UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

ANALISIS Y DISEÑO DE ESTABILIDAD SISMICA DE TALUDES EN SUELOS Y ROCAS - CASO CURVAS LA LEONA

TESIS

Para optar el Título Profesional de:

INGENIERO CIVIL

FELIX EDUARDO GARCIA PRADO

Lima - Perú 2005

Digitalizado por:

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse

INDICE

INTRODUCCION

CAPITULO I

1.0 CONSIDERACIONES SISMICAS

		Pag.
1.1.	Generalidades	1
1.2.	Análisis Sísmico Determinístico	2
1.3.	Análisis Sísmico Probabilístico	2
	1.3.1. Identificación y Delimitación de las Fuentes Sísmicas	3
	1.3.2. Determinación de la Actividad Sísmica en Cada Fuente	5
	1.3.3. Establecimiento de una Relación de Atenuación	7
	1.3.4. Integración de los Efectos Experimentados en el Sitio de los E	Eventos
	Sísmicos en las Fuentes	8
	;	
	<u>CAPITULO II</u>	
	2.0 EXPLORACION DE CAMPO	
2.1.	Generalidades	10
2.2.	Métodos Geofísicos	
2.2.	2.2.1. Refracción Sísmica	
	2.2.2. Resistividad Eléctrica	
2.3.	Perforaciones	
	2.3.1. Perforaciones a Inyección de Agua (Wash Boring)	
	2.3.2. Perforaciones por Rotación (Diamantinas)	
2.4.	Ensayos de Penetración	
	2.4.1. Ensayo de Penetración Estándar (SPT)	
	2.4.2. Ensayo de Penetración con Cono Holandés (CPT)	
2.5.	Instrumentación	
٠.٠.	***************************************	

CAPITULO III

3.0 ENSAYOS DE LABORATORIO

3.1.	Genera	alidades45
3.2.	Ensayo	os de Clasificación de Suelos46
	3.2.1.	Sistema Unificado de Clasificación de Suelos (SUCS)47
	3.2.2.	Sistema de Clasificación de Suelos de la AASTHO49
3.3.	Ensayo	os de Resistencia Cortante51
	3.3.1.	Ensayo de Corte Directo53
	3.3.2.	Ensayos de Compresión Triaxial54
		<u>CAPITULO IV</u>
	4.0	ANALISIS DE ESTABILIDAD DE TALUDES EN SUELOS
4.1.	Genera	alidades72
4.2.	Anális	is Estático (Equilibrio Límite) (Programa SLOPE/W)72
	4.2.1.	Método Bishop Simplificado (1955)76
	4.2.2.	Método Janbu Simplificado (1968)
	4.2.3.	Otros métodos
4.3.	Aná1is	sis Pseudoestático77
4.4.	Anális	is de Respuesta Sísmica79
	4.4.1.	Modelo Lineal Equivalente80
	4.4.2.	Determinación de Parámetros Dinámicos81
	4.4.3.	Modulo de Corte en Suelos Arenosos81
	4.4.4.	Modulo de Corte en Suelos Cohesivos82
	4.4.5.	Modulo de Corte en Suelos Gravosos82
4.5.	Anális	is Retrogresivo (Back Analysis)83
4.6.	Anális	is de Deformaciones Permanentes Inducidas por Sismo84
	4.6.1.	Método de Newmark85

CAPITULO V

5.0 ANALISIS DE CAIDA DE ROCAS

5.1.	Genera	lidades101
5.2.	Anális	s de Caída de Rocas (Programa CRSP)102
	5.2.1.	Perfil de Contacto
	5.2.2.	Velocidad Inicial
	5.2.3.	Tamaño y Forma de la Roca
	5.2.4.	Rugosidad
	5.2.5.	Coeficientes de Restitución
		5.2.5.1. Coeficientes de Restitución Tangencial (Kt)
		5.2.5.2. Coeficientes de Restitución Normal (Kn)108
5.3.	Interpr	etación del Análisis de Caída de Rocas (Programa CRSP)109
5.4.	Protec	ción Contra la Caída de Rocas110
	5.4.1.	Banquetas110
	5.4.2.	Cunetas Junto al Pie del Talud112
	5.4.3.	Diseño de Enmallados113
	5.4.4.	Diseño de Vallas Estáticas
	5.4.5.	Diseño de Vallas Dinámicas121
		CAPITULO VI
6.0	ANA	LISIS DE ESTABILIDAD DE TALUDES EN LA S CURVAS DE LA
		LEONA
		(EL SAL V ADOR)
6.1.		lidades155
6.2.		dentes
6.3.		idad160
	6.3.1.	Tectónica160
	6.3.2.	Sismicidad Histórica161
	6.3.3.	Estudios de Peligro Sísmico163

	6.3.4.	Registro de Aceleraciones del Ano 2001				
	6.3.5.	Sismos de Diseño				
6.4.	Geolo	gía				
	6.4.1.	Clima167				
	6.4.2.	Marco Geo1ógico167				
		6.4.2.1. Estratigrafía				
		6.4.2.2. Rasgos Geomorfo1ógicos				
		6.4.2.3. Geodinámica Externa				
	6.4.3.	Estabilidad de Taludes				
		6.4.3.1. Evaluación del Nivel de Riesgo172				
		6.4.3.2. Características Geológico-Estructurales de los Tramos				
		Críticos				
6.5.	Geote	cnia y Mecánica de Suelos180				
	6.5.1.	Sondajes Profundos				
	6.5.2.	Muestras Inalteradas y Pruebas SPT en Taludes de Deslizamiento181				
	6.5.3.	Prospección Geofísica del Deslizamiento 3				
	6.5.4.	Monitoreo del Talud del Deslizamiento 3				
	6.5.5.	Resultados del Estudio Geotécnico y de Mecánica de Suelos183				
6.6.	Anális	Análisis de Estabilidad de Taludes184				
	6.6.1.	Introducción				
	6.6.2.	Modelo Geotécnico de Falla de Taludes				
		6.6.2.1. Deslizamiento N° 1				
		6.6.2.2. Deslizamiento N° 2				
		6.6.2.3. Deslizamiento N° 3				
	6.6.3.	Análisis Estático y Pseudo-Estático				
	6.6.4.	Análisis Retrospectivo (Back Analysis)				
	6.6.5.	Análisis de Estabilidad Pre y Post-Sismo191				
	6.6.6.	Análisis de Deformaciones Permanentes				
		6.6.6.1. Cálculo de Deformaciones Permanentes con Sismos				
		de Diseño193				
	6.6.7.	Medidas Correctivas196				
		6.6.7.1. Des1izamiento N° 1				

	6.6.7.2. Deslizamiento N° 2
	6.6.7.3. Deslizamiento N° 3
	<u>CAPITULO VII</u>
EA CON	COLVICTORIDG NADE CONTENIDA CRONIEC
7.0 CON	CLUSIONES Y RECOMENDACIONES245
REFI	ERENCIAS BIBLIOGRAFICAS
ICLX I	
ANEXOS	
ANEXO A	CRONOLOGIA DE LOS SISMOS
	DESTRUCTIVOS EN EL SALVADOR
ANEXO B	MAPAS DE ISOSISTAS
ANEXO C	REGISTROS ACELEROGRAFICOS DISPONIBLES DE LOS
	SISMOS DE ENERO Y FEBRERO DEL 2001
ANEXO D	CLASIFICACION DE RIESGO DE TALUDES
ANEXO E	SALIDAS DEL PROGRAMA CONTEO PARA LA ZONA
	CRITICA Nº 2
ANEXO F	SALIDAS DEL PROGRAMA CONTEO PARA LA ZONA
	CRITICA Nº 3
ANEXO G	REGISTRO DE PERFORACIONES Y TABLAS DE RESUMEN
	DE PERFORACIONES
	REGISTRO DE SPT
ANEXO I	LINEAS DE REFRACCION SISMICA Y SONDAJES
	ELECTRICOS VERTICALES
ANEXO J	
ANEXO K	ANALISIS DE DEFORMACIONES PERMANENTES
POWA TO	

INTRODUCCION

La Inestabilidad de Taludes es causada gradualmente por la desintegración de la estructura del suelo, que se inicia con grietas dividiendo al suelo en fragmentos granulares; en ocasiones, estos son causados por el incremento de la presión de poros o por eventos sísmicos. Usualmente, la inestabilidad es debida a la excavación o al corte del pie del talud y pueden suceder de una manera lenta o repentina, y con o sin aparente provocación. Debido a la variedad de factores que desencadenan un deslizamiento, éstas demandan también una teoría de análisis.

El objetivo de la presente Tesis es proveer a los profesionales que enfrentan estos problemas de estabilidad una metodología de Análisis de Estabilidad Sísmica de Taludes, considerando también su comportamiento, cuando es sometido a cargas sísmicas, así como las medidas correctivas necesarias de los taludes para su correcto funcionamiento luego de un determinado evento sísmico.

El análisis de taludes puede ser dividido en dos categorías, una para Evaluar Estabilidad del Talud y otra para Estimar el Movimiento del Talud, aún cuando ambas están estrechamente relacionados; estos diferentes y distintos tipos de análisis son casi siempre usados para evaluarlos.

En este trabajo, se hizo uso del Análisis de Equilibrio Límite para evaluar la Estabilidad de los Taludes, mientras que para predecir los Movimientos se empleó la Metodología de Newmark.

En muchas ocasiones los Eventos Sísmicos son los principales agentes que activan el desprendimiento o caída de rocas de los taludes naturales, dichas rocas descienden a altas velocidades y se convierten en un peligro para las personas y vehículos que transitan bajo los taludes, por este motivo el tema de caída de rocas es también parte importante de este trabajo, así como las medidas de protección ante este fenómeno, presentando diferentes alternativas de solución.

La presente Tesis se ha llevado a cabo en 6 capítulos desarrollándose de la siguiente manera:

En el Capítulo I se dan a conocer las Consideraciones Sísmicas para un Análisis de Estabilidad de Taludes. En este Capítulo se realiza un estudio de peligro sísmico o amenaza sísmica en determinada zona; para lo cual se hace uso de las Metodologías Determinística y Probabilística. De ellas se obtienen aceleraciones máximas en determinado lugar y de dicho valor el coeficiente sísmico, para el diseño de estructuras de tierra y taludes naturales. Para el desarrollo de esta tesis se presentan en los primeros capítulos las consideraciones teóricas para realizar un Análisis Sísmico de Estabilidad de Taludes y se muestran las medidas correctivas para su estabilización. En el capitulo 6 son utilizados los aspectos teóricos de los anteriores capítulos en un caso real ocurrido en la República de El Salvador donde a inicios del año 2001 se sucedieron dos eventos sísmicos ocasionando numerosos deslizamientos.

En el Capítulo II se describe la Exploración de Suelos la cual se considera como la de mayor importancia para diseñar los taludes y con la cual se obtienen las propiedades físicas representativas y valederas del suelo conformante del talud. Se revisaron los métodos directos e indirectos, considerando además, un acápite de Instrumentación Geotécnica describiéndose la importancia de la auscultación de los taludes y el continuo monitoreo de ellos, tanto superficialmente como en el interior del terreno.

En el Capitulo III se describen los principales Ensayos de Laboratorio para una correcta caracterización de las propiedades de resistencia de corte del suelo, los ensayos de Clasificación de Suelos, ensayos de Corte Directo y el ensayo de Compresión Triaxial.

En el Capitulo IV se muestra el Análisis de Estabilidad de Taludes en Suelos y se presentan el Análisis Estático, Pseudo Estático, Respuesta Sísmica, Back Analysis y de Deformaciones Permanentes. En el caso de la ocurrencia de un deslizamiento de un talud por causa de un evento sísmico, se tiene que realizar un Modelo Geotécnico de Falla del Talud que refleje lo acontecido en la realidad, es por tal motivo que los análisis de estabilidad antes descritos son de mucha importancia. No es habitual realizar el análisis de deformaciones permanentes en el análisis de estabilidad de taludes naturales, pero en esta ocasión, se consideró necesario hacerlo, para asegurar la estabilidad futura de los taludes, limitando su deformación.

En el Capitulo V se presenta el Análisis de Caída de Rocas y las medidas de mitigación respectivas. El objetivo de este capítulo es dar a conocer un procedimiento de análisis confiable para este problema que afecta también los taludes mineros en Tajos Abiertos, Taludes carreteros, etc. Este problema de Caída de Rocas no ha sido implementado en el Perú de una forma mas agresiva como lo es en otros países, aún cuando en nuestra Región Sierra se presenta de manera continua.

En el Capitulo VI se presenta un caso real de Análisis de Estabilidad Sísmica acontecido en la República de El Salvador en unos taludes de la carretera CA-l en un sector denominado Las Curvas de la Leona como consecuencia de dos fuertes sismos ocurridos en Enero y Febrero del 2001, dichos eventos produjeron numerosos deslizamientos de rocas el país. La metodología descrita en los capítulos anteriores fue puesta en práctica para aplicar las medidas correctivas de estabilización en este caso real.

Finalmente se presentan las principales conclusiones y recomendaciones, frutos del presente Trabajo de Tesis.

CAPITULO I

1.0 CONSIDERACIONES SISMICAS

1.1. GENERALIDADES

Los Estudios de Peligro o amenaza sísmica de un país, se realizan para determinar la distribución de valores de aceleración máxima en roca para un determinado período de retorno. Los resultados de estos estudios se utilizan en los códigos de diseño sismo - resistente y para determinar los sismos de diseño en las obras de Ingeniería Civil. Los estudios de peligro sísmico son de carácter determínistico y probabílistico.

Para la evaluación de amenazas sísmicas naturales hay que caracterizar el fenómeno que genera la amenaza, en este caso sería la sismicidad siendo necesario estudiar el tamaño, la ubicación de los sismos y posteriormente la determinación de los efectos que estos fenómenos pueden tener en el lugar de estudio.

Con la finalidad de tener valores de intensidades ya sea de magnitud, aceleración máxima, valor espectral de la velocidad, valor espectral de desplazamiento del suelo, etc; se efectúa un estudio de peligro sísmico el que se define como: "La probabilidad de que en un determinado lugar ocurra un movimiento sísmico de una intensidad igual o mayor que un valor fijado".

Los estudios de peligro sísmico determinan aceleraciones máximas a nivel de roca, estos valores son utilizados para obtener un coeficiente sísmico en el diseño de estructuras de tierra, así como en taludes naturales.

El objetivo de este capítulo es de dar a conocer las diversas metodologías usadas actualmente para el Análisis de Peligro Sísmico de determinada zona y su utilización en el cálculo de coeficientes sísmicos para estructuras de tierra; las metodologías mas usadas son las determinística y probabilística las que se describen a continuación.

1.2. ANÁLISIS SÍSMICO DETERMINÍSTICO

Esta metodología proporciona un enfoque sencillo para la estimación de las solicitaciones dinámicas a esperar en determinado lugar, es usada para etapas de Pre-Factibilidad y Factibilidad de Proyectos de Ingeniería. Este tipo de estudio brinda un panorama global que describe las fuentes sismotectónicas que afectarán al lugar y estima los sismos que en esta etapa pueden producirse, las solicitaciones dinámicas se evalúan aplicando leyes de atenuación a las fuentes. Solo toma en cuenta un evento entre todas las fuentes sísmicas que es supuestamente "el peor" considerándose que la sismicidad futura será idéntica a la del pasado.

1.3. ANÁLISIS SÍSMICO PROBABILÍSTICO

Este tipo de análisis brinda un panorama general en el que se describe las fuentes sismotectónicas que afectarán al lugar y estima los sismos que en éstas se pueden generar, las solicitaciones dinámicas se evalúan con las leyes de atenuación a los respectivos sismos de las fuentes, se adoptan modelos estocásticos para modelar la ocurrencia en el tiempo de la sismicidad y aplicar modelos estadísticos para la distribución de sus magnitudes.

El análisis probabilístico permite al que diseña escoger una solicitación dinámica que represente a su juicio, el mejor balance entre costos y riesgos. Esta metodología permite escoger probabilidades de excedencia para las cargas dinámicas congruentes con las otras solicitaciones de diseño de la estructura, realizando un enfoque óptimo para las etapas de diseño de los proyectos ingenieriles. La metodología probabilística permite la evaluación de espectros de respuesta de los movimientos del terreno congruentes con el marco tectónico.

El peligro sísmico probabilístico se calcula con el método desarrollado por Cornell (1968). Este método considera 4 diferentes pasos:

- 1. Identificación y Deliminación de las Fuentes
- 2. Determinación de la Actividad Sísmica en cada Fuente.
- 3. Establecimiento de una Relación de Atenuación.
- 4. Integración de los Efectos Experimentados en el lugar de los eventos sísmicos de las fuentes.

A continuación se describirán los pasos de la metodología sísmica probabilística:

1.3.1. IDENTIFICACIÓN Y DELIMITACIÓN DE LAS FUENTES SÍSMICAS

Las fuentes pueden ser fallas estudiadas, hasta estructuras geológicas difusas y poco entendidas, pero asociadas de alguna manera a la sismicidad o a las estructuras tectónicas. Las configuraciones de las fuentes pueden ser puntos, líneas, áreas o planos buzantes. Esta tarea requiere estudiar los modelos sismo-tectónicos propuestos por los sismológos y analizar los catálogos de registros de eventos sísmicos y la información geológica y geofísica disponible para el lugar.

TECTONISMO Y SISMOTECTÓNICA

Para la delimitación de las fuentes se realiza un estudio de la tectónica y sismotectónica del área de estudio, ya que la sismicidad es una de las manifestaciones de la dinámica interior del globo terrestre; la actividad sísmica se concentra principalmente en los bordes de los grandes bloques tectónicos denominados placas tectónicas y su estudio es importante para el estudio del peligro sísmico. Tal es el caso del Perú en Sudamérica formando parte del cinturón circumpacífico y presentando una alta sismicidad. Sus rasgos tectónicos son la Cordillera de los Andes y la Fosa Oceánica Perú-Chile las que se relacionan con esta alta sismicidad, como consecuencia de la interacción de dos placas convergentes cuya resultante es el proceso orogénico de los Andes.

En los contactos de las placas, los límites o bordes raramente coinciden con las márgenes continentales, pudiendo ser éstos de tres tipos:

- A. Según cordilleras axiales, donde las placas divergen una de otra y donde se genera un nuevo suelo oceánico.
- B. Según las fallas de transformación a lo largo de las cuales las placas se deslizan una respecto a la otra.
- C. Según zonas de subducción, donde las placas convergen y una de ellas se sumerge bajo el borde delantero de la suprayacente.

Se tiene indicios que la mayor parte de la Actividad Tectónica en el mundo se concentra a lo largo de los bordes de las placas debido al frotamiento mutuo de éstas, produciendo terremotos.

En trabajos de sismotectónica en muchas oportunidades se señalan ciertas discontinuidades de carácter regional provocando una división de las regiones en provincias tectónicas. Estas tienen características específicas que influyen en la actividad sísmica que ocurre en cada una de ellas.

Las fuentes se definen como Continentales o de Subducción correspondientes a áreas, fallas o puntos dependiendo del estudio sismotectónico, observación de distribución en el espacio de sismos tanto en profundidad como en la superficie terrestre.

1.3.2. DETERMINACIÓN DE LA ACTIVIDAD SÍSMICA EN CADA FUENTE

La actividad sísmica se evalúa en términos del número de eventos sísmicos y la frecuencia de ocurrencia de magnitudes que se generan en una fuente durante un lapso determinado. Se requiere de la aplicación de un modelo estocástico para representar la ocurrencia de eventos, comúnmente el de máxima verosimilitud y el de mínimos cuadrados, y un modelo probabilístico para la distribución de magnitudes.

Para evaluar estadísticamente los parámetros de estos modelos se cuenta con los catálogos de los eventos sísmicos. Es importante que sean homogéneos, precisos, completos y de un período largo de observación.

Se usarán los catálogos desde una fecha determinada con la finalidad de tener completos los catálogos, se usará valores de magnitud de onda de cuerpo (mb), magnitud de onda de superficie (Ms) o magnitud momento (Mw) siendo esta última mas actualizada.

Para el análisis de recurrencia de sismos se hace uso de la expresión de Richter (1958).

$$Log N = a - bM$$

donde:

N = número de sismos acumulados por unidad de

tiempo.

a, b = parámetros que dependen de la región.

M = magnitud (mb, Ms o Mw)

La expresión anterior también se puede describir como:

$$N = \Gamma_O.e^{-\beta M}$$

donde:

 Γ_o = 10' es el número de sismos por unidad de tiempo con M > 0.

 β = b x ln 10.

La tasa μ es la tasa media anual de ocurrencia de eventos mayores o iguales que la magnitud mínima de homogeneidad. Para determinar la tasa μ se utiliza una variación del Diagrama de Gutenberg y Richter, que consiste en dibujar un número acumulativo de eventos mayores a una determinada magnitud, versus el tiempo. De estos gráficos se puede determinar la magnitud mínima de homogeneidad (Mmin) y la tasa μ . La magnitud mínima de homogeneidad corresponderá al gráfico cuyo diagrama acumulativo versus tiempo muestre un comportamiento lineal monotónicamente creciente. La tasa μ es la pendiente de dicha recta.

Mmax. es la magnitud máxima probable que puede ser liberada como energía sísmica (McGuire, 1976). Para determinar esta magnitud se utiliza el siguiente criterio: el más grande evento que ha ocurrido en la fuente en el pasado, es el máximo sismo que se espera en el futuro.

Para determinar las profundidades representativas de los hipocentros en las zonas sismogénicas se hace un trabajo estadístico del cálculo de frecuencias de sismos versus profundidad. Este análisis de recurrencia se realiza para cada fuente delineada.

1.3.3. ESTABLECIMIENTO DE UNA RELACION DE ATENUACIÓN

Esta relación determina el efecto que el sismo genera en el sitio, es una expresión matemática que predice el movimiento del terreno (usualmente aceleración pico) en un lugar debido a la ocurrencia de un sismo en una fuente particular. Los parámetros que generalmente intervienen son: la magnitud (mb, Ms ó Mw) para cuantificar el sismo y la distancia (epicentral o hipocentral) para caracterizar el efecto del recorrido fuente-lugar. La relación de atenuación deberá ser generada con una base de datos que sea congruente con el marco sismo-tectónico y las observaciones especificas de movimientos fuertes del terreno para la región de estudio.

Para cada fuente, sean éstas continentales o de subducción, existen diferentes leyes de atenuación que se basan en registros de acelerógrafos de las componentes de aceleración

Las leyes de atenuación toman en consideración la magnitud del sismo, la distancia sea epicentral o hipocentral, si son para roca o para suelo, obteniéndose un valor de aceleración, que indica la aceleración esperada ocasionada por un sismo de determinada magnitud a una distancia dada.

1.3.4. INTEGRACIÓN DE LOS EFECTOS EXPERIMENTADOS EN EL SITIO DE LOS EVENTOS SISMICOS EN LAS FUENTES

Esta integración toma en cuenta la ubicación y geometría de las fuentes con respecto al lugar, su actividad y relaciones de atenuación para traducir la ocurrencia de sismos. Como se dijo al comienzo de este trabajo, el peligro sísmico se define por la probabilidad que en un lugar determinado ocurra un movimiento sísmico de una intensidad igual o mayor que un cierto valor fijado.

La ocurrencia de un evento sísmico es de carácter aleatorio y la Teoría de las Probabilidades es aplicable en el análisis del riesgo de su ocurrencia. Aplicando esta teoría se puede demostrar que si la ocurrencia de un evento A depende de la ocurrencia de otros eventos: E1, E2,..... En, mutuamente excluyentes y colectivamente exhaustivos; entonces, de acuerdo al Teorema de la "Probabilidad Total" se tiene para la probabilidad de ocurrencia de A:

$$P(A) = \sum_{i}^{n} P(A/Ei).P(Ei)$$

donde P (A/Ei) es la probabilidad condicional que A ocurra, dado que Ei ocurra. La intensidad generalizada (I) de un sismo en el lugar fijado puede considerarse dependiente del tamaño del sismo (la magnitud o intensidad epicentral) y de la distancia al lugar de interés. Si el tamaño del sismo (S) y su localización (R) son considerados como variables aleatorias continuas y definidas por sus funciones de densidad de probabilidad, fs (s) y f_R (r) respectivamente, entonces el peligro sísmico definido por la probabilidad que la intensidad I sea igual o mayor que una intensidad dada, será: $P(I \ge i)$ y está dada por:

$$P(I \ge i) = \iint P[I/(s,r)] f_s(s) f_R(r) ds dr$$

Esta es la expresión que resume la teoría desarrollada por Cornell en 1968 para analizar el peligro sísmico. La evaluación de esta integral es efectuada por el programa de cómputo RISK (1976) ó EZ-FRISK (1995) desarrollado por R. McGuire en el cálculo del peligro sísmico.

CAPITULO II

2.0 EXPLORACIÓN DE CAMPO

2.1. GENERALIDADES

En el estudio de la Estabilidad de Taludes, la exploración de campo constituye la parte de mayor importancia para el diseño de un talud y no puede ser llevado a cabo mientras el diseñador no tenga conceptos razonables de las propiedades físicas del suelo, es así que las investigaciones de campo y laboratorio son requeridas para obtener esta información, son estas investigaciones llamadas Exploraciones del Suelo.

Fue hasta cerca de 1930 que la exploración del suelo fue inadecuada ya que los métodos racionales de investigación de suelos no habían sido desarrollados debidamente. Actualmente las técnicas de exploración de campo y ensayos, así como su refinamiento en muchas de las ocasiones no ofrecen valores prácticos de los resultados.

Una de las consideraciones a tener en cuenta en el programa de exploración es el tipo de suelo que uno encontrará, ya que es muy diferente encontrarse con una gran capa homogénea de arcilla en lugar de un depósito consistente de lentes de arena, arcilla y limo. Es recomendable para el segundo caso tener datos de mayor significación en menor tiempo y menor costo con sondeos como el Ensayo de Penetración Estándar, Cono Peck, Cono Sowers, Cono Holandés, etc. a lo largo de líneas verticales en el terreno, ya que estos permiten descubrir zonas débiles o zonas compresibles.

Con la finalidad de adecuar el programa de laboratorio a los requerimientos del proyecto y obtener los datos esenciales en un tiempo y costos mínimos, el Ingeniero ha de familiarizarse con las herramientas y procedimientos disponibles en la exploración, con los métodos de análisis y evaluación de resultados de laboratorio y ensayo de campo y con las incertidumbres de los resultados obtenidos.

Las causas de juzgar el suelo en forma equivocada se dividen en tres categorías:

- a. Influencia de los resultados de los ensayos de suelos disturbados o las diferencias significantes entre ensayos y las condiciones de campo.
- b. Falla para reconocer o juzgar correctamente las condiciones más desfavorables del suelo compatibles con los datos de campo.
- c. Inadecuado contacto entre el diseñador y la organización de la construcción.

Dentro del programa de exploración se debe tener todas las consideraciones antes mencionadas para la elección de los diferentes tipos de ensayos que se realizarán, estos ensayos se dividen en dos grandes grupos: siendo estos *Métodos Directos* y los *Métodos Indirectos*.

Así mismo es objetivo del presente capítulo describir en forma suscinta la auscultación de taludes mediante la instrumentación geotécnica y presentar valores considerados críticos en la estabilidad de éstos.

2.2. METODOS GEOFÍSICOS

Estos ensayos son considerados dentro de los llamados Métodos Indirectos permitiendo estudiar la distribución en profundidad de determinada propiedad físico-química de las capas del terreno, o de alguna característica relacionada con dichas propiedades.

Su importancia reside en la capacidad de determinar los contactos entre los materiales de recibimiento y sub-estratos rocosos entre rellenos artificiales y el terreno natural así como la delimitación de nivel freático.

Los métodos Geofísicos se clasifican en los siguientes grupos: Gravimétricos, Magnéticos, Sísmicos, Eléctricos y Radioactivos.

En el presente capítulo se describe los métodos geofísicos más importantes para el estudio de la estabilidad de taludes, tanto para fases de diseño, como para corrección de inestabilidades.

2.2.1. REFRACCION SÍSMICA

Considerado el más conocido de los métodos geofísicos, la Refracción Sísmica es una herramienta que permite explorar en forma rápida y económica grandes áreas permitiendo obtener con relativa precisión los espesores de los estratos y las velocidades de ondas P y de ondas S en algunos casos.

Este método tiene como base el análisis de la propagación de las ondas elásticas a través del terreno. Estas ondas pueden ser Ondas Elásticas Internas y Ondas Elásticas Superficiales. Si una onda incide sobre una superficie de separación de dos medios de diferentes velocidades, dicha onda se refleja y refracta según la Ley de Snell, como se observa en la Fig. 2.1.

El ensayo consiste en la medición de los tiempos de viaje de las ondas compresionales (P), y algunas veces de las ondas de corte (S), generadas por una fuente de energía impulsiva a unos puntos localizados a diferentes distancias a lo largo de un eje sobre la superficie del suelo. Esta fuente de energía es por lo general una pequeña carga explosiva o un golpe de martillo (Fig. 2.2).

Antes del impacto del martillo o carga explosiva se marcan las líneas de medición con estacas en los puntos de impacto y en las localizaciones de los geófonos. Se determinan las elevaciones topográficas de cada uno de estos puntos y se define su azimut. Para cada línea se colocan los geófonos y se efectúan un mínimo de 4 impactos. Se efectúan los ensayos en ambas direcciones para permitir la detección de buzamientos en los estratos del subsuelo y minimizar el número de suposiciones requeridas en la interpretación de resultados.

Es muy importante definir el espaciamiento de los geófonos y esto es determinado por el grado deseado por definición de los estratos del subsuelo y por la longitud de cada línea de tendido. Si los estratos no son muy potentes y las líneas son cortas, los intervalos de los geófonos serán menores, y si los estratos del subsuelo tienen mayor potencia y las líneas son largas, se necesitarán mayores intervalos de los geófonos.

La energía es detectada, amplificada y registrada de tal manera que puede determinarse su tiempo de arribo en cada punto. El instante del impacto o explosión, "Tiempo Cero", también es registrado conjuntamente con las vibraciones del suelo que arriban de los geófonos. Por lo tanto, en general, los datos consisten en tiempos de viaje y distancias, siendo el tiempo de viaje el intervalo entre el "Tiempo Cero" y el instante en que el geófono empieza a responder a la perturbación.

Luego la información tiempo-distancia es procesada, para obtener una interpretación de la forma de velocidades de propagación de ondas y la estructura de los estratos del subsuelo. La representación se realiza sobre unos ejes de coordenadas, poniendo en las abscisas las distancias entre el punto de impacto y los geófonos y en las ordenadas los tiempos que la onda elástica tarda en recorrer dichas distancias. La gráfica obtenida recibe el nombre de **Dromocrónica**, ejemplo en la Fig. 2.3.

En el caso de asumir un conjunto particular de condiciones de subsuelo, incluyendo espesores de estratos, geometría y velocidades, siempre se puede asumir un grafico teórico de tiempo vs. distancia. Sin embargo, la inversa de este proceso no siempre es posible. Para un gráfico dado de tiempo vs. distancia, los métodos convencionales de interpretación confían en el uso de modelos idealizados e hipotéticos planteados en la Teoría de la Refracción Sísmica, tales como el caso simple de los estratos con una interfase horizontal y V1<V2, el caso de múltiples estratos con interfases horizontales y velocidades que se incrementan con la profundidad, o modelos mas complicados que pueden incluir desalineamientos por fallas, estratos inclinados y semejantes. El modelo seleccionado es aquel cuyo gráfico hipotético tiempo-distancia mas cercanamente corresponde a los datos obtenidos en campo.

Así por ejemplo (Fig. 2.4) el caso de dos estratos (medio semi-infinito) que subyace a un estrato simple de velocidad inferior y espesor uniforme) se puede deducir una expresión para evaluar el espesor del primer estrato en función de la distancia crítica y de las velocidades de las ondas en estos estratos, obteniéndose:

$$D_1 = \frac{X_c}{2} \sqrt{\frac{V_2 - V_1}{V_2 + V_1}}$$

donde:

 D_1 = Profundidad del estrato

 X_C = Distancia crítica

 V_1 = Velocidad del estrato 1

 V_2 = Velocidad del estrato 2

De la misma manera para el caso de múltiples estratos, se asume que los estratos tienen límites planos y paralelos (incluyendo la superficie del terreno), las velocidades son uniformes dentro de cada estrato, y las velocidades de los estratos se incrementan con la profundidad. La Fig. 2.5 muestra el gráfico tiempo-distancia y posee segmentos de línea que corresponden a cada estrato con una pendiente igual al recíproco de la velocidad del estrato. Cada interfase tiene una distancia crítica y un correspondiente tiempo de intersección.

Finalmente el ensayo de refracción sísmica permite describir la estructura del subsuelo por medio de secciones con la distribución de velocidades de ondas P y de potencias (espesores) y profundidades de horizontes elásticos, también detecta la posición de zonas de debilidad (fallas o fracturas) como oquedades, discontinuidad, etc, lo que convierte a este ensayo de suma importancia en la detección de zonas críticas en un talud y el conocimiento de la potencia de los estratos, en la Tabla 2.1 se muestra valores típicos de velocidad de onda P y S para diferentes tipos de material.

2.2.2. RESISTIVIDAD ELECTRICA

El siguiente Método Indirecto se basa en el estudio de los campos de potencial eléctrico provocados artificialmente, de cuya deformación pueden deducirse conclusiones sobre las características geológicas del subsuelo, siendo una de las ventajas de este ensayo su reducido costo.

Dentro de los métodos mas usuales basados en la resistividad se encuentran los Sondeos Eléctricos Verticales (SEV) y las calicatas eléctricas. La configuración del sistema de medición se muestra en las Fig. 2.6(a) y 2.6(b) que muestran las ubicaciones de cuatro electrodos A, B, M y N y el esquema para medir los sondeos eléctricos verticales.

Los sondeos eléctricos verticales son los de mayor utilización en la exploración de taludes, en éstos se toma un punto del terreno como estación y se procede a realizar una serie de lecturas con distintas distancias ínter eléctricas. Cuanto mayor se hace la apertura del dispositivo, la información recibida corresponde a una mayor profundidad; si en lugar de modificar las distancias ínter eléctricas del dispositivo éstas se mantienen constantes y desplazamos todo el dispositivo a lo largo de un perfil, obtenemos una calicata eléctrica. Esto nos indica la variación que experimenta la resistividad aparente lateralmente a lo largo de un perfil.

La utilización de los SEV es de determinar recubrimientos sobre substrato, pero solo son útiles cuando se trata de materiales eléctricamente distintos, y no suelen servir ni para espesores de meteorización ni profundidades del nivel freático, mientras que las calicatas eléctricas, sirven para detectar fallas o cambios laterales de litologías con contraste eléctrico.

Uno de los métodos mas usados en los SEV es el llamado método *tetrapolar de Schumberger*, el cual se basa en la introducción de una corriente continua de intensidad i mediante dos electrodos de corriente A y B, y en la medición de la diferencia de potencial V que dicha corriente genera en dos electrodos de potencial M y N (Fig. 2.6(a)).

La resistividad aparente para cada medición se obtiene mediante el cociente de la diferencia de potencial V y la intensidad de corriente i para cada medida, multiplicada por un factor geométrico que depende de las distancias electródicas, siendo en la mayoría de los casos las distancias AB/2 y MN/2.

La técnica de campo de este método se basa en la ejecución de medidas sucesivas a distancias electródicas AB/2 crecientes a razón logarítmica y manteniendo una relación de AB/2>>MN/2. La penetración en profundidad se obtiene mediante la abertura de los electrodos de corriente A y B.

La curva de campo o curva de resistividad aparente, en términos de distancia AB/2 contra resistividad eléctrica en Ohm/m, se digitaliza para su interpretación en forma de curva de resistividades verdaderas en términos de resistividad de cada capa en Ohm/m y espesor en metros como se muestra en la Fig. 2.7.

Como parte final del ensayo se comparan los valores de resistividad obtenidos en el ensayo con valores típicos encontrados en la bibliografía (Tabla 2.2) determinándose en forma indirecta el tipo de material que conforma el terreno.

2.3. PERFORACIONES

Después de haber descrito los métodos indirectos en los acápites anteriores vemos que estos son importantes para el estudio de taludes, pero que no son determinantes en el diseño de un talud ya que tiene la limitación de no tener muestras directas del suelo. De tal manera que surge la necesidad de realizar ensayos directos donde es posible la extracción de muestras, los medios mas comunes para la extracción de éstas, son las llamadas *perforaciones*.

Dentro de las diferentes clases de perforaciones tenemos las perforaciones a inyección de agua y las perforaciones por rotación, descritas a continuación.

2.3.1. PERFORACIONES A INYECCIÓN DE AGUA (WASH BORING)

Este es un método económico y rápido para conocer la estratigrafía del terreno, así también es usado para tener una avance rápido en otros métodos de exploración. Las muestras extraídas son alteradas y no son recomendadas para realizar ensayos de laboratorio.

El equipo más primitivo por hacer un wash boring (Mohr 1943), usualmente incluye un trípode con polea y un martillo suspendido de 80 a 150 Kg. de peso cuya finalidad es la de hincar en el suelo a golpes una tubería de 1.5m de longitud y 60 mm de diámetro. Esta tubería tiene un diámetro mayor que la usada para inyectar el agua. La tubería de lavado es de 25 mm de diámetro, y de 1.5 á 3m de longitud y presenta unos hoyuelos para la salida del agua que es bombeada como se aprecia en la Fig. 2.8.

El procedimiento consiste en inyectar agua en la perforación, una vez hincado la tubería de mayor diámetro que soportará al suelo con sus paredes, el agua formará una suspensión con el suelo en la perforación y ésta sale al exterior a través del espacio comprendido entre la tubería de mayor diámetro y la tubería de lavado. Se complementará esto con el muestreo correspondiente, será suficiente extraer una muestra cada 1.50m si ésta no cambia. Debe tenerse en cuenta que para el muestreo, el agua en la perforación, el agua alcance un nivel de equilibrio que corresponde al nivel freático. Además que estas perforaciones se realizan en arenas, limos y arcillas blandas.

2.3.2. PERFORACIONES POR ROTACIÓN (DIAMANTINAS)

Este tipo de perforaciones son usadas tradicionalmente para perforar rocas aunque pueden ser utilizadas en arcillas duras o margas y existen dos modalidades: *perforaciones abiertas* en las que la broca retira todo el material de la perforación y la técnica de *perforaciones con toma de muestras* en las que se utiliza un muestreador anular que corta el material en forma continua. El equipo usualmente usado para perforaciones diamantinas se muestra en la Fig. 2.9.

La utilización de un fluido de perforación el que es bombeado al interior de la tubería ayuda a la lubricación, a refrigerar la broca y para enviar a la superficie los residuos de perforación. Usualmente se emplea agua, aunque también lodos de perforación como arcilla bentonítica cuando las paredes necesitan soporte.

En rocas blandas se usa la modalidad de perforación abierta, en cambio en rocas sanas y arcillas duras se usa las perforaciones con toma de muestra. Para este tipo de perforaciones los tamaños de diámetros más comunes son de 54mm(2 pulg.) y 76mm (3 pulg.) pero además existen otros, los que se muestran en la Tabla 2.3.

En el mercado se encuentran diferentes tipos de máquinas perforadoras, desde las básicas hasta la mas complejas y sofisticadas, se tendrá en consideración que para la realización de este tipo de perforaciones estos equipos puedan ser transportados y ubicados en los lugares determinados para la exploración puesto que algunas perforadoras son de gran tamaño.

2.4. ENSAYOS DE PENETRACION

2.4.1. ENSAYO DE PENETRACIÓN ESTANDAR (SPT)

Siguiendo en la descripción de los ensayos directos hemos notado que la recuperación de muestras adquiere una gran importancia, sobre todo en los suelos muy susceptibles a la perturbación y la variación de sus propiedades en sentido horizontal o vertical.

El método de prueba *in situ* mas ampliamente utilizado es el de penetración. Estos penetrómetros se hincan o penetran a presión en el terreno midiendo la resistencia a la penetración. La prueba de mayor uso es la "Penetración Estándar" que consiste en la hinca del toma muestras o cuchara partida dejando caer una masa de 140 libras (63.5 Kg.) desde una altura de 30 pulg. (76cm), como se observa en Fig. 2.10. La resistencia a la penetración se expresa por el número de golpes necesario para hincar la cuchara partida 1 pie (30cm).

La Tabla 2.4 presenta las correlaciones entre la resistencia del ensayo de penetración estándar y la compacidad relativa de la arena, así como la correlación entre los valores N del SPT y la resistencia a la compresión simple de la arcilla y su consistencia. En estudios mas recientes como los de Holtz y Gibbs se correlaciona el N del SPT, la densidad relativa y el ángulo de fricción interna considerando la presión vertical ya que ha demostrado ser un factor de gran influencia, La Fig. 2.11 ésta dada por Peck, Hanson y Thorburn, 1953 y no toma en cuenta la influencia de la presión vertical.

Se recomienda realizar de 3 a 5 sondeos de SPT a través de la sección crítica del talud analizado, dependiendo esta cantidad de la complejidad del terreno encontrado. Los sondeos deben llegar a una profundidad que atraviese cualquier posible superficie de falla.

2.4.2. ENSAYO DE PENETRACIÓN CON CONO HOLANDES (CPT)

Este ensayo de penetración estática fue desarrollado originalmente en el Laboratorio de Mecánica de Suelos de Delf, Holanda, en los años treinta. Como características típicas este penetrómetro tiene un cono de 60°, 35.7 mm de diámetro y una sección transversal de 10cm^2 , además presenta un manguito de fricción del mismo diámetro y un área superficial de 150 cm². (Fig. 2.12). La principal característica del penetrómetro es que permite medir, en forma separada, la resistencia en punta del cono y la resistencia por fricción que actúa sobre el manguito.

Para realizar el ensayo, el penetrómetro se introduce hasta la profundidad requerida: se introduce la sección del cono solo a una velocidad constante de 20 mm/s mediante la varilla interior hasta que el manguito que sirve de tope penetren conjuntamente. Si se registra la fuerza durante ambas fases del ensayo, la medida de la primera fase permite obtener directamente la resistencia de la punta, en tanto que la resistencia por fricción se obtiene al realizar la diferencia.

La resistencia en la punta del cono se denomina resistencia a la penetración de cono, se designa q_c , y se define como el resultado de dividir por el área de la punta la fuerza requerida por el cono para avanzar. Es así que Meyerhof (1976) propuso una correlación entre q_c y ϕ que se muestra en la Fig. Nº 2.13.

2.5. INSTRUMENTACION

Ya que la geotecnia tiene un carácter experimental, el desarrollo de un trabajo no puede concluir con el diseño de un determinado talud, ya que sus resultados solo tienen el carácter de hipótesis mas o menos confiable; dado ésto, es necesario controlar el talud y contrarrestar experimentalmente las hipótesis de diseño y modificarlas si es preciso.

Los trabajos necesarios para el control del comportamiento de un talud, suelen englobarse bajo el concepto de *auscultación*, que implica la ejecución de las labores siguientes:

- a. Predicción del comportamiento del talud (fase de diseño).
- Elección de las magnitudes cuyo control resulta significativo para reflejar simplificadamente el comportamiento del talud, y que por tanto, serán sujetas a medición.
- c. Definición de los instrumentos adecuados -para medir las magnitudes elegidas en el punto. Dichos instrumentos dependen del rango (valor máximo esperado), precisión requerida y frecuencia de lectura necesaria y también de otros condicionantes, tales como características topográficas, factores económicos, etc.
- d. Instalación de los instrumentos elegidos y lectura de los mismos.
- e. Comparación de los valores previstos con los reales. Análisis de los datos, y modificación, si procede, de las hipótesis efectuadas para la predicción del comportamiento del talud (contrastación experimental del diseño y modificación si procede).

Los principales tipos de instrumentos usados para monitorear las condiciones del terreno se encuentran en la Tabla 2.5, describiéndose además los alcances de cada instrumento.

Siendo el objetivo principal de la auscultación de taludes comprobar que su comportamiento está en concordancia con los estudios de estabilidad, y en caso contrario aportar datos que permitan corregir las hipótesis de estudio, las magnitudes que usualmente se deben controlar son:

- Movimientos superficiales.
- Movimientos en el interior del terreno.
- Movimiento de apertura de grietas y movimientos entre bloques en macizos rocosos.
- Presiones intersticiales.

MOVIMIENTOS SUPERFICIALES

Para la medida de los movimientos superficiales se pueden utilizar los siguientes instrumentos:

Marcas topográficas

Esta metodología detecta movimientos relativos a un punto y las técnicas topográficas son usadas para ello, se hace uso de puntos referenciales en la estructura relacionados a uno o más puntos establecidos. Estos puntos establecidos han de colocarse en una ubicación donde no es afectado por el movimiento del terreno. En presas de tierra, los puntos referenciales son puntos bench marks de concreto, típicamente cubos de 0.30 a 0.50 metros, con planchas de bronce en la cara superior e instalados y nivelados en superficie, se colocan en roca o terreno firme o pilotes.

Extensómetros

Este tipo de instrumento mide el movimiento relativo entre dos puntos en una estructura, este movimiento es medido usando una varilla y un manguito como se aprecia en la Fig. 2.14. La varilla y manguito son

encajados en el final de la perforación y el segundo punto es un punto referencial que es medido por un dial, además los movimientos pueden ser medidos remotamente. La aproximación depende del diseño y el dial o transductor usado: típicamente de \pm 50 mm y una precisión de 0.01 mm usando varillas de 100 metros de longitud.

MOVIMIENTOS EN EL INTERIOR DEL TERRENO

Para la medida de los movimientos en el interior del terreno el instrumento de mayor uso es el Inclinómetro. El inclinómetro como se observa en la Fig. 2.15 es un instrumento que mide las inclinaciones en diversos puntos del interior de un sondeo mediante una sonda que da una señal eléctrica proporcional a la inclinación.

Un juego de lecturas es tomado en un período de tiempo y los movimientos horizontales pueden ser detectados. La sonda inclinométrica es introducida en un tubo de plástico o aluminio que tiene 4 ranuras que mantienen al inclinómetro en una orientación fija y permite el monitoreo del movimiento en dos direcciones horizontales.

El inclinómetro permite detectar las zonas de superficie de deslizamiento de un talud que presenta movimiento, su evolución y la velocidad del mismo, así la Tabla 2.6 presenta un resumen de las diferentes escalas de movimiento para un talud y la Fig. 2.16 muestra un registro inclinométrico.

MEDICION DE PRESIONES INTERSTICIALES

Para el control de presiones intersticiales en taludes se usan instrumentos de medición mas comunes como: pozos de observación, piezómetros abiertos y piezómetros cerrados.

El pozo de observación mostrado en la Fig. 2.17 consiste en un tubo ranurado instalado en el interior de un sondeo y el nivel del agua se mide mediante una sonda que se introduce por la boca del mismo. Su uso es aconsejable para medir niveles freáticos en terrenos permeables.

Por su parte, los piezómetros abiertos consisten en tubos cuyo extremo inferior está situado en el punto que se desea controlar; es ranurado para permitir el paso del agua, esta zona está aislada con un sello de bentonita de las presiones intersticiales existentes en otros niveles. La Fig. 2.18 presenta un esquema de este tipo de piezómetro. Este instrumento tiene la desventaja de medir presiones intersticiales en un solo nivel, tiene un tiempo de respuesta largo.

Los piezómetros más efectivos son los del tipo cerrados que generalmente constan de un transductor y están compuestos por:

- Filtro Poroso: permite el paso del agua a una cámara situada en el interior del sensor.
- Un Diafragma Transductor: separa la cámara del elemento sensor.
- El Elemento Sensor: puede ser neumático, de resistencia eléctrica o cuerda vibrante y mide la presión ejercida por el agua contra el diafragma.

La Fig. 2.19 muestra un diagrama del piezómetro cerrado y la Tabla 2.7 describe los diversos sistemas de medida resumiendo las ventajas y desventajas de cada uno de ellos.

Tabla 2.1

VALORES TIPICOS DE Vp Y Vs
(SUELOS SATURADOS)

TIPO DE SUELO	(gr/cm3)	Vp (m/seg)	Vs (m/seg)
Suelo Superficial	1.2	250	90
Turba	1.2	250	90
Ceniza Volcánica	1.6	1100	170
Limo	1.6	1150	210
Arcilla	1.6	1330	350
Arena	1.6	1760	450
Arena Fina	1.6	1780	460
Arena Media	1.6	1810	600
Arena Gruesa	1.6	1700	300
Arena Marina	1.6	1350	360
Grava	1.7	1910	510
Grava Gruesa	1.8	2250	650
Esquisto de barro Deposito o acarreo fluvial	1.7	1750	550

Cismid, Seminario Taller de Mecánica de Suelos y Exploración Geotécnica, 1992

Tabla 2.2

VALORES TIPICOS DE RESISTIVIDAD

TIPO DE MATERIAL	RESISTIVIDAD Ohms-cm
Azufre	10 ¹⁷
Mica	10 ¹⁰ a 10 ¹⁵
Sal gema seca	10 ⁵ a 10 ¹⁵
Calcita	5 a 10 ¹⁴
Cuarzo	10 ¹⁴
Granito seco	10 ⁸ a 10 ¹¹
Arenisca seca	10 ⁶ a 10 ¹⁰
Limonita	10 ⁷
Caliza seca	10 ⁵ a 10 ⁶
Caliza húmeda	5x10 ³ a 5x10 ⁴
Mineral de pirita, seco	10 ³ a 10 ⁴
Mineral de pirita, húmedo	10 ² a 10 ⁻¹
Calcopirita	1 a 10 ⁻¹
Calcopirita húmeda	5x10 ³ a 10 ⁴
Marga, húmeda	10 ² a 10 ³
Arcilla, seca	10 a 10 ²
Sal gema, húmeda	5 a 10
Grafito	3x10 ⁻²
Cobre	1.7x10 ⁻⁶
Plata	10 -6

MATERIAL	RESISTIVIDAD (Ohms-m)
Arcilla	1 - 20
Arena Húmeda	20 - 200
Shale	1 - 500
Piedra caliza porosa	100 - 1 000
Piedra caliza densa	1 000 – 1'000 000
Roca Metamórfica	50 – 1'000 000
Roca Ígnea	100 – 1'000 000

CANTOS, 1974

Tabla 2.3

TAMAÑOS COMUNES DE DIAMETROS DE PERFORACIONES

Sistema Estándar		
Designación	Diámetro de Muestra (mm)	Diámetro de Taladro (mm)
BWG - BWM	42.0	59.9
NWG - NWM	54.7	75.7
HWG	76.2	99.2

Sistema Wire Line		
Designación	Diámetro de Muestra (mm)	Diámetro de Taladro (mm)
BQ	36.5	60.0
NQ	47.6	75.8
HQ	63.5	96.0

Fuente: Seminario Taller de Mecánica de Suelos y Exploración Geotécnica, CISMID, 1992

COMPACIDAD RELATIVA DE LA ARENA

Tabla 2.4

Resistencia a la penetración N (golpes/pie)	Compacidad Relativa
0 – 4	Muy suelta
4 – 10	Suelta
10 – 30	Media
30 – 50	Compacta
> 50	Muy compacta

(Terzaghi y Peck, 1948)

RESISTENCIA DE LA ARCILLA

Resistencia a la penetración N (golpes/pie)g	Resistencia a compresión simple (kg/cm2)	Consistencia
2 <	< 0.25	Muy blanda
2 – 4	0.25 – 0.50	Blanda
4 – 8	0.50 - 1.00	Media
8 – 15	1.00 – 2.00	Semidura
15 – 30	2.00 – 4.00	Dura
> 30	> 4.00	Rígida

(Terzaghi y Peck, 1948)

Tabla 2.5
EQUIPOS DE INSTRUMENTACION

EQUIPO	OBJETO DE MEDICION	
Extensómetro	Para medir pequeños cambios de longitud.	
Manómetros de desplazamiento	Para medir desplazamientos entre o en las superficies del suelo, macizos rocosos, estructuras, etc.	
Inclinómetros	Para medir cambios en la inclinación (ángulos).	
Manómetros de asentamiento	Para medir asentamientos en terraplenes o bajo estructuras, etc	
Piezómetros	Para medir niveles de agua y presión de ésta.	
Celdas de presión	Para medir presiones contra estructuras.	

Tabla 2.6

ESCALA DE MOVIMIENTOS DE DESLIZAMIENTOS

CLASE DE VELOCIDAD	DESCRIPCIÓN	VELOCIDAD (MM/SEG)	VELOCIDAD TÍPICA
7	Extremadamente Rápido	5x10 ³	5 m/seg
6	Muy Rápido		
	<u> </u>	5x10 ¹	3 m/min
5	Rápido	5x10 ⁻¹	1.8 m/hr
4	Moderado		
	l auto	5x10 ⁻³	13 m/mes
3	Lento	5x10 ⁻⁵	1.6 m/año
. 2	Muy Lento		
1	Extremadamente Lento	5x10 ⁻⁷	16 mm/año

(Varnes, 1978)

Tabla 2.7

CONTROL DE PRESIONES INTERSTICIALES

TIPO	Sistema de medida	Observaciones
Pozo de Observación	Tubo ranurado instalado en el interior de un sondeo cuyo nivel de agua se mide con una sonda	Equipos para medida de niveles freáticos en terrenos permeables. No se puede utilizar cuando existen niveles colgados o capas artesianas. Su tiempo de respuesta es largo principalmente en terrenos poco permeables. Movimientos grandes que pueden dañar los tubos e impedir las medidas.
Piezómetro Abierto	Tubo ranurado en su extremo inferior, instalado en un sondeo. El extremo inferior se sella para evitar transmisión de presiones interticiales en el interior del taladro. La medida del nivel se realiza con una sonda	Equipos para medida de presiones intersticiales en terrenos permeables. Bajo costo. Solo puede usarse en un punto del sondeo. Su tiempo de respuesta es grande principalmente en terrenos poco permeables. Movimientos grandes que pueden dañar los tubos e impedir las medidas.
Piezómetro Cerrado	Sensor que detecta la presión intersticial en un punto mediante un trasductor que da una señal proporcional a los cambios de presión. El transductor puede ser neumático, de resistencia eléctrica o de cuerda vibrante.	Equipos para control de presiones intersticiales en uno o varios puntos situados en el interior de un sondeo. Mayor costo que los otros. Su tiempo de respuesta es muy corto aun en terrenos poco permeables. Son poco afectados por el movimientos del talud. Los de cuerda vibrante son precisos y fiables. Permiten transmitir la señal a distancias de mas de 1000 m sin pérdida de precisión. Los de resistencia eléctrica pierden precisión con las variaciones de temperatura y al transmitir la señal a distancia su estabilidad a largo plazo no esta comprobada. Los de tipo neumático son aconsejables para distancias entre sensor y unidad de lectura menores de 200 m, siempre que no se quiera automatizar el proceso de medida.

Tabla XI.4 del Manual de Ingenieria de Taludes Instituto tecnológico Geo Minero de España (ITGE)

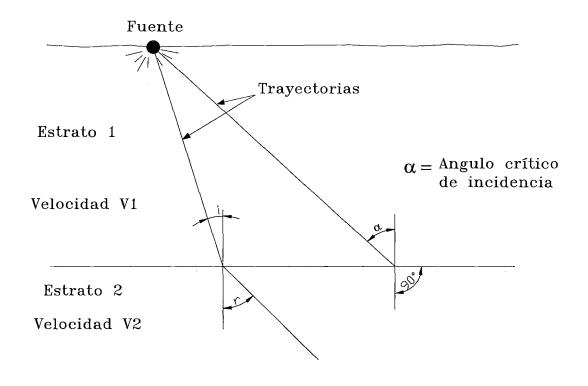


Fig. 2.1 : Refracción de Rayos a través de un Límite entre dos Medios Elásticos.

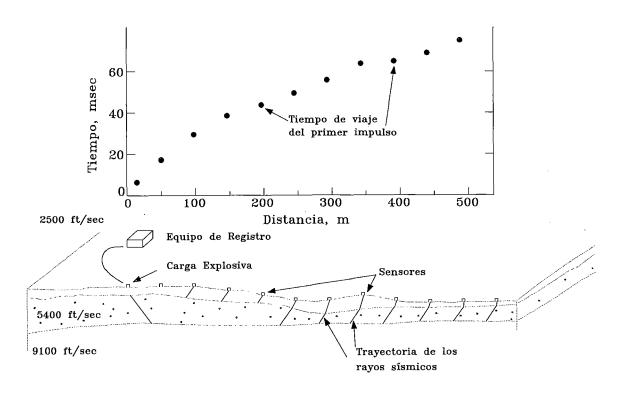


Fig. 2.2: Esquema del Ensayo de Refracción Sísmica

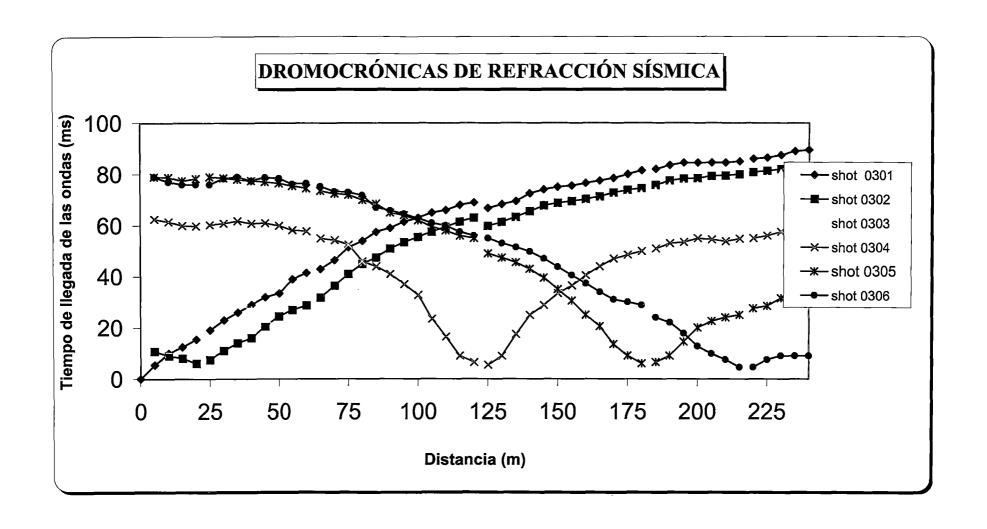


Fig. 2.3: Dromocrónica

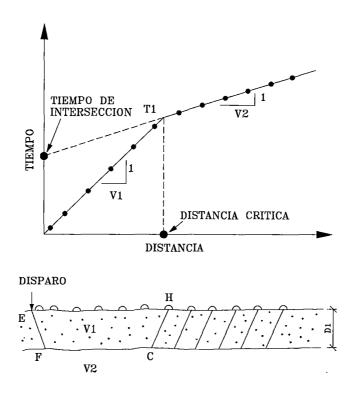


Fig. 2.4 : Caso Simple de 2 estratos con límites Planos y Paralelos y Curva Tiempo-Distancia correspondiente

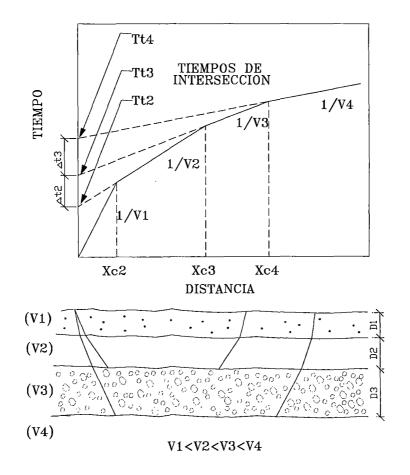
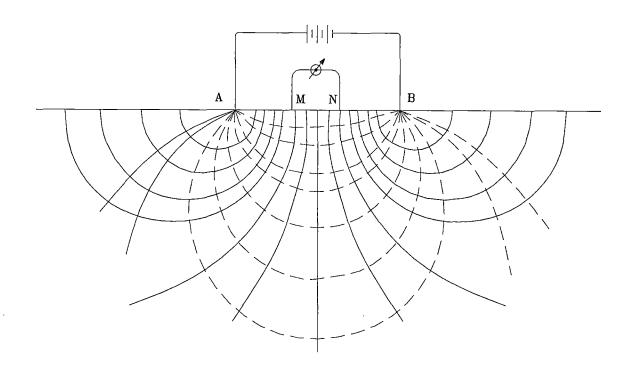
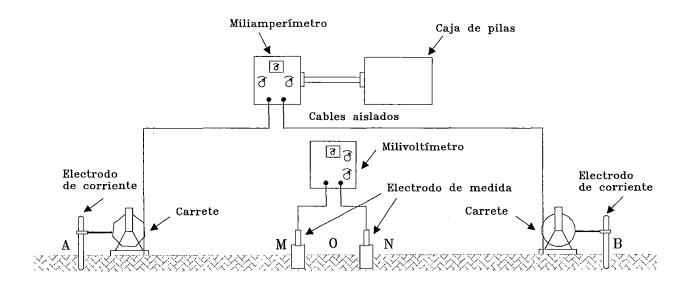




Fig. 2.5 : Esquema del Caso de Múltiples Estratos y Curva Tiempo-Distancia Correspondiente

(a) Método basado en la resistividad del terreno

(b) Esquema para realizar Sondeos Eléctricos Verticales (SEV)

Fig. 2.6: Método de Resistividad Eléctrica

Fig. 2.7: Curva de Resistividad Aparente

Fig. 2.8 : Perforaciones a Inyección de Agua (Wash Boring)

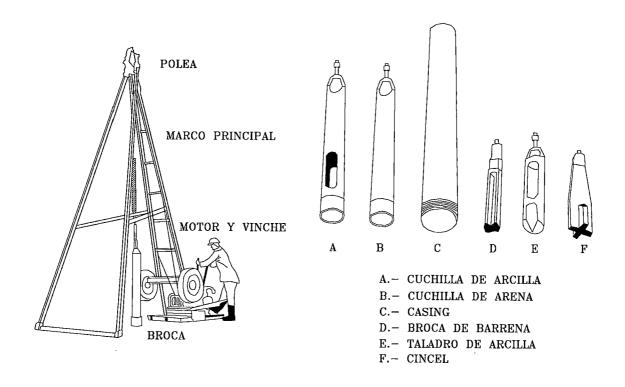


Fig. 2.9: Perforaciones por Rotación (Diamantinas)

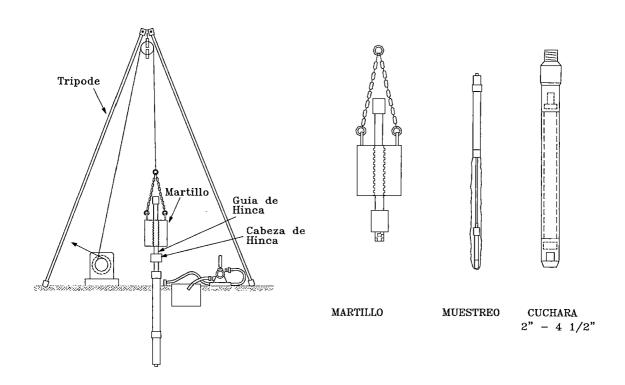


Fig. 2.10: Ensayo de Penetración Estándar (SPT)

Compacidad Relativa N Número de golpes para 30 cm de penetración compacta muy compacta (prueba de penetración estandar) 20 30 40 50 (1) (2)60 70 80 38° 28° 30° 34° 36⁴ 40° 42° 44°

(1) Relación para arenas de grano anguloso o redondeado de mediano o grueso

Angulo de Fricción Interna

(2) Relación para arenas finas y para arenas limosas

Fig. 2.11 : Correlación entre N del SPT y el Angulo de Fricción Interna (Peck, Hanson y Thorburn, 1953)

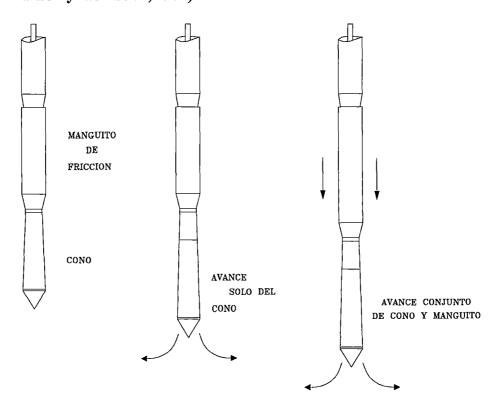


Fig. 2.12: Mecanismo de Funcionamiento del Cono Holandés CPT

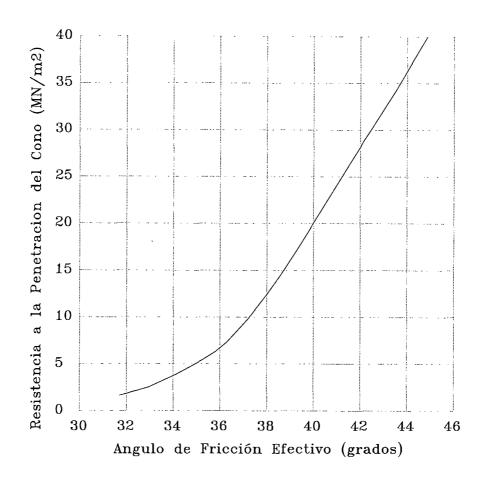


Fig. 2.13 : Correlación entre q_c y φ' (Meyerhof, 1976)

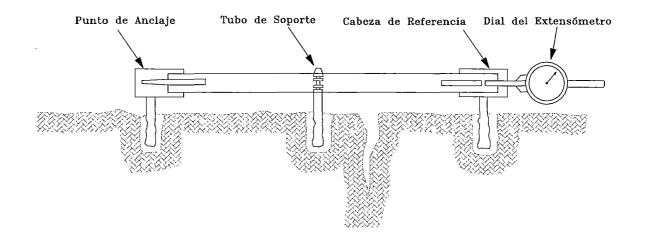


Fig. 2.14: Extensómetros

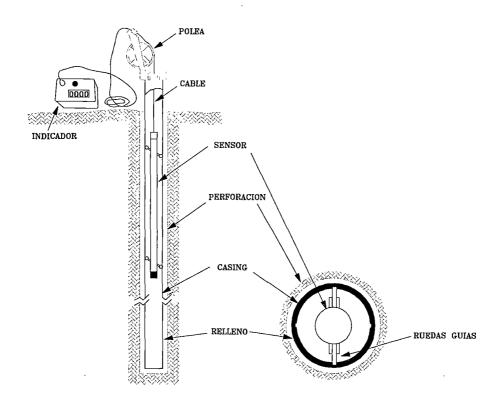


Fig. 2.15: Inclinómetro

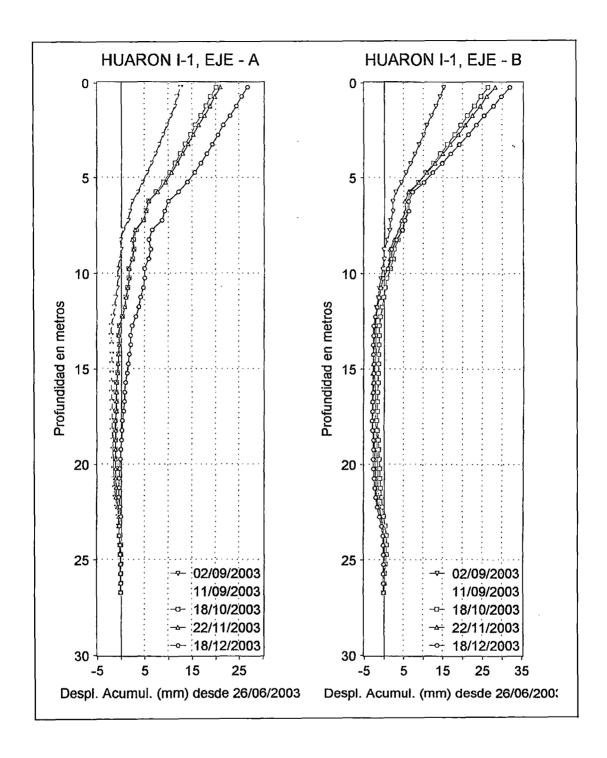


Fig. 2.16: Registro Inclinométrico

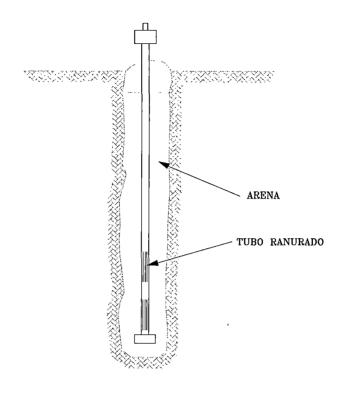


Fig. 2.17: Pozo de Observación

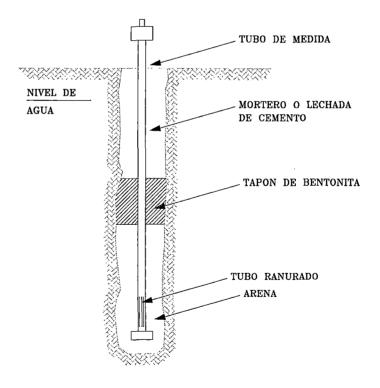


Fig. 2.18: Piezómetro Abierto

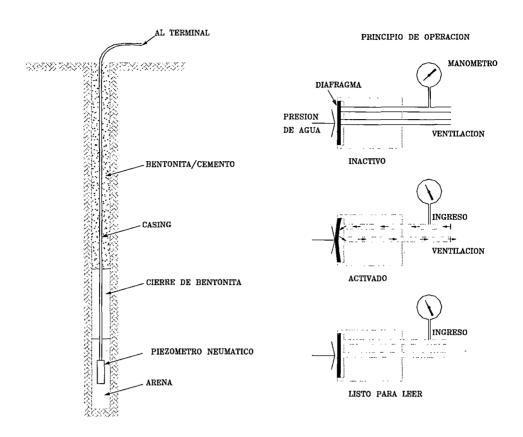


Fig. 2.19: Piezómetro Cerrado (caso de piezómetro neumático y principio de operación)

CAPITULO III

3.0 ENSAYOS DE LABORATORIO

3.1. GENERALIDADES

Los suelos constituyen un sistema discontinuo con diferentes fases (sólido, líquido, gas). El estudio de las relaciones interfases, morfología y tamaño de las partículas deben concluir con el conocimiento de las características mecánicas de los suelos.

Generalmente la mayoría de las muestras inalteradas que se ensayan en laboratorio han sufrido una variación en su estructura original, debida al procedimiento de su obtención y posterior manipulación. No obstante, los ensayos realizados sobre muestras inalteradas constituyen el medio mas eficaz para conocer las distintas propiedades de los mismos y evaluar su comportamiento.

Para realizar el análisis de estabilidad de taludes es indispensable conocer las características mecánicas y de resistencia del suelo conformante de éste, por tal motivo los ensayos de laboratorio son indispensables e inevitables; el presente capítulo pretende dar a conocer ensayos de suelos realizados con mayor frecuencia en el análisis de estabilidad, tales como ensayos de clasificación de suelos, ensayos de resistencia al corte, así como el ensayo de corte directo y el ensayo de compresión triaxial.

3.2. ENSAYOS DE CLASIFICACION DE SUELOS

El método directo para resolver un problema de ingeniería de suelos consiste en determinar en primer lugar la propiedad conveniente del suelo, utilizando más tarde este valor en una expresión racional para obtener la respuesta al problema.

Para el cálculo de la estabilidad de un talud se mide la resistencia al corte del suelo, entrando con ese valor a una expresión basada en las leyes de la estática.

La medida de las propiedades fundamentales de un suelo, como la permeabilidad, la compresibilidad y la resistencia, puede ser difícil, caro y requerir mucho tiempo. En muchos problemas de ingeniería de suelos, como el proyecto de pavimentos, no se dispone de expresiones racionales para analizar la solución numéricamente. Por estas razones, puede ser muy útil dividir los suelos en grupos con comportamiento semejante. Es lo que se denomina clasificación de suelos.

La clasificación de suelos consiste, pues, en incluir un suelo en un grupo que presenta un comportamiento semejante. La correlación de unas ciertas propiedades con un grupo de un sistema de clasificación suele ser un proceso empírico puesto a punto a través de una experiencia considerable.

La mayoría de clasificaciones de suelos utilizan pruebas muy sencillas, del tipo indicativo, para obtener las características del suelo necesarias para asignarlo a un determinado grupo. Evidentemente una clasificación de suelos pierde su valor si las pruebas de partida resultan mas complicadas que la necesaria para medir directamente la propiedad fundamental que se desea conocer. Las características utilizadas mas corrientemente son la granulometría y la plasticidad.

Existen varios métodos de clasificación de suelos, el conocido como Sistema Unificado de Clasificación de Suelos, el de la Asociación Americana de Agencias Oficiales de Carreteras y Transportes (AASHTO), el Sistema del Departamento de Agricultura de los estados Unidos (USDA), el Sistema de la ASTM y el Sistema de la Agencia Federal de Aviación (FAA) para nombrar solo unos cuantos.

La clasificación de suelos constituye una ayuda valiosa para el ingeniero y le da indicaciones generales, transformando de manera empírica los resultados de la experiencia en campo.

Debido a que existe mucha similitud entre los diferentes sistemas de clasificación y siendo el sistema suelos unificado y AASHTO los de mayor uso, se procederá a su respectiva descripción.

3.2.1. SISTEMA UNIFICADO DE CLASIFICACION DE SUELOS (SUCS)

Los elementos esenciales del sistema de clasificación fueron propuestos inicialmente por Arturo Casagrande (1942) y adoptados subsecuentemente por el Cuerpo de Ingenieros de los Estados Unidos para la construcción de aeropuertos. Actualmente, este sistema se utiliza con modificaciones mínimas en la mayoría de los países fuera de los Estados Unidos. En U.S.A el sistema es ampliamente utilizado por organizaciones tales como el Cuerpo de Ingenieros, el Bureau of Reclamation, y con pequeñas modificaciones por la mayoría de las firmas consultoras.

La Tabla 3.1 presenta los factores a considerar en la clasificación de un suelo de acuerdo con el Sistema Unificado de Clasificación de Suelos.

A continuación se consideran estas subdivisiones en más detalle:

a. Gravas o arenas son: GW, GP, SW o SP
 si menos del 5% del material pasa a través del tamiz Nº 200; G = grava; S = arena; W = bien gradada; P = pobremente gradada. La gradada bien gradada o pobremente gradada depende de dos valores característicos para Cu y Cc y con valores numéricos como se muestra en la Tabla 3.1.

b. Gravas y arenas son: GM, GC, SM ó SC si más del 12 % del material pasa a través del tamiz Nº 200; M = limo; C = arcilla. La designación limo o arcilla se determina después de obtener los valores de los límites líquido y plástico de la fracción menor al tamiz Nº 40, y utilizando los criterios de la carta de plasticidad de la Tabla 3.1 Este carta de plasticidad es otra contribución de Casagrande al sistema, y la línea A que se encuentra en él, es conocida como la línea A de Casagrande.

c. Las gravas y las arenas se pueden clasificar:

GW-GC SW-SC GP-GC SP-SC GW-GM SW-SM GP-GM SP-SM

si entre 5 y 12 %del material pasa a través del tamiz Nº 200.

d. Los suelos de grano fino (más del 50 % pasa el tamiz Nº 200) son:
 ML, OL, ó CL

si los límites líquidos son menores que 50% L = menor que 50%; M = limo; O = suelos orgánicos; C = arcilla.

e. Los suelos de grano fino son: MH, OH, ó CH

si los límites líquidos son superiores a 50% H = mayor que 50%.

Los límites líquido y plástico se ejecutan sobre material correspondiente a la fracción menor del tamiz Nº 40 de todos los suelos, incluyendo gravas, arenas, y suelos finos. Estos límites se utilizan con la carta de plasticidad para determinar el prefijo M, O ó C, dependiendo de la localización de las coordenadas de plasticidad del suelo dentro de la carta.

Una descripción visual del suelo debe siempre incluirse conjuntamente con el símbolo unificado para completar la clasificación.

3.2.2. SISTEMA DE CLASIFICACION DE SUELOS DE LA AASTHO

La Tabla 3.2 muestra el sistema de clasificación de la AASTHO, asimismo la Fig. 3.1 provee una forma de utilizar los límites plástico y líquido para obtener la clasificación de los suelos entre los grupos A-4 y A-7, para los cuales el hecho de tener mas de un 35% de material más fino que el tamiz Nº 200, es un factor esencial de clasificación. Este factor puede también utilizarse para obtener la clasificación de subgrupo de los suelos titulados A -2, para los cuales el hecho de tener menos del 35 % del material más fino que el tamiz Nº 200, es un factor esencial de clasificación. La designación de los subgrupos en el grupo A-2 se logra determinando sí el suelo es A-2 clasificado de acuerdo con su análisis granulométrico, pero tiene propiedades plásticas (wL y wP) características de los suelos A-4, A-5, A-6 ó A-7.

Para la clasificación AASTHO se utiliza la Tabla 3.2 procediendo de izquierda a derecha hasta encontrar el primer tipo de suelo que tenga las propiedades del suelo en consideración. El suelo tipo A-8 (no se muestra) se clasifica visualmente como turba (material excesivamente orgánico).

El sistema de clasificación de la AASHTO utiliza además un índice de grupo para comparar diferentes suelos dentro de un mismo grupo. El índice de grupo se calcula de acuerdo a la ecuación 3.1, o a partir de la Fig. 3.2. El índice encontrado de esa forma se redondea al entero siguiente y se reemplaza entre paréntesis después del número de clasificación correspondiente de la siguiente forma: *A-2-6(3)*.

Clasificando de esta forma el suelo como un material del grupo A-2 con propiedades plásticas del grupo A-6 y con un índice de grupo de 3. Si dos suelos de un mismo grupo tienen diferente índice de grupo, tendrá mejor comportamiento como material de carretera aquél cuyo índice de grupo sea menor; esto es, un A-2-6 (2) debe ser un mejor material de carretera que un A -2-6 (4).

La ecuación para establecer el índice de grupo es la siguiente:

$$GI = 0.2 * a + 0.005 * ac + 0.01 * bd (3.1)$$

Donde:

- a = porcentaje de material más fino que el tamiz Nº 200 mayor que el 35% pero menor que el 75%, expresado como un número entero positivo (1 ≤ a ≤ 40).
- b = porcentaje de material que pasa el tamiz N° 200 mayor que 15
 % pero menor que 55%, expresado como un número positivo entero (1 ≤ b ≤ 40).

- c = porción del límite líquido mayor que 40 pero no mayor que 60, expresado como un número positivo entero $(1 \le c \le 20)$.
- $d = porción del índice de plasticidad mayor que 10 pero no excedente a 30, expresado como un número positivo entero <math>(1 \le d \le 20)$.

Como esta ecuación es lineal, se ve fácilmente que la parte superior de la Fig. 3.2, resuelve el término 0.01bd y que la parte inferior de la misma resuelve el término 0.2 a + 0.005ac. De forma que la suma de los valores obtenidos de las dos partes de la figura y aproximada al siguiente entero positivo constituye el índice de grupo IG del suelo.

3.3. ENSAYOS DE RESISTENCIA CORTANTE

La resistencia al corte de un suelo determina factores tales como la estabilidad de un talud, la capacidad de carga admisible para una cimentación y el empuje de un suelo contra un muro de contención. El conocimiento de la resistencia al corte es requisito indispensable para cualquier análisis relacionado con la estabilidad de una masa de suelo.

En 1776 Coulomb observó que si el empuje que produce un suelo contra un muro de contención produce un ligero movimiento del muro, en el suelo que está retenido se forma un plano de deslizamiento esencialmente recto. El postuló que la máxima resistencia al corte, τ_f en el plano de falla está dada por

$$\tau_f = c + \sigma \, tg\phi \,(3.2)$$

donde:

σ, es el esfuerzo normal total en el plano de falla

φ es el ángulo de fricción del suelo, y

c es la cohesión del suelo

La ecuación de Coulomb es una relación puramente empírica y se basa en la ley de fricción de Amonton para el deslizamiento de dos superficies planas, con la inclusión de un término de cohesión c para tener en cuenta la adherencia propia de los suelos arcillosos. Para los materiales granulares, c = 0, y por tanto $\tau_f = \sigma t g \phi$.

La utilización de la ecuación de Coulomb no condujo siempre a diseños satisfactorios de estructuras de suelo. La razón para ello no se hizo evidente hasta que Terzaghi publicó el principio de esfuerzos efectivos, $\sigma = \sigma' - \mu$. Pudo apreciarse entonces que, dado que el agua no puede soportar esfuerzos cortantes sustanciales, la resistencia al corte de un suelo debe ser el resultado únicamente de la resistencia a la fricción que se produce en los puntos de contacto entre partículas; la magnitud de ésta depende sólo de la magnitud de los esfuerzos efectivos que soporta el esqueleto de suelo. Por tanto, cuanto más grande sea el esfuerzo efectivo normal a un plano de falla potencial, mayor será la resistencia al corte en dicho plano. Entonces, si se expresa la ecuación de Coulomb en términos de esfuerzos efectivos, se tiene:

$$\tau_f = c' + \sigma' t g \phi' \dots (3.3)$$

en la cual los parámetros c' y φ' son propiedades del esqueleto de suelo, denominadas cohesión efectiva y ángulo de fricción efectiva, respectivamente.

Puesto que la resistencia al corte depende de los esfuerzos efectivos en el suelo, los análisis de estabilidad se harán entonces en términos de esfuerzos efectivos. Sin embargo, en ciertas circunstancias el análisis puede hacerse en términos de esfuerzos totales y por tanto, en general, se necesitará determinar los parámetros de resistencia al corte del suelo en esfuerzos efectivos y en esfuerzos totales. Es decir, los valores de c', φ' y c, φ. Éstos se obtienen, a menudo en ensayos de laboratorio realizados sobre muestras de suelo representativas mediante el ensayo de corte directo (ASTM D-3080-72) o el ensayo de compresión triaxial (ASTM D-2850-70).

3.3.1. ENSAYO DE CORTE DIRECTO

La Fig. 3.3 muestra los principales detalles del aparato de corte directo, en el cual la muestra de suelo se introduce en un molde dividido horizontalmente en dos mitades. Se aplica luego a la muestra una fuerza normal N mediante una placa de carga, y, luego de fijar la mitad superior del molde, se corta la muestra en un plano horizontal mediante la aplicación de una fuerza cortante S. El movimiento vertical de la muestra durante el corte se mide por medio de un deformímetro que se apoya sobre la placa superior.

El diseño del molde de corte no permite el control del drenaje de la muestra. Esta no es una limitante en el caso de arenas y gravas, que son materiales de drenaje libre y por lo general fallan en condiciones completamente drenadas. Sin embargo, en depósitos de arcilla un elemento de suelo en el campo puede fallar sin ningún drenaje (sin disipación del exceso de presión intersticial), con drenaje parcial (con alguna disipación del exceso de presión intersticial), o drenaje completo (con una total disipación del exceso de presión intersticial) dependiendo de la velocidad a la cual se le aplica la carga a la masa de suelo. Aunque puede intentarse medir la resistencia al corte no drenada mediante la aplicación de la fuerza cortante sobre la muestra en pocos minutos; la falta de control del drenaje hace obvio que exista una incertidumbre sobre si este valor representa o no la verdadera resistencia no drenada. Por esta razón, la resistencia al corte no drenada de un suelo arcilloso a menudo se mide en una cámara triaxial, la cual permite el completo control del drenaje de la muestra. Sin embargo, el ensayo de corte directo puede utilizarse para medir la resistencia drenada de los suelos arcillosos si primero se consolida por completo la muestra bajo la carga normal y luego se corta la muestra a una velocidad suficientemente lenta para asegurarse de la disipación

inmediata del exceso de presión intersticial que se produce durante el corte; de este modo, u=0 durante el proceso de corte. Por tanto, para arcillas y arenas drenadas el esfuerzo normal efectivo en el plano de corte esta dado por $\sigma'=N/A$ y el esfuerzo cortante asociado $\tau=S/A$, donde A es el área plana del molde de corte.

El ángulo de fricción efectivo para un estado de densidad en particular se obtiene al graficar el valor máximo del esfuerzo cortante τ_f en función del esfuerzo normal efectivo σ' (Fig. 3.4). Para establecer la envolvente de falla se realizan diferentes ensayos con diferentes valores de presión de confinamiento. En la Tabla 3.3 se presentan valores típicos de ϕ' para suelos granulares y su utilización en anteproyectos de análisis de estabilidad de taludes.

3.3.2. ENSAYO DE COMPRESIÓN TRIAXIAL

La medición de las propiedades de resistencia del suelo en un ensayo triaxial fue investigada en detalle por Bishop y Henkel (1962) y se ha constituido en la obra de referencia acerca de este tema.

La Fig. 3.5 muestra los principales detalles de una cámara triaxial en la cual la muestra de suelo se introduce en una membrana de caucho impermeable y se encierra dentro de una cámara llena de agua mediante la cual se aplica a la muestra una presión de confinamiento. El drenaje se facilita por medio de bandas de papel filtro colocadas verticalmente alrededor de la muestra, las cuales están en contacto con un disco poroso en la platina superior, de donde sale un tubo de nylon que pasa a través de la base de la cámara. La presión intersticial de la muestra se mide mediante un disco poroso saturado que está empotrado en el pedestal de base y conectado por medio de un tubo lleno de agua a un transductor eléctrico de presión. La muestra se cizalla con un pistón de carga vertical que aplica la carga a la platina

superior. Para minimizar las fuerzas de fricción arriba y abajo de la muestra y permitir que durante el corte la deformación lateral no tenga restricciones, se colocan discos de caucho lubricados entre la muestra y los cabezales. El ensayo puede hacerse con deformaciones controladas; en este caso el pistón de carga vertical se apoya en un marco de carga motorizado con un sistema de engranajes que permita deformar verticalmente la muestra a una velocidad constante, o con esfuerzo controlado; en este caso se permite que la muestra se deforme libremente bajo la aplicación de cargas en el pistón vertical.

Con la eliminación de los esfuerzos cortantes en los extremos superior e inferior de la muestra, y puesto que entre el agua de la cámara y la superficie vertical de la muestra no se generan esfuerzos cortantes, el esfuerzo axial y la presión de cámara son los esfuerzos principales. Bajo las condiciones del ensayo triaxial, el esfuerzo principal mayor σ_1 es el esfuerzo axial, y los esfuerzos principales, intermedio y menor, σ_2 y σ_3 , son iguales a la presión de cámara. Esta actúa no solo en la superficie vertical de la muestra, sino también en sus bases. Por tanto, si en cualquier etapa del ensayo de corte la carga del pistón vertical es P y la sección transversal de la muestra es A, entonces

$$\sigma_1 = \frac{P}{A} + \sigma_3$$

donde

$$\frac{P}{A} = \sigma_1 - \sigma_3 \dots (3.4)$$

El esfuerzo P/A que aplica el pistón es por tanto igual a la diferencia entre los esfuerzos totales principales, mayor y menor, σ_1 - σ_3 , el cual se denomina desviador de esfuerzos y se designa con D.

El propósito de controlar el drenaje en el ensayo triaxial es proporcionar condiciones de ensayo que sean similares a las condiciones reales de carga o drenaje en el campo. Dependiendo del tipo de suelo y la velocidad y secuencia de carga en el campo, la cantidad de consolidación y drenaje que ocurren durante la aplicación de carga puede variar. Debido a que la resistencia cortante del suelo está controlada por la cantidad de drenaje que ocurre durante la carga, es necesario medir la resistencia cortante utilizando un procedimiento de ensayo que sea apropiado para simular el drenaje y la consolidación que ocurrirán durante la construcción y la vida de estructura en el campo.

Para lograr lo anterior, puede utilizarse uno o más de los tres procedimientos de ensayo siguientes:

1. No consolidado - No drenado

En este tipo de ensayo no se permite consolidar al especímen durante el estado de esfuerzo inicial (no consolidado), ni drenar durante el corte (no drenado). Este tipo de condición de ensayo se utiliza para medir la resistencia cortante del suelo cuando la carga en el campo será lo suficientemente rápida para prevenir cualquier drenaje significativo y cambio en el contenido de humedad, que ocurran antes que el suelo falle.

Este ensayo tiene aplicación en los análisis de estabilidad a corto plazo de obras construidas con o sobre depósitos de arcilla en los que se considera que el tiempo transcurrido hasta el final de la construcción es insuficiente para la disipación del exceso de presión intersticial. Tales obras por lo general incluyen pequeños terraplenes, taludes artificiales, muros de contención y cimentaciones de edificaciones.

La resistencia no drenada de una arcilla se obtiene con muestras de suelo sometidas a condiciones no drenadas durante todo el ensayo, donde no se permite el drenaje durante la aplicación de la presión de cámaras ni durante la aplicación del desviador de esfuerzos.

Si la muestra de arcilla está saturada la presión intersticial toma el incremento en la presión de cámara sin modificación en el esfuerzo efectivo de la muestra y, por tanto, sin modificación en la resistencia al corte. En consecuencia, el desviador de esfuerzos necesario para fallar la muestra es independiente de la presión de cámara a la cual se realiza el ensayo. La Figura 3.6 muestra los correspondientes círculos de esfuerzos de Mohr, la tangente común a estos círculos define la envolvente de falla del suelo, la cual en este caso es horizontal y entonces $\phi_u = 0$; el intercepto con el eje vertical de esfuerzos cortantes define la cohesión no drenada Cu. La resistencia al corte no drenada, $\tau_{\rm fu}$, en términos del esfuerzo total es entonces

$$\tau_{fu} = c_u + \sigma t g \phi_u$$

Puesto que $\phi_u = 0$, entonces

$$\tau_{fu} = c_u \tag{3.5}$$

La cohesión no drenada determina la resistencia al corte no drenada. De este modo, por lo general, Cu, se denomina resistencia al corte no drenada; y como la envolvente de falla es horizontal, entonces

$$c_u = \frac{1}{2} (\sigma_1 - \sigma_3)_f = \frac{1}{2} D_f \dots (3.6)$$

donde el desviador de esfuerzos en la falla, $D_{\rm f}$, define la resistencia a la compresión de la muestra.

En la Figura 3.6 las muestras se fallan de manera convencional, en la cual σ_3 , se mantiene constante y σ_1 se incrementa. Puesto que el desviador de esfuerzos en la falla es independiente de la presión de cámara, se obtiene el mismo resultado sin importar la trayectoria de esfuerzos que se siga. Por tanto, los parámetros no drenados en esfuerzos totales son únicos e independientes del procedimiento del es utilizado para medirlos. Éste un particularmente importante puesto que significa que un elemento de suelo en el campo donde la trayectoria de esfuerzos en la falla es mucho más compleja con σ_1 y σ_3 variables, se tendrá el mismo valor de Cu y ϕ_u , lo cual sugeriría que cuando los esfuerzos cambien y probablemente causen la falla en condiciones no drenadas, el análisis de estabilidad puede hacerse en términos del esfuerzo total.

2. Consolidado - Drenado

En este tipo de ensayo primero se consolida completamente al suelo bajo un estado de esfuerzo inicial. Después se aplica el esfuerzo axial muy lentamente para que las presiones de poro generadas puedan tener tiempo de disiparse, o la carga axial se aplica en incrementos pequeños manteniendo cada uno de ellos hasta que las presiones de poro se hayan disipado antes de aplicar el siguiente incremento. Este procedimiento de ensayo se utiliza cuando el suelo en el campo drena relativamente rápido durante la aplicación de cargas de construcción (en arenas), o cuando el suelo tiene tiempo suficiente para drenar bajo la carga aplicada y la resistencia cortante se determinará cuando la disipación de la presión de poros y el drenaje en el campo hayan ocurrido.

La envolvente de los distintos círculos de Mohr define el ángulo de rozamiento interno y cohesión efectivos del suelo (\(\phi' \) y c'\).

Cuando la construcción en el campo reposa sobre un depósito de arena o grava, la falla potencial se producirá en condiciones drenadas. Es posible que se presenten fallas en cortes medios en arcilla, varios años después de su construcción cuando el exceso de presión intersticial inicial (negativo) se disipa por completo. Estas condiciones pueden simularse en un ensayo drenado en el cual la muestra se consolida completamente con la presión de cámara y luego se falla bajo condiciones drenadas a una velocidad adecuada para impedir la generación de excesos de presión intersticial, de tal manera que u = 0 a lo largo de la etapa de corte.

Puesto que u=0 a lo largo del proceso de corte, $\sigma'_3=\sigma_3$, $\sigma'_1=\sigma_1$, y el círculo de Mohr de esfuerzos efectivos y el de esfuerzos totales coinciden (Fig. 3.7). La envolvente de falla define los parámetros de esfuerzos efectivos c' y ϕ' . Éstos a menudo se designan con cd y ϕ_d , respectivamente. Como antes, las arenas y las arcillas normalmente consolidadas tienen el intercepto en cero (cd = 0)

Por lo general existe muy poca diferencia entre los parámetros de esfuerzos efectivos que se obtienen en ensayos drenados con los que se obtienen en ensayos consolidados-no drenados. Sin embargo, en las arenas y en las arcillas altamente preconsolidadas ϕ_d es ligeramente mayor que ϕ' , debido al trabajo que hace la muestra de suelo cuando se expande durante el corte, en contra de la presión de confinamiento.

3. Consolidado - No drenado

En este tipo de ensayo el especímen se consolida completamente bajo el estado inicial de esfuerzo. Sin embargo, durante el corte (segunda etapa), se cierran las líneas de drenaje y el especímen se carga a la falla en condiciones no drenadas. Este procedimiento de ensayo puede utilizarse para simular condiciones de campo donde el estado inicial de carga resulta en la consolidación del suelo sin el peligro de falla, y después se aplica una segunda etapa de carga suficientemente rápida que resulta en carga esencialmente no drenada. Este tipo de carga puede aplicarse a los suelos de un lugar donde un terraplén de tierra se construirá primero y se dejará allí por varios años hasta que los suelos de cimentación se consoliden y luego se construirá relativamente rápido una edificación en el terraplén de tierra. Un ensayo consolidado-no drenado podría utilizarse para determinar la resistencia cortante del suelo bajo el terraplén para su utilización en el diseño de la cimentación de la edificación, y el estado de esfuerzo inicial usado representaría los esfuerzos en el suelo después que se haya consolidado bajo la carga del terraplén.

Dado la importancia de los ensayos no drenados en la modelación de la situación de campo, cuando un depósito de arcilla se somete a un cambio de esfuerzos que es rápido comparado con el tiempo necesario para la disipación del exceso de presión intersticial, la falla se producirá entonces en condiciones no drenadas. Sin embargo, si el tiempo de construcción se extiende por largo tiempo (como, por ejemplo, en el caso de presas de tierra) es razonable suponer que al final de la construcción ya se habrá producido algún grado de consolidación. Si en este momento los esfuerzos cortantes que se generan en el suelo tienen la magnitud suficiente para producir la falla, ésta se producirá rápidamente sin drenaje adicional. Este comportamiento se modela con el ensayo

consolidado-no drenado en el cual la muestra de suelo se consolida por completo con la presión de cámara y luego el desviador de esfuerzos produce la falla en condiciones no drenadas. La Fig. 3.8 muestra las curvas típicas de desviador de esfuerzos en función de la deformación unitaria axial.

Cuanto mayor sea la presión a la cual se consolida la muestra, mayor será el desviador de esfuerzos necesarios para producir la falla. La Fig. 3.9 muestra los círculos de Mohr típicos en esfuerzos totales. El intercepto y la pendiente de la envolvente de falla definen los parámetros de resistencia al corte en esfuerzos totales del suelo, que en los ensayos consolidados no drenados se designan con c_{cu}. y ϕ_{cu} , respectivamente. Si durante el ensayo se mide la presión intersticial, lo cual es usual en la práctica, entonces pueden dibujarse los círculos de Mohr de esfuerzos efectivos (Fig. 3.10) cuya envolvente de falla permite definir los parámetros de resistencia al corte en esfuerzos efectivos c' y ϕ '. Los círculos de esfuerzos efectivos pueden situarse a la izquierda o a la derecha de los círculos de esfuerzos totales respectivos, dependiendo de si la presión intersticial en la falla es positiva o negativa.

En el ensayo triaxial estándar la muestra se falla de manera convencional, es decir, se mantiene σ_3 constante y se incrementa σ_1 . En una situación de campo los cambios de esfuerzos que conducen a la falla potencial de un elemento son más complejos ya que van desde aquellas que están en el rango de σ_3 constante y aumento de σ_1 hasta aquellas que se producen con σ_1 constante y reducción de σ_1 . Es importante considerar la posible influencia que lo anterior puede tener en la medición del valor de los parámetros de resistencia al corte. Esto se ilustra en la Figura 3.11 para el caso de arcillas normalmente consolidadas. En el ensayo 1, una muestra de suelo se consolida completamente bajo la presión de cámara σ_3 .

La válvula de drenaje se cierra y la muestra se falla en condiciones no drenadas incrementando σ_1 . La línea OX define entonces el valor ϕ_{cu} . En el ensayo 2, una muestra de suelo idéntica se consolida a la misma presión de cámara σ_3 . La válvula de drenaje se cierra y se falla la muestra disminuyendo σ_3 , y al mismo tiempo se mantiene σ_1 constante e igual a la presión inicial de la cámara de consolidación. Dado que la presión a la cual se consolidaron las muestras es la misma, entonces el desviador de esfuerzos en la falla será el mismo que en el ensayo 1. La línea OY define entonces el valor de ϕ_{cu} . Se observa así que el valor de ϕ_{cu} no es único y por tanto tiene una aplicación práctica limitada si se considera la condición de esfuerzos efectivos, en el ensayo 1 la presión intersticial en la falla es positiva y por tanto el círculo de esfuerzos efectivos se sitúa a la izquierda del círculo de esfuerzos totales. En el ensayo 2, el proceso de falla por descarga de la muestra induce una presión intersticial negativa y, en consecuencia, el círculo de esfuerzos efectivos se sitúa a la derecha del círculo de esfuerzos totales. Los dos círculos de esfuerzos efectivos coinciden (círculo 3).

Por tanto, el valor de ϕ' es único y, en consecuencia, tiene una aplicación práctica mucho más amplia. De esta forma, si al final de la construcción se ha producido algún drenaje de la masa de suelo, el análisis de estabilidad debería hacerse en términos del esfuerzo efectivo. Esto es lógico puesto que el esfuerzo efectivo en el suelo es lo que controla la resistencia al corte.

Tabla Nº 3.1
Sistema Unificado de Clasificacion de Suelos (SUCS)

(excluyendo	las parti	iculas mayores	s de 7.6	cm (3') y basand	o las fracciones	en pesos estimados)	Simbolo del grupo	Nombres tipicos	Informacion necesaria para la descripcion de los suelos		Criterios de clasificacion en el laboratorio		
		a fraccion r el	avas Limpias pocos finos o sin ellos)	Amplia gama de todos los tamano		dades apreciables de	GW	Gravas bien graduadas, mezclas de grava y arenas con pocos finos o sin ellos.	Dese el nombre tipico, indiquese los porcentajes aproximados de grava y arena, tamanomaximo, angulosidad, estado superficial y) los	$C_U = D_{60}/D_{10}$ Mayor de 4 $C_C = (D_{30})^2/(D_{10} \times D_{60})$ Entre 1 y 3		
 	vista)	mitad de la etenida por iz N 4	Gravas (con poc sin e		n tamano o un tip unos tamanos inte	o de tamanos, con ermedios	GP	Gravas mal graduadas, mezclas de arena y grava con pocos finos o sin ellos.	dureza de los granos gruesos; el nombre local o geologico y cualquier otra informacion o descripcion perfinente y el simbolo entre parentesis.	en el campo ir de la curva el Tamiz N 200) los quieren el empleo d	No satisfacen todos los requisitos g	ranulometricos de las GW	
de la mitad por el	a simple	de la a es ri Tam	(cantidad reciable de	Fraccion fina no grupo ML mas a		identificacion ver el	GM	Gravas limosas, mezclas mal graduadas de grava, arena y limo	Para los suelos inalterados agreguese informacion	por por	Limites de Atterberg por debajo de la linea "A" o l _P menor de 4	Por encima de la linea "A", con I _P entre 4 y 7: casos limites que requieren	
no grueso-Mas c srial es retenido p Tamiz N 200	apreciable	Gravas-Mas gruesi	(can aprecia	Finos plasticos (abajo)	para identificacio	n ver el grupo CL mas	GC	Gravas arcillosas, mezclas mal graduadas de grava, arena y arcilla.	sobre estratificacion,compacidad, cementacion, condiciones de humedad y características de drenaje.		Limites de Atterberg por encima de la linea "A" con I _P mayor de 7	el uso de simbolos dobles.	
at ag	particula	la fraccion el	enas Limpias 1 pocos finos o sin ellos)	Amplia gama de todos los tamano		dades apreciables de	sw	Arenas bien graduadas, arenas con gravas con pocos finos o sin ellos,		de grava de grava (fraccion gue: GW, GP, GM, GC Casos	$C_U = D_{60}/D_{10}$ Mayor de 6 $C_C = (D_{30})^2/(D_{10} \times D_{60})$ Entre 1 y 3		
Suelos de ç del m	la menor		Arenas (con poc sin e		n tamano o un tip unos tamanos inte	oo de tamanos, con ermedios	SP	Arenas mal graduadas, arenas con gravas con pocos finos o sin ellos.	Ejemplo: Arena limosa, con grava, aproximadamente un 20% de particulas de grava angulosa de 1.5 cm	n la contajes omo e	No satisfacen todos los requisitos granulometricos de las SW		
	lamano de	las de la gruesa p Tan	Tam nas con linos (cantidad reciable de finos)	Finos no plastico grupo ML mas a	os (para la identifi abajo)	icacion ver el	SM	Arenas limosas, mezclas de arena y limo mal graduadas	de tamano maximo; arena gruesa a fina, con particulas redondeadas o subangulosas, alrededor de 15% de finos no plasticos, con baja resistencia en estado		Limites de Atterberg por debajo de la linea "A" o I _P menor de 4	Por encima de la linea "A", con I _P entre 4 y 7: casos limites que requieren	
	- To	Arena-N	a de	abajo)		n ver el grupo CL mas	sc	Arenas arcillosas, mezclas mal graduadas de arenas y arcilla.	seco compacta y humeda in situ; arena aluvial; (SM)	Determines granulome! Segun el pi suelos gruesos se gruesos se gruesos del Mas del 12% simbolos di simbolos di	Limites de Atterberg por encima de la linea "A" con l _p mayor de 7	el uso de simbolos dobles.	
	aproximadamente			Resistencia en estado seco (a la disgregacion)	n que pasa por el Dilatancia (reaccion a la agitacion)	Tenacidad (consistencia cerca del limite plastico)				fraccion	CARTA DE PLASTICIDAD		
de la mitad or el	corresponde	s y arcillas con liquido menor	2	Nula a ligera	Rapida a lenta	Nula	ML	Limos inorganicos y arenas muy finas, polvo de roca, arenas finas limosas o arcillosas con ligera plasticidad.	Dese el nombre tipico; indiquese el grado y caracter de la plasticidad; la cantidad y el tamano maximo	90 % 1 00 % 1 00 00 00 00 00 00 00 00 00 00 00 00 0			
no - Mas de la I pasa por el N 200	Tamiz N 200 co	Limos y a	3	Media a alta	Nula a muy lenta	Media	CL	Arcilla inorganicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas, arcillas negras.	de las particulas gruesas; color del suelo humedo, olor si lo tuviere; nombre local y geologico; cualquier otra informacion descriptiva pertinente y el simbolo	granulometrica para identificar las PLASTICIDAD (IP) - % 0 0 0 0 0		m 20)	
grano fino - material pas Tamiz N 2) 콤			Ligera a media	Lenta	Ligera	OL	Limos organicos y arcillas limosas organicas de baja plasticidad.	entre parentesis.	PLASTICIDAD PLASTICIDAD	CH 0,12	ОН	
Suelos de gr	abertura	las con mayor		Ligera a media	Lenta a nula	Ligera a media	MH	Limos inorganicos, suelos limosos o arenosos finos micaceos y con diatomeas, limos elasticos.	Para los suelos inalterados agreguese informacion sobre la estructura , estratificacion, consistencia.	Utilice la curva	CL OL	o MH	
Sur	(La	y arcil	00 90	Alta a muy alta	Nula	Alta	СН	Arcillas inorganicas de plasticidad elevada, arcillas grasas.	tanto en estado inalterado como remoldeado , condiciones de humedad y drenaje.	9 N N N N N N N N N N N N N N N N N N N	L ML	80 90 100	
		Limos Iimite I		Media a alta	Nula a muy lenta	Ligera a media	OH*	Arcillas organicas de plasticidad media a alta.	Ejemplo: Limo arcilloso, marron; ligeramente plastico; porcentaje		plasticidad para la c ratorio de suelos de gr		
Su	elos altan	mente organicos	·			color, ofor, sensacion or su textura fibrosa.	Pt	Turba y otros suelos altamente organicos	reducido de arena fina; numerosos agujeros verticales de raices; firme y seco in situ; loes; (ML)	en labol	uiono de suelos de gi		

Clasificación AASHTO de suelos en grupos principales

Tabla Nº 3.2

Clasificación General	Materiale (35% o meno	Materiales Arcillosos-Limosos (mas del 35% pasa los 75 um)					
Grupo de Clasificación	A-1	A-3*	A-2	A-4	A-5	A-6	A-7
Análisis granulométrico, % pasante:							
Tamiz № 10	-	L		•	-	•	-
Tamiz Nº 40	50 max	51 min	-	ı	-	-	-
Tamiz Nº 200	25 max	10 max	35 max	36 min	36 min	36 min	36 min
Fracción pasante el Tamiz Nº 40:							
Límite Líquido	-	-	-	40 max	41 min	40 max	41 min
Indice Plástico	6 max	N.P.		10 max	10 max	11 min	11 min

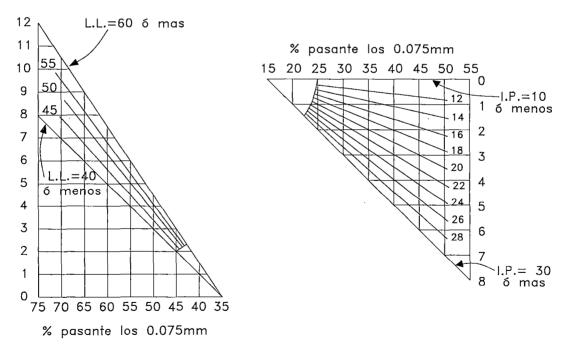
La localización de A-3 a A-2 es necesariamente un proceso de eliminación de izquierda a derecha' y no indica superioridad de A-3 sobre A-2.

Clasificación detallada AASHTO de suelos en grupos y subgrupos

Clasificación General		Materiales Granulares (35% o menos pasa los 75 um)							Materiales Arcillosos-Limosos (mas del 35% pasa los 75 um)			
	A-1		A-2						A-7			
Grupo de Clasificación	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5 A-7-6	
Análisis granulométrico, % pasante:												
Tamiz № 10	50 max	1		-	-	-	-	.		-	-	
Tamiz Nº 40	30 max	50 max	51 min		-	-		_	-	-	1	
Tamiz № 200	10 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min	
Fracción pasante el Tamiz № 40:												
Límite Líquido	-			40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min	
Indice Plástico	6 max		N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min*	
Tipos usuales de constituyentes significativos:	Fragmentos de piedra, grava, arena	Arena fina	Grava limosa o Arcillosa y arena				Suelos limosos Suelos		Suelos a	arcillosos		
Calificación general como subrasante:			Excelente	a buenc)			Medio a malo				

^{*} IP del subgrupo A-7-5 < (LL-30); IP del subgrupo A-7-6 > (LL-30)

Tabla N° 3.3


Angulos de Fricción para su Utilización en Anteproyectos

	Angulos de Fricción								
	Angulo	de talud	Para la resistencia máxima						
Clasificación	_	ural	Compaci	dad media	Compacta				
	(°)	Talud (ver. a hor.)	φ(°)	tg φ	φ(°)	tg ф			
	26	1:2	28	0.532	30	0.577			
Limo	а		а		а				
	30	1:1.75	32	0.625	34	0.675			
	26	1:2	30	0.577	32	0.675			
Arena uniforme fina a media	а		а		а				
	30	1:1.75	34	0.675	36	0.726			
	30	1:1.75	34	0.675	38	0.839			
Arena bien graduada	а		а		а				
	34	1 : 1.50	40	0.839	46	1.030			
	32	1:1.60	36	0.726	40	0.900			
Arena y grava	a		а		а				
	36	1:1.40	42	0.900	48	1.110			

Según B.K. Hough, Basic Soils Engineering, Copyright 1957, The Ronald Press Company, Nueva York

INDICE DE PLASTICIDAD, IP LIMITE LIQUIDO, WL A-5A-6

Fig. 3.1: Rangos de Límite Líquido e Índice de Plasticidad para los grupos de suelos A-4, A-5, A-6 y A-7.

Indice de Grupo = Suma de las escalas verticales de ambas gráficas

Fig. 3.2 : Cartas AASHTO para hallar el Índice de Grupo de Clasificación de Suelos AASHTO

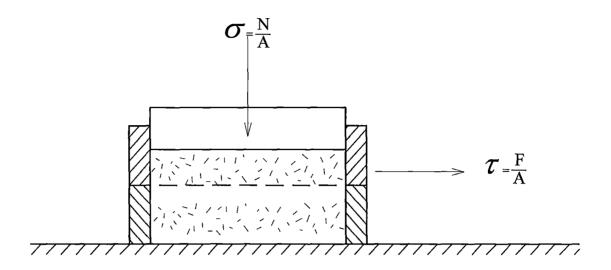


Fig. 3.3: Aparato de Corte Directo

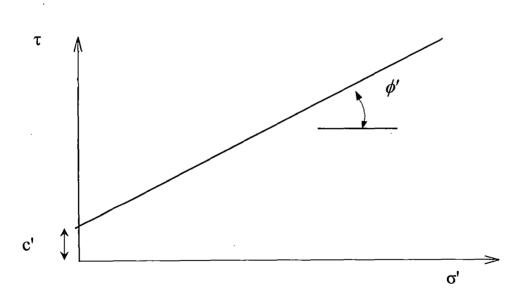


Fig. 3.4 : Diagrama de Falla en Función de Esfuerzos Efectivos

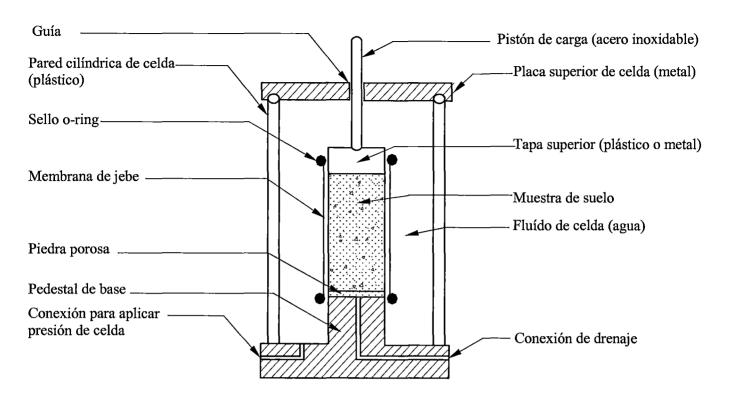


Fig. 3.5: Diagrama de Falla en Función de Esfuerzos Efectivos

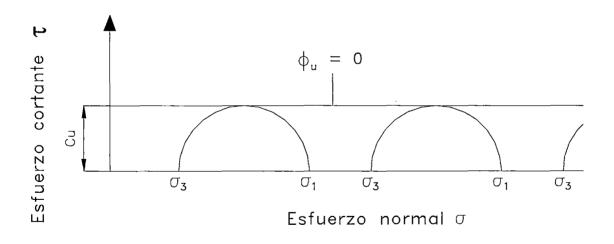


Fig. 3.6: Envolvente de Falla en Ensayos No Drenados sobre Arcillas Saturadas

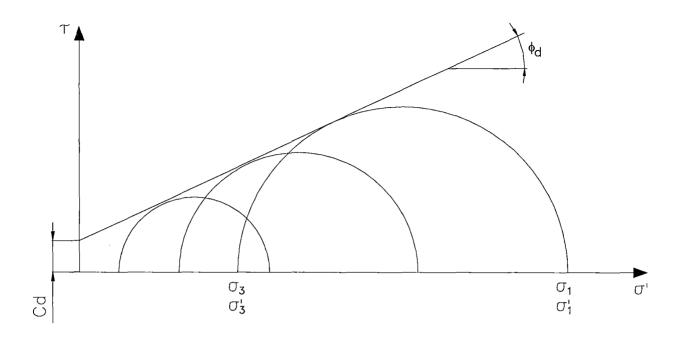


Fig. 3.7: Envolvente de Falla en Ensayos Drenados con Arcilla

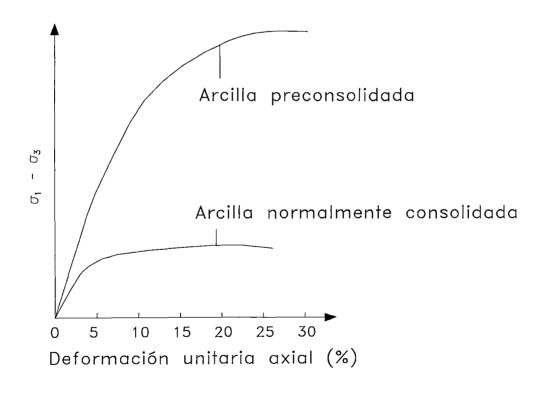


Fig. 3.8: Relación Esfuerzo – Deformación Unitaria en Ensayos Consolidados-No Drenados con Arcillas

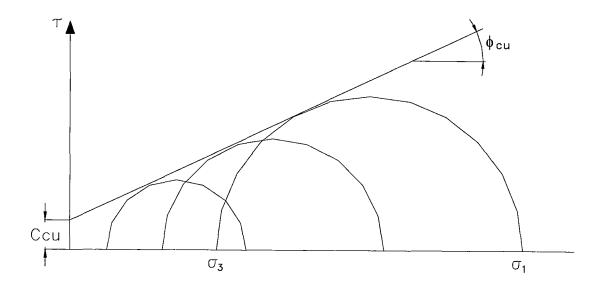


Fig. 3.9: Envolvente de Falla en Ensayos Consolidados-No drenados con Arcilla en Función de Esfuerzo Total

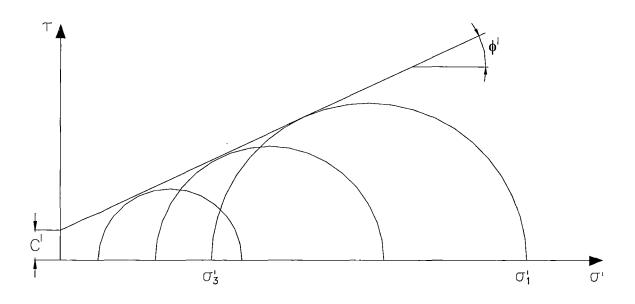


Fig. 3.10: Envolvente de Falla en Ensayos Consolidados-No drenados con Arcilla en Función de Esfuerzo Efectivo

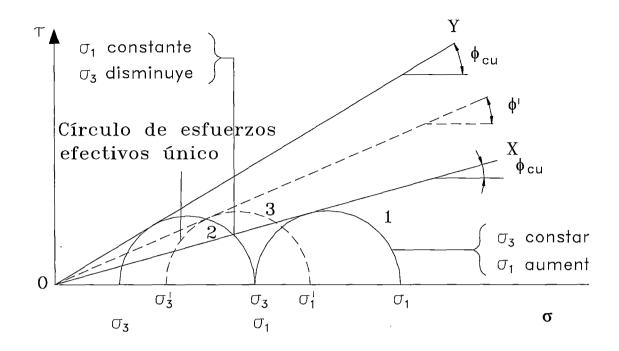


Fig. 3.11 : Influencia del Procedimiento del Ensayo sobre ϕ_{cu} y ϕ'

CAPITULO IV

4.0 ANÁLISIS DE ESTABILIDAD DE TALUDES EN SUELOS

4.1. GENERALIDADES

En este capítulo se presenta en primer lugar el análisis estático de taludes mediante el método de equilibrio límite, así como los métodos de Bishop Modificado y Janbu Simplificado y otros métodos y sus respectivas consideraciones.

En segundo lugar se describe el análisis Pseudoestático de taludes y la elección correspondiente de un coeficiente sísmico para este análisis, seguidamente describe el análisis de respuesta sísmica mediante el modelo lineal equivalente y el cálculo de los parámetros dinámicos necesarios en este análisis, así también se describe el back análisis. Finalmente se describe el cálculo para el análisis de deformaciones permanentes inducidas por sismos en taludes mediante el Método de Newmark.

4.2. ANÁLISIS ESTÁTICO (EQUILIBRIO LIMITE) (PROGRAMA SLOPE/W)

El análisis estático se ejecuta mediante el método del equilibrio límite, donde la estabilidad se define por un factor de seguridad, el cual toma en consideración las características topográficas, de resistencia cortante del suelo, hidrogeología, grietas de tensión, etc. El factor de seguridad es definido como el factor por el cual el esfuerzo de corte del suelo debe ser reducido para brindar a la masa a un

estado de equilibrio límite a lo largo de una superficie de falla. Así, para un análisis de esfuerzo efectivo, el esfuerzo de corte es definido como:

$$S_m = c' + (\sigma_n - u) t g \phi' \dots (4.1)$$

donde:

S = esfuerzo de corte.

c' = cohesión efectiva

 $\phi' =$ ángulo efectivo de fricción interna

 $\sigma_n = esfuerzototal normal$

u = presión de poros

En la Fig. 4.1 se muestran todas las fuerzas que actúan en una superficie de falla circular y las respectiva nomenclatura de las variables implicadas en el método del equilibrio límite usada por el programa SLOPE/W.

El método de Equilibrio Límite usa las siguientes ecuaciones de la estática en la solución del factor de seguridad:

- 1. La sumatoria de fuerzas en la dirección vertical para cada dovela. La ecuación es resuelta para la fuerza normal en la base de la dovela, N.
- 2. La sumatoria de fuerzas en la dirección horizontal para cada dovela es usada para el calculo de la fuerza normal ínter dovelas, E.
- 3. La sumatoria de momentos en un punto común para todas las dovelas. La ecuación puede ser reorganizada y resuelta para hallar el factor de seguridad de equilibrio de momentos, F_m .
- La sumatoria de fuerzas en la dirección horizontal para todas las dovelas, dando un factor de seguridad de equilibrio de fuerzas, F_f. (Criterio de falla de Mohr-Coulomb).

Teniendo estas ecuaciones, el análisis aún es indeterminado, y mas consideraciones son hechas respecto a la dirección de la fuerza resultante interdovelas. La dirección es asumida a ser descrita por una función de fuerza interdovelas. Los factores de seguridad pueden ahora ser calculados basados en

el equilibrio de momentos (F_m) y el equilibrio de fuerzas (F_f) . Estos factores de seguridad pueden variar mucho dependiendo del porcentaje (λ) de la función de fuerza usada en el cálculo.

Para cada dovela la sumatoria de momentos respecto a un punto puede ser escrita como sigue:

$$\sum Wx - \sum S_m R - \sum Nf + \sum kWe \pm [Dd] \pm Aa = 0 \dots (4.2)$$

Además se tiene que la magnitud del esfuerzo cortante movilizado para satisfacer las condiciones de equilibrio límite es:

$$S_m = \frac{s\beta}{F} = \frac{\beta \left(c' + (\sigma_n - u)tg\phi'\right)}{F} \dots (4.3)$$

donde:

$$\sigma_n = \frac{N}{\beta} = esfuerzo \, normal \, promedio \, en la \, base \, de \, cada \, dovela.$$

$$F = factor \, de \, seguridad.$$

$$\beta = longitud \, de \, base \, de \, cada \, dovela.$$

Para obtener el factor de seguridad de equilibrio de momentos se substituye la ecuación (4.3) en (4.2) y se tiene:

$$F_{m} = \frac{\sum (c' \beta R + (N - u\beta) R tg \phi')}{\sum Wx - \sum Nf + \sum kWe \pm [Dd] \pm Aa} \dots (4.4)$$

De la misma manera para hallar el factor de seguridad de equilibrio de fuerzas, la ecuación de sumatoria de fuerzas horizontales es:

$$\sum (E_L - E_R) - \sum (N \sin \alpha) + \sum (S_m \cos \alpha) - \sum (kW) \dots (4.5)$$

El término $\sum (E_L - E_R)$ debe ser cero cuando se tome en cuenta toda la masa deslizante. Luego sustituyendo (4.3) en (4.5) se obtiene:

$$F_{f} = \frac{\sum (c' \beta \cos \alpha + (N - u\beta) tg \phi' \cos \alpha)}{\sum N \sin \alpha + \sum kW - [D \cos \omega] \pm A} \dots (4.6)$$

Ambas ecuaciones (4.4) y (4.6) son no lineales ya que la fuerza normal N actuante en la base de cada dovela es también función del factor de seguridad.

Para la fuerza normal en la base de cada dovela se hace una sumatoria de las fuerzas verticales en cada una de ellas teniéndose lo siguiente:

$$-W + (X_L - X_R) + N\cos\alpha + S_m\sin\alpha - [D\sin\omega] = 0.....(4.7)$$

Despejando la fuerza normal y substituyendo la ecuación (4.3) en (4.7) tenemos:

$$N = \frac{W + (X_R - X_L) - \frac{c' \beta \sin \alpha + u\beta \sin \alpha tg \phi'}{F} + [D \sin \omega]}{\cos \alpha + \frac{\sin \alpha tg \phi'}{F}} \dots (4.8)$$

El denominador de la ecuación (4.8) es comúnmente conocido con el nombre de m_{α} . El factor de seguridad F es igual al factor de seguridad de equilibrio de momentos, F_m , cuando se resuelve el equilibrio de momentos es igual al factor de seguridad de fuerzas F_f si se resuelve el equilibrio de fuerzas.

Además la ecuación (4.8) no puede ser resuelta aún pues el factor de seguridad y las fuerzas de corte interdovelas son desconocidas, dando lugar a tener que asumir determinadas condiciones.

En la Tabla 4.1 se presentan los factores de seguridad mínimos propuestos por la US Corps of Engineers para presas de tierra, que pueden servir como referencia para el análisis de estabilidad de taludes naturales.

4.2.1. METODO BISHOP SIMPLIFICADO (1955)

Este método asume que las fuerzas de corte interdovelas son iguales a cero, la fuerza normal en la base queda como:

$$N = \frac{W - \frac{c' \beta \sin \alpha + u\beta \sin \alpha tg \phi'}{F} + [D \sin \omega]}{\cos \alpha + \frac{\sin \alpha tg \phi'}{F}} \dots (4.9)$$

Cuando se usa el equilibrio de momentos con esta ecuación se obtiene el factor de seguridad de equilibrio de momentos, este método es conocido como Método Simplificado de Bishop.

Pero para esto, es necesario tener un valor inicial de F dado por el Método Ordinario de Fellenius donde las fuerzas son sumadas en dirección perpendicular a la base de cada dovela, la siguiente ecuación es obtenida de la fuerza normal:

$$N = W \cos \alpha - kW \sin \alpha + \left[D \cos \left(\omega + \alpha - 90 \right) \right] \dots (4.10)$$

haciendo uso de esta ecuación y la ecuación (4.4) se obtiene el valor inicial del factor de seguridad.

Aunque este método no satisface el equilibrio de fuerza horizontales, la experiencia ha mostrado que se trata de un método bastante preciso para el análisis de superficies de falla circular, aún en los casos de taludes poco inclinados y con altos valores de presión de poros.

El método de Bishop Modificado es muy utilizado en la práctica de la ingeniería porque proporciona valores del factor de seguridad por el método de equilibrio límite muy cercanos a aquellos que proporcionan los métodos mas rigurosos que satisfacen completamente las condiciones de equilibrio de fuerzas y momentos.

4.2.2. MÉTODO JANBU SIMPLIFICADO (1968)

En este método, la ecuación (4.9) es usada para resolver el factor de seguridad del equilibrio de fuerzas obteniéndose así el Método Janbu Simplificado sin la corrección empírica f_o aplicada por Janbu, Bjerrum y Kjaernsli, 1956.

4.2.3. OTROS METODOS

En la Tabla 4.2 se muestra un resumen de los métodos usados para la estabilidad de taludes propuestos por la literatura, donde se indica el tipo de falla, las ecuaciones de equilibrio y las hipótesis simplificadoras de éstos.

4.3. ANÁLISIS PSEUDOESTÁTICO

Este método utiliza cualesquiera de los métodos de equilibrio límite (Método de Bishop), con la diferencia que se incluyen fuerzas Pseudoestáticas horizontales y verticales, debidas al evento sísmico. Estas fuerzas sísmicas se asumen que son proporcionales al peso de la masa de deslizamiento potencial y de los coeficientes k_H y k_V expresados en términos de veces la aceleración g, producida por el sismo.

La carga sísmica seudo estática solamente se usa en la superficie mas crítica identificada en el análisis estático, la mayoría de los análisis solamente tienen en cuenta la fuerza sísmica horizontal y la vertical se asume igual a cero.

Uno de los mayores problemas en este método es la elección del coeficiente sísmico K. En el Perú no existen todavía normas establecidas para la elección de este coeficiente, teniendo como referencia mas cercana los coeficientes sísmicos para el diseño de presas mostrados en la Fig. 4.2 donde se presenta la Zonificación del Coeficiente Sísmico para Presas de Tierra y Enrocado en el Perú (Ruesta et al., 1988), en el cual se sugiere que los coeficientes sísmicos varían entre 0.05-0.25 para presas de tierra y entre 0.05-0.20 para presas de enrocado.

Un procedimiento es el utilizar los coeficientes de las Tabla 4.3 donde se muestra en valor de k_H para obtener una factor de seguridad mayor que 1 y la institución que toma tal consideración.

La cuantificación de un valor de aceleración máxima para estabilidad de taludes debe tener en cuenta los siguientes criterios empíricos:

- a. Si la masa considerada para deslizamiento es rígida, la aceleración inducida sobre la masa debe ser igual a la aceleración máxima esperada con sus respectivas amplificaciones por sitio y topografía.
- b. Si la masa de suelo es rígida, como en la mayoría de casos y teniendo en cuenta que la aceleración máxima solo se presenta en períodos muy pequeños no suficientes para producir una falla, se pueden utilizar valores entre 0.1 y 0.2g, dependiendo dela intensidad del sismo esperado. Marcuson (1981) recomienda valores de 1/3 y ½ de la aceleración máxima esperada con las respectivas amplificaciones.

El método Pseudoestático presenta algunas inconsistencias para modelar el efecto real de un sismo sobre un talud ya que las estructuras de tierra se comportan como cuerpos deformables y su respuesta a la excitación sísmica depende de los materiales de la estructura, de la geometría, de la naturaleza del movimiento, etc., como se evidenció en ensayos a escala natural y en las observaciones de la respuesta durante los sismos pasados.

Además que el factor de seguridad se torne menor que la unidad, el talud no sufrirá una súbita inestabilidad, pudiendo simplemente sufrir algunas deformaciones de tipo permanente.

4.4. ANÁLISIS DE RESPUESTA SÍSMICA

La determinación de los esfuerzos cortantes máximos inducidos por un movimiento sísmico, que actúan en planos horizontales dentro del talud, es un factor importante en la evaluación de la respuesta dinámica del talud y eventualmente de la amplificación de las ondas sísmicas en el talud. Por lo tanto, es necesario evaluar apropiadamente la respuesta del talud ante solicitaciones sísmicas a las que podría ser sometido.

La evaluación de la respuesta sísmica y de las características de amplificación de la fuerza sísmica en el talud puede ser realizada utilizando procedimientos analíticos o técnicas numéricas mediante elementos finitos. El Programa SHAKE (Schnabel et al., 1972) evalúa la respuesta mediante el análisis unidimensional de propagación de ondas. Este tipo de análisis solo puede ser utilizado como una aproximación preliminar ya que debido a la naturaleza del talud y su geometría, el problema es fundamentalmente bidimensional o en algunos casos (valles muy estrechos) tridimensional.

El programa está basado en la solución continua de la ecuación de onda adaptada para el uso de movimientos transitorios a través de la Transformada Rápida de Fourier (FFT) desarrollada por Cooley y Tukey (1965). La no linealidad del módulo de corte y amortiguamiento se emplea con el uso de las propiedades lineales equivalentes del suelo (Seed e Idriss, 1970; Seed et al., 1984; Sun et al., 1988) usando un procedimiento iterativo hasta obtener valores del módulo de corte y amortiguamiento compatibles con la deformación efectiva en cada capa.

Luego otros autores han ideado otros programas como el SHAKE91 (Idriss y Sun, 1992) y el SHAKE21 (Kagawa, 1995) basándose en el programa SHAKE de Schnabel et al.(1972).

4.4.1. MODELO LINEAL EQUIVALENTE

Las deformaciones cortantes relativamente grandes que ocurren en los materiales de un talud durante terremotos introducen efectos no lineales significativos que deben ser considerados por los métodos de análisis. Este problema fue estudiado por Seed e Idriss (1969), que introdujeron una noción del método lineal equivalente en geotécnia.

Este método propone que la solución no lineal aproximada puede ser obtenida mediante un análisis lineal en el cual las propiedades de rigidez y de amortiguamiento del suelo son compatibles con las amplitudes de las deformaciones cortantes efectivas en todos los puntos considerados del sistema.

En este modelo los valores iniciales del módulo de corte y del amortiguamiento son estimados para cada capa de suelo. Se inicia el análisis utilizando estas propiedades, donde la deformación cortante máxima en el tiempo-historia es calculada en cada elemento. A partir de estos resultados se estima la amplitud de la deformación cortante efectiva en cada capa a través de las curvas de módulo de corte y amortiguamiento con la deformación del material correspondiente, para después observar si el nivel de deformación es compatible con los valores de las propiedades dinámicas utilizadas en el cálculo de la respuesta.

Estas propiedades serán compatibles si los valores del módulo de corte y amortiguamiento en la próxima iteración convergen. La respuesta de la última iteración es considerada como la respuesta no lineal del sistema. Algunos investigadores sugieren que este procedimiento iterativo puede simular el comportamiento real de forma bastante razonable. El proceso de iteración se muestra en la Fig. 4.3.

4.4.2. DETERMINACION DE PARÁMETROS DINAMICOS

La utilización de las curvas de reducción de módulo cortante y factor de amortiguamiento involucran el conocimiento previo del módulo de corte, que alcanza su valor máximo para pequeñas deformaciones (10⁻⁴ % de deformación), donde el suelo presenta un comportamiento elástico lineal; dichas curvas han sido utilizadas para calcular los parámetros dinámicos.

4.4.3. MÓDULO DE CORTE EN SUELOS ARENOSOS

Seed e Idriss (1970) proponen la siguiente ecuación para el calculo del módulo de corte en suelos arenosos.

$$G = 1000(k_2)\sqrt{\sigma_m}$$

$$\sigma_{m.} = \frac{1 + 2K_o}{3} \sigma_v$$

donde:

G: módulo de corte (psf)

σm: esfuerzo principal medio (psf)

σv : esfuerzo vertical (psf)

K_o: coeficiente de empuje en reposo

K2: parámetro del módulo de corte

En esta ecuación la influencia de la relación de vacíos y de la amplitud de la deformación es expresada a través del parámetro K2, este parámetro alcanza un valor máximo (K2)_{max} para deformaciones muy pequeñas correspondiente al estado lineal elástico del orden del 10-4 %. Existe una relación entre el valor de (K2)_{max} y el valor de N del ensayo de SPT mostrado a continuación:

$$(K_2)_{\text{max}} \approx 20 (N_1)_{60}^{1/3}$$

Los valores de $(K2)_{max}$ para arenas muy sueltas están generalmente en el rango de 30 y para arenas muy densas cerca de 75. En el caso de gravas, este valor se encuentra en el rango de 80 a 180 (Seed, 1970).

4.4.4. MÓDULO DE CORTE EN SUELOS COHESIVOS

Hardin y Black (1968) y Hardin (1978) propusieron una fórmula empírica para el cálculo del módulo de corte inicial:

$$G_o = 625 \frac{OCR^K}{0.3 + 0.7 * e^2} \sqrt{P_a * \overline{\sigma}_O}$$

donde:

G_o: módulo de corte inicial

OCR : relación de sobreconsolidación

e : relación de vacíos

 $\overline{\sigma_O} = \frac{\overline{\sigma_1} + \overline{\sigma_2} + \overline{\sigma_{31}}}{3}$: esfuerzo efectivo

P_a: presión atmosférica

K: parámetro que depende de la plasticidad (Fig. Nº

4.5)

4.4.5. MÓDULO DE CORTE EN SUELOS GRAVOSOS

Tokimatsu et. al. propuso una formula empírica para el cálculo del módulo de corte inicial en suelos gravosos:

$$G_o = 1000 * K_2 * (\overline{\sigma_O})^{1/2}$$

donde:

G_o: módulo de corte inicial (psf)

$$\overline{\sigma_o} = \frac{\overline{\sigma_1} + \overline{\sigma_2} + \overline{\sigma_{31}}}{3}$$
 : esfuerzo efectivo (psf)

K2 : coeficiente del modulo de corte

$$K_2 \cong 20 * (N_1)_{60}^{1/3}$$

N1 : N del SPT (60% de eficiencia)

4.5. ANÁLISIS RETROGRESIVO (BACK ANALYSIS)

Las propiedades de esfuerzo de muchos tipos de suelos son difíciles de determinar por ensayos de laboratorio. En casos donde el talud ya se ha deslizado y la medidas de reparación son comenzadas a evaluar, es mas efectivo determinar los parámetros de resistencia por Back Análisis. Este consta de tres etapas:

- La mejor estimación posible debe ser hecha de la información de los parámetros de resistencia y densidades de los suelos vistos en el sitio. Los ensayos de laboratorio y correlaciones con los parámetros de resistencia dan una base efectiva de estos valores. La geometría del talud y las condiciones de nivel freático al momento de la falla deben ser establecidos.
- 2. El talud se analizará con la geometría antes de la falla usando los parámetros de resistencia estimadas. Si el factor de seguridad es F = 1.00, las propiedades y condiciones representan razonablemente el modelo del talud. Si el cálculo del factor de seguridad no es igual a 1.00 los parámetros de resistencia y densidad son ajustados hasta obtener F = 1.00. El relación de ajuste no debe ser la misma para todos lo suelos envueltos en el deslizamiento.

- Lógicamente mayores ajustes serán hechos para los parámetros con mayor incertidumbre.
- 3. Cuando los parámetros del suelo hayan sido determinados y den F = 1.00 para las condiciones al momento de la falla, estos parámetros han de ser usados para las medidas de corrección.
- 4. Si la falla se debió a un evento sísmico, se considerará un coeficiente sísmico representativo del sismo ocurrido, se variarán los parámetros de resistencia hasta obtener F = 1.00, momento donde se tendrán los parámetros de resistencia a usar.

Para los deslizamientos que se han producido por un evento sísmico se realiza un back análisis ya que por un lado se conoce la geometría de los taludes pre y post sismo, con una superficie de falla definida, y por otro lado se conocen las características de cada estrato del suelos como son sus pesos específicos secos y húmedos.

4.6. ANÁLISIS DE DEFORMACIONES PERMANENTES INDUCIDAS POR SISMO

El método de análisis pseudo-estático, como todos los métodos de equilibrio límite, proporciona un índice de la estabilidad dado por el factor de seguridad, pero ninguna información sobre las deformaciones asociadas con la falla del talud. Sin embargo, la condición de servicio de un talud luego de un sismo está controlada por las deformaciones; de esta manera los métodos de análisis que predicen los desplazamientos del talud proveen una mejor evaluación de la estabilidad sísmica del talud.

Existen diferentes métodos para predecir los desplazamientos permanentes después de ocurrido el sismo y de acuerdo a su aplicabilidad y valoración merecen cierta atención en lo concerniente a la evaluación en presas de tierra y taludes.

En la Tabla 4.4 se define las categorías de daños con relación a la deformación permanente producidas por sismos y la descripción de las probables consecuencias obtenidas de Makdisi-Seed (1977). Esta clasificación se basa en el juicio ingenieríl y está aplicada a presas y terraplenes. En el caso de taludes naturales o de corte esta clasificación puede variar. Para el caso de los taludes naturales se puede establecer valores límites de hasta 10 cm o dependen de la experiencia del especialista.

Además, de acuerdo al máximo sismo creíble, la probabilidad de ocurrencia de daño producido se muestra en la Tabla 4.5. Por ejemplo, para un talud típico de 1.5H:1V, de acuerdo a esta tabla, existe un 17% de probabilidad de que el daño de categoría I pueda ocurrir de acuerdo al máximo sismo creíble. Sin embargo, para el talud de 3H:1V existe un 97% de probabilidad de que la deformación en la cresta pueda ser menor de 0.3 m. En otros términos, para un talud de 3H:1V existe una mínima y casi despreciable deformación en la cresta del talud de una presa o terraplén.

4.6.1. MÉTODO DE NEWMARK

Como la aceleración varía con el tiempo, el factor de seguridad pseudoestático también lo hará, si las fuerzas de inercia actuantes en la masa de
falla potencial (estáticas y dinámicas) son mayores que las fuerzas
resistentes, el factor de seguridad disminuirá su valor hasta ser menor que
la unidad. Newmark (1965) consideró el comportamiento de un talud
bajo tales condiciones. Cuando el factor de seguridad es menor que la
unidad, la masa de falla potencial no estará más en equilibrio,
consecuentemente, será acelerada por una fuerza. La situación es
análoga a un bloque apoyado en un plano inclinado (5.4). Newmark usó
esta analogía para desarrollar un método de predicción de las
deformaciones permanentes de un talud sujeto a cualquier movimiento
del terreno.

Cuando un bloque en un plano inclinado es sujeto a un pulso de aceleración que excede la aceleración de fluencia, el bloque se moverá de manera relativa al plano. Para ilustrar el procedimiento de cálculo de las deformaciones permanentes, consideramos el caso en el cuál un plano inclinado es sujeto a un pulso de aceleración rectangular simple de amplitud A y duración Δt . Si la aceleración de fluencia, a_y , es menor que A (Fig. 4.6a), la aceleración del bloque relativa al plano durante el período de tiempo t_0 a $t_0 + \Delta t$ es :

$$a_{rel}(t) = a_{b}(t) - a_{v} = A - a_{v}$$
 $t_{0} \le t \le t_{0} + \Delta t$ (4.11)

Donde a_b(t) es la aceleración del plano inclinado. El movimiento relativo del bloque durante este período puede ser obtenido integrando dos veces la aceleración relativa, de esta manera:

$$v_{rel}(t) = \int_{t_0}^{t} a_{rel}(t) dt = \left[A - a_y \right] (t - t_0)$$
 $t_0 \le t \le t_0 + \Delta t$ (4.12)

$$d_{rel}(t) = \int_{t_0}^{t} v_{rel}(t) dt = \frac{1}{2} [A - a_y] (t - t_0)^2 \qquad t_0 \le t \le t_0 + \Delta t \qquad (4.13)$$

Cuando $t = t_0 + \Delta t$, la velocidad relativa alcanza su máximo valor:

$$v_{rel}(t_0 + \Delta t) = |A - a_v| \Delta t \tag{4.14}$$

$$d_{rel}(t_0 + \Delta t) = \frac{1}{2} [A - a_y] \Delta t^2$$
 (4.15)

Después la aceleración de la base se hace cero (cuando $t = t_0 + \Delta t$), el bloque deslizante se desacelera por la fuerza de fricción actuante en su base. El bloque continuará deslizándose en el plano, pero sólo hasta que su velocidad alcance el valor de cero. La aceleración en este tiempo está dada por:

$$a_{rel}(t) = a_b(t) - a_y = 0 - a_y = -a_y$$
 $t_0 + \Delta t \le t \le t_1$ (4.16)

Donde t_1 es el tiempo en el cual la velocidad relativa se hace cero. Entre $t_0+\Delta t$ y t_1 , la velocidad relativa disminuirá con el tiempo de acuerdo a:

$$v_{rel}(t) = v_{rel}(t_0 + \Delta t) + \int_{t_0 + \Delta t}^t a_{rel}(t) dt = A \Delta t - a_y(t - t_0)$$

$$t_0 + \Delta t \le t \le t_1$$
(4.17)

Si la ecuación (4.17) la igualamos a cero cuando $t = t_1$, se obtiene:

$$t_1 = t_0 + \frac{A}{a_v} \Delta t {(4.18)}$$

Luego:

$$d_{rel}(t) = \int_{t_0 + \Delta t}^{t} v_{rel}(t) dt = A \Delta t (t - t_0 - \Delta t) - \frac{1}{2} \left[t^2 - (t_0 + \Delta t)^2 \right]$$

$$t_0 + \Delta t \le t \le t_1$$
(4.19)

Después del tiempo t_1 , el bloque y el plano inclinado se mueven juntos. Durante el período total de tiempo entre $t = t_0$ y $t = t_1$, el movimiento relativo del bloque es mostrado en la Fig.4.6.

Entre t_0 y t_0 + Δt , la velocidad relativa se incrementa linealmente y el desplazamiento relativo cuadráticamente. En t_0 + Δt , la velocidad relativa ha alcanzado su máximo valor, luego del cual decrece linealmente. El desplazamiento relativo continúa incrementándose hasta $t=t_1$. El desplazamiento total relativo será:

$$d_{rel}(t_i) = \frac{1}{2}(A - a_y) \Delta t^2 A/a_y$$
 (4.20)

El desplazamiento relativo depende de la duración del tiempo durante el cual la aceleración de fluencia es excedida. Esto sugiere que el desplazamiento relativo causado por un simple pulso de un fuerte movimiento estará relacionado a la amplitud y contenido de frecuencias de ese pulso. Un movimiento sísmico puede exceder la aceleración de fluencia varias veces y producir un número de incrementos del desplazamiento (Fig. 4.7).

Tabla 4.1

Factores de Seguridad Mínimos para el Análisis de Estabilidad en Presas de Tierra
(US Corps of Engineers)

Condición	Talud Aguas Arriba	Talud Aguas Abajo
Al Final de la Construcción	1.3	1.3
Para presas de más de 15 m	1.4	1.4
II. Infiltración Constante		1.5
III. Desembalse Rápido	1.5	
IV. Sismo: solo condiciones I y II	1	1

Tabla 4.2

Metodos de Análisis de Estabilidad de Taludes

METODO	SUPERFICIES DE FALLA	EQUILIBRIO	CARACTERÍSTICAS
Ordinario o de Fellenius (Fellenius 1927)	Circulares	De fuerzas	Este método no tiene en cuenta las fuerzas entre las dovelas y no satisface equilibrio de fuerzas, tanto para la masa deslizada como para dovelas deslizadas. Sin embargo este método es muy utilizado por su procedimiento simple. Muy impreciso para taludes planos con alta presión de poros. Factores de seguridad bajos
Bishop Simplificado (Bishop 1955)	Circulares	De momentos	Asume que todas las fuerzas cortantes entre dovelas son cero. Reduciendo el numero de incógnitas. La solución es sobredeterminada debido a que no se establecen condiciones de equilibrio para una dovela.
Janbu Simplificado (Janbu 1968)	Cualquier forma de superficie de falla	De fuerzas	Al igual que Bishop asume que no hay fuerza de cortante entre dovelas. La solución es sobredeterminada que no satisface completamente las condiciones de equilibrio de momentos. Sin embargo, Janbu utiliza un factor de corrección F _o para tener en cuenta este posible error. Los factores de seguridad son bajos.
Sueco Modificado U.S. Army Corps. of Engineers (1970)	Cualquier forma de superficie de falla	De fuerzas	Supone que las fuerzas tienen la misma dirección que la superficie del terreno. Los factores de seguridad son generalmente altos.
Lowe y Karafiath (1960)	Cualquier forma de superficie de falla	De fuerzas	Asume que las fuerzas entre partículas están inclinadas a un ángulo igual al promedio de la superficie del terreno y las bases de las dovelas. Esta simplificación deja una serie de incógnitas y no satisface el equilibrio de momentos. Se considera el mas preciso de los métodos de equilibrio de fuerzas.
Spencer (1967)	Cualquier forma de superficie de falla	Momentos y fuerzas	Asume que la inclinación de las fuerzas laterales son las mismas para cada dovela. Rigurosamente satisface el equilibrio estático asumiendo que la fuerza resultante entre dovelas tiene una inclinación constante pero desconocida.
Morgenstern y Price (1965)	Cualquier forma de superficie de falla	Momentos y fuerzas	Asume que las fuerzas laterales siguen un sistema predeterminado. El método es muy similar al método Spencer con diferencia que la inclinación de la resultante de las fuerzas entre dovela se asume que varía de acuerdo a una función arbitraria.
Sarma (1973)	Cualquier forma de superficie de falla	Momentos y fuerzas	Asume que las magnitudes de las fuerzas verticales siguen un sistema predeterminado. Utiliza el método de dovelas para calcular la magnitud de un coeficiente sísmico requerido para producir la falla. Esto permite desarrollar una relación entre el coeficiente sísmico y el factor de seguridad. El factor de seguridad estático corresponde al caso de cero coeficiente sísmico. Satisface todas las condiciones de equilibrio; sin embargo, la superficie de falla correspondiente es muy diferente a la determinada utilizando otros procedimientos mas convencionales.
Elementos Finitos	Cualquier forma de superficie de falla	Analiza esfuerzos y deformaciones	Satisface todas las condiciones de esfuerzo. Se obtienen esfuerzos y deformaciones en los nodos de los elementos pero no se obtiene un factor de seguridad.
Espiral Logarítmica	Espiral logarítmica	Momentos y fuerzas	Existen diferentes métodos con diversas condiciones de equilibrio.

Tabla 4.3

Coeficientes Sísmicos para Análisis Seudoestático

k _H	F.S.	Observaciones
0.10g	> 1.0	Sismo importante. Cuerpo de Ingenieros del Ejército US, 1982
0.15g	> 1.0	Sismo de gran magnitud. Cuerpo de Ingenieros del Ejército US, 1982
0.15g a 0.25g	> 1.0	Japón
0.15g	> 1.15	Seed, 1979. Con una reduccion de resistencia del 20%
1/2 de la aceleracion máxima	> 1.0	Hynes-Griffin y Franklin, 1984 y una reduccion de resistencia del 20%

Tabla 4.4

Categorías de Daño de Acuerdo a la Deformación Permanente Producida por Sismo*

Categorías de Daño	Deformación	Descripción
Ι	<0.3 m	Deformación de la cresta mínima o casi despreciable. No ocurren mayores fallas en el talud.
п	0.3 m a 1.0 m	Ligeras fallas superficiales probablemente ocurran (1 m a 2 m bajo la superficie del terreno) Mayores daños son considerados improbables.
III	1.0 m a 3.0 m	Profundas fallas probablemente ocurran (hasta los 5.0 m bajo la superficie del terreno) La carretera al pie del talud puede ser bloqueada y ocurrir desgracias.
IV	>3.0 m	Profundas fallas probablemente ocurran. (Hasta 10.0 m bajo la superficie del terreno). La carretera al pie del talud será bloqueada ocurriendo desgracias.

^(*) De: Maksidi F.I. y Seed H.B.(1977). A Simplified Procedure for Estimating Earthquake-induced Deformations in Dams and Embankments.

Tabla 4.5

Probabilidad de Ocurrencia de Daño de las Deformaciones Permanentes para Diferentes Taludes

Categorías de	Probabilidad de Ocurrencia (%)							
Daño	1.5H:1V	2H:1V	2.5H:1V	3H:1V				
I	17	37	75	97				
II	48	38	19	3				
III	29	20	5	<<1				
IV	6	5	1	<<1				

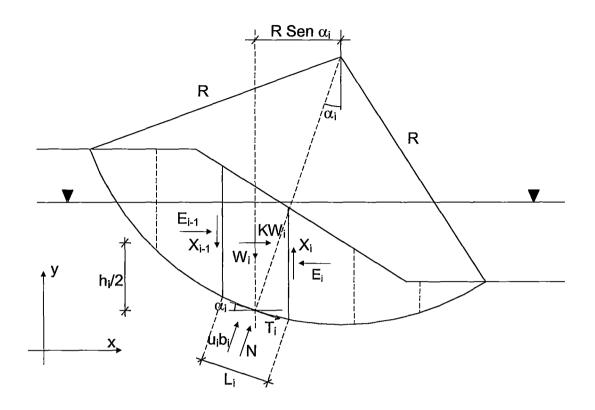


Fig. 4.1 : Método de Bishop considerando la Acción Sísmica.

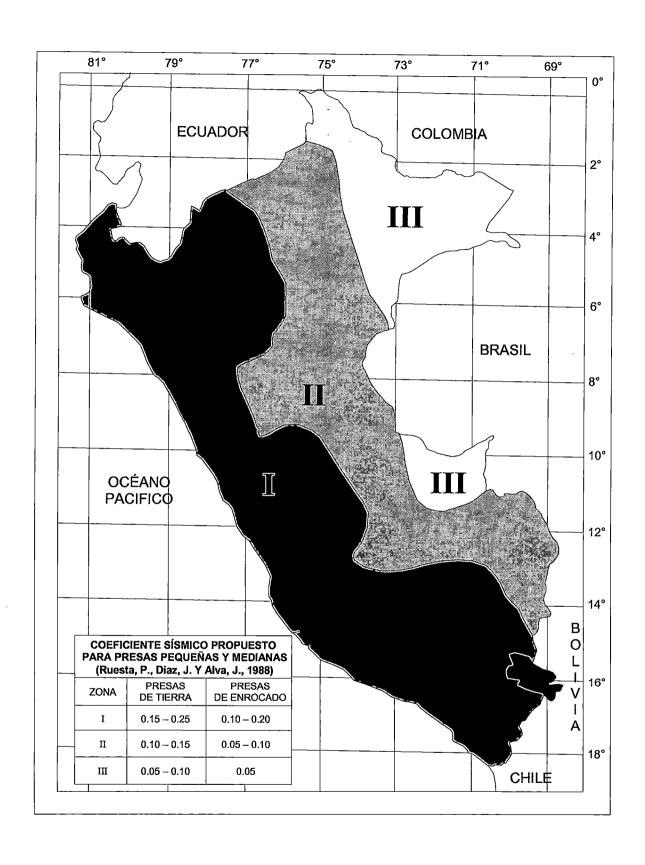
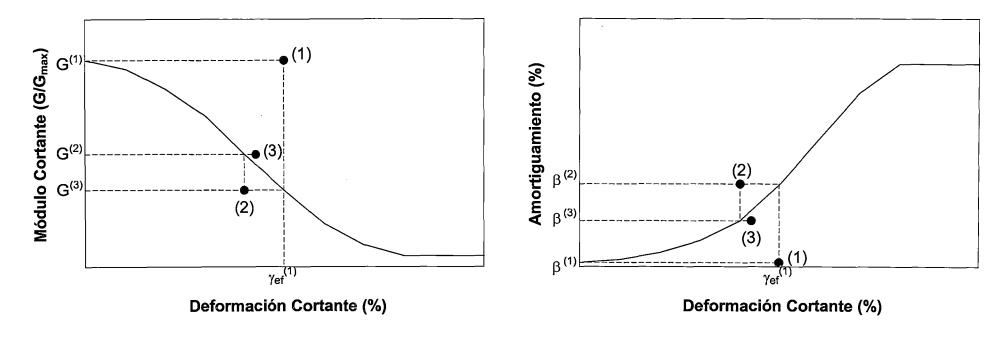



Fig. 4.2 : Mapa de Zonificación del Coeficiente Sísmico en el Perú (Ruesta et al., 1988)

Descripción: Usando las propiedades iniciales $G^{(1)}$ y $\beta^{(1)}$ se calcula la deformación cortante efectiva $\gamma_{ef}^{(1)}$. En la siguiente iteración se calcula los nuevos parámetros $G^{(2)}$ y $\beta^{(2)}$ que son compatibles con $\gamma_{ef}^{(1)}$. Se repite el calculo de la nueva deformación cortante y se calcula nuevamente los parámetros hasta que se produzca la convergencia.

Fig. 4.3: Propiedades del Suelo que dependen de la Deformación Cortante mostrando el Método Lineal Equivalente.

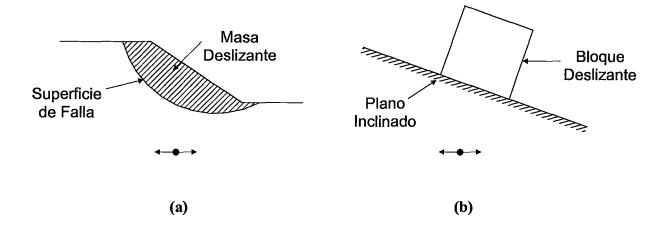


Fig. 4.4 : Analogía entre (a) Masa Potencial de Deslizamiento y (b) Bloque sobre un Plano Inclinado.

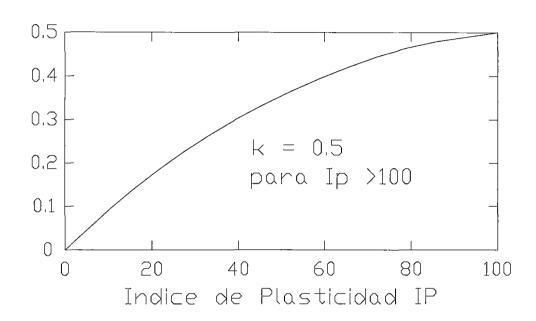


Fig. 4.5: Variación del parámetro K con el índice de plasticidad. (Hardin, 1978)

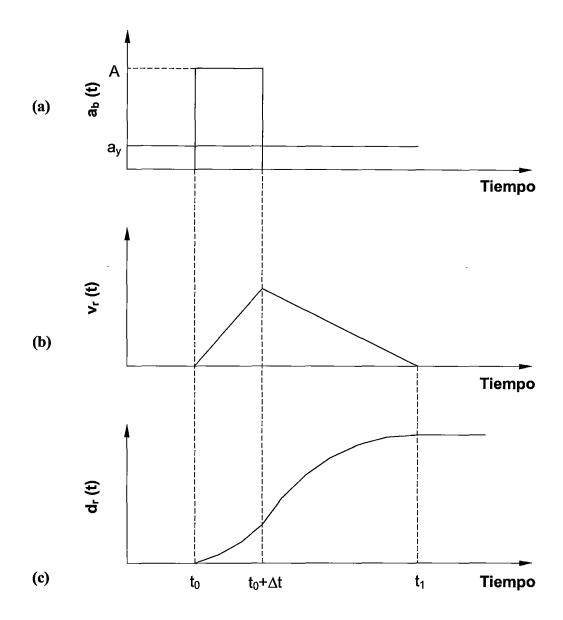


Fig. 4.6 : Variación de la Velocidad Relativa y del Desplazamiento Relativo entre el Bloque deslizante y el Plano debido a un Pulso Rectangular que excede la Aceleración de fluencia entre $t=t_0$ y $t=t_0+\Delta t$.

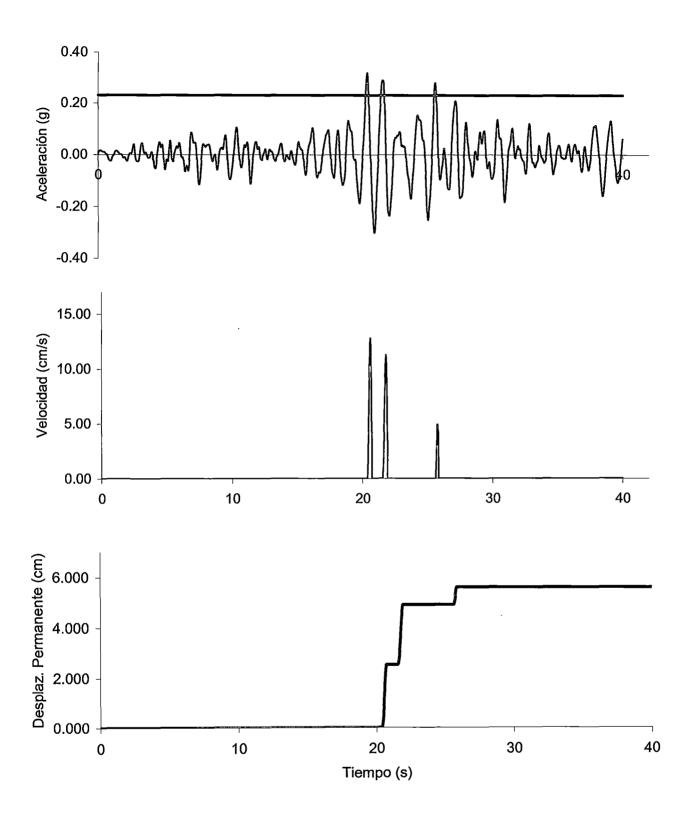


Fig. 4.7 : Desarrollo del Desplazamiento Permanente de un Talud ante la Acción de un Movimiento Sísmico

CAPITULO V

5.0 ANÁLISIS DE CAIDA DE ROCAS

5.1. GENERALIDADES

El fenómeno de desprendimiento de rocas sobre las vías de comunicación, a pesar de ser un problema tan antiguo como las propias vías, aún no está totalmente solucionado debido a la variedad de situaciones que se pueden presentar, para lo cual cada una necesitará un tratamiento y solución específicos.

La caída de rocas viene a ser un gran riesgo en los cortes de rocas en carreteras o vías ferroviarias en terrenos montañosos, aún cuando no tenga el mismo nivel de riesgo económico que alguna falla a gran escala, el número de gente que fallece por este fenómeno tiende a ser del mismo orden que otras formas de inestabilidades en taludes rocosos.

Cuando se ejecutan excavaciones en roca, no siempre se toman las medidas de garantía de la estabilidad superficial, además en zonas de roca muy fracturada y alterable, aún cuando se hagan esfuerzos por garantizar la calidad del corte, son necesarias algunas medidas de estabilización.

Las caídas de rocas son generalmente iniciadas por algún evento climático, biológico o sísmico, los que causan un cambio en las fuerzas actuantes en la roca, pérdida de resistencia en los planos de discontinuidades; dentro de estos eventos se incluye el incremento de la presión de poros debido a la infiltración

de la lluvia, erosión del material circundante durante fuertes tormentas, procesos de congelamiento y descongelamiento en climas fríos, degradación química o meteorización de la roca, crecimiento de raíces o su palanqueo por fuertes vientos, en épocas de construcción el mecanismo de caída de rocas es aún de mayor magnitud que los factores climáticos y biológicos.

En reconocimiento del serio problema que significa la caída de rocas y la dificultad de obtener una investigación detallada y de análisis en varios kilómetros hace necesario la realización de una sectorización, con la finalidad de ver donde son más riesgosos los taludes a sufrir caída de rocas; es por eso que la División Estatal de Carretera del Estado de Oregon (USA) (Pierson et. al. 1990) creó el Sistema de Calificación de Riesgo de Caída de Rocas que se muestra en la Tabla 5.1. Aunque este sistema no brinda un sistema de recomendaciones o acciones a tomar para diferentes rangos de calificación, es útil para una sectorización y reconocimiento y de los taludes más riesgosos. Se considera que una calificación menor de 300 son taludes de baja prioridad y los de calificación mayor de 500 han de tomarse una acción inmediata de mitigación.

5.2. ANÁLISIS DE CAÍDA DE ROCAS (PROGRAMA CRSP)

En 1988 el Departamento de Colorado de Autopistas de los Estados Unidos de América completó su propio programa de simulación de caídas de rocas. En los Estados Unidos el programa "Colorado Rockfall Simulation Program" (CRSP) es extensamente usado y ha provisto el más consistente y predictivo comportamiento de caída de rocas de diferentes ensayos. Este programa fue desarrollado para modelar el comportamiento de caídas de rocas y proveer un análisis estadístico de los probables eventos de caída de rocas, además se basa en principios físicos que aplican la ecuación de aceleración gravitacional y conservación de energía que describen el movimiento de un cuerpo.

El programa considera que el volumen del bloque y el centro de gravedad no coinciden con el punto de impacto, por lo que el proceso de impacto ha de ser balanceado por leyes de momento lineal y angular. Fue así que Bozzolo y Pamini en 1982 hicieron la formulación matemática con las siguientes hipótesis:

- El bloque se comporta como un cuerpo rígido de forma elíptica.
- El contacto entre el bloque y la superficie del talud se da en el punto P. (Fig. 5.1)
- El movimiento de rotación alrededor del punto P, comienza inmediatamente después del impacto, y P es el centro de rotación.

Teniendo en cuenta el principio de conservación del momento en un intervalo de tiempo antes y después del impacto se tiene:

$$I\omega_o + V_{ox}d_y - V_{oy}d_x = I\omega + V_xd_y - V_yd_x$$

donde:

I : Momento de inercia de la elipse alrededor del centro de masa.

 ω_a : Velocidad angular antes del impacto.

 ω : Velocidad angular después del impacto.

 V_{ox}, V_{oy} : Componentes de la velocidad inicial de traslación.

 V_x, V_y : Componentes de la velocidad final de traslación.

$$d_x = X_G - X_P$$
, $d_y = Y_G - Y_P$

Luego la energía cinética total de la unidad de masa después del impacto, se puede expresar como:

$$E = \frac{1}{2}(I\omega^2 + V_x^2 + V_y^2)$$

La energía cinética se expresa por la suma de la energía de la velocidad lineal y la energía de rotación.

Actualmente los programas de cómputo como el CRSP simplifican los cálculos y presentan incluso un gráfico de trayectoria; generalmente los datos de entrada requeridos son: Coordenadas del perfil estratigráfico, rugosidad, Coeficientes de restitución Normal y Tangencial y dimensiones del bloque inestable. Estos programas arrojan los siguientes resultados: Energía Cinética, Altura de Rebote máxima, Altura de Rebote promedio, Velocidad Máxima, Velocidad promedio, los que son útiles para el diseño correspondiente de las obras de protección.

5.2.1. PERFIL DE CONTACTO

El movimiento de caída libre de un bloque es descrito convenientemente por la ecuación de una parábola si se desprecia la fricción del aire. El punto de impacto con la superficie se puede determinar en el plano 2-D por la intersección entre la parábola que describe el movimiento del bloque y la poligonal que se ajusta al perfil del talud.

El procedimiento analítico para la determinación del camino tiene en cuenta la definición de la sección vertical del talud en el cual ocurre el movimiento de la roca ladera abajo. Como este movimiento no sigue una trayectoria perfectamente recta, la topografía se puede realizar de forma aproximada, entonces la representación del terreno se realiza por un conjunto de segmentos que incluso pueden rotarse con referencia a la sección examinada (Fig. 5.2).

Los programas de simulación de caída de rocas como el CRSP necesitan como dato de entrada las coordenadas correspondientes a los tramos confortantes del talud, también llamadas celdas.

5.2.2. VELOCIDAD INICIAL

La velocidad de rodadura o deslizamiento V en una longitud l está dada por la siguiente expresión:

$$V = 2 * \sqrt{g * (sen\alpha - tg\theta * cos\alpha) * l}$$

donde:

g: aceleración de la gravedad.

 θ : ángulo de fricción por rodadura o deslizamiento.

 α : inclinación del tramo inicial de caída

Esta expresión es usada si se identifica perfectamente el lugar de donde se origina el desprendimiento y se tiene las características del tipo de bloque como se observa en Fig. 5.3.

El rango de valores comúnmente empleado en la literatura científica relacionada es de 1 a 3 m/s.

5.2.3. TAMAÑO Y FORMA DE LA ROCA

La forma y tamaño de la roca dependen del tamaño de los bloques en el área y de la durabilidad de éstas, diversos ensayos demuestran que caídas de mas de 8–10 m pueden provocar la fractura del bloque en fragmentos. Así, las rocas encontradas en la base del camino son un indicio del tamaño y su forma; en el caso de no tener rocas en la base del camino se determinará la forma y tamaño en la zona de origen.

En el proceso de toma de datos es conveniente identificar la forma de la roca, generalmente se adoptan como esféricas ya que aportan mayor inercia.

Se tendrá en consideración que en el descenso las rocas se rompen y una roca pequeña podría ocasionar la peor condición, pero el caso más desfavorable es en donde la roca más grande recorre todo el talud o ladera.

5.2.4. RUGOSIDAD

Es una medida que está en función del tamaño de la roca y de la irregularidad de la superficie. Si todos los taludes fueran lisos y las rocas perfectamente esféricas, entonces la rodadura de éstas sería modelada con gran precisión. Sin embargo, estas condiciones nunca se presentan en la naturaleza. La mayoría de taludes son irregulares y variables con resaltos y afloramientos que afectan la trayectoria de la caída de las rocas (saltos, rodadura o deslizamiento), lo cual también está relacionado con el diámetro y forma de la caída de la roca.

La rugosidad de la superficie es una estimación de cuanto puede variar el talud, dentro del radio de la roca. Este valor puede ser obtenido extendiendo una cuerda ladera abajo, midiendo la distancia al talud perpendicular a la cuerda. La variación de esta medida, en relación con el radio de la roca, es la rugosidad de la superficie. Un rango de valores de rugosidad se seleccionan para cada celda, en la Tabla 5.2 se encuentran algunos de los valores de rugosidad para diferentes condiciones del terreno.

5.2.5. COEFICIENTES DE RESTITUCIÓN

El rebote de los bloques de roca se da cuando impactan en la superficie del talud. Este movimiento está regido por un coeficiente de restitución, que expresa la cantidad de energía disipada durante el impacto. La disipación depende del comportamiento elasto-plástico de la superficie que el bloque impacta, el material del bloque y la resistencia a la rodadura y al deslizamiento.

Se utiliza el coeficiente K de restitución para predecir el comportamiento del bloque, este coeficiente toma valores entre 0 y 1 puede ser definido de diferentes formas:

1. De acuerdo a la Teoría de Newton, sobre el choque de partículas.

$$K=\frac{v'}{v}$$

donde:

v y v' son las velocidades del bloque antes y después del impacto.

2. De forma experimental la ecuación anterior queda de la siguiente forma:

$$K = \sqrt{\frac{h'}{h}}$$

donde:

h y h' representan la altura de caída original y la altura de rebote posterior al impacto.

Así, con la finalidad de reproducir de una forma más consecuente este fenómeno se han desarrollado modelos matemáticos, que dan mejor definición del rebote de las rocas, estableciendo una diferenciación entre las componentes normal y tangencial del movimiento: los coeficientes Kn y Kt (Coeficientes de restitución normal y tangencial a la superficie del talud).

5.2.5.1. COEFICIENTES DE RESTITUCIÓN TANGENCIAL (Kt)

Este coeficiente describe las características de la cobertura de la superficie de cada celda, incluye el suelo y la cobertura de vegetación, lo que afecta en el comportamiento de la caída de rocas por su absorción de energía y su detención.

Este coeficiente determina que cantidad de componente de velocidad paralela al talud aminora durante el impacto. La vegetación y en menor grado el material de la ladera, influyen en el coeficiente tangencial.

Los valores de coeficiente de restitución tangencial (Tabla 5.2), para laderas con vegetación a mas de unos pocos metros de altura son difíciles de evaluar, porque mientras que el coeficiente para una roca individual debe ser bajo, las primeras rocas que caen van despejando el camino para las rocas siguientes.

5.2.5.2. COEFICIENTES DE RESTITUCIÓN NORMAL (Kn)

Caracterizan la dureza de la superficie rocosa y de la superficie del talud, esta característica afecta la cantidad de energía absorbida de la superficie del talud. Una superficie rocosa desnuda causaría grandes saltos mientras que una cobertura de suelo profunda absorbería considerablemente energía, posiblemente reduciendo la caída.

Este coeficiente es una medida de comparación del cambio de la velocidad normal a la ladera antes del impacto, con la velocidad normal después del impacto, dependiendo ésto de la dureza de la superficie.

Una forma de juzgar la dureza de la ladera es, cuando el suelo es blando quedarán huellas, mientras en los suelos firmes las huellas serán pequeñas o no existirán. Se tendrá cuidado que un suelo blando pueda helarse en el invierno.

Los valores de rugosidad, coeficientes de restitución normal y tangencial se presentan en la Tabla 5.2 para las diferentes condiciones del terreno, así como la debida referencia de donde fue tomada.

5.3. INTERPRETACION DEL ANÁLISIS DE CAÍDA DE ROCAS (PROGRAMA CRSP)

El programa provee estimados estadísticos de la probable velocidad y altura de rebote de las rocas a diferentes localizaciones del talud. Por defecto, el programa corre 100 caídas de rocas, pero cualquier número es posible.

CRSP muestra en la pantalla una sección transversal con la trayectoria de cada simulación (Fig. 5.4) y luego es seguido por la salida del promedio y máxima altura de rebote y velocidad a lo largo del talud y datos específicos de la altura de rebote, velocidad y energía en un punto especifico de análisis (Fig. 5.5), dentro de los gráficos que arroja el programa están: Frecuencia vs. Altura de Rebote, Velocidad vs. Frecuencia (Fig. 5.6), Distancia Horizontal vs. Altura de Rebote (Fig. 5.7) y Distancia Horizontal vs. Velocidad (Fig. 5.8).

Esta información es usada para determinar una trayectoria típica de la caída de la roca que podría ser usada para identificar áreas de baja altura de rebote y baja energía. El conocimiento de éstas es usado para optimizar la apropiada medida de mitigación.

CRSP también es usado para determinar la energía y altura de rebote en una ubicación particular y asistir en la determinación del diseño de una barrera. Los principales tipos de barreras son:

- Banquetas
- Cunetas al pie del talud
- Enmallado

- Vallas Estáticas
- Vallas Dinámicas
- Túneles o semitúneles

5.4. PROTECCIÓN CONTRA LA CAIDA DE ROCAS

Si es aceptable que no es posible detectar o prevenir todas las caídas de rocas, entonces se tendrá que usar alguno de los métodos para detenerlas, estos métodos se ilustran en la Fig. 5.9. Cada uno de estos métodos de protección han de ser evaluados después de realizar un análisis de simulación de caída de rocas y de interpretar los resultados de velocidad, altura de rebote y energía cinética. Se describen las obras que interceptan y atenúan la caída de rocas de taludes rocosos fracturados que con frecuencia son provocados en la inestabilidad, estos desprendimientos se encuentran muy distantes de la calzada de carreteras pero que inevitablemente la alcanzan, ésto se produce en taludes muy altos y escarpados, producto de construcciones en emplazamientos que son prácticamente acantilados o cañones, donde no hay diferencia entre talud y ladera.

Las medidas de protección contra caída de rocas más importantes a ser estudiadas son: banquetas, cunetas al pie del talud, enmallado, vallas estáticas y vallas dinámicas.

5.4.1. BANQUETAS

La disposición de banquetas es una medida que suele darse antes de la construcción del talud en la fase de proyecto o rehabilitación. Las banquetas producen un efecto beneficioso en la estabilidad general del talud además de que facilitan el proceso constructivo y las operaciones de mantenimiento del talud, retiene las caídas de rocas y si se disponen en ellas zanjas de drenaje que disminuyen el aumento de presiones intersticiales.

Las banquetas suelen disponerse en taludes de roca especialmente si ésta es fácilmente meteorizable y cuando es importante evitar la caída de rocas.

El dimensionamiento de la altura de banqueta y el ángulo de escalonado ha de hacerse en función de un doble concepto: altura de banquetas grandes y ángulos de escalonado cercanos a 90° (Fig. 5.10), permiten mantener constante el ángulo general del talud, dar mayores anchos de berma, aumentando la funcionalidad de éstas, pero por otra parte se incrementa el riesgo de aparición de tracciones importantes en la cresta de la banqueta, lo que da lugar grietas y desprendimientos.

En las actuales Especificaciones Técnicas Generales para Carreteras, Edición 2001 se indica que se colocará banquetas, con pendiente hacia el talud de 4% para banquetas permanentes vertiendo hacia la pared del corte y 1:5 (V:H) vertiendo hacia la plataforma si son transitorios y un ancho aproximado de 2 a 3 metros tal que permitan el funcionamiento de la maquinaria de construcción, en taludes con altura mayor de 7 m., dependiendo del material y el estudio de estabilidad de taludes respectivo.

El sobrecosto de banquetas en la construcción suele verse justificado por el aumento de estabilidad general. Se tendrá en consideración que al elegir entre un talud continuo y un talud con banquetas de igual ángulo, este último disminuye los efectos de desprendimiento de roca y permite la evacuación de las aguas superficiales, aparte de consideraciones del tipo constructivo.

La Federal Highway Administration de los Estados Unidos en su publicación FHWA SA-93-085 en marzo del año 1994 para el diseño taludes rocosos con banquetas intermedias consideraban que ellas serían limpiadas periódicamente, pero como no se realizaron estas limpiezas estas se convertían en rampas de lanzamiento de las rocas, en adición a

la mínima protección de las banquetas, a la caída de rocas se creó un problema de mantenimiento. Es así que: Ahora es práctica aceptada, no usar banquetas excepto para interfaces de suelo-roca.

5.4.2. CUNETAS JUNTO AL PIE DEL TALUD

El criterio mejor conocido y ampliamente usado es el empírico de Ritchie basado en las investigaciones de Arthur M. Ritchie en la década de los años sesenta. Su procedimiento considera la caída de rocas en varios taludes de diferentes ángulos y alturas. Los datos fueron entonces colectados para los diferentes modos de caída (rodadura, rebote, deslizamiento o caída libre).

Basado en esta investigación, el criterio original de Ritchie fue desarrollado. Este presenta la geometría de cunetas al pie del talud que detiene rocas desde caida libre hasta por rodadura. El criterio de Ritchie usa como datos de entrada la altura y el ángulo del talud desde donde se desprenden las rocas, las medidas de ancho de cuneta, y profundidad se encuentran en la Tabla 5.3. En 1986, Mak y Blomfield realizaron una investigación sobre estas cunetas en taludes precortados de alturas mayores de 12m, los resultados alcanzados estuvieron muy cercanos a los de Ritchie y se muestran en la Fig. 5.11.

El estado de Washington ha modificado el criterio original de Ritchie y actualmente este criterio se encuentra en el Manual de Diseño de Carreteras del Estado de Washington DOT, en la Tabla 5.4 es mostrado este criterio para las condiciones de un talud no detrítico, aquí se observa la presencia además de cunetas al pie del talud, una protección con barreras de concreto o barreras de protección contra caída de rocas.

5.4.3. DISEÑO DE ENMALLADOS

El desarrollo de la mecánica de rocas en los últimos años, ha hecho cambiar de forma radical los trabajos de protección de taludes que hasta entonces ha estado basado en la experiencia. Así, con la finalidad de proteger al talud de la erosión y evitar la rotura progresiva de éstos, se utiliza como medidas de protección los enmallados. Pueden ser de diferentes tipos, revisten el talud y son fijados a éste, mediante anclajes como se muestra en la Fig. 5.12. Los diferentes tipos de enmallados son:

- Las mallas de alambre con pernos de anclaje
- Redes de cables con pernos de anclaje
- Combinación de mallas y red de cables.

Algunas empresas fabricantes de sistemas de enmallado y red de cables como: Geobrugg, Tubosider, Industrial Enterprise, Sisyphe, etc; Proponen diferentes métodos de solución para la protección de los taludes. El presente trabajo utiliza como referencia el sistema usado por la Empresa Geobrugg el cual ha desarrollado 2 sistemas de tipos de protección de taludes llamados: Sistema Tecco Mesh G-65 (mallas de alambre) y el Sistema Pentifix (red de cables).

METODOLOGÍA DE CALCULO

Para optimizar los cálculos se hizo uso del Programa Malla realizado por el Ing. Hebert Sotelo (Fig. 5.13), este software utiliza el método de equilibrio límite y nos permite conocer la fuerza tensional actuante en cada paño, el esfuerzo actuante en la malla tensora y la carga en el perno.

El programa Malla usa como datos de entrada lo siguiente:

- Ancho del paño de malla
- La pendiente del talud
- Buzamiento del plano de falla
- La longitud del paño
- Las propiedades de material (ángulo de fricción, cohesión y densidad.)
- Coeficiente sísmico

El antecesor del Sistema Pentifix y Tecco Mesh G-65 fue el llamado Sistema Tecco TD, en la Tabla 5.5 se presenta las características de diseño del sistema: TD-15, TD-20, TD-25 y TD-30 los cuales usan una red de cables de acero y barras GEWI. La Fig. 5.14 complementa la Tabla 5.5 donde para diferentes ancho de paños y esfuerzo actuante requerido se usa determinado sistema de sostenimiento.

Para la selección del tipo de malla se usa el esfuerzo actuante dado por el programa Malla en kN/m2. Para esfuerzos actuantes menores a 6 kN/m2 la malla necesaria para el soporte es la Malla Hexagonal de doble torsión.

Para la elección del tipo de malla y anclaje se sigue el siguiente procedimiento:

- a. Determinación del esfuerzo actuante utilizando el método de equilibrio límite mediante el programa Malla.
- Utilizar la Fig. 5.14 y la longitud de cada paño se elige el tipo de Malla.
- c. Determinación de la carga a Tracción Directa de la malla, para las mallas TECCO TD o similar, se utiliza la Tabla 5.6 y para la malla Hexagonal utilizamos el análisis de equilibrio límite.

- d. El factor de Seguridad se calcula dividiendo la carga de rotura de la malla determinada por el fabricante entre la Carga a Tracción Directa.
- e. Para efectuar el diseño de los anclajes se considera la utilización de varillas inyectadas la cual usa una lechada de cemento y una varilla y los pernos GEWI. Se busca que la longitud de empotramiento del perno de anclaje esté sometida a un esfuerzo de corte uniforme entre el talud y la lechada. Se utiliza la siguiente fórmula:

$$l_b = \frac{T}{\pi * d_b * \tau_a} * FS$$

donde:

 l_b = Longitud de empotramiento

 τ_a = Esfuerzo de adherencia

T = Carga de trabajo del anclaje (GEWI o GA-7001)

 d_h = Diámetro del hueco del anclaje

FS = Factor de Seguridad (Varía de 1.3–3.0, usualmente FS = 2.0)

El esfuerzo de adherencia puede ser estimado de la Tabla 5.7 o del ensayo de Compresión Uniaxial (σ_C) de la roca en la zona de anclaje mediante la relación (Landslides, Special Report 247, Pág. 486):

$$\tau_a = \frac{\sigma_C}{30}$$

Lo conveniente es la realización de ensayos para cada caso particular y determinar los parámetros resistentes.

Un tamaño del hueco del perno significativamente mayor que del perno podría no mejorar el diseño resultando un mayor costo de perforación y material. Por eso se recomienda una relación entre el diámetro del agujero (d_h) y diámetro del perno (d_a) es:

$$0.4 \le \frac{d_a}{d_h} \le 0.6$$

La carga de trabajo está dada por el fabricante del anclaje en donde además de la carga de trabajo se presentan las características técnicas. Las Tablas 5.8 y 5.9 muestran las características dadas para anclajes GEWI (usados como anclajes interiores) y los anclajes GA-7001 (usados como anclajes exteriores) respectivamente.

Ahora el sistema Tecco TD fue reemplazado por el sistema Pentifix y Tecco Mesh – G65 donde con el esfuerzo actuante se selecciona entre los sistemas el enmallado necesario, (Tabla 5.10), estos sistemas usan la malla mostrada en la Fig. 5.15.

5.4.4. DISEÑO DE VALLAS ESTATICAS

El principio de funcionamiento está basado en el empleo de soluciones potentes basándose en elementos rígidos y de gran inercia que se oponen al paso de las rocas y las detienen. Estas soluciones han de ser diseñadas para soportar fuertes choques, que podrán ser absorbidos de diferente forma por la estructura de contención, dependiendo fundamentalmente por su rigidez.

Las soluciones más conocidas son:

a. Caballones de tierra con cunetas colectoras del lado de la ladera

Son convenientes en donde la topografía de la ladera, material de la ladera y condiciones de drenaje permitan su construcción en forma segura. (Fig. 5.16).

b. Muros de Concreto

Son rígidos y costosos. Se han usado del tipo New Jersey (separadores central de autovías). Son recomendables para impactos de rocas de baja velocidad. Se considera que pueden tener una capacidad de absorción de energía de 20 kJ. (Fig. 5.17).

c. Muros de Gaviones

Son fabricados fundamentalmente de enrejado de alambre de 3 ó 5 torsiones galvanizado o plastificado, que rellenos de piedra, se colocan unos encima de otros formando muros.

La Fig. 5.18, representa un gráfico para la determinación del peso específico aparente del gavión γ_s ; conocidos el peso específico del material de relleno γ_s (Tabla 5.11), y la porosidad del gavión η , que varía entre 0,30 y 0,40 en función de la curva granulométrica de las piedras de cantera o canto relleno. La dimensión más adecuada de las piedras está comprendida entre una y dos veces la dimensión D de malla de la red, para evitar la salida de las piedras. El uso de áridos de dimensiones menores entre 1 - 1.5 D, permite, un mejor y más económico ajuste del relleno, una mejor distribución de los esfuerzos y una mejor adaptabilidad a las deformaciones de la estructura.

En éstos se deja la parte trasera libre para recibir los impactos de las rocas, estos muros son más deformables siendo mayor su capacidad de absorción de energía. Su principal inconveniente es el deterioro de la malla que deshace los gaviones. Se considera que pueden tener una capacidad de absorción de energía de 20 kJ. (Fig. 5.19).

d. Pantallas Metálicas

Estas son compuestas de elementos metálicos y tienen la capacidad de detener rocas que caen hasta con una energía de 70 KJ.

La detención de las rocas se produce cuando se alcanza la condición de igualdad entre la energía cinética que tiene la roca en el momento del impacto y el trabajo de las fuerzas de reacción durante la deformación y desplazamiento de la estructura:

$$E_C = W_r$$

El trabajo de las fuerzas de reacción que la pantalla opone al movimiento, puede calcularse por la siguiente expresión:

$$W_r = \int_{0}^{\Delta \max} R_P d\Delta$$

donde:

 R_p = fuerza de reacción que opone la pantalla en la misma dirección y sentido contrario al movimiento de la roca.

 Δ = desplazamiento del punto de contacto de la roca hasta que la misma se detiene.

Analizando esta expresión conduce que soluciones rígidas debido al pequeño desplazamiento que ofrecen, las fuerzas de reacción son muy elevadas.

El incremento de la rigidez de los elementos de la pantalla acrecientan las siguientes insuficiencias:

a. Las fuerzas de reacción, ante el impacto de las rocas se acrecientan sustancialmente, lo que obliga a la utilización de elementos de mayor sección y calidad y su costo respectivo.

- Baja capacidad de deformación de los elementos rígidos distribuye muy poco los esfuerzos, produciendo fallas locales por concentración de tensiones.
- c. Escasa absorción de energía.

En la actualidad se emplean dos clases de vallas para la prevención de la caída de roca:

- Las vallas con cuerdas de alambre y malla conectadas a tuberías de acero poste de sección H, y
- Las vallas con miembros horizontales de acero conectados a postes de acero de sección H.

La valla con miembros horizontales de acero tiene una capacidad menor de absorción de energía de las rocas que caen, en comparación con la valla con malla, por lo que frecuentemente se le combina con materiales que absorben golpes, (Fig. 5.20).

METODOLOGÍA DE CALCULO

Las vallas para la prevención de caída de rocas que tienen cuerdas y malla de alambre se diseñan usando la Fig. 5.21. La energía a ser absorbida por la valla de prevención de caída de rocas, E_T, puede derivarse de la fórmula siguiente:

$$E_T = E_R + E_P + E_N$$

Donde:

E_R = Energía absorbida por la cuerda de alambre

 E_P = Energía absorbida por el poste

 E_N = Energía absorbida por la malla

La altura del punto de impacto se considera normalmente a los dos tercios de la altura de la valla. Se asume en el diseño que las rocas que caen chocarán con la cuerda de alambre entre los postes.

La energía absorbida por la cuerda de alambre y el poste se determina de acuerdo siguiente procedimiento:

- 1. Determine la tensión de fluencia, Ty, que corresponde al diámetro de la cuerda de alambre.
- 2. Determine la fuerza R que actúa en el poste cuando Ty actúa en la cuerda de alambre. En este caso se asume que la roca que cae estará resistida por dos cuerdas de alambre.
- 3. Determine la fuerza Fy requerida para formar una rótula plástica en la parte inferior del poste intermedio.
- 4. Compare R con Fy y calcule la energía a ser absorbida por la valla para cada una de las condiciones descritas a continuación:

CONDICION 1.- Para R≥ Fy:

Energía absorbida por el poste:

$$E_P = 2 * F_v * \delta = 2 * F_v * h_2 * tg 15^\circ = 0.54 * h_2 * F_v$$

Energía absorbida por la cuerda de alambre

$$E_R = \frac{L}{E_W *_A} (T^2 - T_0^2)$$

donde, T es la tensión en la cuerda correspondiente a Fy. Su valor puede determinarse resolviendo las siguientes ecuaciones, cuyas variables son T y θ_2 ,

$$T = \frac{F_y}{2 * seno \theta_2}$$

$$\left(\frac{a}{2} + \frac{T * L}{2 * E_W * A}\right) \cos \theta_2 = \frac{a}{2}$$

donde, T_0 es la tensión inicial en la cuerda, y E_W , A y L son el módulo de Young, área transversal y longitud total de la cuerda de alambre. El espaciamiento entre postes está dado por a.

CONDICION 2.- Para R < Fy:

Energía absorbida por el poste:

$$E_P = \frac{R^2 * h_2^3}{3 * E_H * I}$$

Energía absorbida por la cuerda de alambre:

$$E_R = 2 * T_v * L * S$$

Donde, E_H es el módulo de Young de la sección H de acero, I es el momento de inercia de la sección H de acero y S es el porcentaje de elongación de la cuerda cuando R = Fy, pudiendo ser determinado de $S = T_y / (E_W * A)$.

Ya que la energía a ser absorbida por la malla no puede obtenerse por cálculo, deberá utilizarse $E_N=2.5\,$ tm obtenida de resultados experimentales. Un ejemplo de diseño se presenta en la Tabla 5.12.

5.4.5. DISEÑO DE VALLAS DINÁMICAS

Son estructuras de elevada deformabilidad pudiéndose absorber una gran energía cinética y está compuesta por redes de cables de una gran capacidad de deformación que incorporan disipadores de energía, sustentada en su posición por una estructura de postes y elementos que también pueden deformarse. (Fig. 5.22 y Fig. 5.23).

Sus características son las siguientes:

Las Redes de Cables: Son de acero galvanizado y forman una red

cuadrada o romboidal de 200 mm a 300 mm de

lado, con grapas o prensacables en sus nudos,

además para evitar el paso de piedras pequeñas

se coloca mallas de simple torsión o de triple

torsión. Según el tipo de red existe un cable

perimetral alrededor de cada módulo que luego

está unido al poste o a los cables de anclaje a

la ladera.

Postes: Hechos de perfiles o tubos metálicos, se

encuentran anclados en la base, son articulados

o simplemente apoyados haciéndose necesaria

la utilización de tirantes. (Fig. 5.24)

Disipadores de Energía: Están colocados en los cables de anclaje o

perimetrales, al momento del impacto se

elongan consumiendo energía. Disipan la

energía por deformación plástica.(Fig. 5.25).

Mallas de Alambre: Se pueden usar mallas de simple torsión

50/15 o de triple torsión 80x100/15.

Anclaje de Cable: Son del tipo GA-7001 que fueron

presentados en diseño de enmallados (Tabla

5.9).

Barras de Anclaje: Del GEWI (Tabla 5.8), tienen como objetivo

aguantar por sí mismos y/o soportar y

transmitir determinadas acciones como

fijación de las placas de base.

Red de Anillos:

Constituidas por redes ROCCO, formadas por la unión de anillos de 300 mm de diámetro entrelazados entre sí. Cada anillo está formado por 19 espiras de alambre de acero de alta resistencia (1770 N/mm²) de 3 mm de diámetro. (Fig. 5.26).

Las barreras dinámicas mostradas son patentes de la empresa GEOBRUGG y los diferentes tipos se muestran en la Tabla 5.13, donde se consideran las características más resaltantes de estos sistemas.

Para el diseño de la barrera dinámica se usa, de la simulación realizada por el Program CRSP, la energía cinética de la roca, con este valor y la Tabla 5.13 se elige la barrera dinámica a usar.

Estas barreras presentan una amplia variedad de energía de disipación desde 250kJ a 2000kJ. Esta cobertura de energía es debida principalmente a los disipadores de energía que permiten una deformación mayor que las vallas estáticas, así mismo los anclajes y la red de cables contribuyen a tener una mejor solución.

La Tabla 5.14 presenta un resumen de tipo de protección contra la caída de rocas en función de la energía cinética producida por éstas.

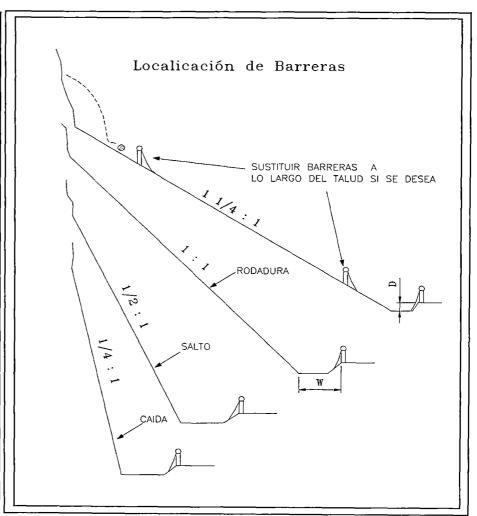
Tabla 5.1
Sistema de Clasificación de Caída de Rocas (Rockfall Hazard Rating System RHRS)

CATEGORIA			CRITERIO DE PU	INTAJE Y SCORE		
			3 PUNTOS	9 PUNTOS	27 PUNTOS	81 PUNTOS
ALTUR	A DEL TALU	D	25 FT	50 FT	75 FT	81 FT
EFECTIVIDAD DE LA CUNETA			Buena	Moderada	Limitada	Mala
RIESG	O VEHICULA	R	25%	50%	75%	100%
PROM	<u> EDIO</u>		del tiempo	<u>del tiempo</u>	del tiempo	del tiempo
PORCENTAJE DE DISTANCIA DE VISIBILIDAD			Adecuada visibilidad, 100% del valor mínimo de diseño	Moderada visibilidad, 80% del valor minimo de diseño	Limitada visibilidad, 60% del valor minimo de diseño	Muy limitada, 40% del valor minimo de diseño
H	D DE LA VIA YENDO BERI	MAS	44 feet	36 feet	28 feet	20 feet
ICAS \S	CASO 1	CONDICION ESTRUCTURAL	Grietas discontinuas, orientación favorable	Grietas discontinuas, orientación aleatoria	Grietas discontinuas, orientación adversa	Grietas continuas, orientación adversa
CARACTERISTICAS GEOLOGICAS	 	FRICCION DE LA ROCA	Rugosa, irregular	Ondulada	Planar	Relleno de arcilla o espejo de falla
등		CONDICION	Características de erosión	Características de erosión	Muchas características de	Mayores características de
RACT GEOL		ESTRUCTURAL	bajas	ocasionales	erosión	erosión
))	CASO 2	EROSION DIFERENCIAL	Pequeña diferenciación	Moderada diferenciación	Gran diferenciación	Extrema diferenciación
TAMAI	O DEL BLO	QUE	1 FT	2 FT	3 FT	4 FT
		i= 23000				
CANTI	DAD DE CAIL	DA DE ROCAS	3 yardas cúbicas	6 yardas cúbicas	9 yardas cúbicas	12 yardas cúbicas
CLIMA Y PRESENCIA DE AGUA EN EL TALUD		Y PRESENCIA DE AGUA EN EL Baja a moderada precipitación, no hay		Moderada precipitación o cortos períodos de congelamiento o agua intermitente en el talud	Alta precipitación o largos períodos de congelamiento o agua continua en el talud	Elevada precipitación y largos períodos de congelamiento o agua continua en el talud
HISTO	RIA DE CAID	A DE ROCAS	Pocas caídas	Caídas ocasionales	Muchas caídas	Constantes caídas

^{*} Tabla desarrollada por:

Oregon State Highway Division (Pierson et. al. 1990)

Tabla 5.2

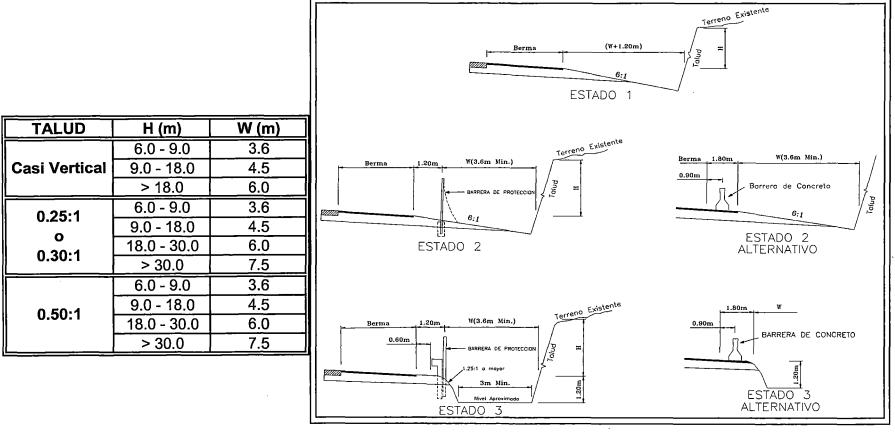

Rugosidad y Coeficientes de Restitucion Tangencial y Normal.

SUPERFICIE O MATERIAL	Rugosidad r	Coeficiente Normal r _n	Coeficiente Tangencial r _t	Referencia
Afloramientos de roca dura con bolones y bloques		0.35		Hoek (1987)
Caliza	0.75 a 0.90	0.25 a 0.38		Robotahm et al. (1995). Azzoni et al. (1995)
Caliza con algo de vegetacion		022 a 0.38		Robotahm et al. (1995).
Caliza dinamitada sin remover		0.25 a 0.38		Robotahm et al. (1995).
Caliza dinamitada y apilada con algo de vegetacion		0.22 a 0.28	0.35 a 0.83	Robotahm et al. (1995).
Creta (chalk)		0.20 a 0.36	0.75 a 0.92	Robotahm et al. (1995).
Creta (chalk) con algo de vegetación		0.25 a 0.29		Robotahm et al. (1995).
Carpeta de Asfalto		0.4	0.9	Hoek (1987)
Cubierta de talus		0.32	0.82.	Hoek (1987)
Cubierta de talus con vegetación		0.32	0.8	Hoek (1987)
Detritus blando	0.35 a 0.45			Azzoni et al. (1995)
Detritus compactado con bolones	0.55 a 0.60	0.40 a 0.50	0.35 a 0.45	Pasquero (1987). Azzoni et al. (1995)
Detritus con bolones y bloques	0.45 a 0.50	0.50 a 0.80	0.45 a 0.65	Pasquero (1987). Azzoni et al. (1995)
Detritus con bolones, bloques y algunos arboles	0.40 a 0.50			Azzoni et al. (1995)
Detritus gruesos con bloques de roca	0.55 a 0.70			Azzoni et al. (1995)
Impacto roca-roca	0.75 a 0.80			Pasquero (1987).
Impacto roca-suelo	0.20 a 0.35			Pasquero (1987).
Pavimento	0.75			Azzoni et al. (1995)
Roca dura limpia		0.53	0.99	Hoek (1987)
Roca solida		⁻ 0.90 a 0.80	0.65 a 0.75	Pasquero (1987).
Suelo blando con algo de vegetación		0.3	0.8	Hoek (1987)
Suelo con pasto y vegetación	0.50 a 0.60			Azzoni et al. (1995)
Suelo compacto	0.50 a 0.65	<u> </u>		Azzoni et al. (1995)
Taludes cubiertos de pasto		0.20 a 0.40	0.35 a 0.45	Pasquero (1987).
Taludes en Italia	0.75 a 0.80			Habib (1976)
Taludes en Noruega	0.50 a 0.60			Habib (1976)
Taludes en Viñedos	0.4			Descoeudres & Zimmermann (1988)
Taludes rocosos	0.85			Descoeudres & Zimmermann (1988)

Tabla 5.3

Criterio Modificado de Ritchie

TALUD	TALUD ROCOSO: CASI VERTICAL (H:V>1:4)							
H (m)	W (m)	D (m)						
4.5 - 9.0	3.0	0.9						
9.0 - 18.0	4.5	1.2						
> 18.0	6.0	1.2						
	TALUD ROCO	SO: 0.25:1 & 0.3:1						
H (m)	W (m)	D (m)						
4.5 - 9.0	3.0	0.9						
9.0 - 18.0	4.5	1.2						
18.0 - 30.0	6.0	1.8 *						
> 30.0	7.5	1.8 *						
	TALUD R	OCOSO: 0.5:1						
H (m)	W (m)	D (m)						
4.5 - 9.0	3.0	0.9						
9.0 - 18.0	4.5	1.8 *						
18.0 - 30.0	6.0	1.8 *						
> 30.0	7.5	2.4 *						
		OCOSO: 0.75:1						
H (m)	W (m)	D (m)						
4.5 - 9.0	3.0	0.9						
9.0 - 18.0	4.5	1.2						
> 18.0	4.5	1.8 *						
		ROCOSO: 1:1						
H (m)	W (m)	D (m)						
4.5 - 9.0	3.0	0.9						
9.0 - 18.0	3.0	1.5 *						
> 18.0	4.5	1.8 *						
	TALUD RO	COSO: 1.25:1						
	Use	barreras						


^{*} Se recomienda colocar una pantalla al borde de la calzada y con ella se puede reducir la profundidad de la cuneta a 1.20m.

^{*} Tomado del Washington State DOT Roadway Design Manual

Tabla 5.4

Criterio Washington State DOT

SECCIONES EN CORTES ROCOSOS

^{*} Tomado del Washington State DOT Roadway Design Manual

Tabla 5.5

Características de las Redes de Cables GEOBRUGG TECCO-TD

Tipo de red	1 –	ción directa N)	para placa	nzonamiento de a=600m N)	Soporte Total Qred, con carga distribuida para FS=1.67 (kN)		
TECCO	Carga de rotura (FS=1)	Carga de trabajo (FS=1.67)	Carga de rotura (FS=1)	Carga de trabajo (FS=1.67)	Paños de 3x3 m	Paños de 4x4 m	
TD-15	85	51	76	45	121	146	
TD-20	105	63	98	59	150	180	
TD-25	135	81	170	102	193	232	
TD-30	175	105	-	-	251	302	

Prescripciones Técnicas-Geobrugg

Tabla 5.6 Relacion entre Tracción Directa y el Empuje sobre el talud, para Fs $_{\rm bulon}$ =1.67

Carga de Tracción Directa	Tipo de red	Empuje s	obre el talud o la	idera (kN/m2), p	para luces de pa	ıño/ (m) de:	Diámetro de la barra de anclaje
(kN/m)	de cables	2.00	2.50	3.00	3.50	4.00	(mm)
16		8.3	5.7	4.3	3.5	2.9	
18		9.3	6.4	4.8	4.0	3.3	7
20	TECCO o similar TD-15	10.4	7.1	5.4	4.4	3.6	7
22		11.4	7.8	5.9	4.9	4.0	
24		12.4	8.6	6.4	5.3	4.3	7
26		13.5	9.3	7.0	5.7	4.7	
28		14.5	10.0	7.5		5.1	1
30		15.5	10.7	8.0	6.6	5.4	7
32		16.6	11.4	8.6	7.1	5.8	7
34	is c	17.6	12.1	9.1	75.0	6.1	φ = 25
36	Ö	18.6	12.8	9.6	7.9	6.5	7
38		19.7	13.5	10.2	8.4	6.9	7
40	#	20.7	14.3	10.7	8.8	7.2]
42		21.7	15.0	11.2	9.3	7.6	
44		22.8	15.7	11.8	9.7	8.0	7
46	[23.8	16.4	12.3	10.2	8.3	7
48		24.9	17.1	12.8	10.6	8.7	7
50	[25.9	17.8	13.4	11.0	9.0	7
52		26.9	18.5	13.9	11.5	9.4	Ţ
54	0	28.0	19.3	14.5	11.9	9.8	
56	TECCO o	29.0	20.0	15.0	12.4	10.1	
58		30.0	20.7	15.5	12.8	10.5	φ = 28
60	TECCO o similar TD-20	31.1	21.4	16.1	13.2	10.9	1
62	, "	32.1	22.1	16.6	13.7	11.2	7
64		33.1	22.8	17.1	14.1	11.6	
66	[34.2	23.5	17.1	14.6	11.9	7
68		35.2	24.2	18.2	15.0	12.3	7
70		36.2	0.3	18.7	15.4	12.7	7
72		37.3	25.7	19.3	15.9	13.0	φ = 32
74	TECCO o similar TD-25	38.3	26.4	19.8	16.3	13.4	
76	Si.	39.3	27.1	20.3	16.8	13.7	
78		40.4	27.8	20.9	17.2	14.1	
80		41.4	28.5	21.4	17.7	14.5	<u>l </u>
82		42.5	29.2	21.9	18.1	14.8	
84		43.5	29.9	22.5	18.5	15.2	
86	TECCO o similar TD-30	44.5	30.7	23.0	19.0	15.6	
88	용투	45.6	31.4	23.5	19.4	15.9	
90	lar EC	46.6	32.1	24.1	19.9	16.3	
92	L ří	47.6	32.8	24.6	20.3	16.6	
94	, , , , , , , , , , , , , , , , , , ,	48.7	33.5	25.2	20.7	17.0	φ = 40
96		49.7	34.2	25.7	21.2	17.4	_
98		50.7	34.9	26.2	21.6	17.7	
100		51.8	35.7	26.8	22.1	18.1	_
102		52.8	36.4	27.3	22.5	18.4	
104		53.8	37.1	27.8	23.0	18.8	_
106	l	54.9	37.8_	28.4	23.4	19.2	

^{*} Tablas de diseño de Geobrugg

Esfuerzo de Adherencia en Anclajes (Wyllie, 1991)

Tabla 5.7

Esfuerzo en la roca y Tipo	Esfuerzo de Adherencia (MPa)	Rango de Esfuerzo en Compresión (MPa)
Dura	1.05-1.40	>100
Media	070-1.05	50-100
Débil	0.35-0.70	20-50
Granito, Basalto	055-1.00	
Dolomita Limolita	0.45-0.70	
Limolita blanda	0.35-0.50	
Pizarra, Esquisto duro	0.30-0.45	
Esquisto débil	0.05-0.30	
Arenisca	0.30-0.60	
Concreto	0.45-0.90	

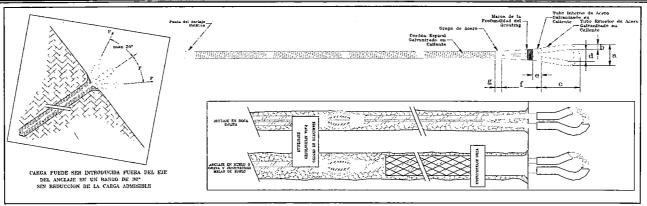
Características Técnicas de Anclajes GEWI

Tabla 5.8

Tipo de Acero			Diametro Máximo Diámetro		Carga	Carga de campo			
Tipo de Acero	N/mm2	i incl parvadurae i		Ultima $F_u = A * f_u$	F _u / 1.6	F _u / 1.7	F _u / 1.8	F _u / 2.0	
		16	19	111	69	65	62	55	101
		20	23	173	108	102	96	86	157
Acero Reforzado	500/550	25	28	270	169	159	150	135	246
		28	32	339	212	199	188	169	308
		32	36	442	276	260	246	221	402

Dywidag-System International U.S.A.: DSI Report Anchor System

Tabla 5.9


Características Técnicas de Anclajes GA-7001

Time	Carga	φ cable	Longitud	de anclaje	φ de Perforación	Peso	Peso por metro adicional de
Tipo	Admisible kN	mm	min.	max.	mm	kg/ml	longitud
Ī	100	10.5	0.8m	7.0m	38	1.8	1.0 kg
11	195	14.5	0.8m	7.0m	40	3.8	2.0 kg
111	315	18.5	0.8m	7.0m	50	6.6	3.3 kg
IV	470	22.5	0.8m	7.0m	64	10.5	4.8 kg

Nota: Carga admisible = 1/2 Carga de rotura

Características Geométricas de Anclajes GA-7001

A mm	B mm	C mm	D mm	E mm	F mm	G mm	H mm
83	21.3	128	40	32	130	35	80
104	26.9	161	50	40	162	35	80
138	33.7	213	70	56	225	45	80
180	42.4	279	95	76	265	55	80

Tabla 5.10

Sistema Tecco Mesh G-65

SISTEMA	CAPACIDAD DE SOPORTE (Kn/m2)	LADO	OS (m)	LONGITUD (m) ANCLAJE INTERMEDIO	CABLE DE REFUERZO HORIZONTAL (mm)	ANCLAJES EXTREMOS COLOCACION	
_		Sx	Sy		()	332376.61	
TECCO MESH G-65		3.0	3.0	2.0-3.0	16	GA-7001 TIPO I y II	
TECCO MESH G-65 (S-10)	10	5.0	3.0	3.0-5.0	16-18	GA-7001 TIPO III	
TECCO MESH G-65 (S-15)	15	4.0	2.5	4.0-6.0	16-18	GA-7001 TIPO III	
TECCO MESH G-65 (S-20)	20	5.0	2.5	5.0-7.0	18-20	GA-7001 TIPO III	
TECCO MESH G-65 (S-30)	30	5.0	2.5	8.0-10.0	22-24	GA-7001 TIPO IV	

APLICACIONES

- * DESLIZAMIENTOS DEL DEMONETE SOBRE PLANOS INESTABLES.
- * ESTABILIZACION DE LADERAS REPTANTES
- * CONTENCION SUPERFICIAL DE DESMONTES EN ROCA FRACTURADOS
- * SUSTITUCION DE MUROS DE CONTENCION * EN ZONAS DE ESPACIO LIMITADO
 - * EN ZONAS INACCESIBLES
- * ESTABILIZACION SUPERFICIAL Y PROFUNDA DE DESMONTES Y LADERAS DE ROCAS BLANDAS E INACCESIBLES.
- * RECUPERACION DE ZONAS EROSIONADAS Y FALLADAS
- * SUJECION PASIVA DE ACANTILADOS INESTABLES.

Tabla 5.11

Pesos Específicos de Material de Relleno para Gaviones

Tipo de Roca	Peso Específico (kg/m³)	_
Basalto	2900	
Granito	2600	
Caliza compacta	2600	
Traquita	2500	
Arenisca	2300	
Calica tierna	2200	
Toba	1700	

Tabla 5.12

DISEÑO DE PANTALLAS METALICAS

DATOS					
Ec (ton-m)	3.96				
H (m)	2.00				
a (m)	5.00				
A (cm²)	2.85				
E _W (ton/m ²)	1.7E+07				
L (m)	5.00_				
T _Y (ton)	15.20				
σ _Y (kg/cm ²)	2530				
Z (cm³)	212				
E (kg/cm²)	2.1E+06				
l (m⁴)	1.479E-05				

RESULTADOS					
h ₂ (m) 1.33					
φ ₁ (°)	4.53				
R (ton)	2.40				
Fy (ton)	4.02				
CONDICION 2					

CONDI	CION 1]	
φ ₂ (°)	4.2	0.0	0.0
To (ton)	0.0		
E _N (ton-m)	0.0	1	
E _P (ton-m)	0.00]	
T (ton)	0.00		
E _R (ton-m)	0.00	1	
E _T (ton-m)	0.00		_
FS	0.00	0.0	

CONDI]	
E _N (ton-m)	2.50]
S	3.137E-03	
E _P (ton-m)	0.01	1
E _R (ton-m)	0.48]
E _⊤ (ton-m)	12.99	
FS	3.28	ok

R	R	
-	-	
▼	_	1 •
Îθ	I	
		_ '
Ty	Ty	

	NOMENCLATURA					
Ec (ton-m)	Energía Cinetica Máxima (Dato del Rockfall, ton-m) (kJ/11.11=ton-m)					
H (m)	Altura de valla					
a (m)	Separación entre postes					
A (cm ²)	Area del cable					
E _W (ton/m²)	Modulo de Young del cable de acero					
L (m)	Longitud total del cable					
T _Y (ton)	Tensión de fluencia del cable de acero					
σ _Y (kg/cm²)	Esfuerzo unitario del punto de fluencia del perfil de acero					
Z (cm³)	Módulo de sección del perfil de acero					
E (kg/cm²)	Módulo de Young del Perfil de acero					
1 (m.)	Momento de Inercia geométrico del perfil de acero					
h ₂ (m)	Altura en el punto de impacto					
To (ton)	Tensión en la cuerda inicial					
E _N (ton-m)	E _N (Energía absorvida por los cables, ton-m)					
E _P (ton-m)	Energía absorvida por los postes					
T (ton)	Tensión en la cuerda correspondiente a Fy					
E _R (ton-m)	Energía absorvida por los cables					
E _T (ton-m)	Energía absorvida por la valla de protección					
S	Porcentaje de elongación cuando R=Fy					
FS	Factor de Seguridad					

Tabla 5.13

BARRERAS DINAMICAS GEOBRUGG

SISTEMA	ENERGIA MAXIMA (KJ)	ANCLAJE	CARGA (kN)	RED DE CABLE TIPO	φ DE CABLES DE ACERO(mm)	φ MINIMO DE PERFORACION (mm)	ALTURA (m)	DISTANCIA ENTRE POSTES (m)	ANILLO DE FRENADO	ENERGIA DEL ANILLO (kJ)	CABLE TENSIONAL	
AXI-15	150	GA-7001 TIPO III	315	ROCCO 5/3/300	16–18	50	Hasta 4.0	4.0 - 12.0	-	-	-	
AXI-30	300	GA-7001 TIPO III	315	ROCCO 7/3/300	16–18	50	Hasta 4.0	4.0 - 12.0	-	-	-	
F74. 005	1	GA-7001 TIPO II	195	ROCCO 5/3/300	16	40	2.0 - 6.0	6.0 - 12.0	-			
RXI - 025	250	GA-7001 TIPO III	315	ROCCO 9/3/300	18	50				-	-	
RXI - 050	500	GA-7001 TIPO II	195	ROCCO 7/3/300	18	40	Hasta 6.0	6.0 - 12.0				
KX1-050	ll	GA-7001 TIPO IV	470		22	64	1 14314 0.0	0.0 - 12.0				
RXI - 075	750	GA-7001 TIPO II	7001 TIPO II 195	ROCCO 7/3/300	16		Hasta 6.0	6.0 - 12.0	0 60-120	6	65 (Reten.)	
RAI-075	11	GA-7001 TIPO III	315	1.0000 7/3/300	18-22	50			0 0	90 (Long.)		
RXI - 150	1500	GA-7001 TIPO III	315	ROCCO 12/3/300	18-22	50	Hasta 6.0	6.0 - 12.0	6	90 (Reten.)		
KAI * 150	11	GA-7001 TIPO IV	470	120/000	10-22	64		0.0 - 12.0		140 (Long.)	-	
RXI - 200	2000	GA-7001 TIPO III	315	ROCCO 19/3/300	20	50	Hasta 6.0	sta 6.0 8.0 - 12.0	6	140 (Reten.)	Lateral	
KAI - 200	H	GA-7001 TIPO IV	470	10000 10,0,000	22	64				140 (Long.)	Geobinex	

Tabla 5.14
TIPOS DE SOSTENIMIENTO

PANTALLAS	TIPO	ENERGIA DE DISIPACION (KJ)	
	MUROS DE GAVIONES	20	
PANTALLAS ESTATICAS	MUROS DE CONCRETO	20	
	PANTALLAS METALICAS	70	
PANTALLAS DINAMICAs	PANTALLAS DINAMICAS	2300	

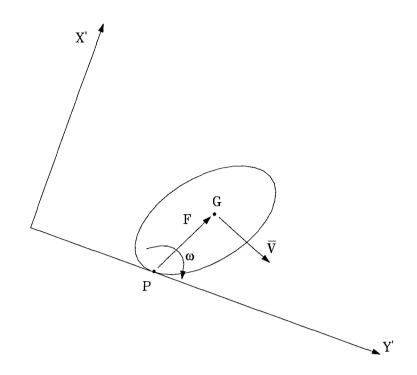


Fig. 5.1 : Esquema del Impacto del Bloque y del Movimiento después del Impacto según Bozzolo.

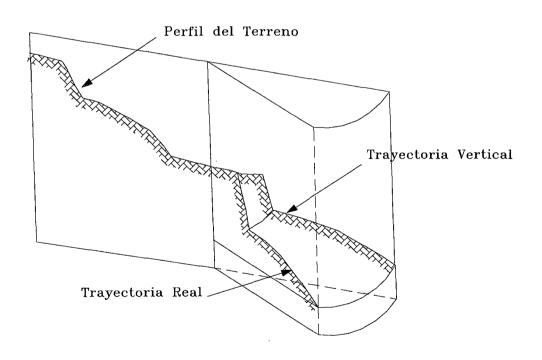


Fig. 5.2: Superficie Topográfica del Talud.

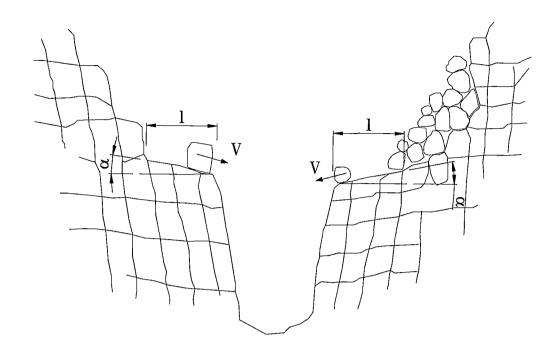


Fig. 5.3: Condición Inicial de un Bloque antes de la Caída desde la Coronación del Talud.

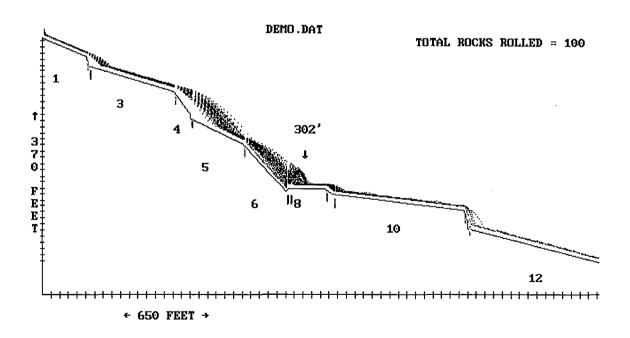


Fig. 5.4: Sección Transversal con la Trayectoria de cada Simulación.

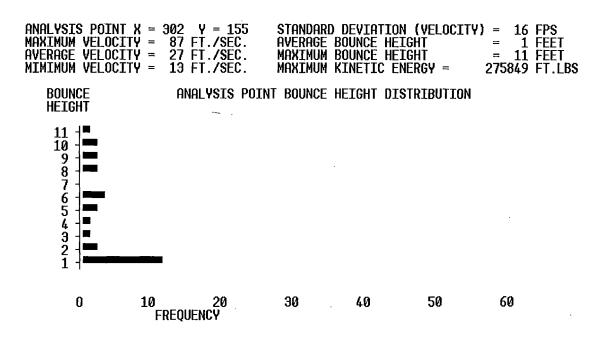
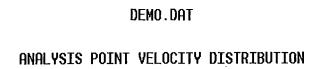



Fig. 5.5: Gráfico Frecuencia vs. Altura de Rebote y Resultados de Velocidad, Altura de Rebote y Energía Cinética Máxima del Análisis de Caída de Rocas

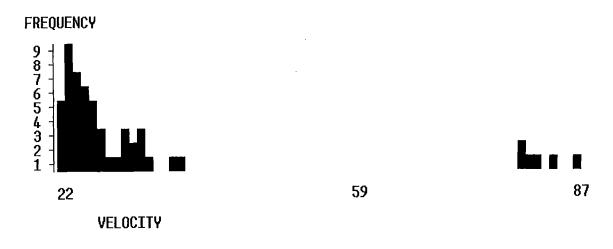


Fig. 5.6: Gráfico Velocidad vs. Frecuencia.

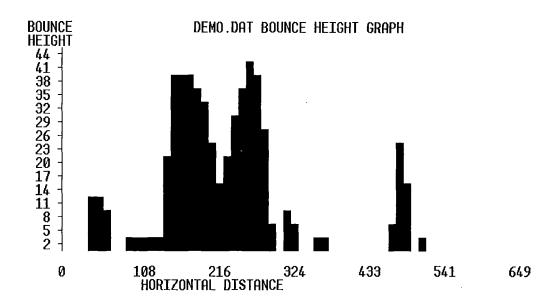


Fig. 5.7: Gráfico Distancia Horizontal vs. Altura de Rebote.

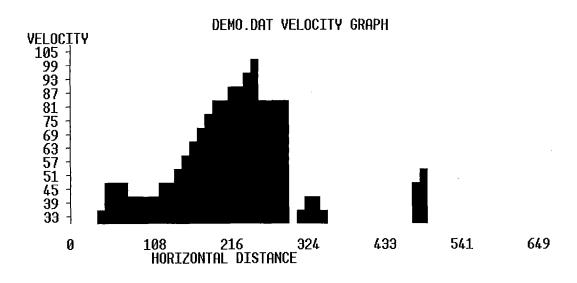


Fig. 5.8: Gráfico Distancia Horizontal vs. Velocidad.

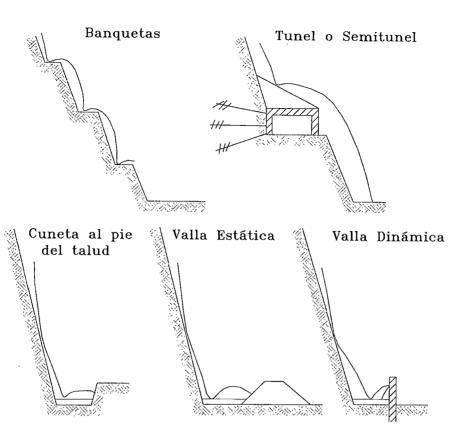


Fig. 5.9: Métodos de Protección Contra la Caída de Rocas.

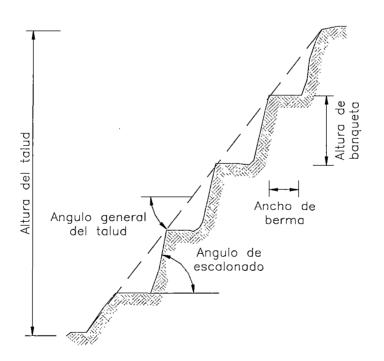


Fig. 5.10: Esquema de un Talud con Banquetas

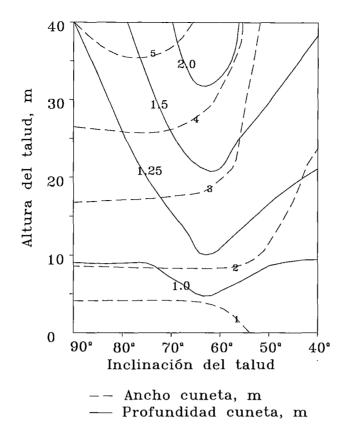


Fig. 5.11: Diagrama para el Dimensionamiento de Cunetas para la Intercepción de Rocas. (Mak y Blomfield, 1986).

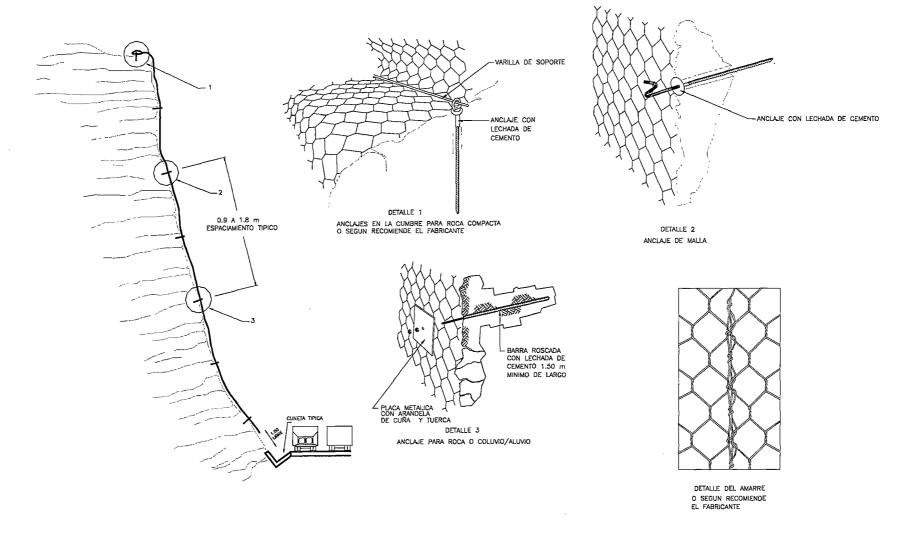


Fig. 5.12: Esquema de un Talud con Enmallados

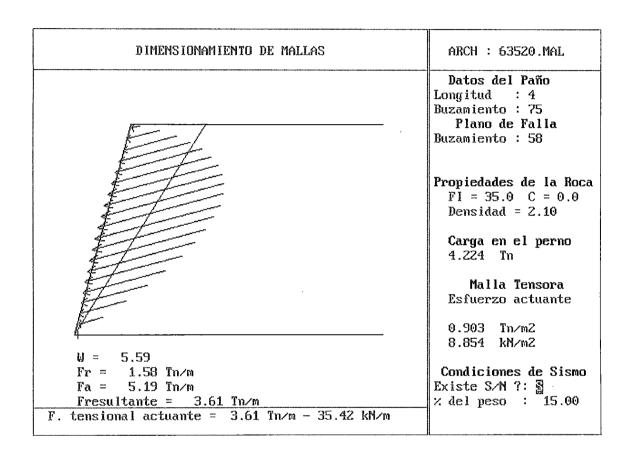


Fig. 5.13: Programa Malla para el Diseño de Enmallados

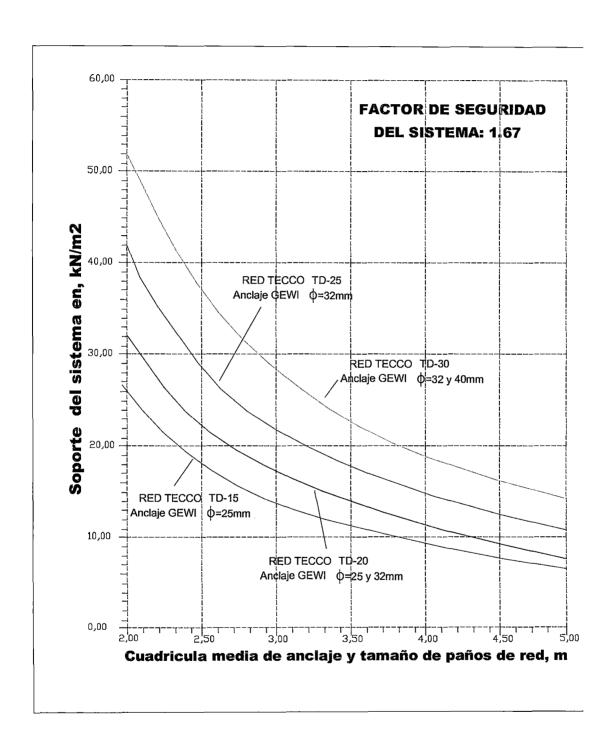


Fig. 5.14: Nomograma de Diseño del Sistema TECCO TD

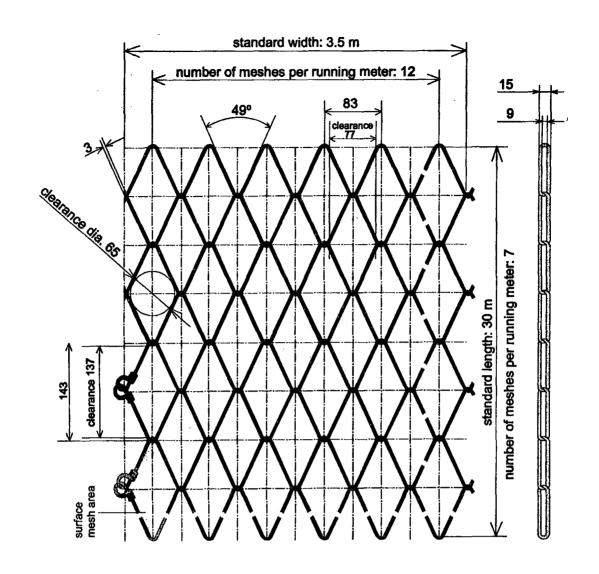


Fig. 5.15: Malla usada por el Sistema Tecco Mesh G-65

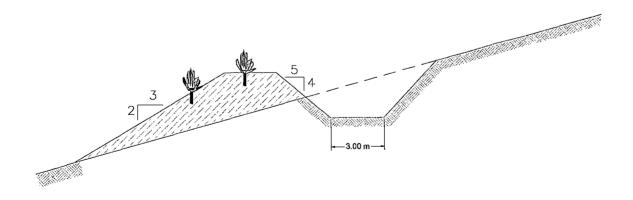


Fig. 5.16: Caballones de Tierra con Cunetas Colectoras del Lado de la Ladera

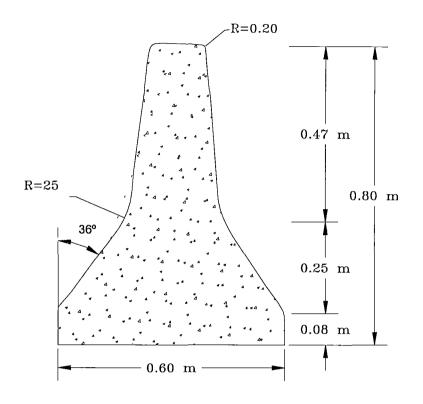


Fig. 5.17: Muros de Concreto

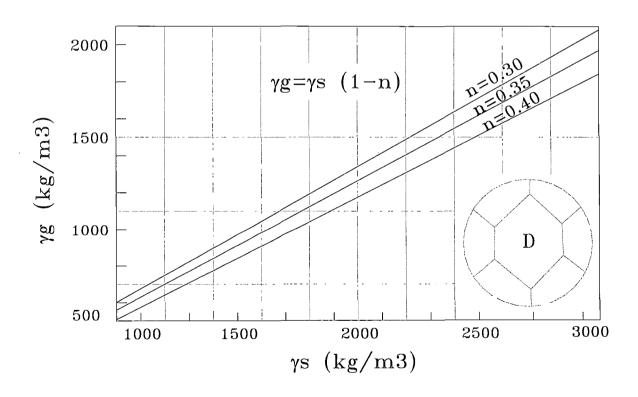


Fig. 5.18: Gráfico para la Determinación del Peso Específico Aparente de Gavión

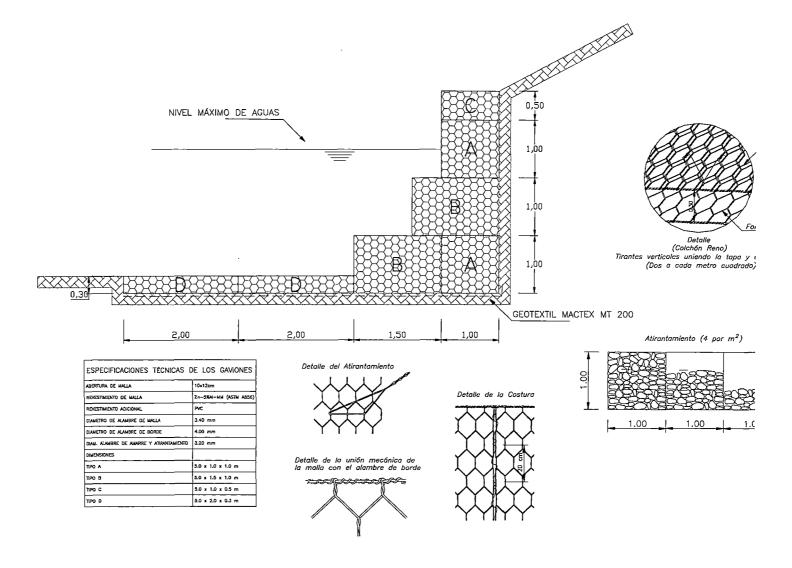
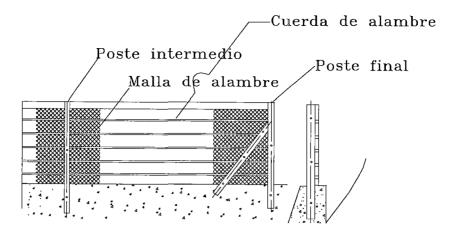
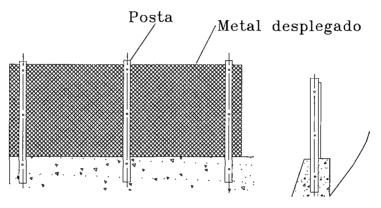




Fig. 5.19: Plano de Detalle de Gaviones

Valla tipo cuerdas de alambre y malla

Valla tipo malla y postes H

Fig. 5.20: Tipo de Vallas Estáticas

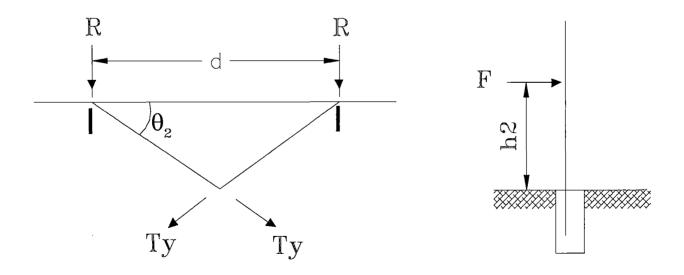


Fig. 5.21: R y F_Y de la Valla de Prevención de Caída de Rocas

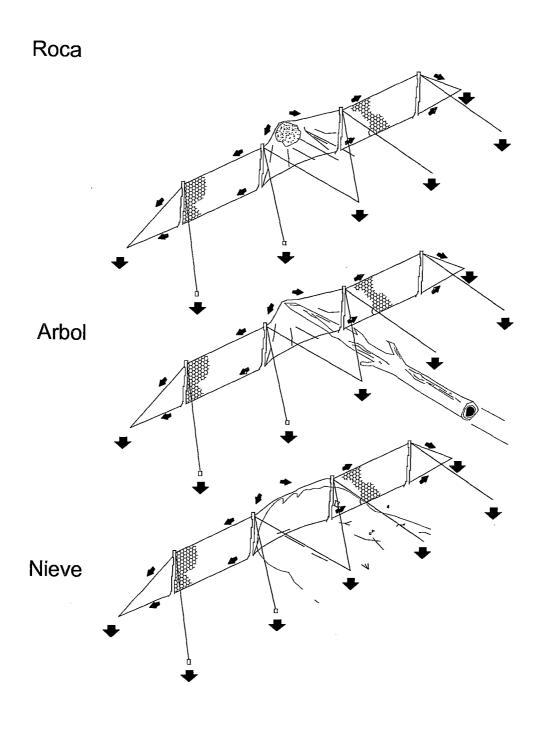


Fig. 5.22: Valla Dinámica

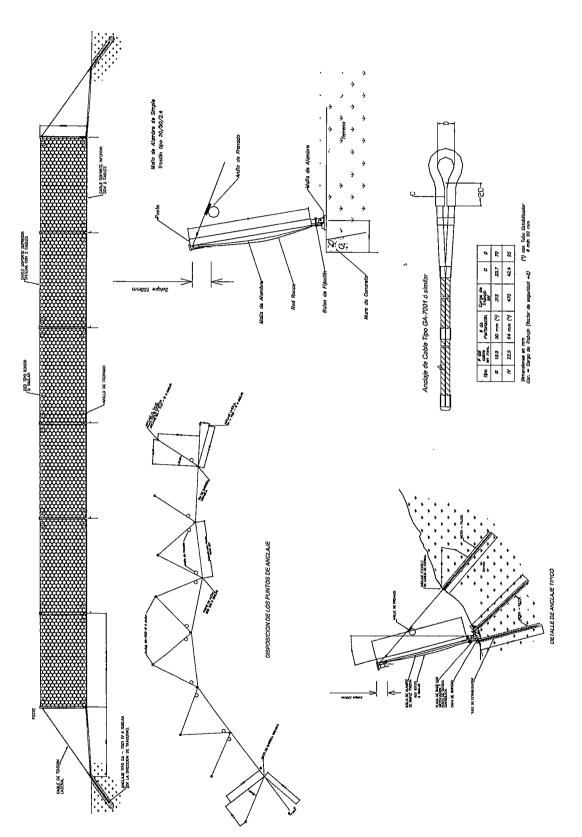


Fig. 5.23: Valla Dinámica

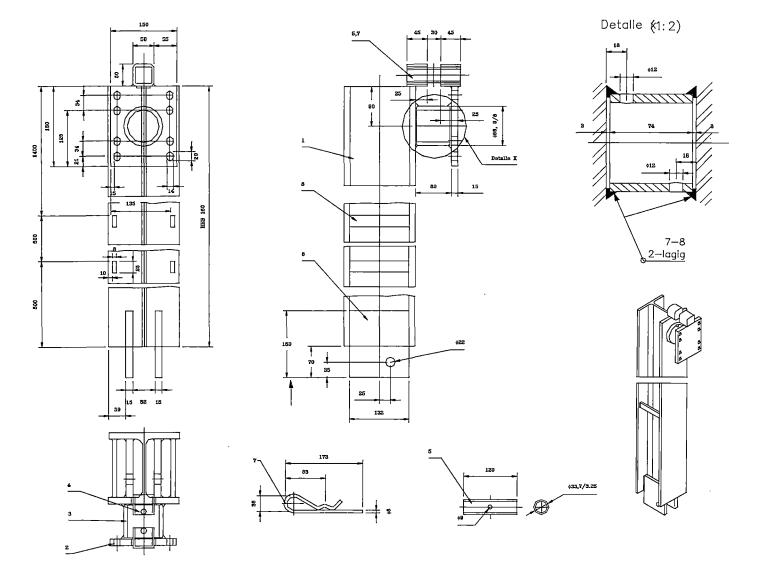


Fig. 5.24: Postes en H para Valla Dinámica

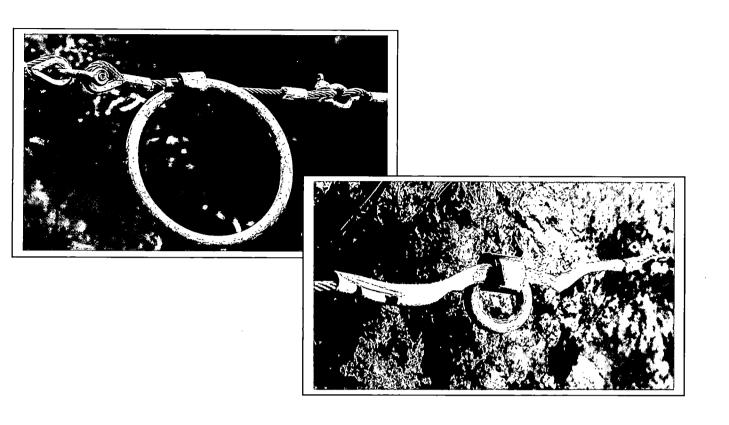


Fig. 5.25: Anillo de Frenado (Disipador de Energía)

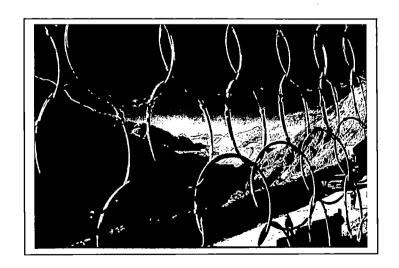


Fig. 5.26: Red de Anillos ROCCO

CAPITULO VI

6.0 ANALISIS DE ESTABILIDAD DE TALUDES EN LAS CURVAS DE LA LEONA (EL SALVADOR)

6.1. GENERALIDADES

Este capítulo presenta la aplicación de los diferentes métodos de análisis de estabilidad de taludes ante una amenaza sísmica, así como las medidas correctivas ha adoptarse, las cuales han sido descritas en los capítulos anteriores, para los taludes críticos de la Carretera Panamericana CA-1 en el tramo Curva de La Leona dañada por los terremotos del 13 de Enero y del 13 de Febrero del 2001 en la República de El Salvador.

Dicho tramo de carretera sufrió los embates de los terremotos y como consecuencia de ello muchos de los taludes aledaños a la vía presentaron inestabilidad ocasionando daños materiales y pérdidas humanas.

Se ha realizado el análisis de Estabilidad Estático, Pseudo-Estático, Deformaciones Permanentes y Análisis de Caída de Rocas de los taludes de los tramos críticos, empleándose una serie de programas de cómputo y hojas de cálculo para un mejor estudio.

El análisis estático de estabilidad se ha ejecutado mediante el método de equilibrio límite haciendo uso de las metodologías de Bishop Modificado y Janbu, proporcionando en ambos casos un factor de seguridad, el cual toma en consideración las características topográficas, de resistencia cortante del suelo, hidrogeología, grietas de tensión, etc.; en el análisis estático y pseudo-estático se utilizaron los programas de cómputo PCSTABL de la Universidad de Purdue (van Aller, 1996) y SLOPE/W de Geoslope International (1998).

Para obtener un modelo geotécnico de falla de los taludes se hizo uso de la topografía que existía antes del sismo y se realizó un análisis retrogresivo (back analysis) y así comprobar que con dichos parámetros geotécnicos se tendría un factor de seguridad superior a la unidad antes de los terremotos, y también se verificará que el factor de seguridad sea igual a la unidad ante la ocurrencia de los movimientos sísmicos que ocasionaron fallas.

Después de tener un modelo geotécnico de falla confiable y teniendo parámetros geotécnicos fiables se realizó el análisis estático con el talud estabilizado, para verificar que su factor de seguridad sea superior al del diseño.

De la misma manera se realizó el análisis pseudo-estático, el cual calcula el factor de seguridad por el método de equilibrio límite, tomando la acción de un coeficiente lateral sísmico. Adicionalmente, el análisis pseudo-estático permite conocer el valor de la aceleración de fluencia, es decir aquel valor del coeficiente lateral sísmico que produce un factor de seguridad igual a la unidad que se emplea en el método de deformación permanente.

El método de deformación permanente emplea como criterio de diseño la deformación permanente producida en un talud ante la acción sísmica; es usado en taludes conformados de suelos arcillosos compactos, arenas secas y suelos granulares densos, ya que en estos suelos existe poco potencial de desarrollo de presión de poros, generándose relativamente deformaciones pequeñas y el material retiene su resistencia estática. En este método se evalúa la respuesta dinámica para calcular las deformaciones permanentes. La falla ocurre en una superficie de deslizamiento bien definida con comportamiento elástico hasta la falla y luego ocurre comportamiento perfectamente plástico.

El análisis unidimensional de respuesta sísmica usa el programa de cómputo SHAKE91, elaborado por I.M. Idriss y J.I. Sun (1992) de la Universidad de California, Berkeley.

El método de deformaciones permanentes fue propuesto originalmente por Newmark (1965). Sarma (1975) propuso usar el modelo para analizar los efectos de las fuerzas de inercia y presión de poros en el factor de seguridad, la aceleración crítica y el desplazamiento. Makdisi y Seed (1977) desarrollaron un método simplificado basado en el concepto original de Newmark para aplicarlo en presas de tierra y terraplenes.

La descripción resumida del Método de Deformaciones Permanentes es la siguiente:

1) Se determina la aceleración de fluencia, es decir, el coeficiente lateral sísmico con el cual una superficie potencial de falla desarrollará un factor de seguridad igual a la unidad. Los valores de la aceleración de fluencia están en función de la geometría del talud, la resistencia cortante del material involucrado y la localización de la superficie potencial de deslizamiento.

- 2) Se determinan las aceleraciones producidas por el sismo en el talud mediante un análisis de respuesta dinámica. Se pueden emplear técnicas desde los elementos finitos con propiedades del suelo dependientes del nivel de deformación o técnicas unidimensionales más simples. De estos análisis se determinan los tiempo-historia de aceleraciones promedio para las superficies potenciales de falla.
- 3) En una masa potencial de deslizamiento, cuando la aceleración inducida excede a la aceleración de fluencia calculada, se asume que los movimientos ocurrirán a lo largo de la dirección del plano de falla y la magnitud del desplazamiento se evalúa por un procedimiento simple de doble integración.

Para el cálculo de las deformaciones permanentes producidas en el talud por la acción sísmica se utilizó el Método de Newmark, con algoritmos y hojas de cálculo para presentar los resultados (Alva Hurtado e Infantes, 2000). Se tendrá en consideración que para el cálculo de la deformación permanente del talud, además del sismo de diseño, es necesario conocer la superficie de falla propuesta y el valor de la aceleración de fluencia calculada por el método de equilibrio límite en el análisis pseudo-estático. Los cálculos de la deformación permanente se ejecutaron para los tres taludes críticos en su condición antes del sismo para verificar su falla y luego de realizada la estabilización del talud para predecir su comportamiento satisfactorio ante el sismo de diseño.

Para los sismos de diseño, por la cercanía a la zona de Las Curvas de La Leona se utilizaron los registros de la Unidad de Salud San Pedro Nonualco y del Hospital Santa Teresa, en La Paz, para el sismo del 13 de Enero del 2001 y el registro del Hospital Santa Gertrudis en San Vicente, para el sismo del 13 de Febrero del 2001.

Finalmente, se presentan los resultados de los análisis en los taludes de los tres sectores críticos y las conclusiones y recomendaciones del estudio de estabilidad de taludes.

6.2. ANTECEDENTES

La República de El Salvador (Fig. 6.1, Fig. 6.2, Plano 01) fue afectada por dos sismos distintivos; el primer sismo ocurrió el 13 de Enero del 2001 y fue de subducción. Este movimiento telúrico destruyó 108,000 casas y ocasionó por lo menos 944 víctimas. El 13 de Febrero del 2001, ocurrió el segundo cerca de San Vicente, al oriente de San Salvador, en este caso fue un sismo continental; perdiendo la vida 315 personas y 41300 viviendas destruidas. A causa de tal fenómeno muchos deslizamientos se produjeron.

El 13 de Enero del 2001 aconteció el primer sismo con una magnitud de Mw = 7.6 y una profundidad focal de 39.0 Km., frente a las costas de El Salvador a 100 Km. al suroeste de San Miguel, El Salvador, las coordenadas del epicentro según la USGS fueron 12.83° latitud N y 88.79° longitud W. El evento principal se localizó en la placa del Caribe, por encima de la placa de subducción de Cocos, siendo un evento de falla normal.

El 13 de Febrero del 2001, ocurrió un sismo a 30 Km. al este de San Salvador, El Salvador. Tuvo una magnitud de Mw = 6.6 y una profundidad focal de 13.0 Km. El USGS reportó el epicentro en las coordenadas 13.64° latitud N y 88.94° longitud W. El sismo fue continental, en la corteza de la placa del Caribe.

Los terremotos de las fechas mencionadas produjeron numerosos daños a causa de los deslizamientos, derrumbes y caída de rocas. Influyó en forma preponderante la naturaleza del terreno y su topografía abrupta. La Cordillera que atraviesa de sur a norte El salvador es llamada la Cordillera del Bálsamo y está constituída por depósitos volcánicos y topografía muy inclinada y ha tenido amplificación sísmica.

Así en esta cordillera existieron derrumbes catastróficos como el de Las Colinas y como el ocurrido en el Km. 53 de la Curva de La Leona, parte de la Carretera Panamericana CA-I.

Los materiales que atraviesan la carretera están compuestos por depósitos de tobas, cenizas volcánicas, fragmentos rocosos y gravas con matriz limo arcilloso, existiendo algunos afloramientos rocosos y bolonerías (rocas sueltas de diferentes dimensiones), estas rocas en muchos casos han quedado expuestas y desestabilizadas a inminentes caídas por cargas generadas en los eventos sísmicos.

6.3. SISMICIDAD

Con la finalidad de determinar el sismo de diseño de las obras de estabilización de los deslizamientos de Las Curvas de la Leona, se pretende en este acápite dar un resumen de la tectónica, sismicidad histórica, estudios de peligro sísmico, deslizamientos inducidos por sismos y registros de aceleraciones en El Salvador.

6.3.1. TECTONICA

América Central y el Caribe presentan un régimen tectónico que es el resultado de la interacción de cinco placas:

- La placa del Pacífico
- La placa de Norteamérica
- La placa de Cocos
- La placa de Nazca
- La placa de Sudamérica.

Dichas placas se muestran en la Fig. 6.3 (Weyl, 1980) y Fig. 6.4. En esta última se observa la dirección de movimiento de dichas placas. Las principales fuentes sísmicas en El Salvador son:

1. La zona de subducción, donde la trinchera o la fosa se encuentra a 125 Km de la costa. Donde la placa de Cocos empieza a sumergirse por debajo de la placa del Caribe (Fig 6.5, White y Harlow, 1993), alcanzando

- profundidades de hasta 300 Km por debajo de Centroamérica. Los sismos de subducción en esta zona son sentidos en todo el territorio nacional porque se generan a grandes profundidades y pueden alcanzar magnitudes de hasta 8.0 grados en la escala de Richter. (Cepeda y Salazar, 2001).
- 2. La zona que coincide con la ubicación de la cadena volcánica (Stoiber y Carr, 1977). La zona se concentra en los primeros 25 Km. de la corteza terrestre y dentro de una faja paralela a la fosa, de unos 20 Km. de ancho. En esta zona también se encuentran los volcanes activos del Cuaternario. A diferencia de los sismos de subducción, los sismos de esta zona provocan daños en una zona limitada ya que su foco es superficial y su magnitud reducida. La máxima magnitud de esta zona es de 6.5 en la escala de Richter.
- Otras fuentes generadoras de sismos son las que se ubican en el sistema de fallas de Guatemala y la depresión de Honduras, aunque por su lejanía a El Salvador su efecto sísmico es menor.

6.3.2. SISMICIDAD HISTORICA

La información obtenida de sismos históricos data desde 1520, y ha sido preparada por Alvarenga et al. 2001, del Centro de Investigaciones Geotécnicas del Ministerio de Obras Públicas de la República de El Salvador, y es presentado en el Anexo A.

La Tabla 6.1 (Salazar y otros,1997), muestra un resumen de los sismos destructivos en El Salvador en el siglo XX. Dicha Tabla indica la fecha de ocurrencia, ubicación, profundidad, fuente sísmica, magnitud e intensidad sísmica.

Entre los sismos locales más destructivos se pueden mencionar el de Jucuapa-Chinameca del 6 de Mayo de 1951; el de San Salvador del 3 de Mayo de 1965 y el del 10 Octubre de 1986, el de San Vicente del 13 Febrero del 2001. Los terremotos locales de la cadena volcánica no alcanzan magnitudes mayores de 6.5, pero son la principal causa de destrucción en El Salvador debido a su coincidencia con las principales concentraciones urbanas.

Los sismos originados en la zona de subducción han sido históricamente menos frecuentes (Harlow et al, 1993). El último sismo regional o de subducción de gran intensidad fue el del 13 de Enero del 2001, ubicado en el Océano Pacífico. Estos sismos pueden alcanzar magnitudes de 8.0 grados en la escala de Richter.

La Fig. 6.6 muestra la superposición de mapas de isosistas de sismos de foco superficial que han causado graves daños en El Salvador en los siglos XVIII, XIX y XX. Así mismo se tienen las vistas de los mapas de isosistas del sismo de subducción del 13 de Enero (Fig. 6.7) y sismo continental del 13 de febrero del 2001 (Fig. 6.8). De esto se observa que los sismos de subducción se sienten en todo el territorio, aunque con una menor intensidad.

En el Anexo B se presentan los mapas de isosistas de los sismos salvadoreños de siguientes fechas: 07 de Setiembre de 1915, 06 de Mayo de 1951, 03 de Mayo de 1965, 4 de Febrero de 1976, 19 de Junio de 1982, 10 de Octubre de 1986.

Existe en El Salvador un mapa de Máximas Intensidades Sísmicas Observadas (Aguilar, 1986), que se presenta en la Fig. 6.9, en ésta se observa que la zona norte de El Salvador ha experimentado valores de intensidades máximas en la escala de Mercalli Modificada de VI grados; mientras que en la zona volcánica central se ha experimentado valores

máximos de VIII – IX en la escala de MM. En tanto que todo el resto del territorio ha tenido intensidades máximas de VII MM. Los últimos sismos ocurridos desde 1986 han ratificado la distribución propuesta de máximas intensidades observadas para la República de El Salvador.

6.3.3. ESTUDIOS DE PELIGRO SISMICO

En la revisión efectuada a la literatura recopilada se ha determinado la existencia de cuatro estudios de peligro sísmico probabilístico para la República de El Salvador (Bommer et al, 1996). Los estudios revisados fueron realizados por el US Geological Survey (Algermissen et al, 1988); la Universidad de Stanford (Alfaro et al, 1990); la Universidad Autónoma de México (Singh et al, 1993) y NORSAR-CEPREDENAC (Lindholm et al, 1995).

Luego en la Fig. 6.10 se realiza una comparación de los mapas de peligrosidad sísmica para El Salvador para un período de retorno de 475 años, que equivale a un tiempo de exposición de 50 años con una probabilidad de excedencia del 10%. Se puede apreciar en la figura que existen grandes diferencias en los valores de aceleración máxima para un mismo lugar. Es bueno indicar además que en la preparación de los mapas no se toman en cuenta las condiciones y efectos locales.

Las diferencias existentes se deben a la incertidumbre que existe con los datos disponibles en el país y las características de los movimientos fuertes de la región (Bommer et al, 1996). Así en el caso de San Vicente, lugar cercano al área en estudio los valores para 475 años varían de 0.3g a 1.0g para la aceleración máxima horizontal en terreno firme.

Rymer y White (1989) han preparado la Fig. 6.11 en la cual se presentan las áreas afectadas por deslizamientos durante sismos en El Salvador, sin incluir los eventos del año 2001. En dicha figura se han tomado en cuenta los factores topográficos, litológicos, precipitaciones e intensidad sísmica y se han superpuesto las zonas donde se han producido intensidades sísmicas mayores que VII grados en la escala de Mercalli Modificada.

6.3.4. REGISTRO DE ACELERACIONES DEL AÑO 2001

En El Salvador existen varias redes de registros de movimientos fuertes a nivel nacional, éstas son:

- 1. La red analógica de acelerógrafos tipo SMA-I pertenece al Centro de Investigaciones Geotécnicas del Ministerio de Obras Públicas (CIG). Esta red tiene varios instrumentos en San Salvador y en el resto del territorio nacional. La Comisión Ejecutiva del Río Lempa opera acelerógrafos tipo SMA-I en la Presa San Lorenzo (15 de Septiembre). Dos acelerógrafos digitales SSA-2 se instalaron en la planta geotérmica de Berlín, en el Departamento de Usultán. Existen tres instrumentos SMA-I en el Hotel Camino Real en San Salvador, los cuales registraron el sismo de 1986 (Shakal et al, 1987).
- La red digital TALULIN recientemente establecida por la UCA (Universidad Centroamericana José Simeón Cañas).

Ambas redes, CIG y UCA, son presentadas en la Fig. 6.12, en esta se muestra las ubicaciones de los acelerógrafos en El Salvador. Asimismo en el Anexo C se presentan los registros acelerográficos disponibles de los sismos de Enero y Febrero de 2,001.

REGISTRO DEL SISMO DEL 13 DE ENERO DEL 2001

La red del CIG consta de 25 acelerógrafos analógicos de tipo SMA-I, en el sismo del 13 de Enero del 2001 solo se activaron 9 estaciones acelerográficas que son: Acajutla (CA), Ahuachapán (HA), Ciudadela Don Bosco (DB), Cutuco (CU), Presa 15 de Septiembre (QC), Relaciones Exteriores (RF y RS), San Miguel (SG) y Sensuntepeque (SE).

La red del CIG ha registrado aceleraciones horizontales máximas de 0.32g en Relaciones Exteriores (RS) en San Salvador. En la Presa San Lorenzo ó 15 de Septiembre (QC), cercana a las Curvas de La Leona, se registró una aceleración máxima horizontal de 0.19g.

La red acelerográfica digital de la UCA consta de 10 acelerógrafos digitales tipo SSA-2, estos equipos han registrado los tres sismos de Enero y Febrero del 2001, durante el sismo del 13 de Enero del 2001 funcionaron 9 estaciones de la red de la UCA, no habiendo registrado el acelerógrafo instalado en el Hospital Santa Gertrudis en San Vicente (VI). El mayor valor de aceleración horizontal se registró en la componente norte—sur (1,18g), de la Unidad de Salud de Puerto de La Libertad (LI). Valores de aceleración máxima horizontal cercanas o ligeramente superiores a 0.50g se registraron en las estaciones: Hospital San Rafael, Santa Tecla (TE); Unidad de Salud de Armenia, Sonsonate (AR) y la Unidad de Salud de San Pedro Nonualco, La Paz (NO). Se debe indicar que las distancias epicentrales de las estaciones anteriores varían entre 62 y 108 Km. En las estaciones indicadas el material es suelo, a excepción de la estación US Puerto de La Libertad que es aluvión y el instrumento está ubicado en una cresta dorsal este - oeste.

En la Tabla 6.2 se tienen valores corregidos de aceleraciones máximas en las tres componentes de registros para el sismo del 13 de Enero de 2001.

REGISTRO DEL SISMO DEL 13 DE FEBRERO DEL 2001

El mayor valor de aceleración horizontal se registró en la componente norte-sur (0.43g) del Hospital Santa Gertrudis en San Vicente (VI). Los resultados de las aceleraciones máximas medidas en este sismo se muestran en la Tabla 6.3.

En la estación Hospital Santa Teresa en Zacatecoluca (ZA) se registró un valor de 0.41g en la componente norte-sur y en la estación de la Unidad de Salud de Tonacatepeque en San Salvador (TO), se registró en la componente este-oeste una aceleración horizontal máxima de 0.31g. En todas las estaciones indicadas existe material de suelo.

Los valores de las aceleraciones máximas obtenidas en los acelerógrafos para los sismos del 13 de Enero y 13 de Febrero de 2001, tanto las componentes horizontales como las componentes verticales se presentan en la Fig. 6.13, Fig. 6.14, Fig. 6.15 y Fig. 6.16.

6.3.5. SISMOS DE DISEÑO

Con propósitos de diseño para el caso del análisis de estabilidad de Las Curvas de La Leona se propone utilizar el método determinístico de datos registrados.

Se propone utilizar un sismo de subducción de diseño con una aceleración horizontal máxima de 0.5g y un coeficiente lateral sísmico para el método pseudo— estático de 0.25.

Para el sismo de diseño continental se propone utilizar un sismo de diseño con una aceleración horizontal máxima de 0.4g y un coeficiente lateral sísmico para el método pseudo— estático de 0.20. Estos valores representan sismos similares a los ocurridos en el área en estudio en el año 2001 y son consistentes con los promedios de estudios de peligro sísmico realizados en El Salvador.

6.4. GEOLOGIA

La acción de fenómenos de geodinámica externa e inestabilidad de taludes, en especial a los asociados con factores sísmicos y litológicos, que han afectado los cortes (taludes), de la carretera Panamericana (CA-1), sector de "La Leona" (km 50+840 – km 55+160), son estudiados de tal forma de obtener el marco geológico que permita diseñar las correspondientes soluciones geotécnicas.

6.4.1. CLIMA

El clima donde se ubica el área de estudio se caracteriza por dos estaciones propiamente dichas, y dos transiciones, durante el curso del año (Servicio Meteorológico Nacional – El Salvador):

- La Estación Seca, entre Noviembre Abril.
- Transición Seca Lluviosa entre Abril Mayo.
- Estación Lluviosa, entre Mayo Octubre.
- Transición Lluviosa Seca, entre Octubre Noviembre.

6.4.2. MARCO GEOLÓGICO

6.4.2.1. ESTRATIGRAFIA

Regionalmente predominan unidades litoestratigráficas de naturaleza volcánica (lávica y piroclástica).

Los afloramientos que constituyen los taludes y/o laderas de la zona donde se emplaza la vía están compuestos por rocas que van desde el Terciario (Neógeno) al Cuaternario Reciente. Las unidades diferenciadas en el área de influencia del Proyecto corresponden, según el cartografiado efectuado por la Misión Geológica Alemana (1968 – 1976), a las formaciones del Terciario, representadas por la Formación Bálsamo; la Formación Cuscatlán, del Terciario Superior – Cuaternario Pleistocénico y las Unidades piroclásticas recientes sobreyacientes, pertenecientes a la Formación San Salvador "Tierras Blancas"

Según el Atlas de El Salvador estas unidades estratigráficas presentan las siguientes características litológicas generales:

(1) TERCIARIO (Neógeno)

Formación Bálsamo (Plioceno)

De acuerdo a la Nomenclatura de la Misión Alemana se diferencia los miembros:

Miembro b1: Epiclásticas volcánicas y piroclásticas, localmente efusivos básicos-intermedios intercalados.

Miembro b3: Efusivas básicas – intermedios.

(2) TERCIARIO - CUATERNARIO

Formación Cuscatlán (Plio-Pleistoceno)

De acuerdo a la Nomenclatura de la Misión Alemana se diferencia los miembros:

Miembro c1: piroclásticos ácidos, epiclastitas volcánicas.

Miembro c2: Efusivas ácidas e intermedias-ácidas

(3) CUATERNARIO

Formación San Salvador (Pleistoceno-Holoceno)

De acuerdo a la Nomenclatura Estratigráfica de la Misión Alemana se distingue en la zona el siguiente miembro:

Miembro S4: "Tierra Blanca": piroclásticos ácidos y epiclásticos, volcánicos subordinados; localmente efusivos ácidos (S3'b).

Depósitos Recientes:

Suelos residuales y depósitos antrópicos, sobre los que se desarrolla una cobertura vegetal.

La Tabla 6.4 muestra las respectivas unidades litoestratigraficas de la zona y el Plano 02 de Geología - Geodinámica presenta gráficamente las diferentes zonas por la cruza la carretera, además de las unidades litológicas.

6.4.2.2. RASGOS GEOMORFOLOGICOS

Las geoformas se encuentran estrechamente controladas por las estructuras resultantes de los procesos tectónicos y volcánicos recientes. Predomina el relieve de colinas altas, el mismo que se encuentra disectado por cursos de agua menores, cuya evolución está controlada por la vegetación, presentando pendientes moderadas a abruptas. Es así que en esta unidad geomorfológica se desarrolla la mayoría del trazo, en corte abierto.

La denominada Cadena Costera (Cadena de Bálsamo), corresponde a relieves de alta montaña, cuya altura máxima sobrepasa los 2000 msnm. Está representado en la zona de trabajo por Sierra La Libertad — San Salvador — San Vicente. Allí se ubican el Volcán San Salvador (1959.97 msnm) y Volcán San Vicente (2181.74 msnm), por su parte otro rasgo geomorfológico es la depresión donde se emplaza el Lago Ilopango, que es producto de la colapso de una caldera.

6.4.2.3. GEODINAMICA EXTERNA

En la generación de los fenómenos de Geodinámica Externa intervienen directa y/o indirectamente factores estáticos y factores dinámicos. Los factores estáticos son:

- Factores topográficos
- Factores estructurales (fallas, estratificación, fracturas, pliegues, etc.) Litológicos (suelos y rocas)
- Factores hidrogeológicos

Y los factores dinámicos de mayor importancia son:

- La acción de lluvia
- La actividad sísmica
- La gravedad

Como parte de la evaluación de geodinámica externa, se han identificado fenómenos activos y/o potenciales de movimientos de masa dentro de la franja de la carretera entre el km 50+840 y km 55+160.

Dentro de los fenómenos identificados, tenemos: Derrumbes, Deslizamientos, Caída de rocas.

DERRUMBES

Se caracterizan por la caída repentina de una porción de suelo o roca por pérdida de la resistencia al esfuerzo cortante. No presenta plano o superficie de deslizamiento.

DESLIZAMIENTOS

Se caracterizan por el deslizamiento pendiente abajo y hacia fuera, de pequeñas o grandes masas de suelo, rocas, rellenos artificiales, en un talud natural o artificial. Presenta una superficie de falla por donde se produce el movimiento.

CAIDA DE ROCA

Se caracteriza por la caída violenta de fragmentos o porciones de roca de diversos tamaños, en forma libre, salto, rebote, y rodamiento.

En el Plano 02 (Geológico-Geodinámico) donde se detallan las características particulares y ubicación de los fenómenos identificados, el esquema volcánico-estratigráfico y un cuadro de fenómenos de geodinámica externa

6.4.3. ESTABILIDAD DE TALUDES

Para la evaluación del nivel de riesgo de los taludes se realizó la recopilación de las características geológicas - geotécnicas de los materiales que conforman dichos taludes, y su probable incidencia sobre la vía, para este fin se utilizó la plantilla de evaluación que se muestra en la Tabla 6.5 la que sirvió de base para la determinación del Factor de Riesgo.

6.4.3.1. EVALUACION DEL NIVEL DE RIESGO

de evaluadas características geológicas Luego las geotécnicas particulares de la Carretera Panamericana CA-1, Tramo km 50+840 – 55+160, identificado la susceptibilidad de los taludes ante los eventos sísmicos desencadenantes, así su comportamiento histórico (identificación de paleorelieves asociados a movimientos de remoción en masa anterior), y fenómenos de geodinámica externa actuantes, se ha evaluado el nivel de riesgo mediante tablas de síntesis que permita en forma fácil y rápida, establecer el mismo, para cada subtramo de la carretera y determinar el riesgo según la Tabla 6.5 en su parte inferior donde se muestra la existencia de cuatro niveles de riesgo: Leve, Moderado, Crítico y Muy Crítico con su respectiva valoración.

La evaluación del Nivel de Riesgo toma como parámetros determinantes la topografía, volumen en movimiento, la velocidad con que se desarrolla el fenómeno (el cual depende de la pendiente del talud, forma de la superficie de rotura y propiedades físicas de los materiales, principalmente) y los daños que puede ocasionar (humanos y materiales).

Se complementó la información con datos como: altura del talud, pendiente del talud, características geológicas (litología), humedad del medio (presencia de agua superficial y subsuperficial en el material), con lo cual se tiene una evaluación más integral.

Los taludes pueden estar en evolución progresiva ó nula. En cuanto al factor topográfico se toma como referencia la pendiente de los taludes: suaves (menores a 10°), medianos (10-30°), y fuertes (mayores de 30°).

El volumen de material movido ó inestable, expresado en metros cúbicos, se ha clasificado en rangos menores de 10, 10-100, 100-1000, y mayores de 1000m³. Respecto a los daños materiales probables ó existentes, se consideran en ligeros, intermedios y catastróficos, según la magnitud ó la probabilidad del fenómeno.

La evaluación del tramo en estudio se presenta en el Anexo D, en donde se muestran las tablas de evaluación del nivel de riesgo haciendo uso de la metodología antes descrita.

6.4.3.2. CARACTERISTICAS GEOLÓGICO-ESTRUCTURALES DE LOS TRAMOS CRITICOS

Se considera que un talud se encuentra en un nivel de riesgo **Críticos** a los taludes que representan un peligro elevado para la carretera, es decir, que de ocurrir un deslizamiento y/o derrumbe importante no sólo obstaculizará el tránsito vehicular, sino que puede dañar las estructuras tales como cunetas, alcantarillas, plataforma y principalmente puede cubrir la totalidad de la vía obstaculizando el tránsito vehicular. Los tramos de progresiva 53+860-51+060, 51+340-51+420 y 51+640-51+700 tiene un nivel de riesgo de Crítico.

Los taludes de un nivel de riesgo Muy Crítico son aquellos taludes que se encuentran con evidencia de activación y que representan un serio problema para la carretera; es decir que de ocurrir un deslizamiento y/o derrumbe dañará las estructuras tales como cunetas, alcantarillas, plataforma vial, y principalmente cortará el tránsito vehicular por un tiempo prolongado. El tramo de progresiva Km. 53+060-53+280 presentó este nivel de riesgo.

De acuerdo a la evaluación de riesgo, se han determinado cuatro(04) zonas críticas, que a continuación se detallan:

ZONA CRITICA Nº 01

El nivel de riesgo de esta zona se encuentran en la Tabla 6.5, la zona presenta características tales como:

Ubicación(Km) 50+800 - 51+060

Lado de la Carretera: Izquierdo

Tipo de Fenómeno

Derrumbe

Unidad Estratigráfica:

Fm. Cuscatlán (miembro C1)

Unidad Geomorfológica:

Colinas Altas (zona de ladera)

Unidad Geotécnica:

Talud superior, en corte cerrado

Inclinación del Talud:

35° (material caido)

50° (talud)

Altura del talud

25 - 30m

Nivel de Riesgo/Valoración: Crítico / 11

Factor de Humedad:

Presencia de manchas y filtración de

agua en la parte alta del talud.

Factor Desencadenante:

Sismo

Condiciones:

El talud originalmente con pendiente promedio de 70° aprox. falló como consecuencia del sismo de Febrero del 2001; se observan agrietamientos en la parte alta del talud de relieve llano a subhorizontal y se aprecian hasta 10m mas allá del borde más alto de la escarpa principal.

La superficie de falla irregular afectó el frente del talud; material deslizado cubrió totalmente la vía izquierda de la autopista, afectando además un muro de retención ubicado al pie del talud. El volumen movilizado supera los 45,000m³ aprox.

ZONA CRITICA Nº 02

El nivel de riesgo de esta zona se encuentran en la Tabla 6.6, la zona presenta las siguientes características:

Ubicación : km 51+340 - km 51+420

Lado de la Carretera : Izquierdo

Tipo de Fenómeno : Deslizamiento en cuña

Unidad Estratigráfica: Fm. Cuscatlán (miembro C1)

Unidad Geomorfológica: Colinas Altas (zona de ladera)

Unidad Geotécnica : Talud superior, en banqueta

Inclinación del Talud: 35° (material caído)

70° (talud)

Altura del talud : 45-50m

Nivel de Riesgo/Valoración: Crítico / 11

Factor de Humedad : Presencia de filtración de agua en el

frente fallado.

Factor Desencadenante: Sismo

Análisis Estructural :

Estructuralmente se tiene cuatro (04) familias de discontinuidades (fallas), predominantes.

Familia N° 01:

DB 184° B 51°

Familia N° 02:

DB 61° B 78°

Familia N° 03:

DB 180° B 78°

Familia N° 04:

DB 96° B 82°

A fin de establecer el grado de influencia de estas familias en la estabilidad del talud, donde a priori se observa un control estructural y su relación con la orientación del trazo (en curva) con respecto a estos, se ha efectuado el análisis de estabilidad para deslizamiento planar, cuña y volteo, apoyado en el programa Conteo (Las salidas se encuentran en el Anexo E). Cabe señalar que el talud fallado evidencia in-situ un control estructural.

Para falla Planar: Existe ligera tendencia a este tipo de falla asociada a las discontinuidades agrupadas a la Familia N° 01 de DB 184° B 51°.

Para falla por Cuña: Condición crítica, cuñas potencialmente inestables conformadas por los planos de discontinuidades agrupadas a la Familia Nº 01 con los planos de la Familia Nº 4 de DB 96° B 82°. Así mismo existe tendencia a falla en cuña de la combinación de la Familia N° 01 con el plano de discontinuidades agrupados en la Familia N° 02 DB 61° B 78°.

Para falla por Volteo: La combinación de las discontinuidades agrupadas en la Familia Nº 02, con las discontinuidades agrupadas en la Familia Nº 04, constituyen una condición crítica.

Correlacionando el comportamiento de las discontinuidades en el tramo crítico, con el análisis realizado en las proyecciones estratigráficas, se concluye que el mecanismo principal de falla es el tipo cuña.

Se remarca la sensibilidad sísmica a lo largo de la dirección NW-SE, representado en este caso por la Familia Nº 01 DB 184° B 51° y en segundo término por la Familia N° 04 DB 96° B 82°, de orientación general NE-SW, que se presume subordinada a la primera, coincidiendo en este caso con el marco tectónico de El Salvador.

ZONA CRITICA Nº 03

La hoja de evaluación del nivel de riesgo se muestra en la Tabla 6.7, las características de dicha zona se describen a continuación:

Ubicación : km 53+060 - km 53+280

Lado de la Carretera : Izquierdo

Tipo de Fenómeno : Deslizamiento traslacional

Unidad Estratigráfica: Fm. Bálsamo (miembro b3)

Unidad Geomorfológica: Colinas Altas (zona de ladera)

Unidad Geotécnica : Talud superior

Inclinación del Talud: 40° (material suelto)

40° - 56° (Talud)

Altura del talud : 150 - 170m

Nivel de Riesgo/Valoración: Muy Crítico / 13

Factor de Humedad : Filtración de agua en el frente del

escarpe principal.

Factor Desencadenante: Sísmo

Condiciones:

El deslizamiento principalmente compromete ambas vías de la carretera entre el km 53+040 y el km 53+280, se desplazó a través de una superficie de falla de forma regularmente plana. El volumen remocionado superó los 400,000m³. Se generaron dos movimientos, el primer movimiento ocurrió con el sismo de Enero – 2001, mientras que el segundo se desencadenó como consecuencia del Sismo de Febrero- 2001.

Se observa un claro control estructural, reportándose deslizamientos menores en años anteriores a los eventos citados, pero asociados a actividades antrópicas (extracción de material en la zona).

La presencia de grietas paralelas al contorno de la parte alta del escarpe principal, extiende su influencia entre 20 y 30m hacia la cabecera del deslizamiento que presenta pendiente aproximada de 40°, con saltos menores a 0.15m, hasta donde el relieve es llano a subhorizontal.

Se aprecia notoria presencia de flujo de agua en el frente de la escarpa principal.

Análisis Estructural:

En la zona del Proyecto, del Análisis Estereográfico se han diferenciado cuatro (04) familias de discontinuidades(fallas) predominantes:

Familia Nº 01:

DB 184° B 51°

Familia N° 02:

DB 61° B 78°

Familia N° 03:

DB 180° B 78°

Familia Nº 04:

DB 96° B 82°

Cabe señalar que existe particular concentración de fallamientos en este sector (estructuralmente sensible).

A fin de establecer el grado de influencia de estas familias en la estabilidad de los taludes, se analizan los datos tomados en el campo respecto a la orientación e inclinación del talud de este sector, mediante el programa Conteo, para falla planar, cuña y volteo (ver diagramas resultantes en el Anexo F).

Para Falla Planar: Condición crítica para este tipo de falla de los planos de discontinuidades agrupados en la Familia N° 01 DB 184° B 51°, cuyo polo se ubica nítidamente dentro de la zona crítica.

Cabe señalar que la superficie de falla del deslizamiento ocurrido en este sector, pertenece a esta Familia.

Para Falla por Cuña: La combinación de las familias agrupadas en la Familia N° 01 y Familia N° 04, constituyen cuñas potencialmente inestables (condición crítica).

Para Falla por Volteo: Tendencia al volteo de las familias agrupadas en la Familia N° 01.

El análisis de los resultados de las proyecciones estereográficas y su correlación con las evidencias de campo, se concluye que el tipo de falla principal es la **planar**, subordinándose los demás tipos de falla a ésta. Cabe señalar que la superficie del deslizamiento que afectó el talud entre el Km 53+060– Km 53+280, pertenece a esta familia.

6.5. GEOTECNIA Y MECANICA DE SUELOS

Las investigaciones geotécnicas y de mecánica de suelos desarrolladas para analizar la estabilidad de los taludes de la Carretera Panamericana CA-1, en el sector de las curvas de La Leona, comprendido entre el Km. 50+860 y el Km. 55+160, son:

6.5.1. SONDAJES PROFUNDOS

La Tabla 6.8 muestra la ubicación de los sondajes realizados para cada uno de los deslizamientos y la profundidad de éstos. Las perforaciones fueron del tipo diamantinas a rotación (diámetro interno mínimo entre 63 mm y 96 mm) con recuperación de muestras alteradas e inalteradas, así también se recuperaron núcleos continuos. Los registros de las perforaciones para los deslizamientos Nº 1, Nº 2 y Nº 3 se encuentran en el Anexo G así como las tablas resumen de las perforaciones.

Para esta etapa de exploración se realizaron pruebas SPT, y para el deslizamiento del Km. 53+060 al Km. 53+280, además de lo ya indicado, se ha realizado la instalación de tubos inclinométricos, para el monitoreo de los taludes de dicho sector.

Para la recuperación de muestras inalteradas se hizo uso del tubo Shelby (3"), esta recuperación ha sido limitada, debido a la dureza de los materiales encontrados, habiéndose logrado obtener únicamente dos (02) de este tipo de muestras, donde las condiciones del terreno lo han permitido.

6.5.2. MUESTRAS INALTERADAS Y PRUEBAS SPT EN TALUDES DE DESLIZAMIENTO

Para establecer los parámetros geotécnicos requeridos para el análisis de estabilidad de taludes se extrajo muestras inalteradas de la superficie expuesta en un número de 23, luego mediante ensayos de corte directo y, ensayos triaxiales (Tipo UU, es decir no consolidado – no drenado), las muestras fueron llevadas a la ciudad de Guatemala, para hacer dichos ensayos por contar con el personal y equipo especializado.

Se hizo ensayos de corte directo en muestras limo arenosas y arenas gravosas y tuvieron que ser remoldeadas por su naturaleza y no tiene el tamaño para ensayos triaxiales.

En las perforaciones realizadas en los deslizamientos se realizaron 21 ensayos SPT con recuperación de muestras alteradas, los registros se encuentran en el Anexo H y un resumen de los ensayos se muestran en la Tabla 6.6.

Dado que el deslizamiento 3 presenta un volumen considerable en la parte inferior del talud se realizó 4 pruebas de Penetración Estándar (SPT 16-17-18-19) para investigar el grado de compactación del suelo natural existente, que deberá ser acondicionado como berma de soporte del pie de talud del deslizamiento. Los resultados de las pruebas de Penetración Estándar (SPT), antes indicadas, se presentan en el Anexo H.

6.5.3. PROSPECCION GEOFÍSICA DEL DESLIZAMIENTO 3

Para el deslizamiento 3, también se han realizado prospecciones geofísicas, consistentes en 590 m. de Refracción Sísmica y cinco (05) Sondajes Eléctricos Verticales.

La ubicación de las líneas de refracción sísmica y de los sondajes eléctricos verticales, se detallan en el Anexo I.

> Sísmica de Refracción

Para estas pruebas se han utilizado equipos del tipo Geometrics Smartseis de 12 canales con registro digital, habiéndose elaborando los perfiles del subsuelo para su interpretación y correlación con los perfiles obtenidos mediante la ejecución de los sondajes profundos.

Las dromocrónicas fueron registradas digitalmente e interpretados en términos de espesores y velocidad de cada capa mediante el software SIP (Seismic Interpretation Package) desarrollado para los formatos digitales de los equipo Geometrics, o similares.

La generación de impulsos sísmicos se efectuó mediante impacto de martillo con disparador en la superficie, con tiros de 10 m del inicio, en el medio y a 10 m del final de cada tendido de geófonos, es decir, tres tiros por dispositivo.

> Resistividad Eléctrica

En el deslizamiento 3, se efectuaron 5 sondeos eléctricos verticales (SEV) utilizando el método tetrapolar de Schlumberger explicado en el Capítulo II del presente trabajo.

La interpretación automática de la curva de campo se correlaciona tanto con los perfiles de sísmica de refracción, como con los perfiles de los sondeos profundos con perforación diamantina para obtener el modelo geoeléctrico de campo.

La Tabla 6.10 nuestra un resumen de los datos sísmicos y eléctricos realizados y cuyos resultados son mostrados en el Anexo I.

La información que brinda la geofísica se complementa a la información geotécnica obtenida en sondeos profundos, definiéndose así el perfil del subsuelo que será analizado para determinar la estabilidad de los taludes materia de la presente investigación.

6.5.4. MONITOREO DEL TALUD DEL DESLIZAMIENTO 3

Después de realizadas las perforaciones en el derrumbe del Km. 53+060 al Km. 53+280, se instalaron dos tuberías inclinométricas en los sondajes de 150m y de 30m de dicho sector. El control del deslizamiento es de suma importancia y es por medio de la inclinometría que permite ver si existe un movimiento, así como la detección de algún plano de deslizamiento.

Los registros de inclinometría para los sondajes de 150m y 30m se encuentran en el Anexo J.

6.5.5. RESULTADOS DEL ESTUDIO GEOTÉCNICO Y DE MECANICA DE SUELOS

Todo el programa de exploración de campo ha sido complementado con los correspondientes ensayos de laboratorio, habiéndose obtenido como resultado la cuantificación de los principales parámetros de los suelos encontrados.

Los parámetros que han de ser utilizados para el análisis de estabilidad de taludes de los tramos donde han ocurrido los principales deslizamientos, y de los sectores donde existe falla en los terraplenes de la vía, se resumen en las Tablas 6.11, 6.12 y 6.13 para cada uno de los deslizamientos respectivos.

Dichas tablas muestran la clasificación de los suelos, el contenido de humedad, el ángulo de fricción interna, la cohesión, etc., de acuerdo al tipo de ensayo que se ha practicado a cada una de las muestras obtenidas de acuerdo al programa de investigaciones descrito anteriormente.

6.6. ANALISIS DE ESTABILIDAD DE TALUDES

6.6.1. INTRODUCCION

En este acápite se presenta el análisis de estabilidad de los taludes críticos de la Carretera Panamericana CA-1 en el tramo Curvas de La Leona en El Salvador dañada por los terremotos del 13 de Enero y 13 de Febrero de 2001. Para esta finalidad se realizaron el análisis de estabilidad estático, pseudo-estático y de deformaciones permanentes de cada uno de los taludes.

Para el estudio de los taludes críticos se emplearon los registros de aceleraciones que fueron descritos en acápite 6.3 de sismicidad. Para este fin se usaron los registros sísmicos próximos a las Curvas de la Leona, con distintas amplificaciones de las aceleraciones máximas a 0.5g, 0.75g, 1.00g y 1.50g, y así de esta manera ser utilizados en el análisis de deformaciones permanentes.

El programa SHAKE (Schnabel et al, 1972) y la versión moderna de SHAKE 91 (Idriss y Sun, 1992) permite evaluar la respuesta mediante el análisis unidimensional de propagación de ondas con el uso de modelos lineales equivalentes para el suelo (Seed e Idriss, 1970; Seed et al, 1984), además que nos permitió amplificar el sismo hasta las aceleraciones máximas descritas en el párrafo anterior.

En el cálculo de las deformaciones permanentes producidas en el talud por la acción sísmica se usó el método de Newmark, haciendo uso de hojas de cálculo y programas (Alva Hurtado e Infantes, 2000). Cabe resaltar que en el cálculo de la deformación permanente es necesario además de un registro de un sismo de diseño, una superficie de falla dada y un el valor de la aceleración de fluencia calculada por el método de equilibrio límite.

Los cálculos de la deformación permanente se ejecutaron para los tres taludes críticos en su condición antes del sismo para verificar su falla y luego de realizada la estabilización del talud para predecir su comportamiento satisfactorio ante el sismo de diseño.

6.6.2. MODELO GEOTECNICO DE FALLA DE TALUDES

La correcta modelación geotécnica de falla de un talud es muy importante y consiste en definir las características de un talud de tal manera de poder explicar satisfactoriamente su comportamiento ante distintas condiciones de esfuerzos y cargas aplicadas, y de esta manera obtener un esquema para la definición de soluciones de estabilización.

En la desarrollo de un modelo geotécnico de los taludes se definen las características topográficas, geológicas, de mecánica de suelos, e hidrogeológicas, así como se definen las cargas ya sea en el mismo talud, el pie o sobre la cabeza del mismo y que pueden afectar la estabilidad del mismo. La correcta caracterización de las fallas ocurridas es importante pues existe una relación cercana entre el tipo de inestabilidad que puede producirse y la naturaleza intrínseca del material.

En el análisis de estabilidad de taludes de los tres casos críticos se ejecutaron las siguientes situaciones:

- Estabilidad de los taludes pre-sísmicos.
- Comportamiento inestable del talud durante el sismo y
- Estabilidad de los taludes con las medidas correctivas para las condiciones sísmicas similares a las del 13 de Enero de 2001.

A continuación se presenta el modelo geotécnico de los tres deslizamientos que se analizan en este estudio:

6.6.2.1. DESLIZAMIENTO Nº 1

El deslizamiento N° 1, está ubicado entre las progresivas 50+860 y 51+060 de la Carretera Panamericana, y tiene una longitud de 200 metros, su altura varía de 25 a 30m, la pendiente del talud era de ½ a 1 a ¼ a 1 sin bermas y se mantuvo estable durante muchos años, durante el 13 de Enero el talud falló en forma de derrumbe en la mitad superior del talud, el derrumbe se caracteriza por la caída repentina de una porción de sección mas o menos triangular con superficie de falla de forma recta e inclinación mayor de 60°, debido al aumento de cargas producidas por el sismo. La estratigrafía del talud se encuentra en la Tabla 6.11.

6.6.2.2. DESLIZAMIENTO Nº 2

El deslizamiento No. 2, está ubicado entre las progresivas 51+340 y 51+420 de la Carretera Panamericana, y tiene una longitud de 80 metros, su altura es de 50m, su pendiente máxima antes del sismo era de ½ a 1, con 3 bermas de ancho variable, distribuidas a lo largo de toda la altura del talud, el talud se mantuvo estable muchos años; durante el terremoto del 13 de Enero el talud falló en forma de deslizamiento rotacional en la mitad superior del talud, es decir, afectando las dos bermas superiores, que colapsaron y ubicándose la superficie de falla del deslizamiento

unos 10 m sobre la primera berma. Posteriormente en el sismo del 13 de Febrero existieron derrumbes adicionales en la parte mas alta del talud fallado debidos al volteo de bloques inestables originados por la falta de apoyo en el pie de los mismos, y por la presencia de grietas en la cabeza del talud producto del primer deslizamiento. Existieron grietas de hasta 15 m mas allá de la escarpa principal. La estratigrafía del talud se encuentra en la Tabla 6.12.

6.6.2.3. DESLIZAMIENTO Nº 3

El deslizamiento No. 3, está ubicado entre las progresivas 53+060 y 53+280 de la Carretera Panamericana, en una longitud de 220 metros, su altura es de 150 m, inicialmente la zona de taludes estaba afectada mas o menos hasta una altura de 50 metros debido a la construcción de la Carretera Panamericana, además el área adyacente a la carretera estaba siendo explotada para extraer material para construcción de carreteras, y al momento del deslizamiento no tenía una sección transversal definida, ni medidas de protección como banquetas, por lo que la zona se constituía en zona de derrumbes desde hace muchos años.

El talud fue construido originalmente con dos bermas y con taludes ½ a 1 con una zona de retiro de 15 m, sin embargo la explotación a que fue sometida hizo que se perdiera esta sección y se volviera un talud inestable, especialmente debido a la caída de rocas. Fue así que por el sismo del 13 de Enero, el talud falló en forma de un deslizamiento translacional desde unos 100m de altura hasta el pie del talud y movilizó aproximadamente 400 000 m3, con el sismo del 13 de Febrero hubo un segundo deslizamiento, esta vez rotacional y movilizó unos 10 000 m3. Posteriormente se encontraron grietas que se extienden en forma

mas o menos concéntrica con la falla original hasta 30 m más allá del borde de la escarpa principal del derrumbe. La estratigrafía del talud se encuentra en la Tabla 6.13.

6.6.3. ANALISIS ESTATICO Y PSEUDO-ESTATICO

Para el análisis de estabilidad estático y pseudo-estático de los taludes críticos de las Curvas de La Leona se ha utilizado el método de equilibrio límite en base a la topografía existente antes del sismo, para determinar por un análisis retrospectivo (back analysis) los parámetros existentes antes de la falla de los taludes. Luego mediante la utilización de un coeficiente lateral sísmico consistente con los sismos ocurridos se ha podido verificar la falla del talud. También, con la utilización de esta metodología se ha determinado la aceleración de fluencia a emplearse en el método de cálculo de las deformaciones permanentes con la acción sísmica.

Los métodos de equilibrio límite fueron utilizados en los tres principales derrumbes en la zona en estudio, con el propósito de establecer rangos de valores de las características de resistencia cortante del suelo, que permitan luego ser comparadas con los resultados de los ensayos de laboratorio y entender el mecanismo de falla del talud.

Para realizar el análisis retrospectivo se contó con los perfiles topográficos de los taludes antes de la ocurrencia del sismo. También se contó con coeficientes laterales sísmicos, se usó un coeficiente de 0.25 para el análisis pseudo-estático.

Se realizaron los análisis de estabilidad estáticos y pseudo-estáticos para el talud estabilizado, utilizando los parámetros de resistencia cortante del análisis pre-sismo, el coeficiente lateral sísmico y el talud con las medidas correctivas.

6.6.4. ANALISIS RETROSPECTIVO (BACK ANALYSIS)

Siguiendo la metodología dada en los capítulos anteriores, a continuación se explican los resultados obtenidos para cada de los taludes críticos:

DESLIZAMIENTO Nº 1

Se analizó la condición del primer deslizamiento para el sismo del 13/01, fallando en forma de derrumbe de los estratos superiores, aplicando el método de bloques deslizantes de Janbu y manteniéndose estable con el sismo del 13/02 con un Factor de Seguridad > 1.0 y respetando los pesos de los suelos encontrados en campo, de esta manera, se han encontrado los siguientes valores para las características físicas de los suelos:

 $\varphi = 35^{\circ}$

c = 35 KPa (0.35 kg/cm2)

Estos resultados son válidos para las dos capas superiores de suelo, el back analysis se muestra en la Fig. 6.17 con un coeficiente sísmico de 0.25g.

DESLIZAMIENTO Nº 2

El derrumbe se da en los 27 metros superiores, afectando cinco estratos de limos, arenas y gravas en general bastante consolidadas considerándose como tobas, se ha hecho un análisis de la falla para el sismo del 13/01 considerando el tramo fallado como homogéneo, de esta manera se tiene que para un coeficiente sísmico horizontal de 0.25, el talud falla con una superficie rotacional de acuerdo al análisis de Bishop Modificado con un FS < 1.0 con los siguientes parámetros:

$$\varphi = 33^{\circ}$$
c = 30 kN/m2 (0.30 Kg/cm2)

El back analysis se muestra en la Fig. 6.18.

DESLIZAMIENTO Nº 3

Este deslizamiento fue de carácter translacional, por lo que para el análisis retrogresivo se ha recurrido a los métodos de bloques deslizantes de Rankine y Janbu, ya que se conoce la superficie de falla y que se han podido definir basándose en levantamientos topográficos antiguos cual era el perfil del terreno natural antes del sismo.

El deslizamiento más grande ocurrió el 13/01 por lo que se ha analizado la falla para un coeficiente sísmico horizontal de 0.25, considerando para fines de este análisis un talud de características físicas homogéneas, de esta manera se han obtenido los siguientes valores:

$$\varphi = 40^{\circ}$$
 $c = 50 \text{ kN/m2 } (0.50 \text{ kg/cm2})$

El back analysis se muestra en la Fig. 6.19.

Dado que durante el sismo del 13/02 se dió un segundo deslizamiento en la parte alta, se ha hecho un análisis retrogresivo de este bloque, asumiendo una forma de falla rotacional para una aceleración horizontal de 0.20g, resultando los siguientes valores para el ángulo de fricción y la cohesión:

$$\varphi = 40^{\circ}$$
c = 20 kN/m2 (0.20 kg/cm2)

El back analysis se muestra en la Fig. 6.20.

Este estrato inferior está por supuesto menos consolidado y había quedado con grietas verticales después del primer sismo, lo que ha influido para que los resultados del análisis sean menores.

6.6.5. ANÁLISIS DE ESTABILIDAD PRE- Y POST-SISMO

En este acápite se ha procedido a correlacionar los resultados del ángulo de fricción interna y cohesión procedentes de pruebas triaxiales, pruebas de Corte Directo, Correlación de Resultados SPT y Análisis Retrospectivo, para definir todas las propiedades necesarias para proceder a los análisis de estabilidad pre y post sismo.

Los análisis pre-sismo sirven para determinar si el modelo asumido sigue siendo consistente en cuanto a su respuesta a los sismos de diseño, de tal manera que puedan usarse mas tarde para los diseños que se vayan definiendo.

El análisis pre-sismo para el derrumbe Nº 1 arroja los siguientes resultados:

Según los resultados de las pruebas de laboratorio se verificó la estabilidad del talud antes del sismo para condiciones estáticas, los datos utilizados en este análisis fueron

Tipo de Suelo	φ(grados)	Cohesión(kg/cm2)
\mathbf{CL}	41	0.045
SM	26.5	0.085
SW .	45	0.0

Con estos datos se obtiene un Factor de Seguridad de 0.45 (Fig. 6.20) para condiciones estáticas, lo cual significa que el talud sería inestable para condiciones estáticas, lo cual no corresponde a la realidad, ya que el

talud se mantuvo estable para condiciones estáticas durante muchos años, en el back analysis realizado anteriormente se definieron valores característicos para el talud de $\phi = 35$ grados y c = 0.35 kg/cm2, sustituyendo estos valores para los dos estratos superiores, se logra un FS en condiciones estáticas de 1.11 (Fig. 6.21), lo cual significa que el talud es estable.

Se realizó el análisis pre-sismo para el deslizamiento Nº 2 y se obtuvieron los resultados siguientes:

Para la condición estática antes del sismo se tiene un factor de seguridad de 1.39 (Fig. 6.22) de acuerdo al análisis de falla rotacional de Bishop Modificado, y FS = 0.97 (Fig. 6.23) para una coeficiente horizontal de 0.25, lo cual corresponde con lo observado.

El análisis pre-sismo para el deslizamiento N° 3 arroja resultados consistentes, ya que se tiene un FS = 0.96 (Fig. 6.24) para un coeficiente sísmico horizontal de 0.25, FS = 1.04 (Fig. 6.25) para 0.20g y FS = 1.42 (Fig. 6.26) para la condición estática.

Así de esta manera el análisis pre-sísmico permite dar una explicación satisfactoria de los deslizamientos ocurridos, tanto en la fase estática como ante la condición sísmica, de esta manera, se consideran que las propiedades de los suelos son lo bastante cercanas a la realidad y que pueden ser tomadas como base para los cálculos futuros, donde en la siguiente fase se definirán las medidas de rehabilitación de los taludes, es decir, volverlos estables para condiciones sísmicas como las experimentadas en el evento del 13/01/2001.

El análisis post-sismo del Deslizamiento N° 1 para las condiciones del talud estabilizado y un coeficiente sísmico de 0.25g arroja un valor de factor de seguridad de 1.10 con el programa Slope/W (Fig. 6.27) y 1.18 en el programa Pestabl (Fig. 6.28); el Deslizamiento N° 2 para las condiciones de talud estabilizado y un coeficiente sísmico de 0.25g tiene un factor de seguridad de 1.375 con el programa Slope/W (Fig. 6.29) y 1.25 con el programa Pestabl (Fig. 6.30); finalmente el Deslizamiento N° 3 con las condiciones de talud estabilizado y coeficiente sísmico de 0.25g tiene un factor de seguridad de 0.961 con el programa Slope/W (Fig. 6.31) y 1.06 con el programa Pestabl (Fig. 6.32).

6.6.6. ANALISIS DE DEFORMACIONES PERMANENTES

Para la condición de servicio de un talud luego de un sismo está controlada por las deformaciones, más aún si se trata de taludes, que como se sabe, ante la ocurrencia de una falla significa un grave peligro, pudiendo provocar en el peor de los casos una catástrofe ambiental y muertes. De esta manera para la evaluación de los desplazamientos permanentes de los taludes se consideró el método de Newmark.

Para el caso de los taludes naturales de las Curvas de La Leona se ha establecido valores límites de hasta 10 cm, ya que se trata de materiales susceptibles a la vibración.

6.6.6.1. CALCULO DE DEFORMACIONES PERMANENTES CON SISMOS DE DISEÑO

Se hizo uso del programa para realizar el cálculo de deformaciones permanentes con el método de Newmark llamado DESPLA, este programa está basado en la publicación de Houston et al (1987), además el algoritmo de cálculo fue implementado a una hoja Excel para obtener resultados gráficos de forma inmediata y que son presentados en los cálculos siguientes.

Los valores de las aceleraciones de fluencia han sido determinados para dos tipos de falla; una falla que corresponde a la totalidad del talud y otra a la mitad del talud, ya que corresponde a lo que se ha observado durante la acción sísmica de los sismos de Enero y Febrero del 2001.

Para los sismos de diseño, por la cercanía a la zona de Las Curvas de La Leona se utilizaron los registros de la Unidad de Salud San Pedro Nonualco en La Paz y del Hospital Santa Teresa en La Paz para el sismo del 13 de Enero del 2001 y el registro del Hospital Santa Gertrudis en San Vicente para el sismo del 13 de Febrero del 2001. Se debe anotar que no se contó con registros de aceleraciones en San Vicente para el sismo del 13 de Enero.

Los cálculos se realizaron para los deslizamientos N° 1, N° 2 y N° 3, para lo cual se hizo uso de los valores de aceleraciones máximas registradas y los registros sísmicos amplificadas a valores de 0.5, 0.75, 1.0 y 1.5g como aceleración máxima, este procedimiento fue posible con el programa SHAKE, el cual logra aumentar en forma proporcional los valores del registro a aquellos valores de aceleración máxima supuestos. Por la clase de suelos encontrados en las investigaciones de campo y la forma del talud es indudable que existió una amplificación de las aceleraciones, dado esto una suposición ingenieril fue utilizar amplificaciones de hasta tres veces.

La Tabla 6.14 presenta los resultados de los cálculos de las deformaciones permanentes para los tres deslizamientos en la condición pre-sísmica. Estos valores de deformación permanente son para una falla al 50% del talud y para una falla total de los mismos, así mismo se usaron los registros nombrados anteriormente.

El análisis de los resultados de las condiciones pre-sismo nos indican que para una falla del 50% del talud, el sismo registrado en **San Pedro Nonualco** se consideró como el de mayor importancia por presentar una máxima aceleración y un contenido de frecuencia mayor que los registros de Santa Teresa y Santa Gertrudis, se notó que tal registro producía deformaciones permanentes menores a los 8.5 cm en los tres taludes; sin embargo con una amplificación a 0.75 g para el mismo mecanismo de falla se desarrollarían deformaciones permanentes en el talud mayores a 20 cm, que impondrían la falla del mismo.

Estos valores resultan ser inferiores a los que se proponen para presas de tierra y terraplenes, pero dado el caso de ser taludes naturales, constituidos por materiales volcánicos se justifica la utilización de un valor límite mucho menor.

De la misma manera se presentan los resultados obtenidos para deformaciones permanentes en los taludes estabilizados en la Tabla Nº 6.15.

En el Anexo K se muestran las salidas de la hoja de cálculo que realiza el análisis de deformaciones permanentes junto con gráficas que complementan la información, tanto para los taludes en un estado pre-sísmico, así como con las medidas correctivas de estabilización de los mismos.

6.6.7. MEDIDAS CORRECTIVAS

Las medidas correctivas de los taludes presentadas, y los resultados se han descrito anteriormente, satisfacen los criterios de diseño en cuanto a estabilidad de los taludes en condiciones estáticas y bajo carga sísmica, control de la escorrentía superficial y del drenaje subterráneo, control de la erosión, control de la caída de rocas y el adecuado diseño de las estructuras de retención necesarias.

A continuación se presenta la descripción de las medidas correctivas propuestas para cada una de las zonas en estudio:

6.6.7.1. DESLIZAMIENTO Nº 1

Movimiento de Tierras

En la zona del derrumbe 1, se debe perfilar el talud entre las progresivas 50 + 860 y 51 + 060 de la siguiente manera:

- Construir una zona de retiro de por lo menos 3 m de ancho al lado de la carretera.
- Perfilar el talud hasta una altura de 15 m con una pendiente de ½ a 1.
- Conformar una berma de 5 m de ancho en la corona de este primer talud.
- Perfilar el talud con base en la primera berma con una pendiente variable entre ½ a 1 y 1 a 1 tal como se muestra en la planta, hasta alcanzar la cresta existente del talud y desalojar todos los bloques inestables.

Drenaje y Subdrenaje

Para el Control de la Erosión y Drenaje Superficial del talud se proponen los siguientes trabajos:

- Construcción de dos contracunetas trapezoidales de ancho = 1.2 m y profundidad = 0.3 m revestida de concreto simple f''c= 180 kg/cm2 colado en el sitio en la berma y al pie del talud y una cuneta de coronación en la cresta del talud, con pendiente hacia el oriente.
- Construcción de bajaderos de Mampostería de Piedra a mitad del tramo y en el extremo oriental de la contracuneta.
- Revestimiento de los taludes con malla biodegradable.

Estructuras de Protección

Dado que el estrato superior del talud contiene bolonería aislada es necesaria la construcción de una barrera dinámica para controlar la caída de rocas y su llegada hasta la carretera en la primera berma. También se construirá un muro a base de gaviones y tendrá una sección de ancho = 1.0 m y altura = 2.0 m a lo largo de la orilla de la carretera en toda la longitud del talud corregido.

Las Obras de Estabilización del Deslizamiento Nº 1 se encuentran representadas gráficamente en el Plano 03, así mismo el Plano 04 muestra los detalles para la protección del talud tales como las barreras dinámicas y geomantas.

6.6.7.2. DESLIZAMIENTO Nº 2

Movimiento de Tierras

En el tramo 51+380 - 51+470 se propone conformar el talud de la siguiente manera:

- Desde el nivel de la carretera y adyacente a la misma se perfilará el primer talud hasta una altura de 15 metros, en la cresta del cual se construirá la primera berma, la cual tendrá un ancho de 5.0 metros y pendiente longitudinal de 8% hacia el este, que es la necesaria para salvar la diferencia de elevación entre la berma poniente y la oriente.
- El siguiente talud se conformará con pendiente variable entre ½ a 1 y 0.8 a 1, y tendrá una altura variable entre 13 y 14 metros, y en la corona del cual se construirá la segunda berma.
 - La segunda berma tendrá un ancho = 5 m y pendiente de 10% hacia el Oriente.
 - A continuación se perfilará un tercer talud con pendientes entre ½ a 1 y 1 a 1, con una altura de 10 metros, que termina en la tercera berma.
 - La tercera berma tendrá un ancho de 5.0 metros y pendiente de 10% hacia el oriente.
 - En la tercera berma se iniciará el cuarto y último talud, el cual tendrá pendiente entre ½ a 1 y 1 a 1, con una altura entre 6 y 12 metros, y terminará en la planicie del terreno natural en la cresta del talud.

Drenaje

Para el control de la escorrentía y de la erosión se proponen las siguientes medidas de protección:

- Construir contracunetas revestidas de forma trapezoidales en las tres bermas y en la cresta del talud, estas bermas deben ser revestidas con concreto simple f'c = 180 kg/cm2 y serán de sección trapezoidales de 1.2 m de ancho y 0.30 m de profundidad.
- Los taludes se protegerán por medio de malla de coco biodegradable para fomentar el crecimiento de cobertura vegetal sobre el mismo.

Estructuras de Protección

En este talud no es necesaria la construcción de estructuras de protección.

Las Obras de Estabilización del Deslizamiento Nº 2 se muestran en el Plano 05.

6.6.7.3. DESLIZAMIENTO Nº 3

Movimiento de Tierras

El movimiento de tierras en el talud se dividió en dos partes, la primera es el desalojo del material procedente del derrumbe y que obstruye la carretera en los cuatro carriles, y la segunda es la conformación de bermas en el talud, tanto en el material derrumbado que se dejará al pie como en el talud mismo en la cabeza y en los laterales inestables.

A continuación se mencionan los trabajos de terracería que fueron ejecutados en la primera etapa de mitigación:

- En el bloque de suelo derrumbado que se está dejando al pie del talud se conformaron taludes de inclinación 1 a 1, con una berma intermedia de 10 metros de ancho y otra berma superior, con ancho variable entre 5 y 40 metros, estas bermas tienen inclinación hacia afuera de la carretera con una pendiente del 2%, la berma intermedia tiene una pendiente longitudinal igual a la de la carretera es decir, aproximadamente 4%, de tal manera de mantener una elevación de 10 metros superior a la carretera en todos los puntos. La segunda berma está ubicada en una cota constante, entre 18 y 23 metros sobre la carretera, entre esta segunda berma y el terreno natural arriba de la misma fue necesario conformar un talud con pendiente 1 a 1 y con altura variable entre 17 y 27 metros, para hacer una transición entre el talud natural que quedó del derrumbe y la berma. En general, este bloque está separado de la carretera actual una distancia promedio de 9 metros, como zona de retiro.
- En la cabeza del talud, en la zona más alta donde se inició el derrumbe, que está a 128 metros sobre el nivel de la carretera, se construyeron dos bermas separadas 12 metros entre si, la primera a 120 metros y la segunda a 132 metros sobre el nivel de la carretera, el ancho de la primera es de 6 metros y el de la segunda de 8 metros que después se amplió a 35 metros, las dos están conformadas sin pendiente longitudinal, pero con pendiente transversal del 2% hacia afuera de la carretera, la primera berma tiene 75 metros de longitud y la segunda 62 m. Los taludes arriba de ambas bermas tienen inclinación 1 a 1.

En el extremo oriental de la zona de derrumbe, a unos 90 metros del eje del mismo, se construyó una berma a 54 m sobre el nivel de la carretera, cortando un estrato inestable debido a la presencia de bolonería que puede caer sobre la vía, esta berma tiene un ancho máximo de 15 metros y una longitud de 30 metros, con talud de corte con inclinación de ½ a 1.

Adicionalmente a las medidas constructivas mencionadas, se propone la conformación de otras bermas, como se explica a continuación:

La berma construida como obras de mitigación en el extremo oriental no es suficiente para las condiciones de diseño establecidas en este estudio, por lo cual se propone la construcción de dos bermas, a 75 y 85 m. de altura sobre el nivel de la carretera. Los taludes superiores de las bermas tendrán una inclinación de 1:1. Las bermas llevarán una inclinación transversal de 2% en dirección hacia las "contracunetas". Las características de las bermas propuestas, se muestran en el Tabla 6.16.

Drenaje y Subdrenaje

Como primera medida para controlar la escorrentía superficial se propone construir contracunetas en todas las bermas, éstas deberán ser revestidas con concreto simple f'c = 180 kg/cm2, la sección de las contracunetas será de 1.2 m de ancho y 0.30 m de profundidad, excepto para la segunda berma del bloque inferior, donde la sección será de ancho = 2.0 m y 0.50 m de profundidad.

Dado que en el talud natural colapsado, a la altura de la segunda berma del bloque inferior se observa el flujo de agua subterránea hacia la superficie, será necesario controlarlo mediante la construcción de una galería filtrante que capte esta agua para ser posteriormente conducidas hacia el exterior del bloque. La galería (subdren) será construida de geotextil y tubería perforada de PVC en una longitud de 25 m.

Para proteger los taludes conformados debido a la construcción de las bermas, se recomienda el uso de una cubierta conformada por una geomalla y una biomanta del tipo "fibra de coco", la cual promueve un rápido crecimiento de hierba y arbustos, que más tarde son la mejor protección contra la escorrentía superficial.

Estructuras de Protección

Para este talud se ha propuesto dos tipos de estructuras de protección, las primeras son las barreras dinámicas para controlar la caída de rocas, ya que se han identificado estratos con la presencia de bolonería aislada de 50 cm de diámetro medio, estas barreras se colocarán en la berma superior del bloque inferior, y en la berma inferior del extremo oriental del derrumbe, en una longitud total de 210 m y una altura de 2m.

El segundo tipo de estructura que se propone es una barrera de protección al lado de la carretera, la cual tiene como finalidad protegerla de los posibles derrumbes que puedan haber en los taludes inferiores principalmente durante las primeras estaciones lluviosas, cuando el material no se ha consolidado ni la cobertura vegetal es suficiente. Esta barrera tendrá una longitud de 170 m.

Adicional a las obras propias de los tres derrumbes, se ha propuesto una protección contra la caída de rocas en el tramo 51+640 – 51+700, con lo cual se cubren todos los tramos calificados en el estudio geológico como críticos o muy críticos.

Las Obras de Estabilización del Deslizamiento Nº 3 se muestran en el Plano 06, de la misma manera el Plano 07 contiene los detalles de las Barreras Dinámicas.

Lista de Sismos Destructores para el Siglo XX

Tabla 6.1

Fecha	Hora	Latitud N	Longitud O	Profundidad	Magnitud	Intensidad Máxima	Fuente
	(UTC)*	(°)	(°)	(Km)	Ms	MM	Sísmica
19 de Julio de 1912		13.87	89.57	10	5.9	VII	Cadena volcánica
7 de Septiembre de 1915	01:20	13.90	89.60	60	7.7	IX	Subducción
8 de Junio de 1917	00:51	13.82	89.31	10	6.7	VIII	Cadena volcánica
8 de Junio de 1917	02:54	13.77	89.50	10	5.4	VIII	Cadena volcánica
28 de Abril de 1919	06:15	13.69	89.19	10	5.9	VII-VIII	Cadena volcánica
21 de Mayo de 1932	10:10	12.80	88.00	150	7.1	VIII	Subducción
20 de Diciembre de 1936	02:43	13.72	88.93	10	6.1	VII-VIII	Cadena volcánica
25 de Diciembre de 1937	23:50	13.93	89.76	10	5.9	VIII	Cadena volcánica
6 de Mayo de 1951	23:03	13.52	88.40	10	5.9	VIII+	Cadena volcánica
6 de Mayo de 1951	23:08	13.52	88.40	10	6	VIII	Cadena volcánica
3 de Mayo de 1965	10:01	13.70	89.17	15	6.3	VIII	Cadena volcánica
19 de Junio de 1982	06:21	13.30	89.40	80	7.3	VII	Subducción
10 de Octubre de 1986	17:49	13.67	89.16	10	5.4	VIII-IX	Cadena volcánica

Fuente: Salazar y otros (1997). La latitud y la longitud se refiere al epicentro. Los datos de intensidad máxima fueron obtenidos a partir del estudio de Grases (1974), Alvarez (1982), Harlow y otros (1993) * UTC: es el tiempo Universal Coordinado, es la hora del Meridiano de Greenwich.

TABLA 6.2

SISMO DEL 13 DE ENERO DE 2001

UBICACIÓN DE ESTACIONES ACELEROGRAFICAS Y ACELERACIONES MAXIMAS

Latitud N (*) Longitud O (*) E-W N-S UP	Estación	Agencia	Coord	Aceleraciones Máximas %g			
Hespital Sta. Teresa, Zacatecoluca, La Paz Zacatecoluca, La Cherita Carteria, La			Latitud N (°)	Longitud O (°)			UP
Zacalcobuca, La Paz ZA (61.2 Km.)* UCA 13.517 -88.869 -0.29 0.26 -0.28 ZA (61.2 Km.)* US San Pedro Nonualco, La Paz UCA 13.602 -88.927 0.5 0.56 0.46 NO (61.8 Km.) Presa 15 de Septiembre QC (63.9 Km.) GC (63.9 Km.) US Poerto de Septiembre UCA 13.616 -88.55 -0.19 0.15 0.12 QC (63.9 Km.) US Poerto de La Libertad UCA 13.614 -89.179 0.15 0.19 0.1 US Puerto de La Libertad, La Libertad UCA 13.486 -89.327 0.59 1.18 0.85 LI (75.0 km.) UCA 13.704 -89.106 0.19 -0.16 0.18 DA (79.1 Km.) Colegio Externado San José, San Salvador San Salvador UCA 13.707 -89.207 -0.29 0.3 -0.15 EC (84.8 Km.) Hospital San Rafael, Sta. Tecla, La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 EE (86.0 Km.) US Tornocatepeque, San Salvador US Tornocatepeque, Cabarlass CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (80.5 Km.) Cludadela Don Bosco, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 REGIONAL CIG 13.393 -87.817 0.08 -0.08 Culturo, La Unión Culturo, La Unión Culturo, La Unión CUCA 13.744 -89.501 0.45 -0.52 -0.22 La Unión CUCA 13.756 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) US Armenia, Sonsonate CIG 13.667 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) US Armenia, CUCA 13.744 -89.501 0.45 -0.52 -0.22 CUCA 13.744 -89.501	Hospital Sta. Teresa,						
ZA (51.2 Km.)* US San Pedro Nonualco, La Paz NO (61.8 Km.) Presa 15 de Septiembre QC (63.9 Km.) Presa 15 de Septiembre QC (63.9 Km.) Presa 15 de Septiembre QC (63.9 Km.) QC (63.9 Km.) US Panchimalco, San Salvador PA (74.5 Km.) US Panchimalco, San Salvador PA (74.5 Km.) US Puerto de La Libertad, La Libertad LI (75.0 Km.) UCA 13.486 A79.1 Km.) Hospital San Bartolo, San Salvador QC (63.4 Km.) UCA 13.704 A79.1 Km.) UCA 13.707 A79.2 Km. UCA 13.707 A79.2 Cm. UCA 13.704 A79.2 Cm. UCA 13.704 A79.2 Cm. UCA 13.704 A79.2 Cm. UCA 13.704 A79.2 Cm. UCA 13.		UCA	13.517	-88.869	-0.29	0.26	-0.28
US San Pedro Nonualco, La Paz NO (61.8 Km.) Presa 15 de Septiembre QC (63.9Km.) CIG 13.616 -88.55 -0.19 0.15 0.12 QC (63.9Km.) CIG 13.475 -88.183 0.12 0.14 -0.09 MG (70.0 km.) US Panchimalco, San Salvador PA (74.5 km.) US Puerto de La Libertad, La Libertad UCA 13.614 -89.179 0.15 0.19 0.1 LI (75.0 km.) LI (75.0 km.) US Puerto de La Libertad, LI (75.0 km.) LI (75.0	ZA (51.2 Km.)*	}				1	
NO (81.8 Km.) Press 15 de Septiembre QC (83.9Km.) San Miguel MG (70.0 Km.) CIG 13.616 -88.55 -0.19 0.15 0.12 QC (83.9Km.) San Miguel MG (70.0 Km.) US Parchimalco, San Salvador PA (74.5 Km.) US Puerto de La Libertad, La Libertad LI (75.0 Km.) LI (75.0 Km.) UCA 13.614 -89.179 0.15 0.19 0.1 US Puerto de La Libertad, La Libertad LI (75.0 Km.) LI (75.0 Km	- 	LICA	13 602	99 027	0.5	0.56	0.46
Presa 15 de Septiembre QC (63,9Km.) CIG 13,616 -88,55 -0.19 0.15 0.12 QC (63,9Km.) San Miguel MG (70.0 km.) US Panchimalco, San Salvador PA (74,5 km.) US Puerto de La Libertad, La Libertad LI (75,0 km.) UCA 13,486 -89,327 0.59 1.18 0.65 LI (75,0 km.) Hospital San Bartolo, San Salvador BA (79,1 km.) Colegio Externado San José, San Salvador UCA 13,704 -89,106 0.19 -0.16 0.18 BA (79,1 km.) Colegio Externado San José, San Salvador UCA 13,707 -89,207 -0.29 0.3 -0.15 EX (64,8 km.) Hospital San Rafael, Sta. Tecla, La Libertad La Libertad LIC (66,0 km.) US Tonacatepeque, San Salvador UCA 13,778 -89,114 0.3 -0.22 0.24 TO (67,0 km.) Sensuntepeque, Cabañas CIG 13,867 -88,663 -0.06 0.08 -0.06 Sen Salvador Cid (70,0 km.) Sensuntepeque, Cabañas CIG 13,733 -89,15 -0.25 -0.22 0.16 DB (92,4 km.) Relaciones Exteriores, San Salvador CIG 13,692 -89,25 0.32 -0.3 0.33 RS (96,5 km.) Cutudoch La Unión CIG 13,333 -87,817 0.08 -0.08 CU (98,6 km.) USA 13,744 -89,501 0.45 -0.62 -0.22 AR (108,0 km.) Albuschapán CIG 13,925 -89,805 -0.21 -0.15 0.12	NO (61.8 Km.)	1 00	13.002	-00.927	0.5	0.50	0.40
Clif 13.475 -88.183 0.12 0.14 -0.09	Presa 15 de Septiembre	CIG	13.616	-99 55	-0.10	0.15	0.12
MG (70.0 Km.) CIG 13.475 -86.183 0.12 0.14 -0.09 US Panchimalco, San Salvador UCA 13.614 -89.179 0.15 0.19 0.1 US Puerto de La Libertad, La Libertad, La Libertad UCA 13.486 -89.327 0.59 1.18 0.65 L(75.0 Km.) Hospital San Bartolo, San Salvador UCA 13.704 -89.106 0.19 -0.16 0.18 A (79.1 Km.) Colegio Externado San José, San Salvador UCA 13.707 -89.207 -0.29 0.3 -0.15 EX (84.8 Km.) Hospital San Rafael, Sta. Tecla, La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 TE (86.0 Km.) UCA 13.778 -89.114 0.3 -0.22 0.24 TE (86.0 Km.) UCA 13.867 -88.663 -0.06 0.08 -0.06 San Salvador UCA 13.867 -88.663 -0.06 0.08 -0.06 San Salvador UCA 13.867 -88.663 -0.06 0.08 -0.06 San Salvador UCA 13.867 -89.915 -0.25 -0.22 0.16 DB (92.4 Km.) CIG 13.692 -89.25 0.21 0.21 0.19 Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (96.6 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.697 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) Ahuachapán CIG 13.695 -89.805 -0.21 -0.15 0.12 Aluachapán CIG 13.925 -89.805 -0.21 -0.15 0.12 CIGA 13.925 -89.805 -0.21 -0.16 0.12 CIGA 13.925 -89.805 -0.21 -0.16 0.12 CICA 13.406 -0.016 -0.016 -0.016 -0.016 CIGA 13.925 -89.805 -0.21 -0.16 -0.12 CICA 13.406 -0.016 -0.016 -0.016 -0.016 CIGA 13.925 -89.805 -0.21 -0.16 -0.12 CICA 13.406 -0.016 -0.016 -0.016 -0.016 CIGA 13.925 -89.805 -0.21 -0.16 -0.12 CICA 13.406 -0.016 -0.016 -0.016 CIGA 13.925 -89.805 -0.21 -0.16 -0.12 CICA 13.406 -0.016 -0.016 -0.016 CICA 13.507 -0.808.05 -0.21 -0.16 -0.12 CICA 13.507 -0.21 -0.15 -0.15	QC (63.9Km.)		13.010	-00.00	-0.13	0.15	0.12
MG (70.0 Km.) US Panchimalco, San Salvador PA (74.5 Km.) US Puerto de La Libertad, La Libertad L (75.0 Km.) Hospital San Bartolo, San Salvador PA (74.5 Km.) UCA 13.486 -89.327 0.59 1.18 0.65 L (75.0 Km.) Hospital San Bartolo, San Salvador BA (79.1 Km.) Colegio Externado San José, San Salvador San Salvador UCA 13.707 -89.207 -0.29 0.3 -0.16 0.18 BA (79.1 Km.) Colegio Externado San José, San Salvador UCA 13.707 -89.207 -0.29 0.3 -0.15 EX (84.8 Km.) Hospital San Rafaei, Sta. Tecla, La Libertad La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 TE (86.0 Km.) US Tonacatepeque, San Salvador UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 Km.) Sensuntepeque, Cabarias CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 Km.) CICudadela Don Bosco, San Salvador CIG 13.692 -89.25 0.21 0.19 RF (95.6 Km.) Cutuco, La Unión Cut (20.6 Km.) Cutuco, La Unión Cut (20.6 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.697 -89.833 -0.11 0.10 0.05 -0.06	San Miguel	CIG	13 475	-88 183	0.12	0.14	-0.09
PA (74.5 Km.) US Puerto de La Libertad, La Libertad LI (75.0 Km.) Hospital San Bartolo, San Salvador BA (79.1 Km.) Colegio Externado San José, San Salvador LI (76.0 Km.) Hospital San Rafael, Sta. Tecla, La Libertad LI (76.0 Km.) Hospital San Rafael, Sta. Tecla, La Libertad LI (76.0 Km.) Hospital San Rafael, Sta. Tecla, La Libertad LI (76.0 Km.) Hospital San Rafael, Sta. Tecla, La Libertad LI (76.0 Km.) Hospital San Rafael, Sta. Tecla, La Libertad LI (76.0 Km.) LIS Tonacatepeque, San Salvador LI (76.0 Km.) UCA L	MG (70.0 Km.)		13.473	-00.100	0.12		-0.03
PA (74.5 Km.) US Puerto de La Libertad, La Libertad LI (75.0 Km.) Hospital San Bartolo, San Salvador BA (79.1 Km.) Colegio Externado San José, San Salvador LI (75.0 Km.) Hospital San Rafael, Sta. Tecla, La Libertad LI Libertad LI (25.0 Km.)	US Panchimalco, San Salvador	UCΔ	13 614	-80 170	0.15	0.19	0.1
La Libertad LI (75.0 km.) LI (PA (74.5 Km.)	UOA	15.014	-05.175	0.15	0.13	0.1
L1 (75.0 Km.)	US Puerto de La Libertad,				·		
Hospital San Bartolo, San Salvador	La Libertad	UCA	13.486	-89.327	0.59	1.18	0.65
San Salvador BA (78.1 Km.) Colegio Externado San José, San Salvador UCA 13.707 -89.207 -0.29 0.3 -0.15 EX (84.8 Km.) Hospital San Rafael, Sta. Tecla, La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 TE (86.0 Km.) US Tonacatepeque, San Salvador UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 Km.) Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 Km.) Ciudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 Refaciones Exteriores, San Salvador CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CAC (13.925 -89.805 -0.21 -0.15 0.12	LI (75.0 Km.)						
BA (79.1 Km.) Colegio Externado San José, San Salvador UCA 13.707 -89.207 -0.29 0.3 -0.15 EX (84.8 Km.) Hospital San Rafael, Sta. Tecla, La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 TE (86.0 Km.) US Tonacatepeque, San Salvador UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 Km.) Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 Km.) Cludadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 Km.) Cutuco, La Unión Cutuco, La Unión Cutuco, La Unión CU (96.6 Km.) US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.692 -89.833 -0.11 0.1 0.05 CEPA Acajutla CA (139.4 Km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12	Hospital San Bartolo,						
Colegio Externado San José, San Salvador EX (84.8 Km.) Hospital San Rafael, Sta. Tecla, La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 TE (86.0 Km.) US Tonacatepeque, San Salvador TO (87.0 Km.) Sensuntepeque, Cabañas CIG DB (92.4 Km.) Relaciones Exteriores, San Salvador CIG CULUCO, La Unión CU (96.6 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) UCA 13.7778 -89.279 -0.49 -0.5 0.24 -0.5 0.24 -0.5 0.24 -0.5 0.24 -0.65 -0.22 0.24 -0.60 -0.66 -0.	San Salvador	UCA	13.704	-89.106	0.19	-0.16	0.18
San Salvador	BA (79.1 Km.)						
EX (84.8 Km.) Hospital San Rafael, Sta. Tecla, La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 TE (86.0 Km.) US Tonacatepeque, San Salvador TO (87.0 Km.) Sensuntepeque, Cabañas Cig 13.867 -88.663 -0.06 0.08 -0.06 San Salvador Cidudadela Don Bosco, San Salvador Cididadela Don Bosco, San Salv	Colegio Externado San José,						
Hospital San Rafael, Sta. Tecla, La Libertad UCA 13.671 -89.279 -0.49 -0.5 0.24 TE (86.0 km.) US Tonacatepeque, San Salvador UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 km.) Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 km.) Ciudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 Refaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 Refaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 Refaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 Refaciones Exteriores, San Salvador CIG 13.333 -87.817 0.08 -0.08 0.06 Cutuco, La Unión CIG 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CEPA Acajutla CIG 13.925 -89.805 -0.21 -0.15 0.12	San Salvador	UCA	13.707	-89.207	-0.29	0.3	-0.15
La Libertad TE (86.0 Km.) US Tonacatepeque, San Salvador TO (87.0 Km.) UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 Km.) Sensuntepeque, Cabarias CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 Km.) Cludadela Don Bosco, San Salvador Cludadela Don Bosco, San Salvador Cludadela Don Bosco, San Salvador Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) Cutuco, La Unión CU (96.6 Km.) US Armenia, Sonsonate AR (108.0 Km.) CEPA Acajutla CA (139.4 Km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.24 0.24 0.24 0.24 0.24 0.25 0.26 0.27 0.28 0.29 0.29 0.29 0.20 0.20 0.24 0.20 0.24 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	EX (84.8 Km.)						
TE (86.0 km.) US Tonacatepeque, San Salvador TO (87.0 km.) Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 San Salvador Ciudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 km.) Relaciones Exteriores, San Salvador RF (95.6 km.) CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 km.) Cutuco, La Unión CU (96.6 km.) US Armenia, Sonsonate AR (108.0 km.) CEPA Acajutla CA (139.4 km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12	Hospital San Rafael, Sta. Tecla,				-		_
UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 km.) Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 km.) Ciudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 km.) US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CIG 13.925 -89.805 -0.21 -0.15 0.12	La Libertad	UCA	13.671	-89.279	-0.49	-0.5	0.24
UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 km.) Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 km.) Ciudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 km.) US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CIG 13.925 -89.805 -0.21 -0.15 0.12	TE (86.0 Km.)						
San Salvador TO (87.0 Km.) UCA 13.778 -89.114 0.3 -0.22 0.24 TO (87.0 Km.) Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 Km.) Cludadela Don Bosco, San Salvador BB (92.4 Km.) CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 Km.) Relaciones Exteriores, San Salvador RF (95.6 Km.) CIG 13.692 -89.25 0.21 0.21 0.19 Relaciones Exteriores, San Salvador RS (95.6 Km.) CIG 13.692 -89.25 0.32 -0.3 0.33 Cutuco, La Unión CU (96.6 Km.) CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12							
Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06	[]	UCA	13.778	-89.114	0.3	-0.22	0.24
Sensuntepeque, Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06	TO (87.0 Km.)						
Cabañas CIG 13.867 -88.663 -0.06 0.08 -0.06 SE (90.5 Km.) CIudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12							
Ciudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 Km.) Relaciones Exteriores, San Salvador RS (95.6 Km.) CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) USArmenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12	1	CIG	13.867	-88.663	-0.06	0.08	-0.06
Ciudadela Don Bosco, San Salvador CIG 13.733 -89.15 -0.25 -0.22 0.16 DB (92.4 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 Km.) Relaciones Exteriores, San Salvador RS (95.6 Km.) CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) USArmenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12	SE (90.5 Km.)						
DB (92.4 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19						-	
Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12	San Salvador	CIG	13.733	-89.15	-0.25	-0.22	0.16
Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12	 DB (92.4 Km.)	}	1	<u>'</u>		j '	
San Salvador CIG 13.692 -89.25 0.21 0.21 0.19 RF (95.6 Km.) Relaciones Exteriores, San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) US Armenia, UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12	V						
RF (95.6 Km.) Relaciones Exteriores, San Salvador RS (95.6 Km.) Cutuco, La Unión CU (96.6 Km.) US Armenia, Sonsonate AR (108.0 Km.) CEPA Acajutla CA (139.4 Km.) Ahuachapán CIG 13.692 -89.25 0.32 -0.3 0.33 0.33 -87.817 0.08 -0.08 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05		CIG	13.692	-89.25	0.21	0.21	0.19
Relaciones Exteriores, San Salvador RS (95.6 Km.) Cutuco, La Unión CU (96.6 Km.) US Armenia, Sonsonate AR (108.0 Km.) CEPA Acajutla CA (139.4 Km.) Ahuachapán CIG 13.692 -89.25 0.32 -0.3 0.33 0.33 0.33 0.33 0.34 -87.817 0.08 -0.08 0.06 0.06 0.06 0.06 0.07 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.06		ļ	1		1		}
San Salvador CIG 13.692 -89.25 0.32 -0.3 0.33 RS (95.6 Km.) Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12							
RS (95.6 Km.) Cutuco, La Unión CU (96.6 Km.) US Armenia, Sonsonate AR (108.0 Km.) CEPA Acajutla CA (139.4 Km.) Ahuachapán CIG CU (95.6 Km.) CIG CIG CIG CIG CIG CIG CIG CIG CIG CI		CIG	13.692	-89.25	0.32	-0.3	0.33
Cutuco, La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) US Armenia, UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12					[[
La Unión CIG 13.333 -87.817 0.08 -0.08 0.06 CU (96.6 Km.) US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12					Ī		
CU (96.6 Km.) US Armenia, Sonsonate AR (108.0 Km.) CEPA Acajutla CA (139.4 Km.) Ahuachapán CIG 13.744 -89.501 0.45 -0.62 -0.22 -89.833 -0.11 0.1 0.05 -89.805 -0.21 -0.15 0.12	l '	CIG	13.333	-87.817	0.08	-0.08	0.06
US Armenia, Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CEPA Acajutla CA (139.4 Km.) CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12					<u> </u>		
Sonsonate UCA 13.744 -89.501 0.45 -0.62 -0.22 AR (108.0 Km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12							I
AR (108.0 Km.) CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12		UCA	13.744	-89.501	0.45	-0.62	-0.22
CEPA Acajutla CIG 13.567 -89.833 -0.11 0.1 0.05 CA (139.4 Km.) CIG 13.925 -89.805 -0.21 -0.15 0.12	1					L	
CA (139.4 Km.) Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12		CIC	40.507	90,000	0.44	0.1	0.05
Ahuachapán CIG 13.925 -89.805 -0.21 -0.15 0.12	11	CIG	13.567	-89.833	-0.17	0.1	0.05
1 010 10.020 00.000 01.21 01.02		+	40.005	00.005	0.04	0.45	0.12
	HA (157.4 Km.)	CIG	13.925	-89.805	-0.21	-0.15	0.12

^{*}Distancia Epicentral

SISMO DEL 13 DE FEBRERO DE 2001
UBICACIÓN DE ESTACIONES ACELEROGRAFICAS Y ACELERACIONES MAXIMAS

TABLA 6.3

Estación	Agencia	Coo	rdenadas	Aceleraciones Máximas			
Estacion	Agencia	Latitud N (°)	Longitud O (°)	%g E-W N-S UP			
Hospital San Bartolo,						ì	
San Salvador	UCA	13.704	-89.106	0.16	-0.11	-0.14	
BA (10.9 Km.)*							
US Panchimalco,							
San Salvador	UCA	13.614	-89.179	-0.1	-0.18	-0.06	
PA (11.9 Km).]					
Colegio Externado San José,							
San Salvador	UCA	13.707	-89.207	-0.11	-0.12	-0.06	
EX (18.2 Km.)							
US Tonacatepeque,	_		<u> </u>				
San Salvador	UCA	13.778	-89.114	0.36	0.26	0.23	
TO (19.0 Km.)		li				1	
Hospital San Rafael,							
Santa Tecla, La Libertad	UCA	13.671	-89.279	0.04	-0.04	0.02	
TE (23.6 Km.)		li				_	
Hospital Sta. Teresa,							
Zacatecoluca, La Paz	UCA	13.517	-88.869	-0.29	0.41	-0.28	
ZA (24.1 Km.)						L	
Hospital Sta. Gertrudis,			_		_		
San Vicente	UCA	13.642	-88.784	-0.22	0.43	0.24	
VI (30.9 Km.)							
US Puerto de La Libertad,	_						
La Libertad	UCA	13.486	-89.327	0.11	0.09	-0.03	
LI (31.2 Km.)							
US Armenia, Sonsonate	UCA	13.744	-89.501	0.03	-0.04	-0.05	
AR (48.9 Km.)		10.777	-09.501	0.00	-0.07	-0.05	

^{*} Distancia epicentral

TABLA 6.4
UNIDADES LITO ESTRATIGRAFICAS DE LA ZONA

SISTEMAS	SERIE	UNIDAD LITO- ESTRATIGRÁFICA	MIEMBRO
CUATERNARIO	Holoceno	Depósitos recientes Fm.	S4 S3′a
	Pleistoceno	San Salvador (s)	S2
	Plioceno	Fm. Cuscatlán (c)	C1
TERCIARIO (NEOGENO)	Mioceno	Fm Bálsamo (b)	B3 b1

TABLA 6.5

EVALUACION DEL NIVEL DE RIESGO*

ZONA CRITICA Nº 1

ZUNA CRITICA Nº 1				
Progresiva (Km)	ogresiva (Km) de:			
i	a:		51+060	
Margen de la carretera:		IZQ.		
Características	Fenómeno		DERRUMBE	
Equilibrio	Estable	(0)		
Actual	Intermedio	(1)	1	
Actual	Crítico	(2)		
Evolución	Nula	(0)	3	
Evolucion	Progresiva	(3)	3	
	Suave < 10°	(0)		
Topografía	Media 10-30°	(1)	2	
	Fuerte > 30°	(2)		
	<10	(0)		
Volumen (m³)	10-100	(1)	3	
volumen (m)	100-1000	(2)	3	
	>1000	(3)		
Daños	Ligero	_ (1)		
Materiales	Medio	(2)	2	
	Catastrófico	(3)		
Valoracio		_	11	
Altura de Tali	ıd (m)		25 - 30	
Pendiente del		50 – 35 (Mat.caído)		
Litología			Tobas, cenizas pumíticas, fragmentos rocosos en matriz limosa.	
Factor de Hu	medad		Húmedo - Mojado	
Evaluación Ir	ntegral		Crítico	

Fotografia:

NIVEL DE RIESGO	VALORACION
Leve	0 – 4
Moderado	5-8
Crítico	9 – 11
Muy crítico	≥ 12

^{*}Nota: Manual de Ingeniería de Taludes del Instituto Tecnológico Geominero de España

TABLA 6.6

EVALUACION DEL NIVEL DE RIESGO*

ZONA CRITICA Nº 2

ZONA CRITICA Nº 2			
Progresiva (Km)	de:	ĺ	51+340 51+420
	a:		
Margen de la carretera:		IZQ.	
Características	Fenómeno	,	DESLIZAMIENTO
Equilibrio	Estable	(0)	
Actual	Intermedio	(1)	1
Actual	Crítico	(2)	
Evolución	Nula	(0)	3
Evolucion	Progresiva	(3)	
	Suave < 10°	(0)	
Topografía	Media 10-30°	(1)	2
	Fuerte > 30°	(2)	
3.	<10	(0)	
	10-100	(1)	3
Volumen (m³)	100-1000	(2)	3
	>1000	(3)	
Daños	Ligero	(1)	<u> </u>
Danos Materiales	Medio	(2)	2
mater lates	Catastrófico	(3)	
Valora	ción		11
Altura de T	alud (m)		45 - 50
Pendiente de		35 – 70	
Litolo		Principalmente tobas medianamente compactas y piroclasticos.	
Factor de l	lumedad		Húmedo - Mojado
Evaluación	Integral		Crítico

Fotografia:

NIVEL DE RIESGO	VALORACION
Leve	0-4
Moderado	5 – 8
Crítico	9 – 11
Muy crítico	≥ 12

^{*}Nota: Manual de Ingeniería de Taludes del Instituto Tecnológico Geominero de España

TABLA 6.7

EVALUACION DEL NIVEL DE RIESGO*

ZONA CRITICA Nº 3

ZONA CRITICA Nº 3				
Progresiva (Km)	rogresiva (Km) de:			
	a:		53+280	
Margen de la carretera:			IZQ.	
Características	Fenómeno	•	DESLIZAMIENTO	
Equilibrio	Estable	(0)		
Actual	Intermedio	(1)	2	
Actual	Crítico	(2)		
Evolución	Nula	(0)	3	
Evolucion	Progresiva	(3)	3	
	Suave < 10°	(0)		
Topografía	Media 10-30°	(1)	2	
	Fuerte > 30°	(2)		
	<10	(0)		
W-L (3)	10-100	(1)	3	
Volumen (m³)	100-1000	(2)	3	
	>1000	(3)		
Daños	Ligero	(1)		
Materiales	Medio	(2)	3	
Water laies	Catastrófico	(3)		
Valoració	n		13	
Altura de Talu	d (m)		150 - 170	
Pendiente del T	alud (°)		45 – 55	
Litología	Secuencia tobácea con prescenci de obsidiana deleznables; niveles limo arcillosos con fragmentos.			
Factor de Hun	nedad		Húmedo - Mojado	
Evaluación In	tegral	·	Muy Crítico	

Fotografia:

NIVEL DE RIESGO	VALORACION
Leve	0-4
Moderado	5-8
Crítico	9 – 11
Muy crítico	≥ 12

^{*}Nota: Manual de Ingeniería de Taludes del Instituto Tecnológico Geominero de España

TABLA 6.8

UBICACIÓN DE LOS SONDAJES PROFUNDOS

Deslizamiento	Denominación	Ubicación	Profundidad de Perforación
No. 1	SL-1	Km 50+860 – km 51+060	30 m (desde la cresta del deslizamiento)
No 2	SL-2	Km 51+340 – km 51+420	50 m (desde la cresta del deslizamiento)
No 3	SL-3	Km 53+060 – km 53+280	150 m (desde la cresta del deslizamiento)
No 3	SL-4	Km 53+060 – km 53+280	30 m (desde el pie de la vía)

TABLA 6.9

RESUMEN DE LOS ENSAYOS REALIZADOS

Muestra	Estado de la Muestra	CORTE DIRECTO ASTM D 3080	TRIAXIAL (UU) ASTM D 2850
M1 - Deslizamiento 1	Remoldeada	c = 0.09 kg/cm2	
M2 - Deslizamiento 1	Remoldeada	c = 0.24 kg/cm2 $\phi = 3.5^{\circ}$	
M3 - Deslizamiento 1	Remoldeada	c = 0.00 kg/cm2 ϕ = 59.8°	
M4 - Deslizamiento 1	Remoldeada	c = 0.05 kg/cm2 $\phi = 40.9^{\circ}$	
M1 - Deslizamiento 2	Remoldeada		c = 0.50 kg/cm2 φ = 32.8°
M2 - Deslizamiento 2	Remoldeada	c = 0.06 kg/cm2 φ = 35.1°	
M3 - Deslizamiento 2	Inalterada		c = 1.10 kg/cm2 $\phi = 60.4^{\circ}$
M1 - Deslizamiento 3	Remoldeada	c = 0.04 kg/cm2 $\phi = 37.2^{\circ}$	
M5 - Deslizamiento 3	Remoldeada	c = 0.04 kg/cm2 ϕ = 47.8°	
M7 - Deslizamiento 3	Remoldeada	c = 0.09 kg/cm2 $\phi = 38.9^{\circ}$	
M8 - Deslizamiento 3	Remoldeada	c = 0.00 kg/cm2 ϕ = 55.3°	
M9 - Deslizamiento 3	Remoldeada	c = 0.00 kg/cm2 $\phi = 38.2^{\circ}$	
M10 - Deslizamiento 3	Remoldeada	c = 0.08 kg/cm2 φ = 32.6°	
M1- Deslizamiento 3	Remoldeada		c = 0.55 kg/cm2 ϕ = 44.9°
M2 - Deslizamiento 3	Remoldeada		c = 0.35 kg/cm2 $\phi = 28.9^{\circ}$
M6 - Deslizamiento 3	Remoldeada		c = 0.68 kg/cm2 ϕ = 31.2°

TABLA 6.10

RESUMEN DE DATOS SISMICOS Y ELECTRICOS DEL DESLIZAMIENTO 3

Sección Geofísica	Ubicación	Capa	Tipos de Material	Espesor m	Velocidad Onda m/s	Resistividad Electrica Ohm/m
	Parte alta	1	Suelo residual, roca y tobas muy alteradas.	10 - 15	420	20
1	zona derrumbe	2	Bloques de roca volcánica, alterados,		1300	60
	derrumbe	3	Lahares con matriz compacta	-	_	400
	Berma	1	Roca fracturada y alterada	0 - 25	360	-
2	Superior	2	Rocas volcánicas moderadamente alteradas	> 25	1500	-
1		3	Roca sana, posiblemente lavas		3300	-
	3 Berma 1 2 3		Roca fracturada, alterada y suelo	0 - 8	500	30 - 150
3			Roca alterada	5 - 8	1480	50 - 90 20-200
 			Riolitas - lavas de buena condición	> 20	2900	-
		1	Relleno, depósitos de talud	0 - 7	550	20
4	Al sur 2		Lahares	20	1100	60
		3	Riolitas - lavas	-	2000	100
-		1	Depósito talud, deslizamientos antiguos	0 - 7	570	140
5	5 CA-1	2	Lahares	20	1300	90
		3	Riolitas - lavas	-	2700	230

TABLA 6.11
ESTRATIGRAFIA DEL DESLIZAMIENTO 1

Estratos	Espesor (m)	Tipo de Suelo (SUCS)	Angulo Fricción Interna (°)	Cohesión (KN/m2)	Peso Volumétrico Seco (kg/m3)
Superior	1.50 a 2.20	MH	39	4.5	1637
Segundo	13.5	SM	35	30	1824
Tercer	12	SW	45	0	1527

Nota: No se encontró nivel freático

TABLA 6.12
ESTRATIGRAFIA DEL DESLIZAMIENTO 2

Estratos	Espesor (m)	Tipo de Suelo (SUCS)	Angulo Fricción Interna (°)	Cohesión (KN/m2)	Peso Volumétrico Seco (KN/m3)
Superior	4.0	ML/OL	35.0	20	17.1
Segundo	4.0	SM	35.1	5.9	12.0
Tercer	20.0	GM	35.0	5.9	16.5
Cuarto	10.5	SW	42.0	20	13.2
Quinto	5.5	SP	42.0	20	12.9
Sexto	12.3	SM	45.0	110	12.0
Séptimo	1.2	GW	32.8	50	23.0
Octavo	11.0	SP	32.8	11	21.8

Nota: No se encontró nivel freático

TABLA 6.13
ESTRATIGRAFIA DEL DESLIZAMIENTO 3

Estratos	Espesor (m)	Tipo de Suelo (SUCS)	Angulo Fricción Interna (°)	Cohesión (KN/m2)	Peso Volumétrico Seco (KN/m3)
Superior	7.0	ML	34	35	15.7
Segundo	15.8	SM	44	20	11.6
Tercer	5.2	ML	38	35	13.0
Cuarto	10.5	SM	41	59	13.1
Quinto	14.4	Roca fracturada	45	50	17.6
Sexto	18.2	SM	43	30	12.9
Séptimo	2.5	SP	41	10	14.4
Octavo	24.1	Roca fracturada	45	50	21.0
Noveno	16.3	GP/GM	38	10	19.5
Décimo	36.3	SM	42	37	12.4
Undécimo	18.00 a 23.00	SM	34	34.5	12.9

Nota: No se encontró nivel freático

Deformación Permanente para Condiciones Pre-sismo

TABLA 6.14

DESLIZAMIENTO	Amax (f)	Ку	Registro San Pedro Nonualco	Registro Santa Teresa	Registro Santa Gertrudis
			Deformación Permanente (m)	Deformación Permanente (m)	Deformación Permanente (m)
	0.50	0.21	5.64	1.25	1.19
		0.25	3.29	0.60	0.69
	0.54	0.21	8.28	•	-
	0.75	0.21	34.65	8.21	4.23
Deslizamiento Nº 1		0.25	20.22	4.39	3.10
	1.00	0.21	85.78	27.36	8.39
		0.25	60.19	16.08	6.64
	1.50	0.21	246.09	115.37	19.28
	1.50	0.25	189.58	76.16	16.20
	0.50	0.25	3.29	1.25	0.69
	0.30	0.30	1.23	0.24	0.32
	0.75	0.25	20.22	4.39	3.10
Deslizamiento № 2		0.30	9.72	2.23	2.04
Desilzamento N-2	1.00	0.25	60.19	16.08	6.64
		0.30	38.29	· 8.55	5.04
	1.50	0.25	189.58	76.16	16.20
		0.30	140.98	47.15	13.34
Deslizamiento Nº 3	0.50	0.25	3.29	1.25	0.69
	0.75	0.25	20.22	4.39	3.10
	1.00	0.25	60.19	16.08	6.64
	1.50	0.25	189.58	76.16	16.20

TABLA 6.15

Deformación Permanente para los Taludes Estabilizados

DESLIZAMIENTO	Amax (f)	Ку	Registro San Pedro Nonualco Deformación Permanente (m)
	0.75	0.37	5.19
Deslizamiento Nº 1	1.00	0.37	18.22
	1.50	0.37	92.89
	0.75	0.51	0.67
	0.75	0.57	0.19
Deslizamiento Nº 2	1.00	0.51	6.08
Destizamiento N° 2	1.00	0.57	3.44
	1.50	0.51	37.5
	1.50	0.57	24.56
Deslizamiento Nº 3	0.75	0.292	11.05
(Estabilización desarrollada en la	1.00	0.292	41.35
primera etapa de mitigación)	1.50	0.292	147.95
De alimentiante NO O			ļ
Deslizamiento Nº 3 (Estabilización desarrollada en la	0.56	0.306	2.47

TABLA 6.16

Dimensiones de Bermas Adicionales para la Estabilización del Deslizamiento Nº 3

N°	Altura sobre la carretera	Ancho (m)	Longitud (m)
1	75	6	55
2	85	6	40

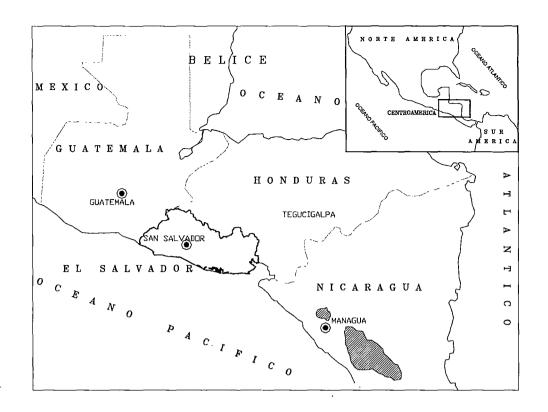


Fig. 6.1: Plano de Ubicación de la República del El Salvador

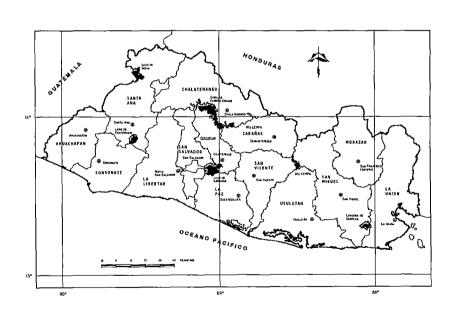


Fig. 6.2: Mapa de la República del El Salvador

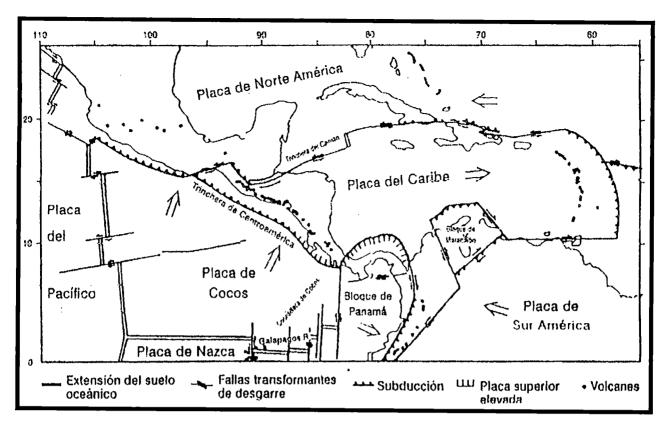


Fig. 6.3: Mapa Tectónico de Placas para la Región Centroamericana (Weyl, 1980).

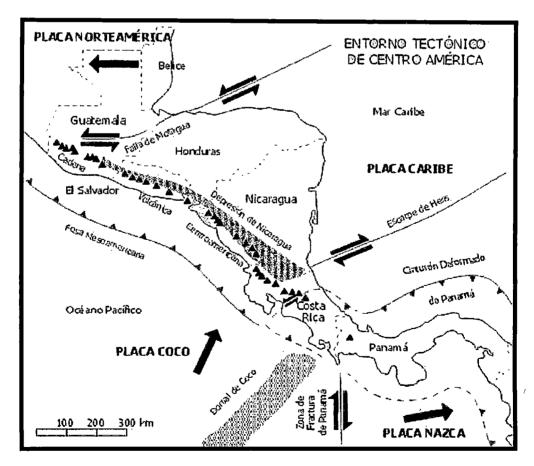


Fig. 6.4: Mapa de Placas Tectónicas para Centroamérica

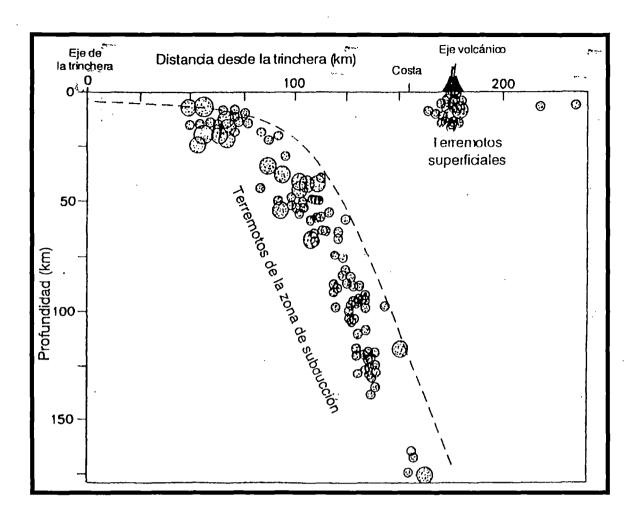


Fig. 6.5: Sección Transversal para Sismos de Subducción y Continentales. (White y Harlow, 1993)

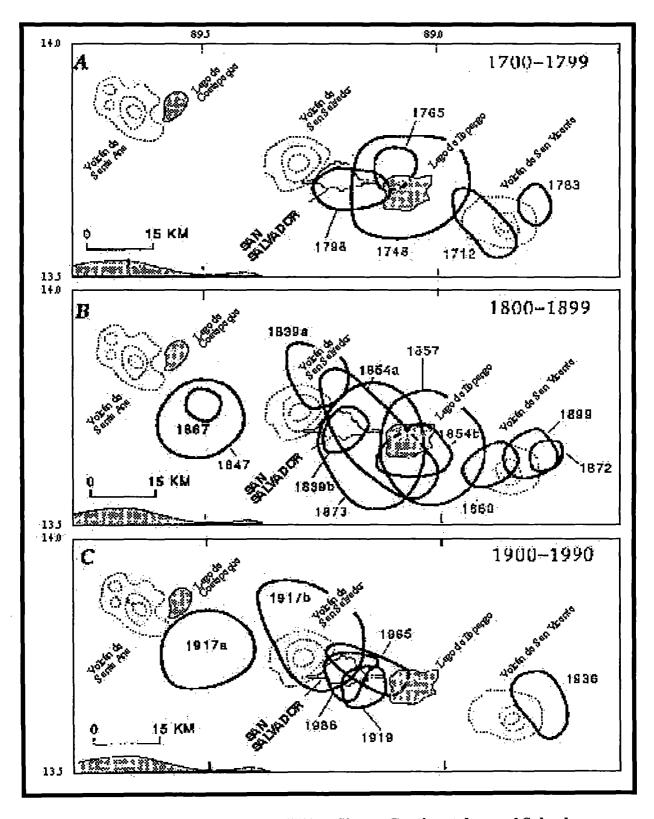


Fig. 6.6: Mapas de Isosistas de MM>VII de Sismos Continentales en el Salvador. (Harlow et. al, 1993)

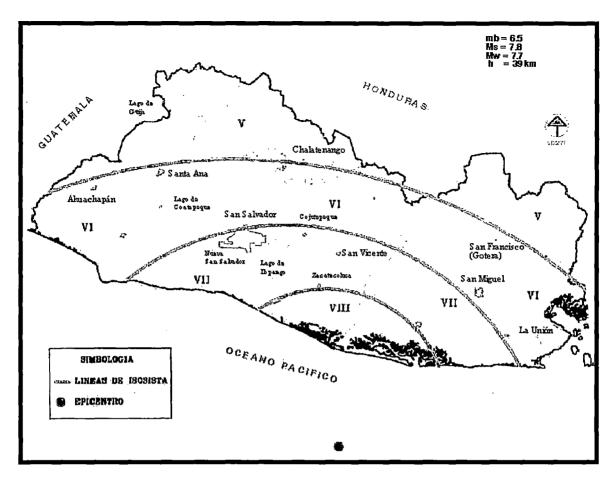


Fig. 6.7: Mapa de Isosistas en Escala de Mercalli Modificada Sismo del 13 de Enero del 2001 (CIG-MOP)

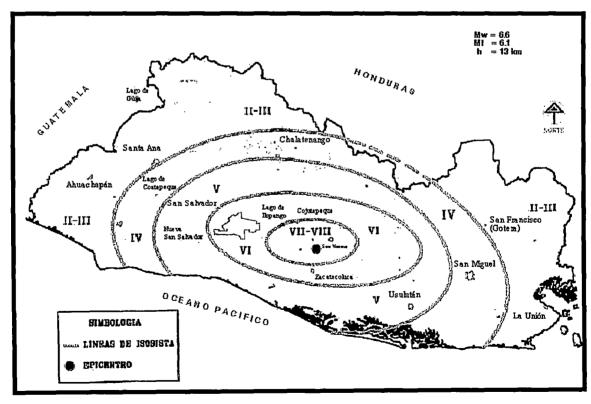


Fig. 6.8: Mapa de Isosistas en Escala de Mercalli Modificada Sismo del 13 de Febrero del 2001 (CIG-MOP)

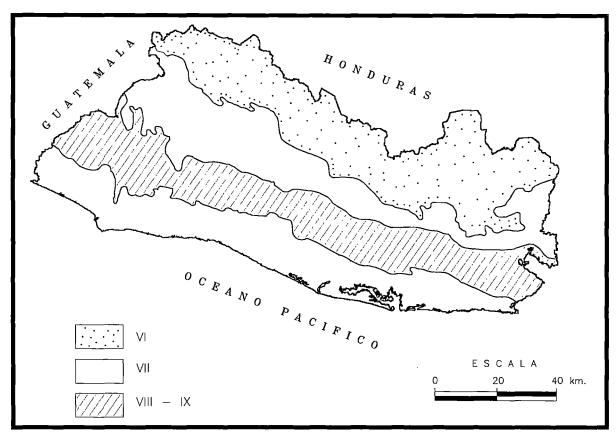


Fig. 6.9: Máximas Intensidades Sísmicas en la Escala de Mercalli Modificada en El Salvador (Aguilar 1986)

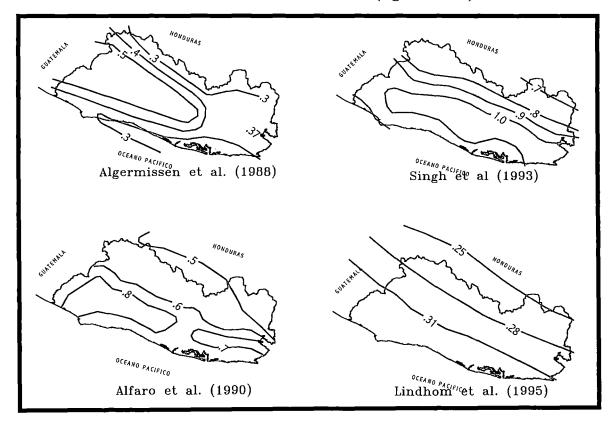


Fig. 6.10: Mapa de Peligrosidad Sísmica de Aceleraciones Máximas para Períodos de Retorno de 475 años en El Salvador (Bommer et al, 1996)

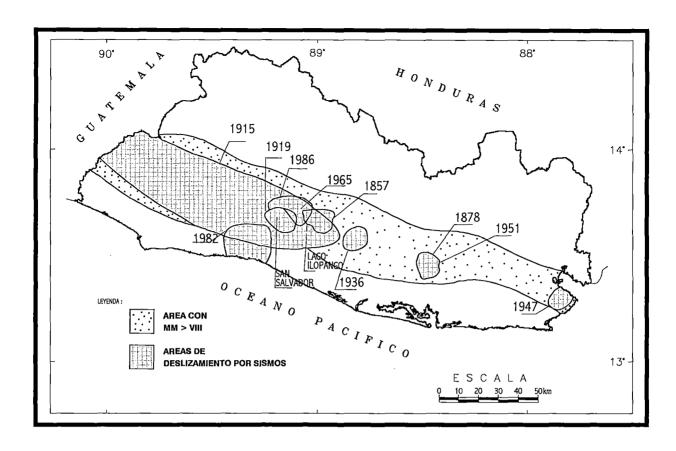


Fig. 6.11: Zonas Afectadas por Deslizamientos durante Sismos en El Salvador (Rymer y White, 1986)

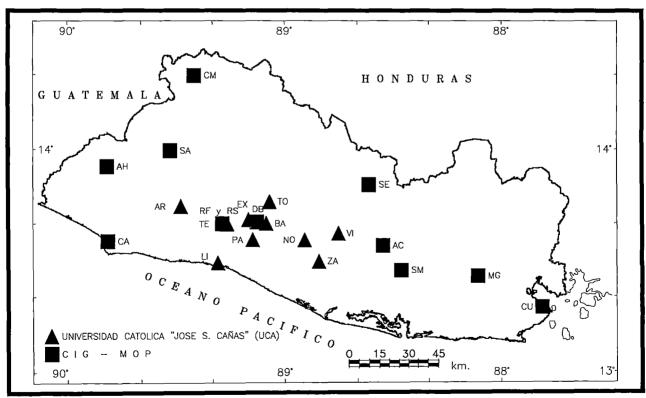


Fig. 6.12: Ubicación de la Red Acelerográfica Digital de UCA y la Red Analógica del CIG - MOP

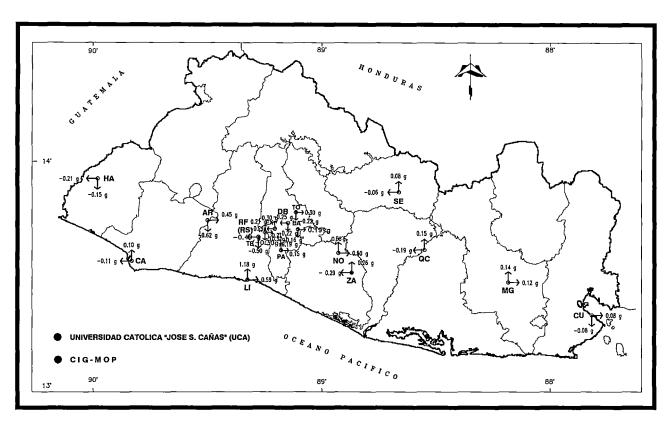


Fig. 6.13: Aceleraciones Máximas de Componentes Horizontales del Sismo del 13 de Enero de 2001

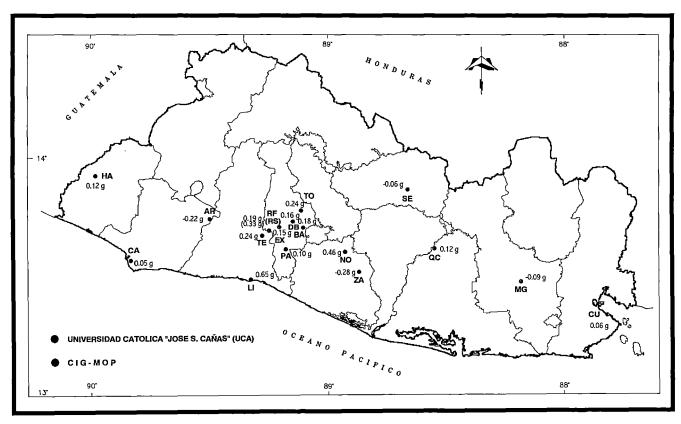


Fig. 6.14: Aceleraciones Máximas de Componentes Verticales del Sismo del 13 de Enero de 2001

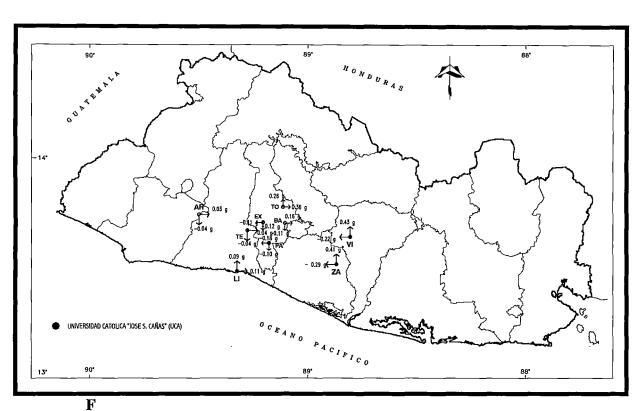


Fig. 6.15: Aceleraciones Máximas de Componentes Horizontales del Sismo del 13 de Febrero de 2001

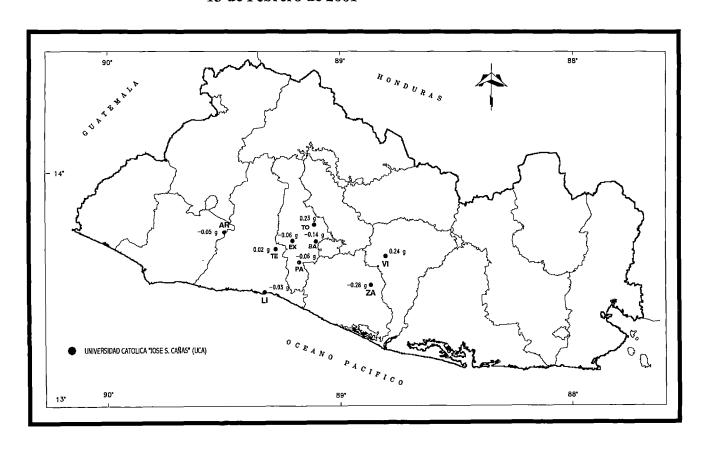


Fig. 6.16: Aceleraciones Máximas de Componentes Verticales del Sismo del 13 de Febrero de 2001

Back Analysis de Deslizamiento $N^{\mathfrak o}$ 1 de las Curvas La Leona

Ten Most Critical. C:DER1PRE.PLT By: Eduardo 2/05/2003 6:21pm # FS a 1.00 Total Unit Wt. Saturated Unit Wt. Cohesion Intercept (KPa) Friction Angle (deg) Pore Pressure Pressure Constant Piez. Surface Soil Type c 1.26 (KN/m3) (KN/m3) (KPa) Param. No. No. Label 1,33 17.9 35 0 1 pruebal 17.9 35 1,61 1.75 1.85 1,96 2.74 30 Elev. 20 (m) 10 0 -10 10 20 30 40 50 60 70 -10 0 80 PCSTABL5M FSmin=1.00 X-Axis (m)

Fig. 6.17: Back Análisis La Leona Deslizamiento Nº 1

Back Analysis de Deslizamiento N° 2 de la Curva La Leona

Ten Most Critical. C:DER2BACK.PLT By: Eduardo 2/05/2003 6:54pm FS 1.00 PCSTABL5M FSmin=1.00 X-Axis (m) α Saturated Unit Vt. (KN/m3) 23.3 Cohesion Intercept (KPa) Friction Angle (deg) 33 17.1 1.00 12.5 13.2 16.2 16.5 17.1 33 30 30 30 30 30 ď 1.00 33 33 33 33 120 1.00 12.9 12 23 16.2 16.2 25 24.1 1.00 9 1.00 1.01 h 1.01 100 Y-Axis (m) 80 6 60 8 40 0 20 40 60 80 100 PCSTABL5M FSmin=1.00 X-Axis (m)

Fig. 6.18: Back Análisis La Leona Deslizamiento Nº 2

Back Analysis del Deslizamiento N° 3 de las Curvas La Leona

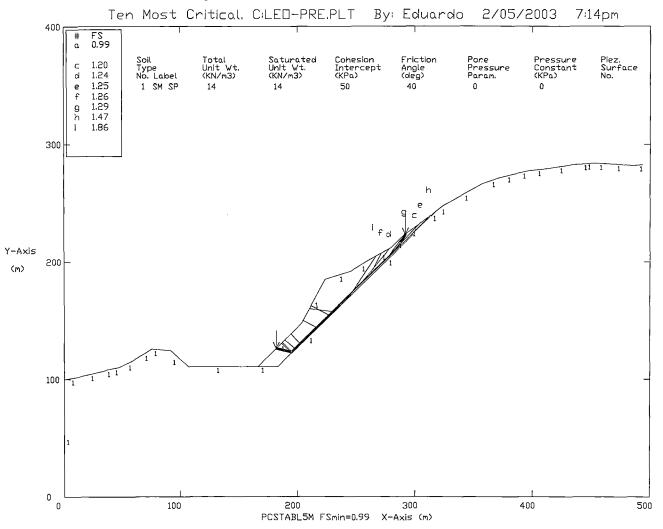


Fig. 6.19: Back Análisis La Leona Deslizamiento Nº 3 (a=0.25g)

Back Analysis Parte Alta del Desl. Nº 3 de las Curvas La Leon Ten Most Critical. C:LEOARR.PLT By: Eduardo 2/05/2003 7:23pm 100 # FS a 0.98 Cohesion Intercept (KPa) 20 20 Soil Type No. Label 1 SM 2 ML Total Unit Vt. (KN/m3) 11.6 15.7 Saturated Unit Wt. (KN/m3) 11.6 15.7 Friction Angle (deg) 40 40 c 1.00 d 1.00 e 1.00 f 1.00 g 1.00 h 1.00 i 1.00 80 Y-Axis 60 (m) 40 \S_0 20 40 60 80 PCSTABL5M FSmin=0.98 X-Axis (m)

Fig. 6.19: Back Análisis Parte Alta del Deslizamiento Nº 3 (a=0.20g)

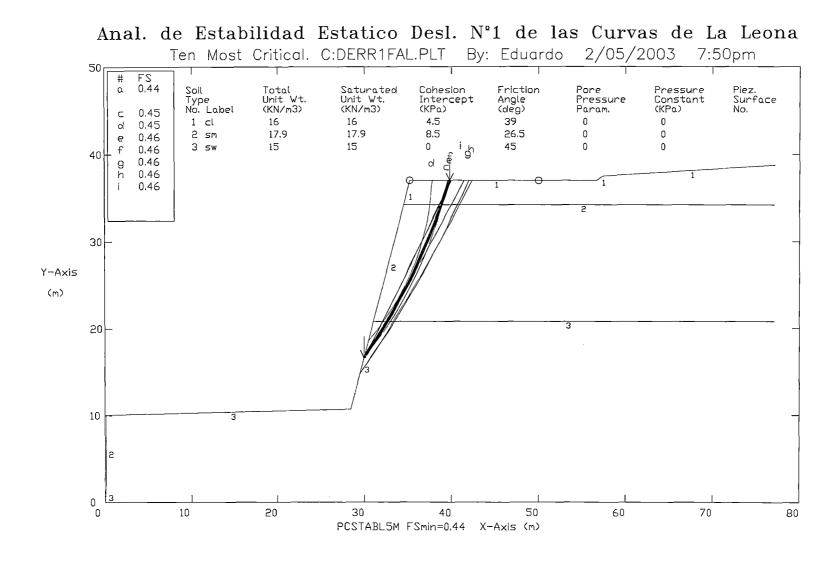


Fig. 6.20: Análisis de Estabilidad Estático con Parámetros de Resistencia de Ensayos del Deslizamiento Nº 1

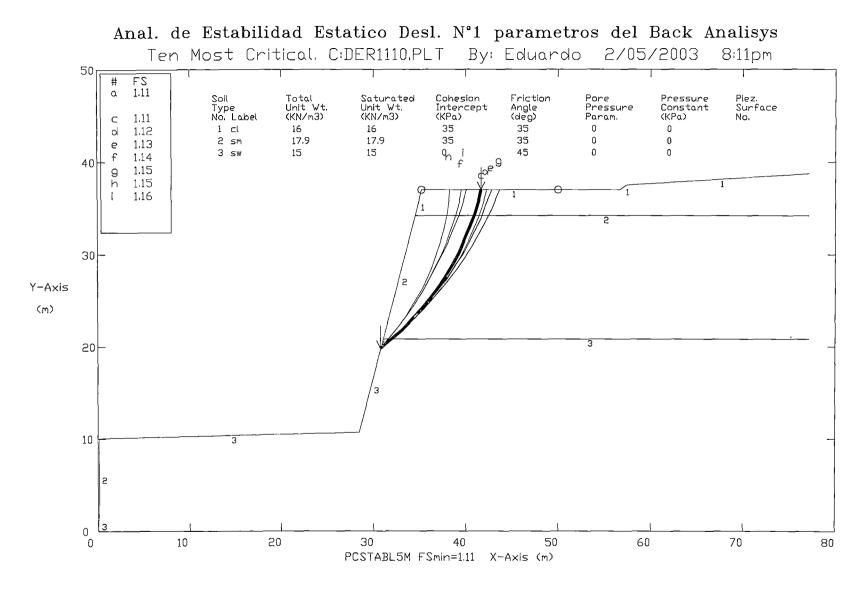


Fig. 6.21: Análisis de Estabilidad Estático con Parámetros de Back Analysis del Deslizamiento Nº 1

Anal. de Estabilidad Estatico Desl. N§ 2 de las Curvas de La Leona

Ten Most Critical, C:LEO2BA.PLT By: Eduardo 2/20/2003 4:02pm

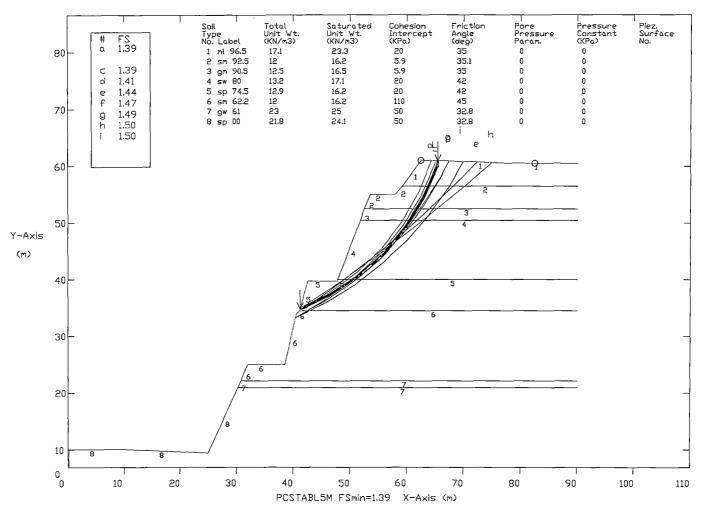


Fig. 6.22: Análisis de Estabilidad Estático con Parámetros de Resistencia de Ensayos del Deslizamiento Nº 2

Anal. de Estabilidad Pseudo-estático Desl. Nº 2 de las Curvas de La Leon Ten Most Critical. C:LEO2BA1.PLT By: Eduardo 2/20/2003 Piez. Surface No. Soil Type No. Label Total Unit Wt. (KN/m3) Friction Pore Pressure Pressure Constant (KPa) Saturated Cohesion FS 0.97 Angle (deg) Unit Wt. Intercept à (KN/m3) (KPa) Param. 1 ml 96.5 17.1 23,3 20 35 80 2 sm 92.5 12 16.2 5.9 35.1 0.99 \subset 3 gm 90.5 4 sw 80 12.5 16.5 5.9 35 0.99 d 42 13.2 17.1 20 1.00 5 sp 74.5 12.9 16.2 20 42 1.01 6 sm 62.2 12 16.2 110 45 1.05 7 gw 61 23 25 50 32.8 70 1.06 h 50 32.8 8 sp 00 21.8 24.1 1.06 f_E 9 60 50 40 Y-Axis (m) 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110

Fig. 6.23: Análisis de Estabilidad Pseudo-estático con Parámetros de Resistencia de Ensayos del Deslizamiento Nº 2 (a=0.25g)

PCSTABL5M FSmin=0.97 X-Axis (m)

By: Eduardo 2/20/2003 Ten Most Critical. C:LEO3DEF1.PLT 4:36pm Friction Angle (deg) Piez. Surface No. Saturated Unit Wt. (KN/m3) Cohesion Intercept (KPa) Soil Type No. Label Total Unit Wt, (KN/m3) Pore Pressure Pressure Constant (KPa) Param, FS 17.2 35 34 0 1 ML 15.7 0 a 0.96 280 13.4 20 2 SM 11.6 44 13 15.9 35 38 3 ML 0.99 4 SM 13.1 15.4 59 41 1.02 17.6 17.6 50 45 5 ROCA 1.05 30 43 6 SM 12.9 14 1.12 7 SP 14.4 14.7 10 41 1.21 240 21.2 50 45 8 RDCA 21 й 1.23 38 9 GM GP 19.5 19.6 10 1.35 10 SM 12.4 14.6 37 42 12.9 15.1 34.5 34 ٥ 11 SM hf 200 160 Y-Axis (m) 120 80 40 0 40 80 120 160 200 240 360 0 280 320 400 STABL6H FSmin=0.96 X-Axis (m)

Anal.de Estabilidad Pseudo-estático Desl. Nº 3 de las Curvas de la Leona

Fig. 6.24: Análisis de Estabilidad Pseudo-estático con Parámetros de Resistencia de Ensayos del Deslizamiento Nº 3 (a=0.25g)

Anal.de Estabilidad Pseudo-estático Desl. Nº 3 de las Curvas de la Leona Ten Most Critical, C:LEO3DEF.PLT By: Eduardo 2/20/2003 4:29pm Piez. Surface No. Soil Type No. Label Total Unit Wt. (KN/m3) Saturated Unit Wt. (KN/m3) Cohesion Friction Pressure Intercept Angle (deg) Pressure Constant # FS a 1.04 (KPa) Param, (KPa) 15.7 34 1 ML 17.2 35 0 280 2 SM 11.6 20 44 13.4 \subset 1.06 3 ML 13 15.9 35 38 0 1.09 4 SM 13.1 15.4 59 41 1.12 е 17.6 17.6 50 45 5 ROCA 1.19 30 43 6 SM 12.9 14 10 41 9 1.29 7 SP 14.4 14.7 240 1.29 8 RDCA 21 21.2 50 45 h 10 38 9 GM GP 19.5 19.6 1.41 42 10 SM 12.4 14.6 37 11 SM 12.9 15.1 34.5 34 200 160 Y-Axis (m) 120 80 40 0 40 80 120 160 200 240 280 320 360 400 0 STABL6H FSmin=1.04 X-Axis (m)

Fig. 6.25: Análisis de Estabilidad Pseudo-estático con Parámetros de Resistencia de Ensayos del Deslizamiento Nº 3 (a=0.20g)

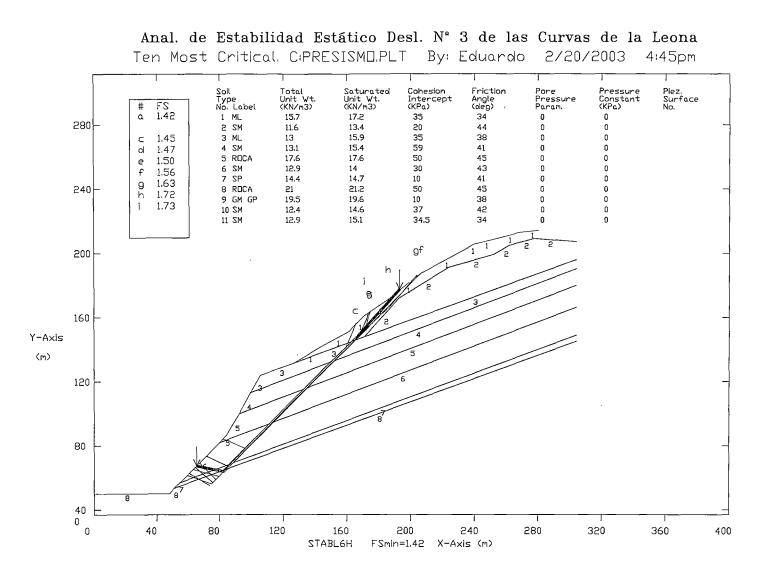


Fig. 6.26: Análisis de Estabilidad Estático con Parámetros de Resistencia de Ensayos del Deslizamiento Nº 3

Fig. 6.27: Análisis de Estabilidad Pseudo-estático con Medidas Correctivas del Deslizamiento N^{o} 1 (a = 0.25g) Programa SLOPE/W

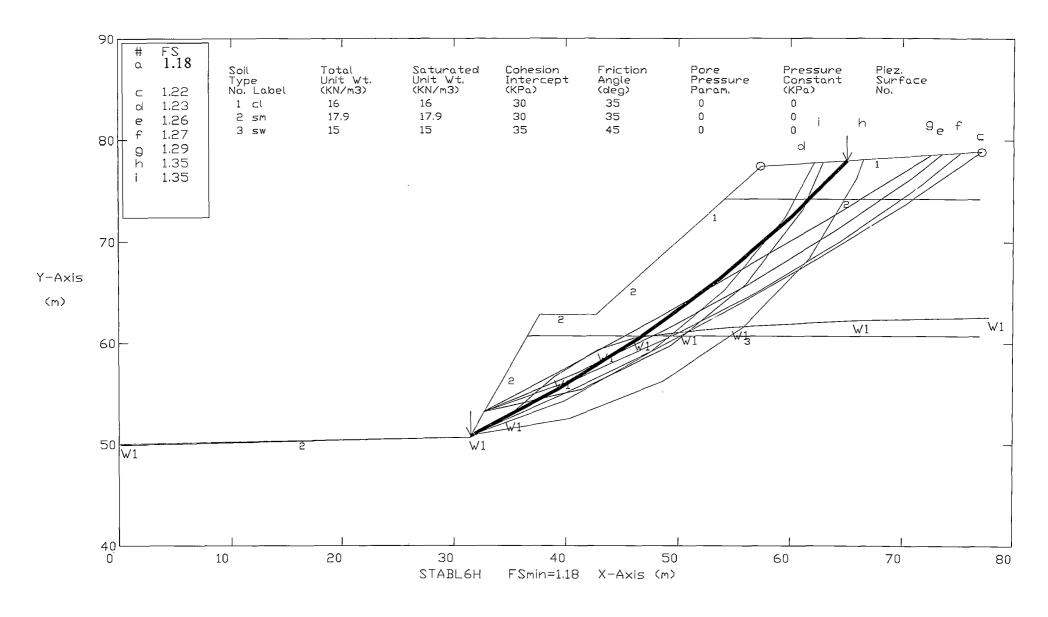


Fig. 6.28: Análisis de Estabilidad Pseudo-estático con Medidas Correctivas del Deslizamiento N^{o} 1 (a = 0.25g) Programa PCSTABL

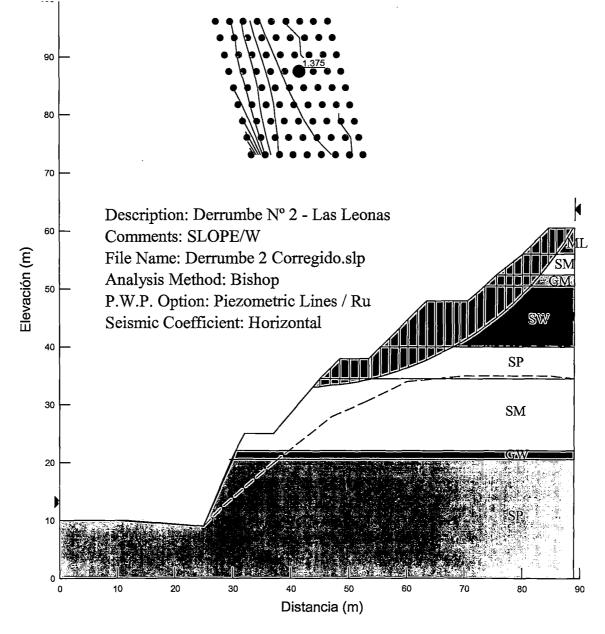


Fig. 6.29: Análisis de Estabilidad Pseudo-estático con Medidas Correctivas del Deslizamiento N^{o} 2 (a=0.25g) Programa SLOPE/W

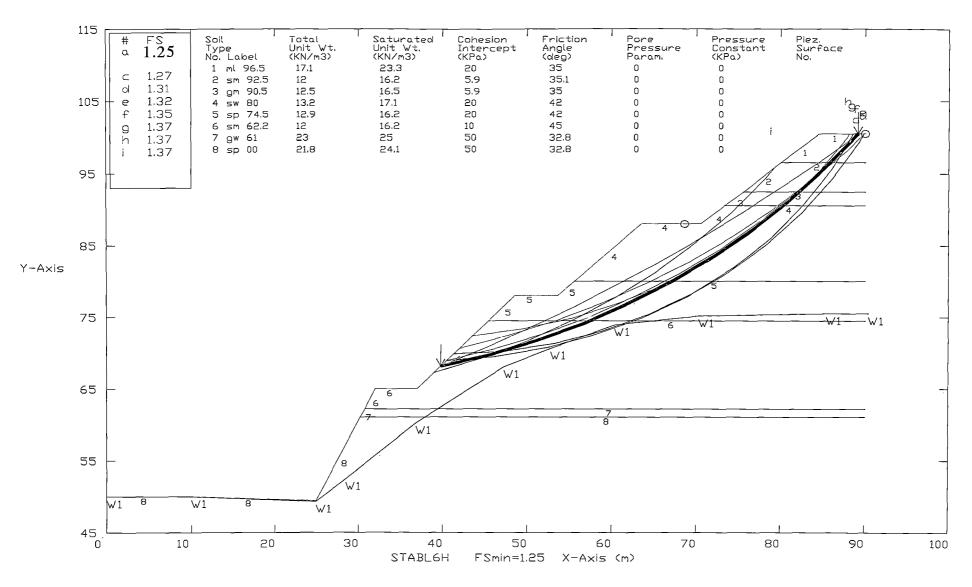


Fig. 6.30: Análisis de Estabilidad Pseudo-estático con Medidas Correctivas del Deslizamiento N^{o} 2 (a = 0.25g) Programa PCSTABL

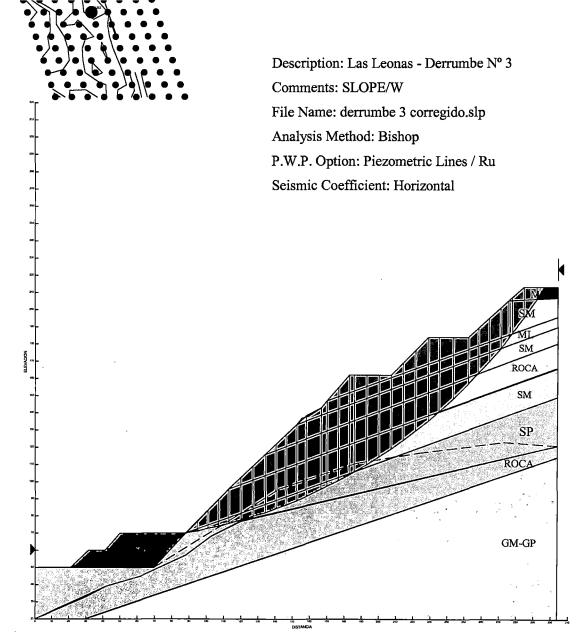


Fig. 6.31: Análisis de Estabilidad Pseudo-estático con Medidas Correctivas del Deslizamiento N^{o} 3 (a = 0.25g)

Programa SLOPE/W

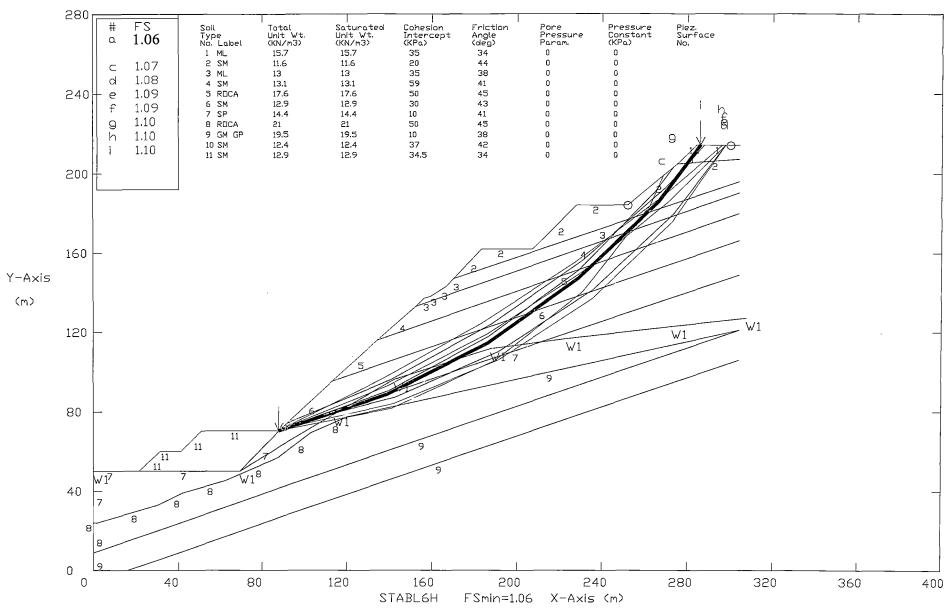


Fig. 6.32: Análisis de Estabilidad Pseudo-estático con Medidas Correctivas del Deslizamiento Nº 3 (a = 0.25g)
Programa PCSTABL

CAPITULO VII

CONCLUSIONES Y RECOMENDACIONES

El análisis pseudo estático para la estabilidad de taludes es aun valedero como metodología de diseño, para esto la correcta elección de un coeficiente sísmico proveniente de un estudio de peligro sísmico bien realizado es parte importante de este análisis.

La caracterización de las fuentes sismogénicas, leyes de atenuación y actividad sísmica de las fuentes en el análisis probabilístico son parte fundamental para hallar la aceleración máxima. La mala elección de éstos deriva en errores de diseño.

La elección de un coeficiente sísmico para un análisis pseudo estático ha de reflejar los hechos ocurridos durante determinado sismo, explicando la falla durante la acción sísmica.

El uso de la instrumentación geotécnica permite determinar en forma mas precisa el mecanismo de falla de los taludes, su superficie de falla y el avance progresivo del deslizamiento mediante vectores de desplazamiento. El monitoreo mediante mediciones inclinométricas en deslizamientos importantes, se llevará a cabo para tener un seguimiento de su comportamiento en el transcurso del tiempo.

Los ensayos indirectos como la refracción sísmica y los sondeos eléctrico verticales complementan y aportan con información adicional a los necesarios e importantes ensayos directos.

La elección de una alternativa económica y técnicamente viable a ser la elegida, en deslizamientos que involucran un apreciable movimiento de tierras la alternativa de una variante de trazo de la carretera tiene que ser evaluada; en el presente trabajo de las Curvas de Las Leonas no se tomó en consideración dicha alternativa puesto que escapa a los objetivos de este trabajo.

En los casos como el acontecido en la República de El Salvador, el correcto modelamiento geotécnico de falla de los taludes ha permitido explicar en forma satisfactoria su comportamiento ante condiciones de esfuerzo y cargas aplicadas, además de permitir tener un esquema para adoptar soluciones de estabilización.

Para el análisis de deformaciones permanentes mediante el método de Newmark se tendría que realizar un análisis de respuesta sísmica para así calcular las aceleraciones promedio inducidas; el asumir diferentes aceleraciones promedio permite realizar tanteos previos y en algunos casos definitivos para la estabilidad en taludes naturales. En taludes de mayor altitud es recomendable el análisis de respuesta sísmica para el cálculo de las deformaciones permanentes.

El utilizar una diversa variedad de programas de cómputo, los datos con los que son alimentados han de ser verificados y contrastados con la bibliografía existente así como los resultados de los mismos.

Las deformaciones de un talud proporcionan la condición de servicio del mismo luego de ocurrido un sismo, de esta forma los análisis de predicción de desplazamientos dan una mejor evaluación de la estabilidad sísmica del talud.

El análisis de caída de rocas es un fenómeno que se presenta en la serranía del Perú, sin embargo las medidas correctivas o de mitigación no se han implementado en forma agresiva, como en otros países. Recomendándose establecer, procedimientos de análisis confiables para el problema de Caída de Rocas a fin de evitar numerosas pérdidas humanas y materiales.

La metodología propuesta para el análisis sísmico de taludes del presente trabajo pretende que sea aplicada en nuestra realidad, siendo el Perú una zona de alta actividad sísmica, para este propósito una mayor y mejor información sísmica es fundamental.

En el caso de las Curvas de La Leona en El Salvador, los suelos en su mayoría son de origen volcánico siendo susceptibles a vibración, por tal motivo es que se consideró, una deformación permanente máxima de 10 centímetros.

REFERENCIAS BIBLIOGRAFICAS

- BIENIAWSKI Z. T. -Engineering Rock Mass Classifications, John Wiley & Sons, Inc., New York., 1989.
- CARTER M. -Geotechnical Engineering Handbook, 1983.
- * CASTILLO J. y ALVA, J. -Peligro Sísmico en el Perú, VII Congreso Nacional de Mecánica de Suelos e Ingeniería de Cimentaciones, Lima, 1993, pp. 409-431.
- CLASS & ORTEGA CONSULTORES. -Diseño Final y Documentos de Licitación para el Proyecto de Rehabilitación de la Carretera CA-1, Tramo Curva de la Leona -KM 53- Dañada por los terremotos del 13 Enero y 13 de Febrero del 2001, San Salvador, 2001.
- Lima, 1982. CISMID. -Seminario Taller de Mecánica de Suelos y Exploración Geotécnica,
- Lima, Mayo 1984.
- * CORPEI. -"Estudio de Estabilidad de Taludes y Defensas Ribereñas Carretera: Tarma La Merced", Ministerio de Transportes y Comunicaciones, Vivienda y Construcción, Lima, 1999.
- DUNNICLIFF J. -Geotechnical Instrumentation for Monitoring Field Performance, John Wiley & Sons, Inc., New York, 1998.
- EVERT HOEK -JOHN BRAY. Rock Slope Engineering, Second Edition, Taiwan, .1975.

- FEDERAL HIGHWAY ADMINISTRATION. -Participant Workbook for Rockfall Hazard Mitigation Methods, NHI Course N° 13219, March 1994.
- GEO-SLOPE. -Slope/W Program for Slope Stability Analysis, Version 4.
- GOODMAN R. E..- Rock Mechanics, University of California at Berkeley, John Wiley & Sons, Inc., New York, 1980.
- HOEK E. D. SC. -E. T. BROWN. -Excavaciones Subterráneas en Roca, McGraw Hill, 1980.
- ♣ IDRISS, I.M. and SEED, H.B. -Seismic response of horizontal soil layers,
 JSMFD, ASCE, Vol. 94, No. SM4, 1968.
- ** IDRISS. I.M. and SUN, J.I. -SHAKE 91: A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits, National Institute of Standards and Technology of Maryland and University of California, Davis, 1992.
- INFANTES QUIJANO M. A. -Análisis Sísmico de Estructuras de Tierra, Tesis de Titulación Profesional, Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería, 1999.
- INSTITUTO TECNOLOGICO GEOMINERO DE ESPAÑA. -Manual de Ingeniería de Taludes, España, 1991.
- * KAGAWA, T. -SHAKE 21: New approach to earthquake response analyses of horizontally layered soil stress using the equivalent linear method, Wayne State University, Detroit, 1995.

- LAMBE T. W. Y WHITMAN R. -Mecánica de Suelos, Editorial Limusa, John Wiley & Sons, Inc., New York, 1989.
- MAKDISI, F.I. and SEED, H.B. -A simplified procedure for estimating earthquake- induced deformations in dams and embankments. Report No. UCB/EERC 77/19, University of California, Berkeley, 1977.
- McGUIRE, R. -Fortran computer program for seismic risk analysis, Open-File Report 76-67, U.S. Geological Survey, 1976.
- MONONOBE, N., TAKATA, A. and MATUMURA, M. -Seismic stability of earth dam, Proceeding Second Congress on Large Dams, Vol. IV, Washington, 1936.
- NEWMARK, N .M. -Effects of earthquakes in dams and embankments, Geotechnique, Vol. 15 No.2, 1965, pp. 139-160.
- MINISTERIO DE FOMENTO-SECRETARIA DE ESTADO DE INFRAESTRUCTURA Y TRANSPORTE DIRECCION GENERAL DE CARRETERAS. -Protección contra Desprendimientos de Rocas, Centro de Publicaciones Secretaria General Técnica Ministerio de Fomento de España, 1996.
- ROBLES N. H. -Excavación y Sostenimiento de Túneles y Roca, Concytec, Lima, 1994.
- ROSE D. M. -A. URZUA. -An Examination of Lateral Displacement in Sanitary Landfills Due to Seismic Loading, 1996.
- RUESTA, P., DIAZ, J. y ALVA, J. -El coeficiente sísmico en el diseño de presas de tierra y enrocado. VII Congreso Nacional de Ingeniería Civil, 1988, pp. 197-218.

- SAMAYCA INGENIEROS S.A. -Dywidag Systems International, USA.
- ♣ SEED, H.B. and IDRISS, I.M. -Soil moduli and damping factors for dynamic response analysis, Report No EERC 70-10, University of California, Berkeley, 1970.
- SUÁREZ DÍAZ J. -Deslizamientos y Estabilidad de Taludes en Zonas Tropicales, Ediciones Uis, 1998.
- * TRANSPORTATION RESEARCH BOARD. -Landslides Investigation and Mitigation, Special Report 247, USA, 1996.

)

ANEXOS

ANEXO A CRONOLOGIA DE LOS SISMOS DESTRUCTIVOS EN EL SALVADOR

CRONOLOGIA DE LOS SISMOS DESTRUCTIVOS EN EL SALVADOR

Ref.: Alvarenga E., Hernández D.A. y Hernández D.A.(CIG – MOP)

FECHA	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
1524	 				San Salvador	Primera ruina de que se tiene noticia	Díaz y Cáceres
23 de Mayo de 1576	 				Entre San Marcos y Santo Tomás, San Salvador.	Total destrucción de San Salvador.	Lomnitz y Schultz (1966)
1593	 				San Salvador	Terremoto daña severamente San Salvador	Vásquez
1625	 				San Salvador	Violento terremoto causa graves daños en San Salvador	Vásquez
1650	 				San Salvador	Violento terremoto causa daños en San Salvador	(Archivo Ayuntamiento)
1656	 444				San Salvador	Terremoto en San Salvador	
30 de Septiembre de 1659	 					Gran erupción del volcán Boquerón. Completa destrucción de San Salvador	Lomnitz y Schultz (1966)
24 de Agosto de 1671	 				San Salvador	Terremoto llamado de San Bartolomé	Díaz
1707					San Salvador	Ruina completa en San Salvador	Guzmán y Lardé

FECHA	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
5 de Marzo de 1719	 13.300° N 89.120° O	7.4			San Sarvador, San	Ruina completa en San Salvador, San Vicente y pueblos vecinos	Lardé, White
1730	 13.738° N 89.292° O	5.5				Violento terremoto en San Salvador	(Archivo Ayuntamiento)
1733	 14.294° N 89.615° O	7.2			Santa Ana, Sonsonate, Izalco	Violento terremoto en Santa Ana, Sonsonate, Izalco, causaron daños principalmente en los templos de La Trinidad en Sonsonate y Dolores en Izalco	Ipiña
Abril de 1765	 13.720° N 89.066° O	5.7			Ilopango, San Martín, Perulapía y Perulapan		Cáceres, Sapper, Díaz, White
1769	 				Izalco	Violenta serie de temblores en la Villa de Izalco	Meyer - Abich
29 de Julio de 1773	 13.950° N 91.400° O	7.5			El Salvador	Violento terremoto ocasiona serios daños en San Salvador , Panchimalco, Huizúcar, Jayaque y Guaymoco	Lardé, White
Julio de 1774	 				El Salvador	Temblores dañan pueblos del Bálsamo y causan grandes estragos en Huizúcar y Panchimalco	Cáceres
29 de Noviembre de 1783	 13.632° N 88.787° O	6.6				Terremoto, se produce a las 2:30 pm, daña la Villa de San Vicente de Austria	Lardé, White

FECHA	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
1792	 				Izalco	Violento temblor en Izalco	Ipiña
2 de Febrero de 1798	 13.702° N 89.208° O	5.4			San Salvador	Terremoto a las 2:00 pm destruye San Salvador, tambien se vió afectado Cuscatlán	Montessus y Cáceres, White
20 de Agosto de 1815	 13.633° N 89.175° O	6.1			San Salvador	Gran temblor en toda la provincia de San Salvador, muchos templos de la capital quedaron deteriorados, la parroquia de Panchimalco quedó destruida	Lardé y Monterrey, White
7 de Febrero de 1831	 13.400° N 89.750° O	7.1			El Salvador	Gran terremoto producido a la 1:00 pm causando notables estragos en San Salvador y daños en muchas poblaciones del Sur	Marure, White
Diciembre de 1838	 				San Miguel	Gran terremoto daña completamente Chinameca y San Miguel	Cáceres
21 de Marzo de 1839	 13.762° N 89.230° O	6.2			San Salvador	Terremoto a las 3 pm causó daños en San Salvador y pueblos vecinos como Quezaltepeque y Nejapa	Squier, White
23 de Junio de 1847	 13.708° N 89.469° O	5.9				Temblor causa daños en los pueblos del Balsamo, en particular Armenia y Jayaque	Cáceres y Díaz, White

FECHA	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
16 de Abril de 1854	 13.681° N 89.135° O	6.5			La intensidad pico fue cerca de San Jacinto, San Salvador	Ruina en San Salvador, la capital se trasladó a Santa Tecla.	Lomnitz y Schulz (1966), White
8 de Mayo de 1854	 -				San Salvador	Fuerte temblor destruye algunas paredes en San Salvador y causa alarma en Cojutepeque	Boletín de Gobierno
11 de Junio de 1854	 13.672° N 89.038° O	6.3			San Vicente	Terremoto a las 2:00 pm, destruye la torre de Reloj en San Vicente, la iglesia y otras poblaciones	Lardé, White
18 de Junio de 1854	 		 -		San Miguel	Fuertes temblores en San Miguel y derrumbes en Estanzuelas	Montessus
26 de Noviembre de 1854	 				San Salvador	Fuerte terremoto causa daños en San Salvador, se reportaron 20 heridos	Informe Oficial
9 de Diciembre de 1856	 					Terremoto a las 11:00 am destruye parte de Cojutepeque como algunas casas en San Salvador	Lardé
25 de Agosto de 1859	 12.850°N 88.000° O	7.1			La Unión	Fuerte temblor a las 11:00 pm en el Puerto de La Unión, causa daños sin victimas que lamentar	Gaceta, White

FECHA	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
8 de Diciembre de 1859	 13.350° N 89.150° O	7.3			San Salvador	Fuerte temblor se produce a las 10:45 pm en San Salvador, se generó un Tsunami que afectó el puerto de Acajutla	Gaceta, White
21 de Junio de 1860	 13.630° N 88.887° O	5.8			San Vicente	Serie de temblores en San Vicente, daños en muchas poblaciones	Gaceta, White
3 de Diciembre de 1860	 13.350° N 89.450° O	7.1			San Salvador	Fuerte temblor se da a las 11:00 am, daños en las poblaciones de los alrededores	Gaceta, White
21 de Marzo de 1867	 				Armenia	Violento temblor destruye la Iglesia de Armenia	Lardé
30 de Junio de 1867	 13.310° N 89.200° O	7.1			El Salvador	Violento temblor a las 5:30 pm que dañó San Salvador, La Libertad, San Vicente, Suchitoto, Santa Tecla	Cáceres, White
29 de Diciembre de 1872	 13.633° N 88.876° O	5.4			San Vicente	Violento terremoto a las 11:50 pm daña muchas viviendas en San Vicente y ocasiona varias muertes	Lardé, White
19 de Marzo de 1873	13.300° N 89.300° O	7.1	••-		San Salvador	Violento temblor se produjo en San Salvador a las 4:30 pm	

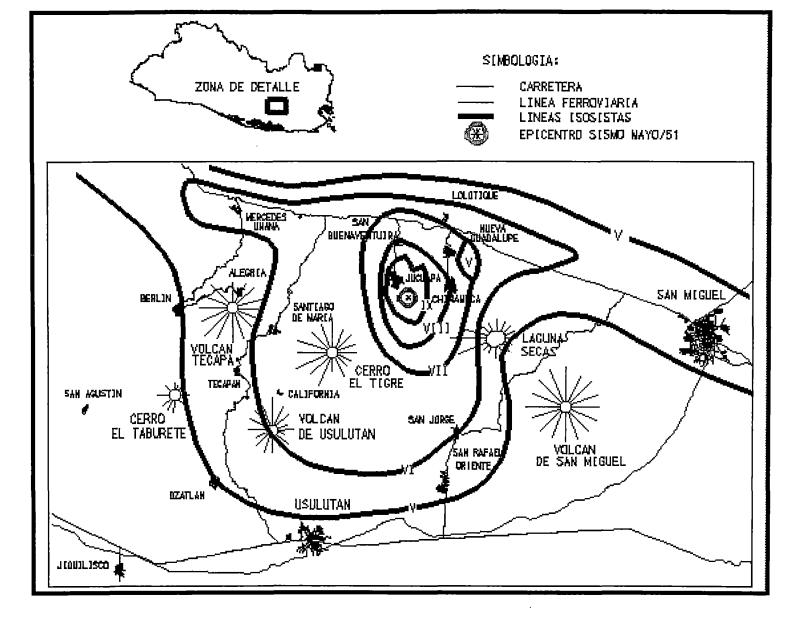
FECHA	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
2 de Octubre de 1878	 					Violento terremoto causa a las 8:00 am la ruina total de Jucuapa, daños parciales en Chinameca y considerables daños en El Triunfo, Santiago de María, Alegría y otras poblaciones de área	Lardé y Sapper
20-21 de Diciembre de 1879	 				San Salvador, Ilopango	Serie de temblores que se extendió hasta el 31 de diciembre en los alrededores del lago de Ilopango, su número fluctuó de 600 a 800 eventos produciendo daños en los alrededores del lago de Ilopango.	
8 de Julio de 1883					San Salvador	Fuerte temblor destruye algunas paredes en san Salvador a las 8:10 am	
12 de Octubre de 1887	 				La Unión	Fuerte temblor a las 7:00 pm causa daños en La Unión	
9 de Septiembre de 1891	 13.250° N 89.300° O	7.1			San Salvador	Terremoto causa semiruina de San Salvador y otras poblac.	Lardé, White
18 de Octubre de 1892	 				La Umon	Serie de temblores en el área de la Bahía de Fonseca, causando fuertes derrumbes en la isla de Conchaguita. Considerables daños en La Unión	Meyer - Abich

FECHA	HORA GMT	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
2 de Enero de 1893		13.705° N 89.164° O	5.6			San Salvador	Sismo a las 9:00 am, ocasiona la semiruina de San Salvador y Soyapango	White
25 de Marzo de 1899		13.651° N 88.796° O	5.7			San Vicente	Movimiento sísmico causa la ruina de San Vicente, Apastepeque e Istepeque	Lardé, White
18 de Abril de 1902		14.000° N 91.000° O	Ms=7.9 (Alfaro et al, 1990)	25.0			Maremoto en Ahuachapán destruyendo Barra de Santiago, Cara Sucia y Garita Palmera. Daños en el occidente del país y en San Salvador.	Martínez (1978)
19 de Julio de 1912		13.867° N 89.567° O	Ms=5.9 (White y Harlow, 1993)				Violento temblor causa daños en Armenia, Izalco y Santa Ana.	Martínez (1978), White
8 de Junio de 1917	00:55	13.700° N 89.500° O	Ms=6.5 (White y Harlow, 1993)				Erupción del Boquerón. Sismo causa destrucción en Armenia y graves daños en Ateos, Sacacoyo y San Julián. Un segundo sismo causa daños en San Salvador, Apopa, Nejapa, Quezaltepeque, Opico y Santa Tecla.	Jordan y Martínez (1979), White
8 de Junio de 1917	01:30	13.750° N 89.267° O	Ms=6.4 (White y Harlow, 1993)					
20 de Diciembre de 1936	02:43	13.717° N 88.933° O	Ms=6.1 (White)			Non Vicenta	Destrucción de San Vicente. Entre 100 a 200 muertos.	White
6 de Mayo de 1951	23:03	13.520° N 88.400° O	Ms=6.0 (White)	10		Jucuapa y Chinameca		White (1993)

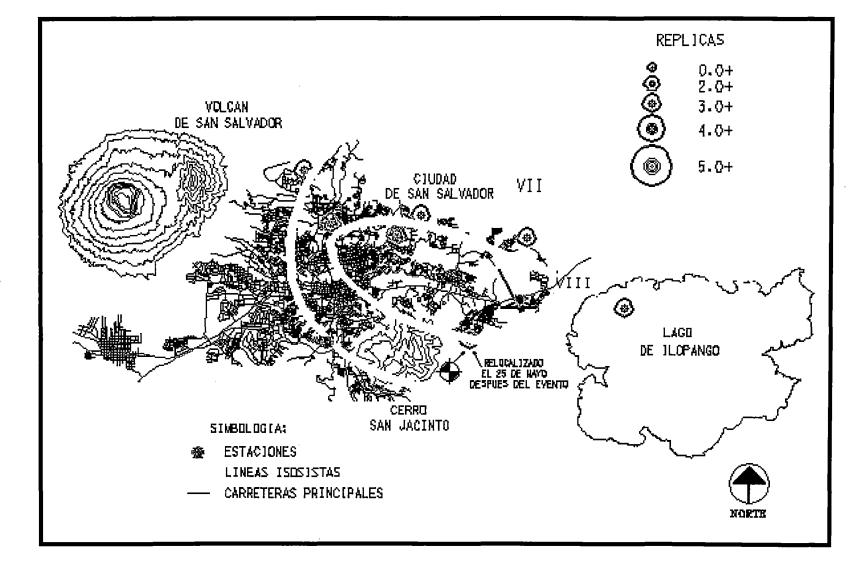
FECHA		COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
6 de Mayo de 1951	23:08	13.520° N 88.400° O	Ms=6.2 (White)	10		Jucuapa y Chinameca	Murieron más de 400 personas	White (1993)
7 de Mayo de 1951	20:22	13.480° N 88.450° O	5.8 (White)	10		Jucuapa y Chinameca		White (1993)
12 de Abril de 1961	22:20	13.200° N 88.900° O	5.95 (USGS)	122	VI en San Salvador	Océano Pacífico	Daños menores en San Salvador y el sur de El Salvador	USGS No 30-61 (1961) CIG (Reporte Interno)
3 de Mayo de 1965	10:01	13.700° N 89.170° O	Ms=6.0 (White)	15	VII en San Salvador	San Salvador	125 muertos, 400 heridos y 4000 casas destruidas	USGS No 44-65 (1965) Lomnitz y Shulz (1966) White et al (1987)
4 de Febrero de 1976	09:01	15.300° N 89.100° O	Ms=7.5	5	IX en Ciudad de Guatemala. V en San Salvador.	Guatemala	En Guatemala hubo 254,750 casas destruidas, más de 22,700 muertos y más de 76,000 heridos. No hubo daños en San Salvador.	Geological Survey (1976), White
19 de Junio de 1982	06:21	13.300° N 89.300° O	7.0 PAS 6.0 ISC	82	VII en San Salvador	Océano Pacífico	Según informe de Cruz Roja Salvadoreña, 8 personas murieron y 96 resultaron heridas. Hubo un promedio de 5000 personas damnificadas	CIG (1983)
23 de Abril de 1985	03:22	13.560° N 88.670° O	mb=4.8 (USGS)	-	VI en Berlín	Area de Berlín,	Se registraron más de 5,000 sismos, por lo menos 167 fueron sentidos en el área epicentral.	USGS(1985) CIG (1985)

FECHA		COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
10 de Octubre de 1986	17:49	13.670° N 89.190° O	mb=5.4 (CIG-USGS)	7.3	VIII-IX en San Salvador	San Salvador	1,500 muertos, 10,000 heridos, unas 60,000 viviendas destruidas o seriamente dañadas.	Alvarez (1987)
3 de Noviembre de 1988	14:46	13.880° N 90.450° O	mb=5.6 (USGS)	69	VI en Ahuachapán	Océano Pacífico. Al Sur del Depto de San José, Guatemala	5 personas murieron, algunos heridos, y cerca de 100 viviendas dañadas al sur de Guatemala	USGS (1988) CIG (Reporte Interno)
1 de Marzo de 1999	21:57	13.639° N 88.786° O	Mc=4.6	10.3	VI-VII en San Vicente	Zona de San Vicente	A partir del 1 de marzo de 1999 un total de 934 sismos fueron registrados, de los cuales 71 fueron reportados como sentidos en la ciudad de San Vicente y Alrededores. Se reportaron daños en viviendas (adobe y bahareque) e iglesias.	CIG (Reporte Interno)
17 de Marzo de 1999	21:38	13.663° N 88.802° O	Mc=4.5	9.1	VI en San Vicente	Zona de San Vicente		CIG (Reporte Interno)
3 de Abril de 1999	4:22	13.296° N 87.575° O	Mc=5.3	14.1	VII en la Isla de Meanguera			CIG (Reporte Interno)
3 de Abril de 1999	10:10	13.225°N 87.603° O	Mc=5.8	12.5	VII en la Isla de Meanguera		se reportó una serie de sismos en la Zona del Golfo de Fonseca, de éstos 17 fueron reportados como sentidos en la Isla de Meanguera y sitios aledaños. Se reportaron daños en muros de mampostería y grietas moderadas en algunas edificaciones.	CIG (Reporte Interno)

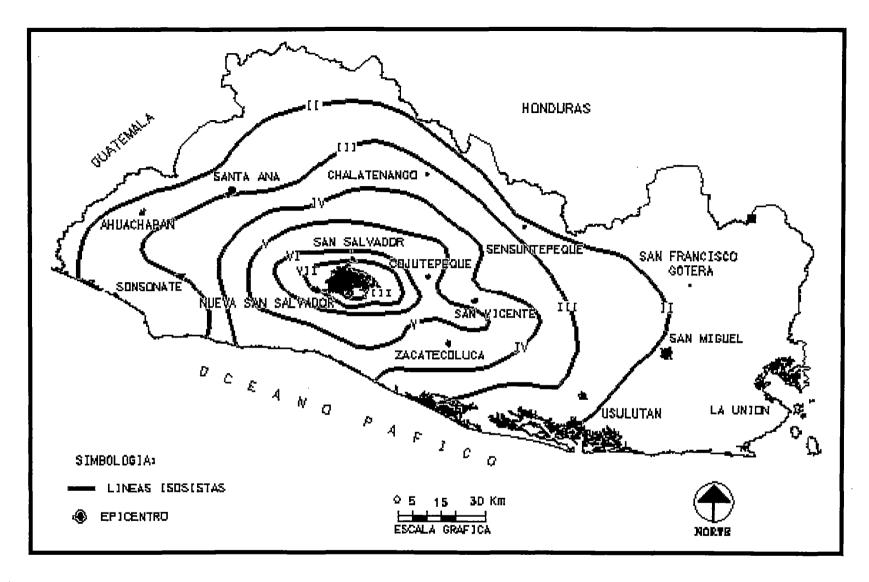
FECHA	8 3	COORDENADAS GEOGRAFICAS	MAGNITUD	PROF (km)	INTENSIDAD MAXIMA (MM)	EPICENTRO	COMENTARIOS	REFERENCIA
13 de Enero de 2001	17:34	12.830° N 88.790° O	Mw=7.6	39.0	VII en San Salvador	Zona de Subducción	Se reportan 944 fallecidos, 1155 edificios públicos dañados, 108,261 viviendas destruidas, 19 hospitales dañados, 405 iglesias dañadas, 445 derrumbes (Fuente: COEN)	USGS
13 de Febrero de 2001	14:22	13.640° N 88.940° O	Mw=6.6	13.0	VI en San Salvador		Se reportan 315 fallecidos, 82 edificios públicos dañados, 41302 viviendas destruidas, 5 hospitales dañados, 73 iglesias dañadas, 71 derrumbes (Fuente: COEN)	USGS CIG
17 de Febrero de 2001	20:25	13°39.6' N 89°14.9' O	Ml=5.1	5.1		Area Metropolitana	No se reportaron mayores daños materiales pero si causa pánico en la población del Area Metropolitana de San Salvador	CIG

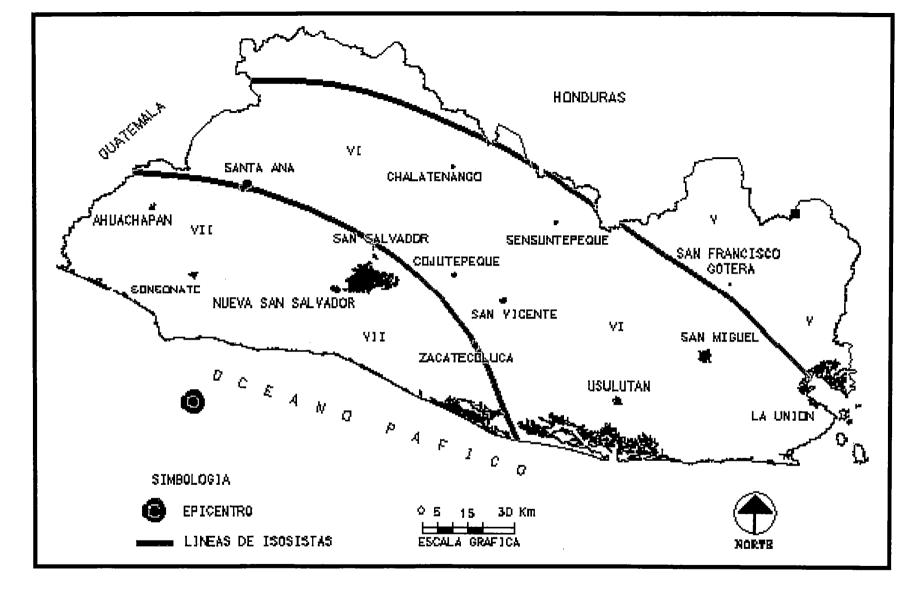

Nota: mb= Magnitud de Ondas de Cuerpo

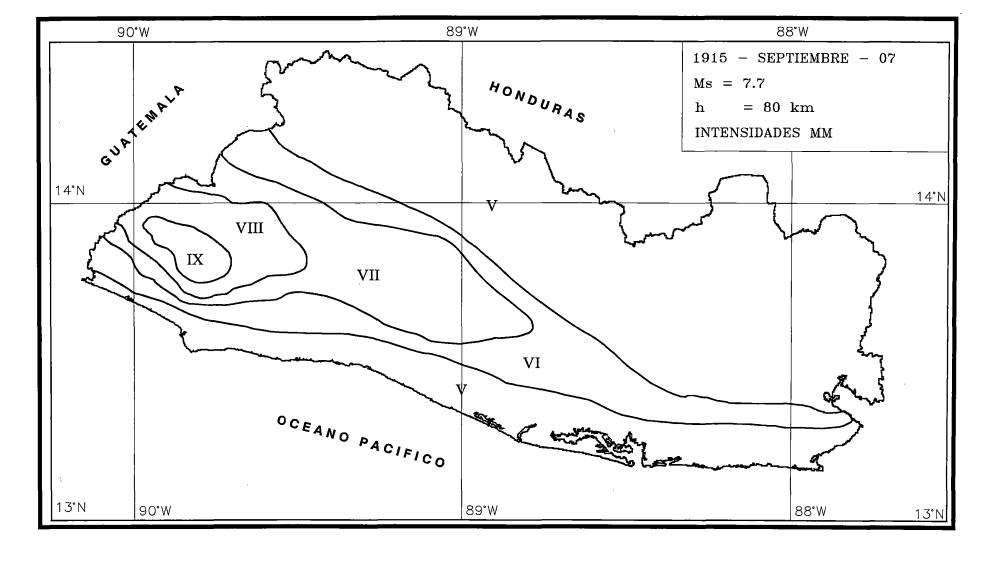
Ms= Magnitud de Ondas de Superficie

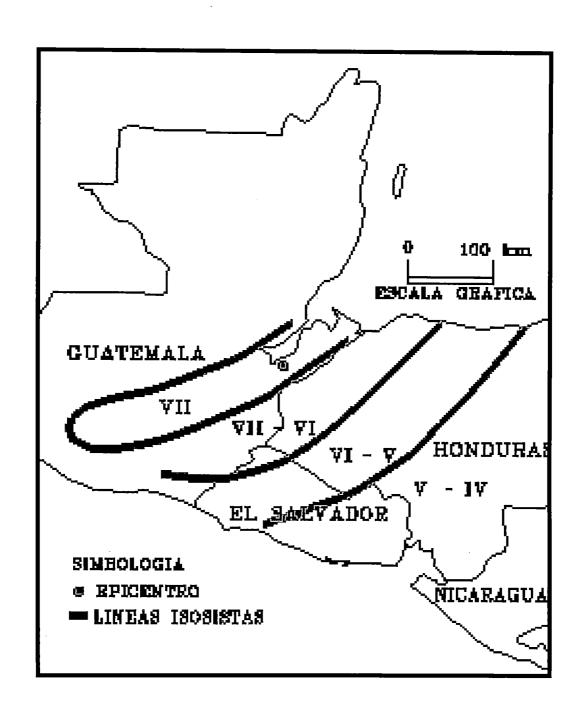

Mc= Magnitud Coda

Mw= Magnitud de Momento

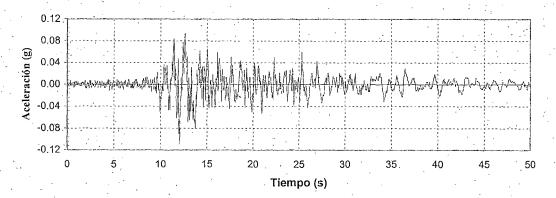

ANEXO B MAPAS DE ISOSISTAS

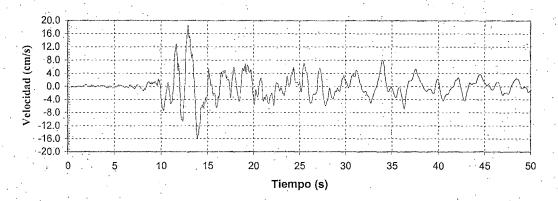

MAPA DE ISOSISTAS EN ESCALA DE MERCALLI MODIFICADA SISMO DEL 6 DE MAYO DE 1951 (Whitey Harlow, 1993)


MAPA DE ISOSISTAS EN ESCALA DE MERCALLI MODIFICADA SISMO DEL 03 DE MAYO DE 1965 (Lommitz y Schultz, 1966; White et al 1987)

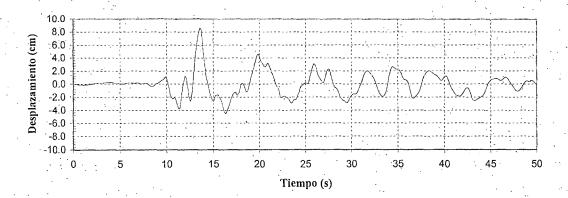

MAPA DE ISOSISTAS EN ESCALA DE MERCALLI MODIFICADA SISMO DEL 10 DE OCTUBRE DE 1986 (Alvarez, 1987)

MAPA DE ISOSISTAS EN ESCALA DE MERCALLI MODIFICADA SISMO DEL 19 DE JUNIO DE 1982 (Alvarez, 1982)

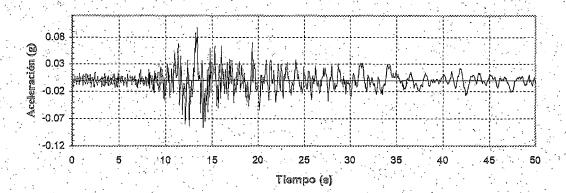

MAPA DE ISOSISTAS EN ESCALA DE MERCALLI MODIFICADA SISMO DEL 7 DE SEPTIEMBRE DE 1915 (Grases, 1994)


MAPA DE ISOSISTAS EN ESCALA DE MERCALLI MODIFICADA SISMO DEL 4 DE FEBRERO DE 1976 (White y Harlow, 1993)

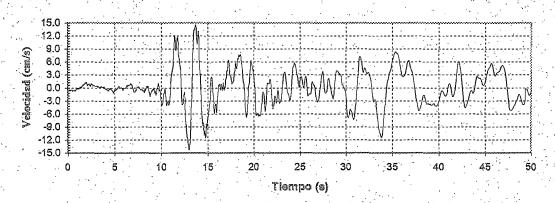
ANEXO C REGISTROS ACELEROGRAFICOS DISPONIBLES DE LOS SISMOS DE ENERO Y FEBEREO DEL 2001


Aceleración - Tiempo Historia a=-0.108~g~t=~12.07~s

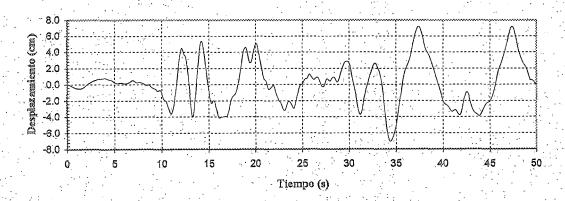
Velocidad - Tiempo Historia v=18.555 cm/s t=12.90 s



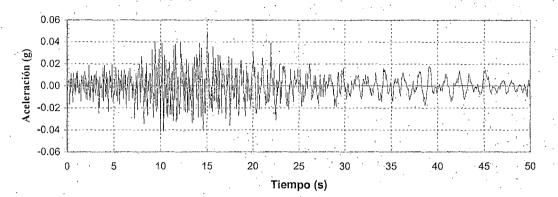
Desplazamiento - Tiempo Historia d= 8.552 cm t= 13.59 s



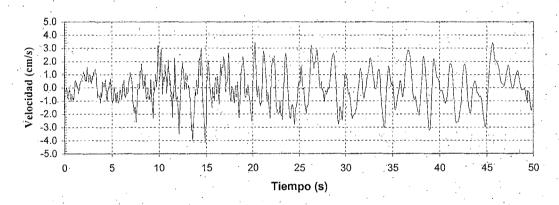
SAN SALVADOR. 13 ENE 2001. ACAJUTIA CEPA COMP. 90° Sismo 2001 - Acajutia Cepa dt=0.005s


Aceleración - Tiempo Historia a= 0.098 g t= 13.38 s

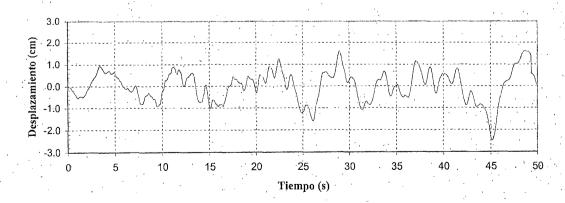
Velocidad - Tiempo Historia v=14.567 cm/s t=13.70s



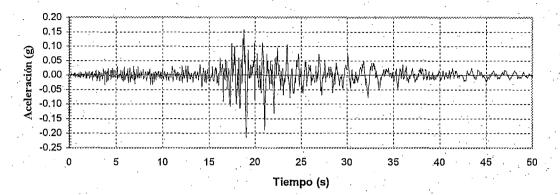
Desplazamiento - Tiempo Historia d= 7.168 cm t= 37.40s



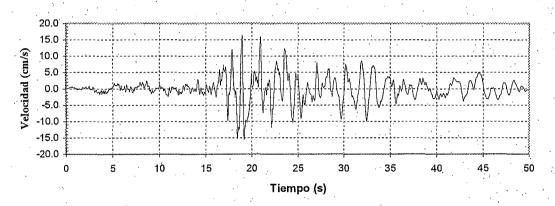
SAN SALVADOR. 13 ENE 2001. ACAJUTIA CEPA COMP. 360
Sismo 2001 - Acajutia Cepa
dt=0.005s


Aceleración - Tiempo Historia a = 0.050 g t = 15.04 s

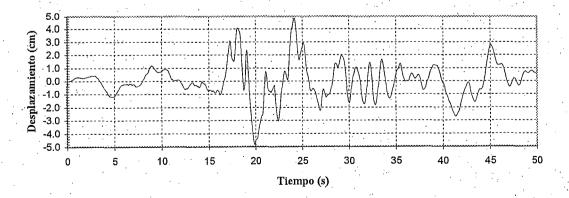
Velocidad - Tiempo Historia v=4.177 cm/s t= 14.87 s



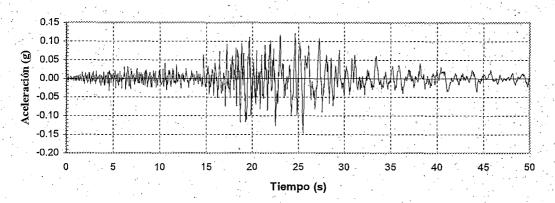
Desplazamiento - Tiempo Historia d= -2.497 cm t= 45.16 s



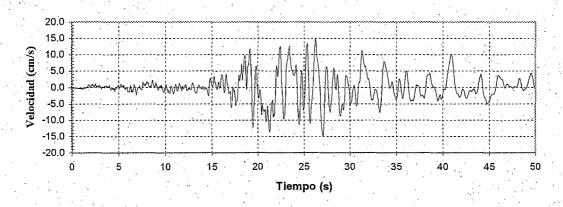
SAN SALVADOR. 13 ENE 2001. ACAJUTIA CEPA COMP. VERTICAL Sismo 2001 - Acajutia Cepa dt=0.005s


Aceleración - Tiempo Historia a=-0.214g t= 19.01 s

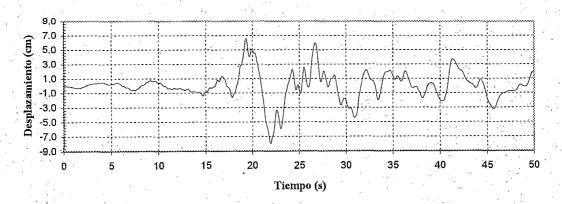
Velocidad - Tiempo Historia v=16.552 cm/s t= 18.92s



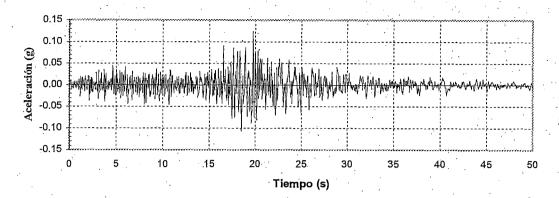
Desplazamiento - Tiempo Historia d=4.862 cm t=24.15s



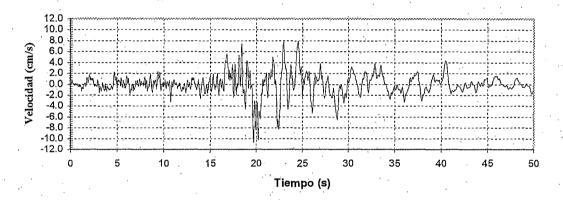
SAN SALVADOR. 13 ENE 2001. AHUACHAPAN COMP. 90° Sismo 2001 - Ahuachapán dt=0.005s


Aceleración - Tiempo Historia a=-0.146 g t= 25.53 s

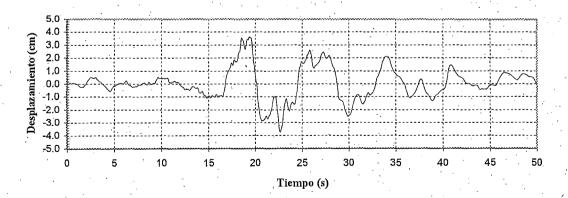
Velocidad - Tiempo Historia v=14.883 cm/s t=27.07 s



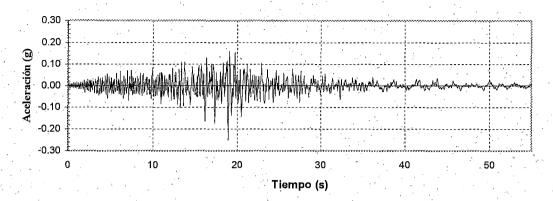
Desplazamiento - Tiempo Historia d= -7.986 cm t= 21.92s



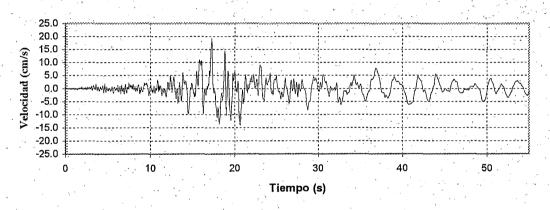
SAN SALVADOR. 13 ENE 2001. AHUACHAPAN COMP. 360° Sismo 2001 - Ahuachapán dt=0.005s


Aceleración - Tiempo Historia a = 0.124 g t = 19.73 g

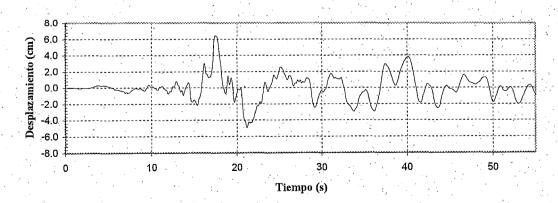
Velocidad - Tiempo Historia v=10.747 cm/s t=19.69s



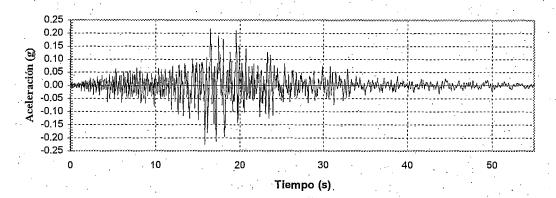
Desplazamiento - Tiempo Historia d= -3.737 cm t= 22.66s



SAN SALVADOR. 13 ENE 2001. AHUACHAPAN COMP. VERTICAL Sismo 2001 - Ahuachapán dt=0.005s

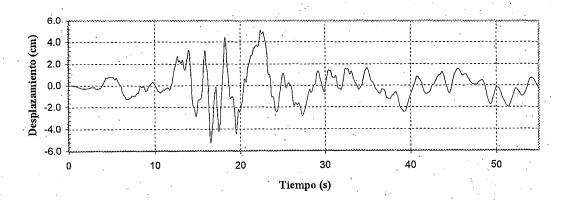

Aceleración - Tiempo Historia a=-0.250 g t= 18.91 s

Velocidad - Tiempo Historia v=19.211 cm/s t=17.23s

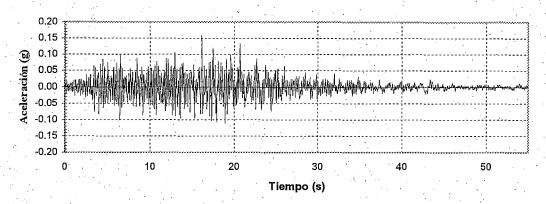


Desplazamiento - Tiempo Historia d = 6.449 cm t = 17.42s

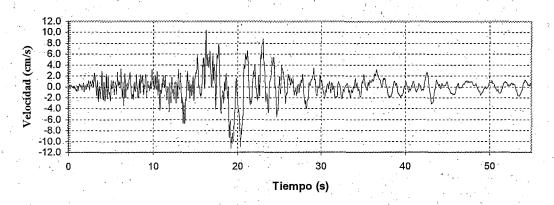
SAN SALVADOR. 13 ENE 2001. CIUDADELA DON BOSCO COMP. 90° Sismo 2001 - Ciudadela Don Bosco dt=0.005s


Aceleración - Tiempo Historia a=-0.225 g t= 15.81 s

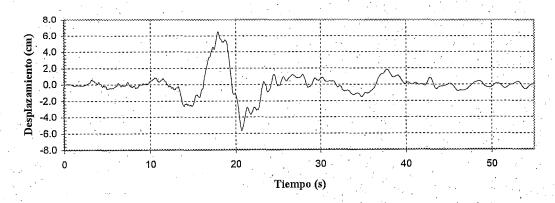
Velocidad - Tiempo Historia v=23.240 cm/s t= 16.29s



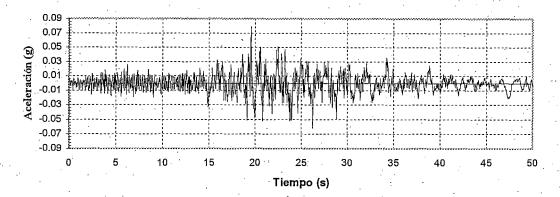
 $\begin{array}{c} Desplazamiento - Tiempo \ Historia \\ d= \ ^{-5.264} \ cm \ t= \ 16.52_S \end{array}$



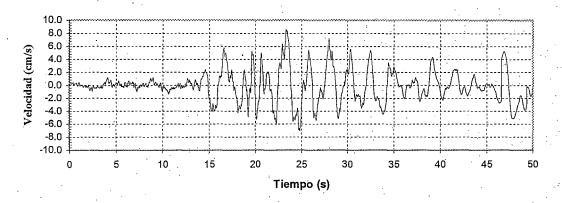
SAN SALVADOR. 13 ENE 2001. CIUDADELA DON BOSCO COMP. 360° Sismo 2001 - Ciudadela Don Bosco dt=0.005s


Aceleración - Tiempo Historia a = 0.160 g t = 16.12 s

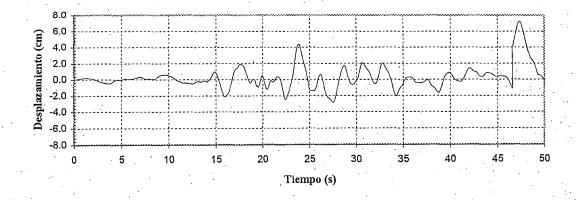
Velocidad - Tiempo Historia v=11.307 cm/s t=19.21s



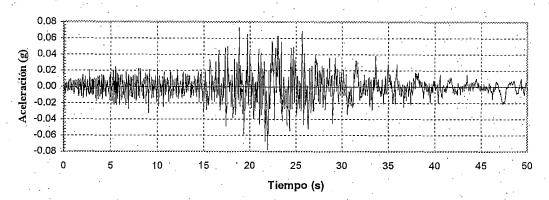
Desplazamiento - Tiempo Historia d=6.501 cm t=17.89s



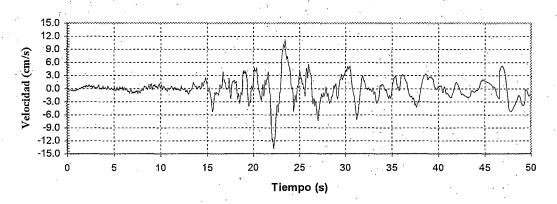
SAN SALVADOR. 13 ENE 2001. CIUDADELA DON BOSCO COMP. VERTICAL Sismo 2001 - Ciudadela Don Bosco dt=0.005s


Aceleración - Tiempo Historia a = 0.079 g t = 19.56 s

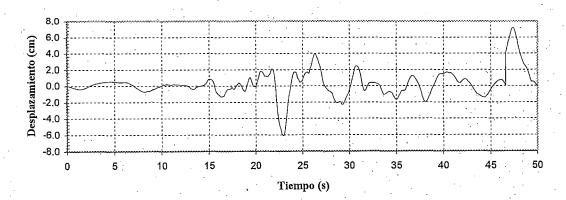
Velocidad - Tiempo Historia v=8.617 cm/s t=23.29s



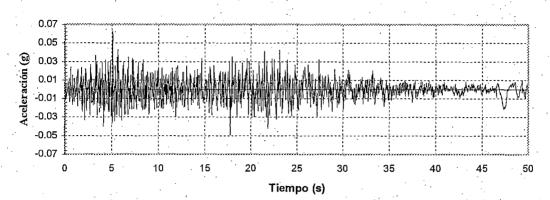
Desplazamiento - Tiempo Historia d= 7.167 cm t= 47.36s



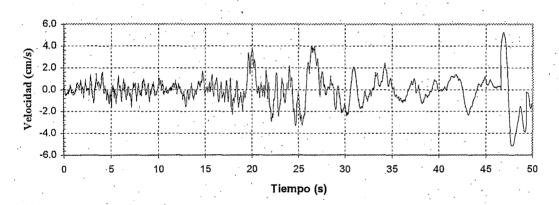
SAN SALVADOR. 13 ENE 2001. CUTUCO COMP. 90° Sismo 2001 - Cutuco dt=0.005s


Aceleración - Tiempo Historia a=-0.078 g t= 21.94 s

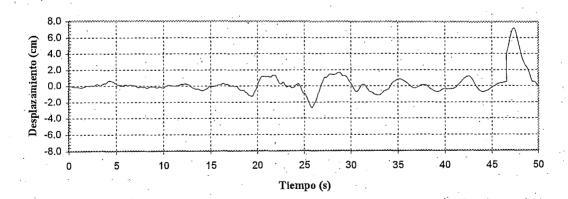
Velocidad - Tiempo Historia v=13.835 cm/s t= 22.20s

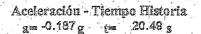


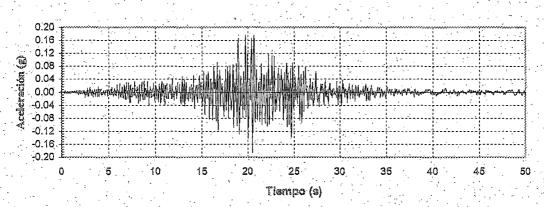
Desplazamiento - Tiempo Historia d= 7.167 cm t= 47.36s



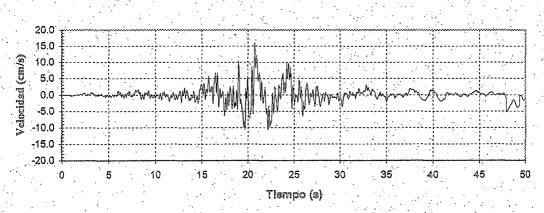
SAN SALVADOR. 13 ENE 2001. CUTUCO COMP. 360° Sismo 2001 - Cutuco dt=0.005s


Aceleración - Tiempo Historia a= 0.063 g t= 5.08 s

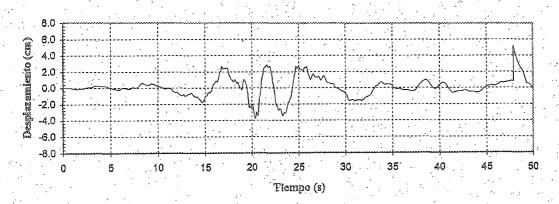

Velocidad - Tiempo Historia v = 5.249 cm/s t = 46.86 s



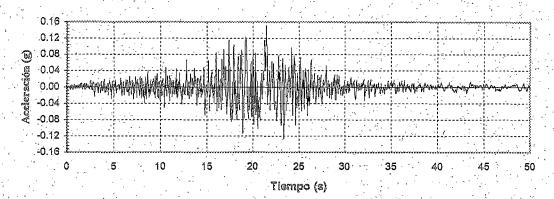
Desplazamiento - Tiempo Historia d=7.167 cm t=47.36s



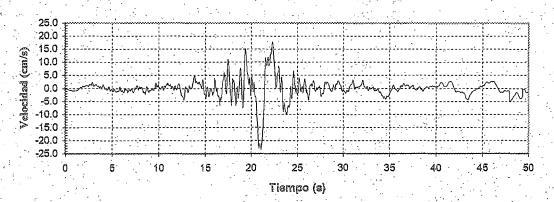
SAN SALVADOR. 13 ENE 2001. CUTUCO COMP. VERTICAL Sismo 2001 - Cutuco dt=0.005s



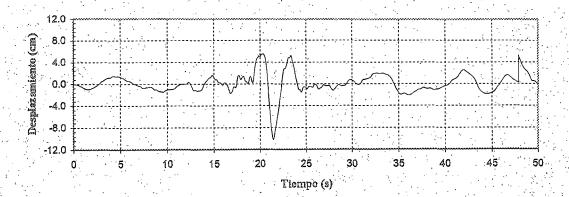
Velocidad - Tiempo Historia v=16.027 cm/s t= 20.74s



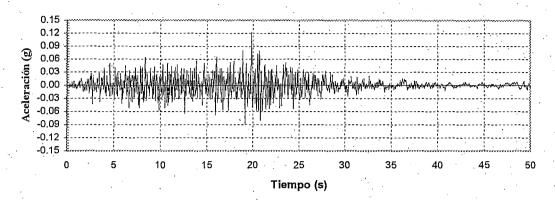
Desplazamiento - Tiempo Historia d= 5.205 cm t= 47.88s



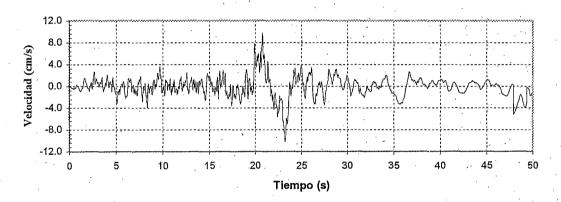
SAN SALVADOR. 13 ENE 2001. PRESA 15 DE SETIEMBRE COMP. 90°
Sismo 2001 - Presa 15 de Setiembre
dt=0.005s


Aceleración - Tiempo Historia 2= 0.152 g t= 21.47 s

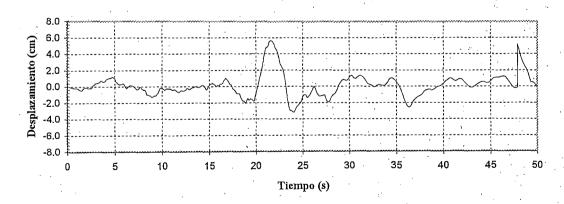
Velocidad - Tiempo Historia v=23.466 cm/s t=21.06s



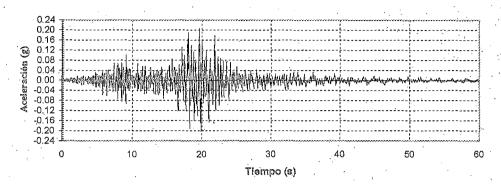
Desplazamiento - Tiempo Historia $d=-10.194_{CHI}$ (= 21.45 $_{\rm S}$



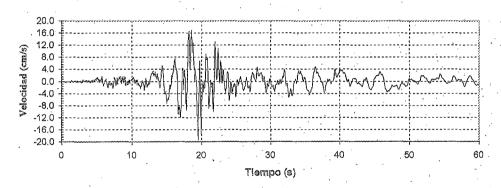
SAN SALVADOR. 13 ENE 2001. PRESA 15 DE SETIEMBRE COMP. 360° Sismo 2001 - Presa 15 de Setiembre dt=0.005s


Aceleración - Tiempo Historia a= 0.122 g t= 19.83 s

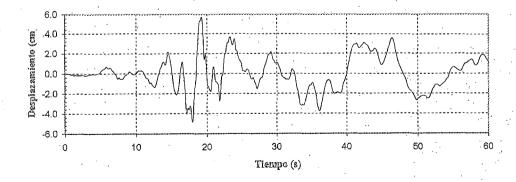
Velocidad - Tiempo Historia v=10.241 cm/s t=23.20 s

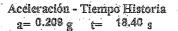


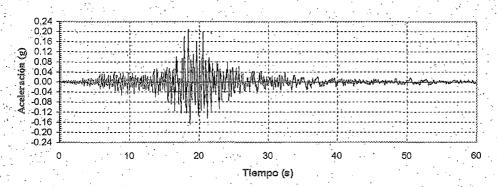
Desplazamiento - Tiempo Historia d= 5.644 cm t= 21.62s



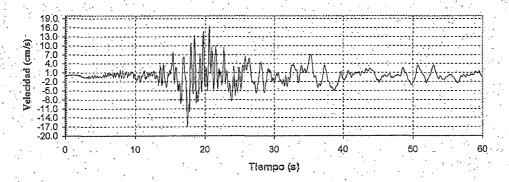
SAN SALVADOR. 13 ENE 2001. PRESA 15 DE SETIEMBRE COMP. VERTICAL Sismo 2001 - Presa 15 de Setiembre dt=0.005s


Aceleración - Tiempo Historia a= 0.208 g t= 19.61 s

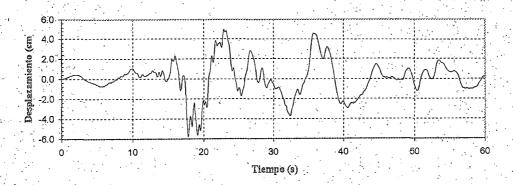

Velocidad - Tiempo Historia v=16.873 cm/s t= 18.53 s

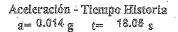


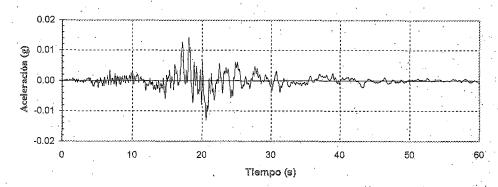
Desplazamiento - Tiempo Historia d= 5.706 cm t= 13.26s



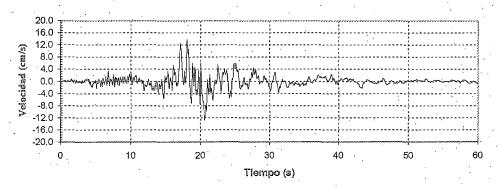
SAN SALVADOR. 13 ENE 2001. RELACIONES EXTERIORES (FONDO) COMP. 90°
Sismo 2001 - Relaciones Exteriores
dt=0.005s



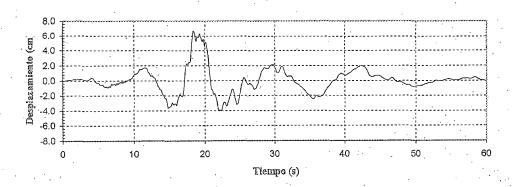

Velocidad - Tiempo Historia v=16.621 cm/s t= 17.44 s



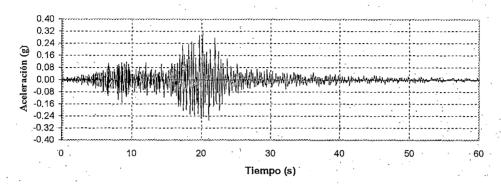
Desplazamiento - Tiempo Historia d= -5.781 cm t= 17.82s



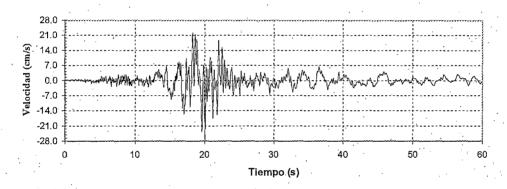
SAN SALVADOR. 13 ENE 2001. RELACIONES EXTERIORES (FONDO) COMP. 360° Sismo 2001 - Relaciones Exteriores dt=0.005s



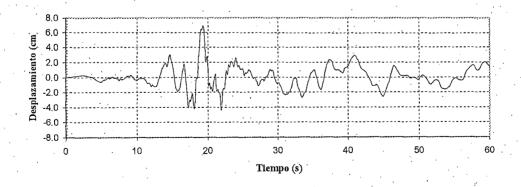
Velocidad - Tiempo Historia $_{\rm V}$ =13.903 $_{\rm Cm/s}$ t= 18.05 $_{\rm S}$



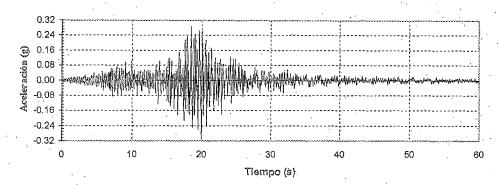
Desplazamiento - Tiempo Historia d= 6.693 cm t= 18.38s



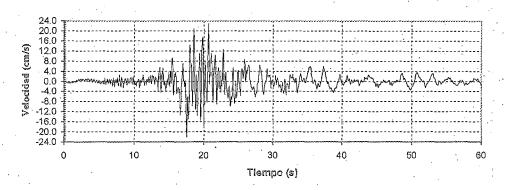
SAN SALVADOR, 13 ENE 2001. RELACIONES EXTERIORES (FONDO) COMP. VERTICAL Sismo 2001 - Relaciones Exteriores dt=0.005s


Aceleración - Tiempo Historia a=0.323 g t= 20.12 s

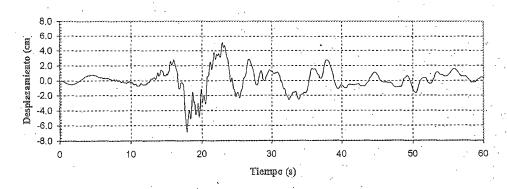
Velocidad - Tiempo Historia v=27.583 cm/s t=20.02 s



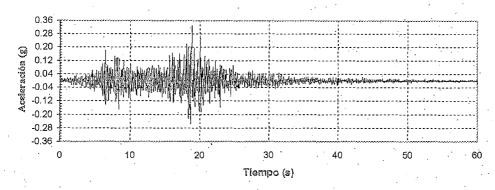
Desplazamiento - Tiempo Historia d= 6.957 cm t= 19.28s



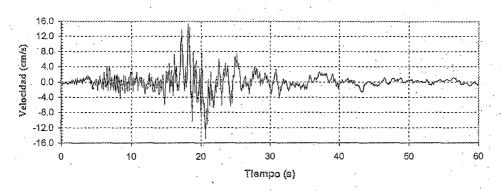
SAN SALVADOR. 13 ENE 2001. RELACIONES EXTERIORES (SUPERF) COMP. 90° Sismo 2001 - Relaciones Exteriores dt=0.005s


Aceleración - Tiempo Historia a=-0.304g t=-19.94g

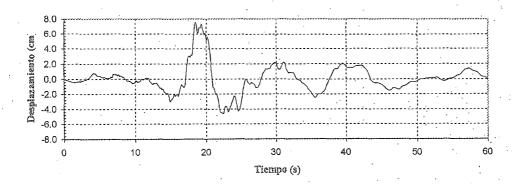
Velocidad - Tiempo Historia v=22.917 cm/s t= 20.66s



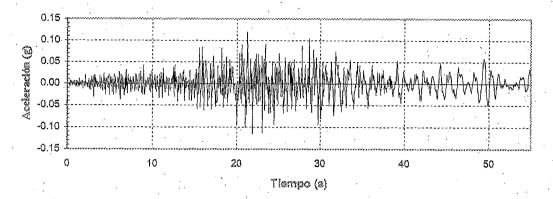
Desplazamiento - Tiempo Historia d= -6.904 cm t= 17.88s



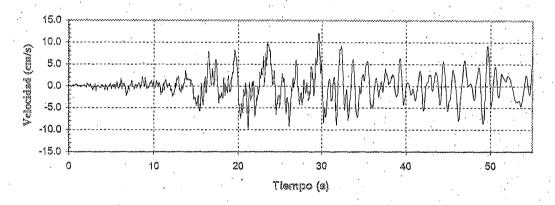
SAN SALVADOR. 13 ENE 2001. RELACIONES EXTERIORES (SUPERF) COMP. 360° Sismo 2001 - Relaciones Exteriores dt=0.005s


Aceleración - Tiempo Historia a=0.329 g t=18.82 s

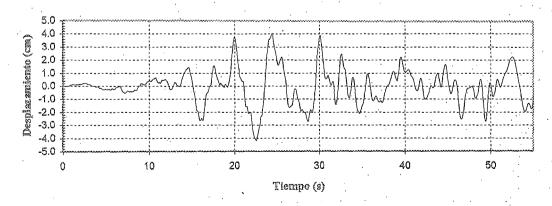
Velocidad - Tiempo Historia v=15.342 cm/s t=18.08 s



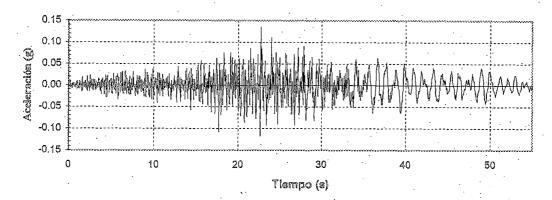
Desplazamiento - Tiempo Historia de 7.644 cm \pm 18.44 \pm



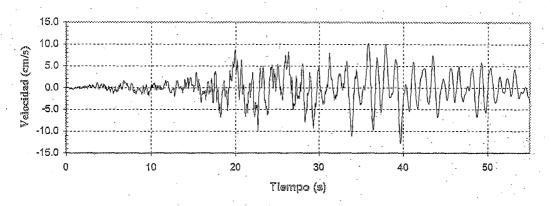
SAN SALVADOR. 13 ENE 2001. RELACIONES EXTERIORES (SUPERF) COMP. VERTICAL Sismo 2001 - Relaciones Exteriores dt=0.005s


Aceleración - Tiempo Historia a = 0.120 g (= 21.25 s

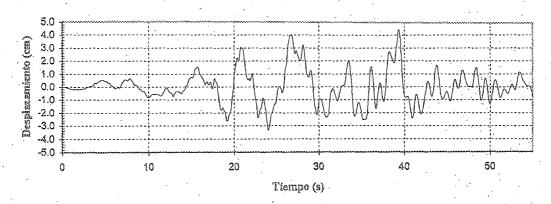
Velocidad - Tiempo Historia v=12.101 cm/s t= 29.64s



Desplazamiento - Tiempo Historia d= -4.188 cm t= 22.51s

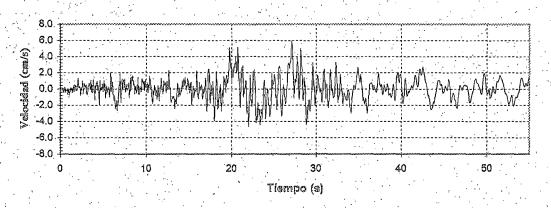


SAN SALVADOR. 13 ENE 2001. SAN MIGUEL COMP. 90° Sismo 2001 - San Miguel dt=0.005s

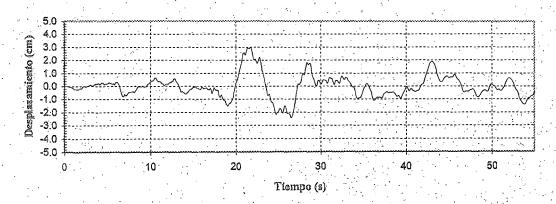

Aceleración - Tiempo Historia a=-0.117 g t=-22.95 s

Velocidad - Tiempo Historia v=12.767 _{cm/s} t= 39.68_s

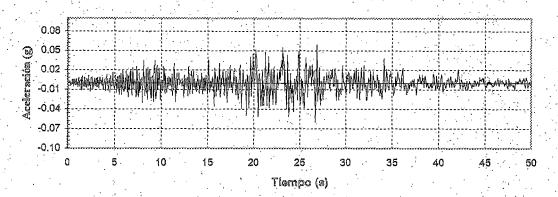
Desplazamiento - Tiempo Historia d= 4.387 cm t= 39.36s



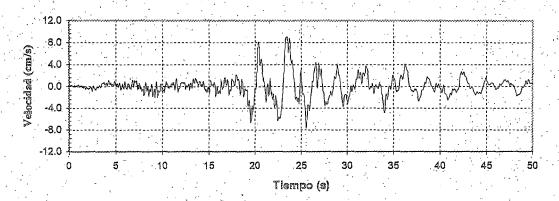
SAN SALVADOR. 13 ENE 2001. SAN MIGUEL COMP. 360° Sismo 2001 - San Miguel dt=0.005s


Aceleración - Tiempo Historia a=-0.089 g t=-21.76 g

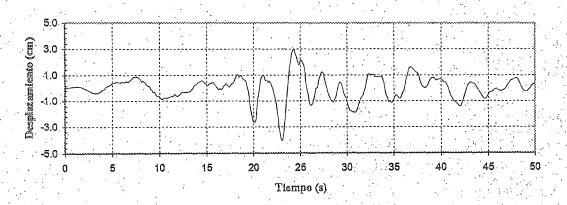
Velocidad - Tiempo Historia v=5.989 cm/s t= 27.11s



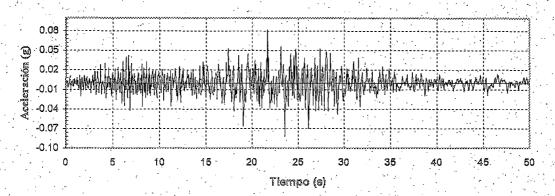
Desplazamiento - Tiempo Historia d= 2.993 cm t= 21.74s



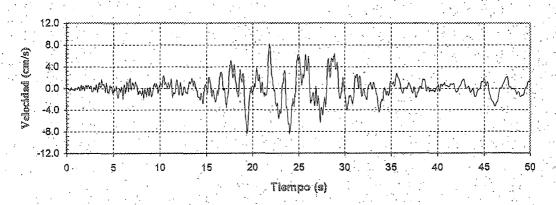
SAN SALVADOR. 13 ENE 2001. SAN MIGUEL COMP. VERTICAL Sismo 2001 - San Miguel dt=0.005s


Aceleración - Tiempo Historia $_{\rm a=-0.061\,g}$ $_{\rm t=-}$ 26.70 $_{\rm s}$

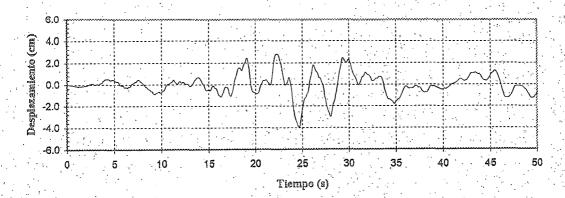
Velocidad - Tiempo Historia v=9.141 cm/s t=23.44s

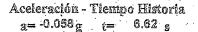


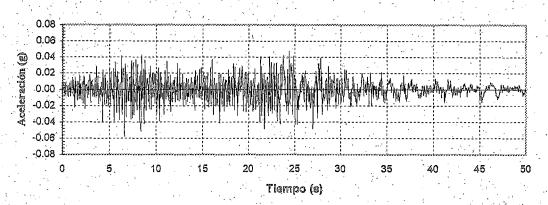
Desplazamiento - Tiempo Historia $d = {}^{-4.041}$ cm t = 23.04s



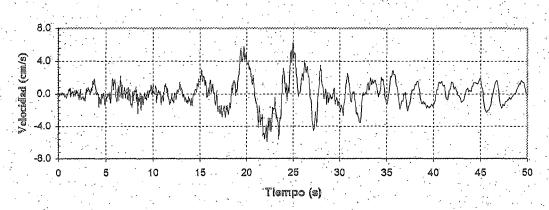
SAN SALVADOR. 13 ENE 2001. SENSUTEPEQUE COMP. 90° Sismo 2001 - Sensutepeque dt=0.005s


Aceleración - Tiempo Historia a=0.082 g t=21.66 s

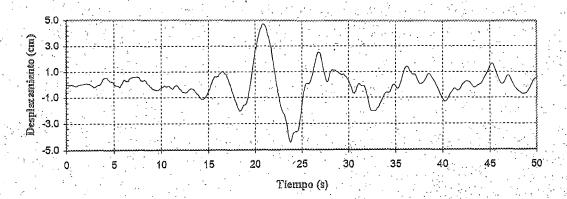

Velocidad - Tiempo Historia v=-8.456 cm/s t=-24.01s



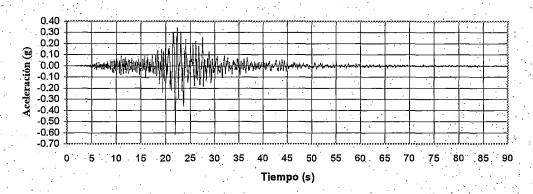
Desplazamiento - Tiempo Historia d=-3.970 cm t=-24.67s



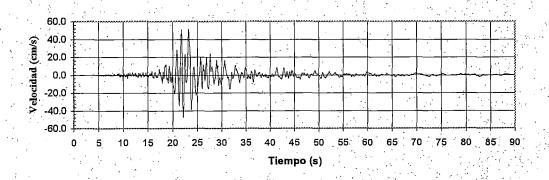
SAN SALVADOR. 13 ENE 2001. SENSUTEPEQUE COMP. 360° Sismo 2001 - Sensutepeque dt=0.005s



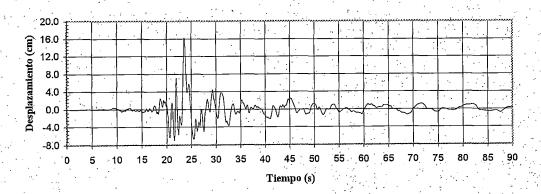
Velocidad - Tiempo Historia v=6.236 cm/s t= 24.96s



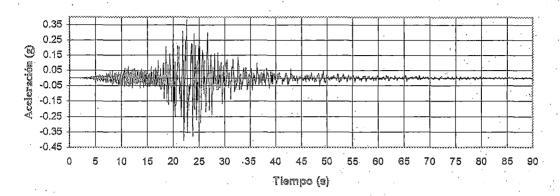
Desplazamiento - Tiempo Historia d= 4.897 cm t= 20.85s



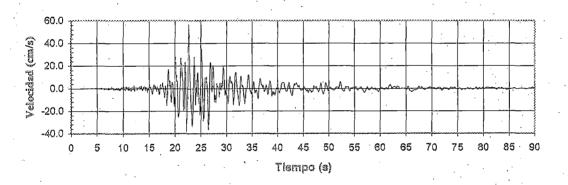
SAN SALVADOR. 13 ENE 2001. SENSUTEPEQUE COMP. VERTICAL Sismo 2001 - Sensutepeque dt=0.005s


Aceleración - Tiempo Historia a=-0.615 g t=21.945s

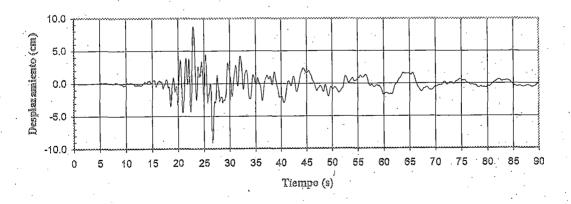
Velocidad - Tiempo Historia v=51.052 cm/s t=23.230 s



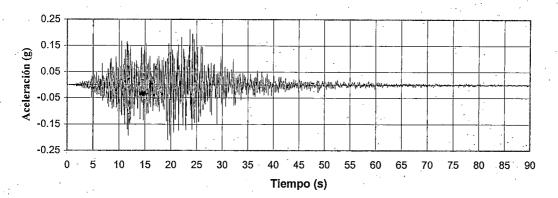
Desplazamiento - Tiempo Historia d=16.171cm t=23.605s



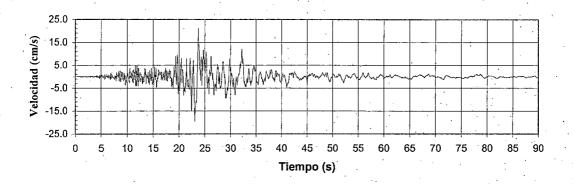
SAN SALVADOR. 13 ENE 2001. ARMENIA COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= -0.408 g t= 22.070

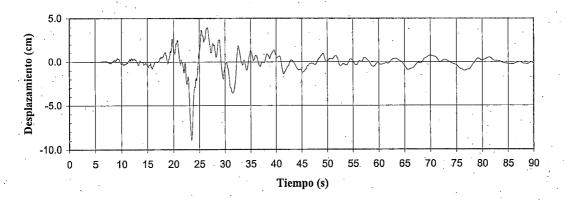
Velocidad - Tiempo Historia v=56.734cm/s t= 22.645



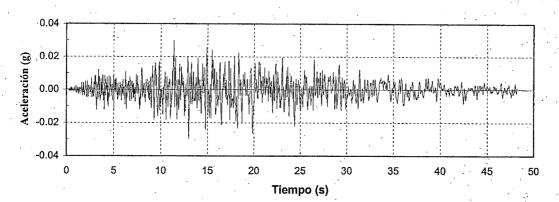
Desplazamiento - Tiempo Historia de-9.088cm t= 26.640s



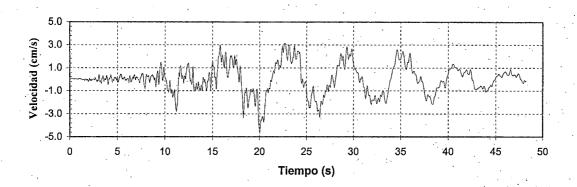
SAN SALVADOR. 13 ENE 2001. ARMENIA COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a= 0.213 g t= 23.645s

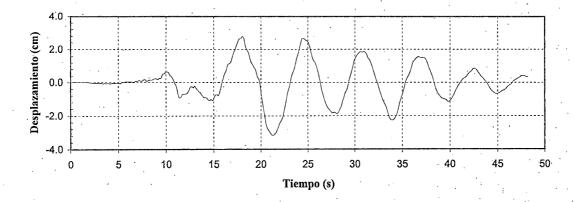
Velocidad - Tiempo Historia v=21.213 cm/s t=23.705s



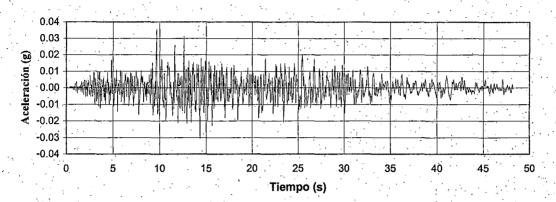
Desplazamiento - Tiempo Historia d=8.957 cm t=23.495 s



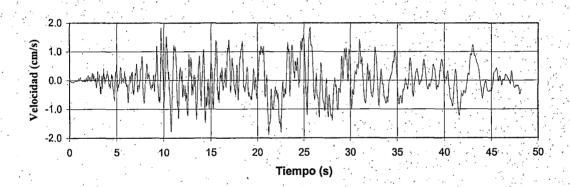
SAN SALVADOR. 13 ENE 2001. ARMENIA COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a= 0.030 g t= 11.395

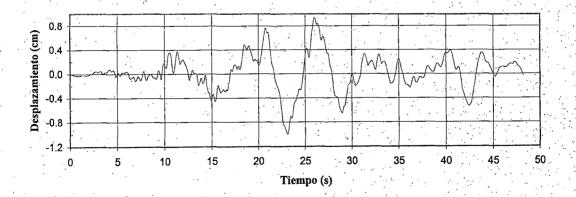
Velocidad - Tiempo Historia v=-4.682cm/s t=20.020s



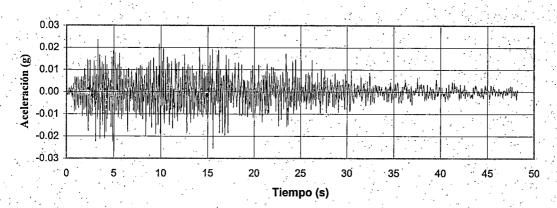
Desplazamiento - Tiempo Historia d=-3.172cm t=21.300s



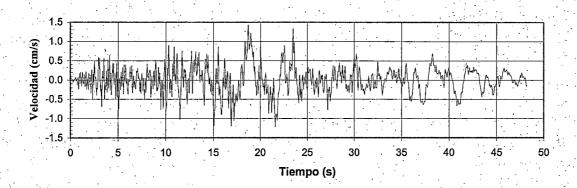
SAN SALVADOR. 13 FEB 2001. ARMENIA COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= 0.036 g t= 9.665 s

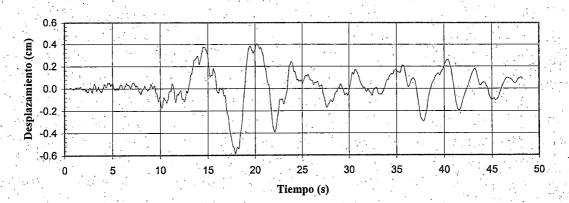
Velocidad - Tiempo Historia v=-1.891 cm/s t= 21.200s



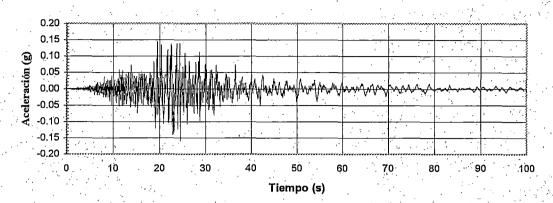
Desplazamiento - Tiempo Historia d=1.005cm t=23.100s



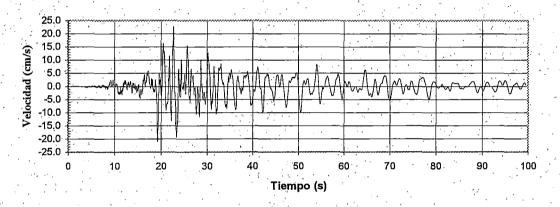
SAN SALVADOR. 13 FEB 2001. ARMENIA COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a=-0.027 g t=5.0358

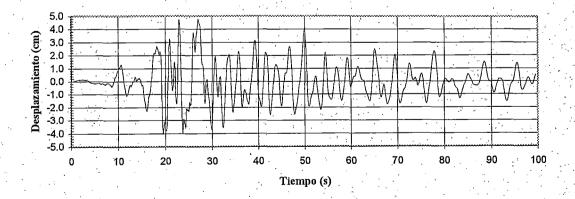
Velocidad - Tiempo Historia v= 1.438 cm/s t= 18.690



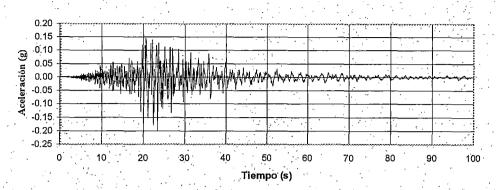
Desplazamiento - Tiempo Historia d=-0.586cm t= 17.905s



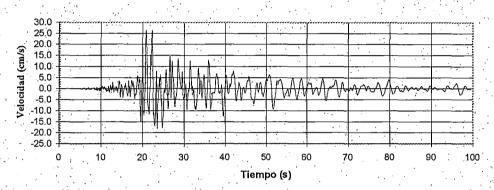
SAN SALVADOR. 13 FEB 2001. ARMENIA COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a=-0.159 g t= 24.490s

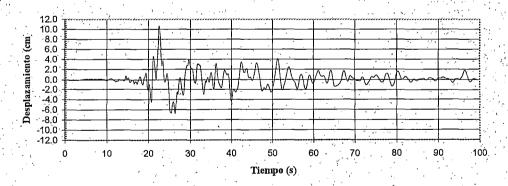
Velocidad - Tiempo Historia $v=^{22.702}$ cm/s $t=^{22.675}$



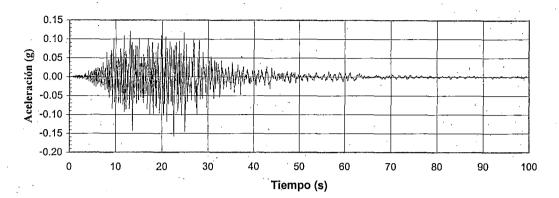
Desplazamiento - Tiempo Historia d=4.790 cm t=27.05Q



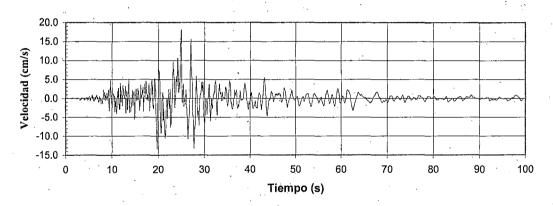
SAN SALVADOR. 13 ENE 2001. HOSPITAL SAN BARTOLO COMP. E-W Sismo 2001 - Hospital San Bartolo Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= -0.201 g t= 23.420 s

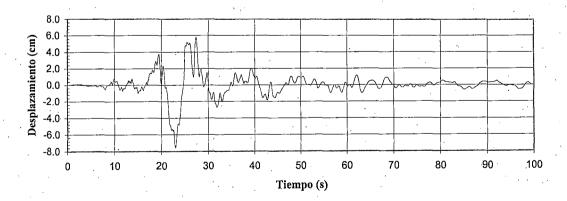
Velocidad - Tiempo Historia v=26.507 cm/s t=20.855s



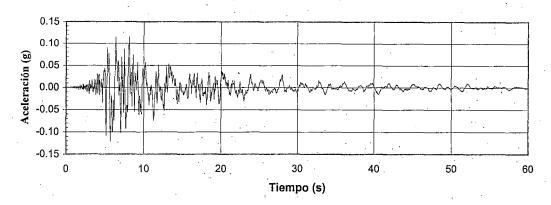
 $\begin{array}{c} Desplazamiento - Tiempo \ Historia \\ d = 10.673 \ cm \ t = 22.500 \\ \end{array}$



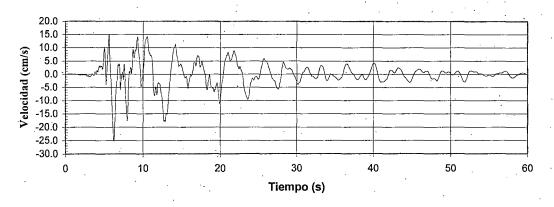
SAN SALVADOR. 13 ENE 2001. HOSPITAL SAN BARTOLO COMP. N-S Sismo 2001 - Hospital San Bartolo Transversal dt=0:005s


Aceleración - Tiempo Historia a=-0.158 g t= 22.580 s

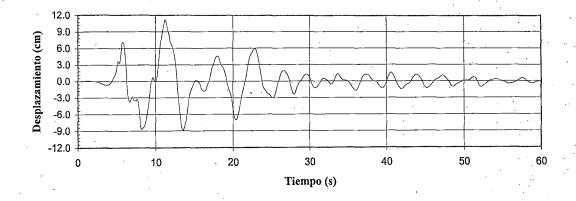
Velocidad - Tiempo Historia v=18.152 cm/s $t= 24.920_s$



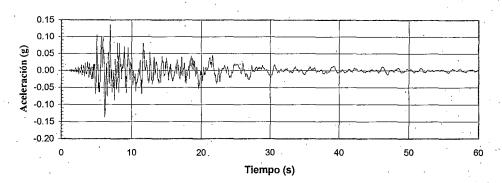
Desplazamiento - Tiempo Historia d= -7.563 cm t= 23.020s



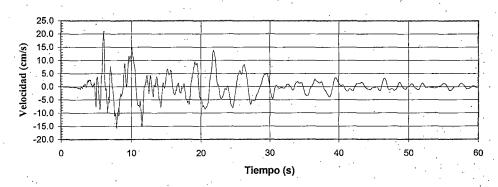
SAN SALVADOR. 13 ENE 2001. HOSPITAL SAN BARTOLO COMP. VERTICAL Sismo 2001 - Hospital San Bartolo Vertical dt=0.005s


Aceleración - Tiempo Historia a=-0.121 g t= 5.705 s

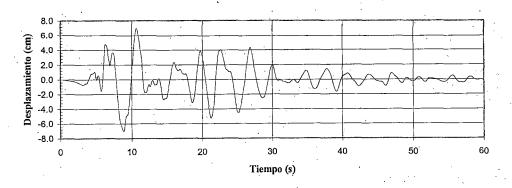
Velocidad - Tiempo Historia v=25.313 cm/s t=6.245 s



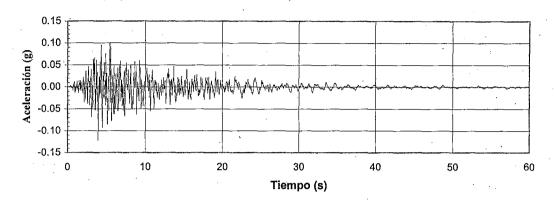
Desplazamiento - Tiempo Historia d=11.168 cm t= 11.255s



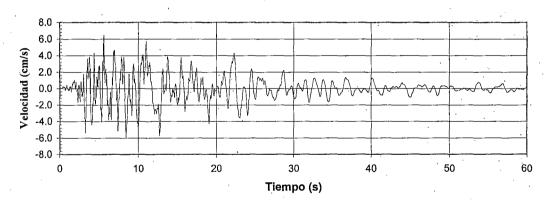
SAN SALVADOR. 13 FEB 2001. HOSPITAL SAN BARTOLO COMP. E-W Sismo 2001 - Hospital San Bartolo Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=-0.137 g t= 6.140 s

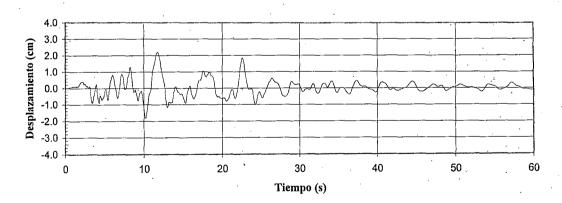
Velocidad - Tiempo Historia v=21.107 cm/s t=6.075 s



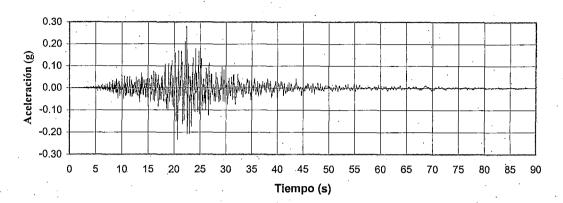
Desplazamiento - Tiempo Historia d=-7.029 cm t=8.855 s



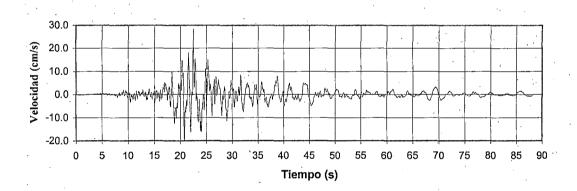
SAN SALVADOR. 13 FEB 2001. HOSPITAL SAN BARTOLO COMP. N-S Sismo 2001 - Hospital San Bartolo Transversal dt=0.005s


Aceleración - Tiempo Historia a=-0.123 g t= 3.920 s

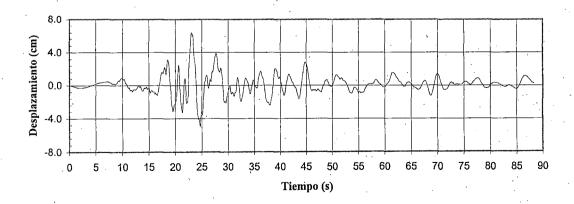
Velocidad - Tiempo Historia v=6.501 cm/s t=5.605 s



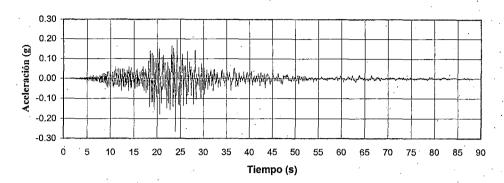
Desplazamiento - Tiempo Historia d= 2.202 cm t= 11.750s



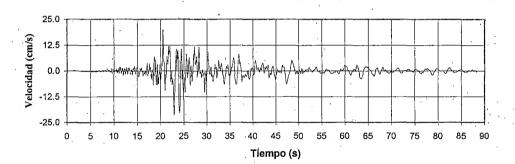
SAN SALVADOR. 13 FEB 2001. HOSPITAL SAN BARTOLO COMP. VERTICAL Sismo 2001 - Hospital San Bartolo Vertical dt=0.005s


Aceleración - Tiempo Historia a= 0.282 g t= 22.36§

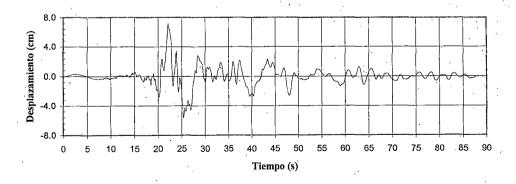
Velocidad - Tiempo Historia v=28.349cm/s t= 22.46\cdot\cdot



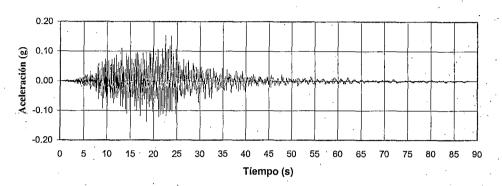
 $\begin{array}{c} Desplazamiento - Tiempo \ Historia \\ d=6.389cm \quad t=22.980_S \end{array}$



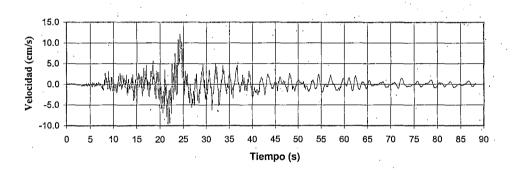
SAN SALVADOR. 13 ENE 2001. COLEGIO EXTERNADO SAN JOSE COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= -0,268 g t= 23.940s

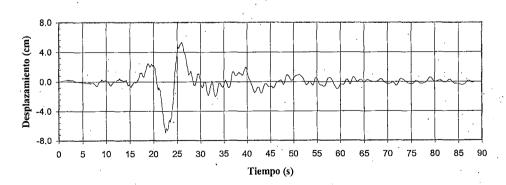
Velocidad - Tiempo Historia v=21.447cm/s t= 22.890s



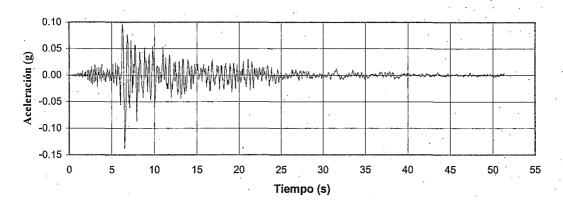
Desplazamiento - Tiempo Historia d=7.180 cm t=22.115s



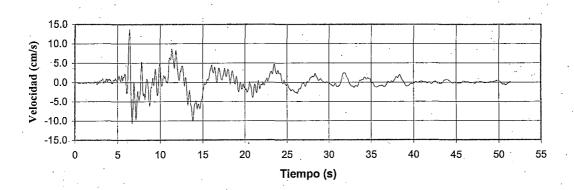
SAN SALVADOR. 13 ENE 2001. COLEGIO EXTERNADO SAN JOSE COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a= 0.154 g t= 22.525s

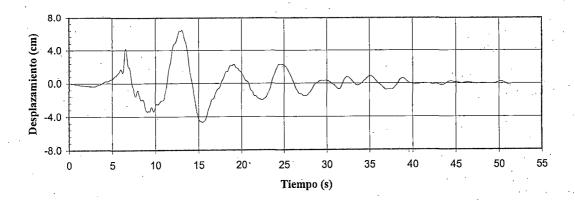
Velocidad - Tiempo Historia v=12.194 cm/s t= 24.295s



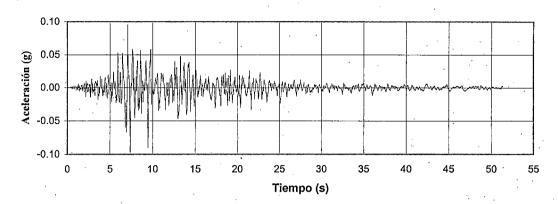
Desplazamiento - Tiempo Historia d=6.906cm t=22.515s



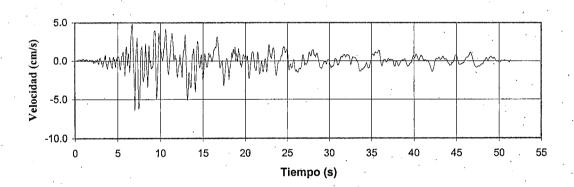
SAN SALVADOR. 13 ENE 2001. COLEGIO EXTERNADO SAN JOSE COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a = -0.137 g $t = 6.515_8$

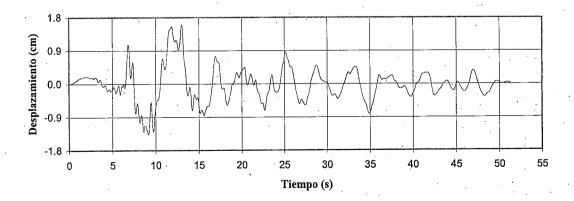
Velocidad - Tiempo Historia v=13.780cm/s t=6.390s



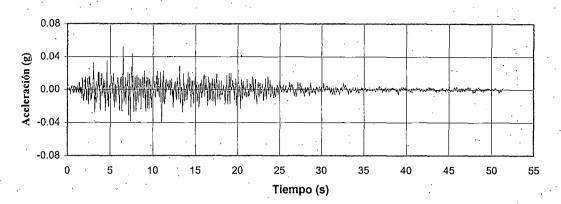
 $\begin{array}{c} Desplazamiento - Tiempo \ Historia \\ d=6.450 \ cm \quad t=13.065 \end{array}$



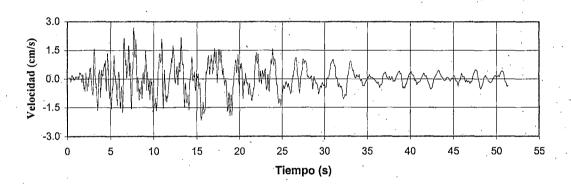
SAN SALVADOR. 13 FEB 2001. COLEGIO EXTERNADO SAN JOSE COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= -0.097 g t= 7.3758

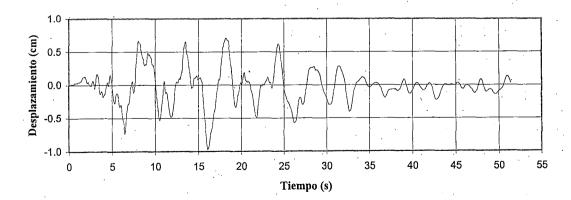
Velocidad - Tiempo Historia v=-6.441cm/s t=7.000s



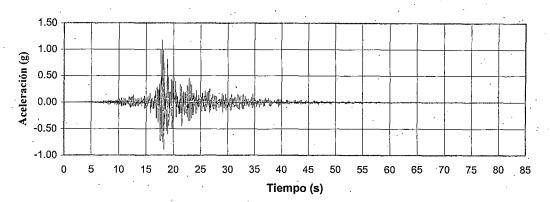
Desplazamiento - Tiempo Historia d=1.595cm t= 13.005s



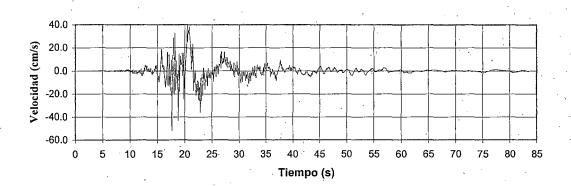
SAN SALVADOR. 13 FEB 2001. COLEGIO EXTERNADO SAN JOSE COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a= 0.052 g t= 6.500s

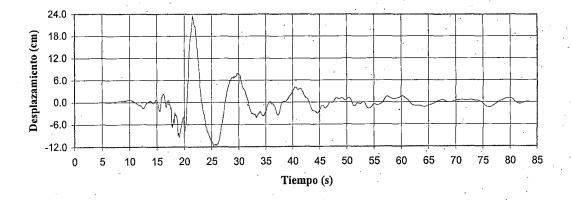
Velocidad - Tiempo Historia v= 2.689 cm/s $t= 7.675_s$



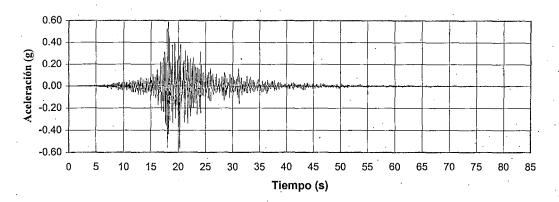
Desplazamiento - Tiempo Historia d=-0.972cm t= 16.055s



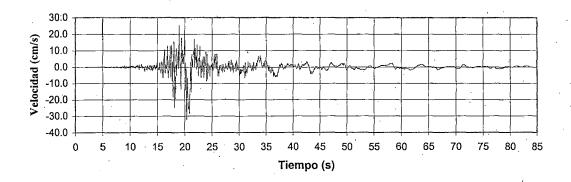
SAN SALVADOR. 13 FEB 2001. COLEGIO EXTERNADO SAN JOSE VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a= 1.182 g t= 17.900s

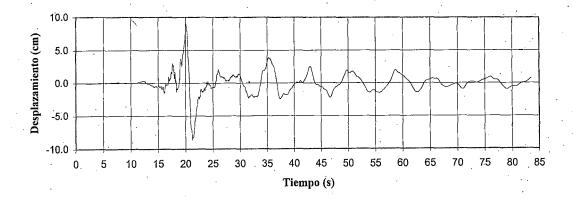
Velocidad - Tiempo Historia y=51.978cm/s t= 17.660s



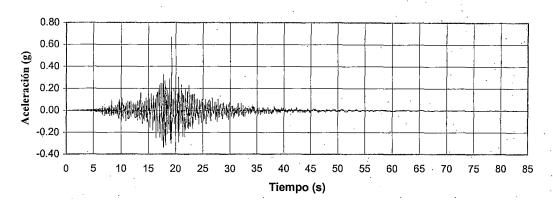
Desplazamiento - Tiempo Historia d=23.658cm t=21.540s



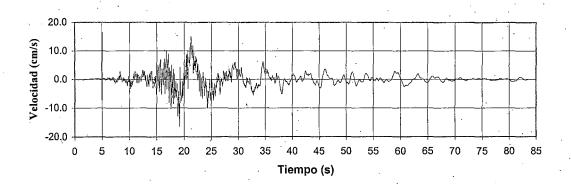
SAN SALVADOR. 13 ENE 2001. PUERTO DE LA LIBERTAD COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= 0.592 g t= 18.130s

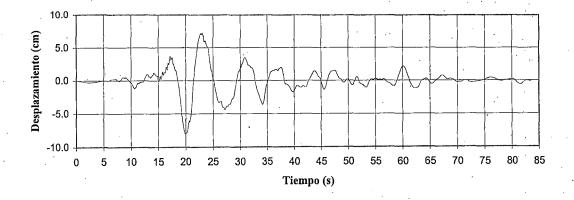
Velocidad - Tiempo Historia v=32.036cm/s t= 20.345s



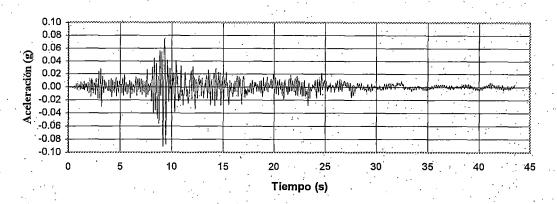
Desplazamiento - Tiempo Historia d=8.944 cm t=20.110 s



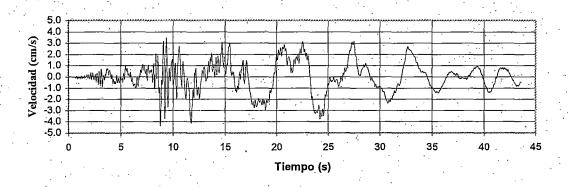
SAN SALVADOR. 13 ENE 2001.PUERTO DE LA LIBERTAD. COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a= 0.669 g t= 19.245s

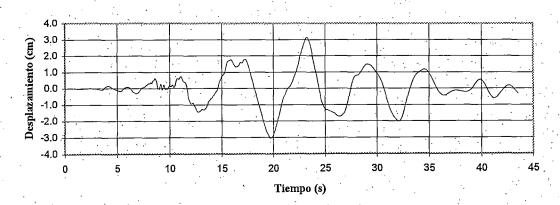
Velocidad - Tiempo Historia v=16.498cm/s t= 19.210s



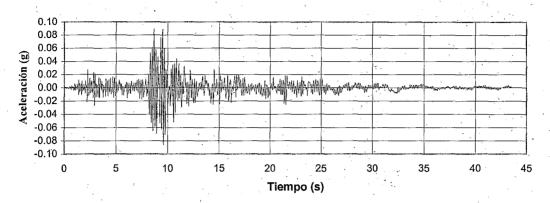
Desplazamiento - Tiempo Historia d⇒8.070cm t=19.900s



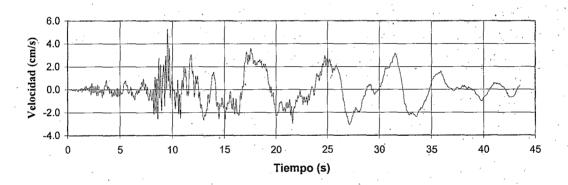
SAN SALVADOR. 13 ENE 2001.PUERTO DE LA LIBERTAD COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a = -0.091 g $t = 9.155_S$

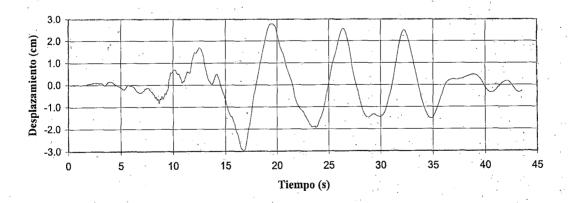
Velocidad - Tiempo Historia v=-4.367cm/s $t=8.795_S$



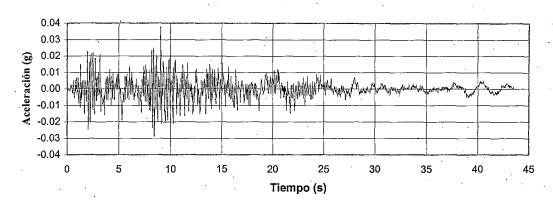
 $\begin{array}{ccc} Desplazamiento - Tiempo \ Historia \\ d{=}\ 3.134_{cm} & t{=}\ 23.275_{S} \end{array}$



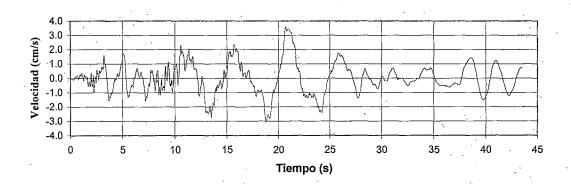
SAN SALVADOR. 13 FEB 2001. PUERTO DE LA LIBERTAD COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= 0.090 g t= 8.670 s

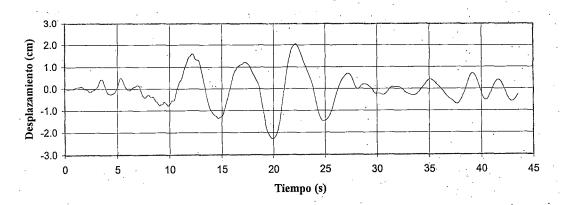
Velocidad - Tiempo Historia v=5.259 cm/s t=9.545 s



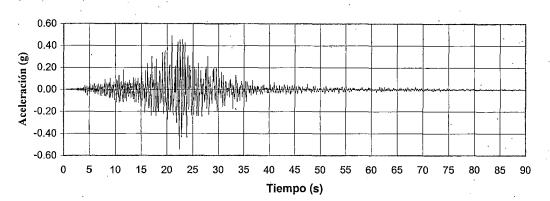
Desplazamiento - Tiempo Historia d=2.972cm t=16.710s



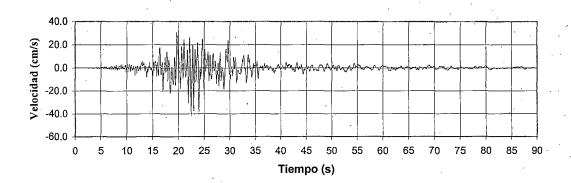
SAN SALVADOR. 13 FEB 2001. PUERTO DE LA LIBERTAD COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a = 0.038 g t = 9.050 s

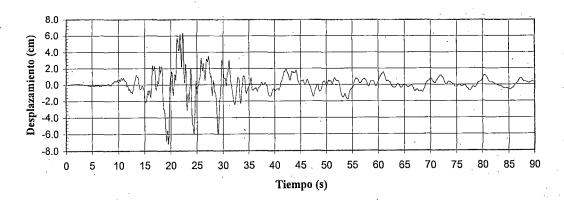
Velocidad - Tiempo Historia v=3.580 cm/s $t=20.705_{\text{S}}$



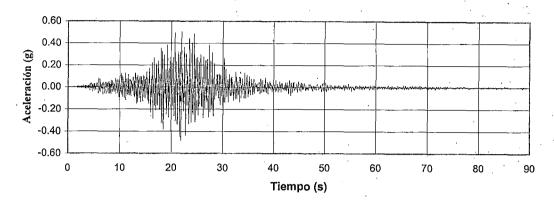
Desplazamiento - Tiempo Historia d⇒2.292cm t=19.935s



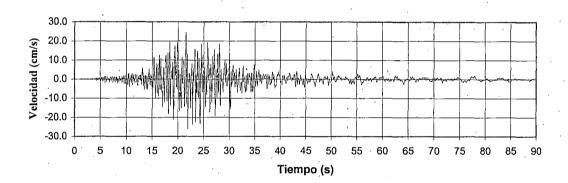
SAN SALVADOR. 13 FEB 2001. PUERTO DE LA LIBERTAD COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a= -0.544 g t= 22.380s

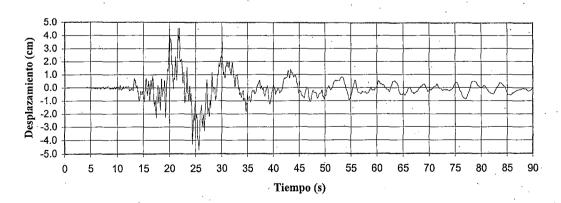
Velocidad - Tiempo Historia v=41.757cm/s t= 22.435s



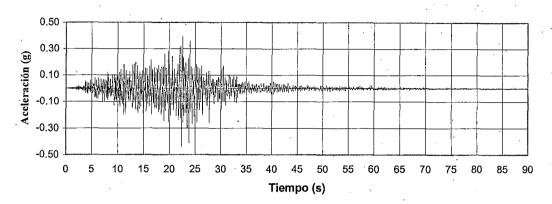
Desplazamiento - Tiempo Historia d=7.177 cm t=19.510 s



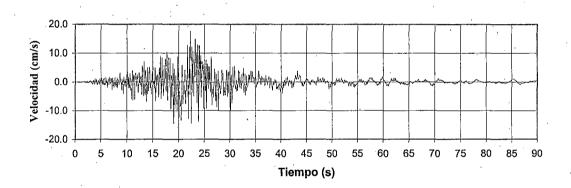
SAN SALVADOR. 13 ENE 2001. SAN PEDRO NONUALCO COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a= 0.508 g t= 21.975s

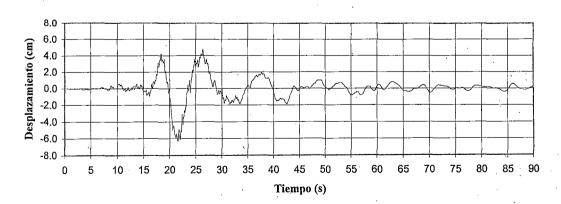
Velocidad - Tiempo Historia v=26.041cm/s t=21.930s



Desplazamiento - Tiempo Historia d=4.726cm t=25.640s

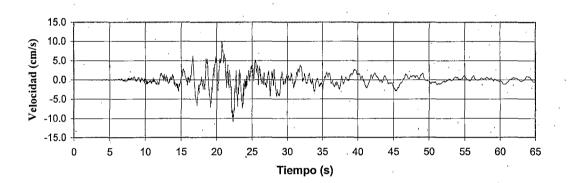


SAN SALVADOR. 13 ENE 2001. SAN PEDRO NONUALCO COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s

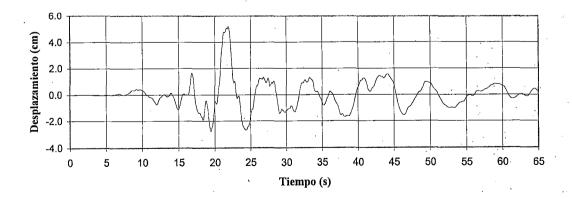

Aceleración - Tiempo Historia a=-0.439 g t= 22.37 s

Velocidad - Tiempo Historia v=17.585 cm/s t= 22.29 s

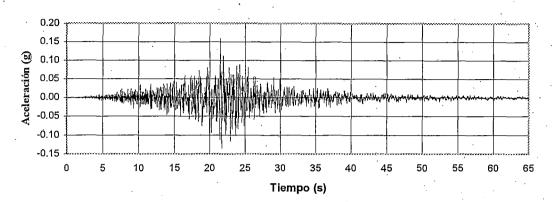
Desplazamiento - Tiempo Historia d=6.317 cm t= 21.59 s



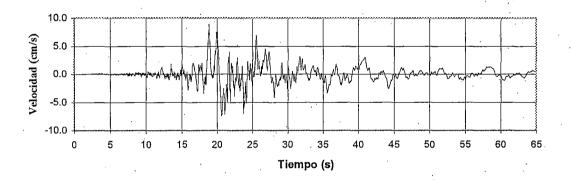
SAN SALVADOR. 13 ENE 2001. SAN PEDRO NONUALCO COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a = 0.187 g t = 23.74 s

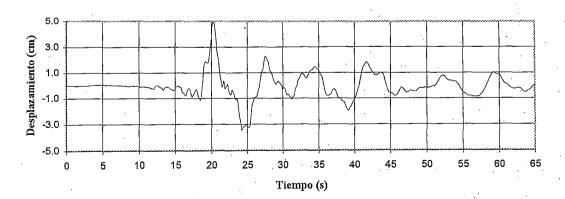
Velocidad - Tiempo Historia v=10.805cm/s t= 22.32 s



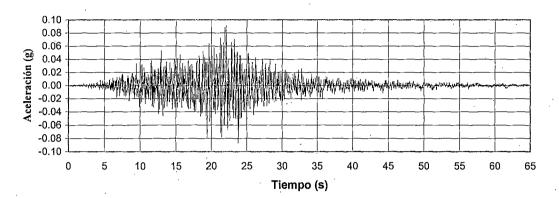
Desplazamiento - Tiempo Historia d=5.193 cm t= 21.90 s



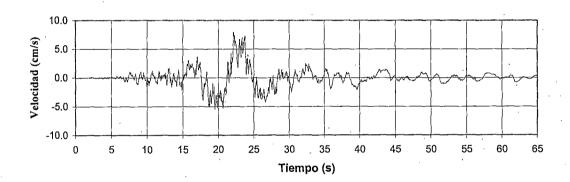
SAN SALVADOR. 13 ENE 2001. PACHIMALCO COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia $a = 0.160 g t = 21.47_S$

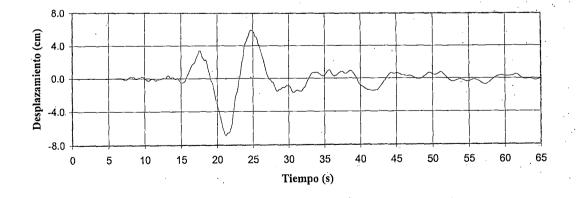
Velocidad - Tiempo Historia v=8.914 cm/s t=18.83 s



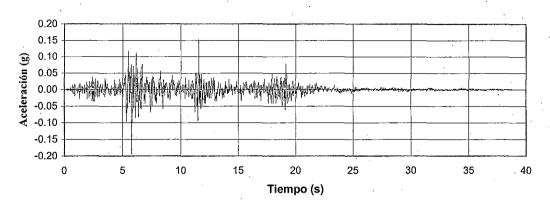
Desplazamiento - Tiempo Historia $d=-3.431_{cm}$ $t=24.22_{s}$



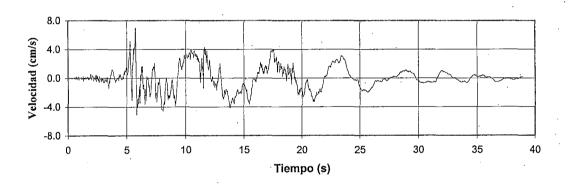
SAN SALVADOR. 13 ENE 2001. PACHIMALCO COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a = 0.091 g t = 22.05 s

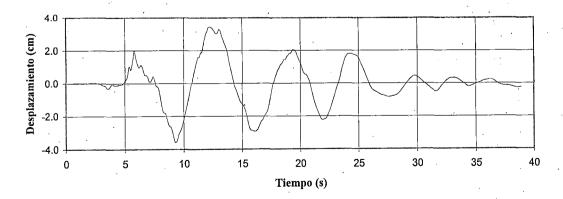
Velocidad - Tiempo Historia v=7.968 cm/s t= 22.19 s



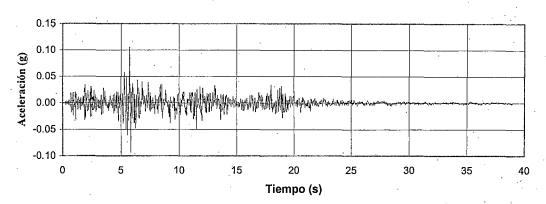
Desplazamiento - Tiempo Historia d=6.908cm t= 21.18 s



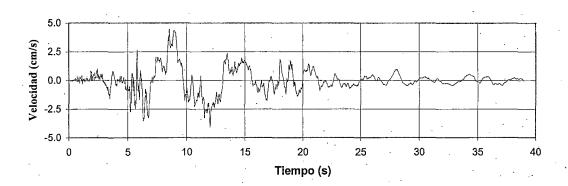
SAN SALVADOR. 13 ENE 2001. PANCHIMALCO COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a = -0.193 g t = 5.77 s

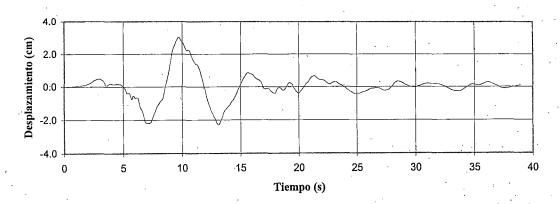
Velocidad - Tiempo Historia v=7.004 cm/s t=5.74 s



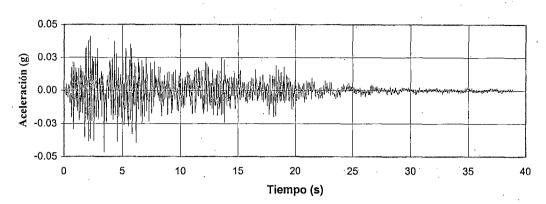
Desplazamiento - Tiempo Historia d=3.425 cm t= 12.16 s



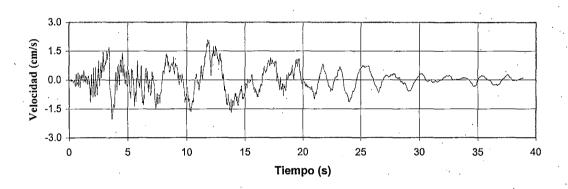
SAN SALVADOR. 13 FEB 2001. PANCHIMALCO COMP. E-W Sismo 2001 - UCA Longitudinal dt=0.005s


Aceleración - Tiempo Historia a = 0.106 g t = 5.730 s

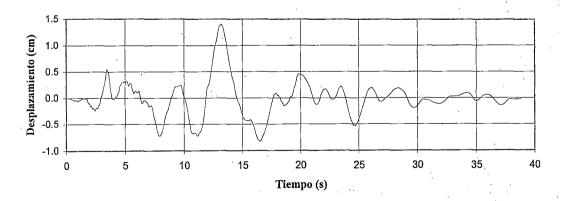
Velocidad - Tiempo Historia v=4.476 cm/s t=8.540 s



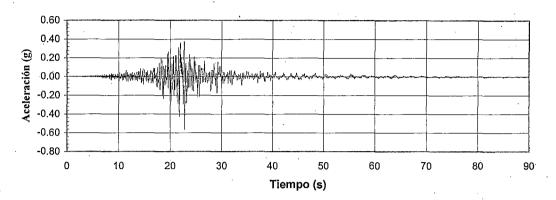
Desplazamiento - Tiempo Historia d=3.023 cm t= 9.705 s



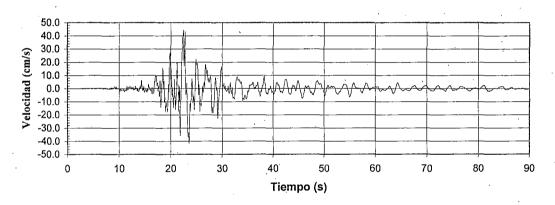
SAN SALVADOR. 13 FEB 2001. PANCHIMALCO COMP. N-S Sismo 2001 - UCA Transversal dt=0.005s


Aceleración - Tiempo Historia a=-0.047 g t=3.44 s

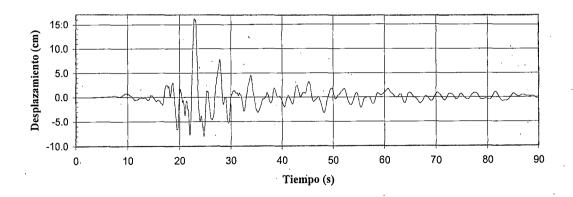
Velocidad - Tiempo Historia v=2.101 cm/s t=11.80 s



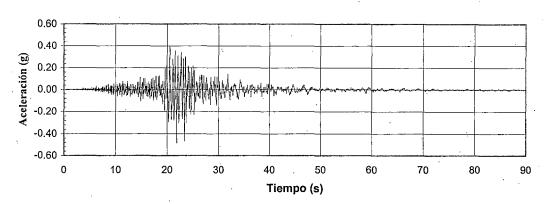
Desplazamiento - Tiempo Historia d=1.396 cm t= 13.18 s



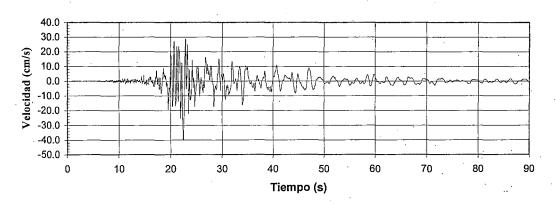
SAN SALVADOR. 13 FEB 2001. PANCHIMALCO COMP. VERTICAL Sismo 2001 - UCA Vertical dt=0.005s


Aceleración - Tiempo Historia a=-0.566 g t= 22.78 s

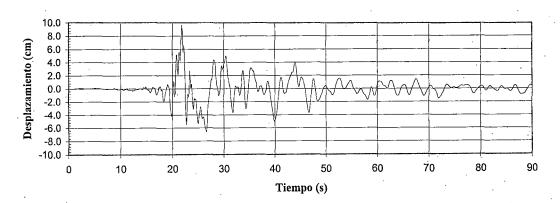
Velocidad - Tiempo Historia v=44.443 cm/s t= 22.43 s



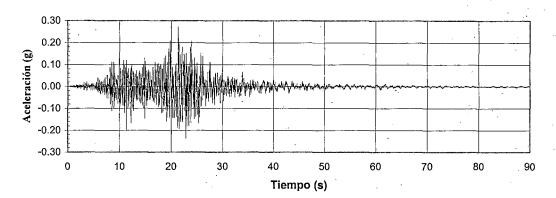
Desplazamiento - Tiempo Historia d=16.199 cm t=22.84 s



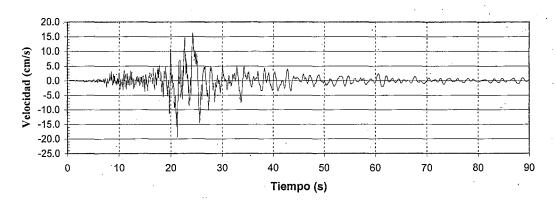
SAN SALVADOR. 13 ENE 2001. HOSPITAL SAN RAFAEL COMP. E-W Sismo 2001 - Hospital San Rafael Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=-0.486 g t= 21.86 s

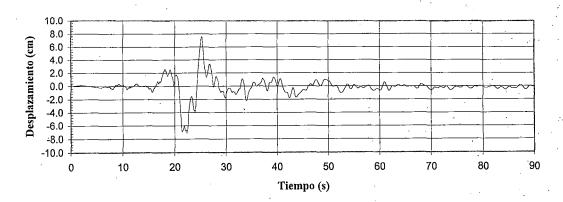
Velocidad - Tiempo Historia v=39.935 cm/s t=22.43 s



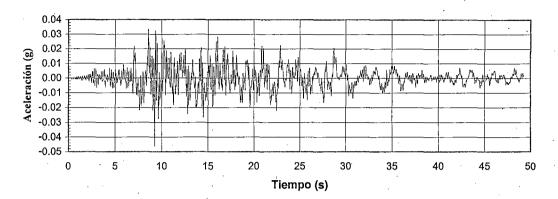
Desplazamiento - Tiempo Historia $_{d=}$ 9.632 $_{cm}$ $_{t=}$ 21.84 $_{s}$



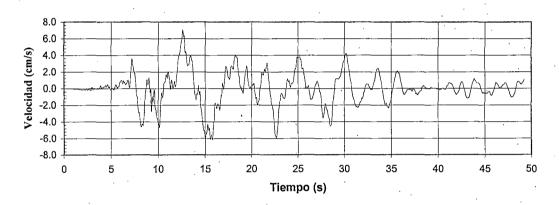
SAN SALVADOR. 13 ENE 2001. HOSPITAL SAN RAFAEL COMP. N-S Sismo 2001 - Hospital San Rafael Transversal dt=0.005s


Aceleración - Tiempo Historia a=0.273 g t= 21.33 s

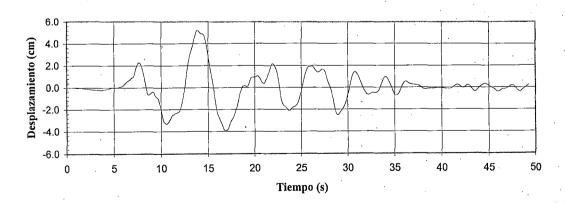
Velocidad - Tiempo Historia v=19.324 cm/s t=21.30 s



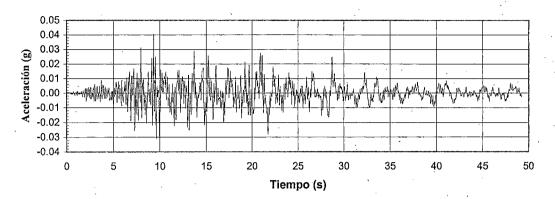
Desplazamiento - Tiempo Historia $_{d=}$ 7.547 $_{cm}$ $_{t=}$ 25.23 $_{s}$



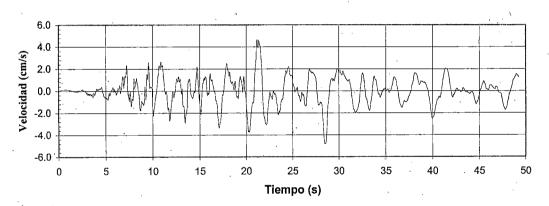
SAN SALVADOR. 13 ENE 2001. HOSPITAL SAN RAFAEL COMP. VERTICAL Sismo 2001 - Hospital San Rafael Vertical dt=0.005s


Aceleración - Tiempo Historia a=-0.046 g t= 9.25 s

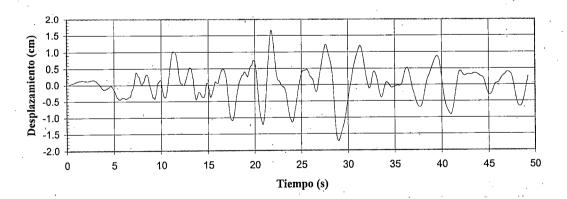
Velocidad - Tiempo Historia v=7.054 cm/s t= 12.60 s



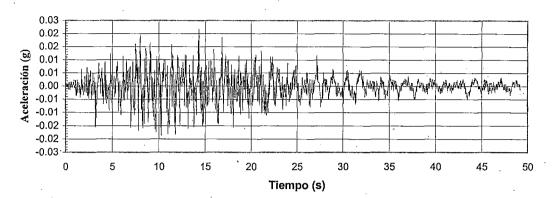
Desplazamiento - Tiempo Historia d= 5.229 cm t= 13.83 s



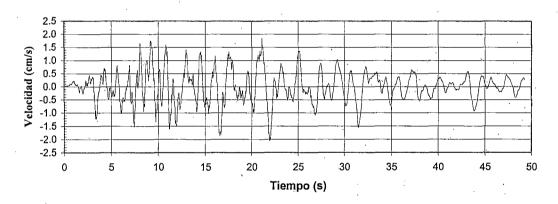
SAN SALVADOR. 13 FEB 2001. HOSPITAL SAN RAFAEL COMP. E-W Sismo 2001 - Sta. Tecla Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=0.040 g t= 9.34 s

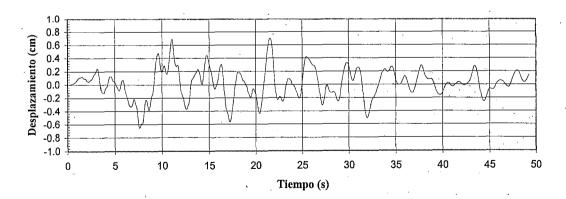
Velocidad - Tiempo Historia v=-4.817 cm/s t= 28.47 s



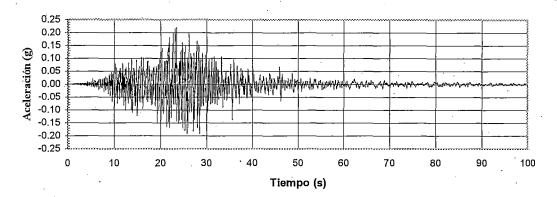
Desplazamiento - Tiempo Historia $_{d}$ -1.727 $_{cm}$ $_{t}$ = 28.98 $_{s}$



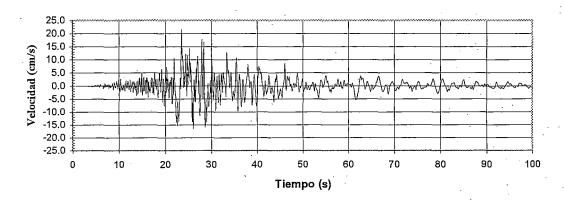
SAN SALVADOR. 13 FEB 2001. HOSPITAL SAN RAFAEL COMP. N-S Sismo 2001 - San Rafael Transversal dt=0.005s


Aceleración - Tiempo Historia a=0.022 g t= 14.32 s

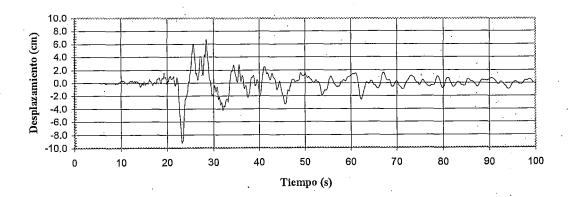
Velocidad - Tiempo Historia v=-2.061 cm/s t=-21.93 s



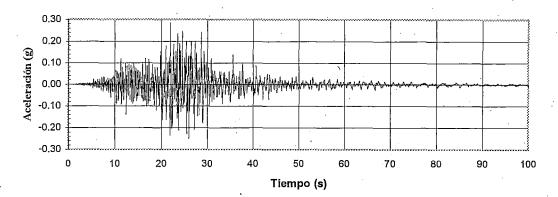
Desplazamiento - Tiempo Historia $_{d=}$ 0.701 $_{cm}$ $_{t=}$ 21.55 $_{s}$



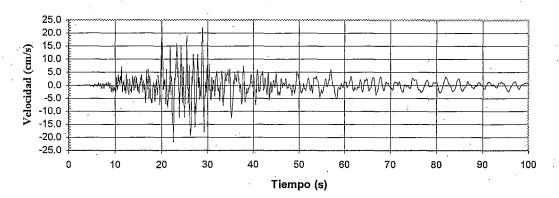
SAN SALVADOR. 13 FEB 2001. HOSPITAL SAN RAFAEL COMP. VERTICAL Sismo 2001 - San Rafael Vertical dt=0.005s


Aceleración - Tiempo Historia a = 0.220g t = 23.44s

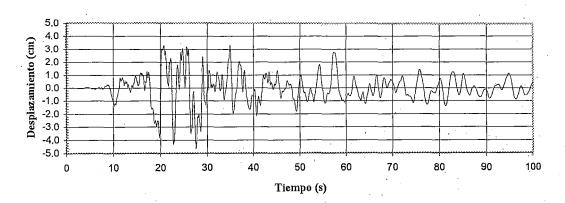
Velocidad - Tiempo Historia v=21.688 cm/s t=23.48s



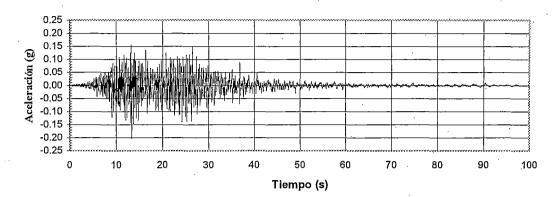
Desplazamiento - Tiempo Historia d= -9.268 cm t= 23.14s



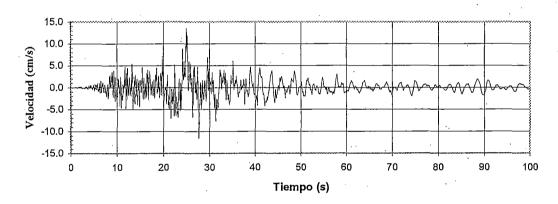
SAN SALVADOR. 13 ENE 2001. TONACATEPEQUE COMP. E-W Sismo 2001 - Tonacatepeque Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=0.284g t=22.00s

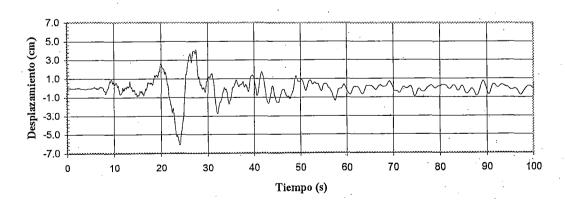
Velocidad - Tiempo Historia v=22.211 cm/s t=28.87s



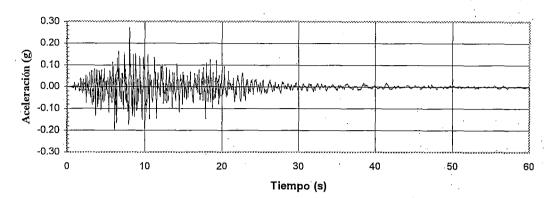
Desplazamiento - Tiempo Historia d= -4.649 $_{cm}$ t= 27.58 $_{s}$



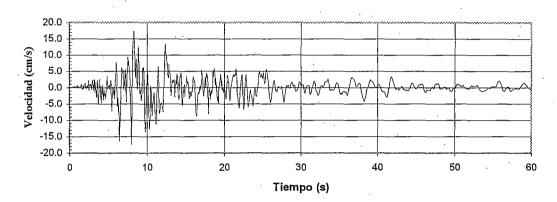
SAN SALVADOR. 13 ENE 2001. TONACATEPEQUE COMP. N-S Sismo 2001 - Tonacatepeque Transversal dt=0.005s


Aceleración - Tiempo Historia a= -0.204g t= 13.36s

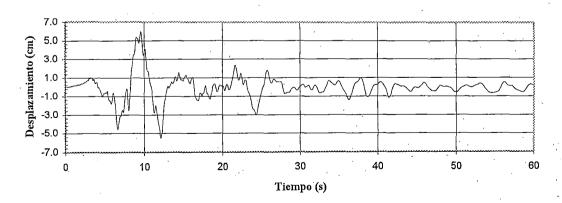
Velocidad - Tiempo Historia v=13.585 cm/s t=24.93 cm/s



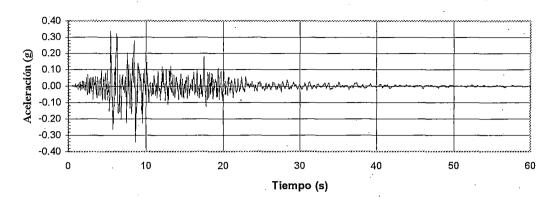
Desplazamiento - Tiempo Historia d= -6.064 cm t = 24.02s



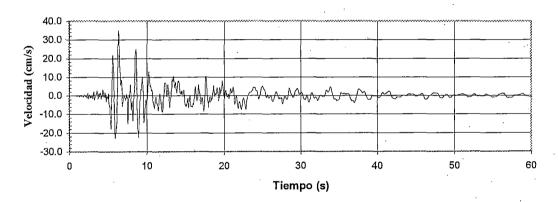
SAN SALVADOR. 13 ENE 2001. TONACATEPEQUE COMP. VERTICAL Sismo 2001 - Tonacatepeque Vertical dt=0.005s


Aceleración - Tiempo Historia a = 0.273 g t = 8.02 s

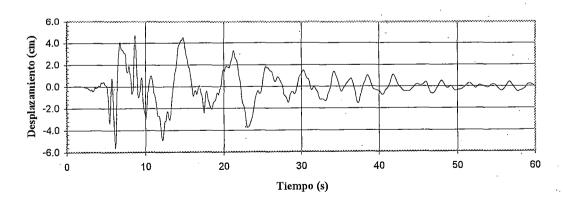
Velocidad - Tiempo Historia $v=^{17.481}$ cm/s $t=^{7.97}$ s



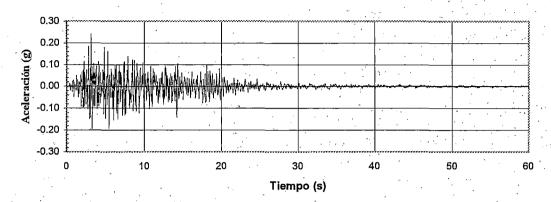
Desplazamiento - Tiempo Historia d= $^{6.019}$ cm t= $^{9.60}$ s



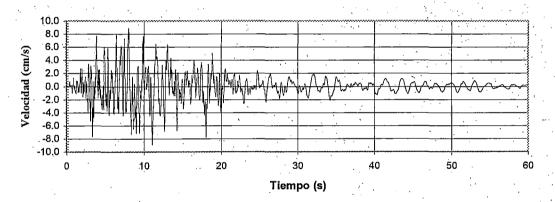
SAN SALVADOR. 13 FEB 2001. TONACATEPEQUE COMP. E-W Sismo 2001 - Tonacatepeque Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=-0.343 g t= 8.66 s

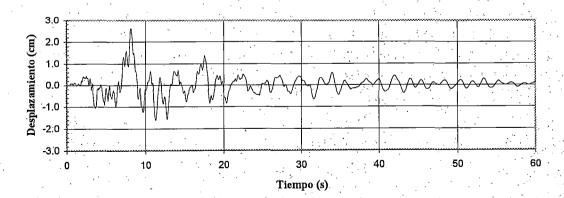
Velocidad - Tiempo Historia v=34.886 cm/s t= 6.33 s



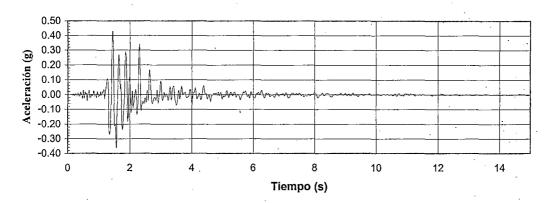
Desplazamiento - Tiempo Historia d= -5.606 cm t= 6.17 s



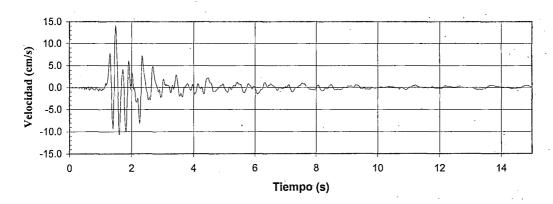
SAN SALVADOR. 13 FEB 2001. TONACATEPEQUE COMP. N-S Sismo 2001 - Tonacatepeque Transversal dt=0.005s


Aceleración - Tiempo Historia a = 0.243 g t = 3.16 s

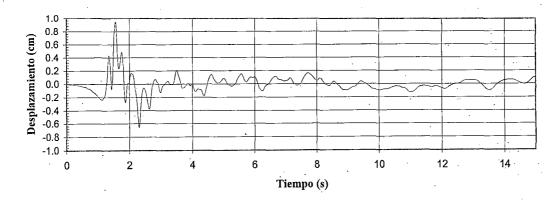
Velocidad - Tiempo Historia v=8.950 cm/s t= 7.99 s



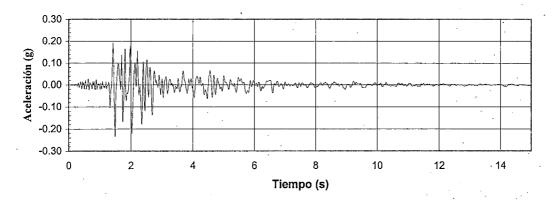
Desplazamiento - Tiempo Historia d= 2.632 cm t = 8.17 s



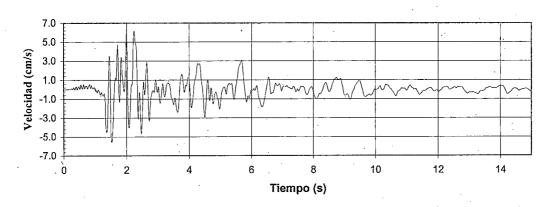
SAN SALVADOR. 13 FEB 2001. TONACATEPEQUE COMP. VERTICAL Sismo 2001 - Tonacatepeque Vertical dt=0.005s


Aceleración - Tiempo Historia a = 0.431 g t = 1.44 s

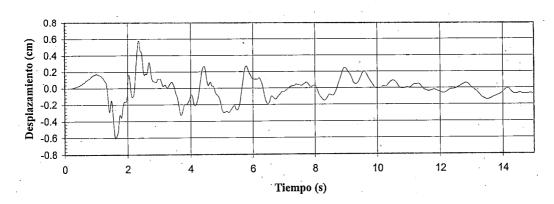
Velocidad - Tiempo Historia v=14.197 cm/s t= 1.49 s



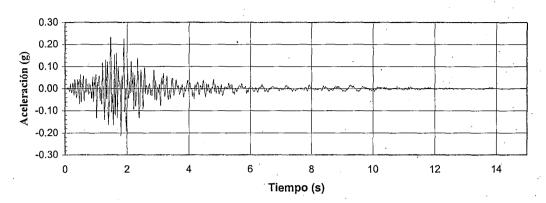
Desplazamiento - Tiempo Historia d=0.947 cm t=1.56 s



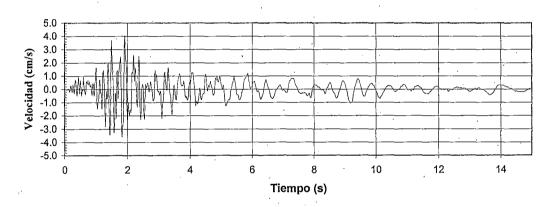
SAN SALVADOR. 13 FEB 2001. HOSPITAL STA. GERTRUDIS COMP. E-W Sismo 2001 - Hospital Sta. Gertrudis Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=-0.235 g t= 1.49 s

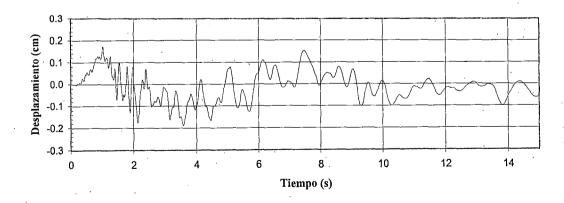
Velocidad - Tiempo Historia v=6.301 cm/s t= 2.00 s



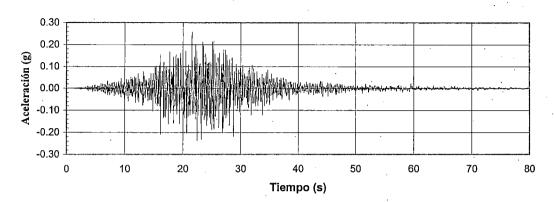
Desplazamiento - Tiempo Historia d= -0.611 cm t= 1.62 s



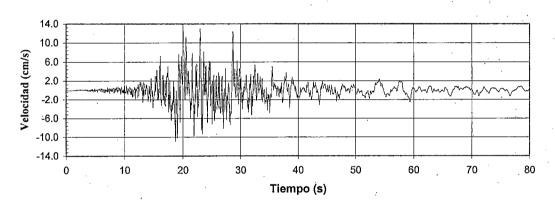
SAN SALVADOR. 13 FEB 2001. HOSPITAL STA. GERTRUDIS COMP. N-S Sismo 2001 - Hospital Sta. Gertrudis Transversal dt=0.005s


Aceleración - Tiempo Historia a=0.233 g t= 1.47 s

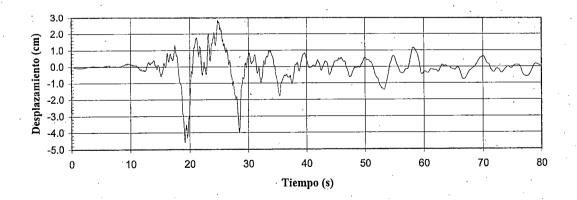
Velocidad - Tiempo Historia v=4.059 cm/s t=1.92 s



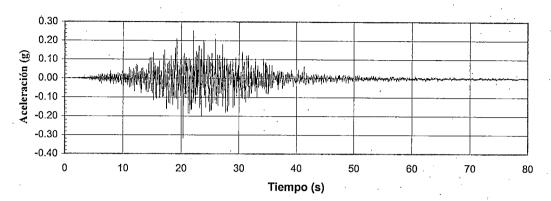
Desplazamiento - Tiempo Historia d= -0.188 cm t= 3.58 s



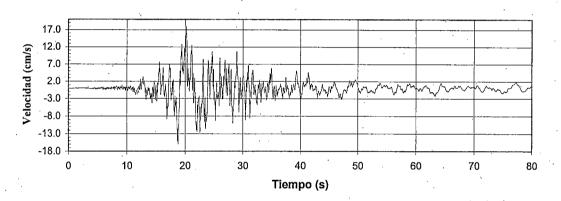
SAN SALVADOR. 13 FEB 2001. HOSPITAL STA. GERTRUDIS COMP. VERTICAL Sismo 2001 - Hospital Sta. Gertrudis Vertical dt=0.005s


Aceleración - Tiempo Historia a=0.259 g t= 21.54 s

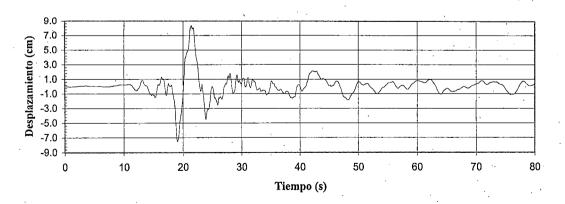
Velocidad - Tiempo Historia v=12.993 cm/s t=22.96 s



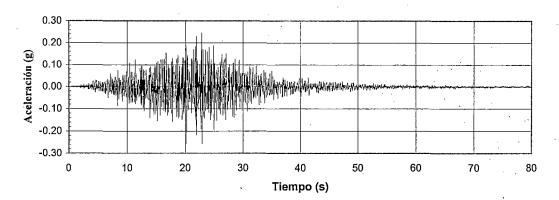
Desplazamiento - Tiempo Historia d=-4.578 cm t=19.19 s



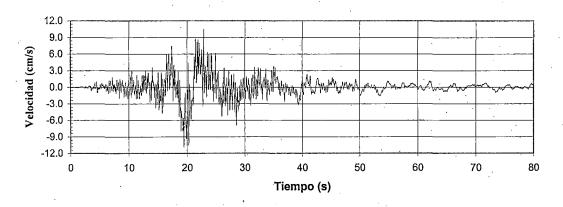
SAN SALVADOR. 13 ENE 2001. HOSPITAL STA. TERESA COMP. E-W Sismo 2001 - Hospital Sta. Teresa Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=-0.318 g t= 20.33 s

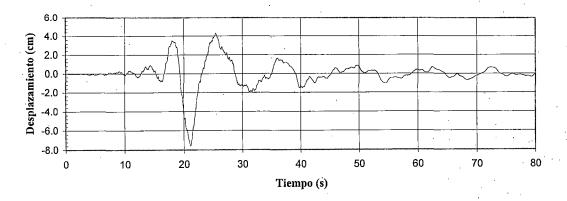
Velocidad - Tiempo Historia v=18.137 cm/s t=20.19 s



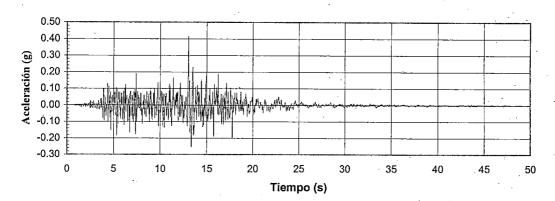
Desplazamiento - Tiempo Historia d=8.371 cm t=21.39 s



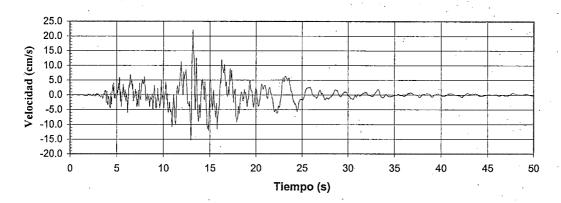
SAN SALVADOR. 13 ENE 2001. HOSPITAL STA. TERESA COMP. N-S Sismo 2001 - Hospital Sta. Teresa Transversal dt=0.005s


Aceleración - Tiempo Historia a=0.247 g t=22.83 s

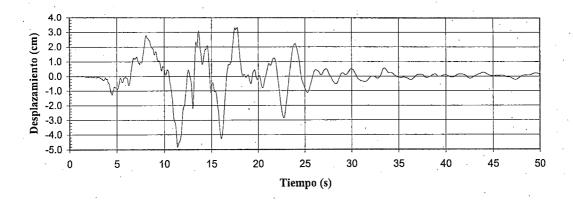
Velocidad - Tiempo Historia v=10.873 cm/s t= 19.45 s



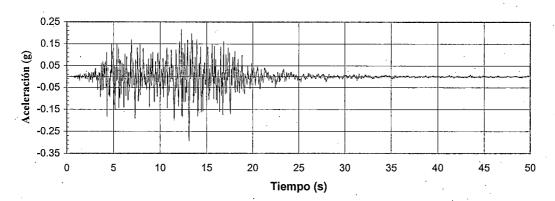
Desplazamiento - Tiempo Historia $_{d=}$ -7.585 $_{cm}$ $_{t=}$ 21.12 $_{s}$



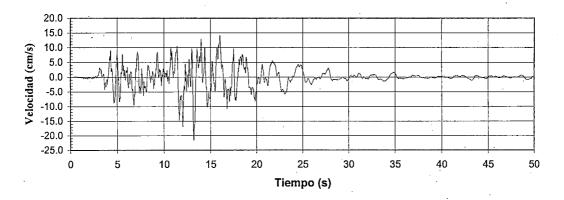
SAN SALVADOR. 13 ENE 2001. HOSPITAL STA. TERESA COMP. VERTICAL Sismo 2001 - Hospital Sta. Teresa Vertical dt=0.005s


Aceleración - Tiempo Historia a=0.415 g t= 13.02 s

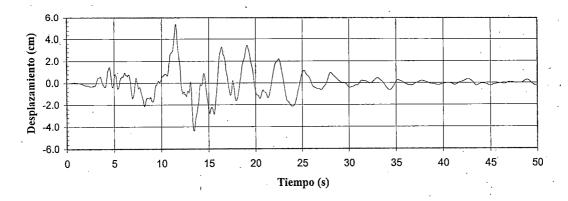
Velocidad - Tiempo Historia v=22.201 cm/s t=13.16 s



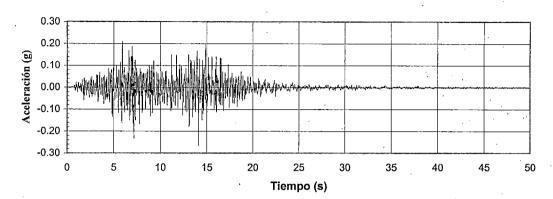
Desplazamiento - Tiempo Historia d= -4.838 cm t= 11.41 s



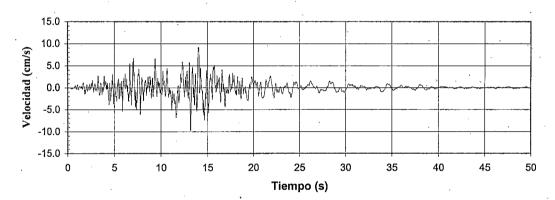
SAN SALVADOR. 13 FEB 2001. HOSPITAL STA. TERESA COMP. E-W Sismo 2001 - Hospital Sta. Teresa Longitudinal dt=0.005s


Aceleración - Tiempo Historia a=-0.294 g t= 13.10 s

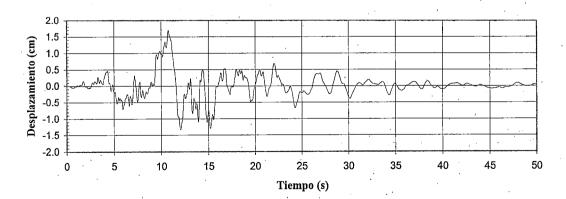
Velocidad - Tiempo Historia v=21.569 cm/s t= 13.18 s



Desplazamiento - Tiempo Historia $_{d=}$ 5.360 $_{cm}$ $_{t=}$ 11.50 $_{s}$



SAN SALVADOR. 13 FEB 2001. HOSPITAL STA. TERESA COMP. N-S Sismo 2001 - Hospital Sta Teresa Transversal dt=0.005s


Aceleración - Tiempo Historia a=-0.267 g t= 14.10 s

Velocidad - Tiempo Historia v=-9.799 cm/s t= 13.18 s

Desplazamiento - Tiempo Historia $_{d=}$ 1.698 $_{cm}$ $_{t=}$ 10.75 $_{s}$

SAN SALVADOR. 13 FEB 2001. HOSPITAL STA. TERESA COMP. VERTICAL Sismo 2001 - Hospital Sta. Teresa Vertical dt=0.005s

ANEXO D CLASIFICACION DE RIEGO DE TALUDES

CLASIFICACION DE RIESGO DE TALUDES

LA CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM.53 DAÑADA POR LOS TERREMOTOS DEL 13 DE ENERO Y 13 DE FEBRERO DE 2001

Progresiva (Km)		de:	50+860	50+860	50+980	51+030	51+060
		a: ,	51+060	50+980	51+030	51+060	51+080
(Margen de la carr	retera)		IZQ.	DER.	DER.	DER.	DER.
	-	Fenómeno	DERRUMBE	CAIDA DE ROCAS	DERRUMBE	CAIDA DE ROCAS	DERRUMBE
Características				Diámetro: 0.10-0.20m		Diámetro: 0.05-0.10m	
Equilibrio Actual	Estable Intermedio Crítico	(0) (1) (2)	1	1	1	1	1
Evolución	Nula Progresiva	(0) (3)	3	3	0	0	0
Topografía	Suave < 10° Media 10-30° Fuerte > 30°	(0) (1) (2)	2	2	2	2	2
Volumen (m³)	<10 10-100 100-1000 >1000	(0) (1) (2) (3)	3	0	2	0	2
Daños Materiales	Ligero Medio Catastrófico	(1) (2) (3)	2	1	2	1	1
	Valoración		11	7	7	4	6
Alt	ura de Talud (m)		25 - 30	8 – 10	20	15 - 20	20
Pend	diente del Talud (°)		50 - 35 (Mat.caído)	70 – 72	50	72	60
	Litología		Tobas, cenizas pumíticas, fragmentos rocosos en matriz limosa.	Toba, fragmentos rocosos en matriz limosa de naturaleza piroclástica.	Tobas, fragmentos rocosos en matriz limosa, naturaleza piroclástica	Tobas, fragmentos rocosos en matriz limosa, naturaleza piroclástica	Tobas, fragmentos rocosos en matriz limosa, naturaleza piroclástica
Fa	ctor de Humedad		Húmedo - Mojado	Seco	Húmedo	Húmedo	Húmedo
Ev	aluación Integral		Crítico	Moderado	Moderado	Leve	Moderado

CLASIFICACION DE RIESGO DE TALUDES CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM. 53 DAÑADA POR LOS TERREMOTOS DEL 13 DE ENERO Y 13 DE FEBRERO DE

				2001			
Progresiva (Km)		de:	51+340	51+380	51+640	51+700	51+840
(0.4	-4>	a:	51+420	51+480	51+700	51+820	51+890
(Margen de la carre	etera)	Fenómeno	IZQ. DESLIZAMIENTO	DER. CAIDA DE ROCAS	IZQ. CAIDA DE ROCAS	IZQ. CAIDA DE ROCAS	IZQ.
Características		renomeno	DESCIZAMIENTO	Diám: 0.10-0.15m	Diám: 1.0 – 2.2m	Diám: 0.30 – 1.00m	DERRUMBE
Equilibrio Actual	Estable Intermedio Crítico	(0) (1) (2)	1	0	2	1	1
Evolución	Nula Progresiva	(0) (3)	3	0	3	3	0
Topografía	Suave < 10° Media 10-30° Fuerte > 30°	(0) (1) (2)	2	2	2	2	2
Volumen (m³)	<10 10-100 100-1000 >1000	(0) (1) (2) (3)	3	0	0	0	1
Daños Materiales	Ligero Medio Catastrófico	(1) (2) (3)	2	1	2	1	1
	Valoración		11	3	9	8	5
A	itura de Talud (m)		45 - 50	2-5	17 – 20	15	10 -12
Per	ndiente del Talud (°)		35 – 70	80	62 – 65	63	41/80
	Litología		Principalmente tobas medianamente com-pactas y piroclás-ticos.	Toba parda alterada, bloques rocosos en matriz limo-arcillosa naturaleza volcánica.	Toba beige mediana- mente compacta con niveles aluvio volcá- nicos	Toba beige mediana- mente compacta con niveles aluvio volcá- nicos	Secuencia tobas color beige alteradas con iveles lávicos.
Fa	actor de Humedad		Húmedo-Mojado	Húmedo	Húmedo	Húmedo	Húmedo – Mojado
E	valuación Integral		Crítico	Leve	Crítico	Moderado	Moderado

CLASIFICACION DE RIESGO DE TALUDES

CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM.53 DAÑADA POR LOS TERREMOTOS DEL 13 DE ENERO Y 13 DE FEBRERO DE 2001

Progresiva (Km)		de:	51+900	52+180	52+330	52+380	52+500
i rogrooma (ram)		a:	52+180	52+330	52+380	52+400	52+580
(Margen de la carre	etera)		IZQ.	IZQ.	IZQ.	IZQ.	IZQ.
(margori do la barr			CAIDA DE	CAIDA DE ROCAS	DESLIZAMIENTO	CAIDA DE ROCAS	CAIDA DE ROCAS
		Fenómeno	ROCAS/DERRUMBE				0.20 - 1.50 m
Características			Diámetro: 0.15m	Diám: 0.80 – 1.50 m	Diám: 0.80.1.50m	Frente y parte alta	(parte alta)
Facility at a	Estable	(0)	4	4	1	2	4
Equilibrio	Intermedio	(1)	l I	'	'	2	1
Actual	Crítico	(2)					
Evolución	Nula	(0)	0	0	0	0	0
Evolucion	Progresiva	(3)	0	0	U	0	0
	Suave < 10°	(0)	2	2	2	2	2
Topografía	Media 10-30°	(1)	_	2	2	2	2
	Fuerte > 30°	(2)					
	<10	(0)	0	0	0	2	1
Volumen (m3)	10-100	(1)		· ·	Ü	-	'
Volumen (iii)	100-1000	(2)					
	>1000	(3)	, , , , , , , , , , , , , , , , , , , ,				
Daños	Ligero	(1)	1	1	1	. 3	2
Materiales	Medio	(2) (3)	·			_	_
	Catastrófico	(3)	<u> </u>				
	Valoración		4	7	4	7	6
Δltı	ura de Talud (m)		10	8 - 10	4	8 (Frente talud)	7 (frente de talud)
							7 (Horne do talda)
Pone	diente del Talud (°)		70 – 80	70 - 80	35 – 40	60 – 75/35	70 – 75
renc	mente del Talda ()					(Parte alta)	(35 – 40, parte alta)
<u> </u>			Tobas	Secuencia masiva	Secuencia masiva	Secuencia masiva	Secuencia masiva,
			semicompactas y	naturaleza aluvio	naturaleza aluvio	naturaleza aluvio	aluvio volcánica.
	Litología		niveles aluvio	volcánica.	volcánica	volcánica.	predominantemente
			volcánicos				
C	ator do Uumodo d		Húmedo	Húmedo	Húmedo	Húmedo	Llúmada
Fac	ctor de Humedad		numedo	numedo	numedo	Humeao	Húmedo
Fv	aluación Integral		Leve	Moderado	Leve	Moderado	Moderado

CLASIFICACION DE RIESGO DE TALUDES
CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM. 53 DAÑADA POR LOS TERREMOTOS DEL 13 DE ENERO Y 13 DE FEBRERO DE 2001

Progresiva (Km)		de:	52+660 52+705	52+720 52+900	52+730 52+900	53+060 53+280	53+520 53+600
(Margen de la carre	etera)	a:	1ZQ.	1ZQ.	DER.	1ZQ.	IZQ.
Características	storuj	Fenómeno	DERRUMBES	CAIDA DE ROCAS Diám: 0.50 – 1.50m	CAIDA ROCAS Diam: 0.4 – 1.0m	DESLIZAMIENTO	CAIDA DE ROCAS Diam: 0.2 – 1.0 m
Equilibrio Actual	Estable Intermedio Crítico	(0) (1) (2)	1	2	1	2	2
Evolución	Nula Progresiva	(0) (3)	0	0	0	3	0
Topografía	Suave < 10° Media 10-30° Fuerte > 30°	(0) (1) (2)	2	2	2	2	2
Volumen (m³)	<10 10-100 100-1000 >1000	(0) (1) (2) (3)	1	1	1	3	1
Daños Materiales	Ligero Medio Catastrófico	(1) (2) (3)	1	3	ý	3	3
- -	Valoración		5	8	6	13	8
Al	ltura de Talud (m)		6 - 8	20 –25	20 - 25	150 – 170	10 – 15
Pen	ndiente del Talud (°)		60	65 – 70	55	45 – 55	60 – 70
	Litología		Tobas medianamente compactas con frag-mentos líticos y pumíticos.	Piroclásticos tobas medianamente compactas.	Secuencia volcánica masiva.	Secuencia tobácea con presencia de obsidiana deleznable; niveles limo-arcillosos con fragmentos	Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava
Fa	actor de Humedad		Húmedo	Húmedo	Húmedo	Húmedo-Mojado	Húmedo
E	valuación Integral		Moderado	Moderado/Leve	Moderado	Muy Crítico	Moderado

CLASIFICACION DE RIESGO DE TALUDES CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM. 53 DAÑADA POR LOS TERREMOTOS DEL 13 DE ENERO Y 13 DE FEBRERO DE 2001

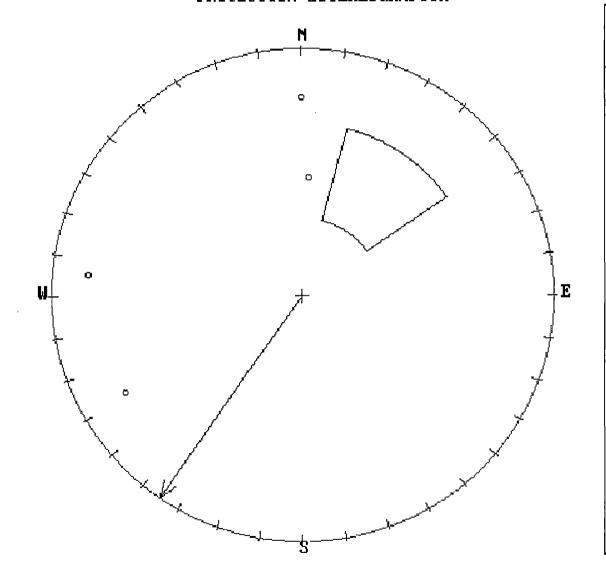
Progresiva (Km)		de: a :	52+730 52+900	53+060 53+280	53+060 53+260	53+520 53+600	53+600 53+680
(Margen de la carre	etera)	<u>-</u>	DER.	IZQ.	DER.	IZQ.	IZQ.
Características	· · · · · · · · · · · · · · · · · · ·	Fenómeno	CAIDA ROCAS Diam: 0.4 – 1.0m	DESLIZAMIENTO	CAIDA DE ROCAS Diam: 0.2 – 1.0m	CAIDA DE ROCAS Diam: 0.2 - 1.0m	DERRUMBES
Equilibrio Actual	Estable Intermedio Crítico	(0) (1) (2)	1	2	0	2	0
Evolución	Nula Progresiva	(0) (3)	0	3	0	0	0
Topografía	Suave < 10° Media 10-30° Fuerte > 30°	(0) (1) (2)	2	2	2	2	2
Volumen (m³)	<10 10-100 100-1000 >1000	(0) (1) (2) (3)	. 1	3	1	1	1
Daños Materiales	Ligero Medio Catastrófico	(1) (2) (3)	2	3	1	3	1
	Valoración		6	13	4	8	4
	Altura de Talud	•	20 - 25	150 - 170	6	10 - 25	7 - 8
Per	ndiente del Talud (°)		55	45 - 55	70	60 - 70	60 - 70
i	Litología		Secuencia volcánica masiva.	Secuencia tobácea con presencia de obsidiana deleznable; niveles limo-arcillosos con fragmentos	Remanentes lávicos masivos y fragmentos rocosos con matriz limo arcillosa.	Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava	Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava
Fa	actor de Humedad		Húmedo	Húmedo-Mojado	Húmedo	Húmedo	Húmedo
E	Evaluación Integral		Moderado	Muy Crítico	Leve	Moderado	Leve

CLASIFICACION DE RIESGO DE TALUDES

CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM. 53 DAÑADA POR LOS TERREMOTOS DEL 13 DE ENERO Y 13 DE FEBRERO DE 2001

Progresiva (Km) de: S3+900 S3+780 S3+7				50.000	50.700	50.700	50.000	54.000
Margen de la carretera IZQ IZQ	Progresiva (Km)		de:	53+600	53+720	53+780	53+880	54+000
Fenómeno			a:				1	
Equilibrio Actual Estable (0) (1) (2) (2) (2) (2) (3) (3) (2) (2) (2) (4)	(Margen de la carr	etera)						
Equilibrio Estable (0) 1 2 1 0 0 0 0 0 0 0 0 0			Fenómeno			CAIDA ROCAS		
Equilibrio Actual Estable (0) (1) (1) (1) (1) (1) (1) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4	Cometerísticas		1 CHOMENO	CAIDA DE ROCAS	DERRUMBES]		DERRUMBES PEQ.
Intermedic	Caracteristicas						Frente y banqueta	
Intermedic		Fetable	(0)					
Evolución Nula (0)	Equilibrio		(1)	0] 1	2	1	0
Evolución Nula (0) Progresiva (3) 3	Actual							
Progresiva Suave < 10° (0) 2 2 2 2 2 2 2 2 2		Childo						
Progresiva Suave < 10°	Cuelueián	Nula	(0)	0	0	0	0	0
Topografía Media 10-30° (1) Fuerte > 30° (2) (2) (0) (1) (0) (1) (Evolution	Progresiva	(3)					
Topografía Media 10-30° (2)		Suave < 10°	(0)	2				
Fuerte > 30° (2) Classification Cl	Topografía	Media 10-30°			2	2	2	2
Volumen (m³) Column (m³)	_	Fuerte > 30°	(2)					
Volumen (m³) 10-100 (1) 100-1000 (2) > 1000 (3) 1 1 1 1 0 Daños Materiales Ligero (1) Medio (2) (2) 1 2 2 3 1 1 (2 Catastrófico (3) Catastrófico (3) (3) 2 3 3 3 1 1 (2 Catastrófico (3) (3) (3) (3) (4 6 6 6 6 5 3 3 (4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		<10	(0)					
Daños Materiales Ligero (1) Medio (2) 1 2 3 1 1 1 Valoración Valoración Altura de Talud (m) Pendiente del Talud (°) Litología Litología Fragmentos rocosos, en matriz limosa y niveles limosas con fragmentos tamaño de grava Factor de Humedad Húmedo	1/21	10-100	(1)	1	1] 1	1	0
Nateriales	volumen (m²)	100-1000						
Materiales Medio Catastrófico (2) (3) 1 2 3 1 1 Valoración 4 6 6 5 3 Altura de Talud (m) 7-8 35-40 25-30 4-8 (frente) 20-25 Pendiente del Talud (°) 60-70 70-75 65 60-65 60-70 Litología Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Secuencia lávica intercalada con niveles tobáceos. Secuencia lávica masiva, con sectores bastante fracturados. Nivel tobáceo, naturaleza limo arcillosa compacta con fragmentos rocosos. Factor de Humedad Húmedo Húmedo Húmedo Húmedo Húmedo		>1000	(3)					
Materiales Medio Catastrófico (2) (3) 1 2 3 1 1 Valoración 4 6 6 5 3 Altura de Talud (m) 7-8 35-40 25-30 4-8 (frente) 20-25 Pendiente del Talud (°) 60-70 70-75 65 60-65 60-70 Litología Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Secuencia lávica intercalada con niveles tobáceos. Secuencia lávica masiva, con sectores bastante fracturados. Nivel tobáceo, naturaleza limo arcillosa compacta con fragmentos rocosos. Factor de Humedad Húmedo Húmedo Húmedo Húmedo Húmedo	Defice	Ligero	(1)					
Valoración Valoración 4 6 6 6 5 3 Altura de Talud (m) 7-8 35 - 40 25 - 30 4 - 8 (frente) 20 - 25 Pendiente del Talud (°) 60-70 70 - 75 65 60 - 65 60 - 70 Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Factor de Humedad Húmedo		Medio	(2)	1	2	3	1	1
Altura de Talud (m) 7-8 35 - 40 25 - 30 4 - 8 (frente) 20 - 25 Pendiente del Talud (°) 60-70 70 - 75 65 60 - 65 60 - 65 60 - 70 Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Factor de Humedad Húmedo Húmedo 4 - 8 (frente) 20 - 25 8 - 25 - 30 4 - 8 (frente) 20 - 25 8 - 20 - 20 8 -	Materiales	Catastrófico	(3)					
Altura de Talud (m) 7-8 35 - 40 25 - 30 4 - 8 (frente) 20 - 25 Pendiente del Talud (°) 60-70 70 - 75 65 60 - 65 60 - 65 60 - 70 Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Factor de Humedad Húmedo Húmedo 4 - 8 (frente) 20 - 25 8 - 25 - 30 4 - 8 (frente) 20 - 25 8 - 20 - 20 8 -		Mala na aidin		4	6	6		2
Pendiente del Talud (°) 60-70 70 - 75 65 60 - 65 60 - 70 Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Factor de Humedad 65 60 - 65 60 - 65 60 - 70 Secuencia lávica in- dercalada con niveles tobáceos. Secuencia lávica masiva, con sectores bastante fracturados. Fragmentos rocosos, en matriz limosa y niveles tobáceos. Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo		valoracion		4	0	0	5	<u> </u>
Pendiente del Talud (°) 60-70 70 - 75 65 60 - 65 60 - 70 Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Factor de Humedad 65 60 - 65 60 - 65 60 - 70 Secuencia lávica in- dercalada con niveles tobáceos. Secuencia lávica masiva, con sectores bastante fracturados. Fragmentos rocosos, en matriz limosa y niveles tobáceos. Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo	Altı	ıra de Talud (m)		7-8	35 - 40	25 – 30	4 – 8 (frente)	20 - 25
Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Factor de Humedad Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Factor de Humedad Fragmentos rocosos, en matriz limosa y niveles limosos con fragmentos tamaño de grava Secuencia lávica in-masiva, con sectores bastante fracturados. Immo arcillosa compacta y niveles aluvio volcánicos mentos rocosos. Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo							- (
en matriz limosa y niveles limosos con fragmentos tamaño de grava en matriz limosa y tercalada con nive- niveles limosos con fragmentos tamaño de grava Húmedo	Pend	iente del Talud (°)		60-70	70 - 75	65	60 – 65	60 – 70
en matriz limosa y niveles limosos con fragmentos tamaño de grava en matriz limosa y tercalada con nive- niveles limosos con fragmentos tamaño de grava Húmedo				Fragmentos rocosos	Secuencia lávica in-	Secuencia lávica	Nivel tobáceo, natu-	Toba beige masiva
Litología niveles limosos con fragmentos tamaño de grava les tobáceos. bastante fracturados. compacta con fragmentos rocosos. les tobáceos. bastante fracturados. compacta con fragmentos rocosos.								
fragmentos tamaño de grava Factor de Humedad Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo		Litología						
de grava Factor de Humedad Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo Húmedo		Litologia			100 1000001	Dadiano nadianados.		100 GIGVIO VOICE/11005
Factor de Humedad Húmedo Húmedo Húmedo Húmedo Húmedo	1			_			111011100 1000000	
	<u> </u>							
Evaluación Integral Moderado Moderado Moderado Leve	Fac	tor de Humedad		Húmedo	Húmedo	Húmedo	Húmedo	Húmedo
Livaluación integral ividuelado ividuelado ividuelado ividuelado teve	E.,,	aluación Integral		Moderado	Moderado	Moderado	Moderado	1 0/0
	=va	aluacion integral		IVIOUEIAUO	WIOGEIAGO	Moderado	Wiodelado	

CLASIFICACION DE RIESGO DE TALUDES CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM.53 DAÑADA POR LOS TERREMOTOS DEL 13 DE <u>ENERO Y 13 DE FEBRERO DE 2001</u>


Progresiva (Km)		de: a:	54+120 54+125	54+380 54+460	54+460 54+780	54+780 54+820	54+820 54+880
(Margen de la carret	tera)	α.	DER.	IZQ.	IZQ.	IZQ.	1ZQ.,
Características		Fenómeno	DERRUMBE	CAIDA DE PIEDRA Y ROCAS	CAIDA DE ROCAS	CAIDA DE ROCAS	CAIDA DE PIEDRA Y ROCAS
Caracteristicas					Diam. 0.40-0.80 m	Frente de talud	(frente)
Equilibrio Actual	Estable Intermedio Crítico	(0) (1) (2)	0	0	2	1	0
Evolución	Nula Progresiva	(0) (3)	0	0	0	0	0
Topografía	Suave < 10° Media 10-30° Fuerte > 30°	(0) (1) (2)	2	2	2	2	2
Volumen (m³)	<10 10-100 100-1000 >1000	(0) (1) (2) (3)	0	0	1	0	0
Daños Materiales	Ligero Medio Catastrófico	(1) (2) (3)	1	1	3	2	1
	Valoración		3	3	8	5	3
Alt	tura de Talud (m)		2 - 4	10 -15	8 - 12	6 - 10	5 – 7
Pend	diente del Talud (°)		60 - 65	60 – 70	70 – 35 (parte alta)	55 - 60	70
	Litología		Toba beige masiva semicompacta y nive- les aluvio volcánicos	Secuencia aluvio vol- cánica, intercalada con toba compacta beige; niveles lávicos lenticu- lares	Secuencia aluvio vol- cánica, intercalada con toba compacta beige; niveles lávicos lenticulares	nantemente aluvio vol-	Secuencia predomi- nantemente aluvio volcánica
Fa	ctor de Humedad		Húmedo	Húmedo	Húmedo	Húmedo	Húmedo
Ev	/aluación Integral		Leve	Leve	Moderado	Moderado	Leve

CLASIFICACION DE RIESGO DE TALUDES

CARRETERA CA-1 TRAMO CURVAS DE LA LEONA KM.53 DAÑADA POR LOS TERREMOTOS DEL 13 DE ENERO Y 13 DE FEBRERO DE 2001

Progresiva (Km)		de:	54+880	54+920		
/8.4	-4001	a:	54+920 IZQ.	55+060 IZQ.		
(Margen de la carre	etera)	Fenómeno	CAIDA DE ROCAS	CAIDA DE ROCAS		
Características		renomeno	Frente de talud	Frente de talud	_	
Equilibrio	Estable Intermedio	(0) (1)	1	0		
Actual	Crítico	(2)			_	
Evolución	Nula Progresiva	(0) (3)	0	0		
Topografía	Suave < 10° Media 10-30° Fuerte > 30°	(0) (1) (2)	2	2		
Volumen (m³)	<10 10-100 100-1000 >1000	(0) (1) (2) (3)	0	0		
Daños Materiales	Ligero Medio Catastrófico	(1) (2) (3)	2	1		
	Valoración		5	3		
Al	ltura de Talud (m)		5-6	6 – 10		
Pen	diente del Talud (°)		45 - 50	80		
	Litología		Secuencia predomi- nantemente aluvio vol- cánica.	Secuencia aluvio vol- cánica, con derrames lávicos, derrames lá- vicos en la base.		
Fa	actor de Humedad		Húmedo	Húmedo		
E	valuación Integral		Moderado	Leve		

ANEXO E SALIDAS DEL PROGRAMA CONTEO PARA LA ZONA CRITICA Nº 2

ARCH: LEONA.DAT Total puntos = 51

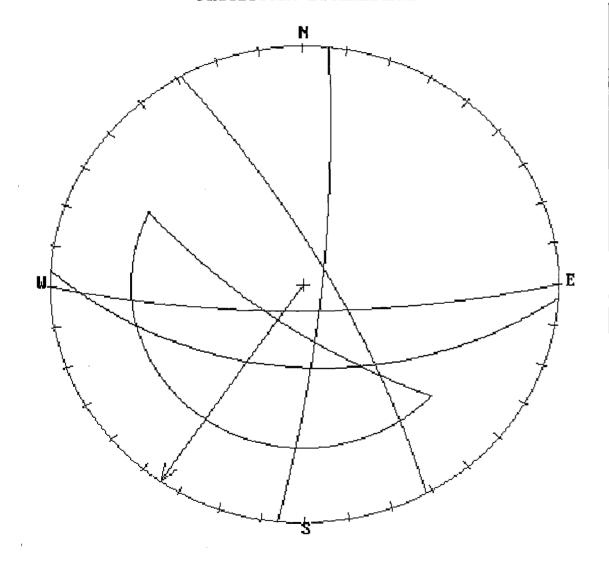
FAMILIA 1 _ 184/51 FAMILIA 2 _ 61/78 FAMILIA 3 _ 180/78 FAMILIA 4 _ 96/82

TALUD
DIR.BUZ= 215
BUZAM = 70
< FI = 35

TIPO DE FALLA

(1) PLANAR

(2) CUÑA

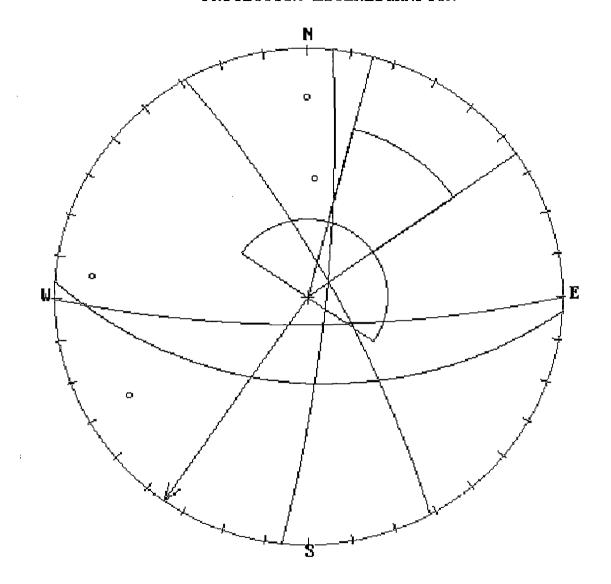

(3) VOLTEO

(4) TUNELES

(5) LIMPIAR

(6) SALIR

(7) IMPORTAR

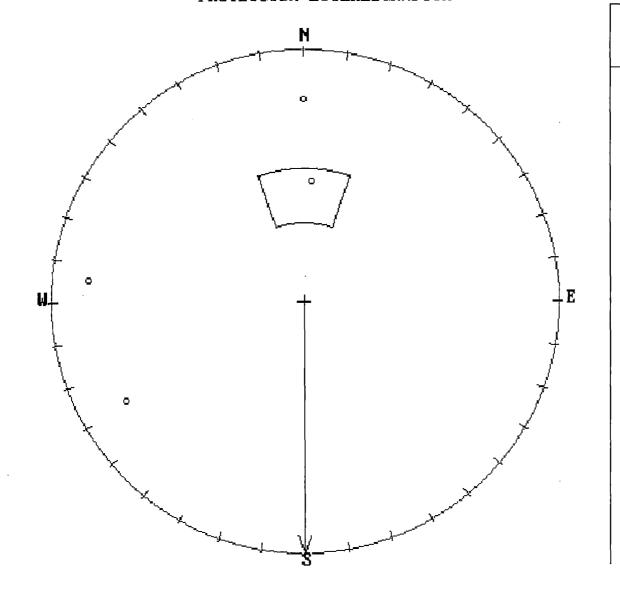

ARCH: LEONA.DAT Total puntos = 51

FAMILIA 1 _ 184/51 FAMILIA 2 _ 61/78 FAMILIA 3 _ 180/78 FAMILIA 4 _ 96/82

TALUD

DIR.BUZ= 215 BUZAM = 70 < FI = 35

- (1) PLANAR
- (2) CUÑA
- (3) VOLTEO
- (4) TUNELES
- (5) LIMPIAR
- (6) SALIR
- (7) IMPORTAR

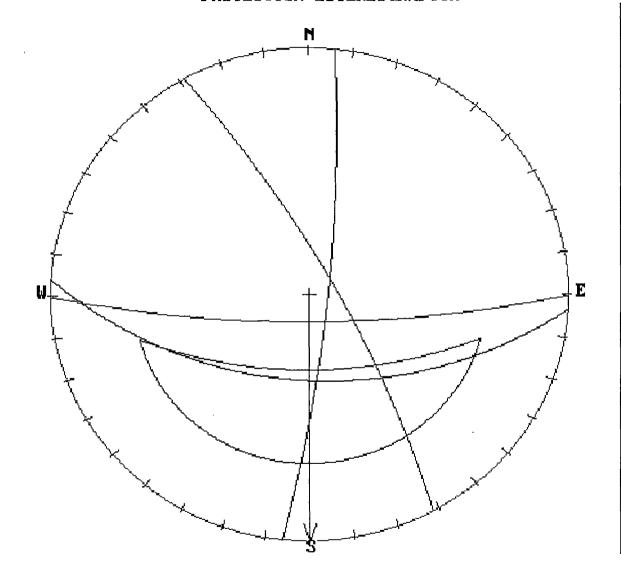

ARCH : leona.DAT Total puntos = 51

FAMILIA 1 _ 184/51 FAMILIA 2 _ 61/78 FAMILIA 3 _ 180/78 FAMILIA 4 _ 96/82

TALUD
DIR.BUZ= 215
BUZAM = 70
< FI = 35

- (1) PLANAR
- (2) CUÑA
- (3) VOLTEO
- (4) TUNELES
- (5) LIMPIAR
- (6) SALIR
- (7) IMPORTAR

ANEXO F SALIDAS DEL PROGRAMA CONTEO PARA LA ZONA CRITICA Nº 3

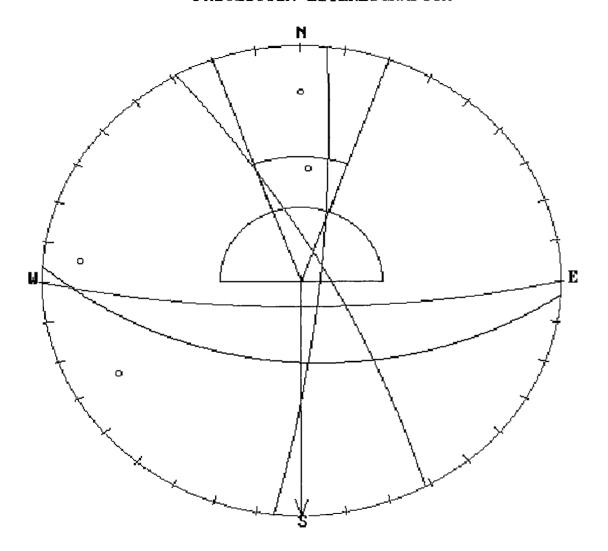


ARCH: LEONA.DAT Total puntos = 51

FAMILIA 1 _ 184/51 FAMILIA 2 _ 61/78 FAMILIA 3 _ 180/78 FAMILIA 4 _ 96/82

TALUD
DIR.BUZ= 180
BUZAM = 56
< FI = 35

- (1) PLANAR
- (2) CUÑA
- (3) VOLTEO
- (4) TUNELES
- (5) LIMPIAR
- (6) SALIR
- (7) IMPORTAR



ARCH : LEONA.DAT Total puntos = 51

FAMILIA 1 _ 184/51 FAMILIA 2 _ 61/78 FAMILIA 3 _ 180/78 FAMILIA 4 _ 96/82

TALUD
DIR.BUZ= 180
BUZAM = 56
< FI = 35

- (1) PLANAR
- (Z) CUÑA
- (3) VOLTEO
- (4) TUNELES
- (5) LIMPIAR
- (6) SALIR
- (7) IMPORTAR

ARCH : LEONA.DAT Total puntos = 51

FAMILIA 1 _ 184/51 FAMILIA 2 _ 61/78 FAMILIA 3 _ 180/78 FAMILIA 4 _ 96/82

TALUD
DIR.BUZ= 180
BUZAM = 56
< FI = 35

- (1) PLANAR
- (Z) CUÑA
- (3) VOLTEO
- (4) TUNELES
- (5) LIMPIAR
- (6) SALIR
- (7) IMPORTAR

ANEXO G REGISTROS DE PERFORACIONES Y TABLAS RESUMEN DE PERFORACIONES

							Ē	= =	_03-0	ON BEOTE	0/4/02										
*POIEC	то		C EDAG PARA EL Pavo Curna	PP PP DE	L \ ; 0°E0T0 14 LE0	000 000 000	LNEWTOS DE 1 LA CARRETER - 12 05 - FC 1 13 DE 1	COTAC PARCE DAGAS) (). \$ - 1. 14 FTF (15)	NEU NEC SI	20-		o to e Te fil		Э.		47771. 7 6763.3		9893170 989340	-{	er m
¥3.640	424	-					FC + 13 DE 1 FERA CA - 1 %			FROSENCI DIZIO FERFIDRIZISI 1907. FERFIDRIZIO DI BUELLO PRUFI, REPFERFIZIONE EN FOCA	30,5 M	\vdash	5182 Vivit	. —	£ 5	۲ .	18323	6.49 1.92	-Cuár / }	+ SL	1
DE C	S F	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		. %	æ s	£ 9	. RFICO			or on the second of the second			H NA Li	UMEDA TURAI MITES	L Y DE	1		SAYOS DE	PENETRACION EST	andar	3 a
DIAMETRO	PERFORACION METODO DE	PERFORAC	(%)	ROD (COTAS ABSOLUTAS (M)	PROFUNDIDAD	PERFIL ESTRATIGRAFICO	SIMBOLO	ľ	DESCRIPCION DEL MATERIAL		MUESTRA	W	LL.	IP	No. C		CK (GLP / I		. SPT (GLP /	PIE)
		- 1	25 50 75	_			iii ii	*					(%)	(%)	(%)	SECO	SAT	01	20 30	40	50
	_				779.77	1.15		CL	ARCILLA ARENOSA, CON GRAVA, AISLA	,COLOR CAFE CLARO, 33% ARE ADA, O MAX=15.6001, FINOS DE AI	NA FINA A MEDIA, .TA PLASTICIDAD		25.6 19.5	38.4 42.0							
տոհագերունում որ համարակարկում այն ուներ արևում այն արևում այն արևում այն արևում այն արևում այն արևում այն արկ 	*																	i			
								SM	ARENA LIMOSA CO 66% DE ARENA FI DE/0 MAX=25 MM,	DLOR CAFE CLARO INA A MEDIA, GRAVA AISLADA Y PIEDRA CUARTA DE 250 mm,											
					776.02	4.90					ĺ										1
					775.12	5.80			*1	Oł	-19999) -19999	ı									
									LIMO ARENOSO COLOR CAFE OS FINOS DE BAJA F	I CONTAMINADO CON ORGANICO CURO, 30% ARENAS FINA MEDIA PLASTICIDAD.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										}
			Ę		772.87	8.05							14.9	-	-						
						} 															
					770.37	10.55															
	H	0 >			767.92	13.00								ļ							
	2 2	_ A _	Ē		765.57	15.35					ļ										
	, [0			764.62	16.30		}													
					-	17.00							,								
						,					ļ		12.6	_	-						
					760.77	20.15		SW-SM	80% ARENA FINA	DUADA LIMOSA COLOR CAFE CLA , A GRUESA, 10% GRAVA FINOS NO PLASTICOS.	JRO		14.8	-	-						
													ļ		Į						
		2186				22.50		SM.	ARENA LIMOSA, CO	OLOR GRIS CLARO, 70% A PUMI	TICA.				ı		,				
						24.05		SM	CON GRAVA, AISLA	ADA DE POMEZ FINOS NO PLASTICOS.			24.2								
					756.22	24.70		SP-SM		IADA LIMOSA, COLOR GRIS CLAR 30% GRAVA DE PONEZ, 10 MARE 2			31.5								
									FINOS NO PLASTIC												
<u>յունումումումումուկուհայնուկուկումումումումումումումումումումումումումո</u>				ļ		}															ļ
	A - I A - 2		ROCA NO ALTERADA	(F		30.00			C - I MUY DURA	্মেত্রত ইমিত্র একটে ১			Ŧ				RACTURA	ADA (< I Fr			
	A - 3 A - 4 A - 5 A - 6	1	ROCA POCO ALTERAL ROCA MODERADAMEN ROCA MUY ALTERADA ROCA COMPLETAMEN SUELO RESIDUAL	NTE A					C - 2 DURA C - 3 MEDIO DUI C - 4 LIGERAME C - 5 SUAVE					F - F -	- 3 - 4	MUY FR. EXTREM	acturai Iadamen		FRAC/M) RADA (II-20 Fra	ac/m)	,

								EVP	LORACION GEOTECNICA					
FROME	то	-	D BERC PARA EL AVRUD OMAR	O FA	MAL Y GYESTO	ICC DE	UMENTOS DE LA CARRETE	L DITAS	0019 + 00/A3084 901 4 1.			Stra Styru		14 07/266. REVISION
	15.	+	TERREY DOTOS	EEL	13 DE	EINE	TFO Y 13 DE TEPA CA - 1 UM	FEBPE:	PO DE 0001 (MANAGEMENTALE)	J.,	518	565.		2 253036.15 FS.A 1 / 2
.5:CAC		L	TESEVERI NET			1	EFA CA - I We	5.7549	FR 17. PERFORADA (B. RACA)	237			ntan 2	200. 788.52 / PROS.
AMETER DE	PERFORACION	METODO DE ERFORACION	RECUPERACION (%)	00 (%)	COTAS ABSOLUTAS (m)	PROFUNDIDAD (M)	PERFIL ESTRATIGRAFICO	SIMBOLO (SUCS)	DESCRIPCION DEL MATERIAL	MUESTRA	N. L	ATURA IMITES NSISTE	L Y DE	ENSAYOS DE PENETRACION ESTANDAR SPT Y/O CONO DE PECK (SIN CORRECCION) NO. CONO PECK (GLP / ISON) NO. SPT (GLP / PIE)
	- =	•	25 50 75	æ	AB) E	SE SE				(%)		(%)	(No. DE GOUPES) 10 20 30 40 50 60 70
, [↑ I			ļ				OL-PT OL OL	LIMO ARENOSO CON ORGANICO,35 KARENAVC CAFE LIMO BPICENTAMINIDO LIMO ARENOSO CON ORGANICO,20% ARENA PERIA AJINA. LIMO CACOR RERGRO DE REDIA RESTIDIDAD. LIMO ARENOSO COLOR CAFE,37% ARENALIMO DE METIA P. ARENA DE RETIA PIJA. LIMO ARENOSO COLOR CAFE GRIS-GEO, 42% ARENA, LIMO ARENOSO COLOR CAFE GRIS-GEO, 42% ARENA,		36.3 8.7	ĺ	5.43 9 10.92	N=12 O
turilmilmi	\bigcap				787.02	4.00		OL SM	AREMA DE FINA A MEDIANA PLASTICIDAD. AREMA ILMOSA COLOR CAFE CON GRAVAS ASLADAS, 79% AREMS, AREMA DE FINA A HEDIA, LIMOS DE MEDIANA PLASTICIDAD. CONCLOMERADO CEMENTADO COLOR CAFE GRISJARBIA LIMOSA		23.8	29.8	10.48	N=72 O
thurhuduut								GM SM	CON GRAVAS MAL GRADUADAS, o MARE ZEMI. TOBA COLOR CAFE OSCIRO.		57.1			
undumlanda					780.57	7.95	9 9	GM-GW	GRAVA ARENOSA CON LIMOS COLOR GRIS CLARO DE ORIGEN PLIMETICO, O PIARE-25 MIL 90% GRAVA	Ī				
Juntur danilari					778.52 777.72	10.00	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SP SM	SUELO METEORIZADO, GRANILOMETRIA DE ARENAS, O MARJAS. TORAS COLOR CAFE OSCURO.		21.6 25.6			
ulentantenta				j	776.77	11.95		SW-SM	ARENA LIMOSA COLOR CAFE ROJISO CONSOLIDADA 88% ARENAS, GRANILLOMETRIA. LIMO DE MEDIANA PLASTICIDAD.					
Supplement of the Control of the Con											30.2	28.2.	9.95	
7 Maragaran				ļ	İ			SW	AFENA LIMOSA COLOR CAFE, 96% ARENA, AFENAS FINAS A MEDIAS,					o N-50
)	l				LIMO DE MEDIAS PLASTICIDAD.		25.7	28.6	8.11	
				j	67.54	23.00		SP	ARENA GRAVOSA CON LIMOS COLOR CAFE OSCIERO, 96% ARENA, GRAVA O MASE Z.		18.2	29.5	6.92	
				ļ				SP	ARENA LIMOSA CON GRAVA AISLADA O 12M COLOR CAFE OSCLRO 98% ARENA, LIMO DE MP. TORA CONOLOMERADO DE ARENA MEDIA AGRIESA, COLOR					
26					762.32	26.20		SP	GRIS OSCURO. ARENA LIMOSA CON GRAVAS AISLADAS, 75% GRANLLAR COLOR CAFE OSCURO, ARENA DE FINA A PEDIA		25.2 42.4	28.5	6.40	
28 -	,	7 ·												
50 Paragraph 15 Par	HQ-2	ОТА			759.17	30.30		SM	ROCA AUSLADA ARENA LIMOSA COLOR CAFE CON GRAVAS, 54% FINA GRESSA O MALE 'SA'. LIMO ORGANICO DE PP.					
entinetinetinetinetinetinetinetinetineti		2		j		}		SM	ARENA LIMISA COLOR CAFE CON GRAVA CON GRAVAS FIMITICAS Y Y OSSIDIAND, 88% ARENA, ARENA DE PERIA A GRESA O MAET		34.4	26.11	8.65	
andandan kari				- 1	/50.3/	38.60	Δ	GP-GM	ROCA AISLADA. GRAVA ARENOSA CON LIMOS COLOR CAFE OSCURO, O MAR ³ 3' ARENA MEDIA A GRUESA, LIMO DE MEDIA PLASTICIDAD.		20.7	35.0	5,54	
alandamhada.					750.37	38.60		SP	ARENA GRAYOSA , COLOR NEGRO A GRS, FINDS : LIMO DE BAJA PLASTICIAD.		1			
underdendende.			2000000		750.37	43.70			· ·			} 		
LS TOTAL OF THE PARTY OF THE PA								SP	APENA GRAYOSA, COLOR IEGRO ARENA DE FINA GRUESA, O MARE 3 FM* FINOS, LIMO NO PLASTICO.		1,20			
a paparapara								•						
50-==	4	1			738,52	50.00								
indendari karantari karant									· İ					
dunkahuduri													}	
59												_		
L	A - 5 A - 5 A - 5 A - 6 A - 6	2 3 4	ROCA NO ALTERADA ROCA POCO ALTERA ROCA MODERADAMEI ROCA MUY ALTERAD ROCA COMPLETAMEN SUELO RESIDUAL	A (FI DA NTE A	resca) Lterada				C - 1 MUY DURA C - 2 DURA C - 3 MEDIO DURA C - 4 LIGERAMENTE DURA C - 5 SUAVE	_		F	- 1 - 2 - 3 - 4 - 5	POCO FRACTURADA (4 FRAC/H) FRACTURADA (1 - 5 FRAC/H) FRACTURADA (1 - 5 FRAC/H) EXTREMADAMENTE FRACTURADA (11 - 20 FRAC/H) FRAGMENTADA (> 20 FRAC/H)

ECTO	DIEEN PARA EL TRAMO CURVA TERREMOTOS	. PR DE	OYECTO LA LEC	DE MA -	LA. 1 - Ki	DARF	ETE 3 -	LICITAN PA C - DASA - FERRE	elli. Da Por Los	TELLICACION	90°	Fig.	E FEB	FTFAT	000	STAND S. CO.	PESTUTEC REVISADA	**************************************
.C:(SA)	DESL'CAMIE						_			TROPL PERTURADA EN SUELA PROFL PERFORADA EN ROCA		├	520. . act.			³¹ 283147.38 2004 812,56	50.86 1/5	? 1 375.
PERFORACION METODO DE PERFORACION	RECUPERACION (%) 25 50 75	RaD (%)	COTAS ABSOLUTAS (m)	PROFUNDIDAD (M)	1 1 1 1	ESTRATIGRAFICO		SIMBOLO		DESCRIPCION DEL MATERIAL		MUESTRA	NA Lfi	UMEDA TURAL MITES SISTEI	Y DE NCIA IP	SPT (S	No. DE GOLPES)	PT (GLP / PIE
+		-	· 	Н			П	СН	ARCILLA ORGANICA CI CON GRAVOS AISLAD	ON ORG COLOR NEGRO, 30% DE ARENA E O DE 12.5mm tamaño max finos de al'	E FINA A MEDIA, TA PLASTICIDAD			28.85		0 10		
			81146	1.00				OL.	LIMO ORGANICO ARE GRUESA, CON GRAYA: PLASTICIDAD MEDIA.	NOSO COLOR CAFE OSCUROZOM DE AR S AISLADO DE 1254H TAMAÑO MAX FINDE	ena de fina a 5 de		15.6	29.81	5. <u>22</u>	Ø 423	p ³⁵²	
			203.46	7.00				5M	ARENA LIMOSA, COL GRUESA, CON GRAVA FINOS NO PLASTICOS.	or cafe oscuro,82% de Arena Romit Auslada de 125m; de tamaño maximo	CA FINA A					- 1	35 35 35 51(F	ECHAZO)
								- SM	ARENA LIMOSA, COL Gruesa, con Graya Finos de Plasticid	or cafe oscuro,55% de Arena Ponta . Aislada de 50.0m; de Tamaro Maxim Ad Baja.	CA FINA A		15.1	29.81	3.40		_	(RECHAZ
			79246 795.01	IA.0				зм	ARENA LIMOSA, COL CON GRAVA DE 19.0	OR GRIS CLARO, 60% DE ARENA FINA A (ONH DE TAMARO HAZIMO, FINOS NO PLA	REESA STICAS.						31 💇	@
			: 	j				ъ	CON GRAVAS AISLAD FINOS DE BAJA PLA				18,0	25.97	3.40		55	
		,	790.56 789.66	21.90]-[:] 		111 	SM ML	FINOS NO PLASTICOS LIMO ARENOSO COLO CON GRAVAS AISLAI	OR GEIS CLARO,68% DE ARENA DE FINA G. DR CAFE CLARO, 67% DE ARENA DE FINA DAS DE 19.0MM DE TAMAÑO MAX FINOS DE			20.0	25.19	1.70		o	
		l	788.01	2A.45				ML	PLASTICIDAD BALIA.	DR GRIS CLARO, 25% DE ARENA POMITIO			20,9	23.19	4.10		(5) (5) (4) (5)	

PERFOR PERFOR	(%)	COT	PROFUNDI	i i	ESTRATIG		(SUCS)	DESCRIPCION DEL MATERIAL	MUES.	w	LL	ſΡ	No. CONO PECK (GLP / ISCH) No. SPT (GLP / PIE)
	25 50 75	BA BA	PRO		EST		(3323)			(%)		(%)	(No. DE GOLPES)
							СН	ARCILLA ORGANICA CON ORG COLOR NEGRO, 30% DE ARENA DE FINA A MEDIA, CON GRAVOS. AISLADO DE 12.5MM TAMARO MAX FINOS DE ALTA PLASTICIDAD		21,5	28.85	43.88	O a 19
		81) 46	1.00				OL.	LIMO ORGANICO ARENOSO. COLOR CAFE OSCURIQUYS DE ARENA DE FINA A GRUESA, CON GRAVAS AISLADO DE 12599 TAMAÑO MAI FINES DE PLASTICIDAD PEDA.		15,6	29.81	5.22	Ø p 32 Ø d 23
		80546	7.00				SM	ARENA LIMOSA, COLOR CAFE OSCURO, 8286 DE ARENA ROMITICA FINA A GRUESA, CON GRAYA AISLADA DE 125m DE TAMAÑO MOXIMO FINOS NO PLASTICOS.					35 35 51(RECHAZO)
		79246	9.00				SM	AURENA LIMOGA, COLORI CAFE OSCURRISSOS DE ARENA POTITICA FINA A GRUESA, CON GONYA ASILADA DE SOLORI DE TAMVIO PARITIO FINOS DE PLASTICIDAD BAJA.		15.1	29.81	3.40	@*@
							SM	ARENA LIMOSA, COLOR GRIS CLARO, AOR DE ARENA FINA A GRAESA CON GRAVA DE IN CONHO DE TANAÑO MAXIMO, FINOS NO PLASTICUS.					, o
		795.0I	17.45				5M	ARENA LIMOSA, COLOR CAFE CLARO,64% DE AGENA DE FINA GRIESA CON GRAVAS AUSLADAS DE IZ-SEM DE TAMASO HAVIRO. FINAS DE RAJA RUSTICIAD		18,0	25.97	3.40	376 75 0 55 0
		790.56	21.90				SH .	ARENA LIMOSA, COLOR GEIS CLARO,68% DE ARENA DE FINA A GRLESA					80
		789.66	22.80		777		ML	FINOS NO PLASTICOS. LIMO ARENOSO COLOR CAFE CLARO, A 7% DE ARENA DE FINA A GRUESA CON GRAVAS AISLADAS DE 19.0mm DE TAPAÑO MAX FINOS DE PLASTICIDAD BAJA.	-	20.9	25.19	4.70	
		788.01	24.45				ML.	PLOS INDIANOS COLORG GRIS CLARO, 25% DE ARENA PONTICA FINA, FINOS NO PLASTICOS.					951 1 1 1 1 1 1 1
		784 Å6	28.00				SM	ARENA LIMOSA, COLOR COLOR CAFE OSCURO, 52% DE ARENA DE FINOS A MEDIA, FINOS DE A MEDA PLASTICIDAD.	1	19.8	26.77	6.52	⑤ ₀′ ₅₃
		782.76	29,70				SM	Arena limosa, color color cafe 20% de Arena de Fina A media, finos de mediana rasticidad.	-	1		7.15	
		781.86	30.60				SM	ARENA LIMOSA, COLOR CAFE CLARO, 72% DE ARENA POMITICA DE FINA A GREESA, CON GRAVAS AISLADAS DE 125MM DE TAMARO MAXIMOS, FINOS NO PLASTICOS.	Ţ			İ	
		779.96	32.50				54	ARENA LIMERA, COLOR GOS CLARA, SANE ERECAN POPTICA, DE FINA À GAREA, CON GRAVIS ARLADAS DE ZOM DE PARADO PAR Y PEDRA DE ZÓDIM DE TAMADO MAX Y FINAS NO PLASTICOS.					©و _{ري}
		773.96	38.50			3		ESTRATO ROCOSO FRACTURADO CON GRAVAS CAFE CLARÓ Y GRIS CLARO FINOS NO PLASTICOS.				 	0 6 7
		768.01	44.45					ESTRATO ROCOSO FRACTURADO CON GRIVAS Y ARSIA GRESA COLOR GRES CLARO, FINES NO PUSTICOS.					
inin katalonin katal				ICOLINATION OF THE PROPERTY OF									
ilia kifinda kanda k		759.61	52.85				SM	ARENA LIMPORA, CÓLORI GAIS CLARIO, BISIGE RIERAN POMTICA. DE FINA A GREEKA, CON CRAVAC Y REDIANS DE 25,0mm Y 250mm DE TAMAÑO MAXIMO, FINOS NO PLASTICOS.					6
A - I	AL ERACION DI	(FRESCA)		U-1-1	-1-1-1-	1-1-1	+-	SECTION SERVICE A SIGN		+	_	<u></u>	POCO EDACTURADA (< 1 Enac(w.)
A - 2 A - 3	ROCA POCO ALTERADA ROCA MODERADAMENTE ROCA MUY ALTERADA ROCA COMPLETAMENTE SUELO RESIDUAL	ALTERADA						C - 1 MUY DURA C - 2 DURA C - 3 MEDIO DURA C - 4 LIGERAMENTE DURA C - 5 SUAVE			F F	- 1 - 2 - 3 - 4 - 5	POCO FRACTURADA (< < \ \text{Frac} m) FRACTURADA (1 - 5 \ \text{Frac} m) FRACTURADA (6 - 10 \ \ \text{Frac} m) EXTREMADAMENTE FRACTURADA (II - 20 \ \text{Frac} / n) FRAGMENTADA (> 20 \ \text{Frac} / n)

							<u> </u>	LOPAC ON GEOTECHICA						
าลดหระบา		D'EE' (PARA EL RAMO CURVA	C T	HALIN DYECTS	De de	VENTOS DE : LA CHEPETER	10 Ta 0	0.00 vs_346.00 pg-			रहर राज्य साहस्य	94	3047 Ec. 257 Ec.	ij.
		TERREMOTOS	DEL	13 DE	ElNE:	80 Y 13 DE 3	FEBPER	RD DE 2001 18 AU EASTERNAME 1	 	530	30.2		* 283(47.88 FOLK 2/	
.9°C40°@.		DESLIZAM ENT		. 3 CAF	RETE	PA CA - 1 AM 5	3-050	FROF, PETPENADA EN 2004	:37	4 14 5	O LE	EF:	earon 812.46 ∕5 erri.	
METRO DE FUNDIDAD	METODO DE PERFORACION	RECUPERACION	(%)	COTAS ABSOLUTAS (%)	PROFUNDIDAD (%)	PERFIL ESTRATIGRAFICO	SIMBOLO	DESCRIPCION DEL MATERIAL	MUESTRA	N L	HUMEDA ATURA IMITES NSISTE	L Y DE	ENSAYOS DE PENETRACION ESTANDAR SPT Y/O CONO DE PECK (SIN CORRECCION) No. CONO PECK (GLP / / ISon) No. SPT (GLP / PIE	5
	2 10	(%) 25 50 75	ВВ	ABSC	PROFI		(SUCS)		Σ	W (%)	(%)	(%)	(No. DE GOLPES) 10 20 30 40 50 60 70	
50 in parliminari				748.36	64.10		54	APENA LIMOSA, COLOR CAFE OSCURO,78% DE ANSNA DE MEDIA A GRJESA CON GRAVAS DE ROCA Y POMEZ DE TAMARO MAXIMO DE 75mm, FINOS NO PLASTICOS.						
19 0 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14				74146	71.00		SP	ARENA POBREMENTE GRADUADA, COLOR GRS CLARO, 66% DE ARENA Fina a recha con grava auslada de 20 opi de tamno mac Finas do Recision. Estrato roceso fracturado con gravas de 75m de Tamno mac Color Cape Claro a gris claro, finos no plasticos.	-					
							3							
22 33 2 25 56 67 77 88 99 90 00 00 00 00 00 00 00 00 00 00 00														
92-19 93-19				714.26	97.60			GRAVA POSISEPENTE GRADUADA CON LIMO CALGRIDE GRIS A NEGRO						
						4	GP-GM	GRAVA POREMENTE GRADULDIA CON LIPA, CATATOE GRS A INGUIO 72% DE GRAVA DE GROCA TO SEIDIANA DE L'ESTIMO E L'AMBO PIAX 18% DE ARENA DE HEDIA AGRUESA, FINAS NO PIASTICOS.						
						4								
recent and confined and confine				698.61 694.21	113.25		SM SM	ARENA LIMOSA, COLOR CAFE, 80% DE ARENA DE FINA A MEDIA CON GRAVAS AISLADAS DE 25MM DE TAMAÑO MAR, FINZS NO RASICOS. ARENA LIMOSA, COLOR CAFE, 84 % DE ARENA DE FINA A GRUESA, CON GRAVAS Y REDRAS AISLADAS DE OBSIDIANA Y ROCA DE 250M Y						
A A A	- 2 - 3 - 4	ROCA NO ALTERAD. ROCA POCO ALTERA ROCA MODERADAME ROCA MUY ALTERA ROCA COMPLETAME SUELO RESIDUAL	A (F NDA NTE A	TRESCA)				ISONN DE TAMARONMAXINO, FINDS DO PLASTICOS. TEUDO DE DISTRIBUILDE DA PLASTICO. C - 1 MLY DURA C - 2 DURA C - 3 MEDIO DURA C - 4 LIGERAMENTE DURA C - 5 SUAVE			F	- 2	FALL CALDE LARIXA POCO FRACTURADA (< FRAC/n) FRACTURADA (- 5 FRAC/n) MUY FRACTURADA (6 - 10 FRAC/n) EXTREMADAMENTE FRACTURADA (11 - 20 FRAC/n) FRAGMENTADA (> 20 FRAC/n)	

			_					_ ()	10'MAC	ON GESTE								
PAGVEC	. 6.	70.00	CISEN PAPA EL	0 F1 . PR	MAL Y I	DOCU DE	JMENTOS DE LA CARRETE - Km. 53 -	MORAC PAIGI	1.5% 5 - 1,	MOCAGIST	\$ 15			n lett East		3903/219	953 STRO 953 SER	nEonCoTC Dd
			ERREMOTOS	DEL	13 DE	ENE	RO Y 13 DE	FEEPE	RO DE 2001	FREFORDISMO PERFORMON OF ST. PERFORMON DE SUSUL	55.5 m.	ř.	520	302.		* 283147.88	F3.28 3	3
945.E.	c-	- U	ESCITAMENT	OK	1. 3 CAH	Str	IRA CA - 1 ket	534750	- 5542651 	FROF, PERFORAÇA EN FOCA		2074			FEFFIR	ur ix 8126	/ 3	FFG1.
		z		_	£	3	8						N.	HUMEDA ATURA IMITES	LΥ		PENETRACION ESTA 10 CONO DE PECK	DAR .
1ETRO D	PROFUNDIDAD METODO DE	FORACIO	RECUPERACION	% O	COTAS ABSOLUTAS (M)	PROFUNDIDAD	PERFIL ESTRATIGRAFICO	SIMBOLO		DESCRIPCION DEL MATERIAL		MUESTRA		NSISTE		No. CONO PECK (GLP / IS	CORRECCION) Sch) • No.	SPT (GLP / PIE)
DIA	묎	FE	(%) 25 50 75	ď	ABSC	PROFIL	ESTRA	(SUCS)				ž	W	LL	IP	(Ni 10 20 30	o. DE GOLPES)	60 70
20	╬	+				-							(%)	(%)	(%)			1 1
22.4																		
24		1						SM	ARENA LIMOSA, CON GRAVA Y RE	COLOR CAFE BLOS DE ARENA DE FINA DRAS AISLADAS DE OBSIDIANA DE 2549 MAÑO MAXIMO, FINOS NO FLASTICOS.	A GRUESA 1				İ			
25									1 130 101 121 121	solo racino, rino no rocincos.								
27-1	ŀ		<u> </u>															İ
20 1																		İ
39			27.27.27.2		682A1	130.05		9M	ARENA LIMOSA, CON GRAVA AISL	COLOR CAFE DE FINAS A GRUESAS ADA DE OBSIDIANA DE SONN DE TAMARI COS.	D MAX							
33=																		
<u>.</u>		2																
35 36 36 36 36 36 36 36 36 36 36 36 36 36		**	<u>V</u>															
37					675.66	136.80		SP-SM	DE ARENA DE ME DE 100mm DE TA	NTE GRADUADA LIMOSA, COLOR CAFE I DIA A GRUESA, CON GRAVA DE ROCA Y MAÑO MAXIMO	CLARO, 92% OBSIDIANA							
39 40									FINOS NO PLAST	cos.								ĺ
					670.96	141,50			ARENA LIMOSA, CO	.OR CAFE CLARO, 83% DE ARENA DE F IA A GRUESA, CON GRAVAS DE POPEZ Y	INA A GRUESA							
43								SM	DE 12.5mm DE TA FINOS NO PLAST	MAÑO MAXIMO ICOS,								
4					668.66	143.80		SM	ARENA LIMOSA, CO A GRUESA, CON GR FINOS NO PLAST	ilor gris claro, 80% de Arena Pom Iava aislados de pomez de 125mm de ICOS.	ITICA DE FINA E TAMAÑO MAX							Ì
47-	ŀ																	ĺ
48		Ì																}
					663.06 662.36	150.10		SM	ARENA LIMOSA, COL FINOS NO PLASTICO	OR CAFE CLARO, 80% DE ARENA, DE F	INA A GRUESA							
2	ĺ													,				
53-					:													
155												ļ						
57-1 58-1					ļ													
5						ļ												Ì
61																		ì
62																		
65 65	ļ												İ					
65 E					ļ													Ì
68																		
70																		
7 = 72																		
73		ł																
175																		
177																		
155 156 157 158 159 159 159 159 159 159 159 159 159 159																		
	A - I		OCA NO ALTERAD) A		_		+	C - I MUY DUR	TOTALIO OF CUPETA IN LA ROCA M	2	-	Ŧ	F	-1	FOCO FRACTURADA (< 1 F		
	A - 2 A - 3 A - 4	R	ROCA POCO ALTER ROCA MODERADAMI ROCA MUY ALTERA	ADA Ente a					C - 2 DURA C - 3 MEDIO D					F	- 2 - 3 - 4	FRACTURADA (I - 5 FRACE MUY FRACTURADA (6 - 10 EXTREMADAMENTE FRACTU	m) Frac/m)	:/н)
	A - 5 A - 6	R	OCA COMPLETAME SUELO RESIDUAL		ALTERADA				C - 5 SUAVE						-5	FRAGMENTADA (> 20 FRAG		

									_ (~	LUR-L	IOL. GEOTE	<u>(</u>										
PP 01 ECTO	_	2424 Ft	D.F.	MAL POPECTS	2 05	1.4	r :==	575	DA C.	· _	MEDIACION	57			EFFSH FSF4(C ON		6/07/20 15/07/20		*E3/3/40	PESE	CALLY
	-	RAMO CURVA TEPREMOTOS	DEC	. 13 CE	ENE	RO 1	12	ΞĒ	FEBFE	PO DE 2001	FROM YO LAD FERFORADA FROM YERFOFACA EN SJELL	50.5%	ķ.	520	.229		ACENTA ACENTA	3 29279	72.84	-0.24	// SL	/;
181675504	L	DESLIZAME	NTO	Ho. 5 C	AFRE	7 E 7.1	CA - 	i in	4 51+345	: - 5'- 26: 	TROP, TERFORADA EN POCA		COTA	7 -710.	O SE	PEFTS:	uta.	64.	.57		-=	20 au
					-									,	KUMED. ATURA			E		PENETRACION I		
DIAMETRO DE	METODO DE PERFORACION	RECUPERACION	(%)	COTAS ABSOLUTAS (M)	O'DAD ()	00000	IGRAFIC		SIMBOLO		DESCRIPCION DEL MATERIAL		¥ZE		MITES ISISTE		A No.	CONO RE		N CORRECCION)	No. SPT (GLP	/ DIES
DIAME	PERF	(%)	ROD	CO	PROFUNDIDAD (M)		ESTRATIGRAFICO		(SUCS)		DESCRIPTION DEL FINI ENDE		MUESTRA	w	LL	ΙP	PESO ESPEC	(6/cH²)	CK (GE 71	(No. DE		7 FIE)
	*	25 50 75			<u> </u>									(%)	(%)	(%)	SECO	SAT	10	20 30	40	50
	1			641.37	0.00	Щ	\coprod	Щ	ML-PT	PLASTICIDAD M							}					
∄台				040.02	0.,,0				MH	DE ALTA PLAST	ICO, CAFE; 30% A FINA A GRUE FICIDAD	SA, FINOS										
																						ĺ
-	1			638.87	2.50	Ш				LIMO INORGANI	CO. COLOR CAFE .40% ARENA F	INA A GRIJESA)							
]									MH	CON GRAVAS A PLASTICIDAD.	ico, color cafe ,40% arena f Isladyas o = 25pm, finos de mei	DIA										
-					ļ																	- 1
]]]				638.87	5.20					_		_										
									SM	ARENA LOMOSA A MEDIA, FINOS	A, COLOR CAFE OSCURO, 70% D S DE PLASTICIDAD MEDIA.	E ARENA FINA										
- -																						- 1
1					İ																	
引		L																				}
nthadandandandandandandandandandandandandan				632.57	8.80				CM	ARENA LOMOSA	a, color cafe oscuro, 70% d (a o/max= 38.5mm, yboles aisl Maño Maximo.	E ARENA FINA										
									SM	DE 30cm DE TAI	MANO MAXIMO.	ADU										1
																						Ì
]																						
<u> </u>																						ł
	0																					
]	-			627.17	14.20					LIMO ARENOSO	COLOR CAFE CLARO,80% ARENU	A FINA A GRUESA						1				
클낅	A T			47417	15.25				SM	PLASTICIDAD.	ISLAUAS (0 = 20M, FINOS DE NEL	ла 										
事.	0 T			626.12	15.25	\		₹		MATERIAL ROC	OSO GRAVOSO, COLOR GRIS CLAF MM DE TAMAÑO MAXIMO.	RO, -										
]	۳ ا					$\hat{\chi}$	\mathcal{Y}	₽		GRAVAS DE 25	PP DE TAMAÑO MAXIMO.											
∄∐						X	_	Ľ							i							
]							F	7														
]								J														1
▋Ⅱ						Ţ																1
]								E														
∄						Ç	7											ļ				
						Ħ	1															ŀ
∄∐						otal	亽	\preceq														
를					}			\bigcup														
11						\supset	\preceq					'							i			1
를 H							<u> </u>	لِ														
를																						
][[H	1															
릘						Y	_{}	\preceq														
][) A	Ц														
kadambadandan badan badan badan kadam kadambadan badan badan badan badan badan badan badan badan badan badan b				611.39	30.00			\preceq						Ļ								
Α-		ROCA NO ALTERAD	A (F	JA POSA FRESCA)						C - I MUY DURA	i gradi de gureza de la ado. A			F	F.			RACTUR	ADA (< I Fr			
A - : A - :	3	ROCA POCO ALTERA ROCA MODERADAME ROCA MUY ALTERAD	NTE A	ALTERADA						C - 2 DURA C - 3 MEDIO DU					F	- 2 - 3 - 4	MUY FF	RACTURA		m) FRAC/M) RADA (II-20	Frac / m)	
A - 1	5	ROCA COMPLETAME! SUELO RESIDUAL		ALTERADA						C - 5 SUAVE						- 5			(> 20 Frac			

			_) PLCR	ACION GE	OTEON		<u> </u>								
FROM	EC70							ITASION PARA I			PAGE PERSON	67.		ic de r			-	3 / 12 / 2		RED STRC 3.	Б.	ERFCRAC OX.
<u></u>								A DE LA LECTA EPC Y 13 DE FEE			FPSF,NCOAD FCRFSPACA	S 175	 			355	FE FUCAS			aora - T	7	5
ಚಿತ್ರರು	rC1074		_	DER	⊒[]+B	€ №5. 3.	'* SE	F"A - CLRPET	ERLC.		PROF. PERFORMING DATE			520 Alai			.	262°\&.21	,	/	_	FRES.
	_	亍			$\overline{\top}$	Ī	T		_	<u> </u>			1		(UMED				S DE P	ENETRACION	ESTANDAD	F 41. 3.
	2 8 2	18 E			£	" & F	(E)	AFICO						LI	ATURA IMITES	DE			SPT Y/O	CONO DE PE	CK	
	DIAMETRO DE PROFUNDIDAD	RFORA	RECUPE		ROD (COTAS ABSOLUTAS M 3 N M	PROFUNDIDAD	PERFIL ESTRATIGRAFICO	SIMBOLO		DESCRIPCION DEL MATERIA	-	MUESTRA		NSISTE	T	▲ No. Co	ONO PECK (G			No. SPT (GLP / PIE)
	를 분 3		25 5		α	4	ğ.	ESTI	(SUCS)				1	(%)	(%)	1	ю	20	(No. 30	DE GOLPES)		70
°		十	\pm i	+	\vdash	485.,	1.0	7777	CL	ARCILLA ARENOSA,	. 46 % ARENAS GRUESAS A FINAS IS DE MEDIANA PLASTICIDAD.	S, COLOR CAFÉ	-	 	23.,	0.5	-	+	+	+		+-1
<u>'</u>]	Ì				454.8	2.7		CL	ARCILLA ARENOSA,	. 44 % ARENAS GRUESAS A FRU DE MEDIANA PLASTICIDAD.	S, COLOR CAFÉ CLARO	1		20.0	ė -						
,	l	-				∋53.å.	3.3		S M	ARENA LIMOSA, 90 PLÁSTICOS Y GRAVA	1% ARENAS GRUESAS A FINA, CO AS AISLADAS.	LOR CAFÉ, FINOS POCO	1									
4 📱		-							1										-			
5		Ì					}													1 1		
° 🚪		ł											1						ľ			
' 臺																						
`, ፟፟፟፟	- }																					
10	-	ı	11															İ				
" 🎚						1																
0	}																					
"					1					ľ												
<u> </u>	-																					
16													İ									
" <u> </u>				ł	ĺ	1																
18 =				- [
20 =																		-				
Zı 🚪						ŀ					- 62	RADAS										
zz 🚪		ľ		-	ĺ	Ì		アア			SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO. SMESTICOFEMBO.											
23	1	Ì								اهد	MOESITICO GRIS. C.			!								
24			11							ESTRATSA ROCA EN	NOS ARCILL		1									
²⁵ =		ı			Ì					604			{									
<i>"</i> ₹]	1			Ì	}																
		- [•													
29					ĺ																	
30 =	- 1																					
31																						
" 量	-			-		1																
34																						
35					-								l									
* <u></u>		ŀ															.]	l				
³⁷ =																						
39 =								21													1	
40		-																				
4 📕																						
44 ∰													-									
<u>"</u>						Į																
45								IUX							1							
46																						
47																						
48		1																				
28 29 330 35 35 35 36 36 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38						-	<u> </u> :-								L				\perp			
	A - I		OCA NO	ALTERA	DA (I	FRESCA)				C - I MUY DUI	0912. 12 3.457116 64 4 84	nież.		+	F			ACTURADA (< I FRA	c/n)		
}	A - 2 A - 3 A - 4		OCA MOD	O ALTER XERADAM 7 ALTERA	ENTE A	ALTERADA				C - 2 DURA C - 3 MEDIO D	PURA				F	- 2 - 3	FRACTUR	RADA (1-5 ICTURADA (Frac/m 6 - 10) Frac/m)	En-	
	A - 5 A - 6	F		IPLETAM		LTERADA				C - 4 LIGERAN C - 5 SUAVE	1ENTE DURA					- 4 - 5		NTADA (> 20		ADA (II - 20 m)	r reac / M)	
									-1							_						

	= - 1 _ 1	Radon GEO	==:,	J 4			
	TOBY TIP WALL TO DECUMENTED DE LI CITADON FARA EN PRIVIETTO TO LA	NGL MOUZE		· C.0.02 FERRIAL (N.	2212 211	RED 5 TE	FERFIPAL DI
PPS,ECTS	CAPPERERA CAH! TRAMIN CURVA SE LA LECNA MAISO - BAGULA FOR UTI	142 1 342.		FINDE FERRURAL J.	23, 2, 200	7	
	ISPASINATES ALL IS DE PIERO , IS DE PANAFRO DE PAR	FROFING DAY VERFORADA	\$5.0 175	C0K40E-00	43	75 ASLS 1 L. F.	-
				.: 830,95,45 V:	: 26294A.JS	-J /	0
CBTCACTON	DEPRUMBE #3. 24 BETMA	PROF. PERFORMAL EN CLEUR	17.75	7	507440149] /.	
1.315401.71	DETROPSE #U, EA ELVIA	HRUF, PEFFORADA EN RUCA	76.77	ರರ್ಷ ೧೮೮೮ ಚಾರ್ಚ್ಯವಾದರು.	Lt: "	/	55°a.
				HUMEDAD	ENSAYOS DE	PENETDACIONI COTAN	DAD

8	E S		*	AS	PROFUNDIDAD (M.)		VFICO .				N.	ATURA MITES	L Y DE		EN	SPT	Y/O C0	TRACION NO DE PI RECCION		R
S	OBO	RECUPERACION	15	OLUTAS S N M	DIDAL	PERFIL	1684	SIMBOLO	DESCRIPCION DEL MATERIAL	MUESTRA	CON	NSISTE	NCIA	▲ No. C	ONO PEO				No. SPT	(GLP / F
	METODO DE PERFORACION	(%)	R 0 5	COTAS ABSOLUTAS M S N M	OF UN	"	ESTRATIGRAFICO	(SUCS)		Ę	w	ш	IΡ			_		GOLPES)		
		25 50 75 	1		É		ω				(%)	(%)	(%)	10	21				0 60	70
l	-			555.87	١.	11.1.1.	11111	SM	ARENAS LIMOSA DE ARENAS GRUESAS A FINAS, COLOR CAFÉ	+			-					_	\vdash	
			1	324.17	2.5		1.1.1.1.1.	CL	CON FINOS NO PLASTICO. ARCILLA ARENOSA, 29 % ARENAS GRLESAS A FINAS, COLOR CAFÉ	+-		ž.:	17.3		Ì	1				- 1
	ì				+	///	+/-	"	DE ALTA PLASTICIDAD.		├					1				
						1//	///													
]	561.67	5.9	1	///	CL	ARCILLA ARENOSA 41% ARENAS GRUESAS A FINAS COLOR CAFÉ DE MEDIA A ALTA PLASTICIDAD	+			-							
ļ					1	1//	//	-	DE FIEDIA A ALTA PLASTICIDAD	╅		\vdash	\vdash							[
į				JE 9 27	7 4	1	///	CL	ARCILLA ARENOSA 44% ARENAS GRUESAS A FINAS COLOR CAFÉ DE MEDIA ALTA PLASTICIDAD, TOBA CEMENTADA	-	\vdash	_ ;	5,2			l				ŀ
			}			//	///			+-	一	<u> </u>	-							
ĺ		111	İ		İ			[i	H			1						ł
l																				
							///													
l			1		1															
l				}		V/	///									1				ļ
l					ऻ		//			_										
				-3 5	3	\swarrow		CL	ARCILLA ARENOSA, 42% ARENAS GRUESAS FINAS BIEN GRADUADAS, COLO CAFÉ, FINOS DE MEDIA A ALTA FLASTICIDAD, TOBAS CEMENTADAS	<u> </u>		"h.,	·							
١							\bigcap			ĺ			Ì		ľ					ĺ
l			1												}					
١		111					$\sqrt{2}$						1	1						
1		111			ļ	$\left\{ -\right\}$	\bigcup	l	ROCA FISURADA (GRANITO). SANA, FISURAS CONTAMBADAS	+		-	\dashv	- 1		ł				1
l					<u> </u>		\bigcirc		CON FINOS ARCILLOSOS	+	\vdash	\vdash				i				
	i 1)()			Ì						i			1	
Į				}]		\mathbb{K}]]			1	J	J				
I														1						
Į									ROCA FISURADA (ANDESITA). Sana, fisuras contaminadas confinos arcillosos							ļ				
1	-	111					=			1								į	ŀ	
1	-		-	}	ĺ	[[i	1		Í		i		1
1	134						{ }												1	1
							\preceq	,		-						Ì			.	
ļ					1		آکم				1			1	ł					
1]													1	ĺ		
						\mathbb{Z}								ı						
l	}			ļ	1		íŲ							ļ	ļ	ļ				
				1		Ш														
						\geq	<u>~</u>									ļ				
						<u> </u>	ل													
ļ							YQ				{				- 1	ĺ				
							1 1			1										
Ì			,	ļ		h-	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				ļ									
			7							i	ì	1 1								
	ļ					1				Į	ļ					1				
ļ				ļ							1			.						
ł			1		l	}=					ļ									
						Ш														
					1					1										
					ļ	1)													
							$\overline{\Box}$							'	ľ					
				: -	57															
ا -	i	ROCA NO ALTERA						Ή.	COVERNIA DE LA PROM		+	_				702251				
-	2	ROCA POCÓ ALTE ROCA MODERADAN	RADA					1	C - 1 MUY DURA C - 2 DURA			F-	- 2	POCO FE	RADA (1 - 5 FR4	c/m)			
-	4	ROCA MUY ALTER ROCA COMPLETAN	ADA						C - 3 MEDIO DURA C - 4 LIGERAMENTE DURA C - 5 SIAVE			F -	- 4	MUY FRA EXTREM. FRAGME	ADAMEN	TE FRAC	TURADA		FRAC / M)
A -	6	SUELO RESIDUAL							C - 5 SUAVE		- 1	, ,	•	, RAUTTE	AUA	, , ₂₀ FN				

									Ξ	yP_CP_	NO DIN GEO	YTE DY.		-										
FROYECT			SEND FINAL Y								12, 142.1%	54.		O DE P. DE PEF			\Box	T2.:2		PE:"	5790 E.	25.	7 <u>2</u> 97709	12.5 m
FRITZER			EPETERA CA- PREMITOS DE								PROFU DI DUS PEFFORAZIA	55.5 m .	F			5364	DENESTO	i		- PEU.	SAN.		7	i
-3.0400		_	_		EPFL) II	BE 7	¥5. 4,	4. BE	PMA	<u> </u>	POP, FERFORATA EN SÆLD POF, FERFORATA EN ROGA	21.6		521.			J	28355		_	• •/			
	T	7		Ť		T			1		- 40°, FE 47044, 2 \$1, 408, 4			A M. C.	UMEDA	_			_				P2-01	
병	3 W	₫		Ç,	<u>ب</u>	3		8	1						TURAL MITES I			EN	SPT	Y/O CO	10 DE PE	CK	₹	
DIAMETRODE	TODO	FORAC	RECUPERACION	8	COTAS ABSOLUTAS MSNM	PROFUNDIDAD (M)	PERFIL	TIGRA	SIMBOLO	D	ESCRIPCION DEL MATERIAL		MUESTRA	CON	SISTE	ICIA	▲ No. C	ONO PEC		ISCM)		No. SPT	(GLP /	PIE)
AIO S	£ 2	岂	(%) 25 50 75	ROD	B	PROFU	-	ESTR	(SUCS)				Ē	w	ш	ιP .	ω	20		No. DE) 60	. 7	0
	+-	-		_		┼-	111111	1111	SM	ARENAS LIMOSA, 88%	arenas gruesas a finas, colo	R GRIS	-	(%)	(%)	(%)				\rightarrow				<u> </u>
		۱ ٔ	111			}			319	Ø MAX= 2"		-	┢╌		7.1	\dashv								
		;			77e.8	3																		
1		i				T)("											}					
1		1		2		}			 	ESTRATO CONGLOMERA DE ARENA LIMOSA	DO ROCOSO EN MATRIZ		L								1			
								\rightarrow	}			-	├-		_	_			İ					
	١			}	:	7.5			}				-	\vdash	'	_	ŀ							
▋,		.		-	777.5	- //	17 × 1		SP	ARENAS MAL GRADUAD COLOR GRIS. FINOS LE	DAS, 97% ARENAS GRUESAS A F	NAS CON PÓPIEZ,	-		-	-]					
1		-			"					THE PROPERTY OF		-	+	H	-	\dashv				i				
┋.					744.0	9.5			GΡ	MEZCLA DE GRAVA Y A														
				-						ARENA LIMOSA, 80% MAL GRADUADAS, COLO	arenas griesas a finas dr gris, Ø max= 2°		L	\square						}	j	J	ļ	
1															ļ				ļ					
					1				SM							1					İ			
						-			3 1							•		j		1				
		,													ŀ									
░					759.5	'o. 3			1				1		ļ				ŀ					
ቜ				\vdash		 			1				\vdash			\neg						,		
	Ì		111			1				MEZCLA DE GRAVA Y	arena, Ø max= 2"		<u> </u>		_	[ŀ		1	ľ		
		١	111		; ,	نے ا			GP											ĺ		1	- 1	ı
			111	\vdash	Ť	+-		Ш					\vdash		7	\dashv								
									[1	ĺ	ľ							ĺ	
▋	Ì															ļ								
≣																		ŀ			ŀ	İ		
		ĺ		ĺ		ĺ				ļ			ĺ	1	Ì	ı		i	ı			ł	ľ	
					750 8	1.0				:					ı									
	=	;		L		ļ.",							L											ı
	-	١ ١		1		1	1		<u> </u>					ll		- {			İ					
░	-	1		1.0		1			1	MONTO ROCOSO, ANDES	SITICO FISURADO.		T		一	_			- 1					ı
			1) (<u> </u>								ĺ					İ
▋	-	Ì		1		l			1				1		1	1		.	1	1		1		I I
		ŀ]]			l								1 1						l				ı
			1 1 1				[,)							-				1				
	1	-		'		l							1	1 (- {	}		}		1			
▋		1	1		1			}('	\															
1									1															
			111	1	1		1	1	1							l			}	ł	-	1		
		ا				1		7	1										ļ					
		•			ļ			$\mathcal{L}_{\mathcal{L}}$	ก็					1					Ì					
		}			1			Ž	}												Į			
▋) }															
1								<u></u>	Í									ł						
=					1					}								ļ						
THE PART OF THE PA					1,15	50	$\ (\cdot,\cdot)\ $	-	1									Ì						
L			ALTERA		~ <u>stry</u>	Т.,	<u> </u>	<u>′</u>	1		લ્યા કાર્ટ્સ હ્યું હતા.	2	<u>_</u>	Ŧ			i			DK DE LA	Fus			<u></u>
Δ	- 1		ROCA NO ALTER	ERADA	FRESCA)				i	C - I MUY DURA C - 2 DURA					F -	· 2	FRACTU	RACTURA RADA (I	- 5 FRA	c/n)				
Δ	- 3		ROCA MODERADA ROCA MUY ALTE ROCA COMPLETA	RADA					- 1	C - 3 MEDIO DUR C - 4 LIGERAME					F -	. 4	EXTREM	ACTURAL IADAMEN	TE FRAC	TURADA		FRAC / I	1)	
	5 6		SUELO RESIDUAL							C - 5 SUAVE					F.	- 5	FRAGME	NTADA (/ ZU FR	m. / 71)				

CLASIFICACION DE SUELOS PARA PROPOSITO DE INGENIERIA SUCS

Proyecto:

Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Perforacion rotativa N° SL - 1 Ubicación : curva la Leona

Estacionamiento: 50+993, lateral derecho, via San Miguel - San Salvador.

Laboratorista : Mauricio Rivera Ing. Responsable : Dilber Sánchez

Muestra	Profundidad	CLASIFICACION VISUAL	
N°	metros	DESCRIPCION	SIMBOLO
1.00	0.00 a 0.35	Limo arenoso con material orgánico, color café oscuro, 30% de arena fina a media, finos de plasticidad media.	OL
2.00	0.35 a 1.15	Arcilla arenosa, color café claro, 33% de arena fina a media con gravas aisladas de tamaño máximo de 15.6 mm, finos de plasticidad media.	CL
3.00	1.65 a 17.00	Arena limosa, color café claro, 66% de arena fina a media, gravas aisladas de tamaño máximo de 25 mm y piedra cuarta de 25 cm, finos no plásticos.	SM
4.00	17.00 a 22.50	Arena bien graduada, color café claro, 80% de arena de fina a gruesa, 10% de grava de tamaño máximo de 12.5 mm, finos no plasticos.	SW - SM
5.00	22.50 a 24.70	Arena limosa, color gris claro, 70% de arena pómitica de fina a gruesa con gravas aisladas de pómez de 25 mm de tamaño máximo, finos no plásticos.	SM
6.00	24.70 a 30.00	Arena pobremente graduada, color gris claro, 59% de arena pómitica de media a gruesa, 30% de grava de pómez de tamaño máximo de 25 mm, finos no plásticos	SP - SM

CLASIFICACION DE SUELOS PARA PROPOSITO DE INGENIERIA SUCS

Proyecto:

Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Perforacion rotativa N° SL - 2 Ubicación : curva la Leona

Estacionamiento : 51+383, lateral derecho, via San Miguel - San Salvador.

Laboratorista : Mauricio Rivera

Ing. Responsable : Dilber Sánchez

Muestra	Profundidad	CLASIFICACION VISUAL	
N°	metros	DESCRIPCION	SIMBOLO
12.00	21.00 a 24.60	Arena pobremente graduada, color café oscuro, 96% de arena de media a gruesa, con gravas aisladas de 25 mm de tamaño maximo, finos de plasticidad media.	SP
13.00	24.60 a 26.20	Conglomerado de arena, color gris oscuro, arena de media a gruesa, finos no plasticos.	SP
14.00	26.20 a 30.30	Arena limosa, color café oscuro, 74% de arena de fina a gruesa, con gravas aisladas de 25 mm de tamaño maximo, piedras aisladas de 60 cm de tamaño maximo, finos de plasticidad media.	SM
15.00	30.30 a 38.60	Arena limosa, color café oscuro, 60% de arena de fina a gruesa, con gravas aisladas de 25 mm de tamaño maximo de origen pómitico y obsidiana, finos de plasticidad media.	SM
16.00	38.60 a 39.75	Grava arenosa limosa, color café oscuro, 25% de arena de media a gruesa, 63% de grava de 75 mm de tamaño maximo con piedras aisladas de 35 cm de tamaño maximo, finos de mediana	GP - GM
17.00	39.75 a 50.00	Arena gravosa limosa, color gris oscuro, 60% de arena de fina a gruesa, 31% de grava de 75 mm de tamaño maximo, finos no plasticos.	SP

CLASIFICACION DE SUELOS PARA PROPOSITO DE INGENIERIA SUCS

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Perforacion rotativa N° SL - 3 Ubicación : curva la Leona

Estacionamiento : 53+135, lateral derecho, via San Miguel - San Salvador.

Laboratorista : Mauricio Rivera Ing. Responsable : Dilber Sánchez

Muestra	Profundidad	CLASIFICACION VISUAL	
N°	metros	DESCRIPCION	SIMBOLO
1.00	0.00 a 1.00	Arcilla arenosa con organico, color negro, 30% de arena de fina a media con gravas aisladas de 12.5 mm de tamaño maximo, finos de alta plasticidad.	ОН
2.00	1.00 a 7.00	Limo arenoso con organico, color café oscuro, 20% de arena de fina a gruesa con gravas aisladas de 12.5 mm de tamaño maximo, finos de plasticidad media.	OL
3.00	7.00 a 9.00	Arena limosa, color café claro, 82% de arena pómitica de fina a gruesa con gravas aisladas de 12.5 mm de tamaño maximo, finos no plasticos.	SM
4.00	9.00 a 14.00	Arena limosa, color café oscuro, 56% de arena pómitica de fina a gruesa con gravas de 50 mm de tamaño maximo, finos de plasticidad media.	SM
5.00	14.00 a 17.45	Arena limosa, color gris claro, 60% de arena pómitica de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos.	SM
6.00	17.45 a 21.90	Arena limosa, color café claro, 64% de arena de fina a gruesa con gravas aisladas dde 12.5 mm de tamaño maximo, finos de baja plasticidad.	SM
7.00	21.90 a 22.80	Arena limosa, color gris claro, 68% de arena de fina a gruesa, finos no plasticos.	SM
8.00	22.8 a 24.45	Limo arenoso, color café claro, 47% de arena de fina a gruesa con gravas aisladas de 19.00 mm de tamaño maximo, finos de plasticidad baja.	ML
9.00	24.45 a 28.00	Limo arenoso, color gris claro, 25 % de arena pómitica fina, finos no plasticos.	ML
10.00	28 a 29.7	Arena limosa, color café oscuro, 52% de arena de fina a media, finos de mediana plasticidad.	SM
11.00	29.70 a 30.60	Arena limosa, color café, 80% de arena de fina amedia, finos de mediana plasticidad	SM

CLASIFICACION DE SUELOS PARA PROPOSITO DE INGENIERIA SUCS

Proyecto : Carrete

Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Perforacion rotativa N° SL - 3 Ubicación : curva la Leona

Estacionamiento : 53+135, lateral derecho, via San Miguel - San Salvador.

Laboratorista : Mauricio Rivera

Ing. Responsable : Dilber Sánchez

Muestra	Profundidad	CLASIFICACION VISUAL	
N°	metros	DESCRIPCION	SIMBOLO
12.00	30.60 a 32.50	Arena limosa, color café claro, 72% de arena pómitica de fina a gruesa con gravas aisladas de 12.5 mm de tamaño maximo, finos no plasticos.	SM
13.00	32.50 a 38.50	Arena limosa, color gris claro, 83% de arena pómitica de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo y piedras de 25 cm de tamaño maximo, finos no plasticos.	SM
14.00	38.50 a 44.45	Estrato rocoso fracturado con gravas y arena gruesa, color café claro y gris claro, finos no plasticos.	
15.00	44.45 a 52.85	Estrato rocoso fracturado con gravas y arena gruesa, color gris claro, finos no plasticos.	
16.00	52.85 a 64.10	Arena limosa, color gris claro, 83% de arena pómitica de fina a gruesa con gravas de 25 mm de tamaño maximo y piedras de 25 cm de tamaño maximo, finos no plasticos.	SM
17.00	64.10 a 71.00	Arena limosa, color café claro, 78% de arena de media a gruesa con gravas de roca y pómez de tamaño maximo de 75 mm, finos no plasticos.	SM
18.00	71.00 a 73.50	Arena pobremente graduada, color gris claro, 96% de arena de fina a media con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos.	SP
19.00	73.5 a 97.6	Estrato rocoso fracturado con gravas de 75 mm de tamaño maximo, color café claro a gris claro, finos no plasticos.	
20.00	97.60 a 113.45	Grava pobremente graduada con limos, color de gris a negro, 72% de grava de roca y obsidiana de 125 mm de tamaño maximo, 18% de arena de media a gruesa, finos no plasticos.	GP - GM
21.00	113.45 a 118.25	Arena limosa, color café, 80% de arena de fina a media con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos.	SM
22.00	118.25 a 130.05	Arena limosa, color café, 84% de arena de fina a gruesa con gravas y piedras aisladas de roca y obsidiana de 25 mm y 150 mm de tamaño maximo, finos no plasticos.	SM

CLASIFICACION DE SUELOS PARA PROPOSITO DE INGENIERIA SUCS

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Perforacion rotativa N° SL - 3 Ubicación : curva la Leona

Estacionamiento : 53+135, lateral derecho, via San Miguel - San Salvador.

Laboratorista : Mauricio Rivera Ing. Responsable : Dilber Sánchez

Muestra	Profundidad	CLASIFICACION VISUAL	
N°_	metros	DESCRIPCION	SIMBOLO
23.00	130.05 a 136.80	Arena limosa, color café, 84% de arena pómitica de fina a gruesa con gravas aisladas de obsidiana de 50 mm de tamaño maximo, finos no plasticos.	SM
24.00	136.80 a 141.50	Arena pobremente graduada limosa, color café claro, 92% de arena de media a gruesa con gravas de roca y obsidiana de 100 mm de tamaño maximo, finos no plasticos.	SP - SM
25.00	141.50 a 143.80	Arena limosa, color café claro, 83% de arena de fina a gruesa con gravas de pómez y obsidiana de 12.5 mm de tamaño maximo, finos no plasticos.	SM
26.00	143.80 a 149.40	Arena limosa, color gris claro, 80% de arena pómitica de fina a gruesa con gravas aisladas de pómez de 12.5 mm de tamaño maximo, finos no plasticos.	SM
27.00	149.40 a 150.10	Arena limosa, color café claro, 80% de arena de fina a gruesa, finos no plasticos.	SM
-			

ANEXO H REGISTROS DE SPT

REGISTRO DE EXPLORACION SUB - SUPERFICIAL ENSAYO DE PENETRACION ESTANDAR (SPT)

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 1 Ubicación : San Salvador - San Miguel

Estacion: San Salvador - San Miguel Estacion: 51+080

Lateral : Lateral derecho Fecha : 24 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	12 12 9	22	21	8.82	Arena limosa, color café, 80% de arena de fina a grue- sa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM
1.00	8 8 12	26	20	12.03	Arena limosa, color café, 80% de arena de fina a grue- sa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM
1.50	10 7 10	31	17	28.94	Arena arcillosa, color café claro, 60% de arena de fina a media, finos de media plasticidad. SC
2.00	12 10 12	34	22	22.64	Arena limosa, color café claro, del 60% a 70% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM.
2.50	16 8 14	25	22	22.04	Arena limosa, color café claro, del 60% a 70% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM.
3.00	15 9 20	30	29	24.35	Arena limosa, color café claro, del 60% a 70% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM.
3.50	12 38 40	27	78	23.31	Arena limosa, color café claro, del 60% a 70% de arena de fina a gruesa con gravas aisladas de 25 mm de tama- ño maximo, finos no plasticos. SM.
	Rechazo				
· 				,	

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 2 Ubicación : San Salvador - San Miguel Estacion : 51+080

Estacion : 51+080 Lateral : Lateral derecho Fecha : 23 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad	No. de Golpes en	Recuperación	Penetración	Porcentaje de	CLASIFICACION VISUAL
(mts)	Cuchara	Centimetros	N	Humedad	OB toll TOAGION VIOUAL
0.50	5 3 8	16	11	9.01	Arena limosa, color café del 70% al 80% de arena de fina a gruesa, finos no plasticos. SM.
1.00	21 16 14	40	30	14.13	Arena limosa, color café del 70% al 80% de arena de fina a gruesa, finos no plasticos. SM.
1.50	20 10 10	33	20	29.24	Arena limosa, color café del 70% al 80% de arena de fina a gruesa, finos no plasticos. SM.
2.00	18 20 45	31	65	7.87	Arena limosa, color café del 70% al 80% de arena de fina a gruesa, finos no plasticos. SM.
2.50	14 17 6	N.H.R.	_		N.H.R
3.00	7 7 9	12	16	21.97	Arena arcillosa, color café, 60% de arena de fina a gruesa, finos de mediana plasticidad. SC.
3.50	8 9 15	20	24	17.35	Arena arcillosa, color café, 60% de arena de fina a gruesa, finos de mediana plasticidad. SC.
4.00	20 35 23	21	58	21.94	Limo arenoso, color café 45% de arena de fina a media, finos de media plasticidad. ML.
4.50	27 14 12	24	26	53	Arena bien graduada, color café, 97% de arena de fina a gruesa, finos no plasticos. SW.
5.00	12 7 6	26	13	51.9	Arena bien graduada, color café, 97% de arena de fina a gruesa, finos no plasticos. SW.
5.50	8 5 2	37	7	33.04	Arena bien graduada, color café, 97% de arena de fina a gruesa, finos no plasticos. SW.
6.00	12 13 13	28	26	50.95	Arena limosa, color café 80% de arena pomitica de fina a gruesa , finos no plasticos. SM.
6.50	7 7 8	34	15	27.5	Arena limosa, color café 80% de arena pomitica de fina a gruesa , finos no plasticos. SM.

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 2

Ubicación : San Salvador - San Miguel

Estacion : 51+080 Lateral : Lateral derecho Fecha : 23 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación	Penetración	Porcentaje de Humedad	CLASIFICACION VISUAL
	32	Centimetros	N		Lime arrange polar opti de 2007 a 4507 de arran nomitico
7.00	17	27	47	30.22	Limo arenoso, color café de 30% a 45% de arena pomitica fina, finos de media plasticidad. ML.
7.50	30 17 17	50	34	35.49	Limo arenoso, color café de 30% a 45% de arena pomitica fina, finos de media plasticidad. ML.
8.00	28 34 21	38	55	35.05	Limo arenoso, color café de 30% a 45% de arena pomitica fina, finos de media plasticidad. ML.
8.50	28 30 41	28	71	39.41	Arena limosa, color café, 85% de arena pomitica de fina a gruesa, finos no plasticos. SM.
9.00	RECHAZO				
				<u> </u>	
				<u> </u>	

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 3 Ubicación : San Miguel - San Salvador

Estacion: 51+080 Lateral: Lateral derecho Fecha: 25 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración — N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	30 29 15	21	44	10.09	Arena limosa, color café, 80% de arena de fina a gruesa, finos no plasticos. SM.
1.00	12 15 12	7	27	11.35	Arena limosa, color café, 80% de arena de fina a gruesa, finos no plasticos. SM.
1.50	12 10 7	23	17	31.05	Arena limosa, color café, 80% de arena de fina a gruesa, finos no plasticos. SM.
2.00	11 10 11	20	21	30.57	Arena limosa, color café, 70% de arena de fina a gruesa, finos no plasticos. SM.
2.50	11 6 7	18	13	28.69	Limo arenoso, color café, 45% de arena de fina a media, finos no plasticos. ML.
3.00	6 7 6	N.H.R.	13		N. H. R.
3.50	5 7 10	N.H.R.	17		N. H. R.
4.00	14 11 10	N.H.R.	21		N. H. R.
4.50	14 8 9	28	17	26.90	Arena arcillosa, color café, 60% de arena de fina a media, finos de plasticidad media. SC.
5.00	14 13 21	22	34	29.49	Arena arcillosa, color café, 60% de arena de fina a media, finos de plasticidad media. SC.
5.50	19 22 24	30	46	26.05	Arena arcillosa, color café, 60% de arena de fina a media, finos de plasticidad media. SC.
6.00	30 26 35	27	61	25.51	Arcilla arenosa, color café, 40% de arena de fina a media, finos de plasticidad media. SC.
6.50	RECHAZO				

Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos de enero y febrero de 2001. Proyecto:

Sondeo N° 4

Ubicación : - San Salvador - San Miguel Estacion : 51+200

Lateral: Lateral derecho Fecha: 24 - Jul - 01

Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera: 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación	Penetración	Porcentaje de Humedad	CLASIFICACION VISUAL
	_	Centimetros	N		
0.50	7 7 8	21	15	16.63	Arena limosa, color café, 80% de arena de fina a gruesa, finos no plastiicos. SM.
1.00	8 8 9	17	17	19.61	Arena limosa, color café, 80% de arena de fina a gruesa, finos no plastiicos. SM.
1.50	18 8 7	21	15	28.1	Arena arcillosa, color café, 70% de arena de fina a grues finos de baja plastiicidad. SC.
2.00	6 6 7	24	13	29.15	Arena arcillosa, color café, 70% de arena de fina a grues finos de baja plastilicidad. SC.
2.50	5 10 5	30	15	31.91	Arena bien graduada, color café, 97% de arena pomitica de fina a gruesa, finos de baja plasticidad. SW.
3.00	10 8 8	18	16	38.39	Arena bien graduada, color café, 97% de arena pomitica de fina a gruesa, finos de baja plasticidad. SW.
3.50	9 9 8	15	17	32.25	Arena bien graduada, color café, 97% de arena pomitica de fina a gruesa, finos de baja plasticidad. SW.
4.00	17 15 15	19	30	31.28	Arena limosa, color café, 70% de arena pomitica de fina a gruesa, finos de baja plasticidad. SM.
4.50	30 52 50	16	102	19.57	Arena limosa, color café, 70% de arena pomitica de fina a gruesa, finos de baja plasticidad. SM.
	RECHAZO				
					

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos de enero y febrero de 2001.

Sondeo N° 5

Ubicación: - San Salvador - San Miguel

25

24

38

6.50

21

Estacion: 51+220 Lateral: Lateral izquierdo Fecha: 24 - Jul - 01

Peso de Martillo: 140 Libras Altura de caida: 30 Pulgadas Cuchara muestrera: 1.5 Pulgadas Ing. Responsable: Dilber Sánchez

Cuadrilla: Adán - David - Enrique.

No de Recuperación Penetración Profundidad Porcentaie de Golpes en CLASIFICACION VISUAL (mts) Humedad Cuchara Ν Centimetros Arena limosa, color café claro, 70% de arena de fina a 0.50 14 35 8.96 22 gruesa con gravas aisladas de 25 mm de tamaño maxi-21 mo, finos no plasticos. SM. 28 Arena limosa, color café claro, 70% de arena de fina a 1.00 13 27 38 15.41 gruesa con gravas aisladas de 25 mm de tamaño maxi-25 mo, finos no plasticos. SM. 32 Arena limosa, color café, 75% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos 1.50 23 31 48 17.84 25 de plasticidad baja. SM. 25 Arena limosa, color café, 75% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos 2.00 17 28 33 17.29 16 de plasticidad baja. SM. Arena limosa, color café, 75% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos 12 2.50 13 31 25 20.44 12 de plasticidad baja. SM. 24 Arena limosa, color café claro, 80% de arena pomitica de 35.76 3.00 18 29 38 fina a gruesa, finos no plasticos. SM. 20 20 Arena limosa, color café claro, 80% de arena pomitica de 26.03 32 20 fina a gruesa, finos no plasticos. SM. 3.50 12 8 Arena limosa, color café claro, 80% de arena pomitica de 15 27 16 31.91 fina a gruesa, finos no plasticos. SM. 4.00 8 8 Arena limosa, color café claro, 80% de arena pomitica de 16 4.50 10 31 20 39.29 fina a gruesa, finos no plasticos. SM! 10 12 Arena limosa, color café claro, 80% de arena pomitica de 36.69 fina a gruesa, finos no plasticos. SM. 5.00 10 34 21 11 8 Arena limosa, color café, 65% de arena de fina a gruesa con gravas aisladas de 32.5 mm de tamaño maximo, 38.05 5.50 9 30 18 finos de baja plasticidad. SM. 9 Arena limosa, color café, 65% de arena de fina a gruesa 14 con gravas aisladas de 32.5 mm de tamaño maximo, 6.00 20 25 47 31.87 finos de baja plasticidad. SM. 27 Arena limosa, color café, 80% de arena de fina a gruesa

23.08

no plasticos. SM.

62

con gravas aisladas de 25 mm de tamaño maximo, finos

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 5

Ubicación: - San Salvador - San Miguel

Estacion: 51+220 Lateral: Lateral izquierdo Fecha: 24 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas

Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
7.00	RECHAZO				
ļ		_			
<u> </u>					

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas pc as terremotos

de enero y febrero de 2001.

Sondeo N° 6

Ubicación: - San Salvador - San Miguel

Estacion: 51+240 Lateral : Linea central Fecha: 24 - Jul - 01

Peso de Martillo : 140 Libra-

Altura de caida : 30 Pulgada Cuchara muestrera : 1.5 Pu

das Ing. Responsable : Dilber S nez Cuadrilla : Adán - David - E u**e.**

	Porcentaje de	Penetración	Recuperación	No. de Golpes en	Profundidad	
	Humedad	N	Centimetros	Cuchara	(mts)	
Arena con a	12.59	16	38	4 8	0.50	
finos				8		
Aren.	10.00	10	26	9	1.00	
con g. finos	18.23	13	20	7	1.00	
Are na				9		
finos	23.75	7	24	2 5	1.50	
Aren				3		
con (25.29	8	21	44	2.00	
finos Arena		-		8	-	
finos	23.07	11	17	5	2.50	
Arent				6 8		
finos		14	21	5	3.00	
				9		
Aren	16.37	16	23	7	3.50	
				8	0.00	
Arei		19	19	8	4.00	
finos	29.02	19	19	10	4.00	
Aren				12		
finos	26.63	46	17	19 27	4.50	
Aren				18		
con : fino	32.03	44	22	21 23	5.00	
Arear			-	19		
con	31.04	67	13	34	5.50	
fino:				33 RECHAZO		
					6.00	

CLASIFICACION VISUAL
nosa, color café, 70% de arena de fina a gruesa
as aisladas de 25 mm de tamaño maximo,
asticos, SM.
osa, color café, 70% de arena de fina a gruesa
as aisladas de 25 mm de tamaño maximo,
plasticos. SM.
osa, color café, 60% de arena de fina a gruesa
as aisladas de 25 mm de tamaño maximo,
baja plasticidad. SM.
osa, color café, 60% de arena de fina a gruesa s aisladas de 25 mm de tamaño maximo,
aja plasticidad. SM.
illosa, color café, 70% de arena de fina a gruesa,
paja plasticidad. SC.
77 700/ 1
illosa, color café, 70% de arena de fina a gruesa,
aja plas ticidad. SC.
illosa, color café, 70% de arena de fina a gruesa,
eja plas ticidad. SC.
700/ 1
illosa, color café, 70% de arena de fina a gruesa,
oja plas ticidad. SC.
idosa, color café, 70% de arena de fina a gruesa,
aja plas ticidad. SC.
sa, color café, 70% de arena de fina a gruesa
aisladas de 25 mm de tamaño maximo,
sticos, SM.
sa, color café, 70% de arena de fina a gruesa
s aistad as de 25 mm de tamaño maximo,
lasticos. SM.

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 7A

Ubicación : - San Salvador - San Miguel Estacion : 51+420 Lateral: Lateral derecho Fecha: 24 - Jul - 01

Peso de Martillo : 140 Libras Altura de caida: 30 Pulgadas

Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla: Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	4 12 12	32	24	12.86	Arena limosa, color café, 70% de arena de fina a gruesa, finos de baja plasticidad. SM.
1.00	12 14 31	37	45	11.39	Arena limosa, color café, 70% de arena de fina a gruesa, finos de baja plasticidad. SM.
1.50	42 58 62	29	120	14.66	Arena limosa, color café, 60% de arena de fina a media, finos de baja plasticidad. SM.
			-		
		~			

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 7B

Ubicación : - San Salvador - San Miguel Estacion : 51+420

Lateral : Lateral derecho Fecha : 24 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	6 5 11	32	16	9.55	Arena limosa, color café, 80% de arena de fina a gruesa, finos no plasticos. SM.
1.00	11 10 17	37	27	15.71	Arena limosa, color café, 80% de arena de fina a gruesa, finos no plasticos. SM.
1.50	14 24 27	29	51	24.01	Arcilla arenosa, color café claro, 45% de arena de fina a gruesa, finos de baja plasticidad. CL.
2.00	37 59 63	29	122	20.62	Arcilla arenosa, color café claro, 45% de arena de fina a gruesa, finos de baja plasticidad. CL.
		,			

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 8

Ubicación : - San Salvador - San Miguel Estacion : 51+860

Lateral: Linea central Fecha: 25 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez

Cuadrilla : Adán - David - Enrique.

Profundidad	No. de Golpes en	Recuperación	Penetración	Porcentaje de	CLASIFICACION VISUAL
(mts)	Cuchara	Centimetros	N Humedad	CLASIFICACION VISUAL	
	8			-	Arena limosa, color café claro, 80% de arena pomitica de
0.50	5	28	10	21.24	fina a gruesa, finos no plasticos. SM.
	5				
1.00	9 6	34	10	40.47	Arena limosa, color café, 80% de arena de fina a gruesa
1.00	13	34	19	19.17	finos no plasticos. SM.
	6				Arena limosa, color café, 80% de arena de fina a gruesa
1.50	7	20	13	20.46	finos no plasticos. SM.
	6				
	40		•		Arena limosa, color café, 80% de arena de fina a gruesa
2.00	19	23	36	19.88	finos no plasticos. SM.
	17				Annual linear and a second of the second of
2.50	17 22	26	42	21.75	Arena limosa, color café, 80% de arena de fina a gruesa finos no plasticos. SM.
2.50	20	20	42	21.75	illios no piasticos. Sivi.
	17				Arena limosa, color café claro, 70% de arena de fina a
3.00	15	23	35	8.94	gruesa, finos no plasticos. SM.
	20				
	18				
3.50	11	N.H.R.	21		N.H.R.
	10 12				L
4.00	9	17	20	17.35	finos no plasticos. SM.
4.00	11	[''	20	17.50	inico no piadiood. civi.
	16				Arena limosa, color café, 70% de arena de fina a gruesa
4.50	12	20	22	20.8	finos no plasticos. SM.
	10				
	12		0.4	40.00	Arena limosa, color café, 70% de arena de fina a gruesa
5.00	11 10	22	21	19.02	finos no plasticos. SM.
	12				
5.50	10	N.H.R.	24		N.H.R.
	14	<u> </u>			
	19				Arena limosa, color café, 70% de arena de fina a gruesa
6.00	65 50	17	115	22.01	finos no plasticos. SM.
	RECHAZO			ľ	

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 9

Ubicación : - San Salvador - San Miguel

Estacion: 52+300

Lateral : Lateral izquierda Fecha : 25 - Jul - 01 Peso de Martillo : 140 Libras

Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	5 5 11	25	16	14.43	Arena limosa, color café, 70% de arena de fina a gruesa, finos no plasticos. SM.
1.00	20 12 12	28	24	18.04	Arena limosa, color café, 70% de arena de fina a gruesa, finos no plasticos. SM.
1.50	15 15 12	35	27	15.62	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
2.00	13 11 12	31	23	21.04	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
2.50	20 10 15	22	25	20.49	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
3.00	26 38 43	18	81	20.68	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
	RECHAZO				

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 10

Ubicación: - San Salvador - San Miguel

Estacion: 52+440 Lateral: Linea central Fecha: 26 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	10 10 8	28	18	15.19	Arena limosa, color café, 70% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM.
1.00	11 8 13	31	21	15.32	Arena limosa, color café, 70% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM.
1.50	24 10 10	22	20	17.96	Arena arcillosa, color café, 75% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos de baja plasticidad. SC.
2.00	7 6 5	24	11	32.75	Arena arcillosa, color café, 75% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos de baja plasticidad. SC.
2.50	10 4 5	20	9	25.23	Arcilla arenosa, color café, 40% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos de media plasticidad CL.
3.00	7 47 68	25	115	17.48	Arcilla arenosa, color café, 40% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos de media plasticidad. CL.
		·			
_					

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 11 Ubicación : - San Salvador - San Miguel

Estacion: 52+640 Lateral: Lateral derecho Fecha: 26 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	38 27 25	17	52	14.54	Arena limosa, color café, 75% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM.
1.00	35 20 28	20	48	13.57	Arena limosa, color café, 75% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos no plasticos. SM.
1.50	20 16 16	19	32	8.35	Arcilla arenosa, color café, 35% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos de media plasticidad. CL.
2.00	20 34 36	22	70	10.5	Arcilla arenosa, color café, 35% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos de media plasticidad. CL.
2.50	39 52 70	28	122	9.15	Arcilla arenosa, color café, 35% de arena de fina a gruesa con gravas aisladas de 25 mm de tamaño maximo, finos de media plasticidad. CL.
				_	

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 12A

Ubicación: San Salvador - San Miguel

Estacion: 53+170

Lateral : Lateral derecho, fuera de vía

Fecha: 27 - Jul - 01

Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas

Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	1 6 5	19	11	22.23	Arcilla arenosa con organico, color café oscuro, 40% de arena de fina a gruesa, finos de media plasticidad. OH.
1.00	5 7 6	18	13	23.79	Arcilla arenosa con organico, color café oscuro, 40% de arena de fina a gruesa, finos de media plasticidad. OH.
1.50	14 11 33	5	44	33.44	Arcilla arenosa, color café, 20% de arena fina con gravas aisladas de 25 mm de tamaño maximo, finos de alta plasticidad. CH.
2.00	40 56 50	12	106	34.15	Arcilla arenosa, color café, 20% de arena fina con gravas aisladas de 25 mm de tamaño maximo, finos de alta plasticidad. CH.
	RECHAZO				
			_		
				. =	

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 12B Ubicación : San Salvador - San Miguel

Estacion: 53+170

Lateral : Lateral derecho, fuera de vía

Fecha: 27 - Jul - 01

Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	6 7 7	21	14	22.45	Arcilla arenosa, color café, 40% de arena de fina a gruesa con gravas aisladas de 25 mm de tamño maximo, finos de baja plasticidad. CL.
1.00	10 38 36	18	74	34.22	Arcilla arenosa, color café, 20% de arena fina con gravas aisladas de 25 mm de tamño maximo, finos de alta plasticidad CH.
	RECHAZO				

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 13A Ubicación : San Salvador - San Miguel

Estacion: 53+240

Lateral : Lateral derecho, fuera de vía

Fecha: 27 - Jul - 01

Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez

Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	7 14 14	18	28	30.92	Arcilla arenosa, color café, 25% de arena de fina a gruesa finos de alta plasticidad. CH.
1.00	58 25 33	21	58	33.63	Arcilla arenosa, color café, 25% de arena de fina a gruesa finos de alta plasticidad. CH.
	30 40 45	30	85	30.15	Arcilla arenosa, color café, 25% de arena de fina a gruesa finos de alta plasticidad. CH.
	RECHAZO				
				_	
	-				
_					
				_	

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 13B Ubicación : San Salvador - San Miguel

Estacion: 53+240

Lateral: Lateral derecho, fuera de vía

Fecha: 27 - Jul - 01

Peso de Martillo : 140 Libras Altura de caida: 30 Pulgadas

Cuchara muestrera: 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla: Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	7 9 8	28	17	29.65	Arcilla, color café, 10% de arena fina, finos de media plasticidad. CL.
1.00	10 10 14	35	24	30.83	Arcilla, color café, 10% de arena fina, finos de media plasticidad. CL.
1.50	9 10 14	28	24	26.31	Arcilla, color café, 10% de arena fina, finos de media plasticidad. CL.
2.00	20 15 38	12	53	26.27	Arcilla, color café, 10% de arena fina, finos de media plasticidad. CL.
:	36 50 62	15	112	20.31	Arcilla, color café, 10% de arena fina, finos de media plasticidad. CL.
	RECHAZO				
<u> </u>	-		. <u> </u>		
			•——		
					
		-			

Proyecto:

Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos de enero y febrero de 2001.

Sondeo N° 14

Ubicación: San Salvador - San Miguel

Estacion: 53+280

Lateral : Lateral derecho, fuera de vía

Fecha: 27 - Jul - 01

Peso de Martillo: 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera: 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	3 7	20	10	· 17.44	Arena arcillosa, color café, 60% de arena de fina a gruesa, finos de media plasticidad. SC.
1.00	13 10 13	18	23	19.75	Arena arcillosa, color café, 60% de arena de fina a gruesa, finos de media plasticidad. SC.
1.50	20 27 41	28	68	16.73	Arena arcillosa, color café, 80% de arena de fina a gruesa, finos de media plasticidad. SC.
2.00	63 40 37	34	77	21.18	Arena arcillosa, color café, 80% de arena de fina a gruesa, finos de media plasticidad. SC.
2.50	RECHAZO				
· · ·					
<u> </u>					
			<u>-</u>		
			<u> </u>		
· · · · · ·		<u></u>			
			<u> </u>		

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° 15

Ubicación : San Miguel - San Salvador

Estacion : 54+610 Lateral : Linea central Fecha : 27 - Jul - 01 Peso de Martillo : 140 Libras Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración — N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	11 38 25	19	63	10.25	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
1.00	33 20 18	38	38	10.66	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
1.50	15 17 21	17	38	9.21	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
2.00	33 42 54	18	96	22.48	Arena limosa, color café, 80% de arena de fina a gruesa con gravas aisladas de 19 mm de tamaño maximo, finos no plasticos. SM.
				·	
		-	<u> </u>		
		-			
			-		
			<u> </u>		

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos de enero y febrero de 2001.

Sondeo N°: 16

Ubicación : Deslabe N° 3, Berma N° 1, Curva La Leona

Estacion: 53+135, Via San Miguel - San Salvador, lateral derecho

Fecha: 10 - Ago - 01

Peso de Martillo: 140 Libras

Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Cuadrilla : Adan - David - Enriqu Laboratorista : Mauricio Rivera.

Profundidad	No. de Golpes en	Recuperación	Penetración	Porcentaje₋de	CLASIFICACION VISUAL
(mts)	Cuchara	Centimetros	N	Humedad	CEASII ICAGION VISUAL
0.50	1 3 5	26	8	20.1	Arena limosa, color gris claro, 85% de arena de fina a gruesa con gravas aisladas de 25.00 mm de tamaño maximo, finos no plasticos. SM.
1.00	6 6 5	40	11	20.8	Arena limosa, color gris claro, 83% de arena de fina a gruesa con gravas aisladas de 25.00 mm de tamaño maximo, finos no plasticos. SM.
1.50	8 4 4	26	8	17.3	Arena limosa, color gris claro, 86% de arena de fina a gruesa con gravas aisladas de 25.00 mm de tamaño maximo, finos no plasticos. SM.
2.00	8 7 6	23	13	25.4	Arena limosa, color gris claro, 75% de arena de fina a gruesa con gravas aisladas de 32.50 mm de tamaño maximo, finos no plasticos. SM.
2.50	26 20 26	37	46	17.4	Arena limosa, color gris claro, 78% de arena de fina a gruesa con gravas aisladas de 32.50 mm de tamaño maximo, finos no plasticos. SM.
3.00	32 19 18	39	37	20.4	Arena limosa, color gris claro, 80% de arena de fina a gruesa con gravas aisladas de 12.50 mm de tamaño maximo, finos no plasticos. SM.
3.50	42 44 54	46	98	16.3	Arena limosa, color cafe, 76% de arena de fina a gruesa con gravas aisladas de 12.50 mm de tamaño maximo, finos no plasticos. SM.
4.00	56 70 RECHAZO	7		12.6 ⁻	Arena limosa, color cafe, 60% de arena de fina a gruesa con gravas aisladas de1 2.50 mm de tamaño maximo, finos no plasticos. SM.
					·
			**	, -	
					

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos

de enero y febrero de 2001.

Sondeo N° : 17 Ubicación : Deslabe N° 3, Berma N° 2, Curva La Leona Estacion : 53+135, Via San Miguel - San Salvador, lateral derecho

Fecha: 10 - Ago - 01

Peso de Martillo : 140 Libras

Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique.

Laboratorista: Mauricio Rivera.

Profundidad (mts)	No. de Golpes en Cuchara	Recuperación Centimetros	Penetración N	Porcentaje de Humedad	CLASIFICACION VISUAL
0.50	1 1 3	23	4	18.2	Arena limosa, color cafe, 73% de arena de fina a gruesa con gravas aisladas de pómez de 19.00 mm de tamaño maximo, finos no plasticos. SM.
1.00	15 13 12	45	25	25.9	Arena pobremente graduada, color cafe, 91% de arena pómitica de fina a gruesa con gravas aisladas de pómez de 19.00 mm de tamaño maximo, finos no plasticos. SP.
1.50	17 17 15	44	32	23.8	Arena pobremente graduada, color cafe, 91% de arena pómitica de fina a gruesa con gravas aisladas de pómez de 19.00 mm de tamaño maximo, finos no plasticos. SP.
2.00	20 15 13	45	28	21.2	Arena pobremente graduada, color cafe, 91% de arena pómitica de fina a gruesa con gravas aisladas de pómez de 19.00 mm de tamaño maximo, finos no plasticos. SP.
2.50	36 70 75	45	145	18.1	Arena limosa, color cafe, 62% de arena de fina a gruesa con gravas aisladas de 25.00 mm de tamaño maximo, finos no plasticos. SM.
3.00	80 RECHAZO				
				•	
			<u>-</u>		
·					·

Proyecto: Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos de enero y febrero de 2001.

Sondeo N°: 18

Ubicación : Deslabe N° 3, Berma N° 3, Curva La Leona

Estacion: 53+135, Via San Miguel - San Salvador, lateral derecho

Fecha: 11 - Ago - 01

Peso de Martillo : 140 Libras

Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez

Cuadrilla : Adán - David - Enrique. Laboratorista : Mauricio Rivera.

		,			· · · · · · · · · · · · · · · · · · ·
Profundidad	No. de Golpes en	Recuperación	Penetración	Porcentaje de	CLASIFICACION VISUAL
(mts)	Cuchara	Centimetros	N	Humedad	OLAGINICACIÓN VISUAL
0.50	1 1 4	27	5	23	Arena limosa, color café, 78% de arena de fina a gruesa, finos de baja plasticidad. SM.
1.00	6 7 6	37	13	18	Arena limosa, color café, 78% de arena de fina a gruesa, finos de baja plasticidad. SM.
1.50	11 11 9	30	20	21.5	Arena limosa, color café, 78% de arena de fina a gruesa, finos de baja plasticidad. SM.
2.00	13 12 7	27	19	15.5	Arena limosa, color café, 78% de arena de fina a gruesa, finos de baja plasticidad. SM.
2.50	13 11 10	13	21	16.2	Arena limosa, color café, 78% de arena de fina a gruesa, finos de baja plasticidad. SM.
3.00	17 17 32	. 16	49	19.9	Arena limosa, color café, 78% de arena de fina a gruesa, finos de baja plasticidad. SM.
3.50	23 24 24	N.H.R.	48		
4.00	24 24 44	N.H.R.	68		
4.50	60 RECHAZO	N.H.R.			
	-		_		
					9 P

Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos Proyecto:

de enero y febrero de 2001.

Sondeo N°: 19

Ubicación : Deslabe N° 3, Berma N° 3, Curva La Leona Estacion : 53+135, Via San Miguel - San Salvador, lateral derecho

Fecha: 11 - Ago - 01

Peso de Martillo : 140 Libras

Altura de caida: 30 Pulgadas Cuchara muestrera: 1.5 Pulgadas

Ing. Responsable : Dilber Sánchez Cuadrilla : Adán - David - Enrique. Laboratorista : Mauricio Rivera.

Profundidad	No. de Golpes en	Recuperación	Penetración	Porcentaje de	CLASIFICACION VISUAL
(mts)	Cuchara	Centimetros	N	Humedad	CLASIFICACION VISUAL
	7				Arena limosa, color cafe, 51% de arena de fina a gruesa
0.50	9	38	18	14.5	finos de plasticidad media. SM.
	17	-		,	Arena limosa, color cafe, 55% de arena de fina a gruesa
1.00	17 12	30	29	12.5	finos no plasticos. SM.
	23			<u> </u>	Arena limosa, color cafe, 77% de arena de fina a gruesa
1.50	<u>8</u> 5	42	13	14.9	finos de baja plasticidad. SM.
	13				Arena limosa, color cafe, 77% de arena de fina a gruesa
2.00	11 8	33	19	12.6	finos de baja plasticidad. SM.
	9 _				Arena limosa, color cafe, 77% de arena de fina a gruesa
2.50	<u>6</u>	43	12	10	finos de baja plasticidad. SM.
	18	_		<u> </u>	Arena limosa, color cafe, 77% de arena de fina a gruesa
3.00	18 13	34	31	9.6	finos de baja plasticidad. SM.
	13			<u> </u>	Arena-limosa, color-cafe, 77% de arena de fina a gruesa
3.50	12 12	42	24	13.4	finos de baja plasticidad. SM.
	21				Arena limosa, color cafe, 77% de arena de fina a gruesa
4.00	13 30	39	43	21.3	finos de baja plasticidad. SM.
	24				Arena limosa, color cafe, 77% de arena de fina a gruesa
4.50	17 12	36	29	18.8	finos de baja plasticidad. SM.
	20				Arena limosa, color cafe, 77% de arena de fina a gruesa
5.00	16	37	29	20.7	finos de baja plasticidad. SM.
	13 18			-	Arena limosa, color cafe, 77% de arena de fina a gruesa
5.50	12 16	35	28	23.8	finos de baja plasticidad. SM.
	28				Arena limosa, color cafe, 77% de arena de fina a gruesa
6.00	30	40	53	19.1	finos de baja plasticidad. SM.
	23 29		<u>.</u>		Arena limosa, color cafe, 77% de arena de fina a gruesa
6.50	26 30	40	56	26.9	finos de baja plasticidad. SM.

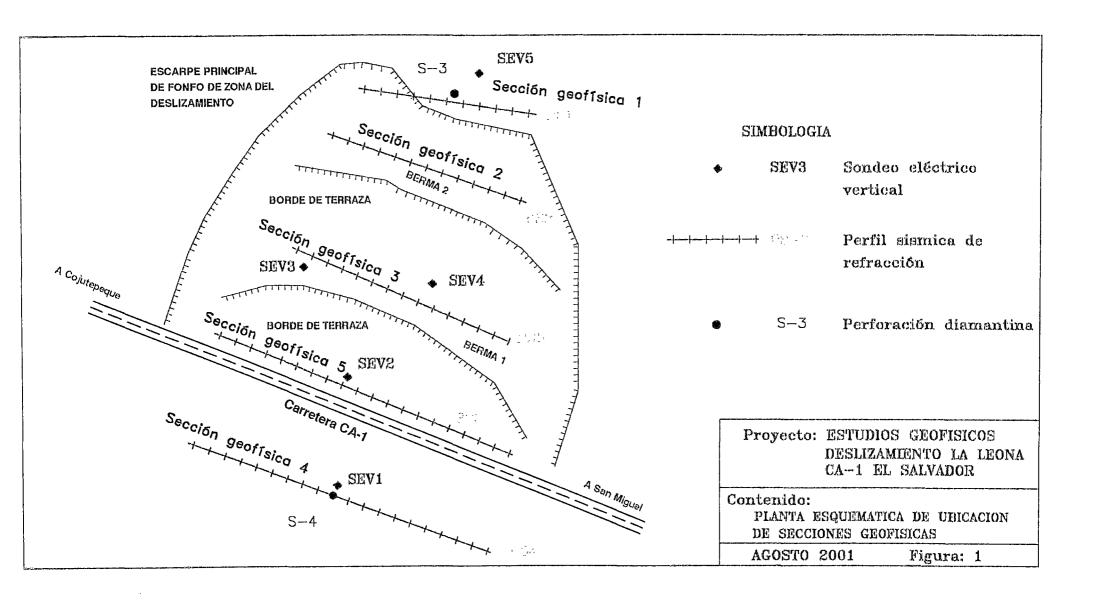
Carretera CA - 1, Tramo curva La Leona KM 53, dañadas por los terremotos Proyecto: de enero y febrero de 2001.

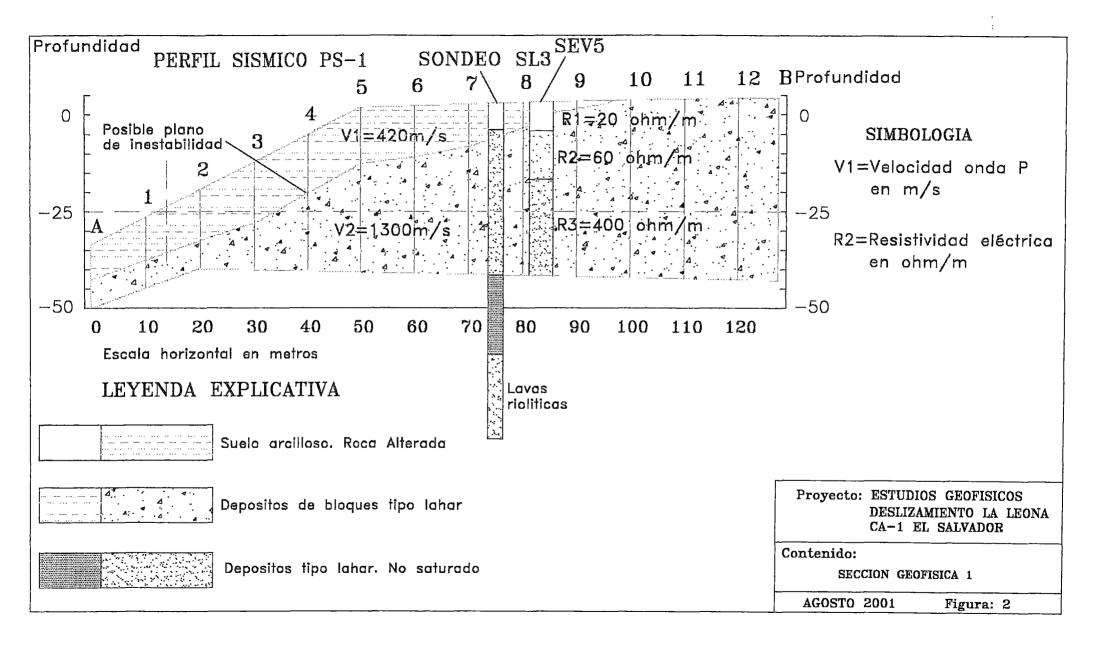
Sondeo N° : 19 Ubicación : Deslabe N° 3, Berma N° 3, Curva La Leona

Estacion: 53+135, Via San Miguel - San Salvador, lateral derecho

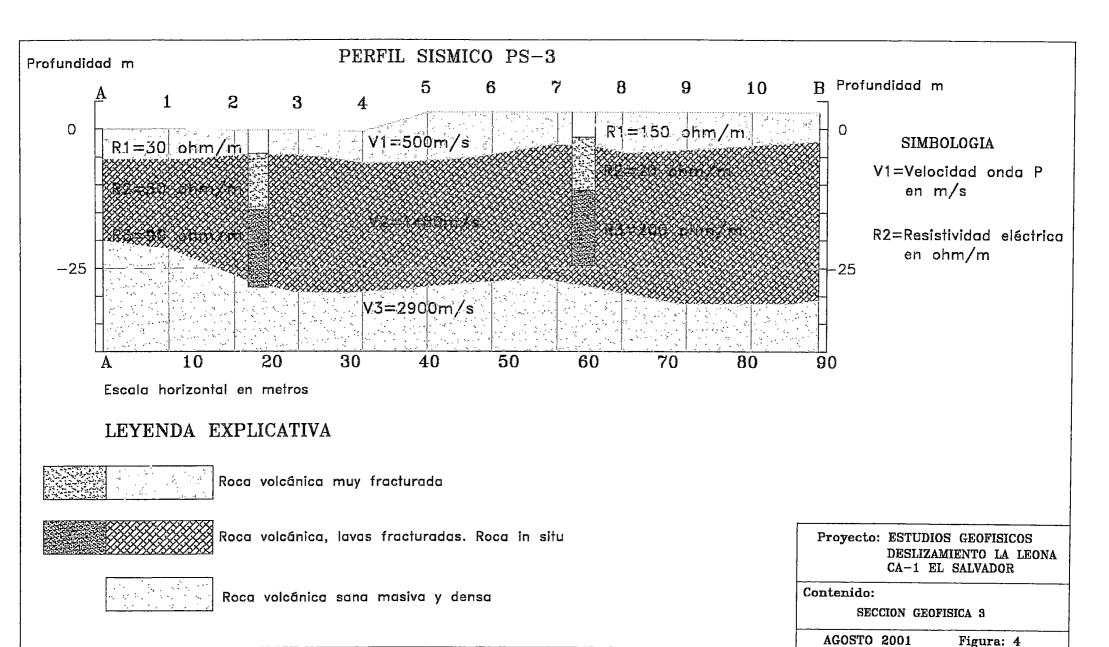
Fecha: 11 - Ago - 01

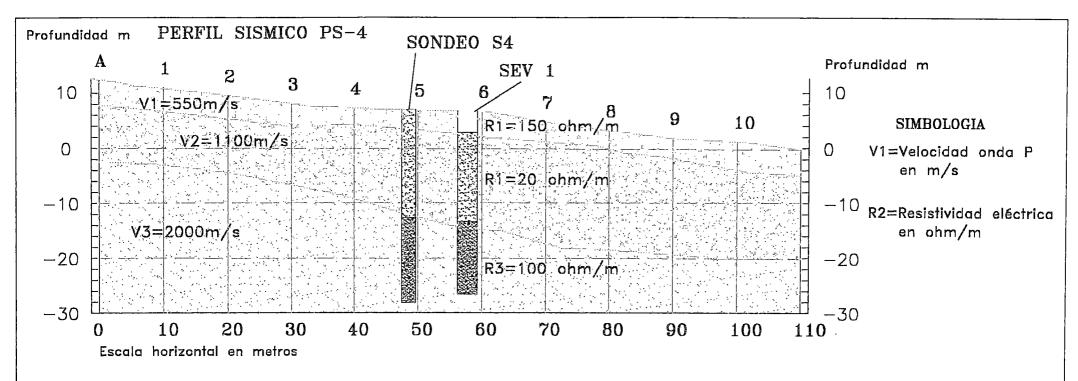
Peso de Martillo : 140 Libras


Altura de caida : 30 Pulgadas Cuchara muestrera : 1.5 Pulgadas Ing. Responsable : Dilber Sánchez


Cuadrilla: Adán - David - Enrique.

Laboratorista : Mauricio Rivera.


	CLASIFICACION VISUAL	Porcentaje de Humedad	Penetración	Recuperación	No. de Golnes en	Profundidad
•	CLASII ICACION VISUAL	Humedad	N .	Centimetros	Golpes en Cuchara	(mts)
		N.H.R.	51	N.H.R.	43 26 25	7.00
₹*						
						•

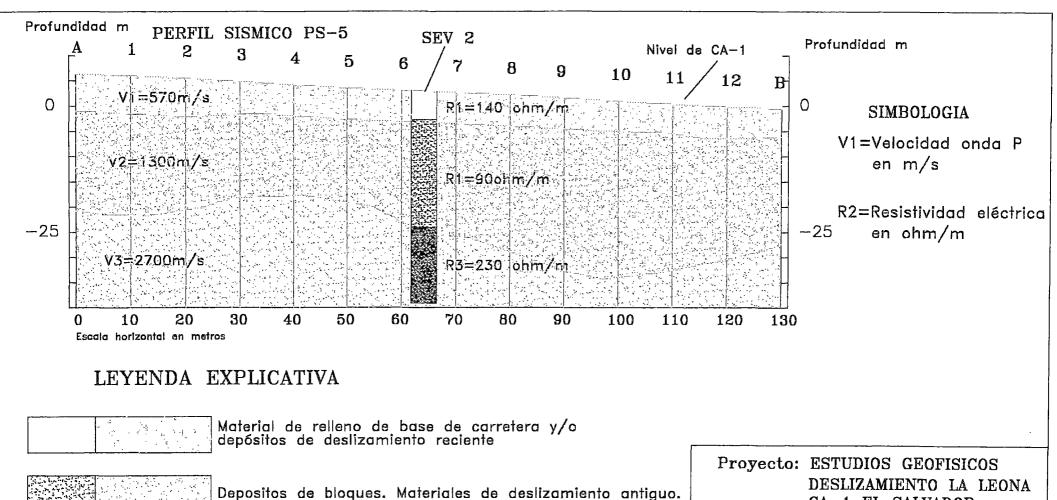

ANEXO I LINEAS DE REFRACCION SÍSMICA Y SONDAJES ELECTRICO VERTICALES

LEYENDA EXPLICATIVA

Material de relleno. Deposito de deslizamiento reciente.

Depositos de bloques. Materiales de deslizamiento antiguo.

Roca volcánica riolítica sana masiva y densa.

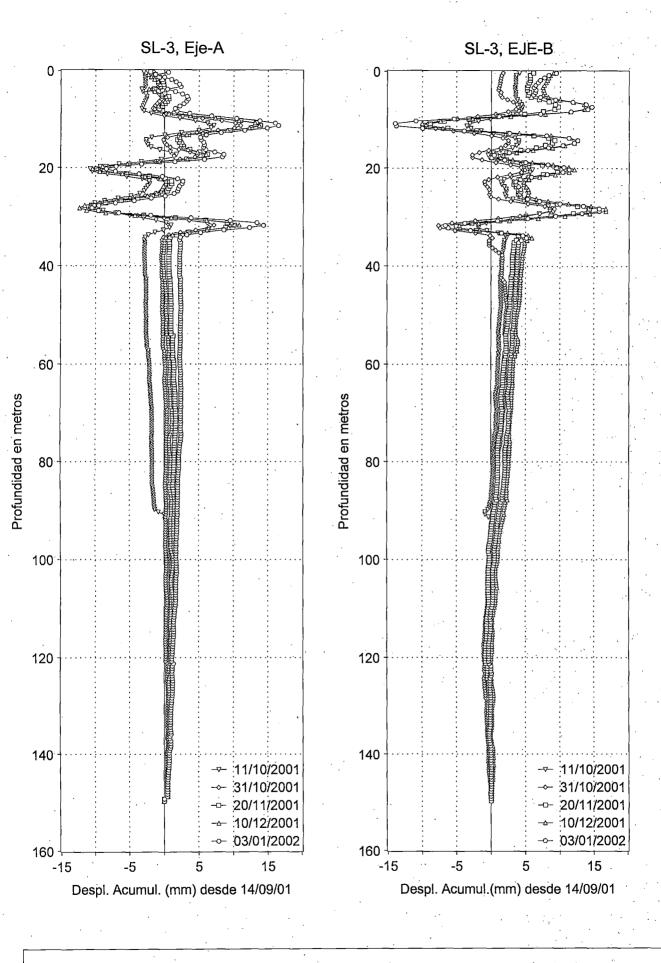

Proyecto: ESTUDIOS GEOFISICOS

DESLIZAMIENTO LA LEONA
CA-1 EL SALVADOR

Contenido:

SECCION GEOFISICA 4

AGOSTO 2001 Figura: 5

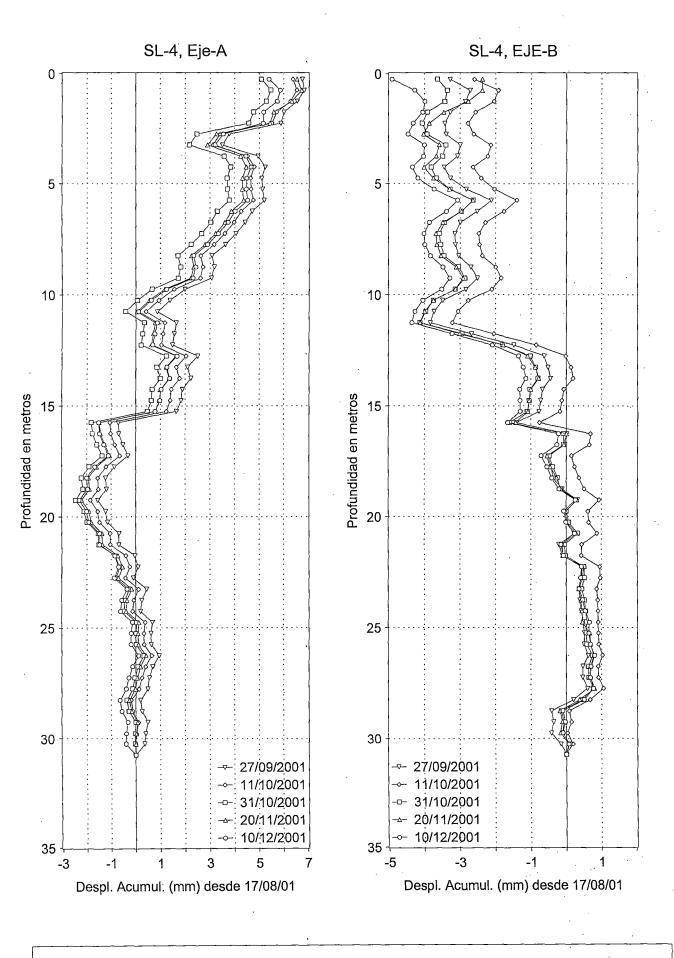

Roca volcánica riolitica sana masiva y densa.

DESLIZAMIENTO LA LEONA
CA-1 EL SALVADOR

Contenido:
SECCION GEOFISICA 5

AGOSTO 2001 Figura: 6

ANEXO J REGISTROS INCLINOMETRICOS



INCLINOMETRIA PROFUNDA

Proyecto: Carretera CA-1 Curva de La Leona KM 53+060 - KM 53+280

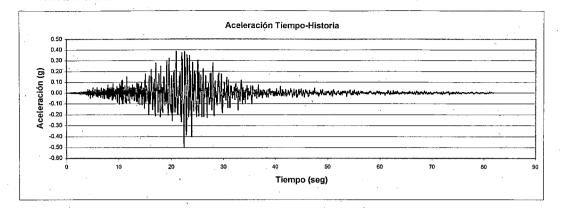
REPUBLICA DE SAN SALVADOR

Deslizamiento 3 Hecho por: FEGP

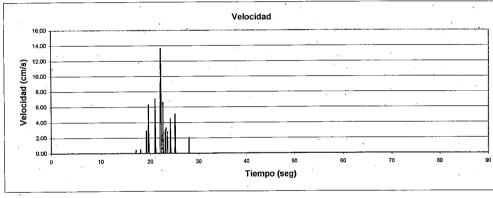
INCLINOMETRIA PROFUNDA PROYECTO: Carretera CA-1

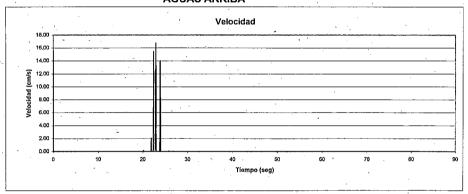
Curva de La Leona KM 53+060 - KM 53+280

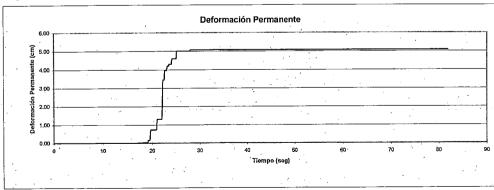
REPUBLICA DE SAN SALVADOR

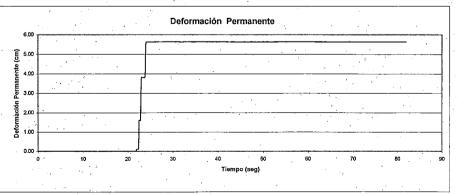

Deslizamiento 3 Hecho por: FEGP

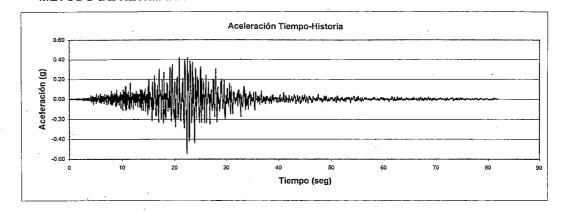
ANEXO K ANÁLISIS DE DEFORMACIONES PERMANENTES

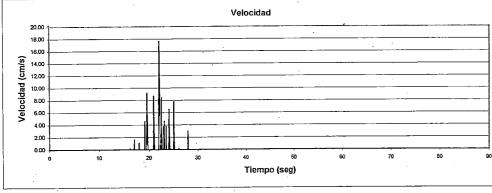

ANÁLISIS DE DEFORMACIONES PERMANENTES PRE-SISMO REGISTRO NONUALCO 13 DE ENERO DEL 2001


DESLIZAMIENTO Nº 1 RESULTADOS


K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	0.385
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	13.66
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	5.08
Aceleración max (-)	(g)	0.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	16.78
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	5.64

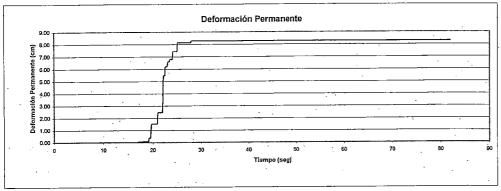


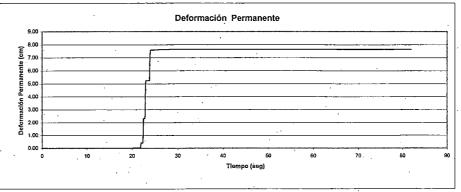




DESLIZAMIENTO Nº 1 RESULTADOS

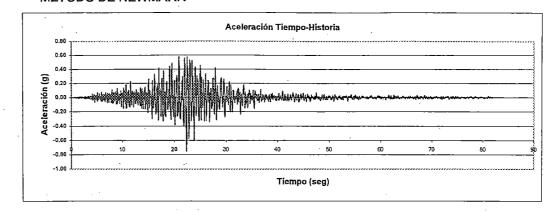
K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	0.418
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	17.60
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	8.28
Aceleración max (-)	(g)	0.544
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	21.39
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	7.63

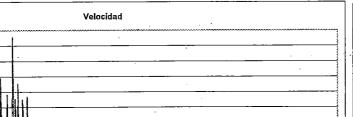


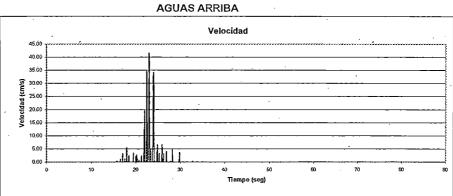


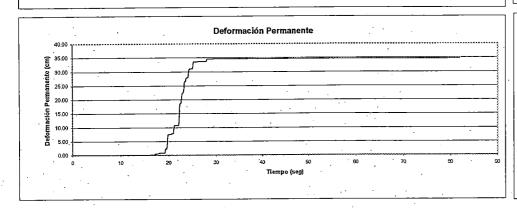
DESLIZAMIENTO Nº 1 RESULTADOS

35.00

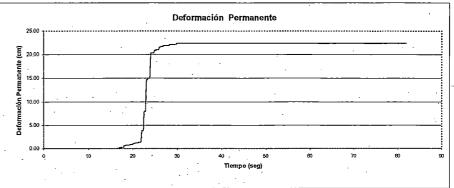

15.00

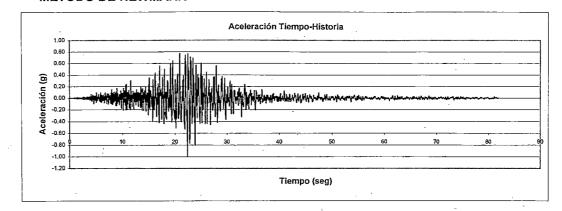

5.00


30.00 25.00

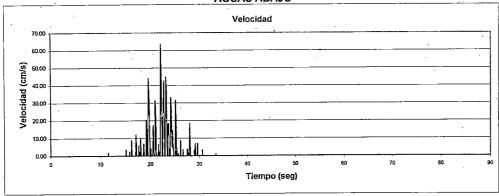

Velocidad 20.00

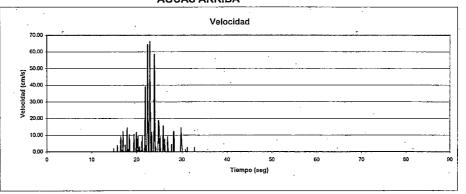
	0.21
_	0.02
(g)	0.577
(seg)	20.92
(cm/s)	37.84
(seg)	22.12
(cm)	34.65
(g)	0.750
(seg)	22.38
(cm/s)	41.59
(seg)	22.92
(cm)	22.41
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

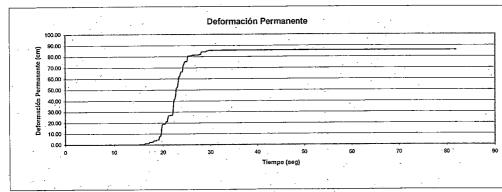


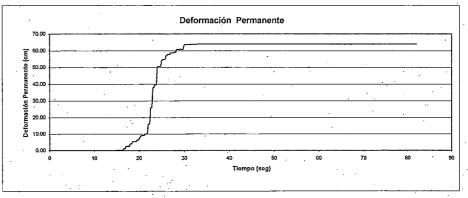

Tiempo (seg)

AGUAS ABAJO




DESLIZAMIENTO Nº 1 RESULTADOS

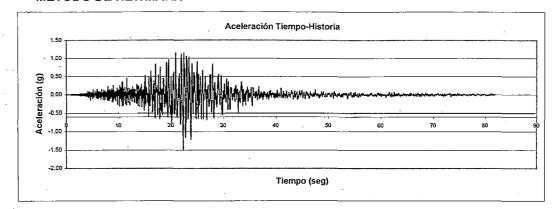

K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	0.770
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	63.58
Tiempo para Vmax.	(seg)	22.12
Desplazamiento max.	(cm)	85.78
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	66.40
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	63.89

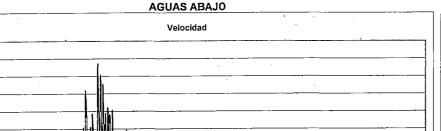


DESLIZAMIENTO Nº 1 RESULTADOS

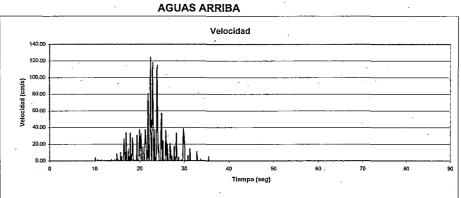
140.00

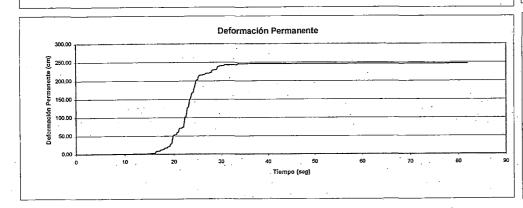
120.00

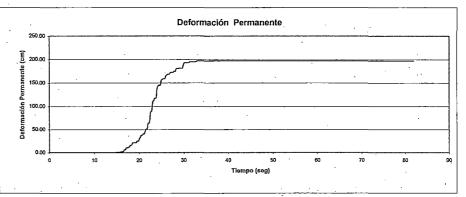

100.00


80.00

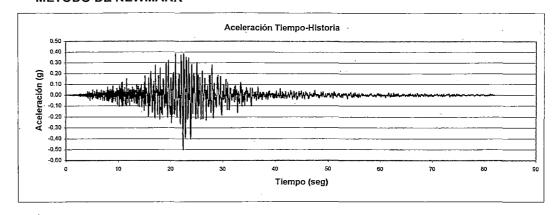
60.00 40.00 20.00

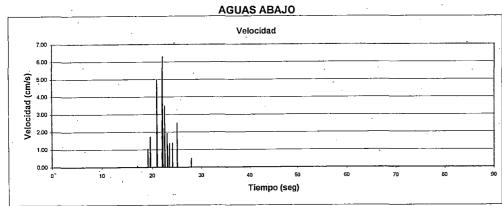

Velocidad (cm/s)

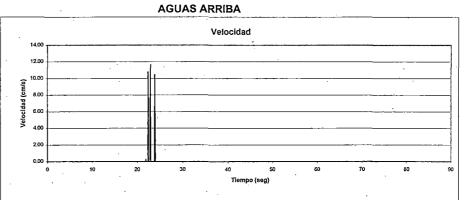

KEGGETABGG		
K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	1.154
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	114.54
Tiempo para Vmax.	(seg)	22.12
Desplazamiento max.	(cm)	246.09
Aceleración max (-)	(g)	1.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	124.39
Tiempo para Vmax.	(seg)	22.42
Desplazamiento max.	(cm)	197.28

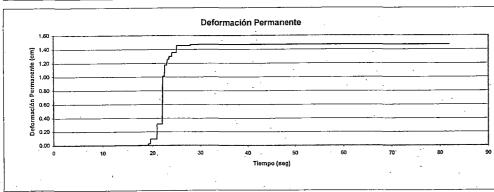


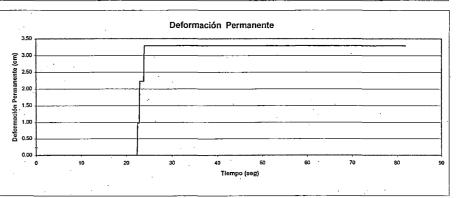
Tiempo (seg)

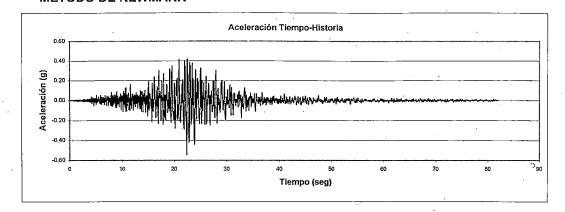


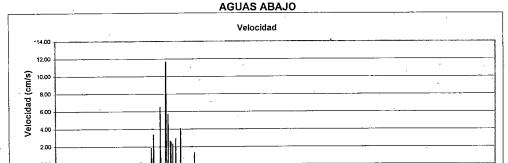





DESLIZAMIENTO Nº 1 RESULTADOS

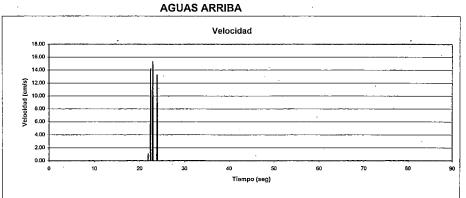

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.385
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	6.19
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	1.47
Aceleración max (-)	(g)	0.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	11.62
Tiempo para Vmax.	(seg)	22.9
Desplazamiento max.	(cm)	3.29

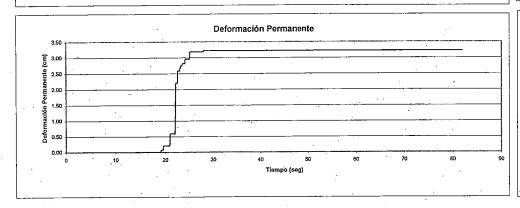


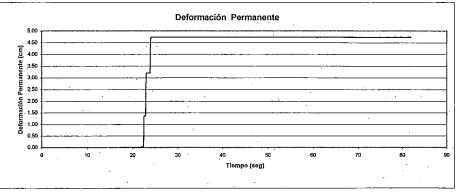


80

DESLIZAMIENTO N° 1 RESULTADOS

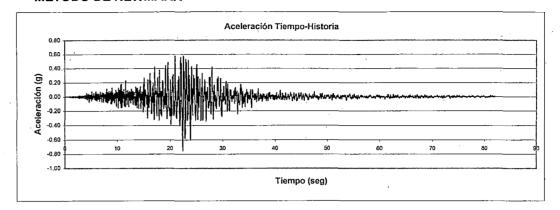

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.418
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	11.64
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	3.22
Aceleración max (-)	(g)	0.544
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	15.32
Tiempo para Vmax.	(seg)	22.9
Desplazamiento max.	(cm)	4.73

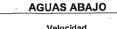


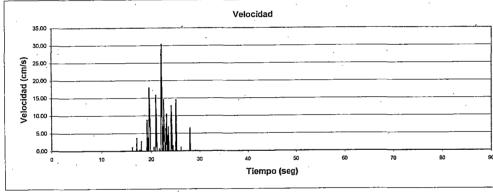


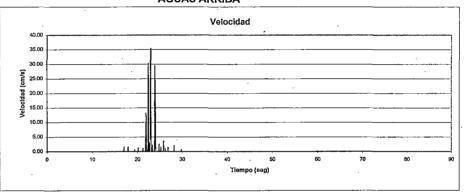
Tiempo (seg)

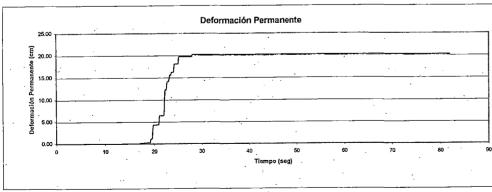
30

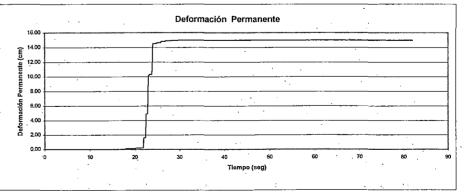


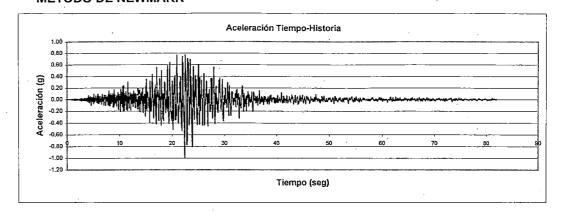


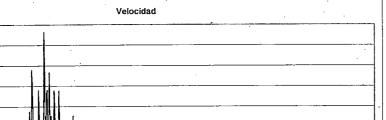



DESLIZAMIENTO Nº 1 **RESULTADOS**

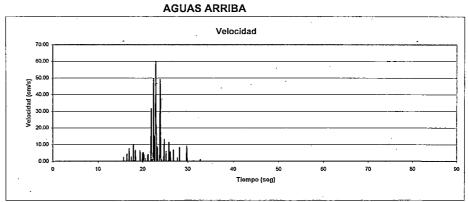

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.577
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	30.39
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	20.22
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	35.47
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	14.98

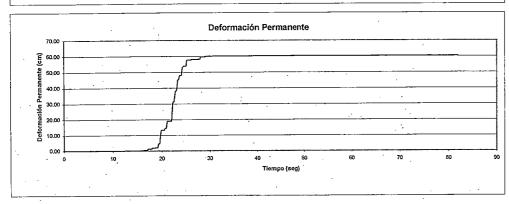


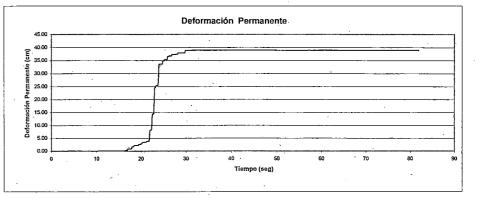


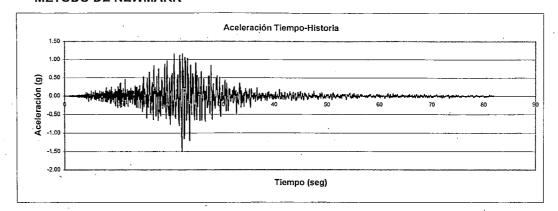

DESLIZAMIENTO Nº 1 RESULTADOS

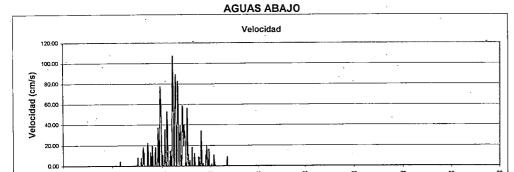
60.00 50,00 40,00

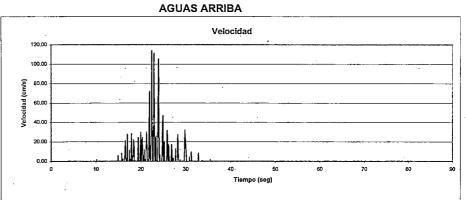

0.00

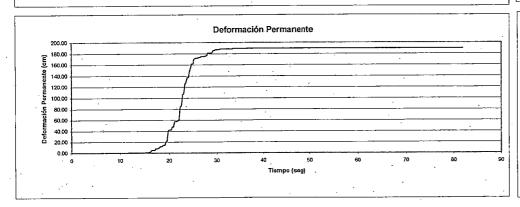

	0.25
	0.02
(g)	0.770
(seg)	20.92
(cm/s)	56.31
(seg)	22.12
(cm)	60.19
(g)	1.000
(seg)	22.38
(cm/s)	60.11
(seg)	22.92
(cm)	38.93
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

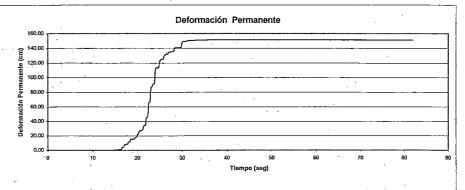

70


Tiempo (seg)

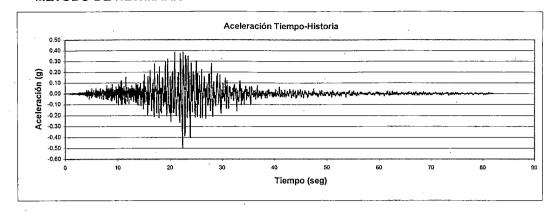

AGUAS ABAJO

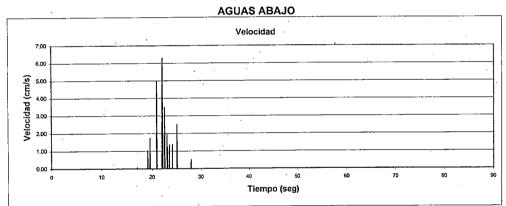

DESLIZAMIENTO Nº 1 RESULTADOS

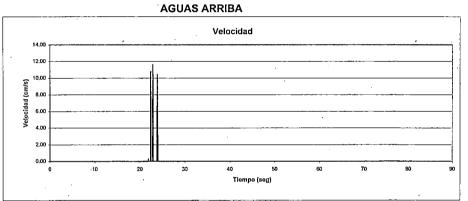

KEGGETABGG		
K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	1.154
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	107.20
Tiempo para Vmax.	(seg)	22.12
Desplazamiento max.	(cm)	189.58
Aceleración max (-)	(g)	1.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	113.82
Tiempo para Vmax.	(seg)	22.42
Desplazamiento max.	(cm)	151.33

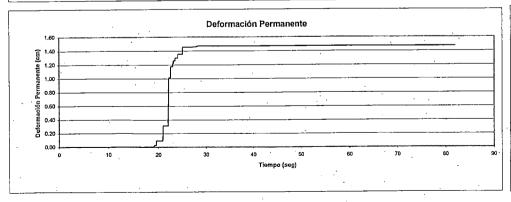


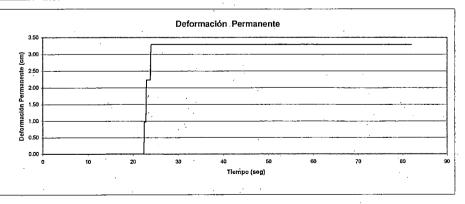
Tiempo (seg)

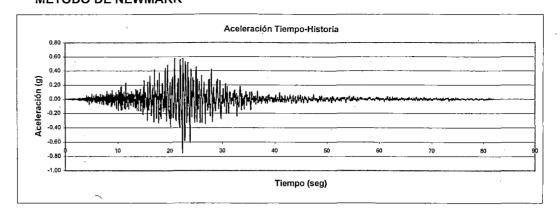


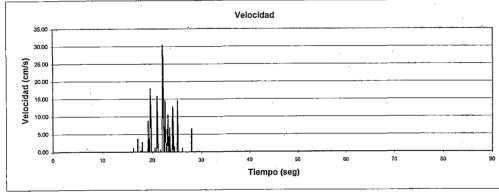


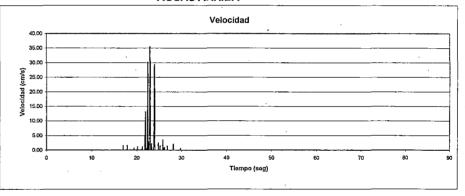


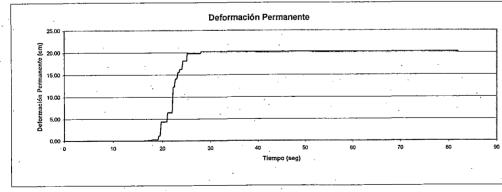

DESLIZAMIENTO N° 2 RESULTADOS

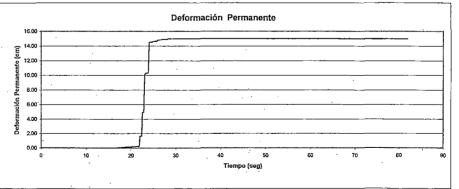

	0.25
	0.02
(g)	0.385
(seg)	20.92
(cm/s)	6.19
(seg)	22.10
(cm)	1.47
(g)	0.500
(seg)	22.38
(cm/s)	11.62
(seg)	22.9
(cm)	3.29
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

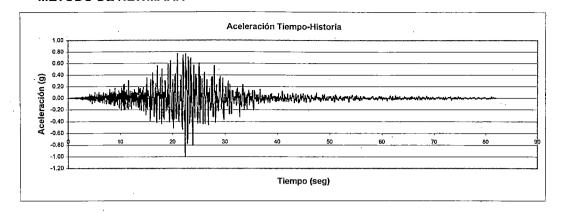


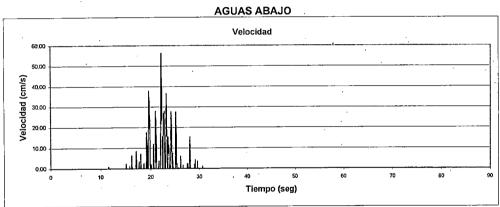


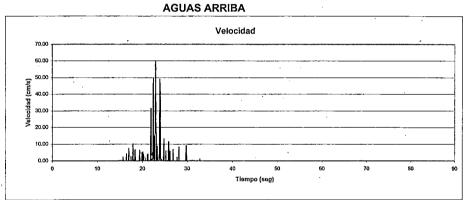

DESLIZAMIENTO N° 2 RESULTADOS

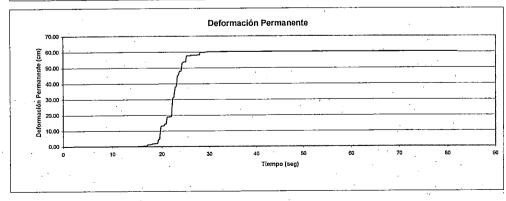

Κ̈ _Υ		0.25
Δ t		0.02
Aceleración max (+)	(g)	0.577
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	30.39
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	20.22
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	35.47
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	14.98

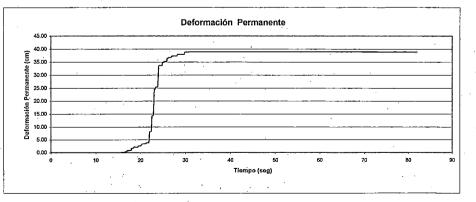


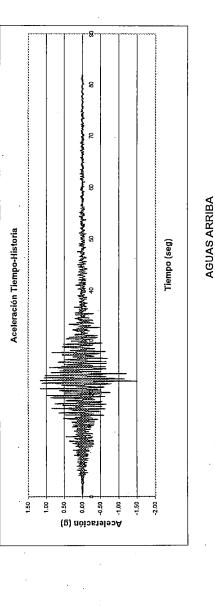


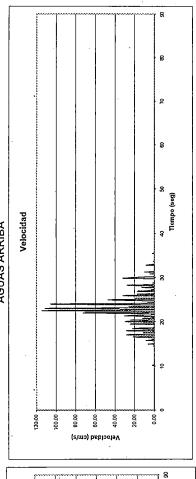


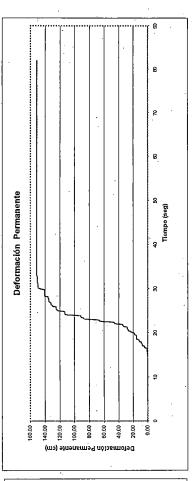


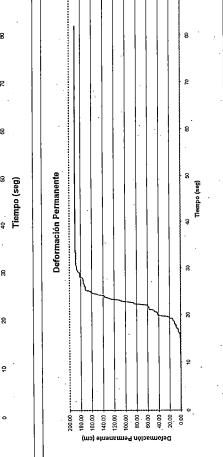

DESLIZAMIENTO N° 2 RESULTADOS


K _Y	8	0.25
Δt		0.02
Aceleración max (+)	(g)	0.770
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	56.31
Tiempo para Vmax.	(seg)	22.12
Desplazamiento max.	(cm)	60.19
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg) .	22.38
Velocidad max.	(cm/s)	60.11
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	38.93

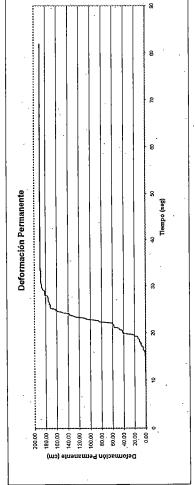



DESLIZAMIENTO N° 2 RESULTADOS	
Κ _γ	0.25
Δt	0.02
Aceleración max (+) (g)	1.154
Tiempo para Amax (seg)	20.92
Velocidad max. (cm/s)	107.20
Tiempo para Vmax. (seg)	22.12
Desplazamiento max. (cm)	189.58
Aceleración max (-) (g)	1.500
Tiempo para Amax (seg)	22.38
Velocidad max. (cm/s)	113.82
Tiempo para Vmax. (seg)	22.42
Desplazamiento max. (cm)	151.33

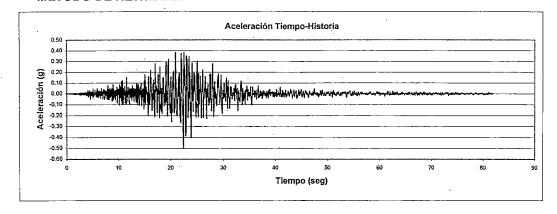

AGUAS ABAJO

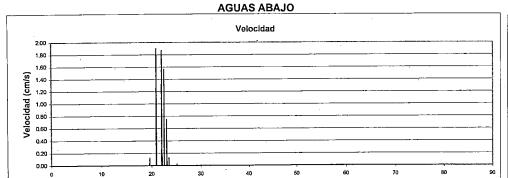

Velocidad

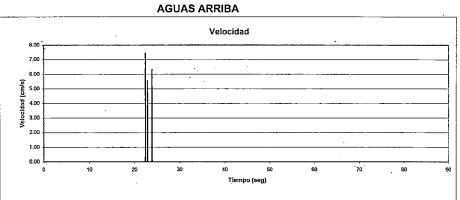
120.00

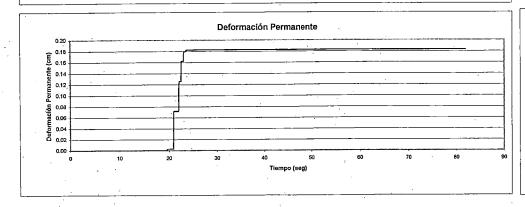


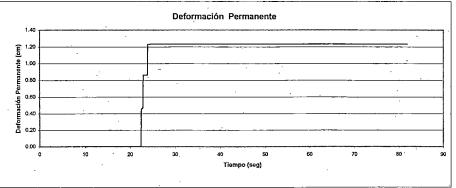
0.00


60.00

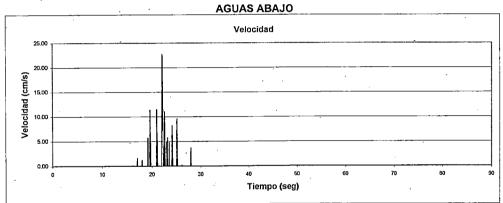

Velocidad (cm/s)

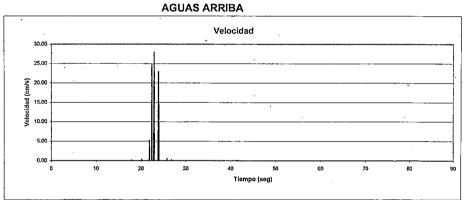

DESLIZAMIENTO N° 2 RESULTADOS

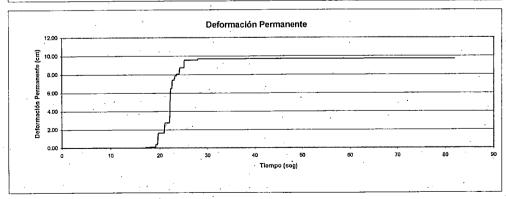

K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	0.385
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	1.87
Tiempo para Vmax.	(seg)	20.92
Desplazamiento max.	(cm)	0.18
Aceleración max (-)	(g)	0.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	7.45
Tiempo para Vmax.	(seg)	22.4
Desplazamiento max.	(cm)	1.23

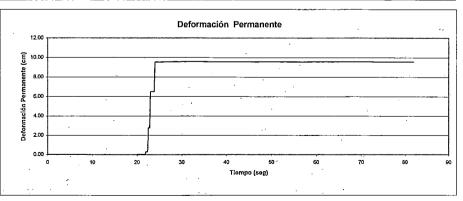


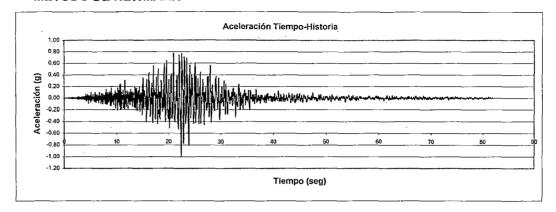
Tiempo (seg)

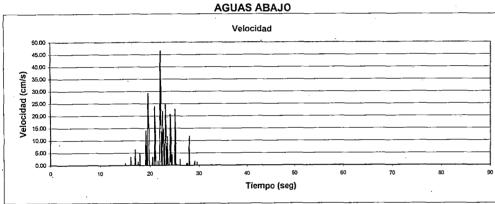


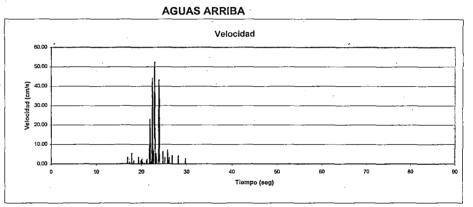


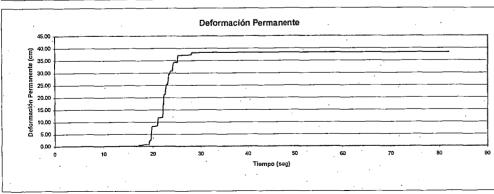

DESLIZAMIENTO Nº 2 RESULTADOS

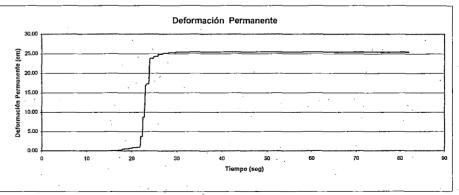

K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	0.577
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	22.74
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	9.72
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	28.00
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	9.57

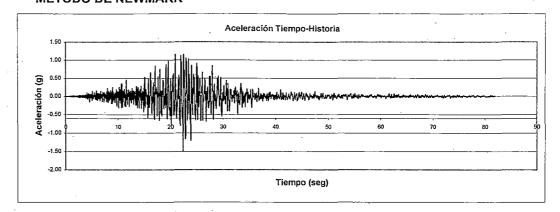


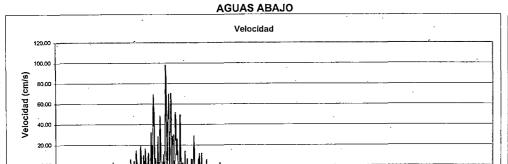


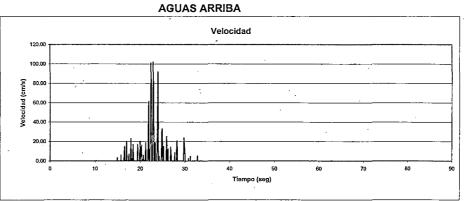


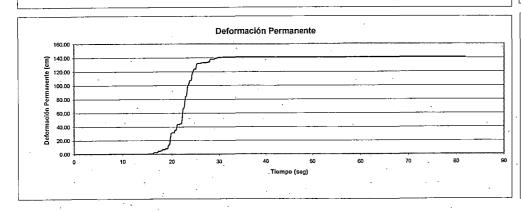

DESLIZAMIENTO Nº 2 RESULTADOS

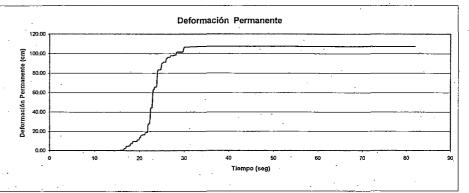

REGOLIADOG		
K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	0.770
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	46.57
Tiempo para Vmax.	(seg)	22.12
Desplazamiento max.	(cm)	38.29
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seġ)	22.38
Velocidad max.	(cm/s)	52.37
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	25.43



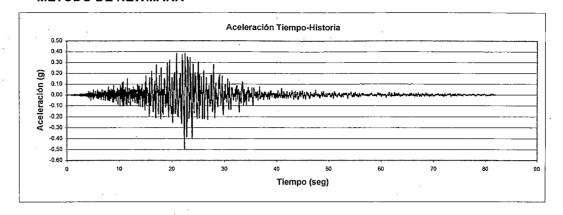


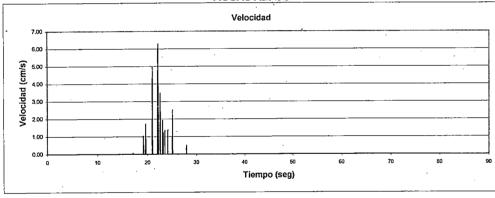

DESLIZAMIENTO Nº 2 RESULTADOS

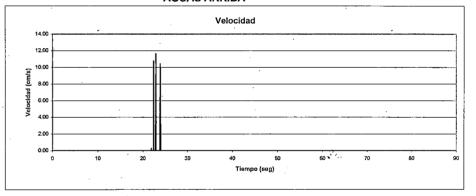

K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	1.154
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	98.09
Tiempo para Vmax.	(seg)	22.12
Desplazamiento max.	(cm)	140.98
Aceleración max (-)	(g)	1.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	102.05
Tiempo para Vmax.	(seg)	22.94
Desplazamiento max.	(cm)	107.37

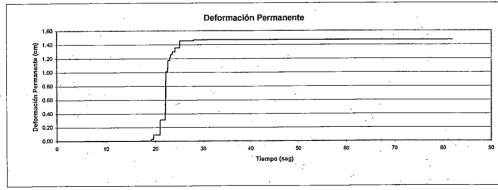


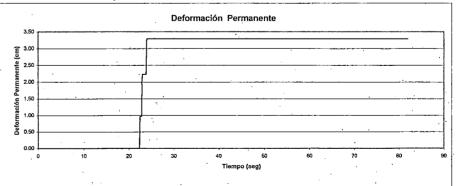
Tiempo (seg)



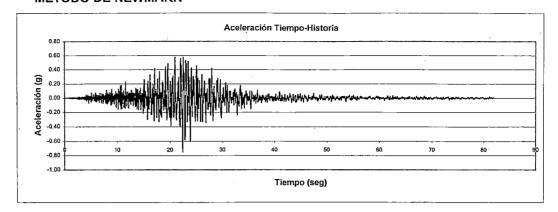


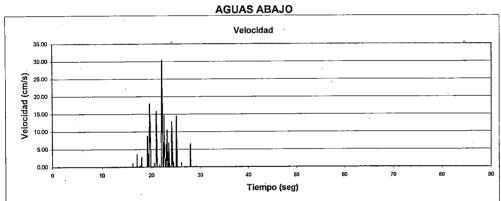

DESLIZAMIENTO Nº 3 RESULTADOS

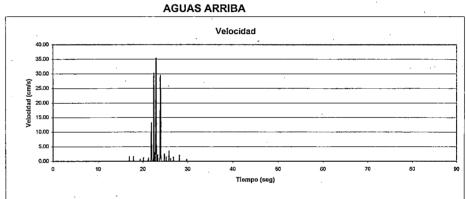

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.385
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	6.19
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	1.47
Aceleración max (-)	(g)	0.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	11.62
Tiempo para Vmax.	(seg)	22.9
Desplazamiento max.	(cm)	3.29

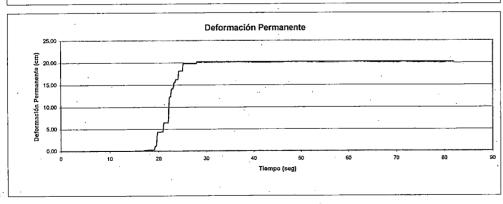


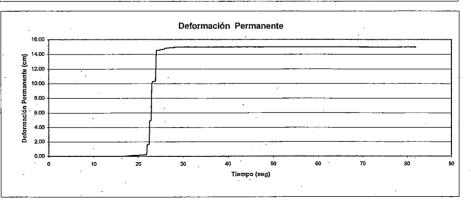
AGUAS ABAJO

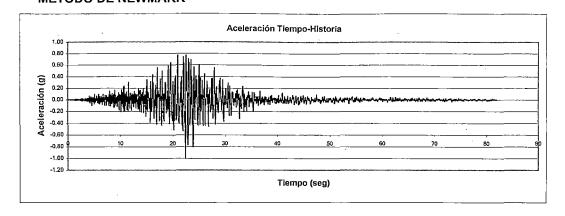


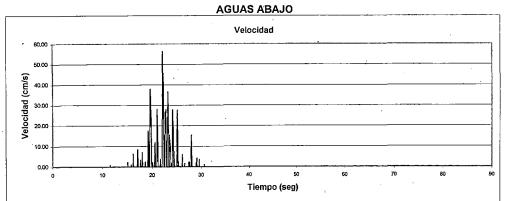


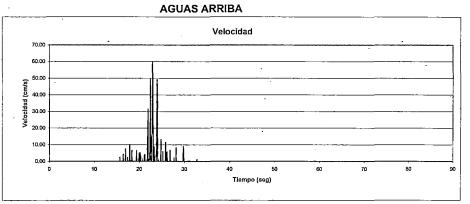


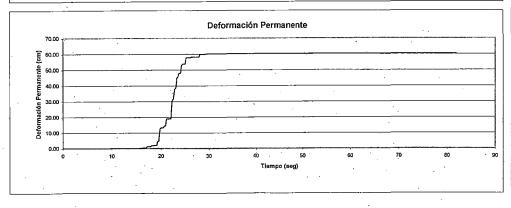

DESLIZAMIENTO Nº 3 RESULTADOS

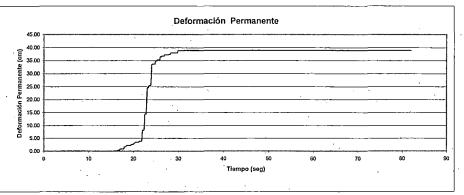

K _Y		0.25
Δt	-	0.02
Aceleración max (+)	(g) .	0.577
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	30.39
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	20.22
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	35.47
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	14.98

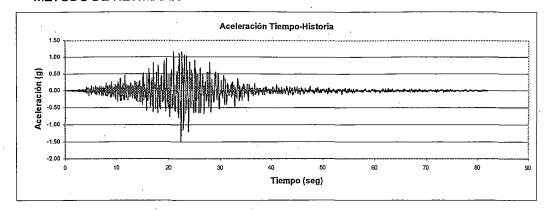


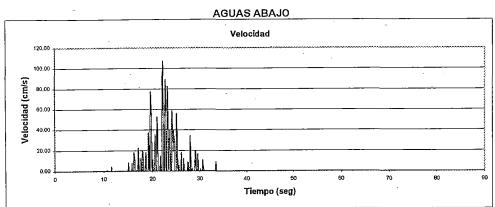


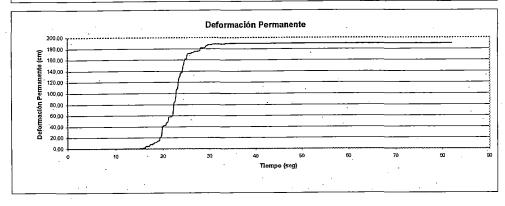


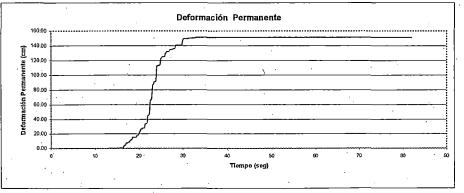

DESLIZAMIENTO Nº 3 RESULTADOS

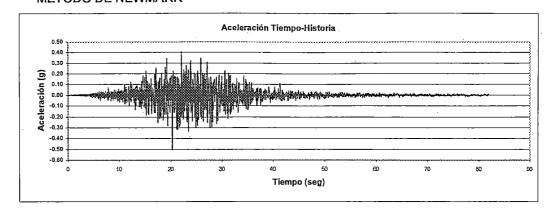

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.770
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	56.31
Tiempo para Vmax.	(seg)	22.12
Desplazamiento max.	(cm)	60.19
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	60.11
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	38.93

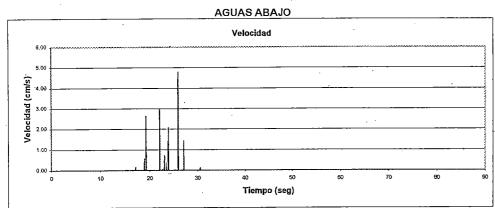


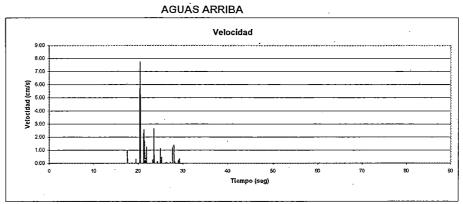


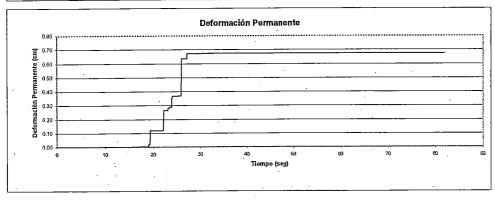

DESLIZAMIENTO N° 3
RESULTADOS

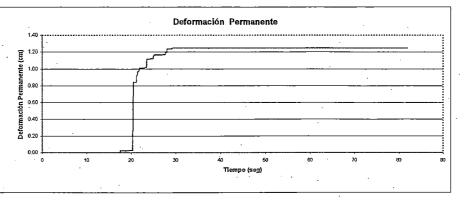

-	0.25
	0.02
(g)	1,154
(seg)	20.92
(cm/s)	107.20
(seg)	22.12
(cm)	189.58
(g)	1.500
(seg)	22.38
(cm/s)	113.82
(seg)	22.42
(cm)	151.33
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

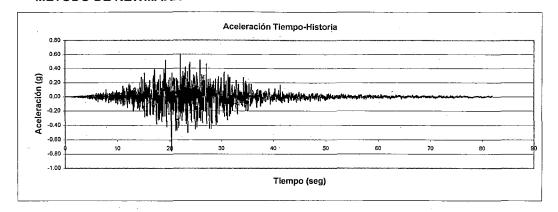


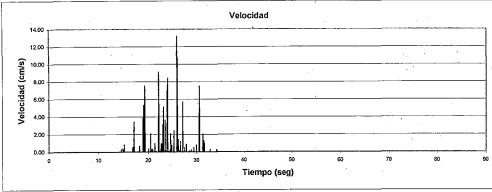


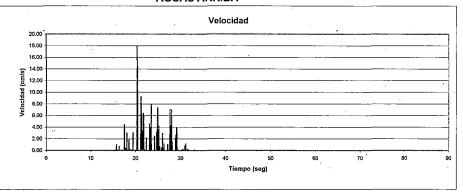

ANÁLISIS DE DEFORMACIONES PERMANENTES PRE-SISMO REGISTRO SANTA TERESA 13 DE ENERO DEL 2001

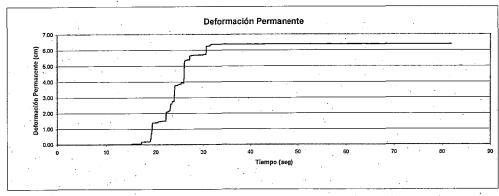

DESLIZAMIENTO Nº 1
RESULTADOS

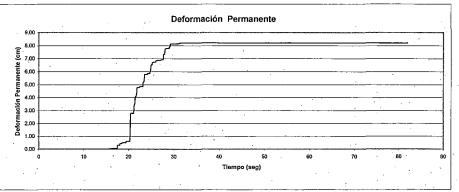

0.21 0.02
0.02
0.02
0.398
22.06
4.78
25.90
0.68
0.500
20.3
7.74
20.34
1.25

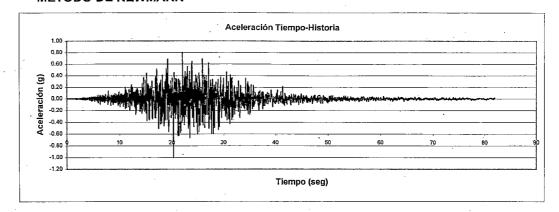


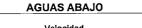


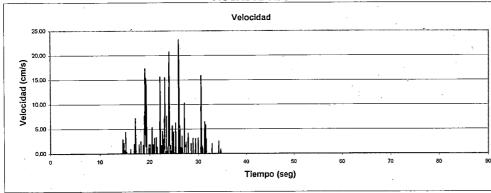

DESLIZAMIENTO Nº 1 RESULTADOS

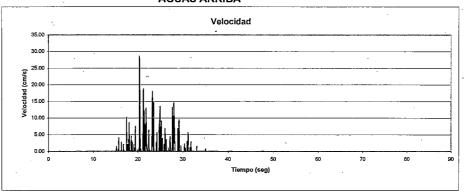

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	0.597
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	13.15
Tiempo para Vmax.	(seg)	25.90
Desplazamiento max.	(cm)	6.38
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	18.00
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	8.21

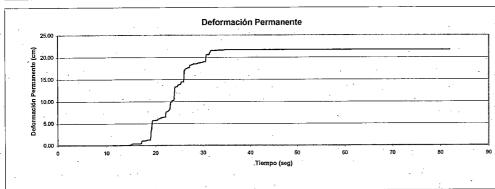


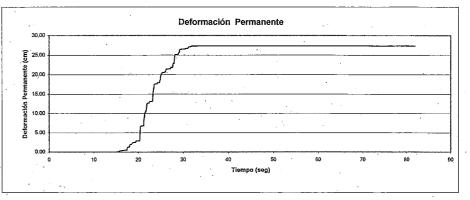


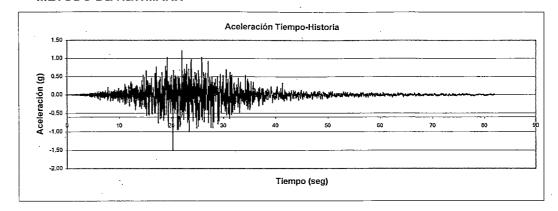


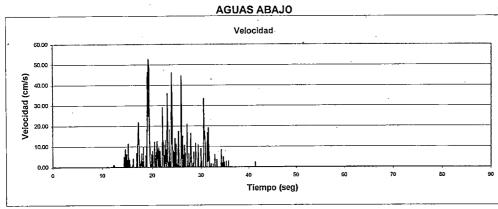


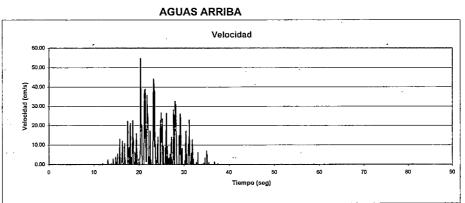

DESLIZAMIENTO Nº 1 RESULTADOS


REGULTADOO		
K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	0.796
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	23.23
Tiempo para Vmax.	(seg)	25.92
Desplazamiento max.	(cm)	21.74
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	28.56
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	27.36

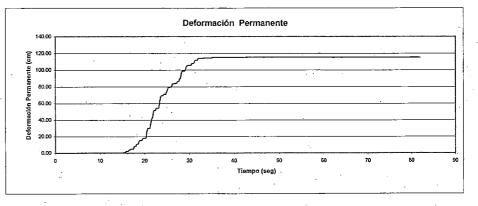


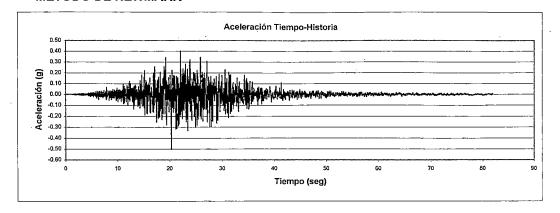


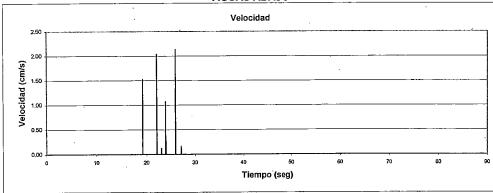


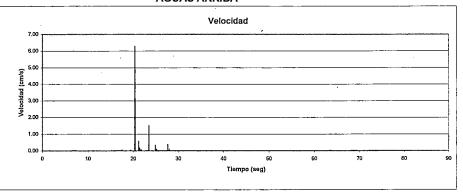


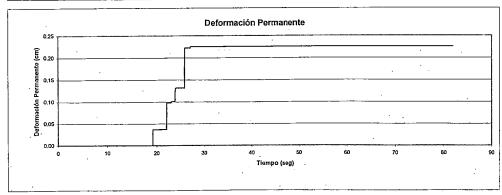
DESLIZAMIENTO Nº 1

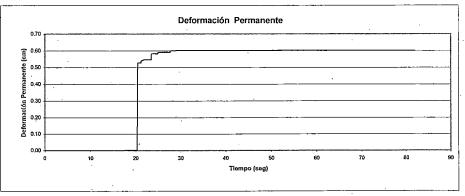

0.21
0 00
0.02
.194
2.06
2.64
9.24
1.94
.500
20.3
4.61
0.34
5.37

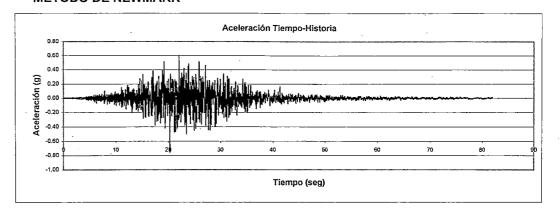


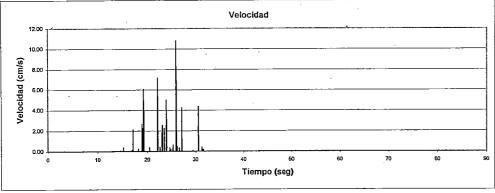


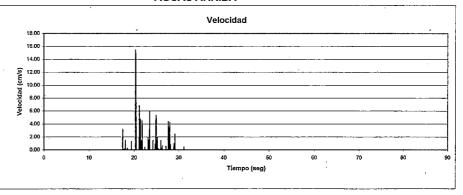

DESLIZAMIENTO N° 1 RESULTADOS

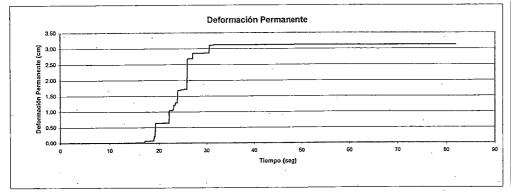

K _Y		0.25
Δt	_	0.02
Aceleración max (+)	(g)	0.398
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	2.13
Tiempo para Vmax.	(seg)	25.88
Desplazamiento max.	(cm)	0.23
Aceleración max (-)	(g)	0.500
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	6.20
Tiempo para Vmax.	(seg)	20.32
Desplazamiento max.	(cm)	0.60

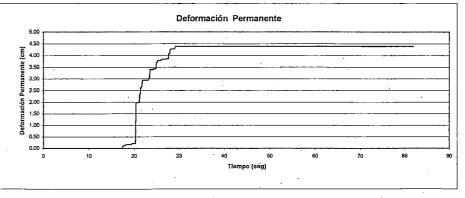


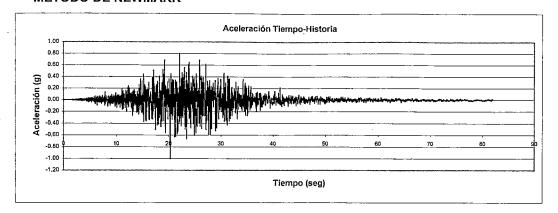


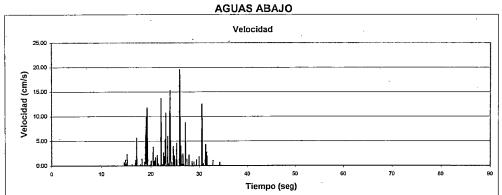


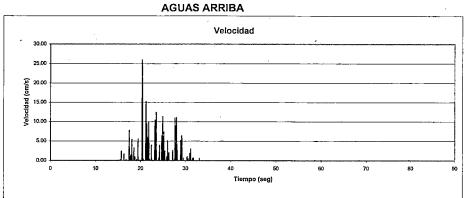

DESLIZAMIENTO Nº 1 RESULTADOS

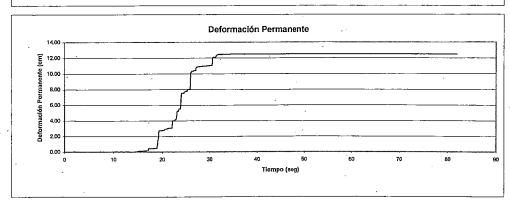

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.597
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	10.78
Tiempo para Vmax.	(seg)	25.90
Desplazamiento max.	(cm)	3.12
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	15.49
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	4.39

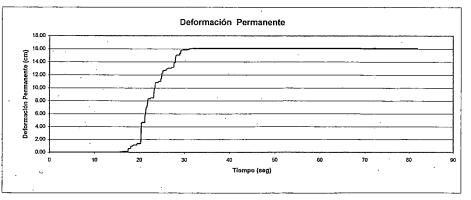


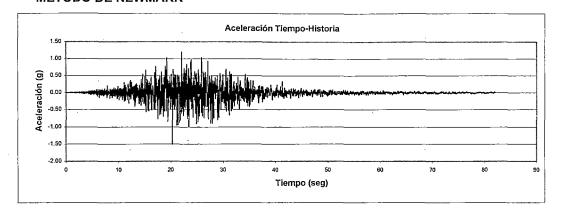


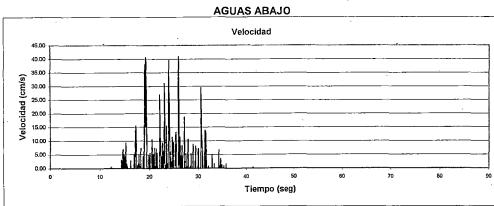


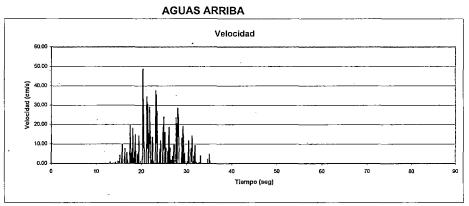


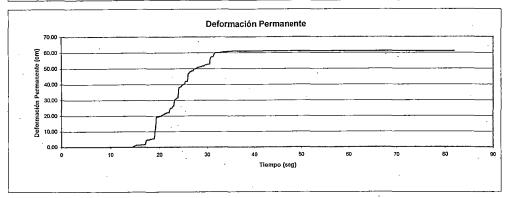

DESLIZAMIENTO Nº 1 RESULTADOS

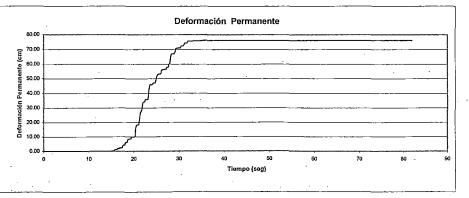

	0.25
	0.02
(g)	0.796
(seg)	22.06
(cm/s)	19.58
(seg)	25.92
(cm)	12.50
(g)	1.000
(seg)	20.3
(cm/s)	25.93
(seg)	20.34
(cm)	16.08
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

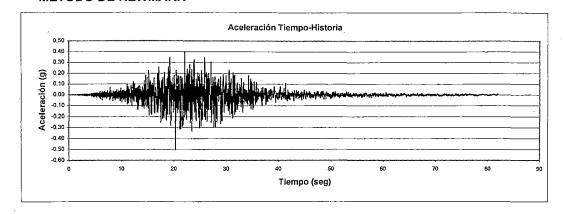


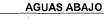


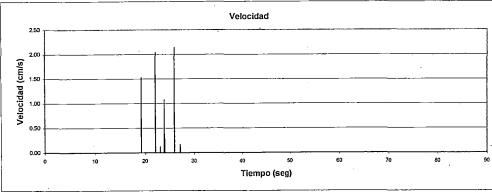


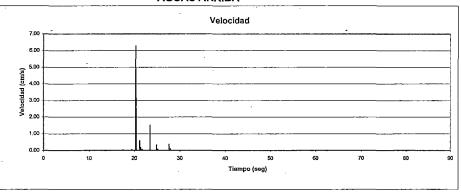

DESLIZAMIENTO Nº 1 RESULTADOS

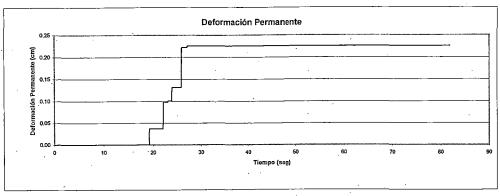

	0.25
	0.02
(g)	1.194
(seg)	22.06
(cm/s)	40.88
(seg)	25.92
(cm)	61.16
(g)	1.500
(seg)	20.3
(cm/s)	48.48
(seg)	20.34
(cm)	76.16
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

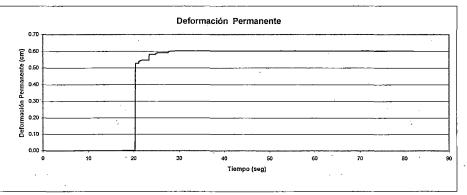


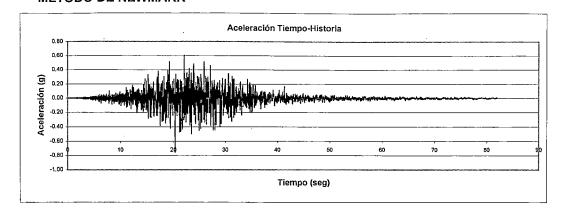


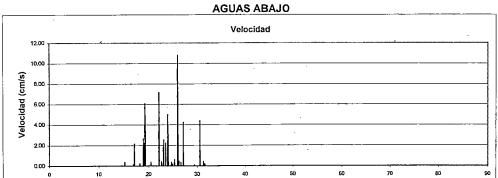


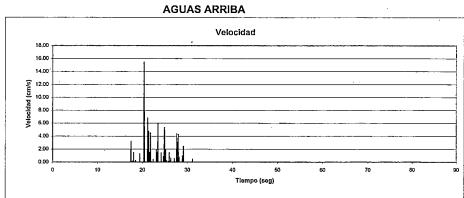

DESLIZAMIENTO Nº 2 RESULTADOS

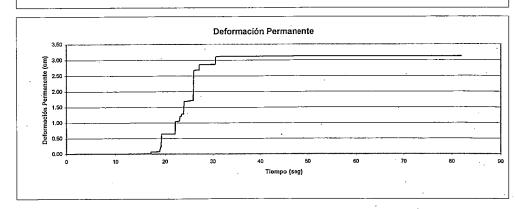

KLOULIADOO		
K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.398
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	2.13
Tiempo para Vmax.	(seg)	25.88
Desplazamiento max.	(cm)	0.23
Aceleración max (-)	(g)	0.500
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	6.20
Tiempo para Vmax.	(seg)	20.32
Desplazamiento max.	(cm)	0.60

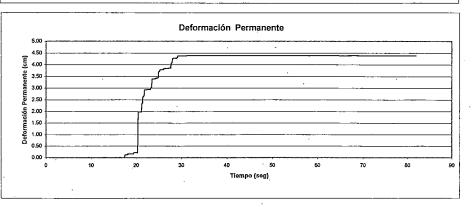




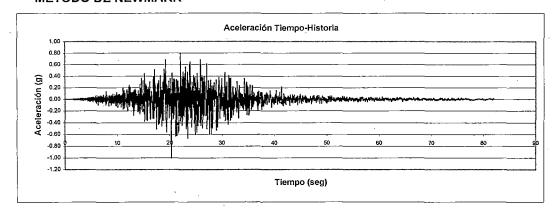


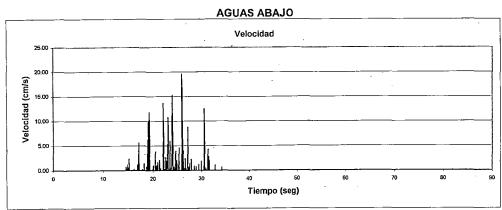

DESLIZAMIENTO Nº 2 RESULTADOS

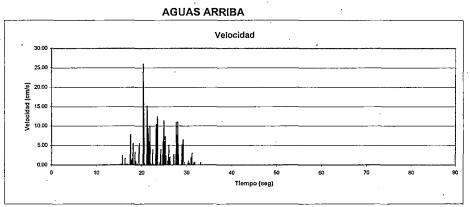

K _Y		0.25
Δŧ		0.02
Aceleración max (+)	(g)	0.597
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	10.78
Tiempo para Vmax.	(seg)	25.90
Desplazamiento max.	(cm)	3.12
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	15.49
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	4.39

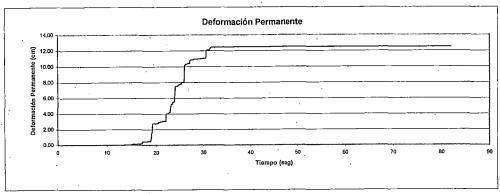


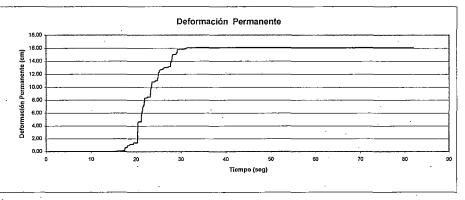
Tiempo (seg)

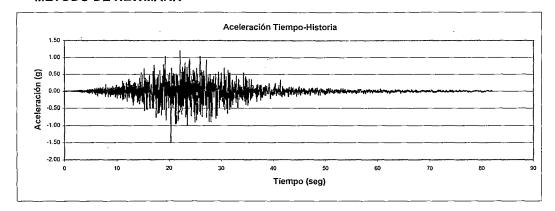


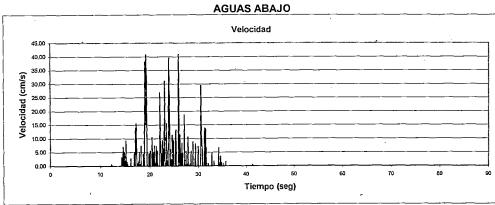


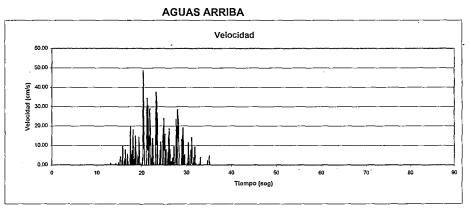


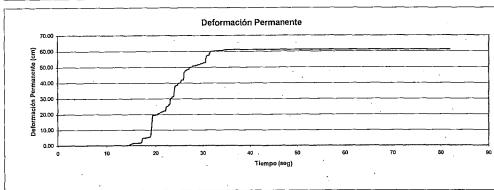

DESLIZAMIENTO N° 2 RESULTADOS

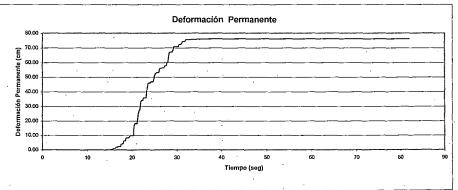

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.796
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	19.58
Tiempo para Vmax.	(seg)	25.92
Desplazamiento max.	(cm)	12.50
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	25.93
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	16.08

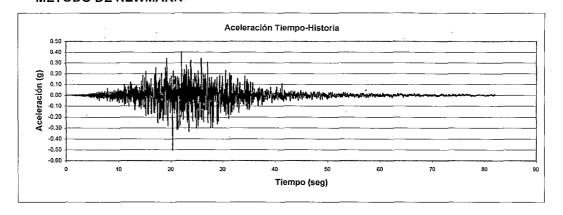


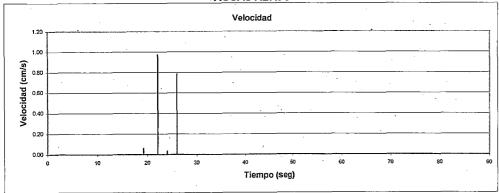


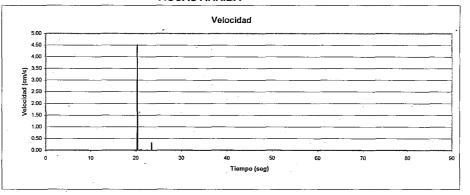


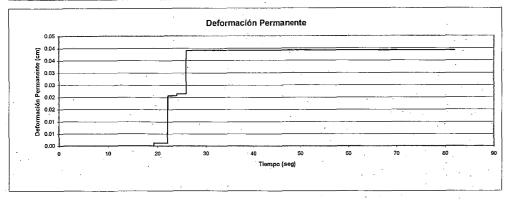

DESLIZAMIENTO N° 2 RESULTADOS

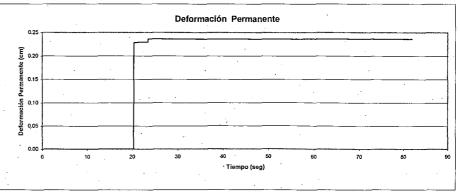

KEGGETADOG		
K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	1.194
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	40.88
Tiempo para Vmax.	(seg)	25.92
Desplazamiento max.	(cm)	61.16
Aceleración max (-)	(g)	1.500
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	48.48
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	76.16

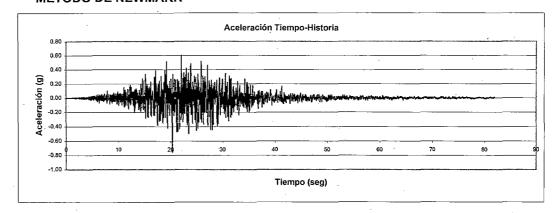


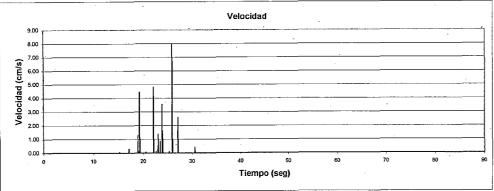


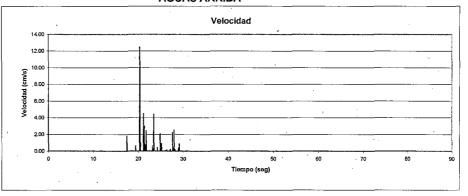

DESLIZAMIENTO Nº 2 RESULTADOS

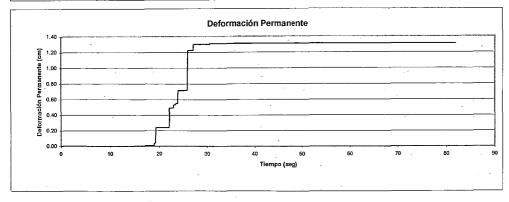

KESSETADOS		
K _Y	•	0.3
Δ t		0.02
Aceleración max (+)	(g)	0.398
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	0.98
Tiempo para Vmax.	(seg)	22.06
Desplazamiento max.	(cm)	0.04
Aceleración max (-)	(g)	0.500
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	4.49
Tiempo para Vmax.	(seg)	20.32
Desplazamiento max.	(cm)	0.24

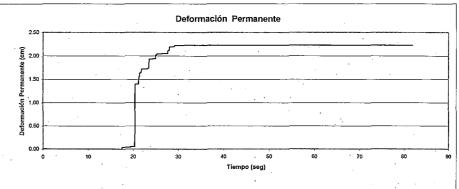


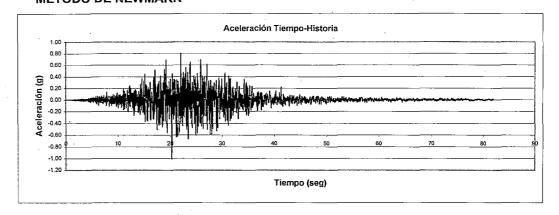


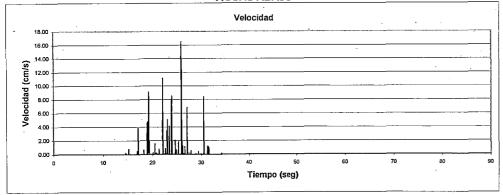


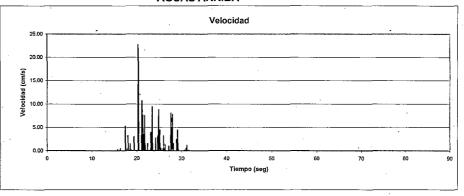

DESLIZAMIENTO Nº 2 RESULTADOS

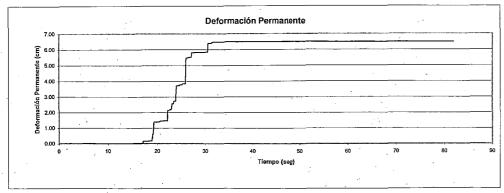

K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	0.597
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	7.97
Tiempo para Vmax.	(seg)	25.90
Desplazamiento max.	(cm)	1.31
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	12.49
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	2.23

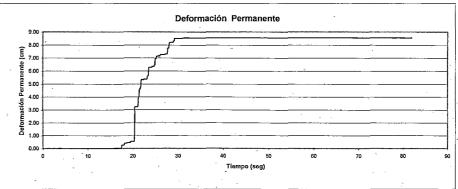


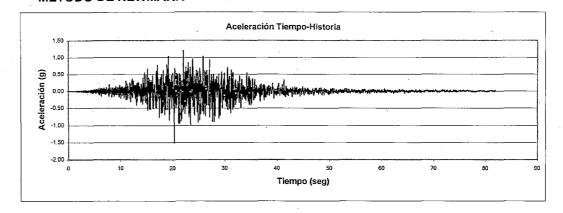


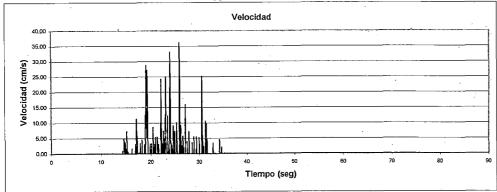


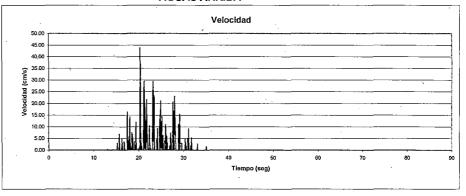

DESLIZAMIENTO N° 2 RESULTADOS

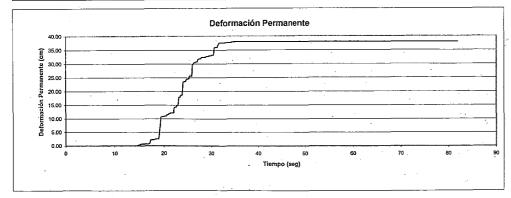

K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	0.796
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	16.33
Tiempo para Vmax.	(seg)	25.90
Desplazamiento max.	(cm)	6.49
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	22.73
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	8.55

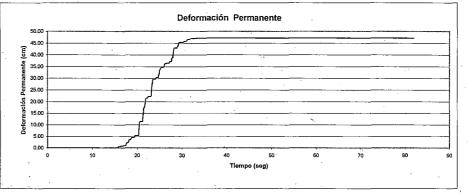


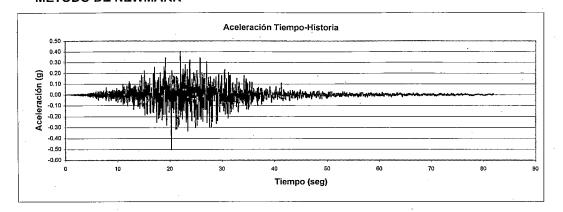


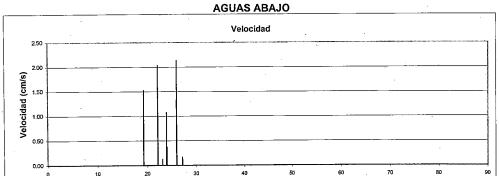


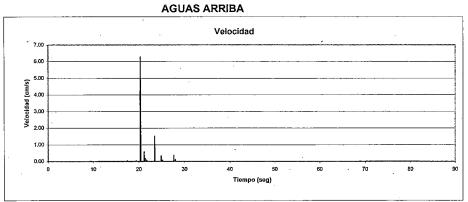

DESLIZAMIENTO Nº 2 RESULTADOS

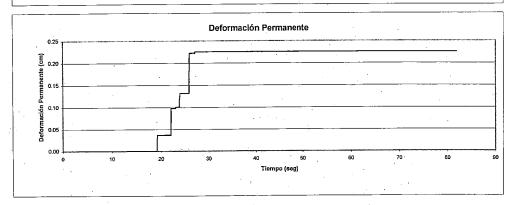

K _Y	-	0.3
Δt	-	0.02
Aceleración max (+)	(g)	1.194
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	36.23
Tiempo para Vmax.	(seg)	25.92
Desplazamiento max.	(cm)	37.94
Aceleración max (-)	(g)	1.500
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	43.85
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	47.15

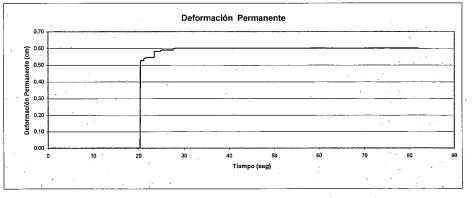




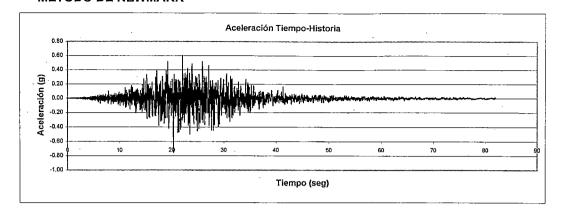


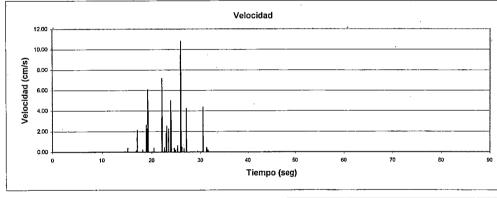

DESLIZAMIENTO Nº 3 RESULTADOS

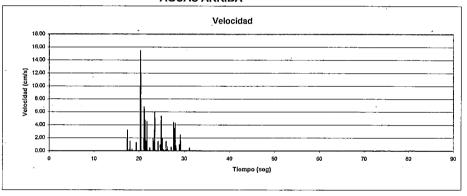

	0.25
_	0.02
(g)	0.398
(seg)	22.06
(cm/s)	2.13
(seg)	25.88
(cm)	0.23
(g)	0.500
(seg)	20.3
(cm/s)	6.20
(seg)	20.32
(cm)	0.60
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

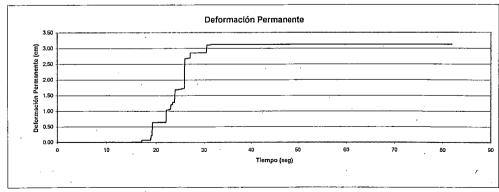


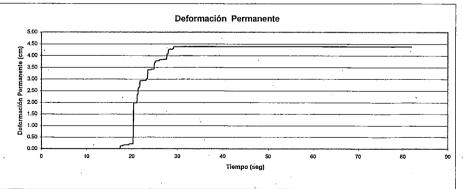
Tiempo (seg)

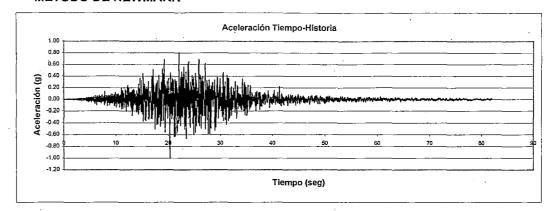


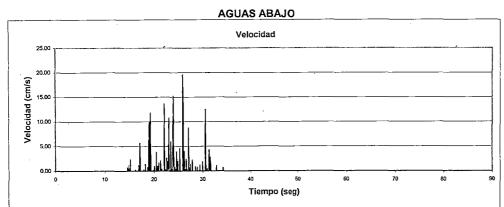


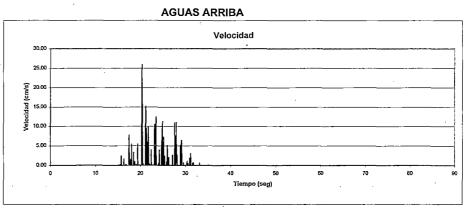

DELIZAMIENTO Nº 3 RESULTADOS

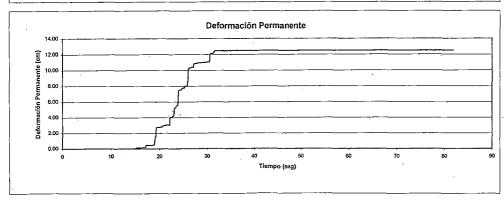

K _Y		0.25
Δt	-	0.02
Aceleración max (+)	(g)	0.597
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	10.78
Tiempo para Vmax.	(seg)	25.90
Desplazamiento max.	(cm)	3.12
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	15.49
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	4.39

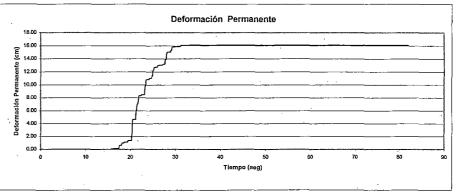


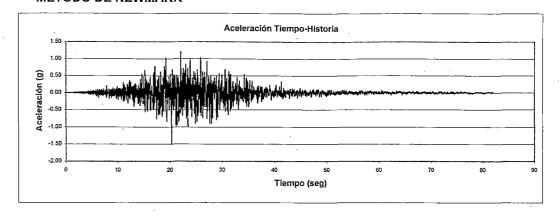


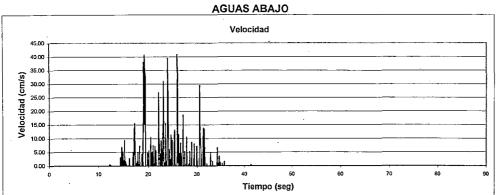


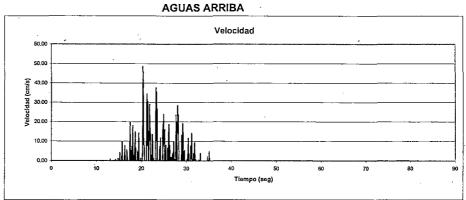


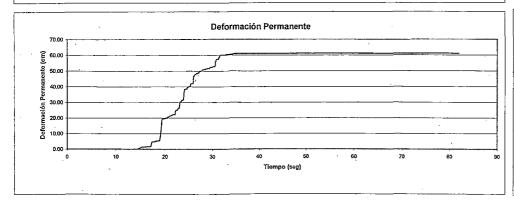


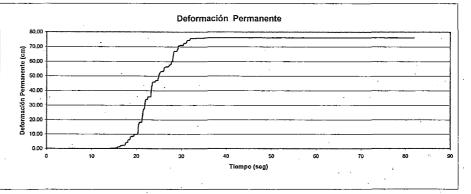

	0.25
	0.02
(g)	0.796
(seg)	22.06
(cm/s)	19.58
(seg)	25.92
(cm)	12.50
(g)	1.000
(seg)	20.3
(cm/s)	25.93
(seg)	20.34
(cm)	16.08
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

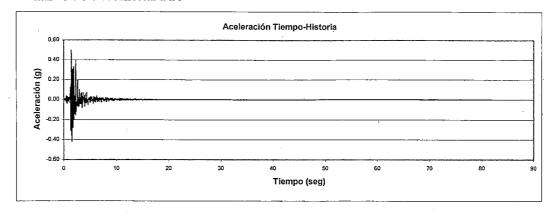


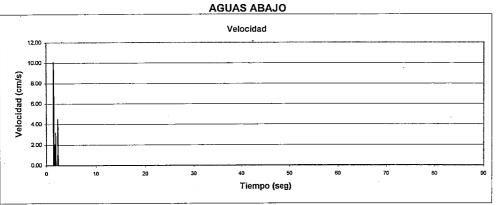


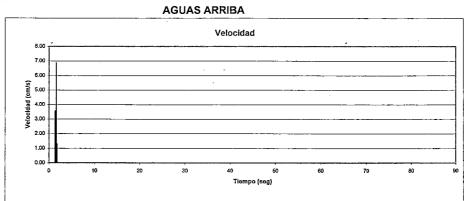


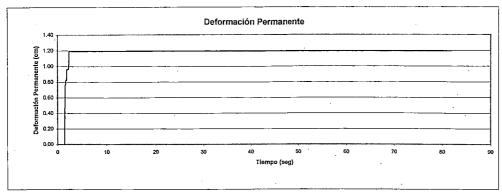


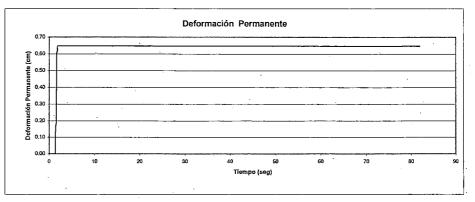

INEGULIADOS.		
K _Y	•	0.25
Δt	-	0.02
Aceleración max (+)	(g)	1.194
Tiempo para Amax	(seg)	22.06
Velocidad max.	(cm/s)	40.88
Tiempo para Vmax.	(seg)	25.92
Desplazamiento max.	(cm)	61.16
Aceleración max (-)	(g)	1.500
Tiempo para Amax	(seg)	20.3
Velocidad max.	(cm/s)	48.48
Tiempo para Vmax.	(seg)	20.34
Desplazamiento max.	(cm)	76.16

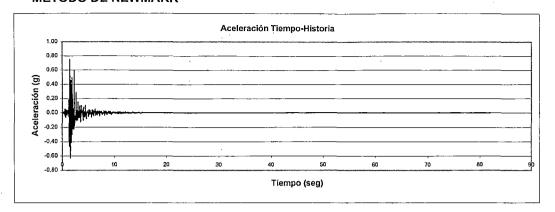


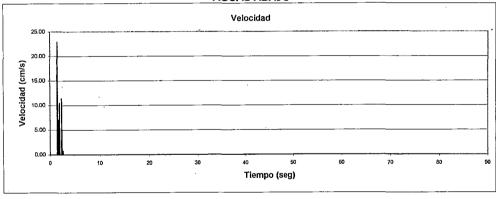


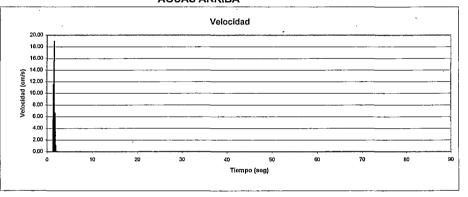


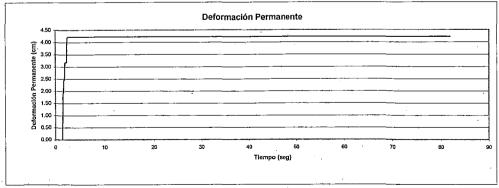

ANÁLISIS DE DEFORMACIONES PERMANENTES PRE-SISMO REGISTRO SANTA GERTRUDIS 13 DE FEBRERO DEL 2001

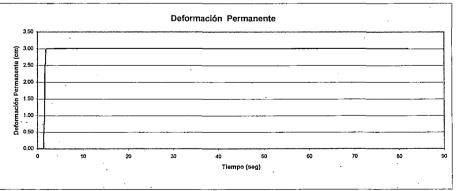

K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	0.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	10.09
Tiempo para Vmax.	(seg)	1.46
Desplazamiento max.	(cm)	1.19
Aceleración max (-)	(g)	0.419
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	6.86
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	0.65

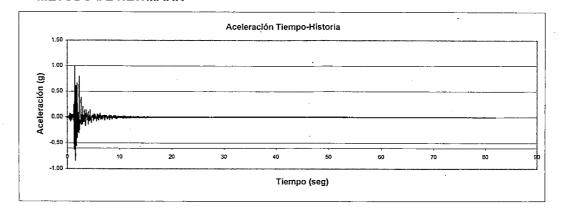


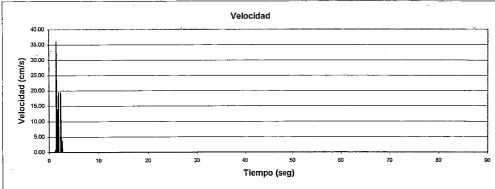


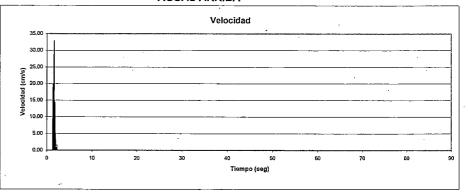

DESLIZAMIENTO Nº 1 RESULTADOS

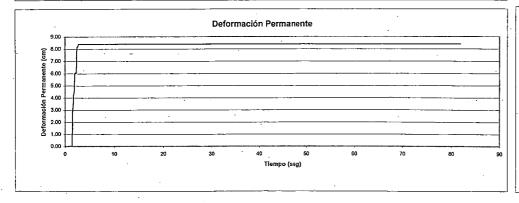

	0.21
	0.02
(g)	0.750
(seg)	1.44
(cm/s)	22.95
(seg)	1.48
(cm)	4.23
(g)	0.629
(seg)	1.56
(cm/s)	19.00
(seg)	1.6
(cm)	3.01
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

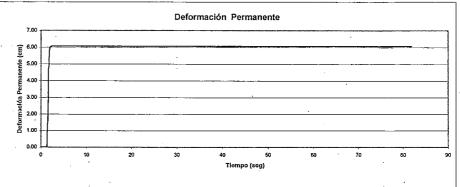




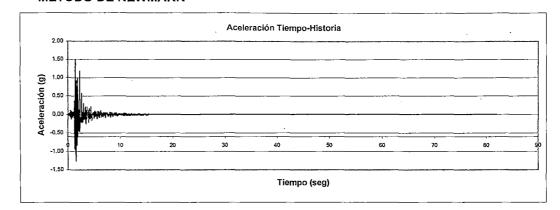


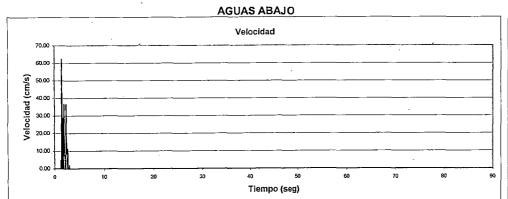

DESLIZAMIENTO Nº 1 RESULTADOS

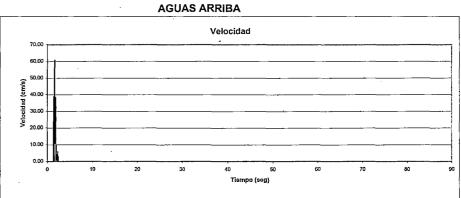

K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	1.000
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	36.03
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	8.39
Aceleración max (-)	(g)	0.838
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	32.92
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	6.07

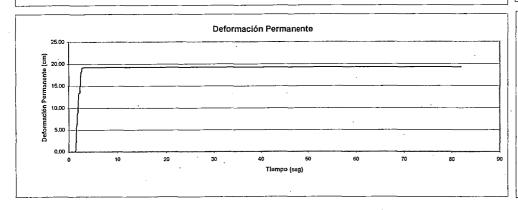


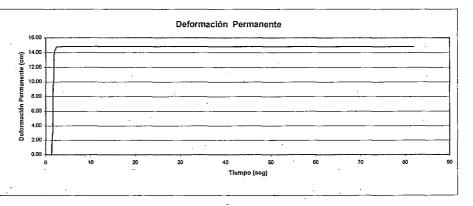
AGUAS ABAJO

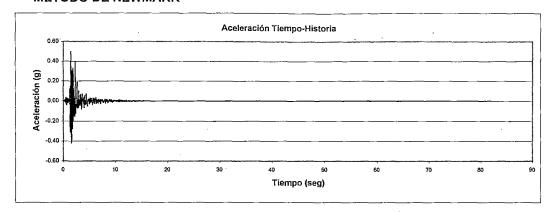


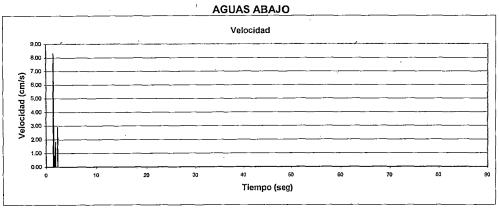


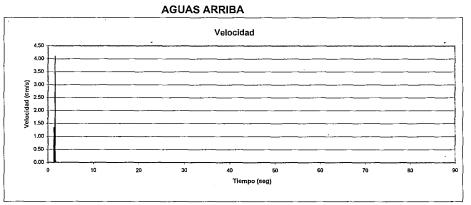


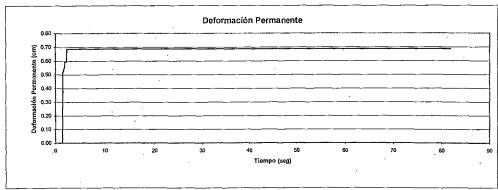


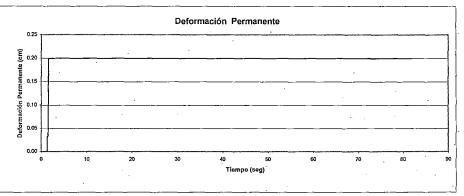

K _Y		0.21
Δt		0.02
Aceleración max (+)	(g)	1.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	62.30
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	19.28
Aceleración max (-)	(g)	1.257
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	60.99
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	14.80

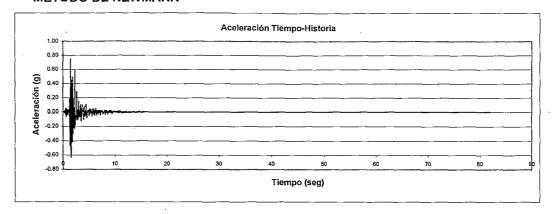


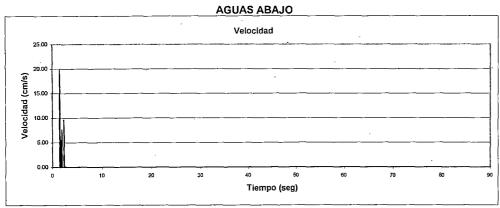


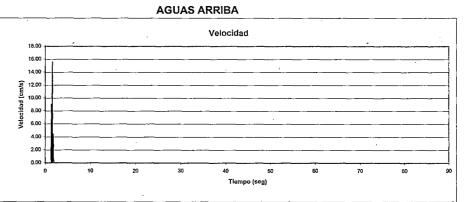


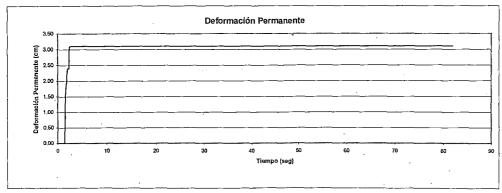


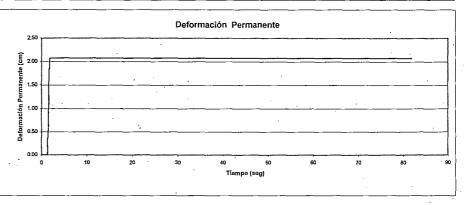

	0.25
	0.02
(g)	0.500
(seg)	1.44
(cm/s)	8.19
(seg)	1.46
(cm) _	0.69
(g)	0.419
(seg)_	1.56
(cm/s)	4.11
(seg)	1.58
(cm)	0.20
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

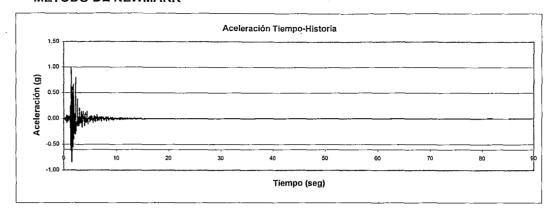


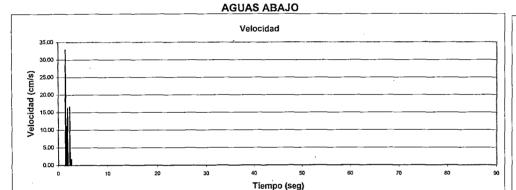


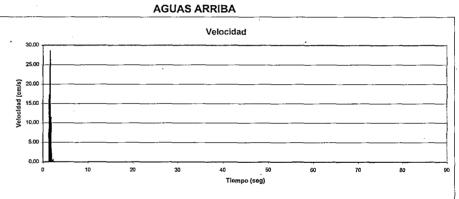


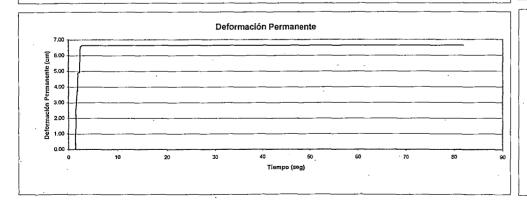


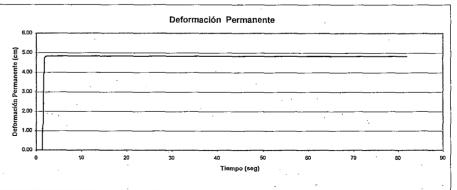

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.750
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	19.91
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	3.10
Aceleración max (-)	(g)	0.629
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	15.52
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	2.08

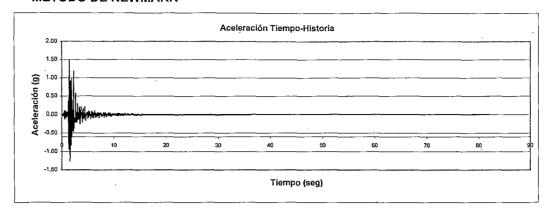


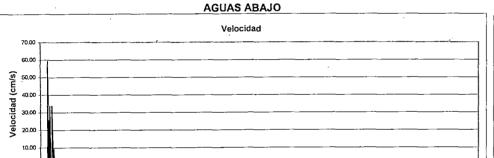







K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	1.000
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	32.91
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	6.64
Aceleración max (-)	(g)	0.838
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	28.56
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	4.83

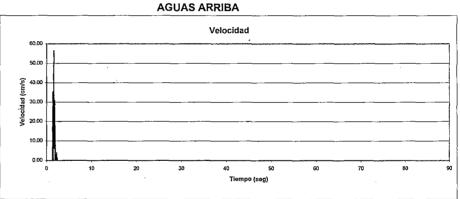

DESLIZAMIENTO Nº 1
RESULTADOS

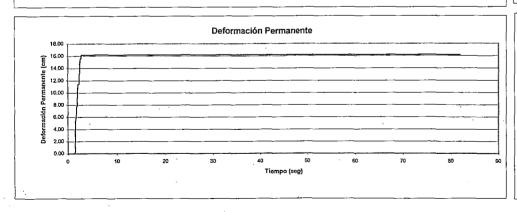

0.00

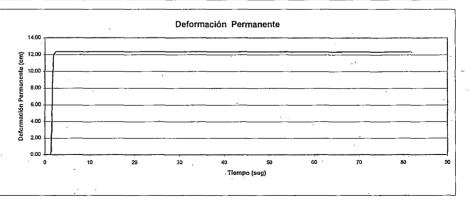
	0.25
	0.02
(g)	1.500
(seg)	1.44
(cm/s)	59.18
(seg)	1.48
(cm)	16.20
(g)	1.257
(seg)	1.56
(cm/s)	56.53
(seg)	1.6
(cm)	12.33
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

20

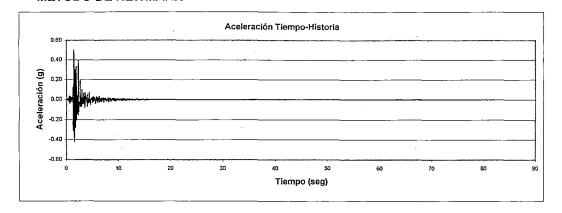
30

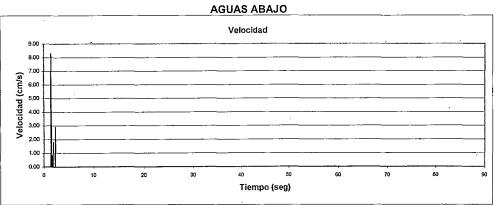


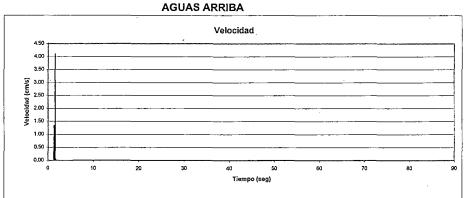


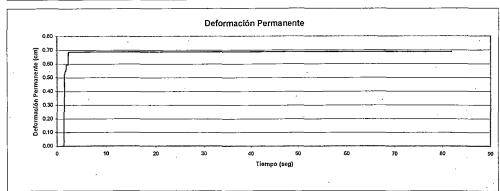

Tiempo (seg)

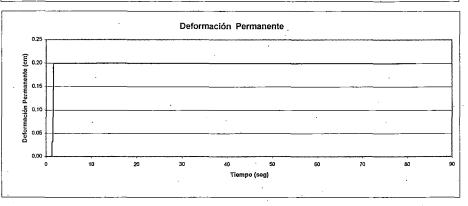
70

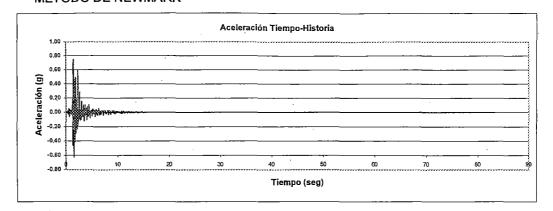

80

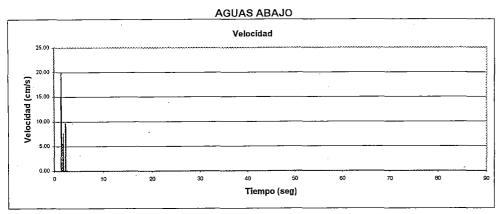


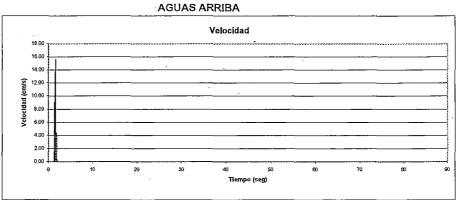


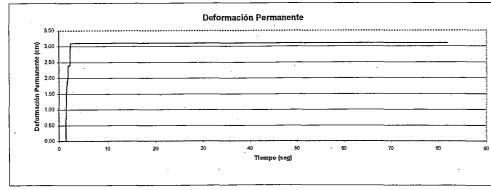


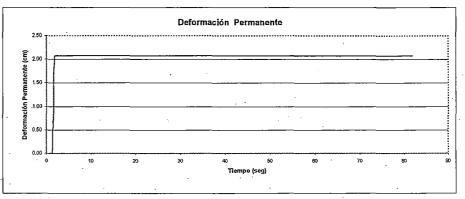

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	8.19
Tiempo para Vmax.	(seg)	1.46
Desplazamiento max.	(cm)	0.69
Aceleración max (-)	(g)	0.419
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	4.11
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	0.20

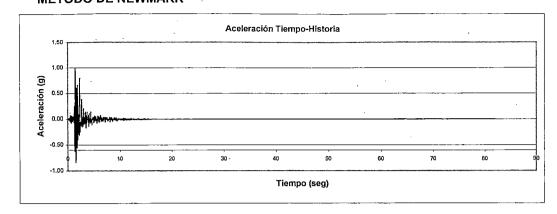


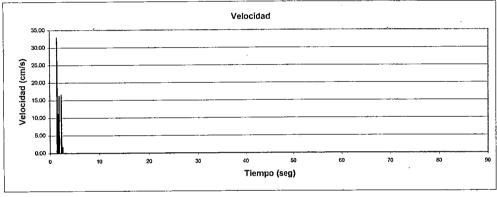


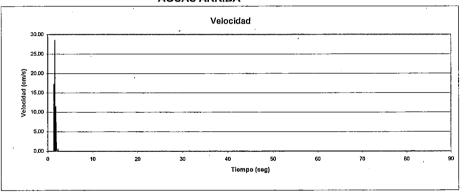


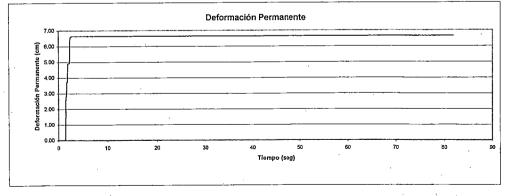


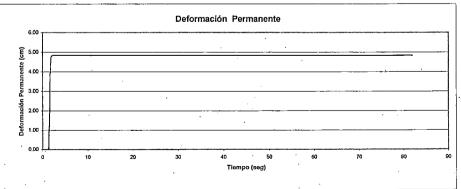

0.25 0.02 .750
.750
1.44
9.91
1.48
3.10
.629
1.56
5.52
1.58
2.08
)

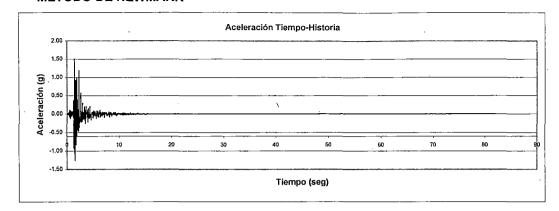


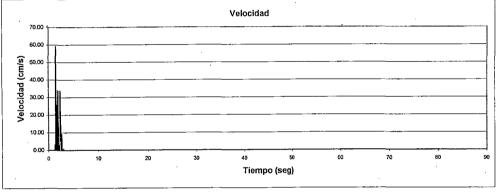


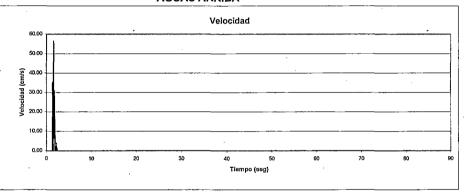

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	1.000
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	32.91
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	6.64
Aceleración max (-)	(g)	0.838
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	28.56
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	4.83

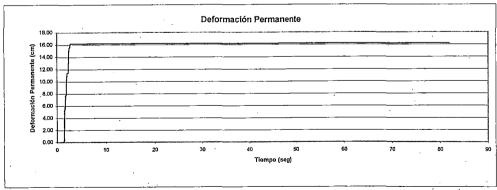


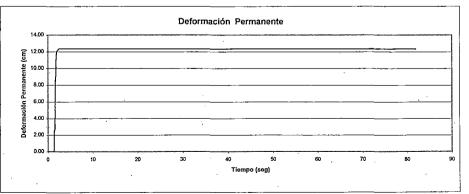







DESLIZAMIENTO Nº 2 RESULTADOS

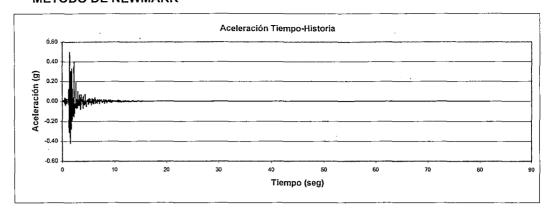

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	1.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	59.18
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	16.20
Aceleración max (-)	(g)	1.257
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	56.53
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	12.33

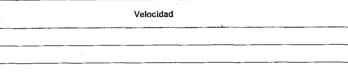


80

DESLIZAMIENTO N° 2 RESULTADOS

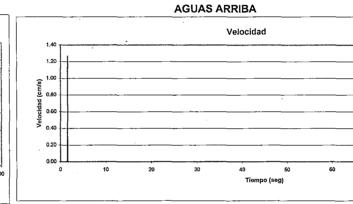
6.00

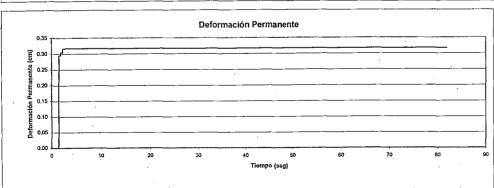

Velocidad (cm/s)

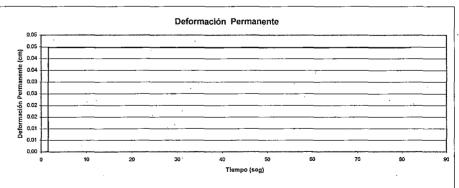

1,00

NEGOE! ADOC		
K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	0.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	5.93
Tiempo para Vmax.	(seg)	1.46
Desplazamiento max.	(cm)	0.32
Aceleración max (-)	(g)	0.419
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	1.24
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	0.04

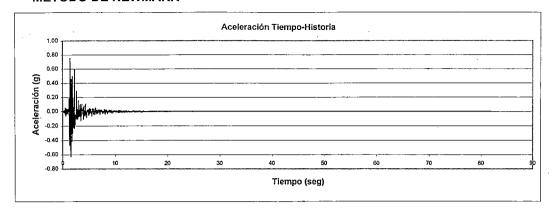
20

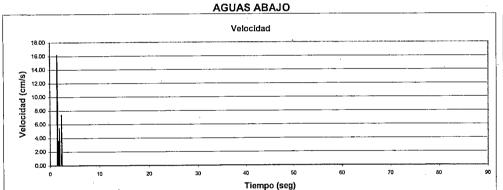

30

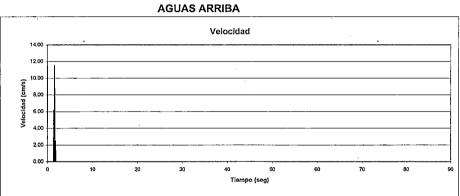


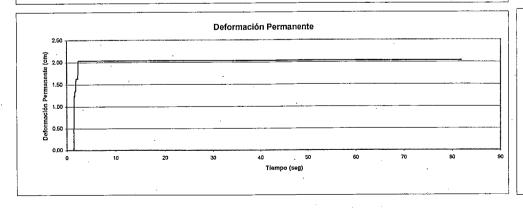


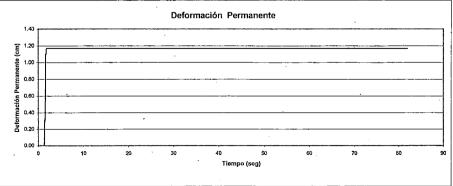
Tiempo (seg)

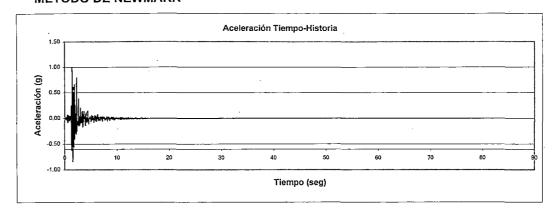

AGUAS ABAJO

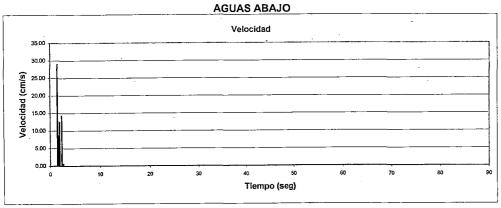


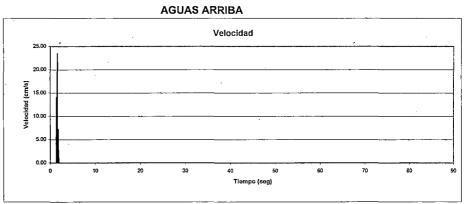


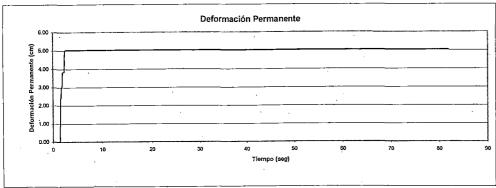


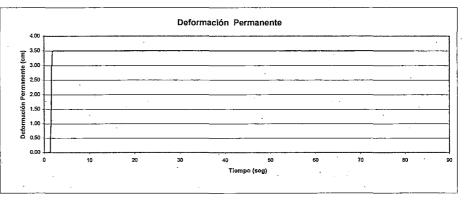

KESULTADOU		
K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	0.750
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	16.20
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	2.04
Aceleración max (-)	(g)	0.629
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	11.48
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	1.17

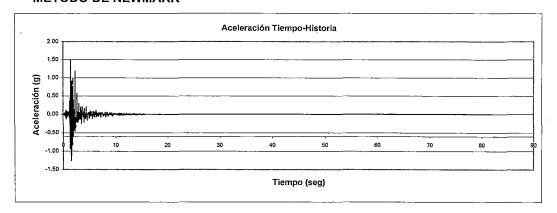


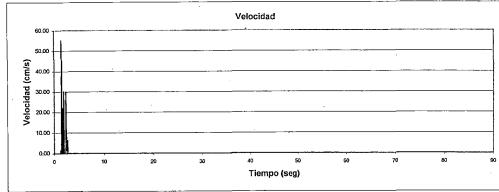


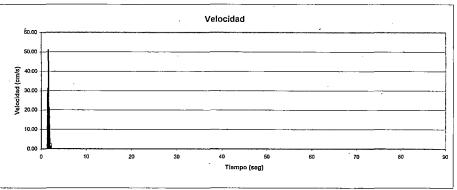


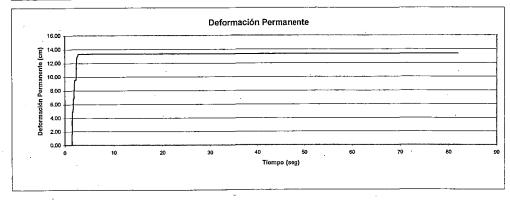


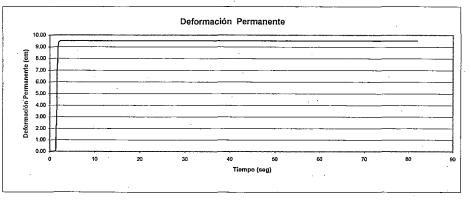

K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	1.000
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	29.07
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	5.04
Aceleración max (-)	(g)	0.838
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	23.45
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	3.50

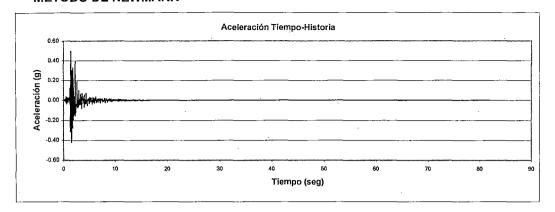


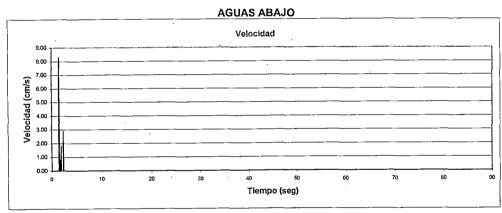


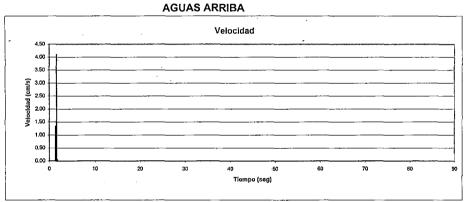

DESLIZAMIENTO Nº 2 RESULTADOS

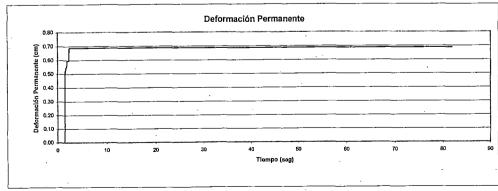

KE30ETADO3		
K _Y		0.3
Δt		0.02
Aceleración max (+)	(g)	1.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	55.22
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	13.34
Aceleración max (-)	(g)	1.257
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	51.02
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	9.52

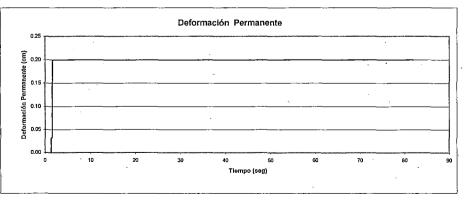


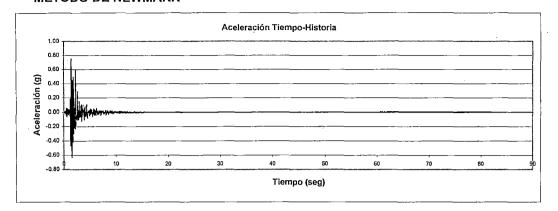


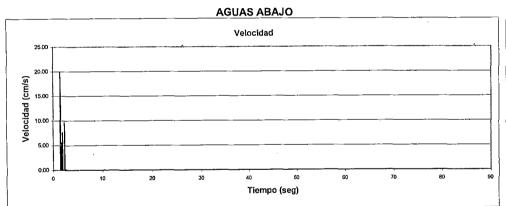


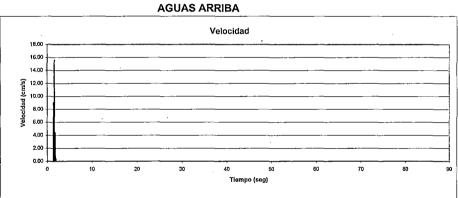


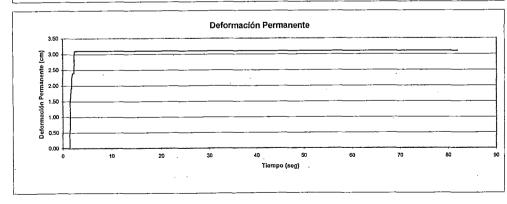


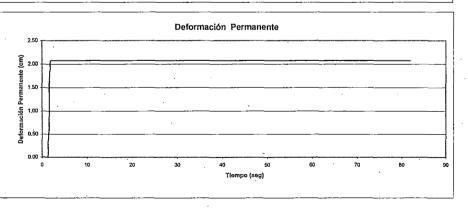

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	8.19
Tiempo para Vmax.	(seg)	1.46
Desplazamiento max.	(cm)	0.69
Aceleración max (-)	(g).	0.419
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	4.11
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	0.20

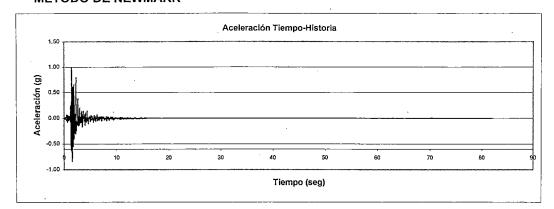


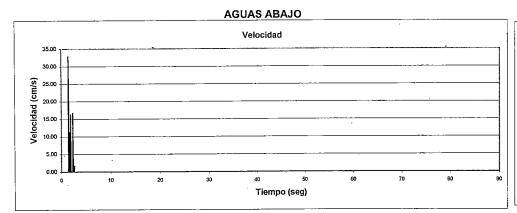


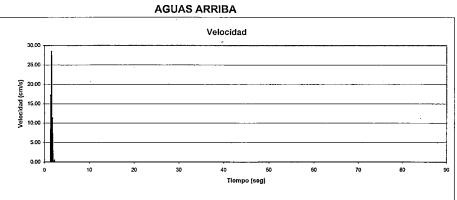


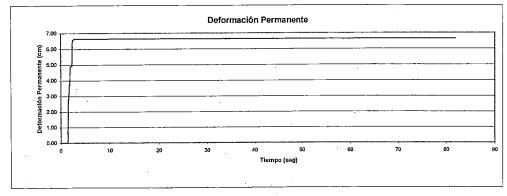

DESLIZAMIENTO Nº 3

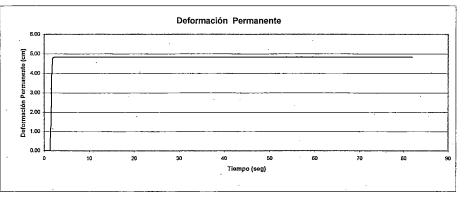

KESULIADOS		
K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	0.750
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	19.91
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	3.10
Aceleración max (-)	(g)	0.629
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	15.52
Tiempo para Vmax.	(seg)	1.58
Desplazamiento max.	(cm)	2.08

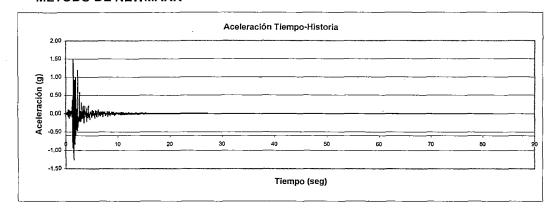


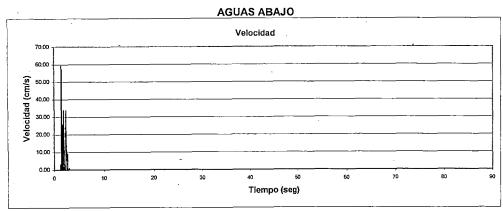


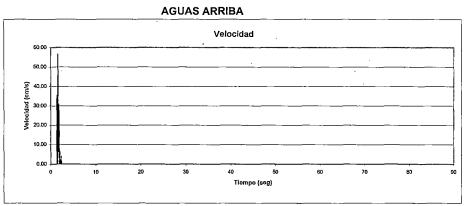


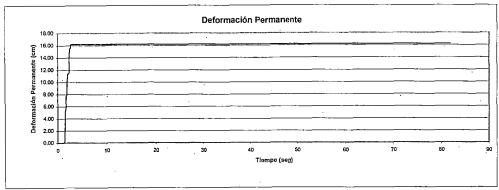

DESLIZAMIENTO N° 3
RESULTADOS

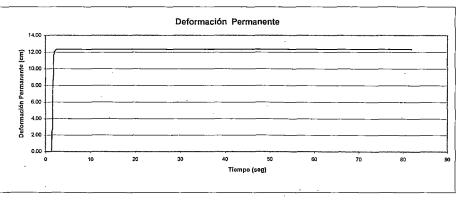

KESULTADOS		
K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	1.000
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	32.91
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	6.64
Aceleración max (-)	(g)	0.838
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	28.56
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	4.83

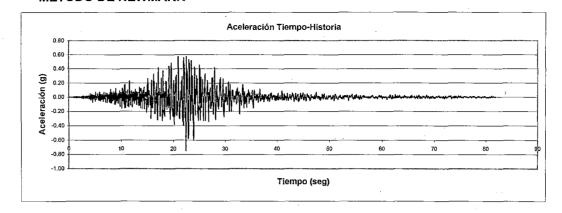


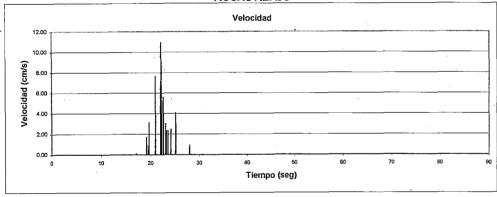


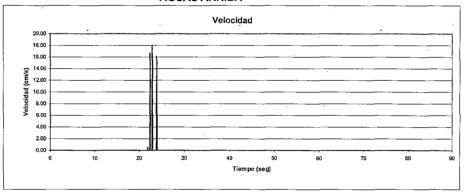


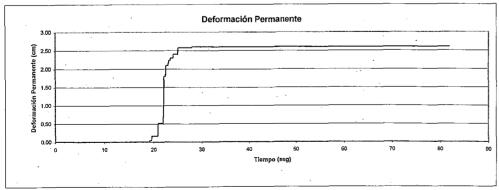


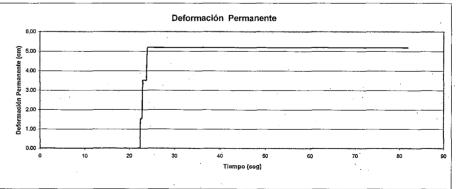

K _Y		0.25
Δt		0.02
Aceleración max (+)	(g)	1.500
Tiempo para Amax	(seg)	1.44
Velocidad max.	(cm/s)	59.18
Tiempo para Vmax.	(seg)	1.48
Desplazamiento max.	(cm)	16.20
Aceleración max (-)	(g)	1.257
Tiempo para Amax	(seg)	1.56
Velocidad max.	(cm/s)	56.53
Tiempo para Vmax.	(seg)	1.6
Desplazamiento max.	(cm)	12.33

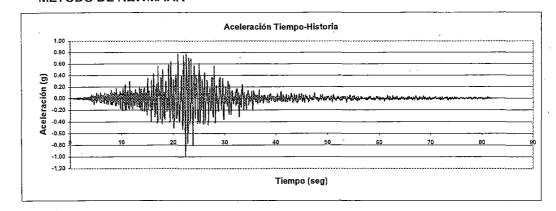


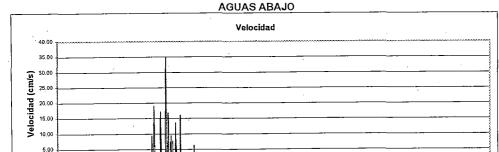

ANÁLISIS DE DEFORMACIONES PERMANENTES POST-SISMO REGISTRO NONUALCO


DESLIZAMIENTO Nº 1 RESULTADOS


K _Y		0.37
Δt		0.02
Aceleración max (+)	(g)	0.577
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	10.83
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	2.60
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	18.04
Tiempo para Vmax.	(seg)	22.9
Desplazamiento max.	(cm)	5.19

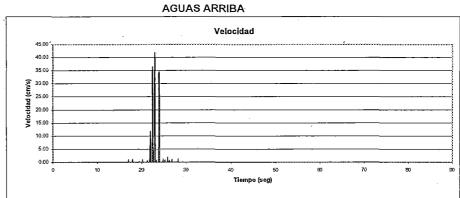


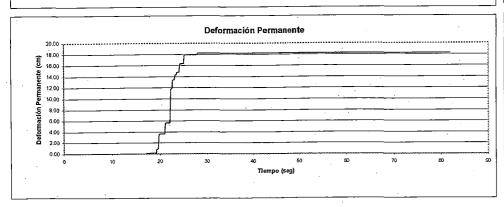


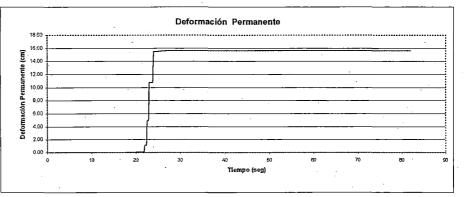


DESLIZAMIENTO Nº 1 RESULTADOS

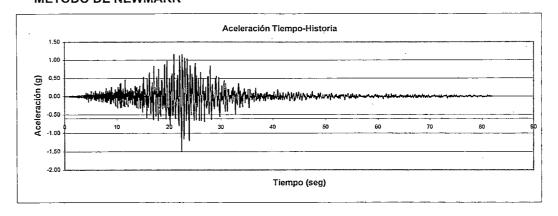
	0.37
<u>.</u>	0.02
(g)	0.770
(seg)	20.92
(cm/s)	34.87
(seg)	22.10
(cm)	18.22
(g)	1.000
(seg)	22.38
(cm/s)	41.78
(seg)	22.92
(cm)	15.65
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

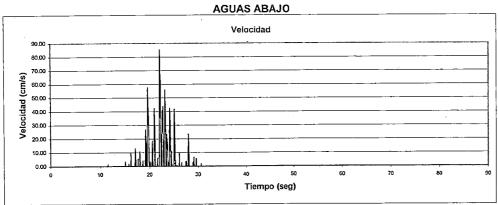



40

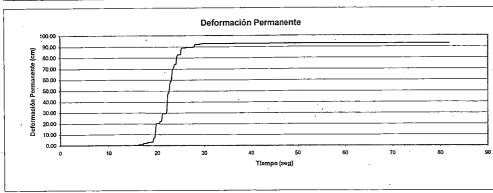

Tiempo (seg)

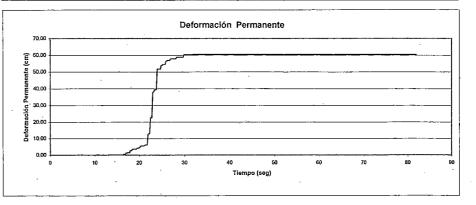
30

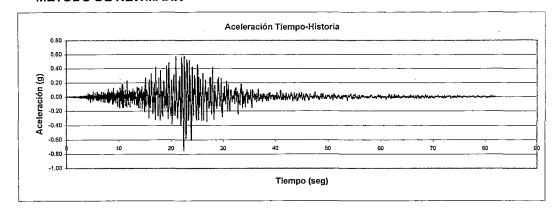

70

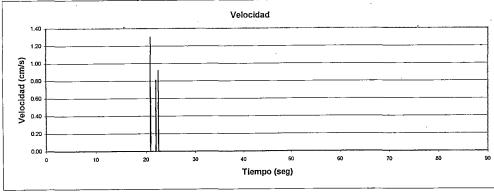


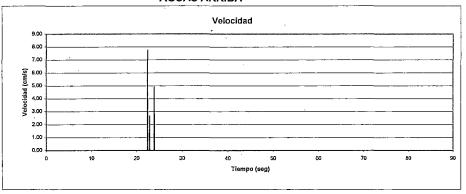


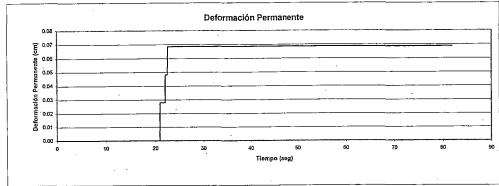


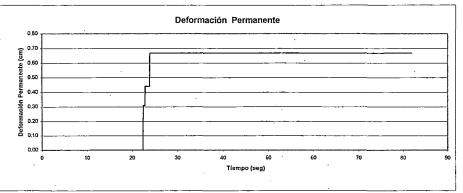

	0.37
	0.02
(g)	1.154
(seg)	20.92
(cm/s)	85.45
(seg)	22.12
(cm)	92.89
(g)	1.500
(seg)	22.38
(cm/s)	90.94
(seg)	22.92
(cm)	60.47
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

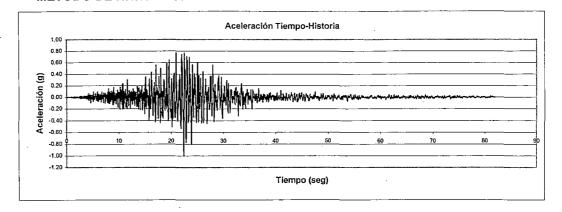


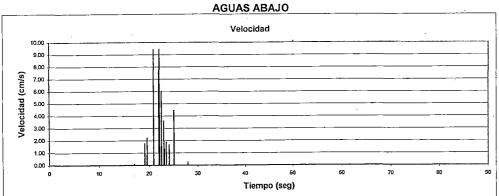


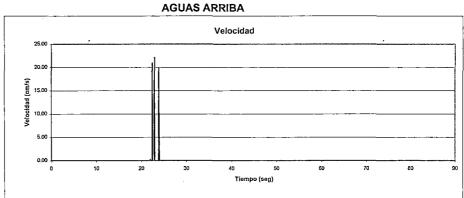

DESLIZAMIENTO N° 2 RESULTADOS

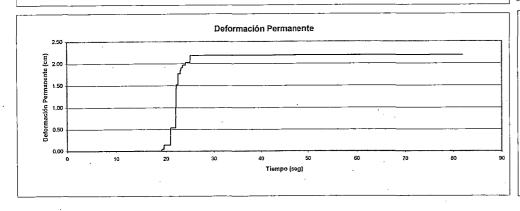

ICEOURINE CO.		
K _Y		0.51
Δt	-	0.02
Aceleración max (+)	(g)	0.577
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	1.30
Tiempo para Vmax.	(seg)	20.92
Desplazamiento max.	(cm)	0.07
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	7.72
Tiempo para Vmax.	(seg)	22.4
Desplazamiento max.	(cm)	0.67

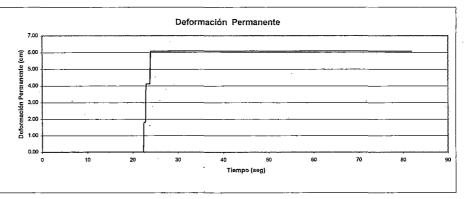


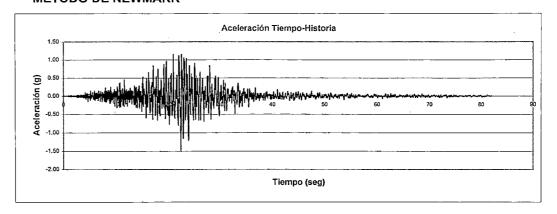


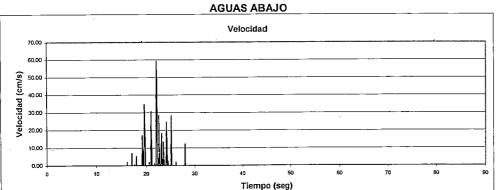


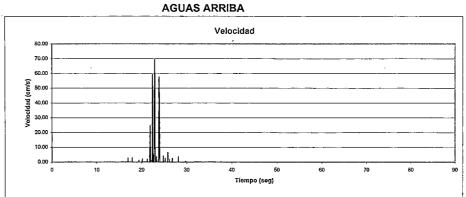


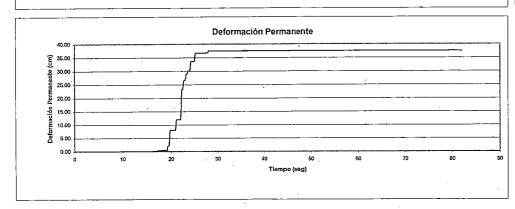


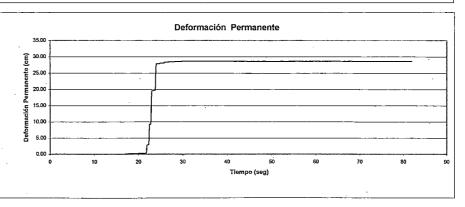

K _Y		0.51
Δt	-	0.02
Aceleración max (+)	(g)	0.770
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	9.33
Tiempo para Vmax.	(seg)	20.94
Desplazamiento max.	(cm)	2.19
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	22.02
Tiempo para Vmax.	(seg)	22.9
Desplazamiento max.	(cm)	6.08

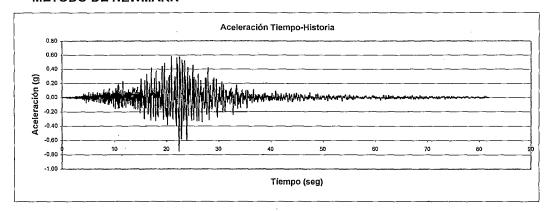


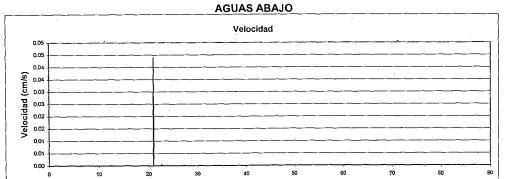


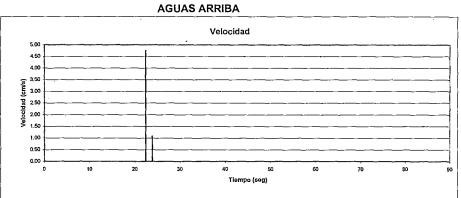


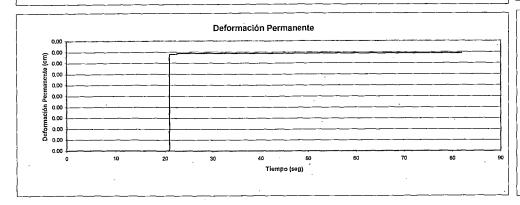


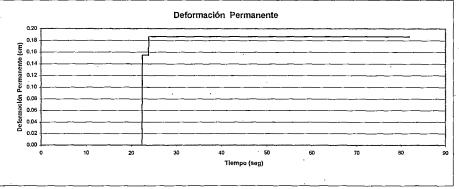

	0.51
	0.02
(g)	1.154
(seg)	20.92
(cm/s)	59.22
(seg)	22.10
(cm)	37.50
(g)	1.500
(seg)	22.38
(cm/s)	69.43
(seg)	22.92
(cm)	28.62
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)



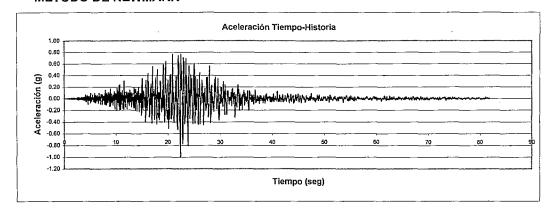


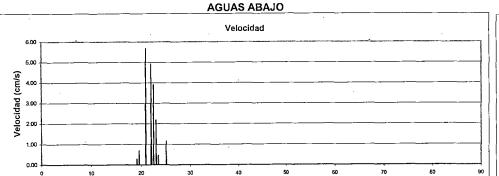

DESLIZAMIENTO N° 2 RESULTADOS

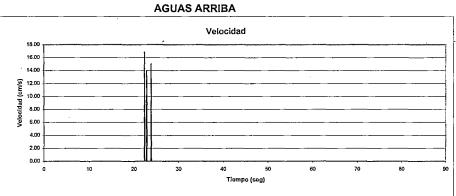

K _Y		0.57
Δt		0.02
Aceleración max (+)	(g)	0.577
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	0.04
Tiempo para Vmax.	(seg)	20.92
Desplazamiento max.	(cm)	0.00
Aceleración max (-)	(g)	0.750
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	4.69
Tiempo para Vmax.	(seg)	22.4
Desplazamiento max.	(cm)	0.19

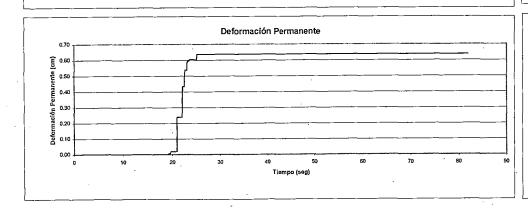


Tiempo (seg)

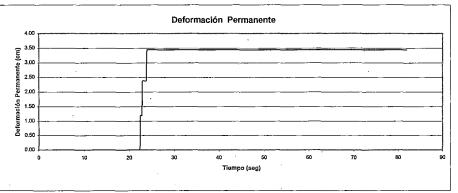

80

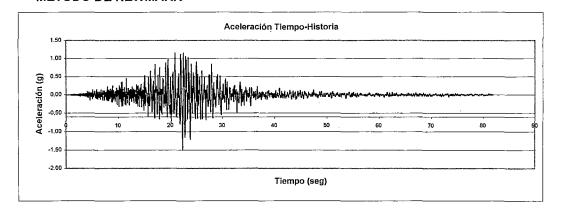

DESLIZAMIENTO Nº 2 RESULTADOS

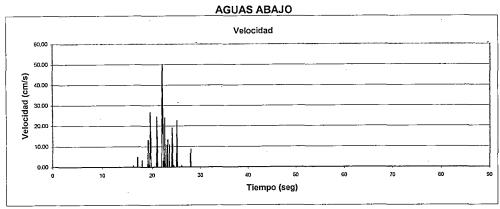

K _Y		0.57
Δt		0.02
Aceleración max (+)	(g)	0.770
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	5.55
Tiempo para Vmax.	(seg)	20.94
Desplazamiento max.	(cm)	0.64
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	16.78
Tiempo para Vmax.	(seg)	22.4
Desplazamiento max.	(cm)	3.44

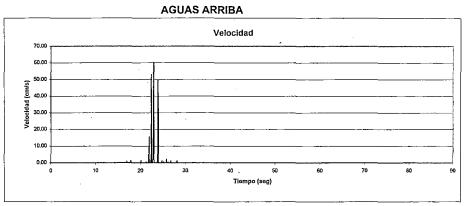

20

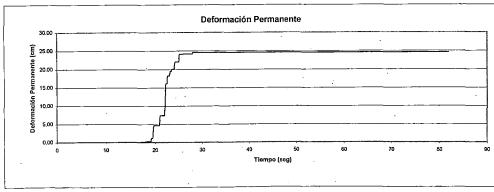
30

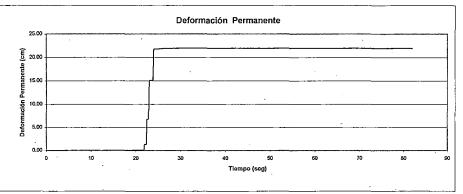


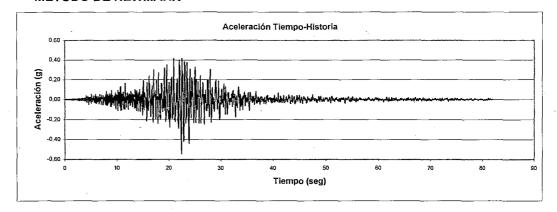


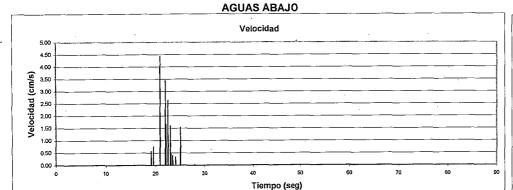

40

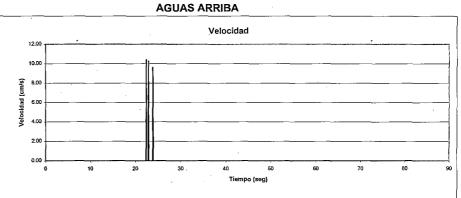

Tiempo (seg)

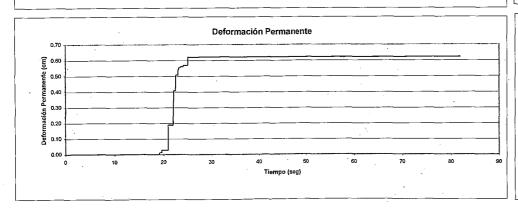


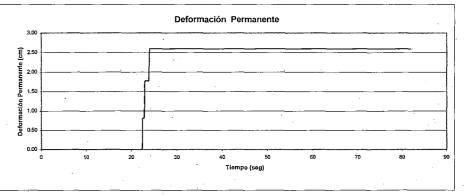

K _Y		0.57
Δt		0.02
Aceleración max (+)	(g)	1.154
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	50.02
Tiempo para Vmax.	(seg)	22.10
Desplazamiento max.	(cm)	24.56
Aceleración max (-)	(g)	1.500
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	60.44
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	21.99

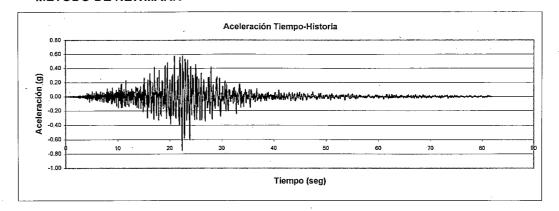


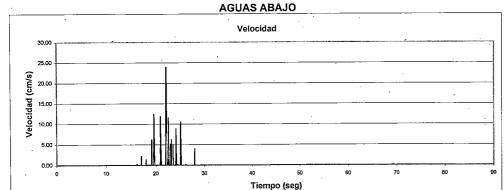


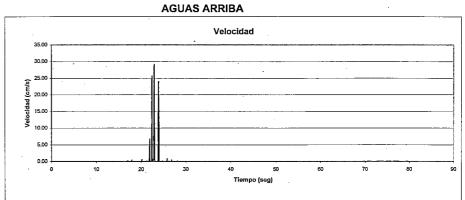


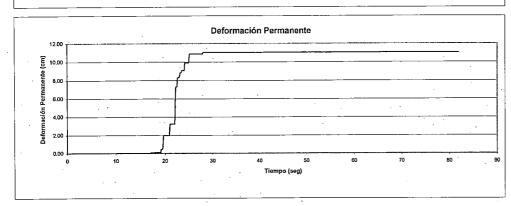


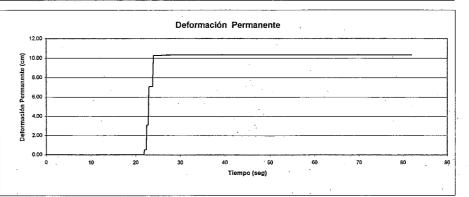

	0.292
	0.02
(g)	0.418
(seg)	20.92
(cm/s)	4.33
(seg)	20.94
(cm)	0.62
(g)	0.544
(seg)	22.38
(cm/s)	10.31
(seg)	22.4
(cm)	2.60
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

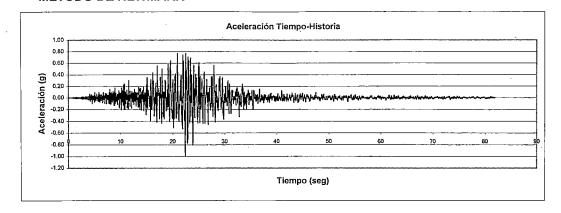


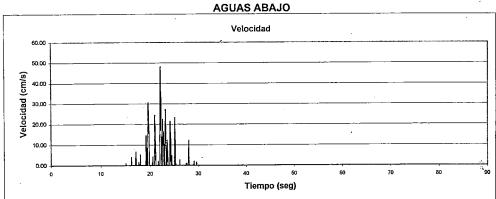


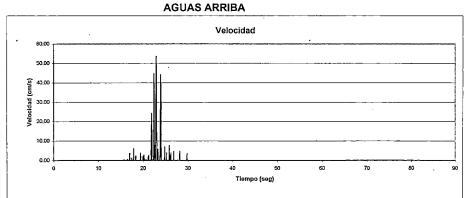


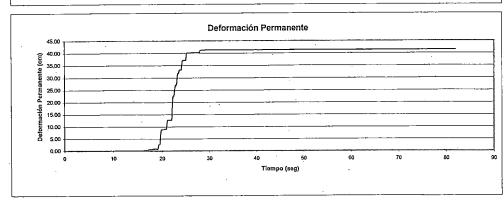


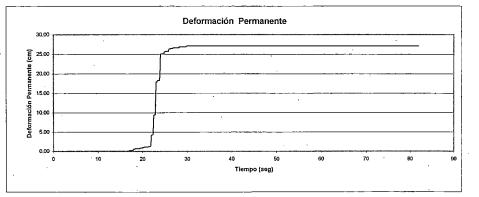

	0.292
	0.02
(g)	0.577
(seg)	20.92
(cm/s)	23.95
(seg)	22.10
(cm)	11.05
(g)	0.750
(seg)	22.38
(cm/s)	29.18
(seg)	22.92
(cm)	10.32
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

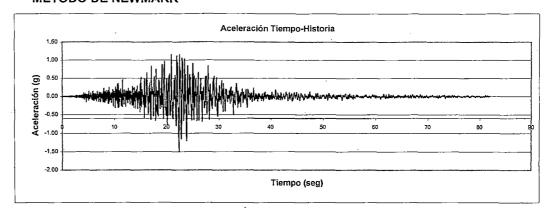


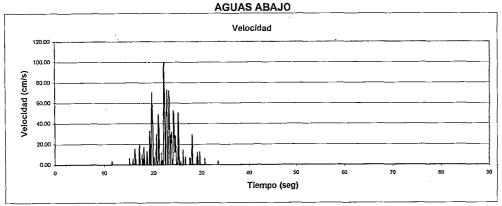


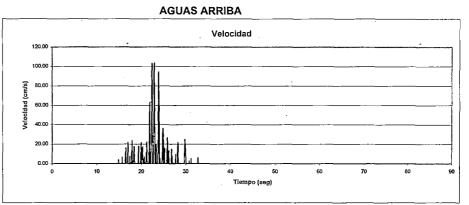


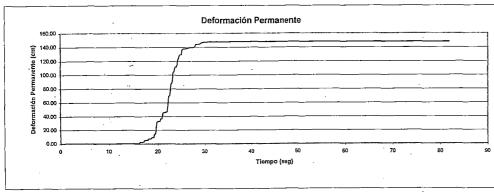


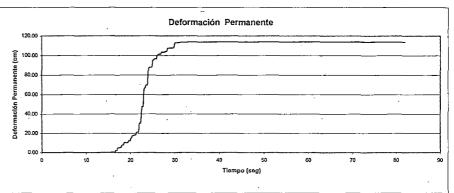

K _Y		0.292
Δt	-	0.02
Aceleración max (+)	(g)	0.770
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	48.12
Tiempo para Vmax.	(seg)	22,12
Desplazamiento max.	(cm)	41.35
Aceleración max (-)	(g)	1.000
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	53.60
Tiempo para Vmax.	(seg)	22.92
Desplazamiento max.	(cm)	27.11

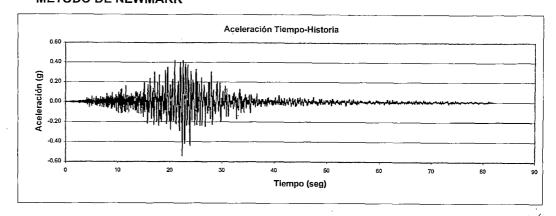


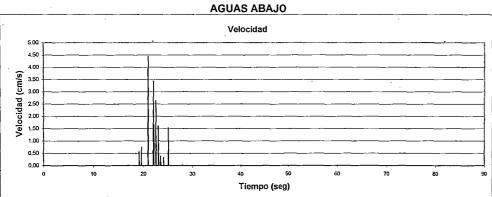


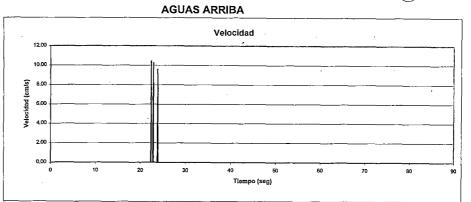


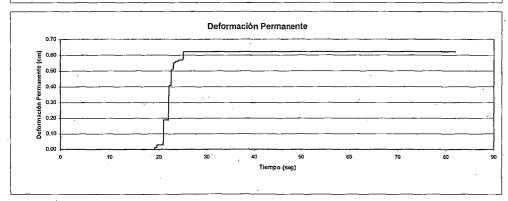


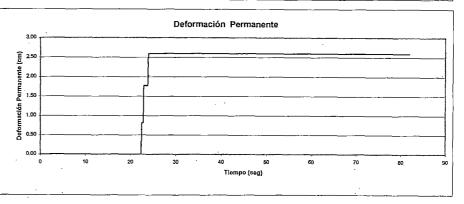

	0.292
	0.02
(g)	1.154
(seg)	20.92
(cm/s)	99.55
(seg)	22.12
(cm)	147.95
(g)	1.500
(seg)	22.38
(cm/s)	103.49
(seg)	22.94
(cm)	113.85
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

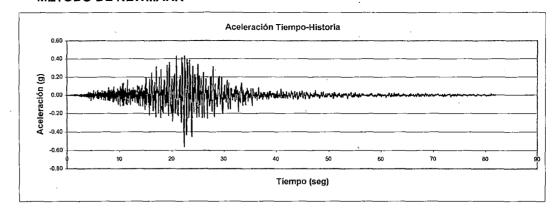


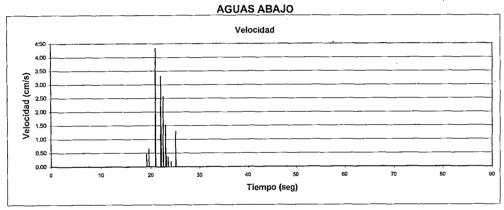


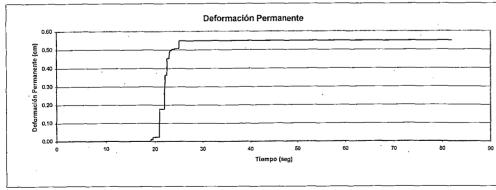


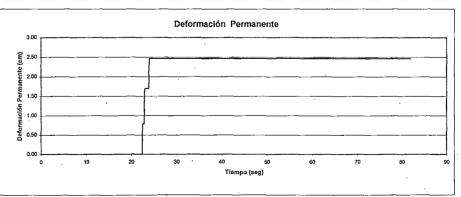



RESULTADOS		
K _Y		0.292
Δt		0.02
Aceleración max (+)	(g)	0.418
Tiempo para Amax	(seg)	20.92
Velocidad max.	(cm/s)	4.33
Tiempo para Vmax.	(seg)	20.94
Desplazamiento max.	(cm)	0.62
Aceleración max (-)	(g)	0.544
Tiempo para Amax	(seg)	22.38
Velocidad max.	(cm/s)	10.31
Tiempo para Vmax.	(seg)	22.4
Desplazamiento max.	(cm)	2.60








	0.306
	0.02
(g)	0.431
(seg)	20.92
(cm/s)	4.21
(seg)	20.94
(cm)	0.55
(g)	0.560
(seg)	22.38
(cm/s)	10.27
(seg)	22.4
(cm)	2.47
	(seg) (cm/s) (seg) (cm) (g) (seg) (cm/s) (seg)

