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Introduction

The electric charge is a conserved quantity as far as we know. It is a property of matter which

constitutes one of the most important milestones in Physics at the same level as conservation

of energy. Its minimal value (without considering the quarks that cannot be isolated) has

been experimentally determined as a quantized quantity since the nineteenth century and it is

currently accepted as a constant (and exact value) of nature e = 1.602 176 634× 10−19 C [1].

From a theoretical point of view, electric charge is recognized as the global conserved

charge of the Quantum Electrodynamics (QED) symmetry group, U(1)Q. In this context, it is

a Noether’s charge. However, at high energies QED is not the governing symmetry anymore,

i.e. there is another gauge theory which explains the particle interactions above certain limit

called electroweak energy scale: The Standard Model (SM). Thus, we have to understand how

electric charges are predicted at this stage even though they are not defined at high energies;

this is the main purpose of this work.

SM is a widely accepted theory thanks to its enormous success in predicting what would

later be important discoveries such as the very existence of some particles, properties of other

particles already discovered and outcomes of some particle physics experiments. This gauge

theory belongs to the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . For better understanding, it

can be separated into (i) SU(3)C , which corresponds to Quantum Chromodynamics (QCD),

theory developed in the early 70’s by Politzer [2], Wilczek and Gross [3] in order to describe

strong interactions; and (ii) SU(2)L ⊗ U(1)Y that corresponds to Electroweak Standard Model

(EWSM) developed in the middle 60’s by Weinberg, Salam and Glashow. The latter describes

the electromagnetic and weak interactions in the same framework at high energies. The EWSM

prototype was done by Glashow [4], while Weinberg and Salam [5,6] implemented the Higgs

mechanism [7] to generate masses to all particles involved and succeeded in placing the model

as a gauge field theory.
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It is in this EWSM gauge group that some of the most important predictions were made

such as the existence of the vector bosons W and Z as well as the scalar Higgs boson, all of

them confirmed experimentally some years later.

All interactions are written to be a local gauge invariant in the Lagrangian density, which

means that the unitary gauge transformations of all the fields are defined for that purpose.

Also, within this electroweak Lagrangian there are all the interactions between the fields and

their respective gauge bosons that conveying the forces. These gauge bosons (Wµ
1 , W

µ
2 , W

µ
3 and

Bµ for SU(2)L ⊗ U(1)Y ) are massless until a process called Spontaneous Symmetry Breaking

(SSB) takes place. In fact, all particles acquire mass after this process.

Despite all the virtues of SM, it must be said that there are some reasons to believe that it

is an incomplete theory and should be considered, at best, as an effective theory that describes

particle physics only on energy scales that have been experimentally tested; that is, up to

about 13 TeV c.m. in Run 2 of the LHC[1].

Some of the items and questions that reveal the incompleteness of SM are the massive

neutrinos, dark matter, matter-antimatter asymmetry, gravitational interaction, etc. and as

a consequence, SM has to be extended to a more complete theory. In the search for these

extensions it must be considered what types of new very massive particles could exist or what

implications these could have on experiments at accessible energies.

EWSM extensions are described by left-right symmetry groups like SU(2)L ⊗ SU(2)R ⊗

U(1)B−L or new chiral groups like SU(3)L ⊗ U(1)N . The symmetries inherent to these new

theories occur at high energies and the massless particles represented as new multiplets will

be disjointed to generate massive physical fields when the symmetry breaks down to U(1)Q, at

energies in which experiments are developed.

That means that when energy decreases, a limit is evidenced when the symmetry is broken

in a process called "Spontaneous Symmetry Breaking" (SSB) as a result of Higgs mechanism.

For example, above the electroweak scale in EWSM (100 ∼ 1000 GeV), Lagrangian obeys the

symmetry SU(2)L⊗U(1)Y where there are no masses at all and the hypercharge is the respective

conserved charge[2]. After this breakdown the symmetry is that of the group U(1)Q where the

electric charge is conserved. In the “breaking” process the particles acquire mass so that the

number of degrees of freedom remains unchanged, according to the Goldstone theorem [8].

[1]The design energy is 14 TeV c.m. to be reached in run 3
[2]As a consequence of Noether’s theorem, by means of it all continuous symmetry leads to a conserved current and

charge.
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This work demonstrates that electric charge of all particles can be predicted from the very

beginning, when the EWSM Lagrangian is defined, and we show how to do it from different

symmetry groups. We are going to assign electric charges in gauge theories such as the minimal

left-right theory that considers the conservation of parity from the beginning and belongs to the

symmetry SU(2)L⊗SU(2)R⊗U(1)Y ; the 331 theories which explain why there are three fermionic

families and belongs to SU(3)L ⊗ U(1)N . Moreover, if we require a gauge theory that includes

the previous two, we must take into account the model SU(3)R ⊗ U(1)X [9–12] and this is also

analyzed. All these symmetries are built respecting the conservation of electric charge after the

breakdown and this fact is used to elaborate charge operators for the different multiplets. In

order to do that, we describe how the SSB occurs also in the gauge transformation operators

getting the electric charges and how they are obtained for almost all multiplets involved in

each symmetry group studied here. In order to achieve that, we have to mention that all of the

mathematical deductions are formally discussed using classical unitary transformations for

gauge theories as is customary in literature.

One of the motivations for this work is that in publications where SM and extensions

are discussed, it is not usual to read a description of the criteria used to choose the particle

content inside the multiplets, presenting them a priori with their respective electric charges.

Here, we suggest that the very process of obtaining electric charge is of the utmost importance

in the multiplets construction at high energies (when breaking is not carried out yet) and on

the other hand, charge operators contextualize the symmetry breaking process within the

principle of electric charge conservation.

To achieve this, the gauge transformation operators must be set up for each multiplet of

the theory depending on the type of multiplet we are considering. So, the relation among the

conserved charges of the symmetries involved in the breaking the electric charges are obtained

is an application of the Gell-Mann Nishijima [13] formula applied to the electroweak interaction

whose mathematical structure is analyzed in the context of a gauge theory. However, this

formula is useful for column vector representations but it is not very clear for other types of

representations. This work is focused on the latter.

Then, the aim of this thesis is to achieve the electric charge operator for exotic multiplets

in different gauge symmetries and demonstrate that it is not necessary to build them up from

the subsequent interactions after the SSB.

Therefore, the charge operators are the main issues in this work and its concept has to be

examined. Since gauge theories are associated with local symmetries and they are generalized

7
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from global ones, they posses a conserved physical charge. These charges appear to be

generators of their respective symmetry groups. In this way, electric charges are generators of

the global U(1)Q symmetry group included in the QED. Besides, weak isospin and hypercharge

constitute three generators of the SU(2)L ⊗ U(1)Y group of the electroweak theory in the

Standard Model, or the nine generators of SU(3)L ⊗ U(1)N .

These conserved quantities are eigenvalues of Hermitian operators that commute with the

Hamiltonian. For example, electric charges are eigenvalues of Q operator which commutes

with Hamiltonian[3] [Q,H], and its expected values q are constants of the theory. Applied to a

field particle Qψ = qψ, where q is the expected value of Q and ψ is its eigenstate.

On the other hand, in the quantization process of a field theory satisfying the unitarity

conditions, it has demonstrated, see ref. [14], that charge operator must commute with linear

and angular momentum operators. Also, the electric charge of a particle and its respective

antiparticle have opposite signs, so that Q gets the total charge, Q = q
(
Nψ −Nψ̄

)
, where N

gives the particle and/or antiparticle count as seen in appendix (C).

The charge operator varies depending on the multiplet representation to which it is applied.

In this work Q is calculated for all multiples involved in the Standard Model (Chapter 1) as well

as in three of its extensions (Chapters 2, 3 and 4).

[3]According with Ehrenfest’s theorem
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Chapter 1

Symmetry of Electroweak Standard

Model

1.1 Description of Standard Model

The Standard Model (SM) of particle physics is treated as a gauge theory that describes the

characteristics and properties of elementary particles as well as their interactions.[1]

These particles can be classified, according to their spin, into two groups: fermions and

bosons.

a) Fermions: Half-integer spin particles distributed according to the Fermi-Dirac statistic

and obey the Pauli exclusion principle. The SM classifies this type of particles according

to the interactions that take place between them[1] in:

• Leptons: they do not experience strong interaction but may experience weak and/or

electromagnetic.

• Quarks: They do experience strong interaction as well as weak and electromagnetic.

Furthermore, they combine to form hadrons.

b) Bosons: Integer spin particles that do not obey the Pauli exclusion principle and follow

[1]SM describes three of the four fundamental interactions of nature: the Strong, the Weak and the Electromagnetic.
Gravitational is not within the theory “yet”.
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Chapter 1. Symmetry of Electroweak Standard Model

the Bose-Einstein statistic. The SM classifies them into two groups:

• Scalars: They have null spin and are quanta of scalar fields (Lorentz invariants).

In the SM there is only one: the Higgs boson, responsible for the masses of all the

particles in the model.

• Vectors: They have spin one and are quanta of vector fields. Also called gauge bosons

and are responsible for the interactions.

As seen in figure 1.1, SM classifies quarks and leptons in three generations or families that

differ from each other by the order of magnitude among their masses. This classification is done

even before the symmetry breakdown, when they are in doublet representations considering

the masses they will acquire. It is also seen the four gauge bosons responsible for electroweak

interactions and the scalar Higgs responsible for the mass acquisition in the SSB process.

Physical states of weak vector bosons are revealed only after the breaking since before that

they are part of covariant derivatives and are not physical eigenstates until mix each other

appearing as the known W±, Z and γ (photon) shown in the figure. With respect to the gluons,

they belong to the colour symmetry which is not part of the symmetry breaking process. The

Higgs is the lower (neutral) component of its former doublet.

Notice that there are 17 different elementary particles (in addition to the antiparticles that

do not appear explicitly). Each of them is represented by a field within the Lagrangian, where

all the interactions allowed by the theory are also included.

Figure 1.1: Standard Model. Source: PhD Thesis [15]
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1.2. Standard Model extensions

The reason why exactly three flavor families exist so far is unknown in SM domain; but

there are some hypotheses in other areas, such as the anthropic explanation [16] or the

cancellation of anomalies in higher symmetries [17].

With respect to the SM predictions, table 1.1 shows some of them and the year of

experimental confirmation.

The particle fields have representations in SU(3)C⊗SU(2)L⊗U(1)Y symmetry group, where

C: Color, L: Left e Y : Hypercharge.

The interaction associated with SU(3)C is the strong force described by Quantum Chromo-

dynamics (QCD), and the interaction associated with SU(2)L ⊗ U(1)Y is the electroweak force

described as a weak hypercharge symmetry (for related papers in a historical context, see refer-

ence [18]). This last force is the unification, at high energies, of the weak and electromagnetic

forces that manifest as such at low energies after a process called “Spontaneous Symmetry

Breaking” (SSB).

On the other hand, SM is a chiral theory; this means that the left and right chiral projection

fields are not transformed in the same way, the left fermions have doublet representation and

right ones are singlet of the same symmetry group.

1.2 Standard Model extensions

The existence of deficiencies in the SM, such as those mentioned in the introduction, make it

necessary to have a broader gauge theory that encompasses new particles and their consequent

interactions.

The SM extensions are still under development, the neutrino mass is already taken into

account within them and was not considered in the original model. There are a large number of

extensions such as Left-Right symmetric models, large unification models, those that consider

dark matter, etc. which try to improve what the SM cannot explain.

In the same symmetry group of the SM, we have for example simple extensions: Two-

Higgs-doublet model (2HDM) [19], which has two Higgs doublets in its minimum version [20].

There are also other 2HDM including Axion models [21], Dark matter and neutrino masses [22];

etc.
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Chapter 1. Symmetry of Electroweak Standard Model

Particle Predicted/
Discovered

Spin number
Electric

charge (e) Color Mass (MeV/c2)

u 1964 1968 1/2 +2/3 r, g, b 2,16+0,49
-0,26

d 1964 1968 1/2 -1/3 r, g, b 4,67+0,48
-0,17

c 1970 1974 1/2 +2/3 r, g, b 1,27 ± 0,02†

s 1964 1968 1/2 -1/3 r, g, b 96+11
-5

t 1973 1995 1/2 +2/3 r, g, b 172,9 ± 0,4†

b 1973 1977 1/2 -1/3 r, g, b 4,18+0,03
-0,02

†

e 1874 1897 1/2 -1 none ∼ 0,511

µ - 1936 1/2 -1 none ∼ 105,658

τ 1971 1975 1/2 -1 none 1776,86 ± 0,12

νe 1930 1956 1/2 0 none < 2 eV

νµ 1940s 1962 1/2 0 none < 0,19 eV

ντ 1970s 2000 1/2 0 none < 18,2 eV

g 1962 1978 1 0 8 colors 0∗

γ - 1899 1 0 none ∼0

W 1968 1983 1 ±1 none 80,385 ± 0,012†

Z 1968 1983 1 0 none 91,1876
± 0,0021†

H 1964 2012 0 0 none 125,10 ± 0,14†

Table 1.1: SM particles with mass values from PDG 2020 [1]. *Theoretical value; †in GeV
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1.3. Standard model Lagrangian

Beside this, there are also extensions that include a scalar triplet, getting other ways to

set dark matter [23] and neutrino mass terms [24] into the Lagrangian.

In the next section we explore exotic multiplets included in some extensions, in addition

to the known ones, and find the electric charge operators regardless of their interactions.

1.3 Standard model Lagrangian

As in all gauge theory, the Lagrangian describes characteristics of the symmetry in which the

theory develops; some of these characteristics are its covariant derivatives, the representation

of its multiplets and the types of couplings between the fields. In the minimum SM above the

electroweak scale, left chiral fermions and scalars transform as doublets, while right chiral

fermions as singlets.

L = − 1
4FiµνF

µν
i − 1

4GµνG
µν . . .Vector sector

+iΨiL /DΨiL + iΨiR /DΨiR + h.c. . . .Fermion- Vector sector

+ΨiLyijΨjRΦ+ h.c. . . . Interaction sector (Yukawa)

+(DµΦ)
†
(DµΦ)− V (Φ) . . .Scalar-Vector sector

(1.1)

We have to remark that de covariant derivative for left fields are different from right fields

as we will describe in the next chapters. Besides, when these derivatives arises, there will

always be interactions with gauge fields. In consequence, in the fermion-vector sector, there

are interactions between the fermions themselves and with vector fields after the symmetry

breaking. The vector sector defines the interactions among vector bosons after breaking, which

mediate the electroweak interactions. The tensor Fiµν is a QED-like electromagnetic tensor.

This sector accounts for the derivatives and interactions of SU(2)L gauge bosons and Gµν is

for the U(1)Y gauge boson. The second line describes the fermions and their respective gauge

interactions, where ΨL’s are lepton and quark doublets and ΨR are the respective lepton and

quark singlets. The third line describes the interactions between fermions and scalar bosons

represented as a doublet Φ from which the fermionic mass terms will be obtained. The last

line shows both scalar-scalar and scalar-vector interactions. As in the fermionic case, these

interactions will give rise to the mass terms of the scalar and vector bosons after the SSB.

The Lagrangian shows fields (1.1) in SU(2)L⊗U(1)Y representations where the hypercharge

is conserved at high energies (above the electroweak scale). At low energies, the symmetry

breaks spontaneously to U(1)Q, where the electric charge is conserved. In this symmetry

13



Chapter 1. Symmetry of Electroweak Standard Model

breaking process, the particles acquire mass and electric charge through the Higgs mechanism

[7] after which the interactions can be verified in experiments.

For instance, one of the terms that result from expanding the fermionic sector (1.1) after

the symmetry breaking is − g

2
√
2

[
νeγ

α
(
1− γ5

)
e
]
W−
α + hc, which corresponds to one decay mode

of the bosons W .

e−

νe

W−

νe

e+

W+

Figure 1.2: W boson decay

The decay rate is predicted by SM (at a tree level),

Γ (W → eν) =
GFm

3
W

6π
√
2

≈ 0, 226 GeV (1.2)

Experimentally [1] the value is 0,223 GeV. This difference is due to loop calculations which

did not take into account.

As well as this result, the SM predicts all the interactions between leptons, bosons and

quarks, many of which have been experimentally validated and there is, as yet, no result that

contradicts these predictions in a meaningful way.

1.4 Conserved charges

In the SM electroweak symmetry (EWSM), the conserved charge is the weak hypercharge, Y .

After the SSB is carried out, the symmetry group changes from SU(2)L ⊗ U(1)Y to U(1)Q where

the electric charge is the final conserved charge.

The electric charge operator is obtained as an extension of the original Gell-Mann Nishijima

(GN) [25] formula adapted to the electroweak case,

Q = e

(
T3 +

Y

2
12

)
. (1.3)
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1.4. Conserved charges

T3L is the SU(2)L third generator and Y (hypercharge) is the U(1)Y generator.

This formula relates conserved charges of the symmetries involved before and after the

SSB. It will be clarified from the requirement of the vacuum expectation value invariance in

next section.

1.4.1 SU(2)L ⊗U(1)Y Doublets

In this symmetry, left-handed fermions and scalars transform like doublets and can be

represented as

D =

a
b


L

∼ (2, Y ) , (1.4)

here 2 denotes SU(2)L doublet, in this case a “left doublet”. The number Y is its respective

U(1)Y hypercharge.

The predominant interaction is the electroweak force and the (unitary) transformations of

these doublets are defined as

ULUYD = eiTjαj(x)ei
Y
2 f(x)D

≈ (12 + iTjαj(x))

(
1 + i

Y

2
f(x)

)
D

≈
(
12 + i

(
Tjαj(x) +

Y

2
f(x)12

))
D,

(1.5)

at first order. The matrices Tj , j = 1, 2, 3 are the three generators of SU(2)L. This infinitesimal

gauge transformation should be affected by the change in symmetry where the electric charge

is the conserved charge and relates to hypercharge via equation (1.3).

To visualize how equation (1.5) changes, we have to point out that in the minimal EWSM

with just one scalar doublet Φ, the symmetry SU(2)L ⊗ U(1)Y is broken to U(1)Q through the

Higgs mechanism. After this process, the entire Lagrangian becomes U(1)Q invariant, as

well as the vacuum expectation value (vev). The simplest way to do that is introducing a

weak isospin scalar doublet Φ =

ϕa
ϕb

 =

ϕ1 + iϕ2

ϕ3 + iϕ4

 with degenerated minimum Φ0 =

ϕa0
ϕb0

,∣∣ϕ0a∣∣2 + ∣∣ϕ0b∣∣2 ≡ v2. Then, a particular value is chosen for the ground state

⟨Φ0⟩ =

ϕ0a
ϕ0a

 =

0

v

 , v ∈ R.

15



Chapter 1. Symmetry of Electroweak Standard Model

Like in (1.5) scalar doublets transform as

Φ → Φ′ = ULUY Φ =

(
12 + iTjαj(x) + i

Y

2
f(x)12

)
Φ = Φ+ δΦ . (1.6)

Assuming the invariance of ⟨Φ0⟩,

δ ⟨Φ0⟩ ≈ i

(
Tjαj(x) +

Y

2
f(x)12

)0

v


=
iv

2

 α1(x)− iα2(x)

−α3(x) + f(x)Y

→

0

0

 ,

(1.7)

from which it follows that α1(x) = α2(x) = 0 and α3(x) = f(x)Y . In particular, to be in accordance

with (1.3) and the fact that the last symmetry must be global, Y (Φ) = +1 and α3(x) = f(x) → e.

Then, the transformation (1.6) remains as

δΦ ≈ ie

(
T3 +

1

2
12

)
Φ

= ieQΦ,

(1.8)

taking into account that the electric charge is the conserved charge of the symmetry U(1)Q and

Q = T3 +
Y (Φ)

2
12. It should be emphasize that the value of the hypercharge, for the scalar case,

is a consequence of the breaking process.

Therefore, after the breaking U(1)Q gauge transformation on the doublet scalar Φ using

Y (Φ) = 1 is

δΦ ≈ ie

(
T3 +

1

2
12

)
Φ ≈ i

+e 0

0 0

ϕa
ϕb

 , (1.9)

which tells us that δϕa → +ieϕa has an electric charge +e and δϕb → 0ϕb has no electric charge.

Namely,

Φ =

ϕ+
ϕ0

 (1.10)

Hence, in equation (1.5),

δD ≈ ie

(
T3 +

Y

2
12

)
D = iQD. (1.11)
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1.4. Conserved charges

Here, the symmetry breaking is evident when ULUY → UQ = eieQ ≈ 1 + ieQ. Then, the

charge operator for doublets in SM is

Q(D) =
1

2

1 + Y 0

0 −1 + Y

 , (1.12)

in units of the positron charge e, which will be the units of Q used from now on.

In the minimal EWSM, left-handed fermions as well as scalars are in doublet representa-

tions. Each quark doublet QiL =
(
uiL diL

)T
is assumed to have a hypercharge[2] Y (QiL) =

1
3 ,

so as

Q(QiL) =

 2
3 0

0 − 1
3


is the electric charge operator which contains the charge eigenvalues for the known u− and

d−type quarks.

For the left-handed lepton case Li =
(
νiL eiL

)T
, it is assumed Y (Li) = −1, resulting

Q(Li) =

0 0

0 −1

 ,

and it’s consistent with the known electric charges too.

As already deduced previously, the scalar doublet has hypercharge Y (Φ) = +1 and its

electric charge operator is

Q(Φ) =

+1 0

0 0

 .

It is worth mentioning that an usual requirement for the electric charge conservation in

the Lagrangian after breakdown is that the Higgs boson must be neutral. This is because in

the vacuum, there are not charges at all and the Higgs doublet is arranged in such a way that

it can couple with ad-hoc fields respecting the electric charge conservation. That is to say that

in the previous result, the lower component of the doublet must be the field that gives rise to

the Higgs boson and the upper component should be positive. However, there are currently

models that propose to find positive and negatively charged Higgs bosons [26].

In short for fermions,
[2]Actually, the hypercharge value is taken so that the electric charge coincides with the known values.
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Chapter 1. Symmetry of Electroweak Standard Model

1st Family 2nd Family 3rd Family Isospin T3 Charge Q Hypercharge Yu
d


L

c
s


L

t
b


L

+ 1
2

− 1
2


L

+ 2
3

− 1
3


L

+ 1
3

uR cR tR 0 + 2
3 + 4

3

dR sR bR 0 − 1
3 − 2

3νe
e


L

νµ
µ


L

ντ
τ


L

+ 1
2

− 1
2


L

 0

−1


L

−1

νeR νµR ντR 0 0 0

eR µR τR 0 −1 −2

Table 1.2: Charges for each fermionic family

1.4.2 SU(2)L ⊗ U(1)Y Singlets

In SM, right-handed fermions have a singlet representation and do not transform with the

SU(2)L group. Then, the parameters must be αj(x) = 0 in (1.5) and the transformation is

UY S ≈
(
1 + ie

Y

2

)
S ≈ eiQS, (1.13)

so that the charge operator is Q(S) = Y
2 , which means that the electric charge is the hypercharge

generator or UY → UQ.

In that way, we choose Y (uR) =
4
3 and Y (dR) = − 2

3 in order to obtain the known values

Q(u) = + 2
3 and Q(d) = − 1

3 .

Furthermore, hypercharges for right-handed leptons are Y (νiR) = 0 and Y (eiR) = −2 to get

Q(ν) = 0 and Q(e) = −1.

1.4.3 SU(2)L ⊗ U(1)Y Triplets

In SM, triplets are represented in the adjoint representation of SU(2), i.e. they are grouped in

2× 2 matrices, which have the appropriate dimensions to be coupled with doublets. Here, the

equation (1.3) is not enough for giving electric charges because of it is defined for fundamental

representations (column vector) and a new charge operator has to be performed.

It is shown in Appendix B that a vector-like triplet representation T =
(
t1 t2 t3

)T
that

transforms with the SU(2) adjoint matrices directly T → T ′ = exp[iθjTj ]T , being Tj the adjoint
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1.4. Conserved charges

SU(2) matrices (for spin 1), gives the same component transformations if we transform the 2× 2

matrix T̃ ≡ σjT as T̃ ′ = ULT̃ U†
L, with UL = exp{iθjTj}, with Tj as the usual SU(2) generators.

For that reason, it is customary to say that T̃ is the adjoint representation.

Gauge (vector) bosons fall into this representation. In SU(2)L ⊗ U(1)Y , the three gauge

bosons corresponding to SU(2)L appear in W̃µ =
σj
2
Wµj , j = 1, 2, 3 represented as

W̃µ =
1

2

 W3µ W1µ − iW2µ

W1µ + iW2µ −W3µ

 . (1.14)

It is known that gauge invariance for the SU(N)L group in covariant derivatives, requires

W̃µ to transform as

W̃µ → W̃ ′
µ = ULW̃µU

†
L +

i

g
(∂µUL)U

†
L

≈ (12 + iαjTjL) W̃µ

(
12 − iαjT

∗
jL

)
− 1

g
(∂µ(αjTjL))

(
12 − iαjT

∗
jL

)
.

(1.15)

As mentioned before, in the symmetry breaking α1 = α2 = 0 and α3 = e. Then,

W̃µ → W̃ ′
µ ≈ W̃µ + ie

[
T3L, W̃µ

]
= W̃µ + ieQW̃µ.

So,

δW̃µ = ieQW̃µ = ie
[
T3, W̃µ

]
. (1.16)

The charge operator acts over the vector boson matrix as a commutator

Q(W̃µ) ≈
[
T3, W̃µ

]
=

 0 +1

−1 0

 . (1.17)

This matrix may be compared with (1.14) and it shows that the electric charge of physical

W−
µ ≡

W 1
µ + iW 2

µ√
2

is q(W−
µ ) = −1 and that of W+

µ ≡
W 1
µ − iW 2

µ√
2

is q(W+
µ ) = +1. Moreover, after the

symmetry breaking, the neutral physical fields Aµ and Zµ are linear combinations of real gauge

fields W 3
µ and Bµ, which is in accordance with the zero-valued eigenvalues of the last matrix

diagonal and the fact that the term that includes Bµ would also be added in the diagonal.

Another way to see this is recalling that to the fourth gauge boson Bµ corresponds the

U(1)Y generator, Y
2 . This field transforms as Bµ → B′

µ = Bµ − ∂µf(x) and it is not affected by

19



Chapter 1. Symmetry of Electroweak Standard Model

the SU(2)L transformations. Moreover, equation (1.17) does not change if Bµ is included. Let

Ṽµ ≡ gT3LWµj + g′ Y2 Bµ, then it can be demonstrated that Ṽ ′
µ ≈ Ṽµ + ie

[
T3L + Y

2 , Ṽµ

]
, then

Q(Ṽµ) ≈
[
T3L +

Y

2
1, Ṽµ

]
=
[
T3L, Ṽµ

]
(1.18)

is the same result as (1.17). That means that including the Bµ bosons, Zµ and Aµ have no

electric charge as linear combinations of W3µ and Bµ which are located in the diagonal of

(1.17).

1.4.4 Exotic multiplets

In some SM extensions with the same symmetry group, scalar triplets are considered in the

theory. For instance some scalar triplets belong to the SU(2) adjoint representation like gauge

vectors, which means that scalar or vector-matter fields are treated in the same way but with

ad-hoc hypercharges. These triplets may predict neutrino masses [27] or the existence of Dark

Matter (DM) [28].

Moreover, in some SM extension [29], a complex scalar triplet with Y = 2 has to be

considered in order to perform the type-II seesaw model.

In general, the triplet H =
(
H1 H2 H3

)T
∼ (3L, Y ) can be written in its adjoint represen-

tation H̃ = Hjσj =

H1 h2

h3 −H1

 but unlike the vector boson case, h2 and h3 are not conjugated,

since H entries are not reals then h2 ≡ H1−iH2√
2

̸= h∗3 ≡ H∗
1−iH

∗
2√

2
.

H̃ ′ = UY ULH̃U
†
L

≈
(
12 + ieT3L + ie

Y

2
12

)
H̃ (12 − ieT3L)

≈ H̃ + ie

([
T3L, H̃

]
+
Y

2
H̃

)
.

(1.19)

The charge operator is

QH̃ =
[
T3, H̃

]
+
Y

2
H̃ =

 Y
2 1 + Y

2

−1 + Y
2

Y
2

 . (1.20)

An appropriate term to generate a Majorana mass to neutrinos is LcϵH̃L with ϵ = iσ2 [29].
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1.4. Conserved charges

This needs Y (H) = +2 because of Y (L) = −1. H̃ has the following electric charge operator

Q(H̃) =

 +1 +2

0 +1

 . (1.21)

On the other hand, it could be generalized theories in the same symmetry group as SM

with a generalized GN formula,
Q

e
= αT3 +

Y

2
12. (1.22)

In this case, doublets have the following electric charge eigenvalues Q(D) = 1
2diag(α +

Y,−α+ Y ), triplets have Q(T ) = 1
2diag(2α+ Y, Y,−2α+ Y ) and even quartets Q(F) = 1

2diag(3α+

Y, α+ Y,−α+ Y,−3α+ Y ), using (1.22) with appropriate dimensions for T3. However, theories

with α ̸= 1 do not include to SM in a way in which the doublets have the known charges of

leptons and quarks.

One goal of this work is to construct multiplets with known electric charges without taking

into account its interactions with other fields after SSB.

The cases of triplets and quartets are useful to illustrate the method exposed in this thesis.

The triplets are built from two doublets and may be generated from a tensor product 2⊗ 2 or

2⊗ 2∗ and can be expressed in a 2× 2 matrix. For instance, consider the case 2⊗ 2∗ = 3⊕ 1.

Let be two doublets q ∼ (2, Y1) and r ∼ (2, Y2) that shape a triplet (T1)ab from the traceless

hermitian part of qarb. In matrix representation, the doublets transform as q′ = UY ULq and the

triplet,

(T1)′ab = (UY (UL)aa′qa′)(UY (UL)bb′rb′)
†

≈ (1 + ie
Y1
2

+O(e2))(1− ie
Y2
2

+O(e2))(12 + ieαT3L +O(e2))(qr†)(12 − ieαT3L +O(e2))

≈ (1 + ie

(
Y1 − Y2

2

)
+O(e2))(T1 + ieα(T3LT1 − T1T3L) +O(e2))

≈ T1 + ie

(
[αT3L, T1] +

Y

2
T1
)
+O(e2),

(1.23)

where Y = Y1 − Y2 and hence its electric charge operator expanding up to the first order in e is

QT1 = [αT3L, T1] +
Y

2
T1 =

 Y
2 α+ Y

2

−α+ Y
2

Y
2

 . (1.24)
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Chapter 1. Symmetry of Electroweak Standard Model

It could be used for flavor symmetries where the symmetry also belongs to the group

SU(2)V . For example, if we choose the quark doublet q = r =
(
u d

)T
∼ (2, 1/3) to build a

composite meson, then Y = Y (q)− Y (r) = 0 and we have the real pion-like triplet (π+ π0 π−)T

(see (D.2)). To show that, let us go back to the product 2⊗ 2∗ = 3⊕ 1. Using tensor notation,

te doublets multiplication can be symmetrized by qiqj =
(
qiq

j − 1
2δ
i
jqkq

k
)
+ 1

2δ
i
jqkq

k. The upper

index denotes an anti-doublet and the traceless part in parentheses represents a triplet.

Since q =
(
u d

)T
is the doublet then q̄ =

(
ū d̄

)T
[3] is the anti-doublet. If we build the

π-meson triplet T from the tensor defined above,

T 1
1 = uū− 1

2

(
uū+ dd̄

)
=

1

2

(
uū− dd̄

)
=

π0

√
2
;

T 2
1 = ud̄ = π+; T 1

2 = dū = π−;

T 2
2 = dd̄− 1

2

(
uū+ dd̄

)
= −1

2

(
uū− dd̄

)
= − π0

√
2
.

(1.25)

It obtains T =

 π0
√
2

π+

π− − π0
√
2

 as usual for adjoint SU(2) triplets like the vector bosons in

SM.

As we said before, for triplets in SU(2)⊗U(1)Y there is another possibility, if 2⊗ 2 = 3S ⊕ 1

where a second triplet (T2)ab is made up from the symmetric part of qarb. Doing the same

calculation as in the equation (1.23), we deduce the transformation T ′
2 → UY ULT2UTL and

QT2 ≈ {αT3, T2}+
Y

2
T2 ≈

 α+ Y
2

Y
2

Y
2 −α+ Y

2

 , (1.26)

where Y = Y1 + Y2. Let us notice that with a rotation, the triplets in (1.24) and (1.26) are the

same. There is no application for this type of triplet because of mesons = quark + antiquark (q

and r transform differently) and does not exist composite particles quark + quark. Furthermore,

leptons do not join together to form another particle, as far as we know. However it is interesting

to notice that 2⊗ 2 produces different charge operator in (1.24) from 2⊗ 2∗ in (1.26).

Finally, let us deal with a quartet F which can be obtained from the product of three

different doublets, 2⊗ 2⊗ 2 = 2⊕ 2⊕ 4. (F)abc denotes the totally symmetric 3-rank tensor of

[3]We are considering 2⊗ 2∗ ̸= 2⊗ 2 as a consequence of a tensor treatment and the anti-doublet is not arranged as
usual in SU(2).
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1.4. Conserved charges

tensor multiplication qarbsc or

(F)abc =
1

6
[qarbsc + qbrasc + qbrcsa + qcrbsa + qcrasb + qarcsb] ≡

1

6
q(arbsc) (1.27)

This tensor has eight components (octet). In order to make a four-element 2× 2 matrix

that fits into de SM Lagrangian coupling with other standard multiplets. Let us consider

qa = ra = sa ∼ (2, Y ) as a fermionic tensor, with which we can set F111 = q1q1q1, F112 = F121 =

F211 = 1
3 (q1q1q2+ q1q2q1+ q2q1q1), F122 = F212 = F221 = 1

3 (q1q2q2+ q2q1q2+ q2q1q1) and F222 = q2q2q2

reducing the number of elements to four (quartet). Ordering the remaining components, we

have F =

F111 F122

F112 F222

. Then, this quartet transforms as

F ′
abc = UY

[
(UL)

α
a qα(UL)

β
b qβ(UL)

θ
cqθ

]
≈
(
1 + i

Y

2

)[
(δαa + iα(T3L)

α
a )(δ

β
b + iα(T3L)

β
b )(δ

θ
c + iα(T3L)

θ
c)
]
qαqβqθ

≈
{
δαa δ

β
b δ

θ
c + i

[
α
(
δαa δ

β
b (T3L)

θ
c + δβb δ

θ
c (T3L)

α
a + δαa δ

θ
c (T3L)

β
b

)
+
Y

2
δαa δ

β
b δ

θ
c

]}
qαqβqθ

≈ Fabc + i

[
α
(
(T3L)

θ
cFabθ + (T3L)

α
aFαbc + (T3L)

β
bFaβc

)
+
Y

2
Fabc

]
(1.28)

Then, the electric charge operator, taken into account the four mentioned components

only, is

Q(Fabc) = α
(
(T3L)

θ
cFabθ + (T3L)

α
aFαbc + (T3L)

β
bFaβc

)
+
Y

2
Fabc =

1

2

3α+ Y −α+ Y

α+ Y −3α+ Y

 . (1.29)

For instance, let us take the case α = 1 and q =
(
q1 q2

)T
=
(
u d

)T
∼ (2L, 1/3), then

Y = 1/3 + 1/3 + 1/3 = +1. The ∆ baryon quartet may be built from its charge operator,

Q(F) =

+2 0

+1 −1

 , (1.30)

which corresponds to

F111 = q1q1q1 = uuu = ∆++, F112 = q1q1q2 = uud = ∆+,

F122 = q1q2q2 = udd = ∆0, F222 = q1q1q1 = ddd = ∆−
(1.31)

It can be noticed that the U(1) charges (electric and hypercharge) are summatives.
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Chapter 1. Symmetry of Electroweak Standard Model

In a flavor symmetry, this multiplet could be the ∆-baryon quadruplet of the quark model

if q1 = u and q2 = d.

Let us perform some other examples of exotic representations of SU(2)⊗ U(1)Y using the

charge operator given in Eq. (1.22) and (1.24):

1. Model with α = 2 and Y = 0. The electric charge eigenvalues for fields in the funda-

mental representation are (+1,−1). For instance, a vector-like Dirac fermionic doublet(
E+ E−

)T
or scalar

(
Y + S−

)
, which could be coupled to a real vector triplet T , with

electric charge content

Q(T1) ≈ [2T3, T1] =

 0 +2

−2 0

 , Q(T2) ≈ {2T3, T2} =

 2 0

0 −2

 , (1.32)

hence we could take T1 =
(
V ++ V ′0 V −−

)T
. Notice that these fields may be introduced in

extended gauge symmetries at higher energies.

2. Model with α = 2 and Y = 2 obtains doublets with electric charge eigenvalues (+2, 0) and

triplets with (+2, 0,−2) in the commutator case and (+4, 2, 0) in the anti-commutator case.

Here the triplets are different because the definition of doublets hypercharges for the

commutator and anti-commutator case are different from each other.

3. The more exotic case when α = 1 and Y = −3 include doublets with electric charge (−1,−2).

In this case it is possible to have doublets as (χ− χ−−)T which could be coupled with

vector bosons like (V + V 0 V −)T (SM). On the other hand, it is possible a complex scalar

triplet like the one shown in Ref. [29] with Y = −6,

QH ≈ [T3, H]− 3H =

 −3 +1

−1 −3

 . (1.33)

All these exotic multiplets are possibilities within the SM symmetry group. However, there

are other reasonable questions which can not be absolved and require to extend the mentioned

gauge group. For example, why the three families? or why the representations are different

for right-handed particles and left-handed ones?. Next chapters go beyond the SM symmetry

group and discuss electric charge operators that belong to these extensions.
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1.5. Electric charge and gauge couplings

1.5 Electric charge and gauge couplings

Finally, electric charge might be viewed as coupling constant in U(1)Q symmetry after the

breakdown. Then, there must have a relation with the other coupling constants in SU(2)L ⊗

U(1)Y symmetry in order to perform the SSB from the charge point of view.

In that way, to perform the mentioned relation, recall that coupling constants appear in

the covariant derivative for doublets which is defined as

DµΦ = ∂µΦ+

(
igLW

µj σj
2

+ igY
Y

2
Bµ12

)
Φ,

where σj

2 , (i = 1, 2, 3) and Y
2 are the generators of SU(2)L and U(1)Y groups respectively.

By developing the kinetic part of the Higgs sector in the SSB context, [DµΦ]
†
[DµΦ], vector

boson masses and relations between gauge coupling constant with weak mixing angle are

obtained.

MW =
gLv

2
, MZ =

v

2

√
g2L + g2Y , MA = 0 (1.34)

M2
W

M2
Z

=
g2L

g2L + g2Y
= cos2 θW . (1.35)

But also, there is a way to find the relations with electric charge from comparing the

coefficients of the interaction of lepton charged current with photons in SM symmetry and

QED symmetry, obtaining e = gY cos θW = gL sin θW (see appendix (E)). Then

1

e2
=

1

g2L
+

1

g2Y
, (1.36)

where gL stands for SU(2)L and gY for U(1)Y . This relation was obtained at low energies, since

the coefficient comparison took place after SSM, below the electroweak scale.

For sin2 θW ≈ 0.2315 [1] and e2 = 4πα = 4π
137 , then

gL ≈ 0.6295, gY ≈ 0.3455. (1.37)
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Chapter 2

Electroweak model SU(3)L ⊗U(1)N

From what was stated previously about of the lack of robustness of the SM to explain some

facts such as neutrino mass, hierarchy problem, matter/antimatter asymmetry, etc. (see the

introduction), physicists have been conjecturing for decades, new gauge extended symmetries

to that of the SM which reveal new physics. These models predict the existence of new exotic

fermions as well as new gauge bosons and scalars that depend on the symmetry group they are

defined. Some of these exotic particles are being searched at the LHC [30]. In some extensions,

it is possible to understand the number of families from the cancellation of anomalies [17].

This is the case of the 331 models in SU(3)C ⊗ SU(3)L ⊗ U(1)N gauge symmetry which includes

to SM whose particle content, in addition to new ones, is reproduced after the SSB.

As in the equation (1.3), the charge relation [31] can be defined as

Q

e
= αT3L + βT8L +N, (2.1)

where T3L and T8L are diagonal generators of the SU(3)L group. The hypercharge N , as Y in

the SM, unifies weak and electromagnetic interactions above the electroweak energy scale.

It should be pointed out that the value of β defines an entire theory in 331 models and the

β that reproduces the same lepton content as in the SM, is the one where no exotic lepton is

considered in leptonic triplets. It occurs in the called minimal 331 model with β = −
√
3 when

only neutrinos and known charged leptons are considered.
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2.1. Lagrangian

2.1 Lagrangian

The electroweak Lagrangian in this symmetry is similar to that of the SM in eq. (1.1)

L = − 1
4FiµνF

µν
i − 1

4GµνG
µν . . .Vector sector

+iΨiL /DΨiL + iΨiR /DΨiR + h.c. . . .Fermion-Vector sector

+ΨiLy
a
ijΨjRΦ

a +ΨiLwij(ΨjL)
cS + h.c. . . . Interaction sector (Yukawa)

+(DµΦ)
†
(DµΦ)− V (Φ) . . .Scalar-Vector sector

(2.2)

There are some aspects of this Lagrangian we must point out:

• In the vector sector there are eight tensors Fiµν = ∂µWiν −∂νWiµ+g3LfijkWjµWkν , i = 1 . . . 8

whose vector fields Wiµ are associated to SU(3)L generators (fijk are the structure constant

of this Lie group) and one tensor Gµν = ∂µBν − ∂νBµ of which Bµ is associated to U(1)N

generator.

• In the fermion sector triplets (or anti-triplets defined for the second and third family of

quarks) ΨiL, i = 1 . . . 3 are representations of the left-handed leptons or quarks, while ΨiR

are the corresponding right-handed singlets.

• In the Yukawa sector there are three different scalar triplets Φa, a = 1 . . . 3, and one sextet

S. All these multiplets (or anti-triplets) couple with fermions. These couplings are written

to take into account after breakdown two classes of mass terms, the first adding decants

only into Dirac mass terms mφLφR+h.c. for all the fermions, while the second adding into

Majorana mass terms mφL(φL)c + h.c. for neutrinos [32], although it also obtains Dirac

mass terms for charged leptons in some cases. Then, the following must be fulfilled for

the scalar multiplets Φ:

ΨiLΨjRΦ :

 3∗ ⊗ 1⊗ Φ = 1 ⇒ Φ = 3

3⊗ 1⊗ Φ = 1 ⇒ Φ = 3∗

ΨiL(ΨjL)
cΦ :

 3∗ ⊗ 3∗ ⊗ Φ = 1 ⇒ Φ = 3⊗ 3 = 3∗ ⊕ 6

3⊗ 3⊗ Φ = 1 ⇒ Φ = 3∗ ⊗ 3∗ = 3⊕ 6∗

which means that the usual Dirac mass terms are obtained if Φ is a triplet (or an anti-

triplet) while the Majorana mass terms are achieved with Φ being an anti-triplet (triplet)

or a sextet (anti-sextet).
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Chapter 2. Electroweak model SU(3)L ⊗U(1)N

• From the last point, scalar multiplets could be triplets or sextets as possible represen-

tations. If it is a sextet S, its corresponding kinetic term is written in the shape of a

Hilbert-Schmidt inner product, Tr
[
(DµS)

†
(DµS)

]
. The potential V (Φ) is defined as gen-

erally as possible according to the symmetries (including the discrete ones if aplicable)

added to the theory [33].

In the Lagrangian density described above, covariant derivatives for fermion triplets ΨiL

and singlets ΨiR are

DµΨiL =
[
∂µ + ig3LTjW

µ
j + igNB

µNL
]
ΨiL,

DµΨiR = [∂µ + igNB
µNR] ΨiR,

(2.3)

where:

• ΨiL is the left-handed fermion triplet: ΨiL = Li for leptons and ΨiL = QiL for quarks (for

anti-quarks i = 1, 2 the derivative changes to its complex conjugated form). ΨiR is the

right-handed fermion singlet and could be the lepton singlet Ri or the quark singlet QiR.

Index i stands for the three families i = 1, 2, 3.

• g3L y gN are the coupling constants of SU(3)L and U(1)N respectively.

• NL y NR are hypercharges of left- and right-handed fields.

• Wµ
j with j = 1, ..., 8 are the eight gauge fields that correspond to SU(3)L generators and

Bµ is the gauge field of U(1)N group.

Like the SM with its SU(2)L gauge bosons, the eight gauge bosons of SU(3)L transform in

the adjoint representation and mix themselves to form the mass (physical) states (see appendix

(B).

Left-handed fermions triplets and right-handed singlets transform as

ΨL → Ψ′
iL = UNULΨiL,

ΨR → Ψ′
iR = UNΨiR,

(2.4)

where UL = exp [ig3LTjωj(x)] and UN = exp [igNNf(x)]. All these triplets and singlets are grouped

in the same three families of SM with an additional degree of freedom for each family.
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2.2. Electric charge for Fermions

The gauge fields transform as

Wµ
i (x) → Wµ′

i (x) =Wµ
i (x)− ∂µωi(x)− g3Lfijkωj(x)W

µ
k (x),

Bµ(x) → Bµ
′
(x) = Bµ(x)− ∂µf(x),

(2.5)

where f(x) y ωj(x) are real function-like parameters, numbers fijk = 1
4i Tr{[λi, λj ]λk}, i, j, k =

1 . . . 8 are structure constants defined for SU(3)L group and λi are the Gell-Mann matrices.

The covariant derivatives for scalar multiplets are

DµΦ =
[
∂µ + ig3LTjW

µ
j + igNB

µNΦ

]
Φ,

DµS = ∂µS + ig3L
[
TjW

µ
j S + S(TjW

µ
j )

T
]
.

(2.6)

The gauge covariant derivative for the sextet has a peculiar form without a commutator,

which is usual for matrix representations, because of the way it is constructed (See (F.13) in

Appendix (F)). This scalar multiplet is formed by two triplets as may be seen in (2.25). In short,

S = ηηT and this relation yields the way it transforms.

The gauge transformations are

Φ → Φ′ = UNULΦ,

S → S′ = UNULSU
T
L .

(2.7)

These multiplet transformations, as well as their covariant derivatives, make the La-

grangian remain gauge invariant. In the sextet case, some possible allowed terms may be

GSabf
a
L(f

b
L)
cS [34] to give neutrino mass via coupling with lepton triplets faL or interactions with

other scalars inside the potential.

In the next section, the particle content is described separately in the fermionic, bosonic

and scalar sector of the lagrangian; all of them in terms of their electric charge operator.

2.2 Electric charge for Fermions

Here, the main difference with EWSM is that left fermions are SU(3)L triplets which possess,

in addition to the known leptons, a third new component (one for each family) and its nature

depends on the values of α and β in eq. (2.1). Models with α = 1 and β = −
√
3 are considered

in Refs. [32,35,36] while those with α = 1 and β = −(1/
√
3) in Refs. [37–39].
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Chapter 2. Electroweak model SU(3)L ⊗U(1)N

In general, triplets T obtain their electric charge eigenvalues directly from equation (2.1)

as the fundamental representation of the symmetry group. In this case, SSB is easily visualized

when the gauge transformation itself goes from UNUL to UQ in the breaking process.

ULUNT = eiTjωj(x)eiNf(x)T

≈ [13 + ie (αT3L + βT8L) + ieN13] T

≈ T + ieQT , and

U†
LU

∗
NT ∗ ≈ [13 − ie (αT3L + βT8L)− ieN13] T ∗

≈ T ∗ + ieQT ∗,

(2.8)

where in the second line ωj(x) = 0 for j = 1, 2, 4, . . . 7 and ωj(x) = f(x) = e for i = 1, 3. This is

obtained thanks to the gauge invariance of the vacuum expectation values of the theory, just

like in the SM (see appendix (A)). The resulting electric charge operator is

Q(T ) =
1

2
diag(α+

β√
3
+ 2N,−α+

β√
3
+ 2N,−2

β√
3
+ 2N)T

Q(T ∗) =
1

2
diag(−α− β√

3
+ 2N ′, α− β√

3
+ 2N ′, 2

β√
3
+ 2N ′)T ∗

(2.9)

The symmetry group breaks down as follows: SU(3)L ⊗ U(1)N
⟨χ⟩−−→ SU(2)L ⊗ U(1)Y

⟨η⟩,⟨ρ⟩−−−−→

U(1)Q. In the first breakdown, the fermion triplets decant in the SM fermion doublets. To

do so, an ad-hoc scalar triplet χ is coupled with lepton and quark currents in the Yukawa

sector [39]. For models with exotic lepton in leptonic triplet, this scalar gives mass only to

the exotic fermion Xi or Ji since the vacuum expectation value (vev) is located in its third

component. Then, fermion components are

Li =


νiL

eiL

XiL

 ⟨χ⟩−−→

νiL
eiL

 , Q1L =


u1L

d1L

J1L

 ⟨χ⟩−−→

u1L
d1L

 ,QjL =


−djL
ujL

JjL

 ⟨χ⟩−−→

−djL
ujL

 (2.10)

with i = 1, 2, 3 and j = 2, 3. Let us notice that QjL goes to an SU(2) anti-doublet which

transforms in the same way as a doublet. Besides, in this sort of models, the lepton triplet set

up the component XiL as an exotic lepton or a charge conjugated field in electron family, both

of them have the same electric charge.

Moreover, before the breakdown, quark triplets have two representations: Q1L and QjL

which transform like T and T ∗ respectively.

In order to determine hypercharges, values of α must be deduced. The electric charges for
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2.2. Electric charge for Fermions

known SM leptons and quarks in (2.10) are achieved only if α = 1 in (2.9):

LSMi =

νiL
eiL

 :

q(νiL) =
1

2
α+

β

2
√
3
+N(Li) = 0

q(eiL) = −1

2
α+

β

2
√
3
+N(Li) = −1

 α = 1

QSM1L =

u1L
d1L

 :

q(u1L) =
1

2
α+

β

2
√
3
+N(Q1L) =

2

3

q(d1L) = −1

2
α+

β

2
√
3
+N(Q1L) = −1

3

 α = 1

QSMjL =

−djL
ujL

 :

q(djL) = −1

2
α− β

2
√
3
+N(QjL) = −1

3

q(ujL) =
1

2
α− β

2
√
3
+N(QjL) =

2

3

 α = 1

For this α-value the corresponding hypercharges are

N(Li) = −1

2
− β

2
√
3
, N(Q1L) =

1

6
− β

2
√
3

and N(QjL) =
1

6
+

β

2
√
3
. (2.11)

Then,

Q(Li) = diag

(
0,−1,−1

2
−

√
3β

2

)
, Q(Q1L) = diag

(
+
2

3
,−1

3
,
1

6
−

√
3β

2

)
,

Q(QjL) = diag

(
−1

3
,
2

3
,
1

6
+

√
3β

2

)
.

(2.12)

If we state that the electric charge of the third component of lepton triplets is q ≡ q(Xi) =

q(eci ) = − 1
2 −

√
3β
2 , then q(J1L) = q + 2

3 and q(JjL) = −q − 1
3 . The fermion multiplets are described

in the following table,

Li Q1L QjL

SU(3)C 1 3 3

SU(3)L 3 3 3∗

N q−1
3

q+1
3 − q

3

Q


0

−1

q




+2/3

−1/3

q + 2/3




−1/3

+2/3

−q − 1/3


Table 2.1: Representation of fermion triplets. The first two rows show the dimension in SU(3)C
and SU(3)L symmetries.
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Chapter 2. Electroweak model SU(3)L ⊗U(1)N

The right-handed fermions transform as singlets and have the same electric charge of

their left-handed partners when the symmetry has lowered to U(1)Q.

From the table (2.2), triplets are interdependent in terms of their electric charges and

hypercharges. It means that the whole theory depends upon the possible β = −( 2q+1√
3
) values.

In short,

β
√
3 1/

√
3 −

√
3 −1/

√
3

L


0

−1

−2

 ∼ −1


0

−1

−1

 ∼ −2/3


0

−1

+1

 ∼ 0


0

−1

0

 ∼ −1/3

Q1L


+2/3

−1/3

−4/3

 ∼ −1/3


+2/3

−1/3

−1/3

 ∼ 0


+2/3

−1/3

+5/3

 ∼ +2/3


+2/3

−1/3

+2/3

 ∼ +1/3

QjL


−1/3

+2/3

+5/3

 ∼ +2/3


−1/3

+2/3

+2/3

 ∼ +1/3


−1/3

+2/3

−4/3

 ∼ −1/3


−1/3

+2/3

−1/3

 ∼ 0

Table 2.2: Electric charge eigenvalues for fermionic triplets with their respective hypercharges
on the right side.

It may be noted that theories with no exotic electric charges in their third component

triplets have β = ± 1√
3
, however models with β = −

√
3 may consider a lepton triplet with a

charge conjugated lepton in its third component which means that there is no exotic charge.

Nevertheless, in all models could be electric charges of unknown very massive particles that

are yet to be discovered.

After the symmetry breakdown which leads toward the U(1)Q symmetry, the exotic

fermions XiL,R and Ji,L,R, i = 1, 2, 3 are accommodated in mass terms within the respec-

tive Lagrangian. Here, these fields have their respective electric charge (via Noether’s theorem)

despite having predicted them before the breaking. As the "future" electric charges are wanted

to be the same in both theories, 331 and SM, then we can equate the relations (1.3) and (2.1)

to obtain a new relation for hypercharges. With α = 1,

Y 13 = 2(βT8L +N13) = diag
(
β√
3
+ 2N,

β√
3
+ 2N,− 2β√

3
+ 2N

)
,

Y ∗13 = 2(−βT8L +N∗13) = diag
(
− β√

3
+ 2N∗,− β√

3
+ 2N∗,

2β√
3
+ 2N∗

)
,

(2.13)
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2.3. Electric charge for vector bosons

where N∗ and Y ∗ stands for anti-triplet hypercharges.

With the N-values given in (2.11), the SM doublets are recovered with their respective

Y -values. Also, the hypercharges for exotic fermions can be obtained Y (XiL) = −1−
√
3β = 2q,

Y (J1L) =
1
3 −

√
3β = 2q + 4

3 and Y (JjL) =
1
3 +

√
3β = −2q − 2

3 . Here, XiL are the exotic leptons

and JiL are the exotic quarks that came from the third component/state of fermion triplets.

2.3 Electric charge for vector bosons

As in the SM, gauge bosons (nine in this case) are written in the SU(3) adjoint representation

as 3 × 3 matrices, see Appendix (B). Using α = 1 and the same procedure as (1.15), the

transformation of W̃µ = λjWjµ is

W̃µ → W̃ ′
µ ≈ W̃µ + ie

[
T3L + βT8L, W̃µ

]
≈ W̃µ + ieQW̃µ. (2.14)

Then,

Q(W̃µ) ≈
[
T3L + βT8L, W̃µ

]
=


0 +1 1+

√
3β

2

−1 0 −1+
√
3β

2

−1−
√
3β

2
1−

√
3β

2 0


W̃

=


0 +1 −q

−1 0 −(1 + q)

q 1 + q 0


W̃

. (2.15)

It can be seen that electric charges of the SM bosons (W±, Z0), which are mixtures of

SU(2)L ⊗ U(1)Y gauge symmetry bosons, can be obtained from the first 2× 2 entries of (2.15)

and are independent of β and/or q values. As said before, the choice of a particular β is

necessary to construct the whole theory and each value of it gives a different particle content

with new exotic bosons and the new physics that it entails. All possible β values obtain at

least one fourth extra neutral boson (Z0’) and there could be more if β = ± 1√
3
. There is no

fundamental reason to prevent accepting any value defined for beta, the choice made for any of

these values depends on the constrains one impose to develop the theory. For instance, if no

exotic charge is required then we should choose β = ± 1√
3

or if only three neutral bosons are

wanted, the ad-hoc choice is β = ±
√
3.

β =
√
3, q = −2 β = 1/

√
3, q = −1 β = −

√
3, q = +1 β = −1/

√
3, q = 0

W̃µ


0 +1 +2

−1 0 +1

−2 −1 0




0 +1 +1

−1 0 0

−1 0 0




0 +1 −1

−1 0 −2

+1 2 0




0 +1 0

−1 0 −1

0 +1 0


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Chapter 2. Electroweak model SU(3)L ⊗U(1)N

Table 2.3: Electric charge eigenvalues for gauge bosons

One of the most used 331 model proposes β = −
√
3 [35]. For this value we can define

W̃µ =


W3µ +

W8µ√
3

W1µ − iW2µ W4µ − iW5µ

W1µ + iW2µ −W3µ +
W8µ√

3
W6µ − iW7µ

W4µ + iW5µ W6µ + iW7µ −2
W8µ√

3

 ≡


W3µ +

W8µ√
3

√
2W+

µ

√
2V −

µ

W−
µ −W3µ +

W8µ√
3

√
2U−−

µ
√
2V +

µ

√
2U++

µ −2
W8µ√

3

 ,

where the charged vector bosons are

W±
µ =

(W1µ ∓ iW2µ)√
2

,

V ±
µ =

(W4µ ± iW5µ)√
2

,

U±±
µ =

(W6µ ± iW7µ)√
2

.

(2.16)

Their electric charges were already known from the table (2.3) for β = −
√
3. It is not

necessary to know them from their interactions within the Lagrangian, which is what this work

is about.

The neutral vector boson are (see in the Appendix eq. (E.24))

Aµ =
1√

1 + 4t2

[(
W3µ −

√
3W8µ

)
t+Bµ

]
Zµ ≈ 1√

1 + 4t2

(√
1 + 3t2W3µ +

√
3t2√

1 + 3t2
W8µ − t√

1 + 3t2
Bµ

)

Z ′
µ ≈ 1√

1 + 3t2

(
W8µ +

√
3tBµ

)
,

(2.17)

where t ≡ tan θ =
gN
g3L

=
sin θW√

1− 4 sin2 θW
(E.22).

Solving for gauge bosons:

W3µ ≈ Aµ sin θW + Zµ cos θW

W8µ ≈ −Aµ sin θW
√
3− 12 sin2 θW + Zµ

√
3 sin θW tan θW + Z ′

µ sec θW

√
1− 4 sin2 θW

Bµ ≈ Aµ

√
1− 4 sin2 θW − Zµ tan θW

√
1− 4 sin2 θW + Z ′

µ

√
3 tan θW

(2.18)

These results show that after breaking, W3µ has the same transformation as the equivalent

W3µ of SM, but Bµ do not. It could be explained with the assumption that there are another
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2.3. Electric charge for vector bosons

intermediate degree of freedom Z ′
µ which is presumed to be achieved only at very high energies

where the Weinberg angle has run to a different value.

In that sense, if Z0
µ (or W±

µ ) mass values theoretically obtained in SM and 331 (see appendix

E) symmetries are compared,

M2
Z

331
=

g23L
2

(
1 + 4t2

1 + 3t2

)(
v2η + v2ρ + v22

) SM
=

v2

4

(
g2L + g2Y

)
M2
W

331
=

g23L
2

(
v2η + v2ρ + v22

) SM
=

g2Lv
2

4
,

(2.19)

we can deduce a possible relation between expectation values and constant couplings,

v =
√
2
(
v2η + v2ρ + v22

)
, g3L = gL and gN =

gLgY√
g2L − 3g2Y

,

where, v and g stand for SM and vη, vρ, v2, g3L and gN for 331 symmetries.

Therefore,
1

g2Y
=

3

g2L
+

1

g2N
. (2.20)

As in the last chapter, the relations between symmetry constants and electric charge can

be obtained from comparing the coefficients of the interaction of lepton charged current with

photons in 331 symmetry and QED symmetry, (Appendix E)

e = g3L

(
t√

1 + 4t2

)
=

g3L sin θ√
1 + 3 sin2 θ

=
gN cos θ√
1 + 3 sin2 θ

. (2.21)

Then,

e =
gNg3L√
g23L + 4g2N

→ 1

e2
=

4

g23L
+

1

g2N
. (2.22)

For sin2 θW ≈ 0.2315 [1] and e2 = 4πα = 4π
137 , then t2 = 463

148 and

g3L = gL ≈ 0.6295, gN ≈ 1.1133 ̸= gY ≈ 0.3455. (2.23)
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Chapter 2. Electroweak model SU(3)L ⊗U(1)N

2.4 Electric charge for scalar bosons

The original model [35] features three scalar triplets. Each of them is built in such a way that

there is one neutral scalar field inside at least. These scalars ρ, η and χ have electric charges

with α = 1 in equation (2.9),

β =
√
3, q = −2 β = 1/

√
3, q = −1 β = −

√
3, q = +1 β = −1/

√
3, q = 0

η


0

−1

−2

 ∼ −1


0

−1

−1

 ∼ −2

3


0

−1

+1

 ∼ 0


0

−1

0

 ∼ −1

3

ρ


+1

0

−1

 ∼ 0


+1

0

0

 ∼ 1

3


+1

0

+2

 ∼ 1


+1

0

+1

 ∼ +
2

3

χ


+2

+1

0

 ∼ 1


+1

0

0

 ∼ 1

3


−1

−2

0

 ∼ −1


0

−1

0

 ∼ −1

3

Table 2.4: Electric charge eigenvalues for scalar triplets with different values of β. The right
numbers are N-hypercharges.

As seen in the last table, locations of one neutral scalar (Higgs) bosons in η, ρ, and χ are

the same for each β. Furthermore, for β = ± 1√
3

only two triplets are necessary to be used in

the theory [40] due to the same electric charge of ρ and χ, also a similar order of magnitud of

their vev’s (vη and vρ). Besides, we have to be careful with β = ± 1√
3

due to the possibility of

two vev’s for some of their triplets. In those cases a new analysis must be promoted to achieve

the vev relation between the SM and 331 theories as was done in the previous section. The

whole scalar and interaction sector of the Lagrangian have a direct correspondence with each

β-values.

On the other hand, a theory that includes Dirac and/or Majorana mass terms for neutrinos

in order to implement the See-saw mechanism, needs an additional scalar sextet [32]. For any

value of β (or q), the mentioned sextet is defined as

S =


σ1 σ2 σ3

σ2 σ4 σ5

σ3 σ5 σ6

∼ (6L, N). (2.24)
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2.4. Electric charge for scalar bosons

In SU(3)L, when two triplets (or antitriplets) are coupled, it is verified that 3⊗ 3 = 3∗A ⊕ 6S

(or 3∗ ⊗ 3∗ = 3A ⊕ 6∗S) [41]. In tensor form, be ua, vb, a, b = 1, 2, 3 two SU(3) first-order tensors

(SU(3) triplets), then their multiplication may be represented in matrices form,

Λab = uavb =


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3



=
1

2


2u1v1 u1v2 + u2v1 u1v3 + u3v1

u2v1 + u1v2 2u2v2 u2v3 + u3v2

u3v1 + u1v3 u3v2 + u2v3 2u3v3

+
1

2


0 u1v2 − u2v1 u1v3 − u3v1

u2v1 − u1v2 0 u2v3 − u3v2

u3v1 − u1v3 u3v2 − u2v3 0


=

1

2

(
uavb + ubva

)
+

1

2
ϵabcϵcdeu

dve =
1

2

(
Λab + Λba

)
+

1

2
ϵabcϵcdeΛ

de.

It is evident that the first addend is 6S and the second is 3∗A. Then, the sextet may be

expressed as Sab = 1
2

(
Λab + Λba

)
. Since triplets transform as ua → u′a = Uabub then tensor Λab

is transformed as

Λ′ab = (Uacuc)
(
U bdvd

)
= (Uacuc)

(
vdUdb T

)
≈ [δac + ie (T ac3L + βT ac8L +N1δ

ac)]
(
ucvd

) [
δdb + ie

(
T db3L + βT db8L +N1δ

db
)]

≈ δacucvdδdb + ie
(
δacucvdT db3L + βδacucvdT db8L +N2δ

acucvdδdb + T ac3Lu
cvdδdb

+βT ac8Lu
cvdδdb +N1δ

acucvdδdb
)

= uavb + ie
(
uavdT db3L + T ac3Lu

cvb
)
+ ieβ

(
uavdT db8L + T ac8Lu

cvb
)
+ ie (N1 +N2)u

avb

= Λab + ie{Λ, T3L + βT8L}ab + ieNΛab,

(2.25)

where N = N1 +N2. Therefore,

S′ =
Λ+ ΛT

2
+ ie

{
Λ + ΛT

2
, T3L + βT8L

}
+ ieN

Λ + ΛT

2

= S + ie{S, T3L + βT8L}+ ieNS

So, the charge operator for the sextet is

Q(S) =
{
T 3
L + βT 8

L, S
}
+NS. (2.26)

It is interesting to observe that the charge operator takes the form of an anticommutator

when it is built from the multiplication of two triplets. It can be verified that it would have the

form of a scalar operator if the field had been built from the multiplication of a triplet with an

antitriplet.
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Chapter 2. Electroweak model SU(3)L ⊗U(1)N

This process also deduces the way in which the sextet is transformed, namely S′ = USUT

as can be observed in the first line of the equation (2.25). This deduction also show how the

sextet gets its hypercharge from hypercharges of constituent triplets N = N1 +N2. In the model

used, to be in accordance with (2.6), N1 = N2.

Then, the electric charge of each sextet components will be

Q(S) =


1 + β√

3
+N β√

3
+N 1

2

(
1− β√

3

)
+N

β√
3
+N −1 + β√

3
+N − 1

2

(
1 + β√

3

)
+N

1
2

(
1− β√

3

)
+N − 1

2

(
1 + β√

3

)
+N − 2β√

3
+N



=


2
3 (1− q) +N − 1

3 (1 + 2q) +N 1
3 (2 + q) +N

− 1
3 (1 + 2q) +N − 2

3 (2 + q) +N − 1
3 (1− q) +N

1
3 (2 + q) +N − 1

3 (1− q) +N 2
3 (1 + 2q) +N



(2.27)

For the possible values of β and S = ηηT (N(S) = 2N(η)),

β = −
√
3 or q = +1, N(S) = 0 : Q(S) =


0 −1 +1

−1 −2 0

+1 0 +2

 ,

β = +
√
3 or q = −2, N(S) = −2 : Q(S) =


0 −1 −2

−1 −2 −3

−2 −3 −4

 ,

β = − 1√
3

or q = 0, N(S) = − 2
3 : Q(S) =


0 −1 0

−1 −2 −1

0 −1 0

 ,

β = 1√
3

or q = −1, N(S) = − 4
3 : Q(S) =


0 −1 −1

−1 −2 −2

−1 −2 −2

 .

(2.28)

For each β there is a different number of neutral scalars (Higgs) responsible for assigning

Majorana mass terms to neutrinos, which reinforce the idea that the whole theory is β-value

dependent.
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2.5 Octet

In the same foot as the SM quartet, there is the possibility of include an octet accepted by the

group representation in SU(3). One way to obtain this multiplet is by multiplying 3⊗ 3∗ = 1⊕ 8.

In tensor form, uavb =
(
uavb − 1

3δ
a
bu

kvk
)
+ 1

3δ
a
bu

kvk being ua, vb triplet and anti-triplet re-

spectively. The first addend Ωab = uavb − 1
3δ
a
bu

kvk is the searched octet which transforms

as

Ω′ = Uuv†U† ≈ [1+ ie(T3L + βT8L) +N1] Ω [1− ie(T3L + βT8L) +N2]

≈ Ω+ ie[Ω,1+ ie(T3L + βT8L)] + ieNΩ,
(2.29)

where N = N1 − N2. If the octet is built from multiplets with the same hypercharges, then

N = 0. In this case, QΩ = [Ω,1+ ie(T3L + βT8L)] or

Q(Ω) =


0 +1 1

2 (1 +
√
3β)

−1 0 1
2 (−1 +

√
3β)

− 1
2 (1 +

√
3β) 1

2 (1−
√
3β) 0

 =


0 +1 −q

−1 0 −q − 1

+q +q + 1 0

 . (2.30)

For the possible β values,

β = −
√
3 or q = +1 : Q(Ω) =


0 +1 −1

−1 0 −2

+1 +2 0

 ,

β = +
√
3 or q = −2 : Q(Ω) =


0 +1 +2

−1 0 +1

−2 −1 0

 ,

β = − 1√
3

or q = 0 : Q(Ω) =


0 +1 0

−1 0 −1

0 +1 0

 ,

β = 1√
3

or q = −1 : Q(Ω) =


0 +1 +1

−1 0 0

−1 0 0

 .

(2.31)

The last case, with β = 1√
3

match with the known electric charge for the pseudoscalar

meson octet matrix.
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In the SM there is an inherent left-right disparity since the right and left multiplets are not

treated in the same footing. Is that a characteristic of nature? There is a possibility whereby

left-right symmetry is recovered at high energies and this is achieved in L-R symmetric models.

As mentioned in the introduction, this extension maintains a parity symmetry [42,43]

which breaks spontaneously to the SM symmetry at very high energies and then breaks again

to U(1)Q at electroweak energy scale (∼ 1 TeV). In order to do that, new scalars are needed

with their respective vacuum expectation values, such as Higgs triplets and bi-doublets which

permit the symmetry to be reduced accordingly. Also, we are considering the model that seesaw

mechanism is allowed.

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L −→ SU(2)L ⊗ U(1)Y −→ U(1)Q (3.1)

However, there is some research in recent literature that uses models considering the

possibility that there is no parity restoration at high energies but it is broken explicitly and the

interactions of left- and right- handed fermions are completely different from each other at any

energy scale [44].

The old and more used model described here, in addition to establishing a relation-

ship between the restoration of parity at high energies (GUT energy scales) and the seesaw

mechanism [45], try to explain interactions that violate CP [46].
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3.1. Lagrangian

We will consider the so-called Minimal Left-Right Symmetric Model (MLRSM) with a bi-

doublet and a triplet scalar, where the parity invariance is imposed before the SSB down to SM

symmetry.

3.1 Lagrangian

The electroweak Lagrangian in this symmetry is similar to that of SM in eq. (1.1) but includes

new multiplets

L = − 1
4FiL,RµνF

µν
iL,R − 1

4GµνG
µν . . .Vector sector

+iΨiL,R /DΨiL,R + h.c. . . .Fermion-Vector sector

+ΨiL

(
DijΦ+D′

ijΦ̃
)
ΨjR + h.c.

+i (LiL,R)cMijσ2∆L,RLjL,R + h.c.
. . . Interaction sector (Yukawa)

+Tr
[
(Dµ∆L,R)

†
(Dµ∆L,R)

]
+Tr

[
(DµΦ)

†
(DµΦ)

]
− V (Φ) . . .Scalar-Vector sector (Higgs)

(3.2)

The relevant aspects we have to point out about the terms in this Lagrangian are:

• In the vector sector there are six tensors for the SU(2)L ⊗ SU(2)R symmetry, three for

FiL µν = ∂µWiL ν−∂νWiL µ+gLϵijkWjLµWkLν , i = 1 . . . 3, three for FiR µν = ∂µWiR ν−∂νWiR µ+

gRϵijkWjRµWkRν whose gauge vector fields WiL,Rµ are associated to SU(2)L,R generators

(ϵijk are the structure constant of this Lie group) and one tensor for the U(1)B−L symmetry

Gµν = ∂µBν − ∂νBµ where Bµ is associated to the single generator.

• In the fermion sector left doublets ΨiL, i = 1 . . . 3 are representations of the left-handed

leptons LiL or quarks QiL, while ΨiR are the corresponding right-handed doublets LiR or

QiR.

• The Yukawa sector takes into account two classes of scalar multiplets, the first one are

the bi-doublets Φ and Φ̃ = σ2Φσ2 which couples with left anti-doublets and right doublets

like in QiLΦQjR (that is why it must be a bi-doublet). The need use Φ̃ in addition to Φ is

to obtain all possible couplings with fermions. The second class is the triplet ∆L,R which

ensures Majorana mass terms for neutrinos to perform seesaw mechanism [47].

• In the Higgs sector, since scalar multiplets are bi-doublets and triplets (the latter written

in its adjoint representation), their corresponding kinetic terms are written using a Hilbert-

Schmidt inner product, Tr
[
(DµΦ)

†
(DµΦ)

]
or Tr

[
(Dµ∆L,R)

†
(Dµ∆L,R)

]
. The potential V (Φ)
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Chapter 3. Modelo SU(2)L ⊗ SU(2)R ⊗U(1)B−L

is defined in its most possible general form considering these scalars and the discrete

symmetries if aplicable to the theory [48].

The covariant derivatives for fermion doublets ΨiL,R are

DµΨiL =
[
∂µ + igLTjLW

µ
jL + igB−LB

µYB−L

]
ΨiL,

DµΨiR =
[
∂µ + igRTjRW

µ
jR + igB−LB

µYB−L

]
ΨiR,

(3.3)

where:

• gL, gR y gB−L are the coupling constants of SU(2)L, SU(2)R and U(1)B−L respectively.

• Values YB−L = B − L are the corresponding hypercharges.

• Wµ
jL,R with j = 1, 2, 3 are the six gauge fields that correspond to SU(2)L,R generators and

Bµ is the gauge field of U(1)B−L group. It is important to remark that after breaking these

gauge bosons mix themselves to form the physical (mass) states Wµ±
L and Wµ±

R , ZµL and

ZµR as well as Aµ. However, (W,Z)L and (W,Z)R have very different masses after breaking.

Left- and right-handed fermions doublets transform as

ΨiL → Ψ′
iL = UB−LULΨiL,

ΨiR → Ψ′
iR = UB−LURΨiR,

(3.4)

where UL,R = exp [igL,RTjωjL,R(x)] and UB−L = exp [igB−LYB−Lf(x)]. Like in SM, Tj =
σj

2 are the

SU(2)L,R generators and YB−L = B − L is the hypercharge.

The gauge fields transform as

Wµ
iL,R(x) → Wµ′

iL,R(x) =Wµ
iL,R(x)− ∂µωiL,R(x)− gL,RϵijkωjL,R(x)W

µ
kL,R(x),

Bµ(x) → Bµ
′
(x) = Bµ(x)− ∂µf(x),

(3.5)

where f(x) and ωjL,R(x) are real function-like parameters and ϵijk = 1
4i Tr{[σi, σj ]σk} is the

Levi-Civita tensor or the structure constant defined for SU(2)L,R group. Matrices σi are the

Pauli matrices.
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The covariant derivatives for scalar multiplets are

DµΦ = ∂µΦ+ i
[
gLTjW

µ
jLΦ− gRΦTjW

µ
jR

]
,

Dµ∆L,R = ∂µ∆L,R + igL,R

[
TjW

µ
jL,R,∆L,R

]
+ igB−LB

µ∆L,R.

(3.6)

For the ∆L,R case, its derivative has the usual form with a commutator due to the way

they are constructed (See (F.13)). But, for the Φ case, its derivative has a special treatment as

we will show later.

In accordance with the Yukawa sector in Lagrangian (3.2),

ΨiLΦΨjR :2∗L ⊗ Φ⊗ 2R = 1 ⇒ Φ = 2L ⊗ 2∗R

(ΨiL,R)c(iσ2)∆L,RΨjL,R : (2∗ ⊗∆⊗ 2)L,R = 1 ⇒ ∆L,R = (2⊗ 2∗)L,R = (3⊕ 1)L,R.

Then, Φ transforms as a bi-doublet whilst ∆L,R as a triplet in its adjoint representation to

be coupled accordingly to fermions. Like any symmetry triplet ∆L,R → ∆′
L,R = UB−LUL,R∆L,R,

being UL,R the spin-1 representation from SU(2), that is the reason why it is written in the

Lagrangian in its adjoint representation. The gauge transformations are

Φ → Φ′ = ULΦU
†
R,

∆L,R → ∆′
L,R = UB−LUL,R∆L,RU

†
L,R.

(3.7)

These ∆L,R transformations allow terms such as (LiL,R)ch
M
ij ∆L,RLjL,R to give Majorana

mass terms for neutrinos after SSB, while terms including Φ or Φ̃ permit ad-hoc Dirac mass

terms for all fermions like LiL,R(hijΦ+ h̃ijΦ̃)LjL,R.

In the next section, the particle content is described separately in the fermionic, bosonic

and scalar sector of the lagrangian; all of them in terms of their electric charge operators.

3.2 Conserved charges and particle content

The charge relation is,
Q

e
= T3L + T3R +

(
B − L

2

)
12. (3.8)

As in SM, T3L and T3R are the third isospin generators, but in this case they act only on
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the left (T3L) or right (T3R) multiplets respectively. The letters B and L are the baryonic and

leptonic number respectively. Besides, the introduction of the B − L symmetry contains the

existence not only of Majorana neutrinos (∆L = 2) but also n ↔ n̄ transitions (∆B = 2) when

breaking this symmetry [49].

3.2.1 Fermions

This symmetry requires the introduction of right “partners” for the fermions and gauge bosons.

Unlike SM, where the left fermionic fields are presented in doublets and the right ones in

singlets of the symmetry, here all fermions (left and right) have a doublet representation for

the three flavour families i = 1, 2, 3 [43].

ΨiL =

νi
ei


L

∼ (2L,1R, B − L) ; ΨiR =

νi
ei


R

∼ (1L,2R, B − L) , (3.9)

where the hypercharge is B − L[1]. This choice of hypercharge ensures the known electrical

charge of the components that are assigned after the SSB with Eq. (3.8).

In SM the procedure (1.5) was done for doublets. Here this procedure is done twice (for

the right and left representations) and the electric charge operator for fermions are:

Q(ΨL,R) =
1

2

1 +B − L 0

0 −1 +B − L


L,R

. (3.10)

In lepton sector, doublets have B = 0 and L = 1 while in quark sector B = 1/3 and L = 0.

That assignment gives the expected values for electric charges.

1st 2nd 3rd T3L,R Q B− Lu
d


L,R

c
s


L,R

t
b


L,R

+ 1
2

− 1
2


L,R

+ 2
3

− 1
3


L,R

+ 1
3

νe
e


L,R

νµ
µ


L,R

ντ
τ


L,R

+ 1
2

− 1
2


L,R

 0

−1


L,R

−1

Table 3.1: Fermionic charges in 3221-LR families.

[1]The factor 1/2 is a matter of convention like in the SM to get integers numbers mostly.
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3.2.2 Vector Bosons

Like in the SM, before the breaking gauge bosons within the Lagrangian are represented as

triplets in the adjoint representation of SU(2)L : W̃µL ∼ (3L,1R) and of SU(2)R : W̃µR ∼ (1L,3R).

Q(W̃µL,R) =
[
T 3, W̃µ

]
L,R

=

 0 +1

−1 0


L,R

. (3.11)

However, it should be noted that, although the electrical charges of the left components

are the same as those of their right counterparts, the masses after breaking are very different.

Unlike fermions, the denomination left or right do not incise in the mass value; they are only

labels to indicate belonging to a certain symmetry (L or R) and to identify which boson comes

out of the covariant derivative that acts on the left or right doublets. The mass of the right

components turns out to be much greater than their left counterparts and that explain their

existence at very high energies justifying the reason why they are not found yet.

The gauge-covariant derivative is

Dµ = ∂µ + igLW
µ
iLTiL + igRW

µ
iRTiR − igBL

(B − L)

2
Bµ. (3.12)

The matrices TiL,R are the three SU(2)L,R generators and act only to the L,R doublets

respectively.

It is common to make in the Minimal L-R Symmetric Model (MLRSM) gL = gR = g if you

want the theory to have parity symmetry from the beginning. Considering that, we may define

two phases that relate the coupling constants cos θ =

√
g2 + gBL
g2 + 2gBL

and cos θBL =

√
g2

g2 + gBL
. It

can be demonstrated (See appendix (E), eq. (E.8)) that

1

e2
=

2

g2
+

1

g2BL
. (3.13)

In order to be in accordance with the fact that this symmetry contains that of SM, the left

handed contributions have to coincide with the SM couplings. That means the g is assumed to

have the same value as the SM gL, then gBL = 0.4133.
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3.2.3 Scalar Bosons

Following the MLRSM presented in [43], the scalar multiplets can are represented with one

bi-doublet and two triplets [43]. The bi-doublet Φ gives Dirac mass terms to fermions while the

triplets give Majorana mass terms to neutrinos.

Φ =

ϕ11 ϕ12

ϕ21 ϕ22

∼ (2L,2
∗
R, 0) ,

∆L =

δ11 δ12

δ21 δ22


L

∼ (3L,1R,+2) ,

∆R =

δ11 δ12

δ21 δ22


R

∼ (1L,3R,+2) ,

(3.14)

Bidoublets have the representation 2L ⊗ 2∗R and may be built from Φ =
(
ϕ1 ϕc2

)
, where ϕ1,2

are left Higgs doublets and then ϕc2 is right handed. Since the two doublets are opposite in all

charges, hypercharge B − L for Φ is always zero and it is suitable for coupling with fermions

forming Dirac mass terms after breaking. Then,

Φ → Φ′ = ULΦU
†
R

≈ (12 + ieT3L) Φ (12 − ieT3R)

= Φ + ie (T3LΦ− ΦT3R) .

The charge operator for bidoublet is

Q(Φ) = T3LΦ− ΦT3R =

 0 +1

−1 0

 , (3.15)

which means that the bidoublet components may be written down as

Φ =

ϕ01 ϕ+2

ϕ−1 −ϕ0∗2

 . (3.16)

For the triplets case, in SU(2)L,R, it is verified that 2⊗ 2∗ = 3⊕ 1 [41]. In tensor form, be

ua, vb, a, b = 1, 2 are doublet and anti-doublet of SU(2) respectively, then their multiplication
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may be represented in matrix form,

T a
b = uavb =

u1v1 u1v2

u2v1 u2v2


=

u1v1 u1v2

u2v1 u2v2

− 1

2

u1v1 + u2v2 0

0 u1v1 + u2v2

+
1

2

u1v1 + u2v2 0

0 u1v1 + u2v2


=

(
uavb −

1

2
δabu

kvk

)
+

1

2
δabu

kvk.

The first addend has the shape or a SU(2) triplet tensor, then it could be related with

∆L,R ∼ 3L,R. The second addend is a singlet ∼ 1L,R. Since doublets transform as uL,R → u′L,R =

UB−LUL,RuL,R then the triplet ∆L,R is transformed as

∆′
L,R = (UB−LUu)L,R

(
vcU∗

B−LU
†)
L,R

≈
[
12 + ie

(
T3L,R +

(
B − L

2

)
1

12

)]
(uvc)

[
12 − ie

(
T3L,R +

(
B − L

2

)∗

2

12

)]
≈ uvc + ie (T3L,Ruv

c − uvcT3L,R) + ie

((
B − L

2

)
1

−
(
B − L

2

)∗

2

)
uvc

= ∆L,R + ie[T3L,R,∆L,R] +

(
B − L

2

)
∆L,R,

(3.17)

where B−L = (B − L)1−(B − L)
∗
2 and the subscripts 1, 2 correspond to the doublet hypercharges

of u, v respectively. Therefore, the charge operator for the triplet is

Q(∆L,R) = [T3L,R,∆L,R] +

(
B − L

2

)
∆L,R. (3.18)

The electric charge operator is

Q(∆L,R) =
1

2

 B − L +2 +B − L

−2 +B − L B − L


L,R

. (3.19)

It can be noticed that if we choose u = v, then B − L must be twice the hypercharge of u.

This makes sense because ∆L,R is coupled with two doublets with same hypercharge in the

lepton sector LL,R and (LL,R)c. Moreover, in this model these doublets have hypercharge −1

and so the hypercharge of ∆L,R must be +2. Therefore, the electric charge operator is

Q(∆L,R) =

+1 +2

0 +1


L,R

, (3.20)
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Chapter 3. Modelo SU(2)L ⊗ SU(2)R ⊗U(1)B−L

and the triplet content may be written as

∆L,R =


δ+√
2

δ++

δ0 − δ+√
2


L,R

, (3.21)

which came from the original triplet gauge states δi, i = 1, 2, 3 before breaking.

Regarding to exotic multiplets, we can replicate the same SM multiplets, like in (1.4.4),

but with left and right chiralities.
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Chapter 4

Charges in the model

SU(3)C ⊗ SU(3)L ⊗ SU(3)R ⊗U(1)X

The development of left-right symmetry extensions to the SM were motivated by the explanation

of the parity (and/or charge conjugation) violation in weak interactions observed at low energy.

In this case, the model carries the benefits of the 331 and 221-LR model: the latter in which

parity symmetry is preserved and the former which explains why only three families are

observed by anomaly cancellation (see the appendix in [9]).

The chosen model is able to generate Dirac or Majorana masses for neutrinos and is a

left-right extension of the 331 chiral model explained before. The charge relation is

Q = T3L + T3R + β (T8L + T8R) +X, (4.1)

where, as in 221 L-R models, operators T3L,R y T8L,R are applied over L or R fields only.

The particle content is in accordance with [9] and [10], but for a general β. However, it

has to be mentioned that this symmetry was considered firstly in [12] considering only scalar

triplets and that is why fermion masses were generated by five-dimensional operators.
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Chapter 4. Charges in the model SU(3)C ⊗ SU(3)L ⊗ SU(3)R ⊗U(1)X

4.1 Lagrangian

The electroweak Lagrangian in this symmetry is similar to the previous ones with extended

multiplets.

L = − 1
4FiL,RµνF

µν
iL,R − 1

4GµνG
µν . . .Vector sector

+iΨlL,R /DΨlL,R + h.c. . . .
Fermion-Vector

sector

+QaLGabΦ
∗QbR +Q3LG33ΦQ3R +QaLGa3P

∗Q3R +Q3LG3aPQaR

+LlGlmΦLm +G′
lm

(
Lcl∆

†
LLm +Rcl∆

†
RRm

)
+ h.c.

. . .
Interaction sector

(Yukawa)

+Tr
[
(Dµ∆L,R)

†
(Dµ∆L,R)

]
+Tr

[
(DµΦ)

†
(DµΦ)

]
+Tr

[
(DµP )

†
(DµP )

]
− V (Φ,∆, P )

. . .
Scalar-Vector

sector (Higgs)
(4.2)

The principal features of this Lagrangian are:

• In the vector sector there are sixteen tensors for the SU(3)L ⊗ SU(3)R symmetry, eight

for FiL µν = ∂µWiL ν − ∂νWiL µ + gLfijkWjLµWkLν, i, j, k = 1 . . . 8, eight for FiR µν = ∂µWiR ν −

∂νWiR µ+gRfijkWjRµWkRν whose gauge fields WiL,Rµ are associated to SU(3)L,R generators

(fijk are the structure constant of this Lie group) and one tensor for the U(1)X symmetry

Gµν = ∂µBν − ∂νBµ where Bµ is associated to the single generator.

• In the fermion sector ΨlL are left triplets, where l = 1 . . . 3 are flavour index. Representa-

tions of the left-handed leptons are written as LlL and quarks as QlL, while ΨlR are the

corresponding right-handed triplets LlR or QlR.

• The Yukawa sector was written down taking into account after breakdown Dirac mass

terms for all the fermions and Majorana mass terms for neutrinos. Then, the following

must be fulfilled for the scalar multiplets Φ, ∆L,R and P :

Q3L ΦQ3R : 3∗L ⊗ Φ⊗ 3R = 1 ⇒ Φ = 3L ⊗ 3∗R

(L,R)cl ∆
†
L,R(L,R)m : 3L,R ⊗∆†

L,R ⊗ 3L,R ⇒ ∆L,R = 3L,R ⊗ 3L,R = (3∗ ⊕ 6)L,R

Q3L P QaR : 3∗L ⊗ P ⊗ 3∗R = 1 ⇒ P = 3L ⊗ 3R

which means that the usual Dirac mass terms are obtained if Φ is a bi-triplet and P is a

bi-fundamental multiplet while the Majorana mass terms are achieved with ∆L,R being a

left or right sextet. The bi-triplet Φ couples with left and right quark triplets belonging

only to the third family due to their hypercharge assignment (as we will see later), that is
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4.1. Lagrangian

why a, b = 1, 2. The sextets ∆L,R ensures Majorana mass terms for neutrinos to perform

seesaw mechanism and the bi-fundamental field P completes the coupling with third

family of quarks.

• In the Higgs sector, since scalar multiplets are bi-triplets, bi-fundamentals and sextets,

their corresponding kinetic terms are written using a Hilbert-Schmidt inner product,

Tr
[
(DµΦ)

†
(DµΦ)

]
, Tr

[
(Dµ∆L,R)

†
(Dµ∆L,R)

]
and Tr

[
(DµP )

†
(DµP )

]
. As usual, the potential

V (Φ,∆, P ) is defined in its most possible general form considering discrete symmetries if

aplicable to the theory [9].

The covariant derivatives for fermion triplets ΨiL,R are

DµΨiL =
[
∂µ + igLTjLW

µ
jL + igXB

µX
]
ΨiL,

DµΨiR =
[
∂µ + igRTjRW

µ
jR + igXB

µX
]
ΨiR,

(4.3)

where:

• gL, gR y gX are the coupling constants of SU(3)L, SU(3)R and U(1)X respectively.

• X is the corresponding hypercharge.

• Wµ
jL,R with j = 1 . . . 8 are sixteen gauge fields that correspond to SU(3)L,R generators that

mix with Bµ, the gauge field of U(1)X , to form mass (physical) states after breaking like in

SM. It is important to remark that Wµ
L and Wµ

R are not related after SSB.

Fundamental representations (fermions triplets) transform as

ΨlL → Ψ′
lL = UXULΨlL,

ΨlR → Ψ′
lR = UXURΨlR,

(4.4)

where UL,R = exp [igL,RTjωjL,R(x)] and UX = exp [igXXf(x)]. Like in 331, Tj =
λj

2 are the

SU(3)L,R generators and X is the hypercharge.

The gauge fields transform as

Wµ
iL,R(x) → Wµ′

iL,R(x) =Wµ
iL,R(x)− ∂µωiL,R(x)− gL,RfijkωjL,R(x)W

µ
kL,R(x),

Bµ(x) → Bµ
′
(x) = Bµ(x)− ∂µf(x),

(4.5)

where f(x) and ωiL,R(x) are real function-like parameters and fijk = 1
4i Tr{[λi, λj ]λk} are the
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Chapter 4. Charges in the model SU(3)C ⊗ SU(3)L ⊗ SU(3)R ⊗U(1)X

structure constants defined for SU(3)L,R group. Matrices λi are the Gell-Mann matrices.

The covariant derivatives for scalar multiplets are (see appendix (F))

DµΦ = ∂µΦ+ i
[
gLTjW

µ
jLΦ− gRΦTjW

µ
jR

]
,

Dµ∆L,R = ∂µ∆L,R + igL,R

[
TjW

µ
jL,R∆L,R +∆L,R(TjW

µ
jL,R)

T
]
+ igXXB

µ∆L,R,

DµP = ∂µP + i
[
gLTjW

µ
jLP + gRP (TjW

µ
jR)

T
]
+ igXXB

µP.

(4.6)

As in the chiral 331 case, the sextets have a particular way of transforming without a

commutator. In the three cases, the scalar multiplet transformations lead us to write the way

they would be built accordingly.

Φ → Φ′ = ULΦU
†
R,

∆L,R → ∆′
L,R = UXUL,R∆L,RU

T
L,R,

P → P ′ = UXULPUR.

(4.7)

With all these transformations, the particle content can be described separately in the

fermionic, bosonic and scalar sector of the lagrangian; all of them in terms of their electric

charge operator.

4.2 Fermions

Quarks and leptons are left- and right-handed triplets (or antitriplets) like those of 331 case,

and their charge operators are defined in equation (2.12),

Q(TL,R) =
1

2
diag

(
1 +

β√
3
+ 2X,−1 +

β√
3
+ 2X,−2

β√
3
+ 2X

)
= diag

(
1− q

3
+X,

−2− q

3
+X,

2q + 1

3
+X

)
Q(T ∗

L,R) =
1

2
diag

(
−1− β√

3
+ 2N, 1− β√

3
+ 2X∗, 2

β√
3
+ 2X∗

)
= diag

(
−1 + q

3
+X∗,

2 + q

3
+X∗,

−2q − 1

3
+X∗

)
.

(4.8)

For simplicity, it is usual to write the components in terms of the electric charge of the third

lepton component q = −
√
β−1
2 .
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4.3. Scalar bosons

β = −
√
3, Q, X β = +

√
3 β = − 1√

3
β = 1√

3

Q3L,R,

 +2/3

−1/3

+5/3

 ,+
2

3

 +2/3

−1/3

−4/3

 ,−1

3

 +2/3

−1/3

+2/3

 ,+
1

3

 +2/3

−1/3

+1/3

 , 0

QaL,R,

 −1/3

+2/3

−4/3

 ,−1

3

 −1/3

+2/3

+5/3

 ,+
2

3

 −1/3

+2/3

−1/3

 , 0

 −1/3

+2/3

+2/3

 ,+
1

3

(L,R)i,

 0
−1
+1

 , 0

 0
−1
−2

 ,−1

 0
−1
0

 ,−1

3

 0
−1
−1

 ,−2

3

Table 4.1: Fermionic charges for different values of β and a = 1, 2.

These six triplets replicate the charges of the chiral 331 model, adding those of the right

chirality.

4.3 Scalar bosons

Four scalar multiples are proposed: one bitriplet Φ, one bifundamental P and two symmetric

sextets ∆L,R.

Φ =


η1 ρ1 χ1

η2 ρ2 χ2

η3 ρ3 χ3

 ∼ (1,3L,3
∗
R, 0), P =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 ∼ (1,3L,3R, XP ),

∆L =


σ1 σ2 σ3

σ2 σ4 σ5

σ3 σ5 σ6


L

∼ (1,6L,1R, XδL), ∆R =


σ1 σ2 σ3

σ2 σ4 σ5

σ3 σ5 σ6


R

∼ (1,1L,6R, XδR).

(4.9)

The bitriplet can be built from a left triplet and right antitriplet, Φ = vLv
†
R, then the transforma-

tion is

Φ → Φ′ = (UXULvL) (UXURvR)
†
= ULΦU

†
R

≈ [13 + ie (T3 + βT8)L] Φ [13 − ie (T3 + βT8)R]

≈ Φ+ ie[T3 + βT8,Φ],

where the usual values of αj(x) and f(x) have been assumed like in chiral 331 for sextet S.

The bitriplet has zero hypercharge as a consequence of its own transformation.
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The charge operator for the bitriplet is

Q(Φ) = [T3 + βT8,Φ]

=


0 +1 1

2

(
1 + 3β√

3

)
−1 0 1

2

(
−1 + 3β√

3

)
− 1

2

(
1 + 3β√

3

)
1
2

(
1− 3β√

3

)
0

 .
(4.10)

For the possible values of β,

β = −
√
3 : Q(Φ) =


0 +1 −1

−1 0 −2

+1 +2 0

 , β = +
√
3 : Q(Φ) =


0 +1 +2

−1 0 +1

−2 −1 0

 ,

β = − 1√
3
: Q(Φ) =


0 +1 0

−1 0 −1

0 +1 0

 , β =
1√
3
: Q(Φ) =


0 +1 +1

−1 0 0

−1 0 0

 .

(4.11)

This result is consistent with charges in table (2.4) and the fact that bitriplet is made up

of Φ = (η, ρ, χ) for any β.

The bifundamental multiplet can be built from a left triplet and right triplet, P = wLw
T
R

with hypercharge X ′, then the transformation is

P → P ′ = (ULwL)(URwR)
T = ULPU

T
R

≈ (1 + ieX ′)
[
13 + ie

(
T 3
L −

√
3T 8

L

)]
P (1 + ieX ′)

[
13 + ie

(
T 3
R −

√
3T 8

R

)]
≈ P + ie

{
T 3 + βT 8, P

}
+ ieXP,

where X = 2X ′. The charge operator for P is

Q(P ) =
{
T 3 + βT 8, P

}
+XP =

=


(
1 + β√

3
+X

) (
β√
3
+X

)
1
2

(
1− β√

3
+ 2X

)
(
β√
3
+X

) (
−1 + β√

3
+X

)
− 1

2

(
1 + β√

3
− 2X

)
1
2

(
1− β√

3
+ 2X

)
− 1

2

(
1 + β√

3
− 2X

) (
− 2β√

3
+X

)
 .

(4.12)

This result shows that this field can be considered as symmetric multiplet if the theory requires

it.

P is design to be coupled with quarks, e.g. Q1LPQaR. Therefore, the hypercharge
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4.3. Scalar bosons

assignment depends on β.

β = −
√
3, X = +1 : Q(P ) =


+1 0 +2

0 −1 +1

+2 +1 +3

 ,

β = +
√
3, X = −1 : Q(P ) =


+1 0 −1

0 −1 −2

−1 −2 −3

 ,

β = − 1√
3
, X = +

1

3
: Q(P ) =


+1 0 +1

0 −1 0

+1 0 +1

 ,

β =
1√
3
, X = −1

3
: Q(P ) =


+1 0 0

0 −1 −1

0 −1 −1

 .

Finally, the two sextets ∆L,R receive the same treatment as the sextet of model 331 and the

electric charges of their components are the same as equations (2.27) and (2.28) but duplicated

for left and right. Then

Q(∆L,R) =


1 + β√

3
+N β√

3
+N 1

2

(
1− β√

3

)
+N

β√
3
+N −1 + β√

3
+N − 1

2

(
1 + β√

3
N
)
−N

1
2

(
1− β√

3

)
+N − 1

2

(
1 + β√

3

)
−N − 2β√

3
+N



=


2
3 (1− q) +N − 1

3 (1 + 2q) +N 1
3 (2 + q) +N

− 1
3 (1 + 2q) +N − 2

3 (2 + q) +N − 1
3 (1− q) +N

1
3 (2 + q) +N − 1

3 (1− q) +N 2
3 (1 + 2q) +N



(4.13)
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For the possible values of β and ∆L,R = ηL,Rη
T
L,R (N(∆L,R) = 2N(ηL,R)),

β = −
√
3 or q = +1, N(∆L,R) = 0 : Q(∆L,R) =


0 −1 +1

−1 −2 0

+1 0 +2

 ,

β = +
√
3 or q = −2, N(∆L,R) = −2 : Q(∆L,R) =


0 −1 −2

−1 −2 −3

−2 −3 −4

 ,

β = − 1√
3

or q = 0, N(∆L,R) = − 2
3 : Q(∆L,R) =


0 −1 0

−1 −2 −1

0 −1 0

 ,

β = 1√
3

or q = −1, N(∆L,R) = − 4
3 : Q(∆L,R) =


0 −1 −1

−1 −2 −2

−1 −2 −2

 .

(4.14)

4.4 Vector Bosons

Like in 3221-LR model that has the same vector boson matrix as the Standard Model, only

duplicated (one for the right bosons and one for the left ones), the same happens in the 3331-LR

model. That is, the W̃L,R matrix has the same shape as that of model 331 only in two versions,

L and R.

Therefore, the charge operator for 331 version is duplicated here

Q(W̃µL,R) =
[
T 3
L,R + βT 8

L,R, W̃µL,R

]
(4.15)

And the electric charge content is the same as equation (2.15).

β =
√
3, q = −2 β = 1/

√
3, q = −1 β = −

√
3, q = +1 β = −1/

√
3, q = 0

W̃µL,R


0 +1 +2

−1 0 +1

−2 −1 0




0 +1 +1

−1 0 0

−1 0 0




0 +1 −1

−1 0 −2

+1 2 0




0 +1 0

−1 0 −1

0 +1 0


Table 4.2: Electric charge eigenvalues for gauge bosons
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Chapter 5

Conclusions

This work studies a method to obtain the electric charge operator to different multiplets from

the SSB applied to generators to gauge symmetry groups. From there, the electric charges of

particles in gauge theories are all worked out. The method has been tested in four different

gauge symmetries and has been successful in all of them, by verifying its validity in the values

of electric charges already known and generating confidence in the results for new charges of

exotic particles.

On the other hand, the charge eigenstates obtained give us some properties of scalar

multiples (especially when these are matrix representations 2× 2, 3× 3, etc.) when developing

new theories, as mentioned for the sextet of 331 and the Φ and P scalar multiples of the

3331-LR model.

In the case of vector bosons, there is an additional contribution: to demonstrate that

their electric charges can be calculated in their fundamental representation or in the adjoint

one. However, it must be said that the electric charges for the neutral vector bosons we found

are those of the gauge eigenstates and not for the mass eigenstates. Despite this, the gauge

bosons that shape the vector bosons in their respective mixing might be considered with zero

eigenvalues due to the fact that they do not transform in this symmetry.

There are more motivations to continue developing our research in this way, for example we

have found relations between hypercharges in 331 models, which makes us think that probably

there exists a minimal extension that establish all the charges (including hypercharges) from

the beginning.
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Chapter 5. Conclusions

What follows is to use the method in GUT symmetries proposing new multiplets in an easy

and safe way with the new couplings that this entails. Then Lagrangian could be constructed

in an easier way than the traditional way. In the group of Phenomenology of High Energies in

our faculty the method would be of great help since we worked also analyzing properties of

extended gauge theories.
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Appendix A

Invariance of the vacuum

expectation value (vev)

In minimal EWSM with just one scalar doublet, the symmetry SU(2)L ⊗ U(1)Y is broken to

U(1)Q and Higgs mechanism establish the following

Φ =

 ϕ+

v + ϕ0

 =

 ϕ1 + iϕ2

v + ϕ3 + iϕ4

 ,

where the chosen vacuum is ⟨Φ⟩0 =

0

v

 , v ∈ R. This vacuum has to be invariant under

SU(2)L ⊗ U(1)Y .

Recall that the doublet transforms as

Φ → Φ′ = ULUY Φ = eiTjαj(x)ei
Y
2 f(x)Φ

≈
(
12 + iTjαj(x) + i

Y

2
f(x)12

)
Φ = Φ+ δΦ .
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Assuming the invariance of ⟨Φ⟩0,

δ ⟨Φ⟩0 ≈ i

(
Tjαj(x) +

Y

2
f(x)12

)0

v


=
iv

2

 α1(x)− iα2(x)

−α3(x) + f(x)Y

→

0

0

 ,

(A.1)

from which it follows that α1(x) = α2(x) = 0 and α3(x) = f(x)Y .

Then, the transformation remains as

δΦ ≈ if(x)

(
T3 +

Y

2
12

)
Φ

= ieQΦ,

(A.2)

where in the last equality f(x) → e taking into account that the electric charge is the conserved

charge of the global symmetry U(1)Q and Q = T3 +
Y
2 12.

Applying the U(1)Q gauge transformation on the doublet using Y (Φ) = 1,

δΦ ≈ ie

(
T3 +

1

2
12

) ϕ1 + iϕ2

v + ϕ3 + iϕ4


≈ i

+e 0

0 0

 ϕ1 + iϕ2

v + ϕ3 + iϕ4

 ,

(A.3)

which tells us that ϕ1 + iϕ2 → ϕ+ has an electric charge +e and ϕ3 + iϕ4 → ϕ0 does not have one.

Namely,

δ(ϕ1 + iϕ2) = +ie (ϕ1 + iϕ2) ; δ(ϕ3 + iϕ4) = 0 (A.4)

This method can be extended to other symmetries. For example, in the minimal elec-

troweak SU(3)L ⊗ U(1)N with three scalar triplets
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Chapter A. Invariance of the vacuum expectation value (vev)

η =


ηa

ηb

ηc

 =


vη + η1 + iη2

η3 + iη4

η5 + iη6

 .

The chosen vacuum is ⟨η⟩0 =


vη

0

0

 , vη ∈ R. This vacuum has to be invariant under U(1)Q.

Recall that the triplet transforms as

η → η′ = ULUNη = eiTjαj(x)eiNηf(x)η

≈ (13 + iTjαj(x) + iNηf(x)13) η = η + δη .

Invariance of ⟨η⟩0:

δ ⟨η⟩0 ≈ i (Tjαj(x) +Nηf(x)13)


vη

0

0



=
ivη
2


2Nηf(x) + α3 +

α8√
3

α1 + iα2

α4 + iα5

→


0

0

0

 ,

(A.5)

from which it follows that α1 = α2 = α4 = α5 = 0 and 2Nηf(x) + α3 +
α8√
3
= 0.

The second triplet is

ρ =


ρa

ρb

ρc

 =


ρ1 + iρ2

vρ + ρ3 + iρ4

ρ5 + iρ6

 .

The chosen vacuum is ⟨ρ⟩0 =


0

vρ

0

 , vρ ∈ R. This vacuum has to be invariant under U(1)Q.

The triplet transforms as

ρ→ ρ′ = ULUNρ ≈ (13 + iTjαj(x) + iNρf(x)13) ρ = ρ+ δρ .

62



Invariance of ⟨ρ⟩0:

δ ⟨ρ⟩0 ≈ i (Tjαj(x) +Nηf(x)13)


0

vρ

0



=
ivρ
2


α1 − iα2

2Nρf(x)− α3 +
α8√
3

α6 + iα7

→


0

0

0

 ,

(A.6)

from which it follows that α1 = α2 = α6 = α7 = 0 and 2Nρf(x)− α3 +
α8√
3
= 0.

And the third triplet,

χ =


χa

χb

χc

 =


χ1 + iχ2

χ3 + iχ4

vχ + χ5 + iχ6

 .

The chosen vacuum is ⟨χ⟩0 =


0

0

vχ

 , vχ ∈ R. This vacuum has to be invariant under U(1)Q.

As before

χ→ χ′ ≈ (13 + iTjαj(x) + iNχf(x)13)χ = χ+ δχ .

Invariance of ⟨χ⟩0:

δ ⟨χ⟩0 ≈ i (Tjαj(x) +Nχf(x)13)


0

0

vχ



=
ivχ
2


α4 − iα5

α6 − iα7

2Nχf(x)− 2α8√
3

→


0

0

0

 ,

(A.7)

from which it follows that α4 = α5 = α6 = α7 = 0 and Nχf(x)− α8√
3
= 0.

If we put together the results of (A.5), (A.6) and (A.7), we have

α1 = α2 = α4 = α5 = α6 = α7 = 0

and Nη +Nρ +Nχ = 0.
(A.8)
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Chapter A. Invariance of the vacuum expectation value (vev)

Let us notice that the electric charge content of the triplets depends upon of the values of

α3 and α8.
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Appendix B

Adjoint representations in SU(2)

and SU(3) symmetry

In Standard Model, the triplets are transformed with the adjoint representation of SU(2) and

are represented as 2 × 2 matrices which is the appropriate dimensions to be coupled with

doublets. Here, the equation (1.3) is not enough for giving electric charges because of the

operator dimensions involved. Then, a new transformation has to be performed.

Let a triplet T = (t1, t2, t3)
T be transformed as T → T ′ = exp[iθjTj ]T , where Tj is the

adjoint representation for SU(2) and spin 1/2. We can demonstrate that this transformation is

equivalent to the representation T̃ =
σj

2 tj being transformed as T̃ → T̃ ′ = eiθj
σj
2 T̃ e−iθj

σj
2 .

That is,

T̃ ′ = eiθj
σj
2 T̃ e−iθj

σj
2

≈
(
12 + iθj

σj
2

)
T̃
(
12 − iθj

σj
2

)
≈ T̃ + i

[
θj
σj
2
, T̃
]

= T̃ +
1

2

 t1θ2 − t2θ1 t2θ3 − t3θ2 − i(t3θ1 − t1θ3)

t2θ3 − t3θ2 + i(t3θ1 − t1θ3) −(t1θ2 − t2θ1)

 .
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Chapter B. Adjoint representations in SU(2) and SU(3) symmetry

As T̃ = 1
2

 t3 t1 − it2

t1 + it2 −t3

, then δT̃ ≈ 1
2

 δt3 δt1 − i δt2

δt1 + i δt2 − δt3

. So at first order,

δt3 ≈ t1θ2 − t2θ1

δt1 − i δt2 ≈ t2θ3 − t3θ2 − i(t3θ1 − t1θ3)

δt1 + i δt2 ≈ t2θ3 − t3θ2 + i(t3θ1 − t1θ3)

− δt3 ≈ − (t1θ2 − t2θ1).

Solving for the variations,


δt1

δt2

δt3

 ≈


t2θ3 − t3θ2

t3θ1 − t1θ3

t1θ2 − t2θ1

 =


0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0


︸ ︷︷ ︸


t1

t2

t3

 ,

iθjTj .

(B.1)

Or, δT ≈ i(θjTj)T , which means that T ′ = exp[iθjTj ]T .

We conclude that transforming T with the adjoint representation of SU(2), the same result

is obtained if T̃ is transformed with the fundamental representation of the same Lie group.

For the SU(3) case, we can define an octet O = (t1, t2, t3, t4, t5, t6, t7, t8)
T which transforms

as O → O′ = exp
[
iθjT

′
j

]
O, where T′

j are the adjoint representation for SU(3). As before, we can

demonstrate that the O transformation is equivalent to the transformation of Õ = 1
2λjtj. That

is Õ → Õ′ = eiθj
λj
2 Õe−iθj

λj
2 .

Õ′ = eiθjλj Õe−iθjλj

≈
(
13 + iθj

λj
2

)
Õ
(
13 − iθj

λj
2

)
≈ Õ + i

[
θj
λj
2
, Õ
]

= Õ +
i

2
M,
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where

M11 = θ1 (−t2) + θ2t1 − θ4t5 + θ5t4

M12 = −iθ1t3 − θ2t3 + iθ3t1 + θ3t2 +
1

2
iθ4t6 +

θ5t6
2

+
1

2
iθ5t7 −

1

2
iθ6t4 +

θ7t4
2

− 1

2
iθ7t5 −

θ4t7
2

− θ6t5
2

M13 =
1

2
iθ1t6 +

θ1t7
2

+
θ2t6
2

− 1

2
iθ2t7 +

1

2
iθ3t4 +

θ3t5
2

− 1

2
iθ4t3 −

1

2
i
√
3θ4t8 −

1

2

√
3θ5t8 −

1

2
iθ6t1

+
1

2
iθ7t2 +

1

2
i
√
3θ8t4 +

1

2

√
3θ8t5 −

θ5t3
2

− θ6t2
2

− θ7t1
2

M21 = iθ1t3 − θ2t3 − iθ3t1 + θ3t2 −
1

2
iθ4t6 +

θ5t6
2

− 1

2
iθ5t7 +

1

2
iθ6t4 +

θ7t4
2

+
1

2
iθ7t5 −

θ4t7
2

− θ6t5
2

M22 = θ1t2 − θ2t1 − θ6t7 + θ7t6

M23 =
1

2
iθ1t4 +

θ1t5
2

+
1

2
iθ2t5 −

1

2
iθ3t6 −

1

2
iθ4t1 +

θ4t2
2

− 1

2
iθ5t2 +

1

2
iθ6t3 −

1

2
i
√
3θ6t8 +

θ7t3
2

− 1

2

√
3θ7t8 +

1

2
i
√
3θ8t6 +

1

2

√
3θ8t7 −

θ2t4
2

− θ3t7
2

− θ5t1
2

M31 = −1

2
iθ1t6 +

θ1t7
2

+
θ2t6
2

+
1

2
iθ2t7 −

1

2
iθ3t4 +

θ3t5
2

+
1

2
iθ4t3 +

1

2
i
√
3θ4t8 −

1

2

√
3θ5t8 +

1

2
iθ6t1

− 1

2
iθ7t2 −

1

2
i
√
3θ8t4 +

1

2

√
3θ8t5 −

θ5t3
2

− θ6t2
2

− θ7t1
2

M32 = −1

2
iθ1t4 +

θ1t5
2

− 1

2
iθ2t5 +

1

2
iθ3t6 +

1

2
iθ4t1 +

θ4t2
2

+
1

2
iθ5t2 −

1

2
iθ6t3 +

1

2
i
√
3θ6t8 +

θ7t3
2

− 1

2

√
3θ7t8 −

1

2
i
√
3θ8t6 +

1

2

√
3θ8t7 −

θ2t4
2

− θ3t7
2

− θ5t1
2

M33 = θ4t5 − θ5t4 + θ6t7 − θ7t6

(B.2)

Since Õ = 1
2λjtj =

1
2


t3 +

t8√
3

t1 − it2 t4 − it5

t1 + it2
t8√
3
− t3 t6 − it7

t4 + it5 t6 + it7 − 2t8√
3

, then

δt3 +
δt8√
3
= 2M11, δt1 − iδt2 = 2M12, δt4 − iδt5 = 2M13,

δt1 + iδt2 = 2M21, −δt3 + δt8√
3
= 2M22, δt6 − iδt7 = 2M23,

δt4 + iδt5 = 2M31, δt6 + iδt7 = 2M32, − 2δt8√
3

= 2M33.
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Chapter B. Adjoint representations in SU(2) and SU(3) symmetry

Solving for the variations,



δt1

δt2

δt3

δt4

δt5

δt6

δt7

δt8



≈



t2θ3 − t3θ2 +
1
2 (t6θ5 − t5θ6 + t4θ7 − t7θ4)

t3θ1 − t1θ3 +
1
2 (t4θ6 − t6θ4 + t5θ7 − t7θ5)

t1θ2 − t2θ1 +
1
2 (t4θ5 − t5θ4 + t7θ6 − t6θ7)

1
2 (t1θ6 − t6θ1 + t7θ2 − t2θ7 + t3θ4 − t4θ3 +

√
3(t5θ8 − t8θ5))

1
2 (t3θ4 − t4θ3 + t1θ6 − t6θ1 + t7θ2 − t2θ7 +

√
3(t8θ4 − t4θ8))

1
2 (t1θ5 − t5θ1 + t2θ4 − t4θ2 + t3θ7 − t7θ3 +

√
3(t7θ8 − t8θ7))

1
2 (t1θ4 − t4θ1 + t2θ5 − t5θ2 + t3θ6 − t6θ3 +

√
3(t8θ6 − t6θ8))

√
3
2 (t4θ5 − t5θ4 + t6θ7 − t7θ6)



=



0 θ3 −θ2 θ7
2 − θ6

2
θ5
2 − θ4

2 0

−θ3 0 θ1
θ6
2

θ7
2 − θ4

2 − θ5
2 0

θ2 −θ1 0 θ5
2 − θ4

2 − θ7
2

θ6
2 0

− θ7
2 − θ6

2 − θ5
2 0 θ3

2 +
√
3θ8
2

θ2
2

θ1
2 − 1

2

√
3θ5

θ6
2 − θ7

2
θ4
2 − θ3

2 −
√
3θ8
2 0 − θ1

2
θ2
2

√
3θ4
2

− θ5
2

θ4
2

θ7
2 − θ2

2
θ1
2 0

√
3θ8
2 − θ3

2 − 1
2

√
3θ7

θ4
2

θ5
2 − θ6

2 − θ1
2 − θ2

2
θ3
2 −

√
3θ8
2 0

√
3θ6
2

0 0 0
√
3θ5
2 − 1

2

√
3θ4

√
3θ7
2 − 1

2

√
3θ6 0


︸ ︷︷ ︸



t1

t2

t3

t4

t5

t6

t7

t8



.

iθjT
′
j

(B.3)

It means that the transformation in the adjoint representation δO ≈ iθjT
′
jO or O′ =

exp
[
iθjT

′
j

]
O, gets the same result as the transformation Õ′ = eiθj

λj
2 Õe−iθj

λj
2 .
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Appendix C

Charge Operator

C.1 Conserved charge in U(1)Q

An example of a gauge theory with U(1) symmetry is QED, whose lagrangian is

L = ψ
(
i /D −m

)
ψ − 1

4
FµνFµν , (C.1)

In global case, Dµ → ∂µ and fermionic fields transform like ψ′(x) = eiqfψ(x), with constants

q and f . Then δψ(x) ≈ iqeψ(x), where f → e. Besides, in this case δAµ(x) = 0 and tensor

Fµν = ∂µAν(x)− ∂νAµ(x) does not transform.

According to Noether’s theorem, the conserved current in this symmetry is

Jµ =
∂L

∂(∂µψ)
δψ = −eqψγµψ. (C.2)

The gauge group has a generator Q with eigenvalues q. In quantized theory, the operator

Q̂is

Q̂ =

∫
d3xJ0 = −eq

∫
d3xψ†ψ, (C.3)

which is called charge operator, and if it is written in terms of raising and lowering operators,

results the net charge of particles and antiparticles, according with equation (C.8).

On the other hand, in the local case the fields are transformed ϕ′(x) = eiqf(x)ϕ(x), with
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Chapter C. Charge Operator

δϕ(x) = iqf(x)ϕ(x). In this case, the associated gauge field is transformed A′
µ(x) = Aµ(x) +

1
e∂µf(x).

Here, the conserved current with respect to the part of the Lagrangian that corresponds to

Maxwell FµνFµν is

Jµ =
∂L

∂(∂µAν)
δAν = −1

2
Fµν∂νf(x). (C.4)

That is, Noether’s current can be assumed as Fµν∂νf(x). It is known that for gauge

symmetries (local) the second Noether theorem is applied where conserved charges are not

obtained; these latter only come from global symmetries applying Noether’s first theorem.

However, it can be shown that for the QED there is a relationship between the local symmetry

U(1) and the electric charge.

Q =

∫
J0d3x =

∫
F 0i∂if(x)d

3x

=

∫
∂i
(
F 0if(x)

)
d3x−

∫
(∂iF

0i)f(x)d3x .

But ∂νFµν = 0, then ∂iF
µi = −∂0Fµ0. For µ = 0, ∂iF 0i = −∂0F 00 = 0. That means that the

last integral has no contribution and the charge left

Q =

∫
∂i
(
f(x)F 0i

)
d3x = −

∮
S

f(x)E⃗ · n⃗ dS , (C.5)

because F 0i = −Ei. If S → ∞, the principle of charge conservation requires that f(x) be a

constant in S, so that Q is proportional to the electric field flow and Gauss’s law is applied,

Q = −e
∮
S

E⃗ · n⃗ dS = −eq, (C.6)

making f → e. This result is identical to that of (C.3) with adequate normalization of
∫
d3xψ†ψ.
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C.2. Particle-Antiparticle

C.2 Particle-Antiparticle

The total charge of a spinor is Q = q
∫
d3xψ†ψ, with

{
ψ†(x), ψ(y)

}
= δ3(x− y) y {ψ(x), ψ(y)} = 0.

Then,

ψ(x)Q = q

∫
d3yψ(x)ψ†(y)ψ(y)

= q

∫
d3yδ3(x− y)ψ(y)− q

∫
d3yψ†(y)ψ(x)ψ(y)

= qψ(x) +Qψ(x)

Qψ†(x) = q

∫
d3yψ†(y)ψ(y)ψ†(x)

= q

∫
d3yψ†(y)δ3(x− y) + q

∫
d3yψ†(x)ψ†(y)ψ(y)

= qψ†(x) + ψ†(x)Q

Therefore,

[Q,ψ] = −qψ,
[
Q,ψ†] = qψ†. (C.7)

If it is assumed that |ψ⟩ = ψ† |0⟩ and
∣∣ψ〉 = ψ |0⟩,

Q |ψ⟩ = Qψ† |0⟩ =
(
qψ† + ψ†Q

)
|0⟩ = qψ† |0⟩ = q |ψ⟩

Q
∣∣ψ〉 = Qψ |0⟩ = (−qψ + ψQ) |0⟩ = −qψ |0⟩ = −q |ψ⟩

It can be seen that Q has eigenvalues of opposite sign for particles and antiparticles. So, Q

applied to a particle system measures the total charge

Q = q
(
Nψ −Nψ

)
. (C.8)
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Appendix D

Flavor Symmetries

D.1 Isospin Symmetry SU(2)

Historically, Heisenberg (1932) [50] implemented the idea of considering the proton and neutron

as states of the same particle, the nucleon.

In this way, p =
∣∣ 1
2

1
2

〉
and n =

∣∣ 1
2 − 1

2

〉
, or p = (1 0)T and n = (0 1)T in an isospin space

with the usual SU(2) transformations in which strong force is conserved. If we put them

together to form a composite particle, we have to add their spins.

In the same foot, if we consider another isodoublet (u d)T or anti-isodoublet (−d̄ ū)[1],

with u =
∣∣ 1
2

1
2

〉
, d =

∣∣ 1
2 − 1

2

〉
, ū =

∣∣ 1
2 − 1

2

〉
and d̄ = −

∣∣ 1
2

1
2

〉
. From the Clebsch-Gordan table, we

get composite representations constituted by an isospin-1 triplet (symmetric) and an isospin-0

singlet (antisymmetric).

∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉
= |1 1⟩∣∣ 1

2
1
2

〉 ∣∣ 1
2 − 1

2

〉
= 1√

2
|1 0⟩+ 1√

2
|0 0⟩∣∣ 1

2 − 1
2

〉 ∣∣ 1
2

1
2

〉
= 1√

2
|1 0⟩ − 1√

2
|0 0⟩∣∣ 1

2 − 1
2

〉 ∣∣ 1
2 − 1

2

〉
= |1 − 1⟩



|1 1⟩ =
∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉
|1 0⟩ = 1√

2

(∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉
+
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉)
|1 − 1⟩ =

∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉

|0 0⟩ = 1√
2

(∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉
−
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉)
(D.1)

[1]See Halzen, F. and Martin, A. D. (1984) Quarks and Leptons, p.42
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D.1. Isospin Symmetry SU(2)

Evidently, the triplet and the singlet shown are gotten from 2⊗ 2 = 3⊕ 1. In the "up-down"

representation, we obtain the isotriplet of pions (π+ π0 π−)T and the isosinglet ω,

|1 1⟩ = π+ =− ud̄

|1 0⟩ = π0[2] = (uū− dd̄)/
√
2

|1 − 1⟩ = π− = dū

|0 0⟩ = ω = (uū+ dd̄)/
√
2

(D.2)

If we want to add one more isodoublet ro form some baryon quartet, we may perform

2⊗ 2⊗ 2 = (3⊕ 1)⊗ 2 = 4⊕ 2⊕ 2. Again, from C-G table:

|1 1⟩
∣∣ 1
2

1
2

〉
=

∣∣ 3
2

3
2

〉
|1 1⟩

∣∣ 1
2 − 1

2

〉
= 1√

3

∣∣ 3
2

1
2

〉
+
√

2
3

∣∣ 1
2

1
2

〉
|1 0⟩

∣∣ 1
2

1
2

〉
=

√
2
3

∣∣ 3
2

1
2

〉
− 1√

3

∣∣ 1
2

1
2

〉
|1 0⟩

∣∣ 1
2 − 1

2

〉
=

√
2
3

∣∣ 3
2 − 1

2

〉
+ 1√

3

∣∣ 1
2 − 1

2

〉
|1 − 1⟩

∣∣ 1
2

1
2

〉
= 1√

3

∣∣ 3
2 − 1

2

〉
−
√

2
3

∣∣ 1
2 − 1

2

〉
|1 − 1⟩

∣∣ 1
2 − 1

2

〉
=

∣∣ 3
2 − 3

2

〉
|0 0⟩

∣∣ 1
2

1
2

〉
=

∣∣ 1
2

1
2

〉
|0 0⟩

∣∣ 1
2 − 1

2

〉
=

∣∣ 1
2 − 1

2

〉
[2]This combination also get ρ0.
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Chapter D. Flavor Symmetries

Solving, we have one quartet and two doublets:

∣∣ 3
2

3
2

〉
=

∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉
∣∣ 3
2

1
2

〉
= 1√

3

(∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉
+
∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉
+
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉)
∣∣ 3
2 − 1

2

〉
= 1√

3

(∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉
+
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉
+
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉)
∣∣ 3
2 − 3

2

〉
=

∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉
∣∣ 1
2

1
2

〉
=

√
2
3

∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉
− 1√

6

(∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉
+
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉)∣∣ 1
2 − 1

2

〉
= 1√

6

(∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉
+
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉)
−
√

2
3

∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉
∣∣ 1
2

1
2

〉
= 1√

2

(∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉
−
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2

1
2

〉)
∣∣ 1
2 − 1

2

〉
= 1√

2

(∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉 ∣∣ 1
2 − 1

2

〉
−
∣∣ 1
2 − 1

2

〉 ∣∣ 1
2

1
2

〉 ∣∣ 1
2 − 1

2

〉)
(D.3)

In the "up-down" representation for the quartet, we obtain the ∆-baryon quartet

∣∣∣∣32 3

2

〉
= ∆++ = uuu∣∣∣∣32 1

2

〉
= ∆+ =

1√
3
(uud+ udu+ duu)∣∣∣∣32 − 1

2

〉
= ∆0 =

1√
3
(udd+ dud+ ddu)∣∣∣∣32 − 3

2

〉
= ∆− = ddd

(D.4)

74



Appendix E

Electric charge and gauge coupling

constants

E.1 Standard Model 321 symmetry

In SM, gauge coupling constants are related with electric charge since the SSM SU(2)L ⊗ U(1)Y

turn into U(1) including their respective coupling constants.

One way to achieve this is comparing the coefficients of known interactions with their

QED counterparts where the electric charge appears everywhere.

When the derivatives of Higgs sector are developed with Y (Φ) = +1 and ⟨Φ⟩0 =

 0

v√
2


taking into account the neutral field interactions only,

[DµΦ]
†
[DµΦ] =

[(
∂µ + igLW

µj σj
2

+ igY
Y

2
Bµ
)
Φ

]† [(
∂µ + igLWµj

σj
2

+ igY
Y

2
Bµ

)
Φ

]
= . . .

g2L
4

(
Wµ
j

σj
2
Φ
)† (

Wµj
σj
2
Φ
)
+
gLgY
4

[(
Wµ
j

σj
2

)†
(BµΦ) + (BµΦ)

†
(
Wµ
j

σj
2

)]
+
g2Y
4

(BµΦ)
†
(BµΦ)

= . . .
g2Lv

2

8

(
Wµ+W−

µ +Wµ
3 W3µ

)
− gLgY v

2

8
BµW3µ − gLgY v

2

8
Wµ

3 Bµ +
g2Y v

2

8
BµBµ

= . . .
g2Lv

2

8
Wµ+W−

µ +
v2

8

(
Wµ

3 Bµ
) g2L −gLgY

−gLgY g2Y

W3µ

Bµ

 .

(E.1)
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Chapter E. Electric charge and gauge coupling constants

On the penultimate line the vev of Φ was applied and in the last line the central matrix

must be diagonal in order to get the mass terms for Wµ
3 and Bµ. This means that these gauge

bosons are not physical ones.

The mass for charged W boson is MW =
gLv

2
and for the neutral ones, the symmetric

matrix can be diagonalized by an orthogonal matrix

cos θW − sin θW

sin θW cos θW

, where θW is called

weak mixing or Weinberg angle. The resulting mass eigenvectors are

W3µ

Bµ

→

Zµ
Aµ

 =

W3µ cos θW −Bµ sin θW

W3µ sin θW +Bµ cos θW

 , (E.2)

with tan θW = gY
gL

. The corresponding mass eigenvalues are

MZ =
v

2

√
g2L + g2Y , MA = 0 (E.3)

For the charged gauge bosons, let us take into account only the W+
µ and W−

µ interactions

in (E.1),

[DµΦ]
†
[DµΦ] = . . .

g2L
4

(
Wµ
j

σj
2
Φ
)† (

Wµj σj
2
Φ
)
= . . .

g2Lv
2

8
Wµ+W−

µ . (E.4)

In this case, the mass term has been obtained directly and MW = gLv
2 . Then the W/Z mass

ratio is
M2
W

M2
Z

=
g2L

g2L + g2Y
= cos2 θW . (E.5)

In order to get the electric charge, we may find the QED interaction term between the left

electromagnetic current for electrons and photon e(eLγ
µeL)Aµ. The left-handed doublet has

Y (L) = −1 and the right-handed singlet Y (R) = −2 for R = e in the leptonic sector,

i
[
Ll /DLl +Rl /DRl

]
= i
[
Lγµ

(
∂µ + igLWµj

σj
2

− i
gY
2
Bµ

)
L+ eRγ

µ
(
∂µ + igLWµj

σj
2

− igYBµ

)
eR

]
= . . .

gL
2
eLγ

µeLW3µ +
gY
2
eLγ

µeLBµ +
gY
2
eRγ

µeRBµ

= . . .
gL
2
eLγ

µeL (cos θWZµ + sin θWAµ) +
gY
2
eLγ

µeL (− sin θWZµ + cos θWAµ)

= . . .
(gL

2
sin θW +

gY
2

cos θ
)
eLγ

µeLAµ.

(E.6)

The coefficient in the last line is the electric charge e = gL
2 sin θW + gY

2 cos θW . Since tan θW = gY
gL

,

then

e = gY cos θW = gL sin θW . (E.7)
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E.2. Extension: 331 symmetry

From the last relation,

e =
gY gL√
g2Y + g2L

→ 1

e2
=

1

g2L
+

1

g2Y
(E.8)

E.2 Extension: 331 symmetry

As in the SM we can write the covariant derivative for triplets,

DµΦi = ∂µΦi +
ig3L
2


W3µ + 1√

3
W8µ W1µ − iW2µ W4µ − iW5µ

W1µ + iW2µ −W3µ + 1√
3
W8µ W6µ − iW7µ

W4µ + iW5µ W6µ + iW7µ − 2√
3
W8µ

Φi + igNBµNΦi
Φi, (E.9)

where Φ1 = η,Φ2 = ρ,Φ3 = χ; and hypercharges NΦi
are defined in

The eigenstates for the charged (complex) vector bosons are,

W+
µ =

1√
2
(W1µ − iW2µ) , V

+
µ =

1√
2
(W4µ + iW5µ) , U

++
µ =

1√
2
(W6µ + iW7µ) . (E.10)

Then, the vector boson matrix is

W̃µ =


W3µ

2 +
W8µ

2
√
3

W+
µ√
2

V −
µ√
2

W−
µ√
2

−W3µ

2 +
W8µ

2
√
3

U−−
√
2

V +
µ√
2

U++
√
2

−W8µ√
3

 .

Let us build up the vector boson mass matrix. For η ∼ (3L, 0) and ⟨η⟩0 =
(
vη 0 0

)T
,

[Dµη]
†
[Dµη] =

[(
∂µ + ig3LW

µjTj
)
η
]†

[(∂µ + ig3LWµjTj) η]

= . . . g23L
(
Wµ
j Tjη

)†
(WµjTjη)

= . . .
g23Lv

2
η

4

(
Wµ

3 W3µ +Wµ
3

W8µ√
3

+
Wµ

8√
3
W3µ +

Wµ
8√
3

W8µ√
3

)
+
g23Lv

2
η

2

(
Wµ+W−

µ + V µ−V +
µ

)

= . . .+
g23Lv

2
η

4

(
Wµ

3 Wµ
8 Bµ

)


1 1√
3

0

1√
3

1
3 0

0 0 0



W3µ

W8µ

Bµ

+
g23Lv

2
η

2

(
Wµ+W−

µ + V µ−V +
µ

)
.

(E.11)
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Chapter E. Electric charge and gauge coupling constants

For ρ ∼ (3L,+1) and ⟨ρ⟩0 =
(
0 vρ 0

)T
,

[Dµρ]
†
[Dµρ] =

[(
∂µ + ig3LW

µjTj + igNB
µ
)
ρ
]†
[(∂µ + ig3LWµjTj + igNBµ) ρ]

= . . . g23L
(
Wµ
j Tjρ

)†
(WµjTjρ) + g3LgN

[(
Wµ
j Tjρ

)†
(Bµρ) + (Bµρ)

†
(WµjTjρ)

]
+ g2N (Bµρ)

†
(Bµρ)

= . . .
g23Lv

2
ρ

4

(
Wµ

3 W3µ −Wµ
3

W8µ√
3

− Wµ
8√
3
W3µ +

Wµ
8√
3

W8µ√
3

)
+
g23Lv

2
ρ

2

(
Wµ+W−

µ + Uµ++U−−
µ

)
+
g3LgNv

2
ρ

2

(
−Wµ

3 Bµ +
Wµ

8√
3
Bµ −BµW3µ +Bµ

W8µ√
3

)
+
g2N
2
v2ρ (B

µBµ)

= . . .
g23Lv

2
ρ

4

(
Wµ

3 Wµ
8 Bµ

)


1 − 1√
3

−2t

− 1√
3

1
3

2t√
3

−2t 2t√
3

4t2



W3µ

W8µ

Bµ

+
g23Lv

2
ρ

2

(
Wµ+W−

µ + Uµ++U−−
µ

)
,

(E.12)

where t = gN
g3L

.

For χ ∼ (3L,−1) and ⟨χ⟩0 =
(
vχ 0 0

)T
,

[Dµχ]
†
[Dµχ] =

[(
∂µ + ig3LW

µjTj − igNB
µ
)
χ
]†

[(∂µ + ig3LWµjTj − igNBµ)χ]

= . . . g23L
(
Wµ
j Tjχ

)†
(WµjTjχ)− g3LgN

[(
Wµ
j Tjχ

)†
(Bµχ) + (Bµρ)

†
(WµjTjχ)

]
+ g2N (Bµχ)

†
(Bµχ)

= . . . g23Lv
2
χ

(
Wµ

8√
3

W8µ√
3

)
+
g3LgNv

2
χ

2

(
Wµ

8√
3
Bµ +Bµ

W8µ√
3

)
+
g2Nv

2
χ

2
(BµBµ)

+
g23Lv

2
χ

2

(
V µ+V −

µ + Uµ++U−−
µ

)

= . . .
g23Lv

2
χ

4

(
Wµ

3 Wµ
8 Bµ

)

0 0 0

0 4
3

4t√
3

0 4t√
3

4t2



W3µ

W8µ

Bµ

+
g23Lv

2
χ

2

(
V µ+V −

µ + Uµ++U−−
µ

)
.

(E.13)
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For the sextet S ∼ (6L, 0) and ⟨S⟩0 = 1√
2


v1 0 0

0 0 v2

0 v2 2

,

Tr
[
(DµS)

†
(DµS)

]
= Tr

[
∂µS + ig3L

(
Wµ
j TjS + SWµ

j Tj
)]† [

∂µS + ig3L
(
Wµ
j TjS + SWµ

j Tj
)]

= . . . g23L

[(
Wµ
j TjS

)†
(WµjTjS) +

(
Wµ
j TjS

)†
(SWµjTj) +

(
SWµ

j Tj
)†

(WµjTjS) +
(
SWµ

j Tj
)†

(SWµjTj)
]

= . . .
g23L
4

(2v21 + v22)

(
Wµ

8√
3
W3µ +

Wµ
8√
3

Wµ
8√
3
+Wµ

3 W3µ +Wµ
3

Wµ
8√
3

)
+
g23L
2

[(
v21 + v22

) (
Wµ+W−

µ + V µ+V −
µ

)
+ 2v22U

µ++U−−
µ + 2v1v2

(
Wµ+V −

µ + V µ+W−
µ

)]

= . . .
g23L(2v

2
1 + v22)

4

(
Wµ

3 Wµ
8 Bµ

)


1 1√
3

0

1√
3

1
3 0

0 0 0



W3µ

W8µ

Bµ



+
g23L
2

(
Wµ+ V µ+ Uµ++

)

v21 + v22 2v1v2 0

2v1v2 v21 + v22 0

0 0 2v22



W−
µ

V −
µ

U−−
µ

 .

(E.14)

Let us notice that in order to avoid mixing among the charged bosons, we may consider v1 = 0.

Moreover, this value is related with Majorana mass terms for neutrinos. In this way, the mass

matrix of the charged bosons MC , in the base
(
Wµ Vµ Uµ

)
is

M2
C =

g23L
2


v2η + v2ρ + v22 0 0

0 v2η + v2χ + v22 0

0 0 v2ρ + v2χ + 2v22

 , (E.15)

Then, masses of the charged bosons are

M2
W =

g23L
2

(
v2η + v2ρ + v22

)
, M2

V =
g23L
2

(
v2η + v2χ + v22

)
, M2

U =
g23L
2

(
v2ρ + v2χ + 2v22

)
. (E.16)

The mass matrix of neutral bosons in the base
(
W3µ W8µ Bµ

)
is

M2
N =

g23L
2


v2η + v2ρ + v22

1√
3
(v2η − v2ρ + v22) −2tv2ρ

1√
3
(v2η − v2ρ + v22)

1
3 (v

2
η + v2ρ + 4v2χ + v22)

2t√
3
(v2ρ + 2v2χ)

−2tv2ρ
2t√
3
(v2ρ + 2v2χ) 4t2(v2ρ + v2χ)

 . (E.17)
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The mass eigenvalues are,

MA = 0,

M2
Z =

g23L
3

[
v2η + (1 + 3t2)v2ρ + (1 + 3t2)v2χ + v22 −

√
∆
]
,

M2
Z′ =

g23L
3

[
v2η + (1 + 3t2)v2ρ + (1 + 3t2)v2χ + v22 +

√
∆
]
,

(E.18)

where,

∆ = v4η + (1 + 3t2)2v4ρ + (18t4 − 1)v2ρv
2
χ + (1 + 3t2)2v4χ − (1 + 6t2)(v2η + v22)(v

2
ρ + v2χ) + v22(v

2
2 + 2v2η).

Now, it can be state that vχ ≫ vη,ρ,2 to define the V and U masses very large. Then using
√
1 + x ≈ 1 + x

2 for |x| ≪ 1,

√
∆ ≈ v2χ(1 + 3t2)

√
1 +

[
18t4 − 1

(1 + 3t2)2

]
v2ρ
v2χ

−
[

1 + 6t2

(1 + 3t2)2

](
v2η + v22
v2χ

)
≈ (1 + 3t2)v2χ +

(
18t4 − 1

1 + 3t2

)
v2ρ
2

−
(
1 + 6t2

1 + 3t2

)
v2η + v22

2
.

(E.19)

Then, neutral bosons have the following masses

MA = 0, M2
Z ≈ g23L

2

(
1 + 4t2

1 + 3t2

)
(v2η + v2ρ + v22), M

2
Z′ ≈

2g23L
3

(
1 + 3t2

)
v2χ. (E.20)

The W/Z mass ratio compared with (1.35) allows us to obtain the t = gN
g3L

value.

M2
W

M2
Z

=
1 + 3t2

1 + 4t2
= cos2 θW , (E.21)

then the value of t is known,

t2 =
sin2 θW

1− 4 sin2 θW
. (E.22)

Let us go back to the matrix analysis in (E.17) with the same assumptions vχ ≫ vη,ρ,2. The

eigenvectors are
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VA =


t

−
√
3t

1

 ,

VZ =


3t2(v2ηv

2
ρ+v

2
ηv

2
χ+v

2
ρv

2
χ+v

2
2v

2
ρ−v

4
ρ+v

2
2v

2
χ)+

√
∆(v2η+v

2
ρ+v

2
2)+v

2
ηv

2
χ−2v22v

2
η−v

4
η+v

2
ρv

2
χ−v

4
ρ+v

2
2v

2
χ−v

4
2

2t(3t2v2ρv2χ+3t2v4ρ−
√
∆v2ρ−v2ηv2χ+v4ρ−v22v2χ)

3t2(v2ηv
2
ρ+v

2
ηv

2
χ+3v2ρv

2
χ+v

2
2v

2
ρ+v

4
ρ+v

2
2v

2
χ)+

√
∆(v2η−v

2
ρ+v

2
2)−v

2
ηv

2
χ−2v22v

2
η−v

4
η+v

2
ρv

2
χ+v

4
ρ−v

2
2v

2
χ−v

4
2

2
√
3t(3t2v2ρv2χ+3t2v4ρ−

√
∆v2ρ−v2ηv2χ+v4ρ−v22v2χ)

1

 ,

VZ′ =


−−3t2(v2ηv

2
ρ+v

2
ηv

2
χ+v

2
ρv

2
χ+v

2
2v

2
ρ−v

4
ρ+v

2
2v

2
χ)+

√
∆(v2η+v

2
ρ+v

2
2)−v

2
ηv

2
χ+2v22v

2
η+v

4
η−v

2
ρv

2
χ+v

4
ρ−v

2
2v

2
χ+v

4
2

2t(3t2v2ρv2χ+3t2v4ρ+
√
∆v2ρ−v2ηv2χ+v4ρ−v22v2χ)

−−3t2(v2ηv
2
ρ+v

2
ηv

2
χ+3v2ρv

2
χ+v

2
2v

2
ρ+v

4
ρ+v

2
2v

2
χ)+

√
∆(v2η−v

2
ρ+v

2
2)+v

2
ηv

2
χ+2v22v

2
η+v

4
η−v

2
ρv

2
χ−v

4
ρ+v

2
2v

2
χ+v

4
2

2
√
3t(3t2v2ρv2χ+3t2v4ρ+

√
∆v2ρ−v2ηv2χ+v4ρ−v22v2χ)

1

 .

Now, the approximation for
√
∆ computed in (E.19) can be used as well as a simple

normalization,

VA =
1√

1 + 4t2


t

−
√
3t

1

 , VZ ≈ 1√
1 + 4t2


√
1 + 3t2

√
3t2√

1+3t2

− t√
1+3t2

 , VZ′ ≈ 1√
1 + 3t2


0

1
√
3t

 . (E.23)

So, the mass eigenstates for the neutral vector bosons are

Aµ =
1√

1 + 4t2

[(
Wµ

3 −
√
3Wµ

8

)
t+Bµ

]
Zµ ≈ 1√

1 + 4t2

(√
1 + 3t2Wµ

3 +

√
3t2√

1 + 3t2
Wµ

8 − t√
1 + 3t2

Bµ

)

Zµ
′
≈ 1√

1 + 3t2

(
Wµ

8 +
√
3tBµ

) (E.24)
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Solving for the gauge bosons:

W3µ ≈ 1√
1 + 4t2

(
Aµt+ Zµ

√
1 + 3t2

)
W8µ ≈ 1√

1 + 3t2

(
−Aµt

√
3 + 9t2

1 + 4t2
+ Zµt

2

√
3

1 + 4t2
+ Z ′

µ

)

Bµ ≈ 1√
1 + 4t2

(
Aµ − Zµt

√
1

1 + 3t2
+ Z ′

µt

√
3 + 12t2

1 + 3t2

) (E.25)

As in the SM case, we want to get the electromagnetic current from the breakdown of the

leptonic sector,

i
[
Ll /DLl

]
= i
[
Lγµ (∂µ + ig3LWµjTj)L

]
= . . .− g3L

2
eLγ

µ

(
−W3µ +

W8µ√
3

)
eL + . . .

= . . .− g3L
2
eLγ

µ

(
− Aµt√

1 + 4t2
− Aµt√

1 + 4t2
+ . . .

)
eL + . . .

= . . .+ g3LeLγ
µ

(
t√

1 + 4t2

)
AµeL + . . . .

(E.26)

If we define t = tan θ, then the relation between electric charge and couplings are

e = g3L

(
t√

1 + 4t2

)
=

g3L sin θ√
1 + 3 sin2 θ

=
gN cos θ√
1 + 3 sin2 θ

(E.27)

From the last equation,

e =
gNg3L√
g23L + 4g2N

→ 1

e2
=

4

g23L
+

1

g2N
(E.28)

E.3 Extension: 221-LR symmetry

Using the same logic as the previous cases, in this symmetry the covariant derivative for scalar

triplets are

Dµ∆L,R = ∂µ∆L,R + ig
[
W̃µL,R,∆L,R

]
+ igBL∆L,R, (E.29)

where it has been used gL = gR = g and the hypercharge B − L = +2 which was defined in the

Lagrangian due to the lepton couplings.

The eigenstates for the charged (complex) vector bosons are W±
µL,R =

[
1√
2
(W1µ ∓ iW2µ)

]
L,R
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E.3. Extension: 221-LR symmetry

and the vector boson matrix is

W̃µL,R =


W3µ

2

W+
µ√
2

W−
µ√
2

−W3µ

2


L,R

.

The vector boson mass matrices are built from

Tr
[
(Dµ∆L)

†
(Dµ∆L)

]
+Tr

[
(Dµ∆R)

†
(Dµ∆R)

]
,

with the vev’s defined as [43]

⟨∆L,R⟩0 =
1√
2

 0 0

vL,R 0

 , and ⟨Φ⟩0 =
1√
2

k 0

0 k′

 . (E.30)

For ∆a, a = L,R the commutator
[
W̃µa,∆a

]
=
va
2

 W+
µ 0

− 2√
2
W3µ −W+

µ

, then

Tr
[
(Dµ∆a)

†
(Dµ∆a)

]
= . . .Tr

{(
∂µ∆a + ig

[
W̃µ,∆a

]
+ igBµ∆a

)† (
∂µ∆a + ig

[
W̃µ,∆a

]
+ igBµ∆a

)}
= . . .

g2v2a
2

(
W−
aµW

µ+
a +W3aµW

µ
3a

)
− g gBLv

2
a

2
(W3aµB

µ +BµW
µ
3a) +

g2BLv
2
a

2
BµB

µ

= . . .
(
W3µL W3µR Bµ

)


1
2g

2v2L 0 − 1
2g gBLv

2
L

0 1
2g

2v2R − 1
2g gBLv

2
R

− 1
2g gBLv

2
L − 1

2g gBLv
2
R

1
2g

2
BL(v

2
L + v2R)



Wµ

3L

Wµ
3R

Bµ



+
(
W−
µL W−

µR

) 1
2g

2v2L 0

0 1
2g

2v2R


W+

µL

W+
µR

 .

(E.31)

The covariant derivative for the bidoublet is

DµΦ = ∂Φ + ig
(
W̃µLΦ− ΦW̃µR

)
, (E.32)
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then

Tr
[
(DµΦ)

†
(DµΦ)

]
= (∂µΦ)

†
(∂µΦ) + . . .

g2 Tr


 k

2
√
2
(W3µL −W3µR)

k
2W

+
µL − k

2

′
W+
µR

k
2

′
W−
µL − k

2W
−
µR − k′

2
√
2
(W3µL −W3µR)

 k
2
√
2
(Wµ

3L −Wµ
3R)

k
2

′
Wµ+
L − k

2W
µ+
R

k
2W

µ−
L − k′

2 W
µ−
R − k′

2
√
2
(Wµ

3L −Wµ
3R)


= . . . g2

[
k2

8
(W3µLW

µ
3L −W3µLW

µ
3R −W3µRW

µ
3L +W3µRW

µ
3R) +

k2

4
W+
µLW

µ−
R − kk′

4
W+
µLW

µ−
R

−kk
′

4
W+
µRW

µ−
L +

k′2

4
W−
µLW

µ+
L − kk′

4
W−
µLW

µ+
R − kk′

4
W−
µRW

µ+
L +

k2

4
W−
µRW

µ+
R

+
k′2

8
(W3µLW

µ
3L −W3µLW

µ
3R −W3µRW

µ
3L +W3µRW

µ
3R)

]

= . . .
(
W3µL W3µR Bµ

)


1
8g

2(k2 + k′2) − 1
8g

2(k2 + k′2) 0

− 1
8g

2(k2 + k′2) 1
8g

2(k2 + k′2) 0

0 0 0



Wµ

3L

Wµ
3R

Bµ



+
(
W−
µL W−

µR

) g2

4 (k2 + k′2) − g2

2 kk
′

− g2

2 kk
′ g2

4 (k2 + k′2)


W+

µL

W+
µR

 .

(E.33)

The mass matrix of charged vector bosons in the base
(
W−
µL W−

µR

)
is

M2
C =

g2

4

2v2L + k2 + k′2 −2kk′

−2kk′ 2v2R + k2 + k′2

 , (E.34)

and the eigenvalues are

M2
1,2 =

g2

4

(
k2 + k′2 + v2L + v2R ∓

√
(v2R − v2L)

2 + 4k2k′2
)
. (E.35)

These eigenvalues are related with the mass eigenstates. Assuming vR ≫ k, k′ ≫ vL, and

k2+ ≡ k2 + k′2

M2
W1

=
g2

4

[
k2+ + v2R

(
1 +

v2L
v2R

)
− v2R

√
1− 2

v2L
v2R

+
v4L
v4R

+ 4
k2k′2

v4R

]

≈ g2

4

[
k2+ + v2R − v2R

√
1 + 4

k2k′2

v4R

]

≈ g2

4

[
k2+ + v2R − v2R

(
1 + 2

k2k′2

v4R

)]
≈ g2

4
k2+

(
1− 2

k2k′2

v2Rk
2
+

)
(E.36)
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M2
W2

=
g2

4

[
k2+ + v2R

(
1 +

v2L
v2R

)
+ v2R

√
1− 2

v2L
v2R

+
v4L
v4R

+ 4
k2k′2

v4R

]

≈ g2

4

[
k2+ + v2R + v2R

√
1 + 4

k2k′2

v4R

]

≈ g2

4
v2R

[
2 +

k2+
v2R

+ 2
k2

v2R

k′2

v2R

]
≈ g2

2
v2R

(
1 +

k2+
2v2R

)
(E.37)

The mass matrix for neutral bosons in the base
(
W3µL W3µR Bµ

)
is

M2
N =


1
4g

2(4v2L + k2+) − 1
4g

2k2+ −ggBLv2L

− 1
4g

2k2+
1
4g

2(v+Rk
2
+) −ggBLv2R

−ggBLv2L −ggBLv2R g2BL(v
2
L + v2R),

 (E.38)

where k2+ = k2 + k′2.

The mass eigenvalues in the vL → 0 limit for Z1 and Z2 (for A is exact) is

MA = 0 (E.39)

M2
Z1

=
1

4

[
g2k2+ + 2v2R(g

2 + g2BL)−
√
g4k4+ + 4v4R(g

2 + g2BL)
2 − 4k2+v

2
Rg

2g2BL

]
=

1

4

[
g2k2+ + 2v2R(g

2 + g2BL)− 2v2R(g
2 + g2BL)

√
1 +

g4k4+
4v4R(g

2 + g2BL)
2
−

g2g2BLk
2
+

v2R(k
2
+v

2
R)

2

]

≈ 1

4

[
g2k2+ + 2v2R(g

2 + g2BL)− 2v2R(g
2 + g2BL)

(
1−

g2g2BLk
2
+

2v2R(g
2 + g2BL)

2
+
g6k4+(g

2 + 2g2BL)

8v4R(g
2 + g2BL)

4

)]
=

1

4

[
g2k2+ + 2v2R(g

2 + g2BL)

(
g2g2BLk

2
+

2v2R(g
2 + g2BL)

2
−
g6k4+(g

2 + 2g2BL)

8v4R(g
2 + g2BL)

4

)]
=

1

4

[
g2k2+ + k2+g

2

(
g2BL

g2 + g2BL
−
g4k2+(g

2 + 2g2BL)

4v4R(g
2 + g2BL)

3

)]
=
g2k2+
4

[
g2 + 2g2BL
g2 + g2BL

−
g4k2+
4v2R

g2 + 2g2BL
(g2 + g2BL)

3

]
=
g2k2+
4

(
g2 + 2g2BL
g2 + g2BL

)[
1−

k2+
4v2R

(
g4

(g2 + g2BL)
2

)]
=

g2k2+
4 cos2 θ

(
1−

k2+
4v2R cos4 θBL

)
,

(E.40)

where the phases θ and θBL are defined as

sin θ =
gBL√

g2 + 2g2BL
, and sin θBL =

gBL√
g2 + g2BL

(E.41)
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The third mass eigenvalue is:

M2
Z2

=
1

4

[
g2k2+ + 2v2R(g

2 + g2BL) +
√
g4k4+ + 4v4R(g

2 + g2BL)
2 − 4k2+v

2
Rg

2g2BL

]
=

1

4

[
g2k2+ + 2v2R(g

2 + g2BL) + 2v2R(g
2 + g2BL)

√
1 +

g4k4+
4v4R(g

2 + g2BL)
2
−

g2g2BLk
2
+

v2R(k
2
+v

2
R)

2

]

≈ 1

4

[
g2k2+ + 2v2R(g

2 + g2BL) + 2v2R(g
2 + g2BL)

(
1−

g2g2BLk
2
+

2v2R(g
2 + g2BL)

2
+
g6k4+(g

2 + 2g2BL)

8v4R(g
2 + g2BL)

4

)]
=

1

4

[
g2k2+ + 2v2R(g

2 + g2BL)

(
2−

g2g2BLk
2
+

2v2R(g
2 + g2BL)

2
+
g6k4+(g

2 + 2g2BL)

8v4R(g
2 + g2BL)

4

)]
=

1

4

[
4v2R(g

2 + g2BL) + g2k2+

(
1− g2BL

g2 + g2BL

)]
= v2R(g

2 + g2BL)

[
1 +

k2+ cos4 θBL

4v2R

]

(E.42)

The mass eigenstates must include those of the SM, en this sense we may relate W1 →W

and Z1 → Z. Also, we obtained new vector bosons that may be associated to very large masses

in comparison to SM ones, W2 →WR and Z2 → Z ′.

Then the mass ratio for the known SM vector bosons, equating (E.5) with (E.36) and

(E.40),

M2
W

M2
Z

SM
=

g2

g2 + g2Y

LR
≈

g2k2+
4

g2k2+
4 cos2 θ

= cos2 θ. (E.43)

Then cos2 θW = cos2 θ, that is

g2

g2 + g2Y
=

g2 + g2BL
g2 + 2g2BL

⇒ 1

g2Y
=

1

g2
+

1

g2BL
. (E.44)

Finally, from (E.8),
1

e2
≈ 2

g2
+

1

g2BL
(E.45)
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Appendix F

Covariant derivative in SU(N)

All things we are going to show are based on the requirement that the covariant derivative

must transform like the field it acts to.

Φ → Φ′ = UΦ ⇒ DµΦ → (DµΦ)
′
= UDµΦ, (F.1)

where U is the matrix transformation (or scalar in the Abelian case) for the corresponding Lie

group.

F.1 Abelian case

ϕ′ =eigθ(x)ϕ

(Dµϕ)
′
=eigθ(x)Dµϕ,

(F.2)

where θ(x) is a real function. It is easy to show that the requirement is achieved with:

Dµϕ = ∂µϕ+ igAµϕ, and A′
µ = Aµ − ∂µθ(x), (F.3)

being Aµ its corresponding gauge field.

In the infinitesimal version, for small θ → δθ then ϕ→ (1 + igδθ)ϕ,

δϕ = igϕδθ, δDµϕ = igDµϕδθ, δAµ = −∂µ(δθ). (F.4)
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On the other hand, the antisymmetric electromagnetic field tensor Fµν ≡ ∂µAν − ∂νAµ is

gauge invariant,

δFµν = ∂µ(δAν)− ∂ν(δAµ) = −∂µ∂ν(δθ) + ∂ν∂µ(δθ) = 0.

The latter means that Fµνψ → (Fµνψ)
′ = U(Fµνψ) and the Kinetic term of the Lagrangian

for gauge bosons, − 1
4FµνF

µν , that contains a quadratic term in ∂µAν , is gauge invariant.

Besides, [Dµ, Dν ]ψ = [∂µ + igAµ, ∂ν + igAν ]ψ = ig ([∂µ, Aν ] + [Aµ, ∂ν ])ψ = igFµνψ. then,

Fµν = − i

g
[Dµ, Dν ], (F.5)

F.2 Non-Abelian case

F.2.1 Gauge transformation of fields in matrix representation

In the non-Abelian case, the transformations depend upon the representations; if the field has

a column representation: Φ → Φ′ = UΦ, or if it is row: Φ† → Φ′† = Φ†U†. Besides, there some

gauge invariants such as gµν → gµν and the scalar

(
Φ†Φ

)
→
(
Φ†Φ

)′
= Φ†Φ. (F.6)

For square matrices M1,2 that are coupled with fields in different ways,

(
Φ†M1Φ

)′
= Φ†U†M ′

1UΦ ⇒ M ′
1 = UM1U

† and M ′∗
1 = U∗M∗

1U
T ,(

ΦTM2Φ
)′

= ΦTUTM ′
2UΦ ⇒ M ′

2 = U∗M2U
† and M ′∗

2 = UM∗
2U

T .
(F.7)

F.2.2 Properties of the gauge covariant derivative

From the requirement raised at the beginning (DµΦ)
′ = D′

µΦ
′ = D′

µ(UΦ) → UDµΦ. Then

D′
µ = UDµU

† . (F.8)

In general, gauge covariant derivatives are defined to satisfy the Leibniz rule (the product
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rule) and to reduce to the ordinary partial derivative when applied to an invariant scalar object.

Dµ

(
Ψ†Φ

)
=
(
DµΨ

†)Φ+Ψ†DµΦ = ∂µ
(
Ψ†Φ

)
Dµ

(
Φ†Ψ

)
=
(
DµΦ

†)Ψ+Φ†DµΨ = ∂µ
(
Φ†Ψ

)
,

then Ψ† (DµΦ
†)† + (DµΨ)

†
Φ = Ψ† (DµΦ) + (DµΨ

†)Φ. In other words,

(
DµΦ

†)† = DµΦ or (DµΦ)
†
= DµΦ

†, (F.9)

and the same relation with Ψ.

The conjugate transpose commutes with the gauge covariant derivative. If F (Ψ) = Ψ† ⇒

[F,Dµ] = 0.

F.2.3 Construction of the gauge covariant derivative

Ansatz: Dµ = 1∂µ+igAµ; being Aµ → square matrix of the same dimension as the transformation

matrix U . Since the transformation is D′
µ = 1∂µ + igA′

µ = U (1∂µ + igAµ)U
†, then

A′
µ =

i

g
(∂µU)U† + UAµU

† (F.10)

Property: If there exists a field Bµ that commutes with U , then (Aµ + Bµ)
′ = i(∂µU)U† +

U(Aµ +Bµ)U
† = A′

µ which means that Bµ is a gauge invariant, Bµ → B′
µ = Bµ.

Also, we can clear the form of the covariant derivative for transpose conjugates DµΨ
† from

the requirement

∂µ(Ψ
†Φ) = Dµ(Ψ

†Φ) ⇒ (∂µΨ
†)Φ + Ψ†(∂µΦ) = (DµΨ

†)Φ + Ψ†(DµΦ)

= (DµΨ
†)Φ + Ψ†(∂µΦ+ igAµΦ)

⇒ (DµΨ
†)Φ = (∂µΨ

†)Φ− igΨ†AµΦ,

with which we obtain the covariant derivative for the fields Ψ†:

DµΨ
† = ∂µΨ

† − igΨ†Aµ or DµΨ
T = ∂µΨ

T + igΨTATµ . (F.11)

In order to be in accordance with (F.9),
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(DµΨ)† = Dµψ
† ⇒ (∂µΨ+ igAµΨ)† = ∂µΨ

† − igΨ†Aµ

⇒ A†
µ = Aµ .

(F.12)

Now, let be M1 = ΦΨ† and M2 = ΦΨT square matrices (outer product), with Φ′ = UΦ and

Ψ′ = VΨ, the transformations may be written down as M ′
1 → UM ′

1V
† and M ′

2 → UM ′
2V

T . Then,

Dµ(ΦΨ
†) =

(
∂µΦ+ igAUµΦ

)
Ψ† +Φ

(
∂µΨ

† − igΨ†AVµ
)
= ∂µ(ΦΨ

†) + ig
(
AUµΦΨ

† − ΦΨ†AVµ
)
,

Dµ(ΦΨ
T ) =

(
∂µΦ+ igAUµΦ

)
ΨT +Φ

(
∂µΨ

T + igΨTA∗U
µ

)
= ∂µ(ΦΨ

T ) + i{AUµΦΨT +ΦΨTA∗V
µ },

then,

DµM1 = ∂µM1 + ig
(
AUµM1 −M1A

V
µ

)
and DµM2 = ∂µM2 + ig{AUµM2 +M2A

∗V
µ } . (F.13)

Furthermore, if M1 = ΦΦ† then it is a Hermitian matrix that transforms as UM1U
†. In

the same way, if M2 = ΨΨT then it is a symmetric matrix and transformas as UM2U
T . Both

multiplets have their covariant derivatives as

DµM1 = ∂µM1 + ig
[
AUµ ,M1

]
and DµM2 = ∂µM2 + ig{AµM2 +M2A

∗
µ}. (F.14)
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