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MATEMÁTICA

ELABORADA POR:

JULIO JOSUE GUTIERREZ ALVA

ASESOR:

Dr. JOE ALBINO PALACIOS BALDEÓN
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Resumen

LaK-teoŕıa bivariante kkalg en la categoŕıa lca de álgebras localmente convexas asigna

grupos abelianos kkalgn (A,B), n ∈ Z, a cada par de dichas algebras A y B y existen

aplicaciones bilineales

kkalgn (A,B)× kkalgm (B,C) → kkalgn+m(A,C)

para A,B y C álgebras localmente convexas y m,n ∈ Z. Con este producto, podemos

definir una categoŕıa KKalg cuyos objetos son álgebras localmente convexas y cuyos mor-

fismos están dados por los grupos graduados kkalg∗ (A,B). De este modo, la K-teoŕıa

bivariante kkalg se puede ver como un funtor kkalg : lca → KKalg. Este funtor es universal

con respecto a funtores split exactos, invariantes por diffotoṕıas y K-estables. En par-

ticular, un isomorfismo en KKalg induce un isomorfismo en KKLp y en homoloǵıa ćıclica

periódica bivariante HP .

En [10], se determina que los invariantes del álgebra de Weyl

A1(C) = C⟨x, y|xy − yx = 1⟩

son los mismos que los de C. Esto es, se prueba que A1(C) es isomorfo a C en la

categoria KKalg. En este trabajo, generalizamos el resultado a una familia de álgebras de

Weyl generalizadas.

Como resultados del presente trabajo, calculamos la clase de isomorfismo en la cate-

goŕıa KKalg de todas las álgebras de Weyl generalizadas no conmutativas A = C[h](σ, P ),

donde σ(h) = qh + h0 es un automorfismo de C[h] y P ∈ C[h], excepto cuando q ̸= 1 es

una ráız de la unidad.
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Abstract

The bivariant K-theory kkalg in the category lca of locally convex algebras asigns

abelian groups kkalgn (A,B), n ∈ Z to a pair A, B of such algebras and there are bilinear

maps

kkalgn (A,B)× kkalgm (B,C) → kkalgn+m(A,C)

for every A,B and C locally convex algebras and m,n ∈ Z. Using this product, we can

define a category KKalg whose objects are locally convex algebras and whose morphisms

are given by the graded groups kkalg∗ (A,B). Then the bivariant K-theory kkalg can

be seen as a functor kkalg : lca → KKalg. This functor is universal among split exact,

diffotopy invariant and K-stable functors. In particular, an isomorphism in KKalg induces

an isomorphism in KKLp and in bivariant periodic cyclic homology HP .

In [10], the invariants of the Weyl algebra

A1(C) = C⟨x, y|xy − yx = 1⟩

are determined to be the same as those of C. That is, A1(C) is isomorphic to C in the

category KKalg. In the present work, we generalize this result to a family of generalized

Weyl algebras.

As results, we compute the isomorphism class in the category KKalg of all non com-

mutative generalized Weyl algebras A = C[h](σ, P ), where σ(h) = qh+h0 is an automor-

phism of C[h] and P ∈ C[h], except when q ̸= 1 is a root of unity.
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Introduction

In [10], Cuntz defined a bivariant K-theory kkalg in the category lca of locally convex

algebras. These are algebras A that are complete locally convex vector spaces over C with

a jointly continuous multiplication · : A×A→ A. To a pair of locally convex algebras A

and B, there correspond abelian groups kkalgn (A,B), n ∈ Z and there are bilinear maps

kkalgn (A,B)× kkalgm (B,C) → kkalgn+m(A,C)

for every A,B and C locally convex algebras and m,n ∈ Z. Using this product, we can

define a category KKalg whose objects are locally convex algebras and whose morphisms

are given by the graded groups kkalg∗ (A,B). Then the bivariant K-theory kkalg can be

seen as a functor kkalg : lca → KKalg. This functor is universal among split exact, diffotopy

invariant and K-stable functors:

Theorem 0.1. [Theorem 7.26 in [11] ] If F is a covariant functor from the category of

bornological algebras to an abelian category C that is diffotopy invariant, half exact for

linearly split extensions and K-stable then F = F̄ ◦kkalg for a unique homological functor

F̄ : KKalg → C.

This property implies the existence of a bivariant Chern-Connes character to bivariant

periodic cyclic homology, i.e. for any pair of locally convex algebras A and B, there are

natural maps ch : kkalgn (A,B) → HPn(A,B) that commute with the products of kkalg

and of HP . In particular, an isomorphism in KKalg induces an isomorphism in bivariant

periodic cyclic homology HP .

The coefficient ring kkalg0 (C,C) has not been computed. However, the coefficient ring

can be computed for a related bivariant K-theory. In [12], Cuntz and Thom define
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kk
Lp
n (A,B) = kkalgn (A,B⊗πLp) where Lp ⊆ B(H) is the p-th Schatten ideal. In the same

article, they prove that kk
Lp

0 (C,C) = Z and kk
Lp

1 (C,C) = 0. The functor kkLp satisfies

the conditions of Theorem 0.1, thus there is a functor KKalg → KKLp .

The category of locally convex algebras includes all algebras with a countable ba-

sis over C with the topology given by all seminorms. The Weyl algebra A1(C) =

C⟨x, y|xy − yx = 1⟩ is one of such algebras and in [10] it is proven that A1(C) is isomor-

phic to C in KKalg. By the universal property of KKalg this implies KK
Lp

0 (C,W ) = Z and

KK
Lp

1 (C,W ) = 0.

The results from [10] together with those obtained for Z-graded C*-algebras in [21],

[20], [13] and [1] motivate the construction of tools for finding the invariants of other

Z-graded locally convex algebras.

Tools for computing the K-theory of Z-graded C*-algebras date back to the Pimsner-

Voiculescu sequence (see [21]). Let A be a C*-algebra and α ∈ Aut(A). The crossed

product A ⋊α Z is the universal C*-algebra generated by A and a unitary element u

satisfying the relation

ua = α(a)u

for all a ∈ A. The Z-grading is defined by setting the degree of u equal to 1 and the

degree of all elements of A equal to 0. The Pimsner-Voiculescu sequence is a classical

result for computing the K-theory of a crossed product by Z.

Theorem 0.2 (Theorem 2.4 in [21]). There is an exact sequence

K0(A) K0(A) K0(A⋊α Z)

K1(A⋊α Z) K1(A) K1(A).

1−α∗ i∗

i∗ 1−α∗

There are results that generalize the Pimsner-Voiculescu exact sequence for other Z-

graded C*-algebras such as Cuntz-Pimsner algebras defined in [20], covariance algebras

associated to partial automorphisms (see [13]) and for generalized crossed products (see

[1]).

A similar result can be obtained for smooth crossed products A⋊̂αZ, where A is a

locally convex algebra and α ∈ Aut(A) (see [10]). The smooth crossed product A⋊̂αZ is

2



defined as the universal locally convex algebra generated by A together with an invertible

element u satisfying uxu−1 = α(x) for all x ∈ A. In this case we have the following

theorem.

Theorem 0.3 (Theorem 14.3 in [10]). For any locally convex algebra D, there is an exact

sequence

kkalg0 (D,A) kkalg0 (D,A) kkalg0 (D,A⋊̂αZ)

kkalg1 (D,A⋊̂αZ) kkalg1 (D,A) kkalg1 (D,A).

·(1−kk(α))

·(1−kk(α))

The locally convex algebra analog to a generalized crossed product is called a smooth

generalized crossed product and defined in [15].

Definition 0.4. A gauge action γ on a locally convex algebra B is a pointwise continuous

action of S1 on B. An element b ∈ B is called gauge smooth if the map t 7→ γt(b) is

smooth.

If we have a gauge action on B, then Bn = {b ∈ B|γt(b) = tnb, ∀t ∈ S1} define a

natural Z-grading of B.

Definition 0.5. A smooth generalized crossed product is a locally convex algebra B with

an involution and a gauge action such that

� B0 and B1 generate B as a locally convex involutive algebra.

� all b are gauge smooth and the map B → C∞(S1, B) is continuous.

In [15], 6-term exact sequences for smooth generalized crossed products B that satisfy

the condition of being tame smooth are constructed (see definition 18 in [15]). These se-

quences relate the kkalg invariants of B with the kkalg invariants of the degree 0 subalgebra

B0.

Theorem 0.6 (Theorem 36 in [15]). Let B be a tame smooth generalized crossed product.

For any locally convex algebra D we have a 6-term exact sequence

3



kkalg0 (D,B0) kkalg0 (D,B0) kkalg0 (D,B)

kkalg1 (D,B) kkalg1 (D,B0) kkalg1 (D,B0),

and a similar sequence on the other variable.

In this thesis, we study a family of generalized Weyl algebras.

Definition 0.7. Let D be a ring, σ ∈ Aut(D) and a a central element of D. The

generalized Weyl algebra D(σ, a) is the algebra generated by x and y over D satisfying

xd = σ(d)x, yd = σ−1(d)y, yx = a and xy = σ(a) (0.1)

for all d ∈ D.

We compute the isomorphism class in KKalg of all non commutative generalized Weyl

algebras A = C[h](σ, P ), where σ(h) = qh+h0 is an automorphism of C[h] and P ∈ C[h],

except when q ̸= 1 is a root of unity. In the table below we list all possible cases for A

and our results.

Conditions Results

P is constant
P = 0 A ∼=KKalg C Prop 4.20

P ̸= 0 A ∼=KKalg SC⊕ C Prop 4.19

P is nonconstant

with r distinct

roots

q not a root of unity A ∼=KKalg Cr Thm 4.13

Prop 4.17

q = 1 and h0 ̸= 0 A ∼=KKalg Cr Thm 4.13

q ̸= 1, a root of unity No result

q = 1 and h0 = 0 No result

Generalized Weyl algebras A = C[h](σ, P ) are locally convex algebras when given the

fine topology. They are Z-graded with a grading defined by deg y = 1 and deg x = −1.

There is an action of S1 defined by γt(ωn) = tnωn for ωn ∈ An. When P ∈ R[h] and

q and h0 are real, they have an involution defined by y∗ = x, x∗ = y and d∗ defined

4



by conjugating all coefficients of d, for d ∈ C[h]. Generalized Weyl algebras over C[h]

satisfying these conditions are smooth generalized crossed products that are tame smooth

if and only if P is a non zero constant polynomial (see Remark 3.13).

Hence, if P ∈ C[h] is a non-constant polynomial we cannot use the results of [15].

However, in most cases we can construct an explicit faithful representation of A, which

allows us to follow the general strategy of [10] and [15], in order to determine the KKalg

class of A.

Our main result is Theorem 4.13, which computes the isomorphism class of A in KKalg

in the following two cases:

� q = 1 and h0 ̸= 0.

� q is not a root of unity and P has a root different from h0
q−1

.

In each of these cases we construct an exact triangle

SA→ A1A−1
0→ A0 → A, (0.2)

in the triangulated category (KKalg, S), where An is the subspace of degree n of the Z-

graded algebra A (see Lemma 3.3). In order to construct the exact triangle in (0.2) we

follow the methods of [15]: we construct a linearly split extension

0 → ΛA → TA → A→ 0

and prove

TA ∼=KKalg A0 and ΛA ∼=KKalg A1A−1.

The exact triangle in (0.2) yields an isomorphism A ∼=KKalg A0 ⊕ S(A1A−1). The

main result now follows after we prove A1A−1
∼=KKalg SCr−1 in Proposition 4.12, since

A0 = C[h] ∼=KKalg C.

The main result allows for the computation of the isomorphism class in KKalg of the

quantum Weyl algebra, the primitive factors Bλ of U(sl2) and the quantum weighted

projective lines O(WPq(k, l)) (see [4]).

For the sake of completeness, we also discuss the case where P is a constant polynomial

or has only h0
1−q as a root.
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In the case where A =
⊕

n∈NAn is an N-graded locally convex algebra with the fine

topology, it can be shown that A ∼=KKalg A0 (see Lemma 4.16). This is the case when

� P is nonconstant, q is not a root of unity and P has only h0
q−1

as a root or

� P = 0.

In these cases we obtain A ∼=KKalg C.

In the case where P is a nonzero constant polynomial, we follow the construction of

[15]. In this case, there is an exact triangle

SA→ A0
0→ A0 → A, (0.3)

in the triangulated category (KKalg, S) and we obtain A ∼=KKalg SC⊕ C.

In the case where q = 1 and h0 = 0, we have σ = id and so A ∼= C[h, x, y]/(xy − P )

is a commutative algebra. This case and the case where q ̸= 1 is a root of unity remain

open.

This thesis is organized as follows. In Chapter 1, we recall basic results on locally

convex algebras. Lemma 1.38 is a technical result which asserts that the projective tensor

product of the Toeplitz algebra T with an algebra with a countable basis over C is the

algebraic tensor product. In Chapter 2 we recall the definition and properties of kkalg

following [10] and [12]. In Chapter 3, we define generalized Weyl algebras and construct

explicit faithful representations when q = 1 and h0 ̸= 0, and when q is not a root of

unity and P has a root different from h0
q−1

. In Chapter 4, we compute the isomorphism

class in KKalg of all noncommutative generalized Weyl algebras A = C[h](σ, P ) where

σ(h) = qh+ h0 except when q ̸= 1 is a root of unity.

6



Chapter 1

Locally convex algebras

In this chapter we discuss the category of locally convex algebras lca, differential homo-

topies, linearly split extensions of locally convex algebras and some important locally

convex algebras which we use for the definition of kkalg and for computations. We follow

the discussions of [15], [11] and [10].

1.1 Locally convex algebras

We begin with the definition of the category of locally convex algebras. This category is

broad enough to contain all algebras with a countable basis over C. In what follows we

consider only vector spaces and algebras over C.

Definition 1.1. A locally convex algebra A is a complete locally convex vector space over

C which is an algebra such that for any continuous seminorm p in A there is a continuous

seminorm q in A such that p(ab) ≤ q(a)q(b) for all a, b ∈ A. This is equivalent to saying

that the multiplication is jointly continuous.

Definition 1.2. Let A be a locally convex algebra. A seminorm p of A is called sub

multiplicative if p(ab) ≤ p(a)p(b), for all a, b ∈ A. If the topology of A can be defined by

a family of submultiplicative seminorms we say that A is an m-algebra.

The category lca has locally convex algebras as objects and the morphisms are con-

tinuous homomorphisms.

7



Examples 1.3. The following are examples of locally convex algebras.

1. All algebras with a countable basis over C. These are locally convex algebras when

the topology is generated by all seminorms (Proposition 2.1 on [10]). The Weyl

algebra and generalized Weyl algebras (defined in Chapter 3) are examples of this

kind of algebras.

2. C∞([0, 1]) is a locally convex algebra with the topology defined by the family of

seminorms

pn(f) = ||f ||+ ||f ′||+ 1

2
||f ′′||+ · · ·+ 1

n!
||f (n)||

where ||f || = sup{f(t)|t ∈ [0, 1]}.

3. More generally, C∞(M) is a locally convex algebra for any compact manifold M .

4. The smooth Toeplitz algebra T and the algebra of smooth compact operators K

(to be defined in Section 1.4).

There are several possible ways to topologize the tensor product V ⊗W of two locally

convex vector spaces. These different topologies will lead to different completions. The

two most common completions are the projective completion V ⊗πW and the equicontin-

uous completion V ⊗ϵW . For locally convex algebras, we use the projective completion.

Definition 1.4. Let V and W be locally convex spaces. We define the projective tensor

product V ⊗π W of V and W as the completion of V ⊗W with respect to the family of

seminorms

(p⊗ q)(z) = inf{
n∑
i=1

p(ai)q(bi) | z =
n∑
i=1

ai ⊗ bi, n ≥ 1, ai ∈ A, bi ∈ B}

where p and q are continuous seminorms on V and W respectively.

Lemma 1.5. If A and B are locally convex algebras, then A ⊗π B is a locally convex

algebra.

Proof. We will proof that the multiplication in A ⊗ B is continuous with respect to the

family of seminorms p⊗ q. Let z = z1z2 ∈ A⊗B. Let p⊗ q be a continuous seminorm on

8



A⊗B and p̄, q̄ be such that for all a1, a2 ∈ A and b1, b2 ∈ B, we have p(a1a2) ≤ p̄(a1)p̄(a2)

and q(b1b2) ≤ q̄(b1)q̄(b2). Then for all ϵ > 0 we have expressions z1 =
∑

i ai ⊗ bi and

z2 =
∑

j cj ⊗ dj such that ∑
i

p̄(ai)q̄(bi) ≤ (p̄⊗ q̄)(z1) + ϵ∑
j

p̄(cj)q̄(dj) ≤ (p̄⊗ q̄)(z2) + ϵ.

Now we have z =
∑

i,j aicj ⊗ bidj and

(p⊗ q)(z) ≤
∑
i,j

p(aicj)q(bidj)

≤
∑
i,j

p̄(ai)p̄(cj)q̄(bi)q̄(dj)

≤ [(p̄⊗ q̄)(z1) + ϵ][(p̄⊗ q̄)(z2) + ϵ]

therefore (p ⊗ q)(z) ≤ [(p̄ ⊗ q̄)(z1)][(p̄ ⊗ q̄)(z2)]. Since A ⊗ B is dense in A ⊗π B, the

product in A⊗π B is also continuous.

Remark 1.6. The completions V ⊗π W and V ⊗ϵ W coincide when either V or W is a

nuclear space (see Definition 50.1 and Theorem 50.1 in [23]). The main example of an

infinite dimensional nuclear space is the space of rapidly decreasing sequences.

Definition 1.7. Define s to be the space of rapidly decreasing sequences of complex

numbers. These are sequences a = (ai)i∈N such that the sums

pn(a) =
∞∑
i=0

|1 + i|n|ai|

are finite for all n ∈ N. The locally convex topology is defined by the seminorms pn.

Example 1.8. We define C[0, 1] as the (closed) subalgebra of C∞([0, 1]) of functions with

all derivatives vanishing at 0 and 1. Since C∞([0, 1]) is a nuclear space and C[0, 1] is

a linear subspace, then C[0, 1] is nuclear (see item (50.3) in Proposition 50.1 in [23]).

Therefore, for any locally convex algebra A, C[0, 1] ⊗π A = A[0, 1], the algebra of C∞

functions with values in A and all derivatives vanishing at 0 and 1. We define A[0, 1) and

A(0, 1) as the subalgebras of A[0, 1] that consist of functions that vanish at 1, and at 0

and 1 respectively.

9



Definition 1.9. We define SA and CA to be the algebras A(0, 1) and A[0, 1) and we call

them the suspension and the cone of A respectively.

Definition 1.10. There is an extension

0 → SA→ CA→ A→ 0.

We name this extension the cone extension of A. We will see that this is a linearly split

extension as defined in 1.3.

Note that S : lca → lca is a functor. Given a morphism ϕ of locally convex algebras

C[0, 1], there is a morphism S(ϕ) : SA → SB defined by f 7→ ϕ ◦ f . We can iterate this

functor n times to obtain SnA and Sn(f).

1.2 Diffotopies

The bivariant K-theory kkalg is invariant with respect to differentiable homotopies also

known as diffotopies. The reader can consult section 6.1 in [11] for more details on

diffotopies.

Definition 1.11. Let ϕ0, ϕ1 : A → B be morphisms of locally convex algebras. A diffo-

topy between ϕ0 and ϕ1 is a morphism Φ: A → C∞([0, 1], B) such that evi ◦Φ = ϕi. If

there is a diffotopy between ϕ0 and ϕ1 we call them diffotopic and write ϕ0 ≃ ϕ1.

Using a reparameterization of the interval we can assume that all derivatives of Φ

at 0 and 1 vanish and therefore we can assume that a diffotopy is given by a morphism

Φ: A → B[0, 1]. With this characterization we can define a concatenation of diffotopies

and therefore show that diffotopy is an equivalence relation.

Remark 1.12. The existence of a diffotopy Φ: A→ B[0, 1] implies the existence of a family

of homomorphisms ϕt : A→ B such that t→ ϕt(x) is in B[0, 1] for each x ∈ A. However,

as it is proven in [14], the existence of such a family is not equivalent to the existence of

a diffotopy between ϕ0 and ϕ1 because Φ might fail to be continuous. However, Φ will be

continuous when A and B are Frechet (because of the Closed Graph Theorem) or when

10



A has the topology defined by all seminorms. We use this fact to justify the existence of

diffotopies in Lemmas 4.16 and 1.36.

Definition 1.13. Given F0, F1 : A → B[0, 1] their concatenation is the continuous ho-

momorphism

F0 • F1(a)(t) =

F0(a)(2t) , 0 ≤ t ≤ 1/2

F1(a)(2t− 1) , 1/2 ≤ t ≤ 1

Definition 1.14. Given two locally convex algebras A and B, we denote by ⟨A,B⟩ the

set of diffotopy clases of continuous homomorphisms from A to B. We denote by ⟨ϕ⟩ the

diffotopy class of a continuous homomorphism ϕ : A→ B.

Lemma 1.15. There is a group structure in ⟨A, SB⟩ given by concatenation. The group

stuctures in ⟨A, SnB⟩ that we get from concatenation in different variables all agree and

are abelian for n ≥ 2.

Proof. See Lemma 6.4 in [11].

Next we define contractible locally convex algebras.

Definition 1.16. A locally convex algebra A is called contractible if the identity map is

diffotopic to 0.

Examples 1.17. Examples of contractible locally convex algebras are tC[t] and CA. The

diffotopies are given by ϕs : tC[t] → tC[t], ϕs(t) = st and ψs : CA→ CA, ψs(f)(t) = f(st),

respectively. Note that the algebras (t− t0)C[t] are isomorphic to tC[t] and therefore are

also contractible.

We conclude this section with a note on N-graded algebras.

Lemma 1.18. Let A =
⊕
n∈N

An be an N-graded locally convex algebra with the fine topol-

ogy, then A is diffotopy equivalent to A0.

Proof. The diffotopy is given by the family of morphisms ϕt : A → A, t ∈ [0, 1], sending

an element an ∈ An to tnan. When t = 1 we recover the identity and when t = 0 the

morphism is a retraction of A onto A0.

11



This lemma will be useful for computing the invariants of a particular family of gen-

eralized Weyl algebras (see Section 4).

1.3 Extensions of locally convex algebras

In this section, we define linearly split extensions of locally convex algebras and their

classifying maps. Extensions play a key role in the definition of kkalg because we can

characterize the suspension stable category in terms of extensions of locally convex alge-

bras of arbitrary length using their classifying maps.

Definition 1.19. An extension of locally convex algebras

0 → I → E → B → 0

is linearly split if there is a continuous linear section s : B → E. Similarly we define

extensions of length n to be chain complexes

0 → I → En → · · · → E1 → B → 0

and we say an extension of lenght n is linearly split if there is a continuous linear maps

of degree −1 such that ds+ sd = id (where d is the differential of the chain complex).

Example 1.20. Let A be a locally convex algebra. The cone extension of A

0 → SA→ CA→ A→ 0

is a linearly split extension. There exists a continuous linear section s : A→ CA defined

by a ∈ A 7→ f ∈ CA with f(t) = (1 − ψ(t))a, where ψ : [0, 1] → [0, 1] is a C∞ bijection

with f(0) = 0, f(1) = 1 and all derivatives vanishing at 0 and at 1.

Now, we define the tensor algebra which has a universal property in the category of

locally convex algebras. It is a completion of the usual algebraic tensor algebra. Let V

be a complete locally convex vector space. The algebraic tensor algebra is defined as

TalgV =
∞⊕
n=1

V ⊗n.
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Notice that we are considering a non-unital algebraic tensor algebra. We will topologize

TalgV with the following family of seminorms. First notice that there is a linear map

σ : V → TalgV mapping V into the first summand. Consider all seminorms of the form

α ◦ ϕ, where ϕ is a homomorphism from TalgV into a locally convex algebra B such that

ϕ ◦ σ is continuous on V and α is a continuous seminorm on B.

Definition 1.21. The tensor algebra TV is the completion of TalgV with respect to the

family of seminorms {α ◦ ϕ} defined above.

Proposition 1.22. The tensor algebra TV is a locally convex algebra.

Proof. First we will show that the multiplication in TalgV is continuous. Let x, y ∈ TalgV .

With α, ϕ and σ as above, we have (α◦ϕ)(xy) = α(ϕ(x)ϕ(y)). Since B is a locally convex

algebra, there exists a continuous seminorm β in B such that α(b1b2) ≤ β(b1)β(b2) for

all b1b2 ∈ B. Therefore, we have (α ◦ ϕ)(xy) ≤ (β ◦ ϕ)(x)(β ◦ ϕ(y)). Since TV is the

completion of TalgV , the multiplication in TV is also continuous.

The tensor algebra satisfies the following universal property.

Proposition 1.23. Given a continuous linear map s : V → B from a complete locally

convex vector space V to a locally convex algebra B, there is a unique morphism of

locally convex algebras τ : TV → B such that τ ◦ σ = s. The morphism τ is defined by

τ(x1 ⊗ x2 ⊗ · · · ⊗ xn) = s(x1)s(x2) . . . s(xn) where xi ∈ V .

Proof. By the universal property of TalgV , we have a unique morphism ϕ : TalgV → B

such that ϕ ◦σ = s. The morphism ϕ is continuous because s is continuous and for every

continuous seminorm α in B, α ◦ ϕ is a continuous seminorm in TalgV (see Definition

1.21). Since B is complete, ϕ extends to a morphism τ : TV → B. Two morphisms

τ1, τ2 : TV → B that satisfy τ1 ◦ σ = τ2 ◦ σ = s coincide in TalgV and therefore are the

same.

In particular, if A is a locally convex algebra, the identity map id: A → A induces a

morphism π : TA→ A.

We use the universal property of TA to construct a universal extension. There is an

extension
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0 JA TA A 0,π

where JA is defined as the kernel of π : TA → A, which has a canonical linear section

σ : A → TA. This extension is universal in the sense that given any extension of locally

convex algebras 0 → I → E → B → 0 with lineal split s and a morphism α : A → B,

there is a morphism of extensions

0 JA TA A 0

0 I E B 0

γ τ α

where τ : TA→ E is the morphism induced by the continuous linear map s ◦ α : A→ E

and γ : JA→ I is the restriction of τ .

Notice that J : lca → lca is a functor. Given a morphism α : A → B, consider the

extension 0 → JB → TB → B → 0 with its cannonical continuous linear section. Then

we define J(α) : JA → JB in the natural way. We can iterate this construction n times

to obtain JnA and Jn(α).

We observe that the map γ : JA → I is unique up to diffotopy. Given two linear

sections s1 and s2 then st = ts1 + (1 − t)s2 is a smooth family of linear sections which

induces a diffotopy γt.

Definition 1.24. The morphism γ : JA → I is called the classifying map of both the

extension 0 → I → E → B → 0 and the morphism α : A → B. It is well-defined up to

diffotopy.

Similarly, we can define the classifying map of an extension

0 → I → En → · · · → E1 → B → 0

and a morphism α : A→ B to be the map γ : JnA→ I in

0 JnA T (Jn−1A) · · · TA A 0

0 I En · · · E1 B 0

γ α

It will also be unique up to diffotopy.
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Examples 1.25. 1. For any locally convex algebra A, there is a classifying map JA→

SA associated to its cone extension 0 → SA→ CA→ A→ 0.

2. Given a morphism α : JnA → SmB, there is an induced morphism α′ : Jn+1A →

Sm+1B defined up to diffotopy by the morphism of extensions

0 Jn+1A T (JnA) JnA 0

0 Sm+1B C(SmB) SmB 0

α′ α

Finally, we study the interplay between the functors J and S. We define a natural

projection from J jSiB onto SiJ jB.

Definition 1.26. For a locally convex algebra B and i, j ∈ N, we define κi,jB to be the

classifying map in the extension

0 J jSiB · · · SiB 0

0 SiJ jB · · · SiB 0

κ id

where the bottom sequence is obtained by tensoring the sequence

0 → J jB → T (J j−1B) → · · · → B → 0

with SiC = C(0, 1)i.

1.4 The algebra of smooth compact operators and

the smooth Toeplitz algebra

We will define kkalg to be stable with respect to the algebra K of smooth compact op-

erators. This algebra will play a role analogue to the one of K, the algebra of compact

operators used in Kasparov’s KK-theory.

We will also define the smooth Toeplitz algebra T . This algebra will be the locally

convex algebra analogue to TC* , the Toeplitz C*-algebra. It will be used to prove results

such as Bott periodicity, Pimsner-Voiculescu exact sequences and the sequences we will

construct for generalized Weyl algebras.
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An important result of this section is the diffotopy of Lemma 1.36. This diffotopy is

a smooth version of a classical homotopy of C*-algebras given by Cuntz in [6].

Definition 1.27. The algebra of smooth compact operators K is defined as the algebra

of N× N matrices a = (aij)i,j∈N such that qn(a) =
∑

i,j∈N(1 + i+ j)n|ai,j| is finite for all

n ∈ N. The topology is defined by the seminorms qn.

Let H = l2(N) be the Hilbert space with a countable basis. We can define K ⊆ B(H),

the algebra of compact operators, as the closure of the subalgebra of finite rank operators.

The algebra K can also be viewed as N×N matrices with square summable coefficients;

that is, matrices (ai,j)i,j∈N with
∑

i,j∈N |ai,j|2 < ∞. The algebra K sits inside K as a

subalgebra.

We define ei,j ∈ K as the matrix with 1 in position (i, j) and 0 elsewhere. Then any

element of K can be written as a =
∑∞

i,j=0 ai,jei,j.

Lemma 1.28. The locally convex spaces K, s⊗π s and s⊕ s are isomorphic to s.

Proof. The proofs of these facts can be found in [24] Chapter 3 Section 1.1. We give the

proofs here for completeness.

First we prove K ∼= s. Consider the bijection ϕ : N× N → N defined by

ϕ(i, j) = i+

i+j∑
k=1

k.

Note that if n = ϕ(i, j), then i+ j ≤ n ≤ (1 + i+ j)2.

Given a sequence {xn}n∈N ∈ s, define aij = xn for n = ϕ(i, j). When n = ϕ(i, j), we

have i+ j ≤ n and therefore∑
i,j∈N

(1 + i+ j)k|aij| ≤
∑
n∈N

(1 + n)k|xn|.

Thus, we have a well-defined continuous map ψ : s → K.

Given (aij)i,j∈N ∈ K, define xn = aij for (i, j) = ϕ−1(n). When n = ϕ(i, j), we have

n ≤ (1 + i+ j)2 and therefore∑
n∈N

(1 + n)k|xn| ≤
∑
i,j∈N

(1 + (1 + i+ j)2)k|aij|

≤ 2k
∑
i,j∈N

(1 + i+ j)2k|aij|.
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Therefore, the map ψ−1 : K → s is well-defined and continuous.

Now, we prove that K ∼= s ⊗π s. Let x = {xi}i∈N and y = {yi}i∈N be elements of s.

Define η : s ⊗ s → K by x ⊗ y 7→ a = (aij)i,j∈N with aij = xiyj. Using the inequality

(1 + i+ j)k ≤ (1 + i)k(1 + j)k that holds for all i, j ∈ N, we have∑
i,j∈N

(1 + i+ j)k|xiyj| ≤
∑
i,j∈N

(1 + i)k(1 + j)k|xi||yj|.

Thus we have proved qk(η(x ⊗ y)) ≤ pk(x)pk(y) (here qk and pk are the seminorms

that define the topologies of K and s respectively). Now, given z ∈ s ⊗ s such that

z =
∑N

t=1 x
(t) ⊗ y(t) with x(t), y(t) ∈ s, we have

qk(η(z)) ≤
N∑
t=1

qk(η(x
(t) ⊗ y(t)))

≤
N∑
t=1

pk(x
(t))pk(y

(t))

This implies that qk(η(z)) ≤ (pk ⊗ pk)(z) and thus η is well-defined and continuous. To

see that η is injective, let z =
∑N

t=1 x
(t)⊗y(t) with x(t) for 1 ≤ t ≤ N linearly independent

in s, and assume η(z) = 0. Column j of η(z) is equal to
∑N

t=1 y
(t)
j x

(t) = 0, therefore

y(t) = 0 for all 1 ≤ t ≤ N , and this implies z = 0.

Now, we prove that η is open. Let z =
∑N

t=1 x
(t) ⊗ y(t) with x(t), y(t) ∈ s. Then we

have z =
∑

i,j∈N
∑N

t=1 x
(t)
i y

(t)
j ei ⊗ ej. Hence,

(pk ⊗ pk)(z) ≤
∑
i,j∈N

(pk ⊗ pk)(
N∑
t=1

x
(t)
i y

(t)
j ei ⊗ ej)

=
∑
i,j∈N

|1 + i|k|1 + j|k|
N∑
t=1

x
(t)
i y

(t)
j |

≤
∑
i,j∈N

|1 + i+ j|2k|
N∑
t=1

x
(t)
i y

(t)
j |

= q2k(η(z)).

Therefore, the topology of s⊗ s inherited from K is the projective topology.

In order to finish the proof that η is an isomorphism, we show that s ⊗ s is dense in

K. Define the sequences ei ∈ s as having a 1 in position i and zeros elsewhere. Then
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η(ei ⊗ ej) = eij and therefore M∞, the space of matrices with finite non-zero entries, is

contained in s⊗ s. Since M∞ is dense in K, s⊗ s is dense in K. We conclude K ∼= s⊗π s.

The isomorphism between s ⊕ s and s is given by sending ({xi}i∈N, {yi}i∈N) to {zi}i∈N,

where z2k = xk and z2k+1 = y2k+1 for k ∈ N. The proof that this map is well-defined and

an isomorphism is similar to the previous proofs.

Lemma 1.29. There is an isomorphism θ : K → K ⊗π K which is diffotopic to the

cannonical inclusion ι : K → K⊗π K defined by a 7→ e00 ⊗ a.

Proof. See Lemma 2.8 in [19].

Before defining the smooth Toeplitz algebra we will define the Toeplitz C*-algebra

TC* . We will use the right shift operator S ∈ B(H) = B(l2(N)) defined by S(en) = en+1.

Definition 1.30. Let S be the right shift operator on B(H), then we define the Toeplitz

algebra as TC* = C*(S) ⊆ B(H), the C*-subalgebra generated by S.

Remark 1.31. Note that S∗S = 1 and SS∗ = 1− e00, thus S is an isometry which is not

unitary. Alternatively, the Toeplitz algebra can be defined abstractly as the universal

unital C*-algebra generated by an isometric element which is not unitary.

Lemma 1.32. There is an exact sequence of C*-algebras

0 → K → TC* → C(S1) → 0.

Therefore, we have an isomorphism TC*
∼= K⊕ C(S1) as vector spaces.

Now, we define the smooth Toeplitz algebra. The Fourier series gives an isomorphism

of locally convex spaces between C∞(S1) and the space s of rapidly decreasing Laurent

series (see Theorem 51.3 in [23])

C∞(S1) ∼= {
∑
i∈Z

aiz
i |
∑
i∈Z

|1 + i|n|ai| <∞, ∀n ∈ N},

where z corresponds to the function z : S1 → C, z(t) = t.
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Definition 1.33. The smooth Toeplitz algebra T is defined by the direct sum of locally

convex vector spaces T = K⊕C∞(S1). To define the multiplication we define vk = (0, zk)

and just write x for an element (x, 0) with x ∈ K. We denote the elementary matrices

in K by eij and set eij = 0 for all i, j < 0. The multiplication is defined by the following

relations

eijekl = δjkeil, vkeij = e(i+k),j, eijvk = ei,(j−k),

for all i, j, k, l ∈ Z and

vkv−l =

vk−l(1− e00 − e11 − . . . el−1,l−1) , l > 0

vk−l , l ≤ 0,

for all k, l ∈ Z.

We can see that K is a closed ideal in T . As a matter of fact we have the following

extension of locally convex algebras.

Lemma 1.34. There is a linearly split extension of locally convex algebras

0 → K → T → C∞(S1) → 0.

The split sends z 7→ v and z−1 7→ v∗.

The smooth Toeplitz algebra is generated, as a locally convex algebra, by S and S∗.

In fact, it satisfies a universal property in the category of m-algebras.

Lemma 1.35 (Satz 6.1 in [9]). T is the universal unital m-algebra generated by two

elements S and S∗ satisfying the relation S∗S = 1 whose topology is defined by a family of

submultiplicative seminorms {pn}n∈N with the condition that there are positive constants

Cn such that

pn(S
k) ≤ Cn(1 + kn) and pn(S

∗n) ≤ Cn(1 + kn). (1.1)

The following diffotopy is due to [9]. In the context of C*-algebras a homotopy like this

one is used to prove Bott periodicity and to construct the Pimsner-Voiculescu sequence.

Because T and T ⊗π T are Frechet, the path ϕt defines a diffotopy between ϕ0 and ϕ1

(see Remark 1.12).
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Lemma 1.36 (Lemma 6.2 in [9]). There is a unital diffotopy ϕt : T → T ⊗π T such that

ϕt(S) = S2S∗ ⊗ 1 + f(t)(e⊗ S) + g(t)(Se⊗ 1),

where f, g ∈ C[0, 1] are such that f(0) = 0, f(1) = 1, g(0) = 1 and g(1) = 0.

Note that ϕ0(S) = S ⊗ 1 and ϕ1(S) = S2S∗ ⊗ 1 + e⊗ S. Lemma 1.35 implies that, in

order to define a morphism from T to T ⊗π T , we only need to check the relations on S

and S∗ and the bounds of (1.1).

We finish this section with a result for tensoring algebras with a countable basis over

C equipped with the fine topology and the Toeplitz algebra. This result is used to prove

Proposition 3.15.

Lemma 1.37. The locally convex space A⊗π s is isomorphic to the space F of sequences

{xn}n∈N ⊆ A such that

||x||ρ,k =
∑
n∈N

|1 + n|kρ(x(n))

is finite for all k ∈ N and any continuous seminorm ρ on A, where the topology on F is

defined by the seminorms || · ||ρ,k.

Proof. There is an inclusion ϕ : A⊗ s → F defined by a⊗α ∈ A⊗ s 7→ {xn = αna} ∈ F .

Let z =
∑N

t=1 a
(t) ⊗ α(t) be an element of A⊗ s. We have

||ϕ(z)||ρ,k =
∑
n∈N

ρ

(
N∑
t=1

a(t)α(t)
n

)
|1 + n|k

≤
∑
n∈N

N∑
t=1

ρ(a(t))|α(t)
n ||1 + n|k

=
N∑
t=1

ρ(a(t))pk(α
(t)).

This implies ||ϕ(z)||ρ,k ≤ (ρ ⊗ pk)(z). We can write z =
∑

n∈N
∑N

t=1 a
(t)α

(t)
n ⊗ en and

therefore

(ρ⊗ pk)(z) ≤
∑
n∈N

(ρ⊗ pk)

(
N∑
t=1

a(t)α(t)
n ⊗ en

)

=
∑
n∈N

ρ

(
N∑
t=1

a(t)α(t)
n

)
|1 + n|k

= ||ϕ(z)||ρ,k.
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This implies that || · ||ρ,k = ρ⊗pk in the image of A⊗s. Since all finite sequences in A are

in A⊗ s, A⊗ s is dense in F . Since F is a complete space, we conclude A⊗π s = F .

Lemma 1.38. Let s be the locally convex space of rapidly decreasing sequences and A an

algebra with a countable basis over C equipped with the fine topology. Then, we have

A⊗π s = A⊗ s,

as locally convex spaces. This implies that

A⊗π T = A⊗ T and A⊗π (T ⊗π T ) = A⊗ (T ⊗π T ),

as locally convex algebras.

Proof. We prove that the space F from Lemma 1.37 is equal to the algebraic tensor

product A ⊗ s. Let {vn}n∈N be a countable basis of A. Given {xn}n∈N a sequence of

elements in A with ρk(x) finite for all k ∈ N we have, for n fixed

xn =
∑
i∈N

λ(i)n vi,

where λ
(i)
n ̸= 0 for finitely many i ∈ N.

First, we prove that span{xn}n∈N is finite dimensional. Suppose this is not the case.

We construct subsequences {xni
} and {vmi

} such that λ
(mi)
ni ̸= 0. Choose n1 such that

xn1 ̸= 0 and m1 such that λ
(m1)
n1 ̸= 0. Suppose {xn1 , . . . , xnk

} and {vm1 , . . . , vmk
} have

been chosen. Notice that span{xi}i>nk
is infinite dimensional, and therefore it is not

contained in span{vi}1≤i≤mk
. Choose nk+1 > nk such that xnk+1

/∈ span{vi}1≤i≤mk
. We

can choose mk+1 > mk such that λ
(mk+1)
nk+1 ̸= 0.

Now we define a seminorm in A,

ρ(
∑
i∈N

civi) =
∑
i∈N

|ci|αi,

with αi = 0 for i /∈ {nk}k∈N and αnk
≥ |λ(mk)

nk |−1. Thus we have ρ(xnk
) ≥ 1 and

ρ0(x) =
∑
i∈N

ρ(xi) ≥
∑
i∈N

ρ(xni
)

diverges. We conclude that span{xn}n∈N is finite dimensional.
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Let N ∈ N be such that span{xn}n∈N ⊆ span{v1, . . . , vN}. That is

xn =
N∑
i=0

λ(i)n vi

Then

x = lim
M→∞

M∑
n=0

xn ⊗ en

= lim
M→∞

M∑
n=0

N∑
i=0

λ(i)n vi ⊗ en

= lim
M→∞

N∑
i=0

vi ⊗
M∑
n=0

λ(i)n en.

Consider the seminorm pj(
∑
civi) = |cj|. Then, since x ∈ A⊗π s,∑

n∈N

|1 + n|kpi(xn) =
∑
n∈N

|1 + n|k|λ(i)n | <∞

for all k ∈ N. Thus, for a fixed i, the sequences {λ(i)n } are rapidly decreasing on n.

Therefore
∑

n∈N λ
(n)
i en ∈ s, and consequently x =

∑N
i=1 vi ⊗ si ∈ A⊗ s.

The equalities A⊗π T = A⊗ T and A⊗π (T ⊗π T ) = A⊗ (T ⊗π T ) follow because,

as locally convex vector spaces, we have T ∼= s and T ⊗π T ∼= s.
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Chapter 2

Bivariant K-theory

In this chapter, following [11], we give the definition of the supension stable categoryΣHo,

state its main properties and then describe the relation between kkalg and ΣHo. For a

complete treatise of these constructions in the context of bornological algebras consult

[11]. We also study weak Morita equivalences and quasi-homomorphisms. We finish the

chapter summarizing the results that have been obtained for computing the invariants of

Z-graded algebras.

2.1 The suspension stable category

First, we construct the category ΣHo (see Section 6.3 in [11]). The objects of ΣHo are

pairs (A, n) where A is a locally convex algebra and n ∈ Z. Given two objects (A, n) and

(B,m) of ΣHo, the set of morphisms is defined as

ΣHo((A, n), (B,m)) = lim−→
k∈N

⟨Jn+kA, Sm+kB⟩

where the inductive limit is taken over k ∈ N with n + k,m + k ≥ 0. The inductive

system is defined by sending the diffotopy class of α : Jn+kA→ Sm+kB to the morphism

α′ : Jn+k+1A → Sm+k+1B defined up to diffotopy as the classifying map for the second

row of the diagram
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0 Jn+k+1A T (Jn+kA) Jn+kA 0

0 Sm+k+1B C(Sm+kB) Sm+kB 0

α′ α

(see definition 1.24). We note that ΣHo((A, n), (B,m)) has the structure of an abelian

group because of Lemma 1.15

The composition of morphisms in ΣHo is defined as follows. Given morphisms in ΣHo

(A, n) → (B,m) and (B,m) → (C, p) with representatives

f : Jn+kA→ Sm+kB and g : Jm+lB → Sp+lC

we take the composition (A, n) → (C, p) to be defined by the composition

Jm+lJn+kA Jm+lSm+kB Sm+kJm+lB Sm+kSp+lC

Jn+(m+k+l)A Sp+(m+k+l)C

Jm+l(f) Sm+k(g)

= =

The morphism in the center is (−1)(m+l)(m+k)κ
(m+k),(m+l)
B , where κi,jB is the projection

defined in 1.26.

Remark 2.1. The proof that this definition is independent of the representative chosen

in the direct limit and that it is associative requires will be omitted. The reader can find

this proof in Section 6.3 of [11].

The category ΣHo has a suspension functor

Σ: ΣHo → ΣHo

defined by Σ(A, n) = (A, n + 1) and sending a morphism f : (A, n) → (B,m) to a

morphism Σf : (A, n+ 1) → (B,m+ 1) with the same representative in the direct limit.

There is an inverse functor Σ−1 : ΣHo → ΣHo with Σ−1(A, n) = (A, n − 1) and defined

for morphisms in an analog way as Σ. Thus Σ is an automorphism.

There are also two functors S, J : ΣHo → ΣHo. S is defined by S(A, n) = (SA, n)

and it sends a morhism f : (A, n) → (B,m) with representative f : Jn+kA → Sm+kB to

the morphism in ΣHo defined by the composition

Jn+kSA SJn+kA SSm+kB.
(−1)n+kκ1,n+k

A S(f)

24



J is defined by J(A, n) = (JA, n) and it sends a morphism f : (A, n) → (B,m) with

representative f : Jn+kA→ Sm+kB to the morphism in ΣHo defined by the composition

Jn+kJA JSm+kB Sm+kJB.
J(f) (−1)m+kκm+k,1

B

Lemma 2.2. The functors S and J are isomorphic to the suspension Σ in ΣHo.

Proof. See Lemmas 6.29 and 6.30 in [11].

Now we state the universal property of the suspension-stable homotopy category. Note

that there is a functor from the category of locally convex algebras to ΣHo that sends

a locally convex algebra A to (A, 0) and a morphism f : A → B to its representative in

ΣHo((A, 0), (B, 0)). We denote this functor again by ΣHo. Similarly, we have functors

ΣHon from the category of locally convex algebras to abelian groups defined by sendig A

to (A, n) and sending f : A→ B to the class of α : JnA→ SnB, the classifying map of

0 → SnB → CSn−1B → · · · → CB → B → 0.

The functors {ΣHon}n∈Z define a homology theory for locally convex algebras as defined

below.

Definition 2.3. A functor F from the category of locally convex algebras to an abelian

category is called

1. diffotopy invariant if F (f) = F (g) whenever f and g are diffotopic,

2. half exact for linearly split extensions if

F (A) → F (B) → F (C)

is exact whenever

0 → A→ B → C → 0

is a linearly split extension.

Definition 2.4. A homology theory for locally convex algebras is a sequence of covariant

functors {Fn}n∈Z from the category of locally convex algebras to an abelian category

together with natural isomorphisms Fn(SA) ∼= Fn+1(A) for all n ∈ Z, such that
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1. the functors Fn are diffotopy invariant;

2. the functors Fn are half exact for linearly split extensions.

Proposition 2.5 (Proposition 6.72 in [11]). If {Fn}n∈Z is a homology theory for bornolog-

ical algebras, then F̄ (A, n) : = Fn(A) defines a homological functor F̄ : ΣHo → Ab.

Conversely, any such homological functor F̄ arises from a unique homology theory for

bornological algebras in this fashion.

2.2 Definition of kkalg

We define kkalg and describe its relation to ΣHo. The functor ΣHo: lca → ΣHo still

lacks some properties like Bott periodicity. To obtain this property we have to stabilize

our algebras. The stabilization that Cuntz considered in [10] is given by K, the alge-

bra of smooth compact operators. This is the smallest algebra that we can consider to

obtain Bott periodicity. The problem with this stabilization is that the coefficient ring

kkalg(C,C) is difficult to compute. Other stabilizations such as stabilization by the Schat-

ten ideals Lp have been considered in [12]. Considering this kinds of ideals the coefficient

ring can be computed to be kkL∗ = Z[u, u−1] with u in degree 2.

The following is the definition of kkalg as in [10].

Definition 2.6. Let A and B be locally convex algebras. We define

kkalg(A,B) = lim−→
k∈N

⟨JkA,K ⊗π S
kB⟩

and for n ∈ N

kkalgn (A,B) = kkalg(JnA,B), kkalg−n(A,B) = kkalg(A, SnB).

Note that we have defined kkalg(A,B) = ΣHo(A,K⊗π B). The following Lemma will

tell us that this definition is equivalent to kkalg(A,B) = ΣHo(K ⊗π A,K ⊗π B).

Lemma 2.7 (Lemma 7.21 in [11]). Composition with the stabilization A → K ⊗π A

induces a natural isomorphism

ΣHo(K ⊗π A,K ⊗π B) ∼= ΣHo(A,K ⊗π B)
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We can therefore view kkalg as a quotient category of ΣHo.

The associative product of kkalg follows from the associative product of ΣHo.

Lemma 2.8. There is an associative product

kkalgn (A,B)× kkalgm (B,C) → kkalgn+m(A,C)

Proof. Follows from Lemma 6.32 in [11].

In view of this associative product we can regard locally convex algebras as objects of

a category KKalg with morphisms between A and B given by elements of kkalg∗ (A,B). Any

morphism ϕ : A → B of locally convex algebras induces an element kk(ϕ) ∈ kkalg(A,B)

which is associated with the diffotopy class of i ◦ ϕ : A → B → K ⊗π B, where i is the

inclusion of B into the first corner, i.e. i(b) = e00 ⊗ b.

Lemma 2.9 (see Theorem 2.3.1 in [12]). If ϕ : A→ B and ψ : B → C are morphisms of

locally convex algebras then

kk(ϕ)kk(ψ) = kk(ψ ◦ ϕ).

It can also be seen that the identity of A induces kk(idA) = 1A ∈ KKalg(A,A), the

identity of A in the category KKalg. Therefore there is a functor

kkalg∗ : lca → KKalg.

Remark 2.10. In what follows, given two morphisms ϕ : A→ B and ϕ : B → Cin lca, we

shall denote the product

kk(ϕ)kk(ψ)

as a composition in KKalg

kk(ψ) ◦ kk(ϕ).

Extensions of A by B of length n that are linearly split define elements in kkalg−n(A,B).

This is because to any linearly split extension

E : 0 → B → En → · · · → E1 → A (2.1)

there corresponds the diffotopy class of a morphism JnA→ B. We will call this element

kk(E) ∈ kkalg−n(A,B).
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Lemma 2.11. Given two extensions of lenghts n and m

E1 : 0 → B → En → · · · → E1 → A

E2 : 0 → C → Dm → · · · → D1 → B

the product kk(E2)kk(E1) = kk(E) where E is the Yoneda product of E1 and E2

E : 0 → C → Dm → · · · → D1 → En → · · · → E1 → A.

We now turn to study the properties of kkalg. These are diffotopy invariance, half

exactness for linearly split extensions and stability with respect to K. We will see that

kkalg is universal with respect to homological functors into some abelian category that

satisfy these properties.

Definition 2.12. A functor F from the category of locally convex algebras to an abelian

category is called K-stable if the natural inclusion i : A → K ⊗π A, sending a to e ⊗ a

induces an isomorphism F (i) : F (A) → F (K ⊗π A).

Proposition 2.13. The functor kkalg : lca → kkalg is diffotopy invariant, half exact for

linearly split extensions and is K-stable.

As a matter of fact, the functor kkalg is universal with respect to these properties.

Theorem 2.14 (Theorem 7.26 in [11] ). If F is a covariant functor from the category

of bornological algebras to an abelian category C that is diffotopy invariant, half exact for

linearly split extensions and K-stable then F = F̄ ◦kkalg for a unique homological functor

F̄ : kkalg → C.

2.3 Stabilization by Schatten ideals

In [12], Cuntz and Thom define a related bivariantK-theory in the category lca. We recall

the definition for the case of the Schatten ideals. Let H denote an infinite dimensional

separable Hilbert Space.
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Definition 2.15. The Schatten ideals Lp ⊆ B(H), for p ≥ 1, are defined by

Lp = {x ∈ B(H)| Tr|x|p <∞}.

Equivalently, Lp consists of the space of bounded operators such that the sequence of its

singular values {µn} is in lp(N).

Definition 2.16. Let A and B be locally convex algebras and p ≥ 1. We define

kkLp
n (A,B) = kkalg(A,B ⊗π Lp).

The groups kkLp(A,B), for all p ≥ 1, are isomorphic (Corollary 2.3.5 of [12]).

This bivariant K-theory is related to algebraic K-theory when p > 1.

Theorem 2.17 (Theorem 6.2.1 in [12]). For every locally convex algebra A and p > 1

we have

kk
Lp

0 (C, A) = K0(A⊗π Lp).

Corollary 2.18 (Corollary 6.2.3 in [12]). The coefficient ring kk
Lp
∗ (C,C) is isomorphic

to Z[u, u−1] with deg(u) = 2.

This implies that kk
Lp

0 (C,C) = Z and kk
Lp

1 (C,C) = 0.

2.4 Bott periodicity and Triangulated structure of

KKalg

The suspension of locally convex algebras determines a functor S : KKalg → KKalg with

S(A) = SA.

Theorem 2.19. [Bott periodicity] There is a natural equivalence between S2 and the

identity functor, hence KKalg
2n (A,B) ∼= KKalg

0 (A,B) and KKalg
2n+1(A,B) ∼= KKalg

1 (A,B).

Proof. See Corollary 7.25 in [11] and the discussion that follows.
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By Theorem 2.19, S is an automorphism and S−1 ∼= S. We recall the triangulated

structure of (KK, S).

Let f : A→ B be a morphism in lca. The mapping cone of f is defined as the locally

convex algebra

C(f) = {(x, g) ∈ A⊕ CB|f(x) = g(0)}.

The triangle

SB
kk(ι) // C(f)

kk(π) // A
kk(f) // B

in (KKalg, S), where π : C(f) → A is the projection into the first component and ι : SB →

C(f) is the inclusion into the first component, is called a mapping cone triangle.

Let E : 0 → A
f→ B

g→ C → 0 be a linearly split extension in lca. This induces an

element kk(E) ∈ kkalg1 (C,A) that corresponds to the classifying map JC → A of the

extension and hence an element kk(E) ∈ kkalg(SC,A). The triangle

SC
kk(E) // A

kk(f) // B
kk(g) // C

in (KKalg, S) is called an extension triangle.

Proposition 2.20. The category KKalg with suspension automorphism S : KKalg → KKalg

and with triangles isomorphic to mapping cone triangles as exact triangles is a triangu-

lated category. Furthermore, extension triangles are exact.

Proof. See Propositions 7.22 and 7.23 in [11].

2.5 Weak Morita equivalence

In the context of separable C*-algebras, two algebras A and B are strong Morita equiva-

lent if and only if K⊗A ∼= K⊗B (they are stably isomorphic). Therefore a strong Morita

equivalence of separable C*-algebras induces an equivalence in Kasparov’s bivariant K-

theory, KK. In the case of locally convex algebras we define weak Morita equivalence,

which still give us an isomorphism between two objects in KKalg. This is a weak version

of Morita equivalence.

A Morita context gives us the data needed to define maps A→ K⊗π B.
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Definition 2.21. Let A and B be locally convex algebras. A Morita context from A to

B consists of a locally convex algebra E that contains A and B as subalgebras and two

sequences (ξi)i∈N and (ηj)j∈N of elements of E that satisfy

1. ηjAξi ⊂ B for all i, j.

2. The sequence (ηjaξi) is rapidly decreasing for each a ∈ A. That is, for each contin-

uous seminorm α in B, α(ηjaξi) is rapidly decreasing in i, j.

3. For all a ∈ A, (
∑
ξiηi)a = a.

A Morita context ((ξi), (ηj)) from A to B determines a homomorphism A → K ⊗π

B defined by a 7→
∑

i,j∈N eij ⊗ ηjaξi. Thus it determines an element kk((ξi), (ηj)) of

kkalg0 (A,B), which is an element of KKalg(A,B).

In the next proposition, we give conditions for a Morita context to determine an

equivalence in KKalg.

Proposition 2.22. Let ((ξi), (ηj)) be a Morita context from A to B in E. If ((ξ′l), (η
′
k))

is a Morita context from B to A in the same locally convex algebra and if Aξiξ
′
l ⊂ A and

η′kηjA ⊂ A for all i, j, k, l; then

kk((ξ′l), (η
′
k)) ◦ kk((ξi), (ηj)) = 1A.

Therefore, if we also have Bξ′lξi ⊂ B and ηkη
′
jB ⊂ B for all i, j, k, l, then kk((ξi), (ηj))

is invertible in KKalg.

Proof. See Lemma 7.2 in [10].

2.6 Quasi-homomorphisms

The definition of a quasi-homomophism goes back to [5]. In that article, given a pair

of separable C*-algebras A and B, KK(A,B) is characterized as the set of homotopy

classes of quasi-homomorphisms between A and B ⊗ K. With this characterization the

product in KK can be obtained in an easy way [8].
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We will define quasi-homomorphisms in the context of locally convex algebras. In

this context, quasi-homomorphisms will still define elements of kkalg and because of their

properties they will be useful to prove our results. As a matter of fact we can make the

definition for an arbitrary split-exact functor E : lca → C where C is an additive category.

In this section we follow Section 4 of [15], Section 3.3.1 in [11] and Section 3 in [12].

Definition 2.23. Let A, B and D be locally convex algebras with B a closed subalgebra

of D. A quasi-homomorphism from A to B in D is a pair of homomorphisms (α, ᾱ) from

A to D such that α(x)− ᾱ(x) ∈ B, α(x)B ⊂ B and Bα(x) ⊂ B for all x ∈ A. We denote

such quasi-homomorphism by (α, ᾱ) : A D ▷ B.

Remark 2.24. Some definitions of quasi-homomorphisms require B to be an ideal in D.

However, we will need Definition 2.27. Note that if B is an ideal then the conditions

α(x)B ⊂ B and Bα(x) ⊂ B are satisfied for all x ∈ A. As a matter of fact we only need

to check these conditions in a set of algebraic generators of A.

Lemma 2.25. Let G ⊂ A be a subset of algebraic generators of A. If α(x)− ᾱ(x) ∈ B,

α(x)B ⊂ B and Bα(x) ⊂ B for all x ∈ G, then the same conditions are also satisfied for

all x ∈ A.

Proof. If x, y ∈ G, then it is easy to see that x+ y also satisfies the conditions. Next we

show that xy also satisfies the conditions. Note that

(α(x)− ᾱ(x))(α(y)− ᾱ(y)) = α(x)(α(y)− ᾱ(y))− ᾱ(x)(α(y)− ᾱ(y)) ∈ B.

Since α(x)(α(y)− ᾱ(y)) ∈ B, then ᾱ(x)(α(y)− ᾱ(y)) ∈ B from this we have

α(xy)− ᾱ(xy) = (α(x)− ᾱ(x))α(y) + ᾱ(x)(α(y)− ᾱ(y)) ∈ B.

Similarly we can show α(xy)B,Bα(xy) ⊂ B.

Next we see how a quasi-homomorphism (α, α′) : A D ▷ B determines an ele-

ment kk(α, ᾱ) ∈ kkalg(A,B). As a matter of fact, we work with split exact functors from

lca to an additive category C. An extension 0 A B C 0π in lca is split if

there is a morphism of locally convex algebras s : C → B such that πs = idC .
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Definition 2.26. Let C be an additive category. A sequence A → B → C in C is split

exact if it is isomorphic to the sequence A→ A⊕C → C with the natural inclusion and

projection. A functor E : lca → C is called split exact if it sends split extensions in lca to

split exact sequences in C.

Lemma 2.27. [Section 3.2 in [12]] Let E be a split exact functor from lca to an additive

category C. Then a quasi-homomorphism (α, α′) : A D ▷ B determines a morphism

E(α, ᾱ) : E(A) → E(B) in C.

Proof. Let D′ be the closed subalgebra of A⊕D generated by all elements (a, α(a)) and

(0, b) with a ∈ A and b ∈ B. Then we have an exact sequence

0 → B → D′ → A→ 0

with the inclusion B ⊆ D′ given by b 7→ (0, b) and the projection π : D′ → A defined by

π(a, x) = a. This extension has two splits α′, ᾱ′ : A → D′ defined by α′(a) = (a, α(a))

and ᾱ′(a) = (a, ᾱ(a)). Because of the split-exactness of E, E(B) → E(D′) is a kernel

of E(D′) → E(A). Therefore, the morphism E(α′) − E(ᾱ′) : E(A) → E(D′) defines a

morphism E(α, ᾱ) : E(A) → E(B).

The following proposition summarizes some properties of quasi-homomorphisms.

Proposition 2.28. Let E be a split exact functor from lca to an additive category C and

(α, α′) : A D ▷ B be a quasi-homomorphism from A to B in D.

1. E(α, ᾱ) = −E(ᾱ, α)

2. For any morphism ϕ : A′ → A, (α ◦ ϕ, ᾱ ◦ ϕ) : A′ → B is a quasi-homomorphism

from A′ to B in D and

E(α ◦ ϕ, ᾱ ◦ ϕ) = E(α, ᾱ) ◦ E(ϕ)

3. If ψ : D → F is a morphism such that ψ|B : B → C ⊂ F and the morphisms

ψ ◦ α, ψ ◦ ᾱ : A→ F define a quasi-homomorphism from A to C in F , then

E(ψ ◦ α, ψ ◦ ᾱ) = E(ψ|B) ◦ E(α, ᾱ)
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4. Let ϕ = α− ᾱ. If ϕ(x)ᾱ(y) = ᾱ(y)ϕ(x) = 0 for all x, y ∈ A, then ϕ is a homomor-

phism and E(α, ᾱ) = E(ϕ)

5. Let α and ᾱ be homomorphisms from A to D[0, 1] such that α(x)− ᾱ(x) ∈ B[0, 1],

α(x)B[0, 1] ⊂ B[0, 1] and B[0, 1]α(x) ⊂ B[0, 1] for all x ∈ A. If E is diffotopy

invariant, then E(α1, ᾱ1) = E(α0, ᾱ0) (where αt = evt ◦α).

Proof. The proofs of (1)-(4) can be found in Proposition 21 of [16]. We give them here

for completion. (1) follows from the fact that E(ᾱ)− E(α) = −(E(α)− E(ᾱ)).

For (2) it is easy to see that the morphisms α ◦ ϕ, ᾱ ◦ ϕ : A′ → D define a quasi-

homomorphism from A′ to B in D. If we define D′ ⊆ A ⊕D as in the proof of Lemma

2.27 and D′′ ⊆ A′ ⊕D as the subalgebra generated by the elements (a′, (α ◦ ϕ)(a′)) and

(0, b) for all a′ ∈ A′ and b ∈ B, then we have a commutative diagram

0 B D′ A 0

0 B D′′ A′ 0

i′

i′′

ψ ϕ

where ψ : D′ → D′′ is the restriction of ϕ⊕ idD : A′ ⊕D → A⊕D. The second row has

the splits λ(a′) = (a′, (α ◦ ϕ)(a)) and λ̄(a′) = (a′, (α′ ◦ ϕ)(a′)). Now we have

E(ψ) ◦ (E(λ)− E(λ̄)) = (E(α′)− E(ᾱ′)) ◦ E(ϕ)

E(ψ) ◦ E(i′′) ◦ E(α ◦ ϕ, ᾱ ◦ ϕ) = E(i′) ◦ E(α, ᾱ) ◦ E(ϕ)

E(i′) ◦ E(α ◦ ϕ, ᾱ ◦ ϕ) = E(i′) ◦ E(α, ᾱ) ◦ E(ϕ)

and from the injectivity of E(i′) we deduce E(α ◦ ϕ, ᾱ ◦ ϕ) = E(α, ᾱ) ◦ E(ϕ).

We have a similar situation in (3). Define F ′ the subalgebra of A ⊕ F associated to

the quasi-homomorphisms (ψ ◦α, ψ ◦ ᾱ) defined as in the proof of Lemma 2.27. Then we

have a commutative diagram

0 B D′ A 0

0 C F ′ A 0

i′

ψB η

i′′
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Where η is the restriction of idA⊕ψ : A ⊕ D → A ⊕ F and the second row has splits

β(a) = (a, (ψ ◦ α)(a)) and β̄(a) = (a, (ψ ◦ ᾱ)(a)). Now we have

E(β)− E(β̄) = E(η ◦ α′)− E(η ◦ ᾱ′)

E(i′′) ◦ E(ψ ◦ α, ψ ◦ ᾱ) = E(η) ◦ (E(α′)− E(ᾱ′))

= E(η) ◦ E(i′) ◦ E(α, ᾱ)

= E(i′′) ◦ E(ψB) ◦ E(α, ᾱ).

Again, from the injectivity of E(i′′), we conclude E(ψ ◦ α, ψ ◦ ᾱ) = E(ψB) ◦ E(α, ᾱ).

(4) follows from the fact that E is split exact and therefore it respects direct sums. In

the case that α− ᾱ is a morphism, then we have E(α− ᾱ) = E(α)−E(ᾱ). Considering

α− ᾱ : A→ B, we obtain E(α− ᾱ) = E(α, ᾱ).

To prove (5), we consider the evaluation maps evt : D[0, 1] → D. They restrict to the

evaluation maps evt : B[0, 1] → B. To apply (3) we need to check that the morphisms

evt ◦α, evt ◦ᾱ : A → D define a quasi-homomorphism from A to B in D. First notice

that (evt ◦α)(a) − (evt ◦ᾱ)(a) = (evt ◦(α − ᾱ))(a) is in B because (α − ᾱ)(a) ∈ B[0, 1].

Now consider an element b ∈ B. We want to prove that the product (evt ◦α)(a)b is in B.

Consider a function ϕ ∈ B[0, 1] such that evt ◦f = b. Then (evt ◦α)(a)b = evt ◦(α(a)f)

and α(a)f ∈ B[0, 1]. Similarly, we can prove that B(evt ◦α)(a) ⊆ B.

We can now apply (3) and we obtain E(evt ◦ α, evt ◦ᾱ) = E(evt) ◦ E(α, ᾱ). Since E

is diffotopy invariant, E(ev0) = E(ev1) and thus we conclude the result.

2.7 Z-graded algebras

In this section, we summarize the results that have been obtained for computing the

invariants of Z-graded algebras. We will recall results from the theory of C*-algebras and

see how these have been recovered in the case of locally convex algebras.

The origin of this kind of results dates back to the Pimsner-Voiculescu exact sequence

which is a classical result for computing the K-theory of C*-algebra crossed product by

an automorphism.
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Definition 2.29. Let A be a C*-algebra and α ∈ Aut(A). The crosed product A⋊α Z is

the universal C*-algebra generated by A and a unitary element u satisfying the relations

ua = α(a)u

for all a ∈ A.

The algebra A⋊α Z contains the algebra

{
∑
i∈Z

a(i)ui|a ∈ Cc(Z, A)}

as a dense subalgebra. There is a natural grading assigning degree 1 to u and degree 0

to elements of A.

The exact sequence in the following theorem is called the Pimsner-Voiculescu exact

sequence.

Theorem 2.30 ([21]). There is an exact sequence

K0(A) K0(A) K0(A⋊α Z)

K1(A⋊α Z) K1(A) K1(A)

1−α∗ i∗

i∗ 1−α∗

We note that this sequence relates the K-theory of the crossed product A⋊α Z with

that of A. In terms of the grading, it relates the K-theory of the Z-graded algebra to

that of the degree 0 subalgebra. This sequence has been used, for instance, to compute

the K-theory of the irrational rotation algebras Aθ.

The proof of this theorem that Cuntz gave in [6] uses Kasparov’sKK and the Toeplitz

extension associated to the crossed product

0 → K⊗π A→ Tα → A⋊α Z

where Tα is the C*-subalgebra of (A⋊α Z)⊗ TC* generated by A⊗ 1 and u⊗ v where v

is the isometry that generates TC* . The kernel K ⊗π A is equivalent to A in KK. Once

the equivalence between Tα and A is stablished, the theorem will follow.

This kind of sequences have been later constructed for covariance C*-algebras associ-

ated to partial automorphisms (see [13]), Cuntz-Pimsner algebras (see [20]) and general-

ized crossed products (see [1]).
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All of these are examples of Z-graded C*-algebras that satisfy certain conditions on the

grading. A Z-grading on a C*-algebra B is equivalent to a circle action α : S1 → End(B).

Given a grading B =
∑

n∈ZBn, we can define the action αz(bn) = znbn. And given an

action α we define the spectral subspaces Bn = {b ∈ B|αz(b) = znb}.

Definition 2.31. A circle action α : S1 → End(B) is called semisaturated if the spectral

spaces B0 and B1 generate B as a C*-algebra.

Z-graded algebras that satisfy the condition of being semisaturated are exactly the

generalized crossed products (see Theorem 3.1 of [1]). Covariance algebras by a partial

automorphism are Z-graded that are semisaturated and satisfy the condition of being

regular (see [13]).

Theorem 2.32. Let B be a semisaturated Z-graded algebra. Then there is an exact

sequence

K0(B1B−1) K0(B0) K0(B ⋊α Z)

K1(B ⋊α Z) K1(B0) K1(B1B−1).

i∗

i∗

Proof. The statement in the case of regular semisaturated algebras is in theorem 7.1 of

[13]. In remark 3.4 of [1] the proof of the theorem is sketched.

This theorem generalizes the Pimsner-Voiculescu sequence, since a crossed product

A⋊α Z is a semisaturated Z-graded algebra B with B1B−1 = B0 = A.

In the context of locally convex algebras, similar sequences are constructed for smooth

crossed products.

Definition 2.33 (See Section 14 of [10]). We define the smooth crossed product A⋊̂αZ

where A is a locally convex algebra and α ∈ Aut(A) as the complete locally convex

algebra generated by A together with an invertible element u satisfying

uxu−1 = α(x)

for all x ∈ A.
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We have the following theorem for smooth crossed products.

Theorem 2.34 (Theorem 14.3 in [10]). For any locally convex algebra D, there is an

exact sequence

kkalg0 (D,A) kkalg0 (D,A) kkalg0 (D,A⋊̂αZ)

kkalg1 (D,A⋊̂αZ) kkalg1 (D,A) kkalg1 (D,A),

·(1−kk(α)) ·kk(i)

·kk(i) ·(1−kk(α))

where i is the inclusion of A into A⋊̂αZ.

In [15], Gabriel and Grensing defined smooth generalized crossed products. These

are certain Z-graded locally convex algebras analog to C*-algebra generalized crossed

products.

Definition 2.35. A gauge action γ on a locally convex algebra B is a pointwise contin-

uous action of S1 on B. An element b ∈ B is called gauge smooth if the map t 7→ γt(b)

is smooth.

If we have a gauge action on B, then Bn = {b ∈ B|γz(b) = znb, ∀z ∈ S1} defines a

natural Z-grading of B.

Definition 2.36. A smooth generalized crossed product is a locally convex algebra B

with an involution and a gauge action such that

� B0 and B1 generate B as a locally convex involutive algebra.

� all b are gauge smooth and the map B → C∞(S1, B) is continuous.

In the same article, 6-term exact sequences for smooth generalized crossed products

B that satisfy the condition of being tame smooth are constructed (see definition 18 in

[15]). These sequences relate the kkalg invariants of B with the kkalg invariants of their

degree 0 subalgebra B0.

Theorem 2.37 (Theorem 36 in [15]). Let B be a tame smooth generalized crossed product.

For any locally convex algebra D we have a 6-term exact sequence
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kkalg0 (D,B0) kkalg0 (D,B0) kkalg0 (D,B)

kkalg1 (D,B) kkalg1 (D,B0) kkalg1 (D,B0),

and a similar sequence on the other variable.

Remark 2.38. Equivalently, the result of Theorem 2.37 can be seen as the existence of

the following exact triangle in KKalg

SB → B0 → B0 → B.
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Chapter 3

Generalized Weyl algebras

Generalized Weyl algebras were introduced by Bavula (see [2]) and have been amply

studied. Examples of generalized Weyl algebras include the Weyl algebra, the quantum

Weyl algebra, the quantum plane, the enveloping algebra of sl2, U(sl2), and its primitive

factors Bλ = U(sl2)/⟨C − λ⟩ where C is the Casimir element (see Example 4.7 in [17]).

In our context, generalized Weyl algebras provide a family of examples of Z-graded

algebras that might not be smooth generalized crossed products or might not satisfy the

condition of being tame smooth (and therefore in general they are outside the framework

of [15]).

3.1 Definition and properties

In this section, we define generalized Weyl algebras and establish their main properties.

Definition 3.1. Let D be a ring, σ ∈ Aut(D) and a a central element of D. The

generalized Weyl algebra D(σ, a) is the algebra generated by x and y over D satisfying

xd = σ(d)x, yd = σ−1(d)y, yx = a and xy = σ(a) (3.1)

for all d ∈ D.

Examples 3.2. The following are examples of generalized Weyl algebras
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1. The Weyl algebra

A1(C) = C⟨x, y|xy − yx = 1⟩

is isomorphic to C[h](σ, h), with σ(h) = h− 1.

2. The quantum Weyl algebra

Aq(C) = C⟨x, y|xy − qyx = 1⟩

is isomorphic to C[h](σ, h− 1), with σ(h) = qh.

3. The quantum plane

C⟨x, y|xy = qyx⟩

is isomorphic to C[h](σ, h), with σ(h) = qh.

4. The primitive quotients of U(sl2) (see Example 3.2 in [2]),

Bλ = U(sl2)/⟨c− λ⟩, λ ∈ C,

are isomorphic to C[h](σ, P ), with σ(h) = h− 1 and P (h) = −h(h+ 1)− λ/4.

5. The quantum weighted projective space or the quantum spindle algebra O(WPk,l)

(see Example 3.8 in [3]) is isomorphic to C[h](σ, P ) with P (h) = hk
∏l−1

i=0(1− q−2ih)

and σ(h) = q2lh.

6. The previous examples are generalized Weyl algebras over C[h]. The enveloping

algebra of sl2,

U(sl2) = C⟨E,F,H|[E,H] = 2E, [F,H] = −2F, [E,F ] = 2H⟩

is isomorphic to C[h, c](σ, a) where σ(h) = h−1, σ(c) = c and a = c−h(h+1). This

case will not be treated in this article since we focus on generalized Weyl algebras

over C[h].

Lemma 3.3. A generalized Weyl algebra has a Z-grading A =
⊕

n∈ZAn where A0 = D

and

An =

Dy
n n > 0

Dxn n < 0.

(3.2)
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Proof. Consider the grading in A = D(σ, a) defined by setting the degree of y equal to 1,

the degree of x equal to −1, and the degree of all elements of D equal to 0. That is, the

degree of the monomial
∏n

i=1 dix
αiyβi , with di ∈ D, is equal to

∑n
i=1 βi −

∑n
i=1 αi. Since

the relations defining A are compatible with the grading, the algebra A is Z-graded.

Now consider the following relations in A. We have

xnyn = σn(a)σn−1(a) . . . σ(a)

ynxn = σ−(n−1)(a)σ−(n−2)(a) . . . a

Using induction on the length of the monomial
∏n

i=1 dix
αiyβi we prove (3.2). Note that

Dyn = ynD and Dxn = xnD.

In the case of generalized Weyl algebras over C[h], we have the following result.

Corollary 3.4. The generalized Weyl algebra A = C[h](σ, P ), with P ∈ C[h], has a

countable basis over C.

Proof. A basis is given by the elements hn, hnym and hnxm for n ∈ N, m ≥ 1.

There are several ways of writing the same generalized Weyl algebra. The conjugation

of σ by an automorphism τ ofD gives rise to an isomorphism of generalized Weyl algebras.

Lemma 3.5. Let σ, τ be automorphisms of D and let a be a central element of D. Then

τ(a) is central in D and

D(σ, a) ∼= D(τστ−1, τ(a)).

Proof. Let x′ and y′ be the generators of D(τστ−1, τ(a)) over D. There is a morphism

ϕ : D(σ, a) → D(τστ−1, τ(a)) defined by x 7→ x′, y 7→ y′, d 7→ τ(d), for all d ∈ D. We

need to check that ϕ is compatible with the relations of (3.1). Using the relations defining

D(τστ−1, τ(a)) we have

x′τ(d) = (τστ−1)(τ(d))x′ = τ(σ(d))x′

y′τ(d) = (τσ−1τ)(τ(d))y′ = τ(σ−1(d))y′

x′y′ = τ(a)

y′x′ = (τστ−1)(τ(a)) = τ(σ(a)).

ϕ−1 is defined by x′ 7→ x, y′ 7→ y, d 7→ τ−1(d) for all d ∈ D.
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In the case D = C[h], we use Lemma 3.5 to write a given generalized Weyl algebra

in a canonical form. Any automorphism of C[h], is of the form σ(h) = qh + h0 with

q, h0 ∈ C and q ̸= 0. We have three cases

1. σ is conjugate to id if and only if σ = id,

2. if q = 1 and h0 ̸= 0, then σ is conjugate to h 7→ h− 1,

3. if q ̸= 1, then σ is conjugate to h 7→ qh.

Combining this with Lemma 3.5, we obtain the following result.

Proposition 3.6 (Compare with Proposition 2.1.1 in [22].). Let A = C[h](σ, P ), with

P ∈ C[h] and σ(h) = qh+ h0 with q, h0 ∈ C and q ̸= 0. The following facts hold.

1. If σ = id, then A ∼= C[h, x, y]/(xy − P ).

2. If q = 1 and h0 ̸= 0 then A ∼= C[h](σ1, P1) with σ1(h) = h−1 and P1(h) = P (−h0h).

3. If q ̸= 1 then A ∼= C[h](σ1, P1) with σ1(h) = qh and P1(h) = P (h− h0
1−q ).

By Proposition 3.6, we can assume that σ = id, σ(h) = h− 1 or σ(h) = qh for some

q ̸= 0.

Proposition 3.7. Let A = C[h](σ, P ), with P ∈ C[h]. We have

1. if σ(h) = h − 1 and P is a non-constant polynomial, then A ∼= C[h](σ, P1) with

P1(0) = 0,

2. if σ(h) = qh and P has a nonzero root, then A ∼= C[h](σ, P1) with P1(1) = 0.

3.2 A faithful representation

Now we construct faithful representations for the generalized Weyl algebras covered in

cases (1) and (2) of Proposition 3.7. We define VN as the vector space of sequences of
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complex numbers indexed by N. Let U1,U−1, G ∈ End(VN) as the shifts to the right and

to the left respectively. Note that U−1U1 = 1, U1U−1 = 1− e00.

U1 =



0 0 0 · · ·

1 0 0

0 1 0

0 0 1
...

. . .


U−1 =


0 1 0 0 · · ·

0 0 1 0

0 0 0 1
...

. . .


Additionally, we use the following elements N =

∑
i∈N(−i)ei,i and G =

∑
i∈N q

iei,i for

q ̸= 0 not a root of unity.

N =



0 0 0 0 · · ·

0 −1 0 0

0 0 −2 0

0 0 0 −3
...

. . .


G =



1 0 0 0 · · ·

0 q 0 0

0 0 q2 0

0 0 0 q3

...
. . .


Lemma 3.8. The following relations are satisfied in End(VN).

1. U1N = (N + 1)U1.

2. U−1N = (N − 1)U−1,

3. U1G = (q−1G)U1,

4. U−1G = (qG)U−1.

5. If P is a polynomial and k ∈ N, then

[P (N)U1]
k = Uk

1P (N − 1)P (N − 2) . . . P (N − k).

6. If P is a polynomial and k ∈ N, then

[P (G)U1]
k = Uk

1P (qG)P (q
2G) . . . P (qkG).
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Proof. The relations in (1)-(4) are readily checked. For (5), we note that by (1) we have

P (N)U1 = U1P (N − 1) and the result follows by interchanging factors in

P (G)U1P (G)U1 . . . P (G)U1.

Item (6) is proved similarly, using P (G)U1 = U1P (qG) which follows from (2).

As a consequence of Lemma 3.8, we obtain that the subalgebras E1 and E2 of End(VN)

generated by {U1,U−1, N} and {U1,U−1, G}, respectively, have countable bases over C

and therefore they are locally convex algebras with the fine topology.

Lemma 3.9. We have representations for generalized Weyl algebras A = C[h](σ, P (h))

in the following cases.

1. If σ(h) = h − 1 and P is a nonzero polynomial with P (0) = 0, then there is a

faithful representation ρ : A→ E1 such that

ρ(h) = N, ρ(x) = U−1 and ρ(y) = P (N)U1 = U1P (N − 1).

2. If σ(h) = qh with q ̸= 0 not a root of unity and P (1) = 0, then there is a faithful

representation ρ : A→ E2 such that

ρ(h) = G, ρ(x) = U−1 and ρ(y) = P (G)U1 = U1P (qG).

Proof. For (1), first we notice that we have an injective homomorphism C[h] ↪→ End(VN)

defined by h 7→ N .

This homomorphism is injective because all the entries in the diagonal of matrix N

are different. With P (0) = 0 we will see that the relations of C[h](σ, P (h)) hold. To

prove this, we use the relations of Lemma 3.8. For a polynomial α(h) ∈ C[h] we have

ρ(xα(h)) = U−1α(N) = α(N − 1)U−1 = ρ(α(h− 1)x)

ρ(yα(h)) = P (N)U1α(N) = α(N + 1)P (N)U1 = ρ(α(h+ 1)y)

ρ(yx) = U1P (N − 1)U−1 = U1U−1P (N) = (1− e00)P (N) = P (N) = ρ(P (h))

ρ(xy) = U−1U1P (N − 1) = P (N − 1) = ρ(P (h− 1))
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We use that P (0) = 0 in the third row to guarantee (1− e00)P (N) = P (N).

Now we prove that ρ is injective. Let

α =
∑
n≥0

pn(h)y
n +

∑
m<0

qm(h)x
m

be an element of A. Then we have

ρ(α) =
∑
n≥0

pn(P (N))(P (N)U1)
n +

∑
m<0

qm(P (N))Um
−1.

Note that (P (N)U1)
n = Qn(N)Un

1 where Qn(N) = P (N)P (N + 1) . . . P (N + (n − 1)).

Therefore if ρ(α) = 0 then qm = 0 and because Qn ̸= 0, we have pn = 0. Therefore α = 0

and so ρ is injective.

(2) is proved in a similar way: we have an injective homomorphism C[h] ↪→ End(VN)

defined by h 7→ G. This homomorphism is injective because q ̸= 0 not a root of unity

imply that all the entries in the diagonal of matrix G are different. Using P (1) = 0, it

is easy to see that the relations of D(σ, a) hold. We also need to use the relations of

Lemma 3.8. We prove that ρ is injective in a similar way. In this case we note that

(P (G)U1)
n = Qn(G)Un

1 where Qn(G) = P (G)P (q−1G) . . . P (q−(n−1)G).

Remark 3.10. Lemma 3.9 covers every noncommutative generalized Weyl algebra over

C[h] except the following cases

(i) P constant. The case P = 0 is treated in Proposition 4.20. In the case P is a

nonzero constant polynomial, we follow the construction of [15]. We treat this case

in Proposition 4.19.

(ii) σ(h) = qh + h0, with q not a root of unity and P having only h0
1−q as a root. We

treat this case in Proposition 4.17.

(iii) σ(h) = qh+ h0 with q ̸= 1 a root of unity. This case remains open.
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3.3 Relation to smooth generalized crossed products

In [15], Gabriel and Grensing define smooth generalized crossed products. These are

involutive locally convex algebras analog to C*-algebra generalized crossed products in [1].

In the same article [15], sequences analog to the Pimsner-Voiculescu exact sequence are

constructed for smooth generalized crossed products that are tame smooth (see definition

18 in [15]).

Definition 3.11. A gauge action γ on a locally convex algebra B is a pointwise contin-

uous action of S1 on B. An element b ∈ B is called gauge smooth if the map t 7→ γt(b)

is smooth.

If we have a gauge action on B, then Bn = {b ∈ B|γt(b) = tnb, ∀t ∈ S1} defines a

natural Z-grading of B.

Definition 3.12. A smooth generalized crossed product is a locally convex algebra B

with an involution and a gauge action such that

� B0 and B1 generate B as a locally convex involutive algebra,

� all b are gauge smooth and the induced map B → C∞(S1, B) is continuous.

Generalized Weyl algebras A = C[h](σ, P ) are locally convex algebras when given the

fine topology. When P ∈ R[h] and q and h0 are real, they have an involution defined

by y∗ = x, x∗ = y and d∗ obtained by conjugating the coefficients of d ∈ C[h]. There

is an action of S1 defined by γt(ωn) = tnωn for ωn ∈ An. In this case, generalized Weyl

algebras over C[h] are smooth generalized crossed products.

Remark 3.13. In the case when P ∈ R[h] and q and h0 are real, generalized Weyl algebras

A = C[h](σ, P ) are only tame smooth when P is a nonzero constant polynomial (see

definition 18 in [15]). If P is non-constant, we have A1A−1 = (P ) ⊊ A0 = C[h]. This

implies that A is not tame smooth because tame smooth generalized crossed products B

have a frame in degree 1 which implies that B1B−1 = B0.
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3.4 The Toeplitz extension of a generalized Weyl al-

gebra

We define the Toeplitz algebra associated to a Z-graded locally convex algebra. This

definition is akin to the one given for smooth generalized crossed products in [15].

Definition 3.14. Let A be a Z-graded locally convex algebra. We define TA to be the

closed subalgebra of T ⊗π A generated by Si ⊗ Ai and S
∗j ⊗ A−j for all i ≥ 0, j ≥ 1.

Note that in the case that A is generated by A0, A1 and A−1 then TA is generated by

1⊗ A0, S ⊗ A1 and S∗ ⊗ A−1.

We tensor the linearly split extension 0 → K → T → C∞(S1) → 0 with A to obtain

0 → K⊗π A→ T ⊗π A
p→ C∞(S1)⊗π A→ 0. (3.3)

which is still a linearly split extension.

Proposition 3.15. Let A be a generalized Weyl algebra C[h](σ, P ). Then there is a

linearly split extension

0 → ΛA
ι→ TA

p̄→ A→ 0

where ΛA is the closure of the ideal
⊕

i,j≥0 ei,j⊗Ai+1A−(j+1) in K⊗πA, ι is the inclusion

of ΛA in TA and p̄ is the restriction of p to TA.

Proof. Because of the splitting of the sequence, the image of TA in C∞(S1) ⊗π A is the

closed algebra generated by 1⊗A0, z ⊗A1 and z−1 ⊗A−1 in C∞(S1)⊗π A. We map Im

p̄→ A via the restriction of ev1⊗1A : C∞(S1)⊗π A→ C⊗π A ∼= A. The inverse is given

by A → Im p̄,
∑
an 7→ zn ⊗ an, which is continuous because A is endowed with the fine

topology.

The proof that the kernel of p̄ is the closure of the ideal
⊕

i,j≥0 ei,j ⊗ Ai+1A−(j+1) in

K ⊗π A is the same as that of Proposition 23 in [15].

Although by construction the elements of ΛA could be infinite sums we prove that in

fact these sums are finite.
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Lemma 3.16. The elements of ΛA are finite sums∑
i,j≥0

ei,j ⊗ yi+1Pi,j(h)x
j+1

with Pi,j(h) ∈ C[h].

Proof. Let ω =
∑∞

i,j≥0 ei,j ⊗ ai+1,−(j+1) be an element of ΛA. We claim that only finitely

many of the ai+1,−(j+1) are non-zero. Since K⊗π A = K⊗A, an element ω ∈ K⊗π A can

be written as ω =
∑M

t=1m
(t) ⊗ f (t) where m(t) ∈ K and f (t) ∈ A. Because we are dealing

with finitely many f (t), we can assume that there is an N > 0 such that the degree of all

homogeneous components of f (t) in A is bounded between −N and N . By Lemma 3.3,

we can write

f (t) =
N∑
k=0

P
(t)
k (h)yk +

N∑
k=1

P
(t)
−k(h)x

k.

Let D be the maximum degree of all polynomials P
(t)
k . If m(t) =

∑∞
i,j≥0 c

(t)
i,jei,j we have

ω =
M∑
t=1

(
∞∑

i,j≥0

c
(t)
i,jei,j

)
⊗ f (t)

=
∞∑

i,j≥0

ei,j ⊗

(
M∑
t=1

c
(t)
i,jf

(t)

)

=
∞∑

i,j≥0

ei,j ⊗

[
N∑
k=0

(
M∑
t=1

c
(t)
i,jP

(t)
k (h)

)
yk +

N∑
k=1

(
M∑
t=1

c
(t)
i,jP

(t)
−k(h)

)
xk

]
.

We notice that the degree of ai+1,−(j+1) ∈ Ai+1A−(j+1) inA is i−j, therefore ai+1,−(j+1) ̸=

0 only if |i−j| ≤ N . For fixed i and j we have ai+1,−(j+1) = q(h)yi+1xj+1 with q(h) ∈ C[h].

Let n be the degree of the polynomial P that defines A. From the relations defining

A = C[h](σ, P ), we can deduce ykxk =
∏k−1

s=0 P (σ
−s(h)) which is a polynomial of degree

nk. We then have

ai+1,−(j+1) =

Q(h)y
i−j , i ≥ j

Q(h)xj−i , i < j,

where degQ ≥ nmin{i + 1, j + 1}. Since we must have degQ ≤ D in order to have

ai+1,−(j+1) ̸= 0, then if ai+1,−(j+1) ̸= 0 we have i+1 ≤ D
n
or j+1 ≤ D

n
and using |i−j| ≤ N ,
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we can conclude ai+1,−(j+1) ̸= 0 only if i + j = i − j + 2j = i − j + 2i ≤ N + 2(D
n
− 1).

This implies that ai+1,−(j+1) ̸= 0 for finitely many i, j.
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Chapter 4

kkalg invariants of generalized Weyl

algebras

In this chapter, we compute the isomorphism class in KKalg of generalized Weyl algebras

A = C[h](σ, P ) where σ(h) = qh + h0 is an automorphism of C[h] and P ∈ C[h]. We

summarize our results in the table below.

Conditions Results Observation

P is constant
P = 0 A ∼=KKalg C Prop 4.20 A N-graded

P ̸= 0 A ∼=KKalg SC⊕ C Prop 4.19

P is nonconstant

with r distinct

roots

q not a root of unity A ∼=KKalg Cr Thm 4.13

Prop 4.17

q = 1 and h0 ̸= 0 A ∼=KKalg Cr Thm 4.13

In the case where P is a non-constant polynomial, Amight not be a smooth generalized

crossed product, and if it is, it is not tame smooth so we cannot apply the results of [15]

directly. In this case we follow the methods of [10] and [15] to obtain

ΛA ∼=KKalg A1A−1 (Theorem 4.1 ) and TA ∼=KKalg A0 (Theorem 4.9 )

in the cases where P is non-constant and
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� q = 1 and h0 ̸= 0 or

� q is not a root of unity and P has a root different from h0
q−1

.

With these isomorphisms we construct in Theorem 4.10 an exact triangle

SA→ A1A−1
0→ A0 → A

in the triangulated category (KKalg, S) (see Proposition 2.20). This implies

A = A0 ⊕ S(A1A−1).

In Proposition 4.12, we prove that A1A−1
∼=KKalg SCr−1, and since by Lemma 4.16

we know that A0
∼=KKalg C, we obtain our main result Theorem 4.13: in these cases

A ∼=KKalg Cr.

We also determine the KKalg-class of A when A is N-graded. In this case Lemma 4.16

gives us A ∼=KKalg A0. This is the case when

� P is nonconstant, q is not a root of unity and P has only h0
q−1

as a root or

� P = 0.

In both cases we obtain A ∼=KKalg C in Propositions 4.20 and 4.17.

If P is a nonzero real constant, A is a tame smooth generalized crossed product and

the results from [15] apply. In case P is a non zero constant, the proofs of [15] still hold

and we obtain A ∼=KKalg SC⊕ C in Proposition 4.19.

4.1 The case where P is a non-constant polynomial

We consider the short exact sequence

0 → ΛA → TA → A→ 0

from Proposition 3.15, where TA is the Toeplitz algebra of A. This sequence yields an

exact triangle

SA→ ΛA → TA → A
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in the triangulated category (KKalg, S).

In order to apply Lemma 3.9, we need to consider generalized Weyl algebras A =

C[h](σ, P ) where P is non-constant and

� q = 1 and h0 ̸= 0 or

� q is not a root of unity and P has a root different from h0
1−q .

By Propositions 3.6 and 3.7, in order to cover these cases, it suffices to consider the

following two cases:

� σ(h) = h− 1 and P is a non-constant polynomial with P (0) = 0.

� σ(h) = qh where q is not a root of unity and P is a non-constant polynomial with

P (1) = 0.

We first consider generalized Weyl algebras satisfying these assumptions and treat

the case where q is not a root of unity and P has only h0
1−q as a root separately in

Proposition 4.17.

Define j1 : A1A−1 → ΛA by j1(a) = e00 ⊗ a. We embed ΛA in a suitable algebra so

that we can construct a Morita equivalence to its subalgebra j1(A1A−1) = e00 ⊗ A1A−1.

Now, we show ΛA ∼=KKalg A1A−1.

Theorem 4.1. There is a Morita equivalence between ΛA and j1(A1A−1), therefore there

is an invertible element θ ∈ kkalg(ΛA, A1A−1) which is an inverse of kk(j1).

Proof. First, write the proof in the case σ(h) = h − 1 and P (0) = 0. Consider the

representation

ρ : A = C[h](σ, P ) → E1

from item (1) in Lemma 3.9, that is ρ(h) = N , ρ(x) = U−1 and ρ(y) = P (N)U1. Tensoring

with 1T we obtain an injective morphism 1T ⊗ ρ : T ⊗A→ T ⊗ E1 which restricts to an

injective morphism

ρ̄ : ΛA ↪→ T ⊗ E1.

The Morita equivalence is given by ξi = ξ′i = ei,0⊗U i
1 and ηj = η′j = e0,j⊗U i

−1. We check

that these sequences satisfy the conditions in Definition 2.21 and Proposition 2.22.
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First, we establish that ξi, ηj defines a Morita context between ΛA and e00 ⊗ A1A−1

according with Definition 2.21. Let w =
∑
ei,j ⊗ yi+1Pi,j(h)x

j+1 be an element of ΛA.

1. ηj ρ̄(w)ξi ∈ e00 ⊗ A1A−1. We have

ηj ρ̄(w)ξi = e00 ⊗ U j
−1[P (N)U1]

j+1Pj,i(N)U i+1
−1 U i

1

Using item (5) from Lemma 3.8, we can write (P (N)U1)
j+1 = U j+1

1 Rj+1(N) where

Rj+1(N) = P (σ(N)) . . . P (σj+1(N)).

Naming R′
j+1(N) = P (σ2(N)) . . . P (σj+1(N)) we have

Rj+1(N) = P (σ(N))R′
j+1(N).

Therefore

ηj ρ̄(w)ξi = e00 ⊗ U1Rj+1(N)Pj,i(N)U−1

= e00 ⊗ U1P (σ(N))R′
j+1(N)Pj,i(N)U−1

= e00 ⊗ P (N)U1R
′
j+1(N)Pj,i(N)U−1

= ρ̄(e00 ⊗ yR′
j+1(h)Pj,i(h)x) ∈ ρ̄(e00 ⊗ A1A−1).

2. The terms ηj ρ̄(w)ξi are rapidly decreasing. This is because the elements of ΛA are

finite sums.

3. (
∑
ξiηi)ρ̄(w) = ρ̄(w). We have(∑

ξiηi

)
ρ̄(w) =

(∑
ei,i ⊗ U i

1U i
−1

)(∑
ek,l ⊗ (U1P (N))k+1Pk,l(N)U l+1

−1

)
=
∑

ek,l ⊗ Uk
1Uk

−1Uk+1
1 Rk+1(N)Pk,l(N)U l+1

−1

=
∑

ek,l ⊗ Uk+1
1 Rk+1(N)Pk,l(N)U l+1

−1

= ρ̄(w)

Now we check the conditions of Proposition 2.22. We show that ρ̄(w)ξkξ
′
l and η

′
kη

′
lρ̄(w)

are still elements of ρ̄(ΛA).

ρ̄(w)ξkξ
′
l =

(∑
ei,j ⊗ (U1P (N))i+1Pi,j(N)U j+1

−1

)
(ek,0 ⊗ Uk

1 )(el,0 ⊗ U l
1)
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which is 0 unless l = 0 and in that case we obtain

ρ̄(w)ξkξ
′
l =

∑
ei,0 ⊗ (U1P (N))i+1Pi,k(N)U−1

= ρ̄
(∑

ei,0 ⊗ yi+1Pi,k(h)x
)
∈ ρ̄(ΛA)

and similarly we compute

η′kηlρ̄(w) = (e0,k ⊗ Uk
−1)(e0,l ⊗ U l

−1)
(∑

ei,j ⊗ (U1P (N))i+1Pi,j(N)U j+1
−1

)
which is 0 unless k = 0 and in that case we obtain

ρ̄(w)ξkξ
′
l =

∑
e0,j ⊗ U l

−1(U1P (N))l+1Pl,j(N)U j+1
−1

= ρ̄
(∑

e0,j ⊗ yR′
l+1(h)Pl,j(h)x

j+1
)
∈ ρ̄(ΛA).

The Morita context from e00 ⊗A1A−1 to ΛA is defined by (ξ′i, η
′
j). So far we have proved

kk((ξ′i), (η
′
j)) ◦ kk((ξi), (ηj)) = 1ΛA

. Let z = e00 ⊗ yP0,0x ∈ e00 ⊗A1A−1. Then ρ̄(z)ξ
′
lξk =

η̄lη
′
kρ(z) = 0 unless l = k = 0 and in this case ρ̄(z)ξ′0ξ0 = ρ̄(z)η0η

′
0 = ρ̄(z). Thus we have

kk((ξi), (ηj)) ◦ kk((ξ′i), (η′j)) = 1e00⊗A1A−1 .

The proof of the case where σ(h) = qh and P (1) = 0 is quite similar. Consider the

representation

ρ : A = C[h](σ, P ) → E2

from item (2) in Lemma 3.9, that is ρ(h) = G, ρ(x) = U−1 and ρ(y) = P (G)U1. Again,

tensoring with 1T we obtain an injective morphism 1T ⊗ ρ : T ⊗ A → T ⊗ E2 which

restricts to an injective morphism

ρ̄ : ΛA ↪→ T ⊗ E2.

The Morita equivalence is given by ξi = ξ′i = ei,0 ⊗ U i
1 and ηj = η′j = e0,j ⊗ U i

−1.

Let ω ∈ ΛA be as above. Again, we check that these sequences satisfy the conditions in

Definition 2.21 and Proposition 2.22.

1. ηj ρ̄(w)ξi ∈ e00 ⊗ A1A−1. We have

ηj ρ̄(w)ξi = e00 ⊗ U j
−1[P (Q)U1]

j+1Pj,i(Q)U i+1
−1 U i

1
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This time, we use item (6) from Lemma 3.8. We can write (P (Q)U1)
j+1 = U j+1

1 Tj+1(Q)

where

Tj+1(Q) = P (σ(Q)) . . . P (σj+1(Q)).

Naming T ′
j+1(Q) = P (σ2(Q)) . . . P (σj+1(Q)) we have

Tj+1(Q) = P (σ(Q))T ′
j+1(Q).

Therefore

ηj ρ̄(w)ξi = e00 ⊗ U1Tj+1(Q)Pj,i(Q)U−1

= e00 ⊗ U1P (σ(Q))T
′
j+1(Q)Pj,i(Q)U−1

= e00 ⊗ P (Q)U1T
′
j+1(Q)Pj,i(Q)U−1

= ρ̄(e00 ⊗ yT ′
j+1(h)Pj,i(h)x) ∈ ρ̄(e00 ⊗ A1A−1).

2. The terms ηj ρ̄(w)ξi are rapidly decreasing. This is because the elements of ΛA are

finite sums.

3. (
∑
ξiηi)ρ̄(w) = ρ̄(w). We have(∑

ξiηi

)
ρ̄(w) =

(∑
ei,i ⊗ U i

1U i
−1

)(∑
ek,l ⊗ (U1P (Q))

k+1Pk,l(Q)U
l+1
−1

)
=
∑

ek,l ⊗ Uk
1Uk

−1Uk+1
1 Tk+1(Q)Pk,l(Q)U l+1

−1

=
∑

ek,l ⊗ Uk+1
1 Tk+1(Q)Pk,l(Q)U l+1

−1

= ρ̄(w)

Finally, we check the conditions of Proposition 2.22 in this case. We show that

ρ̄(w)ξkξ
′
l and η

′
kη

′
lρ̄(w) are still elements of ρ̄(ΛA).

ρ̄(w)ξkξ
′
l =

(∑
ei,j ⊗ (U1P (Q))

i+1Pi,j(Q)U
j+1
−1

)
(ek,0 ⊗ Uk

1 )(el,0 ⊗ U l
1)

which is 0 unless l = 0 and in that case we obtain

ρ̄(w)ξkξ
′
l =

∑
ei,0 ⊗ (U1P (Q))

i+1Pi,k(Q)U−1

= ρ̄
(∑

ei,0 ⊗ yi+1Pi,k(h)x
)
∈ ρ̄(ΛA).
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Next, we compute

η′kηlρ̄(w) = (e0,k ⊗ Uk
−1)(e0,l ⊗ U l

−1)
(∑

ei,j ⊗ (U1P (Q))
i+1Pi,j(Q)U

j+1
−1

)
which is 0 unless k = 0 and in that case we obtain

ρ̄(w)ξkξ
′
l =

∑
e0,j ⊗ U l

−1(U1P (Q))
l+1Pl,j(Q)U

j+1
−1

= ρ̄
(∑

e0,j ⊗ yT ′
l+1(h)Pl,j(h)x

j+1
)
∈ ρ̄(ΛA).

We have proved kk((ξ′i), (η
′
j))◦kk((ξi), (ηj)) = 1ΛA

. Let z = e00⊗yP0,0(h)x ∈ e00⊗A1A−1.

Then ρ̄(z)ξ′lξk = η̄lη
′
kρ(z) = 0 unless l = k = 0 and in this case ρ̄(z)ξ′0ξ0 = ρ̄(z)η0η

′
0 = ρ̄(z).

Thus we have kk((ξi), (ηj)) ◦ kk((ξ′i), (η′j)) = 1e00⊗A1A−1 .

Next, we show TA ∼=KKalg A0. Define j0 : A0 → TA by j0(a) = 1 ⊗ a. We show that

this inclusion induces an invertible element kk(j0) ∈ kkalg0 (A0, TA).

Lemma 4.2. There is a quasihomomorphism (id,Ad(S ⊗ 1)) : TA ⇒ T ⊗ A ▷ C, where

C is the closure of
⊕

i,j≥0 ei,j ⊗ AiA−j in K ⊗π A. Here Ad(S ⊗ 1) is the restriction of

Ad(S ⊗ 1) : T ⊗ A→ T ⊗ A defined by x 7→ (S ⊗ 1)x(S∗ ⊗ 1).

Remark 4.3. By an argument similar to the proof of Lemma 3.16 we can conclude that⊕
i,j≥0 ei,j ⊗ AiA−j is closed.

Proof. We have AiA−jAjA−k ⊆ AiA−k because A−jAj ⊆ A0, therefore C is a subalgebra.

To prove that the pair (id,Ad(S⊗ 1)) defines a quasihomomorphism we check the condi-

tions on the generators. It is clear that (1⊗A0)C, (S⊗A1)C and (S∗⊗A−1)C are subsets

of C. Now we let ai ∈ Ai and we check

(id− Ad(S ⊗ 1))(1⊗ a0) = e⊗ a0 ∈ C

(id−Ad(S ⊗ 1))(S ⊗ a1) = Se⊗ a1 ∈ C

(id−Ad(S ⊗ 1))(S∗ ⊗ a−1) = eS∗ ⊗ a−1 ∈ C.

Define i0 : A0 → C by i0(a) = e00 ⊗ a.
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Proposition 4.4. There is a Morita equivalence between C and i0(A0). Therefore there

is an invertible element κ ∈ kkalg(C, A0).

Proof. Using Lemma 3.9, we think of C represented in T ⊗ E (where E = E1 if q = 1

and E = E2 if q ̸= 1). The Morita equivalence is given by ξi = ξ′i = ei,0 ⊗ U i
1 and

ηj = η′j = e0,j ⊗ U i
−1. The proof that these elements determine a Morita equivalence is

similar to the proof of Theorem 4.1. We define κ = kk((ξi), (ηj)) ∈ kkalg0 (C, A0).

Proposition 4.5. Let κ ∈ kk(C, A0) as in Proposition 4.4, then

κ ◦ kk(id,Ad(S ⊗ 1)) ◦ kk(j0) = 1A0 .

This implies that kk(j0) has a left inverse and that kk(id,Ad(S⊗ 1)) has a right inverse.

Proof. We have

(id−Ad(S ⊗ 1))(j0(a0)) = e00 ⊗ a0,

thus kk(id,Ad(S ⊗ 1)) ◦ kk(j0) = kk(i0). By Proposition 4.4, κ ◦ kk(i0) = 1A0 .

To show that kk(j0) is invertible, we construct a left inverse for kk(id,Ad(S ⊗ 1)).

In order to do this, we construct a diffotopic family of quasihomomorphisms between TA
and a subalgebra C̄ of (T ⊗π T ) ⊗ A and prove that C̄ is Morita equivalent to TA. To

construct this diffotopic family we use the following diffotopy.

Recall the diffotopy

ϕt : T → T ⊗π T

from Lemma 1.36. The images of S and S∗ are

ϕt(S) = S2S∗ ⊗ 1 + f(t)(e⊗ S) + g(t)(Se⊗ 1)

ϕt(S
∗) = SS∗2 ⊗ 1 + f(t)(e⊗ S∗) + g(t)(eS∗ ⊗ 1)

where f, g ∈ C[0, 1] are such that f(0) = 0, f(1) = 1, g(0) = 1 and g(1) = 0. Note that

ϕ0(S) = S ⊗ 1 and ϕ1(S) = S2S∗ ⊗ 1 + e⊗ S.

Consider the map Φt = ϕt ⊗ idA : T ⊗ A → (T ⊗π T ) ⊗ A where ϕt is the diffotopy

of Lemma 1.36. Since ϕ0(S) = S ⊗ 1, then Φ0(x⊗ a) = x⊗ 1⊗ a.
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Lemma 4.6. There is a diffotopic family of quasihomomorphisms

(Φt,Φ0 ◦ Ad(S ⊗ 1)) : TA ⇒ (T ⊗π T )⊗ A ▷ C̄.

Here C̄ is the closure of ⊕
i,j,p,q∈N

ei,j ⊗ SpS∗q ⊗ Ai+pA−(j+q)

in (K ⊗π T )⊗ A

Proof. We check that (Φt,Φ0◦Ad(S⊗1)) define quasihomomorphisms using the generators

of TA. First we note that Φt(1⊗A0)C̄,Φt(S ⊗A1)C̄ and Φt(S
∗ ⊗A−1)C̄ are subsets of C̄.

Finally, we compute

(Φt − Φ0 ◦ Ad(S ⊗ 1))(1⊗ a0) = e⊗ 1⊗ a0 ∈ C̄

(Φt − Φ0 ◦ Ad(S ⊗ 1))(S ⊗ a1) = f(t)(e⊗ S ⊗ a1) + g(t)(Se⊗ 1⊗ a1) ∈ C̄

(Φt − Φ0 ◦ Ad(S ⊗ 1))(S∗ ⊗ a−1) = f̄(t)(e⊗ S∗ ⊗ a−1) + ḡ(t)(eS∗ ⊗ 1⊗ a−1) ∈ C̄.

Lemma 4.7. The elements of C̄ are finite sums∑
i,j,p,q≥0

ei,j ⊗ SpS∗q ⊗ yi+pPi,j,p,qx
j+q.

Proof. The proof is similar to that of Lemma 3.16. Any element of (K ⊗π T ) ⊗ A can

be written as ω =
∑M

t=1m
(t) ⊗ f (t) where m(t) ∈ K ⊗π T . Therefore we have m(t) =∑

i,j≥0 ei,j ⊗m
(t)
i,j where m

(t)
i,j ∈ T are rapidly decreasing. We can write each m

(t)
i,j as

m
(t)
i,j =

∑
p,q≥0

c
(t)
i,j,p,qS

pS∗q.

Therefore we have

ω =
M∑
t=1

(∑
i,j≥0

ei,j ⊗
∑
p,q≥0

c
(t)
i,j,p,qS

pS∗q

)
⊗ f (t)

=
∑

i,j,p,q≥0

ei,j ⊗ SpS∗q ⊗

(
M∑
t=1

c
(t)
i,j,p,qf

(t)

)
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Let ω =
∑∞

i,j,p,q≥0 ei,j ⊗ SpS∗q ⊗ ai,j,p,q be an element of C̄, that is ai,j,p,q ∈ Ai+pA−(j+q).

By Lemma 3.3, we can write

f (t) =
N∑
k=0

P
(t)
k (h)yk +

N∑
k=1

P
(t)
−k(h)x

k.

Let D be the maximum degree of the polynomials P
(t)
k and n the degree of the polynomial

P defining A = C[h](σ, P ). Just like in the proof of Lemma 3.16, we have ai,j,p,q ̸= 0 only

if |i− j + p− q| ≤ N . We also have that ai+p,−(j+q) ̸= 0 implies i+ p ≤ D
n
or j + q ≤ D

n
.

These conditions imply that ai+p,−(j+q) ̸= 0 only if i+ j + p+ q ≤ N + 2D
n

and thus only

for finitely many i, j, p and q.

Define η : TA → C̄ as the restriction of the injective morphism T ⊗A→ (T ⊗π T )⊗A

given by η(x⊗ a) = e⊗ x⊗ a.

Proposition 4.8. There is a Morita equivalence between C̄ and η(TA). Therefore kk(η) ∈

kkalg0 (TA, C̄) is invertible.

Proof. Using Lemma 3.9, we have an injective morphism C̄ → (T ⊗πT )⊗E (where E = E1
if q = 1 and E = E2 if q ̸= 1). The Morita equivalence is given by ξi = ξ′i = ei,0 ⊗ 1⊗ U i

1

and ηj = η′j = e0,j ⊗ 1⊗ U j
−1. The proof is similar to the proof of Theorem 4.1.

Theorem 4.9. kk(j0) ∈ kkalg0 (A0, TA) is invertible.

Proof. By Proposition 4.5, we know that kk(j0) has a left inverse and kk(id,Ad(S ⊗ 1))

has a right inverse. Now, we prove that kk(id,Ad(S ⊗ 1)) has a left inverse, which

completes the proof.

Since ϕ0(S) = S ⊗ 1, then if ai ∈ Ai and a−j ∈ A−j, we have

Φ0(ei,j ⊗ aia−j) = ei,j ⊗ 1⊗ aia−j ∈ C̄

and therefore Φ0(C) ⊆ C̄, thus by item (4) of Proposition 2.28 we have

kk(Φ0|C) ◦ kk(id,Ad(S ⊗ 1)) = kk(Φ0,Φ0 ◦ Ad(S ⊗ 1)).

By item (5) of Proposition 2.28, we obtain

kk(Φ0,Φ0 ◦ Ad(S ⊗ 1)) = kk(Φ1,Φ0 ◦ Ad(S ⊗ 1)).
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We have ϕ1(S) = S2S∗ ⊗ 1 + e ⊗ S and therefore Φ1 − Φ0 ◦ Ad(S ⊗ 1) = η. By item

(2) of Proposition 2.28, kk(Φ1,Φ0 ◦ Ad(S ⊗ 1)) = kk(η) and by Lemma 4.8, kk(η) is

invertible.

With the isomorphisms in KKalg from Theorems 4.1 and 4.9, we construct the desired

exact triangle.

Theorem 4.10. For a generalized Weyl algebra A = C[h](σ, P (h)) with P a non-constant

polynomial and

� q = 1 and h0 ̸= 0 or

� q is not a root of unity and P has a root different from h0
1−q

there is an exact triangle

SA→ A1A−1
0→ A0 → A.

Proof. The linearly split extension

0 → ΛA
ι→ TA

p̄→ A→ 0 (4.1)

yields an exact triangle

SA
kk(E)→ ΛA

kk(ι)→ TA
kk(p̄)→ A,

where kk(E) ∈ kkalg1 (A,ΛA) ∼= kkalg0 (SA,ΛA) is the element defined by the extension

(4.1).

By Theorem 4.1, the inclusion j1 : A1A−1 → ΛA defined by j1(x) = e00⊗x induces an

invertible element kk(j1) ∈ kkalg0 (A1A−1,ΛA). By Theorem 4.9, the inclusion j0 : A0 →

TA defined by j0(a) = 1 ⊗ a induces an invertible element kk(j0) ∈ kkalg0 (A0, TA). We

define ϕ by the commutative diagram in KKalg

ΛA
kk(ι) // TA

kk(j0)−1

��
A1A−1

kk(j1)

OO

ϕ
// A0

and claim that

ϕ = kk(i)− kk(σ ◦ i). (4.2)
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Here i : A1A−1 → A0 is the inclusion and σ is the automorphism of C[h] defining

A = C[h](σ, P ). For this we use Proposition 4.5 to obtain

kk(j0)
−1 = κ ◦ kk(id,Ad(S ⊗ 1))

and therefore

kk(j0)
−1 ◦ kk(ι) ◦ kk(j1) = κ ◦ kk(id,Ad(S ⊗ 1)) ◦ kk(ι) ◦ kk(j1).

Let x = R(h) ∈ A1A−1 ⊆ C[h]. The composition kk(id,Ad(S ⊗ 1)) ◦ kk(ι) ◦ kk(j1)

corresponds to the quasihomomorphism (ϕ, ψ) : A1A−1 ⇒ T ⊗A▷C, where ϕ(x) = e00⊗x

and ψ(x) = e11 ⊗ x. Since ϕ and ψ are orthogonal, we obtain kk(ϕ, ψ) = kk(ϕ)− kk(ψ).

Now we compose this difference by the Morita equivalence κ of Proposition 4.4. Thus

we have that κ ◦ kk(ϕ) and κ ◦ kk(ψ) are determined by maps A1A−1 → C → K ⊗ A0

that send x 7→ e00 ⊗ x and x 7→ e00 ⊗ ρ−1(U−1R(G)U1) = e00 ⊗R(σ(h)) (here we use the

representation ρ of Lemma 3.9). Thus we conclude ϕ = kk(i)− kk(σ ◦ i), proving (4.2).

Now we prove that ϕ = 0. Both i and σ ◦ i factor through a contractible subalgebra of

C[h]. This is because we have i(A1A−1) = P (h)C[h] and σ(A1A−1) = P (σ(h))C[h] and

the polynomials P (h) and P (σ(h)) have some linear factors L(h) and L(σ(h)). Thus the

morphisms i and σ factor through the subalgebras L(h)C[h] and L(σ(h))C[h], which are

contractible. Therefore we have kk(i) = kk(σ ◦ i) = 0.

Lemma 4.11. Let (T,Σ) be a triangulated category. If there is an exact triangle

ΣX → Y
0→ Z → X

then X ∼= Z ⊕ Σ−1Y .

Proof. See Corollary 1.2.7 in [18].

Now we compute the isomorphism class of A1A−1 in KKalg.

Proposition 4.12. Let A = C[h](σ, P ) where P is a nonconstant polynomial with r

different roots, then

A1A−1
∼=KKalg SCr−1.
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Proof. Let P (h) = c(h − h1)
n1 · · · (h − hr)

nr . Without loss of generality we can assume

c = 1. Since A1A−1 = (P (h)) we have a linearly split extension

0 → A1A−1 → C[h] π→ C[h]/(P (h)) → 0. (4.3)

By the Chinese Remainder Theorem, there is an isomorphism

ϕ : C[h]/(P (h)) →
r∏
i=1

C[h]/(h− hi)
ni .

We have the following commutative diagram

0 // (h− hi)
niC[h] //

��

C[h] qi //

=

��

C[h]/(h− hi)
ni //

µi

��

0

0 // (h− hi)C[h] // C[h] evhi
// C // 0

Since (h− hi)
niC[h] and (h− hi)C[h] are contractible, kk(qi) and kk(evhi) are invertible,

therefore kk(µi) ∈ kkalg0 (C[h]/(h− hi)
ni ,C) is invertible. By the additivity of KKalg, the

homomorphism µ :
∏r

i=1C[h]/(h− hi)
ni → Cr given by µi in the i-th component induces

an invertible element kk(µ). Note that µ ◦ π : C[h] → Cr is given by evhi in the i-th

component.

Since all evaluation maps evhi induce the same kkalg-isomorphism kk(ev0) in kk
alg(C[h],C),

we have the commutative diagram in KKalg

C[h] kk(π) //

kk(ev0)
��

C[h]/P (h)
kk(µ)
��

C
kk(△)

// Cr

where △ : C → Cr is the diagonal morphism △(1) = (1, . . . , 1). Replacing C[h] by C

and C[h]/(P (h)) by Cr in the exact triangle corresponding to (4.3), we obtain an exact

triangle in KKalg

SCr → A1A−1 → C kk(△)→ Cr. (4.4)

The linearly split extension 0 → C △→ Cr → Cr−1 → 0 yields an exact triangle

SCr−1 → C kk(△)→ Cr → Cr−1.
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Rotating this triangle we obtain the exact triangle

SCr → SCr−1 → C kk(△)→ Cr. (4.5)

Since both triangles (4.4) and (4.5) complete the morphism kk(△) : C → Cr, by the

axiom TR3 of triangulated categories we have A1A−1
∼=KKalg SCr−1.

Theorem 4.13. Let A = C[h](σ, P (h)) be generalized Weyl algebra with σ(h) = qh+ h0

and P a non-constant polynomial such that

� q = 1 and h0 ̸= 0 or

� q is not a root of unity and P has a root different from h0
1−q .

Then A ∼=KKalg Cr.

Proof. The result follows from Theorem 4.10, Lemma 4.11 and Proposition 4.12.

Corollary 4.14. Let A be as in Theorem 4.13. Then A ∼= Cr in KKLp and so

kk
Lp

0 (C, A) = Zr and kk
Lp

1 (C, A) = 0.

Corollary 4.14 implies K0(A⊗πLp) = Zr. This is compatible with Theorem 4.5 of [17],

which computes K0(A) = Zr for A = C[h](σ, P ) when σ(h) = h− 1 and P has r simple

roots.

Examples 4.15. We apply Theorem 4.13 in the following cases.

1. The quantum Weyl algebra Aq with q ̸= 1 not a root of unity is isomorphic to C in

KKalg.

2. In the case of the primitive factors Bλ of U(sl2), we have P (h) = −h(h+ 1)− λ/4.

If λ = 1, then Bλ
∼= C in KKalg. If λ ̸= 1, then Bλ

∼= C2 in KKalg. This implies

kk
Lp

0 (C, Bλ) = Z⊕ Z and kk
Lp

1 (C, Bλ) = 0.

3. The quantum weighted projective line O(WPq(k, l)) is isomorphic to C[h](σ, P )

with σ(h) = q2lh and

P (h) = hk
l−1∏
i=0

(1− q−2ih).
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In the case q ̸= 1 is not a root of unity, we have O(WPq(k, l)) ∼= Cl+1 in KKalg. This

implies kk
Lp

0 (C,O(WPq(k, l))) = Zl+1 and kk
Lp

1 (C,O(WPq(k, l))) = 0. (Compare

with Corollary 5.3 of [4].)

Now we treat the case the case where q is not a root of unity and P has only h0
1−q as

a root. We will use the following lemma.

Lemma 4.16. Let A =
⊕
n∈N

An be an N-graded locally convex algebra with the fine topol-

ogy, then A is diffotopy equivalent to A0. In particular C[h] is diffotopy equivalent to

C.

Proof. The diffotopy is given by the family of morphisms ϕt : A → A, t ∈ [0, 1], sending

an element an ∈ An to tnan. When t = 1 we recover the identity and when t = 0 the

morphism is a retraction of A onto A0.

Proposition 4.17. The generalized Weyl algebra A = C[h](σ, P (h)), with σ(h) = qh+h0

such that q ̸= 1 and P has only h0
1−q as a root, is isomorphic to C in KKalg.

Proof. By Proposition 3.6, A is isomorphic to C[h](σ1, P1) with σ1(h) = qh and P1(h) =

chn with c ∈ C∗ and n ≥ 1. The algebra C[h](σ1, P1) is N-graded with deg h = 2,

deg x = n and deg y = n. To prove this we check that the defining relations

xh = qhx, yh = q−1hy, yx = chn and xy = cqnhn

are compatible with the grading.

The result follows from applyng Lemma 4.16 again, since the degree 0 subalgebra of

A is isomorphic to C in KKalg.

Example 4.18. The quantum plane C[h](σ, h) with σ(h) = qh is isomorphic to C in KKalg.

4.2 The case where P is a constant polynomial

If P is a nonzero constant polynomial and q, h0 are real, then A = C[h](σ, P ) is a

tame smooth generalized crossed product and we can apply the results from [15]. If q or

h0 are not real, we can still obtain results similar to those of [15].
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Proposition 4.19. Let A = C[h](σ, P ) where P ̸= 0 is a constant polynomial, then

A ∼= SC × C in KKalg. This implies A ∼= SC × C in KKLp and therefore we have

kk
Lp

0 (C, A) = Z and kk
Lp

1 (C, A) = Z.

Proof. Even though A might not be a tame smooth generalized crossed products, it has

a frame ξi = yi and ξ̄i = xi for i ∈ N that satisfies the conditions of Definition 18 in [15].

Following the proofs of sections 8 and 9 of [15] it can be shown that the linearly split

extension

0 → ΛA
ι→ TA

p̄→ A→ 0,

yields an exact triangle

SA
kk(E)→ ΛA

kk(ι)→ TA
kk(p̄)→ A.

By Theorem 27 of [15], j1 : C[h] → ΛA, defined by j1(x) = e00⊗x induces an invertible

element kk(j1) and by Theorem 33 of [15], j0 : C[h] → TA defined by j0(x) = 1⊗x induces

an invertible element kk(j0). We have a commutative diagram in KKalg

ΛA
kk(ι)

// TA

C[h]

kk(j1)

OO

α
// C[h].

kk(j0)

OO

We prove that α = 1C[h] − kk(σ) and that 1C[h] = kk(σ), thus concluding that α = 0.

By Theorem 33 of [15], we have kk(j0)
−1 = kk(ι1)

−1◦kk(id,Ad(S⊗1)). The composition

kk(1,Ad(S ⊗ 1)) ◦ kk(ι) ◦ kk(j1) corresponds to a quasi-homomorphism

(ϕ, ψ) : C[h] ⇒ T ⊗ A ▷ C,

where ϕ(Q) = e00⊗Q and ψ(Q) = e11⊗Q for all Q ∈ C[h]. Since ϕ and ψ are orthogonal

kk(ϕ, ψ) = kk(ϕ)− kk(ψ). We now compose kk(ϕ) and kk(ψ) with kk(j1)
−1 . Theorem

27 of [15] characterizes kk(j1)
−1 as given by a Morita equivalence defined by

Ξi = Si ⊗ yi and Ξi = S∗i ⊗ xi.

therefore kk(j1)
−1 ◦ kk(ϕ) is defined by the morphism Q 7→ Q and kk(j1)

−1 ◦ kk(ψ) is

defined by Q 7→ xQy = σ(Q). This implies that α = 1C[h] − kk(σ).
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The commutative diagram

C[h] σ
//

ev0

��

C[h]
ev0

��
C

id
// C,

implies that kk(σ) = 1C[h] and thus α = 0.

This implies the existence of an exact triangle in KKalg

SA→ C 0→ C → A.

Using Lemma 4.11, we obtain A ∼= SC⊕ C in KKalg.

In the case where P = 0 we have the following result.

Proposition 4.20. The generalized Weyl algebra A = C[h](σ, P (h)) with P = 0 is

isomorphic to C in KKalg.

Proof. The relations

xh = σ(h)x, yh = σ−1(h)y, yx = 0 and xy = 0

are compatible with the grading determined by deg h = 0, deg x = 1 and deg y = 1,

therefore the algebra A is N-graded. The result follows from Lemma 4.16 and the fact

that the degree 0 subalgebra of A is equal to C[h].
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[3] Tomasz Brzeziński, Circle and line bundles over generalized Weyl algebras, Algebr. Represent. The-

ory 19 (2016), no. 1, 57–69.
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