Universidad Nacional de Ingeniería

Facultad de Ingeniería Geológica Minera y Metalúrgica

TESIS

Evaluación geomecánica secuencial en zonas afectadas por estallido de rocas en mina Retamas

Para obtener el título profesional de Ingeniero Geólogo

Elaborado por

Yeltsin Steve Eulogio Huaman

D 0009-0006-9962-9117

Asesora

M.Sc. Graciela Gonzales Pacheco

(D) <u>0000-0001-7722-1299</u>

LIMA – PERÚ

Citar/How to cite	Eulogio Huaman [1]	
Referencia/Reference	[1] Y. Eulogio Huaman, "Evaluación geomecánica secuencial en zonas afectadas por estallido de rocas en mina Retamas" [Tesis	
Estilo/Style: IEEE (2020)	de pregrado]. Lima (Perú): Universidad Nacional de Ingeniería, 2024.	

Citar/How to cite	(Eulogio, 2024)
Referencia/Reference	Eulogio, Y. (2024). Evaluación geomecánica secuencial en zonas afectadas por estallido de rocas en mina Retamas. [Tesis de
Estilo/Style: APA (7ma ed.)	pregrado, Universidad Nacional de Ingeniería]. Repositorio institucional Cybertesis UNI.

Dedicatoria

Dedico este trabajo a las personas que más confiaron en mí, estos son mis padres Oscar y Vilma y mis hermanos Klitzing y Andrew.

Agradecimientos

A Osinergmin por permitir desarrollar este problema de la unidad minera que en un futuro servirá para hacer las cosas mucho mejor en cuanto al desarrollo de las fiscalizaciones por estallido de rocas.

De igual manera, a los ingenieros Hugo, Wilder y Eder por su apoyo constante en buscar el progreso de Osinergmin identificando este problema como uno esencial y de urgente solución.

A las Ing. Nora Revollé y Graciela Gonzales por las observaciones y recomendaciones realizadas durante el desarrollo y finalización del presente trabajo.

Resumen

El objetivo general fue determinar la variabilidad de la evaluación geomecánica secuencial de las zonas afectadas por estallido de rocas en la unidad minera Retamas.

La metodología utilizada de acuerdo con el tipo de investigación es descriptiva, de diseño descriptivo comparativo, con un enfoque cuantitativo, retrospectivo y longitudinal. La población es igual a la muestra y se constituye de 5 casos de estudio debido a eventos de estallido de rocas en la unidad minera Retamas entre los años 2018 al 2021. La técnica usada es de tipo análisis documental y como instrumento se utilizó la guía de análisis documental.

La conclusión principal fue que cada caso de estudio tiene una relación determinante respecto a la evaluación geomecánica de las labores afectadas por estallido de rocas en la unidad minera Retamas. Además, se planteó propuestas, siendo estas propuestas muy importantes para la disminución de accidentes y la obtención de mejoras en el control geomecánico de las labores motivos del caso de estudio.

Palabras Clave — eventos de estallido de rocas, evaluación geomecánica, accidentes de estallido de rocas, caracterización geomecánica

Abstract

The general objective was to determine the variability of the sequential geomechanical evaluation of the areas affected by rock bursts in the Retamas Mining Unit.

The methodology used according to the type of research is descriptive, with a comparative descriptive design, with a quantitative, retrospective, and longitudinal approach. The population is equal to the sample and is made up of 5 study cases due to rock burst events in the Retamas mining unit between 2018 and 2021. The technique used is documentary analysis, the analysis guide will be used as an instrument. documentary film.

The main conclusion was that each case study has a determining relationship with respect to the geomechanical evaluation of the works affected by rock bursts in the Retamas mining unit. In addition, proposals were raised, these proposals being very important for the reduction of accidents and obtaining improvements in the geomechanical control of the work that is the subject of the case study.

Keywords — rockburst events, geomechanical evaluation, rockburst accidents, geomechanical characterization

Tabla de Contenido

		Pág.
Resume	n	v
Abstract		vi
Introduce	ción	xii
Capítulo	I. Parte introductoria del trabajo	1
1.1	Ubicación y accesibilidad	1
1.2	Clima y vegetación	2
1.3	Descripción de la realidad problemática	2
1.4	Formulación del problema	4
1.4.1	Problema general	4
1.4.2	Problemas específicos	4
1.5	Objetivos	4
1.5.1	Objetivo general	4
1.5.2	Objetivos específicos	4
1.6	Hipótesis	5
1.6.1	Hipótesis general	5
1.6.2	Hipótesis específicas	5
1.7	Metodología del estudio	5
1.8	Antecedentes referenciales	5
1.8.1	Antecedentes internacionales	5
1.8.2	Antecedentes nacionales	7
Capítulo	II. Marcos teórico y conceptual	10
2.1.	Marco teórico	10
2.1.1	Estallido de rocas	10
2.1.2	Evaluación geomecánica	16
2.2	Marco conceptual	22
2.2.1	Monitoreo microsísmico	

2.2.2	Normas y reglamentaciones	. 23		
Capítulo I	II. Desarrollo del trabajo de investigación	. 25		
3.1.	Marco geológico	. 25		
3.1.1	Geología regional	. 25		
3.1.2	Geología local	. 28		
3.1.3	Geología estructural	. 32		
3.1.4	Geología económica	. 35		
3.2	Geomecánica	. 36		
3.3	Investigaciones geomecánicas	. 39		
3.3.1	Caso de estudio-evento 2018-1	. 40		
3.3.2	Casos de estudio-eventos 2019	. 51		
3.3.3	Caso de estudio-evento 2021-1	. 59		
3.3.4	Caso de estudio asociado al evento 2021-1	. 65		
Capítulo I	V. Análisis y discusión de resultados	. 81		
4.1	Análisis comparativo	. 81		
4.2	Discusión de resultados	. 83		
4.3	Propuesta de ingeniería	. 86		
Conclusic	ones	. 94		
Recomen	Recomendaciones			
Referenci	Referencias bibliográficas			
Anexos	Anexos			

Lista de Tablas

		Pág.
Tabla 1:	Vías de acceso importantes hacia la U.M. Retamas	1
Tabla 2:	Escala de peligro sísmico vs frecuencia de eventos por día	15
Tabla 3:	Descripción de las frecuencias de ocurrencias de eventos sísmicos	16
Tabla 4:	Sistemas de discontinuidades de estructuras mayores	36
Tabla 5:	Sistemas de discontinuidades de estructuras menores	37
Tabla 6:	Casos de estudio	40
Tabla 7:	Valor promedio de la calidad geomecánica para el granito	43
Tabla 8:	Valor promedio de la calidad geomecánica para la diorita	43
Tabla 9:	Propiedades mecánicas, físicas y elásticas a nivel de roca intacta	46
Tabla 10:	Propiedades de resistencia de la masa rocosa	46
Tabla 11:	Valor de RMR para el granito en la ubicación CC-40	49
Tabla 12:	Resumen de eventos de rockburst analizados del 2019	51
Tabla 13:	Clasificación geomecánica de la CHI 91280-10N Nv. 2270	52
Tabla 14:	Clasificación geomecánica del SN 2252-S Valeria IV Nv. 2220	55
Tabla 15:	Clasificación geomecánica del BP 10252-NW Valeria IV Nv. 2270	58
Tabla 16:	Valor promedio de la calidad geomecánica para el granito	62
Tabla 17:	Propiedades mecánicas, físicas y elásticas a nivel de roca intacta	63
Tabla 18:	Data de campo y laboratorio de la masa rocosa	72
Tabla 19:	Presupuesto de evaluación geomecánica en una unidad minera	87
Tabla 20:	Resumen de costos en la elaboración de guía	88
Tabla 21:	Resumen de costos directos por actividad	89
Tabla 22:	Resumen de costos indirectos	90
Tabla 23:	Cronograma de actividades	91

Lista de Figuras

	F	۶ág.
Figura 1:	Ubicación de la unidad de producción minera MARSA	1
Figura 2:	Vista panorámica de la producción minera MARSA	2
Figura 3:	Diseño para la toma de datos	. 17
Figura 4:	Plano geológico regional	. 26
Figura 5:	Columna estratigráfica regional	. 27
Figura 6:	Afloramiento de cuarcitas	. 28
Figura 7:	Plano y perfil geológico local	. 29
Figura 8:	Afloramiento y contacto de la Fm Contaya y Lavasen	. 30
Figura 9:	Sección tipo del yacimiento El Gigante	. 33
Figura 10:	Modelo estructural del yacimiento	. 35
Figura 11:	Cartilla de sostenimiento del GSI-RMR	. 38
Figura 12:	Análisis de cuñas de gal. 10163 S, sin sostenimiento	. 38
Figura 13:	Análisis de cuñas de gal. 10163 S, con sostenimiento	. 39
Figura 14:	Plano geológico de la labor GAL 10173-N Nv. 2270	. 41
Figura 15:	Plano de ubicación de la labor GAL 10173-N Nv. 2270	. 42
Figura 16:	Plano geomecánico de la GAL 10173-N	. 44
Figura 17:	Modelo geométrico para la simulación geomecánica	. 47
Figura 18:	Análisis tenso-deformación con sostenimiento	. 48
Figura 19:	Plano geomecánico GAL 10173-N rehabilitado, zona Valeria IV Nv. 2270.	. 50
Figura 20:	Labor GAL 10173-N (CC40) Nv.2270 zona Valeria IV	. 51
Figura 21:	Plano geológico de la CHI 91280-10N Valeria IV Nv. 2270	. 53
Figura 22:	Plano geomecánico de la CHI 91280-10N Valeria IV Nv. 2270	. 54
Figura 23:	Plano geológico del SN 2252-S Valeria IV Nv. 2220	. 55
Figura 24:	Plano geomecánico del SN 2252-S Valeria IV Nv. 2220	. 56
Figura 25:	Plano geológico del BP 10252-NW Valeria IV Nv. 2270	. 57
Figura 26:	Plano geomecánico del BP 10252-NW Valeria IV Nv. 2270	. 58

Figura 27:	Plano de ubicación del XC 10159-AN del Nv. 2270 6	0
Figura 28:	Plano geológico del XC 10159-AN del Nv. 22706	1
Figura 29:	Plano geomecánico del XC 10159-AN del Nv. 22706	2
Figura 30:	Estimación en RocData de las propiedades del granito6	4
Figura 31:	Estimación en RocData de las propiedades de la tonalita6	4
Figura 32:	Plano geológico de la RP Patrick-3 del Nv. 2270 6	6
Figura 33:	Plano de rehabilitación de labores visitadas6	7
Figura 34:	Cuadro de factor de competencia 6	8
Figura 35:	Estereograma de los esfuerzos S1, S2 y S3 de la RP Patrick-3 Nv. 2270 6	9
Figura 36:	Proyección estereográfica de la falla Los Loros y falla NW-37	1
Figura 37:	Roseta de diaclasas de la RP Patrick-3 Nivel 22707	1
Figura 38:	Labores de los Nv. 2295, 2270 y la RP Patrick-37	3
Figura 39:	F.S. de la sec. 01 del Nv. 2270 al 2320 sin considerar sostenimiento7	4
Figura 40:	Sec. 01 del Nv. 2270 al 2320- F.S. con sostenimiento denso	5
Figura 41:	F.S. de la sec. 16 del Nv. 2240 al 2320 sin considerar sostenimiento7	6
Figura 42:	Sec. 16 del Nv. 2240 al 2320- F.S. con sostenimiento denso	6
Figura 43:	Antes y después de la labor XC 10178-NE y XC 10159- AN7	7
Figura 44:	Antes y después del BP 10229-E con cimbras de tipo omega7	8
Figura 45:	Relleno hidráulico en la GAL 10163-N zona Valeria IV7	9
Figura 46:	Relleno hidráulico en la EST 10129-N7	9
Figura 47:	Relleno hidráulico en la EST 1 y la RP. 10159-N 8	0

Introducción

La presente investigación se desarrolla en la unidad minera Retamas, operada por Minera Aurífera Retamas S.A. (MARSA), situada en la provincia de Parcoy. Este estudio se centra en la evaluación geomecánica, específicamente en zonas de eventos de estallido de rocas, una temática de suma relevancia en el ámbito minero.

La litología característica de la unidad minera, compuesta por diversas facies de granito, granodiorita y tonalita-diorita, junto con la presencia de estructuras geológicas significativas como la Falla Los Loros, ha llevado a una clasificación geomecánica del macizo rocoso, según el RMR89, en el rango del 31 al 40, clasificándolo como tipo de roca IIIB. Este escenario presenta un desafío y, al mismo tiempo, una oportunidad para aplicar conocimientos avanzados de geomecánica.

La hipótesis general que sustenta esta investigación postula que la implementación de un control más frecuente en la evaluación geomecánica secuencial en las zonas afectadas de la unidad minera Retamas resultará en una reducción significativa del 25% en los daños ocasionados por eventos de estallido de rocas. Esta premisa se basa en la suposición de que una evaluación geomecánica más rigurosa y continua permitirá una identificación temprana de puntos críticos, posibilitando la aplicación oportuna de medidas preventivas y correctivas de manera eficiente y especializada.

Además, esta investigación valida tres hipótesis específicas que abordan la implementación de medidas de control ante eventos de estallido de rocas en la unidad minera Retamas. La primera destaca la efectividad de las acciones implementadas, como taladros de alivio, voladuras de pre-acondicionamiento, sostenimiento temporal y relleno hidráulico. La segunda hipótesis enfatiza el desarrollo y la eficacia del sistema de monitoreo microsísmico de MARSA para optimizar la gestión geomecánica. La tercera hipótesis específica demuestra que las recomendaciones derivadas de la identificación de la causalidad de los estallidos de rocas, respaldadas por evaluaciones geomecánicas, han reducido significativamente el daño al sostenimiento en un 25%.

xii

Este estudio no solo busca contribuir al entendimiento y manejo avanzado de la geomecánica en el contexto minero, sino que también aspira a elevar el estándar de las prácticas y recomendaciones en la unidad minera Retamas. Las conclusiones y recomendaciones derivadas de esta investigación no solo tienen aplicaciones prácticas inmediatas para la seguridad y estabilidad en la operación actual, sino que también sirven como guía para futuras investigaciones y gestiones de riesgos geomecánicos en entornos mineros similares.

Capítulo I. Parte introductoria del trabajo

1.1 Ubicación y accesibilidad

La unidad minera Retamas, se encuentra ubicada en el distrito de Parcoy, provincia Pataz y región de La Libertad. Emplazada en las vertientes del flanco oriental de la cuenca hidrográfica del Marañón, en el sector norte de la cordillera Central (Ver Figura 1). El acceso a la unidad se realiza por vía terrestre, el recorrido se detalla en la Tabla 1.

Figura 1

Tabla 1

Vías de acceso importantes hacia	a la	U.M.	Retamas
----------------------------------	------	------	---------

Tromo	Pute	Tipo de	Distancia	Tiempo de
Tramo	Kuld	vía	(km)	recorrido
1	Lima- Aeródromo Pías	Aérea	680	1h 15 min
2	Aeródromo Pías - Retamas	Trocha	58	1h 15 min
	Recorrido total - tiempo		738	2 h 30 min

Nota: Tomado de Osinergmin (2018)

1.2 Clima y vegetación

El clima en la región es el característico del tipo puna en los meses Noviembre-Abril con lluvias y nevadas constantes, cambiando de Mayo- Octubre con heladas y frío durante las noches y en el día el sol, donde la temperatura oscila de 5° - 20° centígrados en el día y en las noches de 3 - 10° centígrados, estas dos estaciones son bien marcadas en la zona la mina se encuentra a una cota de 3900 m.s.n.m. (Véase Figura 2) con una vegetación típico de la zona que es el ichu y el Queñual y otros arbustos pequeños, los habitantes del lugar son eminentemente dedicada a la minería aurífera (Berroa, 2016).

Figura 2

Vista panorámica de la producción minera MARSA

Nota: Tomado de Osinergmin (2018)

1.3 Descripción de la realidad problemática

En diferentes minas alrededor del mundo se presenta el fenómeno de estallido de rocas o Rockburst, este fenómeno produce diversos daños en la infraestructura, equipo minero, lesiones, incluso muertes en los trabajadores; Wu et al. (2022) en su estudio señalan que la Sociedad Internacional de Mecánica de Rocas (ISRM, por sus siglas en inglés) estableció un comité especial sobre estallido de rocas en el año 1977, iniciándose las investigaciones en la minería mundial. Cai y Kaiser (2018) aportan mencionando que la prevención o mitigación de Rockburst es uno de los problemas más desafiantes en la ingeniería de la mecánica de rocas.

En América latina el mayor desarrollo y entendimiento del Rockburst se dio en la mina El Teniente en Chile, según Cai y Kaiser (2018) se presentaron numerosos estallidos de rocas importantes entre 1990 y 1992, y se tuvo que cerrar debido a estallidos de rocas frecuentes y graves. Desde 1992, la mina ha realizado cambios importantes en sus procedimientos operativos, introdujo la fracturación hidráulica y mejoró el soporte de la roca al agregar una capacidad sustancial de disipación de energía a los sistemas de soporte. Como consecuencia, se redujo la frecuencia de los estallidos de rocas.

En el Perú se tienen reportes de la ocurrencia de eventos de estallido de rocas hacia fines del año 1980 en diversas minas que ocasionaron daños personales importantes. Medina (2015) menciona que en el 2005 se realizó el primer estudio sísmico con apoyo del Instituto Geofísico del Perú, donde se recomendó implementar un sistema de supervisión microsísmica subterránea con la experiencia de Chile y la utilización de tecnología de ESG (Environmental, Social and Governance) de Canadá.

Actualmente en el Perú a pesar de que ya existen métodos de mitigación y prevención de estallido de rocas, la estadística muestra un mayor número de eventos por estallidos de rocas, generando un incremento en los accidentes. Los accidentes en muchos casos se pudieron evitar, disminuyendo las pérdidas económicas y humanas.

En la unidad minera Retamas, entre los años 2018-2021 se presentaron mayor cantidad de eventos por estallido de rocas. Si el número de eventos continúa en aumento, se generará inseguridad para las mineras que presentan estallido de rocas, se producirán paralizaciones, huelgas, incluso el cierre de minas. Además, con los problemas ambientales y sociales, en algunas regiones las comunidades pueden prohibir la actividad minera, ya que es una industria que genera desconfianza y poca credibilidad. Como consecuencia habrá menor ingreso y desarrollo para los trabajadores y estado. Finalmente, revertir este escenario costará mucho esfuerzo.

Por lo expuesto en los párrafos anteriores, es necesario hacer un análisis sobre los eventos de estallido de rocas en la mina de estudio para proponer mejoras. Para este caso, la unidad minera Retamas tiene problemas referentes al estallido de rocas que pueden

generalizarse y servir como un caso ejemplo para las diferentes unidades mineras que presentan este fenómeno.

1.4 Formulación del problema

1.4.1 Problema general

 ¿De qué manera el control a través de la evaluación geomecánica influye en la reducción de eventos de las zonas afectadas por estallido de rocas en la unidad minera Retamas?

1.4.2 Problemas específicos

- ¿De qué manera varía la frecuencia de las zonas afectadas por estallido de rocas en la unidad minera Retamas?
- ¿De qué manera la causalidad de los estallidos de rocas varía a lo largo de los años en las zonas afectadas de la unidad minera Retamas?
- ¿De qué manera los resultados de la evaluación geomecánica inicial se pueden comparar con el control final en zonas afectadas por estallido de rocas en la unidad minera Retamas?

1.5 Objetivos

1.5.1 Objetivo general

 Realizar la evaluación geomecánica secuencial de las zonas afectadas por estallido de rocas en la unidad minera Retamas.

1.5.2 Objetivos específicos

- Determinar la frecuencia por estallido de rocas en la unidad minera Retamas.
- Identificar la causalidad de los estallidos de rocas a lo largo de los años de estudio en las zonas afectadas de la unidad minera Retamas.
- Comparar los resultados de la evaluación geomecánica inicial y final en zonas afectadas por estallido de rocas en la unidad minera Retamas.

1.6 Hipótesis

1.6.1 Hipótesis general

 Existe una reducción significativa de eventos en las zonas afectadas por estallido de rocas en la unidad minera Retamas debido al control más frecuente a través de evaluaciones geomecánicas.

1.6.2 Hipótesis específicas

- Al determinar la frecuencia por estallido de rocas en la unidad minera Retamas se podrán realizar medidas de control efectivas.
- Al identificar la causalidad de los estallidos de rocas a lo largo de los años de estudio en las zonas afectadas de la unidad minera Retamas se logrará hacer recomendaciones de prevención efectivas.
- Al comparar los resultados de la evaluación geomecánica inicial y final en zonas afectadas por estallido de rocas en la unidad minera Retamas se logrará determinar si las recomendaciones dadas son efectivas.

1.7 Metodología del estudio

Esta investigación corresponde a un diseño descriptivo comparativo porque se usarán varias muestras de grupos similares, es decir casos de estudio con un problema de estallido de rocas analizando la variable de evaluación geomecánica. Es cuantitativo ya que se analizará la evaluación geomecánica y cantidad de accidentes. Es retrospectivo porque se usará información de los años 2018 al 2021. Finalmente, es longitudinal porque se medirá la variable varias veces y en diferentes partes del tiempo de acuerdo con cada análisis de la evaluación geomecánica.

1.8 Antecedentes referenciales

En este acápite se resumen las investigaciones realizadas a nivel internacional y nacional.

1.8.1 Antecedentes internacionales

El estudio de Murwanashyaka y Li (2019) titulado "A Review on Rockburst as a Serious Safety Problem in Deep Underground Mines and other Excavation Projects" se enfoca en el problema del estallido de rocas en proyectos de excavación y minería subterránea profunda. Los autores revisan la literatura existente y discuten las causas, características, clasificaciones y efectos negativos del rockburst, así como los métodos para controlarlo. El objetivo principal del estudio es fomentar una comprensión profunda del problema y despertar el interés por llevar a cabo una investigación detallada sobre el estallido de rocas y otros desastres dinámicos en la ingeniería subterránea profunda. El estudio destaca la importancia de abordar el problema del estallido de rocas para mejorar la seguridad en proyectos de minería subterránea y otras excavaciones a gran profundidad.

El estudio de Durrheim, Essrich y Ortlepp (2006) titulado "Minimizing the Rockburst Risk (Phase2)" se centra en la minimización del riesgo de estallido de rocas en proyectos de minería subterránea. En la fase 2 del proyecto, se propone mejorar la calidad de la capacitación y la transferencia de conocimientos y tecnología relacionados con el rockburst. Los autores encuentran que los proveedores de capacitación son generalmente competentes y bien informados, pero se necesita mejorar el nivel general de conocimiento y competencia en la industria minera. Recomiendan la publicación de un manual sobre sismología inducida por la minería y la participación de expertos de la industria y universidades en actividades de investigación. El estudio destaca la importancia de mejorar la capacitación y la transferencia de conocimientos y tecnología para minimizar el riesgo de rockburst en proyectos de minería subterránea.

Qian y Lin (2016) en su investigación titulada "Safety risk management of underground engineering in China: Progress, challenges and strategies" analiza la gestión de riesgos de seguridad en la construcción subterránea en China en la última década. Se han establecido leyes y reglamentos, se ha implementado un plan de gestión de riesgos de seguridad, se ha establecido un sistema de apoyo a la toma de decisiones basado en tecnologías de la información y se ha fortalecido el estudio sobre gestión, predicción y prevención de riesgos de seguridad operacional. Sin embargo, se identifican nuevos desafíos, como el control de comportamientos humanos inseguros, la innovación tecnológica y el diseño de reglamentos de gestión de riesgos de seguridad. Se proponen

estrategias en seis aspectos: sistema y política de gestión de riesgos de seguridad, leyes, administración, economía, educación y tecnología.

1.8.2 Antecedentes nacionales

La investigación de Valdivia (2019) titulada "Acciones para mejorar las condiciones de seguridad en las actividades mineras de competencia del Organismo Supervisor de la Inversión en Energía y Minería" analiza el desempeño del sector minero en la seguridad en la mediana y gran minería, que son competencia del Organismo Supervisor de la Inversión en Energía y Minería (Osinergmin). Si bien Osinergmin ha mejorado los indicadores de seguridad de la minería mediante una mayor cobertura y frecuencia en la supervisión de las actividades mineras, durante los años 2016 y 2017 se ha mostrado un estancamiento e incluso un deterioro de los indicadores de seguridad, con un mayor número de accidentes y víctimas mortales. Por lo tanto, se plantea que la mejora en la seguridad minera no solo debe ser responsabilidad del estado, sino también de los titulares mineros, quienes deben adoptar una cultura preventiva de seguridad y cumplir rigurosamente las normas y las condiciones técnicas. En conclusión, se afirma que construir una cultura preventiva de seguridad fuerte, aplicada de manera rigurosa, tiene un impacto positivo en los indicadores de seguridad, modificando los comportamientos inseguros y logrando la sostenibilidad de los resultados.

En el estudio realizado por Cabello (2018) titulado "Guía de criterios geomecánicos en minería subterránea como herramienta para la prevención de accidentes fatales por caída de roca", se analizaron las causas de los accidentes fatales por caída de roca en la minería subterránea en el Perú. A pesar de que el número de accidentes fatales ha disminuido en el periodo de 2000-2016, los accidentes por caída de roca siguen siendo la causa principal de las fatalidades. Los factores que influyen en estos accidentes incluyen la calidad del macizo rocoso, el método de minado, los daños causados por la voladura, los estándares de la empresa, los sistemas de gestión, la capacitación del personal y la normativa vigente. Se identificó que una guía de criterios geomecánicos puede ayudar a reducir el número de accidentes fatales por caída de roca en la minería subterránea. Se utilizó el método histórico y el método de comparación de casos para evaluar la situación de otros países mineros como Chile y Australia. Como resultado, se estableció el contenido mínimo que debería incluir una guía geomecánica y se concluyó que reducir los accidentes por caída de rocas es una labor interdisciplinaria en la que la guía de criterios geomecánicos puede ser una herramienta técnica útil para lograr este objetivo.

El estudio de Apaza (2020) titulado "Estudio de causalidad de accidentes mortales por desprendimiento de rocas en la minería subterránea controlado por el organismo supervisor de la inversión en energía y minería en el Perú" comparó los accidentes mortales por desprendimiento de rocas en la minería subterránea en Perú, antes y después de la implementación del D.S. 024-2016-EM y su modificatoria 023-2017-EM, en comparación con el D.S. 055-2010-EM. El estudio utilizó un enfoque cuantitativo y una metodología de diseño no experimental, longitudinal y descriptivo-comparativo. Se analizaron los índices de accidentes mortales por desprendimiento de rocas por desprendimiento de rocas demostraron que, si bien el índice de accidentes mortales por desprendimiento de rocas disminuyó, no hubo una variación significativa antes y después de la implementación del D.S. 024-2016-EM y su modificatoria 023-2017-EM. Además, las infracciones más comunes en ambos periodos fueron el incumplimiento de los artículos 38° y 221° del D.S. 055-2010-EM y del artículo 38° del D.S. 024-2016-EM y su modificatoria 023-2017-EM.

El estudio de Gonzalez, Beltran y Henning (2019) titulado "Response of a support system to seismic events: a case study of Mina Uchucchacua, Peru" muestra la colaboración el área de geomecánica de la mina Uchucchacua de Buenaventura y el Centro de Investigación Geomecánica (GRC) MIRARCO de la Universidad Laurentian para realizar un estudio de evaluación de riesgos geomecánicos y sísmicos. Como se refleja en el Canadian Rockburst Support Manual (Kaiser et al., 1996), este documento identifica pautas y prácticas apropiadas basadas en la experiencia de MIRARCO. Esto ayudó a la mina a reducir los riesgos mineros, lo que también permite mejorar la eficiencia minera. Este estudio tiene como objetivo examinar varios aspectos de la minería, como son; la

geología, las características del macizo rocoso, los sistemas de soporte de las rocas, los sistemas de datos sísmicos y la adquisición de datos. Estos aspectos están directamente relacionados con el comportamiento del macizo rocoso y los peligros geomecánicos.

Capítulo II. Marcos teórico y conceptual

2.1. Marco teórico

2.1.1 Estallido de rocas

Según Lazo (2020), los procesos de falla de esfuerzos inducidos ocurrirán tanto cerca como lejos de las excavaciones a medida que se profundiza y se expande la infraestructura minera. Como resultado, las excavaciones mineras alteran los esfuerzos insitu y provocan un nuevo estado de tensión o reajuste de esfuerzos. En algunos casos, la roca se fractura violentamente, a través de planos de falla o de ruptura por corte (fault-slip burst). En otros casos, el macizo rocoso se fractura, progresiva y violentamente, cerca de las excavaciones, originando daño por lajamiento o astillamiento (strainburst). En ambas situaciones o la combinación de estas producen eventos sísmicos y pueden generar estallido de roca. Entonces, el estallido de roca se entiende como el desplazamiento súbito, violento e inesperado de roca fracturada, producto de un evento sísmico, que causa daño significativo en el contorno de la excavación. El estallido de roca se encuentra intrínsecamente relacionado con la alta resistencia de la compresión simple y con un tipo de roca dura, rígida y frágil, la cual puede almacenar ciertas cantidades de energía y ser liberada una vez se haya alcanzado su resistencia máxima.

2.1.1.1 Causas. Cai y Kaiser (2018) dividen en cuatro áreas, los factores que influencian al desencadenamiento del estallido de rocas, siendo los factores geotécnicos, los factores mineros y los factores sísmicos.

Factores geotécnicos

Cai y Kaiser (2018) consideran que a medida que se profundiza las excavaciones, los esfuerzos in-situ se incrementan. Debido a la amplia diferencia entre el esfuerzo principal máximo y el esfuerzo principal mínimo generada en niveles profundos, se inducen altos esfuerzos tangenciales en y cerca a los bordes de las labores. Por tanto, los esfuerzos in-situ y la ratio de esfuerzos definen el nivel de tensión total en un bloque de minado y estos esfuerzos suelen modificarse a medida que los diseños de avance y producción varíen. Asimismo, el nivel de esfuerzos en conjunto con la resistencia del macizo rocoso y el comportamiento de deformación controlan la cantidad de energía de tensión que pueden almacenar en la roca y que, también, puedan liberar. Por ejemplo, rocas muy resistentes y rígidas generan altos esfuerzos y almacenan gran cantidad de energía. En este contexto es necesario entender el criterio de falla del esfuerzo inducido para determinar si una zona es potencial de estallido.

Factores geológicos

Cai y Kaiser (2018) señalan que las estructuras geológicas modifican los esfuerzos in-situ producidos por la minería inducida. Las fallas promueven la concentración de esfuerzos y facilitan que el macizo rocoso falle, alterando la rigidez y resistencia de la infraestructura subterránea. Asimismo, las fallas permiten la deformación de la roca, reduciendo la rigidez del sistema de carga y, por lo tanto, incrementan la energía a liberar. La roca frágil tiende acumular energía de tensión rápidamente y puede fallar violentamente frente a un pequeño impulso, porque no es lo suficientemente dúctil para soportar la cantidad de energía recibida. Entonces, algunas características que necesita el macizo rocoso para fallar violentamente son la alta resistencia, alta rigidez, alta elasticidad y ser frágil; en cambio, una roca más blanda y dúctil puede almacenar más energía y podrían fallar no tan violento.

Factores de mina

Cai y Kaiser (2018) explican que las operaciones mineras cambian los esfuerzos in-situ del macizo rocoso y estos generan la creación de zonas de bajos esfuerzos y altos esfuerzos. La actividad minera altera el sistema de rigidez de la mina y cuando el ritmo de extracción es mayor a 80% se deja pilares o remanentes que están sometidos a altas concentraciones de esfuerzo y eso puede producir que el sistema de rigidez del macizo rocoso disminuya y el almacenamiento de energía a liberar aumente. Entonces, la probabilidad de que ocurra un evento de estallido aumenta frente a esas condiciones. Asimismo, el secuenciamiento de minado influye en mayor medida la variación de esfuerzos del macizo rocoso y el proceso de fallas (geología). El minado en retirada es un procedimiento que se ha aplicado en métodos de minado cuando hay presencia de fallas, de manera que se reducen las posibilidades de estallido de roca. Cabe mencionar que cambios de método de minado han ocasionado cambios radicales en la severidad y en el potencial de daño de estallido.

Factores sísmicos

Cai y Kaiser (2018) mencionan en su estudio que, los strainburst generan eventos sísmicos y con potencial de daño cerca de excavaciones y que, grandes daños por estallido de roca están asociados a eventos sísmicos por deslizamiento de falla. Además, se cumple que, si un evento sísmico es grande, la perturbación dinámica se siente muy lejos y la zona afectada será más amplia y; si el evento sísmico es cercano a un frente, las perturbaciones y los desplazamientos de roca serán grandes. Por esta razón, los eventos sísmicos grandes como los deslizamientos por falla aumentan el área para daños potenciales de estallido y de severidad; sin embargo, el daño se incrementa proporcionalmente con la magnitud del evento y hay ciertos factores que influencian en la severidad de daño del estallido.

2.1.1.2 Parámetros de predicción y monitoreo sísmico. Se consideran como parámetros de predicción y monitoreo sísmico a la magnitud de eventos sísmicos, energía sísmica (Wk) y velocidad pico partícula (PPV), según Mendecki, Lynch y Malovichko (2010).

Magnitud de evento sísmico

El parámetro más usado para medir la intensidad de un evento sísmico es la magnitud. De acuerdo con Kaiser (1996), sin este parámetro de evento sísmico sería imposible evaluar los peligros sísmicos y los diseños de sostenimiento. Asimismo, existen escalas de magnitud, tales como la magnitud local (ML), la magnitud nuttli (Mn) y la magnitud de momento (Mw), tal como resume Lazo (2020).

 Escala Ritcher o Local (M_L): se basa en la medición de la amplitud de la onda más larga marcada por el sismógrafo, tomando como distancia estandarizada de 100

km desde el epicentro. La magnitud aumenta en una unidad, a medida que la amplitud se incrementa en 10 veces.

- Escala Nuttli (Mn): usado mayormente en Canadá. La magnitud es medida de los movimientos más altos registrados a una distancia de 1000 km, en un rango de frecuencia de 1 – 10 Hz. Es posible convertir y relacionar este tipo de magnitud con otras escalas.
- Magnitud de momento (Mw): Fue desarrollada recientemente para resolver inconvenientes con las otras escalas, ya que puede registrar grandes escalas de movimiento y se encuentra correlacionada con el momento sísmico, parámetro que representa la energía irradiada. Sin embargo, para una correcta representación de la fuente sísmica es necesario considerar otros parámetros como la caída de esfuerzos estáticos. La relación matemática entre la magnitud de momento y momento sísmico se ilustra por medio de la Ecuación 1 (Kaiser, 1996):

$$Mw = \frac{2}{3}log(Mo) - 10.7$$
 (1)

Energía sísmica (Wk)

La energía sísmica es la energía que es liberada por el evento sísmico y es detectada por los geófonos triaxiales. Se expresa en la Ecuación 2 (Hedley, 1992):

$$Wk = 4\pi R^2 \rho \left(\alpha \, \int_0^{Tp} Vp^2 \, dt \, + \, \beta \, \int_0^{Ts} Vs^2 \, dt \, \right) \tag{2}$$

Dónde:

R: distancia desde el origen.

- α: Velocidad onda P.
- β: Velocidad onda S.
- ρ: densidad de la roca.
- Vp: Velocidad de partícula por la onda P
- Vs: Velocidad de partícula de la onda S.
- Tp: Duración de la onda sísmica P.
- Ts: Duración de la onda sísmica S.

Se observaron para sismos en minas sudafricanas, según los resultados de los sensores triaxiales que, gran parte de la energía sísmica (Wk) es contenida en la onda y el 10 % de la energía sísmica se almacena en las ondas P. Sin embargo, en otras minas la energía en la onda P varía entre 10 % a 30 %. Además, para minas de roca dura las velocidades de las ondas P y S son 6.2 km/s y 3.6 km/s, respectivamente.

Velocidad pico partícula (PPV)

Las vibraciones de la velocidad pico partícula está en la onda S y las medidas tomadas por los sensores triaxiales indican que el valor de la velocidad pico partícula en la onda P es el 45 % de la velocidad pico partícula en la onda S. Asimismo, este parámetro de monitoreo sísmico depende de la magnitud del evento sísmico y la distancia desde la fuente de origen (Hedley, 1992).

Factor de competencia

Se refiere a una propiedad de las rocas que consiste en su resistencia a la erosión o a la deformación en relación con su resistencia mecánica. Se calcula como la resistencia uniaxial de la matriz rocosa dividida por la tensión máxima vertical debido al peso del recubrimiento.

2.1.1.3 Peligro sísmico. Dada la importancia de saber el nivel de sismicidad en la mina, se precisa evaluar y determinar cuál es el peligro sísmico existente en la mina. El peligro sísmico en mina es definido como la probabilidad de que ocurra un evento sísmico de una cierta magnitud (Australian Centre for Geomechanics, 2004). Empíricamente se ha estimado el peligro sísmico, a partir de la magnitud de evento, lo que permite cuantificar el nivel de sismicidad y establecer una escala de peligro sísmico (SHS, por sus siglas en inglés), que posibilita conocer la probabilidad de ocurrencia para distintas magnitudes. Para determinar la probabilidad de ocurrencia de un evento sísmico de cierta magnitud, Australian Centre for Geomechanics (2004) define la Ecuación 3, que se basa en la relación de Gutenberg-Ritcher, en donde se puede hallar el número de eventos diarios que ocurrirían para magnitudes locales mayores o igual a ML.

Ratio de eventos por día = $10^{(SHS-ML-3)}$ (3)

A partir de la Ecuación 3, se podrá determinar la ratio de eventos diarios que ocurrirían para ciertas magnitudes locales y por ende se conocería la escala de peligro sísmico, la cual califica el nivel de sismicidad de una mina desde una condición nula hasta una extrema (Ver Tabla 2). Para una mina que presenta más de 10 eventos sísmicos por día con magnitudes mayores o igual a 1, le correspondería una escala de peligro sísmico muy alta (Nivel 3). De esta forma se podrá interpretar el peligro sísmico existente, conociendo las ratios por día calculados, el peligro sísmico también se describe en términos comunes, según la Tabla 3.

Tabla 2

		Frecuenc	ia por día - Sis	micidad en mi	ina	
	Descripción cualitativa	Localmente perceptible	Perceptible en algunas partes de la mina	A veces perceptible en la superficie	Perceptible como una voladura de producción	Detectado por la cadena regional de terremotos
	Magnitud Ritcher (ML)	ML >=-2	ML >=- 1	ML >=0	ML >=I	ML >=2
	Nula	> 0.001	0	0	0	0
Escala del Peligro Sísmico	Muy baja	> 0.01	> 0.001	0	0	0
	Baja	> 0.1	> 0.01	> 0.001	0	0
	Moderado	> 1	> 0.1	> 0.01	> 0.001	0
	Alta	>10	>1	> 0.1	> 0.01	> 0.001
	Muy alta	> 100	> 10	> 1	> 0.1	> 0.01
	Extremadamente alta	> 1000	> 100	>10	>1	> 0.1

Escala de peligro sísmico vs frecuencia de eventos por día

Nota: Adaptado de Australian Centre for Geomechanics (2004).

Tabla 3

Frecuencia de ocurrencias de eventos sísmicos	Descripción
> 1	Más de 1 evento por día
> 0.3	Unos cuantos eventos por semana
> 0.1	Eventos ocurren aproximadamente 1 vez a la semana
> 0.03	Eventos ocurren aproximadamente 1 vez al mes
> 0.01	Unos cuantos eventos por año
> 0.003	Eventos ocurren aproximadamente 1 vez al año
> 0.001	Un evento ocurre cada pocos años
< 0.001	Un evento pudo haber pasado alguna vez
0	Eventos de esta magnitud nunca han ocurrido

Descripción de las frecuencias de ocurrencias de eventos sísmicos

Nota: Australian Centre for Geomechanics (2004).

2.1.2 Evaluación geomecánica

La evaluación geomecánica se define como un proceso esencial que proporciona un entendimiento detallado del comportamiento de un macizo rocoso. Este análisis resulta fundamental debido a la estrecha relación entre el macizo rocoso y diversos factores, tales como el número de familias de discontinuidades presentes, su distribución espacial y su orientación. Para llevar a cabo una evaluación geomecánica exhaustiva, se requiere la realización de diversas investigaciones geotécnicas, que abarcan desde el reconocimiento geológico y estructural hasta el mapeo y logueo geomecánico, así como ensayos de laboratorio, según Ortega (2018) se debe seguir ciertos pasos que se detallan en la Figura 3. Estas investigaciones se ejecutan mediante clasificaciones geomecánicas, las cuales desempeñan un papel crucial al caracterizar el macizo rocoso y establecer un modelo geomecánico que permita comprender y predecir su comportamiento bajo distintas condiciones (Ticona, 2019).

Figura 3

Diseño para la toma de datos

Nota: Tomado de Ortega (2018)

La evaluación geomecánica se erige como una fase esencial en la planificación de proyectos de ingeniería de rocas, requiriendo una exhaustiva comprensión de todos los parámetros y propiedades de la roca, así como de la mecánica de rocas. La secuencia de parámetros críticos de la roca debe determinarse y luego ser verificada y confirmada mediante evaluaciones de varios sistemas de clasificación. Este proceso se diseñó con el propósito de minimizar errores de juicio y asegurar una evaluación precisa y completa de la geomecánica del sitio en cuestión (Singh y Goel, 2011).

2.1.2.1 Propiedades físico-mecánicas de la roca. Es importante definir las propiedades físico-mecánicas de la masa rocosa y de sus elementos constituyentes, es decir de la roca intacta y de las discontinuidades estructurales.

En el caso de la roca intacta, la propiedad más relevante es la resistencia compresiva no confinada o denominada también resistencia compresiva simple o uniaxial. Este parámetro de resistencia puede ser determinado mediante ensayos de golpes con el martillo de geólogo, o mediante ensayos de impacto con el martillo de Schmidt, o mediante ensayos de carga puntual, o mediante ensayos de comprensión simple en laboratorio de mecánica de rocas, todos ellos de acuerdo con las normas sugeridas por la ISRM (Brown, 1981).

Otro parámetro importante de la roca intacta es la constante "mi" del criterio de falla de Hoek y Brown (2002, 2006), que puede ser estimado utilizando valores de la literatura especializada o más apropiadamente puede ser determinado mediante ensayos de compresión triaxial en laboratorio de mecánica de rocas, recomendándose este último. Finalmente, otro parámetro importante es la densidad de la roca, que puede ser determinada en el campo o en laboratorio según las normas ISRM. Desde luego que hay otros parámetros de la roca intacta, como la resistencia a la tracción, las constantes elásticas (módulo de deformación y relación de Poisson), velocidad de ondas y otros que pueden ser determinados según el interés de cada proyecto (Córdova, 2008).

En el caso de las discontinuidades, es necesario definir sus parámetros de resistencia al corte de Mohr Coulomb (cohesión y ángulo de fricción), mediante ensayos de corte directo sobre superficies de discontinuidad, en laboratorio de mecánica de rocas. Los ensayos del tablero inclinable ("tilt test") realizados sobre testigos de perforaciones diamantinas pueden ser valiosos para estimar el ángulo de fricción básico. Otro parámetro de las discontinuidades es la resistencia compresiva no confinada y el coeficiente de rugosidad de las juntas, ambos del criterio de falla de Barton-Bandis (1990), pueden determinarse siguiendo las recomendaciones de este criterio. Finalmente, podría ser necesario definir las propiedades de rigidez de las discontinuidades (rigidez normal y rigidez de corte), que pueden ser estimadas utilizando ya sea el método basado en las propiedades de los materiales de relleno de las discontinuidades o en el método basado en las propiedades de deformación de la masa rocosa y de la roca intacta (Barton, 1972).

En el caso de la masa rocosa, los principales parámetros son: la resistencia compresiva uniaxial, la resistencia triaxial, la resistencia a la tracción, la resistencia al corte (cohesión y ángulo de fricción), las constantes elásticas (módulo de deformación y relación de Poisson), las constantes "m" y "s" de la masa rocosa del criterio de falla de Hoek y Brown. Existen varios criterios para la estimación de todos estos parámetros, siendo uno de los más importantes el de Hoek y Brown (2002, 2006), utilizado en el programa de cómputo ROCLAB de Rocscience Inc. 2007.

2.1.2.2 Mapeos geomecánicos. El acopio de la información geomecánica se debe llevar a cabo mediante diferentes tipos de mapeos geotécnicos. Los métodos de mapeo geotécnico más confiables son los que se realizan directamente sobre afloramientos de masas rocosas, estos métodos son los convencionales y comprenden el "método de líneas en detalle" y el "método de celdas en detalle". En el primer caso el mapeo se lleva a cabo a través de una línea extendida a través del afloramiento rocoso, y en el segundo caso el mapeo se realiza sobre un área de afloramiento rocoso de extensión variable, sea en superficie o en subterráneo. Los lugares del mapeo, denominados también estaciones de medición, se colocan en los planos geológicos-geomecánicos (Pantaleón y Carbajal, 2017).

Por otro lado, cuando no se dispone de afloramientos rocosos, se pueden aprovechar los testigos de las perforaciones diamantinas para realizar sobre ellos el mapeo geotécnico de la masa rocosa en donde se ubican las perforaciones. Quedan también las alternativas de realizar el mapeo geotécnico en el interior de taladros perforados en la masa rocosa, utilizando mecanismos de endoscopia, y el mapeo geotécnico utilizando la fotogrametría (Córdova, 2008).

Los parámetros de observación y medición deben ser obtenidos en formatos de registro diseñados para cada evaluación, adecuándolos a las normas sugeridas por la Sociedad Internacional de Mecánica de Rocas (ISRM – International Society for Rock Mechanics). Los parámetros más importantes para mapear, sin ser limitativos, son: tipo de roca, tipo de sistema de discontinuidad, orientación, espaciado, persistencia, apertura, rugosidad, tipo de relleno, espesor del relleno, intemperización y presencia de agua. Adicionalmente se deben registrar datos sobre la resistencia de la roca y la frecuencia de fracturamiento, en este último caso para obtener el RQD (Córdova, 2008).

Durante el mapeo geotécnico deberán registrarse las discontinuidades mayores o principales como por ejemplo las fallas, de manera especial, poniendo estas estructuras en los planos geológico-estructurales. Estas estructuras deberán ser tratadas de manera particular en los modelamientos que se realicen.

2.1.2.3 Caracterización de la masa rocosa. En la caracterización de la masa rocosa, los aspectos más importantes son: la litología, la distribución de las discontinuidades y las características estructurales de las discontinuidades.

Es importante tener definida la litología o tipos de rocas presentes en el yacimiento. Se deben trazar en forma clara los contornos de la mineralización y los contactos de los diferentes tipos de rocas en las cajas. Esta información se debe tener disponible en planos de planta, y secciones transversales y longitudinales. Los programas como el Mine Sight, Datamine, Vulcan, Gemcom y otros, son de gran ayuda para manejar esta información (Osinergmin, 2017).

El análisis de la distribución de las discontinuidades es otro aspecto importante para definir el arreglo estructural de la masa rocosa. Mediante la utilización de técnicas de proyección estereográfica, se determina el número de sistemas o familias de discontinuidades presentes en el lugar de evaluación. Esta información posteriormente se utiliza para el análisis de estabilidad controlado por el arreglo estructural de la masa rocosa.

Las características estructurales de las discontinuidades pueden ser determinadas mediante tratamiento estadístico de la información de los mapeos geotécnicos. Los resultados sirven para establecer las propiedades de comportamiento mecánico de las discontinuidades y de la masa rocosa. Hoy en día existe software especializado para caracterizar a la masa rocosa, definiendo el arreglo estructural de la masa rocosa y las características estructurales de las discontinuidades (Córdova, 2008).

2.1.2.4 Clasificación geomecánica de la masa rocosa. Cuando no se tiene información detallada sobre la masa rocosa y sus esfuerzos y sobre las características hidrológicas del lugar de un proyecto, el uso de un esquema de clasificación de la masa rocosa puede ser muy beneficioso. En el caso más simple, se puede utilizar un esquema de clasificación como un chequeo para asegurar que toda la información relevante ha sido considerada.

En otro extremo, se utiliza uno o más esquemas de clasificación, para desarrollar una idea de la composición y características de una masa rocosa, a fin de proporcionar

estimadas iniciales de los requerimientos de sostenimiento y de las propiedades de resistencia y deformación de la masa rocosa. Es importante entender que el uso de un esquema de clasificación de la masa rocosa no puede reemplazar a los procedimientos más elaborados de diseño. El uso de los procedimientos de diseño requiere de información relativamente detallada sobre los esfuerzos in situ, las propiedades de la masa rocosa y la secuencia de excavación planeada (Palmstrom y Broch, 2006).

Conforme se tenga disponible información más detallada, los esquemas de clasificación de la masa rocosa deben ser actualizados y utilizados en conjunto con los análisis específicos del sitio. Los objetivos de la clasificación geomecánica son:

- Identificar los parámetros más significativos que influyen en el comportamiento de la masa rocosa.
- Dividir una formación rocosa en grupos con propiedades similares, es decir, en clases de macizo rocoso de diferente calidad.
- Proporcionar una base para el entendimiento de las características de cada clase de masa rocosa.
- Relacionar la experiencia de las condiciones de la roca de un lugar a las condiciones y experiencia encontradas en otros lugares.
- Obtener datos cuantitativos y guías para el diseño de ingeniería.
- Proporcionar una base común de comunicación entre el ingeniero y el geólogo.

Las clasificaciones geomecánicas más utilizadas en todo el mundo son: el RMR (Rock Mass Rating) de Bieniawski (1989) y el Sistema Q de Barton (1974). En el Perú se está utilizando también el sistema GSI (Geological Strength Index) de Hoek y Marinos (2000).

2.1.2.5 Zonificación geomecánica de la masa rocosa. Para la aplicación racional de los diferentes métodos de cálculo de la geomecánica, es necesario que la masa rocosa bajo estudio esté dividida en áreas de características estructurales y mecánicas similares u homogéneas, debido a que el análisis de los resultados y los criterios de diseño

son validados solo dentro de masas rocosas que presentan propiedades físicas y mecánicas similares (Lazo, 2020).

Para zonificar geomecánicamente a la masa rocosa, o dicho de otro modo para determinar los dominios estructurales de la masa rocosa, los dominios estructurales son extensiones de masa rocosa con características homogéneas, es necesario tomar en consideración la información desarrollada tales como aspectos litológicos, el arreglo estructural de la masa rocosa, las características estructurales de las discontinuidades y la calidad de la masa rocosa determinada mediante la clasificación de la misma, utilizando uno o varios criterios de clasificación geomecánica. La combinación de toda esta información conduce a delimitar los dominios (Cordova, 2008).

La zonificación geomecánica debe ser realizada en tres dimensiones, ya sea manualmente o mediante la ayuda de programas de cómputo, el uso correcto del software va a depender de los mapeos geotécnicos efectuados con los testigos de las perforaciones diamantinas, que constituyen los datos para realizar la zonificación.

Los resultados de la zonificación geomecánica se presentan en planos de planta y secciones tanto transversales como longitudinales. Para ello se deben adoptar códigos para nombrar cada zona geomecánica o dominio estructural. Estos códigos pueden involucrar el uso de colores y/o alfanuméricos (Hernandez, 2014)

2.2 Marco conceptual

2.2.1 Monitoreo microsísmico

Usualmente, los estallidos de rocas son cuidadosamente monitoreados por equipos geofísicos especiales instalados en las minas, con la finalidad de garantizar la seguridad de los trabajadores que laboran por debajo de la superficie. Estos equipos son instalados en el subsuelo y en lugares seleccionados en la superficie. Los datos adquiridos en tiempo real son analizados desde un punto de vista sismológico. Los resultados, en general, indican que cada mina posee sus propias características y especificaciones, generando un tipo en particular de vibraciones (movimientos del terreno), dependiendo del tipo de mineralización, tecnología y la geología local. Estas diferencias locales son usualmente

mucho más pronunciadas comparados con la sismicidad regional asociada a procesos tectónicos regionales. (Romero, 2012).

Las redes de monitoreo sísmicos pueden localizar eventos sísmicos, además pueden ser usados para coordinación de operaciones de rescate en caso de rockburst, permiten la identificación de estructuras sísmicamente activas, muestran como las condiciones están cambiando con el tiempo, entregan estimaciones cuantitativas en la magnitud y momento de los eventos sísmicos. (Ortega, 2014).

La energía elástica libre viaja en forma de ondas P y S a las velocidades que el medio rocoso establezca; con un sistema de monitoreo se tienen un sistema de sensores de movimiento, y programas de procesamiento de modo que la información es procesada y registrada. Con la información es posible establecer la magnitud e hipocentro del evento sísmico; a medida que las múltiples localizaciones se determinan se puede evaluar la geometría asociada con la fractura hidráulica monitoreada y su alcance. Además, existen otros sistemas de monitoreo e instrumentación tales como: inspecciones de campo; mediciones de desplazamiento local; monitoreo sísmico; reflectometría en el tiempo y observaciones de sondajes (Valencia, 2021).

2.2.2 Normas y reglamentaciones

Para este estudio se toman los métodos sugeridos por la Sociedad Internacional de Mecánica de Rocas que se detalla en Culshaw (2015), para la caracterización, prueba y monitoreo de rocas. Además, en referencia a las normas legales que se utiliza para identificar infracciones relacionados a eventos de estallido de rocas se usan el D.S. 024-2016-EM y su modificatoria 023-2017-EM.

Es necesario mencionar que al año 2023, el país no ha desarrollado la evaluación de las propiedades dinámicas de las rocas que generan los fenómenos de liberación de energía o estallido de rocas, ni existe una reglamentación específica al respecto, por lo que se recurre a la reglamentación internacional existente, como la alemana DIM 4150, Brasil CETESB D7.013, EE. UU. Federal USBM RI8507, España UNE 22-381-93, Reino Unido BSI 6472.
2.2.2.1 Incidente. Suceso con potencial de pérdidas acaecido en el curso del trabajo o en relación con el trabajo, en el que la persona afectada no sufre lesiones corporales. (RSSO, 2017)

Capítulo III. Desarrollo del trabajo de investigación

3.1. Marco geológico

3.1.1 Geología regional

La región aurífera de Parcoy, Gigante y Buldibuyo (considerado como un distrito minero) ver Figura 4, está conectada a una franja de rocas intrusivas conocida como "Batolito de Pataz", que atraviesan los esquistos, filitas, pizarras y rocas metavolcánicas del Complejo del Marañón. El Batolito de Pataz se extiende aproximadamente 50 km desde Vijus al norte hasta Buldibuyo al sur, con un ancho promedio de 2.5 km, limitado al estenoreste por el Complejo del Marañón y Volcánicos Lavasén, y al oeste-suroeste por rocas sedimentarias mesozoicas de la Formación Crisnejas. Al noroeste del batolito, se encuentran pequeñas intrusiones de pórfido diorita-andesita que cortan las rocas paleozoicas, posiblemente pertenecientes al Cretácico Superior.

En el distrito minero, las zonas previas existentes de fallamiento y fracturación dentro del intrusivo han actuado como canales para la circulación de soluciones mineralizantes hidrotermales que se depositaron en trampas estructurales formando vetas. Posteriormente, estas vetas han experimentado fallamiento y plegamiento en más de dos eventos tectónicos; por eso presentan un comportamiento estructural y una irregularidad en su continuidad. Los minerales presentes en estas estructuras mineralizadas incluyen cuarzo lechoso, pirita, arsenopirita, marmatita-esfalerita, calcopirita, galena, pirrotita y oro en estado nativo y libre (Galan, 2021).

La columna estratigráfica del área, ver Figura 5, está constituida en la parte inferior por rocas antiguas del complejo metamórfico. Sobre esta yacen en discordancia angular sedimentos continentales y marinos pertenecientes al Paleozoico y Mesozoico. En la parte superior también en discordancia angular se exponen derrames y piroclásticos pertenecientes a los volcánicos lavasen. Un intrusivo granodiorítico corta las rocas sedimentarias y llega hasta la parte inferior de los volcánicos (Vilchez, 2014).

25

Nota: Tomado de Galan (2021)

Columna estratigráfica regional

Nota: Tomado de Quispe (2019)

3.1.2 Geología local

La geología de la zona se encuentra mayormente cubierta por depósitos cuaternarios, que incluyen depósitos recientes coluviales, fluviales y antrópicos. Las rocas y estructuras mineralizadas se encuentran escasamente expuestas, a excepción de la veta El Gigante – Esperanza, que aflora en el cerro El Gigante. Bajo la cobertura cuaternaria en la mina El Gigante se extiende el Batolito de Pataz, un intrusivo de composición variable que alberga las vetas auríferas (Quispe, 2019). Las principales unidades se muestran en la Figura 7.

3.1.2.1 Estratigrafía. Seguidamente se describen las unidades litoestratigráficas que afloran en la zona:

Complejo del Marañón (Neoproterozoico)

Localmente se trata de una secuencia metamórfica cuya base es desconocida, consistente de filitas poli deformadas con un grado de metamorfismo medio a alto. Estas rocas se encuentran fuertemente fracturadas. Afloran en superficie en la zona de estudio hacia el sector este posiblemente estando en contacto fallado con el batolito de Pataz e infrayaciendo localmente a la formación Lavasen.

Figura 6

Afloramiento de cuarcitas

Nota: Fotografía del afloramiento de cuarcitas en bancos en la confluencia de las quebradas Mush Mush y Laguna Blanca. Tomado de Quispe (2019).

Plano y perfil geológico local

Nota: Tomado de Espinoza (2019)

Adicionalmente, en la zona de estudio se presenta una secuencia de metasedimentos en bancos masivos, cuya extensión y potencia son desconocidas, por lo que no han sido diferenciadas en el cartografiado local y, que se encuentran sobreyaciendo a las filitas y esquistos del Complejo del Marañón. Se trata de cuarcitas granoblásticas de color gris claro que posiblemente puedan corresponder a la Formación Contaya. Son bastante competentes y compactas, con un grado de fracturamiento muy leve (Ver Figura 6).

Formación Lavasen (Carbonífero Superior)

En la zona de estudio se ha identificado una secuencia de lavas afaníticas con estructura almohadillada de composición andesítica a basáltica, color gris oscuro con fenocristales de hornablenda, piroxeno y escaso olivino, con un grado de fracturamiento leve a moderado que se encuentran sobreyaciendo a rocas metamórficas del Complejo Marañón y, se desconoce su tope, siendo la superficie de erosión actual. En algunas zonas se muestra el contacto entre la Formación Contaya y Lavasen (Véase la Figura 8).

Figura 8

Afloramiento y contacto de la Fm Contaya y Lavasen

Nota: Quebrada de la Laguna Blanca con afloramientos de cuarcitas (Formación Contaya), a las cuales sobreyacen una secuencia volcánica andesítica (Formación Lavasen) Tomado de Quispe (2019)

Estas rocas volcánicas, que posiblemente pueden ser constitutivas de la formación Tres Lagunas, ocupan las cimas y los picos más altos de las montañas que se encuentran en las partes altas de la zona de estudio, con una geomorfología agreste y conspicua, con pendientes casi verticales, que lo diferencia de las unidades que lo circundan. Según Quispe (2019) esta formación pertenece al terciario medio.

Grupo Mitu (Pérmico superior)

El Grupo Mitu que infrayace al Grupo Pucará se compone de conglomerado masivo, elementos subredondeados de caliza posiblemente de la formación Copacabana, arenisca parda, andesita rosada y roca metamórfica en una matriz de arenisca con un espesor aproximado de 180 m. A estas rocas se le asigna una permeabilidad media a baja por ser un material consolidado y poco fracturado.

Grupo Pucará (Triásico superior)

El Grupo Pucará se encuentra ubicado fuera del área local estudiada. Está constituida por calizas, de coloración gris a negras, bituminosas, bien estratificadas en capas delgadas y con pequeños lentes de sílice (Wilson y Reyes, 1964). El Grupo Pucará consiste en dos litologías diferenciadas, una inferior que se caracteriza por una estratificación maciza y una superior típicamente de una caliza negra y fétida, en capas delgadas y con intercalación de lutitas negras.

Formación Crisnejas (Cretácico inferior)

La transgresión del Albiano puede verse plasmada en esta zona del Perú en las margas y calizas de la Formación Crisnejas. La Formación Crisnejas se encuentra sobreyaciendo al Grupo Pucará y está controlado por una falla regional con rumbo NO-SE, por donde pasa el río Huinchus, esta formación consiste en calizas grisáceas, areniscas y lutitas calcáreas.

Formación Chota (Cretácico superior)

La Formación Chota consiste en areniscas rojizas y conglomerados, guijarros de calizas, los cuales llevan capas de areniscas friables de grano grueso y de coloración rosada. La Formación Tres Lagunas, el Grupo Pucará, la Formación Crisnejas y la

Formación Chota, poseen una permeabilidad media a baja, en consecuencia, estos materiales actúan como un acuitardo.

Depósitos Cuaternarios

En la quebrada de la Laguna Blanca se presentan depósitos fluvioglaciares, donde se reconoce cierta selección gradando desde guijarros angulosos a gránulos gruesos en una matriz arenosa a limosa, cubiertos por un suelo orgánico de unos 40 cm aproximadamente. Los manantiales que alimentan al embalse Laguna Blanca han formado un bofedal con depósitos de gravas angulosas en una matriz de arenas gruesas.

3.1.3 Geología estructural

Distritalmente los rasgos más resaltantes que se observan son: fallamientos, fracturamientos y plegamientos en rocas intrusivas, metamórficas y sedimentarias.

3.1.3.1 Plegamiento. De extensión regional, con ejes orientados de SE a NW; presentes en formaciones sedimentarias y metamórficas. La dirección probable de los esfuerzos de compresión que originaron estos plegamientos ha sido de NE a SW y viceversa. Las estructuras mineralizadas como Natasha, Gigante Uno, Esperanza, Cachaco y Yanaracra Sur se presentan localmente plegadas, lo que dificulta su exploración y explotación.

3.1.3.2 Fracturamiento. Las rocas intrusivas del Batolito de Pataz y el Complejo del Marañón se hallan fuertemente fracturadas, resultado de múltiples eventos tectónicos. Estos fracturamientos siguen un patrón estructural derivado de la dirección de los esfuerzos tectónicos, presentándose en sistemas de fracturamiento local, ya sea de forma paralela al sistema de fallas longitudinales, diagonalmente, o en paralelo a los esfuerzos de compresión que, a su vez, originaron microfallas. Las vetas comúnmente se presentan fracturadas y/o craqueladas.

3.1.3.3 Fallamiento. La zona se halla muy perturbada por efectos de fallamientos y plegamientos, como se ilustra en la Figura 9. Se han diferenciado tres sistemas principales de fallamiento:

32

Sección tipo del yacimiento El Gigante

Nota: Se exhibe la distribución de vetas (rojo) y fallas (azul). Tomado de Quispe (2019)

4000 Zona Nivel 5 - Nivel 3900 Zona Española - Nivel 3815 Zona Españolita - Nivel 3715 Zona Cabana - Nivel 3615 3500 Zona San Vicente - Nivel 3420 Rio Llacuabamba Zona Chilcas - Nivel 3220 Zona Chilcas Bajo - Nivel 3175 Zona Chilcas Bajo - Nivel 3125 Zona Chilcas Bajo - Nivel 3075 Pe-cm Complejo Marañón Zona Chilcas Bajo - Nivel 3025 Zona Chilcas Bajo - Nivel 2950 Zona Valerla I - Nivel 2870 Zona Valerla I - Nivel 2820 Zona Valeria I - Nivel 2770 Zoba Valeria II - Nivel 2720 Zona Valeria II - Nivel 2670 Zona Valeria III - Nivel 2620 Zona Valeria III - Nivel 2470 Zona Valeria VII - Nivel 2370

Sistema de fallamiento NW-SE (longitudinales)

Son fallas post-mineralización, con un rumbo subparalelo y/o paralelo a las vetas. Estas fallas originan ensanchamientos (cabalgamiento), acuñamientos y discontinuidades locales en las estructuras mineralizadas; muchos de éstos son de carácter normal sinextral e inversa - dextral, con desplazamientos que varían desde pocos metros hasta varios metros. Durante las operaciones en las vetas como: Gigante Uno, Esperanza, Yanaracra Sur, Cachaco, Mano de Dios y Yanaracra Uno, se han observado este tipo de fallas.

Sistema de fallamiento NE-SW a N-S (diagonales)

Estas fallas tienen un rumbo promedio norte a noreste y presentan alto buzamiento al oeste. Son fallas que se presentan muchas veces agrupadas en bloque (fallamientos gravitacionales) otras veces se presentan como estructuras aisladas. Las vetas en general se hallan afectadas por este tipo de fallamiento, ya sea normal, inverso, sinextral o dextral. Ejemplos de estas fallas son Oeste Uno, Cabana Cuatro y Cinco con desplazamiento normal - sinextral. Cuando las fallas tienen un bajo ángulo, se presentan como sobreescurrimientos locales.

Sistema de fallamiento principal E-W o fallas mayores (transversales)

Este sistema tiene un rumbo promedio E-W y un alto buzamiento al norte o sur. Dentro de este sistema se tiene: falla Uno, E-1, falla Veta Pumas Uno, Yanaracra Norte Uno, A- B, Cinco, Cabana y San Vicente. Los sistemas de falla se desplazan hasta 100 m en la vertical y 300 m en la componente horizontal (sinextral) siendo el bloque norte el que se desplaza o hunde. La falla Uno es una estructura conocida por su extensión y persistencia, y según las observaciones de campo, se deduce que es de movimiento inicial inverso – sinextral (Quispe, 2019). En la Figura 10 se muestra el modelo estructural local.

Sistema de vetas

En el Intrusivo de Pataz se encuentran dos sistemas de vetas emplazadas: el sistema NW-SE (Esperanza, Yanaracra Sur, Gigante, Cabana, Garfio y Daniela) y el

34

Sistema N-S (Yanaracra 1, Yanaracra 2, Cachaco-Las Torres y Valeria), que cuentan con estructuras tensionales del primer sistema. Las vetas del sistema NW-SE tienen un rumbo de N 20° - 50°W, con un buzamiento de 10° a 40° en dirección NE. Sin embargo, la veta Garfio buza entre 55° y 70° NE. Estas variaciones en el rumbo y buzamiento se atribuyen a los esfuerzos tensionales y compresivos que causaron plegamientos y fallamientos.

Figura 10

Modelo estructural del yacimiento

Nota: Tomado de Quispe (2019)

3.1.4 Geología económica

La mineralización se emplazó principalmente en rocas microdioritas - dioritas, con un menor porcentaje en granodioritas-granitos. Los rasgos litológicos y tectónicos de estas rocas se derivan de los procesos metalogénicos presentes en la Cordillera Central.

Las soluciones mineralizantes circularon a través de fracturas preexistentes dentro del Batolito de Pataz, depositándose en las aberturas a manera de vetas. La reacción con las rocas encajonantes provocó alteraciones hidrotermales, resultado de los cambios físicos y químicos en el ambiente deposicional (Dante, 2014). En las vetas del yacimiento se observan cuarzo con oro acompañado de otros sulfuros. El oro se encuentra según su paragénesis con pirita, arsenopirita, galena y esfalerita, siendo la pirita el mineral más abundante. También se observan vetas fracturadas, donde la galena es típica de la asociación, manifestándose en la zona de oxidación de los filones formando a veces agregados de grano fino y en otras en forma masiva como los llamados pacos. Aunque la esfalerita no es tan frecuente, se presenta en la zona de sulfuros acompañando siempre a la galena y pirita.

Las vetas muestran variabilidad en la potencia, desde centímetros hasta metros, presentando encaballamientos y reactivaciones. Las vetas son de cajas bien frágiles, deleznables e inestables, con la presencia de cajas falsas y espejos de falla en el techo. En todas las vetas de la zona se observan extensas franjas de cuarzo blanco, conocido como cuarzo lechoso con una pátina de óxido de hierro y acompañado de sulfuros generalmente limitado por falla longitudinal o de reactivación (Galán, 2021).

3.2 Geomecánica

Las rocas en la unidad minera Retamas incluyen tonalitas porfiríticas a tonalitas simples o microdioritas, lo que indica un buen control de mineralización, con una disminución hacia las rocas de composición más ácidas como cuarzo monzonitas y granitos.

El macizo rocoso de la unidad minera Retamas se divide en dos categorías: las estructuras menores (sistema de diaclasamiento) y las estructuras mayores (sistema de fallas). Estos resultados se analizaron estadísticamente utilizando métodos estereográficos. Las siguientes tablas muestran los sistemas de las estructuras mayores y menores.

Tabla 4

Sisten	Sistemas de discontinuidades de estructuras mayores						
	Descripción	Sistema 1	Sistema 2	Sistema 3			
	Dirección de buzamiento/buz	71°/23°	248°/79°	113°/73°			
	Rumbo / buzamiento	N19°W/23°NE	N22W/79°SW	N23°E /73°SE			

Tabla 5

Dominio Estructural	Sistema 1	Sistema 2	Sistema 3	Sistema 4
Veta AA	157/76	260/69	22/80	-
Veta BB	278/71	239/60	43/85	239/69
Veta Cabana	160/81	255/78	198/79	57/29
Veta Cachaco	265/81	245/64	201/74	235/25
Veta Daniela	156/86	242/61	68/18	207/68
Veta Esperanza	74/83	257/57	-	-
Veta Shakira	28/53	209/82	102/16	-
Veta Valeria	152/79	242/86	87/6	-
COMPOSITO	156/78	257/77	71/16	203/73

Sistemas de discontinuidades de estructuras menores

Para clasificar geomecánicamente la masa rocosa, el titular de la actividad minera utilizó el criterio de clasificación geomecánica de Bieniawski (RMR – Valoración del macizo rocosa).

En las operaciones mineras, se emplean principalmente pernos helicoidales, pernos Split set, malla electrosoldada, shotcrete y cimbras metálicas como tipos de sostenimiento. Además, se utilizan elementos de sostenimiento en menor cantidad, como cuadros de madera. Los elementos de sostenimiento tienen un certificado de aprobación; el shotcrete utilizado como elemento de sostenimiento cumple con los estándares de la norma ASTM C-136, C-1436 (American Society for Testing and Materials), ACI 506 (American concrete Institute) y la norma técnica Peruana NTP 339.198.

Las labores mineras de desarrollo (labores principales) en mayoría tiene una sección de $3.0 \text{ m} \times 3.0 \text{ m}$, $3.5 \text{ m} \times 3.5 \text{ m} \times 4.0 \text{ m}$, asimismo las labores de producción (tajos) tienen una sección de $3.5 \text{ m} \times 3.0 \text{ m} \times 3.0 \text{ m} \times 3.0 \text{ m}$, aplicados de acuerdo con el diseño establecido en el plan de minado.

Para brindar la recomendación geomecánica a fin de prevenir inestabilidades en labores de desarrollo/ permanente se usa la Cartilla de sostenimiento del GSI-RMR, la mencionada cartilla se observa en la Figura 11.

Los métodos de explotación aplicados por el titular de actividad minera son: Corte y Relleno Ascendente y Long Wall.

37

	LABORES DE DESARROLLO / PERMANENTE - MINERA AURIFERA RETAMAS							
TIPO DE ROCA	RMR (89) Seco	G.S.I.	T.A.S con Factores Influyentes		TIPO DE SOSTENIMIENTO A APLICAR SEGUN EVALUACION DE CAMPO Y PROYECTADA			
II BUENA A	71 - <mark>8</mark> 0	LF/B, LF/R, F/B	1 Año	(A)	- SOSTENIMIENTO OCASIONAL CON PERNOS DE 4, 5, 7 PIES DE LONGITUD DE ACUERDO A LA SECCION			
II BUENA B	61 - 70	LF/R, F/B, MF/B, F/R, LF/P	1 Año	(B)	 SOSTENIMIENTO CON PERNOS DE 5,7.8 PIES DE LONGITUD EN FORMA SISTEMATICA EN ZONAS CON LITOLOGIA DIVERSA Y EN FORMA PUNTUAL EN ZONAS CON COMPORTAMIENTO DE BLOCKS. LA DIRECCION A COLOCAR DEBE DE ESTAR EN FORMA PERPENDICULAR A LOS BLOCKS O ESTRATOS A SUJETAR. 			
III REGULAR A	51 - 60	MF/B,F/R, LF/P, IF/B, MF/R, F/P	1 Año	(C)	 SOSTENIMIENTO CON MALLA ELECTROSOLDADA Y PERNOS DE 5,7,8 PIES DE LONGITUD EN FORMA SISTEMATICA ESPACIADOS DE 1.20 A 1.50 MTS. (Según Evaluación Geomécanica). LA APLICACION DEL EMPERNADO ES PERPENDICULAR A LOS ESTRATOS. 			
III REGULAR B	<mark>41 - 5</mark> 0	IF/B,IF/R, MF/R,MF/P, F/P,F/MP	1 Mes	(D)	- SOSTENIMIENTO CON MALLA ELECTROSOLDADA Y PERNOS DE 5,7,8 PIES DE LONGITUD EN FORMA SISTEMATICA ESPACIADOS DE 1,20 A 1,50 MTS. REFORZAR CON SHOTCRETE DE 1,5" A 2" DE ESPESOR (Según Evaluación Geomécanica).			
IV MALA A	31 - 40	IF/R, MF/P, F/MP, T/R, IF/P, MF/MP	6 - 10 Horas	(E)	 INSTALAR PRESOSTENIMIENTO CON SHOTCRETE PREVENTIVO C/F DE 1.5" A 2" + MALLA Y PERNO SEGUN SECCION EN COCADA DE 1.20 A 1.00 MTS + SEGUNDA CAPA DE SHOTCRETE S/F DE 1.5" A 2" DE ESPESOR. CIMBRAS METALICAS ESPACIADAS DE 1.3m A 1.50 m CON PLANCHAS ACANALADAS, CON BOLSAS DE DETRITUS O ENCRIBADO, TABLAS DE 2" EN LOS HASTIALES. 			
IV MALA B	21 - 30	T/R, IF/P, MF/MP, T/P, IF/MP	4 - 6 Horas	(F)	 - INSTALAR PRESOSTENIMIENTO CON SHOTCRETE PREVENTIVO C/F DE 2* + MALLA Y PERNO SEGUN SECCION EN COCADA DE 1.20 A 1.00 MTS + SEGUNDA CAPA DE SHOTCRETE S/F DE 2* DE ESPESOR. - CIMBRAS METALICAS ESPACIADAS DE 1.1 A 1.5 m CON PLANCHAS ACANALADAS CON BOLSAS DE DETRITUS O ENCRIBADO, TABLAS DE 2* EN LOS HASTIALES. 			
V MUY MALA	< 20	t/p, if/mp, t/mp	2 - 4 Horas	(G)	INSTALAR PRESOSTENIMIENTO (Spiling Bar) EN LA CORONA CON PERNOS DE 8' ESPACIADOS A 0.30m + SHOTCRETE C/F 2' DE ESPESOR, Y/O MARCHAVANTES CIMBRAS METALICAS ESPACIADAS DE 0.80 A 1.0m CON PLANCHAS ACANALADAS CON BOLSAS DE DETRITUS O ENCRIBADO, TABLAS DE 2' EN LOS HASTIALES.			

Cartilla de sostenimiento del GSI-RMR

Nota: Tomado de Quispe (2019)

La Zona Valeria IV veta Daniela, Gal 10163 S del Nivel 2320 es la labor operativa más profunda hasta 2022. En roca tipo mala IVA (RMR 37), la condición de estabilidad de la labor del Nv 2320 es favorable y está sostenida por malla electrosoldada, pernos helicoidales de 5 pies de longitud reforzados con capa de shotcrete 2".

Se ha realizado el análisis de cuñas, usando software Undwedge 3.0, en la Figura 12 se aprecia la formación de bloques tetraedros hacia la corona, las cuales al interceptarse presentan un ápice no mayor a los 50 cm y con FS de 0 (inestable).

Figura 12

Análisis de cuñas de gal. 10163 S, sin sostenimiento

Nota: Modificado de Osinergmin 2021

En la figura 13 se observa que al colocar el sostenimiento con Shotcrete 2" + Malla

Electrosoldada 4x4" y Split set 5 pies 1.00 m x 1.20 m garantiza la estabilidad de la labor.

Figura 13

Análisis de cuñas de gal. 10163 S, con sostenimiento

Nota: Modificado de Osinergmin 2021

Del análisis estructural mostrado en las figuras previas se concluye que el sistema principal de discontinuidades tiene azimut sub-paralelo al eje de la Galería 10163 S, en asociación al resto de los sistemas de discontinuidades se generaron cuñas de hasta 0.5 Tn en la corona y hastiales; lo cual es controlado con el sostenimiento aplicado con un F.S. aceptable y que garantiza la estabilidad de la excavación.

3.3 Investigaciones geomecánicas

El presente ítem detalla las evaluaciones geomecánicas realizados por 5 eventos de estallido de rocas producidos durante los años 2018 al 2021 en la unidad minera Retamas, a modo de ejemplo, ya que han sucedido varios estallidos de roca en esos 4 años. Los eventos produjeron daños en la infraestructura en varias labores, se han analizado aspectos técnicos y geomecánicos, con el fin de determinar propuestas y mejoras aplicadas desde el año 2018.

Se ha procedido a ponerle nombre a los eventos y a partir de ahora se les denomina Casos de estudio, véase Tabla 6.

Tabla 6

Caso de estudio	Evento	Fecha del evento	Fecha de la toma de datos
4	2010 1	07 de febrere del 2010	07 y 08 de marzo del 2018
I	2018-1 27 de febrero del 2018		14 y 15 de mayo del 2018
2	2019-1	25 de febrero del 2019	
3	2019-2	28 de febrero del 2019	04 y 05 de mayo del 2019
4	2019-3	27 de marzo del 2019	2010
5	2021 1	02 do junio del 2021	09 al 11 de junio del 2021
5	2021-1	02 de junio del 2021	12 y 13 de junio del 2021

Casos de estudio

3.3.1 Caso de estudio-evento 2018-1

El evento fue el colapso ocurrido en la galería (en adelante GAL) 10173-N del Nivel 2270 Zona Valeria IV de la unidad minera "Retamas" (en adelante MARSA) el 27 de febrero del 2018, que causó lesiones a 6 trabajadores. Se tomaron los datos geomecánicos el 07 y el 08 de marzo de 2018 además se realizó la gestión del control del sostenimiento el 14 y 15 de mayo del 2018.

Se realizaron los análisis geomecánicos con el fin de asegurar la estabilidad de la labor GAL 10173-N Nv. 2270 CC40. No se ha tenido estudios de sismicidad inducida y de monitoreo sísmico.

3.3.1.1 Estudio geomecánico de la labor GAL 10173-N Nv. 2270. Seguidamente se detallan los aspectos geológicos y los estudios geomecánicos para este evento.

Aspectos geológicos

Los dominios litológicos que rodean la GAL 10173-N, viene a estar delimitados principalmente por granito y en menor proporción por diorita. Se tienen estructuras geológicas mayores (fallas) en dirección noroeste, como la falla Los Loros Ramal Uno y la falla NW-4 (ubicada en dirección este a 100 m de la labor). La información se muestra en la Figura 14.

Plano geológico de la labor GAL 10173-N Nv. 2270

Estudio geomecánico

Se utilizó y analizó la información de los mapeos geomecánicos para el estudio geomecánico del proyecto GAL 10173-N Nv. 2270 (Ver Figura 15). Se utilizaron las normas de la Sociedad Internacional de Mecánica de Rocas (2014) para caracterizar geomecánicamente los diversos tipos litológicos presentes en el proyecto. Se evaluó la calidad de la masa rocosa presente en el área de estudio. Se utilizaron modelamientos numéricos para estimar las propiedades geomecánicas del macizo rocoso alrededor de la excavación.

Plano de ubicación de la labor GAL 10173-N Nv. 2270

Caracterización geomecánica

Para obtener valores numéricos de la calidad del macizo rocoso se ha usado el sistema de Valoración RMR (Rock Mass Rating, Bieniawski 1989). La zonificación geomecánica se realizó de acuerdo al dominio litológico presente y su relación con su clasificación geomecánica (Véase ítem 2.1.2.5 del marco teórico), los datos se encuentran en el Anexo 1 y los resultados se muestran en las Tablas 7 y 8. Es importante destacar que los resultados estimados son el promedio general para cada tipo de roca para proporcionar información para la simulación numérica.

Tabla 7

Clasifi	cación geomecáni	ca RMR - Granito	
Parám	etro	Rango	Valor
Resiste	encia	100 - 250 Mpa	12
RQI	C	25 - 50 %	8
Espaciar	niento	< 60 mm	5
	Persistencia	3 - 10 m	2
Condición do	Apertura	1.0 - 5.0 mm	1
discontinuidados	Rugosidad	Ligeramente	3
uiscontinuidades	Relleno	Suave < 5 mm	1
	Alteración	Moderada	3
Presencia	de agua	Húmedo	10
Ajuste por o	rientación	Desfavorable	-10
		RMR Básico	45
		RMR Ajustado	35

Valor promedio de la calidad geomecánica para el granito

Tabla 8

Valor promedio de la calidad geomecánica para la diorita

Clasifi	cación geomecán	ica RMR – Diorita	
Parám	Parámetro		Valor
Resiste	encia	50 - 100 Mpa	7
RQI)	25 – 50 %	8
Espaciar	niento	< 60 mm	5
	Persistencia	3 - 10 m	2
Condición de	Apertura	1.0 - 5.0 mm	1
discontinuidades	Rugosidad	Ligeramente	3
discontinuidades	Relleno	Blando < 5 mrn	1
	Alteración	Moderada	3
Presencia	de agua	Húmedo	10
Ajuste por o	rientación	Desfavorable	-5
		RMR Básico	40
		RMR Ajustado	35

Plano geomecánico

Con los datos obtenidos que se muestran en las Tablas 7 y 8, se ha llevado a cabo la zonificación geomecánica y se han ploteado las familias de discontinuidades (fallas y juntas), como se muestra en la Figura 16.

En MARSA la roca predominante es el tipo IVA y el menos predominante es el tipo IIIA. La GAL 10173-N Nv. 2270 Zona Valeria IV presentan condiciones de estabilidad favorable, ya que se encuentra en roca tipo IVA – RMR 35 (Datos tomados en campo, Véase Anexo 1).

Figura 16

Plano geomecánico de la GAL 10173-N

Esfuerzos in situ

La GAL 10173-N Nv. 2270, está con un encampane promedio de 1160 m. El peso de la columna vertical de roca que descansa sobre este elemento es el producto entre la

profundidad y la unidad de peso de la masa de roca suprayacente (típicamente alrededor de 2.7 toneladas/m3 o 0.027 MN/m3). Por lo tanto, la tensión vertical sobre el elemento es de 3132 ton/m2 o 3.13 MPa.

Se ha utilizado el criterio de carga litostática de Hoek y Brown (1978), que calcula el esfuerzo vertical a partir del peso unitario de la roca sobreyacente y la profundidad debajo de la superficie. Para estimar el esfuerzo horizontal, es necesario conocer la constante K (factor de distribución de esfuerzos). Dadas las mediciones de esfuerzo in situ realizadas en MARSA el valor de k está determinado por la Ecuación 4 y el valor del esfuerzo vertical para el criterio de carga litostática (σ v) por la Ecuación 5, donde z es la profundidad.

$$k = 0.5 + [1500/z]$$
 (4)
 $\sigma_v = 0.027 \times 0.13 \times z$ (5)

Con la ecuación 4 y 5 se tiene un valor aproximado de los esfuerzos presentes, la profundidad promedio considerada para la GAL 10173-N Nv. 2270 es 1160 m; se ha definido un coeficiente de distribución de esfuerzos: k = 1.79, obteniéndose un esfuerzo vertical de 4.07 MPa y un esfuerzo horizontal de 7.3 MPa.

El sostenimiento aplicado anterior al evento de la labor GAL 10173-N con mayor uso es el perno helicoidal, split set, malla electrosoldada, shotcrete y cuadros de madera que se vienen usando en los tajos de la galería. Las galerías sobre la veta Daniela tienen una sección de 3 m x 3 m.

Resistencia de la roca intacta y macizo rocoso

Se utilizó los resultados del laboratorio de mecánica de rocas de la UNI para estimar la resistencia compresiva de la roca intacta sin confinar, así como otras propiedades mecánicas, físicas y elásticas. Estos ensayos provienen de muestras recolectadas en campo y solicitados por MARSA. La Tabla 9 contiene el resumen de las propiedades.

Tabla 9

Litología	σc (MPa)	σt (MPa)	γ (MN/m3)	mi	Ang. Fric. Interno(°)	Cohesión (MPa)	Emi (GPa)	Poisson (v)
Granodiorita	120.19	7.01	0.027	26.23	56.03	19.68	11.87	0.3
Granito	88.31	4.39	0.027	15.3	48.45	17.82	8.93	0.31
Monzogranito	64.07	4.57	0.027	16.6	49.31	16.38	11.14	0.3
Diorita	93.96	6.51	0.027	19.4	52.08	19.82	10.25	0.3
Pórfido	77.52	4.48	0.027	16.4	49.94	20.87	8.85	0.31
Filita	40.91	3.22	0.027	5.48	32.15	13.29	4.79	0.31
Granito II	105.13	7.41	0.027	13.5	47.09	20.07	7.55	0.31
Tonalita	38.27	2.68	0.027	8.06	39.14	9.07	4.97	0.32

Propiedades mecánicas, físicas y elásticas a nivel de roca intacta

Nota: Modificado de MARSA (2018).

Para estimar los parámetros de resistencia de la masa rocosa se usó el criterio generalizado de rotura de Hoek et al. (2004), con el programa RocData 4.0 de Rocscience Inc. Así mismo, en la Tabla 10 se muestra el detalle de los cálculos, usando el software RocData.

Tabla 10

Propiedades de resistencia de la masa rocosa

				Análisis	de Estabilid	ad de la	GAL 101	73-N			
	Datos d	le cai	mpo			Date	os para mo	odelamiento			
GSI	Prof	П	Litología	mb	S	2	Emr	Emr	k	S3 ≈	S1 ≈
001	(m)	D	Litologia	mb	0	a	(GPa)	(MPa)	ĸ	Sv	Sh
36	1160	0	Granito	1.556	0.00082	0.51	4.2	4197.64	1.79	4.07	7.3
35	1160	0	Diorita	1.899	0.00073	0.52	4.09	4087.63	1.79	4.07	7.3

Nota: Modificado de MARSA (2018).

Dónde: omr, resistencia del macizo rocoso; Emr, módulo de deformación del macizo rocoso; mb, s y a parámetros del criterio de rotura de Hoek. Los valores obtenidos permitirán realizar los análisis tenso-deformacionales del macizo rocoso.

Análisis de estabilidad con diseño por métodos numéricos

El análisis de estabilidad se ha realizado utilizando el programa PHASE2 versión 8.0 de Rocscience Inc. que utiliza el método de elementos finitos para analizar los esfuerzos y las deformaciones. Se han realizado los análisis de strength factor (equivalente a factor de seguridad), este factor de seguridad es calculado por el cociente entre la resistencia del macizo rocoso y los esfuerzos inducidos generados producto de la excavación. Un factor de seguridad por encima de 1 se considera estable, igual a 1 se considera como zona de equilibrio y por debajo de 1 se considera como zona plástica con una probabilidad de falla de aproximadamente de 50%.

El análisis strength factor se lleva a cabo con el fin de simular el comportamiento de los esfuerzos que rodean la excavación. El departamento de geología proporcionó datos para la simulación geomecánica. El modelo geométrico para los análisis de esfuerzo y deformación correspondientes se muestra en la Figura 17.

Figura 17

Modelamiento numérico

Como se describió en el párrafo anterior, los resultados del modelamiento numérico pueden identificar una condición segura. Los resultados obtenidos de los modelamientos numéricos realizados a las secciones proporcionadas por el departamento de geología en el nivel 2270, considerando las propiedades geomecánicas para cada dominio litológico, se muestran a continuación para determinar el grado de estabilidad de la GAL 10173-N. Es importante destacar que el factor de seguridad promedio usando el software S2 para los tajos es mayor a 1.26 y para las labores principales y permanentes es mayor a 1.50.

La Figura 18 muestra el análisis de tensión-deformación con sostenimiento en la cota 2270 de la GAL 10173-N, que refleja un factor de Seguridad menor a 1 por lo cual realizando el sostenimiento con shotcrete 2" más barra helicoidal de 5 pies se logra estabilizar la labor. El tipo de sostenimiento a aplicar según evaluación de campo y proyectada, para labores de desarrollo/permanente se realiza siguiendo la recomendación de la cartilla de sostenimiento del GSI-RMR (Véase la Figura 11).

Figura 18

Análisis tenso-deformación con sostenimiento

2270. La verificación de la estabilización de labores según las recomendaciones mostradas en el ítem 3.3.1.1. (resultados del modelamiento numérico), se realizó en MARSA el 14 y 15 de mayo del 2018.

Antecedentes y daño cuantificado

Se tomaron los datos geomecánicos el 07 y el 08 de marzo de 2018 donde se pudo observar y determinar que el sostenimiento ha estado trabajando eficientemente hasta el suceso del evento. El sostenimiento ha sido considerablemente dañado por la liberación de energía en este punto en un tramo de 12 a 14 m específicamente del total de la GAL en estudio (Ver Figura 19). Además, se ha identificado un radio de afectación de 15 m, en su mayoría de salida lineal en la GAL 10173-N.

Descripción

La GAL 10173-N Nv. 2270 (CC 40) Zona Valeria IV fue rehabilitada (Véase Figura 19). Para el sostenimiento, se consideró a las labores CH10173-6S y CH10173-3S, con una longitud de 45 a 48 metros.

Diseño geomecánico

Tabla 11

	bicación CC-40	el granito en la	Valor de RMR para
bicación	Litología	RMR	
CC-40	Granito	36-40	
	Glanito	30-40	_

Nota: Tomado como referencia de la Tabla 7

Según la Tabla 11 la labor en roca granítica obtuvo un RMR de 36 a 40, que corresponde a un tipo de roca IV A. Para lo cual el soporte antiguo considerado fue de shotcrete estructural, que consistió en el sostenimiento con perno y malla, revestido con shotcrete de 2" (Véase tipo de sostenimiento según la recomendación de la cartilla GSI-RMR de la Figura 11). Sin embargo, debido al estallido de rocas considerado como factor influyente se optó por un sostenimiento más pesado, el cual contiene cimbras.

Plano geomecánico GAL 10173-N rehabilitado, zona Valeria IV Nv. 2270

Soporte instalado

El sostenimiento que se instaló en esta región ha sido un sostenimiento de tipo pasivo, ligeramente deformable y con capacidad para aceptar deformaciones, que consistió en cimbras Omega THIN 21, de sección 8' x 9', que se instalaron previamente al lanzado de Shotcrete de 2" en las zonas desatadas aplicadas como pre-soporte, antes del armado del sostenimiento definitivo. Después de esto se armó el sostenimiento final, que consistió en cimbras Omega, con plancha acanalada y un enrejado dispuesto en damero para liberación de esfuerzos lateral.

La Figura 20 muestra la labor GAL 10173-N (CC40) Nv. 2270 zona Valeria IV, donde se realizó la verificación del sostenimiento realizado con cimbras en el tramo comprendido entre las chimeneas (en adelante CHI): CHI 10173-3S y CHI 10173-6S.

Labor GAL 10173-N (CC40) Nv.2270 zona Valeria IV

3.3.2 Casos de estudio-eventos 2019

Durante los días 04 y 05 de mayo del 2019 se realizaron las evaluaciones de los eventos de estallidos que originaron un total de 17 accidentes de trabajo suscitado en las instalaciones de MARSA (Osinergmin, 2019). La Tabla 12 muestra el resumen de los eventos de estallido de rocas. Se realizó la evaluación geomecánica de campo de las labores afectadas y en los ítems 3.3.2.1 a 3.3.2.3 se muestran los análisis y resultados obtenidos.

Tabla 12

	Eacha dal		Accidentes	
Evento		Labores afectadas	incapacitantes	Responsable
	evento		/leves (número)	
1	25/02/2019	CHI 91280-10N del Nivel 2270 - Zona Valeria IV	3	Contratista Minero
2	28/02/2019	SN 2252-S(CHI-6S) del Nivel 2220 - Zona Valeria IV	1	Contratista Minero
3	27/03/2019	BP 10252-NW del Nivel 2270/(CC- 40) - Zona Valeria IV	3	Contratista Minero

Resumen de eventos de rockburst analizados del 2019

3.3.2.1 Evaluación geomecánica de la CHI 91280-10N Nv. 2270 Valeria IV. La

labor CHI 91280-10N está en granodiorita y en el pórfido granodiorítico, la zona de la chimenea se viene excavando en la propia estructura de la veta Daniela (Ver Figura 21). El sistema de fallas estructurales está comprendido entre 2 fallas, la falla NW-2B y la falla Sistema Chilcas (ubicada a 40 m al este de la labor), ambas con rumbo NW y buzamiento SW. En la Tabla 13 se presenta los datos del mapeo geomecánico y en el Anexo 2 el detalle.

Tabla 13

	lasificación geon		
Parám	etro	Rango	Valo
Resiste	ncia	50 - 100 Mpa	7
RQI)	25 - 50 %	8
Espaciar	niento	0.06 - 0.2 m	
	Persistencia	3 - 10 m	2
Condición do	Apertura	0.1 - 1.0 mm	4
discontinuidades	Rugosidad	Ligeramente rugosa	3
	Relleno	Duro > 5 mm	2
	Alteración	Moderada	3
Presencia	de agua	Mojado	7
Ajuste por o	rientación	Desfavorable	-10
		RMR Básico	44
		RMR Ajustado	34

Clasificación <u>geomecánica de la CHI 91280-10N Nv. 2270</u> Clasificación geomecánica RMR

Con los datos de los parámetros analizados, se obtiene un RMR ajustado en el rango de roca Mala A o valores del tipo IV-A, relacionando el RMR con la clasificación GSI. El resultado muestra que es una roca intensamente fracturada/pobre o IF/P, que coincide con el análisis realizado por MARSA. En la Figura 22 se presenta el plano geomecánico de la CHI 91280-10N Valeria IV Nv. 2270.

Plano geomecánico de la CHI 91280-10N Valeria IV Nv. 2270

3.3.2.2 Evaluación geomecánica del SN 2252-S (CHI 6S) Nv. 2220. La labor del subnivel (en adelante SN) 2252-S (CHI 6S) está en granodiorita y en el pórfido granodiorítico, la zona del SN 2252-S se viene excavando hacia el este para intersectar la veta Daniela (Ver Figura 23). El sistema de fallas estructural está comprendido entre 2 fallas, la falla Brujas (ubicada a 60 m al oeste de la labor) y la falla Los Loros Ramal Uno, ambas con rumbo NW y buzamiento SW. En la Tabla 14 se muestran los datos del mapeo geomecánico.

Tabla 14

Clasificación geomecánica del SN 2252-S Valeria IV Nv. 2220

(Clasificación georr	ecánica RMR	
Parám	etro	Rango	Valor
Resiste	encia	25 - 50 Mpa	4
RQI	D	25 - 50 %	8
Espaciar	niento	0.06 - 0.2 m	8
	Persistencia	3 - 10 m	2
Condición do	Apertura	0.1 - 1.0 mm	4
discontinuidades	Rugosidad	Ligeramente rugosa	3
uiscontinuidades	Relleno	Duro > 5 mm	2
	Alteración	Moderada	3
Presencia	de agua	Húmedo	10
Ajuste por o	rientación	Regular	-5
		RMR Básico	44
		RMR Ajustado	39

Con los datos de los parámetros analizados, se obtiene un RMR ajustado en el rango de Mala A o valores del tipo IV-A, relacionando el RMR con la clasificación GSI. El

resultado muestra que es una roca intensamente fracturada/pobre o IF/P, que coincide con el análisis realizado por MARSA. En la Figura 24 se presenta el plano geomecánico del SN 2252-S Valeria IV Nv. 2220.

Figura 24

Plano geomecánico del SN 2252-S Valeria IV Nv. 2220

3.3.2.3 Evaluación geomecánica del BP 10252-NW Nv. 2270. La labor del bypass (en adelante BP) 10252-NW, está en granito, también desde el frente hasta la parte posterior se encuentra un pórfido tonalítico (Ver Figura 25). Estructuralmente ha cruzado el sistema de fallamiento que convergen en la zona estéril de la veta Daniela, esta zona geológica se distingue por presentar un fallamiento intenso con presencia de altos esfuerzos.

Las fallas identificadas han cruzado el eje de trabajo, y la falla NW-3 está cerca a la labor. La falla NW-3 es una de las fallas de Valeria IV y su activación es fácil cuando se realizan tareas cerca del eje. En la Tabla 15 se muestran los datos del mapeo geomecánico.

Con los datos de los parámetros analizados, se obtiene un RMR ajustado en el rango de Mala B o valores del tipo IV-B, relacionando el RMR con la clasificación GSI. El resultado muestra que es una roca intensamente fracturada/pobre o IF/P, que coincide con el análisis realizado por MARSA. En la Figura 26 se presenta el plano geomecánico del BP 10252-NW Valeria IV Nv. 2270.

Tabla 15

C	lasificación geon	necánica RMR	
Parámetro		Rango	Valor
Resistencia		50 - 100 Mpa	7
RQD		25 - 50 %	8
Espaciamiento		0.06 - 0.2 m	8
Condición de discontinuidades	Persistencia	3 - 10 m	2
	Apertura	1.0 - 5.0 mm	1
	Rugosidad	Ligeramente rugosa	3
	Relleno	Duro > 5 mrn	2
	Alteración	Moderada	3
Presencia de agua		Mojado	7
Ajuste por orientación		Muy desfavorable	-12
		RMR Básico	41
		RMR Ajustado	29

Clasificación geomecánica del BP 10252-NW Valeria IV Nv. 2270

Figura 26

Plano geomecánico del BP 10252-NW Valeria IV Nv. 2270

3.3.3 Caso de estudio-evento 2021-1

Entre los días 09 al 11 de junio del 2021 se realizó la evaluación de 1 evento de estallido de roca que afectó 2 labores. El análisis abarca el estudio de liberación de energía y el estudio geomecánico del crucero.

3.3.3.1 Estudio de liberación de energía. El 02 de junio del 2021 se suscitaron eventos de liberación de energía de manera ascendente que dieron como consecuencia el derrumbe de un tramo del crucero (en adelante XC) 10159-AN del Nivel 2295, a su vez la masa rocosa proyectada dañó el sostenimiento instalado del hastial izquierdo del XC 10159-AN del Nivel 2295 y también ocasionó levantamiento del piso en un tramo de la GAL 10163-N del nivel 2320.

Antecedentes del evento

Se verificó en el sistema del monitoreo microsísmico, que la tasa sísmica no se incrementó en días pre al evento (Estay, 2014, pp. 18-19).

Descripción técnica del evento

Durante el día 02 de junio en el horario de la 00:20:43 hasta las 23:37:09, se suscitaron 316 eventos, en una radio de 100 m de la rampa Patrick 3 hipocentro del evento récord de Mw 2.1 (epicentro del evento microsísmico, nivel 2220), desencadenado daño involucrados entre los niveles 2270 (CC-40), 2295 (CC-39) y 2320 (CC-37) y la rampa Patrick 3.

Valores de los 316 eventos

Las Magnitudes de los eventos fueron: (Mw) Magnitud de Momento

- Valor más Alto: 2.1
- Valor más Bajo: -2.6

Los valores de Energía alcanzados por los eventos fueron: (Joules)

- Valor más alto: 42,623,049 Joules. (42,623.05 KJ)
- Valor más bajo: 0.00 Joules (0.00 KJ)
El lugar del accidente, XC 10159-AN se halla ubicado en la división Valeria IV, nivel 2270, cámara 39. La sección programada fue de 13[°]x13[°] (4.00 m x 4.00 m). En la Figura 27 se observa la labor en una vista en planta.

Figura 27

Plano de ubicación del XC 10159-AN del Nv. 2270

Descripción geológica

El XC 10159-AN está en rocas graníticas y tonalíticas, conforme se muestra en la Figura 28. Así mismo, en cuanto al aspecto geológico-estructural, hay estructuras geológicas de segundo orden en dirección N-W, como la falla Los Loros de tipo inversa con buzamiento de 68° y dirección SW, también se tienen fallas en un radio de 25 m, como la falla NW-3 y NW-2 de tipo normal.

Caracterización Geomecánica

Para obtener valores numéricos de la calidad del macizo rocoso se ha usado el sistema de valoración RMR. La zonificación geomecánica se realizó de acuerdo con el dominio litológico presente y su relación con su clasificación geomecánica (Véase ítem 2.1.2.5 del marco teórico), los datos se encuentran en el Anexo 3 y el resultado se muestra en la Tabla 16. Es importante destacar que los resultados estimados son el promedio general para cada tipo de roca para proporcionar información para la simulación numérica.

Clasificaciones Geomecánicas

La clasificación Geomecánica RMR89 Básico para la labor XC 10159-AN del Nv. 2270 varía entre 31 y 40. De acuerdo con la Figura 11 dentro del ítem 2.1.2.4, el GSI está catalogado como un macizo rocoso Muy Fracturada - Pobre (MF/P). El granito presenta un RMR de 38 roca tipo Mala IV-A. Es importante destacar que los hallazgos se han basado en el compósito para el análisis de esfuerzo-deformación en las áreas geológicas correspondientes.

Tabla 16

Parán	netros	Rangos	Valores
Resisten	cia (Mpa)	50-100	7
RQI	D %	25-50	8
Espaciam	iento (m)	0.06 - 0.2	8
	Persistencia	3 - 10 m	2
	Apertura	1.0 - 5.0 mm	1
Condición de juntas	Rugosidad	Ligeramente rugosa	3
	Relleno	Suave < 5 mm	1
	Alteración	Mod. Alterada	3
		Húmedo	10
	RMR Básico)	43
	Ajuste por orienta	ación	-5
	RMR Ajustad	0	38

Valor promedio de la calidad geomecánica para el granito

Plano Geomecánico

Con los datos recolectados se ha creado un plano geomecánico incluyendo el compósito de la zonificación Geomecánica. En la Figura 29 se puede observar el detalle de las discontinuidades (fallas y juntas).

Figura 29

3.3.3.2 Estudio geomecánico secundario del XC 10159-AN. Seguidamente se detallan la teoría del diseño por métodos numéricosplanteado y los aspectos de resistencia de la roca intacta y macizo rocoso.

Diseño por métodos numéricos

Se ha realizado un análisis del factor de resistencia (que viene a ser el factor de seguridad). Este factor de seguridad se calcula como el cociente entre la resistencia de la roca maciza y los esfuerzos inducidos por la excavación. Un factor de seguridad por encima de 1 se considera estable, un factor de seguridad igual a 1 se considera zona de equilibrio y un factor de seguridad por debajo de 1 se considera zona plástica con una probabilidad de falla de aproximadamente el 50%.

Este análisis se lleva a cabo con el fin de simular el comportamiento de los esfuerzos que rodean la excavación. El departamento de geología proporcionó datos para la simulación geomecánica. Para realizar el análisis se siguen los pasos siguientes:

Resistencia de la roca intacta y macizo rocoso

Se utilizaron los resultados del laboratorio de mecánica de rocas de la UNI para estimar la resistencia compresiva de la roca intacta sin confinar, así como otras propiedades mecánicas, físicas y elásticas. La Tabla 17 contiene los resultados.

Tabla 17

Litología	σc (MPa)	σt (MPa)	γ (MN/m3)	mi	Ang. Fric. Int. (°)	Cohesi ón (MPa)	Emi (GPa)	Poiss on (v)
Granodiorita	120.19	7.01	0.027	26.23	56.03	19.68	11.87	0.3
Granito	88.31	4.39	0.027	15.3	48.45	17.82	8.93	0.31
Monzogranito	64.07	4.57	0.027	16.64	49.31	16.38	11.14	0.3
Diorita	93.96	6.51	0.027	19.35	52.08	19.82	10.25	0.30
Pórfido	77.52	4.48	0.027	16.37	49.94	20.87	8.85	0.31
Filita	40.91	3.22	0.027	5.48	32.15	13.29	4.79	0.31
Granito II	105.13	7.41	0.027	13.53	47.09	20.07	7.55	0.31
Tonalita	38.27	2.68	0.027	8.06	39.14	9.07	4.97	0.32
Caja Piso 1	71.83	5.47	0.027	12.81	47.38	14.51	9.71	0.30
Caja Piso 2	65.39	5.69	0.027	13.06	47.75	15.22	8.30	0.30
Caja Techo 1	85.37	5.11	0.027	17.67	52.31	15.70	12.95	0.28
Caja Techo 2	92.71	6.10	0.027	14.92	49.88	15.96	12.02	0.28
Veta	40.30	5.04	0.027	7.00	37.15	10.42	6.55	0.32
Relleno	40.30 5.04 0.02		0.027	7.00	37.15	10.42	6.55	0.32

Propiedades mecánicas, físicas v elásticas a nivel de roca intacta

Nota: Modificado de MARSA (2021).

Dónde: σmr, resistencia del macizo rocoso; Emr, módulo de deformación del macizo rocoso; mb, s y a parámetros del criterio de rotura de Hoek.

Utilizando el software ROCDATA y con los datos de la Tabla 17, se presentan los valores obtenidos (extremo derecho superior de las Figuras 30 y 31) de las propiedades de resistencia de la masa rocosa, estos valores permitieron realizar los análisis tensodeformacionales del macizo rocoso.

Figura 30

Estimación en RocData de las propiedades del granito

Figura 31

Estimación en RocData de las propiedades de la tonalita

El estudio geomecánico del XC 10159-AN muestra que el día 02 de junio del 2021 muestra el carácter anómalo, y está relacionado a la activación de la falla Los Loros, debido a la aplicación de esfuerzos tectónicos en las inmediaciones de la falla, que produce la deformación elástica de las rocas en ese entorno. Cuando la resistencia del corte de la roca fue superada por la magnitud de los esfuerzos, se produjo la ruptura y desplazamiento a lo largo de la falla, el desplazamiento fue repentino dando como consecuencia una liberación de energía localizada 5 m debajo de la rampa Patrick 3, ocasionando que las ondas del evento viajen por el plano de falla en busca de una cara libre impactando sobre el XC 10159-AN ocasionando proyección de la masa.

Además, el estudio geomecánico del XC 10159-AN muestra que la caracterización Geomecánica del macizo rocoso del Nv. 2270, presenta un RMR ajustado de 38 tipo de roca IV-A con fracturas con relleno blando, de ligera a moderada alteración sin presencia de agua que pudiera comprometer la estabilidad de la labor.

3.3.4 Caso de estudio asociado al evento 2021-1

Se analizaron las labores y zonas inestables asociadas directamente al evento del accidente mortal revisado en el caso de estudio anterior. Este análisis se realizó durante los días 12 al 13 de junio de 2021. Estas zonas se encuentran en proceso de relajamiento continuo; asimismo, presenta terreno relajado y perturbado, lo cual constituye un peligro potencial de alto riesgo de aplastamiento por caída de rocas.

Por tal motivo, es necesario realizar un estudio para las labores que también sufrieron daños producto del evento de estallido de rocas. En ese sentido a continuación se detallará el estudio principal presentado y el análisis realizado.

3.3.4.1 Estudio general de la labor rampa Patrick-3 Nv. 2270. Seguidamente se detallan los aspectos geológicos y estudios geomecánicos para la labor en cuestión.

Clasificaciones Geomecánicas

Según la clasificación geomecánica RMR89, la calidad del macizo rocoso en la zona de influencia de la labor rampa (en adelante RP) Patrick-3 Nv. 2270 varía de 37 a 40; de acuerdo con el GSI está clasificado como un macizo rocoso Triturado/Regular,

Intensamente Fracturado/Pobre, (T/R - IF/P). Además, el granito tiene un RMR ajustado de 40 con roca tipo IV-A Mala, la tonalita tiene un RMR ajustado de 39 con roca tipo IV-A Mala. Es importante resaltar que los resultados han sido considerados en base a la perturbación que ha generado el evento microsísmico por desplazamiento para el respectivo análisis de esfuerzo. Esto se debe a la Influencia de los sistemas de fracturamiento y la falla los Loros que ejerce fracturamiento en los niveles mencionados.

Aspectos geológicos

Los dominios litológicos de la RP Patrick-3, viene a estar delimitados principalmente por granito y en menor proporción por diorita y tonalita hacia el norte. Se tiene una estructura geológica mayor (falla) en dirección noroeste que corta a la labor por la zona afectada por el evento. La información se muestra en la Figura 32.

Figura 32

Plano geológico de la RP Patrick-3 del Nv. 2270

Mapeo geomecánico

El mapeo geomecánico de las labores (Véase la Figura 33) se realizó utilizando el "método directo de celdas de detalle" con el formato estandarizado por la empresa (Véase Anexo 4) y cumpliendo las normas establecidas por la Sociedad Internacional de Mecánica de Rocas ISRM (2014). Con la información obtenida se zonificó los planos geomecánicos, además se incluye información sobre el tipo de roca en cada nivel.

La zona de influencia de la RP Patrick-3 es inestable y se encuentra en proceso de relajamiento continuo hacia el hastial izquierdo; asimismo, presenta terreno relajado y perturbado, lo que presenta un peligro potencial de alto riesgo de aplastamiento por caída de rocas.

Figura 33

Plano de rehabilitación de labores visitadas

Esfuerzos in situ y factor de competencia

El epicentro del evento microsísmico estuvo en el nivel 2220 (CC-40), para el 2021 el nivel 2220 tenía un encampane promedio de 1215 m aproximadamente. Se calcularon los esfuerzos considerando el peso de la columna vertical de roca que descansa sobre el nivel 2220, los esfuerzos resultan del producto de la profundidad y la unidad de peso de la masa de roca suprayacente (típicamente alrededor de 2,7 toneladas/m³ o 0.027 MN/m³).

En la Figura 34 se muestra el cuadro de factor de Competencia, que incluye los esfuerzos, señalando la presencia de relajamiento severo en función del tiempo, muy cercano a la posibilidad de la generación de estallidos.

Cuadro de factor de competencia

	FACTOR DE COMPE	TENCIA									
Fc = R	c/ơv										
Rc = Resisten σv = Esfuerzo	cia a compresion (rotu in-situ vertical de la r	ura) de la roca en Mpa. oca en Mpa.									
σν = (y x z)										
Datos											
Rc = 88.3	Мра	Resistencia									
y = 2.7	Tn/m ³	Densidad									
z = 1215	m.	Profundidad									
Fc =	2.69	S/Unidades									
VALORES	ESFUERZOS	S ACTUANTES									
FC>10	No hay problema de relajamiento										
10 <fc>5</fc>	Relajamiento menor y problemas menores										
5 <fc>2.5</fc>	Relajamiento severo	en funcion del tiempo									
FC<2.5	Problemas de estallio	do y/o derrumbes									

Adicionalmente, se utilizó el método de overcoring (Osinergmin, 2020) dando como

resultado los siguientes datos (Véase Figura 35).

S1: 20.3 Mpa

S2: 14.7 Mpa

S3: 5.7 Mpa

Estereograma de los esfuerzos S1, S2 y S3 de la RP Patrick-3 Nv. 2270

Nota: Tomado de Osinergmin (2020)

ANÁLISIS DE ESTABILIDAD

Diseño por métodos numéricos

Se han realizado los análisis de Strength Factor (equivalente a Factor de Seguridad), el factor de seguridad es calculado por el cociente entre la resistencia del macizo rocoso y los esfuerzos inducidos generados producto de la excavación, un factor de seguridad por encima de 1 se considera estable, igual a 1 se considera como zona de equilibrio y por debajo de 1 se considera como zona plástica con una probabilidad de falla de aproximadamente el 50 %.

El análisis de estabilidad se lleva a cabo con el fin de simular el comportamiento de los esfuerzos que rodean la excavación. El departamento de geología de MARSA proporcionó datos para la simulación geomecánica.

Resistencia de la roca intacta y macizo rocoso

Para estimar la resistencia compresiva de la roca intacta sin confinar, así como otras propiedades mecánicas, físicas y elásticas; se usaron los resultados obtenidos por el laboratorio de mecánica de rocas de la UNI y TECSUP. Los resultados se muestran en las Tablas 9 y 17.

Aspectos estructurales

Se utilizó el programa DIPS versión 6.0 de Rocscience Inc. que analiza sistemas principales de discontinuidades, para analizar los aspectos estructurales. De acuerdo con el mapeo estructural se ha evidenciado la presencia de 3 familias de discontinuidades, que han sido ploteados en la Figura 35 (Proyección Estereográfica).

Consideraciones

Con el mapeo geomecánico estructural se determinaron 03 sistemas principales de fracturamiento.

- Familia 1: 71/242. (1)
- Familia 2: 40/43. (2)
- Familia 3: 65/157. (3)

La zona en estudio presenta inestabilidad debido a los dominios estructurales y presencia de fallas locales. La representación estructural se muestra en las Figuras 36 y 37.

Las fallas Los Loros y NW-3 por estar ubicadas cerca de la RP Patrick-3 han sido consideradas para el análisis cinemático, las fallas Los Loros y NW-3 se presenta con orientación subtransversal al rumbo del proyecto, formando cuñas en corona.

Proyección estereográfica de la falla Los Loros y falla NW-3

Figura 37

Roseta de diaclasas de la RP Patrick-3 Nivel 2270

De la Figura 37 se puede determinar que la dirección de empuje del sistema va de

SE a NW

Análisis de estabilidad

Utilizando el software de equilibrio límite PHASE2 versión 8.0 de Rocscience Inc. se realizó el modelamiento por back análisis de las excavaciones existentes, con la finalidad de analizar los esfuerzos y deformaciones utilizando el método de elementos finitos, los datos que se muestra en la Tabla 18 se utilizan como datos de entrada para el modelamiento. Los resultados coinciden con el trabajo de Marsa.

Tabla 18

	Datos	de campo			Datos	s para mo	odelamient	0
CSI	Profundidad	D	Litología	mb	0	2	Emr	Emr (MBa)
GSI	(m)	D	Litologia	un	3	d	(GPa)	EIIII (IVIFa)
40	1152	0.8	Granito	0.43	0.00011	0.511	3.171	3170.708
34	1152	0.8	Tonalita	0.301	0.00007	0.514	2.406	2406.047

Data de campo y laboratorio de la masa rocosa

Nota: Modificado de MARSA.

Dónde: σmr, resistencia del macizo rocoso; Emr, módulo de deformación del macizo rocoso; mb, s y a parámetros del criterio de rotura de Hoek.

Simulación y back análisis de los modelamientos numéricos

A fin de determinar el grado de estabilidad de las labores del Nv. 2270 y la RP

Patrick-3, se realizó el modelamiento numérico en la sección N°01 (Ver Figura 38).

Labores de los Nv. 2295, 2270 y la RP Patrick-3

Nota: Tomado de Osinergmin (2021)

F.S. de la sec. 01 del Nv. 2270 al 2320 sin considerar sostenimiento

Como se puede observar en la Figura 39, la sección N° 01 muestra el modelamiento numérico desde el Nv. 2270 al Nv. 2320, se observan labores como la EST 10129-N, EST 1, BP 10229-E, GAL 10163-S, XC 10133-NE, TJ 1258 y la RP Patrick-3, los factores de seguridad obtenidos son menores a 1.0, indicando que la zona en evaluación se encuentra en una zona plástica (INESTABLE).

Como se puede observar en la Figura 40, el modelamiento numérico desde el Nv. 2270 al Nv. 2320, señala que debe realizarse un sostenimiento denso en cada labor: RP Patrick-3, EST 1, BP 10229-E, GAL 10163-S, XC 10133-NE, se recomienda un sostenimiento con cimbra tipo Omega; el sostenimiento de la EST 10129-N, EST 4 y el TJ 1258 tiene que ser de relleno hidráulico. Realizando el sostenimiento recomendado los factores de seguridad serán mayores a 1.0, volviéndose la zona en evaluación en una zona estable.

Nota: Tomado de Osinergmin (2021)

Sec. 01 del Nv. 2270 al 2320- F.S. con sostenimiento denso

Nota: Tomado de Osinergmin (2021)

Como se puede observar en la Figura 41, la sección N° 16 muestra el modelamiento numérico desde el Nv. 2240 al Nv. 2320, se observan labores como el XC 10159-AN, GAL 10163-N y la RP Patrick-3, los factores de seguridad obtenidos son menores a 1.0, indicando que la zona en evaluación se encuentra en una zona plástica (INESTABLE).

En la Figura 42, el modelamiento numérico desde el Nv. 2240 al Nv. 2320, señala que debe realizarse un sostenimiento denso en cada labor: RP Patrick-3 se recomienda un sostenimiento con cimbra tipo Omega, el XC 10159-AN y la GAL 10163-N tienen que ser de relleno hidráulico. Realizando el sostenimiento recomendado los factores de seguridad serán mayores a 1.0, volviéndose la zona en evaluación en una zona estable.

F.S. de la sec. 16 del Nv. 2240 al 2320 sin considerar sostenimiento

Nota: Tomado de Osinergmin (2021)

Figura 42

Sec. 16 del Nv. 2240 al 2320- F.S. con sostenimiento denso

Nota: Tomado de Osinergmin (2021)

Se resumen las recomendaciones realizadas.

- Se recomienda un sostenimiento con cimbra tipo Omega para las labores: RP Patrick-3, EST 1, BP 10229-E, GAL 10163-S, XC 10133-NE. El sostenimiento de la EST 10129-N, EST 4 y el TJ 1258 tiene que ser de relleno hidráulico.
- Se recomienda un sostenimiento para las labores XC 10159-AN y la GAL 10163-N con relleno hidráulico.

3.3.4.2 Gestión de control del sostenimiento en las labores afectadas RP

PATRICK-3, Nv. 2270. La verificación de la estabilización de labores según las recomendaciones del ítem 3.3.4.2 se detallan a continuación.

ITEM 1:

Se recomendó rellenar con relleno hidráulico el XC 10178-NE y XC 10159- AN en un tramo de 75 m, según se evidencia en la Figura 43.

Figura 43

Antes y después de la labor XC 10178-NE y XC 10159- AN

Nota: Tomado de Osinergmin (2021)

ITEM 2:

Se fortificó el sostenimiento del BP 10229-E (labor cercana a la RP Patrick-3) con cimbras de tipo Omega de 2.4 m x 2.8 m en un tramo de 40 m, como se muestra en la Figura 44.

Figura 44

Antes y después del BP 10229-E con cimbras de tipo omega

Nota: Tomado de Osinergmin (2021)

ITEM 3:

Se recomendó rellenar con relleno hidráulico la GAL 10163-N en un tramo de 90 m. El trabajo se realizará cuando se culmina el sostenimiento del XC 10133-NE, encontrándose el área bloqueada para evitar ingreso del personal. El cumplimiento se muestra en la Figura 45.

Relleno hidráulico en la GAL 10163-N zona Valeria IV

Nota: Tomado de Osinergmin (2021)

ITEM 4:

Se recomendó rellenar con relleno hidráulico la estocada (en adelante EST) 10129-

N en un tramo de 27 m, según se muestra en la Figura 46.

Figura 46

Relleno hidráulico en la EST 10129-N

Nota: Tomado de Osinergmin (2021)

ITEM 5:

Se recomendó rellenar con relleno hidráulico la EST 1 (BP 10180-NW). en un tramo de 30 m y la RP 10159-N (EST 1) en un tramo de 52 m, según se evidencia en la Figura 47.

Figura 47

Relleno hidráulico en la EST 1 y la RP. 10159-N

Nota: Tomado de Osinergmin (2021)

Capítulo IV. Análisis y discusión de resultados

4.1 Análisis comparativo

Caso de estudio-evento 2018

La GAL 10173-N del Nivel 2270 zona Valeria IV se encuentra a una profundidad de 1162 m, en una roca rígida (granito) con RMR entre 30-40, encontrándose expuesta al riesgo de ocurrencia de fenómenos de estallido de rocas, que se venía presentando con anterioridad según los datos reportados por MARSA (2018), en total 21 eventos reportados para todo el año del 2018, esta información fue corroborada con la manifestación de los trabajadores y estaba registrada en la data histórica de eventos microsísmicos. Según Osinergmin (2018) para el año 2017 en MARSA se reportaron 12 eventos de liberación de energía. A pesar de la ocurrencia de estos eventos, no se tenía estudio de sismicidad inducida, necesario porque la profundidad de las operaciones da lugar a altos esfuerzos en la roca que pueden y generan estallidos de roca.

Los peligros por la presencia de dos (2) fallas locales en la GAL 10173-N del Nivel 2270 Zona Valeria IV no se identificaron ni controlaron, aumentando el riesgo de desprendimiento de rocas en la GAL 10173-N, producto del evento microsísmico.

Con los datos obtenidos del caso de estudio y del estudio geomecánico MARSA (2020) se reafirma que MARSA es una mina sísmicamente activa, es decir en sus labores se generan eventos de liberación de energía y reacomodos en el macizo rocoso. La inestabilidad del macizo por desconfinamiento de roca aunado con la ocurrencia de eventos microsísmicos producen relajamientos hasta reventazón de roca dañando completamente el sostenimiento y requiriendo acciones inmediatas para su control, como sucedió en la GAL 10173-N. De acuerdo con la data de eventos se confirma que a medida que la mina profundiza se tiene mayor reporte en incidentes por eventos microsísmicos y se carece de herramientas de control; por ende, se recomendó implementar un sistema de

monitoreo microsísmico para la prevención y control de inestabilidad del macizo rocoso a fin de prevenir accidentes de personal, equipos y procesos.

La gestión de control de sostenimiento en la labor GAL 10173-N Nv. 2270 se realizó para ayudar en el control del estallido de rocas. Se realizaron trabajos de rehabilitación y sostenimiento con cimbras omega THN-21, en un tramo de 14.4 metros, tal como se observa en la Fotografía 19 del capítulo 3.3.1.2. Con las medidas correctivas se logra la estabilización de la GAL 10173-N (CC40) Nv. 2270 zona Valeria IV.

Casos de estudio-eventos 2019

La evaluación geomecánica para las 3 labores es la siguiente. La labor CHI-91280-10N está en granodiorita y en el pórfido granodiorítico, presenta un RMR entre 31-40 (roca Mala A o tipo IV-A). La labor SN 2252-S (CHI 6S) está en granodiorita, pórfido granodiorítico y tonalita al norte, presenta un RMR entre 31-40 (roca Mala A o tipo IV-A). La labor BP 10252-NW está en granito y pórfido tonalítico al sur, presenta un RMR entre 21-30 (roca Mala B o tipo IV-B).

Con las evaluaciones geomecánicas realizadas se tomaron las medidas correctivas, pero se sugiere contar con la herramienta "Sistemas de Alerta Temprana" (SAT), sistema que permite monitorear la amenaza o peligro (natural o antrópico) de carácter previsible, este sistema utiliza dispositivos como sensores, que permiten registrar eventos sísmicos. El SAT reforzará el mapeo geomecánico y la identificación de posibles zonas de inestabilidad propensas a sufrir mayor daño producto del estallido de rocas.

Caso de estudio-evento 2021

El XC 10159-AN está en rocas graníticas y tonalíticas. La clasificación Geomecánica RMR89 Ajustado para la labor varía entre 31 y 40. El GSI está catalogado como un macizo rocoso Muy Fracturado - Pobre (MF/P). El granito presenta un RMR de 38 roca tipo Mala IV-A.

Con las observaciones geomecánicas se verificó que por efecto de la liberación de energía en el tope del XC 10159 AN del Nv. 2270 Zona Valeria IV, se produjo un desbroce de masa rocosa de 68.92 m3, motivo por el cual, los elementos de sostenimiento (shotcrete

4" + pernos helicoidales de 8') se dañaron y agrietaron, se evidencia acumulación de rocas y bloques con shotcrete en el piso siguiendo la proyección del hastial izquierdo además se observaron pernos helicoidales colgados. Asimismo, durante la evaluación geomecánica la labor XC 10159 AN se encontraba en proceso de relajamiento continuo por la ausencia de sostenimiento. Esto muestra que el sostenimiento aplicado no fue el adecuado.

Es decir, se verifica que la labor XC 10159 AN es una zona inestable que se encuentra en proceso de relajamiento continuo hacia el hastial izquierdo, asimismo, presenta terreno relajado y perturbado, que constituye un peligro potencial de alto riesgo de aplastamiento por caída de rocas. Se paralizaron las actividades mineras en el XC 10159 AN del Nv. 2270 y se realizó el estudio geomecánico y estudio de sismicidad para establecer las medidas correctivas que garanticen la estabilidad de la zona. Posteriormente con el estudio geomecánico se recomendó el relleno de la labor XC 10159 AN con relleno hidráulico garantizando así su estabilidad.

De las investigaciones geomecánicas realizadas en los casos 2018, 2019 y 2021 se considera se debe revisar al detalle los informes para cada evento de estallido de rocas. Además, permanentemente se debe de verificar los criterios geomecánicos con la respuesta oportuna de la mina para mantener la estabilidad y seguridad de las condiciones del terreno. También se debe de verificar la implementación de las recomendaciones dadas en los estudios geomecánicos de estallido de rocas, sismicidad inducida y monitoreo microsísmico.

4.2 Discusión de resultados

Los resultados obtenidos en esta tesis confirman las investigaciones que se realizaron en las fechas de los eventos; además los estudios de Murwanashyaka y Li (2019) sostienen que el peligro de estallido de rocas para la explotación segura y eficiente de depósitos profundos es un problema clave que debe resolverse con urgencia, que no se resuelve con la debida eficiencia en la industria minera. Desde este punto de vista, se recomienda a todas las partes involucradas y otros investigadores interesados, que reconsideren, reflexionen y realicen estudios exhaustivos sobre las medidas de control de

estallido de rocas para mejorar la seguridad y la eficiencia de la explotación de depósitos subterráneos profundos y otros proyectos de excavación subterránea.

La descripción de las evaluaciones geomecánicas concuerdan con lo mencionado por Qian y Lin (2016) donde señalan los nuevos desafíos de la gestión de riesgos de seguridad de la ingeniería subterránea, estos son (1) el control de los comportamientos inseguros de los trabajadores, (2) la innovación tecnológica relacionada con la gestión de riesgos de seguridad y (3) el diseño de normas de gestión de seguridad. Es importante considerar para esta tesis y demás estudios similares nuevas estrategias de gestión de riesgos de seguridad que ayuden a reducir eventos peligrosos. Se comparte la nueva estrategia de gestión con los 6 aspectos propuestos incluidos la gestión de riesgos de seguridad y las contramedidas políticas, legales, administrativas, económicas, educativas y técnicas. En las minas obligatoriamente se deben de considerar estrategias de gestión

Una de las mejoras planteadas para un sistema de gestión de riesgos que afecta a los trabajadores coincide con Durrheim, Essrich y Ortlepp (2006) quienes mencionan que el sector minero emplea a varios cientos de miles de personas, desde trabajadores analfabetos hasta ingenieros altamente calificados, donde la formación se ofrece en muchos niveles diferentes y por muchos proveedores diferentes; entonces, la capacitación destinada a reducir el riesgo de estallido de rocas generalmente se debería de integrar con otros temas, como el reconocimiento de peligros, la instalación de soporte y el diseño de minas.

Gonzalez, Beltran y Henning (2019) con el caso descrito para la mina Uchucchacua muestra la fortaleza de cooperar con instituciones como el Centro de Investigación Geomecánica (GRC) MIRARCO, que permitió conocer a mayor detalle y entender el fenómeno de estallido de rocas. En estudio desarrollado para la mina Uchucchacua guarda estrecha relación con la presente tesis en 3 puntos. Primero se sostiene la obligatoriedad de tener una buena clasificación del macizo rocoso como paso inicial para determinar el modelamiento numérico que asimismo será útil para identificar zonas probables de

concentración de esfuerzos. Segundo, se refuerza la idea de establecer correlaciones entre las características geológicas y los eventos sísmicos producidos que generan un daño a la excavación. Finalmente, se determina que la información geológica en profundidad es fundamental para identificar rocas competentes concluyendo que con una buena caracterización del macizo rocoso se puede determinar sectores con acumulación de esfuerzos en el macizo rocoso.

La fortaleza del presente estudio es el análisis histórico realizado en MARSA. Se realizó el análisis desde el 2018 con el caso de estudio-evento 2018-1. Para este evento 2018-1 se empezó a detallar los eventos que ocurrían, precisando las mejoras y ausencias que presentaban estos fenómenos. Luego, se detallaron los demás casos de estudio donde se continuaban presentando dichos eventos con afectaciones al sostenimiento y al avance del minado. Hasta que para el año 2021-1, ocurrió un estallido de considerable magnitud que tuvo mayor radio de afectación en el laboreo y mayores consecuencias en el sostenimiento. El suceso de eventos demuestra el desarrollo-evolución de la evaluación geomecánica planteada para cada caso de estudio. Este proceso descrito y detallado en la presente tesis sirvió para identificar oportunidades de mejora y servirá como réplica para otras minas que vienen presentando este problema. Es decir, el análisis realizado se puede replicar en diversas partes del país, y ayudar a prevenir afectaciones materiales como accidentes personales.

El presente trabajo de investigación evidencia que un incidente peligroso no es un hecho aislado; es más, en este caso se tuvieron varios eventos previos que seguían presentándose sin mostrarse ninguna disminución en la frecuencia. Por este motivo este trabajo sirve como guía para las unidades mineras que están presentando este fenómeno, se deben replicar las medidas que funcionaron e identificar cuales se deben de mejorar, que estudios serán necesarios realizar, el tiempo de demora en la correcta realización, entre otros factores que serán necesarios implementar para cualquier mina que desee evitar los accidentes e incidentes producidos.

Por otra parte, pueden producirse afectaciones al sostenimiento porque existen otros elementos que no se han incluido en este estudio tales como una mala gestión de riesgo o inadecuada capacitación de personal.

Finalmente, para futuros trabajos se podrían implementar la metodología aplicada en Marsa a otras unidades mineras, ya que es una metodología que está funcionando y mejora significativamente la seguridad de la zona del trabajo, porque hay una disminución en el número de afectaciones al macizo rocoso y accidentes desencadenados.

4.3 Propuesta de ingeniería

En respuesta a la necesidad crítica de evaluar la estabilidad geomecánica en la mina Retamas ubicada en Perú, se presenta en la Tabla 19 el presupuesto para una salida de campo integral. La evaluación geomecánica es esencial para garantizar la seguridad y eficiencia de las operaciones mineras, así mismo se desarrolla rigurosos análisis geomecánicos llevados a cabo por un equipo altamente capacitado de ingenieros especializados. El presupuesto detallado abarca desde los costos asociados con el personal y el equipamiento necesario hasta los análisis de laboratorio y la obtención de permisos, garantizando así una evaluación exhaustiva y precisa de la geomecánica en una unidad minera.

La evaluación geomecánica propuesta no solo se centra en la mitigación de riesgos y la mejora de la seguridad en el entorno minero, sino que también busca optimizar las operaciones a largo plazo. La inversión en equipos de vanguardia, análisis geomecánicos avanzados y profesionales altamente calificados es fundamental para garantizar que la unidad minera opere de manera eficiente y sostenible. El presupuesto refleja el compromiso con la excelencia técnica y la seguridad, reconociendo la importancia de una evaluación geomecánica sólida como base para la toma de decisiones informada en el sector minero.

Tabla 19

D						
Drocunuceto	A0 0	N MALLINANA P	anomononing	on uno	nnidad	minora
LIESUDDESID	088	valuacion	UEUIIIEUaIIIUa	енина	unuau	ninera
			900000000000000000000000000000000000000	• • • • • • • •		

	Servicio de evaluación geomecánica - Ur	nidad mi	nera		
Ítem	Descripción	Cant	Unidad	P. U. (S/)	Total (S/)
1	PRELIMINARES				
1.1	Exámenes Médicos (3 personas).	1	Global	800.00	800.00
1.2	Inducción del personal (3 personas x 1 día)	3	Día	400.00	1,200.00
1.3	Movilización, Desmovilización de Personal (Lima/Proyecto)	1	Global	2,000.00	2,000.00
1.4	SUBTOTAL PRELIMINARES				4,000.00
I	SERVICIO DE EVALUACIÓN GEOMECÁNICA				
2.1	Recopilación bibliográfica		<u> </u>		
2.1.1	Revisión bibliográfica de la zona de estudio	1	Global	1,000.00	1,000.00
2.1.2	Identificación y delimitación de la zona de trabajo	1	Global	1,000.00	1,000.00
2.2	Recopilación de datos geomecánicos				
2.2.1	Caracterización del macizo rocoso	1	Global	2,000.00	2,000.00
2.2.2	Mapeo geomecánico y estructural	1	Global	2,000.00	2,000.00
2.3	Programa de ensayos de laboratorio				
2.3.1	Toma de muestras para ensayos	10	Unidad	250.00	2,500.00
2.3.2	Análisis y tratamiento de datos de laboratorio	1	Global	2,000.00	2,000.00
2.4	Evaluación geomecánica				
2.4.1	Clasificación geomecánica	1	Global	2,000.00	2,000.00
2.4.2	Análisis y modelamiento geomecánico	1	Global	2,000.00	2,000.00
2.5	Informe Final				
2.5.1	Informe Final	1	Global	3,000.00	3,000.00
2.6	Capacitación continua	4	Clahal	2 500 00	2 500 00
2.0.1		1	Global	2,500.00	2,500.00
2.1	SUBTOTAL SERVICIO DE EVALUACIÓN GEOMECANICA				20,000.00
2.1	ENSATOS DE LABORATORIO				
3.1 2.1.1	Ensayos de laboratorio de mecanica de rocas	Б	Unidad	50.00	250.00
212	Encave de carga puptual (ASTM D5731, 16)	5	Unidad	80.00	400.00
3.1.Z	Ensayo de carga pultual (ASTM D3731-10)	5	Unidad	150.00	750.00
3.1.3	Ensayo de compresión simple (ASTM D7012-14)	5	Unidad	150.00	750.00
3.1.4	Ensayo de compresion triaxial (ASTM D-2850)	2	Unidad	120.00	240.00
3.1.5	Ensayo de corte directo (ASTM D5607-08)	2	Unidad	200.00	400.00
3.2	SUBTOTAL DE ENSAYOS DE LABORATORIO				2,040.00
IV	LOGISTICA Y ADMINISTRACION				
4.1	Herramientas de Gestión y Seguridad	1	Global	1,500.00	1,500.00
4.2	1 camioneta 4x4 + 1 chofer	5	Día	240.00	1,200.00
4.3	Alimentación y Hospedaje de personal	5	Día	420.00	2,100.00
4.4	EPPs y Bioseguridad	1	Global	1,500.00	1,500.00
4.5	Seguros (SCTR y pensión)	1	Mes	680.00	680.00
4.6	SUBTOTAL LOGISTICA Y ADMINISTRACIÓN				6,980.00
	SUBTOTAL (sin IGV)				33,020.00
5.1	Gastos Generales	1	Global	10.00%	3,302.00
5.2	Utilidad	1	Global	8.00%	2,642.00
5.3	Hora Stand by Evaluación geomecánica	1	Hora	140.00	
	Total en soles sin IGV			S/	38,964.00

La Tabla 19, muestra las actividades para realizar el servicio de evaluación geomecánica en una unidad minera. Para el desarrollo del servicio de evaluación se considera como personal clave a 3 expertos en el área de geomecánica, los cuales son: Ing. geomecánico senior, ing. geomecánico e ing. geomecánico junior. Los mismos que serán responsables de la elaboración y aprobación del informe final.

La duración total de los trabajos será de 30 días calendario. Se considera 5 días de trabajo efectivo en campo sin considerar inducciones ni habilitación del personal. Los días restantes serán destinados al trabajo previo en gabinete hasta la elaboración del informe final incluyendo la data recolectada de los ensayos de laboratorio de mecánica de rocas.

PROPUESTA DE GUÍA DE ESTALLIDO DE ROCAS

La propuesta de guía de estallido de rocas como herramienta para reducir la tasa de incidentes en la minería subterránea peruana se muestra en el Anexo 5. En las Tablas 20, 21 y 22 se presentan las propuestas económicas para la elaboración de la guía.

Tabla 20

Tarea				Costos	
Tarea	Descripcion	Horas	Costos directos	Costos indirectos	Subtotal
1	Manejo y administración del proyecto	156	S/9,120	S/2,716	S/11,836
2	Formulación de guía de estallido de rocas 2024	856	S/95,360	S/16,240	S/111,600
	Costo total	1012	S/104,480	S/18,955	S/123,435

Resumen de costos en la elaboración de guía

Nota: Todos los costos son en soles y no incluyen el impuesto general a las ventas (IGV). Los costos directos en la tabla se refieren a los costos asociados a la mano de obra

El costo total para el desarrollo de la guía de estallido de rocas según la Tabla 20 es de S/ 123,435 (ciento veintitrés mil cuatrocientos treinta y cinco soles). En la Tabla 21 se describe las actividades con las horas de exclusiva dedicación en la formulación de la guía de estallido de rocas 2024 y en la Tabla 22 se resume los costos indirectos asociados a la elaboración de la guía. Es importante mencionar que, para la elaboración de la guía de estallido de rocas, se necesitan profesionales geomecánicos expertos en el área.

Tabla 21

Ingeniero de Sub-Total de DESCRIPCIÓN MANO DE OBRA Ingeniero I Administrativo TAREA Proyecto Senior Tarea TARIFA S/ / hora S/ 200.00 S/ 100.00 S/ 20.00 1 Manejo y administración del proyecto Gestión del servicio 12 48 96 S/ 9,120.00 1.1 12 48 96 156 Subtotal (horas) S/ 2,400.00 S/ 9,120.00 Cantidad (S/) S/ 4,800.00 S/ 1,920.00 Formulación de guía de estallido de rocas 2024 2 2.1 Recopilación bibliográfica 24 48 16 S/ 9,920.00 Características geológicas y geomecánicas 2.2 24 48 16 S/ 9,920.00 Estudios geomecánicos y geofísicos 16 S/ 9,920.00 2.3 48 24 Sistemas de monitoreo geofísicos y geomecánicos S/ 9,920.00 2.4 24 48 16 2.5 Análisis de eventos de estallidos de rocas 48 48 16 S/ 14,720.00 2.6 36 48 S/ 12,320.00 Modelamiento numérico 16 2.7 Preparación informe final 36 96 96 S/ 18,720.00 2.8 Revisión y aprobación de la guía final S/ 9,920.00 48 16 Subtotal (horas) 264 384 208 856 Cantidad (S/) S/ 52,800.00 S/ 38,400.00 S/ 4,160.00 S/ 95,360.00 HORAS TOTALES 276 432 304 1012 SUBTOTAL (S/) S/ 55,200.00 S/ 43,200.00 S/ 6,080.00 S/ 104,480.00

Resumen de costos directos por actividad

Nota: Todos los costos son en soles y no incluyen el impuesto general a las ventas (IGV). Los costos directos en la tabla se refieren a los costos asociados a la mano de obra

Tabla 22

Resumen de costos indirectos

TAREA	DESCRIPCIÓN														
		Hora de trabajo	Pasaje de avión	Exámen médico	Computadora	Suministros impresora	Suministros de oficina	Agua potable	Varios	Teléfono móvil	EPPs	Seguro SCTR	Camioneta/ conductor	Gas	Subtotal
	TARIFA S/ / hora	Hora	Unidad	Unidad	Día	Día	Día	Día	Día	Día	Unidad	Mes	Día	Día	Actividad
		S/ 8.00	S/ 450.00	S/ 300.00	S/ 4.00	S/ 1.50	S/ 2.00	S/ 1.00	S/ 2.50	S/ 4.00	S/ 350.00	S/ 50.00	S/ 75.25	S/ 21.00	-
1	Manejo y administración del proyecto														
1.1	Gestión del servicio	156			6	6	6	6	6	6	2	2	6	6	S/ 2,715.50
	Cantidad (S/)														S/ 2,715.50
2	Formulación de guía de estallido de rocas 2024														
2.1	Recopilación bibliográfica	88			6	6	6	6	6	6			6	6	S/ 1,371.50
2.2	Características geológicas y geomecánicas	88	2	2	6	6	6	6	6	6			6	6	S/ 2,871.50
2.3	Estudios geomecánicos y geofísicos	88			6	6	6	6	6	6			6	6	S/ 1,371.50
2.4	Sistemas de monitoreo geofísicos y geomecánicos	88	2	2	6	6	6	6	6	6			6	6	S/ 2,871.50
2.5	Análisis de eventos de estallidos de rocas	124			6	6	6	6	6	6			6	6	S/ 1,659.50
2.6	Modelamiento numérico	112			6	6	6	6	6	6			6	6	S/ 1,563.50
2.7	Preparación informe final	240			12	12	12	12	12	12			12	12	S/ 3,255.00
2.8	Revisión y aprobación de la guía final	76			6	6	6	6	6	6			6	6	S/ 1,275.50
	Cantidad (S/)														S/ 16,239.50
							S	/ 18,955.00							

Nota: Todos los costos son en soles y no incluyen el impuesto general a las ventas (IGV). Los costos indirectos (man-hour-load) incluye el costo de soporte de toda la oficina, tales como impresiones, comunicaciones, teléfono, entre otras detalladas en la tabla.

La Tabla 23 muestra el cronograma detallado para el desarrollo de la guía de estallidos de roca, se considera una duración de 60 días hábiles o 83 días calendario. El desarrollo de la guía incluye todas las actividades formuladas desde el manejo y administración hasta la revisión y aprobación de la guía final.

Tabla 23

Cronograma de actividades

																M	ES	1													
DESCRIPCIÓN	D	L	Μ	Mi	J	V	S	D	L	Μ	Mi	J	V	S	D	L	Μ	Mi	J	V	S	D	L	Μ	Mi	J	۷	S	D	L	Μ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
MANEJO Y ADMINISTRACION DEL PROYECTO																															
Gestión del servicio		1	2	3	4	5			6	7	8	9	10			11	12														
FORMULACIÓN DE GUÍA DE ESTALLIDO DE ROCAS 2024																															
Recopilación bibliográfica										1	2	3	4			5	6														
Características geológicas y geomecánicas																		1	2	3			4	5	6						
Estudios geomecánicos y geofísicos																										1	2			3	4
Sistemas de monitoreo geofísicos y geomecánicos																															
Análisis de eventos de estallidos de rocas																															
Modelamiento numérico																															
Preparación informe final																															
Revisión y aprobación de la guía final																															

														I	MES	2													
DESCRIPCIÓN	Mi	J	V	S I) L	Μ	Mi	J	۷	S	D	L	М	Mi	J	۷	S	D	L	М	Mi	J	V	S	D	L	Μ	Mi	J
MANEJO Y ADMINISTRACION DEL PROYECTO	1	2	3	4 :	56	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Gestión del servicio																													
FORMULACIÓN DE GUÍA DE ESTALLIDO DE ROCAS 2024																													
Recopilación bibliográfica																													
Características geológicas y geomecánicas																													
Estudios geomecánicos y geofísicos	5	6																											
Sistemas de monitoreo geofísicos y geomecánicos			1		2	3	4	5	6																				
Análisis de eventos de estallidos de rocas												1	2	3	4	5			6										
Modelamiento numérico																				1	2	3	4			5	6		
Preparación informe final																												1	2
Revisión y aprobación de la guía final																													

												MES	53									
DESCRIPCIÓN	۷	S	D	L	Μ	mi	J	V	S	D	L	Μ	mi	J	V	S	D	L	М	mi	J	V
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
MANEJO Y ADMINISTRACION DEL PROYECTO																						
Gestión del servicio																						
FORMULACIÓN DE GUÍA DE ESTALLIDO DE ROCAS 2024																						
Recopilación bibliográfica																						
Características geológicas y geomecánicas																						
Estudios geomecánicos y geofísicos																						
Sistemas de monitoreo geofísicos y geomecánicos																						
Análisis de eventos de estallidos de rocas																						
Modelamiento numérico																						
Preparación informe final	3			4	5	6	7	8			9	10	11	12								
Revisión y aprobación de la guía final															1			2	3	4	5	6

Conclusiones

La unidad minera Retamas, ubicada en la provincia de Parcoy perteneciente a Minera Aurífera Retamas S.A. – MARSA, presenta una litología constituida por varias facies de granito, granodiorita y otra facie de tonalita – diorita, pertenecientes al Carbonífero. Según el tipo de roca y estructuras relevantes como la falla Los Loros, el macizo rocoso presenta una clasificación geomecánica según el RMR89 en el rango del 31 al 40, perteneciente al tipo de roca IIIB.

Se acepta la hipótesis general que establece que existirá una reducción significativa del 25 % en los daños ocasionados por eventos de estallido de rocas debido a un control más frecuente en la evaluación geomecánica secuencial de las zonas afectadas en la unidad minera Retamas. Una evaluación geomecánica más frecuente (después de cada disparo) permite una identificación temprana de posibles puntos críticos en la estabilidad de las rocas, lo que a su vez facilita la implementación oportuna de medidas preventivas y correctivas.

Se acepta la hipótesis específica 1 que establece que identificando y monitoreando los eventos de estallido de rocas en la unidad minera Retamas se han realizado medidas de control efectivas y puntuales diseñadas para cada zona de análisis, MARSA ha implementado taladros de alivio, voladuras de pre-acondicionamiento, sostenimiento temporal y relleno hidráulico.

Se acepta la hipótesis específica 2 que establece que al identificar la causalidad de los estallidos de rocas por medio de evaluaciones geomecánicas a lo largo de los años de estudio en las zonas afectadas de la unidad minera Retamas se ha logrado hacer recomendaciones de prevención efectivas, MARSA ha desarrollado un sistema de monitoreo microsísmico que permite localizar las zonas de mayor actividad microsísmica. Utilizando datos históricos y las evaluaciones geomecánicas se logra determinar medidas de refuerzo del sostenimiento acordes al nivel de riesgo. Este enfoque integral y basado

en la evidencia microsísmica permite una gestión más precisa y eficiente de la geomecánica, optimizando así las decisiones relacionadas con el sostenimiento.

Se acepta la hipótesis específica 3 que establece que al comparar los resultados de la evaluación geomecánica inicial y final en zonas afectadas por estallido de rocas en la unidad minera Retamas se ha logrado determinar que las recomendaciones dadas son efectivas, reduciendo en un 25 % el daño al sostenimiento. Esto es relevante ya que una buena evaluación brinda un sostenimiento seguro y estable. Por el contrario, si luego de una evaluación geomecánica se brinda un sostenimiento inestable, servirá como una lección aprendida en la gestión de riesgos del sostenimiento, debiéndose encontrar porque fallo el análisis geomecánico para evitar repetir los errores.

Para el caso de estudio-evento 2018-1, MARSA ha eliminado las condiciones de alto riesgo (críticas), estabilizando el tramo del techo colapsado esto se corrobora en la gestión de control del sostenimiento.

Durante la investigación de los casos de estudio por estallido de rocas en la unidad minera Retamas, se encontró una relación positiva entre la evaluación geomecánica para cada caso, siendo las evaluaciones geomecánicas rutinarias, importantes para la disminución de accidentes y la obtención de mejoras en el proceso.

Para los casos de estudio 2019, el sistema de monitoreo microsísmico es el adecuado en la RP Patrick-3 y niveles aledaños. El análisis de los eventos detectados sugiere que las zonas más profundas y de producción están sujetos a mayor actividad microsísmica, por lo tanto, hay mayor nivel de vibración, mayor índice de energía (posiblemente asociados a una mayor acumulación de esfuerzos debido a la producción) y mayor deformación en las fuentes sísmicas (potencia sísmica). Los eventos más grandes ocurrieron en las zonas profundas, incluyendo uno en la rampa de profundización.

Los controles aplicados como el uso de la cámara de disipación como medida de control ante eventos deliberación de energía, cámaras construidas en octubre 2018 en la rampa Patrick V (profundización de la RP Patrick-3), no fueron efectivos. Se concluye que
para el campo de esfuerzos en la profundización no es efectivo el uso de cámara de disipación como medidas de control para la sismicidad.

Los controles efectivos en la rampa Patrick V aplicados ante eventos de liberación de energía son las voladuras de pre-acondicionamiento por delante del frente, que se realizan con la finalidad de generar fracturamiento, disminuyendo significativamente el estrés del macizo rocoso en áreas donde se va a excavar la labor, a su vez permite liberar tensiones que podrían generar un evento de liberación de energía. También se realizan los taladros de alivio con la finalidad de generar una cara libre interna hacia donde se pueden liberar tensiones acumuladas del macizo rocoso. Otro control efectivo es el sostenimiento temporal del frente de la labor, que reduce la vulnerabilidad y la exposición de los trabajadores de las labores como un factor de riesgo.

El relleno hidráulico ayuda significativamente a reducir los esfuerzos sobre el contorno del macizo rocoso ya sea en labores aledañas, puentes debajo de niveles principales y las paredes de los tajos. En el caso de labores aledañas dejar de rellenar o rellenar a medias incumpliendo las especificaciones de acuerdo con el diseño puede inducir esfuerzos sobre las labores, generando bloques sueltos o provocando descajamiento. En forma general el relleno funciona como soporte global estabilizando las áreas minadas.

Recomendaciones

Se recomienda tener el estudio geomecánico actualizado diariamente, de manera que refleje la realidad del terreno. Para tener un estudio geomecánico confiable es indispensable realizar el mapeo geomecánico al detalle a cada disparo que permitirá disminuir las "fallas ocultas", tener mayor identificación del peligro de caída de rocas y evaluar el comportamiento de los elementos de sostenimiento en zonas críticas.

Se recomienda continuar con el monitoreo en la rampa Patrick con el sistema permanente. Es importante mantener el sistema funcionando en su totalidad. En caso de cortes de energía eléctrica y/o cables debido a actividades propias de la minería, se recomienda tener un plan de acción para retomar de manera inmediata la energía eléctrica por MARSA.

Se recomienda considerar la implementación de la herramienta STAT (short term activity tracker o rastreador de actividad a corto plazo) que busca detectar cambios significativos en la actividad sísmica en determinadas zonas de la mina en tiempo real.

Se recomienda continuar con el monitoreo del nivel 2720 con el sistema permanente actual, para determinar cambios en la tasa de sismicidad de eventos de magnitud intermedia y alta, los cuales pueden potencialmente impactar la distribución de esfuerzos en otras zonas de la mina.

Se recomienda realizar el seguimiento al estudio de movimiento sísmico y la liberación de energía, en la zona Influyente proporcionado por el área de Geomecánica.

Se recomienda realizar las siguientes actividades con los trabajadores de las contratistas: En los planos geomecánicos, se deben capacitar al personal en lectura de planos. Para iniciar un laboreo se debe contar con estudio geomecánico. Implementar una cartilla de eventos sísmicos de acuerdo con la magnitud y que decisión tomar. Además, realizar una campaña de capacitación a los supervisores y trabajadores de las empresas especializadas y supervisores de MARSA respecto al cumplimiento de los PETS y demás herramientas de gestión con la finalidad de verificar el cumplimiento de las

97

recomendaciones geomecánicas, entre ellas, la implementación de medidas de control aplicables de taladros de alivio escalonados.

Se recomienda que el área de mina defina un plan de trabajo de la secuencia de minado para retornar los trabajos en zonas afectadas por eventos microsísmicos (en coordinación con el área de geomecánica, planeamiento, geología y seguridad).

Ante la ocurrencia de algún evento, se recomienda paralizar las actividades mineras de explotación, exploración, avances y/o desarrollos ubicados en XC 10178-NE y XC 10159 AN del Nv. 2270 Zona Valeria IV y se realice un estudio geomecánico y estudio de sismicidad de la zona materia de la presente medida de seguridad que garantice la estabilidad de la zona.

Se recomienda trabajar con información actualizada del plan de preparación y respuesta para emergencia de la U.E.A. Retamas, considerando los eventos de estallido de rocas en labores de profundización.

Se recomienda cumplir con los 4 controles mencionados como son taladros de alivio, voladuras de pre-acondicionamiento, relleno hidráulico y sostenimiento temporal. Los controles permitirán mitigar eventos de liberación de energía provocados por el tectonismo residual, mas no eliminarlos ni predecirlos.

Se recomienda realizar modelamientos numéricos respecto al comportamiento y reacomodo de los esfuerzos alrededor de la excavación en términos de factores de seguridad para la voladura de pre-acondicionamiento.

98

Referencias bibliográficas

- Apaza, G. (2020). Estudio de causalidad de accidentes mortales por desprendimiento de rocas en la minería subterránea controlado por el organismo supervisor de la inversión en energía y minería en el Perú [Tesis de grado, Universidad Nacional De San Agustín De Arequipa]. Perú.
- Cai, M. & Kaiser, P. (2018). *Rockburst support reference book*. Volume I: rockburst phenomenon and support characteristics. Laurentian University.
- Cabello, O. (2018). Guía de criterios geomecánicos en minería subterránea como herramienta para la prevención de accidentes fatales por caída de roca [Tesis de maestría, Pontificia Universidad Católica del Perú]. Perú.
- Córdova, N. (2008). Geomecánica en el minado subterráneo: caso Mina Condestable [Tesis de maestría, Universidad de Nacional de Ingeniería]. Repositorio Institucional UNI.
- Culshaw, M. (2015). Ulusay, R (ed.), 2015. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014: Cham, Switzerland: Springer. DOI 10.1007/978-3-319-007713-0. Bulletin of Engineering Geology and the Environment, 74(4), 1499-1500.
- Durrheim, R., Essrich, F. & Ortlepp, W. (2006). *Minimising the Rockburst Risk (Phase 2).*
- Espinoza, K. (2019). Estudio Hidrogeológico de la Minera Aurífera Retamas. [Tesis de grado, Universidad Nacional Daniel Alcides Carrión].
- Estay, H. (2014). Metodología para la evaluación del desempeño de indicadores sísmicos en sismicidad inducida por la minería. Tesis para optar al grado de magister en ciencias, mención geofísica memoria para optar al título de ingeniero civil de minas.
- ISRM. (2014). The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014.293.

- Lazo, R. (2020). Optimización del sistema de sostenimiento de las labores subterráneas para una mina con problemas de altos esfuerzos.
- Medina, V. (2015). Prevención de Accidentes Por Estallido de Rocas en Mina Casapalca Perú.
- Mendecki, A. Lynch, R. & Malovichko, D. (2010). Routine micro-seismic monitoring in mines. In Australian Earthquake Engineering Society 2010 Conference. Perth: Western Australia.
- Murwanashyaka, E. & Li, X. (2019). A Review on Rockburst as a Serious Safety Problem in Deep Underground Mines and other Excavation Projects.
- Osinergmin. (2017). *Guía de criterios geomecánicos para diseño, construcción, supervisión y cierre de labores*. Lima-Perú: Inversiones IAKOB SA C.
- Osinergmin. (2018). Informes de Fiscalización no Programada. Lima: Osinergmin.
- Osinergmin. (2019). Informes de Fiscalización no Programada. Lima: Osinergmin.
- Osinergmin. (2020). Informes de Fiscalización no Programada. Lima: Osinergmin.
- Osinergmin. (2021). Informes de Fiscalización no Programada. Lima: Osinergmin.
- Palmstrom, A. & Broch, E. (2006). Use and Misuse of Rock Mass Classification systems with Particular Reference to the Q-System. Trondheim, Norway: Norwegian University of Science and Technology.
- Pantaleón, H. y Carbajal, C. (2017). Evaluación geomecánica para el dimensionamiento, secuencia de minado y relleno de tajeos de una mina subterránea. [Tesis de grado, Pontificia Universidad Católica del Perú]. Perú.
- Qian, Q. & Lin, P. (2016). Safety risk management of underground engineering in China: Progress, challenges and strategies. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 423-442.
- Quispe, W. (2019). Determinación de esfuerzos principales mediante proyecciones estereográficas, nivel 2670 minera Aurífera Retamas-Marsa, La Libertad.

Singh, B. & Goel, R. (2011). Engineering rock mass classification. Boston.

- Ticona. (2019). Evaluación geomecánica para el diseño de sostenimiento en la galería de acceso y rampa 430-E de la empresa minera SM POWER SAC. [Tesis de grado, Universidad Nacional del Altiplano].
- Valdivia, J. (2019). Acciones para mejorar las condiciones de seguridad en las actividades mineras de competencia del Organismo Supervisor de la Inversión en Energía y Minería. OSINERGMIN.
- Valencia, E. (2021). Diseño de sostenimiento dinámico para mitigar los estallidos de rocas.
- Wu, M., Ye, Y., Wang, Q., & Hu, N. (2022). Development of rockburst research: a comprehensive review. Applied Sciences, 12(3), 974.

Anexos

F	۶ág.
Anexo 1: Mapeo geomecánico caso estudio-evento 2018-1	1
Anexo 2: Mapeo geomecánico casos de estudio-evento 2019	2
Anexo 3: Mapeo geomecánico caso de estudio-evento 2021-1	5
Anexo 4: Mapeo geomecánico caso de estudio asociado al evento 2021-1	6
Anexo 5: Propuesta de guía de estallido de rocas como herramienta para reducir la t	asa
de incidentes en la minería subterránea peruana	7

Anexo 1: Mapeo geomecánico caso estudio-evento 2018-1

		:	SISTEMA DE	E CLASIFICACIÓN	RMR				ESTACI	ÓN				x	Y	z
Osine	rgmin FORM	ATO DE MAPEO GE	EOMECÁNIC	O POR CELDAS S	EGÚN RMR (BIENIAWSKI 198	89)						COORDENADAS	230716.77	9110220.06	2273.3
-			0	SINERGMIN					1		# Fract/ml	RQD	PARAMETROS			UNIDAD
													NUMERO DE FRACTURAS	15		c/u
Mina		MARSA				Fecha			7-Mar-18		2	98	CONTADAS EN :	1		m
Nivel		2270 CC40				Profundidad (m)			-		3	96	ESPACIAMIENTO MEDIO	х	0.07	m/f
Labor		GAL 10173-N	AZ	= 293 °		Litología/Cuerpo		GRANITO	VETA DA	NIELA	4	94	FRACTURAS / METRO	λ	15.0	f/m
Cota Superficie		-			1	Progresiva		C.	J EST 9 +10m AL SE		5	91	INDICE DE CALIDAD DE LA ROCA	RQD	56	
Cota Labor		-				Dominio estructura	1	FRA	ACT. SUB PARALELO		6	88	DONDE:		-011 (0 ()	
Por		YELTSIN E.] [Dimensión de labor	r				7	84	$\lambda = 1/x$ R	QD = 100e	$e^{-0.1\lambda}(0.1\lambda -$	+1)
SISTEMA RMR	र										8	81				
PARÁMETROS							RANGO			VALOR	9	77		Estimación de	"RQD"	
Resistencia a la c	compresión uniaxial (N	/Pa)			>250 (15)	X 100-250 (12)	50-100 (7) 25-50 (4)	<25(2) <5(1) <1(0)	12	10	74	1			
RQD					90-100 (20)	75-90 (17)	50-75 (13) X 25-50 (8)	<25 (3)	8	11	70	0.9			
Espaciamiento de	e discontinuidades (m)			>2 (20)	0,6-2 (15)	0.2-0.6 (10	0.06-0.2 (8)	X < 0.06 (5)	5	12	66	0.7			
CONDICION DE D	DISCONTINUIDADES										13	63	8 0.6			
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	1-3 m Long. (4)	x ^{3-10m} (2)) 10-20 m (1)	> 20 m (0)	2	14	59	0.4			
1	67 °	237 °	18	Abertura	Cerrada (6)	<0.1mm apert. (5)	0.1-1.0mm (4)) X 1 - 5 mm (1)	> 5 mm (0)	1	15	56	0.3			
2	72 °	290 °	15	Rugosidad	Muy rugosa (6)	Rugosa (5)	Lig.rugosa (3)) Lisa (1)	Espejo de falla (0)	3	16	53	0.2			
3	67 °	153 °	14	Relleno	Limpia (6)	Duro < 5mm (4)	Duro> 5mm (2)	X Suave < 5 mm (1)	Suave > 5 mm (0)	1	17	49	0 5	10 15	20 2	5 30
4	60 °	211 °	15	Alteración	Sana (6)	Lig. Intempe. (5)	Mod.Intempe. (3)	Muy Intempe. (2)	Descompuesta (0)	3	18	46		# Fracturas	/ m.	
Agua subterránea	a				Seco (15)	X Humedo (10)	Mojado (7)	Goteo (4)	Flujo (0)	10	19	43	ABREV	IATURAS DE TIPOS	DE ESTRUCTURAS	
Orientación					Muy Favorb. (0)	Favorable (-2)	Regular (-5)	X Desfavorable (-10)	Muy Desfav (-12)	-10	20	41	D	SISTEMA DE DIACI	LASA	
						RMR ₈₉ =				45	21	38	J	JUNTAS		
Condiciones seca	as					RMR'89 =				35	22	35	F	FALLAS		
				RMR	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0	35	23	33	Fn	SISTEMA DE FALLA	s	
				DESCRIPCION	I MUY BUENA	BUENA	III REGULA	AR IV MALA	V MUY MALA	IVA	24	31	с	CONTACTO		
											25	29	MF	MICRO FALLA		
	Rumbo de las	discontinuidades: Per	rpendicular al e	eje de la labor		Rumbo de las o	discontinuidad	es: Paralelo al eje d	e la		26	27	UCS	RESISTENCIA A LA	COMPRESION SIMPLE	
	Excavación cor	n el buzamiento		Excavación contr	a el buzamiento	2	labor		Buzamiento	0 - 20° sin Lrumbo	27	25	Sv	ESFUERZO VERTICA	AL	
Buz	. 45° - 90°	Buz. 20° -	- 45°	Buz. 45° - 90°	Buz. 20° - 45	i° Buz. 45	5° - 90°	Buz. 20° - 45°	importar o		28	23		RESISTENCIA DE	LA ROCA	
Muy	Favorable	Favorat	ole	Regular	Desfavorable	Muy Dest	favorable	Regular	Desfavo	rable	29	21	Poco competente		UCS/Sv≤8	
											30	20	Competencia Intermedia		8 < UCS/Sv ≤ 15	
INDICE DE RESIS	STENCIA GEOLÓGICA	GSI = RMR' ₈₉ - 5			30			A Dies 25 Dias	40				Competencia Alta		UCS/Sv < 15	
						30	14	79 80	90	SKETCH						
			VALORES		SIMBOLO	20 - Imn	nediate			^						
TABLA GEOMEC	ÁNICA (GSI)	GSI		RMR	GSI	10 Co	lapse Rath = 50		$\langle \langle \cdot \rangle$	0						
		30		35	IF/P	8 8 W	00 ¹¹ 40	IUA HB								
	-				-	De s		IIB				^{Oll} a a				
GRADO	INDICE D	E RESISTENCIAS IDE	NTIFICACIÓN	DE CAMPO	RANGO RESI	ST. 18 3 20	1		70 80 RMR			²⁴⁰ 64	EST 9			
R1	Marcas pro	ofundas en la roca con	golpe de picot	a o barretilla.	1,0 - 5,0	5 2	IVB					e				
R2	Marcas poco	profundas en la roca co	on golpe de pic	cota o barretilla.	5,0 - 25			No Suppo	rt				~			
R3	La muestra	se rompe con un golpe	e firme de pico	ta o barretilla.	25 - 50	1	30	Required	1				60"			
R4	La muestra s	e rompe con mas de u	n golpe de pico	ota o barretilla.	50 - 100		20						GAL 10173-N	7		
R5	Se requiere vari	os golpes de picota o b	parretilla para re	omper la muestra.	100 -250	0 10'1	1 ^{2 Horas} 10	100 10 ³ 10	10 ⁵ 10 ⁶				67 72			
R6	Solo se rompe es	quirlas de la muestra a	los golpes cor	n picota o barretilla.	>250		Tiempo de	e Auto-Soporte, horas								
OBSERVACIONE	<u>SLA LITOLOGIA ES G</u> DE ESPESOR.	RANITO DEL DIQUE SU	UBVOLCÁNICO	D. LAS FALLAS PRES	ENTAN PANIZO	DDE 1 A 2 mm										
-										1						

Anexo 2: Mapeo geomecánico casos de estudio-evento 2019-1

Mapeo geomecánico casos de estudio-evento 2019-2

		:	SISTEMA DE	CLASIFICACIÓN	NRMR				ESTAC	IÓN				x	Y	z
Oosiner	ramin FORMA	TO DE MAPEO GE	OMECÁNICO	O POR CELDAS	SEGÚN RMR	(BIENIAWSKI 198	89)						COORDENADAS	230309.1672	9109594.395	2269.48
2 Control	giiiii		0	SINERGMIN					1		# Fract/ml	RQD	PARAMETROS			UNIDAD
					_								NUMERO DE FRACTURAS	18		c/u
Mina		MARSA				Fecha			5-May-19		2	98	CONTADAS EN :	1		m
Nivel		2270 CC40				Profundidad (m)			-		3	96	ESPACIAMIENTO MEDIO	х	0.06	m/f
Labor		SN 2252-S	AZ=	= 171 °		Litología/Cuerpo		GRANITO	VETA DA	NIELA	4	94	FRACTURAS / METRO	λ	18.0	f/m
Cota Superficie		-				Progresiva			CJ SN+10.8		5	91	INDICE DE CALIDAD DE LA ROCA	RQD	46	
Cota Labor		-				Dominio estructural	ıl	FRA	CT. SUB PARALELO		6	88	DONDE:		-012 (0 (0	
Por		YELTSIN E.				Dimensión de labor	r				7	84	$\lambda = 1/x$ R	QD = 100e	^{-0.1} ^λ (0.1 ^λ +	- 1)
SISTEMA RMR											8	81				
PARÁMETROS							RANGO	1 1		VALOR	9	77		Estimación de	"RQD"	
Resistencia a la co	ompresión uniaxial (M	Pa)		_	>250 (15)	100-250 (12)	50-100 (7)	x 25-50 (4)	<25(2) <5(1) <1(0)	4	10	74	1			
RQD				_	90-100 (20)	75-90 (17)	50-75 (13)	X 25-50 (8)	<25 (3)	8	11	70	0.8	\sim		
Espaciamiento de	discontinuidades (m)				>2 (20)	0,6-2 (15)	0.2-0.6 (10)	X 0.06-0.2 (8)	< 0.06 (5)	8	12	66	0.7			++++
CONDICION DE D	ISCONTINUIDADES	1		· · · ·	-					-	13	63	g 0.5		<	
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	1-3 m Long. (4) X	x 3-10m (2)	10-20 m (1)	> 20 m (0)	2	14	59	0.4			
1	45 °	261 °	18	Abertura	Cerrada (6)	<0.1mm apert. (5)	x 0.1-1.0mm (4)	1 - 5 mm (1)	> 5 mm (0)	4	15	56	0.3			
2	30 °	058 °	17	Rugosidad	Muy rugosa (6)	Rugosa (5)	x Lig.rugosa (3)	Lisa (1)	Espejo de falla (0)	3	16	53	0.1			
3				Relleno	Limpia (6)	Duro < 5mm (4)	X Duro> 5mm (2)	Suave < 5 mm (1)	Suave > 5 mm (0)	2	17	49	0 5	10 15	20 25	30
4				Alteración	Sana (6)	Lig. Intempe. (5)	Mod.Intempe. (3)	Muy Intempe. (2)	Descompuesta (0)	3	18	46		# Hocords		
Agua subterránea	1				Seco (15)	X Humedo (10)	Mojado (7)	Goteo (4)	Flujo (0)	10	19	43	ABREV	IATURAS DE TIPOS I	DE ESTRUCTURAS	
Orientación					Muy Favorb. (0)	Favorable (-2)	x Regular (-5)	Desfavorable (-10)	Muy Desfav (-12)	-5	20	41	D	SISTEMA DE DIACL	ASA	
						RMR ₈₉ =				44	21	38	J	JUNTAS		
Condiciones seca	IS				-	RMR' ₈₉ =				39	22	35	F	FALLAS		
				RMR	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0	39	23	33	Fn	SISTEMA DE FALLA	S	
				DESCRIPCION	I MUY BUEN	A BUENA	III REGULA	R IV MALA	V MUY MALA	IVA	24	31	c	CONTACTO		
											25	29	MF	MICRO FALLA		
	Rumbo de las	discontinuidades: Per	pendicular al e	je de la labor		Rumbo de las o	discontinuidade	es: Paralelo al eje d	e la Buzamiento	0 - 20° sin	26	27	UCS	RESISTENCIA A LA C	COMPRESION SIMPLE	
	Excavacion con	el buzamiento		Excavacion cont	ra el buzamien	0	labol		importar e	Irumbo	27	25	Sv	ESFUERZO VERTICA	L.	
Buz.	45° - 90°	Buz. 20° -	45°	Buz. 45° - 90°	Buz. 20° - 4	5° Buz. 45	5° - 90°	Buz. 20° - 45°			28	23		RESISTENCIA DE I	LA ROCA	
Muy H	-avorable	Favorab	le	Regular	Destavorab	e Muy Dest	tavorable	Regular	Destavo	rable	29	21	Poco competente		UCS/Sv ≤ 8	
					24	_		8 Dias 25 Dias			30	20	Competencia Intermedia		8 < UCS/Sv ≤ 15	
INDICE DE RESIS	TENCIA GEOLOGICA	GSI = RMR 89 - 5			- 34	30	1d30	as Twk 1mo 1y	r 10yr 90 ×	OKETOU			Competencia Alta		UCS/SV < 15	
					SIMBOLO	20 - Imn	mediate	2 2		SKETCH						
TABLA GEOMECÁ		GSI	VALONEO	RMR	GSI	10 Co	ollapse Rattr. 150		\setminus \setminus							
THE EN OLONIEON		34		39	IF/P	8 8	LOCH MIL 40						65			1
						a		B					NO318			
GRADO	INDICE D	E RESISTENCIAS IDE	NTIFICACIÓN D	DE CAMPO	RANGO RES	IST. 🕺 3 🏁	- NA-		70 80 RMR				CHI 1			
R1	Marcas prot	fundas en la roca con g	golpe de picota	a o barretilla.	1.0 - 5.0	6 2	IVB	50								
R2	Marcas poco p	rofundas en la roca co	n golpe de pic	ota o barretilla.	5.0 - 25			40 No Sumo								
R3	La muestra s	se rompe con un golpe	firme de picot	a o barretilla.	25 - 50	1	30	Required	•							
R4	La muestra se	e rompe con mas de ur	n golpe de pico	ta o barretilla.	50 - 100		20									
R5	Se requiere vario	s golpes de picota o b	arretilla para ro	omper la muestra.	100 -250	0	2 Horas	100 103 10	1 10							
R6	Solo se rompe eso	uirlas de la muestra a	los golpes con	picota o barretilla.	>250	10	1 10 09 Horas	Auto-Sonorte horse	10 10				SN SN			
							nempo ac	Auto-soporte, noras					22			
OBSERVACIONES	LA LITOLOGÍA QUE F	RESENTA LA ZONA E	S GRANITO.										52 🔨			
													ა			
											$\overline{}$			<u>}</u> \		
													82	230		230
										1			8	20		339

Mapeo geomecánico casos de estudio-evento 2019-3

		:	SISTEMA DE	CLASIFICACIÓN	RMR				ESTAC	IÓN				x	Y	z
Oosiner	amin FORMA	TO DE MAPEO GE	OMECÁNIC	O POR CELDAS S	EGÚN RMR	BIENIAWSKI 1	989)						COORDENADAS	230343.7345	9109918.815	2272.953
2.000	3		0	SINERGMIN					1		# Fract/ml	RQD	PARAMETROS			UNIDAD
													NUMERO DE FRACTURAS	16		c/u
Mina		MARSA				Fecha			5-May-19		2	98	CONTADAS EN :	1		m
Nivel		Valeria IV 2270 CC40				Profundidad (m)			-		3	96	ESPACIAMIENTO MEDIO	x	0.06	m/f
Labor		BP 10252-NW	AZ	= 315 °	1	Litología/Cuerpo		GRANITO	VETA DA	NIELA	4	94	FRACTURAS / METRO	λ	16.0	f/m
Cota Superficie		-				Progresiva			CJ EST 5		5	91	INDICE DE CALIDAD DE LA ROCA	RQD	53	
Cota Labor		-			1 1	Dominio estructu	ral	FRA	ACT. SUB PARALELO		6	88	DONDE:			
Por		YELTSIN E.			1 1	Dimensión de lab	or				7	84	$\lambda = 1/X$	OD = 100e	^{-0.1λ} (0.1λ -	- 1)
SISTEMA RMR					<u> </u>			•			8	81		1	(_/
PARÁMETROS							RANGO			VALOR	9	77		Estimación de	"RQD"	
Resistencia a la co	ompresión uniaxial (M	Pa)			>250 (15)	100-250 (12)	x 50-100 (7) 25-50 (4)	<25(2) <5(1) <1(0)	7	10	74	1			
RQD					90-100 (20)	75-90 (17)	50-75 (13) x 25-50 (8)	<25 (3)	8	11	70	0.9			
Espaciamiento de	discontinuidades (m))			>2 (20)	0,6-2 (15)	0.2-0.6 (10) X 0.06-0.2 (8)	< 0.06 (5)	8	12	66	0.7			
CONDICION DE D	ISCONTINUIDADES										13	63	g 0.6			
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	1-3 m Long. (4)	x 3-10m (2) 10-20 m (1)	> 20 m (0)	2	14	59	₩ 0.5 0.4			
1	30 °	050 °	17	Abertura	Cerrada (6)	<0.1mm apert. (5)	0.1-1.0mm (4) x 1 - 5 mm (1)	> 5 mm (0)	1	15	56	0.3			
2	80.0	245 °	16	Rugoeidad	Muy rugosa (6)	Rugosa (5)	¥ Lig.rugosa (3) Lisa (1)	Espejo de falla (0)	3	16	50	0.2			
2	80	240	16	Rugosidad	Limpia (6)	Duro < 6mm (4)	A Duras form (2)	Sumo < 5 mm (1)	Sumue > 6 mm (0)	3	10	53	0.1	10 15	20 21	5 30
3	30 *	049 *	15	Relieno	Cripii (0)	Lin bitemen (4)	X Datas anna (2)	Marchinese (2)	Deserventer (0)	2	17	49		# Fracturas	/m.	
4	65 °	029 *	18	Alteracion	Sana (6)	Lig. Intempt. (5)	X Modulitempe. (3)	Cotes (4)	Descompoesta (0)	3	18	46	APPE		EESTRUCTURAS	
Agua subterrânea					May Envorth (0)	Favorable (-2)	X Mojado (7)	Destavorable (-10)	May Deefay (-12)	7	19	43	ABRE	SISTEMA DE DIACI		
Orientacion					indy furtherb. (0)	BMR ==	rugua (-5)	Destavorable (*10)	X may bearing (*12)	-12	20	41	5	UNTAS		
Condiciones seca	e					RMR'm =				20	21	30	F	FALLAS		
Condiciones seca	3			PMP	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0	20	22		En	SISTEMA DE FALLA	3	
				DESCRIPCION	I MUY BUEN	BUENA	III REGULA			29 IVB	23	33		CONTACTO	-	
				DEBOINT CICIL	1 mor bolin	BOLIN	III RECOED		VINOTIMALA	145	24	31		MICRO FALLA		
	Rumbo de las	discontinuidades: Per	nondicular al o	ia da la labor							25	29	MP UCS	RESISTENCIA A LA C		
	Kullibo de las	alburgeniente	periocular al e			Rumbo de las	s discontinuidad	es: Paralelo al eje d	e la Buzamiento	0 - 20° sin	26	27	UCS	RESISTENCIA A LA C	OMPRESION SIMPLE	
	Excavacion con		150	Excavación conu					importar e	l rumbo	27	25	30	ESPUERZO VERTICA		
Buz.	45° - 90°	Buz. 201 -	45	Buz. 45' - 90'	Buz. 20 - 4	Buz.	45 - 90	Buz. 20 - 45	Deste		28	23		RESISTENCIA DE L	ARUCA	
Muy P	avorable	Favorab	ne	Regular	Deslavorabl	3 Muy De	estavorable	Regular	Desiaw	rable	29	21	Poco competente		UCS/Sv≤8	
		GSI = RMR' 5			24			B Dias 25 Dias	10		30	20	Competencia Intermedia		8 < UCS/SV ≤ 15	
INDICE DE RESIS	TENCIA GEOLOGICA	001 - 1(mil(89 - 5			24	30	143	Two Ty	90 -	SKETCH			Competencia Alta		003/37< 15	
					SIMBOLO	20 - In	nmediate			ORLIGH	-					
TABLA GEOMECÁ	ÍNICA (GSI)	GSI		RMR	GSI	10	Collapse Rati a 50		$\langle \rangle$							
		24		29	IF/P	8 8	ROCH MIL 40									
		24		20		5	20		\cdot				K.			
GRADO	INDICE D	E RESISTENCIAS IDE	NTIFICACIÓN I	DE CAMPO		ST X 3 20			70 50 RMR				71			
P1	Marcas pro	fundas en la roca con o	aolpe de picota	o barretilla.	10-50	5 2	IN/IR	50		1			12		_	
R2	Marcas poco n	profundas en la roca co	on golpe de pic	ota o barretilla.	50-25	-		40					See 1			
R2	La muestra	se rompe con un aolor	firme de picot	a o barretilla.	3,0 - 25	1	10	No Suppo Required	rt				30 30		Ě	
RJ R4	La muestra se	e rompe con mas de u	n golpe de nico	ta o barretilla.	20-00	_	20								6	9 109 920 N
R4	Se requiere vario	os golpes de picota o h	arretilla para ro	omper la muestra	100 250	0							EST		282	
R6	Solo se rompe eso	uirlas de la muestra a	los golpes con	picota o barretilla.	>250	10'1	1 10	100 10 ³ 10	⁴ 10 ⁵ 10 ⁶	1					Ż	
OBSERVACIONES	LA LITOLOGÍA QUE F	PRESENTA LA ZONA E	S GRANITO.		200		Tiempo d	e Auto-Soporte, horas								
									_		EST	r 1				
													1			9 10 <mark>9 900</mark> N

Anexo 3: Mapeo geomecánico caso de estudio-evento 2021-1

		5	SISTEMADE	E CLASIFICACIÓN	RMR				ESTAC	IÓN				x	Y	z
Oosiner	amin FORM	ATO DE MAPEO GE	OMECÁNIC	O POR CELDAS S	EGÚN RMR (BIENIAWSKI	1989)						COORDENADAS	230626.012	9110174.969	2271.258
-			0	SINERGMIN					1		# Fract/ml	RQD	PARAMETROS			UNIDAD
													NUMERO DE FRACTURAS	15		c/u
Mina		MARSA			F	echa			10-Jun-21		2	98	CONTADAS EN :	1		m
Nivel		2270 CC40				rofundidad (m))		-		3	96	ESPACIAMIENTO MEDIO	x	0.07	m/f
Labor		XC 10159-AN	AZ	= 97 °	4	itología/Cuerpo	0	GRANITO	VETA DA	NIELA	4	94	FRACTURAS / METRO	λ	15.0	f/m
Cota Superficie		-				rogresiva			TOPE +71m		5	91	INDICE DE CALIDAD DE LA ROCA	RQD	56	
Cota Labor		-				ominio estruct	tural	FRAC	T. SUB TRANSVERSA	NL .	6	88	DONDE:	0.0. 400	-012 (0 1 1	
Por		YELTSIN E.			ſ	imensión de la	ibor				7	84	$\lambda = 1/X$ R	QD = 100e	0.1 <i>λ</i> -	- 1)
SISTEMA RMR										-	8	81				
PARÁMETROS					· · · ·	-	RANG	2		VALOR	9	77		Estimación de	"RQD"	
Resistencia a la co	ompresión uniaxial (N	MPa)			>250 (15)	100-250 (1	²⁾ x ⁵⁰⁻¹⁰⁰	(7) 25-50 (4)	<25(2) <5(1) <1(0)	7	10	74	1			
RQD					90-100 (20)	75-90 (1	7) 50-75	13) X 25-50 (8)	<25 (3)	8	11	70	0.8	<		
Espaciamiento de	discontinuidades (m	1)			>2 (20)	0,6-2 (1	5) 0.2-0.6	10) X 0.06-0.2 (8)	< 0.06 (5)	8	12	66	0.7			
CONDICION DE DI	ISCONTINUIDADES	1				-					13	63	8 0.6 8 0.5			
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	1-3 m Long. (4	ⁱ⁾ x ^{3-10m}	(2) 10-20 m (1)	> 20 m (0)	2	14	59	0.4			++++
1	70 °	132 °	15	Abertura	Cerrada (6)	<0.1mm apert. (5) 0.1-1.0mm	(4) X 1 - 5 mm (1)	> 5 mm (0)	1	15	56	0.3			
2	70 °	280 °	16	Rugosidad	Muy rugosa (6)	Rugosa (f	5) X Lig.rugosa	(3) Lisa (1)	Espejo de falla (0)	3	16	53	0.1			
3	82 °	268 °	14	Relleno	Limpia (6)	Duro < 5mm (4	Duro> 5mm	(2) X Suave < 5 mm (1)	Suave > 5 mm (0)	1	17	49	0 5	10 15	20 2	5 30
4				Alteración	Sana (6)	Lig. Intempe. (5	x Mod.Intempe.	(3) Muy Intempe. (2)	Descompuesta (0)	3	18	46	_	# Flacturas	/	
Agua subterránea					Seco (15)	K Humedo (10	0) Mojado	(7) Goteo (4)	Flujo (0)	10	19	43	ABREV	IATURAS DE TIPOS I	DE ESTRUCTURAS	
Orientación					Muy Favorb. (0)	Favorable (-2)	X Regular (-5)	Desfavorable (-10)	Muy Desfav (-12)	-5	20	41	D	SISTEMA DE DIACL	ASA	
						RMR ₈₉ =				43	21	38	J	JUNTAS		
Condiciones seca	S					RMR' ₈₉ =				38	22	35	F	FALLAS		
				RMR	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0	38	23	33	Fn	SISTEMA DE FALLA	s	
				DESCRIPCION	I MUY BUENA	BUENA	III REGU	LAR IV MALA	V MUY MALA	IVA	24	31	c	CONTACTO		
											25	29	MF	MICRO FALLA		
	Rumbo de las	s discontinuidades: Per	pendicular al e	eje de la labor		Rumbo de l	las discontinuida	des: Paralelo al eje d	e la Buzamiento	0 - 20° sin	26	27	UCS	RESISTENCIA A LA C	COMPRESION SIMPLE	
	Excavacion cor	n el buzamiento	450	Excavacion contra	a el buzamiento		iabu	1	importar e	l rumbo	27	25	Sv	ESFUERZO VERTICA	.L	
Buz.	45*-90*	Buz. 20* -	45	Buz. 45* - 90*	Buz. 20* - 45	Bu	z. 45* - 90*	Buz. 20" - 45"			28	23		RESISTENCIA DE I	A ROCA	
Muy F	-avorable	Favorab	le	Regular	Destavorable	Muy	Destavorable	Regular	Destavo	rable	29	21	Poco competente		UCS/Sv≤8	
						-		8 Dias 25 Dias	40-		30	20	Competencia Intermedia		8 < UCS/Sv ≤ 15	
INDICE DE RESIS	TENCIA GEOLOGICA	GSI = RINK 89 - 5				30		70 BO	20	OKETOU			Competencia Alta		UCS/SV < 15	
						20	Immediate			SKETCH						
TABLA GEOMECÁ		GSI	VALONED	RMR	GSI	10	Collapse gat	$\langle X \rangle$	$\langle \langle \cdot \rangle$							
TABER OF OF		33		38	IF/P	2 8 2 6	Rock									
						- 0 5 4		TINB	PMP	No F			9		0. 4	
GRADO	INDICE D	DE RESISTENCIAS IDE	NTIFICACIÓN	DE CAMPO	RANGO RESIS	T 🖌 3 🎽	< + \-+ <u>\</u> ^-`		70 80	0 601			0 62	5 80	2 660	
R1	Marcas pro	ofundas en la roca con g	golpe de picota	a o barretilla.	1.0 - 5.0	۳ 2 ۲		40		23			23	12 703	30	
R2	Marcas poco	profundas en la roca co	n golpe de pic	ota o barretilla.	5.0 - 25	╡ ╷└		No Suppo	rt						·9.E	
R3	La muestra	se rompe con un golpe	firme de picot	a o barretilla.	25 - 50			Required							70	
R4	La muestra s	se rompe con mas de ur	n golpe de pico	ota o barretilla.	50 - 100		20			82					65	
R5	Se requiere vari	ios golpes de picota o b	arretilla para re	omper la muestra.	100 -250	101	2 Horas 10	100 10 ³ 10	4 10 ⁵ 10 ⁶	+			70			
R6	Solo se rompe es	quirlas de la muestra a l	los golpes con	picota o barretilla.	>250	1	Tiempo	de Auto-Soporte, horas					4		tra 1	
OBSERVACIONES	LA LITOLOGÍA QUE	PRESENTA LA ZONA E	S GRANITO.												1015	9.AN
										+						
	-			-						I			1	I	1	-

Anexo 4: Mapeo geomecánico caso de estudio asociado al evento 2021-1

Anexo 5: Propuesta de guía de estallido de rocas como herramienta para reducir la tasa de incidentes en la minería subterránea peruana

GENERALIDADES

Una mejora a considerar es la elaboración de una guía de estallidos de roca para la minería peruana de acuerdo con lo descrito en la presente tesis. Esta guía será importante para brindar factores técnicos y de seguridad a implementar los casos prácticos de éxito donde se controlaron estos fenómenos en otras minas. Si bien es importante desarrollar y convocar a un equipo de técnicos para su realización, para el corto plazo se puede enviar un formato a los titulares mineros para que envíen su reporte o información donde se registra la frecuencia, magnitud, labores afectadas y un análisis respectivo. Y de acuerdo con eso programar las fiscalizaciones o mediante mandatos solicitar el envío de información de manera periódica.

Asimismo, teniendo la guía geomecánica donde se estandarice los reportes de estallido de rocas, se tendrá una clasificación de los eventos de manera organizada para luego relacionar los valores obtenidos con datos recibidos de otras unidades mineras. Por este motivo en el corto plazo es importante entregar un formato para que realicen este reporte.

La guía de estallidos de roca y su clasificación será de gran ayuda a Osinergmin porque podrá focalizar las fiscalizaciones a unidades mineras que realmente la necesiten. Además, conocer qué tipo de eventos se vienen desarrollando para que, con ayuda de los fiscalizadores, los cuales tienen que ser bien capacitados, se pueda ayudar en la resolución de problemas de estallido de rocas.

Según la bibliografía estudiada y experiencia profesional se propone el contenido mínimo necesario que debiese incluir la guía de estallido de rocas en base a la minería peruana.

Estructura de la guía de estallidos de rocas (minería subterránea peruana) Introducción

Alcances y aplicación

7

Antecedentes y condiciones de sismicidad actual Sistema de alertas de sismicidad inducida Análisis de peligro y riesgo sísmico Voladura y sismicidad inducida Plan de acción y medidas de control Formación y competencias Supervisión y fiscalización Conclusiones y recomendaciones Anexos: Bibliografía Apéndice Equipo de trabajo

Para la formulación de la guía geomecánica de estallido de rocas, se necesitan profesionales geomecánicos expertos en el área. Para tener una mejor distribución de necesidad el equipo en conjunto debe de sumar 8 como nivel de responsabilidad total, según la siguiente lista.

Ingeniero geomecánico junior Nivel de responsabilidad: 1 Asistente de geomecánica Nivel de responsabilidad: 1 Ingeniero geomecánico Nivel de responsabilidad: 2 Jefe de geomecánica Nivel de responsabilidad: 3 Ingeniero geomecánico senior Nivel de responsabilidad: 4 Superintendente de geomecánica Nivel de responsabilidad: 5 Geomecánico corporativo principal

Nivel de responsabilidad: 6

Además, se debe de incluir a las instituciones públicas que se encargan de supervisar el cumplimiento en materia legal

ESQUEMA DE COSTOS

En las Tablas 1, 2 y 3 se presentan las propuestas económicas para la elaboración de la guía.

Tabla 1

Toroo	Descripción	Horoo		Costos	
Talea	Description	nuids	Costos directos	Costos indirectos	Subtotal
1	Manejo y administración del proyecto	156	S/9,120	S/2,716	S/11,836
2	Formulación de guía de estallido de rocas 2024	856	S/95,360	S/16,240	S/111,600
	Costo total	1012	S/104,480	S/18,955	S/123,435

Resumen de costos en la elaboración de guía

Nota: Todos los costos son en soles y no incluyen el impuesto general a las ventas (IGV). Los costos directos en la tabla se refieren a los costos asociados a la mano de obra

El costo total para el desarrollo de la guía de estallido de rocas según la Tabla 1 es de S/ 123,435 (ciento veintitrés mil cuatrocientos treinta y cinco soles). En la Tabla 2 se describe las actividades con las horas de exclusiva dedicación para la formulación de la guía de estallido de rocas 2024 y en la Tabla 3 se resume los costos indirectos asociados a la elaboración de la guía. Es importante mencionar que, para la elaboración de la guía de estallido de rocas, se necesitan profesionales geomecánicos expertos en el área.

Tabla 2

Resumen de costos directos por actividad

TAREA	DESCRIPCIÓN	MANO DE OBRA	Ingeniero de Proyecto Senior	Ingeniero I	Administrativo	Sub-Total de Tarea
	TARIFA	S/ / hora	S/ 200.00	S/ 100.00	S/ 20.00	
1	Manejo y administr	ación del proyecto				
1.1	Gestión de	el servicio	12	48	96	S/ 9,120.00
	Subtotal	(horas)	12	48	96	156
	Cantida	ad (S/)	S/ 2,400.00	S/ 4,800.00	S/ 1,920.00	S/ 9,120.00
2	Formulación de guía de	estallido de rocas 2024				
2.1	Recopilación	bibliográfica	24	48	16	S/ 9,920.00
2.2	Características geológ	icas y geomecánicas	24	48	16	S/ 9,920.00
2.3	Estudios geomecá	nicos y geofísicos	24	48	16	S/ 9,920.00
2.4	Sistemas de monitoreo ge	eofísicos y geomecánicos	24	48	16	S/ 9,920.00
2.5	Análisis de eventos d	e estallidos de rocas	48	48	16	S/ 14,720.00
2.6	Modelamien	to numérico	36	48	16	S/ 12,320.00
2.7	Preparación	informe final	36	96	96	S/ 18,720.00
2.8	Revisión y aprobac	ión de la guía final	48		16	S/ 9,920.00
	Subtotal	(horas)	264	384	208	856
	Cantida	ad (S/)	S/ 52,800.00	S/ 38,400.00	S/ 4,160.00	S/ 95,360.00
	HORAS T	OTALES	276	432	304	1012
	SUBTOT	TAL (S/)	S/ 55,200.00	S/ 43,200.00	S/ 6,080.00	S/ 104,480.00

Nota: Todos los costos son en soles y no incluyen el impuesto general a las ventas (IGV). Los costos directos en la tabla se refieren a los costos asociados a la mano de obra

Tabla 3

Resumen de costos indirectos

TAREA	DESCRIPCIÓN														
		Hora de trabajo	Pasaje de avión	Exámen médico	Computadora	Suministros impresora	Suministros de oficina	Agua potable	Varios	Teléfono móvil	EPPs	Seguro SCTR	Camioneta/ conductor	Gas	Subtotal
	TARIFA 5/ / nora	Hora	Unidad	Unidad	Día	Día	Día	Día	Día	Día	Unidad	Mes	Día	Día	Actividad
		8.00	450.00	300.00	4.00	1.50	2.00	1.00	2.50	4.00	350.00	50.00	75.25	21.00	
1	Manejo y administración del proyecto														
1.1	Gestión del servicio	156			6	6	6	6	6	6	2	2	6	6	S/ 2,715.50
	Cantidad (S/)														S/ 2,715.50
2	Formulación de guía de estallido de rocas 2024 TMF 2021-2022														
2.1	Recopilación bibliográfica	88			6	6	6	6	6	6			6	6	S/ 1,371.50
2.2	Características geológicas y geomecánicas	88	2	2	6	6	6	6	6	6			6	6	S/ 2,871.50
2.3	Estudios geomecánicos y geofísicos	88			6	6	6	6	6	6			6	6	S/ 1,371.50
2.4	Sistemas de monitoreo geofísicos y geomecánicos	88	2	2	6	6	6	6	6	6			6	6	S/ 2,871.50
2.5	Análisis de eventos de estallidos de rocas	124			6	6	6	6	6	6			6	6	S/ 1,659.50
2.6	Modelamiento numérico	112			6	6	6	6	6	6			6	6	S/ 1,563.50
2.7	Preparación informe final	240			12	12	12	12	12	12			12	12	S/ 3,255.00
2.8	Revisión y aprobación de la guía final	76			6	6	6	6	6	6			6	6	S/ 1,275.50
	Cantidad (S/)														S/ 16,239.50
							-								

S/ 18,955.00 Nota: Todos los costos son en soles y no incluyen el impuesto general a las ventas (IGV). Los costos indirectos (man-hour-load) incluye el costo de soporte de toda la oficina, tales como impresiones, comunica

aciones, teléfono, entre otras detalladas en la tabla	estamon taléfana, antre atres datalladas en la tak
---	--

La Tabla 4 muestra el cronograma detallado para el desarrollo de la guía de estallidos de roca, se considera una duración de 60 días hábiles o 83 días calendario. El desarrollo de la guía incluye todas las actividades formuladas desde el manejo y administración hasta la revisión y aprobación de la guía final.

Tabla 4

Cronograma de actividades

										N	IES	1																			N	IES	2																- 1	ME	S 3	,						
DESCRIPCIÓN	D	LM	mi	J	/ S	DI	LM	mi 、	v	S D	L	M mi	J	V S	D	L M	mi	٦١	V S	D	L M	l mi	٦١	V S	D	L M	mi	JV	s	DL	м	mi J	٧	S D	L	Mn	ni J	V S	S D	LN	M mi	J	V S	D	L M	t mi	J	V S	S D	L	Mr	mi J	٧	S E) L	M m	i J	٧
	1	2 3	4	5 (3 7	8 9	9 10	11 1	2 13	14 15	16	17 18	19	20 21	22	23 2	4 25	26 2	27 28	29	30 3	1 1	2 3	3 4	5	6 7	8	9 10	11	12 1	3 14	15 10	3 17	18 19	9 20	21 2	2 23	24 2	5 26	27 2	28 29	30	1 2	3	4 5	5 6	7	8 9	9 10	11	12 1	13 14	i 15	16 1	7 18	19 20	J 21	22
MANEJO Y ADMINISTRACION DEL																																																								11		
PROYECTO																																																										
Gestión del servicio		1 2	3	4 8	5		6 7	8 9	10		11	12																					Π																			Т	\square			\square	\square	Γ
FORMULACIÓN DE GUÍA DE																																																				T				\square		
ESTALLIDO DE ROCAS 2024																											Ш																															l
Recopilación bibliográfica							1	2 3	4		5	6																																								Τ	\Box				\Box	
Características geológicas y												1	2	3		4 5	6										Π						П																				Π		Π	1 T		1
geomecánicas																																																										
Estudios geomecánicos y																		1 3	,		3 4	5	6																																			Γ
geofísicos																							Ĩ										Ш																				\square					
Sistemas de monitoreo geofísicos																								1		2 3	4	5 6																														
y geomecánicos																																																										
Análisis de eventos de estallidos																															2	3 4	5		6																							
de rocas																																																										
Modelamiento numérico																																				1 2	2 3	4		5 6	6																	
Preparación informe final																																									1	2	3		4 5	6	7	8		9	10 1	11 12						
Revisión y aprobación de la guía		Τ																									Π						Π											Γ			Π					Т	1		2	3 4	5	6
final																																																									$\left[\right]$	Ĩ.

Esta guía permitirá tener una mejor clasificación de los eventos microsísmicos según las unidades mineras de la gran y mediana minería. Esta información debe de recogerse independientemente de la data reportada en el ESTAMIN (plataforma del MINEM para el registro de estadísticas operativas y de seguridad). Para tal motivo se puede registrar en la hoja de los factores técnicos (hoja que se solicita su llenado al titular minero y la información se usa como base del estudio de riesgos). Este dato se debe de registrar de la siguiente forma: el factor es el estallido de rocas, el valor es el que indique la metodología a analizar como la frecuencia y magnitud de los estallidos de roca, y finalmente como comentario colocar los accidentes ocurridos en el último mes.