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ABSTRACT

We focus in this thesis, on splitting methods which be applied to special optimization

or inclusion problems considering its related inclusion problems with an appropri-

ated Lagrangian map.

In a general setting for solving a monotone inclusion problem and obtain split-

ting algorithms, we develop a generalized proximal point and construct a related

map with similar contraction properties as the resolvent map. Our general setting

includes popular splitting algorithms.

Also, we show decomposition techniques in order to solve the multi-block version

of our model problems, finding adequate formulations of the original problem and

then apply a particular algorithm version of our general scheme.

Finally, we apply the splitting method to a large-scale energy production plan-

ning problem.
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Introduction

Decomposition techniques have been widely used in Mathematical Programming

and Variational Analysis to cope mainly with the large-scale models issued from

Decision Systems with many variables and constraints, but also to manage hetero-

geneous models including discrete choices, uncertainties or even mix of conflictual

criteria. The recent explosion in size and complexity of datasets and the increased

availability of computational resources has led to what is sometimes called the big

data era. The large dimension of these data sets and the often parallel, distributed,

or decentralized computational structures used for storing and handling the data, set

new requirements on the optimization algorithms that solve these problems. Much

effort has gone into developing algorithms that scale favorably with problem dimen-

sion and that can exploit structure in the problem as well as the computational

environment.

Splitting methods for convex optimization or monotone variational analysis are

commonly referred to address the construction of decomposition techniques based

on regularization and duality. Indeed, many hard problems can be expressed under

the form of a minimization of a sum of terms where each term is given by the compo-

sition of a convex function with a linear operator. The main advantage of splitting

methods results thus from the fact that they can yield very efficient optimization

schemes according to which a solution of the original problem is iteratively computed

through solving a sequence of easier subproblems, each one involving only one of

the terms constituting the objective function. These algorithms can also handle

both differentiable and non smooth terms, the former by use of gradient operators

(yielding explicit forward steps) and the latter by use of proximal operators (yielding

implicit backward steps), thus giving rise to efficient first-order algorithms.

Since the pioneer works of Martinet [35], Glowinski-Marocco [24], Gabay [22]

and Rockafellar [45], many algorithms have been studied for different models. A

cornerstone was Lions and Mercier’s paper in 1979 [31] about the Douglas-Rachford’s
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family of splitting methods applied to the following inclusion :

Find x ∈ X such that 0 ∈ S(x) + T (x) (Vs)

where S and T are maximal monotone operators (typically subdifferential operators

of convex functions) on a Hilbert space X.

Back to the motone inclusion problem, i.e. to find x ∈ X such that 0 ∈ T (x)

where T is maximal monotone, the proximal point method (PPM) constructs the

mapping JTλ = (I + λT )−1 for λ > 0, the resolvent of T with known contractive

properties, and transforms the above inclusion into an equivalent fixed-point equa-

tion, i.e. x = JTλ (x). (PPM) is thus defined by the following fixed-point iteration

:

xt+1 = JTλ (xt)

which corresponds, when T = ∂f , the subdifferential of a convex function f , to the

following subproblem :

xt+1 = argmin x f(x) +
1

2λ
‖x− xt‖2

That so-called implicit backward step leads to the celebrated Augmented Lagrangian

algorithm when f is the dual function associated to the Lagrangian Relaxation of

a constrained concave maximization problem with many potential applications (see

for instance [28]).

In general the maximality assumption on T is restrictive, consider for instance

the inclusion problem corresponding to the sum of two operators, i.e. inclusion (V).

The sum S + T is not necessarily maximal monotone and also its resolvent doesn’t

necessarily maintain its separability structure. Fortunately Lions and Mercier [31],

solve that disadvantage considering an appropriate operator called after ”Douglas-

Rachford” operator (cf. [17], defined by

Gλ = I − JTλ + JSλ [2JTλ − I]

having splitting properties and whose fixed points are closely related with the so-

lution points of problem (V ). Moreover, the maximality assumptions on T and S,

ensure that Gλ maintains the contractive properties of the single resolvent and the

fullness of its domain.

When T = ∂f and S = ∂g, unlike the resolvent map, Gλ is not in general the

subdifferential of a function [19], so we need to continue working with monotone

operators even in optimization problems in order to obtain splitting methods for

optimization problems.
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The Douglas–Rachford method leads us to consider in Chapter 2 and 4 the follow-

ing methodology: given an inclusion problem with separable structure, we construct

an appropriated average map with full domain having splitting properties and then

apply the fixed point method to this new map.

Gabay [22] noticed that the Douglas-Rachford operator is behind the popular Al-

ternate Direction Method of Multipliers (ADMM), considering the dual variational

problem associated with the composite model

Minimize f(x) + g(Ax)

where f : IRn 7→ IR and g : IRm 7→ IR are proper lower semi-continuous (lsc, for

short) convex functions and A a given (m× n) matrix. The ADMM is an iterative

method that consider two sub problems associated with f and g separately at each

iteration.

Algorithm (ADMM)
xk+1 = argminx f(x) + σ

2
‖Ax− zk + σ−1yk‖2

zk+1 = argminz g(z) + σ
2
‖Axk − z + σ−1yk‖2

yk+1 = yk + σ(Axk+1 − zk+1)

where σ is a positive real parameter.

Recently Shefi and Teboulle [49] have presented a unified scheme algorithm for

solving the last composite model based on the introduction of additional proximal

terms like in Rockafellar’s Proximal Method of Multipliers [44], this algorithm in-

cludes a version of a Proximal ADMM and other known algorithms like Chambolle

and Pock [10].

In Chapter 2, we consider an extended model problem coming from an energy

production planning problem

min
(x,y)

[f(x) + g(y) : Ax+By = 0] (P )

where f and g are again proper lsc convex functions, and A and B are matrices of

order m× n and m× p, respectively. Its saddle-point formulation in the variational

setting is

Find (x̄, z̄, ȳ) ∈ IRn × IRp × IRm such that 0 ∈ L(x̄, z̄, ȳ) (VL)

where L is the maximal monotone map defined on IRn × IRp × IRm as

L(x, z, y) :=

 ∂f(x)

∂g(z)

0

+

 0 0 At

0 0 Bt

−A −B 0


 x

z

y

 .
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For solving (VL), a generalized resolvent of L, defined as JLP = (L + P )−1P , is in-

troduced, where P is a symmetric positive semidefinite matrix with special block

structure in order to split JLP into a separable structure leaving f and g separated.

Then we consider the relaxed fixed-point method applying to JLP , where after chang-

ing the variables we obtain the following generalized algorithm

Generalized Splitting Scheme (GSS)

z̃k+1 ∈ argmin

{
g(z) +

1

2
‖Bz +M−1uk + Axk‖2

M +
1

2
‖z − zk‖2

V2

}
(1)

vk+ 1
2 = γAxk − (γ − 1)Bzk +M−1uk (2)

x̃k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+ vk+ 1

2 + 2γBz̃k+1‖2
M +

1

2
‖x− xk‖2

V1

}
(3)

ũk+1 = uk +M(γAxk + (1− γ)Ax̃k+1 +Bz̃k+1) (4)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk). (5)

where the special cases γ = 0 and γ = 1, include the Shefi-Teboulle algorithm.

To guarantee the convergence of GSS and find an average map behind it, we

developed a general setting in order to solve the inclusion problem: finding x ∈ IRn

such that 0 ∈ T (x), studying the generalized proximal point associated to the

generalized resolvent JTP = (T +P )−1P , where P is a symmetric positive semidefinite

matrix, and then defining the map GTS as

GTS = S(T + StS)−1St (6)

where S is a matrix satisfying StS = P . By the monotonicity of T , GTS is 1
2
−average.

In the special case of T = L, we find conditions on the matrix S in order to GL
S

has full domain, which is used in the proof of the convergence of GSS. Also, consid-

ering S = S3 (defined in Remark 2.4.3), we recover the Douglas-Rachford operator

coinciding with λ
1
2GL

S3
λ−

1
2 , showing that its fundamental properties of splitability

and 1
2
−average can be deduced from our generalized setting corresponding the La-

grangian map. Also, the general setting help us to find the ergodic and nonergodic

rate of convergence of GSS.

Finally, in the last section of Chapter 2, for fi : IRni → IR (i = 1, · · · , q) and

g : IRm → IR proper lsc convex functions, Ai and B matrices of order p × ni and

4



p×m, respectively, the following S-Model problem is presented:

inf
(x1,··· , xq , z)

q∑
i=1

fi(xi) + g(z)

s.t

q∑
i=1

Aixi +Bz = 0.

This model is a multiblock generalization of problem (P ). In [18] the authors propose

the so called Separable Augmented Lagrangian Algorithm (SALA) in order to solve

the S-Model problem by considering g = 0 and B = 0. At each iteration k, the

algorithm considers a set of subproblems (one subproblem fo each i = 1, · · · , q)
defined by

argminx fi(x) +
1

2
‖Aix− zki +M−1yk‖2

M (7)

where M is a parameter matrix considered symmetric positive definite, solved in

parallel processing.

As a generalization, they also consider different parameter matrices depending

on each iteration.

Reformulating the S-Model problem in order to apply GSS, we get a new algo-

rithm called “Proximal Multi-block Algorithm (PMA)” where like SALA it

considers a set of problems at each iteration k:

argmin x

{
fi(x) +

1

2
‖Aix− z̃k+1

i +M−1
i ỹk+1

c ‖2
Mi

+
1

2
‖x− xki ‖2

Qi

}
, i = 1, · · · , q,

where Mi is symmetric positive definite and Qi symmetric positive semi-definite.

Matrix Qi allow us to deal with the not injective case on Ai and choosing it appro-

priately, each sub problem becomes on proximal step of fi.

In Chapter 3, we show some decomposition techniques, which consist in find-

ing an adequate formulation of the original problem in order to apply GSS with

particular parameter matrices V1, V2 and M , and consequently find new splitting

algorithms.

For every i ∈ {1, · · · , q}, let fi : IRn → IR be proper lsc convex. We consider

the separable model with coupling variable (SMCV) defined as

min
x

q∑
i=1

fi(x) (S)

For this problem we recover algorithm PDA and the algorithm given in [34] by con-

sidering a particular parameter. We also show the relationship between these two

5



algorithms.

Adding linear constraints in the model, we obtain the separable model with

coupling constraint (SMCC) where Ai, i = 1, . . . , q are (p× ni) matrices

min

q∑
i=1

fi(xi)

s.t

q∑
i=1

Aixi = 0

Notice that this problem can be seen as a S-Model problem and, since SMCC can

be formulated as SMCV, we apply the results obtained for SMCV to SMCC, getting

directly two algorithms which can also be recovered from PMA considering special

formulation for SMCC.

The precedent algorithms found in this chapter, consider, for each iteration, the

proximal step of all family {fi}i=1,··· ,q or separate the family into two sub-family, one

consisting of {fi}i=1,··· ,q−1 and the other consisting of fq. Then, the proximal step of

all {fi}i=1,··· ,q−1 are found in parallel processing and then, after linear combination

of all these values, the proximal step of fq is found.

We show that after special reformulations, we get two splitting algorithms, one

for SMCV and the other for SMCC. Each algorithm separates the problem into two

sub-block problems, considering the proximal step to one sub-block and then (at a

linear combination of the preceding values) the proximal step is found for the other

sub-block, both in parallel processing.

In the last part of this chapter, we consider the following multi-block optimization

problem

min
x=(x1,··· , xq)

q∑
i=1

fi(xi) + g(

q∑
i=1

Aixi) + s(x) (Psc)

where for i ∈ {1, ..., q}, fi : IRni → IR , g : IRp → IR and s : IRn 7→ IR (n =
∑q

i=1 ni)

are proper lsc convex functions, and Ai are matrices of order p× ni.

This special structure is deduced from the formulation over the Euclidean space

of the following stochastic optimization model problem with finite scenarios Ξ

min
X∈L

[
Eξ

T∑
t=1

gt(Xt(ξ), ξ) : s.t X ∈ N and
T∑
t=1

Bξ
tXt(ξ) = 0, ∀ξ ∈ Ξ

]
(SP )

where L is the linear space of all mapping X from Ξ to IRn := IRn1 × · · · × IRnT ,

and N the nonanticipativity subspace of L, and for ξ ∈ Ξ and t = 1, · · · , T , gt(·, ξ)

6



is a proper lsc convex function and Bξ
t an mξ × nt matrix.

As a consequence of obtaining a splitting algorithm for (Psc), we get a splitting

algorithm for problem (SP ).

Coming back to problem (Vs), if one these maps (say T ) is co-coercive, then

we can apply the Forward-Backward method or Backward-Forward method, which

combine the Backward step of S with the Forward step of T . Notice that the For-

ward step only needs the value of single value map T unlike the Backward step needs

the value of the resolvent map of S which in general is not easy.

D. Davis and W. Yin [16] generalized problem (Vs) considering the sum of three

maps:

Find x such that 0 ∈ S(x) + T (x) + C(x)

where S and T are again maximal monotone (with T not necessarily single value) and

C a co-coercive operator with full domain. They combine separately the Backward

steps on S and T , with the Forward step on C, defining the following map

G := I − JTλ + JSλ (2JTλ − I − λC(JTλ ))

which clearly extends the Douglas-Rachford operator Gλ and the operators corre-

sponding to the Forward-Backward and Backward-Forward methods.

In Chapter 4, we consider the more general composite monotone inclusion:

Find x such that 0 ∈ S(x) + AtT (Ax) + C(x) (V ar)

where S : IRn −→−→ IRn and T : IRm −→−→ IRm are maximal monotone maps,

C : IRn → IRn a β−co-coercive with full domain and A an m× n matrix.

For the particular case C = 0, the map G coincides with the Douglas-Rachford

operator which in turn is equal to λ
1
2GL

S3
λ−

1
2 as mentioned just after (6).

For the general cases (C not necessarily equal to zero) and assuming A injective,

we get from (6) considering T = L̂ an alternative Lagrangian map and S = D̂ a

special matrix, a map GL̂
D̂

which extends the Davis-Yin operator G (coinciding it

with λ
1
2GL̂

D̂
λ−

1
2 when A = I) and maintaining similar properties as G, for instance

under mild assumptions, GL̂
D̂

is an average map with full domain.

Then using the generalized resolvent J L̂
D̂

, we get a new splitting algorithm which

converges to a saddle-point of Lagrangian map associated with primal problem (V ar)

because, as mentioned previously, GL̂
D̂

is an average map with full domain.

7



For the general case, where A is not necessarily injective, problem (V ar) is

reformulated as

0 ∈ S(x) +
(
AtM

1
2 V

1
2

)[ M− 1
2TM− 1

2

0

](
M

1
2Ax

V
1
2x

)
+ C(x) (V ar1)

where M and V are two symmetric matrices of order m×m and n×n, respectively,

with V positive semi-definite and M positive definite.

In this reformulation the involved matrix

(
M

1
2A

V
1
2

)
is injective if and only if

AtMA+V is invertible. So, assuming that condition and applying the former split-

ting algorithm (for the injective case on A) to (V ar1), we get a splitting algorithm

for problem (V ar) in the general setting, which is termed “Generalized splitting

algorithm for three operators (GSA3O)”:

(GSA3O)

z̃k+1 = (T +M)−1(yk +MAxk) (8)

ỹk+1 = yk +MAxk −Mz̃k+1 (9)

rk+1 = C((V + AtMA)−1(V xk + AtMz̃k+1)) (10)

x̃k+1 = (S + V + AtMA)−1
(
V xk + AtMz̃k+1 − Atỹk+1 − rk+1

)
(11)

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk). (12)

The structure of problem (V ar) is related to the variational formulation of the

minimization of separable convex functions:

Minimize f(x) + g(Ax) + h(x) (13)

where f : IRn 7→ ĪR and g : IRm 7→ ĪR are proper lower semi-continuous convex func-

tions, h : IRn 7→ IR is convex and ( 1
β
)-Lipschitz-differentiable, and A an m×n matrix.

Condat [13] presents two types of algorithms for solving (13) that we call CA1

and CA2, for simplicity, we have considered with fixed relaxation parameter ρ > 0

and without error term.

Algorithm (CA1)
x̃k+1 = (τ∂f + In×n)−1(xk − τ∇h(xk)− τAtyk)

ỹk+1 = (σ∂g∗ + Im×m)−1(yk + σA(2x̃k+1 − xk))

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk)

8



and the other one switch the roles of primal and dual variables:

Algorithm (CA2)
ỹk+1 = (σ∂g∗ + Im×m)−1(yk + σAxk)

x̃k+1 = (τ∂f + In×n)−1(xk − τ∇h(xk)− τAt(2ỹk+1 − yk))

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk)

The main difference between these algorithms is the order of action of the proximal

steps. In the same manner, we present two versions of each algorithm proposed in

this chapter.

From our general setting, choosing special parameter matrices and different La-

grangian maps, we get different variants of algorithms CA1 and CA2. From the

variant of CA1 we recover in particular the recently algorithm proposed by Yang.

Using the same techniques given in Chapter 2, we show the ergodic and noner-

godic rates of convergence of the algorithms found in this chapter.

The last model considered in this chapter is concerned with the more general

S−Model problem defined as:

inf
x=(x1,··· , xq), z

q∑
i=1

fi(xi) + h(x) + g(z)

s.t

q∑
i=1

Aixi −Bz = 0

where for i = 1, · · · , q, fi : IRni → IR and g : IRm → IR are proper lsc convex

functions, h : IRn 7→ IR is convex and ( 1
β
)-Lipschitz-differentiable (n =

∑q
i=1 ni),

and Ai and B are matrices of order p× ni and p×m, respectively.

Rewriting this last problem as a variational inclusion problem having similar

structure as problem (V ar), we apply GSA3O getting a new algorithm called “Sep-

arable Primal -Dual Variant (SPDV)” which is a generalization of PMA ap-

pearing in Chapter 2.

Finally, in Chapter 5, we apply the splitting algorithm developed in the previous

chapters in order to solve a model of long-term energy pricing problem. Rewriting

this model as problem (P ), we apply algorithm GSS, getting three types of algo-

rithms. Finally, we give some ideas on how to deal with the considered model in the

stochastic case where many ’scenarios’ with given probabilities need to be included,

thus minimizing the total expected cost on the horizon.
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Chapter 1

Notations, preliminaries and basic

results on convex optimization

problems

1.1 Notations and basic definitions

Throughout this thesis, we will use the following notations on convex optimization

and variational inequality problems . Most of the theoretical material can be found

in [43, 4].

We will denote by IR the set of extended real numbers IR∪{±∞} = [−∞,+∞].

For a given subset C ⊂ IRn we will denote by cl (C), int (C) and ri (C), the closure,

the interior and the relative interior of C, respectively.

For a given set C ⊂ IRn, the orthogonal subspace to C, denoted by C⊥, is the

linear subspace

C⊥ = {x∗ ∈ IRn : 〈x∗, x〉 = 0 for all x ∈ C}.

For a closed convex set C ⊂ IRn, we denote by Proj C(x) the projection of x ∈ IRn

onto C which consists of all ȳ ∈ C satisfying

‖x− ȳ‖ ≤ ‖x− y‖ for all y ∈ C

where ‖ · ‖ denotes a norm of IRn. Of course, if C 6= ∅, then ȳ satisfying this

inequality is unique if the considered norm is Euclidean (unless otherwise stated, we

will use in all the Thesis this type of norm). For F ⊂ IRn, the set Proj C(F ) denotes

the collection of all Proj C(x) for x ∈ F .

For a closed convex set C ⊂ IRn, the normal cone of C at a given point x ∈ C is

the set denoted by NC(x) and defined as

NC(x) = {x∗ ∈ IRn : 〈x∗, y − x〉 ≤ 0 for all y ∈ C},
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assuming NC(x) = ∅ if x /∈ C.

A function f : IRn → IR is said to be convex, if its epigraph

epi (f) := {(x, λ) ∈ IRn × IR : f(x) ≤ λ}

is convex; and concave, if −f is convex. The function f is said to be lower semi-

continuous (lsc, for short) at a given point x̄ if for every λ ∈ IR verifying λ < f(x̄)

there exists an open set V containing x̄ such that λ < f(x) for all x ∈ V . This

function is lsc if it is lsc at every point of IRn. Of course, f is lsc if epi (f) is closed

in IRn × IR.

Assuming f convex, it is said to be proper if f(x) > −∞ for all x ∈ IRn and its

domain defined as

dom (f) := {x ∈ IRn : f(x) < +∞} = Proj IRn(epi (f))

is nonempty. Of course, dom (f) is convex if f is convex.

A function f : IRn → IR is said to be strongly convex (with modulus α > 0)

or α−strongly convex if for all x, y ∈ IRn and all t ∈ [0, 1], one has

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)− α

2
t(1− t)‖x− y‖2.

The function f is said to be β−Lipschitz differentiable function (with β > 0)

if it is differentiable whose gradient is β−Lipschitz (ie, Lipschitz continuous with

constant β). In that case, f is of real value on the whole IRn.

Associated to a function f : IRn → IR, its Fenchel-conjugate is the function

f ∗ defined on IRn as

f ∗(x∗) = sup
x∈IRn

[〈x∗, x〉 − f(x)]

and its biconjugate is the function f ∗∗ which is the conjugate of f ∗, ie

f ∗∗(x) = sup
x∗∈IRn

[〈x, x∗〉 − f ∗(x∗)].

It is clear that f ∗ and f ∗∗ are convex and lsc, and f ∗∗ is the greatest lsc convex

function bounded from above by f . Moreover, f ∗∗ and f coincide if f is proper lsc

convex.

The subdifferential of f at a point x ∈ IRn is the set

∂f(x) := {x∗ ∈ IRn : f(x) + 〈x∗, y − x〉 ≤ f(y) for all y ∈ IRn}

or equivalently

∂f(x) = {x∗ ∈ IRn : f(x) + f ∗(x∗) ≤ 〈x∗, x〉}.
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Clearly ∂f(x) = ∅ if x /∈ dom (f) or if f is not lsc at x. In general, ∂f(x) is convex

and closed, maybe empty. It is nonempty and bounded on int (dom (f)).

Another very important property of subdifferential is its monotonicity. For all

(x, x∗), (y, y∗) in the graph of ∂f one has

〈x∗ − y∗, x− y〉 ≥ 0.

In general, a multivalued map (or simply, map) Γ : IRn −→−→ IRn is said to be

monotone if for all (x, x∗), (y, y∗) in the graph of Γ [is the set consisting of all pair

(z, z∗) ∈ IRn × IRn such that z∗ ∈ Γ(z)] one has

〈x∗ − y∗, x− y〉 ≥ 0.

It is clear that if Γ is monotone, then its inverse map Γ−1 defined by Γ−1(x∗) = {x :

x∗ ∈ Γ(x)}, is monotone. So, the monotonicity property can be seen as a property

on the graph instead on the map itself.

The map Γ is said to be maximal monotone if for any monotone map Σ :

IRn −→−→ IRn satisfying Γ(x) ⊂ Σ(x) for all x ∈ IRn, one has Γ = Σ. It also follows

that Γ is maximal monotone if and only if Γ−1 is maximal monotone.

A very important characterization of the maximality in the monotone sense is

given by Minty’s theorem [36]. It say that a monotone map Γ : IRn −→−→ IRn is

maximal monotone if and only if the inverse map (I + Γ)−1, which is single-valued

and with full domain. Here I denotes the identity map from IRn into itself.

Analogous to the strongly convexity, a map Γ : IRn −→−→ IRn is said to be strongly

monotone (with modulus α > 0) or α−strongly monotone if Γ − ρI is monotone,

i.e. for all (x, x∗), (y, y∗) in the graph of Γ, it holds

〈x∗ − y∗, x− y〉 ≥ α‖x− y‖2.

One deduces that f : IRn → IR is strongly convex if and only if its subdifferential

∂f is strongly monotone.

The inverse of a strongly monotone map (with modulus α) is clearly single value

and α−1−Lipschitz.

A map Γ is said to be co-coercive with constant β ( or shortly β−co-coercive) if

its inverse Γ−1 is β−strongly monotone. That is, for all (x, x∗), (y, y∗) in the graph

of Γ, it holds

〈x∗ − y∗, x− y〉 ≥ β‖x∗ − y∗‖2.

One deduce that if Γ is co-coercive with constant β then Γ is β−1−Lipschitz.

When β ≥ 1, the map Γ is nonexpansive. In general, a map Γ is said to be

nonexpansive if it is Lipschitz with constant ≤ 1, i.e. if there exists γ ≤ 1 such

that for all (x, x∗), (y, y∗) in the graph of Γ, it holds that

‖x∗ − y∗‖ ≤ γ‖x− y‖.
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Another important property used in many parts of the thesis is the α−average

of a map. A map Γ is said to be α−average if

Γ = (1− α)I + αR

where R is a nonexpansive map. A 2−1−average map is also called firmly nonex-

pansive. For example, the resolvent of a maximal monotone map Γ, JΓ := (I+Γ)−1

is firmly nonexpansive (and defined on the whole space).

We finish this section by introducing the following notations that we will use for

instance in Chapters 2, 3 and 4. For arbitrary maps T1 and T2 and vectors x and y

of appropriated dimensions, we denote[
T1

T2

](
x

y

)
=

(
T1(x)

T2(y)

)
.

Analogously, for two given functions g1 and g2, we denote

(g1, g2)(z1, z2) = g1(z1) + g2(z2)

for all z1 and z2 of appropriated dimensions.

1.2 The duality scheme

An optimization problem in the mathematical context can be set as

α := inf [f(x) : x ∈ IRn] (P )

where f : IRn → IR is a given function. Problem (P ) is commonly called primal

problem.

In order to develop the duality scheme following Rockafellar’s scheme [43], we

introduce a duality space IRp and a perturbation function ϕ : IRn×IRp → IR satisfying

ϕ(x, 0) = f(x) for all x ∈ IRn. Then the associated perturbed primal problems is

defined as

h(u) := inf [ϕ(x, u) : x ∈ IRn]. (Pu)

If ϕ is convex on IRn × IRp then h is convex on IRp; but if ϕ is lsc it does not neces-

sarily imply that h is lsc.

It is clear that h(0) = α, then the duality arises from the idea to find in other

way h(0), for this we use the Fenchel-conjugate function h∗ of h,

h∗(u∗) := sup
u

[〈u∗, u〉 − h(u)] = ϕ∗(0, u∗).
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The biconjugate of h is

h∗∗(u) = sup
u∗

[〈u, u∗〉 − ϕ∗(0, u∗)].

The biconjugate, under some conditions (see [43]), allows us to recover the initial

function. In general,

β := h∗∗(0) ≤ h(0) = α.

Then the dual problem is defined as

β = h∗∗(0) = sup [−ϕ∗(0, u∗) : u∗ ∈ IRp]. (D)

The primal and dual problem are also related through the Lagrangian function

l : IRn × IRp → IR defined as:

l(x, u∗) := inf [ϕ(x, u)− 〈u∗, u〉 : u ∈ IRp].

So, if ϕ is convex proper lsc, the primal and dual problem are respectively:

inf
x

sup
u∗

l(x, u∗) and sup
u∗

inf
x
l(x, u∗).

In order to obtain optimal solution of primal and dual problems without duality

gap (α = β), the Saddle Point problem arises which consist in finding (x̄, ȳ) ∈
IRn × IRp such that

inf
x
l(x, ȳ) = l(x̄, ȳ) = sup

y
l(x̄, y).

Under some regularity condition on ϕ, the primal and dual problems can be

respectively formulated as inclusion problems called optimality condition

Find x ∈ IRn such that 0 ∈ πt1∂ϕ(π1x) (Popc)

and

Find y ∈ IRp such that 0 ∈ πt2∂ϕ∗(π2y) (Dopc)

where

π1 =

(
In×n
0p×p

)
and π2 =

(
0n×n
Ip×p

)
.

The Saddle Point problem can also be formulated as

Find (x, y) ∈ IRn × IRp such that (0, 0) ∈ (∂xl)× (∂y[−l])(x, y) (Lopc)

which, in terms of ∂ϕ and assuming ϕ proper lsc convex, it holds that

(z, y) ∈ ∂ϕ(x, u) if only if z ∈ ∂xl(x, y), u ∈ ∂y[−l](x, y).
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Since ∂ϕ∗ = (∂ϕ)−1, then problems (PV ), (DV ) and (LV ) are equivalent to each

other in the sense that the mapping intervening in each inclusion problem is the

composite of ∂ϕ or ∂ϕ−1 with π1 or π2 (and its respective transpose matrix).

Following this construction, [42] (see also [39]) has extended this duality scheme

to general variational or inclusion problems which can be set as

Find x ∈ IRn such that 0 ∈ S(x). (V )

A perturbation map associated to problem (V ) is a map F satisfying πt1Fπ1 = S.

Then the corresponding dual and lagrangian problems are respectively formulated

as

Find y ∈ IRp such that 0 ∈ πt2F−1(π2y) (DV )

and

Find (x, y) ∈ IRn × IRp such that (0, 0) ∈ L(x, y) (LV )

where

(z, y) ∈ F (x, u) if and only if (z, u) ∈ L(x, y).

Coming back to the duality scheme for an optimization problem, we reformulate

the duality and its respective Lagrangian problem through their optimality condi-

tions for some particular classes of optimization problems.

1.2.1 The composite model

A composite model is an optimization problem that can be set as

Minimize f(x) + g(Ax) (Pc)

where f : IRn → IR and g : IRp → IR are proper lsc convex functions, and A a p×n
matrix. We consider the following perturbation function ϕ : IRn × IRp → IR defined

by

ϕ(z, u) = f(x) + g(Ax+ u)

and its corresponding dual problem

Minimize f ∗(−Aty) + g∗(y) (Dc)

and its Lagrangian function l : IRn × IRp → IR defined by

l(x, y) := f(x)− g∗(y) + 〈y, Ax〉.

Under some regularity conditions, the optimal conditions of (Pc) and (Dc) are

respectively

Find x ∈ IRn such that 0 ∈ ∂f(x) + At∂g(Ax) (Pcv)
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and

Find x ∈ IRn such that 0 ∈ −A∂f ∗(−Aty) + ∂g∗(y). (Dcv)

The corresponding Saddle point problem can also be formulated as

Find (x, y) ∈ IRn × IRp such that 0 ∈

(
∂f(x)

∂g∗(y)

)
+

(
0 At

−A 0

)(
x

y

)
. (Lcv)

1.2.2 The separable case

We now consider a more general optimization problem regarding to the previous one

min
(x,z)

[f(x) + g(z) : Ax+Bz = 0] (Psc)

where f : IRn → IR and g : IRp → IR are again proper lsc convex functions, and A

and B are matrices of order m× n and m× p, respectively.

It is clear that problem (Psc) includes the composite model (Pc) by considering

B = −Ip×p. Conversely, problem (Psc) can be written as the following composite

model:

min
(x,z)

f(x) + g(z) + δ{0}

(
A B

)( x

z

)
.

So, the dual problem is

min
y

f ∗(−Aty) + g∗(−Bty) (Dsc)

and the lagrangian function lsc : IRn × IRp × IRm → IR is

lsc(x, z, y) = f(x) + g(z) + 〈y, Ax+Bz〉.

The optimality conditions of (Psc) and (Dsc) and the corresponding saddle point

problem are respectively:

Find (x, z) ∈ IRn× IRp st

(
0

0

)
∈

(
∂f(x)

∂g(z)

)
+

(
At

Bt

)
N{0}(Ax+Bz) (Pscv)

and

Find x ∈ IRn such that 0 ∈ −A∂f ∗(−Aty)−B∂g∗(−Bty) (Dscv)

and

Find (x̄, z̄, ȳ) ∈ IRn × IRp × IRm such that 0 ∈ L(x̄, z̄, ȳ) (Lscv)

where L is the maximal monotone map defined on IRn × IRp × IRm as

L(x, z, y) = (∂x,zlsc)×(∂y[−lsc]) =

 ∂f(x)

∂g(z)

0

+

 0 0 At

0 0 Bt

−A −B 0


 x

z

y

 . (1.1)
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1.2.3 The optimization problem with linear subspace con-

straints

We note that problem (Psc) (in particular problem (Pc)) can be formulated as

min
z∈V

ψ(z) (Psbp)

where ψ : IRr → IR is a proper lsc convex function and V a linear subspace of IRr.

We present now two equivalent formulations of (Psbp) like the primal and dual

problems by expressing V as Image space and as well as kernel space of suitable

matrices.

It is clear that (Psbp) can be formulated as the composite model:

min ψ(z) + δV (z) (P̂sbp)

whose associated dual problem is

min ψ∗(z∗) + δV ⊥(z∗) (D̂sbp)

which can be formulated as the following optimization problem with linear subspace

constraints

min
z∗∈V ⊥

ψ∗(z∗). (Dsbp)

Let K and W be matrices of order p× r and r × n, respectively, such that V =

ker(K) = range (W ). Then (Psbp) and (Dsbp) can also be formulated respectively as

the following optimization problems termed primal projection problem

min
x∈IRn

ψ ◦W (x) (P V
sbp)

and dual projection problem

min
u∗∈IRp

ψ∗ ◦Kt(u∗). (DV
sbp)

We observe that problems (Psbp) and (P V
sbp) are defined on different linear spaces

and, if W is injective, then problem (P V
sbp) is defined on a linear space of dimension

dim(V ) which is less or equal than r, that is, the dimension of the linear space where

problem (Psbp) is defined. Similarly, problems (Dsbp) and (DV
sbp) are also defined on

different linear spaces.

As a special case, problems (Pc) and (Dc) can also be formulated respectively

as the primal projection and dual projection problems regarding the following opti-

mization problem

min
(x,y)∈V

ψ(x, y) (Op)

17



where ψ(x, y) := f(x) + g(y) and

V = range

(
In×n
A

)
= ker

(
−A Ip×p

)
.

In the separable case, problem (Dsc) can also be formulated as the dual projection

problem related to (Op) by considering V = ker
(
−A −B

)
. Then, by setting R

and D matrices of order n× q and p× q, respectively, such that

V = range

(
R

D

)
we obtain two related problems, the primal projection problem

min
z∈IRq

f(Rz) + g(Dz)

and the optimization problem with linear subspace constrains

min
(x∗,y∗)

[f ∗(x∗) + g∗(z∗) : Rtx∗ +Dtz∗ = 0].

Remark 1.2.1 Considering IRr = IRn × IRp, the linear subspace V coincides with

IRn × {0p} and the matrices W and K are exactly the projection matrices π1 and

πt2, respectively, defined in problems (Popc) and (Dopc). So,

(ψ ◦W )(x) = ψ(x, 0) and (ψ∗ ◦Kt)(u∗) = ψ∗(0, u∗) for all x ∈ IRn and u∗ ∈ IRp

and hence problems (P V
sbp) and (P V

sbp) are respectively the primal and dual optimiza-

tion problems associated to perturbation function ϕ = ψ described in the duality

scheme.

1.3 The gradient and proximal point methods

The gradient and proximal point methods are apparently the most popular and basic

methods to solve an optimization problem or (more generally) an inclusion problem.

Let h : IRr 7→ IR be an ( 1
β
)-Lipschitz-differentiable convex function. In order to

find a minimizer of h, the gradient method generates, from a given initial point

x0 ∈ IRr, the iterative points defined by:

xk+1 = xk − α∇h(xk).

The corresponding sequence converges to a minimizer of h if α ∈ ]0, 2
β
[ .

Regarding the proximal point algorithm in order to find a minimizer of a proper

lsc convex function f : IRr 7→ IR, this algorithm constructs the so called Moreau
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envelope function, an alternative Lipschitz-differentiable convex function having

the same minimizers as function f . Then the proximal point algorithm can be

recovered from the gradient algorithm applied to the Moreau envelope function.

Given λ > 0, the Moreau envelope function of f is the function fλ defined

as

fλ(z) := min
x

[
f(x) +

1

2λ
‖x− z‖2

]
. (∗)

One deduce immediately that

• inf f = inf fλ and argmin f = argmin fλ; and

• fλ is differentiable on IRr and its gradient is

∇fλ(z) =
1

λ
(I − (λ∂f + I)−1)(z)

which is ( 1
λ
)-Lipschitz. The set value (λ∂f +I)−1(z) is singleton whose unique

element is the minimizer of problem (∗).

So, given an initial point z0 ∈ IRr, the proximal point method generates a se-

quence defined by

zk+1 = zk − ρλ∇fλ(zk) = (1− ρ)zk + ρ(λ∂f + I)−1(zk).

This sequence converges to a minimizer of f if ρ ∈ ]0, 2[ .

1.3.1 Application to the dual projection problem

The dual projection problem (DV
sbp),

min
u∗∈IRp

ψ∗ ◦Kt(u∗)

represents, as we saw, the general formulation of all dual problems described in

Subsection 1.2.3. In order to apply the gradient method to this problem, we check

under what condition the dual objective function ψ∗ ◦Kt is Lipschitz-differentiable

on the whole IRp. This is the object of the next proposition.

Proposition 1.3.1 With the same notations as before, suppose that ψ is proper

lsc α-strongly convex and K a nonzero matrix, then ψ∗ ◦ Kt is differentiable with

gradient K∇ψ∗Kt which is ‖K‖
2

α
−Lipschitz with full domain.

Proof. From the assumptions, ∂ψ∗ is univalued with full domain. Then the

subdiferential of ψ∗◦Kt is K∇φ∗Kt having full domain. On other hand, for arbitrary

points x, y ∈ IRp, we have that

〈K∇ψ∗Ktx−K∇ψ∗Kty, x− y〉 = 〈∇ψ∗Ktx−∇ψ∗Kty,Ktx−Kty〉

19



and since ∂ψ = (∇ψ∗)−1 is α-strongly monotone, we get

〈K∇ψ∗Ktx−K∇ψ∗Kty, x− y〉 ≥ α‖∇ψ∗Ktx−∇ψ∗Kty‖2

which implies, if K is nonzero, that

〈K∇ψ∗Ktx−K∇ψ∗Kty, x− y〉 ≥ α

‖K‖2
‖K∇ψ∗Ktx−K∇ψ∗Kty‖2.

The Lipschitz constant of K∇ψ∗Kt is deduced applying the Cauchy-Schwarz’s in-

equality.

Regarding the proximal point algorithm applied to before dual problem, for a

given r × r symmetric positive definite matrix Q, we consider a little more general

Moreau envelope function of f denoted by fQ, defined as

fQ(z) := min
x

[
f(x) +

1

2
‖x− z‖2

Q

]
. (env)

Similarly to the classical Moreau envelope function fλ, it holds that

• inf f = inf fQ and argmin f = argmin fQ;

• fQ is differentiable on IRr and its gradient is

∇fQ(z) = Q[I − (∂f +Q)−1Q](z).

The set [(∂f + Q)−1Q](z) is singleton whose element is the optimal solution

of the minimization problem (env);

• Q−1/2∇fQQ−1/2 is 1−Lipschitz on IRr.

The next proposition shows another way to express the Moreau envelope function

for the objective dual function.

Proposition 1.3.2 Let ψ : IRr → IR be a proper lsc convex function, K a p × r
matrix satisfying Im (Kt)∩ ri dom (ψ∗) 6= ∅. For a p× p positive definite matrix M

one has

(ψ∗ ◦Kt)M−1(u∗) = − inf
x

[
ψ(x) +

1

2
‖Kx‖2

M − 〈u,Kx〉
]

for all u ∈ IRp. (∗∗)

Furthermore, denoting zu := (∂(ψ∗ ◦Kt) +M−1)−1M−1u the minimizer of problem

(env) with f = (ψ∗◦Kt) and Q = M−1, and xu = (∂ψ+KtMK)−1Ktu a minimizer

of problem (∗∗), then

zu = u−MKxu.
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Proof. From assumptions, ψ∗ ◦Kt is proper lsc convex and then

(ψ∗ ◦Kt)M−1 = [(ψ∗ ◦Kt)M−1 ]∗∗ = [(ψ∗ ◦Kt)∗ +
1

2
‖ · ‖2

M ]∗.

Also, (ψ∗ ◦Kt)∗(v) = infx [ψ(x) : Kx = v] and hence

(ψ∗ ◦Kt)M−1(u) = − inf
v

inf
x

[ψ(x) +
1

2
‖v‖2

M − 〈v, u〉 : Kx = v]

which implies that

(ψ∗ ◦Kt)M−1(u) = − inf
x

[
ψ(x) +

1

2
‖Kx‖2

M − 〈u,Kx〉
]
.

The relationship between the optimal solutions follows from this expression.

On the other hand, since both optimization problems

min
x
f(x) and min

w
fQ(w)

have same optimal values and same minimizers, then under the regularization con-

dition given in Proposition 1.3.2, both optimization problems

min
y∈IRp

ψ∗ ◦Kt(y) and min
v∈IRp

(
−min

x

[
ψ(x) +

1

2
‖Kx‖2

M − 〈v,Kx〉
])

have also same optimal values and same minimizers.

The problem on the right is termed Augmented Dual Problem [47] and its

objective function is nothing else than
(
ψ + 1

2
‖K(·)‖2

M

)∗ ◦ Kt and hence the aug-

mented dual problem is the dual projection problem corresponding to problem (Psbp)

with objective function ψ + 1
2
‖K(·)‖2

M .

In particular, for a given perturbation function ϕ of f in the duality scheme, the

objective function of the dual problem corresponding to ϕ(x, u) + 1
2
‖u‖2 (another

perturbation function of f), results to be Lipschitz-differentiable if ϕ and π2 satisfy

the conditions given in Proposition 1.3.2 considering ψ = ϕ and K = π2.

1.3.2 The resolvent map corresponding to the Saddle Point

Problem

Rockafellar [44], considered the proximal point method to a saddle point problem

corresponding to a convex optimization problem with inequality constraints, getting

the so called “proximal multiplier algorithm”.

Corresponding to the Saddle Point Problem (Lscv) defined in Section 1.2.2 and

associated to the diagonal block symmetric positive definite matrix

P :=

 W1 0 0

0 W2 0

0 0 M
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where W1, W2 and M are symmetric positive definite matrices of order n× n, p× p
and m×m, respectively, we introduce the following resolvent map defined by

(L+ P )−1P.

Since L is maximal monotone, Minty’s theorem guarantees that (L+P )−1P has full

domain and its value at each point (x, z, y) ∈ IRn × IRp × IRm is a singleton whose

value is

(L+ P )−1P (x, z, y) =

{
(η, ν,M−1(My + Aη +Bν) :

0 ∈ H1
(x,z)(η, ν)

0 ∈ H2
(x,z)(η, ν)

}

where

H1
(x,z)(η, ν) := ∂f(η) +W1(η − x) + Aty + AtM−1(Aη +Bν)

and

H2
(x,z)(η, ν) := ∂g(ν) +W2(ν − z) +Bty +BtM−1(Aη +Bν).

It is noteworthy that the involved subproblems cannot directly be splitted because of

the coupling on their variables η and ν is present and hence the solvability of such

subproblems becomes very difficult in practice. In Chapter 2 we present another

matrix P avoiding the aforementioned coupling.

1.4 The α−average maps

The gradient and proximal point method have common structure in the sense that

both methods can be formulated as a relaxed fixed point method [13] for a suitable

mapping having the following property defined now.

Definition 1 An operator T is α−average if α ∈ ]0, 1[ and there exists a nonex-

pansive map N such that T = (1− α)I + αN .

For instance, the α−average maps involved in the gradient and proximal point

methods are respectively β∇h and I−(λ∂f+I)−1. Baillon-Haddad’s theorem shows

that if h is convex and ( 1
β
)-Lipschitz-differentiable, then β∇h is 1

2
−average having

full domain. On the other hand, Rockafellar [43] (Proposition 12.11) shows that if

f is proper lsc convex, then (λ∂f + I)−1 and hence I − (λ∂f + I)−1 are 1
2
−average

having full domain.

Another important example of α−average map is given through a maximal mono-

tone map T : IRn −→−→ IRn and a n× n positive definite matrix M . It is not difficult

to show that the resolvent map

M
1
2 (T +M)−1M

1
2
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which is related with the multidimensional scaling proximal point method [29] is
1
2
−average having (due Minty) full domain.

In general, an α−average map T satisfies the following important inequality

‖T x− T y‖2 ≤ ‖x− y‖2 − 1− α
α
‖(I − T )x− (I − T )y‖2

which immediately implies the convergence of the relaxed fixed point algorithm as

mentioned in next proposition.

Proposition 1.4.1 Let T : IRn → IRn be an α−average map with full domain and

ρ ∈ ]0, α−1[ . Assume that the fixed point set of T is nonempty. For a given initial

point x0 ∈ IRn consider the following iteration points

xn+1 = ρT (xn) + (1− ρ)xn.

Then the corresponding sequence {xn} converges to a fixed point of T .

This important convergence result makes it possible to deal with general mono-

tone inclusion problems by transforming them into fixed point equations correspond-

ing to α− average maps. Moreover, for practical treatments is also important that

the corresponding α− average map possesses splitting property.

We give two examples of α−average maps corresponding to inclusion problems

for the sum of two and three monotones maps. The first one is due the Douglas &

Rachford scheme discussed in [31] and the second one is due to Davis & Yin [16].

1.4.1 Douglas-Rachford map

Consider the following inclusion problem for the sum of two maps

0 ∈ S(x) + T (x)

where S and T are two maximal monotone maps from IRn into itself. It is well known

that S + T is not necessarily maximal monotone which is a condition to apply the

proximal point method. Another disadvantage of this method is the absence of

splitting structure of its corresponding resolvent map.

Lions and Mercier [31], reformulate the above inclusion into a fixed-point equa-

tion with respect to an appropriated operator called after “Douglas-Rachford” op-

erator, defined by

Gλ = I − JTλ + JSλ [2JTλ − I], (1.2)

where JTλ = (λT + I)−1 and JSλ = (λS + I)−1 are the resolvent maps of T and S,

respectively. This map is 1
2
−average and, unlike the resolvent map of S + T , it has

splitting property and having full domain.
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This map is behind the popular ADMM algorithm as noticed Eckstein [21]. On

the other hand, D. O’Connor and L. Vandenberghe [40] have recently shown that

Chambolle-Pock algorithm [10] is also constructed using this map by considering S

and T with special structures in the inclusion problem.

1.4.2 Davis-Yin map

We consider the sum of three maps

0 ∈ S(x) + T (x) + C(x) (V2)

where S and T are two maximal monotone maps and C a β−co-coercive function

with full domain, all from IRn into itself.

It is possible to apply the Douglas-Rachford method considering the sum of S

(or T ) and C as a unique map, but in general this procedure does not split S and

C (or T and C).

Davis and Yin [16] have recently considered the following map

G := I − JTλ + JSλ [2JTλ − I − λC(JTλ )] (1.3)

having splitting property and defined everywhere of IRn. It is also α−average for

α = 2β
4β−λ , if λ ∈ ]0, 2β[ .

1.4.3 Convergence Study

We recall that xn = O(yn) means that there exists a positive C such that for all n

sufficiently large

‖xn‖ ≤ C‖yn‖.

And xn = o(yn) means that ‖xn‖‖yn‖ converges to 0.

Also we say that xn converge linearly to x∗ if there exists a positive C < 1 such that

for all n sufficiently large

‖xn+1 − x∗‖ ≤ C‖xn − x∗‖.

For example, H. Brezis et P.L. Lions [?] showed that given a monotone map

T with at least one zero then the fixed point residual (FPR) ‖JTλ (xn) − (xn)‖ is

O( 1√
k+1

). D. Davis and W. Yin [15] improve this result for any average map with

has at least a fixed point getting that its FPR is o( 1√
k+1

) and the ergodic FPR is

O( 1
k
).

24



Rockafellar [45] showed that if we consider T a strongly monotone map (or more

generally T −1 Lipschitz continuous at 0) and T has at least one zero then the prox-

imal point applied to T generates a linearly convergent sequence.

Lions and Mercier [31] showed that if T in 4.2 is strongly monotone and Lips-

chitz then the Douglas-Rachford method generates a linearly convergent sequence.

Recently Giselsson [23] gave a best upper bound rate as Lions-Mercier and showed

linear convergence under other regularity conditions over S or T , proving that in

these cases the map Gλ is contractive. In the convex case D. Davis and W. Yin [15]

showed the ergodic and nonergodic convergence rate of the feasibility and objective

function error related to the relaxed Douglas-Rachford method.

D. Davis and W. Yin in [16] showed that under regularity assumptions the map

G is a contractive map from which the linear convergence is deduced.

In this thesis, we will not focus on the special cases when linear convergence

is attained, rather keeping the analysis on global or point wise convergence in the

ergodic or non ergodic sense.
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Chapter 2

A unified splitting algorithm for

composite monotone inclusions

Operator splitting methods have been recently concerned with inclusions problems

based on composite operators made of the sum of two monotone operators, one of

them associated with a linear transformation. We analyze here a general and new

splitting method which indeed splits both operator proximal steps, and avoiding

costly numerical algebra on the linear operator. The family of algorithms induced

by our generalized setting includes known methods like Chambolle-Pock primal-dual

algorithm and Shefi-Teboulle Proximal Alternate Direction method of multipliers.

The study of the ergodic and non ergodic convergence rates show similar rates with

the classical Douglas-Rachford splitting scheme. We end with an application to

a multi-block convex optimization model which leads to a generalized Separable

Augmented Lagrangian algorithm1.

2.1 Introduction

Composite models involving sums and compositions of linear and monotone oper-

ators are very common and still challenging problems like in constrained separable

convex optimization or composite variational inequalities. We will consider here

composite monotone inclusions of the form (X and Y are Hilbert spaces) :

0 ∈ S(x) + A∗T (Ax) (2.1)

where S : X 7→ X and T : Y 7→ Y are maximal monotone operators and A : X 7→ Y

is a linear transformation (associated with its adjoint operator A∗, which will be

denoted by At when dealing with finite-dimensional spaces).

1This chapter corresponds to the paper [41] submitted to Journal of Convex Analysis
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Most existing monotone operator splitting methods can deal with composite

models, for example the Douglas-Rachford family (see [31]) and its special de-

composition versions, the Alternate Direction Method of Multipliers (ADMM) (see

[22, 21]) and the Partial Inverse or Proximal Decomposition Algorithm (PDA) (see

[51, 34, 42]).

Lions and Mercier [31] analyzed the Douglas-Rachford’s method (including the

limiting case of Peaceman-Rachford splitting, PRS) for the case of the sum of two

maximal monotone operators (S + T ), alternating between proximal steps applied

to each operator separately. Gabay [22] analyzed the case S + A∗TA where A

is an injective linear transformation (and A∗ its adjoint), yielding the celebrated

Alternative Direction Method of Multipliers (ADMM). Spingarn [50] studied the

case when the operator is the sum of the normal cone of a closed subspace M and

a maximal monotone operator T . Later, Pennanen [42] showed how to reformulate

that model as a monotone inclusion

The first study which explicitly considered an algorithm to solve the composite

inclusion which avoids the use of projection (or proximal) steps on the range of A

was proposed in [9] (an extension of Spingarn’s Partial Inverse to composite models

was proposed too in [1]). The corresponding algorithms solve the dual problem at

the same time, which is defined by :

0 ∈ −AS−1(−A∗y) + T−1(y)

Many applications surge in the minimization of separable convex functions like :

Minimize f(x) + g(Ax) (2.2)

where f : IRn → IR and g : IRm → IR are proper lower semi-continuous convex

functions and A is a given (m × n) matrix. The Dual problem in the sense of

Rockafellar-Fenchel theory is :

Minimize f ∗(−Aty) + g∗(y)

where f ∗ is the Fenchel–conjugate of f .

Recently Chambolle-Pock [10] studied model (2.2) and introduced new splitting

schemes applied to a Lagrangian formulation of the primal minimization problem.

They applied a primal-dual version of (ADMM) to the following saddle-point for-

mulation :

min
x

max
y

f(x)− g∗(y) + 〈Ax, y〉

Observe that we could as well define a Lagrangian operator associated with the

composite inclusion (2.1) :

L̄(x, y) = [S(x) + Aty]× [T−1(y)− Ax] (2.3)
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Chambolle and Pock’s algorithm relies on two Proximal steps on f and g with

an additional extrapolation step (in a similar fashion of Varga’s iterative principle

[53]) as summarized below :
xk+1 = (I + τ∂f)−1(xk − τAtȳk)
yk+1 = (I + σ∂g∗)−1(yk + σAxk+1)

ȳk+1 = yk+1 + θ(yk+1 − yk)

where (I + τ∂f)−1 is the resolvent operator of the subdifferential operator S =

∂f which is known to be defined on the whole space and supposed to be easily

computable in a so-called ’backward’ proximal step as detailed below.

The difference and presumed advantage of that formulation is the symmetry

(considering that x and y can be updated in reverse order) and a potentially de-

composable algorithm which depends on three parameters. Their convergence result

states that we should choose their values such that στ‖A‖2 < 1.

Observe now that (CPA) can be rewritten using Augmented Lagrangian-like

functions by using the Moreau identity (see [37]) :

(I + σ∂g∗)−1(y) + σ(I + σ−1∂g)−1(σ−1y) = y

Resuming the transformed steps into the following iteration:

Algorithm (CPA)
xk+1 = argminx f(x) + 1

2τ
‖x− xk + τAtȳk‖2

zk+1 = argminz g(z) + σ
2
‖z − Axk+1 − σ−1yk‖2

yk+1 = yk + σ(Ax̄k+1 − zk+1)

ȳk+1 = yk+1 + θ(yk+1 − yk)

Chambolle and Pock confirmed the expected rate of convergence in O(1/k) and

even obtain the accelerated rate of O(1/k2) following the FISTA scheme of Beck

and Teboulle [5] (thus reaching Nesterov’s optimal rates in convex programming

[38]).

In a recent survey, Shefi and Teboulle [49] have presented a unified scheme algo-

rithm for solving model (2.2) based on the introduction of additional proximal terms

like in Rockafellar’s Proximal Method of Multipliers [44]. The resulting schemes in-

clude a version of a Proximal (ADMM) and other known algorithms like Chambolle-

Pock’s method (CPA). Indeed, a generic sequential algorithm proposed by Shefi and

Teboulle is the following three steps scheme :

Algorithm (STA)
xk+1 = argminx f(x) + σ

2
‖Ax− zk + σ−1yk‖2 + 1

2
‖x− xk‖2

M1

zk+1 = argminz g(z) + σ
2
‖Axk+1 − z + σ−1yk‖2 + 1

2
‖z − zk‖2

M2

yk+1 = yk + σ(Axk+1 − zk+1)
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where ‖.‖M is the norm induced by a symmetric positive definite matrix M , i.e.

‖x‖2
M = xtMx. Algorithm (STA) makes use of alternate minimization steps on the

Augmented Lagrangian function associated with the coupling subspace Ax− z = 0.

It is noted in [49] that (CPA) with the choice θ = 1 corresponds exactly to (STA)

with M1 = τ−1I − σAtA and M2 = 0 (which implies again that στ‖A‖2 < 1).

Later, Condat [13] extended the model (2.2) and algorithm (CPA) to the case

f = F + h where F : IRn → IR is convex and smooth. He relaxed the restriction on

the parameters allowing στ‖A‖2 = 1 and also includes the Douglas-Rachford family

in the case of A = I (therefore we can say that Chambolle-Pock’s method generalized

Douglas-Rachford’s splitting scheme). Condat showed too that Chambolle-Pock’s

method is the proximal point method applied to the Lagrangian operator associated

with the primal and dual pair of inclusions.

In this chapter we will further extend the algorithms surveyed by Shefi and

Teboulle, in order to solve the following convex optimization problem

min
(x,z)

[f(x) + g(z) : Ax+Bz = 0]. (P )

where f and g are again convex lsc functions and, A and B are two matrices of order

m× n and m× p, respectively. It is clear that this problem includes problem (2.2)

by considering B = −Ip×p.

The primal variational formulation of (P ) is the following

Find (x, z) ∈ IRn × IRp such that

(
0

0

)
∈

(
∂f(x)

∂g(z)

)
+

(
At

Bt

)
N{0}(Ax+Bz)

(2.4)

where NC(a) is the normal cone to set C at point a.

The dual variational formulation of (P ) is the following

Find y ∈ IRm such that 0 ∈ − A(∂f)−1(−Aty)−B(∂g)−1(−Bty) (2.5)

In Section 2.2, we propose a generalized proximal point method (GPPM) which

was developed implicitly by Condat [13], where we consider specific assumptions to

relax the condition of symmetric positive definiteness of the matrix associated with

the resolvent, to authorize matrices which are only symmetric positive semidefinite,

maintaining the properties of convergence of the proximal method.

In Section 2.3, we apply GPPM in order to find a zero of the Lagrangian map

associated with problem (P ), selecting an appropriate symmetric positive semi defi-

nite matrix in order to obtain a Generalized Splitting Scheme (GSS), which includes
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various known algorithms, for instance both types of algorithms studied by Shefi

and Teboulle [49] correspond indeed to particular choices of the parameters in GSS.

In Section 2.4, we define a 1−co-coercive operator GT
P related to GPPM, which

set of fixed points is related to the zeroes of T . When T is the Lagrangian operator

and the matrix P has a special structure as considered in Section 2.3, we show

examples where we can get that operator explicitly, in particular we can recover the

Douglas-Rachford operator.

In Section 2.5, we investigate the rate of converge of the GSS scheme, in the

ergodic and non ergodic sense, analyzing the convergence of the sequences of the

optimal values and the constraints violations associated with problem (P ).

Finally, section 2.6 applies the GSS scheme to some general multi-block convex

optimization problem with a composite structure. We show the relationship with a

separable Augmented Lagrangian algorithm (SALA) introduced in [32].

2.2 A generalized proximal point method

The classical Proximal Point method is used to solve a monotone inclusion

Find x ∈ IRr such that 0 ∈ T (x) (V )

where T : IRr −→−→ IRr is a maximal monotone operator. We denote by sol (V ) the

solution set of problem (V ). It is closed, convex and may be empty. The iteration

exploits the contractive properties of the resolvent operator JTτ = (I + τT )−1 to

define a sequence given by xk+1 = JTτ (xk) which converges weakly to a solution of

(V ) if it is nonempty.

Following former ideas developed by Condat [13] in the proof of the convergence

of a specialized splitting method closely related (CPA), we define the generalized

Proximal Point iteration by substituting the classical resolvent by

JTP := (T + P )−1P (2.6)

where P is an r × r symmetric positive semidefinite matrix.

Since T is monotone, then for any (x, x∗), (x̄, x̄∗) ∈ graph (JTP ), one has

〈x∗ − x̄∗, Px− Px̄〉 ≥ 〈Px∗ − Px̄∗, x∗ − x̄∗〉 ≥ 0. (2.7)

We deduce immediately the following properties:

• T + P and thereby its inverse (T + P )−1 are monotone.
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• R := P + Ir×r −Q is a symmetric positive definite matrix, whenever Q is the

orthogonal projection onto the image of P , which implies in particular that

Q satisfies QP = PQ = P and Q2 = Q.

• JTP = JTPQ, where Q is as above.

As R is symmetric positive definite, it induces an inner product on IRr, 〈u, v〉R :=

〈Ru, v〉 for all u, v ∈ IRr with its corresponding norm ‖u‖R :=
√
〈u, u〉R for all

u ∈ IRr.

Hence, from (2.7), for all x, x̄ ∈ dom (QJTP ) = dom (JTP ),

〈QJTP (x)−QJTP (x̄), x− x̄〉R ≥ ‖QJTP (x)−QJTP (x̄)‖2
R,

which implies that QJTP is 1−co-coercive wrt R on domain of JTP .

We deduce immediately the following relationship between the solution set of

problem (V ) and the fixed points of JTP and QJTP .

Proposition 2.2.1 With the same notations as before, we have

• x ∈ sol (V ) if and only if x is a fixed point of JTP .

• v is a fixed point of QJTP if and only if v = Qx for some x ∈ sol (V )∩JTP (v).

Proof. The first property is directly by definition. The second one follows from

the fact that v ∈ QJTP v if and only if there exists x such that x ∈ JTP (v) satisfying

v = Qx. It follows that x ∈ JTP (v) = JTP (Qx) = JTP (x). Using the first equivalence

we deduce that x belongs to sol (V ).

Concerning the regularity of JTP , we have

• If P is positive definite, then Q = Ir×r and R = P . We deduce that JTP = QJTP
and then JTP is 1−co-coercive wrt P on the whole of its domain.

• If P is not positive definite, then JTP may not be single valued. But if it is

single valued, then it is continuous on the whole of its domain.

We consider now a relaxed version of the generalized proximal iteration. In con-

nection with the resolvent operator JTP and a real positive parameter ρ, we consider

for an arbitrary point x0 ∈ dom JTP , the sequence {xk} defined by

xk+1 ∈ ρJTP (xk) + (1− ρ)xk. (2.8)

Notice that this sequence is well defined whenever

range (ρJTP + (1− ρ)I) ⊆ dom (JTP ).

Concerning the convergence of {xk}, we distinguish the following situations:
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• If P is positive definite, then JTP is 1−co-coercive wrt P (hence single valued)

with full domain which implies that {xk} converges, for ρ ∈ (0, 2), assuming

sol (V ) nonempty. In fact, given x∗ ∈ sol (V ), the convergence follows from

the inequality

‖xk − x∗‖2
P ≥

2− ρ
ρ
‖xk+1 − xk‖2

P + ‖xk+1 − x∗‖2
P .

• In general, since QJTP is 1−co-coercive wrt R, then for ρ ∈ (0, 2) and assuming

that QJTP has closed domain and nonempty fixed point set (which is equiv-

alently to sol (V ) being nonempty), the sequence {Qxk} is convergent. The

convergence of {xk} needs additional assumptions as we show in the following

proposition.

Proposition 2.2.2 Let T : IRr −→−→ IRr be maximal monotone and P be an r × r
positive semidefinite matrix. Assuming JTP single valued (which implies that it is

continuous) with closed domain and sol (V ) not empty. Then, for ρ ∈ (0, 2), the

sequence {xk} converges to some point belonging to sol (V ).

Proof. Since QJTP is 1−co-coercive wrt R, it is single valued on its domain; and

since JTP = JTPQ, then from (2.8) we obtain that

Qxk+1 = ρQJTP (Qxk) + (1− ρ)Qxk. (2.9)

Using again the fact that QJTP is 1−co-coercive wrt R and, by assumptions with

closed domain, ρ ∈ (0, 2) and sol (V ) nonempty, then {Qxk} converges to some point

a, which is a fixed point of QJTP . From Proposition 2.2.1 and the single valuedness

assumption, JTP (a) ∈ sol (V ).

On the other hand, using the triangular inequality in (2.8) we have

‖xk+1 − JTP (a)‖ ≤ ρ‖JTP (Qxk)− JTP (a)‖+ |1− ρ|‖xk − JTP (a)‖.

Since JTP is continuous, the sequence ‖JTP (Qxk)−JTP (a)‖ converges to 0. We deduce

that {xk} converges to JTP (a).

Some examples of specially tailored co-coercive operators will be discussed in

Section 2.4.

2.3 Generalized splitting algorithms

With the convex minimization problem (P ) defined in Section 2.1, we associate its

Lagrangian function defined as

l(x, z, y) = f(x) + g(z) + 〈y, Ax+Bz〉 (2.10)
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and then its saddle-point problem in the variational setting

Find (x̄, z̄, ȳ) ∈ IRn × IRp × IRm such that 0 ∈ L(x̄, z̄, ȳ) (VL)

where L is the maximal monotone map defined on IRn × IRp × IRm as

L(x, z, y) := (∂x,zl)× (∂y[−l]) =

 ∂f(x)

∂g(z)

0

+

 0 0 At

0 0 Bt

−A −B 0


 x

z

y

 . (2.11)

The map L, as the sum of maximal monotone operators and a skew-symmetric

linear operator, satisfies similar inequalities as the subdifferential of a convex-concave

bifunction. These inequalities will be used in order to obtain the rate of convergence

studied in Section 2.5.

Proposition 2.3.1 For any (d, d∗), (d̄, d̄∗) ∈ graph (L), considering d = (x, z, y)

and d̄ = (x̄, z̄, ȳ), it holds

〈d− d̄, d∗〉 ≥ l(x, z, ȳ)− l(x̄, z̄, y) ≥ 〈d− d̄, d̄∗〉.

These inequalities are still verified if we consider (d, d∗) ∈ graph (L) and d̄ ∈
dom (f) × dom (g) × IRm, for the first inequality; and (d̄, d̄∗) ∈ graph (L) and

d ∈ dom (f)× dom (g)× IRm, for the second inequality.

It is well known that, under some regularity conditions, problem (VL) admits a

saddle-point if and only if problem (P ) admits an optimal solution. One instance of

such regularity condition is :

There exist x ∈ ri (dom f) and z ∈ ri (dom g) such that Ax+Bz = 0. (H)

We now apply to problem (VL) the relaxed proximal method described in the

previous section for a specially tailored matrix P in order to provide a separable

structure to the algorithm.

2.3.1 The separable structure on the main step

In this part we describe the main iteration step of the relaxed proximal method

given in (2.8) providing a decomposable structure.

We will choose an appropriate symmetric matrix P in order to split (L+P )−1 or

equivalently JLP = (L+P )−1P , into a separable structure leaving f and g separated.

To that end, given (x̃, z̃, ỹ) ∈ IRn × IRp × IRm, we analyze the solution of the

following inclusion system: Find (x, z, y) such that ∂f(x)

∂g(z)

0

+

 0 0 At

0 0 Bt

−A −B 0


 x

z

y

+

 P11 P t
21 P t

31

P21 P22 P t
32

P31 P32 P33


 x

z

y

 3
 x̃

z̃

ỹ

 .
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We introduce now two parameters α, β ∈ IR, and a positive definite matrix M to

simplify the third row-block of P into P3 = [(1 + α)A (1 + β)B M−1]. So, the

last inclusion can be expressed as

y = Mỹ − αMAx− βMBz (2.12)

and hence, replacing it in the second block-system, this results in

∂g(z) + (2 + β)Bt(Mỹ − αMAx− βMBz) + P21x+ P22z 3 z̃.

So, in order to express this last system eliminating primal variable x, we need to

consider P21 = α(2 + β)BtMA, obtaining

z ∈ (∂g + P22 − β(2 + β)BtMB)−1(z̃ − (2 + β)BtMỹ). (2.13)

Using again (2.12), now in the first block system, we get

∂f(x) + (2 + α)At(Mỹ − αMAx− βMBz) + P11x+ α(2 + β)BtMAz 3 x̃

which is equivalent to

x ∈ (∂f + P11 − α(2 + α)AtMA)−1(x̃− (2 + α)AtMỹ − 2(α− β)AtMBz). (2.14)

Summarizing the previous sequence in order to get a separable structure, we

must first solve system (2.13), then system (2.14) and finally system (2.12). The

corresponding matrix P , of order (r × r) with r = n+ p+m, is then of the form

P :=

 C1 α(2 + β)AtMB (1 + α)At

α(2 + β)BtMA C2 (1 + β)Bt

(1 + α)A (1 + β)B M−1

 (2.15)

where C1(n× n), C2(p× p) are arbitrary symmetric matrices,

From the maximality of ∂f and ∂g, the inclusions in (2.13) and (2.14) are indeed

equalities if the matrices defined as

W1 := C1 − α(2 + α)AtMA and W2 := C2 − β(2 + β)BtMB,

are positive definite. In that case (L + P )−1 is single-valued with full domain and

therefore JLP is continuous with full domain.

It is clear that P is symmetric. It is positive semidefinite (resp. positive definite)

if and only if the matrix

U :=

(
C1 − (1 + α)2AtMA (α− β − 1)AtMB

(α− β − 1)BtMA C2 − (1 + β)2BtMB

)
(2.16)

is positive semidefinite (resp. positive definite).

We now list some conditions in order to get a positive semidefinite matrix U :
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A1 If C1− [(1+α)2 +(α−β−1)2]AtMA and C2− [(1+β)2 +1]BtMB are positive

semidefinite then U is positive semidefinite.

A2 If C1− [(1+α)2 +1]AtMA and C2− [(1+β)2 +(α−β−1)2]BtMB are positive

semidefinite then U is positive semidefinite.

A3 If β ≤ α− 1, and C1− [(1 +α)2 + (α− β− 1)]AtMA and C2− [(1 + β)2 + (α−
β − 1)]BtMB are positive semidefinite then U is positive semidefinite.

A4 If β = α − 1. Then C1 − (1 + α)2AtMA and C2 − α2BtMB are positive

semidefinite if only if U is positive semidefinite.

In order to calculate the sequence in (2.8), we first calculate (x̃k+1, z̃k+1, ỹk+1) =

JLP (xk, zk, yk), which is equal to

(x̃k+1, z̃k+1, ỹk+1) = (L+ P )−1

 C1x
k + α(2 + β)AtMBzk + (1 + α)Atyk

α(2 + β)BtMAxk + C2z
k + (1 + β)Btyk

(1 + α)Axk + (1 + β)Bzk +M−1yk


Then from (2.13), we have that

z̃k+1 = J̄gW2

(
z̃ − (β + 2)BtMAxk

)
(2.17)

where z̃ = C2z
k − (2 + β)(1 + β)BtMBzk − Btyk and J̄gW2

= (∂g + W2)−1 is the

generalized resolvent operator associated with the convex function g.

From (2.14), we have that

x̃k+1 = J̄fW1

(
x̃− 2(α− β)AtMBz̃k+1

)
(2.18)

where x̃ = C1x
k − (2 + α)(1 + α)AtMAxk + (α − 2β − 2)AtMBzk − Atyk and

J̄fW1
= (∂f +W1)−1 is the generalized resolvent operator associated with the convex

function f ; and from (2.12), we have that

ỹk+1 = yk + (1 + α)MAxk + (1 + β)MBzk − αMAx̃k+1 − βMBz̃k+1. (2.19)

The sequence in (2.8) is completed with an extrapolation step for a given ρ ∈
(0, 2):

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk). (2.20)

We obtain the following proposition directly from Proposition 2.2.2.

Proposition 2.3.2 Let ρ ∈ (0, 2). Assume that C1 ∈ IRn×n, C2 ∈ IRp×p and

M ∈ IRm×m are symmetric, with M positive definite; and α, β ∈ IR, such that W1

and W2 are positive definite and satisfying one of conditions (A1)-(A4). If sol (VL)

is nonempty, then for an arbitrary (x0, z0, y0) ∈ IRn+p+m, the sequence (xk, zk, yk)

defined by the sequential update formulas (2.17→ 2.18→ 2.19→ 2.20) converges

to some element of sol (VL).
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We will now further reformulate the iteration to show the alternating steps on

separable Augmented Lagrangian functions. We introduce the parameter γ = α−β
and the matrices defined as

V1 := W1 − AtMA and V2 := W2 −BtMB. (2.21)

The conditions (A1)− (A4) become:

A1’ If V1 − (γ − 1)2AtMA and V2 − BtMB are positive semidefinite then U is

positive semidefinite.

A2’ If V1 − AtMA and V2 − (γ − 1)2BtMB are positive semidefinite then U is

positive semidefinite.

A3’ If γ ≥ 1. Then V1−(γ−1)AtMA and V2−(γ−1)BtMB are positive semidefinite

then U is positive semidefinite.

A4’ If γ = 1. Then V1 and V2 are positive semidefinite if only if U is positive

semidefinite.

We introduce a new primal-dual auxiliary variable uk := yk+(α−γ+1)MAxk+

(1 + β)MBzk, to obtain the following updates :

zk+ 1
2 = V2z

k −Btuk (2.22)

z̃k+1 = JgW2
[zk+ 1

2 −BtMAxk] (2.23)

xk+ 1
2 = V1x

k − γAtMAxk + (γ − 1)AtMBzk − Atuk (2.24)

x̃k+1 = JfW1
[xk+ 1

2 − 2γAtMBz̃k+1] (2.25)

ũk+1 = uk + γMAxk + (1− γ)MAx̃k+1 +MBz̃k+1 (2.26)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk) (2.27)

which is equivalent to the following sequential minimization subproblems :

Generalized Splitting Scheme (GSS)

z̃k+1 ∈ argmin

{
g(z) +

1

2
‖Bz +M−1uk + Axk‖2

M +
1

2
‖z − zk‖2

V2

}
(2.28)

vk+ 1
2 = γAxk − (γ − 1)Bzk +M−1uk (2.29)

x̃k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+ vk+ 1

2 + 2γBz̃k+1‖2
M +

1

2
‖x− xk‖2

V1

}
(2.30)

ũk+1 = uk +M(γAxk + (1− γ)Ax̃k+1 +Bz̃k+1) (2.31)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk). (2.32)

From Proposition 2.3.2, we obtain the proposition of convergence of (GSS)
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Proposition 2.3.3 Let ρ ∈ (0, 2). Assume that V1 ∈ IRn×n, V2 ∈ IRp×p and M ∈
IRm×m are symmetric, with M positive definite such that V1+AtMA and V2+BtMB

are positive definite. Let γ ∈ IR such that one of conditions (A1′)−(A4′) is satisfied.

If sol (VL) is nonempty, then for an arbitrary (x0, z0, u0) ∈ IRn+p+m, the sequence

(xk, zk, uk) in (2.28)-(2.32) converges to some element of sol (VL).

We analyze now the special cases when γ = 0 and γ = 1, which correspond to

the two types of algorithms proposed by Shefi and Teboulle [49].

Case γ = 0

From (A1′), if both matrices V1−AtMA and V2−BtMB are positive semi-definite

then P is a positive semi-definite matrix.

Switching the order (2.28) for (2.30), we get the following algorithm where the

primal updates are performed in parallel:

x̃k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bzk +M−1uk‖2

M +
1

2
‖x− xk‖2

V1

}
(2.33)

z̃k+1 ∈ argmin

{
g(z) +

1

2
‖Axk +Bz +M−1uk‖2

M +
1

2
‖z − zk‖2

V2

}
(2.34)

ũk+1 = uk +M(Ax̃k+1 +Bz̃k+1) (2.35)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk) (2.36)

If B = −Ip×p, M = cIp×p and ρ = 1 , we obtain the algorithm STA type I

proposed by Shefi and Teboulle [49].

Summarizing, from Proposition 2.3.3, we obtain the following proposition of

convergence of the sequence defined by (2.33)-(2.36).

Proposition 2.3.4 Let ρ ∈ (0, 2). Assume that V1 ∈ IRn×n, V2 ∈ IRp×p and M ∈
IRm×m are symmetric, with M positive definite, such that V1+AtMA and V2+BtMB

are positive definite and V1 − AtMA and V2 − BtMB are positive semi-definite. If

sol (VL) is nonempty, then for an arbitrary (x0, z0, u0) ∈ IRn+p+m, the sequence

(xk, zk, uk) in (2.33)-(2.36) converges to some element of sol (VL).

37



Case γ = 1

From (A4′), it holds that V1 and V2 are positive semi-definite if only if P is a positive

semi-definite matrix. In this case GSS becomes :

z̃k+1 ∈ argmin

{
g(z) +

1

2
‖Axk +Bz +M−1uk‖2

M +
1

2
‖z − zk‖2

V2

}
(2.37)

ũk+1 = uk +M(Axk +Bz̃k+1) (2.38)

x̃k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bz̃k+1 +M−1ũk+1‖2

M +
1

2
‖x− xk‖2

V1

}
(2.39)

(xk+1, zk+1, uk+1) = ρ(x̃k+1, z̃k+1, ũk+1) + (1− ρ)(xk, zk, uk) (2.40)

If B = −Ip×p, M = τIp×p, V2 = 0 and V1 = σ−1In×n − τAtTA such that

1 ≥ στ‖A‖2, then we obtain the over relaxed algorithm proposed by Chambolle-

Pock [10].

Considering ρ = 1 and defining, x̄k := xk, z̄k := zk+1 and ūk := uk+1, then

substituting in (2.37)-(2.39) and switching the order, we get the following algorithm

x̄k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bz̄k +M−1ūk‖2

M +
1

2
‖x− x̄k‖2

V1

}
(2.41)

z̄k+1 ∈ argmin

{
g(z) +

1

2
‖Ax̄k+1 +Bz +M−1ūk‖2

M +
1

2
‖z − z̄k‖2

V2

}
(2.42)

ūk+1 = ūk +M(Ax̄k+1 +Bz̄k+1) (2.43)

If B = −Ip×p and M = cIp×p, we obtain the algorithm STA type II proposed by

Shefi and Teboulle [49], which is called the Proximal Alternating Direction Method

(PADM).

Further transformations applied to (2.37)-(2.40) lead us to consider two inter-

esting algorithms. The first of them is obtained by considering V2 = 0, and con-

sidering the auxiliary variables x̂k+1, ẑk, ûk, ŝk to update the relaxed sequences

x̂k+1 := 1
ρ
xk+1 + (1− 1

ρ
)xk = x̃k+1, ẑk := 1

ρ
zk+1 + (1− 1

ρ
)zk = z̃k+1, ûk := ũk+1 and

ŝk := xk, getting
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x̂k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bẑk +M−1ûk‖2

M +
1

2
‖x− ŝk‖2

V1

}
(2.44)

ẑk+1 ∈ argmin

{
g(z) +

1

2
‖ρAx̂k+1 +Bz +M−1ûk + (ρ− 1)Bẑk‖2

M

}
(2.45)

ûk+1 = ûk + ρMAx̂k+1 + (ρ− 1)MBẑk +MBẑk+1 (2.46)

ŝk+1 = ρx̂k+1 + (1− ρ)ŝk (2.47)

The second interesting algorithm is obtained by considering the auxiliary vari-

ables x̌k, žk, ǔk, šk to update the relaxed sequences x̌k := 1
ρ
xk+1 + (1− 1

ρ
)xk = x̃k+1,

žk := 1
ρ
zk+1 + (1− 1

ρ
)zk = z̃k+1, ǔk := ũk+1 and šk := xk, getting

žk+1 ∈ argmin

{
g(z) +

1

2
‖ρAx̌k +Bz +M−1ǔk + (ρ− 1)Bžk‖2

M

}
(2.48)

ǔk+1 = ǔk + ρMAx̌k + (ρ− 1)MBžk +MBžk+1 (2.49)

šk+1 = ρx̌k + (1− ρ)šk (2.50)

x̌k+1 ∈ argmin

{
f(x) +

1

2
‖Ax+Bžk+1 +M−1ǔk+1‖2

M +
1

2
‖x− šk+1‖2

V1

}
(2.51)

So, by considering in these two last algorithms B = −Ip×p, M = cIp×p and V1 = 0,

the sequences ŝk and šk becomes unnecessary. Moreover, (2.44)-(2.47) become the

generalized ADMM proposed by Eckstein [21], and (2.48)-(2.51) become the algo-

rithm 2 considered in [15].

From Proposition 2.3.3, we obtain the convergence of the sequence (2.37)-(2.40)

Proposition 2.3.5 Let ρ ∈ (0, 2). Assume that V1 ∈ IRn×n, V2 ∈ IRp×p and M ∈
IRm×m are symmetric, with V1 and V2 positive semi-definite and M positive definite

such that V1 +AtMA and V2 +BtMB are positive definite. If sol (VL) is nonempty,

then for an arbitrary (x0, z0, u0) ∈ IRn+p+m, the sequence (xk, zk, uk) defined in

(2.37)-(2.40) converges to some element of sol (VL).

2.4 The co-coercive map associated with GPPM

Lions and Mercier [31] have transformed an inclusion problem of the sum of two

maximal monotone operators (S+T ) into a fixed-point equation with respect to an

appropriated operator, the Douglas-Rachford operator, which is 1−co-coercive map

and, in order to compute its value at each point of its domain, only local calculations
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of proximal terms of S and T separately are needed. Eckstein [21] later showed the

relationship between the splitting algorithm (ADMM) and the fixed-point method

applied to a Douglas-Rachford operator, after a suitable linear transformation.

In our general setting, we show in this section that the sequence generated by the

generalized proximal point method (GPPM) corresponding to map JTP for arbitrary

maximal monote operator T and arbitrary symmetric positive semidefinite matrix P

is nothing else but the sequence generated by the fixed point method corresponding

to map GT
S defined in (2.53), after a linear transformation S (satisfying P = StS). It

leads thus in some sense to a generalization of a Douglas-Rachford operator, keeping

the property of 1−co-coercivity.

As pointed out in Subsection 2.3.1, the sequence generated by GPPM for T = L

defined in (2.11) and P defined in (2.15) corresponds to the sequence generated by

the generalized splitting scheme (GSS) defined in (2.17)–(2.20).

In Section 2.2, we have shown that the sequence generated by GPPM is nothing

else but, under the linear transformation Q, the sequence generated by the fixed

point method corresponding to the 1−co-coercive wrt R map QJTP (see (2.9)). But

for arbitrary symmetric positive semidefinite matrix P , matrices Q and R are dif-

ficult to calculate; when P is symmetric positive definite, then Q = I and R = P .

Alternately by considering S such that P = StS, we define GT
S an operator easier to

implement than QJTP and having similar properties, for example, it is 1−co-coercive

property wrt the usual norm. In particular, using GT
S instead QJTP , we give an al-

ternative proof of Proposition 2.2.2.

Finally, by considering S = S3 defined in Remark 2.4.3, one gets GL
S3

= St3(L +

St3S3)−1S3 which corresponds, under a reparametrization, to the classical Douglas-

Rachford operator defined byM− 1
2St3(L+St3S3)−1S3M

1
2 . In other words, the Douglas-

Rachford operator and its fundamental properties of of co-coercivity and splittability

will be shown to be a special case of our generalized setting based on the Lagrangian

monotone inclusion.

Associated with the r × r symmetric positive semidefinite matrix P introduced

in the former section, let consider a q × r matrix S satisfying

P = StS (2.52)

and then the map GT
S : IRq −→−→ IRq defined as

GT
S := S(T + StS)−1St. (2.53)

It follows that

SJTP = GT
SS (2.54)
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and hence, from (2.7), we get for all w,w′ ∈ IRr :

〈GT
S (Sw)−GT

S (Sw′), Sw − Sw′〉 ≥ ‖GT
S (Sw)−GT

S (Sw′)‖2.

Since for any s, s′ ∈ IRq there exist w,w′ ∈ IRr such that StSw = Sts and StSw′ =

Sts′, we get

〈GT
S (s)−GT

S (s′), s− s′〉 ≥ ‖GT
S (s)−GT

S (s′)‖2

which means that GT
S is 1−co-coercive with respect to the usual norm.

The following proposition shows in particular that GT
S is the Moreau-Yosida

regularization of ST−1St. This will be used in the examples considered in this

Section and in Section 2.6 (Proposition 2.6.1).

Proposition 2.4.1 Let T : IRr −→−→ IRr be an arbitrary map, S and M two matrices

of order q × r and q × q, respectively, with M invertible. For z ∈ IRq the value

(ST−1St + M)−1Mz is nonempty if and only if (T + StM−1S)−1Stz is nonempty.

Furthermore, it holds that

(ST−1St +M)−1Mz = z −M−1S(T + StM−1S)−1Stz.

Proof. The proof follows from the two properties:

• x ∈ (ST−1St + M)−1Mz if and only if there exists y ∈ IRm such that Stx ∈
T (y) and z −M−1Sy = x.

• y∗ ∈ (T + StM−1S)−1Stz if and only if exists x∗ ∈ IRr such that Stx∗ ∈ T (y∗)

and z −M−1Sy∗ = x∗.

Similar to Proposition 2.2.1, we get the relationship between the solution set of

problem (V ) and the fixed points of GT
S .

Proposition 2.4.2 With the same notations as before, we have

• If z ∈ sol (V ), then Sz is a fixed point of GT
S .

• If w is a fixed point of GT
S , then w = Sq for some q ∈ sol (V )∩ (T +P )−1Stw.

We deduce that the set of fixed point of GT
S is exactly

S(sol (V )) = {Sw : w ∈ sol (V )}.

Applying S to the sequence {wk} defined in (2.8) and considering the permuta-

tion property (2.54), we get:

Swk+1 = ρGT
S (Swk) + (1− ρ)Swk. (2.55)
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This equation gives us another alternative proof of convergence of the sequence

{wk} under the same conditions of Proposition 2.2.2. In fact, since GT
S is 1−co-

coercive and from (2.55), we have that, given w∗ ∈ sol (V )

‖Swk − Sw∗‖2 − 2− ρ
ρ
‖Swk+1 − Swk‖2 − ‖Swk+1 − Sw∗‖2 ≥ 0. (2.56)

Since rankStS = rankSt, the domain of GT
S is equal to the domain of JTP which is

closed, using this fact and from (2.56) we deduce that Swk converges to some point

b, which is a fixed point of GT
S . On the other hand, using the triangular inequality

and considering w̃ := (T + P )−1Stb, we get

‖wk+1 − w̃‖ ≤ ρ‖(T + P )−1St(Swk)− w̃‖+ |1− ρ|‖wk − w̃‖.

From the continuity of JTP , we deduce the continuity of (T +P )−1St = JTP S
+, where

S+ denotes the Moore–Penrose pseudo-inverse matrix of S. Therefore we deduce

that {wk} converges to w̃.

We now give some explicit expressions of GL
S for the Lagrangian operator L and

matrix S such that P = StS, considered in Section 2.3.

2.4.1 Examples of co-coercive operators GL
S

Example 2.4.1 Let γ = 1 (β = α− 1), We consider in (2.15)

C1 = V1 + (1 + α)2AtMA and C2 = V2 + α2BtMB,

where V1 and V2 are as (2.21) assumed positive semidefinite matrices. In (2.37)-

(2.40) matrices V1 and V2 are associated with the additional proximal term that will

be used in ADMM, which, as we have shown in Subsection 2.3.1 (Case γ = 1), is

related to Shefi-Teboulle algorithm type II [49]. We get :

P =

 V1 + (1 + α)2AtMA (1 + α)αAtMB (1 + α)At

(1 + α)αBtMA V2 + α2BtMB αBt

(1 + α)A αB M−1

 .

The matrix

S1 =

 V
1
2

1 0 0

0 V
1
2

2 0

(1 + α)M
1
2A αM

1
2B M− 1

2
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satisfies (2.52) and the corresponding map GL
S1

, that applies IRn × IRp × IRm into

itself, is defined as

GL
S1

(x̂, ẑ, ŷ) =

 V
1
2

1 x

V
1
2

2 z

M
1
2Ax+M

1
2Bz + ŷ


where

x = (∂f + V1 + AtMA)−1(V
1
2

1 x̂− AtM
1
2 (ŷ + 2M

1
2Bz))

z = (∂g + V2 +BtMB)−1(V
1
2

2 ẑ −BtM
1
2 ŷ).

Note that GL
S1

has full domain if V1 +AtMA and V2 +BtMB are assumed positive

definite matrices.

Remark 2.4.1 The map GL
S1

is the Douglas–Rachford operator [31], applied to the

two maps

−

 V
1
2

1 0

0 Ip×p
M

1
2A 0

[ ∂f

0

]−1(
−

(
V

1
2

1 0 AtM
1
2

0 Ip×p 0

))

and

−

 −In×n 0

0 −V
1
2

2

0 M
1
2B

[ 0

∂g

]−1(
−

(
−In×n 0 0

0 −V
1
2

2 BtM
1
2

))

The corresponding sum of these two maps is exactly the dual variational map

(2.5) associated with the following optimization problem

min
(x1,x2,z1,z2)∈F

(f, 0)(x1, x2) + (0, g)(z1, z2)

where F is the set of all (x1, x2, z1, z2) satisfying V
1
2

1 0

0 Ip×p
M

1
2A 0

( x1

x2

)
+

 −In×n 0

0 −V
1
2

2

0 M
1
2B

( z1

z2

)
= 0.

Remark 2.4.2 In the case that V2 = 0, which corresponds to Chambolle-Pock al-

gorithm as we showed in Subsection 2.3.1, we can restrict the map GL
S1

, and obtain

the map D1 that applies IRn × IRm into itself, where D1(x, u) is(
V

1
2

1 (∂f + V1 + AtMA)−1[V
1
2

1 x− AtM
1
2 (u+ 2z)]

M
1
2A(∂f + V1 + AtMA)−1[V

1
2

1 x− AtM
1
2 (u+ 2z)] + z + u

)
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where

z = M
1
2B(∂g +BtMB)−1BtM

1
2 (−u).

Note if B is injective, then D1 has full domain.

The map D1 can be obtained in the form (2.53), considering that when V2 = 0,

the matrix

S2 =

(
V

1
2

1 0 0

(1 + α)M
1
2A αM

1
2B M− 1

2

)
satisfies (2.52), and we obtain that D1 = GL

S2
.

The map D1 can also be obtained as the Douglas–Rachford operator, applied to

the two maps

−

(
V

1
2

1

M
1
2A

)
(∂f)−1

(
−
(
V

1
2

1 AtM
1
2

))
and

−

(
−In×n 0

0 M
1
2B

)[
0

∂g

]−1(
−

(
−In×n 0

0 BtM
1
2

))
The corresponding sum of these two maps is exactly the dual variational map asso-

ciated with the following optimization problem

min
(x,z1,z2)∈F

f(x) + (0, g)(z1, z2)

where F is the set of all triples (x, z1, z2) satisfying(
V

1
2

1

M
1
2A

)
x+

(
−In×n 0

0 M
1
2B

)(
z1

z2

)
= 0.

Remark 2.4.3 In the case V1 = 0 and V2 = 0, we can restrict the map GL
S1

, and

obtain the map D2 that applies IRm into itself, where D2(x, u) is

M
1
2A(∂f + AtMA)−1AtM

1
2 [−u− 2z] + z + u

where

z = M
1
2B(∂g +BtMB)−1BtM

1
2 (−u).

Note that if A and B are injective, then D2 has full domain.

The map D2 can be obtained in the form (2.53), considering that when V1 =

V2 = 0, the matrix

S3 =
(

(1 + α)M
1
2A αM

1
2B M− 1

2

)
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verifies (2.52), and we obtain that D2 = GL
S3

.

The map D2 can also be obtained as the Douglas–Rachford operator [31], applied

to the two maps

−M
1
2A(∂f)−1(−AtM

1
2 ) and −M

1
2B(∂g)−1(−BtM

1
2 ).

The corresponding sum of these two maps is exactly the dual variational map

(2.5) associated with the following optimization problem

min
(x,y)

[f(x) + g(z) : M
1
2Ax+M

1
2Bz = 0].

Alternatively we can consider, instead D2, the map D̃2 := M− 1
2D2M

1
2 , i.e

D̃2(ū) = A(∂f + AtMA)−1AtM [−ū− 2z] + z + ū

where

z = B(∂g +BtMB)−1BtM(−ū),

which is co-coercive w.r.t. the metric induced by M .

Example 2.4.2 Let γ = 0 (α = β). We consider in (2.15)

C1 = (1 + (α + 1)2)AtMA+R and C2 = (1 + (α + 1)2)BtMB,

where R is a positive semidefinite matrix. Then V1 and V2 in (2.21) are equal to

V1 = AtMA+R and V2 = BtMB.

These matrices are associated with the additional proximal term considered in (2.33)-

(2.36), which, as we have shown in Subsection 2.3.1 (Case γ = 0), is related to

Shefi-Teboulle algorithm type I [49]. We get :

P =

 (1 + (α + 1)2)AtMA+R α(2 + α)AtMB (1 + α)At

α(2 + α)BtMA (1 + (α + 1)2)BtMB (1 + α)Bt

(1 + α)A (1 + α)B M−1

 .

The matrix

S4 =

 R
1
2 0 0

M
1
2A −M 1

2B 0

(1 + α)M
1
2A (1 + α)M

1
2B M− 1

2


satisfies (2.52) and hence the value GL

S4
(x̂, ẑ, ŷ) of the corresponding map GL

S4
, that

applies IRn × IRm × IRm into itself, is R
1
2x

M
1
2Ax−M 1

2Bz

M
1
2Ax+M

1
2Bz + ŷ
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where

x = (∂f + 2AtMA+R)−1(R
1
2 x̂+ AtM

1
2 (ẑ − ŷ))

z = (∂g + 2BtMB)−1BtM
1
2 (−ẑ − ŷ).

Note that GL
S4

has full domain if 2AtMA+R and 2BtMB are assumed positive

definite matrices.

Remark 2.4.4 In the case that R = 0, we can restrict the map GL
S4

, and obtain the

map D3 that applies IRm × IRm into itself, where D3(ẑ, ŷ) is(
M

1
2A(∂f + 2AtMA)−1AtM

1
2 (ẑ − ŷ) +M

1
2 (∂g + 2BtMB)−1BtM

1
2 (−ẑ − ŷ)

M
1
2A(∂f + 2AtMA)−1AtM

1
2 (ẑ − ŷ)−M 1

2 (∂g + 2BtMB)−1BtM
1
2 (−ẑ − ŷ) + ŷ

)

The map D3 can be obtained as the form (2.53), considering that when V1 =

AtMA and V2 = BtMB, the matrix

S5 =

(
M

1
2A −M 1

2B 0

(1 + α)M
1
2A (1 + α)M

1
2B M− 1

2

)
.

satisfies (2.52), then we obtain that D3 = GL
S5

.

2.5 Rate of Convergence

The global rate of convergence of ADMM and other monotone operator splitting

algorithms has motivated many research contributions that we cannot survey here

(see [15] for example). We will recover these results for the generalized splitting

scheme GSS with no further refinements (like uniform or strong convexity) and will

remain in the framework of finite-dimensional spaces (see [2] for similar results in

Hilbert spaces).

D. Davis and W. Yin [15] have show the ergodic and nonergodic convergence rate

of the feasibility and objective function error related to the relaxed PRS and relaxed

ADMM, which is a particular case of our general scheme as remarked in Subsection

2.3.1. Similarly, in this Section, without regularity assumption, we show the ergodic

and nonergodic convergence rate of the constraint violations (feasibility) and objec-

tive function error related to the chain of steps (2.17)→ (2.18)→ (2.19)→ (2.20),

defined in Subsection 2.3.1, which is our main sequence associated with primal prob-

lem (P ) defined in the first section.
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With the same expressions of matrices P and U defined in (2.15) and (2.16),

respectively, we get the following identity by using S satisfying P = StS and explicit

expressions of P and U ,

‖(x, z, y)‖2
P = ‖S(x, z, y)‖2 = ‖(x, z)‖2

U + ‖M
1
2 ((1 + α)Ax+ (1 + β)Bz) +M− 1

2y‖2.

(2.57)

Notice that for γ = 0 (β = α),

‖(x, z)‖2
U = ‖x‖2

V1−AtMA + ‖z‖2
V2−BtMB + ‖Ax−Bz‖2

M

and for γ = 1 (β = α− 1),

‖(x, z)‖2
U = ‖x‖2

V1
+ ‖z‖2

V2
. (2.58)

Back to the sequence (2.17)–(2.20) and considering wk = (xk, zk, yk), it holds

from definition that

JLPw
k = (x̃k+1, z̃k+1, ỹk+1) and wk+1 = ρJLPw

k + (1− ρ)wk. (2.59)

The following proposition will be used later in Subsection 2.5.2 in order to esti-

mate an upper bound of the optimal value of problem (P ).

Proposition 2.5.1 With the same notations as before and considering w = (x, z, y) ∈
dom (f)× dom (g)× IRm, the following inequality holds:

‖wk−w‖2
P −

2− ρ
ρ
‖wk+1−wk‖2

P −‖wk+1−w‖2
P ≥ 2ρ

[
l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1)

]
Proof. Let w = (x, z, y) ∈ dom (f) × dom (g) × IRm. Since P (wk − JLPwk) ∈

L(JLPw
k), then using Proposition 2.3.1, it holds that〈
JLPw

k − w,P (wk − JLPwk)
〉
≥ l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1). (2.60)

On the other hand, from the symmetry of P , it holds

2ρ
〈
JLPw

k − w,P (wk − JLPwk)
〉

= ‖wk − w‖2
P −

2− ρ
ρ
‖wk+1 − wk‖2

P − ‖wk+1 − w‖2
P

So, replacing this last expression in (2.60), we get the desired inequality.

In particular, from the inequality of last proposition, we get

‖wk − w‖2
P − ‖wk+1 − w‖2

P ≥ 2ρ
[
l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1)

]
. (2.61)

This inequality will be used in Theorem 2.5.1 for approximating the optimal value

of problem (P ).
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We note that Proposition 2.5.1 is a general version of the inequality given in

Proposition 2 of [15] which is obtained by considering A = I = −B, M = γ−1I and

P as in Remark 2.4.3, w = (x, x, 0) (which implies M− 1
2S3w = x), z = M− 1

2S3z
k,

and

z+ = (TPRS)λ(z) = (M− 1
2GL

S3
M

1
2 )2λ(M

− 1
2S3z

k) = M− 1
2S3w

k+1.

Similarly, Proposition 2.5.1 is also a general version of the one given in Proposition

11 of [15] by considering M = γI and P as in Remark 2.4.3; (x̄∗, z̄∗, ȳ∗) and z∗

fixed points of GL
S3

and (TPRS)λ = (M
1
2GL

S3
M− 1

2 )2λ, respectively; wk satisfying

M
1
2S3w

k = zk and w = (x̄∗, z̄∗, 0) such that

M
1
2S3w = M

1
2S3(x̄∗, z̄∗, ȳ∗)− ȳ∗ = z∗ − w∗

where w∗ = Jγ(−B)(∂g)−1(−Bt)(z
∗).

2.5.1 Bounding the fixed-point residual

The fixed-point residual of operator ρGT
S + (1− ρ)Iq×q is the sequence with general

term

‖(ρGT
S + (1− ρ)Iq×q)Sw

k − Swk‖2

which, from (2.55), is equal to

‖Swk+1 − Swk‖2.

Since ρ ∈ (0, 2), then ρGT
S +(1−ρ)Iq×q is non expansive and hence {‖Swk+1−Swk‖}

is non increasing. Summing over k = 0, · · · , N − 1 in (2.56), we get

‖Swk − Swk−1‖2 ≤ ρ

(2− ρ)k
‖Sw0 − Sw∗‖2. (2.62)

On the other hand, using the Jensen’s inequality, we get

‖Swk − Sw0‖2 ≤ 2‖Swk − Sw∗‖2 + 2‖Sw0 − Sw∗‖2 ≤ 4‖Sw0 − Sw∗‖2

and hence∥∥∥∥∥ 1

N

N∑
k=1

(Swk − Swk−1)

∥∥∥∥∥
2

=
1

N2
‖SwN − Sw0‖2 ≤ 4

N2
‖Sw0 − Sw∗‖2. (2.63)

Notice that upper bounds (2.62) and (2.63) can also be deduced respectively from

Theorem 1 “Notes on Theorem 1” and Theorem 2 developed in D. Davis and W.

Yin [15].
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2.5.2 Bounding the saddle-point gap

We consider the following ergodic sequences defined as: for N ≥ 1,

xN :=
1

N

N∑
k=1

x̃k, zN :=
1

N

N∑
k=1

z̃k and yN :=
1

N

N∑
k=1

ỹk.

Theorem 2.5.1 With the same notations as before, we get the following rate of

convergence:

• Ergodic Convergence: for any w = (x, z, y) ∈ dom (f)× dom (g)× IRm

l(xk, zk, y)− l(x, z, yk) ≤
1

2ρk
‖Sw0 − Sw‖2. (2.64)

• Nonergodic Convergence: for any w∗ = (x∗, z∗, y∗) ∈ sol (VL)

l(x̃k+1, z̃k+1, y∗)− l(x∗, z∗, ỹk+1) ≤ 1 + |1− ρ|
ρ
√
ρ(2− ρ)(k + 1)

‖Sw0 − Sw∗‖2. (2.65)

Proof. Summing (2.61) over k = 0, · · · , N − 1, and applying the Jensen’s

inequality to the convex functions l(·, ·, y) − l(x, z, ·) for arbitrary fixed elements

x ∈ dom (f), z ∈ dom (g) and y ∈ IRm, where l is the lagrangian function defined in

(2.10) of Section 2.3, we deduce the desired ergodic convergence.

Given w∗ ∈ sol (VL) and considering w = w∗ in (2.60), we get

〈GL
SSw

k − Sw∗, Swk −GL
SSw

k〉 ≥ l(x̃k+1, z̃k+1, y∗)− l(x∗, z∗, ỹk+1) ≥ 0

and hence, from the Cauchy-Schwarz inequality and (2.55), we obtain

1

ρ
‖GL

SSw
k − Sw∗‖‖Swk+1 − Swk‖ ≥ l(x̃k+1, z̃k+1, y∗)− l(x∗, z∗, ỹk+1). (2.66)

On other hand, from (2.55) and since {‖Swk+1 − Sw∗‖} is non increasing, we

get

‖GL
SSw

k−Sw∗‖ = ‖1

ρ
(Swk+1−Sw∗)+(1−1

ρ
)(Swk−Sw∗)‖ ≤ 1 + |1− ρ|

ρ
‖Sw0−Sw∗‖.

So, replacing this last expression and inequality (2.62) in expression (2.66), we

deduce the desired nonergodic convergence.

49



2.5.3 Bounding the constraint violation

We consider, for N ≥ 1,

x̂N :=
1

N

N∑
k=1

xk−1 and ẑN :=
1

N

N∑
k=1

zk−1.

We get the following result

Theorem 2.5.2 With the same notations as before, for any w∗ ∈ sol (VL), we get

the following rate of convergence:

• Ergodic Convergence:

‖(xk − x̂k, zk − ẑk)‖2
U + ‖Axk +Bzk‖2

M ≤
4

ρ2k2
‖Sw0 − Sw∗‖2.

• Nonergodic Convergence:

‖(x̃k − xk−1, z̃k − zk−1)‖2
U + ‖Ax̃k +Bz̃k‖2

M ≤
1

(2− ρ)ρk
‖Sw0 − Sw∗‖2.

Proof. From (2.59) we have wk−wk−1 = ρ(x̃k− xk−1, z̃k− zk−1, ỹk− yk−1) and

hence, from (2.19), we get

wk−wk−1 = ρ(x̃k−xk−1, z̃k−zk−1, M [(1+α)Axk−1 +(1+β)Bzk−1−αAx̃k−βBz̃k]).
(2.67)

Summing over k = 1, · · · , N , we obtain

1

N

N∑
k=1

(wk−wk−1) = ρ(xN−x̂N , zN−ẑN , M [(1+α)Ax̂N+(1+β)BẑN−αAxN−βBzN ]).

Then from (2.57), we get

1

ρ2

∥∥∥∥∥ 1

N

N∑
k=1

(wk − wk−1)

∥∥∥∥∥
2

P

= ‖(xN − x̂N , zN − ẑN)‖2
U + ‖AxN +BzN‖2

M

and hence, given w∗ ∈ sol (VL), we deduce from (2.63) the ergodic rate of conver-

gence for constraint violations.

Using (2.67), from (2.57), we get

1

ρ2
‖wk − wk−1‖2

P = ‖(x̃k − xk−1, z̃k − zk−1)‖2
U + ‖Ax̃k +Bz̃k‖2

M

and hence, from (2.62), we deduce the nonergodic rate of convergence for constraint

violations.

We note that the particular case γ = 1, V1 = 0 and V2 = 0, which implies

that U = 0, the two terms ‖(xk − x̂k, zk − ẑk)‖2
U and ‖(x̃k − xk−1, z̃k − zk−1)‖2

U of

inequalities in Theorem 2.5.2 are null and hence we recover the Theorem 15 of [15].
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2.6 Application to the decomposition of multi-

block optimization problems

To conclude our study, we consider the application of the generalized scheme GSS

to the decomposition of some block structured convex optimization problems.

For i ∈ {1, ..., q}, let fi : IRni → IR and g : IRm → IR are proper lsc convex

functions, Ai and B matrices of order p × ni and p ×m, respectively. We consider

the following S-Model problem:

inf
(x1,··· , xq , z)

q∑
i=1

fi(xi) + g(z)

s.t

q∑
i=1

Aixi +Bz = 0.

This problem has been analyzed by many authors (see [29] for instance). We rewrite

it into two different forms, (B1) and (B2), but with the same structure as (BP ) de-

fined below, then we rewrite (BP ) as problem (P ) also defined below. Finally, we

apply the algorithm (2.37)-(2.40) to this last problem.

The S- Model problem is equivalent to

inf
(x1,··· , xq , z)

q∑
i=1

fi(xi) + g(z) + δ{0}(

q∑
i=1

Aixi +Bz). (B1)

In this formulation the function g can be viewed as a function fi. The associated

dual problem of (B1) is

inf
y∗

q∑
i=1

(f ∗i ◦ Ati)y∗ + (g∗ ◦Bt)y∗. (Ds)

Now, by considering n =
∑q

i=1 ni and f : IRn → IR defined as f(x) :=
∑q

i=1 fi(xi),

the problem (Ds) can be written as

inf
y∗

f ∗ ◦

 At1
...

Atq

 y∗ + (g∗ ◦Bt)y∗.

This is a composite problem whose associated dual problem is

inf
(x1,··· , xq)

q∑
i=1

fi(xi) + (g∗ ◦Bt)∗ ◦ (−
q∑
i=1

Aixi). (B2)
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We observe that in this last problem we reduce the number of variables considered

in the S-Model problem and the function g acts now as regularization function.

Using the same notations as before, we define a problem having the same struc-

tures as problems (B1) and (B2):

VP = inf
(x1,··· , xq)

q∑
i=1

fi(xi) + (g∗ ◦Bt)∗ ◦ (

q∑
i=1

Aixi). (BP )

In order to apply the splitting algorithm to problem (BP), we reformulate it to an

appropriate optimization problem. To do it, consider

K :=
(
Ip×p · · · Ip×p

)
∈ IRp×pq and

A :=

 A1

. . .

Aq

 ∈ IRpq×n.

So, problem (BP ) can be formulated as

inf
x∈IRn

, z∈IRpq

[
f(x) + (g∗ ◦Bt)∗ ◦Kz : Ax− z = 0

]
. (P )

Notice that this last formulation problem has a good separable structure.

We apply to problem (P ) the algorithm (2.37)-(2.40) developed in Subsection

2.3.1 (Case γ = 1). We assume that g verifies the following identity

∂[(g∗ ◦Bt)∗ ◦K] = Kt(B(∂g)−1Bt)−1K.

The saddle-point problem of (P ) is

Find (x̄, z̄, ȳ) ∈ IRn × IRpq × IRpq such that 0 ∈ L̄(x̄, z̄, ȳ) (VL̄)

where L̄ is the maximal monotone map defined on IRn × IRpq × IRpq as

L̄(x, z, y) :=

 ∂f(x)

Kt(B(∂g)−1Bt)−1Kz

0

+

 0 0 At

0 0 I

−A I 0


 x

z

y

 .

For i ∈ {1, ..., q}, let Mi be an p × p symmetric positive definite matrix and Qi

be an ni × ni symmetric positive semi-definite matrix.

In order to take advantage of the separability of f , we take V1 = diag([Q1, ..., Qq])

and M = diag([M1, ...,Mq]), and we consider V2 = 0 in order to calculate zk+1 using
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alone the resolvent of ∂g. So, the related algorithm (2.37)-(2.40) takes the following

structure:

z̃k+1 = (Kt(B(∂g)−1Bt)−1K +M)−1(MAxk + yk) (2.68)

ỹk+1 = yk +M(Axk − z̃k+1) (2.69)

x̃k+1 = (∂f + AtMA+ V1)−1(V1x
k + AtMz̃k+1 − Atỹk+1) (2.70)

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk) (2.71)

Because of the diagonal structure of expression (2.70) the calculation of x̃k+1 is

realized in parallel: for i ∈ {1, · · · , q},

x̃k+1
i = (∂fi + AtiMiAi +Qi)

−1(Qix
k
i + AtiMiz̃

k+1
i − Atiỹk+1

i ).

Now, in order to calculate z̃k+1, the following identity is relevant:

Proposition 2.6.1 With the same notations as before, the following identity holds

(Kt(B(∂g)−1Bt)−1K +M)−1M = I −M−1KtΣ(I −B(∂g +BtΣB)−1BtΣ)K

where Σ is a p× p matrix defined by

Σ := (KM−1Kt)−1 =

(
q∑
i=1

M−1
i

)−1

.

Proof. From Proposition 2.4.1, we have

(Kt(B(∂g)−1Bt)−1K +M)−1M = I −M−1Kt(B(∂g)−1Bt +KM−1Kt)−1K

and hence by combining it with the following identity

(B(∂g)−1Bt + Σ−1)−1Σ−1 = I − ΣB(∂g +BtΣB)−1Bt

obtained also from Proposition 2.4.1, we get the desired identity.

So, using the identity of this last proposition, we can obtain an equivalent ex-

pression of ỹk+1 in (2.69) but with a more tractable expression for computational

purpose :

ỹk+1 = KtΣ(I −B(∂g +BtΣB)−1BtΣ)K(Axk +M−1yk). (2.72)

It follow in particular that ỹk+1 ∈ rangeKt and, by considering yk ∈ rangeKt

in (2.71), we have that yk+1 ∈ rangeKt and hence all the block components of ỹk+1
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(similarly of yk+1) are equal. We denote by ỹk+1
c (resp yk+1

c ) such a block component

of ỹk+1 (resp yk+1). Then,

ỹk+1
c = Σ(I −B(∂g +BtΣB)−1BtΣ)K(Axk +M−1Ktykc ) (2.73)

By denoting

ζk+1 := (∂g +BtΣB)−1Bt(Σ

q∑
j=1

(Ajx
k
j ) + ykc )

we obtain, from (2.73),

ỹk+1
c = ykc + Σ(

q∑
j=1

(Ajx
k
j )−Bζk+1). (2.74)

On the other hand, from (2.69), we get

z̃k+1 = Axk +M−1Kt(ykc − ỹk+1
c )

which combining with (2.74), we deduce that for i ∈ {1, · · · , q},

z̃k+1
i = Aix

k
i −M−1

i Σ

(
q∑
j=1

(Ajx
k
j )−Bζk+1

)
.

Therefore we obtain the following algorithm, called “Proximal Multi-block Al-

gorithm”.

Proximal Multi-block Algorithm

(PMA)

For i ∈ {1, · · · , q} set Qi ∈ IRni×ni symmetric positive semi-definite, Mi ∈ IRp×p

symmetric positive definite. Set Σ =
(∑q

i=1 M
−1
i

)−1
. Then for an arbitrary (x0, z0, y0

c ) ∈
IRn × IRpq × IRp

Step 1. Find ζk+1 such that

ζk+1 = argmin

{
g(w) +

1

2
‖Bw −

q∑
j=1

(Ajx
k
j )− Σ−1ykc ‖2

Σ

}

Step 2. Find z̃k+1

For all i ∈ {1, ..., q} do

Find z̃k+1
i such that

z̃k+1
i = Aix

k
i −M−1

i Σ

(
q∑
j=1

(Ajx
k
j )−Bζk+1

)
.
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Step 3. Find ỹk+1
c such that

ỹk+1
c = ykc + Σ

(
q∑
j=1

(Ajx
k
j )−Bζk+1

)
.

end for

Step 4. Find x̃k+1

For all i ∈ {1, ..., q} do

Find x̃k+1
i such that

x̃k+1
i = argmin

{
fi(xi) +

1

2
‖Aixi − z̃k+1

i +M−1
i ỹk+1

c ‖2
Mi

+
1

2
‖xi − xki ‖2

Qi

}
end for

Step 5. Find (xk+1, zk+1, yk+1
c )

(xk+1, zk+1, yk+1
c ) = ρ(x̃k+1, z̃k+1, ỹk+1

c ) + (1− ρ)(xk, zk, ykc ).

The next proposition gives conditions in order to guarantee the convergence of

PMA. The proof is a direct consequence of Proposition 2.3.5.

Proposition 2.6.2 Let ρ ∈ (0, 2). For i ∈ {1, ..., q}, assume that Qi ∈ IRni×ni and

Mi ∈ IRp×p are symmetric, with Qi positive semi-definite and Mi positive definite

such that Qi + AtiMiAi is positive definite. If sol (VL̄) is nonempty, then for an

arbitrary (x0, z0, y0
c ) ∈ IRn × IRpq × IRp, the sequence (xk, zk, Ktykc ) generated by

(PMA) converges to some element of sol (VL̄).

The Separable Augmented Lagrangian Algorithm (SALA) with multidi-

mensional scaling has been proposed in [18] to solve a special case of the S-Model

where g = 0 and B = 0 . This algorithm can be recovered if instead of applying

the algorithm (2.37)-(2.40) to problem (P ), we consider the algorithm (2.41)-(2.43)

with V1 = V2 = 0. Therefore SALA is a particular version of (PMA).

The advantages of (PMA) are twofold: 1) the inclusion of the relaxing term ρ ∈
(0, 2), which enables the accelaration of the algorithm, and 2) the additional proxi-

mal term ‖xi − xki ‖2
Qi

considered in the subproblems of Step 4, which improves the

strong convexity of the proximal subproblem when we choose an adequate matrix

Qi. More specifically, considering σi and τi positive numbers holding σiτi‖Ai‖2 ≤ 1

and choosing Mi and Qi matrices defined as

Mi = σiIp×p and Qi = τ−1
i Ini×ni − σiAtiAi,
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the conditions about matrices Qi, Mi and Qi + AtiMiAi in Proposition 2.6.2 are

verified and hence the subproblem in Step 4 of the Algorithm (PMA) becomes

x̃k+1
i = argmin

{
fi(xi) +

1

2τi
‖xi − xki − τi[σiAtiz̃k+1

i − σiAtiAixki − Atiȳk+1]‖2

}
which has an explicit solution in some particular cases, for instance fi(xi) = ‖xi‖1.
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Chapter 3

Decomposition techniques

In the last section of previous chapter we have developed a general algorithm termed

Proximal Multi-block Algorithm (PMA) in order to solve a S-Model problem as in

Section 2.6. This algorithm uses the proximal step of all the family {fi}i=1,··· ,q

through a parallel processing for each iteration.

The special case considering g ≡ 0 and B ≡ 0 in the previous S-model, which will

be termed separable model with coupling constraint (SMCC) is considered in

Section 3.2. We propose an alternative way to use the proximal step of each fi,

separating the problem into two sub-block problems and considering the proximal

step to one sub-block and then (at a linear combination of the preceding values) the

proximal step is found for the other sub-block, both in parallel processing.

For this purpose, we first study in Section 3.1 the separable model with cou-

pling variable (SMCV) using the duality scheme developed in Chapter 1, finding

an adequate formulation for that problem, allowing recovery two know algorithms

with multi–scaling parameters, and their relationship. We also show the numeri-

cal behavior of these two algorithms. Since SMCC can be formulated as a SMCV,

we apply the results obtained for SMCV to SMCC, getting another way to recover

SALA and DSALA, the last also contained in PMA.

In Section 3.3, we get two splitting algorithms, one for SMCV and the other for

SMCC. Each algorithm separates the problem into two arbitrary sub-block problems

considering the proximal step of all functions corresponding to each sub-block in

parallel processing similar to the one obtained in the precedent section.

All found algorithms in this chapter are consequences of finding adequate for-

mulations of the original problem and then applying popular algorithms. In this

vein, in the last section we study an especial block optimization problem, that will

be used for solving a stochastic optimization model problem, reformulating it and

applying the multi–scaling ADMM (considering V1 = 0 and V2 = 0 in (2.41)–(2.43)).

In [11] the authors show that “The direct extension of ADMM is not
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necessarily convergent”. The authors in [54] showed an alternative way to deal

with a multi-block optimization problem, reformulating it into two-block problem

in order to apply the ADMM.

The main difference of the corresponding algorithm found by these authors re-

garding the one proposed in Section 3.2 of this chapter is the step order of subprob-

lems intervening in the algorithm.

On the other hand, in [20] the author gives another way to solve problem SMCC

using projective splitting methods.

3.1 The separable model with coupling variable

(SMCV)

In this section we present the sum problem (or consensus problem as termed in

[7]). In this book the authors give important references on recent advances and

applications regarding the SMCV.

For every i ∈ {1, · · · , q}, let fi : IRn → IR be proper lsc convex. We consider

the following SMCV

inf
x∈IRn

q∑
i=1

fi(x) (S)

which by defining f : IRnq → ĪR as f(z) :=
∑q

i=1 fi(zi) for z = (z1, · · · , zq) with

zi ∈ IRn, and W the nq × n matrix defined by W = (In×n · · · In×n)t, that problem

can be set as

inf
x∈IRn

f ◦W (x) (P V
s )

which is termed Primal projected problem regarding to the following optimiza-

tion problem with linear subspace constraint

inf
z

q∑
i=1

fi(zi) (3.1)

s.t z ∈ V (3.2)

where V := range (W ) = {z = (z1, · · · , zq) ∈ IRnq : z1 = · · · = zq}. Clearly, this

problem is also equivalent to

inf
z∈IRnq

f(z) + δV (z). (P̂s)

Notice that if we apply the Douglas-Rachford’s method (DRM) to problem (P̂s),

we obtain the so called [29] “Proximal Decomposition algorithm (PDA)”.
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On the other hand, by making V = ker(K) where K is the n(q− 1)× nq matrix

defined by

K =
[
In(q−1)×n(q−1) −D

]
with D being the n(q− 1)×n matrix defined by D = (In×n · · · In×n)t, we obtain the

following problem so called Dual projected problem:

inf
u∗∈IRn(q−1)

f ∗ ◦Ktu∗. (DV
s )

Now, by considering h : IRn(q−1) → IR defined as h(y) :=
∑q−1

i=1 fi(yi) for y =

(y1, · · · , yq) with yi ∈ IRn, problem (DV
s ) can be formulated as

inf
u∗∈IRn(q−1)

h∗(u∗) + f ∗q ◦ −Dtu∗. (D̄V
s )

Since DtD = (q − 1)I, applying the DRM to problem (D̄V
s ), we obtain a suit-

able decomposition algorithm called “Dual Proximal Decomposition algorithm

(DPDA)”.

By considering V = ker(K) in problem (3.1)-(3.2), it is transformed in

inf
(u,s)

q−1∑
i=1

fi(ui) + fq(s)

s.t ui − s = 0, i = 1, · · · , q − 1

which is exactly the dual problem of (DV
s ).

In [7] the authors termed this problem “Global variable consensus with reg-

ularization”, where fq represents the regularization function. In order to solve such

a problem, they apply ADMM, which is equivalent to apply the Douglas-Rachford’s

method to problem (D̄V
s ).

Summarizing the previous discussions, PDA is DRM applied to problem (Ps),

and DPDA is DRM applied to problem (Ds).

We now describe these two algorithms:

Proximal Decomposition algorithm

(PDA)

For every i ∈ {1, · · · , q − 1} set Mi ∈ IRn×n symmetric positive definite. Then for

an arbitrary (x0, y0, u0) ∈ IRnq × IRn × IRnq,

Step 1. Find xk+1

For all i ∈ {1, ..., q} do

find xk+1
i the optimal value of problem

inf
x

[
fi(x) +

1

2
‖x− yk +M−1

i uki ‖2
Mi

]
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end for

Step 2. Find yk+1 such that

yk+1 =

(
q∑
i=1

Mi

)−1 q∑
j=1

(Mix
k+1
i + uki )

Step 3. Find uk+1

For all i ∈ {1, ..., q} do

find uk+1
i such that

uk+1
i = uki +Mi(x

k+1
i − yk+1)

end for

Dual Proximal Decomposition algorithm

(DPDA)

For every i ∈ {1, · · · , q − 1} set Mi ∈ IRn×n symmetric positive definite matrix.

Then for an arbitrary (x0, y0, u0) ∈ IRn(q−1) × IRn × IRn(q−1)

Step 1. Find xk+1

For all i ∈ {1, ..., q − 1} do

find xk+1
i the optimal value of the problem

inf
x

[
fi(x) +

1

2
‖x− yk +M−1

i uki ‖2
Mi

]
end for

Step 2. Find yk+1 the optimal value of the problem

inf
x

fq(x) +
1

2

∥∥∥∥∥∥x−
(
q−1∑
i=1

Mi

)−1 q−1∑
j=1

(Mix
k+1
i + uki )

∥∥∥∥∥∥
2

∑q−1
i=1 Mi


Step 3. Find uk+1

For all i ∈ {1, ..., q − 1} do

find uk+1
i such that

uk+1
i = uki +Mi(x

k+1
i − yk+1)

end for
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Remark 3.1.1 If fq = 0, then DPDA becomes PDA applied to problem

inf
x∈IRn

q−1∑
i=1

fi(x).

So, apply PDA to problem (S) is equivalent to apply DPDA to the following problem

inf
x∈IRn

q∑
i=1

fi(x) + 0(x).

Example 3.1.1 (Numerical illustration for the sum of three operators) We

apply the methods PDA and DPDA in order to solve the following problem

min
x=(x1,x2)∈IR2

〈[
1 0

0 2

]
x, x

〉
+

〈[
8 0

0 1

]
x, x

〉
+

〈[
5 0

0 7

]
x, x

〉

which evidently x∗ = 0 is the unique solution.

We consider, for i ∈ {1, 2, 3}, Mi = λI in the algorithm of (PDA); and for

j ∈ {1, · · · , q − 1}, we set Mj = λI in the algoritm of (DPDA).

The graph in (fig 3.1) describes the relationship of parameter λ for PDA and

DPDA versus the necessary number of iterations in order to get an approximation

of the optimal value with an error (‖xk1 − x∗‖) less than 10−8, 10−25 and 10−60

respectively.

Figure 3.1: iteration vs parameter
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3.2 Separable model with coupling constraints (SMCC)

For i ∈ {1, · · · , q}, let fi : IRni → IR be proper lsc convex function and Ai be a

p× ni matrix. We consider the SMCC which can be expressed as

inf
x

q∑
i=1

fi(xi)

s.t

q∑
i=1

Aixi = 0.

This is a minimization problem over a linear subspace whose dual projection

problem is

inf
u∗∈IRp

q∑
i=1

(f ∗i ◦ Ati)u∗ (DV
sm)

which is a SMCV as described in the previous section. So, if we apply the algo-

rithms PDA and DPDA to this problem, we obtain respectively the Separable

Augmenting Lagrangian Algorithm (SALA) and the Dual Separable Aug-

menting Lagrangian Algorithm (DSALA). In order to apply PDA or DPDA

we will use the equivalent expression of the Moreau envelope function to each com-

posite function fi ◦ Ati as showed in Proposition 2.4.1.

We now describe the algorithms SALA and DSALA.

Separable Augmenting Lagrangian Algorithm

(SALA)

For every i ∈ {1, · · · , q}, set Mi ∈ IRp×p symmetric positive definite. Set Σ =

(
∑q

i=1M
−1
i )−1 (similarly to the given in Proposition 2.6.1). Then for an arbitrary

(x0, y0, u0) ∈ IR
∑q
i=1 ni × IRp × IRpq,

Step 1. Find xk+1

For all i ∈ {1, ..., q} do

find xk+1
i the optimal value of the problem

inf
x

[
fi(x) +

1

2
‖Aix−M−1

i yk + uki ‖2
Mi

]
end for

Step 2. Find yk+1 such that

yk+1 = yk − Σ(

q∑
j=1

(Aix
k+1
i ))
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Step 3. Find uk+1

For all i ∈ {1, ..., q} do

find uk+1
i such that

uk+1
i = −Aixk+1

i +M−1
i Σ(

q∑
i=1

(Aix
k+1
i ))

end for

Dual Separable Augmenting Lagrangian Algorithm

(DSALA)

For i ∈ {1, · · · , q − 1}, let Mi ∈ IRp×p symmetric positive definite. Set Σ =

(
∑q−1

i=1 M
−1
i )−1. Then for an arbitrary (x0, y0, u0) ∈ IR

∑q−1
i=1 ni × IRp × IRp(q−1)

Step 1. Find xk+1

For all i ∈ {1, ..., q − 1} do

find xk+1
i the optimal value of the problem

inf
x

[
fi(x) +

1

2
‖Aix−M−1

i yk + uki ‖2
Mi

]
end for

Step 2. Calculate wk+1 the optimal value of the problem

inf
x

[
fq(x) +

1

2
‖Aqx− Σ−1yk +

q−1∑
j=1

(Aix
k+1
i )‖2

Σ

]

Step 3. Find yk+1 such that

yk+1 = yk − Σ(

q−1∑
j=1

(Aix
k+1
i ) + Aqw

k+1)

Step 4. Find uk+1

For all i ∈ {1, ..., q − 1} do

find uk+1
i such that

uk+1
i = −Aixk+1

i +M−1
i Σ(

q−1∑
i=1

(Aix
k+1
i ) + Aqw

k+1)

end for
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Remark 3.2.1

• If Aq = 0, then DSALA becomes SALA applied to problem

inf
x

q−1∑
i=1

fi(xi)

s.t

q−1∑
i=1

Aixi = 0.

• For i ∈ {1, ..., q}, let fi : IRni → IR and g : IRp → IR proper lsc convex

functions, and Ai be p× ni matrix. We consider the Multi-block problem

min
x

q∑
i=1

fi(xi) + g(

q∑
i=1

Aixi)

also termed in [7] as Sharing problem, where fi is called local cost function

and g the shared objective.

It is clear that Multi-block problem includes SMCC problem by considering

g = δ{0}. Conversely, we can formulate the Multi-block problem as a SMCC

by making xq+1 =
∑q

i=1Aixi:

inf
x

q∑
i=1

fi(xi) + g(xq+1)

s.t

q∑
i=1

Aixi − xq+1 = 0.

So, by applying the SALA or DSALA algorithms to this last problem, we get

a splitting algorithm for Multi-block problem.

Example 3.2.1 (Numerical illustration for the sum of operators) We con-

sider the algorithms SALA and DSALA in order to solve the following constrained

problem

min
x1,x2,x3

〈[
1 0

0 2

]
x1, x1

〉
+

〈[
8 0

0 1

]
x2, x2

〉
+

〈[
5 0

0 7

]
x3, x3

〉

subject to [
1 −1

0 2

]
x1 +

[
3 4

2 1

]
x2 +

[
1 3

−1 5

]
x3 = 0

whose solution is x∗1 = x∗2 = x∗3 = 0.
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We consider, for i ∈ {1, · · · , q}, Mi = λI in SALA; and for j ∈ {1, · · · , q − 1,

Mj = λI in DSALA.

The graph in (fig 3.2) describes the relationship of parameter λ versus the nec-

essary number of iterations in order to get an approximation of the optimal value

with an error (‖xk1 − x∗1‖) less than 10−6, 10−25 and 10−50 respectively.

Figure 3.2: iteration vs parameter

3.3 Proximal separation into two sub-blocks

The algorithm PDA described in the first section of this chapter considers the proxi-

mal step of all family {fi}i=1,··· ,q in parallel processing. Unlike this algorithm, DPDA

separates the family into two sub-families or sub-blocks: one consisting of q−1 func-

tions, f1, · · · , fq−1, and the other consisting of fq. Then, the proximal step of each

function of sub-block {fi}i=1,··· ,q−1 is found in parallel processing and then, at a

linear combination of all these values, the proximal step of fq is found.

B. He and X.Yuan [25] considered a linear programming model and a corre-

sponding algorithm separating the problem into two adequate sub-blocks. They

then determinate the proximal step of all functions corresponding to one of these

sub-block in parallel processing and, using these values, determinate the proximal

step for all functions corresponding to the second sub-block in parallel processing

too.

We show in this section that this procedure can also be applied for general

setting by separating a given problem into two arbitrary sub-blocks. In practice, is

more adequate to separate into two sub-blocks taking into account the difficulty to

determinate their proximal steps.

65



3.3.1 The separable model with coupling variables

Let r and s be two positive numbers such that r + s = q and r ≥ s. We separate

the block of functions into two sub-blocks: the first one consisting of r functions

{fi}i=1,··· ,r and the second one consisting of s functions {fi+r}i=1,··· ,s, and the matri-

ces coupling these two sub-blocks: B1 and B2 of order n(q−1)×nr and n(q−1)×ns,
respectively, defined as

B1 =


In×n

C
. . .

C

In(r−s)×n(r−s)

 and B2 =


−C

. . .

−C
−In×n
−U


with C =

(
In×n In×n

)t
and U a n(r−s)×nmatrix such that U t =

(
In×n · · · In×n

)
.

Since V = ker
(
B1 B2

)
, then problem (3.1)-(3.2) can be equivalently formu-

lated as

inf
(x,z)

r∑
i=1

fi(xi) +
s∑
j=1

fj+r(zj) (3.3)

s.t B1x+B2z = 0. (3.4)

On the other hand, the diagonal structure of Bt
1B1 and Bt

2B2 allows to solve in

parallel processing the proximal step of each sub-block when the algorithm (2.41)-

(2.43) with V1 = 0 and V2 = 0, is applies to problem (3.3)-(3.4). Explicitly Bt
1B1

and Bt
2B2 are respectively equal to:

In×n
2In×n

. . .

2In×n
In(r−s)×n(r−s)

 and


2In×n

. . .

2In×n
ηIn×n


where η = r − s+ 1.

So, applying the algorithm (2.41)-(2.43) with V1 = 0, V2 = 0 and M = λ (which is

a slight variant of ADMM) to problem (3.3)-(3.4) by considering f(x) =
∑r

i=1 fi(xi)

and g(z) =
∑s

j=1 fj+r(zj), we get the following algorithm:

xk+1 = (∂f + λBt
1B1)−1(λBt

1B2z
k +Bt

1u
k)

zk+1 = (∂g + λBt
2B2)−1(λBt

2B1x
k+1 +Bt

2u
k)

uk+1 = uk + λ(B1x
k+1 +B2z

k+1)
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Since Bt
1B1 is diagonal, the calculation of x̃k+1 can be realized in parallel processing:

for i ∈ {1, · · · , r},

xk+1
i = (∂fi + λαiIn×n)−1(λ(Bt

1B2z
k)i + (Bt

1u
k)i).

Similarly, since Bt
2B2 is diagonal, the calculation of x̃k+1 is also realized in parallel

processing: for j ∈ {1, · · · , s},

zk+1
j = (∂fj+r + λαj+rIn×n)−1(λ(Bt

2B1x
k+1)j + (Bt

2u
k)j)

where {αi}i=1,··· ,q is defined as

αi =


1 if i ∈ {1, s+ 1, · · · , r},
2 if i ∈ {2, · · · , s, r + 1, · · · , q − 1},
r − s+ 1 if i = q.

(3.5)

Then we get the following algorithm.

Two Sub-blocks Proximal Decomposition algorithm

(2sb-PDA)

Set the finite sequence {αi}i=1,··· ,q previously defined and λ a positive number. Then

for an arbitrary (x0, z0, u0) ∈ IRrn × IRsn × IRn(q−1),

Step 1. Find xk+1

For all i ∈ {1, ..., r} do

if i = 1 then ξi = −zki , µi = uki , end if

if 2 ≤ i ≤ s then ξi = −zki−1 − zki , µi = uk2(i−1) + uk2i−1, end if

if i ≥ s+ 1 then ξi = −zks , µi = uki+s−1, end if

find xk+1
i the optimal value of the problem

inf
x

[
fi(x) +

λαi
2
‖x+ α−1

i ξi + (λαi)
−1µi‖2

]
end for

Step 2. Find zk+1

For all j ∈ {1, ..., s} do

if j ≤ s− 1 then ζj = −xk+1
i − xk+1

j+1 , νj = −uk2j−1 − uk2j, end if

if j = s then ζi = −
∑r

i=s x
k+1
i , νi = −

∑r
i=s u

k
i+s−1, end if

find zk+1
i the optimal value of the problem

inf
z

[
fr+j(z) +

λαr+j
2
‖z + α−1

j+rζj + (λαr+j)
−1νj‖2

]
end for
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Step 3. Find uk+1

For all i ∈ {1, ..., q − 1} do

if 1 ≤ i ≤ 2s− 2 then

ai = xk+1
(i−(i mod 2))/2+1, bi = −zk+1

(i+(i mod 2))/2 end if

If i ≥ 2s− 1 then

ai = xk+1
i−s+1, bi = −zk+1

s end if

Calculated uk+1
i such that

uk+1
i = uki + λ(ak+1

i + bk+1
i )

end for

3.3.2 The separable model with coupling constraints

Since SMCC can be formulated as a SMCV (DV
sm), we can get from the previous

algorithms given for the last model an splitting algorithm for the SMCC which

separates it into two sub-block problems: the first one corresponding to {fi}i=1,··· ,r

and the second one corresponding to {fr+j}j=1,··· ,s. Then, the proximal step of all

functions corresponding the first sub-block is obtained by parallel processing, and

then, using these values, the proximal step of the other functions is also obtained in

parallel processing.

So, the SMCC can also be formulated as

inf
(x,z)

r∑
i=1

(f ∗i ◦ Ati)(xi) +
s∑
j=1

(f ∗r+j ◦ Atr+j)(zj) (3.6)

s.t B1x+B2z = 0 (3.7)

where B1 and B2 are the matrices corresponding to expression (3.4).

Similarly to algorithm (2sb-PDA), applying the algorithm (2.41)-(2.43) with

V1 = 0, V2 = 0 and M = λ to this new formulation problem we get the follow-

ing algorithm called (2sb-SALA).

Two Sub-blocks Separable Augmenting Lagrangian Algorithm

(2sb-SALA)

Set the finite sequence {αi}i=1,··· ,q defined in (3.5) and λ a positive real number.

Then for an arbitrary (x0, z0, u0) ∈ IRrn × IRsn × IRn(q−1)

Step 1. Find xk+1

For all i ∈ {1, ..., r} do
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if i = 1 then ξi = −zki , µi = uki , end if

if 2 ≤ i ≤ s then ξi = −zki−1 − zki , µi = uk2(i−1) + uk2i−1, end if

if i ≥ s+ 1 then ξi = −zks , µi = uki+s−1, end if

find x̃k+1
i the optimal value of the problem

inf
x

[
fi(x) +

1

2λαi
‖Aix+ λξi + µi‖2

]
calculated xk+1 = −α−1

i ξi − (λαi)
−1µi − (λαi)

−1Aix̃
k+1
i

end for

Step 2. Find zk+1

For all j ∈ {1, ..., s} do

if j ≤ s− 1 then ζj = −xk+1
i − xk+1

j+1 , νj = −uk2j−1 − uk2j, end if

if j = s then ζi = −
∑r

i=s x
k+1
i , νi = −

∑r
i=s u

k
i+s−1, end if

find z̃k+1
i the optimal value of the problem

inf
z

[
fr+j(z) +

1

2λαr+j
‖Ar+jz + λζj + νj‖2

]
calculated xk+1 = −α−1

j+rζj − (λαr+j)
−1νj − (λαr+j)

−1Ar+j z̃
k+1
j

end for

Step 3. Find uk+1

For all i ∈ {1, ..., q − 1} do

if 1 ≤ i ≤ 2s− 2 then

ai = xk+1
(i−(i mod 2))/2+1, bi = −zk+1

(i+(i mod 2))/2 end if

If i ≥ 2s− 1 then

ai = xk+1
i−s+1, bi = −zk+1

s end if

Calculated uk+1
i such that

uk+1
i = uki + λ(ak+1

i + bk+1
i )

end for

3.4 Multi-block optimization problem

We consider the following problem

min
x=(x1,··· , xq)

q∑
i=1

fi(xi) + g(

q∑
i=1

Aixi) + s(x) (Psc)

where for i ∈ {1, ..., q}, fi : IRni → IR , g : IRp → IR and s : IRn 7→ IR (n =
∑q

i=1 ni)

are proper lsc convex functions, and Ai are matrices of order p× ni.
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By considering f : IRn → IR defined as f(x) =
∑q

i=1 fi(xi) and matrices K and

A of order p× pq and pq × n, respectively, defined by

K :=
(
Ip×p · · · Ip×p

)
and A :=

 A1

. . .

Aq

 ,

then (Psc) can be set as

min
x

f(x) + (g ◦K, s)

(
A

In×n

)
x.

For every i ∈ {1, ..., q}, set Mi an p × p symmetric positive definite matrix and

Qi an ni × ni symmetric positive definite matrix. We define the blocks diagonal

matrices M̂ = diag (M1, · · · ,Mq) and Q = diag (Q1, · · · , Qq).

We apply the algorithm (2.41)-(2.43) with V1 = 0 and V2 = 0, which is equivalent

to the scaling ADMM. So, in order to take advantage of the separability of ∂f we

consider the matrix of scaling defined as M = diag (M̂,Q).

xk+1 = (∂f +Q+ AtM̂A)−1(AtM̂zk1 +Qzk2 − Atuk1 − uk2) (3.8)

zk+1
1 = (Kt∂gK + M̂)−1(M̂Axk+1 + uk1) (3.9)

zk+1
2 = (∂s+Q)−1(Qxk+1 + uk2) (3.10)

uk+1
1 = uk1 + M̂(Axk+1 − zk+1

1 ) (3.11)

uk+1
2 = uk2 +Q(xk+1 − zk+1

2 ) (3.12)

Then using similar techniques described in Section 6 of Chapter 2, we get the

following algorithm called “Separable Multi-block for sum of three blocks

function (SMS3BF)”

(SMS3BF)

For every i ∈ {1, · · · , q}, set Mi and Qi symmetric positive definite matrices of

order p × p and ni × ni, respectively, and Σ = (
∑q

i=1M
−1
i )−1. Then for arbitrary

(x0, y0, z0, v̄0, u0) ∈ IRn × IRpq × IRn × IRp × IRn,

Step 1. Find xk+1

For all i ∈ {1, ..., q} do

find xk+1
i such that

xk+1
i = (∂fi +Qi + AtiMiAi)

−1(AtiMiy
k
i +Qiz

k
i − Ativ̄k − uki )

end for
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Step 2. Calculate wk+1

wk+1 = (∂g + Σ)−1(Σ

q∑
j=1

(Ajx
k+1
j )− v̄k)

Step 3. Find yk+1

For all i ∈ {1, ..., q} do

find yk+1
i such that

yk+1
i = Aix

k+1
i −M−1

i Σ(

q∑
j=1

(Ajx
k+1
j ) + wk+1).

end for

Step 4. Calculate sk+1

zk+1 = (∂s+Q)−1(Qxk+1 + uk)

Step 5. Calculate v̄k+1

v̄k+1 = v̄k + Σ(

q∑
j=1

(Ajx
k+1
j ) + wk+1).

Step 6. find uk+1

For all i ∈ {1, ..., q} do

find uk+1
i such that

uk+1
i = uki +Qi(x

k+1
i − zk+1

i )

end for

Remark 3.4.1 If s ≡ 0 in problem (Psc), then this problem becomes a multi-block

problem

min
x

q∑
i=1

fi(xi) + g

(
q∑
i=1

Aixi

)
which is treated in Section 6 of Chapter 2, considering B = −I. In that case, the

k-th iteration in Step 4 satisfies

Qzk+1 = Qxk+1 + uk

and hence from Step 6, we get uk+1
i = 0 for all i ∈ {1, ..., q}. So, the (k + 1)-th

iteration in Step 1, becomes

xk+2
i = (Ti+Qi+A

t
iDiAi)

−1(AtiDiy
k+1
i +Qix

k+1
i −Ativ̄k+1), zk+2 = xk+2 and uk+2 = 0

implying that the variables z and u in the algorithm turn out obsolete. The resulting

algorithm becomes equivalent to algorithm (PMA).
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3.4.1 Aplication to a stochastic problem

We consider a stochastic problem with finite scenarios, which can be reformulated

as a problem defined over a Euclidean linear space, having the same structure of

problem (Psc) considered at the beginning of this section. Then we apply (SMS3BF)

in order to obtain a splitting algorithm for such a stochastic problem.

Let consider a finite set Ξ of scenarios and a corresponding positive probability

function p. We also consider the linear space L consisting of all mapping from Ξ to

IRn := IRn1 × · · · × IRnT , and the following inner product related

〈X, Y 〉L =
∑
ξ∈Ξ

p(ξ)〈X(ξ), Y (ξ)〉 (3.13)

Set E := card(Ξ) and G := {1, · · · , T}. We consider the linear space IRnE :=

IRn1E × · · · × IRnTE, and the following related inner product

〈((xξt )ξ∈Ξ)t∈G, ((y
ξ
t )ξ∈Ξ)t∈G〉IRnE =

∑
ξ∈Ξ

p(ξ)〈(xξt )t∈G, (y
ξ
t )t∈G〉.

There is a relationship between IRnE and L through the following isomorphic map-

ping W : (IRnE, 〈·, ·〉IRnE) → (L, 〈·, ·〉L) such that for x := ((xξt )ξ∈Ξ)t∈G, the value

W (x) ∈ L satisfies

W (x)(ξ) = (xξ1, · · · , x
ξ
T ) for all ξ ∈ Ξ.

For each t ∈ G, we consider At, a partition of Ξ such that At+1 is a refinement of

At. The nonanticipativity subspace of L is defined as (see (1.3) in [46])

N := {X ∈ L : Xt is constant on each A ∈ At for t ∈ G}.

For t ∈ G and ξ ∈ Ξ, we consider Bξ
t an mξ × nt matrix and then C(ξ) :=

ker
(

[ Bξ
1 · · · Bξ

T ]
)

.

The following stochastic optimization problem is considered

min
X∈L

[
Eξ

T∑
t=1

gt(Xt(ξ), ξ) : s.t X ∈ N and
T∑
t=1

Bξ
tXt(ξ) = 0, ∀ξ ∈ Ξ

]
. (SP )

Reformulating this problem in the Euclidean linear space IRnE, we get

min
x=((xξt )ξ∈Ξ)t∈G

∑
ξ∈Ξ

p(ξ)
T∑
t=1

gt(x
ξ
t , ξ) +

∑
ξ∈Ξ

δ{0mξ}(
T∑
t=1

Bξ
t x

ξ
t ) + δW−1N (x)
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This last problem can be reformulated having the same structure of (Psc) considered

at the beginning of this section:

min
x=((xξt )ξ∈Ξ)t∈G

T∑
t=1

[∑
ξ∈Ξ

p(ξ)gt(x
ξ
t , ξ)

]
+ δ⊗

ξ∈Ξ{0mξ}(
T∑
t=1

Bt(x
ξ
t )ξ∈Ξ) + δW−1N (x) (3.14)

where

Bt :=

 Bξ1
t

. . .

BξE
t

 .

Since algorithm SMS3BF applied to last problem uses the proximal step of δW−1N

through the isomorphic mapping W , we get an equivalent expression for the general

resolvent of ∂δW−1N with respect to matrix Q := λdiag (Q1, · · · ,QT ), where Qt is

defined as

Qt :=

 p(ξ1)Int×nt
. . .

p(ξE)Int×nt

 .

Proposition 3.4.1 Given x = ((xξt )ξ∈Ξ)t∈G ∈ IRnE and M defined as before. Then

the resolvent value z := (∂δW−1N +Q)−1Q(x) can be calculated as follows: for every

t ∈ G and every A ∈ At,

zξt =
1∑

ξ′∈A

p(ξ′)

(∑
ξ′∈A

p(ξ′)xξt

)
for all ξ ∈ A.

Proof. Set Y ∈ L and PY = ProjNY . Then

〈Y − PY, η〉L = 0 for all η ∈ N

and hence

〈Q(W−1Y −W−1PY ),W−1η〉 = 0 for all η ∈ N .

Since W−1PY ∈ W−1N , we get

(∂δW−1N +Q)−1Q(W−1Y ) = W−1PY.

So, using the equivalent expression of PY given by Rockafellar and Wets [46], we

deduce the result.

We now apply algorithm SMS3BF considering for every t ∈ G, the parameter

matrices Qt = Qt and Mt = diag (p(ξ1)M̄ ξ1
t , · · · , p(ξE)M̄ ξE

t ), Then we obtain the

following algorithm, called “Time Scenarios Decomposition (TSD)”
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(TSD)

For every t ∈ G, ξ ∈ Ξ, set M̄ ξ
t a symmetric positive definite matrix. For every

ξ ∈ Ξ, set also Σξ = (
∑T

t=1(M̄ ξ
t )−1)−1 and p̄ =

∑
ξ∈Ξ mξ. Then for an arbitrary

(x0, y0, z0, v0, u0) ∈ IRnE × IRp̄T × IRnE × IRp̄ × IRnE,

Step 1. find xk+1

For all t ∈ {1, ..., T} and ξ ∈ Ξ do

find (xk+1)ξt such that

(xk+1)ξt =
(
gt(·, ξ) + λInt×nt + (Bξ

t )
tM̄ ξ

t B
ξ
t

)−1

(η)

where η = (Bξ
t )
tM̄ ξ

t B
ξ
t (y

k)ξt + (zk)ξt − p(ξ)−1Bξ
t (v̄

k)ξ − p(ξ)−1(uk)ξt

end for

Step 2. Calculate yk+1

For all t ∈ {1, ..., T} and ξ ∈ Ξ do

(yk+1)ξt = Bξ
t (x

k+1)ξt − (M̄ ξ
t )−1Σξ

(
T∑
i=1

Bξ
i (x

k+1)ξi

)
.

end for

Step 3. Calculate zk+1

For all t ∈ {1, ..., T} do

set A ∈ At

(zk+1)ξt =

(∑
ξ′∈A

p(ξ′)[(xk+1)ξ
′

t + p(ξ)−1(uk)ξ
′

t ]

)
/
∑
ξ′∈A

p(ξ′), ∀ξ ∈ A.

Step 4. Calculate v̄k+1

For all ξ ∈ Ξ do

(v̄k+1)ξ = (v̄k)ξ + p(ξ)Σξ

(
T∑
i=1

Bξ
i (x

k+1)ξi

)
.

end for

Step 5. Calculate uk+1

For all t ∈ {1, ..., T} and ξ ∈ Ξ do

(uk+1)ξt = (uk)ξt + p(ξ)[(xk+1)ξt − (zk+1)ξt ]

end for
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Chapter 4

A new splitting algorithm for

inclusion problems mixing a

composite monotone plus a

co-coercive operator

In this chapter we consider the following composite monotone inclusion:

0 ∈ S(x) + AtT (Ax) + C(x) (V ar)

where S : IRn −→−→ IRn and T : IRm −→−→ IRm are maximal monotone maps,

C : IRn → IRn is β−co-coercive with full domain and A an m × n matrix. Re-

garding this formulation, D. Davis and W. Yin’s [16] analyze the particular case

A = I (thus m = n). They reformulate (V ar) as a fixed-point equation with respect

to an appropriate average map with similar properties as the Douglas-Rachford map

considered for the sum of two maximal monotone maps (C = 0). In fact this new

map recovers the Douglas-Rachford map when C = 0.

Monotone inclusion problems with three operators have gained a recent increase

of interest in the community of splitting methods. It is motivated by many in-

verse problems in different fields like data analysis, image processing or machine

learning when parcimony is a challenge for very large data sets. Primal-dual split-

ting methods were proposed in the literature as extensions of the classical splitting

schemes for two operators, mainly the Douglas-Rachford family [31], which lead

to decomposing the corresponding proximal steps for each operator separately (see

[9, 12, 52, 13, 26, 16, 27, 6, 55, 30]).

The case C = 0, was studied in Chapter 2, where we have shown that the
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Douglas-Rachford map is recovered from (2.53) considering the associated lagrangian

map and a special matrix (see Remark 2.4.3). On the other hand, the case C 6= 0

and under mild assumption, we construct an average map with similar properties

as the Davis-Yin map (recovering it when A = I) using the same definition (2.53),

but considering a variant of the lagrangian map associated to (V ar) and a special

matrix. Then, we construct a generalized resolvent map defined in (2.6) deducing

from it new splitting algorithms in order to solve problem (V ar).

The structure of problem (V ar) is related to the variational formulation of the

minimization of separable convex functions:

Minimize f(x) + g(Ax) + h(x) (4.1)

where f : IRn 7→ ĪR and g : IRm 7→ ĪR are proper lower semi-continuous convex func-

tions, h : IRn 7→ IR is convex and ( 1
β
)-Lipschitz-differentiable, and A an m×n matrix.

Condat [13] considers problem (4.1) where under some regularity conditions it

can be equivalently written as the following inclusion problem(
0

0

)
∈

(
∂f(x) +∇h(x)

∂g∗(y)

)
+

(
0 At

−A 0

)(
x

y

)
. (V )

To solve such problem, the author applies the Forward-Backward method, getting

two algorithms described just below where, for simplicity, we fixed the relaxation

parameter ρ > 0 and without error term, termed for us CA1 and CA2:

Algorithm (CA1)
x̃k+1 = (τ∂f + In×n)−1(xk − τ∇h(xk)− τAtyk)

ỹk+1 = (σ∂g∗ + Im×m)−1(yk + σA(2x̃k+1 − xk))

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk)

and

Algorithm (CA2)
ỹk+1 = (σ∂g∗ + Im×m)−1(yk + σAxk)

x̃k+1 = (τ∂f + In×n)−1(xk − τ∇h(xk)− τAt(2ỹk+1 − yk))

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk)

The main difference between CA1 and CA2 is the parameter matrices chosen

in the Forward–Backward method. Choosing special parameter matrices and La-

grangian maps in our general setting, we get different variants of algorithms CA1
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and CA2. For example, a variant of CA1 is the recently algorithm YA proposed by

O’connor [40], a slight variant of algorithm PD3O proposed by Yan [55], in order to

solve model (4.1):

Algorithm (YA){
xk+1 = (τ∂f + In×n)−1(xk − τ∇h(xk)− τAtyk)

yk+1 = (σ∂g∗ + Im×m)−1(yk + σA(2xk+1 − xk + τ∇h(xk)− τ∇h(xk+1)))

Note that CA1 and YA differ on their second update and on the choose of parameter

ρ, considering ρ = 1 in the second algorithm. Through numerical experiment, Yan

[55] noticed that YA has more advantages than CA1 (considering ρ = 1).

Similarly, our variant algorithm of CA2 has the same advantage like YA re-

spect to CA1, ie. has large range of acceptable parameters ensuring convergence

and better numerical result.

In Chapter 2 we have proposed some splitting algorithms for the following sep-

arable optimization problem

min
(x,z)

[f(x) + g(z) : Ax+Bz = 0] (P0)

where f and g are convex and A and B two matrices of appropriated dimensions.

In practice (see for instance [55]) f and g have the form (k + h) where h is convex

differentiable and k not necessarily differentiable but with a tractable proximal step.

So, we need to propose an appropriate algorithm such that instead of finding the

value of (∂k+∇h+Q)−1 at a given point, where Q is a symmetric positive definite

matrix, the algorithm must use the proximal step of ∂k and the evaluation of ∇h,

separately, in oder to obtain a splitting structure.

So, we will assume that problem (P0) has the following form:

min
(x,z)

[f(x) + h1(x) + g(z) + h2(z) : Ax+Bz = 0]. (P )

where f and g are convex lsc functions, hi (i = 1, 2) is convex and ( 1
βi

)-Lipschitz-

differentiable, and A and B two matrices of order m×n and m×p, respectively. It is

clear that this problem includes problem (4.1) by considering B = −Ip×p and h2 = 0.

In Section 4.1, we analyze the case A injective (m ≥ n), constructing an average

map and a related splitting algorithm for solving (V ar). Then, in order to obtain

another algorithm switching the proximal steps of S and T with respect to algorithm

(4.4)-(4.7) found in this section, we construct an appropriated average map, getting

also ergodic and nonergodic convergence.
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The general case (A not necessarily injective) is analyzed in Section 4.2 by re-

formulating (V ar) as a problem preserving his original structure but corresponding

to an injective matrix. Then, applying the results of Section 4.1, we get two general

algorithms in this setting.

So, taking special parameter matrices intervening in the two previous general

algorithms, we get in Section 4.3 two new algorithms (Alg1) and (Alg2) closely re-

lated with Condat’s splitting algorithms (CA1) and (CA2). We show that (Alg1)

and (Alg2) can also be obtained from Davis-Yin algorithm [16]. The rate of con-

vergence of the two new algorithms is also analyzed.

In Section 4.4, we study problem (P ) by reformulating it in order to apply the

same procedure of Section 4.1 corresponding to injective matrix.

In Section 4.5, we apply the algorithm developed in Section 4.2 to a general

multi-block convex optimization problem.

Finally, in Section 4.6 a numerical example is given.

4.1 Matrix A injective

Problem (V ar) can be set as a composite monotone inclusions by considering the

sum of S and C as a unique map, which, similarly to the one given in [41], is

equivalent to the primal problem

Find (x, z) ∈ IRn×IRm such that

(
0

0

)
∈

(
S(x) + C(x)

T (z)

)
+

(
At

−I

)
N{0}(Ax−z)

where, as usual, NK(a) is the normal cone to set K at point a.

This problem is in turn equivalent to the following saddle-point inclusion problem

Find (x̄, z̄, ȳ) ∈ (IRn × IRm)× IRm such that 0 ∈ L(x̄, z̄, ȳ) (VL)

where L is the map defined on (IRn × IRm)× IRm as

L(x, z, y) :=

 S(x) + C(x)

T (z)

0

+

 0 0 At

0 0 −I
−A I 0


 x

z

y

 .

From [41] we know that the lagrangian map L allows us to find splitting algo-

rithms alternating between general proximal steps applied to S+C and T , separately.

In order to also split the general proximal map of S + C into the general proximal

map of S and the evaluation of C, we consider an alternative Lagrangian map which

considers S and C defined with different variables.
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TakeM an arbitrary m×m positive definite matrix. Since A is of full-rank, then

AtMA is invertible and hence, from he third row-block of expression L in (VL), we get

x̄ = (AtMA)−1AtMz̄. One deduces that the solution set of problem (VL), denoted

by sol (VL), coincides with the solution set of the following inclusion problem

Find (x̄, z̄, ȳ) ∈ (IRn × IRm)× IRm such that 0 ∈ L̂(x̄, z̄, ȳ) (VL̂)

where L̂ is the map defined on (IRn × IRm)× IRm as

L̂(x, z, y) :=

 S(x) + C((AtMA)−1AtMz)

T (z)

0

+

 0 0 At

0 0 −I
−A I 0


 x

z

y

 .

The maps S and T being defined on different variables, we will get an additional

separation of these maps by introducing an appropriate regularization map similarly

to the one given in Section 4 of [41].

4.1.1 The average map GL̂
Ŝ
: an appropriate regularization

map

First recall that the generalized resolvent operator associated with a maximal mono-

tone map T and a positive semi-definite linear map P is defined by JTP := (T+P )−1P

which is not necessarily defined on the whole space. Similarly, the corresponding

map GT
S := S(T + P )−1St where S satisfies P = StS, is not necessarily defined on

the whole space but has contractive properties under additional assumptions (see

Section 2.4 of Chapter 2).

Back to the Lagrangian map L̂ defined above, we take a symmetric positive

definite matrixM of order m×m and the matrices

P̂ =

 AtMA 0 At

0 0 0

A 0 M
−1

 and D̂ =
(
M

1
2A 0 M

− 1
2

)
,

which satisfy P̂ = D̂ tD̂. We define the generalized resolvent map

J L̂
P̂

:= (L̂+ P̂ )−1P̂

and then the map

GL̂
D̂

:= D̂(L̂+ D̂ tD̂)−1D̂ t.

It is clear that the set of fixed points of J L̂
P̂

and GL̂
D̂

are respectively sol (VL) and

D̂(sol (VL)) := {M
1
2Ax̄+M− 1

2 ȳ : −Atȳ ∈ S(x̄) + C(x̄), ȳ ∈ T (Ax̄)}.
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Also, by simple calculations we get

GL̂
D̂

= I − J̃T
M

+ J̃S
AtMA

[2J̃T
M
− I − C̃ ◦ J̃T

M
] (4.2)

where

J̃T
M

= M
1
2 (T +M)−1M

1
2 ,

J̃S
AtMA

= M
1
2A(S + AtMA)−1AtM

1
2 , and

C̃ = M
1
2A(AtMA)−1C(AtMA)−1AtM

1
2 .

Notice that C = 0 implies L̂ monotone and thereby the co-coercivity of GL̂
D̂

as

shown in expression just before of Proposition 2.4.1. If C 6= 0, the map GL̂
D̂

is still

co-coercive by making an additional condition on matrix M as shows the following

proposition :

Proposition 4.1.1 Let S : IRn −→−→ IRn and T : IRm −→−→ IRm be maximal monotone

maps, C : IRn → IRn a β−co-coercive function with full domain, and A an m × n
injective matrix. Assume that ‖(AtMA)−1‖ ∈ ]0, 2β[ . Then, GL̂

D̂
is α−average with

full domain, where α := 2β

4β−‖(AtMA)−1‖ < 1.

Proof. The fullness of the domain of GL̂
D̂

is deduced from the maximality of S and

T and the fullness of the domain of C.

From expression (4.2) the α−average of map GL̂
D̂

is deduced from Proposition

2.1 of Davis-Yin [16] taking into account that J̃T
M

and J̃S
AtMA

are both 1−co-coercive,

and 1
‖(AtMA)−1‖C̃ is β−co-coercive.

We note that the particular case A = I and M = γI in M
− 1

2 GL̂
D̂
M

1
2 correspond

to the average map associated to the sum of three maps defined in [16].

Remark 4.1.1 Using Proposition 2.4.1 the map GL̂
D̂

can also be deduced from the

average map associated to the sum of three maps defined in [16] applying to the

following equivalent problem of (V ar)

0 ∈ (M
1
2AS−1AtM

1
2 )−1(y)+M− 1

2TM− 1
2 (y)+M

1
2A(AtMA)−1C(AtMA)−1AtM

1
2 (y).

This equivalent problem is deducted as follows, first we note that problem (V ar) is

equal to the composite problem

0 ∈ S(x) + AtM
1
2

[
M− 1

2TM− 1
2 +M

1
2A(AtMA)−1C(AtMA)−1AtM

1
2

]
M

1
2A(x)

then the dual problem is equal to

0 ∈ −M
1
2AS−1(−AtM

1
2y)+

[
M− 1

2TM− 1
2 +M

1
2A(AtMA)−1C(AtMA)−1AtM

1
2

]−1

(y)

finally taking the dual again considering the last problem as sum of two map problem,

we obtained the desirable equivalent problem.
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4.1.2 Constructing the splitting algorithm

In connection with the resolvent operator J L̂
P̂

and a real positive parameter ρ, we

consider for an arbitrary point w0 ∈ dom J L̂
P̂

, the sequence {wk} defined by

wk+1 ∈ ρJ L̂
P̂

(wk) + (1− ρ)wk. (4.3)

Denoting wk := (xk, zk, yk) and w̃k+1 := (x̃k+1, z̃k+1, ỹk+1) = J L̂
P̂
wk, we get from

(4.3) that

z̃k+1 = (T +M)−1(yk +MAxk) (4.4)

ỹk+1 = yk +MAxk −Mz̃k+1 (4.5)

rk+1 = C((AtMA)−1AtMz̃k+1) (4.6)

x̃k+1 = (S + AtMA)−1
(
AtMz̃k+1 − Atỹk+1 − rk+1

)
(4.7)

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk) (4.8)

and

D̂wk+1 = ρGL̂
D̂

(D̂wk) + (1− ρ)D̂wk. (4.9)

It is worth to mention that {D̂wk} is the sequence generated by the fixed point

method corresponding to operator ρGL̂
D̂

+(1−ρ)I which is ρα−average if ρ ∈ ]0, α−1[

because GL̂
D̂

is α−average (see Proposition 4.1.1), and hence the sequence {D̂wk}
converges if sol (V ar) is nonempty.

The next proposition concerns the convergence of wk; its proof is similar to the

given in Section 2.4 of Chapter 2.

Proposition 4.1.2 With the same hypothesis given in Proposition 4.1.1, let ρ ∈
]0, α−1[ and assume that sol (V ar) is nonempty. Then for an arbitrary (x0, z0, y0) ∈
(IRn× IRp)× IRm, the sequence (xk, zk, yk) defined by the sequential update formulae

(4.4)− (4.8), converges to some element of sol (VL).

Proof. From the comments given just before this proposition, {D̂wk} converges to

some b ∈ sol (VL), which is a fixed point to GL̂
D̂

.

Now, from (4.3) and considering w̃ := (L̂+ P̂ )−1D̂tb, we get by using the trian-

gular inequality

‖wk+1 − w̃‖ ≤ ρ‖(L̂+ P̂ )−1D̂t(D̂wk)− w̃‖+ |1− ρ|‖wk − w̃‖.
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On the other hand, the map J L̂
P̂

being continuous, (L̂ + P̂ )−1D̂t = JTP D̂
+ is also

continuous, where D̂+ denotes the Moore–Penrose pseudo-inverse matrix of D̂, and

hence the convergence of {wk} to w̃ is deduced.

Remark 4.1.2 We note that the sequence zk in (4.4)-(4.8) is only used in the final

step of the algorithm, so we can discard it and consider the final step as

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk).

Applying (4.4)-(4.8) to the optimization problem (4.1), we get the following

sequence:

z̃k+1 = argmin

{
g(z) +

1

2
‖z −M−1yk − Axk‖2

M

}
(4.10)

ỹk+1 = yk +MAxk −Mz̃k+1 (4.11)

r̃k+1 = A(AtMA)−1∇h((AtMA)−1AtMz̃k+1) (4.12)

x̃k+1 = argmin

{
f(x) +

1

2
‖Ax− z̃k+1 +M−1ỹk+1 + r̃k+1‖2

M

}
(4.13)

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk). (4.14)

4.1.3 Switching the proximal step

Applying the forward-backward method to a lagrangian inclusion problem (V), Con-

dat [13] obtains two splitting algorithms CA1 and CA2 corresponding to two ap-

propriated parameter matrices. The main difference between these algorithms is the

order of action of the proximal steps.

In the same manner, we present an algorithm switching the order of action

of the proximal steps regarding algorithm (4.4)–(4.8). For this purpose, it is not

only necessary to find an appropriate matrix but also consider another alternative

Lagrangian map.

For a given m × m positive definite matrix M (similarly to the given at the

beginning of this section), we consider the map L defined on (IRn × IRm)× IRm as

L(x, z, y) :=

 S(x)

T (z) +MA(AtMA)−1C(x)

0

+

 0 0 At

0 0 −I
−A I 0


 x

z

y


whose set of their zeroes is exactly

{(x∗,MA(AtMA)−1C(x∗) + y∗, z∗) : (x∗, y∗, z∗) ∈ sol (VL)}.
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Note that when C ≡ 0, this new Lagrangian coincides with Lagrangian L̂ corre-

sponding to problem (VL̂) defined at the beginning of this section.

Analogously to the one given in Subsection 4.1.1, we define JL
P

and GL
D

corre-

sponding to matrices

P =

 0 0 0

0 M −I
0 −I M−1

 and D =
(

0 M
1
2 −M− 1

2

)
,

which satisfies P =DtD. It follows that

GL
D

= I − J̃S
AtMA

+ J̃T
M

[2J̃S
AtMA

− I − C̃ ◦ J̃S
AtMA

] (4.15)

where J̃T
M

, J̃S
AtMA

and C̃ are defined just after of expression (4.2).

We note that the main difference between GL
D

and GL̂
D̂

(the last one defined in

(4.2)) is the switching position of J̃T
M

and J̃S
AtMA

in their expressions. So, under the

same conditions giving in Proposition 4.1.1, we get that GL
D

is also α−average.

The fixed point iteration method applied to JL
P

generates the following sequences

x̃k+1 = (S + AtMA)−1(AtMzk − Atyk) (4.16)

ỹk+1 = yk +MAx̃k+1 −Mzk (4.17)

rk+1 = MA(AtMA)−1C(x̃k+1) (4.18)

z̃k+1 = (T +M)−1
(
MAx̃k+1 + ỹk+1 − rk+1

)
(4.19)

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk). (4.20)

We note that the main difference between this algorithm and the one of (4.4)-

(4.8) is the order position of the (general) proximal step of S and T .

Remark 4.1.3 Briceño [8] has analyzed the particular case A = I and T = NV
where V is a linear sub-space of a Hilbert space H. He proposed two alternative

methods where the first one was obtained through the composition of two special

average maps, and the other one through the forward-backward method applied to

the sum problem corresponding to the partial inverse of map S with respect to V and

a special co-coercive map. The considered model is

Find x ∈ H such that 0 ∈
m∑
i=1

Si(x) + C(x) (Sv)
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where for i ∈ {1, · · · ,m}, Si is maximal monotone and C co-coercive, all defined

on H. The aforementioned algorithms were applied to an appropriate reformulation

of this model. Considering H = IRn, an alternative reformulation of problem (Sv)

is

Find x ∈ IRn such that 0 ∈ S1(x) +DtT (Dx) + C(x) (RSv)

where T := (S2, · · · ,Sm) and D is an n(m − 1) × n matrix defined by D =

(In×n · · · In×n)t. Notice that problem (RSv) has the same structure as model (V ar)

considered at the beginning of this chapter, when D is injective. So we can ap-

ply algorithm (4.4)-(4.8) or his switched version (4.16)-(4.20), getting in both cases

splitting algorithms by considering M = λI. These splitting algorithms combine

proximal steps on each Si with the forward step on C, because DtD = (m− 1)In×n.

4.1.4 Rate of Convergence

This part is dealing with the rate of convergence of algorithm (4.10)−(4.14) . In this

direction, the next proposition gives an upper bound estimation of the saddle-point

gap of optimization problem (4.1) defined in the introduction of this chapter.

Proposition 4.1.3 With the same notations as before and considering w = (x, z, y) ∈
dom (f)× dom (g)× IRm, the following inequality holds:

‖wk − w‖2
P̂
− γ‖wk+1 − wk‖2

P̂
− ‖wk+1 − w‖2

P̂
≥ 2ρ

[
l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1)

]
where γ = 1

ρ

[
2− ρ− ‖(A

tMA)−1‖
β

]
and

l(x, z, y) = f(x) + h(x) + g(z) + 〈y, Ax+Bz〉.

Proof. Since w̃k+1 = J L̂
P̂
wk, one has L̂(w̃k+1) ∈ P̂ (wk − w̃k+1) and hence

L′(w̃k+1) ∈ P̂ (wk − w̃k+1)−

 ∇h(ẑk+1)

0

0


where L′ is L without the term C, and ẑk+1 = (AtMA)−1AtMz̃k+1. Note that

L′ = (∂x,zl
′)× (∂y[−l′]), where

l′(x, z, y) = f(x) + g(z) + 〈y, Ax− z〉.

From Prop. 3 given in [41] and denoting w := (x, z, y) ∈ dom (l), we get〈
w̃k+1 − w, P̂ (wk − w̃k+1)

〉
−
〈
x̃k+1 − x,∇h(ẑk+1)

〉
≥ l′(x̃k+1, z̃k+1, y)−l′(x, z, ỹk+1).

(4.21)
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On the other hand, since h is convex and β−1−Lipschitz differentiable, we have

1

2β
‖ẑk+1 − x̃k+1‖2 + 〈∇h(ẑk+1), x̃k+1 − ẑk+1〉 ≥ h(x̃k+1)− h(ẑk+1)

and

h(x) ≥ h(ẑk+1) + 〈∇h(ẑk+1), x− ẑk+1〉.

Then, summing the three last inequalities we get〈
w̃k+1 − w, P̂ (wk − w̃k+1)

〉
+

1

2β
‖ẑk+1 − x̃k+1‖2 ≥ l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1).

(4.22)

We now find an appropriate upper bound for 1
2β
‖ẑk+1 − x̃k+1‖2. From the defi-

nition of GL̂
D̂

we have

D̂w̃k+1 = GL̂
D̂

(D̂wk) = D̂wk −M
1
2 z̃k+1 +M

1
2Ax̃k+1

and hence by using wk+1 = ρw̃k+1 + (1− ρ)wk we get

1

ρ
D̂(wk+1 − wk) = D̂(w̃k+1 − wk) =M

1
2Ax̃k+1 −M

1
2 z̃k+1. (4.23)

Since

ẑk+1 − x̃k+1 = (AtMA)−1AtM
1
2 [M

1
2 z̃k+1 −M

1
2Ax̃k+1]

we get, from (4.23), the desirable appropriate upper bound

1

2β
‖ẑk+1− x̃k+1‖2 ≤ ‖(A

tMA)−1‖
2β

‖1

ρ
D̂(wk+1−wk)‖2 =

‖(AtMA)−1‖
2βρ2

‖wk+1−wk‖2
P̂
.

On the other hand, from the symmetry of matrix P̂ , it holds

2ρ
〈
w̃k+1 − w, P̂ (wk − w̃k+1)

〉
= ‖wk − w‖2

P̂
− 2− ρ

ρ
‖wk+1 − wk‖2

P̂
− ‖wk+1 − w‖2

P̂
.

So, replacing the two last expressions into (4.49), we get the desired inequality.

Upper bound of fixed-point residual

SetM and ρ satisfying the hypothesis of Proposition 4.1.2, i.e,

α−1 = 2− ‖(A
tMA)−1‖
2β

> ρ > 0.

With this condition ρGL̂
D̂

+ (1− ρ)I is ρα−average and hence from (4.9), we have

‖D̂wk − D̂w∗‖2 − θ‖D̂wk+1 − D̂wk‖2 − ‖D̂wk+1 − D̂w∗‖2 ≥ 0 (4.24)
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where θ = 1
ρ

[
2− ρ− ‖(A

tMA)−1‖
2β

]
> 0 and w∗ ∈ sol (VL).

Then using similar argument given in Section 2.5.1 of Chapter 2, we get that

‖D̂wk − D̂wk−1‖2 ≤ 1

kθ
‖D̂w0 − D̂w∗‖2 (4.25)

and ∥∥∥∥∥ 1

N

N∑
k=1

(D̂wk − D̂wk−1)

∥∥∥∥∥
2

≤ 4

N2
‖D̂w0 − D̂w∗‖2. (4.26)

These two relations can also be deduced respectively from Theorem 1 “Notes on

Theorem 1” and Theorem 2 given in [15].

Bounding the saddle-point gap

We consider the following ergodic sequences defined for N ≥ 1 as

xN :=
1

N

N∑
k=1

x̃k, zN :=
1

N

N∑
k=1

z̃k and yN :=
1

N

N∑
k=1

ỹk.

We get the following result

Theorem 4.1.1 With the same notations as before. Set M and ρ satisfying

2− ‖(A
tMA)−1‖
β

≥ ρ > 0.

The following rate of convergence are deduced:

• Ergodic Convergence: for any w = (x, z, y) ∈ dom (f)× dom (g)× IRm,

l(xk, zk, y)− l(x, z, yk) ≤
1

2ρk
‖D̂w0 − D̂w‖2. (4.27)

• Nonergodic Convergence: for any w∗ = (x∗, z∗, y∗) ∈ sol (VL),

l(x̃k+1, z̃k+1, y∗)− l(x∗, z∗, ỹk+1) ≤
(

α1√
k + 1

+
α2

k + 1

)
‖D̂w0− D̂w∗‖2 (4.28)

where

α1 =
1 + |1− ρ|
ρ2
√
θ

and α2 =
‖(AtMA)−1‖

2βρ2θ
.
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Proof. From Proposition 4.1.3 we get

‖wk − w‖2
P̂
− ‖wk+1 − w‖2

P̂
≥ 2ρ

[
l(x̃k+1, z̃k+1, y)− l(x, z, ỹk+1)

]
since 2 − ‖(AtMA)−1‖

β
≥ ρ > 0. Summing over k = 0, · · · , N − 1, and applying the

Jensen’s inequality to the convex functions l(·, ·, y) − l(x, z, ·) for arbitrary fixed

element (x, z, y) ∈ dom (f) × dom (g) × IRm, where l is the Lagrangian function

defined in Proposition 4.1.3, the desired ergodic convergence is deduced.

Regarding the nonergodic convergence, for w∗ ∈ sol (VL) and considering w = w∗

in (4.3.1), we get〈
w̃k+1 − w∗, P̂ (wk − w̃k+1)

〉
+
‖(AtMA)−1‖

2βρ2
‖wk+1−wk‖2

P̂
≥ l(x̃k+1, z̃k+1, y∗)−l(x∗, z∗, ỹk+1)

and hence, from the Cauchy-Schwarz inequality and (4.9), we obtain

1

ρ
‖w̃k+1−w∗‖P̂‖w

k+1−wk‖P̂+
‖(AtMA)−1‖

2βρ2
‖wk+1−wk‖2

P̂
≥ l(x̃k+1, z̃k+1, y∗)−l(x∗, z∗, ỹk+1).

(4.29)

On other hand, from (4.9) and since {‖D̂wk+1− D̂w∗‖} is non increasing, we get

‖GL̂
D̂
D̂wk−D̂w∗‖ = ‖1

ρ
(D̂wk+1−D̂w∗)+(1−1

ρ
)(D̂wk−D̂w∗)‖ ≤ 1 + |1− ρ|

ρ
‖D̂w0−D̂w∗‖.

So, replacing this last expression and inequality (4.25) in expression (4.29), we

deduce the desired nonergodic convergence.

Constraint violations

Following the same arguments given in the proof of Theorem 2.5.2 of Chapter 2, we

get the following result.

Theorem 4.1.2 With the same notations as before. Set M and ρ satisfying

2− ‖(A
tMA)−1‖
2β

> ρ > 0.

For any w∗ ∈ sol (VL), the following rate of convergence are obtained:

• Ergodic Convergence:

‖Axk − zk‖M ≤
2

kρ
‖D̂w0 − D̂w∗‖.

• Nonergodic Convergence:

‖Ax̃k − z̃k‖M ≤
1

ρ
√
kθ
‖D̂w0 − D̂w∗‖.
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Linear convergence

In the case when A = I (sum of three maps problem), D. Davis and Yin [16]

got a linear convergence under additional regularity condition (co-coercive, strong

montone or lipschitz properties) over the monotone maps. In the case when matrix

A is injective, since the map GL̂
D̂

can be obtained from Davis-Yin map associated

to a sum of three maps problem (see remark 4.1.1), and noting that if S γ−strong

monotone then (M
1
2AS−1AtM

1
2 )−1 is γ

‖AtMA‖−strong monotone and if T is θ−co-

coercive then M− 1
2TM− 1

2 is θ
‖M‖−co-coercive. We deduce the linear convergence of

algorithm (4.4)-(4.8) and (4.16)-(4.20), if we consider the additional hypothesis: S

strong monotone and T is co-coercive.

4.2 The general case on matrix A

We now consider problem (V ar) without assuming matrix A injective. In order to

cope with this rank deficiency, we reformulate the problem as

0 ∈ S(x) +
(
AtM

1
2 V

1
2

)[ M− 1
2TM− 1

2

0

](
M

1
2Ax

V
1
2x

)
+ C(x) (V ar1)

where M and V are two symmetric matrices of order m×m and n×n, respectively,

with V positive semi-definite and M positive definite.

It is clear that matrix

(
M

1
2A

V
1
2

)
is injective if and only if AtMA+ V is invert-

ible. So, applying the algorithm described in Section 4.1 for matrix M = I we get

a splitting algorithm for problem (V ar) in the general setting.

It is important to note that formulation (V ar1) is motivated by the optimization

problem defined in (4.1). Indeed, using the same notations given at the end of the

first section of Chapter 1, problem (4.1) can be formulated as

min
(x,z1,z2)∈F

f(x) + h(x) + (g, 0)(z1, z2) (•)

where F is the set of all triples (x, z1, z2) satisfying(
M

1
2A

V
1
2

)
x+

(
−M 1

2 0

0 −I

)(
z1

z2

)
= 0.

It is clear that the optimal solution set of problem (•) consists of all (x,Ax, V
1
2x),

where x is an optimal solution of problem (4.1).
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Notice that problem (•) has the same structure as problem (P0). Indeed, by

taking f1(x) = f(x) + h(x) and f2 = (g, 0) and the matrices

B1 =

(
M

1
2A

V
1
2

)
and B2 =

(
−M 1

2 0

0 −I

)
,

the dual variational formulation of problem (•) consists in finding a zero of the sum

of two composite maps consisting of

−

(
M

1
2A

V
1
2

)
(∂f +∇h)−1

(
−
(
AtM

1
2 V

1
2

))

and

K := −

(
−M 1

2 0

0 −I

)[
∂g

0

]−1(
−

(
−M 1

2 0

0 −I

))
.

Then the dual problem of this sum problem is

0 ∈ ∂f(x) +∇h(x) +
(
AtM

1
2 V

1
2

)
K−1

(
M

1
2Ax

V
1
2x

)
.

Since K−1 has the following expression

K−1 =

(
M− 1

2 0

0 I

)[
∂g

0

](
M− 1

2 0

0 I

)
=

[
M− 1

2∂gM− 1
2

0

]
,

then the last inclusion problem can be set as

0 ∈ ∂f(x) +
(
AtM

1
2 V

1
2

)[ M− 1
2∂g(x)M− 1

2

0

](
M

1
2Ax

V
1
2x

)
+∇h(x).

4.2.1 The main algorithm for non injective operators

Like to map L̂ and matrix D̂ corresponding to problem (V ar), we denote respectively

by L̂′ and D̂′ the map and matrix corresponding to problem (V ar1). It is clear that
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L̂′ is defined on (IRn × IRm × IRn)× (IRm × IRn) and its value is

L̂′(x, z1, z2, y1, y2) =


S(x) + C((AtMA+ V )−1(AtM

1
2 z1 + V

1
2 z2))

M− 1
2TM− 1

2 (z1)

0z2
0y1

0y2



+


0 0 0 AtM

1
2 V

1
2

0 0 0 −I 0

0 0 0 0 −I
−M 1

2A I 0 0 0

−V 1
2 0 I 0 0




x

z1

z2

y1

y2

 .

The set of zeroes of L̂′ is

{(x̄,M
1
2 z̄, V

1
2 x̄,M− 1

2 ȳ, 0y2) : (0x, 0z, 0y) ∈ L(x̄, z̄, ȳ)},

where 0w denotes the zero vector of the w−space.

On the other hand, the corresponding map defined in (4.2) associated with L̂′ is

denoted by GL̂′

D̂′
which applies IRm × IRn into itself and whose value at (u, x) is u− J̃Tu+M

1
2AJ̃S

[
V

1
2x+ AtM

1
2 (2J̃Tu− u)− C̃(V

1
2x+ AtM

1
2 J̃Tu)

]
V

1
2 J̃S

[
V

1
2x+ AtM

1
2 (2J̃Tu− u)− C̃(V

1
2x+ AtM

1
2 J̃Tu)

] 
where

J̃T = M
1
2 (T +M)−1M

1
2 , J̃S = (S + V + AtMA)−1 and C̃ = C(AtMA+ V )−1.

Set r = ‖(V + AtMA)−1‖. From Proposition 4.1.1, GL̂′

D̂′
is 2β

4β−r−average with

full domain, if r ≤ 2β.

Applying the algorithm described in (4.4)-(4.8), we get that

z̃k+1
1 = M

1
2 (T +M)−1M

1
2 (yk1 +M

1
2Axk)

z̃k+1
2 = yk2 + V

1
2xk

ỹk+1
1 = yk1 +M

1
2Axk − z̃k+1

1

ỹk+1
2 = yk2 + V

1
2xk − z̃k+1

2

rk+1 = C((AtMA+ V )−1(AtM
1
2 z̃k+1

1 + V
1
2 z̃k+1

2 ))

x̃k+1 = (S + AtMA+ V )−1
(
AtM

1
2 z̃k+1

1 + V
1
2 z̃k+1

2 − AtM
1
2 ỹk+1

1 − V
1
2 ỹk+1

2 − rk+1
)
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(xk+1, yk+1
1 , yk+1

2 ) = ρ(x̃k+1, ỹk+1
1 , ỹk+1

2 ) + (1− ρ)(xk, yk1 , y
k
2).

Notice that ỹk+1
2 = 0, and hence, by considering y0

2 = 0, we get yk2 = 0, which

implies in particular z̃k+1
2 = V

1
2xk. So, by denoting

z̃k+1 = M− 1
2 z̃k+1

1 , ỹk+1 = M
1
2 ỹk+1

1 and yk = M
1
2yk1 ,

we deduce from the previous sequences our main algorithm termed “Generalized

splitting algorithm for three operators (GSA3O)”:

(GSA3O)

z̃k+1 = (T +M)−1(yk +MAxk) (4.30)

ỹk+1 = yk +MAxk −Mz̃k+1 (4.31)

rk+1 = C((V + AtMA)−1(V xk + AtMz̃k+1)) (4.32)

x̃k+1 = (S + V + AtMA)−1
(
V xk + AtMz̃k+1 − Atỹk+1 − rk+1

)
(4.33)

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk). (4.34)

We finally deduce the following proposition directly from Proposition 4.1.2.

Proposition 4.2.1 Assume that V ∈ IRn×n and M ∈ IRm×m are symmetric, with

V positive semi-definite and M positive definite, such that V + AtMA is positive

definite and satisfying that ‖(V + AtMA)−1‖ ∈ ]0, 2β[ . Let ρ ∈ ]0, α−1[ be where

α := 2β
4β−‖(V+AtMA)−1‖ . If sol (V ar) is nonempty, then for an arbitrary (x0, y0) ∈

IRn × IRm, the sequence (xk, yk) in (4.30)-(4.34) holds that (xk, Axk, yk) converges

to some element of sol (VL).

Similarly to expression (4.9), the sequence {ζk := (xk, yk)} generated by algo-

rithm (GSA3O), satisfies the following relation

Q̂ζk+1 = ρGL̂′

D̂′
(Q̂ζk) + (1− ρ)Q̂ζk (4.35)

where

Q̂ =

(
M

1
2A M− 1

2

V
1
2 0

)
.
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4.2.2 Switching the proximal step

In a similar way described for the injective context, we get now an algorithm where

the order position of the proximal steps corresponding to maps S and T in algorithm

GSA3O are switched. In order to do that, like to mapL and matrixD corresponding

to problem (V ar), we denote respectively by L′ and D′ the map and matrix for

problem (V ar1). Then, the map GL
D

defined in (4.15) is replaced by GL
′

D′
which

applies IRm × IRn into itself whose value at (u, x) is(
u−M 1

2AĴS(x, u) + J̃T
[
2M

1
2AĴS(x, u)− u−M 1

2AĈ(ĴS(x, u))
]

V
1
2 ĴS(x, u)− V 1

2 Ĉ(ĴS(x, u))

)
where

J̃T = M
1
2 (T +M)−1M

1
2 , ĴS = (S + V + AtMA)−1 ◦

(
V

1
2 AtM

1
2

)
and

Ĉ = (AtMA+ V )−1C.

By setting r = ‖(V + AtMA)−1‖, we deduce from Proposition 4.1.1, that GL
′

D′
is

2β
4β−r−average with full domain, if r ≤ 2β.

Now applying algorithm (4.16)-(4.20) for problem (V ar1), we get the following

chain of sequences:

x̃k+1 = (S + AtMA+ V )−1(AtM
1
2 zk1 + V

1
2 zk2 − AtM

1
2yk1 − V

1
2yk2)

ỹk+1
1 = yk1 +M

1
2Ax̃k+1 − zk1

ỹk+1
2 = yk2 + V

1
2 x̃k+1 − zk2

rk+1
1 = M

1
2A(AtMA+ V )−1C(x̃k+1)

rk+1
2 = V

1
2 (AtMA+ V )−1C(x̃k+1)

z̃k+1
1 = M

1
2 (T +M)−1M

1
2 (M

1
2Ax̃k+1 + ỹk+1

1 − rk+1
1 )

z̃k+1
2 = V

1
2 x̃k+1 + ỹk+1

2 − rk+1
2

(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk).

So, by defining

r̃k+1 = (AtMA+ V )−1C(x̃k+1) and rk+1 = ρr̃k+1 + (1− ρ)rk

and assuming for arbitrary points x0, r0, y0
2 and z0

2 ,

V
1
2 z0

2 − V
1
2y0

2 = V x0 − V r0,
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we get applying the mathematical induction (k ≥ 1)

V
1
2 zk2 − V

1
2yk2 = ρ(V x̃k − V

1
2 rk2) + (1− ρ)(V xk−1 − V rk−1)

= V xk − V rk.

Hence, by denoting

zk := M− 1
2 zk1 , z̃k+1 := M− 1

2 z̃k+1
1 , yk := M

1
2yk1 and ỹk+1 := M

1
2 ỹk+1

1 ,

we deduce from the previous chain of sequences our desired new algorithm:

x̃k+1 = (S + AtMA+ V )−1(V xk + AtMzk − Atyk − V rk) (4.36)

ỹk+1 = yk +MAx̃k+1 −Mzk (4.37)

r̃k+1 = (AtMA+ V )−1C(x̃k+1) (4.38)

z̃k+1 = (T +M)−1(MAx̃k+1 + ỹk+1 −MAr̃k+1) (4.39)

(xk+1, zk+1, yk+1, rk+1) = ρ(x̃k+1, z̃k+1, ỹk+1, r̃k+1) + (1− ρ)(xk, zk, yk, rk) (4.40)

Notice that the sequence {ξk = (xk − rk, zk, yk)} corresponding to the sequence

(4.36)-(4.40), satisfies the following relation

Qξk+1 = ρGL
′

D′
(Qξk) + (1− ρ)Qξk (4.41)

where

Q =

(
0 M

1
2 −M− 1

2

V
1
2 0 0

)
.

4.3 A variant of primal–dual Condat’s algorithms

In this section, considering special parameter matrices M and V corresponding to

algorithms (4.36)-(4.40) and (4.30)-(4.34), we deduce two algorithms which can be

seen as variants of the primal-dual Condat’s algorithms CA1 and CA2 [13] and

their respective construction relationship. We also show the relationship of these

new algorithms with Davis-Yin’s algorithm, and also their ergodic and nonergodic

rate of convergence.

Applying (4.36)-(4.40) considering M = σIm×m and V = τ−1In×n − σAtA, we

get the following sequence:

x̃k+1 = (S + τ−1In×n)−1((τ−1In×n − σAtA)(xk − rk) + σAtzk − Atyk)

ỹk+1 = yk + σAx̃k+1 − σzk

r̃k+1 = τC(x̃k+1)

z̃k+1 = (T + σIm×m)−1(σAx̃k+1 + ỹk+1 − σAr̃k+1)
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(xk+1, zk+1, yk+1, rk+1) = ρ(x̃k+1, z̃k+1, ỹk+1, r̃k+1) + (1− ρ)(xk, zk, yk, rk).

Defining the new variables ηk = σAxk + yk − σzk − σArk and η̃k = σAx̃k + ỹk −
σz̃k − σAr̃k, we obtain the following algorithm

Algorithm (Alg1)

x̃k+1 = (τS + In×n)−1(xk − τAtηk − rk)

r̃k+1 = τC(x̃k+1)

η̃k+1 = (σT−1 + Im×m)−1(ηk + σA(2x̃k+1 − xk) + σArk − σAr̃k+1)

(xk+1, ηk+1, rk+1) = ρ(x̃k+1, η̃k+1, r̃k+1) + (1− ρ)(xk, ηk, rk)

This algorithm is indeed a variant of CA1 for solving optimization problem (4.1).

In particular when ρ = 1, we recover YA algorithm [55] which is described in the

introduction of this chapter.

On the other hand, applying (4.30)-(4.34) with M = σIm×m and V = τ−1In×n−
σAtA, we get the following sequence:

z̃k+1 = (T + σIm×m)−1(yk + σAxk)

ỹk+1 = yk + σAxk − σz̃k+1

rk+1 = C((τ−1In×n − σAtA)τxk + τσAtz̃k+1))

x̃k+1 = (S + τ−1In×n)−1
(
(τ−1In×n − σAtA)xk + σAtz̃k+1 − Atỹk+1 − rk+1

)
(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk).

Then using that (σT−1 + Im×m)−1 = I −σ(T +σIm×m)−1, and eliminating the term

z̃k+1, we obtain the following algorithm:

Algorithm (Alg2)

ỹk+1 = (σT−1 + Im×m)−1(yk + σAxk)

rk+1 = τC(xk − τAt(ỹk+1 − yk))

x̃k+1 = (τS + In×n)−1(xk − τAt(2ỹk+1 − yk)− rk+1)

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk).

So, by considering σ, τ and ρ positive parameters such that στ‖A‖2 ≤ 1, τ < 2β

and ρ < 4β−τ
2β

, then applying Proposition 4.2.1, we deduce the convergence of se-

quence (xk, Axk, yk) to an optimal solution of the lagrangian problem corresponding

to problem (4.1).

With respect to the convex problem (4.1), algorithm Alg2 is a variant of CA2

by changing ∇h(xk) by ∇h(xk − τAt(ỹk+1 − yk)).
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4.3.1 Relationship with the Condat’s method

When C = 0, algorithms Alg1 and Alg2 are exactly CA1 and CA2 respectively.

Otherwise, when C 6= 0, they are different. We consider the lagrangian function

defined as

l′(x, y) = f(x)− g∗(y) + 〈Ax, y〉 (4.42)

and its corresponding maximal monotone map L′ defined on IRn × IRm as

L′(x, y) := (∂xl
′)× (∂y[−l′]) =

(
∂f(x)

∂g∗(y)

)
+

(
0 At

−A 0

)(
x

y

)
. (4.43)

The next inequalities which are immediately deduced by definition will be used

later in Proposition 4.3.1.

Lemma 4.3.1 For any (d, d∗), (d̄, d̄∗) ∈ graph (L′), considering d = (x, y) and d̄ =

(x̄, ȳ), it holds

〈d− d̄, d∗〉 ≥ l′(x, ȳ)− l′(x̄, y) ≥ 〈d− d̄, d̄∗〉.

These inequalities are still verified if we consider (d, d∗) ∈ graph (L′) and d̄ ∈
dom (f) × dom (g∗), for the first inequality; and (d̄, d̄∗) ∈ graph (L′) and d ∈
dom (f)× dom (g∗), for the second inequality.

Notice that algorithms CA1 and CA2 generate the sequences wki = (xk, yk) and

w̃ki = (x̃k, ỹk), for i = 1, 2, respectively, which satisfy the following inclusion

L′(w̃k+1
i ) + Pi(w̃

k+1
i − wki ) 3 −

(
∇h(xk)

0

)

where P1 and P2 are matrices defined as

P1 =

(
1
τ
I −At

−A 1
σ
I

)
and P2 =

(
1
τ
I At

A 1
σ
I

)
. (4.44)

As showed in the proof of Theorem 2 regarding the relaxed primal-dual algorithm

given by Chambolle-Pock [10], it holds that

2ρ[L(x̃k+1, y)− L(x, ỹk+1)] ≤ ‖wk − w‖2
Pi
− ‖w̃k+1 − w‖2

Pi
− 2− ρ

ρ
‖wk+1 − wk‖2

Ui

where U1 and U2 are two matrices defined as

U1 =

(
( 1
τ
− 1

β(2−ρ)
)I −At

−A 1
σ
I

)
and U2 =

(
( 1
τ
− 1

β(2−ρ)
)I At

A 1
σ
I

)
,
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and L defined as

L(x, y) = f(x) + h(x)− g∗(y) + 〈Ax, y〉. (4.45)

The last inequality is fundamental to deduce the ergodic convergence of CA1

and CA2 as showed in the aforementioned Chambolle-Pock’s paper.

On the other hand, algorithm Alg1 generates the sequences ν̃k = (x̃k, η̃k), ξk =

(xk − rk, ηk) and ξ̃k = (x̃k − r̃k, η̃k) satisfying

L′(ν̃k+1) + P1(ξ̃k+1 − ξk) 3 −

(
∇h(x̃k+1)

0

)
. (4.46)

Similarly, algorithmAlg2 generates the sequences wk = (xk, yk) and w̃k+1 = (x̃k+1, ỹk+1)

satisfying

L′(w̃k+1) + P2(w̃k+1 − wk) 3 −

(
∇h(xk − τAt(ỹk+1 − yk))

0

)
. (4.47)

From (4.47) and (4.46), we deduce the following fundamental upper bound of

the saddle-point gap. This will be used later in the analysis of the ergodic and

nonergodic rates of convergence.

Proposition 4.3.1 With the same notations as before; let us assume that στ‖A‖2 ≤
1, then for any w = (x, y) ∈ dom (f)× dom (g∗), the following inequalities hold:

• For the sequences generated by algorithm Alg1, it holds that

‖ξk − w′‖2
P1
− λ‖ξk+1 − ξk‖2

P1
− ‖ξk+1 − w′‖2

P1
≥ 2ρ[L(x̃k+1, y)− L(x, η̃k+1)]

where w′ = w − (τ∇h(x), 0)

• For the sequences generated by algorithm Alg2, it holds that

‖wk − w‖2
P2
− λ‖wk+1 − wk‖2

P2
− ‖wk+1 − w‖2

P2
≥ 2ρ[L(x̃k+1, y)− L(x, ỹk+1)]

where λ = 1
ρ

[
2− ρ− τ

β

]
.

Proof. From (4.47), and applying Proposition 4.3.1, we get〈
ν̃k+1 − w,P1(ξk − ξ̃k+1)

〉
−
〈
x̃k+1 − x,∇h(x̃k+1)

〉
≥ l′(x̃k+1, y)− l′(x, η̃k+1).

using that ν̃k = ξ̃k + (r̃k, 0) in the last inequality, we have〈
ξ̃k+1 − w,P1(ξk − ξ̃k+1)

〉
−
〈
ûk+1 − x,∇h(x̃k+1)

〉
≥ l′(x̃k+1, y)− l′(x, η̃k+1).
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where ûk+1 = r̃k+1 + xk − rk + τAt(η̃k+1 − ηk). Then, since h is convex and β−1–

Lipschitz–differentiable, we have

〈∇h(x̃k+1), x̃k+1 − x〉 − β

2
‖∇h(x̃k+1)−∇h(x)‖2 ≥ h(x̃k+1)− h(x)

and from the properties of norm we have

1

2β
‖x̃k+1 − ûk+1‖2 ≥ 〈x̃k+1 − ûk+1,∇h(x̃k+1)−∇h(x)〉 − β

2
‖∇h(x̃k+1)−∇h(x)‖2.

Then, summing the three last inequalities we get〈
ξ̃k+1 − w′, P1(ξk − ξ̃k+1)

〉
+

1

2β
‖x̃k+1 − ûk+1‖2 ≥ L(x̃k+1, y)− L(x, η̃k+1). (4.48)

where w′ = w − (τ∇h(x), 0).

Now we find an appropriate upper bound for 1
2β
‖x̃k+1 − ûk+1‖2. From the ex-

pression of P1 we have

‖(x, y)‖2
P1

= τ−1‖x− τAty‖2 + ‖y‖2
σ−1I−τAAt

Then since στ‖A‖2 ≤ 1, we have that σ−1I − τAAt is positive definite matrix, so

we get

‖x̃k+1 − ûk+1‖2 = ‖x̃k+1 − r̃k+1 − xk + rk − τAt(η̃k+1 − ηk)‖2

≤ τ‖ξ̃k+1 − ξk‖2
P1

=
τ

ρ2
‖ξk+1 − ξk‖2

P1

On other hand, from the symmetry of matrix P1, it holds

2ρ
〈
ξ̃k+1 − w′, P1(ξk − ξ̃k+1)

〉
= ‖ξk − w′‖2

P1
− 2− ρ

ρ
‖ξk+1 − ξk‖2

P1
− ‖ξk+1 − w′‖2

P1
.

So, replacing the two last expressions into (4.48), we get the desired inequality

of the first item.

Now we proof of second item, from (4.46), and applying Proposition 4.3.1, we

get〈
w̃k+1 − w,P2(wk − w̃k+1)

〉
−
〈
x̃k+1 − x,∇h(ẑk+1)

〉
≥ l′(x̃k+1, y)− l′(x, ỹk+1).

where ẑk+1 = xk − τAt(ỹk+1 − yk). Then since h is convex diferentiable with ∇h
β−1−Lipschitz, we have

1

2β
‖ẑk+1 − x̃k+1‖2 + 〈∇h(ẑk+1), x̃k+1 − ẑk+1〉 ≥ h(x̃k+1)− h(ẑk+1)
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and

h(x) ≥ h(ẑk+1) + 〈∇h(ẑk+1), x− ẑk+1〉.

Then, summing the three last inequalities we get〈
w̃k+1 − w,P2(wk − w̃k+1)

〉
+

1

2β
‖ẑk+1 − x̃k+1‖2 ≥ L(x̃k+1, y)− L(x, ỹk+1). (4.49)

Then using the same techniques as the first item, we get the desired inequality of

the second item.

4.3.2 Relationship with the Davis-Yin’s method

Recently D. O’Connor and L. Vandenberghe [40], noticed that algorithm YA (de-

scribed early in the introduction of this chapter) can be deduced from the algorithm

developed by D. Davis and W. Yin [16] by means a reformulation of the sum of

three special operators.

Now we show that algorithm Alg1 and Alg2 are also obtained from Davis-Yin’s

algorithm considering these adhoc reformulations.

Fixing A = I in problem (V ar) and applying algorithms Alg1 and Alg2 with

σ = τ−1, we obtain

ỹk+1 = (τ−1T−1 + Im×m)−1(yk + τ−1xk) (4.50)

rk+1 = τC(xk − τ(ỹk+1 − yk)) (4.51)

x̃k+1 = (τS + In×n)−1(xk − τ(2ỹk+1 − yk)− rk+1) (4.52)

(xk+1, yk+1) = ρ(x̃k+1, ỹk+1) + (1− ρ)(xk, yk). (4.53)

and the switching algorithm

x̃k+1 = (τS + In×n)−1(xk − τηk − rk) (4.54)

r̃k+1 = τC(x̃k+1) (4.55)

η̃k+1 = (τ−1T−1 + Im×m)−1(ηk + τ−1(2x̃k+1 − xk) + τ−1rk − τ−1r̃k+1)(4.56)

(xk+1, ηk+1, rk+1) = ρ(x̃k+1, η̃k+1, r̃k+1) + (1− ρ)(xk, ηk, rk). (4.57)

Notice that [40] these two algorithms can also be obtained directly from the

Davis-Yin’s algorithm.
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Now, in order to recover algorithms Alg1 and Alg2 from algorithms (4.50)–

(4.53) and (4.54)–(4.57), respectively, we consider the following inclusion problem

corresponding with the sum of three operators, as defined in [40] for optimization

problems :

0 ∈

[
S

N{0}

](
z1

z2

)
+

(
At

Ṽ
1
2

)
T
(
A Ṽ

1
2

)( z1

z2

)
+

[
C

0

](
z1

z2

)
(V ar2)

where Ṽ = (τσ)−1I − AAt.
Notice that algorithms (4.50)–(4.53) and (4.54)–(4.57) need the resolvent maps

of

[
S

N{0}

]
and of the inverse of

(
At

Ṽ

)
T
(
A Ṽ

)
which by simple calculations

are respectively[
(τS + In×n)−1

0

]
and

(
At

Ṽ

)
(T−1 + σ−1Im×m)−1τ

(
A Ṽ

)
.

Then the aforementioned two algorithms applied to problem (V ar2) are exactly Alg1

and Alg2.

The fact that problem (V ar2) can be deduced from problem (V ar1) follows from

the following steps: We first apply the dual formulation to (V ar), which consists in

finding y ∈ IRm such that

0 ∈ T−1(y)− A(S + C)−1(−Aty).

Then reformulate it as (V ar1) considering M = I, resulting

0 ∈ T−1(y) +
(
−A V

1
2

)[ (S + C)−1

0

](
−At

V
1
2

)
y.

Finally, the dual formulation of the last inclusion problem considering Ṽ = −V is

exactly (V ar2). Conversely, using the same previous arguments, we can show that

problem (V ar1) is deduced from problem (V ar2).

4.3.3 Rate of convergence

Following the same arguments described in Subsection 4.1.4, we can deduce similar

rates of convergence for the sequences generated by Alg1 and Alg2. For that we

need the upper bound of the saddle–point gap given in Proposition 4.3.1 and also an

upper bound of the fixed–point residual. The last upper bound can be deduced (see

Subsection 2.5.1 in Chapter 2) from the following relations which follow respectively
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from (4.41) and (4.35) considering M = σIm×m and V = τ−1In×n − σAtA in the

definition of matrices Q̂ andQ involved in (4.35) and (4.41):

D1w
k+1
1 = ρGL

′

D′
(D1w

k
1) + (1− ρ)D1w

k
1

and

D2w
k+1
2 = ρGL̂′

D̂′
(D2w

k
2) + (1− ρ)D2w

k
2

where wk1 = (xk − rk, ηk), wk2 = (xk, yk) and

D1 =

(
σ

1
2A −σ− 1

2 I

V
1
2 0

)
and D2 =

(
σ

1
2A σ−

1
2 I

V
1
2 0

)

which satisfy

Q = D1

(
I 0 0

σA −σI I

)
and Q̂ = D2.

By Proposition 4.1.1, GL
′

D′
and GL̂′

D̂′
are 2β

4β−τ−average maps, if τ < 2β, and their

corresponding fixed point sets are respectively

{(σ
1
2A(x̄− τC(x̄))− σ−

1
2 ȳ, V

1
2 (x̄− τC(x̄)) : −Atȳ ∈ S(x̄) + C(x̄), ȳ ∈ T (Ax̄)}

and

{(σ
1
2Ax̄+ σ−

1
2 ȳ, V

1
2 x̄) : −Atȳ ∈ S(x̄) + C(x̄), ȳ ∈ T (Ax̄)}.

Now, corresponding to algorithms Alg1 and Alg2, we consider, for i = 1, 2, the

following sequences:

(ζ̃ki , ν̃
k
i ) = (x̃k, η̃k), (ωki , ν

k
i ) = (xk − (2− i)rk, ηk), ω̃ki = x̃k − (2− i)r̃k, k ≥ 1,

and the ergodic sequences, for N ≥ 1,

ζ
N

i :=
1

N

N∑
k=1

ζ̃ki , νNi :=
1

N

N∑
k=1

ν̃ki , ω̂Ni :=
1

N

N∑
k=1

ωk−1
i and ν̂Ni :=

1

N

N∑
k=1

νk−1
i ,

and, associated to matrix Pi defined in (4.44), we consider the norm

‖(x, y)‖2
Pi

= ‖x‖2
V + σ‖Ax+ (−1)iσ−1y‖2,

where i = 1 corresponds to algorithm Alg1, and i = 2 to Alg2.

Using the upper bound of the saddle-point gap and the fixed–point residual

developed in Sections 2.5.2 and 2.5.3 of Chapter 2 the following rate of converge are

deduced in the two next results:
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Theorem 4.3.1 With the same notations as before. Set σ, τ and ρ satisfying

2− τ

β
≥ ρ > 0, and 1 ≥ στ‖A‖2.

The following rate of convergence are deduced:

• Ergodic Convergence: for any (x, y) ∈ dom (f)× dom (g∗) and i = 1, 2,

L(ζ
k

i , y)− L(x, νki ) ≤
1

2ρk
‖(ω0

i , ν
0
i )− (x− µi, y)‖2

Pi
(4.58)

where µi = (2− i)τ∇h(x).

• Nonergodic Convergence: for any (x∗, y∗) ∈ sol (V ) and i = 1, 2,

L(ζ̃k+1
i , y)− L(x, ν̃k+1

i ) ≤
(

α1√
k + 1

+
α2

k + 1

)
‖(ω0

i , ν
0
i )− (x∗ − µ∗i , y∗)‖2

Pi

(4.59)

where

µ∗i = (2− i)τ∇h(x∗), α1 =
1 + |1− ρ|
ρ2
√
θ

and α2 =
‖(AtMA)−1‖

2βρ2θ
.

Respect to the rate of constraint violations we have

Theorem 4.3.2 With the same notations as before. Set σ, τ and ρ satisfying

2− τ

2β
≥ ρ > 0, and 1 ≥ στ‖A‖2.

For any (x∗, y∗) ∈ sol (V ) and i = 1, 2, the following rate of convergence are obtained

by setting u∗i = (x∗ − (2− i)τC(x∗), y∗):

• Ergodic Convergence:

‖ω̃ki − ω̂ki ‖2
V + σ‖Aω̃ki − Aω̂ki + (−1)iσ−1(ν̃ki − ν̂ki )‖2 ≤ 4

k2ρ2
‖(ω0

i , ν
0
i )− u∗i ‖2

Pi
.

• Nonergodic Convergence:

‖ω̃ki −ωk−1
i ‖2

V +σ‖Aω̃ki −Aωk−1
i +(−1)iσ−1(ν̃ki −νk−1

i )‖2 ≤ 1

αk
‖(ω0

i , ν
0
i )−u∗i ‖2

Pi
.

where α = ρ(2− ρ− τ
2β

) and

Remark 4.3.1 Considering the sequence (xk, zk, sk) generated by PD3O [55], the

sequence (xk, yk) = (xk, sk+1) is generated by YA (or equivalently by Alg1 with
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ρ = 1) using τ = γ and σ = δ. Moreover, the sequence rk in YA verifies zk+1 =

xk − rk − τAtyk. One deduces that

‖ξk − (x− τ∇h(x), s)‖2
P1

= τ−1‖x−∇h(x)− τAts− zk+1‖2 + ‖s− sk+1‖2
δ−1I−γAAt

= τ−1‖(z, s)− (zk+1, sk+1)‖2
I,M

where ‖(a, b)‖2
I,M = ‖a‖2 + ‖b‖2

M with M = γ
δ
(I − γδAAt) defined in [55]. The last

equality relations and the upper bound given in Proposiion 4.3.1, allow us recover the

upper bound (36) given in Theorem 2 of [55] related to the aforementioned sequence

(xk, zk, sk).

Notice that Theorem 2 of [55] is exactly the ergodic convergence of Theorem

4.3.1.

4.4 General separable optimization problem

Following the same scheme described in Section 4.2 regarding the optimization prob-

lem (4.1), we reformulate problem (P ) keeping the same structure of problem (V ar),

where the involved matrix is injective and then we apply the algorithm developed

in Section 4.1.

Set M,V1 and V2 symmetric matrices of order m×m, n×n and p×p, respectively,

with V1 positive semi-definite and M and V2 positive definite. Then problem (P )

can be formulated as

min
(x1,x2,z1,z2)∈F

(f + h1, h2)(x1, x2) + (g, 0)(z1, z2),

where F denotes the set of all (x1, x2, z1, z2) satisfying
M

1
2A 0

V
1
2

1 0

0 V
1
2

2


(
x1

x2

)
+

 M
1
2B 0

0 −In
−V

1
2

2 0

( z1

z2

)
= 0.

The dual problem of its variational formulation consists in finding a zero of the sum

of the two composition maps given by

−


M

1
2A 0

V
1
2

1 0

0 V
1
2

2


[
∂f +∇h1

∇h2

]−1(
−

(
AtM

1
2 V

1
2

1 0

0 0 V
1
2

2

))

and

−

 M
1
2B 0

0 −In
−V

1
2

2 0

[ ∂g

0

]−1(
−

(
BtM

1
2 0 −V

1
2

2

0 −In 0

))
.
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Then the dual formulation of this sum problem is

0 ∈

[
∂f

0

](
x1

x2

)
+

[
∇h1

∇h2

](
x1

x2

)
+

(
AtM

1
2 V

1
2

1 0

0 0 V
1
2

2

)
G


M

1
2A 0

V
1
2

1 0

0 V
1
2

2


(
x1

x2

)
,

(4.60)

where the map G is the inverse of the composite map defined by −M
1
2B 0

0 In

V
1
2

2 0

[ ∂g

0

]−1(
−BtM

1
2 0 V

1
2

2

0 In 0

)

which is clearly monotone.

The next proposition gives an explicit expression of the resolvent of G and thereby

its maximal monotonicity by Minty’s theorem.

Proposition 4.4.1 With the same notations as before, for given (x, y, z) ∈ IRm ×
IRn × IRp, it holds that

(G + I)−1(x, y, z) = (−M
1
2Bu, y, V

1
2

2 u),

where I denotes the identity map of order m+ n+ p, and

u = (∂g + V2 +BtMB)−1(−BtM
1
2x+ V

1
2

2 z).

Proof. Since (G + I)−1 = I − (G−1 + I)−1, then using Proposition 2.4.1 of Chapter

2 we obtain

(G + I)−1 =

 −M
1
2B 0

0 In

V
1
2

2 0

[ ∂g +BtMB + V2

In

]−1(
−BtM

1
2 0 V

1
2

2

0 In 0

)

from which the desired equality is deduced.

Observe that problems (4.60) and (V ar) have same structure where the involved

matrix in the first one is injective and whose corresponding maps verify the proper-

ties required in Proposition 4.1.1. So, the corresponding algorithm described by the

sequential update formulae (4.4)− (4.8) converges to a solution of its corresponding

saddle-point problem, whose solution set is

{(x̄, z̄,M
1
2Ax̄, V

1
2

1 x̄, V
− 1

2
2 z̄,M− 1

2 ȳ, 0y2 ,−V
− 1

2
2 ∇h2(z̄)) : (0x, 0z, 0y) ∈ L̃(x̄, z̄, ȳ)},

where L̃ is the classical Lagrangian map corresponding to problem (P ), which is

defined as

L̃(x, z, y) :=

 ∂f(x) +∇h1(x)

∂g(z) +∇h2(z)

0

+

 0 0 At

0 0 Bt

−A −B 0


 x

z

y

 .
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So, applying the sequential update formulae (4.4) → · · · → (4.8) forM = I and

ρ = 1, and using Proposition 4.4.1 we get the following update sequences

zk+1
1 = −M

1
2B(∂g + V2 +BtMB)−1(V

1
2

2 (yk3 + V
1
2

2 x
k
2)−BtM

1
2 (yk1 +M

1
2Axk1))

zk+1
2 = yk2 + V

1
2

1 x
k
1

zk+1
3 = V

1
2

2 (∂g + V2 +BtMB)−1(V
1
2

2 (yk3 + V
1
2

2 x
k
2)−BtM

1
2 (yk1 +M

1
2Axk1))

yk+1
1 = yk1 +M

1
2Axk1 − zk+1

1

yk+1
2 = yk2 + V

1
2

1 x
k
1 − zk+1

2

yk+1
3 = yk3 + V

1
2

2 x
k
2 − zk+1

3

rk+1
1 = ∇h1((V1 + AtMA)−1(V

1
2

1 z
k+1
2 + AtM

1
2 zk+1

1 ))

rk+1
2 = ∇h2(V

− 1
2

2 zk+1
3 )

xk+1
1 = (∂f + V1 + AtMA)−1(V

1
2

1 (zk+1
2 − yk+1

2 ) + AtM
1
2 (zk+1

1 − yk+1
1 )− rk+1

1 )

xk+1
2 = V −1

2 (V
1
2

2 (zk+1
3 − yk+1

3 )− rk+1
2 ).

By construction we can reduce some sequences: for k ≥ 1, one has

• yk2 = 0 and hence zk+1
2 = V

1
2

1 x
k
1, and

• on other hand,

V
1
2

2 (yk3 + V
1
2

2 x
k
2) = V

1
2

2 y
k
3 + V2V

−1
2 (V

1
2

2 (zk3 − yk3)− rk2) = V
1
2

2 z
k
3 − rk2 .

Hence, by denoting xk = xk1, zk = V
− 1

2
2 zk3 and yk = M

1
2yk1 , the above chain of

sequences is reduced to, for k ≥ 1,

zk+1 = (∂g + V2 +BtMB)−1(V2z
k − rk2 −Btyk −BtMAxk)) (4.61)

yk+1 = yk +MAxk +MBzk+1 (4.62)

rk+1
1 = ∇h1((V1 + AtMA)−1(V1x

k − AtMBzk+1)) (4.63)

rk+1
2 = ∇h2(zk+1) (4.64)

xk+1 = (∂f + V1 + AtMA)−1(V1x
k − AtMBzk+1 − Atyk+1 − rk+1

1 ). (4.65)

Notice that the update sequences (4.61) − (4.65) is also satisfied for k = 0, if we

consider y0
2 = 0, and y0

3 and x0
2 satisfying

V
1
2

2 (y0
3 + V

1
2

2 x
0
2) = V

1
2

2 z
0
3 − r0

2

for arbitrary r0
2 and z0

3 .

From Proposition 4.1.2, we get the following convergence result of the sequences

described by (4.61)− (4.65)
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Proposition 4.4.2 With the same notations as before, we assume that V1 ∈ IRn×n,

V2 ∈ IRp×p and M ∈ IRm×m are symmetric with V2 and M positive definite such that

V1 +AtMA is positive definite and satisfying that max(‖V −1
2 ‖, ‖(V1 +AtMA)−1‖) ∈

]0, 2 min(β1, β2)[. If sol (VL̃) is nonempty, then for arbitrary points (x0, z0, y0) ∈
(IRn×IRp)×IRm and r0

2 ∈ IRp, the sequence (xk, zk, yk) generated by (4.61)−(4.65)

converges to some element of sol (VL̃).

4.5 Application to the decomposition of multi-

block optimization problems

In this section we extend the algorithm (PMA) described in Chapter 2 in order

to solve the more general S-Model defined below. This extension uses a similar

reformulation as described in the mentioned chapter and has similar structure as

problem (V ar) described in Section 4.2.

Our S−Model problem is as follows

inf
x=(x1,··· , xq), z

q∑
i=1

fi(xi) + h(x) + g(z)

s.t

q∑
i=1

Aixi −Bz = 0,

where fi : IRni → IR (i ∈ {1, ..., q}) and g : IRm → IR are proper lsc convex

functions, h : IRn 7→ IR is convex and ( 1
β
)-Lipschitz-differentiable (n =

∑q
i=1 ni),

and Ai and B are matrices of order p× ni and p×m, respectively.

It is clear that this problem is equivalent to

inf
(x=(x1,··· , xq), z)

q∑
i=1

fi(xi) + g(z) + δ{0}

(
Bz −

q∑
i=1

Aixi

)
+ h(x) (B1)

or again

VP = inf
x=(x1,··· , xq)

q∑
i=1

fi(xi) + (g∗ ◦Bt)∗

(
q∑
i=1

Aixi

)
+ h(x). (B2)

We note that (B2) has the same structure as the optimization problem (4.1)

given in the introduction of this chapter. If we apply Alg1 or Alg2, we obtain an

algorithm with separable structure but unfortunately with two important disadvan-

tages: the necessity to know the norm of A in order to choose the parameters for

the convergence result, and also the necessity to know all values of (τ∂fi + I)−1 at

arbitrary points (parameter τ beings equal for all i).
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So, we consider a reformulation of (B2) allowing us to choose in an independently

manner parameters for each block, where we only need to know the norm of each

Ai separatly.

By considering f : IRn → IR defined as f(x) =
∑q

i=1 fi(xi), and matrices K and

A of order p× pq and pq × n, respectively, defined by

K :=
(
Ip×p · · · Ip×p

)
and A :=

 A1

. . .

Aq

 ,

problem (B2) can be set as

inf
x=(x1,··· , xq)

f(x) + [(g∗ ◦Bt)∗ ◦K](Ax) + h(x). (PS−mod)

Note that this new problem has also the same structure as problem (4.1) but

with a good separable structure since f and A have separable structure for blocks.

Then, we apply to this last problem algorithm GSA3O developed in Section 4.2.

Alternatively, we can apply algorithm (4.36)− (4.40), but for simplicity we will not

do it in this work.

Regarding function g, we assume that

∂[(g∗ ◦Bt)∗ ◦K] = Kt(B(∂g)−1Bt)−1K.

The saddle-point problem of (PS−mod) is

Find (x̄, z̄, ȳ) ∈ IRn × IRpq × IRpq such that 0 ∈L(x̄, z̄, ȳ) (VL̄)

where L is the maximal monotone map defined on IRn × IRpq × IRpq as

L̄(x, z, y) :=

 ∂f(x) +∇h(x)

Kt(B(∂g)−1Bt)−1Kz

0

+

 0 0 At

0 0 −I
−A I 0


 x

z

y

 .

For i ∈ {1, · · · , q}, let Mi be an p× p symmetric positive definite matrix and Qi be

an ni × ni symmetric positive semi-definite matrix.

In order to take advantage of the separability of f , we consider the diagonal ma-

trices V = diag (Q1, · · · ,Qq) and M = diag (M1, · · · ,Mq). So, the related algorithm

GSA3O has the following structure:

z̃k+1 = (Kt(B(∂g)−1Bt)−1K +M)−1(MAxk + yk) (4.66)

ỹk+1 = yk +M(Axk − z̃k+1) (4.67)

rk+1 = ∇h((AtMA+ V )−1(V xk + AtMz̃k+1)) (4.68)

x̃k+1 = (∂f + AtMA+ V )−1(V xk + AtMz̃k+1 − Atỹk+1 − rk+1) (4.69)
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(xk+1, zk+1, yk+1) = ρ(x̃k+1, z̃k+1, ỹk+1) + (1− ρ)(xk, zk, yk). (4.70)

We finally get the following algorithm

Separable Primal-Dual Variant

(SPDV)

For i ∈ {1, · · · , q} set Qi ∈ IRni×ni symmetric positive semi-definite, Mi ∈
IRp×p symmetric positive definite. Set Σ =

(∑q
i=1 M

−1
i

)−1
. Then for an arbitrary

(x0, z0, y0
c ) ∈ IRn × IRpq × IRp

Step 1. Find ζk+1 such that

ζk+1 = argmin

{
g(w) +

1

2
‖Bw −

q∑
j=1

(Ajx
k
j )− Σ−1ykc ‖2

Σ

}
.

Step 2. Find z̃k+1

For all i ∈ {1, ..., q} do

Find z̃k+1
i such that

z̃k+1
i = Aix

k
i −M−1

i Σ

(
q∑
j=1

(Ajx
k
j )−Bζk+1

)
.

Step 3. Find ỹk+1
c such that

ỹk+1
c = ykc + Σ

(
q∑
j=1

(Ajx
k
j )−Bζk+1

)
.

end for

Step 4. Find rk+1 = (rk+1
1 , · · · , rk+1

q ) such that

rk+1 = ∇h((AtMA+Q)−1(Qxk + AtMz̃k+1))

whereA = diag([A1, ..., Aq]), Q = diag([Q1, ..., Qq]) andM = diag([M1, ...,Mq])

Step 5. Find x̃k+1

For all i ∈ {1, ..., q} do

Find x̃k+1
i such that

x̃k+1
i = argmin

{
fi(xi) +

1

2
‖Aixi − z̃k+1

i +M−1
i ỹk+1

c + Air̃
k+1
i ‖2

Mi
+

1

2
‖xi − xki + r̃k+1

i ‖2
Qi

}
where r̃k+1

i = (AtiMiAi +Qi)
−1rk+1

i .

end for
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Step 6. Find (xk+1, zk+1, yk+1
c )

(xk+1, zk+1, yk+1
c ) = ρ(x̃k+1, z̃k+1, ỹk+1

c ) + (1− ρ)(xk, zk, ykc ).

The following converge result is deduced.

Proposition 4.5.1 Assume that Qi and Mi are symmetric matrices of order ni×ni
and p× p, respectively, with Qi positive semi-definite and Mi positive definite such

that Qi+A
t
iMiAi is positive definite and satisfying ‖(Qi+A

t
iMiAi)

−1‖ ∈ ]0, 2β[ . Let

ρ ∈ ]0, α−1[ where α := 2β
4β−maxi{‖(Vi+AtiMiAi)−1‖}qi=1

. If sol (VL̄) is nonempty, then for

an arbitrary (x0, z0, y0
c ) ∈ IRn × IRpq × IRp, the sequence (xk, zk, Ktykc ) generated by

(SPDV) converges to some element of sol (VL̄).

Remark 4.5.1 Choosing matrices

Mi = σiIp×p and Qi = τ−1
i Ini×ni − σiAtiAi,

the subproblem in Step 5 of the Algorithm (PMA) becomes

x̃k+1
i = argmin

{
fi(xi) +

1

2τi
‖xi − xki − τi[σiAtiz̃k+1

i − σiAtiAixki − Atiȳk+1
c − rk+1]‖2

}
.

If in addition the positive parameters σi and τi are chosen satisfying σiτi‖Ai‖2 ≤ 1

and τi < 2β, then the conditions on matrices Qi, Mi and Qi+A
t
iMiAi in Proposition

4.5.1 are immediately verified and thereby the sequence (xk, zk, Ktykc ) generated by

(SPDV) converges to some element of sol (VL̄) if nonempty.

4.6 Numerical Example

We consider the problem (commonly referred as fused lasso) with the least squares

loss as in [55]

min
x

1

2
‖Qx− b‖2

2 + µ1‖x‖1 + µ2‖Ax‖1 (4.71)

where Q ∈ IRn×p, b ∈ IRn and

A =


−1 1

−1 1

· · · · · ·
−1 1

 ∈ IR(p−1)×p.

We consider n = 200 , p = 4000, µ1 = 20 and µ2 = 200. Moreover, matrix Q

and vector b quoted from [55].
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We compare the algorithms CA1, CA2 with their variants algorithms Alg1 and

Alg2 considering ρ = 1 as relaxing parameter. Notice that in this case Alg1 coincides

with Y A. We choose as parameters

τ = γ
1

‖A‖2
and σ =

1

8τ

and we implement the last algorithms considering three variant for γ as γ1 = 1, γ2 =

1.5 and γ3 = 1.99. For CA1 and CA2 we only use γ1 because for γ2 and γ3 the con-

vergence is not guaranteed.

We observe that all algorithms have the same behavior for γ1, but for γ2 and

γ3 algorithms Y A and Alg2 (= New) have more velocity and maintain the same

behavior.
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Chapter 5

Application to stochastic problems

In this chapter, we will consider a large-scale production planning problem with a

multiple separable structure which is favorable to the use of the splitting techniques

which constitute the heart of the present thesis. Motivated by a long-term energy

production planning problem, we analyze here a stochastic optimal control problem

where three levels of coupling structure are present, namely:

• the coupling of the dynamic equations w.r.t. time intervals;

• the coupling of the scenario tree w.r.t. the so-called non-anticipativity con-

straints, i.e. which force the decisions at some period t to be the same for

scenarios with identical past history before t;

• the spatial coupling which interconnects the local subsystems

Most approaches in the literature to treat stochastic multistage optimization prob-

lems use a scenario tree where the non-anticipativity constraints at each node of the

tree are dualized to allow the temporal decomposition as if the model was determin-

istic (see [48] for instance).

5.1 The stochastic optimization model

We study the model problem presented in [33]. Consider a set of agents Z (ge-

ographical zones, markets) with interconnections between them given by a graph

(E ⊂ Z × Z). Given a finite period time {0, · · · , T − 1}, for each agent (z ∈ Z)

there are a production (pzτ ), demand (dzτ ), storage (xzτ ) and interchange (feτ ) of a

commodity (electricity, gas). The objective is to minimize the cost associated with

the production, interchange, usage of storage of a commodity, in order to satisfy

the demand. The usage of the storage (uzτ ) and the storage (xzτ ) evolve in

time satisfying a dynamic equation. Finally, uncertainty affects the following data:
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the local demands (dzτ ) are random processes and we consider additional terms izτ
that are random input of the storage. The distribution of these random processes

is supposed to be known and generally approximated by a finite set of historical

scenarios.

Since we are working with random variables affecting the dynamic equations

defining the state and control decisions, we need to consider the nonanticipativity

constraints that rule the sequence of decisions when the successive realizations of

the random values are revealed at each stage. More specifically, given the following

constraints :

• The demand equation is given by

pzτ + uzτ +
∑
e∈z+

feτ −
∑
e∈z−

feτ = dzτ

where z+ (resp. z−) is the set of outgoing (res. ingoing) arcs incident to zone

z.

• The storage xzτ obeys the dynamics

xz,τ+1 = xzτ − uzτ + izτ

where izτ is a random input in the storage.

• The quantity transported through line feτ satisfies the capacity constraints as

feτ ∈ Feτ

• The variables xzt, uzt and pzt satisfy some constraints

xzτ ∈ Xzτ , uzτ ∈ Uzτ , pzτ ∈ Pzτ

• The control variable feτ , uzτ and pzτ should then satisfy the nonanticipativity

equations

pzτ , uzτ , feτ � Fτ .

i.e. pzτ , uzτ , feτ are Fτ−measurable where Fτ is a σ−field defined as

Fτ = σ({(dzτ , izτ ) : z ∈ Z, τ ∈ [0, t]})

Summarizing, we consider the following multistage stochastic problem
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min
p,u,f,x∈L2(Ω)

IE

[
T−1∑
τ=0

(∑
z∈Z

cz(pz,t) +
∑
e∈E

leτ (feτ )

)]
(5.1)

pzτ + uzτ +
∑
e∈z+

feτ −
∑
e∈z−

feτ = dzτ , ∀z ∈ Z, τ ∈ [0, T − 1] (5.2)

xz,τ+1 = xzτ − uzτ + izτ , ∀z ∈ Z, τ ∈ [0, T − 1] (5.3)

xzτ ∈ Xzτ , uzτ ∈ Uzτ , pzτ ∈ Pzτ ∀z ∈ Z, τ ∈ [0, T − 1] (5.4)

feτ ∈ Feτ ∀e ∈ E, τ ∈ [0, T − 1] (5.5)

xz,0 = x̃z0, ∀z ∈ Z (5.6)

pzτ , uzτ � Fτ ∀z ∈ Z, τ ∈ [0, T − 1] (5.7)

feτ � Fτ ∀e ∈ E, τ ∈ [0, T − 1] (5.8)

5.2 Solution of a deterministic formulation

In the first part of this chapter, we study the deterministic case of the last model.

The modeling of cost functions cz and leτ is borrowed from [14].

Cost on the final state

The hydroelectric production cost is negligible in the considered model. On the

other hand, we add a cost on the final state xzT 7→ Ψ(xzT ) to penalize the excess of

water reserves, defined as

Ψ(xzT ) = cfinz max{0, xz0 − xzT}.

Thermic production

The thermic production cost is a piecewise affine and convex function of the pro-

duction levels pzτ . It will be defined with a given number of stages j = 1, . . . , Qzτ ,

each one associated with a given slope cjzτ valid in the interval [P j
zτ , P

j+1
zτ ]. We need

obviously 0 ≤ c1
zτ ≤ c2

zτ ≤ · · · ≤ cQzτzτ to obtain an increasing convex function of pzτ .

The cost function is thus defined by

gzτ (pzτ ) =



c1
zτpzτ if 0 ≤ pzτ ≤ P 1

zτ

c1
zτP

1
zτ + c2

zτ (pzτ − P 1
zτ ) if P 1

zτ ≤ pzτ ≤ P 2
zτ

...
...∑Qzτ−1

j=1 cjzτ P̂
j
zτ + cQzτzτ (pzτ − PQzτ−1

zτ ) if PQzτ−1
zτ ≤ pzτ ≤ PQzτ

zτ

+∞ else
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where we defined P̂ j
zτ = P j

zτ − P j−1
zτ with P−1

zτ = 0.

The cost function gzτ is reformulated as

gzτ (pzτ ) =


infθ

∑Qzτ
j=1 c

j
zτθ

j
zτ

s.t.
∑Qzτ

j=1 θ
j
zτ = pzτ

0 ≤ θjzτ ≤ P̂ j
zτ

where θjzτ represents the production of stage j.

Interzonal transfer costs

For an arc e = (z, z′) ∈ E interconnecting two zones z and z′, the flow transfer

during period τ is the variable feτ which is bounded by 0 ≤ feτ ≤ κeτ . The transfer

cost is linear and given by leτ (feτ ) = cintere feτ .

Failure cost

The failure quantity corresponds to the part of demand not satisfied during period

τ in zone z. It will be denoted by ηzτ . It is penalized by the cost cfail >> cjzτ .

Using former formulations of the cost functions, the problem becomes

min
(θ,u,f,η,v)

T−1∑
τ=0

[∑
z∈Z

[
Qzτ∑
j=1

cjzτθ
j
zτ + cfailηzτ

]
+
∑
e∈E

leτfeτ

]
+
∑
z∈Z

cfinz vz (5.9)

satisfying

uzτ +

Qzτ∑
j=1

θjzτ −
∑
e∈z+

feτ + ηzτ = dzτ −
∑
e∈z−

feτ , ∀z ∈ Z, τ ∈ [0, T − 1](5.10)

xz,τ+1 = xzτ − uzτ + izτ , ∀z ∈ Z, τ ∈ [0, T − 1] (5.11)

Xmin
zτ ≤ xzτ ≤ Xmax

zτ , ∀z ∈ Z, τ ∈ [0, T − 1] (5.12)

0 ≤ uzτ ≤ Umax
z δh, ∀z ∈ Z, τ ∈ [0, T − 1] (5.13)

0 ≤ θjzτ ≤ P j
zτδh, ∀z ∈ Z, τ ∈ [0, T − 1] (5.14)

0 ≤ feτ ≤ κeτδh, ∀e ∈ E, τ ∈ [0, T − 1] (5.15)

vz ≥ 0, vz ≥ (xz0 − xzT ), ∀z ∈ Z (5.16)

We rewrite this problem in the context of problem (P ) defined in Chapter 2, in

order to apply GSS algorithm also described in that chapter.
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Setting qzτ = ((θjzτ )j∈Qzτ , uzτ , ηzτ , xz,τ+1) ∈ IRQzτ+3 and fτ = (feτ )e∈E, relation

(5.10) becomes

Azτqzτ −Bzfτ = dzτ , ∀z ∈ Z, ∀τ ∈ [0, T − 1]

where Bz is the row z of the incidence node-arc matrix for graph G, and the matrix

Azτ defined as

Azτ =
(

11×Qzτ 1 1 0
)

Considering qz = (qzτ )τ∈[0,T−1], the objective cost function (5.9) can be rewritten

as ∑
z∈Z

kz(qz, vz) +
∑
e∈E

T−1∑
τ=0

leτfeτ ,

where the zonal cost of production Kz is equal to

kz(qz, vz) =
T−1∑
τ=0

[
Qzτ∑
j=1

cjzτθ
j
zτ + cfailηzτ

]
+ cfinz vz.

We introduce the set of zonal constraints associated to the production Cz which

are the constraints (5.11)-(5.16) except (5.15) and the set of interzonal transfer

constraint Ceτ which is the constraint (5.15). Then the planning problem (5.9)-

(5.16) now reads

min
(q, v, f)

∑
z∈Z

kz(qz, vz) +
∑
e∈E

T−1∑
τ=0

leτfeτ (5.17)

Azτqzτ −Bzfτ = dzτ , ∀(z, τ) ∈ Z × [0, T − 1] (5.18)

(qz, vz) ∈ Cz, ∀z ∈ Z, (5.19)

feτ ∈ Ceτ , ∀(e, τ) ∈ E × [0, T − 1]. (5.20)

Considering f = (fτ )τ∈[0,T−1] and dz = (dzτ )τ∈[0,T−1], relation ((5.18)) becomes

Azqz − B̄zf = dz, ∀z ∈ Z (5.21)

where Az = diag (Az0, · · · , Az(T−1)) and B̄z = diag (Bz, · · · , Bz). Then considering

w = (qz, vz)z∈Z and d = (dz)z∈Z , we have that (5.21) becomes

Aw + B̄f = d

where A = diag ([Az1 0T×1], · · · , [Azn 0T×1]) and B̄ =

 −B̄z1
...

−B̄zn

.
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In summary, we rewrite (5.17)-(5.20) as

min
(w, f)

∑
z∈Z

kz(wz) +
∑
e∈E

T−1∑
τ=0

leτfeτ (5.22)

Aw + B̄f = d (5.23)

wz ∈ Cz, ∀z ∈ Z, (5.24)

feτ ∈ Ceτ , ∀e ∈ E, ∀τ ∈ [0, T − 1]. (5.25)

Since this problem has the same structure as problem (P ), we apply GSS considering

different parameters. In fact, we apply slight modifications of ADMM, Chambolle-

Pock, and Spingarn algorithms, which correspond to the GSS algorithms with dif-

ferent parametrized matrices.

5.2.1 ADMM applied to the dynamic model

We apply the algorithm (2.41)-(2.43) with V1 = 0, V2 = 0 and M = λI (which is a

slight variant of ADMM) to the problem (5.22)-(5.25) obtaining the algorithm

wk+1 ∈ argmin wz∈Cz

{∑
z∈Z

kz(wz) +
λ

2
‖Aw + B̄fk − d+ λ−1yk‖2

}
(5.26)

fk+1 ∈ argmin feτ∈Ceτ

{∑
e∈E

T−1∑
τ=0

leτfeτ +
λ

2
‖Awk+1 + B̄f − d+ λ−1yk‖2

}
(5.27)

yk+1 = yk + λ(Awk+1 + B̄fk+1 − d) (5.28)

Since

‖Aw + B̄fk − d+ λ−1yk‖2 =
∑
z∈Z

T−1∑
τ=0

‖Azτqzτ −Bzfτ − dzτ − λ−1ykzτ‖2

the corresponding minimization problem in (5.26) can be solvable in parallel pro-

cessing with respect to z indices. Similarly, the corresponding minimization problem

in (5.27) can also be solvable in parallel processing with respect to τ indices.

Application 1

Step 1. Zonal subproblems

For all z ∈ Z do

Find qk+1
z = ((θjzτ )

k+1
j∈Qzτ , u

k+1
zτ , ηk+1

zτ , xk+1
z,τ+1)τ∈[0,T−1] and vk+1

z solution of

min
(qz , vz)

T−1∑
τ=0

[
Qzτ∑
j=1

cjzτθ
j
zτ + cfailηzτ +

λ

2
‖
Qzτ∑
j=1

θjzτ + uzτ + ηzτ +Bzf
k
τ − dzτ + λ−1ykzτ‖2

]
+cfinz vz
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s.t xz,τ+1 = xzτ − uzτ + izτ , ∀ τ ∈ [0, T − 1]

Xmin
zτ ≤ xzτ ≤ Xmax

zτ , ∀ τ ∈ [0, T − 1]

0 ≤ uzτ ≤ Umax
z δh, ∀ τ ∈ [0, T − 1]

0 ≤ θjzτ ≤ P j
zτδh, ∀τ ∈ [0, T − 1]

vz ≥ 0,

vz ≥ (xz0 − xzT ),

end for

Step 2. Network subproblem

For all τ ∈ [0, T − 1] do

Find fk+1
τ solution of

min
fτ

∑
e∈E

leτfeτ +
λ

2

∑
z∈Z

‖
Qzτ∑
j=1

(θjzτ )
k+1 + uk+1

zτ + ηk+1
zτ +Bzfτ − dzτ + λ−1ykzτ‖2

s.t 0 ≤ feτ ≤ κeτδh, ∀e ∈ E.

end for

Step 3. Dual update

For all (z, τ) ∈ Z × [0, T − 1] do

yk+1
zτ = ykzτ + λ(

Qzτ∑
j=1

(θjzτ )
k+1 + uk+1

zτ + ηk+1
zτ +Bzf

k+1
τ − dzτ )

end for

5.2.2 Chambolle-Pock applied to the dynamic model

Considering in algorithm (2.41)-(2.43) the positive parameters r1, r2 such that 1 ≥
r1λ‖B‖2 and 1 ≥ r2λ‖Ā‖2, and the parameter matrices V1, V2 and M defined as

V1 = r1I − λAtA, V2 = r2I − λBtB and M = λI,
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we obtain a variant of Chambolle-Pock algorithm. This variant is applied to problem

(5.22)-(5.25) obtaining the following algorithm

wk+1 ∈ argmin wz∈Cz

{∑
z∈Z

kz(wz) +
1

2r1

‖w − wk + r1λA
t(Awk + B̄fk − d+ λ−1yk)‖2

}

fk+1 ∈ argmin feτ∈Ceτ

{∑
e∈E

T−1∑
τ=0

leτfeτ +
1

2r2

‖f − fk + r2λB̄
t(Awk+1 + B̄fk − d+ λ−1yk)‖2

}

yk+1 = yk + λ(Awk+1 + B̄fk+1 − d).

Notice that each resultant sub-problem is a classical proximal step and can be solv-

able in parallel procesing with respect to z and eτ indices respectively.

Now, in order to get a more explicit form the last algorithm, we find explicit

expressions of the norms of At and B̄t (for this purpose we assume in the original

model (5.9)–(5.16) that the graph is complete), and also explicit expressions of

At(Awk + B̄fk − d+ λ−1yk) and Bt(Awk+1 + B̄fk − d+ λ−1yk).

For g = ((gzτ )τ∈[0,T−1])z∈Z , the following expressions hold

(Atg)z =

(
q̃tz
0

)
and (B̄tg)τ =

∑
z∈Z

gzτB
t
z

where q̃z = (q̃zτ )τ∈[0,T−1], with q̃zτ = gzτ

(
1Qzτ×1 1 1 0

)
.

We now calculate the norms of At and B̄t. To calculate the norm of At, note

that

AAt = diag (Az1A
t
z1
, · · · , AznAtzn)

and AzA
t
z = diag (Qz10 + 2, · · · , Qzn(T−1) + 2). Then,

‖A‖2
2 = 2 + max

zτ
{Qzτ}. (5.29)

Since that in the original model (5.9)–(5.16) the graph is complete, then given

n zones, the n× n(n− 1) matrix B holds that

BB∗ = 2nIn×n − 2(1n×n). (5.30)

The following proposition shows some properties of matrix with this structure.

Proposition 5.2.1 Set x, y ∈ IR. We consider the n× n matrix

P = x(In×n) + y(1n×n).

Then,
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• P has x and x+ ny as unique eigenvalues,

• ‖P‖2 =
√

max{|x|, |x+ ny|}

• if x /∈ {0,−ny}, then P is invertible and

P−1 =
1

x
(In×n)− y

x(x+ ny)
(1n×n).

Since matrix B̄ is a row permutation of the nT×n(n−1)T matrix diag (B, · · · , B),

then ‖B̄‖2 = ‖B‖2. Therefore, from (5.30) and the last proposition, we conclude

that

‖B̄‖2
2 = 2n. (5.31)

So, from (5.29) and (5.31) and choosing the parameters r1 , r2 ∈ IR satisfying

1 ≥ r1λ2n and 1 ≥ r2λ(2 + max
zτ
{Qzτ})

we get from the previous algorithm, the desired more explicit algorithm:

Application 2

Step 1. Zonal subproblems

For all z ∈ Z do

calculated

For all τ ∈ {0, · · · , T − 1} do

bτ := (

Qzτ∑
j=1

(θjzτ )
k+1 + uk+1

zτ + ηk+1
zτ +Bzf

k+1
τ − dzτ + λ−1ykzτ )

(
1Qzτ×1 1 1 0

)
end for

Set b = (b)τ∈[0,T−1]

Find qk+1
z = ((θjzτ )

k+1
j∈Qzτ , u

k+1
zτ , ηk+1

zτ , xk+1
z,τ+1)τ∈[0,T−1] and vk+1

z solution of

min
(qz ,vz)

T−1∑
τ=0

[
Qzτ∑
j=1

cjzτθ
j
zτ + cfailηzτ

]
+ cfinz vz +

1

2r1

‖qz − qkz + r1λb‖2 +
1

2r1

‖vz − vkz‖2

s.t xz,τ+1 = xzτ − uzτ + izτ , ∀ τ ∈ [0, T − 1]

Xmin
zτ ≤ xzτ ≤ Xmax

zτ , ∀ τ ∈ [0, T − 1]

0 ≤ uzτ ≤ Umax
z δh, ∀ τ ∈ [0, T − 1]

0 ≤ θjzτ ≤ P j
zτδh, ∀τ ∈ [0, T − 1]

vz ≥ 0,

vz ≥ (xz0 − xzT ),
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end for

Step 2. Network subproblem

For all τ ∈ {0, · · · , T − 1} do

calculated

a :=
∑
z∈Z

[
Qzτ∑
j=1

(θjzτ )
k+1 + uk+1

zτ + ηk+1
zτ +Bzf

k
τ − dzτ + λ−1ykzτ

]
A∗z

For all e ∈ E do

Find fk+1
eτ solution of

min
feτ

[
leτfeτ +

1

2r2

‖feτ − fkeτ + r2λae‖2

]

s.t 0 ≤ feτ ≤ κeτδh.

end for

end for

Step 3. Dual update

For all (z, τ) ∈ Z × [0, T − 1] do

yk+1
zτ = ykzτ + λ(

Qzτ∑
j=1

(θjzτ )
k+1 + uk+1

zτ + ηk+1
zτ +Bzf

k+1
τ − dzτ )

end for

5.2.3 PDA applied to the dynamic model

We reformulate the problem (5.22)-(5.25) and apply Spingarn method. Set

h(w, f) =
∑
z

kz(qz, vz) +
∑
e∈E

T−1∑
τ=0

leτfeτ , V = {(w, f) : Aw + B̄f = 0}

and also a′ such that (A B̄)a′ = d. Then, problem (5.22)-(5.25) can be set as

min
(w,f)

h(w, f)

(w, f) ∈ V + a′

wz ∈ Cz, ∀z ∈ Z,

feτ ∈ Ceτ , ∀e ∈ E, τ ∈ [0, T − 1].
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Using the Spingarn’s algorithm to that problem, we get

wk+1 ∈ argmin wz∈Cz

{∑
z

kz(wz) +
λ

2
‖w − sk + λ−1dk‖2

}

fk+1 ∈ argmin feτ∈Ceτ

{∑
e∈E

T−1∑
τ=0

leτfeτ +
λ

2
‖f − gk + λ−1rk‖2

}

(sk+1, gk+1) = PV+a′((w
k+1, fk+1) + λ−1(dk, rk))

dk+1 = dk + λ(wk+1 − sk+1)

rk+1 = rk + λ(fk+1 − gk+1)

In order to get a more explicit expression of this algorithm, we need to find an

adequate manner to express the projection on the affine space V + a′. For these we

assume that Qz1τ = · · · = Qznτ . Since

PV+a′ = a′ − PV (a′) + PV ,

it suffices to determinate the projection over V . Set B̂ = diag (B, · · · , B) a permu-

tation matrix D such that DB̄ = B̂, then

V = {(w, f) : DAw+B̂f = 0} and DAAtDt = diag (Ã0Ã
t
0, · · · , Ã(T−1)Ã

t
(T−1)),

where, for τ = 0, · · · , T − 1, Ãτ := diag (Az1τ , · · · , Aznτ ).
On the other hand, since V is the kernel of matrix

(
DA B̂

)
, one deduces

that the projection PV (w, f) is equal to

(w−AtDt(DAAtDt+B̂B̂t)−1(DAw+B̂f), f−B̂t(DAAtDt+B̂B̂t)−1(DAw+B̂f)).

To finish, we calculate the inverse of DAAtDt + B̂B̂t. Since

DAAtDt + B̂B̂t = diag (Ã0Ã
∗
0 +BB∗, · · · , (Ã(T−1)Ã

t
(T−1),+BB

t),

it suffices to determinate the inverse of each diagonal block Ãτ Ã
t
τ + BBt (τ =

0, · · · , T − 1). From definition,

Ãτ Ã
t
τ +BBt = diag (Qz1τ + 2, · · · , Qznτ + 2) + 2nIn×n − 2(1n×n)

and, by considering Qτ = Qz1τ = · · · = Qznτ , we deduce, from Proposition 5.2.1,

that

(Ãτ Ã
t
τ +BBt)−1 =

1

Qτ + 2n+ 2
In×n +

2

(Qτ + 2n+ 2)(Qτ + 2)
1n×n
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and hence the desired explicit expression of the projection is deduced. In particular,

a′ − PV (a′) = (AtDtb, B̄tDtb)

where b = (bτ )τ∈{0,··· ,T−1} is defined as

bτ :=
1

Qτ + 2n+ 2
dτ +

2
∑

z∈Z dzτ

(Qτ + 2n+ 2)(Qτ + 2)
11×n .

Therefore, the last previous algorithm can be set in the following context

Application 3

Step 1. Zonal subproblems

Find qk+1
z = (((θjzτ )

k+1
j∈Qzτ , u

k+1
zτ , ηk+1

zτ ))τ∈[0,T−1] and pk+1
z = (vk+1

z , xk+1
z ) solution of

min
(qz ,pz)

T−1∑
τ=0

[
Qzτ∑
j=1

cjzτθ
j
zτ + cfailηzτ

]
+ cfinz vz +

λ

2
‖(qz, pz)− skz + λ−1dkz‖2

s.t xz,τ+1 = xzτ − uzτ + izτ , ∀ τ ∈ [0, T − 1]

Xmin
zτ ≤ xzτ ≤ Xmax

zτ , ∀ τ ∈ [0, T − 1]

0 ≤ uzτ ≤ Umax
z δh, ∀ τ ∈ [0, T − 1]

0 ≤ θjzτ ≤ P j
zτδh, ∀τ ∈ [0, T − 1]

vz ≥ 0,

vz ≥ (xz0 − xzT ),

Step 2. Network subproblem

For all (e, τ) ∈ E × {0, · · · , T − 1} do

Find fk+1
eτ solution of

min
feτ

[
leτfeτ +

λ

2
‖feτ − gkeτ + λ−1rkeτ‖2

]

s.t feτ ∈ Ceτ .
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end for

Step 3. Projection Step

calculate gk+1 = (gk+1
τ )τ and sk+1 = (q̄k+1, p̄k+1) where q̄k+1

zτ = ((θ̄jzτ )
k+1
j∈Qzτ , ū

k+1
zτ , η̄k+1

zτ )

and p̄k+1
z = (v̄k+1

z , x̄k+1
z ).

First calculate

czτ =

Qzτ∑
j=1

(θjzτ )
k+1 + uk+1

zτ + ηk+1
zτ + λ−1(

Qzτ∑
j=1

(θ̂jzτ )
k + ûkzτ + η̂kzτ ) +Bz(f

k+1
τ + λ−1rkτ )

then calculate

ppzτ :=
1

Qτ + 2n+ 2
czτ +

2
∑

z∈Z czτ

(Qτ + 2n+ 2)(Qτ + 2)

and finally calculate

(θ̄jzτ )
k+1 = (θjzτ )

k+1 + λ−1(θ̂jzτ )
k − ppzτ + bzτ

ūk+1
zτ = uk+1

zτ + λ−1ûkz − ppzτ + bzτ

η̄k+1
zτ = ηk+1

zτ + λ−1η̂kz − ppzτ + bzτ

v̄k+1
z = vk+1

z + λ−1v̂kz

x̄k+1
z = xk+1

z + λ−1x̂kz

and

gk+1
τ = fk+1

τ + λ−1rkτ −
∑
z∈Z

Bt
z(ppzτ − bzτ )

Step 4. Dual update

Calculate rk+1 = ((rk+1)e∈E)τ and dk+1 = (q̂k+1, p̂k+1) where q̂k+1
zτ := ((θ̂jzτ )

k+1
j∈Qzτ , û

k+1
zτ , η̂k+1

zτ )

and p̄k+1
z = (v̂k+1

z , x̂k+1
z ).

dk+1 = dk + λ((qk+1, pk+1)− sk+1)

rk+1 = rk + λ(fk+1 − gk+1)

5.3 Uncertainty Environment

The general case of stochastic production planning models has been studied by many

authors and we will not detail the different discussions which are behind these models
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when decomposition is the final objective to cope with the curse of dimensionality

(see [46, 48, 3]).

Coming back to the stochastic model problem (5.1)-(5.8), we rewrite it in the

context of problem (P ).

Set wzτ = (pzτ ,uzτ ,xzτ ), wz = (wzτ )τ∈[0,T−1], w = (wzτ )z∈Z , d = ((dzτ )τ∈[0,T−1])z∈Z
and f = ((feτ )e∈E)τ∈[0,T−1]

min
(w, f)

IE

[∑
z∈Z

(
T−1∑
τ=0

cz(pzτ ) + ψz(xzT )

)
+

T−1∑
τ=0

∑
e∈E

le(feτ )

]
(5.32)

Âw + B̂f = d (5.33)

wz ∈ Cz, ∀z ∈ Z, (5.34)

feτ ∈ Ceτ , ∀e ∈ E, ∀τ ∈ [0, T − 1]. (5.35)

wzτ � Fτ , feτ � Fτ ∀z ∈ Z, ∀e ∈ E, ∀τ ∈ [0, T − 1] (5.36)

considering matrices Â and B̂ defined as

Â = diag (Az1 , · · · , Azn) and B̂ =

 −B̂z1
...

−B̂zn


where Az = diag ([1 1], · · · , [1 1]) and B̂z = diag (Bz, · · · , Bz).

Notice that Âw and B̂f in (5.33) are random vectors because w and f are so.

They are defined by

Âw(ξ) = Â(w(ξ)) and B̂f(ξ) = B̂(f(ξ)) for all ξ ∈ Ξ.

We apply algorithm (2.41)-(2.43) with V1 = 0, V2 = 0 and M = λI (which is

a slight variant of ADMM) to last problem, assuming the random variable space

of finite dimension (finite scenarios) with inner product induced by the expectation

function, getting the following algorithm.

Stochastic Application 1(SA1)

Step 1.

For all z ∈ Z do
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Find wk+1
z = (pk+1

z , uk+1
z , xk+1) a solution of

min
(p,u)

IE

[
T−1∑
τ=0

(
cz(pzτ ) +

λ

2
‖pzτ + uzτ +Bzf

k
τ − dzτ + λ−1ykzτ‖2

)
+ ψz(xzT )

]
xz,τ+1 = xzτ − uzτ + izτ , ∀ τ ∈ [0, T − 1]

xzτ ∈ Xzτ , uzτ ∈ Uzτ , pzτ ∈ Pzτ , ∀ τ ∈ [0, T − 1]

pzτ , uzτ � Fτ , ∀ τ ∈ [0, T − 1]

end for.

Step 2.

Find fk+1 a solution of

min
f

IE

[
T−1∑
τ=0

(∑
e∈E

le(feτ ) +
λ

2

∑
z∈Z

‖pk+1
zτ + uk+1

zτ +Bzfτ − dzτ + λ−1ykzτ‖2

)]
feτ ∈ Feτ ∀e ∈ E, ∀ τ ∈ [0, T − 1]

feτ � Fτ ∀e ∈ E, ∀ τ ∈ [0, T − 1]

Step 3. Dual update

yk+1 = yk + λ(Âwk+1 + B̂fk+1 − d).

Notice that the sub-problem of Step 2, can be solvable by the progressing hedg-

ing algorithm proposed by Rockafellar and Wets[46] because the only restriction

coupling e and τ is the nonanticipativity constraint.

The sub-problem of Step 1 is a stochastic optimal control (SOC) which has less

variables than original problem. But the white noise assumption over the random

variable (dzτ , izτ )τ∈[0,T−1] is not enough in order to apply dynamic programming, be-

cause we have two another families of random variables (fkτ )τ∈[0,T−1] and (ykzτ )τ∈[0,T−1]

which from Step 3, are not independent over time, since ykzτ depends on (dzτ ′)τ ′∈[0,τ ].

So we cant not solve the sub-problem of Step 1 directly by dynamic programming.

Following the same ideas presented in [33], we now reformulate problem (5.32)-

(5.36) considering information relaxation in order to obtain a variant of sub-problem

corresponding to Step 1 of previous algorithm (SA1) where we can apply DP for

solve it.
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For each τ ∈ [0, T −1] and z ∈ Z, we consider a random variable Uzτ � Fτ , then

we consider the approximate version of our problem (5.32)-(5.36):

min
(w, f)

IE

[∑
z∈Z

(
T−1∑
τ=0

cz(pzτ ) + ψz(xzT )

)
+

T−1∑
τ=0

∑
e∈E

le(feτ )

]
(5.37)

IE[pzτ + uzτ +Bzfτ |Uzτ ] = IE[dzτ |Uzτ ], ∀z ∈ Z, ∀τ ∈ [0, T − 1](5.38)

wz ∈ Cz, ∀z ∈ Z, (5.39)

feτ ∈ Ceτ , ∀e ∈ E, ∀τ ∈ [0, T − 1]. (5.40)

wzτ � Fτ , feτ � Fτ , ∀z ∈ Z, ∀e ∈ E, ∀τ ∈ [0, T − 1]. (5.41)

Set matrix Qzτ (τ = 0, · · · , T − 1 and z ∈ Z = {z1, · · · , zn}) satisfying Qzτh =

IE[h|Uzτ ], then restriction (5.38) become

QÂw +QB̂f = Qd (5.42)

where Q = diag (Qz1 , · · · , Qzn), with Qzi = diag (Qzi0, · · · .Qzi(T−1)).

Therefore, since (5.42) is a coupling linear constraint, similar to our original

model (5.32)-(5.36), we get the following algorithm for solving (5.37)-(5.41):

Stochastic Application 2 (SA2)

Step 1.

For all z ∈ Z do

Find wk+1
z = (pk+1

z , uk+1
z , xk+1) a solution of

min
(p,u)

IE

[
T−1∑
τ=0

L(pzτ ,uzτ , QzτBzf
k
t , Qzτy

k
zτ , dzτ ) + ψz(xzT )

]
xz,τ+1 = xzτ − uzτ + izτ , ∀ τ ∈ [0, T − 1]

xzτ ∈ Xzτ , uzτ ∈ Uzτ , pzτ ∈ Pzτ , ∀ τ ∈ [0, T − 1]

pzτ , uzτ � Fτ , ∀ τ ∈ [0, T − 1]

where the function L is defined as

L(p, u, f̃ , ỹ, d) = cz(p) + 〈Qzτ (p+ u− d) + f̃), ỹ〉+
λ

2
‖Qzτ (p+ u− d) + f̃‖2

end for.
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Step 2.

Find fk+1 a solution of

min
Z∈L

IE

[
T−1∑
τ=0

(∑
e∈E

le(feτ ) +
λ

2

∑
z∈Z

‖Qzτ (p
k+1
zτ + uk+1

zτ +Bzfτ − dzτ ) + λ−1ykzτ‖2

)]
feτ ∈ Feτ ∀e ∈ E, ∀ τ ∈ [0, T − 1]

feτ � Fτ ∀e ∈ E, ∀ τ ∈ [0, T − 1]

Step 3. Dual update

yk+1 = yk + λ(QÂwk+1 +QB̂fk+1 −Qd)

Choosing Uzτ equal to (dzτ , izτ ), we have that QzτBzf
k
t and Qzτy

k
zτ are not noise,

on the contrary are function of (dzτ , izτ ). Therefore we can apply DP for solve the

sub-problem of Step 1.

In a future work we will try to apply the algorithm TSD, developed in Subsection

3.4.1 of Chapter 3, to sub-problem of Step 1 of algorithm SA1.
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Conclusion

The contributions of this thesis are disseminated in the 5 chapters with different

relative importance. Chapters 2 and 4 contain the main basic algorithms for two

or more operators and they are nearly self-contained. In Chapter 2, the main point

is the generalized splitting scheme which includes most of the classical primal-dual

splitting methods as particular cases associated with the choices of the blocks of the

matrix involved in a generalized proximal point method (a method constructed in

this thesis) applied to the saddle-point inclusion problem.

The general setting shows us the relationship between the splitting algorithms

and the fixed point algorithms corresponding to special average maps. This general

setting also gives us a common point of view of the splitting and convergence proper-

ties of the classical primal-dual splitting methods deduced from this general setting,

allowing us to improve them by adding for example multi-scaling parameters and a

relaxed parameter.

The separable models for multi-block constrained optimization are studied in

Chapter 3 and many new decomposition algorithms are derived with block separable

augmented Lagrangian subproblems. One of these algorithms (SMS3BF) is applied

to a stochastic model defined as (SP ), splitting the nonanticipative constrains and

the linear temporal coupling constraints.

In Chapter 4, a Lipschitz-differentiable function or its corresponding co-coercive

map is added to the models proposed in Chapter 2. So we get extended version of

this algorithm, where we add a Forward step correspond to that function in there

formulation. Notice that, under mild assumptions, these extended algorithms inherit

the properties of the generalized splitting schemes of Chapter 2.

Finally, in Chapter 5, some of the new algorithms considered in the thesis are

applied to an applicative model, the stochastic multistage production planning prob-

lem with a limited set of numerical experiments based on randomly generated data

sets. More is to be done to further validate the proposed algorithms considering the

different coupling inherent to the model. An important open question is concerned

with the tuning of the numerous parameters which influence these splitting methods.

Even if the theoretical convergence rate analysis presented in Chapters 2 and 4 are

not surprising, either in the ergodic or non ergodic sense, the numerical behavior of

the splitting methods is still very sensitive to the choice of the scaling parameters,

as already observed in the literature (see [19, 29]).
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