UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

TESIS

"METODOLOGÍA DE INVENTARIO PARA EL CÁLCULO DE CO₂ EQUIVALENTE EN LA CONSTRUCCIÓN"

PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

ELABORADO POR

YONER ALEJO SANCHEZ AGURTO

ASESOR

MSc. EDWARD SANTA MARÍA DÁVILA

LIMA- PERÚ

2023

© 2023, Universidad Nacional de Ingeniería. Todos los derechos reservados "El autor autoriza a la UNI a reproducir la Tesis en su totalidad o en parte con fines estrictamente académicos."

Sanchez Agurto, Yoner Alejo ysancheza@uni.pe

+51 980 502 014

DEDICATORIA

A mis padres, Marcial y Armandina, por el apoyo constante, paciencia y fe en mí. Ellos, que son la fuente de inspiración para mi crecimiento personal y profesional.

AGRADECIMIENTOS

Un especial agradecimiento al MSc. Edward Santa María Dávila, asesor de la presente tesis, por iniciarme en el camino de la investigación, por su apoyo incondicional y tiempo dedicado al desarrollo de la presente, el cual ha sido posible gracias a sus sólidos conocimientos, amplia experiencia y esmero en seguir aportando a la ciencia y tecnología del país.

Al Ing. Hernán Arboccó Valderrama, quien asentó la curiosidad e interés de estudiar a los materiales tradicionales y no convencionales en el curso de Industrialización de la Construcción.

A los docentes de la Facultad de Ingeniería Civil, quienes, en todo momento, motivaron a la búsqueda de nuevos conocimientos en el campo de la ciencia.

Finalmente, a todas las personas, amigos y familiares, que de una u otra manera, apoyaron en la culminación de la presente tesis.

ÍNDICE

ÍNDICE	1
RESUMEN	3
ABSTRACT	5
PRÓLOGO	7
LISTA DE CUADROS	8
LISTA DE GRÁFICOS	9
LISTA DE FIGURAS	10
LISTA DE SÍMBOLOS Y SIGLAS	
CAPÍTULO I: INTRODUCCIÓN	13
1.1 GENERALIDADES	13
1.2 PROBLEMÁTICA	14
1.3 OBJETIVOS	14
1.3.1 Objetivo General	14
1.3.2 Objetivos Específicos.	14
1.4 HIPÓTESIS	15
1.4.1 Hipótesis General	15
1.4.2 Hipótesis Específicos	15
CAPÍTULO II: MARCO TEÓRICO Y CONCEPTUAL	16
2.1. Características de las Construcciones con Adobe	16
2.2. Características de las Construcciones con Ladrillo de arcilla	16
2.3. Inicio de la metodología del Análisis del Ciclo de Vida (ACV)	17
2.4. Análisis del Ciclo de Vida (ACV)	17
2.5. Metodología del Análisis del Ciclo de Vida	17
2.6. Análisis del Inventario del Ciclo de Vida (ICV)	18
2.7. Evaluación del Impacto del Ciclo de Vida (EICV)	18
2.8. Base de datos de ACV	18
2.9. Unidad Funcional	19
2.10. Emisión de CO ₂ en transporte	19
2.11. Dióxido de Carbono (CO ₂)	20
2.12. Huella de Carbono	21
2.13. Materiales de construcción	22
2.14. Emisiones del Carbono por parte de la Industria del Cemento	22
2.15. ¿Por qué cuantificar las emisiones?	23

2.16	. Aspectos a considerar en la cuantificación de las emisiones	24
2.17	. Emisiones de CO ₂ en el sector Construcción	26
2.18	. Modelo de la Cuantificación de las emisiones de CO ₂	27
2.19	. Consumo de Energía del Sector Transporte	27
2.20	. Gestión del Combustible	28
2.21	. Simulación de Monte Carlo	29
2.22	. Distribución Normal	30
2.23	. Definición y Características de la Distribución Normal	30
CAPÍI	TULO III: RECOPILACIÓN DE DATOS	33
3.1	DELIMITACIÓN DEL ALCANCE	33
3.2	UBICACIÓN Y LOCALIZACIÓN	33
3.2	2.1 Distrito de Aucallama, región Costa	33
3.2	2.2 Distrito de Concepción, región Sierra	
3.3	METODOLOGÍA DE TRABAJO	37
	ΓULO IV: CÁLCULO DE EMISIONES DE CO₂ EQUIVALENTE	
4.1.	METODOLOGÍA DEL CÁLCULO	43
4.2.	CÁLCULO DE LA HUELLA DEL CARBONO	44
	2.1 Emisiones por producción de insumos	
	2.2 Emisiones por el transporte de insumos	
4.2	2.3 Emisiones durante la etapa de la construcción	66
	2.4 Huella de carbono unitaria	
4.2	2.5 Resumen de la huella del carbono	93
CAPÍI	ΓULO V: ANÁLISIS COMPARATIVO DE EMISIONES DE CO₂	108
	Análisis Comparativo Global	
	Análisis comparativo con estudios anteriores	
	CLUSIONES	
	MENDACIONES	
	RENCIAS BIBLIOGRÁFICAS	
ANEV	OS	126

RESUMEN

En el Perú, el sector construcción ha tenido un crecimiento aceptable en los últimos años, esto es, en obras de construcción de edificaciones públicas, como centros de salud y colegios, obras viales y de servicios bácisos. Siempre se está buscando obtener mejores resultados en cuanto a resistencia, durabilidad, confort, bajo costo, mejor comportamiento sísmico; pero poco se ha trabajado en cuantificar la gran contaminación que generan estos materiales, y buscar alternativas de otros menos contaminantes.

Al buscar una alternativa de un material que sea el sustituto del ladrillo convencional, se encuentra el adobe tradicional, usado por los antepasados, de fácil elaboración, y con insumos que ofrece la naturaleza. El adobe, al ser elaborado de forma artesanal, reduce de forma paulatina la emisión de Gases de Efecto Invernadero (GEI) a la atmósfera, los cuales, en adelante, los cuantificaremos como equivalente de CO₂.

La metodología de investigación seguida, fue descriptiva, observacional, cuasiexperimental. Se hizo un estudio de campo en dos localidades distintas, una en la costa y otra en la sierra. En la costa, en la localidad de San Juan, Distrito de Aucallama, Provincia de Huaral – Lima, en la sierra, en el distrito de Concepción, Provincia de Concepción – Junín. En ambos casos, se seleccionó una de las viviendas para realizar el estudio de campo, el criterio de elección para el estudio, fue que las características de dichas viviendas se asemejan a las recomendaciones de la norma peruana E.080.

Se tomaron datos sobre los materiales utilizados, lugar de compra o adquisición de estos, el tiempo, la cantidad de trabajadores y los equipos utilizados en la construcción de la vivienda. Con los datos tomados, se hizo el análisis para cada partida, obteniendo las cantidades de insumos, horas hombre y horas máquina requeridos durante la construcción de la vivienda unifamiliar de cada tipo de material, adobe y ladrillo de arcilla.

Como bien se puede deducir, estas viviendas han sido construidas sin seguir los criterios sismo resistentes que exige la norma peruana del adobe. Con el fin de obtener resultados confiables, se han diseñado dos viviendas siguiendo las recomendaciones de la norma E.080, para la vivienda de adobe y la norma E.070 para la de ladrillo de arcilla.

Teniendo la cantidad de insumos, según sea el caso, se procedió a realizar un análisis ambiental detallado de cada uno. El análisis consistió en cuantificar las emisiones de CO₂ equivalente en sus distintas etapas, producción, transporte y uso en obra. Para cuantificar estas emisiones, se recurrió a fuentes nacionales e internaciones sobre emisiones de GEI, y realizando los cálculos respectivos se obtuvo la emisión total de CO₂ en la construcción de la vivienda.

Para la vivienda diseñada de adobe en el distrito de Aucallama, provincia de Huaral, departamento de Lima, se calculó un total de emisión de 14 toneladas de CO₂ equivalente, mientras que, para la vivienda del mismo tipo en el distrito de Concepción, departamento de Junín, se obtuvo 17 toneladas de CO₂ eq. Del mismo modo, para la vivienda de ladrillo de arcilla en el distrito de Aucallama, se calculó un total de 50 toneladas de CO₂ eq. En ese sentido, tenemos que, por cada m² de vivienda de adobe construido en la localidad de Aucallama, se emiten 166 kg CO₂ eq., mientras que, en Concepción, 205 kg CO₂ eq. Del mismo modo, por cada m² de vivienda de ladrillo de arcilla construido en la localidad de Aucallama, se emiten 761 kg CO₂ eq.

La construcción de una vivienda de adobe, reduce en gran medida las emisiones de CO₂ al ser comparadas con una vivienda construida a base de ladrillo de arcilla, esto es debido a que cada actividad realizada para la producción del adobe y la construcción de la vivienda, emite baja cantidad de CO₂, por ser artesanal y no requerir de grandes equipos con grandes emisiones, esta es la característica principal que lo convierte en una vivienda sostenible.

ABSTRACT

In Peru, the construction sector has had an acceptable growth in recent years, that is, in construction works of public buildings, such as health centers and schools, road works and basic services. It is always seeking to obtain better results in terms of resistance, durability, comfort, low cost, better seismic behavior; but little work has been done to quantify the great pollution generated by these materials, and to look for less polluting alternatives.

When looking for an alternative of a material that is a substitute for conventional brick, there is the traditional adobe, used by the ancestors, easy to make, and with inputs that nature offers. Adobe, being made by hand, gradually reduces the emission of Greenhouse Gases (GHG) into the atmosphere, which, from now on, we will quantify as CO2 equivalent.

The research methodology followed was descriptive, observational, quasi-experimental. A field study was carried out in two different locations, one on the coast and the other in the mountains. On the coast, in the town of San Juan, District of Aucallama, Province of Huaral – Lima, in the mountains, in the district of Concepción, Province of Concepción – Junín. In both cases, one of the dwellings was selected to carry out the field study, the selection criterion for the study was that the characteristics of said dwellings resemble the recommendations of the Peruvian standard E.080.

Data on the materials used, place of purchase or acquisition of the same, time, number of workers and equipment used in the construction of the house were collected. With the data collected, the analysis was made for each item, obtaining the quantities of inputs, man hours and machine hours required during the construction of the single-family home of each type of material, adobe and clay brick.

As can be deduced, these houses have been built without following the seismicresistant criteria required by the Peruvian adobe standard. In order to obtain reliable results, two houses have been designed following the recommendations of standard E.080 for the adobe house and standard E.070 for the clay brick house.

Taking the amount of inputs, as the case may be, a detailed environmental analysis of each one was carried out. The analysis consisted of quantifying the equivalent CO2 emissions in its different stages, production, transport and use on site. To quantify these emissions, national and international sources on GHG emissions were used, and making the respective calculations, the total CO2 emission in the construction of the house was obtained.

For the house designed in adobe in the district of Aucallama, department of Lima, a total emission of 14 tons of CO_2 equivalent was calculated, while for the house of the same type in the district of Concepción, department of Junín, it was obtained 17 tons of CO_2 eq. Similarly, for the clay brick house in the district of Aucallama, a total of 50 tons of CO_2 eq. In this sense, we have that, for each m^2 of adobe housing built in the town of Aucallama, 166 kg CO_2 eq. are emitted, while in Concepción, 205 kg CO_2 eq. Similarly, for each m^2 of clay brick housing built in the town of Aucallama, 761 kg CO_2 eq.

The construction of an adobe house greatly reduces CO₂ emissions when compared to a house built with clay brick, this is due to the fact that each activity carried out for the production of adobe and the construction of the house, it emits a low amount of CO₂, because it is handmade and does not require large equipment with large emissions, this is the main characteristic that makes it a sustainable home.

PRÓLOGO

El Análisis de Ciclo de Vida es una técnica que trata de obtener una visión transversal y completa de las huellas ambientales de las actividades humanas, y en el caso de la presente investigación, de la huella ambiental de la construcción de ciertos tipos de vivienda.

La construcción de infraestructura modifica de manera permanente el entorno donde se edifica, alterando de forma definitiva la relación del hombre con el ecosistema preexistente. Esta modificación de entorno puede ser de bajo impacto, si se logran controlar y disminuir los efectos de las principales variables de interacción, o, por el contrario, tener un impacto muy alto, implicando incluso necesidades complementarias de energía y materiales durante la vida útil de la infraestructura física, esto es, mayor gasto energético durante la etapa operacional.

La medición de la huella carbono constituye un ejercicio básico para medir el impacto, y comparar diferentes actividades bajo los parámetros de las emisiones de efecto invernadero, que tienen una correlación directa con el cambio climático. ¿Qué materiales de construcción para viviendas tienen mayor huella de carbono? ¿Qué técnicas constructivas tienen menor consumo de energía y de emisiones invernadero embebidas? ¿Qué tecnologías de la construcción deben prevalecer o merecen ser rescatadas desde el punto de vista de sostenibilidad?

La investigación realizada por Yoner Sánchez, un joven estudioso del medioambiente, está centrada en medir procesos constructivos tradicionales (adobe) y aquellos procesos constructivos de "materiales nobles" (como el ladrillo y el concreto). La unidad funcional es la vivienda, para lo cual, se tuvieron que realizar mediciones durante el proceso constructivo completo. Los resultados servirán para orientar futuras investigaciones, y para definir políticas de mitigación de emisiones de efecto invernadero en el Sector Vivienda y Construcción, rescatando y promoviendo técnicas de reducción de emisiones, y tomando en cuenta, acciones de corto, mediano y largo plazo.

LISTA DE CUADROS

Cuadro N° 1: Volúmenes de recipientes utilizados para medir el agua	38
Cuadro N° 2: Cantidades de agua utilizada en la elaboración de adobes	38
Cuadro N° 3: Tiempos en la elaboración de un adobe	
Cuadro N° 4: Cantidades de agua en la mezcla tierra – agua	
Cuadro N° 5: Tiempo en la elaboración de una fila de adobe	
Cuadro N° 6: Fuente 1 de FE de Combustibles	
Cuadro N° 7: Fuente 2 de FE de Combustibles	46
Cuadro N° 8: Consumo de combustible o energía por hora máquina	46
Cuadro N° 9: Fuente 1, FE de insumos	47
Cuadro N° 10: Fuente 2, FE de insumos	47
Cuadro N° 11: HC por proceso de producción – Adobe Aucallama	
Cuadro Nº 12: HC proceso de producción – vivienda ladrillo Aucallama	51
Cuadro N° 13: Lugar de producción de insumos para vivienda de adobe	54
Cuadro N° 14: Lugar de producción de insumos para vivienda de ladrillo	55
Cuadro N° 15: Consumo de combustible por hora máquina	56
Cuadro N° 16: Distancias recorridas por un galón de combustible	56
Cuadro N° 17: Emisión de CO2 eq. por un galón de combustible	56
Cuadro N° 18: Capacidad de carga de vehículos	57
Cuadro N° 19: HC proceso de transporte – adobe Aucallama	57
Cuadro N° 20: HC proceso de transporte – adobe Concepción	60
Cuadro N° 21: HC proceso de transporte – ladrillo Aucallama	64
Cuadro N° 22: Factor de emisión por actividad de una persona	67
Cuadro N° 23: HC proceso de ejecución de obra – adobe Aucallama	68
Cuadro N° 24: HC de Mano de obra y equipos – adobe Aucallama	69
Cuadro N° 25: HC proceso de ejecución de obra – ladrillo Aucallama	71
Cuadro N° 26: HC Mano de obra y equipos – ladrillo Aucallama	73
Cuadro N° 27: Resumen del cálculo de HC – vivienda adobe Aucallama	94
Cuadro N° 28: Cantidad de resultados en cada rango – adobe Aucallama	95
Cuadro N° 29: Resumen de cálculo de HC – vivienda adobe Concepción	98
Cuadro N° 30: Cantidad de resultados por rango – adobe Concepción	98
Cuadro N° 31: Resumen del cálculo de HC – vivienda ladrillo Aucallama	102
Cuadro Nº 32: Cantidad de resultados por rango - ladrillo Aucallama	103
Cuadro N° 33: HC por procesos, vivienda de adobe en Aucallama	108
Cuadro N° 34: HC por procesos, vivienda de adobe en Concepción	109
Cuadro N° 35: HC por procesos, vivienda de ladrillo en Aucallama	111
Cuadro N° 36: Comparativo global de HC por procesos	113
Cuadro N° 37: Comparativo global de HC por especialidades	115

LISTA DE GRÁFICOS

Grafico N° 1: Insumos HC unitaria mas altas – vivienda adobe Aucaliama	49
Gráfico N° 2: Impacto de HC – vivienda de adobe Aucallama	50
Gráfico N° 3: Insumos con HC unitaria más elevadas – ladrillo Aucallama	52
Gráfico N° 4: Impacto de HC – vivienda ladrillo Aucallama	53
Gráfico N° 5: Insumos de HC unitaria más elevadas – adobe Aucallama	59
Gráfico N° 6: Impacto de HC por transporte – adobe Aucallama	60
Gráfico N° 7: Insumos de HC unitaria más elevadas – adobe Concepción	62
Gráfico N° 8: Impacto de HC por transporte – adobe Concepción	63
Gráfico N° 9: Insumos con HC unitaria más elevadas – ladrillo Aucallama	65
Gráfico N° 10: Impacto de HC por transporte – ladrillo Aucallama	66
Gráfico N° 11: Partidas de mayor impacto en HC – adobe Aucallama	69
Gráfico N° 12: Impacto de los recursos en HC – adobe Aucallama	70
Gráfico N° 13: Partidas de mayor impacto en HC – ladrillo Aucallama	72
Gráfico N° 14: Impacto de los recursos en HC – ladrillo Aucallama	74
Gráfico N° 15: Histograma de resultados del Cuadro N°28	
Gráfico Nº 16: Partidas con mayor HC, vivienda de adobe Aucallama	96
Gráfico N° 17: Porcentaje de HC, vivienda de adobe Aucallama	
Gráfico N° 18: Histograma de resultados del Cuadro N°30	
Gráfico N° 19: Partidas con mayor HC, vivienda de adobe Concepción	100
Gráfico N° 20: Porcentaje de HC, vivienda de adobe Concepción	101
Gráfico N° 21: Histograma de resultados del Cuadro N°32	104
Gráfico N° 22: Partidas con mayor HC – vivienda de ladrillo Aucallama	105
Gráfico N° 23: Porcentaje de HC, vivienda de ladrillo Aucallama	106
Gráfico N° 24: Impacto de HC por procesos, vivienda adobe Aucallama	109
Gráfico N° 25: Impacto de HC por procesos, vivienda adobe Concepción	110
Gráfico N° 26: Impacto de HC por procesos, vivienda ladrillo Aucallama	111
Gráfico N° 27: Comparativo global de HC por procesos	114
Gráfico N° 28: Comparativo global de HC por especialidades	115
Gráfico N° 29: Comparativo de HC / m² con tesis UNI-2018	
Gráfico N° 30: Comparativo de HC / m² con tesis UNCP-2016	117

LISTA DE FIGURAS

Figura N° 1: Curva de Distribución Normal	31
Figura N° 2: Mapa de la Provincia de Huaral	34
Figura N° 3: Av. Arenales, distrito de Aucallama	34
Figura N° 4: Vivienda de adobe para toma de datos - Aucallama	35
Figura N° 5: Mapa de la provincia de Concepción	35
Figura N° 6: Ingreso del distrito de Concepción	36
Figura N° 7: Vivienda de adobe para toma de datos - Concepción	36
Figura N° 8: Molde para la elaboración del adobe	39
Figura N° 9: Mezcla de agua y tierra almacenada por siete días	39
Figura N° 10: Adobes almacenados en un lugar seco y limpio	40
Figura N° 11: Proceso de elaboración del muro de adobe	41
Figura N° 12: Controlando la verticalidad del muro de adobe	42
Figura N° 13: Muro de adobe de 1.00 x 1.00 m	42

LISTA DE SÍMBOLOS Y SIGLAS

CO2: Dióxido de Carbono

O₃: Ozono

CO: Monóxido de Carbono

GEI: Gases de Efecto Invernadero

SF₆: Hexafluoruro de azufre **HFC**: Hidrofluorocarbonos **PFC**: Perfluorocarbonos

CH₄: Metano

N₂O: Óxido nitroso

CaO: Óxido de calcio

CaCO₃: Carbonato de Calcio **PH**: Potencial de Hidrógeno

H₂O: Agua

IPCC: Intergovernmental Panel on Climate Change

ACV: Análisis del Ciclo de Vida **ICV:** Inventario del Ciclo de Vida

EICV: Evaluación del Impacto del Ciclo de Vida

BB.DD: Base de Datos

ONU: Organización de las Naciones Unidas

EIA: Energy Information Administration

LKD: Lime Kiln Dust

MCH: Modelo Constructivo Habitual **CBM:** Componente Básico del Material

EE. UU: Estados Unidos

UE: Unión Europea

MINAM: Ministerio del Ambiente

PGC: Plan de Gestión de Combustible

ppm: partes por millón

m.s.n.m.: metros sobre el nivel del mar

m: metro

m²: metro cuadradom³: metro cúbico

gal: galón

I: litro

kg: kilogramo

bol: bolsa **mill:** millar

p²: pie cuadrado

%mo: porcentaje de mano de obra

kW: kilovatio

kWh: kilovatio-hora

hh: hora hombrehm: hora máquina

km²: kilómetro cuadradocm²: centímetro cuadrado

t: tonelada

CAPÍTULO I: INTRODUCCIÓN

1.1 GENERALIDADES.

El Gas de Efecto Invernadero (GEI) es un "componente gaseoso de la atmósfera, natural o antropógeno, que absorbe y emite radiación en determinadas longitudes de onda del espectro de radiación infrarroja térmica emitida por la superficie de la Tierra, por la propia atmósfera y por las nubes. Esta propiedad da lugar al efecto invernadero. El vapor de agua (H₂O), el dióxido de carbono (CO₂), el óxido nitroso (N₂O), el metano (CH₄) y el Ozono (O₃) son los gases de efecto invernadero primarios de la atmósfera terrestre. La atmósfera contiene, además, cierto número de gases de efecto invernadero enteramente antropógenos, como los halocarbonos u otras sustancias que contienen cloro y bromo, contemplados en el Protocolo de Montreal. Además del CO₂, del N₂O y del CH₄, el Protocolo de Kioto contempla los gases de efecto invernadero hexafluoruro de azufre (SF₆), los hidrofluorocarbonos (HFC) y los perfluorocarbonos (PFC)" (IPCC, 2015)

El cambio climático es una realidad global que afecta a todos. Las diferentes actividades que se realizan diariamente en sectores como la agricultura, la industria, el transporte o la construcción, tienen implicaciones directas en este fenómeno. Por ejemplo, solo el sector construcción consume un 40% de energía global y además aporta un tercio de las emisiones de CO₂. Las decisiones que se toman en la fase inicial de diseño de una construcción, pueden llegar a determinar el aporte en emisiones a lo largo de sus etapas, ya que cada una de ellas aporta proporciones diferentes debido a que contienen diferentes procesos que intervienen en cada una. (Badilla y colaboradores, 2015)

El Perú ya se encuentra severamente afectado por el cambio climático. La población y el territorio están expuestos a eventos extremos (inundaciones, sequías, tormentas intensas y prolongadas, granizadas). Por otro lado, en los distintos territorios la variabilidad y elevación de la temperatura se están dando más rápido de lo pronosticado y las consecuencias, como por ejemplo la desglaciación, están llegando antes de lo previsto. De hecho, el Perú ha sido considerado por el Centro Tyndall del Reino Unido, uno de los 3 países del mundo más vulnerables al cambio climático. (PNUD, 2014)

Si bien los impactos ambientales del uso de energía han sido drásticamente abordados, se ha dedicado una menor atención en regular la explotación de recursos no renovables necesarios para producir materiales de construcción. La mayoría de los edificios de materiales convencionales, tales como concreto, acero y mampostería, necesitan un gran número de operaciones tecnológicas. Esto implica grandes cantidades de energía incorporada y un no despreciable consumo de recursos fósiles. En los últimos quince años, especialmente en Europa y EE. UU., ha habido un aumento del interés por los materiales naturales y no convencionales de construcción que tienen menos energía incorporada que las convencionales. (Meliá, Ruggieri, Sabbadini y Dotelli, 2014)

1.2 PROBLEMÁTICA

¿Cómo calcular las emisiones de CO₂ equivalente, considerando el ciclo de vida de los materiales durante en la construcción de una vivienda unifamiliar en el Perú? En base a las investigaciones antes mencionadas, el problema principal es que, el Perú, está en un estado principiante en relación a cuantificar las emisiones de CO₂ equivalente que se producen en las distintas industrias y condiciones geográficas, principalmente, en la construcción.

1.3 OBJETIVOS

1.3.1 Objetivo General

Proponer una metodología de inventario para el cálculo de CO₂ equivalente en la construcción de una vivienda unifamiliar de adobe y ladrillo a lo largo del ciclo de vida de los materiales involucrados.

1.3.2 Objetivos Específicos.

- Recopilación de datos de dos viviendas de adobe y una de ladrillo ubicadas en las regiones, Costa y Sierra.
- Cuantificar las emisiones de CO₂ equivalente en la construcción de las viviendas unifamiliares de adobe y ladrillo.
- Análisis comparativo de las emisiones de CO₂ equivalente producidas en las dos viviendas de adobe ubicadas en las regiones, costa y sierra.

 Comparar las emisiones de CO₂ equivalente producidas en la construcción de una vivienda de adobe y otra de ladrillo ubicadas en la misma región.

1.4 HIPÓTESIS

1.4.1 Hipótesis General

El cálculo de emisiones de CO₂ durante la construcción de viviendas unifamiliares, contempla cuantificar las emisiones producidas durante todo el proceso de la construcción, haciendo un Análsis del Ciclo de Vida de los materiales y el proceso de ejecución de obra. Las emisiones de CO₂ están concentradas sobre ciertos tipos de materiales de construcción, principalmente en el consumo energético durante la fabricación de estos materiales

1.4.2 Hipótesis Específicos

La construcciónde una vivienda de adobe, presentaría menor impacto de Huella de Carbono medido en términos de emisiones de CO₂ equivalente, respecto a la construcción de una vivienda de ladrillo con similares características, es decir, viviendas de un solo nivel y con igual área útil, además de tener los mismos ambientes interiores.

CAPÍTULO II: MARCO TEÓRICO Y CONCEPTUAL

2.1. Características de las Construcciones con Adobe

Según la Norma Peruana E.080, el adobe es un material tradicional de la construcción. Se denomina tradicional, debido a que se usan métodos y técnicas constructivas, conocimientos ancestrales, empleando materia prima o productos de la zona, los cuales no han pasado por un proceso industrial para su elaboración. El adobe es uno de los materiales más antiguos, elaborado a base de tierra. Las viviendas construidas de adobe, se han realizado sin seguir criterios técnicos, no cumplen los requisitos mínimos de seguridad, funcionalidad y durabilidad. De preferencia estas viviendas deberán ser de un solo nivel, con un ancho de muro mínimo de 40 cm, la cimentación de mampostería de piedra o concreto ciclópeo, del mismo modo el sobre cimiento, del ancho del muro con una altura mínima de 30 cm. El techo depende de la topografía de la zona. En la Costa generalmente es horizontal, mientras que en la zona andina es inclinado, puede ser hacia uno de los lados o hacia dos lados.

2.2. Características de las Construcciones con Ladrillo de arcilla

Según la Norma Peruana E.070, se denomina ladrillo a aquella unidad cuya dimensión y peso permite que sea manipulado con una sola mano, para su elaboración se utiliza arcilla, sílice-cal o concreto, como materia prima. Las unidades de albañilería, deberán tener un tratamiento previo al asentado de acuerdo a las condiciones climatológicas de la ubicación de la obra, esto es, regarlos durante media hora, 10 a 15 horas antes de ser asentadas. Las unidades de albañilería se asentarán con las superficies limpias de polvo y sin agua libre, presionando verticalmente las unidades, sin bambolearlas. Los muros de albañilería confinada, se construirán a plomo y en línea, el espesor de las juntas de mortero será como mínimo 10 mm y como máximo 15 mm. No se asentará más de 1.30 m de altura de muro en una jornada de trabajo. En caso de emplearse unidades totalmente sólidas (sin perforaciones), la primera jornada de trabajo culminará sin llenar la junta vertical de la primera hilada, este llenado se realizará al iniciarse la segunda jornada.

2.3. Inicio de la metodología del Análisis del Ciclo de Vida (ACV)

Según Bishop (2000), los inicios de la metodología de ACV se atribuyen a una investigación que se realizó entre 1960 y 1970 por el Departamento de Energía de Estados Unidos. Este estudio determinó los requerimientos de energía de algunos procesos y sistemas para el análisis de los efectos ambientales por el empleo de energía. Además, en el año 1963 el profesor Harold Smith realizó uno de los primeros estudios en los que se empezaron a tener en cuenta los impactos ambientales. Este estudio se presentó en la Conferencia Mundial de Energía en 1963, donde se informó sobre las cantidades de energía para la fabricación de productos químicos.

2.4. Análisis del Ciclo de Vida (ACV)

Según la Norma ISO 14040, el Análisis de Ciclo de Vida es una técnica para determinar los aspectos ambientales e impactos potenciales asociados a un producto: compilando un inventario de las entradas y salidas relevantes del sistema, evaluando los impactos ambientales potenciales asociados a esas entradas y salidas, e interpretando los resultados de las fases de inventario e impacto en relación con los objetivos del estudio. El ACV consiste en evaluar cada uno de los efectos ambientales generados a lo largo de la vida de un producto, vale decir, desde las fuentes de recursos primarios, hasta el consumo y disposición final.

2.5. Metodología del Análisis del Ciclo de Vida

Según Balderas & Arista (2011), la metodología del Análisis del Ciclo de vida es utilizada para comparar los tipos de materiales de construcción. El ACV se refiere a las diferentes etapas que tiene un producto, proceso o servicio y así cuantificar los impactos ambientales de forma integral. Las fases que componen el ACV son: 1) definición del objetivo y alcance, 2) análisis de inventario, 3) evaluación del impacto, 4) interpretación. La definición de los objetivos y el alcance es el inicio del ACV, ahí se definirán los ejes principales del estudio, así como los procesos que se analizarán

para la producción de los materiales, los elementos constructivos, los componentes, materiales y energía. Por último, es importante definir la unidad funcional con la cual se trabajará en el análisis, todo esto ayudará a acortar el campo de estudio.

2.6. Análisis del Inventario del Ciclo de Vida (ICV)

Según la ICONTEC (2007), la fase del análisis del ciclo de vida que implica la recopilación y la cuantificación de entradas y salidas para un sistema del producto a través de su ciclo de vida. La realización de un análisis de inventario es un proceso iterativo. A medida que se recopilan los datos y se aprende más sobre el sistema, se pueden identificar nuevos requisitos o limitaciones que requieran cambios en los procedimientos de recopilación de datos, de tal manera que se puedan cumplir los objetivos del estudio.

2.7. Evaluación del Impacto del Ciclo de Vida (EICV)

Según la ICONTEC (2007), la fase de evaluación del impacto de un ACV tiene como propósito evaluar cuán significativos son los impactos ambientales potenciales utilizando los resultados del ICV. En general, este proceso implica la asociación de los datos del inventario con las categorías de impactos ambientales específicos y con los indicadores de esas categorías, para entender estos impactos. La fase de la EICV también proporciona información para la fase de interpretación del ciclo de vida. La evaluación del impacto puede incluir un proceso iterativo de revisión del objetivo y del alcance del estudio del ACV para determinar si se han cumplido los objetivos del mismo, o para modificar el objetivo y el alcance si la evaluación indica que no se puede alcanzar. La EICV trata solamente los asuntos ambientales específicos en el objetivo y el alcance. Por lo tanto, la EICV no es una evaluación completa de todos los asuntos ambientales del sistema del producto bajo estudio.

2.8. Base de datos de ACV

Ihobe (2009), diferencia dos tipos de bases de datos (BBDD) en el marco de un ACV, en función de los datos que contengan.

- BBDD con las entradas/salidas que se emplean para simular el sistema analizado en el ICV. Comúnmente conocidas como BBDD de ICV.
- ➢ BBDD con los datos que cada metodología de EICV necesita para que la herramienta que llevará a cabo la EICV haga los cálculos, comúnmente conocidas como BBDD de metodologías.

Las BBDD de ICVs están formadas por datos de muy diversos materiales y procesos, generalmente agrupados según la fase del ciclo de vida a la que hagan referencia. A través de éstas BBDD es posible asignar a cada entrada/salida recogida en el ICV una serie de datos de la BBDD que le aportarán la información sobre su impacto ambiental, los factores de caracterización, normalización, etc.

Las BBDD de metodologías están formadas por los factores de caracterización, ponderación y demás datos que cada metodología de EICV necesita para llevar a cabo los cálculos de obtención de resultados.

La principal característica de los datos de estas BBDD es la de estar recogidos en un formato predeterminado y común, con lo que las herramientas de ACV pueden diseñarse para poder aceptar los datos en los formatos que decidan incluir.

2.9. Unidad Funcional

El Ministerio del Ambiente de Ecuador (2021), define a la Unidad Funcional, como la cantidad de producto que se utiliza como unidad de referencia para la cuantificación de la Huella del Carbono. La HC debe ser cuantificada en base a una unidad declarada o unidad funcional y sus resultados deben ser expresados de acuerdo a ello.

2.10. Emisión de CO₂ en transporte

Según OCCC (2011), el cálculo de emisiones de CO₂ de los vehículos en el transporte se calcula de tres maneras, según los datos disponibles que

se obtiene en el inventario: 1) cuando se tiene el dato de litros de combustible consumidos, 2) cuando se tiene la cuantía económica asociada al consumo de combustible, 3) cuando se tiene los kilómetros recorridos, marca y modelo del vehículo. Se debe mencionar también, que las emisiones de CO₂ que se calcularán en función a la distancia recorrida, varían en función a múltiples factores, por ejemplo, las características del vehículo y la velocidad de diseño de la vía.

2.11. Dióxido de Carbono (CO₂)

IPCC (2012), define al Dióxido de Carbono, como el gas que se produce de forma natural y también como subproducto de la combustión de combustibles fósiles y biomasa, cambios en su uso de las tierras y otros procesos industriales. Es el principal gas de efecto invernadero antropogénico que afecta al equilibrio de radiación del planeta. Es el gas de referencia frente al que se miden otros gases de efecto invernadero, y, por lo tanto, tiene un potencial de calentamiento mundial de 1. El dióxido de carbono, también denominado óxido de carbono (IV), gas carbónico y anhídrido carbónico, es un gas cuyas moléculas están compuestas por dos átomos de oxígeno y uno de carbono.

Su fórmula molecular es de CO₂, es una molécula lineal y no polar, a pesar de tener enlaces polares, esto se debe a que, dada la hibridación del carbono, la molécula posee una geometría lineal simétrica. Su representación por estructura de Lewis es: O=C=O. Como parte del ciclo del carbono, las plantas, algas y cianobacterias usan la energía lumínica del Sol para foto sintetizar carbohidratos a partir del dióxido de carbono y el agua, expulsando oxígeno como desecho de la reacción. Sin embargo, las plantas no pueden hacer la fotosíntesis por la noche o en la oscuridad, desprendiendo una cantidad menor de dióxido de carbono debido a la respiración celular. No solo las plantas, la mayoría de los organismos en la Tierra que respiran expulsan dióxido de carbono como desecho del metabolismo, incluyendo al ser humano.

El dióxido de carbono es producido también por la combustión del carbón y los hidrocarburos, y es emitido por volcanes, géiseres y fuentes

volcánicas. Los efectos ambientales del dióxido de carbono atmosférico generan un creciente interés.

Actualmente existe una fuerte controversia sobre el calentamiento global y la relación que el CO₂ tiene con éste. El dióxido de carbono es un importante gas que regula el calentamiento global de la superficie de la Tierra, además de ser la primera fuente de carbono para la vida en la Tierra. Su concentración en la atmósfera se ha mantenido constante desde el final del Precámbrico hasta la Revolución industrial, pero debido al crecimiento desmesurado de la combustión de combustibles fósiles, la concentración está aumentando, incrementando el calentamiento global y causando un cambio climático antropogénico. Sin embargo, los opositores a esta teoría se basan en la falta de evidencias científicas significativas que soporten el argumento de que el dióxido de carbono es el principal causante del calentamiento global, o incluso, tenga alguna relación con ésta.

Desde el año 2000, la tasa anual apenas ha cambiado. La concentración de CO₂ en la atmósfera es actualmente de 387 ppm, esto es, el 0.0387% de la atmósfera. Las emisiones antropogénicas mundiales están aumentando cada año, en el 2007 las emisiones de CO₂ eran 2 veces mayor que en 1971. Entre 1990 fueran emitidas 21 Gt/año de CO₂ y en 2005 (26), es decir; un aumento de 1.7% por año durante este periodo. La combustión de un litro de gasolina no se desvanece en el aire, este genera 2.3 kg de CO₂, mientras que, un litro de gasóleo genera 2.6 Kg de CO₂. A pesar del Protocolo de Kioto, las emisiones de dióxido de carbono siguen aumentando. De acuerdo con la Agencia Internacional de Energía, las emisiones de CO₂ aumentarán el 130% de aquí al 2050.

2.12. Huella de Carbono

Según la RAEE (2012), la Huella de Carbono busca cuantificar la cantidad de emisiones de Gases de Efecto Invernadero (GEI), medida en emisiones de CO₂ equivalente, que son liberadas a la atmosfera debido a nuestras actividades cotidianas o a la comercialización de un producto. Este análisis abarca todas las actividades de su ciclo de vida (desde la adquisición de las materias primas hasta su gestión como residuo).

2.13. Materiales de construcción

Según Osorio J. (2011), la extracción y procesamiento de materias primas para la producción de los materiales y elementos de construcción, generan alto deterioro de los ecosistemas y de la biodiversidad en las zonas de explotación, generalmente con dinámicas de deforestación, erosión y contaminación del suelo, agua y aire. Otros procesos como la producción de las industrias, cerámica y metalúrgica, implican un alto consumo energético, generalmente de combustibles fósiles no renovables con un fuerte impacto ambiental.

De acuerdo con la industria de la construcción, este sector es responsable de casi la mitad de emisiones de gases de efecto invernadero (GEI), sumados los aportes en emisiones de las industrias cementera, maderera, metalúrgica y cerámica. De esta forma, en sus procesos, consumen el 30% de la demanda energética del total del sector industrial. Por otra parte, la producción de cemento representa el sector que, a nivel mundial, genera mayor cantidad de emisiones de gases de efecto invernadero. El consumo de energía en la industria del cemento, representa casi el 2% del consumo de la energía global primaria y aproximadamente el 5% de la energía consumida por la industria global. Se requiere el equivalente de 60 a 130 kilogramos de combustible y 110 kWh de electricidad para producir una tonelada de cemento. La industria del cemento genera, a nivel mundial, 5% del CO₂ antropogénico global, uno de los principales gases de efecto invernadero que contribuyen al cambio climático. En este sentido, más del 90% de la energía utilizada en la producción de cemento, emplea combustibles fósiles, principalmente carbón mineral, coque, petróleo y gas natural. El carbón térmico es el combustible más utilizado en la industria global del cemento, dado su mayor poder calorífico y precios relativamente bajos en comparación con el petróleo.

2.14. Emisiones del Carbono por parte de la Industria del Cemento

UNACEM (2015), indica los porcentajes de emisiones de CO2 que se producen en el proceso de transformación de la materia prima, para producir el cemento. Dividen el proceso en tres fases:

- 1. Obtención de Materias Primas: entre el 50% y el 60% de las emisiones de CO₂ en la producción de este, se generan durante la descomposición de la piedra caliza y otros materiales calcáreos para producir Clinker. Es difícil reducir las emisiones relacionadas con la producción de Clinker porque están asociadas con la transformación de la piedra caliza, que es núcleo del proceso.
- 2. Molienda y cocción de la materia prima: entre el 30% y 40% de las emisiones de CO₂ son generadas por la quema de combustibles fósiles, realizada principalmente para que alcancen las altas temperaturas necesarias en el horno y equipos asociados como los secadores. Los principales factores que afectan a las necesidades de energía térmica son las materias primas y el proceso utilizado (seco, húmedo o intermedio).
- 3. Molienda del cemento: el 10% restante de las emisiones de CO₂ surge del transporte y la generación de electricidad necesaria para otros procesos de la fábrica. Los molinos (molino de cemento y molino de materias primas) y los extractores de gases (de horno) consumen la mayor parte de la electricidad, en conjunto, más del 80% del consumo eléctrico.

2.15. ¿Por qué cuantificar las emisiones?

Ihobe (2013), indica que, ante los impactos derivados del cambio climático se hace importante la necesidad de tomar medidas con el objetivo de mitigar los posibles efectos negativos derivados en lo que respecta al sector construcción de edificaciones, particularmente, como es el caso de este estudio.

Las bases sobre las que definir los esfuerzos de reducción de emisiones pasa por conocer la contribución de cada agente en relación a las emisiones de GEI a fin de poder establecer la situación de partida y plantear unos objetivos de reducción, así como poder evaluar el grado de éxito de las estrategias implementadas. Todo ello implica cuantificar las

emisiones GEI y poder atribuir valores de emisión a las actividades evaluadas.

En función del nivel de detalle con el que la organización decida conocer sus emisiones, así como los objetivos en materia de reducción de las mismas, existen dos formas de realizar el cálculo de emisiones:

- Inventario de emisiones: es el enfoque más básico de los existentes para la contabilización de las emisiones de GEI de una actividad y generalmente incluye las emisiones derivadas de los consumos de combustibles fósiles o el transporte (emisiones directas).
- Huella de carbono: este enfoque comprende un mayor alcance en relación a las fuentes de emisión asociadas a la organización (puesto que analiza las emisiones desde una óptica de análisis de ciclo de vida del concepto evaluado). En este caso se consideran tanto las emisiones directas como indirectas.

A la vista de las herramientas citadas anteriormente, las emisiones (según la fuente de emisión) pueden clasificarse en dos grupos:

- Emisiones directas: aquellas asociadas a una actividad o proceso generado dentro de la organización o sobre la que existe un control total por parte de la misma. Ejemplos de estas emisiones son: las emisiones de vehículos utilizados por la organización, emisiones derivadas de la combustión de combustibles por equipos dentro de la organización para la producción de calefacción, energía eléctrica, refrigeración, selección y utilización de determinados materiales de construcción, etc.
- Emisiones indirectas: en este caso, estas emisiones son generadas como resultado de acciones o actividades de la organización, pero sobre las cuales no se dispone de ningún control. Ejemplos de estas emisiones son: las emisiones producidas durante la fabricación de los equipos utilizados por la organización.
- 2.16. Aspectos a considerar en la cuantificación de las emisiones

Según Ihobe (2013), la selección de herramientas de cuantificación de emisiones responde al nivel de detalle con el que la organización pretenda conocer su contribución al cambio climático, así como a los objetivos que pretenda plantear en materia de reducción. La idoneidad de cada una, en relación a las necesidades de la organización, debe considerar las siguientes cuestiones:

➤ En primer lugar, debe quedar fijado el alcance del cálculo. Esto es, decidir si la organización quiere realizar una cuantificación solamente sobre aquellas emisiones directamente ligadas a sus actividades o procesos o pretende ir un paso más allá y considerar otros agentes que intervienen en el desarrollo de sus actividades de forma externa a los límites de su organización.

Como se ha citado anteriormente, ambas herramientas permiten cuantificar las emisiones presentando un enfoque más básico el inventario de emisiones frente a una metodología más compleja (aunque de resultados más detallados) por parte de la huella de carbono. En un inventario de emisiones se consideran generalmente sólo las emisiones directas de la organización, añadiendo en algunos casos emisiones indirectas, puesto que los consumos eléctricos forman parte de la actividad rutinaria en muchas organizaciones. La huella de carbono parte de un enfoque más exhaustivo en el que se consideran todos los procesos (tanto dentro como fuera de la organización) asociados a la creación de un producto o prestación de un servicio por la organización. Es importante destacar que en el caso de utilizar la huella de carbono es necesario definir si el cálculo se centra sobre el total de la organización, un producto o un servicio de la misma.

➤ En segundo lugar, es necesario considerar los objetivos perseguidos por la organización al cuantificar las emisiones. Estos objetivos pueden ir desde enfoques más básicos como disponer de un conocimiento interno sobre la situación ambiental de la empresa o su comunicación a terceros, a objetivos más ambiciosos y detallados como establecer un plan de reducción de emisiones o conseguir la neutralidad climática de la organización.

Cada una de las herramientas (inventario y huella de carbono) presenta un grado de complejidad metodológica, así como un requerimiento mayor de información que se incrementa desde el enfoque más sencillo del inventario a la aproximación más exhaustiva de la huella de carbono. En el caso particular de la huella de carbono, el hecho de incorporar agentes externos a la propia organización incrementa considerablemente la información necesaria (así como la dificultad en disponer de toda esa información).

2.17. Emisiones de CO₂ en el sector Construcción

Según Mercader et al. (2012), es conocido que las actividades de construcción intervienen en el medio ambiente natural utilizando los recursos extraídos de la naturaleza, para lo que se requiere de enormes cantidades de energía, tanto para la explotación de canteras y bosques como para transformación en productos de construcción, depositando en el ambiente desechos y emanaciones durante y al final del ciclo de vida de los productos y obras, con las consiguientes emisiones a la atmósfera. La actividad generada por el sector de la construcción, incluida su industria asociada, es la mayor consumidora de recursos naturales. En la Unión Europea, la construcción de edificios consume el 40% de los materiales, el 40% de la energía primaria y genera el 40% de los residuos, teniendo especial responsabilidad en el actual deterioro del medio ambiente la ampliación del parque construido.

En España los resultados son similares, la construcción y uso de edificios, en el contexto total de impactos de la sociedad suponen un 32% en cuanto al consumo de energía no renovable, un 30% de la generación de emisiones de CO₂, de efecto invernadero, un 24% de las extracciones de materiales de la corteza terrestre, que junto al 17% del agua potable consumida hacen un total de 41% del consumo de recursos naturales y finalmente suponen entre el 30-40% de los residuos sólidos generados.

Investigaciones realizadas durante el año 2005 nos revelan, que la construcción de viviendas en España habría supuesto la emisión de cerca de tres cuartos de tonelada de CO₂ por cada español, generada por la fabricación de los materiales que las conforman, lo que, junto a las emisiones derivadas del uso de energía de las viviendas, en conjunto supondrían casi un 20% del total de las emisiones producidas por nuestro país.

Es evidente pues, que los materiales que utilizamos para la construcción de nuestros edificios son responsables de los impactos más relevantes que se producen en el medio, consecuencia de un excesivo consumo energético y de la liberación de grandes cantidades de dióxido de carbono (CO₂) y otros gases contaminantes.

2.18. Modelo de la Cuantificación de las emisiones de CO₂

Según Mercader et al. (2012), para cuantificar las emisiones de CO₂, se puede dividir el cálculo en tres niveles organizados jerárquicamente, atendiendo a su prioridad temporal en su consecución:

NIVEL 0: Selección de la muestra y cuantificación de los recursos materiales consumidos en la ejecución del Modelo Constructivo Habitual (MCH). El objetivo es seleccionar una muestra de estudio representativa del MCH y cuantificar, en kg por m² construido, cada uno de los componentes básicos materiales consumidos en su ejecución.

NIVEL 1: Emisiones de CO₂ por Componente Básico Material (CBM). El objetivo es conocer las emisiones de CO₂, expresadas en kgCO₂/kg, producidas en la fabricación de 1 kg de cada CBM implicado en la ejecución del MCH.

NIVEL 2: Cuantificación de las emisiones de CO₂ en la construcción de Viviendas de Protección Oficial en Sevilla. En este nivel 2 se cuantifican las emisiones de CO₂ que se producen en la ejecución del MCH, en kgCO₂/m² de superficie construida, derivados de la fabricación de los CBMs que lo constituyen.

2.19. Consumo de Energía del Sector Transporte

Valdeiglesias (2007), indica que, a nivel de sectores económicos, el principal demandante de los derivados fue el Sector Transporte, de este modo, este sector se constituyó en el mayor consumidor de energía del Perú (53%). Es un mercado que está en continuo crecimiento en lo que respecta al consumo de energía.

El 53% del consumo energético en el Sector Transporte se efectúa en Lima-Callao, siendo los taxis (47%) el medio de locomoción que mayor consumo ha presentado.

En el resto del país, los camiones (49%) son los principales demandantes de energía en el transporte carretero.

En Lima - Callao la estructura de consumo de los hidrocarburos es aproximadamente de un 44% para la gasolina motor, 2% para GLP-GNV y el 54% para el diésel, sin embargo, para el resto del País el diésel representa más del 78% del consumo energético sectorial.

2.20. Gestión del Combustible

Según Villegas (2017), el actual precio del combustible hace que la partida destinada a la compra del mismo suponga cada vez un desembolso más importante para las empresas, por lo que un ahorro en su consumo significaría una reducción importante en sus gastos. Es por esta razón por la que muchas empresas, sobre todo de trasporte, deciden crear e implementar un programa de gestión del combustible.

Es importante darse cuenta de que hay muchos factores de los que depende el consumo de combustible y hay que concienciar a la organización en todos sus niveles para conseguir buenos resultados.

La tarea de gestionar el consumo de combustible necesita ser gestionada de forma estructurada y supervisada.

Un programa de gestión de combustible (PGC) es un método que permite monitorear y gestionar el combustible desde la compra hasta su utilización. Abarca muchos aspectos, pero se centra en que el combustible es el recurso más preciado, por eso el programa mantendrá un registro de existencias y un control del consumo que se ha hecho del mismo. Un PGC tiene que cubrir las siguientes fases:

- Selección
- Adquisición
- Almacenamiento
- Control

2.21. Simulación de Monte Carlo

Salazar et al. (2015), define a la la simulación de Monte Carlo como una herramienta estadística que permite la modelación de resultados acorde con el comportamiento histórico de datos y su probabilidad de ocurrencia. Esta herramienta ayuda a proyectar el estado de resultados, incorporando condiciones de incertidumbre y riesgo en la modelación a corto plazo. Para tal fin, es necesario replicarlo como una herramienta de gestión a través de un programa tan sencillo y alcance de la mano, como el Microsoft Excel. A partir de los resultados de simulación se establecen escenarios como punto de partida para el análisis y la gestión de los recursos. (Salazar, Alzate, 2015)

Por su parte, Azofeifa (2014), muestra la aplicación de la simulación de Monte Carlo, definiéndolo como el desarrollo de un modelo lógico-matemático de un sistema, de manera que se obtenga una imitación de un proceso del sistema a través del tiempo. Por lo tanto, la simulación involucra la generación de una historia artificial del sistema y la observación de esta historia mediante la manipulación experimental.

Esta simulación es básicamente un muestreo experimental cuyo propósito es estimar las distribuciones de las variables de salida que depende de variables probabilísticas de entrada. Los investigadores acuñaron este término por su similitud al muestreo aleatorio en los juegos de ruleta en los casinos de Monte Carlo.

Entre los beneficios de la Simulación, tenemos:

 Los modelos simulados son más fáciles de entender que muchos modelos analíticos.

- Se gana experiencia en forma barata simulando en el computador sin correr riesgos reales.
- Se obtienen resultados de manera rápida.
- Con los modelos de simulación es posible analizar sistemas muy complejos, donde los modelos analíticos no pueden llegar.

Chase & Jacobs 82014), indican que la Simulación de Monte Carlo (SMC), reproduce valores de una variable a partir de su comportamiento, basado en la selección de números aleatorios. Para poder aplicar la SMC, es necesario contar con suficiente información histórica, que permita establecer cómo se comportan las variables y cómo éstas afectan o son afectadas por otras variables.

2.22. Distribución Normal

Salazar et al. (2018), indica que el matemático Karl Gauss, reconoció que los errores de mediciones iteradas de objetos, están generalmente bajo un mismo patrón, al que lo llamó Curva normal de error. Por este motivo, a esta distribución también se le denomina distribución de Gauss y la curva representativa de la misma, como Campana de Gauss.

Características:

- > Pertenece a una variable continua
- > Es una distribución simétrica con relación a la media aritmética, cuyo valor coincide con la mediana y moda de la distribución
- Es unimodal
- La curva que representa a la distribución es asintótica con relación al eje horizontal
- El área bajo la curva es 1

2.23. Definición y Características de la Distribución Normal

Según Romero (2000), el histograma correspondiente a la Función de Densidad, tiene forma de una campana simétrica con una densidad o valor máximo en la media, µ y dicha densidad decrece de forma simétrica a ambos lados en función del valor de la desviación típica, σ. Gráficamente,

como se puede apreciar en la Figura N°1, se observa que σ es la distancia desde la media μ al punto de inflexión de la campana.

El parámetro de posición (es decir, donde caen más frecuentemente los valores), más adecuado en distribuciones normales es la media, µ, que como puede apreciarse en la figura de la función de densidad, se corresponde con la densidad máxima. En las variables que siguen una distribución normal la media toma un valor muy próximo o coincide con la mediana y con la moda, con lo ambos parámetros también serían buenos indicadores de posición.

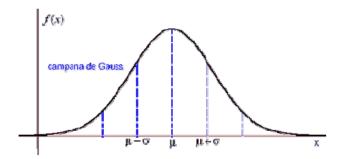


Figura N° 1: Curva de Distribución Normal Fuente: Romero, Zúnica, 2000

Respecto a los parámetros de asimetría y curtosis, toda variable que presente una distribución normal tiene un coeficiente de asimetría nulo, como puede deducirse de la gráfica de la función de densidad, que decrece de forma simétrica a ambos lados. Así mismo presenta valores de curtosis de cero o tres en función de la fórmula utilizada en el cálculo de dicho coeficiente.

La distribución cumple tres propiedades básicas normal que constituyen la base de las técnicas utilizadas en control estadístico de procesos. Como puede observarse en la gráfica de la función de densidad, se comprueba que, en toda distribución normal, en el intervalo:

- 1. $\mu \pm \sigma$ se encuentra el 68% de la distribución.
- 2. $\mu \pm 2\sigma$ se encuentra el 95,5% de la distribución.
- 3. $\mu \pm 3\sigma$ se encuentra el 99,7% de la distribución.

Es decir, existe una probabilidad inferior al 5% de encontrar un valor de una variable aleatoria que siga una distribución normal que difiera de su media en más de dos desviaciones típicas y es prácticamente improbable, con una probabilidad inferior al 3 por mil, de encontrar un valor que difiera de su media en más de tres desviaciones típicas.

CAPÍTULO III: RECOPILACIÓN DE DATOS

3.1 DELIMITACIÓN DEL ALCANCE

La presente investigación busca conocer la Huella del Carbono de viviendas unifamiliares construidas a base de dos insumos con la misma funcionalidad, pero utilizados en distintas regiones. El primero, es el adobe, un insumo tradicional utilizado para edificar viviendas en diversas zonas de Costa y Sierra del país. El segundo, el ladrillo de arcilla, insumo convencional usado para edificar viviendas en todas las regiones del país, principalmente en la costa.

3.2 UBICACIÓN Y LOCALIZACIÓN

Las tomas de datos se realizaron en dos regiones distintas del Perú, dado que el objetivo de la presente tesis, fue comparar la Huella de Carbono de la construcción de viviendas unifamiliares de características similares, pero con distintas condiciones geogáficas.

3.2.1 Distrito de Aucallama, región Costa

Aucallama es uno de los 12 distritos que conforman la provincia de Huaral, del departamento de Lima, cuya capital es el pueblo del mismo nombre. El distrito de Aucallama se encuentra ubicado a la margen izquierda del río chancay, al sur de Huaral, a una distancia de 13 km. Tiene una extensión de 716.84 km² y una altitud de 140 m.s.n.m, casi todo el año, el clima es templado y húmedo.

La zona es netamente agrícola y recibe las aguas del río Chancay. Se llega a la capital del distrito a través de una pista que se desprende a la altura del kilómetro 9 de la carretera Huaral – Variante Pasamayo.

En la Figura N°2, se muestra el mapa de la provincia de Huaral con todos los distritos. En círculo rojo, la zona de toma de datos.



Figura N° 2: Mapa de la Provincia de Huaral Fuente: Elaboración propia

En la Figura N°3, se observa la Avenida Arenales en el Distrito de Aucallama, fotografía tomada en la visita realizada para la toma de datos respectiva.

Figura N° 3: Av. Arenales, distrito de Aucallama Fuente: Elaboración propia

En esta localidad, el 50% de viviendas están construidas con el adobe tradicional, de estos, se seleccionó una de ellas para realizar el estudio, cabe resaltar que, se seleccionó la vivienda cuyas características se asemejan a las recomendaciones de la norma peruana E.080, ver Figura N°4.

Figura N° 4: Vivienda de adobe para toma de datos - Aucallama Fuente: Elaboración propia

3.2.2 Distrito de Concepción, región Sierra

El Distrito de Concepción es uno de los quince distritos que conforman la Provincia de Concepción del departamento de Junín, en pleno valle del Mantaro, a 22 km al noroeste de la ciudad de Huancayo, con una altitud de 3 283 m.s.n.m., en el centro del Perú.

En la Figura N°5, se muestra el mapa de la provincia de Concepción con todos sus distritos. En círculo rojo, la zona de toma de datos.

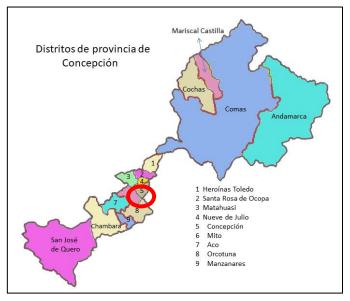


Figura N° 5: Mapa de la provincia de Concepción Fuente: Elaboración propia

En la Figura N°6, se observa parte del Distrito de Concepción, fotografía tomada en la visita realizada para la toma de datos respectiva.

Figura N° 6: Ingreso del distrito de Concepción Fuente: Elaboración propia

En esta localidad, el 60% de viviendas están construidas con el adobe tradicional, de estos, se seleccionó una de ellas, que fue la vivienda representativa de dos pisos con un sistema constructivo tradicional, albañilería confinada de muros de adobe de 0.40 m de espesor, vigas de madera y cobertura de teja con mezcla de agua y tierra, tales características, son parte de las recomendaciones que se dan en la norma peruana E.080, ver Figura N°7.

Figura N° 7: Vivienda de adobe para toma de datos - Concepción Fuente: Elaboración propia

3.3 METODOLOGÍA DE TRABAJO

En los dos lugares de análisis, se tomaron datos de cantidades de materiales que se utilizaron en el proceso de construcción de las viviendas, una vivienda de material tradicional (adobe) y una vivienda de material convencional. Esto, mediante una encuesta de datos al propietario de la vivienda. Del mismo modo, se tomaron datos de tiempo en la elaboración de las unidades de albañilería tradicional (adobe) y los muros del mismo material.

No se pueden obtener datos confiables de cantidades de materiales utilizados por una unidad patrón (m, m², m³, etc.) mediante una encuesta al propietario de la vivienda, ya que, este no es especialista en tal materia. Por tanto, se buscaron a los fabricantes de adobe, a quienes se les entrevistó y tomó datos de tiempos y cantidades de insumos para la elaboración del adobe.

Respecto a la fabricación del adobe, se tomaron los siguientes datos:

- Tiempo para la elaboración del adobe: este tiempo no se toma por cada adobe, sino, el tiempo para la elaboración para una cantidad mayor, puede ser en bloques de 5 adobes, para luego calcular el tiempo promedio para un adobe.
- Insumos: se tomarán datos de cantidades de cada insumo que interviene en la elaboración del adobe, tales como: tierra, agua, paja.

Para elaborar el adobe, como paso previo, se almacena la mezcla de tierra de arcilla y agua por un periodo de siete días, a esta mezcla, se le debe cubrir con un material impermeable con el fin de evitar que se agregue agua a la mezcla producto de lluvias u otro acontecimiento. Pasado los siete días, se procede a retirar la cubierta y mezclar con la ayuda de una pala, se le puede incorporar cierta cantidad de agua, a fin de buscar la trabajabilidad de la mezcla.

La cantidad de tierra que se extrae también es de la forma tradicional, se traza una longitud de 4.00 m, ancho de 3.00, y una profundidad de 0.45 m, obteniendo un volumen de 5.40 m3, la cual sirve para la elaboración de 1 millar de adobes.

Para cuantificar las cantidades de agua, se ha utilizado recipientes comunes y caseros, los volúmenes de estos, están descritos en el Cuadro N°1.

Cuadro N° 1: Volúmenes de recipientes utilizados para medir el agua

Material	Vol. (m³)	Vol. (I)
Cilindro	0.223	223.39
Balde Aceite	0.020	20.00
Balde Pintura	0.004	4.00

Con fines de sincerar lo resultados, consideramos que el cilindro se utiliza al 100% de su capacidad en volumen, mientras que, el balde de aceite y pintura, al 70% y 80% de su capacidad respectivamente.

Las cantidades de agua utilizadas en cada proceso de elaboración de 100 adobes, están descritas en el Cuadro N°2.

Cuadro N° 2: Cantidades de agua utilizada en la elaboración de adobes

		Volume	en de agua	1	Vol.	Vol.
Actividad	Actividad Veces		Vol. (I)	Vol. (m³)	Parcial (I)	Parcial (m³)
Remojar la tierra	1	Cilindro	223.39	0.223	223.39	0.2234
Lavar materiales	1	Balde Aceite	14.00	0.014	14.00	0.0140
Lavar las manos	1	Balde Pintura	3.20	0.0032	3.20	0.0032

Fuente: Elaboración propia

De los tiempos empleados en la elaboración del adobe, se obtuvieron los resultados que se muestran en el Cuadro N°3, logrando un tiempo promedio de 24.46 segundos en la elaboración de cada adobe. Es preciso mencionar que la elaboración propia del adobe, lo hace un solo personal, sin embargo, para los pasos previos, como obtener la tierra, transportarlo y mezclarlo, se requiere de un ayudando o peón. En ese sentido, los tiempos que se muestran en el Cuadro N°03, son hechas por un personal, tiempo calculado desde el inicio de la incorporación de la mezcla ya realizada, al molde, hasta el desmoldado en un lugar seco (ver Figura N°10).

Cuadro N° 3: Tiempos en la elaboración de un adobe

Muestra	Tiempo (seg)
1	23.30
2	24.11
3	26.12
4	25.12
5	23.65
Tiempo. Prom.	24.46

Fuente: Elaboración propia

El molde para la elaboración de los adobes, es de madera, con dimensiones de 0.40x0.20x0.10 m, con un peso aproximado de 1.50 kg. (ver Figura N°89

Figura N° 8: Molde para la elaboración del adobe Fuente: Elaboración propia

La mezcla de agua y tierra almacenada por siete días, debe encuentrarse en estado óptimo de saturación para la elaboración de los adobes, se le puede incorporar agua de acuerdo a la trabajabilidad que se busque de la mezcla. (ver Figura N°9)

Figura N° 9: Mezcla de agua y tierra almacenada por siete días Fuente: Elaboración propia

Los adobes elaborados se deben almacenar bajo sombra, en un lugar seco, limpio y superficie plana (ver Figura N°10), con el fin de evitar alterar sus características de fabricación.

Figura N° 10: Adobes almacenados en un lugar seco y limpio Fuente: Elaboración propia

Respecto al proceso constructivo de la vivienda de adobe, se tomaron los siguientes datos:

- Recursos utilizados para la construcción de viviendas de adobe: materiales, mano de obra, equipos y herramientas.
- Lugar de adquisición de los recursos materiales utilizados

Se hizo un ensayo in situ elaborando un muro de adobe de 1.00 m x 1.00 m, durante el cual, se tomó el tiempo promedio para elaborar cada fila de adobe y el tiempo total para la elaboración del muro. Del mismo modo, se tomaron datos de cantidades de agua para cada proceso. El ancho del muro fue de 0.40 m con juntas horizontales y verticales de 1.5 cm. Los datos de las cantidades de agua se muestran en el Cuadro N°4, mientras que, el tiempo en la elaboración de cada fila de adobe, en el Cuadro N°5.

Cuadro N° 4: Cantidades de agua en la mezcla tierra – agua

		Volume	en de agua	ì	Vol.	Vol.	
Actividad	Veces	Unid. Medida	Jnid. Medida Vol. (I) Vol. (m³)		Parcial (I)	Parcial (m³)	
Remojar la tierra	1	Cilindro	44.68	0.0447	44.68	0.0447	
Lavar materiales	1	Balde Aceite	14.00	0.0140	14.00	0.0140	
Lavar las manos	1	Balde Pintura	3.20	0.0032	3.20	0.0032	

Fuente: Elaboración propia

Cuadro N° 5: Tiempo en la elaboración de una fila de adobe

Muestra	Tiempo (seg)
1	6' 55"
2	7' 21"
3	6' 34"
Tiempo. Prom.	6' 57"

Del Cuadro N°5, se concluye que el tiempo en la elaboración de una fila de adobe de 1.00 m de largo, es de 7 minutos. Para un muro de 1.00 m de alto con 10 filas, se tiene un total de 1 hora con 10 minutos como tiempo de elaboración del muro de adobe.

En cada hilada del asentado de muro, se expande la mezcla de agua y tierra de tal forma que quede homogénea, esto se hace con la ayuda de una plancha, previamente, se colocan los adobes extremos a fin de colocar el cordel como elemento para controlar el alineamiento de los adobes (ver Figura N°11). El proceso de elaboración del muro, fue hecho por un albañil y un peón de la zona, sin embargo, para la construcción propiamente, se requierió de dos albañiles y un peón.

Figura N° 11: Proceso de elaboración del muro de adobe Fuente: Elaboración propia

Del mismo modo que se controla el alineamiento horizontal de los adobes con la ayuda del cordel, se controla la verticalidad con la ayuda de una plomada. (ver Figura N°12)

Figura N° 12: Controlando la verticalidad del muro de adobe Fuente: Elaboración propia

Luego de concluir los pasos indicados en los párrafos anteriores, se logró culminar el muro de $1.00 \text{ m} \times 1.00 \text{ m}$, de donde se han obtenido los datos para realizar el análisis unitario para la partida "MUROS CABEZA CON ADOBE $0.40 \times 0.20 \text{ m}$ ", ver Figura N°13.

Figura N° 13: Muro de adobe de 1.00 x 1.00 m Fuente: Elaboración propia

CAPÍTULO IV: CÁLCULO DE EMISIONES DE CO2 EQUIVALENTE

4.1. METODOLOGÍA DEL CÁLCULO

Se tomaron datos sobre los materiales utilizados, lugar de compra o adquisición de estos, el tiempo, la cantidad de trabajadores y los equipos utilizados en la construcción de la vivienda. Como bien se puede deducir, por la antigüedad de las viviendas y el año de la publicación de la Norma E.080, estas viviendas han sido construidas sin seguir los criterios sismo resistentes que exige la norma peruana del adobe. Con el fin de obtener resultados confiables, se diseñará una vivienda con un área total aproximada de 80 m² siguiendo las recomendaciones de la norma E.080 (ver Anexo I).

Buscando obtener resultados cada vez más confiables, se logró ubicar a una de las personas que realiza el adobe en cada localidad. En el distrito de Aucallama, a la persona se le encomendó el trabajo de elaborar 100 adobes con las dimensiones del diseño elaborado y un muro de 1.00 m² de 0.40 m de espesor. Observando este trabajo, se pudo tomar datos de tiempos, cantidad de tierra, agua, y herramientas utilizadas para la elaboración del adobe y muro. Con estos datos se realizó un análisis de la vivienda diseñada, para luego, con el programa S10 de costos y presupuestos, obtener la cantidad de cada insumo, horas hombre y horas máquina que se requerirá en la construcción de la vivienda.

Tener la cantidad de cada insumo servirá para realizar un análisis ambiental detallado de cada uno. El análisis consistirá, en cuantificar las emisiones de CO₂ y en algunos casos un equivalente de CO₂ en sus distintas etapas, producción, transporte y uso en obra. Para cuantificar estas emisiones, se recurrirá a fuentes nacionales e internaciones sobre emisiones de GEI (Gases de Efecto Invernadero). Se trabajará con valores de referencia que se obtienen del inventario de huellas de carbono de los materiales involucrados; a la vez, estos valores fueron obtenidos por fuentes directas, proyectos de investigación, base de datos de algunos gobiernos y por inventarios certificados como la NPI. En cuanto a los materiales, se trabajará con sus valores de potencia y energía consumida en la producción del material. Aquí se realizará algunas correcciones por el uso de electricidad debido a las diferentes composiciones de la matriz energética.

Realizando todos estos cálculos respectivos se obtendrá la emisión total de CO₂ en la construcción de la vivienda.

4.2. CÁLCULO DE LA HUELLA DEL CARBONO

Para el cálculo de las emisiones de CO₂ equivalente en la construcción de una vivienda unifamiliar de adobe, se consideró el cálculo en tres aspectos importantes:

- Las emisiones unitarias de los insumos que intervienen en la construcción, desarrollada en el sub capítulo 4.2.1.
- ➤ Las emisiones dadas por el transporte de materiales, desarrollada en el sub capítulo 4.2.2.
- ➤ Las emisiones durante la etapa de construcción, desarrollada en el sub capítulo 4.2.3.

Los tres cálculos desarrollados, son los desagregados de la huella de carbono unitaria de acuerdo con la unidad de medida de las partidas que contemplan el proceso de ejecución de las viviendas unifamiliares (ver capítulo 4.2.4). Esta huella de carbono unitaria, es un equivalente al precio unitario en un presupuesto de obra, a la cual, al multiplicarle por el metrado correspondiente, obtenemos las cantidades de emisiones totales de cada partida y el global de la construcción (ver sub capítulo 4.2.5).

El cálculo de cada aspecto mencionado, se hizo bajo el Análisis de Montecarlo, toda vez que se tiene más de una fuente de información para la Huella del Carbono (HC) de algunos insumos por su proceso de producción. Para dicho análisis, se trabajó con 400 iteraciones, las cuales arrojaron datos cada vez más cercanos al valor más probable. Los resultados obtenidos, luego de las iteraciones, se grafican siguiendo una distribución normal, lo que resulta en una Campana de Gauss.

4.2.1 Emisiones por producción de insumos

Las emisiones de CO₂ equivalente producidos por cantidades unitarias de los insumos, consideran las emisiones dadas durante su etapa de producción y/o transformación, haciendo un Análisis del Ciclo de Vida (ACV) de cada insumo. Del ACV, se van a conocer los datos como: equipos utilizados, rendimientos, y

combustible o energía utilizada por los mismos en cada proceso, con ello se podrá calcular las emisiones de CO₂ equivalente para cada etapa de producción.

El Ciclo de Vida y los equipos utilizados durante la producción de cada insumo, se recopilaron de bibliografías y publicaciones de las empresas fabricantes. Sin embargo, para el caso de agregados, se hizo una investigación de campo tomando datos requeridos en canteras. En este caso, también se considerará las emisiones de la Mano de Obra, dado que, a diferencia de los demás insumos, que su producción es industrializada, estos requieren también de mano de obra en su proceso de producción.

Para el caso de la HC de los equipos utilizados durante el proceso de producción de insumos, también se hizo bajo el Análisis de Montecarlo, dado que, se tiene más de una fuente de información para la HC de sus fuentes de energía (Ver Cuadro N°6 y 7), con estos valores y las iteraciones se obtendrá el valor más probable para la emisión de CO₂ equivalente por hm.

Existen inventarios nacionales de los Factores de Emision de CO2 de los combustibles y energía eléctrica según su unidad de medida. (ver Cuadro N°6).

Cuadro N° 6: Fuente 1 de FE de Combustibles

Recursos	Fuente 1				
Recursos	Und. Factor		Fuente		
Combustible y Energía					
Energía Eléctrica	kg CO ₂ / kWh	0.52144	Huella de Carbono – Emisiones de GEI por uso del Sistema de Iluminación de la FIA - UNI, 2020		
GLP	kg CO ₂ / kg	2.75	Uso eficiente de la energía - Guía metodológica para docentes - MINEM, 2020		
Diésel	kg CO ₂ / gal	9.7	Uso eficiente de la energía - Guía metodológica para docentes - MINEM, 2020		
Gasolina 95	kg CO ₂ / gal	7.9	Uso eficiente de la energía - Guía metodológica para docentes - MINEM, 2020		

Fuente: Elaboración propia

Del mismo modo, existen inventarios internacionales de los Factores de Emisión de los combustibles y energía eléctrica, también según su unidad de medida (ver Cuadro N°7).

Cuadro N° 7: Fuente 2 de FE de Combustibles

Recursos	Fuente 2				
Recuisos	Und. Factor		Fuente		
Combustible y Energía					
Energía Eléctrica	kg CO ₂ / kWh	0.3	Guía Práctica para el Cálculo de Emisiones de Gases de Efecto Invernadero (GEI), Cataluña - España, Oficina Catalana del Cambio Climático (OCCC), 2013		
GLP	kg CO ₂ / kg	3.015	Guía Práctica para el Cálculo de Emisiones de Gases de Efecto Invernadero (GEI), Cataluña - España, Oficina Catalana del Cambio Climático (OCCC), 2013		
Diésel	kg CO ₂ / I	2.61	Guía Práctica para el Cálculo de Emisiones de Gases de Efecto Invernadero (GEI), Cataluña - España, Oficina Catalana del Cambio Climático (OCCC), 2013		
Gasolina 95	kg CO ₂ / I	2.38	Guía Práctica para el Cálculo de Emisiones de Gases de Efecto Invernadero (GEI), Cataluña - España, Oficina Catalana del Cambio Climático (OCCC), 2013		

Los rendimientos respecto a los consumos de combustible o energía por una unidad determinada, también es un input para el Cálculo de la Huella del Carbono de los equipos (Ver Cuadro N°8). La unidad determinada que se menciona, se recomendó que sea hm, a fin de hacer de los cálculos, más sencillos.

Cuadro N° 8: Consumo de combustible o energía por hora máquina

Material	Combustible que utiliza	Consumo	Unidad	Fuente
Mezcladora	Gasolina	2.7	l/hm	Ficha Técnica Mezclador de Concreto - LA CASA STIHL
Vibrador de Conc.	Gasolina	1.5	l/hm	Ficha Técnica Vibrador de Concreto - PROMART
Cargador Frontal	Diésel	2.0	gal/hm	MAESTRO DE EQUIPOS - CONCAR
Chancadora (Primaria, Cónica, Fajas)	Energía Eléctrica	400	KWh	Toma de Datos en Campo - Chancadora Acaray
Zaranda vibratoria	Energía Eléctrica	100	KWh	Toma de Datos en Campo - Chancadora Acaray
Trefiladora	Energía Eléctrica	55	KWh	JACOM: Aliados Estratégicos en Máquinas
Cortadora	Energía Eléctrica	5.5	KWh	HTK Welding Equipment Manufacture Co

Fuente: Elaboración propia

Para las partidas de "Limpieza de terreno manual", "Excavación manual de zanja para cimientos" y "Acarreo de material excedente manual", en los cuales se utilizan únicamente herramientas manuales, no se van a considerar las emisiones producidas por estas tanto en las etapas de producción y transporte, dado que son mínimas y se pueden considerar despreciables.

De algunos insumos estudiados en la presente tesis, se conoce las emisiones de CO_2 equivalente por su proceso de producción, de igual forma que los combustibles, para este caso. También se tienen dos fuentes de información (Ver Cuadro N°9 y 10), con los cuales se hizo el Análisis de Montecarlo, por tanto, para estos insumos, se obviaron los análisis de su proceso de producción para el cálculo de su HC.

Cuadro N° 9: Fuente 1, FE de insumos

Beeuweee	Fuente 1					
Recursos	Und.	Factor	Fuente			
Insumos						
Cemento	kg CO ₂ / kg	0.629	UNACEM, 2019			
Acero de Refuerzo	kg CO ₂ / kg	1.950	Perfil Ambiental del Acero - Harold Michel Torres; 2012			
Cal	kg CO ₂ / kg	0.750	IPCC 2006, inventarios nacionales de GEI			
Madera	kg CO ₂ / kg	0.262	Valor más alto, Ochsendorf et al, 2011			
Ladrillo k.k.	kg CO ₂ / kg	1.123	Incorporación de huella de carbono y huella ecológica en las bases de costes de construcción. Freire, A., Marrero, M. y Muñoz, J., 2016			
Agua Suministrada	kg CO ₂ / m ³	0.149	UK Government GHG Conversion Factors for Company Reporting, 2022			

Fuente: Elaboración propia

Cuadro N° 10: Fuente 2, FE de insumos

Recursos	Fuente 2				
Recursos	Und. Factor		Fuente		
Insumos					
Cemento	kg CO ₂ / t	510.57	Energía contenida y emisiones de CO ₂ en el proceso de fabricación del cemento en Ecuador, (Ana León, Vanessa Guillén), 2020		
Acero de Refuerzo	kg CO ₂ / kg	1.623	Incorporación de huella de carbono y huella ecológica en las bases de costes de construcción. Freire, A., Marrero, M. y Muñoz, J, 2016		
Cal	kg CO ₂ / kg	0.79	Revisión de los factores de emisión en las metodologías de huella de carbono en Colombia, (Rodríguez, Ruiz Ochoa, Meneses), 2020		
Madera	kg CO ₂ / t	321.61	UK Government GHG Conversion Factors for Company Reporting, 2022		
Ladrillo k.k.	-	-	-		
Agua Suministrada	-	-	-		

Fuente: Elaboración propia

A continuación, se muestran los cálculos realizados para los 3 casos estudiados, con los cuales se hizo el análisis comparativo en el Capítulo V. Como se indicó, el cálculo se ha realizado teniendo en cuenta el ACV de cada insumo y para todas las partidas contempladas en la ejecución de las viviendas unifamiliares.

- Vivienda unifamiliar de Adobe en Aucallama
- Vivienda unifamiliar de Adobe en Concepción
- > Vivienda unifamiliar de Ladrillo de Arcilla en Aucallama

4.2.1.1 Cálculo de emisiones para una vivienda unifamiliar de Adobe en el distrito de Aucallama.

El detalle de estos cálculos se muestra en el Anexo V, realizados de acuerdo a lo indicado en el subcapítulo 4.2.1. En el Cuadro N°11, se presenta un resumen de los resultados del Anexo V, huellas de carbono unitaria para cada insumo por concepto del proceso de producción de los mismos.

Cuadro N° 11: HC por proceso de producción – Adobe Aucallama

Material	Und	Cant.	HC Unit. (kg CO₂/und)	HC Parcial (kg CO₂)
Alambre negro recocido N° 8	kg	26.531	0.045	1.20
Acero Corrugado fy= 4200 kg/cm ²	kg	0.848	1.786	1.52
Clavos para madera con cabeza 3/4"	kg	4.982	0.074	0.37
Clavos	kg	15.676	0.074	1.17
Piedra Mediana de 6"	m³	3.217	0.180	0.58
Piedra Grande de 8"	m³	10.346	0.180	1.87
Arena Fina	m³	4.881	0.361	1.76
Hormigón	m³	29.292	0.340	9.96
Tierra de Chacra	m³	16.144	1.185	19.12
Cemento Portland Tipo I (42kg)	bol	150.764	24.289	3,661.83
Cal Hidratada bolsa 25kg	bol	1.697	19.266	32.69
Adobe .40 x .20 x .10	und	5948.000	0.023	134.60
Caña Brava	m	1445.364	0.026	37.22
Caña Chancada de 1"	m ²	86.982	0.045	3.92
Madera Tornillo inc. corte p/enconf	p ²	134.120	0.301	40.42
Madera Cedro	p ²	108.931	0.562	61.27
Madera de Eucalipto de 4"	m	7.100	6.463	45.89
Madera de 2" x 7"	m	56.200	1.508	84.76
Bisagra de Fierro de 2"	par	15.000	0.000	-
Pintura Latex	gal	6.956	0.000	-
Imprimante	gal	22.607	0.000	-
Barniz Marino	gal	1.300	0.000	-
Agua	m³	10.576	0.149	1.58

HC TOTAL 4,141.70

Fuente: Elaboración propia

Se obtuvo un total de 4 toneladas de CO₂ equivalente, por el concepto de la Huella de Carbono por el proceso de transformación o producción del total de insumos

que participan en la construcción de la vivienda unifamiliar de adobe. Los valores mostrados para la Huella del Carbono unitaria y Parcial, son valores promedio obtenidos de las 400 iteraciones realizadas en el análisis de Montecarlo, lo mismo se hizo para los demás casos.

Esos valores promedios para la HC unitaria, son muy bajos para la mayoría de los insumos, excepto algunos, que tienen alta HC incorporada (Ver Gráfico N°1).

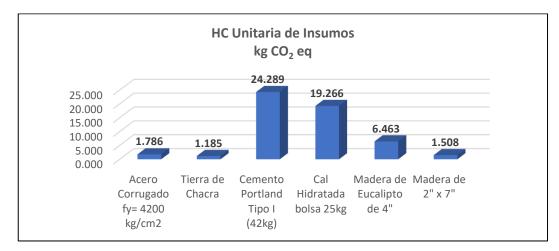


Gráfico Nº 1: Insumos HC unitaria más altas - vivienda adobe Aucallama

Fuente: Elaboración propia

Los insumos con mayores HC unitaria, son el cemento, la cal y la madera, esto se justifica, dado que son insumos que, para su producción, requieren equipos industriales que consumen enormes cantidades de combustible y/o energía durante el proceso de producción. Del gráfico N°1, se tiene que, se emiten 24 kg de CO₂ equivalente por cada bolsa de cemento, 19 kg de CO₂ equivalente, por cada saco de 25 kg de Cal Hidratada, 6 kg de CO₂ equivalente por cada metro lineal de Madera Eucalipto de 4".

El insumo con mayor HC unitaria por el proceso de producción de insumos para el caso de la vivienda de adobe, es el cemento, donde, más del 50%, está dado durante el proceso de descomposición de la piedra caliza y otros calcáreos para producir Clinker (ver Gráfico N°1). Su proceso de producción y los porcentajes de emisiones de CO₂ en cada proceso está descrito en el Marco Teórico. De acuerdo con UNACEM, empresa productora de cemento más importante del País, se producen 0.629 kg CO₂ /kg de cemento (ver Cuadro N°9).

Por otro lado, respecto a las HC parciales que se obtienen al multiplicar el valor unitario de HC por la cantidad de insumo que participa (ver Cuadro N°11), se tiene al cemento, como insumo con HC de mayor impacto, este representa el 88% del total de emisiones por concepto de producción de insumos en este tipo de construcción. Por el principio de Pareto, se seleccionaron las partidas cuyos impactos son iguales o superiores al 3%, de esto, se tiene que la HC parcial del Cemento es el de mayor impacto, seguidos por el adobe y la madera de 2" x 7", pero con gran diferencia (Ver Gráfico N°2).

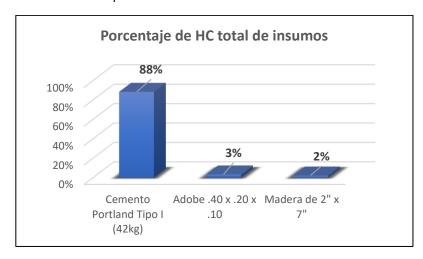


Gráfico N° 2: Impacto de HC – vivienda de adobe Aucallama

Fuente: Elaboración propia

4.2.1.2 Cálculo de emisiones para una vivienda unifamiliar de Adobe en el Distrito de Concepción

Para la construcción de la vivienda de adobe en Concepción, se utilizan los mismos insumos en las mismas cantidades, por este motivo, los cálculos, cuadros y gráficos se replican del capítulo 4.2.1.1.

4.2.1.3 Cálculo de emisiones para una vivienda unifamiliar de Ladrillo de arcilla en el Distrito de Aucallama.

El detalle de estos cálculos se muestra en el Anexo VI, realizados de acuerdo a lo indicado en el subcapítulo 4.2.1. En el Cuadro N°12, se presenta un resumen de los resultados del Anexo VI, huellas de carbono unitaria para cada insumo por concepto del proceso de producción.

Cuadro Nº 12: HC proceso de producción – vivienda ladrillo Aucallama

Material	Und	Cant.	HC Unit. (kg CO₂/und)	HC Parcial
Alambre negro recocido N° 8	kg	20.38	0.045	0.92
Alambre negro recocido N° 16	kg	28.86	0.045	1.30
Acero Corrugado fy= 4200 kg/cm ²	kg	1515.63	1.794	2,719.44
Clavos para madera con cabeza 3/4"	kg	25.04	0.074	1.86
Clavos para madera con cabeza 1/2"	kg	3.25	0.074	0.24
Piedra Grande de 8"	m ³	9.32	0.180	1.68
Piedra Chancada de 1/2"	m ³	10.99	4.694	51.56
Arena Fina	m ³	4.01	0.361	1.45
Arena Gruesa	m ³	13.20	0.279	3.69
Hormigón	m ³	21.27	0.340	7.23
Cemento Portland Tipo I (42kg)	bol	293.42	24.153	7,087.09
Cal Hidratada bolsa 25kg	bol	1.32	19.263	25.49
Ladrillo k.k. 18 huecos 9x12.5x23 cm	und	4614.39	3.144	14,509.48
Ladrillo p/techo de 15x30x30 cm	und	452.19	8.759	3,960.94
Madera Tornillo inc. corte p/enconf	p ²	507.51	0.299	151.59
Madera Cedro	p ²	108.93	0.558	60.73
Bisagra de Fierro de 2"	par	15.00	0.000	-
Pintura Latex	gal	9.07	0.000	-
Imprimante	gal	29.47	0.000	-
Barniz Marino	gal	1.30	0.000	-
Agua	m ³	8.68	0.149	1.29

HC TOTAL 28,585.97

Fuente: Elaboración propia

Se obtuvo un total de 29 toneladas de CO₂ equivalente, por el concepto de la huella de carbono por el proceso de transformación o producción del total de insumos que participan en la construcción de la vivienda unifamiliar de ladrillo. Al igual que los casos anteriores, se trabajó bajo el Análisis de Montecarlo con 400 iteraciones, tomando el valor promedio para cada uno.

Esos valores promedio para la HC unitaria, son muy bajos para la mayoría de los insumos, excepto algunos, que tienen alta HC incorporada (Ver Gráfico N°3).

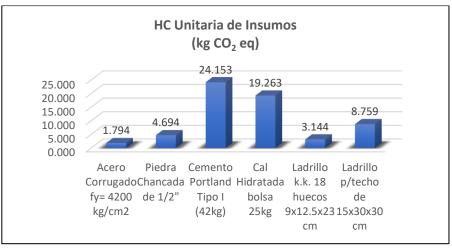


Gráfico N° 3: Insumos con HC unitaria más elevadas – ladrillo Aucallama

Los tres primeros insumos mostrados en la Gráfica N°1, forman parte del concreto armado, partidas con grandes metrados respecto a las demás. Tales partidas, al tener insumos con mayores valores de Huella del Carbono unitaria, hacen de las partidas, también de alto valor de HC.

Para el caso de la piedra chancada de 1/2", uno de los insumos con mayor HC unitaria por proceso de producción para este tipo de vivienda, el 78% de su HC se concentra en el sistema de chancado (chancado primario, chancado secundario y transporte de material por las fajas), para este proceso, se utilizan los equipos de chancadora primaria de 150hp, chancadora cónica de 200hp y las fajas transportadoras, este sistema de chancado consume una energía de 400kwh.

Los insumos con mayores HC unitaria, son el cemento, la cal hidratada, el ladrillo kk 18 huecos, el ladrillo p/techo, la piedra chancada y el acero corrugado, esto se justifica, dado que son insumos que, para su producción, requieren equipos industriales que consumen enormes cantidades de combustible y/o energía durante el proceso de producción. Es preciso mencionar que, estos insumos son propios del tipo de construcción y los que intervienen en mayor cantidad en dicha construcción. Del Gráfico N°3, se tiene que, se emiten 24 kg de CO₂ equivalente por cada bolsa de cemento, 19 kg de CO₂ equivalente por cada saco de 25 kg de Cal hidratada, 9 kg de CO₂ equivalente por cada ladrillo p/techo, 3 kg de CO₂ equivalente por cada ladrillo kk 18 huecos, 5 kg de CO₂ equivalente por cada m³ de piedra chancada y 2 kg de CO₂ equivalente por kg de acero corrugado.

Por otro lado, respecto a las HC parciales que se obtienen al multiplicar el valor unitario de HC por la cantidad de insumo que participa (ver Cuadro N°12). Aplicando el principio de Pareto, se consideran como valores incluyentes, aquellos que superan el 3% de HC Parcial, de esto, se tiene al ladrillo kk 18 huecos, como insumo con HC de mayor impacto, este representa al 51% del total de emisiones por concepto de producción de insumos en este tipo de construcción. Del mismo modo, se tienen otros insumos con HC parcial de considerable impacto, respecto a los demás (Ver Gráfico N°04).

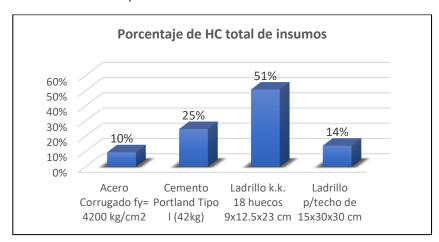


Gráfico Nº 4: Impacto de HC - vivienda ladrillo Aucallama

Fuente: Elaboración propia

4.2.2 Emisiones por el transporte de insumos

Las emisiones de CO₂ equivalente emitidos por el transporte de materiales, consideran las emisiones por consumo de combustible de los distintos tipos de vehículos al transportar los insumos que se utilizarán en la construcción. Esto es, el transporte desde su lugar de explotación o adquisición hasta la construcción.

Los transportes estudiados en la presente tesis, son únicamente terrestres, realizados con camioneta, camión, volquete o tráiler, según el insumo, cantidad y distancia del recorrido. Para el caso de algunos insumos, el transporte está dado con dos vehículos (uno para cada tramo, desde su lugar de producción hasta la construcción), mientras que, en los otros, con un solo tipo, estos últimos, de agregados o insumos producidos en la zona aledaña a la construcción.

Para el caso de la toma de datos en la Localidad de Aucallama, se consideró que la mayoría de los insumos para la construcción, se adquirieron en el distrito de Huaral, para luego transportarlos al distrito de Aucallama, que es la zona de estudio. De forma similar, para el estudio en la localidad de Concepción, se consideró que algunos de los materiales se compraron en Huancayo, para luego ser transportados hasta Concepción, mientras que, otros, se adquirieron en la misma localidad.

En el Cuadro N° 13, se muestra el lugar de producción o adquisición de los insumos para la construcción de la vivienda unifamiliar de adobe, para los dos lugares de toma de datos, costa y sierra.

Cuadro N° 13: Lugar de producción de insumos para vivienda de adobe

	Lugar de Produ	cción /adquisición
Material	Vivienda en Aucallama	Vivienda en Concepción
Alambre negro recocido N° 8	Pisco	Pisco
Acero Corrugado fy= 4200 kg/cm ²	Pisco	Pisco
Clavos para madera con cabeza 3/4"	Pisco	Pisco
Clavos	Pisco	Pisco
Piedra Mediana de 6"	Aucallama	Concepción
Piedra Grande de 8"	Aucallama	Concepción
Arena Fina	La Candelaria	Concepción
Hormigón	La Candelaria	Huancayo
Tierra de Chacra	Aucallama	Lado de Vivienda
Cemento Portland Tipo I (42kg)	Atocongo	Atocongo
Cal Hidratada bolsa 25kg	Puno	Puno
Adobe .40 x .20 x .10	Aucallama	Lado de Vivienda
Caña Brava	Aucallama	Concepción
Caña Chancada de 1"	Aucallama	Concepción
Madera Tornillo inc. corte p/enconf	Amazonía	Valle Mantaro
Madera Cedro	Amazonía	Valle Mantaro
Madera de Eucalipto de 4"	Amazonía	Valle Mantaro
Madera de 2" x 7"	Amazonía	Valle Mantaro
Bisagra de Fierro de 2"	Pisco	Pisco
Pintura Látex	Lima	Lima
Imprimante	Lima	Lima
Barniz Marino	Lima	Lima
Agua	Aucallama	Concepción
Herramientas Manuales	Aucallama	Concepción
Mezcladora de Concreto 11p³ - 18HP	Huaral	Concepción

Fuente: Elaboración propia

En el Cuadro N° 15, se muestra lugar de producción o adquisición de los insumos para la construcción de la vivienda unifamiliar de ladrillo de Arcilla, para la localidad de toma de datos, costa.

Cuadro Nº 14: Lugar de producción de insumos para vivienda de ladrillo

Material	Lugar de Producción /explotación
Alambre negro recocido N° 8	Pisco
Alambre negro recocido N° 16	Pisco
Acero Corrugado fy= 4200 kg/cm ²	Pisco
Clavos para madera con cabeza 3/4"	Pisco
Clavos para madera con cabeza 1/2"	Pisco
Piedra Grande de 8"	Aucallama
Piedra Chancada de 1/2"	Chancay
Arena Fina	La Candelaria
Arena Gruesa	Chancay
Hormigón	La Candelaria
Cemento Portland Tipo I (42kg)	Atocongo
Cal Hidratada bolsa 25kg	Puno
Ladrillo k.k. 18 huecos 9x12.5x23 cm	Lima
Ladrillo p/techo de 15x30x30 cm	Lima
Madera Tornillo inc. corte p/enconf	Amazonía
Madera Cedro	Amazonía
Bisagra de Fierro de 2"	Pisco
Pintura Látex	Lima
Imprimante	Lima
Barniz Marino	Lima
Agua	Aucallama
Herramientas Manuales	Aucallama
Dobladora	Aucallama
Cizalla	Aucallama
Vibrador de Concreto 4HP 1.25"	Huaral
Mezcladora de Concreto 11p³ - 18HP	Huaral

Fuente: Elaboración propia

Como paso previo para calcular las emisiones por transporte de los insumos, se tuvo que conocer las emisiones de CO₂ eq. de los vehículos por unidad de combustible o energía utilizado, para esto, se utilizó como datos de entrada las cantidades de combustibles consumidos por distancias recorridas u horas máquina trabajadas (ver Cuadro N°15 y 16), del mismo modo, la cantidad de CO₂ que emite una unidad de combustible o energía consumida, para estos últimos, se tienen dos fuentes (ver Cuadro N°6 y 7), con esto, de igual forma que el caso anterior, se aplicó el Análisis de Montecarlo para el cálculo de la HC.

Cuadro Nº 15: Consumo de combustible por hora máquina

Tipo de Vehículo	Und	Consumo	Fuente
Cargador Frontal	gal/ hm	2.00	Juicio de Experto (Conductores)
Volquete	gal/ hm	2.50	Juicio de Experto (Conductores)
Tráiler	gal/ hm	2.50	Juicio de Experto (Conductores)

Cuadro Nº 16: Distancias recorridas por un galón de combustible

Tipo de Vehículo	Und	Consumo	Combustible	Fuente
Camioneta	km/ gal	40.00	Gasolina	Juicio de Experto (Conductores)
Camión	km/ gal	25.00	Diésel	Juicio de Experto (Conductores)
Volquete	km/ gal	8.00	Diésel	Juicio de Experto (Conductores)
Tráiler	km/ gal	8.00	Diésel	Juicio de Experto (Conductores)

Fuente: Elaboración propia

Los datos de los Cuadros N°15 y 16, han sido recopilados en campo, mediante consulta a los conductores, esto, debido a que los vehículos mencionados tienen una cantidad de años de uso, cantidad incierta en el momento de uso y consulta, por tanto, el ratio teórico que figuran en las bibliografías, no es válidos para estos casos.

Con los datos mostrados en los Cuadros N°6 y 7, podemos obtener los siguientes resultados de emisiones de CO₂ equivalente para cada tipo de vehículo (ver Cuadro N°17).

Cuadro N° 17: Emisión de CO2 eq. por un galón de combustible

Tipo de Vehículo	Combustible	Emisión	Unidad
Camioneta	Gasolina	7.9	kg CO ₂ / gal
Camión	Diésel	9.7	kg CO ₂ / gal
Volquete	Diésel	9.7	kg CO ₂ / gal
Tráiler	Diésel	9.7	kg CO ₂ / gal

Fuente: Elaboración propia

Los insumos requeridos para las construcciones de las viviendas tienen un peso y volumen calculado. En este aspecto, se buscó conocer la Huella del Carbono unitario del transporte por unidad de medida de cada insumo. Por tal motivo, fue necesario conocer las capacidades de los vehículos, según interés del tipo de insumo transportado, toneladas o m³. (Ver Cuadro N°18).

Cuadro N° 18: Capacidad de carga de vehículos

Tipo de Vehículo	Und.	Capacidad	Fuente
Camioneta	kg	1 500.00	Ficha Técnica Nissan Plg 720tb C/baranda Pick Up Cabina Simple 1986
Camión	kg	4 520.00	Ficha Técnica Camión Hino Dutro 716
Volquete	m³	15.00	Ficha Técnica Volquete DMC DYX 3251
Tráiler	kg	27 600.00	Ficha Técnica Volvo FH-6x2T

A continuación, se muestran los cálculos realizados para los 3 casos estudiados, con los cuales se hizo el análisis comparativo en el Capítulo V. Como se indicó, el cálculo se ha realizado teniendo las distancias y tipo de vehículo de transporte de cada insumo.

- Vivienda unifamiliar de Adobe en Aucallama
- Vivienda unifamiliar de Adobe en Concepción
- Vivienda unifamiliar de Ladrillo de Arcilla en Aucallama

4.2.2.1 Cálculo de emisiones para una vivienda unifamiliar de adobe en el distrito de Aucallama.

El detalle de estos cálculos se muestra en el Anexo VII, realizado de acuerdo con lo indicado en el subcapítulo 4.2.2. En el Cuadro N°19, se presenta un resumen de los resultados del Anexo X, huellas de carbono unitaria para cada insumo por concepto del proceso de transporte.

Cuadro N° 19: HC proceso de transporte – adobe Aucallama

Material	Und	Cant.	HC Unit. (kg CO2/und)	HC Parcial (kg CO ₂)
Alambre negro recocido N° 8	kg	26.531	4.393	116.56
Acero Corrugado fy= 4200 kg/cm ²	kg	0.848	4.393	3.73
Clavos para madera con cabeza 3/4"	kg	4.982	4.393	21.89
Clavos	kg	15.676	4.393	68.87
Piedra Mediana de 6"	m³	3.217	18.270	58.78
Piedra Grande de 8"	m³	10.346	18.270	189.01
Arena Fina	m³	4.881	20.880	101.91
Hormigón	m³	29.292	20.880	611.61
Tierra de Chacra	m³	16.144	15.660	252.81
Cemento Portland Tipo I (42kg)	bol	150.764	14.697	2,215.81
Cal Hidratada bolsa 25kg	bol	1.697	185.192	314.24
Adobe .40 x .20 x .10	und	5948.000	0.047	278.42
Caña Brava	m	1445.364	0.146	210.95
Caña Chancada de 1"	m²	86.982	13.141	1,143.03

Madera Tornillo inc. corte p/enconf	p ²	134.120	2.542	340.90
Madera Cedro	p²	108.931	4.743	516.61
Madera de Eucalipto de 4"	m	7.100	54.500	386.95
Madera de 2" x 7"	m	56.200	12.716	714.64
Bisagra de Fierro de 2"	par	15.000	4.393	65.90
Pintura Latex	gal	6.956	19.369	134.73
Imprimante	gal	22.607	21.232	479.98
Barniz Marino	gal	1.300	12.680	16.48
Agua	m³	10.576	16.240	171.75

HC TOTAL 8,415.55

Se obtuvo un total de 8 toneladas de CO₂ equivalente, por el concepto de la huella de carbono por el proceso de transporte del total de insumos que participan en la construcción de la vivienda unifamiliar de adobe en el distrito de Aucallama. Se trabajó bajo el Análisis de Montecarlo con 400 iteraciones, tomando el valor promedio para cada uno, estos valores se muestran en las columnas de Huella del Carbono unitaria y parcial del Cuadro N°19.

Esos valores promedio para la HC unitaria, son muy altos para la mayoría de los insumos, excepto algunos, que tienen baja HC incorporada (Ver Gráfico N°5). Esto se explica, dado que casi todos los materiales que intervienen en la construcción, son producidos o explotados fuera del lugar de la construcción.

El valor más alto de HC unitaria para este proceso, es para la Cal Hidratada, con 185 kg/CO₂ equivalente, entre otros insumos con mayor impacto, podemos decir con mayor de 20 kg/CO₂ equivalente de HC unitaria, son la arena fina, hormigón y madera de eucalipto de 4" (ver Gráfico N°5). Por su parte, los insumos con la menor HC unitaria para este proceso y tipo de construcción, son el adobe y la caña chancada, esto, dado que son insumos que se producen en el mismo distrito de la construcción.

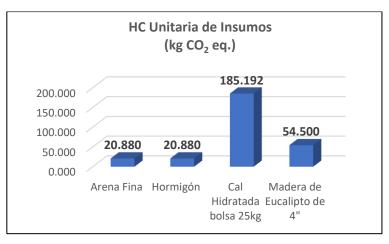


Gráfico N° 5: Insumos de HC unitaria más elevadas – adobe Aucallama

La Cal Hidratada, insumo con mayor HC unitaria, se considera que se produce en la Ciudad de Puno y es trasladada por tierra hasta el lugar de la construcción, por tráiler desde la ciudad de Puno hasta Huaral, luego con camioneta desde Huaral hacia Aucallama.

Del gráfico N°5, se tiene que, se emiten 185 kg de CO₂ equivalente por cada saco de cal hidratada, 54 kg de CO₂ equivalente por cada m de madera eucalipto de 4", 21 kg de CO₂ equivalente por cada m³ de arena fina, el mismo valor para el hormigón. Para la madera, se consideró que los árboles son talados en la Amazonía peruana, y llevados por carretera hasta su lugar de producción más cercana al lugar de la construcción. En tanto, la arena fina y hormigón, son trasladados con volquetes desde lugares aledaños, canteras o ríos cercanos.

Por otro lado, respecto a las HC parciales que se obtienen al multiplicar el valor unitario de HC por la cantidad de insumo que participa (Ver Cuadro N°19). Aplicando el principio de Pareto y para tal fin, se seleccionaron los insumos cuyos impactos son mayores o iguales al 5%. De esto, se tiene al cemento portland, como insumo con HC de mayor impacto, el cual representa el 26% del total de emisiones por concepto de transporte de insumos en este tipo de construcción. Del mismo modo, se tienen otros insumos con HC parcial de considerable impacto, respecto a los demás (Ver Gráfico N°6).

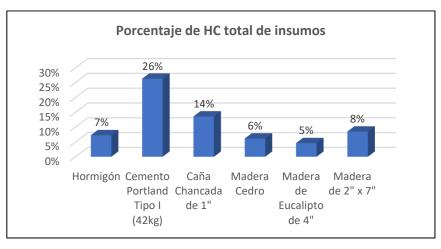


Gráfico Nº 6: Impacto de HC por transporte - adobe Aucallama

En el Gráfico N°6, se ve que la cal hidratada es el insumo con mayor HC unitaria por proceso de transporte para este caso, sin embargo, la HC parcial producto de la cantidad de insumo que interviene es muy bajo, lo que conlleva a que no genere gran impacto, por tal motivo no se muestra en el Gráfico N°6.

La HC unitaria del cemento, representa el 7% de la HC unitaria de la cal hidratada, sin embargo, dada la cantidad que interviene, hace revertir el escenario y lo convierte en el insumo con mayor impacto en la HC parcial (ver Gráfico N°6).

4.2.2.2 Cálculo de emisiones para una vivienda unifamiliar de adobe en el distrito de Concepción.

El detalle de estos cálculos se muestra en el Anexo VIII, realizado de acuerdo con lo indicado en el subcapítulo 4.2.2. En el Cuadro N°20, se presenta un resumen de los resultados del Anexo VIII, huellas de carbono unitaria para cada insumo por concepto del proceso de transporte.

Cuadro N° 20: HC proceso de transporte - adobe Concepción

Material	Und	Cant.	HC Unit. (kg CO₂/und)	HC Parcial (kg CO₂)
Alambre negro recocido N° 8	kg	26.531	1.540	40.86
Acero Corrugado fy= 4200 kg/cm ²	kg	0.848	1.540	1.31
Clavos para madera con cabeza 3/4"	kg	4.982	1.540	7.67
Clavos	kg	15.676	1.540	24.14
Piedra Mediana de 6"	m³	3.217	33.914	109.11

Piedra Grande de 8"	m³	10.346	33.914	350.86
Arena Fina	m³	4.881	33.914	165.52
Hormigón	m³	29.292	23.479	687.74
Tierra de Chacra	m³	16.144	2.609	42.12
Cemento Portland Tipo I (42kg)	bol	150.764	48.184	7,264.37
Cal Hidratada bolsa 25kg	bol	1.697	96.794	164.24
Adobe .40 x .20 x .10	und	5948.000	0.000	-
Caña Brava	m	1445.364	0.146	210.56
Caña Chancada de 1"	m²	86.982	13.117	1,140.94
Madera Tornillo inc. corte p/enconf	p ²	134.120	0.829	111.14
Madera Cedro	p ²	108.931	1.546	168.43
Madera de Eucalipto de 4"	m	7.100	17.768	126.16
Madera de 2" x 7"	m	56.200	4.146	232.99
Bisagra de Fierro de 2"	par	15.000	1.540	23.10
Pintura Latex	gal	6.956	6.242	43.42
Imprimante	gal	22.607	6.842	154.68
Barniz Marino	gal	1.300	4.081	5.31
Agua	m³	10.576	54.108	572.25

HC TOTAL	11,646.90
----------	-----------

Se obtuvo un total de 11 toneladas de CO₂ equivalente, por el concepto de la huella de carbono por el proceso de transporte del total de insumos que participan en la construcción de la vivienda unifamiliar de adobe en el distrito de Concepción. Se trabajó bajo el Análisis de Montecarlo con 400 iteraciones, tomando el valor promedio para cada uno, estos valores se muestran en las columnas de HC unitaria y parcial del Cuadro N°20.

El valor más alto de HC unitaria para este proceso, es para la Cal Hidratada, con 97 kg/CO₂ equivalente, entre otros insumos con mayor impacto, podemos decir con mayor de 20 kg/CO₂ equivalente de HC unitaria, son la piedra mediana y piedra grande, arena fina, hormigón, cemento y agua (ver Gráfico N°7). Por su parte, los insumos con la menor HC unitaria para este proceso y tipo de construcción, son el adobe y la caña chancada, esto se explica, debido a que son insumos que se producen en el mismo distrito de la construcción, para el caso del adobe, es producido al lado de la construcción.

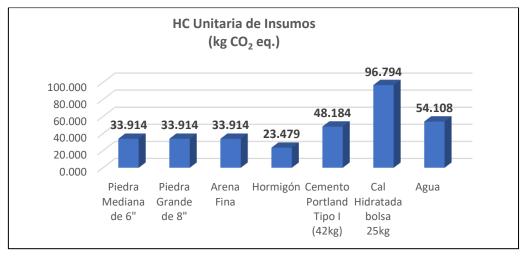


Gráfico Nº 7: Insumos de HC unitaria más elevadas – adobe Concepción

Del gráfico N°7, se tiene que, se emiten 96 kg de CO₂ equivalente por cada saco de cal hidratada, 48 kg de CO₂ equivalente por cada bolsa de cemento, 54 kg de CO₂ equivalente por cada m³ de agua, 33 kg de CO₂ equivalente por cada m³ de piedra mediana, grande, arena fina y 23 kg de CO₂ equivalente por cada m³ de hormigón, estos, para los insumos de HC unitaria de más resaltantes.

El siguiente insumo con alto valor de Huella del Carbono unitaria, muy cerca al valor de la cal hidratada, es el agua (ver Gráfico N°7). El agua es llevada de una distancia de 1km con camioneta, el cual tiene un consumo de 40 km/gal y una capacidad de 1.5 t (ver Cuadros N°16 y 18).

El cemento, es otro insumo con mayor Huella del Carbono unitaria por proceso de transporte, a diferencia del caso de la vivienda de adobe en Aucallama, donde tenía 14.7 kg CO₂ (ver Cuadro N°19), en este caso tiene 48 kg CO₂ como HC unitaria, lo que se puede entender por la mayor distancia de recorrido desde la Planta de producción hasta el distrito de Concepción.

Los agregados como las piedras, arena fina y hormigón, también tienen gran valor de HC unitaria por proceso de transporte, estos insumos son transportados con volquetes desde canteras del mismo distrito de Concepción con distancias de 4.5 a 6 km. (ver Cuadros N°17 y 18 para conocer los consumos y capacidades del volquete).

Por otro lado, respecto a las HC parciales que se obtienen al multiplicar el valor unitario de HC por la cantidad de insumo que participa (ver Cuadro N°20). Aplicando el principio de Pareto, se seleccionaron los insumos más representativos y de mayor impacto, se tiene al cemento portland, como insumo con HC de mayor impacto, este representa al 62% del total de emisiones por concepto de transporte de insumos en este tipo de construcción. Del mismo modo, se tienen otros insumos con HC parcial de considerable impacto, respecto a los demás (ver Gráfico N°8).

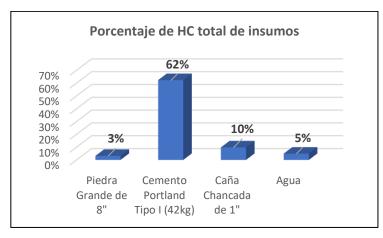


Gráfico N° 8: Impacto de HC por transporte – adobe Concepción

Fuente: Elaboración propia

Se da el caso similar al de la vivienda de adobe en el distrito de Aucallama, la cal hidratada tiene la mayor HC unitaria por proceso de transporte, sin embargo, no lo es en la HC parcial (ver Gráfico N°7 y 8), dada la baja cantidad de cal hidratada que interviene en el proceso, solo en una partida, Trazo y Replanteo Inicial.

El insumo con mayor impacto de HC parcial es el cemento con 62%, duplicando su impacto comparado con la vivienda de adobe en Aucallama, que es 26% (ver Gráfico N°6). Conociendo que tienen la misma cantidad de insumo, esto se justifica entonces en la mayor distancia de recorrido durante el transporte.

4.2.2.3 Cálculo de emisiones para una vivienda unifamiliar de ladrillo de arcilla en el distrito de Aucallama.

El detalle de estos cálculos se muestra en el Anexo IX, realizado de acuerdo con lo indicado en el subcapítulo 4.2.2. En el Cuadro N°21, se presenta un resumen

de los resultados del Anexo X, huellas de carbono unitaria para cada insumo que interviene en la vivienda unifamiliar de ladrillo de arcilla por concepto del proceso de transporte.

Para este caso, de la vivienda de ladrillo de arcilla en Aucallama, los insumos que son similares al de la vivienda de Adobe en el mismo lugar, van a conservar su HC unitaria, dado que hacen el mismo recorrido. De esto, el insumo con mayor HC unitaria será también la cal hidratada (ver Cuadro N°21), por ser el insumo que tiene mayor recorrido, de acuerdo a lo calculado en el subcapítulo 4.2.2.

Cuadro N° 21: HC proceso de transporte – ladrillo Aucallama

Material	Und	Cant.	HC Unit. (kg CO ₂ /und)	HC Parcial (kg CO₂)	
Alambre negro recocido N° 8	kg	20.38	4.388	89.43	
Alambre negro recocido N° 16	kg	28.86	4.388	126.61	
Acero Corrugado fy= 4200 kg/cm ²	kg	1515.63	4.388	6,650.15	
Clavos para madera con cabeza 3/4"	kg	25.04	4.388	109.89	
Clavos para madera con cabeza 1/2"	kg	3.25	4.388	14.26	
Piedra Grande de 8"	m³	9.32	18.261	170.16	
Piedra Chancada de 1/2"	m³	10.99	52.175	573.17	
Arena Fina	m³	4.01	20.870	83.74	
Arena Gruesa	m³	13.20	52.175	688.86	
Hormigón	m³	21.27	20.870	443.94	
Cemento Portland Tipo I (42kg)	bol	293.42	14.691	4,310.54	
Cal Hidratada bolsa 25kg	bol	1.32	185.021	244.78	
Ladrillo k.k. 18 huecos 9x12.5x23 cm	und	4614.39	0.682	3,147.78	
Ladrillo p/techo de 15x30x30 cm	und	452.19	1.920	868.29	
Madera Tornillo inc. corte p/enconf	p ²	507.51	2.541	1,289.36	
Madera Cedro	p²	108.93	4.740	516.38	
Bisagra de Fierro de 2"	par	15.00	4.388	65.82	
Pintura Latex	gal	9.07	19.342	175.38	
Imprimante	gal	29.47	21.202	624.79	
Barniz Marino	gal	1.30	12.662	16.46	
Agua	m³	8.68	16.233	140.97	

HC TOTAL 20,350.77

Fuente: Elaboración propia

Se obtuvo un total de 20 toneladas de CO₂ equivalente, por el concepto de la huella de carbono por el proceso de transporte del total de insumos que participan en la construcción de la vivienda unifamiliar de ladrillo de arcilla en el distrito de Aucallama. Se trabajó bajo el Análisis de Montecarlo con 400 iteraciones, tomando

el valor promedio para cada uno, estos valores se muestran en las columnas de HC unitaria y parcial del Cuadro N°21.

Los agregados como la piedra chancada, hormigón, arena fina y gruesa, también tienen alto valor de HC unitaria por proceso de transporte, aunque con menos del 50% del valor de la HC de la cal hidratada. Estos insumos son transportados con volquetes desde las canteras de Aucallama y Chancay, con distancias de 4 a 10 km, estas características, hacen que la HC unitaria por transporte sobrepase a los demás insumos (ver Gráfico N°9).

El valor más alto de HC unitaria para este proceso, es para la Cal Hidratada, con 185 kg/CO₂ equivalente, entre otros insumos con mayor impacto, podemos decir con mayor de 20 kg/CO₂ equivalente de HC unitaria, son la piedra chancada, arena fina, arena gruesa y hormigón (ver Gráfico N°9). Por su parte, los insumos con la menor HC unitaria para este proceso y tipo de construcción, son el ladrillo k.k. 18 huecos y el ladrillo de techo, al ser insumos que se producen en la zona norte de Lima, por tanto, la distancia con el lugar de construcción, es menor, en consecuencia, baja la HC unitaria incorporada.

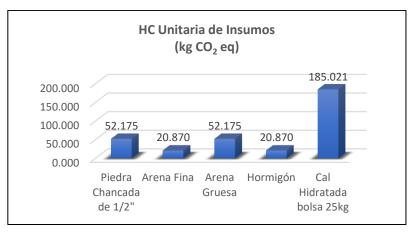


Gráfico Nº 9: Insumos con HC unitaria más elevadas - ladrillo Aucallama

Fuente: Elaboración propia

Del gráfico N°9, se tiene que, se emiten 185 kg de CO₂ equivalente por cada saco de cal hidratada, 52 kg de CO₂ equivalente por cada m³ de piedra chancada y arena gruesa, 20 kg de CO₂ equivalente por cada m³ de arena fina y hormigón, esto, para los insumos de HC unitaria más resaltantes.

Por otro lado, respecto a las HC parciales que se obtienen al multiplicar el valor unitario de HC por la cantidad de insumo que participa (ver Cuadro N°21). Aplicando el principio de Pareto, seleccionando los insumos con HC parcial de mayores impactos, se tiene al acero corrugado, como insumo con HC de mayor impacto, este representa el 33% del total de emisiones por concepto de transporte de insumos en este tipo de construcción. Del mismo modo, se tienen otros insumos con HC parcial de considerable impacto, respecto a los demás (Ver Gráfico N°10).

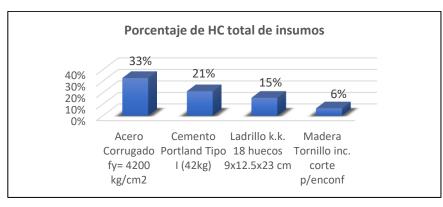


Gráfico Nº 10: Impacto de HC por transporte - ladrillo Aucallama

Fuente: Elaboración propia

El acero corrugado, es el insumo con baja HC unitaria, razón por la cual no se muestra en el Gráfico N°9, sin embargo, dada la cantidad del insumo que interviene, se convierte en el insumo con mayor impacto en HC por proceso de transporte para el caso de la vivienda de ladrillo en Aucallama, representando el 33% del total de las emisiones por dicho factor. Caso muy similar, con el ladrillo kk, que es el insumo con el valor más bajo de HC unitaria por este proceso, con 0.68 kg CO₂ equivalente, también por la cantidad de insumo, hace revertir la situación, ubicándose como uno de los insumos con mayor impacto de HC parcial por este proceso, transporte de insumos (ver Gráfico N°10).

4.2.3 Emisiones durante la etapa de la construcción

Las emisiones de C0₂ equivalente emitidos durante la etapa de construcción, son a causa de la mano de obra y equipos utilizados directamente en cada una de las actividades, desde la etapa de cimentación hasta la cubierta. Aquí, se incluyen las

emisiones por horas hombre y horas máquina de cada recurso utilizado, según sus cantidades unitarias para cada actividad.

Durante la etapa de construcción de la vivienda unifamiliar de adobe, el único equipo utilizado es la Mezcladora de Concreto, mientras que, para la vivienda unifamiliar de ladrillo de arcilla se han utilizado el Vibrador y la Mezcladora de Concreto. Para ambos casos, las únicas partidas en la cuales se utilizaron equipos, son las partidas que involucran el Concreto.

En el Cuadro N°08, se muestra la HC de tales equipos (Vibrador y Mezcladora de Concreto) por hora máquina de acuerdo con la fuente de energía para su funcionamiento.

Para este caso, proceso de construcción, no es posible obtener la HC unitaria por insumo al igual que los casos anteriores, sino, por partida, dado que se cuantifican las HC por concepto de mano de obra y equipos utilizados durante cada una de las actividades o partidas características, propias de cada tipo de vivienda.

En este subcapítulo, se analizaron las partidas con mayor HC unitaria y parcial y el impacto que estos generan en el proceso de construcción de las viviendas unifamiliares de adobe y ladrillo en los distritos de Aucallama y Concepción. Del mismo modo, se van a medir los impactos de la mano de obra y equipos.

Similar al caso del subcapítulo 4.2.1., la HC para las viviendas de adobe en el distrito de Aucallama y Concepción son las mismas, por tal motivo, se consideró un solo análisis para ambos casos.

En esta fase de los cálculos, las principales emisiones producidas son por concepto de la Mano de Obra, esto es, por hora hombre de trabajo. En el Cuadro N°22, se muestra el valor unitario de HC utilizado por este concepto para los tres casos estudiados.

Cuadro N° 22: Factor de emisión por actividad de una persona

FACTORES DE EMISION DE CO2		EQUIVALENCIAS		
Insumo	Factor	Unidad	EQUIVALENCIAS	
Actividad de una persona	3,000.00	kg CO ₂ / año	1 año <> 365 días, 1 día <> 8 hh	

Fuente: Elaboración propia

4.2.3.1. Cálculo de emisiones para una vivienda unifamiliar de adobe en el distrito de Aucallama.

El detalle de estos cálculos se muestra en el Anexo X, realizados de acuerdo a lo indicado en el subcapítulo 4.2.3. En el Cuadro N°23, se presenta un resumen de los resultados del Anexo X, Huellas de Carbono unitario para cada insumo que interviene en la vivienda unifamiliar de adobe en el distrito de Aucallama por concepto del proceso de ejecución de obra.

Cuadro Nº 23: HC proceso de ejecución de obra - adobe Aucallama

Material		Cant.	HC Unit. (kg CO ₂ /und)	HC Parcial (kg CO ₂)
LIMPIEZA DE TERRENO MANUAL	m²	82.84	0.033	2.73
TRAZO Y REPLANTEO INICIAL	m²	84.84	0.110	9.32
EXCAVACION MANUAL DE ZANJA PARA CIMIENTOS	m³	22.99	2.747	63.15
ACARREO DE MATERIAL EXCEDENTE MANUAL	m³	22.99	2.060	47.36
CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO	m³	22.99	6.344	145.85
ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO	m²	38.32	1.373	52.63
CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO	m³	7.66	4.266	32.68
MUROS CABEZA CON ADOBE 0.40X0.20M	m²	118.96	1.545	183.79
DINTEL PARA VANOS DE EUCALIPTO DE 4"	m	7.10	0.412	2.93
TARRAJEO EN MUROS DE ADOBE	m²	162.69	2.472	402.17
FALSO PISO DE 4" DE CONCRETO C:H=1:10	m³	4.29	12.964	55.61
PINTURA EN MUROS INTERIORES	m²	162.69	0.375	60.93
PINTURA EN MUROS EXTERIORES	m²	11.21	0.375	4.20
VIGA SOLERA DE MADERA DE 2" X 7"	m	56.20	1.03	57.89
CAÑA CHANCADA DE e=1"	m²	82.84	0.309	25.60
TORTA DE BARRO DE e=2"	m²	82.84	0.247	20.48
PUERTA PRINCIPAL DE 1.00 X 2.20M	und	1.00	8.24	8.24
PUERTAS INTERIORES	und	4.00	8.24	32.96

HC TOTAL 1,208.50

Fuente: Elaboración propia

La HC parcial de las partidas por proceso de ejecución de obra, provienen de la HC unitaria y la cantidad de metrado requerido para la ejecución de la vivienda de adobe, ya sea en Aucallama o en Concepción. Aplicando el principio de Pareto, se seleccionaron las partidas de mayor impacto, las que representan el 60% del total de emisiones por este proceso, de esto, se tiene que la HC parcial de la partida Tarrajeo en Muros de Adobe es el de mayor impacto, con 33%, seguido por Muro de Adobe y Concreto para cimiento corrido (ver Gráfico N°11).

Porcentaje de HC en ejecución de obra 33% 35% 30% 25% 15% 12% 20% 15% 10% 5% 0% CONCRETO C:H = MUROS CABEZA TARRAJEO EN 1:10 + 30% P.G. CON ADOBE MUROS DE PARA CIMIENTO 0.40X0.20M **ADOBE CORRIDO**

Gráfico Nº 11: Partidas de mayor impacto en HC – adobe Aucallama

Fuente: Elaboración propia

La partida Tarrajeo en Muros de Adobe, tiene el valor promedio HC unitaria por este proceso, 2.5 kg CO₂/m² (ver Cuadro N°23), sin embargo, es la partida con el mayor metrado, considerando ambos factores, se convierte en la partida con mayor HC parcial (33%), por tanto, la de mayor impacto para este caso. Caso muy similar para la partida Muros de Adobe, con 15% de impacto.

De forma similar que se han medido las partidas que generan mayor impacto de HC, se hizo también con los recursos utilizados, mano de obra y equipos. Para tal fin, se trabajó con las horas hombre (hh) y horas máquina (hm) requeridos en forma global para todas las actividades del proceso de construcción de la vivienda de adobe (ver Cuadro N°24).

Cuadro N° 24: HC de Mano de obra y equipos – adobe Aucallama

Recurso	Und Cant.		HC Unit. (kg CO₂/und)	HC Parcial (kg CO₂)
Peón	hh	536.14	1.030	552.22
Operario	hh	550.95	1.030	567.48
Operador de Equipo Liviano	hh	19.34	1.030	19.92
Mezcladora	hm	11.41	5.640	64.36

HC TOTAL 1,203.99

Fuente: Elaboración propia

Resulta evidente que la HC total de los Cuadros N°23 y 24 deben ser iguales, ya que se trata del mismo concepto, HC por recursos utilizados, con la diferencia que

han sido calculados de forma distinta, a fin de conocer las incidencias de las HC por ambos motivos. El Cuadro N°23, se obtuvo la HC por recursos utilizados en las partidas, mientras que, en el Cuadro N°24, por recursos individuales.

El impacto en HC de cada recurso en el proceso de construcción de la vivienda unifamiliar de adobe en el distrito de Aucallama se muestra en el Gráfico N°12.

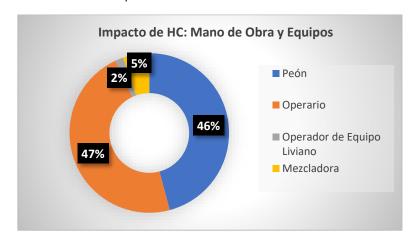


Gráfico Nº 12: Impacto de los recursos en HC – adobe Aucallama

Fuente: Elaboración propia

Es indiscutible encontrar que la mano de obra, operario y peón, son los recursos con mayor impacto de HC por ejecución de obra, representando ellos, el 93% de la HC total de este proceso (ver Gráfico N°12). La casi igualdad de impactos de ambos recursos, operario y peón, es una casualidad, dado que no todas las partidas se ejecutan con la misma cantidad o distribución de estos recursos, por ejemplo, en las partidas de concreto, se tienen más peones que operarios, mientras que, en otras, ocurre lo inverso. También se tienen partidas con solo participación de peones, de estas, la más incidente, es la partida de Acarreo de Material excedente Manual.

Por su parte, los recursos como Operador de Equipo Liviano y Mezcladora, solo representan el 2 y 5% del Impacto Total (ver Gráfico N°12), puesto que estos solo se utilizan en las actividades de concreto, tres actividades en todo el proceso de ejecución de la obra.

4.2.3.2. Cálculo de emisiones para una vivienda unifamiliar de adobe en el distrito de Concepción.

Este caso es exactamente similar al caso descrito en el subcapítulo 4.2.3.1., dado que se trata de una vivienda con las mismas dimensiones y características, con la única diferencia del lugar de construcción. Por tanto, para este caso particular de la HC por proceso de construcción, no presenta variación alguna.

4.2.3.3 Cálculo de emisiones para una vivienda unifamiliar de ladrillo de arcilla en el distrito de Aucallama.

El detalle de estos cálculos se muestra en el Anexo XI, realizado de acuerdo con lo indicado en el subcapítulo 4.2.3. En el Cuadro N°25, se presenta un resumen de los resultados del Anexo XI, huellas de carbono unitario para cada insumo que interviene en la vivienda unifamiliar de ladrillo en el distrito de Aucallama por concepto del proceso de ejecución de obra.

Cuadro N° 25: HC proceso de ejecución de obra – ladrillo Aucallama

Material	Und	Cant.	HC Unit. (kg CO ₂ /und)	HC Parcial (kg CO₂)
LIMPIEZA DEL TERRENO MANUAL	m ²	66.15	0.033	2.18
TRAZO Y REPLANTEO INICIAL	m ²	66.15	0.110	7.26
EXCAVACION MANUAL DE ZANJAS PARA CIMIENTOS	m³	20.71	3.433	71.10
ACARREO DE MATERIAL EXCEDENTE MANUAL	m³	26.92	2.060	55.46
CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO	m³	20.71	9.935	205.75
ACERO DE REFUERZO fy= 4,200 kg/cm ² EN SOBRECIMIENTO	kg	145.13	0.055	7.98
ENCOFRADO Y DESENCOFRADO EN SOBRECIMIENTO	m ²	18.96	1.373	26.04
CONCRETO C:H = 1:8 + 25% P.M. PARA SOBRECIMIENTO	m³	1.78	12.258	21.82
MURO LADRILLO K.K DE ARCILLA 18H (9x12.5x23 CM)	m ²	118.32	1.301	153.95
ACERO DE REFUERZO fy= 4,200 kg/cm ² EN COLUMNAS	kg	263.88	0.055	14.51
ENCOFRADO Y DESENCOFRADO EN COLUMNAS	m²	24.92	1.648	41.07
CONCRETO EN COLUMNAS f'c=175 kg/cm ²	m³	2.31	15.742	36.36
ACERO DE REFUERZO fy= 4,200 kg/cm ² EN VIGAS	kg	701.33	0.055	38.58
ENCOFRADO Y DESENCOFRADO EN VIGAS	m ²	28.07	1.831	51.40
CONCRETO f'c = 210 kg/cm ² EN VIGAS	m³	4.86	15.742	76.51
ACERO DE REFUERZO fy= 4,200 kg/cm ² EN LOSA ALIGERADA	kg	332.49	0.055	18.29
ENCOFRADO Y DESENCOFRADO EN LOSA ALIGERADA	m²	51.70	1.099	56.80
LADRILLO HUECO DE ARCILLA 15X30X30 CM	und	430.66	0.021	8.87
CONCRETO f'c = 210 kg/cm ² EN LOSA ALIGERADA	m³	4.56	12.593	57.43
TARRAJEO EN MUROS	m ²	174.98	1.030	180.23
TARRAJEO EN CIELO RASO	m ²	51.70	1.236	63.90
CONTRAPISO DE 2" DE CONCRETO MEZCLA 1:5	m ²	59.39	1.141	67.78
PISO DE CEMENTO PULIDO E=2" MEZCLA 1:4	m ²	59.39	2.283	135.57
PINTURA EN MUROS	m ²	174.98	0.375	65.53
PINTURA EN CIELO RASO	m²	51.70	0.375	19.36
PUERTA PRINCIPAL DE 1.00 X 2.20 M	und	1.00	8.24	8.24
PUERTAS INTERIORES	und	4.00	8.24	32.96

HC TOTAL 1,524.92

Fuente: Elaboración propia

La HC parcial de las partidas por proceso de ejecución de obra, provienen de la HC unitaria y la cantidad de metrado requerido para la ejecución de la vivienda de ladrillo en el distrito de Aucallama. Aplicando el principio de Pareto, se seleccionaron las partidas de mayor impacto, las que representan casi el 50% del total de emisiones por este proceso, de esto, se tiene que, la HC parcial de la partida Concreto para cimiento corrido es el de mayor impacto, con 13%, seguido por el Tarrajeo en Muros, Muro de ladrillo kk y Piso de cemento pulido (ver Gráfico N°13).

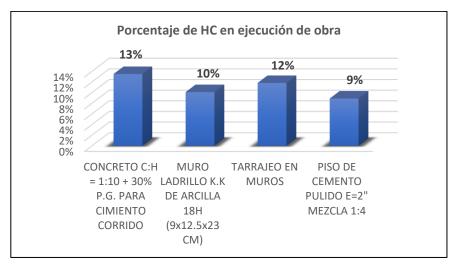


Gráfico Nº 13: Partidas de mayor impacto en HC - ladrillo Aucallama

Fuente: Elaboración propia

La partida de Concreto en cimiento corrido, tiene como HC unitaria 10 kg CO₂/m³, superior al valor promedio de HC unitaria por este proceso (ver Cuadro 25), sin embargo, tiene gran volumen de metrado, considerando ambos factores, se convierte en la partida con mayor HC parcial (13%), por tanto, la de mayor impacto para este caso.

Para las partidas de Muros de ladrillo, Tarrajeo y Piso de Cemento pulido, sus HC unitaria están en el rango de 1 a 2.3 kg CO₂ / m², por debajo del valor promedio para este caso, es decir, se ejecutan con poca mano de obra. Sin embargo, sus metrados calculados, hacen de ellos, partidas con gran impacto en HC parcial (ver Gráfico N°13).

De forma similar que se han medido las partidas que generan mayor impacto de HC, se hizo también con los recursos utilizados, mano de obra y equipos. Para tal fin, se trabajó con las horas hombre (hh) y horas máquina (hm) requeridos en forma global para todas las actividades del proceso de construcción de la vivienda de ladrillo en el distrito de Aucallama (ver Cuadro N°26).

Cuadro N° 26: HC Mano de obra y equipos - ladrillo Aucallama

Material	Und	Cant.	HC Unit. (kg CO ₂ /und)	HC Parcial (kg CO₂)
Operario	hh	524.97	1.030	540.72
Operario Topográfico	hh	3.53	1.030	3.63
Oficial	hh	149.87	1.030	154.36
Peón	hh	482.74	1.030	497.22
Operador de Equipo Liviano	hh	42.50	1.030	43.77
Mezcladora	hm	42.50	5.640	239.69
Vibrador de Concreto 4HP 2.4"	hm	8.65	3.140	27.17

HC TOTAL 1,506.56

Fuente: Elaboración propia

Resulta evidente que la HC total de los Cuadros N°25 y 26 deben ser iguales, ya que se trata del mismo concepto, HC por recursos utilizados, con la diferencia que han sido calculados de forma distinta, a fin de conocer las incidencias de las HC por ambos motivos. El Cuadro N°25, se obtuvo la HC por recursos utilizados en las partidas, mientras que, en el Cuadro N°26, por recursos individuales.

El impacto de la HC de cada recurso en el proceso de construcción de la vivienda unifamiliar de ladrillo en el distrito de Aucallama se muestra en el Gráfico N°14.

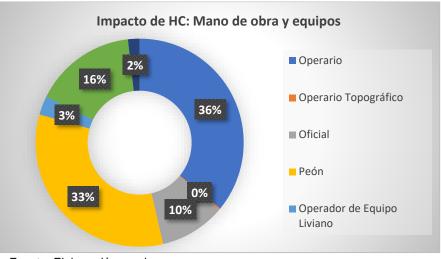


Gráfico Nº 14: Impacto de los recursos en HC – ladrillo Aucallama

Fuente: Elaboración propia

De forma similar al caso de la vivienda de adobe, se vuelve a encontrar que la mano de obra, operario y peón, son los recursos con mayor impacto de HC por ejecución de obra, representando ellos, el 69% de la HC total de este proceso (ver Gráfico N°14). Estos dos recursos, están juntos en casi el total de las partidas, por ello su grado de influencia, no sucediendo lo mismo con los demás recursos de mano de obra. También se tienen partidas con solo participación de peones, de estas, la más incidente, es la partida de Acarreo de Material excedente Manual.

El oficial, que tiene un 10% de impacto, es requerido en algunas partidas como Acero, encofrado y concreto en sobre cimiento, columnas, vigas y losa aligerada (ver subcapítulo 4.2.3.3), sin embargo, su participación no es de gran relevancia comparados con el operario y peón, lo que justifica el valor de su impacto.

Por su parte, el Operario Topográfico, solo es requerido en la partida de Trazo y Replanteo Inicial, presentando muy baja participación, casi considerándose como un impacto despreciable, mientras que, el Operador de Equipo Liviano, participa en las partidas de concreto, pero también con muy poca intervención, resultando con un impacto de apenas el 3%.

En cuanto a los equipos, se tiene a la Mezcladora como el de mayor impacto en HC, con 16%, dado que se utiliza en gran medida en todas las actividades de concreto, mientras que, el Vibrador interviene en baja proporción (ver subcapítulo

4.2.3.3), esto es, un vibrado de pocos minutos al realizar cada capa de concreto, con el fin de distribuir mejor los componentes del concreto en la estructura trabajada, lo que justifica el 2% de impacto para tal recurso.

4.2.4 Huella de carbono unitaria

Es el valor que resulta de multiplicar las cantidades de los insumos obtenidos del análisis unitario de cada partida, por sus respectivas cantidades de emisiones de CO₂ equivalente obtenido en los Capítulos 4.2.1, 4.2.2 y 4.2.3.

También se puede decir que, es un valor equivalente al Precio Unitario en un presupuesto de Obra, dado que, la HC unitaria se multiplica con el metrado de cada partida para obtener la HC parcial de las mismas. Realizando una sumatoria de todas las emisiones parciales, se obtiene el total de emisiones de CO₂ para cada tipo de vivienda.

Como se comentó al principio, se omiten las huellas de carbono de las herramientas manuales en los análisis de los tres aspectos desarrollados. En los presupuestos de obras de construcción, estos tienen como unidad el porcentaje del costo de la Mano de Obra para cada partida, sin embargo; esa lógica no se puede aplicar en el análisis de la Huella del Carbono.

Los equipos como la mezcladora y el vibrador de concreto, tienen la huella de carbono incorporada en la etapa de ejecución de la construcción. La unidad de medida de estos, es horas máquina. Se omitieron las Huellas de Carbono para estos equipos en la etapa de transporte, dado que no es posible medir el transporte de estos por unidad de horas máquina. Se consideró que estos equipos fueron trasladados en el camión que transportó el agua, el vibrador en la tolva del camión y la mezcladora de concreto con remolque.

4.2.4.1 Huella de Carbono unitaria para la vivienda de Adobe en Aucallama

01.01 LIMPIEZA DE TERRENO MANUAL (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	0.0320	0.000	0.000	0.033	0.0330
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			0.03

01.02 TRAZO Y REPLANTEO INICIAL (m2)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0533	0.000	0.000	0.055	0.0549
Peón	hh	0.0533	0.000	0.000	0.055	0.0549
Acero Corrugado fy= 4200 kg/cm ²	kg	0.0100	1.786	4.393	0.000	0.0618
Cal Hidratada bolsa 25kg	bol	0.0200	19.266	185.192	0.000	4.0892
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			4.26

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTOS (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	3.3333	0.000	0.000	2.747	2.7467
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			НС	HC Unitario (kg CO₂)		

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL (m3)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	2.0000	0.000	0.000	2.060	2.0600
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			НС	HC Unitario (kg CO₂)		

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Peón	hh	2.2222	0.000	0.000	2.289	2.2889
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577
Piedra Grande de 8"	m^3	0.4500	0.180	18.270	0.000	8.3025
Hormigón	m³	0.9500	0.340	20.880	0.000	20.1585
Cemento Portland Tipo I (42kg)	bol	3.5000	24.289	14.697	0.000	136.4504
Agua	m^3	0.1500	0.149	16.240	0.000	2.4584
Mezcladora de Concreto 11p3 - 18HP	hm	0.4444	0.000	0.000	2.682	1.1919
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			172.22

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Alambre Negro Recocido N° 8	kg	0.2600	0.045	4.393	0.000	1.1540
Clavos para madera con cabeza 3/4"	kg	0.1300	0.074	4.393	0.000	0.5808
Madera Tornillo inc. corte p/enconf	p ²	3.5000	0.301	2.542	0.000	9.9507
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	•		HC Unitario (kg CO ₂)			13.06

02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.0000	0.000	0.000	0.916	0.9156
Peón	hh	2.5000	0.000	0.000	2.289	2.2889
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577
Piedra Mediana de 6"	m ³	0.4200	0.180	18.270	0.000	7.7490
Hormigón	m ³	0.9000	0.340	20.880	0.000	19.0975
Cemento Portland Tipo I (42.5kg)	bol	3.8000	24.289	14.697	0.000	148.1462
Agua	m³	0.1800	0.149	16.240	0.000	2.9500
Mezcladora de Concreto 11p3 - 18HP	hm	0.5000	0.000	0.000	0.604	0.3018
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			181.91

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.0000	0.000	0.000	1.030	1.0300
Peón	hh	0.5000	0.000	0.000	0.515	0.5150
Tierra de Chacra	m³	0.0800	1.185	15.660	0.000	1.3475
Adobe .40 x .20 x .10	und	50.0000	0.023	0.047	0.000	3.4719
Caña Brava	m	12.1500	0.026	0.146	0.000	2.0862
Agua	m ³	0.0200	0.149	16.240	0.000	0.3278
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			8.78

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" (m)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.206	0.2060
Peón	hh	0.2000	0.000	0.000	0.206	0.2060
Madera de Eucalipto de 4"	m	1.0000	6.463	54.500	0.000	60.9635
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)		61.38	

03.02.01 TARRAJEO EN MUROS DE ADOBE (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Peón	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Fina	m³	0.0300	0.361	20.880	0.000	0.6372
Cemento Portland Tipo I (42.5 kg)	bol	0.2400	24.289	14.697	0.000	9.3566
Agua	m^3	0.0100	0.149	16.240	0.000	0.1639
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			12.63

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	6.6667	0.000	0.000	6.867	6.8667
Operador de Equipo Liviano	hh	1.3333	0.000	0.000	1.373	1.3733
Hormigón	m^3	0.1300	0.340	20.880	0.000	2.7585
Cemento Portland Tipo I (42.5 kg)	bol	0.5000	24.289	14.697	0.000	19.4929
Agua	m^3	0.0200	0.149	16.240	0.000	0.3278
Mezcladora de Concreto 11p3 - 18HP	hm	1.3333	0.000	0.000	0.604	0.8047
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			35.74

03.04.01 PINTURA EN MUROS INTERIORES (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Látex	gal	0.0400	0.000	19.369	0.000	0.7748
Imprimante	gal	0.1300	0.000	21.232	0.000	2.7601
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
			НС	Unitario (kg (O ₂)	3.91

03.04.02 PINTURA EN MUROS EXTERIORES (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Látex	gal	0.0400	0.000	19.369	0.000	0.7748
Imprimante	gal	0.1300	0.000	21.232	0.000	2.7601
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			3.91

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" (m)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.3333	0.000	0.000	0.343	0.3433
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Madera de 2" x 7"	m	1.0000	1.508	12.716	0.000	14.2242
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			НС	Unitario (kg (CO ₂)	15.25

03.05.02 CAÑA CHANCADA DE e=1" (m^2)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.103	0.1030
Peón	hh	0.4000	0.000	0.000	0.206	0.2060
Alambre negro recocido N° 8	kg	0.2000	0.045	4.393	0.000	0.8877
Clavos	kg	0.1500	0.074	4.393	0.000	0.6701
Caña Chancada de 1"	m²	1.0500	0.300	13.141	0.000	14.1133
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			15.98

03.05.03 TORTA DE BARRO DE e=2" (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.082	0.0824
Peón	hh	0.4000	0.000	0.000	0.165	0.1648
Tierra	m³	0.0800	1.185	15.660	0.000	1.3475
Agua	m³	0.0200	0.149	16.240	0.000	0.3278
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			1.92

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M (und)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.074	4.393	0.000	2.9039
Madera Cedro	p ²	23.6806	0.562	4.743	0.000	125.6271
Bisagra de Fierro de 2"	par	3.0000	0.000	4.393	0.000	13.1796
Barniz Marino	gal	0.3000	0.000	12.680	0.000	3.8040
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			153.75

03.06.02 PUERTAS INTERIORES (und)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.074	4.393	0.000	2.9039
Madera Cedro	p ²	21.3125	0.562	4.743	0.000	113.0642
Bisagra de Fierro de 2"	par	3.0000	0.000	4.393	0.000	13.1796
Barniz Marino	gal	0.2500	0.000	12.680	0.000	3.1700
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			140.56

4.2.4.2 Huella de Carbono unitaria para la vivienda de Adobe en Concepción

01.01 LIMPIEZA DE TERRENO MANUAL (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	0.0320	0.000	0.000	0.033	0.0330
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			Н	C Unitario (kg 0	CO ₂)	0.03

01.02 TRAZO Y REPLANTEO INICIAL (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0533	0.000	0.000	0.055	0.0549
Peón	hh	0.0533	0.000	0.000	0.055	0.0549
Acero Corrugado fy= 4200 kg/cm ²	kg	0.0100	1.788	1.540	0.000	0.0333
Cal Hidratada bolsa 25kg	bol	0.0200	19.259	96.794	0.000	2.3211
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			Н	C Unitario (kg (CO ₂)	2.46

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTOS (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	3.3333	0.000	0.000	2.747	2.7467
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			Н	C Unitario (kg 0	O ₂)	2.75

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	2.0000	0.000	0.000	2.060	2.0600
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			Н	C Unitario (kg 0	CO ₂)	2.06

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Peón	hh	2.2222	0.000	0.000	2.289	2.2889
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577
Piedra Grande de 8"	m³	0.4500	0.180	33.914	0.000	15.3423
Hormigón	m³	0.9500	0.340	23.479	0.000	22.6277
Cemento Portland Tipo I (42kg)	bol	3.5000	24.187	48.184	0.000	253.2982
Agua	m³	0.1500	0.149	54.108	0.000	8.1386
Mezcladora de Concreto 11p3 - 18HP	hm	0.4444	0.000	0.000	2.677	1.1897
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			304.26

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Alambre Negro Recocido N° 8	kg	0.2600	0.045	1.540	0.000	0.4122
Clavos para madera con cabeza 3/4"	kg	0.1300	0.075	1.540	0.000	0.2099
Madera Tornillo inc. corte p/enconf	p ²	3.5000	0.299	0.829	0.000	3.9484
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	•		HC Unitario (kg CO₂)			5.94

02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.0000	0.000	0.000	0.916	0.9156
Peón	hh	2.5000	0.000	0.000	2.289	2.2889
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577
Piedra Mediana de 6"	m³	0.4200	0.180	33.914	0.000	14.3195
Hormigón	m³	0.9000	0.340	23.479	0.000	21.4368
Cemento Portland Tipo I (42.5kg)	bol	3.8000	24.187	48.184	0.000	275.0094
Agua	m³	0.1800	0.149	54.108	0.000	9.7663
Mezcladora de Concreto 11p3 - 18HP	hm	0.5000	0.000	0.000	0.602	0.3012
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			324.50

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.0000	0.000	0.000	1.030	1.0300
Peón	hh	0.5000	0.000	0.000	0.515	0.5150
Tierra de Chacra	m ³	0.0800	1.185	2.609	0.000	0.3035
Adobe .40 x .20 x .10	und	50.0000	0.023	0.000	0.000	1.1315
Caña Brava	m	12.1500	0.026	0.146	0.000	2.0829
Agua	m ³	0.0200	0.149	54.108	0.000	1.0851
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			6.15

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" (m)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.206	0.2060
Peón	hh	0.2000	0.000	0.000	0.206	0.2060
Madera de Eucalipto de 4"	m	1.0000	6.423	17.768	0.000	24.1914
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			24.60

03.02.01 TARRAJEO EN MUROS DE ADOBE (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Peón	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Fina	m³	0.0300	0.361	33.914	0.000	1.0282
Cemento Portland Tipo I (42.5 kg)	bol	0.2400	24.187	48.184	0.000	17.3690
Agua	m³	0.0100	0.149	54.108	0.000	0.5426
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	•		HC Unitario (kg CO₂)			21.41

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 (m3)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	6.6667	0.000	0.000	6.867	6.8667
Operador de Equipo Liviano	hh	1.3333	0.000	0.000	1.373	1.3733
Hormigón	m³	0.1300	0.340	23.479	0.000	3.0964
Cemento Portland Tipo I (42.5 kg)	bol	0.5000	24.187	48.184	0.000	36.1855
Agua	m³	0.0200	0.149	54.108	0.000	1.0851
Mezcladora de Concreto 11p3 - 18HP	hm	1.3333	0.000	0.000	0.602	0.8032
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			53.53

03.04.01 PINTURA EN MUROS INTERIORES (m2)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Látex	gal	0.0400	0.000	6.242	0.000	0.2497
Imprimante	gal	0.1300	0.000	6.841	0.000	0.8895
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			1.51

03.04.02 PINTURA EN MUROS EXTERIORES (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Látex	gal	0.0400	0.000	6.242	0.000	0.2497
Imprimante	gal	0.1300	0.000	6.841	0.000	0.8895
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			1.51

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" (m)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.3333	0.000	0.000	0.343	0.3433
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Madera de 2" x 7"	m	1.0000	1.499	4.146	0.000	5.6445
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			6.67

03.05.02 CAÑA CHANCADA DE e=1" (m^2)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.103	0.1030
Peón	hh	0.4000	0.000	0.000	0.206	0.2060
Alambre negro recocido N° 8	kg	0.2000	0.045	1.540	0.000	0.3171
Clavos	kg	0.1500	0.075	1.540	0.000	0.2422
Caña Chancada de 1"	m²	1.0500	0.300	13.117	0.000	14.0880
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			14.96

03.05.03 TORTA DE BARRO DE e=2" (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.082	0.0824
Peón	hh	0.4000	0.000	0.000	0.165	0.1648
Tierra	m^3	0.0800	1.185	2.609	0.000	0.3035
Agua	m³	0.0200	0.149	54.108	0.000	1.0851
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			1.65

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M (und)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.075	1.540	0.000	1.0496
Madera Cedro	p ²	23.6806	0.559	1.546	0.000	49.8517
Bisagra de Fierro de 2"	par	3.0000	0.000	1.540	0.000	4.6202
Barniz Marino	gal	0.3000	0.000	4.081	0.000	1.2244
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			64.99

03.06.02 PUERTAS INTERIORES (und)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.075	1.540	0.000	1.0496
Madera Cedro	p ²	21.3125	0.559	1.546	0.000	44.8665
Bisagra de Fierro de 2"	par	3.0000	0.000	1.540	0.000	4.6202
Barniz Marino	gal	0.2500	0.000	4.081	0.000	1.0203
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	•		HC Unitario (kg CO₂)			59.80

4.2.4.3 Huella de Carbono unitaria para la vivienda de Ladrillo en Aucallama

01.01 LIMPIEZA DE TERRENO MANUAL (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	0.0320	0.000	0.000	0.033	0.0330
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			Н	C Unitario (kg 0	CO ₂)	0.03

01.02 TRAZO Y REPLANTEO INICIAL (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario Topográfico	hh	0.0533	0.000	0.000	0.055	0.0549
Peón	hh	0.0533	0.000	0.000	0.055	0.0549
Acero Corrugado fy= 4200 kg/cm ²	kg	0.0100	1.794	4.388	0.000	0.0618
Cal Hidratada bolsa 25kg	bol	0.0200	19.263	185.021	0.000	4.0857
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			4.26

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTOS (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	3.3333	0.000	0.000	3.433	3.4333
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			Н	C Unitario (kg 0	O ₂)	3.43

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	2.0000	0.000	0.000	2.060	2.0600
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			Н	C Unitario (kg 0	CO ₂)	2.06

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Peón	hh	2.6667	0.000	0.000	2.747	2.7467
Operador de Equipo Liviano	hh	0.8889	0.000	0.000	0.916	0.9156
Piedra Grande de 8"	m³	0.4500	0.180	18.261	0.000	8.2987
Hormigón	m³	0.9500	0.340	20.870	0.000	20.1496
Cemento Portland Tipo I (42kg)	bol	3.5000	24.153	14.691	0.000	135.9540
Agua	m³	0.1500	0.149	16.233	0.000	2.4573
Mezcladora de Concreto 11p3 - 18HP	hm	0.8889	0.000	0.000	5.357	5.3569
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			171.45

02.03.01 ACERO EN SOBRECIMIENTO (kg)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm ²	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			Н	6.63		

02.03.02 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Oficial	hh	0.6667	0.000	0.000	0.687	0.6867
Alambre Negro Recocido N° 8	kg	0.2600	0.045	4.388	0.000	1.1525
Clavos para madera con cabeza 3/4"	kg	0.1300	0.074	4.388	0.000	0.5801
Madera Tornillo inc. corte p/enconf	p ²	3.5000	0.299	2.541	0.000	9.9374
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			13.04

02.03.03 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO (m³)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.3333	0.000	0.000	1.373	1.3733
Oficial	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	5.3333	0.000	0.000	5.493	5.4933
Operador de Equipo Liviano	hh	0.6667	0.000	0.000	0.687	0.6867
Hormigón	m ³	0.9000	0.340	20.870	0.000	19.0891
Cemento Portland Tipo I (42.5kg)	bol	3.3000	24.153	14.691	0.000	128.1852
Agua	m³	0.1620	0.149	16.233	0.000	2.6538
Mezcladora de Concreto 11p3 - 18HP	hm	0.6667	0.000	0.000	4.018	4.0178
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			162.19

02.04.01 MURO CON LADRILLO 0.125X0.23M (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8421	0.000	0.000	0.867	0.8674
Peón	hh	0.4211	0.000	0.000	0.434	0.4337
Arena Gruesa	m³	0.0289	0.279	52.175	0.000	1.5159
Ladrillo k.k. 18 huecos 9x12x24 cm	und	39.0000	3.144	0.682	0.000	149.2361
Cemento Portland Tipo I (42.5kg)	bol	0.2039	24.153	14.691	0.000	7.9203
Agua	m^3	0.0075	0.149	16.233	0.000	0.1229
Herramientas manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			160.10

02.05.01 ACERO EN COLUMNAS (kg)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm ²	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			6.63

02.05.02 ENCOFRADO Y DESENCOFRADO EN COLUMNAS (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8000	0.000	0.000	0.824	0.8240
Oficial	hh	0.8000	0.000	0.000	0.824	0.8240
Alambre Negro Recocido N° 8	kg	0.3000	0.045	4.388	0.000	1.3298
Clavos para madera con cabeza 3/4"	kg	0.3100	0.074	4.388	0.000	1.3832
Madera Tornillo inc. corte p/enconf	p ²	4.2400	0.299	2.541	0.000	12.0385
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	•		HC Unitario (kg CO ₂)			16.40

02.05.03 CONCRETO EN COLUMNAS (m3)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Oficial	hh	0.8000	0.000	0.000	0.824	0.8240
Peón	hh	4.8000	0.000	0.000	4.944	4.9440
Operador de Equipo Liviano	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Gruesa	m^3	0.5000	0.279	52.175	0.000	26.2274
Piedra Chancada de 1/2"	m^3	0.8000	4.694	52.175	0.000	45.4954
Cemento Portland Tipo I (42.5kg)	bol	9.2000	24.153	14.691	0.000	357.3649
Agua	m^3	0.1800	0.149	16.233	0.000	2.9487
Mezcladora de Concreto 11p3 - 18HP	hm	0.8000	0.000	0.000	4.821	4.8212
Vibrador de Concreto 4HP 2.4"	hm	0.8000	0.000	0.000	2.681	2.6807
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			447.78

02.06.01 ACERO EN VIGAS (kg)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm ²	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			6.63

02.06.02 ENCOFRADO Y DESENCOFRADO EN VIGAS (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Oficial	hh	0.8889	0.000	0.000	0.916	0.9156
Alambre Negro Recocido N° 8	kg	0.1000	0.045	4.388	0.000	0.4433
Clavos para madera con cabeza 3/4"	kg	0.3450	0.074	4.388	0.000	1.5394
Madera Tornillo inc. corte p/enconf	p ²	5.4500	0.299	2.541	0.000	15.4740
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO₂)			19.29

02.06.03 CONCRETO EN VIGAS (m3)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Oficial	hh	0.8000	0.000	0.000	0.824	0.8240
Peón	hh	4.8000	0.000	0.000	4.944	4.9440
Operador de Equipo Liviano	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Gruesa	m^3	0.5000	0.279	52.175	0.000	26.2274
Piedra Chancada de 1/2"	m^3	0.8000	4.694	52.175	0.000	45.4954
Cemento Portland Tipo I (42.5kg)	bol	9.2000	24.153	14.691	0.000	357.3649
Agua	m^3	0.1800	0.149	16.233	0.000	2.9487
Mezcladora de Concreto 11p3 - 18HP	hm	0.8000	0.000	0.000	4.821	4.8212
Vibrador de Concreto 4HP 2.4"	hm	0.8000	0.000	0.000	2.681	2.6807
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			447.78

02.07.01 ACERO EN LOSA ALIGERADA (kg)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm ²	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			6.63

02.07.02 ENCOFRADO Y DESENCOFRADO EN LOSA ALIGERADA (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.5333	0.000	0.000	0.549	0.5493
Oficial	hh	0.5333	0.000	0.000	0.549	0.5493
Alambre Negro Recocido N° 8	kg	0.1000	0.045	4.388	0.000	0.4433
Clavos para madera con cabeza 3/4"	kg	0.1000	0.074	4.388	0.000	0.4462
Madera Tornillo inc. corte p/enconf	p ²	3.5300	0.299	2.541	0.000	10.0226
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			12.01

02.07.03 LADRILLO HUECO DE ARCILLA 15X30X30 CM (und)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0050	0.000	0.000	0.005	0.0052
Oficial	hh	0.0050	0.000	0.000	0.005	0.0052
Peón	hh	0.0100	0.000	0.000	0.010	0.0103
Ladrillo p/techo de 15x30x30 cm	und	1.0500	8.759	1.924	0.000	11.2177
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			11.24

02.07.04 CONCRETO EN LOSA ALIGERADA (m3)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.2800	0.000	0.000	1.318	1.3184
Oficial	hh	0.6400	0.000	0.000	0.659	0.6592
Peón	hh	3.8400	0.000	0.000	3.955	3.9552
Operador de Equipo Liviano	hh	0.6400	0.000	0.000	0.659	0.6592
Arena Gruesa	m^3	0.5000	0.279	52.175	0.000	26.2274
Piedra Chancada de 1/2"	m ³	0.8000	4.694	52.175	0.000	45.4954
Cemento Portland Tipo I (42.5kg)	bol	9.2000	24.153	14.691	0.000	357.3649
Agua	m ³	0.1800	0.149	16.233	0.000	2.9487
Mezcladora de Concreto 11p3 - 18HP	hm	0.6400	0.000	0.000	3.857	3.8569
Vibrador de Concreto 4HP 2.4"	hm	0.6400	0.000	0.000	2.145	2.1445
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			Н	444.63		

03.01.01 TARRAJEO EN MUROS (m2)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	0.3333	0.000	0.000	0.343	0.3433
Arena Fina	m^3	0.0177	0.361	20.870	0.000	0.3758
Cemento Portland Tipo I (42.5 kg)	bol	0.1446	24.153	14.691	0.000	5.6168
Agua	m³	0.0044	0.149	16.233	0.000	0.0721
Herramientas manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			HC Unitario (kg CO ₂)			7.09

03.01.02 TARRAJEO EN CIELO RASO (m2)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8000	0.000	0.000	0.824	0.8240
Peón	hh	0.4000	0.000	0.000	0.412	0.4120
Arena Fina	m³	0.0177	0.361	20.870	0.000	0.3758
Cemento Portland Tipo I (42.5 kg)	bol	0.1446	24.153	14.691	0.000	5.6168
Agua	m³	0.0044	0.149	16.233	0.000	0.0721
Herramientas manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	•		HC Unitario (kg CO₂)			7.30

03.02.01 CONTRAPISO DE 2" DE CONCRETO MEZCLA 1:5 (m²)

Material	und	Cant.	HC Mat HC Logist		HC Obra	HC Parcial
Operario	hh	0.1600	0.000	0.000	0.165	0.1648
Oficial	hh	0.0800	0.000	0.000	0.082	0.0824
Peón	hh	0.3200	0.000	0.000	0.330	0.3296
Operador de Equipo Liviano	hh	0.0800	0.000	0.000	0.082	0.0824
Arena Gruesa	m ³	0.0450	0.279	52.175	0.000	2.3605
Cemento Portland Tipo I (42.5 kg)	bol	0.3927	24.153	14.691	0.000	15.2540
Agua	m³	0.0108	0.149	16.233	0.000	0.1769
Mezcladora de Concreto 11p3 - 18HP	hm	0.0800	0.000	0.000	0.482	0.4821
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			Н	18.93		

03.02.02 PISO DE CEMENTO PULIDO E=2" MEZCLA 1:4 (m²)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.3200	0.000	0.000	0.330	0.3296
Oficial	hh	0.1600	0.000	0.000	0.165	0.1648
Peón	hh	0.6400	0.000	0.000	0.659	0.6592
Operador de Equipo Liviano	hh	0.1600	0.000	0.000	0.165	0.1648
Arena Gruesa	m ³	0.0210	0.279	52.175	0.000	1.1016
Piedra Chancada de 1/2"	m ³	0.0270	4.694	52.175	0.000	1.5355
Cemento Portland Tipo I (42.5 kg)	bol	0.4540	24.153	14.691	0.000	17.6352
Agua	m ³	0.0110	0.149	16.233	0.000	0.1802
Mezcladora de Concreto 11p3 - 18HP	hm	0.1600	0.000	0.000	0.482	0.4821
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
HC Ui					CO ₂)	22.25

03.03.01 PINTURA EN MUROS (m2)

Material	und	Cant.	HC Mat HC Logist		HC Obra	HC Parcial	
Operario	hh	0.2424	0.000	0.000	0.250	0.2497	
Peón	hh	0.1212	212 0.000 0.		0.125	0.000 0.125	0.1248
Pintura Látex	gal 0.0400		0.000	19.342	0.000	0.7737	
Imprimante	gal	0.1300	0.000	21.202	000 21.202 0.000	0.000	2.7562
Herramientas Manuales	%mo 2.0000 0		0.000	0.000 0.000		0.0000	
			Н	3.90			

03.03.02 PINTURA EN CIELO RASO (m2)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212 0.000 0.000		0.000	0.125	0.1248
Pintura Látex	gal	0.0400	0.000 19.3		0.000	0.7737
Imprimante	gal	0.1300	0.000	21.202	0.000	2.7562
Herramientas Manuales	%mo 2.0000 0.000		0.000	0.000	0.0000	
			Н	3.90		

03.04.01 PUERTA PRINCIPAL DE 1.00 X 2.20M (und)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh 4.0000 0.000 0.00		0.000	4.120	4.1200	
Clavos	kg	kg 0.6500 0.074		4.388	4.388 0.000	
Madera Cedro	p ²	23.6806	23.6806 0.558		0.000	125.4594
Bisagra de Fierro de 2"	par	3.0000	0.000	4.388	0.000	13.1631
Barniz Marino	gal	0.3000	0.000	12.662	0.000	3.7987
Herramientas Manuales	Manuales %mo 5.0000		0.000	0.000	0.000	0.0000
	•	•		153.56		

03.04.02 PUERTA PRINCIPAL DE 1.00 X 2.20M (und)

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón			0.000	0.000	4.120	4.1200
Clavos			0.074	0.074 4.388		2.9003
Madera Cedro	p ² 21.3125 0.558 4.	4.740	0.000	112.9133		
Bisagra de Fierro de 2"	par	oar 3.0000 0.000		0.000 4.388	0.000	13.1631
Barniz Marino	gal	0.2500	0.000	12.662	0.000	3.1655
Herramientas Manuales	%mo 5.0000 0.000		0.000	0.000	0.0000	
				140.38		

4.2.5 Resumen de la huella del carbono

Los cálculos de los análisis desarrollados en los subcapítulos anteriores, se resumen como la huella del carbono unitaria para cada partida del proceso de construcción de las viviendas unifamiliares estudiadas. Estas Huellas de Carbono unitarias mostradas en los cuadros resúmenes, contienen los cálculos de las emisiones por producción de insumos, transporte de los mismos y emisiones durante la etapa de construcción de dichas viviendas.

En tales cuadros resúmenes, se muestran las cantidades totales de emisiones de CO₂ equivalente para cada tipo de vivienda y en los dos lugares de análisis, estos se obtienen sumando las HC parciales de las partidas para cada caso (Ver subcapítulos 4.2.5.1, 4.2.5.2, 4.2.5.3).

4.2.5.1 Vivienda de adobe en Aucallama

La cantidad total de emisión de CO_2 equivalente para la vivienda de adobe en el distrito de Aucallama, es de 13.7 toneladas, los cuales se concentran principalmente en las partidas de concreto, muros de adobe, tarrajeo de los mismos y caña chancada de e = 1" (ver Gráfico $N^\circ 27$).

Cuadro N° 27: Resumen del cálculo de HC - vivienda adobe Aucallama

Ítem	Partida	Und	Metrado	HC Unit	HC Parcial (kg CO ₂)
01	OBRAS PRELIMINARES				
01.01	LIMPIEZA DEL TERRENO MANUAL	m ²	82.84	0.03	2.73
01.02	TRAZO Y REPLANTEO INICAL	m ²	84.84	4.26	361.48
02	ESTRUCTURAS				
02.01	MOVIMIENTO DE TIERRAS				
02.01.01	EXCAVACION MANUAL DE ZANJAS PARA CIMIENTOS	m ³	22.99	2.75	63.15
02.01.02	ACARREO DE MATERIAL EXCEDENTE MANUAL	m ³	22.99	2.06	47.36
02.02	CIMENTACION				
02.02.01	CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO	m^3	22.99	172.22	3959.43
02.03	SOBRE CIMENTACION				
02.03.01	ENCOFRADO Y DESENCOFRADO EN SOBRE CIMIENTO	m ²	38.32	13.06	500.42
02.03.02	CONCRETO C:H = 1:8 + 25% P.M. PARA SOBRECIMIENTO	m³	7.66	181.92	1393.40
03	ARQUITECTURA				
03.01	ALBAÑILERIA				
03.01.01	MUROS CABEZA CON ADOBE 0.40X0.20M	m ²	118.96	8.78	1044.27
03.01.02	DINTEL PARA VANOS DE EUCALIPTO DE 4"	m	7.10	61.38	435.77
03.02	REVOQUES Y ENLUCIDOS				
03.02.01	TARRAJEO MUROS DE ADOBE	m ²	162.69	12.63	2054.72
03.03	PISOS				
03.03.01	FALSO PISO DE 4" DE CONCRETO C:H = 1:10	m^3	4.29	35.74	153.34
03.04	PINTURAS				
03.04.01	PINTURA EN MUROS INTERIORES	m ²	162.69	3.91	636.02
03.04.02	PINTURA EN MUROS EXTERIORES	m ²	11.21	3.91	43.82
03.05	CUBIERTAS				
03.05.01	VIGA DE MADERA DE 2" X 7"	m	56.20	15.25	857.28
03.05.02	CAÑA CHANCADA DE e=1"	m ²	82.84	15.98	1323.79
03.05.03	TORTA DE BARRO DE e=2"	m ²	82.84	1.92	159.26
03.06	CARPINTERIA DE MADERA				
03.06.01	PUERTA PRINCIPAL DE 1.00 X 2.20 M	und	1.00	153.75	153.75
03.06.02	PUERTAS INTERIORES	und	4.00	140.56	562.23
				TOTAL	13,752.23

Fuente: Elaboración propia

En el análisis de Montecarlo para el cálculo de la Huella del Carbono, se realizaron 400 iteraciones con valores aleatorios, obteniéndose resultados que oscilan entre los 13,200 y 14,300 kg CO₂ eq (ver Cuadro N°28). El resultado promedio es

13,752.23 kg CO₂ eq, mientras que, la desviación estándar de los resultados es 225,52.

Cuadro Nº 28: Cantidad de resultados en cada rango - adobe Aucallama

Rango HC (kg CO₂ eq)	Cantidad Resultados
13,200 - 13,300	3
13,300 - 13,400	22
13,400 - 13,500	36
13,500 - 13,600	53
13,600 - 13,700	50
13,700 - 13,800	65
13,800 - 13,900	63
13,900 - 14,000	44
14,000 - 14,100	36
14,100 - 14,200	25
14,200 - 14,300	3
14,300 - 14,400	0

TOTAL = 400

Fuente: elaboración propia

Los resultados y cantidades de estos siguen el comportamiento de la curva o campana de Gauss (ver Gráfico N°15).

Histograma - Campana de Gauss

70

60

50

40

30

20

13,200 -13,300 -13,400 -13,500 -13,600 -13,700 -13,800 -13,900 -14,000 -14,100 -14,200 -14,300 -13,300 13,300 13,500 13,500 13,700 13,800 13,900 14,000 14,100 14,200 14,300 14,400

RANGOS DE VALORES DE HC

Gráfico Nº 15: Histograma de resultados del Cuadro Nº28

Fuente: Elaboración propia

La partida de concreto para cimiento corrido, tiene la mayor huella de carbono parcial, dado su metrado y el cemento que contiene como insumo principal, este

último, tiene gran cantidad de HC unitaria asociadas a sus procesos de producción y transporte.

Sin embargo, las partidas de Muros de Adobe y Tarrajeo, a pesar de no tener alto valor HC unitaria, son parte de las partidas con gran cantidad de HC parciales, esto, producto del alto metrado que contiene, en comparación con las otras partidas (ver Gráfico N°16)

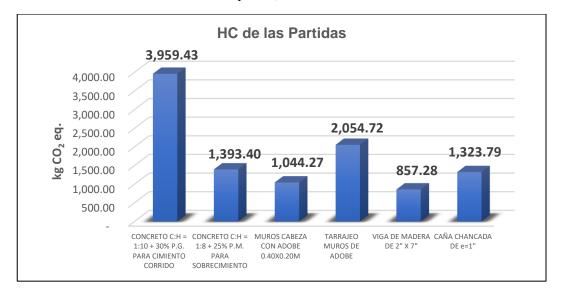


Gráfico Nº 16: Partidas con mayor HC, vivienda de adobe Aucallama

Fuente: elaboración propia

El potencial del impacto de las Huellas de Carbono de las partidas que son parte del proceso de construcción de la vivienda unifamiliar de adobe, se mide en términos del porcentaje de emisiones de las partidas respecto a la Huella de Carbono total del tipo de vivienda. Para este caso, aplicando el principio de Pareto, las partidas que se seleccionaron para el análisis, son aquellas con alto porcentaje de HC (ver Gráfico N°17).

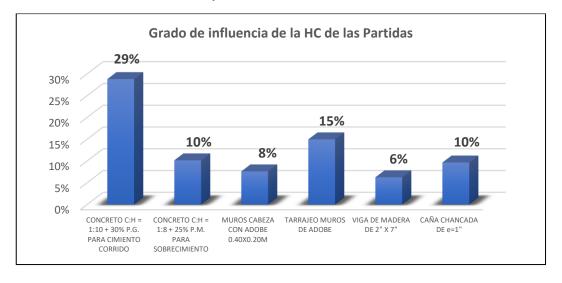


Gráfico Nº 17: Porcentaje de HC, vivienda de adobe Aucallama

Fuente: elaboración propia

Como se puede apreciar en el Grafico N°17, la HC de la partida de Concreto en cimiento corrido, representa el 29% del total de emisiones por la construcción de la vivienda de adobe. Las seis partidas mostradas en el gráfico, son las partidas con la HC parcial más influyentes, ya sea por el potencial de emisiones de sus insumos que los contienen y/o por sus mayores metrados.

Las HC de las partidas de encofrado y dintel para vanos, también tienen un gran potencial de impacto, estos representan el 4 y 3% del total de emisiones respectivamente para la vivienda de adobe en Aucallama. Estas partidas que involucran a la madera como insumo principal, llevan alto valor de HC unitaria, dado principalmente por el transporte, más que por la producción del insumo.

El impacto de la HC de las demás partidas que no se mencionan en los Gráficos N°15 y 16, están por rango de 0 al 2%, excepto la partida de las Puertas Interiores que representa el 4%, que, de igual forma, no se considera de gran impacto.

4.2.5.2 Vivienda de adobe en Concepción

La cantidad total de emisión de CO₂ equivalente para este tipo de vivienda en el distrito de Concepción, es de 17 toneladas, los cuales se concentran principalmente en las partidas de concreto, muros de adobe, tarrajeo de los mismos y caña chancada de e=1" (ver Gráfico N°29).

Cuadro N° 29: Resumen de cálculo de HC – vivienda adobe Concepción

Ítem	Partida	Und	Metrado	HC Unit	HC Parcial (kg CO ₂)
01	OBRAS PRELIMINARES				
01.01	LIMPIEZA DEL TERRENO MANUAL	m ²	82.84	0.03	2.73
01.02	TRAZO Y REPLANTEO INICAL	m ²	84.84	2.46	209.06
02	ESTRUCTURAS				
02.01	MOVIMIENTO DE TIERRAS				
02.01.01	EXCAVACION MANUAL DE ZANJAS PARA CIMIENTOS	m^3	22.99	2.75	63.15
02.01.02	ACARREO DE MATERIAL EXCEDENTE MANUAL	m^3	22.99	2.06	47.36
02.02	CIMENTACION				
02.02.01	CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO	m³	22.99	304.26	6994.91
02.03	SOBRE CIMENTACION				
02.03.01	ENCOFRADO Y DESENCOFRADO EN SOBRE CIMIENTO	m ²	38.32	5.94	227.77
02.03.02	CONCRETO C:H = 1:8 + 25% P.M. PARA SOBRECIMIENTO	m³	7.66	324.50	2485.63
03	ARQUITECTURA				
03.01	ALBAÑILERIA				
03.01.01	MUROS CABEZA CON ADOBE 0.40X0.20M	m ²	118.96	6.15	731.36
03.01.02	DINTEL PARA VANOS DE EUCALIPTO DE 4"	m	7.10	24.60	174.68
03.02	REVOQUES Y ENLUCIDOS				
03.02.01	TARRAJEO MUROS DE ADOBE	m ²	162.69	21.41	3483.49
03.03	PISOS				
03.03.01	FALSO PISO DE 4" DE CONCRETO C:H = 1:10	m ³	4.29	53.53	229.64
03.04	PINTURAS				
03.04.01	PINTURA EN MUROS INTERIORES	m ²	162.69	1.51	246.26
03.04.02	PINTURA EN MUROS EXTERIORES	m ²	11.21	1.51	16.97
03.05	CUBIERTAS				
03.05.01	VIGA DE MADERA DE 2" X 7"	m	56.20	6.67	375.11
03.05.02	CAÑA CHANCADA DE e=1"	m ²	82.84	14.96	1238.98
03.05.03	TORTA DE BARRO DE e=2"	m ²	82.84	1.64	135.51
03.06	CARPINTERIA DE MADERA				
03.06.01	PUERTA PRINCIPAL DE 1.00 X 2.20 M	und	1.00	64.99	64.99
03.06.02	PUERTAS INTERIORES	und	4.00	59.80	239.19
				TOTAL	16,966.78

Fuente: elaboración propia

En el análisis de Montecarlo para el cálculo de la Huella del Carbono, se realizaron 400 iteraciones con valores aleatorios, obteniéndose resultados que oscilan entre los 16,400 y 17,500 kg CO_2 eq (ver cuadro $N^\circ 30$). El resultado promedio es 16,966.78 kg CO_2 eq, mientras que, la desviación estándar de los resultados es 225,85.

Cuadro N° 30: Cantidad de resultados por rango – adobe Concepción

Rango HC (kg CO₂ eq)	Cantidad Resultados
16,400 - 16,500	1
16.500 - 16.600	16

16,600 - 16,700	41
16,700 - 16,800	45
16,800 - 16,900	52
16,900 - 17,000	69
17,000 - 17,100	56
17,100 - 17,200	52
17,200 - 17,300	33
17,300 - 17,400	30
17,400 - 17,500	5
17,500 - 17,600	0

TOTAL = 400

Fuente: elaboración propia

Los resultados y cantidades de estos siguen el comportamiento de la curva o campana de Gauss (ver Gráfico N°18).

Histograma - Campana de Gauss

80

70

60

40

30

16,400 -16,500 -16,600 -16,700 -16,800 -16,900 -17,000 -17,100 -17,200 -17,300 -17,400 -17,500 -16,500 16,600 16,700 16,800 16,900 17,000 17,100 17,200 17,300 17,400 17,500 17,600

RANGOS DE VALORES DE HC

Gráfico Nº 18: Histograma de resultados del Cuadro N°30

Fuente: elaboración propia

Las partidas de concreto en cimiento corrido y sobre cimiento, tienen las mayores cantidades de huella de carbono unitaria, debido al cemento que contienen como su insumo principal. De estas dos, la partida de concreto en cimiento corrido, tiene la mayor huella de carbono parcial, por el mayor metrado que tiene respecto al concreto en sobre cimiento. El cemento tiene un valor elevado de HC unitaria asociadas a sus procesos de producción y transporte.

Sin embargo, las partidas de Muros de Adobe y Tarrajeo, son dos de las partidas con bajo valor de HC unitaria, a la vez, partidas con alta cantidad de emisiones de CO₂ equivalente parciales, esto, producto del metrado que contiene, en comparación con las otras partidas (ver Gráfico N°19).

Gráfico Nº 19: Partidas con mayor HC, vivienda de adobe Concepción

Fuente: elaboración propia

El potencial del impacto de las Huellas de Carbono de las partidas que son parte del proceso de construcción de la vivienda unifamiliar de adobe en Concepción, se mide en términos del porcentaje de emisiones de las partidas respecto a la Huella de Carbono total del tipo de vivienda. Para este caso, aplicando el principio de Pareto, las partidas que se seleccionaron para el análisis, son aquellas con alto porcentaje de HC, estas partidas representan el 88% del total por este concepto (ver Gráfico N°20).

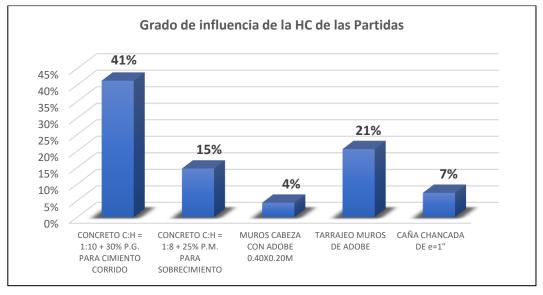


Gráfico N° 20: Porcentaje de HC, vivienda de adobe Concepción

Fuente: elaboración propia

Como se puede apreciar en el Grafico N°20, la HC de la partida de Concreto en cimiento corrido, representa el 41% del total de emisiones por la construcción de la vivienda de adobe en el distrito de Concepción. Las cinco partidas mostradas en el gráfico, son las partidas con la HC parcial más influyentes, ya sea por el potencial de emisiones de sus insumos que los contienen y/o por sus mayores metrados.

Las HC de las partidas de Muros de adobe y Tarrejo, también tienen un gran potencial de impacto, estos representan el 4 y 21% del total de emisiones respectivamente para la vivienda de adobe en Concepción. Estas partidas no llevan alto valor de HC unitaria, en comparación de las partidas de concreto, sin embargo, son influyentes.

La HC unitaria de la partida de Muros de adobe, está dado principalmente por el proceso de producción del adobe y el transporte del agua, esto, debido a la distancia del río a la vivienda en construcción. No se considera el factor transporte para el adobe, puesto que estos se elaboran al lado de la vivienda, donde se encuentra la tierra, su insumo principal.

La HC unitaria de la partida Tarrajeo en Muros, está dada principalmente por el proceso de producción del cemento y en mayor medida, por el factor transporte del agua y cemento.

El impacto de la HC de las demás partidas que no se mencionan en los Gráficos N°3 y 4, están por rango de 0 al 2%, esas partidas tienen bajo HC unitaria y poco metrado, por ello, su bajo potencial de impacto.

4.2.5.3 Vivienda de ladrillo en Aucallama

La cantidad total de emisión de CO₂ equivalente para este tipo de vivienda en el distrito de Aucallama, es de 50 toneladas, los cuales se concentran principalmente en las partidas de concreto en cimiento corrido, muros de ladrillo kk, acero de refuerzo y concreto f'c=210 kg/cm² en vigas y losa aligerada (ver Gráfico N°31).

Cuadro Nº 31: Resumen del cálculo de HC - vivienda ladrillo Aucallama

Ítem	Partida	Und	Metrado	HC Unit	HC Parcial (kg CO₂)
01	OBRAS PRELIMINARES				
01.01	LIMPIEZA DEL TERRENO MANUAL	m ²	66.15	0.03	2.18
01.02	TRAZO Y REPLANTEO INICIAL	m ²	66.15	4.26	281.62
02	ESTRUCTURAS				
02.01	MOVIMIENTO DE TIERRAS				
02.01.01	EXCAVACION MANUAL DE ZANJAS PARA CIMIENTOS	m ³	20.71	3.43	71.09
02.01.02	ACARREO DE MATERIAL EXCEDENTE MANUAL	m ³	26.92	2.06	55.45
02.02	CIMENTACION				
02.02.01	CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO	m ³	20.71	171.45	3550.27
02.03	SOBRE CIMENTACION				
02.03.01	ACERO DE REFUERZO fy= 4,200 kg/cm ² EN SOBRECIMIENTO	kg	145.13	6.63	962.90
02.03.02	ENCOFRADO Y DESENCOFRADO EN SOBRECIMIENTO	m ²	18.96	13.04	247.25
02.03.03	CONCRETO C:H = 1:8 + 25% P.M. PARA SOBRECIMIENTO	m ³	1.78	162.19	288.22
02.04	MURO PORTANTE				
02.04.01	MURO LADRILLO K.K DE ARCILLA 18H (9x12.5x23 CM)	m ²	118.32	160.10	18942.21
02.05	COLUMNAS DE CONFINAMIENTO DE MUROS				
02.05.01	ACERO DE REFUERZO fy= 4,200 kg/cm² EN COLUMNAS	kg	263.88	6.63	1750.77
02.05.02	ENCOFRADO Y DESENCOFRADO EN COLUMNAS	m ²	24.92	16.40	408.74
02.05.03	CONCRETO EN COLUMNAS f'c=175 kg/cm ²	m³	2.31	447.78	1032.76
02.06	VIGAS				
02.06.01	ACERO DE REFUERZO fy= 4,200 kg/cm² EN VIGAS	kg	701.33	6.63	4653.13
02.06.02	ENCOFRADO Y DESENCOFRADO EN VIGAS	m ²	28.07	19.29	541.41
02.06.03	CONCRETO f'c = 210 kg/cm ² EN VIGAS	m³	4.86	447.78	2177.10
02.07	LOSA ALIGERADA				
02.07.01	ACERO DE REFUERZO fy= 4,200 kg/cm² EN LOSA ALIGERADA	kg	332.49	6.63	2205.98
02.07.02	ENCOFRADO Y DESENCOFRADO EN LOSA ALIGERADA	m ²	51.70	12.01	620.95

02.07.03	LADRILLO HUECO DE ARCILLA 15X30X30 CM	und	430.66	11.24	4839.88
02.07.04	CONCRETO f'c = 210 kg/cm ² EN LOSA ALIGERADA	m³	4.56	444.63	2027.07
03	ARQUITECTURA				
03.01	REVOQUES Y ENLUCIDOS				
03.01.01	TARRAJEO EN MUROS	m ²	174.98	7.09	1241.45
03.01.02	TARRAJEO EN CIELO RASO	m ²	51.70	7.30	377.45
03.02	PISOS				
03.02.01	CONTRAPISO DE 2" DE CONCRETO MEZCLA 1:5	m ²	59.39	18.93	1124.42
03.02.02	PISO DE CEMENTO PULIDO E=2" MEZCLA 1:4	m ²	59.39	22.25	1321.60
03.03	PINTURAS				
03.03.01	PINTURA EN MUROS	m ²	174.98	3.90	683.21
03.03.02	PINTURA EN CIELO RASO	m ²	51.70	3.90	201.86
03.04	CARPINTERIA DE MADERA				
03.04.01	PUERTA PRINCIPAL DE 1.00 X 2.20 M	und	1.00	153.56	153.56
03.04.02	PUERTAS INTERIORES	und	4.00	140.38	561.53
			•	TOTAL	50,324.05

Fuente: elaboración propia

En el análisis de Montecarlo para el cálculo de la Huella del Carbono, se realizaron 400 iteraciones con valores aleatorios, obteniéndose resultados que oscilan entre los 48,800 y 51,600 kg CO₂ eq (ver cuadro N°32). El resultado promedio es 50,324.05 kg CO₂ eq, mientras que, la desviación estándar de los resultados es 513,95.

Cuadro Nº 32: Cantidad de resultados por rango - ladrillo Aucallama

Rango HC (kg CO ₂ eq)	Cantidad Resultados
48,800 - 49,000	1
49,000 - 49,200	2
49,200 - 49,400	11
49,400 - 49,600	19
49,600 - 49,800	32
49,800 - 50,000	45
50,000 - 50,200	58
50,200 - 50,400	61
50,400 - 50,600	52
50,600 - 50,800	39
50,800 - 51,000	33
51,000 - 51,200	31
51,200 - 51,400	9
51,400 - 51,600	7
51,600 - 51,800	0

TOTAL = 400

Fuente: elaboración propia

Los resultados y cantidades de estos siguen el comportamiento de la curva o campana de Gauss (ver Gráfico N°21).

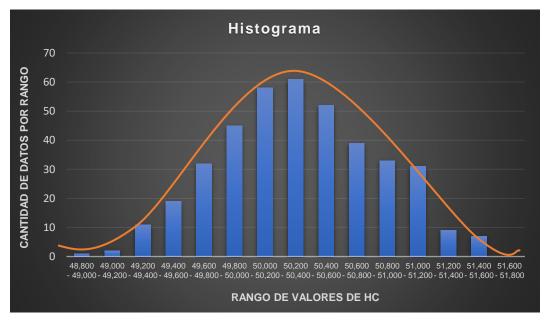


Gráfico Nº 21: Histograma de resultados del Cuadro Nº32

Fuente: elaboración propia

Las partidas de concreto en cimiento corrido, sobre cimiento, columnas, vigas y losa aligerada, tienen las mayores cantidades de huella de carbono unitaria, dado el cemento que contienen como su insumo principal. De estos, la partida de concreto en cimiento corrido, tiene la mayor huella de carbono parcial, por la cantidad de metrado que tiene.

Sin embargo, las partidas de acero de refuerzo en vigas y losa aligerada, que tienen bajo valor de HC unitaria, son parte de las partidas con gran impacto, ello, por el metrado, en comparación con las otras partidas (ver Gráfico N°22).

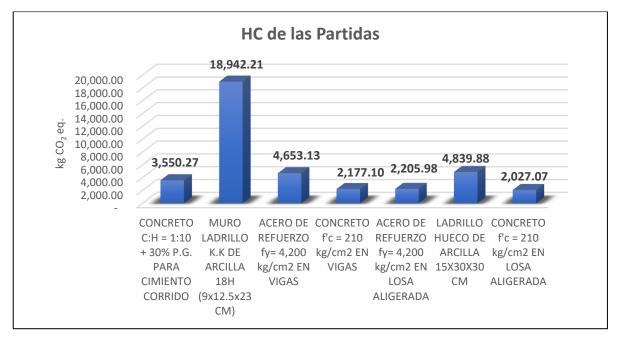


Gráfico Nº 22: Partidas con mayor HC - vivienda de ladrillo Aucallama

Fuente: elaboración propia

El potencial del impacto de las Huellas de Carbono de las partidas que son parte del proceso de construcción de la vivienda unifamiliar de ladrillo en Aucallama, se miden en términos del porcentaje de emisiones de las partidas respecto a la Huella de Carbono total del tipo de vivienda. Para este caso, aplicando el principio de Pareto, las partidas que se seleccionaron para el análisis, son aquellas con alto porcentaje de HC, estas partidas representan el 76% del total por este concepto (ver Gráfico N°23).

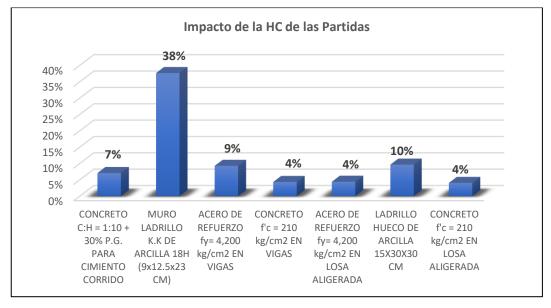


Gráfico N° 23: Porcentaje de HC, vivienda de ladrillo Aucallama

Fuente: elaboración propia

Como se puede apreciar en el Grafico N°23, la HC de la partida Muro de Ladrillo kk de arcilla de 18h (9x12.5x23), representa el 38% del total de emisiones por la construcción de la vivienda de ladrillo en el distrito de Concepción. Las siete partidas mostradas en el gráfico, son las partidas con la HC parcial más influyentes, ya sea por el potencial de emisiones de sus insumos que los contienen y/o por sus mayores metrados.

La partida Muro de Ladrillo kk de arcilla, tiene el valor de la HC unitaria por encima del promedio, además de su alto metrado, lo convierte en la partida de mayor HC parcial. Esta partida, es la principal en este proceso, dado el tipo de vivienda de análisis.

Las partidas de Acero de refuerzo en vigas y Ladrillo hueco de techo, son partidas con HC unitarias muy por debajo del promedio, sin embargo, son las partidas con los mayores metrados para este tipo de construcción de vivienda, en consecuencia, partidas influyentes en cuanto a HC parcial (ver Gráfico N°23).

La partida de concreto en cimiento corrido, es la cuarta partida con mayor HC parcial, esta representa el 7% del total de emisiones para este caso. Esta partida es una de las que tiene mayor HC unitaria, producto del proceso del transporte del hormigón, piedra grande de 8" y cemento y del proceso de producción de este último insumo.

Las partidas de concreto f'c= 210 kg/cm² en vigas y losa aligerada, que representan el 4% del total de emisiones cada uno, llevan la mayor HC unitaria de este caso, estos son 448 y 445 kg CO₂ eq. /m³ de concreto. Sin embargo, su bajo impacto en comparación con la partida de Muros de Ladrillo, es por el bajo valor de metrado que tiene. El alto valor de HC unitaria que tienen, se debe principalmente al cemento, que genera grandes emisiones de CO₂ en sus procesos de producción y transporte, los cuales representan el 80% de su HC unitaria, seguidos del proceso de transporte de la piedra chancada de ½" y la arena gruesa, que representan el 15% de la HC unitaria.

Respecto a las partidas de acero de refuerzo en vigas y losa aligerada, estos tienen bajo valor de HC unitaria y, sin embargo, representan el 9 y 4% del total de emisiones. La HC unitaria de estas partidas, se compone en gran medida por el transporte de los insumos de alambre negro recocido N°16 y el mismo acero de refuerzo. La diferencia en la HC parcial de ambos, es debido al metrado. Las vigas están compuestas de concreto y acero de refuerzo, mientras que, en la losa aligerada, se tiene como insumo adicional y en gran medida, las unidades de ladrillo hueco de arcilla de 15x30x30 cm. Los aceros que se cuantifican en la losa aligerada son de las viguetas y los aceros de temperatura.

El impacto de la HC de las demás partidas que no se mencionan en los Gráficos N°5 y 6, están por el rango de 0 al 3%, esas partidas, tiene bajo HC unitaria y poco metrado, por ello, su bajo potencial de impacto.

CAPÍTULO V: ANÁLISIS COMPARATIVO DE EMISIONES DE CO2

5.1 Análisis Comparativo Global

Se buscó comparar las HC global bajo dos condiciones específicas. La primera, es el análisis comparativo de la HC de dos viviendas del mismo tipo, pero en dos regiones distintas, estos son: la vivienda de adobe en el distrito de Aucallama, región costa, y la vivienda de adobe en el distrito de Concepción, región sierra. La segunda, es el análisis comparativo de la HC de dos viviendas distintas, pero en la misma región, estos son: la vivienda de adobe en el distrito de Aucallama y la vivienda de ladrillo también en Aucallama, región costa. Cabe señalar que, para ambos casos, se tiene la misma cantidad de área efectiva, siendo esta, la diferencia del área construida y el área de muro proyectado. Al área efectiva, también se le puede entender como área aprovechable para habitar.

Para el caso del primer análisis comparativo, se debe tener en cuenta que, por ser vivienda del mismo tipo, las Huellas de Carbono de los procesos de producción de insumos y ejecución de obra son los mismos, por lo que, en este análisis, la atención se concentra en los procesos de transporte de insumos.

Por lo mencionado, en este análisis se buscó conocer los factores que marcan la diferencia en el proceso de transporte de insumos de dos viviendas del mismo tipo, ubicadas en distintas regiones con 360 kilómetros de diferencia.

En el Cuadro N°33, se tiene un resumen de la Huella de Carbono por cada proceso, para la vivienda de adobe en el distrito de Aucallama, estos valores se sustentan en cada uno de los análisis realizados en los subcapítulos anteriores.

Cuadro N° 33: HC por procesos, vivienda de adobe en Aucallama

Proceso	Und	Cant.
HC por producción de insumos	t CO ₂	4.1
HC por transporte de insumos	t CO ₂	8.4
HC durante la ejecución de obra	t CO ₂	1.2
	TOTAL	13.7

Fuente: Elaboración propia

La HC por proceso de transporte, con 8.4 toneladas de CO₂, representa el 61% de la HC total de la vivienda de adobe en Aucallama, por su parte, los procesos de producción de insumos y ejecución de obra, representan el 30% y 9% respectivamente (ver Gráfico N°24).

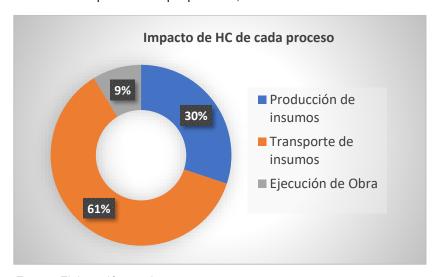


Gráfico Nº 24: Impacto de HC por procesos, vivienda adobe Aucallama

Fuente: Elaboración propia

Las 8.4 toneladas de HC por el proceso de transporte, está concentrada principalmente por el transporte del cemento, caña chancada, maderas y hormigón. Del mismo modo, el proceso de producción de insumos con 4.1 toneladas, está concentrado en un 88% por la producción del cemento (ver Gráfico N°2). Por último, respecto a la HC por ejecución de obra con 1.2 toneladas, este se compone en 93% de la mano de obra, 47% por el operario y 46% por los peones, (ver Gráfico N°12)

En el Cuadro N°34, se tiene un resumen de la Huella de Carbono por cada proceso para la vivienda de adobe en Concepción, estos valores se sustentan en cada uno de los análisis realizados en los subcapítulos anteriores.

Cuadro N° 34: HC por procesos, vivienda de adobe en Concepción

Proceso	Und	Cant.
HC por producción de insumos	t CO ₂	4.1
HC por transporte de insumos	t CO ₂	11.7
HC durante la ejecución de Obra	t CO ₂	1.2
	TOTAL	17.0

Fuente: Elaboración propia

Las HC por proceso de transporte, con 11.7 toneladas de CO₂, representa el 69% de la HC total de la vivienda de adobe en Concepción, por su parte, los procesos de producción de insumos y ejecución de obra, representan el 24% y 7% respectivamente (ver Gráfico N°25).

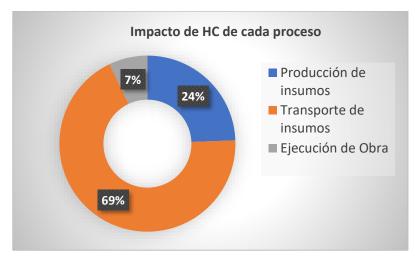


Gráfico N° 25: Impacto de HC por procesos, vivienda adobe Concepción

Fuente: Elaboración propia

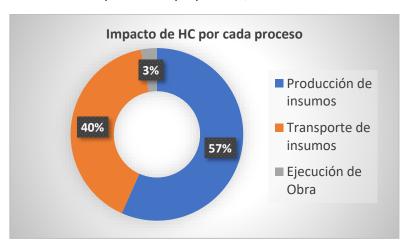
Las 11.7 toneladas de HC por el proceso de transporte, está concentrada principalmente por el transporte del cemento, caña chancada, agua y piedra grande de 8". Respecto a los procesos de producción de insumos y ejecución de obra, ya fueron mencionados en el análisis anterior, puesto que estos son los mismos para ambos casos de este subcapítulo.

La diferencia de 3.3 toneladas de CO₂ equivalente en favor de la vivienda de adobe en Concepción (de los Cuadros N°33 y 34), se concentra en el transporte del cemento (ver Cuadros N°19 y 20). Este insumo, tiene una diferencia de HC unitaria por concepto de transporte de 33 kg CO₂ por bolsa de cemento, duplicando la HC unitaria del transporte para la localidad de Aucallama. Tal diferencia de HC unitaria, al multiplicar con la cantidad de insumos transportado, se tuvo una HC parcial de 4.9 toneladas. A esto, agregando las demás diferencias a favor o en contra, según sea el caso para cada insumo, se llega a la diferencia total de 3.3 t de CO₂ eq, comentada al inicio del párrafo.

Con el segundo análisis comparativo, se buscó conocer las diferencias bajo los tres procesos analizados, puesto que se trata de viviendas de distinto tipo. Si bien, en tipo, algunos insumos son los mismos, no lo son en cantidad, por tanto, las Huellas de Carbono total tampoco lo serán para ninguno de los tres procesos desarrollados.

Respecto a la vivienda de adobe en Aucallama, sus características ya fueron mencionadas en los párrafos anteriores de este subcapítulo, así mismo, sus valores y gráficos respetivos, fueron ilustrados en el Cuadro N°33 y Gráfico N°24.

En el Cuadro N°35, se tiene un resumen de la Huella de Carbono por cada proceso para la vivienda de ladrillo en Aucallama, estos valores se sustentan en cada uno de los análisis realizados en los subcapítulos anteriores.


Cuadro N° 35: HC por procesos, vivienda de ladrillo en Aucallama

Proceso	Und	Cant.
HC por producción de insumos	t CO ₂	28.6
HC por transporte de insumos	t CO ₂	20.4
HC durante ejecución de obra	t CO ₂	1.5
	TOTAL	50.5

Fuente: Elaboración propia

La HC por proceso de producción de insumos, con 28.6 toneladas de CO₂, representa el 57% de la HC total de la vivienda de adobe en Concepción. Por su parte, los procesos de transporte de insumos y ejecución de obra, representan el 40% y 3% respectivamente (ver Gráfico N°26).

Gráfico Nº 26: Impacto de HC por procesos, vivienda ladrillo Aucallama

Fuente: Elaboración propia

Las 28.6 toneladas de HC por el proceso de producción de insumos, están concentradas principalmente por cuatro insumos insumos, el ladrillo kk 18 huecos como el de mayor medida, seguidos por el cemento, ladrillo de techo y acero corrugado (ver Gráfico N°4), estos dos últimos con baja HC unitaria pero alto metrado.

El proceso de transportes de insumos, que tiene 20.4 toneladas, está concentrado en gran medida, sobre el transporte de cuatro insumos, el acero corrugado, el cemento, el ladrillo kk de 18 huecos y la madera tornillo para encofrados con 33%, 21%, 15% y 66% del total respectivamente (ver Gráfico N°10). En tanto, el proceso de ejecución de obra, que tiene 1.5 toneladas como HC, concentrado principalmente por el operario y peón en cuanto a mano de obra, y la mezcladora por la parte de equipos (ver Gráfico N°14), este último representa el 16% de las 1.5 toneladas de CO₂ equivalente.

De acuerdo con lo señalado al principio de este subcapítulo, las comparaciones se realizaron para los tres procesos, producción de insumos, transporte de insumos y ejecución de obra, buscando conocer los factores que marcan la diferencia para cada proceso de un tipo de vivienda respecto al otro en la misma localidad. Estas comparaciones se realizaron con los datos de los Cuadros N°27 y 31.

La diferencia de 24 toneladas de CO₂ equivalente por proceso de producción de insumos a favor de la vivienda de ladrillo, están concentrados en cuatro insumos bien marcados, el acero corrugado, el cemento, el ladrillo kk de 18 huecos y el ladrillo de techo (ver Gráfico N°4). En estos cuatro insumos de gran impacto, se tienen 28 toneladas de CO₂ equivalente, frente a 4 toneladas de CO₂ equivalente por parte del cemento, como insumo de mayor impacto para la vivienda de adobe, resultando con una diferencia de 24 toneladas. A esto, agregando las demás diferencias a favor o en contra, según sea el caso para cada insumo, se llega a la diferencia total de 24 toneladas de CO₂ eq. comentada al inicio del párrafo.

La diferencia de 12 toneladas de CO₂ equivalente por proceso de transporte de insumos a favor de la vivienda de ladrillo, están concentrados en cuatro insumos bien marcados, el acero corrugado, el cemento, el ladrillo kk de 18 huecos y la

madera para encofrado (ver Cuadros N°19 y 21). En estos cuatro insumos que marcan la diferencia en el proceso de transporte, se tiene 15 toneladas de CO₂ equivalente, frente a 6 toneladas concentradas en el transporte de algunos insumos de mayor impacto de la vivienda de adobe, hormigón, cemento, caña chancada y la madera para encofrados, puertas y vanos, resultando una diferencia de 9 toneladas. Al igual que el caso anterior, incluyendo las demás diferencias para cada insumo, se llega al total de 12 toneladas de CO₂ eq.

Para los dos casos comentados en los dos párrafos anteriores, los insumos comunes donde se concentran las diferencias de la HC, son el acero, el cemento y el ladrillo kk. De los dos primeros, el acero y el cemento, se entiende que es por la cantidad de elementos de concreto armado que son parte de la vivienda de ladrillo, tales como columnas, viga y losa aligerada, estos no forman parte de la vivienda de adobe. Respecto al ladrillo kk, se entiende que es por el tipo de vivienda. Para el caso de la madera para encofrados, insumo que también marca una diferencia notable para el proceso de transporte a favor de la vivienda de ladrillo, queda justificado con el hecho que estos se utilizan para los encofrados de los elementos de concreto armado mencionados líneas arriba.

Respecto al proceso de ejecución de las viviendas, se tiene una diferencia de 0.3 toneladas de CO₂ equivalente, la cual es muy baja respecto a las comparaciones de los otros dos procesos. Tal diferencia está marcada por la presencia del oficial y la mayor intervención de la mezcladora en la ejecución de la vivienda de ladrillo (ver Cuadros N°24 y 26). Estos dos recursos participan en las partidas de acero, encofrado y concreto, partidas con grandes metrados y gran impacto de HC, justificando de esta manera, tal diferencia para este último proceso analizado.

Los valores de los resultados globales de la Huella del Carbono para cada tipo de vivienda de acuerdo con cada proceso analizado se muestran en el Cuadro N°36.

Cuadro N° 36: Comparativo global de HC por procesos

	HC (t CO ₂ eq)			
Tipo de vivienda	Producción insumos	Transporte insumos	Ejecución de Obra	
Vivienda de Adobe - Aucallama	4.1	8.4	1.2	
Vivienda de Adobe - Concepción	4.1	11.6	1.2	
Vivienda de Ladrillo - Aucallama	28.6	20.4	1.5	

Fuente: Elaboración propia

Las mayores emisiones de CO₂ equivalente para los tres procesos analizados, es para la vivienda de ladrillo en Aucallama. Para el proceso de producción de insumos, las Huellas de Carbono de las viviendas de adobe, son mucho menores que la Huella de Carbono de la vivienda de ladrillo. Del mismo modo se da para el proceso de transporte de insumos. Esto está sustentado en los insumos para cada tipo de vivienda, para el primer caso, viviendas de adobe, se trata de materiales artesanales con baja HC incorporada, mientras que, para la vivienda de ladrillo, son todos materiales industriales con alta HC incorporada (ver Gráfico N°27).

Sin embargo, para el caso del proceso de ejecución de obra, las Huellas de Carbono son similares, puesto que solo se está considerando la mano de obra y equipos utilizados durante las construcciones.

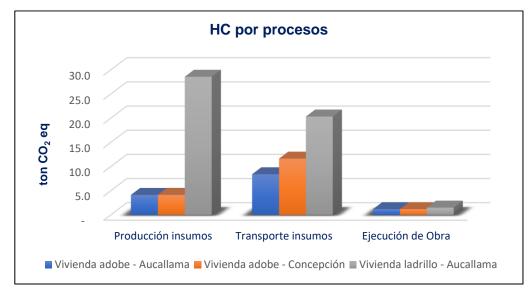


Gráfico Nº 27: Comparativo global de HC por procesos

Fuente: Elaboración propia

El cálculo de la Huella de Carbono para las viviendas, también se puede dividir en otros aspectos de los cuales se quiere conocer su impacto, estos son, obras preliminares, estructuras y arquitectura (ver Cuadro N°37).

Cuadro N° 37: Comparativo global de HC por especialidades

	HC (t CO ₂ eq)			
Tipo de vivienda	Obras Preliminares	Estructuras	Arquitectura	
Vivienda de Adobe - Aucallama	0.36	7.44	5.94	
Vivienda de Adobe - Concepción	0.21	10.72	6.03	
Vivienda de Ladrillo - Aucallama	0.28	44.38	5.67	

Fuente: Elaboración propia

La Huella de Carbono de las estructuras de la vivienda de ladrillo es bastante mayor que las viviendas de adobe, toda vez que, es en este aspecto donde se encuentran gran cantidad de concreto, partida con alta HC incorporada (ver Gráfico N°28). Para el caso de las Obras Preliminares y Arquitectura, las Huellas de Carbono son similares, para el primer caso, se consideran la limpieza y trazo y replanteo, mientras que, para la Arquitectura, los acabados de las viviendas, similares para los tres casos.

HC por Especialidades

50.00
40.00
30.00
20.00
10.00
Obras Preliminares
Estructuras
Arquitectura

Vivienda adobe - Aucallama
Vivienda adobe - Concepción
Vivienda ladrillo - Aucallama

Gráfico N° 28: Comparativo global de HC por especialidades

Fuente: Elaboración propia

5.2 Análisis comparativo con estudios anteriores

De la Tabla N°4.88 de la Tesis: "Huella del Carbono en la Construcción de Edificios de la Ciudad de Lima" de la Universidad Nacional de Ingeniería – 2018, se obtiene un ratio de 300 kg CO_2 eq /m² de área construida para una vivienda multifamiliar en el distrito de San Isidro – Lima. En el presente estudio, se tiene 761 kg CO_2 eq /m² para el mismo tipo de materiales de la vivienda. En la Tesis citada, solo

consideran el cálculo de la HC por proceso de producción de insumos, mientras que, en la presente investigación, se complementa con la HC por procesos de transporte de insumos y ejecución de la obra. En el proceso transporte, se concentra el 40% de la HC total (ver Gráfico N°26). Esto es parte de las razones para tener una elevada HC incorporada por m² de área construida en la presente tesis (ver Gráfico N°29).

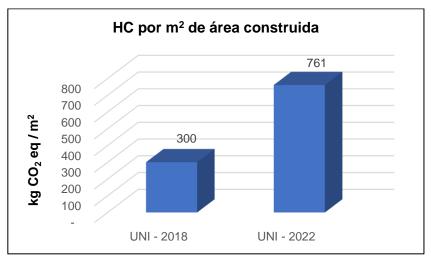


Gráfico N° 29: Comparativo de HC / m² con tesis UNI-2018

Fuente: Elaboración propia

La Tesis: "Cuantificación de CO₂ generado por el Consumo Energético en la construcción de Viviendas unifamiliares – Satipo" de la Universidad Nacional del Centro del Perú – 2016, analiza la HC de algunos elementos que involucra el cemento como insumo principal, esto es, columnas, vigas, losa aligerada, viguetas, zapatas, y muro de ladrillo. Para esto, se obtuvo un total de 46.77 t CO₂ eq. En el presente estudio, para el mismo tipo de vivienda, se obtuvo un total de 50.5 t CO₂ eq. Para este caso, se consideran todas las partidas para la construcción de una vivienda unifamiliar, incluyendo estructuras y arquitectura (acabados), estos son: trazo y replanteo, movimiento de tierras, encofrados, acero de refuerzo, piso pulido, tarrajeos, puertas, ventanas, entre otros (ver Cuadro N°30).

Total de emisiones por construcción

50.5

49.0
48.0
47.0
46.0
45.0
44.0
UNCP - 2016
UNI - 2022

Gráfico N° 30: Comparativo de HC / $\rm m^2$ con tesis UNCP-2016

Fuente: Elaboración propia

CONCLUSIONES

- 1. Se cálculo y realizó el análisis comparativo de la Huella de Carbono (HC) de las viviendas de adobe y ladrillo en las distintas regiones estudiadas. Se obtuvo que la vivienda de adobe, presenta menor impacto de HC respecto a la construcción de la vivienda de ladrillo, esto, debido a la presencia de insumos industriales en la vivienda de ladrillo con alta HC incorporada en su proceso logístico y de transformación, los cuales, además de tener mayor metrado, elevan el valor de la HC global para el tipo de vivienda.
- 2. Para la vivienda de adobe en el distrito de Aucallama, región Costa, se calculó un total de 13.7 toneladas de CO₂ equivalente, de los cuales, el 30% corresponde al proceso de producción, 61% al proceso de transporte y el 9% al proceso de ejecución de obra.
- 3. El cemento, es el insumo con mayor impacto o mayor Huella de Carbono para los procesos de producción de insumos y transporte de los mismos para la vivienda de adobe en Aucallama, siendo estos, el 88% de la HC por proceso de producción y el 26% de la HC por proceso de transporte. Por su parte, respecto a la HC por proceso de ejecución de obra, el 93% está dado por la Mano de Obra, operario y peón.
- 4. Para la vivienda de adobe en Concepción, región Sierra, se calculó un total de 17.0 toneladas de CO₂ equivalente, de los cuales, el 24% corresponde al proceso de producción, 69% al proceso de transporte y el 7% al proceso de ejecución de obra.
- 5. Las cantidades de HC para los procesos de producción de insumos y ejecución de obra de la vivienda de Concepción, son los mismos que el caso de la vivienda en Aucallama, la diferencia se ve en el proceso de transporte de insumos, donde sigue primando el cemento, como insumo con mayor impacto, representando el 62% de la HC de este proceso y para este caso, muy lejos de los impactos de HC de los demás insumos.
- 6. Para la vivienda de ladrillo en el distrito de Aucallama, región costa, se calculó un total de 50.5 toneladas de CO₂ equivalente, de los cuales, el 57%

corresponde al proceso de producción, 40% al proceso de transporte y el 3% al proceso de ejecución de obra.

- 7. El acero, cemento, ladrillo kk y ladrillo p/techo, son los insumos comunes de mayor impacto para los procesos de producción de insumos y transporte para la vivienda de ladrillo en Aucallama. El caso del cemento, lo es principalmente por su HC unitaria, mientras que, el acero y ladrillo kk, que tienen baja HC unitaria, logran tener alto impacto por la cantidad de insumos. Los impactos para el proceso de producción del acero, cemento, ladrillo kk representan el 10%, 25% y 51% de las 28.6 toneladas de la HC, mientras que, para el proceso de transporte, representan el 33%, 21% y 15% respectivamente de las 20.4 toneladas. Por su parte, durante el proceso de ejecución de obra, se tiene los mayores impactos para los siguientes recursos, operario, peón y mezcladora de concreto, con 36%, 33% y 16% respectivamente de las 1.5 toneladas de CO₂ equivalente por este proceso.
- 8. Teniendo en cuenta la HC total incorporada para cada vivienda y el área construida, se tiene como unidad funcional, la HC / m² de área construida. En ese sentido, se tiene, para la vivienda de adobe en Aucallama, 166 kg CO₂ eq. / m², para el mismo tipo de vivienda en Concepción, 205 kg CO₂ eq. / m², por su parte, para la vivienda de ladrillo en Aucallama, produce 761 kg CO₂ eq. / m².
- 9. La vivienda de ladrillo, tiene mayor HC incorporada, producto de los materiales con alta HC que intervienen en su construcción, sobre todo el cemento, acero y ladrillo kk, los dos primeros, insumos del concreto armado, tales como las columnas, vigas y losa aligerada, mientras que, el ladrillo, propio del tipo de vivienda. La vivienda de adobe en Concepción, supera la HC respecto a la vivienda en Aucallama, por el mayor recorrido que se hace durante el transporte de los insumos.
- 10. De la primera comparación, se tiene una diferencia de 3.3 toneladas de CO₂ equivalente como HC total en favor de la vivienda de adobe en Concepción. Las Huellas de Carbono producto de los procesos de producción de insumos y ejecución de la obra, son las mismas en ambos casos, por tanto, se prestó

mayor atención a las Huellas de Carbono por el proceso de transporte, donde se encuentra la diferencia, la cual está concentrada principalmente en el transporte del cemento, con una diferencia de 5.0 toneladas.

- 11. De la segunda comparación, se tiene una diferencia de 36.8 toneladas de CO₂ equivalente como HC total en favor de la vivienda de ladrillo, tal diferencia a favor, se da en los tres procesos desarrollados. En el proceso de producción de insumos, se tiene una diferencia de 24.5 toneladas de CO₂ eq., en el proceso de transporte, 12 toneladas, y en el proceso de ejecución de obra, 0.3 toneladas de CO₂ eq.
- 12. La diferencia de 24.5 t de CO₂ eq. por el proceso de producción de insumos, están marcados por el acero, cemento, ladrillo kk y ladrillo de techo, representando entre los cuatro, el 99% del total de emisiones por este proceso para la vivienda de ladrillo, donde, el ladrillo, tiene la mayor HC incorporada (14.5 t CO₂ eq.), por su parte, el acero, cemento y ladrillo de techo, con 2.7, 7 y 4 t CO₂ eq. respectivamente.
- 13. La diferencia de 12 t de CO₂ eq. por el proceso de transporte de insumos, están marcadas por cuatro insumos, el cemento, acero, ladrillo kk y madera para encofrado, representando entre ellos, el 76% del total de emisiones por este proceso para la vivienda de ladrillo. De los cuatro insumos mencionados, el ladrillo kk no es insumo común. El acero, como insumo común de mayor impacto, excede en 3 t CO₂ eq. a su equivalente en la vivienda de adobe.
- 14. Finalmente, se puede decir que, para el primer caso, se tiene al cemento como insumo más influyente que incrementa la HC para el proceso de transporte para la vivienda en Concepción, donde está la diferencia, mientras que, para el segundo caso, lo hacen tres insumos, el cemento, acero y ladrillo kk de 18 huecos, tanto para la etapa de producción de insumos, como del transporte. Por su parte, para el proceso de ejecución, resaltan el oficial y la mezcladora como recursos que marcan la diferencia, aunque no es tan influyente, por su poca participación en el total de la HC.

RECOMENDACIONES

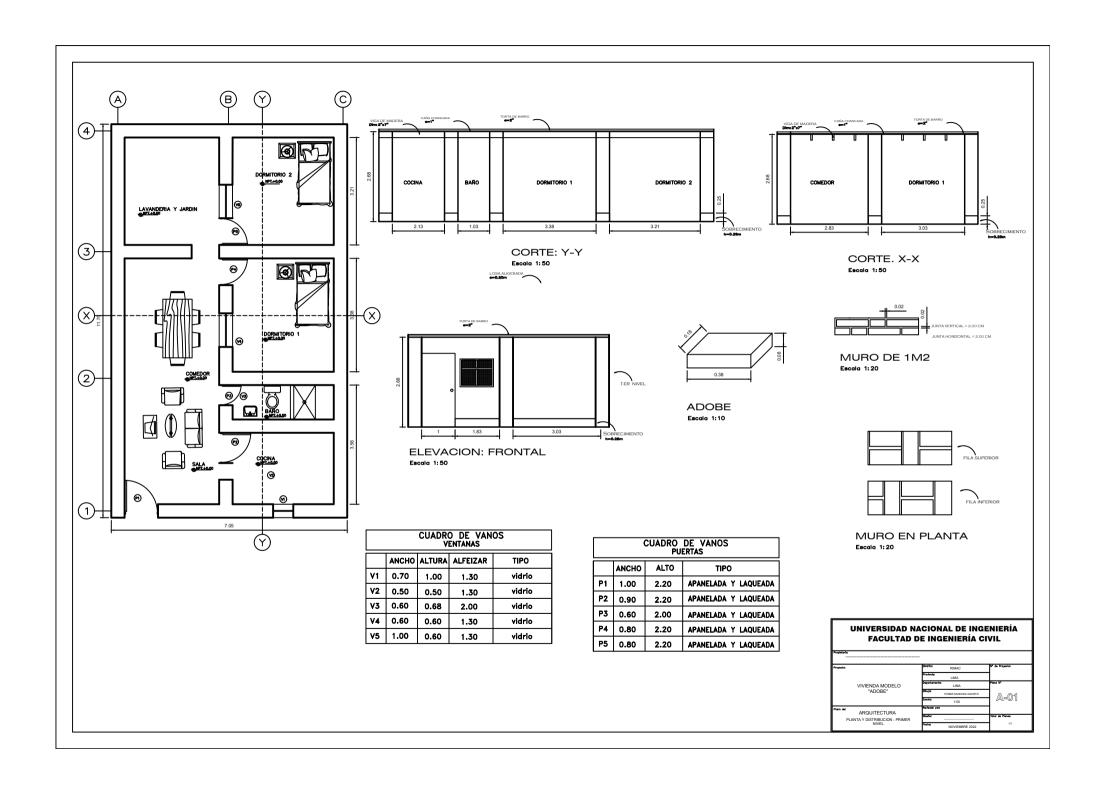
- La metodología de inventario propuesta, no está pensada y elaborada únicamente para construcciones de viviendas unifamiliares, si no, en obras civiles en general. Por tanto, se recomienda aplicar a cualquier obra civil del cual se requiera conocer su Huella de Carbono.
- Las Huellas de Carbono de las herramientas manuales y algunos insumos como la pintura, bisagra y el barniz, se omitieron del alcance de estudio de la presente tesis, en una próxima investigación, se recomienda calcularlo y medir su impacto a fin de conocerlo.
- 3. Se han medido las Huellas de Carbono para viviendas unifamiliares de dos tipos, adobe y ladrillo, desde la etapa de transformación de los insumos o materiales, hasta su proceso de ejecución. Sin embargo, se recomienda calcular la HC que se produce durante la etapa de mantenimiento, a fin de conocer su impacto.
- 4. Se han hecho dos análisis comparativos de viviendas, el primero, dos viviendas de adobe en distintas regiones, costa y sierra, y el segundo, una vivienda de adobe y otra de ladrillo en la región costa. A estos análisis, se le recomienda agregar una tercera vivienda de otro tipo de material, podría considerarse una vivienda de madera en la selva, y comparar los resultados. La recomendación de la vivienda de madera, se da a fin de continuar con la línea de estudio de los materiales sostenibles.

REFERENCIAS BIBLIOGRÁFICAS

- Aguillón, R.J, Arista, G. G. (2011). Análisis del ciclo de vida de materiales de construcción y huella del carbono en San Luis Potosí. Universidad Autónoma de San Luis de Potosí. San Luis Potosí.
- Balderas, Z. H, Arista, G. G. (2011). Análisis comparativos del ciclo de vida en procesos e insumos para construcción y vivienda. Universidad Autónoma de San Luis de Potosí. San Luis Potosí.
- ➤ Bishop, L.P. (2000). Pollution Prevention: Fundamentals and Practice. University of Cincinnati. Ohio.
- Corzo, R. S. (2016). Análisis del ciclo de vida de una vivienda unifamiliar de Huancayo. Tesis para optar el título profesional de ingeniero civil. Pontificia Universidad Católica del Perú. Lima.
- Ecoinvent Versión 3.0. Technoparkstrasse 1. Zurich. [Consultado el 11 de septiembre 2018]. https://www.ecoinvent.org.
- Fernández, M., Cobo, A. (2017). Cálculo de la Huella del Carbono de la Actividad del Grupo de Investigación "Tecnologías Ambientales y Recursos Industriales" TAR Industrial. Madrid.
- Freire, G. A, Marreno, M. M, Muñoz, M. J. (2016). Incorporación de Huella de Carbono y Huella Ecológica en las Bases de Costes de Construcción. Andalucía.
- Grupo Intergubernamental de Expertos Sobre el Cambio Climático (IPCC).
 (2015). Informe de Síntesis. Genéve.
- Hanle L., Maldonado P., Onuma E., Tichy M., Hendrik G. (2018). Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero, Volumen 3, Procesos industriales y uso de productos. Instituto para las Estrategias Ambientales Globales (IGES). Hayama.

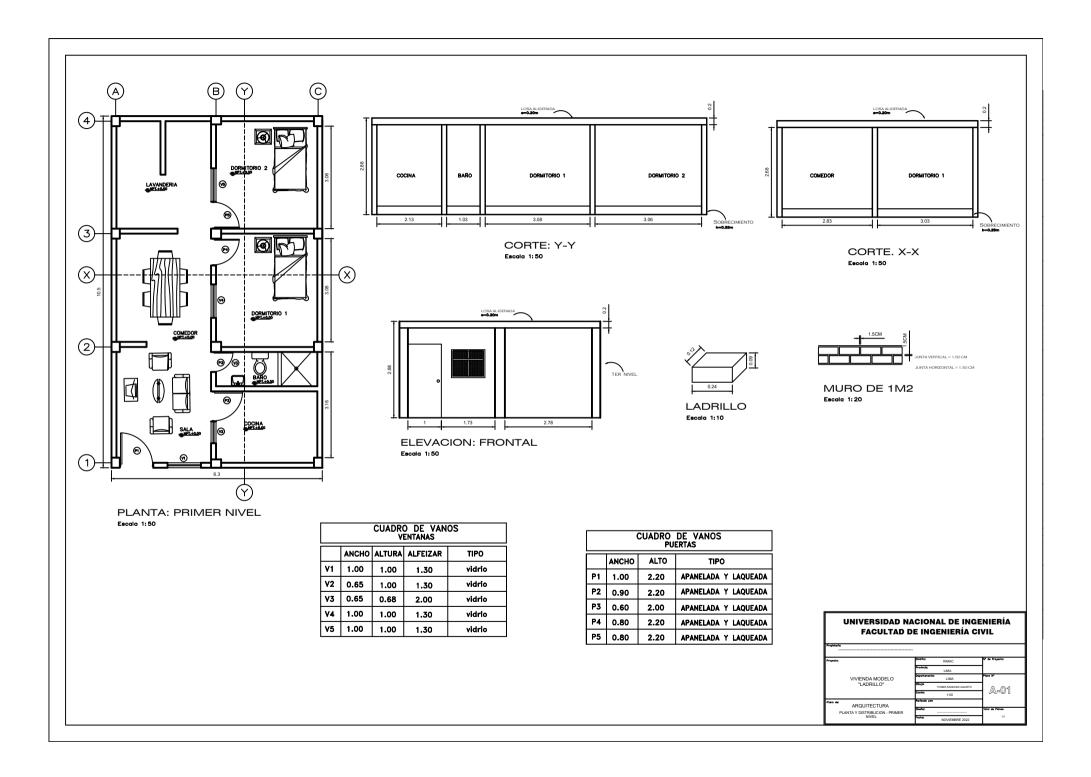
- Ihobe, Sociedad Pública de Gestión Ambiental (2009). Análisis de Ciclo de Vida y Huella del Carbono, Dos Maneras de Medir el Impacto Ambiental de un Producto. Departamento de Medio Ambiente y Planificación Territorial, Agricultura y Pesca. Bilbao
- Ihobe, Sociedad Pública de Gestión Ambiental (2013). 7 Metodologías para el Cálculo de Emisiones de Gases de Efecto Invernadero. Departamento de Medio Ambiente y Política Territorial. Bilbao
- Instituto Colombiano de Normas Técnica y Certificación. (2007). Norma Técnica Colombiana ISO 14040. Bogotá.
- Instituto para la Diversificación y Ahorro de Energía. (2006). Guía para la gestión del combustible. Madrid.
- ➤ León, V. A, Guillén, M. V. (2020). Energía Contenida y Emisiones de CO2 en el Proceso de Fabricación del Cemento en Ecuador. Porto Alegre.
- Marrero, M., Martínez, E. L., Mercader, M. P., Leiva, C. (2013). Minimización del impacto ambiental en la ejecución de fachadas mediante empleo de materiales reciclados. Andalucía.
- Meliá, P., Ruggieri, G., Sabbadini, S., Dotelli, G. (2014). Environmental impacts of natural and conventional building materials: a case study on earth plasters. Universitá Degli Study dell'Insubria. Milano.
- Mercader, M. P., Ramírez de Arellano A., Olivares. M. (2012). Modelo de Cuantificación de las emisiones de CO₂ producidas en edificación derivadas de los recursos materiales consumido en su ejecución. Universidad de Sevilla. Sevilla.
- Michell, T. H. (2012). Perfil Ambiental del Acero. Universidad Industrial de Santander. Bucaramanga
- Ministerio del Ambiente, Agua y Transición Ecológica. (2021). Norma Técnica a Producto del Programa Ecuador Carbono Cero. Quito.

- Ministerio de Vivienda, Construcción y Saneamiento. (2017). Norma E.080 Diseño y Construcción con Tierra Reforzada. Lima: El Peruano.
- Ministerio de Vivienda, Construcción y Saneamiento. (2021). Reglamento Nacional de Edificaciones. Norma E.070. Lima.
- National Pollutant Inventory. (2017). Australian Government Emission estimation technique manual for combustion engines. Australia. [Consultado el 20 de septiembre 2018]. http://www.npi.gov.au
- Oficina Catalana del Cambio Climático. (2011). Metodología de Inventario de Gases de Efecto Invernadero (GEI). Cataluña.
- Oficina Catalana del Cambio Climático. (2013). Guía Práctica para el Cálculo de Emisiones de Gases de Efecto Invernadero. Cataluña.
- Programa de las Naciones Unidas para el Desarrollo. (2014). Informe sobre el Desarrollo Humano. New York.
- Ríos, M. (2012). Residuos de Aparatos Eléctricos y Electrónicos. San José.
- Rodriguez, J. P, Ruiz, M. A., Meneses, A. (2020). Revisión de los Factores de Emisión en las Metodologías de Huella de Carbono en Colombia. Medellín.
- Saavedra, F. E. (2020). Huella de Carbono-Emisiones de GEI por uso del Sistema de Iluminación de la Facultad de Ingeniería Ambiental de la Universidad Nacional de Ingeniería. Lima
- Santiago, P. P., Guevara, S. C., Espinoza, L. M. (2013). Manual de Transformación de la Madera. Asociación para la Investigación y Desarrollo Integral. Lima.
- SENAMHI. (2014). Estimación de emisiones vehiculares en Lima Metropolitana. Lima.
- NTC-ISO 14040 (Segunda Actualización). (2007). Gestión Ambiental. Análisis de Ciclo de Vida, Principios y Marco de Referencia. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá.


- Osorio, J. (2011). El consumo sostenible de los materiales usados en la construcción de vivienda. Universidad Nacional de Colombia. Manizales.
- UNACEM. (2019). Reporte de Sostenibilidad. Lima
- Valdeiglesias López Flor de María Lourdes. (2007). Estudio de Factibilidad Económica para la Conversión de Vehículos Gasolineras a Gas Licuado de Petróleo. Tesis para optar el título profesional de ingeniero civil. Universidad Nacional de Ingeniería. Lima.
- Villegas Olivera Miguel Ángel. (2017). Factores que incrementan el consumo de combustible en la maquinaria minera de la empresa Robocon Servicios S.A.C. Chungar – Cerro de Pasco. Tesis para optar el título profesional de ingeniero mecánico. Universidad Nacional del Centro del Perú. Huancayo.

ANEXOS

- Anexo I: Plano del diseño de vivienda de adobe con las recomendaciones de la Norma Peruana E.080.
- Anexo II: Plano del diseño de vivienda de ladrillo con las recomendaciones de la Norma Peruana E.070.
- Anexo III: Toma de datos sobre la fabricación del adobe.
- Anexo IV: Toma de datos sobre la elaboración de muro de adobe.
- Anexo V: Cálculo de emisiones de CO₂ equivalente para la vivienda unifamiliar de adobe en el distrito de Aucallama.
- Anexo VI: Cálculo de emisiones de CO₂ equivalente para la vivienda unifamiliar adobe en el distrito de Concepción.
- Anexo VII: Cálculo de emisiones de CO₂ equivalente para la vivienda unifamiliar ladrillo en el distrito de Aucallama.


NIVERSIDAD NACIONAL DE INGENIERÍA ACULTAD DE INGENIERÍA CIVIL	ANEXOS
ANEXO I:	
Plano del diseño de vivienda de adobe con las reco Peruana E.080.	mendaciones de la Norma

Bach. Sanchez Agurto Yoner Alejo

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL	ANEXOS
ANEXO II:	
Plano del diseño de vivienda de ladrillo con las recomendaciones de la Peruana E.070.	Norma

Bach. Sanchez Agurto Yoner Alejo

UNIVERSIDAD NACIONAL DE INGENIERÍA
FACULTAD DE INGENIERÍA CIVIL

ANEXOS

ANEXO III:

Toma de datos sobre la fabricación del adobe

DATOS TOMADOS EN CAMPO PARA FABRICACIÓN DE ADOBE Y MURO

ELABORACIÓN DE ADOBES

* Material para medir agua

Cilindro

Lado	Long. (m)
Diametro	0.58
Altura	0.89

Vol (m3) = 0.235

* Cantidad de agua que puede almacenar en recipientes:

Material	Vol (m3)	Vol (It)
Cilindro	0.223	223.39
Balde Aceite	0.020	20.00
Balde Pintura	0.004	4.00

* Cantidad de agua utilizada para la elaboracion de 100 adobles

Actividad	Veces	Volumen de agua		Vol. Parcial	Vol. Parcial	
Actividad	Veces	Unid. Medida	Vol (It)	Vol (m3)	(lt)	(m3)
Remojar la tierra	1	Cilindro	223.39	0.223	223.39	0.2234
Lavar materiales	1	Balde Aceite	14.00	0.014	14.00	0.0140
Lavar las manos	1	Balde Pintura	3.20	0.0032	3.20	0.0032

Total 240.588 0.241

* Cálculo aproximado de la cantidad de tierra para elaborar 1 millar de adobe

Lado	Long. (m)
Largo =	4.00
Ancho =	3.00
Altura =	0.45

Vol (m3) : 5.40 Vol (100 adob) : 0.54 m3

^{*} Tiempo de realizar el adobe.

Muestra	Tiempo (seg)	
1	23.30	
2	24.11	
3	26.12	
4	25.12	
5	23.65	
Tiempo Prom.	24.46	

* Tiempo en realizar el adobe y desmoldarlo

Muestra	Tiempo (seg)
1	30.45
2	45.29
3	43.34
4	34.67
5	45.31
Tiempo Prom.	39.81

UNIVERSIDAD NACIONAL DE INGENIERI	Á
FACULTAD DE INGENIERÍA CIVIL	

ANEXOS

ANEXO IV:

Toma de datos sobre la elaboración de muro de adobe.

DATOS TOMADOS EN CAMPO PARA FABRICACIÓN DE ADOBE Y MURO

CONSTRUCCION DEL MURO (1.00m x 1.00m)

* Material para medir agua

Cilindro

Lado	Long. (m)		
Diametro =	0.58		
Altura =	0.89		

Vol (m3) = 0.235

^{*} Cantidad de agua que puede almacenar en recipientes:

Material	Vol (m3)	Vol (It)
Cilindro	0.223	223.39
Balde Aceite	0.020	20.00
Balde Pintura	0.004	4.00

* Cálculo aproximado de la cantidad de tierra para elaborar 1 millar de adobe

Lado	Long. (m)
Largo =	4.00
Ancho =	3.00
Altura =	0.45

Vol (m3)	:	5.40	
Vol (100 adob)	:	0.54	m3

^{*} Calculo aproximado para la cantidad de tierra utilizada

Dato: Cuarta a quinta parte de lo utilizado para los adobes

Cant. Tierra (m3)	0.122
-------------------	-------

Cantidad de agua utilizada para la elaboracion de 100 adobles

Actividad	Veces	Volumen de agua			Vol. Parcial	Vol. Parcial
Actividad	Veces	Unid. Medida	Vol (It)	Vol (m3)	(It)	(m3)
Remojar la tierra	1	Cilindro	44.68	0.0447	44.68	0.0447
Lavar materiales	1	Balde Aceite	14.00	0.0140	14.00	0.0140
Lavar las manos	1	Balde Pintura	3.20	0.0032	3.20	0.0032

Total 61.878 0.062

^{*} Tiempo de realizar una fila

Muestra	Tiempo (seg)
1	6' 55"
2	7' 21"
4	6' 34"
Tiempo. Prom	6' 57"

Tiempo 7 min

Tiempo global 1 h 20'

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL	ANEXOS
ANEXO V:	
Cálculo de emisiones de CO2 equivalente para la vivienda unifamilia	ar de adobe
en el distrito de Aucallama.	ar do ddobo

SIMULACIÓN DE MONTE CARLO PARA LA HUELLA DE CARBONO

Insumo und Mínimo Máximo Fórmula 0.511 0.511+r*0.118 Cemento kg CO2/kg 0.629 Acero de Refuerzo kg CO2/kg 1.623 1.95 1.623+r*0.327 Cal kg CO2/kg 0.75 0.79 0.75+r*0.04 0.3216 0.262+r*0.0596 Madera kg CO2/kg 0.262

Energía Electrica	kg CO2 / kWh	0.3	0.52144	0.3+r+0.22144
GLP	kg CO2 / kg	2.75	3.015	2.75+r*0.265
Diésel	kg CO2 / gln	9.7	9.8658	9.7+r*0.1658
Gasolina 95	kg CO2 / gln	7.9	8.9964	7.9+r+1.0964

Método de la Transformada Inversa:

Fórmula: a+r(b-a)

a: valor mínimo

b: vamor máximo

r: número aleatorio

VIVIENDA DE ADOBE EN AUCALLAMA - HUARAL

	Cemento	Acero	Cal	Madera
Ensayo	kg CO2/bol	kg CO2/kg	kg CO2/bol	kg CO2/kg
1	26.42981771	1.93274339	19.0028627	0.2890017
2	25.0875919	1.80610873	19.0344324	0.26607513
3	24.02905542	1.71289285	18.8912007	0.315015
4	25.94407793	1.79453872	19.1395978	0.27656841
5	22.53590031	1.63758037	18.7694629	0.29607141
6	22.20158097	1.77533693	19.7409205	0.30088968
7	26.3882458	1.69756812	19.2559884	0.26781513
8	23.66178161	1.70790092	19.6035717	0.30803603
9	26.64223329	1.65945723	19.1782805	0.31106965
10	21.78530081	1.67090318	19.6776147	0.27563185
11	22.76880622	1.7696093	19.1913858	0.27392129
12	26.13678337	1.76049552	19.5576131	0.30030529
13	24.27956233	1.82662164	19.432981	0.27980778
14	24.85281507	1.65020488	19.6143048	0.28485641
15	26.72810487	1.72112448	19.7219715	0.30716706
16	23.73842901	1.73903783	19.353905	0.2932547
17	22.36004162	1.81271042	19.7336697	0.27972242
18	26.68443418	1.66462037	18.9033425	0.3057722
19	21.83744674	1.83514631	18.936959	0.31641821
20	23.74479266	1.63729796	19.587197	0.31784879
21	26.64721511	1.67986109	18.7619334	
22	24.12577733		19.5299935	0.2623505
		1.84169936 1.6901833		0.26907249
23	23.27325156		19.5667142	
	24.68967317	1.65108708	18.9442776	0.2709049
25	26.30605326	1.85494876	19.320814	0.32087694
26	23.09813097	1.7416785	18.875226	0.32104179
27	25.7189506	1.85135299	19.3581857	0.27054517
28	22.683016	1.83806527	18.8282305	0.31694366
29	23.6016506	1.77397461	19.4997162	0.30101379
30	23.01168353	1.9352128	19.2177761	0.29089512
31	26.1689691	1.81303674	19.1669173	0.28455442
32	25.39703845	1.79022823	19.329927	0.31613913
33	25.61453594	1.7698582	19.6677543	0.31037127
34	24.47937328	1.77981184	19.4556864	0.29130558
35	22.71061089	1.68190445	19.4830309	0.2830666
36	22.75424845	1.91891517	19.210146	0.26967645
37	24.14994012	1.87540072	18.9273624	0.31907676
38	25.26456245	1.75168656	18.8243494	0.29979751
39	26.00293162	1.79209021	19.3448672	0.27214696
40	22.49456364	1.76266677	19.0300767	0.31703127
41	26.3426933	1.77706301	19.4654154	0.31578618
42	26.54795721	1.92010435	19.3921675	0.27527915
43	24.19376859	1.84672993	19.6763762	0.28806339
44	23.8696584	1.69169089	19.59732	0.27561594
45	25.95905389	1.64264313	19.4542332	0.31911789
46	24.06434537	1.67339579	19.5609607	0.28803681
47	26.10157627	1.78720602	19.4379032	0.26493118
48	24.50977213	1.78067602	18.8908713	0.30077902
49	24.72253872	1.91988529	19.0440781	0.31847902
50	23.53537339	1.7528382	19.2046641	0.26230729
51	24.73729195	1.92028656	19.5277234	0.31861312
52	25.88107633	1.88154253	19.216747	0.26988328
53	23.99346516	1.81719498	19.414254	0.29523178
54	26.13545004	1.73229893	18.8545199	0.2922636
55	24.13614657	1.73087263	19.4103434	0.29400567

Energía Eléctrica	GLP	Diésel	Gasolina 95
kg CO2/kWh	kg CO2/kg	kg CO2/gln	kg CO2/gln
0.32201602	2.97821962	9.70959468	8.71031269
0.464964472	2.81821495	9.81461027	8.98504057
0.408782446	2.79223079	9.80330989	8.40233552
0.329763349	2.96315532	9.74402442	8.76579142
0.479763275	2.77398509	9.84249246	8.06795841
0.50442164	2.89677809	9.76218377	8.98110708
0.438362323	2.90279552	9.77649324	8.38742493
0.490253372	2.90505498	9.70916583	8.5926832
0.427597521	2.91130851	9.76961136	8.20419452
0.301020061	2.86074848	9.80636303	7.95205823
0.505967614	3.01204959	9.73186461	8.08599453
0.510092406	2.87191462	9.81576501	8.51324529
0.381242467	2.94668742	9.74891175	8.921088
0.363898637	2.85534115	9.84446347	8.0131527
0.407684071	2.78743009	9.82839522	8.05434017
0.419210523	2.84999049	9.75641177	8.83455359
0.478654793	2.77791713	9.85849014	8.54271711
0.389712639	2.96455631	9.70592787	8.27828603
0.300466274	2.84679295	9.8055609	8.61167219
0.48335105	2.93761623	9.72495082	8.93803899
0.320305846	2.91933223	9.84340679	8.152934
0.401714699	3.00499575	9.765588	8.13521586
0.326833275	2.81048318	9.83290232	8.08214559
0.378811536	2.83376752	9.71876236	8.36679262
0.455672634	2.99094133	9.79063754	8.44636092
0.351232263	2.84043588	9.82864806	8.39412107
0.33215723	2.92062084	9.75583028	8.62139596
0.438832954	2.96352029	9.82329917	8.2017463
0.386129179	2.94116293	9.76211458	8.00652711
0.302699702	2.75104156	9.84546205	8.5112451
0.393122828	2.98673103	9.85057808	7.95597578
0.331910806	3.00685004	9.72300428	8.19440048
0.506471038	2.85903976	9.83311973	8.42099039
0.302355976	2.99452537	9.80577911	8.93865782
0.498657512	2.87580997	9.85258243	7.97441858
0.375013622	2.8438119	9.84713813	8.33316412
0.368746169	2.98374434	9.73675567	8.57061686
0.48810466	2.94274226	9.84042268	8.10668056
0.378201799	2.97679991	9.79986644	8.87175363
0.498903087	2.78358736	9.79361184	8.13800875
0.505539802	2.9817529	9.84934133	8.099106
0.520590008	2.78728191	9.85812494	7.97511714
0.506779032	2.86631431	9.82120754	8.58266276
0.46556802	2.96846925	9.80604104	8.8074795
0.486591501	2.88841193	9.71743442	7.95715239
0.373664605	2.93771811	9.75644064	7.91842658
0.321479738	2.75482283	9.8585903	7.93360013
0.42019561	2.93716	9.79530437	8.28492152
0.331536914	2.99110946	9.79951132	8.88695865
0.328788479	2.95065449	9.72450988	8.13757766
0.360179358	2.97908653	9.75574543	8.43355111
0.44901894	3.00640755	9.86571033	8.62665315
0.338753321	2.95633225	9.86084125	8.69023197
0.369725096	2.86434561	9.83989569	8.36514914
0.473633322	2.86649158	9.72650004	8.08452419

	56	23.73973867	1.65035504	19.2342008	0.31477045	0.486011366	2.95405442	9.74542041	8.51214988
	57	23.27902994	1.73586963	19.3943556	0.31873674	0.411495517	2.89503298	9.74580175	8.79780648
	58	25.13437915	1.93165737	19.7295459	0.28954595	0.339537486	2.92008847	9.76879576	8.28548688
	59	22.65063554	1.73014492	19.6220975	0.27935434	0.476851413	2.98528843	9.70015435	8.06063563
	60	22.45034947	1.67264025	18.7953	0.31994425	0.396446278	2.90913777	9.75799132	8.91913639
	61	22.08497486	1.85038099	19.7270925	0.29407479	0.306027743	2.96353591	9.8085567	8.76680604
	62	22.90183893	1.72797206	19.488936	0.31482777	0.340420251	2.80987013	9.86233018	8.09936633
	63	26.00587115	1.85837565	19.5326284	0.29284899	0.448042631	2.7530721	9.77196449	8.23755999
L	64	25.80650929	1.78205376	19.6867737	0.31629726	0.459204334	2.94096947	9.70549778	8.62530373
L	65	24.41546335	1.66641263		0.30301091	0.443531471	2.76743191	9.72464693	8.27597397
	66	26.5774173	1.82582934	19.0659721	0.28009771	0.35850203	2.84820761	9.81388332	8.66782697
	67	24.58913762	1.73321644	19.559531		0.475783335	2.95759202	9.80112702	8.70383512
	68	23.82989279	1.84246479	19.3662566	0.28637212	0.442901671	2.81990268	9.73874839	8.54442104
	69	25.5870857	1.92963392	19.2979901		0.416305786	3.00954363	9.73289263	8.33027054
	70	23.54505422	1.94865697	19.5886178		0.43085221	2.84847871	9.73399792	8.30572008
	71	22.27133354	1.77176348		0.29292839	0.517702837	2.91075868	9.8044964	8.79004408
⊢	72	24.36532101	1.88949507	19.3846615		0.439602257	2.97461434	9.75147723	8.80460948
	73	25.92338957	1.83133992	19.4292481	0.3093909	0.325626937	2.91645403	9.8518708	7.92805115
	74	22.88288277	1.68215082	19.1504156	0.3182675	0.363795218	2.76588256	9.79371716	8.16484916
	75	26.17300985	1.74337718	19.7114846		0.333057847	2.86087706	9.76986476	8.80752552
	76	26.30770895	1.94824538	18.9345315		0.316844645	2.87035717	9.83763411	8.29206924
	77	22.63325857	1.63914605	19.1107781	0.29312213	0.468358181	2.87872571	9.82459972	7.94968081
	78	25.46968709	1.65391004	19.0883291	0.29327783	0.474164962	2.88602518	9.82464876	8.57618148
	79	22.80792363	1.79839777	19.3790434	0.28839599	0.402490759	2.96609341	9.76496935	8.60048675
	80	22.27080514	1.77259483	18.7662931	0.26716611	0.452461276	2.94951726	9.79580913	8.04872089
L	81	25.50686378	1.91209589	19.2291771	0.28479191	0.510230933	2.82820523	9.79204987	8.22981785
L	82	22.30879032	1.62954305	19.5025438	0.2750599	0.363109692	2.99085247	9.74381785	8.65091257
	83	24.08705844	1.82333105	19.0806864	0.27787749	0.474233784	2.87985149	9.81303762	8.80667439
	84	24.08470894	1.66886817		0.31267699	0.382041356	2.91090151	9.70296705	8.57790249
	85	26.27275853	1.77209644	19.0247182	0.32081423	0.388422286	2.7764099	9.85737868	8.08736971
	86	25.36687724	1.6883072	19.1027443	0.28172764	0.444484123	2.9663474	9.79066179	8.51096533
	87	23.82516852	1.7630333	18.7894009	0.2999756	0.51074364	2.83953004	9.80722996	8.8451955
⊢	88	22.98740161	1.66329679		0.28266328	0.354819372	2.76114675	9.81984594	8.78458145
⊢	89	23.50575677	1.79716031		0.32124628	0.324094953	2.9714308	9.70318036	8.0054844
	90	22.39720125	1.86058966		0.26687829	0.49363619	2.75612777	9.73476798	8.74830891
L	91	25.35059601	1.85083577	19.257725		0.398623484	2.80337023	9.80373628	8.06384951
	92	24.78885335	1.75649131	19.562435		0.381147707	2.96667139	9.84900371	8.95990534
	93	24.89419173	1.77661772	19.3008588		0.304573424	2.97500129	9.81920319	8.14662901
	94	26.21817841	1.86387342		0.31298427	0.31312297	2.87355094	9.85488732	8.40003611
	95	22.74704558	1.68006432	19.6928503		0.425034537	2.79858183	9.85972681	8.76737977
_ <u> </u> _	96	21.91020398	1.88601173		0.30565508	0.397724974	2.8829512	9.85396139	8.79740471
\vdash	97	22.20494676	1.88910763	19.3728706		0.357512146	2.82873616	9.76479803	8.00637564
<u> </u>	98	24.01787343	1.9493923	18.9533902		0.422890987	2.97664519	9.78224832	8.54214295
⊢	99	21.8581409	1.80273432	19.5728053		0.34407064	2.81170528	9.81458675	8.49372857
<u> </u>	100	22.83012527	1.70491704	19.0339543	0.318809	0.330507518	2.80831432	9.7456612	8.40506152
<u> </u>	101	25.50705649	1.87080715		0.30461367	0.476950895	2.82529891	9.77393746	8.5462663
_ <u> </u>	102	23.13649708	1.71652701	19.6555676		0.428713268	2.83082591	9.7584116	8.94575692
-	103	24.57978362	1.83249258	19.6606744		0.301240172	2.94352216	9.73323793	8.27801628
-	104	23.89936685	1.83580376	19.2386763	0.2709353	0.426649213	2.97241408	9.78430709	8.85205167
_ <u> </u>	105	26.43150053	1.69836817	18.9084976		0.389322608	2.7988244	9.85400313	8.86254155
_ <u> </u>	106	26.15697306	1.89928819	19.0738792		0.371788718	2.97400839	9.70092877	8.08776875
_ ⊢	107	22.14045023	1.70511501	18.9955511		0.365910257	2.86296107	9.8154776	8.37231793
_ ⊢	108	26.32363323	1.92916391	19.277882		0.430393238	2.80643006	9.77128179	8.69018585
<u> </u>	109	26.11030536	1.62470642	19.432168		0.383981944	2.79980755	9.70738197	8.0532167
-	110	23.26044161	1.78735154	18.783601	0.2737221	0.452351606	2.76055817	9.83632178	8.00220803
\vdash	111	26.05512597	1.9455502		0.30302542	0.316079751	2.975721	9.77414595	8.82055831
\vdash	112	23.67029868	1.85951705		0.26836839	0.301125338	2.96808794	9.8323814	8.23421617
\vdash	113	23.76419117	1.74039769	18.7845621		0.348818456	2.83786309	9.77826876	8.74386206
\vdash	114	24.02210646	1.94680898	18.9747244		0.465715698	2.81534529	9.76499802	8.45395318
\vdash	115	25.96057886	1.70202559	19.699876		0.448574615	2.91840383	9.77911214	8.81791794
\vdash	116	25.16517275	1.92220521	19.2698592		0.354283573	2.94418305	9.72902003	8.30630243
L	117	24.89206723	1.65453287	18.8530827	0.30196428	0.475196884	2.87300578	9.77056905	8.02262667

118	23.3706258	1.7072897	19.4494532	0.2941612	0.485995998	2.94340614	9.80696715	8.83659279
119	23.32703088	1.83303067	18.7786053	0.27797382	0.502151511	2.92046506	9.75825175	8.26642083
120	24.70848172	1.85259462	19.5162212	0.28226044	0.44077303	2.75922444	9.76027666	7.99031272
121	25.84507074	1.94503501	19.3634327	0.26791573	0.377579946	3.00192537	9.84239147	8.11758387
122	23.56262257	1.92653994	19.5746613	0.27205943	0.505015359	2.89777427	9.78824924	8.89195349
123	23.36720597	1.67544651	19.7435712	0.29435831	0.509155531	2.79659112	9.7947111	8.74204951
124	25.41187033	1.74716272	19.1141153	0.27921873	0.360262526	2.82617305	9.70196933	8.63243714
125	22.29220065	1.84591863	18.8433658	0.29438261	0.466633694	2.8433367	9.73351292	8.84910603
126	25.23789671	1.73985175	19.112855	0.31075961	0.518992558	2.83547919	9.73649407	8.21514105
127	24.31144896				0.396729231	2.75818949	9.81425307	8.18099505
128	24.17977083	1.74957432		0.312804	0.30873151	2.99124293	9.75362999	8.62671404
129	23.75091219	1.63729424			0.38074727	2.96066366	9.70554347	8.79054746
130	25.12962892	1.77055624		0.2696867	0.471584598	2.86611375	9.76336341	8.3521819
131	26.433934	1.77902302	19.2868881	0.30890639	0.51123537	2.94256452	9.7291009	7.97679105
132	24.25275507	1.63381986	18.9251434	0.29735071	0.511508097	2.86907047	9.7465793	8.83951895
133	22.22675882	1.92793237	19.6334561	0.30063567	0.400346666	2.87650618	9.81087721	8.98605993
134	24.82673977	1.80298482			0.331939098	2.92416742	9.78972456	8.45995268
135	24.80280938	1.83331421	18.774635		0.402169923	2.91330967	9.80567269	8.73933381
136	22.75125517	1.86371905	18.8795006		0.356115031	2.94323568	9.81204811	8.86709533
137	22.79386734	1.94339655	18.8549263	0.28882437	0.424988271	2.85809647	9.7483233	8.46305807
138	25.73755895	1.77596607	19.6519746	0.27639642	0.365396769	2.77742712	9.85545731	8.76247599
139	24.29034447	1.6951537	19.5208739	0.28446747	0.322464168	2.94268681	9.83300446	7.93035781
140	23.59736918			0.28481588	0.38227141	2.80078362	9.8009137	8.15283543
141	23.9614213		19.2779254	0.27021653	0.353496533	2.78769522	9.72648291	8.73048806
142	22.97642999	1.87532212	18.9586354	0.30551534	0.350031065	3.01255175	9.731241	8.12664784
143	23.57642197	1.92730755	19.0872147	0.31935832	0.44722558	2.82746242	9.72073259	7.92171636
144	26.44782475	1.81134067		0.286384	0.494510165	2.86868805	9.83894024	8.12024167
145	24.99650074	1.83740696		0.26662199	0.381400831	2.83473897	9.76972026	8.88197977
146	22.71854524	1.73457092	19.4593761	0.31402685	0.320387082	2.80541327	9.70065478	8.62335748
147 148	22.33628995	1.82479567	19.5576941	0.27671017	0.349383437	2.84827702	9.75052247	7.97827931
149	22.02214615 24.53302844	1.63342936 1.80630337	19.6717896 18.8428765	0.28483583	0.514359037 0.468370768	2.85499713 2.85387793	9.85408749 9.83746031	8.60334579 8.39670169
150	22.88393911	1.7053288	18.9924064	0.31043334	0.340379218	2.8232225	9.79742784	8.72317889
151	24.44273527	1.79655097	19.2286305	0.29447325	0.458675353	2.91238785	9.8244692	8.95942585
152	24.29419588	1.6442046		0.30619808	0.393220633	2.76015286	9.84040723	8.76578231
153	24.39447386	1.91468565		0.31781021	0.493849989	2.95798186	9.71466997	7.97278895
154	25.24434966	1.90022033		0.29267493	0.374557436	2.91376507	9.84611063	7.93225995
155	22.23022846	1.76923712		0.28080238	0.465703523	2.84851367	9.81722368	8.56352016
156	25.37796968	1.86100321	19.4675535	0.28298207	0.498645066	2.7944526	9.73601849	8.23017729
157	21.92478304	1.90530054			0.426955143	2.9400853	9.75396325	8.52642501
158	26.00853172	1.87255504		0.3007669	0.460035267	2.93287316	9.70852345	8.11021005
159	23.85958203	1.66219584	19.3856787	0.31067084	0.399783919	2.79839137	9.80062111	8.23030743
160	22.65287278	1.89557533		0.2661289	0.308795896	3.00046349	9.75647931	8.672363
161	24.07648797	1.76384026	18.865513	0.26409465	0.413449811	2.99620853	9.84534687	8.70046084
162	22.54426248	1.70157173		0.31064685	0.445823335	2.94459018	9.78989093	8.23104868
163	22.29123512	1.89204355		0.32021645	0.447834629	2.77590627	9.71895348	8.643995
164	25.74568837	1.88005742		0.27691761	0.330721853	2.95245293	9.72182597	8.78977757
165	23.53019242	1.94672475	19.7427288	0.29855213	0.448839301	3.01248255	9.80684575	8.80428455
166	25.14061045	1.77952281	19.3517478	0.31925561	0.423277923	2.79270531	9.81359953	8.71649638
167	25.65987575	1.89207234		0.30650079	0.474862055	3.00458341	9.76420616	8.55927825
168	22.12610194	1.71307843	19.5848444	0.30746852	0.491209067	2.821095	9.72847416	8.73178539
169	22.06370541	1.78566189		0.28669522	0.333101648	2.8819718	9.70785889	8.81372082
170	23.93317054	1.71955598	19.7361311	0.28313033	0.458036318	2.89447325	9.83932386	8.9825779
171	23.86307083	1.6584825	18.7678365		0.456567671	2.83032803	9.79559458	7.95517114
172	22.83240417	1.71173494		0.30790478	0.401510816	2.92727695	9.70483369	7.92858849
173	24.24101598	1.72302245	19.0959714	0.30411101	0.346664066	2.91736348	9.77770823	8.5758305
174	23.0895996	1.93153965	19.5971636	0.31147536	0.393695182	2.89150561	9.81274801	8.00383917
175	24.19717604			0.29786942	0.519874355	2.88086957	9.79440696	8.16970255
176	23.50108375	1.64225732	18.9304916	0.27675697	0.337854838	2.7684274	9.85296961	7.99743783
177	22.65326167	1.87822231	18.8551181	0.26950644	0.430777927	2.83725342	9.79871844	8.0754797
178	22.36627351	1.83536211	18.9811056	0.3083702	0.441123699	2.89472801	9.85511515	8.52811514
179	26.41846166	1.83485754	19.6971752	0.3176442	0.479021578	2.98504734	9.70337557	8.10038454

180	22.56386974	1.89444156	19.7223649	0.31760692	0.37864732	2.8945273	9.80863445	8.67819212
181	25.86984913	1.91142543	19.461531	0.29895346	0.300581634	2.9404876	9.74071078	8.30095033
182	24.09431387	1.93281033	18.806607	0.266861	0.5021962	2.87998565	9.81105936	8.56899506
183	25.63207215	1.92003247	19.0345581	0.2672202	0.472745699	2.84710094	9.85207987	7.96005019
184	26.20237287	1.88577688	19.4792372	0.29495134	0.475291989	2.98161035	9.71950117	8.03741903
185	24.17704966	1.87875145	19.3581492	0.29026404	0.372402676	2.89731029	9.78431609	8.48786685
186	24.11981647	1.70568768	19.6806947	0.27078602	0.351345496	3.00257177	9.82107446	8.25332072
187	24.65395063	1.84619637	19.6577131	0.31213991	0.508528944	2.96961608	9.81422917	8.87235088
188	26.21219861	1.89132544	19.4147609	0.28458071	0.388853797	2.88743883	9.85532929	8.8201595
189	22.38876892	1.77820563	19.334631	0.29143431	0.499520783	2.75155314	9.85249543	8.98826033
190	24.46434224	1.64259072			0.373345949	2.7665321	9.82129163	8.4122702
191	24.71608821	1.81662623	19.2902516	0.31380951	0.499877789	2.9172241	9.77197913	8.55039021
192	24.40491863	1.626067	18.8841246	0.29058223	0.500269833	2.84972802	9.83666449	8.73926067
193	23.4694884	1.66645258	19.069921	0.28757801	0.406652024	2.84727556	9.85198669	8.07110295
194	25.71739306	1.93770967	19.2697897	0.26550349	0.406007801	2.92604585	9.83665927	8.08992822
195	23.39668766	1.63327402	19.1971982	0.29168341	0.34344735	2.9945123	9.74143015	8.42467372
196	24.61073912	1.86124101	19.4339893	0.28080963	0.418635197	3.01018228	9.83537733	8.24440865
197	26.03929086	1.78883327	19.4539693		0.502170594	2.93641927	9.77794588	8.13769034
198	22.95461034	1.65624506	19.6901593	0.31222439	0.475444013	2.91546487	9.7145473	8.34902001
199								
	25.28171709	1.86319426	19.3804031	0.29113854	0.467805923	2.76103077	9.75465767	8.3952268
200	22.55171008	1.75976668		0.30129463	0.396112806	2.89440185	9.82695296	8.59428677
201	25.79700364	1.84978694	19.55637	0.30919732	0.514068588	2.76451642	9.83936632	8.11896246
202	22.1875069	1.85786771		0.26363736	0.316677297	2.96382144	9.81879565	8.47352337
203	22.7591311	1.7593608			0.485622041	2.76972726	9.80656828	8.50737336
204	22.57345275	1.67967142	19.2778359	0.28924069	0.415008655	2.84966616	9.77500812	8.69728239
205	23.54158173	1.64693919	19.7237002	0.30896315	0.498864538	2.9653356	9.85653759	8.84452267
206	24.57168503	1.93192913		0.28456143	0.404657903	2.85825167	9.84731548	8.62085637
207	26.11416226	1.90390777	19.4287279	0.29535148	0.327040521	2.83079119	9.77814186	8.6652165
208	24.58534754	1.90525199	18.8550336	0.28345614	0.515425554	2.86439503	9.74712409	8.34873579
209	26.56822822	1.93685414	19.5836661	0.29934454	0.517508827	2.81325613	9.76916724	8.76779284
210	22.73116788	1.70246425	19.281898	0.30780027	0.346125689	2.9905724	9.85432678	8.76437061
211	22.39060736	1.70181049	18.838	0.26287708	0.305470388	2.77603334	9.83319414	8.99552916
212	24.15958255	1.64977332		0.28102736	0.365606447	2.7934862	9.82482547	8.57717707
213	24.82884048	1.65090472	18.8125129	0.31920541	0.459846467	3.00665486	9.78543635	7.99322899
214	26.67744296	1.80537148		0.29597154	0.500753502	2.7513165	9.73356638	8.87930389
215	24.33569353	1.81393117	18.9824482	0.2722914	0.462554705	2.79486084	9.7016674	8.89405186
216	23.19552772	1.68131158	19.1112624	0.29333438	0.341989439	2.81798905	9.82567957	8.61028376
217	25.19905295	1.74115188	18.7871964	0.28463841	0.502275895	2.88968074	9.8322384	8.85438238
218	24.37125946	1.83435889	19.545265	0.31682842	0.407163135	2.82792926	9.86330394	8.62238574
219	26.07655316	1.72339281		0.28525911	0.459999183	2.85232886	9.81589906	8.29531374
220	23.21841059	1.72457902	18.8751772	0.28503615	0.456852274	2.81866971	9.7707713	8.23238648
221	26.11007641	1.82675473	19.4538668	0.30532944	0.337571627	3.00711388	9.80392762	8.81602928
222	25.62376015	1.72379364	19.7080197	0.26637396	0.345805163	2.87198057	9.71884696	8.06443101
223	25.38034869	1.91443059	19.2274196	0.31364196	0.424887926	2.78667331	9.72297218	8.23120698
224	25.33784229	1.93072698	18.8098831	0.30625411	0.327550828	2.81265894	9.83250104	8.07001636
225	22.85677254	1.76367689	19.3304894	0.31919699	0.337184496	2.82033294	9.78004865	8.65916867
226	26.46635388	1.69933614		0.27426232	0.495881851	2.91823082	9.71887138	8.99288581
227	23.38001796	1.65710702	19.4421675	0.30723044	0.400352353	2.90576652	9.72111713	8.08459014
228	23.01250905	1.87057503	19.1568456	0.30775346	0.488468736	2.952407	9.78937901	8.93862367
229	26.01813057	1.85536022	19.2217569	0.28263244	0.489474772	2.75093809	9.79971652	7.9044026
230	26.39938405	1.88958414	19.0189752	0.3133426	0.334480987	2.90847957	9.81720445	8.65312208
231	22.03029026	1.68979802	19.5275575	0.29765935	0.337602335	2.89095264	9.79356069	8.33254374
232	26.01496577	1.87525035		0.26377412	0.348942637	3.00531128	9.70532308	8.88603247
233	24.92517283	1.67378206	19.1937749	0.30971561	0.331114389	2.91040091	9.76914884	8.90800771
234	24.08064621	1.89402452	19.5659119	0.30909072	0.421324586	2.85877413	9.81555669	8.90649932
235	21.89089227	1.94029938	18.7723918	0.31393714	0.407271317	2.9749065	9.81231216	8.8453268
236	22.30207384	1.81417353	19.7443953	0.26969204	0.495733041	2.82732632	9.77648013	8.24364879
237	23.7940493	1.87168516		0.29550647	0.484448126	2.77632163	9.70761922	8.86600286
238	23.35839046	1.8310448		0.30171294	0.377373527	2.96679709	9.85405513	8.52311576
239	23.06782335	1.85662919	19.0344755	0.28246908	0.520704874	2.84962202	9.83766108	7.95160531
240	23.72566606	1.7536221	19.1066281	0.31105031	0.325957642	2.89938913	9.80627046	8.18065156
241	22.59635466	1./3515938	19.051215	0.28430951	0.438529481	2.90893877	9.75982644	8.94213717

	242	24.83073963	1.63289633	19.3066637	0.30924367	0.363398988	2.76031207	9.81478081	8.08189855
	243	22.45243601	1.7087092	18.7945769	0.31047984	0.323331451	2.82432683	9.8178893	8.98976821
	244	26.5610672	1.79999867	19.0354079	0.26464464	0.420820892	2.91870836	9.7253725	8.57659422
	245	25.34453632	1.83027001	18.7951772	0.3182784	0.315744513	2.94936526	9.76006169	8.4003032
	246	25.14239992	1.91125034			0.371756377	2.86722827	9.82001763	8.0474318
	247	24.78612834	1.7636469			0.42476311	2.76227891	9.76066195	8.02696749
	248	25.6556341	1.69858424	19.3892317	0.31499968	0.332944971	2.92357488	9.81875132	8.19300523
	249	23.66242262	1.75251047	19.5710933	0.28408039	0.510992235	2.76391482	9.74871529	8.07207572
	250	24.28325012	1.90969581	18.8847437	0.27049296	0.343721533	2.75498633	9.83490423	8.47762496
	251	25.94847278	1.8179932	19.7229067	0.26581795	0.366453798	2.84169494	9.73316155	7.98067333
	252	24.07172099	1.73562935			0.312828006	2.78847666	9.83887697	8.52929539
	253	23.10975692	1.64057368		0.28801295	0.358251976	2.80272793	9.79988285	8.186792
	254	24.75464469	1.78305006		0.30473772	0.437861567	2.83574973	9.74780024	8.46897699
	255	26.59005474	1.94840871	18.8175628	0.30894281	0.500784778	2.96843582	9.8113096	8.86647241
-	256	26.59130328	1.70123657		0.30517626	0.504095243	2.98236213	9.8330691	8.41317528
	257	21.83638947	1.85354324		0.30405813	0.397048387	2.86750668	9.81106019	8.23742347
-	258	21.76785215	1.85678852	19.6357024	0.30729618	0.489173686	2.81545597	9.73029356	8.64222619
-	259	26.5998364	1.94228734		0.30729618	0.436114979	2.82196956	9.77672114	8.79347889
-	260		1.76092087	19.1892506	0.26757676	0.422019484	2.99892721	9.7325479	8.49555612
	261	26.32904677					2.98019687		
-		24.31401554	1.91284222	19.4668827	0.3139877	0.464169959		9.81474225	8.74349949
-	262	26.02802031	1.78333923			0.51723287	2.90608849	9.75413322	8.27465406
-	263	26.1317261	1.79131482	19.314728	0.30602567	0.445564863	2.96766968	9.7946298	8.73822914
-	264	25.28423766	1.93021375		0.31303816	0.327610758	2.84210634	9.76340455	8.71972288
-	265	24.57509909	1.84143579			0.521003684	2.9906191	9.79993714	8.4982985
-	266	21.9075667	1.7143323		0.3111939	0.407249381	2.95352417	9.80690161	8.85795427
-	267	25.41393721	1.72102844		0.27105092	0.400588536	2.96698511	9.72224221	8.27289343
-	268	23.50529398	1.68039325		0.2622345	0.411520185	2.9272698	9.71371196	8.30472445
-	269	25.98938706	1.66174403	19.104807	0.30609537	0.485271289	2.76214076	9.76521121	8.24869233
	270	24.4604995	1.68405574		0.27908182	0.350568498	2.90711747	9.70417102	8.52758975
	271 272	22.84242516	1.78199641	19.2034543		0.404210953	2.95072461	9.86471338	8.4440907
-		22.11531199	1.91648753	19.1787782	0.27515645	0.352189046	2.94149883	9.83936265	8.95325616
-	273	25.48678875	1.83990094		0.30463485	0.434517912	2.91019126	9.83028506	8.37918705
-	274	24.48394972	1.94958615		0.31634213	0.434063424	2.76434427	9.83672431	8.27478817
-	275	22.44607663	1.80384067	19.067545	0.31010744	0.489807468	2.78319265	9.84574951	8.87598151
-	276	23.70344331	1.85106852	19.4041213		0.444783714	3.01241695	9.79659247	8.79247898
-	277 278	23.1693832	1.72260134			0.419208401	2.93511662	9.70528224	8.50760734
-		26.57976393	1.88474808		0.30658442	0.466030836	2.7552843	9.86154622	7.99126131
-	279	26.07927485	1.82108583		0.27311528	0.303852744	2.80514163	9.81089621	8.80038946
-	280	26.56610484	1.68135514		0.31700481	0.330290745	2.81267112	9.84692828	8.45205547
-	281	22.51346357	1.6990428		0.31938036	0.330305225	2.80506959	9.78389646	8.75042854
-	282	25.60775414	1.9194398		0.27545468	0.505821177	2.94549448	9.86266913	8.84415367
-	283	23.16068604	1.71163506		0.31423796	0.330431018	2.94516152	9.81023238	8.72116186
-	284	22.17499453	1.82138456	19.6528816	0.30079795	0.307469227	2.97140612	9.79960611	8.26020509
-	285	25.0247853	1.70901266		0.30809582	0.366563459	2.81942253	9.85102007	8.87975501
-	286	23.83133121	1.86222362		0.26813881	0.416627488	2.98427808	9.85329163	8.51026484
-	287 288	25.2204134 23.42088843	1.89864418 1.81535251	19.5398418 19.4370384	0.31228907	0.334663226	2.94916558 2.87130229	9.70211818 9.78508891	8.61955217 8.56740246
-						0.5046018			
-	289	26.35300959	1.91867978	18.9839626	0.26806072	0.516478028	2.8127752	9.77466154	8.82643386
-	290	22.3988079	1.83075468		0.28961781	0.415018377	2.80553901	9.79794692	8.13958989
-	291	24.75924106	1.83677004		0.29117777	0.505579229	2.96898415	9.78527928	8.2020775
-	292	21.72128455	1.93515005	19.3330596	0.31481223	0.42035449	2.86247353	9.81681201	8.18634732
-	293	22.17047606	1.67668927	19.6760261	0.28928088	0.415286482	2.79472553	9.78752927	8.14867304
-	294	23.18297427	1.77993928		0.27655333	0.421448931	2.92269821	9.85060288	8.78029415
-	295 296	22.11999738	1.89509733		0.30686535	0.317778209	2.93421327	9.7822835	8.92300333
-		23.09577095	1.94642439	19.3359797	0.30268787	0.434876952	2.75782786	9.84116588	8.41236994
-	297	24.72939323	1.65000905		0.31289952	0.388564552	2.89028323	9.79480765	8.20083619
-	298	24.14160099	1.92721738		0.27348555	0.497809248	2.92491074	9.85660919	8.89891842
-	299	21.88769885	1.91679235		0.28785128	0.315343034	2.99648059	9.7510522	8.49761542
-	300	25.34879425	1.66723612			0.338788288	2.75156025	9.75585422	8.09205231
-	301	25.25563282 23.07133961	1.69938634 1.67699614	18.9309867 18.8025725	0.27242208	0.481060645 0.402348493	2.76958713 2.79019602	9.70089165 9.82769551	8.06294287 8.62536245
-	302								
	3U3	24.1000083	1.86351021	10.91/1032	0.30529909	0.410904628	2.97442494	9.73243865	8.92219883

304	23.63839784	1.7518693	18.786145	0.26968502	0.407028551	2.98238796	9.826003	8.51845706
305	25.52109804	1.66530974	19.3764524	0.32125724	0.396733604	2.95965768	9.74756848	8.53804829
306	24.89248186	1.68319068	19.4267263	0.27330014	0.497428632	2.90758612	9.72128016	7.95636837
307	25.92095403	1.71469445	18.8464688	0.28311902	0.37269756	2.75706741	9.75219381	8.6585041
308	24.96676332	1.81808971	19.4433221	0.27144076	0.410968806	2.91231844	9.72357748	7.95037729
309	23.83820685	1.85619388	19.1659078	0.30506791	0.304583638	2.83437079	9.78663112	8.88619932
310	23.32144308		18.8122868	0.32119118	0.342828536	2.80058141	9.79851908	8.8359388
311	24.52603511	1.75362423	19.10731	0.3140991	0.346412732	3.00395646	9.79882563	8.6518339
312	21.76017411	1.82226067	19.6782738	0.28848877	0.366567418	2.97314889	9.8076933	8.22471152
313	23.81670288		19.4078445	0.31477851	0.336722539	3.00834029	9.85303772	8.10159949
314	21.89778614	1.8130847	19.3261912	0.29708065	0.485674831	2.79683758	9.73287813	8.16373418
315	25.67846185	1.74785869	19.4327377	0.30259979	0.337060654	2.94924636	9.76048802	8.98185986
316	22.97178948	1.86784059	18.8598225	0.28143808	0.445436409	2.81007005	9.84984618	8.12902093
317	23.79500393	1.68800568	19.0585359	0.30026224	0.460023517	2.7901662	9.71128072	8.24573817
318	24.40120119	1.69416357	18.8924771	0.27657788	0.320321367	2.89106859	9.77686629	8.90997367
319	25.52169003	1.74899014	19.726732	0.31774354	0.436374625	2.87922872	9.84141823	8.19170656
320	24.93134337	1.66443603		0.30770499	0.457844078	2.83477561	9.77578739	8.22242231
321	24.94327833	1.67550852	18.8924827	0.27547975	0.461118831	2.93371138	9.81801212	8.07730284
322	23.91011561	1.76689408	19.0714599	0.31200073	0.36190071	2.96484059	9.84306983	8.4225663
323	22.28877258	1.71371353	19.5562264	0.27939219	0.326577895	2.83211863	9.85201085	8.91911912
324						2.9089728	9.82730619	
	22.61332815	1.77658759	19.384738	0.28190555	0.354230812			8.17079397
325	24.03031764	1.64563101	18.9784215	0.282139	0.394456732	2.94098621	9.85981885	8.57775422
326	24.29783822	1.88149952	19.6536789	0.29333655	0.388682361	2.94262762	9.7521244	8.63651302
327	26.21205273	1.79911897	18.9254306	0.30705713	0.42491812	2.99993527	9.84587834	8.07576159
328	21.74645755	1.66597348	19.4116067	0.26658534	0.315587341	2.93718209	9.82890605	8.85991218
329	24.81648921	1.8897142	18.7601778	0.26982445	0.382377993	2.80998231	9.71011008	8.43567082
330	22.24020149		19.4584014	0.28165223	0.420830467	2.94537494	9.86025732	7.90155815
331	26.2600197	1.8592806	19.240478	0.27377777	0.414556279	2.78477338	9.74172343	8.73839072
332	23.9758371	1.77837319		0.27173953	0.30282076	2.84708701	9.703711	8.29506287
333	24.05393752	1.76629656		0.2986175	0.393882795	2.94052032	9.83889834	8.01665283
334	26.60714539	1.66440376	19.5638484	0.31295703	0.343548505	2.86809505	9.75333392	8.57804519
335	25.77033385	1.91835798	19.2626351	0.29059043	0.320597412	2.75959464	9.72567867	8.56390812
336	25.54816317	1.88255804	19.0023991	0.28078757	0.503098096	2.99985023	9.8104716	8.00441972
337	24.88541417	1.832009	19.0112683	0.26689879	0.300249166	2.7626551	9.7448986	8.60295425
338	25.75274201	1.68985939		0.30066821	0.492579593	2.93556213	9.76323231	8.60938642
339	23.16504708	1.8550669	19.7408773	0.29823909	0.300636416	2.79228138	9.7772077	7.99311852
340	25.98657838	1.85218732	19.1767151	0.30646652	0.317513997	2.7849858	9.75215254	8.97454085
341	23.91713969	1.73883595	19.1763756	0.28016457	0.350148556	2.87111273	9.80680195	8.70823877
342	24.79483699	1.6688391	18.8798504	0.30292895	0.377707853	2.99492717	9.8479893	8.51056941
343	26.45779453	1.94261097	19.3644464	0.30246822	0.507624602	2.78830377	9.77337496	8.76604949
344	23.94218352	1.8250127	19.1611436	0.28119449	0.446287172	2.92974633	9.71919021	8.11729789
345	26.52793228	1.64795314	19.5180803	0.30541834	0.343735975	2.80295856	9.81926641	8.63736043
346	25.91558003	1.74787755	19.5428895	0.29430944	0.361656316	2.98396155	9.72175669	8.72471883
347	22.355174	1.74330559	19.5428566	0.26317234	0.402880736	2.77945422	9.82473441	8.925914
348	22.69754431	1.64248323	19.1304049	0.31899711	0.30128866	2.88458151	9.72399837	8.07450707
349	22.95663321	1.71182833	19.4001861	0.32143314	0.41174221	2.85052084	9.72925102	8.95661461
350	22.71281675	1.78831011	19.65435	0.27283187	0.411988069	2.92046497	9.78434636	8.00159701
351	23.80728562	1.69546602	19.0046444	0.29970203	0.351169997	2.78193956	9.82660682	7.95918121
352	22.96235406	1.84066903	19.0609914	0.28919959	0.511666469	2.76355807	9.76133902	8.51435181
353	23.09757343	1.81855942	19.2977858	0.31901277	0.469325882	2.94859483	9.80693637	8.066849
354	23.67266001	1.93308891	18.8488127	0.31765223	0.305275189	2.88392978	9.75810609	8.74970999
355	22.28442901	1.87547538		0.28940146	0.497960006	2.90000943	9.78605208	8.17454798
356	26.27896111	1.71242799	19.2843875	0.29745164	0.341088904	2.93413802	9.81384807	8.91031421
357	22.95919266	1.77650679	19.0719533	0.29176241	0.491979335	2.80549263	9.81391246	8.49137197
358	23.1641075	1.82325289	19.2734571	0.31007136	0.505296471	2.77821276	9.85781188	8.26823383
359	23.34597842	1.93902686	19.0099985	0.2697525	0.30218257	2.87493512	9.72433572	8.34356955
360	23.83094748	1.80673961	19.3005497	0.29035007	0.485337097	2.97742804	9.79631601	8.78924851
361	23.91742329	1.82549483	19.0716038	0.31783902	0.412194246	2.80527505	9.83012249	8.29752729
362	23.59170942	1.6354614	19.0584492	0.2878843	0.48319557	2.9533239	9.72575228	7.91024082
363	24.53256527	1.74876402	19.5044448	0.3189449	0.424429721	2.7715991	9.85688627	8.40859796
364	22.52543659	1.83519904	19.2401354	0.28298198	0.444146644	2.88541358	9.827821	8.82850376
365	26.52531735	1.69130679	19.348419	0.26242858	0.413960503	2.91805661	9.71566805	8.12969861

366	25.59025686	1.66788338	19.4993294	0.31908494	0.393408629	2.94305944	9.70289248	7.98412735
367	25.22992468	1.6282592	19.4305611	0.30931061	0.371654829	2.79003645	9.85060468	8.25489276
368	24.27963583	1.74413749	19.5815563	0.28913615	0.458675155	2.88573302	9.84663717	8.38410232
369	25.43976904	1.8155677	18.944453	0.28179931	0.398944343	2.75479256	9.72831037	8.02063175
370	24.99471754	1.77688287	19.6018724	0.30440053	0.426728789	2.94571705	9.71465375	8.34265754
371	22.30662704	1.79153341	19.0456828	0.26766145	0.36824999	2.86821272	9.78892569	8.77072443
372	24.42949416	1.8331104	19.5729769	0.2890061	0.470961895	2.95121129	9.8615837	8.21444963
373	26.65388125	1.82916176	19.7348959	0.26258045	0.395658172	2.99128586	9.83605945	7.9161562
374	25.84985461		19.742388		0.415480824	2.87021975	9.85743641	8.8379282
375	22.98884449	1.735433	19.7320134	0.31296758	0.34724113	2.8199109	9.77254572	7.97099153
376	26.16962802	1.64923858	19.1961378		0.436836493	2.81166048	9.7097666	8.13181932
377	26.27065259	1.93812331	19.3591591	0.27881338	0.310459745	2.93822469	9.83770972	8.85820168
378	22.0636764	1.79458961	19.4066891	0.27196035	0.485988308	2.93258975	9.83609583	8.59285862
379	24.58445153	1.66821146	18.8141439	0.27130642	0.427487324	2.96182105	9.76224689	7.91129132
380	22.85029391	1.83514616	19.2740531	0.27763419	0.477807052	2.97443194	9.85021775	8.57753523
381	23.00158399		19.4477734	0.26283369	0.32146337	3.00282313	9.79418288	8.17445603
382	24.72440731	1.73080653	19.4521308		0.320769595	2.97193569	9.74696339	7.98091671
383	26.42462434	1.90693435	19.1855872	0.2899266	0.441257152	2.84097089	9.73485395	8.031517
384	24.45509103	1.74922406	19.7483251	0.31025258	0.351400337	2.92110345	9.73208561	8.90168437
385	24.45476819	1.69686538	19.5053728	0.27519258	0.434745541	2.98026367	9.81772994	8.26943554
386	25.93376495	1.85518087	19.0432926	0.26515242	0.437893794	2.76394471	9.84171798	8.24226818
387	24.58613758	1.67655189	19.6197881	0.29794459	0.318680629	2.76272562	9.80865401	8.78992794
388	22.14721532	1.91268604	19.0137449	0.2994517	0.396181553	2.78536873	9.70661047	8.23306124
389	23.36914164	1.94229889	19.640047	0.26385466	0.448030248	2.77131842	9.77996445	8.27951758
390	24.73194325	1.83917294	19.1553907	0.30478027	0.308020709	2.92946448	9.72326547	8.68364051
391	21.78636281	1.62627593	18.940671	0.3157252	0.461828031	2.78993488	9.75252037	8.95707556
392	25.70994169	1.66622395	19.5255846	0.27156056	0.495489835	2.96036983	9.86487497	8.09123004
393	24.65281427	1.63830061	19.0011869	0.29212216	0.323055193	2.94539512	9.74228837	8.69482805
394	25.24523402	1.64238582	18.9793294	0.26452528	0.308048723	2.93307177	9.74564364	8.59609282
395	26.61407522	1.73045839	19.3874967	0.26573246	0.490025817	2.78141186	9.82115424	8.18873776
396	26.10181982	1.62479868	19.166604	0.29293349	0.428392625	2.9084932	9.72066952	8.95460224
397	26.4390901	1.87276089	19.219623	0.31769698	0.388226276	2.97509009	9.76039573	8.84431832
398	23.8869706	1.72742709	19.2002051	0.26583472	0.518796081	2.83924796	9.86212565	8.23868336
399	25.57824257	1.70153886	19.4656872	0.302557	0.458310068	2.80538851	9.78614347	8.60283868
400	26.01430623	1.75409418	18.8153724	0.26344892	0.371102164	2.91408152	9.75473358	8.6126613
Promedio:	24.2886	1.7859	19.2662	0.2929	0.4098	2.8834	9.7873	8.4527

RESUMEN: HUELLA DEL CARBONO POR LA CONSTRUCCIÓN DE UNA VIVIENDA UNIFAMILIAR DE ADOBE

LUGAR : AUCALLAMA - HUARAL - LIMA

Item	Partida	Und.	Metrado	HC Unit (kgCO2eq/und)	HC Parcial (kg CO2 eq)	Desv. Stand (kg CO2 eq)
01	OBRAS PRELIMINARES					
01.01	LIMPIEZA DEL TERRENO MANUAL	m2	82.84	0.03	2.73	
01.02	TRAZO Y REPLANTEO INICAL	m2	84.84	4.26	361.48	5.89
02	ESTRUCTURAS					
02.01	MOVIMIENTO DE TIERRAS					
02.01.01	EXCAVACION MANUAL DE ZANJAS PARA CIMIENTOS	m3	22.99	2.75	63.15	
02.01.02	ACARREO DE MATERIAL EXCEDENTE MANUAL	m3	22.99	2.06	47.36	
02.02	CIMENTACION					
02.02.01	CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CO	m3	22.99	172.22	3959.43	114.07
02.03	SOBRE CIMENTACION					
02.03.01	ENCOFRADO Y DESENCOFRADO EN SOBRE CIMIENT	m2	38.32	13.06	500.42	3.66
02.03.02	CONCRETO C:H = 1:8 + 25% P.M. PARA SOBRECIMIEN	m3	7.66	181.91	1393.40	41.29
03	ARQUITECTURA					
03.01	ALBAÑILERIA					
03.01.01	MUROS CABEZA CON ADOBE 0.40X0.20M	m2	118.96	8.78	1044.27	8.42
03.01.02	DINTEL PARA VANOS DE EUCALIPTO DE 4"	m	7.10	61.38	435.77	3.32
03.02	REVOQUES Y ENLUCIDOS					
03.02.01	TARRAJEO MUROS DE ADOBE	m2	162.69	12.63	2054.72	55.40
03.03	PISOS					
03.03.01	FALSO PISO DE 4" DE CONCRETO C:H = 1:10	m3	4.29	35.74	153.34	3.03
03.04	PINTURAS					
03.04.01	PINTURA EN MUROS INTERIORES	m2	162.69	3.91	636.02	20.74
03.04.02	PINTURA EN MUROS EXTERIORES	m2	11.21	3.91	43.82	1.43
03.05	CUBIERTAS					
03.05.01	VIGA DE MADERA DE 2" X 7"	m	56.20	15.25	857.28	6.13
03.05.02	CAÑA CHANCADA DE e=1"	m2	82.84	15.98	1323.79	47.55
03.05.03	TORTA DE BARRO DE e=2"	m2	82.84	1.92	159.26	0.64
03.06	CARPINTERIA DE MADERA					
03.06.01	PUERTA PRINCIPAL DE 1.00 X 2.20 M	und	1.00	153.75	153.75	1.19
03.06.02	PUERTAS INTERIORES	und	4.00	140.56	562.23	4.36
				HC Total (kgCO2)	13,752.23	225.52

HUELLA DE CARBONO UNITARIO

HC Mat : Huella del Carbono por producción de insumos (kg CO2 / und)
HC Logist : Huella del Carbono por transporte de insumos (kg CO2 / und)
HC Obra : Huella del Carbono por ejecución de obra (kg CO2 / und)

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	0.0320	0.000	0.000	0.033	0.0330
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOTAL (kg CO2 /m2)			0.03

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0533	0.000	0.000	0.055	0.0549
Peón	hh	0.0533	0.000	0.000	0.055	0.0549
Acero Corrugado fy= 4200 kg/cm2	kg	0.0100	1.786	4.393	0.000	0.0618
Cal Hidratada bolsa 25kg	bol	0.0200	19.266	185.192	0.000	4.0892
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	TOTAL (kg CO2 /m2)			4.26		

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTO / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	3.3333	0.000	0.000	2.747	2.7467
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	2.75		

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	2.0000	0.000	0.000	2.060	2.0600
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOTAL (kg CO2 /m3)			2.06

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Peón	hh	2.2222	0.000	0.000	2.289	2.2889
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577
Piedra Grande de 8"	m3	0.4500	0.180	18.270	0.000	8.3025
Hormigón	m3	0.9500	0.340	20.880	0.000	20.1585
Cemento Portland Tipo I (42kg)	bol	3.5000	24.289	14.697	0.000	136.4504
Agua	m3	0.1500	0.149	16.240	0.000	2.4584
Mezcladora de Concreto 11p3 - 18HP	hm	0.4444	0.000	0.000	2.682	1.1919
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
		-	TOTAL (kg CO2 /m3)			172.22

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Alambre Negro Recocido N° 8	kg	0.2600	0.045	4.393	0.000	1.1540
Clavos para madera con cabeza 3/4"	kg	0.1300	0.074	4.393	0.000	0.5808
Madera Tornillo inc. corte p/enconf	p2	3.5000	0.301	2.542	0.000	9.9507
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOTAL (kg CO2 /m2)			13.06

02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial	
Operario	hh	1.0000	0.000	0.000	0.916	0.9156	
Peón	hh	2.5000	0.000	0.000	2.289	2.2889	
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577	
Piedra Mediana de 6"	m3	0.4200	0.180	18.270	0.000	7.7490	
Hormigón	m3	0.9000	0.340	20.880	0.000	19.0975	
Cemento Portland Tipo I (42.5kg)	bol	3.8000	24.289	14.697	0.000	148.1462	
Agua	m3	0.1800	0.149	16.240	0.000	2.9500	
Mezcladora de Concreto 11p3 - 18HP	hm	0.5000	0.000	0.000	0.604	0.3018	
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000	
				TOTAL (kg CO2 /m3)			

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.0000	0.000	0.000	1.030	1.0300
Peón	hh	0.5000	0.000	0.000	0.515	0.5150
Tierra de Chacra	m3	0.0800	1.185	15.660	0.000	1.3475
Adobe .40 x .20 x .10	und	50.0000	0.023	0.047	0.000	3.4719
Caña Brava	m	12.1500	0.026	0.146	0.000	2.0862
Agua	m3	0.0200	0.149	16.240	0.000	0.3278
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	TOTAL (kg CO2 /m2)		

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" / UND: M

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial	
Operario	hh	0.2000	0.000	0.000	0.206	0.2060	
Peón	hh	0.2000	0.000	0.000	0.206	0.2060	
Madera de Eucalipto de 4"	m	1.0000	6.463	54.500	0.000	60.9635	
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000	
				TOTAL (kg CO2 /m)			

03.02.01 TARRAJEO EN MUROS DE ADOBE / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Peón	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Fina	m3	0.0300	0.361	20.880	0.000	0.6372
Cemento Portland Tipo I (42.5 kg)	bol	0.2400	24.289	14.697	0.000	9.3566
Agua	m3	0.0100	0.149	16.240	0.000	0.1639
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	-		TOT	AL (kg CO2/	m2)	12.63

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	6.6667	0.000	0.000	6.867	6.8667
Operador de Equipo Liviano	hh	1.3333	0.000	0.000	1.373	1.3733
Hormigón	m3	0.1300	0.340	20.880	0.000	2.7585
Cemento Portland Tipo I (42.5 kg)	bol	0.5000	24.289	14.697	0.000	19.4929
Agua	m3	0.0200	0.149	16.240	0.000	0.3278
Mezcladora de Concreto 11p3 - 18HP	hm	1.3333	0.000	0.000	0.604	0.8047
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2/	m3)	35.74

03.04.01 PINTURA EN MUROS INTERIORES / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial

Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Latex Supermate	gal	0.0400	0.000	19.369	0.000	0.7748
Imprimante	gal	0.1300	0.000	21.232	0.000	2.7601
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
	•	•	TOT	AL (kg CO2 /	m2)	3.91

03.04.02 PINTURA EN MUROS EXTERIORES / UND: M2

Material	und	Cant.	HC Mat	HC Logist HC Obra		HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Latex Supermate	gal	0.0400	0.000	19.369	0.000	0.77477
Imprimante	gal	0.1300	0.000	21.232	0.000	2.76010
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.00000
	•		TOT	AL (kg CO2 /	m2)	3.91

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" / UND: M

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.3333	0.000	0.000	0.343	0.3433
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Madera de 2" x 7"	m	1.0000	1.508	12.716	0.000	14.2242
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	TO	15.25				

03.05.02 CAÑA CHANCADA DE e=1" / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.103	0.1030
Peón	hh	0.4000	0.000	0.000	0.206	0.2060
Alambre negro recocido N° 8	kg	0.2000	0.045	4.393	0.000	0.8877
Clavos	kg	0.1500	0.074	4.393	0.000	0.6701
Caña Chancada de 1"	m2	1.0500	0.300	13.141	0.000	14.1133
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2 /	m2)	15.98

03.05.03 TORTA DE BARRO DE e=2" / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial	
Operario	hh	0.2000	0.000	0.000	0.082	0.0824	
Peón	hh	0.4000	0.000	0.000	0.165	0.1648	
Tierra	m3	0.0800	1.185	15.660	0.000	1.3475	
Agua	m3	0.0200	0.149	16.240	0.000	0.3278	
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000	
		-	TOT	AL (kg CO2/	m2)	1.92	

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.074	4.393	0.000	2.9039
Madera Cedro	p2	23.6806	0.562	4.743	0.000	125.6271
Bisagra de Fierro de 2"	par	3.0000	0.000	4.393	0.000	13.1796
Barniz Marino	gal	0.3000	0.000	12.680	0.000	3.8040
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
		-	TOT	AL (kg CO2/	und)	153.75

03.06.02 PUERTAS INTERIORES / UND: UND

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200

Clavos	kg	0.6500	0.074	4.393	0.000	2.9039
Madera Cedro	p2	21.3125	0.562	4.743	0.000	113.0642
Bisagra de Fierro de 2"	par	3.0000	0.000	4.393	0.000	13.1796
Barniz Marino	gal	0.2500	0.000	12.680	0.000	3.1700
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	140.56		

HUELLA DEL CARBONO POR PRODUCCIÓN DE INSUMOS

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

Solo Herramientas Manuales

PROCESO	Equipos y Herramientas					Mano de Obra				Parcial	1
	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
	hm	0.00		0.00	0.00	hh	0	1.03	0.000	0.000	
									PARCIAL	0.000	k

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

Acero Corrugado fy= 4200 kg/cm2 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid Metrado Kg CO2 / hh Kg						Kg CO2	Kg CO2	
									110 B	4 700

HC Prom. 1.786 kg CO2 / kg

2 Cal Hidratada bolsa 25kg /und: bol

PROCESO			Equipos y Herramientas					Parcial	1		
PROCESO	Unid. Metrado Equipo			Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	l
		4, 1, 1									
								HC Prom.	19.266	kç	

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTO (/ UND: M3

Solo Herramientas Manuales

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid. Metrado Equipo			Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	hm	0		0.00	0.00	hh	0	1.03	0.000	0.000
									PARCIAL	0.000

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

Solo Herramientas Manuales

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
FROCESO	Unid. Metrado Equipo			Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
								1.03	0.000	0.000]
					•			PARCIAL	0.000]	

Piedra Grande de 8" / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Selección y Acarreo	hm	0.08	Herramientas Manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082	
Extracción de cantera	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098	
	-					-	•	•	HC Prom.	0.180	k

2 Hormigón / und: m3

PROCESO			Equipos y Herramientas					Parcial		
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
						•	•		PARCIAL	0.340

3 Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
FROCESO	Unid.	Unid. Metrado Equipo F			Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	l
]
									HC Prom.	24.289	kg CO

Agua / und: m3

PROCESO			Equipos y Herramientas					Parcial		
PROCESO	Unid.	Unid. Metrado Equipo			Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
					-	•		PARCIAL	0.149	

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO / UND: M2

Alambre Negro Recocido N° 8 / und: kg

PROCESO			Equipos y Herramientas					Parcial			
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Trefilado	hm	0.002	Maquina Trefiladora	22.54	0.05	hh	0.00	1.03	0.000	0.045	
									HC Prom.	0.045	kg (

2 Clavos para madera con cabeza 3/4" / und: kg

PROCESO			Equipos y Herramientas					Parcial	1		
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.54	0.05	hh	0.00	1.03	0.000	0.045	1
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029	1
	•		•				•	•	HC Prom.	0.074]

3 Madera Tornillo inc. corte p/enconf / und: p2

PROCESO			Equipos y Herramientas	Equipos y Herramientas						Parcial	1
PROCESO	Unid. Metrado Equipo			Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
									HC Prom.	0.301	kg

02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA CIMIENTO / UND: M3

Piedra Mediana de 6" / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo en Cantera	hm	0.08	Herramientas Manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.000	1.03	0.000	0.098
							•		HC Prom.	0.180

kg CO2 / m3

2 Hormigón / und: m3

		Equipos y Herramientas				Mano	de Obra		Parcial
Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
	hm	hm 0.08	Unid. Metrado Equipo hm 0.08 Herramientas manuales	hm 0.08 Herramientas manuales 0.00	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 hm 0.08 Herramientas manuales 0.00 0.00	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid hm 0.08 Herramientas manuales 0.00 0.00 hh	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid Metrado hm 0.08 Herramientas manuales 0.00 0.00 hh 0.08	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid Metrado Kg CO2 / hh hm 0.08 Herramientas manuales 0.00 0.00 hh 0.08 1.03	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid Metrado Kg CO2 / hh Kg CO2 hm 0.08 Herramientas manuales 0.00 0.00 hh 0.08 1.03 0.082

PARCIAL **0.340** kg CO2 / m3

3 Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2		
									HC Brom	24 200

HC Prom. 24.289 kg CO2 / m3

4 Agua / und: m3

PROCESO			Equipos y Herramientas					Parcial	1		
PROCESO	Unid.	Unid. Metrado Equipo Kg CO2 / hm Kg CO2				Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
]
									PARCIAL	0.149	kg

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M

/ UND: M2

Tierra de Chacra / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción	hm	0.65	Herramientas manuales	0.00	0.00	hh	0.65	1.03	0.670	0.670
Selección y Acarreo	hm	0.50	Herramientas manuales	0.00	0.00	hh	0.50	1.03	0.515	0.515
	•	-					•	•	PARCIAL	1.185

2 Adobe .40 x .20 x .10 / und: und

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de tierra	hm	3.51	Herramientas manuales	0.00	0.00	hh	3.51	1.03	3.615	3.615
Selección y Acarreo	hm	2.70	Herramientas manuales	0.00	0.00	hh	2.70	1.03	2.781	2.781
Remojado de Tierra	hm	1.20	Herramientas manuales	0.00	0.00	hh	1.20	1.03	1.236	1.236
Formacion del Barro	hm	3.50	Herramientas manuales	0.00	0.00	hh	3.50	1.03	3.605	3.605
Elaboración del Adobe	hm	11.06	Herramientas manuales	0.00	0.00	hh	11.06	1.03	11.392	11.392
		-				-	•		PARCIAL	0.023

Caña Brava / und: m

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción	hm	0.017	Herramientas manuales	0.00	0.00	hh	0.017	1.03	0.018	0.018
Corte Según Medidas Requeridas	hm	0.008	Herramientas manuales	0.00	0.00	hh	0.008	1.03	0.008	0.008
									DADOLAL	0.000

PARCIAL 0.026 kg CO2 / m

4 Agua / und: m3

PROCESO			Equipos y Herramientas					Parcial	1		
PROCESO	Unid.	Unid. Metrado Equipo Kg CO2 / hm Kg CO2				Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
]
									PARCIAL	0.149	kg

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" / UND: M

1 Madera de Eucalipto de 4" / und: m

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2

HC Prom. 6.463 kg CO2 / m

03.02.01 TARRAJEO EN MUROS DE ADOBE / UND: M2

1 Arena Fina / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Limpieza superficial	hm	0.10	Herramientas manuales	0.00	0.00	hh	0.10	1.03	0.103	0.103
Extracción	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
						•		PARCIAL	0.361	

2 Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
FROCESO	Unid.	Unid. Metrado Equipo Kg CO2 / hm Kg CO2				Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	ĺ
											ĺ
							•		HC Prom.	24.289	kg

3 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Unid. Metrado Equipo Kg CO2 /				Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.149	kç

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 / UND: M3

Hormigón / und: m3

PROCESO		Equipos y Herramientas					Mano de Obra					
PROCESO	Unid.	Metrado	Equipo	Ka CO2 / hm	Ka CO2	Unid	Metrado	Ka CO2 / hh	Ka CO2	Ka CO2		

Selección y Acarreo	hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
					•				DABOLAL	

PARCIAL **0.340** kg CO2 / m3

2 Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	•								HC Prom.	24.289	kg C

3 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	•	•	•				•	•	DADCIAL	0.140

PARCIAL **0.149** kg CO2 / m3

03.04.01 PINTURA EN MUROS INTERIORES / UND: M2

Pintura Latex Supermate / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											1
									PARCIAL	0.000	kg (

2 Imprimante / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
								_		
		-				-			PARCIAL	0.000

03.04.02 PINTURA EN MUROS EXTERIORES / UND: M2

1 Pintura Latex Supermate / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
			•	•			•		PARCIAI	0.000

PARCIAL 0.000 kg CO2 / gal

2 Imprimante / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
			•	•			•		DARCIAL	0.000

PARCIAL 0.000 kg CO2 / gal

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" / UND: M

1 Madera de 2" x 7" / und: m

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											1
									HC Prom.	1.508	kç

03.05.02 CAÑA CHANCADA DE e=1" / UND: M2

Alambre negro recocido N° 8 / und: kg

PROCESO			Equipos y Herramientas	i			Mano	de Obra		Parcial	1
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Trefilado	hm	0.002	Maquina Trefiladora	22.54	0.05	hh	0.00	1.03	0.000	0.045	1
	•	•					•		HC Prom.	0.045	kg CO2 / I

2 Clavos / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.54	0.05	hh	0.00	1.03	0.000	0.045
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029
	-	-	•				•		HC Prom.	0.074

3 <u>Caña Chancada de 1" / und: m2</u>

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción del bambú	hm	0.0694	Herramientas manuales	0.00	0.00	hh	0.0694	1.03	0.071	0.071
Picar longitudinalmente de 1 a 2 cm	hm	0.1389	Herramientas manuales	0.00	0.00	hh	0.1389	1.03	0.143	0.143
Corte Longitudinal	hm	0.0138	Herramientas manuales	0.00	0.00	hh	0.0138	1.03	0.014	0.014
Limpieza de la parte interna	hm	0.0694	Herramientas manuales	0.00	0.00	hh	0.0694	1.03	0.071	0.071
	-	-							PARCIAL	0.300

03.05.03 TORTA DE BARRO DE e=2"

/ UND: M2

1 Tierra / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción	hm	0.65	Herramientas manuales	0.00	0.00	hh	0.65	1.03	0.670	0.670
Selección y Acarreo	hm	0.50	Herramientas manuales	0.00	0.00	hh	0.50	1.03	0.515	0.515
		-					•		PARCIAL	1.185

2 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
		•					•		PARCIAL	0.149	k

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

Clavos / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial]
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.54	0.05	hh	0.00	1.03	0.000	0.045	1
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029	1
	-	-	•						HC Prom.	0.074	kg CO

2 Madera Cedro / und: p2

PROCESO			Equipos y Herramientas		Mano	de Obra		Parcial	1		
	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
				HC Prom.	0.562	kg					

3 Bisagra de Fierro de 2" / und: par

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.000	kg

4 Barniz Marino / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									DADCIAL	0.000

PARCIAL 0.000 kg CO2 / gal

03.06.02 PUERTAS INTERIORES

/ UND: UND

Clavos / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.54	0.05	hh	0.00	1.03	0.000	0.045	1
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029	1
	•	•							HC Prom.	0.074	kg CC

2 Madera Cedro / und: p2

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2			
				HC Prom.	0.562								

3 Bisagra de Fierro de 2" / und: par

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2

PARCIAL 0.000 kg CO2 / par

Barniz Marino / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo Kg CO2		Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	ı
									PARCIAL	0.000	kg

HUELLA DEL CARBONO POR TRANSPORTE DE INSUMOS

Emisiones de CO2 por proceso de transporte por cantidad unitaria del material:

Material	Und	Cant.	Tipo de Vehiculo	Lugar de Producción /explotación	Proveedor (Lima) (km)	Lugar de compra (Huaral) (km)	Lugar de Compra (Aucallama) (km)	Distancia Parcial 1 (Km)	Consumo Parcial 1 de Combustile (gln)	Emisión Parcial 1 de CO2 (kg)	Tipo de Vehiculo	Lugar de Destino (Obra) (km)	Distancia Parcial 2 (Km)	Consumo Parcial 2 de Combustile (gln)	Emisión Parcial 2 de CO2 (kg)	Emisión unitaria 1 de CO2 (kg/und)
Alambre negro recocido N° 8	kg	26.531	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,202.06	Camioneta	15.60	15.60	624.00	5274.48	4.39
Acero Corrugado fy= 4200 kg/cm2	kg	0.848	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,202.06	Camioneta	15.60	15.60	624.00	5,274.48	4.39
Clavos para madera con cabeza 3/4"	kg	4.982	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,202.06	Camioneta	15.60	15.60	624.00	5,274.48	4.39
Clavos	kg	15.676	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,202.06	Camioneta	15.60	15.60	624.00	5,274.48	4.39
Piedra Mediana de 6"	m3	3.217	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Volquete	3.50	3.50	28.00	274.04	18.27
Piedra Grande de 8"	m3	10.346	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Volquete	3.50	3.50	28.00	274.04	18.27
Arena Fina	m3	4.881	*	La Candelaria	0.00	0.00	0.00	0.00	-	-	Volquete	4.00	4.00	32.00	313.19	20.88
Hormigón	m3	29.292	*	La Candelaria	0.00	0.00	0.00	0.00	-	-	Volquete	4.00	4.00	32.00	313.19	20.88
Tierra de Chacra	m3	16.144	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Volquete	3.00	3.00	24.00	234.90	15.66
Cemento Portland Tipo I (42kg)	bol	150.764	Trailer	Atocongo	31.20	75.10	0.00	106.30	850.40	8,323.13	Trailer	15.60	15.60	124.80	1,221.46	14.70
Cal Hidratada bolsa 25kg	bol	1.697	Trailer	Puno	1296.60	75.10	0.00	1371.70	10,973.60	107,402.01	Camioneta	15.60	15.60	624.00	5,274.48	185.19
Adobe .40 x .20 x .10	und	5948.000	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Trailer	3.00	3.00	24.00	234.90	0.05
Caña Brava	m	1445.364	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Camioneta	3.50	3.50	140.00	1,183.38	0.15
Caña Chancada de 1"	m2	86.982	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Camioneta	3.50	3.50	140.00	1,183.38	13.14
Madera Tornillo inc. corte p/enconf	p2	134.120	Trailer	Amazonía	780.00	75.10	0.00	855.10	6,840.80	66,953.02	Trailer	15.60	15.60	124.80	1,221.46	2.54
Madera Cedro	p2	108.931	Trailer	Amazonía	780.00	75.10	0.00	855.10	6,840.80	66,953.02	Trailer	15.60	15.60	124.80	1,221.46	4.74
Madera de Eucalipto de 4"	m	25.560	Trailer	Amazonía	780.00	75.10	0.00	855.10	6,840.80	66,953.02	Trailer	15.60	15.60	124.80	1,221.46	54.50
Madera de 2" x 7"	m	0.500	Trailer	Amazonía	780.00	75.10	0.00	855.10	6,840.80	66,953.02	Trailer	15.60	15.60	124.80	1,221.46	12.72
Bisagra de Fierro de 2"	par	15.000	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,202.06	Camioneta	15.60	15.60	624.00	5,274.48	4.39
Pintura Latex Supermate	gal	6.956	Trailer	Lima	0.00	73.50	0.00	73.50	588.00	5,754.94	Camioneta	15.60	15.60	624.00	5,274.48	19.37
Imprimante	gal	22.607	Trailer	Lima	0.00	73.50	0.00	73.50	588.00	5,754.94	Camioneta	15.60	15.60	624.00	5,274.48	21.23
Barniz Marino	gal	1.300	Trailer	Lima	0.00	75.10	0.00	75.10	600.80	5,880.22	Camioneta	15.60	15.60	624.00	5,274.48	12.68
Agua	m3	10.576	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Camión	0.30	0.30	7.50	73.40	16.24

HUELLA DEL CARBONO DURANTE LA EJECUCIÓN DE OBRA

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

RECURSO		Equipos y Herramientas					Mand	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Peón	hm	0.00		0.00	0.00	hh	0.0320	1.03	0.033	0.033	
	-	-				-	-		PARCIAL	0.033	kg CO2

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mand	o de Obra		Parcial	
KECOKSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.0533	1.03	0.055	0.055	
Peón	hm	0		0.00	0.00	hh	0.0533	1.03	0.055	0.055	
				-			-		PARCIAL	0.110	kg (

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTO / UND: M3

RECURSO		Equi	pos y Herran	nientas			Man	o de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Peón	hm	0.00		0.00	0.00	hh	2.6667	1.03	2.747	2.747	
						-			PARCIAL	2.747	kg CC

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

RECURSO		Equi	pos y Herran	nientas			Man	o de Obra		Parcial	1
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Peón	hm	0.00		0.00	0.00	hh	2.000	1.03	2.060	2.060	1
									PARCIAL	2.060	kç

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO / UND: M3

RECURSO		Equ	ipos y Herran	nientas			Man	de Obra		Parcial	1
KECOKSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916]
Peón	hm	0		0.00	0.00	hh	2.2222	1.03	2.289	2.289]
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.4444	1.03	0.458	0.458]
Mezcladora	hm	0.44	Mezcladora	6.04	2.68	hh	0.00	1.03	0.000	2.682]
	-	-	•	-			-		HC Prom.	6.344	٦,

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mand	o de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687	
Peón	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687	
							-		PARCIAL	1.373	kg CO2 /

/ UND: M3 02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO

RECURSO		Equi	ipos y Herram	nientas			Man	o de Obra		Parcial
KLOUKSU	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916
Peón	hm	0		0.00	0.00	hh	2.2222	1.03	2.289	2.289
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.4444	1.03	0.458	0.458
Mezcladora	hm	0.10	Mezcladora	6.04	0.60	hh	0.00	1.03	0.000	0.604
	-	-				-	•		HC Prom.	4.266

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	1
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	1.0000	1.03	1.030	1.030	1
Peón	hm	0		0.00	0.00	hh	0.5000	1.03	0.515	0.515	1
							-		PARCIAL	1.545	kg CO2 /

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" / UND: M

RECURSO		Equi	pos y Herran	nientas			Mand	o de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.2000	1.03	0.206	0.206	
Peón	hm	0		0.00	0.00	hh	0.2000	1.03	0.206	0.206	
									PARCIAL	0.412	kg C

03.02.01 TARRAJEO EN MUROS DE ADOBE / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mand	o de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	1.6000	1.03	1.648	1.648	1
Peón	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824]
									PARCIAL	2.472	kg CC

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 / UND: M3

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
KECOKSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120
Peón	hm	0		0.00	0.00	hh	6.6667	1.03	6.867	6.867
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	1.3333	1.03	1.373	1.373
Mezcladora	hm	0.10	Mezcladora	6.04	0.60	hh	0.00	1.03	0.000	0.604
									HC Prom.	12.964

03.04.01 PINTURA EN MUROS INTERIORES / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mand	o de Obra		Parcial	1
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	0.2424	1.03	0.250	0.250	1
Peón	hm	0		0.00	0.00	hh	0.1212	1.03	0.125	0.125	1
			•			•			PARCIAL	0.375	kg

03.04.02 PINTURA EN MUROS EXTERIORES / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.2424	1.03	0.250	0.250	
Peón	hm	0		0.00	0.00	hh	0.1212	1.03	0.125	0.125	
									PARCIAL	0.375] kg CO2 / m2

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" / UND: M

RECURSO		Equi	ipos y Herran	nientas				Parcial			
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.3333	1.03	0.343	0.343	1
Peón	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687	
	-		•		•		-		PARCIAL	1.030	kg CO2

03.05.02 CAÑA CHANCADA DE e=1" / UND: M2

RECURSO		Equipos y Herramientas						de Obra	Parcial]	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2]
Operario	hm	0		0.00	0.00	hh	0.1000	1.03	0.103	0.103]
Peón	hm	0		0.00	0.00	hh	0.2000	1.03	0.206	0.206]
									PARCIAL	0.309	kg CO2 /

03.05.03 TORTA DE BARRO DE e=2" / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mand	o de Obra		Parcial	1
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	0.0800	1.03	0.082	0.082	1
Peón	hm	0		0.00	0.00	hh	0.1600	1.03	0.165	0.165	1
	•		•		-	•	•		PARCIAL	0.247	kg C

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

RECURSO		Equipos y Herramientas M.						de Obra		Parcial]
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120	
Peón	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120	
	-						-		PARCIAL	8.240	kg CO2

03.06.02 PUERTAS INTERIORES / UND: UND

RECURSO		Equi	ipos y Herran	nientas			Man	o de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120	1
Peón	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120	
	-	-	-			-			PARCIAL	8.240	kg CO2 / und

ANEXO VI: Iculo de emisiones de CO2 equivalente para la vivienda unifamiliar adot el distrito de Concepción.	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol	
lculo de emisiones de CO2 equivalente para la vivienda unifamiliar adol el distrito de Concepción.	
	oe en

SIMULACIÓN DE MONTE CARLO PARA LA HUELLA DE CARBONO

Insumo Mínimo und Máximo Fórmula Cemento kg CO2/kg 0.511 0.629 0.511+r*0.118 Acero de Refuerzo kg CO2/kg 1.623 1.95 1.623+r*0.327 0.79 0.75+r*0.04 Cal kg CO2/kg 0.75 Madera kg CO2/kg 0.262 0.3216 0.262+r*0.0596 Energía Electrica kg CO2 / kWh 0.3 0.52144 0.3+r+0.22144 GLP 2.75 2.75+r*0.265 kg CO2 / kg 3.015

9.7

7.9

9.8658

8.9964

9.7+r*0.1658

7.9+r+1.0964

Método de la Transformada Inversa:

kg CO2 / gln

kg CO2 / gln

Fórmula: a+r(b-a)

Diésel

Gasolina 95

a: valor mínimo

b: vamor máximo r: número aleatorio

VIVIENDA DE ADOBE EN CONCEPCIÓN - CONCEPCIÓN

Aleatorios:

Aleatorios:	Cemento	Acero	Cal	Madera	Energía Eléctrica	GLP	Diésel	Gasolina 95
Ensayo	kg CO2/bol	kg CO2/kg	kg CO2/bol	kg CO2/kg	kg CO2/kWh	kg CO2/kg	kg CO2/gln	kg CO2/gln
1	24.81992039	1.9331494	19.49239	0.2897767	0.482218845	2.86528412	9.83446683	7.92952054
2	25.70945759	1.755139	19.47203	0.2749448	0.445619541	2.86599261	9.8481561	8.4098423
3	23.30749777	1.6336839	19.050441	0.291889	0.475684315	2.97562845	9.84620809	8.53027317
4	25.95663733	1.8561489	19.485628	0.2741626	0.455091385	2.76760529	9.83301504	8.9226892
5	23.30795607	1.8480643	19.515567	0.2953387	0.453878058	3.00544734	9.72954232	8.78157902
6	22.06205885	1.8053022	19.543128	0.2992503	0.487079613	2.81196559	9.79252331	8.60322412
7	26.58937637	1.809795	19.147846	0.307808	0.333976512	2.85547448	9.83311526	8.45269894
8	25.58313782	1.8146105	19.095875	0.2804169	0.419338126	2.82248189	9.73443291	8.1931519
9	24.15611858	1.7921133	19.101754	0.2907311	0.392807499	2.75414312	9.83598127	8.18097298
10	25.10517715	1.704448	19.718136	0.283648	0.308829356	2.89566751	9.83347922	8.36116882
11	25.04276876	1.801631	19.469588	0.2713784	0.388506256	2.81545755	9.81963102	8.19652658
12	22.20624102	1.9111892	19.244334	0.2664999	0.500184653	2.96282781	9.82174729	8.16493194
13	22.10143574	1.6915847	19.382899	0.2853588	0.483056755	2.95633697	9.77369432	8.2498636
14	22.48768504	1.6802435	19.53182	0.3149859	0.356134791	2.78714647	9.83018117	8.67041566
15	23.68169603	1.8908253	19.684578	0.2667082	0.429734922	2.86604618	9.80836631	7.9340297
16	24.41100247	1.7648875	19.474814	0.3198819	0.355664799	2.93503267	9.7243705	8.2728054
17	25.56209716	1.7094033	19.434587	0.2846908	0.493379029	2.8950886	9.77215562	8.87976452
18	22.09479819	1.914077	19.046646	0.2933149	0.447933582	2.79383463	9.82306843	8.19533492
19	24.93530981	1.8439248	19.585803	0.3031728	0.513620198	2.80281361	9.80891967	8.5972515
20	23.92209315	1.6420363	19.232832	0.267046	0.516214232	2.99927331	9.84747305	8.08734956
21	24.44576494	1.8792804	19.291381	0.3162586	0.504816817	2.95625632	9.70759546	8.27858082
22	26.15681553	1.774836	19.450636	0.2873897	0.419147829	2.90919845	9.78613099	8.17596761
23	25.14612879	1.8619803	19.207899	0.3048513	0.334153563	2.99168525	9.77633551	8.81340067
24	21.81254283	1.8928987	19.272778	0.2962596	0.345310762	2.86391109	9.82875635	8.44004004
25	26.19363318	1.8417096	19.529368	0.3090103	0.413120073	2.94941187	9.82789812	8.09356285
26	22.48627946	1.6734869	19.604602	0.2668255	0.485811258	2.96876026	9.72693011	8.56006644
27	24.95875734	1.6955502	18.866302	0.3076243	0.391165219	2.90015587	9.74566342	8.3454947
28	24.55298758	1.7795692	19.429775	0.3101562	0.373063717	2.79118045	9.80022404	8.75801918
29	24.45116908	1.7115005	19.489753	0.2992244	0.314820098	2.96588739	9.7351482	7.92334891
30	23.33012146	1.8891169	19.317747	0.263722	0.321186899	2.98405143	9.84873285	8.23713595
31	25.32889266	1.6876185	19.303185	0.3172822	0.399628047	2.86923736	9.72648834	8.98578722
32	26.70467301	1.9156183	19.464281	0.287835	0.353611062	2.98443119	9.77436752	8.9520819
33	25.42523178	1.7132639	18.802765	0.2784678	0.349536788	2.82577326	9.85857365	8.93571121
34	21.95135427	1.6985493	19.157444	0.3121346	0.408068454	2.8182315	9.73150489	8.87393699
35	23.77102068	1.8548089	19.642684	0.2768314	0.454654032	2.91085492	9.86428061	8.78855142
36	24.56185214	1.8232475	19.08762	0.2634139	0.498049067	2.83724986	9.70011697	8.68312438
37	23.63089059	1.9250298	19.68879	0.2919262	0.349696404	2.85323595	9.71393342	8.17849853
38	25.12522672	1.8323242	19.115006	0.2780219	0.508536677	3.01081968	9.81444891	8.84691571
39	24.94963231	1.7260461	19.569671	0.2784314	0.4834194	2.88941324	9.7860232	8.7271947
40	22.2340938	1.8355574	19.626423	0.2897449	0.42403991	2.95199575	9.80452579	8.00861402
41	24.34283042	1.771829	19.15168	0.2892281	0.335560642	2.78353197	9.75794421	8.17870666
42	24.80388946	1.6402861	18.784699	0.3079073	0.430301457	2.84168034	9.81375557	8.88319979
43	23.18028253	1.8205259	19.401381	0.2668376	0.431945429	2.88991238	9.861437	8.93957349
44	25.84721102	1.6975965	19.506407	0.2958761	0.364749457	2.7845964	9.85896826	8.9802315
45	23.82850229	1.9346315	19.36198	0.2971254	0.311236016	2.83584389	9.86228548	8.92659753
46	24.01682962	1.6781014	19.62422	0.2782852	0.494663461	2.9128287	9.78352837	8.04577193
47	26.11824198	1.8489491	19.084689	0.3055912	0.321223537	2.83127564	9.86171647	8.51519615
48	26.69789515	1.8782902	19.515596	0.3134305	0.431240012	2.95426701	9.81370541	8.01244592
49	22.28517822	1.7607068	19.613061	0.2650544	0.444090482	2.85904738	9.80409753	8.41544946
50	23.73917522	1.9422788	18.799879	0.2988631	0.332296586	2.98318594	9.78274556	8.32131378
51	25.55243761	1.9475838	18.991205	0.2880486	0.476326731	2.77528258	9.71595306	7.99409045
52	24.13355182	1.684394	18.924764	0.29135	0.482974768	2.95261825	9.78204026	8.45634895
53	25.68488398	1.7449967	18.800261	0.3079351	0.400476378	2.94964725	9.74660795	8.31490596
54	24.24562712	1.7149969	19.708293	0.3125616	0.511799606	3.00272862	9.85901778	8.57734735

55	24.20787603	1.6289182	19.381274	0.3132002	0.452987087	2.81569823	9.75242587	8.90487448
56	25.61311606	1.7135059	19.212196	0.297313	0.509490839	2.7959611	9.7439042	8.09829698
57	24.22062121	1.9116397	19.477694	0.3071478	0.502011419	2.86059553	9.77244378	8.92823809
58	24.38425273	1.8695576	19.062976	0.2643361	0.362452756	2.86246325	9.75980563	8.01367665
59	23.55672959	1.9188162	19.444488	0.2651345	0.375068344	2.81635765	9.79747927	8.67710154
60	21.89113689	1.7180043	19.577783	0.2923714	0.410274926	2.95347982	9.83344489	8.659148
61	24.38774444	1.9090558	19.379053	0.2880596	0.427407124	2.84017112	9.74554875	8.95930064
62	22.08616168	1.6304996	19.541132	0.3175679	0.519047979	2.83361033	9.77151495	7.90460367
63	22.12595229	1.6684544	18.933073	0.2674937	0.40022548	2.96783408	9.74175556	8.47879231
64	23.41783872	1.7383214	19.640871	0.2958277	0.42459274	2.99151588	9.79200802	8.37563868
65	24.70402786	1.6751118	19.317121	0.2705089	0.341659029	2.96220598	9.75439855	8.29825164
66	23.10726808	1.813888	19.653311	0.2847706	0.395332306	2.85823985	9.79270822	8.69501306
67	22.20596398	1.8970786	19.511258	0.3152663	0.420895275	2.75414694	9.72446664	8.30047189
68	24.10179339	1.9232813	19.402667	0.2636856	0.379965597	2.83939235	9.79790325	8.09697722
69	24.37910653	1.8964022	19.573563	0.2688626	0.310507789	2.77981792	9.82079235	8.34120667
70	22.76388385	1.6289268	19.458685	0.2856395	0.341098529	2.99189341	9.84371289	8.5300645
71	25.73341546	1.8652651	19.197986	0.3025601	0.477980999	2.98136327	9.8362801	8.03685934
72	24.62288377	1.8235605	18.927963	0.3049225	0.41610956	2.9934951	9.85588248	7.90515065
73	21.95389557	1.9388181	19.62974	0.2979283	0.4914113	2.90398614	9.81592921	8.85352113
74	23.4335056	1.7619195	18.89267	0.3183708	0.304499931	2.87436981	9.79945193	8.03452129
75	22.54497531	1.766468	19.481823	0.2981923	0.366758732	2.93986843	9.80463321	8.90374912
76	26.23560386	1.7652222	19.447149	0.286216	0.436375658	2.93299325	9.77336328	8.41858042
77	26.31075315	1.8065962	19.362726	0.2863821	0.501313287	2.90151134	9.81066946	8.12491088
78	22.61475842	1.7920058	19.185241	0.2673121	0.349090715	2.86405187	9.7570735	8.07455126
79	21.78225402	1.6478096	19.647553	0.2716359	0.514741458	2.88043569	9.77170005	8.00248276
80	25.01600844	1.7006117	19.194272	0.295316	0.322785949	2.88773358	9.7381478	8.11324828
81	24.28521226	1.6932537	19.404483	0.2647621	0.427741278	2.78079642	9.7908682	8.78279647
82	23.53808736	1.7317243	19.518177	0.3032126	0.450709481	2.89288701	9.84668629	8.22271621
83	22.8253356	1.7448416	19.605249	0.2846745	0.331483618	2.8811561	9.74009537	8.25313839
84	22.62543438	1.6417212	18.882709	0.2886281	0.492830666	2.77228134	9.80865936	8.34825762
85	24.4515463	1.8382268	19.094146	0.2718282	0.390309074	2.91406528	9.74545349	8.43955008
86	23.21940614	1.8458255	19.593279	0.2897887	0.348343403	2.85486016	9.72643041	8.41642712
87	25.70844869	1.7345252	19.429056	0.2961221	0.477818885	2.7610912	9.81671027	8.18764231
88	23.5712064	1.676668	19.219972	0.2993378	0.507253987	2.82657021	9.84290847	8.32600966
89	25.17416152	1.8317523	18.892578	0.2676919	0.510365971	2.75672943	9.7261961	8.05355483
90	21.97285847	1.6582967	19.186085	0.286993	0.416799074	2.88191718	9.70690636	8.53799308
91	22.89420508	1.7550765	18.784828	0.2725492	0.45478973	2.81279016	9.86355429	8.08322312
92	23.19464424	1.8462033	19.170313	0.2723492	0.376175277	2.92595813	9.7793734	7.96436628
93	24.75225414	1.6475861	19.465508	0.2874343	0.329204971	2.89041217	9.85596549	8.74980543
94	24.19462188	1.6707534	19.680881	0.3045334	0.486939156	2.89402825	9.8492309	8.02449608
95	24.84390346	1.7263868	18.956697	0.3043334	0.510321372	2.91021471	9.76919998	8.26913012
96	23.56597256	1.8767334	19.118863	0.2880823	0.492571022	2.78342328	9.83120551	8.69251316
97			19.447687			3.00236907		
	23.89509093	1.8304788 1.7145467		0.2786815	0.400310903		9.86134156	8.5601901
98	24.36207058		19.322005	0.3025639	0.419824772	2.92998673	9.73197844	8.58443852 8.39422982
100	23.53919801	1.8993653 1.6610478	19.124356	0.2926953 0.2771484	0.390980022 0.454010981	2.87795331 2.90338999	9.84077752	
			19.038225				9.75351277	8.99585036
101	26.67136836	1.820025	18.889222 18.82309	0.277401 0.2826995	0.332675113	2.91157292	9.75721155	8.34727342
	25.08266412	1.7769134			0.375056469	2.85598011	9.79861833	8.98269847
103 104	23.34392214 24.97245049	1.8749284 1.7609578	19.628449 19.115088	0.3117058 0.2994363	0.358049729	2.8956828	9.78500542 9.77920892	8.99407665 8.19751944
					0.392857377	2.91533081		
105	23.71990715	1.6386015	19.288502	0.2798964	0.519676117	2.98057963	9.84963986	8.90836445
106	23.60048723	1.9436145	19.398861	0.2808565	0.357873786	2.98936012	9.70251051	8.73515607
107	23.32966135	1.8941648	19.287802	0.2976877	0.393101752	2.77867761	9.82558421	8.03649184
108	25.77230056	1.8021749	18.99074	0.2655275	0.335569617	2.86328866	9.8226568	8.10840435
109	26.13666827	1.6742938	19.388672	0.306986	0.35423488	2.85408391	9.83290246	7.9317104
110	26.00339683	1.8706694	19.085664	0.278636	0.433742105	2.84595436	9.73126366	8.18240709
111	25.58368069	1.6234039	19.45313	0.3196684	0.487688389	2.76261571	9.76433371	8.17050695
112	24.19374679	1.7849843	18.985947	0.3189777	0.324758239	2.87910696	9.75858281	8.9417165
113	26.5898217	1.729849	18.992893	0.302697	0.480766497	2.82155322	9.79067802	8.41592007
114	23.42188324	1.915232	19.244692	0.2782323	0.413592544	2.80201522	9.7540589	8.70332423
115	22.12075884	1.9471739	19.475869	0.2805197	0.454252467	2.81509463	9.77405793	7.97151861

116	22.87315602	1.9354541	19.095361	0.2974825	0.47332	24911	2.91016721	9.71199555	8.44655154
117	22.44546511	1.9188867	19.234309	0.2928275	0.316	51139	2.98925236	9.78233613	8.11584882
118	24.69583819	1.8500935	19.537029	0.2726342	0.51757		2.75050393	9.85309652	8.70255467
119	23.88299216	1.761514	19.267313	0.2835256	0.31408		2.99301837	9.7369015	8.06609222
120	24.87043219	1.8104109	19.697306	0.2745193	0.47773		2.97330278	9.77576092	8.20413823
121	23.9971576	1.6901928	18.972468	0.2833877	0.32768	_	2.84263609	9.83460619	8.31430952
122	23.75069681	1.9104776	19.294897	0.3018059	0.46422		2.98649426	9.82430526	8.25797374
123	23.6539001	1.6452493	19.495801	0.2922426	0.40840		2.94399496	9.74855273	8.88976888
124	25.0521945	1.7585514	19.697658	0.2888807	0.39353		2.98705783	9.70429387	8.36664668
125	23.64289068	1.8490836	19.522055	0.2848345	0.39333		2.79909008	9.72194834	8.27643556
126	25.41201355	1.7681742			0.44113			9.70322075	8.25160829
			19.089142	0.3065309			2.93750199		
127	25.3262108	1.9427721	19.32129	0.2892178	0.36429		2.79507397	9.83330735	8.69237976
128	26.39346645	1.7961805	19.473189	0.275385	0.37283		2.95195684	9.82038071	8.37627017
129	23.77796264	1.8552003	19.138061	0.277529	0.3111		2.94895243	9.71089287	8.9539262
130	25.62956934	1.6930135	19.536418	0.2823905	0.44432		2.95552849	9.84263229	8.00857029
131	24.02835639	1.9376107	19.68382	0.2839594	0.3148		2.79502641	9.74222297	8.52837553
132	21.84992142	1.8873699	18.777747	0.3149071	0.4082		2.79417455	9.72358928	7.91739029
133	25.31864995	1.8150309	19.147674	0.3184955	0.48760	09805	2.86785097	9.86518314	8.88063534
134	26.33461242	1.7996423	19.327819	0.2727057	0.39295	52418	2.86496297	9.73439945	8.0743228
135	25.34830965	1.7805661	18.925483	0.3101724	0.46753	36965	2.94498436	9.79856445	8.5905971
136	25.73737945	1.7084513	18.969228	0.3158688	0.30138	38569	2.78300457	9.77040777	8.03269885
137	25.83418297	1.6333568	19.287105	0.3157657	0.47813	36484	2.75181117	9.84712538	8.44700974
138	23.40989305	1.7760473	18.848797	0.2720045	0.37127	73373	2.78784393	9.71608272	8.39025581
139	25.82069367	1.8385443	19.398708	0.3149433	0.46808		2.78612297	9.75781916	8.37378659
140	22.0891404	1.8883714	19.388728	0.3058419	0.50594		2.82704514	9.85245751	8.32034658
141	22.1850924	1.8320737	18.973141	0.2885977	0.31128		2.97152633	9.77693835	8.39947418
142	22.51840026	1.8561629	19.432087	0.3138542	0.52129		2.80894576	9.86114667	8.83733028
143	22.86170103	1.695006	19.464668	0.321328	0.32464		2.81860041	9.77882002	8.37009358
144	23.13164645	1.6997132	19.402807	0.3132108	0.51565		2.80429511	9.70119126	8.28456757
145	23.68607525	1.7785382	18.934517	0.3135927	0.36174		2.89571402	9.72315235	8.25267511
146	22.14391014	1.9266582	19.07707	0.3205311	0.40392		2.80928085	9.77844292	8.81490365
147	24.80296002	1.7475324	19.54139	0.3090393		98252	2.9798697	9.86296983	8.8443093
148 149	24.39991104	1.8780516 1.8855139	19.708528 18.891124	0.2854892 0.2924398	0.40134		2.8574378 2.83849089	9.78463464 9.7145118	8.06300608 8.15038199
150	23.34064025	1.7394826	19.646557	0.2795791	0.32187		2.76736028	9.80899274	8.0921823
151	24.47563519	1.7625283	18.812668	0.3130344	0.30438		2.77750167	9.73943654	8.31644897
152	25.81675463	1.7651696	18.857246	0.2740139	0.30605		2.85796706	9.80778447	8.85277312
153	26.31923037	1.6493085	19.701015	0.3106926	0.39978		2.87386385	9.78858922	8.74840142
154	24.4837609	1.9073897	19.746178	0.2941723	0.38695		2.80631193	9.79772999	8.03399721
155	22.95160397	1.8756315	19.245463	0.2897752	0.48492	_	2.90979209	9.79567669	8.40694748
156	25.25926686	1.8290559	19.128877	0.2687768	0.39894		2.85041289	9.75063325	8.96201655
157	24.50348875	1.8243241	18.839353	0.2936846	0.42652		2.90915538	9.74510919	8.84746672
158	22.67810271	1.6543286	19.117439	0.2672453	0.33237		2.79537056	9.77065039	8.02886373
159	24.9513961	1.706039	19.203383	0.2882604	0.52088		2.77555783	9.77498698	8.89033464
160	23.30653398	1.7411029	18.973471	0.3194106	0.35107		2.88264319	9.73697513	8.77445946
161	26.07969711	1.8853911	18.948059	0.2719215	0.410	3837	2.82878924	9.76375586	8.66367585
162	23.54942137	1.7117161	19.376182	0.273496	0.52125	59792	2.92688574	9.77823595	8.11645697
163	23.39421158	1.6555474	18.854883	0.2873603	0.3425	7243	2.82978062	9.78888389	8.81867571
164	23.09292685	1.700435	19.331473	0.2788388	0.3809	11298	3.00196744	9.74359702	8.77991465
165	23.83851075	1.8862845	19.394707	0.2814993	0.32769	97683	2.96757984	9.78353811	8.23226011
166	25.60133941	1.6553119	18.935556	0.2942068	0.38860	06553	2.82133618	9.76148468	8.64629256
167	25.44143161	1.6992076	18.772638	0.2671831	0.4428		3.00341172	9.84719679	8.80352816
168	23.2094971	1.6709794	18.906695	0.2846964	0.38557		2.77842611	9.71273381	8.43106954
169	23.01123314	1.8449374	19.551485	0.2865725	0.36085		2.92276525	9.72041967	8.30837523
170	23.58444121	1.837919	18.973847	0.2728132	0.33924		2.8312731	9.83886535	8.37580379
171	24.92418934	1.8205391	19.014306	0.2750122	0.474		2.95144717	9.79466877	8.19942121
172	21.99361005	1.9478376	19.435028	0.2839538	0.33196		2.84246144	9.78560588	8.13146081
173	24.74823108	1.7057186	19.435026	0.2801757	0.32792		2.88495641	9.72566348	8.49708482
174	26.02151862	1.8386798	18.767844	0.2601737	0.37979		2.93342138	9.83961244	8.54607571
175	25.46960938	1.8413995	19.671743	0.3044536	0.37978		2.96183271	9.73683845	8.44778155
176	25.22737591	1.808838	18.951025	0.3044536	0.33942		2.84102615	9.76308973	8.87123111
170	20.22131391	1.000038	10.901025	0.3114383	0.32992	20000	2.04 1020 15	5.10300913	0.01 123 1 1 1

177	22.32928868	1.709877	19.062589	0.2712138	0.413865632	2.83194741	9.78854653	8.53924415
178	24.86816651	1.8001887	19.388425	0.2633751	0.514370665	2.83164808	9.75198931	7.99809547
179	24.17394406	1.8917953	19.667608	0.303717	0.430239259	2.85095624	9.81251927	8.25190249
180	23.12268528	1.7718224	18.907434	0.3178133	0.508132573	2.78110181	9.8327665	8.51829983
181	26.25535036	1.7105717	19.348036	0.3177661	0.318468479	3.0055868	9.72755748	8.04327972
182	24.5696876	1.750869	19.47004	0.3193621	0.489636849	2.81475801	9.72080309	8.54202227
183	22.05535754	1.9430231	19.365094	0.310991	0.501291841	2.89414687	9.73496298	8.21207518
184	23.98779992	1.8810061	19.435371	0.2903105	0.475113157	2.96879656	9.79333571	8.00718404
185	22.64214231	1.7528713	18.985642	0.3210024	0.385862124	2.942507	9.75951882	8.75033708
186	26.27339225	1.8784376	19.004742	0.266191	0.429073336	2.89191542	9.7314575	8.25309662
187	24.12160244	1.9110049	19.46264	0.3030382	0.342432692	2.99319277	9.7130571	8.67578659
188		1.8484143		0.3030382	0.514725698	2.79808933		
	22.20448975		19.08539				9.72500958	8.82803589
189	22.88208509	1.8299905	19.648904	0.2949124	0.442994848	2.89460633	9.82258645	8.44216186
190	25.4393931	1.9335903	18.94249	0.2885372	0.501784501	2.75509336	9.75252225	8.12471373
191	25.4742704	1.6893526	19.380006	0.277817	0.4146213	2.88732362	9.79117081	8.4844877
192	23.37259392	1.6385223	19.59744	0.275615	0.391863606	2.84407693	9.71370048	8.39614197
193	23.29188977	1.736285	18.810521	0.3110333	0.49914567	3.00545608	9.83443164	8.69419177
194	23.83294378	1.7222077	19.06779	0.3091751	0.386445186	2.77104607	9.84613595	7.97105598
195	25.67004453	1.6788459	19.193291	0.2773937	0.359337768	2.9116997	9.78339194	8.70281186
196	24.66258648	1.7307389	18.858555	0.3173534	0.321615115	2.96130018	9.7368915	8.20043898
197	24.0835438	1.878384	19.709959	0.3063425	0.38267466	2.7696699	9.79946142	8.43533703
198	26.45916672	1.8981303	18.927722	0.3044531	0.363695352	2.83701911	9.77447649	8.93195274
199	25.87659061	1.7866849	19.18663	0.2976332	0.455204356	2.76102999	9.70608803	8.24675747
200	23.5801117	1.7691724	19.062798	0.3005391	0.432428954	2.9681278	9.84243357	8.59419184
201	22.36619307	1.6326822	19.111793	0.3205179	0.341827791	2.90354692	9.80539445	8.27380636
202	25.06332515	1.7433309	19.684995	0.316082	0.356228399	2.96574392	9.76393876	8.82445526
203	24.69997165	1.9258344	19.310937	0.2628835	0.415135356	2.77614925	9.83876426	8.4798262
204	22.14753964	1.7343289	19.245715	0.3193673	0.306873513	2.80985747	9.73329407	8.73052242
205	24.82878676	1.8605666	19.590418	0.3012828	0.405544895	2.9632575	9.82161917	8.78754235
206	24.70033467	1.6375016	19.657705	0.2941963	0.43287146	2.80140181	9.72518799	8.97364639
207	23.68656098	1.7999244	19.456895	0.2981002	0.420813745	2.78586316	9.81446108	8.344739
208	23.96470165	1.8934872	18.940977	0.3083163	0.503889419	2.97258787	9.84273837	8.14981
209	25.94416877	1.9232379	18.784807	0.2733082	0.329828623	2.88196971	9.71539793	8.12343785
210	26.42299868	1.6669801	19.454782	0.3048229	0.488488161	2.86633077	9.71734214	8.52490954
211	22.70205409	1.7659462	19.063804	0.2897652	0.321038012	2.75174416	9.82837315	8.08489122
212	24.64171665	1.6650398	19.260639	0.2646314	0.367898652	2.94046633	9.77031744	7.99695752
213	24.7832395	1.6300961	19.282066	0.2649311	0.377481525	2.90621519	9.77493467	8.92313793
214	23.77533342	1.7703835	18.755213	0.3044136	0.496215026	3.00157669	9.73781063	8.73916733
215	21.82491508	1.7078356	18.859824	0.2765682	0.369337855	2.79105795	9.72760279	8.56434721
216	24.76195086	1.8300455	18.819819	0.2907401	0.418437779	2.99792781	9.74721802	8.80413287
217	26.62101292	1.7531471	18.782504	0.2823646	0.495404898	2.90976008	9.70464926	8.49366328
218	24.04329712	1.8958204	18.905926	0.2906048	0.420805751	2.91671336	9.79942285	8.96787804
219	25.69868899	1.8178836	19.224768	0.2647773	0.483429712	2.78160082	9.7270947	8.07574634
220	25.62906801	1.8044208	19.66412	0.2047773	0.43903522	2.82711711	9.74684694	7.93029403
221	24.45827576	1.9150227	18.776028	0.2747833	0.496090311	2.82574759	9.73566771	7.96903288
222	21.96363125	1.6715445	19.132855	0.2646838	0.490696091	2.85126656	9.819383	8.49765253
223	25.39149334	1.7160578	19.132855	0.2876343	0.323825528	2.9485251	9.76137808	8.63944048
		1.9431067	19.478255			2.87526067	9.74813742	7.92702394
224 225	21.88187371 25.44497132	1.637331	19.625337	0.3178525 0.2792468	0.41173092 0.429883145	2.87526067	9.74813742	7.92702394
				0.2792468	0.429883145	2.82685172		7.99985303
226	23.75082247	1.7153115	18.938817				9.70358386	
227	22.65971908	1.8327768	19.186102	0.2675001	0.31914102	2.9106166	9.72456401	8.41550343
228	23.95246223	1.9358448	18.762258	0.3014485	0.475172426	2.89816781	9.83776261	8.76373992
229	24.09871752	1.6414002	18.808754	0.2768111	0.443700326	3.00313108	9.77815793	8.12473772
230	24.50612687	1.6586361	18.793307	0.2901946	0.440861458	2.83384806	9.81454721	8.14669766
231	24.08958857	1.8364014	19.612723	0.2623748	0.36658736	2.75933896	9.84155296	8.22166202
232	24.66370043	1.7178729	19.725746	0.2784579	0.340356552	2.91352316	9.73846759	8.19821604
233	22.63630263	1.6817179	19.512133	0.2772765	0.404172875	2.89261281	9.84140983	7.99383013
234	25.4301911	1.7064481	19.105441	0.2802644	0.439363175	2.8116069	9.72992679	8.36505063
235	26.18898925	1.7962548	19.429204	0.2691338	0.519693625	2.89831594	9.74585981	8.06146551
236	22.66660539	1.689024	19.162355	0.3004608	0.356762181	2.76981104	9.72628642	7.99696056
237	25.84496046	1.66691	19.665817	0.2642752	0.428422598	2.99780899	9.85350931	8.43585508

238	24.90073132	1.8723034	19.469106	0.3125123	0.350299391	2.94812934	9.73001345	8.69561505
239	25.67248165	1.6706594	19.220024	0.3155191	0.490924325	2.75484532	9.84222391	8.68991181
240	26.41987987	1.7514063	19.631085	0.3201666	0.341044373	2.75718556	9.75781156	8.12466513
241	24.1869369	1.8720124	19.169518	0.2938357	0.341205066	2.85976099	9.85807075	8.06853626
242	26.03692852	1.8174798	18.770532	0.2922558	0.477248945	2.79551863	9.74654301	8.26644237
243	24.92327254	1.6356845	18.801134	0.2801086	0.333415312	2.96519864	9.72600032	8.31107572
244	23.46488982	1.877175	19.405299	0.3137996	0.510079753	2.93153308	9.77170299	8.19845815
245	26.35245632	1.946105	19.71639	0.2861906	0.334891261	2.83588495	9.76914315	8.79074605
246	24.00439667	1.6966526	18.836351	0.3112517	0.412504941	2.99862612	9.7068848	8.3712765
247	24.04510222	1.6725369	19.472521	0.2847846	0.344423111	2.79444358	9.82370686	8.9597643
248	23.14960578	1.9489692	19.245433	0.3056518	0.320444656	2.75058053	9.72052998	8.06830804
249	26.34011396	1.8577996	19.243433	0.2656228			9.78423277	8.71422085
					0.338203185	2.83973743		
250	23.19008924	1.6859025	19.605477	0.2654439	0.37969123	2.81885079	9.71763505	8.32452566
251	26.64500875	1.7573905	18.833156	0.3030447	0.472263414	2.92761174	9.73376913	8.13279088
252	22.34906431	1.7736909	18.867189	0.2683191	0.513919501	2.90965018	9.73428527	8.10955938
253	22.09200712	1.949302	19.395375	0.3174919	0.308588654	2.88519945	9.70799403	8.88008773
254	22.70492448	1.8326735	19.579812	0.31579	0.435277683	3.00949956	9.85929185	8.50203174
255	23.35312005	1.720886	19.10456	0.2667555	0.427127216	2.88012404	9.81616375	8.49776197
256	23.71624493	1.8382504	19.239281	0.2738905	0.415203542	2.91878149	9.78230496	8.79703921
257	24.67676416	1.6949085	19.196368	0.279226	0.38836812	3.01197779	9.86173892	7.94546281
258	24.78159975	1.8022134	19.315524	0.2666999	0.345200913	2.9946289	9.78573987	8.86561026
259	24.63447458	1.7676038	19.210649	0.3060432	0.316307377	2.81841457	9.83243575	8.29025181
260	24.69417922	1.6686485	19.090512	0.312469	0.320096871	2.98927598	9.75710929	8.93039877
261	22.2276291	1.7070536	19.6346	0.2932526	0.431457829	2.88830846	9.85104382	8.19611021
262	25.04053616	1.8684998	18.943688	0.2962308	0.452179523	2.75604664	9.77105728	8.68577952
263	26.47182304	1.9391086	19.734233	0.2919831	0.34137714	2.8547062	9.85896518	8.3602226
264	26.42848148	1.9256112	19.590508	0.3090313	0.343481903	2.80308174	9.70681701	8.4279806
265	23.61855082	1.686362	19.234613	0.2948289	0.345321328	2.76539217	9.86255777	8.03448368
266	23.96165867	1.6962487	19.180608	0.3014229	0.34680844	2.98485748	9.72261667	8.83809903
267	25.72512646	1.6764181	19.132984	0.2951712	0.390598737	2.82755961	9.79091615	8.169277
268	21.96060108	1.7262167	19.439721	0.2893178	0.34853838	2.86575239	9.80761784	8.16667678
269	23.61357715	1.8098561	19.050312	0.2931907	0.503823258	2.9262807	9.75391372	8.24432638
270	23.18325731	1.9015642	19.628227	0.2831654	0.491775423	2.87237582	9.7727328	8.4689794
271	26.08630708	1.8234999	19.706854	0.2969158	0.405302624	2.9159728	9.83088564	8.32186159
272	24.08207891	1.8975294	19.738358	0.2953771	0.4603587	2.82234022	9.81585257	8.71663918
273	25.34302391	1.7241651	18.771248	0.3084974	0.50875809	2.83552782	9.71933551	8.70098768
274	23.53871093	1.914979	19.528524	0.3036098	0.495166833	2.8055246	9.74087998	8.86579295
275	26.26615895	1.6368125	19.327232	0.268716	0.384300022	2.95933281	9.84374239	8.89653014
276	22.2083876	1.6502088	19.541105	0.2780788	0.318890194	2.78508385	9.8422581	8.81879023
277	23.14510166	1.8333463	19.444923	0.2956046	0.324537904	2.89618642	9.78499654	8.63776055
278	23.75222002	1.7842135	19.39956	0.2726555	0.494405855	2.80682641	9.78285791	8.07869872
279	24.99665568	1.6617319	18.939741	0.2658394	0.362538956	2.96052003	9.82246918	8.02368655
280	24.71127761			0.2888094		2.91129689		8.93360943
281	22.98911347	1.7984259 1.8749264	18.867187 19.710099	0.2857989	0.461393245 0.521181457	2.92546591	9.74884423 9.77611521	8.86276294
				0.2857989	0.470478164			
282	23.15826528	1.8431983	19.536513			2.99328975	9.71437188	8.64889638
283	26.36053713	1.9316597	19.527598	0.2693013	0.369435021	2.95277931	9.841511	8.50552904
284	26.37201407	1.7061134	19.608127	0.2903988	0.344292374	2.89811527	9.86074267	8.7503537
285	21.81797975	1.7784785	18.90709	0.2632464	0.368540027	2.84967472	9.78151065	8.69228211
286	22.49488898	1.7499604	18.990897	0.2889585	0.493359244	2.87897525	9.73101481	8.91541943
287	21.84993179	1.9442696	19.580929	0.2647	0.388898817	2.93615365	9.79534789	8.39611894
288	25.02368806	1.7261323	18.80066	0.2705832	0.416127108	2.87314826	9.79582673	8.48950057
289	25.93387286	1.7268704	19.612093	0.3039375	0.353415655	2.99321747	9.8129564	8.65802224
290	24.1151057	1.7257873	18.779765	0.3209029	0.411417586	2.98473782	9.81564165	7.94962021
291	22.49663047	1.6995195	18.820143	0.2686777	0.512137225	2.78873171	9.86246515	8.40544357
292	22.30226476	1.702564	19.310115	0.3209853	0.514122989	2.95155203	9.86461464	8.8505174
293	22.34168088	1.7949961	19.414766	0.2624834	0.442818391	2.75220952	9.7949439	8.05335251
294	22.50602358	1.8321256	18.915445	0.2736927	0.341602622	2.99209459	9.71804058	8.48504286
295	22.02063645	1.8966951	19.199032	0.2640499	0.383060025	2.82432791	9.76758482	8.71807359
296	26.50712981	1.8964668	19.486602	0.2974764	0.513078467	2.97519287	9.85358484	8.53825914
297	25.68841218	1.7371825	18.87196	0.2813197	0.373987375	2.9722789	9.84121951	7.98593526
298	22.28376616	1.6421107	18.97865	0.2989185	0.470280101	2.93148371	9.75720554	8.45735298

299	26.39934748	1.9122667	18.75605	0.3104518	0.496234113	2.86661784	9.86089995	8.93750914
300	22.87033625	1.9236778	19.266491	0.2736585	0.399450931	2.79378654	9.77337999	8.56287733
301	26.49890231	1.6900497	19.219762	0.303071	0.33350967	2.95731979	9.79731741	8.74714838
302	22.57871243	1.9383466	18.860134	0.2660522	0.398879436	2.97438617	9.7645153	8.64030543
303	23.37707005	1.645975	19.443098	0.3014391	0.320923772	2.94123096	9.85870605	8.63028275
304	22.12858928	1.9280152	19.382397	0.3093853	0.334131691	2.96499528	9.71291024	7.96405896
305	26.20178353	1.8037193	19.36655	0.2870181	0.476778001	2.7985768	9.85626447	8.25936224
306	25.0381389	1.9066401	19.458494	0.2876874	0.438548687	2.77470898	9.75360665	8.84332292
307	25.83785719	1.891954	19.171351	0.2693837	0.33986252	2.83363637	9.71180289	7.93815573
308	24.60431301	1.7629999	19.443084	0.3089347	0.457424715	2.7915689	9.77829212	8.2436352
309	22.57090669	1.9449457	19.739882	0.303647	0.340967723	2.83264284	9.70701313	8.96515054
310	22.17253688	1.9060477	19.739662	0.2625193		2.86124888	9.81782814	8.13712903
311					0.355528716			
	25.30129503	1.6757663	18.965124	0.2955029	0.385659757	3.00614581	9.77863183	8.6320005
312	23.70135877	1.6400339	19.215407	0.3205939	0.436361772	2.85400947	9.81265757	7.98165318
313	25.49788533	1.8615842	19.23867	0.2624684	0.490897946	2.78277451	9.72224966	8.97561863
314	21.82674501	1.6458373	19.45461	0.2775562	0.47937986	2.92299443	9.78326183	8.08890333
315	24.55822052	1.6543553	19.612544	0.3020161	0.302252403	2.8928285	9.75802277	8.49217631
316	24.50182161	1.948088	19.161663	0.2883169	0.426347601	2.86030384	9.70937126	8.27355971
317	22.85634079	1.9235918	18.854442	0.2897421	0.309125267	2.83240551	9.71297178	7.9367005
318	22.20510362	1.8192509	19.440959	0.2787017	0.50343607	2.85401454	9.79321573	8.55952754
319	25.0008768	1.7601342	18.793201	0.3215715	0.414886072	2.94877717	9.8134436	8.98920147
320	21.88287927	1.8815392	19.05716	0.2944184	0.504700898	2.75953852	9.78354515	8.89307815
321	26.09972572	1.8736332	19.451659	0.3056975	0.308224557	2.99214049	9.7268224	8.15816212
322	21.98741061	1.7240837	19.496631	0.2754903	0.50974911	2.96780724	9.73822858	8.1443527
323	23.62144335	1.7325961	18.974892	0.3085636	0.486734801	2.90606272	9.80100871	8.15432203
324	21.79412163	1.9302184	18.839291	0.3024212	0.338580696	2.88547231	9.78920083	7.97715662
325	23.59571712	1.871257	19.363974	0.3115569	0.349158309	2.91942848	9.73543706	8.02804982
326	25.91225424	1.8371473	18.963911	0.3044412	0.328648354	2.9556493	9.72723295	8.68763509
327	24.57076816	1.932143	19.079679	0.2700199	0.360309688	2.76460609	9.8103992	8.73830227
328	25.49642929	1.8775656	19.574915	0.2879522	0.509536593	2.89413335	9.85589332	8.8455861
329	25.25214638	1.9192201	18.916639	0.3078141	0.403926283	2.8375029	9.82388852	8.04874285
330	26.62229946	1.7975624	19.406893	0.2815886	0.501724912	2.91108046	9.82245596	8.33076387
331	23.58074076	1.6738393	19.454972	0.2765545	0.346216728	3.00082208	9.82833651	8.42818127
332	23.24920361	1.7336074	18.914241	0.3129072	0.358050959	3.00488832	9.83920348	8.74598604
333	23.56590294	1.8961684	19.075769	0.3092881	0.417178384	2.84104006	9.73692301	8.63393861
334	23.40283913	1.6737196	18.833133	0.3136547	0.473147541	3.00890576	9.76390321	7.91380919
335	23.52684707	1.8721837	19.690603	0.2995553	0.451346528	2.91696775	9.74260691	8.49057443
336	26.52558851	1.9163062	19.088937	0.3140023	0.51117745	2.90836916	9.70707392	8.0111825
337	22.47511692	1.9468571	18.769947	0.2844425	0.306270764	3.0001527	9.80065147	8.86892545
338	21.94926017	1.675475	18.925022	0.3062174	0.37051981	2.94235066	9.84929044	8.32691077
339	22.93437632	1.780591	19.06231	0.2648609	0.327895242	2.82219404	9.77708928	8.66669429
340		1.7534715						
	23.7702246		19.706725	0.2900068	0.331277648	2.96141982	9.81648704	8.8978991
341 342	22.53028776 23.33810927	1.6622161 1.6716443	18.940128 19.56937	0.2643912 0.3031297	0.471163438 0.495062939	2.83149707 2.92380234	9.84469748 9.70659746	8.48725429 8.90070617
343	25.8563264	1.805298	19.044402	0.2894465	0.343256295	2.78980309	9.71885456	7.91888027
344	23.29900245	1.7230621	19.733416	0.2630323	0.455638769	2.90723128	9.71206868	8.56026745
345	24.43984669	1.6326384	19.002464	0.2736562	0.310290106	2.86184872	9.77868527	8.12551164
346	22.52726312	1.9228038	19.664136	0.3040759	0.380554661	2.98573775	9.70633547	8.78653794
347	22.6211311	1.8824856	19.515959	0.3204705	0.367766913	2.86679617	9.75349797	8.9818666
348	24.60795733	1.8739793	19.58497	0.3174663	0.435019113	2.90717554	9.79478553	8.42840098
349	23.37785417	1.7804367	19.078852	0.3003398	0.324149913	2.87994669	9.79772585	8.96347594
350	25.57908006	1.6399271	19.181008	0.3157214	0.446276845	2.96749702	9.84759158	8.80491802
351	24.87267725	1.8233874	19.057382	0.3027334	0.385569138	2.96883008	9.77770356	8.53023902
352	23.02741239	1.874641	19.035113	0.3137768	0.374056208	2.83524946	9.81155006	8.78776583
353	22.83550752	1.6959443	19.433823	0.264921	0.320808236	2.84000265	9.77521538	8.18526561
354	25.02281348	1.896723	19.591907	0.3000885	0.424363035	2.91516411	9.84035969	8.34422429
355	22.30802454	1.7476828	19.524921	0.2803946	0.397618326	2.96310071	9.74716283	8.47536091
356	22.85707083	1.6968803	19.432036	0.2903251	0.359287268	2.99002822	9.840898	8.64871501
357	24.44230788	1.8488505	19.656422	0.2724827	0.470446882	2.76521539	9.81355673	7.95394991
358	23.32215137	1.9448378	19.709956	0.2956637	0.431810518	2.95536541	9.78985612	8.99020772
359	22.55799475	1.7448997	18.803565	0.3016107	0.331807392	2.90188757	9.74156949	7.91079764
					-			

360	24.85492741	1.7788439	19.728214	0.3182153	[0.51438697	2.98884836	9.73526675	8.94974983
361	24.67811731	1.8361187	18.869252	0.2902216		0.434649654	2.7657631	9.74786575	8.01722132
362	26.55889803	1.8947917	19.49223	0.2924673	l	0.46606501	2.82489499	9.80796734	8.45707864
363	21.96308079	1.6622307	19.630115	0.2853971		0.448466749	2.89330669	9.78610985	8.12178463
364	25.76668692	1.791269	19.601983	0.318992		0.390253593	2.80396133	9.83155593	8.48677567
365	22.59332826	1.7081121	19.035464	0.2653076		0.444083946	2.97858092	9.84709136	7.99126545
366	23.93481279	1.7522632	18.854129	0.3148341	[0.513240965	3.00698421	9.72512194	8.31906648
367	23.59720882	1.6992537	18.955797	0.2895806	[0.402580399	2.85177433	9.82301346	8.76497667
368	26.24940997	1.7875419	18.897474	0.2968462		0.473085544	2.78898221	9.72876265	8.58234875
369	24.54918861	1.807687	19.362943	0.3152295		0.499463184	2.96070535	9.79581994	8.24026388
370	22.85592169	1.7245002	19.564571	0.2701662		0.515068501	2.76029308	9.81947816	8.31401455
371	23.67059839	1.8614805	19.446434	0.3018889	ſ	0.405730684	2.96524066	9.70162401	8.15945411
372	23.22544291	1.6592906	19.346669	0.2748803		0.474186211	2.78640987	9.80617044	8.35355767
373	26.57647042	1.8042396	18.84581	0.2923671		0.302249404	2.81555046	9.74082147	8.99200997
374	23.65179232	1.8259905	18.765073	0.2674363	Ī	0.360224158	2.91966657	9.71407546	8.68250503
375	22.6047506	1.6623496	18.878909	0.3067823	Ī	0.478984176	2.89960491	9.79100659	8.08662044
376	25.77755843	1.7869996	19.72094	0.2643953	ſ	0.36282268	3.00567498	9.72979417	8.90712907
377	25.81387108	1.6233203	18.96458	0.2665898		0.309364252	2.87276923	9.78210124	8.92316404
378	26.63177761	1.650786	19.69161	0.3199286		0.51159846	2.9755099	9.72428063	7.96430169
379	24.30766922	1.6563325	19.521535	0.2883822	Ī	0.413577516	2.77163468	9.83045446	8.52707916
380	24.13050998	1.83034	18.751207	0.2787396	Ī	0.450475064	2.85855843	9.81701026	8.20600809
381	24.48087803	1.7976162	19.410988	0.2946487	ı	0.461441289	2.95661886	9.72766631	8.1583318
382	24.75827554	1.7692197	19.281825	0.3172275	ı	0.421837342	2.76610625	9.73556665	8.18753722
383	26.53879477	1.7293043	18.809872	0.3064782		0.363548285	2.85928059	9.81421994	7.98422505
384	22.53059867	1.6546701	19.042245	0.2634285	Ī	0.387181268	2.81418698	9.8111956	8.95090585
385	23.70017143	1.7780342	19.723927	0.2951997		0.430305611	3.00534664	9.81595205	8.97321635
386	22.37711318	1.9059001	19.630126	0.2761641	ſ	0.498071673	2.97938205	9.86269661	8.123465
387	23.06205946	1.766768	19.049849	0.2872618		0.327645557	2.98357477	9.73015482	8.36337975
388	25.38826297	1.8789275	19.226884	0.2840081		0.413892406	2.78588386	9.82729674	8.05666633
389	25.81246293	1.7717279	19.508522	0.2957081		0.386430615	2.86634967	9.7931363	7.92373807
390	24.51675428	1.9267083	18.848121	0.2871333	Ī	0.508666118	2.91018674	9.74869745	8.54054866
391	26.09211589	1.6718357	19.363718	0.2765121	ı	0.371610078	2.7861124	9.86570362	8.50627464
392	25.85006175	1.8147554	18.789403	0.2687099		0.418227516	2.97073884	9.85676972	8.23764509
393	26.2400928	1.6640175	19.325479	0.272282	ı	0.311904645	2.97745989	9.81258472	8.61957459
394	23.86967459	1.8641239	19.522806	0.2978318	Ī	0.503031741	2.88447043	9.72478819	8.23474099
395	26.32697008	1.8125105	19.241865	0.3215944	Ī	0.349029528	2.97352478	9.85398444	8.39791434
396	25.8289956	1.8196204	18.839817	0.3169635	ı	0.519821717	2.84121744	9.77269308	8.91062437
397	23.53237139	1.673717	18.759248	0.2691878	ı	0.521277585	2.81412367	9.84840811	8.87847481
398	23.37574999	1.8591081	18.805277	0.3193183	ı	0.320133157	2.83025988	9.84019146	8.1393768
399	25.95139917	1.8790669	19.001079	0.2747842	-	0.342480854	2.82470005	9.71535037	8.42418551
400	22.36911987	1.8699403	19.040405	0.2722555	Ì	0.44712784	3.00546114	9.78491144	8.53006431
					٠				
Promedio:	24.1871	1.7882	19.2591	0.2911	ſ	0.4117	2.8825	9.7828	8.4372
-									

RESUMEN: HUELLA DEL CARBONO POR LA CONSTRUCCIÓN DE UNA VIVIENDA UNIFAMILIAR DE ADOBE

LUGAR : CONCEPCIÓN - CONCEPCIÓN - JUNÍN

Item	Partida	Und.	Metrado	HC Unit	HC Parcial	Desv. Stand
item	Faitiua	Oliu.	Wetrado	(kgCO2eq/und)	(kg CO2 eq)	(kg CO2 eq)
01	OBRAS PRELIMINARES					
01.01	LIMPIEZA DEL TERRENO MANUAL	m2	82.84	0.03	2.73	
01.02	TRAZO Y REPLANTEO INICAL	m2	84.84	2.46	209.06	1.10
02	ESTRUCTURAS					
02.01	MOVIMIENTO DE TIERRAS					
02.01.01	EXCAVACION MANUAL DE ZANJAS PARA CIMIENTOS	m3	22.99	2.75	63.15	
02.01.02	ACARREO DE MATERIAL EXCEDENTE MANUAL	m3	22.99	2.06	47.36	
02.02	CIMENTACION					
02.02.01	CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CO	m3	22.99	304.26	6994.91	114.47
02.03	SOBRE CIMENTACION					
02.03.01	ENCOFRADO Y DESENCOFRADO EN SOBRE CIMIENT	m2	38.32	5.94	227.77	2.45
02.03.02	CONCRETO C:H = 1:8 + 25% P.M. PARA SOBRECIMIEN	m3	7.66	324.50	2485.63	41.36
03	ARQUITECTURA					
03.01	ALBAÑILERIA					
03.01.01	MUROS CABEZA CON ADOBE 0.40X0.20M	m2	118.96	6.15	731.36	8.14
03.01.02	DINTEL PARA VANOS DE EUCALIPTO DE 4"	m	7.10	24.60	174.68	2.73
03.02	REVOQUES Y ENLUCIDOS					
03.02.01	TARRAJEO MUROS DE ADOBE	m2	162.69	21.41	3483.49	55.25
03.03	PISOS					
03.03.01	FALSO PISO DE 4" DE CONCRETO C:H = 1:10	m3	4.29	53.53	229.64	3.05
03.04	PINTURAS					
03.04.01	PINTURA EN MUROS INTERIORES	m2	162.69	1.51	246.26	2.13
03.04.02	PINTURA EN MUROS EXTERIORES	m2	11.21	1.51	16.97	0.15
03.05	CUBIERTAS					
03.05.01	VIGA DE MADERA DE 2" X 7"	m	56.20	6.67	375.11	5.05
03.05.02	CAÑA CHANCADA DE e=1"	m2	82.84	14.96	1238.98	44.11
03.05.03	TORTA DE BARRO DE e=2"	m2	82.84	1.64	135.51	0.52
03.06	CARPINTERIA DE MADERA					
03.06.01	PUERTA PRINCIPAL DE 1.00 X 2.20 M	und	1.00	64.99	64.99	0.80
03.06.02	PUERTAS INTERIORES	und	4.00	59.80	239.19	2.90
			-	HC Prom.	16,966.78	225.85

HUELLA DE CARBONO UNITARIO

HC Mat : Huella del Carbono por producción de insumos (kg CO2 / und)
HC Logist : Huella del Carbono por transporte de insumos (kg CO2 / und)
HC Obra : Huella del Carbono por ejecución de obra (kg CO2 / und)

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	0.0320	0.000	0.000	0.033	0.0330
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	-	-	TOT	AL (kg CO2	/m2)	0.03

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0533	0.000	0.000	0.055	0.0549
Peón	hh	0.0533	0.000	0.000	0.055	0.0549
Acero Corrugado fy= 4200 kg/cm2	kg	0.0100	1.788	1.540	0.000	0.0333
Cal Hidratada bolsa 25kg	bol	0.0200	19.259	96.794	0.000	2.3211
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	-	-	TOT	AL (kg CO2	/m2)	2.46

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTO / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	3.3333	0.000	0.000	2.747	2.7467
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m3)	2.75

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	2.0000	0.000	0.000	2.060	2.0600
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	-		TOT	AL (kg CO2	/m3)	2.06

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Peón	hh	2.2222	0.000	0.000	2.289	2.2889
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577
Piedra Grande de 8"	m3	0.4500	0.180	33.914	0.000	15.3423
Hormigón	m3	0.9500	0.340	23.479	0.000	22.6277
Cemento Portland Tipo I (42kg)	bol	3.5000	24.187	48.184	0.000	253.2982
Agua	m3	0.1500	0.149	54.108	0.000	8.1386
Mezcladora de Concreto 11p3 - 18HP	hm	0.4444	0.000	0.000	2.677	1.1897
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
		-	ТОТ	304.26		

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Alambre Negro Recocido N° 8	kg	0.2600	0.045	1.540	0.000	0.4122
Clavos para madera con cabeza 3/4"	kg	0.1300	0.075	1.540	0.000	0.2099
Madera Tornillo inc. corte p/enconf	p2	3.5000	0.299	0.829	0.000	3.9484
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOTAL (kg CO2 /m2)			5.94

02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.0000	0.000	0.000	0.916	0.9156
Peón	hh	2.5000	0.000	0.000	2.289	2.2889
Operador de Equipo Liviano	hh	0.4444	0.000	0.000	0.458	0.4577
Piedra Mediana de 6"	m3	0.4200	0.180	33.914	0.000	14.3195
Hormigón	m3	0.9000	0.340	23.479	0.000	21.4368
Cemento Portland Tipo I (42.5kg)	bol	3.8000	24.187	48.184	0.000	275.0094
Agua	m3	0.1800	0.149	54.108	0.000	9.7663
Mezcladora de Concreto 11p3 - 18HP	hm	0.5000	0.000	0.000	0.602	0.3012
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000
		-	TOT	AL (kg CO2	/m3)	324.50

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.0000	0.000	0.000	1.030	1.0300
Peón	hh	0.5000	0.000	0.000	0.515	0.5150
Tierra de Chacra	m3	0.0800	1.185	2.609	0.000	0.3035
Adobe .40 x .20 x .10	und	50.0000	0.023	0.000	0.000	1.1315
Caña Brava	m	12.1500	0.026	0.146	0.000	2.0829
Agua	m3	0.0200	0.149	54.108	0.000	1.0851
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	TOT	AL (kg CO2	/m2)	6.15		

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" / UND: M

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.206	0.2060
Peón	hh	0.2000	0.000	0.000	0.206	0.2060
Madera de Eucalipto de 4"	m	1.0000	6.423	17.768	0.000	24.1914
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TO	TAL (kg CO2	? /m)	24.60

03.02.01 TARRAJEO EN MUROS DE ADOBE / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Peón	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Fina	m3	0.0300	0.361	33.914	0.000	1.0282
Cemento Portland Tipo I (42.5 kg)	bol	0.2400	24.187	48.184	0.000	17.3690
Agua	m3	0.0100	0.149	54.108	0.000	0.5426
Herramientas manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
		•	TOT	AL (kg CO2	/m2)	21.41

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	6.6667	0.000	0.000	6.867	6.8667
Operador de Equipo Liviano	hh	1.3333	0.000	0.000	1.373	1.3733
Hormigón	m3	0.1300	0.340	23.479	0.000	3.0964
Cemento Portland Tipo I (42.5 kg)	bol	0.5000	24.187	48.184	0.000	36.1855
Agua	m3	0.0200	0.149	54.108	0.000	1.0851
Mezcladora de Concreto 11p3 - 18HP	hm	1.3333	0.000	0.000	0.602	0.8032
Herramientas Manuales	%mo	1.0000	0.000	0.000	0.000	0.0000
		-	TOT	53.53		

03.04.01 PINTURA EN MUROS INTERIORES / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Latex Supermate	gal	0.0400	0.000	6.242	0.000	0.2497
Imprimante	gal	0.1300	0.000	6.842	0.000	0.8895
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m2)	1.51

03.04.02 PINTURA EN MUROS EXTERIORES / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Latex Supermate	gal	0.0400	0.000	6.242	0.000	0.2497
Imprimante	gal	0.1300	0.000	6.842	0.000	0.8895
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
	TOT	AL (kg CO2	/m2)	1.51		

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" / UND: M

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.3333	0.000	0.000	0.343	0.3433
Peón	hh	0.6667	0.000	0.000	0.687	0.6867
Madera de 2" x 7"	m	1.0000	1.499	4.146	0.000	5.6445
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TO	ΓAL (kg CO2	! /m)	6.67

03.05.02 CAÑA CHANCADA DE e=1" / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.103	0.1030
Peón	hh	0.4000	0.000	0.000	0.206	0.2060
Alambre negro recocido N° 8	kg	0.2000	0.045	1.540	0.000	0.3171
Clavos	kg	0.1500	0.075	1.540	0.000	0.2422
Caña Chancada de 1"	m2	1.0500	0.300	13.117	0.000	14.0880
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m2)	14.96

03.05.03 TORTA DE BARRO DE e=2" / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2000	0.000	0.000	0.082	0.0824
Peón	hh	0.4000	0.000	0.000	0.165	0.1648
Tierra	m3	0.0800	1.185	2.609	0.000	0.3035
Agua	m3	0.0200	0.149	54.108	0.000	1.0851
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m2)	1.64

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.075	1.540	0.000	1.0496
Madera Cedro	p2	23.6806	0.559	1.546	0.000	49.8517
Bisagra de Fierro de 2"	par	3.0000	0.000	1.540	0.000	4.6202
Barniz Marino	gal	0.3000	0.000	4.081	0.000	1.2244
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
· · · · · · · · · · · · · · · · · · ·			TOT	AL (kg CO2	/und)	64.99

03.06.02 PUERTAS INTERIORES / UND: UND

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.075	1.540	0.000	1.0496
Madera Cedro	p2	21.3125	0.559	1.546	0.000	44.8665
Bisagra de Fierro de 2"	par	3.0000	0.000	1.540	0.000	4.6202
Barniz Marino	gal	0.2500	0.000	4.081	0.000	1.0203
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/und)	59.80

HUELLA DEL CARBONO POR PRODUCCIÓN DE INSUMOS

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

Solo Herramientas Manuales

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	l
	hm	0.00		0.00	0.00	hh	0	1.03	0.000	0.000	
									PARCIAL	0.000	kg C

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

Acero Corrugado fy= 4200 kg/cm2 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									HC Prom.	1.788	kg CC

Cal Hidratada bolsa 25kg /und: bol

PROCESO		Equipos y Herramientas					Mano de Obra				
	PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
		-				-	-	-	-	HC Prom.	19.259

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTO (/ UND: M3

Solo Herramientas Manuales

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	hm	0		0.00	0.00	hh	0	1.03	0.000	0.000
	-	-	•	-					PARCIAL	0.000

2 / m3

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

Solo Herramientas Manuales

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	hm	0		0.00	0.00	hh	0	1.03	0.000	0.000
	•						•		PARCIAL	0.000

kg CO2 / m3

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO / UND: M3

Piedra Grande de 8" / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Selección y Acarreo	hm	0.08	Herramientas Manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082	
Extracción de cantera	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098	
				-					HC Prom.	0.180	kg CO2 /

2 Hormigón / und: m3

PROCESO			Equipos y Herramientas					Parcial		
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
	-								PARCIAL	0.340

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	I
]
									HC Prom.	24.187	

4 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											I
									PARCIAL	0.149]

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO / UND: M2

Alambre Negro Recocido N° 8 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Trefilado	hm	0.002	Maquina Trefiladora	22.64	0.05	hh	0.00	1.03	0.000	0.045	
		_					•		HC Prom.	0.045	kg CO2 / r

2 Clavos para madera con cabeza 3/4" / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.64	0.05	hh	0.00	1.03	0.000	0.045	1
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.26	0.03	hh	0.00	1.03	0.000	0.029	
	-							-	HC Prom.	0.075	kg CO2

3 Madera Tornillo inc. corte p/enconf / und: p2

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	l
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
]
									HC Prom.	0.299	kg C

02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA CIMIENTO / UND: M3

Piedra Mediana de 6" / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Selección y Acarreo en Cantera	hm	0.08	Herramientas Manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082	7
Extracción	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.000	1.03	0.000	0.098]
									HC Prom.	0.180	kç

kg CO2 / m3

2 Hormigón / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
	•						•		PARCIAL	0.340

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
						•	•		HC Prom.	24.187

Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
		-				-	•		PARCIAL	0.149	kg CO2 / m

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M

Tierra de Chacra / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción	hm	0.65	Herramientas manuales	0.00	0.00	hh	0.65	1.03	0.670	0.670
Selección y Acarreo	hm	0.50	Herramientas manuales	0.00	0.00	hh	0.50	1.03	0.515	0.515
									PARCIAL	1.185

/ UND: M2

Adobe .40 x .20 x .10 / und: und

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Extracción de tierra	hm	3.51	Herramientas manuales	0.00	0.00	hh	3.51	1.03	3.615	3.615]
Selección y Acarreo	hm	2.70	Herramientas manuales	0.00	0.00	hh	2.70	1.03	2.781	2.781	1
Remojado de Tierra	hm	1.20	Herramientas manuales	0.00	0.00	hh	1.20	1.03	1.236	1.236	1
Formacion del Barro	hm	3.50	Herramientas manuales	0.00	0.00	hh	3.50	1.03	3.605	3.605	1
Elaboración del Adobe	hm	11.06	Herramientas manuales	0.00	0.00	hh	11.06	1.03	11.392	11.392	1
							•	•	PARCIAL	0.023	1

3 <u>Caña Brava</u> / und: m

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción	hm	0.017	Herramientas manuales	0.00	0.00	hh	0.017	1.03	0.018	0.018
Corte Según Medidas Requeridas	hm	0.008	Herramientas manuales	0.00	0.00	hh	0.008	1.03	0.008	0.008
									PARCIAL	0.026

4 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.149	kg (

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" / UND: M

Madera de Eucalipto de 4" / und: m

ſ	PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
l	PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									•	HC Prom.	6.423

03.02.01 TARRAJEO EN MUROS DE ADOBE / UND: M2

Arena Fina / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Limpieza superficial	hm	0.10	Herramientas manuales	0.00	0.00	hh	0.10	1.03	0.103	0.103
Extracción	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258

PARCIAL **0.361** kg CO2 / m3

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	ĺ
	•	-					•		HC Prom.	24.187	kg CO2

3 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	•	•				•	•		PARCIAL	0.149

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 / UND: M3

Hormigón / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
		-				-	•		PARCIAL	0.340

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
]
									HC Prom.	24.187	kg

O2 / bol

3 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.149	kg (

03.04.01 PINTURA EN MUROS INTERIORES / UND: M2

Pintura Latex Supermate / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.000	kg (

2 Imprimante / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.000	kg CC

03.04.02 PINTURA EN MUROS EXTERIORES / UND: M2

1 Pintura Latex Supermate / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
]
		•				•	•		PARCIAL	0.000	kg

2 Imprimante / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.000	kg (

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" / UND: M

1 Madera de 2" x 7"

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									HC Prom.	1.499	kg

03.05.02 CAÑA CHANCADA DE e=1"

/ UND: M2

/ UND: M2

Alambre negro recocido N° 8 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Trefilado	hm	0.002	Maquina Trefiladora	22.64	0.05	hh	0.00	1.03	0.000	0.045]
									HC Prom.	0.045	kg

2 Clavos / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.64	0.05	hh	0.00	1.03	0.000	0.045	1
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.26	0.03	hh	0.00	1.03	0.000	0.029	1
	•	-				-		•	HC Prom.	0.075	kg

Caña Chancada de 1" / und: m2

PROCESO			Equipos y Herramientas	i			Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción del bambú	hm	0.0694	Herramientas manuales	0.00	0.00	hh	0.0694	1.03	0.071	0.071
Picar longitudinalmente de 1 a 2 cm	hm	0.1389	Herramientas manuales	0.00	0.00	hh	0.1389	1.03	0.143	0.143
Corte Longitudinal	hm	0.0138	Herramientas manuales	0.00	0.00	hh	0.0138	1.03	0.014	0.014
Limpieza de la parte interna	hm	0.0694	Herramientas manuales	0.00	0.00	hh	0.0694	1.03	0.071	0.071
				-			•		PARCIAL	0.300

03.05.03 TORTA DE BARRO DE e=2"

Tierra / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción	hm	0.65	Herramientas manuales	0.00	0.00	hh	0.65	1.03	0.670	0.670
Selección y Acarreo	hm	0.50	Herramientas manuales	0.00	0.00	hh	0.50	1.03	0.515	0.515
	•								PARCIAL	1.185

2 Agua / und: m3

PROCESO			Equipos y Herramientas				Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2

PARCIAL **0.149** kg CO2 / m3

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

1 Clavos / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.64	0.05	hh	0.00	1.03	0.000	0.045	
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.26	0.03	hh	0.00	1.03	0.000	0.029	
									HC Prom.	0.075	kg CO2

2 Madera Cedro / und: p2

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									HC Prom.	0.559

Bisagra de Fierro de 2" / und: par

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									PARCIAL	0.000

Barniz Marino / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	-	-	•			-			PARCIAL	0.000

03.06.02 PUERTAS INTERIORES

/ UND: UND

Clavos / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.64	0.05	hh	0.00	1.03	0.000	0.045
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.26	0.03	hh	0.00	1.03	0.000	0.029
									HC Prom.	0.075

kg CO2 / kg

2 Madera Cedro / und: p2

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial Kg CO2	
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	-							-	HC Prom.	0.559	kg CO2 / p2

3 Bisagra de Fierro de 2" / und: par

PROCESO			Equipos y Herramientas					Parcial	1		
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	•	•				•	•	•	PARCIAL	0.000	kg

4 Barniz Marino / und: gal

PROCESO			Equipos y Herramientas					Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											Ī
									PARCIAL	0.000	k

HUELLA DEL CARBONO POR TRANSPORTE DE INSUMOS

Emisiones de CO2 por proceso de transporte por cantidad unitaria del material:

Material	Und	Cant.	Tipo de Vehiculo	Lugar de Producción /explotación	Proveedor (Lima) (km)	Lugar de compra (Huaral) (km)	Lugar de Compra (Aucallama) (km)	Distancia Parcial 1 (Km)	Consumo Parcial 1 de Combustile (gln)	Emisión Parcial 1 de CO2 (kg)	Tipo de Vehiculo	Lugar de Destino (Obra) (km)	Distancia Parcial 2 (Km)	Consumo Parcial 2 de Combustile (gln)	Emisión Parcial 2 de CO2 (kg)	Emisión unitaria 1 de CO2 (kg/und)
Alambre negro recocido N° 8	kg	26.531	Trailer	Pisco	0.00	404.10	20.00	424.10	3,392.80	33,191.14	Camioneta	1.50	1.50	60.00	506.23	1.54
Acero Corrugado fy= 4200 kg/cm2	kg	0.848	Trailer	Pisco	0.00	404.10	20.00	424.10	3,392.80	33,191.14	Camioneta	1.50	1.50	60.00	506.23	1.54
Clavos para madera con cabeza 3/4"	kg	4.982	Trailer	Pisco	0.00	404.10	20.00	424.10	3,392.80	33,191.14	Camioneta	1.50	1.50	60.00	506.23	1.54
Clavos	kg	15.676	Trailer	Pisco	0.00	404.10	20.00	424.10	3,392.80	33,191.14	Camioneta	1.50	1.50	60.00	506.23	1.54
Piedra Mediana de 6"	m3	3.217	*	Concepción	0.00	0.00	0.00	0.00	-	,	Volquete	6.50	6.50	52.00	508.71	33.91
Piedra Grande de 8"	m3	10.346	*	Concepción	0.00	0.00	0.00	0.00	-	-	Volquete	6.50	6.50	52.00	508.71	33.91
Arena Fina	m3	4.881	*	Concepción	0.00	0.00	0.00	0.00	-		Volquete	6.50	6.50	52.00	508.71	33.91
Hormigón	m3	29.292	*	Huancayo	0.00	0.00	0.00	0.00	-	-	Volquete	4.50	4.50	36.00	352.18	23.48
Tierra de Chacra	m3	16.144	*	Lado vivienda	0.00	0.00	0.00	0.00	-	-	Volquete	0.50	0.50	4.00	39.13	2.61
Cemento Portland Tipo I (42kg)	bol	150.764	Trailer	Atocongo	46.90	304.30	20.00	371.20	2,969.60	29,051.05	Camión	1.50	1.50	37.50	366.86	48.18
Cal Hidratada bolsa 25kg	bol	1.697	Trailer	Puno	0.00	1226.40	20.00	1246.40	9,971.20	97,546.41	Camioneta	1.50	1.50	60.00	506.23	96.79
Adobe .40 x .20 x .10	und	5948.000	*	Lado vivienda	0.00	0.00	0.00	0.00	-	-	*	0.00	0.00	-	-	-
Caña Brava	m	1445.364	*	Concepción	0.00	0.00	0.00	0.00	-	-	Camioneta	3.50	3.50	140.00	1,181.21	0.15
Caña Chancada de 1"	m2	86.982	*	Concepción	0.00	0.00	0.00	0.00	-	-	Camioneta	3.50	3.50	140.00	1,181.21	13.12
Madera Tornillo inc. corte p/enconf	p2	134.120	Trailer	Valle Mantaro	0.00	0.00	100.00	100.00	800.00	7,826.25	Camioneta	2.00	2.00	80.00	782.63	0.83
Madera Cedro	p2	108.931	Trailer	Valle Mantaro	0.00	0.00	100.00	100.00	800.00	7,826.25	Camioneta	2.00	2.00	80.00	782.63	1.55
Madera de Eucalipto de 4"	m	25.560	Trailer	Valle Mantaro	0.00	0.00	100.00	100.00	800.00	7,826.25	Camioneta	2.00	2.00	80.00	782.63	17.77
Madera de 2" x 7"	m	0.500	Trailer	Valle Mantaro	0.00	0.00	100.00	100.00	800.00	7,826.25	Camioneta	2.00	2.00	80.00	782.63	4.15
Bisagra de Fierro de 2"	par	15.000	Trailer	Pisco	0.00	404.10	20.00	424.10	3,392.80	33,191.14	Camioneta	1.50	1.50	60.00	506.23	1.54
Pintura Latex Supermate	gal	6.956	Trailer	Lima	0.00	304.30	0.00	304.30	2,434.40	23,815.29	Camioneta	1.50	1.50	60.00	506.23	6.24
Imprimante	gal	22.607	Trailer	Lima	0.00	304.30	0.00	304.30	2,434.40	23,815.29	Camioneta	1.50	1.50	60.00	506.23	6.84
Barniz Marino	gal	1.300	Trailer	Lima	0.00	304.30	0.00	304.30	2,434.40	23,815.29	Camioneta	1.50	1.50	60.00	506.23	4.08
Agua	m3	10.576	*	Concepción	0.00	0.00	0.00	0.00	-	-	Camión	1.00	1.00	25.00	244.57	54.11

HUELLA DEL CARBONO DURANTE LA EJECUCIÓN DE OBRA

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Peón	hm	0.00		0.00	0.00	hh	0.0320	1.03	0.033	0.033	
									PARCIAL	0.033	kg CO2

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.0533	1.03	0.055	0.055	
Peón	hm	0		0.00	0.00	hh	0.0533	1.03	0.055	0.055	
								-	PARCIAL	0.110	kg CO2 / n

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTO/ UND: M3

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	1
RECURSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Peón	hm	0.00		0.00	0.00	hh	2.6667	1.03	2.747	2.747	1
									PARCIAL	2.747	kg CO2 / m3

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Peón	hm	0.00		0.00	0.00	hh	2.000	1.03	2.060	2.060	
									PARCIAL	2.060	kg CO2 / m3

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO / UND: M3

RECURSO		Equi	pos y Herram	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916]
Peón	hm	0		0.00	0.00	hh	2.2222	1.03	2.289	2.289	l
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.4444	1.03	0.458	0.458	Ì
Mezcladora	hm	0.44	Mezcladora	6.02	2.68	hh	0.00	1.03	0.000	2.677	l
		-					-	-	HC Prom.	6.339	1

02.03.01 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687	
Peón	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687	
	-								PARCIAL	1.373] kg CO2 / m2

02.03.02 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO / UND: M3

RECURSO		Equi	ipos y Herran	nientas			Mano	de Obra		Parcial	1
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916	l
Peón	hm	0		0.00	0.00	hh	2.2222	1.03	2.289	2.289	1
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.4444	1.03	0.458	0.458	1
Mezcladora	hm	0.10	Mezcladora	6.02	0.60	hh	0.00	1.03	0.000	0.602	Ī
								•	HC Prom.	4.265	kç

03.01.01 MUROS CABEZA CON ADOBE 0.40X0.20M / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECURSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	1.0000	1.03	1.030	1.030	
Peón	hm	0		0.00	0.00	hh	0.5000	1.03	0.515	0.515	
					-	-		PARCIAL	1.545	kg CC	

03.01.02 DINTEL PARA VANOS DE EUCALIPTO DE 4" / UND: M

RECURSO		Equipos y Herramientas Mano de Obra							Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.2000	1.03	0.206	0.206
Peón	hm	0		0.00	0.00	hh	0.2000	1.03	0.206	0.206
							-		PARCIAL	0.412

03.02.01 TARRAJEO EN MUROS DE ADOBE / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	1.6000	1.03	1.648	1.648	
Peón	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824	
									PARCIAL	2.472	kg CO2 / m

03.03.01 FALSO PISO DE 4" DE CONCRETO C:H=1:10 / UND: M3

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120	
Peón	hm	hm 0			0.00	hh	6.6667	1.03	6.867	6.867	
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	1.3333	1.03	1.373	1.373	1
Mezcladora	hm	0.10	Mezcladora	6.02	0.60	hh	0.00	1.03	0.000	0.602	
									HC Prom.	12.962	kg CO2

03.04.01 PINTURA EN MUROS INTERIORES / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial]
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.2424	1.03	0.250	0.250	
Peón	hm	0		0.00	0.00	hh	0.1212	1.03	0.125	0.125	1
									PARCIAL	0.375	kg CO2 / m2

03.04.02 PINTURA EN MUROS EXTERIORES / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.2424	1.03	0.250	0.250	1
Peón	hm	0		0.00	0.00	hh	0.1212	1.03	0.125	0.125	1
		<u> </u>					-		PARCIAL	0.375	kg C

03.05.01 VIGA SOLERA DE MADERA DE 2" X 7" / UND: M

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.3333	1.03	0.343	0.343
Peón	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687
	•						•	•	PARCIAL	1.030

kg CO2 / m

03.05.02 CAÑA CHANCADA DE e=1" / UND: M2

RECURSO	Equipos y Herramientas						Mano		Parcial		
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.1000	1.03	0.103	0.103	1
Peón	hm	0		0.00	0.00	hh	0.2000	1.03	0.206	0.206	Ī
								,	PARCIAL	0.309	kg CO2 / m

03.05.03 TORTA DE BARRO DE e=2" / UND: M2

RECURSO	Equipos y Herramientas						Mano	Parcial			
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.0800	1.03	0.082	0.082	1
Peón	hm	0		0.00	0.00	hh	0.1600	1.03	0.165	0.165	Ī
									PARCIAL	0.247	kg CO2 / m2

03.06.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

RECURSO		Equi	ipos y Herran	nientas		Parcial				
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120
Peón	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120
	-		-	•		-			PARCIAL	8.240

kg CO2 / und

03.06.02 PUERTAS INTERIORES

/ UND: UND

RECURSO		pos y Herran	nientas	Mano de Obra				Parcial		
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120
Peón	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120
									PARCIAL	8 240

kg CO2 / und

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL	ANEXOS
ANEXO VII:	
Cálculo de emisiones de CO2 equivalente para la vivienda unifam el distrito de Aucallama.	iliar ladrillo en

SIMULACIÓN DE MONTE CARLO PARA LA HUELLA DE CARBONO

Mínimo Máximo Insumo und Fórmula Cemento kg CO2/kg 0.511 0.629 0.511+r*0.118 Acero de Refuerzo kg CO2/kg 1.623 1.95 1.623+r*0.327 Cal 0.75 0.79 0.75+r*0.04 kg CO2/kg Madera kg CO2/kg 0.262 0.3216 0.262+r*0.0596 Energía Electrica kg CO2 / kWh 0.3 0.52144 0.3+r+0.22144 GLP 2.75+r*0.265

2.75

9.7

7.9

3.015

9.8658

8.9964

9.7+r*0.1658

7.9+r+1.0964

Método de la Transformada Inversa:

kg CO2 / kg

kg CO2 / gln

kg CO2 / gln

Fórmula: a+r(b-a)

a: valor mínimo

Diésel

Gasolina 95

b: vamor máximo

r: número aleatorio

VIVIENDA DE LADRILLO EN AUCALLAMA - HUARAL

Aleatorios:

Aleatorios:	Cemento	Acero	Cal	Madera
Ensayo	kg CO2/bol	kg CO2/kg	kg CO2/bol	kg CO2/kg
1	25.29722006	1.7689966	18.876695	0.3212371
2	23.07143491	1.9283308	19.235013	0.3212371
3	26.27479083	1.8806065	19.261502	0.3199263
4	24.10418921	1.7845381	19.132439	0.2983773
5	22.26111008	1.8019954	19.132435	0.3049026
	25.83444524	1.9038277	19.292545	0.3049020
<u>6</u> 7	25.94317477	1.7788378	18.818115	0.2650138
8	23.81902066	1.7793595	19.155772	0.2030136
	22.42184493		19.135772	0.2662976
9 10		1.7482353		
	25.60004511	1.7868509	18.799054	0.294645
11	22.47053089	1.7757004	19.732203	0.2683762
12	25.6537728	1.6350536	19.715446	0.2660791
13	25.1443635	1.8255037	19.595257	0.2736549
14	25.15813119	1.7943066	19.244804	0.2870117
15	23.42409568	1.6248051	19.029706	0.3113016
16	22.36465031	1.7850582	19.374853	0.2905365
17	23.684609	1.6730504	19.627271	0.2913935
18	24.23775229	1.8694808	19.714578	0.2773523
19	22.25650039	1.8009648	19.718199	0.3066359
20	22.30188677	1.7858456	19.537228	0.2992832
21	22.67075904	1.7872208	19.496798	0.3045284
22	22.56455439	1.7248865	19.049648	0.3145119
23	25.74903145	1.8390747	18.990589	0.2657104
24	23.28342704	1.6622528	19.559495	0.2707919
25	24.42771489	1.7705697	19.234535	0.2814021
26	26.53680078	1.8894866	18.987533	0.2875818
27	25.10313117	1.9086737	18.940053	0.2850457
28	23.47784389	1.8295805	19.329293	0.3131218
29	26.60120483	1.8828101	19.612481	0.3151803
30	24.24697517	1.707759	19.534874	0.3079531
31	26.3424823	1.7126578	19.3535	0.2950943
32	24.55769055	1.9244825	19.283844	0.2877295
33	26.00761601	1.7285972	19.30089	0.301962
34	25.63691292	1.8812527	19.096214	0.2996628
35	25.274506	1.8410305	18.775398	0.3135122
36	26.51132675	1.7613458	19.630452	0.3174471
37	23.38970261	1.9140119	19.746643	0.3172765
38	21.88247622	1.7315839	18.889422	0.3079941
39	25.96729114	1.7047236	18.945753	0.3079941
40	21.85771266	1.6358186	19.106069	0.3209031
41	25.56803364	1.8388906	18.839884	0.3175516
42	24.18996852	1.8223518	19.50242	0.2644505
43	25.83993817	1.9055123	19.080509	0.2044303
44	23.37665297	1.727383	19.080509	0.3031157
45	23.22965068	1.727363	19.230362	0.2673214
46	21.99836511	1.9203215	19.14624	0.3013197
47	25.49138733	1.7552256	19.360896	0.3013197
48	24.48491684	1.8477134	19.49538	0.2815725
49	26.32238548	1.7796545	19.683417	0.2956534
50	25.62691213	1.8991151	19.208843	0.2936193
51	25.78133199	1.8678028	18.809036	0.2675531
52	24.32608811	1.8200224	19.668099	0.2699137
53	23.09443711	1.7838052	18.876713	0.2942225
54	23.51961733	1.7415536	19.121313	0.3009074

	21.5		
Energía Eléctrica	GLP	Diésel	Gasolina 95
kg CO2/kWh	kg CO2/kg	kg CO2/gln	kg CO2/gln
0.318935911	2.96274797	9.80295454	8.44906391
0.358693216	2.79485502	9.8454991	8.45637911
0.352581256	2.87063376	9.75854218	8.52481395
0.310405596	2.88190306	9.76252983	8.4361596
0.44942156	2.83003212	9.84487448	8.5357967
0.343638355	2.88993198	9.7935052	8.36085869
0.353665833	2.79563126	9.86373495	8.15788995
0.511502116	2.87899686	9.82804742	8.57606792
0.411260783	2.78477379	9.80569655	8.60422769
0.410532363	2.91678896	9.70720178	8.98217083
0.396316922	2.85655119	9.85532534	8.81179122
0.436390802	2.90599416	9.71897082	8.45198997
0.402677574	2.79398558	9.83394866	8.21778392
0.487230089	2.90861885	9.78429243	8.98898388
0.349214271	2.86930829	9.77929257 9.86232166	8.60665161
0.395450945	2.88067103		8.83603335
0.346004009	3.00073601	9.78442385	8.29290097
0.316401304 0.393048226	2.86515019 2.83492408	9.71305003 9.77372243	8.40210888 8.82702285
0.51478845	2.83424463	9.8605392	8.41865418
0.41487205	2.90895881	9.839534	7.95885537
0.420608276	2.93912429	9.75036481	8.3927038
0.327646281	2.99063016	9.7986558	7.95741284
0.347240384	2.92452154	9.76560097	8.92220699
0.384267167	2.88470249	9.71729912	8.9162977
0.499189692	2.80232051	9.84480291	8.74618653
0.489848198	2.93114569	9.83242063	8.19684616
0.320890395	2.90630143	9.71628604	8.10613008
0.373815763	2.84547918	9.76353213	8.01482974
0.332282359	2.77932644	9.80816751	8.48551957
0.497107805	2.79177439	9.85510513	8.37891244
0.49279718	2.92306191	9.73381929	8.90586897
0.491736601	2.97856248	9.7753062	8.67734303
0.433379038	2.77274116	9.8261999	8.5367822
0.486560082	2.92065419	9.76862555	8.27142223
0.322737421	2.91763054	9.72166355	8.58384907
0.354536324	2.87027397	9.83192967	8.90927623
0.30666351	2.869159	9.8429362	8.04850873
0.366077399	2.7789128	9.79787953	8.82074054
0.36448924	3.01447489	9.78138499	8.9782752
0.313248455	2.82776976	9.81285769	8.34512305
0.408967029	2.90630651	9.85545331	8.20249864
0.507627685	2.92916067	9.73141415	8.62697062
0.311419406	2.87505373	9.82781896	7.98755139
0.357545966	2.75986904	9.72182863	8.35604684
0.424189153	2.81143858	9.85523487	8.5278943
0.437119648 0.427999324	2.92751489	9.75855215	8.31398043
0.427999324	2.85257031 2.7857815	9.75340363 9.7500553	8.07854301 8.58039652
0.486824524	2.7657615	9.70979409	8.69886639
0.423561262	2.9188454	9.76701804	8.77264707
0.429289941	2.97969673	9.81205058	8.25228319
0.404997769	2.8965366	9.7103325	8.05781788
0.461982404	2.90314458	9.7621241	8.43150604

55	25.05195383	1.7072499	18.895231	0.2943076	0.513909277	2.98181672	9.70291595	7.96886337
56	21.92293252	1.8187044	18.909922	0.2681591	0.329067327	2.82422542	9.79173086	7.99190642
57	23.40651028	1.9038246	19.57407	0.2979479	0.352068009	2.88285595	9.75508842	8.44350122
58	21.89041868	1.7823039	19.100297	0.2877348	0.312673504	2.98833278	9.73055342	8.73118997
59	22.46196616	1.9028864	19.680277	0.2875563	0.383144097	2.7988671	9.81154978	8.58657181
60	24.08069659	1.9348049	19.537495	0.27224	0.30665025	2.79624271	9.70448907	8.97816653
61	24.75297152	1.88253	19.439523	0.2889271	0.320458426	2.77465798	9.70306995	8.92074427
62	22.32007971	1.7047864	19.464344	0.3083602	0.435647098	2.92528295	9.82893251	8.45452058
63	24.29731267	1.6857607	18.991837	0.2921617	0.392220453	2.89902283	9.72054858	8.33680771
64	22.74155769	1.8414356	19.169316	0.3177043	0.379025178	2.78607689	9.84671996	8.68286303
65	24.39795586	1.7635502	19.743756	0.3064013	0.418603442	2.77731676	9.81635526	7.91697142
66	26.05721469	1.6551873	18.962256	0.300906	0.344941842	2.99500623	9.80487225	8.3349896
67	21.86073922	1.7696367	19.012935	0.305076	0.477719226	2.87937291	9.74169725	8.2650324
68	22.17138817	1.6525519	19.627856	0.3110448	0.508023663	2.91485668	9.77782395	8.04482466
69	22.24686137	1.7187828	19.195394	0.2653852	0.387265861	2.91218702	9.7201299	8.51262845
70	22.2981657	1.7731048	19.273169	0.2644992	0.356429796	3.0017548	9.74955749	7.91685073
71	23.1446665	1.9456509	19.079602	0.2780041	0.328307789	2.8876327	9.86050357	8.40029383
72							9.7876415	
	24.53986187	1.6943819	18.841354	0.286607	0.46694346	2.96056643		8.73662577
73	21.89867128	1.9270332	19.341533	0.3077276	0.353592696	2.95438483	9.79772347	8.97345077
74	25.28064221	1.9316937	18.944687	0.2951525	0.520991299	2.82412274	9.74565046	8.82012708
75	22.3348304	1.8978459	18.948327	0.3214557	0.420913502	2.76220309	9.82348755	8.59452205
76	24.49194422	1.7634762	19.168448	0.2823982	0.334925434	2.8901729	9.84176625	8.28053487
77	23.66731232	1.7466066	18.932846	0.2621982	0.488440293	2.84561577	9.74073739	8.56675265
78	25.30094956	1.6763151	19.379836	0.2764898	0.467460709	2.89878298	9.77852776	8.37542696
79	25.57779194	1.7236094	19.398136	0.2779502	0.517600978	2.83380825	9.81828815	8.15102795
80	23.90280935	1.9321218	18.7637	0.2634923	0.33840528	2.93511369	9.74490887	8.79490394
81	23.82418864	1.9351895	19.341823	0.3205172	0.4010526	2.92637718	9.70254876	8.70523094
82	23.72662689	1.8297244	19.052546	0.2621605	0.485067821	2.95329142	9.74818218	8.64404537
83	25.77191112	1.8275426	19.470484	0.3129286	0.316529607	2.8240121	9.75345019	8.96138429
84	24.88244299	1.6837511	19.229066	0.2918328	0.397688289	2.78326919	9.78122967	8.15285205
85	23.90302931	1.7975421	19.62094	0.298046	0.439053085	2.84916565	9.71301268	8.97640077
86	21.77719349	1.8156957	19.150058	0.2764443	0.309341434	2.97700239	9.82568798	8.03886236
87	25.24298362	1.6440706	18.828508	0.3139359	0.384727352	2.82624518	9.84273485	8.65234521
88	26.3173061	1.9395021	19.515701	0.2992461	0.500795581	2.75517592	9.81665575	8.88030084
89	21.94496989	1.7600545	19.271609	0.2797536	0.493354844	2.85018368	9.7228607	8.26495758
90	23.76034802	1.874572	19.513926	0.3009913	0.444354819	2.75833477	9.79205874	7.92832671
91	24.86197486	1.9172863	19.196511	0.2647027	0.309288797	2.92013342	9.80385888	7.99984985
92	26.54722989	1.6617903	19.211975	0.2796966	0.493483007	2.98818187	9.8063714	7.9439814
93	26.26800047	1.8334999	19.324866	0.267145	0.514758728	2.99001498	9.733876	8.40828145
94	26.56398802	1.8300371	19.627981	0.283466	0.352732323	2.77615544	9.74860508	8.9202737
95	23.31226622	1.680747	19.598181	0.2844281	0.516883229	2.92980229	9.83006306	8.02977467
96	25.99414451	1.6408006	19.32797	0.2728349	0.509065049	2.90023446	9.78596295	8.30729949
97	21.94176431	1.755817	19.497497	0.2672128	0.342329214	2.87612221	9.85941513	8.45397701
98	24.58034145	1.7442119	19.298889	0.2834074	0.464736802	2.94419034	9.77944943	8.41649706
99	23.36610493	1.7259416	19.629153	0.3089046	0.372242278	2.93645831	9.76730074	8.00538984
100	21.82116914	1.6825643	19.383038	0.3052245	0.437238288	2.80817315	9.77826878	8.5718425
101	22.92218448	1.883814	18.791788	0.2700851	0.367767254	2.79539828	9.84856401	8.40355348
102	26.65858852	1.6944979	19.440299	0.3133997	0.49604024	2.97739058	9.76354766	8.92119746
103	25.50487464	1.9157736	19.212286	0.3056046	0.3858242	2.81975059	9.83586355	8.32224828
104	24.30294604	1.7665154	19.251787	0.2715494	0.481096431	2.88769325	9.81579239	8.99199034
105	23.81462914	1.8083253	19.374164	0.3068566	0.347087732	2.87705964	9.80647259	8.29641713
106	22.61490698	1.7406064	18.918241	0.2978595	0.454435117	2.90804905	9.75285064	8.44417025
107	22.93153737	1.9310195	18.935539	0.287335	0.382488587	2.98926468	9.75420411	8.64751621
108	24.23672532	1.7503098	19.413621	0.3030154	0.478724122	2.87429755	9.82788626	8.52017351
109	23.16022132	1.8554354	19.519603	0.2664723	0.377293937	3.00516233	9.86127659	8.33652883
110	24.09026279	1.8391527	19.620805	0.3048768	0.489295045	2.91329712	9.76674672	8.00619335
111	23.70384939	1.7599716	19.599571	0.2725699	0.327101759	2.92647936	9.80789298	8.86862309
112	22.15101624	1.737269	18.937214	0.2922627	0.516376816	2.92225348	9.79652076	8.76282609
113	26.06672939	1.7218385	19.203823	0.2826878	0.405181532	2.92845226	9.78220554	8.15371456
114	26.67857154	1.9434761	18.948745	0.3139372	0.452124652	2.78334079	9.701992	8.23104057
115	22.77498441	1.6842298	19.241601	0.2860636	0.454360833	2.91117217	9.84073604	8.07903892
								

116	23.14395644	1.8374858	18.836228	0.3025892	0.519507951	2.80615767	9.81198737	8.95008137
117	21.79702787	1.6753642	19.534269	0.2680832	0.43927887	2.94448371	9.70583693	7.9919645
118	22.10434766	1.9422208	19.266281	0.2821765	0.415487658	2.80323766	9.78530613	8.68813377
119	22.55939734	1.7017317	18.992502	0.3163206	0.43293792	2.93886322	9.72674628	8.05830092
120	25.9535456	1.7921101	18.978714	0.2750204	0.41024099	2.89064874	9.72230629	8.11271366
121	21.7895933	1.7258725	19.266883	0.3133802	0.355250043	2.97690424	9.7271815	8.06191528
122	23.25200983	1.8974982	19.364797	0.3104638	0.323924472	2.93225442	9.71758006	8.93089462
123	23.90947983	1.7649452	19.628039	0.2649122	0.335219388	3.01300482	9.70342128	7.93107523
124	26.47266969	1.8339927	19.138534	0.3182791	0.398894279	2.79306782	9.83801366	8.60338501
125	24.33306403	1.8627719	19.52464	0.2794763	0.371819707	2.87793673	9.78730267	7.90845661
126	23.13887502	1.8037365	19.740975	0.2993844	0.479860965	2.9482615	9.74279793	8.64734859
127	26.54288083	1.7459108	18.828331	0.3127	0.42572456	3.00385472	9.83832998	8.62077389
128	21.93013252	1.8064002	18.974167	0.2995563	0.385214699	2.81305317	9.80596973	8.90679184
129	26.60212119	1.9463054	19.300777	0.2793056	0.383507879	2.90103326	9.86151073	7.98142369
130	23.42943129	1.8495449	19.241619	0.2977845	0.373082896	2.86278252	9.84804389	8.09952582
131	24.03537512	1.8138684	18.854761	0.265566	0.320468546	2.80403658	9.74333813	8.2722796
132	24.3979799	1.6230892	19.471046	0.2986025	0.498499947	2.84289549	9.83945046	8.24612048
133	23.48501877	1.7982708	19.555433	0.3172361	0.456324203	2.83140864	9.78575237	8.94372225
134	24.78963872	1.8285593	19.72325	0.3094784	0.49924434	2.99165865	9.76492092	8.87782395
135	25.63730841	1.8409857	19.544723	0.2800447	0.515775664	2.96233828	9.83784811	8.39392712
136	22.23591997	1.7738486	19.450066	0.2836196	0.42128752	2.75705249	9.84956666	8.80659572
137	24.95719153	1.7847219	19.276096	0.2879753	0.504324959	3.01053702	9.81655314	8.09629987
138	25.94404458	1.6307461	19.41026	0.2980655	0.369692148	2.77890118	9.76221022	8.10094764
139	24.17070544	1.8357068	19.638663	0.2867134	0.323478494	2.98837681	9.78742534	7.93818493
140	25.59583904	1.8503139	19.222157	0.2799452	0.359910965	2.8235493	9.79421791	8.93867594
141	26.56579265	1.6804057	18.941472	0.2685918	0.434750128	2.84851011	9.84063489	8.30813322
142	24.53852505	1.9024474	19.322785	0.2713155	0.412956912	2.96618429	9.71211718	8.25616685
143	24.52773484	1.7702887	19.086171	0.2971311	0.373735956	2.75402896	9.851873	8.38561417
144	25.40490846	1.7089052	18.980985	0.3045033	0.35718241	2.96135177	9.80090206	8.56361699
145	24.25141226	1.8829958	19.415714	0.2854649	0.338510258	2.98545671	9.73327835	8.38267793
146	22.84495682	1.7136153	19.383171	0.3087155	0.50288388	2.91525761	9.86324659	8.93451762
147	24.11965902	1.6721508	19.555884	0.2621699	0.326636303	2.90618797	9.73214218	8.45950267
148	21.75026653	1.9423682	19.160916	0.2626765	0.317309119	2.79056522	9.84562103	8.44243168
149	25.7847588	1.8972708	19.625685	0.2858628	0.427388292	2.89536837	9.71599206	8.05978444
150	25.99399783	1.6978559	18.937671	0.265665	0.351418686	2.94311127	9.84560691	8.29208086
151	23.13250963	1.867019	19.428948	0.2896113	0.446529023	2.90654137	9.83751218	8.3862104
152	23.38956468	1.7922048	19.410856	0.300807	0.383405696	2.97588689	9.86571917	8.09817931
153	23.76290445	1.806296	19.323669	0.2672705	0.515859827	2.81539922	9.70048613	8.90579357
154	23.94614487	1.8534294	19.377455	0.3174676	0.463466195	2.7589415	9.81718707	8.81601523
155	22.75566527	1.7031948	19.737532	0.2833376	0.44591714	2.77258479	9.83853502	8.84215069
156	25.82800434	1.6464921	18.897832	0.3150657	0.510437773	2.91862456	9.85657088	8.32182319
157	22.07204507	1.9391649	19.306214	0.2759901	0.510437773	2.85144032	9.81031707	8.45620094
	23.57569611	1.9384343	19.676046	0.2665187	0.414589137	2.99423743	9.72756239	8.51820349
158 159	22.64747139	1.8996309	19.385976	0.2003187	0.502700384	2.99423743	9.83725711	8.33109957
	24.71482461	1.6804504	19.383976	0.2913831	0.399222243	2.90600722	9.83725711	8.87966111
160 161	24.71482461	1.8045214	19.083874	0.2797866	0.399222243	2.9411959	9.70887804	8.59614998
				0.3120741	0.374044648		9.70887804	
162	25.05327273	1.6367153	19.585138			2.87392608		8.17577664
163	25.8739013	1.8493553	19.746775	0.3142338	0.392440126	2.94853791	9.80905349	8.93410178
164	25.34941514	1.7365212	19.749145	0.3143306	0.486904494	2.94435357	9.70635354	8.27097998
165	25.68359175	1.8522377	19.381147	0.2747046	0.47955941	3.01029691	9.70316724	8.47900452
166	23.65161076	1.9303512	19.689427	0.3201809	0.403369952	2.81672061	9.81025054	8.81284438
167	21.82314914	1.8155348	19.596626	0.2993479	0.450049137	2.81854815	9.83900926	8.1691311
168	25.84577051	1.9005025	18.804815	0.2767288	0.327003264	2.87825562	9.80430066	8.05129991
169	22.7148989	1.8435996	19.374794	0.2751533	0.454726102	2.89035047	9.74968442	8.00094431
170	24.92019665	1.8617595	19.443607	0.2746043	0.355566218	2.8756884	9.75925655	8.25714438
171	25.85474834	1.6278848	18.77803	0.2838069	0.435850918	2.94668273	9.71010337	8.6532478
172	25.6943673	1.6435676	18.784099	0.3066813	0.474990865	2.8096606	9.82270112	8.76416833
173	25.57446554	1.6936876	19.555443	0.2808529	0.429336237	2.88389207	9.74018647	7.91157177
174	22.39061845	1.773338	19.137701	0.2777147	0.379199679	2.85584247	9.70160894	8.85445758
175	23.33364199	1.6640385	19.454595	0.2727338	0.332837797	2.86631934	9.80806644	8.71306094
176	24.99505346	1.7257124	18.922177	0.2911143	0.508528238	2.98553658	9.82618415	8.89374925

177	25.59989546	1.9490662	19.190971	0.3198713	0.363010021	2.86140589	9.86041677	8.38577732
178	26.12212374	1.836173	19.372762	0.2829187	0.339352418	2.85481085	9.77153456	8.14366035
179	22.27982783	1.8281406	19.143673	0.3024241	0.309378003	3.00632892	9.7641596	8.58889835
180	26.31676522	1.8453347	18.904789	0.2689505	0.32431288	2.75242534	9.84393728	8.59261655
181	23.15407948	1.780251	19.201061	0.2832465	0.404768076	2.90079297	9.78809803	8.06186758
182	23.06580199	1.7759181	19.556545	0.280706	0.519801769	2.75747185	9.83979292	8.16621544
183	24.51263961	1.9194552	19.328223	0.2805432	0.419002434	2.78020237	9.79333372	8.77723413
184	24.22682836	1.8878979	19.472242	0.2974759	0.514903931	3.00550288	9.73109438	8.82632923
185	26.34494069	1.8867123	19.18943	0.2809258	0.478638779	2.75562243	9.78520538	8.50254304
186	25.44100655	1.7450754	19.748822	0.264975	0.349657741	2.88490124	9.72951013	8.84208581
187	22.97339957	1.8080481	18.919386	0.3161581	0.508843269	2.91612515	9.75141899	8.55462047
188	25.97547435	1.8623392	18.759017	0.3122414	0.496255749	2.75579914	9.86239326	8.45983316
189	23.69061079	1.7889532	18.937735	0.3171963	0.321708828	2.98348678	9.80719841	7.98370031
190	24.31313291	1.6882206	18.814277	0.2980259	0.375079688	2.82670021	9.75453681	8.61972859
191	24.16425753	1.9146273	19.190824	0.2847638	0.304488665	2.95008831	9.78762324	8.55325731
192	23.08886872	1.6878868	18.769157	0.3116446	0.483533845	2.94661672	9.72837494	8.98499463
193	22.59883679	1.8419774	19.466805	0.2701944	0.496859971	2.98367699	9.70402512	7.92612358
194	26.09764737	1.892868	19.353946	0.3119783	0.306472502	2.81952861	9.849637	8.77191225
195	25.93241436	1.766242	19.281824	0.283321	0.332466238	2.90681852	9.85723536	8.81901393
196	26.6218732	1.6827541	19.269014	0.3161566	0.386067364	2.82584351	9.83962455	7.98695442
197	22.99405554	1.8100703	19.736905	0.3108902	0.312516716	2.88551798	9.76462072	8.70268654
198	23.40587132	1.6724658	19.606749	0.3193948	0.454336717	2.98191657	9.7304984	8.30231889
199	22.29746777	1.6520817	19.261899	0.2807857	0.501565069	2.80235434	9.73330273	7.94007176
200	25.27832836	1.9160583	19.128364	0.2879415	0.423765483	2.77242311	9.80091672	8.93082479
201	26.6940998	1.8192202	19.730063	0.2738548	0.329794191	2.8231039	9.76927913	8.88519529
202	24.74022042	1.7708406	18.934237	0.2661285	0.306378917	2.99004599	9.74937658	7.91427508
203	24.31545168	1.8536217	19.483614	0.2959911	0.498460156	2.899187	9.83224716	8.72894731
204	26.65661317	1.7413173	19.128478	0.2825779	0.517410724	2.9389808	9.83459995	8.89644651
205	26.70866181	1.669933	19.399717	0.2728189	0.45965475	2.87014323	9.70942925	8.21987911
206	22.35151977	1.8634104	18.892854	0.2626016	0.426470319	2.78693697	9.81073331	8.04739692
207	24.68650978	1.9230594	19.682047	0.2890591	0.47791678	2.9484822	9.74719152	7.94232833
208	23.21077373	1.8444736	19.268192	0.2786505	0.50614064	2.83781036	9.75785372	8.00514262
209	25.59552917	1.7729909	18.790935	0.2620689	0.463572956	2.93212895	9.82830021	8.74021182
210	23.59812396	1.8967899	19.298736	0.2883873	0.361450667	2.82326889	9.78741386	8.03236341
211	23.78722749	1.8074932	19.459498	0.2762095	0.372620508	2.98480725	9.81851728	8.32694197
212	22.58286457	1.7784733	19.379754	0.2635342	0.447538154	3.01384781	9.85219768	8.03688565
213	25.38283851	1.7560446	18.85369	0.288568	0.490999334	2.85114729	9.75084027	8.72331943
214	25.80711142	1.7428729	19.495186	0.3103511	0.513276035	2.89523346	9.73514437	8.08881
215	25.71804468	1.8235292	18.974699	0.3002115	0.44470376	2.85305432	9.71053988	8.07859941
216	24.12168078	1.681673	19.220341	0.3029836	0.373069177	2.94378694	9.80874654	7.93692925
217	26.36363177	1.8399563	18.859922	0.2642306	0.341155018	2.82214673	9.77959639	8.04259801
218	25.29891552	1.8325481	19.432369	0.2855791	0.329791803	2.79331096	9.71299501	8.27747012
219	26.08077197	1.722835	18.824342	0.3098191	0.418796136	2.87429621	9.79531738	8.77708518
220	22.79339936	1.7433421	19.273139	0.3168455	0.39258937	2.84570044	9.76469332	8.55687364
221	23.14067268	1.6802244	18.997197	0.2656957	0.495064712	2.75718222	9.79834023	8.14519025
222	25.47227243	1.6578008	19.661654	0.2846953	0.356483171	2.91766104	9.77210096	8.29008291
223	24.86514278	1.8949592	19.172743	0.3023706	0.347302104	2.81018591	9.78005622	8.93931293
224	25.54228387	1.6678169	18.786542	0.3023700	0.386770458	2.82939461	9.73529152	8.63840167
225	24.24174146	1.8808797	18.982059	0.3043749	0.346697133	3.00298441	9.78201014	8.1860474
226	25.36244435	1.8879611	18.809771	0.2672524	0.364680493	2.95624374	9.8336603	8.79132238
227	22.30377521	1.6622993	19.118271	0.2072324	0.519099495	2.93167681	9.7609077	8.44829036
228	22.02265479	1.7279708	19.3361	0.2920321	0.434954372	2.75286262	9.79590279	8.38725073
229	22.34852928	1.7526672	19.131344	0.2895958	0.300236026	2.97765164	9.82244531	8.04220368
230	24.09885172	1.8170933	19.131344	0.2895958	0.365641386	2.89730723	9.76373365	8.04220368
230	26.42457363	1.8885231	19.175215	0.295066	0.305041380	2.92708043	9.76139993	8.98252588
232	26.4219954	1.9289191	19.652616	0.2821381	0.325396547	2.91777495	9.78781301	8.08634873
233	23.01877239	1.8223718	19.610184	0.27707	0.46965629	2.90285784	9.75858359	7.97648188
234	24.29335742	1.7714544	18.918469	0.2631202	0.479692598	2.7832252	9.85746243	8.38872138
235	24.22277019	1.7154146	19.16294	0.2633561	0.409873822	2.95637651	9.82278505	8.15602036
236	25.29853173	1.7136379	19.495651	0.3121057	0.454257972	2.76888264	9.77167287	8.54243432
237	22.72429433	1.6752221	19.045307	0.2780655	0.411796781	2.90696502	9.81009328	8.15564222

2.99	000	04 50440000	4.0007400	40.000005	0.0070005	0.004000554	0.70574047	0.70004005	0.75000450
240 24 59257012 16613896 19.644119 0.2756517 0.32492999 2.9492505 9.70831746 8.87303457 241 22.82521739 1.797248 19.61143 0.2887599 0.4858515 2.77249133 9.717276004 8.777474058 242 23.31763899 1.6801099 19.518766 0.3014061 0.40101701 2.36313579 9.86540204 8.72261904 244 23.8675607 1.678508 19.233067 0.2826700 0.50566454 2.9241428 9.7940422 8.7664233 246 25.31897834 1.6643604 19.094141 0.2859532 0.5056645414 2.9244128 9.7740242 8.7664233 246 25.31897834 1.6643604 19.094141 0.2859038 0.34667272 2.246727 2.9273259 1.8117489 8.1177488 1.8117489 247 2.25710004 1.811344 19.60603 0.292172 0.50644272 2.24967188 9.75275555 8.33765549 2.24924159 9.24597441 8.7445024 2.24597444 8.7445024 2.24597444 8.744	238	24.59416302	1.6387138	18.889885	0.2676265	0.324882551	2.78571217	9.72661865	8.75938152
241 22.8251739									
242 23.31783898 1.6501099 19.518766 0.3014061 0.420101701 2.368137579 9.86540204 8.72261904 243 23.91823754 1.6095202 1.822247 0.22761634 0.84616933 2.9116254 9.86443224 2.80827657 1.6785508 1.933067 0.2828709 0.505760253 2.79971237 9.80344222 2.876253186967 1.7715772 1.9117552 0.2855502 0.55056025 0.550760253 2.97971237 9.80344222 2.87625755 8.8117489 244 2.25710004 1.8811244 19.64267 0.2622188 0.31684277 2.9467188 9.75877355 1.81808737 248 2.415597446 1.811344 19.60603 0.292172 0.50864272 2.9469188 9.7587555 8.33765549 250 2.593054237 1.765372 19.424692 0.3102188 0.516572376 2.97932593 9.7287555 8.33765492 251 2.25891438 1.8896136 1.938766 0.2661123 0.3265752 2.90950529 9.83292020 8.77418930 252									
244 23 91823754 1.8095202 18.822247 0.2978128									
244 23.88578697 1.6785080 19.233067 0.2828709 0.520760235 279971237 8.0344228 8.76842331 8.8642331 2.86 22.51808067 1.1717572 19.1717552 0.2855020 0.358545143 2.2841428 9.72023795 8.1572292 246 23.1897834 1.6463804 19.094141 0.2859938 0.449753613 2.8602278 9.47679188 9.75877308 8.16807377 248 24.1557446 1.831134 19.55600 2.925172 2.56847422 2.7969941 8.77473337 2.87522 2.50 2.593054237 1.765372 1.944692 0.3102188 0.462568284 2.99495052 8.3832902 8.77143035 251 22.25961438 1.5596138 19.89769 0.261122 2.525757 2.8085650 0.2952152 2.537607944 2.89905952 8.33059596 0.4755642 2.5022037 0.5085596 0.4755642 0.33057375 2.80622074 0.8597520 2.8016972 2.8016972 2.25324546 2.8079727 2.8016972 2.253245464 2.8079727 2.25224442 2									
246 25,53186967 1,7127572 19,117552 0,2655502 0,355845143 2,9284128 9,77640331 8,117489 246 23,1897834 1,6463604 19,643267 0,2622189 0,316842279 2,94679188 9,75877308 8,16782282 249 24,12507446 1,891134 19,506603 0,2952172 0,508647422 2,79969862 3,85785363 3,8765530 250 25,89054237 1,7765372 19,449692 0,3107188 2,62862842 2,996552 3,8328520 2,8714303 251 22,5961438 1,8596136 1,938766 0,2681122 0,32687562 2,91220397 0,85997529 8,7415305 252 2,378073929 1,623118 19,28465 0,3170545 0,33657375 2,80622074 0,85997529 8,23015973 255 2,580905251 1,7117622 19,417354 0,2780627 0,436474126 2,81714028 8,851224 8,088077102 255 2,5805067691 1,8331744 1,99471 0,2984629 0,373359673 2,8084866 9,4784629									
246 23,1897834 1,6463604 19,094141 0,289938 0,449753613 2,860278 9,72023795 8,1577308 1,6782812 247 22,5710004 1,8811264 19,643267 2,622128 0,516872378 2,97932593 9,72785558 3,3765549 249 24,15597446 1,831134 19,506803 0,2925172 0,508647422 2,996942 9,8332902 8,77143035 251 2,25961438 1,5564136 1,938766 0,261123 0,24675762 2,1920397 8,36932902 8,74718305 252 2,376073929 1,623118 19,293465 0,5171645 0,33657375 2,80622074 8,5997292 8,2315973 253 2,560392554 1,7390662 19,706713 0,3082842 0,36424126 2,81714028 8,8912792 8,2315995 255 2,585 2,585807461 1,9351784 19,10325 0,7708627 0,478915023 2,8972144 8,8947170 2,8947174 8,8442274 8,68120077 257 2,611454363 1,777509 19,522589 0,									
247 22,5710004 1,8811264 19,643267 0.2622189 0.316822279 2,94679188 9,75877308 8,168077354 248 24,36034718 1,8951184 19,506603 0.2952172 0.516672378 2,77969842 9,85536118 8,87644293 250 2,50304237 1,785372 19,44690 0.3102188 0.462586284 2,94049502 2,9822920 8,7753625 251 2,25981438 1,8596136 19,38766 0.2661123 0.32837562 2,9122037 9,85959529 8,23015973 252 2,378073929 1,623118 19,293485 0.3170545 0.33637562 2,9122037 9,85957529 8,20159752 253 2,560392564 1,7360442 1,790417 2,790032 0.33631583 2,88712174 9,88937529 8,20159752 255 2,58507549 1,9351764 1,903216 0.2796827 0.478915023 2,84972174 9,864267 8,90477102 257 2,611454363 1,7877509 1,9952589 3,010573 4,478915023 2,84972174 9,864273484 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
248 23.48034718 1.8995188 18.971758 0.2738468 0.516672278 2.97932530 9.72878555 8.33765549 250 25.500 25.50054237 1.785372 1.96420 0.3102188 0.462568284 2.90490502 9.83829202 8.7715305 251 2.252981438 1.8596136 1.938766 0.2661123 0.32637562 2.91220397 9.838529202 8.7415305 252 2.578073829 1.622118 19.293456 0.3170545 0.33657375 2.80622074 9.88997529 8.23015973 254 2.607979617 1.7116923 1.9147354 0.2790032 3.5081833 2.8921966 7.94764662 9.9077102 255 2.5806067649 1.9351784 1.9109471 0.2994829 0.37159673 2.8038638 9.7748841227 8.6129077 256 2.51445014 1.7402124 1.90355 2.9906627 9.81234844 8.06869005 2.8422224 2.89422425 9.81234844 8.06869005 2.58225690251 8.990729 9.81234844 8.06869005 2.8529222207									
249 24 12597446 1.831134 19.506603 0.2952172 0.508647422 2.79896842 9.85536118 8.87644293 250 25 30304237 1.765372 19.446892 0.3012188 0.482568284 2.940495052 9.83059202 8.7743654 251 2.2 25581438 1.8596136 19.38766 0.2661123 0.32637562 2.91220397 9.850597529 2.23015973 253 2.5 60392554 1.7360462 19.705713 0.3028824 0.438424126 2.81714028 9.86132124 0.08630725 254 2.6 07979617 1.7115923 1.9417354 0.2790032 0.350813833 2.8921714 9.86492725 2.6565 2.850607649 1.9517846 0.2790022 0.378180673 2.84972174 9.86442274 8.6129075 256 2.850607649 1.7877509 19.9052589 0.3010573 0.478915023 2.84972174 9.86442274 8.66129077 257 2.61145363 1.7877509 19.9055289 0.3105673 0.44342291 2.8991429484 0.8669005 258 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
250 25,93054237 1,765372 19,424692 0.3102188 0.462568284 2,90495052 9.83829202 8,774193054 251 22,5361438 1,8596136 1,93766 0.6661123 0.32637562 29120397 9.8997529 8,23015973 253 2,560392554 1,7360462 19,706713 0.302824 0.33657375 2,8022024 9,8997529 8,23015973 254 2,607979617 1,7116923 19,417354 0.2790032 0.350613833 2,89251966 9,74954602 8,992742 255 2,51544014 1,7402124 19,0325 0.2796827 0.350613833 2,8927474 9,842127 8,6129077 257 26,11454363 1,7877509 19,592589 0,3105573 0.448244612 2,88972425 9,81234844 8,06889005 258 2,59302492 1,304409 19,1138 0,264314 0,41634524 2,80822174 9,73037133 8,71561797 260 2,39364093 1,7197546 0,200444 0,41634524 2,80822174 9,7303073133 8,71561797									
251 22 25981438 1.8596136 19.38766 0.2661123 0.32637562 2 2120397 9.83059506 8.04752664 252 23 7.8073929 1.623118 19.93485 0.3170545 0.33657372 2.80520740 9.83013214 8.08830725 253 2.5 60392554 1.7350462 19.708713 0.3228624 0.33657372 2.8012686 9.94745662 8.90477102 255 2.6 58067649 1.9331784 19.109471 0.2994829 0.371359673 2.8038638 9.7488412 8.52453885 256 2.3 15245014 1.7402124 19.09325 0.2798627 0.478915023 2.84972174 9.8642274 8.66129077 257 2.6 11454363 1.78040863 19.157265 0.300314 0.413618624 2.8972174 9.8642274 8.612907 259 2.5 9922807 1.904109 19.1138 0.264314 0.413618622 2.8020737 9.85926676 8.74436236 261 2.5 3204985 1.7910401 19.1138 0.286616 0.401632052 2.80000212 9.8152737 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
252 23,78073929 1,623118 19,293485 0,3170545 0,3365737 2,60622074 9,85997529 8,23015973 253 25,60392554 1,7360462 19,706713 0,3028244 0,436424128 2,81714028 9,8132124 8,08830725 254 26,07978617 1,7116923 19,417354 0,2790827 0,355813833 2,9872196 8,17485412 8,29477102 255 25,315245014 1,7402124 19,0325 0,2798627 0,478915023 2,8972718 9,8123444 8,0669005 257 26,11454363 1,7877509 19,592599 0,3108573 0,484244612 2,897425 9,8123444 8,06689005 258 22,56690951 1,8030663 19,17559 0,200314 0,416135424 2,80822174 9,73037133 8,7161797 260 23,9819073 1,8134593 19,173516 0,2760734 0,414361865 2,5902603 9,7152200 2,986763 3,7488022 261 25,9324085 1,7999039 19,015660 0,317321 0,3073952 2,81710300									
253 25 60392554 1,7360462 19,706713 0.3028824 0.350813833 2.89251968 9,74954662 8.90477102 255 26.8906769 1,9351784 19,109471 0.2994829 0.371359673 2.8038638 9,7488412 8.52453885 256 23,15245014 1,7402124 19,0325 0.2798627 0.478915023 2.84972174 9,86422242 8.66122077 257 26,11454363 1,7877509 19,9592589 0.3108573 0.481241612 2.8897425 9,81234844 0.68669005 258 25,9922807 1,904109 19,1138 0.264314 0.41361865 2,75072337 9,8592676 8,74436236 260 23,9819073 1,8354903 19,1138 0.266314 0.44362919 2,950566763 9,76030212 8,43979062 261 25,922807 1,7766662 0.286616 0.31735673 2,8703237 9,7692912 8,61827303 262 21,97761888 1,706067 19,66662 0.286616 0.347329992 2,76228881 3,707656 2,87672824									
254 26 07979617 17116923 19.417354 0.2790032 0.350813833 2.89251966 9.74954662 8.90477102 255 26 58067640 1.9351784 19.109471 0.2998627 0.37139672 28038835 28382525 2832525 22.56 22.5620951 1.7877509 19.592589 0.30020314 0.478915023 2.84972174 9.86442274 8.66129077 256 22.565629051 11.8030863 19.157255 3.020314 0.413618862 2.75072337 3.87444612 2.8897258 9.85922676 8.7436236 259 22.5922207 1.9044109 19.1138 0.264314 0.416135424 2.80022174 9.73037133 8.71561797 260 23.39819073 1.83354093 19.19166 0.3173821 0.380769392 2.87103207 9.71528208 7.94880237 261 25.93204985 1.7991004 19.69195 0.3100788 0.449877573 2.98703237 9.7692912 8.61827303 263 25.50896866 1.78713673 19.762559 0.449977573 2.98703237 9.7692912									
255 26,58067649 1,9351784 19,109471 0,2994829 0,371359673 2,8038638 9,77488412 8,52453985 256 23,15245014 1,7402124 19,0325 0,2798627 0,478915023 2,8497425 9,81234844 8,6869005 258 2,56509051 1,8030863 19,157265 0,3200314 0,413461885 2,75072337 9,8592876 8,74456336 259 2,59922807 1,904109 19,1138 0,264314 0,41834244 2,8082174 9,73037133 8,71561979 260 2,39419073 1,8354093 19,173516 0,2760734 0,443462919 2,95066763 9,70307133 8,79979045 261 2,53204985 1,7913004 19,69195 0,3100788 0,449877573 2,98066763 9,7652208 8,739807 9,7652288 9,82199 8,47917808 262 2,197819638 1,7096667 19,69195 0,3100788 0,449877573 2,98002676 9,852799 8,47917808 265 2,2934764 1,822294 1,922420 1,922420 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
256 23.15245014 1.7402124 19.0325 0.2798627 0.478915023 2.84972174 9.86442274 8.66129077 257 25.114545363 1.7877509 19.592589 0.3108573 0.480244612 2.8897215 9.81234844 8.06859005 258 22.56509051 1.8030863 19.157265 0.3200314 0.413461885 2.75072337 9.85928676 8.74436236 259 22.9819073 1.893404109 19.11381 0.264314 0.415135424 2.80822174 9.73037133 8.71561797 260 22.9819073 1.8354093 19.173616 0.2760734 0.443462919 2.9506763 9.76030212 8.43979045 261 25.93204885 1.7969039 19.019166 0.3173821 0.380769392 2.87103207 9.71528208 7.9480037 262 21.97819838 1.7068067 19.706562 0.286616 0.401682052 2.8000212 9.81527317 8.43738607 263 25.06896865 1.7913004 19.69195 0.3100788 0.449877573 2.98703237 9.7692912 8.61827303 264 23.07839259 1.6341755 18.87283 0.2805536 0.474099909 2.70622887 9.882199 8.47917808 265 24.37988622 1.7813873 19.136656 0.2990334 0.40202037 2.89134579 9.84790464 8.19505512 266 22.69347848 1.8445666 19.024302 0.2822934 0.402039348 2.99052555 9.84423173 8.06491063 268 24.03053982 1.8380233 19.376758 0.2693316 0.346735178 2.96056047 9.85907662 8.28370222 269 21.81373342 1.8279849 19.33744 0.2633566 0.37322699 3.0136504 9.7922772 8.00814839 270 25.4964116 1.7894102 19.464163 0.3180261 0.346735178 2.96056047 9.85907662 8.28370222 272 21.77544968 18.79587 9.334173 0.3212091 0.32605168 2.921586307 9.7642604 8.0365037 273 23.10727365 1.8683723 19.135511 0.316616 0.409905242 2.8717772 9.71041411 8.66256384 274 22.64636333 1.8049851 19.580763 0.3468697 2.8903574 9.8593064 8.79438973 275 23.35529165 1.899968 1.854508 0.2752999 0.33615897 2.8903574 9.8530166 8.475268 280 22.4673238 1.814685 1.9500763 0.3080775 2.8852669 9.7768639 8.87930847 8.8905869 281 24.4777211 1.906000									
257 26.1145363 1.7877509 19.592689 0.3108573 0.484244612 2.2897425 9.81234844 8.06869005 258 22.56609051 1.8030863 19.157265 0.3200314 0.413461885 2.75072337 9.85928676 8.74436236 259 25.99228207 1.904109 19.13516 0.2760734 0.443462919 2.95066763 9.76030212 8.43979045 261 25.93204985 1.796009 19.173616 0.2760734 0.443462919 2.95066763 9.76030212 8.43979045 261 25.93204985 1.7960067 19.706662 0.266616 0.401692052 2.80000212 9.81527317 8.43738607 263 25.06866665 1.7913004 19.61955 18.87283 0.2806536 0.474099909 2.76282887 9.862199 8.47917808 266 22.69347648 1.8445666 19.024302 0.2822934 0.4202037 2.891487579 9.84791780 8.47917808 2.66 22.69347648 1.8907662 1.9222035 1.9222035 1.9222035 1.9222035 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
258 25.8600051 1.8030863 91.57265 0.3200314 0.413461865 2.7507237 9.85928676 8.74436236 259 25.99228207 1.9044109 19.1138 0.264314 0.413613424 2.80822174 9.7303713 8.71561797 260 23.9919073 1.8384093 19.19166 0.3173821 0.434362919 2.9506673 9.76030212 8.43979045 261 25.93204985 1.7969039 19.019166 0.3173821 0.380769392 2.87103207 9.71528208 7.9480237 262 21.9781983 1.700607 19.706562 0.286616 0.401692052 2.8000212 9.71528208 18.43738607 263 25.8089666 1.7913004 1.9.69195 0.3100788 0.449877573 2.98703237 9.7692212 8.61827303 264 23.07839259 1.6341755 1.827823 0.2805536 0.47409909 2.76228887 9.862199 8.47917808 266 22.69347848 1.8445666 19.024302 0.2825534 0.40202037 2.89134579 9.84790464									
259 2599228207 19044109 19.1138 0.264314 0.416135424 2.80822174 9.73037133 8.71561797 280 23.9819073 1.8354093 19.173516 0.2760734 0.443462919 2.95066763 9.76030212 8.43979045 25.93204985 1.7960039 19.019166 0.3175821 0.380769392 2.87103207 9.71528206 7.94800237 263 25.06896865 1.7913004 19.69195 0.3100788 0.449877573 2.893237 9.7692327 8.43738607 264 23.07839259 1.6341755 18.87283 0.2805536 0.474099990 2.76282887 9.82199 8.47917808 265 24.37988622 1.7813873 19.136565 0.2908351 0.24302 0.2822934 0.4202037 2.99134579 9.84790464 8.19505512 267 25.80948666 1.7652035 19.724235 0.2800934 0.406289348 2.96026521 9.79920415 8.06491063 268 24.03053982 1.8380733 19.376758 0.2693812 0.345735178 2.96056047 9.85907662 8.28370222 269 21.81373342 1.8279849 19.337844 0.2633566 0.372326993 3.01356504 9.79227729 8.00814839 270 26.4964116 1.7894102 19.464163 0.3184021 0.301827085 2.91808647 9.8590662 8.2837022 271 25.71220827 1.81523 19.97201 0.2836057 0.428451691 2.7825673 9.76426004 8.03658037 2.722 21.77544968 1.8739587 19.334173 0.3212091 0.326015108 2.92158132 9.38059404 8.7653599 2.7625804 1.939059404 19.319172 0.2737003 0.485596739 2.97555185 9.784304111 8.6625384 2.220533088 1.7102976 19.437928 0.2753999 0.30812186 3.0081375 9.7420177 8.24197419 2.244717211 1.9060004 19.05896 0.2752999 0.30812186 3.0081375 9.73401411 8.6625384 2.244717211 1.9060004 9.015598 0.2752999 0.3081296 0.30835937 9.78400219 8.8054781 2.244717211 1.9060004 9.015598 0.2752999 0.30812196 3.0081375 9.7400219 8.8054781 2.244717211 1.9060004 9.015598 0.2752999 0.3081296 0.3085037 9.7838133 8.0835137 0.22357868 1.7666627 1.935748 1.9550763 0.30466379 2.88903574 9.8113383 8.982950 0.304649457 2.7760566 9.8676277 7.99526851									
260 23,9819073 1,8354093 19,173516 0.2760734 0.443462919 2,95066763 9,76030212 8,43979045 261 25,93204985 1,7969039 19,019166 0.3173821 0.380769392 2,87103207 9,71528208 7,94880237 262 21,97819838 1,7006067 19,706562 0.286616 0.401692052 2,80000212 9,81527317 8,43738607 263 25,0689686 1,7913004 19,9915 0.3100788 0.449877573 2,88703237 9,7692912 8,61827303 264 22,30783295 1,6341755 1,8718373 19,136565 0.2908351 0.440877573 2,9879345 9,8429173 8,19809529 266 22,69347848 1,8445666 19,024302 0.2622934 0.40202037 2,99134579 9,84790464 8,19505512 267 25,80948666 1,76933342 1,8279849 19,376758 0.2633812 0.345735178 2,96056047 9,85907662 8,28370222 270 26,4964116 1,7894042 1,946163 0.3184021 0.31840									
261 25.93204985 1,7969039 19.10166 0.3173821 0.380769392 2.87103207 9.71528208 7.94880237 262 21.97819838 1,7006067 19.706562 0.286616 0.401692052 2.8000212 9.81527317 8.43738607 263 25.06896865 1,7913004 19.69195 0.3100788 0.449877573 2.98703237 9.7692912 8.61827303 264 23.07839259 1.6341755 18.87283 0.2805356 0.474099909 2.76222887 9.862199 8.47917808 266 22.69347848 1.8445666 19.024302 0.2822934 0.4202037 2.89134579 9.84790464 8.19505512 267 25.80948666 1.7652035 19.724255 0.2693812 0.460289348 2.96026621 9.79920415 8.06491063 268 22.403053982 1.8380233 19.376756 0.2693812 0.34735178 2.96056047 9.85907662 2.8370222 269 21.81373342 1.8279849 19.337440 0.283566 0.37226993 0.31356044 9.79227									
262 2197819838 1,7006067 19.706562 0.286616 0.401692052 2.80000212 9.81527317 8.43738607 263 25.06896865 1.7913004 19.69195 0.3100788 0.449877573 2.98703237 9.7692912 8.61827303 264 23.07639259 1.6341755 18.87283 0.2905536 0.474099909 2.76262887 9.862199 8.47917808 265 22.39347848 1.844566 1.92020 0.2822934 0.4202037 2.8143734579 9.84790468 8.15905512 267 25.80948666 1.7652035 19.724235 0.2909934 0.406289348 2.96026521 9.79920415 8.06491063 268 24.03053982 1.8380233 19.376758 0.2909341 0.345735178 2.96056051 9.79920415 8.06491063 270 2.64964116 1.7894102 19.464163 0.3184021 0.301827085 2.91808647 9.76426804 8.03658037 271 2.571220827 1.81523 18.917317 0.3212091 0.326015108 2.921858132 9.8050									
263 25.06896865 1.7913004 19.69195 0.3100788 0.449877573 2.98703237 9.7629212 8.61827303 264 23.07839259 1.6341755 18.87283 0.2805356 0.474099909 2.76282887 9.862199 8.47917008 265 24.37988622 1.7813873 19.136565 0.2909351 0.314240864 2.77572551 9.84423173 8.19809529 266 22.69347848 1.8445666 19.024302 0.282934 0.402037 2.89134579 9.84790464 8.19505512 267 25.80948666 1.7652035 19.7724235 0.2909341 0.406289348 2.96026521 9.79920415 8.06491063 268 24.03053982 1.83080233 19.376788 0.2693812 0.345735660 0.3457356604 9.79227729 8.00814839 270 26.4964116 1.7894102 19.464163 0.3184021 0.301827085 2.91808647 9.76426804 8.03658037 271 25.71220827 1.81523 18.195311 0.316616 0.302915108 2.92158132 9.8									
264 23,07839259 1,6341755 18,87283 0,2805536 0,474099909 2,76282887 9,862199 8,47917808 265 24,37988622 1,7813873 19,136565 0,2908351 0,314240864 2,77572551 9,84423173 8,19809529 267 25,80948666 1,7652035 19,724235 0,290934 0,4022037 2,89134579 9,84790464 8,1950512 268 24,03053982 1,8380233 19,376758 0,2693812 0,435735178 2,96026521 9,79920415 8,06491063 270 26,4964116 1,7894102 19,464163 0,3184021 0,345735178 2,96056647 9,85907662 8,28370222 271 25,71220827 1,815333 18,972910 0,386057 0,248451691 2,91586547 9,72426804 8,03658037 271 25,71220827 1,81533 18,972910 0,386057 0,482451891 2,97256733 9,726650073 8,082203 273 23,10727365 1,8683723 19,135511 0,316276 0,49905242 2,8717772 9,71041411<									
265 24,37988622 1,7813873 9,136565 0.2908351 0.31240864 2,77572551 9,844790464 8,19809529 266 22,69347848 1,8445666 19,024302 0.2822934 0.4202037 2,89134579 9,84790464 8,19809529 267 25,8094866 1,7652035 19,724235 0.2900934 0.40289348 2,96056521 9,79920415 8,0491063 268 24,03053962 1,8380233 19,37678 0.2693812 0.345735178 2,96056047 9,85907662 8,28370222 269 2,8181373342 1,8879849 19,337844 0.26336656 0.372326993 3,01356604 9,76426804 8,03658037 271 25,71220827 1,81523 18,97201 0.2836057 0.428451661 2,7825673 9,72665007 8,08120019 272 21,77544968 1,8739587 19,331473 0.3212091 0.326015108 2,92158132 9,33559404 8,7653599 273 23,10727365 1,8683723 19,135511 0.316616 0.49952542 2,88717956 9,8531									
266 22.69347848 1.8445666 1.9024302 0.2822934 0.406289348 2.96026521 9.7920415 8.06491063 267 25.80948666 1.7652035 19.724235 0.2900934 0.406289348 2.96026621 9.79920415 8.06491063 268 24.03053982 1.8380233 19.376758 0.293812 0.345735178 2.96056047 9.5907662 2.8370222 269 21.81373342 1.8279849 19.337844 0.2633566 0.372326993 3.01356504 9.79227729 8.00814839 270 26.4964116 1.7894102 19.464163 0.3184021 0.301827085 2.91808647 9.76242604 0.3658037 271 22.57122027 1.81823 1.897201 0.2896057 0.428451691 2.7825630 9.8031340 8.0613010 273 23.10727365 1.8683723 19.135511 0.316616 0.409905242 2.88177772 9.71041411 8.66256384 274 22.0563088 1.7102976 19.437928 0.275303 0.48596739 2.98755185 9.7678436<									
267 25.80948666 1.7652035 19.724235 0.2900934 0.406289348 2.96026521 9.79920415 8.06491063 268 24.03053982 1.8380233 19.376758 0.2693812 0.345735178 2.96056047 9.85907662 8.283702729 269 21.81373342 1.8279849 19.337844 0.2633566 0.372326993 3.01356504 7.9227729 8.0814839 270 26.4964116 1.7894102 19.464163 0.3184021 0.301827085 2.91808647 9.76426804 8.03658037 271 25.71220827 1.81523 18.97201 0.2836057 0.428451691 2.78256773 9.72665307 8.0812019 272 2.175544968 1.8739587 19.334173 0.3212091 0.326015108 2.92158132 9.8059040 8.7653599 273 23.10727365 1.8683723 19.135511 0.316616 0.409905242 2.8717772 9.71041411 8.66256384 274 22.15365523 1.86845096 0.3112599 0.328615108 2.97555185 9.76787436 84									
268 24.03053982 1.8380233 19.376758 0.2693812 0.345735178 2.96056047 9.85907662 8.28370222 269 21.81373342 1.8279849 19.337844 0.2633566 0.372326993 1.031356504 9.79227729 8.00814839 270 2.64661416 1.7894102 19.4646163 0.3184021 0.301827085 2.91808647 9.76265007 8.08120019 271 25.71220827 1.81523 18.97201 0.2836057 0.428451691 2.78256773 9.72665307 8.08120019 272 21.77544968 1.863723 19.155511 0.316616 0.409905242 2.87177772 9.71041411 8.66256384 274 22.15365523 1.8209889 18.845096 0.3112599 0.32995422 2.88177956 9.85313185 8.79439873 275 23.35529165 1.8999964 19.319172 0.273300 0.485596739 2.97555185 9.76787436 8.8473528 276 22.06533088 1.7102976 19.437928 0.275399 0.30812196 3.00813753 9.7									
269 21.81373342 1.8279849 19.337844 0.2633566 0.372326993 3.01356504 9.79227729 8.00814839 270 26.4964116 1.7894102 19.464163 0.3184021 0.301827085 2.91808647 9.76426804 8.03658037 271 25.7122027 1.818523 18.97201 0.2836057 0.428451691 2.78256773 9.72665307 8.08120019 272 21.77544968 1.8739587 19.334173 0.3212091 0.326015108 2.92158132 9.83059404 8.7653599 273 23.10727365 1.8693723 19.135511 0.316616 0.409905242 2.8717772 9.71041411 8.66256384 274 22.15365523 1.8990864 19.319172 0.2737003 0.485596739 2.97555185 9.76787436 8.84735288 276 22.00533088 1.7102976 19.437928 0.2752999 0.30812196 3.00813753 9.74210277 8.24197419 277 22.64636331 1.8033726 19.253861 0.285656137 2.83479182 9.76661273 8									
270 26.4964116 1.7894102 19.464163 0.3184021 0.301827085 2.91808647 9.76426804 8.03658037 271 25.71220827 1.81523 18.97201 0.2836057 0.428451691 2.78256733 9.72665307 8.08120019 272 22.177544968 1.8739587 19.334173 0.3212091 0.326015108 2.92158132 9.83059404 8.7653599 273 23.10727365 1.8683723 19.135511 0.316616 0.409905242 2.8717772 9.71041411 8.66256384 274 22.15365523 1.8209889 18.845096 0.3112599 0.32995422 2.88217956 9.85313185 8.79439873 275 23.35529165 1.8990964 19.31792 0.2752999 0.30812196 3.00813753 9.76661273 8.24197419 277 22.64636383 1.8033726 19.323028 0.2638583 0.456566137 2.83479182 9.76661273 8.33649394 278 26.07716042 1.7997015 18.783871 0.2811854 0.425461871 2.83593457 9.7									
271 25.71220827 1.81523 18.97201 0.2836057 0.428451691 2.78256773 9.72665307 8.08120019 272 21.77544968 1.8739587 19.334173 0.3212091 0.326015108 2.92158132 9.83059404 8.7653599 273 23.10727356 1.8883723 19.135511 0.312599 0.32995422 2.817772 9.71041411 8.66256384 274 22.15365523 1.8209889 18.845096 0.3112599 0.32995422 2.88217956 9.85313185 8.79439873 275 23.35529165 1.8990964 19.319172 0.2737003 0.485596739 2.97555185 9.76787436 8.84735288 276 22.0563088 1.7102976 19.437928 0.2752999 0.30812196 3.08413753 9.74210277 8.24197419 277 22.6463633 1.8033726 19.323028 0.2638583 0.456566137 2.83479182 9.76661273 8.33643934 278 26.07716042 1.7997015 18.783871 0.2811854 0.425461871 2.83593457 9.7490									
272 21.77544968 1.8739587 19.334173 0.3212091 0.326015108 2.92158132 9.83059404 8.7653599 273 23.10727365 1.8683723 19.135511 0.316616 0.409905242 2.8717772 9.71041411 8.66256384 274 22.15365523 1.8209889 18.845096 0.3112599 0.32995422 2.88217956 9.85313185 8.79439873 275 22.35529165 1.8990964 19.319172 0.2737003 0.485596739 2.97555185 9.76787436 8.84735288 276 22.06533088 1.7102976 19.437928 0.2752999 0.30812196 3.00813753 9.74210277 8.24197419 277 22.64636383 1.8033726 19.339028 0.2658583 0.455661871 2.83479182 9.7661273 8.33649394 279 24.91718744 1.8917517 19.3749 0.2753881 0.475661592 2.82309374 9.81143847 8.18498028 280 22.36138536 1.8048951 19.580763 0.3041631 0.348027573 2.81852368 9.									
273 23.10727365 1.8683723 19.135511 0.316616 0.409905242 2.8717772 9.71041411 8.66256384 274 22.15365523 1.8209889 18.845096 0.3112599 0.32995422 2.88217956 9.85313185 8.79439873 275 23.35529165 1.8990864 19.319172 0.2752999 0.30812196 3.00813753 9.74210277 8.24197419 277 22.64636383 1.8033726 19.323028 0.2638583 0.456566137 2.83479182 9.76661273 8.33649394 278 26.07716042 1.7997015 18.783871 0.2811854 0.4566566137 2.83479182 9.76661273 8.33649394 279 24.91718744 1.8917517 19.3749 0.2753881 0.470561592 2.82309374 9.8143847 8.18498028 280 22.36138536 1.8048951 19.580763 0.3041631 0.348027573 2.81852368 9.78348447 8.32629511 281 22.487780872 1.89787617 19.521141 0.2687338 0.503199589 2.8884458 <td< td=""><td></td><td></td><td></td><td>19.334173</td><td></td><td></td><td></td><td></td><td>8.7653599</td></td<>				19.334173					8.7653599
274 22.15365523 1.8209889 18.845096 0.3112599 0.32995422 2.88217956 9.85313185 8.79439873 275 23.35529165 1.8990964 19.319172 0.2757003 0.485596739 2.97555185 9.76787436 8.84735288 276 22.0553088 1.7102976 19.437928 0.2752999 0.30812196 3.00813753 9.74210277 8.24197419 277 22.64636383 1.8033726 19.323028 0.2638583 0.456566137 2.83479182 9.76661273 8.33649394 278 26.07716042 1.7997015 18.783871 0.2811854 0.425461871 2.83593457 9.74900219 8.85047881 279 24.91718744 1.8917517 19.3749 0.2753881 0.470561592 2.8309374 9.81143847 8.18498028 280 22.36138536 1.8048951 19.580763 0.3041631 0.348027573 2.81852368 9.78348447 8.18498028 281 22.44717211 1.906004 19.015598 0.2988822 0.303456997 2.88903574 9									
275 23.35529165 1.8990964 19.319172 0.2737003 0.485596739 2.97555185 9.76787436 8.84735288 276 22.00533088 1.7102976 19.437928 0.2752999 0.30812196 3.00813753 9.74210277 8.24197419 277 22.64636383 1.8033726 19.323028 0.2663583 0.456666137 2.83479182 9.76661273 8.33649394 278 26.07716042 1.7997015 18.783871 0.2811854 0.425461871 2.83593457 9.74900219 8.85047881 279 24.91718744 1.8917517 19.3749 0.2753881 0.470561592 2.82309374 9.81143847 8.18498028 280 22.36138536 1.8048951 19.580763 0.3041631 0.34027573 2.81852368 9.7848447 8.32629511 281 22.44717211 1.9060004 19.015598 0.2968822 0.303456997 2.88903574 9.86310646 8.43441012 282 24.88788072 1.8897617 19.521141 0.2687338 0.503199558 2.8894458				18.845096		0.32995422	2.88217956		
276 22.0533088 1.7102976 19.437928 0.2752999 0.30812196 3.00813753 9.74210277 8.24197419 277 22.64636383 1.8033726 19.323028 0.2638583 0.456566137 2.83479182 9.76661273 8.33649394 278 26.07716042 1.7997015 18.783871 0.2811854 0.4256461871 2.83593457 9.74900219 8.85047881 279 24.91718744 1.8817517 19.3749 0.2753881 0.470561592 2.82309374 9.8143847 8.18498028 280 22.36138536 1.8048951 19.580763 0.3041631 0.348027573 2.81852368 9.78348447 8.32629511 281 22.44717211 1.9060004 19.015598 0.2668822 0.30345697 2.88903574 9.86310646 8.43441012 282 24.88788072 1.8897617 19.521141 0.2687338 0.503199558 2.8884458 9.79381833 8.0835137 283 24.02538788 1.7666054 19.088542 0.2621515 0.38705953 2.89703024 9.						0.485596739			
277 22.64636383 1.8033726 19.323028 0.2638583 0.456566137 2.83479182 9.76661273 8.33649394 278 26.07716042 1.7997015 18.783871 0.2811854 0.425461871 2.83593457 9.74900219 8.85047881 279 24.91718744 1.8817517 19.3749 0.2753881 0.470561592 2.82309374 9.8143847 8.18498028 280 22.36138536 1.8048951 19.580763 0.3041631 0.348027573 2.81852368 9.78348447 8.32629511 281 22.44717211 1.9060004 19.015598 0.2968822 0.303456997 2.88903574 9.86310646 8.43441012 282 24.88788072 1.8897617 19.521141 0.2687338 0.50319958 2.889458 9.79381833 8.0835137 284 26.02995751 1.9395692 18.918388 0.2912039 0.36449457 2.77605962 9.82676277 7.99526851 285 22.78720268 1.9153748 19.546782 0.2751084 0.431011161 2.80903699 9.				19.437928	0.2752999				
279 24.91718744 1.8917517 19.3749 0.2753881 0.470561592 2.82309374 9.81143847 8.18498028 280 22.36138536 1.8048951 19.580763 0.3041631 0.348027573 2.81852368 9.78348447 8.32629511 281 22.44717211 1.9060004 19.015598 0.2968822 0.303456997 2.88903574 9.86310648 8.43441012 282 24.88788072 1.8897617 19.521141 0.2687338 0.503199558 2.8884458 9.79381833 8.0835137 283 24.02538788 1.7666054 19.08542 0.2621515 0.38705953 2.89703024 9.77982251 8.08228512 284 26.02995751 1.9395692 18.918388 0.2912039 0.36449457 2.77605962 9.82676277 7.99526851 285 22.7872028 1.9153748 19.546782 0.2751084 0.431011161 2.80903869 9.77186109 8.71774417 286 23.06239531 1.9443959 18.803625 0.2658032 0.43101161 2.8043644 9.82	277			19.323028		0.456566137		9.76661273	8.33649394
280 22.36138536 1.8048951 19.580763 0.3041631 0.348027573 2.81852368 9.78348447 8.32629511 281 22.44717211 1.9060004 19.015598 0.2968822 0.303456997 2.88903574 9.86310646 8.43441012 282 24.88788072 1.8897617 19.521141 0.2687338 0.503199558 2.8884458 9.79381833 8.0835137 283 24.02538788 1.7666054 19.088542 0.2621515 0.38705953 2.89703024 9.77982251 8.08228512 284 26.02995751 1.9395692 18.918388 0.2912039 0.36449457 2.77605962 9.82676277 7.99526851 285 22.78720268 1.9153748 19.546782 0.2751084 0.431011161 2.89003869 9.77186109 8.71774427 286 23.06239531 1.9443959 18.803625 0.2658032 0.433437744 2.80483644 9.82726133 8.65692923 287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751128 <td< td=""><td>278</td><td>26.07716042</td><td>1.7997015</td><td>18.783871</td><td>0.2811854</td><td>0.425461871</td><td>2.83593457</td><td>9.74900219</td><td>8.85047881</td></td<>	278	26.07716042	1.7997015	18.783871	0.2811854	0.425461871	2.83593457	9.74900219	8.85047881
281 22.44717211 1.9060004 19.015598 0.2968822 0.303456997 2.88903574 9.86310648 8.43441012 282 24.88788072 1.8897617 19.521141 0.2687338 0.503199558 2.8884458 9.79381833 8.0835137 283 24.02538788 1.7666054 19.088542 0.2621515 0.38705953 2.89703024 9.77982251 8.08238512 284 26.02995751 1.9395692 18.918388 0.2912039 0.36449457 2.77605962 9.82676277 7.99526851 285 22.78720268 1.9153748 19.546782 0.2751084 0.431011161 2.80903690 9.77186109 8.71774427 286 23.06239551 1.9443959 18.803625 0.2658032 0.433437744 2.80483644 9.82726133 8.65692923 287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751128 9.78829569 8.83599296 288 25.91571449 1.6443654 19.560043 0.3032079 0.473636965 2.90085782 <td< td=""><td>279</td><td>24.91718744</td><td></td><td>19.3749</td><td></td><td>0.470561592</td><td>2.82309374</td><td>9.81143847</td><td>8.18498028</td></td<>	279	24.91718744		19.3749		0.470561592	2.82309374	9.81143847	8.18498028
282 24.88788072 1.8897617 19.521141 0.2687338 0.503199558 2.8884458 9.79381833 8.08835137 283 24.02538788 1.7666054 19.088542 0.2621515 0.38705953 2.89703024 9.77982251 8.08228512 284 26.02995751 1.9395692 18.918388 0.2912039 0.36449457 2.77605962 9.82676277 7.99526851 285 22.78720268 1.9153748 19.546782 0.2751084 0.431011161 2.80903869 9.77186109 8.71774427 286 23.06239531 1.9443959 18.803625 0.2658032 0.433437744 2.80483644 9.82726133 8.65692233 287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751189 9.78829569 8.83599296 288 25.91571449 1.6443654 19.560043 0.3032079 0.473636965 2.90085782 9.7142094 8.72385148 289 24.37814303 1.6394001 19.587841 0.298429 0.328707436 2.77952947	280	22.36138536	1.8048951	19.580763	0.3041631	0.348027573	2.81852368	9.78348447	8.32629511
283 24.02538788 1.7666054 19.088542 0.2621515 0.38705953 2.89703024 9.77982251 8.08228512 284 26.02995751 1.9395692 18.918388 0.2912039 0.36449457 2.77605962 9.82676277 7.99526851 285 22.78720228 1.9153748 19.546782 0.2751084 0.431011161 2.80903869 9.77186109 8.71774427 286 23.06239531 1.9443959 18.803625 0.2658032 0.433437744 2.80943864 9.82726133 8.65692923 287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751128 9.78829569 8.83599296 288 25.91571449 1.6443654 19.560043 0.3030279 0.473636965 2.90085782 9.7142094 8.72385148 289 24.37814303 1.6394001 19.587841 0.2984299 0.328707436 2.77952947 9.79945289 8.64322011 290 25.8270334 1.8110453 19.169111 0.300163 0.316211924 2.79491094	281	22.44717211	1.9060004	19.015598	0.2968822	0.303456997	2.88903574	9.86310646	8.43441012
283 24.02538788 1.7666054 19.088542 0.2621515 0.38705953 2.89703024 9.77982251 8.08228512 284 26.02995751 1.9395692 18.918388 0.2912039 0.36449457 2.77605962 9.82676277 7.99526851 285 22.78720268 1.9153748 19.546782 0.2751084 0.431011161 2.80903869 9.77186109 8.71774427 286 23.06239531 1.9443959 18.803625 0.2658032 0.433437744 2.80483644 9.82726133 8.65692923 287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751128 9.78829569 8.83599296 288 25.91571449 1.6443654 19.560043 0.3032079 0.473636965 2.90085782 9.7142094 8.72385148 289 24.37814303 1.6394001 19.587841 0.298429 0.328707436 2.77952947 9.79945289 8.64322011 290 25.8270334 1.8110453 19.169111 0.300163 0.316211924 2.79491094 9	282	24.88788072	1.8897617	19.521141	0.2687338	0.503199558	2.8884458	9.79381833	8.08835137
285 22.78720268 1.9153748 19.546782 0.2751084 0.431011161 2.80903869 9.77186109 8.71774427 286 23.06239531 1.9443959 18.803625 0.2658032 0.433437744 2.80483644 9.82726133 8.65692923 287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751128 9.782929569 8.83599296 288 25.91571449 1.6443654 19.560043 0.3032079 0.473636965 2.90085782 9.7142094 8.72385148 289 24.37814303 1.6394001 19.587841 0.298429 0.328707436 2.77952947 9.79945289 8.64322011 290 25.8270334 1.8110453 19.169111 0.30018927 0.316211924 2.79491094 9.71382601 8.42613587 291 23.5779988 1.8213097 19.513572 0.2746971 0.432114671 2.77406737 9.8605716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.30554864 2.97867933 <td< td=""><td>283</td><td>24.02538788</td><td></td><td>19.088542</td><td></td><td>0.38705953</td><td>2.89703024</td><td>9.77982251</td><td>8.08228512</td></td<>	283	24.02538788		19.088542		0.38705953	2.89703024	9.77982251	8.08228512
286 23.06239531 1.9443959 18.803625 0.2658032 0.433437744 2.80483644 9.82726133 8.65692923 287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751128 9.78829569 8.83599296 288 25.91571449 1.6443654 19.560043 0.3032079 0.473636965 2.90085782 9.7142094 8.72385148 289 24.37814303 1.6394001 19.587841 0.298429 0.328707436 2.77952947 9.79945289 8.64322011 290 25.8270334 1.8110453 19.169111 0.300163 0.316211924 2.79491094 9.71382601 8.42613587 291 23.5779988 1.8213097 19.294495 0.3018927 0.444378443 2.7946116 9.8075873 7.93027154 292 24.38328092 1.8315054 19.513572 0.2746971 0.432114671 2.77460737 9.8605716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.300554864 2.97867933 9.7	284	26.02995751	1.9395692	18.918388	0.2912039	0.36449457	2.77605962	9.82676277	7.99526851
287 24.23085168 1.6997915 19.30284 0.2983092 0.412721534 2.77751128 9.78829569 8.83599296 288 25.91571449 1.6443654 19.560043 0.3032079 0.473636965 2.90085782 9.7142094 8.72385148 289 24.37814303 1.6394001 19.587841 0.298429 0.328707436 2.77752947 9.7945289 8.64322011 290 25.8270334 1.8110453 19.169111 0.300163 0.316211924 2.79491094 9.7382601 8.42213587 291 23.5779988 1.8213097 19.294495 0.3018927 0.444378443 2.7946116 9.80795873 7.93027154 292 24.38328092 1.8315054 19.513572 0.2746971 0.432114671 2.77460737 9.8605716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.300554664 2.97867933 9.78731635 8.94843937 294 22.20829235 1.7822704 19.086162 0.269776 0.337698904 2.86177912 9.739	285	22.78720268	1.9153748	19.546782	0.2751084	0.431011161	2.80903869	9.77186109	8.71774427
288 25.91571449 1.6443654 19.560043 0.3032079 0.473636965 2.90085782 9.7142094 8.72385148 289 24.37814303 1.6394001 19.587841 0.298429 0.328707436 2.77952947 9.79945289 8.64322011 290 25.8270334 1.8110453 19.169111 0.300163 0.316211924 2.79491094 9.71382601 8.42613587 291 23.5779988 1.8213097 19.294495 0.3018927 0.444378443 2.7946116 9.80795873 7.93027154 292 24.38328092 1.8315054 19.513572 0.2746971 0.432114671 2.77406737 9.805716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.300554864 2.97867933 9.78731635 8.94843937 294 22.20829235 1.7822704 19.086162 0.2697976 0.337698904 2.86177912 9.73947997 8.19575009 295 22.31415006 1.7323296 18.850468 0.2945689 0.512236316 2.77187593 9.	286	23.06239531	1.9443959	18.803625	0.2658032	0.433437744	2.80483644	9.82726133	8.65692923
289 24.37814303 1.6394001 19.587841 0.298429 0.328707436 2.77952947 9.79945289 8.64322011 290 25.8270334 1.8110453 19.169111 0.300163 0.316211924 2.79491094 9.71382601 8.42613587 291 23.5779988 1.8213097 19.294495 0.3018927 0.444378443 2.7946116 9.80795873 7.93027154 292 24.38328092 1.8315054 19.513572 0.2746971 0.432114671 2.77406737 9.8065716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.300554864 2.97867933 9.78731635 8.94843937 294 22.20829235 1.7822704 19.086162 0.2697976 0.337698904 2.86177912 9.73947997 8.19575009 295 22.31415006 1.7323266 18.850468 0.2943689 0.512236316 2.77187593 9.79242753 8.9539981 296 25.89558789 1.7340806 19.020249 0.3180666 0.305644345 2.92361347 9	287	24.23085168	1.6997915	19.30284	0.2983092	0.412721534	2.77751128	9.78829569	8.83599296
290 25.8270334 1.8110453 19.169111 0.300163 0.316211924 2.79491094 9.71382601 8.42613587 291 23.5779988 1.8213097 19.294495 0.3018927 0.444378443 2.7946116 9.80795873 7.93027154 292 24.38328092 1.8315054 19.513572 0.2746971 0.432114671 2.77406737 9.8605716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.300554864 2.97867933 9.78731635 8.94843937 294 22.20829235 1.7822704 19.086162 0.2697976 0.337698904 2.86177912 9.73947997 8.19575009 295 22.31415006 1.7323296 18.850468 0.2943689 0.512236316 2.77187593 9.72906064 8.57563214 297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053	288	25.91571449	1.6443654	19.560043	0.3032079	0.473636965	2.90085782	9.7142094	8.72385148
291 23.5779988 1.8213097 19.294495 0.3018927 0.444378443 2.7946116 9.80795873 7.93027154 292 24.38328092 1.8315054 19.513572 0.2746971 0.432114671 2.77406737 9.8605716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.300594864 2.97867933 9.78731635 8.94843937 294 22.20829235 1.7822704 19.086162 0.2697976 0.337698904 2.86177912 9.73947997 8.19575009 295 22.31415006 1.7323296 18.850468 0.2943689 0.512236316 2.77187593 9.79242753 8.9539981 296 25.89558789 1.7340806 19.020249 0.3180666 0.305644345 2.92361347 9.72906064 8.57563214 297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053	289	24.37814303	1.6394001	19.587841	0.298429	0.328707436	2.77952947	9.79945289	8.64322011
292 24.38328092 1.8315054 19.513572 0.2746971 0.432114671 2.77406737 9.8605716 8.02690525 293 24.71165572 1.8645309 19.741234 0.2703126 0.300554864 2.97867933 9.78731635 8.94843937 294 22.20829235 1.7822704 19.086162 0.2697976 0.337698904 2.86177912 9.79347997 8.19575009 295 22.31415006 1.7323296 18.850468 0.2943689 0.512236316 2.77187593 9.79242753 8.9539981 296 25.89558789 1.7340806 19.020249 0.3180666 0.305644345 2.92361347 9.72906064 8.57563214 297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053									
293 24.71165572 1.8645309 19.741234 0.2703126 0.300554864 2.97867933 9.78731635 8.94843937 294 22.20829235 1.7822704 19.086162 0.2697976 0.337698904 2.86177912 9.73947997 8.19575009 295 22.31415006 1.7323296 18.850468 0.2943689 0.512236316 2.77187593 9.79242753 8.9539981 296 25.89558789 1.7340806 19.020249 0.3180666 0.305644345 2.92361347 9.72906064 8.57563214 297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053			1.8213097						
294 22.20829235 1.7822704 19.086162 0.2697976 0.337698904 2.86177912 9.73947997 8.19575009 295 22.31415006 1.7323296 18.850468 0.2943689 0.512236316 2.77187593 9.79242753 8.9539981 296 25.89558789 1.7340806 19.020249 0.3180666 0.305644345 2.92361347 9.72906064 8.57563214 297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053									
295 22.31415006 1.7323296 18.850468 0.2943689 0.512236316 2.77187593 9.79242753 8.9539981 296 25.89558789 1.7340806 19.020249 0.3180666 0.305644345 2.92361347 9.72906064 8.57563214 297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053	293				0.2703126		2.97867933	9.78731635	8.94843937
296 25.89558789 1.7340806 19.020249 0.3180666 0.305644345 2.92361347 9.72906064 8.57563214 297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053									
297 22.3945479 1.8845714 18.863205 0.2828866 0.480826708 2.90613322 9.70407964 8.83553053									
298 26.42684808 1.7718598 18.977454 0.2847307 0.448989145 2.83586823 9.80597375 8.7027053									
	298	26.42684808	1.7718598	18.977454	0.2847307	0.448989145	2.83586823	9.80597375	8.7027053

	299	22.22737032	1.906602	19.119339	0.3090047	0.447268293	2.89415899	9.7134792	8.85281785
	300	26.12078229	1.9231025	18.8699	0.3163095	0.503195771	2.79090381	9.70334855	8.96472296
	301	25.23548486	1.6680523	19.401521	0.3011924	0.315801619	2.99454203	9.74364895	8.40986863
	302	23.95655176	1.7957578	19.556282	0.297631	0.388689054	2.99453706	9.70902044	8.46835747
	303	25.56024932	1.7994418	19.662509	0.3123865	0.336463226	3.0082402	9.78989672	8.00794442
	304	23.23336501	1.8598475	19.332444	0.2634702	0.501753937	2.84992042	9.81014726	7.96492288
	305	22.71501245	1.8185074	19.402864	0.2677755	0.379817718	2.88508452	9.80333675	8.67070779
	306	22.22361184	1.6677438	19.688949	0.2883109	0.460149178	2.86515498	9.70192636	8.66751177
	307	23.0096758	1.7899386	18.990083	0.3073125	0.337755715	2.83363157	9.82393412	8.35450529
	308	23.60567767	1.9388274	19.429165	0.3084483	0.476315055	2.79117308	9.81123113	8.57082062
	309	21.87512144	1.9377891	19.614862	0.317072	0.440500435	2.99675429	9.70881142	8.3583778
	310	22.10016266	1.7971933	19.142338	0.3184626	0.512329424	2.87018972	9.75487908	8.41057382
	311	26.28963361	1.8283756	18.77959	0.2725237	0.508348909	2.84040125	9.83001875	7.98015909
	312	25.52891565	1.6635679	19.214745	0.2660887	0.352960855	2.93147511	9.77942109	8.10074588
	313	25.74167632	1.8490702	19.480031	0.3079307	0.336840121	2.76191437	9.82372786	8.22308752
	314	26.4682954	1.6953557	19.224104	0.3084284	0.366795015	2.83260065	9.71178839	8.68644091
	315	24.17619811	1.682653	19.453613	0.2724733	0.333736848	2.93640509	9.77795795	8.17118018
	316	24.70163515	1.8706563	19.185215	0.3183798	0.446824107	2.89997699	9.86100771	8.97836393
	317	23.7409551	1.8518751	18.822826	0.2762166	0.34759281	2.82020698	9.75376215	8.00518948
	318	23.39424219	1.8666715	19.672445	0.2903803	0.337953243	2.94881106	9.74486517	8.83230496
	319	23.49181868	1.6784639	19.49059	0.3165146	0.473720595	2.77977445	9.73401936	8.06586486
	320	23.40225115	1.9468628	19.169568	0.2788411	0.372313368	2.90115588	9.86021262	8.94619356
	321	22.83688849	1.8298735	19.646241	0.2625544	0.440131774	2.83314521	9.76075779	8.89413762
	322	23.64866239	1.6950157	18.946531	0.2627702	0.330065543	2.98264778	9.86426433	8.13078286
	323	22.24722964	1.911302	19.381997	0.2950821	0.407240145	2.77988028	9.714269	8.56656648
	324	23.64917046	1.7917865	19.64888	0.3041528	0.415892909	2.92344105	9.75157049	8.24012941
	325	24.44270328	1.6279114	19.176167	0.302654	0.495360245	2.98850437	9.78859436	8.27013891
	326	24.1698785	1.7267768	19.218187	0.264454	0.340548054	3.00927605	9.83721728	8.24592424
	327	22.05777736	1.7248953	19.337209	0.2939814	0.360184134	2.90325187	9.80088234	8.32956425
	328	26.47749262	1.7732978	18.996174	0.2975819	0.421894471	3.000074	9.75344849	8.26384346
	329	23.40557521	1.909185	19.584961	0.2875475	0.362452763	2.87880596	9.85440457	8.19088106
	330	22.13169554	1.7735975	19.076526	0.3017901	0.437722444	2.83796152	9.76908654	8.66165363
	331	25.01247659	1.7483816	19.041609	0.2830431	0.412670407	2.98023318	9.72109186	8.46684954
	332	24.99392778	1.8163138	19.216562	0.2783765	0.440604934	2.91389549	9.78868304	8.89575366
	333	23.94028669	1.6840369	19.522091	0.2999196	0.379629142	2.96862729	9.78441429	8.89960009
	334	22.35276357	1.9096002	19.209777	0.2736823	0.474800536	2.875684	9.7541775	8.49068401
	335	22.98656643	1.9225699	19.376919	0.2991077	0.333931681	2.86532577	9.85695471	7.91321528
	336	24.25302237	1.736751	19.308347	0.266373	0.389073722	3.01115089	9.72504696	8.8024158
_	337	22.68661883	1.8596825	19.413703	0.2915544	0.489631274	2.85260769	9.72272162	8.69758976
_	338	25.29444144	1.8551083	19.265817	0.2705002	0.337912726	2.98838446	9.74432803	8.82670208
_	339	22.14514824	1.9290698	19.451853	0.2811294	0.420001708	2.93982922	9.7315861	8.95478252
	340	22.10744954	1.9196741	19.301671	0.2925495	0.507323104	2.7577411	9.80173982	8.93643297
_	341	23.88798179	1.6976572	19.441583	0.3008698	0.382357097	2.85420197	9.72075784	8.42539573
\vdash	342	24.31602641	1.9382091	19.410325	0.3046272	0.391774205	2.8318514	9.75368394	8.30776718
<u> </u>	343	24.3969027	1.9268557	18.85437	0.2977565	0.485432869	2.82320436	9.71971428	8.64114721
\vdash	344	24.13754816	1.8089114	19.464624	0.2997654	0.320609682	2.9719678	9.82864344	8.12763903
-	345	22.73467923	1.6625251	19.102166	0.3018526	0.408511677	2.91725325	9.75897019	7.9107522
-	346	24.08827594	1.6415481	19.522248	0.2946556	0.513568791	2.77351423	9.71769811	7.95894527
<u> </u>	347	23.68502438	1.6462394	19.560606	0.2689822	0.480113941	2.92198696	9.74714915	8.72212308
\vdash	348	25.01537469	1.8728498	18.931601	0.2988981	0.31734873	2.77811301	9.75440879	8.15354324
-	349	22.7494284	1.6589121	19.272209	0.2866893	0.348656534	2.9011792	9.73472068	8.33347956
-	350	24.77432539	1.910892	19.241596	0.2904368	0.31661886	2.94083573	9.74592292	8.15464451
\vdash	351	24.58933955	1.6782354	19.358291	0.3173488	0.439735071	2.88676592	9.72175669	8.486334
-	352	23.92935605	1.8992514	19.439212	0.2684046	0.431663782	2.81195714	9.72417875	8.56685062
\vdash	353	23.97223692	1.8418764	18.941833	0.2919594	0.393154617	2.77610272	9.78415437	8.33356946
\vdash	354	21.92189665	1.8470599	19.089407	0.3159699	0.33407432	2.84247988	9.80179495	8.54547992
-	355	21.96118262	1.7511851	19.015865	0.321086	0.376446448	2.87654766	9.81184506	8.88178926
\vdash	356	23.53550583	1.6666739	19.464992	0.2643084	0.41591427	2.94339324	9.70912103	8.49310704
\vdash	357	24.33282734	1.7512944	18.837362	0.2640645	0.34491611	2.8352867	9.76686272	8.60638146
\vdash	358	24.66953899	1.926092	19.610884	0.2913945	0.333146706	2.83821467	9.78969414	8.65433811
	359	22.99416321	1.8277285	19.140095	0.2863316	0.484202378	2.96941872	9.7501688	8.40551908

360	21.90692295	1.9033285	18.794312	0.2668183		0.390886275	2.96103957	9.76030942	8.64456086
361	23.41031908	1.9463743	19.393908	0.2949847		0.452099601	2.78383671	9.79943459	8.51887763
362	23.28857527	1.8648423	18.786285	0.268071		0.38416748	2.99912996	9.84182429	8.07596398
363	24.17385892	1.8603401	19.615908	0.2650791		0.394204343	2.7609509	9.70756715	8.19481516
364	23.32046337	1.6242141	18.996318	0.2714477		0.477560836	2.96773705	9.73822807	8.7754651
365	25.98337082	1.7242989	18.977738	0.2889104		0.489215964	2.93326746	9.72228745	8.5500475
366	23.2094202	1.8072834	19.188917	0.2726603		0.357670968	2.82382349	9.73171922	8.87591082
367	26.16633384	1.9339406	19.033066	0.293568		0.326829977	3.00768146	9.73113033	8.59426324
368	23.91573069	1.8946675	19.521567	0.2832177		0.333714897	2.9050828	9.71095729	8.0327449
369	24.58652918	1.7531947	19.287765	0.2795947		0.451960593	2.86004381	9.84206983	8.9573131
370	22.3639365	1.6442978	19.136816	0.2898149		0.378922268	2.80480239	9.8348262	7.92243583
371	25.81741922	1.8903903	19.140816	0.2793138		0.339658919	2.77616742	9.72082023	8.02033403
372	25.85688486	1.6756973	18.85038	0.2674643		0.39662185	2.88556644	9.75879768	8.84690515
373	24.69449899	1.7053155	19.38811	0.305237		0.438870952	2.95238926	9.81340874	8.57745988
374	24.83807203	1.9435643	19.376903	0.2686236		0.420862578	2.79279512	9.84978042	8.67492495
375	22.65350627	1.8455356	19.634199	0.2822866		0.426049558	2.89604918	9.79097854	8.14207223
376	22.34886012	1.8530052	19.513312	0.3018839		0.368094261	2.95908436	9.84399447	8.79956889
377	23.51138373	1.6710137	19.028395	0.3145229		0.347664407	2.97159267	9.78615708	8.50919389
378	25.22301187	1.9394075	19.064722	0.2671173		0.419537439	2.78096229	9.84693556	8.3682435
379	21.97640101	1.8719249	18.86631	0.2899596		0.356441061	2.97280405	9.84080032	8.71758597
380	23.82844181	1.8137791	19.223356	0.3081127		0.354330269	2.83850451	9.82435956	8.33407062
381	23.78077211	1.7479075	19.392947	0.2704077		0.510061557	2.78882616	9.76372663	7.98488957
382	22.40888747	1.7183536	19.288035	0.3148181		0.481370881	2.98716583	9.81628906	8.82926103
383	25.6630964	1.737915	19.144128	0.3022167		0.312538708	2.91713154	9.74119674	7.99073499
384	22.0324311	1.6694903	19.558188	0.3110782		0.491707536	2.85138847	9.74471379	8.26507882
385	25.29019384	1.6959964	19.601283	0.299471		0.394350529	2.86775191	9.85757466	7.99034762
386	24.19561631	1.7017469	19.128661	0.2757284		0.445584147	2.78202482	9.79892043	8.6290775
387	25.89524554	1.8097249	18.810773	0.2967152		0.325644373	2.78117926	9.79491904	8.3605732
388	24.6402944	1.9013569	18.918684	0.3031692		0.419652928	2.91703735	9.80573224	8.4786230
389	23.81817986	1.7917075	18.865686	0.2752615		0.479079229	2.85281229	9.72509228	8.0055869
390	26.00106045	1.6388964	19.397857	0.2819551		0.506070867	2.78043192	9.71037015	8.46332446
391	25.17443139	1.6324759	18.79485	0.3178318		0.342050997	2.84661507	9.70832333	8.15206368
392	26.58075423	1.6664953	19.658667	0.3168726		0.482104004	2.99779047	9.76551392	8.3669745
393	25.64451023	1.8087964	19.489171	0.3078486		0.353638605	2.86255608	9.8090665	8.8231279
394	26.22648325	1.8430235	18.867037	0.2909218		0.349183978	2.7520903	9.76446829	8.2238783
395	23,49418842	1.754076	19.230039	0.2644764		0.512103296	2.9423877	9.74395197	8.136523
396	23.2013061	1.7193739	19.363491	0.266956		0.471032475	2.80436022	9.86169806	8.3533228
397	26.49327729	1.8945271	19.642421	0.2795506		0.405411278	2.9699931	9.74082403	8.484805
398	23.74640795	1.8318118	19.037495	0.3193276		0.350341992	3.01471615	9.74799854	8.6818045
399	24.75201852	1.6692154	19.464577	0.3100618		0.30902885	2.976472	9.79788213	8.0812099
400	21.76127665	1.7078423	19.09327	0.2894306		0.396614875	2.96391765	9.86060082	8.8302019
	0 .2. 500	0. 0.20	.0.000E1	1.200 .000	_	2.30001.010		2.0000000E	2.0002010
Promedio:	24.1534	1.7943	19.2627	0.2904		0.4089	2.8819	9.7829	8.4404

RESUMEN: HUELLA DEL CARBONO POR LA CONSTRUCCIÓN DE UNA VIVIENDA UNIFAMILIAR DE LADRILLO

LUGAR : AUCALLAMA - HUARAL - LIMA

Item	Partida	Und.	Metrado	HC Unit (kgCO2eg/und)	HC Parcial (kg CO2 eg)	Desv. Stand (kg CO2 eg)
01	OBRAS PRELIMINARES			(ngo ozograna)	(1.9 002 04)	(9 002 04)
01.01	LIMPIEZA DEL TERRENO MANUAL	m2	66.15	0.03	2.18	
01.02	TRAZO Y REPLANTEO INICIAL	m2	66.15	4.26	281.62	4.53
02	ESTRUCTURAS			1.20	201.02	1.00
02.01	MOVIMIENTO DE TIERRAS					
02.01.01	EXCAVACION MANUAL DE ZANJAS PARA CIMIENTOS	m3	20.71	3.43	71.09	
02.01.02	ACARREO DE MATERIAL EXCEDENTE MANUAL	m3	26.92	2.06	55.45	
02.02	CIMENTACION					
02.02.01	CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO COR	m3	20.71	171.45	3550.27	104.00
02.03	SOBRE CIMENTACION					
02.03.01	ACERO DE REFUERZO fy= 4,200 kg/cm2 EN SOBRECIM	kg	145.13	6.63	962.90	25.91
02.03.02	ENCOFRADO Y DESENCOFRADO EN SOBRECIMIENTO	m2	18.96	13.04	247.25	1.86
02.03.03	CONCRETO C:H = 1:8 + 25% P.M. PARA SOBRECIMIENT	m3	1.78	162.19	288.22	8.39
02.04	MURO PORTANTE					
02.04.01	MURO LADRILLO K.K DE ARCILLA 18H (9x12.5x23 CM)	m2	118.32	160.10	18942.21	37.82
02.05	COLUMNAS DE CONFINAMIENTO DE MUROS					
02.05.01	ACERO DE REFUERZO fy= 4,200 kg/cm2 EN COLUMNAS	kg	263.88	6.63	1750.77	47.10
02.05.02	ENCOFRADO Y DESENCOFRADO EN COLUMNAS	m2	24.92	16.40	408.74	3.26
02.05.03	CONCRETO EN COLUMNAS f'c=175 kg/cm2	m3	2.31	447.78	1032.76	30.35
02.06	VIGAS					
02.06.01	ACERO DE REFUERZO fy= 4,200 kg/cm2 EN VIGAS	kg	701.33	6.63	4653.13	125.19
02.06.02	ENCOFRADO Y DESENCOFRADO EN VIGAS	m2	28.07	19.29	541.41	3.95
02.06.03	CONCRETO f'c = 210 kg/cm2 EN VIGAS	m3	4.86	447.78	2177.10	63.98
02.07	LOSA ALIGERADA					
02.07.01	ACERO DE REFUERZO fy= 4,200 kg/cm2 EN LOSA ALIGE	kg	332.49	6.63	2205.98	59.35
02.07.02	ENCOFRADO Y DESENCOFRADO EN LOSA ALIGERADA	m2	51.70	12.01	620.95	4.43
02.07.03	LADRILLO HUECO DE ARCILLA 15X30X30 CM	und	430.66	11.24	4839.88	
02.07.04	CONCRETO f'c = 210 kg/cm2 EN LOSA ALIGERADA	m3	4.56	444.63	2027.07	59.99
03	ARQUITECTURA					
03.01	REVOQUES Y ENLUCIDOS					
03.01.01	TARRAJEO EN MUROS	m2	174.98	7.09	1241.45	36.18
03.01.02	TARRAJEO EN CIELO RASO	m2	51.70	7.30	377.45	10.69
03.02	PISOS					
03.02.01	CONTRAPISO DE 2" DE CONCRETO MEZCLA 1:5	m2	59.39	18.93	1124.42	33.36
03.02.02	PISO DE CEMENTO PULIDO E=2" MEZCLA 1:4	m2	59.39	22.25	1321.60	38.56
03.03	PINTURAS					
03.03.01	PINTURA EN MUROS	m2	174.98	3.90	683.21	22.15
03.03.02	PINTURA EN CIELO RASO	m2	51.70	3.90	201.86	6.55
03.04	CARPINTERIA DE MADERA					
03.04.01	PUERTA PRINCIPAL DE 1.00 X 2.20 M	und	1.00	153.56	153.56	1.21
03.04.02	PUERTAS INTERIORES	und	4.00	140.38	561.53	4.47
				HC Prom.	50,324.05	

HUELLA DE CARBONO UNITARIO

HC Mat : Huella del Carbono por producción de insumos (kg CO2 / und)
HC Logist : Huella del Carbono por transporte de insumos (kg CO2 / und)
HC Obra : Huella del Carbono por ejecución de obra (kg CO2 / und)

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	0.0320	0.000	0.000	0.033	0.0330
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
·			TOT	AL (kg CO2	/m2)	0.03

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario Topográfico	hh	0.0533	0.000	0.000	0.055	0.0549
Peón	hh	0.0533	0.000	0.000	0.055	0.0549
Acero Corrugado fy= 4200 kg/cm2	kg	0.0100	1.794	4.388	0.000	0.0618
Cal Hidratada bolsa 25kg	bol	0.0200	19.263	185.021	0.000	4.0857
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	•		TOT	AL (kg CO2	/m2)	4.26

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTOS / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	3.3333	0.000	0.000	3.433	3.4333
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
				TOTAL (kg CO2 /m3)		

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Peón	hh	2.0000	0.000	0.000	2.060	2.0600
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
	TOTAL (kg CO2 /m3)			2.06		

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Peón	hh	2.6667	0.000	0.000	2.747	2.7467
Operador de Equipo Liviano	hh	0.8889	0.000	0.000	0.916	0.9156
Piedra Grande de 8"	m3	0.4500	0.180	18.261	0.000	8.2987
Hormigón	m3	0.9500	0.340	20.870	0.000	20.1496
Cemento Portland Tipo I (42kg)	bol	3.5000	24.153	14.691	0.000	135.9540
Agua	m3	0.1500	0.149	16.233	0.000	2.4573
Mezcladora de Concreto 11p3 - 18HP	hm	0.8889	0.000	0.000	5.357	5.3569
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m3)	171.45

02.03.01 ACERO EN SOBRECIMIENTO / UND: KG

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm2	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	TO	AL (kg CO2	/kg)	6.63		

Bach. Sanchez Agurto Yoner Alejo

FACULTAD DE INGENIERIA CIVIL

02.03.02 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Oficial	hh	0.6667	0.000	0.000	0.687	0.6867
Alambre Negro Recocido N° 8	kg	0.2600	0.045	4.388	0.000	1.1525
Clavos para madera con cabeza 3/4"	kg	0.1300	0.074	4.388	0.000	0.5801
Madera Tornillo inc. corte p/enconf	p2	3.5000	0.299	2.541	0.000	9.9374
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m2)	13.04

/ UND: M2

02.03.03 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO / UND: M3

				HC Logist	HC Obra	HC Parcial
Operario	hh	1.3333	0.000	0.000	1.373	1.3733
Oficial	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	5.3333	0.000	0.000	5.493	5.4933
Operador de Equipo Liviano	hh	0.6667	0.000	0.000	0.687	0.6867
Hormigón	m3	0.9000	0.340	20.870	0.000	19.0891
Cemento Portland Tipo I (42.5kg)	bol	3.3000	24.153	14.691	0.000	128.1852
Agua	m3	0.1620	0.149	16.233	0.000	2.6538
Mezcladora de Concreto 11p3 - 18HP	hm	0.6667	0.000	0.000	4.018	4.0178
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m3)	162.19

02.04.01 MURO CON LADRILLO 0.125X0.23M / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8421	0.000	0.000	0.867	0.8674
Peón	hh	0.4211	0.000	0.000	0.434	0.4337
Arena Gruesa	m3	0.0289	0.279	52.175	0.000	1.5159
Ladrillo k.k. 18 huecos 9x12x24 cm	und	39.0000	3.144	0.682	0.000	149.2361
Cemento Portland Tipo I (42.5kg)	bol	0.2039	24.153	14.691	0.000	7.9203
Agua	m3	0.0075	0.149	16.233	0.000	0.1229
Herramientas manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	TOTAL (kg CO2 /m2)			160.10		

02.05.01 ACERO EN COLUMNAS / UND: KG

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm2	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	TAL (kg CO2	/kg)	6.63

02.05.02 ENCOFRADO Y DESENCOFRADO EN COLUMNAS / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8000	0.000	0.000	0.824	0.8240
Oficial	hh	0.8000	0.000	0.000	0.824	0.8240
Alambre Negro Recocido N° 8	kg	0.3000	0.045	4.388	0.000	1.3298
Clavos para madera con cabeza 3/4"	kg	0.3100	0.074	4.388	0.000	1.3832
Madera Tornillo inc. corte p/enconf	p2	4.2400	0.299	2.541	0.000	12.0385
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	AL (ka CO2	/m2)	16.40

Bach. Sanchez Agurto Yoner Alejo

02.05.03 CONCRETO EN COLUMNAS

/ UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Oficial	hh	0.8000	0.000	0.000	0.824	0.8240
Peón	hh	4.8000	0.000	0.000	4.944	4.9440
Operador de Equipo Liviano	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Gruesa	m3	0.5000	0.279	52.175	0.000	26.2274
Piedra Chancada de 1/2"	m3	0.8000	4.694	52.175	0.000	45.4954
Cemento Portland Tipo I (42.5kg)	bol	9.2000	24.153	14.691	0.000	357.3649
Agua	m3	0.1800	0.149	16.233	0.000	2.9487
Mezcladora de Concreto 11p3 - 18HP	hm	0.8000	0.000	0.000	4.821	4.8212
Vibrador de Concreto 4HP 2.4"	hm	0.8000	0.000	0.000	2.681	2.6807
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m3)	447.78

02.06.01 ACERO EN VIGAS / UND: KG

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm2	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TO	ΓAL (kg CO2	/kg)	6.63

02.06.02 ENCOFRADO Y DESENCOFRADO EN VIGAS

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8889	0.000	0.000	0.916	0.9156
Oficial	hh	0.8889	0.000	0.000	0.916	0.9156
Alambre Negro Recocido N° 8	kg	0.1000	0.045	4.388	0.000	0.4433
Clavos para madera con cabeza 3/4"	kg	0.3450	0.074	4.388	0.000	1.5394
Madera Tornillo inc. corte p/enconf	p2	5.4500	0.299	2.541	0.000	15.4740
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	TOT	19.29				

/ UND: M2

02.06.03 CONCRETO EN VIGAS / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.6000	0.000	0.000	1.648	1.6480
Oficial	hh	0.8000	0.000	0.000	0.824	0.8240
Peón	hh	4.8000	0.000	0.000	4.944	4.9440
Operador de Equipo Liviano	hh	0.8000	0.000	0.000	0.824	0.8240
Arena Gruesa	m3	0.5000	0.279	52.175	0.000	26.2274
Piedra Chancada de 1/2"	m3	0.8000	4.694	52.175	0.000	45.4954
Cemento Portland Tipo I (42.5kg)	bol	9.2000	24.153	14.691	0.000	357.3649
Agua	m3	0.1800	0.149	16.233	0.000	2.9487
Mezcladora de Concreto 11p3 - 18HP	hm	0.8000	0.000	0.000	4.821	4.8212
Vibrador de Concreto 4HP 2.4"	hm	0.8000	0.000	0.000	2.681	2.6807
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m3)	447.78

02.07.01 ACERO EN LOSA ALIGERADA / UND: KG

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0267	0.000	0.000	0.028	0.0275
Oficial	hh	0.0267	0.000	0.000	0.028	0.0275
Alambre Negro Recocido N°16	kg	0.0200	0.045	4.388	0.000	0.0887
Acero Corrugado fy= 4200 kg/cm2	kg	1.0500	1.794	4.388	0.000	6.4911
Dobladora	hm	0.0088	0.000	0.000	0.000	0.0000
Cizalla	hm	0.0088	0.000	0.000	0.000	0.0000
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	TO	TAL (kg CO2	/kg)	6.63		

02.07.02 ENCOFRADO Y DESENCOFRADO EN LOSA ALIGERADA / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.5333	0.000	0.000	0.549	0.5493
Oficial	hh	0.5333	0.000	0.000	0.549	0.5493
Alambre Negro Recocido N° 8	kg	0.1000	0.045	4.388	0.000	0.4433
Clavos para madera con cabeza 3/4"	kg	0.1000	0.074	4.388	0.000	0.4462
Madera Tornillo inc. corte p/enconf	p2	3.5300	0.299	2.541	0.000	10.0226
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
		•	TOT	AL (kg CO2	/m2)	12.01

02.07.03 LADRILLO HUECO DE ARCILLA 15X30X30 CM / UND: UND

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.0050	0.000	0.000	0.005	0.0052
Oficial	hh	0.0050	0.000	0.000	0.005	0.0052
Peón	hh	0.0100	0.000	0.000	0.010	0.0103
Ladrillo p/techo de 15x30x30 cm	und	1.0500	8.759	1.924	0.000	11.2177
Herramientas Manuales	%mo	3.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/und)	11.24

02.07.04 CONCRETO EN LOSA ALIGERADA / UND: M3

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	1.2800	0.000	0.000	1.318	1.3184
Oficial	hh	0.6400	0.000	0.000	0.659	0.6592
Peón	hh	3.8400	0.000	0.000	3.955	3.9552
Operador de Equipo Liviano	hh	0.6400	0.000	0.000	0.659	0.6592
Arena Gruesa	m3	0.5000	0.279	52.175	0.000	26.2274
Piedra Chancada de 1/2"	m3	0.8000	4.694	52.175	0.000	45.4954
Cemento Portland Tipo I (42.5kg)	bol	9.2000	24.153	14.691	0.000	357.3649
Agua	m3	0.1800	0.149	16.233	0.000	2.9487
Mezcladora de Concreto 11p3 - 18HP	hm	0.6400	0.000	0.000	3.857	3.8569
Vibrador de Concreto 4HP 2.4"	hm	0.6400	0.000	0.000	2.145	2.1445
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	-	-	TOT	AL (kg CO2	/m3)	444.63

03.01.01 TARRAJEO EN MUROS / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.6667	0.000	0.000	0.687	0.6867
Peón	hh	0.3333	0.000	0.000	0.343	0.3433
Arena Fina	m3	0.0177	0.361	20.870	0.000	0.3758
Cemento Portland Tipo I (42.5 kg)	bol	0.1446	24.153	14.691	0.000	5.6168
Agua	m3	0.0044	0.149	16.233	0.000	0.0721
Herramientas manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/m2)	7.09

03.01.02 TARRAJEO EN CIELO RASO / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.8000	0.000	0.000	0.824	0.8240
Peón	hh	0.4000	0.000	0.000	0.412	0.4120
Arena Fina	m3	0.0177	0.361	20.870	0.000	0.3758
Cemento Portland Tipo I (42.5 kg)	bol	0.1446	24.153	14.691	0.000	5.6168
Agua	m3	0.0044	0.149	16.233	0.000	0.0721
Herramientas manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	•		TOT	AL (kg CO2	/m2)	7.30

03.02.01 CONTRAPISO DE 2" DE CONCRETO MEZCLA 1:5

/ UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.1600	0.000	0.000	0.165	0.1648
Oficial	hh	0.0800	0.000	0.000	0.082	0.0824
Peón	hh	0.3200	0.000	0.000	0.330	0.3296
Operador de Equipo Liviano	hh	0.0800	0.000	0.000	0.082	0.0824
Arena Gruesa	m3	0.0450	0.279	52.175	0.000	2.3605
Cemento Portland Tipo I (42.5 kg)	bol	0.3927	24.153	14.691	0.000	15.2540
Agua	m3	0.0108	0.149	16.233	0.000	0.1769
Mezcladora de Concreto 11p3 - 18HP	hm	0.0800	0.000	0.000	0.482	0.4821
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
	•		TOT	AL (kg CO2	/m2)	18.93

03.02.02 PISO DE CEMENTO PULIDO E=2" MEZCLA 1:4 / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.3200	0.000	0.000	0.330	0.3296
Oficial	hh	0.1600	0.000	0.000	0.165	0.1648
Peón	hh	0.6400	0.000	0.000	0.659	0.6592
Operador de Equipo Liviano	hh	0.1600	0.000	0.000	0.165	0.1648
Arena Gruesa	m3	0.0210	0.279	52.175	0.000	1.1016
Piedra Chancada de 1/2"	m3	0.0270	4.694	52.175	0.000	1.5355
Cemento Portland Tipo I (42.5 kg)	bol	0.4540	24.153	14.691	0.000	17.6352
Agua	m3	0.0110	0.149	16.233	0.000	0.1802
Mezcladora de Concreto 11p3 - 18HP	hm	0.1600	0.000	0.000	0.482	0.4821
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
		-	TOT	AL (kg CO2	/m2)	22.25

03.03.01 PINTURA EN MUROS / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Latex Supermate	gal	0.0400	0.000	19.342	0.000	0.7737
Imprimante	gal	0.1300	0.000	21.202	0.000	2.7562
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
		-	TOT	AL (kg CO2	/m2)	3.90

03.03.02 PINTURA EN CIELO RASO / UND: M2

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	0.2424	0.000	0.000	0.250	0.2497
Peón	hh	0.1212	0.000	0.000	0.125	0.1248
Pintura Latex Supermate	gal	0.0400	0.000	19.342	0.000	0.7737
Imprimante	gal	0.1300	0.000	21.202	0.000	2.7562
Herramientas Manuales	%mo	2.0000	0.000	0.000	0.000	0.0000
	-	-	TOT	AL (kg CO2	/m2)	3.90

03.04.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.074	4.388	0.000	2.9003
Madera Cedro	p2	23.6806	0.558	4.740	0.000	125.4594
Bisagra de Fierro de 2"	par	3.0000	0.000	4.388	0.000	13.1631
Barniz Marino	gal	0.3000	0.000	12.662	0.000	3.7987
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
			TOT	AL (kg CO2	/und)	153.56

03.04.02 PUERTAS INTERIORES / UND: UND

Material	und	Cant.	HC Mat	HC Logist	HC Obra	HC Parcial
Operario	hh	4.0000	0.000	0.000	4.120	4.1200
Peón	hh	4.0000	0.000	0.000	4.120	4.1200
Clavos	kg	0.6500	0.074	4.388	0.000	2.9003
Madera Cedro	p2	21.3125	0.558	4.740	0.000	112.9133
Bisagra de Fierro de 2"	par	3.0000	0.000	4.388	0.000	13.1631
Barniz Marino	gal	0.2500	0.000	12.662	0.000	3.1655
Herramientas Manuales	%mo	5.0000	0.000	0.000	0.000	0.0000
		-	TOT	AL (kg CO2	/und)	140.38

HUELLA DEL CARBONO POR PRODUCCIÓN DE INSUMOS

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

Solo Herramientas Manuales

PROCESO		Equipos y Herramientas					Mano de Obra				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	hm	0.00		0.00	0.00	hh	0	1.03	0.000	0.000]
									PARCIAL	0.000	kg C

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

Acero Corrugado fy= 4200 kg/cm2 / und: kg

PROCESO		Equipos y Herramientas					Mano de Obra				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									HC Prom.	1.794	kg

2 <u>Cal Hidratada bolsa 25kg</u> /und: bol

PROCESO		Equipos y Herramientas					Mano de Obra				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm Kg CO2		Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
											1
							•	•	HC Prom.	19.263	٦,

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTOS / UND: M3

Solo Herramientas Manuales

PROCESO			Equipos y Herramientas			Mano de Obra				Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	hm	0		0.00	0.00	hh	0	1.03	0.000	0.000	
		•					•		PARCIAL	0.000	kg CO2 / m3

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

Solo Herramientas Manuales

PROCESO		Equipos y Herramientas					Mano de Obra				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	hm	0		0.00	0.00	hh	0	1.03	0.000	0.000]
		•					•	•	PARCIAL	0.000	kg C

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO / UND: M3

Piedra Grande de 8" / und: m3

PROCESO			Equipos y Herramientas					Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm		Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Selección y Acarreo	hm	0.08	Herramientas Manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082	
Extracción de cantera	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098	
							•		HC Prom.	0.180	kg (

2 Hormigón / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258

PARCIAL **0.340** kg CO2 / m3

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	•						•	•	IIC Duam	04.450

HC Prom. 24.153 kg CO2 / bol

Agua / und: m3

PROCESO		Equipos y Herramientas					Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Extracción	hm	1	Herramientas manuales	0.00	0.00	hh	1	1.03	1.030	1.030	
											1
									PARCIAL	0.149	kg

02.03.01 ACERO EN SOBRECIMIENTO

/ UND: KG

/ UND: M2

Alambre Negro Recocido N° 16 / und: kg

d. Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	K= CO2 / bb	V 000	1/ 000
			.vg ooz	Ulliu	Wellado	Kg CO2 / hh	Kg CO2	Kg CO2
n 0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
Y	n 0.002	n 0.002 Maquina Trefiladora	m 0.002 Maquina Trefiladora 22.49	m 0.002 Maquina Trefiladora 22.49 0.04	m 0.002 Maquina Trefiladora 22.49 0.04 hh	m 0.002 Maquina Trefiladora 22.49 0.04 hh 0.00		m 0.002 Maquina Trefiladora 22.49 0.04 hh 0.00 1.03 0.000

HC Prom. 0.045 kg CO2 / kg

Acero Corrugado fy= 4200 kg/cm2 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
						-			110 D	4 704

HC Prom. 1.794 kg CO2 / kg

02.03.02 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO

Alambre Negro Recocido N° 8 / und: kg

PROCESO		Equipos y Herramientas					Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Trefilado	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
	•	-					•		HC Prom.	0.045

Clavos para madera con cabeza 3/4" / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029

HC Prom. 0.074 kg CO2 / kg

Madera Tornillo inc. corte p/enconf / und: p2

PROCESO								
Unid. Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2

HC Prom. 0.299 kg CO2 / p2

02.03.03 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIEN / UND: M3

Hormigón / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.08	Herramientas manuales	0.00	0.00	hh	0.08	1.03	0.082	0.082
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258

PARCIAL 0.340 kg CO2 / m3

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											1
		-	•				•		HC Prom.	24.153	k

2 / bol

Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción	hm	1.00	Herramientas manuales	0.00	0.00	hh	1.00	1.03	1.030	1.030
								•	DADOLAL	0.440

PARCIAL **0.149** kg CO2 / m3

02.04.01 MURO CON LADRILLO 0.12X0.24M

/ UND: M2

1 Arena Gruesa / und: m3

PROCESO			Equipos y Herramientas			Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de Cantera	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Zarandeo	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Carguío	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
	-					-			HC Prom.	0.279

2 Ladrillo k.k. 18 huecos 9x12.5x23 cm / und: und

PROCESO		Equipos y Herramientas					Mano de Obra Paro					
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2		
]	
		•							PARCIAL	3.144	kg	

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Parcial				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	l
									HC Prom.	24.153	kg (

4 Agua / und: m3

PROCESO	Equipos y Herramientas						Mano de Obra				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.149	kg C

02.05.01 ACERO EN COLUMNA

/ UND: KG

Alambre Negro Recocido N° 16 / und: kg

PROCESO			Equipos y Herramientas				Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Trefilado	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
					· ·					
·							•	•	110 B	0.045

HC Prom. 0.045 kg CO2 / kg

2 Acero Corrugado fy= 4200 kg/cm2 / und: kg

PROCESO			Equipos y Herramientas				Parcial				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									HC Prom.	1.794	kg

02.05.02 ENCOFRADO Y DESENCOFRADO EN COLUMNAS / UND: M2

Alambre Negro Recocido N° 8 / und: kg

PROCESO			Equipos y Herramientas				Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Trefilado	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045

HC Prom. 0.045 kg CO2 / kg

2 Clavos para madera con cabeza 3/4" / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029
									UC Drom	0.074

HC Prom. 0.074 kg CO2 / kg

3 Madera Tornillo inc. corte p/enconf / und: p2

PROCESO			Equipos y Herramientas				Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									LIC Duam	0.2007

HC Prom. 0.2987 kg CO2 / p2

02.05.03 CONCRETO EN COLUMNAS

/ UND: M3

Arena Gruesa / und: m3

PROCESO			Equipos y Herramientas				Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de Cantera	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Zarandeo	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Carguío	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093

HC Prom. 0.279 kg CO2 / m3

2 Piedra Chancada de 1/2" / und: m3

PROCESO			Equipos y Herramientas				Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de cantera	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Carga a la Tolva de Almacenamiento	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Chancado	hm	0.02	Primaria, Cónica y Fajas	163.57	3.60	hh	0.00	1.03	0.000	3.598
Zarandeo	hm	0.02	Zaranda vibratoria	40.89	0.90	hh	0.00	1.03	0.000	0.900
·					•					
						-			HC Prom.	4.694

Cemento Portland Tipo I (42kg) / und: bol

PROCESO	Equipos y Herramientas						Mano de Obra				
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									HC Prom.	24.153	kg

Agua / und: m3

PROCESO			Equipos y Herramientas		Parcial					
	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2

PARCIAL **0.149** kg CO2 / m3

02.06.01 ACERO EN VIGAS

/ UND: KG

/ UND: M2

Alambre Negro Recocido N° 16 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	1.1.			Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Trefilado	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
	•						•		HC Prom.	0.045

2 Acero Corrugado fy= 4200 kg/cm2 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Unid. Metrado Equipo Kg CO2 / hm				Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	•							HC Prom.	1.794	kg C	

02.06.02 ENCOFRADO Y DESENCOFRADO EN VIGAS

Alambre Negro Recocido N° 8 / und: kg

PROCESO								de Obra		Parcial
	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Trefilado	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045

HC Prom. 0.045 kg CO2 / kg

2 Clavos para madera con cabeza 3/4" / und: kg

PROCESO		Equipos y Herramientas					Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045	1
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029	1
											1
	•	•					•		HC Prom.	0.074	k

Madera Tornillo inc. corte p/enconf / und: p2

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
				•				•	LIC Duam	0.200

HC Prom. 0.299 kg CO2 / p2

02.06.03 CONCRETO EN VIGAS

Arena Gruesa / und: m3

/ UND: M3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de Cantera	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Zarandeo	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Carguío	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
	•			•			•		HC Prom.	0.279

Piedra Chancada de 1/2" / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de cantera	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Carga a la Tolva de Almacenamiento	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Chancado	hm	0.02	Primaria, Cónica y Fajas	163.57	3.60	hh	0.00	1.03	0.000	3.598
Zarandeo	hm	0.02	Zaranda vibratoria	40.89	0.90	hh	0.00	1.03	0.000	0.900
							•		HC Prom.	4.694

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2

HC Prom. 24.153 kg CO2 / bol

Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial]
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.149	kg CO

02.07.01 ACERO EN LOSA ALIGERADA

/ UND: KG

Alambre Negro Recocido N° 16 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Trefilado	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
		·							UC Brom	0.045

HC Prom. 0.045 kg CO2 / kg

Acero Corrugado fy= 4200 kg/cm2 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Unid. Metrado Equipo Kg			Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									HC Prom.	1.794

02.07.02 ENCOFRADO Y DESENCOFRADO EN LOSA ALIGER./ UND: M2

Alambre Negro Recocido N° 8 / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Trefilado	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
			•						HC Prom	0.045

HC Prom. 0.045 kg CO2 / kg

2 Clavos para madera con cabeza 3/4" / und: kg

PROCESO			Equipos y Herramientas	1			Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029
		-				-			HC Prom.	0.074

3 Madera Tornillo inc. corte p/enconf / und: p2

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.				Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
]
									HC Prom.	0.299	k

02.07.03 LADRILLO HUECO DE ARCILLA 15X30X30 CM / UND: UND

Ladrillo p/techo de 15x30x30 cm / und: und

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									DADCIAL	9.750

PARCIAL 8.759 kg CO2 / und

02.07.04 CONCRETO EN LOSA ALIGERADA / UND: M3

Arena Gruesa / und: m3

		Equipos y Herramientas				Mano	de Obra		Parcial
Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
	hm hm	hm 0.005 hm 0.005	Unid. Metrado Equipo hm 0.005 Cargador Frontal hm 0.005 Cargador Frontal	Unid. Metrado Equipo Kg CO2 / hm hm 0.005 Cargador Frontal 19.57 hm 0.005 Cargador Frontal 19.57	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 hm 0.005 Cargador Frontal 19.57 0.09 hm 0.005 Cargador Frontal 19.57 0.09	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid hm 0.005 Cargador Frontal 19.57 0.09 hh hm 0.005 Cargador Frontal 19.57 0.09 hh	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid Metrado hm 0.005 Cargador Frontal 19.57 0.09 hh 0.00 hm 0.005 Cargador Frontal 19.57 0.09 hh 0.00	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid Metrado Kg CO2 / hh hm 0.005 Cargador Frontal 19.57 0.09 hh 0.00 1.03 hm 0.005 Cargador Frontal 19.57 0.09 hh 0.00 1.03	Unid. Metrado Equipo Kg CO2 / hm Kg CO2 Unid Metrado Kg CO2 / hh Kg CO2 hm 0.005 Cargador Frontal 19.57 0.09 hh 0.00 1.03 0.000 hm 0.005 Cargador Frontal 19.57 0.09 hh 0.00 1.03 0.000

HC Prom. 0.279 kg CO2 / m3

2 Piedra Chancada de 1/2" / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de cantera	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Carga a la Tolva de Almacenamiento	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Chancado	hm	0.02	Primaria, Cónica y Fajas	163.57	3.60	hh	0.00	1.03	0.000	3.598
Zarandeo	hm	0.02	Zaranda vibratoria	40.89	0.90	hh	0.00	1.03	0.000	0.900

HC Prom. 4.694 kg CO2 / m3

/ und: bol Cemento Portland Tipo I (42kg)

BBOCESO	PROCESO Unid. Metrado							Parcial			
PROCESO	Unid.	Equipos y Herramientas Inid. Metrado Equipo			Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
						-	•	•	HC Prom.	24.153	k

4 Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											1
	•					•	•	•	PARCIAL	0.149	kg

03.01.01 TARRAJEO EN MUROS

/ UND: M2

Areana Fina / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.10	Herramientas manuales	0.00	0.00	hh	0.10	1.03	0.103	0.103
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
	•								PARCIAI	0.361

kg CO2 / m3

2 Cemento Portland Tipo I (42kg) / und: bol

PROCESO		Equipos y Herramientas Jnid. Metrado Equipo Kg CO2 / hm K					Mano	de Obra		Parcial	
PROCESO	Unid.				Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											1
						-			HC Prom.	24.153] ŀ

Agua / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
				•					DARCIAL	0.440

PARCIAL **0.149** kg CO2 / m3

03.01.02 TARRAJEO EN CIELO RASO

/ UND: M2

Areana Fina / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Selección y Acarreo	hm	0.10	Herramientas manuales	0.00	0.00	hh	0.10	1.03	0.103	0.103
Extracción de cantera	hm	0.25	Herramientas manuales	0.00	0.00	hh	0.25	1.03	0.258	0.258
							•		PARCIAL	0.361

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	1. 1			Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	-						•	•	HC Prom.	24.153	kg

3 Agua / und: m3

PROCESO	Equipos y Herramientas				Mano	de Obra		Parcial			
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.149	kg C0

03.02.01 CONTRAPISO DE 2" DE CONCRETO MEZCLA 1:5 / UND: M2

Arena Gruesa / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de Cantera	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Zarandeo	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Carguío	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
	-	-				-	•		HC Prom,	0.279

2 Cemento Portland Tipo I (42kg) / und: bol

PROCESO		Equipos y Herramientas					Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
	-								HC Prom.	24.153

02 / bol

3 Agua / und: m3

PROCESO		Equipos y Herramientas					Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
	•	•				•	•		PARCIAL	0.149	kg CO2

03.02.02 PISO DE CEMENTO PULIDO E=2" MEZCLA 1:4 / UND: M2

Arena Gruesa / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de Cantera	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Zarandeo	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
Carguío	hm	0.005	Cargador Frontal	19.57	0.09	hh	0.00	1.03	0.000	0.093
					·					
•									HC Brom	0.270

HC Prom. 0.279 kg CO2 / m3

Piedra Chancada de 1/2" / und: m3

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Extracción de cantera	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Carga a la Tolva de Almacenamiento	hm	0.005	Cargador Frontal	19.57	0.10	hh	0.00	1.03	0.000	0.098
Chancado	hm	0.02	Primaria, Cónica y Fajas	163.57	3.60	hh	0.00	1.03	0.000	3.598
Zarandeo	hm	0.02	Zaranda vibratoria	40.89	0.90	hh	0.00	1.03	0.000	0.900
	•	•				•			HC Prom.	4.694

Cemento Portland Tipo I (42kg) / und: bol

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
FROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
									HC Prom.	24.153

Agua / und: m3

PROCESO		Equipos y Herramientas					Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.149	kg (

03.03.01 PINTURA EN MUROS INTERIORES / UND: M2

Pintura Latex Supermate / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
		•				•	•	•	PARCIAL	0.000	kg C

Imprimante / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2

0.000 kg CO2 / gal PARCIAL

03.03.02 PINTURA EN CIELO RASO

/ UND: M2

Pintura Latex Supermate / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	1
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											1
	•	-				-			PARCIAL	0.000	kg

2 Imprimante / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
										l
									DADCIAL	0.000

PARCIAL 0.000 kg CO2 / gal

03.04.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

Clavos / und: kg

PROCESO			Equipos y Herramientas	1			Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029
									HC Prom.	0.074

2 Madera Cedro / und: p2

PROCESO			Equipos y Herramientas			Mano	de Obra		Parcial	1	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
]
									HC Prom.	0.558	kg C

3 Bisagra de Fierro de 2" / und: par

PROCESO			Equipos y Herramientas			Mano	de Obra		Parcial		
	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									PARCIAL	0.000	kg C

4 Barniz Marino / und: gal

PROCESO			Equipos y Herramientas		Mano	de Obra		Parcial	1		
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
											1
		•						•	PARCIAL	0.000	1

03.04.02 PUERTAS INTERIORES

/ UND: UND

Clavos / und: kg

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Adelgazamiento del alambron	hm	0.002	Maquina Trefiladora	22.49	0.04	hh	0.00	1.03	0.000	0.045
Definir la cabeza, punto y longitud	hm	0.013	Maquina cortadora	2.25	0.03	hh	0.00	1.03	0.000	0.029

HC Prom. 0.074 kg CO2 / kg

2 Madera Cedro / und: p2

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
									HC Prom.	0.558	kg CO2

3 Bisagra de Fierro de 2" / und: par

PROCESO	Equipos y Herramientas Mano de Ol									Parcial
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
								•		

PARCIAL 0.000 kg CO2 / par

4 Barniz Marino / und: gal

PROCESO			Equipos y Herramientas				Mano	de Obra		Parcial	
PROCESO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
]
						-		-	PARCIAL	0.000	k

HUELLA DEL CARBONO POR TRANSPORTE DE INSUMOS

Emisiones de CO2 por proceso de transporte por cantidad unitaria del material:

Material	Und	Cant.	Tipo de Vehiculo	Lugar de Producción /explotación	Proveedor (Lima) (km)	Lugar de compra (Huaral) (km)	Lugar de Compra (Aucallama) (km)	Distancia Parcial 1 (Km)	Consumo Parcial 1 de Combustile (gln)	Emisión Parcial 1 de CO2 (kg)	Tipo de Vehiculo	Lugar de Destino (Obra) (km)	Distancia Parcial 2 (Km)	Consumo Parcial 2 de Combustile (gln)	Emisión Parcial 2 de CO2 (kg)	Emisión unitaria de CO2 (kg/und)
Alambre negro recocido N° 8	kg	20.38	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,191.16	Camioneta	15.60	15.60	624.00	5,266.82	4.39
Alambre negro recocido N° 16	kg	28.86	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,191.16	Camioneta	15.60	15.60	624.00	5,266.82	4.39
Acero Corrugado fy= 4200 kg/cm2	kg	1515.63	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,191.16	Camioneta	15.60	15.60	624.00	5,266.82	4.39
Clavos para madera con cabeza 3/4"	kg	25.04	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,191.16	Camioneta	15.60	15.60	624.00	5,266.82	4.39
Clavos para madera con cabeza 1/2"	kg	3.25	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,191.16	Camioneta	15.60	15.60	624.00	5,266.82	4.39
Piedra Grande de 8"	m3	9.32	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Volquete	3.50	3.50	28.00	273.92	18.26
Piedra Chancada de 1/2"	m3	10.99	*	Chancay	0.00	0.00	0.00	0.00	-	-	Volquete	10.00	10.00	80.00	782.63	52.18
Arena Fina	m3	4.01	*	La Candelaria	0.00	0.00	0.00	0.00	-	-	Volquete	4.00	4.00	32.00	313.05	20.87
Arena Gruesa	m3	13.20	*	Chancay	0.00	0.00	0.00	0.00	-	-	Volquete	10.00	10.00	80.00	782.63	52.18
Hormigón	m3	21.27	*	La Candelaria	0.00	0.00	0.00	0.00	-	-	Volquete	4.00	4.00	32.00	313.05	20.87
Cemento Portland Tipo I (42kg)	bol	293.42	Trailer	Atocongo	31.20	75.10	0.00	106.30	850.40	8,319.38	Trailer	15.60	15.60	124.80	1,220.91	14.69
Cal Hidratada bolsa 25kg	bol	1.32	Trailer	Puno	1296.60	75.10	0.00	1371.70	10,973.60	107,353.67	Camioneta	15.60	15.60	624.00	5,266.82	185.02
Ladrillo k.k. 18 huecos 9x12.5x23 cm	und	4614.39	Trailer	Lima	0.00	73.50	0.00	73.50	588.00	5,752.35	Trailer	15.60	15.60	124.80	1,220.91	0.68
Ladrillo p/techo de 15x30x30 cm	und	452.19	Trailer	Lima	0.00	73.50	0.00	73.50	588.00	5,752.35	Trailer	15.60	15.60	124.80	1,220.91	1.92
Madera Tornillo inc. corte p/enconf	p2	507.51	Trailer	Amazonía	780.00	75.10	0.00	855.10	6,840.80	66,922.88	Trailer	15.60	15.60	124.80	1,220.91	2.54
Madera Cedro	p2	108.93	Trailer	Amazonía	780.00	75.10	0.00	855.10	6,840.80	66,922.88	Trailer	15.60	15.60	124.80	1,220.91	4.74
Bisagra de Fierro de 2"	par	15.00	Trailer	Pisco	234.00	75.10	0.00	309.10	2,472.80	24,191.16	Camioneta	15.60	15.60	624.00	5,266.82	4.39
Pintura Latex Supermate	gal	9.07	Trailer	Lima	0.00	73.50	0.00	73.50	588.00	5,752.35	Camioneta	15.60	15.60	624.00	5,266.82	19.34
Imprimante	gal	29.47	Trailer	Lima	0.00	73.50	0.00	73.50	588.00	5,752.35	Camioneta	15.60	15.60	624.00	5,266.82	21.20
Barniz Marino	gal	1.30	Trailer	Lima	0.00	75.10	0.00	75.10	600.80	5,877.57	Camioneta	15.60	15.60	624.00	5,266.82	12.66
Agua	m3	8.68	*	Aucallama	0.00	0.00	0.00	0.00	-	-	Camión	0.30	0.30	7.50	73.37	16.23

HUELLA DEL CARBONO DURANTE LA EJECUCIÓN DE OBRA

01.01 LIMPIEZA DE TERRENO MANUAL / UND: M2

RECURSO		Equipos y Herramientas					Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Peón	hm	0.00		0.00	0.00	hh	0.0320	1.03	0.033	0.033	
	•							•	PARCIAL	0.033	kg CO2 / m2

01.02 TRAZO Y REPLANTEO INICIAL / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario Topógrafo	hm	0		0.00	0.00	hh	0.0533	1.03	0.055	0.055	
Peón	hm	0		0.00	0.00	hh	0.0533	1.03	0.055	0.055	
									PARCIAL	0.110	kg CO2 /

02.01.01 EXCAVACION MANUAL DE ZANJA PARA CIMIENTO/ UND: M3

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Peón	hm	0.00		0.00	0.00	hh	3.3333	1.03	3.433	3.433	1
									PARCIAL	3.433	kg CC

02.01.02 ACARREO DE MATERIAL EXCEDENTE MANUAL / UND: M3

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Peón	hm	0.00		0.00	0.00	hh	2.000	1.03	2.060	2.060	
							-		PARCIAL	2.060	kg CO2

02.02.01 CONCRETO C:H = 1:10 + 30% P.G. PARA CIMIENTO CORRIDO / UND: M3

RECURSO		Equ	ipos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916
Peón	hm	0		0.00	0.00	hh	2.6667	1.03	2.747	2.747
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916
Mezcladora	hm	0.8889	Mezcladora	6.03	5.36	hh	0.00	1.03	0.000	5.357
		•	•				•		HC Prom.	9.935

kg CO2 / m3

02.03.01 ACERO EN SOBRECIMIENTO

/ UND: KG

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028	1
Oficial	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028]
							-		PARCIAL	0.055	kg C

02.03.02 ENCOFRADO Y DESENCOFRADO DE SOBRECIMIENTO / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687	
Oficial	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687	
							-		PARCIAL	1.373	kg CO2

02.03.03 CONCRETO C:H=1:8 + 25% P.M PARA SOBRECIMIENTO / UND: M2

RECURSO		Equi	ipos y Herram	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	1.3333	1.03	1.373	1.373
Oficial	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687
Peón	hm	0		0.00	0.00	hh	5.3333	1.03	5.493	5.493
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687
Mezcladora	hm	0.6667	Mezcladora	6.03	4.02	hh	0.00	1.03	0.000	4.018

HC Prom. 12.258 kg CO2 / m2

02.04.01 MURO CON LADRILLO 0.12X0.24M

/ UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	0.8421	1.03	0.867	0.867	1
Peón	hm	0		0.00	0.00	hh	0.4211	1.03	0.434	0.434	1
	-					-	-		PARCIAL	1.301	kg

02.05.01 ACERO DE REFUERZO fy=4,200 kg/cm2 EN COLUMNAS / UND: KG

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028	
Oficial	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028	
							-		PARCIAL	0.055	kg C

02.05.02 ENCOFRADO Y DESENCOFRADO EN COLUMNAS

/ UND: M2

RECURSO	Equipos y Herramientas						Mano de Obra				
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824	
Oficial	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824	
								-	PARCIAL	1.648	kç

02.05.03 CONCRETO EN COLUMNAS f'c=175 kg/cm2 / UND: M3

RECURSO		Equ	ipos y Herran	nientas				Parcial		
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	1.6000	1.03	1.648	1.648
Oficial	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824
Peón	hm	0		0.00	0.00	hh	4.8000	1.03	4.944	4.944
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824
Vibrador de Concreto 4HP 2.4"	hm	0.8000	Vibrador	3.35	2.68	hh	0.00	1.03	0.000	2.681
Mezcladora	hm	0.8000	Mezcladora	6.03	4.82	hh	0.00	1.03	0.000	4.821
	-	-	-				-		HC Prom.	15.742

02.06.01 ACERO DE REFUERZO fy=4,200 kg/cm2 EN VIGAS / UND: KG

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028
Oficial	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028
									PARCIAL	0.055

kg CO2 / kg

02.06.02 ENCOFRADO Y DESENCOFRADO EN VIGAS / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916
Oficial	hm	0		0.00	0.00	hh	0.8889	1.03	0.916	0.916
									PARCIAL	1.831

kg CO2 / m2

02.06.03 CONCRETO f'c=210 kg/cm2 EN VIGAS / UND: M3

RECURSO		Equ	ipos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	1.6000	1.03	1.648	1.648	
Oficial	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824	1
Peón	hm	0		0.00	0.00	hh	4.8000	1.03	4.944	4.944	1
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824	1
Vibrador de Concreto 4HP 2.4"	hm	0.8000	Vibrador	3.35	2.68	hh	0.00	1.03	0.000	2.681	1
Mezcladora	hm	0.8000	Mezcladora	6.03	4.82	hh	0.00	1.03	0.000	4.821	
	-	-	•			-	-		HC Prom.	15.742	kg

02.07.01 ACERO DE REFUERZO fy=4,200 kg/cm2 EN LOSA ALIGERADA / UND: KG

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
RECURSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028
Oficial	hm	0		0.00	0.00	hh	0.0267	1.03	0.028	0.028
									PARCIAL	0.055

02.07.02 ENCOFRADO Y DESENCOFRADO EN LOSA ALIGERADA / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.5333	1.03	0.549	0.549
Oficial	hm	0		0.00	0.00	hh	0.5333	1.03	0.549	0.549
									PARCIAL	1.099

kg CO2 / m2

02.07.03 LADRILLO HUECO DE ARCILLA 15X30X30 CM

/ UND: UND

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.0050	1.03	0.005	0.005
Oficial	hm	0		0.00	0.00	hh	0.0050	1.03	0.005	0.005
Peón	hm	0		0.00	0.00	hh	0.0100	1.03	0.010	0.010
	•	•				-	•	-	PARCIAL	0.021

kg CO2 / und

02.07.04 CONCRETO f'c=210 kg/cm2 EN LOSA ALIGERADA / UND: M3

RECURSO		Equ	ipos y Herran	nientas			Mano	de Obra		Parcial
KECOKSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	1.2800	1.03	1.318	1.318
Oficial	hm	0		0.00	0.00	hh	0.6400	1.03	0.659	0.659
Peón	hm	0		0.00	0.00	hh	3.8400	1.03	3.955	3.955
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.6400	1.03	0.659	0.659
Vibrador de Concreto 4HP 2.4"	hm	0.6400	Vibrador	3.35	2.14	hh	0.00	1.03	0.000	2.145
Mezcladora	hm	0.6400	Mezcladora	6.03	3.86	hh	0.00	1.03	0.000	3.857
									HC Prom.	12.593

03.01.01 TARRAJEO EN MUROS

/ UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.6667	1.03	0.687	0.687
Peón	hm	0		0.00	0.00	hh	0.3333	1.03	0.343	0.343
									PARCIAL	1 030

kg CO2 / m2

03.01.02 TARRAJEO EN CIELO RASO / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.8000	1.03	0.824	0.824	
Peón	hm	0		0.00	0.00	hh	0.4000	1.03	0.412	0.412	
	-		-			-	-		PARCIAL	1.236	kg CO2 / m2

03.02.01 CONTRAPISO DE 2" DE CONCRETO MEZCLA 1:5 / UND: M2

RECURSO		Equi	ipos y Herran	nientas			Mano	de Obra		Parcial	Ì
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	1
Operario	hm	0		0.00	0.00	hh	0.1600	1.03	0.165	0.165	
Oficial	hm	0		0.00	0.00	hh	0.0800	1.03	0.082	0.082	1
Peón	hm	0		0.00	0.00	hh	0.3200	1.03	0.330	0.330	1
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.0800	1.03	0.082	0.082	
Mezcladora	hm	0.08	Mezcladora	6.03	0.48	hh	0.00	1.03	0.000	0.482	1
·	•								HC Prom.	1.141	k

03.02.02 PISO DE CEMENTO PULIDO E=2" MEZCLA 1:4 / UND: M2

RECURSO		Equ	ipos y Herram	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	0.3200	1.03	0.330	0.330
Oficial	hm	0		0.00	0.00	hh	0.1600	1.03	0.165	0.165
Peón	hm	0		0.00	0.00	hh	0.6400	1.03	0.659	0.659
Operador de Equipo Liviano	hm	0		0.00	0.00	hh	0.1600	1.03	0.165	0.165
Mezcladora	hm	0.16	Mezcladora	6.03	0.96	hh	0.00	1.03	0.000	0.964
		•	•			-	•	•	HC Prom.	2.283

3 kg CO2 / m2

03.03.01 PINTURA EN MUROS / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Unid. Metrado Equipo hm 0			Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.2424	1.03	0.250	0.250	
Peón	hm	0		0.00	0.00	hh	0.1212	1.03	0.125	0.125	
							•		PARCIAL	0.375	kg CO2

03.03.02 PINTURA EN CIELO RASO / UND: M2

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	0.2424	1.03	0.250	0.250	
Peón	hm	0		0.00	0.00	hh	0.1212	1.03	0.125	0.125	1
						-			PARCIAL	0.375	kg CO2 / m2

03.04.01 PUERTA PRINCIPAL DE 1.00 X 2.20M / UND: UND

RECURSO		Equi	ipos y Herran	nientas			Mano	de Obra		Parcial
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120
Peón	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120
	•						•		PARCIAL	8 240

kg CO2 / und

03.04.02 PUERTAS INTERIORES / UND: UND

RECURSO		Equi	pos y Herran	nientas			Mano	de Obra		Parcial	
RECORSO	Unid.	Metrado	Equipo	Kg CO2 / hm	Kg CO2	Unid	Metrado	Kg CO2 / hh	Kg CO2	Kg CO2	
Operario	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120	
Peón	hm	0		0.00	0.00	hh	4.0000	1.03	4.120	4.120	1
		-				-	-	-	PARCIAL	8.240	kg CO2 /