UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

MICROZONIFICACION PARA LA PREVENCION Y MITIGACION DE DESASTRES APLICACION AL PUEBLO DE ZANA

INFORME DE INGENIERIA

Para optar el Título Profesional de INGENIERIA CIVIL

JEANETTE AMPARO OBANDO DIAZ

Lima - Perú
1997

INDICE

Indice iv
Indice de figuras viii
Indice de fotos x
Indice de cuadros xi
Introducción xii
Capítulo I. GENERALIDADES 1
1.1 Definición de Microzonificación y su
aplicación 1
1.2 Objetivos de un proyecto de Microzonificación
sísmica 2
1.3 Metodología 3
1.4 Alcances 7
Capítulo II. ESTUDIOS A NIVEL NACIONAL 8
2.1 Sismo del 31 de Mayo de 1970 10
2.1.1 Microzonifícación sísmica de Chimbote - Misión
Técnica Japonesa. 14
2.2 El Estudio Modelo de la nueva Región Grau 17
2.2.1 Tumbes 20
2.2.2 Paita. 24
2.2.3 Sullana. 27
2.2.4 Piura 31
2.2.5 Huancabamba. 33
2.2.6 Talara. 35
2.3 Vulnerabilidad sísmica de las edificaciones en las
ciudades de Ilo, Moquegua y Tacna 37
2.3.1 Concepto - Vulnerabilidad sísmica de las edificaciones 37
2.3.2 Conclusiones de los estudios. 39
2.4 Análisis de Vulnerabilidad del Centro Histórico del Callao
y La Punta 40
2.4.1 Peligros existentes 41
2.4.1.1 Peligros naturales 41
2.4.1.2 Peligros antropogénicos 43
2.5 Microzonificación para la prevención y mitigación de
desastres naturales de la ciudad de Nazca. 43
2.5.1 Movimiento sísmico del 12 de noviembre de 1996. 49
Capítulo II. ESTUDIOS A NIVEL INTERNACIONAL 51
3.1 Levantamiento integrado de cuencas hidrográficas y análisis de puntos críticos en el Municipio de Medellín 51
3.2 Plan para la Microzonificación de la zona de expansión de la refinería Puerto La Cruz, Venezuela 54
3.3 El Desarrollo de estudios geoambientales para la planificación territorial en el Instituto Geológico São Paulo - Brasil 56
3.4 Proyecto Microzonificación sísmica de Santafé de Bogotá - Investigaciones Geotécnicas 57
3.5 Zonificación sísmica del Municipio de Tlalnepantla de Baz,
Estado de México 62
Capítulo IV. MICROZONIFICACION DE ZAÑA 63
4.1 Aspectos Generales 63
4.1.1 Ubicación y accesos 63
4.1.2 Reseña Histórica 64
4.1.3 Antecedentes de desastres 73
4.2 Situación socioeconómica 79
4.2.1 Indicadores demográficos 82
4.2.1.1 Indice de masculinidad 82
4.2.1.2 Estructura por edades de la población 84
4.2.1.3 Natalidad 86
4.2.1.4 Mortalidad. 86
4.2.1.5 Mortalidad Infantil. 86
4.2.1.6 Migración 86
4.2.2 Aspectos socioeconómicos 87
4.3 Condiciones fisicas locales 88
4.3.1 Geomorfología 88
4.3.2 Climatología 90
4.3.3 Características hidrológicas del río Zaña. 90
4.3.3.1 Cuenca del río Zaña 90
4.3.3.2 Fisiografia de la cuenca 92
4.3.3.3 Pluviometría 92
4.3.3. 4 Hidrometría. 93
4.3.3.5 Características del agua subterránea 94
4.3.4 Mecánica de suelos 98
4.3.5 Caracteristicas Geotécnicas 98
4.4 Situación Actual del área urbano rural 100
4.5 Análisis y elección de las áreas de expansión urbana y rural 102
Capítulo V. RESUMEN Y CONCLUSIONES. 108
5.1 Resumen 108
5.2 Conclusiones 117
ANEXOSAnexo A: Cuadros Estadísticos del INEI.Anexo B : Cuadros del SENAMHI de Chiclayo.Anexo C: Resultados de las Pruebas de Laboratorio.
BIBLIOGRAFIA

INDICE DE FIGURAS

Fig. N°
Pag.
1.1 Metodología del estudio de microzonificación... 6
2.1 Mapa de distribución de máximas intensidades sísmicas observadas en
\qquad
2.2 Características del sismo del 31-mayo-1970.. 11
2.3 Magnitud del sismo del 31 de mayo de 1970... 12
2.4 Acelerado crecimiento urbano de Chimbote.. 15
2.5 Condiciones sísmicas de Chimbote... 18
2.6 Ubicación y división política de la región Grau... 19
2.7 Sectorización de la ciudad de Tumbes... 21
2.8 Areas de expansión de Tumbes... 23
2.9 Vulnerabilidad preliminar de la estructura urbana de Paita............................. 26
2.10 Zonas de expansión urbana de Paita... 28
2.11 Sullana: distritos, urbanizaciones y asentamientos humanos........................... 29
2.12 Dirección de la expansión urbana de Sullana... 32
2.13 Plano de microzonificación de Piura... 34
2.14 Plano de riesgos de Huancabamba... 36
2.15 Diagrama de flujo para la mitigación de desastres de la ciudad de Talara....... 38
2.16 Geomorfología de la región Pisco - Nasca... 45
2.17 Geología de Nasca.. 46
2.18 Microzonifcación física de Nasca 48
3.1 Ubicación geográfica de la refinería de Puerto La Cruz. 55
3.2 Proceso general para la microzonifícación sísmica de Santafé de Bogotá 60
3.3 Método de Trabajo - Santafé - Bogotá. 61
4.1 Región Nor Oriental del Marañón 65
4.2 Lambayeque - mapa departamental. 66
4.3 Chiclayo - mapa provincial por distritos 67
4.4 Mapa vial del dapartamento de Lambayeque. 68
4.5 Mapa vial del distrito de Zaña 69
4.6 Plano de Zaña del siglo XVIII - Límites 71
4.7 Plano de Zaña del siglo XVIII - Construcciones 72
4.8 Traslado de la ciudad a raiz de la inundación de 1720 74
4.9 Zonas críticas durante el fenómeno de El Niño. 80
4.10 Población de las provincias del departamento de Lambayeque. 81
4.11 Mapa de la cuenca del río Zaña. 91
4.12 Comportamiento del río Zaña para los años más representativos. 95
4.13 Ubicación de calicatas 99
4.14 Ubicación de las zonas de expansión. 107

INDICE DE FOTOS

Foto N°
1 Restos Arqueológicos 75
2 Restos Arqueológicos 75
3 Restos Arqueológicos 76
4 Restos Arqueológicos 76
5 Restos Arqueológicos 77
6 Restos Arqueológicos 77
7 Fotografia aérea de Zaña 89
8 Plaza Central de la ciudad 101
9 Construcciones típicas 101
10 Estructuras de captación y derivación en el río 103
11 Lecho del río Zaña 103
12 Deterioro del zócalo del muro por el nivel freático 104
13 Puente sobre el río Zaña - Carretera Panamericana Norte 104
14 Puente colgante sobre el río Zaña a la altura del pueblo. 105
15 Pobladores y acémilas cruzando el río Zaña 105

INDICE DE CUADROS

Foto N°
4.1 INEI-Comparación del indice de masculinidad 83
4.2 INEI-Lambayeque Chiclayo:Población proyectada al 30 de junio del 2000. Zaña: por sexo y edad. 85
4.3 INEI-Zaña nivel de educación alcanzado. 85
4.4 Precipitaciones medias mensuales 92
4.5 Precipitación media anual 93

INTRODUCCION

Tomando como marco el Decenio Internacional para la Reducción de los Desastres Naturales, designado por la Organización de las Naciones Unidas al período 1990-2000, se ha preparado este informe, el cual ha sido planificado con tres objetivos principales
1° - Crear conciencia en los sectores de gobierno a nivel nacional, regional y local sobre la importancia de elaborar planes de desarrollo en los que se incluyan actividades de prevención, usando la microzonificación como herramienta clave:
2° - Educar a la población, mediante campañas de concientización, de cómo estar preparados ante los posibles fenómenos naturales que pudieran presentarse en su localidad.
3° - Contribuir a los estudios de prevención, aplicando las técnicas de microzonificación a una localidad pequeña pero representativa como el poblado de Zaña.

Cabe mencionar la activa participación que el CISMID desarrolla en los estudios a nivel nacional; y sin cuyo apoyo, la realización del tercer objetivo no hubiera sido posible.

No obstante, para la realización de la microzonificación de Zaña, se tuvieron que salvar muchos obstáculos en la etapa de recopilación de datos; debido a la falta de información precisa (a veces inexistente) en cada uno de los aspectos tratados; esto es debido a la poca importancia de las edificaciones existentes en la zona, en su mayoría viviendas de adobe.

La información técnica encontrada fue insuficiente por lo que la autora tuvo que realizar trabajos de inspección de campo, así como la realización de ensayos de laboratorio en las instalaciones de la Universidad Pedro Ruiz Gallo de Lambayeque y en el CISMID, en la parte relacionada con la mecánica de suelos. Sin embargo cabe mencionar que la mejor información fue obtenida en el INEI, Ministerio de Agricultura, Instituto Geográfico Nacional, y trabajos de tesis presentados en la Universidad Nacional Pedro Ruiz Gallo de Lambayeque.

El informe presentará en el prımer capítulo, las generalidades de la microzonificación, como son la definición, los objetivos la metodología y los alcances de un proyecto de esta naturaleza.

El segundo capítulo se centrará básicamente en la revisión de algunos de los estudios de microzonificación a nivel nacional, realizados por ex-alumnos de la UNI en el CISMID.

Como tercer capítulo se recordarán algunos de los trabajos que han sido presentados en los cursos internacionales de microzonificación que organıza anualmente el CISMID.

En el cuarto capítulo se aplican las técnicas de microzonificación de manera preliminar a una localidad pequeña pero representativa como el pueblo de Zaña que, periódicamente y a lo largo de su historia se ha visto afectada por inundaciones causadas por el desborde del río cercano que lleva el mismo nombre, durante los fenómenos de "El Niño".

El quinto capítulo consiste en el resumen y conclusiones de los trabajos desarrollados con las técnicas de microzonificación.

Finalmente, se incluyen, como anexos, cuadros de población obtenidos en el INEI, datos del SENAMHI de Chiclayo y los resultados de las pruebas de laboratorio de mecánica de suelos realizadas por la autora, así como la bibliografia revisada.

CAPITULO I

GENERALIDADES

Capítulo I

GENERALIDADES

1.1 Definición de Microzonificación y su aplicación

La microzonificación, es un método de planificación que consiste en estudiar de manera multidisciplinaria un área de interés tomando en consideración todos los fenómenos naturales que puedan ocurrir en ella, como: movimientos sísmicos, 1luvias torrenciales, desbordes de río, tsunamis, tormentas de nieve, huracanes, tornados, deshielos, etc.; de manera de evitar las posibles consecuencias de estos como son las inundaciones, deslizamientos, avalanchas, fallas del suelo, etc.; y minimizar cuantitativamente la pérdida de vidas humanas, así como los perjuicios económicos de las ciudades y sus pobladores.

A nivel mundial se vienen desarrollando conferencias que promueven el uso de técnicas de prevención. En lo que respecta a América Latina, se han realizado varios estudios donde se han aplicado las técnicas de microzonificación considerando las características específicas de cada zona desde el punto de vista fisico y socioeconómico.

Abstract

1.2 Objetivos de un Proyecto de Microzonificación Sísmica

Los estudios de microzonificación o microzonación, tienen por objeto delimitar las zonas con diferentes comportamientos geodinámicos dentro de una ciudad o una región concreta considerando las condiciones locales de los suelos de cimentación. Pretenden por tanto, conocer con detalle la respuesta que un área determinada pueda ofrecer a una perturbación sísmica. Para conseguirlo es necesario analizar la sismicidad de la zona y sus características geológicas y topográficas, así como las propiedades geotécnicas y dinámica de los suelos.

La microzonificación es por tanto una técnica compleja y multidisciplinaria que exige la colaboración de geofisicos, ingenieros civiles, sismólogos, hidrólogos y geólogos. Como resultado, estos trabajos en sí mısmos o vinculados a la microzonación general de riesgos naturales, proporcionan un criterio fundamental para la planificación urbana y la ubicación de obras civiles importantes: grandes presas, centrales nucleares, etc.

Como se sabe el proceso de planificación urbana de una ciudad importante es complicado y de alto costo, y en la mayoría de los casos no es posible realizarlo inmediatamente después que se ha concluido los estudios de microzonificación. Por esta razón las estrategia utilizada para ciudades importantes, ha consistido en dar lineamientos generales para la planificación urbana y algunas recomendaciones para que los estudios de microzonificación beneficien a los pobladores en el menor plazo posible (Kuroiwa, 1990).

1.3 Metodología

Para el presente estudio se ha empleado la metodología denominada "Método Peruano Simplificado de Microzonificación", desarrollado principalmente por el Ing ${ }^{\circ}$ Julio Kuroiwa H. y sus colaboradores de la Universidad Nacional de Ingenieria, a partir de los estudios de microzonificación que hizo una misión japonesa en la ciudad de Chimbote después del terremoto de 1970, estudios en los cuales participó el Ing ${ }^{\circ}$ Julio Kuroiwa H. como contraparte peruana.

Para realizar estudios de microzonificación de un área considerada, en primer lugar se identifican los fenómenos que puedan ocurrir en ella a través de información histórica y de estudios geológicos preliminares. Luego, se estudia cada fenómeno, cuyos resultados se representan mediante el respectivo mapa de amenazas (mapa de procesos). La suma de dichos mapas que incluyen los fenómenos considerados, permite confeccionar el plano de microzonificación, donde el área estudiada es dividida en sectores de diferente grado de peligro. Este documento es muy valioso para el planificador urbano, quien recibe de manera resumida, clara y sencilla los datos del área de interés, del método multidisciplinario que estudia los desastres naturales (Kuroiwa 1990). La principal ventaja del plano de microzonificación es que puede ser entendido por cualquier persona sin necesidad de ser un especialista en la materia que se está tratando.

Los pasos a seguir son los siguientes:
a. Identificación y estudio de los fenómenos naturales que más han afectado o pueden afectar la ciudad. Lo anterior se realiza mediante la investigación de todos los
antecedentes históricos de desastres, este estudio requiere de la revisión de una amplia bibliografia, la que se debe obtener de diversas fuentes, como bibliotecas, tanto públicas como privadas; entrevistas con personas de la zona de estudio, con profesionales del lugar, etc.

En el caso del poblado de Zaña, los principales desastres que pueden afectar la ciudad que se han identificado son sismos e inundaciones.
b. Se define la demanda de vivienda de la ciudad para los próximos años, tomando en cuenta la orientación socioeconómica de la demanda, sobre todo los factores por los cuales la ciudad haya crecido en forma rápida, sin control y los factores que la pueden seguir haciendo crecer en forma rápida (migración del campo a la ciudad por causa de desastres naturales, mejor nivel económico, etc.), en base a esto y con el análisis de los indicadores económicos se determinan las áreas de expansión urbanas necesarias.
c. El paso siguiente es el estudio de las condiciones físicas locales y la relación que tienen con los fenómenos que afectan a la ciudad, con lo cual podremos hacer el mapa de microzonificación sísmica de la ciudad actual y los alrededores, que podrán servir de potenciales áreas de expansión; este punto constituye la médula del estudio pues de él depende no sólo la determinación de las áreas de expansión urbanas, sino que además se estudiarán y propondrán lineamientos de solución para los problemas físicos de la ciudad actual. Esta parte del trabajo requiere la recopilación de todos los estudios hidrológicos, meteorológicos, geotécnicos, geológicos, de mecánica de suelos, topográficos, etc., así como llevar a cabo
numerosas visitas a campo, además de realizar estudios propios de campo en varias de estas especialidades. Toda esta información debe ser procesada y dispuesta en forma de mapas, tablas o gráficas que permitan su fácil estudio y aplicación.
d. Luego se estudia la situación actual de las edificaciones y de la infraestructura urbana, de servicios y de emergencia desde el punto de vista de la vulnerabilidad, con lo cual se podrá determinar a qué grado de riesgo están expuestas al momento del estudio. Esta información se obtiene de todas las fuentes disponibles en esta ciudad.
e. Como siguiente paso se estudian las probables áreas de expansión urbana y se determina cuáles son las mejores y sus limitaciones; tomando en cuenta la microzonificación sísmica, uso de suelos, capacidad de proporcionarle los servicios básicos, la seguridad, su accesibilidad, aspectos legales, económicos y sociales entre otros puntos.
f. Por último se extraen las conclusiones y recomendaciones útiles para el planificador urbano y para posteriores estudios. Por ejemplo, los sectores más seguros son asignados a los componentes urbanos más importantes como las áreas residenciales de alta densidad, para el desarrollo de las actividades económicas de las cuales vive la comunidad, etc. Los sectores más peligrosos no son aptos para el desarrollo urbano y debe dárseles un uso adecuado.

En la figura $\mathrm{N}^{\circ} 1.1$ se presenta el diagrama de flujo llevado a cabo para cumplir la metodología de la microzonificación para la prevención de desastres.
FIGURA 1.1.- METODOLOGIA DEL ESTUDIO DE MICROZONIFICACION

FENOMENO
NATURAL

Abstract

1.4 Alcances

Un trabajo de microzonificación se basa generalmente en la recopilación de información, por lo que muchas veces, el análisis se realiza de una manera preliminar, siendo necesaria una evaluación más profunda del comportamiento del suelo, ante la ocurrencia de sismos.

De la misma manera, se desprende que el análisis se realiza en localidades no muy grandes, para obtener los mejores resultados.

La principal limitación para obtener los mayores beneficios de los estudios de microzonificación radica en que depende de la acogida que estos tengan en las autoridades y la población de la zona, objeto del estudio, ya que de por sí, estos no garantizan una mejora en las vidas y los bienes de las personas, sino la aplicación de sus resultados como parámetros en los planes de desarrollo urbano.

Es por ello de vital importancia, difundir y promover estudios de esta naturaleza en las ciudades en crecimiento, que a lo largo de su historia han sufrido las consecuencias de la ocurrencia de desastres naturales. A la vez que se desarrollen campañas de sensibilización entre la población para estar preparados en caso de un desastre natural.

CAPITULO II

ESTUDIOS A NIVEL NACIONAL

Capitulo II

ESTLDIOS A NIVEI, NACIONAI

Abstract

El Perú, debido a su ubicación el "Cinturón de Fuego del Pacifico", y las características de su Sistema Orográfico, ha estado y estará siempre expuesto a desastres naturales como sismos, inundaciones, actividad volcánica, etc. I.a fig. 2.1 muestra las intensidades máximas de sismos en el Perú.

Los primeros estudios de Microzonificación se realizaron en el país después de la ocurrencia del sismo de Chimbote en el año 1970 y se intensificaron después a rai\%. del Ilamado "Fenómeno del Niño" consistente en lluvias torrenciales que causaron daños localizados principalmente en la Región Grau. El 12 de noviembre de 1996, el Sur de Lima fue sacudido por un sismo cuyos efectos aún no han sido mitigados del todo.

Seguidamente se detallan los desastres naturales más significativos desde el punto de vista socioeconómico que ha sufrido el pais, así como los estudios de Microzonificación realizados

FIGURA 2.1.

2.1 SISMO DEL 31 DE MAYO DE 1970

El domingo 31 de Mayo de 1970 la zona Norte del Perú en especial el Dpto. de Ancash sufrió los efectos de un movimiento sísmico que se percibió en una extensión de $350,000 \mathrm{~km}^{2}$ desde Guayaquil (República de Ecuador) por el Norte, hasta Nazca en el Sur y 300 Km . hacia el Este, siendo el área de destrucción efectiva de $40,000 \mathrm{~km}^{2}$ desde Trujillo a Huacho y por el Este la Cordillera Blanca. La magnitud del sismo fue de 7.5 en la escala de Richter, la intensidad máxima se produjo en la región de la Costa entre Casma y Chimbote en donde se ha estimado alcanzó grado VII en la Escala de Mercalli modificada (Ver Fig. $\mathrm{N}^{\circ} 2.2$ y $\mathrm{N}^{\circ} 2.3$).

El Terremoto de Mayo de 1970 a pesar de estar lejos de ser uno de los de mayor magnitud aparece como el más destructivo en la Historia del Perú y de todo el Continente.

Las pérdidas humanas se estimaron en 50,000 muertos, 20,000 desaparecidos, 150,000 heridos, complementando con un enorme volumen de daños materiales sintetizado en:
. Más de 180,000 viviendas y edificaciones destruidas en 38 poblaciones, 15 quedaron con las viviendas dañadas en más del 80% y el resto sufrió fallas de consideración.
. En 18 ciudades con un total de 409,000 habitantes y en 81 pueblos con una población de 59,400 personas, los servicios de agua potable y alcantarillado quedaron inhabilitadas.

[^0]

FIGURA 2.2.- CARACTERISTICAS DEL SISMO DEL 31 DE MAYO DE 1970

FIGURA 2.3.- MAGNITUD DEL SISMO DEL 31 DE MAYO DE 1970

6,730 aulas fueron destruidas.
. La capacidad de energía eléctrica de Ancash y La Libertad quedó reducido a un 10\% por el serio daño causado a la Central Hidroeléctrica de Huallanca.
. Desaparición total de la ciudad de Yungay, de una población de 20,900 personas, se salvaron 700 al refugiarse en las zonas altas particularmente en el Cementerio de la ciudad.

Quedaron dañadas las facilidades para irrigar 110,000 Has.
El 77\% de los caminos de La Libertad y Ancash se interrumpieron así como el 40\% de las existentes en Chancay y Cajatambo.

La actividad industrial y comercial, en especial la ciudad de Chimbote fue seriamente afectada.

Estas cifras configuran la mayor tragedia de la Historia Peruana, a la que se agregaron los agravantes del aislamiento y la incomunicación que determinaron el desamparo de regiones enteras.

La ciudad de Chimbote, aunque menos destruida que las ciudades de Yungay, Casma y Huarmey y algunas otras del callejón de Huaylas, sufrió una pérdida mayor en términos económicos.

Esto fue debido a que de 1950 a 1960 se desarrolló en este puerto la INDUSTRIA PESQUERA Y SU PROCESAMIENTO PARA HARINA, lo que originó una gran demanda de mano de obra traducida en una invasión de una población inmigrante en áreas no habilitadas. La población hasta 1950 fue 12,000
habitantes en 164 Has., en 1961 fue de 63,970 habitantes en 460 Has. y en 1970 170,000 hab. de los cuales el 75% (aproximadamente 125,000 hab.) determinó la formación de más de 50 pp.jj (Ver Fig. $\mathrm{N}^{\circ} 2.4$). Esta fuerte ola migratoria impidió cualquier CONTROL URBANO. Chimbote se convirtió en una de las ciudades PEOR ACONDICIONADAS DEL PAIS, con escasos servicios sociales y sin la infraestructura básica (agua-desagüe y energía).

2.1.1 MICROZONIFICACION SISMICA EN CHIMBOTE - MISION TECNICA JAPONESA.

Muchas MISIONES TECNICAS EXTRANJERAS Y NACIONALES evaluaron los daños causados, especialmente en viviendas, edificaciones y servicios• vitales surgiendo una serie de alternativas, entre los cuales las más audaces recomendaban las REUBICACIONES DE LAS CIUDADES EN ZONAS MAS SEGURAS y de menor riesgo sísmico.

En el caso específico de la ciudad de Chimbote, los graves daños sufridos en miles de viviendas de interés social, así como de edificaciones vitales, agravando con la destrucción total del AA.HH. Villa María Baja por inundaciones y fenómenos de licuefacción así como las EVALUACIONES DE DAÑOS, especialmente en edificaciones, viviendas, demostró una estrecha relación con las características y propiedades de los suelos, complementado con concepciones estructurales sin criterio sísmico. ESTA SITUACION PRELIMINAR DETERMINO EN UN INICIO EL TRASLADO DE LA CIUDAD DE CHIMBOTE (ZONA CENTRAL CONSOLIDADA), a la zona Sur que respondía a un menor riesgo sísmico.

En estas circunstancias es que surge el valioso aporte técnico de paises amigos, en especial el GOBIERNO JAPONES, el cual a través de una MISION TECNICA integrado por especialistas en Ingeniería Sísmica, formulan diversos estudios físicos en el área de Chimbote, con la finalidad específica de ejecutar los ESTUDIOS DE MICROZONIFICACION SISMICA, que representaba básicamente la zonificación y distribución de las principales funciones urbanas de la ciudad, como vivienda, industria, comercio, servicio, equipamientos.

La microzonificación del área urbana de Chimbote se representó mediante cuatro zonas:

ZONA I.-

Subsuelo de grava o roca, con agua subterránea a cerca de 10 mts . de profundidad. Pocas posibilidades de hundimientos. Pero mayor efecto sísmico por interacción del suelo y las estructuras

ZONA II .-
Zonas cubiertas de arena suelta o parcialmente densa de varios metros de espesor en la mayor parte de esta zona se encuentra agua a 5 mts . de profundidad. Los asentamientos podrían producirse sólo en los bordes de dunas. deberá usarse pilotaje en cimentación para más de dos pisos.

ZONA III .-

El suelo consiste principalmente de arena cubierta por una capa delgada de tierra agrícola, se encuentra agua a muy poca profundidad, es posible se produzca
licuefacción de arena en caso de sismos. P'or lo que para edificaciones de mas de dos pisos se tomarán serias precauciones

ZONA IV .-

Caracterizada por niveles superficiales de agna, presentandose frecuentes manas pantanosas. t:l suelo es de arena cubierta parcialmente por una delgada capa de materia organica. En caso de sismo los hundimientos son inevitables. (Ver IIE 25)

2.2 EL, ESTUDIOMODEIODEE IA NIEVA REGION (;RAU

En 1989 se iniciaron los estudios de la region (irau, para cjue sirva como modelo a las otras 11 nuevas regiones del Perú y obtener asi un programa a nivel nacional. El principal objetivo del proyecto es tratar de incorporar medidas de prevencion y mitigacion de desastres en el proceso de desarrollo economico y social de la región.

La región Grau está conformada por los I)ptos. de Piura y Tumbes. (Ver lie. 2.6) cubre una extension de $41,0(0) \mathrm{km}^{2}$. y tiene una poblacion de $\mathrm{I}^{\prime} 9(0), 0(0)$ habitantes. E: fenómeno "1:1 Niño" de 1983, causó en dicha region cuantiosos daños. destruyendo su aparato productivo. La sismicidad es altay tiene un gran potencial para su desarrollo económico y social.

La herramienta clave que se esta utilizando es la microzonificacion por ser un método multidisciplinario que comprende los aspectos lísicos de la localidad estudiada, así como sus caracteristicas sociocconomicas. Siendo su difusion 1 aplicación de vital importancia para la preparación de los planes de desarrollo.

FIGURA 2.6.- UBICACION Y DIVISION POLITICA DE LA REGION GRAU

Breve resumen de algunos de los trabajos realizados en el ('ISMII):

2.2.1 TUMBES ${ }^{2}$

Ciudad importante por su ubicación estratégica fronteriza (3"34'latitud Sur, $80^{\circ} 27^{\prime}$ longitud Oeste). Se estima que en la zona el fenómeno "El Niño" de efectos moderados se presenta cada 7 ú 8 años, y un sismo de magnitud 7 (escala de Richter) cada 20 años

Para el año 1991 su población era de $60,00()$ hab. La actividad económica es la de servicios, comercio, agricultura y pesca. La ciudad se ha consolidado en la Ciudad Vieja (zona antigua y la más consolidada), Ciudad Intermedia (asentamientos limitados por accidentes topográficos y Nuevo Tumbes (actual expansión) (Ver Fig. $\mathrm{N}^{\circ} 2.7$). Se encuentra atravesada por pequeñas y medianas quebradas naturales que se convierten en drenes cuando ocurren precipitaciones pluviales. En general en toda la ciudad se presentan arcillas medianamente expansivas. La hidrología de la zona se identifica en el río Tumbes cuya pendiente (frente a la ciudad) es de 3 por mil causando cambios constantes en su cauce. Estos cambios son los generadores de grandes inundaciones que hoy son soportadas por el Malecón Benavides, el cual viene sufriendo un proceso lento de erosión, posiblemente por causa de las mareas. La napa freática en la zona baja de la ciudad tiene un mínimo de 0.50 mts . de profundidad, haciéndola inhabitable. El estado actual de la infraestructura urbana presenta un marco

[^1]
desordenado. Los ejes comerciales principales de la ciudad y sus principales estaciones de transporte están centralizados en la zona central (tradicional) lo cual trae problemas de fluidez y desorden en las actividades socioeconómicas. Las áreas de uso militar impiden la restringida expansión y consolidación urbana. Las edificaciones de la ciudad son de material noble y de caña y barro; su estado de conservación va de regular a malo. Su infraestructura vial se encuentra en mal estado por las lluvias. La red de desagüe funciona parcialmente y el sistema de drenaje está dejando de funcionar por el constante deterioro lo mismo ocurre con la red de agua.

Debido a los antecedentes mencionados, definimos como de alto riesgo, a la periferia de la ciudad frente al Fenómeno del Niño y al casco urbano consolidado frente a sismos. Asimismo la Carretera Panamericana, a la altura del Cauce Viejo, podría quedar destruida, aislando la ciudad, inutilizando la Planta de Tratamiento de agua y dejando a la ciudad desabastecida de este servicio. Se recomienda:

Desarrollar un plan integral de uso de suelos en las áreas de expansión.
Mejoramiento del sistema de drenaje de aguas pluviales.
. Pavimentación de las calles y reordenamiento del sistema vial.

Rediseño y reforzamiento de las redes de agua y desagüe.
Reubicación de la planta de tratamiento.
Estudio integral del río Tumbes.
Estudio hidrogeológico del valle del río Tumbes.
. Sistema de prevención tanto físico como social. (Ver Fig. 2.8)

2.2.2 PAITA ${ }^{3}$

Ubicada al oeste de la ciudad de Piura, Su población ha crecido aceleradamente de 1980 a 1990, a raíz de que el Fenómeno del Niño trajo abundancia de peces y langostinos a la región El aspecto es el del típico desierto costero llamado Tablazo para "Paita Alta", y una cuenca rodeada de cerros para "Paita Baja", la misma que es atravesada por una quebrada (Jirón Zanjón) hacia la cual desembocan las demás quebradas que atraviesan la ciudad. Paita se ubica en un área geomorfológica denominada Repisa Costanera; las condiciones climáticas son estables, la temperatura promedio es $22^{\circ} \mathrm{C}$. El suelo es homogéneo, conteniendo sulfatos, carbonatos y sales solubles en las arenas. Zona altamente sísmica; para una intensidad de 7 su período de retomo es de 54 años y para 8, de 116 años. No existen antecedentes de tsunamis, aunque su batimetría es favorable a la generación de olas de gran altura y de tiempos cortos de llegada a la costa, afortunadamente el puerto cuenta con una protección natural compuesta por las puntas de Ajureyo, Paita y Telégrafo.

El sistema de evacuación de aguas pluviales está compuesto por el pequeño canal vía al final del Jirón Zanjón y por algunas cunetas a los lados de las vías que bajan hacia Paita, la mayoría en mal estado. Las edificaciones son de un piso, en su mayoría de adobe, quincha y albañilería confinada, con techos de madera. La mayoría de las calles no son asfaltadas. El servicio de energía eléctrica es restringido. La producción de agua potable, que se realiza en la Planta de Tratamiento El Arenal y cuya fuente es el río Chira, es aceptable. El sistema de desagüe es deficiente, las lagunas de oxidación no fuńcionan, y las aguas servidas son arrojadas sin tratar a la

[^2]bahía; los desechos sólidos son llevados a un botadero Municipal sın nınguna preparación. De lo descrito anteriormente se tiene las siguientes conclusiones

Por la geología de Paita, es posible que se produzcan amplificaciones de onda en toda la ciudad, aunque de una manera leve para "Paita Alta".

Es altamente probable, que se produzcan deslizamientos y desplomes de las cárcavas de las laderas de los cerros de "Paita Baja" y en los acantilados de las zonas industriales

Es muy probable que se produzca licuación de suelos de las zonas en las cuales la napa freática es superficial.

Por el factor de amplificación de la Bahía, la ola más alta se puede presentar en Punta Telégrafo con 7.35 mts., la cual inundaría 750 mts. del Casco Central. El tiempo de llegada de la primera ola es de 20 minutos.

El pequeño canal vía ubicado en la desembocadura del "Jirón Zanjón" es de sección insuficiente en caso de lluvias fuertes.

La resistencia de las edificaciones es baja en caso de sismos. (Ver Fig. ${ }^{\circ}{ }^{\circ}$ 2.9)

Las medidas a tomar serían
. En caso de un tsunami, evacuar por la vía que sale del terminal marítimo y por la vía que sube hacia la Villa Naval.

Se deben mantener limpios y libres de obstrucciones, los cauces de las quebradas, impidiendo la construcción de nuevas edificaciones y demoliendo las existentes.

En caso de edificaciones de adobe, usar adobe estabilizado, considerando una viga collar. Los techos serán dos aguas.

FIGURA 2.9.- VULNERABILIDAD PRELIMINAR DE LA ESTRUCTURA URBANA DE PAITA

También se recomienda la utilización de la quincha modular, por ser liviano, resistente a la acción sísmica y al agua, barato, se le puede dar buen acabado y permite la autoconstrucción.

Mejorar la dotación de energía eléctrica.
El crecimiento de la ciudad a los lados de los tres ejes carreteros principales; Carretera a Piura, a Sullana y Circunvalación.

Creación de la Zona Franca Industrial.
Impedir el crecimiento en la parte Baja.
En el mediano y largo plazo, el crecimiento de la ciudad debe ser exclusivamente hacia el Oeste.

Existencia de un departamento de planeamiento físico con fines de seguridad. Banco de datos, relacionado con sistemas de prevención. (Ver Fig. 2.10)

2.2.3 SULLANA 4

Ubicada a 38 Km . al norte de la ciudad de Piura; en los $4^{\circ} 53^{\prime}$ de Latitud Sur y $80^{\circ} 41$ ' de Longitud Oeste; asentada en las proximidades de la margen izquierda del río Chira. (Ver Fig. ${ }^{\circ} 2.11$) El aspecto físico es el del típico desierto costero (Tablazo), cubierto de arena eólica. Es atravesada por tres quebradas principales: Cieneguillo, Cola del Alacrán y Bellavista; además existe un dren llamado Boquerón, formado por erosión, a raíz del Fenómeno del Niño de 1983, el cual respondió favorablemente en el Niño de 1992. Se observaron numerosas depresiones inundables con escasa posibilidad de drenaje. El suelo es homogéneo, consistente en arenas eólicas. con presencia de carbonatos, por lo que se prevé suelos colapsables. La temperatura

[^3]
promedio en verano es de $26^{\circ} \mathrm{C}$ y no baja de $20^{\circ} \mathrm{C}$ en invierno. La napa freática es superficial en la zona de Bellavista. Existen numerosas depresiones inundables como en el Barrio Obrero, parte baja del Casco Central, lado Este de la Carretera Panamericana y zona Oeste, sin drenes adecuados. La evacuación de las aguas pluviales se hace por el Par Vial y el Canal Vial. Sullana es una zona altamente sísmica. Debido a la geología de Sullana, es posible que se produzca amplificación de ondas sísmicas en toda la ciudad. El embalse de Poechos ha incrementado la actividad sísmica, debido a que la falla Huaypirá cruza el vaso. La estructuración de la ciudad es netamente urbano, entremezclado con el comercio; las instalaciones militares no afectan el orden urbano, las edificaciones son de adobe, quincha y albañilería confinada. La mayoría de las calles de Sullana no son asfaltadas, por lo que son vulnerables a la acción de la escorrentía que produce fuertes erosiones. El servicio de energía no está operativo en la actualidad; el escaso suministro se realiza desde el sistema interconectado de Piura. El abastecimiento de agua es aceptable, aunque puede y debe mejorarse.

Los desechos sólidos son arrojados sin ningún tratamiento al río Chira.
Las recomendaciones serían las siguientes:
Edificaciones de poco peso, asísmicas, con un buen diseño de la cimentación.
Extremar el cuidado en el proceso de curado del concreto en las construcciones, debido a la influencia del calor y la escasa humedad atmosférica.

Para el mejor abastecimiento de agua, hacer un estudio de presiones, ya que en algunos sectores la presión es menor del nivel mínimo recomendado.

Las otras recomendaciones planteadas en el trabajo de Paita.
. Existencia de un departamento de planeamiento físico con fines de seguridad. Banco de datos, relacionado con sistemas de prevención. (Ver Fig. N° 2.12)

2.2.4 PIURA 5

La ciudad de Piura es la más importante de la Región Grau, por ser centro administrativo, comercial, de industria liviana y de servicios en general. Los distritos de Piura y Castilla están separados por el río Piura, el cual cruza la ciudad de Norte a Sur. La topografia de la zona es predominantemente llana. La información hidrológica, indica que la variación de las descargas del río Piura, está estrechamente relacionada con el régimen pluviométrico, e influenciado por las variaciones climáticas relacionadas con el fenómeno de "El Niño". En el año 1983 los caudales registrados superaron $\operatorname{los} 3,000 \mathrm{~m}^{3} / \mathrm{seg}$., creando erosión y socavación del lecho. Los grandes flujos de agua y lodo destruyeron la infraestructura vial, de servicios básicos y provocaron el colapso y deterioro de muchas edificaciones; Todo esto por un deficiente sistema de drenaje. Actualmente el sistema de evacuación sigue siendo deficiente. Las defensas ribereñas construidas parcialmente, solucionan en parte el drenaje superficial, aunque falta completar la zona crítica de El Chipe (margen derecha), para mitigar daños por erosión e inundaciones. La zona es de gran actividad sísmica, con manifestaciones de licuación en el lecho seco del río Piura. Los estudios geotécnicos realizados en la zona, determinan que el subsuelo está conformado por depósitos de materiales finos de origen eólico y aluvial. El Este en Piura y al Oeste en Castilla, se encuentran depósitos superficiales compuestos de arenas arcillosas y limosas compactas a medianamente compactas. Posible ocurrencia de licuación de

[^4]
suelos en caso de sismos, lo que constituye un riesgo en ciertos sectores consolidados. El estudio poblacional indica que tendrán que habilitarse 428 Has. para uso residencial en áreas recomendadas. Recomendaciones :

Continuar la ejecución de defensas ribereñas en la margen derecha del río Piura; principalmente aguas arriba del Puente S. Cerro.

Construcción de pases vehiculares y peatonales en los drenes. Entubado de drenes y reconstrucción de rejillas.

A largo plazo, se recomienda realizar el estudio de factibilidad general de agua, desagüe y evacuación de aguas pluviales subterráneo impulsado por bombeo, teniendo en cuenta el desarrollo agrícola mediante la utilización de las aguas servidas y pluviales. (Ver Fig. 2.13)

2.2.5 HUANCABAMBA ${ }^{6}$

El estudio de la microzonificación de esta ciudad se realizó principalmente por los continuos deslizamientos que afectan a la ciudad. La ciudad se ubica a 2,000 m.s.n.m. Geológicamente consiste en afloramientos de rocas sedimentarias.

Huancabamba es una ciudad de unos 10,000 habitantes, los servicios sociales son deficientes, sobre todo los de alcantarillado y energía eléctrica. La actividad productiva es predominantemente agrícola. Las infiltraciones en las partes altas, producen los deslizamientos que afectan a la ciudad. Los resultados obtenidos de este estudio determinan a la zona de Quispampa como una zona de bajo riesgo, apta para la expansión urbana por su buena ubicación a 1.5 Km . de la ciudad y su topografia

[^5]
casi plana. Se recomienda la construcción de un sistema de drenaje para las partes altas de la ciudad con el fin de mitigar los posibles deslizamientos; así como la construcción de muros de contención para dar seguridad a las casas expuestas a deslizamientos. (Ver Fig. 2.14)

2.2.6 TALARA ${ }^{7}$

Ubicada en el departamento de Piura. Se caracteriza por su clima seco, con eventuales lluvias de baja intensidad, determinando una zona semiárida. Presencia de fuertes vientos Alisios (provenientes del Oeste) y Mediterráneos (provenientes del Este), los cuales arrastran arena formando dunas y abanicos inestables. Este tipo de laderas circundan el casco urbano e industrial en gran parte de la ciudad. Durante el fenómeno del "El Niño" de 1983, la ciudad sufrió de fuertes lluvias, las cuales dieron origen a torrentes de flujos de arena y lodo que erosionaron las laderas. Se formaron cárcavas y quebradas por donde escurrieron masas de arena y barro que luego se depositaron en el casco urbano debido a la topografía plana de la ciudad. Otro problema es la salud pública, debido al deficiente sistema de alcantarillado y las constantes evacuaciones de aguas servidas al mar. La solución a estos problemas está interrelacionado; las aguas servidas pasarán por lagunas de estabilización luego de las cuales podrán ser utilizadas con fines de riego en las laderas dentro de un proceso de forestación. La etapa de forestación consiste en dos zonas, la primera será la arborización en las partes altas o tablazos con algarrobos por ser una planta nativa, la segunda será la misma ladera que será cubierta por pastos y forrajes controlando la
7. VILELA, Carlos; Microzonificación de Talara

FIGURA 2.14.- PLANO DE RIESGOS DE HUANCABAMBA
formación de cárcavas. Asimismo; se llega a la conclusión que la técnica más apropiada de riego es por aspersión, ideal para terrenos en pendiente y además evita la erosión del terreno. En la figura $N^{0} 2.15$ se plantea un diagrama de llujo para el proceso de análisis y solución de la estabilización de las laderas.

2.3 VILNERABILIDAD SISMICA DE IAS EDIFICACIONES EN I.AS CIUDADES DE ILO, MOQUEGI:A Y'TACNA

El Sur del Perú (departamentos de Arequipa, Moquegua y Tacna) y el Norte de Chile ha sido afectado por seis grandes sismos ocurridos en los años $1604,1687,1715,1784,1868$ y 1877 , el primero y los dos últimos originaron maremotos (Tsunamis) que afectaron la costa, se calcula que los sismos de 1868 (epicentro aproximado en Arica) y 1877 (epicentro aproximado en lquique) tuvieron una magnitud de 8.5. Desde 1868, no se ha producido un sismo de gran magnitud en esta zona del pais, por ello se le considera una zona de Brecha Sísmica o Silencio Sísmico.

2.3.1 CONCEPTO

VULNERABILIDAD SISMICA DE LAS EDIFICACIONES

Es el nivel o grado de daño al que las edificaciones están expuestas a sufrir cuando se encuentren sometidas a un sismo. Se puede interpretar que el nivel de vulnerabilidad de una edifícación será inversamente proporcional a la resistencia sísmica con la cual se encuentra construida, dicha resistencia puede aumentar o disminuir con el transcurrir del tiempo, por ello es un proceso dinámico y no estático.

[^6]	FENOMENO DE "EL NIN̄O"
EROSION Y FORMACION DE ARCAVAS EN LAS LADERAS	
DESARROLLO DE FLUJOS	
LODO	

FIGURA 2.15.- DIAGRAMA DE FLUJO PARA LA MITIGACION DE DESASTRES DE TALARA

2.3.2 CONCLUSIONES DE IOS ESTIIDIOS

1. Las ciudades que presentan alta vulnerabilidad sísmıca son Moquegua y Tacna, debido a que existen en ellas una mayor cantidad de edificaciones upo 1 y tipo 2.
2. La ciudad de llo presenta una vulnerabilidad media por la presencia de mayor cantidad de edificaciones tipo 2 y tipo 3 .
3. En los pueblos jóvenes de Ilo, Moquegua y Tacna, cuya ocupación del suelo es producto de invasiones, se presenta la vulnerabilidad sismica por origen debido al proceso de autoconstrucción de viviendas los cuales son mayoritariamente edificados sin criterio antisísmico. Los propietarios de estas edificaciones tienen bajos ingresos lo que los impulsa a optar por la auto construcción sin dirección técnica especializada.
4. Las condiciones económicas mencionadas originan que los pobladores decidan utilizar como unidades de albañileria el adobe y el ladrillo o bloquetas de concreto elaborados artesanalmente
5. Se recomienda como medida para mitigar los posibles daños en las edificaciones tipo 1 (adobe) el empleo de la viga collar continua, la cual puede ser de madera o concreto reforzado. Para las edifícaciones tipo 2 (muros de albañilería con techo ligero y flexible) se recomienda colocar una viga collar
continua de concreto reforzado de tal manera que confine horizontalmente los muros de tal manera de evitar que vibren como borde libre. De ser posible también se deberán agregar columnas que confinen verticalmente los muros.
6. Se recomienda a Defensa Civil, autoridades locales y regionales de la zona en estudio emprender campañas de difusión de las medidas de reforzamiento estructural que se recomiendan para los diferentes tipos de edificación encontrados, con el objetivo de mitigar los daños en las edificaciones ante la probable ocurrencia de un sismo destructor.

2.4 ANALISIS DE VULNERABILIDAD DEL CENTRO HISTORICO DEL CALLAO Y LA PUNTA ${ }^{9}$

El Centro Histórico del Callao y el Distrito de La Punta presentan un riesgo constante por la peligrosidad natural de los sismos y tsunamis y a la alta vulnerabilidad fisica y socioeconómica con características diferenciadas entre sí, que se han analizado, recomendándose aspectos para el planeamiento fisico que contribuyan al bienestar, la vida urbana, cultural y portuaria de las áreas de estudio.

El Centro Histórico del Callao es un área de valor cultural y arquitectónico que identifica al primer puerto del Perú y del Pacífico Sur, que forma parte del área metropolitana. Posee una estructura urbana con la concentración de actividades portuarias, de servicios y comerciales, mantiene un crecimiento espacial horizontal
que ha rebasado sus límites previstos, dentro del crecimiento poblacional natural endógeno y el flujo migratorio, han originado un fuerte hacinamiento en edificaciones cuya secuela negativa se evidencia en un medio ambiente deteriorado.

El Distrito de La Punta por su conformación peninsular baja es susceptible a mayor riesgo y a pesar de su crecimiento lento ha pasado a formar parte del área metropolitana.

2.4.1 PELIGROS EXISTENTES

2.4.1.1 Peligros Naturales

Las principales manifestaciones geodinámicas en el Callao son los sismos y los tsunamis.

Sismos: De los 10 principales terremotos ocurridos en el país entre 1586-1974, seis afectaron al Callao. El terremoto de mayor magnitud fue el ocurrido el 28 de Octubre de 1746 , con magnitud de 8.4 y produjo un maremoto que destruyó el Callao Colonial. El 24 de Mayo de 1940, el Callao sufrió otro terremoto que alcanzó una magnitud de 8.2 destruyendo gran parte de las viviendas en el puerto que eran de quincha, adobe y ladrillo.

El último terremoto importante ocurrido en Lima y Callao fue el del 3 de Octubre de 1974 cuyo epicentro tuvo una profundidad superficial y una magnitud de 7.5 que causó pérdidas económicas considerables.

Tsunamis: La costa peruana está bien expuesta a los efectos de los Tsunamis (maremotos) originados por los sismos superficiales en la fosa marina, que pueden llegar en 15 a 20 minutos a la costa, también se han registrado maremotos originados por sismos oceánicos al encontrarse en el círculo de fuego del Océano Pacífico que alcanzarían las costas en más de una hora según la distancia.

De los 16 principales maremotos ocurridos en el país entre 1586-1974, el 50% afectó al Callao siendo el del 28 de Octubre de 1746 el que destruyó totalmente al puerto del Callao, otro maremoto de gran trascendencia fue el ocurrido el 07 de Diciembre de 1806 que produjo olas de seis metros de altura. Estos desastres naturales causaron la paralización de la actividad económica portuaria que afectaron al Callao y también a Lima y al país.

Según el "Plan de preparación para Tsunamis para el Callao y La Punta (19871989) realizados por el INDECI indican que el Tsunami más desfavorable para el Callao y en particular en La Punta sería originado por un sismo con epicentro en el mar con una intensidad mayor o igual al grado VIII MM. Si es de origen cercano, la ola llegaría a la costa en unos 20-30 minutos, estimándose que la altura máxima de la ola será de 7 metros aproximadamente. Por lo tanto, el área inundable comprende desde La Punta hasta la Zona Monumental del Callao antiguo, siendo La Punta la más vulnerable por ser el extremo de una península baja a 2 m.s.n.m.

En caso de ocurrencia se produciría impacto del canto rodado y otros elementos, erosión y pérdida de suelo, siendo las edificaciones antiguas de material liviano como de adobe quincha y madera las más afectadas. En dicho Plan de

Emergencia se indican las rutas de evacuación y también se determinaron 34 refugios de emergencia en La Punta que son los edificios de 4 a más pisos ubicados a menos de 4 m.s.n.m. que deben sobrepasar la altura máxima de inundación.

2.4.1.2 PELIGROS ANTROPOGENICOS

Los incendios están considerados como otro peligro potencial en el Callao, como referencia histórica podemos mencionar que en el año 1914 en La Punta un incendio destruyó el "Gran Hotel" y todas las construcciones de esa manzana, salvándose únicamente la Casa Rospigliosi de la Av. Bolognesi con el Jr. Medina.

Innumerables edificaciones del Callao antiguo fueron devastadas por incendio, siendo de materiales livianos e inflamables como la madera y la quincha, con el cual fueron construidos, que por efectos de los vientos y por su antigüedad han alcanzado considerables proporciones y daños. La existencia de un gran número de edificaciones tugurizadas, hacinadas puede degenerar en siniestros de gran magnitud. Considerando la cercanía al Terminal marítimo donde existen depósitos de combustibles de Petroperú, los barcos petroleros así como depósitos de materiales inflamables e industrias. Por suerte el Callao cuenta con el invalorable servicio de 5 compañías de bomberos.

2.5 MICROZONIFICACION PARA LA PREVENCION Y MITIGACION

DE DESASTRES NATURALES DE LA CIUDAD DE NASCA ${ }^{10}$

La ciudad de Nasca se encuentra en el Departamento de Ica. Tiene una
superficie de $5,234.24 \mathrm{Km}^{2}$, con una población de 52,742 habitantes. La zona de estudio tiene una alta actividad sísmica, Históricamente, el sismo que causó mayor destrucción fue el del 24 de agosto de 1942, que alcanzó una magnitud de 8.4 en la escala de Richter. Otro de los fenómenos que afectan periódicamente la ciudad es el desborde los dos ríos que la atraviesan (Aja y Tierras Blancas). La última gran inundación se produjo el 24 de febrero de 1985.

Casi todos los sismos, o todos los ocurridos hasta la fecha son el resultado de la interacción de las placas tectónicas Sudamericana y de Nasca; o por los reacomodos que se producen en la corteza terrestre como consecuencia de la interacción y morfología del Aparato Andino. La zona Pisco-Nasca presenta tres regiones geomorfológicas fáciles de distinguir por su litología, su estructura y su topografia que son: El Flanco Occidental de la Cordillera de los Andes, La Cordillera de la Costa y las tierras situadas entre estas dos cordilleras denominada Llanura Preandina (Ver Fig. ${ }^{\circ} 2.16$). En la ciudad se encuentran unidades geológicas ígneas, sedimentarias y metamórficas. Está asentada en depósitos aluviales o fluvioaluvionales que litológicamente están constituidas por conglomerados de gravas y guijarros poco consolidados, con intercalaciones de arenas, limos y arcillas lenticulares. Sobre estos depósitos se ha desarrollado preferentemente la actividad agrícola de los principales valles del área. (Ver Fig N${ }^{\circ} 2.17$)

De acuerdo a los limitados estudios de suelos de la zona, se distinguen tres tipos de suelo:

FIGURA 2.16.- GEOMORFOLOGIA DE LA REGION PISCO - NASCA

Cordillera de los Andes

Llanura Preandina

Cordillera de la Costa

Tipo I.- Este tipo de suelo presenta un primer estrato de arena fina, limosa arcillosa de mediana plasticidad (SC - SM), con una potencia aproximada de 1.0 mt . \wedge continuación la presencia de un suelo granular; hormigón de piedra redondeada de 4" a $6^{\prime \prime}$ con potencia mayor de 3.0 mts .

Tipo II.- Este tipo abarca una zona céntrica de la ciudad y está conformado por un estrato superficial de material de relleno, mal compactado mezclado con arcilla arenosa, piedras y material orgánico, tiene una potencia variable de 0.80 a 3.00 mts . o más.

Tipo III- El más favorable para fines de cimentación, está conformado por un estrato de arcillas inorgánicas de plasticidad baja, consolidadas (CL), tiene una potencia aproximada de 1.40 a 2.00 mts . Debajo de este estrato se encuentra otro de gravas y cantos rodados de $1^{\prime \prime}$ a $12^{\prime \prime}$ de diámetro, su potencia excede los 5.00 mts . con una capacidad portante de 4 a $5 \mathrm{Kg} / \mathrm{cm}^{2}$.

De los datos encontrados se tiene poco probable el fenómeno de licuación de suelos, ya que aunque el nivel freático es alto, el estrato de arenas es muy superficial. Del estudio de microzonificación sísmica, se obtiene que las zonas de mayor peligro son las que corresponden al Tipo I y III. EI I por ser un estrato blando de arenas con nivel freático alto en época de avenidas y el Tipo III por ser una zona de relleno con profundidades que varían de 0.80 a 3.00 y más metros. (Ver Fig. 2.18)

2.5.1 MOVIMIENTO SISMICO DEL 12 DE NOVIEMBRE DE 1996

AFECTO ICA, NASCA, PALPA Y SAN JUAN DE MARCONA

Recientemente se produjo un sismo, que el Instituto Geofisico del Perú, determinó que fue a las 11.59 horas del martes 12 de noviembre, tuvo una intensidad de 6.4 grados, el epicentro se localizó a 90 kilómetros al oeste de San Juan de Marcona, 135 kilómetros al sudoeste de Nasca y a 46 kilómetros de profundidad.

El reporte técnico señaló que el sismo tuvo una magnitud de 6.4 grados en la escala de Richter y 7-8 grados de intensidad en la escala modificada de Mercalli.

De acuerdo con esta calificación, el movimiento telúrico registró, en San Juan de Marcona, una intensidad de siete grados; seis en Palpa y Nasca; de cinco a seis en la ciudad de Ica y en Coracora (Ayacucho); cuatro en Camaná (Arequipa), de tres a cuatro en Moquegua y Ayacucho; tres en Tacna y Lima y dos en Huancayo y Pucallpa.

No se produjo un tsunami, pese a la magnitud del terremoto, frente a las costas de Ica. Sin embargo la población de San Juan de Marcona, demostró un comportamiento inteligente ya que, apenas ocurrido el terremoto, optó por alejarse del mar, preferiblemente hacia las alturas.

Lamentablemente, no existe un sistema de comunicación paralelo nı una adecuada infraestructura de sismómetros en la zona sur, fundamentalmente en Arequipa, Moquegua, Tacna, Cuzco y Puno, debido a limitaciones del presupuesto.

Cada sismómetro tiene un costo aproximado de 20 mil dólares y se requere un mínimo de seis.

El número de damnificados fue de 73,000 aproximadamente. Se tienen muchas instituciones nacionales e internacionales comprometidas en la ayuda a la reconstrucción de la zona, tales como el Instituto Nacional de Defensa Civil (INDECI), el Fondo Nacional de Vivienda (FONAVI), el Programa Nacional de Asistencia Alimentaria (PRONAA), el Instituto Peruano de Seguridad Social (IPSS), la Cruz Roja, el Cuerpo General de Bomberos, las Fuerzas Armadas, la Policía Nacional, el Ministerio de Economía y Finanzas (MEF), el Instituto Nacional de Infraestructura Educativa y de Salud (INFES), la Agencia de Cooperación Internacional del Japón (JICA), etc., y países amigos tales como Ecuador, Colombia, Chile, Bolivia, México, Japón, etc.

CAPITULO III

ESTUDIOS A NIVEL INTERNACIONAL

Capítulo III

ESTUDIOS A NIVEL INTERNACIONAI.

El Centro Peruano-Japonés de Investigación Sísmica y Mitigación de Desastres (CISMID) en convenio con la Agencia de Cooperación Internacional del Japón (JICA) viene desarrollando desde el año 1989, cursos internacionales de Microzonificación. El del año 1996 se realizó en noviembre último y contó con la asistencia de los siguientes países: México, Guatemala, El Salvador, Costa Rica, Venezuela, Colombia, Ecuador, Bolivia, Argentina y Perú.

Se detallan, seguidamente, algunos de los trabajos presentados en el CISMID.

3.1 LEVANTAMIENTO INTEGRADO DE CUENCAS HIDROGRAFICAS
 Y ANALISIS DE PUNTOS CRITICOS EN EL MUNICIPIO DE

MEDELLIN ${ }^{1}$

El Municipio de Medellin se encuentra ubicado en Colombia Sur América, en el departamento de Antioquia. Su posición geográfica, es Longitud (Meridiano de Greenwich) $75^{\circ} 34^{\prime} 05^{\prime \prime} \mathrm{W}$ y Latitud $6^{\circ} 13^{\prime} 55^{\prime \prime} \mathrm{N}$. La altura sobre el nivel del mar es de 1479 metros y su temperatura media anual de $22.4^{\circ} \mathrm{C}$.

El área de Medellín está conformada por un estrecho Valle encerrado en altas montañas que permiten definir geográficamente la cuenca como unidad de planificación.

La cuenca hidrográfica se comporta como un sistema. Es base del desarrollo y marco de Planificación. Sustenta recursos humanos, naturales y financieros, infraestructura y actividad agropecuaria, cuyas variables son interdependientes y cualquier acción sobre uno de sus elementos repercute en forma positiva o negativa en la interacción de los demás elementos del sistema.

Dentro del proceso de Planificación, la identificación de las variables en los aspectos geológicos, hidrológicos, hidráulicos, sísmicos, climáticos, sociales y económicos, y en la caracterización espacial de la interrelación de los mismos en el área de la cuenca, son la base para la toma de decisiones y la formulación de Planes, Proyectos y Programas de ordenación y manejo territorial, que permitan la mitigación de desastres.

Este trabajo consiste en la metodología utilizada para el "Análisis Integrado de Cuencas Hidrográficas y el Análisis de Puntos Críticos" que lleguen a ser detonantes de situaciones de riesgo, con énfasis en la estabilización y conservación de los recursos naturales para posteriormente desarrollar programas de mitigación y prevención de desastres y evitar la pérdida de vidas y bienes, así como el deterioro de la infraestructura fisica.

Esta metodología contribuye tanto a la visión de conjunto como a la identificación de problemas puntuales y su influencia con los otros elementos del área de la cuenca, por estrecha relación entre los mismos.

1. Medellín tiene una red hidrográfica bastante densa.
2. El avance urbanístico afecta cada día más las fuentes de agua.
3. La deforestación de nacimientos y riberas amenazan a la comunidad que se surte de ella.
4. La población asentada junto o sobre los cauces es cada día más vulnerable a los eventos por inundaciones y avalanchas.
5. Diariamente nuestras quebradas sufren un gran daño por el vertimiento de aguas residuales domésticas e industriales, basuras y escombros por la falta de conciencia ambiental y social de la comunidad.
6. El deterioro de las cuencas es tal, que la población sólo manifiesta el deseo de que le cubran la quebrada para hacer desaparecer el problema, sin saber ellos mismos, que éste lo están convirtiendo en una bomba de tiempo.

RECOMENDACIONES

1. Protección de los nacimientos con especies nativas para mejorar la capacidad de infiltración y retención de agua.
2. Protección de las riveras de los cauces mediante arborización en galería que ayude a estabilizar las márgenes y a controlar los asentamientos. En caso de áreas libres aledañas se deben conservar como parques lineales para la recreación.
3. Motivar el sentido de pertenencia del medio, con la participación efectiva de la comunidad en las diferentes acciones a realizar. Se incluyen en esta participación tanto a jóvenes como adultos para garantizar el logro de los objetivos.

3.2 PLAN PARA LA MICROZONIFICACION DE LA ZONA DE EXPANSION DE LA REFINERIA PUERTO LA CRUZ - VENEZUELA ${ }^{2}$

El área noreste de Venezuela es sísmicamente más activa que cualquier otra del país; y al menos trece sismos destructivos han sido históricamente documentados desde 1530. El catálogo instrumental de esta área tiene registrado 1388 eventos y algunos de estos exceden la magnitud Ms de 6,0. La sismicidad está distribuida sobre un amplio rango de profundidades, muchos de los sismos
tienen profundidades epicentrales de 0 a 40 km y algunos alrededor de los 100 km .

CONCLUSIONES

La Refinería de Puerto La Cruz, se encuentra en la zona nororiental de Venezuela (Ver Fig. $N^{\circ} 3.1$), la cual se caracteriza por tener de moderada a alta sismicidad. Por otro lado, los suelos de fundación donde se encuentra, son suelos considerados problemáticos desde el punto de vista ingenieril, presentando en el área, varios estratos licuables. Estas razones han llevado a la formulación de un proyecto de microzonificación sísmica, el cual tiene como objetivo la integración de la información geológica, geotécnica, sismológica y topográfica realizada previamente y la obtenida de un plan de estudios y ensayos en sitio concebido para el caso, donde se delimitarán las áreas de acuerdo a su potencial peligro sísmico. Esta información será

FIGURA 3.1.- UBICACION GEOGRAFICA DE LA REFINERA DE PUERTO LA CRUZ - VENEZUELA
utilizada directamente en:

Planes de expansión de la Refinería de Puerto La Cruz.
Diseño sismorresistente de estructuras y líneas vitales.

Definición de medidas de mitigación de daños y/o adecuación estructural de instalaciones existentes; e indirectamente en:

Preparación en planes de contingencia para manejo de desastres sísmicos y planificación de recuperación de daños.

Definición de medidas para reducir el impacto ambiental derivado de una catástrofe sísmica; y

Política de fijación de primas de seguros contra terremotos.

3.3 EL DESARROLLO DE ESTUDIOS GEOAMBIENTALES PARA LA

 PLANIFICACION TERRITORIAL EN EL INSTITUTO GEOLOGICO -
SÃO PAULO - BRASIL ${ }^{3}$

La metodología constituye la base para el desarrollo de estudios de planificación en cualquier espacio geográfico, donde la escala de trabajo define la escala del estudio de cada campo de conocimiento y los productos a elaborarse.

Esa metodología tiene las siguientes metas:
a) Realizar estudios del medio con relación a sus componentes (relieve, suelo, substrato rocoso, clima, agua subterránea).
b) Realizar estudios del medio fisico con relación a sus aptitudes (disponibilidad de recursos naturales, condiciones de comportamiento, condiciones de susceptibilidad).
c) Estudiar los modos de uso y ocupación actual, las legislaciones sobre uso del suelo, las politicas públicas para desenvolvimiento regional y municipales.
d) Evaluar, diagnosticar y caracterizar de modo integrado los conflictos existentes entre uso y ocupación actual y las aptitudes del medio físico.
e) Establecer criterios y directrices para el desarrollo de los diferentes tipos de ocupación, de modo a mitigar sus impactos sobre el medio físico y permitir un adecuado planeamiento ambiental.
f) Sugerir y elaborar directrices que orienten a las administraciones del Estado y municipalidad en la organización, control y orientación del uso de su territorio en concordancia con sus cualidades y con su desarrollo sostenible.
h) Elaborar conferencias, cursos, encuentros técnicos y publicaciones técnicas para la orientación, entrenamiento y capacitación de los diversos tipos de usuarios, del cuerpo técnico de los gobiernos municipales y otros, subvencionados por los resultados del proyecto.

3.4 PROYECTO MICROZONIFICACION SISMICA DE SANTAFE DE BOGOTA - INVESTIGACIONES GEOTECNICAS

La ciudad de Santafé de Bogotá es la capital de Colombia que cuenta con aproximadamente seis millones de habitantes. Es aquí donde se concentra gran parte de la economía del país ya que se encuentran la mayoría de industrias de producción y las principales instituciones gubernamentales.

[^7]Es importante resaltar que existe inmigración hacia la ciudad por diversas causas (violencia, mejoramiento del status de vida y nuevas oportunidades de progreso) trayendo como consecuencia asentamientos en zonas no aptas para la urbanización.

Lo anterior conlleva a tener edificaciones que no cuentan con los mínimos requerimientos de construcción antisísmica, así como instalaciones eléctricas y sanitarias inadecuadas, generando problemas de alto impacto ambiental. El crecimiento y la concentración de la población, el desarrollo de tecnologías peligrosas y el deterioro del medio ambiente han dado como resultado que cada vez que se presentan fenómenos naturales intensos tales como terremotos, deslizamientos e inundaciones se produzcan graves daños sobre las personas, sus bienes y su infraestructura causando enormes pérdidas que en ocasiones pueden llegar a afectar en forma muy severa el desarrollo económico y social del país.

En consideración a lo anterior y teniendo en cuenta las implicaciones socioeconómicas que pueda ocasionar un desastre fue necesario adelantar el estudio de los efectos de un terremoto sobre la ciudad y de la respuesta sísmica del subsuelo de la misma. Este estudio se basa en las siguientes circunstancias técnicas :
. La zona Andina Colombiana es considerada como altamente propensa a la actividad sísmica, por cuanto está afectada por un complejo sistema de fuerzas tectónicas, derivada de la interacción de tres placas principales: la Placa de Nasca, la Placa Sudamericana y la Placa Caribe.

La ciudad de Santafé de Bogotá está localizada en las inmediaciones de un ambiente sismotectónico de reconocida actividad histórica.

Según los datos históricos en la capital tres sismos han causado destrucción parcial en la ciudad capital (1785,1827 y 1917).

En la actualidad la ciudad se ha desarrollado hacia los terrenos de la Sabana, los cuales están conformados por suelos blandos de origen lacustre, que tienen la propiedad de amplificar la respuesta del subsuelo cuando es recorrido por un tren de ondas sísmicas. Se debe tener en cuenta que el nivel de agua se encuentra en algunas zonas a poca profundidad. y la presencia de suelo saturado hace aún más complejo el comportamiento del suelo ante un evento sísmico.

Los objetivos generales del proyecto fueron:
Realización de la microzonificación de la ciudad y sus áreas de futura expansión de acuerdo con la respuesta sísmica local del subsuelo, de tal manera que a partir de ella se puedan definir los parámetros específicos que debe cumplir el diseño estructural sismo resistente.

Estudio de los efectos generales que el máximo sismo probable puede causar en el área de estudio.

La figura $\mathrm{N}^{\circ} 3.2$ nos muestra el diagrama de flujo de actividades para el desarrollo del proceso de microzonificación para la ciudad de Santafé de Bogotá. La figura 3.3 nos muestra el enfoque del proceso desde el punto de vista Regional y Local.
PROCESO GENERAL PARA LA
$D E$

METODO DE TRABAJO

AMENAZA SISMICA REGIONAL
ESTUDIOS TECTONICOS Y
NEOTECTONICOS
ESTUDIOS SISMOLOGICOS
MODELO DE SISMOTECTONICA
AMENAZA SISMICA
AMENAZA SISMICA LOCAL

3.5 ZONIFICACION SISMICA DEL MUNICIPIO DE TLALNEPANTLA

DE BAZ - ESTADO DE MEXICO ${ }^{5}$

Este trabajo presenta los resultados del proyecto de zonificación sísmica del Municipio de Tlalnepantla obtenidos hasta la fecha. Con base en la información topográfica, geológica y geotécnica disponible, reforzada con los resultados de las mediciones de vibración ambiental efectuadas en varios puntos del municipio, se definió la curva de isoperíodo correspondiente a 0.40 seg., misma que permitió la definición de un mapa de zonificación que distingue dos diferentes tipos de terreno para fines de diseño por sismo. Debido a la falta de información local sobre la sismicidad de Tlanlnepantla, se consideró adecuado complementar el mapa de zonificación con los espectros de diseño utilizados por el RCDF-87 para las zonas correspondientes.

Derivado del trabajo, se identificaron aquellas actividades que es necesario realizar para mejorar esta primera propuesta en el futuro cercano, algunas de las cuales se encuentran ya en proceso:

- Definición de un mapa de isoperíodos del municipio a partir del análisis de más información proveniente de sondeos y de un mayor número de mediciones de vibración ambiental.
- Instalación de cuando menos dos acelerógrafos que permitan obtener información local del movimiento del terreno traducido por sismos futuros.
- Evaluación del potencial sísmico de la falla de Acambay.
- Estudios de la vulnerabilidad sísmica de la infraestructura del Municipio.

CAPITULO IV

MICROZONIFICACION
 DE ZANA

Capítulo IV

MICROZONIFICACION DE ZAÑA

Justificación:

"El Niño", es el fenómeno natural que por su ciclicidad y catastrófica presencıa, lluvias torrenciales, ha influido más en los pobladores de la costa norperuana. Al igual que en otras ciudades, sus efectos se han sentido en Zaña, tal como lo indican los historiadores, desde la época de la Colonia, en el año 1578, hasta el último fenómeno ocurrido en 1983.

Tal como en los estudios de microzonificación aplicados a ciudades importantes del Norte Peruano como las ubicadas en la Región Grau, el presente informe aplica de manera rápida la metodologia de un estudio de microzonificación preliminar llevado a cabo en esta localidad perteneciente a la Región Nor Oriental del Marañón.

4.1 ASPECTOS GENERALES

4.1.1 Ubicación y accesos:

Zaña está ubicado al norte del Perú; es distrito de la Provincia de Chiclayo, en el departamento costeño de Lambayeque, perteneciente a la Región Nor-Oriental del

Marañón; se ubica en los $06^{\circ} 55^{\prime} 15^{\prime \prime}$ Latitud Sur y $79^{\circ} 34^{\prime} 54$ " Longitud ()este, con una altitud promedio de 46 m. s.n.m. Su superficie es de $663.35 \mathrm{Km}^{2}$, siendo el segundo distrito más grande, después de Chongoyape ($696.41 \mathrm{Km}^{2}$), que tiene la provincia de Chiclayo (3,161.48 Km²). (Ver Fig. $\mathrm{N}^{\circ} 4.1, \mathrm{~N}^{\circ} 4.2$ y N ${ }^{\circ} 4.3$)

El sector de Zaña, motivo del presente estudio, es la capital del distrito, por su cercanía al río que lleva el mismo nombre; ya que existen otros centros poblados como Cayaltí, Sipán, Pucalá y Saltur, que a diferencia de Zaña, en su historia no han registrado mayores daños por la ocurrencia de fenómenos naturales.

Las principales vías de acceso a Zaña son dos; la carretera asfaltada que la conecta con la carretera Panamericana Norte distante 6 Km . aproximadamente; y la carretera por asfaltar que va a la Hacienda Cayaltí, ubicada al Este de Zaña, a 650 mts. También cuenta con trochas traficables que la conectan con caserios cercanos. Las Figuras $\mathrm{N}^{\circ} 4.4$ y $\mathrm{N}^{\circ} 4.5$ son los mapas viales a nivel departamental y a nivel distrital respectivamente.

4.1.2 Reseña Histórica:

Según Harth Terré ${ }^{1}$, en estos lugares, a lo largo de la historia y por diversos factores, confluyen razas y sangres originarias de muchas partes del mundo. En Zaña hay rostros de diferente color y variadas facciones. Esta variedad étnica se explica a través de una visión histórica que nos muestre las ocupaciones e invasiones sucesivas sobre Zaña, como también las corrientes migratorias internacionales que fueron

[^8]

FIGURA 4.2.- LAMBAYEQUE MAPA DEPARTAMENTAL

FIGURA 4.3.- CHICLAYO - MAPA PROVINCIAL POR DISTRITOS

FIGURA 4.4.- MAPA VIAL DEL DEPARTAMENTO DE LAMBAYEQUE

FIGURA 4.5.- MAPA VIAL DFI DISTRITO DF TAÑA
traidas a Zaña en diferentes épocas.

En su periodo Pre-Inca llegó el enigmático Naylamp a la costa norte surcando los mares y uno de sus descendientes se instaló en /.aña. Posteriormente el reino Chimú, en su politica expansionista, conquistó todo el Valle de Zaña localizándose principalmente en el Cerro Corbacho.

La dominación Inca comienza con la conquista de Túpac Inca Yupanqui sobre la costa norte. Las ruinas del Cerro Corbacho son la mejor evidencia de la Arquitectura Pre Hispánica y que es un excelente ejemplo del concepto peruano de utilizar al máximo las zonas no cultivables con tinnes de habitación, de tal manera que todo el terreno cultivable pueda ser utilizado.

Posteriormente los españoles eligieron 7aña para instalar una de sus principales Villas debido a su importancia geográfíca y económica. En la historia de la conquista española hay referencias del paso de Francisco Pizarro por el Valle de Zaña en su avance sobre Cajamarca para capturar al Inca Atahualpa.

Su fundación se lleva a cabo el 04 de Noviembre de 1563. Por su riqueza estuvo a punto de ser declarada capital del Virreinato del Perú. La floreciente ciudad de Zaña, casi a fines del siglo XVI, entró en total decadencia debido a diversas causas. Primero que la población negra superó abrumadoramente a la de los blancos y mestizos, por lo cual les fue resultando muy difícil a los hacendados controlarlos y someterlos a la inhumana disciplina de esclavitud. Las figuras 4.6 y 4.7 muestran los

La Provincia de Zaña en el siglo XVIII. en la época oue colindaba con Piura y Trujillo. Tenia una amplia extension y abarcaba cuatro
valles norteños importantes. Esta carta tooografica, ha sido reproducida de la obra del Obispo Martinez de Compañón.
FIGURA 4.6.- PLANO DE ZAÑA DEL SIGLO XVIII - LIMITES

Plano de la ciudad de Zaña en el siglo XVIII, en donde se puede apreciar la uoicación de los :emplos religiosos. El dibujo corresponde
FIGURA 4.7.- PLANO DE ZAÑA DEL SIGLO XVIII - CONSTRUCCIONES
planos Zaña en el siglo XVIII. El 15 de marzo de 1720, las aguas del río Zaña desbordaron su cauce y con estruendo y fuerza incontenible barrieron todo lo que encontraban a su paso. Causó tan catastróficos daños en los edificios de la ciudad, que obligaron a la población entera a abandonar la Villa de Zaña (Ver Fig. 4.8). Los pocos que quedaron se fueron a vivir a las faldas del cerro Corbacho. Desde entonces quedaron abandonados Templos y Casonas que el tiempo y las depredaciones los han convertido en un montón de ruinas en las que aún se observan arcos y columnas con las huellas de las devastaciones aluviónicas que han venido sufriendo hasta la fecha. Las fotografias, de la 1 a la 6, muestran la magnificencia de los templos coloniales que fueron destruidos por las inundaciones (notar las huellas del paso de las aguas, las cuales alcanzaron hasta 2.5 mts . de altura); así como el brillo de la cultura Inca establecida en Sipán, localidad perteneciente al distrito de Zaña.

4.1.3 Antecedentes de desastres

Los sismos y las inundaciones son los desastres que más daños han ocasionado a Zaña.

Relación cronológica de los sismos ocurridos:
Siglo VII.-
1606 - Marzo 23 a las 15 horas se estremeció violentamente la tierra de Zaña. ${ }^{2}$
1619-Febrero 14 a las 11:30 a.m. terremoto en el norte del Perú que arruinó los edificios de Trujillo y sus templos, extendiéndose a Zaña y Santa. ${ }^{2}$

Hubo 350 muertos y las réplicas se sintieron durante 15 días. Se apreció el fenómeno de licuefacción de suelos saturados, seguidos por la surgencia de agua viscosa. ${ }^{3}$

FIGURA 4.8.- TRASLADO DE LA CIUDAD A RAIZ DE LA INUNDACION DE 1720

Foto 1.- Restos arqueológicos.

Foto 2.- Restos arqueológicos.

Foto 3.- Restos arqueológicos.

Foto 5.- Restos arquitectónicos del Convento Colonial "Santo Toribiode Mogrovejo" en la ciudad de Zaña (Provincia de Chiclayo).

Foto 6.-
Tumba del "Señor de Sipán" tal como fue descubierto en el centro poblado de Sipán. Perteneciente al distrito de Zaña.

Siglo VIII.-
1725 - Enero 6 a las 23:25 notable movimiento sísmico causó destrozos en Trujillo. ${ }^{2}$
1759-Setiembre 2 a las 23:15 gran temblor - 5 víctimas en Trujillo. Se sintió en Lambayeque hasta la Villa de Santa. ${ }^{2}$

Siglo XX.-
1902 - Enero 2 a las 09:08 Fuerte y prolongado movimiento de tierra en Casma y Chimbote. Sentido también en Chiclayo y Paita. ${ }^{2}$

1906 - Enero 9 a las 5 de la madrugada temblor al NW del país, fuerte en Piura y Paita, mediano en Trujillo. ${ }^{2}$

1906-Setiembre 28-12h 15^{m} Magnitud 7.0 Intensidad de VII a IX. Epicentro entre Trujillo y Cajamarca. Este sismo cubrió un área elíptica de $310,000 \mathrm{Km}^{2}$ y cubrió gran parte de la Costa, Sierra y las estribaciones de la Cordillera Oriental. Fue el mayor sismo ocurrido cerca a Zaña. ${ }^{3}$

1907 - Junio 20 a las 6:33 sismo de grado 5 Mercalli, sentido Chiclayo, Lambayeque y Eten. ${ }^{2}$

1917 - Mayo 20, 23:45 fuerte temblor en Trujillo que agrietó paredes en edificios. El sismo fue muy fuerte en Zaña a 150 Km al Norte de Trujillo. ${ }^{3}$
2. SILGADO FERRO, Enrique, Historia de los sismos más notables ocurridos en el Perú.
3. I.G.P.; Física de tierra sólida

No se tiene información especifica sobre los fenómenos de "İl Niño" ocurridos en épocas pasadas, pero según los historiadores ${ }^{4}$, se tiene la siguiente relación cronológica, en que se presentó este fenómeno:

$1982-83\left({ }^{*}\right)$	1871	1770
$1972-73\left(^{*}\right)$	1864	1763
$1956-57$	1845	1748
$1945-46$	1837	$1728\left(^{*}\right)$
$1940-41$	1832	172()$\left.^{*}\right)$
$1925\left(^{*}\right)$	1828	1701
1918	1821	1678
1911	1817	$1578\left(^{*}\right)$
1891	1814	$1100 \mathrm{~d} . \mathrm{C}$.
1884	1804	1100 a.C.
$1877-78$		

(*) Considerado catastrófico

En la figura 4.9, podemos apreciar las zonas más castigadas para las Iluvias de los año 1578,1728 y 1983.

4.2 SITUACION SOCIOECONOMICA ${ }^{5}$

El Departamento de Lambayeque tiene una superficie de $14,231.30 \mathrm{Km}^{2}$ lo que representa el 1.11% del territorio nacional; sin embargo en 1996 su población fue de l'008,500 hab. es decir el 4.2% del total nacional (Ver Fig.N ${ }^{\circ} 4.10$)

[^9]

FIGURA 4.9.- ZONAS CRITICAS DURANTE EL FENOMENO DEL NIN̄O

POBLACION DE LAS PROVINCIAS DEL DEPARTAMENTO DE LAMBAYEQUE

PROVINCIA	POBLACION
CHICLAYO	679685
LAMBAYEQUE	228706
FERREÑAFE	100114

INEI: COMPENDIO ESTADISTICO 1995-1996

FIGURA 4.10

De ahí obtenemos que la densidad poblacional a nivel nacional para 1996 fue de $18.63 \mathrm{hab} / \mathrm{Km}^{2}$ y para el departamento de Lambayeque fue de $70.87 \mathrm{hab} / \mathrm{Km}^{2}$. Esta gran diferencia se debe a que existe una gran población en el ámbito rural de la costa, dedicado preferentemente a labores agrícolas.

El distrito de Zaña, en el Censo de 1981, tenía una población de 36,763 hab. y al Censo de 1993 una de 41,463 hab., siendo la tasa de crecimiento intercensal de 1.0. Según el INEI, la población de Zaña, proyectada para el año 2,000 será de 47,860 hab.

4.2.1 INDICADORES DEMOGRAFICOS

4.2.1.1 INDICE DE MASCULINIDAD

La estructura por sexo de la población se expresa a través del indice de masculinidad que representa el número de varones que hay por cada cien mujeres. En cualquier población humana y en todos los tiempos se ha observado que nacen en promedio entre 103 a 106 hombres por cada cien mujeres, pero como la mortalidad es mayor entre los varones en todas las edades, la diferencia entre los sexos desaparece hacia los 40 ó 45 años y se revierte al final de toda la vida, de tal forma que entre los mayores de 70 años, por ejemplo, hay 78 varones por cada 100 mujeres.

Estando la población regional influenciada por la migración, es decir, que en ella actúan factores que alteran el comportamiento natural de la población por sexo, la composición global entre varones y mujeres, al interior de las provincias y distritos presenta algunas variaciones significativas.

En 1981, año en el cual se llevó a cabo el penúltimo Censo Nacional, el índice de masculinidad registrado en la región Nor Oriental del Marañón fue de 992, observándose que el distrito de La Coipa de la provincia de San Ignacio (dpto. de Cajamarca), mostró el mayor índice de masculinidad (125 varones por cada 100 mujeres), en el otro extremo se sitúa el distrito de Quinjalca de la provincia de Chachapoyas (dpto. de Amazonas), (69 varones pro cada 100 mujeres).

En general se puede afirmar que las provincias y distritos con altas tasas de masculinidad (mayores a 100) son receptoras de población masculina; en tanto que los que tienen tasas por debajo de 100 son habitualmente expulsores de población masculina; este supuesto se hace en medida que la migración tiende a ser mayor entre los varones que entre las mujeres.

Como medida de comparación se presentan los valores para la totalidad de la provincia y para el distrito de Zaña.

Cuadro N³.1.- INEI - Comparación del índice de masculinidad

	TOTAL	INDICE DE MASCULIN.		URBANA		RURAL	
			INDICE DE MASCULIN.	POBLACION	INDICE DE MASCULIN.		
CHICLAYO (Provincia)	44,008	95.6	409,324	94.9	36,684	104.6	
ZAN̂A (Distrito)	34,980	99.9	30,306	99.5	4,674	102.8	

4.2.1.2 ESTRUCTURA POR EDADES DE LA POBLACION

Uno de los problemas económicos relacionados con la población está vinculado con la estructura por edades de los habitantes, la misma que tiene que ver con la relación existente entre los miembros jóvenes y viejos. En este tipo de análisis se suele dividir a la población, en tres grandes grupos, el primero comprende los menores de 14 años, el segundo a los que están entre los 15 y 59 años de edad o potencialmente productivos, y el tercer grupo que comprende a los mayores de 65 años llamada también población de la tercera edad. La relación entre los productores y los dependientes es en consecuencia significativa para el bienestar de una Región.

En la región el departamento de Lambayeque, de acuerdo a la información censal, la estructura por grupos de edades de sus habitantes, muestra una población joven menor de 15 años igual a 34%, la población en edad de trabajar o potencialmente productiva representa el 57% en tanto que la población mayor de 60 años, representa el 9\% del total de habitantes. Como es obvio, la mayor proporción en el grupo de 15 a 59 años significa una mayor disponibilidad de mano de obra, pero también una mayor demanda de empleo.

El cuadro $\mathrm{N}^{\circ} 4.2$ contiene la población del año 1996 y la proyectada para el año 2,000 , por sexo y grupos de edad.

Analizando el cuadro 4.2, tenemos que el mayor grupo de edad es el de 20-29 años, seguido por el de 30-39, siendo el número de mujeres relativamente más alto
que el de hombres. Esto es beneficioso para el distrito, ya que los jóvenes representan la mayor fuerza productiva del lugar.

Cuadro Nº4.2.- INEI - Lambayeque y Chiclayo : Población Proyectada al 30 de junio, por sexo. Zaña: por sexo y por grupos de edad.

DEPARTAMENTO PROVINCIA DISTRITO	1996			2000		
	TOTAL	HOMBRES	MUJERES	TOTAL	HOMBRES	MUJERES
LAMBAYEQUE	1001281	488870	512411	1091285	532814	558471
CHICLAYO	674530	326267	348263	7736979	356473	380506
ZAÑA	42303	220987	21316	47860	23744	24116
0-4	4751	2394	2357	5376	2709	2667
5-9	4640	2309	2331	5249	2612	2637
10-14	5112	2562	2550	5784	2898	2886
15-19	4390	2213	2177	4967	2504	2463
20-29	7235	3411	3824	8196	3860	4326
30-39	5448	2517	2931	6163	2847	3316
40-49	3774	1770	2004	4270	2003	2267
50-59	3105	1666	1439	3513	1885	1628
60 Y MAS	3848	2145	1703	4352	2426	1926

El grado de instrucción de la población es mayormente primario. El cuadro $\mathrm{N}^{\circ} 4.3$ muestra el nivel de educación alcanzado en el distrito.

Cuadro N4.3.- INEI - Zaña - Nivel de educación alcanzado en la población de 5 años y más, en porcentaje. Día del Censo: 11 Jul 93

DISTRITO	NINGUN NIVEL	INICIAL O PREESCOLAR	PRIMARIA	SECUNDARIA	SUP. NO UNIVERS. INCOMP.	SUP. NO UNIVERS. COMP	SUP. UNIVERS INCOMP	SUP. UNIVER. COMP.	NO ESPECI- FICADO
ZAÑA	11\%	2\%	41\%	36\%	3\%	3\%	1\%	1\%	2\%

Este nivel deficiente en el grado de instrucción se debe a que la actividad predominante en la zona es la agricultura.

4.2.1.3 Natalidad

La TBN, entendida como la frecuencia de nacimientos ocurridos por cada mil habitantes en el lapso de un año, nos estaría indicando para el período 1990-95, que en los departamentos de Amazonas nacen 34 niños por cada mil habitantes, En Cajamarca 35 niños por cada mil habitantes y en Lambayeque 32 niños por cada mil habitantes.

4.2.1.4 MORTALIDAD

La TBM representa la frecuencia de las defunciones ocurridas por cada mil habitantes en el lapso de un año. Este indicador nos muestra que, para el período 1990-95, en la Región Nororiental del Marañon, la mortalidad en el departamento de Amazonas será de 8 defunciones por cada mil habitantes, Cajamarca 9 defunciones por cada mil habitantes y en Lambayeque 7 defunciones por cada mil habitantes.

4.2.1.5 MORTALIDAD INFANTIL

La Tasa de mortalidad infantil en 1993 (por mil) fue de 58.3 a nivel nacional y de 49 en el departamento de Lambayeque.

4.2.1.6 Migración

La migración interna es un fenómeno demográfico fundamental para la comprensión de la redistribución espacial de la población y de los cambios que acontecen en la estructura demográfica de un determinado territorio. Sus implicancias económicas, sociales, políticas, culturales y demográficas lo ubican como un fenómeno social de importancia en el desarrollo de los paises y regiones.

Relacionando el lugar de empadronamiento con el lugar de residencia habitual cinco años antes del Censo de Población, podemos estimar el fenómeno migratorio en un período corto y de esta manera tener una mejor idea de su influencia en el proceso demográfico.

En el Censo de Población de 1981, se consideró como momento de referencia para el lugar de residencia habitual el mes de junio de 1976. Así según datos del mencionado Censo y considerando la tasa media anual de migración neta, las provincias de Bongará (21,7 por mil), San Ignacio (18,8 por mil) y Bagua (9,2 por mil) soportaron una mayor incidencia relativa de la migración que favoreció el crecimiento de su población. Por el contrario la migración neta negativa fue más fuerte en las provincias de Cutervo (-23,4 por mil), Chota ($-20,3$ por mil) y Santa Cruz (-17,7 por mil).

En la provincia de Chiclayo tenemos las siguientes medias anuales:

Total inmigración	19.23 por mil
Total emigración	23.31 por mil
Total migración neta	-4.08 por mil

4.2.2 Aspecto Socioeconómico

Del Total del PBI, del departamento de Lambayeque, se tiene que para el año 1995, la actividad económica principal es la industria manufacturera (33.5\%), en
segundo lugar la actividad hotelera y de restaurantes (22.6\%), la agricultura (15.7\%), y finalmente el sector construcción, la pesca y otros servicios.

La actividad manufacturera, está referida a la producción de cervezas, gaseosas, hilados, leche envasada, king king, etc. Asimismo, se encuentran en este rubro las cooperativas azucareras, como son la CAA Cayaltí, CAA Pomalca, CAA Tumán y CAA Pucalá, con la producción de azúcar refinada, rubia y de exportación.

Cabe recordar que Cayaltí y Pucalá se encuentran en la jurisdicción del distrito de Zaña, siendo Cayaltí, la más cercana a la zona de estudio. Ambas constituyen la mayor fuente de trabajo para los pobladores de esta zona.

La actividad agrícola está basada en el cultivo de productos de pan llevar, y frutales en general.

4.3 CONDICIONES FISICAS LOCALES

4.3.1 Geomorfología

De la interpretación de fotografias aéreas sobre el área de estudio, se tiene, que esta es prácticamente plana (pampas aluviales), con elevaciones que llegan apenas a los 200 mts . de altura, se ve la formación de conos o dunas aluviales, playas de ríos, médanos, y formaciones eólicas. (Ver Foto $\mathrm{N}^{\circ} 7$)

Estas elevaciones constituyen abanicos extensos de material conglomerádico, que representan antiguos conos de deyección de los ríos Jequetepeque, Zaña y Reque.

Foto 7.- Foto rafĩa Aérea de Zaña

4.3.2 Climatología

En el ámbito de Zaña existe una estación meteorológica, la misma que está ubicada en Cayaltí y según sus estudios se concluyen con las siguientes características: La temperatura promedio anual es de $28.94^{\circ} \mathrm{C}$ la máxima alcanzando una temperatura promedio media de $22.7^{\circ} \mathrm{C}$

A su vez la zona en estudio se encuentra ubicada dentro de la cuenca hidrográfica del río Zaña, que durante los fenómenos de "El Niño" se ha desbordado, causando pérdidas de vidas y económicas a sus pobladores.

4.3.3 Características hidrológicas del Río Zaña

4.3.3.1 Cuenca del río Zaña

La cuenca del río Zaña se encuentra en la vertiente Occidental en los Andes Nor Peruanos entre $6^{\circ} 44^{\prime}$ y $7^{\circ} 03^{\prime}$ Latitud Sur y $78^{\circ} 40^{\prime}$ y $79^{\circ} 40^{\prime}$ Longitud Oeste, su parte inferior pertenece a la franja árida de la Costa, con arroyos y planicies sin vegetación, salvo aquellas artificialmente regadas. Tiene un área total de $2,900 \mathrm{~km}^{2}$. Políticamente está ubicado parcialmente en los departamentos de Lambayeque y Cajamarca, en las provincias de Chiclayo, Chota y Santa Cruz, discurriendo sus aguas en dirección Este a Oeste, limitando por el Norte con la cuenca del río LambayequeChancay, por el Sur con la Cuenca del río Seco de San Gregorio o Chamán y por el Sur-Este con la cuenca de Jequetepeque, todos ellos pertenecientes a la hoya hidrográfica del Pacifico. (Ver Fig. 4.11).

4.3.3.2 Fisiografía de la Cuenca ${ }^{6}$

El índice de Compacidad de la cuenca ($\mathrm{Kc}=1.44$) mayor que uno indica una cuenca de forma irregular respecto al círculo, lo que determina mayor tiempo de concentración y poca susceptibilidad a la inundación. (Ver Fig. N ${ }^{\text {4.11) }}$

4.3.3.3 Pluviometría

La cuenca del río Zaña posee 5 estaciones pluviométricas.(Ver Fig. $\mathrm{N}^{\circ} 4.11$)

Cuadro N° 4.4.- Precipitaciones Medias Mensuales ${ }^{6}$

MESES	ESTACION				
	CAYALTI	OYOTUN	ESPINAL	UDIMA	NIEPOS
Enero	9.8	25.3	31.3	74.6	86.7
Febrero	11.2	26.9	45.1	87.3	86.0
Marzo	36.9	80.5	121.1	171.7	155.6
Abril	14.6	25.7	39.0	130.3	90.5
Mayo	5.9	20.9	24.2	67.1	37.3
Junio	1.7	6.0	7.4	41.9	19.7
Julio	0.6	1.6	2.2	20.7	12.2
Agosto	0.9	2.3	5.0	50.9	24.6
Setiembre	1.0	5.0	8.1	63.8	51.9
Octubre	2.4	10.4	13.8	73.7	59.4
Noviembre	2.0	6.5	10.7	44.0	26.9
Diciembre	4.0	7.9	11.7	55.2	46.8

Del análisis de este cuadro observamos que las mayores precipitaciones se registran en los meses de enero, febrero y marzo, inclusive en los meses de diciembre y abril.

Cuadro N° 4.5.- Precipitación Media Anual 6

ESTACION	PRECIPITACION mm.	ALTITUD m.s.n.m.	
Cayaltí		84.0	
El Espinal		314.1	
Oyotún		206.6	
Niepos	707.8	450	
Udima		914.6	200
Pucalá	37.9	2400	
Talla	30.1	2300	
Hda. Livis		460.8	85
Pulán		1479.1	10

Según la precipitación media anual el poblado de Zaña es considerado árido.

4.3.3.4 Hidrometría

El Batán, la estación hidrométrica, donde se efectúan medidas limnimétricas por lectura de mira y aforo del río Zaña, está ubicada en el distrito de Oyotún en la Provincia de Chiclayo en los $06^{\circ} 52^{\prime}$ Latitud Sur y $79^{\circ} 08^{\prime}$ Longitud Oeste, con una altitud de $250 \mathrm{~m} . \mathrm{s} . \mathrm{n} . \mathrm{m}$. Siendo la descarga media anual de $6.79 \mathrm{~m}^{3} / \mathrm{seg}$.

De acuerdo al comportamiento meteorológico, el río Zaña muestra un régimen anual de descargas bastante equilibrado, aunque en los meses de época de lluvia de enero a abril se caracteriza por su mayor descarga en relación con la época de estiaje.

En 1983 se produce la última gran avenida del río Zaña, de mayores proporciones que la ocurrida 1972, pero la población de Zaña sufrió daños leves debido a que en 1972 el río cambió parcialmente su recorrido, haciendo más grandes sus curvas, ensanchándose y además profundizándose, aumentando su capacidad
hidráulica.

En la figura $\mathrm{N}^{\circ} 4.12$ se muestra el comportamiento del río Zaña para los años más representativos.

4.3.3.5 Características del agua subterránea ${ }^{7}$

Los reservorios acuíferos subterráneos en el Valle de Zaña están constituidos por material de relleno aluvial esencialmente fluvial (gravas, arenas, limos, arcillas, cantos) de edad posiblemente cuaternaria que han sido acarreados por los ríos de la Vertiente Occidental Andina y que forman conos de deyección de extensión limitada y cuya superficie es colonizada para la agricultura en forma restringida debido al factor limitante que constituye el recurso agua.

La geometría de los reservorios acuíferos está condicionada a la tectónica local, pudiendo registrarse espesores de los 400 a 800 mts.que podrían considerarse desproporcionados en razón a las condiciones morfológicas de la formación de los valles costeros (Rímac, Ica, La Yarada, etc.).

Dentro de estos reservorios las aguas subterráneas pueden encontrarse formando napas freáticas a menudo subdivididas en niveles por intercalación de horizontes impermeables. Algunas de estas napas se encuentran en condiciones de artesianismo o semiartesianismo.
7. División de Investigación de Aguas Subterráneas en el valle de Zaña

FIGURA 4.12.- COMPORTAMIENTO DEL RIO ZAÑA PARA LOS AÑOS MAS REPRESENTATIVOS

Se observa que la granulometría de los elementos que conforman los reservorios acuíferos decrecen de aguas arriba hacia aguas abajo y desde el eje de los ríos hacia los límites del reservorio, a excepción de los lugares donde desembocan quebradas aledañas en los que las condiciones hidráulicas parecen mejorar.

No existe alimentación directa para las napas de los valles de la costa. Ella se produce a partir de las filtraciones de las aguas de los ríos, de los canales de regadío y de los riegos de los campos de cultivo. El nivel de base es el Océano Pacífico. En las cercanias del litoral, las aguas subterráneas se encuentran próximas a la superficie y contribuyen a menudo, a propiciar fenómenos de pantanamiento y ensalitramiento, como consecuencia de las condiciones de evaporación imperantes.

Existe un estrecho vínculo en el mecanismo hidrológico, aguas superficiales aguas subterráneas. Los aumentos de caudal de los ríos repercuten, casi instantáneamente en las inmediaciones de sus ejes y con cierto retardo hacia los límites del reservorio, en el comportamiento piezométrico de la napa, repercusión que se evidencia en el alza de los niveles de los pozos.

La calidad de las aguas está relacionada a las rocas en contacto con ellas antes y después de su infiltración. Se evidencia un aumento de la mineralización de aguas arriba hacia aguas abajo y del eje del río hacia los límites de la napa, situación que podría explicarse por el mayor recorrido de las aguas y el intercambio iónico aguaterreno.

Las condiciones de explotación de las aguas subterráneas de la costa del Perú, son deficientes como lo demuestran las constataciones siguientes:
a. La implantaciones de las obras de captación de aguas subterráneas han sido hechas sin estudio previo.
b. En la mayor parte de los casos el diseño de las obras, la perforación de los pozos, y las operaciones de muestreo y hasta el equipamiento de explotación son inexistentes o inadecuados, según el caso, produciendo, como consecuencia, deficiente explotación de los recursos y por ende pérdidas económicas al país por sobre-explotación o sub-explotación de las reservas acuíferas del subsuelo. Así se ha constatado en algunos valles (Chilca, La Yarada, Pampa de los Castillos, etc.) agotamiento de los recursos y/o invasión del frente marino hasta 2 Km . de tierra adentro.

Esta situación está siendo corregida, gracias a la reciente creación y actual promoción de oficina estatal encargada de definir la política de explotación de las aguas subterráneas del país.

Resta una acción por implantar, cual es la formación de especialistas en aguas subterráneas en las universidades peruanas.

El estudio hidrogeológico realizado en el valle del Zaña ha permitido, desde el ángulo de aplicación práctica inmediata en que fue concebido, procurar un incremento de caudal de producción de aguas subterráneas del orden de los $600 \mathrm{l} / \mathrm{s}$.,
antes de ingresar al terreno de las inversiones en nuevas obras de captación, es decir, aplicando, con un reducido costo una serie de mejoras en las actuales instalaciones

4.3.4 Mecánica de suelos

Estratigrafía

Se realizaron 2 calicatas, para la obtención de muestras de suelo inalterado y disturbado, a diferentes profundidades. (Ver Fig. ${ }^{\circ} 4.13$)

Según las excavaciones efectuadas en la zona hay presencia de materiales finos y granulares. Los materiales finos predominantes son principalmente limos de baja plasticidad del tipo ML (Sistema SUCS), de apreciable humedad natural.

Entre los materiales granulares típicos de la zona en estudio, tenemos las arenas de granulometría uniforme con matriz limo-arcillosa siendo clasificada como SP-SM y SP-SC, según el sistema SUCS.

El nivel freático en los pozos de exploración se ubicó a 1.50 mts . (Ver resultados en Anexos.)

4.3.5 Características Geotécnicas

Los materiales se presentan semicompactos y con mediana densidad, con una densidad seca promedio del orden de $1.650 \mathrm{gr} / \mathrm{cm}^{3}$ a 1.50 mts . de profundidad.

Se recomienda efectuar otros ensayos de resistencia adicionales en los materiales finos (limos y/o arcillas) para tener una idea más clara de los parámetros de estos materiales ya que el único ensayo efectuado en este tipo de materiales (C1-M1 Prof. 1.50 mts .), en el cual se obtuvo ø igual a 29° y una cohesión $\mathrm{C}=0.98 \mathrm{Kg} / \mathrm{cm}^{2}$, son aparentemente muy altos especialmente el valor de C, el cual no es conforme con las características de plasticidad y compacidad de los materiales finos.

La presencia de nivel freático alto (a 1.50 mts .) podría ser indicio de ocurrencia de licuación de suelos en los materiales granulares (arenas), pero que descontado considerando la matriz fina presente con la cual no hay materiales granulares limpios del tipo SP , los cuales son susceptibles a presentar la ocurrencia de tal fenómeno.

4.4 SITUACION ACTUAL DEL AREA URBANO RURAL

Métodos y materiales constructivos

El material más utilizado en la construcción de viviendas es el adobe, con tejados de torta de barro y caña; el material noble (concreto armado y ladrillo) es utilizado en las edificaciones de servicio a la comunidad como son la posta médica, las escuelas, el mercado, o las que, en general, son ejecutadas con recursos del Estado. (Ver fotos $\mathrm{N}^{\circ} 8$ y $\mathrm{N}^{\circ} 9$)

Cercano al pueblo encontramos el Cerro San Nicolás que es utilizado como cantera de agregado grueso. El agregado fino es obtenido del dragado del material sedimentado al pie de las estructuras de protección de las márgenes del río Zaña.

Foto 8.- Plaza Central de la Ciudad.

Foto 9.- Construcciones Típicas

Mantenimiento del río Zaña

El río Zaña cuenta con estructuras de captación para uso de riego, así como estructuras de protección de las márgenes del río (gaviones).

En las visitas a la zona se pudo apreciar la falta de limpieza en ciertos tramos del río, en los que la maleza y la caña han crecido, impidiendo el libre escurrimiento de las aguas. (Ver fotos $\mathrm{N}^{\circ} 10$ y $\mathrm{N}^{\circ} 11$)

Evaluación de la vulnerabilidad de las edificaciones

En general, el nivel freático, alto en la zona, debilita las cimentaciones de las edificaciones, ya que no se aplican protecciones con aditivos impermeabilizantes o anticorrosivos.(Ver foto $\mathrm{N}^{\mathrm{o}} 12$)

La carretera Panamericana cruza el río Zaña a través de un puente de concreto armado de 40 mts . de largo y 20 mts . de ancho aproximadamente. (Ver foto $\mathrm{N}^{\circ} 13$)

A la altura del pueblo de Zaña, al otro lado del río se encuentra el caserío La Otra Banda, siendo el puente colgante, la única vía de acceso; el cual se encuentra en pésimas condiciones. (Ver. fotos $\mathrm{N}^{\circ} 14$ y $\mathrm{N}^{\circ} 15$)

4.5 ANALISIS Y ELECCION DE LAS AREAS DE EXPANSION URBANA Y RURAL

Según las condiciones de suelo y sus cercanías al río Zaña, se recomienda de manera preliminar un traslado de la ciudad a zonas más seguras desde el punto de vista de peligro de inundaciones.

Foto 10.-Estructuras de Captación y Derivación en el río Zaña.

Foto 11.-Lecho del río Zaña.

Foto 12.- Deterioro del Zócalo del Muro por el nivel freático.

Foto 13.-Puente sobre el río Zaña, Carretera Panamericana Norte.

Foto 14: Puente colgante sobre el río Zaña.

Foto 15.-
Pobladores y acémilas cruzando el río Zaña.

Dado el nivel freático encontrado a 1.5 mts ., se recomienda cimentaciones corridas con protección contra los sulfatos, debido a que el acuífero es de origen tanto marino como de agua dulce.

Tomando las pruebas de suelos como parámetro, se puede decir que la zona de San Nicolás es la mejor para ocupar en el futuro, dado que es un suelo granular, sin presencia de nivel freático hasta 1.50 mts . de profundidad.

En general, se recomienda profundizar los estudios sı se van a realizar estructuras de importancia en las zonas de expansión. (Ver Fig. N${ }^{\circ} 2.14$)

CAPITULO V

RESUMEN Y
 CONCLUSIONES

Capítulo V

RESUMEN Y CONCLUSIONES

5.1 RESUMEN

MICROZONIFICACION

Definición: Método de planificación que estudia de manera multidisciplinaria un área de interés considerando todos los fenómenos naturales que puedan ocurrir en ella, como: movimientos sísmicos, lluvias torrenciales, desbordes de río, tsunamis, tormentas de nieve, huracanes, tornados, deshielos, etc.; de manera de evitar las posibles consecuencias de estos como son las inundaciones, deslizamientos, avalanchas, fallas del suelo, etc.; y minimizar cuantitativamente la pérdida de vidas humanas, así como los perjuicios económicos de las ciudades y sus pobladores.

Objetivo: Zonificar el área según el mejor o peor grado de seguridad que represente para sus pobladores actuales y futuros.

Metodología:

1. Identificación y estudio de los fenómenos naturales, en base a antecedentes históricos de desastres.
2. Determinación de la demanda de la vivienda de la población futura en base al análisis del crecimiento poblacional.
3. Estudio de las condiciones físicas locales y su interrelación con los fenómenos naturales. Climatología, hidrología, geología, geotecnia, topografia, etc. En base a visitas de campo y recopilación de información.
4. Estudio de la situación actual de las edificaciones y la infraestructura urbana vulnerabilidad.
5. Análisis de las áreas de expansión.
6. Conclusiones y recomendaciones útiles para el planificador urbano y para posteriores estudios.

Alcances y limitaciones: Se basa en la recopilación de información, por lo que se puede requerir de un estudio más profundo en casos específicos.

ESTUDIOS A NIVEL NACIONAL

Sismo del 31 de Mayo de 1970: En el departamento de Ancash. El epicentro submarino se ubicó en 9.4° latitud $\mathrm{S}, 78.9^{\circ}$ longitud W y una magnitud de 7.5 grados. Considerado el más destructivo en la historia del Perú y del Continente, con 50,000 muertos, 20,000 personas desaparecidas, 150,000 heridos y un volumen de daños materiales que afectaron las viviendas, las redes de agua potable y alcantarillado, redujeron al 10% la capacidad de la Central Hidroeléctrica de Huallanca y la desaparición total de la ciudad de Yungay, además de la interrupción de carreteras
con el consiguiente aislamiento de las poblaciones que hizo aún más dificil las operaciones de ayuda y rescate.

La causa principal de los daños ocurridos, se debió al crecimiento desordenado de la ciudad producto de una ola migratoria incontenible atraída por la actividad de la Industria Pesquera y su procesamiento para harina de pescado; que provocó la formación de $50 \mathrm{pp.jj}$. sin ningún control urbano.

La Misión Japonesa, realizó entonces el primer estudio de microzonificación. El resultado de los estudios determinó en la ciudad zonas seguras destinadas a la habilitación y vivienda y zonas de riesgo destinadas a áreas libres y de recreación.

Estudio Modelo de la Región Grau: Otro fenómeno cuya devastadora presencia ha dejado sin servicios básicos y viviendas a sus pobladores es el fenómeno de "El Niño"; consistente en torrenciales lluvias que se presentan en los meses de diciembre a marzo, en la costa norte del país.

Se presentan los estudios realizados las ciudades de Tumbes, Paita, Sullana, Piura, Huancabamba y Talara. El comportamiento de este fenómeno es muy similar en todas las poblaciones, pero su estudio debe ser específico para cada área, por que no sólo intervienen las características del fenómeno y de la zona azotada, sino las condiciones fisicas y socioeconómicas de cada una de ellas.

En los estudios se consideraron sismos, inundaciones, reactivación de quebradas, deslizamientos, fallas de suelo y tsunamis en Talara y Paita.

Se encontró, por ejemplo, que los tsunamis tiene poco efecto destructivo en Tumbes, lo mismo que en la Zona Franca de Paita.

En el caso de Huancabamba, se determinó que la ciudad se está deslizando, por lo que se recomendó el desarrollo urbano sobre Quispampa, terreno plano; así como la construcción de canales en las partes de altas de las laderas, con el fin de interceptar los flujos de agua y la construcción de muros de contención para proteger zonas expuestas a deslizamientos.

En Talara se ha recomendado la reforestación de las laderas para mitigar los efectos de deslizamientos.

Análisis de Vulnerabilidad del Centro Histórico del callao y La Punta: Identificado como el primer puerto del Perú y del Pacífico Sur, debido a sus actividades portuarias, de servicios y comerciales, mantiene un crecimiento espacial que ha rebasado, originando un fuerte hacinamiento en edificaciones que determinan un medio ambiente deteriorado.

Entre los peligros existentes, reconocemos los naturales, como sismos que en la mayoría de los casos, pueden generar tsunamis (maremotos); y los antropogénicos principalmente los incendios. La alta vulnerabilidad de las edificaciones en su
mayoría de madera, quincha y adobe, así como la vulnerabilidad natural del suelo, el alto nivel de la napa freática y la baja altitud propenso a inundaciones y erosión; combinadas con el nivel de tugurización; hacen necesarios; continuar en La Punta con las obras de defensa ribereña; mejorar los servicios vitales y tratamiento de las vías consideradas como rutas de evacuación, mantenimiento de áreas libres que puedan ser usadas como refugios de emergencia y en general, la implementación de instrumentos técnicos legales que permitan una planificación fǐsica orientada a la prevención.

Vulnerabilidad sísmica en las ciudades de Ilo, Moquegua y Tacna: Debido al Silencio Sísmico o Brecha Sísmica desde el sismo de 1868, se realizó este estudio. Clasificando a las estructuras en cuatro tipos de acuerdo a su grado de vulnerabilidad: Tipol Sísmicamente muy débil (casco urbano antiguo de Ilo, Moquegua y Tacna), Tipo 2 Sísmicamente Débil (pp.jj. de Ilo y Tacna), Tipo 3 Sísmicamente Semirresistente (pp.jj. de Ilo y Tacna) y Tipo 4 Sísmicamente Resistentes (Zonas residenciales de Ilo, Moquegua y Tacna).

Microzonificación de Nasca: La alta sismicidad se debe a la interacción de las placas tectónicas Sudamericana y de Nasca, así como el reacomodo en la corteza terrestre debido a la interacción y morfología del Aparato Andino.

Con los estudios de Geología, Geomorfología y Geotecnia, se concluyó que no es probable el fenómeno de licuación de suelos. Se recomendó ejecutar la defensa ribereña de las márgenes de los rios Aja y Tierras Blancas, que son propensos a desbordes.

El último sismo ocurrido el martes 12 de noviembre de 1996 a las 11:59 hrs. sacudió la ciudad de Nasca con una magnitud de 6.4 grados en la escala de Richter y $7-8$ grados de intensidad Mercalli-Modificada. El epicentro se localizó en a 90 Km al oeste de San Juan de Marcona, a 135 Km al sudoeste de Nazca y a 46 Km . de profundidad. No se produjo tsunami. El número de damnificados fue aproximadamente 73,000 . Se sintió en San Juan de Marcona, Palpa, Ica, Coracora (Ayacucho), Camaná (Arequipa), Moquegua, Tacna, Huancayo, Pucallpa y Lima.

ESTUDIOS A NIVEL INTERNACIONAL

A nivel internacional, se presentan trabajos realizados, tal como el Levantamiento Integrado de Cuencas Hidrográficas de Medellín; en este estudio, no sólo se hace un estudio de las cuencas de la zona, sino se pone énfasis, en educar a la población, dándole un sentido de pertenencia del medio, en este caso, el recurso agua, con el fin de cuidar la forestación con especies nativas, que aseguren la infiltración y retención de agua.

Otro ejemplo es el de la microzonificación de la zona de expansión de la Refinería Puerto La Cruz, Venezuela, ya que está ubicada en una zona sísmica y cuyo resultado fue la elaboración de un Plan de Expansión en el que se tendrá especial cuidado en el diseño sismorresistente de las estructuras y lineas viales y proponer políticas de primas de seguros, contra terremotos.

El caso de la microzonificación de la ciudad de Santafé de Bogotá, se enfocó desde el punto de vista de la importancia de la zona como polo de desarrollo y por ende el crecimiento desordenado de la población por la inmigración y la selección de zonas no apropiadas par el desarrollo urbano, ya que es una zona sísmica y se carecen de directrices para su crecimiento desde el punto de vista de la prevención de desastres.

Similar a estos es el trabajo desarrollado en el municipio de Tlalnepantla en México, en que se llegó a la conclusión de que se necesita por lo menos dos acelerógrafos, estudios de la vulnerabilidad de la infraestructura urbana, evaluación del Potencial sísmico de la Falla de Acambay.

MICROZONIFICACION DE ZAÑA

Ubicación: Distrito de la Provincia de Chiclayo, en el departamento de Lambayeque, en la Región Nor Oriental del Marañón. Las vías de acceso son la carretera asfaltada que la conecta con la Panamericana y la Carretera por asfaltar que la conecta con Cayaltí.

Historia: Fundada el 4 de noviembre de 1563, por su riqueza estuvo a punto de ser declarada capital del virreinato del Perú. Existen restos de sus templos y de su brillo en lạ época Inca, en los restos encontrados en Sipán, localidad perteneciente al distrito de Zaña.

Antecedentes de Desastres: Sismos ocurridos en los años 1606 a 1917. La inundación de 1720 arrasó con la ciudad que se trasladó posteriormente a unos metros del río Zaña.

Situación socioeconómica: El distrito de Zaña tiene una superficie de $663 \mathrm{Km}^{2}$. En el Censo de 1981 tenía una población de 36,763 hab. y en el de 1993 una de 41,463 hab. con una tasa de crecimiento intercensal de 1.0

La actividad económica principal a nivel regional es la manufacturera (producción de cervezas, gaseosas, hilados, leche envasada, king kong, etc), y la producción de azúcar en las haciendas de Cayaltí, Pomalca, Tumán y Pucalá, luego la de restaurantes y hotelera y en menor grado la agricultura, la construcción, pesca y otros servicios.

Condiciones Físicas Locales: Topografia plana, con elevaciones que Ilegan apenas a los 200 mts., formación de dunas aluviales cercanas al río Zaña. En Cayaltí existe una estación climatológica que registra una temperatura promedio de $22.7^{\circ} \mathrm{C}$. La zona de estudio pertenece a la cuenca del río Zaña, ubicada en los departamentos de Lambayeque y Cajamarca. Su forma irregular determina su poca susceptibilidad a la inundación.

Según su precipitación se le considera árido. El acuífero subterráneo representa una gran fuente de abastecimiento de agua.

Se realizaron dos calicatas, encontrándose en una material granular de granulometría uniforme, con matriz limo-arcillosa, siendo su clasificación un SP-SM Y SP-SC, según el sistema SUCS. En la otra se encontró el nivel freático a 1.50 mts ., materiales finos, predominantemente limos de baja plasticidad del tipo ML

Situación Actual del área urbano rural: Las viviendas son en su mayoría de adobe y caña. las edificaciones de albañilería son la posta médica, la escuela, y el mercado.

El cerro cercano de San Nicolás es utilizado como cantera de material grueso, el fondo del río es fuente de arenas, y su lecho es usado como fuente de caña y carrizo, por lo que se recomienda una limpieza y mantenimiento del cauce del río.

El nivel freático es el principal factor de deterioro de las cimentaciones existentes. Para cruzar el río a la altura de la ciudad existe un puente colgante en pésimas condiciones (Ver foto $\mathrm{N}^{\circ} 15$)

Análisis de las áreas de expansión: Por las características de suelo encontradas, a nivel preliminar, se puede recomendar como mejor el sector de San Nicolás para la expansión urbana. A raíz del reflotamiento y puesta en marcha de las haciendas azucareras, en su mayoría ubicadas en Zaña, se espera un crecimiento mayor al propuesto por el Instituto Nacional de Estadística e Informática (INEI) de 48,000 hab. para el año 2,000, el cual se ubicará posiblemente también en las márgenes del camino de Zaña a Cayaltí.

5.2 CONCLUSIONES

La principal conclusión a la que podemos llegar después de haber analizado los capítulos desarrollados en el presente informe, es que los desastres no son los que matan a la gente, ni acaban con sus bienes; sino, la falta de prevención sobre la ocurrencia de los mismos.

Se concluye que existe una relación directa entre los daños ocasionados por un desastre natural y las características del subsuelo.

La microzonificación sísmica de una ciudad permite realizar un planeamiento urbano más racional, recomendando la construcción de las edificaciones más importantes de una ciudad en las mejores áreas, y destinando las peores a parques y jardines.

La microzonificación sísmica de una ciudad consiste en dividirla en áreas de comportamiento sísmico similar, con el objeto de establecer parámetros de diseño.

En países en vías de desarrollo con escasos recursos, se recomienda emplear métodos simplificados de microzonificación sísmica, que consiste en el uso de la geología y la ingeniería geotécnica.

Se recomienda que las autoridades municipales u organismos regionales compilen los estudios geotécnicos que se realizan en una ciudad con propósito de
diseño de edificaciones, para establecer un banco de datos de dichos estudios que pueden ser utilizados en los estudios de microzonificación sísmica.

Finalmente cabe insistir en la importancia que los gobiernos locales deben dar a estos estudios, ya que los desastres siguen ocurriendo y las desgracias se siguen presentando por el desconocimiento de la propia zona en que se habita y la falta de planes que eduquen a la población a reaccionar de la mejor manera, a la ocurrencia de estos fenómenos.

1. AGREDA MATIAS, Jorge (1987) "Determinación de las características fisiográficas de la cuenca del río "Zaña". Tesis UNPRG-FIC; Lambayeque.
2. AHUMADA ROMERO, Alejandro, SANCHEZ GALVEZ, José y ZAMORA CAPELLI, Miguel (1988); "Encauzamiento del río Zaña tramo puente Ucupe-Puente Colgante Zaña y diseño de las estructuras hidráulica para la defensa de la ciudad de Mocupe". Tesis UNPRG-FIC; Lambayeque.
3. BLANCO SIRIT, Carlos (1995); "Plan para la Microzonificación de la zona de expansión de la refinería Puerto La Cruz - Venezuela; CISMID-UNI; Lima.
4. BROLLO, María José (1995); "El Desarrollo de estudios geoambientales para la planificación territorial en el Instituto Geológico-Sao Paulo - Brasil; CISMID-UNI; Lima.
5. DIVISION DE INVESTIGACION DE AGUAS SUBTERRANEAS (1970); "Estudio de aguas subterráneas en el valle de Zaña"; Lima.
6. CISMID - UNI (1987); "Memorias del ler. Simpivsium Nacional de Prevención y Mitigación de Desastres Naturales".
7. CISMID - UNI (1990); "Memorias del Encuentro: Los desastres Naturales y los planes de desarrollo económico y social de la Región Grau".
8. CISMID - UNI (1992); "Curso Internacional sobre Mitigación de Desastres: Uso de Información de Peligros Naturales en la preparación de Proyectos de inversión".
9. CISMID - UNI (1995); "Memorias VII Curso Internacional sobre Microzonificación y su aplicación al planeamiento urbano para la mitigación de desastres".
10. DURAN QUEROL, Rodolfo, (1993); "Microzonificación para la prevención y mitigación de desastres de la ciudad de Paita"; Tesis UNI-FIC; Lima.
11. GARZON CABRERA, Sandra (1995); "Proyecto Microzonificación sísmica de Santafé de Bogotá - Investigaciones Geotécnicas; CISMID-UNI; Lima.
12. GOMEZ, Bernardo (1995); "Zonificación sísmica del Municipio de Tlalnepantla de Baz, Estado de México" ; CISMID-UNI; Lima.
13. GONZALES EFFIO, Luis (1991); "Microzonificación y planeamiento urbano de la ciudad de Huancabamba"; Tesis UNI-FIC; Lima.
14. HARTH TERRE, Emilio (1965); "Los monumentos religiosos de la desaparecida Villa de Zaña"; Buenos Argentina.
15. HERMOZA CONDE, Manuel (1995); "Plan de reconstrucción de la ciudad de Chimbote después del sismo del 31 de mayo de 1970 Ancash - Perú"; CISMID-UNI; Lima.
16. HUERTAS VALLEJOS, Lorenzo (1987); "Ecología e Historia"; Editado por el Centro de Estudios Sociales "Solidaridad"; Chiclayo - Perú.
17. HUIMAN ROMAN, Pedro (1995) "Microzonificación para la prevención y mitigación de desastres naturales de la ciudad de Nazca"; Tesis UNI-FIC; Lima.
18. I.G.P. (1973) "Física de tierra sólida - Sismicidad del área de embalse Jequetepeque Zaña"; Informe preparado para Salzgitter-CMPH.
19. INEI (1993) "Resultados Definitivos del Censo del 11 de julio de 1993 - Lambayeque"; Chiclayo.
20. INEI (1995-1996) "Compendio Estadístico - Lambayeque; Lima
21. INEI (1996) "Población Total por área urbana y rural según distritos 1996 y 2000"; Chiclayo.
22. KUROIWA HORIUCHI, Julio (1985); "Algunos trabajos de Investigación sobre Ingeniería sismorresistente, microzonificación y planeamiento contra desastres naturales efectuados en el período 1978-84".
23. LAZARES LA ROSA, Fernando (1994); "Estudio de la vulnerabilidad sísmica de las edificaciones en los departamentos de Moquegua y Tacna"; Tesis UNI-FIC; Lima.
24. LINO BARNUEVO, José (1992); "Microzonificación para la prevención y mitigación de desastres de la ciudad de Sullana"; Tesis UNI-FIC; Lima.
25. MADRID, Bertha (1991); "Microzonificación de la ciudad de Piura y lineamientos de desarrollo urbano para la mitigación de desastres naturales". Tesis UNI-FIC; Lima.
26. MINISTERIO DE AGRICULTURA, "Diagnósticu de la Oficina de Programación y Racionalización de la Región Agraria III de Lambayeque".
27. OSSERVATORIO VESUVIANO - DIRDN (1993); Revista "Stop Disasters"; Fascículo No. 13; Nápoles-Italia.
28. OSSERVATORIO VESUVIANO - DIRDN (1993); Revista "Stop Disasters"; Fascículo No. 14; Nápoles-Italia.
29. OYUEN PAGEN, Clara (1995); "Análisis de Vulnerabilidad del Centro Histórico del Callao y La Punta"; CISMID-UNI; Lima.
30. SILGADO FERRO, Enrique (1978); "Historia de los sismos más notables ocurridos en el Perú"; Instituto de Geología y Minería; Lima.
31. TAPIA CANALES, César (1991); "Microzonificación de la ciudad de Tumbes y lineamientos para su desarrollo urbano para la mitigación de desastres". Tesis UNIFIC; Lima.
32. VAQUERO PIEDRAHITA, María (1995); "Levantamiento integrado de cuencas hidrográficas y análisis de puntos críticos en el Municipio de Medellín, Colombia"; CISMID-UNI; Lima.
33. VILELA, Carlos (1991); "Prevención de Desastres de la ciudad de Talara a través de la forestación de sus laderas"; Tesis UNI-FIC; Lima.
34. WILSON, John (1984); Boletín N ${ }^{\circ} 38$ - Serie A - Carta Geológica Nacional INGEMMET; Lima

[^0]: 1. HERMOZA, Manuel; CISMID 1995; pág. 39
[^1]: 2. TAPIA, César; Microzonificación de Tumbes
[^2]: 3. DURAN, Rodolfo; Microzonificación de Paita.
[^3]: 4. LINO, José; Microzonificación de Sullana.
[^4]: 5. MADRID, Bertha; Microzonificación de Sullana
[^5]: 6. GONZALES, Luis; Microzonificación de Huancabamba
[^6]: 8. LAZARES, Fernando; Vulnerabilidad de Moquegua y Tacna.
[^7]: 4. GARZON CABRERA, Sandra; CISMID 1995; pàg. 259
[^8]: 1. HARTH TERRE, Emilio; Los Monumentos Religiosos de la desaparecida Villa de Zaña.
[^9]: 4. HUERTAS VALLEJOS, Lorenzo, Ecología e Historia; pàg. 16
 5. INEI, Compendio Estadistico Departamental 95-96 - Departamento de Lambayeque
