Universidad Nacional de Ingeniería

Facultad de Ingeniería Eléctrica y Electrónica

TRABAJO DE SUFICIENCIA PROFESIONAL

Aplicación del protocolo IEC 61850 en la puesta en servicio del sistema de protección de Subestaciones Digitales

Para obtener el título de Ingeniero Electricista

Elaborado por

Edson Cayllahua Mendez

(D) <u>0009-0006-8694-9269</u>

Asesor

MSc. ING. Roberto Rubén Ramirez Arcelles

(D) <u>0000-0002-1725-7019</u>

LIMA – PERÚ

2024

Citar/How to cite	Cayllahua Mendez [1]
Referencia/Reference] E. Cayllahua Mendez, "Aplicación del protocolo IEC 6185 en la puesta en servicio del sistema de protección de
Estilo/Style: IEEE (2020)	subestaciones digitales" [Trabajo de suficiencia profesional]. Lima (Perú): Universidad Nacional de Ingeniería, 2024.
Citar/How to cite	(Cayllahua, 2024)
Referencia/Reference	Cayllahua, E. (2024). Aplicación del protocolo IEC 61850 en la
Estilo/Style: APA (7ma ed.)	puesta en servicio del sistema de protección de subestaciones digitales. [Trabajo de suficiencia profesional, Universidad Nacional de Ingeniería]. Repositorio institucional Cybertesis UNI.

Dedicatoria

A mi querido padre, por su apoyo y cariño incondicional, por ser mi ejemplo, y por darme

sus consejos que tanto aprecio.

Agradecimientos

En primer lugar, agradezco a mi padre por su cariño, comprensión y apoyo incondicional. Y, en segundo lugar, a mi asesor por su dedicación y paciencia. Gracias a su guía y todos sus consejos logré culminar con esta etapa de mi carrera profesional.

Resumen

En el diseño del sistema de protección de la subestación Valle Escondido 220/33kV, ubicada en la III Región de Atacama (Chile), Provincia de Copiapó y utilizada para la conexión al sistema del "Parque Fotovoltaico Valle Escondido", están presentes dos tecnologías de relés de protección, la convencional y la digital. La implementación del estándar IEC 61850 para digitalizar las señales que necesita el sistema de protección, tiene un rol crucial para entender estas tecnologías, y la inclusión del dispositivo Merging Unit como interfaz físico/digital, proporciona la digitalización desde la proximidad de los equipos de patio. Los dos métodos usados en las pruebas de aceptación, garantizan la operación correcta de todas las funciones del sistema de protección. El primer método, es de naturaleza 100% simulado, ingresando a la Red de Proceso solo tramas de datos de mensajes Sampled Values y GOOSE. El segundo método, es tradicional, en el cual se inyectan de forma directa corrientes y tensiones secundarias reales, con valores de falla, a las Merging Units suscritas al relé de protección digital, o al relé de protección convencional. Las respuestas, en la medición, umbrales de arranque, curvas características, tiempos y lógicas de operación de las funciones de protección fueron muy similares, demostrando así, la efectividad de los métodos y por ende la confiabilidad del sistema de protección.

Palabras clave - IEC 61850, Digital, Merging Units, Subestación

Abstract

In the design of the protection system of the substation Valle Escondido 220/33kV, located in the III Region of Atacama (Chile), Province of Copiapó and used for the connection to the system of the "Valle Escondido Photovoltaic Park", two technologies of protection relays are present, the conventional and the digital. The implementation of the IEC 61850 standard to digitize the signals needed by the protection system, has a crucial role to understand these technologies, and the inclusion of the Merging Unit device as a physical/digital interface, provides the digitization from the proximity of the yard equipment. The two methods used in the acceptance tests guarantee the correct operation of all protection system functions. The first method is 100% simulated in nature, with only Sampled Values and GOOSE message data frames entering the Process Network. The second method is traditional, in which real secondary currents and voltages with fault values are injected directly to the Merging Units subscribed to the digital protection relay or to the conventional protection relay. The responses, in the measurement, starting thresholds, characteristic curves, times and operation logics of the protection functions were very similar, thus demonstrating the effectiveness of the methods and therefore the reliability of the protection system.

Keywords – IEC 61850, Digital, Merging Units, Substation.

Tabla de Contenido

Resu	nenv	
Abstr	actvi	
Glosa	Glosario de términosxviii	
Introd	lucciónxx	
Capít	ulo I. Parte introductoria del trabajo1	
1.1	Generalidades1	
1.2	Descripción del problema de investigación1	
1.2.1	Situación problemática1	
1.2.2	Problema a resolver2	
1.3	Objetivos del estudio2	
1.3.1	Objetivo general2	
1.3.2	Objetivos específicos3	
1.3.3	Indicadores de logro de los objetivos3	
1.4	Antecedentes del problema3	
Capít	ulo II. Marco teórico y conceptual7	
2.1	Marco Teórico	
2.1.1	Subestación Digital7	
2.1.2	Ingeniería Secundaria7	
2.1.3	Sistema de Control8	
2.1.4	Sistema de Protección13	
2.1.5	Estándar IEC 6185032	
2.2	Marco Conceptual51	
2.2.1	Transformador de potencia52	
2.2.2	Sistema diferencial de barras53	
2.2.3	Línea de transmisión53	
Capít	ulo III. Desarrollo del trabajo de investigación54	

3.1	Descripción del Proyecto	54
3.1.1	Antecedentes	54
3.1.2	Descripción del trabajo de Suficiencia	54
3.1.3	Ubicación del Proyecto	
3.1.4	Características Generales del Proyecto	
3.2	Estudio de Coordinación y ajustes de protección	67
3.2.1	Líneas de transmisión	67
3.2.2	Transformador 220/33kV	73
3.2.3	Acople 220kV	76
3.2.4	Barras 220 kV	
Capít	ulo IV. Análisis y discusión de resultados	81
4.1	Proceso de Pruebas y Puesta en Servicio	81
4.1.1	Equipo de pruebas de inyección secundaria	81
4.1.2	Metodología de las pruebas a los relés de protección	
4.2	Resultado de las pruebas	
4.2.1	Bahía digital de Transformador T1	
4.2.2	Sistema digital Diferencial de Barras 220kV	
4.2.3	Bahía convencional Línea a SE Cardones	
Conc	lusiones	
Reco	mendaciones	206
Refer	encias bibliográficas	207

Lista de Tablas

Tabla 1: IEDs de protección de la SE Valle Escondido	2
Tabla 2: Indicadores de logro	3
Tabla 3: Método de sincronización y sus precisiones	51
Tabla 4: Datos de Transformadores de Corriente	59
Tabla 5: Datos de Transformadores de Tensión	60
Tabla 6: Datos de Transformador de Potencia 220/33 kV	61
Tabla 7: Datos de Transformador Zigzag	61
Tabla 8: Datos de Transformador de Servicios Auxiliares	62
Tabla 9: Datos de Banco Capacitadores	62
Tabla 10: Datos de Transformador de Bloque 33/0.690 kV	63
Tabla 11: Datos de Inversores DC/AC	63
Tabla 12: Resumen de funciones de protección de la línea a SE Cardones	78
Tabla 13: Resumen de funciones de protección de las Barras 220 kV	78
Tabla 14: Resumen de funciones de protección de la línea a SE Rio Escondido	79
Tabla 15: Resumen de funciones de protección del Acople 220 kV	79
Tabla 16: Resumen de funciones de protección del Transformador T1	80
Tabla 17: Señales GOOSE a evaluar	89
Tabla 18: Señales Sampled Values a evaluar	89
Tabla 19: Medida de corrientes fases lado 220kV	98
Tabla 20: Medida de corriente neutro lado 220kV	98
Tabla 21: Medida de tensiones fases lado 220kV	99
Tabla 22: Medida de tensiones barra lado 220kV	99
Tabla 23: Medida de corrientes fases lado 33kV	99
Tabla 24: Medida de tensiones fases lado 33kV	100
Tabla 25: Medida de tensiones barra lado 33kV	100
Tabla 26: Resumen de pruebas de la función 87T	101
Tabla 27: Señales GOOSE evaluadas para 87T	101
Tabla 28: Idiff vs Ibias de 87T	105
Tabla 29: Tiempos para fallas monofásicas de disparo y no disparo 87T	107
Tabla 30: Tiempos para fallas bifásicas y trifásicas de disparo y no disparo 87T	108
Tabla 31: Tiempos de operación 87T	109
Tabla 32: Idiff ante fallas externas 87T	110
Tabla 33: Porcentaje 2do armónico vs Idiff de 87T	111
Tabla 34: Disparo y bloqueo por 2do armónico de 87T	112
Tabla 35: Porcentaje 5to armónico vs Idiff de 87T	113
Tabla 36: Disparo y bloqueo por 5to armónico de 87T	114

Tabla 37: Resumen de pruebas de la función 50/51 lado 220kV	115
Tabla 38: Señales GOOSE evaluadas para 50/51	115
Tabla 39: Resumen de pruebas de la función 50N/51N lado 220kV	120
Tabla 40: Señales GOOSE evaluadas para 50N/51N	121
Tabla 41: Resumen de pruebas de la función 50G/51G lado 220kV	125
Tabla 42: Señales GOOSE evaluadas para 50G/51G	125
Tabla 43: Resumen de pruebas de la función 50BF de interruptor de 220kV	128
Tabla 44: Señales GOOSE evaluadas para 50BF	129
Tabla 45: Tiempos de operación 50BF con arranque externo	133
Tabla 46: Tiempos de operación 50BF con arranque interno	134
Tabla 47: Resumen de pruebas de la función 25 de interruptor de 220kV	135
Tabla 48: Señales GOOSE evaluadas para 25	136
Tabla 49: Valores de tensión para energización 25	137
Tabla 50: Bandas de Synchrocheck 25	140
Tabla 51: Medida de corrientes fases bahía J1	146
Tabla 52: Medida de corrientes fases bahía J2	146
Tabla 53: Medida de corrientes fases bahía JT1	146
Tabla 54: Medida de corrientes fases bahía JR	147
Tabla 55: Resumen de pruebas de la función 87B	147
Tabla 56: Señales digitales evaluadas para 87B	148
Tabla 57: Idiff vs Ibias de 87B operación normal J1 vs J2	150
Tabla 58: Idiff vs Ibias de 87B operación en transferencia JR vs J1	151
Tabla 59: Tiempos para disparo y no disparo 87B operación normal J1 vs J2	153
Tabla 60: Tiempos para disparo y no disparo 87B en barra de transferencia	154
Tabla 61: Tiempos de operación 87B en barra principal	155
Tabla 62: Tiempos de operación 87B en barra de transferencia	156
Tabla 63: Idiff ante fallas externas 87B en barra principal	158
Tabla 64: Idiff ante fallas externas 87B en barra de transferencia	158
Tabla 65: Tiempos de operación End Fault	161
Tabla 66: Medida de corrientes fases	164
Tabla 67: Medida de tensiones fases	164
Tabla 68: Medida de tensión de barra	164
Tabla 69: Resumen de pruebas de la función 87L	165
Tabla 70: Señales digitales evaluadas para 87L	
Tabla 71: Idiff vs Ibias de 87L	168
Tabla 72: Tiempos para disparo y no disparo 87L	170
Tabla 73: Tiempos de operación 87L	171
Tabla 74: Fallas externas 87L	172
Tabla 75: Resumen de pruebas de la función 21/21N	173

Tabla 76: Señales digitales evaluadas para 21/21N	173
Tabla 77: Tiempos de operación 21/21N	176
Tabla 78: Porcentaje de distancia de falla calculada	177
Tabla 79: Resumen de pruebas de la función 67N	178
Tabla 80: Señales digitales evaluadas para 67N	179
Tabla 81: Ángulo de actuación 67N	181
Tabla 82: Resumen de pruebas de la función teleprotección	183
Tabla 83: Señales digitales simuladas con CMC 356 para teleprotección	184
Tabla 84: Señales digitales evaluadas para teleprotección	184
Tabla 85: Tiempos de operación de esquemas de teleprotección	189
Tabla 86: Tiempos de operación SOTF	191
Tabla 87: Resumen de pruebas de la función 79	192
Tabla 88: Señales digitales simuladas con CMC 356 para 79	192
Tabla 89: Señales digitales evaluadas para teleprotección	193
Tabla 90: Tiempos de disparo y comando de recierre	195
Tabla 91: Tiempos de disparo y comando de recierre en casos de bloqueo	199
Tabla 92: Tiempos de operación 50BF	202

Lista de Figuras

Figure 1. Niveles de control	0
Figura 1: Niveles de control del CAC	٥
Figura 2: Arquitectura de control del SAS	10
Figura 3: Topologia PRP	12
Figura 4: Topologia HSR	13
Figura 5: Clasificación de fallas.	13
Figura 6: Rele de protección con tecnología convencional	14
Figura 7: Relé de protección con tecnología digital	15
Figura 8: Zonas de protección	17
Figura 9: Curvas características de sobrecorriente	18
Figura 10: Zonas de la protección de distancia	20
Figura 11: Tiempos de operación de la protección de distancia	20
Figura 12: Característica de operación tipo Mho de la protección de distancia	20
Figura 13: Característica de operación tipo cuadrilateral de la protección de distancia.	21
Figura 14: Diferencial de corriente. Falla externa o carga (a), falla interna (b)	22
Figura 15: Curva característica de función diferencial de corriente	23
Figura 16: Diferencial de corriente en transformador	23
Figura 17: Diferencial de corriente en generador	23
Figura 18: Diferencial de corriente en barras	24
Figura 19: Diferencial de corriente en línea de transmisión	24
Figura 20: Zona de protección de distancia con detección de oscilación de potencia	25
Figura 21: Implementación para funcionamiento del esquema de teleprotección	26
Figura 22: Esquema POTT	27
Figura 23: Esquema 67NCD	27
Figura 24: Esquema WEI	28
Figura 25: Esquema DDT	29
Figura 26: Esquema y comparación de Synchrocheck	31
Figura 27: Topología de automatización de la subestación	32
Figura 28: Mecanismos principales del IEC 61850	33
Figura 29: Relación entre las partes del Estándar IEC 61850	34
Figura 30: Niveles e interfases lógicos del SAS	36
Figura 31: Modelamiento de información	38
Figura 32: Modelo de datos	39
Figura 33: Concepto de nodo y enlace lógico	40
Figura 34: Modelamiento con nodos lógicos de tres funciones	40
Figura 35: Categorías de información del nodo lógico	41
Figura 36: Nodo lógico de interruptor, su obieto de dato v sus atributos	42
	. —

Figura 37: Extracto de servicio de un interruptor	43
Figura 38: Relación de servicios abstractos y protocolos	44
Figura 39: Modelos de comunicación ACSI	44
Figura 40: Mapeo en la red de comunicación	45
Figura 41: Perfiles y tipos de mensajes	46
Figura 42: Concepto del SCL	47
Figura 43: Tiempos de transmisión por eventos	48
Figura 44: Topología inicial, y actual después del seccionamiento	54
Figura 45: Ubicación de la SE Valle Escondido	56
Figura 46: Esquema simplificado de la planta fotovoltaica Valle Escondido	58
Figura 47: Esquema simplificado de SSAA de la SE Valle Escondido	64
Figura 48: Sistema de Protección de la SE Valle Escondido	65
Figura 49: Sistema de Control de la SE Valle Escondido	66
Figura 50: Curva Característica de Función 87L	67
Figura 51: Característica de zonas para fases de la Función de Distancia	69
Figura 52: Característica de zonas para tierra de la Función de Distancia	69
Figura 53: Característica de la Función 67N en tramo Valle-Cardones	70
Figura 54: Característica de la Función 67N en tramo Valle-Rio Escondido	70
Figura 55: Curva Característica de Función 87T	73
Figura 56: Característica de la Función 50/51	74
Figura 57: Característica de la función 50N/51N	75
Figura 58: Curva característica de función 87B	77
Figura 59: Equipo de pruebas CMC 356	81
Figura 60: Datos técnicos de fuentes de corriente	82
Figura 61: Datos técnicos de fuentes de tensión	82
Figura 62: Datos técnicos para envío y recepción de mensajes GOOSE	83
Figura 63: Datos técnicos para envío mensajes Sampled Values	83
Figura 64: Datos técnicos de tarjeta de comunicación	84
Figura 65: Datos técnicos de sincronización de tiempo	84
Figura 66: Software de gestión de la CMC356	85
Figura 67: Módulos de prueba de la CMC 356	85
Figura 68: Protección de bahía convencional	86
Figura 69: Esquema de prueba convencional con block de prueba	86
Figura 70: Esquema de prueba convencional con bornes	87
Figura 71: Protección de bahía digital	87
Figura 72: Esquema de prueba digital	88
Figura 73: IED en modo ON	90
Figura 74: IED en modo Test	90
Figura 75: IED en modo Simulación	91

Figura 76: Esquema de prueba digital, con equipo sin protocolo IEC 61850	91
Figura 77: VLANs de Switch de Red de Proceso	92
Figura 78: Diagrama Unifilar de Protección del Transformador T1	93
Figura 79: Esquema de prueba implementado para la protección del Transformador	94
Figura 80: Relé de protección en modo test	94
Figura 81: Relé de protección en modo simulación	95
Figura 82: Fuente de tiempo para la CMC 356	95
Figura 83: Configuración de Sampled Values suscritos por el relé de protección	96
Figura 84: Configuración de Sampled Values CMC 356	96
Figura 85: Configuración de GOOSE para CMC 356 en relé de protección	97
Figura 86: Configuración de suscripción GOOSE en CMC 356	97
Figura 87: Prueba de corriente de arranque lado 220kV de 87T	102
Figura 88: Prueba de corriente de arranque lado 33kV de 87T	102
Figura 89: Corriente de arranque 87T	103
Figura 90: Datos eléctricos del Transformador T1	103
Figura 91: Puntos de prueba para fallas monofásicas de la curva 87T	104
Figura 92: Puntos de prueba para fallas bifásicas y trifásicas de la curva 87T	104
Figura 93: Resultado de característica de la curva 87T	105
Figura 94: Puntos de prueba para fallas monofásicas de la curva 87T	106
Figura 95: Puntos de prueba para fallas bifásicas y trifásicas de la curva 87T	106
Figura 96: Fallas monofásicas de prueba de disparo y no disparo 87T	107
Figura 97: Fallas bifásicas y trifásicas de prueba de disparo y no disparo 87T	108
Figura 98: Puntos de prueba para tiempos de operación 87T	109
Figura 99: Tiempos de operación 87T	110
Figura 100: Fallas externas 87T	111
Figura 101: Característica de bloqueo por 2do armónico 87T	112
Figura 102: Disparo y bloqueo por 2do armónico 87T	113
Figura 103: Característica de bloqueo por 5to armónico 87T	114
Figura 104: Disparo y bloqueo por 5to armónico 87T	115
Figura 105: Prueba de corriente de arranque 50/51 lado 220kV	116
Figura 106: Corriente de arranque 50/51 lado 220kV	116
Figura 107: Corriente de arranque 51 lado 220kV	117
Figura 108: Corriente de arranque 50-1 lado 220kV	117
Figura 109: Corriente de arranque 50-2 lado 220kV	118
Figura 110: Valores de ajuste de la función 50/51 lado 220kV	118
Figura 111: Fase A-B-C de prueba de característica de la curva 50/51 lado 220kV	119
Figura 112: Fase A-B de prueba de característica de la curva 50/51 lado 220kV	119
Figura 113: Fase B-C de prueba de característica de la curva 50/51 lado 220kV	120
Figura 114: Fase C-A de prueba de característica de la curva 50/51 lado 220kV	120

Figura	115: Prueba de corriente de arranque 50N/51N lado 220kV	.121
Figura	116: Corriente de arranque 50N/51N lado 220kV	.122
Figura	117: Corriente de arranque 51N lado 220kV	.122
Figura	118: Corriente de arranque 50N lado 220kV	.123
Figura	119: Valores de ajuste de la función 50N/51N lado 220kV	.123
Figura	120: Fase A-N de prueba de característica de la curva 50N/51N lado 220kV	.124
Figura	121: Fase B-N de prueba de característica de la curva 50N/51N lado 220kV	.124
Figura	122: Fase C-N de prueba de característica de la curva 50N/51N lado 220kV	.125
Figura	123: Prueba de corriente de arranque 50G/51G lado 220kV	.126
Figura	124: Corriente de arranque 50G/51G lado 220kV	.126
Figura	125: Corriente de arranque 51G lado 220kV	.127
Figura	126: Corriente de arranque 50G lado 220kV	.127
Figura	127: Señal GOOSE simulado de posición y arranque externo para 50BF	.128
Figura	128: Prueba, arranque externo, de corriente de arranque 50BF	.129
Figura	129: Prueba, arranque interno, de corriente de arranque 50BF	.130
Figura	130: Con arranque externo, corriente de arranque 50BF de interruptor 220kV	.130
Figura	131: Con arranque interno, corriente de arranque 50BF de interruptor 220kV	.131
Figura	132: Con arranque externo, tiempos de operación 50BF de interruptor 220kV	.132
Figura	133: Con arranque interno, tiempos de operación 50BF de interruptor 220kV	.132
Figura	134: Tiempos de operación 50BF con arranque externo	.133
Figura	135: Tiempos de operación 50BF con arranque interno externo	.134
Figura	136: Señal GOOSE simulado de arranque externo para 25	.135
Figura	137: Prueba de condición barra viva y línea muerta 25	.136
Figura	138: Prueba de condición línea viva y barra muerta 25	.137
Figura	139: Condiciones de energización 25	.138
Figura	140: Prueba de banda de diferencia de tensión Synchrocheck 25	.139
Figura	141: Prueba de banda de frecuencia Synchrocheck 25	.139
Figura	142: Prueba de banda angular Synchrocheck 25	.140
Figura	143: Banda tensión vs frecuencia Synchrocheck 25	.141
Figura	144: Banda angular Synchrocheck 25	.141
Figura	145: Diagrama Unifilar de Protección de las Barras 220kV	.142
Figura	146: Configuración de Sampled Values para el sistema diferencial de barras	.143
Figura	147: Configuración de GOOSE para el sistema diferencial de barras	.143
Figura	148: Esquema de prueba implementado para la protección de las Barras	.144
Figura	149: Bahías en operación normal (Azul) y en transferencia (Verde)	.145
Figura	150: Prueba de corriente de arranque 87B	.148
Figura	151: Corriente de arranque 87B	.149
Figura	152: Datos de transformadores de corriente para 2 bahías	.149
Figura	153: Puntos de prueba de característica de la curva 87B	.150

Figura 154: Característica de la curva 87B operación normal	151
Figura 155: Característica de la curva 87B operación en transferencia	152
Figura 156: Puntos de prueba para disparo y no disparo 87B	152
Figura 157: Disparo y no disparo 87B en barra principal	153
Figura 158: Disparo y no disparo 87B en barra de transferencia	154
Figura 159: Puntos de prueba para tiempos de operación 87B	155
Figura 160: Tiempos de operación 87B en barra principal	156
Figura 161: Tiempos de operación 87B en barra de transferencia	156
Figura 162: Esquema de prueba de estabilidad 87B, fallas monofásicas	157
Figura 163: Esquema de prueba de estabilidad 87B, fallas bifásicas y trifásicas	157
Figura 164: Fallas externas 87B en barra principal	158
Figura 165: Fallas externas 87B en barra de transferencia	159
Figura 166: Prueba End Fault de J1	160
Figura 167: Indicaciones de prueba End Fault de J1	160
Figura 168: Tiempos de operación End Fault	161
Figura 169: Diagrama Unifilar de Protección de la línea a SE Cardones	162
Figura 170: Esquema de prueba implementado para la protección de línea	163
Figura 171: Enlace de fibra óptica para la función 87L	165
Figura 172: Prueba de corriente de arranque 87L	166
Figura 173: Corriente de arranque 87L	167
Figura 174: Datos de transformadores de corriente en extremos de la línea	167
Figura 175: Prueba de característica de la curva 87L	168
Figura 176: Característica de la curva 87L	169
Figura 177: Puntos de prueba para disparo y no disparo 87L	169
Figura 178: Disparo y no disparo 87L	170
Figura 179: Puntos de prueba para tiempos de operación 87L	171
Figura 180: Tiempos de operación 87L	172
Figura 181: Fallas externas 87L	173
Figura 182: Característica de la curva 21 fases	174
Figura 183: Característica de la curva 21N tierra	174
Figura 184: Puntos de prueba para disparo, no disparo y tiempos 21 fases	175
Figura 185: Puntos de prueba para disparo, no disparo y tiempos 21N tierra	175
Figura 186: Tiempos de operación 21/21N	176
Figura 187: Localización de falla	177
Figura 188: Prueba y resultado de bloqueo por oscilación de potencia 68	178
Figura 189: Prueba de corriente de arranque 67N	179
Figura 190: Corriente de arranque 67N	180
Figura 191: Prueba de búsqueda de ángulo 67N	180
Figura 192: Ángulo de actuación 67N	181

Figura 193: Valores de ajuste de la función 67N	181
Figura 194: Fase A-N curva 67N, dentro y fuera del ángulo de actuación	182
Figura 195: Fase B-N curva 67N, dentro y fuera del ángulo de actuación	182
Figura 196: Fase C-N curva 67N, dentro y fuera del ángulo de actuación	183
Figura 197: Prueba de esquema POTT	185
Figura 198: Prueba de esquema 67NCD	186
Figura 199: Prueba de esquema DDT	187
Figura 200: Prueba de esquema WEI	188
Figura 201: Tiempos de operación de esquemas de teleprotección	189
Figura 202: Prueba de cierre sobre falla SOTF	190
Figura 203: Tiempos de operación SOTF	191
Figura 204: Prueba de operación de comando recierre 79 con disparo 87L	193
Figura 205: Prueba de operación de comando recierre 79 con disparo 21N zona 1	194
Figura 206: Prueba de operación de comando recierre 79 con disparo POTT	194
Figura 207: Prueba de operación de comando recierre 79 con disparo 67NCD	195
Figura 208: Tiempos de disparo y comando de recierre	196
Figura 209: Prueba caso 1 de bloqueo 79: Falla evolutiva	196
Figura 210: Prueba caso 2 de bloqueo 79: Falla monofásica en zona 2 de 21N	197
Figura 211: Prueba caso 3 de bloqueo 79: Falla bifásica en zona 1 de 21	197
Figura 212: Prueba caso 4 de bloqueo 79: Cierre sobre falla SOTF	198
Figura 213: Prueba caso 5 de bloqueo 79: Falla monofásica e interruptor indisponible	.198
Figura 214: Tiempos de disparo y comando de recierre en casos de bloqueo	199
Figura 215: Resultado de prueba de corriente de arranque 50BF	200
Figura 216: Prueba de tiempos de operación 50BF con disparo monopolar	201
Figura 217: Prueba de tiempos de operación 50BF con disparo tripolar	201
Figura 218: Tiempos de operación 50BF	202

Glosario de términos

Bahía: Parte de una subestación, donde se encuentran los equipos de maniobra y control de un circuito determinado.

Cliente: Entidad que solicita un servicio de un servidor, o que recibe un dato no solicitado de un servidor [IEC 61850-7-1].

FAT (Factory Acceptance Test): Pruebas de aceptación en fábrica.

GOOSE (Generic Object-Oriented Substation Event): Tipo de mensaje definido en el estándar IEC 61850-8-1, usado para transmitir datos binarios como: estados, alarmas, disparos, comandos, etc.

GPS (Global Positioning System): Sistema de satélites que distribuye señales de ubicación y tiempo, utilizada para generar una señal de sincronización de tiempo.

IED (Intelligent Electronic Device): Dispositivo electrónico inteligente con servicios de comunicación e integración mediante protocolos, que posee funciones de control, protección, monitoreo y medida.

LAN (Local Area Network): Red de área local.

Merging Unit: Unidad de interfaz que recibe múltiples entradas digitales y análogas que corresponden a transformadores de corriente y tensión, que genera múltiples salidas digitales para la comunicación serial de datos sincronizados en el tiempo vía interfaces lógicas, con conexiones punto a punto.

MMS (Manufacturing Message Specification): Tipo de mensaje definido en el estándar IEC 61850-8-1, usado para transmitir la información y para el control de datos de los procesos en tiempo real, su comunicación es de tipo Cliente/Servidor con funciones específicas de lectura y escritura.

Protocolo de comunicación: Es la norma que define la sintaxis, semántica y sincronización de la comunicación. Está formado por un conjunto de reglas que permiten

xviii

la comunicación y el intercambio de información entre dos o más componentes de un sistema.

Punto a Punto: Es un modelo de comunicación en que cada parte tiene las mismas capacidades y también puede iniciar una sesión. En algunos casos esta comunicación es implementada para brindar al nodo de comunicación, capacidades de cliente y servidor.

Sampled Values: Tipo de mensaje definido en el estándar IEC 61850-9-2, usado para transmitir señales análogas de corriente y tensión.

SAT (Site Acceptance Test): Pruebas de aceptación en sitio.

Servidor: Sobre una red de comunicación, es un nodo funcional que proporciona el dato, o que permite el acceso a sus recursos, por otros nodos funcionales. Un servidor también puede ser una subdivisión lógica, que tiene un control independiente de su operación [IEC 61850-6].

TCP/IP (Transmission Control Protocol/Internet Protocol): Conjunto de protocolos de red, que permite que dos o más computadoras se comuniquen.

Unidad Central: La unidad central con protección diferencial de barras y falla de interruptor distribuido, es un dispositivo típicamente usado para la configuración del sistema, es decir para, fijar los parámetros de ajuste, replicar las barras, asignar las bahías, sincronizar el sistema, etc.

WAN (Wide Area Network): Red de área amplia.

Introducción

El trabajo describe a la subestación Valle Escondido 220/33kV, ubicada en la III Región de Atacama (Chile), en sus elementos primarios principales, como las líneas de transmisión, sistema de barras, transformador de potencia, celdas de media tensión, transformadores de medida de corriente y tensión, etc. El sistema de protección que tiene, es de relés de protección con tecnología convencional y digital.

La implementación del estándar IEC 61850, con sus diferentes mecanismos, que ayudan a entender el concepto del uso de mensajes *Sampled Values* y GOOSE en el proceso de digitalizar, desde el origen, las señales que necesita su sistema de protección, para operar con confiabilidad. Y un resumen de los ajustes de las funciones de protección que determinó el Estudio de Coordinación y Ajustes de Protección.

En este sentido, el trabajo presenta la metodología usada en la puesta en servicio del sistema de protección. Se muestran los resultados y análisis de las pruebas de medición, umbrales de arranque, curvas características, tiempos y lógicas de operación de las funciones de protección, que garantiza la confiabilidad del sistema de protección de la instalación.

El desarrollo de este trabajo se divide en 4 capítulos, que son:

Capítulo I: Introducción.

Capítulo II: Marco teórico y conceptual.

Capítulo III: Desarrollo del trabajo de investigación.

Capítulo IV: Análisis y discusión de resultados.

Capítulo I. Parte introductoria del trabajo

1.1 Generalidades

Actualmente, gracias al avance de la tecnología, el desarrollo y la aplicación continua del estándar IEC 61850 en la protección, automatización, control y monitoreo de las subestaciones eléctricas, se observa una transición en la forma en que el sistema de protección adquiere la información que necesita de los equipos de patio, y en la forma en que transmite la información para cumplir con su función.

Los relés de protección con esta tecnología ya no tienen una conexión directa o cableada, con los equipos de medición y potencia de la subestación. Sino una conexión a una red de comunicación, llamada bus de proceso, de donde obtienen la información de los equipos de medición como corrientes y tensiones, de los equipos de potencia y maniobra, y de otros IEDs.

En relación con este avance, el proceso y la manera en que se venían probando los sistemas de protección tienen que cambiar. Este es el objetivo de este trabajo, brindar este nuevo proceso y esta nueva manera de probar los nuevos sistemas protección, los cuales, fueron aplicados en la subestación Valle Escondido 220/33 kV, ubicada en la III Región de Atacama (Chile), Provincia de Copiapó.

1.2 Descripción del problema de investigación

1.2.1 Situación problemática

En el diseño del sistema de protección de la subestación Valle Escondido 220/33kV, se contempla implementar 2 tecnologías de sistemas de protección, una, con relés de protección de tecnología convencional, y la otra, con relés de protección con tecnología digital.

Es necesario indicar que estos relés de protección con tecnología digital no funcionan solos, necesitan IEDs intermedios, llamados *Merging Units*, que se conectan directamente a los equipos de patio, con cables de cobre, para obtener su información.

Esta información es digitalizada y enviada a los relés de protección a través de una red de

comunicación.

Tabla 1

IEDs de protección de la SE Valle Escondido

Parte	Tecnología	Nivel	IED Protección	Marca	Modelo
Línea 220 kV	Convencional	Bahía	Protección sistema 1	ABB	REL670
SE Cardones	Convencional	Bahía	Protección sistema 2	ABB	REL670
	Digital	Proceso	Merging Unit	SIEMENS	6MU85
Línea 220 kV SE Rio Escondido	Convencional	Bahía	Protección sistema 1	ABB	REL670
	Convencional	Bahía	Protección sistema 2	ABB	REL670
	Digital	Proceso	Merging Unit	SIEMENS	6MU85
Acople 220 kV	Convencional	Bahía	Protección sistema 1	SIEMENS	7VK87
	Digital	Proceso	Merging Unit	SIEMENS	6MU85
Transformador N°1	Digital	Bahía	Protección sistema 1	SIEMENS	7UT85
220/33 kV	Digital	Bahía	Protección sistema 2	SIEMENS	7UT85
	Digital	Proceso	Merging Unit	SIEMENS	6MU85
	Digital	Proceso	Merging Unit	SIEMENS	6MU85
	Digital	Proceso	Merging Unit	SIEMENS	6MU85
Barras 220 kV	Digital	Bahía	Unidad central Diferencial de barras	SIEMENS	7SS85

Nota: Fuente (Elaboración propia)

En la Tabla 1 se indican los IEDs que son parte del sistema de protección de la subestación Valle Escondido 220/33kV.

Validar la correcta operación del sistema protección mediante pruebas de aceptación, no solo se reduce a probar el relé de protección y su conexión directa con los equipos de patio, sino probar el relé de protección digital, las *Merging Units* y la red de comunicación donde se integran.

1.2.2 Problema a resolver

La falta de un proceso de puesta en servicio, para los nuevos relés de protección con tecnología digital, y que este nuevo proceso debe garantizar la operación correcta de todas las funciones del sistema protección.

1.3 Objetivos del estudio

1.3.1 Objetivo general

Aplicar el protocolo IEC 61850 en la puesta en servicio del sistema de protección de una subestación digital.

1.3.2 Objetivos específicos

- Describir la ingeniería básica y de detalle (que a diferencia de las subestaciones convencionales se describirá la incorporación de las *Merging Units*)
- Describir el protocolo IEC 61850.
- Describir la Red de Proceso y Red de Estación.
- Describir los mensajes de Sampled Values y GOOSE.
- Describir las funciones de protección a evaluar.
- Desarrollar y presentar los resultados de las pruebas a los relés de protección.

1.3.3 Indicadores de logro de los objetivos

Los indicadores establecidos para este trabajo son:

- La desviación (%) en medición de la corriente y tensión por Sampled Values, entre valor esperado y valor que indica el IED.
- Operación de las funciones de protección de acuerdo a su curva característica,
- Los tiempos de disparo (ms), que son transmitidos por mensajes tipo GOOSE.

Tabla 2

Indicadores de logro

Objetivo Especifico	Indicador de logro	Métrica
Desviación en medición de corrientes por Sampled Values	-0.3%< ∆l <0.3%	Porcentaje (%)
Desviación en medición de tensiones por <i>Sampled Values</i>	-0.3%< ∆V <0.3%	Porcentaje (%)
Curvas características de operación	Aproximación fiel al ajuste	Parámetros de ajuste
Tiempos de disparo por GOOSE	≤30ms	Milisegundos (ms)

Nota: Fuente (Elaboración propia)

1.4 Antecedentes del problema

Los siguientes antecedentes, se tomaron como referencia para desarrollar el presente trabajo.

HMV (2018) en su paper "IEC 61850-9 Process Bus Line Protection Performance Test and Comparative Methodology" describe el sistema de protección de dos líneas de transmisión. En una línea, tiene como sistema principal un relé de protección digital (marca ALSTOM) integrado a una Red de Proceso conforme al estándar IEC 61850-9-2LE, y otro convencional (marca SEL). La otra línea, posee en ambos sistemas, relés de protección digitales (marca GE y NARI) integrados conforme al estándar IEC 61850-9-1.

Este artículo técnico detalla los diferentes esquemas de prueba que pueden implementarse, durante las pruebas FAT y SAT. En las pruebas FAT se puede tener las *Merging Units* próximos a los relés de protección, mientras que en las pruebas SAT son ubicados en el patio y su conexión con la sala de control es con fibra óptica. Para cada caso se pueden aplicar ciertos esquemas de prueba, pero eso sí, hace énfasis en disponer de un equipo de pruebas capaz de simular a las *Merging Units* e inyectar corrientes y tensiones secundarias de falla.

Además, muestra un resultado comparativo del desempeño de la operación de las funciones de protección entre el relé de protección convencional y los digitales bajo la aplicación de los diferentes esquemas de prueba.

De otro lado, **Mohit Sharma, Lam Nguyen y Sughosh Kuber (2019)** en su paper "Testing IEC-61850 Sampled Values-Based Transformer Differential Protection Scheme" plantean 3 escenarios de prueba de la función diferencial 87T. El primer escenario, es sobre relé de protección cuyo comportamiento es el convencional, es decir no está integrado a una Red de Proceso. El segundo escenario, si se encuentra integrado a la red de proceso y está suscrito a una *Merging Unit* en cada lado, AT y BT de un transformador. Y por último el tercer escenario, en el que solo se suscribe a una *Merging Unit* en lado de BT mientras que el de AT es convencional. Bajo estos escenarios, someten al relé de protección a una serie de pruebas, y muestran el desempeño de los tiempos de disparo y detección por 2do armónico (corriente inrush).

El artículo de **Apostolov, A. (2017),** "Efficient maintenance testing in digital substations based on IEC 61850 edition 2", presenta la definición de una subestación digital, la eficiencia de las pruebas y los requerimientos de aislamiento virtual. Describe las características de las pruebas según el estándar IEC 61850 y los métodos que pueden ser

4

utilizados en las subestaciones digitales, ejemplos de pruebas de mantenimiento y especifica los requisitos de las herramientas de pruebas. Por último, abarca los principios de las pruebas remotas a través del sistema de control, que aportan beneficios significativos en la eficiencia. seguridad, y la reducción de tiempos de interrupción del servicio.

Chase, S., Jessup, E., Silveria, M., Dong, J., Yang, Q. (2019), en su artículo "Protection and Testing Considerations for IEC 61850 Sampled Values-Based Distance and Line Current Differential Schemes" indican que implementar los sistemas de control y protección basados en *Sampled Values* implica la instalación de nuevos equipos, que no son necesarios en los sistemas tradicionales, llamados *Merging Units*. Estos equipos transforman las señales análogas en *Sampled Values*, y junto con *Switches Ethernet,* fuentes de tiempo de alta precisión, cables de fibra óptica e IEDs digitales, se conectan a una red de comunicación llamada Red de Proceso. Señala que el diseño de estos sistemas debe considerar las condiciones de la red de comunicación y su impacto en su aplicación, tales como el límite del ancho de banda, la latencia y la pérdida de paquetes. Analiza y presenta los resultados, del impacto por pérdida de datos de *Sampled Values,* en el monitoreo de la corriente local, la corriente remota y la corriente diferencial de una protección diferencial de línea.

El artículo Yang, Q., Keckalo, D., Dolezilek, D., Cenzon, E., SEL. (2020). Títulado "Testing IEC 61850 Merging Units" realiza un análisis de las *Merging Units* en el entorno de los *Sampled Values*, resalta la importancia de considerar la gestión de la pérdida de sincronización horaria temporal, el rendimiento de los *Sampled Values* publicados y la visualización de señales análogas en tramas de los mensajes en la red de proceso. Introduce conceptos y métodos de prueba que demuestran la precisión, seguridad y confiabilidad de las *Merging Unit* en aplicaciones de protección, dado su criticidad. Analiza soluciones, para la evaluación de la conversión analógico-digital, la detección de la integridad de los mensajes *Sampled Values*, la medición del rendimiento de publicación y la gestión de la sincronización horaria.

Capítulo II. Marco teórico y conceptual

2.1 Marco Teórico

2.1.1 Subestación Digital

Una subestación digital, está basada en dos redes de comunicación con tecnología ethernet. La Red de Proceso, donde se obtiene e intercambia la información entre los equipos de patio e IEDs de control, protección y medición. Y la Red de Estación, donde se transmite la información para la supervisión, el monitoreo y el control hacia estaciones de operación, locales y remotos.

Los IEDs que componen la subestación digital poseen una tecnología avanzada, para comunicarse y procesar la información, y están sujetas al desarrollo del estándar IEC 61850.

A diferencia de una subestación convencional, en la digital, se implementa la Red de Proceso, que viene a ser la interfaz para transmitir la información digitalizada desde la proximidad de los equipos de patio, con el uso de unos dispositivos llamados *Merging Units*.

2.1.2 Ingeniería Secundaria

Los sistemas secundarios de una subestación sirven para proteger, operar y controlar el equipamiento primario y otros sistemas, que, en conjunto, integran todo el sistema de potencia de la subestación. Estos sistemas secundarios son:

- 1. Sistema de Control.
- 2. Sistema de Protección.
- 3. Sistema de Medición.
- 4. Sistema de Comunicación.
- 5. Sistema de Servicios Auxiliares (SSAA).

Dado el objetivo planteado, este trabajo solo se limita a detallar el Sistema de Control y Protección.

2.1.3 Sistema de Control

Actualmente el sistema de control, está basado en el Sistema de Automatización de Subestaciones (SAS). Este sistema permite operar toda la subestación, para ello monitorea en tiempo real el estado de toda la subestación, mostrando al operador local o remoto, los valores análogos de corrientes, tensiones, potencia activa y reactiva, posición y su estado de todo el equipamiento primario. Ello permite tomar la decisión de controlar, pudiendo: abrir y cerrar equipos de maniobra (interruptores y seccionadores), subir y bajar la posición de las tomas (taps) de transformadores, controlar la tensión a través de la potencia reactiva, etc.

Además, proporciona otras funciones como el interbloqueo, llamado también enclavamiento, usado por seguridad o por el proceso operacional. También para cierres y recierres automáticos, cierres y aperturas controladas para la conexión y desconexión de reactores o capacitores cuyo fin es reducir los transitorios que se producen en la red.

a) Arquitectura

La arquitectura es la forma en que se distribuyen y se integran los diferentes IEDs para formar el sistema de control. Desde la perspectiva de cómo funciona y como se opera la subestación, la arquitectura del sistema de control define 4 niveles de control jerarquizado y sus respectivas redes de comunicación e interfaces.

Figura 1

Niveles de control

Nivel 3	Sistemas remotos: Centro de Control y Ente Regulador				
Nivel 2-3	Red de comunicaciones e interfaz (WAN)				
Nivel 2	Sistema de procesamiento de Alma señales (RTU)	acenamiento de datos históricos y de tiempo real	Interfaz de operación integral de la subestación en HMI		
Nivel 1-2	Red de comunicaciones e interfaz (Bus de estación)				
Nivel 1	Controladores de bahía, protecciones, medidores, registradores de falla, etc.		Interfaz de operación de bahía en controladores		
Nivel 0-1	Cableado o red de comunicaciones (Bus de proceso)				
Nivel 0	IEDs: Merging Unit, equipos de monitoreo, etc. Equipos de Patio y de Servicios Auxiliares				

Nota: Fuente (HMV, 2021)

Nivel 0

Lo integran:

- Equipamiento de patio, como: Interruptores, seccionadores, transformadores de potencia, transformadores de medición, bancos capacitadores, reactores, etc.
- Equipos del sistema de SSAA, como: El alimentador en media tensión (MT), los Mini circuit breakers (MCB) en baja tensión (BT) AC y DC, grupos electrógenos, suministro de energía ininterrumpida (UPS), Cargadores de baterías, etc.
- IEDs, como: Monitores de humedad, gases y nivel de aceite del transformador de potencia, *Merging Units*, sensores, etc.

Nivel 1

Lo integran:

 IEDs, como: Controladores de bahía, relés de protección, medidores, registradores de falla, etc.

Actualmente, las funciones de control y protección se integran solo en un IED.

A partir de este nivel los controladores tienen en pantalla, una interfaz hombremáquina (HMI), que permite ejecutar comandos de apertura y cierre, entre otros, a su propia bahía.

Nivel 2

Lo integran:

- HMI de la subestación, es una estación de operación local, desde el cual se tiene el control integral de la instalación. Además, muestra varios despliegues, como la visualización del estado de todos los equipos (como un diagrama unifilar general y por bahía), lista de alarmas, lista eventos, estado de la comunicación del sistema de control y curvas de tendencia.
- Equipo de procesamiento de señales, se encarga de obtener toda la información que proporcionan todos los IEDs integrados a la de red de estación, para procesarlos, adaptarlos, mapearlos y transmitirlos a los sistemas remotos.

Nivel 3

Lo integran:

 Sistemas remotos, como el centro de control centralizado de la compañía y el ente regulador del sistema de potencia. Estos están implementados con sistemas SCADA.

Normalmente, es desde estos sistemas que se operan las subestaciones, es decir la controlan, la supervisan y la monitorean.

En la Figura 2, a modo de resumen, se muestra una arquitectura de control del SAS de una subestación.

Figura 2

Arquitectura de control del SAS

Nota: Fuente (Elaboración propia)

b) Comunicación

El sistema de control necesita obtener la información de todos los elementos que conforman la subestación, para ello hace uso de interfaces, como cableados y redes de comunicación basados en tecnología Ethernet, por donde se distribuyen, transmiten y reciben la información.

Interfaz Nivel 0 y 1

En estos niveles se tiene 3 tipos de interfaces.

- Cableado punto a punto, para llevar cada señal binaria o análoga a los IEDs del nivel 1.
- Comunicación serial, para transductores, equipos de monitoreo, etc. Aquí se pueden utilizar protocolos de comunicación como Modbus, DNP3.0 o IEC 60870-5-101/102/103 para la transmisión de la información.
- Comunicación sobre *Ethernet*, llamada también Red de Proceso, para las *Merging* Units. Aquí se utiliza el único estándar, que satisface los requerimientos, el IEC 61850, para la transmisión de la información.

Interfaz Nivel 1 y 2

La interfaz es la comunicación sobre *Ethernet*, llamado también Red de Estación, para los IEDs del nivel de bahía y de estación, y dispositivos de red como: *Switches*, *Routers*, y *Firewalls*.

En esta interfaz se pueden utilizar los protocolos de comunicación como DNP3.0, IEC 60870-5-104 o IEC 61850 para la transmisión de la información.

Interfaz Nivel 2 y 3

La interfaz es la comunicación WAN, para la unidad de procesamiento de señales con función Gateway y dispositivos de enlace, como Routers y Firewalls.

En esta interfaz se pueden utilizar los protocolos de comunicación como DNP3.0 o IEC 60870-5-104.

Para establecer la conexión con los centros remotos, se usan medios de comunicación como la fibra óptica, microondas, radio o por satélite.

c) Topología de red y protocolos de redundancia

La Red de Estación y la Red de Proceso en el SAS, deben ser confiables y estar siempre disponibles. Solo existen 2 tipos de conexión que pueden cubrir este requerimiento: La conexión de estrella doble y la conexión en anillo.

La norma IEC 62439, define protocolos de redundancia de medios para la transmisión de la información en la red y los principales son.

PRP (Parallel Redundancy Protocol)

Este protocolo de redundancia utiliza el tipo de conexión de estrella doble, donde cada puerto del IED se conecta a un *Switch* diferente, formando 2 redes independientes, LAN A y LAN B.

Este protocolo hace que cada puerto se encuentre activo, envíen y reciban la misma información, de forma simultáneamente. Esto hace que, ante una falla en un puerto, siga enviando y recibiendo la información por la otra, sin pérdida de tiempo por conmutación.

Figura 3

Topología PRP

Nota: Fuente (Elaboración propia)

HSR (High-Availability Seamless Redundancy)

Este protocolo de redundancia utiliza el tipo de conexión en anillo, y tiene el mismo

funcionamiento que el protocolo PRP para los puertos del IED.

Figura 4

Topología HSR

Nota: Fuente (Elaboración propia)

2.1.4 Sistema de Protección

Este sistema despeja de forma selectiva la falla, cuando es detectada, en un tiempo muy rápido, para mantener estable el sistema y minimizar daños en el equipamiento de la subestación.

a) Fallas

En los sistemas de potencia tenemos fallas originadas por cortocircuitos que se clasifican en cortocircuito trifásico (a), bifásico (b), bifásico con tierra (c) y monofásico (d).

Figura 5

Clasificación de fallas

Nota: Fuente (Kasikci, 2018)

b) Relé de protección

Los relés de protección son dispositivos electrónicos inteligentes que procesan señales análogas de corrientes y tensiones, y señales digitales de estados de equipos y alarmas, para detectar una condición de falla o estado anormal del sistema de potencia y ejecutar acciones correctivas en un tiempo muy rápido del orden de los milisegundos, aislando solo la sección fallada y devolviendo el sistema de potencia a un nuevo estado estacionario de operación.

Los relés de protección tienen 3 características principales.

- Son confiables, operan solo cuando deben y no realizan operaciones incorrectas.
- Son selectivos, aíslan solo la zona fallada.
- Son rápidos, actúan lo más rápido posible para minimizar los daños.

Actualmente, hay 2 tecnologías de relés de protección que ofrecen los fabricantes, una convencional y la otra digital. Los relés de protección con tecnología convencional (Figura 6), se conectan de forma directa, con cable de cobre, a los equipos de patio. Mientras que los relés de protección con tecnología digital (Figura 7), se conectan a la Red de Proceso y así de forma indirecta a los equipos de patio, haciendo uso de las *Merging Units* como equipos intermedios para este fin.

Figura 6

Relé de protección con tecnología convencional

Nota: Fuente (Elaboración propia)

Figura 7

Relé de protección con tecnología digital

Nota: Fuente (Elaboración propia)

Transformadores de Corriente (TC)

Es un equipo primario electromagnético que tiene la función de transformar las corrientes que fluyen por el sistema de potencia, en el lado primario, a valores secundarios normalizados de 1 o 5 A para ser medidos por los relés de protección, *Merging Units*, controladores y medidores.

Existen tipos de transformadores de corriente orientados a diferentes fines, tales como:

- Medición, tienen mayor precisión, pero no tienen un rango amplio de medición ya que su núcleo magnético se satura entre 1.5 o 2 veces de la corriente nominal. Usado por sistemas de medición, especialmente en facturación.
- Protección, no son tan precisos, pero proporcionan mayor rango de medición ante altas corrientes, comúnmente ante cortocircuitos, ya que su núcleo magnético se satura entre 10 o 20 veces de la corriente nominal. Usado por sistemas de protección.

Transformadores de tensión (TT)

Es un equipo primario electromagnético que tiene la función de transformar las tensiones de las partes de la instalación que se quieren medir, como la llegada de una línea de transmisión, las barras y la entrada o salida de transformadores o generadores, a valores secundarios normalizados de 110 V o 115 V, para ser medidos por los relés de protección, *Merging Units*, controladores y medidores.

Existen tipos de transformadores de tensión orientados a diferentes fines, tales como:

- Medición, tienen mayor precisión, pero no tienen un rango amplio de medición.
 Usado por sistemas de medición, especialmente en facturación.
- Protección, no son tan precisos, pero proporcionan mayor rango de medición.
 Usado por sistemas de protección.

Interruptor

Es un equipo de maniobra primario electromecánico, que tiene la función de cerrar y abrir circuitos, para conducir o interrumpir las corrientes que se generan en condiciones normales, anormales o de falla del sistema de potencia. Pueden tener accionamientos tripolares o monopolares, según la importancia, el nivel de tensión y la operación del sistema de potencia.

Para los sistemas de protección estos equipos son indispensables, pues permiten interrumpir las corrientes de cortocircuito, ante una falla, por orden de los relés de protección.

En secuencias de recierres, los relés de protección también generan orden de cierre, pudiendo cerrar al interruptor de forma tripolar o monopolar.

Seccionador

Es un equipo de maniobra primario electromecánico que tiene la función de cerrar o abrir sus contactos para energizar o desenergizar partes de la instalación. A diferencia
del interruptor, este equipo no tiene la capacidad de interrumpir la corriente, ni de poder conducir al momento de cerrar sus contactos.

Para los sistemas de protección estos equipos se vuelven importantes, puesto que configuran zonas de protección de acuerdo a la topología de la instalación.

c) Zonas de protección

Para que el sistema de protección sea selectivo, se determinan zonas de protección e implementan los relés de protección con funciones para tal fin.

Las zonas de protección son delimitadas por los transformadores de corriente, como se puede ver en la Figura 8.

Figura 8

Zonas de protección

Nota: Fuente (Elaboración propia)

Las funciones de protección principales, son las primeros en operar en un tiempo muy rápido, aislando la sección fallada y minimizando el impacto en el resto del sistema de potencia. Por ello, se tienen relés de protección dedicados, para líneas de transmisión, transformadores, barras, generador, motor, reactores, alimentadores, etc.

d) Funciones de protección

1. Protección por sobrecorriente

Es la protección más básica y usada ampliamente en sistemas de transmisión y distribución. No define una zona de protección como tal, por ende, no discrimina fallas de otros circuitos; pero ante fallas cercanas, fallas en transformadores (tienen alta impedancia) y en circuitos radiales pueden proporcionar cierta selectividad.

La función opera, cuando el relé de protección detecta que la corriente supera un valor ajustado, las corrientes que son evaluadas dependen de los tipos de cortocircuito que se puedan dar y la conexión de los neutros en la red.

Además de la corriente, usa la señal de tensión para determinar la dirección de la falla, en funciones de sobrecorrientes direccionales.

Los parámetros más importantes, para las funciones de sobrecorriente no direccional (50, 51, 50N, 51N, 50G y 51G) son las corrientes, las curvas características IEC o ANSI e incluso pueden ser personalizadas y el factor multiplicador del tiempo de operación. Mientras que para las funciones de sobrecorriente direccional (67 y 67N), además de las anteriores, el parámetro importante es el umbral de sensibilidad de la tensión.

Figura 9

Curvas características de sobrecorriente

Nota: Fuente (CIGRE Green Books, 2019)

2. Protección por impedancia (21)

Llamada también protección de distancia, es comúnmente usada en sistemas de transmisión y subtransmisión. Puede discriminar las fallas que ocurren en diferentes partes del sistema de potencia, mediante el cálculo de la impedancia.

La impedancia es calculada directamente desde la medición de corrientes y tensiones. La función opera, cuando el relé de protección determina que la impedancia calculada de la falla, se ubica dentro de las zonas de protección ajustadas.

- Zona 1, es ajustada al 70-80% de la impedancia de la línea, con un tiempo de operación instantáneo.
- Zona 2, es ajustada al 120-150% de la impedancia de la línea o al 100% de la línea más 50% de la línea más corta del extremo remoto, con un tiempo de operación de 200-500ms. Es usada principalmente como protección de respaldo ante fallas en barra de la subestación del extremo remoto, y como zona de envío y permiso para el esquema de teleprotección POTT.
- Zona 3, es ajustada para cubrir fallas fuera de la subestación remota, como respaldo, con un tiempo de operación de 800-1000ms.
- Zona 4, es ajustada con una dirección reversa al 20% de la línea, con tiempos similares a la zona 3. Es usada para como protección de respaldo de la barra cercana.

La zona 1 y zona 2 con un esquema de teleprotección POTT, son selectivas ante fallas en las líneas de transmisión.

Zonas de la protección de distancia

Nota: Fuente (CIGRE Green Books, 2019)

Figura 11

Tiempos de operación de la protección de distancia

Nota: Fuente (Ziegler Gerhard, 2011)

Las zonas de la protección de distancia, pueden tener características de operación

tipo Mho o cuadrilaterales, siendo estos últimos los más usados en líneas de transmisión,

pues permite ajustar los alcances de reactancia y resistencia de forma independiente.

Figura 12

Característica de operación tipo Mho de la protección de distancia

Nota: Fuente (CIGRE Green Books, 2019)

Característica de operación tipo cuadrilateral de la protección de distancia

Nota: Fuente (CIGRE Green Books, 2019)

Los parámetros más importantes de la línea de transmisión para la función de distancia son las reactancias y resistencias, de secuencia positiva y homopolar.

3. Protección por diferencial de corriente (87)

La función diferencial es usada como protección principal en líneas de transmisión, transformadores, barras, generadores y motores. Discrimina las fallas que ocurren en el interior del objeto protegido y fuera de estos.

Su operación está basada en la ley de Kirchhoff, según la cual, la suma fasorial de las corrientes que ingresan al objeto protegido y las corrientes que salen es 0, por convención las corrientes que ingresan al objeto protegido son positivas, y las que salen son negativas. Ante una falla, las corrientes ingresan al objeto, por ende, la suma es diferente de cero y el relé de protección determina la presencia de una corriente diferencial y emite un disparo a los interruptores que conectan el objeto al sistema de potencia.

Diferencial de corriente. Falla externa o carga (a), falla interna (b)

Nota: Fuente (Ziegler Gerhard, 2012)

Los relés de protección definen una corriente base común, como referencia, de todas las fuentes de corriente del objeto, llamada corriente de objeto.

- En los transformadores, es la corriente nominal. Además, tienen un factor de corrección, para compensar el grupo de conexión.
- En las líneas de transmisión, es el mayor valor primario, entre los transformadores de corriente de los dos extremos.
- En barras, es el mayor valor primario, entre los transformadores de corriente de todas las bahías que se conectan.
- En los generadores y motores, es el valor primario, del transformador de corriente ya que normalmente son iguales.

La función tiene una curva característica, que se dibuja con el módulo de la corriente diferencial (I_{Op}) vs la corriente de restricción (I_{Res}). La zona de no operación, considera que, ante mayores corrientes primarias, se tiene una mayor corriente de restricción y se presenta un mayor grado de error, provocando que el relé de protección pueda detectar una corriente diferencial, sin que haya de por medio una falla interna.

Curva característica de función diferencial de corriente

$$I_{Res} = |I_1| + |I_2| + |I_3| + \dots + |I_n|$$

$$I_{Op} = |I_1 + I_2 + I_3 + \dots + I_n|$$

Nota: Fuente (Ziegler Gerhard, 2012)

En transformadores, generadores y motores la operación de la función diferencial

se lleva a cabo en un solo relé de protección.

Figura 16

Diferencial de corriente en transformador

Nota: Fuente (Ziegler Gerhard, 2012)

Figura 17

Diferencial de corriente en generador

Nota: Fuente (Ziegler Gerhard, 2012)

En los sistemas de barras la operación de la función diferencial, se lleva a cabo en un solo relé de protección, llamado unidad central, pudiendo ser centralizada o distribuida, en la cual todas las señales de cada bahía convergen.

Figura 18

Diferencial de corriente en barras

Nota: Fuente (Ziegler Gerhard, 2012)

Sin embargo, en líneas de transmisión la operación de la función diferencial, se lleva a cabo en cada relé de protección, de cada extremo de la línea, que están comunicados entre sí mediante un canal de fibra óptica dedicado.

Figura 19

Diferencial de corriente en línea de transmisión

Nota: Fuente (Ziegler Gerhard, 2012)

4. Bloqueo por Oscilación de potencia (68)

Esta función es usada en líneas de transmisión, para bloquear la actuación de las zonas de la protección de distancia, cuando se haya detectado una oscilación de potencia.

Cuando ocurre una oscilación de potencia, la impedancia vista por el relé de protección puede localizarla dentro de sus zonas de protección de distancia, y en consecuencia emitir la orden de disparo. Para evitar esta operación, la función debe discriminar las fallas provocadas por un cortocircuito de una oscilación de potencia.

La oscilación de potencia, debe ser detectada bajo condiciones normales de operación, cuando ocurren fallas en líneas adyacentes o en líneas paralelas, y durante el tiempo muerto de un ciclo de recierre monopolar y cierre exitoso.

Figura 20

Zona de protección de distancia con detección de oscilación de potencia

Nota: Fuente (ABB, 2016)

5. Falla de interruptor (50BF)

Esta función es iniciada cuando las funciones principales han emitido el disparo hacia el interruptor, y este no ha abierto sus contactos primarios, permitiendo que la falla siga presente en el sistema de potencia.

Una vez iniciada la función y el relé de protección detecta que la corriente supera un valor ajustado, emite la orden de disparo de acuerdo a los tiempos de las etapas que tiene.

La función normalmente tiene 2 etapas de operación:

- La primera etapa, emite un redisparo hacia el interruptor en falla.
- La segunda etapa, emite un disparo hacia todos los interruptores de las fuentes que alimentan la falla, pudiendo ser la barra, el extremo remoto de la línea de transmisión, entre otros, de acuerdo a la topología de la red.

En líneas de transmisión, que poseen interruptores de mando monopolar y tienen habilitadas la función recierre monopolar, los redisparos deben ser monopolares.

6. Protección por Esquemas de Teleprotección (85)

Los sistemas de teleprotección son usados principalmente en líneas de transmisión, y usan como medio, para enviar o recibir señales digitales, la onda portadora o la fibra óptica y equipos intermedios de telecomunicaciones.

Figura 21

Implementación para funcionamiento del esquema de teleprotección

Nota: Fuente (Elaboración propia)

A continuación, se describen los esquemas principalmente usados.

Esquema de protección de distancia con sobre alcance permisivo (POTT)

El esquema POTT hace uso del arranque de la zona 2 de la función de distancia, en ambos extremos de la línea.

Cuando en un extremo, el relé de protección detecta que la falla se encuentra en su zona 2, inmediatamente la función arranca y emite la señal de envío; esta señal es trasmitida hasta el otro extremo de la línea, en este extremo, el relé de protección lo recibe, y si a su vez, detecta que la falla se encuentra en su zona 2, ordena el disparo con un tiempo de coordinación, que generalmente es instantáneo.

Esquema POTT

Nota: Fuente (Elaboración propia)

Esquema de protección por comparación direccional (67NCD)

El esquema 67NCD, hace uso del arranque de la función 67N, que detecta fallas

de alta impedancia, en ambos extremos de la línea.

La lógica de funcionamiento es la misma que en el esquema POTT.

Figura 23

Esquema 67NCD

Nota: Fuente (Elaboración propia)

Esquema de protección de fuente débil (WEI)

El esquema es usado cuando en uno de los extremos de la línea tiene un bajo nivel cortocircuito y alta impedancia, llamado extremo débil, y es probable que el relé de protección no pueda detectar la falla cuando ocurra.

Este esquema se implementa en el extremo débil, y para que se pueda emitir el disparo se debe cumplir lo siguiente:

- Se habilita la función ECHO, que devuelve la señal recibida al extremo fuerte, por el canal de transmisión, para completar el esquema POTT o 67NCD en ese extremo. Esto lo realiza de manera independiente a la posición del interruptor.
- Verifica que haya una caída en la tensión por debajo del ajuste.
- Verifica que la falla no haya sido detectada en la zona reversa.
- Verifica la posición cerrada del interruptor.

El extremo fuerte funciona como los esquemas POTT o 67NCD.

Figura 24

Esquema WEI

Nota: Fuente (Elaboración propia)

Esquema de protección por disparo directo transferido (DDT)

El esquema DDT es usado para transmitir una orden de disparo, al otro extremo de la zona fallada, cuya finalidad, es aislar la falla completamente, extinguiendo todas las fuentes posibles de aporte. El extremo que recibe la señal, emite el disparo al interruptor correspondiente.

Las ordenes de envío DDT, son generalmente, emitidas por operación de la función diferencial de barras 87B y falla de interruptor 50BF etapa 2.

Esquema DDT

Nota: Fuente (Elaboración propia)

7. Cierre sobre falla (SOTF)

La función SOTF es usada en líneas de transmisión. Es iniciada, cuando el relé de protección detecta el cierre manual del interruptor.

Una vez iniciada la función, se mantiene activa por lo menos 1 segundo, y si el relé de protección detecta una falla, mediante un arranque de sobrecorriente o por zona 2, emite la orden del disparo en un tiempo instantáneo.

8. Recierre (79)

La función recierre es usada en líneas de transmisión. Funciona como un automatismo para el cierre del interruptor, después del despeje de fallas transitorias. Es iniciada con la operación de funciones de protección principales, netamente selectivas, como: 87L, 21 zona 1 y esquemas de teleprotección POTT, 67NCD y WEI.

Su operación puede ser monopolar o tripolar. El recierre monopolar, considera fallas monofásicas y el orden de disparo de la fase fallada para el inicio de su operación. Si el despeje es efectivo, y es solo en la fase fallada, espera un tiempo (llamado tiempo muerto) para emitir la orden de cierre del interruptor. El recierre monopolar, no considera la evaluación del sincronismo, puesto que el interruptor no se abre completamente. A diferencia del recierre monopolar, el recierre tripolar, considera fallas bifásicas y trifásicas para el inicio de su operación. Si el despeje es efectivo y tripolar, espera un tiempo muerto, y evalúa las condiciones de sincronismo para emitir la orden de cierre del interruptor.

9. Función de sincronismo (25)

La función verifica las condiciones de la tensión en ambos lados del interruptor, antes de su cierre, en condición de operación normal o posterior al despeje de la falla y antes de un recierre tripolar.

Las condiciones de sincronismo son evaluadas de dos maneras.

Con tensión en ambos lados

Llamada también condición de *Synchrocheck*. Para alcanzar la condición de *Synchrocheck*, el relé verifica la presencia de tensión en ambos lados del interruptor, estas tensiones normalmente son mayores al 80% de la tensión nominal de la red. Y luego compara la diferencia de la magnitud de tensión, la diferencia de fases y la diferencia de frecuencias con los rangos de valores ajustados.

Normalmente los valores ajustados son los siguientes:

- La diferencia de la magnitud de tensión esta entre el 10 y 20% de la tensión nominal de la red.
- La diferencia de fases es menor a 100mHz.
- La diferencia de ángulo es menor a 30°.

Esquema y comparación de Synchrocheck

Nota: Fuente (CIGRE Green Books, 2019)

Sin tensión por lo menos en un lado

Llamada también condición de energización. Para alcanzar la condición de energización, el relé verifica la presencia o ausencia de tensión en los lados del interruptor.

Para determinar la presencia de tensión (tensión viva), normalmente debe ser mayor al 80% de la tensión nominal, mientras que la ausencia de tensión (tensión muerta) debe ser menor al 10%.

De acuerdo a lo anterior, se presentan 3 condiciones:

- Barra viva/ Línea muerta, usada para energizar la línea, transformador o alimentador.
- Línea viva/ Barra muerta, usada para energizar la barra de una instalación.
- Barra muerta/ Línea muerta, usada para mantenimiento.

2.1.5 Estándar IEC 61850

El estándar IEC 61850 define la estructura de la información y los mecanismos para su intercambio, que permiten implementar las funciones de control, protección, medida y monitoreo de una subestación.

"El objetivo del estándar es proporcionar un marco de trabajo para lograr la interoperabilidad entre IEDs de diferentes fabricantes" (IEC-61850-1, 2013).

El IEC 61850 estandariza la comunicación de:

- Señales de corrientes y tensiones mediante los mensajes Sampled Values (1).
- Intercambio rápido y confiable de datos binarios de funciones de control y protección (2).
- Control de señales (3).
- Señales de disparo y control (4).
- Ingeniería y configuración (5).
- Monitoreo y supervisión (6).
- Comunicación con centro de control (7).
- Tiempo de sincronización.
- Medición.
- Etc.

Figura 27

Topología de automatización de la subestación

El estándar usa 4 principales mecanismos para cumplir con su objetivo.

- Modelos de información específica o modelo de datos.
- Métodos de intercambio de información o Servicios Abstractos.
- Mapeo a protocolos de comunicación concretos.
- Configuración de IEDs.

Estos mecanismos son en alto grado independientes, esto nos permite que se extiendan fácilmente sin producir cambios en los otros.

Figura 28

Mecanismos principales del IEC 61850

Nota: Fuente (IEC-61850-7-1, 2011)

a) Estructura

El estándar IEC 61850 define 10 partes principales:

Parte 1: Introducción y vista general.

Parte 2: Glosario.

Parte 3: Requerimientos generales.

Parte 4: Sistema y administración del proyecto.

Parte 5: Requerimientos de comunicación para las funciones y modelado de equipos.

Parte 6: Lenguaje de descripción de la configuración para la comunicación de IEDs en subestaciones eléctricas.

Parte 7-1: Estructura básica de comunicación - Principios y modelos.

Parte 7-2: Estructura básica de comunicación – Interfase de los servicios de comunicación abstractos ASCI (Abstract Communication Service Interface).

Parte 7-3: Estructura básica de comunicación – Clases de datos comunes.

Parte 7-4: Estructura básica de comunicación – Clases de datos y clases de nodos

lógicos compatibles.

Parte 8-1: Mapeo de servicios de comunicación específicos (SCSM) – Mapeo hacia MMS y hacia ISO/IEC 8802-3.

Parte 9-2: Mapeo de servicios de comunicación específicos (SCSM) – Sampled Values sobre ISO/IEC 8802-3.

Parte 10: Pruebas de conformidad.

Figura 29

Relación entre las partes del Estándar IEC 61850

Nota: Fuente (IEC-61850-1, 2013)

b) Funciones e Interfaces lógicas

Las funciones en un SAS, son todas las tareas que se llevan a cabo en una subestación. Las funciones principales son: el control, protección y monitoreo de la subestación. Y se añaden otras funciones orientadas a la sincronización del tiempo y al mantenimiento.

Las funciones se agrupan en 3 niveles: Nivel de proceso, nivel de bahía y nivel de estación. El estándar define 11 interfaces lógicas para que estos 3 niveles puedan comunicarse.

Nivel de proceso

En este nivel se encuentra todo el equipamiento primario, como interruptores de potencia, seccionadores, transformadores de medida, etc. Y equipos intermedios, como *Merging Units*. Es desde este nivel, que se proporciona la información de estado del equipamiento primario y señales de medida de TCs y TTs.

Se comunican al nivel de bahía, mediante la interfaz lógica 4 y 5.

Nivel de bahía

En este nivel se encuentran los IEDs de control y protección por cada bahía. Es desde este nivel, que se proporciona los datos de protección y control que es intercambiado entre las bahías, el nivel de proceso y el nivel de estación.

Concentran los datos sobre una bahía, e interactúan sobre su correspondiente equipo primario. Estas funciones se comunican internamente en el nivel de bahía, mediante la interfaz lógica 3 y con el nivel de estación mediante la interfaz lógica 1 y 6. Mientras que la comunicación con otra bahía mediante la interfaz lógica 8, particularmente para señales de enclavamiento.

Nivel de estación

Las funciones de este nivel, proporcionan la integración general de todo el equipamiento de la subestación.

En este nivel se tiene 2 tipos de funciones:

Funciones relativas al proceso

Usa los datos de una o más bahías, o de la subestación completa para actuar sobre los equipos primarios de una o más bahías e incluso la subestación completa. Estas funciones se comunican principalmente mediante la interfaz lógica 8.

Funciones relativas a la interfaz

Representan la interfaz del SAS para el operador local HMI, para el Centro de Control TCI (Telecontrol interface) o para la estación de ingeniería TMI (Telemonitoring interface), Estas funciones se comunican con el nivel de bahía mediante la interfaz lógica 1 y 6, y fuera de la subestación por la interfaz lógica 7 y 10.

Figura 30

Niveles e interfases lógicos del SAS

Nota: Fuente (IEC-61850-5, 2013)

IF1: Datos de protección entre el nivel de bahía y nivel de estación.

IF2: Datos de protección entre nivel de bahía y protección remota (Ejemplo en línea de transmisión).

IF3: Datos internos en el nivel de bahía.

IF4: Datos de medida entre el nivel de proceso y nivel de bahía (Muestras de TC y

TT).

IF5: Datos de control entre nivel de proceso y nivel de bahía.

IF6: Datos de control entre nivel de bahía y nivel de estación.

IF7: Datos entre la subestación y área de trabajo de ingeniería remota. (para configuración, manteniendo y supervisión).

IF8: Datos directos entre bahías, especialmente para enclavamientos rápidos.

IF9: Datos internos en el nivel de estación.

IF10: Datos de control entre la subestación y el centro de control remoto.

IF11: Datos de control entre subestaciones. (Orientado para datos binarios, por ejemplo, enclavamientos).

El estándar indica, que las interfaces 2 y 11 se pueden implementar con otro tipo de sistema de comunicación, que no siguen al modelo de datos y servicios definidos.

No todas las interfaces están presentes en las subestaciones.

Dado la cantidad de interfaces, el estándar IEC 61850 define dos redes LAN, donde las interfaces 1, 3, 6, 8 y 9 forman el Red de Estación, y las interfaces 4 y 5 forman la Red de Proceso.

c) Mecanismos de modelamiento e intercambio de información

Modelo de datos

El primer mecanismo, para el intercambio de información que define el estándar IEC 61850, son los modelos de información común, que permiten tener un modelo, como imagen virtual del sistema de potencia.

Modelamiento de información

Nota: Fuente (IEC-61850-7-1, 2011)

El estándar IEC 61850, define la información y su intercambio. Usan modelos abstractos, para ser independientes a cualquier implementación, para ello, hace uso de la virtualización de los dispositivos reales, tomando como referencia la información de interés, e introduce el concepto de nodo lógico, pieza fundamental del modelo de datos.

La información es modelada de la siguiente manera:

- Descompone el dispositivo real (Physical Device), en dispositivos lógicos (Logical Device).
- Descompone los dispositivos lógicos, en nodos lógicos, objeto de datos y sus atributos.

Modelo de datos

Nota: Fuente (IEC-61850-1, 2013)

El "dispositivo lógico", es el primer nivel de descomposición de las funciones, que normalmente agrupan funciones de control, protección y monitoreo, entre otros. Aloja el punto de acceso, para la comunicación y los servicios. Y permite modelar a los IEDs de forma multifuncional, sin recurrir a especificar otros dispositivos físicos.

El estándar IEC 61850, descompone las funciones de aplicación, en entidades más pequeñas e indivisibles, y las denomina nodos lógicos (LN), estas entidades contienen la información a ser intercambiada y representan de forma virtual los objetos físicos, en sus propiedades y comportamiento, y las funciones del sistema.

El nodo lógico tiene las siguientes características:

- Están agrupadas según el área de aplicación común.
- Tienen una descripción corta según su funcionalidad.
- Aplican la norma IEEE para las funciones de protección.
- Aplican el estándar IEC para los símbolos alfanuméricos o gráficos.

Concepto de nodo y enlace lógico

Nota: Fuente (IEC-61850-5, 2013)

F: Función (Function).

LN: Nodo lógico (Logical node).

LC: Conexión lógica (Logical connection).

PD: Dispositivo físico (Physical device).

PC: Conexión física (Physical connection).

El modelamiento de la subestación, se realiza con los nodos lógicos que define el estándar para funciones de control, protección, medida, monitoreo, etc. En la siguiente figura se muestra un modelamiento de 3 funciones: Sincronismo, protección de distancia y sobrecorriente.

Figura 34

Modelamiento con nodos lógicos de tres funciones

Nota: Fuente (IEC-61850-5, 2013)

- 1. Computadora de estación.
- 2. Dispositivo de sincronización.
- 3. Dispositivo de protección que tiene función de protección y sobrecorriente.
- 4. Controlador de bahía.
- 5. Transformador de corriente.
- 6. Transformador de tensión.
- 7. Transformador de tensión en barra.

Los objetos del nodo lógico se agrupan en datos comunes que son compatibles

(CDC) de acuerdo a la información que contienen: Estado, medida, control, ajustes y descripción.

Figura 35

Categorías de información del nodo lógico

Nota: Fuente (IEC-61850-7-1, 2011)

El objeto de datos y sus atributos, representan la semántica del nodo lógico. Los atributos de los datos tienen las siguientes categorías.

- Estado (o valores medidos o ajustes).
- Sustitución.

• Configuración, descripción y extensión.

Figura 36

Nodo lógico de interruptor, su objeto de dato y sus atributos

Nota: Fuente (IEC-61850-7-1, 2011)

Servicios Abstractos (ACSI)

Para la interoperabilidad del sistema, el estándar IEC 61850 también define un conjunto de servicios de comunicación, para poder intercambiar la información en tiempo real. Estos servicios de comunicación definidos, son independientes al medio y protocolo de comunicación.

Los servicios, son definidos como servicios abstractos, pues solo describen las acciones que se requieren en el IED emisor y el IED receptor, cuando haya una solicitud del servicio. La definición abstracta de los servicios de comunicación se encuentra en la parte 7-2 del estándar.

Proporciona diferentes servicios según su función y naturaleza.

- Autodescripción del dispositivo.
- Intercambio de información de estado rápido y confiable de par en par.
- Reportes de conjunto de datos.

- Registro y recuperación de conjunto de datos.
- Sustitución.
- Manejo y ajuste de parámetros.
- Transmisión de Sampled Values.
- Sincronización de tiempo.
- Transferencia de ficheros.
- Control de dispositivos.
- Configuración.

Extracto de servicio de un interruptor

Nota: Fuente (IEC-61850-7-1, 2011)

Estos objetos y servicios abstractos, son mapeados a protocolos y perfiles de comunicación específicos de acuerdo a las partes 8 y 9.

Logical Nodes for hydro Logical Nodes for wind Logical Nodes for DER Logical Nodes for substations Applications (ACSI, Abstract Communication Service Interface) SCSM 2 SCSM 3 SCSM 4 (Future) IEC 61850-8-1 IEC 61400-25 SCSM - Specific commu-SCSM 1 nication service mapping IEC 61850-8-1 Web services /HTTP MMS ISO-Layer 7: Application and IEC 61850-9-2 TCP/IP ISO-Layer 3..6 OOSE/SV Ethernet ISO-Layer 2: Link 1 GB 100 MB 1 GB ISO-Layer 1: Physical Wireless Fiber optic Fiber optic

Relación de servicios abstractos y protocolos

Los servicios utilizan dos modelos de comunicación:

- Cliente/Servidor, para servicios de control y obtener valores de dato, con característica de tiempo no crítico.
- Publicador y suscriptor (Punto a punto), principalmente para mensajes de multidifusión. Servicios de GOOSE y Sampled Values, con característica de tiempo crítico.

Figura 39

Nota: Fuente (IEC-61850-7-1, 2011)

Nota: Fuente (IEC-61850-1, 2013)

Mapeo a Protocolos

En la red de comunicación del sistema de automatización, se ejecutan los servicios definidos por el estándar IEC 61850, para este fin, específica que es necesario mapear la información que tiene el modelo datos y los servicios ya definidos, sobre protocolos de comunicación.

Con SCSM (Specific Communication Service Mapping), el estándar IEC 61850 establece la codificación, el formato y la transmisión de los mensajes a través de la red. Los mensajes contienen la información de los parámetros del servicio.

En IEC 61850-8-1, define el mapeo de los servicios para mensajes MMS (Manufacturing Message Specification), en TCP/IP y la capa de enlace.

En IEC 61850-8-1, define el mapeo para los mensajes GOOSE, y en IEC 61850-9-2 los mensajes Sampled Values, ambos directamente sobre la capa de enlace.

Figura 40

Mapeo en la red de comunicación

Nota: Fuente (IEC-61850-7-1, 2011)

IEC 61850-8-1 proporciona el detalle de las especificaciones, para implementar los servicios y la información de los objetos, que son definidos en 7-2, 7-3 y 7-4. Además, utiliza del ISO 9506, SNTP y otros protocolos de aplicación.

Tipos de mensajes:

Tipo 1: Mensajes rápidos orientado para la protección.

Tipo 1A: Disparos utilizados para la protección.

Tipo 2: Mensajes de velocidad media para control.

Tipo 3: Mensajes lentos para configuración y supervisión.

Tipo 4: Mensajes para envío de señales análogas.

Tipo 5: Mensaje de transferencia de ficheros.

Tipo 6: Mensaje de sincronización de tiempo.

Los mensajes tipos 1 y 1A son mapeados sobre en el mismo Ethernet.

Los mensajes tipo 2, 3, y 5 requieren servicios orientados a los mensajes, el estándar MMS cubre este requerimiento.

Figura 41

Perfiles y tipos de mensajes

⁽Type x) is the Message type and performance class defined in IEC 61850-5

IEC 811/11

Nota: Fuente (IEC-61850-8-1, 2011)

Configuración de IEDs

En IEC 61850-6, el estándar define el lenguaje SCL (System Configuration Description Language), basado en el lenguaje estándar XML (eXtended Markup Language). Este lenguaje contiene una gramática formal, que permite asociar los nodos lógicos de las funciones presentes en el sistema, la sintaxis que utiliza, hace posible realizar textos y frases a nivel de máquina, y la información contenida en ella puede ser interpretada por los distintos IEDs. Este lenguaje en su información, describe las capacidades de los

IEDs y sus detalles de configuración, así como también las características del sistema y su topología eléctrica, y las especificaciones de la red de comunicaciones.

La función principal de este formato, es poder intercambiar la descripción de las capacidades de los IEDs y la descripción del sistema, entre las diferentes herramientas de ingeniería que poseen los fabricantes.

El lenguaje SCL describe a la subestación, los IEDs y los parámetros de comunicaciones. Es utilizado por las herramientas del sistema y por las herramientas de los IEDs para generar los archivos SSD (System Specification Description), ICD (IED Capability Description), SCD (Substation Configuration Description), CID (Configured IED Description).

Figura 42

Concepto del SCL

Nota: Fuente (Elaboración propia)

d) Tipos de Mensajes Generados

Mensajes GOOSE

El mensaje GOOSE, definido en IEC 61850-8-1, se utiliza principalmente para transmitir datos binarios (como indicaciones, alarmas, disparos, mandos, etc.), la forma de transmitir este mensaje es el direccionamiento multidifusión.

El publicador, escribe el valor en el buffer local de envío y los suscriptores leen el valor del buffer local de recepción.

El buffer local de los suscriptores se actualiza automáticamente, por lo cual, un nuevo valor recibido del dato reemplaza al anterior.

La transmisión del mensaje es rápida y se desencadena por la ocurrencia del evento, para luego ser retransmitida en ciclos lentos, como "latidos del corazón" con una relación máxima de 1/s.

Cuando ocurre el evento, inmediatamente el mensaje GOOSE es transmitido con el nuevo valor del dato y reemplaza al anterior. Los tiempos de transmisión son:

T1: Primer intervalo de tiempo para la retransmisión del mensaje GOOSE.

T2: Segundo intervalo de tiempo.

T3: Tercer intervalo de tiempo.

T0: periodo de tiempo de retransmisión del evento en estado estacionario.

Figura 43

Tiempos de transmisión por eventos

Nota: Fuente (IEC-61850-8-1, 2011)

Mensajes Sampled Values

Los mensajes *Sampled Values*, definido en IEC 61850-9-2, es usado para transferir las señales de corriente y tensiones, ya digitalizadas de los transformadores de corrientes (TC) y tensiones (TT).

Estos mensajes son transportados sobre la Red de Proceso, hacia los IEDs del nivel de bahía.

Los TCs y TTs convencionales hacen uso de un equipo intermedio, llamado *Merging Unit*, que es un puente físico/digital, entre las señales análogas de corrientes y tensiones y la Red de Proceso. En IEC 61850-9-2 detalla cómo deben ser transmitidos los datos del Sampled Values, pero no especifica qué información, ni a qué frecuencia de muestreo.

El IEC 61850-9-2 light edition (LE), desarrollada el 2004, brinda una guía sobre qué información se transmite, en que frecuencia de muestreo, los requerimientos de tiempos de sincronización e interfaces físicas. Define 2 frecuencias de muestreo:

- 80 muestras por ciclo de la frecuencia nominal del sistema de potencia.

- 256 muestras por ciclo de la frecuencia nominal del sistema de potencia.

En sistemas que utilizan 50 Hz, se traduce en 4000 Hz y 12800 Hz; mientras que en los sistemas que utilizan 60 Hz, se traduce en 4800 Hz y 15360 Hz.

Mensajes MMS

El mensaje MMS utiliza el modelo de comunicación Cliente/Servidor para el intercambio de información (como reporte de eventos, medidas, etc.).

IEC 61850 8-1 especifica el mapeo de los objetos y servicios definidos para el MMS definido en ISO 9506. Es mapeado en la capa de aplicación del modelo OSI. El MMS hace uso de todos los servicios del modelo OSI, lo cual garantiza que los datos no se pierdan y sean confiables. Además, esto hace que la información transportada, tenga cierto retardo de tiempo, es decir los datos no son transmitidos ni recibidos de inmediato (tiempo no crítico).

Los mensajes MMS se usan para transmitir la información y el control de los datos de los procesos en tiempo real, entre los IEDs que se encuentran en la Red de Estación.

El mapeo de ACSI a MMS incluye el mapeo del objeto y el mapeo del servicio.

El MMS no es un protocolo de comunicación, ya que solo define los mensajes que tienen que ser transportados por una red no especifica, por lo que utiliza RFC1006 como la capa de interconexión entre TCP/IP y las otras capas del modelo OSI.

El MMS del Cliente puede acceder al MMS del servidor para funciones específicas para la lectura y escritura.

49

e) Sincronización del tiempo

Los IEDs de control, protección y medida deben estar sincronizados con el tiempo, bajo un reloj común, esto brinda una precisión mayor a la información que se obtiene, se procesa y se intercambia.

Según se explica a continuación, la señal del reloj para los IEDs lo proporcionan 2 fuentes:

Servicio de tiempo por satélite

Hace uso del sistema de posicionamiento global por satélite (GPS) proporcionando una alta precisión en frecuencia y una precisión en tiempo del orden de 1µs.

Servicio de tiempo por red

Hace uso del protocolo de tiempo de red (NTP) y que posee un algoritmo complejo de sincronización de tiempo, llegando a proporcionar una precisión del orden de 1ms.

Este servicio originó un protocolo de tiempo para una red simple (SNTP), versión simplificada del NTP, que es usada como protocolo de sincronización de tiempo en el estándar IEC 61850 para mensajes MMS.

En las soluciones actuales, estas dos fuentes funcionan en conjunto, siendo la señal de GPS la que brinda la información de tiempo del reloj y el NTP como servidor de tiempo en redes de comunicación basadas en *Ethernet*, para sincronizar los IEDs mediante SNTP y PTP (Protocolo de tiempo preciso).

Protocolo de tiempo preciso (PTP)

El estándar IEEE 1588 define el protocolo de tiempo preciso (PTP), para sincronizar, con alta precisión de tiempo del orden del 1µs, los IEDs que requieren procesar la información en tiempo real.

El PTP está basada en tecnología de redes de comunicación Ethernet y soporta mensajes tipo multidifusión.

Tabla 3

Método Sincronización	Distribución	Precisión
IRIG-B	Cobre	10µs - 1ms
PPS	Cobre	<1µs
NTP (SNTP)	Red Ethernet	1ms - 10ms
IEEE 1588 (PTP)	Red Ethernet	<1µs

Método de sincronización y sus precisiones

Nota: Adaptado de (CIGRE, 2013)

2.2 Marco Conceptual

El trabajo de suficiencia comprende, desarrollar el proceso de pruebas y evaluar el desempeño las funciones de protección de los relés de la subestación Valle Escondido, a fin de garantizar su confiabilidad, seguridad, selectividad y rapidez ante condiciones normales y de falla del sistema de potencia.

La subestación Valle Escondido está ubicada en la III región de Atacama (Chile),

provincia de Copiapó. Está compuesta principalmente por los siguientes elementos:

- 02 líneas de transmisión de 220 kV.
- 01 acople de 220 kV.
- 02 barras de 220 kV, una principal y la otra de transferencia.
- 01 transformador de potencia de 220/33 kV de 120 MVA.
- Celdas de media tensión de 33 kV.

En este trabajo se desarrolla las pruebas de las funciones de protección de los siguientes elementos:

- Transformador de potencia.
- Sistema diferencial de barras.
- Línea de transmisión.

Estos elementos poseen relés de protección con tecnología convencional y digital. Su configuración, los métodos de prueba y los equipos de comunicación con los que se integran, son distintos y con características particulares conforme al estándar IEC 61850. Los relés de protección con tecnología convencional, reciben las señales digitales y análogas TC/TT desde los equipos de patio, con cables de cobre. Solo se integran a una red, la Red de Estación, para transmitir mensajes GOOSE (entre equipos de nivel 1) y MMS. Para las pruebas de las funciones de protección, normalmente se utilizan un block de pruebas, que seccionan y aíslan, las entradas y salidas del relé con los circuitos de patio.

Los relés de protección con tecnología digital, se integran a dos redes. La primera es la Red de Proceso (nivel 0), de donde reciben las señales digitales y análogas TC/TT de los equipos de patio, en forma de mensajes GOOSE y *Sampled Values*, que son publicados por las *Merging Units*, conforme al estándar IEC 61850. La segunda es la Red de Estación, para transmitir mensajes GOOSE (entre equipos de nivel 1) y MMS. Para las pruebas de las funciones de protección, es necesario utilizar un equipo de pruebas que permita simular las *Merging Units*, así como a la que están suscritas, y poder publicar/suscribirse mensajes GOOSE y *Sampled Values* con la misma estructura datos.

Las funciones de protección de los relés, fueron configuradas de acuerdo al "Estudio de Coordinación y Ajustes de Protección" de la subestación.

2.2.1 Transformador de potencia

La protección del transformador es un relé SIEMENS modelo 7UT85, con tecnología digital, y se encuentra suscrita a un *Merging Unit* SIMENES modelo 6MU85.

Las siguientes funciones de protección están habilitadas y fueron probadas.

- Diferencial de transformador 87T, bloqueo por 2do y 5to armónico.
- Sobrecorriente entre fases 50/51.
- Sobrecorriente neutro 50N/51N.
- Sobrecorriente a tierra 51G.
- Falla de interruptor 50BF.
- Sincronismo 25.
2.2.2 Sistema diferencial de barras

La protección de la barra principal y de transferencia es un relé SIEMENS modelo 7SS85, con tecnología digital, y se encuentra suscrita a cuatro *Merging Units* SIEMENS modelo 6MU85, una por cada bahía.

Las siguientes funciones de protección están habilitadas y fueron probadas.

- Diferencial de barras 87B.
- Zona muerta por cada bahía.

2.2.3 Línea de transmisión

La protección de la línea de transmisión es un relé ABB modelo RED670, con tecnología convencional.

Las siguientes funciones de protección están habilitadas y fueron probadas.

- Diferencial de línea 87L.
- Distancia 21.
- Localización de falla.
- Sobrecorriente direccional a tierra 67N.
- Cierre sobre falla SOTF.
- Oscilación de potencia 68.
- Teleprotección, 85-21, 85-67N y WEI.
- Recierre 79.
- Falla de interruptor 50BF.

Capítulo III. Desarrollo del trabajo de investigación

3.1 Descripción del Proyecto

3.1.1 Antecedentes

La entidad AR Valle Escondido SpA desarrolló el proyecto de generación renovable "Parque Fotovoltaico Valle Escondido", construyendo una subestación elevadora de 220/33kV, llamada Valle Escondido, y un parque de celdas fotovoltaicas para una potencia máxima de generación de 105 MW.

Para la conexión de esta planta al sistema y se evacue la potencia generada, el proyecto también contempló el seccionamiento de la línea de transmisión existente de 220kV, que conecta la SE Cardones y la SE Rio Escondido, La potencia es evacuada por el tramo de la línea resultante que conecta la SE Valle Escondido y la SE Cardones.

Figura 44

Topología inicial, y actual después del seccionamiento

Nota: Fuente (Elaboración propia)

3.1.2 Descripción del trabajo de Suficiencia

La implementación del proyecto, implicó el trabajo de diferentes disciplinas profesionales, y una serie de etapas como: estudios eléctricos para la conexión, obras civiles, montaje de estructuras, montaje electromecánico, pruebas FAT y SAT de equipamiento primario y de los sistemas secundarios, etc.

Este trabajo de suficiencia, presenta el desarrollo del proceso de las pruebas SAT del sistema de protecciones, de forma específica, el de los relés de protección con tecnología digital, para garantizar su confiabilidad, seguridad, selectividad y sus tiempos de operación frente a condiciones normales o de falla del sistema de potencia.

3.1.3 Ubicación del Proyecto

La subestación Valle Escondido está ubicada en la III Región de Atacama (Chile), Comuna de Tierra Amarilla, Provincia de Copiapó, aproximadamente a 11km de la subestación Rio Escondido existente, y a una altitud de 1350 m.s.n.m.

Sus coordenadas según el sistema UTM, Datum WGS84 (Zona 19S) son:

- Este: 375191.4.
- Norte: 6922970.4.

Ubicación de la SE Valle Escondido

Nota: Fuente (Elaboración propia)

3.1.4 Características Generales del Proyecto

La planta fotovoltaica Valle Escondido, lo conforman la subestación elevadora Valle Escondido 220/33kV y el parque fotovoltaico.

La subestación elevadora Valle Escondido, tiene una topología en 220kV de barra simple con barra de transferencia y está conformada por:

- Celdas de media tensión de 33kV.
- Un transformador de servicios auxiliares 33kV/380-220 V de 300 kVA.
- Un reactor neutro (transformador Zigzag de 33kV) que limita la corriente residual del parque.
- Dos bancos capacitores, dos unidades, una de 20 MVAR y otra de 15 MVAR.
- Un transformador de potencia de 33/220kV de 120 MVA.
- Una línea de transmisión de 220kV, entre la SE Valle Escondido y la SE Cardones.
- Una línea de transmisión de 220kV, entre la SE Valle Escondido y la SE Rio Escondido.
- Un Acople de barras de 220kV.
- Una barra principal de 220kV.
- Una barra de transferencia de 220kV.

El parque fotovoltaico está conformado por:

- Paneles solares que poseen una salida DC, estos se conectan en serie y forman una cadena con una tensión de 1500 Vdc, y cada cadena es conectada de forma paralela a una caja de agrupamiento.
- Inversores de 1500 Vdc a 690 Vac, 24 unidades.
- Transformador elevador de 690V/33kV. 24 unidades.

Esquema simplificado de la planta fotovoltaica Valle Escondido

Nota: Fuente (Elaboración propia)

A continuación, se resumen las características de los principales equipos de la planta.

a) Equipamiento Primario

SE Valle Escondido 220/33Kv

Tabla 4

Datos de Transformadores de Corriente

Tensión	Transformador Corriente	Núcleo	Тіро	Diseño	Burden	Relación
220kV	Línea hacia	1	Medición	CI 0.2	5 VA	800/1 A
	SE Cardones	2	Medición	CI 0.2	5 VA	800/1 A
	(TCJ1)	3	Protección	5P20	15 VA	2000/1 A
		4	Protección	5P20	15 VA	800/1 A
		5	Protección	5P20	15 VA	800/1 A
		6	Protección	5P20	15 VA	800/1 A
		7	Protección	5P20	15 VA	800/1 A
	Línea hacia	1	Medición	CI 0.2	5 VA	500/1 A
	SE Rio Escondido	2	Medición	CI 0.2	5 VA	500/1 A
	(TCJ2)	3	Protección	5P20	15 VA	2000/1 A
		4	Protección	5P20	15 VA	500/1 A
		5	Protección	5P20	15 VA	500/1 A
		6	Protección	5P20	15 VA	500/1 A
		7	Protección	5P20	15 VA	500/1 A
	Acople	1	Medición	CI 0.2	5 VA	800/1 A
	(TCJR)	2	Protección	5P20	15 VA	2000/1 A
		3	Protección	5P20	15 VA	800/1 A
	Transformador	1	Medición	CI 0.2	5 VA	400/1 A
	N°1	2	Medición	CI 0.2	5 VA	400/1 A
	(TCJT1-1)	3	Protección	5P20	15 VA	2000/1 A
		4	Protección	5P20	15 VA	400/1 A
		5	Protección	5P20	15 VA	400/1 A
		6	Protección	5P20	15 VA	400/1 A
		7	Protección	5P20	15 VA	400/1 A
	Transformador	1	Protección	5P20	20 VA	500/1 A
	(TCJT1N)	2	Protección	5P20	20 VA	500/1 A
33kV	Celda	1	Medición	CI 0.2	5 VA	2500/1 A
	Incoming	2	Protección	5P20	15 VA	2500/1 A
	(TCF11-2)	3	Protección	5P20	15 VA	2500/1 A
		4	Protección	PX	450V	2500/1 A
		5	Protección	PX	450V	2500/1 A

Tensión	Transformador Tensión	Núcleo	Тіро	Diseño	Burden	Relación
220kV	Línea hacia SE Cardones (TPJ1)	1	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
	(1101)	2	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		3	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		4	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
	Línea hacia SE Rio Escondido (TPJ2)	1	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
	(,	2	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		3	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		4	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
	Transformador N°1 (TPJT1-1)	1	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		2	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		3	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		4	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
	Barra Principal (TPJB)	1	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		2	Protección	3P	50 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		3	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		4	Medición	CI 0.2	5 VA	$\frac{230kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
33kV	Celda Incoming (TPFT1)	1	Medición	CI 0.2	10 VA	$\frac{33kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
	()	2	Protección	3P	10 VA	$\frac{33kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
	Barra (TPJB)	1	Medición	CI 0.5	10 VA	$\frac{33kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$
		2	Protección	3P	10 VA	$\frac{33kV}{\sqrt{3}}/\frac{115V}{\sqrt{3}}$

Datos de Transformadores de Tensión

Datos de Transformador de Potencia 220/33 kV

Descripción		Unidad	Valor
Fabricante			ABB
Тіро			Trifásico
Norma aplicable			IEC 60076
Número de devanados			2
Potencia nominal		MVA	85/120
Tipo de refrigeración			ONAN/ONAF
Frecuencia		Hz	50
Tensión nominal HV (Estrella)		kV	220±10x1.5%
Tensión nominal LV (Delta)		kV	33
Grupo de conexión			YNd1
Conexión del neutro HV			Sólido a tierra
Impedancia a 75ºC. Potencia base 120MVA (TAP 11)		%	12.85
Impedancia secuencia 0 a 75ºC. Potencia base 120MVA (TAP 11)		%	12.35
Sobretensión temporal a frecuencia industrial	HV	kV	460
11=60 s	Ν	kV	70
	LV	kV	70
Sobretensión transitorio tipo rayo (BIL)	HV	kVp	1050
11=1.2 μs, 12=50 μs	Ν	kVp	170
	LV	kVp	170

Nota: Fuente (Elaboración propia)

Tabla 7

Datos de Transformador Zigzag

Descripción	Unidad	Valor
Fabricante		SCHAFFNER
Conexión		ZIG-ZAG
Norma aplicable		IEC 60076
Potencia nominal	kVA	1200
Tipo de refrigeración		ONAN
Frecuencia	Hz	50
Tensión primaria	kV	33
Conexión del neutro		Sólido a tierra
Corriente permanente en fase	А	20.99
Corriente de falla en neutro	А	750
Corriente de falla en fase	А	250
Tiempo de falla	S	10
Impedancia secuencia 0 (75ºC). Potencia base 1200kVA	%	8.4
Sobretensión temporal a frecuencia industrial	kV	70
Sobretensión transitorio tipo rayo (BIL)	kVp	170

Datos de Transformador de Servicios Auxiliares

Descripción	Unidad	Valor	
Fabricante			SCHAFFNER
Тіро			Trifásico
Norma aplicable			IEC 60076
Número de devanados			2
Potencia nominal		kVA	300
Tipo de refrigeración			ONAN
Frecuencia		Hz	50
Tensión nominal HV (Delta)		kV	33±2x2.5%
Tensión nominal LV (Estrella)		V	400-231
Grupo de conexión			Dyn11
Conexión del neutro HV			Sólido a tierra
Impedancia (75ºC). Potencia base 300 kVA		%	3.98
Impedancia secuencia 0 (75ºC). Potencia base 300 kVA		%	3
Sobretensión temporal a frecuencia industrial	HV	kV	70
Sobretensión transitorio tipo rayo (BIL)	HV	kVp	170

Nota: Fuente (Elaboración propia)

Tabla 9

Datos de Banco Capacitadores

Descripción	Unidad	Valor
Fabricante		ABB
Norma aplicable		IEC 60871-1
Frecuencia	Hz	50
Tensión nominal	kV	33
Por paso		
Capacitor		
Capacitancia por fase	μF	13.73
Potencia unitaria	kVAR	536.33
Tensión por capacitor	kV	11.15kV
Cantidad	Unidad	12
Potencia total	kVAR	6436
Inductancia serie		
Tensión	kV	33
Inductancia por fase	mH	44.25
Potencia por fase	kVAR	128.74
Total, de potencia por paso	MVAR	5

Parque fotovoltaico

Tabla 10

Datos de Transformador de Bloque 33/0.690 kV

Descripción		Unidad	Valor
Fabricante			TELAWNE POWER
Тіро			Trifásico
Norma aplicable			IEC 60076
Número de devanados			2
Potencia nominal		kVA	4656
Tipo de refrigeración			ONAN
Frecuencia		Hz	50
Tensión nominal HV (Delta)		kV	33±2x2.5%
Tensión nominal LV (Estrella)		V	690
Grupo de conexión			Dy11
Conexión del neutro HV			Aislado
Impedancia (75ºC). Potencia base 4656 kVA		%	7
Impedancia secuencia 0 (75ºC). Potencia base 4656 kVA		%	5.95
Sobretensión temporal a frecuencia industrial	HV	kV	70
Sobretensión transitorio tipo rayo (BIL)	HV	kVp	170

Nota: Fuente (Elaboración propia)

Tabla 11

Datos de Inversores DC/AC

Descripción	Unidad	Valor
Fabricante		ABB
Norma aplicable		IEC/ANSI
Modelo		PVS980-58
Frecuencia	Hz	50
Potencial nominal	MVA	5
Tensión de entrada DC	VDC	1500
Tensión de salida AC	VAC	690

b) Sistema de Servicios Auxiliares

Los SSAA de la subestación Valle Escondido, tiene una fuente de alimentación principal, desde el transformador de SSAA, y otra de respaldo, desde un grupo electrógeno de emergencia. La fuente principal alimenta la barra AC de cargas no esenciales y esenciales. Mientras que el grupo electrógeno solo a las esenciales, el accionamiento de cambio entre una fuente y otra, lo realiza un tablero con control de transferencia automática.

Las cargas DC son alimentadas desde dos cargadores de baterías con sus respectivos bancos.

Las cargas críticas AC, como los computadores de la sala de control y data center, son alimentados desde el UPS.

Figura 47

Esquema simplificado de SSAA de la SE Valle Escondido

c) Sistema de Protección

El sistema de protección de la subestación, con nivel de tensión 220kV, se muestra en la siguiente figura. Lo conforman, relés de protección marca ABB para las líneas de transmisión y marca SIEMENS para las otras bahías, *Merging Units* marca SIEMENS, *Switches* marca SIEMENS para la Red de Proceso y fuentes de tiempo (Antenas GPS).

Figura 48

Nota: Fuente (Elaboración propia)

Más adelante, se detalla las funciones que poseen cada relé de protección.

d) Sistema de Control

En la siguiente figura, se muestra el sistema de control, que tiene equipos que integran el nivel 2, donde se observa que lo conforman: 2 controladores de subestación (GWS 1 y 2), 2 estaciones de operación o HMI (OWS 1 y 2), 2 *Switches* de Red de Estación, un servidor SLRP (Sistema de Lectura Remota de Protecciones), una computadora de gestión y 2 routers para establecer el acceso, comunicación y envío de datos a los centros de control.

Figura 49

Sistema de Control de la SE Valle Escondido

3.2 Estudio de Coordinación y ajustes de protección

Para este trabajo, se considera el Estudio de Coordinación y Ajustes de Protección, desarrollado para la subestación Valle Escondido.

A continuación, se resumen los criterios de ajuste de las funciones de protección que consideró el estudio.

3.2.1 Líneas de transmisión

1. Función diferencial de línea (87L)

Disponible solo en la protección sistema 1, usa fibra óptica monomodo como medio de comunicación de los relés de cada extremo de la línea. La función 87L en cada relé, debe tener solo una corriente base (Ibase) común. Si los transformadores de corriente de los extremos son diferentes, se recomienda elegir el mayor de estos.

Los ajustes tomados en cuenta fueron:

- Umbral mínimo de corriente diferencial (Idmin), 20% Ibase.
- Fin de primera sección de la curva (EndSection1), 1.25 Ibase.
- Fin de segunda sección de la curva (EndSection2), 3 lbase.
- Pendiente de segunda sección (SlopeSection2), 40%.
- Pendiente de tercera sección (SlopeSection3), 80%.

Figura 50

Curva Característica de Función 87L

2. Función distancia (21/21N)

Proporciona el respaldo de la función 87L. La característica de las zonas es de tipo cuadrilateral.

Los ajustes tomados en cuenta fueron:

- Zona 1, cubre el 60% para el tramo Valle Cardones, y el 80% para el tramo Valle
 Rio Escondido de la reactancia de secuencia positiva de la línea. Tiempo de operación instantáneo (t=0).
- Zona 2, para el tramo Valle Cardones, considera el 100% de la reactancia de la línea y como respaldo ante fallas en la otra Subestación, se ajusta al 150% de la reactancia de la línea protegida con tiempo de operación 600ms. Para el tramo Valle Rio Escondido, cubre el 100% de la reactancia de la línea y el 70% de la reactancia del transformador 220/33kV de Rio Escondido, con tiempo de operación de 300ms Esta zona, para ambos casos, es utilizada para el esquema de teleprotección por sobre alcance permisivo POTT.
- Zona 3, el tramo Valle Cardones, considera el 100% de la reactancia de la línea y el 80% de la impedancia equivalente de los 3 transformadores de Cardones 220/110kV-75MVA.
- Zona 4, con direccionalidad hacia atrás, se utiliza para el bloqueo del esquema de teleprotección por extremo débil (WEI), se ajusta al 85% de la reactancia del transformador de Valle Escondido.

Característica de zonas para fases de la Función de Distancia

Nota: Fuente (Archivo de configuración ABB)

Figura 52

Característica de zonas para tierra de la Función de Distancia

Nota: Fuente (Archivo de configuración ABB)

3. Sobrecorriente direccional a tierra (67N)

Proporciona el respaldo de la función 21N, para fallas a tierra de alta impedancia, ajusta solo una curva IEC normal inversa, y prevé detectar fallas monofásicas con 50 ohm en toda la línea. Además, es utilizada para el esquema de teleprotección de comparación direccional 67NCD.

Figura 53

Característica de la Función 67N en tramo Valle-Cardones

Nota: Fuente (Estudios Eléctricos, 2021)

Figura 54

Característica de la Función 67N en tramo Valle-Rio Escondido

Nota: Fuente (Estudios Eléctricos, 2021)

4. Oscilación de potencia (68)

Esta función debe bloquear todas las zonas de la función de distancia, mientras se verifique que exista oscilación de potencia y sea detectada en su característica de operación.

5. Cierre sobre falla (SOTF)

La función se activa al momento de hacer un cierre manual del interruptor o cuando se produce una orden de cierre, y para determinar la presencia de la falla, usa el arranque por zona 2 y el arranque 87L. El tiempo de actuación es instantáneo (t=0).

6. Sobrecorriente no direccional de fase y tierra de emergencia (50 E, 51N E)

La pérdida de tensión o caída del MCB del circuito de tensión, desactiva las funciones principales 21 y 67N.

La falla de la fibra óptica, dedicada a la función 87L, ocasiona que se desactive la función.

Si se desactivan estas funciones en los relés de protección, la línea prácticamente se queda sin protección, ante esto, cada relé entra en modo emergencia. En este modo, se habilitan las funciones de sobrecorriente no direccional de fases y de tierra, con ajustes similares a las funciones principales.

7. Teleprotección (85)

Esta función complementa a la función 87L, que está solo habilitada en el sistema 1, para cubrir selectivamente el 100% de la línea.

- En el tramo Valle Cardones, se propone el esquema POTT con la lógica adicional de fuente débil en el extremo SE Valle Escondido, y el esquema de comparación dirección. Ambos no tienen retardo para su operación (t=0).
- En el tramo Valle Rio Escondido, se propone el esquema POTT y el esquema de comparación dirección. Ambos no tienen retardo para su operación (t=0).

Adicional a lo anterior, se implementó el esquema DDT, para el envío y recepción de las señales de operación 50BF etapa 2 y operación 87B, usando el canal de onda portadora y fibra óptica.

8. Recierre (79)

Solo se activa para fallas monofásicas, ante la operación de las funciones 87L, 21 zona 1 y esquemas de teleprotección POTT y 67NCD. Para las otras fallas se bloqueará, con un tiempo de reclamo de 60 s.

Tiempo muerto para recierre, en el tramo de línea Valle – Cardones es 700 ms y 600 ms para el tramo Valle – Rio Escondido.

9. Falla de interruptor (50BF)

El arranque de la función es interno y externo, con un tiempo de redisparo de T1=10ms y tiempo de disparo en etapa 2 de T2=200ms. Tiene los siguientes ajustes de corriente:

- Umbral de corriente de fases, igual al 85% del TC.
- Umbral de corriente de fases, igual al 20% del TC.

10. Sincronismo (25)

Condición de energización.

- Con tensión, barra/línea viva desde el 70% tensión nominal.
- Sin tensión, barra/línea muerta hasta 50% tensión nominal.
 Condición de Synchrocheck.
- Diferencia de tensión 0.1 p.u.
- Diferencia de frecuencia 0.2 Hz.
- Diferencia de ángulo 25°.

3.2.2 Transformador 220/33kV

1. Diferencial de transformador (87T)

El transformador tiene conexión delta en el lado de 33 kV, ante fallas monofásicas en este lado la función 87T no lo detectará. Estas fallas serán cubiertas con otras funciones.

Los ajustes tomados en cuenta fueron:

- Umbral mínimo de corriente diferencial (Threshold), 20% IObjeto.
- Primera intersección de la curva (Intersection 1 Irest), 0.67 IObjeto.
- Primera pendiente (Slope 1), 35%.
- Segunda intersección de la curva (Intersection 2 Irest), 2.5 IObjeto.
- Segunda pendiente (Slope 2), 80%.
- Bloqueo por inrush, mediante la detección del segundo armónico, 15%.
- Bloqueo por sobre flujo, mediante la detección del quinto armónico, 35%.

Figura 55

Curva Característica de Función 87T

Nota: Fuente (SIEMENS, 2021)

2. Sobrecorriente no direccional fases (50/51)

Se ajusta la función, por debajo de la curva de daño térmico del transformador y coordinando con las otras protecciones de sobrecorriente de aguas abajo, lado de 33 kV y el lado de 220 kV.

Para el lado de 220 kV se propone:

- Una curva IEC Normal inverso (51).
- Dos curvas de tiempo definido (50-1 y 50-2).

Estas funciones deben tener habilitado el bloqueo por corriente de inrush.

Figura 56

Característica de la Función 50/51

Nota: Fuente (Estudios Eléctricos, 2021)

3. Sobrecorriente residual (50N/51N/51G)

La función 50N/51N permite detectar fallas a tierra, mediante el cálculo de las corrientes de las fases. Mientras que el 51G, lo detecta directamente desde el TC del punto estrella del transformador. Se ajustó lo siguiente:

- Una curva 51N IEC Normal inverso.
- Un tiempo definido 50N.

 Un ajuste 51G con los mismos parámetros del 51N, pero teniendo en cuenta que la relación de TC es 500/1A.

Figura 57

Característica de la función 50N/51N

Nota: Fuente (Estudios Eléctricos, 2021)

4. Falla de interruptor (50BF)

El arranque de la función es interno y externo, con un tiempo de redisparo de T1=100 ms y tiempo de disparo en etapa 2 de T2=200 ms. Tiene los siguientes ajustes de corriente:

- Umbral de corriente de fases, igual al 120% de la máxima carga esperada (456 Aprim en 220 kV).
- Umbral de corriente de fases, igual al 20% del TC.
- 5. Sincronismo (25)

Es aplicado para cada interruptor.

Condición de energización.

- Con tensión, barra/línea viva desde el 70% tensión nominal.
- Sin tensión, barra/línea muerta hasta 50% tensión nominal.

Condición de Synchrocheck.

- Diferencia de tensión 0.1 p.u.
- Diferencia de frecuencia 0.2 Hz.
- Diferencia de ángulo 25°.

3.2.3 Acople 220kV

1. Falla de interruptor (50BF)

El arranque de la función es externo, con un tiempo de redisparo de T1=10 ms y tiempo de disparo en etapa 2 de T2=200 ms. Tiene los siguientes ajustes de corriente:

- Umbral de corriente de fases, igual al 120% de la máxima carga esperada (456 Aprim).
- Umbral de corriente de fases, igual al 10% del TC.

3.2.4 Barras 220 kV

1. Diferencial de barras (87B)

La subestación tiene dos barras, una principal y otra de transferencia, ambas barras son protegidas por la función diferencial de barras 87B que tiene los siguientes ajustes:

- Umbral de corriente diferencial (Threshold Idiff), se considera el 130% de la corriente máxima prevista por una bahía y menor del 80% de la corriente mínima de cortocircuito. La corriente máxima es 730 A de la bahía J1, y la corriente mínima de cortocircuito es 1.35 kA (falla monofásica con 50 ohm). Entonces el estudio lo ajusta a 1000 A = 0.5 lObjeto.
- Factor de estabilización (k), 0.6.

Curva característica de función 87B

Nota: Fuente (SIEMENS, 2021)

2. Zona muerta (End Fault)

La función cubre fallas ocurridas entre el interruptor abierto y TC, emitiendo la señal envío DDT, a las fuentes que aportan a la falla.

El ajuste propuesto para el umbral de corriente es el 25% del TC, por cada bahía.

3. Disparo externo (External Trip)

Esta función cuando recibe la señal de disparo de la función 50BF etapa 2 de una bahía, dispara la barra o barras correspondientes para aislar la bahía fallada, en un tiempo instantáneo.

A continuación, se muestra el resumen de las funciones de protección que están habilitadas por cada bahía.

Тіро	Tensión	Detalle	Característica	Sistema 1 RED670	Sistema 2 RED670
TC	220 kV	Fases	800/1A	√	✓
TP	220 kV	Fases	(230kV/√3) / (115V/√3)	√	√
		Barra	(230kV/√3) / (115V/√3)	\checkmark	\checkmark
Funciones	220 kV	87L	Diferencial de línea	√	✓
Protección		21/21N	Distancia	\checkmark	\checkmark
		SOTF	Cierre sobre falla	\checkmark	\checkmark
		68	Oscilación de potencia	\checkmark	\checkmark
		67N	Sobrecorriente direccional a tierra	\checkmark	\checkmark
		85-21	Teleprotección, esquema POTT	\checkmark	\checkmark
		85-67N	l eleproteccion, esquema comparación direccional	\checkmark	\checkmark
		WEI	Fuente débil	\checkmark	\checkmark
		50 (E)	Sobrecorriente de fases, emergencia	\checkmark	\checkmark
		51N (E)	Sobrecorriente a tierra, emergencia	\checkmark	\checkmark
		79	Recierre	\checkmark	\checkmark
		50BF	Falla de interruptor	\checkmark	\checkmark
		25	Sincronismo	\checkmark	\checkmark
		LF	Localizador de falla	\checkmark	\checkmark

Resumen de funciones de protección de la línea a SE Cardones

Nota: Fuente (Elaboración propia)

Tabla 13

Resumen de funciones de protección de las Barras 220 kV

Тіро	Tensión	Detalle	Característica	Sistema 1 7SS85
TC	220 kV	Fases	Línea a Cardones: 2000/1A	\checkmark
		Fases	Línea a Rio Escondido: 2000/1A	\checkmark
		Fases	Acople: 2000/1A	\checkmark
		Fases	Transformador N°1: 2000/1A	\checkmark
Funciones	220 kV	87B	Diferencial de barras	\checkmark
Protección		External	Operación externa	\checkmark

Тіро	Tensión	Detalle	Característica	Sistema 1 RED670	Sistema 2 RED670
TC	220 kV	Fases	500/1A	\checkmark	\checkmark
TP	220 kV	Fases	(230kV/√3) / (115V/√3)	\checkmark	\checkmark
		Barra	(230kV/√3) / (115V/√3)	\checkmark	\checkmark
Funciones	220 kV	87L	Diferencial de línea	\checkmark	\checkmark
Protección		21/21N	Distancia	\checkmark	\checkmark
		SOTF	Cierre sobre falla	\checkmark	\checkmark
		68	Oscilación de potencia	\checkmark	\checkmark
		67N	Sobrecorriente direccional a tierra	\checkmark	\checkmark
		85-21	Teleprotección, esquema POTT	\checkmark	\checkmark
		85-67N	Teleprotección, esquema comparación direccional	\checkmark	\checkmark
		50 (E)	Sobrecorriente de fases, emergencia	\checkmark	\checkmark
		51N (E)	Sobrecorriente a tierra, emergencia	\checkmark	\checkmark
		79	Recierre	\checkmark	\checkmark
		50BF	Falla de interruptor	\checkmark	\checkmark
		25	Sincronismo	\checkmark	\checkmark
		LF	Localizador de falla	\checkmark	\checkmark

Resumen de funciones de protección de la línea a SE Rio Escondido

Nota: Fuente (Elaboración propia)

Tabla 15

Resumen de funciones de protección del Acople 220 kV

Тіро	Tensión	Detalle	Característica	Sistema 1 7VK87
TC	220 kV	Fases	800/1 A	\checkmark
Funciones Protección	220 kV	50BF	Falla de interruptor	✓

Тіро	Tensión	Detalle	Característica	Sistema 1 7UT85	Sistema 2 7UT85
TC	220 kV	Fases	400/1A	\checkmark	√
		Neutro	500/1A	\checkmark	\checkmark
	33 kV	Fases	2500/1A	\checkmark	\checkmark
TP	220 kV	Fases	(230kV/√3) / (115V/√3)	\checkmark	\checkmark
		Barra	(230kV/√3) / (115V/√3)	\checkmark	\checkmark
	33 kV	Fases	(33kV/√3) / (115V/√3)	\checkmark	\checkmark
		Barra	(33kV/√3) / (115V/√3)	\checkmark	\checkmark
Funciones	220 y 33 kV	87T	Diferencial de transformador	\checkmark	\checkmark
Proteccion		Bloq 2H	Bloqueo por 2do armónico	\checkmark	\checkmark
		Bloq 5H	Bloqueo por 5to armónico	\checkmark	\checkmark
	220 kV	50/51	Sobrecorriente de fases	\checkmark	\checkmark
		50N/51N	Sobrecorriente neutro	\checkmark	\checkmark
		51G	Sobrecorriente tierra	\checkmark	\checkmark
		50BF	Falla de interruptor	\checkmark	\checkmark
		25	Sincronismo	\checkmark	\checkmark
	33 kV	50/51	Sobrecorriente de fases	\checkmark	\checkmark
		50N/51N	Sobrecorriente neutro	\checkmark	\checkmark
		50BF	Falla de interruptor	\checkmark	\checkmark
		25	Sincronismo	\checkmark	\checkmark

Resumen de funciones de protección del Transformador T1

Capítulo IV. Análisis y discusión de resultados

4.1 Proceso de Pruebas y Puesta en Servicio

4.1.1 Equipo de pruebas de inyección secundaria

El equipo de pruebas, que se utilizó para las pruebas secundarias de los relés de protección de una bahía tipo convencional y digital, es el modelo CMC 356 marca OMICRON, que es ampliamente usado.

Figura 59

Equipo de pruebas CMC 356

Nota: Fuente (OMICRON, 2022)

a) Datos técnicos

La CMC 356 posee fuentes de inyección secundaria, trifásicas controlables, dos de corriente y una de tensión, y una fuente de tensión monofásica, siendo todas independientes. Posee entradas binarias, que pueden activarse cuando detectan una diferencia de tensión DC o cuando detectan un circuito continuo con 0 Ω de resistencia, usada para captar señales digitales de arranques, disparos o alarmas. Posee también contactos de salida controlables, que sirven para simular señales rápidas, que requieren ciertas funciones de protección para poder operar.

Datos técnicos de fuentes de corriente

2 × 3 salidas de corriente ¹ (grupos A y B)				
Corrientes de salida CA de 6 fases (L-N) CA de 3 fases (L-N) CA de 2 fases (L-L) ^{2,3} CA de 1 fase (L-L) ^{2,3} CA monofásica (L-L-L) ^{2,3} CA bifásica (LL-LN) ² CA monófásica (LL-LN) ² CC (LL-LN) ²	6 × 0 32 A (Grupo A y B) 3 × 0 64 A (Grupo A y B en paralelo) 2 × 0 32 A (Grupo A y B) 1 × 0 64 A (Grupo A y B en paralelo) 1 × 0 32 A (Grupo A y B en serie) 2 × 0 64 A (Grupo A y B) 1 × 0 128 A (Grupo A y B en paralelo) 1 × 0 128 A (Grupo A y B en paralelo)			
	Típica	Garantizada		
Potencia de salida ⁴ CA de 6 fases (L-N) CA de 3 fases (L-N) CA de 2 fases (L-L) ^{2, 3} CA de 1 fase (L-L) ^{2, 3} CA monofásica (L-L-L) ^{2, 3} CA monofásica (LL-LN) ² CA monofásica (LL-LN) ² CC (LL-LN) ²	6 × 430 VA a 25 A 3 × 860 VA a 50 A 2 × 870 VA a 25 A 1 × 1740 VA a 50 A 1 × 1740 VA a 50 A 1 × 1740 VA a 25 A 2 × 500 VA a 40 A 1 × 1000 VA a 80 A 1 × 1400 W a ±80 A	6 × 250 W a 20 A 3 × 500 W a 40 A 2 × 550 W a 20 A 1 × 1100 W a 40 A 1 × 1100 W a 20 A 2 × 350 W a 40 A 1 × 700 W a 80 A 1 × 1000 W a ±80 A		
Exactitud ⁵				
R _{carga} ≤ 0,5 Ω	Error <0,05 % de rd. + 0,02 % de rg.	Error <0,15 % de rd. + 0,05 % de rg.		
Distorsión armónica (DAT+N) ^{6, 7}	0,05 %	<0,15 %		
Error de fase ⁶	0,05°	<0,2°		
Corriente de desplazamiento de CC	<3 mA	<10 mA		
Rango de frecuencias ^{8, 9}	Señales sinusoidales Armónicos/interarmónicos Señales transitorias	0 (CC) 1000 Hz 10 1000 Hz 0 (CC) 3100 Hz		
Resolución 1 mA, 2 mA (2 fases en paralelo),				

Nota: Fuente (OMICRON, 2022)

Figura 61

Datos técnicos de fuentes de tensión

4 salidas de tensión		
Tensiones de salida CA de 4 fases $(L-N)^1$ CA de 3 fases $(L-N)$ CA de 2 fases $(L-L)^2$ CA de 1 fase $(L-N)$ CA de 1 fase $(L-N)$ CA de 1 fase $(L-N)$	4 × 0 300 V 3 × 0 300 V 2 × 0 600 V 1 × 0 600 V 1 × 0 600 V 4 × 0 ±300 V	
	Típica	Garantizada
Potencia de salida ³ CA de 4 fases ⁴ CA de 3 fases ⁵ CA de 2 fases (L-L) CA de 1 fase (L-N) CA de 1 fase (L-L) CC (L-N)	4 × 75 VA a 100 300 V 3 × 100 VA a 100 300 V 2 × 138 VA a 200 600 V 1 × 200 VA a 100 300 V 1 × 275 VA a 200 600 V 1 × 420 W a 300 V _{CC}	4 × 50 VA a 85 300 V 3 × 85 VA a 85 300 V 2 × 125 VA a 200 600 V 1 × 150 VA a 75 300 V 1 × 250 VA a 200 600 V 1 × 360 W a 300 V _{CC}
Exactitud ⁶	Error <0,03 % de rd. + 0,01 % de rg.	Error <0,08 % de rd. + 0,02 % de rg.
Distorsión armónica (DAT+N) ^{7, 8}	0,015 %	<0,05 %
Error de fase ⁷	0,02°	<0,1°
Tensión de desplazamiento de CC	<20 mV	<100 mV
Rangos de tensión	Rango I: Rango II:	0 150 V 0 300 V
Rangos de frecuencia ^{9, 10}	Señales sinusoidales Armónicos/interarmónicos ¹¹ Señales transitorias	10 1000 Hz 10 3000 Hz 0 (CC) 3100 Hz
Resolución	Rango I: Rango II:	5 mV 10 mV
Protección contra cortocircuitos	Ilimitada para L-N	
Conexión	Zócalos de 4 mm; zócalo combinado de generador V _{L1} -V _{L3}	
Aislamiento	Aislamiento reforzado de la alimentación eléctrica y de todas las interfaces SELV	

Además, de las características mencionadas anteriormente, la CMC 356 posee la capacidad de enviar e intercambiar mensajes *Sampled Values* y GOOSE, de acuerdo al estándar IEC 61850, simulando ser una *Merging Unit* dentro de la Red de Proceso.

La conexión física a la Red de Proceso se realiza mediante su tarjeta de red NET-2 tipo RJ45.

Figura 62

Datos técnicos para envío y recepción de mensajes GOOSE

IEC 61850 GOOSE		
Simulación	Asignación de salidas binarias a atributos de datos en mensajes GOOSE publicados.	
	Número de salidas binarias virtuales: 360	
	Número de mensajes GOOSE por publicar: 128	
Suscripción	Asignación de atributos de datos de mensajes GOOSE suscritos a entradas binarias.	
	Número de salidas binarias virtuales: 360	
	Número de mensajes GOOSE por publicar: 128	
Rendimiento	Tipo 1A; Clase P2/3 (IEC 61850-5).	
	Tiempo de procesamiento (de aplicación a la red o viceversa): <1 ms	
Soporte de VLAN	Prioridad seleccionable y VLAN-ID	

Nota: Fuente (OMICRON, 2022)

Figura 63

Datos técnicos para envío mensajes Sampled Values

IEC 61850 Sampled Values (publicación)		
Especificación	De acuerdo con la "Implementation Guideline for Digital Interface to Instrument Transformers Using IEC 61850-9-2" del UCA International Users Group y según "IEC 61869-9 Instrument transformers – Part 9: Digital interface for instrument transformers"	
Frecuencia de muestreo	 4000 Hz (80 SPC @ 50 Hz) - 1 muestra por paquete 	
	 4800 Hz (80 SPC @ 60 Hz) - 1 muestra por paquete 	
	 4800Hz - 2 muestras por paquete 	
	5760 Hz - 1 muestra por paquete	
	 12800 Hz (256 SPC @ 50 Hz) - 8 muestras por paquete 	
	14400Hz - 6 muestras por paquete	
	 15360 Hz (256 SPC @ 60 Hz) - 8 muestras por paquete 	
Sincronización	El atributo Synchronizer (smpSynch) puede seguir el estado de sincronización del equipo de pruebas o ajustarse a valores distintos.	
	El número de muestras (smpCnt) cero se alinea con la parte máxima del segundo (IRIG-B y PPS).	
	Para los datos de exactitud \rightarrow sección "Sincronización horaria absoluta" en la página 6.	
Soporte de VLAN	Prioridad seleccionable y VLAN-ID	
Número máximo de flujos de SV	Test Universe: 3	
	RelaySimTest: 4	

Nota: Fuente (OMICRON, 2022)

Datos técnicos de tarjeta de comunicación

Nota: Fuente (OMICRON, 2022)

La CMC 356, a través de su tarjeta de comunicación puede sincronizarse por PTP

o por el método de IRIG-B.

Figura 65

Datos técnicos de sincronización de tiempo

Característica	Especificación	
IEEE 1588-2008 (v2)		
Offset (UTC)	Error <±1 µs	
Rango de estiramiento	±100ppm (±0,01%)	
Perfiles admitidos	IEEE C37.238-2011 (Perfil de potencia: v1)	
	IEEE C37.238-2017 (Perfil de potencia: v2)	
	IEC/IEEE 61850-9-3-2016: Redes y sistemas de comunicación para la automatización de compañías eléctricas – Parte 9-3: Perfil de protocolo de tiempo de precisión para la automatización de compañías eléctricas (perfil de compañía eléctrica)	
Fuentes admitidas	OMICRON CMGPS 588, OTMC 100 o cualquier fuente de protocolo de tiempo de precisión (reloj Grandmaster PTP)	
IRIG-B		
Offset (UTC)	Error <±1 µs	
Rango de estiramiento	±100ppm (±0,01%)	
Fuentes admitidas	Fuentes de IRIG-B de terceros con accesorio OMICRON CMIRIG-B	

b) Software de gestión

Para controlar la CMC 356, se usa el software de gestión Test Universe, que tiene módulos de pruebas definidos para probar las diferentes funciones de protección que tienen los relés.

Figura 66

Software de gestión de la CMC356

Nota: Fuente (OMICRON, 2022)

Figura 67

Módulos de prueba de la CMC 356

Nota: Fuente (OMICRON, 2022)

4.1.2 Metodología de las pruebas a los relés de protección

a) Protección de bahía convencional

Figura 68

Protección de bahía convencional

Nota: Fuente (Elaboración propia)

- De forma general, se verifica que los IEDs no presenten un defecto de hardware y se encuentren operativos.
- Se verifica que sus cables de control y de alimentación, se encuentren conectados a bornes del gabinete y de acuerdo a los planos eléctricos.
- El IED debe estar configurado, y con los ajustes ingresados de acuerdo al Estudio de Coordinación y Ajustes de Protección, en última versión.
- 4. Se procede a conectar los cables de pruebas, al block de pruebas o a los bornes que llevan las señales de corriente y tensión al IED bajo prueba. Y se recoge la señal a evaluar desde las salidas binarias del IED, pudiendo ser disparos y arranques de las funciones de protección.

Figura 69

Esquema de prueba convencional con block de prueba

Esquema de prueba convencional con bornes

Nota: Fuente (Elaboración propia)

5. Por último, se da inicio con la inyección de fallas simuladas con el equipo de pruebas CMC 356, para verificar los umbrales de arranque, curvas características, tiempos y lógicas de operación de las funciones de protección que el IED tiene habilitadas.

b) Protección de bahía digital

Figura 71

Protección de bahía digital

- De forma general, se verifica que los IEDs y *Merging Units* no presenten un defecto de hardware y se encuentren operativos.
- Se verifica que su alimentación esté conectada a bornes de alimentación DC. Y sus cables de comunicación estén conectados a la Red de Proceso, de acuerdo a la arquitectura de control.
- El IED debe estar configurado y con los ajustes ingresados de acuerdo al Estudio de Coordinación y Ajustes de Protección en última versión. Las señales GOOSE y Sampled Values también ya implementados.

- 4. Se debe implementar las redes de área local virtuales (VLAN) en los Switches, cuyo fin es optimizar y segmentar el ancho de banda de la Red de Proceso. Y probar la conectividad entre los IEDs que pertenecen esta red.
- Se debe verificar que todos los IEDs y los *Switches*, que pertenecen a la Red de Proceso, deben estar sincronizados con el protocolo de tiempo PTP.
- 6. Si el equipo de pruebas soporta el estándar IEC 6185, mensajes Sampled Values y GOOSE, se procede a conectar su cable de comunicación a la Red de Proceso. Se envía las señales Sampled Values de corriente y tensión al IED bajo prueba, y se recoge la señal GOOSE a evaluar que emite el IED, pudiendo ser disparos y arrangues de las funciones de protección.

Esquema de prueba digital

Nota: Fuente (Elaboración propia)

En esta condición de prueba, se trabaja al 100% con simulaciones de datos (*Sampled Values* y GOOSE) que requiere procesar el IED, es decir, no existe ningún riesgo de energía eléctrica debido a una inyección secundaria de tensión y corriente.

En la Tabla 17, se muestran las señales GOOSE que comúnmente se evalúan.
Señales GOOSE a evaluar

Tipo de señal	Señal	Publicador (Envía)	Suscriptor (Recibe)
GOOSE	Disparos de función de protección	Protección	Merging Unit
	Arranques de función de protección	Protección	Merging Unit
	Alarmas	Protección	Merging Unit
	Comando de apertura	Protección	Merging Unit
	Comando de cierre	Protección	Merging Unit
	Posiciones de equipamiento primario	Merging Unit	Protección
	Alarmas de equipamiento primario	Merging Unit	Protección

Nota: Fuente (Elaboración propia)

En la Tabla 18, se muestran las señales Sampled Values que comúnmente se

evalúan.

Tabla 18

Señales Sampled Values a evaluar

Tipo de señal	Señal	Publicador (Envía)	Suscriptor (Recibe)
Sampled Values	Corrientes de fases	Merging Unit	Protección
	Corriente de neutro	Merging Unit	Protección
	Tensiones de línea	Merging Unit	Protección
	Tensiones de barra	Merging Unit	Protección

Nota: Fuente (Elaboración propia)

Los IEDs, bajo el estándar IEC 61850 edición 2, para probarlos tienen 2 modos de

funcionamiento:

Modo ON/Test, es controlado mediante el nodo lógico LLN0 y el objeto de dato
 Mod. Afecta solo a las señales GOOSE, fijando a cada señal publicada, el bit de calidad q.Test=True. Mientras que las señales GOOSE que recibe con q.Test=False, no es procesada por el IED que está en modo Test; pero si las señales tuvieran el bit q.Test=True, si sería procesado.

IED en modo ON

Nota: Fuente (CIGRE, 2013)

Figura 74

IED en modo Test

Nota: Fuente (CIGRE, 2013)

Modo Simulación, es controlado mediante el nodo lógico LPHD. Afecta a las señales GOOSE y Sampled Values, fijando a cada señal publicada una etiqueta de Sim=True. Mientras que las señales GOOSE y Sampled Values que recibe con Sim=False, no es procesada por el IED que está en modo simulación; pero si las señales tuvieran el Sim=True, si sería procesado.

IED en modo Simulación

Nota: Fuente (CIGRE, 2013)

7. Si el equipo de pruebas no soporta el estándar IEC 61850. Se procede a conectar los cables de pruebas, al block de pruebas o a los bornes que llevan las señales de corriente y tensión a las *Merging Units* que están asociadas al IED bajo prueba. Y se recoge la señal a evaluar desde las salidas físicas de la *Merging Unit*, pudiendo ser disparos y arranques de las funciones de protección que son emitidas, con mensajes GOOSE, por el IED bajo prueba.

Figura 76

Esquema de prueba digital, con equipo sin protocolo IEC 61850

Nota: Fuente (Elaboración propia)

8. Por último, en ambos casos, se da inicio con la inyección de fallas simuladas con el equipo de pruebas CMC 356, para verificar los umbrales de arranque, curvas

características, tiempos y lógicas de operación de las funciones de protección que el IED tiene habilitadas.

4.2 Resultado de las pruebas

Antes del inicio de las pruebas, se implementó las VLANs en los *Switches* de Red de Proceso, y se verificó la conectividad y la sincronización de la red, de los relés de protección y de las *Merging Units*.

Figura 77

VLANs de Switch d	e Red de Proceso
-------------------	------------------

SIEMENS			RUGGED	COM ROS
SE VALLE ESCONDIDO				Static VLANs
Log out				
Administration Configure IP Interfaces Configure IP Gateways Configure IP Services	InsertRecord	VID	VLAN Name	Forbidden Ports
Configure Data Storage		2	SV 220kV SV 33kV	None
Configure Passwords		4	SV 220kV_87B	None
Configure SNMP		5	GOOSE 220kV	None
Configure MMS Configure Security Server		6	GOOSE 33kV	None
Configure Syslog Ethernet Ports Ethernet Ports Ethernet Stats Link Agregation Network Redundancy Virtual LANs Configure Static VLAN Parameters Configure Port VLAN Parameters View VLAN Summary Network Access Control Classes of Service Multicats Filtering MAC Address Tables Layer 3 Switching Network Discovery Diagnostics		Ľ	0003E 220KV_01B	Noie

Nota: Fuente (Elaboración propia)

4.2.1 Bahía digital de Transformador T1

La bahía digital de transformador (Figura 78), está compuesta de manera simplificada, por un IED de protección en el nivel 1 (7UT85) y una *Merging Unit* en el nivel 0 (6MU85). Donde, la *Merging Unit* está conectada directamente a los núcleos secundarios de los transformadores de corriente y tensión, y al circuito de control de los interruptores asociados.

El relé de protección (7UT85) accede a la misma información que la *Merging Unit*, ya digitalizado por esta, en forma de mensajes GOOSE y *Sampled Values* a través de la Red de Proceso.

Diagrama Unifilar de Protección del Transformador T1

Nota: Fuente (Elaboración propia)

Las pruebas a los relés de protección de esta bahía, se realizaron siguiendo la metodología para una bahía digital, y se usó la CMC 356 que tenía la capacidad de enviar y recibir mensajes de GOOSE y *Sampled Values* en la Red de Proceso.

Se probó bajo el esquema digital de la Figura 79, donde el relé de protección se colocó en modo test (Figura 80) y en modo simulación (Figura 81).

Figura 79

Esquema de prueba implementado para la protección del Transformador

Nota: Fuente (Elaboración propia)

Figura 80

Relé de protección en modo test

Relative time	Indication	Value		Quality		
(All)	 (All) 	•	(AII)	-	(AII)	-
00:00:00:00.02	5 GOOSE_TX Comandos:Behavior		test/80 blocked		good (process)	
00:00:00:00.02	5 GOOSE_TX Protecciones:Behavior		test/BO blocked		good (process)	
00:00:00:00.02	4 Alarm handling:Behavior		test/BO blocked		good (process)	
00:00:00:00.02	4 Time managem.:Behavior		test/BO blocked		good (process)	
00:00:00:00.02	0 Com. supervision:SV supervision:Group Indicat.:Behavior		test/BO blocked		good (process)	
00:00:00:00.02	0 Com. supervision:GOOSE supervis.:Group Indicat.:Behavior		test/BO blocked		good (process)	
00:00:00:00.01	9 Time sync.:Behavior		test/BO blocked		good (process)	
00:00:00:00.01	8 IN 220kV:74TC sup.2BI 1:Behavior		test/BO blocked		good (process)	
00:00:00:00.01	7 IN 220kV:25 Synchronization:Synchrocheck 1:Behavior		test/BO blocked		good (process)	
00:00:00:00.01	6 IN 33kV:74TC sup.2BI 1:Behavior		test/BO blocked		good (process)	
00:00:00:00.01	5 IN 33kV:25 Synchronization:Synchrocheck 1:Behavior		test/BO blocked		good (process)	
00:00:00:00.01	ide 220kV:Mechanical Trip:Stage 1:Behavior test/BO blocked			good (process)		
00:00:00:00.01	1 Side 220kV:46:Definite-T 1:Behavior	ide 220kV:46:Definite-T1:Behavior			good (process)	
00:00:00:00.01	0 Side 33kV:50N/51N Calculated:Definite-T1:Behavior	de 33kV:50N/51N Calculated:Definite-T1:Behavior test/BO bl			good (process)	
00:00:00:00.01	ide 220kV Neutro:50G/51G:Definite-T1:Behavior test/BO		test/BO blocked		good (process)	
00:00:00:00.00	8 Side 33kV:50/51:Definite-T1:Behavior	test/BO blocked			good (process)	
00:00:00:00.00	8 Side 33kV:50/51:Inverse-T1:Behavior		test/BO blocked		good (process)	
00:00:00:00.00	7 Transformer 87T:87T diff. prot. 1:I-DIFF:Behavior	ansformer 87T:87T diff. prot. 1:I-DIFF:Behavior test/BO blocked				
00:00:00:00.00	7 Side 33kV:General:Behavior		test/BO blocked		good (process)	
00:00:00:00	7 Side 220kV:General:Behavior		test/BO blocked		good (process)	
00:00:00:00.00	7 IN 220kV:50BF Ad.CBF 1:Behavior		test/BO blocked		good (process)	
00:00:00:00.00	7 IN 33kV:50BF Ad.CBF 1:Behavior		test/BO blocked		good (process)	
00:00:00:00.00	6 Side 220kV Neutro:General:Behavior		test/BO blocked		good (process)	
00:00:00:00.00	6 Transformer 87T:General:Behavior		test/BO blocked		good (process)	
00:00:00:00.00	5 Side 220kV:Inrush detect.:Behavior		test/BO blocked		good (process)	
00:00:00:00.00	0 Comandos:IED Test		OPR+ on		good (process)	
00:00:00:00.00	0 General:>Test mode on		on		good (process)	

Relé de protección en modo simulación

Relativ	/e time	Indication	Value		Quality		
(All)	-	(AII)	-	(All)	-	(AJI)	-
00:00:00:00.106		Com. supervision:SV supervision:Group Indicat.:Group indication		on		good (proces	5)
	00:00:00:00.001	Device:GOOSE/SV sim.mode		true		good (proces	s)
00:00:00:00:00		Device:IED Simulation Active		on		good (proces	5)

Nota: Fuente (Elaboración propia)

Antes de dar inicio a las pruebas, se comprueba que la CMC 356 se encuentra sincronizada por el protocolo de tiempo PTP (Figura 82), a través de la Red de Proceso que pertenece el relé de protección bajo prueba.

Figura 82

Fuente de tiempo para la CMC 356

ral Analog Outputs Binary / Analog Inputs Binary Outputs DC Analog I	nputs Time Source		
<not used=""></not>	PTP Settings		
Trigger via GPS using a CMGPS Trigger via GPS using a CMGPS 588	Profile:	Utility -	
Trigger via PTPv2 Trigger via IRIG-B using a CMIRIG-B	Domain:	26	
IRIG-B Generator Master using a CMIRIG-B IRIG-B Generator following PPS using a CMIRIG-B	Enable VLAN:		
IRIG-B Generator following GPS using a CMIRIG-B and a CMGPS IRIG-B Generator following GPS using a CMIRIG-B and a CMGPS 588	VLAN ID:	0	
IRIG-B Generator following PTPv2 using a CMIRIG-B Time-stamping via NTP using the NTP Client in CMC	VLAN priority:	1	
E triggers are derived from a PTPv2 time source that is connected to the hernet portETH1 or ETH2.			

Nota: Fuente (Reporte de pruebas)

Se importó el archivo SCL de la configuración de los IEDs, y se seleccionó los *Sampled Values* (Figura 83) que se quieren simular y transmitir. Se transmitieron los *Sampled Values* elegidos desde la CMC 356 (Figura 84), para todas las señales de corriente y tensión en el lado de 220 kV y 33 kV, de acuerdo a cada función de protección a probar.

Configuración de Sampled Values suscritos por el relé de protección

ion <u>E</u> dit Insert <u>V</u> iew <u>O</u> ption <u>T</u> ools <u>H</u> elp							
Devices Votes Substation Retwork + GOOSE	S S	MVReports and logs Arotocol mapping					
		·					
	5/1						
ice	CDC	Description		PRO	STAT	Destination	Description
	1 🖃		-	-			
IEC station 1							_
SV Transformador JT1						*	
MUS1_JT1/Mod3_MU2/LLN0/PhsMeas3 (16/100)				1		•	
→ MUS1_JT1/PowS_MeasPointl3ph1/TCTR1/AmpSv	SAV	PowS_TC 220kV/CT 1/Sampled val. current					
→ MUS1_JT1/PowS_MeasPointl3ph1/TCTR1/AmpSv	SAV	PowS_TC 220kV/CT 1/Sampled val. current				F87TS1_JT1/PowS_MeasPointl3ph1/TCTR1	PowS_TC 220kV/CT 1
→ MUS1_JT1/PowS_MeasPointl3ph1/TCTR2/AmpSv	SAV	PowS_TC 220kV/CT 1/Sampled val. current					
→ MUS1_JT1/PowS_MeasPointl3ph1/TCTR2/AmpSv	SAV	PowS_TC 220kV/CT 1/Sampled val. current				F87TS1_JT1/PowS_MeasPointl3ph1/TCTR2	PowS_TC 220kV/CT 1
→ MUS1_JT1/PowS_MeasPointl3ph1/TCTR3/AmpSv	SAV	PowS_TC 220kV/CT 1/Sampled val. current					
→ MUS1_JT1/PowS_MeasPointl3ph1/TCTR3/AmpSv	SAV	PowS_TC 220kV/CT 1/Sampled val. current				F87TS1_JT1/PowS_MeasPointl3ph1/TCTR3	PowS_TC 220kV/CT 1
→ MUS1_JT1/PowS_MeasPointI1ph1/TCTR1/AmpSv	SAV	PowS_TC Neutro 220kV/CT 1/Sampled val. current					
	SAV	PowS_TC Neutro 220kV/CT 1/Sampled val. current				F87TS1_JT1/PowS_MeasPointl1ph1/TCTR1	PowS_TC Neutro 220k
→ MUS1_JT1/PowS_MeasPointV3ph1/TVTR1/VolSv	SAV	PowS_TP 220kV/VT 1/Sampled val. voltage					
→ MUS1_JT1/PowS_MeasPointV3ph1/TVTR1/VolSv	SAV	PowS_TP 220kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV3ph1/TVTR1	PowS_TP 220kV/VT 1
→ MUS1_JT1/PowS_MeasPointV3ph1/TVTR2/VolSv	SAV	PowS_TP 220kV/VT 1/Sampled val. voltage					
	SAV	PowS_TP 220kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV3ph1/TVTR2	PowS_TP 220kV/VT 1
→ MUS1_JT1/PowS_MeasPointV3ph1/TVTR3/VolSv	SAV	PowS_TP 220kV/VT 1/Sampled val. voltage					
	SAV	PowS_TP 220kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV3ph1/TVTR3	PowS_TP 220kV/VT 1
→ MUS1_JT1/PowS_MeasPointV1ph1/TVTR1/VolSv	SAV	PowS_TP BARRA 220kV/VT 1/Sampled val. voltage					
	SAV	PowS_TP BARRA 220kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV1ph1/TVTR1	PowS_TP BARRA 220k
MUS1_JT1/Mod3_MU1/LLN0/PhsMeas3 (14/100)				V		•	
→ MUS1_JT1/PowS_MeasPointl3ph2/TCTR1/AmpSv	SAV	PowS_TC 33kV/CT 1/Sampled val. current					
	SAV	PowS_TC 33kV/CT 1/Sampled val. current				F87TS1_JT1/PowS_MeasPointl3ph2/TCTR1	PowS_TC 33kV/CT 1
+CMUS1_JT1/PowS_MeasPointl3ph2/TCTR2/AmpSv	SAV	PowS_TC 33kV/CT 1/Sampled val. current					
→ MUS1_JT1/PowS_MeasPointl3ph2/TCTR2/AmpSv	SAV	PowS_TC 33kV/CT 1/Sampled val. current				F87TS1_JT1/PowS_MeasPointl3ph2/TCTR2	PowS_TC 33kV/CT 1
→ MUS1_JT1/PowS_MeasPointl3ph2/TCTR3/AmpSv	SAV	PowS_TC 33kV/CT 1/Sampled val. current					
→ MUS1_JT1/PowS_MeasPointl3ph2/TCTR3/AmpSv	SAV	PowS_TC 33kV/CT 1/Sampled val. current				F87TS1_JT1/PowS_MeasPointl3ph2/TCTR3	PowS_TC 33kV/CT 1
→ MUS1_JT1/PowS_MeasPointV3ph2/TVTR1/VolSv	SAV	PowS_TP 33kV/VT 1/Sampled val. voltage					
	SAV	PowS_TP 33kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV3ph2/TVTR1	PowS_TP 33kV/VT 1
→ MUS1_JT1/PowS_MeasPointV3ph2/TVTR2/VolSv	SAV	PowS_TP 33kV/VT 1/Sampled val. voltage					
→ MUS1_JT1/PowS_MeasPointV3ph2/TVTR2/VolSv	SAV	PowS_TP 33kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV3ph2/TVTR2	PowS_TP 33kV/VT 1
→ MUS1_JT1/PowS_MeasPointV3ph2/TVTR3/VolSv	SAV	PowS_TP 33kV/VT 1/Sampled val. voltage					
→ MUS1_JT1/PowS_MeasPointV3ph2/TVTR3/VolSv	SAV	PowS_TP 33kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV3ph2/TVTR3	PowS_TP 33kV/VT 1
→ MUS1_JT1/PowS_MeasPointV1ph2/TVTR1/VolSv	SAV	PowS_TP BARRA33kV/VT 1/Sampled val. voltage					
→ MUS1_JT1/PowS_MeasPointV1ph2/TVTR1/VolSv	SAV	PowS_TP BARRA 33kV/VT 1/Sampled val. voltage				F87TS1_JT1/PowS_MeasPointV1ph2/TVTR1	PowS_TP BARRA 33kV

Nota: Fuente (Elaboración propia)

Figura 84

Configuración de Sampled Values CMC 356

Co	onfigure Sampled	Values					
Ge	eneral Stream 1 Stream	1 2 Stream 3					
	i Test set with NET-	2 board required					
	Imported IEDs: 2				Import SCL	Delete	e IEDs
	Stream	Enabled	Select IED / Sampled Values ID			Simulated	Ethernet port
	1	1	MU / MU_220kV		•		ETH2 🔻
	2		MU / MU_33kV		•		ETH2 *
	3		<none></none>		•		ETH2 ×
	Sample rate / number	of ASDUs:				4000 Hz / 1 ASDU (80 S	PC @ 50 Hz) 🔹
	Start enabled streams:		Start	Stop			

Nota: Fuente (Reporte de pruebas)

Se importó el archivo SCL de la configuración de los IEDs, y se seleccionó las señales GOOSE (Figura 85) que se quieren simular y evaluar en la CMC 356. Se simularon

y evaluaron los mensajes GOOSE que requerimos (Figura 86), de acuerdo a cada función

de protección a probar.

Figura 85

Configuración de GOOSE para CMC 356 en relé de protección

<u>Station Edit</u> Insert <u>View Option</u> Tools <u>H</u> elp						
Devices Vubstation Devices Votes	SM⊻	Reports and logs Protocol mapping				
🔄 🔊 🔁 📑 🦄 🧭 🐰 🗉 🗈 🗙 🥐 🖓 🔤 🖓	Ŧ					
GOOSE messages						
Source	CDC	Description	PRO	STAT	Destination	Description
	🗖		5	-	-	
GOOSE Test OMICRON					*	
▼ ¥ F87TS1_JT1/PTS1_50510C3phase1/LLN0/Omicrontest (1					
► → F87TS1_JT1/CB1/RBRF1/Str	ACD	IN 220kV/50BF Ad.CBF 1/Pickup				
► → F87TS1_JT1/CB1/RBRF1/OpIn	ACT	IN 220kV/50BF Ad.CBF 1/Retrip T1				
►→< F87TS1_JT1/CB1/RBRF1/OpEx	ACT	IN 220kV/50BF Ad.CBF 1/Trip T2				
► + F87TS1_JT1/CB2/RBRF1/Str	ACD	IN 33kV/50BF Ad.CBF 1/Pickup				
►→< F87TS1_JT1/CB2/RBRF1/OpIn	ACT	IN 33kV/50BF Ad.CBF 1/Retrip T1				
► + F87TS1_JT1/CB2/RBRF1/OpEx	ACT	IN 33kV/50BF Ad.CBF 1/Trip T2				
►→ F87TS1_JT1/PTD1_87TrafoDiffProt1/PTRC1/Str	ACD	Transformer 87T_87T 1/Group indicat/Pickup				
► + F87TS1_JT1/PTS1/PTRC1/Str	ACD	Side 220kV/Group indicat./Pickup				
►→ F87TS1_JT1/PTE1/PTRC1/Str	ACD	Side 220kV Neutro/Group indicat/Pickup				
► + F87TS1_JT1/PTS2/PTRC1/Str	ACD	Side 33kV/Group indicat./Pickup				
► + F87TS1_JT1/Application/USER6/SPS	SPS	Application/GOOSE_Tx Test/V> 220kV				
►→ F87TS1_JT1/Application/USER6/SPS1	SPS	Application/GOOSE_Tx Test/V< 220kV				
►→ F87TS1_JT1/Application/USER6/SPS2	SPS	Application/GOOSE_Tx Test/f> 220kV				
►→ F87TS1_JT1/Application/USER6/SPS3	SPS	Application/GOOSE_Tx Test/f< 220kV				
→ F87TS1_JT1/Application/USER6/SPS4	SPS	Application/GOOSE_Tx Test/V> 33kV				
▶→< F87TS1_JT1/Application/USER6/SPS5	SPS	Application/GOOSE_Tx Test/V< 33kV				
►→ F87TS1_JT1/Application/USER6/SPS6	SPS	Application/GOOSE_Tx Test/f> 33kV				
► + F87TS1_JT1/Application/USER6/SPS7	SPS	Application/GOOSE_Tx Test/f< 33kV				
F87TS1_JT1/CB1_25Synchronization/CK_RSYN1/SPS	SPS	IN 220kV_25 Syn/Synchrocheck 1/Sincronismo OK				
F87TS1_JT1/25Synchronization/CK_RSYN1/SPS	SPS	IN 33kV_25 Syn/Synchrocheck 1/Sincronismo Ok				
▶→ F87TS1_JT1/Application/USER6/SPS8	SPS	Application/GOOSE_Tx Test/Ang> 220kV				
▶→ F87TS1_JT1/Application/USER6/SPS9	SPS	Application/GOOSE_Tx Test/Ang< 220kV				
▶→ F87TS1_JT1/Application/USER6/SPS10	SPS	Application/GOOSE_Tx Test/Ang> 33kV				
→ F87TS1_JT1/Application/USER6/SPS11	SPS	Application/GOOSE_Tx Test/Ang< 33kV				
 MUS1_JT1/Application/LLN0/DataSet (8/100) 					*	
→ MUS1_JT1/Application/USER5/SPS	SPS	Application/GOOSE_TX test/25 Start_220kV				
→ → MUS1_JT1/Application/USER5/SPS/Status value	SPC	Application/GOOSE_TX test/25 Start_220kV/Statu			F87TS1_JT1/Application/	Application/GOOSE_Rx Test/25 Start_220kV
→ MUS1_JT1/Application/USER5/SPS1	SPS	Application/GOOSE_TX test/25 Stop_220kV				
→ → MUS1_JT1/Application/USER5/SPS1/Status value	SPC	Application/GOOSE_TX test/25 Stop_220kV/Statu			F87TS1_JT1/Application/	Application/GOOSE_Rx Test/25 Stop_220kV

Nota: Fuente (Elaboración propia)

Figura 86

Configuración de suscripción GOOSE en CMC 356

-						
File	Home View					
Hardware Configuratio C	Ethernet Port ETH2	▼ Import SCL	Rename IED (Apply Abc Configuration Apply Configu	rt Clear	Report Settings * Configuration Documentation
Test View:	GOOSE Configuratio	n in Test Trafo \	/0d1 50Hz fin	al.occ		
Subscriptions	Simulations					
inputs	- Bin. In. 1 Boolean - IED_ClientPTD - Bin. In. 2 Boolean - IED_ClientAppl - Bin. In. 3 Boolean - IED_ClientAppl - Bin. In. 4	1_87TrafoDiffProt1/ cation/USER1.SPS cation/USER1.SPS	PTRC1.Str.gene stVal	eral		
	- Bin. In. 5 - Bin. In. 6 - Bin. In. 7 - Bin. In. 8 - Bin. In. 9					

Nota: Fuente (Reporte de pruebas)

A continuación, se muestra el detalle de las pruebas y resultados que se obtuvo.

a) Pruebas de Medidas

Es la primera prueba que debe realizarse, aquí se verifica la correcta medición en magnitud y fase de los *Sampled Values* de las corrientes y tensiones, contrastando los valores simulados ingresados con los valores que muestran los relés de protección.

Con el módulo OMICRON QuickCMC, se ingresan los Sampled Values de corrientes y tensiones al relé de protección. Las siguientes tablas muestran los resultados obtenidos.

Lado 220 kV

Tabla 19

Medida de corrientes fases lado 220kV

Prueba	Señal SV		Valor Ingresado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa	
10%	IA	Z	0°	40.00	40.00	0.00	0.00%
	IB	Z	-120°	40.00	39.90	-0.10	-0.25%
	IC	Z	120°	40.00	39.90	-0.10	-0.25%
100/60/20%	IA	Z	0°	400.00	400.10	0.10	0.03%
	IB	Z	-120°	240.00	240.00	0.00	0.00%
	IC	Z	120°	80.00	80.00	0.00	0.00%
	IN (310)	Z	-30°	277.20	277.20	0.00	0.00%
100%	IA	Z	0°	400.00	400.10	0.10	0.03%
	IB	Z	-120°	400.00	400.10	0.10	0.03%
	IC	Z	120°	400.00	400.10	0.10	0.03%

Nota: Fuente (Elaboración propia)

Tabla 20

Medida de corriente neutro lado 220kV

Prueba	Señal SV		Valor Ingresado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa	
10%	IN (310)	L	0°	50.00	49.90	-0.10	-0.20%
100%	IN (310)	Z	0°	500.00	500.00	0.00	0.00%

Prueba		Señal SV		Valor Ingresado (kV Prim)	Valor Medido (kV Prim)	Desviación Absoluta (kV Prim)	Desviación Relativa
10%	VA	Z	0°	13.28	13.28	0.00	0.01%
	VB	∠	-120°	13.28	13.28	0.00	0.01%
	VC	Z	120°	13.28	13.28	0.00	0.01%
100/60/20%	VA	Z	0°	132.79	132.81	0.02	0.01%
	VB	∠	-120°	79.67	79.68	0.01	0.01%
	VC	\angle	120°	26.56	26.56	0.00	0.01%
	VN (3V0)	۷	-30°	92.02	91.98	-0.04	-0.05%
100%	VA	\angle	0°	132.79	132.81	0.02	0.01%
	VB	\angle	-120°	132.79	132.81	0.02	0.01%
	VC	Z	120°	132.79	132.81	0.02	0.01%

Medida de tensiones fases lado 220kV

Nota: Fuente (Elaboración propia)

Tabla 22

Medida de tensiones barra lado 220kV

Prueba	Señal SV		Valor Ingresado (kV Prim)	Valor Medido (kV Prim)	Desviación Absoluta (kV Prim)	Desviación Relativa	
10%	VB	Z	-120°	13.28	13.28	0.00	0.01%
100%	VB	Z	-120°	132.79	132.81	0.02	0.01%

Nota: Fuente (Elaboración propia)

Lado 33kV

Tabla 23

Medida de corrientes fases lado 33kV

Prueba		Seña SV	I	Valor Ingresado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa
10%	IA	Z	0°	250.00	250.00	0.00	0.00%
	IB	Z	-120°	250.00	250.00	0.00	0.00%
	IC	Z	120°	250.00	250.00	0.00	0.00%
100/60/20%	IA	Z	0°	2500.00	2500.00	0.00	0.00%
	IB	Z	-120°	1500.00	1500.00	0.00	0.00%
	IC	Z	120°	500.00	500.00	0.00	0.00%
	IN (310)	Z	-30°	1732.50	1734.00	1.50	0.09%
100%	IA	Z	0°	2500.00	2501.00	1.00	0.04%
	IB	L	-120°	2500.00	2501.00	1.00	0.04%
	IC	Z	120°	2500.00	2500.00	0.00	0.00%

Prueba		Señal SV		Valor Ingresado (kV Prim)	Valor Medido (kV Prim)	Desviación Absoluta (kV Prim)	Desviación Relativa
10%	VA	2	0°	1.91	1.91	0.00	0.04%
	VB	2	-120°	1.91	1.91	0.00	0.04%
	VC	2	120°	1.91	1.91	0.00	0.04%
100/60/20%	VA	2	0°	19.05	19.06	0.00	0.01%
	VB	2	-120°	11.43	11.43	0.00	0.01%
	VC	۷	120°	3.81	3.81	0.00	0.01%
	VN (3V0)	۷	-30°	13.20	13.20	0.00	-0.03%
100%	VA	2	0°	19.05	19.06	0.00	0.01%
	VB	2	-120°	19.05	19.06	0.00	0.01%
	VC	Z	120°	19.05	19.06	0.00	0.02%

Medida de tensiones fases lado 33kV

Nota: Fuente (Elaboración propia)

Tabla 25

Medida de tensiones barra lado 33kV

_	Prueba	Señal SV	Valor Ingresado (kV Prim)	Valor Medido (kV Prim)	Desviación Absoluta (kV Prim)	Desviación Relativa
	10%	VB ∠ -120°	1.91	1.91	0.00	0.04%
	100%	VB ∠ -120°	19.05	19.06	0.00	0.02%

Nota: Fuente (Elaboración propia)

b) Pruebas de Funciones de Protección

Después de realizar las pruebas de medidas, se procede a realizar las pruebas de

las funciones de protección habilitadas, las cuales se pasan a detallar.

Función diferencial de transformador (87T)

Para probar esta función, es necesario, ingresar los *Sampled Values* de las corrientes del lado de 220 kV y 33 kV para la operación de la función de protección.

Las pruebas realizadas se muestran en la siguiente tabla.

Prueba			Detalle		
Corriente de arranque y	Fases	A-B	B-C	C-A	A-B-C
reposición	Tierra	A-N	B-N	C-N	
Característica de la curva	Fases	A-B	B-C	C-A	A-B-C
de operación	Tierra	A-N	B-N	C-N	
Dianara y na dianara	Fases	A-B	B-C	C-A	A-B-C
Disparo y no disparo	Tierra	A-N	B-N	C-N	
Tiompos do operación	Fases	A-B	B-C	C-A	A-B-C
hempos de operación	Tierra	A-N	B-N	C-N	
Estabilidad ante	Fases	A-B	B-C	C-A	A-B-C
fallas externas	Tierra	A-N	B-N	C-N	
Plaquas par 2da armánica	Fases				A-B-C
Bioqueo por 200 armonico	Tierra	A-N	B-N	C-N	
Bloquos por Eto armónico	Fases				A-B-C
	Tierra	A-N	B-N	C-N	

Resumen de pruebas de la función 87T

Nota: Fuente (Elaboración propia)

Para la prueba se evaluarán las siguientes señales GOOSE.

Tabla 27

Señales GOOSE evaluadas para 87T

_	Fuente (GOOSE)	Descripción de Señal a Evaluar	Registro en CMC 356 (Suscripción)
	7UT85	Arranque general 87T	Start 87T
		Disparo general lado 220kV	Trip 220kV
		Disparo general lado 33kV	Trip 33kV

Nota: Fuente (Elaboración propia)

Corriente de arranque y reposición

Se evalúan las señales GOOSE que transmite el relé de protección cuando se ingresa los *Sampled Values* simulados de corriente creciente y decreciente, con el módulo OMICRON Ramping por cada lado (Figura 87 y Figura 88), y se registró los valores *Sampled Values* de corriente, ante cada cambio del valor de dato del GOOSE (Figura 89).

Prueba de corriente de arranque lado 220kV de 87T

Nota: Fuente (Reporte de pruebas)

Figura 88

Prueba de corriente de arranque lado 33kV de 87T

Nota: Fuente (Reporte de pruebas)

Corriente de arranque 87T

Nota: Fuente (Elaboración propia)

Característica de la Curva de Operación

En el Test Object de la CMC 356, se ingresaron los datos de tensión, potencia y corriente de referencia del transformador T1 (Figura 90), y los valores de ajuste de la curva de la función 87T del relé de protección.

Figura 90

Datos eléctricos del Transformador T1

			Winding/Leg Name:	Lado 220 kV	Lado 33 kV
			CT Current Prim:	2500.00 A	2500.00 A
Winding/Leg Name:	Lado 220 kV	Lado 33 kV	CT Current Sec:	1.00 A	1.00 A
Voltage:	220.00 kV	33.00 kV	CT Grounding:	tow. Prot. Obj.	tow. Prot. Obj.
Power:	120.00 MVA	120.00 MVA	Gnd CT Prim Current:	500.00 A	800.00 A
Starpoint Grounding:	Yes	No	Gnd CT Sec Current:	1.00 A	1.00 A
Delta-connected CT:	No	No	Gnd CT Grounding:	n/a	n/a

Nota: Fuente (Reporte de pruebas)

Con el módulo OMICRON Diff Operating Characteristic, se ubican los puntos de prueba de corriente de restricción por cada tipo de falla (Figura 91 y Figura 92). Se ingresaron los *Sampled Values* de corriente del lado 220 kV y 33 kV, se evaluó la señal

digital de disparo, con el cambio del valor de dato del GOOSE, y se registró la corriente diferencial límite, entre la operación y no operación de la función (ver Tabla 28 y Figura 93).

Figura 91

Puntos de prueba para fallas monofásicas de la curva 87T

Nota: Fuente (Reporte de pruebas)

Figura 92

Puntos de prueba para fallas bifásicas y trifásicas de la curva 87T

Nota: Fuente (Reporte de pruebas)

Idiff vs Ibias de 87T

Ibias			Resul	tado de Idiff (ln)								
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C						
0.20	0.197	0.197	0.197	0.203	0.203	0.203	0.203						
0.50	0.203	0.203	0.203	0.197	0.197	0.197	0.197						
0.67	0.197	0.197	0.197	0.204	0.204	0.204	0.204						
1.20	0.381	0.381	0.381	0.390	0.390	0.390	0.390						
2.00	0.634	0.634	0.634	0.663	0.663	0.663	0.668						
3.00	0.984	0.984	0.984	1.238	1.238	1.238	1.244						
4.00	1.335	1.335	1.335	2.037	2.037	2.037	2.037						
5.00	1.685	1.685	1.685	2.839	2.839	2.839	2.839						
6.00	2.478	2.478	2.478	3.639	3.639	3.639	3.639						
7.00	3.278	3.278	3.278	4.439	4.439	4.439	4.439						
8.00	4.078	4.078	4.078	5.239	5.239	5.239	5.239						
9.00	4.878	4.878	4.878	6.040	6.040	6.040	6.040						
10.00	5.681	5.681	5.681	6.842	6.842	6.842	6.842						

Nota: Fuente (Elaboración propia)

Figura 93

Resultado de característica de la curva 87T

Nota: Fuente (Elaboración propia)

Disparo y no disparo

Con el módulo OMICRON Diff Operating Characteristic, se ubican los puntos de prueba por cada tipo de falla (Figura 94 y Figura 95). Se ingresaron los *Sampled Values* de corriente del lado 220 kV y 33 kV, se evaluó la señal digital de disparo y se registró el tiempo de cambio del valor de dato del GOOSE (ver Tabla 29, Tabla 30, Figura 96 y Figura 97).

Figura 94

Nota: Fuente (Elaboración propia)

Figura 95

Nota: Fuente (Elaboración propia)

Ibias	Idiff	Resultado de	Tiempos de Dis	paro (ms)		
(In)	(In)	A-N	B-N	C-N		
0.30	0.100	N/T	N/T	N/T		
0.45	0.300	29.80	30.60	30.70		
1.75	0.250	N/T	N/T	N/T		
1.75	0.850	29.70	29.60	28.00		
3.00	0.600	N/T	N/T	N/T		
3.00	1.350	29.40	27.80	28.10		
4.00	0.800	N/T	N/T	N/T		
4.00	1.750	28.00	27.80	28.60		
6.00	1.750	N/T	N/T	N/T		
6.00	3.300	28.90	27.50	28.90		
8.00	3.200	N/T	N/T	N/T		
8.00	5.000	28.60	27.50	28.40		
10.00	4.500	N/T	N/T	N/T		
10.00	7.000	28.40	28.50	27.20		

Tiempos para fallas monofásicas de disparo y no disparo 87T

Nota: Fuente (Elaboración propia)

Figura 96

Fallas monofásicas de prueba de disparo y no disparo 87T

Nota: Fuente (Elaboración propia)

Ibias	ldiff	Result	ado de Tiempos	s de Disparo (m	ms)		
(In)	(In)	A-B	B-C	C-A	A-B-C		
0.40	0.100	N/T	N/T	N/T	N/T		
0.40	0.300	30.00	29.30	29.30	28.50		
1.00	0.200	N/T	N/T	N/T	N/T		
1.00	0.600	28.70	28.50	29.20	28.00		
1.60	0.250	N/T	N/T	N/T	N/T		
1.60	0.800	27.70	28.40	28.00	28.20		
2.10	0.400	N/T	N/T	N/T	N/T		
2.10	1.000	29.20	29.00	29.10	29.20		
3.25	0.900	N/T	N/T	N/T	N/T		
3.25	2.000	28.80	28.20	27.10	28.90		
4.50	1.750	N/T	N/T	N/T	N/T		
4.50	3.200	27.90	27.40	27.60	27.10		
6.00	2.800	N/T	N/T	N/T	N/T		
6.00	4.500	28.70	27.20	28.30	28.50		
8.00	4.200	N/T	N/T	N/T	N/T		
8.00	6.300	28.30	27.50	28.00	27.40		

Tiempos para fallas bifásicas y trifásicas de disparo y no disparo 87T

Nota: Fuente (Elaboración propia)

Figura 97

Fallas bifásicas y trifásicas de prueba de disparo y no disparo 87T

Nota: Fuente (Elaboración propia)

Tiempos de operación

Con el módulo OMICRON Diff Trip Characteristic, se ubican los puntos de prueba por cada tipo de falla (Figura 98). Se ingresaron los *Sampled Values* de corriente del lado 220 kV y 33 kV, se evaluó la señal digital de disparo y se registró su tiempo de cambio del valor de dato del GOOSE (ver Tabla 31 y Figura 99).

Figura 98

Puntos de prueba para tiempos de operación 87T

Nota: Fuente (Elaboración propia)

Tabla 31

Tiempos de operación 87T

Ibias	ldiff (In)		Res	ultado de T	iempos de l	Disparo (ms)	
(In)		A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
1.00	1.00	28.60	28.70	28.10	28.60	27.90	28.70	28.70
3.00	3.00	28.70	28.70	29.00	28.10	27.50	28.00	28.70
6.00	6.00	28.40	28.40	28.70	28.80	28.90	28.60	27.90
9.00	9.00	28.90	28.20	28.80	27.00	27.90	28.10	28.60
1.00 3.00 6.00 9.00	1.00 3.00 6.00 9.00	28.60 28.70 28.40 28.90	28.70 28.70 28.40 28.20	28.10 29.00 28.70 28.80	28.60 28.10 28.80 27.00	27.90 27.50 28.90 27.90	28.70 28.00 28.60 28.10	

Tiempos de operación 87T

Nota: Fuente (Elaboración propia)

Estabilidad ante fallas externas

Con el módulo OMICRON Diff Configuration, se eligen la magnitud de la corriente de restricción e ingresamos los *Sampled Values* de corriente del lado 220 kV y 33 kV, se evaluó la señal digital de disparo (que no hay un cambio del valor de dato del GOOSE durante 1 minuto) y se registró la corriente diferencial medida. (ver Tabla 32 y Figura 100).

Tabla 32

Ibias			Result	ado de Idif	f (In)		
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
1.00	0.001	0.001	0.001	0.001	0.001	0.001	0.000
2.00	0.002	0.002	0.002	0.001	0.001	0.001	0.000
4.00	0.003	0.003	0.003	0.001	0.001	0.001	0.001

Idiff ante fallas externas 87T

Nota: Fuente (Elaboración propia)

Bloqueo por 2do armónico

Con el módulo Diff Harmonic Restraint de la CMC 356, se prueba la característica de bloqueo, donde se ubican los puntos de prueba de corriente diferencial monofásico y trifásico. Se ingresaron los *Sampled Values* de corriente del lado 220kV, se evaluó la señal digital de disparo con el cambio del valor de dato del GOOSE y se registró el porcentaje límite de 2do armónico entre el bloqueo y disparo (ver Tabla 33 y Figura 101)

Tabla 33

ldiff	l2f/ldiff	Resultado de 2do Armónico (%)					
(In)	(%)	A-N	B-N	C-N	A-B-C		
1.00	15	14.95	14.96	14.96	15.38		
2.00	15	14.99	14.95	14.97	15.64		
4.00	15	15.01	14.98	14.98	15.25		
5.00	15	15.00	14.98	14.99	16.01		

Porcentaje 2do armónico vs Idiff de 87T

Característica de bloqueo por 2do armónico 87T

Nota: Fuente (Elaboración propia)

Con el mismo módulo, se realiza la prueba de disparo y bloqueo, donde se ubicaron los puntos de prueba de corriente diferencial, con porcentajes de 2do armónico por encima y debajo del valor de ajuste. Se ingresaron los *Sampled Values* de corriente del lado 220 kV, se evaluó la señal digital de disparo y se registró su tiempo de cambio del valor de dato del GOOSE (ver Tabla 34 y Figura 102).

Tabla 34

ldiff		l2f/ldi	ff		Desultada	
(In)	A-N	A-N B-N		A-B-C	Resultado	
0.50	17.40	17.40	17.40	17.40	Bloqueo	
1.00	12.60	12.60	12.60	12.60	Disparo	
1.50	17.40	17.40	17.40	17.40	Bloqueo	
2.00	12.50	12.50	12.50	12.50	Disparo	
2.50	17.40	17.40	17.40	17.40	Bloqueo	
3.00	12.60	12.60	12.60	12.60	Disparo	

Disparo y bloqueo por 2do armónico de 87T

Disparo y bloqueo por 2do armónico 87T

Nota: Fuente (Elaboración propia)

Bloqueo por 5to armónico

Con el módulo Diff Harmonic Restraint de la CMC 356, se prueba la característica de bloqueo, donde se ubican los puntos de prueba de corriente diferencial monofásico y trifásico. Se ingresaron los *Sampled Values* de corriente del lado 220kV, se evaluó la señal digital de disparo con el cambio del valor de dato del GOOSE y se registró el porcentaje límite de 5to armónico entre el bloqueo y disparo (ver Tabla 35 y Figura 103).

Tabla 35

ldiff	I5f/Idiff	Resultado de 2do Armónico (%)					
(In)	(%)	A-N	B-N	C-N	A-B-C		
0.50	35	34.96	34.96	34.93	34.97		
1.00	35	34.98	34.97	34.97	34.99		
2.00	35	34.96	34.95	34.98	35.31		
3.00	35	34.96	34.95	34.94	34.99		

Porcentaje 5to armónico vs Idiff de 87T

Característica de bloqueo por 5to armónico 87T

Nota: Fuente (Elaboración propia)

Con el mismo módulo, se realiza la prueba de disparo y bloqueo, donde se ubicaron los puntos de prueba de corriente diferencial, con porcentajes de 5to armónico por encima y debajo del valor de ajuste. Se ingresaron los *Sampled Values* de corriente del lado 220 kV, se evaluó la señal digital de disparo y se registró su tiempo de cambio del valor de dato del GOOSE (ver Tabla 36 y Figura 104).

Tabla 36

ldiff		I5f/Idi	ff		Decultede	
(In)	A-N	B-N	C-N	A-B-C	Resultado	
0.50	38.50	38.50	38.50	38.50	Bloqueo	
0.75	31.10	31.10	31.10	31.10	Disparo	
1.00	38.60	38.60	38.60	38.60	Bloqueo	
1.25	31.00	31.00	31.00	31.00	Disparo	
2.00	38.50	38.50	38.50	38.50	Bloqueo	
2.00	31.00	31.00	31.00	31.00	Disparo	

Disparo y bloqueo por 5to armónico de 87T

Disparo y bloqueo por 5to armónico 87T

Nota: Fuente (Elaboración propia)

Función sobrecorriente entre fases lado 220kV (50/51)

Para probar esta función, se requiere solo ingresar los Sampled Values de corriente

del lado de 220 kV para su operación.

Tabla 37

Resumen de pruebas de la función 50/51 lado 220kV

Prueba			Detalle		
Corriente de arranque y reposición	Fases	A-B	B-C	C-A	A-B-C
Característica de la curva de operación	Fases	A-B	B-C	C-A	A-B-C

Nota: Fuente (Elaboración propia)

Para la prueba se evaluarán las siguientes señales GOOSE.

Tabla 38

Señales GOOSE evaluadas para 50/51

OSE)	Descripcion de Senal a Evaluar	356 (Suscripción)
	Arranque general lado 220 kV	Start
165	Disparo general lado 220 kV	Trip 220kV
)	OSE) T85	OSE) Descripcion de Senal a Evaluar T85 Arranque general lado 220 kV Disparo general lado 220 kV

Corriente de arranque y reposición

Con el módulo OMICRON Ramping, se ingresaron los *Sampled Values* de corriente creciente y decreciente (Figura 105), y se registró los valores de *Sampled Values* de corriente ante cada cambio del valor del dato GOOSE (Figura 106, Figura 107, Figura 108 y Figura 109).

Figura 105

Prueba de corriente de arranque 50/51 lado 220kV

Nota: Fuente (Elaboración propia)

Figura 106

Nota: Fuente (Elaboración propia)

Corriente de arranque 51 lado 220kV

Nota: Fuente (Elaboración propia)

Figura 108

Corriente de arranque 50-1 lado 220kV

Nota: Fuente (Elaboración propia)

Corriente de arranque 50-2 lado 220kV

Nota: Fuente (Elaboración propia)

Característica de la Curva de Operación

En el Test Object de la CMC356, se ingresaron los valores de ajuste de la curva de

la función 50/51 del relé de protección.

Figura 110

Valores de ajuste de la función 50/51 lado 220kV

Nota: Fuente (Reporte de Pruebas)

Con el módulo OMICRON Overcurrent, se ubican los puntos de prueba de corriente por cada tipo de falla. Se ingresaron los Sampled Values de corriente del lado 220 kV, se evaluó la señal digital de disparo y registró el tiempo de cambio del valor de dato del GOOSE (Figura 111, Figura 112, Figura 113 y Figura 114)

Figura 111

Fase A-B-C de prueba de característica de la curva 50/51 lado 220kV

Nota: Fuente (Reporte de Pruebas)

Figura 112

Nota: Fuente (Reporte de Pruebas)

Nota: Fuente (Reporte de Pruebas)

Figura 114

Fase C-A de prueba de característica de la curva 50/51 lado 220kV

Nota: Fuente (Reporte de Pruebas)

Función sobrecorriente de neutro lado 220kV (50N/51N)

Para probar esta función, se requiere solo ingresar los Sampled Values de corriente

del lado de 220 kV para su operación.

Tabla 39

Resumen de pruebas de la función 50N/51N lado 220kV

Prueba		Deta	lle	
Corriente de arranque y reposición	Tierra	A-N	B-N	C-N
Característica de la curva de operación	Tierra	A-N	B-N	C-N

Para la prueba se evaluarán las siguientes señales GOOSE.

Tabla 40

		1	
	Fuente (GOOSE)	Descripción de Señal a Evaluar	Registro en CMC 356 (Suscripción)
_	7UT85	Arranque general lado 220 kV	Start
		Disparo general lado 220 kV	Trip 220 kV

Señales GOOSE evaluadas para 50N/51N

Nota: Fuente (Elaboración propia)

Corriente de arranque y reposición

Con el módulo OMICRON Ramping, se ingresaron los *Sampled Values* de corriente creciente y decreciente (Figura 115), y se registró los valores de *Sampled Values* de corriente ante cada cambio del valor del dato GOOSE (Figura 116, Figura 117 y Figura 118).

Figura 115

Prueba de corriente de arranque 50N/51N lado 220kV

Nota: Fuente (Reporte de Pruebas)

Corriente de arranque 50N/51N lado 220kV

Nota: Fuente (Elaboración propia)

Figura 117

Nota: Fuente (Elaboración propia)

Corriente de arranque 50N lado 220kV

Nota: Fuente (Elaboración propia)

Característica de la Curva de Operación

En el Test Object de la CMC356, se ingresaron los valores de ajuste de la curva de

la función 50N/51N del relé de protección.

Figura 119

Valores de ajuste de la función 50N/51N lado 220kV

Nota: Fuente (Reporte de Pruebas)

Con el módulo OMICRON Overcurrent, se ubican los puntos de prueba de corriente por cada tipo de falla. Se ingresaron los *Sampled Values* de corriente del lado 220 kV, se evaluó la señal digital de disparo y se registró el tiempo de cambio del valor de dato del GOOSE (Figura 120, Figura 121 y Figura 122).

Figura 120

Fase A-N de prueba de característica de la curva 50N/51N lado 220kV

Nota: Fuente (Reporte de Pruebas)

Figura 121

Nota: Fuente (Reporte de Pruebas)

Fase C-N de prueba de característica de la curva 50N/51N lado 220kV

Nota: Fuente (Reporte de Pruebas)

Función sobrecorriente de tierra lado 220kV (50G/51G)

Para probar esta función, se requiere solo ingresar los Sampled Values de corriente

neutro del lado de 220 kV para su operación.

Tabla 41

Resumen de pruebas de la función 50G/51G lado 220kV

Prueba	Detal	le
Corriente de arranque y reposición	Tierra	Ν
Característica de la curva de operación	Tierra	Ν

Nota: Fuente (Elaboración propia)

Para la prueba se evaluarán las siguientes señales GOOSE.

Tabla 42

Señales GOOSE evaluadas para 50G/51G

_	Fuente (GOOSE)	Descripción de Señal a Evaluar	Registro en CMC 356 (Suscripción)
_	7UT85	Arranque general lado 220 kV	Start
		Disparo general lado 220 kV	Trip 220 kV

Nota: Fuente (Elaboración propia)

Corriente de arranque y reposición

Con el módulo OMICRON Ramping, se ingresaron los *Sampled Values* de corriente creciente y decreciente (Figura 123), y se registró los valores de *Sampled Values* de corriente ante cada cambio del valor del dato GOOSE (Figura 124, Figura 125 y Figura 126).

Prueba de corriente de arranque 50G/51G lado 220kV

Nota: Fuente (Reporte de Pruebas)

Figura 124

Corriente de arranque 50G/51G lado 220kV

Corriente de arranque 51G lado 220kV

Nota: Fuente (Elaboración propia)

Figura 126

Corriente de arranque 50G lado 220kV

Nota: Fuente (Elaboración propia)

Función falla de interruptor de 220kV (50BF)

La función 50BF posee dos formas de iniciación: externa e interna. La externa es mediante la recepción de un disparo hacia el interruptor, enviado otro relé de protección. Mientras que la interna, es mediante el disparo hacia el interruptor que emite el mismo relé de protección.

Para probar esta función se requiere ingresar los Sampled Values de corriente del lado de 220 kV y simular señales GOOSE necesarias (Figura 127) para su operación.

Figura 127

Señal GOOSE simulado de posición y arranque externo para 50BF

File	Home	View								
Hardware Configuration	Etherne	t Port ETH2 ulation/Test	Ŧ	Import SCL	Rename IED	Apply Configuration	Abort	XX Clear	Report Settings *	Comment
Co	nfigurati	on Setup				Apply Co	onfigurat	ion	Configuration	n Documentation
Test View: G	OOSE Co	onfiguration i	in Test	Trafo Y)d1_50Hz_1	final - copia.oo	c			
Subscriptions	Simulatio	ins								
Outputs										
1 - 1 2 - 1 3 - 1 4 - 1 5 - 1 6 - 1 7 - 1 8 - 1 25 - 26 - Boo 27 - 28 - 27 - 28 - 29 - 30 - 31 -	Bin. Out. 1 Bin. Out. 2 Bin. Out. 3 Bin. Out. 4 Bin. Out. 5 Bin. Out. 5 Bin. Out. 6 Bin. Out. 7 Bin. Out. 7 Bin. Out. 7 VBin. Out. VBin. Out. VBin. Out. VBin. Out. VBin. Out. VBin. Out. VBin. Out.	2 2 4 5 6 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1	ISER1.I	DPS.stVal PS.stVal						

Nota: Fuente (Reporte de Pruebas)

Tabla 43

Resumen de pruebas de la función 50BF de interruptor de 220kV

Prueba			Detalle		
Corriente de arranque y	Fases	A-B	B-C	C-A	A-B-C
reposición	Tierra	A-N	B-N	C-N	
Tiempos de operación	Fases	A-B	B-C	C-A	A-B-C
	Tierra	A-N	B-N	C-N	

Para la prueba se evaluaron las siguientes señales GOOSE.

Tabla 44

Fuente (GOOSE)	Descripción de Señal a Evaluar	Registro en CMC 356 (Suscripción)
7UT85	Disparo general lado 220 kV	Trip 220 kV
	Disparo general lado 33 kV	Trip 33 kV
	Arranque 50BF interruptor 220 kV	50BF Start_220 kV
	Redisparo 50BF interruptor 220 kV	50BF Retrip_220 kV
	Disparo etapa 2 de 50BF interruptor 220 kV	50BF Trip E2_220 kV

Señales GOOSE evaluadas para 50BF

Nota: Fuente (Elaboración propia)

Corriente de arranque y reposición

Con el módulo OMICRON Ramping, se ingresaron los *Sampled Values* de corriente creciente y decreciente, y se simuló un arranque externo (Figura 128), o un arranque interno (Figura 129). Se registró los valores de *Sampled Values* de corriente ante cada cambio del valor del dato GOOSE (Figura 130 y Figura 131).

Figura 128

Prueba, arranque externo, de corriente de arranque 50BF

Nota: Fuente (Reporte de Pruebas)

Prueba, arranque interno, de corriente de arranque 50BF

Nota: Fuente (Reporte de Pruebas)

Figura 130

Con arranque externo, corriente de arranque 50BF de interruptor 220kV

Nota: Fuente (Elaboración propia)

Con arranque interno, corriente de arranque 50BF de interruptor 220kV

Nota: Fuente (Elaboración propia)

Tiempos de operación

Con el módulo OMICRON State Sequencer, se fijan varios escenarios (solo redisparo y redisparo con disparo etapa 2) por prueba y por cada tipo de falla, con arranque externo (Figura 132) e interno (Figura 133). Se ingresaron los *Sampled Values* de corriente del lado 220 kV, de acuerdo a cada escenario, se evaluó las señales digitales de redisparo y disparo por etapa 2, y se registraron sus tiempos de cambio del valor de dato de los GOOSE (ver Tabla 45, Tabla 46, Figura 134 y Figura 135).

Con arranque externo, tiempos de operación 50BF de interruptor 220kV

Nota: Fuente (Reporte de Pruebas)

Figura 133

Con arranque interno, tiempos de operación 50BF de interruptor 220kV

Nota: Fuente (Reporte de Pruebas)

Tabla 45

Critorio	Etono	Resultado de Tiempos de Disparo (ms)						
Criterio	стара -	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
Supervisión Por	Redisparo (Etapa 1)	121.90	116.50	122.40	119.00	124.00	123.60	122.40
Corriente	Disparo 50BF (Etapa 2)	221.80	216.40	222.30	218.80	224.00	223.60	222.40
Supervisión Por	Redisparo (Etapa 1)							108.70
Contacto	Disparo 50BF (Etapa 2)							208.80
Supervisión Por	Redisparo (Etapa 1)	112.10	110.40	109.00	101.20	112.40	109.30	111.30
Corriente y Contacto	Disparo 50BF (Etapa 2)	212.20	210.30	209.00	201.20	212.50	209.20	211.20

Tiempos de operación 50BF con arranque externo

Nota: Fuente (Elaboración propia)

Figura 134

Tiempos de operación 50BF con arranque externo

Tabla 46

Critorio	Etono	Resultado de Tiempos de Disparo (ms)						
Criterio	сара	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
Supervisión Por	Redisparo (Etapa 1)	99.60	99.60	99.60	99.60	99.70	99.60	99.60
Corriente	Disparo 50BF (Etapa 2)	199.50	199.60	199.50	199.50	199.50	199.50	199.50
Supervisión Por Corriente y Contacto	Redisparo (Etapa 1)	99.70	99.70	99.60	99.60	99.60	99.80	99.60
	Disparo 50BF (Etapa 2)	199.60	199.60	199.60	199.40	199.50	199.70	199.50

Tiempos de operación 50BF con arranque interno

Nota: Fuente (Elaboración propia)

Figura 135

Tiempos de operación 50BF con arranque interno externo

Función sincronismo de interruptor de 220kV (25)

La función 25, posee dos formas de iniciación: externa e interna. La externa es mediante la recepción de una orden de arranque enviado otro IED o por una condición operativa. Mientras que la interna, es mediante el comando de cierre manual que se genera en el mismo IED.

Para probar esta función se requiere ingresar los *Sampled Values* de tensión de fases y barra del lado de 220 kV, y simular señales GOOSE necesarias (Figura 136) para su operación.

Figura 136

Señal GOOSE simulado de arranque externo para 25

File Home	View					
Ethern Hardware Configuration Configurat	et Port ETH2	Import SCL IED	Apply Abort Configuration Apply Configura	Clear	Report Settings * Configuration Documentar	t tio
Test View: GOOSE C Subscriptions Simulat	Configuration in Tes	t Trafo Y0d1_50Hz	_final - copia.occ			
Outputs						
 I - Bin. Out. 2 - Bin. Out. 3 - Bin. Out. 5 - Bin. Out. 5 - Bin. Out. 6 - Bin. Out. 7 - Bin. Out. 8 - Bin. Out. 25 - vBin. Out. Boolean - M 26 - vBin. Out. Boolean - M 27 - vBin. O 28 - vBin. O 29 - vBin. O 30 - vBin. O 31 - vBin. O 32 - vBin. O 32 - vBin. O 	1 2 3 4 5 6 7 8 ut. 1-1 //UApplication/USER5.Sl ut. 1-3 ut. 1-2 //UApplication/USER5.Sl ut. 1-3 ut. 1-4 ut. 1-5 ut. 1-6 ut. 1-7 ut. 1-8	PS.stVal PS1.stVal				

Nota: Fuente (Reporte de Pruebas)

Tabla 47

Resumen de pruebas de la función 25 de interruptor de 220kV

Prueba	Deta	alle
Condiciones de	Fases	A-B-C
Energización	Barra	B-N
Condiciones de	Fases	A-B-C
Synchrocheck	Barra	B-N

Para la prueba se evaluaron las siguientes señales GOOSE.

Tabla 48

Fuente (GOOSE)	Descripción de Señal a Evaluar	Registro en CMC 356 (Suscripción)
7UT85	Condiciones de sincronismo	25 Ok
	Tensión excedida	V>
	Tensión insuficiente	V<
	Frecuencia excedida	f>
	Frecuencia insuficiente	f<
	Angulo excedido	Ang>
	Angulo insuficiente	Ang<

Señales GOOSE evaluadas para 25

Nota: Fuente (Elaboración propia)

Condiciones de energización

Las condiciones de energización son dos: para energizar la barra (llamada línea viva y barra muerta) y para energizar la bahía (llamada barra viva y línea muerta). Además de estas dos condiciones, la función posee una condición de mantenimiento (llamada barra muerta y línea muerta).

Con el módulo OMICRON Ramping, se simuló un arranque externo, se ingresaron los *Sampled Values* de tensión de barra (Figura 137) y de línea (Figura 138) de forma creciente y decreciente. Y se registró los valores de *Sampled Values* de tensión ante cada cambio del valor del dato GOOSE (Ver Tabla 49 y Figura 139).

Figura 137

Prueba de condición barra viva y línea muerta 25

Nota: Fuente (Reporte de Pruebas)

Prueba de condición línea viva y barra muerta 25

Nota: Fuente (Reporte de Pruebas)

Tabla 49

Valores de tensión para energización 25

		IED		Resultado	
Prueba	Condición	Tensión (kV)	Tensión (kV)	Desviación Absoluta (kV)	Desviación Relativa
Inicio	BV-LM	161.0	161.1	0.1	0.0%
Bloqueo	BV-LM	264.5	267.2	2.7	1.0%
Inicio	LV-BM	161.0	161.1	0.1	0.0%
Bloqueo	LV-BM	264.5	267.2	2.7	1.0%
Inicio	BM-LM	0.0	0.0	0.0	0.0%
Bloqueo	BM-LM	115.0	120.8	5.8	5.1%

Condiciones de energización 25

Nota: Fuente (Elaboración propia)

Condiciones de Synchrocheck

Para cumplir con las condiciones de *Synchrocheck* (llamada línea viva y barra viva) se debe garantizar 3 cosas, que la diferencia de tensión, frecuencia y ángulo entre las fases y la barra, deben situarse dentro de un margen de ajuste.

Para verificar la banda de diferencia de tensión se utilizó el módulo OMICRON Ramping, donde se simuló un arranque externo, se ingresaron los *Sampled Values* de tensión de barra de forma creciente y decreciente, y de fases fijada a la nominal. Se registró los valores de *Sampled Values* de tensión de barra, ante cada cambio del valor del dato GOOSE.

Para verificar la banda de diferencia de frecuencia y ángulo, se siguió el mismo proceso que el anterior, pero en estos casos, la variación es de estas variables, manteniendo la magnitud del valor nominal de tensión de la barra y de las fases.

A continuación, se muestran las pruebas y el resultado de los registros obtenidos.

Prueba de banda de diferencia de tensión Synchrocheck 25

Nota: Fuente (Reporte de Pruebas)

Figura 141

Prueba de banda de frecuencia Synchrocheck 25

Nota: Fuente (Reporte de Pruebas)

Prueba de banda angular Synchrocheck 25

Nota: Fuente (Reporte de Pruebas)

Tabla 50

Bandas de Synchrocheck 25

Valo	ores Ajustac	los	Resultado			
∆fn (Hz)	∆ V (pu)	Δ φ (°)	∆fn (Hz)	∆ V (pu)	Δ φ (°)	
0.20	0.10	25.00	0.225	0.111	25.00	
-0.20	-0.10	-25.00	-0.225	-0.098	-24.50	

Banda tensión vs frecuencia Synchrocheck 25

Nota: Fuente (Reporte de Pruebas)

Figura 144

Banda angular Synchrocheck 25

Nota: Fuente (Reporte de Pruebas)

4.2.2 Sistema digital Diferencial de Barras 220kV

El sistema de protección diferencial de barras, es de barra simple con barra de transferencia (Figura 145). Está compuesto por una unidad central (7SS85), que concentra y procesa, los *Sampled Values* de corriente y GOOSE (Posiciones, disparos y alarmas) de cada bahía, por medio de las *Merging Units*.

Figura 145

Nota: Fuente (Elaboración propia)

Antes de iniciar las pruebas, se comprobó que la Unidad Central y las *Merging Units* se encuentran sincronizadas por el protocolo de tiempo PTP, a través de la Red de Proceso. Que los mensajes de *Sampled Values* de corrientes y GOOSE, entre la Unidad Central y las *Merging Units*, estén correctamente configuradas (Figura 146 y Figura 147).

Configuración de Sampled Values para el sistema diferencial de barras

SMV messages							
ource	CDC	Description	ST	TATION BUS	PROCESS BUS	Destination	Description
	-			-			3
EC station 1						*	
F87_J1/Mod2_MU1/LLN0/PhsMeas3						*	
F87B_J1/Mod2_MU1/LLN0/PhsMeas3 (8/100)						•	
→ F87B_J1/PowS_MeasPointI3ph1/TCTR1/AmpSv	SAV	PowS_TCJ1-N3/CT 1/Sampled val. current					
→CF87B_J1/PowS_MeasPointl3ph1/TCTR1/AmpSv	SAV	PowS_TCJ1-N3/CT 1/Sampled val. current				F87B_CU/PowS_MeasPointI3ph2/TCTR1/AmpSv	PowS_I-3ph_J1/CT 1/Sampled val. c
F87B_J1/PowS_MeasPointI3ph1/TCTR2/AmpSv	SAV	PowS_TCJ1-N3/CT 2/Sampled val. current					
F87B_J1/PowS_MeasPointl3ph1/TCTR2/AmpSv	SAV	PowS_TCJ1-N3/CT 2/Sampled val. current				F87B_CU/PowS_MeasPointI3ph2/TCTR2/AmpSv	PowS_I-3ph_J1/CT 2/Sampled val.
→ F87B_J1/PowS_MeasPointl3ph1/TCTR3/AmpSv	SAV	PowS_TCJ1-N3/CT 3/Sampled val. current					
→ F87B_J1/PowS_MeasPointl3ph1/TCTR3/AmpSv	SAV	PowS_TCJ1-N3/CT 3/Sampled val. current				F87B_CU/PowS_MeasPointI3ph2/TCTR3/AmpSv	PowS_I-3ph_J1/CT 3/Sampled val.
→ F87B_J1/PowS_MeasPointl3ph1/TCTR4/AmpSv	SAV	PowS_TCJ1-N3/CT 4/Sampled val. current					
→ F87B_J1/PowS_MeasPointl3ph1/TCTR4/AmpSv	SAV	PowS_TCJ1-N3/CT 4/Sampled val. current				F87B_CU/PowS_MeasPointl3ph2/TCTR4/AmpSv	PowS_I-3ph_J1/CT 4/Sampled val.
F87_J2/Mod2_MU1/LLN0/PhsMeas3							
F87B_J2/Mod2_MU1/LLN0/PhsMeas3 (8/100)					V	*	
+ F87B_J2/PowS_MeasPointl3ph1/TCTR1/AmpSv	SAV	PowS_TCJ2-N3/CT 1/Sampled val. current					
F87B J2/PowS MeasPointI3ph1/TCTR1/AmpSv	SAV	PowS_TCJ2-N3/CT 1/Sampled val. current				F87B CU/PowS MeasPointI3ph3/TCTR1/AmpSv	PowS I-3ph J2/CT 1/Sampled val.
F87B J2/PowS MeasPointI3ph1/TCTR2/AmpSv	SAV	PowS TCJ2-N3/CT 2/Sampled val. current					
→ F87B J2/PowS MeasPointl3ph1/TCTR2/AmpSv	SAV	PowS TCJ2-N3/CT 2/Sampled val. current				F87B CU/PowS MeasPointI3ph3/TCTR2/AmpSv	PowS I-3ph J2/CT 2/Sampled val.
+ F87B J2/PowS MeasPointI3ph1/TCTR3/AmpSv	SAV	PowS TCJ2-N3/CT 3/Sampled val. current					
+ F87B J2/PowS MeasPointI3ph1/TCTR3/AmpSv	SAV	PowS TCJ2-N3/CT 3/Sampled val. current				F87B CU/PowS MeasPointI3ph3/TCTR3/AmpSv	PowS I-3ph J2/CT 3/Sampled val.
+ F87B J2/PowS MeasPointI3ph1/TCTR4/AmpSy	SAV	PowS TCJ2-N3/CT 4/Sampled val. current					
F87B J2/PowS MeasPointI3ph1/TCTB4/AmpSy	SAV	PowS TCJ2-N3/CT 4/Sampled val. current				E87B_CU/PowS_MeasPointI3ph3/TCTR4/AmpSy	PowS 1-3ph J2/CT 4/Sampled val
- C E87 JR/Mod2 MU1/UN0/PhsMeas3							
E87B .IB/Mod2_MU1/LIN0/PhsMeas3 (8/100)							
F87B JB/DowS MessPoint/3ob1/TCTB1/AmpSv	SAM	PowS TC-IR-N2/CT 1/Sempled val current					
E878 IR/RowS MearPoint/3ob1/TCTR1//mpSv	SW/	PowS_TC IR N2/CT 1/Sampled val. current				ER78 CU/DowS MearPoint/3ph1/TCTR1/AmpSy	PowS J 3ph JR/CT 1/Sampled val
F27B IR/DawS Mass Date 12 CTP2/AmpSv	CAL/	Daws TO IR N2/CT 2/Sampled val. current				Torb_conrows_measeonnaphtriontenanpav	Pows_ropri_ereer insampled var.
Corp. ID Duvic MassPointspiri/refree/ampsv	CAN	Pows_resident 2/Sampled val. content				FOTO OUTO-UC Manageriano-Marcatoguareo	David Libert (DIOT Alformation)
Forb_ship weaspointisphini CTR2/Ampsv	SMV	Pows_rcure.nz/cr 2/sampled val. current				Pere_coreows_measeointispn1/1CTR2/Ampsv	Pows_i-sph_shoc1 2/sampled val.
++ F87B_JR/PowS_MeasPointi3ph1/ICTR3/AmpSv	SAV	Pows_1CJR-N2/C1 3/Sampled val. current					Device Lands (DIGT Strengthed with
	SAV	Pows_1CJR-N2/C1 3/Sampled val. current				F87B_CU/PowS_MeasPointI3ph1/TCTR3/AmpSv	Pows_I-3ph_JR/C1 3/Sampled val.
+ F8/B_JR/Pows_MeasPointi3ph1/1CTR4/AmpSV	SAV	PowS_TGR-N2/CT 4/Sampled val. current					
+ ro/B_JR/PowS_MeasPoint/3ph1/1CTR4/AmpSv	SAV	Pows_1CJR-N2/C1 4/Sampled val. current				Porb_CU/PowS_MeasPoint/3ph1/1CTR4/AmpSv	Pows_I-3ph_JR/C1 4/Sampled val.
F87_JT1/Mod2_MU1/LLN0/PhsMeas3	_					*	
F87B_JT1/Mod2_MU1/LLN0/PhsMeas3 (8/100)						*	
+ F87B_JT1/PowS_MeasPointl3ph1/TCTR1/AmpSv	SAV	PowS_I-3ph_JT1/CT 1/Sampled val. current					
F87B_JT1/PowS_MeasPointl3ph1/TCTR1/AmpSv	SAV	PowS_I-3ph_JT1/CT 1/Sampled val. current				F87B_CU/PowS_MeasPointl3ph4/TCTR1/AmpSv	PowS_I-3ph_JT1/CT 1/Sampled val
→ F87B_JT1/PowS_MeasPointl3ph1/TCTR2/AmpSv	SAV	PowS_I-3ph_JT1/CT 2/Sampled val. current					
→ F87B_JT1/PowS_MeasPointl3ph1/TCTR2/AmpSv	SAV	PowS_I-3ph_JT1/CT 2/Sampled val. current				F87B_CU/PowS_MeasPointl3ph4/TCTR2/AmpSv	PowS_I-3ph_JT1/CT 2/Sampled val
→ F87B_JT1/PowS_MeasPointl3ph1/TCTR3/AmpSv	SAV	PowS_I-3ph_JT1/CT 3/Sampled val. current					
→ F87B_JT1/PowS_MeasPointl3ph1/TCTR3/AmpSv	SAV	PowS_I-3ph_JT1/CT 3/Sampled val. current				F87B_CU/PowS_MeasPointI3ph4/TCTR3/AmpSv	PowS_I-3ph_JT1/CT 3/Sampled val
F87B_JT1/PowS_MeasPointl3ph1/TCTR4/AmpSv	SAV	PowS_I-3ph_JT1/CT 4/Sampled val. current					
→ F87B_JT1/PowS_MeasPointl3ph1/TCTR4/AmpSv	SAV	PowS I-3ph JT1/CT 4/Sampled val. current				E27B CUIDowS MaasDainti2ph4/CCTR4/AmpSy	PowS L3ph JT1/CT 4/Sempled val

Nota: Fuente (Elaboración propia)

Figura 147

Configuración de GOOSE para el sistema diferencial de barras

265						
USE messages	_		_			
irce	CDC	Description	STAT	PRO	Destination	Description
			-	-	—	
GOOSE_Process Bus_87B					*	
F87B_JR/CB1/LLN0/DataSet (15/100)					*	
▼ 19 F87B_J1/CB1/LLN0/DataSet (12/100)					*	
F87B_J1/CB1/XCBR1/Pos	DPC	52J1/Circuit break./Position				
→ F87B_J1/CB1/XCBR1/Pos/Status value	DPC	52J1/Circuit break./Position/Status			F87B_CU/Bay2_CB3p1/	Linea J1_52 J1/Circuit break./RxPo
F87B_J1/Ds1/XSWI1/Pos	DPC	89J1-1/Disconnector/Position				
→ F87B_J1/Ds1/XSWI1/Pos/Status value	DPC	89J1-1/Disconnector/Position/Statu			F87B_CU/Bay2_Ds1/XS	Linea J1_89J1-1/Disconnector/RxF
F87B_J1/Ds2/XSWI1/Pos	DPC	89J1-2/Disconnector/Position				
→ F87B_J1/Ds2/XSWI1/Pos/Status value	DPC	89J1-2/Disconnector/Position/Statu			F87B_CU/Bay2_Ds2/XS	Linea J1_89J1-2/Disconnector/RxF
► → F87B_J1/Ds3/XSWI1/Pos	DPC	89J1-3/Disconnector/Position				
→ F87B_J1/Ds3/XSWI1/Pos/Status value	DPC	89J1-3/Disconnector/Position/Statu			F87B_CU/Bay2_Ds3/XS	Linea J1_89J1-3/Disconnector/Rx
F87B_J1/CB1/XCBR1/SPS	SPS	52J1/Circuit break./Ext. trip_50BF-E2				
+ F87B_J1/CB1/XCBR1/SPS/Status value	SPC	52J1/Circuit break./Ext. trip_50BF			F87B_CU/Bay2_CB3p1/	Linea J1_52 J1/Ext. trip BZ/RxInitP
+ F87B_J1/CB1/XCBR1/SPS/Status value	SPC	52J1/Circuit break./Ext. trip_50BF			F87B_CU/Bay2_CB3p1/	Linea J1_52 J1/Ext. trip BZ/RxInitP
→ F87B_J1/CB1/XCBR1/SPS/Status value	SPC	52J1/Circuit break./Ext. trip_50BF			F87B_CU/Bay2_CB3p1/	Linea J1_52 J1/Ext. trip BZ/RxInitP
→ F87B_J1/CB1/XCBR1/SPS/Status value	SPC	52J1/Circuit break./Ext. trip_50BF			F87B_CU/Bay2_CB3p1/	Linea J1_52 J1/Ext. trip BZ/RxRele
► → F87B_J1/CB1/GAPC2/SPS	SPS	52J1/Manual close/Close command				
+ F87B_J1/CB1/GAPC2/SPS/Status value	SPC	52J1/Manual close/Close command			F87B_CU/Bay2_CB3p1/	Linea J1_52 J1/50EF 3pole/RxCls0
F87B_J2/CB1/LLN0/DataSet (12/100)					* · · · · · · · · · · · · · · · · · · ·	
F87B_JT1/CB1/LLN0/DataSet (12/100)					*	
F87B_CU/Bay1_CB3p1/LLN0/DataSet (10/100)	1				*	
F87B_CU/Bay1_CB3p1/PTRC1/Op	ACT	Acople JR_52JR/Trip logic/Operate				
+ F87B_CU/Bay1_CB3p1/PTRC1/Op/3-pole	SPC	Acople JR_52JR/Trip logic/Operate/			F87B_JR/CB1/PTRC1/Rx	52JR/Trip logic/52_Trp_JR
► → F87B_CU/ApplicationBusBarProt/USER1/SPS	SPS	Application BBP/Reset86/Reset 86JR				
→ F87B_CU/ApplicationBusBarProt/USER1/SPS/Sta	SPC	Application BBP/Reset86/Reset 86			F87B_JR/UD1/USER1/R	Reset 86/User-def. FB 1/Reset 86B
► → F87B_CU/Bay1/FB0_GAPC1/OutOfSv	SPS	Acople JR/General/Out of service				
→ F87B_CU/Bay1/FB0_GAPC1/OutOfSv/Status value	SPC	Acople JR/General/Out of service/S			F87B_JR/Application/LUN	Application/General/JR Fuera de S
→ F87B_CU/Bay1_CB3p1/ExTr_PSCH1/BlkStg	SPS	Acople JR_52JR/Ext. trip BZ/>Bloc				
→ F87B_CU/Bay1_CB3p1/ExTr_PSCH1/BlkStg/Stat	SPC	Acople JR_52JR/Ext. trip BZ/>Bloc			F87B_JR/CB1/XCBR1/Rx	52JR/Circuit break./JR 50BF Blogu
► → F87B_CU/Bay1_CB3p1/PTRC1/SPS	SPS	Acople JR_52JR/Trip logic/DDT_JX				
→ F87B_CU/Bay1_CB3p1/PTRC1/SPS/Status value	SPC	Acople JR_52JR/Trip logic/DDT_JX			F87B_JR/CB1/PTRC1/Rx	52JR/Trip logic/DDT_JR
F87B_CU/Bay2_CB3p1/LLN0/DataSet (10/100)					*	
F87B_CU/Bay3_CB3p1/LLN0/DataSet (10/100)						
F87B CU/Bav4 CB3p1/LLN0/DataSet (10/100)					*	

Nota: Fuente (Elaboración propia)

Las pruebas a este sistema, se realizaron siguiendo la metodología para una bahía digital, y se usó la CMC 356 que no soportaba *Sampled Values* y GOOSE. Se probó bajo el esquema de la Figura 148, en escenarios de operación normal y en transferencia de cada bahía (Figura 149).

Se inyectaron corrientes secundarias requeridas para la operación de cada función de protección habilitada. Algunas funciones de protección, requieren, que se activen ciertas señales digitales para operar, esto se realiza activando las entradas binarias (BI) necesarias en la *Merging Unit*, con la salida controlada del equipo de pruebas. Para evaluar la operación correcta del sistema diferencial de barras, en cada prueba, se evalúan las señales necesarias, activando las entradas binarias del equipo de pruebas con la respuesta de la salida binaria (BO) de la *Merging Unit*, que es el enlace físico de la Unidad Central.

Figura 148

Nota: Fuente (Elaboración propia)

Bahías en operación normal (Azul) y en transferencia (Verde)

A continuación, se muestra el detalle de las pruebas y los resultados obtenidos.

a) Pruebas de Medidas

Es la primera prueba que debe realizarse, aquí se verifica la correcta medición en magnitud, fase y relación de transformación de las corrientes, contrastando los valores inyectados con los valores que muestran las *Merging Units* y la Unidad Central.

Con el módulo OMICRON QuickCMC, se inyectaron las corrientes secundarias a las *Merging Units* de cada bahía. Las siguientes tablas muestran los resultados obtenidos.

Nota: Fuente (Elaboración propia)

Tabla 51

Prueba		Señal SV		Valor Inyectado (A sec)	Valor Calculado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa
	IA	Z	0°	1.00	2000.00	1996.00	-4.00	-0.20%
100/60/20%	IB	2	-120°	0.60	1200.00	1198.00	-2.00	-0.17%
	IC	2	120°	0.20	400.00	400.00	0.00	0.00%
	IN (3l0)	۷	-30°	0.69	1386.00	1384.00	-2.00	-0.14%
	IA	L	0°	1.00	2000.00	1996.00	-4.00	-0.20%
100%	IB	2	-120°	1.00	2000.00	1998.00	-2.00	-0.10%
	IC	Z	120°	1.00	2000.00	1998.00	-2.00	-0.10%

Medida de corrientes fases bahía J1

Nota: Fuente (Elaboración propia)

Tabla 52

Medida de corrientes fases bahía J2

Prueba		Señal SV		Valor Inyectado (A sec)	Valor Calculado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa
	IA	Z	0°	1.00	2000.00	1998.00	-2.00	-0.10%
100/60/20%	IB	2	-120°	0.60	1200.00	1200.00	0.00	0.00%
	IC	Z	120°	0.20	400.00	400.00	0.00	0.00%
	IN (3l0)	۷	-30°	0.69	1386.00	1387.00	1.00	0.07%
	IA	L	0°	1.00	2000.00	1998.00	-2.00	-0.10%
100%	IB	2	-120°	1.00	2000.00	2000.00	0.00	0.00%
	IC	Z	120°	1.00	2000.00	1999.00	-1.00	-0.05%

Nota: Fuente (Elaboración propia)

Tabla 53

Medida de corrientes fases bahía JT1

Prueba	Señal SV		Valor Inyectado (A sec)	Valor Calculado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa	
100/60/20%	IA	Z	0°	1.00	2000.00	1998.00	-2.00	-0.10%
	IB	Z	-120°	0.60	1200.00	1200.00	0.00	0.00%
	IC	Z	120°	0.20	400.00	401.00	1.00	0.25%
	IN (3I0)	Z	-30°	0.69	1386.00	1385.00	-1.00	-0.07%
100%	IA	Z	0°	1.00	2000.00	1999.00	-1.00	-0.05%
	IB	Z	-120°	1.00	2000.00	1999.00	-1.00	-0.05%
	IC	Z	120°	1.00	2000.00	2000.00	0.00	0.00%

Tabla 54

Prueba		Señal SV		Valor Inyectado (A sec)	Valor Calculado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa
	IA	۷	0°	1.00	2000.00	1998.00	-2.00	-0.10%
100/60/20%	IB	2	-120°	0.60	1200.00	1199.00	-1.00	-0.08%
	IC	2	120°	0.20	400.00	400.00	0.00	0.00%
	IN (3l0)	۷	-30°	0.69	1386.00	1388.00	2.00	0.14%
	IA	2	0°	1.00	2000.00	1998.00	-2.00	-0.10%
100%	IB	\angle	-120°	1.00	2000.00	1999.00	-1.00	-0.05%
	IC	۷	120°	1.00	2000.00	2000.00	0.00	0.00%

Medida de corrientes fases bahía JR

Nota: Fuente (Elaboración propia)

b) Pruebas de Funciones de Protección

Después de realizar las pruebas de medidas, se procede a realizar las pruebas de

las funciones de protección habilitadas, las cuales se pasan a detallar.

Diferencial de Barras (87B)

Para probar esta función, es necesario, inyectar corrientes secundarias a las

Merging Units para la operación de la función de protección.

Las pruebas realizadas se muestran en la siguiente tabla.

Tabla 55

Resumen de pruebas de la función 87B

Prueba			Detalle		
Corriente de arranque y	Fases	A-B	B-C	C-A	A-B-C
reposición	Tierra	A-N	B-N	C-N	
Característica de la curva	Fases	A-B	B-C	C-A	A-B-C
de operación	Tierra	A-N	B-N	C-N	
Dianara y na dianara	Fases	A-B	B-C	C-A	A-B-C
Disparo y no disparo	Tierra	A-N	B-N	C-N	
Tiampos do aparosián	Fases	A-B	B-C	C-A	A-B-C
hempos de operación	Tierra	A-N	B-N	C-N	
Estabilidad ante	Fases	A-B	B-C	C-A	A-B-C
fallas externas	Tierra	A-N	B-N	C-N	

Para la prueba se evaluarán las siguientes señales.

Tabla 56

	Fuente		Registro en CMC	
GOOSE	Salida Binaria (BO)	Descripción de Señal a Evaluar	356 (Bl)	
78895	GMI 195	Arranque 87B	Start 87B	
75565	0101065	Disparo 87B	Trip 87B	

Señales digitales evaluadas para 87B

Nota: Fuente (Elaboración propia)

Corriente de arranque y reposición

Se evalúan las señales digitales que emite el sistema diferencial de barras cuando se realiza una inyección a la *Merging Unit*, de corriente creciente y decreciente con el módulo OMICRON Ramping por cada bahía (Figura 150), y se registró los valores de corriente ante cada activación y desactivación de las señales digitales (Figura 151).

Figura 150

Nota: Fuente (Reporte de Pruebas)

Corriente de arranque 87B

Nota: Fuente (Elaboración propia)

Característica de la Curva de Operación

En el Test Object de la CMC 356, se ingresaron la relación de transformadores de corriente por cada par de bahías a probar (Figura 152), y los valores de ajuste de la curva de la función 87B de la Unidad Central 7SS85.

Figura 152

Datos de transformadores de corriente para 2 bahías

Winding/Leg Name:	Paño 1	Paño 2
Voltage:	230.00 kV	230.00 kV
Power:	796.74 MVA	796.74 MVA
Starpoint Grounding:	No	No
Delta-connected CT:	No	No
Winding/Leg Name:	Paño 1	Paño 2
CT Current Prim:	2000.00 A	2000.00 A
CT Current Sec:	1.00 A	1.00 A
CT Grounding:	tow. Prot. Obj.	tow. Prot. Obj.
Gnd CT Prim Current:	200.00 A	800.00 A
Gnd CT Sec Current:	1.00 A	1.00 A
Gnd CT Grounding:	n/a	n/a

Nota: Fuente (Reporte de Pruebas)

Con el módulo OMICRON Diff Operating Characteristic, se ubican los puntos de prueba de corriente de restricción por cada tipo de falla (Figura 153) y se realiza la inyección de corriente secundaria a cada par de *Merging Unit*, se evaluó la señal digital de disparo, con su activación, y se registró la corriente diferencial límite, entre la operación y no operación de la función (ver Tabla 57, Tabla 58, Figura 154 y Figura 155).

Figura 153

Puntos de prueba de característica de la curva 87B

Nota: Fuente (Reporte de Pruebas)

Tabla 57

Idiff vs Ibias de 87B operación normal J1 vs J2

Ibias	Resultado de Idiff (In)										
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C				
0.65	0.497	0.497	0.497	0.497	0.497	0.497	0.491				
0.83	0.497	0.505	0.497	0.505	0.505	0.505	0.497				
1.00	0.607	0.597	0.597	0.597	0.597	0.597	0.597				
1.50	0.897	0.897	0.897	0.897	0.897	0.897	0.897				
2.00	1.187	1.197	1.197	1.197	1.197	1.197	1.197				
2.50	1.487	1.497	1.497	1.497	1.497	1.497	1.497				
3.00	1.799	1.804	1.799	1.799	1.799	1.799	1.788				
3.50	2.092	2.098	2.092	2.098	2.086	2.098	2.086				
4.00	2.398	2.398	2.398	2.398	2.391	2.384	2.384				

Característica de la curva 87B operación normal

Tabla 58

Idiff vs Ibias de 87B operación en transferencia JR vs J1

Ibias	Resultado de Idiff (In)										
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C				
0.65	0.491	0.497	0.491	0.491	0.497	0.497	0.491				
0.83	0.497	0.505	0.505	0.497	0.505	0.505	0.497				
1.00	0.597	0.597	0.597	0.597	0.597	0.597	0.597				
1.50	0.897	0.897	0.897	0.897	0.897	0.897	0.897				
2.00	1.197	1.197	1.197	1.197	1.197	1.197	1.187				
2.50	1.497	1.497	1.497	1.497	1.497	1.497	1.497				
3.00	1.788	1.799	1.799	1.788	1.793	1.799	1.788				
3.50	2.098	2.105	2.098	2.096	2.086	2.098	2.086				
4.00	2.391	2.384	2.398	2.384	2.391	2.391	2.384				
	., .	1									

Nota: Fuente (Elaboración propia)

Característica de la curva 87B operación en transferencia

Nota: Fuente (Elaboración propia)

Disparo y no disparo

Con el módulo OMICRON Diff Operating Characteristic, se ubican los puntos de prueba por cada tipo de falla (Figura 156) y se realiza la inyección de corriente secundaria a cada par de *Merging Unit*, se evaluó la señal digital de disparo y se registró su tiempo de activación (ver Tabla 59, Tabla 60, Figura 157 y Figura 158).

Figura 156

Puntos de prueba para disparo y no disparo 87B

Nota: Fuente (Reporte de Pruebas)

Tabla 59

Ibias	ldiff		Resu	ultado de T	iempos de	Disparo (m	is)	
(In)	(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
0.80	0.600	26.50	27.00	26.20	26.70	26.80	26.90	23.60
0.80	0.400	N/T	N/T	N/T	N/T	N/T	N/T	N/T
1.10	0.800	26.60	27.20	26.90	26.40	26.40	27.00	23.90
1.30	0.600	N/T	N/T	N/T	N/T	N/T	N/T	N/T
1.50	1.100	26.80	26.60	26.90	26.10	26.60	26.40	11.30
1.80	0.900	N/T	N/T	N/T	N/T	N/T	N/T	N/T
1.90	1.400	27.00	26.70	26.90	26.20	26.50	26.40	11.50
2.20	1.200	N/T	N/T	N/T	N/T	N/T	N/T	N/T
2.30	1.600	26.60	27.00	26.30	26.70	27.20	26.60	11.20
2.70	1.500	N/T	N/T	N/T	N/T	N/T	N/T	N/T
2.70	1.800	13.00	12.90	27.30	27.00	27.30	13.20	11.00
3.10	1.700	N/T	N/T	N/T	N/T	N/T	N/T	N/T
3.00	2.000	12.70	13.40	13.10	13.00	13.10	13.00	11.10
3.50	1.900	N/T	N/T	N/T	N/T	N/T	N/T	N/T
3.50	2.300	12.90	12.20	13.10	12.30	12.40	13.00	11.30

Tiempos para disparo y no disparo 87B operación normal J1 vs J2

Nota: Fuente (Elaboración propia)

Figura 157

Disparo y no disparo 87B en barra principal

Nota: Fuente (Elaboración propia)

Tabla 60

Ibias	ldiff	Resultado de Tiempos de Disparo (ms)									
(In)	(ln) (ln)		B-N	C-N	A-B	B-C	C-A	A-B-C			
0.80	0.600	25.50	25.20	25.30	25.80	25.80	25.20	22.50			
0.80	0.400	N/T	N/T	N/T	N/T	N/T	N/T	N/T			
1.10	0.800	25.30	25.40	25.30	25.50	25.30	25.30	22.10			
1.30	0.600	N/T	N/T	N/T	N/T	N/T	N/T	N/T			
1.50	1.100	25.80	25.20	25.70	25.20	25.90	25.70	10.40			
1.80	0.900	N/T	N/T	N/T	N/T	N/T	N/T	N/T			
1.90	1.400	25.60	25.20	25.60	25.90	25.70	25.50	10.80			
2.20	1.200	N/T	N/T	N/T	N/T	N/T	N/T	N/T			
2.30	1.600	25.80	25.20	25.50	25.90	25.30	25.60	10.00			
2.70	1.500	N/T	N/T	N/T	N/T	N/T	N/T	N/T			
2.70	1.800	11.60	11.50	26.10	25.90	26.20	11.80	10.50			
3.10	1.700	N/T	N/T	N/T	N/T	N/T	N/T	N/T			
3.00	2.000	12.00	12.00	11.40	12.20	11.30	12.10	10.20			
3.50	1.900	N/T	N/T	N/T	N/T	N/T	N/T	N/T			
3.50	2.300	11.40	11.50	11.80	11.20	11.50	11.80	10.60			

Tiempos para disparo y no disparo 87B en barra de transferencia

Nota: Fuente (Elaboración propia)

Figura 158

Disparo y no disparo 87B en barra de transferencia

Nota: Fuente (Elaboración propia)

Tiempos de Operación

Con el módulo OMICRON Diff Trip Characteristic, se ubican los puntos de prueba por cada tipo de falla (Figura 159) y se realiza la inyección de corriente secundaria a cada par de Merging Unit, se evaluó la señal digital de disparo y se registró su tiempo de activación (ver Tabla 61, Tabla 62, Figura 160 y Figura 161).

Figura 159

Puntos de prueba para tiempos de operación 87B

Nota: Fuente (Elaboración propia)

Tabla 61

Tiempos de operación 87B en barra principal

-	lbias	ldiff	Resultado de Tiempos de Disparo (ms)								
_	(In)	(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C		
	0.60	0.60	26.30	27.20	26.40	26.50	27.00	26.70	23.90		
_	1.00	1.00	25.60	25.80	25.70	25.80	25.70	25.90	23.90		
	1.50	1.50	25.80	25.50	25.50	26.00	25.60	25.40	23.00		
-	2.50	2.50	25.70	26.40	26.20	26.20	26.10	25.50	11.20		
	/_										

Tiempos de operación 87B en barra principal

Nota: Fuente (Elaboración propia)

Tabla 62

Tiempos de operación 87B en barra de transferencia

	Ibias	ldiff	Resultado de Tiempos de Disparo (ms)								
_	(In)	(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C		
_	0.60	0.60	25.80	24.90	25.70	25.40	25.60	25.30	22.50		
_	1.00	1.00	25.10	24.20	25.10	24.50	25.20	24.50	22.00		
_	1.50	1.50	24.90	25.10	24.40	25.20	24.50	25.10	21.70		
_	2.50	2.50	24.60	25.10	24.80	24.60	24.70	24.70	10.20		

Nota: Fuente (Elaboración propia)

Figura 161

Tiempos de operación 87B en barra de transferencia

Nota: Fuente (Elaboración propia)

Estabilidad ante fallas externas

Con el módulo OMICRON QuickCMC, se inyectan corrientes por cada fase con una sola fuente de la CMC 356, de tal forma que sea una corriente pasante, es decir, que tengan la misma magnitud, pero desfasadas 180° (Figura 162). Para las bifásicas y trifásicas mantienen el mismo criterio, pero aquí se hace uso de las dos fuentes de corriente de la CMC 356 (Figura 163). En ambos casos, se evalúan la señal digital de disparo (que no se active durante 1 minuto) y se registra la corriente diferencial medida por la Unidad Central. (ver Tabla 63, Tabla 64, Figura 164 y Figura 165).

Figura 162

Esquema de prueba de estabilidad 87B, fallas monofásicas

Nota: Fuente (Elaboración propia)

Figura 163

Esquema de prueba de estabilidad 87B, fallas bifásicas y trifásicas

Nota: Fuente (Elaboración propia)

Tabla 63

Idiff ante	fallas	externas	87R er	n harra	nrincinal
ium ante	ialias	externas	010 61	ndina	principar

Ibias	Resultado de Idiff (In)							
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C	
2.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Nota: Fuente (Elaboración propia)

Figura 164

Nota: Fuente (Elaboración propia)

Tabla 64

Idiff ante fallas externas 87B en barra de transferencia

Ibias			Result				
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
2.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Fallas externas 87B en barra de transferencia

Nota: Fuente (Elaboración propia)

Zona muerta (End fault)

La función requiere que el interruptor este abierto, y que ocurra una falla entre el interruptor abierto y el transformador de corriente. Este evento, con las otras bahías en servicio, no debe generar falsos disparos a nuestro sistema diferencial de barras, solo debe emitir un envío DDT a su extremo remoto.

En la prueba, con el módulo OMICRON State Sequencer, primero se establece una estabilidad monofásica en las bahías en servicio, y se inyecta una corriente secundaria de falla a la bahía con interruptor abierto. Se evaluó la señal digital de disparo y se registró su tiempo de activación (ver Tabla 65 y Figura 168).

Prueba End Fault de J1

Nota: Fuente (Reporte de Pruebas)

Figura 167

Indicaciones de prueba End Fault de J1

Dn	Dnline access ► SIPROTEC 5 devices connected via USB ► F87B_CU (Assigned) ► Indications (Process)											
ł.	🧧 Create snapshot 🗙 Clear list 🖾 🕫 💷											
9	The values are displayed from normal operation.											
	Time stamp		Relative time		Indication		Value		Quality			
	(AII)	•	(All)	•	(All)	•	(All)	•	(All)			
	11.01.2022 14:18:45.72	2	00:00:05:57	·	Recording:Fault recorder:Control:Record made		off		good (process)			
	11.01.2022 14:18:45.52	3	00:00:05:57	·	Recording:Fault recorder:Control:Record made		on		good (process)			
	11.01.2022 14:18:43.33	2	00:00:05:55	j	Recording:Fault recorder:Control:Recording started		off		good (process)			
	11.01.2022 14:18:42.85	2	00:00:05:54	ł	Linea J1:52 J1:50EF 3pole:Operate		off		good (process)			
	11.01.2022 14:18:42.85	2	00:00:05:54	ł	Linea J1:52 J1:Trip logic:DTT_J1		off		good (process)			
	11.01.2022 14:18:42.83	6	00:00:05:54	ł	Linea J1:52 J1:50EF 3pole:Pickup		off		good (process)			
	11.01.2022 14:18:42.83	6	00:00:05:54	ł	Linea J1:52 J1:50EF 3pole:Operate delay expired		off		good (process)			
	11.01.2022 14:18:42.75	6	00:00:05:54	ł	Recording:Fault recorder:Control:Recording started		on		good (process)			
	11.01.2022 14:18:42.75	6	00:00:05:54	ł	Recording:Fault recorder:Control:Fault number		269		good (process)			
	11.01.2022 14:18:42.75	6	00:00:05:54	ł	Linea J1:52 J1:50EF 3pole:Pickup		on		good (process)			
	11.01.2022 14:18:42.75	6	00:00:05:54	ł	Linea J1:52 J1:50EF 3pole:Operate delay expired		on		good (process)			
	11.01.2022 14:18:42.75	6	00:00:05:54	ł	Linea J1:52 J1:Trip logic:DTT_J1		on		good (process)			
	11.01.2022 14:18:42.75	6	00:00:05:54	ł	Linea J1:52 J1:50EF 3pole:Operate		on		good (process)			
	11.01.2022 14:12:48.07	7	00:00:00:00)	Acople JR:52JR:Circuit break.:CB open hours		2		good (process)			

Nota: Fuente (Elaboración propia)
Tiempos de operación End Fault

Punto Prueba	Resultado de Tiempos de Disparo (ms)
J1	27.80
J2	29.80
JT1	32.60
JR	27.20

Nota: Fuente (Elaboración propia)

Figura 168

Tiempos de operación End Fault

4.2.3 Bahía convencional Línea a SE Cardones

La bahía convencional de línea J1 (Figura 169), está compuesta, de manera simplificada, por un relé de protección en nivel 1 (RED670).

Figura 169

Diagrama Unifilar de Protección de la línea a SE Cardones

Se probó bajo el siguiente esquema (Figura 170), para lo cual se inyectaron corrientes y tensiones secundarias requeridas para la operación de cada función de protección habilitada. Algunas funciones de protección, requieren, que se activen ciertas señales digitales para operar, esto se realiza activando las entradas binarias (BI) necesarias del relé de protección con la salida controlada del equipo de pruebas. Para evaluar la operación correcta del relé de protección, en cada prueba se evalúan las señales necesarias, activando las entradas binarias del equipo de pruebas de la salida binaria (BO) del relé bajo prueba.

Figura 170

Esquema de prueba implementado para la protección de línea

A continuación, se muestra el detalle de las pruebas y los resultados obtenidos.

a) Prueba de medidas

Es la primera prueba que debe realizarse, aquí se verifica la correcta medición en magnitud, fase y relación de transformación de las corrientes y tensiones, contrastando los valores inyectados con los valores que muestran los relés de protección.

Con el módulo OMICRON QuickCMC, se inyectan las corrientes y tensiones secundarias al relé de protección. Las siguientes tablas muestran los resultados obtenidos.

Tabla 66

Prueba		Señal		Valor Inyectado (A sec)	Valor Calculado (A Prim)	Valor Medido (A Prim)	Desviación Absoluta (A Prim)	Desviación Relativa
	IA	Z	0°	1.00	800.00	800.35	0.35	0.04%
	IB	Z	-120°	0.60	480.00	480.07	0.07	0.01%
100/60/20%	IC	Z	120°	0.20	160.00	159.63	-0.37	-0.23%
	IN (3l0)	Z	-30°	0.69	554.40	554.53	0.13	0.02%
	IA	Z	0°	1.00	800.00	800.33	0.33	0.04%
100%	IB	Z	-120°	1.00	800.00	800.00	0.00	0.00%
	IC	Z	120°	1.00	800.00	800.36	0.36	0.05%

Medida de corrientes fases

Nota: Fuente (Elaboración propia)

Tabla 67

Medida de tensiones fases

Prueba	Señal			Valor Inyectado (V sec)	Valor Calculado (kV Prim)	Valor Medido (kV Prim)	Desviación Absoluta (kV Prim)	Desviación Relativa
	VA	Z	0°	66.40	132.79	132.89	0.10	0.07%
	VB	Z	-120°	39.84	79.67	79.75	0.07	0.09%
100/60/20%	VC	Z	120°	13.28	26.56	26.58	0.02	0.09%
	VN (3V0)	Z	-30°	46.01	92.02	92.06	0.03	0.04%
	VA	Z	0°	66.40	132.79	132.91	0.12	0.09%
100%	VB	Z	-120°	66.40	132.79	132.90	0.11	0.08%
	VC	۷	120°	66.40	132.79	132.93	0.14	0.11%

Nota: Fuente (Elaboración propia)

Tabla 68

Medida de tensión de barra

Prueba	Señal		eñal	Valor Inyectado (V sec)	Valor Calculado (kV Prim)	Valor Medido (kV Prim)	Desviación Absoluta (kV Prim)	Desviación Relativa
100%	VB	Z	-120°	66.40	132.79	132.96	0.17	0.13%

b) Funciones de Protección

Después de realizar las pruebas de medidas, se procede a realizar las pruebas de las funciones de protección habilitadas, las cuales se pasan a detallar.

Función Diferencial de Línea (87L)

Para probar esta función, es necesario, tener un relé de protección disponible en cada extremo de la línea. Se debe verificar que se encuentren enlazados y comunicados por el canal de fibra óptica dedicado, que poseen para esta función de protección (Figura 171). Esto es indispensable para el intercambio de señales de corriente en magnitud y ángulo entre ambos relés, y la operación de la función de protección.

Figura 171

Enlace de fibra óptica para la función 87L

Nota: Fuente (Elaboración propia)

Las pruebas realizadas se muestran en la siguiente tabla.

Tabla 69

Resumen de pruebas de la función 87L

Prueba			Detalle		
Corriente de arranque y	Fases	A-B	B-C	C-A	A-B-C
reposición	Tierra	A-N	B-N	C-N	
Característica de la curva	Fases	A-B	B-C	C-A	A-B-C
de operación	Tierra	A-N	B-N	C-N	
Diapara y na diapara	Fases	A-B	B-C	C-A	A-B-C
Disparo y no disparo	Tierra	A-N	B-N	C-N	
Tiompos do oporosión	Fases	A-B	B-C	C-A	A-B-C
nempos de operación	Tierra	A-N	B-N	C-N	
Estabilidad ante	Fases	A-B	B-C	C-A	A-B-C
fallas externas	Tierra	A-N	B-N	C-N	

Para la prueba se evaluarán las siguientes señales.

Tabla 70

Señales digitales evaluadas para 87L	

Fuente (BO)	Descripción de Señal a Evaluar	Registro en CMC 356 (BI)
RED670	Disparo fase A por 87L extremo local	Local_Trip A
	Disparo fase B por 87L extremo local	Local_Trip B
	Disparo fase C por 87L extremo local	Local_Trip C
	Arranque general 87L	Start
	Disparo fase A por 87L extremo local	Remote_Trip A
	Disparo fase B por 87L extremo local	Remote_Trip B
	Disparo fase C por 87L extremo local	Remote_Trip C

Nota: Fuente (Elaboración propia)

Corriente de arranque y reposición

Se evalúan las señales digitales que emite el relé de protección cuando se realiza una inyección en cada extremo de la línea, de corriente creciente y decreciente con el módulo OMICRON Ramping (Figura 172), y se registró los valores de corriente ante cada activación y desactivación de las señales digitales (Figura 173).

Figura 172

Prueba de corriente de arranque 87L

Nota: Fuente (Reporte de Pruebas)

Corriente de arranque 87L

Nota: Fuente (Elaboración propia)

Característica de la Curva de Operación

En el Test Object de la CMC 356, se ingresaron la relación de transformadores de corriente de ambos extremos de la línea (Figura 174) y los valores de ajuste de la curva de la función 87L del relé de protección.

Figura 174

Datos de transformadores de corriente en extremos de la línea

Winding/Leg Name:	LOCAL	REMOTO
CT Current Prim:	800.00 A	1000.00 A
CT Current Sec:	1.00 A	1.00 A
CT Grounding:	tow. Prot. Obj.	tow. Prot. Obj.
Gnd CT Prim Current:	200.00 A	800.00 A
Gnd CT Sec Current:	1.00 A	1.00 A
Gnd CT Grounding:	n/a	n/a

Nota: Fuente (Reporte de Pruebas)

Con el módulo OMICRON Diff Operating Characteristic, se ubican los puntos de prueba de corriente de restricción por cada tipo de falla y se procede a la inyección de corriente secundaria en ambos extremos de la línea (Figura 175), se evaluó la señal digital de disparo y se registró su tiempo de activación (ver Tabla 71 y Figura 176).

Prueba de característica de la curva 87L

Nota: Fuente (Reporte de Pruebas)

Tabla 71

Idiff vs Ibias de 87L

Ibias	Resultado de Idiff (In)									
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C			
0.50	0.197	0.197	0.197	0.197	0.197	0.197	0.197			
1.00	0.197	0.197	0.197	0.197	0.197	0.197	0.191			
1.25	0.197	0.197	0.197	0.197	0.197	0.197	0.191			
1.80	0.407	0.398	0.398	0.389	0.389	0.398	0.407			
2.50	0.661	0.661	0.661	0.661	0.652	0.669	0.678			
3.00	0.849	0.859	0.849	0.849	0.859	0.859	0.868			
3.50	1.235	1.228	1.235	1.222	1.242	1.222	1.249			
4.00	1.613	1.613	1.613	1.605	1.613	1.613	1.620			
5.00	2.367	2.376	2.376	2,385	2.376	2.385	2.376			

Característica de la curva 87L

Nota: Fuente (Elaboración propia)

Disparo y no disparo

Con el módulo OMICRON Diff Operating Characteristic, se ubican los puntos de prueba por cada tipo de falla y se realiza la inyección de corriente en ambos extremos de la línea (Figura 177), se evaluó la señal digital de disparo y se registró su tiempo de activación (ver Tabla 72 y Figura 178).

Figura 177

Puntos de prueba para disparo y no disparo 87L

Nota: Fuente (Reporte de Pruebas)

Ibias	ldiff		Resu	esultado de Tiempos de Disparo (ms)					
(In)	(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C	
0.70	0.300	43.80	41.50	47.30	44.00	41.60	43.10	40.00	
0.70	0.100	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
1.20	0.300	45.10	42.90	43.00	43.60	43.60	43.20	45.80	
1.40	0.100	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
1.70	0.500	44.50	43.50	48.10	43.50	44.50	43.10	45.40	
2.10	0.400	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
2.30	0.700	43.80	43.50	46.80	46.40	45.50	42.70	40.50	
2.60	0.600	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
2.80	1.000	44.10	44.70	43.20	43.50	46.60	43.10	42.00	
3.10	0.800	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
3.20	1.300	46.40	41.80	41.70	42.80	46.10	43.80	44.60	
3.60	1.200	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
3.60	1.600	43.30	45.90	43.80	45.60	45.50	43.50	46.40	
4.10	1.600	N/T	N/T	N/T	N/T	N/T	N/T	N/T	
4.00	1.900	45.90	44.70	45.00	48.20	43.20	44.40	40.80	

Tiempos para disparo y no disparo 87L

Nota: Fuente (Elaboración propia)

Figura 178

Disparo y no disparo 87L

Nota: Fuente (Elaboración propia)

Tiempos de operación

Con el módulo OMICRON Diff Trip Characteristic, se ubican los puntos de prueba por cada tipo de falla y se realiza la inyección de corriente en ambos extremos de la línea (Figura 179), se evaluó la señal digital de disparo y se registró su tiempo de activación (ver Tabla 73 y Figura 180).

Figura 179

Puntos de prueba para tiempos de operación 87L

Nota: Fuente (Elaboración propia)

Tabla 73

Tiempos de operación 87L

	Ibias	ldiff	diff Resultado de Tiempos de Disparo (ms)						
	(In)	(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
_	0.25	0.25	44.50	44.10	42.90	43.30	42.00	42.20	40.20
_	0.50	0.50	47.70	47.20	42.80	48.20	42.70	43.80	42.40
_	1.00	1.00	42.20	43.10	43.40	47.70	45.00	46.90	46.20
_	2.00	2.00	43.10	43.30	44.10	43.70	43.20	44.40	41.20

Tiempos de operación 87L

Nota: Fuente (Elaboración propia)

Estabilidad ante fallas externas

Con el módulo OMICRON Diff Configuration, se elige la magnitud de la corriente de restricción y se realiza la inyección de corriente en ambos extremos de la línea, se evaluó la señal digital de disparo (que no se active durante 1 minuto) y se registró la corriente diferencial medida. (ver Tabla 74 y Figura 181).

Tabla 74

Fallas externas 87L

Ibias			Result	ado de Idif	f (In)		
(In)	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
0.50	0.004	0.003	0.001	0.003	0.001	0.002	0.005
1.00	0.009	0.006	0.003	0.005	0.004	0.006	0.007
2.00	0.005	0.005	0.002	0.003	0.004	0.007	0.005

Fallas externas 87L

Nota: Fuente (Elaboración propia)

Función Distancia (21/21N)

Para probar está función, primeramente, se requiere importar en el Test Object de la CMC 356, el archivo.rio (que contiene todos los parámetros ajustados de la función) procedente de la configuración del relé de protección.

Las pruebas realizadas se muestran en la siguiente tabla.

Tabla 75

Resumen de pruebas de la función 21/21N

Prueba			Detalle		
Característica de la zona	Fases	A-B	B-C	C-A	A-B-C
de operación	Tierra	A-N	B-N	C-N	
Disparo, no disparo y	Fases	A-B	B-C	C-A	A-B-C
tiempos de operación	Tierra	A-N	B-N	C-N	

Nota: Fuente (Elaboración propia)

Para la prueba se evaluarán las siguientes señales.

Tabla 76

Señales digitales evaluadas para 21/21N

Fuente (BO)	Descripción de Señal a Evaluar	Registro en CMC 356 (BI)
	Disparo fase A	Trip A
RED670	Disparo fase B	Trip B
	Disparo fase C	Trip C

Característica de la zona de operación

Con el módulo OMICRON Advanced Distance, se trazan segmentos que deben cruzarse con los límites de las zonas de la función, esto se realizó por cada tipo de falla. La prueba es automática, evalúa la señal digital de disparo con cada activación y tiempo de las zonas. (Ver Figura 182 y Figura 183).

Figura 182

Característica de la curva 21 fases

Nota: Fuente (Reporte de pruebas)

Figura 183

Característica de la curva 21N tierra

Nota: Fuente (Reporte de pruebas)

Disparo, no disparo y tiempos de operación

Con el módulo OMICRON Advanced Distance, se ubican los puntos de prueba por cada tipo de falla (Figura 184 y Figura 185) y se realiza la inyección de corriente y tensión secundaria al relé de protección, se evaluó la señal digital de disparo y se registró su tiempo de activación (ver Tabla 77 y Figura 186).

Figura 184

Puntos de prueba para disparo, no disparo y tiempos 21 fases

Nota: Fuente (Reporte de pruebas)

Figura 185

Puntos de prueba para disparo, no disparo y tiempos 21N tierra

Nota: Fuente (Reporte de pruebas)

7	Punto	nto Resultado de Tiempos de					sparo (ms)	
Zona	Prueba	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
Zona1	1F	23.80	25.10	25.80				
	2F				28.40	24.60	25.80	
	3F							23.90
Zona 2	1F	627.60	628.30	630.90				
	2F				625.40	630.20	629.50	
	3F							624.30
Zona 3	1F	1035.00	1029.00	1032.00				
	2F				1030.00	1030.00	1033.00	
	3F							1029.00

Tiempos de operación 21/21N

Nota: Fuente (Elaboración propia)

Figura 186

Tiempos de operación 21/21N

Nota: Fuente (Elaboración propia)

Localización de Fallas (FLO)

Con el módulo OMICRON Advanced Distance, se ubican los puntos de prueba, de acuerdo al porcentaje que se quiere medir, por cada tipo de falla. Se realiza la inyección de corriente y tensión secundaria al relé de protección, se evaluó la señal digital de disparo y se registró el porcentaje calculado de la distancia de la falla por el relé de protección (ver Tabla 78 y Figura 187).

7	Punto	Resultado de Localización de Falla (%)						
Zona	Prueba	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
А	10%	10.00						
В	50%		50.20					
С	100%			100.00				
A-B	10%				10.10			
B-C	50%					50.10		
C-A	100%						100.00	
	10%							9.90
A-B-C	50%							50.00
_	100%							100.00

Porcentaje de distancia de falla calculada

Nota: Fuente (Elaboración propia)

Figura 187

Localización de falla

Nota: Fuente (Elaboración propia)

Función bloqueo por Oscilación de Potencia (68)

Con el módulo OMICRON Ramping, se inyecta una oscilación de potencia, variando simultáneamente la corriente y la tensión. Se evaluó que la señal digital de bloqueo se active, y no se emitió algún disparo.

Prueba y resultado de bloqueo por oscilación de potencia 68

Nota: Fuente (Reporte de pruebas)

Función Sobrecorriente Direccional a Tierra (67N)

Para probar esta función se requiere inyectar las corrientes y tensiones secundarias para fallas a tierra, al relé de protección. Además, el desfasaje de la corriente y la tensión que toma como referencia la función, se debe encontrar dentro del valor de ajuste para su operación.

Tabla 79

Resumen de pruebas de la función 67N

Prueba		Deta	lle	
Corriente de arranque y reposición	Tierra	A-N	B-N	C-N
Búsqueda de ángulo	Tierra	A-N	B-N	C-N
Característica de la curva de operación	Tierra	A-N	B-N	C-N

Nota: Fuente (Elaboración propia)

Para la prueba se evaluarán las siguientes señales.

Fuente (BO)	Descripción de Señal a Evaluar	Registro en CMC 356 (BI)
RED670	Arranque general	Start
	Disparo fase A	Trip A
	Disparo fase B	Trip B
	Disparo fase C	Trip C

Señales digitales evaluadas para 67N

Nota: Fuente (Elaboración propia)

Corriente de arranque y reposición

Con el módulo OMICRON Ramping, se inyecta la corriente secundaria creciente y decreciente (Figura 189), manteniendo fija una tensión de falla. Y se registró los valores de corriente ante cada activación y desactivación de las señales digitales (Figura 190).

Figura 189

Nota: Fuente (Reporte de pruebas)

Corriente de arranque 67N

Nota: Fuente (Elaboración propia)

Búsqueda de ángulo

Para verificar el rango de actuación angular, se utiliza el módulo OMICRON Ramping, en el cual se varía el ángulo de la corriente, desde 180° hacia -180°, manteniendo fija la magnitud de corriente y tensión de falla. Se registró los valores del ángulo, ante la activación y desactivación de la señal digital de arranque.

Figura 191

Nota: Fuente (Reporte de pruebas)

IED						
Señal	Angulo Inicio (°)	Angulo Final (°)	Angulo Inicio (°)	Angulo Final (°)	Desviación Absoluta (°)	Desviación Relativa
I A, IB, IC	-155.0	20.0	-154.0	19.0	-2.00	-1.14%

Ángulo de actuación 67N

Nota: Fuente (Elaboración propia)

Figura 192

Ángulo de actuación 67N

Nota: Fuente (Elaboración propia)

Característica de la Curva de Operación

En el Test Object de la CMC 356, se ingresaron los valores de ajuste de la curva

de la función 67N del relé de protección.

Figura 193

Valores de ajuste de la función 67N

Nota: Fuente (Reporte de pruebas)

Con el módulo OMICRON Overcurrent, se ubican los puntos de prueba de corriente por cada tipo de falla. Se inyecta la corriente secundaria al relé de protección, se evaluó la señal digital de disparo y se registró su tiempo de activación. Y también la no activación, cuando se encuentre fuera del rango de actuación angular.

Figura 194

Nota: Fuente (Reporte de pruebas)

Figura 195

Fase B-N curva 67N, dentro y fuera del ángulo de actuación

Nota: Fuente (Reporte de pruebas)

Fase C-N curva 67N, dentro y fuera del ángulo de actuación

Nota: Fuente (Reporte de pruebas)

Función Teleprotección

La función de teleprotección, para poder emitir una orden de disparo, procesa las señales de emisión y recepción de funciones específicas. Justamente, son las señales digitales de recepción las que se debe simular (Tabla 83), e inyectar una falla local para su operación.

Las pruebas realizadas a los diferentes esquemas, se muestran en la siguiente tabla.

Tabla 82

Resumen de pruebas de la función teleprotección

Prueba			Detalle		
	Fases	A-B	B-C	C-A	A-B-C
Esquema POTT	Tierra	A-N	B-N	C-N	
Esquema 67NCD	Tierra	A-N	B-N	C-N	
Esquema DDT	Fases				A-B-C
Esquema WEI	Fases				A-B-C

Fuente (BO)	Descripción de Señal a Simulada	RED670 (BI)
CMC 356	Recepción 85-21	RX 85A
	Recepción 85-67N	RX 85C
	Recepción DDT	RX 85D
	Posición de interruptor fase A cerrado	IN_Closed L1
	Posición de interruptor fase B cerrado	IN_Closed L2
	Posición de interruptor fase C cerrado	IN_Closed L3

Señales digitales simuladas con CMC 356 para teleprotección

Nota: Fuente (Elaboración propia)

Para las pruebas se evaluarán las siguientes señales.

Tabla 84

Señales digitales evaluadas para teleprotección

Fuente (BO)	Descripción de Señal a Evaluar	Registro en CMC 356 (BI)
RED670	Envió 85-21	TX 85A
	Envío 85-67N	TX 85C
	Disparo fase A	Trip A
	Disparo fase B	Trip B
	Disparo fase C	Trip C
	Bloqueo ECHO	ECHO_Block
	Envío ECHO	ECHO
	Disparo WEI	Trip WEI

Nota: Fuente (Elaboración propia)

Esquema POTT

Con el módulo OMICRON State Sequencer, se inyectó valores de corriente y tensión de falla para el arranque de la zona 2 de la función 21/21N, para cada tipo de falla, y al mismo tiempo se simuló la recepción 85-21. Se verificó el envío 85-21, se evaluó la señal digital de disparo y se registró su tiempo de activación (Ver Tabla 85 y Figura 201).

Prueba de esquema POTT

Nota: Fuente (Reporte de pruebas)

Esquema 67NCD

Con el módulo OMICRON State Sequencer, se inyectó valores de corriente y tensión de falla para el arranque de la función 67N, para cada tipo de falla, y al mismo tiempo se simuló la recepción 85-67N. Se verificó el envío 85-67N, se evaluó la señal digital de disparo y se registró su tiempo de activación (Ver Tabla 85 y Figura 201).

Prueba de esquema 67NCD

Nota: Fuente (Reporte de pruebas)

Esquema DDT

Con el módulo OMICRON State Sequencer, se simuló la recepción DDT. Se evaluó la señal digital de disparo y se registró su tiempo de activación (Ver Tabla 85 y Figura 201).

Prueba de esquema DDT

Nota: Fuente (Reporte de pruebas)

Esquema WEI

Con el módulo OMICRON State Sequencer, se inyectó valores de corriente y tensión de falla para fuente débil (baja de tensión y muy baja corriente), y al mismo tiempo se simuló la recepción 85-21. Se verificó el envío ECHO, se evaluó la señal digital de disparo y se registró su tiempo de activación (Ver Tabla 85 y Figura 201).

Prueba de esquema WEI

Nota: Fuente (Reporte de pruebas)

A continuación, se muestra el registro general y resultados obtenidos

Esquema	Punto		Resu	Resultado de Tiempos de Disparo (ms)				
	Prueba	A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
	1F	23.20	23.30	26.10				
POTT	2F				24.90	26.00	24.90	
_	3F							23.60
67NCD	1F	80.40	81.00	84.20				
DDT	3F							15.80
WEI	3F							33.60

Tiempos de operación de esquemas de teleprotección

Nota: Fuente (Elaboración propia)

Figura 201

Tiempos de operación de esquemas de teleprotección

Función Cierre Sobre Falla (SOTF)

Con el módulo OMICRON State Sequencer, primero, se simuló el comando de cierre del interruptor, y se inyectó valores de corriente y tensión de falla para el arranque de la zona 2 de la función 21/21N, para cada tipo de falla (Figura 202). Se evaluó la señal digital de disparo y se registró su tiempo de activación (Ver Tabla 86 y Figura 203).

Figura 202

Prueba de cierre sobre falla SOTF

Nota: Fuente (Reporte de pruebas)

Tiempos de	operación	SOTF
------------	-----------	------

Inicio	Punto Prueba	Resultado de Tiempos de Disparo (ms)						
		A-N	B-N	C-N	A-B	B-C	C-A	A-B-C
Arranque Zona 2	ΙA	88.10						
	ΙB		85.80					
	IC			84.30				
	I A-B				83.90			
	I B-C					86.50		
	I C-A						87.30	
	I A-B-C							83.80

Nota: Fuente (Elaboración propia)

Figura 203

Tiempos de operación SOTF

Nota: Fuente (Elaboración propia)

Función Recierre (79)

La función de recierre, para poder emitir un comando de cierre al interruptor, primero, se debe seleccionar ante qué tipos de disparo iniciará el ciclo de recierre, monopolar, tripolar o ambos (el ajuste en este caso es solo monofásico). En la configuración del relé de protección se especificó, que las funciones de protección 87L, 21N en zona 1, POTT y 67NCD emitirán la orden de disparo monopolar sobre la fase en falla. La función no siempre cumple su objetivo, puede bloquearse ante ciertos eventos. Se prueban los casos más comunes que se presentan, tales como: una falla evolutiva, fallas monofásicas que son detectadas fuera de la zona 1 y por otras funciones de protección, fallas bifásicas y trifásicas, cierre sobre falla y por la indisponibilidad del interruptor.

Tanto la operación como el bloqueo de la función recierre, fueron probados de acuerdo a la siguiente tabla.

Tabla 87

Resumen de pruebas de la función 79

Prueba					
Operación de comando recierre	Tierra	A-N	B-N	C-N	
Casos de bloqueo	Falla evolutiva	Falla monofásica en zona 2 de 21N	Falla bifásica en zona 1 de 21	Falla con SOFT	Falla con interruptor indisponible

Nota: Fuente (Elaboración propia)

Para las pruebas se simularon ciertas señales, para brindarle las condiciones que

requiere la función.

Tabla 88

Señales digitales simuladas con CMC 356 para 79

Fuente (BO)	Descripción de Señal a Simulada	RED670 (BI)	
CMC 356	Recepción 85-21 o 85-67N	RX 85A/85C	
	Interruptor indisponible	IN Blocked	
	Posición de interruptor fase A cerrado	IN_Closed L1	
	Posición de interruptor fase B cerrado	IN_Closed L2	
	Posición de interruptor fase C cerrado	IN_Closed L3	

Nota: Fuente (Elaboración propia)

Para las pruebas se evalúan las siguientes señales.

Fuente (BO)	Descripción de Señal a Evaluar	Registro en CMC 356 (BI)	
RED670	Disparo cierre sobre falla	Trip SOTF	
	Disparo fase A	Trip A	
	Disparo fase B	Trip B	
	Disparo fase C	Trip C	
	Recierre habilitado	79 On	
	Ciclo de recirre en progreso	79 in Progress	
	Emisión de comando recierre	Cmd Close	

Señales digitales evaluadas para teleprotección

Nota: Fuente (Elaboración propia)

Se realizaron las pruebas de operación y bloqueo de la función recierre con el módulo OMICRON State Sequencer, y se tomaron los registros de tiempos de disparos y emisión de comando recierre, las cuales se muestran a continuación.

Operación de comando recierre

Figura 204

Nota: Fuente (Reporte de pruebas)

Prueba de operación de comando recierre 79 con disparo 21N zona 1

Nota: Fuente (Reporte de pruebas)

Figura 206

Prueba de operación de comando recierre 79 con disparo POTT

Nota: Fuente (Reporte de pruebas)

Prueba de operación de comando recierre 79 con disparo 67NCD

Nota: Fuente (Reporte de pruebas)

Tabla 90

Tiempos de disparo y comando de recierre

Esquema	Punto Prueba	Resultado	Cmd Cierre			
•		A-N	B-N	C-N	A-B-C	(ms)
87L	А	43.40				710.50
	В		48.20			720.10
	С			46.60		713.20
21 zona 1	А	25.70				719.20
	В		25.70			714.00
	С			26.40		715.20
POTT	А	22.80				717.20
	В		25.20			718.90
	С			23.50		710.30
67NCD	А	35.80				705.60
	В		36.00			713.90
	С			36.50		714.50

Tiempos de disparo y comando de recierre

Nota: Fuente (Elaboración propia)

Casos de bloqueo

Figura 209

Prueba caso 1 de bloqueo 79: Falla evolutiva

Nota: Fuente (Reporte de pruebas)
Figura 210

Prueba caso 2 de bloqueo 79: Falla monofásica en zona 2 de 21N

Nota: Fuente (Reporte de pruebas)

Figura 211

Prueba caso 3 de bloqueo 79: Falla bifásica en zona 1 de 21

Nota: Fuente (Reporte de pruebas)

Figura 212

Prueba caso 4 de bloqueo 79: Cierre sobre falla SOTF

Nota: Fuente (Reporte de pruebas)

Figura 213

Prueba caso 5 de bloqueo 79: Falla monofásica e interruptor indisponible

Nota: Fuente (Reporte de pruebas). La falla es en zona 1 de la función 21.

Tabla 91

Esquema	Punto Prueba -	Result	Cmd Cierre			
		A-N	B-N	C-N	A-B-C	(ms)
Caso 1 Falla Evolutiva	А	24.50			565.20	
	В				565.20	
	С				565.20	
Caso 2 Falla 1F 21 en Zona 2	А				577.70	
	В				577.70	
	С				577.70	
Caso 3 Falla 2F 21 en Zona 1	А				25.20	
	В				26.00	
	С				25.80	
Caso 4 Falla 1F Con SOTF	А	25.30			879.90	719.10
	В				879.90	
	С				879.90	
Caso 5 Falla 1F (Z1) Con IN en falla	А				28.80	
	В				28.80	
	С				28.80	

Tiempos de disparo y comando de recierre en casos de bloqueo

Nota: Fuente (Elaboración propia)

Figura 214

Tiempos de disparo y comando de recierre en casos de bloqueo

Nota: Fuente (Elaboración propia)

Función falla de interruptor (50BF)

La operación de esta función, es igual que lo detallado en la bahía digital del transformador, pero con la diferencia, de que ahora la bahía bajo prueba es una línea de transmisión, y al tener la función recierre habilitado, los disparos pueden ser monopolares o tripolares. Entonces la función falla de interruptor debe garantizar que los redisparos deben ser también monopolares, si fueron iniciados con este tipo de disparo.

A continuación, se muestran los resultados obtenidos de las pruebas.

Figura 215

Nota: Fuente (Elaboración propia)

Figura 216

Prueba de tiempos de operación 50BF con disparo monopolar

Nota: Fuente (Reporte de pruebas)

Figura 217

Prueba de tiempos de operación 50BF con disparo tripolar

Nota: Fuente (Reporte de pruebas)

Tabla 92

Tiempos de operación 50BF

Criterio	Etapa –	Resultado de Tiempos de Disparo (ms)					
		A-N	B-N	C-N	A-B	A-B-C	
Supervisión Por Corriente	Redisparo (Etapa 1)	14.60	15.20	14.50	14.70	14.40	
	Disparo 50BF (Etapa 2)	229.70	229.50	229.90	230.00	228.60	
Supervisión Por Contacto	Redisparo (Etapa 1)	29.20	29.60	30.70		29.00	
	Disparo 50BF (Etapa 2)	224.00	219.50	219.40		220.00	
Supervisión Por Corriente y Contacto	Redisparo (Etapa 1)	14.80	13.30	15.30	19.90	14.10	
	Disparo 50BF (Etapa 2)	229.70	229.40	233.00	230.10	229.90	

Nota: Fuente (Elaboración propia)

Figura 218

Tiempos de operación 50BF

Nota: Fuente (Elaboración propia)

Conclusiones

- Se ha desarrollado la puesta en servicio de los relés de protección de la subestación Valle Escondido 220/33kV, de tecnología digital y convencional. Cumpliendo, con las pruebas, los principios de operación de cada función de protección, según los parámetros eléctricos y operacionales que requiere, y a su vez, validando la transmisión de datos por comunicación, de mensajes GOOSE y Sampled Values, bajo la aplicación del estándar IEC 61850.
- La ingeniería básica como el de detalle de la subestación Valle Escondido 220/33kV incorpora, por tener bahías digitales, nuevos equipamientos secundarios a considerar: las Merging Units, los Switches de la red de proceso, servidores de tiempo bajo el estándar IEEE 1588 y los nuevos IEDs de control y protección, compatibles con mensajería GOOSE y Sampled Values. El sistema de protección de la subestación cuenta, con dos tecnologías de relés de protección. La digital, que aplica el estándar IEC 61850, donde se incluye la Red de Proceso, basada en la tecnología Ethernet, que se extiende entre los equipos de patio y la sala de control, utilizando como medio, redes de fibra óptica para enlazar las Merging Units, Switches y relés de protección. Esta nueva concepción reduce en gran medida, el cableado de control (cobre) y la infraestructura civil asociada. Y la convencional, que solo hace uso del cableado de cobre para la adquisición de las señales digitales y análogas.
- El estándar IEC 61850 proporciona la estructura y el modelo de datos, los servicios, modelos de comunicación y los tipos de mensaje que se necesitan para la protección, automatización y control de una subestación digital o convencional.
- En la SAS de la subestación, la red de estación es común para ambos tipos de bahías, digital y convencional. Mientras que la Red de Proceso es exclusivamente dedicado para la bahía digital. El diseño de ambas redes debe ser redundantes,

para evitar pérdida de datos, y los Switches que lo conforman deben ser compatibles con protocolos de redundancia tipo PRP y HSR, tener la capacidad de asignar VLANs, filtrar direcciones MAC y ser transparentes con el protocolo de tiempo PTP.

- Los mensajes Sampled Values están ligados a las señales análogas (corrientes y tensiones) y presentes solo en la Red de Proceso; su configuración se debe realizar en las MU, para su publicación, y en los IEDs digitales, para su suscripción. Los mensajes GOOSE están orientados a transmitir y recibir señales del tipo binario (posiciones, alarmas, disparos, comandos, etc.), y pueden estar presentes en la Red de Estación y la Red de Proceso; su configuración se debe realizar en las MU e IEDs digitales para su publicación y suscripción.
- Las funciones principales de protección evaluadas para el transformador de 220/33kV fueron, la función diferencial de transformador (87T) y sobrecorrientes. Para las barras de 220kV, la función diferencial de barras (87B). Para las líneas de transmisión de 220kV, la función diferencial de línea (87L), distancia (21), sobrecorriente direccional a tierra (67N) y teleprotección (POTT, 67NCD y DDT). Y como una protección de respaldo general, la falla de interruptor (50BF). Los ajustes de cada función son propuestos bajo ciertos criterios y según manual del fabricante, en un Estudio de Coordinación de Protección y simulados en un software dedicado. El Estudio de Coordinación y Ajustes de Protección del sistema de protección de la subestación Valle Escondido establece, de forma indistinta lo digital y lo convencional, los parámetros de ajuste los relés de protección de la bahía digital de transformador de 220/33kV, del sistema digital diferencial de barras de 220kV y de las dos bahías convencionales de líneas de transmisión de 220kV.
- Para el desarrollo de las pruebas a los relés de protección con tecnología digital, se debe contar con sus archivos de configuración, que contiene los ajustes de las funciones de protección (según Estudio) y el archivo SCL, que tiene la suscripción

a sus Merging Units asociados. Los relés de protección tienen configurados comandos accesibles por su pantalla, software de gestión o herramientas de automatización del estándar IEC 61850, para poder intercambiar sus modos de operación, en modo Test y en modo Simulación. Esto permite asegurar el aislamiento total del relé de protección, durante las pruebas con la bahía en servicio, y así, no generar disparos efectivos indeseados. Para los relés de protección digitales, se requirió aplicar dos métodos de prueba y tener equipos capaces para ello. En el primer método, aplicado a la bahía digital de transformador, no se necesitó que las Merging Units estén presentes físicamente, pero si garantizar, que la Red de Proceso sincronice al relé y al equipo de pruebas. Aquí solo se ingresan datos, de mensajes GOOSE y Sampled Values, desde el equipo de pruebas, que simula ser las Merging Units asociadas (Publicador) al relé de protección bajo prueba (Suscriptor). El segundo método, fue aplicado al sistema digital diferencial de barras, en este caso, si se necesitó que las Merging Units estén presentes. Aquí se invectaron corrientes secundarias sobre las Merging Units y se evaluó la respuesta de la unidad central mediante la actuación de las salidas binarias de estás. Los resultados de las pruebas realizadas indican que el comportamiento y la respuesta de los relés de la bahía convencional, la bahía digital y el sistema digital diferencial de barras, prácticamente son similares, lo cual demuestra la aplicación correcta del estándar IEC 61850 sobre los sistemas de protección digitales y la efectividad de los métodos de prueba aplicados. De esta forma se garantiza la confiablidad del sistema de protección ante fallas reales que se puedan dar en el sistema de potencia.

Recomendaciones

- En una subestación con bahías digitales, se debe asegurar una correcta implementación de la Red de Proceso con VLANs, para no saturar la red, ante un aumento de transmisión de datos por mensajes GOOSE y Sampled Values.
- El diseño de la Red de Proceso, debe ser altamente redundante, para no tener pérdida de datos, por fallas en la fibra óptica o *Switches,* imposibilitando la operación de los relés de protección con tecnología digital.
- Las pruebas SAT de los sistemas de protección digitales, deben realizarse con equipos de pruebas que soporten el estándar IEC 61850, puesto que permite simular los mensajes GOOSE y Sampled Values que publican las Merging Units, que están ubicadas de forma remota entre sí y cerca a sus fuentes de señales de corriente (transformador de corriente), haciendo posible, con un solo equipo de pruebas simular dos o más Merging Units, con el objetivo de realizar las pruebas de las funciones de protección como: diferencial de transformador, barras, generador y motor, que requieren dos o más fuentes de señales de corriente para su operación.

Referencias bibliográficas

- ABB. (2016). Protección de distancia de línea REL670 2.0 IEC Manual de aplicaciones.
- Apostolov, A. (2017). Efficient maintenance testing in digital substations based on IEC 61850 edition 2. [Paper]
- Chase, S., Jessup, E., Silveria, M., Dong, J., Yang, Q. (2019). Protection and Testing Considerations for IEC 61850 Sampled Values-Based Distance and Line Current Differential Schemes. [Paper].

CIGRE Green Books. (2019). Substations. Springer.

- CIGRE, Working Group B5.36. (2013). Applications of IEC 61850 Standard to Protection Schemes.
- Dong, F. (2018). Data Flow Control and Performance Evaluation of IEC 61850 Substation Automation System. [Tesis de doctorado].
- Estudios Eléctricos. (2021). Parque Fotovoltaico Valle Escondido NUP 1065 Estudio de Coordinación y Ajustes de Protecciones. (Rev. 3).
- HMV Ingenieros. (2019). Subestaciones de alta y extra alta tensión Guía práctica de diseño. (3ª Ed.). HMV.
- HMV. (2018). IEC 61850-9 Process Bus Line Protection Performance Test and Comparative Methology. [Paper]
- IEC-61850-1. (2013). Communications networks and systems for power utility automation-Part 1: Introduction and overview. (Ed 2.0).

IEC-61850-5. (2013). Communications networks and systems for power utility automation-Part 5: communication requirements for functions and device models. (Ed 2.0).

IEC-61850-7-1. (2011). Communications networks and systems for power utility automation-Part 1: Basic communication structure – Principles and models. (Ed 2.0)

- IEC-61850-8-1. (2011). Communications networks and systems for power utility automation-Part 8-1: Specific communication service mapping (SCSM) Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3. (Ed 2.0).
- Kasikci, I. (2018). Short Circuits in Power Systems–A Practical Guide to IEC 60909-0. (2^a Ed.). Wiley-VCH.
- OMICRON. (2022). CMC 356 Datos técnicos.
- Sharma, M., Nguyen, L. y Kuber, S. (2019). *Testing IEC-61850 Sampled Values-Based Transformer Differential Protection Scheme.* [Paper]

SIEMENS. (2020). SIPROTEC 5 Merging Unit 6MU85.

- SIEMENS. (2021). SIPROTEC 5 Low Impedance Busbar Protection 7SS85.
- SIEMENS. (2021). SIPROTEC 5 Process Bus.
- SIEMENS. (2021). SIPROTEC 5 Transformer Differential Protection 7UT82, 7UT85, 7UT86, 7UT87.
- Yang, Q., Keckalo, D., Dolezilek, D., Cenzon, E., SEL. (2020). *Testing IEC 61850 Merging Units.* [Paper]
- Yubo, Y. y Yi, Y. (2019). IEC 61850-Based Smart Substations Principles, Testing, Operation and Maintenance. Elsevier.