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Dedicatory

A quitter never wins..., and a winner never quits.

Napoleon Hill.

Make everything as simple as possible, but not simpler.

Albert Einstein.
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Abstract

Let S be a connected smooth projective surface over C. Let Σ be the complete linear

system of a very ample divisor D on S and let d = dim(Σ). For any closed point

t ∈ Σ ∼= Pd∗, let Ht be the hyperplane in Pd corresponding to t, Ct = Ht ∩ S the

corresponding hyperplane section of S, and rt the closed embedding of Ct into S. Let

∆S be the discriminant locus of Σ parametrizing singular hyperplane sections of S and

U = Σ \∆S its complement of smooth hyperplane sections of S. Let CH0(S)deg=0 and

CH0(Ct)deg=0 be the Chow groups of 0-cycles of degree zero of S and Ct respectively.

In this thesis we prove that for Ct a smooth hyperplane section of S the Gysin kernel,

i.e., the kernel of the Gysin homomorphism from CH0(Ct)deg=0 to CH0(S)deg=0 induced

by rt, is a countable union of translates of an abelian subvariety At inside the Jacobian

Jt of the curve Ct. Then we prove that there is a c-open subset U0 in U such that

At = 0, for all t ∈ U0, or At = Bt, for all t ∈ U0; where Bt is an abelian subvariety

of Jt. Finally, we prove that if we are in the case where ∆S is an hypersurface, then

At = 0 or At = Bt, for every t ∈ U .

As an application of the main result of the thesis we prove a theorem on 0-cycles

on surfaces and we study the connection of this theorem with Bloch’s conjecture and

constant cycles curves.
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Resumen

Sea S una superficie suave, proyectiva y conexa sobre C. Sea Σ el sistema lineal

completo de un divisor muy amplio D en S y sea d = dim(Σ). Para cualquier punto

cerrado t ∈ Σ ∼= Pd∗, sea Ht el hiperplano en Pd correspondiente a t, Ct = Ht ∩ S

la correspondiente sección hiperplana de S, y rt el embebimiento cerrado de Ct en S.

Sea ∆S el lugar discriminante de Σ parametrizando secciones hiperplanas singulares

de S y U = Σ \ ∆S su complemento parametrizando secciones hiperplanas suaves de

S. Sean CH0(S)deg=0 y CH0(Ct)deg=0 los grupos de Chow de 0-ciclos de grado cero en

S y Ct respectivamente. En esta tesis probamos que para Ct una seccion hiperplana

suave de S el Gysin kernel, i.e., el kernel del Gysin homomorfismo de CH0(Ct)deg=0 a

CH0(S)deg=0 inducida por rt, es una union contable de trasladados de una subvariedad

abeliana At contenida en el Jacobiano Jt de la curva Ct. Luego probamos que existe

un subconjunto c-abierto U0 en U tal que At = 0, para todo t ∈ U0, o At = Bt, para

todo t ∈ U0, donde Bt es una subvariedad abeliana de Jt. Finalmente, probamos que

si estamos en el caso donde ∆S es una hipersuperficie, para todo t ∈ U tenemos que

At = 0 o At = Bt.

Como una aplicación del resultado principal de la tesis probamos un teorema sobre

0-ciclos en superficies y estudiamos la conexión de este teorema con la conjetura de

Bloch y con la noción de curvas ciclo constantes.
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Introduction

Let k be an algebraically closed field of characteristic 0, let S be a smooth projective

surface over k, let CH0(S)deg=0 be the Chow group 0-cycles of degree zero on S, let albS

be the Albanese morphism defined from CH0(S)deg=0 to the Albanese variety Alb(S)

of S. Bloch’s conjecture states that if S has geometric genus zero, then albS is an

isomorphism, see [7] and [5].

If the Kodaira dimension of S is < 2, i.e., S is of special type, Bloch’s conjecture

has been proven in [8]. If S has Kodaira dimension 2, i.e., S is of general type, the

vanishing of the geometric genus of S implies the vanishing of the irregularity of S, and

the conjecture simply states that any two points on S are rationally equivalent to each

other. This is the hard case of Bloch’s conjecture and only known for some particular

cases.

In [1] Banerjee and Guletskĭı show a general version on the countability results of

the Gysin kernel related to the countability results of the Gysin kernel for surfaces

stated in [30, pages 304-305]. They provide a formal and abstract proof based on the

étale monodromy argument. Let us comment their approach. Let X be a smooth

projective connected variety of dimension 2p embedded into Pm over an uncountable

algebraically closed field k of characteristic 0, let Y a hyperplane section of X, and

let Ap(Y ) =
Zp(Y )alg
Zp(Y )rat

(resp. Ap+1(X) =
Zp+1(X)alg
Zp+1(X)rat

) be the continuous part of the Chow

group CHp(Y ) (resp. CHp+1(X)), that is, algebraically trivial algebraic cycles mod-

ulo rational equivalence on Y (resp. on X). Whenever Y is smooth and satisfying

three assumptions (the group Ap(Y ) is regularly parametrized by an abelian variety A,

Ap(Y ) = CHp(Y )deg=0 and H1
et(A,Ql(1− p)) ∼= H2p−1

et (Y,Ql), see §2 in [1]) they prove

that the kernel of the Gysin pushforward homomorphism from Ap(Y ) to Ap+1(X) in-

duced by the closed embedding of Y into X is the union of a countable collection of

shifts of a certain abelian subvariety A0 inside A, and for a very general section Y either

A0 = 0 or A0 coincides with an abelian subvariety A1 in A. Due to their assumptions

the case p = 1 of this result gives an approach to prove Bloch conjecture.

On the other hand, the notion of constant cycles curves was introduced by Huy-

brechts on K3 surfaces, see [16]. There are various equivalent definitions of constant

cycle curves, the interesting definition for us over C, which is algebraically closed and

uncountable, is that a curve C ⊂ S is a constant cycle curve if and only if the map
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rC∗ from Pic0(C̃) = CH0(C̃)deg=0 to CH0(S) is the zero map, where rC : C̃ → S is

the composition of the normalization C̃ → C with the closed embedding C ↪→ S. The

most important examples of constant cycles curves are provided by rational curves, but

not every constant cycle curve is rational so it is still not known how much weaker the

notion of constant cycles curves is. Moreover, to find a criteria that decides whether

a given curve is a constant cycle curve seems as hard as to find a criteria that would

ensure the opposite (see [16, introduction]).

In this thesis we study the Gysin kernel for the case of surfaces and we prove some

results on the countability of the Gysin kernel related to the countability results of the

Gysin kernel stated in [30, pages 304-305] and [1] which play an important role in the

study of 0-cycles on surfaces, especially in the context of Bloch’s conjecture and constant

cycle curves. More precisely, let S be a connected smooth projective surface over C.
Let Σ be the complete linear system of a very ample divisor D on S and let d = dim(Σ).

For any closed point t ∈ Σ ∼= Pd∗, let Ht be the hyperplane in Pd corresponding to t,

Ct = Ht∩S the corresponding hyperplane section of S, and rt the closed embedding of

Ct into S. Let U = Σ\∆S be the complement of the discriminant locus of Σ of smooth

hyperplane sections of S. We prove that whenever Ct is a smooth hyperplane section

the Gysin kernel Gt, i.e., the kernel of the Gysin homomorphism rt∗ from CH0(Ct)deg=0

to CH0(S)deg=0 induced by rt, is the union of a countable collection of translates of

an abelian subvariety At inside Bt ⊂ Jt, where At is the unique irreducible component

passing through zero of the irredundant decomposition of Gt, and Bt is the abelian

subvariety of the Jacobian Jt of the curve Ct corresponding to the Hodge substructure

on H1(Ct,Z)van (this result is the case p = 1 of Theorem A in [1] and it is also a proof

of [30, page 304, Exercise 1 a]). Then, using the approach to prove Theorem B in [1],

we prove that there is a c-open U0 in U such that At = 0, for all t ∈ U0, or At = Bt,

for all t ∈ U0; that is, we prove that for all t ∈ U0 we have that At has only two

possibilities and the same behaviour (using this result we prove that if the Gysin kernel

Gt is countable for a very general section Ct then albS is an isomorphism which is useful

criterion to prove Bloch’s conjecture). This result is the case p = 1 of Theorem B in [1]

which can be also compared with [30, page 304, Exercise 1 b]. Finally, we prove that

if we are in the case where the discriminant locus ∆S of Σ is an hypersurface, then

At = 0 or At = Bt, for every t ∈ U , i.e., we prove that for every t ∈ U we have that

At has only two possibilities but not necessarily the same behaviour. This last result

applied to surfaces with q(S) = 0 gives a criterion to determine if the corresponding

smooth hyperplane section Ct is a constant cycle curve or not.

It is important to note that in order to prove the countability results on the Gysin

kernel for the case of smooth projective connected variety of dimension 2p in [1] Baner-

jee and Guletskĭı make three assumptions called Assumption 1, Assumption 2, and

Assumption 3. In this thesis we also prove that these assumptions are not necessary
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for the case of surfaces because they turn out to be true facts which we prove and call

Fact 1, Fact 2 and Fact 3 respectively.

The plan of the thesis is as follows. In §1 we give the necessary background about

intersection theory. More precisely, we give a short introduction to the theory of alge-

braic cycles, rational equivalence, algebraic equivalence, homological equivalence, divi-

sors and linear systems. In particular, this section provides the necessary background

to prove Fact 2 which gives us a lot of information about the ways we can think of the

Chow group of 0-cycles of degree zero of the smooth hyperplane sections of a surface.

We also prove the needed results of these topics which we could not find easily in other

texts.

In §2 we recall some facts about Hodge theory, that is, we give a short introduction

to the notion of Hodge structure, polarized varieties, the morphism of Hodge structures,

the Abel-Jacobi map, the Albanese map and the Albanese variety. In particular, this

section provides the necessary background to prove Fact 1 and Fact 3.

In §3 we define the Lefschetz pencils of hyperplane sections on an n-dimensional

smooth projective variety which is a notion that provides a qualitative description of

the generators of the vanishing cohomology in degree n − 1 of a smooth hyperplane

section of the variety, that is, the kernel of the Gysin homomorphism on cohomology

groups induced by the embedding of a smooth hyperplane section of the variety into

the variety, in order to obtain this description it is important to consider a Lefschetz

pencil of hyperplane sections of the variety passing through this hyperplane section. In

this chapter we also study the monodromy action on the cohomology of the fibres of a

projective morphism.

In §4 we prove the main result of the thesis called a theorem on the Gysin kernel

(Theorem 4.1.1). More precisely, let S be a connected smooth projective surface over

C. Let Σ be the complete linear system of a very ample divisor D on S of dimension say

d. Let ∆S be the discriminant locus of Σ parametrizing singular hyperplane sections of

S and U = Σ \∆S its complement of smooth hyperplane sections of S. For any closed

point t ∈ Σ ∼= Pd∗, let Ht be the hyperplane in Pd corresponding to t, Ct = Ht ∩ S the

corresponding hyperplane section of S, rt the closed embedding of Ct into S, and rt∗

the Gysin homomorphism on Chow groups from CH0(Ct)deg=0 to CH0(S)deg=0, induced

by rt, whose kernel is denoted by Gt and called the Gysin kernel associated to the

hyperplane section Ct. Using properties of the Chow groups of 0-cycles of degree zero

of the smooth hyperplane sections Ct of a surface S we prove in item a) of this theorem

that the Gysin kernel Gt associated to a smooth hyperplane section Ct, i.e., with t ∈ U ,

is a countable union of translates of an abelian subvariety At inside the Jacobian Jt of

the curve Ct. Then using the approach of [1] we prove in item b) that there exits a

subset U0 in U such that At with t ∈ U0 has only two possibilities and also the same

behaviour. Finally, using the argument of the monodromy we prove that if we are in
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the case where ∆S is a hypersurface, for every t in U we have that At has only two

possibilities but not necessarily the same behaviour.

In §5, as an application of Theorem 4.1.1 we prove Theorem 5.1.1 called a theorem

on the 0-cycles on surfaces (see also Theorem C in [1]). This theorem states that if the

Albanese morphism albS : CH0(S)deg=0 → Alb(S) is not an isomorphism, then Gt is

countable for a very general t. In this chapter we also study the connection of Theorem

4.1.1 and Theorem 5.1.1 with Bloch’s conjecture and constant cycles curves. More

precisely, we show that item c) of Theorem 4.1.1 applied to surfaces with irregularity

zero (see item c) of Corollary 5.3.6) gives a criteria to determine if the smooth curve

Ct is a constant cycle curve or not. On the other hand, we show that the Theorem

5.1.1 or more precisely its contrapositive and hence equivalent form gives us a criteria

to prove Bloch’s conjecture (see Corollary 5.2.1) and this theorem applied to surfaces

with q(S) = 0 gives us a criteria to prove Bloch’s conjecture for surfaces of general type

and with pg(S) = 0 using the notion of constant cycles curves (see Corollary 5.3.7).
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Chapter 1

Algebraic Cycles

The main purpose of this chapter is to recall some needed facts about a beautiful

subject in algebraic geometry called intersection theory. This chapter begins with

the definition of algebraic cycles, then we study some operations on algebraic cycles

(the pushforward, pullback, intersection product, actions of a correspondence), next we

define rational equivalence which allows us to study some properties of the Chow groups

of r-cycles CHr(X) on a scheme X and in particular of the Chow group CH0(X)deg=0 of

0-cycles of degree zero, which is the main mathematical object of this thesis, after that

we study the notion of algebraic equivalence which allows us to define the continuous

part Ar(X) of the Chow group, i.e., the group of r-cycles algebraically equivalent to zero

modulo the group of r-cycles rationally equivalent to zero. We then continue with the

definition of homological equivalence which allows us to define the group CHr(X)hom

of r-cycles homologically equivalent to zero modulo the group of r-cycles rationally

equivalent to zero. Next we study the relationship between rational, algebraic and

homological equivalence which allows to conclude that when X is a connected smooth

projective variety over an algebraically close field of characteristic zero CH0(X)deg=0,

A0(X) and CH0(X)hom are isomorphic to each other (see Fact 2 ), therefore we gain a

lot of information to study CH0(X)deg=0 via these isomorphisms.

The last two subsections of this chapter are dedicated to recall briefly some facts

about schemes, e.g., the notion of Weil divisors, Cartier divisors, we also see that there

is a one to one correspondence between them when X is a nonsingular variety and if

in addition they are effective we can think of them as subschemes of X, we then show

that there is a one to one correspondence between Cartier divisors and some invertible

sheaves, next we state some conditions on the invertible sheaves such that they provide

closed embeddings to the projective space. We end this chapter with the definition of

linear systems and its characterization as the set of closed points of a projective space.

We state and verify some important results needed for the proof of the main result.

The topics in this chapter are likely well known to experts, but we present it also as a

matter of fixing notation.

1



1.1 Algebraic cycles

Definition 1.1.1 (r-Cycle). Let X be a scheme over k.

� An algebraic cycle on X is a formal finite linear combination

Z =
∑
i

niZi,

where ni ∈ Z, and Zi are subvarieties of X.

� If all the Zi have the same dimension r we say that Z is an algebraic cycle of

dimension r on X or simply an r-cycle on X.

The set

Zr(X) = {Z =
∑
i

niZi : Zi a subvariety of dimension r on X, ni ∈ Z}

of r-cycles on X is a free abelian group called the group of r-cycles on X.

Definition 1.1.2 (Purely dimensional scheme). Let X1, . . . , Xt be the irreducible com-

ponents of the scheme X. We say that X is purely n-dimensional if dim(Xi) = n, for

all i.

Remarks 1.1.3. 1. If X is a purely n-dimensional scheme we have

Zr(X) = Zn−r(X),

where Zn−r(X) is the group of algebraic cycles of codimension n − r on X (see

[24, §1.1.]).

2. If we want to work with linear combinations in a field F , we write

Zr(X)F = Zr(X)⊗Z F,

(see [24, §1.1.]).

Example 1.1.4. Let X be a variety of dimension n.

1. 0-cycles on X are finite formal linear combination

Z =
∑
i

niPi,

where ni ∈ Z and Pi are points of X.

2. Cycles of codimension 1 or (n − 1)-Cycles or divisors on X are finite formal

linear combination

Z =
∑
i

niZi,

where ni ∈ Z and Zi are subvarieties of codimension 1 of X.

2



The following informal example will help us to gain more intuition about algebraic

cycles

Example 1.1.5. Let k be an algebraically closed field. Let X be a smooth projective

curve of degree 3 in the projective plane P2
k, then it looks like in the Figure 1.1

Figure 1.1: Algebraic cycles on a curve

Note that the intersection of the curve X with any line in the plane P2
k is a finite

set of points (see Figure 1.1). Since the curve is of degree 3 and if we count the points

with its multiplicities, there are exactly 3 points in the intersection of the curve X with

any line the plane P2
k .

� For the line L1 in P2
k of Figure 1.1, writing

Z1 = P 1
1 + P 1

2 + P 1
3 ,

where P 1
i , i = 1, 2, 3 are the points of the intersection of X and L1 and the

coefficients are the respective multiplicities of the points P 1
i , we get the 0-cycle

Z1 on the curve X.

� For the line L2, proceeding in a similar way, we get the 0-cycle

Z2 = P 2
1 + 2P 2

2 .

Note also that since dim(X) = 1, Z1 and Z2 are also divisors on the curve X, so as we

vary the lines in P2
k we obtain a family of divisors on X parametrized by lines in P2

k

(points of P2∗
k ). We call this set of divisors a linear system of divisors on X, which we

will define later (this example is an adaptation of an example in [15, §6]).

Definition 1.1.6 (Geometric multiplicity). Let X be a scheme or a subscheme of some

scheme X ′, and let X1, . . . , Xt be the irreducible components of X. The geometric

multiplicity of Xi in X, is the length of the zero dimensional local rings OXi,X , i.e,

mi = lOXi,X
(OXi,X).

3



Definition 1.1.7 (Fundamental cycle). Let X be a scheme or a subscheme of some

scheme X ′. The fundamental cycle of X is the cycle

[X] =
t∑
i=0

miXi ∈ Z(X),

where Xi are the irreducible components of X and mi is the geometric multiplicity of

Xi in X.

If X is purely r-dimensional, then [X] ∈ Zr(X).

Pushforward of cycles

Definition 1.1.8 (The “intuitively” number of sheets). Let f : X → Y be a proper

morphism of schemes and Z ⊂ X a subvariety of X. The “intuitively” number of sheets

of Z over f(Z), denoted by deg(Z/f(Z)), is defined by

deg(Z/f(Z)) =

[k(Z) : k(f(Z))] if dim f(Z) = dim(Z)

0 if dim f(Z) < dim(Z).

where [k(Z) : k(f(Z))] denotes the extension degree of the field extension.

The name of the above definition comes from the complex case, because in the

complex case if dim(f(Z)) = dim(Z), then Z is generically a covering of f(Z) with

[k(Z) : k(f(Z))] sheets.

Definition 1.1.9 (Push-forward homomorphism). Let f : X → Y be a proper mor-

phism of schemes and Z ⊂ X a subvariety of X.

� Set

f∗(Z) = deg(Z/f(Z))f(Z).

Note that, by definition, if Z is a subvariety of dimension r on X then f(Z) is a

subvariety in Y and f∗(Z) is an r-cycle on Y .

� Extending linearly, one gets the pushforward homomorphism

f∗ : Zr(X) → Zr(Y ),

induced by f , from the group of r-cycles on X to the group of r-cycles on Y .

Pullback of cycles

Definition 1.1.10 (Flat morphism). A morphism of schemes f : X → Y is flat if one

of the following equivalent facts are true:

1. for V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X affine open sets with f(U) ⊂ V , the

induced map B → A makes A a flat module over B.

4



2. for all subvarieties W of X, OW,X is a flat module over O
f(W ),Y

.

Definition 1.1.11 (Relative dimension of a morphism). A morphism of schemes f :

X → Y is of relative dimension n if for every subvariety V of Y and for every irreducible

component Z of f−1(V ) we have dim(Z) = dim(V ) + n.

Definition 1.1.12 (Pullback of cycles). Let f : X → Y be a flat morphism of schemes

of relative dimension n, and let V ⊂ Y be a subvariety of Y .

� Set

f∗(V ) = [f−1(V )],

where f−1(V ) is the inverse image scheme which is a subscheme of X of pure

dimension dim(V )+n (see [10, Appendix B.2.3]), and [f−1(V )] is the fundamental

cycle of f−1(V ).

� By linearity, this definition can be extended to the set of r-cycles and yields the

pullback homomorphisms

f∗ : Zr(Y ) → Zr+n(X).

If we restrict to the smooth projective reduced schemes we have the following al-

ternative definition of pullback, see [24, chapter 1].

Definition 1.1.13 (Pullback of cycles). Let f : X → Y be a morphism of smooth

projective reduced schemes and let Z ⊂ Y any subvariety. The graph of f is a subvariety

Γf ⊂ X × Y and if it meets X × Z properly, we set

f∗(Z) := (prX)∗(Γf · (X × Z)),

where prX : X × Y → X is the first projection and · denotes the intersection product

which we define next.

Intersection product

In this subsection we define the intersection product for the case of dimensionally

transverse intersections. For the general definition we refer to [10].

Let X be a smooth variety. Recall that two subvarieties V and W of X with

codimension i and j intersect in a union of subvarieties Zb of different codimensions

≥ i+ j.

Definition 1.1.14 (Dimensionally transverse/Proper intersections). If two subvarieties

V andW of X with codimension i and j respectively, intersect in a union of subvarieties

Zb of codimension i + j we say that the intersection of V and W is dimensionally

transverse or proper .
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Definition 1.1.15 (Intersection multiplicity/Intersection number). If V and W are

two subvarieties of X whose intersection is dimensionally transverse and if Zb is an

irreducible component of V ∩W , then the intersection multiplicity or the intersection

number of V and W along Zb is a positive integer defined by

i(V ·W ;Zb) :=
∑
r

(−1)rlA(Tor
A
r (A/I(V ), A/I(W )));A = OX,Zb

,

where I(V ) (resp. I(W )) is the ideal of the variety V (resp. W ) in the ring A = OX,Zb
.

Definition 1.1.16 (Intersection product or Intersection cycle class). The intersection

product of two subvarieties V and W whose intersection is dimensionally transverse is

defined by

V ·W =
∑
b

i(V ·W ;Zb)Zb

where the sum runs over the irreducible components Zb of V ∩W .

Remark 1.1.17. Note that the intersection product is an algebraic cycle.

Action of a correspondence on cycles

In this section all the varieties will be complete, i.e., proper over the ground field and

nonsingular.

Definition 1.1.18 (Correspondence). A correspondence from a variety X to a variety

Y is a subvariety, a cycle or an equivalence class of cycles on X × Y .

Definition 1.1.19 (Action of correspondences on cycles). Let X be a variety of di-

mension n. A correspondence W ∈ Zr(X × Y ) induces a homomorphism

W : Zi(X) → Zi+(r−n)(Y )

T 7→ W (T ) = [prY ]∗(W · (T × Y ))

and (r − n) is called the degree of the correspondence.

Remark 1.1.20. If X is projective then the second projection X × Y → Y is proper.

Then a correspondence Z ∈ CHr(X × Y ) defines a morphism

Z∗ : CHl(X) → CHl+r−dim(X)(Y )

Z ′ 7→ Z∗(Z
′) = pr2∗(pr1

∗(Z ′) · Z)

1.2 Equivalence relations on algebraic cycles

Rational equivalence

Let X be a scheme.
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Definition 1.2.1 (r-cycle associated to a rational function). Let W be any subvariety

of X of dimension r+1, and let f ∈ k(W )∗ be a nonzero rational function on W , then

we can define a r-cycle associated to f on X as follows

div(f) =
∑
V

ordV (f)V,

where V runs over all subvarieties of codimension 1 on W , and ordV (f) is the order of

vanishing of f along V , see [10, §1.2].

Definition 1.2.2 (r-cycle rationally equivalent to 0). A r-cycle Z on X is rationally

equivalent to zero, denoted by Z ∼rat 0, if there is a finite number of (r+1)-dimensional

subvarieties Wi of X and fi ∈ k(Wi)
∗ such that

Z =
∑
i

div(fi).

The set of r-cycles rationally equivalent to 0 is denoted by

Zr(X)rat = {Z ∈ Zr(X) : Z ∼rat 0}.

It is a subgroup of Zr(X).

Definition 1.2.3 (Rationally equivalent cycles). Two r-cycles Z1 and Z2 on X are

rationally equivalent , denoted by Z1 ∼rat Z2, if its difference Z1 − Z2 is rationally

equivalent to 0.

Informally we say that two r-cycles Z and Z ′ on X are rationally equivalent if there

exists a family of r-cycles on X parametrized by P1 interpolating between them. More

precisely, if we restrict to smooth projective varieties we have the following alternative

definition of rational equivalence, see for example [24, Lemma 1.2.5], [9, §1.2.2], [6,

Introduction] and [14, Introduction].

Definition 1.2.4 (Rationally equivalent cycles). Let X be a smooth projective variety.

Two r-cycles Z and Z ′ on X are rationally equivalent if there exits W ∈ Zr+1(X × P1)

such that for any t ∈ P1 defining by

W (t) := (prX)∗(W · (X × {t})),

where · is the intersection product and prX is the projection to X, we have

Z =W (t1) and Z
′ =W (t2) for some t1, t2 ∈ P1.

Remark 1.2.5. 1. Note that W (t) are the members of the family of r-cycles on X

obtained by intersecting the (r+ 1)-cycle W with the fibers X × {t} over t ∈ P1,

i.e., they are the fibers of W .
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2. If in the above definition we set Z ′ = 0 we get the definition of a r-cycle rationally

equivalent to 0.

In terms of codimension the definition is as follows

Definition 1.2.6 (Rationally equivalent cycles). Let X be a smooth projective variety.

Two cycles Z and Z ′ of codimension i on X are rationally equivalent if there exits

W ∈ Zi(X × P1) such that for any t ∈ P1 defining by

W (t) := (prX)∗(W · (X × {t})),

we have

Z =W (t1) and Z
′ =W (t2) for some t1, t2 ∈ P1.

Now we define the Chow groups.

Definition 1.2.7 (Chow groups). Let X be a scheme.

The group quotient

CHr(X) =
Zr(X)

Zr(X)rat
,

of rational equivalence classes of r-cycles is called the Chow group of r-cycles on X. If

we work with coefficients in a field F we will write

CHr(X)F = CHr(X)⊗Z F.

Algebraic equivalence

Definition 1.2.8 (Algebraic equivalence). Let X be a smooth projective reduced

scheme. A cycle Z of codimension r on X is algebraically equivalent to 0, denoted by

Z ∼alg 0, if and only if there exits a smooth connected curve C, a cycle W ∈ Zr(X×C)
such that for any t ∈ C defining by

W (t) := (prX)∗(W · (X × {t})),

we have

W (t1) = Z and W (t2) = 0

for some t1, t2 ∈ C.

The set of cycles of codimension r that are algebraically equivalent to 0 is denoted

by

Zr(X)alg = {Z ∈ Zr(X) : Z ∼alg 0}.

It is a subgroup of Zr(X).

If X is a complex smooth projective variety equivalently we can define algebraic

equivalence as follows, see [30, §8.2.1], [7, Introduction].
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Definition 1.2.9 (Cycle associated to an intersection). Let C be a smooth connected

curve and W ⊂ C ×X a closed algebraic subset of codimension r of X each of whose

components dominates C (i.e. the restriction to the components of the projection over

C is dominant). Then, for each point t ∈ C we can consider

W (t) = [W ∩ ({t} ×X)],

the cycle of codimension r on X associated to the schematic intersection of W with the

fiber {t} ×X ≃ X over t via the first projection.

Remark 1.2.10. If we denote by τ = prX |W : W → X and by π = prC |W : W → C,

where prX and prC are the projections to X and C respectively, then we can define

W (t) as follows

W (t) = τ∗ ◦ π∗(t).

Definition 1.2.11 (Alternative definition of Zr(X)alg). The subgroup Zr(X)alg of cy-

cles of codimension r algebraically equivalent to 0 is the subgroup generated by the

cycles of codimension r the form W (t)−W (t′), for any smooth connected curve C, any

points t, t′ ∈ C, and for any cycleW ∈ Zr(C×X) each of whose components dominates

C.

Now we can define the continuous part of the Chow group.

By definition it is clear that Zr(X)rat ⊂ Zr(X)alg, so we can define the following

group quotient

Definition 1.2.12 (The continuous part of the Chow group). The group quotient of

cycles algebraically equivalent to 0 modulo rational equivalence is denoted by

Ar(X) =
Zr(X)alg
Zr(X)rat

⊂ CHr(X).

This group should be thought of as the continuous part of the Chow group of r-cycles

(see [6, Introduction]).

Homological equivalence

Let X be a smooth projective variety over an algebraically closed field k.

Definition 1.2.13 (Weil-cohomology). Fix a field F of characteristic 0 called the

coefficient field. A Weil-cohomology theory is a contravariant functor

X → H∗(X)

from the category of varieties to the category of augmented, finite dimensional, anti-

commutative F -algebras which satisfies the following properties (see [17, §1.2.])
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1. Poincaré duality: if dim(X) = n, then

a) The groups Hr(X) = 0, for r ̸= 0, . . . , 2n.

b) There is a given orientation isomorphism H2n(X) ≃ F (note that in partic-

ular, H0(P ) ≃ F , for P a point).

c) The canonical pairings

Hr(X)×H2n−r(X) → H2n(X)

are non-singular.

Let Hr(X) be the F -vector space dual to Hr(X). Then Poincaré duality states

that there are isomorphisms

H2n−r(X)
∼→ Hr(X)

induced by the map a 7→ ⟨·, a⟩, where ⟨, ⟩ : H∗(X) → F is the degree map.

Let f : X → Y be a morphism, f∗ = H∗(f) : H∗(Y ) → H∗(X) and define a

F -linear map f∗ : H
∗(X) → H∗(Y ) as the transpose of f∗. Then

f∗((f
∗a) · b) = a · f∗b.

2. Künneth formula: let prX : X×Y → X and prY : X×Y → Y be the projections.

Then

H(X)⊗F H(Y ) → H(X × Y )

a⊗ b 7→ pr∗X(a) · pr∗Y (b)

is an isomorphism.

3. Cycle maps: there are groups homomorphisms

clX : Zr(X) → H2r(X)

satisfying the following properties

� functorial in the sense that for a morphism of varieties f : X → Y , one has

f∗ ◦ clY = clX ◦ f∗ and f∗ ◦ clX = clY ◦ f∗.

� Multiplicativity:

clX×Y (Z ×W ) = clX(Z)⊗ clY (W );

� Non-triviality: if P is a point, then

cl : Z∗(P ) = Z → H∗(P ) = F

is the canonical inclusion.
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The elements of H∗(X) are called cohomology classes, the multiplication on H∗(X) is

called cup product .

Remark 1.2.14. There are other more restrictive definitions of a Weil cohomology the-

ory, see for example [24, Definition 1.2.13], where they define the Weil cohomology over

the category of smooth projective reduced schemes over an arbitrary field k and they

state that a Weil cohomology theory also satisfies the following properties:

a) There are cycle class maps

clX : CHr(X) → H2r(X)

which are functorial, compatible with intersection product and compatible with

points.

b) Weak Lefschetz holds: if i : Y ↪→ X is a smooth hyperplane section of a variety

of dimension n, then

Hr(X)
i∗→ Hr(Y )

is an isomorphism for r < n− 1 and injective for r = n− 1.

c) Hard Lefschetz holds: the Lefschetz operator L(α) induces isomorphisms

Ln−r : Hn−r(X)
∼→ Hn+r(X), 0 ≤ r ≤ n.

Fixing a Weil-cohomology theory we can now define the homological equivalence

Definition 1.2.15 (Homological equivalence). A cycle Z of codimension r on X is

homologically equivalent to 0, denoted by Z ∼hom 0, if clX(Z) = 0.

This definition depends on the choice of a Weil cohomology theory ([24, Definition

1.2.16]).

The set of cycles of codimension r homologically equivalent to 0 form a group, it is

denoted by Zr(X)hom.

Let X be a smooth complex quasi-projective variety or more generally let X be a

smooth projective reduced scheme over an arbitrary field k, fixing a Weil cohomology

theory we have the following lemma

Lemma 1.2.16. Let dim(X) = n and let clX(Z) ∈ H2n−2r(X) be the class of a r-cycle

Z on X. If Z ∼rat 0, then clX(Z) = 0.

Proof. For complex case see proof of [30, Lemma 9.18]. For the general case, note that

this property form part of the properties of the Weil cohomology theory (see item a)

of Remark 1.2.14).
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By this lemma (i.e. the fact that Zr(X)rat ⊂ Ker(cl)) and the fundamental theorem

on homomorphisms, the cycle map

clX : Zr(X) → H2n−2r(X)

thus gives the cycle class map

clX : CHr(X) → H2n−2r(X).

Definition 1.2.17 (The group CHr(X)hom). The kernel of the cycle class map clX is

denoted by

CHr(X)hom = Ker(clX : CHr(X) → H2n−2r(X))

Note that CHr(X)hom is the group of r-cycles homologically equivalent to 0 modulo

rational equivalence, i.e.,

CHr(X)hom =
Zr(X)hom
Zr(X)rat

.

Relation between algebraic, rational and homological equivalence of
algebraic cycles

Let X be a smooth projective reduced scheme over an algebraically closed field k of

characteristic 0, then we have the following proposition.

Proposition 1.2.18.

Zr(X)rat ⊂ Zr(X)alg ⊂ Zr(X)hom.

Proof. The inclusion Zr(X)rat ⊂ Zr(X)alg is clear by definition.

To prove the second inclusion Zr(X)alg ⊂ Zr(X)hom, assume that Z ∈ Zr(X)alg,

that is, Z ∼alg 0, then by definition of algebraic equivalence there exits a connected

smooth curve C, a cycle W ∈ Zr(X × C) each of whose components dominates C and

points t1, t2 ∈ C such that Z is of the form W (t1)−W (t1), where

W (t1) = τ∗ ◦ π∗(t1) and W (t2) = τ∗ ◦ π∗(t2)

with τ (resp. π ) the restriction to W of the projection to X (resp. to C), see Remark

1.2.10.

Now consider the following commutative diagram

Zr(X) H2r(X)

Z1(W ) H2(W )

Z1(C) H2(C)

cl

cl

τ∗ τ∗

cl

π∗ π∗
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Note that since C is connected the cycle map cl : Z1(C) → H2(C) ≃ Z coincides

with the degree map deg : Z0(C) → Z of 0-cycles on C, so for t1, t2 ∈ C we have

cl(t1) = cl(t2) = 1, then

τ∗ ◦ π∗ ◦ cl(t1) = τ∗ ◦ π∗ ◦ cl(t2).

By the commutativity of the diagram we have

cl ◦ τ∗ ◦ π∗(t1) = τ∗ ◦ π∗ ◦ cl(t1)

and similarly

τ∗ ◦ π∗ ◦ cl(t2) = cl ◦ τ∗ ◦ π∗(t2),

it follows that

cl ◦ τ∗ ◦ π∗(t1) = cl ◦ τ∗ ◦ π∗(t2)

which is equivalent to

cl(W (t1)) = cl(W (t2)).

Since the cycle map is an homomorphism we have

cl(W (t1)−W (t2)) = cl(Z) = 0,

then Z ∼hom 0, that is, Z ∈ Zr(X)hom.

The above proposition is also true over an arbitrary field, see [24, §1.2.1.].

Rational, algebraic and homological equivalence of 0-cycles

Let X be a smooth projective reduced scheme of dimension n over an algebraically

closed field k of characteristic 0.

From the Proposition 1.2.18 for the case r = n, one has

Zn(X)alg ⊂ Zn(X)hom

or equivalently

Z0(X)alg ⊂ Z0(X)hom.

Now we prove that if in addition X is connected the other inclusion also holds, therefore

Z0(X)hom = Z0(X)alg. To prove it we use the following lemmas

Lemma 1.2.19. (0-cycles homologous to 0 have degree 0 and vice versa) Assume in

addition that X is connected, and let Z0(X)deg=0 ⊂ Z0(X) be the group of 0-cycles of

degree 0. Then

Z0(X)hom = Z0(X)deg=0.
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Proof. Since X is connected we have H2n(X) ≃ Z, i.e., we have

Z0(X) H2n(X)

Z

deg

cl

≃

So,

Z0(X)hom = Ker(cl : Z0(X) → H2n(X)) = Ker(deg : Z0(X) → Z) = Z0(X)deg=0,

i.e. the 0-cycles homologous to 0 coincide with the 0 cycles of degree 0.

Lemma 1.2.20. Let C be an integral (reduced and irreducible) smooth curve and

P1, P2 ∈ C two points in C, then

P1 ∼alg P2.

Proof. We must show that there exists a smooth curve D, W ∈ Z1(C×D) i.e. a family

of 0-cycles (or equivalently cycles of codimension 1) on C each of whose components

dominates D, and points t1, t2 ∈ D such that W (t1) = P1 and W (t2) = P2, i.e., such

that P1 and P2 are members of this family.

It is enough to take D = C, W = ∆ = {(a, b) ∈ C × C : a = b} ⊂ C × C the

diagonal, and t1 = P1 and t1 = P2.

Lemma 1.2.21. If there exists a connected curve C such that its components are

smooth and integral and P and Q are two points of C, then P ∼alg Q.

Proof. Assume that such a curve C = C1∪· · ·∪Cr exists, then without lost of generality

we can assume that P = P0 ∈ C1, Q = Pr ∈ Cr and that Pi ∈ Ci ∩ Ci+1 for all

i = 1, . . . , r − 1, then for the Lemma 1.2.20 we have Pi−1 ∼alg Pi for all i = 1, . . . , r,

then P = P0 ∼alg Q = Pr.

Proposition 1.2.22. (Homological and algebraic equivalence coincide for 0-cycles) If

X is connected, then

Z0(X)hom = Z0(X)alg.

Proof. By Proposition 1.2.18 it is enough to prove that Z0(X)hom ⊂ Z0(X)alg. By

Lemma 1.2.19 this is equivalent to prove that if a 0-cycle has degree zero then it is

algebraically equivalent to 0, which we do next.

Let Z =
∑

imiPi be a 0-cycle on X with degree zero, i.e., with
∑

imi = 0, then

we can consider Z = P −Q with P,Q ∈ X, this holds true because since Z has degree

zero it is generated by differences of this form. Indeed, observe that

Z =
∑

miPi =
∑
i

mi(Pi −Q) =
∑
i

miPi −
∑
i

miQ,

for any Q ∈ X.
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By [30, §8.2.1] there exits a smooth connected curve C containing P,Q ∈ X, then

by Lemma 1.2.21 P ∼alg Q or equivalently Z = P −Q ∼alg 0.

Finally, we next study the relation between rational, algebraic and homological

equivalence of 0-Cycles on a smooth projective variety.

Proposition 1.2.23. Let X be a smooth projective variety of dimension n over an

algebraically closed field k of characteristic 0. Then

CH0(X)deg=0 = CH0(X)hom = A0(X).

Proof. Since by Lemma 1.2.19 we have Z0(X)deg=0 = Z0(X)hom the first equality holds.

On the other hand, by Proposition 1.2.22 we have that Z0(X)hom = Z0(X)alg, this

gives the second equality.

If dim(X) = 1, that is, X is a smooth projective curve over an algebraically closed

field k of characteristic 0 we get the following important lemma for the proof of the

main result of this thesis.

Lemma 1.2.24. (Fact 2) Let C be a smooth projective curve over an algebraically

closed field k of characteristic 0. Then

CH0(C)deg=0 = CH0(C)hom = A0(C).

Proof. Apply Proposition 1.2.23 when dim(X) = 1.

1.3 Chow groups

Let X be a scheme. Recall that Chow group of r-cycles is defined as the group quotient

CHr(X) =
Zr(X)

Zr(X)rat
,

see Definition 1.2.7.

We now study some properties of the Chow groups.

Theorem 1.3.1 (Rational equivalence pushes forward). If f : X → Y is a proper

morphism and Z is a r-cycle on X rationally equivalent to zero, then f∗(Z) is a r-cycle

rationally equivalent to zero on Y .

Proof. See [10, Theorem 1.4].

By Theorem 1.3.1, given a proper morphism f : X → Y there is an induced

homomorphisms on Chow groups

f∗ : CHr(X) −→ CHr(Y ).
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Definition 1.3.2. The morphism f∗ is called the pushforward homomorphism or Gysin

homomorphism on Chow groups induced by f .

So, we see that the Chow groups have ’homological-like’ properties.

On the other hand, consider the following lemma

Lemma 1.3.3. Let f : X → Y be a flat morphism of relative dimension n and Z an a

r-cycle on Y which is rationally equivalent to zero. Then f∗(Z) is rationally equivalent

to zero in Zr+n(X).

Proof. See [10, Theorem 1.7].

By Lemma 1.3.3 there is an induced homomorphism on Chow groups

f∗ : CHr(Y ) → CHr+n(X).

Definition 1.3.4. The morphism f∗ is called pullback homomorphism on Chow groups

induced by f .

So, we see that the Chow groups have also ’cohomological-like’ properties.

The group CH0(X)deg=0

Let X be a complete scheme over a field k, that is, X is proper over Spec(k).

Definition 1.3.5 (Degree of a 0-cycle). The degree of 0-cycles onX is a homomorphism

deg : Z0(X) → Z,

defined by

Z =
∑
i

niPi 7→ deg(Z) =
∑
i

ni[k(Pi) : k],

where k(Pi) denotes the residue field of the point Pi.

Claim: deg = f∗, where f : X → Spec(k) is the structural morphism.

Proof. Since X is complete, the structure morphism f : X → Spec(k) is proper, so

there is an induced homomorphism

f∗ : Z0(X) → Z0(Spec(k))

defined by

f∗(Z) =
∑
i

nif∗(Pi) =
∑
i

ni deg(Pi/f(Pi))f(Pi).

Since dim(Pi) = dim(f(Pi)) = dim(Spec(k)), we have

deg(Pi/f(Pi)) = [k(Pi) : k(Spec(k))] = [k(Pi) : k],
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then

f∗(Z) =
∑
i

ni[k(Pi) : k]Spec(k).

Sending Spec(k) → 1, we get deg = f∗.

By Theorem 1.3.1 we have an induced homomorphism, which we also denote by

deg, on Chow groups

deg : CH0(X) → CH0(Spec(k)).

Since Z0(Spec(k)) = CH0(Spec(k)) = Z we get

deg : CH0(X) → Z

the degree homomorphism on the Chow group of 0-cycles.

Definition 1.3.6 (The group CH0(X)deg=0). The kernel of deg : CH0(X) → Z is

denoted by

CH0(X)deg=0 = Ker(deg : CH0(X) → Z).

This is the Chow group of 0-cycles of degree zero on X.

In particular, it follows that rationally equivalent cycles have the same degree.

Countability lemmas

In this subsection we present some countability lemmas needed to prove the main result

of the thesis.

Let k be an uncountable field. In this subsection a variety is a reduced scheme, not

necessarily irreducible.

Lemma 1.3.7. Let X be an irreducible quasi-projective algebraic variety over k. Then

X can not be written as a countable union of its Zariski closed subsets, each of which

is not the whole X.

Proof. See [1, Lemma 10].

Definition 1.3.8 (Irredundant countable union). A countable union V = ∪n∈NVn
of algebraic varieties will be called irredundant if Vn is irreducible for each n and

Vm ̸⊂ Vn for m ̸= n. If V is a irredundant decomposition, then the sets Vn are called

c-components of V .

Lemma 1.3.9. Let V be a countable union of algebraic varieties over an uncountable

algebraically closed ground field. Then V admits an irredundant decomposition, and

such an irredundant decomposition is unique.

Proof. See [1, Lemma 11].
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Lemma 1.3.10. Let A be an abelian variety over k, and let K be a subgroup which can

be represented as a countable union of Zariski closed subsets in A. Then the irredundant

decomposition of K contains a unique irreducible component passing through 0, and this

component is an Abelian subvariety in A.

Proof. See [1, Lemma 12].

Regular maps into CH0(X)

Let X be a nonsingular projective variety over an uncountable algebraically closed field

of characteristic zero.

Definition 1.3.11 (c-closed, c-open). A subset of an integral scheme T which is union

of a countable number of closed subsets is called a c-closed subset and the complement

of a c-closed, i.e., intersections of a countable number of open subsets is called a c-open

subset.

Definition 1.3.12 (Very general notion). Let T be an integral scheme. We say that a

property Q holds for a very general point on T if there exists a c-open subset in T such

that Q holds for each point in this c-open.

Here we work over an uncountable field because in this case the theorem on unique

decomposition into irreducible components extends to c-closed subsets, so we can speak

about the dimension of a c-closed subset, understanding by this the maximum of the

dimensions of its irreducible components.

Definition 1.3.13 (Symmetric product). The d-th symmetric product of a variety X,

denoted by Symd(X), is the quotient variety Symd(X) = Xd/Σd, where Xd is the

self-product of X and Σd is the group of permutations of the factors.

The d-th symmetric product Symd(X) is a variety of dimension nd, where n =

dim(X) and as a set coincides with the set of effective 0-cycles of degree d, i.e.,

Symd(X) =
as set

{ effective 0-cycles of degree d on X}.

Definition 1.3.14 (Difference map). The set-theoretic map

θXd1,d2 : Symd1(X)× Symd2(X) → CH0(X)

(A,B) 7→ [A−B]

where [A−B] is the class of the cycle A−B modulo rational equivalence, will be called

the difference map.

Remark 1.3.15. When d1 = d2 = d we will denote θXd1,d2 just by θXd .
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For any non negative integers d1, . . . , ds we denote by

Symd1,...,ds(X) = Symd1(X)× · · · × Symds(X).

to the fibred product over the ground field k.

Let

W d1,d2 = {(A,B;C,D) ∈ Symd1,d2(X)× Symd1,d2(X) : θXd1,d2(A,B) = θXd1,d2(C,D)}
= {(A,B;C,D) ∈ Symd1,d2(X)× Symd1,d2(X) : (A−B) ∼rat (C −D)}

be the subset of Symd1,d2(X)×Symd1,d2(X) defining the rational equivalence on Symd1,d2(X).

It is a c-closed subset by Lemma 1 in [27].

Remark 1.3.16. Note that W d1,d2 is the fibred product

W d1,d2 = Symd1,d2(X)×CH0(X) Sym
d1,d2(X) Symd1,d2(X)

Symd1,d2(X) CH0(X)

θXd1,d2
θXd1,d2

Definition 1.3.17 (Regular map into CH0(X)). A set-theoretic map κ : Z → CH0(X)

of an algebraic variety Z into the Chow group of 0-cycles CH0(X) will be called regular

if there exists a commutative diagram (in the set-theoretic sense)

Y Symn,m(X)

Z CH0(X)

f

g θXd1,d2

κ

where f is a regular map and g is an epimorphism which is also a regular map.

Definition 1.3.18 (Algebraic subset of CH0(X)). The image κ(Z) ⊂ CH0(X) of a

regular map κ : Z → CH0(X) will be called an algebraic subset of CH0(X).

Definition 1.3.19 (Closed subset of CH0(X)). If Z is projective (irreducible), then

its image κ(Z) ⊂ CH0(X) under a regular map κ : Z → CH0(X) will be called closed

subset (irreducible) of CH0(X).

Equivalently set-theoretic regular maps into CH0(X) can be defined as follows ([27,

Lemma 4]).

Definition 1.3.20 (Alternative definition of a regular map into CH0(X)). The set-

theoretic map κ : Z → CH0(X) is regular if and only if for any integers d1 and d2 the

subset

Wκ,θXd1,d2
= {(z,A,B) ∈ Z×Symd1,d2(X) : κ(z) = θXd1,d2(A,B)} = Z×CH0(X)Sym

n,m(X)

is c-closed.
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Lemma 1.3.21. The map θXd1,d2 : Symd1,d2(X) → CH0(X) is regular.

Proof. It follows from the above alternative definition of a regular map into CH0(X)

and the fact that the subset

W d1,d2 = Symd1,d2(X)×CH0(X) Sym
d1,d2(X)

is c-closed [27, Lemma 1].

Remark 1.3.22. Recall that CH0(X) = Z × CH0(X)deg=0, where CH0(X)deg=0 is the

Chow group of 0-cycles of degree zero, see [27, Introduction].

Lemma 1.3.23. Let κ : Z → CH0(X)deg=0 be a regular map and let

albX : CH0(X)deg=0 → Alb(X)

be the Albanese map. Then the composite map albX ◦κ : Z → Alb(X) is a regular map

of algebraic varieties.

Proof. see [27, Lemma 8].

Representability of CH0(X)deg=0

Let X be a connected smooth projective variety over C of dimension n.

Definition 1.3.24 (Representability). CH0(X)deg=0 is representable if the natural map

θXd : Symd(X)× Symd(X) → CH0(X)deg=0

is surjective for sufficiently large d (see [30, Definition 10.6]).

Equivalently the representability of CH0(X)deg=0 can be defined as follows ([30,

Theorem 10.11]).

Definition 1.3.25 (Representability). CH0(X)deg=0 is representable if and only if

albX : CH0(X)deg=0 → Alb(X)

is an isomorphism.

The following Lemma is a basic property of rational equivalence ([30, Lemma 10.7],

[22, Lemma 3]).

Lemma 1.3.26. The fibres of

θXd : Symd(X)× Symd(X) → CH0(X)deg=0

are countable unions of closed algebraic subsets of Symd(X)× Symd(X).
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If we denote by (θXd )−1(α), α ∈ CH0(X)deg=0, to any fiber of the set-theoretic map

θXd , the above lemma tell us

(θXd )−1(α) =
⋃

countable

closed algebraic subsets of Symd(X)× Symd(X)

So now we can talk about the dimension of a fiber of θXd .

Definition 1.3.27 (Dimension of any fibre of θXd ). For any α ∈ CH0(X)deg=0, we have

dim(θXd )−1(α) = largest dimension among the dimensions of its algebraic components

Property: There is a countable union B of proper algebraic subsets of Symd(X) ×
Symd(X) such that for x ∈ Symd(X)× Symd(X) \B,

dim((σXd )−1(σXd (x))) = rd,

is constant and equal to rd (see [30, page 282]).

Definition 1.3.28 (Dimension of a very general fibre of θXd ). rd is called the dimension

of a very general fiber of θXd .

Remark 1.3.29. In [30], for the above definition “general” is used instead of “very

general”.

Then the dimension of a closed subset of CH0(X), that is, the dimension of the

image of the regular map θXd is defined as follows

Definition 1.3.30 (Dimension of a closed subset of CH0(X)). The dimension of the

image of the map θXd is

dim(im(θXd )) = dim(Symd(X)× Symd(X))− rd = 2nd− rd.

Definition 1.3.31 (Dimension of CH0(X)deg=0). We say that CH0(X)deg=0 is infinite

dimensional if

limd→∞ dim im(σXd ) = ∞,

and finite dimensional otherwise.

Then the representability of CH0(X)deg=0 can be defined as follows ([30, Proposition

10.10]).

Proposition 1.3.32. The group CH0(X)deg=0 is representable if and only if it is finite

dimensional.
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1.4 Divisors and Linear system

Weil divisors

Let X be a variety of dimension n over an algebraically closed field.

Definition 1.4.1 (Weil divisors). A Weil divisor on X is a finite formal sum

D =
∑
i

niDi,

where ni ∈ Z and Di are subvarieties of dimension n− 1, i.e., of codimension 1 on X.

In other words, a Weil divisor on X is a cycle of codimension 1 on X.

Example 1.4.2. A Weil divisor on a surface is a finite formal sum D =
∑

i niDi where

ni ∈ Z and Di are curves (i.e. subvarieties of dimension 1).

The set of divisors on X is denoted by Div(X). It is a group with the sum of divisors

defined by ∑
i

niDi +
∑
i

miDi =
∑
i

(ni +mi)Di.

Definition 1.4.3 (Effective Weil divisor). A Weil divisor is called effective if ni ≥ 0

for all ni.

Let f ∈ k(X)∗ be a rational function on X, let div(f) be the (n−1)-cycle or divisor

associated to f (see Definition 1.2.1).

Definition 1.4.4 (Principal divisors). Any divisor which is equal to the divisor of a

rational function is called a principal divisor .

Definition 1.4.5 (Locally principal Weil divisors). AWeil divisor D is locally principal

if X can be covered by open sets U such that D |U is principal.

Definition 1.4.6 (Linear equivalence of Weil divisors). Two divisors D1 and D2 are

said to be linearly equivalent , denoted by D1 ∼lin D2, if D1 −D2 is a principal divisor.

Cartier divisors

In this subsection let X be any arbitrary scheme.

Let K be the sheaf of total quotient rings of OX ([15, §6]), let K ∗ be the sheaf

of invertible elements in the sheaf of rings K , and let O∗
X be the sheaf of invertible

elements in the sheaf OX .

Remark 1.4.7. The sheaf K is a generalization of the concept of function field of an

integral scheme.

Definition 1.4.8 (Cartier divisor). A Cartier divisor on X is a global section of K ∗

O∗
X
.
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A Cartier divisor on X can be described by the data {(Ui, fi)}, where Ui form

an open cover of X and fi is an element of Γ(Ui,K ∗) = K ∗(Ui) such that fi/fj ∈
O∗
X(Ui ∩ Uj) for each i, j.

Definition 1.4.9 (Principal Cartier divisor). A Cartier divisor is principal if it is in

im(Γ(X,K ∗) → Γ(X, K ∗

O∗
X
)).

Definition 1.4.10 (Linear equivalence of Cartier divisors). Two Cartier divisors are

linearly equivalent if their difference is principal.

Remark 1.4.11. When X is a nonsingular variety the group Div(X) of Weil divisors on

X is isomorphic to the group Γ(X, K ∗

O∗
X
) of Cartier divisors on X and principal Weil

divisors correspond to principal Cartier divisors ([15, Remark 6.11.1A.]). So, in this

case usually one refers to them as divisors without any qualifier. In general, the group

of Cartier divisors coincides with the group of locally principal Weil divisors.

Definition 1.4.12 (Effective Cartier divisor). A Cartier divisor on X is effective if it

can be represented by {(Ui, fi)} where fi ∈ Γ(Ui,OUi).

Definition 1.4.13 (Associated subscheme of an effective Cartier divisor). Let D be

an effective Cartier divisor represented by {(Ui, fi)}. The associated subscheme of

codimension 1 is the closed subscheme defined by the sheaf of ideals I which is locally

generated by fi.

The above definition gives a one to one correspondence between effective Cartier

divisors and closed subschemes that are locally principal (i.e., subschemes whose sheaf

of ideals are locally generated by a single element).

Remark 1.4.14. If X is a nonsingular variety (so, Cartier divisors coincide with Weil

divisors) we have a one to one correspondence between effective Weil divisors and closed

subschemes that are locally principal.

Let us now see that there is a one to one correspondence between Cartier divisors

and some special invertible sheaves.

Definition 1.4.15 (Invertible sheaf). An invertible sheaf on a ringed space is a locally

free sheaf of rank 1.

Definition 1.4.16 (Picard group). The group of invertible sheaves on a ringed space

X modulo isomorphism is called the Picard group of X and is denoted by Pic(X).

Definition 1.4.17 (Invertible sheaf associated to a Cartier divisor). Let D be a Cartier

divisor on X represented by {(Ui, fi)} as above. The sheaf OX(D) associated to D is

a subsheaf of K defined by taking OX(D) to be the sub OX -module of K generated

by f−1
i on Ui.
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It is known that OX(D) is an invertible sheaf on X and that the map D 7→ OX(D)

gives a one to one correspondence between Cartier divisors on X and invertible sub

sheaves of K (see [15, Proposition 6.13]).

Remark 1.4.18. In a projective or integral scheme every invertible sheaf is isomorphic

to a subsheaf of K . So, when X is projective and nonsingular variety (so, Cartier

divisors coincide with Weil divisors), we have that

CH1(X) → Pic(X)

is an isomorphism.

In the rest of this section we will see that to give a morphism of a scheme X to a

projective space is equivalent to give an invertible sheaf and a set of its global section

generating it ([15, Theorem 7.1]).

Let R be a fixed ring. Let PnR = Proj(R[x0, . . . , xn]) be the projective space over

R. Let X be any scheme over R. Recall that on PnR there is an invertible sheaf OPn
R
(1)

which is generated by the global sections x0, . . . , xn ∈ Γ(PnR,OPn
R
(1)) induced by the

homogeneous coordinates x0, . . . , xn.

If φ : X → PnR is an R-morphism of X to PnR, then φ∗(OPn
R
(1)) is an invertible sheaf

on X and the global sections si = φ∗(xi) ∈ Γ(X,φ∗(OPn
R
(1))), i = 0, . . . , n, generate

the sheaf φ∗(OPn
R
(1)).

Conversely, if L is an invertible sheaf on X, and if si ∈ Γ(X,L ), i = 0, . . . , n are

global sections generating L , then there exits a unique R-morphism φ : X → PnR such

that L ∼= φ∗(OPn
R
(1)) and si = φ∗(xi) under this isomorphism

To give some criteria for a morphism induced by an invertible sheaf to be an im-

mersion we need the following definition

Definition 1.4.19 (Very ample invertible sheaf). Let X be any scheme over Y . An

invertible sheaf L on X is very ample relative to Y if there exists an immersion i :

X → PrY for some r, such that L ≃ i∗(OPr
Y
(1)).

When Y = Spec(k), where k is a field, we have the following criteria to deter-

mine when the morphism to the projective space induced by an invertible sheaf is an

immersion.

Proposition 1.4.20. Let X be a scheme over Spec(k). An invertible sheaf L is very

ample (relative to Spec(k)) if L admits a set of global sections si, i = 0, . . . , n, such

that the corresponding morphism φ : X → Pnk is an immersion (see [15, §7]).

Definition 1.4.21 (Very ample divisor). A divisor D on a nonsingular and projective

variety X is called very ample if OX(D) is very ample.
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Linear System

Let X be a nonsingular projective variety over an algebraically closed field k (note that

in this case the notion of Cartier divisors is equivalent to the notion of Weil divisors; any

invertible sheaf is isomorphic to a subsheaf of K ; there is a one to one correspondence

between linear equivalence classes of divisors and isomorphism classes of invertible

sheaves; and for any invertible sheaf L on X, Γ(X,L ) is a finite dimensional vector

space).

The following definition shows that global sections of an invertible sheaf on X

correspond to effective divisors on X.

Definition 1.4.22 (Divisor of zeros of a section). Let L be an invertible sheaf on X,

and let s ∈ Γ(X,L ) be a nonzero section of L . The divisor of zeros of s is a (Cartier)

divisor, denoted by (s)0, described by the data {Ui, φUi(s)}, where Ui is any open set

of X in which L is trivial and φUi : L |Ui

∼→ OUi is an isomorphism. Note in particular

that as Ui ranges in a covering of X, the collection {Ui, φUi(s)} determines an effective

Cartier divisor (s)0.

Proposition 1.4.23. Let D be a divisor on X and let L ∼= OX(D) be the corresponding

invertible sheaf. Then

a) For each nonzero s ∈ Γ(X,L ) we have that (s)0 ∼lin D and is effective.

b) Every effective divisor D′ linearly equivalent D is the divisor of zeros of a section

of L , i.e., D′ = (s)0 for some s ∈ Γ(X,L ).

c) Two sections s, s′ ∈ Γ(X,L ) have the same divisor of zeros if and only if s = ts′

for some t ∈ k∗.

Proof. See [15, Proposition 7.7.].

Definition 1.4.24 (Complete linear system). A complete linear system on a nonsin-

gular projective variety is the set of all effective divisors linearly equivalent to some

given divisor D, usually denoted by | D |.

It follows from Proposition 1.4.23 that the complete linear system | D | is in one

to one correspondence with the set Γ(X,L )−{0}
k∗ = P(Γ(X,L )), that is, we can define

the complete linear system as follows: | D |= P(Γ(X,L )) = P(H0(X,L )). So, | D |
has the structure of the set of closed points of a projective space over k and it is also

sometimes denoted by | L |.

Definition 1.4.25 (Linear system). A linear system δ on X is a subset of a complete

linear system | D | which is a linear subspace for the projective space structure of | D |.
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A linear system δ corresponds to a vector subspace

V = {s ∈ Γ(X,L (D)) : (s)0 ∈ δ} ∪ {0}.

Definition 1.4.26 (Dimension of a linear system). The dimension of the linear system

is defined by

dim(δ) = dim(V )− 1.

Definition 1.4.27 (Support of a Divisor). The support of a divisor D =
∑

i niDi is⋃
Di, the union of the subvarieties of codimension 1, it is denoted by Supp(D).

Definition 1.4.28 (Base point). A point x ∈ X is a base point of a linear system δ if

x ∈ Supp(D) for all D ∈ δ.

Definition 1.4.29. (Fixed part of a linear system) A fixed part of a of a linear system

δ is the biggest divisor F that is contained in every element of δ.

Lemma 1.4.30. Let δ be a linear system on X corresponding to the subspace V ⊂
Γ(X,L ). Then δ is base point free if and only if L is generated by global sections in

V .

Proof. See [15, Lema 7.8.]

So giving a morphism X → Pnk is equivalent to giving a linear system δ without

base points on X and a set of elements s0, . . . , sn ∈ V which span V .

Lemma 1.4.31. Let S be a smooth projective surface over the complex numbers, let

D a very ample divisor on S and L = OS(D) its corresponding very ample invertible

sheaf on S and let Σ =| D |=| L | the complete linear system corresponding to D on

S of dimension say d and φL = φΣ : S → Pd the embedding corresponding to Σ, then

S is nondegenerate, that is, is not contained in any hyperplane of Pd.

Proof. Since L = OS(D) is very ample and by Proposition 1.4.20 it admits a set of

global sections s0, . . . , sd ∈ H0(S,OS(D)) generating it which by Lemma 1.4.30 this is

equivalent to the fact that Σ is base points free then it has no fixed part, it follows by

[3, II.6] that S is not degenerated.

Remark 1.4.32. Let φ : X → Pnk be a morphism corresponding to the linear system δ.

Then φ is a closed immersion if and only if δ separate points and separates tangent

vectors (see [15, Remark 7.8.2]).
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Chapter 2

Hodge Theory and The
Abel-Jacobi Map

In this chapter we recall some facts about Hodge theory. We start with the notion of

Hodge structure and polarized varieties which thanks to Kodaira Embedding Theorem

are projective varieties, i.e., admits a holomorphic embedding into a projective space,

then we study the notion of complex torus associated to the Hodge structure on the

cohomology group H1(X) of a compact Kähler manifold X showing that it coincides

with the Picard group Pic0(X) and that if X is smooth and projective Pic0(X) is

an abelian variety. Next we define the morphism of Hodge structures showing that

the pullback and the Gysin homomorphism on cohomology groups are two important

examples of it.

In this chapter we also define the k-th intermediate Jacobian which is a complex

torus associated to the (2k−1)-th cohomology group of X but which can be also defined

for any Hodge structure of weight 2k − 1, then we see that the Jacobian torus J(X)

coincides the torus Pic0(X) hence if X is smooth and projective the Jacobian has the

structure of an abelian variety, we next study the relation between the cohomology

group of a curve and its Jacobian. This topics gives us the background to prove Fact

3 (Lemma 2.3.6). After that, we study the Abel Jacobi map which is a map from

the group of k-cycles homologous to zero to the k-th intermediate Jacobian and which

provide us with the necessary background to prove Fact 1 (Lemma 2.4.12). Finally, we

define the Albanese map and the Albanese variety.

2.1 Hodge structure and Polarized varieties

First recall the definition of a Kähler manifold.

Definition 2.1.1 (Kähler manifold). AKähler manifold is a complex manifold equipped

with a hermitian metric whose imaginary part, which is a 2-form of type (1, 1) relative

to the complex structure, is closed. This 2-form is called the Kähler form.
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Example 2.1.2. Smooth projective complex manifolds are special cases of compact

Kähler manifolds.

Hodge structure

Definition 2.1.3 (Integral Hodge structure of weight k). An integral Hodge structure of

weight k is given by a free abelian group VZ of finite type, together with a decomposition

(of its complexification)

VC := VZ ⊗ C =
⊕
p+q=k

V p,q

such that V p,q = V q,p.

Definition 2.1.4 (Integral Hodge substructure). An integral Hodge substructure is a

subgroup WZ ⊂ VZ such that WC := WZ ⊗ C has a decomposition induced by that of

VC, i.e., WC =
⊕

p+q=kWC ∩ V p,q.

Example 2.1.5. The integral cohomology group Hk(X,Z) of a compact Kähler mani-

fold carries a weight k Hodge structure. Indeed, recall that given a compact complex

manifold X, there is an isomorphism

Hk(X) ∼= Hk(X,C),

where Hk(X) is the set of complex valued harmonic forms for the Laplacian associated

to any metric on X. When the metric is Kähler there is a decomposition of harmonic

forms into harmonic forms of type (p, q). Thus, there is an induced decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X),

where Hp,q(X) is the set of classes representable by closed forms of type (p, q) and it

satisfies the Hodge symmetry:

Hp,q(X) = Hq,p(X).

This decomposition is called the Hodge decomposition of the cohomology of a compact

Kähler manifold ([29, §6.1.3]).

Given such a decomposition, we define the associated Hodge filtration F •V by

F pVC =
⊕
r≥p

V r,k−r = V p,k−p ⊕ · · · ⊕ V k,0.

It is a decreasing filtration on VC, which satisfies

VC = F pVC ⊕ F k−p+1VC.

Remark 2.1.6. Hodge filtration determines the Hodge decomposition by

V p,q = F pVC ∩ F qVC.
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Example 2.1.7. If X is a compact Kähler manifold and VZ = Hk(X,Z), then

F pHk(X,C) =
Ker(d : F pAk(X) → F pAk+1(X))

im(d : F pAk−1(X) → F pAk(X))
,

where F pAk(X) is the set of complex differential forms which are sums of forms of type

(r, k − r) with r ≥ p at every point.

In a wider context we have the following definition of a weight k Hodge structure

([26, §2.1.1]).

Definition 2.1.8. (A weight k Hodge structure) Let V be a finite dimensional real

vector space and VC = V ⊗ C its complexification.

� A real Hodge structure on V is a direct sum decomposition of its complexification,

i.e.,

VC =
⊕
p,q∈Z

V p,q with V p,q = V q,p.

� If V has the real Hodge structure and is of the form V = VR ⊗R R, where R is a

sub-ring of R and VR is an R-module of finite type, then we say that VR carries

and R-Hodge structure.

� If V is a real Hodge structure, the weight k part , denoted by V (k), is the real

vector space underlying
⊕

p+q=k V
p,q.

� If V = V (k), we say that V is a weight k real Hodge structure and if V = VR⊕RR
we say that VR is a weight k R-Hodge structure.

In what follows we will define a Polarized Hodge structure.

Let X be an n-dimensional compact Kähler manifold of Kähler form ω, then the

cup product with the class [ω] ∈ H2(X,R) of ω gives the Lefschetz operator

L : Hk(X,R) → Hk+2(X,R).

This operator gives:

� the Lefschetz decomposition

Hk(X,R) =
⊕
r

LrHk−2r
prim ,

where each component admits an induced Hodge decomposition,

� an intersection form on Hk(X,R) for k ≤ n

Q(α, β) =

∫
X
ωn−k ∧ α ∧ β = ⟨Ln−kα, β⟩.

Q is alternating if k is odd, symmetric otherwise.
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Then we have an Hermitian form

H(α, β) = ikQ(α, β)

on Hk(X,C), induced by the intersection form Q,

Definition 2.1.9 (Integral Kähler form). The class [ω] of the Kähler form ω of X is

called integral if [ω] belongs to H2(X,Z) ⊂ H2(X,R).

Definition 2.1.10 (Polarized Hodge structure). An integral polarised Hodge structure

of weight k is given by a Hodge structure (VZ, F
pVC) of weight k, together with an

intersection form Q on VZ, which is symmetric if k is even, alternating otherwise, and

satisfies conditions (i) and (ii) in [29, §7.1.2].

Polarized varieties

Definition 2.1.11 (Polarized manifold). A polarized manifold is a pair (X, [ω]), where

X is a compact complex manifold, and [ω] is an integral Kähler class on X.

Definition 2.1.12 (Chern form). Let X be a complex manifold, L a holomorphic line

bundle on X, and h a Hermitian metric on L. The 2-form ωL,h, which is closed and

real of type (1, 1), is called the Chern form associated to the hermitian metric h on L.
We say that ωL,h is positive if it correspond to a Hermitian metric on X ([29, 3.3.1]).

As a consequence of Theorem 7.10 in [29], given a polarised manifold (X, [ω]) there

exits a holomorphic line bundle L on X and a Hermitian metric h such that ωL,h = ω

is a positive form. We say that L is positive and we have the following theorem called

Kodaira Embedding Theorem.

Theorem 2.1.13 (Kodaira Embedding Theorem). Let X be a compact complex man-

ifold and L a positive holomorphic line bundle on X. Then for every sufficiently large

N ∈ Z there exists a holomorphic embedding

ϕ : X → Pr

such that ϕ∗(OPr(1)) = L ⊗N , where L is the sheaf of holomorphic sections of L.

Proof. See [29, Theorem 7.11].

Corollary 2.1.14. A polarized manifolds is a projective variety, i.e., admits a holo-

morphic embedding into a projective space.

Proof. It follows from the comment above the Kodaira Embedding Theorem together

with the Kodaira Embedding Theorem.
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Abelian variety associated to the Hodge structure of weight 1

Let X be compact Kähler manifold. The Hodge structure on H1(X) is described by

the decomposition

H1(X,C) = H1,0(X)⊕H0,1(X)

satisfying H0,1(X) = H1,0(X).

Then we have an isomorphism of real vector spaces

ψ : H1(X,R) → H0,1(X)

obtained by the composition of the inclusion H1(X,R) ⊂ H1(X,C) and the projection

H1(X,C) → H0,1(X) given by the Hodge decomposition of H1(X,C).
It follows that the lattice H1(X,Z) ⊂ H1(X,R) projects onto a lattice in the com-

plex vector space H0,1(X). Thus identifying this last lattice with H1(X,Z) via the

above isomorphism we have a complex torus

T =
H0,1(X)

H1(X,Z)

associated to the Hodge structure on H1(X).

Now we prove that the complex torus T coincides with the group of isomorphism

classes of holomorphic line bundles over X with Chern class 0.

For this recall that we have the exponential exact sequence

0 → Z → OX → O∗
X → 0,

then we have an associated long exact sequence

0 H0(X,Z) H0(X,OX) H0(X,O∗
X)

H1(X,Z) H1(X,OX) H1(X,O∗
X)

H2(X,Z) H2(X,OX) H2(X,O∗
X)

Hn(X,Z) Hn(X,OX) Hn(X,O∗
X)

ψ0 φ0

c0
ψ1 φ1

c1

Recall also that the group H1(X,O∗
X) can be identified with the Picard group of

isomorphism classes of holomorphic line bundles L over X (see Theorem 4.49 in [29]).

Definition 2.1.15 (First Chern class homomorphism). The connecting homomorphism

c1 : H
1(X,O∗

X) → H2(X,Z) is called the first Chern class homomorphism and the class

c1(L) is called the first Chern class of L, see [29, page 162].
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Definition 2.1.16 (The group Pic0(X)). Set

Pic0(X) = Ker(c1 : H
1(X,O∗

X) → H2(X,Z)),

for the kernel of the first Chern class homomorphism c1. This is the group of the

isomorphism classes of holomorphic line bundles over X of first Chern class zero.

Proposition 2.1.17. T = Pic0(X).

Proof. From the exactness of the above long sequence we have

Pic0(X) = im(φ1).

By the fundamental theorem of homomorphisms we have im(φ1) ∼= H1(X,OX)
Ker(φ1)

and by

the exactness of the above long sequence again we have that Ker(φ1) = im(ψ1), then

Pic0(X) =
H1(X,OX)

im(ψ1)
.

By [29, §7.2.2] we have a natural isomorphism H0,1(X) ∼= H1(X,OX), so

Pic0(X) =
H0,1(X)

im(ψ1)
.

So, in order to prove the proposition it is enough to prove that we can identify

im(ψ1) = ψ1(H
1(X,Z)) with H1(X,Z) itself, that is, we must prove that ψ1 is in-

jective so H1(X,Z) is really isomorphic to ψ1(H
1(X,Z)). Indeed, by the exactness

of the above long sequence we have Ker(ψ1) = im(c0), so in order to prove that ψ1

is injective we must prove that Ker(ψ1) = im(c0) = 0, i.e., that c0 is the zero map

or in other words that Ker(c0) = H0(X,O∗
X). But since Ker(c0) = im(φ0), by the

exactness of the above long sequence, it is enough to prove that im(φ0) = H0(X,O∗
X),

i.e., that φ0 is surjective. Assuming that X is projective we have H0(X,OX) = C
and H0(X,O∗

X) = C∗ and φ0 is the exponential map of complex numbers so it is

surjective.

Remark 2.1.18. The torus T associated to the Hodge structure on H1(X) is itself a

Kähler manifold, and thus admits a Hodge structure on its group H1(T ), see [29, page

169].

Now let us study the relationship between the Hodge structure on H1(X) and the

Hodge structure on H1(T ) (see [29, §7.2.1]).

Lemma 2.1.19. The Hodge structure on H1(T,Z) is dual to that of H1(X,Z).

Proof. For a torus T = V
Γ , where V is a complex vector space, we have a natural

identification

Γ = H1(T,Z);
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and

V ∗ = H1(T,R).

Furthermore, the holomorphic cotangent bundle of T is trivial, as its global sections

are given by the complex linear forms on V , considered as holomorphic forms on V

invariant under Γ. It follows that

H1,0(T ) = V ∗.

Thus the Hodge structure on H1(T,Z) is dual to that of H1(X,Z), that is,

H1(T,Z) = H1(X,Z)∗ and H1,0(T ) = H0,1(X)∗.

In what follows we prove the following proposition (see [29, Propisition 7.16])

Proposition 2.1.20. The complex torus T = Pic0(X) of a projective smooth variety

is an algebraic projective variety.

Proof. Suppose now that X is a polarised manifold, and let L be the Lefschetz operator

acting on the integral cohomology of X. Obviously, the cohomology of degree 1 is

primitive, and thus the alternating intersection form

Q(α, β) = ⟨Ln−1α, β⟩, n = dim(X),

defined on H1(X) and with integral values on H1(X,Z) satisfies the property that the

Hermitian form H(α, β) = iQ(α, β) is positive definite on H1,0(X), which is orthogonal

to H0,1(X) for H, equivalently, this means that the form Q ∈
∧2(H1(X,Z))∗ can be

considered as an element ω of
2∧
(H1(T,Z)∗) =

2∧
(H1(T,Z)) = H2(T,Z).

In fact, the de Rham class of ω is simply the class of the constant 2-form Ω on T

obtained by extending Q by R-linearity. If we identify H1(T,Z) with H1(X,Z), and
thus H1(T,Z)⊗ R with H1(X,R), this differential form Ω = Q on H1(X,R).

The properties ofQ then imply that the form Ω is a Kähler form on T . As the Kähler

form thus defined on T is a of integral class, T is polarized manifold and Kodaira’s

theorem (Theorem 2.1.13) implies that T is an algebraic projective variety, see also

Corollary 2.1.14.

Definition 2.1.21. (Abelian variety) A complex torus that is also an algebraic pro-

jective variety is called an abelian variety.

From the Proposition 2.1.20 we have that the complex torus T = Pic0(X) of a

projective smooth variety X is an abelian variety.

Definition 2.1.22. (Picard variety) The Abelian variety T = Pic0(X) of a smooth

projective variety X is called the Picard variety of X.
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2.2 Morphisms of Hodge structures

Let (VZ, F
pVC) and (WZ, F

pWC) be Hodge structures of weight n and m = n + 2r,

r ∈ Z respectively.

Definition 2.2.1 (Morphism of Hodge structures). Amorphism of groups ϕ : VZ →WZ

is amorphism of Hodge structures (of type (r, r)) if the morphism ϕ : VC →WC obtained

by C-linear extension, satisfies ϕ(F pVC) ⊂ F p+rWC, or equivalently,

ϕ(V p,q) ⊂W p+r,q+r.

Remark 2.2.2. A morphism of Hodge structures ϕ induces a Hodge structure on Ker(ϕ),

see [29, Lemma 7.25].

Now recall the definition of a rational Hodge substructure

Definition 2.2.3 (Rational Hodge substructure). Let WQ be a rational Hodge struc-

ture. VQ ⊂WQ is a rational sub-Hodge structure if it is a Q-vector subspace such that

VC has a Hodge decomposition induced by that of WC (see [29, page 176]).

We have the following property of rational Hodge substructures

Lemma 2.2.4. Let VQ ⊂ WQ be a rational sub-Hodge structure. Then if the Hodge

structure on W is polarised, then the same holds for the Hodge structure on V , and we

have a decomposition as a direct sum

WQ = VQ ⊕ V ′
Q,

where V ′
Q is also a sub-Hodge structure of WQ.

Proof. See [29, Lemma 7.26].

Two important examples of morphisms of Hodge structures are the following

Definition 2.2.5 (Pullback homomorphism). Let ϕ : X → Y be a continuous map

between two topological spaces. The homomorphism

ϕ∗ : Hk(Y,Z) → Hk(X,Z),

of cohomology groups is called the pullback homomorphism induced by ϕ.

The pullback homomorphism is induced by the natural morphism of sheaves

ZY → ϕ∗ZX .

There are other ways to define ϕ∗, see for example [29, §7.3.2].

Proposition 2.2.6. If ϕ : X → Y is a holomorphic map between Kähler manifolds

then ϕ∗ : Hk(Y,Z) → Hk(X,Z) is a morphism of Hodge structures.
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Proof. See [26, Corollary 1.13.] or [29, page 177].

Definition 2.2.7 (Gysin homomorphism). Let ϕ : X → Y be a morphism between

two Kähler manifolds of dimension n and n + r respectively. The homomorphism in

cohomology groups

ϕ∗ : H
k(X,Z) → Hk+2r(Y,Z)

is called the Gysin homomorphism induced by ϕ.

The Gysin homomorphism is defined using Poincaré duality for X and Y as the

morphism

ϕ∗ : H2n−k(X,Z) → H2n−k(Y,Z)

on singular homology groups, and ϕ∗ is defined in the singular chains. For other ways

to define ϕ∗, see [29, §7.3.2].

Proposition 2.2.8. The Gysin morphism ϕ∗ is a morphism of Hodge structures of

bidegree (r, r), that is, it takes classes α of type (p, q) to classes ϕ∗(α) of type (p+r, q+r).

Proof. See [29, page 179].

A important property for us is the following

Proposition 2.2.9. The Gysin homomorphism ϕ∗ on cohomology groups induce a

Hodge structure on its kernel.

Proof. It follows by Remark 2.2.2 since ϕ∗ is a morphism of Hodge structures by Propo-

sition 2.2.8.

2.3 The intermediate Jacobian

The k-th intermediate Jacobian

Let X be a compact Kähler manifold.

Recall that for every k > 0, the Hodge filtration on H2k−1(X,C) determines the

Hodge decomposition (see Remark 2.1.6), that is,

H2k−1(X,C) = F kH2k−1(X)⊕ F kH2k−1(X),

then F kH2k−1(X) ∩H2k−1(X,R) = {0}, and the decomposition map gives an isomor-

phism

H2k−1(X,R) → H2k−1(X,C)
F kH2k−1(X)

.

In consequence, the lattice H2k−1(X,Z) in H2k−1(X,R) gives a lattice in the C-vector
space H2k−1(X,C)

FkH2k−1(X)
. Identifying this last lattice with H2k−1(X,Z) via the above iso-

morphism we define the k-th intermediate Jacobian of a compact Kähler manifold as

follows
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Definition 2.3.1 (The k-th intermediate Jacobian). The k-th intermediate Jacobian

is defined by

J2k−1(X) =
H2k−1(X,C)

F kH2k−1(X)⊕H2k−1(X,Z)
.

More generally, we can define a complex torus for every Hodge structure of weight

2k − 1 as follows (see [29, Remark 12.3])

Definition 2.3.2 (Complex torus for Hodge structure of weight 2k − 1). Let VZ be a

Hodge structure of weight 2k − 1. The complex torus associated to it is defined by

J2k−1(V ) :=
VC

(F kV ⊕ VZ)
.

This construction is functorial, in the sense that every morphism of Hodge structures

(VZ, F
•V ) → (WZ, F

•+rW ) of bidegree (r, r) induces a morphism of complex tori

J2k−1(V ) → J2(k+r)−1(W ).

The Jacobian of a smooth projective variety is an Abelian variety

Recall that given a compact Kähler manifold X we define the group

Pic0(X) := Ker(H1(X,O∗
X)

c1→ H2(X,Z))

(Definition 2.1.16) and using the long exact sequence associated to the exponential

exact sequence

0 → Z → OX → O∗
X → 0

we proved that

Pic0(X) = T,

where T = H0,1(X)
H1(X,Z) is the complex torus associated to the Hodge structure on H1(X,Z)

(see Proposition 2.1.17).

The following proposition gives an alternative definition of the complex torus Pic0(X).

Proposition 2.3.3. J1(X) = Pic0(X), where J1(X) is the 1-th intermediate Jacobian

of X.

Proof. By definition for the case k = 1 we have

J1(X) =
H1(X,C)

F 1H1(X)⊕H1(X,Z)
.

Now recall that there is an identification H1(X,C)
F 1H1(X)

= H1(X,OX). Then

J1(X) =
H1(X,OX)

H1(X,Z)
.

By [29, §7.2.2] we have a natural isomorphism H0,1(X) ∼= H1(X,OX), it follows that

J1(X) =
H0,1(X)

H1(X,Z)
= T = Pic0(X),

where the last equality holds by Proposition 2.1.17.

36



Proposition 2.3.4. The 1-th intermediate Jacobian J1(X) of a smooth projective va-

riety X is an Abelian variety.

Proof. It follows from Proposition 2.3.3 and Proposition 2.1.20.

Remark 2.3.5. In general, the k-th intermediate Jacobian J2k−1(X) is a transcendental

object even if X is a smooth projective variety whose nature is much more difficult to

understand than of J1(X).

Cohomology Group of a Curve and its Jacobian

Recall that a complex smooth projective curve C is an example of complex compact

Kähler manifold of dimension 1 (see Example 2.1.2).

In this subsection we will prove an important isomorphism between the first coho-

mology group of a connected complex smooth projective curve C and the first coho-

mology group of its Jacobian J(C). More precisely,

Lemma 2.3.6. (Fact 3) Let C be a connected complex smooth projective curve. Then

the homomorphism

w∗ : H
1(J(C),Z) → H1(C,Z)

on cohomology groups is an isomorphism.

Proof. Since in particular C is a complex compact Kähler manifold of dimension 1, by

Proposition 2.3.3 we have that J(C) = T = Pic0(C), where T = H0,1(C)
H1(C,Z) is the complex

torus associated to the Hodge structure on H1(C,Z), so J(C) is itself a Kähler manifold

and thus admits a Hodge structure on its group H1(J(C)) (see Remark 2.1.18), by

Lemma 2.1.19 we have

H1(J(C),Z) ∼= H1(C,Z)∗

and since C is connected and oriented (see [9, C.2.1]) by Poincaré duality (see [29,

Theorem 5.30]) we have that H1(C,Z)∗ ∼= H1(C,Z). It follows that

H1(J(C),Z) ∼= H1(C,Z).

Remark 2.3.7. The existence of the isomorphism in Lemma 2.3.6 is also true for con-

nected smooth projective curves C over an arbitrary algebraically closed field of char-

acteristic zero, that is, the homomorphism

w∗ : H
1
et(J(C),Ql) → H1

et(C,Ql)

is an isomorphism (see [1, Remark 4]).
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2.4 The Abel-Jacobi map and The Albanese map

The Abel-Jacobi map

Let X be a compact Kähler manifold of dimension n.

Definition 2.4.1 (The Abel-Jacobi map). Let Zk(X)hom be the group of cycles of

codimension k homologous to 0 (also called cohomologous to 0), let J2k−1(X) be the

k-th intermediate Jacobian. The Abel-Jacobi map is a morphism

ΦkX : Zk(X)hom → J2k−1(X),

defined by Z 7→ ΦkX(Z) =
∫
γ , where γ ⊂ X is a differentiable chain of dimension

2n− 2k+1 such that ∂γ = Z and
∫
γ ∈ Fn−kH2n−2k+1(X)∗

H2n−2k+1(X,Z) = J2k−1(X), see [29, §12.1.2].

The equality

J2k−1(X) =
Fn−kH2n−2k+1(X)∗

H2n−2k+1(X,Z)

in the above definition holds thanks to Poincaré duality ([29, §12.1.2]).

If we want to work in terms of dimension note that for Z ∈ Zl(X)hom we have the

Abel-Jacobi invariant Φn−lX (Z) ∈ J2(n−l)−1(X).

Lemma 2.4.2. If Z ∈ Zl(X)rat, then Φn−lX (Z) = 0 in J2(n−l)−1(X)

Proof. See [30, Lemma 9.19].

Thanks to the above lemma we prove the existence of the Abel-Jacobi (class) map

in the following proposition.

Proposition 2.4.3. There exists a unique homomorphism

CHl(X)hom → J2(n−l)−1(X)

from the group of l-cycles on X homologous to 0 modulo rational equivalence to the

complex torus J2(n−l)−1(X).

Proof. Consider the Abel-Jacobi map

Φn−lX : Zl(X)hom = Zn−l(X)hom → J2(n−l)−1(X).

Observe that Zl(X)rat is a normal subgroup of Zl(X)hom by Proposition 1.2.18, so the

natural surjective homomorphism

φ : Zl(X)hom → Zl(X)hom
Zl(X)rat

is well defined.
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By Lemma 2.4.2 we have

Zl(X)rat ⊂ Ker(Φn−lX : Zl(X)hom → J2(n−l)−1(X)),

then by the fundamental theorem on homomorphism, there exists a unique homomor-

phism
Zl(X)hom
Zl(X)rat

= CHl(X)hom → J (2n−2l)−1(X)

such that the following diagram commutes

Zl(X)hom J2(n−l)−1(X)

CHl(X)hom

φ

Φn−l
X

Remark 2.4.4. When l = 0, by abuse of notation, the Abel-Jacobi (class) map of

Proposition 2.4.3 is usually denoted by albX and called the Albanese map (see [30,

Theorem 10.11]), but there is another map also denoted by albX and called the Albanese

map which we will define later.

The Abel-Jacobi Map for Divisors

Now we give an useful alternative definition of the Abel-Jacobi map ΦkX for the case

k = 1, that is for the case of divisors.

Let D ∈ Z1(X) be a divisor, [D] the cohomology class of D, OX(D) the holomorphic

line bundle corresponding to the divisor D, and αD the isomorphism class of OX(D).

By Lelong theorem ([29, Theorem 11.33]) [D] = c1(OX(D)), then D ∈ Z1(X)hom,

i.e., [D] = 0 if and only if c1(OX(D)) = 0, i.e., αD ∈ Pic0(X) = J1(X) (see Proposition

2.3.3). So, αD is a well defined element in J1(X).

We also have the following proposition

Proposition 2.4.5. Φ1
X(D) = αD.

Proof. See [29, Proposition 12.7].

This proposition gives us the following characterization of the Abel- Jacobi map for

the case k = 1.

Definition 2.4.6 (Abel-Jacobi map for divisors). Let Z1(X)hom be the group of cycles

of codimension 1 homologous to 0 (also called cohomologous to 0 in [29]), let J1(X) be

the 1-th intermediate Jacobian. The Abel-Jacobi map is a morphism defined by

Φ1
X : Z1(X)hom → J1(X)

D 7→ Φ1
X(D) = αD
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In what follows we prove that the Abel-Jacobi class map for divisors is an isomor-

phism.

Definition 2.4.7 (Alternative definition of rational equivalence). Let D be a divisor

on X. We say that D ∼rat 0 if it is the divisor of a meromorphic function on X ([29,

Definition 12.9]).

Lemma 2.4.8. OX(D) is trivial if and only if D ∼rat 0

Proof. OX(D) is trivial then the meromorphic section σD of OX(D) whose divisor is

equal to D can be seen as a meromorphic function on X thanks to the trivialization,

then by Definition 2.4.7 D ∼rat 0.

Reciprocally, if D ∼rat 0 then by definition D is the divisor of a meromorphic

function ϕ on X, then ϕ gives a everywhere non-zero section σD (whose divisor is D)

of the line bundle OX(D), so OX(D) is trivial.

Lemma 2.4.9. Let D be a divisor such that D ∼hom 0 on X. Then Φ1
X(D) = 0 if and

only if D ∼rat 0

Proof. By Abel’s theorem ([29, Corollary 12.8]) we have that Φ1
X(D) = 0, i.e., αD = 0

if and only if OX(D) is trivial. By Lemma 2.4.8 this last condition is equivalent to

D ∼rat 0.

Then we get the following important theorem

Theorem 2.4.10.

CH1(X)hom
∼→ J1(X).

Proof. From Lemma 2.4.9 we have

Ker(Φ1
X : Z1(X)hom → J1(X)) = Z1(X)rat.

Since Φ1
X is surjective (see [29, §12.2.2]), and using the first isomorphism theorem of

homomorphisms we have that

CH1(X)hom =
Z1(X)hom
Z1(X)rat

∼→ J1(X)

is an isomorphism.

Remark 2.4.11. Since J1(X) = Pic0(X) we also have that

CH1(X)hom
∼→ Pic0(X).

As a easy consequence of the above theorem we get the following corollary which is

very important for us.
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Lemma 2.4.12. (Fact 1) Let C be a smooth projective complex curve, let J = J(C)

be the Jacobian of the curve C. Then there exists an isomorphism

albC : CH0(C)deg=0 → J

between the Chow group CH0(C)deg=0 of 0-cycles of degree zero on C and the Abelian

variety J .

Proof. Since C is in particular a compact Kähler manifold (of dimension 1) by Theorem

2.4.10 we have that the Abel-Jacobi (class) map

albC : CH1(C)hom = CH0(C)hom
∼→ J

is an isomorphism (see also Remark 2.4.4), by fact 2 (see Lemma 1.2.24) CH0(C)hom =

CH0(C)deg=0, so we get that

albC : CH0(C)deg=0
∼→ J

is an isomorphism. Finally, since C is smooth and projective J = Pic0(C) is an abelian

variety see Proposition 2.1.20.

Hence we can identify CH0(C)deg=0 with J by means of albC .

Remark 2.4.13. If X is a smooth projective variety of dimension 1 over an arbitrary

algebraically closed field there exists a universal pair (A,φ), that is, an abelian variety

A = Pic0(X) = J(X) = Alb(X) and a regular homomorphism φ : CH0(X)deg=0 =

A0(X) → A satisfying the universal property (see [23, Notations]). Moreover, the

regular homomorphism φ is an isomorphism, see [6] and [1, Remark 2].

The Albanese variety and the Albanese map

In order to define the Albanese map we need to remember the following theorem due

to Griffiths.

Theorem 2.4.14. (Griffiths’ theorem) Let X be a compact Kähler manifold, Y a

connected manifold, t0 ∈ Y a reference point, and Z =
∑

i niZi ∈ Zk(Y ×X) a cycle of

codimension k with each Zi smooth or flat and such that pr1 : Zi → Y is a submersion.

Then the fibres

Zt =
∑
i

niZi,t, where Zi,t := pr−1
1 (t) ⊂ X,

are all homologous in X, and the map

ϕ : Y → J2k−1(X)

t 7→ ΦkX(Zt − Zt0)

is holomorphic (see [29, Theorem 12.4], see also [29, remark 12.5]).
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Griffiths’ theorem applied to the following particular case: let X be a connected

manifold, Y = X, t0 = x0 ∈ X, Z = ∆ ∈ Zn(X × X), where ∆ = {(x, y) ∈ X × X :

x = y} is the diagonal. Give us a holomorphic map

albX : X → J2n−1(X)

x 7→ Φ2n−1
X (x− x0).

Definition 2.4.15 (The Albanese map). The map albX is called the Albanese map

Remark 2.4.16. Note that albX is the composition

X → Zn(X)hom
Φ2n−1

X→ J2n−1(X)

x 7→ x− x0 7→ Φ2n−1
X (x− x0).

Definition 2.4.17 (Albanese variety). The complex torus Alb(X) := J2n−1(X) is

called the Albanese variety of X.

Example 2.4.18. If dim(X) = 1, that is, if X is a curve, then Alb(X) = J(X).

Property : the image albX(X) generates the torus Alb(X) as a group. More precisely,

for sufficiently large r, the morphism

albrX : Xr → Alb(X)

(x1, . . . , xr) 7→
∑

i albX(xi)

is surjective. This property implies that if X is a projective variety then Alb(X) is an

Abelian variety ([29, Corollary 12.12]).

There is another important characterization of the Albanese morphism:

Theorem 2.4.19. For any holomorphic map ψ : X → T from X to a complex torus T

such that ψ(x0) = 0, there exists a unique morphism of complex tori f : Alb(X) → T

such that the following diagram

X Alb(X)

T

albX

ψ
f

commutes.

Remark 2.4.20. The Abel-Jacobi (class) map CH0(X)hom → Alb(X) = J2n−1(X)

(Proposition 2.4.3) is usually also denoted by albX and called the Albanese map, see

[[30], Theorem 10.11].

Finally we show that a correspondence between two smooth compact Kähler man-

ifolds induce a morphism of the corresponding Albanese varieties.
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Let X and Y be two smooth compact Kähler manifolds, with Y connected, and

Z =
∑

i niZi ∈ Zr(Y ×X) such that each Zi is flat over Y . Let y0 ∈ Y be a reference

point.

By the generalization of Griffith’s theorem to the flat case (see [29, remark 12.5])

there is a holomorphic map

ϕ : Y → J2r−1(X)

y 7→ ΦrX(Zy − Zy0),

where Zy =
∑

i niZi,y, Zi,y = pr−1
1 (y) ⊂ X.

By the Theorem 2.4.19, that is, by the universality of the Albanese morphism there

is a morphism of complex tori

ψ : Alb(Y ) → J2r−1(X)

such that the diagram

Y Alb(Y )

J2r−1(X)

albY

ϕ
ψ

commutes, that is, such that ϕ = ψ ◦ albY .

Remark 2.4.21. The morphism ψ is the morphism of complex tori ˜[Z] induced by the

morphism of Hodge structures (Definition 2.3.2)

[Z] : H2m−1(Y,Z) → H2r−1(X,Z),

where m = dim(Y ), given by the Künneth component

[Z]1,2r−1 ∈ H1(Y,Z)⊗H2r−1(X,Z)

of [Z] ([29, Theorem 12.17]).

Note that if r = dim(X) we get:

ψ : Alb(Y ) → Alb(X) := J2 dim(X)−1(X)

i.e. the correspondence Z ∈ Zdim(X)(Y ×X) gives a morphism on Albanese varieties of

Y and X, respectively.
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Chapter 3

Lefschetz Pencils and The
Monodromy Argument

In this chapter we study the notion of Lefschetz pencils of hyperplane sections on an n-

dimensional smooth projective variety. We start with the definition of Lefschetz pencils

of hyperplane sections on an n-dimensional smooth projective variety X and we study

another characterization of it in terms of the discriminant locus also called discriminant

variety, then we study the local description of the topology of a Lefschetz degeneration

and we obtain Corollary 3.2.8 in terms of homology groups which is used to give a

qualitative description of the vanishing cohomology in degree n− 1, next we apply this

local description to a Lefschetz pencil (Xt)t∈P1 of hyperplane sections of X which gives

a morphism f : X̃ → P1, where X̃ is the blow up of X along the base locus of the pencil

and such that each fiber of f can be naturally identified with a hyperplane section Xt

of X, and we prove that the vanishing cohomology Hn−1(Xt,Z)van is generated by the

classes of vanishing spheres of a Lefschetz pencil passing through Xt, see Lemma 3.2.19.

In this chapter we also study the monodromy action on the cohomology of the fibres

of a projective morphism. We begin with the definition of local systems, then we study

the local monodromy for Lefschetz degenerations, which gives us the Picard-Lefschetz

formula (Theorem 3.4.2), next we study the monodromy action associated to the smooth

universal hypersurface where Zariski’s theorem shows that whenever the discriminant

locus of X is a hypersurface the monodromy action associated to the smooth universal

hypersurface can be computed by restricting to a Lefschetz pencil, after that, whenever

we are in the case where the discriminant locus of X is a hypersurface, we prove that all

the vanishing cycles are conjugate under the monodromy action, and finally we use all

these facts to prove the irreducibility of the monodromy action, i.e., Proposition 3.4.12

which plays an important role in the Hodge theoretical study of algebraic varieties over

C. This theorem says that there exists no nontrivial local subsystem of the local system

with stalk Hn−1(Xt,Q)van. The main reference for this chapter is [30], see also [26].
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3.1 Lefschetz pencils

Let X be a complex variety.

Definition 3.1.1 (Pencil of hypersurfaces on a variety). Let L be a holomorphic line

bundle on X and |L | := P(H0(X,L )). A pencil of hypersurfaces on X is a projective

line L ∼= P1 in |L |.

Remark 3.1.2. (Another characterization of a pencil of hypersurfaces) Note that every

element t ∈ L of this pencil is a class of a nonzero and well defined up to a coefficient

section σt of L. If Xt ⊂ X denotes the hypersurface on X defined by the section σt we

get a one to one correspondence between these hypersurfaces Xt and the points t ∈ L,

we then write (Xt)t∈L for the pencil of hypersurfaces of X. Every σt is of the form

σt = σ0 + tσ∞ for t ∈ C ⊂ P1.

Assume that X ⊂ PN is a projective subvariety of PN and L = OX(1). If the

restriction map

H0(PN ,OPN (1)) → H0(X,OX(1))

is an isomorphism, that is, |L | := P(H0(X,L )) ∼= P(H0(PN ,OPN (1))) = (PN )∗, where
(PN )∗ is the dual projective space parametrising the hyperplanes of PN , we have the

following definition of a pencil.

Definition 3.1.3 (Pencil). A pencil in |L | := P(H0(X,L )) is a line L in (PN )∗.

Definition 3.1.4 (Base locus of a pencil). The base locus or axis of a pencil (Xt)t∈L

is defined by

A =
⋂
t∈L

Xt ⊂ X.

Remark 3.1.5. Since σt = σ0+tσ∞ for t ∈ C ⊂ P1, clearly A is defined by the equations:

σ0 = σ∞ = 0. So A =
⋂
t∈LXt = X0 ∩X∞ is a complete intersection of codimension 2

in X if the hypersurfaces X0 and X∞ have no common component.

Lefschetz pencil

Definition 3.1.6 (Lefschetz pencil). A pencil (Xt)t∈L of hypersurfaces of X is called

a Lefschetz pencil if it satisfies the following conditions:

1. The base locus A is smooth of codimension 2 in X. In particular, the hypersur-

faces of the pencil are smooth along A.

2. Every hypersurface Xt has at most one ordinary double point as singularity.

In what follows we will give another characterization of Lefschetz pencils.
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Let X ⊂ PN be a variety contained in PN , and assume that X is not degenerate,

i.e., the restriction map

H0(PN ,OPN (1)) → H0(X,OX(1))

is injective.

For every t ∈ (PN )∗ let Ht the hyperplane in PN corresponding to t and consider

the algebraic subset defined by

Z = {(x, t) ∈ X × (PN )∗ : Xt := X ∩Ht is singular at x}.

It is known that Z is smooth and dim(Z) = N − 1, see [30, §2.1.1].

Definition 3.1.7 (The discriminant variety of X/discriminant locus of (PN )∗). The

image of Z via the second projection

∆X = pr2(Z)

is called the discriminant variety of X or discriminant locus of (PN )∗.

By definition ∆X is the set of singular hyperplane sections of X. It is known that

dim(∆X) ≤ N − 1 and that dim(∆X) = N − 1 if there exist hyperplane sections of X

having an ordinary double point ([30, §2.1.1]).

Definition 3.1.8 (A special open subset of the discriminant locus). The subset of ∆X

parametrizing hyperplanes Ht such that Xt has at most one ordinary double point as

singularity is denoted by ∆0
X .

Remark 3.1.9. If dim(∆X) = N − 1 then ∆0
X ̸= ∅ and thus dense, since it is clearly a

Zariski open set of ∆X . Moreover, ∆0
X is smooth since pr2 is an isomorphism over ∆0

X

(see [30, page 45]).

Then we have the following characterization of Lefschetz pencils

Proposition 3.1.10. Let X be a smooth subvariety of PN . Then a pencil of hyperplane

sections (Xt)t∈L is a Lefschetz pencil if and only if one of the following two conditions

is satisfied.

1. dim(∆X) = N − 1, i.e., the discriminant variety of X is a hypersurface, and the

corresponding line L ⊂ (PN )∗ to this pencil meets the discriminant hypersurface

∆X transversely in the open dense set ∆0
X .

2. dim(∆X) ≤ N − 2 and the corresponding line L ⊂ (PN )∗ to this pencil does not

meet ∆X .

Proof. See [30, Proposition 2.9].
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Remark 3.1.11. Note that if p ∈ PN is such that p ∈ A then it lies in every hyper-

plane of the pencil, and the hyperplanes of the pencil are exactly those containing the

axis. Moreover, through any point p ∈ PN such that p ̸∈ A there passes exactly one

hyperplane in the pencil, see [21, Chapter 31].

Corollary 3.1.12. If X ⊂ PN is a smooth projective complex variety, then a generic

pencil (Xt)t∈L of hyperplane sections of X is a Lefschetz pencil.

Proof. See [30, Corollary 2.10].

Proposition 3.1.13. If X ⊂ PN is a smooth non-linear surface, then ∆X is a hyper-

surface, that is, dim(∆X) = N − 1.

Proof. See [28, Example 7.5].

3.2 Local and global Lefschetz theory

Local Lefschetz theory

In this section we study the topology of an ordinary singularity.

Definition 3.2.1 (Lefschetz degeneration map). Let B ⊂ Cn be a ball of radius r

centered at 0 ∈ Cn, f the function on B defined by f(z) =
∑

i z
2
i , and Bt := f−1(t)

the fibre over t. The map f has values in the disk D of radius r2 and is such that the

central fibre B0 has an ordinary double point at 0 as singularity, whereas the fibres Bt

for t near 0 are smooth. The map f : B → D is called a Lefschetz degeneration.

For every point t = |t|eiθ ∈ D∗ (D∗ = D − {0}) such that |t| ≤ r2, the fibre Bt

contains the sphere Sn−1
t defined by

Sn−1
t = {z = (z1, . . . , zn) ∈ B : zi =

√
|t|eiθ/2xi, xi ∈ R,

∑
1≤i≤n

x2i = 1}

Definition 3.2.2 (Vanishing sphere). The sphere Sn−1
t contained in the fiber Bt is

called a vanishing sphere of the family (Bt)t∈D.

The name of the sphere Sn−1
t is due to the fact that when t tends to 0 (i.e. to the

singular point) the sphere tends to contract to a point.

Remark 3.2.3. The sphere Sn−1
t depends on the choice of coordinates and does not have

any privileged orientation. However, its homology class δ ∈ Hn−1(Bt,Z), defined by

the choice of an orientation, is well defined up to sign and is a generator of Hn−1(Bt,Z).

Definition 3.2.4 (Vanishing cycle). The homology class δ of the vanishing sphere

Sn−1
t is called the vanishing cycle of the Lefschetz degeneration f : B → D.
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On the other hand, the set B≤|t| = {z ∈ B : |f(z)| ≤ |t|} contains the ball

Bn
t = {z = (z1, . . . , zn) ∈ B : zi =

√
|t|ei/2θxi, xi ∈ R,

∑
1≤i≤n

x2i ≤ 1}

Definition 3.2.5 (Cone on the vanishing sphere). The ball Bn
t contained in B≤|t| is

called the cone on the vanishing sphere Sn−1
t .

As an application of Morse theory we have

Proposition 3.2.6. For D of small radius with respect to the radius of B, and s ∈ D∗,

there exists a retraction by deformation (H ′
t)t∈[0,1] of BD := f−1(D) onto the union

Bs ∪Bn
s of the fiber Bs with the ball Bn

s . Moreover, this retraction by deformation can

be chosen so as to preserve SD (SD ∼= Ss ×D, for some s ∈ D) and to be induced on

SD by a retraction (RS,t)t∈[0,1] as above.

Proof. See [30, Proposition 2.14].

A global version of the above proposition states the following.

Let f : X → D is a proper holomorphic map from a n-dimensional complex variety

X to a disk such that f is a submersion over the punctured disk D∗ and that f has

a nondegenerate critical point x0 over 0 ∈ D, that is, that is, let f be a Lefschetz

degeneration.

Theorem 3.2.7. Then there exists a retraction by deformation of X into the union

Xt

⋃
Sn−1
t

Bn
t

of Xt with a n-dimensional ball Bn
t which is glued to Xt along a vanishing sphere

Sn−1
t ⊂ Xt, where t ∈ D∗.

Proof. See [30, Theorem 2.16].

Corollary 3.2.8. Let i : Xt ↪→ XD, t ∈ D∗, be the inclusion. Then

i∗ : Hk(Xt,Z) → Hk(XD,Z)

is an isomorphism for k < n− 1, and is surjective for k = n− 1. Moreover, the kernel

of i∗ is generated by the class of “the” vanishing sphere Sn−1
t of Xt for k = n− 1.

Proof. See [30, Corollary 2.17].
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Global Lefschetz theory

Definition 3.2.9 (Fibration of topological spaces). ϕ : Y → X is called a fibration of

topological spaces if locally onX there exists a trivialisation of ϕ, i.e., a homeomorphism

YU := ϕ−1(U) ∼= Yt × U

over X, where U is an open neighborhood of t ∈ X.

Example 3.2.10. By Ehresmann’s Theorem if X and Y are differentiable varieties and

ϕ is submersive and proper, then ϕ is a fibration.

Let X be a compact complex variety of dimension n, and let (Xt)t∈P1 be a Lefschetz

pencil on X.

Consider the variety

X̃ = {(x, t) ∈ X × P1 : x ∈ Xt}.

Let

τ = pr1|X̃ : X̃ → X,

where pr1 : X × P1 → X is the first projection, and let

f = pr2|X̃ : X̃ → P1,

where pr2 : X × P1 → P1 is the second projection.

� By definition of blowups it is clear that X̃
τ→ X can be identified with the blowup

of X along the base locus A of the pencil.

� Each hypersurface Xt of the Lefschetz pencil (hence of X) can be naturally iden-

tified with the fibre f−1(t) ⊂ X̃ of f .

Since (Xt)t∈P1 is a Lefschetz pencil, the base locus A is smooth and thus X̃ is smooth,

and since each fibre Xt of f has at most one ordinary double point as singularity we

can in the neighborhood of each critical value of f , apply Theorem 3.2.7 as follows:

� Let 0i ∈ P1, with i = 1, . . . ,M be the critical values of f .

For each i, let Di be a small disk of P1 centered at 0i, and let X̃Di := f−1(Di).

Then X̃Di → Di satisfies the property of Theorem 3.2.7, so we have that X̃Di

retracts by deformation onto the union

Xti

⋃
Sn−1
ti

Bn
ti

of Xti with an n-dimensional ball Bn
ti glued to Xti along a vanishing sphere

Sn−1
ti

⊂ Xti , where ti ∈ D∗
i .
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� Assume that ∞ is not a critical value of f .

Let t ∈ C = P1 −∞ be a regular value, and γi, i = 1, . . . ,M be the paths in C
joining t to ti, not passing through the critical values 0i and meeting only at the

point t. Then

– C = P1 −∞ admits a retraction by deformation onto

M⋃
i=1

Di ∪ γi

the union of the discs Di with the paths γi.

– Since f is a proper fibration above C∖{01, . . . , 0M}, by Ehresmann’s theorem

X̃ −X∞ admits a retraction by deformation onto

M⋃
i=1

X̃γi ∪ X̃Di ,

where X̃γi := f−1(γi).

– Finally, as f is a fibration above γi, each X̃γi admits a trivialization

X̃γi
∼= Xti × γi,

above γi, and correspondingly, X̃γi admits a retraction by deformation onto

Xti . Moreover this trivialization also gives a diffeomorphism between Xti

and Xt.

Theorem 3.2.11. (Homotopy type of X̃−X∞) The variety X̃−X∞ has the homotopy

type of the union of Xt with n-dimensional balls glued to Xt along (n− 1)-dimensional

spheres.

Proof. By above we have that X̃ −X∞ admits a retraction by deformation onto

M⋃
i=1

X̃γi ∪ X̃Di ,

also for each i, X̃γi admits a trivialization onto Xti×γi and a retraction by deformation

onto Xti which is diffeomorphic to Xt thanks to the trivialization, on the other hand,

X̃Di retracts by deformation onto the union

Xti

⋃
Sn−1
ti

Bn
ti .

Then X̃ −X∞ admits a retraction by deformation onto

M⋃
i=1

Xti ∪ (Xti

⋃
Sn−1
ti

Bn
ti),
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and using the diffeomorphism of Xti and Xt, we get that X̃ −X∞ admits a retraction

by deformation onto
M⋃
i=1

Xt

⋃
(Sn−1

ti
)′

(Bn
ti)

′

where (Sn−1
ti

)′ (resp. (Bn
ti)

′) is the image in Xt of S
n−1
ti

(resp. Bn
ti) in Xti under the

identifications Xti
∼= Xt.

Remark 3.2.12. Even though the homology class δi of the vanishing sphere Sn−1
ti

on

Xti , ti ∈ D∗
i is well-defined up to sign as the generator of the kernel of

Hn−1(Xti ,Z) → H∗(X̃Di ,Z),

the class δ′i of the corresponding sphere (Sn−1
ti

)′ in Hn−1(Xt,Z) depends on the choice

of the path γi.

Corollary 3.2.13. (Results for a smooth fiber) For t ∈ P1−∞ such that Xt is smooth,

the inclusion

i′t : Xt ↪→ X̃ −X∞

induces an isomorphism

i′t∗ : Hk(Xt,Z) → Hk(X̃ −X∞,Z),

for k < n− 1. For k = n− 1, i′t∗ is surjective and the kernel of i′t∗ is generated by the

classes of vanishing spheres.

Proof. See [30, Corollary 2.20].

Remark 3.2.14. Note that given a pair (X,Y ), where Y is a smooth hyperplane section

of X ⊂ PN there exists a Lefschetz pencil (Xt)t∈P1 of hyperplane sections of X, of

which Y is one member Xt ([30, §2.3.2]).

Vanishing cohomology and Primitive cohomology

Let Y be a compact Kähler variety of dimension m, [ω] ∈ H2(Y,R) be a Kähler class.

Then we have the operator

L = [ω]∪ : Hk(Y,R) → Hk+2(Y,R),

called the Lefschetz operator .

Definition 3.2.15 (Primitive cohomology). The primitive cohomology is defined by

Hk(Y,R)prim := Ker(Lm+1−k : Hk(Y,R) → H2(m+1)−k(Y,R)).
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Remark 3.2.16. For k = m we have

Hm(Y,R)prim := Ker(L : Hm(Y,R) → Hm+2(Y,R)).

From now on suppose that Y
j
↪→ X is a hyperplane section of a projective variety

X of dimension n (hence m = n − 1). Then we can take [ω] = c1(OY (1)) = hY , and

the equality

j∗ ◦ j∗ = hY ∪ : Hk(Y,Z) → Hk+2(Y,Z)

says that the corresponding Lefschetz operator of [ω] satisfies

L = j∗ ◦ j∗ : Hk(Y,R) j∗→ Hk+2(X,R) j∗→ Hk+2(Y,R).

Definition 3.2.17 (Vanishing cohomology). For every coefficient ring R, the vanishing

cohomology is defined by

Hk(Y,R)van = Ker(j∗ : H
k(Y,R) → Hk+2(X,R)).

As a consequence of the Lefschetz theorem, the hard Lefschetz theorem and prop-

erties of the Lefschetz operator L we have

Corollary 3.2.18. The vanishing cohomology

Hk(Y,Q)van = 0 for k ̸= dim(Y ).

Furthermore,

Hk(Y,Q)van ⊂ Hk(Y,Q)prim, for k = dim(Y ).

Proof. See [30, Corollary 2.25].

For the case k = n − 1 = dim(Y ), the following is an important property of the

vanishing cohomology

Lemma 3.2.19. The vanishing cohomology Hn−1(Y,Z)van is generated by the classes

of vanishing spheres of a Lefschetz pencil passing through Y .

Proof. See [30, Lemma 2.26].

Lemma 3.2.20. The vanishing cohomology Hn−1(Y,Z)van is a Hodge substructure.

Proof. By Proposition 2.2.8 j∗ is a morphism of Hodge structures and by Remark 2.2.2

ker(j∗) = Hn−1(Y,Z)van has the structure of Hodge structure.

The following proposition give us a comparison of the primitive cohomology with

the vanishing cohomology
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Proposition 3.2.21. 1. There is a decomposition as an orthogonal direct sum (rel-

ative to the intersection form in Hn−1(Y,Q))

Hn−1(Y,Q) = Hn−1(Y,Q)van ⊕ j∗Hn−1(X,Q).

2. Similarly, there is a decomposition as an orthogonal direct sum

Hn−1(Y,Q)prim = Hn−1(Y,Q)van ⊕ j∗Hn−1(X,Q)prim.

Proof. See [30, Lemma 2.27].

3.3 Monodromy of Lefschetz pencils

Local systems on topological spaces

Let X be a topological space and let A be some commutative ring with a unit.

Definition 3.3.1 (Local system of A-modules on X). A local system of A-modules on

X consists of the following data: for each t ∈ X an A-module Gt and for any two points

t, t′ ∈ X a collection of isomorphisms ρ([γ]) : Gt
∼→ Gt′ , one for each homotopy class

[γ] of paths from t to t′. A local system with fibres Gt is usually denoted by G.

Remark 3.3.2. In the above definition, furthermore one requires that this assignment is

functorial in the sense that ρ([et]) = idGt , for the class of the constant path et at t and

that ρ([γ ∗ γ′]) = ρ([γ]) ◦ ρ([γ′]) for two classes of composable paths. Here ∗ denotes

the product of two composable paths, see [26, Definition B.32.].

Definition 3.3.3 (Constant local system). The constant local system with fibre G is

denoted by GX .

Definition 3.3.4 (Monodromy representation associated to a local system). Let (X, t)

be a pointed path connected (i.e., 0-connected) topological space, the collection

{ρ([γ]) : Gt → Gt|γ a loop at t}

defines the associated monodromy representation

ρ : π1(X, t) → GL(Gt)

[γ] 7→ ρ([γ])

Definition 3.3.5 (Locally constant sheaf). A locally constant sheaf F on X is a sheaf

with the property that for some open cover {Ui}i∈U of X, the restrictions

ρUi,t : F(Ui) → Ft, t ∈ Ui

are isomorphisms.

53



Remark 3.3.6. (In a locally simply connected space local systems are locally constant

local systems) Let G a local system on the topological space X. If X is a locally

simply connected space, i.e., locally 1-connected, then it admits a covering {Ui}i∈I by

simply connected open subsets therefore for any two points t, t′ ∈ Ui there is a unique

homotopy class [γ] of paths from t to t′ inside Ui, so there is a unique isomorphism

ft,t′ : Gt
∼→ Gt′

defined by any path connecting t and t′ in Ui. This gives a canonical trivialization of

the local system G above Ui, say

ϕi : G|Ui
∼→ GUi .

Let X be a path connected and locally simply connected space. Then we have the

following property

Lemma 3.3.7. Let X be a path connected and locally simply connected space. Then

there is a one to one correspondence between locally constant sheaves of A-modules and

local systems of A-modules on X.

Proof. See [26, Lemma B.34.]. By Remark 3.3.6 note that the one to one correspondence

is actually with locally constant local systems of A-modules on X.

In a locally connected topological space we have the following alternative definition

of a local systems, see [30, §3.1.1].

Definition 3.3.8 (Local system of stalk G). Let X be a locally connected topological

space, and let G be an abelian group. A local system of stalk G is a sheaf which is

locally isomorphic to the constant sheaf of stalk G.

For another definition of constant sheaf see [29, Example 4.5].

Definition 3.3.9 (Local system of A-modules of stalk G). Let G be an A-module. A

local system of A-modules of stalk G is a sheaf of A-modules which is locally isomorphic,

as a sheaf of A-modules, to the constant sheaf of stalk G.

The following proposition gives the nature of a local system on a connected, locally

arcwise connected and simply connected topological space.

Proposition 3.3.10. If X is connected, locally arcwise connected and simply con-

nected, then every local system G of stalk G is trivial on X i.e. isomorphic to the

constant sheaf G.

Proof. See [30, Proposition 3.9].

The following corollary gives a relation of local systems and representations.
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Corollary 3.3.11. If X is arcwise connected and locally simply connected and x ∈ X,

we have a natural bijection between the set of isomorphism classes of local systems of

stalk G, and the set of representations

π1(X,x) → Aut(G),

modulo the action of Aut(G) by conjugation.

Proof. See [30, Proposition 3.0].

Definition 3.3.12 (Monodromy representation). The representation (of π1(X,x))

ρ : π1(X,x) → Aut(Gx) = Aut(G)

corresponding to a local system is called the monodromy representation.

Local systems associated to a fibration

Let ϕ : Y → X be a fibration of topological spaces (see Definition 3.2.9) and assume

that X is locally contractible. Then for sufficiently small U , the open sets YU = ϕ−1(U)

have the same homotopy type as the fibre Yu = ϕ−1(u) with u ∈ U . Therefore, using

the invariance under homotopy of U , one deduces that for every ring of coefficients A,

the sheaves Rkϕ∗A are locally constant sheaves. Recall that Rkϕ∗ is the right k-th

derived functor of the functor

ϕ∗ : Category of sheaves on Y → Category of sheaves on X.

Proposition 3.3.13. The monodromy representation

ρ : π1(X,x) → Aut(Hk(Yx, A))

of π1(X,x) on the stalk Hk(Yx, A) = (Rkϕ∗A)x of the local system Rkϕ∗A is induced

by homeomorphisms of the fibre Yx.

Proof. See [30, Page 74].

Monodromy and Hodge structure

In what follows we study some restrictions that Hodge theory imposes on the mon-

odromy representation.

Definition 3.3.14 (Projective morphism). A morphism ϕ : Y → X of complex vari-

eties is called projective if there exists a holomorphic immersion

i : Y ↪→ X × PN

such that pr1 ◦ i = ϕ.
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Let ϕ : Y → X be a holomorphic, submersive and projective morphism of complex

varieties. Then we have a monodromy representation

ρ : π1(X,x) → Aut(Hk(Yx,Z)),

as above for every k.

By Hogde theory we know that every group Hk(Yx,Z) is equipped with a Hodge

structure, i.e., with a decomposition

Hk(Yx,C) = Hk(Yx,Z)⊗ C =
⊕
p+q=k

Hp,q(Yx)

into complex subspaces such that Hp,q(Yx) = Hq,p(Yx) (see Example 2.1.5).

The first restriction imposed by Hodge theory on ρ is

Proposition 3.3.15. If X is quasi-projective, then the space

Hk(Yx,Z)ρ := {α ∈ Hk(Yx,Z)|ρ(γ)(α) = α,∀γ ∈ π1(X,x)}

of invariants under ρ is a Hodge substructure Hk(Yx,Z).

Proof. See [30, Proposition 3.14].

Another consequence of Hodge theory concerns the local monodromy called the

quasi-unipotence theorem.

Theorem 3.3.16. (Quasi-unipotence theorem) Let X be a punctured disk D∗, so that

π1(X,x) = Z and the monodromy group im(ρ) ⊂ Aut(Hk(Yx,Z)) is generated by a

single element T . Then T is quasi-unipotent, i.e., there exists integers N and M such

that

(TN − 1)M = 0.

In fact, we can even take M ≤ k + 1.

Proof. See [30, Proposition 3.15].

3.4 The Picard-Lefschetz formula and Zariski’s theorem

The Picard-Lefschetz formula for a Lefschetz degeneration

In a wider context we have the following definition of a Lefschetz degeneration (Defi-

nition 3.2.1).

Definition 3.4.1 (Lefschetz degeneration). Let X be a smooth n-dimensional complex

variety. The map f : X → D is called a Lefschetz degeneration if f is proper with non-

zero differential over the punctured disc D∗, and such that the fibre X0 has an ordinary

double point as its unique singularity.
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Let X be a smooth n-dimensional complex variety and f : X → D a Lefschetz

degeneration. Let t ∈ D∗. Since in this case π1(D
∗, t) = Z, the monodromy represen-

tation

ρ : π1(D
∗, t) → Aut(Hn−1(Xt,Z))

on the cohomology of the fibre Hn−1(Xt,Z) is determined by T ∈ Aut(Hn−1(Xt,Z)),
where T denotes the image via ρ of the generator of π1(D

∗, t).

Let δ ∈ Hn−1(Xt,Z) be the cohomology class of the sphere Sn−1
t ⊂ Xt defined by

an orientation, and recall that δ is a generator of

Ker(Hn−1(Xt,Z) ∼= Hn−1(Xt,Z) → Hn−1(X,Z)),

(see Corollary 3.2.8).

Recall also that the fiber Xt is a real oriented (2n − 2)-dimensional variety, so we

have the intersection form ⟨, ⟩ on Hn−1(Xt,Z).
Then we have the following important theorem

Theorem 3.4.2. (Picard-Lefschetz Theorem) For every α ∈ Hn−1(Xt,Z) we have

T (α) = α+ ϵn⟨α, δ⟩δ,

where ϵn = ±1 according to the value of n.

Proof. See [30, Theorem 3.16].

Monodromy action associated to the smooth Universal hypersurface
and Zariski’s Theorem

Definition 3.4.3 (Family of projective varieties PN ). Let T be a variety. A family of

projective varieties in the projective space PN with base T is a closed subvariety X of

the product PN × T . The fibers Xt = p−1
2 (t) over points t ∈ T are called the members

or elements of the family; the variety X is called the total space and the family is said

to be parametrized by T .

Example 3.4.4 (The universal family). For any closed point t ∈ PN∗ let Ht be the

corresponding hyperplane in PN . The subset of PN × PN∗ defined by

H = {(x, t) ∈ PN × PN∗ : x ∈ Ht}

is a subvariety of PN × PN∗. Since the fibers over PN∗, via p2 : H → PN∗, are all

hyperplanes in PN we think of H as the family of hyperplanes in PN parametrized

by PN∗. Needless to say that the situation is symmetric, so we may also view H , via

p1 : H → PN , as the family of all hyperplanes in PN∗ parameterized by PN . H is

called the universal family (see [13, Lecture 4]).
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Remark 3.4.5. The adjective universal of H is due to the fact that if XT ⊂ PN × T is

any flat family of hyperplanes (parametrized by T ) then there is a unique regular map

T → PN∗ such that XT is the fiber product T ×PN∗ H , that is,

XT H

T PN∗

Example 3.4.6 (Universal hyperplane section). Let X ⊂ PN be a projective variety, H

the universal hyperplane, and p1 : H → Pd is the projection on the first factor. Set

C = {(x, t) ∈ H : x ∈ Ht ∩X}
= p−1

1 (X)

By the second description C is a subvariety of X × Pd∗. Let f be the composition of

the closed embedding C ↪→ H and p2 : H → Pd∗. Since the fibers over PN∗, via f ,

are all hyperplane sections of X we think of C as the family of hyperplane sections of

X parametrized by PN∗. This family is called the universal hyperplane section of X,

see [13, Lecture 4].

Let X ⊂ PN be a smooth projective connected non-degenerate variety of dimension

n. Let ∆X = pr2(Z) ⊂ (PN )∗ be the discriminant variety of X (see Definition 3.1.7),

i.e., the set of singular hyperplane sections of X. An important property of ∆X is that

it is irreducible since it is the image in (PN )∗ of the smooth irreducible variety Z (see

[30, §3.2.2]).

Let U := (PN )∗ ∖∆X be complement of ∆X .

Definition 3.4.7 (Smooth universal hyperplane section). Set

CU = {(x, t) ∈ X × U : x ∈ Xt = X ∩Ht}

and fU : CU → U . Since the fibers over U are smooth hyperplane sections of X we

think of CU as the family of smooth hyperplane sections of X parametrized by U . This

family is called the smooth universal hyperplane section of X. Note that by definition

of U , fU is a submersion.

Now in the following remark we recall an important fact about Lefschetz pencils of

hyperplane sections of X.

Remark 3.4.8. Let L ⊂ PN∗ be a Lefschetz pencil through t ∈ U , and recall that ∆0
X is

the open dense subset of ∆X parametrizing hyperplane sections Xt having exactly one

ordinary double point (see also[18, §1.5]).

Case 1. If dim(∆X) ≤ N − 2, then the Lefschetz pencil L does not meet ∆X at all (see

Proposition 3.1.10). In this case π1(U, t) = 1, so there is no monodromy action

associated to the fibration fU , see [30, §3.2.2].
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Case 2. If dim(∆X) = N − 1, then the Lefschetz pencil L meets ∆X transversely in its

smooth locus ∆0
X (see Proposition 3.1.10).

In the second case, Zariski’s theorem shows that the monodromy representation

ρ : π1(U, t) → Aut(Hk(Xt,Z))

can be computed by restricting to a Lefschetz pencil.

Theorem 3.4.9. (Zariski’s theorem) Let Y ⊂ Pr be a hypersurface, and let U = Pr∖Y
be its complement. Then for t ∈ U and for every projective line L ⊂ Pr passing through

t which meets Y transversally in its smooth locus, the natural map

π1(L− L ∩ Y, t) → π1(U, t)

is surjective.

Proof. See [30, Theorem 3.22].

Next we prove that if we are in the second case of the above remark, the vanishing

cycles are conjugate under the monodromy action.

Assume that dim(∆X) = N − 1, i.e., ∆X is a hypersurface. Fix any t ∈ U , then we

have the monodromy representation

ρ : π1(U, t) → Aut(Hn−1(Xt,Z)),

associated to the fibration fU .

Moreover, for every y ∈ ∆0
X , let y

′ ∈ U be near y, contained in a diskDy which meets

∆0
X transversally at y, and such that Dy∖{y} ⊂ U . Then we have a vanishing cycle (of

the Lefschetz degeneration XDy → Dy obtained by restricting fU to XDy = f−1
U (Dy))

δy ∈ Hn−1(Xy′ ,Z) = Hn−1(Xy′ ,Z), where Xy′ := f−1
U (y′)

i.e., the homology class of the sphere Sn−1
y′ ⊂ Xy′ which is well defined up to sign as a

generator of the kernel of the map

Hn−1(Xy′ ,Z) → Hn−1(XDy ,Z),

see Corollary 3.2.13.

Now choose a path γ from t to y′ contained in U ; then, by trivialising the fibration fU

over γ, we can construct a diffeomorphism ψ : Xy′
∼= Xt, well-defined up to homotopy.

Thus, we have a vanishing cycle

δγ = ψ∗(δy) ∈ Hn−1(Xt,Z) = Hn−1(Xt,Z),

where ψ∗ : Hn−1(Xy′ ,Z) → Hn−1(Xt,Z).
Then thanks to the fact that ∆X is irreducible we obtain the following result
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Proposition 3.4.10. All the vanishing cycles δγ (one for each y ∈ ∆0
X) constructed

above (and defined up to sign) are conjugate (up to sign) under the monodromy action

ρ.

Proof. Clearly, by definition of the monodromy action if we change the path γ above

by composing it with a loop γ′ based at t, the morphism ψ∗ becomes

ρ(γ′) ◦ ψ∗,

(where ρ(γ′) : Hn−1(Xt,Z) → Hn−1(Xt,Z) is an automorphism of Hn−1(Xt,Z) and

ψ∗ : H
n−1(Xy′ ,Z) → Hn−1(Xt,Z)) so that

δγ′·γ = ρ(γ′)(δγ).

It thus suffices to check what happens when we change the point y. But as ∆X is

irreducible, its smooth locus ∆0
X is connected, so it is arcwise connected.

If y1 ∈ ∆0
X is another point, we can choose a path l from y to y1 in ∆0

X and lift it

to a path l′ from y′ to y′1 contained in the boundary of a tubular neighborhood of ∆0
X

in (PN )∨.
Obviously, a trivialization of fU over l′ transports the vanishing cycle

δy ∈ Hn−1(Xy′ ,Z)

to the vanishing cycle

δy1 ∈ Hn−1(Xy′1
,Z).

If γ is the path from t to y′ and γ′ is the path from t to y′1, then the loop

γ′′ := (γ′)−1 · l · γ

based at t satisfies

ρ(γ′′)(δγ) = δγ′ .

Corollary 3.4.11. Let (Xt)t∈P1 be a Lefschetz pencil of hyperplane sections of X, 0i,

i = 1, . . . ,M the critical values, and t ∈ P1 a regular value. Then all the vanishing

cycles δi ∈ Hn−1(Xt,Z) of the pencil are conjugate under the monodromy action of

ρ : π1(P1 ∖ {01, . . . , 0M}, t) → Aut(Hn−1(Xt,Z)).

Proof. It follows from Theorem 3.4.9 and the proposition above.

Next we prove that the vanishing cohomology of a smooth hyperplane section is

stable under the monodromy action associated to fU .
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Proposition 3.4.12. Let Xt be a smooth hyperplane section of X. Then the mon-

odromy action

ρ : π1(U, t) → Aut(Hn−1(Xt,Q)),

associated to the fibration fU , leaves H
n−1(Xt,Q)van stable.

Proof. We have an inclusion

XU → U ×X

of fibrations fU : XU → U and pr1 : U × X → U over U which gives a morphism of

local systems

J∗ : R
n−1ϕ∗Q → Rn+1pr1∗Q

whose value on the stalk at the point t is the map

j∗ : H
n−1(Xt,Q) → Hn+1(X,Q).

Thus, we have a local subsystem KerJ∗ whose stalk at the point t is Ker(j∗).

The monodromy ρ preserves the stalks of this local sub-system, i.e., it leaves Ker(j∗)

stable.

Definition 3.4.13 (Irreducible action). The action of a group G on a vector space E

is said to be irreducible if every vector subspace F ⊂ E stable under G is equal to {0}
or E.

Next we prove that there is no non-trivial local subsystem of the local system with

stalk Hn−1(Xt,Q)van.

Theorem 3.4.14. Let (Xt)t∈P1 be a Lefschetz pencil of hyperplane sections of X, 0i,

i = 1, . . . ,M the critical values, and t ∈ P1 a regular value. Then the monodromy

action

ρ : π1(U, t) → Aut(Hn−1(Xt,Q)van)

is irreducible.

Proof. Let V = P1−{01, . . . , 0M}. By Zariski’s Theorem (Theorem 3.4.9) it suffices to

prove the irreducibility of the monodromy action

ρV : π1(V, t) → Aut(Hn−1(Xt,Q)van),

obtained by restringing us to the Lefschetz pencil fP1 : CP1 → P1 passing through t of

the hypothesis.

For each 0i with i = 1, . . . ,M , consider the small disk Di ⊂ P1 centered at 0i,

ti ∈ D∗
i and γi the path joining t to ti. Let δ′i ∈ Hn−1(Xti ,Q) = Hn−1(Xti ,Q) be

the vanishing cycle (the homology class of the vanishing sphere Sn−1
ti

⊂ Xti) which

is well defined up to sign as a generator of Ker(Hn−1(Xti ,Q) → Hn−1(X∆i ,Q)) and
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recall that by trivialising the fibration fP1 over γi we can construct a diffeomorphism

Xti
∼= Xt, so we have a vanishing cycle δi ∈ Hn−1(Xt,Q) which is image of δ′i via

the diffeomorphism. By Lemma 3.2.19 the vanishing cohomology Hn−1(Xt,Q)van is

generated by these vanishing cycles δi, i = 1, . . . ,M , of the Lefschetz pencil.

On the other hand, let γ̃i be the loop in V based at t such that γ̃i is equal to γi

until ti winds around the disk Di once in the positive direction, and then returns to t

via γ−1
i . Recall that these loops γ̃i, i = 1, . . . ,M generate π1(V, t) and note that the

image of the loops γ̃i via ρV are elements in Aut(Hn−1(Xt,Q)van), that is, ρV (γ̃i) :

Hn−1(Xt,Q)van → Hn−1(Xt,Q)van are automorphisms.

Let F ⊂ Hn−1(Xt,Q)van be a nontrivial vector subspace which is stable under the

monodromy action ρV . We must prove that F = Hn−1(Xt,Q)van or F = {0}.

Let 0 ̸= α ∈ F . Since by Proposition 3.2.21, ⟨, ⟩ is non-degenerate onHn−1(Xt,Q)van

there exists i ∈ {1, . . . ,M} such that

⟨α, δi⟩ ≠ 0.

By the Picard-Lefschetz formula (Theorem 3.4.2) for α ∈ F ⊂ Hn−1(Xt,Q)van one

has

ρV (γ̃i)(α) = α± ⟨α, δi⟩δi,

or equivalently,

ρV (γ̃i)(α)− α = ±⟨α, δi⟩δi.

Since, by assumption, F is a vector subspace of Hn−1(Xt,Q)van which is stable under

the monodromy action ρV (so ρV (γ̃i)(α) ∈ F ) we have

ρV (γ̃i)(α)− α = ±⟨α, δi⟩δi ∈ F.

Then

δi ∈ F.

But, Corollary 3.4.11 shows that all the vanishing cycles are conjugate under the

monodromy action, so F , which is stable under the monodromy action, must contain

all the vanishing cycles. Thus

F = Hn−1(Xt,Q)van.

Corollary 3.4.15. Let fU : XU → U be the universal smooth hypersurface. Then there

exists no local subsystem of Rn−1ϕ∗Qvan which is non-trivial, where n = dim(X).

Proof. See [30, Corollary 3.28].
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Chapter 4

The Gysin Kernel

In this chapter we present and prove the main result of the thesis called the theorem

on the Gysin kernel (Theorem 4.1.1). More precisely, let S be a connected smooth

projective surface over C. Let Σ be the complete linear system of a very ample divisor

D on S of dimension say d. Let Pd∗ be the dual projective space of Pd parametrizing

hyperplanes in Pd and let η be the geometric generic point of Pd∗. Let ∆S be the

discriminant variety of S also called the discriminant locus of Σ ∼= Pd∗ parametrizing

singular hyperplane sections of S and U = Σ\∆S its complement of smooth hyperplane

sections of S. For any closed point t ∈ Σ, let Ht be the hyperplane in Pd corresponding
to t, Ct = Ht ∩ S the corresponding hyperplane section of S, rt the closed embedding

of Ct into S, and rt∗ the Gysin homomorphism on Chow groups from CH0(Ct)deg=0

to CH0(S)deg=0, induced by rt, whose kernel is denoted by Gt and called the Gysin

kernel associated to the hyperplane section Ct. We prove the theorem on the Gysin

kernel which has the following three items. Item a) (see also Theorem A in [1], and [30,

page 304]) states that the Gysin kernel Gt associated to a smooth hyperplane section

Ct, i.e., with t ∈ U , is a countable union of translates of an abelian subvariety At inside

Bt ⊂ Jt, where At is the unique irreducible component passing through zero of the

irredundant decomposition of Gt and Bt is the abelian subvariety of the Jacobian Jt

of the curve Ct, corresponding to the Hodge substructure on H1(Ct,Z)van, the kernel

of the Gysin homomorphism from H1(Ct,Z) to H3(S,Z) induced by rt. Item b) (see

also Theorem B in [1]) states the existence of a c-open subset U0 in U such that At

with t ∈ U0 has two possibilities and also the same behaviour. More precisely, there

exits a c-open subset U0 in U such that either Aη = 0, in which case At = 0 for all

t ∈ U0, or Aη = Bη, in which case At = Bt for all t ∈ U0. Item c) states that if we are

in the case where the discriminant locus ∆S is a hypersurface then for every t in U , At

has only two possibilities but not necessarily the same behaviour. More precisely, for

every t ∈ U we have that At = 0 or At = Bt.
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4.1 A Theorem on the Gysin kernel

Let S be a connected smooth projective surface over C, D a very ample divisor on S

(see Definition 1.4.21) and OS(D) its corresponding very ample invertible sheaf on S.

Let Σ = |D| = |OS(D)| be the complete linear system of D on S (see Definition 1.4.24),

d = dim(Σ), and

ϕΣ : S ↪→ Pd

the closed embedding of S on Pd, induced by Σ. Note in particular that since D is very

ample, S is not degenerate, i.e., it is not contained in any hyperplane in Pd (see 1.4.31).
Let Pd∗ be the dual projective space of Pd parametrizing hyperplanes in Pd and let

η be its geometric generic point. Recall that by definition the linear system Σ can be

identified with Pd∗.
For any closed point t ∈ Σ = Pd∗, let Ht be the hyperplane in Pd corresponding to

t, Ct = Ht ∩ S the corresponding hyperplane section of S, and

rt : Ct ↪→ S

the closed embedding of the curve Ct into S.

Let

∆S = {t ∈ Σ : Ct is singular}.

the subset in Σ parametrizing singular hyperplane sections of S and called the discrim-

inant variety of S also called the discriminant locus of Σ (see Definition 3.1.7).

Let

U = Σ \∆S = {t ∈ Σ : Ct is smooth},

be the complement of ∆S parametrizing smooth hyperplane sections of S.

For any closed point t ∈ U , let

rt∗ : H
1(Ct,Z) → H3(S,Z)

be the Gysin homomorphism on cohomology groups induced by rt (see Definition 2.2.7).

Recall that H1(Ct,Z) and H3(S,Z) carries a weight 1 and 3 Hodge structure respec-

tively (see Example 2.1.5) and that rt∗ is a morphism of Hodge structures of bidegree

(1, 1) (see Proposition 2.2.8). Let H1(Ct,Z)van be the kernel of the above Gysin ho-

momorphism rt∗, it is called the vanishing cohomology (see Definition 3.2.17) and it

carries Hodge structure induced by the morphism of Hodge structures rt∗ (see Lemma

3.2.20).

For any closed point t ∈ U , let Jt = J(Ct) be the Jacobian of the curve Ct. Recall

that Jt is the complex torus associated to the Hodge structure of weight 1 on H1(Ct,Z)
(see Proposition 2.3.3) and since Ct is smooth and projective it is an Abelian variety

(see Proposition 2.3.4). Let Bt be the abelian subvariety of the abelian variety Jt

associated or corresponding to the Hodge substructure on H1(Ct,Z)van.
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For any closed point t ∈ U , let CH0(Ct)deg=0 be the Chow group of 0-cycles of

degree zero on Ct (see Definition 1.3.6).

For any closed point t ∈ U , let

rt∗ : CH0(Ct)deg=0 → CH0(S)deg=0

be the Gysin homomorphism on the Chow groups of 0-cycles of degree zero of Ct and

S respectively, induced by rt (see Definition 1.3.2), whose kernel

Gt = Ker(rt∗)

will be called the Gysin kernel associated to the hyperplane section Ct.

Theorem 4.1.1 (A theorem on the Gysin kernel). Let S, ∆S, U , η, Gt, Bt and Jt be

as above. Then

a) For every t ∈ U there is an abelian subvariety At of Bt ⊂ Jt such that

Gt =
⋃

countable

translates of At

b) For very general t ∈ U either, At = 0 or At = Bt.

For the above we mean:

There exits a c-open subset U0 ⊂ U such that either Aη = 0, in which case At = 0

for all t ∈ U0, or Aη = Bη, in which case At = Bt for all t ∈ U0.

c) Assume that ∆S is an hypersurface. Then for every t ∈ U , At = 0 or At = Bt.

Remark 4.1.2. In item b) note that if At = 0 then it follows immediately by item a)

that Gt is countable and if At = Bt and then it follows immediately by item a) that Gt

is a countable union of translates of Bt. The same thing is true for item c).

Remark 4.1.3. More precisely, see Definition 1.3.12, the phrase “For very general t ∈ U

either, At = 0 or At = Bt” in item b) of theorem Theorem 4.1.1 can be stated as

“Either, for very general t ∈ U , At = 0 or , for very general t ∈ U , At = Bt”.

Proof of item a) of Theorem 4.1.1. Recall that U = Σ \∆S is the open subset of Σ =

Pd∗ parametrizing smooth hyperplane sections of S.

Let t ∈ U = Σ \∆S be any (closed) point in U , then the corresponding curve Ct is

a smooth (hence connected, see [11]) curve in S and

rt : Ct ↪→ S

is the closed embedding of the smooth connected curve Ct into S.
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For each natural number d, let Symd(Ct) be the d-th symmetric product of the curve

Ct, Sym
d(S) the d-th symmetric product of the surface S (see Definition 1.3.13),

Symd(rt) : Sym
d(Ct) → Symd(S)

the morphism from the d-th symmetric product of the curve Ct to the d-th symmetric

product of the surface S, induced by rt, and

Symd,d(rt) : Sym
d,d(Ct) = Symd(Ct)× Symd(Ct) → Symd,d(S) = Symd(S)× Symd(S).

Then we have the following commutative diagram

Symd,d(Ct) Symd,d(S)

CH0(Ct)deg=0 CH0(S)deg=0

Symd,d(rt)

θ
Ct
d

θSd

rt∗

(4.1)

where θCt
d and θSd are the set-theoretic maps of Definition 1.3.14 (see also Remark

1.3.15), rt∗ is the Gysin homomorphism on Chow groups of 0-cycles of degree 0 induced

by rt.

Now recall that by Lemma 2.4.12 (fact 1) and Lemma 1.2.24 (fact 2) there exists

an isomorphism

albCt : CH0(Ct)deg=0 → Jt =: Alb(Ct),

where Jt = J(Ct) is the Jacobian of the curve Ct and Alb(Ct) is the Albanese vari-

ety of Ct and albCt is the Albanese map, then, by Definition 1.3.25, CH0(Ct)deg=0 is

representable, or equivalently

θCt
d : Symd,d(Ct) → CH0(Ct)deg=0

is surjective for sufficiently large d, by Definition 1.3.24. This implies that the Gysin

kernel is of the form

Gt = θCt
d [(θSd ◦ Symd,d(rt))

−1(0)].

Indeed, by the commutativity of the diagram (4.1) we have

(rt∗ ◦ θCt
d )−1(0) = (θSd ◦ Symd,d(rt))

−1(0),

then

θCt
d [(rt∗ ◦ θCt

d )−1(0)] = θCt
d [(θSd ◦ Symd,d(rt))

−1(0)],

then by properties of the inverse of a composition and by the surjectivity of θCt
d we get

r−1
t∗ (0) = θCt

d [(θSd ◦ Symd,d(rt))
−1(0)],

i.e.,

Gt = θCt
d [(θSd ◦ Symd,d(rt))

−1(0)].
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On the other hand, by Lemma 1.3.26 the preimage of 0

(θSd )
−1(0)

is a countable union of Zariski closed subsets in Symd,d(S). It follows that

(θSd ◦ Symd,d(rt))
−1(0)

is the countable union of Zariski closed subsets in Symd,d(Ct).

Now for each d, consider the composition

Symd,d(Ct)
θ
Ct
d→ CH0(Ct)deg=0

albCt→ Jt,

by Lemma 1.3.21 it follows that the set-theoretic map θCt
d from the algebraic variety

Symd,d(Ct) to CH0(Ct)deg=0 is regular and by Lemma 1.3.23 the composition albCt ◦θCt
d

is a morphism of varieties. Since these varieties are projective, this composition is

proper (so it takes closed subsets to closed subsets).

It follows that

albCt(Gt) = albCt(θ
Ct
d [(θSd ◦ Symd,d(rt))

−1(0)]) = albCt ◦ θCt
d [(θSd ◦ Symd,d(rt))

−1(0)]

is also a countable union of Zariski closed subsets in the abelian variety Jt.

Now since albCt(Gt) is a countable union of algebraic varieties over C (which is

uncountable), albCt(Gt) admits a unique irredundant decomposition inside the abelian

variety Jt, see Lemma 1.3.9. Using the isomorphism albCt we can identify albCt(Gt)

with Gt and write

Gt =
⋃
n∈N

(Gt)n

for the irredundant decomposition of Gt in Jt ≃ CH0(Ct)deg=0.

On the other hand, note that Gt being the kernel of the Gysin homomorphism

on Chow groups rt∗ : CH0(Ct)deg=0 → CH0(S)deg=0 it is a subgroup in CH0(Ct)deg=0,

hence albCt(Gt) its image in Jt via the isomorphism albCt (which in particular is a

homomorphism), is also a subgroup in Jt.

As Jt is an abelian variety and Gt ⊂ Jt a subgroup which can be represented as

a countable union of Zariski closed subsets in Jt, the irredundant decomposition of

Gt contains a unique irreducible component passing through 0 which is an abelian

subvariety of Jt (see Lemma 1.3.10). After renumbering of the components, we may

assume that this component is (Gt)0.

It is clear that for any x ∈ Gt, the set x + (Gt)0 is an irreducible Zariski closed

subset (just translation of a Zariski closed subset) in Gt, and that we can write

Gt =
⋃
x∈Gt

(x+ (Gt)0).
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Ignoring each set x+ (Gt)0 inside y + (Gt)0, for x, y ∈ Gt, we get a subset Ξt ⊂ Gt

such that

Gt =
⋃
x∈Ξt

(x+ (Gt)0)

which is an irredundant decomposition of Gt.

Now we claim that Ξt is countable. Indeed, for any x, y ∈ Ξt, x+(Gt)0 and y+(Gt)0

are irreducible and not contained one in another. Now observe that since x+ (Gt)0 is

irreducible and Gt is a subgroup, then x+(Gt)0 ⊂ (Gt)n for some n, because otherwise

if x+(Gt)0 is not contained in (Gt)n for every n ∈ N, then x+(Gt)0 would be the union

of the closed subsets of the form (x + (Gt)0) ∩ (Gt)n each of which is not x + (Gt)0,

contradicting Lemma 1.3.7. It follows that (Gt)0 ⊂ −x+(Gt)n. Similarly, we can prove

that −x + (Gt)n is contained in (Gt)l for some l ∈ N. Then (Gt)0 = (Gt)l, that is,

(Gt)0 ⊂ −x + (Gt)n ⊂ (Gt)0, so −x + (Gt)n = (Gt)0, i.e., x + (Gt)0 = (Gt)n for each

x ∈ Ξt. It means that Ξt is countable.

Taking At = (Gt)0, until now we have proved that there is there is an Abelian

variety At ⊂ Jt such that

Gt =
⋃
x∈Ξt

(x+At),

where Ξt ⊂ Gt is a countable subset. Equivalently, we can write as follows: there is an

Abelian variety At ⊂ Jt such that

Gt =
⋃

countable

translates of At.

To complete the proof of item (a) we next show that At is contained in Bt.

Let

i : At ↪→ Jt

be the closed embedding of At into Jt.

Fix an ample line bundle Lt on Jt, and let L′
t be the pullback of Lt to At under the

embedding i. Then we have an homomorphism

λL′
t
: At → A∨

t

from the abelian subvariety At to its dual induced by L′
t, see [20, Chapter 8]. By Remark

8.7 in [20] we have that dim(At) = dim(A∨
t ). Then we have the Gysin homomorphism

(λL′
t
)∗ : H

1(At,Z) → H1(A∨
t ,Z)

on cohomology groups induced by λL′
t
(see Definition 2.2.7).

Let

i∨ : J∨
t ↪→ A∨

t
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be the homomorphism on dual abelian varieties (see [20, Chapter 9]) induced by the

closed embedding

i : At ↪→ Jt,

this induces the pullback homomorphism

(i∨)∗ : H1(A∨
t ,Z) → H1(J∨

t ,Z)

on cohomology groups associated to i∨.

Let

λLt : Jt → J∨
t

be the homomorphism from the abelian variety Jt to its dual induced by Lt, see [[20],

Chapter 8]. Then we have the pullback homomorphism

(λLt)
∗ : H1(J∨

t ,Z) → H1(Jt,Z)

on cohomology groups induced by λLt (see Definition 2.2.5).

From the above we get an injective homomorphism on cohomology groups ζt via

the following commutative diagram

H1(At,Z) H1(Jt,Z)

H1(A∨
t ,Z) H1(J∨

t ,Z)

ζt

(λL′
t
)∗

(i∨)∗

(λLt )
∗

Let

wt∗ : H
1(Jt,Z) → H1(Ct,Z)

be the isomorphism given by Lemma 2.3.6 (fact 3).

By Proposition 14 in [1] the image of the composition

H1(At,Z)
ζt→ H1(Jt,Z)

wt∗→ H1(Ct,Z)

is contained in the kernel of the Gysin homomorphism on cohomology groups

H1(Ct,Z)van = Ker(H1(Ct,Z)
rt∗→ H3(S,Z)),

i.e.,

(wt∗ ◦ ζt)(H1(At,Z)) ⊂ H1(Ct,Z)van. (4.2)

Now recall that Bt is the abelian subvariety of Jt corresponding to the Hodge

substructure on H1(Ct,Z)van, i.e.,

Bt =
H0,1(X) ∩H1(Ct,Z)van
H1(X,Z) ∩H1(Ct,Z)van
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so H1(Bt,Z) ∼= (H1(Ct,Z)van)∗ ∼= H1(Ct,Z)van (the composition of these isomor-

phisms is wt∗, see proof of Lemma 2.3.6). On the other hand, since wt∗ is an isomor-

phism and ζt is injective we can identify (wt∗ ◦ ζt)(H1(At,Z)) with H1(At,Z). Then by

the inclusion (4.2), we get

H1(At,Z) ⊂ H1(Bt,Z),

so At ⊂ Bt.

Remark 4.1.4. Note that the proof of item a) of Theorem 4.1.1 also holds any smooth

hyperplane section C of a surface S over and uncountable algebraically closed field k

of characteristic zero and in the adequate context.

4.2 On the proof of item b)

In order to prove item b) we will use the following lemmas.

Existence of a c-open subset of an integral scheme

We start this chapter with the approach to prove the existence of a c-open subset of

an integral scheme such that the residue field of each point in this c-open is isomor-

phic to the residue field of the geometric generic point of the integral scheme, this

isomorphism of fields then induce a scheme-theoretic isomorphism between each point

of the c-open and the geometric generic point of the integral scheme, and given a family

over this integral scheme the above scheme-theoretic isomorphism of points induces an

isomorphism between the corresponding fibers of the family as schemes over Spec(Q)

preserving rational equivalence of algebraic cycles.

Let k be an uncountable algebraically closed field of characteristic 0. Let T be an

integral scheme over k, XT be a scheme over T and Xt = f−1
T (t) be the fiber over t ∈ T

of the flat family fT : XT → T . Recall that a c-open subset of an integral scheme is

the complement of a c-closed subset (Definition 1.3.11).

Lemma 4.2.1. Given an integral base T over k there exits a natural c-open subset U0

in T such that every t ∈ U0 is scheme-theoretic isomorphic to the generic geometric

point η point of T and given a flat family fT : XT → T over T , the above scheme-

theoretic isomorphism of points induce an isomorphism between the fiber Xt, for all

closed points t ∈ U0, and the geometric generic fiber Xη, as schemes over Spec(Q),

moreover these isomorphisms preserve rational equivalence of algebraic cycles (see [1,

§5]).

Proof. Assume that T is affine (as one can always cover the integral scheme T by open

affine subschemes).
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Step 1. We begin with the strategy of the construction of the c-open subset in T .

Recall that the transcendental degree [k : Q] of the uncountable algebraically closed

field k over its primary subfield, i.e., over Q, is infinity.

Since T is an integral affine scheme of finite type over k, then it is of the form

T = Spec
(k[x1, . . . , xn]

I(T )

)
,

where I(T ) ⊂ k[x1, . . . , xn] is the ideal of T .

Let f1, . . . , fm ∈ k[x1, . . . , xn] be a set of generators of I(T ). As the polynomials fi

have a finite number of coefficients, attaching the coefficients of f1, . . . , fm to Q we get

an extension of Q, say k̃, which is a countable subfield of k since Q is countable. Let k′

be the algebraic closure of k̃, then it is a countable algebraically closed subfield of k.

Let T ′ be the affine integral scheme defined by the ideal I(T ′) generated by

f1, . . . , fm in k′[x1, . . . , xn].

Since
k[x1, . . . , xn]

I(T )
=
k′[x1, . . . , xn]

I(T ′)
⊗k′ k

we have

T = T ′ ×Spec(k′) Spec(k).

Denote by k[T ] = k[x1,...,xn]
I(T ) (resp. k[T ′] = k′[x1,...,xn]

I(T ′) ) to the coordinate ring of T

(resp. of T ′) and by k(T ) (resp. by k(T ′)) its function field.

Note that a closed subscheme Z ′ of T ′ is defined by an ideal a in k′[T ′] = k′[x1,...,xn]
I(T ′) ,

and let iZ′ : Z ′ ↪→ T ′ be the corresponding closed embedding. Since the field k′ is

countable and a is finitely generated, there exist only countably many closed subschemes

Z ′ in T ′. For each Z ′ denote the complement by UZ′ = T ′ \ im(iZ′).

Let

Z = Z ′ ×Spec(k′) Spec(k), UZ = UZ′ ×Spec(k′) Spec(k) and iZ : Z ↪→ T

be the pullbacks of Z ′, UZ′ and iZ′ respectively, with respect to the extension k/k′, then

UZ = T \ im(iZ).

Let

U0 = T \
⋃
Z′

im(iZ) =
⋂
Z′

UZ ,

where the union is taken over closed subschemes Z ′, such that im(iZ) ̸= T . So U0 is

the complement of the countable union of Zariski closed subsets, i.e., U0 is c-open by

construction.
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Recall that a k-point t of a scheme T is a section of the structural morphism

h : T → Spec(k), that is, a morphism ft : Spec(k) → T such that h ◦ ft = idSpec(k).

Step 2. Now we will see that there is an important isomorphism of fields related

with each k-point of the c-open U0 constructed above, that is, there is an isomorphism

between the residue fields of the k-points of the c-open U0 and the residue field of the

geometric generic point of T . More precisely

Claim: Let k(T ) be the algebraic closure of the field k(T ). For a k-point1 t in U0, one

can construct a field isomorphism

et : k(T )
∼→ k

such that for f ∈ k′[T ′] we have et(f) = f(t).

Proof of the Claim. Let t be a k-point in U0, that is, a morphism ft : Spec(k) → T .

Let

π : T = T ′ ×Spec(k′) Spec(k) → T ′

be the projection, since t ∈ U0 by the construction of U0 we have that π(t) = η′ ∈⋂
Z′ UZ′ where the intersection is taken over the closed subschemes Z ′ of T ′ such that

im(iZ′) ̸= T ′. Therefore η′ is the generic point of T ′, since the generic point of an

integral scheme is unique. This is the same to say that there exists a morphism

ht : {t} = Spec(k) → Spec(k′(T ′)) = η′,

such that the following diagram commutes

{t} = Spec(k) T

η′ = Spec(k′(T ′)) T ′

ft

ht π

g′

In terms of coordinate rings this means that there exist a homomorphism ϵt : k
′(T ′) → k

such that the following diagram commutes

k k[T ]

k′(T ′) k′[T ′]

evt

ϵt

Here k is considered as the residue field of the scheme T at t, evt : k[T ] → k is

the evaluation at t morphism, corresponding to the morphism ft, and that ϵt is the

homomorphism corresponding to the morphism ht.

1Since in our case k is algebraically closed, k-points of T coincide with closed points of T . So this
claim is true for all closed points of U0.
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Since k′[T ′] → k[T ] is injective, k′[T ′] \ {0} is a multiplicative system in k[T ].

Furthermore we have

(k′[T ′] \ {0})−1k[T ] = k[T ]⊗k′[T ′] k
′(T ′).

Hence there exists a unique universal morphism εt : k[T ] ⊗k′[T ′] k
′(T ′) → k such that

εt |k[T ]= evt and εt |k′(T ′)= ϵt.

We now construct an embedding of k(T ) ↪→ k whose restriction to k′(T ′) is ϵt, that

is, such that the following diagram commute

k(T ) k

k′(T ′)

ϵt

Let s = dim(T ′) = Tr. deg(k′(T )/k′) = krull dimension of k′[T ′]. Here we denote

by Tr.deg(k′(T )/k′) to the transcendence degree of k(T ′) over k′, then by the Noether

normalization lemma there exist s algebraically independent elements x1, . . . , xs in

k′[T ′] such that k′[T ′] is a finitely generated module over the polynomial ring k′[x1, . . . , xs]

and k′(T ′) is algebraic over the field of fractions k′(x1, . . . , xs).

It follows that k[T ] is a finitely generated module over the polynomial ring k[x1, . . . , xs]

and k(T ) is algebraic over the field of fractions k(x1, . . . , xs).

Let bi = evt(xi) for i = 1, . . . , s. Since t ∈ U0 we have that b1, . . . , bs are algebraically

independent over k′. Indeed, if b1, . . . , bs are algebraic dependent over k
′ there is a non-

trivial polynomial f in s variables with coefficients in k′ such that f(b1, . . . , bs) = 0 or

equivalently such that f(evt(x1), . . . , evt(xs)) = 0, so we have a polynomial such that t

is a zero of it, then t /∈ U0 which is a contradiction.

We can extend the set b1, . . . , bs to a transcendental basis B of k over k′, so that

k = k′(B). As B have an infinite cardinality B \ {b1, . . . , bs} also have an infinite

cardinality, choosing a bijection B
∼→ B \ {b1, . . . , bs} we obtain the following field

embedding

k = k′(B) ≃ k′(B \ {b1, . . . , bs}) ⊂ k′(B)

over k′ such that b1, . . . , bs is algebraically independent over its image. Then we get a

field embedding

Et : k(x1, . . . , xs) ↪→ k

sending xi to bi. Note that Et |k′(x1,...,xs)= ϵt |k′(x1,...,xs).
Since

k(T ) = k(x1, . . . , xs)⊗k′(x1,...,xs) k
′(T ′),

we get a uniquely defined embedding

k(T ) → k
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as the composition k(T ) → k(x1, . . . , xs) ↪→ k. The embedding k(T ) → k can extend

to an isomorphism

et : k(T )
∼→ k.

Finally, by the commutativity of the diagram

k k[T ]

k′(T ′) k′[T ′]

evt

ϵt

if we take f ∈ k′[T ′] we can identify it with its image via the inclusions k′[T ′] → k[T ]

and k′[T ′] → k′(T ′), then we have evt(f) = ϵt(f). since et|k′(T ′) = ϵt we have et(f) =

f(t).

Step 3. Given a fT : XT → T a smooth morphism of schemes over k, we now see that

the above isomorphism of fields induces an isomorphism of the fibers of fT .

Let fT : XT → T be a smooth morphism of schemes over k. Extending, if necessary,

the field k′ used to construct the c-open U0 we may assume that there exists a morphism

of schemes f ′T ′ : X ′
T ′ → T ′ over the countable algebraically closed field k′, such that fT

is the pullback of f ′T ′ under the field extension k/k′.

Let

� η′ = Spec(k′(T ′)) be the generic point of the affine scheme T ′, and let X ′
η′ be the

fibre of the family f ′T ′ : X ′
T ′ → T ′ over η′,

� η = Spec(k(T )) be the generic point of the affine scheme T , and let Xη be the

fibre of the family fT : XT → T over η,

� η = Spec(k(T )) be the geometric generic point of the affine scheme T , and let Xη

be the fibre of the family fT : XT → T over η.

The above isomorphism of fields

et : k(T )
∼→ k,

induces a scheme-theoretic isomorphism between the closed k-point t ∈ U0 and the

geometric generic point η of T

Spec(et) : {t} = Spec(k) → Spec(k(T )) = {η}

over η′, since we have ht = Spec(ϵt) : Spec(k) → η′ and Spec(k(T )) → η′.
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Pulling back the scheme-theoretic isomorphism Spec(et) onto the fibres of the family

fT we obtain the cartesian squares

Xt Xη

Spec(k) = {t} Spec(k(T )) = η

κt

Spec(et)

and pulling back Spec(ϵt) onto the fibers we obtain

Xt X ′
η′

{t} = Spec(k) Spec(k′(T ′)) = η′
Spec(ϵt)

similarly, we get Xη → X ′
η′ by pulling back Spec(k(T )) → Spec(k′(T ′)).

Note that the morphism κt induced by Spec(et) = ht is an isomorphism of schemes

over X ′
η′ .

Step 4. Next we describe the isomorphism between fibres Xt and Xt′ with t, t
′ ∈ U0.

Let t′ be another closed point of U0, then we also have the isomorphism

et′ : k(T )
∼→ k(t′) = k,

then

σtt′ : k(t) = k
e−1
t→ k(T )

et′→ k = k(t′)

is an automorphism of k.

Let (Xt)σtt′ = Xt ×Spec(k) Spec(k) with respect to the automorphism of schemes

Spec(σtt′) : Spec(k) → Spec(k) induced by σtt′ , and let

wσtt′ : (Xt)σtt′
∼→ Xt

be the corresponding isomorphism on schemes over Spec(kσtt′ ), where kσtt′ is a subfield

of σtt′-invariants in k.

Since k′ ⊂ kσtt′ ⊂ k, the projection XT → X ′
T ′ factorises through

(X ′
T ′)kσtt′ = X ′

T ′ ×Spec(k′) Spec(k
σtt′ ),

i.e., we have the following commutative diagram

XT X ′
T ′

(X ′
T ′)kσtt′
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So, we can consider the fiber Xt as a scheme over (X ′
T ′)kσtt′ just by composing the

inclusion of Xt ↪→ XT with the morphism XT → (X ′
T ′)kσtt′ .

Recall that σtt′ : k(t) = k → k = k(t′) and let

κtt′ : Xt′
κt′→ Xη

κ−1
t→ Xt

be the induced isomorphism of the fibres as schemes over Spec(kσtt′ ). It follows that

� (Xt)σtt′ = Xt′ ,

� the isomorphism wσtt′ : Xt′
∼→ Xt is over (X ′

T ′)kσtt′ , and

� wσtt′ = κtt′ .

Step 5. Finally, we see that the isomorphisms of fibres for all closed points of U0

preserve rational equivalence. More precisely:

Claim: the scheme-theoretic isomorphisms κt, for t ∈ U0, preserve rational equivalence

of algebraic cycles.

For the proof of this claim see [1, Lemma 19].

Facts on a family of hyperplane sections of a surface

For any integral scheme T over C and for any morphism of schemes T → (Pd)∗, let

fT : CT → T

be the family of hyperplane sections of S parametrized by T ,

gT : ST → T

the trivial family, that is, the family such that each fiber over T is isomorphic to S,

and

CT ST

T

fT

rT

gT

the closed embedding of schemes over T . Then we also have closed embeddings rt :

Ct ↪→ S and rη : Cη → Sη over t = Spec(C) and η respectively.

By Lemma 4.2.1 there exits a natural c-open subset U0 in T such that the residue

field of any closed point in U0 is isomorphic to the residue field of the geometric generic

point of T , since this isomorphism of fields induce a scheme-theoretic isomorphism

between points, this c-open subset U0 is such that any closed point t ∈ U0 is scheme-

theoretic isomorphic to the geometric generic point η of T .
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Extending appropriately, if necessary, the countably algebraically closed field k′,

used to construct U0, we may assume that there exists morphisms of schemes f ′T ′ , g′T ′

and r′T ′ over k′ with f ′T ′ = g′T ′ ◦ r′T ′ , that is, with

C ′
T ′ S ′

T ′

T ′

f ′
T ′

r′
T ′

g′
T ′

and such that fT , gT and rT are the pullback of f ′T ′ , g′T ′ and r′T ′ respectively under

the field extension C/k′. Then the scheme-theoretic isomorphism between the points

t ∈ U0 and the geometric generic point η of T induce isomorphisms κfTt : Ct → Cη

(resp. κgTt : St → Sη) between the fiber Ct (resp. St) over t and the geometric generic

fiber Cη (resp. Sη) over η of the family fT (resp. gT ) for every t ∈ U0, as schemes over

Spec(Q), and for any two points t and t′ in U0 one has the isomorphisms κfTtt′ : Ct → Ct′

(resp. κgTtt′ : St → St′). Moreover, for any closed point t ∈ U0, the following diagram

Ct St

Cη Sη

rt

κ
fT
t

κ
gT
t

rη

(4.3)

commutes, where rt and rη are the morphisms on fibres induced by rT . Then the

isomorphisms κfTtt′ = (κfTt )−1 ◦ κfTt′ (resp. κgTtt′ = (κgTt )−1 ◦ κgTt′ ) commute with closed

embeddings rt and rt′ for any two closed points t, t′ in U0. Removing more Zariski

closed subset from U0 if necessary we may assume that the fibres of the families fT and

gT over the points on U0 are smooth, that is, we can assume that U0 ⊂ U .

For every closed point t ∈ U0, let

albCt : CH0(Ct)deg=0
∼→ Jt

be the corresponding isomorphisms given by fact 1 (see Lemma 2.4.12), and denote by

albCη : CH0(Cη)deg=0
∼→ Jη

the isomorphism for the geometric generic fiber (see Remark 2.4.13).

By the step 5 of Lemma 4.2.1, for any t ∈ U0 the scheme-theoretic isomorphisms

κfTt : Ct → Cη

of the family fT preserve rational equivalence, then they induce the push-forward iso-

morphisms of Chow groups

κfTt∗ : CH0(Ct)deg=0 → CH0(Cη)deg=0,

then we get lt : Jt → Jη as the composition given by the commutative diagram
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CH0(Ct)deg=0 CH0(Cη)deg=0

Jt Jη

κ
fT
t∗

albCη

lt

alb−1
Ct

Now consider the following commutative diagram

Symd,d(Ct) Symd,d(Cη)

CH0(Ct)deg=0 CH0(Cη)deg=0

Jt Jη

Symd,d(κ
fT
t )

θ
Ct
d θ

Cη
d

κ
fT
t∗

albCt
albCη

lt

Since albCt ◦ θCt
d is a regular morphism of schemes over C and albCη ◦ θCη

d is a regular

morphism of schemes over C(T ) the algebraic closure of the function field of T (see

Lemma 1.3.21 and Lemma 1.3.23) and the morphism Symd,d(κfTt ) is a regular morphism

over Q, it follows that the homomorphism lt : Jt → Jη is a regular morphism of schemes

over Q.

Similarly, by step 5 of Lemma 4.2.1, for any t ∈ U0 the scheme-theoretic isomor-

phisms

κgTt : St → Sη

on the fibers of the family gT preserve rational equivalence, then they induce the push-

forward isomorphisms of abelian groups

κgTt∗ : CH0(St)deg=0 → CH0(Sη)deg=0.

and from the commutative diagram (4.3) one obtains the commutative diagram in Chow

groups

CH0(Ct)deg=0 CH0(St)deg=0

CH0(Cη)deg=0 CH0(Sη)deg=0

rt∗

κ
fT
t∗ κ

gT
t∗

rη∗

(4.4)

For every closed t ∈ U0, let At and Bt be the abelian subvarieties of Jt obtained in

the proof of item a) and let Aη and Bη be the abelian subvarieties of Jη which can be

obtained in a similar way to the proof of item a) corresponding to the closed embedding

rη : Cη → Sη (see Remark 4.1.4).

Lemma 4.2.2. For any closed point t ∈ U0, lt(Bt) = Bη and lt(At) = Aη.

Proof. To prove lt(At) = Aη recall that by item a) we have

Gt =
⋃
x∈Ξt

(x+At) and Gη =
⋃
x∈Ξη

(x+Aη).
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By definition lt = albCη ◦ κ
fT
t∗ ◦ alb−1

Ct
then

lt(Gt) = albCη ◦ κ
fT
t∗ ◦ alb−1

Ct
(Gt)

equivalently we have

lt(Gt) = albCη ◦ κ
fT
t∗ (Gt)

via the identification alb−1
Ct

. By the commutative diagram (4.4) we have κfTt∗ (Gt) = Gη,

then

lt(Gt) = Gη (4.5)

via the isomorphism albCη .

On the other hand,

lt(Gt) = lt(
⋃
x∈Ξt

(x+At)) =
⋃
x∈Ξt

(lt(x) + lt(At)) (4.6)

By equations (4.5) and (4.6) we have⋃
x∈Ξt

(lt(x) + lt(At)) =
⋃
x∈Ξη

(x+Aη).

Note that lt(At) is Zariski closed in Jη since the group isomorphism lt are regular

morphisms of schemes over Spec(Q). Since lt(At) is a subgroup of in Jη, it is an abelian

subvariety in Jη.

As the right and left terms of the above equality are irredundant decomposition

of Gη by the uniqueness of it (see Lemma 1.3.9) and by the fact that the irredundant

decomposition of Gη must contain a unique irreducible component passing through 0

(see Lemma 1.3.10) we have that l(At) = Aη.

Remark 4.2.3. The above Lemma 4.2.2 tells us that one can study the varieties At in

a family either working at the geometric generic point or at a very general closed point

on the base scheme.

Facts on Lefschetz pencils of hyperplanes sections of a surface inter-
secting U0

Now, choose L ∼= P1 be a Lefschetz pencil of hyperplanes for the surface S (see Definition

3.1.6 and Proposition 3.1.10) such that L ∩ U0 ̸= ∅.

Lemma 4.2.4. Let t ∈ L ∩ U0, let At be the abelian subvariety of Bt ⊂ Jt obtained in

the proof of item a). Then either At = 0 or At = Bt.

Proof. Since L ∼= P1 be a Lefschetz pencil of hyperplanes for the surface S passing

through t (if we think of this Lefschetz pencil as the family of hyperplane sections
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(Ct)t∈L parametrized by L this means that Ct corresponding to this t is a member of

this family), then it gives rise to a morphism

fL : CL → L,

where CL is smooth because it can be identified with the blowing up

S̃ = {(x, t) ∈ S × L : x ∈ Ct = S ∩Ht}

of S at the base locus AL of the pencil, and fL = pr2|S̃ : S̃ → L. Moreover, each

hyperplane section Ct of S parametrized by points of L can be naturally identified with

the fibre f−1
L (t) ⊂ S̃, so each fibre Ct of fL has at most one ordinary double point as

singularity.

Let {01, . . . , 0M} be the critical values of the Lefschetz pencil L and V = L −
{01, . . . , 0M}, then we have the monodromy action

ρV : π1(V, t) → Aut(H1(Ct,Q))van,

associated to the local system R1fLZ|V see [12, §5]. Now we claim that the local

monodromy representation ρV is irreducible.

Proof of the claim. Indeed, recall that {01, . . . , 0M} are the critical values of the Lef-

schetz pencil L ∼= P1. For each 0i with i = 1, . . . ,M , consider the small disk Di ⊂ L

centered at 0i, ti ∈ D∗
i and γi the path joining t to ti. Let δ

′
i ∈ H1(Cti ,Q) = H1(Cti ,Q)

be the vanishing cycle (the homology class of the vanishing sphere S1
ti ⊂ Cti) which is

well defined up to sign as a generator of Ker(H1(Cti ,Q) → H1(C∆i ,Q)) and recall that

by trivialising the fibration fL|γi over γi we can construct a diffeomorphism Cti
∼= Ct,

so we have a vanishing cycle δi ∈ H1(Ct,Q) which is image of δ′i via the diffeomor-

phism. By Lemma 3.2.19 the vanishing cohomology H1(Ct,Q)van is generated by these

vanishing cycles δi, i = 1, . . . ,M , of the Lefschetz pencil L.

On the other hand, let γ̃i be the loop in V based at t such that γ̃i is equal to γi

until ti winds around the disk Di once in the positive direction, and then returns to t

via γ−1
i . Recall that these loops γ̃i, i = 1, . . . ,M , generate π1(V, t) and note that the

image of the loops γ̃i via ρV are elements in Aut(H1(Ct,Q)van), that is,

ρV (γ̃i) : H
1(Ct,Q)van → H1(Ct,Q)van

are automorphisms.

Let F ⊂ H1(Ct,Q)van be a nontrivial vector subspace which is stable under the

monodromy action ρV . We must prove that F = H1(Ct,Q)van or F = {0}.
Let 0 ̸= α ∈ F . Since by Proposition 3.2.21, ⟨, ⟩ is non-degenerate on H1(Ct,Q)van

there exists i ∈ {1, . . . ,M} such that ⟨α, δi⟩ ≠ 0.

By the Picard-Lefschetz formula (Theorem 3.4.2) for α ∈ F ⊂ H1(Ct,Q)van one has

ρV (γ̃i)(α) = α± ⟨α, δi⟩δi or equivalently, ρV (γ̃i)(α)− α = ±⟨α, δi⟩δi.
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Since, by assumption, F is a vector subspace of H1(Ct,Q)van which is stable under

the monodromy action ρV (so ρV (γ̃i)(α) ∈ F ) we have ρV (γ̃i)(α)−α = ±⟨α, δi⟩δi ∈ F .

Then δi ∈ F .

But, Corollary 3.4.11 shows that all the vanishing cycles are conjugate under the

monodromy action, so F , which is stable under the monodromy action, must contain

all the vanishing cycles. Thus F = H1(Ct,Q)van.

On the other hand, by Lemma 2.3.6 (fact 3) we have H1(Ct,Z)
wt∗≃ H1(Jt,Z) is an

isomorphism. Let

H1(Ct,Q) = H1(Ct,Z)⊗Q
(wt∗)Q≃ H1(Jt,Z)⊗Q = H1(Jt,Q)

be the isomorphism induced by wt∗, we get this because in particular Ct is compact

(see [29, §7.1.1]).

Let Lt = (wt∗)
−1
Q (H1(At,Q)) be the (pre)image in H1(Ct,Q) of H1(At,Q) ⊂

H1(Jt,Q) under the isomorphism (wt∗)
−1
Q . Then Lt is aQ-vector subspace inH1(Ct,Q).

Recall also that H1(Bt,Z)
wt∗≃ H1(Ct,Z)van (see final part of the proof of item a)),

then it follows that

H1(Bt,Q)
(wt∗)Q≃ H1(Ct,Q)van.

Since in item a) we proved that H1(At,Z) ⊂ H1(Bt,Z) we get

H1(At,Q) ⊂ H1(Bt,Q),

this implies that Lt ⊂ H1(Ct,Q)van in H1(Ct,Q) via the isomorphism (wt∗)Q. More-

over, Lt is a vector subspace in H1(Ct,Q)van which has a Hodge structure on it since it

corresponds to the abelian subvariety At of Jt, then it is invariant under the monodromy

representation ρV (see Proposition 3.3.15).

Then, since the monodromy action

ρV : π1(V, t) → Aut(H1(Ct,Q)van)

on H1(Ct,Q)van is irreducible, either Lt
(wt∗)Q≃ H1(At,Q) = 0 and then At = 0, or

Lt
(wt∗)Q≃ H1(At,Q) = H1(Ct,Q)van

(wt∗)Q≃ H1(Bt,Q) and then At = Bt.

Finally, we next prove the item b) of the main result of this thesis.

Proof of item b) of Theorem 4.1.1. Let

f : C → Pd∗

be the universal hyperplane section of S, i.e., the family of hyperplane sections of S

parametrized by Pd∗ (see Example 3.4.6).
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Let

g : S = S × Pd∗ → Pd∗

be the trivial family parametrised by Pd∗, i.e., the family such that each fiber over Pd∗

is isomorphic to S.

Let

C S

Pd∗

f

r

g

be the closed embedding of schemes over Pd∗.
By Lemma 4.2.1 there exits a natural c-open subset U0 in Pd∗ such that the residue

field of any closed point in U0 is isomorphic to the residue field of the geometric generic

point of Pd∗, since this isomorphism of fields induce a scheme-theoretic isomorphism

between points, this c-open U0 is such that any closed point t ∈ U0 is scheme-theoretic

isomorphic to the geometric generic point η of Pd∗.
Extending appropriately the countably algebraically closed field k′ ⊂ C, used to

construct U0, we may assume that there exists morphisms of schemes f ′, g′ and r′

over k′ with f ′ = g′ ◦ r′ and such that f , g and r are the pullback of f ′, g′ and r′

respectively under the field extension C/k′. Then the scheme-theoretic isomorphism

between the points t ∈ U0 and the geometric generic point η of Pd∗ induce isomorphisms

κft : Ct → Cη (resp. κgt : St → Sη) between the fiber Ct (resp. St) over t and the

geometric generic fiber Cη (resp. Sη) over η of the family f (resp. g) for every t ∈ U0,

as schemes over Spec(Q), and for any two points t and t′ in U0 one has isomorphisms

κftt′ : Ct → Ct′ (resp. κgtt′ : St → St′). Moreover, for any closed point t ∈ U0, the

following diagram

Ct St

Cη Sη

rt

κft κgt
rη

commutes, where rt and rη are the morphisms on fibres induced by r. Then the

isomorphisms κftt′ = (κft )
−1 ◦ κft′ (resp. κgtt′ = (κgt )

−1 ◦ κgt′) commute with closed

embeddings rt and rt′ for any two closed points t, t′ in U0. Removing more Zariski

closed subset from U0 if necessary we may assume that the fibres of the families f and

g over the points on U0 are smooth, that is, we can assume that U0 ⊂ U .

Recall that for every closed point t ∈ Pd∗ we denote by Ht the corresponding

hyperplane in Pd.
Let Ω ⊂ Pd∗ be a Zariski closed subset in Pd∗ such that for every point in t ∈ Pd∗−Ω

the corresponding hyperplane Ht does not contain S and Ht ∩ S = Ct is either smooth

or contains at most one singular point which is a double point.
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Let G(1,Pd∗) be the Grassmannian of lines in Pd∗. There exists W ⊂ G(1,Pd∗) a

Zariski open subset of G(1,Pd∗) such that for every line L ∈W we have L∩Ω = ∅ and

its corresponding codimension 2 linear subspace AL in Pd intersects S transversally.

In other words, any line L ∈ W gives rise to a Lefschetz pencil for S (see Corollary

3.1.12).

Let Z = Pd∗ − U0 be the complement of the c-open U0 subset of Pd∗, then Z is

c-closed. It follows that the condition for a line L ∈ G(1,Pd∗) to be not a subset in Z

is c-open. This means that there exists a c-open A ⊂ G(1,Pd∗) such that for L ∈ A

we have L ̸⊂ Z. It follows that A ∩W ̸= ∅, so we can choose a line L ⊂ Pd∗ such that

gives rise to a Lefschetz pencil fL : CL → L and L ∩ U0 ̸= ∅.
Let t0 ∈ L ∩ U0, then by Lemma 4.2.4 At0 = 0 or At0 = Bt0 .

Suppose that At0 = 0. Applying the Lemma 4.2.2 to the case T = Pd∗, we obtain

Aη = 0 because t0 and η are isomorphic since t0 ∈ U0. Then applying the same Lemma

4.2.2 we have At = 0 for each closed point t ∈ U0.

Suppose that At0 = Bt0 . Applying the Lemma 4.2.2 to the case T = Pd∗, we obtain
Aη = Bη because t0 and η are isomorphic since t0 ∈ U0. Then applying the same

Lemma 4.2.2 we have At = Bt for each closed point t ∈ U0.

4.3 On the proof of item c)

Proof of item c) of Theorem 4.1.1. Recall that ∆S ⊂ Σ is the irreducible variety of

Σ = Pd∗ parametrizing singular hyperplane sections of S and that U = Σ \∆S is the

open subset of Σ = Pd∗ parametrizing smooth hyperplane sections of S.

Let fU : CU → U be the smooth universal hyperplane section of S, that is, the

family of smooth hyperplane sections of S parametrized by U (see Definition 3.4.7).

Let gU : SU = S × U → U be the trivial family parametrized by U , that is, the

family such that each fiber over U is isomorphic to S.

Let
CU SU

U

fU

rU

gU

be the inclusion of fibrations over U .

Fix any (closed) point t ∈ U = Σ\∆, then the fiber of the inclusion rU over t is the

closed embedding rt : Ct ↪→ St ∼= S of the smooth (hence connected, see [11]) curve Ct

into the surface S over C.
Recall that ∆0

S ⊂ ∆S is the open dense subset of ∆S parametrizing hyperplanes

in Pd such that the corresponding hyperplane sections of S has exactly one ordinary

double point as singularity (see Definition 3.1.8).
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Suppose in addition that dim(∆S) = d − 1, i.e., the discriminant variety ∆S of

S is a hypersurface (e.g. S is a non-linear surface, see Proposition 3.1.13) by Propo-

sition 3.1.10 any Lefschetz pencil of hyperplane sections of S meets the discriminant

hypersurface ∆S transversely in the open dense subset ∆0
S ⊂ ∆S . So, in particular any

Lefschetz pencil of hyperplane sections of S passing through t meets the discriminant

hypersurface ∆S transversely in the open dense subset ∆0
S , then from Remark 3.4.8

and Zariski Theorem 3.4.9 we can conclude that there is a monodromy representation

ρfU : π1(U, t) → Aut(H1(Ct,Q)),

associated to the local system R1fU∗Q corresponding to the fibration fU (see Proposi-

tion 3.3.13).

Now recall that the above inclusion of fibrations rU gives a morphism of local

systems

rU∗ : R
1fU∗Q → R3gU∗Q

whose stalk at the point t is

rt∗ : H
1(Ct,Q) → H3(S,Q),

the Gysin homomorphism in cohomology groups. Thus we have a local subsystem in

vanishing cohomology, that is, we have a local subsystem

Ker(rU∗ : R
1fU∗Q → R3gU∗Q)

whose stalk at point t ∈ U is H1(Ct,Q)van = Ker(rt∗ : H1(Ct,Q) → H3(S,Q)). By

Proposition 3.4.12 we have that the monodromy representation ρfU preserves the stalk

of this local subsystem, i.e., leaves H1(Ct,Q)van stable. Then we have a monodromy

representation on vanishing cohomology H1(Ct,Q)van, that is, we have

ρfU : π1(U, t) → Aut(H1(Ct,Q)van).

By Zariski’s theorem (Theorem 3.4.9) the monodromy representation ρfU can be

computed by restricting to a Lefschetz pencil passing through t. So, let L ∼= P1 be a

Lefschetz pencil passing through t (if we think of this Lefschetz pencil as the family

of hyperplane sections (Ct)t∈L parametrized by L this means that Ct corresponding to

this t is a member of this family), then it gives rise to a morphism

fL : CL → L

where CL is smooth because it can be identified with the blowing up

S̃ = {(x, t) ∈ S × L : x ∈ Ct = S ∩Ht}

of S at the base locus AL of the pencil, and fL = pr2|S̃ : S̃ → L. Moreover, each

hyperplane section Ct of S parametrized by points of L can be naturally identified with
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the fibre f−1
L (t) ⊂ S̃, so each fibre Ct of fL has at most one ordinary double point as

singularity. This Lefschetz pencil L through t exists because by Proposition 3.1.10 a

restatement of the claim is that for t in U = Pd∗ \∆S there is a line in Pd∗ through t

transverse to the discriminant variety ∆S of S in the open dense subset ∆0
S and this is

clear, see also Remark 3.2.14.

Let V = L− L ∩∆S , then we have the monodromy action

ρfV := ρfU |V : π1(V, t) → Aut(H1(Ct,Q))

obtained by restringing us to the Lefschetz pencil fL : CL → L.

Now we claim that the local monodromy representation

ρfV : π1(V, t) → Aut(H1(Ct,Q)van)

is irreducible, that is, every vector subspace stable under ρfV is equal to {0} or

H1(Ct,Q))van.

Proof of the claim. Indeed, Let L ∩ ∆S = {01, . . . , 0M} be the critical values of the

Lefschetz pencil L ∼= P1. For each 0i with i = 1, . . . ,M , consider the small disk

Di ⊂ L centered at 0i, ti ∈ D∗
i and γi the path joining t to ti. Let δ′i ∈ H1(Cti ,Q) =

H1(Cti ,Q) be the vanishing cycle (the homology class of the vanishing sphere S1
ti ⊂ Cti)

which is well defined up to sign as a generator of Ker(H1(Cti ,Q) → H1(C∆i ,Q)) and

since that by trivialising the fibration fL|γi over γi we can construct a diffeomorphism

Cti
∼= Ct, so we have a vanishing cycle δi ∈ H1(Ct,Q) which is image of δ′i via the

diffeomorphism. By Lemma 3.2.19 the vanishing cohomology H1(Ct,Q)van is generated

by these vanishing cycles δi, i = 1, . . . ,M , of the Lefschetz pencil L.

On the other hand, let γ̃i be the loop in V based at t such that γ̃i is equal to γi

until ti winds around the disk Di once in the positive direction, and then returns to t

via γ−1
i . Recall that these loops γ̃i, i = 1, . . . ,M , generate π1(V, t) and note that the

image of the loops γ̃i via ρfV are elements in Aut(H1(Ct,Q)van), that is,

ρfV (γ̃i) : H
1(Ct,Q)van → H1(Ct,Q)van

are automorphisms. Let F ⊂ H1(Ct,Q)van be a nontrivial vector subspace which is

stable under the monodromy action ρfV . We must prove that F = H1(Ct,Q)van.

Let 0 ̸= α ∈ F . Since by Proposition 3.2.21, ⟨, ⟩ is non-degenerate on H1(Ct,Q)van

there exists i ∈ {1, . . . ,M} such that

⟨α, δi⟩ ≠ 0.

By the Picard-Lefschetz formula (Theorem 3.4.2) for α ∈ F ⊂ H1(Ct,Q)van one has

ρfV (γ̃i)(α) = α± ⟨α, δi⟩δi,
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or equivalently,

ρfV (γ̃i)(α)− α = ±⟨α, δi⟩δi.

Since, by assumption, F is a vector subspace of H1(Ct,Q)van which is stable under the

monodromy action ρfV (so ρfV (γ̃i)(α) ∈ F ) we have

ρfV (γ̃i)(α)− α = ±⟨α, δi⟩δi ∈ F.

Then

δi ∈ F.

But, Corollary 3.4.11 shows that all the vanishing cycles are conjugate under the mon-

odromy action, so F , which is stable under the monodromy action, must contain all

the vanishing cycles. Thus

F = H1(Ct,Q)van.

By Zariski’s theorem 3.4.9 this implies that the global monodromy representation

ρfU : π1(U, t) → Aut(H1(Ct,Q)van)

is also irreducible (see Theorem 3.4.14).

On the other hand, by Lemma 2.3.6 (fact 3) we have H1(Ct,Z)
wt∗≃ H1(Jt,Z) is an

isomorphism, then since in particular Ct is compact we get the isomorphism

H1(Ct,Q) = H1(Ct,Z)⊗Q
(wt∗)Q≃ H1(Jt,Z)⊗Q = H1(Jt,Q)

induced by wt∗ (see [29, §7.1.1]).

Let Lt = (wt∗)
−1
Q (H1(At,Q)) be the (pre)image in H1(Ct,Q) of H1(At,Q) ⊂

H1(Jt,Q) under the isomorphism (wt∗)
−1
Q . Then Lt is aQ-vector subspace inH1(Ct,Q).

Recall also that H1(Bt,Z)
wt∗≃ H1(Ct,Z)van (see final part of the proof of item a)),

then it follows that

H1(Bt,Q)
(wt∗)Q≃ H1(Ct,Q)van.

Since in item a) we proved that H1(At,Z) ⊂ H1(Bt,Z) we get

H1(At,Q) ⊂ H1(Bt,Q),

this implies that

Lt ⊂ H1(Ct,Q)van

inH1(Ct,Q) via the isomorphism (wt∗)Q. Moreover, Lt is a vector subspace inH
1(Ct,Q)van

which has a Hodge structure on it since it corresponds to the abelian subvariety At of

86



Jt, so we assume that it is invariant under the monodromy representation ρfU (see also

Proposition 3.3.15). Then, since the monodromy action

ρfU : π1(U, t) → Aut(H1(Ct,Q)van)

on H1(Ct,Q)van is irreducible, either

� Lt
(wt∗)Q≃ H1(At,Q) = 0 and then At = 0, or

� Lt
(wt∗)Q≃ H1(At,Q) = H1(Ct,Q)van

(wt∗)Q≃ H1(Bt,Q) and then At = Bt.
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Chapter 5

Applications

In this chapter we prove a result on 0-cycles on surfaces as an application of the theorem

on the Gysin kernel (Theorem 4.1.1), and we study the connection of this result with

Bloch’s conjecture and constant cycles curves.

Bloch conjecture is the converse of a criterion given by Mumford to determine when

the Chow groups of 0-cycles on surfaces are not representable or equivalently when the

Chow groups of 0-cycles on surfaces are not finite dimensional. More precisely Bloch’s

conjecture states

Conjecture 5.0.1 (Bloch’s conjecture). Let S be a smooth projective surface over C. If
pg(S) = 0, then

albS : CH0(S)deg=0 → Alb(S)

is an isomorphism.

Or equivalently (see Definition 1.3.25 or [30, Theorem 10.11]),

Conjecture 5.0.2 (Bloch’s conjecture). Let S be a smooth projective surface over C. If
pg(S) = 0, then CH0(S)deg=0 is representable.

Also equivalently (see Proposition 1.3.32 or [30, Proposition 10.10]),

Conjecture 5.0.3 (Bloch’s conjecture). Let S be a smooth projective surface over C. If
pg(S) = 0, then CH0(S)deg=0 is finite dimensional.

On the other hand, the notion of constant cycles curves was introduced by Huy-

brechts on K3 surfaces, see [16], but it can be defined for arbitrary surfaces. The most

important examples of constant cycles curves are provided by rational curves, but not

every constant cycle curve is rational so it is still not known how much weaker the

notion of constant cycles curves really is.

As constant cycles curves of bounded order resemble rational curves in many ways,

Huybrechts restated two conjectures on rational curves for constant cycles curves.

These two conjectures for constant cycles curves due to Huybrechts are (see [16]):

Conjecture 5.0.4. For any K3 surface S there exists a positive integer n > 0 such that

the union
⋃
C ⊂ S of all constant cycles curves C ⊂ S of order ≤ n is dense.
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Conjecture 5.0.5. Let S be a complex K3 surface. Then any point x ∈ S with [x] = cS

is contained in a constant cycle curve.

5.1 A theorem on zero cycles on surfaces

Recall that Alb(S) = J3(S) is the abelian variety corresponding or associated to the

Hodge structure on H3(S,Z), and that for t ∈ U , Jt = J1(Ct) is the abelian variety

corresponding or associated to the Hodge structure on H1(Ct,Z) and Bt is the abelian

subvariety in Jt corresponding to the Hodge substructure on

H1(Ct,Z)van = Ker(H1(Ct,Z) → H3(S,Z)).

(see Definition 2.3.2):

By definition we have a short exact sequence of Hodge structures

0 → H1(Ct,Z)van → H1(Ct,Z) → H3(S,Z) → 0

which give rise to a short exact sequence of abelian varieties

0 → Bt → Jt → Alb(S) → 0,

this means that Bt → Jt is injective, Jt → Alb(S) is surjective and

im(Bt → Jt) = Ker(Jt → Alb(S)).

So

Alb(S) ∼=
Jt
Bt
.

As an application of Theorem 4.1.1 we have the following result

Theorem 5.1.1 (A theorem on the 0-cycles on surfaces). If

albS : CH0(S)deg=0 → Alb(S) ∼=
Jt
Bt

is not an isomorphism, for a very general t ∈ U , then Gt is countable.

Proof. We must prove that there exits an c-open in U such that for all t in this c-open,

if albS : CH0(S)deg=0 → Alb(S) ∼= Jt
Bt

is not an isomorphism then Gt is countable.

Since by item a) of Theorem 4.1.1 we have that for every t ∈ U

Gt = Ker(rt∗) =
⋃

countable

translates of At in Jt

it is enough to prove that there exits an c-open in U such that for all t in this c-open,

if albS : CH0(S)deg=0 → Alb(S) ∼= Jt
Bt

is not an isomorphism then At = 0.
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By item b) of Theorem 4.1.1, we know that there exists an c-open U0 such that for

every t ∈ U0 we have that At = 0 or for every t ∈ U0 we have that At = Bt.

So it is enough to prove that for every t ∈ U0, if albS : CH0(S)deg=0 → Alb(S) ∼= Jt
Bt

is not an isomorphism then At = 0.

Let t ∈ U0 be any element of U0. By contradiction, suppose that it is not true, i.e.,

that albS : CH0(S)deg=0 → Alb(S) ∼= Jt
Bt

is not an isomorphism and At = Bt. Then, we

have that

Gt = Ker(rt∗) =
⋃

countable

translates of Bt in Jt

Now denote by

πt : Jt = CH0(Ct)deg=0 → Alb(S) ∼=
Jt
Bt

to the above morphism of abelian varieties induced by the homomorphism of Hodge

structures H1(Ct,Z) → H3(S,Z).
and consider

rt∗ : Jt = CH0(Ct)deg=0 → CH0(S)deg=0,

The Gysing homomorphism in Chow groups induced by the closed embedding rt. Since

πt : Jt → Alb(S) is surjective, for a fixed z ∈ Alb(S) there exits x ∈ Jt such that πt(x) =

z. Then under rt∗ : Jt = CH0(Ct)deg=0 → CH0(S)deg=0 we get rt∗(x) ∈ CH0(S)deg=0.

So we get map

ft : Alb(S) ∼=
Jt
Bt

→ CH0(S)deg=0,

defined by ft(z) = rt∗(x).

Since, by assumption, Ker(πt) ⊂ Gt = ker(rt∗) this map is well defined. Indeed,

suppose that there are x1, x2 such that πt(x1) = z and πt(x2) = z, then we have

that πt(x1) = πt(x2), then since πt is an homomorphism we have πt(x1 − x2) = 0, it

follows that x1 − x2 ∈ Bt and since, by our assumption, Bt ⊂ ker(rt∗) we have that

rt∗(x1 − x2) = 0, then rt∗(x1) = rt∗(x2) because rt∗ is a homomorphism. So, ft is well

defined since it does not depend on the choice of the preimage of z.

The composition

CH0(S)deg=0
albS→ Alb(S)

ft→ CH0(S)deg=0

is the identity. Indeed, since CH0(S)deg=0 is generated by points of the form a−b where
a, b lies in some Ct of our fixed family, it suffices to check that a−b maps to a−b under
the composition. On the other hand, albS : CH0(S)deg=0 → Alb(S) is a surjection (see
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[7, Introduction]), so CH0(S)deg=0 is isomorphic to Alb(S) which contradicts to the

hypothesis, so we must have that At = 0, then Gt is countable and we are done.

Corollary 5.1.2. If S is a connected smooth projective surface over C with pg(S) ̸= 0,

then Gt is countable for a very general t ∈ U .

Proof. If pg(S) ̸= 0 by Mumford theorem we have that albS is not an isomorphism (see

[30, Theorem 10.1]), so by Theorem 5.1.1 the Gysin kernel Gt is countable, for a very

general t ∈ U ⊂ Σ.

Example 5.1.3. Let S be a K3 surface or an abelian surface and Σ the complete linear

system of a very ample divisor on S. Then pg(S) ̸= 0 (see [3, Chapter VIII]), so by

Corollary 5.1.2 Gt is countable, for a very general t ∈ U ⊂ Σ.

5.2 Relation with Bloch’s conjecture

In this section we show that the theorem on 0-cycles on surfaces gives us a criteria to

prove Bloch’s conjecture and that this theorem applied to surfaces with irregularity

zero gives us a useful criteria to prove Bloch’s conjecture to surfaces of general type.

The theorem on 0-cycles on surfaces (Theorem 5.1.1) is useful to prove Bloch’s

conjecture because its contrapositive form, and hence equivalent form is as follows

Corollary 5.2.1. If Gt is uncountable, for a very general t ∈ U , then

albS : CH0(S)deg=0 → Alb(S)

is an isomorphism.

So, if a surface S, as in Theorem 4.1.1, has pg(S) = 0 and we want to prove that

Bloch’s conjecture holds for this surface, i.e., albS is an isomorphism, it is enough to

prove that Gt is not countable, for a very general t ∈ U or that At = Bt for a very

general t ∈ U .

Bloch’s conjecture has been proved for surfaces of special type i.e. for surfaces with

Kodaira dimension less than 2, but for surfaces of general type, i.e., for surfaces with

Kodaira dimension 2 it is not proved yet, except for some particular cases.

For surfaces of general type the relation between the theorem on 0-cycles of surfaces

and Bloch’s conjecture is expressed as follows.

Let S be a surface of general type with pg(S) = 0. In this case pg(S) = 0 implies

that q(S) = 0, i.e., Alb(S) = 0, and the Bloch’s conjecture for surfaces of general type

can be stated as follows
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Conjecture 5.2.2 (Bloch’s conjecture for surfaces of general type). Let S be a smooth

projective surface over C of general type. If pg(S) = 0, then

CH0(S)deg=0 = 0,

i.e. any two closed points in S are rationally equivalent.

On the other hand, from Theorem 4.1.1 applied to surfaces with q(S) = 0 we get

the following corollary

Corollary 5.2.3. Let S, ∆S, U , Gt, Bt and Jt be as Theorem 4.1.1. If in addition

q(S) = 0. Then

a) For every t ∈ U there is an abelian variety At ⊂ Bt such that

Gt =
⋃

countable

translates of At

b) There exits a c-open subset U0 ⊂ U such that At = 0 for all t ∈ U0 or rt∗ = 0 for

all t ∈ U0.

c) Assume that ∆S is an hypersurface. Then for every t ∈ U , At = 0 or rt = 0.

Proof. For item a) there is nothing to prove.

By item b) of Theorem 4.1.1 there exists a c-open U0 subset in U such that At = 0

for every t ∈ U0 or At = Bt for every t ∈ U0.

In the first case, i.e., if At = 0 for every t ∈ U0 we do not have anything to prove.

In the second case, i.e., if At = Bt for every t ∈ U0 then since by hypothesis

q(S) = 0 we have H3(S,Z) = 0, so in particular for every t ∈ U0 we have that

H1(Ct,Z) = H1(Ct,Z)van, i.e., Bt = Jt. Then by item a) of Theorem 4.1.1 we have

Gt = Jt for every t ∈ U0, i.e. rt∗ = 0, for every t ∈ U0 which proves item b) of this

corollary.

By item c) of Theorem 4.1.1 one has that for any point t ∈ U , At = 0 or At = Bt.

Fix any arbitrary t ∈ U , then in the first case, i.e., if At = 0 we do not have anything

to prove.

In the second case, i.e., if At = Bt since by hypothesis q(S) = 0 we have H3(S,Z) =
0, so H1(Ct,Z) = H1(Ct,Z)van, i.e., Bt = Jt. Then by item a) of Theorem 4.1.1 we

have Gt = Jt i.e. rt∗ = 0, which proves item c) of this corollary.

Remark 5.2.4. In item b) and c) of the above corollary note that if At = 0 then it

follows immediately that Gt is countable.
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Remark 5.2.5. Note that item b) of Theorem 4.1.1 more precisely states that there

exits a c-open subset U0 ⊂ U such that either Aη = 0 in which case At = 0, for every

t ∈ U0, or Aη = Bη in which case At = Bt, for every t ∈ U0.

By Remark 4.2.3 it is enough to prove item b) at the level of (closed) very general

points in U , that is, points t ∈ U0 instead of proving item b) for the geometric generic

point η of Σ = Pd∗.

From Theorem 5.1.1 on 0-cycles of surfaces applied to surfaces S with q(S) = 0 we

get the following result

Corollary 5.2.6. Assume in addition that S is a surface with q(S) = 0. If

CH0(S)deg=0 ̸= 0

then for a very general t ∈ U , Gt is countable.

Proof. It is obvious since when q(S) = 0 then Alb(S) = 0 then by Theorem 5.1.1 we

are done.

The above corollary is equivalent to the following

Corollary 5.2.7. Assume in addition that S is a surface with q(S) = 0. If rt∗ = 0,

for a very general t ∈ U , then CH0(S)deg=0 = 0.

Proof. The contrapositive form of Corollary 5.2.6 tells us that if it is not true that Gt

is countable, i.e., that At = 0, for a very general t ∈ U , then CH0(S)deg=0 = 0. Then

applying item b) of Corollary 5.2.3 we are done.

So, if a surface S as in Theorem 4.1.1 is of general type with pg(S) = 0 and we

want to prove that Bloch’s conjecture holds for this surface, i.e., CH0(S)deg=0 = 0 it is

enough to prove that rt∗ = 0, for a very general t ∈ U i.e. more precisely we have

Corollary 5.2.8. Assume in addition that S is a surface of general type with pg(S) = 0.

Then rt∗ = 0, for a very general t ∈ U , if and only if Bloch’s conjecture holds for S.

Proof. Since S is a surface of general type with pg(S) = 0, it follows that q(S) = 0,

then we apply Corollary 5.2.7 and we are done.

Reciprocally, assume that Bloch’s conjecture holds for S then by Proposition 4.1 in

[16] rt∗ = 0 for every t ∈ Σ = Pd∗, then rt∗ = 0, for a very general t ∈ U .

5.3 Relation with constant cycle curves

In this section we show that the theorem on the Gysin kernel applied to surfaces with

irregularity zero gives a criteria to determine when smooth curves in a linear system

are constant cycles curves, we will also see that the theorem on 0-cycles on surfaces
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applied to surfaces with q(S) = 0 gives us a criteria to prove Bloch’s conjecture using

the notion of constant cycles curves.

Let S be a surface over C.

Definition 5.3.1 (Pointwise constant cycle curve). A curve C ⊂ S is a pointwise

constant cycle curve if all closed points x ∈ C define the same class [x] ∈ CH2(S).

Since we are working over C which is algebraically closed, we have the following

equivalent definition (see [16, §3]).

Definition 5.3.2 (Pointwise constant cycle curve). A curve C ⊂ S is a pointwise

constant cycle curve if and only if

rC∗ : Pic
0(C̃) = CH0(C̃)deg=0 → CH0(S)

is the zero map. Here, rC : C̃ → S is the composition of the normalization C̃ → C

with the closed embedding C ↪→ S.

By Lemma 3.8 in [16], we can define the notion of a constant cycle curve on any

surface as follows

Definition 5.3.3 (Constant cycle curve). Let S be a surface over C. An integral curve

C ⊂ S is a constant cycle curve if and only if there exists a positive integer n such that

n · [ηC ] ∈ im
(
CH2(S) → CH2

(
S ×C C(ηC)

))
,

where the generic point ηC ∈ C is viewed as a closed point in S×CC(ηC). Equivalently,
C ⊂ S is a constant cycle curve when

[ηC ] ∈ im
(
CH2(S) → CH2

(
S ×C C(ηC)

))
,

if ηC is viewed as a point in the geometric generic fibre S ×C C(ηC).

Definition 5.3.4 (Constant cycle curve). Let S be a surface over C. We call an

arbitrary curve C ⊂ S a constant cycle curve if every integral component of C is a

constant cycle curve.

When the ground field is C these two notions coincide thanks to the following

proposition, see Proposition 3.7 in [16].

Proposition 5.3.5. Let S be a surface over an algebraically closed field k. Then a

constant cycle curve C ⊂ S is also a pointwise constant cycle curve. If k is uncountable,

the converse holds true as well.

Using the definition of constant cycle curves the Corollary 5.2.3 can be restated as

follows
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Corollary 5.3.6. Let S, ∆S, U , Gt, Bt and Jt be as Corollary 5.2.3. If in addition

q(S) = 0. Then

a) For every t ∈ U there is an abelian variety At ⊂ Bt such that

Gt =
⋃

countable

translates of At

b) There exits a c-open subset U0 ⊂ U such that At = 0 for all t ∈ U0, or Ct is a

constant cycle curve for all t ∈ U0.

c) Assume that ∆S is an hypersurface. Then for every t ∈ U , At = 0 or Ct is a

constant cycle curve.

Proof. Recall that since the ground field is C a smooth curve Ct is a constant cycle

curve if rt∗ = 0, and then apply Corollary 5.2.3.

So item c) of the corollary above tells us that the study of the Gysin kernel gives us

a criteria to determine when a smooth curve in a linear system of a connected smooth

projective surface S with q(S) = 0 is a constant cycle curve.

The following result shows the relation of the theorem on the 0-cycles on surfaces,

i.e., Theorem 5.1.1, the notion of constant cycle curves and Bloch’s conjecture.

Corollary 5.3.7. Assume in addition that S is a surface of general type with pg(S) = 0.

Then the curve Ct is a constant cycle curve, for a very general t ∈ U , if and only if S

satisfies Bloch’s conjecture.

Proof. We apply Corollary 5.2.8 and definition of constant cycle curve and we are

done.

The above corollary says that if a surface S as in Theorem 4.1.1 is of general type

with pg(S) = 0 and we want to prove that Bloch’s conjecture holds for this surface,

i.e., CH0(S)deg=0 = 0 it is enough to prove that Ct is a constant cycle curve, for a very

general t ∈ U .

In the following examples let Σ be a complete linear system corresponding to a very

ample divisor on the surface S.

Example 5.3.8. Let S be the minimal model of a product-quotient surface with pg(S) =

0, then by Theorem 3.4. in [2] it is a surface of general type satisfying Bloch’s conjecture;

therefore by Corollary 5.3.7 then Ct is a constant cycle curve, for a very general t ∈
U ⊂ Σ.

Example 5.3.9. Let S be a surface as in [2, Corollary 3.5.], then by Corollary 5.3.7 Ct

is a constant cycle curve, for a very general t ∈ U ⊂ Σ.
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Example 5.3.10. Let S be a Catanese surface or a Barlow surface, then it is a surface

of general type satisfying Bloch’s conjecture (see [31]). So by Corollary 5.3.7 we have

that Ct is a constant cycle curve, for a very general t ∈ U ⊂ Σ.

Example 5.3.11. Let S be a numerical Campedelli surface, i.e., a minimal surface S of

general type with pg(S) = 0, then it satisfies Bloch’s conjecture (see [19]). It follows

by Corollary 5.3.7 that Ct is a constant cycle curve, for a very general t ∈ U ⊂ Σ.

Example 5.3.12. Let S be a surface as in [25], since they are surfaces of general type

with pg(S) = 0 satisfying Bloch’s conjecture, by Corollary 5.3.7 we have that Ct is a

constant cycle curve, for a very general t ∈ U ⊂ Σ.
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Appendix A

A.1 Future Research Topics

A.1.1 The Gysin kernel

Let S be a smooth projective and connected surface over C with dim(∆S) ̸= d− 1. An

interesting question is what happens to the Gysin kernel Gt or more precisely to At

when t is outside of U0, i.e., in U \U0 which is called by Guletskii the misty locus, in

which no uniform behaviour is expected and it is not discussed in the present work. One

interesting future work is to follow a concrete approach to understand the misty locus,

it can be done working out particular examples for different types of surfaces which can

provide more intuition to determine in which cases At = 0 and then the Gysin kernel

is countable, in which cases At = Bt and then the Gysin kernel is a countable union

of translates of Bt and in which cases 0 ̸= At ̸= Bt. Therefore providing information

about the Gysin kernel Gt.

A.1.2 The Gysin kernel over an arbitrary algebraically closed field

Since the study of the Gysin kernel on surfaces with irregularity zero gives a criterion to

determine constant cycle curves (see item c) and also item b) of Corollary 5.3.6), another

interesting direction is to study whether we can get the analogous of the Theorem on

the Gysin kernel over an arbitrary algebraically closed field.

This result may help to answer the following question due to Huybrechts (see [16,

Introduction])

Question. Is it true that for all K3 surfaces over Fq every curve is a constant cycle

curve?

It is important to note that the above question is related to the following conjecture

for K3 surfaces over global fields

Conjecture A.1.1. (Bloch-Beilinson) If X be a K3 surface over Fp, then

CH2(X ×Fp
Fp(t)) ≃ Z.

Another interesting question is the following (see [16, Introduction]).
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Question. Let Let X be a K3 surface over Fp. Is it true that every closed point

x ∈ X is contained is a constant cycle curve?

The answer to this question can help to prove the above Bloch-Beilinson conjecture.

A.1.3 Constant cycle curves

The notion of constant cycle curves originated when Beauville and Voisin in [4] de-

scribed a distinguished element of the Chow group of 0-cycles CH0(X) when X is a K3

surface over C or over Q. This distinguished element is denoted by cX and satisfies the

following properties: c2(X) = 24 · cX and c1(L)
2 ∈ Z · cX , where L is a line bundle on

X.

This distinguished class is also interesting from an arithmetic point of view as is

stated in the following conjecture

Conjecture A.1.2. (Bloch-Beilinson) If X is a K3 surface over Q and x ∈ X(Q), i.e., x

is a Q-rational point, then [x] = cX .

Beauville and Voisin in [4] proved that if x ∈ C with C rational, then [x] = cX .

This property inspired the Definition 5.3.1 of a pointwise constant cycle curve. If the

field k is algebraically closed the above definition is equivalent to

Definition A.1.3. Let X be a projective K3 surface over a field k. A curve C in X is a

pointwise constant cycle curve if for all closed points x ∈ C we have [x] = cX ∈ CH0(X).

This last definition relates the study pointwise constant cycle curves, Chow groups,

the distinguished cycle cX with the study of the Gysin kernel because the above defini-

tion over an algebraically closed field k is equivalent to Definition 5.3.2 which in terms

of the Gysin kernel can be restated as follows

Definition A.1.4. A curve C ⊂ X is a pointwise constant cycle curve if and only if

GC = Ker(rC∗ : Pic
0(C̃) = CH0(C̃)deg=0 → CH0(X)) = Pic0(C̃),

that is, the Gysin kernel of the resolution of singularities of the curve C coincides with

Pic0(C̃) = J(C̃).

When the ground field is C or more generally over an uncountable algebraically

closed field the notion of pointwise constant cycle curve coincides with the notion of

constant cycle curves (see Definition 5.3.2) thanks to Proposition 3.7 in [16]. So, the

study of the Gysin kernel is also related to the study of constant cycle curve in this

case.

There are also interesting conjectures for constant cycles curves as the following

which is stated by D. Huybrechts.

Conjecture A.1.5. (D. Huybrechts) For every K3 surface over an algebraically closed

field of characteristic zero, there exist an n > 0 such that the union of all constant cycle

curves C of X of order ≤ n is dense.

98



A.1.4 Bloch’s conjecture

A complete understanding of the Gysin kernel can be used to proved Bloch’s conjecture

for many particular cases. This was pointed out to us by Guletskii whose approach to

prove Bloch’s conjecture for surfaces with involution is as follows:

� Let S be a smooth projective surface over an algebraically closed field k of char-

acteristic 0, equipped with a regular involution ι, i.e., with an action of the order

two (cyclic) group G = {id, ι} generated by ι.

� Let S
ι or S

G be the quotient surface of orbits of S under the action of G.

� Let (̃Sι ) be the resolution of the quotient surface S
ι .

� Let q(S) = h0,1 = dim(H1(S,OS)) be the irregularity of S.

� Let M(S) = (S,∆S , 0) be the motive of S. Here ∆S is the fundamental class

associated to the image of the diagonal morphism ∆ : S → S × S, and 0 ∈ Z.

A complete understanding of the Gysin kernel would help to prove the following claim.

Claim A.1.6. Assume that q(S) = 0. If CH0((̃
S
ι ))deg=0 = 0 then M(S) is finite dimen-

sional.

Then, observing that for surfaces with pg(S) = 0 the following facts are true:

� M(S) is finite dimensional if and only if Bloch’s conjecture holds for S.

� Assume in addition that S is of general type. Then, CH0((̃
S
ι ))deg=0 = 0 if and

only if M((̃Sι )) is finite dimensional.

One can prove the following claim

Claim A.1.7. Let S be of general type and pg(S) = 0. Then Bloch’s conjecture holds

for S if and only if Bloch’s conjecture holds for (̃Sι ).

Using this claim we can prove Bloch’s conjecture for all numerical Godeaux sur-

faces with involutions, a “half” of Campedelli surfaces with involutions, the surface of

Craighero and Gattazzo, some Catanese surfaces and other examples.
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