Universidad Nacional de Ingeniería

Facultad de Ingeniería Geológica Minera y Metalúrgica

TRABAJO DE SUFICIENCIA PROFESIONAL

Efecto del uso de revestimientos híbridos en la mejora del rendimiento operativo en un molino de bolas de mineral

Para obtener el título profesional de Ingeniero Metalurgista

Elaborado por

Diego Artidoro Castromonte Pari

(D) <u>0009-006-5666-4975</u>

Asesor

M.Sc. Edwilde Yoplac Castromonte

0000-0003-0288-0008

LIMA – PERÚ

2024

Citar/How to cite	Castromonte Pari [1]	
Referencia/Reference	[1] D. Castromonte Pari, "Efecto del uso de revestimientos híbridos en la mejora del rendimiento operativo en un molino de bolas de	
Estilo/Style: IEEE (2020)	<i>minera</i> l" [Trabajo de suficiencia profesional de pregrado]. Lima (Perú): Universidad Nacional de Ingeniería, 2024.	

Citar/How to cite	(Castromonte, 2024)	
Referencia/Reference	Castromonte, D. (2024). Efecto del uso de revestimientos híbridos en la meiora del rendimiento operativo en un molino de bolas de	
Estilo/Style: APA (7ma ed.)	<i>mineral.</i> [Trabajo de suficiencia profesional de pregrado, Universidad Nacional de Ingeniería]. Repositorio institucional Cybertesis UNI.	

Dedicatoria

A mis amados padres, por su esfuerzo por haberme forjado como la persona que soy el día de hoy. A mis hermanos, quienes contribuyeron con mi crecimiento académico y siempre son un ejemplo para mí.

Resumen

La molienda de mineral es una etapa en el procesamiento de minerales cuya finalidad es la de reducir las partículas de mineral al tamaño requerido para la siguiente etapa del proceso. Por otro lado, el proceso de molienda constituye la etapa de mayores costos de operación de una planta concentradora, debido fundamentalmente a los altos consumos de energía en los molinos.

Tanto en la molienda semi-autógena (molienda SAG) como en la molienda convencional, los revestimientos en los molinos, además de recubrir y proteger la coraza del molino, influyen en el desempeño de la operación, identificándose como los factores principales: la geometría de diseño para el movimiento de la carga de los medios de molienda y los materiales de fabricación para la duración de este.

En el presente trabajo de suficiencia, se ha evaluado un factor adicional de influencia en la operación, el peso del revestimiento y su efecto en el consumo de energía con la finalidad de reducirla, para lo cual se estudió la operación de un molino de bolas, primero en la etapa con revestimientos de acero y luego con revestimientos híbridos (de caucho y acero). De esta manera, el estudio está orientado a medir este efecto, mediante el análisis de la función selección específica en ambos escenarios.

Palabras clave: revestimientos, molienda de minerales, consumo de energía.

Abstract

Ore grinding is a stage in mineral processing whose purpose is to reduce the particle size to the size required for the next stage of the process. On the other hand, the grinding process is the stage with the highest operating costs in a concentrator plant, mainly due to the high energy consumption in the mills.

In both semi-autogenous grinding (SAG milling) and conventional grinding, the liners in the mills, besides coating and protecting the mill shell, influence the performance of the operation, being identified as the main factors: the design geometry for the movement of the grinding media charge and the manufacturing materials for the duration of the same.

In the present work of sufficiency, an additional factor of influence in the operation has been evaluated, the weight of the liner and its effect on the energy consumption with the purpose of reducing it, for which the operation of a ball mill was studied, first in the stage with steel liners and then with hybrid liners (rubber and steel). Thus, the study is oriented to measure this effect by analyzing the specific selection function in both scenarios.

Keywords: liners, grinding, energy consumption.

Tabla de Contenido

	F	۹ág.
Resun	nen	iv
Abstra	ıct	v
Introdu	ucción	xi
Capítu	Ilo I. Parte introductoria del trabajo	1
1.1	Generalidades	1
1.2	Descripción del problema de investigación	1
1.3	Objetivo del estudio	5
1.4	Antecedentes investigativos	5
1.4.1	Investigaciones internacionales	5
1.4.2	Investigaciones nacionales	9
Capítu	Ilo II. Marcos teórico y conceptual	. 10
2.1	Marco teórico	. 10
2.1.1	Variables en molienda de minerales	. 10
2.1.2	Diseño de revestimientos	. 10
2.1.3	Función selección y Energía específica	. 12
2.2	Marco Conceptual	. 13
2.2.1	Revestimiento del molino	. 13
2.2.2	Elevador o lifter	. 13
2.2.3	Placa o coraza	. 13
2.2.4	Ángulo de ataque	. 13
Capítu	Ilo III. Desarrollo del trabajo de investigación	. 14
3.1	Recolección de datos	. 14
3.2	Información de los revestimientos del cilindro	. 16
3.2.1	Características de los revestimientos de acero	. 16
3.2.2	Características de los revestimientos híbridos	. 16
3.2.3	Comparativo de revestimientos	. 17

3.2.4	Volumen remanente de los revestimientos	. 18
3.2.5	Volumen ocupado por los revestimientos	. 19
3.3	Resultados granulométricos	. 19
3.4	Procesamiento de datos	. 24
3.4.1	Tabla de granulometrías con revestimientos de acero	. 27
3.4.2	Función selección específica con revestimientos de acero	. 28
3.4.3	Gráficas de la función selección específica con revestimientos de acero	. 29
3.4.4	Tabla de granulometrías con revestimientos híbridos	. 30
3.4.5	Función selección específica con revestimientos híbridos	. 31
3.4.6	Gráficas de la función selección específica con revestimientos híbridos	. 32
Capítu	llo IV. Análisis y discusión de resultados	. 33
4.1	Análisis comparativo de los resultados promedio	. 33
4.2	Análisis estadístico de validación de resultados	. 36
Conclu	usiones	. 40
Recon	nendaciones	. 41
Refere	encias bibliográficas	. 42
Anexo	S	. 44

Lista de Tablas

Pág.
Tabla 1: Materiales de revestimientos y aplicaciones11
Tabla 2: Meses de operación de revestimientos en cada inspección 14
Tabla 3: Datos de operación registrados y obtenidos mediante los muestreos 15
Tabla 4: Información general de los revestimientos de acero
Tabla 5: Información general de los revestimientos híbridos
Tabla 6: Comparativo de revestimientos de acero versus revestimientos híbridos 17
Tabla 7: Volumen y peso remanente del revestimiento en cada muestreo
Tabla 8: %Volumen ocupado al transcurrir los meses de operación
Tabla 9: Granulometrías con operación de revestimientos de acero
Tabla 10: Datos operativos para el cálculo de la función selección específica28
Tabla 11: Función selección específica con revestimientos de acero 28
Tabla 12: Granulometrías con operación de revestimientos híbridos
Tabla 13: Datos operativos para el cálculo de la función selección específica
Tabla 14: Función selección específica con revestimientos de acero
Tabla 15: Función selección específica promedio con acero e híbridos
Tabla 16: Media y desviación estándar de la función selección específica
Tabla 17: Resultados de la prueba de hipótesis

Lista de Figuras

Figura 1: Distribución del consumo eléctrico de una planta de concentración minera 2
Figura 2: Consumo específico de energía por unidad de operación2
Figura 3: Energía consumida por un molino en función del volumen de carga4
Figura 4: Efecto del ángulo de ataque en la potencia6
Figura 5: Influencia de la altura del revestimiento de 24 elevadores en la potencia6
Figura 6: Consumo de energía con diferentes tipos de levantador7
Figura 7: Comparación en demanda de potencia con distintos revestimientos8
Figura 8: Comparación en consumo energía específica con distintos revestimientos 8
Figura 9: Curva de potencia versus nivel de llenado de bolas9
Figura 10: Circuito de molienda y puntos de muestreo15
Figura 11: Sección transversal de los revestimientos de acero16
Figura 12: Sección transversal de los revestimientos híbridos 17
Figura 13: Simulación de trayectoria de bolas con MiillTraj17
Figura 14: Gráfica del % volumen remanente versus los meses operativos de uso 18
Figura 15: Perfil granulométrico con revestimientos de acero, Test N°1 20
Figura 16: Perfil granulométrico con revestimientos de acero, Test N°2 20
Figura 17: Perfil granulométrico con revestimientos de acero, Test N°321
Figura 18: Perfil granulométrico con revestimientos de acero, Test N°421
Figura 19: Perfil granulométrico con revestimientos de acero, Test N°5 22
Figura 20: Perfil granulométrico con revestimientos híbridos, Test N°622
Figura 21: Perfil granulométrico con revestimientos híbridos, Test N°723
Figura 22: Perfil granulométrico con revestimientos híbridos, Test N°823
Figura 23: Perfil granulométrico con revestimientos híbridos, Test N°924
Figura 24: Perfil granulométrico con revestimientos híbridos, Test N°1024
Figura 25: Hoja de ingreso de datos operativos del circuito de molienda
Figura 26: Balance del circuito de molienda25

Figura 27: Simplificación de ingreso y salida en el Molino de Bolas 11'x18.8'
Figura 28: Función selección específica para muestreos con revestimientos de acero 29
Figura 29: Función selección específica promedio con revestimientos de acero29
Figura 30: Función selección específica para muestreos con revestimientos híbridos 32
Figura 31: Función selección específica promedio con revestimientos híbridos
Figura 32: Comparativo de la función selección específica en escala logarítmica34
Figura 33: Ajuste lineal de la función selección específica en escala decimal
Figura 34: Resumen estadístico de la función selección específica con acero
Figura 35: Resumen estadístico de la función selección específica con híbridos

Introducción

En el presente trabajo de suficiencia profesional se aborda la influencia que tienen los revestimientos en un molino de bolas para su operación.

Si bien se pueden encontrar referencias de este tipo de estudio realizados en mayor medida a nivel laboratorio o en molinos SAG, es oportuno analizar el comportamiento de la operación en un molino de bolas cuando utilizan revestimientos híbridos.

Dado que, en la operación de los molinos de bolas, aunque se suele tener debidamente identificadas las características del revestimiento, no es considerado como una variable directa del proceso, por lo que un estudio de la operación en conjunto con el estado del revestimiento contribuye a ampliar la visión de lo que los revestimientos pueden ofrecer al proceso además de su durabilidad.

Capítulo I. Parte introductoria del trabajo

1.1 Generalidades

El procesamiento de minerales, al igual que en todo proceso industrial, durante su ejecución atraviesa por un conjunto de etapas que requieren de continuos análisis para mejorar sus niveles de eficiencia. Una de las etapas dentro del procesamiento de minerales con mayores oportunidades para mejorar el rendimiento es en la molienda del mineral.

En los procesos de molienda, a través de los medios moledores en el interior del molino, se transmite energía al mineral rocoso o en partículas. Esta energía debe ser la suficiente para generar el rompimiento de partículas del mineral, logrando así la reducción de tamaño necesaria para una siguiente etapa. Debido a que este evento depende de diversos factores, la tarea de mejorar su rendimiento es ejecutada desde diferentes perspectivas, desde el análisis más simple como la influencia del porcentaje de sólidos, hasta los más complejos como lo es el tipo de revestimiento en el molino.

De esta manera, la evaluación de la influencia del tipo de revestimiento para un molino de minerales es un aporte investigativo a la cuestión de cómo mejorar o elevar la eficiencia de un proceso de molienda; y dado que los revestimientos constituyen un factor con poca frecuencia de variación en relación con otros factores (como el caudal de agua, nivel de llenado de bolas de acero, entre otros), cualquier aporte de esta naturaleza será de gran utilidad para el investigador.

1.2 Descripción del problema de investigación

La producción diaria en una planta concentradora es medida por el tonelaje de mineral procesado en sus molinos. Así mismo es en la etapa de molienda donde ocurren los más altos costos por consumo energético. Por este motivo el ratio entre el consumo de energía del molino y el tonelaje producido (consumo energético específico, expresado en kW-H/Ton) al expresar elevados valores, indica un bajo rendimiento de la operación. [1]

Los altos consumos de energía en la etapa de molienda en relación con las demás etapas de una planta es una situación común en toda operación. Tal situación ocasiona

que, en algunas operaciones, los fenómenos que originan ineficiencia no logren ser identificados.

En la Figura 1 se muestra, a manera de ejemplo, la distribución del consumo de energía la etapa de reducción de tamaño de mineral (chancado y molienda), que alcanza hasta el 80% del consumo total de la planta concentradora. [2]

Figura 1

Nota: Yoplac Castromonte, Edwilde, Curso de Operaciones Unitarias - Universidad Nacional de Ingeniería: Desintegración de Materiales, 2008

Así mismo, desde el punto de vista del consumo específico de energía (KWh/ton), se registra que los más altos índices de consumo ocurren en los molinos de bolas y molinos SAG. En la Figura 2 se muestra los consumos específicos de energía de los principales equipos de una planta concentradora, como promedio de nueve plantas con tratamiento por encima de las 50 kTPD.

Figura 2

Consumo específico de energía por unidad de operación.

Nota: Ipinza, Jorge, El consumo específico de energía - Minería Chilena (N°342), 2009

Andrea Blanco, Emilio (2014) en su publicación "Curso: Tecnología Mineralúrgica", menciona que dentro los costos más elevados en la molienda se encuentran:

- Costes energéticos: elevados de manera intrínseca por el tonelaje de procesamiento.
- Medios de molienda y revestimientos: el tratamiento del mineral, su abrasividad y dureza, genera consumo de los medios de molienda y desgastes de los revestimientos, teniendo que programar adiciones de los medios de molienda y programación de cambio de revestimientos.
- Otros costes de operación.
- Costes de instalación.

Al observar que los costes energéticos en los molinos son los más elevados, se plantea en primer lugar preguntar a qué se debe que sea el mayor consumo. Se sabe que gran parte de la energía empleada en el proceso de molienda es disipada por el uso de los propios equipos.

Ipinza, Jorge (2009) en su artículo "El consumo específico de energía" para la revista Minería Chilena (N°342), menciona que el proceso de molienda, desde una perspectiva energética, es de alta ineficiencia. Se menciona que el 85% de la energía utilizada se disipa como calor, un 12% se atribuye a pérdidas mecánicas y sólo un 1% de la energía alimentada a la planta, se utiliza para reducir el tamaño del mineral.

De esta manera, en la etapa de molienda, la energía consumida en los molinos que no es transferida a los medios de molienda para los propósitos de reducción de tamaño del mineral, sino más bien la energía disipada por los equipos, representa pérdidas de energía que limitan las opciones para optimizar el proceso.

Por otro lado, los registros de incremento de los niveles volumétricos de los elementos moledores en el molino muestran el aumento en el consumo de energía, tal como lo menciona el autor Linares, Gutiérrez N. (2014) en su publicación "Procesamiento De Minerales – Mineralurgia I"; donde señala que en los molinos de bolas el volumen de carga de bolas debe ser alrededor del 40% al 50% del volumen interior del molino (entre

revestimientos). De este modo la energía que se consume incrementa conforme se aumenta la carga de bolas llegando a un punto máximo aproximadamente al 50%, luego del cual un sucesivo aumento de bolas aporta una masa que se opone al movimiento, originando un descenso en el consumo energético hasta anular toda capacidad de molienda. En la Figura 3 se aprecia el fenómeno de incremento de bolas de acero y su relación con el consumo de energía.

Figura 3

Energía consumida por un molino en función del volumen de carga.

Como se observa, antes del 50% del llenado en el molino, el incremento de masa de bolas de acero requiere de más energía. Es decir, desde la perspectiva del peso en el molino, la energía no se podrá reducir exista un peso elevado. Sin embargo, reducir la masa de las bolas de acero es asegurar un menor rompimiento de las partículas de mineral, por tanto, mayor tamaño de partícula en el producto, perjudicial para la operación.

En el caso de una planta concentradora de producción de plata y oro, en un molino de bolas con revestimientos de acero, se presentan dificultades para el arranque del primer giro del molino, y junto a la baja productividad, limitada por la capacidad de potencia del motor, son evidencias de una baja eficiencia asociadas al elevado peso del molino y todos los elementos que se encuentran dentro de él. Por lo tanto, el problema central es el alto consumo de energía en el molino.

Nota: Linares, Gutiérrez N, Procesamiento De Minerales – Mineralurgia I, 2014

Bajo estos enfoques, se plantea una interrogante a este problema: ¿Cuáles son las causas de que el tipo de revestimiento de un molino de bolas produce un alto consumo de energía perjudicial para su rendimiento operativo?

1.3 Objetivo del estudio

Analizar el uso de revestimientos híbridos en el molino de bolas, para reducir el consumo energético y lograr una operación de mayor rendimiento.

1.4 Antecedentes investigativos

A continuación, se describen las investigaciones relacionadas a este tema, que han sido publicadas en los últimos años:

1.4.1 Investigaciones internacionales

Zhen-Xu, Jun-feng Sun, Huo-jin Cheng (2018) en su trabajo de investigación "Study on the influence of liner parameters on the power of ball mill and impact energy of grinding ball" evalúan algunos de los parámetros de los revestimientos que causan impacto sobre el consumo de energía en los molinos de bolas. En el estudio se destacan las variables en el diseño de los revestimientos tales como el ángulo de ataque, la altura del elevador y número de elevadores para con ello evaluar el impacto que tienen sobre la potencia y sobre el número de impactos que se producen por parte de los medios moledores sobre la carga.

En esta oportunidad el estudio fue llevado a cabo por medio de sistemas de simulación EDEM, planteando una operación en un molino de bolas de 1.5m x 3.5m, bolas de 50 mm de diámetro, volumen de llenado al 20% y con velocidades de rotación de 75%, 80% y 85% de la velocidad crítica. En tanto que las variaciones en los revestimientos fueron como se muestra a continuación:

- Angulo de ataque: 12.15°, 18.14° y 23.19°.
- Altura de los elevadores: 40 mm, 60 mm y 80 mm.
- Número de elevadores: 24, 30 y 36.

De las múltiples combinaciones de variables se muestran algunos resultados en la Figura 4 donde se observa el incremento en la potencia al aumentar el ángulo de ataque en los tres escenarios de velocidad de giro del molino, mientras que en la Figura 5 se

5

muestra el incremento en la potencia conforme aumenta la altura de los elevadores a una velocidad en el escenario del 85% de la velocidad crítica.

Figura 4

Nota: Zhen-Xu, Jun-feng Sun, Huo-jin Cheng; Study on the influence of liner parameters on the power of ball mill and impact energy of grinding ball; 2018.

Figura 5

Influencia de la altura del revestimiento en la potencia (revestimiento de 24 elevadores).

Nota: Zhen-Xu, Jun-feng Sun, Huo-jin Cheng; Study on the influence of liner parameters on the power of ball mill and impact energy of grinding ball; 2018.

Rosales-Marín, Andrade-Martínez, Alvarado-Macías, Espinosa-Serrano, Nava-Gómez (2020) en su artículo "Investigación experimental en el consumo de energía específica y reducción de tamaño en la molienda de bolas usando diferentes tipos de levantador" muestran la influencia de la geometría de los revestimientos en una prueba a nivel de laboratorio.

Empleando levantadores de acero al carbón para un molino de bolas de 320mm x 350mm experimental con 3 HP de potencia, los resultados de las pruebas de molienda a las mismas condiciones de operación muestran el efecto de la geometría de los revestimientos como se observa en la Figura 6.

Figura 6

Consumo de energía con diferentes tipos de levantador.

Nota: Rosales-Marín, Andrade-Martínez, Alvarado-Macías, Espinosa-Serrano, Nava-Gómez, Investigación experimental en el consumo de energía específica y reducción de tamaño en la molienda de bolas usando diferentes tipos de levantador, 2020.

Aunque el este estudio a nivel de laboratorio no refleja un comparativo con diferentes materiales de revestimiento, queda demostrado que cualquier modificación en las dimensiones del diseño tendrá influencia en los resultados de consumo de energía.

Barrueto Guarda, Carla Karina (2021), en su publicación "Evaluación del comportamiento operacional de revestimientos híbridos en molino SAG de 40'x26'" analiza la reducción del OPEX en molienda SAG al utilizar el 100% de revestimientos de acero versus el uso parcial con revestimientos híbridos en el cilindro (67% híbridos, 33% acero%). Realizando un modelamiento empírico para el cálculo de la demanda de potencia y

consumo específico de energía, se utilizan como variables la velocidad del molino, nivel de llenado de bolas, porcentaje de sólidos, características del mineral y la variación en peso del revestimiento, aproximadamente en 13%.

Figura 7

Nota: Barrueto Guarda, Carla Karina. Evaluación del comportamiento operacional de revestimientos híbridos en molino SAG de 40'x26', 2021.

Figura 8

Nota: Barrueto Guarda, Carla Karina. Evaluación del comportamiento operacional de revestimientos híbridos en molino SAG de 40'x26', 2021.

Si bien la variación del consumo energético no resultó significativa, el autor recomienda el análisis con el cilindro revestido al 100% con revestimientos híbridos para un estudio de mayor representatividad.

1.4.2 Investigaciones nacionales

Bellido, Dai (2020) en su artículo "Liners híbridos y su impacto en el consumo de energía", comparte el caso de estudio de un molino de 24 pies operando con revestimientos híbridos en periodo de prueba de 12 meses. Los resultados muestran que el peso de los revestimientos híbridos tiene influencia en la reducción de consumo de potencia del molino, disminuyendo 3.1% en comparación con el uso de revestimientos de acero de mayor peso. Así mismo, durante ese periodo también se evidencia la reducción de la presión de descanso del molino. Este efecto se puede observar en la Figura 9 donde se muestra la curva simulada de consumo de potencia versus el nivel de llenado, para los revestimientos de acero y los revestimientos híbridos. [7]

Figura 9

Curva de Potencia versus Nivel de llenado de bolas.

Nota: Bellido, Dai, Liners híbridos y su impacto en el consumo de energía, 2020.

Capítulo II. Marcos teórico y conceptual

2.1 Marco teórico

2.1.1 Variables en molienda de minerales

(MSc. Ing. Nataniel Linares Gutiérrez, 2014, Procesamiento De Minerales – Mineralurgia I) El propósito final en el proceso de molienda es la de lograr la reducción del tamaño de las partículas de mineral hasta alcanzar el grado de liberación de los elementos valiosos. Para tal propósito se considera el análisis de las siguientes variables:

- Disposición o forma de la alimentación.
- Tamaño de partícula del alimento fresco.
- Medios de molienda
- Tamaño del molino.
- Velocidad del molino.
- Consumo de energía
- Consumo de barras, bolas y revestimientos.
- Dilución de la mezcla (agua/mineral).

Comprendiendo el concepto de estas variables fundamentales y la relación entre ellas, se pueden realizar estudios más específicos relacionados al tema del diseño y control de la operación. [8]

Para el presente trabajo, se analizará la influencia del revestimiento en la operación, por tal motivo es fundamental estudiar las características y diferencias de cada diseño de revestimiento.

2.1.2 Diseño de revestimientos

Conforme a su publicación "The Selection and Designs of Mill Liners" (2006), el investigador Malcolm Powell afirma para los molinos SAG, que los errores de diseño de los revestimientos impactan de forma directa en la duración de estos, razón por la cual, para diseñarlos, se necesita también analizar las condiciones de operación del molino. Por otro lado, el rol fundamental del revestimiento es la de proteger a la estructura del molino

del desgaste producido por la abrasión, y es el revestimiento quien transfiere energía hacia los elementos de molienda para obtener los tamaños de mineral deseados. Sin embargo, los resultados varían de acuerdo con el diseño utilizado.

En forma general, los tipos de revestimientos se clasifican, por un lado, en función al diseño y estructura, y por otro lado en función al tipo de material. De acuerdo al tipo de diseño y estructura se encuentran los revestimientos sólidos (o en bloque), los diseños lifter-coraza, los diseños alto bajo, los diseños doble onda, entre otros. En la clasificación de acuerdo con el tipo de materiales se encuentran los revestimientos metálicos (acero cromo-molibdeno de dureza 380 HB, aceros laminados de 500 HB o 550 HB, fundición de alto cromo 650 HB), los revestimientos de caucho o goma, los revestimientos híbridos (caucho-metálico) y los revestimientos magnéticos. Algunos de estos materiales son descritos en la Tabla 1 en la cual se muestran sus principales aplicaciones. [9]

Tabla 1

Materials	Application		
Low Carbon Chrome Moly Steel	Hardness 300-370 BHN, generally used for discharge gates where slightly better impact resistance is required.		
Low Carbon Chrome Moly Steel	Hardness 325-380 BHN, considered the main material used for SAG mill liners.		
Nihard Iron	Hardness 550 HBN, general with Rod Mills and Ball Mills, where impacts were considered low enough for this brittle yet highly abrasive resistant wear material to perform well.		
High Chrome Hardness +600 BHN, considered to have superior wear abrasion characteristics Irons generally used un rod and ball mills.			
Rubber liners	Hardness 55-70 on A scale, used successfully in secondary and regrind milling applications.		
Rubber / Steel Composites	Composites has been used successfully in many applications. The joining of the metal and rubber has to be with a chemical bond plus a mechanical type attachment to be assured of a positive fastening of the two materials for the life of the component.		
Magnetic Liners	The powerful magnets keep the lining in a place without liners bolts and ensure that the lining attracts magnetically susceptible material available in the mill. The limitation is that the magnets are not very resistant to impact as they are brittle.		

Materiales de revestimientos y aplicaciones.

Nota: (Adaptado) Powell, Malcolm – The Selection and Design of Mill Liners.

Aunque los estudios de revestimientos para molinos, en general, están orientados principalmente a los revestimientos para molinos SAG (molienda semi-autógena), los enfoques para su evaluación y selección para molinos de bolas se efectúa en forma similar, teniendo en consideración el mecanismo de molienda que se requiere para cada tipo de molino.

2.1.3 Función selección y Energía específica

De acuerdo con el artículo "The specific selection function effect on clinker grinding" (2008) D. Touil, S. Belaadi, C. Frances; la expresión de la función selección, propuesta por los investigadores Herbst and Fuerstenau (1973), está representada de la siguiente forma:

$$S_i = S_i^E \times \frac{P}{M}$$

Donde:

S_i: función selección

 S_i^E : función selección específica

P: potencia específica en el molino

M: masa al interior del molino

En donde la función selección (S_i) es una constante de proporcionalidad para un intervalo "*i*" de tamaño de partícula, y que denota la velocidad en la cual el material se rompe fuera del intervalo "*i*" de tamaño. Mientras que la función de selección específica S_i^E es independiente del diseño del molino y las condiciones de operación, siendo influenciado por el tamaño de la bola. [10]

A través de demostraciones matemáticas (Yoplac Castromonte, Edwilde, Curso de Operaciones Unitarias - Universidad Nacional de Ingeniería: Modelos de trituración y molienda, 2008), se obtiene la expresión que relaciona la energía específica con la función selección específica [2]:

$$(1 - P_i) = (1 - F_i) \left(1 + \frac{E \times S_i^E}{N} \right)^{-N}, \quad i = 1, n$$

Donde:

S^E: función selección específica E: energía específica F_i y P_i: granulometrías de alimentación y producto de un reactor N: número de reactores

12

Esta expresión es con la que, para el presente estudio, se analizará la diferencia de los resultados en cada escenario de uso de revestimientos.

2.2 Marco Conceptual

2.2.1 Revestimiento del molino

Componente del molino localizado en su interior, sujetado con pernos al casco del molino y cuya distribución se realiza por hileras. Como función principal, los revestimientos protegen la estructura metálica del molino (tapas y cilindro) durante el proceso de molienda hasta completar su vida útil, para luego ser reemplazados por revestimientos nuevos para una siguiente campaña.

2.2.2 Elevador o lifter

Parte de los revestimientos en forma de barra alargada variable en altura, ancho, ángulo o geometría según el diseño del fabricante. Es de trascendental importancia para definir el movimiento de la carga de bolas en el interior del molino.

2.2.3 Placa o coraza

Parte del revestimiento que complementa al elevador, con un menor espesor y que ocupa mayor área de la superficie del revestimiento.

2.2.4 Ángulo de ataque

Es la medida angular de una de las caras del elevador respecto a un eje vertical. Teniendo en consideración el sentido de giro del molino, la cara del elevador que entra en contacto directo con la carga mineral se le conoce como lado de ataque

Capítulo III. Desarrollo del trabajo de investigación

Esta investigación consiste en el análisis de los resultados de consumo de energía, partiendo de los muestreos del circuito molienda-clasificación, teniendo en cuenta las etapas en las que opera el molino de bolas 11'x18.8', operando con los revestimientos de acero y operando con los revestimientos híbridos.

De esta manera los muestreos del circuito molienda-clasificación fueron realizados previo a las paradas del molino de bolas, para las inspecciones del desgaste del revestimiento.

En la siguiente tabla se muestra el tiempo de operación del revestimiento en cada inspección para las etapas con revestimientos de acero y con revestimientos híbridos:

Tabla 2

Etapa	N° Test	Meses de operación del revestimiento
	1	4.3
	2	7.2
Revestimiento de acero	3	9.6
	4	12.0
	5	12.8
	6	0.0
	7	2.0
Revestimiento híbrido	8	4.0
	9	7.9
	10	12.1

Meses de operación de revestimiento en cada inspección.

Nota: Elaboración propia, obtenida a partir las condiciones de la unidad minera.

3.1 Recolección de datos

Para el estudio del molino de bolas 11'x18.8' que opera en circuito cerrado con los hidrociclones, se realizó el muestreo de los puntos de ingreso y salida, como se observa en el esquema de la Figura 10: [1] alimentación fresca, [2] descarga del molino, [3] underflow y [4] overflow.

Circuito de molienda y puntos de muestreo.

Nota: Elaboración propia, obtenida a partir las condiciones de la unidad minera.

Cada muestra tomada fue procesada en laboratorio para la determinación del porcentaje de sólido y reducción en masa a una muestra representativa mediante homogenización y cuarteo para el análisis de mallas.

Así mismo, durante cada muestreo se tomó registro de los parámetros operativos

del circuito, los cuales son relacionados con los resultados de los análisis granulométricos de los puntos tomados.

En la siguiente tabla se muestra la información requerida para el análisis por cada muestreo:

Tabla 3

Datos de operación registrados y obtenidos mediante los muestreos.

Datos de operación del molino con hidrociclón				
Tonelaje de procesamiento	Registrado por cada muestreo			
Potencia consumida	Registrado por cada muestreo			
%Carga de bolas	Registrado por cada inspección			
Velocidad de giro del molino	17.2 rpm			
Diámetro de recarga de bolas	3"			
Densidad de bolas de acero	7.85 ton/m ³			
Peso específico del mineral	2.7 ton/m ³			
Número de hidrociclones	2			
Dimensiones de hidrociclón				
Diámetro	15"			
Altura	60"			
Inlet	4"			
Vortex	5.5"			
Apex	3.25"			
Presión de hidrociclones	Registrado por cada muestreo			
Porcentaje de sólidos	Obtenido por cada muestreo			
Perfiles granulométricos	Obtenido por cada muestreo			
%Vol. ocupado por el revestimiento	Obtenido por cada muestreo			

Nota: Elaboración propia, obtenida a partir las condiciones de la unidad minera.

En la tabla se muestran los distintos datos requeridos como el registro de las condiciones de operación, datos del procesamiento de muestras e información del volumen que ocupan los revestimientos.

3.2 Información de los revestimientos del cilindro

3.2.1 Características de los revestimientos de acero

Tabla 4

Información general de los revestimientos de acero.

Volumen del revestimiento	4.76 m ³
Peso del revestimiento	37.35 ton
Altura del elevador	125 mm
Altura de placa	60 mm
Ángulo de ataque	35°

Nota: Elaboración propia, elaborado para el desarrollo del diseño de liners.

Figura 11

Sección transversal de los revestimientos de acero.

Nota: Imagen desarrollada por el fabricante de revestimiento híbrido, para elaboración de nuevo diseño.

3.2.2 Características de los revestimientos híbridos

Tabla 5

Información general de los revestimientos híbridos.

Volumen del revestimiento	4.76 m ³
Peso del revestimiento	20.73 ton
Altura del elevador	125 mm
Altura de placa	60 mm
Ángulo de ataque	35°

Nota: Elaboración propia, elaborado para el desarrollo del diseño de liners.

Sección transversal de los revestimientos híbridos.

Nota: Imagen desarrollada por el fabricante de revestimiento híbrido, para elaboración de nuevo diseño.

3.2.3 Comparativo de revestimientos

Al mantener la geometría del revestimiento y la longitud en todo el cilindro, el volumen se mantiene constante en 4.76 m³, mientras en peso la diferencia es de 16.62 toneladas, es decir, respecto a los revestimientos de acero hay una reducción del 44% en peso con los revestimientos híbridos. Sin embargo, al tener caracetrísticas similares en la geometría del revestimiento, la trayectoria de la carga de bolas no sufre alteración.

Tabla 6

Comparativo de revestimientos de acero versus revestimientos híbridos.

	Revestimiento de acero	Revestimiento híbrido	Variación	%Variación
Volumen Total	4.76 m3	4.76 m3	0	0%
Peso Total	37.35 ton	20.73 ton	-16.62 ton	-44%
Altura del elevador	125 mm	125 mm	0	-
Altura de placa	60 mm	60 mm	0	-
Ángulo de ataque	35°	35°	0	-

Nota: Elaboración propia, obtenida a partir de las características de los revestimientos.

Figura 13

Nota: Simulación con MillTraj desarrollada por el fabricante de revestimiento híbrido.

3.2.4 Volumen remanente de los revestimientos

Al transcurrir los meses de operación los revestimientos van sufriendo desgaste, lo que hace su volumen se vaya reduciendo. A partir de los controles de desgaste se estima el volumen remanente (m³) de los revestimientos con sus respectivos pesos (ton):

Tabla 7

Etapa	N° Test	Meses de operación	% Volumen remanente	Vol. rem. (m ³)	Peso rem. (ton)
	1	4.3	78%	3.69	28.94
	2	7.2	63%	2.98	23.38
Revestimientos de acero	3	9.6	50%	2.36	18.52
	4	12.0	37%	1.77	13.89
	5	12.8	33%	1.57	12.32
	6	0.0	100%	4.76	20.73
	7	2.0	92%	4.36	18.99
Revestimientos híbridos	8	4.0	83%	3.96	17.25
	9	7.9	67%	3.19	13.89
	10	12.1	50%	2.37	10.32

Volumen y peso remanente del revestimiento en cada muestreo.

Nota: Elaboración propia, obtenido a partir de las condiciones de la unidad minera.

Figura 14

Nota: Elaboración propia, obtenido a partir de las condiciones de la unidad minera.

Se considera que con un remanente del 33% de su volumen inicial, el revestimiento cumple su vida útil y procede a ser retirado.

3.2.5 Volumen ocupado por los revestimientos

Se conoce que el volumen vacío al interior del molino (sólo cilindro) es de 48.73 m³, con lo que se realiza el cálculo porcentual del volumen ocupado por los revestimientos:

Tabla 8

Etapa	N° Test	Meses de operación	Vol. Rem. (m³)	Vol. Vacío (m ³)	%Vol. Ocupado	
	1	4.3	3.69	48.73	7.6%	
	2	7.2	2.98	48.73	6.1%	
Revestimientos de acero	3	9.6	2.36	48.73	4.8%	
	4	12.0	1.77	48.73	3.6%	
	5	12.8	1.57	48.73	3.2%	
	6	0.0	4.76	48.73	9.8%	
	7	2.0	4.36	48.73	8.9%	
Revestimientos híbridos	8	4.0	3.96	48.73	8.1%	
	9	7.9	3.19	48.73	6.5%	
	10	12.1	2.37	48.73	4.9%	

%Volumen ocupado al transcurrir los meses de operación.

Nota: Elaboración propia, obtenido a partir de las condiciones de la unidad minera.

Con la información obtenida hasta esta sección, se realiza el procesamiento de datos para balance del circuito.

En el Anexo 1 se muestran algunas variables operativas verificables, así como el volumen remanente estimado del revestimiento observado en cada inspección.

3.3 Resultados granulométricos

Curvas granulométricas con revestimientos de acero

Perfil granulométrico con revestimientos de acero, Test N°1

Figura 16

Perfil granulométrico con revestimientos de acero, Test N°2.

Nota: Elaboración propia.

Perfil granulométrico con revestimientos de acero, Test N°3

Figura 18

Perfil granulométrico con revestimientos de acero, Test Nº4.

Nota: Elaboración propia.

Nota: Elaboración propia.

Perfil granulométrico con revestimientos de acero, Test N°5.

Curvas granulométricas con revestimientos híbridos

Figura 20

Perfil granulométrico con revestimientos híbridos, Test Nº6.

Nota: Elaboración propia.

Nota: Elaboración propia.

Perfil granulométrico con revestimientos híbridos, Test N°7.

Figura 22

Perfil granulométrico con revestimientos de acero, Test N°8.

Nota: Elaboración propia.

Perfil granulométrico con revestimientos de acero, Test N°9.

Figura 24

Perfil granulométrico con revestimientos de acero, Test N°10.

Nota: Elaboración propia.

3.4 Procesamiento de datos

A continuación, se procede a realizar los balances del circuito con la información obtenida de cada muestreo, haciendo uso de la herramienta Moly-Cop Tools 3.0.

Moly-Cop Tools TM (Version 3.0) BALLBAL : Mass Balance Closure around a Ball Mill Grinding Circuit																		
	Circuit Type DIRECT										s	ample N°	F	1				
	Remarks MOLINO DE BOL/			BOLAS 11' x	18.8' - LINEF	S DE ACER	80								late	L	21/02/2019	
	Mill Dimens Eff. Diam. ft	sions and Op Eff. Length ft	erating Con Speed % Critical	ditions Charge Filling,%	Balls Filling,%	Inters Slurry F	titial illing,%	Lift Angle, (°)	508 28 81	Balls Overfilling Slurry		Charge Volume, m3	Mill Ch Ball Charge	arge Weight, Slun Interstitial	tons y Excess	Apparent Density ton/m3		
	11.0	18.8 rpm	74.5	33.00	29.00	100	.00	25.4	617 9.0 678	Net Power %Losses Gross kW		15.46 Feedrate, to	63.98	10.20	3.52	5.026		
	Cyclone Dir Number	nensions (in Diameter	ches) and O Height	Inlet	vortex	Apex	psi	1	%Vol. Liners			Ore Density	, ton/m3	F	2.70			
	Defa	ult Values:	45.0	3.8	5.3	2.6	10.52	1	7.6			Balls Densit	y, ton/m3		7.85			
			I						EXPE	RIMENTA	L SIZE DI	STRIBUTI	ONS		_			
- 1 - E	Mesh	Opening	Mid-Size	ton/hr	Fresh Feed % Retained	% Passing	ton/hr	Will Discharge % Retained	e % Passing	C ton/hr	% Retained	d % Passing	C) ton/hr	% Retained	% Passing	Cy ton/hr	% Retained	v % Passing
1	5	122500				100.00			100.00			100.00			100.00			100.00
2	4	98000 73500	109567	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00
4	2	49000	60012	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00
5	1"	24500	34648	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00	0.00	0.00	100.00
7	3/8*	9525	17639	1.11	3.35	90.00	0.00	0.00	100.00	0.00	0.00	100.00	1.91	0.17	99.83	0.00	0.00	100.00
8	1/4"	6350	7777	4.76	14.37	73.75	2.59	0.23	99.77	2.66	0.23	99.77	3.37	0.30	99.30	0.00	0.00	100.00
9	4	4750	5492	2.33	7.04	66.71	3.93	0.35	99.42	4.05	0.35	99.42	0.90	0.08	99.22	0.00	0.00	100.00
10	10	2000	3082	5.56	16.78	49.93	14.61	1.30	98.12	15.04	1.30	98.12	24.50	2.18	97.04	0.00	0.00	100.00
11	20	600	714	3.40	3.34	39.47	39.11	3.48	94.64	40.27	3.48	94.64	50.80	4.52	91.67	0.00	0.00	100.00
13	50	300	424	1.57	4.74	31.39	190.73	16.97	74.52	196.35	16.97	74.52	172.19	15.32	71.83	0.00	0.00	100.00
14	70	212	252	0.52	1.58	29.81	160.38	14.27	60.25	165.11	14.27	60.25	134.87	12.00	59.83	0.08	0.24	99.76
15	100	150	178	0.60	1.80	28.01	178.70	15.90	44.35	183.97	15.90	44.35	226.92	20.19	39.64	0.44	1.34	98.42
17	200	75	89	0.42	1.28	25.12	99.47	8.85	17.03	102.40	8.85	17.03	92.27	8.21	13.45	4.09	12.36	80.23
18	270	53	63	0.54	1.64	23.48	42.71	3.80	13.23	43.97	3.80	13.23	60.35	5.37	8.08	3.74	11.28	68.95
19	325	45	49	0.18	0.55	22.93	16.86	1.50	11.73	17.36	1.50	11.73	11.46	1.02	7.06	1.70	5.13	63.82
20	-400	38	41	0.23	22.24	22.24	9.78	0.87	10.86	10.07	0.87	10.86	4.61 74.74	0.41	6.65	1.36	4.10	59.72
Totals	100		15	33.12	100.00	0.00	1123.93	100.00	0.00	1157.05	100.00	0.00	1123.93	100.00	0.00	33.12	100.00	0.00
						07.1						74			74.62			00.00
% Solids	ity. ton/m3					97.17			74.21			71.50			74.39			22.23
Weighting F	actor				E	0.000			1.000			1.000			1.000		l	1.000

Hoja de ingreso de datos operativos del circuito de molienda.

Nota: Adaptado de las plantillas de Moly-Cop.

Figura 26

Balance del circuito de molienda.

Nota: Adaptado de plantillas de Moly-Cop.

En el Anexo 2 se pueden observar todos los datos recolectados de cada muestreo

y sus respectivos balances de masa.

Para el análisis de la operación del Molino de Bolas 11' x 18.8' se tomará en cuenta la alimentación total que recibe el molino y el producto de la descarga:
Figura 27

Simplificación de ingreso y salida en el Molino de Bolas 11'x18.8'.

El alimento al molino está conformado por la alimentación fresca y el underflow del hidrociclón, de manera que el tonelaje a considerar se determinará con el tonelaje fresco multiplicado por la carga circulante del circuito:

Tonelaje al molino = Tonelaje fresco × Carga Circulante

Así mismo se calculan los valores de la energía específica E y la constante N para el reactor Molino de Bolas 11' x 18.8':

$$E = \frac{KW - hr \ consumido}{Tonelaje \ al \ molino}$$
$$N = \frac{Largo \ del \ molino}{Diámetro \ del \ molino}$$

Estos valores se utilizan en la ecuación para el cálculo de la función selección específica, aplicando las granulometrías de entrada y salida para cada malla:

$$(1 - P_i) = (1 - F_i) \left(1 + \frac{E \times S_i^E}{N} \right)^{-N}, \quad i = 1, n$$
$$S_i^E = \frac{N}{E} \left(\left(\frac{1 - F_i}{1 - P_i} \right)^{1/N} - 1 \right), \quad i = 1, n$$

Nota: Elaboración propia

3.4.1 Tabla de granulometrías con revestimientos de acero

Tabla 9

Granulometrías con operación de revestimientos de acero.

	GRANULOMETRÍA DE INGRESO Y SALIDA – MOLINO DE BOLAS 11' x 18.8'										
Malla	μm	m TEST 1		TEST 2		TEST 3		TES	ST 4	TEST 5	
		Alimento al molino	Descarga								
1"	24500	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
1/2"	12700	99.74	99.92	99.68	99.89	99.71	99.92	99.57	99.89	99.74	99.92
3/8"	9525	99.18	99.80	99.07	99.76	99.04	99.81	98.59	99.77	99.16	99.80
1/4"	6350	98.17	99.54	97.85	99.42	97.95	99.58	96.77	99.50	98.13	99.54
4	4750	97.59	99.33	97.20	99.15	97.26	99.38	95.90	99.24	97.54	99.33
10	2000	94.99	97.61	94.57	97.36	94.35	97.74	93.21	97.69	94.93	97.62
20	850	90.07	93.24	89.39	92.70	89.10	93.28	88.85	94.00	90.17	93.42
30	600	86.11	89.45	84.92	88.38	85.24	89.67	85.39	90.75	86.07	89.50
50	300	69.97	73.55	69.48	73.16	70.99	75.77	71.85	77.50	69.91	73.59
70	212	56.97	60.62	54.37	58.13	59.15	64.02	61.00	66.75	56.93	60.69
100	150	39.11	42.79	35.23	39.03	40.63	45.59	43.07	48.89	39.09	42.88
140	105	21.37	24.75	20.63	24.22	22.86	27.67	25.35	30.86	21.38	24.86
200	75	13.29	16.17	13.10	16.16	14.83	19.04	16.87	21.70	13.31	16.27
270	53	9.13	11.48	8.86	11.24	10.07	13.34	10.71	14.36	9.15	11.57
325	45	8.03	10.16	7.93	10.10	8.66	11.47	9.60	12.94	8.05	10.25
400	38	7.46	9.48	7.23	9.22	7.77	10.26	8.34	11.24	7.48	9.56
K	80	469	404	488	416	472	375	462	345	470	403

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

3.4.2 Función selección específica con revestimientos de acero

Tabla 10

	TEST 1	TEST 2	TEST 3	TEST 4	TEST 5
Tonelaje fresco (tph)	33.12	32.88	33.03	30.00	33.26
Carga circulante	18.14	18.62	13.02	11.56	17.61
Tonelaje molino (TPH)	633.91	645.05	462.95	376.99	618.98
Potencia consumida (kW)	678.43	675.27	671.59	669.24	663.15
Nivel de bolas (%)	29	28.5	29	28.5	29.5
Energía Esp. (kW-H/TM)	1.07	1.05	1.45	1.78	1.07
Diámetro del molino (ft)	11.00	11.00	11.00	11.00	11.00
Largo del molino (ft)	18.80	18.80	18.80	18.80	18.80
N (Largo/Diámetro)	1.71	1.71	1.71	1.71	1.71

Datos operativos para el cálculo de la función selección específica.

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

Tabla 11

Función selección específica con revestimientos de acero.

		FUN	ECÍFICA TM	CA TM / kW-H		
Malla	μm	TEST 1	TEST 2	TEST 3	TEST 4	TEST 5
		SiE	SiE	SiE	SiE	SiE
1"	24500	-	-	-	-	-
1/2"	12700	1.4759	1.3286	1.2334	1.1873	1.5091
3/8"	9525	2.0522	1.9435	1.8190	1.7888	2.0963
1/4"	6350	1.9822	1.8792	1.8107	1.9069	2.0261
4	4750	1.7768	1.6540	1.6267	1.6244	1.8175
10	2000	0.8634	0.8557	0.8355	0.8479	0.8867
20	850	0.4016	0.3983	0.3847	0.4203	0.4227
30	600	0.2783	0.2690	0.2735	0.2952	0.2869
50	300	0.1231	0.1272	0.1310	0.1349	0.1266
70	212	0.0851	0.0841	0.0908	0.0941	0.0876
100	150	0.0594	0.0588	0.0618	0.0627	0.0611
140	105	0.0416	0.0448	0.0453	0.0442	0.0428
200	75	0.0319	0.0346	0.0355	0.0343	0.0328
270	53	0.0247	0.0255	0.0257	0.0238	0.0254
325	45	0.0221	0.0230	0.0217	0.0214	0.0227
400	38	0.0207	0.0208	0.0190	0.0183	0.0213

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

3.4.3 Gráficas de la función selección específica con revestimientos de acero

Figura 28

Función selección específica para muestreos con revestimientos de acero.

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

Figura 29

Función selección específica promedio con revestimientos de acero.

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

3.4.4 Tabla de granulometrías con revestimientos híbridos

Tabla 12

Granulometrías con operación de revestimientos híbridos.

		GRANULOMETRÍA DE INGRESO Y SALIDA – MOLINO DE BOLAS 11' x 18.8'									
Malla	μm	TES	ST 6 TEST 7		TEST 8		TEST 9		TEST 10		
		Alimento al molino	Descarga	Alimento al molino	Descarga	Alimento al molino	Descarga	Alimento al molino	Descarga	Alimento al molino	Descarga
1"	24500	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
1/2"	12700	99.19	99.82	99.31	99.84	99.82	99.97	99.54	99.90	99.13	99.83
3/8"	9525	97.35	99.65	97.88	99.70	99.33	99.92	98.21	99.76	97.39	99.69
1/4"	6350	95.33	99.40	96.10	99.48	97.18	99.64	96.65	99.57	95.68	99.50
4	4750	94.24	99.12	95.13	99.20	95.97	99.40	95.55	99.27	94.78	99.19
10	2000	91.38	97.57	92.49	97.73	92.59	97.65	92.12	97.30	92.02	97.51
20	850	86.51	93.33	87.81	93.69	87.60	93.40	86.85	92.74	86.50	92.66
30	600	81.44	88.44	83.24	89.32	83.42	89.42	83.11	89.16	81.33	87.73
50	300	64.01	71.27	66.38	72.71	65.51	71.82	66.68	73.01	65.74	72.44
70	212	49.31	56.70	51.21	57.66	50.19	56.62	52.71	59.15	52.12	58.96
100	150	31.53	38.88	32.42	38.89	31.98	38.46	35.30	41.83	34.16	41.03
140	105	17.62	24.51	18.89	25.05	18.92	25.10	19.63	26.04	18.97	25.52
200	75	12.00	18.22	12.19	17.75	10.93	16.29	11.76	17.44	12.26	18.20
270	53	6.91	12.02	7.14	11.64	7.44	11.97	7.53	12.08	7.46	12.31
325	45	5.94	10.72	6.19	10.40	6.55	10.77	6.43	10.52	5.83	10.12
400	38	4.86	9.14	5.17	8.97	5.74	9.60	5.54	9.17	4.89	8.78
К	80	570	435	531	414	532	422	532	412	569	430

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

3.4.5 Función selección específica con revestimientos híbridos

Tabla 13

	TEST 6	TEST 7	TEST 8	TEST 9	TEST 10
Tonelaje fresco (tph)	33.52	32.56	33.00	33.44	33.45
Carga circulante	11.05	12.59	12.53	12.74	12.16
Tonelaje molino (TPH)	403.81	442.44	446.64	459.44	440.32
Potencia consumida (kW)	660.05	658.90	657.79	654.75	649.79
Nivel de bolas (%)	30	30.5	31	31	31
Energía Esp. (kW-H/TM)	1.63	1.49	1.47	1.43	1.48
Diámetro del molino (ft)	11.00	11.00	11.00	11.00	11.00
Largo del molino (ft)	18.80	18.80	18.80	18.80	18.80
N (Largo/Diámetro)	1.71	1.71	1.71	1.71	1.71

Datos operativos para el cálculo de la función selección específica.

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

Tabla 14

Función selección específica con revestimientos híbridos.

		FUNCIÓN SELECCIÓN ESPECÍFICA TM / kW-h						
Malla	μm	TEST 6	TEST 7	TEST 8	TEST 9	TEST 10		
		SiE	SiE	SiE	SiE	SiE		
1"	24500	-	-	-	-	-		
1/2"	12700	1.4693	1.5486	1.8854	1.7482	1.8487		
3/8"	9525	2.3779	2.4246	2.7291	2.6836	2.8352		
1/4"	6350	2.4174	2.5971	2.7328	2.7958	2.9319		
4	4750	2.0988	2.1625	2.3721	2.2518	2.2986		
10	2000	1.1502	1.1661	1.1099	1.0466	1.1303		
20	850	0.5325	0.5400	0.5184	0.4991	0.4960		
30	600	0.3338	0.3459	0.3490	0.3553	0.3223		
50	300	0.1474	0.1491	0.1456	0.1572	0.1573		
70	212	0.1009	0.0992	0.0979	0.1072	0.1093		
100	150	0.0719	0.0695	0.0700	0.0771	0.0772		
140	105	0.0548	0.0543	0.0551	0.0598	0.0585		
200	75	0.0458	0.0448	0.0429	0.0476	0.0485		
270	53	0.0351	0.0339	0.0346	0.0359	0.0370		
325	45	0.0324	0.0312	0.0319	0.0318	0.0320		
400	38	0.0286	0.0278	0.0288	0.0279	0.0287		

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

3.4.6 Gráficas de la función selección específica con revestimientos híbridos

Figura 30

Función selección específica para muestreos con revestimientos híbridos.

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

Figura 31

Función selección específica promedio con revestimientos híbridos.

Nota: Elaboración propia, obtenida a partir del procesamiento de datos.

Capítulo IV. Análisis y discusión de resultados

En este capítulo se analizarán los resultados de la función selección específica obtenidos en los dos escenarios de revestimientos, realizando un comparativo de los resultados y el análisis estadístico para la validación.

Teniendo en cuenta las diferentes condiciones en la operación del Molino de Bolas 11' x 18.8', la función selección específica es independiente del diseño del molino y sus condiciones de operación, según lo mencionado en el marco teórico.

Así mismo, la expresión de la función selección específica relaciona la energía consumida en proporción con el tonelaje procesado y la granulometría de entrada y salida; en consecuencia, los resultados de la función selección específica presentan similitud para determinado tipo de revestimiento. Sin embargo, al ser el peso de los revestimientos un factor asociado a el consumo energético del molino, la función selección específica presenta variación al pasar de revestimientos de acero a revestimientos híbridos.

4.1 Análisis comparativo de los resultados promedio

Considerando el orden de las pruebas realizadas para el molino, se agrupan los resultados según la etapa de revestimientos: resultados del Test 1 al Test 5 para los revestimientos de acero y resultados del Test 6 al Test 10 para los revestimientos híbridos. En ambos casos se obtiene un promedio para cada malla, los cuales se muestran en la siguiente tabla:

Tabla 15

Malla	um	FUNCIÓN SELECO	CIÓN ESPECÍFICA kW-H
	•	Promedio con revestimientos de acero	Promedio con revestimientos híbridos
1"	24500	-	-
1/2"	12700	1.3469	1.7000
3/8"	9525	1.9400	2.6101
1/4"	6350	1.9210	2.6950
4	4750	1.6999	2.2368
10	2000	0.8578	1.1206
20	850	0.4055	0.5172
30	600	0.2806	0.3413
50	300	0.1286	0.1513
70	212	0.0883	0.1029
100	150	0.0608	0.0731
140	105	0.0438	0.0565
200	75	0.0338	0.0459
270	53	0.0250	0.0353
325	45	0.0222	0.0319
400	38	0.0200	0.0283

Función selección específica promedio acero e híbridos.

Nota: Elaboración propia, obtenida a partir del análisis de datos.

En forma gráfica (en escala logarítmica) se puede observar un desplazamiento positivo de la curva del revestimiento de acero hacia la curva del revestimiento híbrido, lo cual se puede interpretar en forma general que se presenta una mayor velocidad para el rompimiento de las partículas de mineral con los revestimientos híbridos.

Figura 32

Nota: Elaboración propia, obtenida a partir del análisis de datos.

Dado que para este estudio el perfil de los revestimientos fue equivalente, lo que incluye la misma altura de los elevadores y el mismo ángulo de ataque, así como el tamaño de las bolas de acero, se deduce que este desplazamiento positivo hacia la curva del revestimiento híbrido se debe a un menor valor de la energía específica.

Figura 33

Ajuste lineal de la función selección específica en escala decimal.

Nota: Elaboración propia, obtenida a partir del análisis de datos.

Observando las curvas de función selección específica en escala decimal, se aprecia la tendencia lineal de las curvas que van desde las partículas de 38 µm hasta las partículas de 4750 µm. Siendo que las partículas con mayor tamaño tienden a romperse con relativa facilidad, no forman parte de la tendencia lineal.

 $y = \alpha x + c$

Donde: y: función SiE

x: tamaño de partícula µm

- *α:* pendiente del modelo lineal
- c: constante

La pendiente α de la función selección específica determina la mayor velocidad el menor consumo de energía para la obtención de un tamaño específico de partícula.

	Revestimiento de acero	Revestimiento híbrido
α	0.0004	0.0005

De esta manera se obtienen los mayores valores de la función selección específica con los revestimientos híbridos.

4.2 Análisis estadístico de validación de resultados

A continuación, se realiza la prueba de hipótesis para cada tamaño de partícula, con el cual se obtiene la validez de los resultados. Para este análisis estadístico se hace uso del paquete estadístico MINITAB.

Nuevamente las 10 pruebas se dividen según el tipo de revestimientos, definiendo el ESTATUS igual a ACERO o igual a HÍBRIDO. Teniendo en cuenta que se realizaron 5 pruebas para cada caso, el tamaño de la muestra para cada malla será de 5.

En la siguiente tabla se resumen los resultados completos de la media de la muestra y la desviación estándar (resultados para cada MALLA, según el ESTATUS).

A continuación, en la Tabla 16 se muestran los resultados de la media de la

función selección específica para cada malla con revestimientos de ACERO e HÍBRIDOS.

Tabla 16

	ES	STATUS = ACEF	RO	ESTATUS = HÍBRIDO			
MALLA	Tamaño de la	Media de la	Desviación	Tamaño de la	Media de la	Desviación	
	muestra	muestra	estandar	muestra	muestra	estandar	
1/2"	5	1.3469	0.1429	5	1.7000	0.1837	
3/8"	5	1.9400	0.1365	5	2.6101	0.1991	
1/4"	5	1.9210	0.0850	5	2.6950	0.1965	
M4	5	1.6999	0.0907	5	2.2368	0.1083	
M10	5	0.8578	0.0192	5	1.1206	0.0464	
M20	5	0.4055	0.0159	5	0.5172	0.0196	
M30	5	0.2806	0.0105	5	0.3413	0.0132	
M50	5	0.1286	0.0045	5	0.1513	0.0055	
M70	5	0.0883	0.0041	5	0.1029	0.0051	
M100	5	0.0608	0.0016	5	0.0731	0.0037	
M140	5	0.0438	0.0015	5	0.0565	0.0025	
M200	5	0.0338	0.0014	5	0.0459	0.0022	
M270	5	0.0250	0.0008	5	0.0353	0.0012	
M325	5	0.0222	0.0007	5	0.0319	0.0004	
M400	5	0.0200	0.0013	5	0.0283	0.0005	

Media y desviación estándar de la función selección específica.

Nota: Elaboración propia, obtenida a partir del análisis de datos con Minitab.

A manera de ejemplo en las Figuras 34 y 35 se observan los resúmenes estadísticos de la función selección TM/kW-H para la MALLA 1/2", para un ESTATUS caso de ACERO y un ESTATUS caso HIBRIDO, realizado con la herramienta MINITAB.

Figura 34

Resumen estadístico de la función selección específica con acero (para MALLA 1/2").

Nota: Elaboración propia, obtenida con el software Minitab.

Figura 35

Resumen estadístico de la función selección específica con híbridos (para MALLA 1/2").

Nota: Elaboración propia, obtenida con el software Minitab.

Los resultados completos de resúmenes estadísticos para los revestimientos de acero se podrán observar en el Anexo 3 y para los revestimientos híbridos en el Anexo 4.

Seguidamente, se muestra la definición de la hipótesis nula y la hipótesis alterna, con las cuales se validan los resultados obtenidos de la función selección específica con revestimientos de acero y con revestimientos híbridos. Se realiza la prueba de hipótesis utilizando el estadístico T-Student para muestras con tamaños menores a 30.

Método

 μ_1 : media de SiE (para cada MALLA) cuando ESTATUS = ACERO

 μ_2 : media de SiE (para cada MALLA) cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

Si μ_2 (media para el híbrido) es mayor que μ_1 (media para el acero) la diferencia planteada debe ser menor a cero.

Prueba

Hipótesis nula	$H_0: \mu_1 - \mu_2 = 0$
Hipótesis alterna	H ₁ : μ ₁ - μ ₂ < 0

Según la prueba, a partir de la diferencia entre medias del ACERO y el HÍBRIDO se tiene que para la hipótesis nula H_0 ambos resultados de medias son iguales y para la hipótesis alterna H_1 la media del HÍBRIDO es mayor a la media del ACERO.

En los resultados de esta prueba se podrá notar el Valor P, el cual es el valor de la probabilidad de haber obtenido un resultado que acepta la hipótesis, siempre que su valor sea menor al valor de significancia. Teniendo en cuenta un valor de significancia igual a 0.05, se evalúa el resultado del Valor P que, en caso de ser mayor al valor de significancia, es probable que los resultados se deban al azar, por tanto, la hipótesis es rechazada. En caso de que el Valor P sea menor al valor de significancia, es poco probable que los resultados se deban al azar, por tanto, la hipótesis es probable que los resultados se deban al valor de significancia.

A continuación, en la Tabla 17 se tienen los resultados de la prueba con las medias de la función selección específica para revestimientos de ACERO e HÍBRIDOS. Así mismo, los detalles de las pruebas se podrán observar en el Anexo 5.

Tabla 17

Resultados de la prueba de hipótesis.

Malla	Valor P	Comparativo con valor de significancia	Resultado
1/2"	0.005770	Menor a 0.05	Se acepta la hipótesis
3/8"	0.000221	Menor a 0.05	Se acepta la hipótesis
1/4"	0.000235	Menor a 0.05	Se acepta la hipótesis
M4	0.000031	Menor a 0.05	Se acepta la hipótesis
M10	0.000040	Menor a 0.05	Se acepta la hipótesis
M20	0.000011	Menor a 0.05	Se acepta la hipótesis
M30	0.000044	Menor a 0.05	Se acepta la hipótesis
M50	0.000095	Menor a 0.05	Se acepta la hipótesis
M70	0.000805	Menor a 0.05	Se acepta la hipótesis
M100	0.000529	Menor a 0.05	Se acepta la hipótesis
M140	0.000033	Menor a 0.05	Se acepta la hipótesis
M200	0.000026	Menor a 0.05	Se acepta la hipótesis
M270	0.000002	Menor a 0.05	Se acepta la hipótesis
M325	0.000000	Menor a 0.05	Se acepta la hipótesis
M400	0.000093	Menor a 0.05	Se acepta la hipótesis

Nota: Elaboración propia, obtenida a partir del análisis de datos

Se observa que en todos los casos el Valor P resulta menor al valor de significancia (0.05), en consecuencia, para cada caso de las mallas se rechaza la hipótesis.

Por lo tanto, los resultados obtenidos a partir de los Test realizados con revestimientos de acero y con revestimientos híbridos, no son suficientes para aceptar o validar que con los revestimientos híbridos se obtienen los mayores resultados de la función selección específica, tal como se obtuvo con los primeros resultados comparativos.

Conclusiones

Se pudo comprobar que independientemente de las condiciones de operación, la función selección específica S_i^E presenta similitud de resultados para un mismo tipo de revestimientos, por lo que estos fueron promediados para realizar el comparativo.

En el cambio de revestimientos de acero a revestimientos híbridos, se aprecia gráficamente un desplazamiento positivo de las curvas de la función selección específica S_i^E hacia los revestimientos híbridos, encontrando a su vez que la pendiente de las curvas en un modelo lineal, favorecen un mayor resultado para los revestimientos híbridos. Es decir, al utilizar los revestimientos híbridos ocurrió un aumento de velocidad del rompimiento de partículas.

Dada la cantidad de datos utilizados para el estudio con cada tipo de revestimientos, se realizó el análisis estadístico de T-Student para la evaluación de hipótesis para cada malla (5 grupos de datos para revestimientos de acero y 5 grupos de datos para revestimientos híbridos). La hipótesis "la función selección específica con revestimientos híbridos es mayor que con los revestimientos de acero" es evaluada para cada malla, obteniendo que en todos los casos el Valor P es menor al valor de significancia (0.05), es poco probable que los resultados se deban al azar, por tanto, la hipótesis se acepta.

Aunque para este estudio el peso de revestimientos fue un factor a considerar para demostrar el menor consumo de energía, representado con la variación favorable de la función selección específica, se requiere de una mayor cantidad de datos para reducir la variabilidad de resultados.

40

Recomendaciones

A nivel operativo se observa una oportunidad para optimizar el circuito moliendaclasificación. Al obtener altos valores de la carga circulante se recomienda realizar un estudio de la operación de los hidrociclones y evaluar sus parámetros. Así mismo el radio de reducción del molino presenta un bajo índice de reducción de tamaño de partícula, por lo que se recomienda evaluar un cambio del collar de bolas.

Para la evaluación de la operatividad de los revestimientos, se recomienda realizar los muestreos desde el inicio de campaña, tanto para el acero como para los híbridos. De ser posible establecer tiempos de operación de los revestimientos en los cuales se deben hacer los muestreos.

Para un estudio con mayor representatividad y con el fin de validar las hipótesis estadísticas, es recomendable realizar una mayor cantidad de muestreos, ya que el presente estudio con 5 muestreos realizados para cada malla y por cada revestimiento, puede ser complementado con una mayor cantidad de pruebas y de ser posible validado con el estadístico Z (para muestras mayores a 30).

Referencias bibliográficas

- Morote Guevara A.V., Vega Cahuana R., Pareja Poccori S.M. (2019). *Beneficios y desafíos de la gestión integrada Mina Planta*. Lima, Perú.
- Yoplac Castromonte E. (2008). *Curso de Operaciones Unitarias*. Universidad Nacional de Ingeniería, Lima, Perú.
- Rodilla, Vicente (2015). Eficiencia Energética Eléctrica: Rentabilidad vs. Ahorro. Portal Arquitectura y Construcción, España.
- Roca, Jose A. (2020). El Periódico de la Energía: Las emisiones de CO2 relacionadas con la energía en EEUU cayeron un 2,6% en 2019. España.
- Michaud, David (2016). Ball Mill liner design. Langley, British Columbia, Canada.
- Tecnología Minera (2019). Lanzamiento de revestimientos de molino compuesto.
- Bellido Gala D. (2020). Liners híbridos y su impacto en el consumo de energía. RevistaHorizonte Minero. Perú.
- Linares Gutiérrez N. (2014). Procesamiento De Minerales Mineralurgia I. Tacna, Perú.
- Powell M., Cleary P., Radziszewski P., (2006). *The selection and design of mill liners*. Society for Mining, metallurgy, and exploration, Inc., Colorado, USA.
- D. Touil, S. Belaadi, C. Frances, (2008). *The specific selection function effect on clinker grinding efficiency in a dry batch ball mill.* France.
- Arratia Henríquez M.A. (2006). Modelo matemático para la estimación de la vida útil de revestimientos en molinos semiautógenos. Valdivia, Chile.
- MINEM Dirección General de Eficiencia Energética (2017). *Guía de orientación del uso* eficiente de la energía y de diagnóstico energético. Lima, Perú.
- Heredia Tejada H.J. (2016). Simulación y obtención de parámetros óptimos para la optimización de los revestimientos del molino SAG 36 ft x 26.6 ft de la Minera Constancia Hudbay. Arequipa, Perú.

Osinergmin (2016). La industria de la electricidad en el Perú.

- Powell M.S. (1991). The effect of liner design on the motion of the outer grinding elements in a rotary mill. Randburg, South Africa.
- Rajamani, Raj K (2007). Improving energy efficiency via optimized charge motion and slurry flow in plant scale SAG Mills. Salt Lake City, Utah, United States.
- Royston, David (2007). Semi-autogenous grinding (SAG) mill liner design and development. Brisbane, Queensland, Australia.

Anexos

	Pág.
Anexo 1: Variables operativas	1
Anexo 2: Datos de los muestreos y reportes de balance	3
Anexo 3: Resumen estadístico de la función selección específica (SiE) para re	vestimientos
de acero	23
Anexo 4: Resumen estadístico de la función selección específica (SiE) para re	vestimientos
híbridos	31
Anexo 5: Resultados de pruebas de hipótesis	39

Anexo 1: Variables operativas

Velocidad crítica del molino

$$V_c = \frac{76.63}{\sqrt{D_{ef}}}$$

 $V_c = velocidad \ crítica, en \ revoluciones \ por \ minuto$

 $D_{ef}=diámetro\ efectivo\ del\ molino\ (entre\ revestimientos), en\ pies$

Espesor del revestimiento = 60 mm = 0.2 pies

$$D_{ef} = 11 - 2 \times (0.2) = 10.6 \ pies$$

$$V_c = \frac{76.63}{\sqrt{10.6}} rpm$$

$$V_c = 23.5 rpm$$

$$V_{op} = 17.2 rpm$$
$$V_{op} = 73\% V_c$$

Diámetro de adición de bolas

Revestimiento híbrido del molino

Volumen remanente del revestimiento por cada inspección

%Volumen remanente del revestimiento de acero

%Volumen remanente del revestimiento híbrido

Unidad de análisis

Molino de bolas 11'x18.8'.

Anexo 2: Datos de los muestreos y reportes de balance

DATOS DEL MUESTREO – TEST N°1

Test N°	1
Date	21/02/2019
Feedrate, ton/hr (dry)	33.1
Gross Power (kW)	678.4
Balls Filling,%	29.0
Pressure Cyclone (psi)	10.5

%Solids

Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow
97.17	74.21	71.50	74.39	22.23

	Openina	%Passing				
Mesh	(µm)	Fresh Feed	Mill Discharge	Underflow	Overflow	
1"	24500	100.00	100.00	100.00	100.00	
1/2"	12700	96.65	100.00	99.83	100.00	
3/8"	9525	88.12	100.00	99.60	100.00	
1/4"	6350	73.75	99.77	99.30	100.00	
4	4750	66.71	99.42	99.22	100.00	
10	2000	49.93	98.12	97.04	100.00	
20	850	39.47	94.64	91.67	100.00	
30	600	36.13	91.49	87.15	100.00	
50	300	31.39	74.52	71.83	100.00	
70	212	29.81	60.25	59.83	99.76	
100	150	28.01	44.35	39.64	98.42	
140	105	26.40	25.88	21.66	92.59	
200	75	25.12	17.03	13.45	80.23	
270	53	23.48	13.23	8.08	68.95	
325	45	22.93	11.73	7.06	63.82	
400	38	22.24	10.86	6.65	59.72	

Moly-Cop Tools[™], Version 3.0 **BALLBAL** Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS DE ACERO

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	hr	33.1	633.9	633.9	0.0	633.9	600.8	33.1
Water, m	3/hr	1.0	149.5	220.3	44.1	264.4	148.5	115.9
Slurry, to	n/hr	34.1	783.4	854.2	44.1	898.3	749.3	149.0
Slurry, m	3/hr	13.2	384.3	455.1	44.1	499.2	371.1	128.1
Slurry D,	ton/m3	2.576	2.039	1.877	1.000	1.800	2.019	1.163
% Solids	(vol.)	92.7	61.1	51.6	0.0	47.0	60.0	9.6
% Solids	(weight)	97.2	80.9	74.2	0.0	70.6	80.2	22.2
			Parti	cle Size Dist	ributions (C	Cummulative %	Passing)	
Mach	Oponing	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
MESH	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	96.65	99.74	99.92	0.00	99.92	99.91	100.00
3/8"	9525	88.12	99.18	99.80	0.00	99.80	99.79	100.00
1/4"	6350	73.75	98.17	99.54	0.00	99.54	99.51	100.00
4	4750	66.71	97.59	99.33	0.00	99.33	99.29	100.00
10	2000	49.93	94.99	97.61	0.00	97.61	97.48	99.99
20	850	39.47	90.07	93.24	0.00	93.24	92.86	99.97
30	600	36.13	86.11	89.45	0.00	89.45	88.87	99.95
50	300	31.39	69.97	73.55	0.00	73.55	72.10	99.88
70	212	29.81	56.97	60.62	0.00	60.62	58.46	99.78
100	150	28.01	39.11	42.79	0.00	42.79	39.72	98.57
140	105	26.40	21.37	24.75	0.00	24.75	21.09	91.16
200	75	25.12	13.29	16.17	0.00	16.17	12.64	80.31
270	53	23.48	9.13	11.48	0.00	11.48	8.34	68.44
325	45	22.93	8.03	10.16	0.00	10.16	7.21	63.76
400	38	22.24	7.46	9.48	0.00	9.48	6.64	60.87
D80	, microns	7643	469	404	0	404	423	74.4

Specific Energy Consumptio: Operational Work Index:

20.48 KWH/ton (Gross) 19.60 KWH/ton

Number of Cyclones:2Cyclone Dimensions, in:		2	Operating Conditions:		
			Feed Flowrate, m3/hr	499.2	
	Diameter	15.00	Pressure, psi	10.5	
	Height	60.00	D50 (corr.), microns	43.5	
	Inlet	4.00	Water By-Pass, %	56.2	
	Vortex	5.50	Solids By-Pass, %	58.1	
	Apex	3.25	Plitt's Parameter	1.38	
Ore Density,	ton/m3	2.70	Circulating Load, %	1814	

Test N°	2
Date	17/05/2019
Feedrate, ton/hr (dry)	32.9
Gross Power (kW)	675.3
Balls Filling,%	28.5
Pressure Cyclone (psi)	10.1

%Solids

Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow
97.14	73.02	70.52	73.52	22.86

	Opening	%Passing					
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow		
1"	24500	100.00	100.00	100.00	100.00		
1/2"	12700	96.17	100.00	99.77	100.00		
3/8"	9525	86.98	100.00	99.51	100.00		
1/4"	6350	70.37	99.45	99.37	100.00		
4	4750	63.11	99.25	99.03	100.00		
10	2000	47.41	97.96	96.69	100.00		
20	850	37.62	93.47	91.71	100.00		
30	600	34.61	90.48	85.97	100.00		
50	300	30.43	75.25	70.25	100.00		
70	212	28.78	59.81	55.14	99.71		
100	150	27.10	40.61	35.57	98.31		
140	105	25.53	26.41	19.88	92.52		
200	75	24.32	18.46	11.84	80.35		
270	53	22.82	12.36	8.27	69.12		
325	45	22.27	11.24	7.26	63.55		
400	38	21.65	10.31	6.52	59.44		

Moly-Cop Tools[™], Version 3.0 BALLBAL

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS DE ACERO

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	′hr	32.9	620.3	620.3	0.0	620.3	587.4	32.9
Water, m	n3/hr	1.0	161.2	229.2	42.0	271.2	160.3	110.9
Slurry, to	on/hr	33.8	781.5	849.5	42.0	891.5	747.7	143.8
Slurry, m	n3/hr	13.1	391.0	458.9	42.0	500.9	377.8	123.1
Slurry D	, ton/m3	2.575	1.999	1.851	1.000	1.780	1.979	1.168
% Solids	s (vol.)	92.6	58.8	50.1	0.0	45.9	57.6	9.9
% Solids	(weight)	97.1	79.4	73.0	0.0	69.6	78.6	22.9
			Parti	cle Size Dist	ributions (C	ummulative %	Passing)	
Maab	Opening	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
MESH	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	96.17	99.68	99.89	0.00	99.89	99.88	100.00
3/8"	9525	86.98	99.07	99.76	0.00	99.76	99.74	100.00
1/4"	6350	70.37	97.85	99.42	0.00	99.42	99.39	99.99
4	4750	63.11	97.20	99.15	0.00	99.15	99.11	99.99
10	2000	47.41	94.57	97.36	0.00	97.36	97.21	99.97
20	850	37.62	89.39	92.70	0.00	92.70	92.29	99.93
30	600	34.61	84.92	88.38	0.00	88.38	87.74	99.88
50	300	30.43	69.48	73.16	0.00	73.16	71.67	99.73
70	212	28.78	54.37	58.13	0.00	58.13	55.81	99.57
100	150	27.10	35.23	39.03	0.00	39.03	35.69	98.78
140	105	25.53	20.63	24.22	0.00	24.22	20.36	93.24
200	75	24.32	13.10	16.16	0.00	16.16	12.48	81.99
270	53	22.82	8.86	11.24	0.00	11.24	8.08	67.79
325	45	22.27	7.93	10.10	0.00	10.10	7.13	63.24
400	38	21.65	7.23	9.22	0.00	9.22	6.42	59.14
D80), microns	8116	488	416	0	416	437	71.7
Specific	Energy Consum	ption:		20.54 KWI	l/ton (Gross))		

Operational Work Index:

20.54 KWH/ton (19.20 KWH/ton

Number of Cyc	lones:	2 Operating Conditions:		
Cyclone Dimen	isions, in:		Feed Flowrate, m3/hr	500.9
	Diameter	15.00	Pressure, psi	10.1
	Height	60.00	D50 (corr.), microns	53.5
	Inlet	4.00	Water By-Pass, %	59.1
	Vortex	5.50	Solids By-Pass, %	61.7
	Apex	3.25	Plitt's Parameter	1.71
Ore Density, to	n/m3	2.70	Circulating Load, %	1786

Test N°		3		
Date		30/07/2019		
Feedrate, ton	/hr (dry)	33.0		
Gross Power	(kW)	671.6		
Balls Filling,%	, 0	29.0		
Pressure Cyc	lone (psi)	9.6		
%Solids				
Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow
97.10	70.60	68.10	71.10	22.39

	Opening	%Passing					
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow		
1"	24500	100.00	100.00	100.00	100.00		
1/2"	12700	97.14	100.00	99.83	100.00		
3/8"	9525	89.26	100.00	99.61	100.00		
1/4"	6350	77.14	99.85	99.31	100.00		
4	4750	70.30	99.57	99.17	100.00		
10	2000	52.45	98.92	96.52	100.00		
20	850	41.33	94.56	91.80	100.00		
30	600	37.65	90.54	88.46	100.00		
50	300	32.35	77.34	73.40	100.00		
70	212	30.84	64.26	62.52	99.82		
100	150	28.93	47.66	41.71	99.14		
140	105	27.26	29.62	23.45	94.20		
200	75	25.93	21.66	14.17	85.47		
270	53	24.14	16.08	8.69	69.93		
325	45	23.58	13.84	7.36	62.88		
400	38	22.84	12.14	6.79	57.13		

Moly-Cop Tools[™], Version 3.0 BALLBAL

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS DE ACERO

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton	/hr	33.0	463.0	463.0	0.0	463.0	429.9	33.0
Water, n	n3/hr	1.0	113.4	192.8	34.1	226.9	112.4	114.5
Slurry, to	on/hr	34.0	576.4	655.7	34.1	689.9	542.4	147.5
Slurry, m	n3/hr	13.2	284.9	364.3	34.1	398.4	271.7	126.7
Slurry D	, ton/m3	2.573	2.023	1.800	1.000	1.732	1.996	1.164
% Solids	s (vol.)	92.5	60.2	47.1	0.0	43.0	58.6	9.7
% Solids	s (weight)	97.10	80.32	70.60	0.00	67.11	79.27	22.39
			Parti	cle Size Dist	ributions (C	ummulative %	Passing)	
Maab	Opening	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
wesn	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	97.14	99.71	99.92	0.00	99.92	99.91	100.00
3/8"	9525	89.26	99.04	99.81	0.00	99.81	99.79	100.00
1/4"	6350	77.14	97.95	99.58	0.00	99.58	99.55	99.99
4	4750	70.30	97.26	99.38	0.00	99.38	99.33	99.98
10	2000	52.45	94.35	97.74	0.00	97.74	97.57	99.94
20	850	41.33	89.10	93.28	0.00	93.28	92.77	99.83
30	600	37.65	85.24	89.67	0.00	89.67	88.89	99.74
50	300	32.35	70.99	75.77	0.00	75.77	73.96	99.38
70	212	30.84	59.15	64.02	0.00	64.02	61.32	99.08
100	150	28.93	40.63	45.59	0.00	45.59	41.53	98.53
140	105	27.26	22.86	27.67	0.00	27.67	22.52	94.78
200	75	25.93	14.83	19.04	0.00	19.04	13.97	84.98
270	53	24.14	10.07	13.34	0.00	13.34	8.99	69.85
325	45	23.58	8.66	11.47	0.00	11.47	7.51	62.89
400	38	100.00	100.00	100.00	0.00	100.00	100.00	100.00
D80), microns	7026	472	375	0	375	403	67.4

Specific Energy Consumption: Operational Work Index: 20.33 KWH/ton (Gross) 18.50 KWH/ton

Number of Cyclones:		2	Operating Conditions:	
Cyclone Dimensions, in:			Feed Flowrate, m3/hr	398.4
	Diameter	15.00	Pressure, psi	9.6
	Height	60.00	D50 (corr.), microns	58.0
	Inlet	4.00	Water By-Pass, %	49.6
	Vortex	5.50	Solids By-Pass, %	57.1
	Apex	3.25	Plitt's Parameter	2.09
Ore Density, to	n/m3	2.70	Circulating Load, %	1302

Test N°		4		
Date		1/11/2019		
Feedrate, ton	/hr (dry)	30.0		
Gross Power	(kW)	669.24		
Balls Filling,%	, D	28.5		
Pressure Cyc	lone (psi)	9.2		
%Solids				
Fresh Feed Mill Discharge		Cyclone Feed	Underflow	Overflow
97.10	71.80	69.30	72.30	23.70

	Opening	%Passing						
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow			
1"	24500	100.00	100.00	100.00	100.00			
1/2"	12700	95.93	100.00	99.78	100.00			
3/8"	9525	85.20	100.00	99.53	100.00			
1/4"	6350	65.70	100.00	99.00	100.00			
4	4750	57.96	99.91	98.57	100.00			
10	2000	43.66	97.95	97.36	100.00			
20	850	35.28	95.11	92.70	100.00			
30	600	32.57	91.34	89.84	100.00			
50	300	28.71	78.56	75.65	99.89			
70	212	27.44	67.89	64.41	99.86			
100	150	25.85	51.20	44.79	98.92			
140	105	24.38	33.50	25.96	93.95			
200	75	23.17	24.75	16.41	84.62			
270	53	21.77	16.94	9.87	67.68			
325	45	21.21	15.61	8.50	62.68			
400	38	20.63	13.67	7.19	56.76			

Moly-Cop Tools[™], Version 3.0 BALLBAL

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS DE ACERO

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	/hr	30.0	377.0	377.0	0.0	377.0	347.0	30.0
Water, m	n3/hr	0.9	79.6	148.1	27.2	175.3	78.7	96.6
Slurry, to	on/hr	30.9	456.6	525.1	27.2	552.2	425.7	126.6
Slurry, m	n3/hr	12.0	219.2	287.7	27.2	314.9	207.2	107.7
Slurry D,	, ton/m3	2.573	2.083	1.825	1.000	1.754	2.054	1.175
% Solids	s (vol.)	92.5	63.7	48.5	0.0	44.3	62.0	10.3
% Solids	s (weight)	97.10	82.57	71.80	0.00	68.26	81.52	23.70
			Parti	cle Size Dist	ributions (C	ummulative %	Passing)	
Mech	Opening	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
MESH	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	95.93	99.57	99.89	0.00	99.89	99.88	100.00
3/8"	9525	85.20	98.59	99.77	0.00	99.77	99.75	100.00
1/4"	6350	65.70	96.77	99.50	0.00	99.50	99.46	99.99
4	4750	57.96	95.90	99.24	0.00	99.24	99.18	99.99
10	2000	43.66	93.21	97.69	0.00	97.69	97.50	99.97
20	850	35.28	88.85	94.00	0.00	94.00	93.48	99.93
30	600	32.57	85.39	90.75	0.00	90.75	89.96	99.89
50	300	28.71	71.85	77.50	0.00	77.50	75.58	99.74
70	212	27.44	61.00	66.75	0.00	66.75	63.91	99.62
100	150	25.85	43.07	48.89	0.00	48.89	44.56	98.96
140	105	24.38	25.35	30.86	0.00	30.86	25.43	93.69
200	75	23.17	16.87	21.70	0.00	21.70	16.32	83.89
270	53	21.77	10.71	14.36	0.00	14.36	9.75	67.57
325	45	21.21	9.60	12.94	0.00	12.94	8.59	63.18
400	38	20.63	8.34	11.24	0.00	11.24	7.28	57.06
D80), microns	8634	462	345	0	345	376	69.5
Specific	Specific Energy Consumption: 22.31 KWH/ton (Gross)							

Operational Work Index:

22.31 KWH/ton (0 20.43 KWH/ton

Number of Cyclones:		2	Operating Conditions:	
Cyclone Dimensions, in:			Feed Flowrate, m3/hr	314.9
	Diameter	15.00	Pressure, psi	9.2
	Height	60.00	D50 (corr.), microns	51.9
	Inlet	4.00	Water By-Pass, %	44.9
	Vortex	5.50	Solids By-Pass, %	54.0
	Apex	3.25	Plitt's Parameter	1.67
Ore Density, to	n/m3	2.70	Circulating Load, %	1156

Test N°		5		
Date		2/11/2019		
Feedrate, tor	n/hr (dry)	33.3		
Gross Power	(kW)	663.2		
Balls Filling,%	6	29.5		
Pressure Cyc	clone (psi)	16.1		
%Solids				
Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow
96.70	71.90	69.40	72.40	22.50

	Opening	%Passing						
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow			
1"	24500	100.00	100.00	100.00	100.00			
1/2"	12700	96.65	100.00	99.83	100.00			
3/8"	9525	88.12	100.00	99.60	100.00			
1/4"	6350	73.75	99.77	99.30	100.00			
4	4750	66.71	99.42	99.22	100.00			
10	2000	49.93	98.12	97.05	100.00			
20	850	39.47	94.64	92.03	100.00			
30	600	36.13	91.49	87.23	100.00			
50	300	31.39	74.52	71.83	100.00			
70	212	29.81	60.25	59.83	99.76			
100	150	28.01	44.35	39.64	98.42			
140	105	26.40	25.88	21.66	92.59			
200	75	25.12	17.03	13.45	80.23			
270	53	23.48	13.23	8.08	68.95			
325	45	22.93	11.73	7.06	63.82			
400	38	22.24	10.86	6.65	59.72			

Moly-Cop Tools[™], Version 3.0 BALLBAL

Grinding Circuit Mass Balance Estimator

Remarks:

CIRCUIT MASS BALANCE

MOLINO DE BOLAS 11' x 18.8' - LINERS DE ACERO

Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	/hr	33.3	619.0	619.0	0.0	619.0	585.7	33.3
Water, m	n3/hr	1.1	171.4	241.9	42.9	284.8	170.3	114.6
Slurry, to	on/hr	34.4	790.4	860.9	42.9	903.8	756.0	147.8
Slurry, m	n3/hr	13.5	400.7	471.2	42.9	514.1	387.2	126.9
Slurry D,	, ton/m3	2.557	1.973	1.827	1.000	1.758	1.952	1.165
% Solids	s (vol.)	91.6	57.2	48.7	0.0	44.6	56.0	9.7
% Solids	s (weight)	96.70	78.31	71.90	0.00	68.48	77.48	22.50
			Parti	cle Size Dist	ributions (C	Cummulative %	Passing)	
Moch	Opoping	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
IVIESII	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	96.65	99.74	99.92	0.00	99.92	99.91	100.00
3/8"	9525	88.12	99.16	99.80	0.00	99.80	99.79	100.00
1/4"	6350	73.75	98.13	99.54	0.00	99.54	99.51	100.00
4	4750	66.71	97.54	99.33	0.00	99.33	99.29	100.00
10	2000	49.93	94.93	97.62	0.00	97.62	97.48	99.99
20	850	39.47	90.17	93.42	0.00	93.42	93.05	99.97
30	600	36.13	86.07	89.50	0.00	89.50	88.91	99.95
50	300	31.39	69.91	73.59	0.00	73.59	72.10	99.88
70	212	29.81	56.93	60.69	0.00	60.69	58.47	99.78
100	150	28.01	39.09	42.88	0.00	42.88	39.72	98.56
140	105	26.40	21.38	24.86	0.00	24.86	21.10	91.13
200	75	25.12	13.31	16.27	0.00	16.27	12.64	80.29
270	53	23.48	9.15	11.57	0.00	11.57	8.34	68.45
325	45	22.93	8.05	10.25	0.00	10.25	7.21	63.78
400	38	22.24	7.48	9.56	0.00	9.56	6.64	60.88
D80), microns	7643	470	403	0	403	423	74.4
Specific	ecific Energy Consumption: 19.94 KWH/ton (Gross)							

Operational Work Index:

19.94 KWH/ton (C 19.08 KWH/ton

Number of Cyclones:		2	Operating Conditions:	
Cyclone Dimensions, in:			Feed Flowrate, m3/hr	514.1
	Diameter	15.00	Pressure, psi	16.1
	Height	60.00	D50 (corr.), microns	43.6
	Inlet	4.00	Water By-Pass, %	59.8
	Vortex	5.50	Solids By-Pass, %	57.3
	Apex	3.25	Plitt's Parameter	1.38
Ore Density, to	on/m3	2.70	Circulating Load, %	1761

Test N°		6		
Date		6/11/2019		
Feedrate, tor	n/hr (dry)	33.5		
Gross Power	[·] (kW)	673.3		
Balls Filling,%	6	30.0		
Pressure Cyc	clone (psi)	15.3		
%Solids				
Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow
96.70	71.52	69.02	72.05	22.10

	Opening	%Passing						
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow			
1"	24500	100.00	100.00	100.00	100.00			
1/2"	12700	92.46	100.00	99.64	100.00			
3/8"	9525	72.24	100.00	99.30	100.00			
1/4"	6350	51.04	99.91	98.88	100.00			
4	4750	41.14	99.64	98.59	100.00			
10	2000	25.35	98.75	96.35	100.00			
20	850	17.93	95.23	91.25	100.00			
30	600	15.67	89.64	86.87	100.00			
50	300	12.49	74.22	67.40	100.00			
70	212	10.93	60.11	51.86	99.83			
100	150	9.50	42.96	32.83	98.30			
140	105	8.17	28.52	18.27	91.01			
200	75	8.06	21.74	12.55	81.94			
270	53	5.97	15.15	6.97	69.20			
325	45	5.54	13.79	5.90	62.60			
400	38	5.09	11.75	4.93	56.77			

Moly-Cop Tools[™], Version 3.0 **BALLBAL**

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS HÍBRIDOS

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	′hr	16.1	16.1	16.1	16.1	16.1	16.1	16.1
Water, m	n3/hr	43.6	43.6	43.6	43.6	43.6	43.6	43.6
Slurry, to	on/hr	59.8	59.8	59.8	59.8	59.8	59.8	59.8
Slurry, m	n3/hr	57.3	57.3	57.3	57.3	57.3	57.3	57.3
Slurry D	, ton/m3	1.38	1.38	1.38	1.38	1.38	1.38	1.38
% Solids	; (vol.)	16.1	16.1	16.1	16.1	16.1	16.1	16.1
% Solids	s (weight)	43.6	43.6	43.6	43.6	43.6	43.6	43.6
			Parti	cle Size Dist	ributions (C	ummulative %	Passing)	
Maab	Opening	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
wesn	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	92.46	99.19	99.82	0.00	99.82	99.80	100.00
3/8"	9525	72.24	97.35	99.65	0.00	99.65	99.62	100.00
1/4"	6350	51.04	95.33	99.40	0.00	99.40	99.34	100.00
4	4750	41.14	94.24	99.12	0.00	99.12	99.04	100.00
10	2000	25.35	91.38	97.57	0.00	97.57	97.35	100.00
20	850	17.93	86.51	93.33	0.00	93.33	92.72	100.00
30	600	15.67	81.44	88.44	0.00	88.44	87.39	100.00
50	300	12.49	64.01	71.27	0.00	71.27	68.67	100.00
70	212	10.93	49.31	56.70	0.00	56.70	52.79	99.88
100	150	9.50	31.53	38.88	0.00	38.88	33.52	98.13
140	105	8.17	17.62	24.51	0.00	24.51	18.47	91.21
200	75	8.06	12.00	18.22	0.00	18.22	12.36	82.95
270	53	5.97	6.91	12.02	0.00	12.02	7.00	67.55
325	45	5.54	5.94	10.72	0.00	10.72	5.98	63.05
400	38	5.09	4.86	9.14	0.00	9.14	4.84	56.69
D80, microns 10728		10728	570	435	0	435	465	70.6
Specific Energy Consumption:			19.69 KWI	I/ton (Gross))			

Specific Energy Consumption: Operational Work Index: 19.69 KWH/ton (Gross) 18.00 KWH/ton

Number of Cyclones: Cyclone Dimensions, in:		2	Operating Conditions:			
			Feed Flowrate, m3/hr	340.6		
	Diameter	15.00	Pressure, psi	15.3		
	Height	60.00	D50 (corr.), microns	41.9		
	Inlet	4.00	Water By-Pass, %	38.2		
	Vortex	5.50	Solids By-Pass, %	33.8		
	Apex	3.25	Plitt's Parameter	1.28		
Ore Density, ton/m3		2.70	Circulating Load, %	1105		

Test N°		7		
Date		7/11/2019		
Feedrate, tor	n/hr (dry)	32.6		
Gross Power	⁻ (kW)	672.1		
Balls Filling,9	6	30.5		
Pressure Cyclone (psi)		15.4		
%Solids				
Fresh Feed Mill Discharge		Cyclone Feed	Underflow	Overflow
97.20 72.50		70.00	73.00	22.90

	Onening	%Passing					
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow		
1"	24500	100.00	100.00	100.00	100.00		
1/2"	12700	92.82	100.00	99.68	100.00		
3/8"	9525	75.31	100.00	99.39	100.00		
1/4"	6350	54.03	99.52	99.43	100.00		
4	4750	44.68	99.20	99.18	100.00		
10	2000	28.72	98.33	97.08	100.00		
20	850	19.96	94.73	92.47	100.00		
30	600	17.29	90.21	88.08	100.00		
50	300	13.55	74.04	70.48	100.00		
70	212	11.83	59.48	54.42	99.83		
100	150	10.34	39.58	36.14	98.35		
140	105	8.97	30.08	17.91	90.32		
200	75	7.96	20.87	12.50	81.62		
270	53	6.70	14.14	7.19	70.14		
325	45	6.26	12.85	6.19	63.32		
400	38	5.72	11.01	5.28	58.10		

Moly-Cop Tools[™], Version 3.0 **BALLBAL**

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS HÍBRIDOS

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	/hr	32.6	442.4	442.4	0.0	442.4	409.9	32.6
Water, m	n3/hr	0.9	90.6	167.8	31.4	199.3	89.7	109.6
Slurry, to	on/hr	33.5	533.0	610.3	31.4	641.7	499.5	142.2
Slurry, m	n3/hr	13.0	254.5	331.7	31.4	363.1	241.5	121.7
Slurry D,	, ton/m3	2.577	2.095	1.840	1.000	1.767	2.069	1.169
% Solids	s (vol.)	92.8	64.4	49.4	0.0	45.1	62.9	9.9
% Solids	(weight)	97.20	83.00	72.50	0.00	68.95	82.05	22.90
			Parti	cle Size Dist	ributions (C	Cummulative %	Passing)	
Maab	Opening	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
MESH	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	92.82	99.31	99.84	0.00	99.84	99.83	100.00
3/8"	9525	75.31	97.88	99.70	0.00	99.70	99.67	100.00
1/4"	6350	54.03	96.10	99.48	0.00	99.48	99.44	99.99
4	4750	44.68	95.13	99.20	0.00	99.20	99.14	99.99
10	2000	28.72	92.49	97.73	0.00	97.73	97.56	99.97
20	850	19.96	87.81	93.69	0.00	93.69	93.20	99.91
30	600	17.29	83.24	89.32	0.00	89.32	88.48	99.86
50	300	13.55	66.38	72.71	0.00	72.71	70.58	99.63
70	212	11.83	51.21	57.66	0.00	57.66	54.34	99.40
100	150	10.34	32.42	38.88	0.00	38.88	34.18	98.16
140	105	8.97	18.89	25.05	0.00	25.05	19.68	92.70
200	75	7.96	12.19	17.75	0.00	17.75	12.52	83.50
270	53	6.70	7.14	11.64	0.00	11.64	7.17	67.92
325	45	6.26	6.19	10.40	0.00	10.40	6.19	63.46
400	38	5.72	5.17	8.97	0.00	8.97	5.12	57.37
D80, microns 10351		10351	531	414	0	414	441	69.8
Specific Energy Consumption:			20.24 KWI	I/ton (Gross)			

Operational Work Index:

20.24 KWH/ton (0 18.42 KWH/ton

Number of Cyclones: Cyclone Dimensions, in:		2	Operating Conditions:	
			Feed Flowrate, m3/hr	363.1
	Diameter	15.00	Pressure, psi	15.4
	Height	60.00	D50 (corr.), microns	45.1
	Inlet	4.00	Water By-Pass, %	45.0
	Vortex	5.50	Solids By-Pass, %	42.5
	Apex	3.25	Plitt's Parameter	1.44
Ore Density, ton/m3		2.70	Circulating Load, %	1259

Test N°		8		
Date		4/03/2020		
Feedrate, ton	/hr (dry)	33.0		
Gross Power	(kW)	670.9		
Balls Filling,%	D	31.0		
Pressure Cyc	lone (psi)	18.0		
%Solids				
Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow
97.90	77.70	75.00	78.10	21.80

	Opening	%Passing					
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow		
1"	24500	100.00	100.00	100.00	100.00		
1/2"	12700	98.00	100.00	99.93	100.00		
3/8"	9525	92.05	99.98	99.85	100.00		
1/4"	6350	66.48	99.75	99.53	100.00		
4	4750	53.31	99.43	99.35	100.00		
10	2000	31.22	98.12	97.12	100.00		
20	850	21.02	94.59	92.06	100.00		
30	600	18.27	90.81	87.76	100.00		
50	300	13.99	73.93	68.95	100.00		
70	212	12.16	59.31	52.75	99.78		
100	150	10.59	41.82	33.44	98.47		
140	105	9.28	28.66	19.65	92.85		
200	75	8.17	19.80	10.99	80.70		
270	53	7.34	14.92	7.44	69.16		
325	45	7.03	13.58	6.48	64.34		
400	38	6.79	12.04	5.76	60.12		
REPORTE DE BALANCE – TEST N°8

Moly-Cop Tools[™], Version 3.0 **BALLBAL**

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS HÍBRIDOS

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	′hr	33.0	449.0	449.0	0.0	449.0	416.0	33.0
Water, m	13/hr	0.7	41.5	128.9	30.2	159.1	40.8	118.4
Slurry, to	on/hr	33.7	490.5	577.9	30.2	608.1	456.8	151.4
Slurry, m	13/hr	12.9	207.8	295.2	30.2	325.4	194.8	130.6
Slurry D,	ton/m3	2.607	2.361	1.958	1.000	1.869	2.344	1.159
% Solids	(vol.)	94.5	80.0	56.3	0.0	51.1	79.1	9.4
% Solids	(weight)	97.90	91.55	77.70	0.00	73.84	91.08	21.80
			Parti	cle Size Dist	ributions (C	Cummulative %	Passing)	
Maab	Opening	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
MESH	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	98.00	99.82	99.97	0.00	99.97	99.96	100.00
3/8"	9525	92.05	99.33	99.92	0.00	99.92	99.91	100.00
1/4"	6350	66.48	97.18	99.64	0.00	99.64	99.62	100.00
4	4750	53.31	95.97	99.40	0.00	99.40	99.35	100.00
10	2000	31.22	92.59	97.65	0.00	97.65	97.46	99.99
20	850	21.02	87.60	93.40	0.00	93.40	92.88	99.96
30	600	18.27	83.42	89.42	0.00	89.42	88.59	99.94
50	300	13.99	65.51	71.82	0.00	71.82	69.60	99.84
70	212	12.16	50.19	56.62	0.00	56.62	53.20	99.74
100	150	10.59	31.98	38.46	0.00	38.46	33.67	98.80
140	105	9.28	18.92	25.10	0.00	25.10	19.69	93.29
200	75	8.17	10.93	16.29	0.00	16.29	11.15	81.05
270	53	7.34	7.44	11.97	0.00	11.97	7.44	69.10
325	45	7.03	6.55	10.77	0.00	10.77	6.51	64.53
400	38	6.79	5.74	9.60	0.00	9.60	5.66	59.38
D80), microns	7997	532	422	0	422	448	72.9
Specific Energy Consumption: 19.93 KWH/ton (Gross)								

Operational Work Index:

19.93 KWH/ton (C 18.81 KWH/ton

CLASSIFIERS PERFORMANCE

Number of Cyclones:		2	Operating Conditions:		
Cyclone Dimen	isions, in:		Feed Flowrate, m3/hr		
	Diameter	15.00	Pressure, psi	18.0	
Height 60.00		60.00	D50 (corr.), microns	52.3	
	Inlet	4.00	Water By-Pass, %	25.6	
	Vortex	5.50	Solids By-Pass, %	48.0	
	Apex	3.25	Plitt's Parameter	1.62	
Ore Density, ton/m3 2.70		2.70	Circulating Load, %	1261	

DATOS DEL MUESTREO – TEST N°9

Test N°		9			
Date		29/06/2020			
Feedrate, tor	n/hr (dry)	33.4			
Gross Power	[·] (kW)	667.8			
Balls Filling,%	6	31.0			
Pressure Cyclone (psi)		11.7			
%Solids					
Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow	
97.15	72.28	69.78	72.78	21.87	

	Opening _	%Passing						
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow			
1"	24500	100.00	100.00	100.00	100.00			
1/2"	12700	94.99	100.00	99.80	100.00			
3/8"	9525	78.76	100.00	99.52	100.00			
1/4"	6350	59.90	99.90	99.24	100.00			
4	4750	48.94	99.75	98.78	100.00			
10	2000	28.80	98.64	95.92	100.00			
20	850	18.95	94.54	90.76	100.00			
30	600	16.80	90.58	87.42	100.00			
50	300	12.94	76.46	68.75	100.00			
70	212	11.30	63.98	53.09	99.84			
100	150	9.82	47.91	34.02	98.92			
140	105	8.89	29.81	20.13	93.18			
200	75	7.87	21.23	11.50	84.77			
270	53	6.31	14.77	7.53	69.63			
325	45	5.81	12.67	6.67	63.06			
400	38	5.40	10.90	5.89	56.93			

REPORTE DE BALANCE – TEST N°9

Moly-Cop Tools[™], Version 3.0 BALLBAL

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS HÍBRIDOS

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	/hr	33.4	459.4	459.4	0.0	459.4	426.0	33.4
Water, m	n3/hr	1.0	91.3	176.2	33.6	209.8	90.3	119.4
Slurry, to	on/hr	34.4	550.7	635.6	33.6	669.2	516.3	152.9
Slurry, m	n3/hr	13.4	261.5	346.4	33.6	379.9	248.1	131.8
Slurry D,	, ton/m3	2.575	2.106	1.835	1.000	1.761	2.081	1.160
% Solids	; (vol.)	92.7	65.1	49.1	0.0	44.8	63.6	9.4
% Solids	(weight)	97.15	83.42	72.28	0.00	68.65	82.51	21.87
			Parti	cle Size Dist	ributions (C	ummulative %	Passing)	
Mooh	Opening	Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
Mesn	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	94.99	99.54	99.90	0.00	99.90	99.89	100.00
3/8"	9525	78.76	98.21	99.76	0.00	99.76	99.74	100.00
1/4"	6350	59.90	96.65	99.57	0.00	99.57	99.54	100.00
4	4750	48.94	95.55	99.27	0.00	99.27	99.21	100.00
10	2000	28.80	92.12	97.30	0.00	97.30	97.09	99.98
20	850	18.95	86.85	92.74	0.00	92.74	92.18	99.95
30	600	16.80	83.11	89.16	0.00	89.16	88.32	99.93
50	300	12.94	66.68	73.01	0.00	73.01	70.90	99.82
70	212	11.30	52.71	59.15	0.00	59.15	55.96	99.73
100	150	9.82	35.30	41.83	0.00	41.83	37.30	99.60
140	105	8.89	19.63	26.04	0.00	26.04	20.47	97.08
200	75	7.87	11.76	17.44	0.00	17.44	12.07	85.88
270	53	6.31	7.53	12.08	0.00	12.08	7.63	68.81
325	45	5.81	6.43	10.52	0.00	10.52	6.48	62.01
400	38	5.40	5.54	9.17	0.00	9.17	5.55	55.37
D80), microns	9756	532	412	0	412	439	67.1
Specific	Energy Consum	ption:		19.58 KWI	H/ton (Gross))		

Operational Work Index:

19.58 KWH/ton (0 17.49 KWH/ton

CLASSIFIERS PERFORMANCE

Number of Cyclones:		2	Operating Conditions:		
Cyclone Dimen	sions, in:		Feed Flowrate, m3/hr		
	Diameter	15.00	Pressure, psi	11.7	
Height 60.00		60.00	D50 (corr.), microns	63.7	
	Inlet	4.00	Water By-Pass, %	43.1	
	Vortex	5.50	Solids By-Pass, %	54.5	
	Apex	3.25	Plitt's Parameter	2.47	
Ore Density, ton/m3 2.70		2.70	Circulating Load, %	1274	

DATOS DEL MUESTREO – TEST N°10

69.36 72.36

21.66

Test N°		10		
Date		3/11/2020		
Feedrate, ton	/hr (dry)	33.5		
Gross Power	(kW)	662.8		
Balls Filling,%	, 0	31.0		
Pressure Cyclone (psi)		14.0		
%Solids				
Fresh Feed	Mill Discharge	Cyclone Feed	Underflow	Overflow

71.86

96.88

	Opening _	%Passing					
Mesh	(μm)	Fresh Feed	Mill Discharge	Underflow	Overflow		
1"	24500	100.00	100.00	100.00	100.00		
1/2"	12700	90.82	100.00	99.66	100.00		
3/8"	9525	69.79	100.00	99.37	100.00		
1/4"	6350	49.77	100.00	99.00	100.00		
4	4750	41.91	99.75	98.63	100.00		
10	2000	27.75	98.87	96.10	100.00		
20	850	18.92	94.33	90.79	100.00		
30	600	15.77	89.44	85.65	100.00		
50	300	11.81	76.45	67.63	99.95		
70	212	9.96	64.58	52.13	99.84		
100	150	8.92	47.73	32.57	99.03		
140	105	8.00	29.86	18.99	94.08		
200	75	6.92	21.21	13.02	85.04		
270	53	5.86	15.01	7.77	68.80		
325	45	5.06	12.72	5.81	62.78		
400	38	4.42	10.91	5.08	56.94		

REPORTE DE BALANCE – TEST N°10

Moly-Cop Tools[™], Version 3.0 BALLBAL

Grinding Circuit Mass Balance Estimator

Remarks:

MOLINO DE BOLAS 11' x 18.8' - LINERS HÍBRIDOS

CIRCUIT MASS BALANCE Configuration: DIRECT

		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
		Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
Ore, ton/	'nr	33.5	440.3	440.3	0.0	440.3	406.9	33.5
Water, m	13/hr	1.1	85.3	172.4	32.7	205.1	84.2	121.0
Slurry, to	on/hr	34.5	525.6	612.8	32.7	645.5	491.1	154.4
Slurry, m	13/hr	13.5	248.3	335.5	32.7	368.2	234.9	133.3
Slurry D,	ton/m3	2.564	2.116	1.826	1.000	1.753	2.091	1.158
% Solids	(vol.)	92.0	65.7	48.6	0.0	44.3	64.2	9.3
% Solids	(weight)	96.88	83.78	71.86	0.00	68.22	82.86	21.66
			Parti	cle Size Dist	ributions (C	Cummulative %	Passing)	
Maah Onanian		Fresh	Mill	Mill	Sump	Cyclone	Cyclone	Cyclone
Mesn	Opening	Feed	Feed	Disch.	Water	Feed	U'flow	O'flow
1"	24500	100.00	100.00	100.00	0.00	100.00	100.00	100.00
1/2"	12700	90.82	99.13	99.83	0.00	99.83	99.82	100.00
3/8"	9525	69.79	97.39	99.69	0.00	99.69	99.66	100.00
1/4"	6350	49.77	95.68	99.50	0.00	99.50	99.46	100.00
4	4750	41.91	94.78	99.19	0.00	99.19	99.13	100.00
10	2000	27.75	92.02	97.51	0.00	97.51	97.30	100.00
20	850	18.92	86.50	92.66	0.00	92.66	92.05	100.00
30	600	15.77	81.33	87.73	0.00	87.73	86.72	100.00
50	300	11.81	65.74	72.44	0.00	72.44	70.18	100.00
70	212	9.96	52.12	58.96	0.00	58.96	55.59	99.99
100	150	8.92	34.16	41.03	0.00	41.03	36.23	99.40
140	105	8.00	18.97	25.52	0.00	25.52	19.88	94.21
200	75	6.92	12.26	18.20	0.00	18.20	12.70	85.12
270	53	5.86	7.46	12.31	0.00	12.31	7.60	69.63
325	45	5.06	5.83	10.12	0.00	10.12	5.90	61.51
400	38	4.42	4.89	8.78	0.00	8.78	4.93	55.67
D80), microns	11057	569	430	0	430	461	67.4
Specific Energy Consumption:				19.43 KWI	H/ton (Gross))		

Operational Work Index:

19.43 KWH/ton (0 17.30 KWH/ton

CLASSIFIERS PERFORMANCE

Number of Cyclones:		2	Operating Conditions:		
Cyclone Dimen	isions, in:		Feed Flowrate, m3/hr	368.2	
	Diameter	15.00	Pressure, psi	14.0	
Height 60.00		60.00	D50 (corr.), microns	49.0	
	Inlet	4.00	Water By-Pass, %	41.0	
	Vortex	5.50	Solids By-Pass, %	43.9	
	Apex	3.25	Plitt's Parameter	1.59	
Ore Density, ton/m3 2.70		2.70	Circulating Load, %	1216	

Anexo 3: Resumen estadístico de la función selección específica (SiE) para revestimientos de acero

Anexo 4: Resumen estadístico de la función selección específica (SiE) para revestimientos híbridos

Anexo 5: Resultados de pruebas de hipótesis

Prueba T e IC de dos muestras: SiE 1/2"; ESTATUS

Método

 μ_1 : media de SiE 1/2" cuando ESTATUS = ACERO

 μ_2 : media de SiE 1/2" cuando ESTATUS = HIBRIDO

Diferencia: μ_1 - μ_2

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE 1/2"					Estimación de la diferencia		
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia		Límite superior de 95% para la diferencia
ACERO	5	1.347	0.143	0.064	-0.353		-0.156
HIBRIDO	5	1.700	0.184	0.082	Prueba		
					Hipótesis r	nula H	$_{0}$: $\mu_{1} - \mu_{2} = 0$
					Hipótesis a	alterna	a H ₁ : μ ₁ - μ ₂ < 0
					Valor T	GL	Valor p
					-3.39	7	0.005770

Prueba T e IC de dos muestras: SiE 3/8"; ESTATUS

Método

 μ_1 : media de SiE 3/8" cuando ESTATUS = ACERO

 μ_2 : media de SiE 3/8" cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

Estadísticos descriptivos: SiE 3/8"					Estimaciór	Estimación de la diferencia		
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia	Límite superior de 95% para la diferencia		
ACERO	5	1.940	0.137	0.061	-0.670	-0.466		
HIBRIDO	5	2.610	0.199	0.089	Prueba			
					Hipótesis n	ula H_0 : $\mu_1 - \mu_2 = 0$		
					Hipótesis a	lterna H ₁ : μ ₁ - μ ₂ < 0		
			Valor T	GL Valor p				
					-6.21	7 0.000221		

Prueba T e IC de dos muestras: SiE 1/4"; ESTATUS

Método

 μ_1 : media de SiE 1/4" cuando ESTATUS = ACERO

 μ_2 : media de SiE 1/4" cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE 1/4"

ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia	Límite superior de 95% para la diferencia
ACERO	5	1.921	0.0850	0.038	-0.7740	-0.5811
HIBRIDO	5	2.695	0.196	0.088	Prueba	
					Hipótesis nula	$H_0: \mu_1 - \mu_2 = 0$
					Hipótesis alter	rna H ₁ : μ ₁ - μ ₂ < 0
					Valor T GL	_ Valor p

-8.08

-8.50

7

0.000031

Estimación de la diferencia

5

0.000235

Prueba T e IC de dos muestras: SiE M4; ESTATUS

Método

 μ_1 : media de SiE M4 cuando ESTATUS = ACERO

 μ_2 : media de SiE M4 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

Estadísticos descriptivos: SiE M4					Estimación de la diferencia		
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia	Límite superior de 95% para la diferencia	
ACERO	5	1.699	0.0907	0.041	-0.5369	-0.4172	
HIBRIDO	5	2.237	0.108	0.048	Prueba		
					Hipótesis nu	la H ₀ : $\mu_1 - \mu_2 = 0$	
					Hipótesis alte	erna H ₁ : μ ₁ - μ ₂ < 0	
					Valor T	SL Valor p	

Prueba T e IC de dos muestras: SiE M10; ESTATUS

Método

 μ_1 : media de SiE M10 cuando ESTATUS = ACERO

 μ_2 : media de SiE M10 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE M10

· · · · · · · · · · · ·				-	
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Límite superior de 95% para la Diferencia diferencia
ACERO	5	0.858	0.0191	0.0086	-0.2628 -0.2175
HIBRIDO	5	1.121	0.0464	0.021	Prueba
					Hipótesis nula H_0 : $\mu_1 - \mu_2 = 0$
					Hipótesis alterna H ₁ : μ_1 - μ_2 < 0
					Valor T GL Valor p
					-11.70 5 0.000040

Estimación de la diferencia

Prueba T e IC de dos muestras: SiE M20; ESTATUS

Método

 μ_1 : media de SiE M20 cuando ESTATUS = ACERO

 μ_2 : media de SiE M20 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadístico	escriptivo	Estimació	Estimación de la diferencia				
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia		Límite superior de 95% para la diferencia
ACERO	5	0.4055	0.0159	0.0071	-0.1117		-0.0903
HIBRIDO	5	0.5172	0.0196	0.0088	Prueba		
					Hipótesis r	nula H	$H_0: \mu_1 - \mu_2 = 0$
					Hipótesis a	altern	a H₁: μ₁ - μ₂ < 0
					Valor T	GL	Valor p
					-9.90	7	0.000011

Prueba T e IC de dos muestras: SiE M30; ESTATUS

Método

 μ_1 : media de SiE M30 cuando ESTATUS = ACERO

 μ_2 : media de SiE M30 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE M30

Estadístico	scriptivo	s: SiE M3	Estimació	Estimación de la diferencia			
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia		Límite superior de 95% para la diferencia
ACERO	5	0.2806	0.0105	0.0047	-0.06068		-0.04638
HIBRIDO	5	0.3413	0.0132	0.0059	Prueba		
					Hipótesis r	nula H	$H_0: \mu_1 - \mu_2 = 0$
					Hipótesis a	altern	a H ₁ : μ ₁ - μ ₂ < 0
					Valor T	GL	Valor p
					-8.04	7	0.000044

Prueba T e IC de dos muestras: SiE M50; ESTATUS

Método

 μ_1 : media de SiE M50 cuando ESTATUS = ACERO

 μ_2 : media de SiE M50 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

Estadístico	escriptivo	s: SiE M50	Estimación	Estimación de la diferencia			
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia		Límite superior de 95% para la diferencia
ACERO	5	0.129	0.0045	0.0020	-0.02277		-0.01671
HIBRIDO	5	0.151	0.0055	0.0025	Prueba		
					Hipótesis nu	ula H ₀	: $\mu_1 - \mu_2 = 0$
					Hipótesis al	terna	H ₁ : μ ₁ - μ ₂ < 0
					Valor T	GL	Valor p
					-7.12	7	0.000095

Prueba T e IC de dos muestras: SiE M70; ESTATUS

Método

 μ_1 : media de SiE M70 cuando ESTATUS = ACERO

 μ_2 : media de SiE M70 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE M70

		•				
ESTATUS	N	Media	Desv. Est.	Error Est.de la media	Diferencia	Límite superior de 95% para la diferencia
ACERO	5	0.0883	0.0041	0.0018	-0.01454	-0.00900
HIBRIDO	5	0.1029	0.0051	0.0023	Prueba	
					Hipótesis nu	lla H_0 : $\mu_1 - \mu_2 = 0$
					Hipótesis alt	erna H ₁ : μ ₁ - μ ₂ < 0
					Valor T	GL Valor p
					-4.98 7	0.000805

Estimación de la diferencia

Prueba T e IC de dos muestras: SiE M100; ESTATUS

Método

 μ_1 : media de SiE M100 cuando ESTATUS = ACERO

 μ_2 : media de SiE M100 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

Estadístico	Estadísticos descriptivos: SiE M100						Estimación de la diferencia		
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia		Límite superior de 95% para la diferencia		
ACERO	5	0.06076	0.00162	0.00073	-0.01238		-0.00870		
HIBRIDO	5	0.07314	0.00374	0.0017	Prueba				
					Hipótesis n	nula ⊢	$I_0: \mu_1 - \mu_2 = 0$		
					Hipótesis a	alterna	a H ₁ : μ ₁ - μ ₂ < 0		
					Valor T	GL	Valor p		
					-6.78	5	0.000529		

Prueba T e IC de dos muestras: SiE M140; ESTATUS

Método

 μ_1 : media de SiE M140 cuando ESTATUS = ACERO

 μ_2 : media de SiE M140 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE M140

Estimación de la diferencia

ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia		Límite superior de 95% para la diferencia
ACERO	5	0.04376	0.00151	0.00068	-0.01276		-0.01022
HIBRIDO	5	0.05652	0.00250	0.0011	Prueba		
					Hipótesis n	ula H	$_{0}$: $\mu_{1} - \mu_{2} = 0$
					Hipótesis a	lterna	α H ₁ : μ ₁ - μ ₂ < 0
					Valor T	GL	Valor p
					-9.76	6	0.000033

Prueba T e IC de dos muestras: SiE M200; ESTATUS

Método

 μ_1 : media de SiE M200 cuando ESTATUS = ACERO

 μ_2 : media de SiE M200 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

Estadístico	Estadísticos descriptivos: SiE M200					Estimación de la diferencia		
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia	Límite superior de 95% para la diferencia		
ACERO	5	0.03383	0.00144	0.00064	-0.01208	-0.00977		
HIBRIDO	5	0.04591	0.00223	0.0010	Prueba			
					Hipótesis nu	la H ₀ : $\mu_1 - \mu_2 = 0$		
					Hipótesis alt	erna H ₁ : $\mu_1 - \mu_2 < 0$		
					Valor T	GL Valor p		
					-10.16 6	6 0.000026		

Prueba T e IC de dos muestras: SiE M270; ESTATUS

Método

 μ_1 : media de SiE M270 cuando ESTATUS = ACERO

 μ_2 : media de SiE M270 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE M270

Estimación de la diferencia

ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia	Lím de dife	nite superior 95% para la erencia
ACERO	5	0.0250	0.00080	0.00036	-0.010313	-0.0	009056
HIBRIDO	5	0.0353	0.00120	0.00054	Prueba		
					Hipótesis nu	la H _o	$\mu_1 - \mu_2 = 0$
					Hipótesis alt	erna	H ₁ : μ ₁ - μ ₂ < 0
					Valor T	GL	Valor p
					-15.94	6	0.000002

Prueba T e IC de dos muestras: SiE M325; ESTATUS

Método

 μ_1 : media de SiE M325 cuando ESTATUS = ACERO

 μ_2 : media de SiE M325 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

Estadísticos descriptivos: SiE M325					Estimación de la diferencia		
ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia	Límite superior de 95% para la diferencia	
ACERO	5	0.0222	0.00065	0.00029	-0.009671	-0.009005	
HIBRIDO	5	0.0319	0.00041	0.00018	Prueba		
					Hipótesis nul	la H ₀ : μ ₁ - μ ₂ = 0	
					Hipótesis alte	erna H ₁ : μ ₁ - μ ₂ < 0	
					Valor T	GL Valor p	
					-28.23	6 0.000000	

Prueba T e IC de dos muestras: SiE M400; ESTATUS

Método

 μ_1 : media de SiE M400 cuando ESTATUS = ACERO

 μ_2 : media de SiE M400 cuando ESTATUS = HIBRIDO

Diferencia: $\mu_1 - \mu_2$

No se presupuso igualdad de varianzas para este análisis.

Estadísticos descriptivos: SiE M400

Estimación de la diferencia

ESTATUS	N	Media	Desv. Est.	Error Est. de la media	Diferencia	Límite superior de 95% para la diferencia
ACERO	5	0.02003	0.00132	0.00059	-0.008304	-0.006971
HIBRIDO	5	0.02834	0.00047	0.00021	Prueba	
					Hipótesis nula H ₀ : μ_1 - μ_2 = 0 Hipótesis alterna H ₁ : μ_1 - μ_2 < 0	
					Valor T	GL Valor p
					-13.29	4 0.000093