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Abstract

It is known in the Standard Model of particle physics that the parity symmetry is violated (left-
right asymmetry of fermions) in the weak interaction, consequently, neutrinos are considered as
particles not massive, however, according to experimental facts, like in the case of neutrino oscil-
lation, they must have mass. For this reason, one way to correct this asymmetry is to extend the
gauge group SU(3)C⊗SU(2)L⊗U(1)Y to a group where the left and right fields are transformed
in the same way, these models are called left-right symmetric models, where due to the presence
of the right fields of the neutrinos these can gain mass.

This work propose a left-right symmetric model, where the scalar sector consisting of two dou-
blets and two bidoublets (could include more bidoublets), in which neutrinos remain as Dirac
fermions, like the charge leptons and quarks, in all orders in perturbation theory. However, only
with two bidoublets the neutrino masses still need a fine-tuning, this would not be the case when
a third bidoublet is added to our scalar sector. One of the scalar doublets may be regarded as
inert, because the left-right symmetry forbids it to couple with the known fermions1.

1H. Diaz, V. Pleitez and O. Pereyra Ravinez. Dirac neutrinos in a SU(2) left right symmetric model. Phys.
Rev. D102, 075006 (2020)
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Introduction

With the advancement of technology applied to the construction of new detectors, and the effort
of many dedicated experimentalists[1], we now know that neutrinos appear in nature in three
different flavors where each type of neutrino is grouped with its charge lepton partern. Moreover,
the different observations, where involving neutrinos, have played a key role in our understanding
about weak interactions in the building of the Standard Model (SM) of the particle physics[2]
and it is believed that further observations may be the cornerstone to understand the physics
beyond the SM.

The known electroweak theory (also known as the GlashowWeinbergSalam theory) is a unified
theory describing the weak and electromagnetic interaction of elementary particles. Its prototype
was Glashow’s model to combine the weak and electromagnetic interaction in the framework of
SU(2)L⊗U(1)Y symmetry. Weinberg and Salam supplemented the Higgs mechanism to generate
masses of gauge particles and fermions, and succeeded in placing the model in the mathematical
framework of gauge theories.

The experimental evidence shows that neutrinos are characterized by having half-integer spin,
in others words they are fermions, and have no electric charge[1][3]. Having a little mass or not
was one of the key questions of the particle physics and constituted one of the chief obsessions in
the scientific thought; however due to the evidence of neutrino oscillation, they must have mass,
small but they do.

The SM, like a model at low energies, predicts massless neutrinos, making them different from
other fermions such as the charged leptons (e, µ, τ) and the quarks (u, d, s, c, t, b), which
introducing the spontaneous symmetry breaking and the Higgs mechanism these known fermions
acquire mass. As is knowing the charge leptons and quarks presents left and right fields within
the framework of the model. In addition, the SM has also been extremely successful in explain-
ing the various low weak energy processes involving charged and neutral current interactions
of neutrinos[3]. Many enteresenting models which go beyond the SM[1] that became extremely
popular in fact were closely tied to the masslessness of the neutrino[2].

Among the extended models which may manifest itself in the multi-TeV (or maybe higher) range
of energies are the left-right symmetric models[4][5] in the electroweak sector. In these models,
the left and right chiralities of leptons and quarks are assumed to play an identical role previous to
the symmetry breaking (or at high energies above all symmetry breaking scales). Furthermore, it
follows that in the left right symmetric models, weak interactions conserve parity[4, 6], being this
property already shared by strong, electromagnetic and gravitational interactions. Maybe, this
is closer to the essential part of unified theories than the SM. The weak interactions treatment in
the left right symmetric models requires that all left handed fermions must have a right handed
partner. Therefore, an immediate consequence of these models is the existence of a new particle,
the right handed neutrino, usually denoted by νR (lighter neutrino) or sometimes by NR (heavy
neutrinos are predicted by others left right models where the neutrino is the Majorana type). In
conclusion, these models propose a complete correspondence between leptons and quarks in its
spectrum and leads us to obtain massive neutrinos[6], which could be either Majorana or Dirac
ones.

As mentioned in previous paragraphs, the simplest extension of the SM involving additional
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charged gauge bosons is the SU(2)L ⊗ SU(2)R ⊗ U(1)B−L model, in which the first (second)
SU(2) couples to L (R) chiral fermions. In the original versions of the model[5][7], the gener-
ator of the U(1) symmetry is indeed B − L. It was appreciated subsequently [6], where the
electric charge is expressed as a lineal combination of the generators of the symmetry groups:
Q = I3L + I3R + B−L

2
(Gell Mann - Nishijima formula).

In the first chapter, we will talk about some basic points about the SM of the particle physics,
considering the particles that it contains and how they are classified, as well as the process of
mass generation through the Higgs mechanism[8] and will discuss some alternatives of getting
massive neutrinos, which represents extended models respect to the SM.

In the second chapter, we will discuss about the theoretical structure of our model with gauge
symmetry SU(2)L⊗SU(2)R⊗U(1)B−L⊗P , which represents one of the extended models of the
SM, a model with right-handed fermions (we will have right-handed neutrinos) that presents the
same law of transformation as the already known left-handed fermions of the SM, taking into ac-
count a scalar sector that must respect all known symmetries (Lorentz invariant, gauge invariant,
and invariant with respect to some discrete symmetries). With the P operator, this left-right
symmetric model respects the parity symmetry from the beginning[4]. After spontaneous sym-
metry breaking and using the Higgs mechanism[8], these particles proposed by the model acquire
mass, including neutrinos. we also study the different sectors proposed by the model, for exam-
ple, in the gauge sector we will see the way as the gauge bosons interact with the leptons. I can
mention that this thesis work has two published articles, one of them in the Physical Review D
whose title is Dirac neutrinos in an SU(2) left-right symmetric model and the other one pub-
lished in the Journal of Physics G, titled Explicit parity violation in SU(2)L⊗SU(2)R⊗U(1)B−L.

In the third chapter, we develop some phenomenological calculations; firstly, in the scalar sector
through the more general potential where applying certain discrete symmetries we get a simpler
version than the first one. With this later version of the scalar potential we obtain the new con-
strain equations. In addition, we work with the gauge sector where using the covariant derivatives
related to the scalar sector we can obtain the masses and the physical states of the vector bosons.
Finally, we obtain the coupling coefficients between the leptons and the physical gauge bosons.
In addition, the couplings between quarks with the neutral vector bosons have also been obtained.

In the fourth chapter, We work with the yukawa sector where, by choosing a parameterized
mixing matrix (PMNS), we obtain for our model the Yukawa couplings for both charged leptons
and neutrinos, using information obtained from the particle data group (PDG)[3], that is, it
has been regarded different types of hierarchy for the neutrinos masses like: Normal hierarchy,
Inverted hierarchy and the Cuasi-degenerated hierarchy without phase factor.

In the fifth chapter some of the phenomenological consequences due to the characteristics of
the model are discussed, where it is commented on the existence of FCNCs in the scalar sector,
as well as on contributions to the magnetic moment of the muon, ways to recognize if neutrinos
are of Dirac or Majorana type through the performance of certain processes. A brief discussion
of the electric dipole moment of the fundamental particles is also treated.

In the sixth chapter, the conclusions are established according to what was gotten in the present
work, considering that the objectives have been achieved and are shown in the articles published
in the journals mentioned in the previous paragraphs.
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Chapter 1

The Standard Model of Particle Physics

1.1 Introduction of the Electroweak Standard Model (ESM)

The success of the ESM predictions is remarkably high and even, if we can extent it beyond what
one would have expected. It shows a very elegant theoretical framework, which since about 1974
has successfully explained our observations at particle colliders. The main parts of the SM were
introduced by Salam and Weinberg independently around 1968, however Weinbergs paper for
example received only two citations in 1969 and 1970.

The ESM,[1][2] describe only three of the known fundamental forces (the electromagnetic, weak,
and strong interactions, without including the gravitational one) in the universe, moreover it
explains how the all known elementary particles are classified.

This model is built as a result of several experiments and symmetry principles like Lorentz
invariance, local gauge invariance and electric charge conservation. Moreover, after of the dis-
covery of the Higgs boson at LHC [9], the SM received the status of Physical phenomena theory
in the electroweak energy scale (up to about 200 GeV).

The principles of gauge symmetry represent one important part the great success of ESM as it
establishes an connection between local (gauge) symmetries and forces mediated by spin-1 par-
ticles called vector gauge bosons. On the other hand, in the ESM, the weak and electromagnetic
interactions are connected to gauge symmetry under the direct product SU(2)L ⊗ U(1)Y where
L for left-handedness, and Y for hypercharge ( the fields’ charge before spontaneous symmetry
breaking). The ESM gauge symmetry is spontaneously broken to U(1)Q (natural symmetry)
where couples to the electromagnetic charge Q = TL3 + Y which can be obtained after applying
the spontaneous symmetry breaking (the Gell Mann- Nishijima relation). TL3 represents the
weak isospin which is the third generator of SU(2)L. The model explains the interactions of the
known fermions (only electroweak sector) once they are assigned to well defined representation
of the gauge group.[1][10].

It is important to keep in mind that in all gauge theories the particles masses are protected
by the gauge group of the model, the symmetry group of the ESM fixes the interactions, that is,
the number and properties of the vector gauge bosons. In addition, the two coupling constants g
and gY of the SU(2)L and U(1)Y groups respectively must be determined from experiments. On
the other hand, the number and properties of scalar bosons and fermions are left unconstrained,
except for the fact that they must be transformed in a particular way under the symmetry group.
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From an experimental and theoretical point of view there is too much information, already
known in the literature, about the success of the SM, however, we are interested in how the
fermions (quarks, charged leptons) acquire mass. Take into account that in the SM formulation
the neutrinos, after the breakdown of symmetry, remain as non-massive. This is what will be
emphasized in the following sections of this chapter.

1.2 Quarks and Charge Leptons masses in the SM

In the formulation of the SM, the fermions masses are generated via Yukawa coupling, where the
only scalar Higgs doublet, Φ, couples with the fermions proposed by the SM, that is, a right-
handed component must couple with the left-handed one. The former is an SU(2)L doublet, the
latter is part of a singlet.

−LY ukawa = Y d
ij Q

′
Li ΦD′Rj + Y u

ij Q
′
Li Φ̃U ′Rj + Y `

ij `
′
Li Φ `′Rj +H.C., (1.1)

where Φ̃ = i τ2Φ∗ which after spontaneous symmetry breaking these terms lead to charged fermion
masses, that is[1]:

mf
ij =

v√
2
Y f
ij , (1.2)

v is the vacuum expectation value (V.E.V.) of the Higgs field. Nevertheless, since the model
does not contain right-handed neutrinos, the Yukawa interaction of Eq. (1.1) leave the neutrinos
massless.

1.2.1 Neutrinos in the ESM: Massless Neutrinos

In the ESM, we know neutrinos are fermions don’t feel neither strong nor electromagnetic inter-
actions. In others words, they are singlets under SU(3)C and their hypercharge is −1/2. They
transform as isospin doublets of SU(2)L:

Ψ′L` =

(
ν ′`
`′

)
L

where, in general, ψ′L (= `′L, ν
′
`L) is the left-handed component of the fermion ψ:

ψ′L = PLψ
′ ≡ 1

2
(1− γ5)ψ′

. On the other hand, in what follows we can define the active neutrinos to those which form
part of these lepton doublets. In the SM there is one active neutrino for each charged leptons, e,
µ, and τ . SU(2)L gauge invariance dictates the form of weak charged current (CC) interactions
between the neutrinos and their corresponding charged leptons and neutral current (NC) among
themselves to be:

LCC = − g√
2

∑
`

νL` γ
µ `−L W

+
µ +H.C., (1.3)

LNC = − g

2 cos θW

∑
`

νL` γ
µ νLν Z

0
µ (1.4)

where θW is the Weinberg angle and g is the coupling constant associated to SU(2) group, as
was mentioned in the previous parragraph. In addition, the equations (1.3) and (1.4) describe
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all interactions in the ESM that neutrinos present. Taking into account the equation (1.4), it
determines the decay width of the Z0

µ boson into light left-handed neutrinos mass eigenstates.
Then according to experimental evidences, the total decay witdh of the Z0

µ boson, the number of
such neutrinos (the particle data group [3] is Nν = 2.984±0.008, this value represent the number
of light neutrinos which are coupled to Z0, in others words this allows determining the number of
species of light neutrinos. Whatever model representing an extension of the SM should contain
three and only three light active neutrinos.

In models which are extensions of the SM, certain types of neutrinos called Sterile Neutri-
nos (or right-handed neutrinos) are proposed. These kinds neutrinos are defined as having no
SM gauge interactions, their only interactions is gravitational, in others words, they are singlets
of the complete SM gauge group and have hypercharge Y = 0. Thus the SM, as a gauge theory
is able to describe all known particle interactions, leaving out sterile neutrinos[11].

¿Could a neutrino mass term be generated at loop level?, knowing the particle content of SM the
only way to build neutrino mass term is through the bilinear term ΨL Ψc

L, where Ψc
L is the charge

conjugated field, Ψc
L = CΨ

T

L and C is the charge conjugation operator. Nevertheles, this term
is forbidden in the SM because it violates the total lepton symmetry by two units and hence it
cannot be induced by loop corrections[12].

It is concluded that within the ESM neutrinos are precisely massless and the symmetry group
needs to be extended to generate mass to neutrino.

1.3 Non-zero neutrino mass: Extensions of ESM

With the content of matter particle and gauge symmetry of the ESM we can conclude that the
generation of mass terms for the neutrinos won’t be posible. Therefore, in order to introduce a
neutrino mass in the theory, it is necessary to extend the symmetry group of the model.

We could explore several posibilities to generate a neutrino mass term, without changing the
gauge symmetry of the model, adding to the ESM an arbitrary number of sterile neutrinos νsk
(k = 1, 2, · · ·m). With the addition of m number of sterile neutrinos (Extension of the ESM) one
may build two gauge invariant renormalizable operators. Now there are, in general, two types of
mass terms1:

−LMν = MDijψ
′
ν,siψ

′
ν,Lj +

1

2
MNijψ

′
ν,siψ

′csj
ν +H.C., (1.5)

ψ′c = Cγ0ψ′∗, is the charge conjugated field of the neutrino, moreover, MD is complex matrix of
(m× 3) dimension and MN is a m×m matrix.

The Yukawa interactions after applying the spontaneous symmetry breaking can generate mass
terms:

Γνijψ
′
si,ν φ̃

†L′Lj → MDij = Γνij
v√
2
, (1.6)

similar to Eqs. (1.1) and (1.2) for the fermions in the ESM, where it is called a Dirac mass term
and preserve the lepton number (total).

1Standard Model: A Primer-Burgess Moore
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The Majorana mass term is the second in the equation (1.5), it differs from the Dirac mass
terms in many relevant aspects:

1. It represents a singlet field of the ESM gauge group.

2. It breaks the lepton number in two unities. Therefore, such terms are not allowed for any
charged fermions which, by definition, carry U(1)Q charges.

We can rewrite Eq. (1.5) at the form:

−LMν ≡
1

2
~ψ′cνMν

~ψ′ν +H.C., (1.7)

where ~ψ′ν =
(
~ψ′νL,

~ψ′cνs

)T
is a vector with dimension (3 + m). In addition, Mν (complex and

symmetric matrix) can be diagonalized by a unitary matrix V ν of dimension (3 +m), that is:

M̂ν = (V ν)TMνV
ν , mk : real values, k : 1, 2, · · ·m+ 3

The original weak eigenstates in terms of the resulting 3 + m mass eigenstates are given by the
following form:

~ψν = (V ν)† ~ψ′ν

Writing the Eq. (1.7) in terms of the mass eigenstates, we obtain:

−LMν =
1

2

k∑
i=1

mi

(
ψ
c

i,ν ψi,ν + ψi,ν ψ
c
i,ν

)
=

1

2

k∑
i=1

mi ψMi,ν ψMi,ν , (1.8)

k = m+ 3, where:

ψMi,ν = ψi,ν + ψci,ν =
(
V ν† ~ψν

)
i
+
(
V ν† ~ψν

)c
i
. (1.9)

From this last expression we can observe the following relation ( called Majorana condition2):

ψM,ν = ψcM,ν (1.10)

These are the Majorana neutrinos where both neutrino and antineutrino states are described by
only one field, on the other hand, for the case of charged fermion the particle and antiparticle are
described by two different fields. Then, a Majorana like neutrino are described by spinor with two
components, however, the charged fermions (Dirac particles) are represented by four-component
spinors.

1.3.1 Dirac Neutrinos

It is known that the lepton number is conserved, on the other hand, as a was indicated in previous
paragraphs, we can make MN = 0 in the Eq.(1.5) results equivalent to regard lepton number
conservation. Applying it in Eq.(1.5) and considering that sterile neutrinos are three, so we can
recognize them as the right-handed component of a neutrino four spinor field then the Dirac mass
term can be diagonalized with two 3× 3 unitary matrices, Uν and Uν

R as:

Uν†
R MD U

ν = M̂D (1.11)

2see the appendix E
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The lagrangian density of the neutrino take the form:

−LMν =
3∑
i=1

mi ψDi,νψDi,ν , (1.12)

we can identify:

ψDi,ν =
(
Uν†ψ

′
L,ν

)
i
+
(
Uν†
R ψ

′
s,ν

)
i
, (1.13)

remember that ψL,ν represents the active neutrino and ψs,ν represents the sterile one. Therefore,
the weak-doublet components of the neutrino fields are:

ψ′Li,ν = PL

3∑
j=1

Uν
ijψDj ,ν , i = 1, 2, 3. (1.14)

It is important to point out that both the matter content and the assumed symmetries are
different. Moreover, there is no explanation to the fact that neutrino masses must be much lighter
compared to charged fermion masses which acquire their mass using the same mechanism.

1.3.2 Brief Summary of the See-saw Mechanism

In this case the mass eigenvalues of MN is much higher than the ones of electroweak symmetry
breaking 〈φ〉. When we diagonalize the Mν matrix, as a consequence, we obtain three light
neutrinos, ν`, and m heavy ones:

−LMν =
1

2
ψν`M

`ψν` +
1

2
ψNM

hψN , (1.15)

where

M ` ' −UT
` M

T
DM

−1
N MDU`, Mh ' UT

hMNUh, (1.16)

and

Uν '

 (1− 1
2
M †

DM
∗−1
N M−1

N MD

)
U` M †

DM
∗−1
N Uh

−M−1
N MDU`

(
1− 1

2
M−1

N MDM
†
DM

∗−1
N

)
Uh

 (1.17)

U` and Uh are unitary matrices respectively. Moreover, we can see from Eq. (1.16) that these
matrices are proportional to MN and the lighter ones are proportional to M−1

N . This is called
the See-Saw Mechanism. In addition, from (1.17) the heavy states are right-handed while the
light ones are in most cases left-handed. In this way the light and the heavy states are Majorana
particles. The See-Saw Mechanism can be consered as a particular example of a whole theory
which to low energy we obtain the ESM plus three light Majorana like neutrinos.

1.3.3 New Physics and the Neutrino Masses

From the above discussion, there are several reasons to think that the ESM isn’t a complete
picture of nature. If any of the extensions of the SM is indeed realized in nature, the SM must
be thought of as an effective low energy theory. It means that it is a valid approximation up to
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the scale ΓNP (see below) which characterizes the new physics (NP: New Physics).

Regarding to the SM as an effective low enegy theory, without changing the gauge symmetry
group, GSM = SU(3)C × SU(2)L × U(1)Y , the fermionic spectrum and the hierarchy of SSB
(Spontaneous Symmetry Breaking) as valid ingredients to describe nature at energies E � ΓNP .
Nevertheles, the modifications of the SM predictions are given by small effects which are propor-
tional to powers of E/ΓNP . The difference between the ESM, as a whole description of nature
and like a low energy effective theory is which in the latter one, it must regard no-renormalizable
terms.

In fact, there is a single set of dimension-five operators terms that is made of SM fields which
is consistent with the gauge symmetry. This term is given by the Weinberg operator[13]:

O5 =
Xν
ij

ΓNP

(
ΨLiφ̃

)(
φ̃TΨc

Lj

)
+H.C. (1.18)

Xν
ij is a constant elements matrix, furthermore, the equation 1.18 violates total lepton number

by two units leading, after SSB, we arrive to:

LMν =
Y ν
ij

2

v2

ΓNP
ψLi,νψ

c
Lj,ν +H.C., (1.19)

where the neutrinos masses are given by:

(Mν)ij =
Xν
ij

2

v2

ΓNP
. (1.20)

Since Eq. (1.20) would arise in a generic extension of the SM, we learn that neutrino masses are
very likely to appear if there is new physics. Moreover, if neutrino masses arise effectively from
nonrenomalizable terms, we gain an understanding not only for the existence of neutrino masses
but also for their smallness. The scale of neutrino masses is suppressed by v/ΓNP , compared to
the scales of charged fermion masses.

The equation (1.19) break not only total lepton number but also the lepton flavor symmetry,
hence we should expect lepton mixing and CP violation3.

1.4 Testing of the ESM

In addition to cross-sections, asymmetries, parity violation, W and Z decays, there is a large
number of experiments and observables testing the flavor structure of the SM.

We present the results of global fits to experimental data. The values for mt (quark top
mass), ν-lepton scattering, the weak charge ( In the SM: 2T3 − 4Q sin2 θW ) of the electron,
the proton, cesium, thallium, the weak mixing angle extracted from ATLAS, CMS, D0 ex-
periments; the muon anomalous magnetic moment, and the τ lifetime are listed in the table
1.1. MH (Higgs boson mass) is our average of the LHC combination from Run 1, MH =
125.09± 0.21 stat. ± 0.11 syst. GeV , with MH = 124.98 ± 0.19 stat.± 0.21 syst. GeV from
ATLAS and MH = 125.26 ± 0.29 stat.± 0.08 syst. GeV from CMS at Run 2, where conserva-
tively is treated the smallest systematic error as common among the three determinations.

3M. C. Gonzalez - Garcia, Neutrino masses and mixing evidence and implication
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Quantity Experimental value SM (predictions)
mt [GeV] 172.89± 0.59 173.19± 0.55
MW [GeV] 80.387± 0.016 80.361± 0.006

80.376± 0.033
80.370± 0.019

ΓW [GeV] 2.046± 0.049 2.090± 0.001
2.195± 0.083

MZ [GeV] 91.1876± 0.0021 91.1882± 0.0020
ΓZ [GeV] 2.4955± 0.0023 2.4942± 0.0009

Γe+e− [MeV] 83.942± 0.085 83.964± 0.009
Γµ+µ− [MeV] 83.941± 0.085 83.963± 0.009
Γτ+τ− [MeV] 83.759± 0.085 83.780± 0.009
MH [GeV] 125.14± 0.15 125.14± 0.15

gνeV −0.040± 0.015 −0.0398± 0.0001
gνeA −0.507± 0.014 −0.5063
aµ (1165920.91± 0.63)× 10−9 (1165918.36± 0.44)× 10−9

ŝ2
Z 0.2299± 0.0043 0.23122± 0.00003

geuAV + 2gedAV 0.4914± 0.0031 0.4950
2geuAV − gedAV −0.7148± 0.0068 −0.7194

geeAV 0.0190± 0.0027 0.0226
QW (e) −0.0403± 0.0053 −0.0476± 0.0002
QW (p) 0.0719± 0.0045 0.0711± 0.0002
QW (Cs) −72.62± 0.43 −73.23± 0.01
QW (T l) −116.4± 3.6 −116.87± 0.02
ττ [fs] 290.75± 0.36 290.39± 2.17

Table 1.1: Experimental datas and the SM predictions.

According to the values placed in this table we can also mention the following:

1. The first MW and ΓW values were obtained from the Tevatron, the second ones from LEP
2, while the third MW is from ATLAS.

2. The ττ value is the τ lifetime world average computed by combining the direct measurements
with values derived from the leptonic branching ratios.

3. The MZ , ΓZ , ŝ2
Z and Γ`+`− have been performed at LEP 1 and SLAC.

4. The muon anomalous magnetic momento is dominated by the final result of the BNL E821
collaboration4

5. The world averages for gνeA and gνeV are dominated by the CHARM II5.

6. geuAV + 2gedAV , geeAV and 2geuAV − gedAV were obtained from the CMS and ATLAS collaboration.

1.5 Independent parameters of the SM

The SM Lagrangian density contains many parameters. However, not all these parameters can
have physical meaning. One is always free to re-define the SM fields in an arbitrary manner. By

4G. Bennett et al. (Muon g-2), Phys. Rev. Lett. 92, 161802 (2004)
5P. Vilain et al. (CHARM-II), Phys. Lett. B 335, 246 (1994).
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suitable re-definitions, one can remove some of the apparent parameter freedom and identify the
true physical independent parametric degrees of freedom.

The model that unifies three of the fundamental forces and describes all matter in the form
of quarks and leptons, has about 18 free parameters which are not predicted by the theory.

The following table 1.2 shows the 18 independent parameters of the SM. As can be seen, most
of the model’s free parameters belong to the quark sector6:

Quantity Simbol Valou
α 7.297352 5664(17)× 10−3

Gauge coupling constants sin2 θW 0.23122(4)
αs 0.1181(11)
mW 80.379± 0.012 GeV

Gauge bosons masses
mH 125.10± 0.14 GeV
me 0.5109989461± 0.0000000031 MeV
mµ 105.6583745± 0.0000024 MeV
mτ 1776.86± 0.12 MeV
mµ 2.16+0.49

−0.26 MeV
Fermion masses mc 1.27± 0.02 GeV

mt 172.9± 0.4 GeV
md 4.67+0.48

−0.17 MeV
ms 93+11

−5 MeV
mb 4.18+0.03

−0.02 GeV
JCKM (3.18± 0.15)× 10−5

CKM Matriz parameters |Vµd| 0.97420± 0.0021
|Vµs| 0.2243± 0.0005
|Vµb| (3.94± 0.36)× 10−3

Table 1.2: The SM parameters.

6Particle Data Group 2020, (http://pdg.lbl.gov)

10



1.6 Questions that can’t be answered by the SM

The ESM is one of the most successful theories in physics. So far, it withstands all tests and has
been experimentally verified with great accuracy. One of its latest triumphs is the discovery of
a neutral scalar particle which appears to have the properties predicted by the SM, the Higgs
Boson. However, there are several phenomenas that cannot be explained within the energy scale
of the SM and hence require the existence of some kind of yet undiscovered physics, commonly
referred to as new physics or physics beyond the SM (BSM).

Within the SM, neutrinos are treated as massless, but observation of neutrino oscillation de-
mands that neutrinos in fact do have a non-vanishing mass, although a very small one.

Another challenge for the SM is the so-called hierarchy problem: The SM gives no explana-
tion for the enormous difference between the electroweak scale (until about[1] 200 GeV), the
scale at which electroweak and strong forces become equally strong (due to the running coupling
constants) which is of the order of 1016 GeV and the Planck scale of ∼ 1019 GeV, at which also
the gravitational interaction becomes as strong as the other forces.While the masses of the fun-
damental particles can be generated via the Higgs-mechanism in electroweak symmetry breaking,
the theory gives no explanation for the large range of the masses. Moreover, additional particles
are needed in order to cancel diverging loop-corrections to the Higgs mass.

There is also no explanation why, within the SM, there are three generations of fundamental
fermions.

The origin of the matter-antimatter asymmetry in the universe is another open question in
particle physics: If at the big bang, particles and antiparticles were created in the same amount,
they should all have annihilated each other, however, the annihilation appears to be asymmetric
as there is today only matter observed in the universe while the antimatter has disappeared.
This requires CP violation by an amount that cannot be accommodated in the SM.

Finally, cosmological and astrophysical observations lead to the conclusion, that radiation and
matter made of SM particles only account for about 5 % of the mass and energy content in the
universe. Roughly 27 % are attributed to non-luminous dark matter and the remaining roughly
68 % are so-called dark energy. Neither of these last two components finds any explanation within
the SM.

In the next chapter we will study one of the so-called left-right symmetric models, which are
extensions of the standard model, with the aim of trying to explain some of the many questions
that can not be justified with the SM. The left-right symmetric model is built by modifying the
electroweak gauge group. There may be added a right-handed SU(2)R group and the charge on
U(1) is modified to a new charge denoted by Ỹ = B − L, where B : Barionic number and L :
Leptonic number, which will be explained later.

GLR = SU(2)L ⊗ SU(2)R ⊗ U(1)Ỹ

This kind of model was first suggested by physicists Jogesh Pati and Abdus Salam[4], in an
attempt to introduce left-right symmetry.
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Chapter 2

The Left - Right Model with gauge
symmetry group
SU(2)R ⊗ SU(2)L ⊗ U(1)B−L ⊗ P

2.1 Introduction

It is known that the SM violates the parity which can understand it as left-right asymmetry of
elementary particles. One way to study and understand the left-right asymmetry is to enlarge
the gauge symmetry group of the ESM into a left-right (LR) symmetry one and then, by applying
spontaneously breaking mechanism, to recover the ESM symmetry structure. For instance, in
left-right symmetric models [4], the gauge SU(2)R group is introduced to maintain parity invari-
ance at high energy scales with new scalar multiples: Two doublets and two bi-doublets scalar
fields. The symmetry group SU(2)L ⊗ SU(2)R ⊗ U(1)B−L of LR symmetric models can be sub-
group of grand unified symmetry groups such as SO(10)[14], E6[15] or superstring models[16]. In
the framework of LR symmetric models, the left-handed fermions are placed in the SU(2)L dou-
blets like they are in the ESM while the right-handed fermions (where appearing the right-handed
neutrinos which are part of the leptons) are placed in the SU(2)R isospin doublets. Subsequently,
following the usual process, the LR symmetry is spontaneously broken down to the electroweak
symmetry of the SM using the known Higgs Mechanism. According to the bibliography, exist sev-
eral variants of LR symmetric models which have been proposed such as these references: [6]-[17].

The idea of the non-conservation of parity in the SM was proposed in a classic paper[18] by
Lee and Yang where they proposed the existence of additional fermions of opposite chirality to
the SM ones to make the world left-right symmetric at high energies. Moreover, the smallness
of neutrino mass can be explained via a see-saw mechanism, where the neutrino is a Majorana
fermion like by regarding in the scalar sector triplets one. These models can also be useful by ex-
plaining the Dark Matter problem[19], neutrino oscillations, as well as different neutrino physics
anomalies such as solar neutrino deficit and atmospheric neutrino anomaly[20]. In summary, the
existence of right particles appear naturally in models which go beyond the SM, like GUT and
string theories[21]. The right particles masses, which are unknown experimentally, can be at or
below the TeV scale. The agreement of the LR models with electroweak precision data have been
studied in [22].

In this chapter I start giving an overview of our left-right symmetric model with gauge group
SU(2)L⊗SU(2)R⊗U(1)B−L⊗P , where the parity operator P assures me the left-right symmetry
of the model; therefore parity is preserved from the start. We have also regarded two extra left
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right models in order to compare it with our model (These articles are of Goran Senjanovic’s [7]
and Mohapatra’s [4]). In addition, we will give some details about the most important sectors
in our model, by defining the theoretical framework through the gauge group considered in this
research work and showing how the particles (fermions) are placed into multiplets according to
the gauge symmetry group. Within the most important sectors we are going to show the gauge
sector through the covariant derivaties of the scalar sector (kinetic part), however, the gauge
bosons’ physical states and masses are calculated in the next chapter by applying the Higgs
mechanics and the SSB[10, 8]. Moreover, we analize the most general potential (which respects
several symmetry) and the Yukawa sector that is built respecting the symmetries of the model.

Remember that LRSM has been studied extensively since the 1970s; as one example of an early
review see [4, 5]. The most common and popular version of the model is called the minimal
LRSM and is defined by its scalar sector, where the usual SM Higgs doublet is replaced by a
bi-doublet and two complex triplets which are introduced into the theory. One of the complex
triplets transforms under SU(2)R and the other one under SU(2)L. In addition, the VEV of the
right-handed triplet is large, resulting in the gauge bosons Z ′ and W±

R whose masses are larger
than the SM gauge bosons masses.

To conclude, I am exploring an alternative symmetry breaking pattern (six VEV’s), where the
vevs vR is considered to be the largest one. This version of the model includes two doublets and
two bi-doublets, within the scalar sector, in order to give large masses to Z ′ and W ′± bosons,
which are the new vectorial bosons proposed by the model, and also, give masses to the other
particles, this includes the light leptons and the quarks. Many features of the model are as sim-
ilar as the minimal LRSM, however, the scalar sector that I have explored has not been worked
before.

2.2 Particles Classification

2.2.1 Leptonic Sector

The left and right leptons (charged and neutral) are represented by doublets, using the funda-
mental representation of the symmetry group SU(2)R ⊗ SU(2)L ⊗ U(1)B−L ⊗ P [23]:

Ll ≡ 1
2
(1− γ5)

 ψνl

ψl

 =

 νe

e−


L

;

 νµ

µ−


L

;

 ντ

τ−


L

∼ (2L,1R,−1)

Rl ≡ 1
2
(1 + γ5)

 ψνl

ψl

 =

 νe

e−


R

;

 νµ

µ−


R

;

 ντ

τ−


R

∼ (1L,2R,−1)

(2.1)

where the quantum numbers in parentheses represent the third component of the left weak isospin
(right), T3L(T3R), and the hypercharge B−L, which is introduced to implement quark and lepton
correspondence, since they are distinguished only by the B − L quantum number[24][25]. These
quantum numbers are related to the electric charge by the relation of Gell Mann-Nishijima of
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the model:

Q = T3L + T3R +
B − L

2
(2.2)

The quantum numbers corresponding to the representation (2.1) are summarized in the following
table:

Leptón T3L T3R
B−L

2
Q

νeL, νµL, ντL 1/2 0 -1/2 0
eL, µL, τL -1/2 0 -1/2 -1
νeR, νµR, ντR 0 1/2 -1/2 0
eR, µR, τR 0 -1/2 -1/2 -1

Table 2.1 :Quantum numbers for leptons at the left - right model.

Because the fields are transformed according to the local symmetry group SU(2)R × SU(2)L ×
U(1)B−L ⊗ P . These fields transform non trivially under different SU(2) transformation, in ad-
dition, the leptonic lagrangean density must remain invariant under this transformation, and as
a consequence of the gauge invariant, new bosonic fields are introduced:

WR
µk, W

L
µk with k = 1, 2, 3 associated with groups SU(2)R y SU(2)L respectively, and Bµ re-

lated to the group U(1)B−L, the ordinary derivative is replaced by the covariant derivative:

DL
µ ≡ ∂µ +

igL
2
τ̄ .W̄L

µ −
ig′

2
Bµ

DR
µ ≡ ∂µ +

igR
2
τ̄ .W̄R

µ −
ig′

2
Bµ

(2.3)

however, making use of the parity invariance, P , the covariant derivaties should be written as:

DL
µ ≡ ∂µ +

ig

2
τ̄ .W̄L

µ −
ig′

2
Bµ

DR
µ ≡ ∂µ +

ig

2
τ̄ .W̄R

µ −
ig′

2
Bµ

(2.4)

where: gR = gL = g y gB−L ≡ g′ are the coupling constants of the weak and hypercharge
symmetry. To observe that we need making gR = gL , with the aim that the theory must be
invariant by parity P , where fields transform by Parity as follows[26]:

Ll
P↔ Rl ; W̄L

P↔ W̄R

that is, we impose a generalized parity under which

gL ↔ gR, WLµ ↔ W µ
R, fL ↔ fR, χL ↔ χR,Φi ↔ Φ†i , Φ̃i ↔ Φ̃†i , (2.5)

where Φ̃i = τ2Φ∗i τ2; WµL,R are the vectorial gauge bosons of the SU(2)L,R gauge symmetry, re-
spectively, f denotes a quark or a lepton doublet, and Φi and χL,R are the scalar multiplets that
will be defined in the scalar sector of the model, see later sections.

As we mentioned in the previous paragraphs, the invariance under P implies equality of gauge
couplings gL = gR ≡ g at the energy at which these symmetries are realized. Under this condi-
tion, the model has only two gauge couplings, g and g′; however, as a result of running couplings,
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we will have gL 6= gR[27], we consider in this work the case when these two couplings are equal
at any energy scale, but this has to be seen just as an approximation.

In the next chapter (section 3.3.1), we are justifying the relations between the coupling constants
which are given by the following:

g =
e

sinθ
, g′ =

e√
cos 2θ

(2.6)

We may define the following parameter:

r2
θ ≡

g′2

g2
=

s2
θ

c2
2θ

=
s2
θ

1− 2s2
θ

, (2.7)

this last expression implies that s2
θ < 1/2, to this expression we can call matching condition. The

weak mixing angle θ is not equal to the weak mixing angle of the SM, θW , not even at any energy
scale. However, at a certain energy scale, which satisfy the matching condition the prediction of
the LR model must coincide with those of the SM.

In others words, this implies only that the energy scale at which gL(µ) = gR(µ) must be below
the scale at which:

s2
θ(Λ) = 1/2, µ < Λ

Notice that the equation (2.6) can be written like:

1

e2
=

2

g2
+

1

g′2
, (2.8)

which implies a matching condition with the SM that is valid at a given energy:

1

g2
Y

=
1

g2
+

1

g′2
, (2.9)

where gY is the coupling constant relates to the gauge group U(1)Y , similar to the SM. Remember
that in the SM, it is known:

gY /g = tan θW (2.10)

Returning to the Leptonic sector, the leptonic lagrangian density, invariant under the symmetry
SU(2)R ⊗ SU(2)L ⊗ U(1)B−L ⊗ P can be built by the covariant derivatives(2.3):

Llep(x) = i
{
L̄l(x)γµDL

µLl(x) + R̄l(x)γµDR
µRl(x)

}
+ h.c. (2.11)

We can make L↔ R , then the lagrangian density turns out to be invariant pointing out a parity
symmetry appearing.

2.2.2 Scalar Sector Multiplets

What differentiates our model from other similar let-right models is the scalar sector. This sector
consists of two bi-doublets transforming as (2,2∗, 0):

Φ1 =

(
φ0

1 η+
1

φ−1 η0
1

)
, Φ2 =

(
φ0

2 η+
2

φ−2 η0
2

)
, (2.12)
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where the first bi-doublet, Φ1
1, couple with leptons and the other one, Φ2, couple with quarks.

These bi-doublets will generate masses to the leptons (including neutrinos) and quarks re-
spectivily. In addition, the scalar sector also consists of two doublets χL ∼ (2L,1R,+1) and
χR ∼ (1L,2R,+1) to break the parity and the gauge symmetry down to U(1)Q, as in [28, 7].

χL =

(
χ+
L

χ0
L

)
, χR =

(
χ+
R

χ0
R

)
, (2.13)

We are going to suposse that the vacuum expectation values, VEV, exist, and they are given by:

< Φ1 >= 1√
2

(
k1 0
0 k′1

)
, < Φ2 >= 1√

2

(
k2 0
0 k′2

)
, (2.14)

and

〈χL〉 =
1√
2

(
0
vL

)
, 〈χR〉 =

1√
2

(
0
vR

)
, (2.15)

The neutral components of the scalars can be written like the following expression:

〈xi〉 =
1√
2

(vi +Ri + iIi)e
iθi (2.16)

vi, θi: real numbers; Ri, Ii Hermitian fields, but, here we are going to consider all VEVs real, that
is, θi = 0 for all i running over scalar multiplets.

Considering complex VEVs implies spontaneous CP violation [29]. Moreover, remember that
are the neutral scalar fields which gain non-zero vev, because the vacuum state must be neutral,
the electric charge must be conserved, while the corresponding charged scalars fields do not.

2.3 The Scalar Potential

First, we are going to regard the most general scalar potential, invariant under the gauge sym-
metry group:

V = V (2) + V (4a) + V (4b) + V (4c) + V (4d) + V (4e) (2.17)

1In appendix H, the assignment of electric charge to the scalar fields of each multiplet is detailed.
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Where:

V (2) =
1

2

2∑
i,j

[
µ2
ij Tr(Φ

†
i Φj) + µ̃2

ij Tr(Φ̃
†
i Φj) +H.C.

]
+ µ2

LR(χ†LχL + χ†RχR), (2.18)

V (4a) =
1

2

2∑
i,j

[
λij Tr(Φ

†
i Φj)

2 + λ̃ij Tr(Φ̃
†
i Φj)

2 +H.C.
]
, (2.19)

V (4b) =
1

2

2∑
i,j

[
λ′ij (TrΦ†i Φj)

2 + λ̃′ij (TrΦ̃†i Φj)
2 +H.C.

]
, (2.20)

V (4c) = ρ12 Tr(Φ
†
1Φ1Φ†2Φ2) + ρ̃12 Tr(Φ̃

†
1Φ1Φ̃†2Φ2), (2.21)

V (4d) =
1

2

[
2∑
i,j

(Λij TrΦ
†
iΦj + Λ̃ij TrΦ̃

†
iΦj)(χ

†
LχL + χ†RχR)

+ Λ̄ij(χ
†
LΦiΦ

†
jχL + χ†RΦ†iΦjχR) + Ωij(χ

†
LΦ̃iΦ

†
jχL + χ†RΦ̃†iΦjχR)

+ Λ̄′ij(χ
†
LΦ̃iΦ̃

†
jχL + χ†RΦ̃†i Φ̃jχR) + Ω′ij(χ

†
LΦiΦ̃

†
jχL + χ†RΦ†i Φ̃jχR) +H.C.

]
(2.22)

V (4e) = λLR

[
(χ†LχL)2 + (χ†RχR)2

]
. (2.23)

Where we have omitted the redundant terms, for instance:

Tr
(

Φ̃†i Φ̃
†
j

)
= Tr(Φ†i Φj), i, j = 1, 2. (2.24)

Because when they acquire VEVs, they reproduce the same results, that is:

Tr
(

Φ̃†1Φ̃†1

)
= Tr(Φ†1 Φ1) =

k′21
2

+
k2

1

2
,

Tr
(

Φ̃†2Φ̃†2

)
= Tr(Φ†2 Φ2) =

k′22
2

+
k2

2

2
,

Tr
(

Φ̃†1Φ̃†2

)
= Tr(Φ†1 Φ2) =

k′1k
′
2

2
+
k1k2

2
,

Tr
(

Φ̃†2Φ̃†1

)
= Tr(Φ†2 Φ1) =

k′1k
′
2

2
+
k1k2

2
, (2.25)

Remember that Φ̃i = τ2Φ∗i τ2. This potential is discussed in the appendix F, where we have
found its minimal value and the constraint equations. Although we have not carried out any
calculations with this potential, The information that can be obtained through their constrain
equations will serve to develop some later phenomenological calculations, through other research
works.

2.3.1 Transformation rules of the Bi-doublets Scalar Fields

A bidoublet Φ transforms under the SU(2)L ⊗ SU(2)R
2 symmetry as:

Φ → ULΦU †R,

Φ† → URΦ† U †L,

Φ̃ → ULΦ̃U †R,

Φ̃† → URΦ̃† U †L, (2.26)

2In principle, it must be transformed according to gauge group SU(2)R ⊗ SU(2)L ⊗ U(1)B−L, however, the
hypercharge value of Φ, respect to the gauge group U(1)B−L is zero, that is B − L = 0
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for instance, we can use the Yukawa sector to demostrate how the bi-doublets are transformed:

− LY = L′(GΦ1 + F Φ̃1)R′ + h.c. (2.27)

1. For the case of the bi-doublet Φ1:

−LY = L′GΦ′1R
′ + · · · , (2.28)

however, the leptonic doublet:

L′ = ei τ̄ ·ᾱLL = UL L → L′ = LU †L
R′ = ei τ̄ ·ᾱR R = URR → R′ = RU †R

replacing on the equation (2.28), we obtain:

−LY = LU †LGΦ′1 URR + · · ·
= LG U †L Φ′1 UR︸ ︷︷ ︸

=Φ1

R + · · ·

= LGΦ1R + · · · (2.29)

we can observe:

Φ1 = U †L Φ′1 UR → Φ′1 = ULΦ1U
†
R (2.30)

where we are use the fact that:

U †LUL = U †RUR = I, unitary operator (2.31)

Also, from the equation (2.30) we get the transformation rule of Φ†1:

Φ′†1 = URΦ†1U
†
L (2.32)

2. For the case of the bi-doublet Φ̃1:

−LY = L′ F Φ̃′1R
′ + · · · , (2.33)

in the same way as the previous item, we have:

−LY = LU †L F Φ̃′1 URR + · · ·
= LF U †L Φ̃′1 UR︸ ︷︷ ︸

=Φ̃1

R + · · ·

= LF Φ̃1R + · · · (2.34)

we can observe:

Φ̃1 = U †L Φ̃′1 UR → Φ̃′1 = ULΦ̃1U
†
R (2.35)

then

Φ̃′†1 = URΦ̃1U
†
L (2.36)

both bi-doublets, Φ1 and Φ̃1 transform of the same way. The same occurs with the bi-
doublet Φ2 and Φ̃2, which are coupled with quarks.
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Another way to demonstrate: Φ̃′1 = ULΦ̃1U
†
R

From the previous results:

Φ′ = ULΦU †R

taking the complex conjugate:

Φ′∗ = U∗LΦ∗UT
R

multiplying in both sides by τ2, we have:

τ2 Φ′∗ τ2︸ ︷︷ ︸
Φ̃′

= τ2 U
∗
L τ2 τ2 Φ∗ τ2︸ ︷︷ ︸

=Φ̃

τ2 U
T
R τ2,

then:

Φ̃′ = τ2 U
∗
L τ2 Φ̃ τ2 U

T
R τ2, (2.37)

we can define the unitary operators as follows:

UR = e−iβ̄·τ̄ , UL = e−iᾱ·τ̄ ,

where: τ̄ = (τ1, τ2, τ3), τi : Pauli matrices. β̄ and ᾱ are real vectorials parameters.
According to the Pauli matrices properties, we have:

τ2 τ
T
1 τ2 = −τ1,

τ2 τ
T
2 τ2 = −τ2, (2.38)

τ2 τ
T
3 τ2 = −τ3,

τ2 τ
∗
1 τ2 = −τ1,

τ2 τ
∗
2 τ2 = −τ2, (2.39)

τ2 τ
∗
3 τ2 = −τ3,

then,

UR = e−iβ̄·τ̄ = I − iβ̄ · τ̄ → UT
R = I − iβ̄ · τ̄T

τ2U
T
Rτ2 = I − iβ̄ · τ2τ̄

T τ2︸ ︷︷ ︸
=−τ̄

= I + iβ̄ · τ̄

τ2U
T
Rτ2 = I + iβ̄ · τ̄ = eiβ̄·τ̄ = U †R, (2.40)

in the same way:

UL = e−iᾱ·τ̄ = I − iᾱ · τ̄ → U∗L = I + iᾱ · τ̄ ∗

τ2U
∗
Lτ2 = I + iᾱ · τ2τ̄

∗τ2︸ ︷︷ ︸
=−τ̄

= I − iᾱ · τ̄

τ2U
∗
Lτ2 = I − iᾱ · τ̄ = e−iᾱ·τ̄ = UL, (2.41)

finally, in the equation (2.42), we obtain:

Φ̃′ = UL Φ̃ U †R , (2.42)
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2.3.2 Analysis of the invariance of the most general scalar potential
according to the gauge group SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

According to the scalar potential given by equation (2.17) and from what is known from the
previous section about the way in which bi-doublets are transformed according to U(2)L⊗SU(2)R,
we can analyze the invariance of the potential under this symmetry:

� From the expression:

V (2) =
1

2

2∑
i,j

[
µ2
ij Tr(Φ

†
i Φj) + µ̃2

ij Tr(Φ̃
†
i Φj) +H.C.

]
+ µ2

LR(χ†LχL + χ†RχR)

Analyzing the gauge invariance of this potential term:

Tr(Φ′†Φ′) = Tr(URΦ† U †L UL︸ ︷︷ ︸
=I

ΦU †R) = Tr(URΦ†ΦU †R) = Tr(Φ†ΦU †RUR︸ ︷︷ ︸
=I

) = Tr(Φ†Φ),

Tr(Φ̃′†Φ′) = Tr(URΦ̃† U †L UL︸ ︷︷ ︸
=I

ΦU †R) = Tr(URΦ̃†ΦU †R) = Tr(Φ̃†ΦU †RUR︸ ︷︷ ︸
=I

) = Tr(Φ̃†Φ),

χ′†Lχ
′
L = χ†L U

†
L UL︸ ︷︷ ︸
=I

χL = χ†LχL,

χ′†Rχ
′
R = χ†R U †R UR︸ ︷︷ ︸

=I

χL = χ†RχR, (2.43)

hence, the term V (2) is invariant due to the established gauge symmetry.

� From the expression:

V (4a) =
1

2

2∑
i,j

[
λij Tr(Φ

†
i Φj)

2 + λ̃ij Tr(Φ̃
†
i Φj)

2 +H.C.
]

Tr
(
Φ′†Φ′

)2
= Tr

(
Φ′†Φ′Φ′†Φ′

)
= Tr

URΦ† U †L UL︸ ︷︷ ︸
=I

ΦU †RUR︸ ︷︷ ︸
=I

Φ† U †L UL︸ ︷︷ ︸
=I

ΦU †R


= Tr

(
URΦ†ΦΦ†ΦU †R

)
= Tr

Φ†ΦΦ†ΦU †RUR︸ ︷︷ ︸
=I

 = Tr
(
Φ†ΦΦ†Φ

)
= Tr

(
Φ†Φ

)2

Tr
(

Φ̃′†Φ′
)2

= Tr
(

Φ̃′†Φ′Φ̃′†Φ′
)

= Tr

URΦ̃† U †L UL︸ ︷︷ ︸
=I

ΦU †RUR︸ ︷︷ ︸
=I

Φ̃† U †L UL︸ ︷︷ ︸
=I

ΦU †R


= Tr

(
URΦ̃†ΦΦ̃†ΦU †R

)
= Tr

Φ̃†ΦΦ̃†ΦU †RUR︸ ︷︷ ︸
=I

 = Tr
(

Φ̃†ΦΦ̃†Φ
)

= Tr
(

Φ̃†Φ
)2

(2.44)

hence, the term V (4a) is also invariant due to the established gauge symmetry.
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� From the expression:

V (4b) =
1

2

2∑
i,j

[
λ′ij (TrΦ†i Φj)

2 + λ̃′ij (TrΦ̃†i Φj)
2 +H.C.

]
,

however, from the terms of V (2), we have already shown the gauge invariance of the traces:

Tr(Φ′†Φ′) = Tr(Φ†Φ),

Tr(Φ̃′†Φ′) = Tr(Φ̃†Φ), (2.45)

hence, the term V (4b) is also invariant due to the established gauge symmetry.

� From the expression:

V (4c) = ρ12 Tr(Φ
†
1Φ1Φ†2Φ2) + ρ̃12 Tr(Φ̃

†
1Φ1Φ̃†2Φ2),

then

Tr(Φ′†1 Φ′1Φ′†2 Φ′2) = Tr(URΦ†1 U
†
LUL︸ ︷︷ ︸
=I

Φ1 U
†
RUR︸ ︷︷ ︸
=I

Φ†2 U
†
LUL︸ ︷︷ ︸
=I

Φ2U
†
R),

= Tr(URΦ†1Φ1Φ†2Φ2U
†
R) = Tr(Φ†1Φ1Φ†2Φ2 U

†
RUR︸ ︷︷ ︸
=I

),

= Tr(Φ†1Φ1Φ†2Φ2),

(2.46)

Tr(Φ̃′†1 Φ′1Φ̃′†2 Φ′2) = Tr(URΦ̃†1 U
†
LUL︸ ︷︷ ︸
=I

Φ1 U
†
RUR︸ ︷︷ ︸
=I

Φ̃†2 U
†
LUL︸ ︷︷ ︸
=I

Φ2U
†
R),

= Tr(URΦ̃†1Φ1Φ̃†2Φ2U
†
R) = Tr(Φ̃†1Φ1Φ̃†2Φ2 U

†
RUR︸ ︷︷ ︸
=I

),

= Tr(Φ̃†1Φ1Φ̃†2Φ2),

hence, the term V (4c) is also invariant due to the established gauge symmetry.

� From the expression:

V (4d) =
1

2

[
2∑
i,j

(Λij TrΦ
†
iΦj + Λ̃ij TrΦ̃

†
iΦj)(χ

†
LχL + χ†RχR)

+ Λ̄ij(χ
†
LΦiΦ

†
jχL + χ†RΦ†iΦjχR) + Ωij(χ

†
LΦ̃iΦ

†
jχL + χ†RΦ̃†iΦjχR)

+ Λ̄′ij(χ
†
LΦ̃iΦ̃

†
jχL + χ†RΦ̃†i Φ̃jχR) + Ω′ij(χ

†
LΦiΦ̃

†
jχL + χ†RΦ†i Φ̃jχR) +H.C.

]
The first line has already been demonstrated. From the second line we have:

χ′†LΦ′Φ′†χ′L = (ULχL)† ULΦU †RURΦ†U †LULχL

= χ†L U
†
LUL︸ ︷︷ ︸
=I

ΦU †RUR︸ ︷︷ ︸
=I

Φ† U †LUL︸ ︷︷ ︸
=I

χL = χ†LΦΦ†χL (2.47)

χ′†RΦ′†Φ′χ′R = (URχR)† URΦ†U †LULΦU †RURχR

= χ†R U
†
RUR︸ ︷︷ ︸
=I

Φ† U †LUL︸ ︷︷ ︸
=I

ΦU †RUR︸ ︷︷ ︸
=I

χR = χ†RΦ†ΦχR (2.48)
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χ′†LΦ̃′Φ′†χ′L = (ULχL)† ULΦ̃U †RURΦ†U †LULχL

= χ†L U
†
LUL︸ ︷︷ ︸
=I

Φ̃U †RUR︸ ︷︷ ︸
=I

Φ† U †LUL︸ ︷︷ ︸
=I

χL = χ†LΦ̃Φ†χL (2.49)

χ′†RΦ̃′†Φ′χ′R = (URχR)† URΦ̃†U †LULΦU †RURχR

= χ†R U
†
RUR︸ ︷︷ ︸
=I

Φ̃† U †LUL︸ ︷︷ ︸
=I

ΦU †RUR︸ ︷︷ ︸
=I

χR = χ†RΦ̃†ΦχR (2.50)

χ′†LΦ̃′Φ̃′†χ′L = (ULχL)† ULΦ̃U †RURΦ̃†U †LULχL

= χ†L U
†
LUL︸ ︷︷ ︸
=I

Φ̃U †RUR︸ ︷︷ ︸
=I

Φ̃† U †LUL︸ ︷︷ ︸
=I

χL = χ†LΦ̃Φ̃†χL (2.51)

χ′†RΦ̃′†Φ̃′χ′R = (URχR)† URΦ̃†U †LULΦU †RURχR

= χ†R U
†
RUR︸ ︷︷ ︸
=I

Φ̃† U †LUL︸ ︷︷ ︸
=I

Φ̃U †RUR︸ ︷︷ ︸
=I

χR = χ†RΦ̃†Φ̃χR (2.52)

χ′†LΦ′Φ̃′†χ′L = (ULχL)† ULΦU †RURΦ̃†U †LULχL

= χ†L U
†
LUL︸ ︷︷ ︸
=I

ΦU †RUR︸ ︷︷ ︸
=I

Φ̃† U †LUL︸ ︷︷ ︸
=I

χL = χ†LΦΦ̃†χL (2.53)

χ′†RΦ′†Φ̃′χ′R = (URχR)† URΦ†U †LULΦ̃U †RURχR

= χ†R U
†
RUR︸ ︷︷ ︸
=I

Φ† U †LUL︸ ︷︷ ︸
=I

Φ̃U †RUR︸ ︷︷ ︸
=I

χR = χ†RΦ†Φ̃χR (2.54)

hence, the term V (4d) is also invariant due to the established gauge symmetry.

� From the expression:

V (4e) = λLR

[
(χ†LχL)2 + (χ†RχR)2

]
.

the terms of this potential have already been demonstrated in previous calculations its
gauge invariance.

Finally, our potential turns out to be invariant by the gauge group of the model. Although
we have shown the invariance with respect to the SU(2)L ⊗ SU(2)R group, in the case of the
invariance with respect to U(1)B−L it is automatic for each scalar field of each multiplet.

2.4 Gauge Sector: Vectorial Bosons

From the covariant derivative of the scalar sector, for the bi-doublets, Φi, i = 1, 2 and for the
doublets χL and χR are given by:

DµΦi = ∂µΦi + ig

[
~τ

2
· ~WLΦi − Φi

~τ

2
· ~WR

]
,

DµχL =

(
∂µ + ig

~τ

2
· ~WL − i g′Bµ

)
χL, (2.55)

DµχR =

(
∂µ + ig

~τ

2
· ~WR − i g′Bµ

)
χR,
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where we have already established gL = gR = g. Moreover, it is important to recognize that the
form of the covariant derivative is justified by the gauge symmetry group of the model, see the
ref[30]. The lagrangian density for the kinetic part of the scalar sector is given by:

Lkinetic = (DµχL)†DµχL + (DµχR)†DµχR + Tr (DµΦ)†DµΦ, (2.56)

replacing the VEVs, expressions (2.14) and (2.15), in the Lagrangian density, (2.56), and sep-
arating the quadratic part, we can obtain the mass matrices of the gauge bosons, that will be
discussed in detail in the next chapter

2.5 Yukawa Sector

As we show above, the model has two bi-doublets, Φi, i = 1, 2, shown in (2.12), two doublets as
χL,R shown in (2.13), and no triplets, where leptons interact only with Φ1 while the quarks with
Φ2.

To build the Yukawa sector we are going to introduce the following Z2 ⊗ Z′2 discrete symme-
try (direct product of two Cyclic group ZN). In the next chapter this symmetry will be apply to
the scalar potential of our model in order to make it easier to work. On the other hand, under
the first one, Z2, right-handed lepton doublets, R′, and Φ1 are odd, that is, R′, Φ1 → −R′, −Φ1;
while other fields are even; under the second one, Z′2, right-handed quarks QR and Φ2 is odd
(Q′R, Φ2 → −Q′R, −Φ2). This is the justification for why the Φ1 bi-doublet couples with the
leptons while the Φ2 bi-doublet couples with the quarks.

Hence, in this case the Yukawa interactions in the lepton sector are:

− LY = L̄′(GΦ1 + F Φ̃1)R′ + R̄′(Φ†1G
† + Φ̃†1F

†)L′ (2.57)

where L′ and R′ are defined in (2.1) and we have omitted generations indices. To observe that
the terms χ†LΦ1,2χR (trilinear term) in the scalar potential are forbided under these symmetries.

Imposing left-right symmetry to this Yukawa’s sector, that is: L′ ↔ R′, Φi ↔ Φ†i , Φ̃i ↔ Φ̃†i ,
we obtain:

− LY = R̄′(GΦ†1 + F Φ̃†1)L′ + L̄′(Φ1G
† + Φ̃1F

†)R′ (2.58)

comparing both lagrangian density, (2.57) and (2.58), implies that G† = G and F † = F . Hence
these matrices can be diagonalized by unitary transformations. A similar expression arises in the
quarks sector but now Φ1 → Φ2 and (ν ′L,R, `

′
L,R)→ (u′L,R, d

′
L,R). Primed fields denote symmetry

eigenstates and unprimed ones mass eigenstates.

With these interactions the mass matrices in the lepton sector are:

Mν = G
k1√

2
+ F

k′∗1√
2
, M l = G

k′1√
2

+ F
k∗1√

2
. (2.59)

In general G, F are hermitians and the VEVs are complex, then the mass matrices are diagonal-
ized by biunitary transformations as follows:

V l†
L M

lV l
R = M̂ l, Uν†

L M
νUν

R = M̂ν , (2.60)

where M̂ l = diag(me,mµ,mτ ) and M̂ν = diag(m1,m2,m3) for charged leptons and neutrinos
respectively.
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To give an appropriate mass to the quarks, we have to introduce the bidoublet Φ2, and it is
possible to implement the analysis as in Ref. [31]. Notice that this means that the neutral scalar
with VEV and mass about 174 and 125 GeV, respectively, is part of this bidoublet.

We will assume that k′1 = 0 (for simplicity) and in this case the lepton mass matrices, from
(2.59), are given by

Mν
ab = Gab

k1√
2
, M l

ab = Fab
k∗1√

2
, (2.61)

whereG and F are symmetric complex matrices that are diagonalized, in general, by the biunitary
transformation in Eq. (2.60). However, we will consider, just for the sake of simplicity, all VEVs
being real too. From these matrices and the lepton measured masses, we found the Yukawa
coupling matrices

G =

√
2

k1

Uν
LM̂

νUν†
R , F =

√
2

k∗1
V l
LM̂

lV l†
R , (2.62)

and we use for numerical calculations |k1| = 2 GeV, since this VEV is the only one for generating
the lepton masses. Then, making uso of (2.61), we can regard Uν

L = Uν
R ≡ Uν , and Uν =

V L
PMNS = V R

PMNS ≡ Vl, and we have

G =

√
2

k1

VlM̂
νV †l , F =

√
2

k1

M̂ l, (2.63)

the unitary matrix Vl being parametrized in the same way for Dirac particles. We use the PDG
parametrization for Dirac neutrinos, for the interactions with W+

L,R:

Vl =

 cl12c
l
13 sl12c

l
13 sl13

−sl12c
l
23 − cl12s

l
13s

l
23 cl12c

l
23 − sl12s

l
13s

l
23 cl13s

l
23

sl12s
l
23 − cl12s

l
13c

l
23 −cl12s

l
23 − sl12s

l
13c

l
23 cl13c

l
23

 , (2.64)

with slij = sin θlij, · · · and where we have considered δl = 0.

In this case the Yukawa interactions are given by

−LYl =

√
2

k1

{ν̄L[(M̂νφ0
1 + V †l M̂

lVlη
0∗
1 )νR + (M̂νV †l η

+
1 − V

†
l M̂

lφ+
1 )lR]

+ l̄L[(VlM̂
νφ−1 − M̂ lVlη

−
1 )νR + (VlM̂

νV †l η
0
1 + M̂ lφ0∗

1 )lR]}
+ H.c., (2.65)

with Vl given in (2.64). Notice that, in this case (in the basis in which charged leptons are
diagonal), the Higgs φ0

1 is the one whose couplings with charged leptons are proportional to
their respective masses, and the couplings with η0

1 are suppressed by the neutrino masses in the
charged lepton sector. In the neutrino sector, the situation reverses: The enhanced interactions
are those with η0

1 since they are proportional to the charged lepton masses.

In addition, we write the Yukawa interactions in the quark sector (with their mass matrices
diagonalized by the unitary matrices V u

L,R and V d
L,R with V L

CKM = V R
CKM = V u†

L V d
L ):

−LYq =

√
2

k2

{ūLV u†[(GqV
uφ0

2 + Fqη
0∗
2 )V u uR + (Gqη

+
2 − Fqφ+

2 )V ddR]

+ d̄LV
d†[(Gqφ

−
2 − Fqη−2 )V u uR + (Gqη

0
2 + Fqφ

0∗
2 )V ddR]}+H.c. (2.66)
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The solution k′2 = 0 should not regard in the quark sector since for the case of generalized parity,
P , it has been shown that k′2 � k2 is ruled out by the CP -violating parameters ε and ε′; never-
theles, in the case of generalized C this hierarchy is allowed [32].

Notice that there are flavor-changing neutral currents (FCNCs) mediated by scalars in both
lepton and quark sectors. However, the existence of these processes in the present model implies
only that the constraints already obtained in the minimal version of the model i.e., one bidoublet
and two doublets, have to be reviewed. For instance, the current data and the contributions re-
lated to the renormalization of the flavor-changing neutral Higgs tree-level amplitude which are
needed in order to obtain gauge-independent results was done in Ref. [32]. In the minimal model
there are four neutral scalars while in the present model there are six (with two bidoublets) or
eight (three bidoublets) and it means that there are more amplitude mediated by neutral scalars
at tree and one-loop level than those in Ref. [32]. Doing this analysis is outside the scope of this
paper.

2.6 Alternatives models relating to the SU(2)R⊗ SU(2)L⊗
U(1)B−L gauge symmetry

2.6.1 A model for Dirac Neutrino masses and mixings - Rabindra N.
Mohapatra

In this article[33], Mohapatra present a gauge model for three-fermion families where the neu-
trino masses vanish naturally at the tree level and their Dirac masses arise at the one-loop level.

Mohapatra regard the following gauge group SU(2)R ⊗ SU(2)L ⊗ U(1)B−L in order to describe
the electroweak interactions for E �MW with quark and lepton doublets assigned in the ussual
way:

Quarks: QL(1/2, 0, 1/3), QR(0, 1/2, 1/3); leptons: ψL(1/2, 0,−1), ψR(0, 1/2,−1), (2.67)

where: Q ≡ (u, d) and ψ ≡ (ν, e) and so on for higher generations.

We can find two stages:

1. In the first, this model describe the symmetries of the model which allow us to preserve
the neutrinos naturally massless at the tree level.

2. In the second, the author computes corrections to one loop neutrino Dirac masses, regarding
that the lepton number is a good symmetry de the model. The neutrinos will be Dirac
particles and the eigenvalues and eigenvectors of this one loop mass matrix provide the
physical masses and mixings betweeen the different neutrino species.

The following symmetries are imposed on the model, (Dq ×D`):

Dq : QL → −QL, QR → iQR, Φq → iΦq,
χL → ωχL, χR → −iχR,
σ1 → +iωσ1, σ2 → ωσ2, σ1 → ωσ3,

(2.68)
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where ω = exp(2
3
πi), and others symmetries, like:

D` : ψL → i exp(1
4
iπ)ψL ψR → i exp(1

4
iπ)ψR

Φ` → iΦ, ηL1 → iηL1, ηR1 → iηR1

σ2 → +σ2 σ3 → −iσ3.
(2.69)

The Yukawa couplings invariant under D` ×Dq are:

LY = h1Q̄LΦqQR + h2(Q̄LχLgR1 + Q̄RχRgL1) + µ1(ḡL1gR2 + ḡL2gR1) +

+ h3ḡL2gR2σ1 + h4ψ̄LΦ`ψR + f(ψTLτ2C
−1ψLηL1 + ψTRτ2C

−1ψRηR1) + h.c. (2.70)

Where hi (i = 1, 2, 3, 4) and µ1 are matrices. By choosing a proper basis for QL,R and ψL,R it is
posible to diaginalize h1,4, h3. The matrices h2 and µ1 are the sole source of flavor mixing in the
quark sector.

Mohapatra calculates the one loop contribution to the neutrino mass matrix. They arise from
the exchange of the ηL and ηR bosons in the loop (the loop is shown in the Mohapatra’s article)
and has the form:

(Mν)ab = (fTM`εf)ab, (2.71)

where:

εa ≈ (1/16π2) ln(M2
η/m

2
a), (2.72)

where a denotes the leptonic generation; ε is a diagonal matrix with diagonal elements: DiagM =
(m2,mµ,mτ ).

In conclusion, Mohapatra presents a model for Dirac neutrino masses and mixings, mνµ �
mντ � mνe , with all mixings given in terms of two parameters. This model can also provide a
solution to the solar neutrino puzzle.

2.6.2 Neutrino Mass and Spontaneous Parity Nonconservation - Ra-
bindra N. Mohapatra and Goran Senjanovic

In this article[34], they propose a model of spontaneous parity nonconservation based on the
SU(2)R ⊗ SU(2)L ⊗ U(1)Y ′ gauge group, where this connection is brought out explicitly. It is
obtained the following estimate that relates the neutrino mass to the mass of the right-handed
gauge bosons:

mνe ' m2
e/gmWR

.

Where a similar formula holds for leptons in each generation.

The main new ingredient of this proposal is that they start with two Majorana neutrinos ν
and N and choose the left- and right-handed lepton multiplets prior to spontaneous breakdown
to be:

ψL =

(
νL
eL

)
, ψR =

(
νR
eR

)
(2.73)

They impose the left-right symmetry on the Lagrangian; under this symmetry ϕL ↔ ϕR and this
demand that at three level, gL = gR.
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They also introduce the Higgs multiplets to break the gauge symmetry down to U(1)em: One
bi-doublet and two triplets that transform like: ϕ ∼ (1

2
, 1

2
, 0), ∆L ∼ (1, 0, 2), and ∆R ∼ (0, 1, 2).

The Yukawa sector can be written as:

L = h1ψ̄LϕψR + h2ψLϕ̃ψR + h3(ψTLCiτ2∆LψL + ψTRCiτ2∆RψR) +H.C., (2.74)

where: ϕ̃ ≡ τ2ϕ
∗τ2 and C is the Dirac charge-conjugation matrix. In addition:

∆L,R =

(
1√
2
δ+ δ++

δ+ − 1√
2
δ+

)
L,R

(2.75)

Under left-right discrete symmetry:

ϕ↔ ϕ† ∆L ↔ ∆R

With the analysis of charged and neutral current phenomena puts a lower bound on the right-
handed W-boson mass, that is:

mWR
≥ 250 − 300 GeV (2.76)

If it is chosen mWR
≥ 300 GeV then it will produce:

mνe ≤ 1.5 eV, mνµ < 56 keV, mντ ≤ 18 MeV (2.77)

This model provides, therefore, an understanding of a tiny neutrino mass.
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Chapter 3

Characteristic of the Model with Gauge
Symmetry SU(2)L⊗SU(2)R⊗U(1)B−L⊗P

3.1 Scalar sector - Reduced Scalar Potential

Taking into account the expression of the most general scalar potential given in the equation
(2.17), we are going to apply certain discrete symmetries to obtain a simpler version of the scalar
potential.

3.1.1 Imposing some discrete symmetries to our scalar potential

Two constrain equations are shown below, the rest of equations can be found in the corresponding
appendix. In addition, to calculate the constrain equations we carry out the following operation:

ti =
∂V

∂Xi

= 0,

where Xi = k1, k
′
1, k2, k

′
2, vL, vR (we have considered real VEVs because we are not interesting to

study CP Violation), therefore, they are given by:

t1 = k1

[
µ2

11 + (λ11 + λ′11) k2
1 + k′21

(
λ′11 + λ̃11 + 2λ̃′11

)
+

1

2

(
v2
RH + λ̃21k

′2
2

+
(
λ̃12 + λ̃′21 + λ̃′12

)
k′22 +

1

2
v2
LH + k2

2 (λ′12 + λ′21 + λ21 + λ12 + ρ12)

)]
+

1

4
(v2
R + v2

L)(k′1D + k′2F + k2G) +
k2k

′
1k
′
2

2

(
λ̃′21 + λ̃′12 + λ′12 + λ′21 + ρ̃12

)
+ k2µ

2 + µ̃2
11k
′
1, (3.1)

t′1 = k′1

[
µ2

11 + (λ11 + λ′11) k′21 + k2
1

(
λ′11 + λ̃11 + 2 λ̃′11

)
+

1

2
(v2
RH + λ̃′12k

2
2

+ (λ̃′21 + λ̃12 + λ̃21)k2
2 +

1

2
v2
LH + k′22 (λ′12 + λ′21 + λ21 + λ12 + ρ12)

)]
+

1

4

(
v2
L + v2

R

)
(k1D + k2F + k′2G) +

k2k1k
′
2

2

(
λ̃′12 + λ̃′21 + λ′12 + λ′21 + ρ̃12

)
+ k′2µ

2 + µ̃2
11k1, (3.2)
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and similarly we obtain t2 and t′2 for k2 and k′2, respectively, but we will not write them explicitly.
Finally, we have

tL =
vL
2

(2µ2
LR + 2λLRv

2
L + ∆), tR =

vR
2

(2µ2
LR + 2λLRv

2
R + ∆), (3.3)

where

∆ = k′21 A+ k′1k
′
2B + k′1k2C + k1k

′
1D + k2k

′
2E + k1k

′
2F + k1k2G+ k2

1H + k2
2I

+ k′22 J, (3.4)

and

A = Λ11 + Λ11, B = Λ12 + Λ21 + Λ12 + Λ21, C = Λ̃12 + Λ̃21 + Ω′12,+Ω21

D = Ω′11 + 2 Λ̃11 + Ω11, E = Ω′22 + 2 Λ̃22 + Ω22, F = Ω′21 + Λ̃21 + Λ̃12 + Ω12,

G = Λ
′
21 + Λ

′
12 + Λ21 + Λ12, H = Λ11 + Λ

′
11,

I = Λ22 + Λ
′
22, J = Λ22 + Λ22, (3.5)

The invariance under the parity transformations defined in (2.5) implies µ12 = µ21 ≡ µ2,
µ̃12 = µ̃21 ≡ ν2; λ12 = λ21, λ̃12 = λ̃21, λ̃

′
12 = λ̃′21, λ

′
12 = λ′21, Λ12 = Λ21, Λ̃12 = Λ̃21, Λ̄12 =

Λ̄21, Λ̄′12 = Λ̄′21, and that Ω′ij and Ωij are real.

Notice that the Z2 ⊗ Z′2 (see the section 2.5) implies µ2 = ν2 = 0 and Λ12 = Λ21 = Λ̄12 =
Λ̄21 = Λ̄′12 = Λ̄′21 = 0. However, we will allow for the moment a soft breaking of these symmetries
and use µ2 6= 0 in order to get the hierarchy between the vevs.

Notice that only vL and vR can be zero; however, this solution is not accepted for vR. Thus, we
obtain the hierarchy relation between the vevs:

vR � k2 � k1, k
′
1, k
′
2 � vL,

we are assuming that vR is very large compare with the others ones, and vL is the smallest one,
this would not affect our results, and If

D,F,G� 1, λ̃′12 + λ̃′21 + λ′21 + λ′12 + ρ̃12 � 1, (3.6)

then we obtain from Eqs. (3.1) and (3.2), respectively,

k1 ≈
−µ2

µ2
11 + v2

RH
k2 � k2, k′1 ≈

−µ2

µ2
11 + v2

RH
k′2 � k′2, (3.7)

with −µ2 > 0 and v2
RH > |µ2

11|. This shows that there is a range of the parameter space in which
we can have k′1 � k1 � k′2 < k2. Moreover, if we can assume for simplicity:

D = F = G = 0, λij = λ′ij = λ̃ij = λ̃′ij = ρ̃ij = 0, i 6= j; µ2 = µ̃2
11 = 0, (3.8)
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the constraint equations become

t1 = k1

(
µ2

11 + (λ11 + λ′11)k2
1 + λ′11k

′2
1 +

1

2
(v2
L + v2

R)H +
1

2
ρ12k

2
2

)
,

t′1 = k′1

(
µ2

11 + λ′11k
2
1 + (λ11 + λ′211)k′21 +

1

2
(v2
L + v2

R)A+
1

2
ρ12k

′2
2

)
,

t2 = k2

(
µ2

22 + (λ22 + λ′22)k2
2 + λ′22k

′2
2 +

1

2
(v2
L + v2

R)I +
1

2
ρ12k

2
1

)
,

t′2 = k′2

(
µ2

22 + (λ22 + λ′22)k′22 + λ′22k
2
2 +

1

2
(v2
L + v2

R)J +
1

2
ρ12k

′2
1

)
,

tL =
vL
2

[
2µ2

LR + 2λLRv
2
L + k′21 A+ k2

1H + k2
2I + k′22 J

]
,

tR =
vR
2

[
2µ2

LR + 2λLRv
2
R + k′21 A+ k2

1H + k2
2I + k′22 J

]
. (3.9)

In fact, we further restrict the Higgs potential so that it is invariant under the Z5 symmetry
(defined as ωn = e2π i n/5, n = 0, · · · , 4) under which

Φ1 → ω1 Φ1 = e2π i/5 Φ1, Φ2 → ω2 Φ2 = e4π i/5 Φ2

while also other fields are invariant; that is:

Tr(Φ′†1 Φ′2) = Tr(ω∗1Φ†1ω2Φ2) = Tr(ω∗1ω2Φ†1Φ2) = Tr(e2π i/5 Φ†1Φ2) = e2π i/5 Tr(Φ†1Φ2),

Tr
(

Φ′†1 Φ′2

)2

= Tr
(
ω∗1Φ†1ω2Φ2

)2

= Tr
(
e2π i/5 Φ†1Φ2

)2

= e4π i/5 Tr
(

Φ†1Φ2

)2

,

when i 6= j the term in the lagrangian is not invariant. Only the terms where i = j remain.

In this way, the scalar potential in Eq. (2.17) becomes

V (2) =
1

2

∑
i=1,2

[
µ2
iiTr(Φ†iΦi) +H.c.

]
+ µ2

LR(χ†LχL + χ†RχR),

V (4a) =
1

2

∑
i=1,2

[
λiiTr(Φ†iΦi)

2 +H.c.
]
,

V (4b) =
1

2

∑
i=1,2

λ′ii(TrΦ†iΦi)
2,

V (4c) = ρ12Tr(Φ†1Φ1Φ†2Φ2),

V (4d) =
1

2

[∑
i=1,2

{
ΛiiTrΦ†iΦi(χ

†
LχL + χ†RχR) + Λ̄ii(χ

†
LΦiΦ

†
iχL + χ†RΦiΦ

†
iχR)+

+ Λ̄′ii(χ
†
LΦ̃iΦ̃

†
iχL + χ†RΦ̃iΦ̃

†
iχR)

}]
,

V (4e) = λLR[(χ†LχL)2 + (χ†RχR)2], (3.10)

When the neutral fields gain an expectation value, the minimum value of the potential is obtained;
moreover, their constraint equations are also obtained. Theses results are shown below:
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� The minimum value of the new scalar potential:

〈V (2)〉 = µ2
LR

(
v2
L

2
+
v2
R

2

)
+ µ2

11

(
k2

1

2
+
k′21
2

)
+ µ2

22

(
k2

2

2
+
k′22
2

)
〈V (4a)〉 = λ11

(
k4

1

4
+
k′41
4

)
+ λ22

(
k4

2

4
+
k′42
4

)
〈V (4b)〉 = λ′11

(
k2

1

2
+
k′21
2

)2

+ λ′22 ·
(
k2

2

2
+
k′22
2

)2

〈V (4c)〉 = ρ12

(
k′21 k

′2
2

4
+
k2

1k
2
2

4

)
〈V (4d)〉 =

1

4
(v2
L + v2

R)
(

Λ11 k
′2
1 + Λ22 k

′2
2 + Λ

′
11k

2
1 + Λ

′
22k

2
2

)
〈V (4e)〉 = λLR

(
v4
R

4
+
v4
L

4

)
. (3.11)

� The new constraint equations become the following:

(a) k1 :

t1 = k1

(
µ2

11 + (λ11 + λ′11)k2
1 + λ′11k

′2
1 +

1

2
(v2
L + v2

R)(Λ11 + Λ
′
11) +

1

2
k2

2ρ12

)
,

(b) k′1 :

t′1 = k′1

(
µ2

11 + (λ11 + λ′11)k′21 + λ′11k
2
1 +

1

2
(v2
L + v2

R)(Λ11 + Λ11) +
1

2
k′22 ρ12

)
,

(c) k2 :

t2 = k2

(
µ2

22 + (λ22 + λ′22)k2
2 + λ′22k

′2
2 +

1

2
(v2
L + v2

R)(Λ22 + Λ
′
22) +

1

2
k2

1ρ12

)
,

(d) k′2 :

t′2 = k′2

(
µ2

22 + (λ22 + λ′22)k′22 + λ′22k
2
2 +

1

2
(v2
L + v2

R)(Λ22 + Λ22) +
1

2
k′21 ρ12

)
,

(e) vL :

tL = vL

(
µ2
LR + λLRv

2
L +

1

2

(
k′21 (Λ11 + Λ11) + k′22 (Λ22 + Λ22) + k2

1(Λ11 + Λ
′
11)+

+ k2
2(Λ22 + Λ

′
22)
))

,

(f) vR :

tR = vR

(
µ2
LR + λLRv

2
R +

1

2

(
k′21 (Λ11 + Λ11) + k′22 (Λ22 + Λ22) + k2

1(Λ11 + Λ
′
11)+

+ k2
2(Λ22 + Λ

′
22)
))

. (3.12)

We can observe from these constrain equations that are the same as those shown in Eq. (3.9). It
means that these conditions are protected by the Z5 symmetry and may be naturally small. We
may consider the potential in Eq. (3.10), and the respective mass spectra, as a good approxima-
tion.

31



Moreover, from the constrain equations, all VEVs could be zero; in particular, the solutions
k′1,2 = 0 and vL = 0 are allowed. The SM-like Higgs scalar is in the bidoublet Φ2.

It is important to note that the doublet χL was introduced just to implement the invariance
of the Lagrangian under parity without interacting with the fermions, if the respective VEV is
zero it becomes an inert doublet since the left-right symmetry protects its inert character; hence
it is a candidate for dark matter.

Notice that vL 6= 0 is also a solution, hence the possibility to have a model without any bidoublet,
with fermion masses arisen from nonrenormalizable interactions [35]; in this case, it is possible
to make A = H = I = J = 0 in Eq. (3.9). We stress that although the constraint equations
in Eq. (3.9) were obtained using the potential in Eq. (3.10) by considering the most general
potential (without the Z2 ⊗ Z′2 symmetries), we still obtain

tL = vL(µ2
LR + λLRv

2
L + ...), (3.13)

and the solution vL = 0 is still allowed even without a soft breaking of parity symmetry [36].

3.2 Gauge boson mass matrix:

In this section, using the covariant derivatives given in equation (2.55) and the lagrangian density
(2.56), we proceeded to calculate the masses of the gauge bosons, both for Z1 and Z2 as a function
of the VEVs and others parameters proposed in the model; for the case of the photon was obtained
an eigenvalue exactly zero, as it should be. Subsequently, using the mass hierarchy of expectation
values where vR � X, being X : others VeVs different from vR. In this section we have obtained
explicit values of the masses of the vector bosons and a lower bound for their right handed vector
boson’s masses. The couplings of physical bosons with known fermions have also been obtained.

3.2.1 Charged Bosons mass matrix:

M2
CB =

g2

4

(
k2

1 + k′21 + k2
2 + k′22 + v2

L −2(k1k
′
1 + k2k

′
2)

−2(k1k
′
1 + k2k

′
2) k2

1 + k′21 + k2
2 + k′22 + v2

R

)
Diagonalization of the matrix:

det|M − λI| = 0,

where: M2
CB = g2

4
M , λ : eigenvalue of M

det|M − λI| =
∣∣∣∣ k2

1 + k′21 + k2
2 + k′22 + v2

L − λ −2(k1k
′
1 + k2k

′
2)

−2(k1k
′
1 + k2k

′
2) k2

1 + k′21 + k2
2 + k′22 + v2

R − λ

∣∣∣∣ = 0,

in this case we have the characteristic equation for λ:

λ2 − [v2
L + v2

R + 2K2]λ+ (K2 + v2
L)(K2 + v2

R)− 4(k1k
′
1 + k2k

′
2)2 = 0,

where: K2 ≡ k2
1 + k′21 + k2

2 + k′22
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solving the equation we have:

λ =
1

2

(
2K2 + v2

L + v2
R ±

√
(2K2 + v2

L + v2
R)2 − 4([K2 + v2

L][K2 + v2
R]− 4(k1k′1 + k2k′2)2)

)
(3.14)

therefore, we can obtain the exact eigenvalues of MCB:

M2
W1

=
g2

4
λ1 =

g2

4

(
k2

1 + k′21 + k2
2 + k′22 +

v2
L + v2

R

2
−
√

∆

)
(3.15)

M2
W2

=
g2

4
λ2 =

g2

4

(
k2

1 + k′21 + k2
2 + k′22 +

v2
L + v2

R

2
+
√

∆

)
,

where we have define: ∆ ≡ 4(k1k
′
1 + k2k

′
2)2 +

(
v2R−v

2
L

2

)2

.

the eigenvectors of M2
CB (physical states):

W+
1µ =

(
v2
R − v2

L + 2
√

∆

2N

)
W+
µL +

(
2B

N

)
W+
µR (3.16)

W+
2µ = =

(
−2B

N

)
W+
µL +

(
v2
R − v2

L + 2
√

∆

2N

)
W+
µR, (3.17)

we can express these relations as:

W+
1µ = W+

µL cos ξ + W+
µR sin ξ,

(3.18)

W+
2µ = −W+

µL sin ξ + W+
µR cos ξ,

where:

sin ξ =
2B

N
,

cos ξ =
v2
R − v2

L + 2
√

∆

2N
,

B ≡ k1k
′
1 + k2k

′
2,

N ≡

√√√√4B2 +

(
v2
R − v2

L + 2
√

∆

2

)2

,

ξ: represents the mixing angle between the bosonsWR andWL. We also can express the symmetry
states (W+

µL, W
+
µR) as a function of physical states (W+

1µ, W
+
2µ), that is:

W+
µL = W+

1µ cos ξ − W+
2µ sin ξ,

(3.19)

W+
µR = W+

1µ sin ξ + W+
2µ cos ξ,
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Neutral Bosons mass matrix:

M2
NB =

 g2

4
(K2 + v2

L) −g2

4
K2 −g′ g

4
v2
L

−g2

4
K2 g2

4
(K2 + v2

R) −g′g
4
v2
R

−g′ g
4
v2
L −g′ g

4
v2
R

g′2

4
(v2
L + v2

R)

 ,

remember that K2 ≡ k2
1 + k′21 + k2

2 + k′22 .

In the same way as the previous item, the diagonalization of the matrix:

det|M2
NB − λI | = 0 (charateristic equation),

solving the characteristic equation we obtain the exact eigenvalues (masses of neutral gauge
bosons):

M2
Z1

= λ1 =
1

4

[
g2K2 +

1

2

(
g2 + g′2

)
(v2
L + v2

R)− 1

2

√
∆′
]

M2
Z2

= λ2 =
1

4

[
g2K2 +

1

2

(
g2 + g′2

)
(v2
L + v2

R) +
1

2

√
∆′
]

(3.20)

M2
Aµ = λ3 = 0.

where we have defined:

∆′ ≡
(
g2 + g′2

)2 (
v2
L + v2

R

)2 − 4g2v2
Lv

2
R

(
g2 + 2g′2

)
− 4K2g2g′2

(
v2
L + v2

R

)
+ 4 g4K4,

we can observe that λ3 = 0 corresponds to that of the Photon.

Obtaining the eigenvectors (physical states: Aµ, Z1µ, Z2µ) of MNB as a function of symme-
try states (W 3L

µ , W 3R
µ , Bµ):

Aµ =
1

N ′1
[a11W

3L
µ + a12W

3R
µ + a13Bµ],

Z1µ =
1

N ′2
[a21W

3L
µ + a22W

3R
µ + a23Bµ], (3.21)

Z2µ =
1

N ′3
[a31W

3L
µ + a32W

3R
µ + a33Bµ],

where:

a11 = 1,

a12 = 1,

a13 = g/g′,

a21 = g g′v2
R,

a22 = g g′v2
RD1, (3.22)

a23 = −K2g2 + 4C1D1,

a31 = g g′v2
R

a32 = g g′v2
RD2,

a33 = −K2g2 + 4C2D2,

also, we have defined:
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N ′1 =
√
a2

11 + a2
12 + a2

13 =
√

2 + (g/g′)2,

N ′2 =
√
a2

21 + a2
22 + a2

23 =
√

(g g′v2
R)2 + (g g′v2

RD1)2 + (−K2g2 + 4C1D1)2,

N ′3 =
√
a2

31 + a2
32 + a2

33 =
√

(g g′v2
R)2 + (g g′v2

RD2)2 + (−K2g2 + 4C2D2)2,

C1 ≡ −1

8
(g′2 + g2)v2

L −
1

8
(g′2 − g2)v2

R +
1

8

√
∆′,

C2 ≡ −1

8
(g′2 + g2)v2

L −
1

8
(g′2 − g2)v2

R −
1

8

√
∆′,

, D1 ≡ v2
Lv

2
R(g2 − g′2)− v4

R(g′2 + g2) + 2g2K2 v2
L + v2

R

√
∆′

2g2K2 v2
R − v4

L(g′2 + g2)− (g′2 − g2)v2
Rv

2
L + v2

L

√
∆′
,

D2 ≡ v2
Lv

2
R(g2 − g′2)− v4

R(g′2 + g2) + 2g2K2 v2
L − v2

R

√
∆′

2g2K2 v2
R − v4

L(g′2 + g2)− (g′2 − g2)v2
Rv

2
L − v2

L

√
∆′
,

we can express the equations 3.21 in a matrix form: Aµ
Z1µ

Z2µ

 =

 a′11 a′12 a′13

a′21 a′22 a′23

a′31 a′32 a′33


︸ ︷︷ ︸

= P

 W 3L
µ

W 3R
µ

Bµ

 (3.23)

where P represents a ortogonal matrix:

P =

 a′11 a′12 a′13

a′21 a′22 a′23

a′31 a′32 a′33

 (3.24)

to note that a′ij =
aij
N ′i

. Moreover, we need the inverse matrix P−1: W 3L
µ

W 3R
µ

Bµ

 = P−1

 Aµ
Z1µ

Z2µ

 (3.25)

the matrix P explicitly:

P =

 1/N ′1 1/N ′1 (g/g′)/N ′1
g g′v2

R/N
′
2 g g′v2

RD1/N
′
2 (−K2g2 + 4C1D1)/N ′2

g g′v2
R/N

′
3 g g′v2

RD2/N
′
3 (−K2g2 + 4C2D2)/N ′3


but P−1 = P T , because the matrix P is an ortogonal matrix.

P−1 = P T =

 1/N ′1 g g′v2
R/N

′
2 g g′v2

R/N
′
3

1/N ′1 g g′v2
RD1/N

′
2 g g′v2

RD2/N
′
3

(g/g′)/N ′1 (−K2g2 + 4C1D1)/N ′2 (−K2g2 + 4C2D2)/N ′3

 ,

then: W 3L
µ

W 3R
µ

Bµ

 =

 1/N ′1 g g′v2
R/N

′
2 g g′v2

R/N
′
3

1/N ′1 g g′v2
RD1/N

′
2 g g′v2

RD2/N
′
3

( g
g′

)/N ′1 (−K2g2 + 4C1D1)/N ′2 (−K2g2 + 4C2D2)/N ′3

 Aµ
Z1µ

Z2µ


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then, we have:

W 3L
µ = (1/N ′1)Aµ +

(
g g′v2

R/N
′
2

)
Z1µ +

(
g g′v2

R/N
′
3

)
Z2µ

W 3R
µ = (1/N ′1)Aµ +

(
g g′v2

RD1/N
′
2

)
Z1µ +

(
g g′v2

RD2/N
′
3

)
Z2µ, (3.26)

Bµ =

(
g

N ′1g
′

)
Aµ +

(
[−K2g2 + 4C1D1]/N ′2

)
Z1µ +

(
[−K2g2 + 4C2D2]/N ′3

)
Z2µ,

However, it is important to express the symmetry states as a function of the parameters vR, vR,
g, and g′, therefore, the transformation matrix can be written:

 W 3L
µ

W 3R
µ

Bµ

 =

 n11 n12 n13

n21 n22 n23

n31 n32 n33

 Aµ
Z1µ

Z2µ


That is, we have (exactly):

W 3L
µ = n11Aµ + n12Z1µ + n13Z2µ

W 3R
µ = n21Aµ + n22Z1µ + n23Z2µ, (3.27)

Bµ = n31Aµ + n32Z1µ + n33Z2µ,

where:

n11 =
1√

2 + g2

g′2

n12 = 1/
([

2 g2K4 − (g2 + g′2)K2v2
L + (g2 + g′2)v4

R + v2
R

(
−
√

Γ− v2
L(g2 + g′2)

+ K2(g2 − g′2)
)
−K2

√
Γ
]2

/
(
−2g2K4 + 2g′2v2

Lv
2
R + (g′2 − g2)(v2

L + v2
R)K2 +K2

√
Γ
)2

+
g′2(2g2K2 − (g2 − g′2)v2

L − (g2 + g′2)v2
R +
√

Γ)2

4g2(g′2v2
L − g2K2)2

+ 1

)1/2

n13 = 1/
([

2 g2K4 − (g2 + g′2)K2v2
L + (g2 + g′2)v4

R + v2
R

(√
Γ− v2

L(g2 + g′2)

+ K2(g2 − g′2)
)

+K2
√

Γ
]2

/
(
−2g2K4 + 2g′2v2

Lv
2
R + (g′2 − g2)(v2

L + v2
R)K2 −K2

√
Γ
)2

+
g′2(2g2K2 − (g2 − g′2)v2

L − (g2 + g′2)v2
R −
√

Γ)2

4g2(g′2v2
L − g2K2)2

+ 1

)1/2

n21 =
1√

2 + g2

g′2

n22 =
[
2 g2K4 − (g2 + g′2)K2v2

L + (g2 + g′2)v4
R + v2

R

(
−
√

Γ− v2
L(g2 + g′2) +K2(g2 − g′2)

)
−K2

√
Γ
]
/{[

K2
√

Γ +K2(g′2 − g2)(v2
L + v2

R) + 2g′2v2
Rv

2
L − 2g2K4]

((
2g2K4 + (g2 + g′2)(v4

R −K2v2
L)

+v2
R[−
√

Γ− (g2 + g′2)v2
L + (g2 − g′2)K2]−K2

√
Γ
)2

/[−2g2K4 + 2g′2v2
Lv

2
R + (g′2 − g2)×

K2(v2
L + v2

R) +K2
√

Γ]2 +
g′2(2g2K2 − (g2 − g′2)v2

L − g2 + g′2)v2
R +
√

Γ)2

4g2(g′2v2
L − g2K2)2

+ 1

)1/2

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n23 =
[
2 g2K4 − (g2 + g′2)K2v2

L + (g2 + g′2)v4
R + v2

R

(√
Γ− v2

L(g2 + g′2) +K2(g2 − g′2)
)

+K2
√

Γ
]
/{[

−K2
√

Γ +K2(g′2 − g2)(v2
L + v2

R) + 2g′2v2
Rv

2
L − 2g2K4]

((
2g2K4 + (g2 + g′2)(v4

R −K2v2
L)

+v2
R[
√

Γ− (g2 + g′2)v2
L + (g2 − g′2)K2] +K2

√
Γ
)2

/[−2g2K4 + 2g′2v2
Lv

2
R + (g′2 − g2)×

K2(v2
L + v2

R)−K2
√

Γ]2 +
g′2(2g2K2 − (g2 − g′2)v2

L − g2 + g′2)v2
R −
√

Γ)2

4g2(g′2v2
L − g2K2)2

+ 1

)1/2


n31 =
g

g′
√

2 + g2

g′2

n32 = g′
(

2g2K2 − (g′2 − g2)v2
L − (g2 + g′2)v2

R +
√

Γ
)
/
{

2g(g′2v2
L − g2K2)

[
(2g2K4 + (g2 + g′2)×

(v4
R −K2v2

L) + v2
R(−
√

Γ− (g2 + g′2)v2
L + (g2 − g′2)K2)−K2

√
Γ)2/(−2g2K4 + 2g′2v2

Lv
2
R+

+ (g′2 − g2)K2(v2
R + v2

L) +K2
√

Γ)2 +
g′2(2g2K2 − (g′2 − g2)v2

L − (g2 + g′2)v2
R +
√

Γ)

4g2(g′2v2
L − g2K2)2

+ 1

]1/2


n33 = g′
(

2g2K2 − (g′2 − g2)v2
L − (g2 + g′2)v2

R −
√

Γ
)
/
{

2g(g′2v2
L − g2K2)

[
(2g2K4 + (g2 + g′2)×

(v4
R −K2v2

L) + v2
R(
√

Γ− (g2 + g′2)v2
L + (g2 − g′2)K2) +K2

√
Γ)2/(−2g2K4 + 2g′2v2

Lv
2
R+

+ (g′2 − g2)K2(v2
R + v2

L)−K2
√

Γ)2 +
g′2(2g2K2 − (g′2 − g2)v2

L − (g2 + g′2)v2
R −
√

Γ)

4g2(g′2v2
L − g2K2)2

+ 1

]1/2


where:

Γ = (g2 + g′2)2(v2
L + v2

R)2 − 4g2g′2K2(v2
L + v2

R)− 4g2(g2 + 2g′2)v2
Lv

2
R + 4g4K4

Remember that: K2 ≡ k2
1 + k2

2 + k′21 + k′22 .

3.2.2 Approximate analysis of the masses and physical states of the
gauge bosons

The previous results are given in an exact way, so here we will consider the analysis of the masses
of the gauge bosons and the eigenstates in an approximate way, that is, when we consider large
values of vR compared with the other VEVs.

Regarding that vR is larger than others VEVs, v2
R � v2

L, A
′, from the expression (3.27) we

have:

W 3L
µ = a1Aµ + a2 Z1µ + a3 Z2µ

W 3R
µ = b1Aµ + b2 Z1µ + b3 Z2µ (3.28)

Bµ = c1Aµ + c2 Z1µ + c3 Z2µ
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where:

a1 =
g′√

g2 + 2g′2

a2 ≈

√
g2 + g′2

g2 + 2 g′2
− g2

√
g2 + 2g′2

√
g2 + g′2(g2K2 − g′2v2

L)2

2 (g2 + g′2)4 v4
R

a3 ≈ −g (g2K2 − v2
L g
′2)

v2
R (g2 + g′2)3/2

b1 =
g′√

g2 + 2g′2

b2 ≈ −g′2√
g′2 + g2

√
2g′2 + g2

+ g2

√
g2 + 2g′2

g2 + g′2

(
K2g2 − v2

Lg
′2

v2
R(g2 + g′2)2

)
(3.29)

b3 ≈ g√
g2 + g′2

+
gg′2

√
g2 + g′2[K2g2 − g′2v2

L]

v2
R(g2 + g′2)3

c1 =
g

g′
√

2 + g2

g′2

c2 ≈ − g g′√
g2 + g′2

√
g2 + 2g′2

− gg′
√
g2 + 2g′2

g2 + g′2
K2g2 − g′2v2

L

v2
R(g2 + g′2)2

c3 ≈ − g′√
g2 + g′2

+ g′g2 K2g2 − v2
Lg
′2

v2
R(g2 + g′2)5/2

Remember we have defined from de the expresion (2.7): r ≡ g′/g. The electric charge operator
is:

e =
g g′√

g2 + 2g′2
=

g′√
1 + 2r2

, (3.30)

and the angle θ, expression (2.6), we can write:

sin θ =
g′√

g2 + 2g′2
=

r√
1 + 2r2

, cos θ =

√
g2 + g′2

g2 + 2g′2
=

√
1 + r2

1 + 2r2
, (3.31)

hence, from the previous equations we obtain:

r2 = r2
θ = s2

θ/c2θ =
s2
θ

1− 2s2
θ

This last expression was commented in the 2.2.1 section, the matching condition, s2
θ < 1/2.

Notice that:

tan θ ≡ tθ =
r√

1 + r2
. (3.32)
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It is posible to express the neutral gauge bosones masses, given by the expression (3.20) as a
function of r, like that:

M2
Z1

=
g2

4

[
K2 +

1

2

(
1 + r2

)
(v2
L + v2

R)− 1

2

√
∆

]
M2

Z2
=

g2

4

[
K2 +

1

2

(
1 + r2

)
(v2
L + v2

R) +
1

2

√
∆

]
(3.33)

M2
Aµ = 0.

remmember that:

∆ ≡
(
1 + r2

)2 (
v2
L + v2

R

)2 − 4 v2
Lv

2
R

(
1 + 2r2

)
− 4K2r2

(
v2
L + v2

R

)
+ 4K4,

As it is known, the symmetry eigenstates are linear combinations of the mass eigenstates as
follows:  W 3L

µ

W 3R
µ

Bµ

 =

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 Aµ

Zµ
1

Zµ
2

 , (3.34)

the coefficients, ai, bi and ci (which are approximate values), are given in (3.29), and we can
express them as a function of θ:

a1 = sθ, a2 ≈ cθ

[
1− c3

2θ

2v4
Rc

6
θ

(
K2 − s2

θ

c2θ

v2
L

)2
]
, a3 ≈ −

(
c2θ

c2
θ

)3/2 [
K2 − s2

θ

c2θ

v2
L

]
1

v2
R

,

b1 = sθ, b2 ≈ −sθ tθ +
c2

2θ

v2
Rc

5
θ

(
K2 − v2

Ls
2
θ

c2θ

)
, b3 ≈

√
c2θ

cθ

{
1 +

c2θ s
2
θ

v2
R c

4
θ

[
K2 − v2

L

s2
θ

c2θ

]}
,

c1 =
√
c2θ, c2 ≈ −tθ

√
c2θ

[
1 +

c2θ

v2
R c

4
θ

(
K2 − s2

θ v
2
L

c2θ

)]
, c3 ≈ −tθ

[
1− c2

2θ

v2
R c

4
θ

(
K2 − s2

θ

c2θ

v2
L

)]
,

(3.35)

where: tθ ≡ tan θ, sθ ≡ sin θ, cθ ≡ cos θ, c2θ ≡ cos 2θ, t2θ ≡ tan 2θ.

We can also express the previous matrix elements in other way, that is, making the following
definition:

x =
K2

v2
R

,

y =
v2
L

v2
R

,

(3.36)

z =
K̄2
L

v2
R

,

φ =
c

3/2
2θ

c3
θ

(
x− s2

θ

c2θ

y

)
,

the matrix 3.34, can be expressed: W 3L
µ

W 3R
µ

Bµ

 =

 n n12 n13

n n22 n23

n′ n32 n33

 Aµ

Zµ
1

Zµ
2

 , (3.37)
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where:

n = sθ, n′ =
√
c2θ, n12 ≈ cθ, n13 ≈ φ,

n22 ≈ −sθ tθ
[
1− φ

√
c2θ

s2
θ cθ

]
, n23 ≈

√
c2θ

cθ

[
1 + φ

cθ t
2
θ√
c2θ

]
(3.38)

n32 ≈ −tθ
√
c2θ

[
1 +

φ

cθ
√
c2θ

]
, n33 ≈ −tθ

[
1− φ

√
c2θ

cθ

]
In the case of the charge boson masses, using the Wx-maxima software, both masses given in

(3.15) can be expanded in Taylor series regarding large values of vR:

M2
W1

=
g2

4

(
K2 +

v2
L + v2

R

2
−
√

∆

)
≈ g2

4

(
K2 +

v2
L

2

)
(3.39)

M2
W2

=
g2

4

(
K2 +

v2
L + v2

R

2
+
√

∆

)
≈ g2

4
v2
R,

where: ∆ ≡ 4(k1k
′
1 +k2k

′
2)2 +

(
v2R−v

2
L

2

)2

. Notice that if all VEVs are positive, then M2
W2
�M2

W1
,

and we identify the W±
1 of the left-right model as the W± of the SM.

3.2.3 Calculation of the minimum value of vR

Regarding the exact masses of the MW1 and MZ1 vectorial bossons:

MW1

MZ1

=

√√√√ x+ 1
2
(1 + y)−

√
∆

x+ 1
2
(1 + y)(1 + r2)− 1

2

√
Ω
, (3.40)

where:

∆ = 4z2 +
1

4
(y − 1)2, (3.41)

Ω = (1 + y)2(1 + r2)2 − 4y(1 + 2r2)− 4xr2(1 + y) + 4x2, (3.42)

remember that:

x =
K2

v2
R

,

y =
v2
L

v2
R

, (3.43)

z =
K̄2

v2
R

,

where: K̄2 = k1k
′
1 + k2k

′
2, and K2 = k2

1 + k′21 + k2
2 + k′22

Relating the parameters x and z:

Regarding: k1 ≈ k′1 ≈ 0 and k2 ≈ k′2, we have:

K̄2 ≈ k2
2, (3.44)

K2 ≈ 2 k2
2, (3.45)
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In addition:

K2 ≈ 2 K̄2. (3.46)

then, from (3.43) we obtain the following relations:

x = 2 z → z =
x

2
. (3.47)

the expression (3.41) take the form:

∆ = x2 +
1

4
(y − 1)2, (3.48)

Looking for a minimum value for vR:

Making vL = 0, it is obtained y = 0. Then, the equation (3.40) take the form:

MW1

MZ1

=

√√√√ x+ 1
2
−
√

∆

x+ 1
2
(1 + r2)− 1

2

√
Ω

= 0.88147± 0.00013, 1 (3.49)

where:

∆ = x2 +
1

4
, (3.50)

Ω = (1 + r2)2 − 4xr2 + 4x2. (3.51)

According to the Standard Model, we can regard the following values:

r =
g′

g
= 0.6314, (3.52)

k2 =
vSM√

2
=

246 GeV√
2

, (3.53)

K =
√

2 k2 = 246 GeV. (3.54)

We know: x = K2

v2R
, then:

vR =
K√
x

=
246√
x

GeV

1. For the case:
MW1

MZ1

= 0.88147± 0.000262, (2 σ) we obtain:

Where the interception of the two curves, we get the value: x = 0.0001016.

With this value we obtain the minimum expectation value vR, that is:

vR = 24.00 TeV

2. For the case:
MW1

MZ1

= 0.88147± 0.00039, (3 σ) we obtain:

In the same way as the previous item, the interception of the two curves gives the following
value of x = 0.0007058.

With this value we obtain the minimum expectation value vR, that is:

vR = 9.26 TeV
2values taken from the PDG-2020
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Figure 3.1: Estimation of x, using 2σ approximation in
MW1

MZ1

Figure 3.2: Estimation of x, using 3σ approximation in
MW1

MZ1

We can gather the results in a single graph:

In summary, we can consider the following condition (lower limit) to vR ≥ 24.00 TeV for getting
the W2 and Z2 masses.
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Figure 3.3: Estimation of x gathering the two previous graphics

3.2.4 Calculation of the masses of the W2 and Z2 bosons

Knowing the general expression of the bosons masses:

M2
W2

=
g2 v2

R

4

(
x+

1 + y

2
+
√

∆

)
, (3.55)

M2
Z2

=
g2 v2

R

4

(
x+

1

2
(1 + y)(1 + r2) +

1

2

√
Ω

)
, (3.56)

where Ω and ∆ are given by the expressions (3.41) and (3.43).

Given the values: vL = 0, then y = 0, we get the following expressions:

M2
W2

=
g2 v2

R

4

(
x+

1

2
+
√

∆

)
, (3.57)

M2
Z2

=
g2 v2

R

4

(
x+

1

2
(1 + r2) +

1

2

√
Ω

)
, (3.58)

According to the SM:

GF =

√
2

8

g2

M2
W

= 1.16637× 10−5 GeV−2, (3.59)

then:

g2 = 4
√

2GFM
2
W (3.60)

where: MW = 80.379 GeV, then:

g2 = 0.4263 (3.61)

Also, using the minimum value of vR = 24.00 TeV, we obtain:

MW2 = 7.835 TeV.

(3.62)

MZ2 = 9.284 TeV
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Notice that only in the limit vR →∞ does the angle θ in this model have a relation with the θW
of the SM. However, it is important that vR is kept to be large but finite in order to obtain a
lower bound on the right-handed vector bosons, W2 and Z2 [37] and the respective coupling with
fermions. If χL is an inert doublet, we simply put vL = 0, or, equivalently, y = 0, in the above
expressions.

3.2.5 Calculation of the angle ξ for the charged bosons

Recall that:

sin(ξ) =
2B

N
=

2(k1k
′
1 + k2k

′
2)√

4B2 +
(
v2R−v

2
L+2
√

∆

2

)2
, (3.63)

cos(ξ) =
v2
R − v2

L + 2
√

∆

2N
=

v2
R − v2

L + 2
√

∆

2

√
4B2 +

(
v2R−v

2
L+2
√

∆

2

)2
(3.64)

Considering the same aproximation of the previous section, we may express the above equation
as a function of x, z, e y, that is:

sin(ξ) =
4z√

16 z2 + Y 2
,

(3.65)

cos(ξ) =
Y√

16 z2 + Y 2
,

where: Y = 1− y + 2
√

∆, making vL = 0 then y = 0, finally we obtain: Y = 1 + 2
√

∆.

Replacing the value x = 0.0001016 in the equation (3.65):

sin(ξ) = 0.000101599,

(3.66)

cos(ξ) = 0.999999994,

thus, the angle value ξ is given by:

ξ = 1.01599× 10−4 rad. (3.67)

The mixing angle WL −WR defined in Eq. (3.66) has an upper limit sin ξ < 10−4. Recent anal-
ysis comparing the experimental limits to the theoretical calculations for the total W2 resonant
production and the decay W2 → WZ implies that the exclusion in the mixing angle ξ is between
10−4 and 10−3, with a maximum exclusion above ξ ' 6× 10−4 [38].

3.3 Coupling the leptons with the bosons:

Knowing the lagrangian density for leptons:

Llep(x) = i
{
L̄l(x)γµDL

µLl(x) + R̄l(x)γµDR
µRl(x)

}
+ h.c. (3.68)
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Llep = i
(
νL `L

)(
γµ∂µ + i

gL
2
γµτ ·WL

µ − i
g′

2
γµBµ

)(
νL
`L

)
+ i

(
νR `R

)(
γµ∂µ + i

gR
2
γµτ ·WR

µ − i
g′

2
γµBµ

)(
νR
`R

)
(3.69)

however:

τ ·WL

µ =

(
WL

3µ WL
1µ − iWL

2µ

WL
1µ + iWL

2µ −WL
3µ

)
, (3.70)

τ ·WR

µ =

(
WR

3µ WR
1µ − iWR

2µ

WR
1µ + iWR

2µ −WR
3µ

)
, (3.71)

replacing in the expression (3.69), we have:

Llep = i
(
νL `L

)( 6∂ + igL
2
γµWL

3µ − i
g′

2
γµBµ igL

2
γµ
(
WL

1µ − iWL
2µ

)
igL

2
γµ
(
WL

1µ + iWL
2µ

)
6∂ − igL

2
γµWL

3µ − i
g′

2
γµBµ

)(
νL
`L

)
+ i

(
νR `R

)( 6∂ + igR
2
γµWR

3µ − i
g′

2
γµBµ igR

2
γµ
(
WR

1µ − iWR
2µ

)
igR

2
γµ
(
WR

1µ + iWR
2µ

)
6∂ − igR

2
γµWR

3µ − i
g′

2
γµBµ

)(
νR
`R

)
multiplying the matrices and regarding the neutrinos contribution:

Llepν` = i νL

(
6∂ + i

gL
2
γµWL

3µ − i
g′

2
γµBµ

)
νL + νR

(
6∂ + i

gR
2
γµWR

3µ − i
g′

2
γµBµ

)
νR

= i νL 6∂νL + i νL

(
i
gL
2
γµWL

3µ − i
g′

2
γµBµ

)
νL︸ ︷︷ ︸

(I)

+i νR 6∂νR +

+ i νR

(
i
gR
2
γµWR

3µ − i
g′

2
γµBµ

)
νR︸ ︷︷ ︸

(II)

3.3.1 Coupling with the Electromagnetic field:

The interaction with the photon arises from the projection of W3L,W3R and B over A.

We know from the expression :

W 3L
µ =

(
g′√

g2 + 2g′2

)
Aµ + · · ·

W 3R
µ =

(
g′√

g2 + 2g′2

)
Aµ + · · · (3.72)

Bµ =

(
g√

g2 + 2g′2

)
Aµ + · · ·
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For the case of neutrinos:

working with (I) and (II):

(I) + (II) =
i

2
νLγ

µ

g WL
3µ︸︷︷︸

Aµ
g′√

g2+2g′2

−g′ Bµ︸︷︷︸
Aµ

g√
g2+2g′2

 νL +
i

2
νRγ

µ

g WR
3µ︸︷︷︸

Aµ
g′√

g2+2g′2

−g′ Bµ︸︷︷︸
Aµ

g√
g2+2g′2

 νR(3.73)

Where it has been necessary to do gL = gR = g, then we have:

(I) + (II)
Aµ
=

i

2
νL︸︷︷︸
ν`PR

γµAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
νL︸︷︷︸
PLν`

+

+
i

2
νR︸︷︷︸
ν` PL

γµAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
νR︸︷︷︸
PR ν`

=
i

2
ν`PRγ

µAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
PLν` +

+
i

2
ν`PLγ

µAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
PRν`

=
i

2
ν`γ

µAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
︸ ︷︷ ︸

= 0

ν` = 0.

This proves that the neutrino has zero electric charge, such as we showed in the previous
section when we consider the case vL = 0 .

For the case of charged leptons:

Llep`α = i `L

(
6∂ − ig

2
γµWL

3µ − i
g′

2
γµBµ

)
`L + i `R

(
6∂ − ig

2
γµWR

3µ − i
g′

2
γµBµ

)
`R

= i `L 6∂`L + i (−1)`L

(
i
g

2
γµWL

3µ + i
g′

2
γµBµ

)
`L︸ ︷︷ ︸

(I′)

+i `R 6∂`R +

+ i (−1)`R

(
i
g

2
γµWR

3µ + i
g′

2
γµBµ

)
`R︸ ︷︷ ︸

(II′)

considering the interaction with the photon:
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(I ′) + (II ′)
Aµ
=
−i
2

`L︸︷︷︸
`PR

γµAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
`L︸︷︷︸
PL`

+
−i
2

`R︸︷︷︸
` PL

γµAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
`R︸︷︷︸
PR `

=
−i
2
`PRγ

µAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
PL`

+
−i
2
``PLγ

µAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
PR`

=
−i
2
`γµAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
︸ ︷︷ ︸

=2 g′g√
g2+2g′2

`.

therefore, we have the electric charge for charged leptons:

Qe =
−g′g√
g2 + 2g′2

,

This result have been done regarding vL 6= 0. A similar result is obtained regarding vL = 0,
see that in the appendix G. To mention, this choice is importante because we have the freedom
of choosing vL = 0. Remmeber that χL doesn’t coupling with charged leptons, and it could be
regarded dark matter particle candidate.

Hence, the electric charge is given by:

Qf = q
g g′√

g2 + 2 g′2
, (3.74)

with q = −1, 2/3,−1/3 for charged leptons, u-like and d-like quarks, respectively. Moreover,
Qν = 0.

From (3.74) is obtained:
1

e2
=

2

g2
+

1

g′2
,

1

g2
Y

=
1

g2
+

1

g′2
, (3.75)

as was mentioned in the chatper two, see the equation (2.8).

3.3.2 Coupling with the Charged Weak Bosons:

In the lepton sector:

The lagrangian interaction between charged bosons and leptons can be write in the form:

LW = −g
2

[
ν̄Lγ

µVPMNS`LW
+
Lµ + ν̄Rγ

µVPMNS`RW
+
Rµ

]
+H.C., (3.76)

the mixing matrix is the same in both, left- and right - sectors because the charged lepton and
neutrino mass matrices are diagonalized by the same unitary matrices.
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In addition, we can write the charged current interactions, in the mass eigenstates basis, in-
troducing a phase factor like a general case, such that the Lagrangian is given by:

LlW = −g
2

[
eiφlνLγ

µVllLW
+
Lµ + νRγ

µVllRW
+
Rµ

]
+H.c.

= −g
2

[
(eiφlcξJ

lµ
L + sξJ

lµ
R )W+

1µ + (−eiφlsξJ lµL + cξJ
lµ
R )W+

2µ

]
+H.c.,

(3.77)

and we have used Eq. (3.19); here J lµL = νLγ
µVllL and J lµR = νRγ

µVllR.

In the quark sector:

LqW = −g
2

[
eiφq ūLγ

µVCKM lLW
+
Lµ + ūRγ

µVCKMdRW
+
Rµ

]
+H.c.

= −g
2

[
(eiφqcξJ

qµ
L + sξJ

qµ
R )W+

1µ + (−eiφsξJqµL + cξJ
qµ
R )W+

2µ

]
+H.c.,

(3.78)

with JqµL = ūLγ
µVCKMdL and JqµR = ūRγ

µVCKMdR with VCKM being the same as in the left-
handed sector with three angles and one physical phase.

In the general case where the Yukawa couplings in Eq. (2.59) aren’t hemitics, the right-handed
CKM matrix is different from the left-handed one. This case was considered in Ref. [39].

According with the previous paragraph we can say:

� the phase φl and φq introduced in Eqs. (3.77) and (3.78), respectively, needs an explanation.

� The Dirac fields abserve 2n−1 phases in the mixing matrix for n Dirac fermions, since one
is a global phase.

� In the SM, this is enough, because there is only one charged current and the global phase
never appears in amplitudes. However, in this sort of model there are also right-handed
charged currents and there is a relative global phase between both charged currents. This
phase is φl for leptons and φq for quarks.

3.3.3 Coupling with Neutral Weak Boson (Neutral Current):

Next, we parametrize the neutral interactions of a fermion i with the Z1µ and Z2µ neutral bosons
as follow:

LNC = − g

cos θ

∑
i

ψ̄iγ
µ
[
(giV − giAγ5)Z1µ + (f iV − f iAγ5)Z2µ

]
ψi (3.79)

we will define:

gfV =
1

2
(afL + afR), gfA =

1

2
(afL − a

f
R), (3.80)

where afL and afR are the couplings of the left- and right- handed components of a fermion f .
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Coupling with Z1:

Lνα = −νL

g
2
γµ WL

3µ︸︷︷︸
a2 Z1µ

−g
′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 νL − νR

g
2
γµ WR

3µ︸︷︷︸
b2 Z1µ

−g
′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 νR

= −1

2
νLγ

µ (a2 g − c2 g
′) Z1µ νL −

1

2
νRγ

µ (b2 g − c2 g
′) Z1µ νR

= −1

2
[ν PRγ

µ (a2 g − c2 g
′)Z1µPLν + ν PLγ

µ (b2 g − c2 g
′)Z1µPRν]

= −1

2
[ν γµ PL (a2 g − c2 g

′)Z1µPLν + ν γµ PR (b2 g − c2 g
′)Z1µPRν]

= −1

2

[
ν γµ P 2

L (a2 g − c2 g
′)Z1µν + ν γµ P 2

R (b2 g − c2 g
′)Z1µν

]
= −1

2

ν γµ PL (a2 g − c2 g
′)︸ ︷︷ ︸

=A
ν`
L

Z1µν + ν γµ PR (b2 g − c2 g
′)︸ ︷︷ ︸

=A
ν`
R

Z1µν


= −1

2
ν γµ

[
1

2
(1− γ5)Aν`L +

1

2
(1 + γ5)Aν`R

]
Z1µ ν

= −1

2
ν γµ

[
Aν`L + Aν`R

2
− Aν`L − A

ν`
R

2
γ5

]
Z1µ ν = − g

2 cos θ
ν γµ (gν`V − g

ν`
A γ5)Z1µν.

where:

Aν`L ≈ g

√
g2 + 2g′2

g2 + g′2
+
g g′2

√
g2 + g′2

√
g2 + 2g′2[K2g2 − v2

Lg
′2]

v2
R(g2 + g′2)3

(3.81)

Aν`R ≈ g
√
g2 + g′2

√
g2 + 2g′2

[
g2K2 − g′2v2

L

(g2 + g′2)2 v2
R

]
(3.82)

g

cos θ
gνV =

1

2
(Aν`L + Aν`R ) (3.83)

g

cos θ
gνA =

1

2
(Aν`L − A

ν`
R ) (3.84)

remember that:

g sθ = g′
√
c2θ →

√
g2 + g′2

g2 + 2 g′2
= cθ

Finally:

Aν`L ≈ g

cos θ

[
1 +

g′2 (K2g2 − v2
L g
′2)

v2
R(g2 + g′2)2

]
=

g

cos θ
aν`L (3.85)

Aν`R ≈ g (K2g2 − v2
L g
′2)

(g2 + g′2) cos θ v2
R

=
g

cos θ
aν`R (3.86)

gν`V ≈ 1

2
+
g′2 (K2g2 − v2

L g
′2)

2 v2
R(g2 + g′2)2

+
K2g2 − v2

L g
′2

2(g2 + g′2) v2
R

(3.87)

gν`A ≈ 1

2
+
g′2 (K2g2 − v2

L g
′2)

2 v2
R(g2 + g′2)2

− K2g2 − v2
L g
′2

2(g2 + g′2) v2
R

(3.88)
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1. Summarizing we have for the case of neutrinos:

gν`V ≈ 1

2
+
g′2 (K2g2 − v2

L g
′2)

2 v2
R(g2 + g′2)2

+
K2g2 − v2

L g
′2

2(g2 + g′2) v2
R

gν`A ≈ 1

2
+
g′2 (K2g2 − v2

L g
′2)

2 v2
R(g2 + g′2)2

− K2g2 − v2
L g
′2

2(g2 + g′2) v2
R

(3.89)

aν`L ≈ 1 +
g′2 (K2g2 − v2

L g
′2)

v2
R(g2 + g′2)2

,

aν`R ≈ K2g2 − v2
L g
′2

(g2 + g′2) v2
R

we know the following:

g2

g2 + g′2
=
c2θ

c2
θ

,
g′2

g2 + g′2
= t2θ

replacing in 3.89, and taking into account the definitions in 3.36, we have:

aν`L ≈ 1 +
c2θ t

2
θ

c2
θ

(
x− y s

2
θ

c2θ

)

aν`R ≈ c2 θ

c2
θ

(
x− y s

2
θ

c2θ

)
(3.90)

gν`V ≈ 1

2
+
c2θ

2 c4
θ

(
x− y s

2
θ

c2θ

)

gν`A ≈ 1

2
− c2

2θ

2 c4
θ

(
x− y s

2
θ

c2θ

)
Notice that when vR → ∞ (x, y → 0), then:

aν`L → 1, aν`R → 0

(3.91)

gν`V = gν`A →
1

2

These couplings with neutrinos are consistent with those known from the SM.
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2. for the case of charged leptons:

L`α = `L

g
2
γµ WL

3µ︸︷︷︸
a2 Z1µ

+
g′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 `L + `R

g
2
γµ WR

3µ︸︷︷︸
b2 Z1µ

+
g′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 `R

=
1

2
`Lγ

µ (a2 g + c2 g
′) Z1µ `L +

1

2
`Rγ

µ (b2 g + c2 g
′) Z1µ `R

=
1

2

[
` PRγ

µ (a2 g + c2 g
′)Z1µPL`+ ` PLγ

µ (b2 g + c2 g
′)Z1µPR`

]
=

1

2

[
` γµ PL (a2 g + c2 g

′)Z1µPL`+ ` γµ PR (b2 g + c2 g
′)Z1µPR`

]
=

1

2

[
` γµ P 2

L (a2 g + c2 g
′)Z1µ`+ ` γµ P 2

R (b2 g + c2 g
′)Z1µ`

]
=

1

2

` γµ PL (a2 g + c2 g
′)︸ ︷︷ ︸

=A`L

Z1µ`+ ` γµ PR (b2 g + c2 g
′)︸ ︷︷ ︸

=A`R

Z1µ`


=

1

2
` γµ

[
1

2
(1− γ5)A`L +

1

2
(1 + γ5)A`R

]
Z1µ `

=
1

2
` γµ

[
A`L + A`R

2
− A`L − A`R

2
γ5

]
Z1µ ` =

g

2 cos θ
` γµ

(
g`αV − g

`α
A γ5

)
Z1µ`.

where:

A`αL ≈ g3

g2 + 2g′2

√
g2 + 2g′2

g2 + g′2
− g′2g (K2g2 − v2

Lg
′2)

v2
R(g2 + g′2)2

√
g2 + 2g′2

g2 + g′2
=

g

cθ
a`αL

(3.92)

A`αR ≈

√
g2 + 2g′2

g2 + g′2

[
− 2g g′2

g2 + 2g′2
+
g(v2

L g
′4 + (−K2 − v2

L)g′2g2 +K2g4)

(g2 + g′2)2 v2
R

]
=

g

cθ
a`αR

also
g

cθ
g`αV =

1

2

(
A`αL + A`αR

)
(3.93)

g

cθ
g`αA =

1

2

(
A`αL − A

`α
R

)
then, we can find:

g`αV ≈ 1

2

(
g2 − 2g′2

g2 + 2g′2

)
+

(K2 g2 − v2
L g
′2)(g2 − 2g′2)

2 v2
R(g2 + g′2)2

,

(3.94)

g`αA ≈ 1

2
− g2(K2 g2 − v2

Lg
′2)

2 v2
R(g2 + g′2)2

,

taking into account the following:

g2 − 2g′2

g2 + 2g′2
= 2c2θ − 1,

(3.95)

g2 − g′2

g2 + g′2
=

1− 4 s2
θ

c2
θ

,
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we finally have:

a`αL ≈ c2θ −
t2θ c2θ

c2
θ

(
x− y s

2
θ

c2θ

)

a`αR ≈ −2 s2
θ + x

(
t2θ −

t2θ c2θ

c2
θ

+
c2

2θ

c4
θ

)
− y t2θ

c2θ

c2
θ

(3.96)

g`αV ≈ 1

2
(2c2θ − 1)

{
1 +

c2θ

c4
θ

(
x− y s

2
θ

c2θ

)}

g`αA ≈ 1

2
− c2

2θ

2 c4
θ

(
x− y s

2
θ

c2θ

)
.

Notice that when vR → ∞ (x, y → 0), then:

a`αL → c2θ, a`αR → −2 s2
θ,

(3.97)

g`αV → 1

2
(2c2θ − 1) , g`αA →

1

2

It can be seen that the glV and glA couplings are the same as those of the SM, that is, at low
energy it reproduces known results.

In summary, the coupling constants (vR → ∞) with the neutron boson Z1 are shown in the
following table:

f g′fV g′fA
` c2θ − 1

2
1
2

ν 1
2

1
2

Table 3.1: Coupling constants between leptons and Z1 neutral boson
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Coupling with Z2:

a) for the case of neutrinos:

Lνα = −νL

g
2
γµ WL

3µ︸︷︷︸
a3 Z2µ

−g
′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 νL − νR

g
2
γµ WR

3µ︸︷︷︸
b3 Z2µ

−g
′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 νR

= −1

2
νLγ

µ (a3 g − c3 g
′) Z2µ νL −

1

2
νRγ

µ (b3 g − c3 g
′) Z2µ νR

= −1

2
[ν PRγ

µ (a3 g − c3 g
′)Z2µPLν + ν PLγ

µ (b3 g − c3 g
′)Z2µPRν]

= −1

2
[ν γµ PL (a3 g − c3 g

′)Z2µPLν + ν γµ PR (b3 g − c3 g
′)Z2µPRν]

= −1

2

[
ν γµ P 2

L (a3 g − c3 g
′)Z2µν + ν γµ P 2

R (b3 g − c3 g
′)Z2µν

]
= −1

2

ν γµ PL (a3 g − c3 g
′)︸ ︷︷ ︸

=A
′ν`
L

Z2µν + ν γµ PR (b3 g − c3 g
′)︸ ︷︷ ︸

=A
′ν`
R

Z2µν


= −1

2
ν γµ

[
1

2
(1− γ5)A′ν`L +

1

2
(1 + γ5)A′ν`R

]
Z2µ ν

= −1

2
ν γµ

[
A′ν`L + A′ν`R

2
− A′ν`L − A

′ν`
R

2
γ5

]
Z2µ ν = − g

2 cθ
ν γµ

(
f ′ν`V − f

′ν`
A γ5

)
Z2µν.

In the same way of the previous section:

A′ν`L ≈ g′2√
g2 + g′2

− g2
√
g2 + g′2

(g2 + g′2)3v2
R

[
g4K2 + g2g′2(2K2 − v2

L)− 2v2
Lg
′4] = a′ν`L

g

cθ
,

(3.98)

A′ν`R ≈
√
g2 + g′2 = a′ν`R

g

cθ
,

as a function of θ angle:

a′ν`L ≈ s2
θ√
c2θ

−
√
c2θ

c4
θ

[
x c2

2θ + (2x− y) c2θ s
2
θ − 2 y s4

θ

]
,

(3.99)

a′ν`R ≈ c2
θ√
c2θ

,

then:

f ′ν`V ≈ 1

2

{
1
√
c2θ

−
√
c2θ

c4
θ

[
x c2

2θ + (2x− y) c2θ s
2
θ − 2 y s4

θ

]}
,

(3.100)

f ′ν`A ≈ 1

2

{
−
√
c2θ −

√
c2θ

c4
θ

[
x c2

2θ + (2x− y) c2θ s
2
θ − 2 y s4

θ

]}
,
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Notice that when vR → ∞ (x, y → 0), then:

a
′ν`α
L → s2

θ√
c2θ

,

a
′ν`α
R → c2

θ√
c2θ

,

(3.101)

f
′ν`α
V → 1

2
√
c2θ

,

f
′ν`α
A → −

√
c2θ

2
.

we can put the neutrinos coupling constants with the neutral boson Z2 in the following table:

a′L a′R f ′V f ′A

ν`α
s2θ√
c2θ

c2θ√
c2θ

1
2
√
c2θ

−
√
c2θ
2

Table 3.2: Coupling constants between neutrinos and Z2 neutral boson

b) For the case of charged leptons:

L`α = `L

g
2
γµ WL

3µ︸︷︷︸
a3 Z2µ

+
g′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 `L + `R

g
2
γµ WR

3µ︸︷︷︸
b3 Z2µ

+
g′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 `R

=
1

2
`Lγ

µ (a3 g + c3 g
′) Z2µ `L +

1

2
`Rγ

µ (b3 g + c3 g
′) Z2µ `R

=
1

2

[
` PRγ

µ (a3 g + c3 g
′)Z2µPL`+ ` PLγ

µ (b3 g + c3 g
′)Z2µPR`

]
=

1

2

[
` γµ PL (a3 g + c3 g

′)Z2µPL`+ ` γµ PR (b3 g + c3 g
′)Z2µPR`

]
=

1

2

[
` γµ P 2

L (a3 g + c3 g
′)Z2µ`+ ` γµ P 2

R (b3 g + c3 g
′)Z2µ`

]
=

1

2

` γµ PL (a3 g + c3 g
′)︸ ︷︷ ︸

=A′`L

Z2µ`+ ` γµ PR (b3 g + c3 g
′)︸ ︷︷ ︸

=A′`R

Z2µ`


=

1

2
` γµ

[
1

2
(1− γ5)A′`L +

1

2
(1 + γ5)A′`R

]
Z2µ `

=
1

2
` γµ

[
A′`L + A′`R

2
− A′`L − A′`R

2
γ5

]
Z2µ ` =

g

2 cθ
` γµ

(
f ′`αV − f

′`α
A γ5

)
Z2µ`.

where:

A′`αL ≈ − g′2√
g2 + g′2

− g4
√
g2 + g′2(K2g2 − v2

Lg
′2)

(g2 + g′2)3v2
R

=
g

cθ
a′`αL

(3.102)

A′`αR ≈ (g2 − g′2)
√
g2 + g′2

g2 + g′2
+

2g2g′2(K2g2 − v2
Lg
′2)√

g2 + g′2(g2 + g′2)2v2
R

=
g

cθ
a′`αR
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Knowing that:
g sθ = g′

√
c2θ

we will have:

a′`αL ≈ 1
√
c2θ

{
−s2

θ −
c3

2θ

c4
θ

(
x− y s

2
θ

c2θ

)}

a′`αR ≈ 1
√
c2θ

{
1− 3 s2

θ −
(1− c2 θ) c

2
2θ

c4
θ

(
x− y s

2
θ

c2θ

)}
(3.103)

f ′`αV ≈ 1

2
√
c2θ

{
1− 4 s2

θ −
c2

2θ

c4
θ

(
x− y s

2
θ

c2θ

)}

f ′`αA ≈ 1

2
√
c2θ

{
−1 + 2 s2

θ −
(2 c2 θ − 1) c2

2θ

c4
θ

(
x− y s

2
θ

c2θ

)}
.

Notice that when vR → ∞ (x, y → 0), then:

a′`αL → −s2
θ√
c2θ

,

a′`αR → 1− 3 s2
θ√

c2θ

,

f ′`αV → 1− 4 s2
θ

2
√
c2θ

,

f ′`αA → −1 + 2 s2
θ

2
√
c2θ

. (3.104)

In summary, the coupling constants (vR → ∞) with the neutron boson Z2 are shown in the
following table:

f f ′fV f ′fA

`
1−4 s2θ
2
√
c2θ

−1+2 s2θ
2
√
c2θ

ν 1
2
√
c2θ

−
√
c2θ
2

Table 3.3: Coupling constants between leptons with Z2 neutral boson

In the quark Sector:

The same happens with the coefficients of the quark sector in this limit, that is, regarding
v2
R � X2, where X represents other VEV.

a) Coupling constant Up and Down quark with Z1

We start with the lagrangian given by:

Lu,d = − g

2 cos θ
f̄γµ(gfV − g

f
A γ5)Z1µf, (3.105)

where:
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f gfV gfA
Up 1

2
− 4

3
sin2 θ 1

2

Down −1
2

+ 2
3

sin2 θ −1
2

Table 3.4: Coupling quark up, down with Z1 neutral boson

b) Coupling constant Up and Down quark with Z2

The lagrangian is given by:

Lu,d = − g

2 cos θ
f̄γµ(g′fV − g

′f
A γ5)Z2µf, (3.106)

where:

f g′fV g′fA

Up 4 cos 2θ−1
6
√

cos 2θ
−1

2

√
cos 2θ

Down −1+2 cos 2θ
6
√

cos 2θ
1
2

√
cos 2θ

Table 3.5: Coupling quark up, down with Z2 neutral boson

In the way that Lagrangians are defined, the couplings of the quarks with the neutral bosons are
different, like the case with the leptons. We can say:

� Only when vR is strictly infinite can we identify, at tree level, the angle θ with θW of the
SM.

� Assuming the measured values glV = 0.03783 ± 0.00041 does not imply a stronger lower
bound on vR and the W2 and Z2 masses, which was obtained from the MW/MZ ratio in
Eq. (3.62).

� the CMS Collaboration using W2 → B + t or W2 → T + b [T and B are vectorlike quarks
(VLQs)] excluded a W2 with a mass below 1.6 TeV at 95% C.L. assuming equal branching
ratios for the W ′ boson to tB and bT and 50% for each VLQ to qH, where H is a neutral
scalar [40]. If T and B are the known t and b quarks and assuming W2 with coupling to the
SM particles equal to the SM weak coupling constant, masses below 3.15 TeV are excluded
at the 95% confidence level [41]

Furthermore, if right-handed gauge bosons decay into a high-momentum heavy neutrino and
a charged lepton, the LHC has excluded values of the W2 ∼ WR smaller than 3.85 TeV for
NR in the mass range 0.11.8 TeV [42]. Of course, if there are no extra quarks like T and B and
neither heavy right-handed neutrinos, these restrictions for the mass of WR are not valid anymore.

Only for illustration, we give the partial width at tree level, neglecting the fermion masses,
and with MW2 = 7.8 TeV

Γ(W+
2 → l+ν) ≈

GFM
2
W1
MW2

6π
√

2
∼ 31.57 GeV. (3.107)

Adding over all fermions, it means a full width Γ ∼ 94.71 GeV. Compare this with the case of
the W of the SM, ΓW = 2.085 ± 0.042 GeV [3] where l denotes any of the charged leptons i.e.,
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l = e, µ, τ without a sum over them.

For the Z2 and also neglecting the fermion masses we have

Γ(Z2 → ff̄) ' Nc

[
(afL)2 + (afR)2

] GFM
2
WMZ2

24π
, (3.108)

for leptons Nc = 1 and for quarks Nc = 3. In the case of leptonic decay, using the couplings
in Eq. (3.104), we have Γ(Z2 → l−l+) ∼ 3.79 GeV for any of the three charged leptons, if
MZ2 = 9.28 TeV, with Γ(Z → l−l+) = 83.984± 0.086 MeV [3].

Notice that scalar doublets χL,R do not couple to fermions and we will assume that vacuum
alignment is such that vL = 0; therefore, this scalar field does not contribute to the gauge boson
masses, and, hence, χL is an inert doublet [43]. In this case, the inert character is protected by
the left-right symmetry.
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Chapter 4

Mixing and Lepton Masses

Here we will obtain, assuming the measured matrix elements of the PMNS matrix, the Yukawa
couplings to generate the correct charged lepton and neutrino masses. First, we consider the
present case, i.e., two bidoublets, then we briefly discuss the case with three bidoublets.

4.1 The Two-Bidoublet Case

We need to solve the following equations:

U `†M ` U ` = M̂ ` (4.1)

Uν`†Mν` Uν` = M̂ν` (4.2)

where:

� M `, M ν` , are given by:

Mν` = G
k1√

2
=

k1√
2

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (4.3)

M ` = F
k1√

2
=

k1√
2

 F11 F12 F13

F21 F22 F23

F31 F32 F33

 (4.4)

� M̂ ` and M̂ν` are the diagonal matrix for charged leptons and neutrinos respectively. That
is:

M̂ ` =

 me 0 0
0 mµ 0
0 0 mτ

 , M̂ν` =

 m1 0 0
0 m2 0
0 0 m3

 (4.5)

Remember that the PMNS mixing matrix is given by:

UPMNS = U `† Uν` . (4.6)
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We are going to propose a unitary matrix with only three angles for the neutrinos (mixing
matrix), like the PMNS matrix known in the literature of neutrinos oscillation, however we begin
showing a parametrized unitary matrix with three angles plus a phase, like this:

Uν = UPMNS =

 c12c13 s12c13 s13 e
−i δ

−s12c23 − c12s13s23 e
i δ c12c23 − s12s13s23 e

i δ c13s23

s12s23 − c12s13c23 e
i δ −c12s23 − s12s13c23 e

i δ c13c23

 (4.7)

Note that, when we regard a unitary matrix for the neutrinos like the matrix given in the ex-
pression 4.7, then the unitary matrix for charged leptons, F , should be a diagonal matrix.

Depending on the values of the lightest neutrino mass, the neutrino mass [44] spectrum can
be: The normal mass hiercharchy, the inverse mass hierarchy and the Cuasi degenerate hierarchy.

In appendix J the calculations of the Yukawa couplings are shown considering nonzero phase
factors.

4.1.1 The Normal Mass Hierarchy (NH)

The neutrinos matrix, using the normal mass hierarchy1 (m1 � m2 < m3),in eV, is given by the
following expression:

M̂ν =

 0 0 0
0 0.0086 0
0 0 0.0506

 , (4.8)

the coupling matrix for the neutrinos, G, is given by:

G =

√
2

k1

UPMNSM̂νU
†
PMNS =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (4.9)

1Particle Data Group - 2020
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where:

G11 =

√
2

k1

(
0.0504 s2

13 + 0.0086s2
12 c

2
13

)
,

G12 =

√
2

k1

(
0.0086 s12c13(c12c23 − s12s13s23 e

−iδ) + 0.0504 c13s13s23 e
−iδ) ,

G13 =

√
2

k1

(
0.0086 s12c13(−c12s23 − s12s13c23 e

−iδ) + 0.0504 c13s13c23 e
−iδ) ,

G21 =

√
2

k1

(
0.0086 s12c13(c12c23 − s12s13s23 e

iδ) + 0.0504 c13s13s23 e
iδ
)
,

G22 =

√
2

k1

(
0.0086 (c12c23 − s12s13s23 e

−iδ)(c12c23 − s12s13s23 e
iδ) + 0.0504 c2

13s
2
23

)
, (4.10)

G23 =

√
2

k1

(
0.0086 (−c12s23 − s12s13c23 e

−iδ)(c12c23 − s12s13s23 e
iδ) + 0.0504 c2

13c23s23

)
,

G31 =

√
2

k1

(
0.0086 s12c13(−c12s23 − s12s13c23 e

iδ) + 0.0504 c13s13c23 e
iδ
)
,

G32 =

√
2

k1

(
0.0086 (c12c23 − s12s13s23 e

−iδ)(−c12s23 − s12s13c23 e
iδ) + 0.0504 c2

13c23s23

)
,

G33 =

√
2

k1

(
0.0086 (−c12s23 − s12s13c23 e

−iδ)(−c12s23 − s12s13c23 e
iδ) + 0.0504 c2

13c
2
23

)
,

In the case where:

s2
12 = 0.307,

s2
23 = 0.512,

s2
13 = 0.0218, (4.11)

δ = 0,

k1 = 2 GeV,

we obtain real values of the matrix elements:

G11 = 0.2606 × 10−11,

G12 = 0.5481 × 10−11,

G13 = 0.1474 × 10−11,

G21 = 0.5481 × 10−11,

G22 = 1.9583 × 10−11, (4.12)

G23 = 1.5418 × 10−11,

G31 = 0.1474 × 10−11,

G32 = 1.5418 × 10−11,

G33 = 1.9671 × 10−11,

The neutrinos matrix could also be written in the following form:

M̂ν =

 0 0 0
0 (∆m2

21)1/2 0
0 0 |∆m2

31|1/2

 , (4.13)
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In general, the coupling matrix elements for the neutrinos, in the Hierarchy normal, are given
by:

G11 =

√
2

k1

(
|∆m2

31|1/2 s2
13 + (∆m2

21)1/2s2
12 c

2
13

)
,

G12 =

√
2

k1

(
(∆m2

21)1/2 s12c13(c12c23 − s12s13s23 e
−iδ) + |∆m2

31|1/2 c13s13s23 e
−iδ) ,

G13 =

√
2

k1

(
(∆m2

21)1/2 s12c13(−c12s23 − s12s13c23 e
−iδ) + |∆m2

31|1/2 c13s13c23 e
−iδ) ,

G21 =

√
2

k1

(
(∆m2

21)1/2 s12c13(c12c23 − s12s13s23 e
iδ) + |∆m2

31|1/2 c13s13s23 e
iδ
)
,

G22 =

√
2

k1

(
(∆m2

21)1/2 (c12c23 − s12s13s23 e
−iδ)(c12c23 − s12s13s23 e

iδ) + |∆m2
31|1/2 c2

13s
2
23

)
,(4.14)

G23 =

√
2

k1

(
(∆m2

21)1/2 (−c12s23 − s12s13c23 e
−iδ)(c12c23 − s12s13s23 e

iδ) + |∆m2
31|1/2 c2

13c23s23

)
,

G31 =

√
2

k1

(
(∆m2

21)1/2 s12c13(−c12s23 − s12s13c23 e
iδ) + |∆m2

31|1/2 c13s13c23 e
iδ
)
,

G32 =

√
2

k1

(
(∆m2

21)1/2 (c12c23 − s12s13s23 e
−iδ)(−c12s23 − s12s13c23 e

iδ) + |∆m2
31|1/2 c2

13c23s23

)
,

G33 =

√
2

k1

(
(∆m2

21)1/2 (−c12s23 − s12s13c23 e
−iδ)(−c12s23 − s12s13c23 e

iδ) + |∆m2
31|1/2 c2

13c
2
23

)
,

4.1.2 The charged leptons coupling matrix

As was mentioned in the previous sections, the charged leptons matrix coupling have to be
diagonal, then:

F =

√
2

k1

M̂` =

√
2

k1

 me 0 0
0 mµ 0
0 0 mτ

 (4.15)

Regarding the following values:

me = 0.5109MeV , mµ = 105.6584MeV , mτ = 1776.86MeV and k1 = 2GeV , we obtain
the matrix F:

F =

 3.6126× 10−4 0 0
0 0.0747 0
0 0 1.2564

 (4.16)

4.1.3 The Inverse Mass Hierarchy (IH)

The Inverted mass hierarchy2 (m3 � m1 < m2) is given by the following matricial expression:

M̂ν =

 0.0497 0 0
0 0.0504 0
0 0 0

 (4.17)

2Particle Data Group - 2020
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The coupling matrix for the neutrinos, G, is given by:

G =

√
2

k1

UPMNSM̂νU
†
PMNS =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (4.18)

Taking into account the numerical values of the mixing angles and the phase angle written in
the PDG:

s2
12 = 0.297 (4.19)

s2
23 = 0.425 (4.20)

s2
13 = 0.0215 (4.21)

δ = 0 (4.22)

k1 = 2 GeV, (4.23)

we obtain the following values:

G11 ≈ 3.4531× 10−11

G12 ≈ −0.3530× 10−11

G13 ≈ −0.3762× 10−11

G21 ≈ −0.3530× 10−11

G22 ≈ 1.7677× 10−11 (4.24)

G23 ≈ −1.7352× 10−11

G31 ≈ −0.3752× 10−11

G32 ≈ −1.7352× 10−11

G33 ≈ 1.8568× 10−11

4.1.4 The Quasidegenerate Case (QD)

The Inverted mass hierarchy3 (m1
∼= m2

∼= m3
∼= m0, m0 & 0.10 eV ) is given by the following

matricial expression:

M̂ν =

 0.10 0 0
0 0.10 0
0 0 0.10

 (4.25)

The coupling matrix for the neutrinos, G, is given by:

G =

√
2

k1

UPMNSM̂νU
†
PMNS =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (4.26)

Taking into account the numerical values of the mixing angles (PDG):

s2
12 = 0.297

s2
23 = 0.425

s2
13 = 0.0215

δ = 0

k1 = 2 GeV,

3Particle Data Group - 2020
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we obtain the following values of the Yukawa couplings:

G11 = 7.0711× 10−11

G12 = −6.1332× 10−27

G13 = −1.2266× 10−27

G21 = −6.1332× 10−27

G22 = 7.0711× 10−11 (4.27)

G23 = 4.9065× 10−27

G31 = −2.4533× 10−27

G32 = −4.9064× 10−27

G33 = 7.0711× 10−11

According to these coefficients we can approximate these values as follows (up to a factor 10−11)

G11 = G22 = G33 ≈ 7.0711, (4.28)

in this case, all the other G’s vanish for all practical purposes.

The Yukawa couplings from this model with two bidoublets contain a fine adjustment as in
the SM, which would be avoided if we introduce a third bidoublet, being this the price to pay
for having Dirac neutrinos and only the known charged leptons plus the right-handed neutrinos.
However, we will show that when a third bidoublet is considered, it seems possible to avoid a
fine-tuning in the lepton masses.

4.2 Describing the case when a third Bi-doublet is intro-

duced

A possible way to avoid fine tuning in our model with two bi-doublets is to introduce a third
doublet in order to give mass to the neutrinos with a single vev, although the information that
will be given is very superficial since this would correspond to a topic for a future work.

It is interesting that one of the natural hierarchy in field theories are those in which the VEVs are
responsible by the spontaneously breaking of symmetries. This is because their values depend
on the vacuum alignment and heavy scalars may have small VEVs. Probably this was first noted
by Ma [45] and we have seen an example in section 3.1.1, in the case of k′1. Moreover, as we have
emphasized before, we already do not know the number and sort of scalars and we can think of
an extension of the present model in which three bi-doublets (and the two doublets χL,R) are
introduced.

In this case, the sector of the model which is more affected by the existence of a third bi-
doublet is the Yukawa one. Let us denote Φν ,Φl and Φq the three bi-doublets. We denote the
respective VEVs

√
2〈Φν〉 = Diag(kν k

′
ν),
√

2〈Φl〉 = Diag(kl k
′
l), and

√
2〈Φq〉 = Diag(kq k

′
q).

We introduce the discrete symmetry D under which [46]

D : Φν ,Φl → −iΦν ,−iΦl, R′l → iR′l, (4.29)

and all the other fields stay invariant under D. In this case, the Yukawa interactions are written
as

LY = L̄′l(G
νΦν +GlΦl)R

′
l + Q̄′L(GqΦq + F qΦ̃q)Q

′
R +H.c. (4.30)
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Notice that the D symmetry forbids the interactions like L̄′lΦ̃νR
′
l and L̄′lΦ̃lR

′
l, where Φ̃ = τ2Φ∗τ2.

Although it is out of the scope of this work to analyze the scalar potential and its spectra we
note that it may be possible to have a vacuum alignment in which VEVs are hierarchically:
kν , k

′
ν , kl � k′l � kq, k

′
q, then neutrino masses arise from kν , and the charged lepton masses from

k′l (these leptons receive a small contributions from k′ν). In this situation the mass matrices are
given by

M ν ≈ Gν kν√
2
, M l ≈ Gl k

′
l√
2
, Mu = Gq kq√

2
+ F q

k′∗q√
2
, Md = Gq

k′q√
2

+ F q
k∗q√

2
, (4.31)

where the quark mass matrices are the same as in most LR symmetric models. If kν
>∼
√

∆m2
31

then all entries of the matrix Gν are of order of unity. The same happens in the Yukawa

couplings in the charged lepton sector if k′l
>∼ mτ . Recall that hierarchy among VEVs are more

easily justified than in the Yukawa couplings. The quark sector follows as usual. An interesting
possibility is when an S3 symmetry is introduced. This has been done in the quark sector by
Das and Pal [47], and it is possible to do the same in the lepton sector.

We illustrate how hierarchy between the VEVs can arise considering the SM with two scalar
doublets with Y = +1, Hi, i = 1, 2 with 〈H0

1 〉 = v and 〈H0
2 〉 = u. Introducing the quadratic

Hermitian term in the scalar potential µ2
12(H†1H2 + H†2H1) the constraints equations have the

form [45]

v[µ2
1 + λ1v

2 + (λ3 + λ4)u2] + µ2
12u = 0, u[µ2

2 + λ2u
2 + (λ3 + λ4)v2] + µ2

12v = 0, (4.32)

where λ1,2,3,4 are quartic coupling constants. If µ2
1 < 0, µ2

2 > 0, and |µ2
12| � µ2

2, we have

v2 ' −µ
2
1

λ1

, u ' − µ2
12v

µ2
2 + (λ3 + λ4)v2

. (4.33)

We see that u � v is possible. A similar mechanism may be at work in the present model but
the full scalar potential with three bidoublets and two doublets is rather complicated and needs
a separately study.
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Chapter 5

Phenomenological Consequences

Many of the features of the present model1 are as those in multi-Higgs models. For instance,
FCNC mediated by scalars, several CP -violating phases, etc. The existence of FCNCs in the
scalar sector has several phenomenological consequences, among others, it means that there are
contributions to the muon anomaly ∆aµ. For instance, taking the present data for the case of the
muon aµ = (gµ − 2)/2 anomaly: ∆aµ = aexpµ − aSMµ = 288(63)(49)× 10−11 which is about 3.7σ
below the experimental value [3]. In the present model there are several possible contributions
to aµ. Just for illustration consider the contribution of a scalar or a pseudoscalar [48]

∆aµX(f) =
m2
µ

8π2m2
X

|O|2
∫ 1

0

dx
QX(x)

(1− x)(1− λ2
X) + (εfλX)2x

, (5.1)

with X = S,A, εf = mf/mµ, where f is the fermion in the internal line, λX = mµ/MX (if f is
lepton tau) and QS(x) = x2(1 + ε− x) for a scalar S, and QA = x2(1− ε− x) for a pseudoscalar
A; O denotes a matrix element in the scalar or pseudoscalar sector and we use, for simplicity,

|O| = 1. In order to fit the muon and electron g − 2 anomalies [49] we need mS
>∼ 4.318 TeV

and mA
>∼ 4.321 TeV [50] (this reference deals with a 331 model where it is not possible si-

multaneously resolve such anomalies except for certain conditions that must satisfy the heavy
charged leptons, which as is known, our model does not contain such exotic leptons). However,
lower masses are allowed if we consider the contributions of all scalar and pseudoscalars in the
model. We recall that vector boson contributions W1 and W2 are suppressed by neutrino masses
and by the unitarity of the PMNS mixing matrices, where neutral vector bosons have diagonal
interactions with leptons.

Below, we will consider mainly the difference with the case of the model with Majorana neutrinos
(with triplets in the scalar sector), in particular, when heavy neutrinos do exist, with the present
model with Dirac neutrinos.

(i) In the present case, there are no heavy neutrinos that can decay at tree level into a Higgs
boson plus an active neutrino, νR → H + ν ′L. These processes are kinematically forbidden
since neutrinos are the lightest particles in the model.

(ii) Flavour-changing lepton number processes as µ→ e+ γ and µ− e are suppressed because
of the small neutrino masses. The case µ → eeē is discussed below. For instance, µ →
e + γ may occur through charged scalar or a W+ where the branching ratio would (up to

1Dirac neutrinos in a SU(2) left right symmetric model. Phys. Rev. D102, 075006 (2020)
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numerical factors ∼ α) be proportional to∣∣∣∣∣
3∑

k=1

(V ∗l )ik(Vl)jk
m2
νk

M2
W

∣∣∣∣∣
2

, (5.2)

where Vl is the PMNS matrix in Eq. (2.64) and we have used the values given in Eq. (4.11);
MW denotes the mass of WL or WR. Plugging in numbers, we obtain branching ratios
smaller than 10−48. The suppression is due the small neutrino masses and the GIM sup-
pression factor (unitarity of the matrix V ). Also, in the present model there is not the
(logarithmic) enhancement produced by the doubly charge scalar bosons [51, 52].

(iii) In the present model with Dirac neutrinos, there is no neutrinoless double beta decay (ββ)0ν

and other |∆L| = 2 processes; the muon decay proccess µ→ eeē are produced at tree level
only by neutral scalars, as can be seen from the Yukawa interactions in Eq. (2.65). Among
the flavor violation charged lepton decays, this is the one which imposes the strongest
restriction on the new physics scenarios. Recall that the present and future experiments
sensitivities in this decay are 10−12 and 10−16, respectively [53]. However, this process
is proportional to (up to kinematic factors) |V †LGVR|4/m4

X , where VL and VR are unitary
matrices and G are the Yukawa couplings in Eq. (2.65). In the case of two bidoublets,
the G entries are as those in Eqs. (4.11), (4.24) and (4.27), and all of them are rather
small ∼ 10−11; hence their contributions are negligible. This is not the case if we consider
three bidoublets where there is no fine-tuning in the Yukawa couplings. In this case, the
µ → eeē decay will impose direct constraints on these couplings. However, in this case
Yukawa couplings of the order of 10−3 will suppress the factor |V †LGVR|4 < 10−12 and the
decay µ → eeē can have a rate near to the experimental limit. The latter case deserves a
more detailed study.

(iv) Keung-Senjanovic (KS) noted that the LHC offers an exciting possibility of seeing directly
both LR symmetry restoration and lepton number violation production of same sign in
charged lepton pairs plus jets: pp→ W+

R → l+RN
c
L → l+RW

−
R l

+
R → l+Rl

+
Rjj where (j) denotes

jets [54].

(v) Instead of jets, we have another charged leptons and one neutrino; the respective trileptons
final state has been considered in Ref. [55]. However, if neutrinos are pure Dirac particles,
as in the present model, there are no heavy right-handed neutrinos, and, hence, these sort
of processes, since one of the vector bosons is WR and the other WL; it needs a mass
insertion in the neutrino internal line, and, hence the amplitude is proportional to the
(active) neutrino mass and, for this reason, negligible. Of course, we can introduce triplets
in order to have a seesaw type I or II mechanism, but we think that it is still interesting to
study pure Dirac neutrinos in LR symmetric models.

Trilepton processes occur in both Majorana and Dirac neutrino cases, and there are sub-
processes like the following

qq′ → W+
R → νRl

+
1L → W+

R l
+
1Ll
−
2L → l+1Ll

−
2Ll

+
3LNR, (a) M

qq′ → W+
L → νLl

+
1R → W+

L l
+
1Rl
−
2L → l+1Rl

−
2Ll

+
3R(NR)c, (b) M

qq′ → W+
R → νRl

+
1L → W+

L l
+
1Ll
−
2L → l+1Ll

−
2Ll

+
3RνL, (c) D

qq′ → W+
L → νLl

+
1R → W+

R l
+
1Rl
−
2R → l+1Rl

−
2Rl

+
3LνR (d) D

qq′ → W+
R → νRl

+
1L → W+

R l
+
1Ll
−
2R → l+1Ll

−
2Rl

+
3LνR(NR), (e) D,M

qq′ → W+
L → νLl

+
1R → W+

L l
+
1Rl
−
2L → l+1Rl

−
2Ll

+
3RνL, (f) D,M. (5.3)
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Above we denote NR a heavy right-handed neutrino and νR the right-handed component of
a Dirac neutrino. Notice that the processes (c) and (d) need a mass insertion or a Yukawa
coupling and they are suppressed if neutrinos are pure Dirac. Hence, at least in principle,
it is possible to use these processes to distinguish the Dirac from the Majorana case. When
processes can occur in both Majorana and Dirac cases, the Dirac case is suppressed by the
small neutrino masses. Of course, the Majorana case allows ∆L = 2, and the Dirac case
does not.

5.1 Breaking parity first

Any model beyond the SM must match with that model at a given energy, say, the Z pole.
In the SM coupling constants g and gY have different running with the energy. In the case of
LR symmetric models, the same happens with g and g′ ≡ gB−L as was noted in Ref. [57]. It
means that we cannot keep gL = gR for all energies, since quantum corrections imply a finite
∆g = gL − gR 6= 0. This is due to the fact that both constants feel different degrees of freedom.
Hence, it is interesting to search for models with gauge symmetries as in Eq. (2.1) but in which
parity is broken spontaneously by nonzero VEVs [57] or softly if quadratic terms in the scalar
potential are different µ2

L 6= µ2
R as in Ref [5].

Let us consider as in Ref. [57] the possibility that the symmetries in Eq. (2.1) are broken spon-
taneously but in the following way: First, the parity P is broken at an energy scale µP by
introducing a neutral pseudoscalar singlet, η ∼ (1,1, 0) with η → −η under parity and 〈η〉 = vη.
Then, the doublet χR breaks the SU(2)L ⊗ SU(2)R ⊗ U(1)B−L symmetry to SU(2)L ⊗ U(1)Y .
The relevant terms in the scalar potential involving the doublets χL, χR and the isosinglet η are
the following:

µ2
ηη

2 + ληη
4 + µ2

LR(χ†LχL + χ†RχR) + fη(χ†LχL − χ
†
RχR) + λ′ηη

2(χ†LχL + χ†χR) ⊂ V. (5.4)

At the energy µP , µ2
η < 0 with 〈η〉 = vη ' µP , and all the other VEVs are still zero. We obtain

µ2
L = µ2

LR + fvη + λ′ηv
2
η, µ2

R = µ2
LR − fvη + λ′ηv

2
η, (5.5)

with the singlet VEV vη =
√
−µ2

η/2λη. Next, if µ2
R < 0 and |µ2

R| � vη, we have that 〈χR〉 = vR 6=
0. This leads to the interesting case in which the SU(2)R symmetry-breaking scale is induced
by the parity-breaking scale as noted in Refs. [57]. It happens also that gL 6= gR, for energies in
the range vR < µ < vη, and also V L

PMNS 6= V R
PMNS, with V L

PMNS = V l†
L U

ν
L, V R

PMNS = V l†
R U

ν
R. In

this case we have to consider the most scalar potential involving two or three bidoublets, Φi, two
doublets χL,R, and the singlet η.
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Chapter 6

Conclusions

1. Since the early 1980s, most phenomenology of the left-right symmetric models includes
triplets and Majorana neutrinos [34]. Since then, the model with the following scalar
multiplets: one bi-doublet and two triplets was considered the minimal left-right symmetric
model. There is no doubt that this proposal was, and still is, well motivated [60]. However,
if the neutrinos ultimately turn out to be Dirac particles, all that effort will have been in
vain. For this reason we have to pay attention to Dirac neutrinos, even in the context of
the left-right symmetric models.

2. As was obtained in the section 2.2.1, our model must match with the SM model at a given
energy, that is, according to the mathing condition: s2

θ < 1/2, where the weak mixing angle
θ is, in general, different from the θW (Weinberg angle). This implies that the energy scale
at which gL(µ) = gR(µ) must be below the scale at which: s2

θ(Λ) = 1/2, µ < Λ. However,
it is important to know that in other energy scale we cannot keep gL = gR since quantum
corrections imply a finite ∆g = gL − gR 6= 0, Ref. [57]. This is due to the fact that both
constants feel different degrees of freedom.

3. An important result within this work is the hierarchical relationship of the vevs. This was
developed in section 3.1.1, working firstly with the more general potential and its constrain
equations such that by applying certain symmetries such as parity invariance and the
symmetry Z2 ⊗ Z ′2 we obtained simpler constrain equations and, the most important, the
hierarchical relationship:

vR � k2 > k′2 � k1 � k′1 � vL

An alternative way of obtaining the same simpler constrain equations is to apply the sym-
metry Z5 to this general potential but it does not give me information about the hierarchy
relationship of the vevs. This Z5 symmetry is not applied to the whole Lagrangian, only
to the potential, therefore our model can leave out with this symmetry.

4. For the case of the charged gauge boson masses, and using the fact that vR � X, where
X represents the others vevs, we obtained:

M2
W1

=
g2

4

(
K2 +

v2
L + v2

R

2
−
√

∆

)
≈ g2

4

(
K2 +

v2
L

2

)
(6.1)

M2
W2

=
g2

4

(
K2 +

v2
L + v2

R

2
+
√

∆

)
≈ g2

4
v2
R,
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where conclude that MW2 � MW1 , being MW1 = W± the charged gauge boson from the
SM. The same happens in the case of MZ2 .

M2
Z1
≈ g2

4 cos2 θ

(
K2 +

v2
L

2

)
(6.2)

M2
Z2
≈ g2 + g′2

4
v2
R,

Using the minimum value of vR = 24TeV, we obtain: MW2 = 7.835 TeV, MZ2 = 9.284
TeV. Remmember that for the parity invariance in our model we obtain several conditions,
among them gL = gR, at a given energy scale value.

5. Another important result is the value of ξ < 1.015999 × 10−4 rad, that represents the
upper limit of the mixing angle between WR −WL, or in others words W1 −W2, where
according to recent analysis, the experimental limits to the theoretical calculations for the
W2 production, the mixing angle ξ is excluded in the range of 10−4 and 10−3. See the
section 3.2.5.

6. In our model, when we analysis the coupling between the fermions with the electromagnetic
field, we obtained the general form of the the electric charge, that is:

Qf = q
g g′√

g2 + 2g′2
,

where: q = 0,−1, 23,−1/3 for the neutrinos, charged leptons, u-like and d-like quarks,
respectively. In addition, from the form of the electric charge we obtain:

1

e2
=

2

g2
+

1

g′2
,

this result is according to the obtained in others extended models similar to the left-right
models[52].

7. In the context of the SM with three right-handed neutrinos the Yukawa couplings have the
hierarchy (using the normal hierarchy) ∆y31 = (∆m2

31)1/2/vSM ≈ 2 × 10−13 and ∆y21 =
(∆m2

21)1/2/vSM ≈ 2 × 10−14, which we compare with those couplings that in the present
model are given in Eq. (4.12). Although the latter values are smaller than the Yukawa
sector in the charged lepton sector, see Eq. (4.16), we note that the dispersion in the
neutrino Yukawa couplings is in the range 0.25 − 2.2 (up to a factor of 10−11). In this
model, as in the old left-right symmetric models without scalar triplets and also no extra
charged leptons, neutrinos gain arbitrary small masses. Notice, however that the Yukawa
couplings are all almost of the same order of magnitude and about 2 order of magnitude
larger compared with those in the context of the SM with three right-handed neutrinos.
However, we showed how this fine-tuning in the lepton sector can be avoided at the price of
introducing a third bidoublet and the discrete D symmetry. In the latter case, all Yukawa
couplings in the lepton and quark sector may be of the order of O(1) if there is a hierarchy
in the VEVs of the three bidoublets, however, this will be studied in more detail in a future
work.

8. Many of the features of the present model are those in multi-Higgs models, for instance, the
existence of FCNCs in the scalar sector, several CP-violating phases, etc. These topics can
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be studied in others future works, however, the existence of FCNCs in the scalar sector has
several phenomenological consequences, for instance, there are contributions to the muon
anomaly (chapter 5) ∆aµ, where aµ = gµ−2

2
is the muon anomalous magnetic moment.

Using the equation (5.1) we obtained the condition that the scalar particle or pseudoscalar
particle must fulfill in order to fit the muon and the electron g − 2 anomalies, mS & 4.318
TeV and mA & 4.321 TeV.

9. In the last appendix, I consider some results obtained when it is proposed a model where
the parity is explicitly broken. There is no restoration of parity at high energies. This was
also part of a second publication on the Journal of Physics G, whose title is Explicit Parity
Violation in SU(2)L ⊗ SU(2)R ⊗ U(1)B−L models.
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Appendix A

Symmetries in Particle Physics

In nature there are different types of symmetries, which can be classified into two main groups:

1. Discrete symmetries.

2. Continous symmetries.

Continuous symmetries can be further classified into: space-time symmetries and internal sym-
metries. We will concentrate here mainly on the transformations of internal symmetry, which in
general act simultaneously on the quantum numbers and the space-time coordinates of an initial
particle, transforming it into a particle of different quantum numbers and space-time coordinates
in the final state, but keeping the same mass.

There are two kinds of internal symmetries:

1. Global symmetry: where the parameters of the transformation do not depend on the space-
time coordinates.

2. Local symmetry: where the parameters of the transformation depend explicitly of the
space-time coordinates.

Relying on group theory, we know that every symmetry that can be represented by a Lie group
is characterized by a number of generators, and the elements of the group can be represented by
a unitary transformation, that is:

U(~α) = exp (iαa T
a) (A.1)

where αa are the transformation parameters U and T a, which are the generators of the group in
the corresponding representation. These must satisfy the commutation relations:[

T a.T b
]

= ifabcT
c (A.2)

where fabc are the structure constants of the Lie algebra.

According to this, we can say that global symmetry tranformations must have of (A.1), while
the local symmetry transformations have the form of the following expresion:

U(~α) = exp (iαa(x)T a) (A.3)

where αa depends of the space-time coordinates.
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During the 20th century, many physicists devoted themselves to the study of the spectrum
of particles and the interactions between them, until historically Weinberg, Salam and Glashow
postulated that the base internal local symmetry for constructing the electroweak standard model
is SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Leptons and quarks in the SM are organized into three families that they have similar char-
acteristics except for their masses. Here, the right fields (R) or the left fields (L) are given in

function of the chirality operator γ5:

ψL = PL ψ, ψR = PR ψ, (A.4)

The particles organized in this way are eigenstates of the isospin operator T3 and of the operator
Y , called hypercharge, which are generators of the groups SU(2)L and U(1)Y respectively. These
operators determine two quantum numbers Y and T3, related to the electric charge through the
Gell Mann-Nishijima relation:

Q = T3 +
Y

2
, (A.5)

A.1 Gauge Principle

To interpret the gauge principle let us consider a physical system of particles ψ whose dynamics
are described by a Lagrangian density L which is invariant under a global symmetry U . If we
promote that this symmetry becomes local U(x), we will be transforming the particles and si-
multaneously generating a theory of interactions.

The procedure to make an invariant theory under local transformations is as follows: by means
of a covariant derivative, new boson fields are introduced, called gauge fields, which interact
with the ψ field so that the Lagrangian be gauge invariant. The number of gauge fields and the
particular characteristics of gauge interactions depend on the symmetry group, being the number
of bosons gauge equal to the number of generators of the symmetry group.

A.2 SSB of the ESM

A simple definition of the phenomenon of SSB is given by:

A physical system has spontaneously broken symmetry if the interactions that govern the dy-
namics of the system have such symmetry and the (empty) ground state of the system does not.

The spontaneous symmetry breaking has repercussions on the dynamics of the system. One
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of these implications is described by Goldstone’s theorem:

If a field theory has a global symmetry of the Lagrangian which itself is not vacuum symme-
try then there must exist a massless scalar or pseudoscalar boson, associated to each generator
that does not annihilate the vacuum, and that has the same quantum numbers. These modes are
denoted as Nambu-Goldstone bosons or simply Nambu-Goldstone bosons goldstone.

A.3 Fundamental Interactions

In quantum mechanics, particles are distinguished into two groups: bosons with integer spin
and fermions with half-integer spin. The statistical properties of bosons and fermions are very
different. Bosons follow the Bose-Einstein statistic and can be grouped in the same quantum
state, while fermions follow the Fermi-Dirac statistic, where two particles with the same quantum
numbers cannot be in the same state. As we already mentioned, in the theory field quantum
the interactions between particles are described by the exchange of other particles, known as the
¿mediators? of the force. In the ESM all the elementary particles that make up the matter are
fermions, while all the elementary particles that mediate or carry the force are bosons.

The fundamental interactions known so far are electromagnetic, weak, strong and gravitational.
They are considered fundamental because they cannot be written in terms of other interactions.
The electromagnetic force and that of gravity are infinite in scope and have an intensity that
decays with the square of the distance. However, there is no quantum theory of gravity, which
would imply the existence of a mediator boson, or graviton. Because there is no quantum theory
of gravity and the mass of the particles is very small compared to that of macroscopic objects,
the SM does not include gravity.

The weak force is chiral. The concept of chirality is related to that of helicity. The helicity
of a particle is the projection of the spin in the direction of motion, thus, a particle can be left
or right. Although helicity and chirality are only the same in the case of massless particles, the
concept of helicity helps to intuitively understand the concept of chirality. In field theory the
chirality is an intrinsic property of particles that is related to left and right transformations under
the Poincare group. The chirality of the weak interaction is manifested in the fact that only the
left particles and the right anti-particles feel it.

The strong force is mediated by gluons, which have a color charge but no electrical charge.
As its name implies, it is the strongest of the fundamental forces. This force is very short range.

Atomic nuclei are composed of particles, which until now have not been seen to have a structure
and are considered fundamental. These are called quarks and they have peculiar properties.
Quarks have a property or quantum number called color. It has nothing to do with the colors we
observe with our eyes (or the wavelengths our eyes perceive), it is simply a name for a conserved
charge. In experiments to explore the interior of atomic nuclei it became clear that quarks had
a quantum number that can take three different states, and that particles composed of quarks,
baryons and mesons are always in a neutral combination of this state. That is why they were
agreed to give the names of the primary colors.

The gluons also have a color charge and interact with the quarks through the strong force.
This is again different than in the case of the electromagnetic force, where the photons have no
electrical charge. The mathematical theory that describes the interaction between quarks and
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gluons is known as quantum chromodynamics or QCD for short. English (quantum chromody-
namics). In the processes where quarks intervene, they never appear isolated as we have already
said, but when the quarks collide and interact gluons form jets or hadron jets. There are two
fundamental types of quarks: up and down. Quarks have an electrical charge, therefore they
feel the electromagnetic force. Hadrons, which are classified as baryons (fermions made up of
three quarks) and mesons (bosons made up of two quarks), always have an electric charge that
is an integer multiple of the charge of the electron. The neutron and the proton are baryons, the
constituent quarks of the first are udd and of the second uud. From the fact that the neutron has
zero electric charge and the proton +1 we know that individual quarks have fractional electric
charge, u-types have 2/3 charge and d-types 1/3. The decay of neutron to proton in nuclear de-
cay tells us that the neutron transforms into a proton and emits an electron and an anti-neutrino
from the electron. Since the neutron is made up of quarks this tells us, at a more fundamental
level, that a down quark became an up quark, by the exchange of a vector boson W−, which
then decays into the electron and its anti-neutrino.

Leptons are also fermions and form, together with quarks, all known matter. Leptons also come
in six varieties or “flavors”and can be charged, like the electron, or neutral like the neutrino.
Charged and neutral leptons form electroweak doublets. As in the case of quarks, the charged
and neutral leptons of different doublets are distinguished only by their mass.

However, quarks can decay into other quarks, and neutrinos can change from one type to another.
To that part of elementary particle physics that deals with studying the interactions between
the different generations is known generically as “flavour physics”, and the processes of decay
and transformation from one type of fermion to another It is known as flavor changes. The
information of the masses and mixtures (processes that change the flavor) of the quarks is con-
tained in the unitary matrix CKM (Cabibbo- Kobayashi-Maskawa). The equivalent information
for neutrinos is found in the PMNS (PontecorvoMakiNakagawaSakata) matrix. These matrices
parameterize the difference between the quantum state that participates in electroweak interac-
tions and the quantum state that describes the particle propagating freely (mass state), which is
a superposition of different flavors.

Electroweak doublets have the same interactions, and in principle, they would be interchangeable
if they had the same mass. In this case the symmetry of the flavor would be exact. A small
CP symmetry violation is observed in nature. The CP symmetry is the joint action of the sign
change in the charge and the sign change in the spatial coordinates (parity). In order to have
CP violation in quarks and leptons it is necessary to have three generations of matter. Thus, the
CP violation is included in the CKM matrix, although it does not predict its magnitude.
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Appendix B

Issues that go beyond the SM

Asymmetry Matter-Antimatter: To each particle of matter there also corresponds its anti-
particle, which has all the opposite quantum numbers, but the same mass. The existence of
the anti-particles was predicted by P.A.M. Dirac in developing his relativistic theory of quantum
mechanics. In 1932, in a cosmic ray experiment done by C.D. Anderson, anti-electrons were
found and called positrons. When a particle and its anti-particle they collide annihilate and
what remains are gamma rays (ultra-energetic photons) or other particle and anti-particle pairs.
An obligatory question is why is there more matter than anti-matter in our Universe. Particles
of anti-matter from the cosmos reach us, but in a much smaller quantity than those of matter.
We can also produce in the laboratory, but from astrophysical observations we can infer that the
Universe is made mainly of what we call matter and not of anti-matter. This one is known as
the problem of baryogenesis, or the creation of baryons (matter) in the Universe. In order to
explain how this asymmetry was reached, it is necessary to have a system outside of equilibrium,
an initial asymmetry between matter and anti-matter, as well as a charge-parity (CP) symmetry
violation. These are known as the Sakharov conditions. to generate baryogenesis. Although the
Sakharov model elegantly explains baryogenesis there is not enough baryon asymmetry or CP vi-
olation in the SM to be able to explain the dominance of matter over anti-matter in our Universe.

The Hierarchy Problem: The mass of fermions varies greatly, the lightest quark, the up, has
a mass of about 2,3 MeV, while the top, heaviest and with the same numbers quantum, has a
mass of ∼ 173 GeV, that is five orders of magnitude difference. The mass of the electron, the
lightest charged lepton, is ∼ 0, 511 MeV and that of tau is ∼ 1, 78 GeV, four orders of magnitude
larger. This is the hierarchy problem small or mass hierarchy problem. On the other hand,
neutrinos, which were thought they had zero mass, actually they have a tiny mass, but different
from zero. If of the neutrinos, what has been measured so far in experiments is the difference in
the squared masses between pairs of neutrinos. From these bounds it can be deduced that the
heavier neutrino cannot have a mass less than 0.04 eV. There is also a bound cosmology that
places an upper bound on the sum of the mass of the neutrinos of 1 eV.

This means that there are another five orders of magnitude between the heaviest neutrino and
the electron, which makes the mass hierarchy problem even more pronounced.

One explanation for the small mass of neutrinos is that neutrinos acquire their mass by the
seesaw mechanism. This implies the existence of very massive particles that have not been ob-
served, right neutrinos. Neutrinos, as their name implies, have zero electrical charge. Being
neutral, it is possible that neutrinos are their own anti-particles. If this is the case, it is said to
be a Majorana neutrino, if not, it is said to be a Dirac neutrino. If the neutrino is a Majorana
particle we can suppose that in addition to the left neutrinos there could be right sterile neu-
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trinos, which do not participate in the weak interaction. The see-saw mechanism assumes the
existence of at least two very massive right neutrinos. The diagonalization of the neutrino mass
matrix makes the physical states, the eigenvalues of the mass matrix, to be two very massive
neutrinos and another very light one, which would be the one observed. The more massive the
right ones, the lighter the left ones, hence the name seesaw.

An open problem in particle physics is why hadrons have much more mass than the sum of
the masses of their constituent quarks. The sum of the mass of the constituent quarks of a
proton or neutron is barely 1% of its total mass. Strong interaction dynamics are assumed to be
responsible for the hadron mass, however the exact mechanism is unknown.

Dark Matter: The proposal of a class of non-interacting matter was made by Jan Oort and
later Fritz Zwicky around 1930, to explain the discrepancy between the mass estimated from
the rotation curves of galaxies and that inferred through luminosity. In order for the observed
rotation curves to be consistent with the mass of the galaxies, a component of non-visible matter
must be added. This type of matter does not emit or absorb light or electromagnetic radiation,
or if it does, it is at a minimal level, and its only significant interaction is gravitational, for
this reason it was called matter dark Also at larger scales, the need to assume the existence of
dark matter is observed to explain the dynamics of large astronomical objects, such as galaxy
clusters, where it is inferred that most of the mass comes from dark matter. Over the years
the evidence in favor of the matter hypothesis has increased: analysis of the velocities of the
members of galaxy clusters, images of gravitational lensing, as well as observations of the Bullet
cluster, among others. The Bala cluster is actually two clusters colliding and the observation of
this object indicates the existence of two types of matter, ordinary matter, which interacts with
each other slowing down the movement in opposite directions and that produces X-ray emission,
and another type of matter that does not interact.

The first question that arises from the observation of dark matter is whether it can be one
of the already known particles or some particle not yet detected in terrestrial laboratories. To
determine what kind of particle it could be, dark matter is divided into three types, depend-
ing on its mass and interactions: cold, warm or cold. hot. Hot dark matter is assumed to be
ultra-relativistic, with a very small mass, the obvious candidate being the neutrino. However,
the structure formation of the Small-scale universe cannot be explained with hot dark matter
as the only component. On the other hand cold dark matter is heavy and non-relativistic and
the predictions The assumptions made for the structure formation of the Universe are in general
agreement with astronomical observations. Warm dark matter has properties that are a mix
between those of cold and warm. Mixed hot and cold dark matter models can also be con-
sidered. In these cases the amount of hot dark matter it may be only a small percentage of
the total. The hypothesis most favored by current observations is that dark matter is cold and
consists of weakly interacting massive particles. However, none of the SM particles can be a can-
didate for cold dark matter, so it would have to be a new or undiscovered new particles until now.

Dark matter makes up 23% of the total mass of the Universe, visible matter (galaxies and
intergalactic gas) makes up 4, 6%, and the rest is energy content. of the Universe is found in the
so-called “dark energy”. The dark energy hypothesis arose from the observation that our Uni-
verse is expanding rapidly. So far it is not known with certainty what is causing this expansion.
Among the best accepted proposals are the following: that there is a constant term cosmological
, which is a constant energy density intrinsic to space and constant in time, or the quintessence
and scalar field models, which can vary of intensity over time. Although the cosmological con-
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stant hypothesis is the most favored and forms part of what is known as the cosmological model
Γ, the The difference between the expected value of cosmological measurements and that calcu-
lated from models of elementary particles is huge. The expected value from calculations of the
vacuum energy in the SM is about 120 orders of magnitude greater than that needed to explain
the expansion of the Universe.
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Appendix C

Irreducible representations of Lie
groups SU(N) using Young’s diagrams

The use of Young Tableaux becames very useful for dealing with irreducible representations of
the discrete symmetric groups and the Lie Groups (continues groups) SU(N).
In our case we will discuss some important points about the Young’s Diagrams applie to the Lie
groups SU(N) for the cases when N = 2, 3, 5.

Figure C.1: Every irreps has a particular Young’s Diagram

In general:

λ =

λ1, λ2, · · · , λn︸︷︷︸
=0

 , λ1 ≥ λ2 ≥ λ3 · · · (C.1)

and the boxes (SU(n)) = n − 1. Remember that according to the theory of Young’s Tables, it
must fulfill that λn−1 6= 0, therefore λn = 0, but it is placed for convenience.

Figure C.2: Following the idea of the above figure
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For instance, regarding the case n = 5, that is, SU(5), we will have the next diagrams, where
the boxes: n− 1 = 5− 1 = 4. where:

Figure C.3: For the case of n = 5, SU(5)

λ = [5, 3, 2, 1] , (C.2)

or it can also be represented by the number of blocks in the columns (Pi). That is:

P = (P1, P2, P3 · · · , Pn−1) , P1, P2, · · · , Pn−1 ≥ 0, (C.3)

Using that in the example, P = (P1, P2, P3, P4) = (1, 1, 1, 2), where:

P4 = λ1 − λ2; P3 = λ2 − λ3; P2 = λ3 − λ4; P1 = λ4 (C.4)

In addition:

Figure C.4: Notation as a function of (a, b)

λ = [λ1, λ2, λ3] ≡

λ1 − λ3︸ ︷︷ ︸
λ′1

, λ2 − λ3︸ ︷︷ ︸
λ′2

, λ3 − λ3︸ ︷︷ ︸
λ′3=0

 = [λ′1, λ
′
2, 0] (C.5)

they are equivalent when we are talking about the dimension of SU(N), dim[λ].

dim
[
λ
]

=
n∏
i<j

(`i − `j)
(`oi − `oj)

, i, j = 1, 2, · · · , n (C.6)

where:
`oj = n− j; `j = λj + n− j

79



1. The case of SU(2): λ = [λ1, λ2]

dim
[
λ
]

=
(`1 − `2)

(`o1 − `o2)
(C.7)

but

`o1 = 2− 1 = 1,

`o2 = 2− 2 = 0,

`1 = λ1 + 2− 1 = λ1 + 1, (C.8)

`2 = λ2 + 2− 2 = λ2

by replacing in the equation (C.7), we obtain:

dim
[
λ
]

=
λ1 + 1− λ2

1− 0
= λ1 − λ2︸ ︷︷ ︸

λ′1

+1 (C.9)

hence:

dim
[
λ
]

=
λ1 + 1− λ2

1− 0
= λ1 − λ2︸ ︷︷ ︸

λ′1

+1 = λ′1 + 1 (C.10)

Finally, we obtain:

dim
[
λ
]

= dim (λ1, λ2) = dim (λ′1, 0) = λ′1 + 1 (C.11)

for example:

dim [1, 0] = 2 = dim [2, 1] ,

dim [2, 0] = 3,

dim [k, 0] = k, (C.12)

In this Thesis work we have dealt with the gauge group SU(2)R⊗SU(2)L⊗U(1)B−L, and we
can get the irreps of SU(2)⊗SU(2) ≡ 2⊗2, or maybe SU(2)⊗SU(2)⊗SU(2) ≡ 2⊗2⊗2

Figure C.5: Young Tableoux’s representation SU(2)
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2. The case of SU(3):
In the same way that the dimension of SU(2) was obtained.

dim
[
λ
]

=
(`1 − `2)(`1 − `3)(`2 − `3)

(`o1 − `o2)(`o1 − `o3)(`o2 − `o3)
(C.13)

where:

`1 = λ1 + 3− 1 = λ1 + 2; `o1 = 3− 1 = 2; → `1 − `2 = λ1 − λ2 + 1,
`2 = λ2 + 3− 2 = λ2 + 1; `o2 = 3− 2 = 1; → `1 − `3 = λ1 − λ3 + 2,
`3 = λ3 + 3− 3 = λ3; `o3 = 3− 3 = 0; → `2 − `3 = λ2 − λ3 + 1,

(C.14)

replacing in the equation (C.13), we obtain:

dim
[
λ
]

=
(λ1 − λ2 + 1)(λ1 − λ3 + 2)(λ2 − λ3 + 1)

(1)(2)(1)

=
(λ1 − λ2 + 1)(λ1 − λ3 + 2)(λ2 − λ3 + 1)

2
(C.15)

Finally, we have:

Figure C.6: Blocks in the SU(3)

dim
[
λ
]

= dim(λ1, λ2, λ3) = dim(a, b) = (a+ 1)(b+ 1)

(
1 +

a+ b

2

)
(C.16)
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Appendix D

The Minimally extended Standard
Model

In the SM, the mass of fermions arises as a result of the Higgs mechanism through the presence of
Yukawa couplings of the fermion fields with the Higgs doublet. It is clear that in the SM neutrinos
are massless ( their fields do not have a right-handed component) and the Higgs-Lepton Yukawa
lagrangian density is given by the following expression:

LH,L = −
∑

α,β=e,µ,τ

Yαβ L′αLΦ `′βR +H.C. (D.1)

The quark Yukawa lagrangian density is given by:

LH,Q = −
∑

α=1,2,3

[ ∑
β=d,s,b

Y ′Dαβ Q
′
αLΦ q′DβR +

∑
β=u,c,t

Y ′Uαβ Q
′
αLΦ̃ q′UβR

]
+H.C. (D.2)

In the minimally extended SM with three right-handed neutrino fields, The SM Higgs-lepton
Yukawa lagrangian in equation(D.1) is extended by adding a lepton term with the same structure
as the second term on the right-hand side of equation (D.2), which generates the up-type quarks
masses:

LH,L = −
∑

α,β=e,µ,τ

Y ′`αβ LαLΦ `′βR −
∑

α,β=e,µ,τ

Y ′ναβ LαLΦ ν ′βR +H.C., (D.3)

in the second term, Y ′ν , represents a new matriz of Yukawa couplings. Moreover, when the
neutral scalar field gains VEV, that is:

〈Φ〉(x) =
1√
2

(
0

v +H(x)

)
, (D.4)

the lepton Yukawa lagrangian density can be written in matrix form like:

LH,L = −
(
v +H√

2

) [
`′L Y

′` `′R + ν ′L Y
′ν ν ′R

]
+H.C., (D.5)

where the arrays of charged lepton fields are given by:

`′L ≡

 e′L
µ′L
τ ′L

 , `′R ≡

 e′R
µ′R
τ ′R

 , (D.6)
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and the new right-handed neutrino array:

ν ′R ≡

 ν ′eR
ν ′µR
ν ′τR

 , (D.7)

where Y ′` is the matrix of charged lepton Yukawa couplings that can be diagonalized through
the biunitary transformation:

V `†
L Y

′`V `
R = Y `, with Y `

αβ = y`αδαβ (α, β = e, µ, τ).

The matrix Y ′ν of neutrino Yukawa couplings can be diagonalized in a similar way:

V ν†
L Y ′νV ν

R = Y ν , with Y ν
kj = yνkδkj (k, j = 1, 2, 3),

where yνk > 0. V ν
L and V ν†

R are two appropiate 3× 3 unitary matrices:

V ν†
L = (V ν

L )−1, and V ν†
R = (V ν

R )−1. (D.8)

Defining the chiral massive neutrino arrays:

nL = V ν†
L ν ′L ≡

 ν1L

ν2L

ν3L

 , nR = V ν†
R ν ′R ≡

 ν1R

ν2R

ν3R

 , (D.9)

for instance, the term ν ′L Y
′ν ν ′R can be written of the following form:

ν ′L Y
′ν ν ′R = (ν ′L)

†
γo Y ′ν ν ′R

= nL (V ν
L )−1︸ ︷︷ ︸
V ν†L

Y ′ν
(
V ν†
R

)−1

︸ ︷︷ ︸
V νR

nR

= nL

(
V ν†
L Y ′ν V ν

R

)
︸ ︷︷ ︸

Y ν

nR = nL Y
ν nR, (D.10)

the diagonalized Higgs-lepton Yukawa lagrangian density reads:

LH,L = −
(
v +H√

2

) [
`L Y

` `R + nL Y
ν nR

]
+H.C.

= −
(
v +H√

2

) [ ∑
α=e,µ,τ

y`α `αL `αR +
3∑

k=1

yνk νkL νkR

]
+H.C., (D.11)

the Dirac neutrino fields:

νk = νkL + νkR, (k = 1, 2, 3), (D.12)

finally, we obtain:

LH,L = −
∑

α=e,µ,τ

y`α v√
2
`α `α −

3∑
k=1

yνα v√
2
νk νk −

∑
α=e,µ,τ

y`α v√
2
`α `αH −

3∑
k=1

yνα v√
2
νk νkH,

(D.13)
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Furthermore, the neutrino masses are given by:

mk =
yνk v√

2
, (k = 1, 2, 3), (D.14)

We can observe that the neutrino masses are proportional to the Higgs VEV v, like the masses of
charged leptons and quarks. However, it is knwon that the masses of neutrinos are much smaller
than those of charged leptons and quarks. In this mechanism, there is no explanation of the
very small values of the eigenvalues yνk of the Higgs-neutrino Yukawa coupling matrix which are
needed.
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Appendix E

Majorana Neutrinos

Remember that a chiral fermion fields are building blocks of the SM which is related with the
modern gauge theories. It is known that chiral spinors are the smallest irreducible representations
of the Lorentz group, from which all representations can be built.
The Dirac equation:

(i γµ∂µ −m) ψ = 0 (E.1)

for a fermion field:

ψ = ψL + ψR, (E.2)

where:

ψL = PLψ =
1

2
(1 + γ5) ψ,

ψR = PRψ =
1

2
(1− γ5) ψ,

multiplying by PR to the left of equation (E.3), we obtain:

PR × (i γµ∂µ −m) ψ = 0,

(i PRγ
µ∂µ −mPR) ψ = 0,

i γµPL∂µψ −mPR ψ = 0,

i γµ∂µ

PLψ︸︷︷︸
ψL

−mPR ψ︸︷︷︸
ψR

= 0,

finally we have:

i γµ∂µψL = mψR (E.3)

In the same way, multiplying by PL to the left of equation (E.3), we obtain:

PL × (i γµ∂µ −m) ψ = 0,

(i PLγ
µ∂µ −mPL) ψ = 0,

i γµPR∂µψ −mPL ψ = 0,

i γµ∂µ

PRψ︸︷︷︸
ψR

−mPL ψ︸︷︷︸
ψL

= 0,
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finally we have:

i γµ∂µψR = mψL, (E.4)

we can see that the chiral fields ψL y ψR, from the equations (E.3) and (E.4), are coupled by the
mass m.
If we consider that the fermion is massless, the two equations in (E.3) and (E.4) are decoupled:

i γµ∂µψL = 0 (E.5)

i γµ∂µψR = 0 (E.6)

Therefore, a massless fermion can be described by a single chiral field (left-handed or right-
handed), which has only two independent components. These equation are called the Weyl
equations and the spinors ψL and ψR are called Weyl spinors.
The posibility of describing a physical particle with Weyl spinor was rejected by Pauli in 1933
because it leads to the violation of parity. In addition, space inversion transforms ψL into ψR
and vice versa which implies that parity conservation requires the simultaneous existence of
both chiral components, however, the discovery of parity violation in 1956-57 invalidated Pauli’s
arguments, renewing the posibility to describe massless particles with Weyl spinor fields.
Landau, Lee, Yang and Salam proposed to describe the neutrino with a left-handed Weyl spinor
νL. This is the so-called two component theory of massless neutrinos, which has been incorporated
in the SM, where neutrinos are massless and dscribed by left-handed Weyl spinors.
It is known that a two component spinor is suficient for the description of a massless fermion,
however, for the description of a massive particle using a four-component spinor isn’t enough.
The trick lies in the assumption that ψR and ψL are not independent. Obviously, the relation
connecting ψR and ψL must be compatible with the equations (E.3) and (E.4), which means that
the two equations must be two ways of writing the same equation for one independent field, say
ψL. We can obtain the equation (E.3) from equation (E.4).
Taking the Hermitian conjugate of equation (E.4):

−i (∂µψR)† γµ† = mψ†L

−i ∂µψ†R γ
µ† = mψ†L

multiplying it on the right by γo:−i ∂µψ†R γµ†︸︷︷︸
γoγµγo

= mψ†L

× γo
reducing this expression:

−i ∂µ
(
ψ†Rγ

o
)
γµ = m

(
ψ†L γ

o
)

hence:

−i ∂µψR γµ = mψL, (E.7)

in order to obtain the same structure as equation (E.3), we take the transpose of equation (E.7)
and multiply on the left with the charge conjugation matrix C, that is:

−i (γµ)T ∂µ
(
ψR
)T

= m
(
ψL
)T
,

−i C (γµ)T ∂µ
(
ψR
)T

= m C
(
ψL
)T

(E.8)
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using the property of C into (E.8):

C (γµ)T C−1 = −γµ, → C (γµ)T = −γµC

we have:

−i (−γµ C) ∂µψR
T

= m CψL
T

(E.9)

or equivalently:

i γµ∂µ C ψR
T

= m C ψL
T

(E.10)

This equation has the same structure as equation (E.3), that is, it is identical if we set:

ψR = ξ C ψL
T
, (E.11)

where ξ is an arbitrary phase factor, |ξ|2 = 1. This is the Majorana relation between ψR and ψL,
which makes sense because C ψL is right-handed, that is:

PL

(
C ψL

T
)

= PL C ψL
T
, (E.12)

but
C
(
γ5
)T C−1 = γ5 → Cγ5 = γ5 C, remember that:

(
γ5
)T

= γ5

then

PLC =
1

2
(1− γ5)C =

1

2

(
C − γ5C

)
=

1

2

(
C − Cγ5

)
= C 1

2
(1− γ5) = C PL (E.13)

on the equation (E.12):

PL

(
C ψL

T
)

= C
(
PL ψL

T
)

= C
(
P T
L ψL

T
)

= C
(
ψL PL

)T
= C

(
ψ†Lγ

o PL

)T
= C

(
ψ†L PR γ

o
)T

= C
[
(PRψL)† γo

]T
= C


PR PL︸ ︷︷ ︸

=0

ψ

† γo

T

= 0 (E.14)

from equations (E.3) and (E.11) we obtain the Majorana equation for the chiral field:

i γµ∂µ ψL = mξ C ψL
T
, (E.15)

rephasing the field ψL in order to eliminate the phase factor ξ:

ψL → ξ ψL

then, the Majorana equation for the chiral field ψL:

i γµ∂µ ψL = m C ψL
T
, (E.16)

the Majorana condition for the field ψ on the equation (E.2):

ψ = ψL + ψR = ψL + C ψL
T

(E.17)
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is given by:

ψ = C ψT (E.18)

that is, from equation (E.17):

ψ = ψL + ψR = ψL + C ψL
T︸︷︷︸

=PR ψ
T

= ψL + PR C ψ
T

(E.19)

multiplying to the left of (E.20) by PR:

PR ψ = PRψL︸ ︷︷ ︸
=0

+ P 2
R︸︷︷︸

=PR

C ψT (E.20)

Finally, we obtain that:

ψ = C ψT , (E.21)

One can see that C ψT is identical, apart from a possible phase factor, to the charge conjugated
field ψCL , that is:

ψCL = C ψT , (E.22)

the Majorana field ψ can also be written as:

ψ = ψL + ψCL , (E.23)

and the Majorana condition can also be written like:

ψ = ψC (E.24)

This condition, called Majorana condition, implies the equality of particle and antiparticle.
Therefore, only neutral fermions can be described by a Majorana field.
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Appendix F

The most general Scalar Potential

1. The complete scalar potential:

V = V (2) + V (4a) + V (4b) + V (4c) + V (4d) + V (4e) (F.1)

Where:

V (2) =
1

2

2∑
i,j

[
µ2
ij Tr(Φ

†
i Φj) + µ̃2

ij Tr(Φ̃
†
i Φj) +H.C.

]
+ µ2

LR(χ†LχL + χ†RχR), (F.2)

V (4a) =
1

2

2∑
i,j

[
λij Tr(Φ

†
i Φj)

2 + λ̃ij Tr(Φ̃
†
i Φj)

2 +H.C.
]
, (F.3)

V (4b) =
1

2

2∑
i,j

[
λ′ij (TrΦ†i Φj)

2 + λ̃′ij (TrΦ̃†i Φj)
2 +H.C.

]
, (F.4)

V (4c) = ρ12 Tr(Φ
†
1Φ1Φ†2Φ2) + ρ̃12 Tr(Φ̃

†
1Φ1Φ̃†2Φ2), (F.5)

V (4d) =
1

2

[
2∑
i,j

(Λij TrΦ
†
iΦj + Λ̃ij TrΦ̃

†
iΦj)(χ

†
LχL + χ†RχR)

+ Λ̄ij(χ
†
LΦiΦ

†
jχL + χ†RΦ†iΦjχR) + Ωij(χ

†
LΦ̃iΦ

†
jχL + χ†RΦ̃†iΦjχR)

+ Λ̄′ij(χ
†
LΦ̃iΦ̃

†
jχL + χ†RΦ̃†i Φ̃jχR) + Ω′ij(χ

†
LΦiΦ̃

†
jχL + χ†RΦ†i Φ̃jχR) +H.C.

]
(F.6)

V (4e) = λLR

[
(χ†LχL)2 + (χ†RχR)2

]
. (F.7)

2. The minimum potential:

(a) The minimum scalar potential 〈V (2)〉:

〈V (2)〉 =
µ2

11

2

(
k2

1 + k′21
)

+

(
µ2

12 + µ2
21

2

)
(k1k2 + k′1k

′
2) +

µ2
22

2

(
k2

2 + k′22
)

+ µ̃2
11 k1k

′
1 +

+ µ̃2
22 k2k

′
2 +

(
µ̃2

12 + µ̃2
21

2

)
(k′1k2 + k1k

′
2) +

1

2

(
v2
L + v2

R

)
µ2
LR
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(b) The minimum scalar potential 〈V (4a)〉:

〈V (4a)〉 =
λ11

4

(
k4

1 + k′41
)

+

(
λ12 + λ21

4

)(
k2

1k
2
2 + k′21 k

′2
2

)
+

(
λ̃12 + λ̃21

4

)(
k2

1k
′2
2 + k′21 k

2
2

)
+

+
λ22

4

(
k4

2 + k′42
)

+
1

2

(
λ̃11 k

2
1k
′2
1 + λ̃22 k

2
2k
′2
2

)
(c) The minimum scalar potential 〈V (4b)〉:

〈V (4b)〉 =
λ′11

4

(
k2

1 + k′21
)2

+
1

4
(λ′12 + λ′21) (k1k2 + k′1k

′
2)

2
+
λ′22

4

(
k2

2 + k′22
)2

+ λ̃′11k
2
1k
′2
1 +

+ λ̃′22k
2
2k
′2
2 +

1

4

(
λ̃′12 + λ̃′21

)
(k1k

′
2 + k2k

′
1)

2

(d) The minimum scalar potential 〈V (4c)〉:

〈V (4c)〉 =
ρ12

4

(
k2

1 k
2
2 + k′21 k

′2
2

)
+
ρ̃12

2
(k1k2k

′
1k
′
2)

(e) The minimum scalar potential 〈V (4d)〉:

〈V (4d)〉 =
1

4

(
v2
L + v2

R

) {
Λ11

(
k2

1 + k′21
)

+ (Λ12 + Λ21) (k1 k2 + k′1 k
′
2) + Λ22

(
k2

2 + k′22
)}

+

+
1

4

(
v2
L + v2

R

){
Λ̃11k1k

′
1 +

(
Λ̃12 + Λ̃21

)
(k′1 k2 + k1 k

′
2) + Λ̃22k2k

′
2

}
+

+
( v2

R + v2
L)

4

{
Λ11 k

′2
1 + k′1k

′
2

(
Λ12 + Λ21

)
+ Λ22 k

′2
2 + Λ

′
11 k

2
1 + k1k2

(
Λ
′
12 + Λ

′
21

)
+ Λ

′
22 k

2
2

}
+

( v2
R + v2

L)

4
{k1k

′
1 Ω11 + Ω12k1 k

′
2 + Ω21k2 k

′
1 + k2k

′
2 Ω22}

+
( v2

R + v2
L)

4
{k1k

′
1 Ω′11 + Ω′12k2 k

′
1 + Ω′21k1 k

′
2 + k2k

′
2 Ω′22}

(f) The minimum scalar potential 〈V (4e)〉:

〈V (4e)〉 =
λLR

4

(
v4
L + v4

R

)
3. The constrains equations:

Knowing the total scalar potential:

〈V 〉 = 〈V (2)〉+ 〈V (4a)〉+ 〈V (4b)〉+ 〈V (4c)〉+ 〈V (4d)〉+ 〈V (4e)〉,

the constrains equations are the followings:
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�
∂〈V 〉
∂k1

= t1;

t1 = µ2
11 k1 +

(
λ11 + λ′11

)
k3

1 + k1k
′2
1

(
λ′11 + λ̃11 + 2 λ̃′11

)
+ µ̃2

11 k
′
1 +

k1

2

(
Λ
′
11v

2
R + Λ11v

2
R+

+ λ̃21k
′2
2 + λ̃12k

′2
2 + λ̃′21k

′2
2 + λ̃′12k

′2
2 +

(
Λ
′
11 + Λ11

)
v2
L + k2

2

(
λ′12 + λ′21 + λ21 + λ12 + ρ12

))
+

+
k′1v

2
R

4

(
Ω′11 + 2 Λ̃11 + Ω11

)
+
k′2v

2
R

4

(
Ω′21 + Ω12 + Λ̃12 + Λ̃21

)
+
k2v

2
R

4

(
Λ
′
21 + Λ

′
12

+ Λ12 + Λ21) +
k2k
′
1k
′
2

2

(
λ̃′21 + λ̃′12 + λ′12 + λ′21 + ρ̃12

)
+
k′1v

2
L

4

(
Ω′11 + Ω11 + 2 Λ̃11

)
+

k′2v
2
L

4

(
Λ̃12 + Λ̃21 + Ω′21+ + Ω12) +

k′2
2

(
µ̃2

12 + µ̃2
21

)
+
k2v

2
L

4

(
Λ
′
12 + Λ

′
21 + Λ12 + Λ21

)
+

k2

2
(µ2

12 + µ2
21)

�
∂〈V 〉
∂k′1

= t′1;

t′1 = µ̃2
11 k1 +

(
λ11 + λ′11

)
k′31 + k′1k

2
1

(
λ′11 + λ̃11 + 2 λ̃′11

)
+ µ2

11 k
′
1 +

k′1
2

(
Λ11v

2
R + Λ11v

2
R+

+ λ̃′12k
2
2 + λ̃′21k

2
2 + λ̃12k

2
2 + λ̃21k

2
2 +

(
Λ11 + Λ11

)
v2
L + k′22

(
λ′12 + λ′21 + λ21 + λ12 + ρ12

))
+

+
k1v

2
R

4

(
Ω′11 + 2 Λ̃11 + Ω11

)
+
k2v

2
R

4

(
Ω′12 + Ω21 + Λ̃21 + Λ̃12

)
+
k′2v

2
R

4

(
Λ21 + Λ12

+ Λ12 + Λ21) +
k2k1k

′
2

2

(
λ̃′12 + λ̃′21 + λ′12 + λ′21 + ρ̃12

)
+
k1v

2
L

4

(
Ω′11 + Ω11 + 2 Λ̃11

)
+

k2v
2
L

4

(
Λ̃12 + Λ̃21 + Ω′12 + Ω21

)
+
k2

2

(
µ̃2

12 + µ̃2
21

)
+
k′2v

2
L

4

(
Λ12 + Λ21 + Λ12 + Λ21

)
+

k′2
2

(µ2
12 + µ2

21)

�
∂〈V 〉
∂k2

= t2;

t2 = µ2
22 k2 +

(
λ22 + λ′22

)
k3

2 + k2k
′2
2

(
λ′22 + λ̃22 + 2 λ̃′22

)
+ µ̃2

22 k
′
2 +

k2

2

(
Λ
′
22v

2
R + Λ22v

2
R+

+ λ̃21k
′2
1 + λ̃12k

′2
1 + λ̃′21k

′2
1 + λ̃′12k

′2
1 +

(
Λ
′
22 + Λ22

)
v2
L + k2

1

(
λ′12 + λ′21 + λ21 + λ12 + ρ12

))
+

k′2v
2
R

4

(
Ω′22 + 2 Λ̃22 + Ω22

)
+
k′1v

2
R

4

(
Ω′12 + Ω21 + Λ̃12 + Λ̃21

)
+
k1v

2
R

4

(
Λ
′
12 + Λ

′
21

+ Λ12 + Λ21) +
k1k
′
1k
′
2

2

(
λ̃′21 + λ̃′12 + λ′12 + λ′21 + ρ̃12

)
+
k′2v

2
L

4

(
Ω′22 + Ω22 + 2 Λ̃22

)
+

k′1v
2
L

4

(
Λ̃12 + Λ̃21 + Ω′12 + Ω21

)
+
k′1
2

(
µ̃2

12 + µ̃2
21

)
+
k1v

2
L

4

(
Λ
′
12 + Λ

′
21 + Λ12 + Λ21

)
+

k1

2
(µ2

12 + µ2
21)
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�
∂〈V 〉
∂k′2

= t′2;

t′2 = µ2
22 k
′
2 +

(
λ22 + λ′22

)
k′32 + k′2k

2
2

(
λ′22 + λ̃22 + 2 λ̃′22

)
+ µ̃2

22 k2 +
k′2
2

(
Λ22v

2
R + Λ22v

2
R+

+ λ̃21k
2
1 + λ̃12k

2
1 + λ̃′21k

2
1 + λ̃′12k

2
1 +

(
Λ22 + Λ22

)
v2
L + k′21

(
λ′12 + λ′21 + λ21 + λ12 + ρ12

))
+

+
k2v

2
R

4

(
Ω′22 + 2 Λ̃22 + Ω22

)
+
k1v

2
R

4

(
Ω′21 + Ω12 + Λ̃12 + Λ̃21

)
+
k′1v

2
R

4

(
Λ12 + Λ21

+ Λ12 + Λ21) +
k1k
′
1k2

2

(
λ̃′21 + λ̃′12 + λ′12 + λ′21 + ρ̃12

)
+
k2v

2
L

4

(
Ω′22 + Ω22 + 2 Λ̃22

)
+

k1v
2
L

4

(
Λ̃12 + Λ̃21 + Ω′21 + Ω12

)
+
k1

2

(
µ̃2

12 + µ̃2
21

)
+
k′1v

2
L

4

(
Λ12 + Λ21 + Λ12 + Λ21

)
+

k′1
2

(µ2
12 + µ2

21)

�
∂〈V 〉
∂vL

= tL;

tL =
vL
2

{
k′21 (Λ11 + Λ11) + k′1k

′
2(Λ12 + Λ21 + Λ12 + Λ21) + k′1k2(Λ̃12 + Λ̃21 + Ω′12 + Ω21)+

+ k1k
′
1(Ω′11 + 2 Λ̃11 + Ω11) + k2k

′
2(Ω′22 + 2 Λ̃22 + Ω22) + k1k

′
2(Ω′21 + Λ̃21 + Λ̃12 + Ω12)+

+ k1k2(Λ
′
21 + Λ

′
12 + Λ21 + Λ12) + k2

1(Λ11 + Λ
′
11) + k2

2(Λ22 + Λ
′
22) + k′22 (Λ22 + Λ22)

+ 2µ2
LR + 2 v2

LλLR
}
.

�
∂〈V 〉
∂vR

= tR;

tR =
vR
2

{
k′21 (Λ11 + Λ11) + k′1k

′
2(Λ12 + Λ21 + Λ12 + Λ21) + k′1k2(Λ̃12 + Λ̃21 + Ω′12 + Ω21)+

+ k1k
′
1(Ω′11 + 2 Λ̃11 + Ω11) + k2k

′
2(Ω′22 + 2 Λ̃22 + Ω22) + k1k

′
2(Ω′21 + Λ̃21 + Λ̃12 + Ω12)+

+ k1k2(Λ
′
21 + Λ

′
12 + Λ21 + Λ12) + k2

1(Λ11 + Λ
′
11) + k2

2(Λ22 + Λ
′
22) + k′22 (Λ22 + Λ22)

+ 2µ2
LR + 2 v2

RλLR
}
.

These are the six equations that restrict the values of the parameters proposed by our
model.
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Appendix G

Coupling the leptons with the gauge
bosons, in the case vL = 0

Physical States as a function of symmetries states:

We have regarding in this case vL = 0

W 3L
µ = a1Aµ + a2 Z1µ + a3 Z2µ (G.1)

W 3R
µ = b1Aµ + b2 Z1µ + b3 Z2µ

Bµ = c1Aµ + c2 Z1µ + c3 Z2µ (G.2)

where:

a1 =
g′√

g2 + 2g′2
(G.3)

a2 =

√
g2 + g′2

g2 + 2g′2
−
√
g2
p + g2

√
2g′2 + g2g6A′2

(g2 + g′2)4 v4
R

(G.4)

a3 =
A′g3

(g2 + g′2)
√
g2 + g′2 v2

R

+
2g5g′2A′2

√
g2 + g′2

(g2 + g′2)4v4
R

(G.5)

b1 =
g′√

g2 + 2g′2
(G.6)

b2 =
−g′2√

g′2 + g2
√

2g′2 + g2
+

g4A′
√

2g′2 + g2√
g′2 + g2(g2 + g′2)2v2

R

(G.7)

b3 =
−g√
g2 + g′2

− g3A′g′2√
g2 + g′2 (g2 + g′2)2v2

R

(G.8)

c1 =
g√

g2 + 2g′2
(G.9)

c2 =
−g g′√

g2 + g′2
√
g2 + 2 g′2

− g3A′g′
√
g2 + 2 g′2

(g2 + g′2)2
√
g2 + g′2v2

R

(G.10)

c3 =
g′√

g2 + g′2
− g4A′g′√

g2 + g′2 (g2 + g′2)2v2
R

(G.11)

Remember that: A′ ≡ k2
1 + k2

2 + k′21 + k′22 .
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Llep = i
(
νL `L

)(
γµ∂µ + i

gL
2
γµτ ·WL

µ − i
g′

2
γµBµ

)(
νL
`L

)
+ i

(
νR `R

)(
γµ∂µ + i

gR
2
γµτ ·WR

µ − i
g′

2
γµBµ

)(
νR
`R

)
(G.12)

however:

τ ·WL

µ =

(
WL

3µ WL
1µ − iWL

2µ

WL
1µ + iWL

2µ −WL
3µ

)
, (G.13)

τ ·WR

µ =

(
WR

3µ WR
1µ − iWR

2µ

WR
1µ + iWR

2µ −WR
3µ

)
, (G.14)

replacing in the previous expression, G.12, we have:

Llep = i
(
νL `L

)( 6∂ + igL
2
γµWL

3µ − i
g′

2
γµBµ igL

2
γµ
(
WL

1µ − iWL
2µ

)
igL

2
γµ
(
WL

1µ + iWL
2µ

)
6∂ − igL

2
γµWL

3µ − i
g′

2
γµBµ

)(
νL
`L

)
+ i

(
νR `R

)( 6∂ + igR
2
γµWR

3µ − i
g′

2
γµBµ igR

2
γµ
(
WR

1µ − iWR
2µ

)
igR

2
γµ
(
WR

1µ + iWR
2µ

)
6∂ − igR

2
γµWR

3µ − i
g′

2
γµBµ

)(
νR
`R

)
multiplying the matrices and regarding the neutrinos contribution:

Llepν` = i νL

(
6∂ + i

gL
2
γµWL

3µ − i
g′

2
γµBµ

)
νL + νR

(
6∂ + i

gR
2
γµWR

3µ − i
g′

2
γµBµ

)
νR

= i νL 6∂νL + i νL

(
i
gL
2
γµWL

3µ − i
g′

2
γµBµ

)
νL︸ ︷︷ ︸

(I)

+i νR 6∂νR +

+ i νR

(
i
gR
2
γµWR

3µ − i
g′

2
γµBµ

)
νR︸ ︷︷ ︸

(II)

1. Coupling with the Electromagnetic field:

We know from the expression G.1:

W 3L
µ =

(
g′√

g2 + 2g′2

)
Aµ + · · ·

W 3R
µ =

(
g′√

g2 + 2g′2

)
Aµ + · · · (G.15)

Bµ =

(
g√

g2 + 2g′2

)
Aµ + · · ·

working with (I) and (II):

94



(I) + (II) =
i

2
νLγ

µ

g WL
3µ︸︷︷︸

Aµ
g′√

g2+2g′2

−g′ Bµ︸︷︷︸
Aµ

g√
g2+2g′2

 νL

+
i

2
νRγ

µ

g WR
3µ︸︷︷︸

Aµ
g′√

g2+2g′2

−g′ Bµ︸︷︷︸
Aµ

g√
g2+2g′2

 νR (G.16)

Where it has been necessary to do gL = gR = g, then we have:

(I) + (II)
Aµ
=

i

2
νL︸︷︷︸
ν`PR

γµAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
νL︸︷︷︸
PLν`

+

+
i

2
νR︸︷︷︸
ν` PL

γµAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
νR︸︷︷︸
PR ν`

=
i

2
ν`PRγ

µAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
PLν` +

+
i

2
ν`PLγ

µAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
PRν`

=
i

2
ν`γ

µAµ

(
g

g′√
g2 + 2g′2

− g′ g√
g2 + 2g′2

)
︸ ︷︷ ︸

= 0

ν` = 0.

This proves that the neutrino has zero electric charge.

In the same way for the case of leptons:

Llep`α = i `L

(
6∂ − ig

2
γµWL

3µ − i
g′

2
γµBµ

)
`L + i `R

(
6∂ − ig

2
γµWR

3µ − i
g′

2
γµBµ

)
`R

= i `L 6∂`L + i (−1)`L

(
i
g

2
γµWL

3µ + i
g′

2
γµBµ

)
`L︸ ︷︷ ︸

(I′)

+i `R 6∂`R +

+ i (−1)`R

(
i
g

2
γµWR

3µ + i
g′

2
γµBµ

)
`R︸ ︷︷ ︸

(II′)

considering the interaction with the photon:
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(I ′) + (II ′)
Aµ
=
−i
2

`L︸︷︷︸
`PR

γµAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
`L︸︷︷︸
PL`

+
−i
2

`R︸︷︷︸
` PL

γµAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
`R︸︷︷︸
PR `

=
−i
2
`PRγ

µAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
PL`

+
−i
2
``PLγ

µAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
PR`

=
−i
2
`γµAµ

(
g

g′√
g2 + 2g′2

+ g′
g√

g2 + 2g′2

)
︸ ︷︷ ︸

=2 g′g√
g2+2g′2

`.

therefore, we have the electric charge for charged leptons:

e =
−g′g√
g2 + 2g′2

2. Coupling with Z1 (Neutral current):

Lνα = −νL

g
2
γµ WL

3µ︸︷︷︸
a2 Z1µ

−g
′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 νL − νR

g
2
γµ WR

3µ︸︷︷︸
b2 Z1µ

−g
′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 νR

= −1

2
νLγ

µ (a2 g − c2 g
′) Z1µ νL −

1

2
νRγ

µ (b2 g − c2 g
′) Z1µ νR

= −1

2
[ν PRγ

µ (a2 g − c2 g
′)Z1µPLν + ν PLγ

µ (b2 g − c2 g
′)Z1µPRν]

= −1

2
[ν γµ PL (a2 g − c2 g

′)Z1µPLν + ν γµ PR (b2 g − c2 g
′)Z1µPRν]

= −1

2

[
ν γµ P 2

L (a2 g − c2 g
′)Z1µν + ν γµ P 2

R (b2 g − c2 g
′)Z1µν

]
= −1

2

ν γµ PL (a2 g − c2 g
′)︸ ︷︷ ︸

=a
ν`
L

Z1µν + ν γµ PR (b2 g − c2 g
′)︸ ︷︷ ︸

=b
ν`
R

Z1µν


= −1

2
ν γµ

[
1

2
(1− γ5) aν`L +

1

2
(1 + γ5) bν`R

]
Z1µ ν

= −1

2
ν γµ

[
aν`L + bν`R

2
− aν`L − b

ν`
R

2
γ5

]
Z1µ ν = − g

2 cos θ
ν γµ (gν`V − g

ν`
A γ5)Z1µν.
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where:

aν`L = g

√
g2 + 2g′2

g2 + g′2
+

A′ g′2g3

v2
R(g2 + g′2)2

√
g2 + 2g′2

g2 + g′2
(G.17)

bν`R =
A′ g3

(g2 + g′2) v2
R

√
g2 + 2g′2

g2 + g′2
(G.18)

g

cos θ
gνV =

1

2
(aν`L + bν`R ) (G.19)

g

cos θ
gνA =

1

2
(aν`L − b

ν`
R ) (G.20)

remember that:

g sin θ = g′
√

cos 2θ →

√
g2 + g′2

g2 + 2 g′2
= cos θ

Finally:

aν`L =
g

cos θ

[
1 +

A′ g′2g2

v2
R(g2 + g′2)2

]
(G.21)

bν`R =
A′ g3

(g2 + g′2) cos θ v2
R

(G.22)

gν`V =
1

2
+

A′ g′2g2

2 v2
R(g2 + g′2)2

+
A′ g2

2(g2 + g′2) v2
R

(G.23)

gν`A =
1

2
+

A′ g′2g2

2 v2
R(g2 + g′2)2

− A′ g2

2(g2 + g′2) v2
R

(G.24)

(a) Summarizing we have for the case of neutrinos:

gν`V =
1

2
+

A′ g′2g2

2 v2
R(g2 + g′2)2

+
A′ g2

2(g2 + g′2) v2
R

(G.25)

gν`A =
1

2
+

A′ g′2g2

2 v2
R(g2 + g′2)2

− A′ g2

2(g2 + g′2) v2
R

but we know the following:

g√
g2 + 2 g′2

=
√

cos 2θ,
g g′

g2 + g′2
=

sin θ
√

cos 2θ

cos2 θ

replacing in G.25, we have:

gν`V =
1

2
+
A′ sin2 θ cos 2θ

2 v2
R cos4 θ

+
A′ cos 2θ

2 v2
R cos2 θ

(G.26)

gν`A =
1

2
+
A′ sin2 θ cos 2θ

2 v2
R cos4 θ

− A′ cos 2θ

2 v2
R cos2 θ
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(b) for the case of charged leptons:

L`α = `L

g
2
γµ WL

3µ︸︷︷︸
a2 Z1µ

+
g′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 `L + `R

g
2
γµ WR

3µ︸︷︷︸
b2 Z1µ

+
g′

2
γµ Bµ︸︷︷︸

c2 Z1µ

 `R

=
1

2
`Lγ

µ (a2 g + c2 g
′) Z1µ `L +

1

2
`Rγ

µ (b2 g + c2 g
′) Z1µ `R

=
1

2

[
` PRγ

µ (a2 g + c2 g
′)Z1µPL`+ ` PLγ

µ (b2 g + c2 g
′)Z1µPR`

]
=

1

2

[
` γµ PL (a2 g + c2 g

′)Z1µPL`+ ` γµ PR (b2 g + c2 g
′)Z1µPR`

]
=

1

2

[
` γµ P 2

L (a2 g + c2 g
′)Z1µ`+ ` γµ P 2

R (b2 g + c2 g
′)Z1µ`

]
=

1

2

` γµ PL (a2 g + c2 g
′)︸ ︷︷ ︸

=a`L

Z1µ`+ ` γµ PR (b2 g + c2 g
′)︸ ︷︷ ︸

=b`R

Z1µ`


=

1

2
` γµ

[
1

2
(1− γ5) a`L +

1

2
(1 + γ5) b`R

]
Z1µ `

=
1

2
` γµ

[
a`L + b`R

2
− a`L − b`R

2
γ5

]
Z1µ ` =

g

2 cos θ
` γµ

(
g`αV − g

`α
A γ5

)
Z1µ`.

where:

a`αL =
g3

g2 + 2g′2

√
g2 + 2g′2

g2 + g′2
− A′ g′2g3

v2
R(g2 + g′2)2

√
g2 + 2g′2

g2 + g′2
(G.27)

b`αR = − 2g g′2

g2 + 2g′2

√
g2 + 2g′2

g2 + g′2
(G.28)

g

cos θ
g`αV =

1

2

(
a`αL + b`αR

)
(G.29)

g

cos θ
g`αA =

1

2

(
a`αL − b

`α
R

)
(G.30)

Knowing that:

g sin θ = g′
√

cos 2θ →

√
g2 + g′2

g2 + 2 g′2
= cos θ,

we have:

a`αL =
g

cos θ

[
g2

g2 + 2g′2
− A′ g′2g2

v2
R(g2 + g′2)2

]
(G.31)

b`αR =
−2 g g′2

(g2 + 2g′2) cos θ
,

also:

g`αV =
1

2

(
g2 − 2g′2

g2 + 2g′2

)
− A′ g′2g2

2 v2
R(g2 + g′2)2

(G.32)

g`αA =
1

2
− A′ g′2g2

2 v2
R(g2 + g′2)2

,
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taking into account the following:

g2 − 2g′2

g2 + 2g′2
= 2 cos 2θ − 1, (G.33)

g g′

g2 + g′2
=

sin θ
√

cos 2θ

cos2 θ
, (G.34)

replacing in G.32, we finally have:

g`αV =
1

2
(2 cos 2θ − 1)− A′ sin2 θ cos 2θ

2v2
R cos4 θ

,

(G.35)

g`αA =
1

2
− A′ sin2 θ cos 2θ

2v2
R cos4 θ

.

3. Coupling with Z2 (Neutral current):

Lνα = −νL

g
2
γµ WL

3µ︸︷︷︸
a3 Z2µ

−g
′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 νL − νR

g
2
γµ WR

3µ︸︷︷︸
b3 Z2µ

−g
′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 νR

= −1

2
νLγ

µ (a3 g − c3 g
′) Z2µ νL −

1

2
νRγ

µ (b3 g − c3 g
′) Z2µ νR

= −1

2
[ν PRγ

µ (a3 g − c3 g
′)Z2µPLν + ν PLγ

µ (b3 g − c3 g
′)Z2µPRν]

= −1

2
[ν γµ PL (a3 g − c3 g

′)Z2µPLν + ν γµ PR (b3 g − c3 g
′)Z2µPRν]

= −1

2

[
ν γµ P 2

L (a3 g − c3 g
′)Z2µν + ν γµ P 2

R (b3 g − c3 g
′)Z2µν

]
= −1

2

ν γµ PL (a3 g − c3 g
′)︸ ︷︷ ︸

=a
′ν`
L

Z2µν + ν γµ PR (b3 g − c3 g
′)︸ ︷︷ ︸

=b
′ν`
R

Z1µν


= −1

2
ν γµ

[
1

2
(1− γ5) a′ν`L +

1

2
(1 + γ5) b′ν`R

]
Z2µ ν

= −1

2
ν γµ

[
a′ν`L + b′ν`R

2
− a′ν`L − b

′ν`
R

2
γ5

]
Z2µ ν = − g

2 cos θ
√

cos 2θ
ν γµ

(
g′ν`V − g

′ν`
A γ5

)
Z2µν.

In the same way of the previous section:

a′ν`L = − g′2√
g2 + g′2

+
g4A′

√
g2 + g′2(g2 + 2g′2)

(g2 + g′2)3v2
R

(G.36)

b′ν`R = −
√
g2 + g′2 +

g6A′2
√
g2 + g′2(g2 + 2g′2)

2(g2 + g′2)4v4
R

(G.37)

g′ν`V =
1

2
− A′ cos2 2θ

2 cos4 θ v2
R

− A′2 cos3 2θ

4 v4
R cos6 θ

(G.38)

g′ν`A = −cos 2θ

2
− A′ cos2 2θ

2 cos4 θ v2
R

+
A′2 cos3 2θ

4 v4
R cos6 θ

(G.39)
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(a) Summarizing we have for the case of neutrinos:

g′ν`V =
1

2
− A′ cos2 2θ

2 cos4 θ v2
R

− A′2 cos3 2θ

4 v4
R cos6 θ

(G.40)

g′ν`A = −cos 2θ

2
− A′ cos2 2θ

2 cos4 θ v2
R

+
A′2 cos3 2θ

4 v4
R cos6 θ

.

(b) for the case of charged leptons:

L`α = `L

g
2
γµ WL

3µ︸︷︷︸
a3 Z2µ

+
g′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 `L + `R

g
2
γµ WR

3µ︸︷︷︸
b3 Z2µ

+
g′

2
γµ Bµ︸︷︷︸

c3 Z2µ

 `R

=
1

2
`Lγ

µ (a3 g + c3 g
′) Z2µ `L +

1

2
`Rγ

µ (b3 g + c3 g
′) Z2µ `R

=
1

2

[
` PRγ

µ (a3 g + c3 g
′)Z2µPL`+ ` PLγ

µ (b3 g + c3 g
′)Z2µPR`

]
=

1

2

[
` γµ PL (a3 g + c3 g

′)Z2µPL`+ ` γµ PR (b3 g + c3 g
′)Z2µPR`

]
=

1

2

[
` γµ P 2

L (a3 g + c3 g
′)Z2µ`+ ` γµ P 2

R (b3 g + c3 g
′)Z2µ`

]
=

1

2

` γµ PL (a3 g + c3 g
′)︸ ︷︷ ︸

=a′`L

Z2µ`+ ` γµ PR (b3 g + c3 g
′)︸ ︷︷ ︸

=b′`R

Z2µ`


=

1

2
` γµ

[
1

2
(1− γ5) a′`L +

1

2
(1 + γ5) b′`R

]
Z2µ `

=
1

2
` γµ

[
a′`L + b′`R

2
− a′`L − b′`R

2
γ5

]
Z2µ ` =

g

2 cos θ
√

cos 2θ
` γµ

(
g′`αV − g

′`α
A γ5

)
Z2µ`.

where:

a′`αL =
g′2√
g2 + g′2

+
A′g6

√
g2 + g′2

(g2 + g′2)3v2
R

(G.41)

b′`αR = −(g2 − g′2)
√
g2 + g′2

g2 + g′2
− 2A′g′2g4

√
g2 + g′2

(g2 + g′2)3v2
R

(G.42)

g

cos θ
√

cos 2θ
g′`αV =

1

2

(
a′`αL + b′`αR

)
(G.43)

g

cos θ
√

cos 2θ
g′`αA =

1

2

(
a′`αL − b

′`α
R

)
(G.44)

Knowing that:
g sin θ = g′

√
cos 2θ

we will have:

a′`αL =
g

cos θ
√

cos 2θ

(
sin2 θ +

A′ cos3 2θ

v2
R cos4 θ

)
(G.45)

b′`αR =
g

cos θ
√

cos 2θ

(
3 sin2 θ − 1− 2A′ sin2 θ cos2 2θ

v2
R cos4 θ

)
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and also:

g′`αV =
1

2
(4 sin2 θ − 1) +

A′ cos3 2θ

2v2
R cos4 θ

− A′ sin2 θ cos2 2θ

v2
R cos4 θ

(G.46)

g′`αA =
cos 2θ

2
+

1

2
sin2 θ (−3 + cosθ) +

A′ cos3 2θ

2v2
R cos4 θ

+
A′ sin2 θ cos2 2θ

v2
R cos4 θ

.
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Appendix H

Assignment of electrical charge to
scalar multiplets

It will be considered one of the bi-doublets, Φ1, which gives mass to the charged leptons and
neutrinos, in which we will demonstrate why their elements have the charge they have. Similarly
it can be shown for the second bi-doublet, Φ2, which is responsible for giving mass to the quarks
and their interactions.

As for the electric charge we know from the fermion sector, that it has the general form:

Q = T3L + T3R +
1

2
(B − L), (H.1)

for all multiplets where T3L and T3R are generators of SU(2)L and SU(2)R, respectively. This
allows to calculate the charge of the fields in:

Φ1 =

(
φ11 φ12

φ21 φ22

)
, (H.2)

using:

QΦ1 =

[
1

2
τ3,Φ1

]
+

1

2
(B − L)Φ1, (H.3)

however, Φ1 has a zero value of hypercharge, that is, B − L = 0, hence, the previous expression
has the form:

QΦ1 =

[
1

2
τ3,Φ1

]
=

1

2


(

1 0
0 −1

)(
φ11 φ12

φ21 φ22

)
︸ ︷︷ ︸

=

 φ11 φ12

−φ21 −φ22


−
(
φ11 φ12

φ21 φ22

)(
1 0
0 −1

)
︸ ︷︷ ︸

=

 φ11 −φ12

φ21 −φ22


=


(H.4)

then, we have:

QΦ1 =
1

2

(
0φ11 2φ12

−2φ21 0φ22

)
=

(
(0)φ11 (+1)φ12

(−1)φ21 (0)φ22

)
, (H.5)

where the numbers in parentheses represent the electric charges of the fields within the bi-doublet.
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The bi-doublets can be expressed in the fundamental representation of the group SU(2), sim-
ply expressed as a linear combination of those generated from the group SU(2), which are the
matrices of pauli: τ1, τ2 and τ3.

Φ1 =
1

2
τ i δi =

1

2

(
τ 1δ1 + τ 2δ2 + τ 3δ3

)
=

1

2

{
δ1

(
0 1
1 0

)
+ δ2

(
0 −i
i 0

)
+ δ3

(
1 0
0 −1

)}
Φ1 =

1

2

(
δ3 δ1 − i δ2

δ1 + i δ2 −δ3

)
=

(
δ3/2 δ1−i δ2

2
δ1+i δ2

2
−δ3/2

)
(H.6)

Finally, using H.5 and H.6, we have the bi-doublet of the form:

Φ1 =

(
φo1 φ+

2

φ−1 φ0
2

)
(H.7)
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Appendix I

Free parameters of the Model
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

I.1 Standard Model SU(2)L ⊗ U(1)Y

Remind that many popular science books and articles mention that the Standard Model of par-
ticle physics, the model that unifies three of the fundamental forces and describes all matter in
the form of quarks and leptons, has about 18 free parameters that are not predicted by the theory.

Very few popular accounts actually tell you what these parameters are. So here they are, in
no particular order:

� The so-called fine structure constant, α, which (depending on your point of view) defines
either the coupling strength of electromagnetism or the magnitude of the electron charge;

� The Weinberg angle or weak mixing angle θw that determines the relationship between the
coupling constant of electromagnetism and that of the weak interaction;

� The coupling constant g3 of the strong interaction;

� The electroweak symmetry breaking energy scale (or the Higgs potential vacuum expecta-
tion value, V.E.V) v;

� The Higgs potential coupling constant λ or alternatively, the Higgs mass; However, since
2012 this quantity is known.

� The three mixing angles θ12, θ23 and θ13 and the CP-violating phase δ13 of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, which determines how quarks of various flavor can
mix when they interact;

� Nine Yukawa coupling constants that determine the masses of the nine charged fermions
(six quarks, three charged leptons).

I.2 Model with Gauge Symmetry SU(2)L⊗SU(2)R⊗U(1)B−L

In our left-right model we can set 87 free parameters. These are shown in the following items:

� The so-called constants, gL, gR and g′, which (depending on your point of view) defines
either the coupling strength of weak and electromagnetism.
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� The weak mixing angle θ that determines the relationship between the coupling constant
of electromagnetism and that of the weak interaction;

� The coupling constant g3 of the strong interaction;

� Within the electroweak symmetry breaking energy scale, we have six VEVs: k1, k′1, k2, k′2,
vL and vR.

� The Higgs potential coupling constants, expression 2.17, we have 58 free parameters, that
is: µij, µ̃ij, µLR, λij, λ̃ij, λ

′
ij, λ̃

′
ij, ρij, ρ̃ij, Λij, Λ̃ij, Λ̄ij, Λ̄′ij, Ωij, Ω′ij, λLR.

� The three mixing angles θ12, θ23 and θ13 and the CP-violating phase δ13 of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, which determines how quarks of various flavor can
mix when they interact.

� The three mixing angles θ12, θ23 and θ13 and the CP-violating phase δ13 of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, which determines how charged leptons and neu-
trinos of various flavor can mix (neutrino oscillations) when they interact;

� Twelve Yukawa coupling constants that determine the masses of the twelve fermions (six
quarks, three charged leptons and three neutrinos.
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Appendix J

PMNS Matrix using the differents
neutrinos masses Hierarchy

J.1 Inverted Hierarchy

The neutrinos matrix, using the Inverted mass hierarchy (m3 � m1 < m2) is given by the
following matricial expression:

M̂ν =

 0.0497 0 0
0 0.0504 0
0 0 0

 (J.1)

The coupling matrix for the neutrinos, G, is given by:

G =

√
2

k1

UPMNSM̂νU
†
PMNS =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (J.2)

Taking into account the numerical values of the mixing angles and the phase angle written
in the Particle Data Group, we get:

s2
12 = 0.307

s2
23 = 0.512

s2
13 = 0.0218

δ = 0

k1 = 2 GeV,

The coupling matrix elements G are given by the following:

G11 = 3.4531× 10−11

G12 = −3.1673× 10−12

G13 = −4.0272× 10−12

G21 = −3.1673× 10−12

G22 = 2.0697× 10−11

G23 = −1.7175× 10−11

G31 = −4.0272× 10−12

G32 = −1.7175× 10−11

G33 = 1.5553× 10−11
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J.2 Cuasi-degenerated Hierarchy

The neutrinos matrix, using the Cuasi-degenerated hierarchy (m1
∼= m2

∼= m3
∼= m0, m0 &

0.10 eV ) is given by the following matricial expression:

M̂ν =

 0.10 0 0
0 0.10 0
0 0 0.10

 (J.3)

The coupling matrix for the neutrinos, G, is given by:

G =

√
2

k1

UPMNSM̂νU
†
PMNS =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (J.4)

Taking into account the numerical values of the mixing angles and the phase angle written in
the Particle Data Group, we get:

s2
12 = 0.307

s2
23 = 0.512

s2
13 = 0.0218

δ = 1.38π

k1 = 2 GeV,

The coupling matrix elements G are given by the following:

G11 = 7.0707× 10−11

G12 = −2.4533× 10−27 i+ 1.8399× 10−27

G13 = −1.2266× 10−27 i− 2.4533× 10−27

G21 = 2.4533× 10−27 i+ 1.8399× 10−27

G22 = 7.0711× 10−11

G23 = −9.8131× 10−27 + 6.1332× 10−28 i

G31 = 2.4533× 10−27 i− 1.8399× 10−27

G32 = −9.8131× 10−27 − 6.1332× 10−28 i

G33 = 7.0711× 10−11

Si δ = 0, we have:

G11 = 7.0711× 10−11

G12 = −6.1332× 10−27

G13 = −4.9065× 10−27

G21 = −1.2266× 10−27

G22 = 7.0711× 10−11

G23 = −9.8131× 10−27

G31 = −4.9065× 10−27

G32 = 0.0

G33 = 7.0711× 10−11
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J.3 Normal Hierarchy

The neutrinos matrix, using the normal mass hierarchy (m1 � m2 < m3) is given by the following
matricial expression:

M̂ν =

 0 0 0
0 0.0086 0
0 0 0.0504

 (J.5)

G11 =

√
2

k1

(
|∆m2

31|1/2 s2
13 + (∆m2

21)1/2s2
12 c

2
13

)
,

G12 =

√
2

k1

(
(∆m2

21)1/2 s12c13(c12c23 − s12s13s23 e
−iδ) + |∆m2

31|1/2 c13s13s23 e
−iδ) ,

G13 =

√
2

k1

(
(∆m2

21)1/2 s12c13(−c12s23 − s12s13c23 e
−iδ) + |∆m2

31|1/2 c13s13c23 e
−iδ) ,

G21 =

√
2

k1

(
(∆m2

21)1/2 s12c13(c12c23 − s12s13s23 e
iδ) + |∆m2

31|1/2 c13s13s23 e
iδ
)
,

G22 =

√
2

k1

(
(∆m2

21)1/2 (c12c23 − s12s13s23 e
−iδ)(c12c23 − s12s13s23 e

iδ) + |∆m2
31|1/2 c2

13s
2
23

)
, (J.6)

G23 =

√
2

k1

(
(∆m2

21)1/2 (−c12s23 − s12s13c23 e
−iδ)(c12c23 − s12s13s23 e

iδ) + |∆m2
31|1/2 c2

13c23s23

)
,

G31 =

√
2

k1

(
(∆m2

21)1/2 s12c13(−c12s23 − s12s13c23 e
iδ) + |∆m2

31|1/2 c13s13c23 e
iδ
)
,

G32 =

√
2

k1

(
(∆m2

21)1/2 (c12c23 − s12s13s23 e
−iδ)(−c12s23 − s12s13c23 e

iδ) + |∆m2
31|1/2 c2

13c23s23

)
,

G33 =

√
2

k1

(
(∆m2

21)1/2 (−c12s23 − s12s13c23 e
−iδ)(−c12s23 − s12s13c23 e

iδ) + |∆m2
31|1/2 c2

13c
2
23

)
,

Taking into account the numerical values of the mixing angles and the phase angle written in
the Particle Data Group (2020):

s2
12 = 0.307,

s2
23 = 0.512,

s2
13 = 0.0218, (J.7)

δ = 1.37 π,

k1 = 2 GeV,
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Replacing the experimental values, hence the coupling matrix elements G, (4.10), are given by
the following:

G11 = 2.606200× 10−12,

G12 = 3.252116× 10−12 i+ 5.306357× 10−13,

G13 = 3.174979× 10−12 i− 3.358971× 10−12,

G21 = −3.252116× 10−12 i+ 5.306357× 10−13,

G22 = 2.016160× 10−11, (J.8)

G23 = 1.540466− 3.800792× 10−13 i,

G31 = −3.174979× 10−12 i− 3.358971× 10−12,

G32 = 1.540466× 10−11 + 3.800792× 10−13 i,

G33 = 1.909292× 10−11,

J.3.1 Normal Hierarchy in the case of gL 6= gR

I propose the following unitary matrix like a PMNS matrix:

UL =

 c12c13 s12c13 s13 e
−i δ

−s12c23 − c12s13s23 e
i δ c12c23 − s12s13s23 e

i δ c13s23

s12s23 − c12s13c23 e
i δ −c12s23 − s12s13c23 e

i δ c13c23

 (J.9)

UR =

 C12C13 S12C13 S13 e
−i δR

−S12C23 − C12S13S23 e
i δR C12C23 − S12S13S23 e

i δR C13S23

S12S23 − C12S13C23 e
i δR −C12S23 − S12S13C23 e

i δR C13C23

 (J.10)

The coupling matrix for the neutrinos, G, is given by:

G =

√
2

k1

ULM̂νU
†
R =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (J.11)

Considering UR = UCKM , and using the values of the CKM matrix elements according to the
PDG, we have:

UR =

 C12C13 S12C13 S13 e
−i δR

−S12C23 − C12S13S23 e
i δR C12C23 − S12S13S23 e

i δR C13S23

S12S23 − C12S13C23 e
i δR −C12S23 − S12S13C23 e

i δR C13C23

 =

=

 0.97446 0.22452 0.00365
0.22438 0.97359 0.04214
0.00896 0.04133 0.999105

 (J.12)

Taking into account the numerical values of the mixing angles and the phase angle written in
the Particle Data Group, we get:

s2
12 = 0.307

s2
23 = 0.512

s2
13 = 0.0218

δ = 0π

k1 = 2 GeV,
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we have:

G11 = 7.55106× 10−13

G12 = 3.41187× 10−12

G13 = 5.35639× 10−12

G21 = 8.80819× 10−13

G22 = 4.42423× 10−12

G23 = 2.31083× 10−11

G31 = −7.31455× 10−13

G32 = −2.46844× 10−12

G33 = 2.65554× 10−11

J.3.2 Normal Hierarchy Bi-unitary transformation Matrix

According to the left-right gauge groups, the idea of regarding two differents unitary matrices,
each of one relating to the left and right symmetry, we may have the following:

G =

√
2

k1

ULM̂νU
†
R =

 G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (J.13)

where:

UL =

 c12c13 s12c13 s13 e
−i δ

−s12c23 − c12s13s23 e
i δ c12c23 − s12s13s23 e

i δ c13s23

s12s23 − c12s13c23 e
i δ −c12s23 − s12s13c23 e

i δ c13c23

 (J.14)

M̂ν =

 0 0 0
0 0.0086 0
0 0 0.0506

 (J.15)

UR =

 C12C13 S12C13 S13 e
−i δR

−S12C23 − C12S13S23 e
i δR C12C23 − S12S13S23 e

i δR C13S23

S12S23 − C12S13C23 e
i δR −C12S23 − S12S13C23 e

i δR C13C23

 (J.16)

s2
12 = 0.307,

s2
23 = 0.512,

s2
13 = 0.0218,

δ = 1.37 π

k1 = 2 GeV,
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G11 = 4.908399× 10−13 i C12S13S23e
iδR + 2.141357× 10−12C12S13S23e

iδR + 0.00328S12C13

G12 = −0.00327S12S13S23 e
−iδR + i 0.00485C13S23 − 0.00192C13S23 + 0.00328C12C23

G13 = −0.003278S12S13C23 e
−iδR − 0.00327C12S23 + i 0.00485C13C23 − 0.00192C13C23

G21 = 0.02298S13 e
iδR + 2.94546× 10−4i S12C13 + 0.00398S12C13

G22 = −2.94546× 10−4 i S12S13S23e
−iδR − 0.00398S12S13S23e

−iδR + 0.0229C13S23 +

+ 2.9455× 10−4i C12C23 + 0.00398C12C23

G23 = −2.94546× 10−4 i S12S13C23 e
−iδR − 0.003983S12S13C23 e

−iδR − 2.94546× 10−4 iC12S23 +

− 0.003983C12S23 + 0.02298C13C23

G31 = 0.02673S13 e
iδR + 3.42604× 10−4i S12C13 − 0.00318S12C13

G32 = −3.42605× 10−4 i S12S13S23e
−iδR + 0.003188S12S13S23e

−iδR + 0.02673C13S23 +

+ 3.42604× 10−4i C12C23 − 0.00318C12C23

G33 = −3.42604× 10−4 i S12S13C23 e
−iδR + 0.003188S12S13C23 e

−iδR − 3.40604× 10−4 iC12S23 +

+ 0.003188C12S23 + 0.02673C13C23
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Appendix K

Explicit parity violation models with
left-right gauge symmetries

K.1 Introduction

This appendix is based on another article published in the Journal of Physics G (J. Phys. G:
Nucl. Part. Phys. 48 (2021) 085010 (16pp)). The basic asumptions of the left-right symmetric
models is the electroweak gauge GP

LR ≡ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗ P symmetries is that
at under generalized parity P , or charge conjugated C, is that the electroweak interactions are
invariant under these symmetries at an energy scale larger than the standard electroweak scale
i.e., ≈ 100 GeV Ref.[4, 5, 28, 7]. As a consequence right-handed neutrinos must exist in nature
and neutrino are masssive particles. The smallness of the neutrino masses is related with the
breaking of parity if scalar triplets are added being the active neutrinos Majorana particles and
the right-handed neutrinos are heavy or, if neutrinos are Dirac fermions only scalar doublets are
added and the right- handed neutrinos are related with the Dirac field ν = νL + νR and the mass
term is mDν̄ν. However, this is the case the smallness of the neutrino masses need a fine tuning.
The rationale for the parity, or charge conjugation, violation in low energy weak interactions is
a well known motivation for the left-right symmetric models or even if the parity violation is
trigger before the SU(2)R symmetry breakdown [6, 27].

Here we will study a model with SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗ P gauge symmetry without
introducting the parity symmetry at all, i.e., the parity is breakdown explicitly and the left-
handed weak interactions have no relation with the right-handed ones. Of course, the SU(2)R
symmetry involves heavy vector bosons in order to be compatible with low energy phenomenol-
ogy.

K.2 The Model

Our results do not depend in the representation content of the left-right symmetric or almost
symmetric model so we will consider the model in Ref. [7]. with the electroweak gauge symmetry:

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L (K.1)

without introducing the generalized parity P . Hence, gL 6= gR from the very beginning and the
model has thre gauge couplings gL, gR and gB−L ≡ g′ of the respective factors. The electric
charge operator defined [24, 25]

Q

|e|
= T3L + T3R +

B − L
2

(K.2)
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We omit the SU(3)C factor because is as in the Standard Model. We will also consider only the
lepton sector transforming as follows:

L′` =

(
ν`L
`′

)
L

∼ (2L,1R.− 1
2
), R′` =

(
ν`L
`′

)
R

∼ (1L,2R.− 1
2
) (K.3)

With ` = e, µ, τ and the primed states in (K.3) are symmetry eigenstates.

The scalar sector consists one or more bi-doublets transforming as (2L,2R, 0):

Φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)
, (K.4)

to generate the fermion masses and only one doublet χR ∼ (1,2,+1) or one triplet ∆R ∼
(1,3,+2) to break the gauge symmetry down to U(1)Q. Here we will consider, for simplicity, the
cases of one bi-doublet and one doublet.

χR =

(
χ+
R

χ0
R

)
(K.5)

to break completely the gauge symmetry to U(1)Q A doblet χL ∼ (2,1,+1) or a triplet ∆L ∼
(3,1,+2) can be added but are not mandatory in this case. They can be added to have a inert
doublet or triplet. A triplet ∆R ∼ (1,3,+2) may be added to give a Majorana mass term to
right-handed neutrino and implement the type-I seesaw mechanism. Here, we will consider the
minimal case of a bi-doublet in (K.4) and the doublet in (K.5) since they are enough to shown
the main feauture of the model.

The vacuum expectation values, (VEVs), are:

〈Φ1〉 = 1√
2

(
k1 0
0 k′1

)
, 〈χR〉 = 1√

2

(
0
vR

)
, (K.6)

K.3 Gauge Bosons Mass Eigenstates

The covariant derivative for the bi-doublets Φi with i = 1, 2 and for the doublet χR are given by:

DµΦ = ∂µΦ + i

[
gL
~τ

2
· ~WLΦ− gRΦ

~τ

2
· ~WR

]
, (K.7)

DµχR =

(
∂µ + igR

~τ

2
· ~WR − ig′Bµ

)
χR, (K.8)

where we have considered gL 6=R. The VEVs are given in the equations (K.6).

K.3.1 Charged Bosons mass matrix

We obtain

MCB =

(
g2L
4

(k2
1 + k′21 + k2

2 + k′22 + v2
L) −gLgR

2
(k1k

′
1 + k2k

′
2)

−gLgR
2

(k1k
′
1 + k2k

′
2)

g2L
4

(k2
1 + k′21 + k2

2 + k′22 + v2
R)

)
Regarding vL = k2 = k′2 = 0, we have:

MCB =

(
g2L
4
K2 −gLgR

2
K̄2

−gLgR
2
K̄2 g2L

4
(K2 + v2

R)

)
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where: K2 = k2
1 + k′21 , K̄2 = k1k

′
1, and the charged gauge bosons masses are given by:

M2
W1

=
1

8

(
K2(g2

L + g2
R) + g2

R v
2
R −
√

∆′
)
, (K.9)

M2
W2

=
1

8

(
K2(g2

L + g2
R) + g2

R v
2
R +
√

∆′
)
, (K.10)

where: ∆′ = 16 g2
Lg

2
RK̄

4 + [g2
Rv

2
R +K2(g2

R − g2
L)]

2
.

The masses eigenstates as a function of the symmetry eigenstates are given by:

W+
1µ = cξW

+
L + sξW

+
R , (K.11)

W+
2µ = −sξW+

L + cξW
+
R , (K.12)

where:

sξ =
4 gLgR K̄

2√
16g2

Lg
2
RK̄

4 + Y 2
, (K.13)

cξ =
Y√

16g2
Lg

2
RK̄

4 + Y 2
, (K.14)

Y = K2(g2
R − g2

L) + g2
Rv

2
R +
√

∆′, (K.15)

Making v2
R � X2, where X is another VEV, we have:

M2
W1
≈ 1

4
g2
LK

2, (K.16)

M2
W2
≈ 1

4
g2
Rv

2
R, (K.17)

We can observe that M2
W2
�M2

W1

K.3.2 Neutral Bosons mass matrix

MNB =


g2L
4

(K2 + v2
L) −gLgR

4
K2 −g′ gL

4
v2
L

−gLgR
4
K2 g2R

4
(K2 + v2

R) −g′gR
4
v2
R

−g′ gL
4
v2
L −g′ gR

4
v2
R

g′2

4
(v2
L + v2

R)

 ,

remember that K2 ≡ k2
1 + k′21 + k2

2 + k′22 .

Making vL = k2 = k′2 = 0, we have:

MNB =


g2L
4
K2 −gLgR

4
K2 0

−gLgR
4
K2 g2R

4
(K2 + v2

R) −g′gR
4
v2
R

0 −g′ gR
4
v2
R

g′2

4
v2
R

 ,

Diagonalizing we have:

M2
Z1

=
1

8

[
K2(g2

L + g2
R) + v2

R(g′2 + g2
R)−

√
∆
]
, (K.18)

M2
Z2

=
1

8

[
K2(g2

L + g2
R) + v2

R(g′2 + g2
R) +

√
∆
]
, (K.19)

M2
Aµ = 0. (K.20)
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Where:

∆ = (g′2 + g2
R)2v4

R + (g2
R + g2

L)2K4 + 2K2 v2
R

[
g4
R − g2

Rg
2
L − g2

Rg
′2 − g2

Lg
′2]

Diagonalizing we have:

M2
Z1

=
1

8

[
K2(g2

L + g2
R) + v2

R(g′2 + g2
R)−

√
∆
]
, (K.21)

M2
Z2

=
1

8

[
K2(g2

L + g2
R) + v2

R(g′2 + g2
R) +

√
∆
]
, (K.22)

M2
Aµ = 0. (K.23)

Where:

∆ = (g′2 + g2
R)2v4

R + (g2
R + g2

L)2K4 + 2K2 v2
R

[
g4
R − g2

Rg
2
L − g2

Rg
′2 − g2

Lg
′2] (K.24)

Making v2
R � X2, where X is another VEV, in the same way as the previous section, we have:

M2
Z1
≈ 1

4

(g2
Lg

2
R + [g2

R + g2
L]g′2)K2

g′2 + g2
R

, (K.25)

M2
Z2
≈ 1

4
(g2
R + g′2)v2

R, (K.26)

We can observe that M2
Z2
�M2

Z1
. Notice that for vR � X we also have:

MZ1 ≈
MW1

cos θ
+O

(
X2/v2

R

)
(K.27)

After diagonalizing the neutral matrix by an orthogonal matrix, OTM2
NBO = M̂ =

(
0,m2

Z1
,m2

Z2

)
,

we obtain the following symmetry eigenstates as a function of masses eigenstates: W 3L
µ

W 3R
µ

Bµ

 =

 n11 n12 n13

n21 n22 n23

n31 n32 n33

 Aµ

Zµ
1

Zµ
2

 , (K.28)

where:

n11 = 1/N1, (K.29)

n21 =
gL

N1 gR
, (K.30)

n31 =
gL
N1 g′

, (K.31)

n12 = 1/N2, (K.32)

n22 =
a1

N2

, (K.33)

n32 =
b1

N2

, (K.34)

n13 = 1/N3, (K.35)

n23 =
a2

N3

, (K.36)

n33 =
b2

N3

, (K.37)
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Moreover:

a1 =
−(g2

R − g2
L)K2 − (g′2 + g2

R)v2
R +
√

∆

2gLgRK2
, (K.38)

b1 = g′
−(g2

R + g2
L)K2 + (g′2 + g2

R)v2
R −
√

∆

2gLg2
RK

2
, (K.39)

a2 =
−(g2

R − g2
L)K2 − (g′2 + g2

R)v2
R −
√

∆

2gLgRK2
, (K.40)

b2 = g′
−(g2

R + g2
L)K2 + (g′2 + g2

R)v2
R +
√

∆

2gLg2
RK

2
, (K.41)

N1 =

√
1 + (

gL
gR

)2 + (
gL
g′

)2, (K.42)

N2 =
√

1 + a2
1 + b2

1, (K.43)

N3 =
√

1 + a2
2 + b2

2, (K.44)

and ∆ is given by the expression (K.24). The eigenstates are normalized. These are exact results.

K.4 Lepton-Vector Boson Interactions

When gL 6= gR the covariant derivatives in the lepton sector are given by:

DµL =

(
∂µ + i

gL
2
~τ · ~WLµ − i

g′

2
Bµ

)
L, (K.45)

DµR =

(
∂µ + i

gR
2
~τ · ~WRµ − i

g′

2
Bµ

)
R, (K.46)

and similarly for quarks.

From projection on the photon field in Eq. (K.28) y (K.45) we may obtain the electric charge:

Q`L = Q`R ≡ −e =
gLgRg

′

Ω
(K.47)

or

e2 =
g2
Lg

2
Rg
′2

(g2
L + g2

R)g′2 + g2
Lg

2
R

=
g2
Lg

2
Rg
′2

Ω2
, (K.48)

where:

Ω =
√

(g2
L + g2

R) g′2 + g2
Lg

2
R.

Similarly for quarks.

From (K.48) we have:

1

e2
=

1

g2
L

+
1

g2
R

+
1

g′2
(K.49)

Notice that in the present case only gL can be related to the g coupling constant of the SU(2)L
electroweak standard model, while gR and g′ have no relation with g and gY and should be phe-
nomenological constrained.
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Using Eq. (K.28) y (K.47) we can write it like this: W 3L
µ

W 3R
µ

Bµ

 =


gRg
′

Ω
1
N2

1
N3

gLg
′

Ω
a1
N2

a2
N3

gRgL
Ω

b1
N2

b2
N3


 Aµ

Zµ
1

Zµ
2

 , (K.50)

Note that:

QνL = QνR = 0 (K.51)

Using the appropriate projection of W3L, W3R and Bµ upon the photon field it is not necessary
to impose extra constraints over the matrix elements of the matrix in Eq. (K.28) or (K.50). In
Ref. [12], the author began with a general orthogonal matrix relating W3L, W3R and Bµ with A,
Z1, Z2 and for this reason extra constraints had to be imposed on the matrix elements. However,
now it is possible to define three angles θij of an orthogonal 3× 3 matrix: c12c13 s12c13 s13

−s12c23 − c12s13s23 c12c23 − s12s13s23 c13s23

s12s23 − c12s13c23 −c12s23 − s12s13c23 c13c23

 , (K.52)

such that:
gRg
′

√
Ω

1
N2

1
N3

gLg
′

√
Ω

a1
N2

a2
N3

gRgL√
Ω

b1
N2

b2
N3

 =

 c12c13 s12c13 s13

−s12c23 − c12s13s23 c12c23 − s12s13s23 c13s23

s12s23 − c12s13c23 −c12s23 − s12s13c23 c13c23

 (K.53)

Comparing both matrices, we obtain:

c12c13 =
gRg

′
√

Ω
,

s12c13 =
1

N2

,

s13 =
1

N3

,

−s12c23 − c12s13s23 =
gLg

′
√

Ω
,

c12c23 − s12s13s23 =
a1

N2

, (K.54)

c13s23 =
a2

N3

,

s12s23 − c12s13c23 =
gRgL√

Ω
,

−c12s23 − s12s13c23 =
b1

N2

,

c13c23 =
b2

N3

,

Notice that if we assume from the very start that the matrixO in (K.50) is an arbitrary orthogonal
matrix, we obtain, for instance, for neutrinos:

QνL = gLc12c13 − g′(s12s23 − c12s13c23)

QνR = −gL(s12c23 + c12s13s23)− g′(s12s23 − c12s13c23) 6= 0, (K.55)
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Hence QνL 6= QνR 6= 0, for arbitrary angles. Similarly all left-handed fields have electric charge
which is different from the charge of the right-handed components. Only when the massles vector
field (photon) has been identified, it is possible to put the constraints in Eq. (K.54) like has been
done in [61, 62].

In left-right symmtric model, the invariance under a generalized parity symmetry implies: gL =
gR and we have from Eq. (K.49):

1

e2
=

2

g2
+

1

g′2
, (K.56)

and the charged leptons electric charge is given by:

eq = q
g g′√

g2 + 2g′2
, (K.57)

with q = −1, 2/3,−1/3 for charged leptons, u-like and d-like quarks, respectively.

From (K.57):

e = g sin θ, e = g′
√

cos 2θ, (K.58)

where:

sin θ =
g′√

g2 + g′2
, cos 2θ =

g√
g2 + 2g′2

(K.59)

Arises in left-right symmetric model and again we obtain the relation in Eq. (K.56). However, it
is not possible to mantain the equality of gL and gR for all the energy range, but only at a give
energy, say at the Z-pole because the running of both coupling constants are different since they
feel different degrees of freedom [6, 27].

K.4.1 Charged Interactions

We know from the lagrangian:

LW = −1

2

[
gLν̄Lγ

µV L
PMNS`LW

+
Lµ + gRν̄Rγ

µV R
PMNS`RW

+
Rµ

]
+H.C., (K.60)

Besides the fact that gL 6= gR, in the general case where the Yukawa couplings are complex the
right-handed CKM matrix is different from the left-handed one. This case was considered in
Ref.[16]. However, if we neglect CP violation and consider G and F real as well the VEV k1, we
have that V L

PMNS = V R
PMNS ≡ VPMNS. Similarly in the quark sector.

K.4.2 Neutral Interactions

Neutral interactions between the fermions and the neutral vector bosons are the following: The
electromagnetic interactions had already been confirmed, the charged fermions has the correct
interaction with the photons. See Eq. (K.47). The interactions with the massive neutral vector
bosons are given by: Next, we parametrize the neutral interactions of a fermion i with the Z1µ

and Z2µ neutral bosons as follows:

LNC = − g

2 cos θ

∑
i

ψ̄iγ
µ
[
(giV − giAγ5)Z1µ + (f iV − f iAγ5)Z2µ

]
ψi (K.61)
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We will define:

gfV =
1

2
(afL + afR), gfA =

1

2
(afL − a

f
R), (K.62)

where afL and afR are the couplings of the left and right-handed comoponents of a fermion ψi.
Similarly couplings f iL,R and the respective f iV,A are defined.

Using (K.28), we obtain for leptons:

aνL =
gL
N2

(1− δLb1),

aνR =
gR
N2

(a1 − δRb1),

a`L = − gL
N2

(1 + δLb1), (K.63)

a`R = − gR
N2

(a1 + δRb1),

with δL(R) = g′/gL(R) or:

gνV =
gL
N2

(1 + εa1 − 2δLb1),

g`V = − gL
N2

(1 + εa1 + 2δLb1),

gνA =
gL
N2

(1− εa1), (K.64)

g`A = − gL
N2

(1− εa1),

where ε = gR/gL, and for quarks:

auL =
gL
N2

(
1 +

1

6
δLb1

)
,

auR =
gR
N2

(
a1 +

1

6
δLb1

)
,

adL =
gL
N2

(
−1 +

1

6
δLb1

)
, (K.65)

adR =
gR
N2

(
−a1 +

1

6
δLb1

)
,

with:

guV =
gL

2N2

[
1 + εa1 +

1

6
(δL + δR)b1

]
,

guA =
gR
N2

[
1− εa1 +

1

6
(δL − δR)b1

]
,

gdV = − 1

2N2

[
1 + εa1 −

1

6
(δL − δR)b1

]
, (K.66)

gdA =
1

2N2

[
−1 + εa1 +

1

6
(δL − δR)b1

]
, ,

Notice that when vR →∞, we obtain:

gνV , g
ν
A →

1

2
. (K.67)
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