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Rocio, Willy, among others who were my undergraduate mentors. Also, to the prized pro-

fessors Enoch Humberto, Arturo Fernandez, Gonzalo Panizo, Philippe Thieullen, among

others who were my mentors during the doctorate course, and in special to my adviser

Roger J. Metzger Alván and my co-adviser Silas luiz de Carvalho of Instituto de Ciências

Exatas (ICEX) of Universidade Federal de Minas Gerais, for their guidance and teachings.

To my friends and colleagues at the Instituto de Matemáticas y Ciencias Afines (IMCA),
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Abstract

In this thesis, we are interested in characterizing typical (generic) dimensional properties

of invariant measures associated with the full-shift system, T , in a product space whose

alphabet is uncountable. More specifically, we show that the set of invariant measures with

upper Hausdorff dimension equal to zero and lower packing dimension equal to infinity is

a dense Gδ subset of M(T ), the space of T -invariant measures endowed with the weak

topology. We also show that the set of invariant measures with upper rate of recurrence

equal to infinity and lower rate of recurrence equal to zero is a dense Gδ subset ofM(T ).

Furthermore, we show that the set of invariant measures with upper quantitative waiting

time indicator equal to infinity and lower quantitative waiting time indicator equal to zero

is also residual in M(T ).

For topological dynamical systems with a dense set (in the weak topology) of periodic

measures, we show that a typical invariant measure has, for each q > 0, zero lower q-

generalized fractal dimension. This implies, in particular, that a typical invariant measure

has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is

the full-shift system (X,T ) (where X = MZ is endowed with a sub-exponential metric and

the alphabet M is a perfect and compact metric space), for which we show that a typical

invariant measure has, for each q > 1, infinite upper q-correlation dimension. Under the

same conditions, we show that a typical invariant measure has, for each s ∈ (0, 1) and

each q > 1, zero lower s-generalized and infinite upper q-generalized dimensions.

Finally, for measure preserving dynamical systems on metric spaces, we present suf-

ficient conditions involving the upper and lower pointwise dimensions of the measure in

order to obtain upper and lower bounds for its generalized fractal dimensions. We also

obtain an extension of Young’s Theorem [59] involving the generalized fractal dimensions

of the Bowen-Margulis measure of an Axiom A system. Furthermore, for Axiom A sys-

tems, we show that the set of invariant measures with zero correlation dimension, under

a hyperbolic metric, is generic.
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Resumen

En esta tesis, nos interesa caracterizar las propiedades dimensionales t́ıpicas (genéricas)

de medidas invariantes asociadas al sistema de cambio completo (full-shift system), (X,T ),

en un espacio producto cuyo alfabeto es no numerable. Se muestra que el conjunto de

medidas invariantes que tienen dimensión de Hausdorff superior cero y dimensión de empa-

quetamiento inferior infinita es un subconjunto Gδ-denso deM(T ), el espacio de medidas

T -invariantes dotadas con la topoloǵıa débil. También se muestra que el conjunto de me-

didas invariantes con tasa de recurrencia superior igual a infinito e inferior igual a cero

es un subconjunto Gδ-denso de M(T ). Además, se muestra que el conjunto de medidas

invariantes con un indicador de tiempo de espera cuantitativo superior infinito e inferior

cero es residual en M(T ).

Para sistemas dinámicos topológicos con un conjunto denso de medidas periódicas, se

muestra que una medida invariante t́ıpica tiene, para cada q > 0, q-dimensión fractal

generalizada inferior igual a cero. Esto implica, en particular, que una medida invariante

t́ıpica tiene dimensión de Hausdorff superior y tasa de recurrencia inferior iguales a cero.

De especial interés es el sistema de cambio completo (full-shift system), (X,T ), (donde

X = MZ es dotado de una métrica sub-exponencial y M es un espacio métrico perfecto

y compacto), para el cual se muestra que una medida invariante t́ıpica tiene, para cada

q > 1, q-dimensión de correlación superior infinita. Bajo las mismas condiciones, una

medida invariante t́ıpica tiene, para cada s ∈ (0, 1) y cada q > 1, dimensión inferior

s-generalizada igual a cero y dimensión superior q-generalizada infinita.

Finalmente, para sistemas dinámicos que preservan medidas sobre espacios métricos,

presentamos condiciones suficientes que involucran las dimensiones puntuales superior e

inferior de la medida para obtener ĺımites superiores e inferiores para sus dimensiones

fractales generalizadas. También se obtiene una extensión del Teorema de Young que

involucra las dimensiones fractales generalizadas de la medida de Bowen-Margulis de

un sistema Axioma A. Además, para sistemas Axioma A, se muestra que una medida

invariante t́ıpica tiene dimensión de correlación cero, bajo una métrica hiperbólica.

vii



INTRODUCTION

Background and State of Art

“The dimension of invariant sets is among the most important characteristics of dy-

namical systems”, as mentioned by Pesin in [42]. Under this premise, the importance

of studying invariant sets of dynamical systems is clear and the dimension theory un-

doubtedly points to this. In this way, this thesis focuses on some dimensional properties

of invariant measures associated with some specific dynamical systems. The information

obtained by these dimensions are used in the characterization of the invariant sets where

these measures are supported.

The classical and intuitive idea of dimension is perhaps what refers to an entire dimen-

sion suitable for Euclidean spaces, known as the typological dimension. This idea can be

traced back, at least, to Poincaré, but it was only around 1922 that Urysohn and Menger

formalised this notion. Naturally, the dimension of a point is zero; the dimension of a line

is 1; the dimension of a plane is 2; the dimension of Rd is d (see Definition I.2). However,

the intuitive idea of topological dimension seems to be insufficient when one tries to de-

termine the dimension of certain sets of rather exotic structure which naturally rise, for

example, in the theory of dynamical systems.

Soon after the discovery of such exotic structures, the so-called strange attractors,

they became the focus of attention for many researchers who, among other problems,

tried to obtain relations between the dimensions of these attractors and other invariants

of the dynamical system, such as Lyapunov exponents and entropy (which characterize

instability and stochasticity). Classic examples of these are the Lorenz attractor, the
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Smale–Williams solenoid and Smale horseshoe. The latter is an example of a hyperbolic

invariant set whose local topological structure is the product of different Cantor-like sets.

There are several different notions of dimension for more general sets, some easier to

compute and others more convenient in applications. One of them is, and could be said to

be the most popular of all, the Hausdorff dimension, introduced in 1919 by Hausdorff and

also by Caratheodory, which gives a notion of size useful for distinguishing between sets

of zero Lebesgue measure. This notion was widely investigated and widely used, among

others, in the theory of dynamical systems, where many interesting invariant sets have zero

Lebesgue measure, and later in function theory, mainly by Besicovitch and his school.

In 1975, Mandelbrot [33] has also observed the presence of these “strange” sets in some

physical phenomena (as Julia and Mandelbrot sets). He called a set like these fractal,

and defined it vaguely as the set whose Hausdorff dimension is strictly greater than its

topological dimension. Mandelbrot also revealed an important aspect of the qualitative

behavior of dynamical systems: assume that a physical system admits a group of scale

similarities, i.e., that it “reproduces” itself on smaller scales. From a mathematical point

of view, this means that the dynamical system, which describes the physical phenomenon,

possesses invariant sets of a special self-similar structure.

The works of Hausdorff, Besicovitch and Mandelbrot gave shape to a new field in

mathematics called fractal geometry. The results of this theory were widely used in di-

fferent areas of science. Its importance lies in its independence of scaling. The rate of

such scale is quantitatively characterized by a fractal dimension. The interaction of many

individual fractals (often infinite), results in a multifractal, with a much more complicated

topological structure.

Unfortunately, the Hausdorff dimension of relatively simple sets can be very hard to

calculate; besides, the notion of Hausdorff dimension is not completely adapted to the

dynamics per se (for instance, if Z is a periodic orbit, then its Hausdorff dimension is

zero, regardless to whether the orbit is stable, unstable, or neutral). This fact led to

the introduction of other characteristics with which it is possible to estimate the size of

irregular sets. For this reason, some of these quantities were also branded as “dimensions”
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(although some of them lack some basic properties satisfied by Hausdorff dimension, such

as σ-stability (see [34])). Several good candidates were proposed; among them are the

correlation dimension, the information dimension, the box dimension, entropy dimension,

etc.

From the notion of (Hausdorff) dimension of sets, one may propose the concept of

dimension of a finite measure, namely, as the supreme one among the (Hausdorff) dimen-

sions of the sets with total measure (that is, the upper Hausdorf dimension of a measure;

see Definition I.7).

The importance of the dimension of an invariant measure, one might say, is due to

the fact that, for a dynamical system, the fractal dimensions of an invariant measure

provide more relevant information than the fractal dimensions of its invariant sets, or

even the fractal dimensions of its topological support; the point is that invariant sets

and topological supports usually contain superfluous sets (that is, measurable sets of zero

measure). Thus, by establishing the fractal dimensions of invariant measures, one has

a more precise information about the structure of the relevant sets (that is, the sets of

positive measure) of a dynamical system (see [4, 40, 42] for a more detailed discussion).

Within the known literature, we may highlight the results obtained for hyperbolic er-

godic measures. Eckmann and Ruelle, in [16], discussed the existence of the pointwise

dimensions (see Definition I.8) of hyperbolic invariant measures (i.e, measures which are

invariant under diffeomorphisms with non-zero Lyapunov exponents almost everywhere).

This led to the problem of whether a hyperbolic ergodic measure is exact dimensional

(i.e, whether the lower and upper local dimensions coincide almost everywhere; see Defini-

tion I.8). This problem was later known as the Eckmann-Ruelle conjecture, and has been

recognized as one of the main problems in the interface between the dimension theory and

the dynamical systems theory. Its importance in dimension theory of dynamical systems is

compared to the importance of Shannon-McMillan-Breiman Theorem in Ergodic Theory.

In [59], Young showed that the hyperbolic measures which invariant under surface

diffeomorphisms are exact dimensional, by providing a relation of the local dimensions

involving the metric entropy and the Lyapunov exponents of the system. Later, Ledrappier
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[29] extended this relation for general Sinai-Ruelle-Bowen measures. Finally, Eckmann-

Ruelle conjecture was affirmatively answered by Barreira, Pesin and Schmeling in [5].

Hausdorff and Packing dimension of a measure and
topological dimension of a set

The topological dimension of a set X is defined as follows. Let α = (Ai)i∈I be a family

of subsets of X indexed by a set I. For each x ∈ X, let

ordx(α) := card{i ∈ I | x ∈ Ai} − 1.

One says that the quantity ordx(α) ∈ {−1} ∪ N ∪ {∞} is the order of α at the point x.

One defines the (global) order ord(α) ∈ {−1} ∪ N ∪ {∞} of the family α by

ord(α) := sup
x∈X

ordx(α).

Let α = (Ai)i∈I and β = (Bj)j∈J be two covers of X. One says that β is finer than α if,

for every j ∈ J , there exists i ∈ I such that Bj ⊂ Ai.

Definition I.1. Let X be a topological space. Let α = (Ui)i∈I be a finite open cover of

X. One defines the quantity D(α) by

D(α) := min
β

ord(β),

where β runs over all finite open covers of X that are finer than α.

Definition I.2. Let X be a topological space. The topological dimension dim(X) ∈
{−1} ∪N ∪ {∞} of X is given by dim(X) := supαD(α) where α runs over all finite open

covers of X.

In what follows, (X, d) is an arbitrary metric space and B = B(X) is its Borel σ-algebra.

Definition I.3 (radius packing φ-premeasure, [14]). Let ∅ 6= E ⊂ X, and let 0 < δ < 1.

A δ-packing of E is a countable collection of disjoint closed balls {B(xk, rk)}k with centers
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xk ∈ E and radii satisfying 0 < rk ≤ δ/2, for each k ∈ N (the centers xk and radii rk are

considered part of the definition of the δ-packing). Given a measurable function φ, the

radius packing (φ, δ)-premeasure of E is given by the law

P φ
δ (E) = sup

{
∞∑
k=1

φ(2rk) | {B(xk, rk)}k is a δ-packing of E

}
.

Letting δ → 0, one gets the so-called radius packing φ-premeasure

P φ
0 (E) = lim

δ→0
P φ
δ (E).

One sets P φ
δ (∅) = P φ

0 (∅) = 0.

It is worth mentioning that, although open and closed balls in RN possess nice re-

gularity properties (for example, the diameter of a ball is twice its radius, and open and

closed balls of the same radius have the same diameter), this may not be the case in

arbitrary metric spaces. As it was observed by Cutler in [14], the possible absence of such

regularity properties means that the usual measure construction based on diameters can

lead to packing measures with undesirable features (see [14] for the details).

It is easy to see that P φ
0 is non-negative and monotone. Moreover, P φ

0 generally fails

to be countably sub-additive. One can, however, build an outer measure from P φ
0 by

applying Munroe’s Method I construction, described both in [36] and [45]. This leads to

the following definition.

Definition I.4 (radius packing φ-measure, [14]). The radius packing φ-measure of E ⊂ X

is defined to be

P φ(E) = inf

{∑
k

P φ
0 (Ek) | E ⊂

⋃
k

Ek

}
. (1)

The infimum in (1) is taken over all countable coverings {Ek}k of E. It follows that P is

an outer measure on the subsets of X.

In an analogous fashion, one may define the Hausdorff φ-measure. The theory of
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Hausdorff measures in general metric spaces is a well-explored topic; see, for example, the

treatise by Rogers [45].

Definition I.5 (Hausdorff φ-measure, [14]). For E ⊂ X, the outer measure Hφ(E) is

defined by

Hφ(E) = lim
δ→0

inf

{
∞∑
k=1

φ(diam(Ek)) | {Ek}k is a δ-covering of E

}
, (2)

where a δ-covering of E is any countable collection {Ek}k of subsets of X such that,

for each k ∈ N, E ⊂
⋂
k Ek and diam(Ek) ≤ δ. If no such δ-covering exists, one sets

Hφ(E) = inf ∅ =∞.

Of special interest is the situation where given α > 0, one sets φ(t) = tα. In this

case, one uses the notation Pα
0 , and refers to Pα

0 (E) as the α-packing premeasure of E.

Similarly, one uses the notation Pα(E) for the packing α-measure of E, and Hα(E) for

the Hausdorff α-measure of E.

Definition I.6 (Hausdorff and packing dimensions of a set, [14]). Let E ⊂ X. One defines

the Hausdorff (packing) dimension of E as the critical point

dimH(E) = inf{α > 0 | Hα(E) = 0}

dimP (E) = inf{α > 0 | Pα(E) = 0}.

We note that dimH(X) or dimP (X) may be infinite for some metric space X. One can

show that, for each E ⊂ X, dimH(E) ≤ dimP (E) (see Theorem 3.11(h) in [14]), and this

inequality is in general strict.

Definition I.7 (lower and upper packing and Hausdorff dimensions of a measure,[34]).

Let µ be a positive Borel measure on (X,B). The lower and upper packing and Hausdorff

dimension of µ are defined, respectively, by

dim−K(µ) = inf{dimK(E) | µ(E) > 0, E ∈ B},

dim+
K(µ) = inf{dimK(E) | µ(X \ E) = 0, E ∈ B},
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where K stands for H (Hausdorff) or P (packing).

Example I.1 (Skew tent map, see [57]). Consider the unit interval I = [0, 1], and for

each λ ∈ (0, 1), define fλ : I → I by the law

fλ(x) :=

 x/λ , if x ∈ [0, λ],

(1− x)/(1− λ) , if x ∈ (λ, 1].

Let ζλ = {I0, I1} = {[0, λ], (λ, 1]} be the natural partition associated with the map fλ. For

any (j0, . . . , jn) ∈ {0, 1}n, define a cylinder Ij0,...,jn by

Ij0,...,jn = Ij0 ∩ f−1
λ Ij1 ∩ · · · ∩ f−nλ Ijn .

Now, for each p ∈ (0, 1), there exists a unique fλ-invariant measure µp such that

µp(Ij0,...,jn) = pm(1− p)n+1−m,

where m = card{k | jk = 0} is the number of zeros in the symbolic representation of

Ij0,...,jn . In fact, µp is the projection of the Bernoulli (or the product) measure with

probabilities p and 1 − p, defined on the set of all infinite sequences of 0’s and 1’s, onto

the unit interval. Note that the topological support of µp is the whole interval [0, 1]. The

Hausdorff dimension of the measure µp is given by the following formula (see [17])

dimH(µp) =
p log p+ (1− p) log(1− p)
p log λ+ (1− p) log(1− λ)

.

One has dimH(µp) = 1 if and only if p = λ (in this case, the measure µλ is the Lebesgue

measure on I).

Definition I.8. Let µ be a positive finite Borel measure over an arbitrary metric space

X. One defines the upper and lower local dimensions of µ at point x ∈ X by

dµ(x) = lim sup
ε→0

log µ(B(x, ε))

log ε
and dµ(x) = lim inf

ε→0

log µ(B(x, ε))

log ε
,

if, for each ε > 0, µ(B(x; ε)) > 0; if not, dµ(x) := +∞. If the limit exists, one says that

7



the measure has local dimension dµ(x) at the point x. One says that the measure µ is

exact dimensional if dµ(x) = dµ(x) = dµ(x) = dim±H(µ), µ-a.e.

Definition I.9 ([17]). Let F ⊂ Rn. Define N(F, δ) to be the least number of balls of radius

δ required to cover F . The interpretation of this measure is an indication of how irregular

or spread out the set is when examined at scale δ. The upper and lower box-counting

dimensions are defined as

dimBF = limδ→0

logN(F, δ)

− log δ

dimBF = limδ→0
logN(F, δ)

− log δ

Remark I.1.

i) In Euclidean spaces (like Rn), the packing and the box counting dimensions of sets are

related (see [17, 42]); namely, one has dimP (F ) ≤ dimB(F ). One can also relate the

packing and the upper box counting dimension of a Borel probability measure µ over Rn:

dimP (µ) = lim
δ→0

inf{dimP (F ) | µ(F ) ≥ 1−δ} ≤ lim
δ→0

inf{dimB(F ) | µ(F ) ≥ 1−δ} =: dimB(µ).

ii) One can also relate the Hausdorff and the upper and lower box counting dimensions of

a probability measure µ in Rn (see [42]):

dimH(µ) ≤ dimB (µ) ≤ dimB (µ).

iii) Let X be a complete separable metric space of finite multiplicity (finite topological

dimension) and let µ be a Borel finite measure on X. If dµ(x) = dµ(x) = d for µ-a.e.

x ∈ X, then dimH(µ) = dimP (µ) = dimB(µ) = dimB(µ) = d (see [42]).

Example I.2 (see Proposition 1.1, Proposition 1.3 and Theorem 1.5 in [47]).

1) Let f : S1 → S1 (S1 = R/Z) be a circle homeomorphism given by fα(x) = (x+α) mod 1,

with α ∈ Q, and let µ be an f -ergodic invariant measure. Then, dµ(x) = 0 for µ-a.e x ∈ S1.
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2) Circle diffeomorphisms with an irrational rotation number are uniquely ergodic. In this

case, the properties of the invariant measure depend on how well the irrational rotation

number can be approximated by rational numbers. The numbers that cannot be rapidly

approximated by rationals are called Diophantine. Namely, a number τ is called Diophan-

tine if there exist δ > 0 and K > 0 such that |τ − p/q| > K/|q|2+δ for any integers p

and q.

Let f be a C∞ circle diffeomorphism with a Diophantine rotation number, and let µ be

its unique invariant measure. Then,

(i) dµ(x) = 1 for every x in S1;

(ii) dim−H(µ) = dim−P (µ) = 1.

3) A more interesting situation occurs when the rotation number is Liouville; an irrational

number τ is called a Liouville number if for any n ≥ 1 there exist integers p and q > 1,

such that |τ − p/q| < 1/qn.

Let τ be a Liouville number and let 0 ≤ β ≤ 1. There exists a C∞ circle diffeomorphism

f with rotation number τ such that

(i) dµ(x) = β and dµ(x) = 1 for µ -almost every x in S1 ;

(ii) dimH µ = β and dimP µ = 1;

here, µ stands for the unique f -invariant measure.

The next result presents a characterization of the lower (upper) Hausdorff and the

lower (upper) packing dimensions of a probability Borel measure µ defined on a general

metric space X in terms of the essential infimum (supremum) of its lower and upper local

dimensions, respectively.

Proposition I.1. Let µ be a probability measure on a metric space X. Then,

µ- ess inf dµ(x) = dim−H(µ) ≤ µ- ess sup dµ(x) = dim+
H(µ),

µ- ess inf dµ(x) = dim−P (µ) ≤ µ- ess sup dµ(x) = dim+
P (µ).

9



Proof. See Appendix A.

Poincaré’s Recurrence (rates of recurrence: a quanti-
tative description)

In what follows, (X,T ) is a dynamical system such that (X, d) is a separable metric

space, B(X) is the Borel σ-algebra of X and T : X → X is a measurable map. Let us

recall some basic definitions.

Definition I.10. Let µ be a probability measure defined on the measurable space (X,B(X)).

One says that µ is T -invariant if µ(T−1(B)) = µ(B) for each B ∈ B(X). One denotes the

set of T -invariant measures by M(T ).

Definition I.11. Let µ be a probability measure defined on the measurable space (X,B(X)).

The system (T, µ) is called ergodic if µ ∈ M(T ) and if T−1(B) = B, then µ(B) = 0 or

µ(B) = 1. One denotes the set of ergodic measures by Me(T ).

One of the main problems studied in this work refers to a quantitative description of

the recurrence phenomenon for a dynamical system. The recurrence problem was initially

studied by Poincaré, who “stated that any dynamical system preserving a finite invariant

measure exhibits a non-trivial recurrence to each set of positive measure”, as mentioned

by Barreira and Saussol in [6] (an information of qualitative nature).

Theorem I.1 (Poincaré’s Recurrence Theorem). Let µ ∈ M(T ), and let A ∈ B(X) be

such that µ(A) > 0. Then, for µ-a.e. x ∈ A, card{n > 0 | T nx ∈ A} =∞.

This result tells us that the orbit of almost every point of A returns to A at least

once (actually, it returns to A infinitely many times). It, nevertheless, does not give us

any information about the first return time to A. On the other hand, Birkhoff’s Ergodic

Theorem states that, for almost every x ∈ A, the frequency at which the orbit of x visits

A is equal to µ(A).
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Definition I.12. Let (X,T ) be a dynamical system, let A ∈ B(X) and let x ∈ A. One

defines the first return time of x to A by

τA(x) := inf{n > 0 : T nx ∈ A}.

A more accurate result than Poincaré’s Recurrence Theorem is Kač’s Theorem (more

commonly known as Kač’s Lemma), which proves that in the case where the measure is

ergodic, the mean of the return time to A is equal to the inverse of the measure of A.

Theorem I.2 (Kač’s Theorem [27]). Let µ ∈ Me(T ), and let A ∈ B(X) be such that

µ(A) > 0. Then,

1

µ(A)

∫
A

τA(x)dµ(x) =
1

µ(A)
.

We are particularly interested in the determination of the returning rates of a given

point to an arbitrarily small neighborhood of itself. Boshernitzan [9] proved a quantitative

result linking the first return time to balls of small radii to the Hausdorff measure of the

respective invariant measure. We note that Boshernitzan’s Theorem can be reformulated

in terms of the return time to balls (see [6]).

Theorem I.3 (Boshernitzan [9]). Let (X,T ) be a dynamical system, and assume that for

α > 0, the Hausdorff α-measure Hα is σ-finite on X. Then, for Hα-a.e. x ∈ X, one has

lim inf
n→∞

{nβd(x, T nx)} <∞, with β =
1

α
.

If, furthermore, Hα(X) = 0, then for Hα-a.e. x ∈ X,

lim inf
n→∞

{nβd(x, T nx)} = 0.

Following the idea of Boshernitzan, Barreira and Saussol [6] studied the typical (with

respect to an invariant measure) asymptotic behavior of the polynomial returning rates to

a ball which radius tends to zero, and showed that they were related to the local dimensions

of this invariant measure (see also [2, 7, 25] for further motivations).
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Definition I.13. Let x ∈ X and let r > 0. One defines the first return time of x to

B(x, r) by the law

τr(x) = inf{k ∈ N | T kx ∈ B(x, r)},

and the lower and upper returning rates at x by

R(x) = lim inf
r→0

log τr(x)

− log r
and R(x) = lim sup

r→0

log τr(x)

− log r
.

Theorem I.4 (Barreira-Saussol [6]). If T : X → X is a Borel measurable transformation,

where X is a separable metric space, and if µ ∈ M(T ), then R(x) ≤ dim+
H(µ) for µ-a.e.

x ∈ X.

Theorem I.5 (Barreira-Saussol [6]). If T : X → X is a Borel measurable transformation

on a measurable set X ⊂ Rd, d ∈ N , and if µ ∈M(T ), then

R(x) ≤ dµ(x) and R(x) ≤ dµ(x),

for µ-a.e. x ∈ X.

Later, Saussol has showen in [48] that, under the hypotheses that T is a Lipschitz

transformation, hµ(T ) > 0 (see Appendix B for the definition of the metric entropy of a

system) and that the decay of the correlations of (X,T, µ) is super-polynomial, R(x) =

dµ(x), and R(x) = dµ(x) for µ-a.e. x ∈ X.

In this work, we present some results, for M -valued discrete stationary stochastic

processes (see Definition I.18), relating R and dµ (namely, Theorem 1.1 and Corollary 1.1).

Another dynamical aspect of M -valued discrete stationary stochastic processes that is

explored in this work refers to the quantitative waiting time indicators, defined by Galatolo

in [20] as follows:

Definition I.14. Let x, y ∈ X and let r > 0. The first entrance time of O(x) := {T ix |
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i ∈ N}, the T -orbit of x, into the closed ball B(y, r) is given by

τr(x, y) = min{n ∈ N | T n(x) ∈ B(y, r)}.

Naturally, τr(x, x) is just the first return time into the closed ball B(x, r). The so-called

quantitative waiting time indicators are defined as

R(x, y) = lim inf
r→0

log τr(x, y)

− log r
and R(x, y) = lim sup

r→0

log τr(x, y)

− log r
.

Suppose that µ ∈ M(T ) 6= ∅. Then, Theorem 4 in [20] states that, for each fixed

y ∈ X, one has

R(x, y) ≥ dµ(y) and R(x, y) ≥ dµ(y) for µ-a.e. x ∈ X. (3)

Furthermore, even if µ is only a probability measure on X, Theorem 10 in [20] states

that for each x ∈ X, one has R(x, y) ≥ dµ(y) and R(x, y) ≥ dµ(y) for µ-a.e. y ∈ X.

Generalized fractal and correlation dimensions

As was mentioned, the Hausdorff dimension gives an information that may not be

sufficient to capture the dynamical fine behaviour of the system. Thus, in order to obtain

relevant information about dynamics, one should consider not only the geometry of the

set Z, but also the distribution of points on Z under T . That is, one should be interested

in how often a given point x ∈ Z visits a fixed subset Y ⊂ Z under T . If µ is an ergodic

measure for which µ(Y ) > 0, then for a typical point x ∈ Z, the average number of visits

is equal to µ(Y ). Thus, the orbit distribution is completely determined by the measure µ.

On the other hand, the measure µ is completely specified by the distribution of a typical

orbit.

This fact is widely used in the numerical study of dynamical systems where the dis-

tributions are, in general, non-uniform and have a clearly visible fine-scaled interwoven
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structure of hot and cold spots, that is, regions where the frequency of visitations is either

much greater than average or much less than average respectively. The distribution of

hot and cold spots varies with the scale: if a small piece of the invariant set is magnified

another picture of hot and cold spots can be seen.

In this direction, the so-called correlation dimension of a probability measure was

introduced by Grassberger, Procaccia and Hentschel [22] in an attempt to produce a

characteristic of a dynamical system that captures information about the global behavior

of typical (with respect to an invariant measure) trajectories by observing only one them.

This dimension plays an important role in the numerical investigation of different

dynamical systems, including those which present strange attractors. The formal definition

is as follows (see [40, 41, 42]):

Definition I.15. Let (X, r) be a complete and separable (Polish) metric space, and let

T : X → X be a continuous mapping. Given x ∈ X, ε > 0 and n ∈ N, one defines the

correlation sum of order q ∈ N \ {1} (specified by the points {T i(x)}, i = 1, . . . , n) by

Cq(x, n, ε) =
1

nq
card {(i1 · · · iq) ∈ {0, 1, · · · , n}q | r(T ij(x), T il(x)) ≤ ε for any 0 ≤ j, l ≤ q},

where cardA is the cardinality of the set A. Given x ∈ X, one defines (when the limit

n→∞ exists) the quantities

αq(x) =
1

q − 1
lim
ε→0

lim
n→∞

logCq(x, n, ε)

log(ε)
, αq(x) =

1

q − 1
lim
ε→0

lim
n→∞

logCq(x, n, ε)

log(ε)
, (4)

the so-called lower and upper correlation dimensions of order q at the point x or the lower

and the upper q-correlation dimensions at x. If the limit ε→ 0 exists, we denote it by αq,

the so-called q-correlation dimension at x. In this case, if n is large and ε is small, one

has the asymptotic relation

Cq(x, n, ε) ∼ εαq .

Cq(x, n, ε) gives an account of how the orbit of x, truncated at time n, “folds” into

an ε-neighborhood of itself; the larger Cq(x, n, ε), the more “tight” this truncated orbit

is. αq(x) and αq(x) are, respectively, the lower and upper growing rates of Cq(x, n, ε) as
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n→∞ and ε→ 0 (in this order).

Let X be a general metric space and let µ be a Borel probability measure on X. For

q ∈ R\{1} and ε ∈ (0, 1), one defines the so-called energy function I·(q, ε) :M→ (0,+∞]

by the law

Iµ(q, ε) =

∫
supp(µ)

µ(B(x, ε))q−1dµ(x), (5)

where supp(µ) is the topological support of µ.

The next result shows that the two previous definitions are intimately related.

Theorem I.6 (Pesin [41, 42]). Let X be a Polish metric space, assume that µ is ergodic

and let q ∈ N \ {1}. Then, there exists a set Z ⊂ X of full µ-measure such that, for each

R, η > 0 and each x ∈ Z, there exists an N = N(x, η, R) ∈ N such that

|Cq(x, n, ε)− Iµ(q, ε)| ≤ η

holds for each n ≥ N and each 0 < ε ≤ R. In other words, Cq(x, n, ε) tends to Iµ(q, ε)

when n→∞ for µ-almost every x ∈ X, uniformly over ε ∈ (0, R].

Definition I.16 (Generalized fractal dimensions). Let X be a general metric space, let µ

be a Borel probability measure on X, and let q ∈ (0,∞) \ {1}. The so-called upper and

lower q-generalized fractal dimensions of µ are defined, respectively, as

D+
µ (q) = lim sup

ε↓0

log Iµ(q, ε)

(q − 1) log ε
and D−µ (q) = lim inf

ε↓0

log Iµ(q, ε)

(q − 1) log ε
.

For q = 1, one defines the so-called upper and lower entropy dimensions (see [4] for

a discussion about the connection between entropy dimensions and Rényi information

dimensions), respectively, as

D+
µ (1) = lim sup

ε↓0

∫
supp(µ)

log µ(B(x, ε))dµ(x)

log ε
,

D−µ (1) = lim inf
ε↓0

∫
supp(µ)

log µ(B(x, ε))dµ(x)

log ε
.
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Example I.3 (see [57] and Example I.1). Consider again the skew tent map, with λ = 1/2

and µp, for p ∈ (0, 1), as in Example I.1. Assume also that p > 1/2. Using the natural

partition ζ = {I0, I1} = {[0, 1/2], (1/2, 1]}, one can show by a direct computation that the

generalized upper and lower dimensions are

D±µ (q) = − 1

q − 1

log(pq + (1− p)q)
log 2

, q 6= 1, and D±µ (1) = −p log p+ (1− p) log(1− p)
log 2

.

Some useful relations involving the generalized fractal, Hausdorff and packing dimen-

sions of a probability measure are given by the following inequalities, which combine

Propositions 4.1 and 4.2 in [4] with Proposition I.1 (although Propositions 4.1 and 4.2

in [4] were originally proved for probability measures defined on R, one can extend them

to probability measures defined on a general metric space X; see also [46]).

Proposition I.2 ([4, 46]). Let µ be a Borel probability measure over X, let q > 1 and let

0 < s < 1. Then,

D−µ (q) ≤ dim−H(µ) ≤ dim+
H(µ) ≤ D−µ (s),

D+
µ (q) ≤ dim−P (µ) ≤ dim+

P (µ) ≤ D+
µ (s).

Moreover, D±µ (q) ≤ D±µ (1) ≤ D±µ (s).

Contributions and organization of the
present thesis

In this work, we are interested in the characterization of some typical (in Baire’s

sense) dimensional properties of invariant measures, where the set of invariant measures

is endowed with the weak topology. We start with shift-type systems, for which, as will

be seen, the chaotic dynamics is associated with some rather exotic invariant measures.

Later, we also study dimensional properties of invariant measures for other dynamical
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systems, such as Axiom A systems.

Recall that a subset R of a topological space X is residual if it contains the intersection

of a countable family, {Uk}, of open and dense subsets of X. A topological space X is a

Baire space if every residual subset of X is dense in X. By the Baire Category Theorem,

every complete metric space is a Baire space.

Definition I.17. A property P is said to be generic in the space X if there exists a residual

subset R of X such that each x ∈ R satisfies property P.

Note that, given a countable family of generic properties P1,P2, · · · , all of them are

simultaneously generic in X. This is because the family of residual sets is closed under

countable intersections.

Hausdorff and packing dimension - rates of recurrence

Let (M,ρ) be a complete separable (Polish) metric space, and let S be its σ-algebra of

Borel sets. Now, define (X,B) as the bilateral product of a countable number of copies of

(M,S). Note that B coincides with the σ-algebra of the Borel sets in the product topology.

Let d be any metric in X = MZ which is compatible with the product topology (that is, d

induces an equivalent topology). It is straightforward to show that (X, d) is also a Polish

metric space.

One can define in X the so-called full-shift operator, T , by the action

Tx = y,

where x = (. . . , x−n, . . . , xn, . . .), y = (. . . , y−n, . . . , yn, . . .), and for each i ∈ Z, yi = xi−1.

T is clearly a homeomorphism of X into itself. We choose d in such a way that T and T−1

are Lipschitz transformations; set, for instance, for each x, y ∈ X,

d(x, y) =
∑
|n|≥0

1

2|n|
ρ(xn, yn)

1 + ρ(xn, yn)
. (6)
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LetM(T ) be the space of all T -invariant probability measures, endowed with the weak

topology (that is the coarsest topology for which the net {µα} converges to µ if, and only

if, for each bounded and continuous function f ,
∫
fdµα →

∫
fdµ). Since X is Polish,

M(T ) is also a Polish metrizable space (see [15]).

Definition I.18. Given µ ∈ M(T ), the triple (X,T, µ) is called an M -valued discrete

stationary stochastic process (see [39, 51, 53]; see also [19] for a discussion of the role of

such systems in the study of continuous self-maps over general metric spaces).

In Chapter I we obtain several results, compiled in Theorem 1.1 (items I-VIII), where

we characterize typical (generic) dimensional properties of invariant measures associated

with an M -valued discrete stationary stochastic process, for M a perfect and separable

metric space. More specifically, we show that the set of invariant measures with upper

Hausdorff dimension equal to zero and lower packing dimension equal to infinity is a dense

Gδ subset of M(T ). We also show that the set of invariant measures with upper rate of

recurrence equal to infinity and lower rate of recurrence equal to zero is a Gδ subset of

M(T ). Furthermore, we show that the set of invariant measures with upper quantitative

waiting time indicator equal to infinity and lower quantitative waiting time indicator equal

to zero is residual in M(T ).

Generalized fractal and correlation dimension - rates
of recurrence

In Chapter II we show that, for topological dynamical systems with a dense set (in

the weak topology) of periodic measures, a typical (in Baire’s sense) invariant measure

has, for each q > 0, zero lower q-generalized fractal dimension. This implies, in particular,

that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of

recurrence. Of special interest is the M -valued discrete stationary stochastic process (for

the case where X = MZ is endowed with a sub-exponential metric and the alphabet M is

a perfect and compact metric space), for which we show that a typical invariant measure

has, for each q > 1, infinite upper q-correlation dimension. Under the same conditions, we

show that a typical invariant measure has, for each s ∈ (0, 1) and each q > 1, zero lower

18



s-generalized and infinite upper q-generalized dimensions.

More specifically, we show in Section 2.1 that for each s ∈ (0, 1) and each q > 1,

both D := {µ ∈ M | d−µ (s) = 0} (see Proposition 2.1 for a definition of d−µ (s)) and

CD := {µ ∈ M | D+
µ (q) = +∞} are Gδ sets. In Section 2.2, we show that these sets are

dense in M(T ).

Axiom A systems and expansive homeomorphisms

We are also interested in dimensional properties of invariant measures for Axiom A

systems and expansive homeomorphisms.

Suppose that M is a compact C∞ Riemannian manifold, and that f : M → M is a

diffeomorphism. Then, the derivative of f can be seen as a map df : TM → TM , where

TM =
⋃
x∈M TxM is the tangent bundle of M and dfx : TxM → Tf(x)M .

Definition I.19. A closed subset Λ ⊂M is said to be hyperbolic if f(Λ) = Λ, and if each

tangent space TxM , x ∈ Λ, can be written as a direct sum TxM = Eu
x ⊕ Es

x of subspaces

so that

(a) dfx (Es
x) = Es

f(x), dfx (Eu
x) = Eu

f(x);

(b) there exist constants c > 0 and λ ∈ (0, 1) so that

‖dfnx (v)‖ ≤ cλn‖v‖ if v ∈ Es
x, n ≥ 0,

and ∥∥df−nx (v)
∥∥ ≤ cλn‖v‖ if v ∈ Eu

x , n ≥ 0;

(c) Es
x, E

u
x vary continuously with x.

A point x ∈M is said to be non-wandering if, for each neighborhood U of x,

U ∩
⋃
n>0

fnU 6= ∅.
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The set Ω = Ω(f) of all non-wandering points is closed and f -invariant. A point x is

periodic if fnx = x for some n > 0; clearly, each periodic point belongs to Ω.

Definition I.20. f is called an Axiom A diffeomorphism if Ω is a hyperbolic set and the

set of periodic points is dense in Ω.

Remark I.2. Smale’s Spectral Decomposition Theorem (see [55]) states that if f satisfies

the Axiom A conditions, then one can write Ω = Ω1 ∪ · · ·ΩM , where the Ωl are disjoint

closed f -invariant sets and f �Ωl is topologically transitive. In what follows, let T : X → X,

where X := Ωl and T := f �Ωl ; the dynamical system (T,X) will be called an Axiom A

system.

Let us recall the definition of an expansive map.

Definition I.21. Let X be a metrizable space and let f : X → X be a homeomorphism.

f is said to be expansive if there exists a δ > 0 such that, for each pair of different points

x, y ∈ X, there exists an n ∈ Z such that d(fn(x), fn(y)) > δ, where d is any metric which

induces the topology of X.

Note that expansivity, defined in Definition I.21, is a topological notion, i.e., it does

not depend on the choice of a particular metric under consideration (compatible with the

topology, of course), although the expansivity constant δ may depend on d.

Remark I.3. Equivalently, f is expansive if there exists a δ > 0 such that, for each x ∈ X,

Γ(δ(x)) = {x}, where

Γ(δ(x)) = {y ∈ X : d(f i(x), f i(y)) ≤ δ, ∀i ∈ Z}.

At last, we recall the definition of an f -homogeneous measure and present some exam-

ples of such measures.

Definition I.22. Let f be a continuous transformation of a compact metric space (X, d).

A Borel probability measure µ on X is said to be f -homogeneous if for each ε > 0, there

exist δ > 0 and c > 0 such that, for each n ∈ N and each x, y ∈ X,

µ(B(y, n, δ)) ≤ c µ(B(x, n, ε)), (7)
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where B(x, n, ε) := {y ∈ X | d(f i(x), f j(y)) < ε, ∀i = 0, . . . , n} is the Bowen ball of size

n and radius ε, centered at x.

In Chapter III we present, under some hypotheses over the local dimensions of Borel

probability measures over compact metric spaces, upper and lower bound to the generalized

fractal dimensions of such measures. Based on this result, we show a version of Young’s

Theorem for the generalized fractal dimensions of homogeneous measures of C1+α-Axiom

A systems (α > 0). Furthermore, for Axiom A systems, we show that the set of invariant

measures with zero correlation dimension is a generic set in the set of all invariant measures,

under a hyperbolic metric.

Finally, in Appendix A we give the proof of Proposition I.1. In Appendix B-E we

present some basic results and definitions which are necessary for the good understanding

of this thesis.
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CHAPTER I

GENERIC PROPERTIES OF INVARIANT
MEASURES OF FULL-SHIFT SYSTEMS OVER

PERFECT SEPARABLE METRIC SPACES

Some generic properties (in Baire’s sense; see Definition I.17) of the invariant measures

of the M -valued discrete stationary stochastic processes presented in Definition I.18, like

ergodicity and zero entropy (this one in case M = R), have been studied by Parthasarathy

in [39] and Sigmund in [51, 53], respectively. In the last decade, various studies about the

full-shift system over an uncountable alphabet have been performed; more specifically, we

can mention the works about the Gibbs state in Ergodic Optimization [3], entropy and the

variational principle for one-dimensional lattice systems [32]. All results in this Chapter

appear in our article published in Stochastic and Dynamics [12], in January 2021.

We begin this chapter making some comments and observations about the results

obtained here, including their dynamical and topological consequences. The proof of

Theorem 1.1 is presented in Sections 1.1 and 1.2.

Theorem 1.1. Let (X,T,B) be the full-shift dynamical system over X =
∏+∞
−∞M , where

the alphabet M is a perfect and separable metric space. Then:

I. The set of ergodic measures, Me, is residual in M(T ).

II. The set of invariant measures with full support, CX , is a dense Gδ subset of M(T ).

III. The set HD = {µ ∈M(T ) | dim+
H(µ) = 0} is a dense Gδ subset of M(T ).

IV. The set PD = {µ ∈M(T ) | dim−P (µ) = +∞} is a dense Gδ subset of M(T ).
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V. The set R = {µ ∈M(T ) | R(x) = 0, for µ-a.e. x} is a dense Gδ subset of M(T ).

VI. The set R = {µ ∈M(T ) | R(x) = +∞, for µ-a.e. x} is a dense Gδ subset of M(T ).

VII. The set R = {µ ∈ M(T ) | R(x, y) = 0, for (µ× µ)-a.e. (x, y) ∈ X ×X} is a dense

Gδ subset of M(T ).

VIII. The set R = {µ ∈ M(T ) | R(x, y) = +∞, for (µ × µ)-a.e. (x, y) ∈ X × X} is

residual in M(T ).

Item I was proved by Oxtoby in [38] and Parthasarathy in [39], using the fact that the

set of T -periodic or T -closed orbit measures (that is, measures of the form 1
kx

∑kx−1
i=0 δT ix(·),

where x is a T -periodic point of period kx) is dense inM(T ). Sigmund has proved item II

in [53] (see also [15]). We have opted to include these results in Theorem 1.1 (the proofs

of some of these results, among others, are presented in Appendix D) since they are used

in the proofs of items III-VIII, which comprise our main contributions to the problem.

As a direct consequence of Theorem 1.1, we have obtained for typical ergodic measures,

that is, for µ ∈ RD = R ∩ R ∩ PD ∩ HD, some relations between R and dµ which are

similar to those obtained by Saussol and Barreira (see [6] and [49]).

Corollary 1.1. Let M be a compact and perfect metric space, and let µ ∈ RD ⊂Me(T ).

Then, R(x) = dµ(x) = 0 and R(x) = dµ(x) =∞, for µ-a.e. x ∈ X.

It follows from items III and IV in Theorem 1.1 that there exists a dense Gδ set,

D := PD ∩ HD ⊂ Me(T ), such that each µ ∈ D is somewhat similar, in one hand,

to a “uniformly distributed” measure, whose lower packing dimension is maximal (for

instance, when X = [0, 1]Z, the shift Bernoulli measure Λ =
∏+∞
−∞ λ, where λ is the

Lebesgue measure on [0, 1], is an uniformly distributed measure, whose lower packing

dimension is infinite) and in the other hand, to a purely point measure, whose upper

Hausdorff dimension is zero.

Moreover, by Definition I.7, each µ ∈ D is supported on a Borel set Z = Z(µ) such that

dimtop(Z) ≤ dimH(Z) = 0 < dimP (Z) = ∞, where dimtop(Z) stands for the topological

dimension of Z (see, [26] Sect. 4, page 107, for a proof of the inequality dimtop(Z) ≤
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dimH(Z); see also Definition I.2). Since dimtop(Z) = 0, if one also assumes that supp(µ) =

X (just take µ ∈ CX(T ) ∩ D), one concludes that Z is a dense and totally disconnected

set in X with zero Hausdorff and infinite packing dimensions. Furthermore, one may take

Z as a dense Gδ subset of X (see Proposition 1.7).

Remark 1.1. It is worth noting that although the packing dimension of X is infinite

(since, for each µ ∈ D, dimP (Z) = ∞), its topological dimension may be finite. This is

not unexpected, altogether: there are examples of topological spaces where dimP (X) >

dimtop(X). Indeed, let σ be the full-shift on the space Σp = {0, 1, . . . , p− 1}Z of two-sided

infinite sequences of symbols 0, 1, . . . , p − 1. We assume that Σp is endowed with the

standard metric

ρ
(
ω(1), ω(2)

)
=

∞∑
i=−∞

∣∣∣ω(1)
i − ω

(2)
i

∣∣∣
a|i|

,

where a > 1. Then, for any σ-invariant measure µ on Σp and µ-a.e. x ∈ Σp,

dµ(x) = dµ(x) =
hµ(σ)

log a
.

Thus, one has dimP (Σp) ≥ dim+
P (µ) = hµ(σ)

log a
> dimtop(Σp) = 0.

Items V and VI in Theorem 1.1 say that there exists a dense Gδ set, R := R ∩ R ⊂
Me(T ), of ergodic measures such that if µ ∈ R, then there exists a Borel set Z, with

µ(Z) = 1, so that if x ∈ Z, then R(x) = 0 and R(x) =∞. This means that given a very

large α and a very small β, for each x ∈ Z, one has R(x) ≤ β and R(x) ≥ α. So, there

exist sequences (εk) and (σl) converging to zero such that, for each k, l ∈ N, τεk(x) ≤ ε−βk

and τσl(x) ≥ σ−αl , respectively. Setting, for each k, l ∈ N, sk = 1/εk and tl = 1/σl, one

has τ1/sk(x) ≤ sβk and τ1/tl(x) ≥ tαl , respectively.

Therefore, given x ∈ Z, there exists a time sequence (time scale) for which the first

incidence of O(x) to one of its spherical neighborhoods (which depend on time) occurs

as fast as possible (that is, it is of order 1; this means that the first return time to those

neighborhoods increases sub-polynomially fast); accordingly, there exists a time sequence

for which the first incidence of O(x) to one of its spherical neighborhoods increases as fast

as possible (that is, super-polynomially fast).
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The following scheme tries to depict how subsequent elements of both sequences are

related. Between to consecutive elements of (σk), there are several elements of (εl):

x

ε
k+1 ε

k

σ
l+1 σ

l

Here, we also show that the typical measures described in Theorem 1.1 are supported

on the dense Gδ set R = {x ∈ X | R(x) = 0 and R(x) =∞} (Proposition 1.11).

Finally, combining items II, VII and VIII of Theorem 1.1, one concludes that for a

typical measure µ ∈ R ∩R ∩ CX(T ), almost every T -orbit O(x) densely fills the whole

space (given that µ is supported on a dense subset of X and R(x, y) = 0 for (µ × µ)-

a.e (x, y) ∈ X × X), but not in a homogeneous fashion. Namely, as in the previous

analysis, there exists a time scale for which the first entrance time of O(x) to one of the

spherical neighborhoods (which depend on time) of y is of order 1; accordingly, there

exists a time sequence for which the first entrance time of the O(x) to one of the spherical

neighborhoods of y increases as fast as possible. Naturally, these time scales depend on

the pair (x, y) ∈ X ×X.

Remark 1.2.

i) It is true that the sets defined in items III to VIII of Theorem 1.1 are Gδ subsets

of M(T ) for any topological dynamical system (X,T )1 such that X is Polish and

both T , T−1 are Lipshitz transformations (this is particularly true for Axiom A

systems on smooth compact Riemannian n-manifolds, (M,T ), where f : M → M

is a diffeomorphism: it is possible to show that both f and f−1 are Lipschitz with

respect to the natural the Riemannian metric; see Theorem 5.1 in [18]).

ii) It is also true that the sets defined in items III, V and VII of Theorem 1.1 are dense in

M(T ) for any topological dynamical system (X,T ) such that X is a separable metric

1By a topological dynamical system we understand a pair (X,T ) such that X is a Polish metric space
and T : X → X is a continuous transformation.
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space and the set of T -periodic measures is dense in M(T ). This is particularly

true for any system satisfying the specification property (see [53] for a proof of this

proposition and examples of systems that satisfy this property; see also [43] and

Appendix B for the definition of this property), or even milder conditions (see [21,

24, 28, 30, 31] for a broader discussion involving such conditions).

iii) Since the Axiom A systems described in Introduction also have a dense set of T -

periodic measures (here, X stands for a closed f -invariant set and T := f � X is

topologically transitive; see [50]), one may combine both properties and obtain the

following result.

Theorem 1.2. Let (X,T ) be an Axiom A system as described in Introduction. Then, the

set {µ ∈ Me(T ) | R(x, y) = 0, for (µ × µ)-a.e. (x, y) ∈ X × X} is a dense Gδ subset of

Me.

iv) The hypothesis that the alphabet M is perfect is crucial for items IV and VI of

Theorem 1.1. Namely, the fact that M does not have isolated points is required

to guarantee that one can always choose the periodic point x of period s in the

statement of Lemma 1.6 so that xi 6= xj if i 6= j, 1 ≤ i, j ≤ s. This result, whose

proof relies on the product structure of X, is required in the proof of Proposition 2.7,

which in turn guarantees that the sets presented in items IV and VI of Theorem 1.1

are dense. Indeed, our strategy depends on the fact that the set of ergodic measures

with arbitrarily large entropy is dense in Me(T ); here, we explicitly use the fact

that the lower packing dimension of an ergodic measure is lower bounded by (up to

a constant) its entropy (see Lemma 1.4).
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1.1 Sets of ergodic measures with zero Hausdorff and

infinity packing dimensions

1.1.1 Gδ sets

LetM(X) (with simple notationM) be the space of probability measures defined on the

measurable space (X,B(X)), endowed with the topology of the weak convergence. Let,

for each x ∈ X and each ε > 0,

χ
B(x,ε)

(y) =


1 , if d(x, y) < ε,

0 , if d(x, y) ≥ ε,

and note that for each µ ∈M, µ(B(x, ε)) =
∫
χB(x,ε)(y)dµ(y). Since, for each x ∈ X and

each ε > 0, χ
B(x,ε)

: X → [0, 1] is not necessarily continuous, one needs to approximate, for

each ε > 0, the mapping M×X 3 (µ, x) 7→ µ(B(x, ε)) ∈ [0, 1] (in the product topology

of M×X) by a continuous one. This motivates the follows results.

The first one gives a continuous approximation of the characteristic function of the

ball of center x and radius ε.

Lemma 1.1. Define, for each x ∈ X and each ε > 0, the application f εx : X → [0, 1] by

the law

f εx(y) :=



1 , if d(x, y) ≤ ε,

−d(x, y)

ε
+ 2 , if ε ≤ d(x, y) ≤ 2ε,

0 , if d(x, y) ≥ 2ε.

Given any η > 0, there exists δ > 0 such that if d(w, x) < δ, then |f εw(y)− f εx(y)| < η for

all y ∈ X. In particular, if {xn} is a sequence in X with limit x ∈ X, then the sequence

of functions {f εxn} converges uniformly to f εx over X.
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Proof. The proof is split in three cases:

CASE 1: Let y ∈ X be such that d(x, y) ≤ ε and:

a) d(w, y) ≤ ε. In this case, one has |f εw(y)− f εx(y)| = 0, and one can take any δ > 0.

b) ε < d(w, y) ≤ 2ε. For this case, one has |f εw(y)−f εx(y)| = d(w,y)
ε
−1. In order to obtain

d(w,y)
ε
− 1 < η, just take d(w, x) < εη. Thus, d(w, y) ≤ d(w, x) + d(x, y) < εη + ε.

c) d(w, y) ≥ 2ε. This case is impossible; let d(x,w) < ε/2 and note that 2ε ≤ d(w, y) ≤
d(w, x) + d(x, y) < ε/2 + ε, an absurd.

Thus, in this case, just set δ = εmin{1/2, η}.

CASE 2: Let y ∈ X be such that ε < d(x, y) ≤ 2ε and:

a) d(w, y) ≤ ε. In this case, one has |f εw(y) − f εx(y)| = d(x,y)
ε
− 1. In order to obtain

d(x,y)
ε
− 1 < η, just let d(w, x) < εη. Thus, d(x, y) ≤ d(w, x) + d(w, y) < εη + ε.

b) ε < d(w, y) ≤ 2ε. In this case, one has |f εw(y) − f εx(y)| = 1
ε
|d(w, y) − d(x, y)|.

In order to obtain 1
ε
|d(w, y) − d(x, y)| < η, just let d(w, x) < εη. Namely, note

that d(y, w) ≤ d(y, x) + d(x,w) and d(y, x) ≤ d(y, w) + d(w, x), so −d(w, x) ≤
d(w, y)− d(x, y) ≤ d(w, x).

c) d(w, y) ≥ 2ε. In this case, one has |f εw(y) − f εx(y)| = 2 − d(x,y)
ε

. In order to obtain

2− d(x,y)
ε

< η, just let d(w, x) < εη. Thus, d(x, y) ≥ d(w, y)− d(w, x) > 2ε− εη.

Therefore, set δ = εη in this case.

CASE 3: Let y ∈ X such that d(x, y) ≥ 2ε and:

a) d(w, y) ≤ ε. This case is impossible; let d(x,w) < ε/2 and note that 2ε ≤ d(x, y) ≤
d(y, w) + d(w, x) < ε+ ε/2, an absurd.

b) ε < d(w, y) ≤ 2ε. In this case, one has |f εw(y)−f εx(y)| = 2− d(x,y)
ε

. In order to obtain

2− d(x,y)
ε

< η, just take d(w, x) < εη. Namely, note that d(y, x) ≤ d(y, w) + d(x,w)

implies −d(w, y) ≤ d(w, x)− d(y, x) ≤ εη − 2ε.
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c) d(w, y) ≥ 2ε. In this case, one has |f εw(y)− f εx(y)| = 0, so one can take any δ > 0.

Thus, set δ = εη in this case.

Therefore, one can set δ = εmin{1/2, η} in order to prove the result. The uniform

convergence of the sequence of functions is immediate.

Lemma 1.2. Let µ ∈M. Then, for each x ∈ X,

dµ(x) = lim inf
ε→0

log fx,ε(µ)

log ε
and dµ(x) = lim sup

ε→0

log fx,ε(µ)

log ε
,

where, for each x ∈ X and each ε > 0,

fx,ε( · ) :M→ [0, 1] is defined by the law fx,ε(µ) :=

∫
f εx(y)dµ(y),

and f εx : X → [0, 1] is defined as in Lemma 1.1. Furthermore, the function fε(µ, x) =

fx,ε(µ) :M×X → [0, 1] is jointly continuous.

Proof. It follows from the definition of f εx that, for each x ∈ X and each ε > 0, fx,ε/2(µ) ≤
µ(B(x, ε)) ≤ fx,2ε(µ). Then, if µ(B(x; ε)) > 0, one has

log fx,ε/2(µ)

log ε
≥ log µ(B(x,ε))

log ε
≥ log fx,2ε(µ)

log ε
,

which proves the first assertion. If µ(B(x; ε)) = 0, given that fx,ε/2(µ) ≤ µ(B(x, ε)), just

set lim supε→0(inf) log fx,ε(µ)

log ε
= +∞.

Note that, for each x ∈ X and each ε > 0, f εx : X → R is a continuous function such

that, for each y ∈ X, χ
B(x,ε/2)

(y) ≤ f εx(y) ≤ χ
B(x,ε)

(y). Given that f εx(y) depends only on

d(x, y), Lemma 1.1 show that f εxn converges uniformly to f εx on X when xn → x.

We combine this remark with Theorems E.1 and E.2 (see Appendix D) in order to

prove that fε(µ, x) is jointly continuous. Let (µm) and (xn) be sequences in M and X,

respectively, such that µm → µ and xn → x. Firstly, we show that

lim
m→∞

lim
n→∞

fε(µm, xn) = lim
m→∞

lim
n→∞

∫
f εxn(y)dµm(y) = fε(µ, x).

Since, for each y ∈ X, |f εxn(y)| ≤ 1, it follows from Dominated Convergence Theorem
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that, for each m ∈ N, lim
n→∞

∫
f εxn(y)dµm(y) =

∫
f εx(y)dµm(y). Now, since f εx is continuous,

it follows from the definition of weak convergence that

lim
m→∞

lim
n→∞

∫
f εxn(y)dµm(y) = lim

m→∞

∫
f εx(y)dµm(y) = fε(µ, x).

The next step consists in showing that, for each n ∈ N, the function ϕn : N → N,

defined by the law ϕn(m) := fε(µm, xn), converges uniformly in m ∈ N to ϕ(m) :=

lim
n→∞

fε(µm, xn) =
∫
f εx(y)dµm(y). Let δ > 0 and fix m ∈ N. Since f εxn(y) converges

uniformly to f εx(y), there exists N ∈ N such that, for each n ≥ N and each y ∈ X,∣∣f εxn(y)− f εx(y)
∣∣ < δ. Then, one has, for each n ≥ N ,

|ϕn(m)− ϕ(m)| =
∣∣∣∣∫ f εxn(y)dµm(y)−

∫
f εx(y)dµm(y)

∣∣∣∣ ≤ ∫ ∣∣f εxn(y)− f εx(y)
∣∣ dµm(y)

< δ.

It follows from Theorem E.2 that lim
n,m→∞

fε(µm, xn) = fε(µ, x). Given that lim
n→∞

fε(µm, xn) =∫
f εx(y)dµm(y) and that lim

m→∞
fε(µm, xn) =

∫
f εxn(y)dµ(y) exist for each m ∈ N and each

n ∈ N, respectively, Theorem E.1 implies that

lim
m→∞

lim
n→∞

fε(µm, xn) = lim
n→∞

lim
m→∞

fε(µm, xn) = lim
n,m→∞

fε(µm, xn) = fε(µ, x).

Hence, if (µn, xn) is some sequence inM×X (endowed with the product topology) such

that (µn, xn) → (µ, x), then lim
n→∞

fε(µn, xn) = fε(µ, x), showing that fε( · , · ) = f · ,ε( · ) is

jointly continuous at (µ, x).

For each t > 0, let ε = 1/t. Since, for each x ∈ X,

dµ(x) = limε→0

log fx,ε(µ)

log ε
= lim

s→∞
sup(inf)t≥s

log fx,1/t(µ)

− log t
,

we set, for each s ∈ N,

βµ(x, s) = sup
t>s

log fx,1/t(µ)

− log t
and β

µ
(x, s) = inf

t>s

log fx,1/t(µ)

− log t
;
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note that, for each x ∈ X, N 3 s 7→ βµ(x, s) ∈ [0,+∞] is non-increasing, whereas

N 3 s 7→ β
µ
(x, s) ∈ [0,+∞] is a non-decreasing function.

Proposition 1.1. Let (X, d) be a compact metric space and let α > 0. Then, each of the

sets

PD = {µ ∈M(X) | dim−P (µ) ≥ α},

HD = {µ ∈M(X) | dimH(µ) = 0}

is a Gδ subset of M(X).

Proof. Since the arguments in both proofs are similar, we just prove the statement for

PD. We show that M(X) \ PD is an Fσ set.

Claim 1. PD =
⋂
s∈N{µ ∈M(X) | µ- ess inf βµ(x, s) ≥ α}.

Let µ ∈ PD. Since, for each x ∈ X, N 3 s 7→ βµ(x, s) ∈ [0,∞] is a non-increasing

function, it follows that, for each s ∈ N, µ- ess inf βµ(x, s) ≥ α.

Now, let µ ∈
⋂
s∈N{ν ∈ M(X) | µ- ess inf βν(x, s) ≥ α}. Then, for each s ∈ N, there

exits a measurable As ⊂ X with µ(As) = 1, such that for each x ∈ As, βµ(x, s) ≥ α. Let

A :=
⋂
s≥1As; then, for each x ∈ A, one has dµ(x) ≥ α; given that µ(A) = 1, the result

follows by Proposition I.2.

Let µ ∈ M(X), let k, s ∈ N, set Zµ(s, k) = {x ∈ X | βµ(x, s) ≤ α − 1/k} and set, for

each l ∈ N,

Ms,k(l) = {ν ∈M(X) | ν(Zν(s, k)) ≥ 1/l}.

Claim 2. Zµ(s, k) is closed.

Let (zn) be a sequence in Zµ(s, k) such that zn → z, and let t > 0. Since for each

fixed µ ∈ M(X), the mapping X 3 x 7→ fx,1/t(µ) ∈ (0, 1] is continuous (see the proof of

Lemma 1.2), the mapping X 3 x 7−→ βµ(x, s) ∈ [0,+∞) is lower semi-continuous, which
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implies that z ∈ Zµ(s, k).

Claim 3. Ws,k = {(µ, x) ∈M(X)×X | βµ(x, s) > α− 1/k} is open.

This is a consequence of the fact that, by Lemma 1.2, the mapping M(X) × X 3
(µ, x) 7−→ βµ(x, s) is lower semi-continuous.

Now, we show that Ms,k(l) is closed. Let (µn) be a sequence in Ms,k(l) such that

µn → µ. Suppose, by absurd, that µ /∈ Ms,k(l); we will find that µn /∈ Ms,k(l) for n

sufficiently large, a contradiction.

If µ /∈ Ms,k(l), then µ(A) > 1 − 1/l where, A = X \ Zµ(s, k). Given that µ is tight

(µ is a probability Borel measure and the space X is Polish), there exists a compact set

C ⊂ A such that µ(C) > 1− 1/l.

The idea is to construct a suitable subset of Ws,k that contains a neighborhood of {µ}×
C. Let, for each x ∈ C, Vx ⊂ Ws,k be an open neighborhood of (µ, x) (such open set exists,

by Claim 3; that is, Vx := B((µ, x); ε) = {(ν, y) ∈M(X)×X | max{ρ(ν, µ), d(x, y)} < ε},
for some suitable ε > 0 (where ρ is any metric defined inM(X) which is compatible with

the weak topology); then, {Vx}x∈C is an open cover of {µ} × C, and since {µ} × C is

a compact subset of M(X) × X, it follows that one can extract from {Vx}x∈C a finite

subcover, {Vxi}ni=1.

We affirm that there exists an ` ∈ N (which depends on C) such that {µn}n≥` ⊂⋂
i(π1(Vxi)). Namely, for each i, there exists an `i such that {µn}n≥`i ⊂ π1(Vxi); set

` := max{`i | i ∈ {1, . . . , n}}, and note that for each i, {µn}n≥` ⊂ π1(Vxi). Set also

I :=
⋂
i(π1(Vxi)) and O :=

⋃
i(π2(Vxi)).

Since for each i, Vxi = π1(Vxi)× π2(Vxi), and given that

{µn}n≥` ×O ⊂ I ×O =
⋃
j

([⋂
i

π1 (Vxi)

]
× π2

(
Vxj
))
⊂
⋃
j

(
π1

(
Vxj
)
× π2

(
Vxj
))

=
⋃
j

Vxj ⊂ Ws,k,
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it follows that, for each n ≥ ` and each y ∈ O, βµn(y, s) > α − 1/k. Moreover, O is an

open set that contains C.

On the other hand, weak convergence implies that

lim sup
n→∞

µn(X \ O) ≤ µ(X \ O) ≤ µ(X \ C) <
1

l
,

from which follows that there exists an ˜̀≥ ` such that, for n ≥ ˜̀, µn(X \ O) < 1/l.

Combining the last results, one concludes that for n ≥ ˜̀, µn(X \ O) < 1/l, and for

each y ∈ O, βµn(y, s) > α− 1/k, so

µn(Zµn(s, k)) ≤ µn(X \ O) <
1

l
;

this contradicts the fact that, for each n ∈ N, µn ∈ Ms,k(l). Hence, µ ∈ Ms,k(l), and

Ms,k(l) is a closed subset of M(X).

Finally, it followsM(X)\PD(α) =
⋃
s∈N
⋃
k∈N
⋃
l∈NMs,k(l) is an Fσ subset ofM(X),

concluding the proof of the proposition.

1.1.2 Dense sets

From now on, we assume that (X, d) is a Polish metric space and that T : X → X is a

Lipschitz function, with Lipschitz constant Λ > 1. Assume also that T−1 : X → X exists

as a Lipschitz function, with Lipschitz constant Λ′ > 1.

Proposition 1.2. Let µ ∈ M(T ). Then, for each x ∈ X, dµ(x) = dµ(Tx), dµ(x) =

dµ(Tx).

Proof. It follows from Birkhoff’s Ergodic Theorem that, for each z ∈ X and each ε > 0,

the limit

ϕ̃
B(z,ε)

(y) = lim
n→∞

1

n

n−1∑
i=0

f εz (T i(y)) (1.1)

33



exists for µ-a.e. y ∈ X, and∫
ϕ̃
B(z,ε)

(y)dµ(y) =

∫
f εz (y)dµ(y) = fz,ε(µ).

Fix x ∈ supp(µ). It is straightforward to show that, for each y ∈ X and each i ∈
N ∪ {0}, one has f

ε/Λ
x (T i(y)) ≤ f εTx(T

i+1(y)). Letting z = x and z = Tx in (1.1),

respectively, one gets ϕ̃
B(x,ε/Λ)

(y) ≤ ϕ̃
B(Tx,ε)

(y) for µ-a.e. y ∈ X, from which follows that

fx,ε/Λ(µ) ≤ fTx,ε(µ).

Case 1: x ∈ supp(µ). Note that, for each η > 0, fx,η(µ) > 0. Let ε = 1/t, t = l/Λ and

s ≥ 1 + 1/Λ; then,

sup
t≥s

log fTx,1/t(µ)

− log t
≤ sup

l≥Λs

log l

log l − log Λ

log fx,1/l(µ)

− log l
≤ log(Λs)

log(Λs)− log Λ
sup
l≥Λs

log fx,1/l(µ)

− log l

= AΛ(s) sup
l≥Λs

log fx,1/l(µ)

− log l
,

where AΛ(s) := log s+log Λ
log s

(since s ≥ 1 + 1/Λ, one has l ≥ Λ + 1).

Using the same idea, one can prove that fz,ε/Λ′(µ) ≤ fT−1z,ε(µ); letting z = Tx, one

gets fTx,ε/Λ′(µ) ≤ fx,ε(µ). Thus, the previous discussion leads to

βµ(Tx, s) ≤ AΛ(s)βµ(x,Λs) and βµ(x, s) ≤ AΛ′(s)βµ(Tx,Λ′s);

one can combine these inequalities and obtain, for each x ∈ X and each s ≥ max{1 +

1/Λ, 1 + 1/Λ′},

βµ(Tx, s) ≤ AΛ(s)βµ(x,Λs) ≤ AΛ(s)AΛ′(Λs)βµ(Tx,Λ · Λ′s).

Now, taking the limit s → ∞ in the inequalities above and observing that AΛ(s) and

AΛ′(s) are decreasing functions such that lims→∞AΛ(Λ′)(s) = 1, one gets dµ(Tx) = dµ(x).

Case 2: x /∈ supp(µ). It follows from the T -invariance of supp(µ) that T (x) /∈ supp(µ);

thus, dµ(Tx) = +∞ = dµ(x).
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The proof that, for each x ∈ X dµ(Tx) = dµ(x), is analogous; therefore, we omit it.

Remark 1.3. If µ ∈Me, since T and T−1 are Lipschitz functions, it follows from Propo-

sition 1.2 that dµ(x) and dµ(x) are constants µ-a.e. (an analogous result can be found in

[13], Theorem 4.1.10 chapter 1).

Lemma 1.3. Let X be a compact metric space. If µ ∈M(T ), then dim+
P (µ) ≥ hµ(T )

log Λ
.

Proof. Fix x ∈ X, n ≥ 1 and ε > 0. Given y ∈ B(x, εΛ−n), one has, for each 0 ≤ i ≤ n,

ρ(T iy, T ix) ≤ Λiρ(x, y) ≤ Λi−nε < ε, which shows that y ∈ B(x, n, ε) := {z ∈ X |
ρ(T iz, T ix) < ε, ∀ 0 ≤ i ≤ n− 1}. Hence, for each x ∈ X and each ε > 0,

dµ(x) ≥ lim sup
n→∞

log µ(B(x, εΛ−n))

log εΛ−n
≥ lim sup

n→∞

log µ(B(x, n, ε))

−n
1

− log ε
n

+ log Λ

≥ lim sup
n→∞

log µ(B(x, n, ε))

−n
1

log Λ
;

it follows that, for µ-a.e. x ∈ X,

dµ(x) ≥ lim
ε→0

lim sup
n→∞

log µ(B(y, εΛ−n))

log εΛ−n
≥ lim

ε→0
lim sup
n→∞

log µ(B(x, n, ε))

−n
1

log Λ

= hµ(T, x)
1

log Λ
, (1.2)

where hµ(T, x) is the so-called local entropy of µ at x. One also has, using Brin-Katok

Theorem, that
∫
hµ(T, x)dµ(x) = hµ(T ) (the compactness of X is required in this step;

see [10]). Hence, there exists a measurable set B, with µ(B) > 0, such that, for each

x ∈ B, dµ(x) ≥ hµ(T )

log Λ
. The result is now a consequence of Proposition I.2.

Lemma 1.4. Let X be a Polish metric space and let µ ∈Me. Then, dim−P (µ) ≥ hµ(T )

log Λ
.

Proof. Since µ is ergodic, it follows from Proposition 1.2 that dµ(x) is constant for µ-a.e.x

(this constant may be infinite).

One also has, by Lemma C.1, that
∫
hµ(T, x)dµ(x) = µ- ess inf hµ(T, x), and then, by

Theorem C.2, that
∫
hµ(T, x)dµ(x) ≥ hµ(T ). Thus, by inequality (1.2), one gets, for
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µ-a.e. x ∈ X,

dµ(x) =

∫
dµ(x)dµ(x) ≥

∫
hµ(T, x)

1

log Λ
dµ(x) ≥ hµ(T )

1

log Λ
.

The result is obtained again by an application of Proposition I.2.

Lemma 1.5 (Lemma 6 in [51]). Let µ ∈ M(T ) be such that µ(RZ) = 1, and let s0 > 0.

Then, µ can be approximated by a T -periodic measure µx ∈ M(T ), where x = (xi) is in

RZ, x has period s ≥ s0 and xi 6= xj if i 6= j, i, j = 1, . . . , s.

The next result is an extension of Lemma 1.5 to X =
∏+∞
−∞M , where M is perfect and

compact (the hypothesis of M being perfect is required to guarantee that one can always

choose the periodic point x in the statement of Lemma 1.6 in such way that xi 6= xj if

i 6= j, i, j = 1, . . . , s; see Remark 3.4 in [38]). Lemma 2.3 of Chapter II is a weak version of

Lemma 1.6, actually it is sufficient (see Section 2.2 of Chapter II for a proof of Lemma 2.3).

Lemma 1.6. Let X =
∏+∞
−∞M , where M is perfect and compact, let µ ∈ M(T ) and

let s0 > 0. Then, µ can be approximated by a T -periodic measure µx ∈ M(T ) such that

x ∈ X has period s ≥ s0 and xi 6= xj if i 6= j, i, j = 1, . . . , s.

Remark 1.4. Since, for each x ∈ X, µx(·) = 1
kx

∑kx−1
i=0 δT ix(·), where kx is the period of

x, the measure presented in the statement of Lemma 1.6 is clearly supported on X, so it

belongs to M(T ).

Lemma 1.7 (Lemma 7 in [51]). Let µ ∈ M(T ) be such that µ(RZ) = 1, and let K > 0.

Then, every neighborhood V of µ contains a ρ, with ρ(X) = 1, such that hρ(T ) > K.

Proposition 1.3 (Proposition 6.1 in [38]). Let µn → µ in the space of all normalized Borel

measures in a compact metric space Y . Let E be a Borel subset of Y such that µn(E) = 1

for all n ≥ 0. Then,
∫
fdµn →

∫
fdµ for any bounded Borel measurable function f on Y

such that f |E is continuous.

The next result is an extension of Lemma 1.7 to the space X =
∏+∞
−∞M (with M a

perfect Polish space) proved using Lemma 1.6 and Proposition 1.3. We leave the details

for the dedicated reader.
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Proposition 1.4. Let M a perfect Polish space, µ ∈ M(T ) and let K > 0. Then, every

neighborhood V of µ contains an invariant measure ρ ∈M(T ) such that hρ(T ) ≥ K.

Proof. Take Vµ(f1, · · · , fd; δ), L and κ > 0 as in Proposition 2.7. The proof is analogous

to proof of Proposition 2.7, with the difference that one should take s0 > 0 such that

κ log(s0 − 1)− κ log κ− (1− κ) log(1− κ) ≥ K.

It follows, as in Proposition 2.7, from Lemma 1.6 that there exists a T -periodic point

w = (wi) ∈ MZ, with period s ≥ s0, such that wi 6= wj for each i 6= j, i, j = 1, . . . , s, and

µw ∈ Vµ(f1, · · · , fd; δ/2).

Following the proof of Lemma 7 in [51], one defines, for each fixed s ≥ s0, a Markov

chain ρ whose states are w1, . . . , ws, whose initial probabilities are given by the s-tuple

(1/s, . . . , 1/s), and whose transition probabilities are given by the s× s-matrix pij, where

ps 1 = 1− κ,

pi i+1 = 1− κ, for i = 1, . . . , s− 1,

pi j =
κ

s− 1
, otherwise.

The entropy for a stochastic process given by a Markov chain with initial probabilities

πi (1 ≤ i ≤ s) and transition matrix pij (1 ≤ i, j ≤ s) is given by
∑

i,j πipij · log pij.

Therefore, one obtains

hρ(T ) ≥ κ log(s0 − 1)− κ log κ− (1− κ) log(1− κ) ≥ K.

To evaluate the integral
∣∣∫ fjdµw − ∫ fjdρ∣∣, we proceed as in the Proposition 2.7 in order

to show that ρ ∈ Vµw(f1, · · · , fd; δ/2), from which follows that ρ ∈ Vµ(f1, · · · , fd; δ).

Proposition 1.5. Let L > 0. Then, {µ ∈Me | dim−P (µ) ≥ L} is a dense subset of Me.

Proof. Let δ > 0, and let µ ∈ Me. It is straightforward to show that T is a Lipschitz

function with constant Λ = 2. SetK := L log 2. It follows from the proof of Proposition 1.4
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(see Lemma 7 in [51]) that given any neighborhood of µ (in the induced topology) of the

form Vµ(f1, . . . , fr; δ) = {ν ∈ Me | |
∫
fi dν −

∫
fi dµ| < δ, i = 1, . . . , r} (where δ > 0

and each fi : X → C is continuous and bounded; such sets form a sub-basis of the weak

topology), there exists a measure ζ ∈ Vµ(f1, . . . , fr; δ) such that hζ(T ) ≥ K. Now, by

Lemma 1.4, one has dim−P (ζ) ≥ hζ(T )

log 2
= K 1

log 2
= L.

Proposition 1.6. Let M be a perfect and separable metric space. Then, the set {µ ∈
Me | dim+

H(µ) = 0} is dense in Me.

Proof. Let µ be the T -periodic measure associated with the T -period point x ∈ X, and

denote its period by k. Naturally, µ(·) = 1
k

∑k−1
i=0 δf i(x)(·), and for each i = 0, · · · , k − 1,

one has

dµ(T i(x)) = lim sup
r→0

log µ(B(T i(x), r))

log r
= lim sup

r→0

− log k

log r
= 0.

The result follows now from the fact that the set of T -periodic measures is dense in

Me (see Theorem 3.3 in [39]).

Remark 1.5. The result stated in Proposition 1.6 is valid for any topological dynamical

system (X,T ) such that the set of T -periodic measures is dense inMe; this is particularly

true for systems which satisfy the specification property (see Remark 1.2 for more details).

Proof (Theorem 1.1).

III. Note that, by Propositions 1.1, 1.5 and item I of Theorem 1.1, PD =
⋃
L≥1 PD(L)

is a countable intersection of dense Gδ subsets of M(T ).

IV. It follows from Propositions 1.1 and 1.6 that HD is a dense Gδ subset of Me. The

result is now a consequence of item I in Theorem 1.1.

2

The next statement says that each µ ∈ HD ∩ PD ∩ CX is supported on a dense Gδ

subset of X.
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Proposition 1.7. Let µ ∈ PD∩HD∩CX . Then, each of the sets Dµ = {x ∈ X | dµ(x) =

∞} and Dµ = {x ∈ X | dµ(x) = 0} is a dense Gδ subset of X.

Proof. We just present the proof that Dµ is a dense Gδ subset of X.

Dµ is a Gδ set in X. Let α > 0, let s ∈ N, and set Zµ,s(α) = {x ∈ X | βµ(x, s) ≤ α}.
Following the proof of Claim 2 in Proposition 1.1, it is clear that Zµ,s(α) is closed. Thus,

taking α = n ∈ N, it follows that Dµ =
⋂
n∈N

⋂
s∈N(X \ Zµ,s(n)) is a Gδ subset of X.

Dµ is dense in X. Since µ ∈ PD, one has µ(Dµ) = 1. Suppose that Dµ is not

dense; then, there exist x ∈ X and ε > 0 such that B(x, ε) ∩Dµ = ∅. This implies that

1 = µ(Dµ)+µ(B(x, ε)), which is an absurd, since µ(B(x, ε)) > 0 (recall that supp(µ) = X,

given that µ ∈ CX).

1.2 Rates of recurrence and quantitative waiting time

indicators almost everywhere

In this section, we present the proof of items V-VIII of Theorem 1.1. This section presents

the counterparts, for R(x), R(x), R(x, y) and R(x, y), of the results presented in Sec-

tion 1.1. Once again, we assume that (X, d) is a Polish metric space and that T : X → X

is a Lipschitz function, with Lipschitz constant Λ > 1. Assume also that T−1 : X → X

exists as a Lipschitz function, with Lipschitz constant Λ′ > 1.

1.2.1 Sets of ergodic measures with zero lower and infinity upper

rates of recurrence

Proposition 1.8. Let (X,T ) be a topological dynamical system and let α > 0. Then, each

of the sets

R = {µ ∈M(T ) | µ- ess inf R(x) ≥ α},

R = {µ ∈M(T ) | µ- ess supR(x) = 0}
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is Gδ subset of M(T ).

Proof. Since the arguments in both proofs are similar, we just prove the statement for

R. We show that M(T ) \ R is an Fσ set. We begin noting that R =
⋂
s∈N{µ ∈ M(T ) |

µ- ess inf γ(x, s) ≥ α} (see the proof of Proposition 1.1 for the proof of an analogous

statement).

Let l, s ∈ N, set Zs,l = {x ∈ X | γ(x, s) ≤ α− 1/l}, and set for each k ∈ N,

Ms,l(k) = {µ ∈M(T ) | µ(Zs,l) ≥ 1/k}.

Claim. Zs,l is closed.

Let (zn) be a sequence in Zs,l such that zn → z. Since, for each n ∈ N, γ(zn, s) =

sups≥t
log τ1/t(zn)

log t
≤ α− 1/l, it follows that for each t ≥ s, τ1/t(zn) ≤ tα−1/l. Now, fix t ≥ s;

then, there exists a sequence (kn), kn ∈ N, such that for each n ∈ N, kn ≤ tα−1/l and

d(T kn(zn), zn) ≤ 1/t.

Given that (kn) is bounded, there exist a sub-sequence (knj), k ≤ tα−1/l and j0 ∈ N

such that for each j ≥ j0, knj = k. Since for each j ∈ N, d(T knj (znj), znj) ≤ 1/t, it follows

from the continuity of T k and the previous statements that d(T k(z), z) ≤ 1/t, which proves

that τ1/t(z) ≤ tα−1/l. Given that t ≤ s is arbitrary, one gets supt≥s
log τ1/t(z)

log t
≤ α − 1/l,

which concludes that z ∈ Zs,l.

Now, we show that Ms,l(k) is closed. Indeed, fix s ∈ N and let (µn) be a sequence in

Ms,l(k) such that µn → µ. Suppose that µ /∈ Ms,l(k); then, µ(A) > 1− 1/k, where A =

X \Zs,l. Since, by Claim, A is open in X and µn → µ, it follows that lim infn→∞ µn(A) ≥
µ(A) > 1− 1/k, which shows that there exists an ` ∈ N such that µ`(A) > 1− 1/k. This

contradicts the fact that µ` ∈Ms,l(k). Hence, µ ∈Ms,l(k).

Given thatMs,l(k) is closed, it follows thatM(T )\R(α) =
⋃
s∈N
⋃
k∈N
⋃
l∈NMs,l(k) =

{µ ∈M(T ) | µ- ess inf γµ(x, s) < α} is an Fσ subset of M(T ).
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The next results show that such sets are dense for the full-shift system.

Proposition 1.9. Let (X,T ) be the full-shift system, with M a Polish metric space. Then,

R = {µ ∈Me | µ- ess supR(x) = 0} is a dense subset of Me.

Proof. Note that if µx is a T -periodic measure, then for each y ∈ O(x), R(y) = 0. The

result follows, therefore, from the fact that the set of T -periodic measures is dense inMe

(this is Theorem 3.3 in [39]).

Proposition 1.10. Let (X,T ) be the full-shift system, with M a perfect and compact

metric space, and let L > 0. Then, R(L) = {µ ∈ Me | µ- ess inf R(x) ≥ L} is a dense

subset of M(T ).

Proof. Fix x ∈ X, n ≥ 1 and ε > 0. It follows from the argument presented in the proof

of Lemma 1.4 that B(x, ε2−n) ⊂ B(x, n, ε) (recall that the full-shift system is Lipschitz

continuous). Note that τε2−n(x) ≥ Rn(x, ε), where Rn(x, ε) = inf{k ≥ 1 | T k(x) ∈
B(x, n, ε)} is the nth return time to the dynamical ball B(x, n, ε). Now, as in the proof

of Proposition 1.5, for each µ ∈ M(T ) and each neighborhood Vµ(f1, . . . , fn; δ) (in the

induced topology), there exists a measure ζ ∈ Vµ(f1, . . . , fn; δ) ∩Me such that hζ(T ) ≥
L log 2. The result is now a consequence of Theorem C.3 and Proposition C.1, which state

that R(x) ≥ hζ(T )

log 2
= L, for ζ-a.e.x.

Remark 1.6. Proposition 1.10 can be extended to the case where M is a Polish metric

space using an adapted version of Lemma 1.4. Namely, let µ ∈ Me. It follows from the

proof of Theorem A in [56] that h(T, x) := limε→0 lim infn→∞
1
n

logRn(x, ε) is T -invariant

(and therefore, constant for µ-a.e.x; this constant may be infinite), where Rn(x, ε) :=

inf{k ∈ N | fk(x) ∈ B(x, n, ε)}, and that hµ(T ) ≤ h(T, x) for µ-a.e.x; as in the proof

of Katok’s Theorem, this inequality is also valid for Polish spaces (see the discussion

preceding Theorem 2.6 in [44]).

Since R(x) is also T -invariant, it follows from the previous discussion and from the

argument presented in the proof of Proposition A in [56] that, for µ-a.e. x ∈ X,

R(x) =

∫
R(x)dµ(x) ≥

∫
hµ(T, x)

log 2
dµ(x) ≥ hµ(T )

log 2
.
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Proof (Theorem 1.1).

V. The result is a consequence of Propositions 1.8, 1.9 and item I of Theorem 1.1.

VI. It follows from Proposition 1.8, Remark 1.6 and item I of Theorem 1.1, since R =⋂
L≥1R(L).

2

Remark 1.7. There is an alternative proof to the fact thatR = {µ ∈Me | µ- ess inf R(x) =

0} is residual inM(T ). In fact, this result can be seen as a direct consequence of Theorem

2 in [6] and Theorem 1.1-III, since it follows that, for each µ ∈ HD, µ- ess supR(x) ≤
dimH(µ) = 0.

The following result states that each typical measure obtained in Theorem 1.1 is sup-

ported on the dense Gδ set R = {x ∈ X | R(x) = 0 and R(x) =∞}.

Proposition 1.11. Let (X,T ) the full-shift system, where M is a perfect and separable

metric space. Then, each of the sets R− = {x ∈ X | R(x) = ∞} and R− = {x ∈ X |
R(x) = 0} is a dense Gδ subset of X. Moreover, for each µ ∈ R∩R∩CX , µ(R−∩R−) = 1.

Proof. We just present the proof that R− is a dense Gδ subset of X.

R− is a Gδ set in X. Let α > 0, s ∈ N, and set Zs(α) = {x ∈ X | γ(x, s) ≤ α}.
Following the proof of Claim in Proposition 1.8, it is clear that Zs(α) is closed. Thus,

taking α = n ∈ N, it follows that R− =
⋂
n∈N

⋂
s∈N(X \ Zs(n)) is a Gδ set in X.

R− is dense in X. Let µ ∈ R ∩ CX . Then, µ(R−) = 1. Suppose that R− is not

dense; so, there exist x ∈ X and ε > 0 such that B(x, ε) ∩ R− = ∅. This implies that

1 = µ(R−) + µ(B(x, ε)), which is an absurd, since µ(B(x, ε)) > 0.
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1.2.2 Sets of ergodic measures with zero lower and infinity upper

quantitative waiting time indicators almost everywhere

Now, we present equivalent results, to those already obtained in this section, for the

quantitative waiting time indicators.

Let, for each (x, y) ∈ X × X and each s ∈ N, γ(x, y, s) := supt>s
log τ1/t(x,y)

log t
and

γ(x, y, s) := inft>s
log τ1/t(x,y)

log t
.

Proposition 1.12. Let (X,T ) be a topological dynamical system and let α > 0. Then,

the set

Rα = {µ ∈M(T ) | (µ× µ)- ess supR(x, y) ≤ α}

is a Gδ subset of M(T ).

Proof. Using the same ideas presented in the proof of the Proposition 1.8, we show that

Rα is a Gδ subset of M(T ) by showing that M(T ) \ Rα =
⋃
s∈N{µ ∈ M(T ) | (µ ×

µ)- ess sup γ
µ
(x, y, s) > α} is an Fσ set.

Let l, s ∈ N, set Zs,l = {(x, y) ∈ X ×X | γ(x, y, s) ≥ α+ 1/l} and set, for each k ∈ N,

Ms,l(k) = {µ ∈M(T ) | (µ× µ)(Zs,l) ≥ 1/k}.

The proofs that Zs,l andMs,l(k) are closed sets follow the same arguments presented in

the proof of Proposition 1.8 (here, one uses Theorem 8.4.10 in [8] for the product measure

µ× µ). Finally, since M(T ) \R(α) =
⋃
s∈N
⋃
l∈N
⋃
k∈NMs,l(k), we are done.

Proof (Theorem 1.1).

VII. Since, by Proposition 1.12, R = {µ ∈Me | (µ×µ)- ess supR(x, y) = 0} = ∩k≥1R1/k,

one just needs to prove that R is dense. Let µz be a T -periodic measure. Then,
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for each x, y ∈ O(z), R(x, y) = 0. The result follows from the fact that the set of

T -periodic measures is dense in Me and from item I in Theorem 1.1.

VIII. The result is a direct consequence of Theorem 1.1 (IV) and the second inequality

in (3) (see Theorem 4 in [20]).

2

Proposition 1.13. Let (X,T ) the full-shift system, where M is a perfect and separable

metric space. Then, each of the sets S− = {(x, y) ∈ X × X | R(x, y) = ∞} and S− =

{(x, y) ∈ X × X | R(x, y) = 0} is a dense Gδ subset of X × X. Moreover, for each

µ ∈ R ∩R ∩ CX , (µ× µ)(S− ∩S−) = 1.
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CHAPTER II

GENERALIZED FRACTAL DIMENSIONS OF
INVARIANT MEASURES OF FULL-SHIFT

SYSTEMS OVER UNCOUNTABLE ALPHABETS:
GENERIC BEHAVIOR

In this chapter, we are interested in extending the analysis of the previous chapter to

the so-called upper and lower q-generalized fractal dimensions of the T -invariant measures,

D±q (µ), with q > 0 (Definition I.16). We shall also explore the connection between such

properties and the orbital behavior of the full-shift system through the upper and lower

q-correlation dimensions at a point x ∈ X, for q ∈ N \ {1} (Definition (4)). All results in

this Chapter appear in our article published in Forum Mathematicum,V33, N2, p. 435-450

([12], in January 2021).

As in Chapter I, we begin this chapter making some comments and observations about

the results obtained here, as well as some of their dynamical and topological consequences.

The proofs of the main results, stated in Theorems 2.1 and 2.2, are presented in Section 2.1,

Section 2.2 and Section 2.3.

Our first central result (in this chapter) establishes that ifMp(T ) (the set of T -periodic

measures) is dense in M(T ), then generically, for each s ∈ (0, 1), µ ∈ M(T ) has s-lower

generalized fractal dimension equal to zero. This density is particularly true for dynamical

systems satisfying the specification property (such as Axiom A systems [53] and the actions

of discrete countable residually finite amenable groups on compact metric spaces with

specification property [43]), as previously discussed.
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Here, we let (X, d) be a compact metric space.

Theorem 2.1. Let (X,T ) be a topological dynamical system and suppose that Mp(T ) is

dense in M(T ). Then, for each s ∈ (0, 1),

FD = {µ ∈M(T ) | D−µ (s) = 0}

is a residual subset of M(T ).

The next result is a direct consequence of Theorem 2.1 and Proposition I.2.

Corollary 2.1. Let (X,T ) be a topological dynamical system and suppose that Mp(T ) is

dense in M(T ). Then,

HD = {µ ∈M(T ) | dim+
H(µ) = 0}

is a residual subset of M(T ).

The first consequence of Corollary 2.1 is that a typical invariant measure is supported

on a set Z ⊂ X satisfying dimH(Z) = 0; moreover, given that dimH(Z) ≥ dimtop(Z), it

follows that Z is totally disconnected. Now, if (X,T ) satisfies the specification property,

it is known that CX(T ), the set of invariant measures with supp(µ) = X, is a dense Gδ

subset of M(T ) (see [15, 53]); thus, in this case, Z is a totally disconnected and dense

subset of X.

One must compare Corollary 2.1 with Theorem 1.1; although X =
∏+∞
−∞M may not

be compact in Theorem 1.1 (III), X must be endowed with a metric such that T and T−1

are both Lipschitz (here, it is only required that the induced topology and the product

topology are compatible).

Corollary 2.2. Let (X,T ) be a topological dynamical system and suppose that Mp(T ) is

dense in M(T ). Then,

R = {µ ∈M(T ) | R(x) = 0, for µ-a.e. x}

is a residual subset of M(T ).
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As before, one may establish the same kind of comparison between Corollary 2.2 and

Theorem 1.1-(V): here, it is required that X is compact (there, it is sufficient for X to be

Polish); here, the metric may be any one compatible with the product topology (there, it

must be such that T and T−1 are both Lipschitz).

Returning to the full-shift system, we consider now the case where X is perfect and

compact, and two different settings: X is endowed with any metric compatible with the

product topology, or it is endowed with a sub-exponential metric of the form

r(x, y) =
∑
|n|≥0

min

{
1

a|n| + 1
, d(xn, yn)

}
, (2.1)

where x = (. . . , x−n, . . . , xn, . . .), y = (. . . , y−n, . . . , yn, . . .), with (an) any monotone in-

creasing sequence such that
∑

k≥0
1

ak+1
< ∞ and, for each α > 0, limk→∞

ak
eαk

= 0 (for

instance, let for each n ∈ N ∪ {0}, an = n2); naturally, these metrics induce topologies in

X which also are compatible with the product topology.

Our second central result is stated in the following theorem.

Theorem 2.2. Let q > 1. Then,

CD = {µ ∈M(T ) | D+
µ (q) = +∞}

is a dense Gδ subset of M(T ).

Theorems 1.1, 2.1 and 2.2 may be combined with Proposition I.2 in order to produce

the following result. Let q ∈ N\{1}; if µ ∈ FD∩CD, then there exists a Borel set Z ⊂ X,

µ(Z) = 1, such that for each x ∈ Z, one has αq(x) = D−µ (q) = 0 and αq(x) = D+
µ (q) =∞.

Let x ∈ Z; since αq(x) = 0, it follows that given 0 < α � 1 and R > 0, there

exist a radial sequence (εk), with εk ∈ (0, R), and an Nk = Nk(x, α,R) ∈ N such that,

for each n > Nk, one has Cq(x, n, εk) ≥ ε
(q−1)α
k . Thus, there exists a scale (defined by

(εk)) such that Fk = card {(i1 · · · iq) ∈ {0, 1, · · · , n}q | r(T ij(x), T il(x)) ≤ εk for each

0 ≤ j, l ≤ q} ≥ ε
(q−1)α
k nq; in this scale, the quantity Fk is of order nq for each n and each

k large enough. This means that, at least in this scale, the orbit of a typical point (with
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respect to µ) is very “tight” (it is some sense, similar to a periodic orbit).

Nonetheless, since αq(x) = +∞, it follows that given β � 1 and S > 0, there exist a

radial sequence (s`), with s` ∈ (0, S), and an N` ∈ N such that, for each n > N`, one has

Cq(x, n, s`) ≤ s
(q−1)β
` . Thus, there exists a scale such that

P` = card {(i1 · · · iq) ∈ {0, 1, · · · , n}q | r(f ij(x), f il(x)) ≤ s` for each 0 ≤ j, l ≤ q}

≤ s
(q−1)β
` nq;

in this scale, P` is of lesser order than nq, which means that (at least in this scale) the

orbit of a typical point spreads fast (leading to a behavior which is similar to a hyperbolic

system).

In summary, the orbit of a point x ∈ Z has a very complex structure, being “tight”

for some spatial scale, and spreading rapidly throughout the space for another scale.

Combining Corollary 2.1 and Theorem 2.1 with Proposition I.2, one gets the following

result.

Corollary 2.3. Let (X,T ) be the full-shift system, X =
∏∞
−∞M , where M is a perfect

and compact metric space. Let X be endowed with the metric (2.1). Then,

HP = {µ ∈Me(T ) | dim+
H(µ) = 0 and dim−P (µ) =∞}

is a residual subset of M(T ).

Again, one may compare Corollary 2.3 with Theorem 1.1(III-IV). Here, X is perfect,

compact and endowed with the metric (2.1). There, X is perfect, Polish, and endowed

with any metric such that T and T−1 are both Lipschitz.

By Corollary 2.3, each µ ∈ HP∩CX(T ) is supported on a set Z ⊂ X with dimH(Z) = 0

and dimP (Z) = ∞. Thus, Z is a dense and totally disconnected subset of X (suppose

that Z is not dense; then, there exist x ∈ X and ε > 0 such that B(x, ε) ∩ Z = ∅. This

results in 1 = µ(Z) + µ(B(x, ε)), which is absurd since µ(B(x, ε)) > 0).
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Finally, we may also say something about the typical lower and upper entropy dimen-

sions of an invariant measure. Combining Theorems 2.1 and 2.2 with Proposition I.2, the

following result holds.

Corollary 2.4. Each of the sets

ED− = {µ ∈M(T ) | D−µ (1) = 0},

ED+ = {µ ∈M(T ) | D+
µ (1) = +∞}

is residual in M(T ).

2.1 Gδ sets

In this section, X is always a compact metric space.

2.1.1 Gδ sets for s ∈ (0, 1)

Let µ ∈M, let s ∈ (0, 1) and let G = {B(xj, ε)} be some countable covering of X by balls

of radius ε > 0. Let G̃ = {B(xi, ε)} ⊂ G be a sub-covering of X that also covers supp(µ).

For each x ∈ B(xi, ε), one has B(xi, ε) ⊂ B(x, 2ε), from which follows that, for each

x ∈ B(xi, ε) ∩ supp(µ), µ(B(xi, ε))
s−1 ≥ µ(B(x, 2ε))s−1; hence,

Iµ(s, 2ε) =

∫
supp(µ)

µ(B(x, 2ε))s−1dµ(x) ≤
∑
xi∈G̃

∫
B(xi,ε)∩supp(µ)

µ(B(x, 2ε))s−1dµ(x)

≤
∑
xi∈G̃

∫
B(xi,ε)∩supp(µ)

µ(B(xi, ε))
s−1dµ(x) =

∑
xi∈G̃

µ(B(xi, ε))
s

≤
∑
xj∈G

µ(B(xj, ε))
s (2.2)

(by x ∈ G one means that B(x, ε) ∈ G; we will use this notation throughout the text).

Naturally, sinceX is a compact metric space, one can assume, without loss of generality,
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that G is always a finite covering of X.

Definition 2.1. Let µ ∈M. One defines, for each s ∈ (0, 1) and each ε > 0,

Sµ(s, ε) = inf
G

∑
xj∈G

µ(B(xj, ε))
s,

where the infimum is taken over all finite coverings, G, of X by balls of radius ε (as above).

Remark 2.1. One must compare Definition 2.1 with Definition (8.6) in [42].

Definition 2.2. Let µ ∈M. One defines, for each s ∈ (0, 1) and each ε > 0,

Wµ(s, ε) = inf
G

∑
xj∈G

fε(µ, xj)
s,

where the infimum is taken over all finite coverings, G, of X by balls of radius ε, and

fε(µ, xj) is defined in the statement of Lemma 1.2.

Proposition 2.1. Let s ∈ (0, 1) and let µ ∈M. Then,

d−µ (s) := lim inf
ε→0

logWµ(s, ε)

(s− 1) log ε
= lim inf

ε→0

logSµ(s, ε)

(s− 1) log ε
.

Moreover, D−µ (s) ≤ d−µ (s).

Proof. Let ε > 0. Then, one has

Iµ(s, ε) ≤ Sµ(s, ε/2) ≤ Wµ(s, ε/2) ≤ Sµ(s, ε),

from which the results follow. The first inequality above comes from (2.2). The remaining

inequalities come from µ(B(x, ε/2))s ≤ fε/2(µ, x)s ≤ µ(B(x, ε))s, valid for each x ∈ X.

Remark 2.2. One may compare Proposition 2.1 with Theorem 8.4 (1) in [42].

Proposition 2.2. Let ε > 0, let s ∈ (0, 1), and let G = {B(xl, ε)}Ll=1 be a finite covering

of X by open balls of radius ε. Then, the function

HG :M−→ R+, HG(µ) =
L∑
l=1

fε(µ, xl)
s,
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is continuous in the weak topology.

Proof. Let (µn) be a sequence in M such that µn → µ. Since, for each l = 1, . . . , L,

the mapping M 3 µ 7→ fε(µ, xl) ∈ R+ is continuous (by Lemma 1.2), it follows that

HG(µ) =
∑

l∈L fε(µ, xl)
s is also continuous, being a finite sum of continuous functions.

Proposition 2.3. Let s ∈ (0, 1). Then, D∗− = {µ ∈ M | d−s (µ) = 0} is a Gδ subset of

M.

Proof. Let µ ∈ M and let ε > 0. Define h :M→ (0,+∞) by the law h(µ) = Wµ(s, ε) =

infG
∑

xj∈G fε(µ, xj)
s (where the infimum is taken over all finite coverings, G, of X by open

balls of radius ε) and gε : (0,+∞) → R by the law gε(r) = log(r)
(s−1) log ε

. Note that, for each

k ∈ N, g−1
ε ((−∞, 1/k)) = (0, ak), where ak = g−1

ε (1/k).

It follows from Proposition 2.2 that h is upper semicontinuous, and thus, for each

k ∈ N, (gε ◦ h)−1((−∞, 1/k)) = h−1 (g−1
ε ((−∞, 1/k))) = h−1((0, ak)) is open in M. Since

D∗− =

{
µ ∈M | lim inf

ε→0

logWµ(s, ε)

(s− 1) log ε
= 0

}
=

⋂
k∈N

⋂
l∈N

⋃
t>l

{
µ ∈M | logWµ(s, 1/t)

(s− 1) log 1/t
<

1

k

}
=

⋂
k∈N

⋂
l∈N

⋃
t>l

(g1/t ◦ h)−1((−∞, 1/k)),

the result follows.

2.1.2 Gδ sets for q > 1

Lemma 2.1. Let, for each q > 1 and each ε > 0, M3 µ 7→ Jµ(q, ε) ∈ [0, 1] be defined by

the law

Jµ(q, ε) =

∫
fε(µ, x)q−1dµ(x).

Then,

D±µ (q) = lim sup
ε→0

(inf)
log Jµ(q, ε)

log(ε)
,
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where fε(µ, x) =
∫
f εx(y)dµ(y) is defined in the statement of Lemma 1.2. Moreover, the

mapping M3 µ 7→ Jµ(q, ε) ∈ [0, 1] is continuous.

Proof. The proof is divided into the following steps.

Step 1. Note that, for each ε ∈ (0, 1), Iµ(q, ε) ≤ Jµ(q, ε) ≤ Iµ(q, 2ε). Then,

log Iµ(q, ε)

log(ε)
≥ log Jµ(q, ε)

log(ε)
≥ log Iµ(q, 2ε)

log(ε)
,

from which follows that

D±µ (q) = lim sup
ε→0

(inf)
log Iµ(q, ε)

(q − 1) log(ε)
= lim sup

ε→0
(inf)

log Jµ(q, ε)

(q − 1) log(ε)
.

Step 2. We prove that, for each ε > 0, the mapping M 3 µ 7→ Jµ(q, ε) ∈ [0, 1] is

continuous. Let (µn) and (νm) be sequences in M such that µn → µ and νm → ν. Set

Jµ,ν(q, ε) :=
∫ (∫

f εx(y)dµ(y)
)q−1

dν(x). We shall prove that

lim
n,m→∞

Jµn,νm(q, ε) = lim
n,m→∞

∫ (∫
f εx(y)dµn(y)

)q−1

dνm(x) = Jµ,ν(q, ε).

Firstly, we show that

lim
m→∞

lim
n→∞

∫
fε(µn, x)q−1dνm(x) = Jµ,ν(q, ε).

Since f εx(·) is continuous and µn → µ, it follows that limn→∞ fε(µn, x) =
∫
f εx(y)dµ(y).

Clearly, for each x ∈ X and each n ∈ N, |fε(µn, x)|q−1 ≤ 1; thus, by the Dominated

Convergence Theorem,

lim
m→∞

lim
n→∞

∫
fε(µn, x)q−1dνm(x) = lim

m→∞

∫
fε(µ, x)q−1dνm(x). (2.3)

Note that, for each µ ∈ M, the mapping X 3 x 7→ fε(µ, x) ∈ R+ is continuous. Indeed,

let (xl) be a sequence in X such that xl → x. Since f εxl(·) converges uniformly to f εx(·),
and for each y ∈ X and each l ∈ N, |f εxl(y)| ≤ 1, it follows again from the Dominated
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Convergence Theorem that

lim
l→∞

fε(µ, xl) = lim
l→∞

∫
f εxl(y)dµ(y) =

∫
f εx(y)dµ(y) = fε(µ, x).

Thus, one gets from (2.3) that

lim
m→∞

∫
fε(µ, x)q−1dνm(x) =

∫
fε(µ, x)q−1dν(x) = Jµ,ν(q, ε).

Now, we show that for each n ∈ N, the function ϕn : N → N defined by the law

ϕn(m) := Jµn,νm(q, ε), converges uniformly on m ∈ N to ϕ(m) := limn→∞ Jµn,νm(q, ε) =∫
fε(µ, x)q−1dνm(x).

Namely, let δ > 0 and let m ∈ N. Since (M, r1)×(X, ρ) is compact and, by Lemma 1.2,

fε( · , · ) :M×X → [0, 1] is continuous, fε( · , · ) is in fact uniformly continuous onM×X.

Note also that the function h : [0, 1]→ [0, 1], given by the law h(x) = xq−1, is continuous

on [0, 1]; then, h ◦ f : M× X → [0, 1] is uniformly continuous. Hence, there exists an

η > 0 such that, for each (µ̃, x̃) ∈ M × X and each (µ, x) ∈ B((µ̃, x̃), η) := {(ν, y) ∈
M×X | d((µ̃, x̃), (ν, y)) < η}, |fε(µ, x)q−1− fε(µ̃, x̃)q−1| < δ (M×X is endowed with the

product metric d((µ, x), (ν, y)) = r1(µ, ν) + ρ(x, y), whose induced topology is equivalent

to the product topology in M×X).

Since µn → µ, there exists an N ∈ N such that, for each n > N , r1(µn, µ) < η. Thus,

for each x ∈ X and each n > N , d((µn, x), (µ, x)) = r1(µn, µ) + ρ(x, x) < η, which results

in (µn, x) ∈ B((µ, x), η). Thus, by the uniform continuity of h ◦ f , it follows that, for each

x ∈ X and each n > N ,
∣∣∣(∫ f εx(y)dµn(y)

)q−1 −
(∫

f εx(y)dµ(y)
)q−1

∣∣∣ < δ. Then, for each
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n > N and each m ∈ N,

|ϕn(m)− ϕ(m)| =

∣∣∣∣∫ fε(µn, x)q−1dνm(x)−
∫
fε(µ, x)q−1dνm(x)

∣∣∣∣
≤

∫ ∣∣∣∣∣
(∫

f εx(y)dµn(y)

)q−1

−
(∫

f εx(y)dµ(y)

)q−1
∣∣∣∣∣ dνm(x)

<

∫
δ dνm(x)

= δ.

This proves that ϕn(m) → ϕ(m) uniformly on m ∈ N. It follows, therefore, from

Theorem 2.15 in [23] that

lim
n,m→∞

Jµn,νm(q, ε) = lim
n,m→∞

∫ (∫
f εx(y)dµn(y)

)q−1

dνm(x) = Jµ,ν(q, ε).

Since Jµ(q, ε) is the restriction of Jµ,ν(q, ε) to the diagonal set D ⊂M×M, one gets

lim
n→∞

Jµn,µn(q, ε) = lim
n→∞

Jµn(q, ε) = Jµ(q, ε).

This show that the mapping M 3 µ 7→ Jµ(q, ε) ∈ [0, 1] is continuous in the weak

topology.

Proposition 2.4. Let α > 0 and q > 1. Then, each of the sets

D+ = {µ ∈M | D+
µ (q) ≥ α}

D− = {µ ∈M | D−µ (q) = 0}

is Gδ subset of M.

Proof. We just prove the first statement, given that the proof of the second one is

completely analogous. Let µ ∈M. It follows from Lemma 1.2 that, for each ε > 0,

lim inf
t→∞

tα(q−1)Jµ(q, 1/t) = 0 ⇒ D+
µ (q) ≥ α ⇒ lim inf

t→∞
t(α+ε)(q−1)Jµ(q, 1/t) = 0,
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which results in

⋂
n>0

⋂
k>0

⋃
t>k

{
µ ∈M | tα(q−1)Jµ(q, 1/t) <

1

n

}
⊆
{
µ ∈M | D+

µ (q) ≥ α
}

⊆
⋂
n>0

⋂
k>0

⋃
t>k

{
µ ∈M | t(α+ε)(q−1)Jµ(q, 1/t) <

1

n

}
.

Replacing α by α− ε in the last paragraph and taking ε = 1
l
, one gets

⋂
l>0

⋂
n>0

⋂
k>0

⋃
t>k

{
µ ∈M | t(α+ 1

l
)(q−1)Jµ(q, 1/t) <

1

n

}
=

⋂
l>0

{
µ ∈M | D+

µ (q) ≥ α− 1

l

}
=

{
µ ∈M | D+

µ (q) ≥ α
}
.

Now, one just needs to prove that, for each k, l, n ∈ N and each t > k,{
µ ∈M | t(α+ 1

l
)(q−1)Jµ(q, 1/t) <

1

n

}
=
(
t(α+ 1

l
)(q−1)J(.)(q, 1/t)

)−1

([0, 1/n))

is an open set in M; this is a direct consequence of Lemma 1.2.

2.2 Dense sets

Proposition 2.5. Let (X,T ) be a topological dynamical system, assume that Mp(T ) is

dense in M(T ), and let s ∈ (0, 1). Then, D∗− = {µ ∈ M(T ) | d−s (µ) = 0} is a dense

subset of M(T ).

Proof. Let {µn}n∈N be a dense subset of Mp(T ) (recall that Mp(T ) is separable), and

let µ ∈ {µn}n∈N be a T -periodic measure associated with the T -periodic point x ∈ X,

whose period is kx. Set ε0 = min0≤i 6=j≤kx−1{d(xi, xj) | xl := T l(x), l = 0, . . . , kx − 1}, set

A = {x, T (x), · · · , T kx−1(x)}, and let ε ∈ (0,min{1, ε0}).

As X is a compact metric space and C = X \
⋃
z∈AB(z, ε) is closed, C is also compact.

Let G1 = {B(yn, ε)}yn∈C be a finite covering of C, and set G̃ = G1 ∪ {B(z, ε)}z∈A. By
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construction, each z ∈ A belongs to only one element of G̃ (namely, B(z, ε)), and for each

yn ∈ G1, µ(B(yn, ε)) = 0. Thus,

Sµ(s, ε) = inf
G

∑
zj∈G

µ(B(zj, ε))
s ≤

∑
w∈G̃

µ(B(w, ε))s = k1−s
x ,

from which follows that
logSν(s, ε)

(s− 1) log ε
≤ log(k1−s

x )

(s− 1) log ε
.

Letting, ε→ 0, one gets d−s (ν) = 0.

Remark 2.3. The fact that Mp(T ) is dense in M(T ) is true, in particular, for the full-

shift over X =
∏∞
−∞M , where M is a Polish space, as we have seen in Chapter I

From now on, we endow X = MZ with the following metric (which corresponds to the

choice an := n2, n ∈ N ∪ {0}, in (2.1)):

r(x, y) =
∑
|n|≥0

min

{
1

n2 + 1
, d(xn, yn)

}
.

Remark 2.4. Although we use this metric in what follows, the results presented below are

also valid for any sub-exponential metric as defined by (2.1). We have made this particular

choice in order to simplify the exposition of the main arguments (see also Remark 2.5).

Next, we prove that CD = {µ ∈ M(T ) | D+
µ (q) = +∞} is a dense subset of M(T ).

Our strategy involves a modified version of the energy function (5): for each q > 1, each

ε > 0, each n ∈ N and each µ ∈M(T ), set

Inµ (q, ε) :=

∫
µ(Bn(x, ε))q−1dµ(x),

where Bn(x, ε) := · · ·×M ×· · ·×M ×BM(x−n, ε)×· · ·×BM(xn, ε)×M ×· · ·×M ×· · · ,
and BM(z, ε) := {w ∈M | d(w, z) < ε}.

Lemma 2.2. Let ε > 0. Then, there exists an n0 ∈ N such that, for each x ∈ X,

B(x, ε) ⊆ Bn0(x, ε).
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Proof. Let x ∈ X and let y ∈ B(x, ε); then, for each n ∈ Z, min{ 1
n2+1

, d(xn, yn)} < ε.

Set n0 := [(1
ε
− 1)1/2] + 1. Since 1

(n0+1)2+1
≤ ε < 1

n2
0+1

, it follows that, for each |n| < n0,

min{ 1
n2+1

, d(xn, yn)} = d(xn, yn) < ε. Therefore, y ∈ Bn0(x, ε).

The following result is a direct consequence of Lemma 2.2.

Proposition 2.6. Let q > 1. Then,

D+
µ (q) = lim sup

ε→0

log Iµ(q, ε)

(q − 1) log ε
≥ D̃+

µ (q) := lim sup
ε→0

log In0
µ (q, ε)

(q − 1) log ε
,

where n0 = n0(ε) is given by Lemma 2.2.

In what follows, X is a perfect and compact metric space.

Lemma 2.3. Let µ ∈M(T ) and let U be an open basic (weak) neighborhood of µ. Then,

there exist m0, n0 ∈ N such that for each m ≥ m0 and each n ≥ n0, µx ∈ U ∩M(T ), where

x = (xi) ∈ X is a T -periodic point with period s = mn and xi 6= xj if i 6= j, i, j = 1, . . . , s.

Proof. We present the proof in details for the reader’s sake. For each k ∈ N, let πk denote

the projection of X onto
∏k
−kM and let

Ck(X) = {f | f ∈ C(X) and if πk(x) = πk(y), then f(x)− f(y) = 0} .

In other words, Ck(X) is the set of functions f ∈ C(X) which depend only on the coor-

dinates (x−k, . . . , xk)·. The functions that belong to C0 =
⋃
k≥1Ck(X) are called finite-

dimensional.

Consider an arbitrary basic open neighborhood of µ inM(T ), that is, a set of the form

U =

{
ν ∈M(T ) | f ∈ F →

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ < ε

}
,

where ε > 0 and F is a finite subset of C(X). Since C0 is dense in C(X), one may (and

shall) assume that F ⊂ Ck(X), for some k.
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Let {Q1, . . . , QN} be a partition of Q into Borel sets of positive µ-measure on each of

which the oscillation of f ∗(x) := limn→∞
1
n

∑n
i=1 f(T ix), for each f ∈ F , is less than ε/2

(here, Q is the set of quasi-regular points, that is, those points for which f ∗(x) is defined

for every f ∈ C(X)). Choose points xj =
{
xji
}
∈ Qj (j = 1, . . . , N). Then, for each

f ∈ F , ∣∣∣∣∣
∫
Q

f ∗dµ−
N∑
j=1

f ∗
(
xj
)
µ (Qj)

∣∣∣∣∣ < ε

2
.

Now, by a theorem of Kryloff and Bogoliouboff (see [37], p. 118), µ(Q) = 1, and by the

Ergodic Theorem, it follows that
∫
Q
f ∗dµ =

∫
Q
fdµ.

Set, for each n ∈ N, fn(x) = 1
n

∑n
i=1 f(T ix). Hence, there exists n0 ∈ N such that, for

each n ≥ n0 and each f ∈ F ,∣∣∣∣∣
∫
fdµ−

N∑
j=1

fn
(
xj
)
µ (Qj)

∣∣∣∣∣ < ε

2

and
(2k + 1)(2L)

n
<
ε

2
,

where L = max{‖f‖ | f ∈ F}. Fix n ≥ n0 and note that there exists m0 ∈ N such that,

for each m ≥ m0 and each f ∈ F , one can approximate the numbers µ (Qj) by positive

rational numbers mj/m such that∣∣∣∣∣
∫
fdµ−

N∑
j=1

fn
(
xj
) mj

m

∣∣∣∣∣ < ε

2
(2.4)

and
N∑
j=1

mj = m.

For each j = 1, . . . , N , denote by Bj the n-block

Bj =
[
xj1, . . . , x

j
n

]
,
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and form the mn-block

B = B1 . . . B1︸ ︷︷ ︸
m1

B2 . . . B2︸ ︷︷ ︸
m2

. . . BN . . . BN︸ ︷︷ ︸
mN

.

Let x be the point of X with T -period mn such that

[x1, . . . , xmn] = B.

Thus, for each f ∈ Ck(X), and therefore, for each f ∈ F , one has

f
(
T ix
)

= f
(
T ix1

)
for k + 1 ≤ i ≤ n− k.

By a simple procedure, one gets∣∣∣∣∣fmn(x)−
N∑
j=1

fn
(
xj
) mj

m

∣∣∣∣∣ ≤ (2k + 1)

n
(2L) <

ε

2
. (2.5)

Now, since x has T -period mn, it follows that∫
fdµx = fmn(x). (2.6)

Finally, by combining (2.4), (2.5) and (2.6), it follows that, for each f ∈ F ,∣∣∣∣∫ fdµx −
∫
fdµ

∣∣∣∣ < ε.

Therefore, µx ∈ U ∩M(T ), where x is a T -periodic point of period s = mn ≥ m0n0 =:

s0. In order to complete the proof, just note that since each point of M is a limit point and

since each f ∈ F is continuous, one can choose x such that xi 6= xj if i 6= j, i, j = 1, . . . , s,

keeping the estimates as before.

Proposition 2.7. Let µ ∈ M(T ) and let q > 1. Then, each (weak) neighborhood, V , of

µ contains ρ ∈M(T ) such that D+
ρ (q) = +∞.
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Proof. Let δ > 0 and set

V = Vµ(f1, · · · , fd; δ) =

{
σ ∈M |

∣∣∣∣∫ fjdµ−
∫
fjdσ

∣∣∣∣ < δ, j = 1, . . . , d

}
,

where each fj ∈ C(MZ) (this is the set of continuous real valued functions on MZ, endowed

with the supremum norm). One can further assume that there exists an N such that, for

each j = 1, . . . , d, one has fj(x) = fj(y) if, for each |i| ≤ N , xi = yi. Note that, since M

is compact, functions of this type form a dense set in C(MZ).

Let L = sup{|fj(x)| | x ∈MZ, j = 1, . . . , d}, let κ > 0 be such that

κ < (8L)−1 2−(2N+1) δ,

1− (1− κ)2N < (8L)−1δ,
(2.7)

and set S = 1+
(

κq

1−(1−κ)q

)1/(q−1)

. It follows from Lemma 2.3 that there exists a T -periodic

point w = (wi) ∈MZ, with period s = mn, where m ≥ max{m0, S} and n ≥ max{n0, S},
such that for each i 6= j, i, j = 1, . . . , s, wi 6= wj and µw ∈ Vµ(f1, · · · , fd; δ/2).

Following the proof of Lemma 7 in [51], one defines, for each fixed s ≥ s0, a Markov

chain ρ whose states are w1, · · · , ws, whose initial probabilities are given by the s-tuple

(1/s, · · · , 1/s), and whose transition probabilities are given by the s× s-matrix pij, where

ps 1 = 1− κ,

pi i+1 = 1− κ for i = 1, . . . , s− 1,

pi j =
κ

s− 1
otherwise.

One can show (see the proof of Lemma 7 in [51]) that ρ ∈ Vµw(f1, · · · , fd; δ/2), from

which follows that ρ ∈ Vµ(f1, · · · , fd; δ).

Now, by Proposition 2.6, one just needs to prove that D̃+
ρ (q) =∞. Let ε ∈ (0,min{1, ε0}),

with ε0 := min{|wi − wl| : i, l = 1, . . . , s}, and set n = n0(ε).

Set Cn = [−n; ai−n , . . . , ain ] = {(yi)i∈Z ∈ X | y−n = ai−n , . . . , yn = ain}, with
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ai−n , . . . , ain ∈ {w1, . . . , ws}. For each x ∈ Cn, it is clear from the choice of ε that

Cn ⊂ Bn(x, ε) = {(yi)i∈Z ∈ X | yi ∈ B(xi, ε), i = −n, . . . , n} and that ρ(Bn(x, ε)) =

ρ(Cn).

Note that, as in Lemma 7 in [51], there are s2n+1 sets of the form Cn = [−n; ai−n , . . . , ain ]

(which we will refer as the (n-th level) cylinders) that can be split into two groups, say

P and Q. Then P consists of those s sets which contain an element of the orbit of w.

The second group, Q, splits into the groups Q1, · · · , Q2n, where Qp is the group of those

s
(

2n
p

)
(s−1)p (n-th level) cylinders for which there are exactly p places i = −n, . . . , n where

ai+1 is not the natural follower of ai, in the sense that if ai = wl and ai+1 = wm, then

m 6= l + 1(mod s). For each j = 1, . . . , s2n+1, denote by Cn
j these (n-th level) cylinders.

Thus, since Inρ (q, ε) depends only on the values taken by ρ(Bn(x, ε)) when x ranges

over the s2n+1 (n-th level) cylinders described above, one has

∫
ρ(Bn(x, ε))q−1dρ(x) =

s2n+1∑
j=1

∫
Cnj

ρ(Bn(x, ε))q−1dρ(x) +

∫
X\

s2n+1⋃
j=1

Cnj

ρ(Bn(x, ε))q−1dρ(x)

=
s2n+1∑
j=1

∫
Cnj

ρ(Cn
j )q−1dρ(x) =

s2n+1∑
j=1

ρ(Cn
j )q−1ρ(Cn

j )

=
s2n+1∑
j=1

ρ(Cn
j )q =

∑
Cn∈P

ρ(Cn)q +
2n∑
p=1

∑
Cn∈Qp

ρ(Cn)q

= s

(
1

s
(1− κ)2n

)q
+

2n∑
p=1

∑
Cn∈Qp

1

sq
pqa−n,a−n+1

· · · pqan−1,an
, (2.8)

where we have used, in the second inequality, that for each x ∈ Cn and each 0 < ε < ε0,

ρ(Bn(x, ε)) = ρ(Cn), as previously discussed.

Now,

∑
Cn∈Qp

1

sq
pqa−n,a−n+1

· · · pqan−1,an
= s

(
2n

p

)
(s− 1)p · 1

sq

(
κ

s− 1

)pq
(1− κ)(2n−p)q,
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and therefore,

2n∑
p=1

∑
Cn∈Qp

1

sq
pqa−n,a−n+1

· · · pqan−1,an
= s1−q

2n∑
p=1

(
2n

p

)
(s− 1)p

(
κq

(s− 1)q

)p
((1− κ)q)(2n−p)

= s1−q
((

(s− 1)1−qκq + (1− κ)q
)2n − (1− κ)2nq

)
.(2.9)

Thus, combining (2.8) with (2.9), one gets∫
ρ(Bn(x, ε))q−1dρ(x) = s1−q

[
(1− κ)2nq +

(
(s− 1)1−qκq + (1− κ)q

)2n − (1− κ)2nq
]

= s1−q ((s− 1)1−qκq + (1− κ)q
)2n

.

Recall that, by Lemma 2.2, one has n ≥ (1
ε
−1)1/2−1. Note also that log ((s− 1)1−qκq + (1− κ)q) <

0 by the definition of S. Thus,

log

∫
ρ(Bn(x, ε))q−1dρ(x) = log

(
s1−q ((s− 1)1−qκq + (1− κ)q

)2n
)

= (1− q) log s+ 2n log
(
(s− 1)1−qκq + (1− κ)q

)
≤ (1− q) log s+ (2(1/ε− 1)1/2 − 2) log

(
(s− 1)1−qκq + (1− κ)q

)
,

from which follows that

log
∫
ρ(Bn(x, ε))q−1dρ(x)

(q − 1) log ε
≥ (1− q) log s

(q − 1) log ε
− 2 log ((s− 1)1−qκq + (1− κ)q)

(q − 1) log ε
+

2 log ((s− 1)1−qκq + (1− κ)q)

(q − 1)

(1/ε− 1)1/2

log ε
. (2.10)

Letting ε→ 0, one gets D̃+
ρ (q) = +∞.

Remark 2.5. It is clear from inequality (2.10) that the metric r for which the previous

result is valid must necessarily be sub-exponential, since in this case, limε→0
h(1/ε)
| log ε| = +∞,

where h is the inverse of the (invertible) function f : [0,∞) → (0,∞), defined in such a

way that, for each n ∈ N ∪ {0}, f(n) := an (see the discussion immediately after (2.1)).

Moreover, if one considers the exponential metric r(x, y) =
∑
|k|≥0 min{2−|k|, d(xk, yk)},

or even r(x, y) =
∑
|k|≥0 2−|k| d(xk,yk)

1+d(xk,yk)
(naturally, one can replace an = 2−|n| by an = c−α|n|,
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with c > 1 and α > 0), then for each q > 1,

D+
ρ (q) ≤ 2| log((s− 1)1−qκq + (1− κ)q)|

(q − 1) log 2
, (2.11)

with ρ, κ and s defined as in the proof of Proposition 2.7.

Namely, if n0 ∈ N is such that 2−n0 < ε ≤ 2−n0+1, then it is easy to see that for each

n ≥ n0 and each x ∈ X, Cn(x) ⊂ B(x; ε); thus, as in equation (2.8),

∫
ρ(B(x, ε))q−1dρ(x) =

s2n+1∑
j=1

∫
Cnj

ρ(B(x, ε))q−1dρ(x) +

∫
X\

s2n+1⋃
j=1

Cnj

ρ(B(x, ε))q−1dρ(x)

≥
s2n+1∑
j=1

∫
Cnj

ρ(Cn
j )q−1dρ(x) = s1−q ((s− 1)1−qκq + (1− κ)q

)2n
,

from which follows that (for ε ∈ (0,min{1, ε0}) and n = n0)

log
∫
ρ(B(x, ε))q−1dρ(x)

(q − 1) log ε
≤ log s

| log ε|
+

2(| log ε|+ log 2)| log ((s− 1)1−qκq + (1− κ)q) |
(q − 1)(log 2)| log ε|

Letting ε → 0, one gets (2.11). In particular, given η > 0, there exists a dense set of the

Markov shifts ρ such that D+
ρ (q) < η; namely, just choose κ small enough and s large

enough so that | log((s− 1)1−qκq + (1− κ)q)| < (η(q − 1) log 2)/2, and we are done.

2.3 Proof of the Theorems 2.1 and 2.2

Proof (Theorem 2.1). Since, by Proposition 2.1,

D∗− = {µ ∈M(T ) | d−q (µ) = 0} ⊂ FD = {µ ∈M(T ) | D−q (µ) = 0},

the result follows from Propositions 2.3 and 2.5. 2
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Proof (Theorem 2.2). The result is a direct consequence of Propositions 2.4, 2.6 and 2.7.

2

Remark 2.6. It follows from Remark 2.5 that if Theorem 2.2 is true for the product

space X endowed with an exponential metric, then the proof will follow from a different

argument than the one presented in the proof of Proposition 2.7.

64



CHAPTER III

DIMENSION OF INVARIANT MEASURES OF
EXPANSIVE HOMEOMORPHISMS AND AXIOM

A SYSTEMS

Again, as in the previous chapters, we begin making some comments and observa-

tions about the results obtained here, as well as some of their dynamical and topological

consequences. The proofs of central results (Theorems 3.1, 3.4, Proposition 3.1 and Coro-

llary 3.6), are presented in Sections 3.1 and 3.2.

Our first result in this chapter present, under some hypotheses, lower and upper bounds

for the generalized fractal dimensions of any Borel probability measure defined on a com-

pact metric space.

Theorem 3.1. Let X be a compact metric space, let µ be a probability Borel measure on

X and suppose that there exist constants α < β ∈ (0,∞) such that, for each x ∈ supp(µ),

α ≤ dµ(x) ≤ dµ(x) ≤ β. Then, for each s < 1 and each q > 1, one has

α ≤ D−µ (q) ≤ D−µ (1) ≤ D+
µ (1) ≤ D+

µ (s) ≤ β.

It follows from Lemma 3.1 that f -homogeneous measures (see Definition I.22) satisfy

the hypotheses of Theorem 3.1. In particular, the next result, which is already known

in the literature (see Theorem 2.5 in [54] and [42]), is an extension of Young’s formula

([59], Theorem 3.1) to the generalized fractal dimensions of the Bowen-Margulis measure

(see Introduction) associated to a C1+α-Axiom A system over a two-dimensional compact

Riemannian manifold.
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Proposition 3.1. Let T : X → X be a C1+α-Axiom A system (α > 0) over a two-

dimensional compact Riemannian manifold M (as in Remark I.2). Suppose that µ is its

Bowen-Margulis measure and let λ1(µ) ≥ λ2(µ) be its Lyapounov exponents. Then, for

each q ∈ R,

D+
µ (q) = D−µ (q) = hµ(T )

[
1

λ1

− 1

λ2

]
. (3.1)

Definition 3.1. Let X be a metrizable space and let f : X → X be a homeomorphism.

One says that d is a hyperbolic metric for X if there exist numbers k > 1 and ε > 0 such

that, for each x, y ∈ X,

max{d(f(x), f(y)), d(f−1(x), f−1(y))} ≥ min{k d(x, y), ε}. (3.2)

Moreover, both f and f−1 are Lipschitz for d.

The following results show that if X is a metrizable compact space, then a home-

omorphism f : X → X is expansive if and only if X admits a hyperbolic metric (see

Definition I.21).

Theorem 3.2 (Theorem 5.1 in [18]). If f : X → X is an expansive homeomorphism of

the compact metric space X, then there exist a hyperbolic metric for X which is compatible

with its topology.

Theorem 3.3 (Theorem 5.3 in [18]). Let f : X → X be a homeomorphism of the metri-

zable compact space X. Suppose that there exists a metric d on X defining its topology

and numbers k > 1, ε > 0 such that, for each x, y ∈ X,

max
(
d(f(x), f(y)), d

(
f−1(x), f−1(y)

))
= min(kd(x, y), ε).

Then, f is expansive and

(dimH)d(X) 5 Cd(X) 5 2
h(f)

log k
,

where Cd(X) and (dimH)d(X) are, respectively, the upper capacity and the Hausdorff
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dimension of X with respect to d; h(f) stands for the topological entropy of f (see (C.1)).

In particular, Cd(X) and (dimH)d(X) are finite.

The next results present, for an expansive homeomorphism over a compact metric

space, some estimates for the generalized fractal dimensions of its invariant measures in

terms of the metric entropy (see Appendix C for the definitions).

Theorem 3.4. Let f : X → X be an expansive homeomorphism over a compact metric

space X, and let d be the respective hyperbolic metric. Then, for each invariant measure

µ ∈M(f) and each q > 1 one has D+
µ (q) ≤ hµ(f) log k.

Theorem 3.5 (Theorem 6 in [50]). Let f : M → M be an Axiom A diffeomorphism.

Then,

Mz = {µ ∈M(f) | hµ(f) = 0}

is a residual subset of M(f).

One may combine Theorem 3.4 with Theorem 3.5 in order to obtain the following

result.

Theorem 3.6. Let T : X → X be a C1-Axiom A, and let q ≥ 1. Then, the set

CD0 = {µ ∈M(T ) | D+
µ (q) = 0}

is generic in M(T ).

Theorem 3.6 may be combined with Proposition I.2 in order to produce the following

result. Let q ≥ 1; if µ ∈ CD0, then there exists a Borel set Z ⊂ X, µ(Z) = 1, such that

for each x ∈ Z, one has αq(x) = Dµ(q) = 0.

This means that if x ∈ Z, since αq(x) = 0, it follows that given 0 < α � 1 and

R > 0, there exist δ > 0 such that if 0 < |ε| < β = min{δ, R}, then there exists

N = N(x, α, β) ∈ N such that, for each n > N , one has Cq(x, n, ε) ≥ ε(q−1)α. Thus, we
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have that

γ = card {(i1 · · · iq) ∈ {0, 1, · · · , n}q | d(T ij(x), T il(x)) ≤ ε for each 0 ≤ j, l ≤ q}

≥ ε(q−1)α nq;

thus, the quantity γ is of order nq for each n large enough. This means, as we have seen,

that the orbit of a µ-typical point is similar to a periodic orbit.

The next result in another direct consequence of Theorem 3.4.

Corollary 3.1. Let X be a compact metric space, let f : X → X be a homeomorphism

and let q ≥ 1. If there exist a hyperbolic metric d compatible with the topology of X and

µ ∈M(f) such that D+
µ (q) > 0, then h(f) ≥ hµ(f) > 0.

3.1 Generalized fractal dimensions for f-homogeneous

measures

In this section we prove, for an f -homogeneous measure, some estimates on the generalized

fractal dimensions of such measure in terms of its Lyapunov exponents (for a hyperbolic

measure) and metric entropy. First, we present the proof of Theorem 3.1, and then we

prove some inequalities involving the local uniform dimensions of an invariant measure

which are required for the other results. This section was inspired by [1, 48, 59].

Proof (Theorem 3.1). Since the arguments used in the proof of the first and the

last inequalities are similar, we just present the proof that, for each q > 1, D−µ (q) ≥ α.

The second and the fourth inequalities come from Proposition I.2.

Fix q > 1, let x ∈ supp(µ), and let η > 0; then, there exists an ε(x) > 0 such that, for

each ε ∈ (0, ε(x)) and each y ∈ B(x, ε),

log µ(B(y, ε))

log ε
≥ inf

y∈B̃(x,ε)

log µ(B(y, ε))

log ε
≥ α− η.
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Thus, for each x ∈ supp(µ) and each η > 0, there exists an ε(x) > 0 such that, for each

ε ∈ (0, ε(x)) and each y ∈ B(x, ε),

µ(B(y, ε)) ≤ εα−η. (3.3)

Now, since {B(x, ε(x))}x∈supp(µ) is an open covering of the compact set supp(µ), there

exists a finite sub-family of {B(x, ε(x))}x∈supp(µ) which also covers supp(µ). Let {B(xi, ε(xi))}ki=1

be this sub-covering and let ε(k) := min{ε(x1), . . . , ε(xk)}.

Consider the following (finite) covering of supp(µ) by balls of radius ε(k):

supp(µ) ⊂
N⋃
j=1

B(yj, ε(k)),

where yj ∈ B(xl, ε(xl)) for some l ∈ {1, . . . , k} (note that since, for each l ∈ {1, . . . , k},
B(xl, ε(xl)) is compact, the open covering {B(y, ε(k))}{y∈B(xl,ε(xl))} of B(xl, ε(xl)) admits

a finite sub-covering). Now, let {Aj}Mj=1 be the disjoint covering of supp(µ) obtained by

removing the self-intersections of the elements of the previous covering; then,

supp(µ) =
M⊎
j=1

Aj ∩ supp(µ). (3.4)

Fix j ∈ {1, . . . ,M} and let y ∈ Aj ∩ supp(µ); there exists an l ∈ {1, . . . , k} such that

y ∈ B(xl, ε(xl)) ∩ supp(µ). It follows from (3.3) that, for each 0 < ε ≤ ε(k) ≤ ε(xi), one

has

µ(B(y, ε)) ≤ εα−η.

Therefore,∫
Aj

µ(B(y, ε))q−1dµ(y) =

∫
Aj∩suppµ

µ(B(y, ε))q−1dµ(y)

≤
∫
Aj∩suppµ

ε(q−1)(α−η)dµ(y) = ε(q−1)(α−η) µ(Aj). (3.5)
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Now, by (3.4) and (3.5), one gets∫
supp(µ)

µ(B(y, ε))q−1dµ(y) =

∫
⊎M
j=1 Aj∩suppµ

µ(B(y, ε))q−1dµ(y)

=
M∑
j=1

∫
Aj∩suppµ

µ(B(y, ε))q−1dµ(y)

≤
M∑
j=1

ε(q−1)(α−η)µ(Aj)

= ε(q−1)(α−η).

Thus,

D−µ (q) = lim inf
ε→0

log
∫

supp(µ)
µ(B(y, ε))q−1dµ(y)

(q − 1) log ε
≥ α− η.

The result now follows, since η > 0 is arbitrary. 2

Lemma 3.1. Let (X, f, µ) be a dynamical system such that X is a Polish metric space

and µ ∈M(f).

i) If f is a continuous function for which there exist constants Λ > 1 and δ > 0 such

that, for each x, y ∈ X so that d(x, y) < δ, d(f(x), f(y)) ≤ Λ d(x, y), then for each

x ∈ X,

dµ,i(x) ≥
hµ(f, x)

log Λ
. (3.6)

Moreover, if µ ∈Me(f), it follows that

dim−H(µ) ≥ hµ(f)

log Λ
. (3.7)

ii) If f is a continuous function for which if there exist constants λ > 1 and δ > 0 such

that, for each x, y ∈ X so that d(x, y) < δ, λ d(x, y) ≤ d(f(x), f(y)), then for each

x ∈ X,

dµ,s(x) ≤ hµ(f, x)

log λ
. (3.8)
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Moreover, if X is compact and µ ∈Me(f), it follows that

dim+
P (µ) ≤ hµ(f)

log λ
, (3.9)

Here, hµ(f, x) := limε→0 lim sup(inf)n→∞
− log µ(B(x, n, ε))

n
is the upper (lower) local

entropy of (X, f, µ) at x.

Proof. i) Claim 1. One has, for each x ∈ X, each n ∈ N and each 0 < ε ≤ min{1/2, δ/2},
B(x, εΛ−n) ⊂ B(x, n, ε), where B(x, n, ε) := {y ∈ X | d(f i(x), f i(y)) < ε, ∀ i = 0, . . . , n}
is the Bowen ball of size n and radius ε, centered at x. Namely, fix x ∈ X, n ∈ N and

0 < ε ≤ min{1/2, δ/2}, and let y ∈ B(x, εΛ−n); then, since εΛ−n < δ, one has, for each

i = 0, . . . , n, d(f i(x), f i(y)) < ε, proving the claim.

Now, it follows from Claim 1 that, for each y ∈ B̃(x, εΛ
−n

2
) and each n ∈ N, B(y, εΛ

−n

2
) ⊂

B(x, εΛ−n) ⊂ B(x, n, ε). Then,

dµ,i(x) = lim inf
n→∞

inf
y∈B̃(x, εΛ

−n
2

)

log µ(B(y, εΛ
−n

2
))

log εΛ−n

2

≥ lim inf
n→∞

log µ(B(x, n, ε))

−n
1

− log ε
n

+ log Λ + log 2
n

≥ lim inf
n→∞

log µ(B(x, n, ε))

−n
1

log Λ
.

Thus, the result follows by taking ε→ 0 in both sides of the inequalities above.

Now, if µ ∈Me(f), it follows from Lemma 2.8 in [44] that hµ(f, x) = µ- ess inf hµ(T, y)

is valid for µ-a.e. x, and then, by Theorem 2.9 in [44], that hµ(f, x) ≥ hµ(T ) is also valid

for µ-a.e. x. Relation (3.7) is now a consequence of relation (3.6) and Definition I.7.

ii) Claim 2. One has, for each x ∈ X, each n ∈ N and each 0 < ε ≤ δ, B(x, n, ε) ⊂
B(x, ελ−n). Namely, fix x ∈ X, n ≥ 1 and 0 < ε ≤ δ, and let y ∈ B(x, n, ε) so

that, for each j = 0, . . . , n, d(f j(x), f j(y)) < ε ≤ δ; it follows from the hypothesis that

λn d(x, y) ≤ d(fn(x), fn(y)) < ε, and therefore that d(x, y) < ελ−n.
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Now, it follows from Claim 2 that, for each y ∈ B̃(x, ελ−n) and each n ∈ N, B(x, n, ε) ⊂
B(x, ελ−n) ⊂ B(y, 2ελ−n). Then,

lim sup
n→∞

log µ(B(x, n, ε))

−n
1

log λ
= lim sup

n→∞

log µ(B(x, n, ε))

−n
1

− log ε
n

+ log λ− log 2
n

≥ lim sup
n→∞

sup
y∈B̃(x, ελ−n)

log µ(B(y, 2ελ−n))

log 2ελ−n

= dµ,s(x).

Thus, taking ε→ 0 in both side of the inequalities above, the result follows.

Now, if µ ∈ Me(f), it follows from Brin-Katok’s Theorem that, for µ-a.e. x ∈ X,

hµ(f, x) = hµ(f, x) = hµ(f). Relation (3.9) is now a consequence of relation (3.8) and

Definition I.7.

Remark 3.1. It is straightforward to prove that the local uniform dimensions of a Borel

probability measure coincide with their regular local dimensions:

dµ(x) := lim inf
ε→0

log µ(B(x, ε))

log ε
(3.10)

and

dµ(x) := lim sup
ε→0

log µ(B(x, ε))

log ε
, (3.11)

where x ∈ X (if x /∈ suppµ, then dµ(x) := ∞ also coincide with the respective local

uniform dimensions). The reason that we deal with local uniform dimensions of invariant

measures instead of the regular ones will become clear in the proof of Theorem 3.2.

Remark 3.2. We note that Brin-Katok’s Theorem is pointwise satisfied for f -homogeneous

measures: one has, for each x ∈ X,

lim
ε→0

lim inf
n→0

− log µ(B(x, n, ε))

n
= lim

ε→0
lim sup
n→0

− log µ(B(x, n, ε))

n
= hµ(f).

Proof. By the definition of a homogeneous measure, for each ε > 0, there exist 0 < δ(ε) < ε
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and c > 0 such that, for each n ∈ N and each x, y ∈ X,

µ(B(y, n, δ(ε))) ≤ c µ(B(x, n, ε)).

Thus,

lim
ε→0

lim sup(inf)n→∞ −
1

n
log µ(B(y, n, δ(ε))) ≥ lim

ε→0
lim sup(inf)n→∞ −

1

n
log µ(B(x, n, ε)).

Analogously, for each ε̃ > 0, there exist 0 < δ̃(ε̃) < ε̃ and c̃ > 0 such that

lim
ε̃→0

lim sup(inf)n→∞ −
1

n
log µ(B(x, n, δ̃(ε̃))) ≥ lim

ε̃→0
lim sup(inf)n→∞ −

1

n
log µ(B(x, n, ε̃)).

This proves that the limits do not depend on x ∈ X. The result follows now from

Brin-Katok’s Theorem.

Corollary 3.2. Let (X, f, µ) be a dynamical system such that µ is an f -homogeneous

measure and f is a function which satisfies the hypothesis of Lemma 3.1. Then, for each

s < 1 and each q > 1, one has

hµ(f)

log Λ
≤ D−µ (q) ≤ D−µ (1) ≤ D+

µ (1) ≤ D+
µ (s) ≤ hµ(f)

log λ
.

Proof. It follows from the f -homogeneity of µ, Lemma 3.1 and Remark 3.2 that, for each

x ∈ X,
hµ(f)

log Λ
≤ dµ,i(x) ≤ dµ,i(x) ≤ hµ(f)

log λ
.

The result is now a consequence of Theorem 3.1.

Remark 3.3. The Bowen-Margulis measure is an example of measure that does not belong

to set CD0 in Theorem 3.6. In fact, one has Dµ(q) = dimH(µ) = dimH(X) (which is equal

2 when f is Anosov).
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3.2 Proofs of Proposition 3.1 and Theorem 3.4

Let (X, d) be a compact metric space, and let f : X → X be a continuous transformation.

For each n ∈ N, one defines a new metric dn on X by the law

dn(x, y) = max{d(fk(x), fk(y)) : k = 0, · · · , n− 1}.

Note that, for each ε > 0, the open ball of radius ε centerded at x ∈ X with respect to dn

coincides with the Bowen dynamical ball of size n and radius ε > 0, centered at x:

B(x, n, ε) = {y ∈ X : dn(x, y) < ε}.

Proposition 3.2. The metrics dn and d induce the same topology on X.

Proof. This is a direct consequence of the fact that f is a homeomorphism.

Thus, for each x ∈ X, each n ∈ N and each r > 0, B(x, n, r) is an open set

Proof (Proposition 3.1).

Claim 1. For each x ∈ X, one has dµ,i(x) ≥ hµ(T )
[

1
λ1
− 1

λ2

]
.

We follow the proof of part 1 of Lemma 3.2 in [59]. Namely, let

Λ = {x ∈M | x is regular in the sense of Oseledec-Pesin

and lim
ε→0

lim inf
n1, n2→∞

− log µ(B(x, n1, n2, ε))

n1 + n2

= hµ(T )},

where B(x, n1, n2, ε) := {y ∈ X | d(T jx, T jy) < ε, j = −n2, . . . , n2} is the bilateral Bowen

ball of size n1 + n2 + 1 and radius ε.

Since µ is an f -homogeneus measure and T is a uniform hyperbolic transformation

(note that the discussion presented in Remark 3.2 can be adapted to bilateral Bowen

balls), it follows that Λ = M (see [50, 52]). Let χi = eλi . For each x ∈M and each ε > 0,
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it is straightforward to show (as in [59]) that

dµ,i(x) ≥ (hµ(T )− ε)

 1

log χ1+2ε
1−ε

+
1

log
χ−1

2 +2ε

1−ε

 ;

indeed, it is possible to show that, for each ρ > 0 and each y ∈ B(x,K(x)−1ρ/2), one has

B(y,K(x)−1ρ/2) ⊂ B(x,K(x)−1ρ) ⊂ B(x, n1(ρ), n2(ρ), ρ),

where K(x) : M → R is a function that relates the distance in the x-chart and the

Riemannian metric on M by the formula ‖ · − · ‖x ≤ K(x)d(·, ·). Since ε > 0 is arbitrary,

the claim follows.

Claim 2. For each x ∈ X, one has dµ,i(x) ≤ hµ(T )
[

1
λ1
− 1

λ2

]
.

We follow the proof of part 2 of Lemma 3.2 in [59]. Namely, since X is a uniformly

hyperbolic set, one may define φ : X → R by the law

φ(x) = φ = A1K1 min{(χ1 + 2ε)−1), (χ−1
2 + 2ε)−1},

where A1 := infx∈X A(x) > 0 and K1 := supx∈X K(x) < ∞ (see the proof of Lemma 3.2

in [59] for details).

Now, since µ is f -homogeneous, it follows from Manẽ’s estimate that, for each x ∈ X,

lim sup
n1,n2→∞

− 1

n1 + n2

log(µ(B(x, n1, n2, φ))) ≤ hµ(T ).

The rest of the proof follows the same steps presented in the proof of Lemma 3.2 in [59],

taking into account that Λ1 = X.

The result follows now from Claims 1, 2, Theorem 3.1 and Proposition I.2 (for the case

q = 1). 2
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Remark 3.4. As in Theorem 4.4 in [59], one has, for each q ∈ R, that

D±µ (q) = C(µ) = C(µ) = CL(µ) = CL(µ) = R(µ) = R(µ) = hµ(T )

[
1

λ1

− 1

λ2

]
,

where C(µ), C(µ), CL(µ), CL(µ) are the capacities and R(µ), R(µ) are the upper and lower

Renyi dimensions of µ.

Proof (Theorem 3.4). It suffices, from Proposition I.2, to prove the result for q = 1.

It follows from Theorem 3.2 that there exist a hyperbolic metric d which induces an

equivalent topology on X, and numbers k > 1, ε > 0 such that f is expansive under this

metric and, for each 0 < r < ε/k and each x ∈ X, B(x, n, r) ⊂ B(x, k−nr). Thus,∫
log µ(B(x, k−nr))dµ(x)

log k−nr
≤
∫

log µ(B(x, n, r))dµ(x)

log k−nr
. (3.12)

Claim.

lim sup
n→∞

∫
log µ(B(x, n, r))dµ(x)

log k−nr
≤ hµ(f) log k.

Following the proof of Brin-Katok’s Theorem, fix r > 0 and consider a finite measurable

partition ξ such that diam ξ = maxC∈ξ diam(C) < r. Let ξ(x) be the element of ξ such

that x ∈ ξ(x), and let Cξ
n(x) be the element of the partition ξn =

∨n
i=−n f

−iξ such that

x ∈ Cξ
n(x). Given that ξ(x) ⊂ B(x, r), one has

Cξ
n(x) =

n⋂
i=−n

f−i(ξ(f ix)) ⊂
n⋂

i=−n

f−i(B(f ix, r)) = B(x, n, r),

from which follows that∫
log µ(B(x, n, r))dµ(x)

−n
≤
∫

log µ(Cξ
n(x))dµ(x)

−n
=
H(ξn)

n
,

where H(ξn) = −
∑

Cξn(x)∈ξn µ(Cξ
n(x)) log µ(Cξ

n(x)) =
∫
− log µ(Cξ

n(x))dµ(x). Thus,

lim sup
n→∞

∫
log µ(B(x, n, r))dµ(x)

−n
≤ lim sup

n→∞

H(ξn)

n
= H(f, ξ) ≤ hµ(f),
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proving the claim.

Now, since for each r > 0, each k > 1 and each n ∈ N,
∫

log µ(B(x, k−nr))dµ(x) is

finite (by (3.12) and Lemma 2.12 in [57]), it follows from an adaptation of Lemma A.6

in [35] that

lim sup
r→0

∫
log µ(B(x, r))dµ(x)

log r
= lim sup

n→∞

∫
log µ(B(x, k−nr))dµ(x)

log k−nr
. (3.13)

One concludes the proof of the proposition combining relations (3.12) and (3.13) with

Claim. 2
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CONCLUSIONS

1) By Theorem 1.1, one concludes that, typically, invariant measures associated with

the full-shift system T in a product space X = MZ, whose alphabet M is uncoun-

table (M is a perfect and separable metric space), have zero Hausdorff dimension,

zero lower rate of recurrence, zero lower quantitative waiting time indicator, infinite

packing dimension, infinite upper rate of recurrence and infinite upper quantitative

waiting time indicator, with supp(µ) = M .

This implies that a typical measure is supported on set Z that is totally disconnected

(given that dimtop(Z) = dimH(Z) = 0); even more, one may take Z as a dense Gδ

subset of X. Moreover, given x ∈ Z, there exists a time sequence (time scale) for

which the first incidence of O(x) (the orbit of x) to one of its spherical neighborhoods

(which depend on time) occurs as fast as possible (that is, it is of order 1; this means

that the first return time to those neighborhoods increases subpolynomially fast);

accordingly, there exists a time sequence for which the first incidence ofO(x) to one of

its spherical neighborhoods increases as fast as possible (that is, super-polynomially

fast). One also concludes that almost every T -orbit O(x) densely fills the whole

space.

2) By Theorem 2.1 and Corollary 2.1, one concludes that if a topological dynamical

system has a dense set of periodic measures (this is true if the systems satisfies the

specification property; see Appendix B), then typically an invariant measure has, for

each q > 0, zero lower q-generalized fractal dimension. This implies, in particular,

that a typical invariant measure has zero upper Hausdorff dimension and zero lower

rate of recurrence.

Again, as in 1), one concludes that a typical measure is supported on a subset Z of X
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that is totally disconnected and dense. Furthermore, given x ∈ Z, the first incidence

of O(x) to one of its spherical neighborhoods occurs as fast as possible (that is, the

first return time to those neighborhoods increases subpolynomially fast).

3) By Theorem 2.2, one concludes that for the full-shift system (X,T ) (where X = MZ

is endowed with a sub-exponential metric and the alphabet M is a perfect and

compact metric space), a typical invariant measure has, for each q > 1, infinite upper

q-correlation dimension. Under the same conditions, a typical invariant measure has,

for each s ∈ (0, 1) and each q > 1, zero lower s-generalized and infinite upper q-

generalized dimensions.

This implies that the orbit of a point x ∈ Z has a very complex structure, being

“tight” for some spatial scale, and spreading fast throughout the space for another

scale.

4) One concludes, by Theorem 3.1 and Lemma 3.1, that given a topological dynamical

system (X, f, µ), where f is Lipshitz and µ is an ergodic hyperbolic f -homogeneous

measure with positive metric entropy, its lower q-correlation dimension is positive,

for each q ∈ R.

5) Proposition 3.1 states that an ergodic hyperbolic f -homogeneous measure associated

with a C1+δ-Axiom A diffeomorphism (δ > 0) over a two-dimensional Riemannian

manifold, f : M →M , has correlation dimension equal to hµ(f)[1/λ1−1/λ2] (where

λ1 and λ2 are the Lyapunov exponents of µ).

6) Theorem 3.6 states that if T is a C1-Axiom A, then {µ ∈ M(T ) | D+
µ (q) = 0,

q > 1} is a residual subset of M(T ). Furthermore, by Corollary 3.1, if there exist a

hyperbolic metric d compatible with the topology of X and µ ∈ M(f) is such that

D+
µ (q) > 0, then h(f) ≥ hµ(f) > 0 (that is, the system is chaotic in this metric).

We can even say that the positivity of these fractal dimensions (that is, Hausdorff, pac-

king, correlation dimensions) indicates that the system has a kind of chaotic behaviour,

something that is related to the positivity of the topological entropy. Nonetheless, for the

full-shift system over X = RZ (where {µ ∈ M(T ) | hµ(T ) = 0} is a residual subset of
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M(T )), we can conclude that the chaotic behaviour is somewhat mild in the invariant sets

where such measures are supported.

Certainly, fixed a dynamical system (like the full-shift over an uncountable alphabet

or more general topological dynamical systems), we have seen that the study of generic

dimensional (and of the rates of recurrence) properties of invariant measures has posed a

different (and more refined) way to understand the behavior of typical orbits (with respect

to such invariant measures).

In this setting, we would like to answer the following questions. Fixed a Borel proba-

bility measure defined on a Polish metric space (with certain dimensional and recurrence

properties), for what kind of transformations such is an invariant measure? Is this true

for a generic set of transformations over this space?
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Appendix A

Proof of Proposition I.1

Proof (Proposition I.1). Since the arguments in both proofs (for Hausdorff and packing

dimensions) are similar, we just prove the statement for dim+
P (µ) and dim−P (µ).

a) dim+
P (µ) = µ- ess sup dµ(x). Let α ≥ 0. We show that if µ- ess sup dµ(x) ≤ α,

then dim+
P (µ) ≤ α. In fact, since µ- ess sup dµ(x) = inf{a ∈ R | µ({x | dµ(x) ≤ a}) =

1} ≤ α, one has µ({x ∈ X | dµ(x) ≤ α}) = 1. It follows from the Definition I.7 that

dim+
P (µ) ≤ dimP ({x ∈ X | dµ(x) ≤ α}). Now, by Corollary 3.20(a) in [14], one has

dimP ({x ∈ X | dµ(x) ≤ α}) ≤ α. Thus, dim+
P (µ) ≤ α.

Conversely, we show that if dim+
P (µ) ≤ α, then µ- ess sup dµ(x) ≤ α. Suppose that

there exists δ > 0 such that µ- ess sup dµ(x) ≥ α + δ; then, by the definition of essential

supremum of a measurable function, there exists E ∈ B, with µ(E) > 0, such that for

each x ∈ E, dµ(x) ≥ α+ δ/2. Then, by Corollary 3.20(b) in [14], dimP (E) ≥ α+ δ/2, and

therefore, dim+
P (µ) ≥ α + δ/2. This contradiction shows that µ- ess sup dµ(x) ≤ α.

b) dim−P (µ) = µ- ess inf dµ(x). Let α > 0. We show that if µ- ess inf dµ(x) ≥ α, then

dim−P (µ) ≥ α. By the definition of essential infimun of a measurable function, µ(A) = 1,

where A := {x ∈ X | dµ(x) ≥ α}. Since, for each E ∈ B, µ(E) = µ(A ∩ E) (E \ A ⊂ Ac),

one may only consider, without loss of generality, those sets E ∈ B such that E ⊂ A.

Thus, for each A ⊃ E ∈ B so that µ(E) > 0, it follows from Corollary 3.20(b) in [14] that
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dimP (E) ≥ α. The result is now a consequence of Definition I.7.

Conversely, we show that if dim−P (µ) ≥ α, then µ- ess inf dµ(x) ≥ α. Suppose that there

exists δ > 0 such that µ- ess inf dµ(x) ≤ α− δ; then, by the definition of essential infimum

of a measurable function, there exists E ∈ B, with µ(E) > 0, such that for each x ∈ E,

dµ(x) ≤ α − δ/2. Thus, E ⊂ {x ∈ X | dµ(x) ≤ α − δ/2} = C and dimP E ≤ dimP C.

Then, by Corollary 3.20(a) in [14], dimP (E) ≤ α− δ/2, and therefore, dim−P (µ) ≤ α− δ/2.

This contradiction shows that µ- ess sup dµ(x) ≥ α. 2
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Appendix B

Specification property

The specification property is defined as follows:

Definition B.1 (see [53]). One says that a homeomorphism f : X → X has the specifi-

cation property (abbreviated to f satisfies specification) if for each ε > 0, there exists an

integer m = m(ε) such that the following holds: if

a) I1, . . . , Ik are intervals of integers, Ij ⊆ [a, b] for some a, b ∈ Z and all j,

b) dist (Ii, Ij) > m(ε) for i 6= j,

then for arbitrary x1, . . . , xk ∈ X, there exists a point x ∈ X such that

1) f b−a+m(x) = x,

2) d (fn(x), fn (xj)) < ε for n ∈ Ij.

One can interpret this definition as follows: given ε > 0 and any finite number of pieces

of orbits, sufficiently separated in time, one can find a periodic point, which ε-shadows

the specified pieces of orbits.
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Appendix C

Entropy in dynamical systems

Topological entropy

Let (X, d) be a compact metric space, and let f : X → X be a continuous transforma-

tion.

Let n ∈ N and ε > 0. Recall that a subset F of X is said to be an (n, ε)-generating if,

for each x ∈ X, there exists y ∈ F such that dn(x, y) < ε.

Let R(n, ε) be the smallest cardinality of an (n, ε)-generating set for X with respect to

f . Then, the following limit exists, and it is called the topological entropy of f (see [58]):

h(f) := lim
ε→0

lim sup
n→∞

1

n
logR(n, ε) = lim

ε→0
lim inf
n→∞

1

n
logR(n, ε). (C.1)

Another equivalent approach consists in considering an (n, ε)-separated set. A set

∅ 6= E ⊂ X is called an (n, ε)-separated set if, for each x, y ∈ E, there exists an 0 ≤ i < n

such that dn(x, y) > ε. Let S(n, ε) be the maximal cardinality of an (n, ε)-separated set.

Then (see [58]),

h(f) = lim
ε→0

lim sup
n→∞

1

n
logS(n, ε) = lim

ε→0
lim inf
n→∞

1

n
logS(n, ε). (C.2)
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Metric entropy

Definition C.1 (Metric entropy). Let (X,B(X), f, µ) be a dynamical system (that is,

µ ∈M(f)). One defines the entropy of a finite partition, Q, of X by the law

Hµ(Q) = −
∑
E∈Q

µ(E) log µ(E).

If P and Q are two partitions of X, set P ∨ Q := {F ∩ E | F ∈ P and E ∈ Q}. The

metric entropy of (X,B, f, µ) relative to the partition Q is defined by the law

hµ(f,Q) = lim
n→∞

1

n
Hµ(Q∨ f−1Q∨ · · · ∨ f−n+1Q).

Finally, one defines the entropy of the dynamical system (X,B(X), f, µ) by

hµ(f) = suphµ(f,Q),

where the supremum is taken over all finite partitions, Q, of X.

Definition C.2. Consider a compact metric space (X, d). Let f : X → X be a continuous

map and µ an invariant Borel measure. We define the lower (upper) local (pointwise)

entropies as follows:

hµ(f, x) = lim
ε→0

lim inf
n→∞

− 1

n
log µ (B(x, ε, n))

hµ(f, x) = lim
ε→0

lim sup
n→∞

− 1

n
log µ (B(x, ε, n))

.

Note that the limits in ε exist due to monotonicity. We say that the local entropy exists

at x if

hµ(f, x) = hµ(f, x) = hµ(f, x).

The following result gives an alternative representation of the metric entropy for some

parti-cular dynamical systems on compact metric spaces. It is considered the topological

version of Shannon-McMillan-Breiman’s Theorem.
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Theorem C.1 (Brin-Katok [10]). Let (X, d) be a compact metric space, let f : X → X

be a continuous function, and let µ ∈M(T ) be non-atomic. Then, for µ-a.e. x ∈ X

1) hµ(f, x) = hµ(f, x) = hµ(f, x),

2) hµ(f, x) is an f -invariant function and

3)
∫
hµ(f, x)dµ = hµ(f).

Since for ergodic dynamical systems, invariant functions are constant a.e., one has the

follo-wing corollary of Brin-Katok’s Theorem.

Corollary C.1. If (X,B(X), f, µ) is an ergodic dynamical system, then hµ(f, x) = hµ(f)

for µ-a.e. x ∈ X.

The following definition and results are generalizations of the Brin-Katok Theorem for

complete and separable metric spaces.

Definition C.3. The lower and upper local entropies of f relative to µ, denoted respec-

tively by hlocµ (f) and h
loc

µ (f), are defined as

hlocµ (f) = µ- ess inf lim
ε→0

lim inf
n→∞

− 1

n
log µ (B(x, ε, n)) = µ- ess inf hµ(f, x)

and

h
loc

µ (f) = µ- ess sup lim
ε→0

lim sup
n→∞

− 1

n
log µ (B(x, ε, n)) = µ- ess sup hµ(f, x).

Lemma C.1 (Lemma 2.8 in [44]). Let X be a complete and separable metric space and

let f : X → X be a continuous transformation. If µ is an ergodic f -invariant measure on

X, then

hloc
µ (f) =

∫
hµ(f, x)dµ(x) and h

loc

µ (f) =

∫
hµ(f, x)dµ(x).

Theorem C.2 (Theorem 2.9 in [44]). Let X be a complete and separable metric space and

let f : X → X be a continuous transformation. If µ is an ergodic f -invariant measure on

X, then

hµ(f) 6 hloc
µ (f).
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The follow result is a study of Poincaré recurrence from a purely geometrical view-

point. As we saw, Brin-Katok Theorem show that the metric entropy is given by the

exponential growth rate of return times to dynamical balls. Varandas, in [56], showed

that minimal return times to dynamical balls grow linearly with respect to its length and

gave a relation with local entropy.

Definition C.4. Let X a compact metric space and let f : X → X be a continuous

transformation. The nth return time Rn(x, ε) to the dynamical ball B(x, ε, n) is defined

by

Rn(x, ε) = inf
{
k ≥ 1 | fk(x) ∈ B(x, ε, n)

}
.

Theorem C.3 (Theorem A in [56]). Let µ be an ergodic f -invariant measure. The limits

h(f, x) = lim
ε→0

lim sup
n→∞

1

n
logRn(x, ε) and h(f, x) = lim

ε→0
lim inf
n→∞

1

n
logRn(x, ε)

exist for µ-almost every x and coincide with the metric entropy hµ(f).

Proposition C.1 (Proposition A in [56]). Assume that f : X → X is a continuous trans-

formation and that there exist constants δ, λ,Λ > 0 such that λd(x, y) ≤ d(f(x), f(y)) ≤
Λd(x, y) for every x, y ∈ X so that d(x, y) < δ. If µ is an f -invariant ergodic measure

with positive entropy then

hµ(f)

log Λ
≤ R(x) and R(x) ≤ hµ(f)

log λ

for µ-a.e. x.
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Appendix D

Some generic results for M-valued

discrete stochastic processes known

in the literature

The following results are well-known in the literature; some of them are valid for more

general systems (such those satisfying the specification property; see Definition B.1), but

here we have opted to present them only for M -valued discrete stochastic processes.

Theorem D.1 (see [15, 50, 53]). Let (X,B, T ) be the full-shift system over X =
∏+∞
−∞M ,

where the alphabet M is a separable metric space. Then:

I. if X = RZ, then the set of invariant measures such that hµ(T ) = 0 is a dense Gδ

subset of M(T ) (see [51]);

II. Me(T ) is residual in M(T ) (see [38, 39]);

III. the set of invariant measures with full support is a dense Gδ subset of M(T );

IV. if M is also perfect and compact, then the set of invariant measures that are non-

atomic is residual in M(T );
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V. the set of invariant measures such that µ(F ) = 0, for each F ∈ B(X) which is

T -invariant, int(F ) = ∅ and F ( X, is a residual set of M(T ).

We present a proof of Theorem D.1-(III, IV and V). We begin showing that, for a

Polish space (M,d) (that is, for a complete separable metric space), the set of Borel

probability measures over M , whose respective supports contain a given closed set, is a

Gδ (see [15, 50, 53]).

Proposition D.1. Let ∅ 6= F ⊂M be an arbitrary closed set. Then,

BF = {µ ∈M : F ⊂ supp(µ)}

is a Gδ set in M.

Proof. Let (xi) be a countable dense set in F . Then,

BF =
⋂
i

{µ ∈M : xi ∈ supp(µ)},

so it is sufficient to consider the case F = {x}. Since

{µ ∈M | x /∈ supp(µ)} =
∞⋃
m=1

{µ ∈M | µ(B(x, 1/m)) = 0}

(recall that x ∈ supp(µ) if, and only if, for each m ∈ N, µ(B(x, 1/m)) > 0), one needs to

show that the set Mm,x := {µ ∈M | µ(B(x, 1/m)) = 0} is closed.

Thus, let (µn) be a sequence of measures in Mm,x such that µn → µ. Since, for

each n ∈ N, µn(B(x, 1/m)) = 0, it follows from the definition of weak convergence that

0 = lim infn→∞ µn(B(x, 1/m)) ≥ µ(B(x, 1/m)). Therefore, µ ∈M.

The next result shows that the set of T -invariant measures whose topological supports

are equal to the closure of the T -periodic points (a point x ∈M is periodic if there exists

a minimal positive integer kx, the so-called period of x under T , such that T kxx = x),
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P ⊂ X, is a Gδ-dense set in M(T ) (in this setting, µ(P) = 1 for each µ ∈ M(T ); see

Theorems 3.3 and 4.1 in [39]).

Proposition D.2 (see [15, 50, 53]). The set

CP = {µ ∈M(T ) | supp (µ) = P}

is dense in M.

Proof. It is a direct consequence of Theorems 3.3 and 4.1 in [39] that {µ ∈ M(T ) |
supp(µ) ⊂ P} = M(T ); it follows from this statement and Proposition D.1 that it is

sufficient to show that the set BP = {µ ∈M(T ) | supp (µ) ⊃ P} is dense in M(T ).

So, let {xl}l≥1 be a dense subset of P , and let, for each l ∈ N, λl(·) := 1
kxl

∑kxl−1

i=0 δT ixl(·)
be the periodic measure associated with xl (see Lemma 4.1 in [39]). If this sequence of

periodic measures is not dense in M(T ), then one just has to add to it another dense

enumerable sequence of periodic measures, say {νl} (see Theorems 1-(2.2) in [38] and

Theorem 3.3 in [39] for a proof of the existence of such set). Now, let {µn} = {λl}∪{νm},
and let {yp} be the respective countable dense set of periodic points associated to all of

µn.

Since {µn} is dense in M(T ), it is sufficient to show that given µ ∈ {µn} and ε > 0,

there exists ν ∈ BP such that ν ∈ B(µ, ε), where B(µ, ε) is the open ball of radius ε

centered at µ (recall that M(T ), endowed with the weak topology, is metrizable).

Hence, let η :=
∑

j≥1
1
2j
µj; note that η is a T -invariant probability measure such that

supp(η) = P (that is, η ∈ CP). Now, define ν := (1 − ε
2
)µ + ε

2
η. Then, for each A ∈ B,

one has |ν(A)−µ(A)| ≤ ε, so ν belongs to the strong ε-neighborhood of µ (and therefore,

to B(µ, ε)).

Obviously, ν is a T -invariant probability measure; thus, one just needs to check that

supp(ν) = P in order to conclude that ν ∈ BP . But then, it is sufficient to show that if

p ∈ {yn}, then p ∈ supp(ν).

Let µp be the periodic measure associated with p. It is clear that, for each r > 0,
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µp(B(p, r)) > 0; then, for each r > 0,

ν(B(p, r)) = (1− ε

2
)µ(B(p, r)) +

ε

2
η(B(p, r)) ≥ ε

2
η(B(p, r))

≥ ε

kp 2kp+1
µp(B(p, r)) > 0,

where kp is the period of p. Thus, p ∈ supp(ν), which concludes the proof that BP is

dense in M(T ).

Proof (Theorem D.1). III. It follows from Propositions D.1 and D.2. 2

Proof (Theorem D.1). IV. We follow the same ideas presented in the proof of

Theorem 2 in [50]. For each a > 0, let C(a) denote the set of measures µ ∈ M(T ) such

that µ({x}) ≥ τ for some x ∈ X.

(a) C(a) is closed. Suppose that µn is a sequence in C(a) which converges to µ ∈M(T ).

For each n, there exists an xn ∈ X such that µn(xn) ≥ a. Since X is compact, there exists

a subsequence of xn that converges to x0 ∈ X. So, for each fixed ε > 0, it follows from the

definition of weak convergence that µ(B(x0, ε)) ≥ lim supµn(B(x0, ε)) ≥ a. Since ε > 0 is

arbitrary, one concludes that µ({x0}) ≥ a, and therefore, that µ ∈ C(a).

(b) C(a) is nowhere dense. Suppose, by absurd, that there exists an open set V ⊂ C(a).

Let p > 0 be such that 1/p < a. By Lemma 1.6, there exists a periodic point x with period

τ(x) ≥ p such that µx ∈ V . Since µx(T
ix) ≤ 1/p < a, it follows that µx /∈ C(a), which

contradics the hypothesis.

Thus,
⋃
n∈NC(1/n) is a set of first category inM(T ). Its complement, that is, the set

of nonatomic invariant measures, is a dense Gδ set in M(T ). 2

Proof (Theorem D.1). V. Let N := {µ ∈ M(T ) | µ(F ) = 0 for each F ∈ B(X)

which is T -invariant, intF = ∅ and F ( X}.

Since CX(T )∩Me(T ) is a dense Gδ set inM(T ), it is sufficient to show that CX(T )∩
Me(T ) ⊂ N . Let µ ∈ CX(T ) ∩Me(T ), and let F be as in the definition of N . Since

X \F 6= ∅ is open and supp(µ) = X, it follows that µ(X \F ) > 0 (every µ ∈ CX(T ) gives
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positive weight to any open set). Now, since µ is ergodic and X \ F is T -invariant (given

that T and T−1 are continuous, F is T -invariant), one has µ(X \ F ) = 1, and therefore,

µ(F ) ≤ µ(F ) = 0. 2

A direct consequence of Theorem D.1-IV is:

Corollary D.1. Let S = {F ⊂ X | F is closed and T-invariant }, the set of subsystems

of (X,T ). Then, the subsystems F ∈ S such that int(F ) = ∅ do not form a support set

(that is, µ(F ) = 0) for typical measures. Furthermore, if X is a compact metric space,

then all the proper subsystem F ∈ S do not form a support set for typical measures.

Proof. The first part follows by Theorem D.1-IV. The second part follows from the fact

that the system is topologically transitive.
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Appendix E

Double sequences

Definition E.1. A double sequence of complex numbers is a function s : N×N→ C. We

shall use the notation {s(n,m)}. We say that a double sequence {s(n,m)} converges to

a ∈ C, and we write limn,m→∞ s(n,m) = a, if the following condition is satisfied: for every

ε > 0, there exists N = N(ε) ∈ N such that, for each n,m > N ,

|s(n,m)− a| < ε.

The number a is called the double limit of the double sequence {s(n,m)}. If no such a

exists, we say that the sequence {s(n,m)} diverges.

Definition E.2. For a double sequence {s(n,m)}, the limits

lim
n→∞

( lim
m→∞

s(n,m)) and lim
m→∞

( lim
n→∞

s(n,m))

are called iterated limits.

Theorem E.1 (Theorem 2.13 in [23]). Let {s(n,m)} be a double sequence of natural

numbers such that limn,m→∞ s(n,m) = a. Then, the iterated limits

lim
n→∞

( lim
m→∞

s(n,m)) and lim
m→∞

( lim
n→∞

s(n,m))

exist and both are equal to a if, and only if:
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1) for each n ∈ N, limm→∞ s(n,m) exists, and

2) for each m ∈ N, limn→∞ s(n,m) exists.

Theorem E.2 (Theorem 2.15 in [23]). If {s(n,m)} is a double sequence such that

1) limn→∞(limm→∞ s(n,m)) = a, and

2) limn→∞ s(n,m) exists uniformly in m ∈ N,

then limn,m→∞ s(n,m) = a.
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rence. Comm. Math. Phys. 219, 2 (2001), 443–463.

[7] Barreira, L., and Saussol, B. Product structure of Poincaré recurrence. Ergodic
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