatrix} = \begin{bmatrix} R_{s} & 0 \\ 0 & R_{r} \end{bmatrix} \begin{bmatrix} \sqrt{3}I_{s}e^{j(\omega_{s}t+\phi_{s})} \\ \sqrt{3}I_{r}e^{j(\omega_{s}t+\phi_{r})} \end{bmatrix} + \begin{bmatrix} L_{s} & M_{sr} \\ M_{sr} & L_{r} \end{bmatrix} j\omega_{s} \begin{bmatrix} \sqrt{3}I_{s}e^{j(\omega_{s}t+\phi_{s})} \\ \sqrt{3}I_{r}e^{j(\omega_{s}t+\phi_{r})} \end{bmatrix}$$
$$- j\omega_{m} \begin{bmatrix} 0 & 0 \\ M_{sr} & L_{r} \end{bmatrix} \begin{bmatrix} \sqrt{3}I_{s}e^{j(\omega_{s}t+\phi_{s})} \\ \sqrt{3}I_{r}e^{j(\omega_{s}t+\phi_{r})} \end{bmatrix}$$

$$\begin{bmatrix} V_s \\ 0 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} R_s & 0 \\ 0 & R_r \end{bmatrix} + j\omega_s \begin{bmatrix} L_s & M_{sr} \\ M_{sr} & L_r \end{bmatrix} - j\omega_m \begin{bmatrix} 0 & 0 \\ M_{sr} & L_r \end{bmatrix} \begin{bmatrix} \sqrt{3}I_s e^{j(\omega_s t + \phi_s)} \\ \sqrt{3}I_r e^{j(\omega_s t + \phi_r)} \end{bmatrix}$$

Se obtiene la siguiente ecuación matricial, considerando la velocidad mecánica ω_m :

$$\begin{bmatrix} \bar{V}_s \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s & j\omega_s M_{sr} \\ j(\omega_s - \omega_m)M_{sr} & R_r + j(\omega_s - \omega_m)L_r \end{bmatrix} \begin{bmatrix} I_s \\ \bar{I}_r \end{bmatrix} \qquad \dots (2.11)$$

2.1.1. Modelo del motor de inducción para análisis régimen permanente

Para el análisis del motor de inducción, en régimen estacionario, se utiliza el circuito equivalente que se obtiene a partir de las ecuaciones matriciales en las que se incorpora el deslizamiento s, siendo la diferencia relativa de la velocidad síncrona ω_s menos la velocidad mecánica ω_m del rotor, el cual está definido por la siguiente expresión:

$$s = \frac{\omega_s - \omega_m}{\omega_s} \qquad \dots (2.12)$$

Se obtiene la ecuación matricial:

$$\begin{bmatrix} \bar{V}_s \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s & j\omega_s M_{sr} \\ j\omega_s M_{sr} & \frac{R'_r}{s} + j\omega_s L_r \end{bmatrix} \begin{bmatrix} \bar{I}_s \\ \bar{I}_r \end{bmatrix} \qquad \dots (2.13)$$

El circuito equivalente de la máquina de inducción en régimen permanente se obtiene de la ecuación matricial sin considerar las pérdidas en el núcleo tal como se muestra en la figura.

Figura 2.2 Modelo circuito equivalente de la máquina de inducción en régimen permanente.

Dónde:

Rs: Resistencia del devanado del estator.

R'r: Resistencia del devanado del rotor.

Ls: Inductancia de dispersión del devanado del estator.

L'r: Inductancia de dispersión del devanado del rotor.

Msr: Inductancia mutua entre el estator y el rotor.

La expresión del Par eléctrico T_{em} , en notación vector espacial en régimen estable, se representa por la siguiente expresión:

$$T_{em} = M_{sr} \operatorname{Imag}\{\bar{\iota}_s(\bar{\iota}_r^s)^*\}$$
 ... (2.14)

Donde "Imag" es la parte imaginaria de $\{\bar{\iota}_s(\bar{\iota}_r^s)^*\}$.

Reemplazando las expresiones de las corrientes del estator y del rotor se obtiene la expresión del Par, indicando la interacción de las corrientes de ambos circuitos:

$$T_{em} = 3I_s I_r M_{sr} \sin(\phi_s - \phi_r) \qquad \dots (2.15)$$

La expresión del Par, indicada por la ecuación 2.15, también se puede obtener del circuito de la Figura 2.2, calculando la potencia disipada resistencia $\frac{R_r}{s}$ y dividiendo entre la velocidad síncrona ω_s , tal como se muestra en la siguiente expresión:

$$T_{em} = 3 \frac{R_r}{s\omega_s} {I_r}^2 \qquad \dots (2.16)$$

Considerando que las inductancias de los devanados del estator y rotor L_s y L_r están compuesta por las inductancias de dispersión y magnetización, según las siguientes expresiones:

$$L_{s} - M_{sr} = L_{\sigma s} + \frac{3}{2}L_{sr} - \frac{3}{2}L_{sr} = L_{\sigma s} \qquad \dots (2.17)$$

$$L_r - M_{sr} = L_{\sigma r} + \frac{3}{2}L_{sr} - \frac{3}{2}L_{sr} = L_{\sigma r} \qquad \dots (2.18)$$

El circuito equivalente considerando las reactancias de dispersión del devanado del estator y rotor, incluyendo la resistencia que representa las perdidas en el núcleo, en paralelo con la reactancia de magnetización y la resistencia $\frac{(1-s)}{s}R_r$ que representa la potencia transferida al rotor sin perdidas, se muestra en la Figura 2.3.

Figura 2.3 Modelo clásico del motor de inducción incluyendo pérdidas.

Dónde:

- Rs: Resistencia del devanado del estator.
- R'r: Resistencia del devanado del rotor.
- $X_{\sigma s}$: Reactancia de dispersión del estator.
- X'or: Reactancia de dispersión del rotor.
- R_m: Resistencia de pérdidas en el núcleo.
- X_m: Reactancia de magnetiza.
- S: Deslizamiento.

2.1.2. Características de operación del motor de Inducción en régimen permanente

El circuito equivalente se utiliza para el análisis del motor de inducción en régimen estacionario, los parámetros se obtienen a partir de ensayos en laboratorio mediante las pruebas de vacío y rotor bloqueado, por lo tanto, la predicción de las características de corriente, torque, eficiencia tiene sus limitaciones debido a que se han considerado algunas simplificaciones en vista que no se considera la geometría real de la máquina y la saturación del núcleo ferromagnético.

2.1.2.1. Característica de la Corriente - Velocidad

Utilizando el circuito equivalente se obtiene expresiones que permite predecir las características de la máquina en diferentes condiciones de operación en cuanto a carga y tensión. El cálculo de la corriente del rotor se realiza utilizando el equivalente Thévenin visto desde el rotor hacia la fuente del estator. La tensión de Thévenin se determina mediante un divisor de tensión entre la impedancia serie del estator \bar{Z}_s y la impedancia de magnetización \bar{Z}_m .

Figura 2.4 Equivalente de Thévenin para la máquina de inducción visto desde el rotor. Dónde:

Rth: Resistencia de Thevenin.

X_{th}: Reactancia de Thevenin.

$$\bar{V}_{Th} = \frac{\bar{Z}_m}{\bar{Z}_m + \bar{Z}_s} \bar{V}_s \qquad \dots (2.19)$$

La impedancia de Thevenin es el resultado del paralelo entre \bar{Z}_s y \bar{Z}_m , en serie con $jX_{\sigma r}$

$$\bar{Z}_{Th} = \frac{\bar{Z}_m \bar{Z}_s}{\bar{Z}_m + \bar{Z}_s} + j X'_{\sigma r} = R_{Th} + j X_{Th} \qquad \dots (2.20)$$

La corriente I_r se obtiene a partir del circuito Thevenin de la Figura 2.3:

$$I_{r} = \frac{V_{Th}}{\sqrt{\left(R_{Th} + \frac{R_{r}}{S}\right)^{2} + X_{Th}^{2}}} \dots (2.21)$$

2.1.2.2. Característica del Par-Velocidad

En el presente acápite se mostrará las expresiones del par desarrollado por el motor de inducción y la dependencia de los parámetros de resistencia del devanado del rotor, reactancias de dispersión y de la tensión aplicada, los detalles se muestran en la referencia [5], [21].

La potencia en el eje P_{eje} es la diferencia de la potencia producida por el circuito del rotor (se considera la potencia disipada en la resistencia representada por $\frac{R_r}{s}$) y las pérdidas en el circuito de rotor $3I_r^2 R_r$:

$$P_{eje} = P_{rotor} - P_{R_r} = 3I_r^2 \frac{R_r}{s} - 3I_r^2 R_r = 3I_r^2 R_r \left[\frac{1-s}{s}\right] \qquad \dots (2.22)$$

El par eléctrico T_{eje} se determina considerando la potencia en el eje del rotor entre la velocidad del motor ω_m , según la ecuación:

$$T_{eje} = \frac{P_{eje}}{\omega_m} = 3I_r^2 R_r \frac{1-s}{s\omega_m} = 3I_r^2 R_r \frac{1-s}{s(1-s)\omega_s} = 3I_r^2 R_r \frac{1}{\omega_s s}$$
$$T_{eje} = \frac{P_{rotor}}{\omega_s} \qquad \dots (2.23)$$

Reemplazando la ecuación (2.23) en las ecuaciones (19) y (20):

$$P_{eje} = \frac{3V_{Th}^{2}R_{r}\left(\frac{1-s}{s}\right)}{\left(R_{Th} + \frac{R_{r}}{s}\right)^{2} + X_{Th}^{2}} \qquad \dots (2.24)$$

Entonces el Par será expresado por la siguiente expresión:

$$T_{eje} = \frac{3V_{Th}^{2} \frac{R_{r}}{\omega_{s}s}}{\left(R_{Th} + \frac{R_{r}}{s}\right)^{2} + X_{Th}^{2}} \qquad \dots (2.25)$$

Como puede observarse el Par depende de la resistencia del devanado del rotor R_r , por lo que un adecuado diseño de la forma y sección de las ranuras del rotor permitirá una característica deseada del torque de arranque y del torque de operación.

A partir de la expresión (2.25) se representa la característica Par – deslizamiento de la máquina de inducción tal como se muestra en la Fig. 2.5, considerando la tensión de alimentación V_s constante, la tensión Thevenin V_{Th} también se mantendrá constante debido a que la impedancia del estator y de la magnetización no depende del deslizamiento.

Figura 2.5 Característica Par – Deslizamiento del motor de inducción.

La característica par-deslizamiento muestra los puntos de Par de arranque T_{arr} y el punto que corresponde al Par máximo $T_{máx}$ para un determinado valor de velocidad mecánica, en este caso la potencia del estator que atraviesa el entrehierro debe ser

máxima. Aplicando el teorema de máxima transferencia de potencia se obtiene al igualar la resistencia $\frac{R_r}{s}$ con la impedancia equivalente de Thévenin.

$$\frac{R_r}{s} = Z_{Th} = \sqrt{R_{Th}^2 + X_{Th}^2} \qquad \dots (2.26)$$

De la expresión anterior se deduce que la velocidad mecánica y el deslizamiento donde se genera el Par máximo $T_{máx}$ es directamente proporcional a la resistencia del devanado del rotor, esto muestra que un adecuado diseño de la forma y dimensión de las ranuras permite conseguir una adecuada característica del torque eléctrico, en la expresión (2.27) se muestra la expresión para el deslizamiento donde se consigue el torque máximo $T_{máx}$.

$$s_{T_{máx}} = \frac{R_r}{\sqrt{R_{Th}^2 + X_{Th}^2}} \qquad \dots (2.27)$$

Las ecuaciones de corriente y par explican la característica en régimen estacionario de la corriente de arranque, el par de arranque, de dichas ecuaciones se observa la dependencia con la resistencia del rotor.

Durante el proceso de arranque el motor de inducción debe tener un par suficiente para acelerar la máquina hasta el punto final de la operación, por lo que el par eléctrico debe ser mayor que el par de carga, siendo necesario diseñar al motor para obtener una adecuada característica del par.

En los motores de inducción tipo rotor devanado se puede insertar una resistencia en serie con el objetivo de reducir corrientes de arranque o para incrementar la magnitud del torque de arranque. También se puede agregar un valor de resistencia para que el motor arranque (cuando el deslizamiento es igual a uno) con el par máximo pero su magnitud no es afectada por la variación de la resistencia del rotor.

$$s_{T_{max}} = \frac{R_r + R_{adicional}}{\sqrt{R_{Th}^2 + X_{Th}^2}} = 1 \implies R_{adicional} = \sqrt{R_{Th}^2 + X_{Th}^2} - R_r \qquad \dots (2.28)$$
En los motores de inducción tipo jaula de ardilla no es posible agregar resistencia externa, por lo tanto, la variación del torque de arranque se puede conseguir con un adecuado diseño de las ranuras del rotor

Los puntos de operación del motor quedan definidos cuando el par de la carga se iguala con el par eléctrico, siendo necesarios conocer la característica de la carga resultando un deslizamiento de operación s_{op} :

Figura 2.7 Efecto de la tensión aplica en la característica del Par

A partir de la ecuación del par se puede predecir la dependencia con la tensión al cuadrado y controlar el punto de operación de la máquina variando la tensión de alimentación. En la figura 2.7 se muestra para una carga TL los puntos A y B corresponde a una operación estable y los puntos C y D a una operación inestable.

2.1.2.3. Característica de la eficiencia-Velocidad

En la presente Tesis se plantea mejorar la eficiencia a partir de un adecuado diseño de las ranuras del rotor, las pérdidas en los motores de inducción están compuestas por las pérdidas de hierro, las pérdidas de resistencia del estator, las pérdidas de resistencia del rotor, las pérdidas por rozamiento y fricción y las pérdidas de carga desviada. Las pérdidas de hierro están relacionadas con las laminaciones del núcleo, las pérdidas del estator dependen de los devanados del estator, las pérdidas del rotor están vinculadas en las barras del rotor y anillos finales. Todas estas pérdidas pueden reducirse mediante el diseño de parámetros optimizados.

2.2. Estructura del Motor de inducción y Análisis de las Geometría de las ranuras del rotor

A partir del modelo del circuito equivalente del motor de inducción se ha obtenido las características de operación en cuanto al par eléctrico, corriente y eficiencia los cuales tienen una dependencia con la resistencia del devanado del rotor, por lo que en este acápite se analizara las ranuras del rotor considerando las dimensiones y la forma de estas.

En general, las ranuras pueden ser rectangulares, trapezoidales rectos o trapezoidales redondeados. Las ranuras abiertas y semiabiertas tienden a ser de forma rectangular y las semicerradas son trapezoidales o trapezoidales redondeadas.

Las ranuras de rotor de jaula de forma óptima pueden determinarse a través de técnicas utilizando el Método de Elementos Finitos FEM, para cumplir con maximizar la eficiencia, la mínima corriente del estator y el par de arranque moderado y alto.

La conformación de la geometría de las ranuras del rotor permite lograr efectos particulares dependientes de la frecuencia, si las ranuras del rotor son representadas por geometría rectangular y considerando que las dimensiones de la ranura son tales que los efectos de la dispersión no son importantes para que la corriente en el conductor de la ranura sea aproximadamente uniforme, considerando la figura 2.8 se calcula la resistencia del elemento conductor y la inductancia.

Figura 2.8 Ranura simple.

En ese caso, la resistencia de ranura y la inductancia por unidad de longitud se determina por las siguientes expresiones:

$$R_{slot} = \frac{1}{w_s h_s \sigma} \qquad \dots (2.29)$$

$$L_{slot} = \mu_0 \frac{h_s}{3w_s} \qquad \dots (2.30)$$

La inductancia de la ranura se calcula aplicando la ecuación de Ampere considerando que la corriente es uniforme en dicha ranura entonces la intensidad de campo magnético

$$H_y = \frac{I}{w_s} \frac{x}{h_s} \qquad \dots (2.31)$$

Luego la energía magnética almacenada en el campo magnético de la ranura será:

$$\frac{1}{2}L_{slot}I^2 = w_s \int_0^{h_s} \frac{\mu_0}{2} \left(\frac{Ix}{w_s h_s}\right)^2 dx = \frac{1}{6} \frac{\mu_0 h_s}{w_s} I^2 \qquad \dots (2.32)$$

La impedancia por unidad de longitud es la relación entre la corriente de ranura y el campo eléctrico axial:

$$Z_s = \frac{\bar{E}_z}{\bar{I}} \qquad \dots (2.33)$$

2.3. Dimensionamiento de las ranuras del estator

En el presente acápite se describe el dimensionamiento de la ranura del rotor en función de las dimensiones del diámetro rotor, número de ranuras con la finalidad de definir los límites de la variación cuando se tenga que calcular las características de desempeño del torque eléctrico, corriente de arranque y eficiencia.

En la referencia [5] se muestra con bastante detalle el dimensionamiento del motor de inducción y en forma particular el dimensionamiento de las ranuras del rotor. En la figura 2.9 se muestra la geometría de la lámina del rotor donde se indica las siguientes dimensiones:

El paso de la ranura del rotor τ_r es:

$$\tau_r = \frac{\pi (D_{is} - 2g)}{N_r} \qquad ... (2.34)$$

$$B_{tr} \approx \frac{B_g}{K_{Fe} b_{tr}} \tau_r \qquad \dots (2.35)$$

Figura 2.9 Dimensiones de la ranura en el rotor.

Dónde:

- bso: Abertura de ranura
- bs1: Ancho superior de ranura
- bs2: Ancho inferior de ranura
- h_{so}: distancia exterior

- h_{s1}: distancia interior
- hs2: Altura ranura
- h_{cr}: Distancia de la parte inferior de la ranura hacia la superficie del eje
- r: Paso de ranura
- Dre: Diámetro del rotor
- Deje: Diámetro del eje del rotor
- g: Entrehierro
- Nr: Número de ranuras de rotor
- A_b: Área de la ranura

El ancho superior b_{s1} se obtiene de:

$$\frac{\pi (D_{re} - 2h_{so} - 2h_{s1})}{N_r} = b_{s1} + b_{tr}$$

$$b_{s1} = \frac{\pi (D_{re} - 2h_{or} - 2h_{s1}) - N_r b_{tr}}{N_r} \qquad \dots (2.37)$$

El área de la ranura:

$$A_b = \frac{\pi}{8} (b_{s1}^2 + b_{s2}^2) + \frac{(b_{s1} + b_{s2})h_{s2}}{2} \qquad \dots (2.38)$$

$$b_{s1} - b_{s2} = 2h_{s2}\tan\frac{\pi}{N_r}$$
 ... (2.39)

$$F_{mtr} = H_{tr} \left(h_{s2} + h_{or} + \frac{(b_{s1} + b_{s2})}{2} \right) \qquad \dots (2.40)$$

La resistencia del rotor se expresa por la siguiente ecuación, según referencia [4], y se puede observar que es inversamente proporcional al área de la ranura.

$$R_r = 1,169 \times 10^{-6} \left(\frac{k_{w1}W_1}{k_{dr}k_{pr}}\right)^2 \left(\frac{1}{N_r A_b} + \frac{2}{\pi} \frac{D_{er}}{p^2 A_{er}}\right) \qquad \dots (2.41)$$

Dónde:

 W_1 : Número de vueltas por fase

 k_{w1} : Factor de devanado del rotor

Asimismo, la expresión de la reactancia del rotor, según referencia [5],

$$X_r = 4m \frac{(w_1 K_{ws})^2}{N_r} X_{be} \qquad \dots (2.42)$$

2.4. Las ecuaciones de Maxwell para el análisis del Motor de Inducción

La formulación del modelado, desde el punto de vista electromagnético, del motor de inducción se describirá mediante las ecuaciones de Maxwell, teniendo en cuenta las regiones de conductor Ω_c (conductores en las ranuras) rodeadas por dominios nomagnéticos y la región no conductora (aire) consideradas como regiones libres Ω_n donde el modelado se realiza por las ecuaciones de la magneto-dinámica. Las ecuaciones de Maxwell para el campo magnético en forma diferencial se detallan con amplitud en las referencias [4], [15] y se indican a continuación:

$$\nabla \times H = J$$
 Ley de Ampere (2.43)

$$\overline{\nabla} \times \overline{E} = -\frac{\partial B}{\partial t}$$
 Ley de Faraday – Lenz (2.44)

$$\nabla \cdot B = 0$$
 Ley de Gauss magnética (2.45)

$$\overline{\nabla} \cdot \overline{J} = 0$$
 Ecuación de continuidad eléctrica (2.46)

Dónde:

- \overline{H} : Intensidad de campo magnético (A/m)
- \overline{E} : Intensidad de campo eléctrico (*V/m*)
- \overline{B} : Densidad de campo magnético (*Tesla*)
- \overline{J} : Densidad de corriente (*A/m2*).

Las corrientes con densidad de corriente \overline{Js} , inyectadas al devanado del estator, genera campos magnéticos variables en el tiempo y estos campos generan las corrientes inducidas \overline{Je} en el devanado del rotor, por lo tanto la densidad de corriente total $\overline{J_T}$, presente en un motor de inducción se puede escribir como:

$$\overline{J}_T = \overline{J}_S + \overline{J}_e \tag{2.47}$$

El devanado del rotor tiene conductibilidad σ por lo tanto el campo inducido \overline{E} será:

$$J_e = \sigma E \tag{2.48}$$

Dónde:

\overline{E} : Campo inducido en el material conductor con conductividad σ

El motor de inducción está compuesto por dos cilindros concéntricos cuyo eje coincide con el eje (z), en el modelo se considera que las densidades de corriente tienen solo componente en la dirección del eje (z), debido a que el análisis se realiza en el plano (x-y), entonces la solución de las ecuaciones de Maxwell se simplifica.

2.4.1. Modelamiento considerando el movimiento del rotor mediante el vector potencial magnético \overline{A}

La densidad de flujo magnético \overline{B} puede expresarse como el rotacional de un campo vectorial, esto es porque la divergencia de cualquier rotacional da como resultado cero, entonces \overline{B} se determina a partir del potencial magnético vectorial \overline{A} como:

$$\overline{B} = \overline{\nabla} \times \overline{A} \tag{2.49}$$

A fin de garantizar la unicidad del potencial magnético vectorial, su divergencia debe especificarse, la forma de Coulomb se utiliza comúnmente para problemas en el plano x-y.

$$\nabla \cdot A = 0 \tag{2.50}$$

En el plano (*x-y*), los vectores intensidad de campo magnético \overline{H} y densidad de flujo magnético \overline{B} tienen las siguientes componentes:

$$\overline{H} = H_x(x, y)\hat{i} + H_y(x, y)\hat{j} \quad y \quad \overline{B} = B_x(x, y)\hat{i} + B_y(x, y)\hat{j}$$
(2.51)

Por lo tanto, considerando que el vector potencial magnético vectorial A tiene componente en el eje z, entonces el vector densidad de flujo \overline{B} será:

$$\overline{B} = \overline{\nabla} \times \overline{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 0 & A_z \end{vmatrix} = \frac{\partial A_z}{\partial y} \hat{i} - \frac{\partial A_z}{\partial x} \hat{j}$$
(2.52)

De donde las expresiones de la densidad de flujo \overline{B} en el plano x-y será:

$$B_{x}(x, y) = \frac{\partial A_{z}}{\partial y}$$
(2.53)

$$B_{y}(x, y) = \frac{\partial A_{z}}{\partial x}$$
(2.54)

Para el caso del motor de inducción, los conductores que llevan las corrientes inducidas están envueltos por un medio no conductor (ranuras) donde se halla presente el campo magnético generado por la corriente que circula en las bobinas del estator y por las corrientes inducidas de Foucault, entonces la formulación de corrientes de inducidas y el campo magnético se deben enlazar, la densidad de corriente total \overline{J}_T está compuesta por la densidad de corriente \overline{J}_s y la densidad de corriente inducida \overline{J}_e perpendicular al plano *x-y*.

Sabiendo que:

$$\overline{B} = \overline{\nabla} \times \overline{A} \tag{2.55}$$

$$J_t = J_s + J_e \tag{2.56}$$

$$\overline{\nabla} \times \overline{H} = \overline{J}_t$$
 (2.57)

$$\overline{H} = \frac{1}{\mu} \overline{B} \tag{2.58}$$

Reemplazando (2.58) y (2.56) en (2.57):

$$\overline{\nabla} \times \left(\frac{1}{\mu}\overline{B}\right) = \overline{J}_s + \overline{J}_e$$
(2.59)

Reemplazando (2.55) en (2.59):

$$\overline{\nabla} \times \left(\frac{1}{\mu} \overline{\nabla} \times \overline{A}\right) = \overline{J}_s + \overline{J}_e$$
(2.60)

Además, la densidad de corriente inducida de Foucault:

$$\overline{J}_e = \sigma \overline{E} \tag{2.61}$$

La ley de Faraday en forma diferencial:

$$\overline{\nabla} \times \overline{E} = -\frac{\partial}{\partial t} \overline{B}$$
(2.62)

Reemplazando (2.55) en la ecuación (2.62):

$$\overline{\nabla} \times \overline{E} = -\frac{\partial}{\partial t} \overline{\nabla} \times \overline{A}$$
(2.63)

Luego escribiendo (2.63) en forma apropiada:

$$\overline{\nabla} \times \left(\overline{E} + \frac{\partial \overline{A}}{\partial t}\right) = 0 \tag{2.64}$$

El campo eléctrico \overline{E} es generado por la variación de \overline{B} en el tiempo, luego de la ecuación (2.64):

$$\overline{E} + \frac{\partial A}{\partial t} = 0 \tag{2.65}$$

Entonces:

$$\overline{E} = -\frac{\partial \overline{A}}{\partial t}$$
(2.66)

Y la corriente inducida reemplazando (2.66) en (2.61):

$$\overline{J}_{e} = -\sigma \frac{\partial \overline{A}}{\partial t}$$
(2.67)

En la ecuación (2.60), pasando \overline{J}_e al primer miembro:

$$\overline{\nabla} \times \left(\frac{1}{\mu} \overline{\nabla} \times \overline{A}\right) - \overline{J}_e = \overline{J}_s$$

Reemplazando (2.67) en (2.60) y pasando \overline{J}_s al primer miembro se obtiene la expresión teniendo como incógnita vectorial de campo magnético \overline{A} :

$$\overline{\nabla} \times \left(\frac{1}{\mu} \overline{\nabla} \times \overline{A}\right) + \sigma \frac{\partial \overline{A}}{\partial t} - \overline{J}_s = 0$$
(2.68)

Para el modelamiento del motor de Inducción en el plano (x-y) se expresa las ecuaciones en el dominio de la frecuencia:

$$\overline{E} = -j\omega\overline{A} \tag{2.69}$$

Luego en la ecuación (2.68):

$$\overline{\nabla} \times \left(\frac{1}{\mu} \overline{\nabla} \times \overline{A}\right) + \sigma \, j \omega \overline{A} = 0 \tag{2.70}$$

Considerando que estamos analizando en 2D, plano (x-y), el vector potencial \overline{A} .

Considerando que el rotor del motor de inducción se mueve con una velocidad tangencial (\bar{v}) con respecto al plano de referencia del estator (x, y) y el rotor tiene como coordenadas de referencia (x', y'), por lo que mediante las ecuaciones de Maxwell se puede describir tanto para el estator como para el rotor. Los vectores de campo \overline{H}^r , \overline{B}^r y \overline{J}^r del rotor se mantienen en el estator y rotor, pero el vector campo eléctrico E' en el rotor se debe considerar que obedece a la tensión generada por el movimiento del rotor el cual se mueve a una velocidad \overline{v} por lo tanto se expresa por:

$$\overline{H}' = \overline{H} \tag{2.71}$$

$$\overline{E}^{r} = \overline{E}^{s} + \overline{v}^{r} \times \overline{B}$$
(2.72)

$$B' = B \tag{2.73}$$

$$J' = J \tag{2.74}$$

Incorporando el efecto del movimiento del rotor, el cual tiene una velocidad tangencial $\bar{\nu}$, en la expresión de la corriente inducida de Foucault se obtiene la siguiente expresión:

$$\overline{J}_{e} = \sigma \overline{E}' = \sigma \left(\overline{E} + \overline{v} \times \overline{B} \right)$$
(2.75)

Asimismo, reemplazando la ecuación (2.66) del campo eléctrico en (2.75) se obtiene:

$$\overline{J}_{e} = \sigma \left(-\frac{\partial \overline{A}}{\partial t} + \overline{v} \times \overline{B} \right)$$
(2.76)

Por lo tanto, en la región conductora Ω_c se obtiene:

$$\overline{\nabla} \times \left(\frac{1}{\mu} \overline{\nabla} \times \overline{A}\right) + \sigma \left(-\frac{\partial \overline{A}}{\partial t} + \overline{v} \times \overline{\nabla} \times \overline{A}\right) = 0$$
(2.77)

La ecuación diferencial (2.77) tiene como variable el valor del vector potencial de campo magnético \overline{A} en cada punto de las diferentes regiones de la máquina, teniendo en cuenta la corriente aplicada a los devanados del estator, la corriente inducida en el rotor más la corriente inducida en el rotor por movimiento de este.

También en la región no conductora (región de material magnético) Ω_n :

$$\overline{\nabla} \times \left(\frac{1}{\mu} \overline{\nabla} \times \overline{A}\right) = \overline{J}_{S}$$
(2.78)

Luego en el dominio de la frecuencia en la región conductora Ω_c :

$$\overline{\nabla} \times \left(\frac{1}{\mu}\overline{\nabla} \times \overline{A}\right) + \sigma \left(j\omega\overline{A} - \overline{\nu} \times \overline{\nabla} \times \overline{A}\right) = 0$$
(2.79)

Utilizando el método de elementos finitos para la solución numérica de esta ecuación diferencial para encontrar el valor del potencial vectorial magnético \overline{A} , lo que permitirá determinar las características de operación (corrientes, torque, eficiencia) del motor de inducción para diferentes condiciones de funcionamiento, tanto en régimen estacionario como transitorio.

2.5. El Método de Elementos Finitos para la Solución Numérica de las Ecuaciones de Maxwell

2.5.1. Introducción

En vista que la solución analítica de las ecuaciones diferenciales para el análisis del motor de inducción no es la más conveniente, por lo que se prefiere la solución numérica utilizando el método de elementos finitos MEF. En este capítulo se describirá brevemente el método para su aplicación en la solución numérica de las ecuaciones diferenciales del campo magnético del motor de inducción desarrolladas en el capítulo anterior, en las referencias [4], [15],[27] se muestra ampliamente el método.

El método de elementos finitos MEF, empleado para la solución numérica de las ecuaciones de Maxwell, permite determinar la distribución de los campos electromagnéticos en toda la estructura del motor de inducción logrando un análisis más detallado y mostrando las zonas del motor donde se produce el mayor gradiente del campo y zonas de saturación.

Para nuestro análisis del motor de inducción se aprovecha la periodicidad y simetría del núcleo del motor, asimismo toda la estructura es dividida en su dimensión elemental, principalmente en elementos triangulares, en las cuales se resolverá las ecuaciones diferenciales de campos electromagnéticos.

El Método de elementos Finitos FEM en electromagnetismo está generalmente asociado a métodos variacionales o a métodos residuales. En el método variacional para el procedimiento numérico se establece una función que debe minimizarse y para cada problema se define una función particular llamada funcional.

Para los problemas en dos dimensiones, plano *x-y*, las funciones son bien conocidas, pero para fenómenos poco usuales, como el caso de las superficies con ranuras como en los rotores de las maquinas eléctricas rotativas, es necesario buscar una función de energía, lo cual puede ser una tarea difícil. Además, no se opera directamente con la ecuación física relacionada al problema, pero si indirectamente con su correspondiente función.

Para utilizar método de los elementos finitos se divide un problema continuo a un conjunto de pequeños elementos, generalmente de forma triangular, conectados entre ellos por puntos llamados nodos, por lo que las ecuaciones diferenciales que describen el comportamiento del problema continuo también describirán a cada elemento, transformando el problema de sistema continuo de infinitos grados de libertad, a un problema con grado de libertad finito y será representado por un sistema de ecuaciones simultáneas. Se define los siguientes conceptos:

- Dominio: Es el espacio geométrico donde se va a analizar el sistema.
- Condiciones de frontera: Son las variables conocidas y que condicionan el cambio del sistema.
- Incógnitas: Son las variables del sistema que deseamos conocer después de que las condiciones de contorno han actuado sobre el sistema.

Sobre estos nodos se materializan las incógnitas fundamentales del problema, a las incógnitas se les denomina grados de libertad de cada nodo del modelo. Los grados de libertad de un nodo son las variables que determinan el estado y/o posición del nodo.

2.5.2. Condiciones de frontera

Para asegurar una solución única se debe especificar las condiciones de Dirichlet y de Neumann en las fronteras de la región del problema [4], [15], en la figura 2.9 se indica las regiones de análisis del motor de inducción de dos polos.

En el análisis del motor de inducción las características de periodicidad y antiperiodicidad geométrica reduce considerablemente el dominio de análisis del problema estudiado reduciendo considerablemente el tiempo de las iteraciones del método numérico, para el caso del motor de inducción de dos polos se puede utilizar la mitad de la región tal como se muestra en la fig. 2.9

Figura 2.10 Condiciones de contorno para la máquina de inducción.

a.- Condición de Newman

La condición de Newman consiste en imponer un valor conocido a la derivada del vector potencial magnético ($\frac{\partial \overline{A}}{\partial n}=0$) normal a la frontera, para una condición homogénea las líneas de campo son forzadas a ser perpendiculares a la línea de frontera y por lo tanto la densidad de campo magnético \overline{A} a tener solamente componentes normales sobre la frontera.

Esta condición equivale a tener un material externo, justo en la frontera, con permeabilidad magnética infinita.

b.- Condición de Dirichlet

La condición de Dirichlet asigna un valor conocido constante, al vector de potencial magnético Az, sobre la frontera (ej. Az = 0 sobre toda la frontera), por lo que se deduce que las líneas de flujo son tangenciales a la frontera y las líneas de flujo no la cruzan. Esta condición equivale a considerar un material externo con un valor de permeabilidad magnética igual a cero, actuando como un material aislante magnético justo afuera del dominio.

2.5.3. Método de Galerkin para la solución de problemas de campos

Los métodos más utilizados, [4], [15], para la solución de problemas de campos magnéticos son: el método clásico residual o método Galerkin, el método clásico variacional y el método de elementos finitos MEF. Tanto el método Galerkin y el método variacional consideran todo el dominio, mientras que el método de elementos finitos MEF divide el dominio entero en subdominios, por lo tanto, las funciones se definen en dicho subdominio los cuales son de pequeñas dimensiones hace que las funciones de interpolación sean muy simples.

Con el fin de aproximar a la solución exacta ϕ de una ecuación diferencial, se define una función ϕ^* para aproximar a la función desconocida ϕ . Para lo cual se formula una combinación lineal de funciones básicas y las condiciones de frontera correspondientes.

La función de aproximación ϕ^* se puede expresar por la ecuación siguiente:

$$\phi^*(x, y, z, t) = \sum \phi \times U(x, y, z, t)$$
(2.80)

Dónde:

U(x, y, z, t): Función de interpolación

 ϕ : Función con coeficientes desconocidos que serán determinados

El método Galerkin utiliza directamente la ecuación diferencial que resuelve el problema de campo minimizando el residuo de la ecuación diferencial de campo. Se busca la función ϕ^* que mejor aproxima a la solución exacta ϕ en todo el dominio del análisis, siendo el error *E*:

$$E = L\phi^* - f \tag{2.81}$$

De la ecuación (2.65), L representa el operador diferencial asimismo se fija la función de ponderación ω_i , por lo que el método residual fuerza la integral del residuo R_i a cero en todo el dominio τ_D

$$R_i = \int \omega_i (L\varphi * -f) d\tau \tag{2.82}$$

En el método Galerkin se escoge la función de ponderación como función de interpolación v_i , al reemplazar la función de aproximación se obtiene la ecuación (2.83) y el residual R_i en la ecuación (2.84):

$$\phi^*(x, y, z, t) = \sum \phi \times \upsilon_i(x, y, z, t)$$
(2.83)

$$R_{i} = \int \upsilon_{i} L\left\{\sum \phi \times \upsilon_{i}(x, y, z, t)\right\} - \upsilon_{i} f d\tau$$
(2.84)

2.5.3.1. Función de interpolación

Para aplicar método de elementos finitos MEF se divide el dominio entero en subdominios de m elementos y cada elemento tiene j nodos, analizando el m ésimo elemento se selecciona la función de interpolación para aproximar la función desconocida, cuando se utiliza una función de primer orden entonces la función de interpolación será lineal, así se puede utilizar función de mayor orden, esto implica mayor consumo de tiempo de cómputo.

La ecuación (2.85) expresa la función desconocida en el elemento m ésimo:

$$\varphi_m * (x, y, z, t) = \sum \varphi_{mj} \times v_{mj}(x, y, z, t)$$
(2.85)

Dónde:

 ϕ_{mj} : es el valor de la función ϕ en el nodo j

 $v_{mj}(x,y,z,t)$: es la función interpolación en el nodo j del elemento m ésimo

Considerando el elemento m ésimo con j nodos donde se debe resolver el problema de campo, el valor de ϕ_{mj} debe ser calculada en cada nodo de cada elemento, para lo cual se prepara un sistema de ecuaciones cuya solución corresponda a los valores de ϕ_{mj} .

Entonces el residual *R_{im}* utilizando el método Galerkin al elemento m ésimo:

$$R_{im} = \int v_i (L\varphi_m * -f_m) d\tau \tag{2.86}$$

Reemplazando la expresión de $\varphi_m * (x, y, z, t)$:

$$R_{im} = \int \upsilon_i L \left\{ \sum_{j=l}^n \phi_{mj} \times \upsilon_{mj} \left(x, y, z, t \right) \right\} d\tau - \int \upsilon_i f_m d\tau$$
(2.87)

Igualando a cero se llega a un sistema de n ecuaciones con n incógnitas Φ mj

$$[SS][\phi] - [T] = 0 \tag{2.88}$$

Dónde:

 $\left[\phi
ight]$: es el vector columna de los coeficientes desconocidos $arphi_{\scriptscriptstyle mj}$

[SS]: es la matriz que depende de la función interpolación

[T]: es el vector columna cuyos elementos depende de la función fuerza (para el caso de campos magnéticos será la densidad de corriente).

2.5.3.2. Discretización del dominio

Para aplicar el método numérico de elementos finitos como primer paso se divide el Dominio en un número de *N* elementos, para nuestro caso de dos dimensiones,

siendo el más sencillo la geometría triangular, los N elementos están conectados entre sí por sus vértices no existiendo traslapes o separación entre ellos. La cantidad de elementos será de acuerdo con la exactitud que se requiere, una recomendación es utilizar pequeños elementos en las regiones donde se tendrá variaciones drásticas del campo y elementos más grandes en las regiones de menor variación.

2.5.3.3. Interpolación lineal de la función

Una ilustración del método de interpolación se realiza en el presente acápite, mayores detalles se presenta en la bibliografía [4] y [15].

Se considera que el sistema se analiza en el plano de dos dimensiones en el cual el dominio se subdivide en elementos de forma triangular con coordenadas (x, y), la función potencial ϕ_m para el elemento m-ésimo y la función potencial en los tres vértices del elemento j será respectivamente:

$$\phi_m(X,Y) = a + bx + cy \tag{2.89}$$

La función potencial ϕ_m en cada vértice del elemento triangular se expresa por las tres ecuaciones lineales:

$\Phi_1 = a + bx_1 + cy_1$	(2.90)
$\Phi_2 = a + bx_2 + cy_2$	(2.91)
$\Phi_3 = a + bx_3 + cy_3$	(2.92)

Cada vértice del elemento triangular tiene coordenadas x-y cuyos valores son conocidos por lo tanto se puede determinar los valores de a, b y c mediante la solución de la ecuación matricial siguiente:

$$\begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{bmatrix}$$
(2.93)

Donde:

$$A_{m} = \frac{1}{2} \begin{vmatrix} I & x_{1} & y_{1} \\ I & x_{2} & y_{2} \\ I & x_{3} & y_{3} \end{vmatrix}$$
(2.94)

$$A_{m} = \frac{1}{2} \left[\left(x_{2} y_{3} - x_{3} y_{2} \right) + \left(x_{3} y_{1} - x_{1} y_{3} \right) + \left(x_{1} y_{2} - x_{1} y_{2} \right) \right]$$
(2.95)

Al resolver la ecuación matricial se obtiene los coeficientes a, b y c los cuales están en función de las coordenadas x-y conocidas del elemento triangular j, tal como se indica en las expresiones siguientes:

$$a = \frac{1}{2A_m} \left[\Phi_1 (x_2 y_3 - x_3 y_2) + \Phi_2 (x_3 y_1 - x_1 y_3) + \Phi_3 (x_1 y_2 - x_1 y_2) \right]$$
(2.96)

$$b = \frac{1}{2A_m} \left[\Phi_1 (y_2 - y_3) + \Phi_2 (y_3 - y_1) + \Phi_3 (y_1 - y_2) \right]$$
(2.97)

$$c = \frac{1}{2A_m} \left[\Phi_1(x_3 - x_2) + \Phi_2(x_1 - x_3) + \Phi_3(x_2 - x_1) \right]$$
(2.98)

Escribiendo de forma conveniente:

$$a = \frac{1}{2A_{m}} \left[\Phi_{1}p_{1} + \Phi_{2}p_{2} + \Phi_{3}p_{3} \right]$$

$$b = \frac{1}{2A_{m}} \left[\Phi_{1}q_{1} + \Phi_{2}q_{2} + \Phi_{3}q_{3} \right]$$

$$c = \frac{1}{2A_{m}} \left[\Phi_{1}r_{1} + \Phi_{2}r_{2} + \Phi_{3}r_{3} \right]$$
(2.100)
$$(2.101)$$

Finalmente, la función potencial de campo ϕ_m será expresado como una combinación lineal:

$$\phi_{m}(x,y) = a + bx + cy = \left[\frac{1}{2A_{m}}\sum_{l}^{3}p_{l}\phi_{l}\right] + \left[\frac{1}{2A_{m}}\sum_{l}^{3}q_{l}\phi_{l}\right]x + \left[\frac{1}{2A_{m}}\sum_{l}^{3}r_{l}\phi_{l}\right]y$$
(2.102)
$$\phi_{m}(x,y) = \sum_{l}^{3}\frac{p_{i} + q_{i}x + r_{i}y}{2A_{m}}\phi_{l}$$
(2.103)

$$\phi_m(x, y) = \sum_{i=1}^{3} \upsilon_i(x, y) \Phi_i$$
 (2.104)

La funcional F es la sumatoria de la funcional Fm de cada elemento triangular, por lo tanto, la solución del problema de campo puede ser expresado por la ecuación (2.105):

$$\frac{\partial F}{\partial \Phi_i} = \sum_{m=1}^{N_m} \frac{\partial F_m}{\partial \Phi_i} = 0$$
(2.105)

Teniendo en cuenta que la función potencial $\phi_m(x, y)$ expresada por la ecuación (2.102), por lo tanto, las derivadas parciales serán expresadas por las siguientes expresiones:

$$\frac{\partial \phi_m}{\partial x} = \frac{1}{2A_m} \sum_{i=1}^3 q_i \Phi_i$$
(2.106)

$$\frac{\partial \phi_m}{\partial y} = \frac{1}{2A_m} \sum_{i=1}^3 r_i \Phi_i$$
(2.107)

$$\left[\frac{\partial \phi_m}{\partial x}\right]^2 = \frac{1}{4A_m^2} \sum_{i=1}^3 \sum_{j=1}^3 q_i q_j \Phi_i \Phi_j$$

$$\left[\frac{\partial \phi_m}{\partial y}\right]^2 = \frac{1}{4A_m^2} \sum_{i=1}^3 \sum_{j=1}^3 r_i r_j \Phi_i \Phi_j$$
(2.108)
(2.109)

Por lo tanto, la funcional será expresada por la siguiente ecuación:

$$F_{m} = \frac{1}{8A_{m}} \sum_{i=3}^{3} \sum_{j=1}^{3} \left(\alpha_{x} q_{i} q_{j} + \alpha_{y} r_{i} r_{j} \right) \Phi_{i} \Phi_{j} + f_{m} \frac{A_{m}}{3} \sum_{i=1}^{3} \Phi_{i}$$
(2.110)

Entonces la funcional se puede expresar en forma matricial por las expresiones siguientes:

$$F_{m} = \frac{1}{2} \begin{bmatrix} \Phi_{1} & \Phi_{2} & \Phi_{3} \end{bmatrix} \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{21} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix} \begin{bmatrix} \Phi_{1} \\ \Phi_{2} \\ \Phi_{3} \end{bmatrix} + \begin{bmatrix} \Phi_{1} & \Phi_{2} & \Phi_{3} \end{bmatrix} \begin{bmatrix} t_{1} \\ t_{2} \\ t_{3} \end{bmatrix}$$
(2.111)

$$F_m = \frac{1}{2} \begin{bmatrix} \phi & \\ 123 \end{bmatrix}^t \begin{bmatrix} S_m \end{bmatrix} \begin{bmatrix} \phi & \\ 123 \end{bmatrix}^t \begin{bmatrix} F_m \end{bmatrix}$$
(2.112)

Para hallar los valores de potencial de campo en cada uno de los tres vértices del elemento triangular j se debe evaluar el mínimo de la funcional para lo cual se aplica la derivada de la ecuación (2.105) y se iguala a cero obteniéndose la expresión siguiente:

$$\begin{bmatrix} \frac{\partial F_m}{\partial \Phi_1} & \frac{\partial F_m}{\partial \Phi_2} & \frac{\partial F_m}{\partial \Phi_3} \end{bmatrix}^t = [S_m] [\Phi_{123}] + [T_m] = [0]$$
(2.113)

2.5.3.4. Ensamblaje de los elementos triangulares de la región del dominio

La energía total asociada a toda la región del dominio será la suma de la energía de los N elementos triangulares individuales, entonces la funcional será:

$$F = \sum_{m=1}^{N} F_m \tag{2.114}$$

En el presente acápite se ilustra el procedimiento de ensamblaje, considerando que el dominio se extiende para N elementos triangulares, considerando el dominio conformado por dos elementos triangulares, se desarrolla la funcional para los dos triángulos en forma separada y luego los dos triángulos conectados. Resulta al considerar seis potenciales de campo tal como se muestra en la ecuación matricial (2.113)

Figura 2.11 Elementos triangulares para la región del dominio.

$$F = \frac{1}{2} \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 & \phi_4 & \phi_5 & \phi_6 \end{bmatrix}^T \begin{bmatrix} S_{11}^{I} & S_{12}^{I} & S_{13}^{I} & 0 & 0 & 0 \\ S_{21}^{I} & S_{22}^{I} & S_{23}^{I} & 0 & 0 & 0 \\ S_{31}^{I} & S_{32}^{I} & S_{33}^{I} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44}^{2} & S_{45}^{2} & S_{46}^{2} \\ 0 & 0 & 0 & S_{54}^{2} & S_{55}^{2} & S_{56}^{2} \\ 0 & 0 & 0 & S_{64}^{2} & S_{65}^{2} & S_{66}^{2} \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \\ \phi_6 \end{bmatrix} + \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 & \phi_4 & \phi_5 & \phi_6 \end{bmatrix}^T \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ t_6 \end{bmatrix}$$

2.115)

Para el ensamblaje de los dos elementos triangulares, se requiere físicamente que los valores de los potenciales \emptyset sean continuos a través de la frontera entre los dos elementos, se debe satisfacer el requisito de continuidad de potenciales, para nuestro caso los potenciales \emptyset_1 y \emptyset_6 son iguales, además \emptyset_2 y \emptyset_4 , tal como se muestra en la figura 2.12 y en la ecuación matricial (2.116).

Figura 2.12 Ensamble de dos elementos triangulares de la región del dominio.

$$\begin{bmatrix} \emptyset_1 \\ \emptyset_2 \\ \emptyset_3 \\ \emptyset_4 \\ \emptyset_5 \\ \emptyset_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \emptyset_1 \\ \emptyset_2 \\ \emptyset_3 \\ \emptyset_4 \end{bmatrix}$$
(2.116)

Los elementos nulos de la matriz [*C*] de conexión indica que no existe conexión entre los vértices, por lo tanto, en forma matricial se tiene:

$$[\emptyset]_{dis} = [C][\emptyset]_{con}$$
(2.117)

Luego la funcional conexa será:

.

$$F = \frac{1}{2} [\emptyset]_{con}^{t} [S] [\emptyset]_{con} + [\emptyset]_{con}^{t} [T]_{con}$$
(2.118)

$$[S] = [C]^t [S]_{dis} [C]$$
(2.119)

Para hallar los valores de potencial de campo en los vértices de los dos elementos triangulares conectados se evalúa el mínimo de la funcional para lo cual se deriva e iguala a cero obteniéndose la ecuación matricial (2.120):

$$\left[\frac{\partial F_m}{\partial \Phi_1}, \frac{\partial F_m}{\partial \Phi_2}, \frac{\partial F_m}{\partial \Phi_3}, \frac{\partial F_m}{\partial \Phi_4}\right]^t = [S] [\Phi_1 2 3 4] + [T_m] = [0]$$
(2.120)

2.6. Problemas de Optimización Multiobjetivo

Los problemas de optimización aplicados a los motores de inducción son del tipo multiobjetivo de dos o más funciones que deben satisfacerse simultáneamente, contiene múltiples criterios que se deben tener en cuenta. A menudo dichos criterios entran en conflicto unos con otros y no existe una única solución que simultáneamente satisfaga a todos.

Teniéndose más de una función objetivo a optimizar, cambia la noción de óptimo, pues es muy raro que un punto x optimice simultáneamente, ya que contiene criterios que tienen que satisfacerse tener en cuenta. En vez de esto, se intenta encontrar un conjunto de soluciones que sean buenos compromisos (trade-offs) entre los diversos objetivos más que una solución única.

En la presente Tesis se resuelve la optimización para máximo torque de arranque, mínima corriente de arranque y máxima eficiencia del motor de inducción teniendo como variables las dimensiones de las ranuras del rotor.

2.6.1. Optimización multiobjetivo

En el presente acápite se presenta los conceptos básicos con los problemas de optimización multiobjetivo, los detalles se encuentran en la referencia [12]. Los elementos de la optimización multiobjetivo son:

a.- Función objetivo: es la medida cuantitativa del funcionamiento del sistema que se desea optimizar (maximizar o minimizar). Para nuestro trabajo se considera al Torque de arranque, corriente de arranque y la eficiencia

b.- Variables: representan las decisiones que se pueden tomar para afectar el valor de la función objetivo, se pueden clasificar en variables independientes o de control, y variables dependientes o de estado. Para nuestro análisis se considera como variables a las dimensiones de la ranura del rotor.

c.- Restricciones: representan el conjunto de relaciones que ciertas variables están obligadas a satisfacer, se expresan en términos de ecuaciones e inecuaciones.

49

Resolver un problema de optimización multiobjetivo consiste en encontrar el valor de las variables de decisión para hacer óptimo el conjunto de funciones objetivo y satisfaciendo las restricciónes, no existe una única solución que sea considerada la mejor, en cambio se tiene un conjunto de soluciones óptimas llamadas Pareto Óptimas o soluciones compromiso, en el sentido que cada una representa los compromisos entre ellas, es decir cada una puede ser mejor que las otras en algún objetivo, pero ninguna es mejor que las demás en todos los objetivos de forma simultánea.

2.6.2. Definiciones

Un problema de optimización multiobjetivo es aquel que requiere optimizar de forma simultánea dos o más objetivos, encontrando un vector de variables de decisión que satisfagan restricciones y optimicen una función vectorial cuyos elementos representan funciones objetivo [11]. No se busca una solución óptima única, sino un conjunto de soluciones posibles de calidad equivalente.

a.- Problema de Optimización multiobjetivo: Es aquel que optimiza una función vectorial de k funciones objetivo, con k>1, que incluye un conjunto de n variables de decisión, y un conjunto de m restricciones, donde las funciones objetivo y las restricciones son función de las variables de decisión.

Optimizar

$$\bar{y} = \bar{F}(\bar{x}) = (f_1(\bar{x}), \dots, f_k(\bar{x}))$$
 (2.128)

Sujeto a

$$\bar{g}(\bar{x}) = (g_1(\bar{x}), \dots, g_m(\bar{x})) \le 0$$
 (2.129)

Donde

$$\bar{x} = (x_1, \dots, x_n) \in X \subseteq \mathbb{R}^n$$
$$\bar{y} = (y_1, \dots, y_k) \in Y \subseteq \mathbb{R}^k$$

Donde \bar{y} es el vector objetivo, \bar{x} es el vector decisión, $X \subseteq R^n$ es el espacio de decisión y $Y \subseteq R^k$ es el espacio objetivo. El conjunto de ecuaciones $\bar{g}(\bar{x}) \leq 0$, determinan el espacio factible $X_f \subseteq R^n$

b.- Conjunto factible: El conjunto factible X_f está definido como el conjunto de vectores decisión \bar{x} que satisfacen el conjunto de restricciones tal que,

$$X_f = \{ \bar{x} \in X \mid \bar{g}(\bar{x}) \le 0 \}$$
(2.130)

La imagen de X_f , es la región de factibilidad en el espacio objetivo y se denota por

$$Y_f = F(X_f) = \bigcup_{\bar{x} \in X_f} \{F(x)\}$$
(2.131)

c.- Dominancia de Pareto: un vector $U = (u_1, ..., u_k)$ se dice que domina a otro vector $V = (v_1, ..., v_k)$ sí y solo si U es parcialmente mejor que V, esto es:

 $\forall i \in \{1, \dots, k\}, u_i$ es mejor o igual que $v_i \land \exists i \in \{1, \dots, k\}/u_i$ es estrictamente mejor que v_i

Es decir, U domina a V, si U es mejor o igual que V en todos los objetivos y estrictamente mejor en alguno de ellos.

La dominancia de un vector U sobre un vector V, se denota:

U > V, U domina a V.

Si U es estrictamente mejor que V para todos los objetivos, entonces se le llama dominancia de Pareto fuerte.

d.- Relación de Nodominancia: Un vector $\overline{U} = (u_1, ..., u_k)$ se dice que nodomina a un vector $\overline{V} = (v_1, ..., v_k)$ sí y solo si la relación U > V no se cumple.

La relación de nodominacia de un vector U respecto de un vector V se denota:

 $U \geq V$, el vector U nodomina al vector V.

e.- Vectores no comparables: Se dice que dos vectores U y V son no comparables si y solo si:

$$(U \neq V) \land (V \neq U) \land (V \neq U)$$

Es decir, los vectores U y V no son iguales, ni U es mejor que V, ni el vector V es mejor que U.

Decir que un vector U es no comparable con un vector V se denota:

 $u \sim v$ los vectores U y V son no comparables

f.- Óptimo de Pareto: Se dice que una solución $\bar{x} \in X_f$ es Pareto óptima con respecto a un conjunto $\Omega \subseteq X_f$ sí y solo si:

 $\nexists x_m \in \Omega \text{ para el cual } V_m = F(x_m) = \left(f_1(x_m), \dots, f_k(x_m)\right) \text{ domina a } U = F(x) = \left(f_1(x), \dots, f_k(x)\right)$

Es decir, la solución x es una solución Pareto Óptimo si es nodominada por alguna otra solución en el conjunto factible.

g.- Conjunto Pareto Óptimo: el conjunto Pareto optimo, denotado como P* se define como:

 $P^* = \left\{ x \in X_f / \nexists x_m \in X_f \text{ para el cual } F(x_m) \text{ domine a } F(x) \right\}$

Es decir, una solución x, pertenece al conjunto Pareto óptimo si no existe ningún otro vector en el espacio factible que domine al vector x.

Definición 8. Frente de Pareto Óptimo: Es el conjunto de vectores nodominados en el espacio objetivo. Formalmente, el Frente de Pareto Óptimo se define como:

$$PF^* = \{ U = \overline{F}(x) = (f_1(x), \dots, f_k(x)) / x \in P^* \}$$

Donde $\overline{F}(x)$ representa un problema de optimización multiobjetivo, y P* es el conjunto Pareto Óptimo

CAPÍTULO III DESARROLLO DEL TRABAJO DE LA TESIS

En el diseño del motor de inducción hay muchos parámetros involucrados por lo que las funciones objetivo y las restricciones para la optimización son muy complejas, es imposible que se tengan en cuenta todos los parámetros.

En la presente Tesis se utiliza el método de elementos finitos FEM para calcular inicialmente las características del torque, corriente del estator estator tanto en régimen estacionario como en transitorio así mismo la eficiencia del motor con dimensiones geométricas del motor experimental (máquina generalizada de laboratorio *Student Demostration Set* de la Universidad Nacional de Ingeniería), luego, al cambiar los parámetros de la ranura del rotor se obtiene diferentes características entre las cuales se determinará los valores óptimos. El objetivo es encontrar un conjunto solución (dimensiones de las ranuras del rotor) que optimice el comportamiento, no existe una única solución que sea considerada la mejor, en cambio se tiene un conjunto de "soluciones óptimas" llamadas Pareto Óptimas o soluciones compromiso, se realiza este proceso para lograr el mejor desempeño en el motor de inducción.

3.1. Determinación de los Parámetros del Circuito equivalente Motor de Inducción

3.1.1. Descripción del motor a utilizar

En la presente Tesis se utiliza la máquina generalizada de laboratorio (*Student Demostration Set*) de la Universidad Nacional de Ingeniería para verificar la correspondencia con el modelado. Esta máquina tiene un dinamómetro dinámico de bastidor oscilante, las dos máquinas están acopladas mediante un dispositivo tipo cadena y montadas sobre una bancada de hierro fundido. En la tabla 3.1 se muestra las especificaciones técnicas de la máquina utilizada.

		ESTATOR		ROTOR	
Tensión por fase	100/110 V	200/220 V	230/250 V	100/110 V	200/250 V
Número de ranuras	24	24	24	36	36
BOBINADOS PRINCIPALES	А	В	С	D	Е
Número de bobinas	12	12	12	36	36
Número de conductores/ranuras	30	60	63	16	36
Número de vueltas por bobina.	30	60	63	9	18
Diámetro del conductor (cobre)	2 x 0.044"	0.044"	0.044"	2 x 0.040"	0.040"
Número de polos	2	2	2	2	2
Tipo de bobinado.	Una sola capa	Una sola capa	Una sola capa	Doble capa	Doble capa
Paso de la bobina	1 – 12	1 – 12	1 – 12	1 – 19	1 – 19
La duración media de giro.	35"	35"	35"	27.5"	27.5"
Resistencia por bobina a 60°C	0.254 Ω	1.17 Ω	1.22 Ω	0.078 Ω	0.31 Ω

Tabla 3.1 Especificaciones Técnicas de la Máquina (Student Demostration Set) [18]

3.1.2. Características de las ranuras del estator y rotor

En las figuras 3.1 y 3.2 se muestra las dimensiones de las láminas del estator y rotor de la Máquina Generalizada [18], y en la figura 3.3 la forma y dimensiones de las respectivas ranuras del rotor.

Figura 3.1 Dimensiones de las láminas magnéticas de la Máquina (*Student Demostration Set*) [18].

Figura 3.2 Dimensiones de las ranuras del estator [18].

Figura 3.3 Dimensiones de las ranuras del rotor. [18]

3.2. Determinación experimental de los parámetros del circuito equivalente del motor de inducción

Los parámetros del circuito equivalente del motor de inducción (el cual es considerado como motor de partida) se determina a partir de los datos de las pruebas de vacío, prueba de rotor bloqueado y medición de las resistencias con corriente

continua. Asimismo, se ha realizado las pruebas con diferentes valores de carga y el registro de la corriente transitoria de arranque con la finalidad para verificar la correspondencia del modelo con los valores de laboratorio, para el registro de las variables eléctricas se utilizó el analizador de redes. En la figura 3.4 se muestra la maquina experimental y los instrumentos utilizados para realizar las pruebas de vacío, rotor bloqueado y con carga.

Figura 3.4 Determinación Experimental de Parámetros de la máquina generalizada operando como motor de inducción

Los valores de las pruebas de vacío y rotor bloqueado se muestran en las tablas 3.2 y 3.3

TENSIÓN (V)	CORRIENTE (A)	POTENCIA (W)	VELOCIDAD(RPM)
230	1.90	537	3555
180	1.70	442	3544
157	1.69	404	3525

Tabla 3.2 Medidas del ensayo de vacío.

Tabla 3.3 Medidas de la prueba rotor bloqueado.

TENSIÓN (V)	CORRIENTE(A)	POTENCIA (W)	VELOCIDAD (RPM)
53	5.8	338	0

En la figura 3.5 se muestra el registro, en el analizador de redes, de la corriente transitoria de arranque sin carga cuando al motor se alimenta con una tensión trifásica de 230 V, se obtiene una corriente máxima de 40 A.

Figura 3.5 Registro de la Corriente arranque prueba sin carga

El cálculo de los parámetros del circuito equivalente por fase se realiza con los datos obtenidos en las pruebas de laboratorio, los valores se muestran en la tabla 3.4.

R _s (Ohm)	1,13
R'r (Ohm)	2,26
X _s (Ohm)	2,04
X'r (Ohm)	2,04
X _m (Ohm)	73,76
R _m (Ohm)	218,54

Tabla 3.4 Parámetros del circuito equivalente.

En los cálculos se desprecia la corriente de magnetización y la saturación en la zona de los dientes del rotor y estator, no se considera el comportamiento no lineal de la característica B-H del material ferromagnético. Por lo tanto, la predicción del comportamiento de las variables en diferentes condiciones de operación no resulta la
mejor representación utilizando el modelo del circuito equivalente, este modelo no es válido para el análisis del motor de inducción en régimen transitorio.

En las figuras 3.6 y 3.7 se muestran las características de la corriente vs velocidad, torque vs velocidad obtenidas utilizando el modelo del circuito equivalente.

Figura 3.6 Característica del corriente estator (A)

Figura 3.7 característica del par (N-m)

CAPÍTULO IV

ANALISIS Y RESULTADOS

4.1. Determinación de las características en régimen permanente y transitorio de la maquina experimental utilizando el método de elementos finitos.

En el presente capítulo se desarrolla la simulación, utilizando el método de elementos finitos MEF, para obtener las características en régimen permanente y transitoria de corriente, torque y la eficiencia del motor de inducción experimental del laboratorio. Estas características se consideran como datos iniciales y se compara con los resultados de las pruebas de laboratorio para comprobar la validez del modelado.

Para el modelado del motor de inducción se incluye, en la ecuación de Maxwell, la característica B-H no lineal [18], que corresponde al material que está fabricado el núcleo de la maquina experimental, tal como se muestra en la figura 4.1. La curva B-H presenta una zona lineal, una zona de codo y una zona de saturación.

Figura 4.1 Característica B-H del material ferromagnético [18].

En la figura 4.2 se muestra la geometría, en el plano x-y, de la máquina utilizada (*Student Demostration Set* [18]), en la que se muestra la zona del estator, rotor, devanados del estator y rotor, así como la forma de dichas ranuras, también la zona del entrehierro y el eje.

Figura 4.2 Geometría en el plano x-y (Student Demostration Set).

Para la solución numérica de las ecuaciones diferenciales de Maxwell en función del vector potencial magnético A por el método de elementos finitos se utilizó el software Maxwell de Ansys [1]. El cual se inicia ingresando las dimensiones del estator, rotor, ranuras, bobinados, materiales, curva característica B-H del núcleo ferromagnético, así como las condiciones de frontera. Se obtiene como salida el mallado de la región de trabajo se obtiene tal como se muestra en la Figura 4.3, los elementos triangulares del mallado son más pequeños en el entrehierro lugar donde se concentra la mayor energía magnética. Considerando las condiciones de operaciones se obtiene las características e régimen estacionario y transitorio.

Figura 4.3 Mallado de las regiones para el motor de inducción.

4.1.1. Distribución de las líneas de campo magnético y densidad de flujo

Utilizando el método de elementos finitos MEF, se resuelve las ecuaciones diferenciales del campo magnético en todos los nodos, se obtiene la distribución de las líneas de campo y la distribución de la densidad de flujo B. Las corrientes que circulan por los devanados del estator producen la intensidad de campo H y la densidad de flujo B.

En la Figura 4.4 se muestra las líneas campo magnético, se puede observar que penetran al núcleo del rotor debido a estar operando con un deslizamiento pequeño y la conductividad efectiva del rotor es pequeña.

En los devanados del estator y rotor (material conductor) se obtiene valores nulos de la intensidad de campo H y la densidad de flujo B, de igual manera en el eje del motor el cual se consideró acero no magnético. Estos resultados satisfacen las condiciones de contorno Dirichlet y Neumann.

Figura 4.4 Distribución de las líneas de campo.

En la figura 4.5 se muestra se obtiene la distribución de la densidad de flujo B (se obtiene por $\overline{B} = \overline{\nabla} \times \overline{A}$) en toda la región analizada, se observa valores nulos en la zona de las ranuras, que alojan los conductores de cobre del estator y rotor. En los dientes de estator y rotor se obtienen los mayores valores con un valor de 1,16 Tesla que corresponde a la zona del codo de la curva *B*-*H* del material ferromagnético.

Figura 4.5 Distribución de la densidad de flujo B (Tesla).

4.1.2. Curvas características en régimen estacionario del motor experimental

Se realizo la simulación en régimen estacionario del motor cuando se alimentando con una tensión trifásica nominal de 230 V, 60 Hz y acciona una carga (generador DC conectado al eje) tal que el deslizamiento es s= 0,018 (velocidad mecánica 3531,8 RPM) y la potencia que absorbe es de 1180 W. Se obtiene las curvas características de la corriente del estator, el torque y eficiencia, del comportamiento como motor en régimen estacionario, cuando se varía el deslizamiento desde 1 hasta 0 se muestran en las figuras 4.6 y 4.7 respectivamente. Se observa el valor de la corriente de arranque la cual decrece hasta alcanzar el valor nominal, asimismo de la característica del par se observa los valores del par de arranque, par máximo y par nominal de operación.

Figura 4.6 Corriente del estator (A) en función de la velocidad (RPM).

Figura 4.7 Par electromagnético (N-m) en función de la velocidad (RPM).

4.1.3. Simulación en régimen transitorio condición rotor bloqueado

Se realizó la simulación para la condición de rotor bloqueado, aplicando tensión reducida de 50 V, en esta prueba la conductividad efectiva es igual a la conductividad de las barras ya que el deslizamiento es igual a 1.

En la fig. 4.8 se observa, al aplicar el método de elementos finitos MEF para la solución numérica de la ecuación diferencial del campo magnético, las líneas de campo magnético las cuales no penetran por completo al rotor; esto se explica por la mayor conductividad de un material la penetración de líneas de campo magnético es menor, ocasionando un incremento de corrientes inducidas en las barras del rotor, estas corrientes en las barras del rotor generan un campo magnético que trata de vencer el par que mantiene bloqueado al rotor.

Figura 4.8 Distribución de las líneas de campo para la simulación rotor bloqueado

Figura 4.9 Distribución de la densidad de flujo para la simulación de rotor bloqueado.

En la figura 4.10 se muestra de la corriente del estator, en régimen transitorio, parala prueba de rotor bloqueado, obteniéndose un valor de 6 A de corriente de línea similar al valor de la prueba de laboratorio.

Figura 4.10 Corriente transitoria del estator para la prueba de rotor bloqueado.

4.1.4. Simulación del régimen transitorio.

Se realizó la simulación en régimen transitorio, para lo cual se alimenta con tensión plena de 230 Volt, 60 Hz, el tiempo para la simulación es de 200 ms y un paso de integración de 0,001 s.

En la figura 4.10, se observa el valor máximo de 37,5 A similar con el registro de la corriente de arranque en el laboratorio.

Figura 4.11 Corriente régimen transitorio.

En el grafico 4.11 se observa el par electromagnético obteniéndose un valor de 3,28 N-m, se aprecia una oscilación (rizado) el cual se explica por los armónicos espaciales del campo magnético, lo cual no es posible observar o predecir utilizando el modelo dq con parámetros concentrados lineales.

Figura 4.12 Par transitorio del motor de inducción trifásico

4.1.5. Comparación del análisis del motor de inducción por el método de elementos finitos y la verificación experimental

Se realizo la validación de la solución numérica (por el método de elementos finitos MEF) con la verificación experimental. En la figura 4.13 se muestra la característica de la corrientes obtenidas por el método de Elementos Finitos (FEM) y la característica de la corriente obtenido a partir del circuito equivalente (CE) y los resultados de la prueba de laboratorio, se observa que las diferencias para la característica de la corriente obtenida por el Método de Elementos Finitos son menores (del orden del 2%) obteniéndose una mayor exactitud. Esto se explica porque el método de Elementos Finitos considera la real geometría de la máquina y además incorpora el efecto de la característica B-H no lineal del núcleo.

Figura 4.13 Comparación de las características de corriente estator régimen estacionario.

Figura 4.14 Registro de la corriente transitoria de arranque.

En la figura 4.14 se muestra la corriente de arranque a tensión plena y con carga, el registro se ha realizado con el analizador de redes Fluke 43B siendo el valor de la corriente máxima registrada es de 40 A, la corriente permanente es de 10 A valor pico y el tiempo de registro es de 5 segundos.

En la figura 4.15 se muestra la simulación de la corriente transitoria obtenida por el método de Elementos Finitos, arranque a tensión plena, el valor de la corriente máxima registrada es de 40 A, el valor de la corriente permanente es de 10 A valor pico y el tiempo de registro es de 5 segundos. El método propuesto permite predecir el comportamiento del motor en régimen transitorio con buena exactitud, lo cual permite seleccionar adecuadamente los dispositivos de protección eléctrica.

Figura 4.15 Corriente de arranque obtenida por simulación utilizando el MEF.

Figura 4.16 Comparación de las características del Par obtenido por los tres métodos.

De acuerdo con los resultados de la simulación de las características en régimen estacionario y transitorio del motor de inducción experimental mediante el método de elementos finitos MEF y los obtenidos por ensayos en laboratorio, se comprueba buena correspondencia.

4.2. Optimización multiobjetivo para el mejoramiento del desempeño del motor de inducción

Los resultados de la corriente de arranque, torque de arranque y eficiencia del motor original, que se han obtenido para validar el modelado por el Método de Elementos Finitos (tal como se muestra en el acápite 4.1.5) serán considerados como datos de partida y de referencia para comparar el mejoramiento del desempeño del motor, con la optimización de las ranuras del rotor. La optimización permitirá encontrar la mínima corriente de arranque, el máximo torque de arranque y la máxima eficiencia en función de la forma y dimensiones de las ranuras del rotor. En general, el problema de optimización de las tres funciones objetivo se resuelve mediante técnicas de optimización multiobjetivo. Sin embargo, se usan métodos numéricos porque son problemas de múltiples variables. Los métodos de optimización utilizan el diseño inicial y las restricciones para resolver un problema.

Para el mejoramiento del desempeño se parte de las dimensiones originales de la máquina generalizada (*Student Demostration Set*) [18], se evalúa las características del par de arranque máximo, corriente de arranque mínima y máxima eficiencia mediante la variación de la geometría y dimensiones de las ranuras del rotor, que para nuestro estudio las variables son las dimensiones bs1, bs2 y hs2 de la ranura del rotor. En el acápite 2.1.2 se demostró que existe una dependencia del par, corriente y eficiencia con la resistencia del rotor. Las dimensiones de partida son las indicadas en la tabla 4.1

Número de ranuras del rotor	36
Air Gap (mm)	0.42
Diámetro interno del Rotor (mm)	44.45
Tipo de ranura del Rotor	3
Dimensiones de la ranura del	
Rotor	
hs0 (mm)	0.5
hs1 (mm)	1.2
hs2 (mm)	19.71
bs0 (mm)	2.28
bs1 (mm)	7.47
bs2 (mm):	4.3
rs (mm):	2.14

Tabla 4.1	Datos (del rotor	[18].
-----------	---------	-----------	-------

Figura 4.17 Detalle de ranura del rotor donde se indica las variables Bs0, Bs1, Bs2, Hs0, Hs1 y Hs2.

En esta investigación se encontrará un vector de variables de decisión que satisfagan restricciones y optimicen una función vectorial cuyos elementos representan funciones objetivo.

Las dimensiones de la ranura del rotor bs1, bs2 y hs2, serán las variables de decisión para la optimización, cuyos valores están restringidos por el diámetro de las láminas del rotor. Se calcula el torque, corriente y eficiencia que permitan obtener el mejor desempeño, para lo cual se utiliza el software de elementos finitos Maxwell v14 de Ansys [1], mediante la utilizando la programación paramétrica.

A continuación, se muestra, en la tabla 4.2, las restricciones del vector de las variables de decisión, que para nuestro caso son las dimensiones bs1, bs2 y hs2 de la ranura del rotor.

3mm ≤ bs1 ≤ 11mm	
3mm ≤ bs2 ≤ 6mm	
9mm ≤ hs2 ≤ 22mm	

Tabla 4.2 Restricciones de las Variables de decisión.

4.2.1. Resultados del mejoramiento del desempeño del motor de inducción.

Se ha realizado las simulaciones, utilizando en software Maxwell de Ansys, para obtener el torque de arranque, corriente de arranque y eficiencia variando en forma simultánea los valores de las variables bs1, bs2 y hs2 de las ranuras del rotor, obteniéndose una gran cantidad de posibles soluciones.

4.2.2. Análisis paramétrico variando hs2 de la ranura del rotor

Se ha realizado el análisis paramétrico, de las dimensiones de la ranura rotoricas del motor original, con la finalidad de predecir las características de corriente de arranque, torque de arranque y eficiencia. La ranura del rotor tiene las dimensiones indicadas en la tabla 4.1.

Se calcularon las características, considerando solo la variación del parámetro hs2 (altura de la ranura) y manteniendo contantes las demás dimensiones del rotor original, utilizando la herramienta de análisis paramétrico del software de elementos finitos Maxwell. En las figuras 4.17, 4.18 y 4.19 se muestran los resultados.

En vista que el diseño del motor de inducción tiene muchos variables relacionadas entre sí, por lo tanto, el problema de optimización tiene muchos valores mínimos o máximos locales. En la figura 4.17 se muestra la característica de la corriente de arranque cuando se varía el parámetro de la ranura del rotor Hs2 desde 2,5 mm hasta 22,5 mm, observando una zona lineal cuando hs2 varía desde 2,5 hasta 6mm, una zona constante cuando hs2 está entre 6mm a 16 mm y una zona creciente cuando hs2 está comprendido entre 16 mm a 22,5 mm

Figura 4.18 Corriente de arranque cuando bs1=7,4 mm, bs2=4,3mm y hs2 variable

En la figura 4.19 se muestra la característica del torque de arranque, la cual tiene forma cóncava con un valor mínimo cuando hs2= 13 mm

Figura 4.19 Par de arranque cuando bs1=7,4 mm, bs2=4,3mm y hs2 variable

En la figura 4.20 se muestra la característica de la eficiencia al variar hs2 desde 2,5 mm hasta 22,5 mm, se observa un comportamiento creciente de la eficiencia.

Figura 4.20 Eficiencia cuando bs1= 7,4 mm, bs2=4,3mm y hs2 variable

Del análisis de las tres funciones no es posible obtener una solución de la variable hs2 que optimice las tres funciones, es decir mínima corriente de arranque, máximo torque de arranque y máxima eficiencia, por lo que se debe incorporar las variables bs1, bs2 y hs2 para encontrar un conjunto solución que mejore las tres funciones.

Se analizó otro caso considerando una ranura trapezoidal con las siguientes dimensiones bs1= 10 mm, bs2=6mm y se varia hs2 desde 2,5 mm hasta 22,5 para obtener las características de la corriente de arranque, torque de arranque y eficiencia.

En la figura 4.21 se puede observar que la característica de la corriente de arranque es creciente a medida que se incrementa hs2 desde 2.5 mm hasta 22.5 mm.

Figura 4.21 Corriente de arranque cuando bs1= 10 mm, bs2=6 mm y hs2 variable

En la figura 4.22 se observa que el torque de arranque es cóncavo y crece a medida que se incrementa hs2 y la eficiencia es decreciente, por lo tanto, no es posible obtener la optimización de las tres funciones objetivos.

Figura 4.22 Par de arranque cuando bs1= 10 mm, bs2=6 mm y hs2 variable

Figura 4.23 Eficiencia cuando bs1= 10 mm, bs2=6 mm y hs2 variable

De los dos casos analizados, se concluye que nos es posible mejorar el desempeño del motor de inducción en cuanto a la mínima corriente de arranque, máximo torque de arranque y máxima eficiencia con un análisis determinístico de las dimensiones y forma de la ranura del rotor, por lo que se debe formular una metodología de optimización variando en forma simultánea las tres dimensiones bs1, bs2 y hs2.

Por lo que en la presente tesis se desarrolla el análisis paramétrico de las tres variables, de las ranuras rotoricas bs1, bs2 y hs2, en forma simultánea para obtener un conjunto factible de soluciones, para lo cual se realiza una programación con el software de elementos finitos Maxwell Ansys.

4.2.3. Conjunto Factible análisis paramétrico variando bs1, bs2 y hs2

En el presente trabajo busca una solución óptima para mejorar tres funciones objetivo, para este caso la noción de óptimo cambia siendo muy raro que un punto x optimice simultáneamente todos los objetivos de un problema multiobjetivo. En vez de esto, se intenta encontrar un conjunto de soluciones que sean buenos compromisos (trade-offs) entre los diversos objetivos en lugar de una solución óptima única global. Por lo tanto, no existirá una única solución que optimice sino se escogerá los buenos compromisos para lo cual se utilizara el criterio de Pareto Optimo [12].

Utilizando el análisis paramétrico se genera 640 soluciones, con dimensiones y formas de la ranura del rotor al variar en forma simultánea las variables de decisión bs1, bs2 y hs2. Utilizando el software Maxwell Ansys se genera 640 características en régimen estacionario para la corriente del estator, el torque y la eficiencia en función de la velocidad en RPM. Utilizando el criterio de Optimo de Pareto se encuentra un conjunto de soluciones que sean buenos compromisos (trade-offs) entre los diversos objetivos.

4.2.3.1. Optimización de la ranura del rotor para obtener mínima corriente de Arranque.

Una de las soluciones de las variables de decisión bs1, bs2 y hs2 que se obtiene por los cálculos paramétricos y se muestran en la tabla 4.3, para lo cual se denomina motor con ranura de rotor tipo M1. Con esta solución se obtiene el valor mínimo de la corriente de arranque

Tabla 4.3 Dimensiones ranuras Motor Tipo M1.

hs0	hs1	hs2	bs0	bs1	bs2
0,5 mm	1,2mm	22mm	2,28 mm	3mm	3mm

La geometría del motor tipo M1 se muestra en la figura 4.24, con la cual se utilizará el Método de Elementos Finitos FEM para el análisis respectivo.

Figura 4.24 Geometría del motor con ranuras rotor tipo M1.

En la fig. 4.25 y fig. 4.26 se muestran la distribución de las líneas del campo magnético y la distribución de la densidad de flujo B (Tesla) respectivamente en toda la estructura de la maquina cuando el motor tipo A opera a tensión nominal 220 V, 60 Hz y velocidad de 3579,79 RPM

Figura 4.25 Distribución de las líneas de campo magnético motor ranura tipo M1.

Figura 4.26 Distribución de las líneas de campo magnético motor ranura tipo M1.

En la tabla 4.4 se muestra las dimensiones de las ranuras del rotor para los motores tipo M1, tipo M2 y motor original MO con los correspondientes valores de corriente de arranque, torque de arranque y eficiencia. Se puede comprobar que el motor con ranuras tipo M1 se obtiene la mínima corriente de arranque, el motor con ranura tipoM2 se obtiene la máxima corriente de arranque. Entre ambos valores se encuentra el valor de la corriente de arranque del motor con ranura original.

Tabla 4.4 Dimensiones de la ranura del rotor Motor Tipo M1, Tipo M2 y Motor Original MO.

	bso	bs1	bs2	hs0	hs1	hs2	Corriente Arranque (A)	de
Ranura motor tipo M1	2,28mm	3mm	3mm	0,5mm	1,2mm	22mm	17	
Ranura motor tipo M2	2,28mm	10mm	6mm	0,5mm	1,2mm	22mm	28	
Ranura motor Original MO	2,28mm	7mm	4mm	0,5mm	1,2mm	19mm	19	

En la figura 4.27 se muestra las características, obtenidas por simulación, de la corriente en régimen estacionario para los motores ranuras tipo M1, tipo M2 y ranura original MO. Se observa el valor minino de la corriente corresponde al motor tipo M1, el valor máximo para el motor tipo M2 y obteniéndose una reducción del 30% respecto al valor máximo y un 20% respecto a la corriente de la maquina original MO.

Figura 4.27 Características corriente estator vs velocidad para los motores con ranuras Tipo M1), Tipo M2 y original MO.

Figura 4.28 Corriente de estator transitoria del motor ranura tipo M1.

Figura 4.29 Par transitorio motor ranura tipo M1.

Asimismo, en la figura 4.28 se muestra la corriente del estator en régimen transitorio para el motor ranura tipo M1 para el caso de corriente minina de arranque con un valor de 30 A valor pico y comparando de la corriente de la maquina original de 40A

En la figura 4.29 se muestra los resultados de la simulación del torque transitorio para el caso cuando las ranuras rotor motor tipo M1 tienen las dimensiones, se observa un torque de 5 N-m

4.2.3.2. Optimización de la ranura del rotor para obtener máximo torque de arranque.

El torque de arranque máximo se consigue para una solución de las variables bs1, bs2 y hs2, obtenido por los cálculos paramétricos, por lo que se designa motor con ranuras de rotor tipo M3, cuya geometría se muestra en la figura 4.30, y será utilizada para determinar las características utilizando el método de elementos finitos.

Tabla 4.5 Dimensiones ranuras Motor Tipo M3.

Tipo Ranura	bs0	bs1	bs2	hs0	hs1	hs2
Tipo M3	2,28 mm	3mm	3mm	0,5mm	1,2mm	3mm

En las Fig. 4.31 y Fig. 4.32 se muestra las líneas del campo magnético y la distribución del campo magnético B (Tesla) para el motor con ranuras tipo M3 con la cual se obtiene el

Figura 4.30 Geometría del motor con ranuras rotor tipo M3.

Figura 4.31 Distribución de las líneas de campo magnético motor ranura tipo M3.

Figura 4.32 Distribución de la densidad de campo magnético motor ranura tipo M3.

En la tabla 4.6 se muestra las dimensiones de las ranuras del rotor para los motores tipo M3, tipo M4 y motor original experimental de laboratorio MO con los correspondientes valores de corriente de arranque, torque de arranque y eficiencia. Se puede comprobar que el motor con ranuras tipo M3 se obtiene el máximo torque de arranque, el motor con ranura tipo M4 se obtiene el mínimo torque de arranque.

	bso (mm)	bs1 (mm)	bs2 (mm)	hs0 (mm)	hs1 (mm)	hs2 (mm)	Torque de Arranque(N-m)
Ranura motor tipo M3	2,28	3	3	0,5	1,2	3	8
Ranura motor tipo M4	2,28	10	6	0,5	1,2	22	5,5
Ranura motor Original MO	2,28	7	4	0,5	1,2	19	5

Tabla 4.6 Dimensiones de las ranuras del rotor con dimensiones generadas para el motor tipoM3C, motor tipo M4 y el motor original MO.

En la figura 4.33 se muestra las características, obtenidas por simulación, del torque en régimen estacionario para los motores ranuras tipo M3, tipo M4 y ranura del motor experimental de laboratorio MO. Se observa el valor máximo del torque de arranque corresponde al motor tipo M3, el valor mínimo para el motor tipo M4 y obteniéndose un incremento del 30% respecto al valor del torque del motor MO.

Figura 4.33 Característica del Par vs velocidad para los motores con ranuras Tipo M3, Tipo M4 y original MO.

En la fig. 4.34 se muestra las características de la eficiencia para los tipos de ranuras M3, M4 y la maquina original MO, se puede observar que para el caso de ranura tipo M3, que genera torque de arranque máximo, la eficiencia decrece respecto a la maquina original.

Figura 4.34 Característica eficiencia vs velocidad para los motores con ranuras Tipo M3, Tipo M4 y original MO.

Figura 4.35 Par transitorio para la maquina tipo M3 el cual produce el mayor par de arranque.

La fig. 4.35 muestra los resultados, utilizando el método de elementos finitos FEM, del torque transitorio para el motor con ranura tipo M3 con la cual se obtiene par de arranque máximo

La figura 4.36 muestra los resultados, utilizando el método de elementos finitos FEM, de la corriente transitoria para el motor con ranura tipo M3.

Figura 4.36 Corriente transitoria del estator para la maquina tipo M3.

4.2.3.3. Optimización Multiobjetivo conjunto solución Pareto óptimo

En el presente acápite se desarrolla el proceso de la optimización multiobjetivo con el análisis paramétrico de las variables y encontrando los valores de las tres funciones objetivos, en el Anexo II se muestra el Diagrama de Flujo indicando el proceso de los cálculos para obtener los valores de la corriente de arranque, par de arranque y eficiencia.

El vector objetivo se compone de tres funciones F(X) = (f1 (x), f2(x), f3(x)),

Dónde:

f1(x1, x2, x3): corriente de arranque f2(x1, x2, x3): torque de arranque f3(x1, x2, x3): eficiencia Min F1 Max F2 Max F3 Sujeto a $3 \le x1 \le 11$, $3 \le x2 \le 6$ y $9 \le x3 \le 22$

El vector decisión está dado por el vector \bar{x} = (x1, x2, x3), así mismo el conjunto factible está dado por el conjunto de vectores decisión \bar{x} =(x1, x2,x3) cuyos valores de X1,x2 y x3 están restringidos

Haciendo que F ={f1(x),...,fk(x)} sea el conjunto de k funciones objetivo, sean las soluciones x1,x2 $\in \bar{x}$. Se dice que x1 domina a x2, (denotado por x1 <x2), si existe una función objetivo en la que x1 es mejor que x2 sin ser peor en los demás objetivos.

El proceso de solución de un Problema de Optimización Multiobjetivo se divide en dos etapas:

a.- Se realiza el proceso de búsqueda u optimización para lo cual se explora el conjunto factible en busca de soluciones Pareto Optimas

b.- Etapa de toma de decisión donde se obtiene un conjunto solución de Pareto Optimo

X1(x1, x2, x3) = (3, 3, 3)X2(x1, x2, x3) = (3, 3, 22)

X3(x1, x2, x3) = (4, 5, 22)

En el Anexo I se muestra el conjunto factible de las funciones objetivos F1, F2 y F3, de donde se obtiene las soluciones dominantes, una de las soluciones optimas según criterio de Pareto, se obtiene máxima eficiencia, mínima corriente de arranque y máximo par de arranque, para lo cual se obtiene tres tipos de ranuras rotoricas según se indica en la tabla 4.7, determinándose los motores con ranuras tipo M4, tipo M5 y tipo M6.

En la figura 4.37 se muestra la distribución de dos funciones objetivos, F2 : torque de arranque y F3 : Eficiencia, se observa el frente de Pareto para máxima eficiencia y máximo torque de arranque.

Figura 4.37 Frente de Pareto Máxima eficiencia y máximo Par de arranque

En la figura 4.38 se muestra la distribución de dos funciones objetivos, F1 : corriente de arranque y F2 : torque de arranque , se observa el frente de Pareto para mínima corriente de arranque y máximo torque de arranque.

En la figura 4.39 se muestra la distribución de dos funciones objetivos, F3 : eficiencia y F1 : corriente de arranque , se observa el frente de Pareto para máxima eficiencia y mínima corriente de arranque.

Figura 4.38 Grafico de Frente de Pareto Mínima corriente de arranque y Máximo Par de Arranque

Figura 4.39 Grafico de Frente de Pareto Máxima eficiencia y Mínima corriente de arranque

En la figura 4.40 se observa la distribución de las tres funciones objetivos F1, F2 y F3, en la optimización multiobjetivo se obtiene el Frente de Pareto para obtener la máxima eficiencia, el máximo torque de arranque y la mínima corriente de arranque.

Figura 4.40 Grafico Conjunto solución para las funciones objetivos Par de arranque, Corriente de arranque y eficiencia.

4.2.4. Análisis de las soluciones Pareto optimas de las Funciones Objetivos

Se extraen del frente de Pareto tres soluciones compromiso representativas, motores tipo M4, M5 y M6 indicando sus respectivos valores en la tabla 4.7. Se debe notar que en las soluciones existe un compromiso en el cumplimiento simultaneo de los objetivos, esto es, aquella solución donde se obtenga máximo torque de arranque, mínima corriente de arranque y máxima eficiencia

Tipo Ranura	bs0 (mm)	bs1 (m m)	bs2 (mm)	hso (mm)	hs1 (mm)	hs2 (mm)	Corriente de Arranque(A)	Torque de Arranque (N-m)	Eficienci a (%)
Tipo M4	2,28	3	3	0,5	1,2	22	17	5	80
Tipo M5	2,28	4	5	0,5	1,2	22	18	5,5	78
Tipo M6	2,28	3	3	0,5	1,2	3	17	8	79

Tabla 4.7 Motores con ranuras tipo M4, tipo M5 y tipo M6.

En el proceso de toma de decisiones se selecciona una solución compromiso adecuada entre aquellas halladas en el proceso anterior, siendo el motor ranura tipo M4 y además está vinculado a una condición de preferencia siendo esta la de menor deslizamiento cuando opera a plena carga. En la figura 4.41 se muestra la geometría del motor tipo M4 que será utilizada para determinar las características en régimen estacionario y transitorio.

En las fig. 4.42 y fig. 4.43 se muestran la distribución de las líneas de campo y la distribución de la densidad de flujo para la maquina con ranura de rotor tipo M4 respectivamente, cuando el motor opera con tensión nominal de 220 V, 60 Hz y acciona una carga tal que gira a una velocidad de 3464,26 RPM.

Figura 4.41 Geometría para el motor tipo M4.

Figura 4.42 Líneas de campo magnético para el motor tipo M4.

Figura 4.43 Distribución del campo magnético para el motor tipoM4.

En la figura 4.44 se observa las características de las corrientes vs velocidad del conjunto Pareto optimo (motores tipo M4, M5 y M6), tal que el motor tipo M4 tiene una mejor característica de corriente del estator con valor mínimo de 17 A en el arranque y menor deslizamiento a plena carga, mostrando un mejor comportamiento que el motor tipo M5 y además con menor corriente de arranque que el motor tipo M6.

Figura 4.44 Característica corriente vs velocidad motores tipo M4, M5 y M6.

Figura 4.45 Característica Par vs velocidad para motores tipo M4, M5 y M6.

En la figura 4.45 se observa las características de los torques vs velocidad del conjunto Pareto óptimo (motores tipo M4, M5 y M6). Asimismo, el motor tipo M6 tiene un torque de arranque máximo.

En la figura 4.46 se observa las características de la eficiencia vs velocidad del conjunto Pareto optimo (motores tipo M4, M5 y M6), tal que el motor tipo M4 tiene una eficiencia del 80 %, mostrando un mejor comportamiento que el motor tipo M5 y M6.

Se realizó la simulación utilizando el método de elementos finitos para calcular la corriente y torque en régimen transitorio para el motor con ranura tipo M4, tal como se muestra en las figuras 4.47 y 4.48 respectivamente. Se observa que se obtiene máximo torque de arranque y mínima corriente de arranque.

Figura 4.48 Corriente transitoria para motor ranura tipo M4.

En la tabla 4.8 se muestra la comparación de las características del motor M4 comprado con el motor original MO, comprobándose que al utilizar la optimización multiobjetivo se obtiene una ranura optima, con dimensión y forma denominada motor

M4. La propuesta permite mejorar el desempeño del, motor por lo que se recomienda la optimización después del diseño con la finalidad de cumplir con ciertas especificaciones en la operación.

Tipo Motor	Corriente d Arranque (A)	de	Torque de Arranque (N-m)	Eficiencia (%)
Motor Tipo M4	17		8	79
Motor Original MO	19		5	80

Tabla 4.8 Características de desempeño de Motores con ranuras tipo M4 y tipo MO

Como resultado de la metodología de optimización multiobjetivo utilizando el criterio Optimo de Pareto y el análisis paramétrico con el método de elementos finitos MEF, se obtiene el motor tipo M4 con el mejor desempeño en cuanto a las características de par máximo de arranque, mínima corriente de arranque y alta eficiencia.

CONCLUSIONES

1. Se ha desarrollado una metodología de optimización multiobjetivo, usando el criterio de Óptimo de Pareto, que permite determinar las dimensiones y forma de la ranura del rotor que maximizan el desempeño energético del motor de inducción, obteniéndose el Motor tipo M4 el cual presenta de manera simultánea la máxima eficiencia, la mínima corriente de arranque y el máximo par de arranque

2.- Se desarrollo de modelado del motor de inducción, mediante la aplicación de las ecuaciones de Maxwell, incorporando en el modelo las corrientes inducidas y el movimiento del rotor.

3.-Utilizando el método de elementos finitos se soluciona el modelo matemático formulado con las Ecuaciones de Maxwell desarrollado, y se determina la distribución de las variables magnéticas la intensidad de campo y la densidad de flujo en toda la estructura del motor de inducción, comprobando el efecto de incluir las dimensiones y la característica (*B-H*) no lineal del núcleo ferromagnético. Se comprueba que la distribución no es uniforme ni senoidal, como se asume en el modelo convencional de parámetros concentrados, asimismo; se observa el efecto de las ranuras del estator y rotor en la distribución de la densidad de flujo, comprobándose un mayor valor del campo magnético en los dientes del estator y rotor.

4. Se valida experimentalmente la exactitud de la metodología propuesta, que usa el método de Elementos Finitos, y que el modelo propuesto es más exacto que el método tradicional basadas en el circuito eléctrico equivalente de parámetros concentrados. Los experimentos se realizaron con la máquina eléctrica "*Student Demostration Set*" del Laboratorio de Electricidad de la UNI.

.

Trabajos futuros

1.-Analizar el efecto de la forma de los devanados del estator, tipo de ranura del estator, la influencia de tipo de material ferromagnético en el desempeño de los generadores de inducción doblemente alimentados utilizados en los generadores eólicos.

2.-Analizar el efecto de la forma del núcleo de rotor en las características de par, corriente y eficiencia de los motores utilizados en los vehículos eléctricos que requieren características especiales del par de arranque y de la eficiencia.

3.-Aplicar y comparar la optimización multiobjetivo con los métodos de algoritmos genéticos.

4.-Validar la metodología propuesta con motores industriales donde se pueda fabricar rotores con las ranuras optimizadas.

GLOSARIO

SIMBOLOGÍA

\overline{A}	Vector Potencial Magnético
\overline{B}	Densidad de Flujo Magnético (Tesla)
\overline{H}	Intensidad de Campo Magnético (A/m)
μ	Permeabilidad del material ferromagnético
\overline{J}	Densidad de Corriente (A/m2)
\overline{E}	Intensidad de Campo Eléctrico (V/m)
φ	Flujo Magnético (Wb)
$\overline{ abla}$	Operador Nabla
V	Potencial Eléctrico Escalar (V)
Lis	Inductancia de dispersión de los devanados del estator por fase
L _{ss}	Inductancia propia del devanado del estator.
L _{rr}	Inductancia propia del devanado del rotor.
L _{sm}	Inductancia mutua entre los devanados del estator.
L _{rm}	Inductancia mutua entre los devanados del rotor.
L _{sr}	Inductancia mutua entre el estator y el rotor.
T _e	Torque electromagnético (<i>N.m</i>).
J	Momento de inercia (<i>kg.m2</i>).
ω _r	Velocidad mecánica (<i>rad/s</i>).
D	Constante de fricción (<i>N.m.s</i>).
T_L	Torque de carga (<i>N.m</i>).
r _s	Resistencia del estator
Xs	Reactancia del estator

r _r	Resistencia del rotor
Xr	Reactancia del rotor
r _p	Resistencia de pérdidas en el fierro.
X _m	Reactancia de magnetización.
U(x, y, z, t)	Función de interpolación
ϕ	Función desconocida

BIBLIOGRAFÍA

- [1] Ansoft/Ansys Maxwell v14 User's Guide
- [2] Afaque Iqbal, M., & Agarwal, V. (2014). Investigation & Analysis of Three Phase Induction Motor. International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, 7(9).
- [3] Agamioh, E. (2017). Accurate Determination of Induction Machine Torque and Current vs Speed Caracteristicas. IEEE.
- [4] Bastos, J. P., & Sadowski, N. (2003). Electromagnetic Modeling By Finite Elements Methods (1ra ed.). New York, USA: Mercel Dekker.
- [5] Boldea, I., Syed A. Nasar, S. (2009). The Induction Machines Design Handbook, Second Edition.New York,USA, Taylor & Francis Group.
- [6] Bianchi, A. B., & Bolognani, S. (2011). Variable Speed Induction Machine Perfomance Computed Using Finite Element. IEEE transactions on industry applications, 47(2).
- [7] Bianchi, N., Bolognani, S., & Comelato, G. (1999). Finite Element Analysis of Three-Phase Induction Motor: Comparison of Two Different Approaches. IEEE Transactions on Energy Conversion, 14(4).
- [8] Cortés, C., Deprez, W., Perez, J., (2008). Determinación de pérdidas eléctricas en motores de inducción modelados electromagneticamente con el método de los elementos finitos. Ingenieria e Investigacion, Vol 28 No. 3.
- [9] Daut, I., Yanawati, Y., Gomesh, N., Nor Shafiqin, S., Pungut, I., & Rafidah, A. (Julio de 2013). Comparison of Torque between Different Diameters of Copper Rotor Bar Slot by Using FEM Software. International Journal of Information and Electronics Engineering, 3(4), 379-381.
- [10] Dolinar, D. (1996). Calculation of Two-Axis Induction Motor MOdel Parametres Using Fnite Elements. IEEE Transaction on Energy Convertion.
- [11] Faiz, J., Feyzi, M., & Sharifan, M. (september de 2002). A Complete Lumped Equivalent Circuit of Three-Phase Squirrel-Cage Induction Motors Using Two-Dimensional Finite-Elements Technique. IEEE Transactions on Energy Conversion, 17(3).
- [12] Galeano, E., Montoya V. Optimización Multiobjetivo de la Operación en Sistemas Automatizados de Distribución de Energía Eléctrica. (2008) Universidad Tecnológica de Pereira Facultad de Ingenierias: Eléctrica, Electrónica, Física y Ciencias de la Computación Programa de Ingeniería Eléctrica.
- [13] Han, P.-W., Seo, U.-J., Choi, J.-H., Chun, Y.-D., Koo, D.-H., & Lee, J. (2012). Optimizing Design Variables for High Efficiency Induction Motor. J Electr Eng Technol, 7(6), 948-953.
- [14] Hachica, M.,R., Hadj, N.,B. (2012). Finite Element Method For Induction Machine Parameters Identification. IEEE First International Conference on Renewable Energies and Vehicular Technology.
- [15] Ida, N., & Bastos, J. (1997). Electromagnetics and Calculation of Fields (2da ed.). New York, USA: Spring-Verlag.
- [16] IEEE 112. (2004). Standard Test Procedure for Polyphase Induction Motors and Generators.
- [17] Londoño Parra, C. M., & Ramírez Echavarría, J. L. (enero-junio de 2013). Normas de Eficiencia Energética de. Tecnológicas(30), 117-147.
- **[18]** Mawdsey's, Ldt. (1964). The Student Demostration Set. Manual.
- [19] Melcescu, L., Tudorache, T., Popescu, M.(2013). Finite Element Analysis of a Three Speed Induction Machine. International Conference on Renewable energies and Power Quality (ICREPQ13).

- [20] Min, S., & Hong, J. (Mayo de 2013). Optimal Shape Design of Rotor Slot in Squirrel-Cage Induction Motor Considering Torque Characteristics. IEEE Transactions on Magnetics, 5(49), 2197-2200.
- [21] Ong, C.-M. (1998). Dynamic Simulation of Electric Machinery. New Jersey: Prentice Hall.
- [22] Palma, M. (2016), Análisis del Motor de Inducción Utilizando Elementos Finitos". Tesis Maestro en Ciencias con Mención en Sistemas de Potencia. Universidad Nacional de Ingenieria.
- [23] Palma,M. and J. E. Luyo,(2016) Modeling of induction motor including the saturation effect using the finite element method, IEEE ANDESCON, 2016, pp. 1-4.
- [24] Palma, M., F. V. Cáceres Cárdenas, J. L. Kuong and E. C. Quispe, "Transient Analysis of Induction Motors Considering the Saturation Effect Applying the Finite Element Method," 2018 IEEE ANDESCON, Santiago de Cali, 2018, pp. 1-6.
- [25] Quispe O., E. (2003). Una vision integral para el uso racional de la energia en la aplicacion de motores electricos de inducción. El Hombre y la Máquina., 52-59.
- [26] Said, B., & Alí, A. (november de 2012). Determination of Deep Bar Cage Rotor Induction Machine Parametres Based on Finite Element Approach. The First National Conference for Engineering Sciences FNCES'12.
- [27] Salon, S. (1995). Finite Element Analysis of Electric Machines (1era ed.). New York, USA: Kluwer Academic Publishers.
- [28] Şen Kurt, M., & Fenercioğlu, A. (2018). Rotor Slot Distance Effects on Output Parameters in Single Phase Induction Motors. Hittite Journal of Science and Engineering, 31-35.
- [29] Sen, P. C. (1997). Principles of Electric Machines and Power Electronics (Second Edition ed.). Kingston, Ontario, Canada: John Wiley & Sons Inc.
- [30] Stermecki, A., Biro, O., Preis, K., Rainer, S., Krischan, K., & Ofner, G. (2008). Calculation of load-dependent equivalent circuit parameters of squirrel cage induction motors using time-harmonic FEM. IEEE 2008 18th International Conference on Electrical Machines.
- [31] Tahir Güneşer, M., Dalcalı, A., Özturk, T., & Ocak, C. (2019). Influence of Rotor Slot Structure at Starting Torque and Efficiency on Urban Use EV Motor.IEEE PGSRET..
- [32] Tudorache, T., & Melcescu, L. (2009). FEM Optimal Desing of Energy Efficient Induction Machines. AECE, 9(2).
- [33] Wang, X., & Xie, D. (24 de February de 2009). Analysis of Induction Motor Using Field-Circuit Coupled Time-Periodic Finite Element Method Taking Account of Hysteresis. IEEE Transactions on Magnetics, 45(3).
- [34] Yetgin, A.,G.,Turan, M.(2015). Effects of Rotor Slot Area on Squirrel Cage induction Motor Performnce. IJISET, Vo.3. Issue 11. Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA).

ANEXO I

Resultados del análisis paramétrico de la ranura del rotor con los valores de las características para las funciones objetivos: Eficiencia, Par y Corriente.

Formulación de la Funciones optimización Multiobjetivo

						Locked
						Phase
				Efficiency	Locked Rotor Torque	Curren
solucion	VBS1	VBS2	VHS2	Parameter	Parameter	tParameter
1	3mm	3mm	3mm	75.6346	8.11683NewtonMeter	16.8292A
2	3mm	3mm	4mm	76.6877	7.34614NewtonMeter	17.1306A
3	3mm	3mm	5mm	77.3731	6.7408NewtonMeter	17.2772A
4	3mm	3mm	6mm	77.854	6.25787NewtonMeter	17.323A
5	3mm	3mm	7mm	78.2104	5.88628NewtonMeter	17.3247A
6	3mm	3mm	8mm	78.4788	5.59417NewtonMeter	17.2873A
7	3mm	3mm	9mm	78.6913	5.36436NewtonMeter	17.2193A
8	3mm	3mm	10mm	78.8603	5.19928NewtonMeter	17.1513A
9	3mm	3mm	11mm	78.9987	5.08181NewtonMeter	17.077A
10	3mm	3mm	12mm	79.1134	5.00521NewtonMeter	17.0024A
11	3mm	3mm	13mm	79.2068	4.96218NewtonMeter	16.9302A
12	3mm	3mm	14mm	79.285	4.94209NewtonMeter	16.8555A
13	3mm	3mm	15mm	79.3511	4.94515NewtonMeter	16.7904A
14	3mm	3mm	16mm	79.4081	4.97446NewtonMeter	16.7504A
15	3mm	3mm	17mm	79.4539	5.01343NewtonMeter	16.7167A
16	3mm	3mm	18mm	79.4937	5.06367NewtonMeter	16.6995A
17	3mm	3mm	19mm	79.5288	5.12623NewtonMeter	16.7063A
18	3mm	3mm	20mm	79.559	5.19315NewtonMeter	16.7285A
19	3mm	3mm	21mm	79.5852	5.26548NewtonMeter	16.7711A
20	3mm	3mm	22mm	79.6061	5.32949NewtonMeter	16.8142A
21	3mm	4mm	3mm	76.5652	7.53693NewtonMeter	17.1929A
22	3mm	4mm	4mm	77.4005	6.82125NewtonMeter	17.413A
23	3mm	4mm	5mm	77.9514	6.27245NewtonMeter	17.5058A

24	3mm	4mm	6mm	78.3388	5.83952NewtonMeter	17.511A
25	3mm	4mm	7mm	78.6281	5.51071NewtonMeter	17.4817A
26	3mm	4mm	8mm	78.8476	5.25254NewtonMeter	17.4149A
27	3mm	4mm	9mm	79.0205	5.06269NewtonMeter	17.3408A
28	3mm	4mm	10mm	79.1594	4.92766NewtonMeter	17.2629A
29	3mm	4mm	11mm	79.2713	4.83555NewtonMeter	17.181A
30	3mm	4mm	12mm	79.3626	4.77449NewtonMeter	17.0909A
31	3mm	4mm	13mm	79.4399	4.75262NewtonMeter	17.0215A
32	3mm	4mm	14mm	79.5031	4.75237NewtonMeter	16.9545A
33	3mm	4mm	15mm	79.5549	4.76727NewtonMeter	16.8904A
34	3mm	4mm	16mm	79.5976	4.79703NewtonMeter	16.8385A
35	3mm	4mm	17mm	79.6339	4.83701NewtonMeter	16.7996A
36	3mm	4mm	18mm	79.6658	4.89567NewtonMeter	16.7948A
37	3mm	4mm	19mm	79.6916	4.95828NewtonMeter	16.8042A
38	3mm	4mm	20mm	79.715	5.02647NewtonMeter	16.8344A
39	3mm	4mm	21mm	79.7344	5.09425NewtonMeter	16.8777A
40	3mm	4mm	22mm	79.75	5.15433NewtonMeter	16.9239A
41	3mm	5mm	3mm	77.217	7.07455NewtonMeter	17.4661A
42	3mm	5mm	4mm	77.9075	6.41287NewtonMeter	17.6305A
43	3mm	5mm	5mm	78.3672	5.90735NewtonMeter	17.679A
44	3mm	5mm	6mm	78.6915	5.52363NewtonMeter	17.6702A
45	3mm	5mm	7mm	78.9355	5.2294NewtonMeter	17.6233A
46	3mm	5mm	8mm	79.1213	5.00588NewtonMeter	17.5536A
47	3mm	5mm	9mm	79.2658	4.83593NewtonMeter	17.4639A
48	3mm	5mm	10mm	79.3819	4.71449NewtonMeter	17.369A
49	3mm	5mm	11mm	79.4759	4.6417NewtonMeter	17.2888A
50	3mm	5mm	12mm	79.554	4.59899NewtonMeter	17.2057A
51	3mm	5mm	13mm	79.616	4.57944NewtonMeter	17.1206A
52	3mm	5mm	14mm	79.6665	4.58333NewtonMeter	17.0467A

53	3mm	5mm	15mm	79.7109	4.61055NewtonMeter	16.9946A
		-	_			
54	3mm	5mm	16mm	79.7449	4.64665NewtonMeter	16.9478A
55	3mm	5mm	17mm	79.7751	4.69243NewtonMeter	16.9161A
56	3mm	5mm	18mm	79.8024	4.75737NewtonMeter	16.9223A
57	3mm	5mm	19mm	79.8236	4.82408NewtonMeter	16.9407A
58	3mm	5mm	20mm	79.8425	4.89215NewtonMeter	16.9741A
59	3mm	5mm	21mm	79.8565	4.95744NewtonMeter	17.0176A
60	3mm	5mm	22mm	79.8692	5.01787NewtonMeter	17.0689A
61	3mm	6mm	3mm	77.7021	6.70823NewtonMeter	17.6917A
62	3mm	6mm	4mm	78.2879	6.0868NewtonMeter	17.8047A
63	3mm	6mm	5mm	78.6823	5.62473NewtonMeter	17.8307A
64	3mm	6mm	6mm	78.9617	5.27569NewtonMeter	17.8065A
65	3mm	6mm	7mm	79.1709	5.01105NewtonMeter	17.7524A
66	3mm	6mm	8mm	79.3299	4.80634NewtonMeter	17.6695A
67	3mm	6mm	9mm	79.4533	4.64863NewtonMeter	17.5645A
68	3mm	6mm	10mm	79.5561	4.55777NewtonMeter	17.4972A
69	3mm	6mm	11mm	79.6365	4.49111NewtonMeter	17.4067A
70	3mm	6mm	12mm	79.7012	4.45488NewtonMeter	17.3193A
71	3mm	6mm	13mm	79.7561	4.45119NewtonMeter	17.2522A
72	3mm	6mm	14mm	79.8006	4.46336NewtonMeter	17.1855A
73	3mm	6mm	15mm	79.8379	4.49917NewtonMeter	17.1444A
74	3mm	6mm	16mm	79.8683	4.54038NewtonMeter	17.1039A
75	3mm	6mm	17mm	79.8929	4.59038NewtonMeter	17.0783A
76	3mm	6mm	18mm	79.9145	4.65261NewtonMeter	17.0802A
77	3mm	6mm	19mm	79.9333	4.72413NewtonMeter	17.1083A
78	3mm	6mm	20mm	79.9516	4.81572NewtonMeter	17.1847A
79	3mm	6mm	21mm	79.9668	4.90069NewtonMeter	17.2637A
80	3mm	6mm	22mm	79.9794	4.98718NewtonMeter	17.3608A
81	4mm	3mm	3mm	76.4706	7.74007NewtonMeter	17.2803A

82	4mm	3mm	4mm	77.3569	7.02849NewtonMeter	17.5761A
83	4mm	3mm	5mm	77.9379	6.47604NewtonMeter	17.7279A
84	4mm	3mm	6mm	78.347	6.03693NewtonMeter	17.7857A
85	4mm	3mm	7mm	78.6502	5.70082NewtonMeter	17.8066A
86	4mm	3mm	8mm	78.8819	5.43326NewtonMeter	17.7881A
87	4mm	3mm	9mm	79.0653	5.2317NewtonMeter	17.7595A
88	4mm	3mm	10mm	79.2137	5.08204NewtonMeter	17.7231A
89	4mm	3mm	11mm	79.3343	4.97257NewtonMeter	17.6777A
90	4mm	3mm	12mm	79.434	4.89175NewtonMeter	17.6181A
91	4mm	3mm	13mm	79.5181	4.84965NewtonMeter	17.5746A
92	4mm	3mm	14mm	79.5888	4.8298NewtonMeter	17.5294A
93	4mm	3mm	15mm	79.6477	4.82549NewtonMeter	17.4805A
94	4mm	3mm	16mm	79.699	4.83861NewtonMeter	17.4405A
95	4mm	3mm	17mm	79.743	4.87086NewtonMeter	17.4204A
96	4mm	3mm	18mm	79.7822	4.91376NewtonMeter	17.4122A
97	4mm	3mm	19mm	79.8157	4.96996NewtonMeter	17.4262A
98	4mm	3mm	20mm	79.8462	5.03979NewtonMeter	17.4673A
99	4mm	3mm	21mm	79.8721	5.10202NewtonMeter	17.5029A
100	4mm	3mm	22mm	79.8931	5.16187NewtonMeter	17.5447A
101	4mm	4mm	3mm	77.1538	7.25396NewtonMeter	17.5663A
102	4mm	4mm	4mm	77.879	6.57979NewtonMeter	17.7751A
103	4mm	4mm	5mm	78.3597	6.07509NewtonMeter	17.8772A
104	4mm	4mm	6mm	78.7028	5.68917NewtonMeter	17.9146A
105	4mm	4mm	7mm	78.9576	5.39228NewtonMeter	17.9125A
106	4mm	4mm	8mm	79.1529	5.16463NewtonMeter	17.8856A
107	4mm	4mm	9mm	79.3073	4.98913NewtonMeter	17.8371A
108	4mm	4mm	10mm	79.4297	4.86007NewtonMeter	17.7801A
109	4mm	4mm	11mm	79.531	4.778NewtonMeter	17.7343A
110	4mm	4mm	12mm	79.6157	4.72499NewtonMeter	17.682A

111	4mm	4mm	13mm	79.6858	4.69292NewtonMeter	17.621A
112	4mm	4mm	14mm	79.7432	4.68415NewtonMeter	17.5667A
113	4mm	4mm	15mm	79.7932	4.70012NewtonMeter	17.532A
114	4mm	4mm	16mm	79.8354	4.72423NewtonMeter	17.4954A
115	4mm	4mm	17mm	79.8712	4.76636NewtonMeter	17.483A
116	4mm	4mm	18mm	79.9023	4.81784NewtonMeter	17.4854A
117	4mm	4mm	19mm	79.9301	4.88059NewtonMeter	17.5114A
118	4mm	4mm	20mm	79.955	4.94683NewtonMeter	17.551A
119	4mm	4mm	21mm	79.9762	5.02248NewtonMeter	17.6173A
120	4mm	4mm	22mm	79.9945	5.08388NewtonMeter	17.6714A
121	4mm	5mm	3mm	77.656	6.85517NewtonMeter	17.7815A
122	4mm	5mm	4mm	78.27	6.23177NewtonMeter	17.9427A
123	4mm	5mm	5mm	78.6808	5.7698NewtonMeter	18.0124A
124	4mm	5mm	6mm	78.9742	5.42093NewtonMeter	18.0287A
125	4mm	5mm	7mm	79.1928	5.15558NewtonMeter	18.0124A
126	4mm	5mm	8mm	79.3604	4.94944NewtonMeter	17.9662A
127	4mm	5mm	9mm	79.4906	4.79047NewtonMeter	17.8985A
128	4mm	5mm	10mm	79.5986	4.69492NewtonMeter	17.8621A
129	4mm	5mm	11mm	79.6863	4.62191NewtonMeter	17.799A
130	4mm	5mm	12mm	79.7571	4.57976NewtonMeter	17.7387A
131	4mm	5mm	13mm	79.8181	4.57081NewtonMeter	17.6981A
132	4mm	5mm	14mm	79.867	4.57458NewtonMeter	17.6494A
133	4mm	5mm	15mm	79.9104	4.60289NewtonMeter	17.6248A
134	4mm	5mm	16mm	79.9454	4.63668NewtonMeter	17.5974A
135	4mm	5mm	17mm	79.9756	4.67974NewtonMeter	17.5819A
136	4mm	5mm	18mm	80.0034	4.74669NewtonMeter	17.6113A
137	4mm	5mm	19mm	80.0274	4.81249NewtonMeter	17.6444A
138	4mm	5mm	20mm	80.0473	4.88143NewtonMeter	17.6926A
139	4mm	5mm	21mm	80.0652	4.94769NewtonMeter	17.7482A

140	4mm	5mm	22mm	80.0796	5.01013NewtonMeter	17.8107A
141	4mm	6mm	3mm	78.041	6.52371NewtonMeter	17.9493A
142	4mm	6mm	4mm	78.5749	5.95088NewtonMeter	18.0827A
143	4mm	6mm	5mm	78.9315	5.52158NewtonMeter	18.1228A
144	4mm	6mm	6mm	79.1881	5.21005NewtonMeter	18.1358A
145	4mm	6mm	7mm	79.3779	4.96617NewtonMeter	18.1036A
146	4mm	6mm	8mm	79.5259	4.78227NewtonMeter	18.0532A
147	4mm	6mm	9mm	79.6418	4.65174NewtonMeter	18.0019A
148	4mm	6mm	10mm	79.7348	4.55918NewtonMeter	17.9421A
149	4mm	6mm	11mm	79.8116	4.50792NewtonMeter	17.8968A
150	4mm	6mm	12mm	79.8732	4.47798NewtonMeter	17.8408A
151	4mm	6mm	13mm	79.9269	4.47989NewtonMeter	17.8067A
152	4mm	6mm	14mm	79.9696	4.49384NewtonMeter	17.7664A
153	4mm	6mm	15mm	80.0073	4.52356NewtonMeter	17.737A
154	4mm	6mm	16mm	80.0404	4.57403NewtonMeter	17.7363A
155	4mm	6mm	17mm	80.0658	4.6245NewtonMeter	17.7321A
156	4mm	6mm	18mm	80.0894	4.69083NewtonMeter	17.7603A
157	4mm	6mm	19mm	80.1117	4.77169NewtonMeter	17.8224A
158	4mm	6mm	20mm	80.1321	4.86716NewtonMeter	17.921A
159	4mm	6mm	21mm	80.1491	4.95651NewtonMeter	18.0206A
160	4mm	6mm	22mm	80.1641	5.05017NewtonMeter	18.1411A
161	5mm	3mm	3mm	77.0804	7.40939NewtonMeter	17.6307A
162	5mm	3mm	4mm	77.8421	6.72356NewtonMeter	17.884A
163	5mm	3mm	5mm	78.3466	6.21188NewtonMeter	18.0272A
164	5mm	3mm	6mm	78.7024	5.81908NewtonMeter	18.1022A
165	5mm	3mm	7mm	78.9684	5.51399NewtonMeter	18.1353A
166	5mm	3mm	8mm	79.1713	5.27608NewtonMeter	18.1412A
167	5mm	3mm	9mm	79.3333	5.08818NewtonMeter	18.1235A
168	5mm	3mm	10mm	79.4625	4.9441NewtonMeter	18.0942A

169	5mm	3mm	11mm	79.5693	4.84506NewtonMeter	18.0732A
170	5mm	3mm	12mm	79.6591	4.77384NewtonMeter	18.0432A
171	5mm	3mm	13mm	79.7334	4.72362NewtonMeter	18.0023A
172	5mm	3mm	14mm	79.7972	4.69648NewtonMeter	17.9641A
173	5mm	3mm	15mm	79.8516	4.6944NewtonMeter	17.941A
174	5mm	3mm	16mm	79.8963	4.70203NewtonMeter	17.9124A
175	5mm	3mm	17mm	79.9386	4.72844NewtonMeter	17.9023A
176	5mm	3mm	18mm	79.9732	4.76634NewtonMeter	17.9035A
177	5mm	3mm	19mm	80.0058	4.81724NewtonMeter	17.924A
178	5mm	3mm	20mm	80.0354	4.88613NewtonMeter	17.9773A
179	5mm	3mm	21mm	80.0602	4.94698NewtonMeter	18.0199A
180	5mm	3mm	22mm	80.0825	5.00646NewtonMeter	18.067A
181	5mm	4mm	3mm	77.6024	6.97599NewtonMeter	17.8343A
182	5mm	4mm	4mm	78.2454	6.35337NewtonMeter	18.0467A
183	5mm	4mm	5mm	78.6732	5.88639NewtonMeter	18.1524A
184	5mm	4mm	6mm	78.9775	5.53273NewtonMeter	18.202A
185	5mm	4mm	7mm	79.2048	5.26158NewtonMeter	18.2167A
186	5mm	4mm	8mm	79.3785	5.048NewtonMeter	18.1994A
187	5mm	4mm	9mm	79.5161	4.8799NewtonMeter	18.1588A
188	5mm	4mm	10mm	79.6288	4.7736NewtonMeter	18.1472A
189	5mm	4mm	11mm	79.7212	4.68765NewtonMeter	18.1052A
190	5mm	4mm	12mm	79.796	4.63128NewtonMeter	18.0628A
191	5mm	4mm	13mm	79.8609	4.60609NewtonMeter	18.0343A
192	5mm	4mm	14mm	79.9153	4.59641NewtonMeter	17.9996A
193	5mm	4mm	15mm	79.9614	4.61202NewtonMeter	17.9864A
194	5mm	4mm	16mm	80.001	4.6337NewtonMeter	17.9659A
195	5mm	4mm	17mm	80.036	4.66602NewtonMeter	17.9542A
196	5mm	4mm	18mm	80.0666	4.72345NewtonMeter	17.9844A
197	5mm	4mm	19mm	80.094	4.78157NewtonMeter	18.0159A

198	5mm	4mm	20mm	80.1181	4.84454NewtonMeter	18.0604A
199	5mm	4mm	21mm	80.1381	4.90765NewtonMeter	18.1127A
200	5mm	4mm	22mm	80.1577	4.97545NewtonMeter	18.1831A
201	5mm	5mm	3mm	78.0011	6.63405NewtonMeter	18.0113A
202	5mm	5mm	4mm	78.5544	6.05571NewtonMeter	18.1806A
203	5mm	5mm	5mm	78.926	5.6231NewtonMeter	18.2526A
204	5mm	5mm	6mm	79.1932	5.30786NewtonMeter	18.2938A
205	5mm	5mm	7mm	79.3895	5.05944NewtonMeter	18.2876A
206	5mm	5mm	8mm	79.5425	4.87022NewtonMeter	18.2621A
207	5mm	5mm	9mm	79.6644	4.73315NewtonMeter	18.2341A
208	5mm	5mm	10mm	79.7621	4.63242NewtonMeter	18.1952A
209	5mm	5mm	11mm	79.8425	4.57109NewtonMeter	18.1671A
210	5mm	5mm	12mm	79.9081	4.53141NewtonMeter	18.1285A
211	5mm	5mm	13mm	79.9661	4.52175NewtonMeter	18.1066A
212	5mm	5mm	14mm	80.0129	4.52492NewtonMeter	18.0776A
213	5mm	5mm	15mm	80.0534	4.54344NewtonMeter	18.0553A
214	5mm	5mm	16mm	80.0888	4.5833NewtonMeter	18.0592A
215	5mm	5mm	17mm	80.1176	4.62364NewtonMeter	18.0561A
216	5mm	5mm	18mm	80.1439	4.67832NewtonMeter	18.0785A
217	5mm	5mm	19mm	80.1678	4.74195NewtonMeter	18.1208A
218	5mm	5mm	20mm	80.1896	4.81722NewtonMeter	18.1914A
219	5mm	5mm	21mm	80.2083	4.88622NewtonMeter	18.2596A
220	5mm	5mm	22mm	80.2254	4.95795NewtonMeter	18.3438A
221	5mm	6mm	3mm	78.3146	6.34342NewtonMeter	18.1479A
222	5mm	6mm	4mm	78.8012	5.81076NewtonMeter	18.2929A
223	5mm	6mm	5mm	79.1311	5.4195NewtonMeter	18.3583A
224	5mm	6mm	6mm	79.3667	5.12825NewtonMeter	18.3821A
225	5mm	6mm	7mm	79.5408	4.89986NewtonMeter	18.3626A
226	5mm	6mm	8mm	79.6781	4.73838NewtonMeter	18.3477A

227	5mm	6mm	9mm	79.7843	4.61145NewtonMeter	18.3048A
228	5mm	6mm	10mm	79.8723	4.5319NewtonMeter	18.2781A
229	5mm	6mm	11mm	79.9433	4.47844NewtonMeter	18.2414A
230	5mm	6mm	12mm	80.0036	4.45795NewtonMeter	18.2207A
231	5mm	6mm	13mm	80.0533	4.45301NewtonMeter	18.1919A
232	5mm	6mm	14mm	80.0962	4.47493NewtonMeter	18.1873A
233	5mm	6mm	15mm	80.1329	4.50377NewtonMeter	18.1758A
234	5mm	6mm	16mm	80.1629	4.54899NewtonMeter	18.1839A
235	5mm	6mm	17mm	80.1905	4.61284NewtonMeter	18.2225A
236	5mm	6mm	18mm	80.2159	4.68624NewtonMeter	18.2792A
237	5mm	6mm	19mm	80.2385	4.76971NewtonMeter	18.3593A
238	5mm	6mm	20mm	80.2588	4.8604NewtonMeter	18.4604A
239	5mm	6mm	21mm	80.2766	4.95577NewtonMeter	18.5799A
240	5mm	6mm	22mm	80.294	5.07368NewtonMeter	18.7515A
241	6mm	3mm	3mm	77.5431	7.09526NewtonMeter	17.8792A
242	6mm	3mm	4mm	78.2132	6.457NewtonMeter	18.1199A
243	6mm	3mm	5mm	78.6591	5.98793NewtonMeter	18.2638A
244	6mm	3mm	6mm	78.9741	5.62769NewtonMeter	18.3418A
245	6mm	3mm	7mm	79.2102	5.34928NewtonMeter	18.3831A
246	6mm	3mm	8mm	79.3902	5.12693NewtonMeter	18.3907A
247	6mm	3mm	9mm	79.5328	4.94838NewtonMeter	18.3735A
248	6mm	3mm	10mm	79.6511	4.82974NewtonMeter	18.3834A
249	6mm	3mm	11mm	79.7459	4.7295NewtonMeter	18.3606A
250	6mm	3mm	12mm	79.8259	4.65733NewtonMeter	18.3347A
251	6mm	3mm	13mm	79.8929	4.61514NewtonMeter	18.3196A
252	6mm	3mm	14mm	79.9509	4.588NewtonMeter	18.2952A
253	6mm	3mm	15mm	80.0009	4.58639NewtonMeter	18.2893A
254	6mm	3mm	16mm	80.0438	4.59173NewtonMeter	18.2728A
255	6mm	3mm	17mm	80.0807	4.60923NewtonMeter	18.2621A

256	6mm	3mm	18mm	80.1148	4.65396NewtonMeter	18.292A
257	6mm	3mm	19mm	80.1447	4.70162NewtonMeter	18.3204A
258	6mm	3mm	20mm	80.1715	4.75668NewtonMeter	18.3603A
259	6mm	3mm	21mm	80.1951	4.81446NewtonMeter	18.4066A
260	6mm	3mm	22mm	80.2173	4.87935NewtonMeter	18.4704A
261	6mm	4mm	3mm	77.9551	6.72999NewtonMeter	18.0504A
262	6mm	4mm	4mm	78.5333	6.14868NewtonMeter	18.2582A
263	6mm	4mm	5mm	78.9176	5.71025NewtonMeter	18.3578A
264	6mm	4mm	6mm	79.193	5.38984NewtonMeter	18.4243A
265	6mm	4mm	7mm	79.3967	5.13544NewtonMeter	18.4416A
266	6mm	4mm	8mm	79.5548	4.93892NewtonMeter	18.438A
267	6mm	4mm	9mm	79.6806	4.79323NewtonMeter	18.4305A
268	6mm	4mm	10mm	79.7818	4.68331NewtonMeter	18.4123A
269	6mm	4mm	11mm	79.8666	4.61022NewtonMeter	18.4007A
270	6mm	4mm	12mm	79.9369	4.55678NewtonMeter	18.3745A
271	6mm	4mm	13mm	79.9957	4.53288NewtonMeter	18.363A
272	6mm	4mm	14mm	80.0459	4.52146NewtonMeter	18.3411A
273	6mm	4mm	15mm	80.0885	4.5269NewtonMeter	18.3255A
274	6mm	4mm	16mm	80.1273	4.55394NewtonMeter	18.3325A
275	6mm	4mm	17mm	80.1584	4.58273NewtonMeter	18.3295A
276	6mm	4mm	18mm	80.1872	4.62757NewtonMeter	18.3503A
277	6mm	4mm	19mm	80.2149	4.69095NewtonMeter	18.4042A
278	6mm	4mm	20mm	80.2367	4.75188NewtonMeter	18.4547A
279	6mm	4mm	21mm	80.2578	4.81399NewtonMeter	18.5122A
280	6mm	4mm	22mm	80.2757	4.87506NewtonMeter	18.575A
281	6mm	5mm	3mm	78.2806	6.43063NewtonMeter	18.1936A
282	6mm	5mm	4mm	78.7843	5.89095NewtonMeter	18.366A
283	6mm	5mm	5mm	79.1245	5.49507NewtonMeter	18.4556A
284	6mm	5mm	6mm	79.3677	5.19966NewtonMeter	18.5015A

285	6mm	5mm	7mm	79.5473	4.9658NewtonMeter	18.5015A
286	6mm	5mm	8mm	79.6882	4.79849NewtonMeter	18.5056A
287	6mm	5mm	9mm	79.7997	4.66443NewtonMeter	18.4802A
288	6mm	5mm	10mm	79.8908	4.57759NewtonMeter	18.4716A
289	6mm	5mm	11mm	79.9652	4.51415NewtonMeter	18.4482A
290	6mm	5mm	12mm	80.0276	4.4823NewtonMeter	18.4378A
291	6mm	5mm	13mm	80.0797	4.46509NewtonMeter	18.4163A
292	6mm	5mm	14mm	80.1247	4.47563NewtonMeter	18.4189A
293	6mm	5mm	15mm	80.164	4.49193NewtonMeter	18.4091A
294	6mm	5mm	16mm	80.196	4.52046NewtonMeter	18.4073A
295	6mm	5mm	17mm	80.2256	4.56499NewtonMeter	18.4272A
296	6mm	5mm	18mm	80.2509	4.62274NewtonMeter	18.4688A
297	6mm	5mm	19mm	80.2757	4.6912NewtonMeter	18.5314A
298	6mm	5mm	20mm	80.2969	4.76566NewtonMeter	18.6094A
299	6mm	5mm	21mm	80.3154	4.84214NewtonMeter	18.6979A
300	6mm	5mm	22mm	80.3331	4.92324NewtonMeter	18.8037A
301	6mm	6mm	3mm	78.5426	6.18705NewtonMeter	18.3249A
302	6mm	6mm	4mm	78.9917	5.68178NewtonMeter	18.4669A
303	6mm	6mm	5mm	79.2947	5.31785NewtonMeter	18.5436A
304	6mm	6mm	6mm	79.5113	5.04307NewtonMeter	18.5724A
305	6mm	6mm	7mm	79.6756	4.84275NewtonMeter	18.5895A
306	6mm	6mm	8mm	79.8	4.68231NewtonMeter	18.5697A
307	6mm	6mm	9mm	79.9006	4.57008NewtonMeter	18.5548A
308	6mm	6mm	10mm	79.9818	4.49203NewtonMeter	18.5364A
309	6mm	6mm	11mm	80.0497	4.44987NewtonMeter	18.5323A
310	6mm	6mm	12mm	80.1062	4.42554NewtonMeter	18.5171A
311	6mm	6mm	13mm	80.1545	4.43404NewtonMeter	18.5312A
312	6mm	6mm	14mm	80.1947	4.45172NewtonMeter	18.5346A
313	6mm	6mm	15mm	80.2299	4.48519NewtonMeter	18.5487A

314	6mm	6mm	16mm	80.2609	4.53945NewtonMeter	18.5906A
315	6mm	6mm	17mm	80.2882	4.59702NewtonMeter	18.6311A
316	6mm	6mm	18mm	80.3126	4.67263NewtonMeter	18.7048A
317	6mm	6mm	19mm	80.335	4.75965NewtonMeter	18.8025A
318	6mm	6mm	20mm	80.3582	4.88967NewtonMeter	18.9874A
319	6mm	6mm	21mm	80.3804	5.04743NewtonMeter	19.2298A
320	6mm	6mm	22mm	80.3995	5.2247NewtonMeter	19.5141A
321	7mm	3mm	3mm	77.9076	6.82186NewtonMeter	18.0789A
322	7mm	3mm	4mm	78.509	6.23485NewtonMeter	18.3208A
323	7mm	3mm	5mm	78.9051	5.78953NewtonMeter	18.4448A
324	7mm	3mm	6mm	79.1897	5.45858NewtonMeter	18.5257A
325	7mm	3mm	7mm	79.4007	5.20426NewtonMeter	18.5744A
326	7mm	3mm	8mm	79.5617	4.99591NewtonMeter	18.582A
327	7mm	3mm	9mm	79.6925	4.84652NewtonMeter	18.602A
328	7mm	3mm	10mm	79.7974	4.72526NewtonMeter	18.5986A
329	7mm	3mm	11mm	79.8855	4.64045NewtonMeter	18.6025A
330	7mm	3mm	12mm	79.9579	4.57465NewtonMeter	18.5912A
331	7mm	3mm	13mm	80.0191	4.53714NewtonMeter	18.5922A
332	7mm	3mm	14mm	80.0727	4.51154NewtonMeter	18.5802A
333	7mm	3mm	15mm	80.1184	4.51029NewtonMeter	18.5871A
334	7mm	3mm	16mm	80.1576	4.51413NewtonMeter	18.5802A
335	7mm	3mm	17mm	80.1917	4.5295NewtonMeter	18.5781A
336	7mm	3mm	18mm	80.2225	4.56251NewtonMeter	18.598A
337	7mm	3mm	19mm	80.252	4.61557NewtonMeter	18.6492A
338	7mm	3mm	20mm	80.2764	4.66824NewtonMeter	18.695A
339	7mm	3mm	21mm	80.2997	4.72417NewtonMeter	18.7464A
340	7mm	3mm	22mm	80.3185	4.7811NewtonMeter	18.8018A
341	7mm	4mm	3mm	78.2421	6.509NewtonMeter	18.2233A
342	7mm	4mm	4mm	78.7654	5.96068NewtonMeter	18.4199A

343	7mm	4mm	5mm	79.1172	5.56475NewtonMeter	18.5401A
344	7mm	4mm	6mm	79.3662	5.26442NewtonMeter	18.6062A
345	7mm	4mm	7mm	79.5528	5.02505NewtonMeter	18.6247A
346	7mm	4mm	8mm	79.6986	4.8516NewtonMeter	18.6467A
347	7mm	4mm	9mm	79.8117	4.71006NewtonMeter	18.6379A
348	7mm	4mm	10mm	79.9057	4.61429NewtonMeter	18.6443A
349	7mm	4mm	11mm	79.9822	4.54054NewtonMeter	18.634A
350	7mm	4mm	12mm	80.0477	4.49728NewtonMeter	18.635A
351	7mm	4mm	13mm	80.1023	4.46782NewtonMeter	18.6225A
352	7mm	4mm	14mm	80.1499	4.46572NewtonMeter	18.6318A
353	7mm	4mm	15mm	80.1901	4.46942NewtonMeter	18.626A
354	7mm	4mm	16mm	80.2246	4.48586NewtonMeter	18.6256A
355	7mm	4mm	17mm	80.2551	4.51919NewtonMeter	18.6447A
356	7mm	4mm	18mm	80.2832	4.56327NewtonMeter	18.6762A
357	7mm	4mm	19mm	80.3082	4.61971NewtonMeter	18.7276A
358	7mm	4mm	20mm	80.3312	4.68483NewtonMeter	18.7952A
359	7mm	4mm	21mm	80.3512	4.75277NewtonMeter	18.8708A
360	7mm	4mm	22mm	80.3687	4.8258NewtonMeter	18.961A
361	7mm	5mm	3mm	78.5129	6.25949NewtonMeter	18.3613A
362	7mm	5mm	4mm	78.9762	5.74127NewtonMeter	18.5166A
363	7mm	5mm	5mm	79.2885	5.37836NewtonMeter	18.622A
364	7mm	5mm	6mm	79.512	5.09934NewtonMeter	18.6686A
365	7mm	5mm	7mm	79.6797	4.8944NewtonMeter	18.7021A
366	7mm	5mm	8mm	79.8084	4.72833NewtonMeter	18.6975A
367	7mm	5mm	9mm	79.9117	4.60945NewtonMeter	18.6967A
368	7mm	5mm	10mm	79.9952	4.52334NewtonMeter	18.6906A
369	7mm	5mm	11mm	80.0655	4.47131NewtonMeter	18.6957A
370	7mm	5mm	12mm	80.1231	4.43567NewtonMeter	18.6869A
371	7mm	5mm	13mm	80.1738	4.43043NewtonMeter	18.7018A

372	7mm	5mm	14mm	80.2164	4.43426NewtonMeter	18.7043A
373	7mm	5mm	15mm	80.2533	4.46156NewtonMeter	18.7308A
374	7mm	5mm	16mm	80.285	4.49395NewtonMeter	18.7502A
375	7mm	5mm	17mm	80.3127	4.5368NewtonMeter	18.7793A
376	7mm	5mm	18mm	80.3384	4.59693NewtonMeter	18.8368A
377	7mm	5mm	19mm	80.3611	4.66755NewtonMeter	18.9133A
378	7mm	5mm	20mm	80.3834	4.74962NewtonMeter	19.0138A
379	7mm	5mm	21mm	80.4021	4.83569NewtonMeter	19.1263A
380	7mm	5mm	22mm	80.4183	4.91761NewtonMeter	19.2373A
381	7mm	6mm	3mm	78.7341	6.03604NewtonMeter	18.4623A
382	7mm	6mm	4mm	79.1512	5.56651NewtonMeter	18.6173A
383	7mm	6mm	5mm	79.4316	5.22656NewtonMeter	18.703A
384	7mm	6mm	6mm	79.6334	4.973NewtonMeter	18.7473A
385	7mm	6mm	7mm	79.7855	4.78208NewtonMeter	18.7676A
386	7mm	6mm	8mm	79.9033	4.642NewtonMeter	18.7795A
387	7mm	6mm	9mm	79.9965	4.53542NewtonMeter	18.7742A
388	7mm	6mm	10mm	80.074	4.47466NewtonMeter	18.7944A
389	7mm	6mm	11mm	80.1389	4.44271NewtonMeter	18.819A
390	7mm	6mm	12mm	80.1921	4.42447NewtonMeter	18.8271A
391	7mm	6mm	13mm	80.2378	4.42614NewtonMeter	18.8398A
392	7mm	6mm	14mm	80.2781	4.45388NewtonMeter	18.8776A
393	7mm	6mm	15mm	80.3114	4.48969NewtonMeter	18.9102A
394	7mm	6mm	16mm	80.3409	4.53898NewtonMeter	18.9552A
395	7mm	6mm	17mm	80.3675	4.61156NewtonMeter	19.0379A
396	7mm	6mm	18mm	80.397	4.7478NewtonMeter	19.2426A
397	7mm	6mm	19mm	80.4221	4.88534NewtonMeter	19.4464A
398	7mm	6mm	20mm	80.4439	5.04181NewtonMeter	19.6868A
399	7mm	6mm	21mm	80.463	5.23508NewtonMeter	19.9988A
400	7mm	6mm	22mm	80.4792	5.51328NewtonMeter	20.4688A

401	8mm	3mm	3mm	78.204	6.59194NewtonMeter	18.255A
402	8mm	3mm	4mm	78.7448	6.03437NewtonMeter	18.4755A
403	8mm	3mm	5mm	79.1062	5.63256NewtonMeter	18.6162A
404	8mm	3mm	6mm	79.3634	5.32749NewtonMeter	18.7013A
405	8mm	3mm	7mm	79.5551	5.08407NewtonMeter	18.7391A
406	8mm	3mm	8mm	79.7038	4.90447NewtonMeter	18.7769A
407	8mm	3mm	9mm	79.8213	4.75562NewtonMeter	18.7828A
408	8mm	3mm	10mm	79.9183	4.65188NewtonMeter	18.804A
409	8mm	3mm	11mm	79.9975	4.56895NewtonMeter	18.8075A
410	8mm	3mm	12mm	80.0651	4.5157NewtonMeter	18.8216A
411	8mm	3mm	13mm	80.1211	4.4753NewtonMeter	18.8206A
412	8mm	3mm	14mm	80.1711	4.4604NewtonMeter	18.8371A
413	8mm	3mm	15mm	80.2116	4.45162NewtonMeter	18.8373A
414	8mm	3mm	16mm	80.2488	4.45574NewtonMeter	18.8406A
415	8mm	3mm	17mm	80.2811	4.47736NewtonMeter	18.8616A
416	8mm	3mm	18mm	80.3106	4.51396NewtonMeter	18.8993A
417	8mm	3mm	19mm	80.3379	4.56145NewtonMeter	18.9496A
418	8mm	3mm	20mm	80.3616	4.61798NewtonMeter	19.0122A
419	8mm	3mm	21mm	80.3834	4.67879NewtonMeter	19.0809A
420	8mm	3mm	22mm	80.403	4.75132NewtonMeter	19.1731A
421	8mm	4mm	3mm	78.4816	6.32008NewtonMeter	18.3776A
422	8mm	4mm	4mm	78.9608	5.80612NewtonMeter	18.5717A
423	8mm	4mm	5mm	79.2815	5.43819NewtonMeter	18.6957A
424	8mm	4mm	6mm	79.5105	5.15459NewtonMeter	18.7589A
425	8mm	4mm	7mm	79.6834	4.94529NewtonMeter	18.8085A
426	8mm	4mm	8mm	79.8152	4.77405NewtonMeter	18.8191A
427	8mm	4mm	9mm	79.9216	4.64988NewtonMeter	18.8342A
428	8mm	4mm	10mm	80.008	4.55568NewtonMeter	18.8396A
429	8mm	4mm	11mm	80.0792	4.49578NewtonMeter	18.8579A

430	8mm	4mm	12mm	80.1404	4.45083NewtonMeter	18.8597A
431	8mm	4mm	13mm	80.1913	4.43692NewtonMeter	18.8865A
432	8mm	4mm	14mm	80.2366	4.42938NewtonMeter	18.8942A
433	8mm	4mm	15mm	80.2746	4.44501NewtonMeter	18.9236A
434	8mm	4mm	16mm	80.3079	4.46578NewtonMeter	18.943A
435	8mm	4mm	17mm	80.3369	4.49733NewtonMeter	18.9694A
436	8mm	4mm	18mm	80.3632	4.5468NewtonMeter	19.022A
437	8mm	4mm	19mm	80.3871	4.60727NewtonMeter	19.0906A
438	8mm	4mm	20mm	80.4108	4.68548NewtonMeter	19.1921A
439	8mm	4mm	21mm	80.4299	4.75673NewtonMeter	19.2798A
440	8mm	4mm	22mm	80.4469	4.82965NewtonMeter	19.374A
441	8mm	5mm	3mm	78.7097	6.09921NewtonMeter	18.4949A
442	8mm	5mm	4mm	79.1382	5.62301NewtonMeter	18.6691A
443	8mm	5mm	5mm	79.4275	5.27876NewtonMeter	18.7716A
444	8mm	5mm	6mm	79.6336	5.02213NewtonMeter	18.8325A
445	8mm	5mm	7mm	79.7897	4.82839NewtonMeter	18.8693A
446	8mm	5mm	8mm	79.9103	4.68335NewtonMeter	18.8941A
447	8mm	5mm	9mm	80.0064	4.57071NewtonMeter	18.9004A
448	8mm	5mm	10mm	80.0858	4.50253NewtonMeter	18.9304A
449	8mm	5mm	11mm	80.1526	4.46181NewtonMeter	18.963A
450	8mm	5mm	12mm	80.2074	4.43347NewtonMeter	18.9764A
451	8mm	5mm	13mm	80.2531	4.4239NewtonMeter	18.9918A
452	8mm	5mm	14mm	80.2949	4.43945NewtonMeter	19.0293A
453	8mm	5mm	15mm	80.3299	4.46217NewtonMeter	19.0579A
454	8mm	5mm	16mm	80.3598	4.49759NewtonMeter	19.0947A
455	8mm	5mm	17mm	80.3867	4.54378NewtonMeter	19.141A
456	8mm	5mm	18mm	80.413	4.62575NewtonMeter	19.2525A
457	8mm	5mm	19mm	80.4379	4.72958NewtonMeter	19.4034A
458	8mm	5mm	20mm	80.4596	4.8458NewtonMeter	19.5771A

459	8mm	5mm	21mm	80.4792	4.97117NewtonMeter	19.7695A
460	8mm	5mm	22mm	80.497	5.10455NewtonMeter	19.9802A
461	8mm	6mm	3mm	78.8996	5.91278NewtonMeter	18.601A
462	8mm	6mm	4mm	79.2897	5.47361NewtonMeter	18.7663A
463	8mm	6mm	5mm	79.5507	5.1526NewtonMeter	18.8561A
464	8mm	6mm	6mm	79.741	4.92596NewtonMeter	18.9296A
465	8mm	6mm	7mm	79.8822	4.74726NewtonMeter	18.9602A
466	8mm	6mm	8mm	79.9941	4.61993NewtonMeter	18.9902A
467	8mm	6mm	9mm	80.082	4.53223NewtonMeter	19.0213A
468	8mm	6mm	10mm	80.1562	4.48203NewtonMeter	19.066A
469	8mm	6mm	11mm	80.2159	4.4477NewtonMeter	19.0919A
470	8mm	6mm	12mm	80.267	4.43546NewtonMeter	19.1209A
471	8mm	6mm	13mm	80.314	4.47387NewtonMeter	19.221A
472	8mm	6mm	14mm	80.353	4.52443NewtonMeter	19.3177A
473	8mm	6mm	15mm	80.3878	4.59537NewtonMeter	19.4338A
474	8mm	6mm	16mm	80.4195	4.69196NewtonMeter	19.5852A
475	8mm	6mm	17mm	80.4469	4.81082NewtonMeter	19.7689A
476	8mm	6mm	18mm	80.474	4.98134NewtonMeter	20.0461A
477	8mm	6mm	19mm	80.4961	5.19279NewtonMeter	20.3952A
478	8mm	6mm	20mm	80.5119	5.47274NewtonMeter	20.8669A
479	8mm	6mm	21mm	80.5119	5.89051NewtonMeter	21.5808A
480	8mm	6mm	22mm	80.3763	6.93432NewtonMeter	23.3493A
481	9mm	3mm	3mm	78.4488	6.39514NewtonMeter	18.4108A
482	9mm	3mm	4mm	78.9435	5.87344NewtonMeter	18.6268A
483	9mm	3mm	5mm	79.2749	5.501NewtonMeter	18.7699A
484	9mm	3mm	6mm	79.5086	5.21406NewtonMeter	18.8508A
485	9mm	3mm	7mm	79.6852	5.00364NewtonMeter	18.9212A
486	9mm	3mm	8mm	79.8216	4.83041NewtonMeter	18.9515A
487	9mm	3mm	9mm	79.9307	4.70344NewtonMeter	18.9858A

488	9mm	3mm	10mm	80.0192	4.60546NewtonMeter	19.01A
489	9mm	3mm	11mm	80.0936	4.54122NewtonMeter	19.0472A
490	9mm	3mm	12mm	80.1556	4.49012NewtonMeter	19.0653A
491	9mm	3mm	13mm	80.2097	4.46786NewtonMeter	19.1042A
492	9mm	3mm	14mm	80.255	4.45133NewtonMeter	19.1224A
493	9mm	3mm	15mm	80.2955	4.45747NewtonMeter	19.1603A
494	9mm	3mm	16mm	80.3303	4.46875NewtonMeter	19.186A
495	9mm	3mm	17mm	80.3605	4.4911NewtonMeter	19.2166A
496	9mm	3mm	18mm	80.388	4.53224NewtonMeter	19.272A
497	9mm	3mm	19mm	80.4135	4.58909NewtonMeter	19.3495A
498	9mm	3mm	20mm	80.4367	4.65584NewtonMeter	19.44A
499	9mm	3mm	21mm	80.4577	4.72127NewtonMeter	19.5238A
500	9mm	3mm	22mm	80.4746	4.78973NewtonMeter	19.6126A
501	9mm	4mm	3mm	78.6834	6.16894NewtonMeter	18.5342A
502	9mm	4mm	4mm	79.1255	5.68784NewtonMeter	18.7314A
503	9mm	4mm	5mm	79.4229	5.34165NewtonMeter	18.8553A
504	9mm	4mm	6mm	79.6354	5.0843NewtonMeter	18.9373A
505	9mm	4mm	7mm	79.7937	4.88808NewtonMeter	18.9913A
506	9mm	4mm	8mm	79.9182	4.7395NewtonMeter	19.0315A
507	9mm	4mm	9mm	80.0159	4.62325NewtonMeter	19.054A
508	9mm	4mm	10mm	80.0978	4.55011NewtonMeter	19.0984A
509	9mm	4mm	11mm	80.1662	4.50328NewtonMeter	19.144A
510	9mm	4mm	12mm	80.2217	4.46782NewtonMeter	19.169A
511	9mm	4mm	13mm	80.2706	4.45022NewtonMeter	19.194A
512	9mm	4mm	14mm	80.3126	4.45702NewtonMeter	19.2391A
513	9mm	4mm	15mm	80.349	4.47064NewtonMeter	19.2729A
514	9mm	4mm	16mm	80.3802	4.49723NewtonMeter	19.3133A
515	9mm	4mm	17mm	80.4095	4.54828NewtonMeter	19.3889A
516	9mm	4mm	18mm	80.438	4.64361NewtonMeter	19.5439A

517	9mm	4mm	19mm	80.4622	4.73443NewtonMeter	19.6806A
518	9mm	4mm	20mm	80.4844	4.83635NewtonMeter	19.8343A
519	9mm	4mm	21mm	80.5043	4.9458NewtonMeter	20.0006A
520	9mm	4mm	22mm	80.5215	5.06098NewtonMeter	20.1781A
521	9mm	5mm	3mm	78.8799	5.97792NewtonMeter	18.6447A
522	9mm	5mm	4mm	79.2799	5.53393NewtonMeter	18.8302A
523	9mm	5mm	5mm	79.5475	5.21028NewtonMeter	18.938A
524	9mm	5mm	6mm	79.7424	4.98155NewtonMeter	19.028A
525	9mm	5mm	7mm	79.8873	4.80051NewtonMeter	19.0742A
526	9mm	5mm	8mm	80.0005	4.67006NewtonMeter	19.1185A
527	9mm	5mm	9mm	80.0914	4.57847NewtonMeter	19.1629A
528	9mm	5mm	10mm	80.1666	4.52255NewtonMeter	19.2183A
529	9mm	5mm	11mm	80.2299	4.49283NewtonMeter	19.2771A
530	9mm	5mm	12mm	80.2838	4.48847NewtonMeter	19.3467A
531	9mm	5mm	13mm	80.3304	4.51777NewtonMeter	19.4514A
532	9mm	5mm	14mm	80.3701	4.55461NewtonMeter	19.5423A
533	9mm	5mm	15mm	80.4058	4.60926NewtonMeter	19.6461A
534	9mm	5mm	16mm	80.4366	4.69511NewtonMeter	19.7951A
535	9mm	5mm	17mm	80.4647	4.78294NewtonMeter	19.9329A
536	9mm	5mm	18mm	80.4897	4.91499NewtonMeter	20.1492A
537	9mm	5mm	19mm	80.5127	5.07619NewtonMeter	20.4145A
538	9mm	5mm	20mm	80.5317	5.25528NewtonMeter	20.7082A
539	9mm	5mm	21mm	80.5437	5.48018NewtonMeter	21.0847A
540	9mm	5mm	22mm	80.5483	5.76102NewtonMeter	21.5604A
541	9mm	6mm	3mm	79.0451	5.8211NewtonMeter	18.755A
542	9mm	6mm	4mm	79.4111	5.41179NewtonMeter	18.9361A
543	9mm	6mm	5mm	79.6573	5.12308NewtonMeter	19.0591A
544	9mm	6mm	6mm	79.8366	4.91894NewtonMeter	19.1588A
545	9mm	6mm	7mm	79.9727	4.77682NewtonMeter	19.2509A

546	9mm	6mm	8mm	80.0789	4.683NewtonMeter	19.3444A
547	9mm	6mm	9mm	80.1643	4.61999NewtonMeter	19.4267A
548	9mm	6mm	10mm	80.2367	4.60785NewtonMeter	19.5543A
549	9mm	6mm	11mm	80.296	4.60905NewtonMeter	19.6608A
550	9mm	6mm	12mm	80.3486	4.66626NewtonMeter	19.8427A
551	9mm	6mm	13mm	80.3932	4.74654NewtonMeter	20.0373A
552	9mm	6mm	14mm	80.4315	4.85275NewtonMeter	20.2552A
553	9mm	6mm	15mm	80.4673	5.04222NewtonMeter	20.6156A
554	9mm	6mm	16mm	80.4923	5.25853NewtonMeter	21.004A
555	9mm	6mm	17mm	80.5084	5.5668NewtonMeter	21.547A
556	9mm	6mm	18mm	80.4752	6.17146NewtonMeter	22.6091A
557	9mm	6mm	19mm	80.2862	7.13229NewtonMeter	24.229A
558	9mm	6mm	20mm	80.0116	7.75844NewtonMeter	25.2127A
559	9mm	6mm	21mm	79.6191	8.23376NewtonMeter	25.9338A
560	9mm	6mm	22mm	79.0549	8.60823NewtonMeter	26.4987A
561	10mm	3mm	3mm	78.6601	6.26535NewtonMeter	18.6092A
562	10mm	3mm	4mm	79.1164	5.78217NewtonMeter	18.8375A
563	10mm	3mm	5mm	79.4213	5.43752NewtonMeter	18.9914A
564	10mm	3mm	6mm	79.6392	5.182NewtonMeter	19.1009A
565	10mm	3mm	7mm	79.8023	4.9948NewtonMeter	19.1949A
566	10mm	3mm	8mm	79.9302	4.85753NewtonMeter	19.2806A
567	10mm	3mm	9mm	80.0328	4.75192NewtonMeter	19.3489A
568	10mm	3mm	10mm	80.118	4.6935NewtonMeter	19.4487A
569	10mm	3mm	11mm	80.1891	4.66413NewtonMeter	19.5566A
570	10mm	3mm	12mm	80.2487	4.64174NewtonMeter	19.6362A
571	10mm	3mm	13mm	80.3	4.63909NewtonMeter	19.7198A
572	10mm	3mm	14mm	80.3445	4.66576NewtonMeter	19.8329A
573	10mm	3mm	15mm	80.3829	4.69669NewtonMeter	19.9279A
574	10mm	3mm	16mm	80.4168	4.7422NewtonMeter	20.0301A

575	10mm	3mm	17mm	80.4485	4.83527NewtonMeter	20.2109A
576	10mm	3mm	18mm	80.4753	4.93807NewtonMeter	20.3948A
577	10mm	3mm	19mm	80.4995	5.05558NewtonMeter	20.5948A
578	10mm	3mm	20mm	80.5197	5.18624NewtonMeter	20.8103A
579	10mm	3mm	21mm	80.5363	5.32584NewtonMeter	21.0353A
580	10mm	3mm	22mm	80.5478	5.50693NewtonMeter	21.3344A
581	10mm	4mm	3mm	78.8636	6.08679NewtonMeter	18.7519A
582	10mm	4mm	4mm	79.2761	5.65219NewtonMeter	18.9869A
583	10mm	4mm	5mm	79.5521	5.33908NewtonMeter	19.1419A
584	10mm	4mm	6mm	79.752	5.12745NewtonMeter	19.2893A
585	10mm	4mm	7mm	79.9019	4.96NewtonMeter	19.3871A
586	10mm	4mm	8mm	80.0196	4.84762NewtonMeter	19.4923A
587	10mm	4mm	9mm	80.1151	4.77759NewtonMeter	19.6059A
588	10mm	4mm	10mm	80.1937	4.74539NewtonMeter	19.7357A
589	10mm	4mm	11mm	80.2589	4.73759NewtonMeter	19.8659A
590	10mm	4mm	12mm	80.3154	4.75689NewtonMeter	20.0099A
591	10mm	4mm	13mm	80.364	4.81588NewtonMeter	20.1998A
592	10mm	4mm	14mm	80.4056	4.87775NewtonMeter	20.3645A
593	10mm	4mm	15mm	80.4396	4.95875NewtonMeter	20.5416A
594	10mm	4mm	16mm	80.4723	5.12123NewtonMeter	20.8596A
595	10mm	4mm	17mm	80.4963	5.27738NewtonMeter	21.143A
596	10mm	4mm	18mm	80.5135	5.4809NewtonMeter	21.5006A
597	10mm	4mm	19mm	80.5206	5.73806NewtonMeter	21.9432A
598	10mm	4mm	20mm	80.4983	6.14983NewtonMeter	22.6529A
599	10mm	4mm	21mm	80.3825	6.87989NewtonMeter	23.8926A
600	10mm	4mm	22mm	80.2201	7.41922NewtonMeter	24.7563A
601	10mm	5mm	3mm	79.0394	5.9653NewtonMeter	18.9292A
602	10mm	5mm	4mm	79.4152	5.57273NewtonMeter	19.1753A
603	10mm	5mm	5mm	79.6703	5.30944NewtonMeter	19.3751A

604	10mm	5mm	6mm	79.8542	5.13079NewtonMeter	19.5515A
605	10mm	5mm	7mm	79.9948	5.01785NewtonMeter	19.7277A
606	10mm	5mm	8mm	80.1053	4.95533NewtonMeter	19.9099A
607	10mm	5mm	9mm	80.197	4.95848NewtonMeter	20.1512A
608	10mm	5mm	10mm	80.2702	4.9837NewtonMeter	20.3796A
609	10mm	5mm	11mm	80.3322	5.06764NewtonMeter	20.6774A
610	10mm	5mm	12mm	80.3823	5.17599NewtonMeter	20.982A
611	10mm	5mm	13mm	80.4222	5.3233NewtonMeter	21.3262A
612	10mm	5mm	14mm	80.4492	5.57366NewtonMeter	21.836A
613	10mm	5mm	15mm	80.4307	6.10076NewtonMeter	22.8276A
614	10mm	5mm	16mm	80.3516	6.69394NewtonMeter	23.8772A
615	10mm	5mm	17mm	80.2315	7.16313NewtonMeter	24.6564A
616	10mm	5mm	18mm	80.0697	7.55623NewtonMeter	25.2744A
617	10mm	5mm	19mm	79.8589	7.89208NewtonMeter	25.7787A
618	10mm	5mm	20mm	79.5909	8.18157NewtonMeter	26.1984A
619	10mm	5mm	21mm	79.256	8.4313NewtonMeter	26.5531A
620	10mm	5mm	22mm	78.8342	8.64213NewtonMeter	26.8519A
621	10mm	6mm	3mm	79.197	5.95386NewtonMeter	19.2395A
622	10mm	6mm	4mm	79.546	5.63754NewtonMeter	19.5749A
623	10mm	6mm	5mm	79.787	5.47086NewtonMeter	19.9222A
624	10mm	6mm	6mm	79.96	5.38528NewtonMeter	20.2561A
625	10mm	6mm	7mm	80.0923	5.3858NewtonMeter	20.6371A
626	10mm	6mm	8mm	80.1944	5.42596NewtonMeter	21.0086A
627	10mm	6mm	9mm	80.2716	5.60923NewtonMeter	21.5837A
628	10mm	6mm	10mm	80.3061	6.06291NewtonMeter	22.6026A
629	10mm	6mm	11mm	80.2897	6.51269NewtonMeter	23.5448A
630	10mm	6mm	12mm	80.2322	6.91097NewtonMeter	24.3343A
631	10mm	6mm	13mm	80.1154	7.30148NewtonMeter	25.0587A
632	10mm	6mm	14mm	79.967	7.60688NewtonMeter	25.5946A
633	10mm	6mm	15mm	79.7644	7.88104NewtonMeter	26.0457A
-----	------	-----	------	---------	--------------------	----------
634	10mm	6mm	16mm	79.4991	8.12823NewtonMeter	26.4281A
635	10mm	6mm	17mm	79.1578	8.34705NewtonMeter	26.7489A
636	10mm	6mm	18mm	78.7227	8.54192NewtonMeter	27.0233A
637	10mm	6mm	19mm	78.168	8.71597NewtonMeter	27.264A
638	10mm	6mm	20mm	77.4598	8.86919NewtonMeter	27.4783A
639	10mm	6mm	21mm	76.5853	8.99769NewtonMeter	27.6651A
640	10mm	6mm	22mm	75.3999	9.10814NewtonMeter	27.8459A

ANEXO II

Diagrama de flujo del procedimiento del análisis paramétrico de la ranura del rotor y la Optimización Multiobjetivo Mediante el Criterio de Pareto Óptimo.

