UNIVERSIDAD NACIONAL DE INGENIERIA

FACULTAD DE INGENIERIA GEOLOGICA, MINERA Y METALURGICA

ANALISIS TECNICO-ECOLOGICO-ECONOMICO CON LA APLICACIÓN DE EXPLODECK PARA REDUCIR EL CONSUMO DE MEZCLA EXPLOSIVA EN LA COMPAÑÍA MINERA BARRICK MISQUICHILCA-LAGUNAS NORTE

TESIS

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO DE MINAS

PRESENTADO POR:
MANUEL ANGEL CHANDUVI GAMARRA

Digitalizado por:

Lima – Perú 2010

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse

AGRADECIMIENTO

Agradezco a Dios por darme la vida y darme la sabiduría para poder seguir adquiriendo conocimientos para ser un excelente profesional y un ser humano de bien.

A mi Alma Mater, la Universidad Nacional de Ingeniería por darme una formación íntegra en donde los valores inculcados son reflejados en las empresas y sociedad, asimismo agradecer a los catedráticos, autoridades y trabajadores que conforman el equipo de la UNI por el apoyo que percibí durante mi estadía por las aulas universitarias.

A mi familia que con su apoyo logré ser el profesional que soy, a mis compañeros de trabajo y estudio, ya que siempre me brindaron su confianza y a todas las personas que formaron parte del éxito de mi profesión.

DEDICATORIA

A mi madre que por su gran esfuerzo y apoyo hizo de mí un profesional, a mi padre que desde el cielo me guía, a mis hermanas Jessica, Katherine, a mis sobrinos Christhian y Daniela y a mi enamorada Mariana.

RESUMEN

El presente proyecto tiene como finalidad demostrar que la utilización del Explodeck para generar cámaras de aire proporciona un ahorro significativo con lo que respecta al consumo de mezclas explosivas y otros beneficios que se explicarán en el transcurso del proyecto.

Minera Barrick Misquichilca tiene en mayor proporción roca arenisca, está dividida en tres zonas la mina: Alexa, Josefa y Dafne. Este proyecto se llevó a cabo en la zona de Dafne que tiene una resistencia a la comprensión entre 50 Mpa y 120 Mpa. El explodeck es la única bolsa de aire autoinflable con gas 100% no combustible ó inflamable. Se infla con un aerosol incorporado en la bolsa que es amigable con la capa de ozono.

Su ingeniería hace que resista según sea el caso más de 800 kilos de peso. Su concepción y materiales de los que está hecho permiten que se fije perfectamente en el taladro, aun cuando éste no tenga paredes uniformes, ya que la bolsa se acomodará a cualquier geometría. Otros dispositivos rígidos no tienen esa propiedad y suelen resbalar por entre las paredes o no conseguir un sellado hermético en el caso del deck de aire.

Con el siguiente proyecto se demuestra que utilizando Explodeck se ahorra un metro de mezcla explosiva por taladro, se realizaron pruebas en campo con lo cual se demostró la efectividad del producto, muchos investigadores están de acuerdo en que las operaciones mineras unitarias de perforación y voladura tienen una influencia predominante en el ciclo total de minado; porque de los resultados de éstas dependerá la producción y la productividad y por ende los costos en US\$/TM de las subsiguientes operaciones mineras unitarias que son: carguío, acarreo, chancado primario, etc.

INDICE GENERAL

1. CAPITULO I

	1.1 Introducción	***************************************	1
	1.1.2. Objetivos 1.1.3. Alcances y lim 1.1.4. Metodología d	edentesitacionese la investigación	5 6
	1.2 Generalidades		y
	1.2.2. Proyecto Lagur 1.2.2.1. Ubica 1.2.2.2. Fisiog 1.2.2.3. Hidro 1.2.2.4. Drena 1.2.2.5. Clima 1.2.2.6. Ambie - Fle - Fa - Av	nas Norte	12 13 14 15 16 16 17 18 18
2.	CAPITULO II		
	2.1. Geología		22
	2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5.	Marco Geológico	.27 .28 .29

2.1.6.1. Toneladas de Roca Chancada por Hora según tipo de	
Roca	37
2.1.7. Ensayo Abrasión Los Ángeles (ASTM C.131/C-535)	38
2.1.8. Compilación de Ensayos UCS	39
2.1.9. Determinación de los Rangos de Resistencia por Tipo	
Litológico	40
2.1.9.1. Escala de Durezas	41
2.1.9.2. Rangos de Durezas y sus correspondientes Resistenci	ias
Mpa	
2.1.10. Rangos de Dureza por Tipo Litológico propuestos para el Log	
de BlastHole	
2.1.10.1. Resistencias UCS por Grupo Litológico en Lagunas	
Norte	42
2.1.10.2.Rangos de Dureza Propuesto para Logueo de	
BlastHole	43
·	
2.2. Hipótesis de funcionamiento	45
2.3.1. Descripción de la geometría de cargas	
2.3.2. Primera etapa: Movimiento inicial después de la detonación	
2.3.3. Segunda etapa: Proceso de equilibrio	
2.3.4. Tercera etapa: Transmisión de la energía al medio	
2.3.5. Cuarta etapa: Reflexión de las ondas de choque	
2.3.6. Quinta etapa: Interacción de la energía con cámara de aire	
2.3.6.1. ¿Cómo actúa la energía dentro del Taladro?	53
2.3. Proceso Productivo	56
2.3.1. Perforación	
2.3.1.1. Procedimiento General	
2.3.1.2. ¿En qué consiste la perforación?	
2.3.1.3. Importancia de la Perforación	
2.3.1.4. Perforación de Banqueo	
2.3.1.5. Planos de Perforación	
2.3.1.5.1. Confección de Planos de Perforación	
2.3.1.6. Parámetros de Perforación	
2.3.1.6.1. Velocidad de Penetración	
2.3.1.6.2. Velocidad de Rotación	
2.3.1.6.3. Presión Hidráulica o Empuje (Pulldown)	
2.3.1.6.4. Velocidad de Rotación	
2.3.1.6.5. Velocidad de Barrido (Bailing Velocity)	
2.3.1.6.6. Caudal de Aire	
2.3.2. Voladura	70
2.3.2.1. Importancia de la Actividad de Voladura	71
2.3.2.2. Plano de Voladura	72
2.3.2.3. Diseño de Voladura	

	2.3.2.4. Variables Controlables de la Voladura	
	2.3.2.4.1. Variables de Diseño	73
	2.3.2.5. Influencia de las Variables en los Resultados de	
	Voladura	75
	2.3.2.5.1. Diámetro de los Barrenos	
	2.3.2.5.2. Altura de Banco	
	2.3.2.5.3. Inclinación de los Barrenos	
	2.3.2.5.4. Retacado	
	2.3.2.5.6 Developer Forestim in the second s	
	2.3.2.5.6. Burden y Espaciamiento	
	2.3.3. Carguío y Transporte	
	2.3.3.1. Sistemas de Carguío y Transportes	
	- Planificación de la mina	90
	- Operación de la mina	90
	- Jefe de Operaciones	
	- Operador del equipo de carguío	
	- Topografía	
	- Equipos Auxiliares	
	2.3.4. Ore Control.	
	2.3.5. Chancado	97
	2.3.5.1. Etapas del Proceso de Chancado	99
	APITULO III	101
	.1. Marco teórico	
	.1. Marco teórico	101
	3.1.1. ConceptosLitología	101 103
	1. Marco teórico	101 103 103
	1. Marco teórico	101 103 103
	1. Marco teórico	101 103 103
	3.1.1. Conceptos	101 103 103 104
	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación	101 103 103 104
	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación 3.1.2.1. Etapas del Proceso de Fracturamiento de Rocas	101 103 103 104 104
	3.1.1. Conceptos	101 103 103 103 104 104
	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación 3.1.2.1. Etapas del Proceso de Fracturamiento de Rocas 3.1.2.1.1. Evolución de los Conceptos del Proceso de Fracturamiento de Rocas	101 103 103 104 104 106 e
	3.1.1. Conceptos	101 103 103 104 104 106 e
3.	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación 3.1.2.1. Etapas del Proceso de Fracturamiento de Rocas 3.1.2.1.1. Evolución de los Conceptos del Proceso de Fracturamiento de Rocas	101 103 103 104 104 106 e 114
3.	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación 3.1.2.1. Etapas del Proceso de Fracturamiento de Rocas 3.1.2.1.1. Evolución de los Conceptos del Proceso d Fracturamiento de Rocas 3.1.2.2. Resistencia Compresiva	101103103104104106 e114
3.	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación 3.1.2.1. Etapas del Proceso de Fracturamiento de Rocas 3.1.2.1.1. Evolución de los Conceptos del Proceso d Fracturamiento de Rocas 3.1.2.2. Resistencia Compresiva	101103103104104106 e114116
3.	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación 3.1.2.1. Etapas del Proceso de Fracturamiento de Rocas 3.1.2.1.1. Evolución de los Conceptos del Proceso de Fracturamiento de Rocas 3.1.2.2. Resistencia Compresiva 2. Impacto ambiental. 3.3.1. Recursos	101103103104106 e114116116
3.	3.1.1. Conceptos - Litología - Rocas Eruptivas - Rocas Sedimentarias - Rocas metamórficas 3.1.2. Sobreperforación 3.1.2.1. Etapas del Proceso de Fracturamiento de Rocas 3.1.2.1.1. Evolución de los Conceptos del Proceso d Fracturamiento de Rocas 3.1.2.2. Resistencia Compresiva	101103103104104106 e114116116

	3.4.	Cronogran	na de Actividades.	
			Cronograma de Trabajo Agosto – Noviembre 2009	
4.	CAI	PITULO IV		
	4.1.	Sistema	de Iniciación Electrónica122	2
		4.1.2. 4.1.3.	Detonador Electrónico	2 3
			- Tipos de Explosivos	4
	4.2.		químico de las mezclas explosivas utilizadas en Lagunas	
	I	Norte	125	5
		4.2.1.	Problemas Generados debido a un mal Balance del Oxígeno en la mezcla explosiva	
	4.3.	Secueno	cia de salida y tiempos de retardo130)
		4.3.1.	Retardos Con detonadores pirotécnicos	
	4.4.	Medición	n de la velocidad de detonación130)
	4.5.	Fragmen	tación131	Į
			Impacto de la fragmentación 132 Medición de la fragmentación 133 - Proyecto 1-4030-001 133 - Proyecto 1-4030-002 133 - Proyecto 1-4030-003 14	3 3 7
5.	CAI	PITULO V		
		Perforación,	de Voladura para Eliminar la Sobre Perforación en la Mejorar la Fragmentación, Reducir el Consumo de Explosivos las Vibraciones14	
		5.1.1. 5.1.2.	Taponex	

		5.1.3.	Evaluación e Implementación de Cámara de aire en el fondo taladro de voladura	
	5.2.	Prueba	de proyecto con Taponex-estadísticas.	
		5.2.1.	Análisis	152
			Ejecución	
		5.2.3.	Resultados	154
	5.3.	Prueba d	le proyecto con Explodeck-estadísticas.	
			Aplicación de Explodeck en Proyectos	
		5	.3.1.1. Proyecto 1-4030-001	
			5.3.1.1.1. Características del Proyecto	
		_	5.3.1.1.2. Análisis de Costos del proyecto 1-4030-001.	
		5	.3.1.2. Proyecto 1-4030-002	
			5.3.1.2.1. Características	
			5.3.1.2.2. Resultado del Piso	
			5.3.1.2.4. Análisis de Costos Proyecto 1-4030-002	
		5	3.3.1.3. Proyecto 1-4030-003	
		J	5.3.1.3.1. Análisis de Costos Proyecto 1-4030-003	
	5.4.	Taponex	Vs. Explodeck	169
		541	Análisis del Banco Superior Nivel 4040	170
		5.4.2.	Análisis Costo – Beneficio	172
			Análisis Costo – Beneficio a Largo Plazo	
6	CADI	TULO VI		
υ.	CALL	TOLO VI		
	6.1.	Análisis :	y discusión de Datos	180
7.	CAPI	TULO VI	I	
	7.1.	Conclusion	ones	189
8.	CAPI	TULO VI	II	
	8.1.	Recomen	idaciones	192

9.	CAPITULO IX			
	9.1.	Bibliografía	194	
10.	. CAPI	TULO X		
	10.1. Anexo		195	
		ANEXO A: Procedimiento de la utilización del explodeck	196	
		ANEXO B: Ozone friendly certification	198	
		ANEXO C: Datos proyecto 2-4140-034-con taponex	199	
		ANEXO D: Presentación y componentes del explodeck	200	
		ANEXO E: Taponex vs Explodeck	201	
		ANEXO F: Datos proyecto 1-4030-001	202	
		ANEXO G: Secuencia de salida del proyecto 1-4030-001	207	
		ANEXO H: Inicio-fragmentación-piso final del 1-4030-001	209	
		ANEXO I: Datos proyecto 1-4030-002	211	
		ANEXO J: Secuencia de salida del proyecto 1-4030-002	217	
		ANEXO K: Inicio-fragmentación-piso final del 1-4030-002	219	
		ANEXO L: Datos proyecto 1-4030-003	221	
		ANEXO M: Secuencia de salida del proyecto 1-4030-003	223	
		ANEXO N: Inicio-fragmentación-piso final del 1-4030-003	225	
		ANEXO O: Levantamiento topográfico piso 4030	226	
		ANEXO P: Explodeck dentro de un taladro	227	
	ANEXO Q: Porcentaje de variación de un taladro con respecto a			
		su par superior	228	
		ANEXO R: Plano de dureza proyecto 2-4140-034	229	

TABLA DE ILUSTRACIONES

Figura 1.1: Ubicación y Accesibilidad del proyecto	14
Figura 2.1: Capas de arenisca intercalada con capas de carbón	24
Figura 2.2: Columna Estratigráfica Local	25
Figura 2.3: Geología Regional en los alrededores del Depósito Las Lagunas	26
Figura 2.4: Grupos litológicos	29
Figura 2.5: Ubicación De Muestras Superficiales (Propiedades Elásticas)	31
Figura 2.6: Resistencia al corte	30
Figura 2.7: Resistencia al corte Piteau	32
Figura 2.8: Muestras superficiales	36
Figura 2.9: Modulo de Elasticidad	33
Figura 2.10: Coeficiente De Poisson	34
Figura 2.11: Resistencia a La Compresión.	34

Figura 2.12: Resistencia al corte de las muestras superficiales
Figura 2.13: Resistencia al corte- frentes de carguío
Figura 2.14: Toneladas de roca chancada por hora
Figura 2.15: Resultados de Abrasión 3
Figura 2.16: Desgaste de las rocas
Figura 2.17: Resistencia al corte para los tipos litológicos
Figura 2.18: Rango de durezas Hoek-Brown 4
Figura 2-19: Rango de durezas por tipo litológico
Figura 2.20: Escala de dureza para logueo
Figura 2.21: Diagrama de carga Tradicional vs. Cámara de Aire
Figura 2.22: Primera Etapa: Movimiento Inicial Después de la Detonación4
Figura 2.23: Segunda Etapa - Proceso de Equilibrio
Figura 2.24: Tercera Etapa: Transmisión de la Energía al Medio
Figura 2.25: Cuarta Etapa: Reflexión de las Ondas de Choque
Figura 2.26: Quinta Etapa: Interacción de Taladros con Cámara de Aire al Fondo 53
Figura 2.27: Generación de Cámara de aire dentro del Taladro
Figura 2.28: Reflexión de las ondas de choque con cámara de aire
Figura 2.29: Perforación de Banqueo
Figura 2.30: Imagen Software Mine Sight

Figura 2.31: Malla de Perforación	59
Figura2.32: Topógrafo con GPS	60
Figura 2.33: Diseño Topográfico	61
Figura 2.34: Penetración Máxima	62
Figura 2.35: Velocidad de Penetración	64
Figura 2.36: Voladura en Tajo	71
Figura 2.37: Diseño de Voladura	72
Figura 2.38: Esquema de Voladura en Banco	74
Figura 2.39: Diámetro de Perforación vs. Altura de Banco	77
Figura 2.40: Sobre perforación mínima necesaria	83
Figura 2.41: Dimensión de burden en función del diámetro de perforación	85
Figura 2.42: Plan Minero de explotación	88
Figura 2.43: Plan de Ruta de Carguío	89
Figura 2.44: Carguíos y Transporte	90
Figura 2.45: Planeamiento Mina	91
Figura 2.46: Operación de transporte de mineral	92
Figura 2.47: Recojo de muestras	93
Figura 2.48: Codificación de Muestras	94
Figura 2.49: Recepción de muestras	95

Figura 2.50: Mapa de Muestras 97
Figura 2.51: Material en chancadora
Figura 2.52: Conminución
Figura 2.53: Etapas del proceso de Chancado
Figura 3.1: Sobreperforación
Figura 3.2: Evolución de los Conceptos
Figura 3.3: Evolución de la ciencia de la voladura de rocas
Figura 3.4: Fracturas Radiales
Figura 3.5: Empuje hacia Adelante
Figura 3.6: Fragmentación
Figura 3.7. : Fórmula de Praillet
Figura 3.8: Explodeck
Figura 3.9: Certificados
Figura 4.1: Blaster 123
Figura 4.2: Resultados de fragmentación 1-4030-001
Figura 4.3: Resultados de fragmentación 1-4030-002
Figura 4.4: Resultados de fragmentación 1-4030-003
Figura 5.1: Taponex
Figura 5.2: Clasificación de dureza

Figura 5.3: Estado inicial del explodeck	154
Figura 5.4: Estado final del explodeck	154
Figura 5.5: Plano de dureza del proyecto 1-4030-001	157
Figura 5.6: Proyecto 1-4030-001	157
Figura 5.7: Resultado del piso del proyecto 1-4030-001	158
Figura 5.8: Diseño de taladros proyecto 1-4030-001	159
Figura 5.9: Plano de dureza del proyecto 1-4030-002	161
Figura 5.10: Proyecto 1-4030-002	162
Figura 5.11: Resultado del piso del proyecto 1-4030-002	163
Figura 5.12: Levantamiento topográfico	165
Figura 5.13: Diseño del Taladro proyecto 1-4030-003	167
Figura 5.14: Plano de dureza del proyecto 1-4030-003	167
Figura 5.15: Funcionamiento del taponex	169
Figura 5.16: Funcionamiento del explodeck	170
Figura 5.17: Esfuerzo compresivo del Nivel 4040	171
Figura 5.18: Nivel 4030 (Proyectos a Prueba)	171
Figura 6.1: Representación del cálculo de la resistencia de la roca	184
Figura 6.2: Piso Final del proyecto 1-4030-002	185
Figura 6.3: Zona de Dafne	186

INTRODUCCIÓN

Es bien conocido que para llevar a cabo cualquier actividad relacionada con el movimiento de material rocoso, se requiere de las operaciones unitarias de perforación y voladura para efectuar la fragmentación de la roca. En otras palabras, es necesario reducir de tamaño al macizo rocoso para que sea fácilmente manipulado por el equipo de carguío y acarreo.

Hablando específicamente de minería se puede decir que ésta consta de dos procesos principales que son los siguientes:

- El arranque o fragmentación del material rocoso, el cual es llevado a cabo por las operaciones mineras unitarias, de perforación y voladura.
- La extracción del material fragmentado, el cual es realizado mediante el equipo minero y las operaciones mineras unitarias de carguío y acarreo.

Muchos investigadores están de acuerdo en que las operaciones mineras unitarias de perforación y voladura tienen una influencia predominante en el ciclo total de minado; porque de los resultados de éstas dependerá la producción y la productividad y por ende los costos en US\$/TM de las subsiguientes operaciones mineras unitarias que son: carguío, acarreo, chancado primario, etc.

También se debe de mencionar que durante las tres últimas décadas mucho se ha investigado y aprendido acerca del mecanismo básico del proceso de fracturamiento de rocas, los parámetros de detonación y explosión de las mezclas explosivas comerciales, mecánica de rocas, utilización de cámaras de aire, etc.

La globalización de mercados y por ende el avance tecnológico han llevado a la creación de nuevos mecanismos a ser utilizados en voladura de rocas, tal es el caso del accesorio de voladura Explodeck.

La aplicación de las cámaras de aire nos ayudarán a eliminar la sobre perforación en la perforación, disminuir la vibraciones, y un punto muy importante reducir el consumo de mezcla explosiva, de la cual se trata el proyecto y mejorar la fragmentación previo análisis de las condiciones del macizo rocoso.

La fragmentación es la más importante y única variable que debe ser tomada en cuenta para evaluar los resultados de un disparo desde un punto de vista técnico – económico. Debido a que la fragmentación es la única variable que interrelaciona a todas las operaciones mineras unitarias que conforman el ciclo total de minado.

1.1.1. Origen y Antecedentes

Sabemos a través de la historia que el proceso de voladura es fundamental para optimizar los costos en el ciclo de minado, lo primordial es fragmentar la roca lo más equitativa que sea posible pero sin aumentar los costos de voladura, esto dependerá del uso de accesorios de explosivos lo cual permitirá reducir la mezcla explosiva utilizada en los taladros, actualmente muchas empresas mineras siguen realizando sus voladuras de forma convencional por lo que no tienen ahorros en los costos de voladura.

Desde el comienzo de la era industrial, en voladura de rocas también se buscó optimizar el uso de la energía explosiva, es así que tenemos algunos de los principales avances:

- +100 Robert B. Hopler; Used underground
- 1940 Mel'Nikov & Marchenko; Surface Blasts
- 1961 Univ. of Missouri; Mid-column air decks
- 1980 Univ. of Maryland; Modelling

South Africa; Pre splitting

Atlas Powder Co; Field tests

1987 Chiappetta & Mammele; Air Deck

- 1999 Intec; Test in Evergreen
- 2001 R. F. Chiappetta; Nueva Técnica Voladura
- 2006 W.L. Fourney; Borehole Pressures in an Air Decked

Todos estos estudios y pruebas empíricas resultaron en el desarrollo de:

- Nuevas Técnicas de Voladuras
- Productos explosivos
- Accesorios especiales

Algunos de ellos son:

- Cargas desacopladas
- Pre Splitting
- Voladura de Contorno en Minería Subterránea
- Emulsiones de Pequeño diámetro para Pre Cortes
- Explosivos de baja densidad
- Air decking o cámaras de aire
- Elementos o accesorios plásticos, bolsas, retenedores de taco.

Como antecedente de la aplicación del accesorio Explodeck utilizados para generar cámaras de aire son utilizadas por algunas empresas mineras en Perú como: Yanacocha, Cerro Verde, Southern Perú como también en empresas mineras en Chile y en Estados

Unidos. Algunas de ellas dedicadas a la extracción del carbón utilizan el Explodeck.

1.1.2. Objetivo

Objetivo General

Demostrar que la utilización de Explodeck nos generará un ahorro significativo en el consumo de mezcla explosiva.

Objetivo Especifico

- Demostrar que el uso de Explodeck para generar cámaras de aire nos da una buena fragmentación y elimina el efecto fly rock.
- Demostrar que usando Explodeck no se obtienen desniveles (lomos) en el piso final.
- Reducir la sobre perforación con la utilización de cámaras de aire.
- Obtener una fragmentación más homogénea.

1.1.3. Alcance y Limitaciones

El alcance de este proyecto involucra a todas las actividades en la cual se haga uso de voladuras, es decir ya sea en construcción o minería, con respecto a minería estamos hablando de superficial. Al hablar de voladura se incluye el uso de explosivos en sus distintas presentaciones.

Entre las limitaciones que se dan en el proyecto tenemos la caracterización del macizo rocoso que se da en la mina Barrick unidad Lagunas Norte.

1.1.4. Metodología de Trabajo de la Tesis

La metodología aplicada para el siguiente proyecto consistió en lo siguiente:

Se empezó a revisar proyectos anteriores en las cuales fueron utilizados sin cámara de aire, se recolecto dicha información para tener una línea base de partida de los esfuerzos compresivos de los taladros.

Se recopilo toda la información del sistema Dispatch por cada proyecto para así determinar el esfuerzo compresivo de cada taladro, del mismo modo su presión de detonación.

Con dicho análisis del esfuerzo compresivo y la determinación de la dureza en base a la velocidad de penetración se clasifican en roca muy dura, dura, media y suave.

Se procedió a realizar las pruebas piloto:

Se procedía a instalar los Explodeck en cada taladro a un metro de altura del piso, luego de la voladura se realiza el análisis de la fragmentación con el software Powersieve.

-Pruebas pilotos:

Con respecto a este punto, se realizaron pruebas con la aplicación del Explodeck, fueron 3 proyectos en la zona de Dafne.

De la misma manera se realizó una prueba con Taponex para poder identificar las diferencias. En dichas pruebas se analizó la fragmentación, pisos finales del proyecto con el apoyo de topografía, un análisis del tiempo de acarreo, entre otros factores.

1.1.5. Justificación

Las razones por lo cual se optó por utilizar el Explodeck radicó en ahorrar un metro de mezcla explosiva por taladro de cada malla.

Minera Barrick Misquichilca trabaja con taladros de 97/8" de 10m de longitud con 1 metro de sobre perforación, la distribución de la mezcla explosiva es de 6.2 metros con 4.8 metros de taco proveniente del mismo detritus del taladro. Se realizó el siguiente proyecto de implementar cámaras de aires utilizando el Explodeck en los taladros

de mineral, se enfatizaron dichas pruebas en la zona de Dafne que en su mayor parte es arenisca con una resistencia a la comprensión que varía entre 50MPA a 120 MPA.

Por lo que se optó utilizar el Explodeck en todos los taladros de la malla de producción de la zona Dafne la cual nos permitía una reducción en los costos de voladura específicamente el ahorro de 1 metro de mezcla explosiva, asimismo se obtuvieron otros beneficios como la reducción de las vibraciones, una buena fragmentación, menor desgaste de las tolvas por el efecto de la fragmentación, menores tiempos de carguío que en su conjunto se veían reflejado en los costos del ciclo de minado en la operación.

1.2. Generalidades

1.2.1. Barrick

más importante del mundo. Hace no mucho tiempo, en 1983, sin embargo, era un debutante en la industria, un debutante cuyos activos más sólidos eran la perspicacia financiera y de negocios en vez del oro. Peter Munk, fundador y presidente del Directorio de Barrick, supo detectar bien el ambiente, detectar oportunidades, elaborar una estrategia apropiada y, por supuesto, implementarla. Desde sus inicios Barrick ha reflejado esta fortaleza empresarial. Además, Munk tuvo la sabiduría necesaria para traer a otras personas fuertes y muy capaces a su equipo. Una de ellas es Greg Wilkins, actual presidente y CEO de Barrick.

En la actualidad, Barrick es una de las compañías mineras auríferas

Luego llegaron los activos físicos. Camflo Inc. fue una compra temprana (en 1984) que permitió a Barrick posicionarse en Québec y, lo que es más importante, contar con un talento minero de primer nivel como Robert M Smith, quien además llegó a ser un presidente muy querido en la compañía, hasta su muerte en el año 1998.

Inicialmente la compañía creció mediante adquisiciones en América del Norte. Mención especial merece la compra de Goldstrike (en 1987), que en ese entonces era una modesta operación con lixiviación en pilas. Barrick pagó \$62 millones de dólares y fue criticada por este

gasto sobredimensionado, pero se creía que las reservas se podían duplicar a 1,2 millones de onzas. A comienzos de 2006, las reservas y la producción de Goldstrike sumaban, aproximadamente un total de 45 millones de onzas y seguían aumentando.

Más tarde, en 1994, con la compra de Lac Minerals Ltd, y Arequipa Resources Ltd, en 1996, la compañía se expandió hacia Sudamérica. La compra de Lac Minerals Ltd dio a Barrick el control de El Indio en Chile y un interés del 40% en el proyecto Veladero en Argentina. Arequipa Resources aportó propiedades de exploración en Perú, incluyendo Pierina.

Ya en los primeros cuatro meses en Pierina, Barrick confirmó reservas de 6.5 millones de onzas de oro. En un plazo de 2 años, Barrick tenía una nueva mina en producción. En ese entonces, la compañía seguía metódicamente las tres estrategias complementarias que marcan su éxito hasta el día de hoy: inversión permanente en exploración y desarrollo; un enfoque de desarrollo basado en distritos para así optimizar reservas en franjas de oro que parecen ser muy buenos prospectos; y adquisiciones y fusiones disciplinadas.

En 1999, Barrick compró Sutton Resources, cuyas propiedades mineras en Tanzania incluían el depósito Bulyanhulu. Una vez más, Barrick actuó rápidamente. Aumentó las reservas de oro de 3.8 a 10 millones de onzas en tan solo 18 meses, y la mina empezó su fase de producción en 2001. De acuerdo con su estrategia de desarrollo a nivel

distrital, en 2000 Barrick compró Pangea Goldields Inc, cuyas propiedades para exploración incluían Tulawaka en Tanzania.

La fusión con la compañía minera Homestake (en 2001) fue un paso importante. Agregó minas en América del Norte y del Sur y lo que era nuevo Barrick en Australia. Además ayudó a sentar las bases para el cambio organizacional del año 2003, cuando pasó de un modelo centralizado a una plataforma descentralizada, conformada por unidades regionales de negocios. En paralelo, Barrick estaba desarrollando un nuevo paquete de minas: Tulawaka (Tanzania), Lagunas Norte (Perú), Veladero (Argentina) y Cowal (Australia). Las 3 primeras comenzaron a operar en el año 2005 y la cuarta a principios del 2006.

En enero 2006, Barrick concluyó un acuerdo amigable con Placer Dome, una adquisición cuyos activos complementarios mejoraron posteriormente la posición de la empresa en América del Norte, Tanzania y Australia; agregaron activos cupríferos de clase mundial en Chile y ampliaron su presencia global a Papúa Nueva Guinea y Sudáfrica. Además, prácticamente duplicaron el tamaño de nuestro equipo a nivel mundial.

Esta transacción es el ejemplo más reciente del enfoque consistente de Barrick, orientado hacia el éxito de sus negocios: adquirir activos de calidad, valorar y formar personas al igual que yacimientos, seguir creciendo y prosperando en un sector demandante.

A lo largo de los años, Barrick ha mostrado otra importante consistencia: la responsabilidad social. Bob Smith incluyó la responsabilidad social como un componente clave de la cultura de Barrick a través de una profunda conexión con empleados y comunidades. Hoy en día, la declaración de la visión corporativa define "mejores" con criterios idénticos de rentabilidad y responsabilidad. Esto dice al mundo que Barrick es ambiciosa, basada en el negocio, y con sólidos principios éticos. La cita que se menciona a continuación resume, en una frase, la historia y el carácter de esta compañía.

"El enfoque de Barrick sobre el éxito del negocio: adquirir activos de calidad, y valorar y formar personas al igual que yacimientos".

1.2.2. Provecto Lagunas Norte

En marzo de 2001, MBM empezó un programa agresivo de exploración. Estableció una oficina de exploración en el campamento

Callacuyan, El 15 de abril de 2002, Barrick informó el descubrimiento de Lagunas Norte, un yacimiento de oro diseminado.

El recurso se basó en 172 taladros con un total de 41,714 metros. Hacia fines de 2002, y luego de 22 meses de exploración, MBM había completado 120,000 metros de perforación diamantina en 445 sondeos con recuperación de testigo.

1.2.2.1. Ubicación y Accesibilidad

La mina Lagunas Norte se encuentra ubicada en el distrito de Quiruvilca, en la provincia de Santiago de Chuco, departamento de la Libertad, por carretera aproximadamente a 130 Km. al Este de la ciudad de Trujillo y a 11 Km. al Noreste del pueblo de Quiruvilca.

El yacimiento se encuentra emplazado en la Cordillera Occidental de los Andes peruanos, a una altitud aproximada de 4150 msnm. La elevación en el área de mina oscila entre los 3,500 y los 4,200 msnm. El área se extiende a ambos lados de la divisoria continental, entre la cuenca del río Amazonas (Río Chuyugual hacia el Este) y la vertiente del Océano Pacífico (Río Alto Chicama hacia el Oeste). Ver Figura 1.1

Desde la ciudad de Lima la mina Lagunas Norte es accesible por dos vías: vía aérea y terrestre; por vía aérea (avioneta) 1.50 h. aproximadamente Lima – aeropuerto Pata de Gallo ubicado a
3.5 Km de la mina. Y por vía a terrestre a 12 h.
aproximadamente Lima – Trujillo – Mina Lagunas Norte.

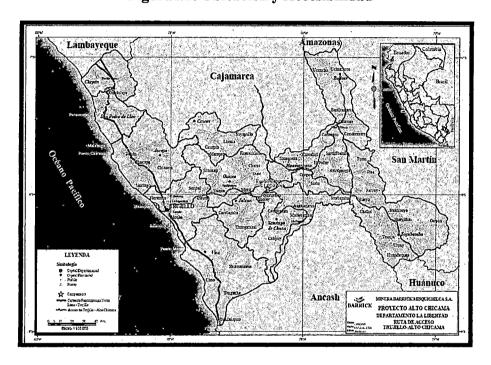


Figura 1.1: Ubicación y Accesibilidad

1.2.2.2. Fisiografía

Los eventos terciarios de la Orogenia Andina configuraron los aspectos esenciales del relieve actual, el cual quedo como un pie de monte continental de la Cordillera Occidental. El área se caracteriza por presentar colinas onduladas y montañas accidentadas con terrenos cortados por valles incisivos y abruptos, que evidencian los patrones erosivos asociados con la

geología del basamento rocoso. En el área predominan los afloramientos rocosos, suelos someros y pastos naturales.

1.2.2.3. Hidrogeología

El entendimiento de las condiciones hidrogeológicas (agua subterránea) del área del Proyecto se adquirió en base a las investigaciones hidrogeológicas del estudio de línea base, las que incluyeron el monitoreo de pozos perforados, monitoreo del nivel y calidad del agua subterránea y pruebas de conductividad hidráulica.

Las aguas subterráneas se encontraron a profundidades entre 1 a 80 metros. Generalmente se encuentra a menor profundidad en áreas de topografías onduladas y/o adyacentes a lagunas y arroyos, y a mayor profundidad en terrenos elevados y empinados. La mayor parte del área del proyecto, es un área recargada de agua subterránea, relacionada con la naturaleza elevada del terreno en el cual las precipitaciones pueden infiltrarse por el basamento rocoso en zonas elevadas. Una vez infiltrada, el agua subterránea discurre a través de las formaciones hacia las elevaciones más bajas, donde ocurre la descarga, típicamente hacia lagunas y arroyos.

1.2.2.4. Drenaje

El drenaje está claramente dividido en dos vertientes la occidental y la oriental. Las aguas que ingresan al drenaje occidental descargan al Río Negro, que desemboca en el Río Perejil, el cual a su vez se convierte en el Río Alto Chicama y posteriormente en Río Chicama hasta descargar en el Océano Pacífico.

Los drenajes que ingresan a la vertiente oriental, están constituidos por cuatro quebradas principalmente; Quebrada Laguna Negra, Quebrada Quishuara Sur, Quebrada Quishuara Norte y Quebrada las Vizcachas las cuales fluyen hacia el Río Chuyuhual, luego este al Río Marañón para terminar en el Río Amazonas.

Existen algunas lagunas pequeñas en el área siendo las más grandes Laguna Negra y laguna Pozo Hondo en la cuenca de Laguna Negra y Laguna Callacuyán, en la cuenca del Río Perejil; Laguna los Ángeles hacia el Sur, en la cuenca de la Quebrada Caballo Moro.

1.2.2.5 Clima y Vegetación

Esta región es muy conocida por presentar climas estacionales extremos, y una considerable variación diaria de la temperatura. El clima entre los 3500 a 4050 m.s.n.m., es de templado a frío cuyas variaciones de temperatura van en promedio de 3 a 13 °C, con presencia de lluvias entre los meses de Enero a Marzo con precipitaciones entre 900 y 1 000 mm, al año.

1.2.2.6 Ambiente Biológico

- Flora

Las elevaciones en área de la mina fluctúan entre los 3 500 y los 4 200 msnm. Las grandes precipitaciones y las numerosas lagunas andinas cerca del área del Proyecto ayudan a la formación de un medio ambiente húmedo que favorece al desarrollo de especies vegetales.

La riqueza y diversidad de las especies tienen una amplia variedad en los diferentes tipos de vegetación. La mayor riqueza de especies se ha registrado en el pajonal, es mayor en el humedal y menor en las comunidades de arbustos.

El pajonal es la vegetación predominante en el área local, que está formado por manojos de gramíneas, plantas almohadilladas y arbustos de hojas diminutas. El pajonal, también conocido como "puna", constituye la vegetación de mayor tamaño y complejidad de la Cordillera de los Andes.

Fauna

El Perú se ubica entre los cinco primeros países en el mundo en lo que respecta a número de especies de aves y mamíferos, y además alberga también diversas especies de reptiles y anfibios (Clements y Shany 2001; Mittermeier et al. 1999; Pacheco et al. 1995). Muchas de estas especies son endémicas, lo cual significa que no se presentan en ningún otro lugar del mundo.

Aves

Se registraron cinco especies endémicas en el: Colibrí negro, Bandurrita peruana, Tijeral coronicastaño, Tapaculo unicolor y Monterita colisimple. Estas especies se encontraron con mayor frecuencia en los bofedales y en las áreas de vegetación arbustiva.

Mamíferos

Los roedores son los principales componentes de la fauna de mamíferos en el área regional y local, por entrevistas a moradores de la zona se reportó la existencia de zorro andino, puma, añas de Molina, venado cola blanca, vizcacha del norte y liebre amazónica.

Reptiles y Anfibios

En el área local, las especies más abundantes fueron el sapo Gastrotheca peruana y la lagartija Stenocercus melanopygus.

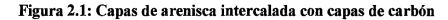
1.2.2.7. Recurso Mineral

Lagunas Norte es un yacimiento aurífero epitermal de alta sulfuración encajonado en el contacto entre las rocas sedimentarias cretáceas de la Formación Chimú y las rocas volcánicas terciarias del Grupo Calipuy. sedimentarias cretáceas caracterizan se estratos relativamente gruesos de areniscas entrelaminados limolitas y calizas micríticas que se gradan localmente en lechos de carbón. Estas rocas se plegaron durante la orogénesis Andina. La Pila volcánica terciaria es de grosor limitado y se caracteriza por una aglomeración de chimeneas volcánicas relacionadas con actividad freato-magmática. Se cree que dicha actividad volcánica está estrechamente relacionada con la mineralización aurífera. Hay grandes áreas de rocas volcánicas post-minerales que rodean el yacimiento, y es posible que encubran potenciales yacimientos satélite "ciegos".

La mineralización aurífera Lagunas Norte es del tipo diseminado y se reconocen tanto controles estructurales como estratigráficos. Las leyes económicas de oro se asocian con zonas anchas de sílice vuggy residual en las rocas volcánicas terciarias como también dentro de zonas irregulares de fracturación, brechación y silicificación en las secuencias sedimentarias subyacentes. El oro está principalmente en pirita, óxidos de hierro, pirita/ cuarzo y óxidos de hierro/ cuarzo. Los ensayos de oro señalan que posiblemente la pirita y los óxidos de hierro sean los principales portadores de oro.

CAPITULO II

2.1. Geología


2.1.1. Marco Geológico

Los estratos rocosos dentro del área del proyecto están conformados por sedimentos clásticos marinos de las eras del Jurásico Superior y del Cretáceo Inferior de las formaciones Chicama, Chimú, Carhuaz, Farrat e Inca, las cuales están plegadas en forma isoclinal alrededor de los ejes anticlinal y sinclinal, y tienen una orientación noroeste a sudeste, introduciéndose hacia el sudeste. Las fallas de empuje asociadas con el plegamiento se encuentran en las formaciones paralelas al eje de plegamiento, mientras que localmente se evidencian fallas transversales. La estructura dominante en el área local es el anticlinal empinado (denominado Anticlinal del Río Negro) que atraviesa la parte central del Proyecto.

Los dos flancos de las cuarcitas resistentes de la Formación Chimú forman la cresta este de la montaña que alberga el yacimiento aurífero y la cresta oeste que alberga la mina de carbón Callacuyán que se orienta hacia el valle del Río Perejil. Los esquistos de barro comparativamente suaves de la Formación Chicama forman el valle del Río Negro, al interior del núcleo del anticlinal. Las areniscas y la limonita de la Formación Carhuaz forman los flancos exteriores del anticlinal dentro de los valles del Río Perejil y Río Chuyuhual.

La secuencia sedimentaria se levantó, plegó y fue sometida a procesos de erosión durante las eras Cretáceo Tardío/Terciario Inicial. Luego del levantamiento, la erosión desarrolló una paleosuperficie irregular, que puede semejarse a la altiplanicie actual. Esta superficie antigua y erosionada fue luego cubierta en forma discordante por la secuencia volcánica Terciaria Inferior subaérea de la Formación Calipuy, que rellenó la paleotopografía y estableció la cubierta volcánica gruesa asociada con el área. La roca volcánica varía entre composición andesítica y dacítica e incluye domos intrusivos como el pico Shulcahuanga.

Generalmente, la secuencia de roca sedimentaria y volcánica presenta una porosidad intergranular baja. La deformación, la presencia de fallas y el levantamiento dieron como resultado el fracturamiento de la secuencia de rocas, formando así la ruta para el flujo del agua subterránea dentro de la masa rocosa.

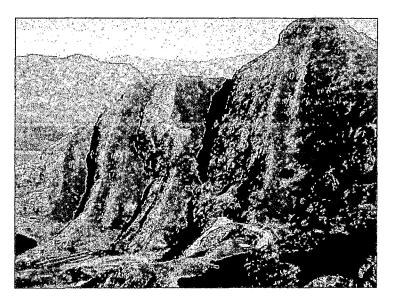


Foto N°01: Mirando al NW, Capas de areniscas cuarzosas intercalados con capas de carbón de la Fm. Chimú.

Figura 2.2: Columna Estratigráfica Local

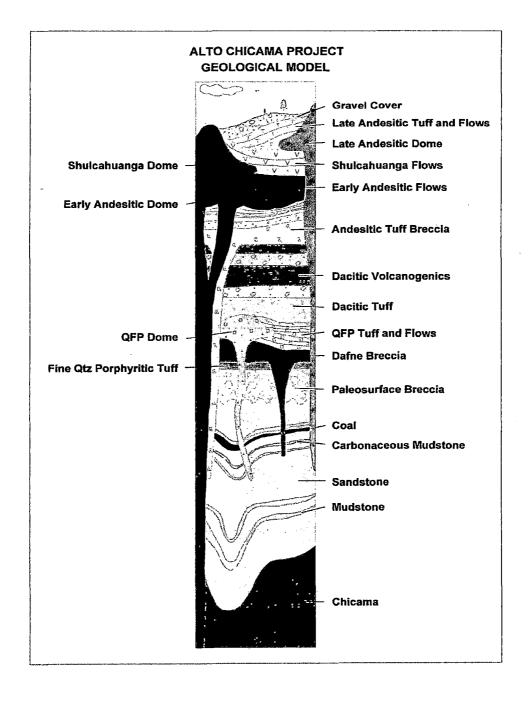
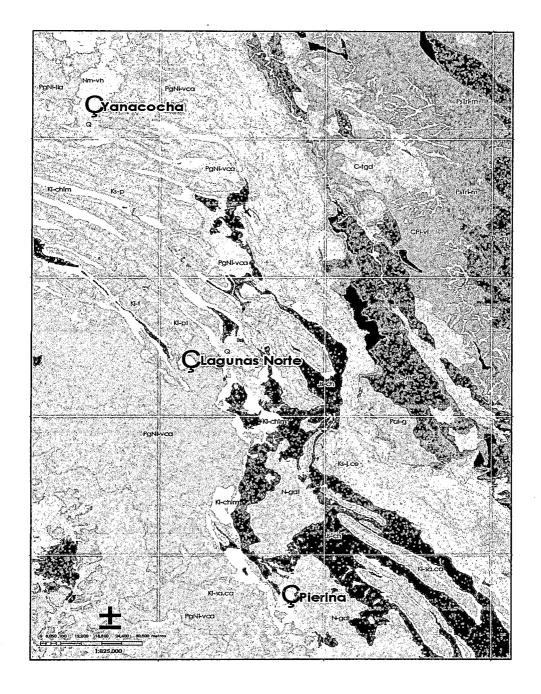



Figura 2.3: Geología Regional en los alrededores del Depósito Las Lagunas

2.1.2. Determinación de Rangos de Dureza para Logueo

En el presente informe se da alcances sobre las Durezas que presentan los distintos tipos litológicos en el Yacimiento de Lagunas Norte, estas durezas están basadas en datos de logueo de campo, ensayos de carga puntual; que se realizaron en la etapa de exploración (campaña de perforación geotécnica); se adicionó ensayos de propiedades elásticas y otros ensayos complementarios en la etapa de explotación.

En el año 2003 se realizaron 16 pozos diamantinos con intereses geotécnicos dentro de los límites del Pit, donde a cada uno de ellos se le realizó ensayos de Carga Puntual a diferentes profundidades y en distintos tipos litológicos encontrados; a la vez se tomaron muestras puntuales y fueron ensayadas por Resistencia a la Compresión no Confinada (UCS) en Lima.

Se procesaron los datos obtenidos de estos 16 pozos diamantinos, y en el presente informe se da a conocer los rangos de variabilidad de Durezas de Grupos Litológicos (agrupados por características litológicas semejantes); esta variabilidad de durezas esta debida al grado de alteración y fracturamiento que presentan las rocas.

De acuerdo a las necesidades y avances de la mina se envió 8 muestras superficiales de distintos tipos litológicos para determinar sus Propiedades Elásticas. Se tomaron también muestras de frentes de carguío en distintos tipos litológicos para conocer su resistencia a la carga puntual y su influencia en el rendimiento del chancado; así mismo se enviaron muestras a ser ensayadas para conocer su abrasión (ensayo abrasión los Angeles).

Por último en el presente informe, a partir del logueo geotécnico realizado en la etapa de exploración, se encontraron y analizaron 40 tipos litológicos; utilizando el parámetro de Dureza de Campo, se presenta una Escala Preliminar de Durezas para los distintos grupos litológicos los cuales podrían usarse en el logueo de BH.

2.1.3. Tipos y Grupos Litológicos

En el logueo de los testigos diamantinos en la etapa de exploración se utilizaron una gran cantidad de tipos litológicos, en la actualidad todos estos tipos litológicos han sido agrupados por sus semejanzas litológicas y de origen (Ver Figura 2.4); en base a esta nueva agrupación, se realiza el análisis de datos para la determinación de la Dureza de las rocas.

Figura 2.4: Grupos litológicos

Litología	Abreviatura	Característica	Comentarios
	VBPMS	Silicificado	Depósitos asociados al diatrema (ducto y apron) - generalmente mineralizada
VOLCANICS	VBPMA	Argilizado	Depósitos asociados al diatrema (ducto y apron) - generalmente acida (sulfuros)
	VBPMK	Carbonoso	Depósitos asociados al diatrema (ducto y apron) - generalmente acida (sulfuros) y matriz n
1	LPANE	Fresco	Andesitas (intusivo, flujos y piroclastos) frescos - Shulcahuanga y otros
ANDESITE	LPANA	Argilizado	Andesitas (intusivo, flujos y piroclastos) con arcillas y pirita
L	LPANE	Nueva unidad? - este	
CARHUAZ	SMSCA	Vetillas de clorita	Al este del depósito
CHICAMA	SMSCH	Carbonoso	Al oeste del depósito
SANDSTONE	SSAC		Arenisca masiva y/o laminada de grano fino, medio o grueso
	SMSCS	Silicificado	Lutitas, limolitas y SAFQi con sílice parda
MUDSTONE	SMSC	No Silicificado	Lutitas, limolitas y SAFQI sin silicificación
	SMSKS	Silicificado	Lutitas y limolitas carbonosas con silicificación
CARBMS	SMSK	No Silicificado	Lutitas y limolitas carbonosas sinn silicificación
	COALA	Antracítico	Carbón antracítico - brillo metático
COAL	COALB	Bituminoso	Carbón Bituminoso - sin brillo y apariencia terrosa
	OVBDK	Carbonoso - Vegetal	Cobertura orgánica
OVBD	OVBD	No Carbonoso	Cobertura sin presencia de material orgánico - tipo laguna Bradley
I	OVBDA	Acido	Cobertura de la zona del cañon

2.1.4. Resistencia al Corte UCS - Pozos Geotécnicos

Se perforaron 16 pozos (ver Figura 2.5), en los cuales se realizaron ensayos de carga puntual (campo - módulo fotográfico), a ciertas profundidades en distintos tipos litológicos; luego de agruparlos (ver Figura 2.4) se calculó las durezas Mínimas, Promedias y Máximas; las variaciones están relacionadas directamente con el grado de alteración y fracturamiento. En el caso específico de las areniscas (SSAC) los valores bajos pueden deberse a la mala calidad de la muestra, presencia de fracturas en la dirección de corte. (ver Figura 2.6).

De los promedios de durezas de los distintos tipos litológicos analizados de los sondajes geotécnicos, se desprende que las brechas volcánicas presentan la mayor resistencia, levemente por encima de las areniscas, las andesitas frescas son menos resistentes, las lutitas y limolitas silicificadas y no silicificadas se encuentran por debajo de las anteriores (su rango de variación es muy amplio debido al grado de alteración que presente); las andesitas alteradas tienen menor resistencia que las frescas y las de menor resistencia son las lutitas y limonitas con contenido carbonoso.

Figura 2.6: Resistencia al corte

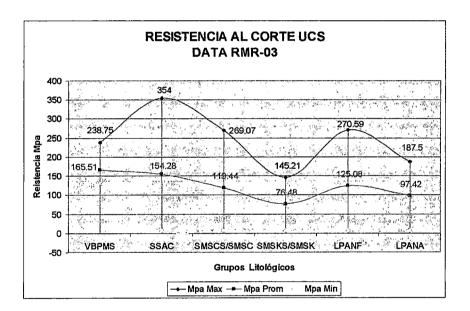
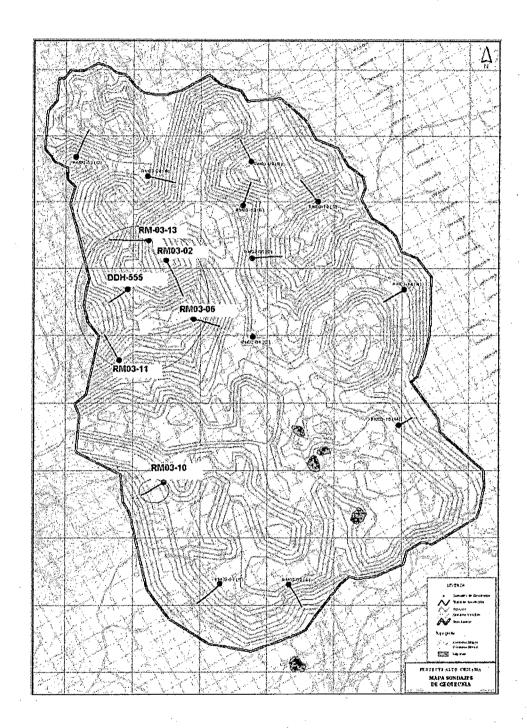
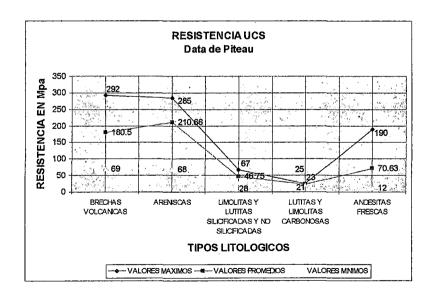



Figura 2.5: Ubicación De Muestras Superficiales (Propiedades Elásticas)



2.1.5. Ensayos de Compresión No Confinada – Pozos Geotécnicos

De los pozos geotécnicos, se tomaron muestras puntuales de distintos tipos litológicos y fueron enviadas a Lima (PUCP) para su respectivo ensayo de compresión. Las variaciones de las durezas son menores debido a que se tomó mucho cuidado en recolectar la muestra (ver Figura 2.7), en donde se muestran los rangos de variabilidad por tipo litológicos.

La resistencia de las brechas volcánicas y areniscas se muestran mayores, bajando para las lutitas y limonitas silicificadas y no silicificadas y más aún para las carbonosas, para las andesitas frescas se elevan; los rangos se encuentran determinados por la alteración de las rocas.

Figura 2.7: Resistencia al corte Piteau

ENSAYO PROPIEDADES ELASTICAS - MUESTRAS SUPERFICIALES.

Se tomaron 8 muestras superficiales (ver figura 2.8), de igual modo de distintos tipos litológicos y fueron enviadas a Lima (PUCP), para ser ensayadas por sus propiedades elásticas (Módulo de Elasticidad, Coeficiente de Poisson), dentro de estos ensayos se determinó también la Resistencia a la Compresión no confinada (ver figuras 2.9, 2.10, 2.11). Encontramos las mimas variaciones en las resistencia de las rocas agrupadas por tipos litológicos.

En los resultados de estos tipos litológicos se observa las mismas variaciones de resistencia, siendo las más altas para las areniscas. (Ver figura 2.12)

Figura 2.9: Modulo de Elasticidad

MUESTRA	CODIGO	MODULO DE ELASTICIDAD kg/cm2
M1	VBPMS	288690.73
M3	VBPMS	153511.93
M6	SSAC	856274.31
M7	SSAC	437609.35
M2	SSAC	662580.6
M4	SMSCS	492188.26
M5	LPANF	54300.48
M8	LPANF	262019.49

Figura 2.10: Coeficiente De Poisson

MUESTRA	CODIGO	COEF. DE POISSON
M1	VBPMS	0.3
M3	VBPMS	0.23
M6	SSAC	0.13
M7	SSAC	0.41
M2	SSAC	0.17
M4	SMSCS	0.14
M5	LPANF	0.26
M8	LPANF	0.13

Figura 2.11: Resistencia a La Compresión

MUESTRA	CODIGO	RESISTENCIA A COMPRESION Mpa
M1	VBPMS	63
МЗ	VBPMS	32
M1 M3 M6 M7 M2	SSAC	220
M7	SSAC	70
M2	SSAC	140
M4	SMSCS	95
M4 M5	LPANF	23
M8	LPANF	100

Figura 2.12: Resistencia al corte de las muestras superficiales

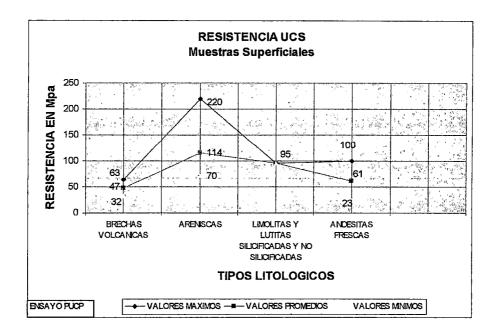
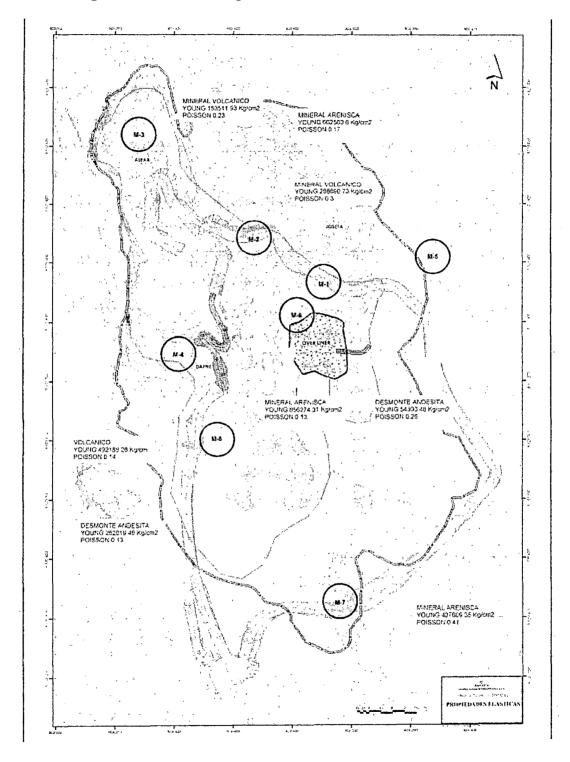



Figura 2.8: Muestras superficiales

2.1.6. Ensayos de Carga Puntual de Frentes de Carguío

Se toman muestras a cada hora, de rocas de los frentes de carguío con destino a chancadora primaria, con la finalidad de conocer sus respectivas resistencias (Ensayo de Carga Puntual); se tomaron muestras de tres tipos litológicos; Brechas Volcánicas, Areniscas y Andesitas (desmonte al botadero). De los valores obtenidos por cada tipo litológico se hallo su valores máximos, promedios y mínimos (ver figura 2.13).

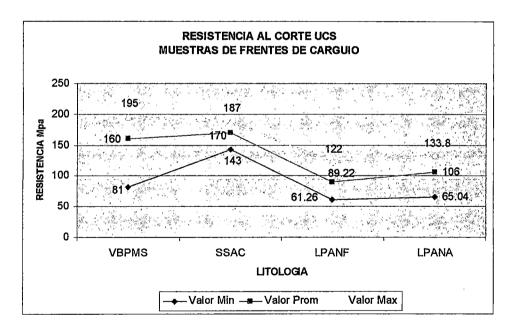


Figura 2.13: Resistencia al corte- frentes de carguío

2.1.6.1. Toneladas de Roca Chancada por hora según tipo de Roca

En la figura 2.14 vemos que las rocas volcánicas son las más duras por lo cual pasa por chancadora un promedio de 2020 Tn/hr; las

areniscas son duras pero más fáciles de romper pasando en mayor cantidad por chancadora que las volcánicas y las mixtas areniscas y limos son chancadas en mayor cantidad que las anteriores.

Figura 2.14: Toneladas de roca chancada por hora

Granolumetria	Roca VOL	Roca SED.	50% VOL-SED	
Granolumotra	Tons/hr	Tons/hr		
P99	-	2470	-	
P93	2030	-	-	
P70	2014	-	-	
P99-P93		1	2745	

2.1.7. Ensayo Abrasión Los Ángeles (ASTM C-131/C-535).

Para conocer el porcentaje de desgaste (abrasión) de las rocas; se enviaron a ensayar 7 muestras de distintos lugares de la mina, básicamente de 2 tipos litológicos; Brechas Volcánicas y Areniscas que son las que presentan mayor dureza (ver resultados en la figura 2.15).

En la figura 2.16, se muestra un promedio de los porcentajes de desgaste de las rocas; donde se concluye que las brechas volcánicas son las más abrasivas, seguidas de las areniscas y por último las cenizas y tobas volcánicas.

Las brechas volcánicas de Dafne son ligeramente más abrasivas que las presentes en el Over Liner; las areniscas del Over Liner son las más abrasivas de la mina (22%), ligeramente superior a las de Dafne y muy por encima de las areniscas de Alexa Sur (33.20%).

Figura 2.15: Resultados de Abrasión

RESULTADOS DE ABRASION

No Muestra	Zona	Nivel	Tipo de Roca	Coeficiente de Desgaste
M-1	Alexa Norte	4180	Ceniza y Tobas Volcánica	28.10%
M-2	Alex Sur	4180	Arenisca	33.20%
M-3	Dafne		Ceniza y Tobas Volcánica	26.90%
M-4	Dafne	4120	Bx. Volcánica	22.90%
M-5	Dafne	4120	Arenisca	22.30%
M-6	Over Liner		Arenisca	22.00%
M-7	Over Liner		Bx. Volcánica	24.30%

Figura 2.16: Desgaste de las rocas

RESUMEN

1						
Tipo de Roca	Coeficientes	Prom				
Ceniza y Tobas Volcánica	28.00	26.90		27.45%		
Bx. Volcánica	22.90	24.30		23.60%		
Arenisca	33.20	22.30	22.00	25.83%		

2.1.8. Compilación de Ensayos UCS

Para poder determinar los rangos de resistencia de los distintos tipos litológicos analizados, se compiló los resultados de los ensayos de compresión no confinada; de esta forma queda marcado los rangos de

variación de las resistencias UCS para los tipos litológicos presentes en la mina con mayor frecuencia. (Ver figura 2.17).

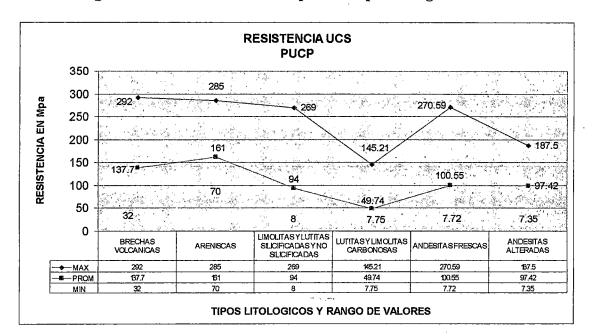


Figura 2.17: Resistencia al corte para los tipos litológicos

2.1.9. Determinación de los Rangos de Resistencia por Tipo Litológico.

Finalmente para poder determinar un rango representativo de resistencia por tipo litológico se promediaron los resultados de resistencia obtenidos de los ensayos realizados en la PUCP (data de Piteau), ensayos en los pozos geotécnicos, resistencias de ensayos en muestras superficiales; estos valores a su vez son promediados con resultados de resistencias obtenidos

de ensayos en muestras de frentes de carguío, con la finalidad de poder ajustar las respectivas resistencias por tipo litológico.

2.1.9.1. Escala de Durezas.

Para proponer como escala de dureza para el logueo de BH. Se analizó el parámetro de dureza de campo que se utilizó en el logueo de los sondajes exploratorios; se analizaron 40 tipos litológicos en 9,664 metros con 4,569 datos; se agrupo según el nuevo código de rocas.

La escala de caracterización de durezas de campo (Clasificación del Macizo Rocoso), comprende un rango del 1 al 6 con sus respectivo rango comparativo de Resistencia en Mpa. (Ver figura 2.18).

2.1.9.2. Rangos de Durezas y sus correspondientes Resistencias Mpa.

Figura 2.18: Rango de durezas

RANGO DE DUREZAS	RESISTENCIA Mpa
1	1 - 5
2	6 - 25
3	26 - 50
4	51 - 100
5	101 - 250
6	>250

^{*}Hoek-Brown

2.1.10. Rangos de Dureza por Tipo Litológico propuestos para el Logueo de BlastHole.

Los rangos de dureza propuestos para cada tipo litológico, se determinaron del análisis estadístico del parámetro de durezas del logueo geotécnico de sondajes diamantinos en la etapa de exploraciones. (Ver figura 2.19)

Figura 2-19: Rango de durezas por tipo litológico

RANGO E	LITOLOGIAS						
. 4	6	VBPMS					
-	5	SSAC					
2	5	SMSCS/SMSC					
2	4.	SMSKS/SMSK					
3	5	LPANE					
.3	5	LPANA					

2.1.10.1. Resistencias UCS por Grupo Litológico en Lagunas Norte.

	RANGO D	E DUREZAS	LITOLOGIAS	RESISTENCIA Mpa 0 - 5	
	y d		COALA/COALB		
3.3	4	6	VBPMS	56 - 243	
	-	5	SSAC	106 - 236	
r right Lab	2	5	SMSCS/SMSC	8 - 269	
	2		SMSKS/SMSK	8 - 145	
	3	5	LPANF	34 - 196	
	3	* 5	LPANÁ	36 - 160	

2.1.10.2. Rangos de Dureza Propuesto para Logueo de BlastHole.

Se propone la siguiente escala de durezas para su utilización en el logueo de blasthole y aporte al departamento de perforación y voladura.

Figura 2.20: Escala de dureza para logueo

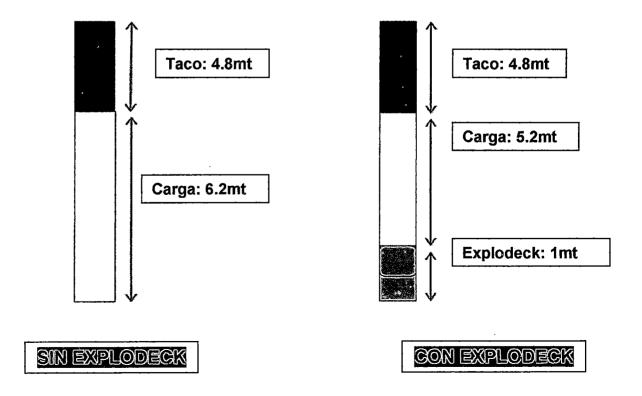
ESCALA DE DUREZAS PARA LOGUEO

DUREZA	N	IPa	G	GRUPOS LITOLOGICOS PRINCIPALES					ALTERACION
⁷ 1	0	- 5			KA				Î I
2	5	- 30	VBK	VBA	SMC			į	। ¹Rocas no Silicificadas
3	30	- 70		ANDA	MSK	~	L		;
·	70	- 100		ANDF					
3	100	- 250	VBKS	VBS	MSCS	SAC	VBS/	SAC /	Rocas Silicificadas
. 6,		> 250			MSKS		SAC	MSCS	1
TIPO LI	TOLOG	CO	VOLCA	NICAS	SEDIMEN	TARIAS	KIM	CTAS	GRADO DE ALTERACION

Con la finalidad de unificar criterios de logueo de durezas se da a conocer algunas consideraciones generales no determinantes.

 Dureza 6.- Para volcánicos mineralizados, silicificados, brechados (Zona de Dafne); Areniscas silicificadas de color blanco a gris oscuras brillosas, areniscas brechadas con matriz de óxidos.

- Dureza 5.- Para areniscas masivas, compactas y fracturadas de color blancas, cremas a rojizas y gris claras (Alexa-Dafne); intercalaciones de areniscas con limos silicificados, lutitas muy silificadas, limos muy silicificados de color pardo (sílice parda).
- Dureza 4.- Para algunas rocas volcánicas mineralizadas de color blanco, poco silicificadas: cineritas, tobas dacíticas, y similares (zona de Josefa); Andesitas frescas, limos y lutitas (K) poco silicificadas de color rojizo, moradas y grises.
- Dureza 3.- Para Andesitas frescas poco alteradas; limos y lutitas (K) no silisificadas.
- Dureza 2.- Para toba basura carbonosa; limos y lutitas (k) argilizadas.
- **Dureza 1.-** Para rocas carbonosas (KA/KB)


2.2. Hipótesis de Funcionamiento

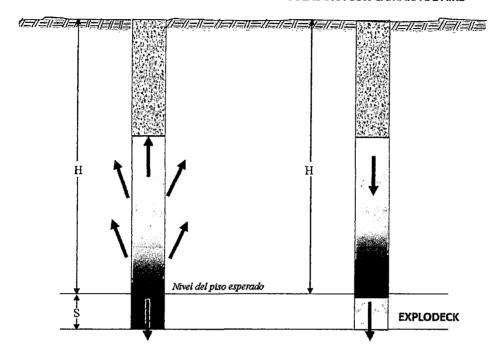
La hipótesis que se formula a continuación tiene como objetivo demostrar las ventajas de utilizar cámaras de aire dentro de los taladros, para lo cual describiremos la aplicación tradicional de un taladro cargado con mezcla explosiva con su taco respectivo comparado con otro en cuya columna explosiva se colocará un accesorio de voladura llamado Explodeck lo cual generará una cámara de aire dentro del taladro.

2.2.1. Descripción de la geometría de cargas

Se procederá a identificar en el diagrama siguiente como estará distribuído la columna explosiva de forma tradicional, con una en la que se adicionará el Explodeck.

Figura 2.21. Diagrama de carga Tradicional vs. Cámara de Aire

2.2.2. Primera Etapa: Movimiento Inicial Después de la


Detonación

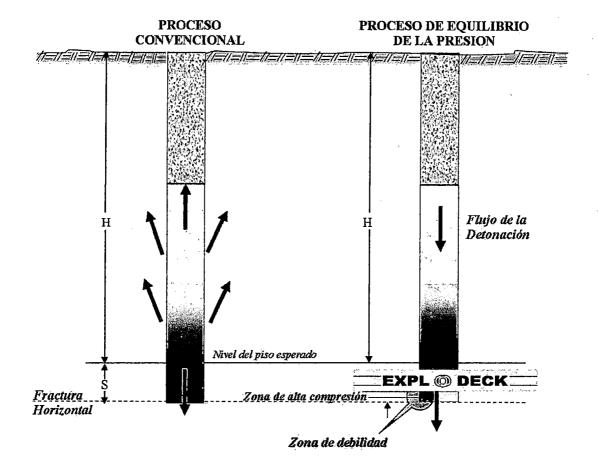
Cuando se inicia el proceso de la detonación, se genera una alta temperatura la que a su vez inicia el desplazamiento de una onda de choque y simultáneamente se comienzan a generar grandes volúmenes de gases; en el caso del taladro cargado a columna completa, dicho fenómeno generara esfuerzos de compresión sobre el macizo rocoso inmediato; sin embargo en el caso del taladro con cámara de aire, el mismo fenómeno de altas temperaturas y presiones tomara en cambio el camino de menor resistencia, es decir el que le permite la cámara de aire (Peterson 2002, Chiappetta 2004), en este proyecto se utilizó el explodeck para generar dicha cámara de aire. En la figura 2-2 se puede apreciar un esquema de esta etapa.

Figura 2.22. Primera Etapa: Movimiento Inicial Después de la Detonación

VOLADURA TRADICIONAL

VOLADURA CON CÁMARA DE AIRE

2.2.3. Segunda Etapa: Proceso de Equilibrio


La cámara de aire obliga a ecualizar la presión, es decir en la zona donde no hay explosivo la presión se incrementara rápidamente hasta equilibrarse con la presión que se está generando producto de la detonación del explosivo.

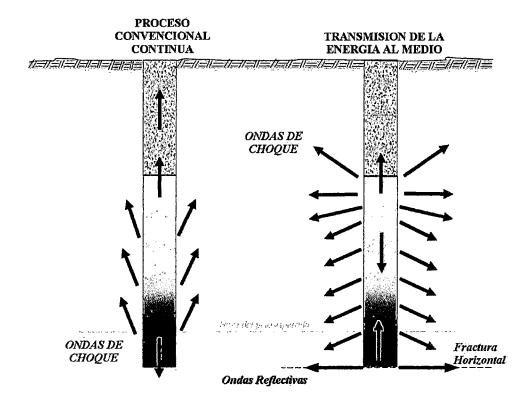
Esto debido a que por ofrecer una menor resistencia, el flujo de la detonación es en primera instancia hacia el fondo del taladro perforado.

Nuestro accesorio de voladura el esplodeck, encabeza la onda de detonación hacia el fondo del taladro, originando que la longitud de la cámara de aire se reduzca rápidamente, produciendo así una zona de alta compresión, esto ocasionara que una multitud de ondas de compresión vayan llegando al fondo del taladro.

Estas fuerzas al no encontrar un lugar por donde escapar buscaran que hacerlo en la intersección que conforman el plano del fondo del taladro y el de la pared del taladro, lo que consecuentemente originara una zona de debilidad y la que finalmente creará una fractura que se expandirá en forma horizontal hacia los taladros vecinos, tal como podemos apreciar en la Figura 2-3.

Figura 2.23. Segunda Etapa - Proceso de Equilibrio

2.2.4. Tercera Etapa: Transmisión de la Energía al Medio

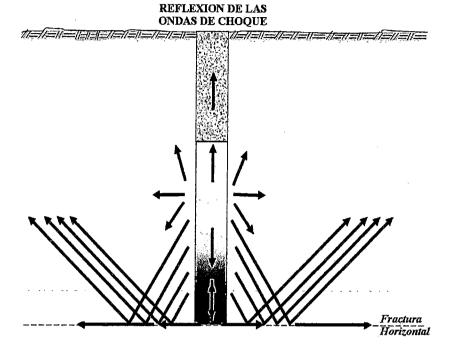

Producto de la fractura horizontal en el fondo de la voladura (fondo de cada una de los taladros) se generan multitud de ondas reflectivas, las mismas que chocan con las ondas de choque provenientes de la detonación.

Es así, que esta multitud de ondas de choque secundarias son propagadas al medio en forma de pulsos (Melnikov 1971).

Debido a las ondas reflectivas ascendentes, el flujo de detonación es desviado hacia el costado y fondo del medio colindante.

Simultáneamente, ondas de choque se propagan por la fractura horizontal formada con anterioridad en el fondo del taladro, creando una especie de precorte que se forma y extiende por la interacción con los taladros colindantes.

Figura 2.24. Tercera Etapa: Transmisión de la Energía al Medio

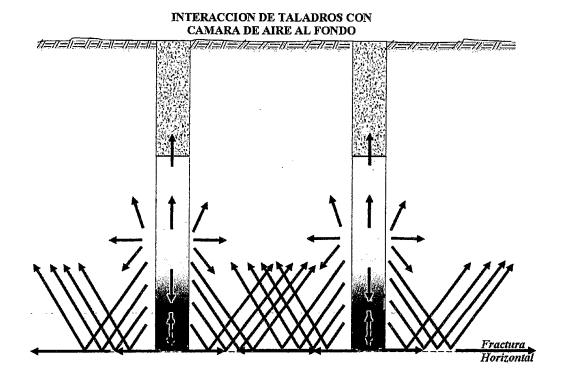

2.2.5. Cuarta Etapa: Reflexión de las Ondas de Choque

Para este momento, habiendo avanzado el proceso de la detonación y observando que los gases de la detonación ya han hecho desaparecer la cámara de aire, se afirma que las ondas de choque ahora son reflejadas al atravesar el cambio de medio, formado por la fractura horizontal al fondo de la voladura.

Estas ondas de choque son reflejadas en forma ondas de corte y de compresión de mayor intensidad que las que las originaron, y se desplazan en forma de olas de choque.

Siempre debemos de tener presente que las ondas de tensión ofrecen más cantidad de daño a la roca. Por lo tanto, no olvidar que para fracturar la roca con un mínimo de esfuerzo y energía, el material debe cargarse principalmente con tensión (Persson 1994).

Figura 2.25. Cuarta Etapa: Reflexión de las Ondas de Choque



2.2.6. Quinta Etapa: Interacción de Taladros con Cámara de Aire en el Fondo

Continuando con el proceso, las ondas de tensión son reflejadas de regreso hacia la formación debido a que existe un cambio de medio (fractura horizontal).

Al mismo tiempo, dichas ondas de tensión continúan su interacción con las otras ondas de tensión originadas por el proceso de los taladros vecinos, esta interacción no es aun bien entendida, se deduce que una multitud de reflexiones son propagadas al medio a causa de esta interacción (ver Figura 2-6).

Figura 2.26. Quinta Etapa: Interacción de Taladros con Cámara de Aire al Fondo

2.2.6.1. ¿Cómo actúa la energía dentro del Taladro?.

Es muy importante saber cuál es el comportamiento de la energía dentro del taladro con la generación de cámaras de aire en el fondo del taladro.

Estudios han indicado, que cámaras de aire incrementan la duración de la acción de las ondas de choque sobre el material, de 2 a 5 veces.

Con Cámaras de Aire, la tensión máxima aplicada sobre la roca que la rodea, es menor que la tensión extrema aplicada por el explosivo en columnas sólidas. Se debe de mencionar que gracias a las cámaras de aire se produce un redireccionamiento de las ondas lo que origina una mejor fragmentación.

En la siguiente figura se puede observar que la generación de una cámara de aire dentro de taladro es muy beneficioso en la distribución de la energía, por ende los resultados se percibirán en la fragmentación y en el nivel de los pisos.

Figura 2.27: Generación de Cámara de aire dentro del Taladro.

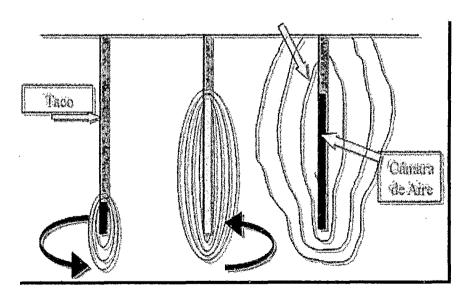


Figura 2.28: Reflexión de las ondas de choque con cámara de aire:

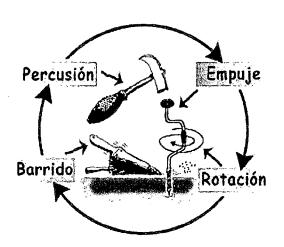
Se puede observar en las figuras la distribución de las ondas dentro de los taladros, es muy notorio que con la generación de cámaras de aire hay una mayor interacción de ondas entre taladros lo cual hará que la roca se fragmente, estás fracturas en la roca serán provocadas más por las ondas de tensión que por las de compresión.

2.3. Proceso Productivo

2.3.1. Perforación:

La perforación es la primera etapa en la explotación minera para la minería a cielo abierto. Consiste en crear una cavidad para colocar el explosivo en el lugar que se desee romper, con la finalidad de aprovechar al máximo su energía.

La planificación y gestión es fundamental para el éxito del proceso.


2.3.1.1. Procedimiento general

Contempla, en general, el desarrollo de cuatro etapas que se realizan simultánea y sincronizadamente: percusión, rotación, empuje y barrido.

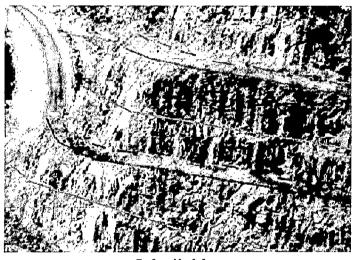
2.3.1.2. ¿En qué consiste la perforación?

En general, se puede considerar la perforación de rocas como una combinación de las siguientes acciones:

 Percusión: Corresponde a los impactos producidos por los golpes del pistón, los que a su vez originan ondas de choque que se

- transmiten a la broca a través del varillaje.
- Rotación: Con el movimiento de rotación se hace girar la broca para que los impactos se produzcan sobre la roca en distintas posiciones.
- Empuje: Corresponde a la fuerza necesaria para mantener en contacto la broca con la roca.
- Barrido: Fluido de barrido que permite extraer el detrito del fondo de la perforación.

La siguiente figura representa en forma sencilla la combinación de las cuatro acciones anteriormente descritas.


2.3.1.3. Importancia de la perforación

La perforación y la voladura desde el punto de vista técnico y económico es la columna vertebral de casi todas las operaciones que se relacionan con las rocas, por lo que influye en los radios de producción del equipo de carguío, transporte y chancado primario del material y lo más importante la seguridad del personal y equipos, por lo tanto, en el resultado y calidad del ciclo de producción. Entonces es indispensable aplicar un sistema de perforación que proporcione las máximas ventajas de producción a bajos costos.

2.3.1.4. Perforación de Banqueo

Es el mejor método para la voladura en minería superficial ya que dispone como mínimo de dos caras libres y una de ellas para la salida y proyección del mineral o desmonte permitiendo una sistematización de las labores.

Figura 2.29: Perforación de Banqueo.

Perforación de banqueo

2.3.1.5. Planos de Perforación

2.3.1.5.1. Confección de Planos de Perforación

El Departamento de Ingeniería confecciona los planos de perforación con la ayuda del Software Mine Sight (ver *figuras 9 y* 10) y los entrega al departamento de perforación voladura

indicando la zona, el número de taladros, la altura de cada taladro y otros datos técnicos.

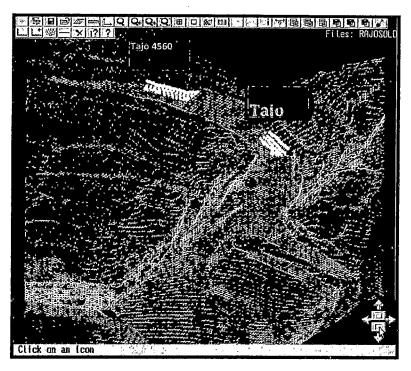
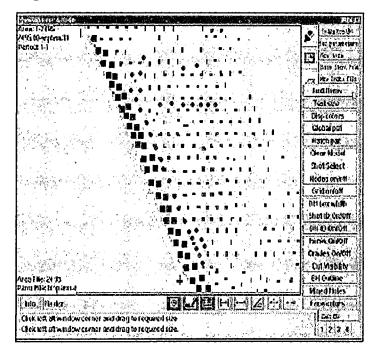
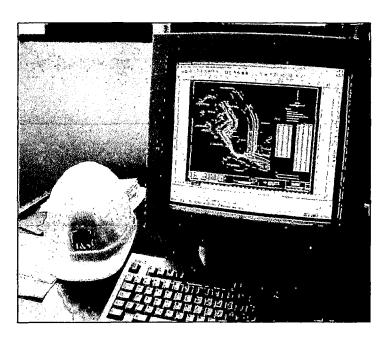



Figura 2.31: Malla de Perforación.

Los topógrafos se trasladaran al Tajo y con la ayuda del GPS y una estación total ubicarán y marcarán los puntos de perforación. La determinación de las coordenadas de cada perforación es definida por los sistemas de posicionamiento satelital (GPS), los cuales muestran la posición de cada una en forma remota, de manera que no necesiten los planos para identificarlas.

Figura 2.32: Topógrafo con GPS



El departamento de Perforación y Voladura se asegura que las áreas de perforación designadas sean limpiadas y niveladas con los equipos de apoyo minero (palas y/o niveladoras). Los topógrafos elaboran entonces un patrón de voladuras de acuerdo con el diseño entregado por el área de ingeniería, estos patrones de

perforación dependen del tipo de material que va a ser extraído (mineral o desmonte), la dureza del mineral y el grado de fractura natural presente en el mineral.

Los planos de perforación son la guía para que el operador a cargo pueda realizar la tarea de perforación en forma correcta y segura.

2.3.1.6. Parámetros de Perforación

En el procedimiento de perforación es necesario considerar diferentes parámetros con el fin de realizar una operación

óptima. Las variables internas que intervienen en la perforación son:

2.3.1.6.1. Velocidad de Penetración (Penetration Rate)

Es la velocidad con que se penetra la roca (perforación) depende de muchos factores externos (por ejemplo factores geológicos), tales como las propiedades físicas de la roca y la resistencia a la compresión.

Esta depende de muchos factores externos: características geológicas, propiedades físicas de las rocas, distribución de tensiones, estructura interna, entre otros. La velocidad se expresa en metros por hora (m/hr) y/o pies por hora (pies/hr).

- Penetración Máxima

Durante la fase de trituración es posible incrementar las revoluciones por minuto (R.P.M.) hasta los R.P.M. óptimos.

Peso Óptimo + R.P.M. Óptimo = Máxima penetración

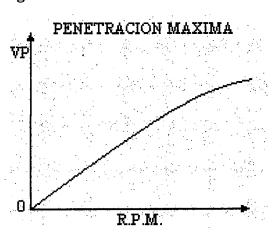


Figura 2.34: Penetración Máxima

La experiencia del perforista es el más importante, especialmente en formaciones variables.

Velocidad de penetración

La siguiente fórmula empírica (Bauer -1971) ayuda a determinar la velocidad de penetración:

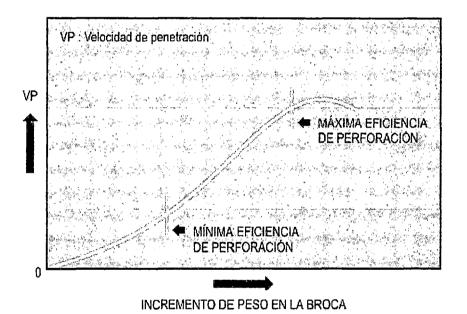
$$VP = fx [(61-28 \times log(RC)) \times (E/D) \times (N_r/300)]$$

Donde:

f = (1/3.28) - Factor de conversión de pies a metros.

VP = Velocidad de penetración (metros/hora).

RC = Resistencia a la compresión uniaxial (miles de libras por pulg².).


(E/D) = Empuje -pulldown- (miles de libras por pulgada de diámetro).

 N_r = Velocidad de rotación (R.P.M.).

La velocidad de penetración en la Mina se calculará en base a los reportes de perforación que se registran en el Daily Bit Performance Record, de uso solo para la sección, y en el Resumen Diario Producción Perforadoras, en ellos también se registra el metraje

perforado y el tiempo. También se puede encontrar el empuje (pulldown), RPMs, etc. Sin embargo, los cálculos haciendo uso de la fórmula reportan también valores muy aproximados a los valores obtenidos en el campo que son los que se muestran en el siguiente ejemplo.

Figura 2.35: Velocidad de Penetración

2.3.1.6.2. Velocidad de Rotación

Las velocidades de rotación varían desde 45 a 60 R.P.M. para triconos con insertos de carburo de tungsteno. El límite de la rotación está fijada por el desgaste de los cojinetes; que a su vez

depende del empuje, de la limpieza del barreno, de la temperatura y la experiencia del operador.

2.3.1.6.3. Presión Hidráulica o Empuje (Pulldown)

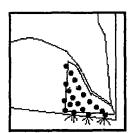
Cuando la perforación es llevada por el método de rotación y trituración, la fuerza de avance es utilizada para presionar constantemente los insertos contra la roca. Consecuentemente en perforación con brocas tricónicas se requiere una fuerza de avance muy grande. Así una roca dura requerirá una gran fuerza de avance.

En rocas con igual dureza, un avance con mayor fuerza mejora la penetración debido a que los botones penetran más profundamente en la roca.

La presión es transmitida a los tubos de perforación a través de un avance de tipo cadena con accionamiento hidráulico.

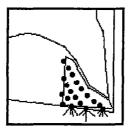
La presión hidráulica aplicada sobre el tricono debe ser suficiente para sobrepasar la resistencia a la compresión de la roca pero no debe ser excesivo para evitar fallas prematuras o anormales del tricono. Para nuestro caso la presión hidráulica aplicada a los triconos es de 85 mil libras para triconos de 11" de diámetro y 70

mil libras para triconos de 9 7/8" de diámetro, todo esto en promedio para todo tipo de roca.

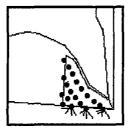

La velocidad de penetración aumenta proporcionalmente con el empuje hasta que se llega a un agarrotamiento del tricono, contra la roca, por efecto de enterramiento de los dientes o insertos, o hasta que por alta velocidad de penetración y el gran volumen de detritus que se produce no se limpia adecuadamente el barreno. En roca dura una presión excesiva produce roturas en los insertos antes de presentarse un agarrotamiento o un defecto de limpieza. También disminuye la vida de los cojinetes.

El empuje se compensa con la velocidad de rotación R.P.M., a mayor empuje menor R.P.M. y menor empuje mayor R.P.M.

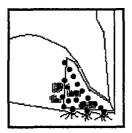
Se presentan las siguiente etapas de perforación en relación al peso en la Broca (Presión de empuje - Pulldown).


Fase o Etapa de Abrasión

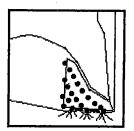
Peso insuficiente, insertos sujetos a abrasión y no hay penetración en la roca.


- Etapa de fatiga

Más peso, penetración insuficiente en la roca, insertos sujetos a fatiga.


- Etapa de Enterramiento

Peso excesivo en la broca, los insertos son enterrados como consecuencia se tiene una pérdida de eficiencia en la perforación.


- Etapa de trituración

Peso optimo, penetración máxima del inserto en la roca.

- Etapa de Consecuencia de la trituración

Fragmentos grandes de roca suelta. Es el resultado de máxima eficiencia en perforación.

2.3.1.6.4. Velocidad de Rotación

Las velocidades de rotación varían desde 45 a 60 R.P.M. para triconos con insertos de carburo de tungsteno. El límite de la rotación está fijado por el desgaste de los cojinetes.

2.3.1.6.5. Velocidad de Barrido (Bailing Velocity)

En principio, la remoción de los detritus en la perforación con rotación y trituración, se lleva a cabo en la misma forma que en los otros métodos de perforación. Con aire de barrido, a veces conjuntamente con agua, es inyectado a través de los tubos de perforación. Las partículas son sopladas para fuera por entre los tubos y la pared. Normalmente se emplean toberas reemplazables

las que son adaptadas a los triconos donde el conducto de barrido emerge y parte del aire de barrido de esta forma es conducido a través del sistema de rodamientos para enfriarlos y mantenerlos limpios.

Para que el barrido sea efectivo, el aire precisa tener una velocidad suficientemente alta. Por eso es esencial que el balance entre el volumen de aire aplicado y el espacio entre el tubo y la pared sea el correcto.

2.3.1.6.6. Caudal de Aire

Debe ser el necesario para alcanzar un barrido efectivo, sin que produzca efectos negativos en los accesorios de perforación ni en el rendimiento de la perforación.

Cuando se perfora con menor aire que el necesario para limpiar con efectividad el barreno, se producen los siguientes efectos negativos.

- Disminución de la velocidad de penetración.
- Requiere aumentar el empuje (pulldown) para perforar.
- Producen averías en la perforadora.
- Desgaste prematuro del barreno, estabilizador y tricono.

El aire circula por un tubo desde el compresor al mástil y desde este, por manguera flexible protegida en la cabeza de rotación, desde donde pasa al interior de la barra de perforación que lo conduce hasta la broca, saliendo por las toberas para producir la remoción de los detritus, elevándolos hasta la superficie. El aire a su vez cumple las siguientes funciones:

- Enfría y lubrica los cojinetes del tricono.
- Limpia el fondo del barreno.
- Eleva el detritus con una velocidad ascencional (Bailing Velocity) adecuada.

La falta de velocidad produce un consumo de energía innecesario, una menor velocidad de penetración y un mayor desgaste de la broca. Por el contrario si la velocidad de barrido es muy alta, aumentan los desgastes en el centralizador y en las barras de perforación (barretones).

2.3.2. Voladura

Es la fragmentación de la roca, ya sea mineral o estéril, mediante el uso de explosivos, esta se realiza de acuerdo a normas de seguridad establecidas por

ley, procedimientos operacionales y técnicas que permiten efectuar en forma segura y eficiente todo el procesos de reducción de tamaño (fragmentación).

La competencia de planificación y gestión es fundamental para el éxito del proceso.

2.3.2.1. Importancia de la actividad de voladura

Una voladura adecuada permite transformar la roca desde su estado natural (in situ) a una condición favorable para su disposición. Su calidad determinara el éxito en las etapas posteriores de carguío, transporte y molienda.

Figura 2.36: Voladura
en Tajo

2.3.2.2. Plano de Voladura

El área de Ingeniería entrega un plano, en el que se indica el sector a ser volado, identificando el número de la voladura, el banco, el tipo de material (si se trata de mineral o estéril) y el tipo de roca, indicando sus propiedades básicas (densidad, presencia de agua, etc.).

2.3.2.3. Diseño de la voladura

El diseño del proceso de voladura debe considerar la participación y aportación de las diferentes áreas respecto a los aspectos fundamentales que permitan una correcta operación y el cumplimiento de los programas de planeamiento (extracción de corto plazo) de manera segura, oportuna y eficiente.

Figura 2.37: Diseño de Voladura

2.3.2.4. Variables Controlables de la Voladura

En el cálculo y diseño de las voladuras las variables que son controlables se clasifican en los siguientes grupos:

- Geométricas (diámetro, longitud de carga, burden, espaciamiento, etc.).
- Químico-Físicas o del explosivo (tipos de explosivo, potencia, energía, sistemas de cebado).
- De tiempo (tiempos de retardo y secuencia de iniciación).

2.3.2.4.1. Variables de diseño

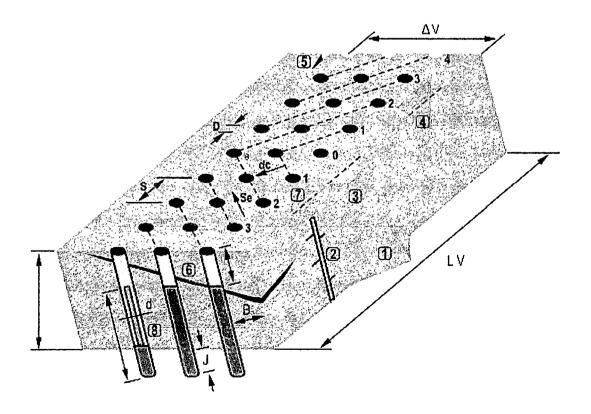
H = Altura de banco

D = Diámetro del barreno

L = Longitud del barreno

d = Diámetro de la carga

B = Burden


S = Espaciamiento

LV = Longitud de la voladura

AV = Anchura del voladura

- B_e = Burden efectivo
- S_e = Espaciamiento efectivo
- T = Retacado
- J = Sobreperforación
- 1 = Longitud de carga
- Θ = Angulo de salida
- v/w = Grado de equilibrio

Figura 2.38: Esquema de Voladura en Banco

- 1 = Repié
- 2 = Caña del barreno
- 3 = Roca saliente o en voladizo
- 4 = Sobreexcavación
- 5 = Grieta de tracción
- 6 = Descabezamiento
- 7 = Cráter de bocazo
- 8 = Carga desacoplada

2.3.2.5. Influencia de las Variables en los Resultados de Voladura

A continuación se expone la influencia sobre los resultados de las voladuras de cada una de las variables indicadas y las tendencias actuales seguidas en su elección.

2.3.2.5.1. Diámetro de los barrenos

El diámetro de perforación idóneo para un trabajo dado depende de los siguientes factores:

- Características del macizo rocoso que se desea volar.
- Grado de fragmentación requerido.

- Altura de banco y configuración de las cargas.
- Economía del proceso de perforación y voladura.
- Dimensiones del equipo de carga.

2.3.2.5.2. Altura de Banco

La rigidez del paralelepípedo de roca situado delante de los barrenos tiene una influencia sobre los resultados de las voladuras.

Cuando la relación "H/B" es grande, el desplazamiento y deformación de la roca es fácil, particularmente en el centro del banco. Se estima que la relación óptima es "H/B \geq 3".

Si "H/B = 1", se obtendrá una fragmentación gruesa con problemas de sobreexcavación y repies. Con "H/B = 2" se aminora estos efectos eliminándose en su totalidad con "H/B \geq 3".

La condición "H/B \geq 3" se cumple generalmente en canteras y explanaciones de descubierta de carbón pero no en minería metálica puesto que la **altura en banco H** viene impuesta por:

- El alcance de la máquina de carga.
- La dilución del mineral.

Cuando "H" es pequeña cualquier variación del burden "B" o el espaciamiento "S" tiene una gran influencia en los resultados de las voladuras. Cuando "H" aumenta, manteniendo "B" constante, el espaciamiento puede incrementarse sin verse afectada la fragmentación hasta un valor máximo.

Si las alturas de banco son muy grandes pueden presentarse problemas de desviación de los barrenos que afectara no solo la fragmentación de la roca, sino que incluso aumentarán el riesgo de generar fuertes vibraciones, proyecciones y sobrexcavaciones, pues la malla de perforación "B ^ S" no se mantendrá constante en las diferentes cotas del barreno.

Figura 2.39: Diámetro de Perforación vs. Altura de Banco.

DIÁMETRO DE PERFORACIÓN vs. ALTURA DE BANCO

2.3.2.5.3. Inclinación de los barrenos

En las voladuras en banco de perforación inclinada presenta numerosas ventajas, pero también algunos inconvenientes que deberán ponderarse en cada caso particular. Habitualmente con equipos de perforación rotopercutivos, los barrenos son inclinados pero en las grandes minas a cielo abierto donde se utilizan perforadoras rotativas la tendencia para dirigirse hacia los barrenos verticales.

Las ventajas que presentan la perforación inclinada son:

- Mejor fragmentación, desplazamiento y esponjamiento de la pila de material, ya que se mantiene más uniformidad del burden "B" a lo largo del barreno y aumenta el ángulo de la trayectoria de proyección.
- Menores problemas de descabezamiento de barrenos, disminuyendo así los cortes de fallos en las voladuras.
- Taludes más sanos y seguros en los nuevos bancos creados.
- Mayor rendimiento de las palas cargadores de ruedas debido a la menor altura y mayor esponjamiento de la pila.
- Menor sobreperforación y mejor aprovechamiento de la energía del explosivo con la consiguiente disminución de vibraciones producido.

- Menor consumo específico de explosivo al reflejarse de forma más eficiente la onda de choque en el pie del banco y posibilidad de aumentar las dimensiones de la piedra con menor riesgo de aparición de repiés.
- En explotaciones de carbón no se produce una sobre trituración de éste durante la voladura de estéril.
- Mayor rendimiento de la perforación por unidad volumétrica arrancada.

Por el contrario, los inconvenientes son:

- Mayor desviación de los barrenos cuando estos son largos.
- Aumenta la longitud de perforación.
- Dificulta el posicionamiento de las perforadoras y las operaciones de emboquille.
- Exige una supervisión cuidadosa que repercute en los tiempos improductivos.
- Disminuye el empuje disponible en las perforadoras, por lo que en rocas duras la velocidad de penetración se ve limitada en proporción directa al ángulo de inclinación del mástil.
- Menor disponibilidad mecánica de la máquina de perforación, debido a los mayores esfuerzos de fatiga en el mástil y desgastes en el sistema de traslación.

- Con excavadoras de cables la reducción de la altura de la pila repercute negativamente en el rendimiento de carga.
- Empeoramiento del barrido del detritus, debido a las fuerzas de rozamiento que se hacen necesario en un aumento del caudal de aire.
- Problemas de carga de explosivo, debido a las fuerzas de rozamiento que hacen necesario un aumento del caudal de aire.
- Problemas de carga de explosivo, especialmente en barrenos con agua.

2.3.2.5.4. Retacado

El retacado es la longitud del barreno que en la parte superior se rellena con un material inerte y tiene la misión de confinar y retener los gases producidos en la explosión para permitir que se desarrolle por completo el proceso de fragmentación de la roca. Si el retacado es insuficiente se producirá un escape prematuro de los gases a la atmósfera generándose problemas de onda aérea y riesgo de proyecciones. Por el contrario. Con un retacado excesivo se obtendrá gran cantidad de bloque procedente de la parte alta del banco, poco esponjamiento de la pila de material y un nivel de vibración elevado.

En la determinación del retacado se deben tener en cuenta:

- El tipo y tamaño del material utilizado y
- La longitud de la columna de retacado.

Normalmente el material que se emplea es el *detrito* de perforación, debido a su disponibilidad junto a la boca del barreno. Sin embargo, reciente estudios han demostrado que el material *granular anguloso*, como la piedra procedente de machaqueio, es más efectivo y que la resistencia a la eyección de la columna de retacado aumenta con la disminución del contenido de humedad.

El retacado más eficaz se alcanza para tamaños de partícula entre "1/17 D" y "1/25 D".

En un material de retacado con un diámetro "1/25 D" procedente de trituración, puede reducirse la longitud de retacado hasta un 41%.

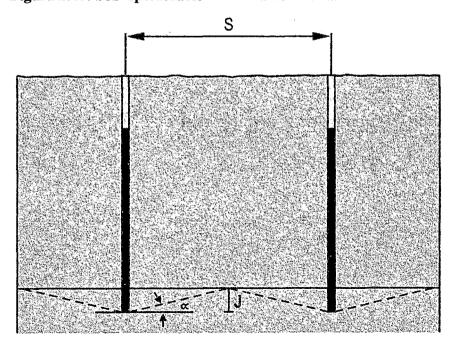
En la práctica, las longitudes óptimas de retacado aumentan conforme disminuyen la competencia y calidad de la roca, variando entre "20 D" y "60 D". Siempre que sea posible debe mantenerse una longitud de retacado superior a "25 D" para evitar los problemas de onda aérea, proyecciones, cortes y sobreexacavaciones.

En voladuras múltiples, de prestarse especial cuidado en el retacado de los barrenos de la primera fila, sobre todo cuando el frente se encuentra con irregularidades que hacen que desde la cabeza al pie del banco la dimensión de la piedra varíe ampliamente.

Cuando el cebado se realiza en cabeza hay que tener en cuenta el efecto negativo del cordón detonante sobre el material retacado, ya que lo comprime lateralmente creando una vía de escape prematuro de los gases de explosión de la atmósfera.

2.3.2.5.5. Sobreperforación

La sobreperforación "J" es la longitud de barreno por debajo del nivel del piso que se necesita para romper la roca a la altura del banco y lograr una fragmentación y desplazamiento adecuado que permita al equipo de carga alcanzar la cota de excavación prevista.


Si la sobreperforación es pequeña no se producirá el corte en la rasante precotada, resultando la aparición de repies con un considerable aumento de los costes de carga.

Pero, si la sobreperforación es excesiva se producirá:

- Un aumento de los costos de perforación y voladura.
- Un incremento del nivel de vibraciones.
- Una fragmentación excesiva en la parte alta del banco inferior, que provocará problemas en la perforación del mismo y afectará en las zonas finales de corta a la estabilidad de los taludes.
- Un aumento del riesgo de descabezamiento y sobre excavación al acentuarse la compone vertical de desplazamiento de la roca.

La rotura en el fondo del barreno se produce en forma de conos invertidos cuyos ángulos con la horizontal dependen de la estructura del macizo y de las tensiones residuales. Normalmente, varían entre 10° y 30°.

Figura 2.40: Sobreperforación mínima necesaria.

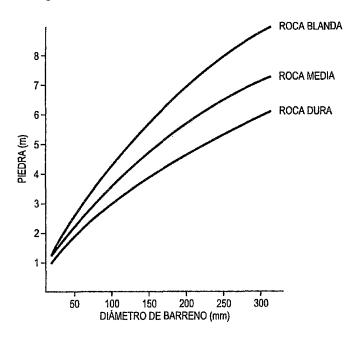
El valor de la sobreperforación para que se produzca la intersección de las superficies cónicas al nivel de banco vale normalmente "J = 0.3B".

Las relaciones normales "J/B" para voladuras en banco se recogen en la siguiente tabla:

Condiciones del terreno	Ј/В
Planos de discontinuidad en el pie del banco.	0
Roca estratificada horizontal.	
Repiés poco probables. Roca blanda.	0.1 - 0.2
Danifa namualas Dana madia	0.3
Repiés normales. Roca media.	0.4 - 0.5
Repiés difíciles. Roca dura.	

Para disminuir la sobreperforación es recomendable la utilización de explosivos que proporcionen una elevada concentración de energía por unidad de longitud en la parte inferior de la carga y perforar barrenos inclinados.

2.3.2.5.6. Burden y Espaciamiento


El burden "B" es la distancia mínima desde el eje de un barreno al frente libre y el espaciamiento "S" es la distancia entre barrenos de una misma fila. Estas variables dependen básicamente del

diámetro de perforación, de las propiedades de las rocas y de los explosivos, de la altura de banco y del grado de fragmentación y desplazamiento del material deseado.

Se han propuesto numerosas fórmulas de cálculo del burden que tienen en cuenta uno o varios de los parámetros indicados, pero todas proporcionan valores que se sitúan en rango de "25 a 40 D", dependiendo fundamentalmente de las propiedades del macizo rocoso.

En lo relativo al burden "B" es muy importante asegurarse de que su dimensión es la adecuada, valores mayores o menores con respecto al teórico previsto pueden darse por error de posicionamiento.

Figura 2.41: Dimensión de Burden en función del diámetro de perforación.

2.3.2.6. Volumen de Expansión Disponible

Cuando la roca se fragmenta se produce un aumento de volumen. Si el hueco donde se expande el material es menor del 15 % de este, los mecanismos de ruptura se verán afectados negativamente y los fragmentos de roca tenderán a entrelazarse dando como resultado un apelmazamiento de estos.

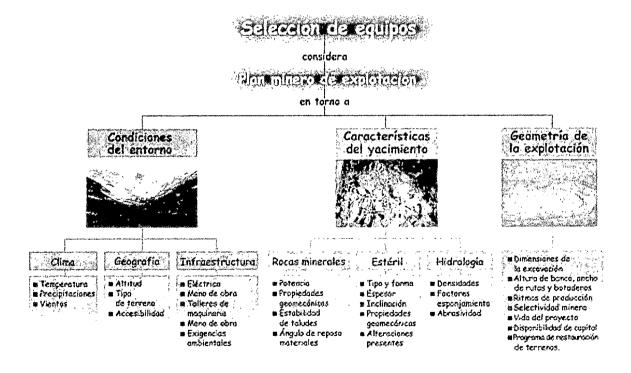
Si el volumen del hueco en el cuele es demasiado pequeño se producirá un fenómeno de sinterización o deformación plástica del material finamente troceado. Siempre que sea posible se recomienda que el volumen sea mayor del 15 % del propio volumen de cuele. En aquellos diseños de voladura donde no se dispone de barrenos vacíos, el empuje de la roca se conseguirá a expensas de aumentar la carga específica en dicha zona.

2.3.3. Carguío y Transporte

Es el movimiento de mineral o estéril fragmentado por el proceso de voladura, desde el tajo hasta la chancadora primaria ó hasta el botadero de desmonte. Ambos procesos tienen un papel importante desde el punto de vista de la planificación, del diseño de la mina; y desde el punto de vista operacional, ya que concentra las mayores inversiones en equipos y costos operacionales, por lo tanto una operación segura y eficiente de estos procesos permitirá en gran

medida, determinar el éxito de ciclo operacional (perforación, voladura, carguío y acarreo) ya que se cumplirán los programas de producción de mineral (ley y tonelaje) y los movimientos de estéril hacia los botaderos.

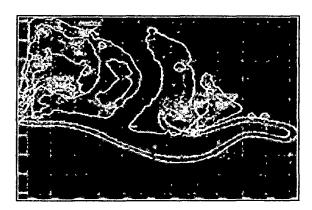
- Carguío: Es la acción de cargar los camiones o equipos de transporte, utilizando equipos de alta capacidad, como palas y/o cargadores frontales.
- Transporte: Consiste en el traslado de los diferentes materiales (mineral o estéril) por rutas habilitadas hacia los destinos preestablecidos (chancado primario o botadero), cumpliendo los programas de extracción definidos por la planificación de la mina.


Importancia del carguío y transporte como parte del proceso productivo: Debido al alto costo de capital y de operación de esta parte del proceso, la preparación de los operadores y áreas involucradas influye directamente en los resultados económicos de los proyectos mineros.

Equipos de carguío y transporte: La selección de los equipos de carguío y transporte se realizó una vez que se definió el proyecto a

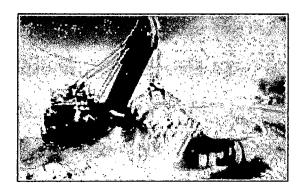
tajo abierto de Alto Chicama. Para ello se tuvo en consideración el plan minero, que consiste en una evaluación técnica y económica completa.

La selección de equipos se realizó, entonces, en torno a tres grupos básicos de información: las condiciones del entorno, las características del yacimiento y la geometría de la explotación y sus requerimientos específicos.


Figura 2.42: Plan Minero de explotación

2.3.3.1. Sistemas de Carguío y Transporte

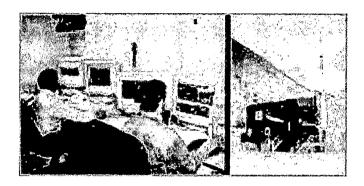
El carguío y el transporte constituyen las acciones que definen la principal operación en una faena minera. Estos son responsables del movimiento del mineral o estéril que ha sido fragmentado en un proceso de voladura.


Figura 2.43: Plan de Ruta de Carguío.

El carguío consiste en la carga de material mineralizado del yacimiento para conducirlo a los posibles destinos, ya sea el chancado, stock de mineral o botaderos de estéril.

La operación de carguío involucra el desarrollo de una serie de funciones que aseguran que el proceso se lleve a cabo con normalidad y eficiencia.

Figura 2.44: Carguíos y Transporte.


- Planificación de la mina

Esta etapa del proceso de la explotación minera se ocupa de definir los sectores de carga, las direcciones de carguío y el destino de los materiales de acuerdo con leyes de clasificación y tonelajes definidas previamente.

Operación de la mina

La operación es la función que se responsabiliza del manejo y organización de los equipos de carga en la mina, así como de supervisar el entorno, especialmente en lo referido a frentes de carga, posición de equipos de carguío y nivel de pisos.

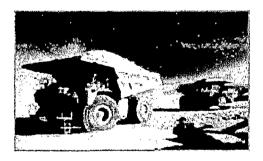
Figura 2.45: Planeamiento Mina

Jefe de operaciones.

La operación minera está a cargo de un jefe de operaciones, quien asigna los equipos y operadores en los turnos respectivos. En faenas a gran escala es apoyado por un sistema de despacho (dispatch), que controla de una forma global la producción, complementado por un proceso de optimización continua a través de sistemas computacionales interconectados, presentes en todos los equipos.

Operador del equipo de carguío.

Es la persona que está directamente a cargo de la operación de carga, y de su equipo, el cual debe verificar antes y después de la jornada de trabajo (turno). Además, es responsable de definir la posición de los camiones para la carga y de evitar que la carga caiga en forma brusca sobre la tolva del camión,


lo que puede dañar el equipo de transporte y/o al operador de éste.

Topografía

Mediante esta función se definen las diferentes zonas de trabajo, en cuanto a control del nivel de pisos y frentes de carguío. Asimismo, el equipo de topografía es responsable de marcar y/o validar las zonas mineralizadas para su posterior destino, tanto por medio de conexión radial como por envío de datos hacia los sistemas de despacho (dispatch).

El transporte consiste en el traslado de material mineralizado y/o estéril desde el yacimiento hacia los posibles destinos, ya sea el chancado, stock de mineral o botaderos de estéril.

Figura 2.46: Operación de transporte de mineral.

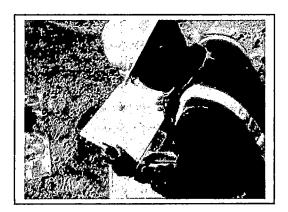
Equipos auxiliares

Esta sección está a cargo de mantener en buen estado las zonas de carguío y transporte, especialmente el nivel de pisos, de acuerdo con las instrucciones del Jefe de operaciones y/o el operador del equipo de transporte.

2.3.4. Ore Control

Luego de que se hayan perforado los orificios de acuerdo con el patrón de voladuras y antes de cargarlos con explosivos y agentes de voladuras, los perforadores recogen muestras de los cortes de perforación producidas al perforar cada orificio.

Figura 2.47: Recojo de muestras



Las muestras son enviadas al laboratorio de ensayes de la mina y sometidas a pruebas para analizar metales y elementos. El

propósito del muestreo y ensaye es determinar qué porciones del material que se extraerá es mineral y qué porción es roca de desmonte. Además se podrían requerir algunas muestras para determinar si la roca de desmonte es NAG o PAG. Entre los tipos de ensaye, se pueden mencionar el ensaye de tiro, la absorción atómica y el análisis ICP y LECO. Después de los ensayes, se envían los resultados al departamento de ingeniería de la mina.

Figura 2.48: Codificación de Muestras

En el departamento de Ingeniería se crean los archivos GRD y ASY los cuales son utilizados por el MineSight para mostrar visualmente la ubicación, cantidad y leyes que tienen los taladros.

Los archivos GRD tienen cinco campos en los cuales se especifica:

- Tipo de Malla (según el material)
- Coordenada Este
- Coordenado Norte
- Latitud Este
- Cota.

Figura 2.49: Recepción de muestras.

Los archivos ASY tienen como campos ocho campos en los cuales se especifica:

- BHS: número de taladro.

- AU : ley de oro (g/t).

- AG: ley de plata (g/t).

- ROCK : tipos de alteración que presenta el taladro.

- PAA: % de arena de alunita.

- PAR : % de arcillas.

- DUR : dureza ponderada del taladro según la escala de Biénanswky.
- MIN : está en función al tipo de mineralización que se produjo.

Entonces se determina qué porciones del patrón de perforaciones terminarán siendo mineral, NAG o PAG. Luego de realizarse las voladuras de acuerdo con el patrón de perforaciones, el departamento de topografía y los ingenieros de control de mineral designan las áreas separadas del material volado como mineral NAG o PAG. Esto se hace generalmente colocando banderas, bandas de colores, letreros y/o anuncios a lo largo de las líneas de excavaciones en donde el cargador minero diferenciará la extracción de mineral de la roca de desmonte. Las cantidades de mineral y roca de desmonte son registradas en los sistemas de computadora de la mina y se les entrega a los operadores de carga los mapas de las áreas designadas de mineral y roca de desmonte.

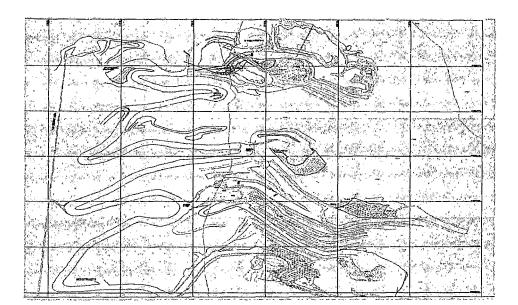
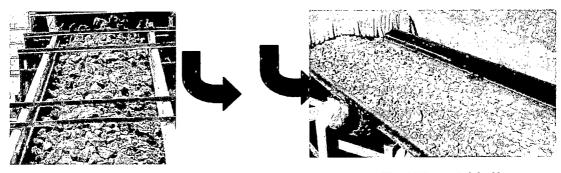


Figura 2.50: Mapa de Muestras

2.3.5. Chancado

La operación de chancado consiste en la reducción de tamaño de rocas grandes a más pequeñas, utilizando fuerzas de compresión, fricción, flexión, cizallamiento u otras en menor proporción.

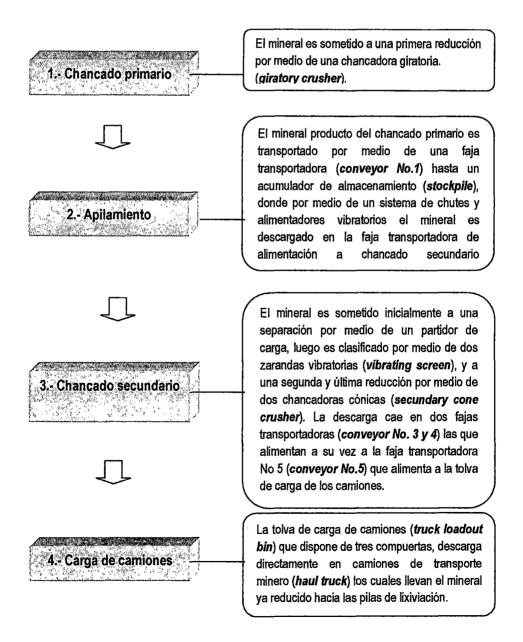
La planta de chancado de Alto Chicama tiene por función reducir el tamaño de mineral en dos etapas: la primera, donde el mineral ROM de mina es reducido hasta un tamaño máximo de 7" y la segunda, donde el mineral es reducido de 7" a un tamaño final de 1 1/2" que permita la lixiviación.


Figura 2.51: Material en chancadora

La finalidad de la reducción del tamaño es liberar el material valioso para que en un proceso posterior (lixiviación) el oro y la plata se libere y se pueda recuperar con mayor facilidad.

El término conminución es aquel con que se designa a la reducción de tamaño de rocas grandes en fragmentos pequeños.

Figura 2.52: Conminución


ROM de 49" máx a 7"

7" a 1 1/2" para lixiviación

2.3.5.1. Etapas del Proceso de Chancado y Carga de Camiones

El proceso de chancado está dividido en cuatro etapas. El siguiente diagrama de flujo muestra la función principal de cada etapa.

Figura 2.53: Etapas del proceso de Chancado

CAPITULO III

3.1 Marco Teórico

3.1.1. Conceptos

- Litología

Este apartado comprende el estudio de las rocas. El concepto "roca" no se ha definido con tanta precisión como otros conceptos, por ejemplo, el de mineral; por tanto, los límites que comprende este término no están bien determinados. Así, se puede considerar la roca como el elemento constructivo fundamental de la litosfera o, también, como un conjunto de agregados mono o poliminerales.

El ciclo geoquímico de las rocas es el siguiente:

Primero se formó la corteza rocosa, los materiales fluídos procedentes de zonas profundas han seguido y siguen actualmente su camino de ascenso hacia la superficie terrestre.

Estos materiales, que consisten en una masa rocosa fluída, en la que pueden coexistir fases sólidas, líquidas y gaseosas; se denominan magmas. Cuando los magmas ascienden a zonas superiores, se produce su consolidación. Esta consolidación puede producirse bien en superficie o bien a una determinada profundidad.

En caso de producirse la consolidación en superficie, ésta tiene lugar de manera brusca y, por lo tanto, no se forman cristales grandes; a veces la roca queda vetrificada. Así se originan las rocas volcánicas.

Cuando la consolidación se produce en profundidad, los cristales se pueden ir desarrollando, debido al enfriamiento lento, así se forman las rocas intrusivas.

El conjunto de rocas volcánicas e intrusivas constituye las rocas ígneas.

Las rocas quedan expuestas a la erosión; sus componentes son destruidos y transportados en disolución o llevados en suspensión por las aguas superficiales, hasta que, por último, llegan al mar donde se depositan. Los materiales, más o menos ordenados, depositados en los fondos marinos van sufriendo una compactación bajo el efecto de nuevos sedimentos. Mediante este proceso se forman las rocas sedimentarias.

En ciertas zonas, al acumularse los sedimentos, se produce un hundimiento del fondo marino y una elevación del grado geotérmico, de esta forma, las fases que en superficie estaban en equilibrio, pasan a ser inestables al ir ganado profundidad, produciéndose una recristalización. Además, las rocas

preexistentes, debido a las fuertes presiones laterales que existen en profundidad, se pliegan. En este proceso se originan las rocas metamórficas, que se caracterizan por su orientación mineral, que les da un aspecto foliado.

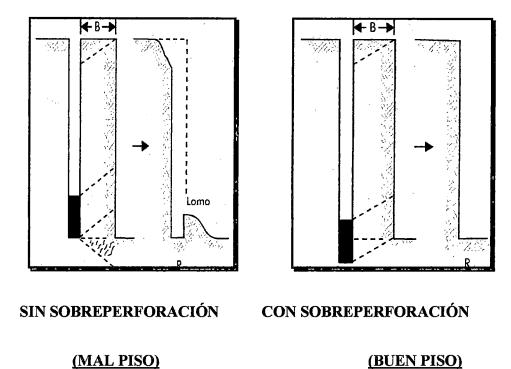
- Rocas eruptivas

Las rocas eruptivas son formadas por las masas o mantos de lava (magma) solidificados y cristalizados. Si un magma es solidificado lentamente y sometido a una presión alta a una gran profundidad, se forma una roca de cristales mayores y grano grueso como el granito, la monzonita, etc. Cuando un magma emerge más próximo a la superficie de la tierra, en forma de lava, las masas se enfriarán más rápidamente y formarán una roca con granulación más fina, como el basalto, pórfido y diabasa.

Rocas sedimentarias

Las rocas sedimentarias están formadas por el material intemperizado de la corteza sólida de la tierra, el mismo que con el tiempo se ha erosionado, ha sido transportado y sedimentado en las bocas de los ríos, sobre el fondo de mares prehistóricos.

Ejemplos de rocas sedimentarias: areniscas, pizarras, calizas, etc.


- Rocas metamórficas

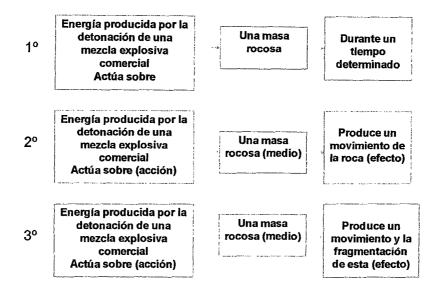
Las rocas metamórficas están formadas a partir de rocas eruptivas sedimentarias. La influencia de la presión, de la temperatura o del intercambio de elementos con el ambiente circundante transforma su estructura y composición

3.1.2. Sobreperforación

La sobre perforación es muy importante para mantener la razante del piso. Si resulta corta normalmente reproducirán lomos, pero si es excesiva se produciría sobre excavación con incremento de vibraciones y de los costos de perforación. La sobreperforación forma parte del banco de voladura.

Figura 3.1: Sobreperforación

En el caso de que tengamos un taladro corto obtendremos un piso con lomos muy pronunciados, lo que se llama toes, nuestros costos operativos se incrementarían debido a que se tiene que realizar una voladura secundaria para poder obtener un piso óptimo y así continuar con el ciclo de carguío y acarreo.


3.1.2.1. Etapas del proceso de Fracturamiento de Rocas

3.1.2.1.1. Evolución de los Conceptos del proceso de Fracturamiento de Rocas.

Desde comienzos de la década de los años 50 han evolucionado vertiginosamente los conceptos que tratan de explicar el proceso del fracturamiento de rocas; o en otras palabras, se han desarrollado múltiples teorías que tratan de explicar los efectos que causan la detonación de una mezcla explosiva comercial cargada dentro de los taladros respectivos.

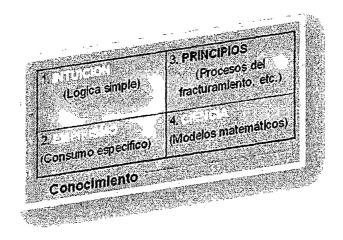

Se debe mencionar que la mayoría de los investigadores están de acuerdo en que la evolución de los conceptos de la referencia ha sido la siguiente:

Figura 3.2: Evolución de los Conceptos.

Otros investigadores del presente siglo proponen el diagrama conceptual siguiente: Mostrando los conceptos de la evolución de la ciencia de la voladura de rocas:

Figura 3.3. : Evolución de la ciencia de la voladura de rocas

Existen también muchas teorías que tratan de explicar el proceso de los diversos mecanismos que toman lugar cuando se lleva a cabo el fracturamiento de la masa rocosa por efecto de la energía producida por la detonación de cualquier mezcla explosiva comercial.

Se debe mencionar al respecto que existen varias opiniones y que muchas de estas dividen al proceso del fracturamiento de rocas en 3, 5 y hasta 8 etapas estando todavía muchas de estas opiniones en pleno proceso de validación.

Así por ejemplo R. Frank Chiappetta, ha propuesto que el proceso de fracturamiento de rocas sea enfocado desde un punto de vista de eventos. Tal como sigue:

- E1 = Detonation
- E2 = Shock and/or stress wave propagation
- E3 = Gas pressure expansion
- E4 = Mass movement, etc.

La mayoría de los investigadores están de acuerdo en que 3 son las etapas o fases principales que toman lugar en el proceso del fracturamiento de rocas por la acción de una mezcla explosiva comercial:

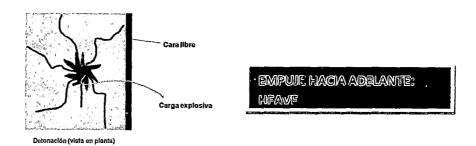
- Primare fase: Fracturas radiales (Brisance)

Cuando cualquier mezcla explosiva comercial que se encuentra cargada dentro de un taladro es detonada, se producen ondas compresivas o de choque.

La forma y magnitud de estas ondas compresivas que viajan a altas velocidades cuyo rango está entre 3000 – 5000 m/seg, dependerá del tipo de mezcla explosiva comercial, del tipo de roca, del número y posición de los boosters, altura de carga, diámetro del taladro y la relación de la velocidad de detonación con la velocidad de propagación de las ondas a través del macizo rocoso.

Se debe mencionar que estas primeras fracturas radiales se producen en las zonas adyacentes a los taladros y el tiempo necesario para esto, está entre 1 a 2 ms.

Figura 3.4.: Fracturas Radiales


- Segunda fase: Empuje hacia adelante (Heave)

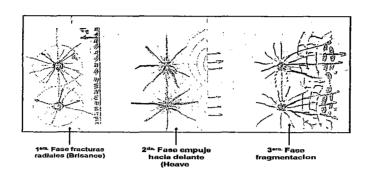
Las altas presiones de los gases, hacen que éstos produzcan las ondas compresivas las cuales serán refractadas y reflejadas. Las ondas compresivas reflejadas cambiarán de signo (negativo) y se convertirán en ondas tensionales. Esta transformación ocurrirá cuando las ondas compresivas arriben a una cara libre, cuando la masa rocosa cambia de densidad o cuando ellas encuentra fallas geológicas o planos estructurales, etc.

El fracturamiento de la roca comenzará en la cara libre o en cualquier discontinuidad donde las ondas compresivas reflejadas. Cuando son ondas compresivas cambian de signo y se convierten en ondas tensionales, ellas regresan de la cara libre o cualquier discontinuidad estructural, hacia el punto de origen de la detonación fracturando el macizo rocoso, porque esta falla más fácilmente por efecto de las ondas tensionales que compresivas. En general, es muy conocido que la resistencia tensional dinámica de cualquier tipo de roca es menor que su resistencia compresiva dinámica. Las ondas tensionales producirán el empuje hacia adelante (Heave) del macizo rocoso en la zona más cercana a la cara libre (burden).

El empuje hacia adelante (Heave) entre otros factores dependerá de lo siguiente: tipo de roca, cantidad y calidad de la mezcla explosiva comercial, las mallas de perforación y voladura a ser usadas en el disparo primario, etc.

Figura 3.5. : Empuje hacia Adelante.

- Tercera fase: Fragmentación

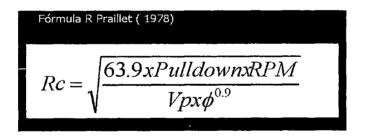

En esta etapa se produce la fragmentación total de la roca. Johansson ha dicho que: "bajo la influencia de las altas presiones de los gases producidos por la detonación de cualquier mezcla explosiva comercial; las primeras fracturas radiales son extendidas, la cara libre falla y ésta es movida hacia el frente."

Como en el caso del empuje hacia adelante (Heave); la primera parte del macizo rocoso es movida hacia adelante y la nueva cara libre reflejará lo restante de las ondas de choque producidas por las ondas compresivas.

Luego, las ondas tensionales son suficientes para fracturar el macizo rocoso en estudio. Este proceso continuará hasta que las ondas tensionales desarrolladas sean menores a las ondas tensionales requeridas para fracturar el macizo rocoso, y por fin todo el proceso del fracturamiento de rocas habrá terminado.

Muchos de los investigadores han dicho que: La fragmentación es la más importante y única variable que debe de ser tomada en cuenta para evaluar los resultados de un disparo desde un punto de vista técnico-económico. Es debido a que la fragmentación es la única variable que interrelaciona a todas las operaciones mineras unitarias que conforman el ciclo de minado.

Figura 3.6.: Fragmentación

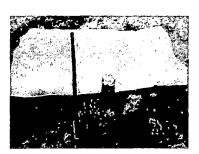

Discusión.- La discusión final sería diciendo que si se quiere maximizar producción y productividad en cualquier operación minera se debe maximizar la FRAGMENTACION del material rocoso; y para lograr esto en primer lugar se debe entender bien el proceso de fracturamiento de rocas y luego usar la ciencia y tecnología más moderna en voladura de rocas, y en especial los modelos matemáticos (softwares) que representen o simulen a la operación minera unitaria de la referencia.

3.1.2.2. Resistencia compresiva

La resistencia compresiva de una roca es la medida que traduce la capacidad de una muestra de roca para resistir a una carga estática aplicada sobre ella, hasta que la misma se quiebre. Esta magnitud a menudo es usada para medir la perforabilidad de las rocas.

Si la estructura de la roca es de granulación gruesa, la perforación será más fácil y habrá menos abrasividad, en comparación con una roca con una estructura de granulación fina: consecuentemente, dos rocas con aproximadamente un mismo contenido de mineral pueden tener perforabilidades completamente diferentes. En el siguiente informe se empleará la fórmula de Praillet para determinar los esfuerzos compresivos.

Figura 3.7. : Fórmula de Praillet



3.2 Impacto Ambiental

Con lo que respecta al impacto ambiental, la utilización del Explodeck para la generación de cámaras de aire no contamina el ambiente. Se menciona ya que el Explodeck contiene un aerosol, que es el que propicia el inflado de la bola. Los componentes del Explodeck son: una bolsa autoinflamable, un tubo de plástico y un aerosol.

Figura 3.8: Explodeck

Los componentes del gas dentro de aerosol son: ethylene glicol, wáter, dimetyl ether y sodium nitrite.

El Explodeck cuenta con los certificados anso y responsable care aceptados y reconocidos en países como Australia, EE.UU.., Sudáfrica. Única en el mundo que tiene un aerosol 100% no inflamable.

Figura 3.9: Certificados

Se adjunta certificados que demuestran una buena relación con el medio.

(Ver ANEXO B)

3.3. Recursos

3.3.1. Recurso Humano

Uno de los factores más importantes para el desarrollo de este proyecto fue el recurso humano, se pudo percibir un gran compromiso de apoyo por parte:

- Supervisor de Perforación y Voladura.
- Supervisor de EXSA.
- Colaboradores: personal de EXSA así como los operadores de Perforación y Voladura.
- Los trabajadores del área de Geología y SSTT.

3.3.2. Recurso Material

Se pudo contar con diferentes materiales para la realización del proyecto tales como: winchas, cámaras fotográficas, libros de consultas, todo lo que concierne a implementos de seguridad (EPP), etc.

3.3.3. Recurso Tecnológico

Es una herramienta fundamental para poder tener cálculos más exactos, en este caso se utilizó el software Shotplus, el software PowerSieve y la utilización de la cámara de alta velocidad.

Con la utilización de este recurso se cree que en muy poco tiempo deben de remplazar por completo a los métodos convencionales que se basaban principalmente en "prueba y errores".

3.4. CRONOGRAMA DE ACTIVIDADES

3.4.1. CRONOGRAMA DE TRABAJO AGOSTO-NOVIEMBRE 2009

1	DATOS A REVISAR 2008-2009	20 dias	
	REVISION DE LOS DATOS DE PERFORACION	5 dias	
	ANALISIS DE LA INFORMACION	3 dias	
	RECOLECCION Y ANALISIS DE LOS PROYECTOS A DISPARARSE	3 dias	
	VERIFICACION DE LA LONGITUD DE LOS TALADROS	2 dias	
	ANALISIS DE ESFUERZO COMPRESIVO	2 días	
	ANALISIS DE DUREZA	2 dias	
	DEFINIR MEZCLA EXPLOSIVA	1 dia	a
	PROYECTO 4030-001 -DAFNE	4 dias	
0	PROYECTO 4030-002 -DAFNE	4 dias	
1	Analisis de la fragnentación	2 dias	· · · · · · · · · · · · · · · · · · ·
2	VERIFICACION DEL PISO FINAL	3 dias	
3	ANALISIS DE COSTO	2 dias	

3.4.2. CRONOGRAMA DE TRABAJO 2010

	lombre de tarea	Duración	2010 09/05 16/05 23/05 30/05 06/06 13/06 20/06 27/06
I	REVISION DE LOS DATOS DE PERFORACION	S dias	
ो	ANALISIS DE LA INFORMACION	3 dias	
	RECOLECCION Y ANALISIS DE LOS PROYECTOS A DISPARARSE	3 dias	
	VERIFICACION DE LA LONGITUD DE LOS TALADROS	2 dias	
	ANALISIS DE ESFUERZO COMPRESIVO	2 dias	
****	ANALISIS DE DUREZA	2 dias	
	DEFINIR MEZCLA EXPLOSIVA	1 dia	
1	PROYECTO 4030-003 -DAFNE	5 dias	
	PROYECTO 4140-034 - JOSEFA	5 dias	
h	ANALISIS DE LA FRAGMENTACION	2 dias	
Ĭ	VERIFICACION DEL PISO FINAL	3 dias	
	ANALISIS DE COSTO	2 dias	

CAPITULO IV

4.1. Sistema de Iniciación Electrónica

El avance tecnológico en los sistemas de iniciación en voladura, nos permite trasladarnos desde el sistema convencional, hasta el moderno y preciso sistema de iniciación electrónica, mediante el cual, podemos controlar la energía liberada en un disparo, optimizando la fragmentación y disminuyendo el daño a las paredes del pit, mediante un control de vibraciones.

4.1.1. Detonador Electrónico

Este detonador puede ser programable entre 0 a 15000 milisegundos, con un incremento de 1 milisegundo dando oportunidad a un amplio manejo de tiempos de amarre; contando con una exactitud del retardo programado de +/- 0.1% ms. Esto garantiza no tener traslape, que tiene la directa relación con la probabilidad de acoplamiento de las ondas de choque producidas por cargas detonadas simultáneamente.

El detonador electrónico cuenta con un número de identificación único de fábrica el cual permite tener registrado a cada detonador.

Se realiza la comunicación Bi-direccional entre el control del equipo y el detonador.

4.1.2. Logger (Programador de Retardos)

Este dispositivo portátil que verifica el estado del detonador.

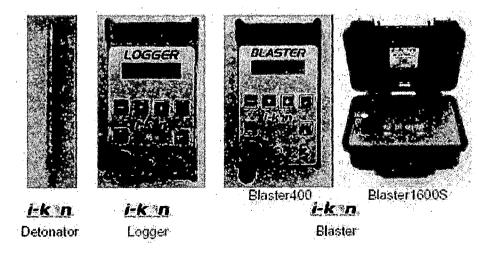
Lee y describe el ID (identificación) del detonador en la memoria.

Asigna tiempos de detonación.

Chequea automáticamente el detonador y el cable, mediante un tes de continuidad de línea.

Cada Logger tiene capacidad de registrar 200 detonadores.

Es inherentemente seguro, tiene 5 voltios de salida.


4.1.3. Blaster (Sistema de Iniciación de Alta Seguridad)

Este equipo realiza un auto chequeo completo y automático de la funcionalidad del sistema y programación del detonador.

Cuenta con una capacidad de 1600 detonadores (control de 8 logger con 200 detonadores por logger).

- Único con una llave de activación digital.
- Único con códigos de armado y fuego.
- Trabaja con un voltaje de salida de 24 voltios.

Figura 4.1: Blaster

4.1.4. Equipos para la detonación electrónica.

- Tipos de Explosivos

En mina Lagunas Norte se utiliza el anfo normal que es la mezcla de nitrato de amonio en 94 % de peso y petróleo diesel N° 2 en 6 % de peso.

Se utiliza emulsión matriz para la fabricación de anfos pesados, las mezclas usadas son:

Anfo pesado 28 : 20 % emulsión, 80 % anfo en zonas donde la roca es considerada suave.

Anfo pesado 37 : 30 % emulsión, 70 % anfo en zonas donde la roca es considerada media.

Anfo pesado 46 : 40 % emulsión, 60 % anfo en zonas donde la roca es Considerada dura.

Anfo pesado 64 : 60 % emulsión, 40 % anfo en zonas de presencia de agua.

4.2. Balance químico de las mezclas explosivas utilizadas en Lagunas Norte.

ANFO	80%
Emulsion	20%

Ī		Balance de Oxigen del ANFO Pesado HA 28 (Anfo Pesado: 20% de Emulsion + 80% de ANFO)											
Į													
ļ		NF	<u> </u>	+									
[H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₂ O	+	C _{7,166} H _{13,B2}		
% de materai prima	94.0%		6.0%		75%		6%		17.7%		1.3%		
BO por Materia prima	20		(336.58)		20		(336.58)		0		(339.85)	Balance de	
BO afectado por % del Producto	18.8		(20.19)		15		(20.19)		0		(4.42)	Oxigeno Final	
BO afectado por % de la Mezcla	15.04	+	(16.16)	+	3	+	(4.04)	+	0	Ŧ	(0.88)	(3.04)	

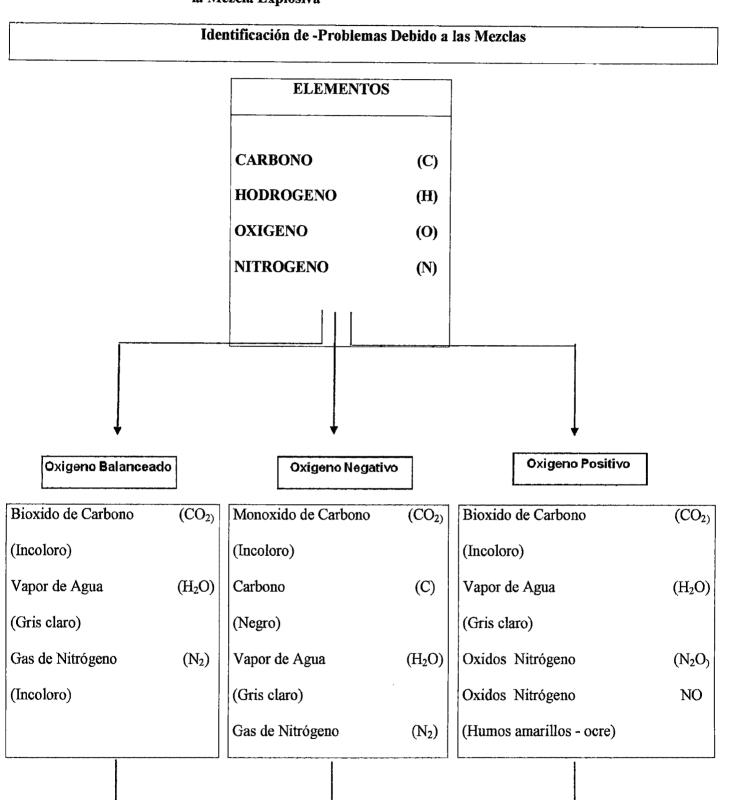
[Balance de Oxigen del ANFO Pesado											
ſ		HA 28 (Anfo Pesado: 20% de Émulsion + 80% de ANFO)											
	ANFO	O + Emulsión											
[H ₄ N ₂ O ₃	+	C _{7,128} H _{13,036}	+	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₂ O	+	C _{7,166} H _{13,82}		
% de materai prima	95.5%	Т	4.5%		75%		6%	Ī	17.7%	_	1.3%		
3O por Materia prima	20		(336.58)		20		(336.58)		0		(339.85)	Balance de	
BO afectado por % del Producto	19.1		(15.15)		15		(20.19)		0		(4.42)	Oxigeno Fin	
BO afectado por % de la Mezcla	15.28	+ 1	(12.12)	+	31	+	(4.04)	+ T	ol	+	(0.88)	1	

ANFO	70%
Emulsion	30%

		HA 37 (Anfo Pesado: 30% de Emulsion + 70% de ANFO)										
	ANFO			+			Emu	Ilsić	on Table 1			
	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+ [H ₂ O	+	C _{7,166} H _{13,82}	
% de materal prima	94%		6%		75%		6%	_	17.7%		1.3%	
BO por Materia prima	20		(336.58)		20		(336.58)	\neg	0		(339.85)	Balance de
BO afectado por % del Producto	18.8		(20.19)		15		(20.19)		o		(4.42)	Oxigeno Final
BO afectado por % de la Mezcla	13.16	+	(14.14)	+	4.5	+	(6.06)	+]	0	+	(1.33)	(3.86)

ANFO	60%
Emulsion	40%

		HA 46 (Anfo Pesado: 40% de Emulsion + 60% de ANFO)										
	ANFO			+		Emulsión						
	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+ -	H ₂ O	+	C _{7,166} H _{13,82}	
% de materai prima	94%	Γ	6%		75%		6%	\neg	17.7%		1.3%	
BO por Materia prima	20		(336.58)		20		(336.58)		0		(339.85)	Balance de
BO afectado por % del Producto	18.8		(20.19)		15		(20.19)		0		(4.42)	Oxigeno Final
BO afectado por % de la Mezcla	11.28	+	(12.12)	+	6	+	(8.08)	+	0	+	(1.77)	(4.6


ANFO	50%
Emulsion	50%

		HA 55 (Anfo Pesado: 50% de Emulsion + 50% de ANFO)										
:	ANFO -			+	· · · · · · · · · · · · · · · · · · ·	12.3 1.4 1.4						
	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₂ O	- C _{7,166} H	13,82	
% de materai prima	94%		6%]		75%		6%		17.7%		1.3%	
BO por Materia prima	20		(336.58)	_	20	_	(336.58)		0	(33	9.85)	Balance de
BO afectado por % del Producto	18.8		(20.19)	_	15		(20.19)		0		(4.42)	Oxigeno Final
BO afectado por % de la Mezcla	9.4	+	(10.10)	+	7.5	+	(10.10)	+ }	0 +	+ ((2.21)	(5.50

ANFO	40%
Emulsion	60%

<u> </u>	HA 64 (Anfo Pesado: 60% de Emulsion + 40% de ANFO)											
t	ANFO			+		(5 × *	Em	iulsión	: X.,	ă.		
	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₄ N ₂ O ₃	+	C _{7,128} H _{13,035}	+	H ₂ O	+	C _{7,166} H _{13,82}	
% de materai prima	94%		6%		75%	_	6%	Т.	17.7%		1.3%	
O por Materia prima	20	\Box	(336.58)		20		(336.58)		0		(339.85)	Balance
3O afectado por % del Producto	18.8		(20.19)		15		(20.19)		0		(4.42)	Oxigeno

4.2.1. Problemas Generados debido a un mal Balance del Oxígeno en la Mezcla Explosiva

Color Resultante	Color Resultante	Color Resultante
Humo gris claro	Humo gris oscuro	Humos Amarillos o Ocres

Diseños en secuencia de salida y tiempos de retardo.

4.3 Secuencia de salida y tiempos de retardo

Los tiempos de retardo entre barrenos y las secuencias de encendido juegan en las voladuras un papel muy importante pues sirven para disminuir las cargas operantes y por consiguiente los niveles de vibración producidos, y hacer que se consiga una mayor efectividad de los mecanismos de rotura y un control sobre el desplazamiento de la roca, la sobre excavación y las proyecciones.

4.3.1. Retardos

Los tiempos de retardo utilizados son:

- Con detonadores pirotécnicos

- Retardos de 17 ms entre taladros.
- Retardos de 42 ms entre filas.
- Retardos de 65 ms en la última fila.

Con detonadores electrónicos

- Retardos de 2 ms entre taladros.
- Retardos de 30 ms entre filas.
- Retardos de 65 ms en la última fila.

4.4. Medición de la velocidad de detonación

La velocidad de detonación, también conocida como velocidad explosiva, es la velocidad a la que el frente de onda de choque viaja a través de un explosivo en

detonación. Las velocidades de detonación son siempre mayores que la velocidad local del sonido en ese medio material.

La velocidad de detonación es proporcional a la potencia cedida por la detonación del explosivo, por tanto a mayor velocidad, mayor será también la energía cedida por unidad de tiempo, que radica en la onda de choque y en la elevación de la temperatura y presión de los gases.

Algunos de los datos medidos son:

Banco	Proyecto	Mezcla. Explosiva	Densidad g/cc	Longitud de Carga (m)	Longitud de Taco (m)	Cantidad Kg	ID Ta <u>la</u> dro ^l	VOD m/s	¹ · PD · ¦ Mpa₁ ,
4050	002	HA46	1.20	5.00	4.5	450	AP1	5368.00	8644.63
4050	002	HA46	1.20	5.00	4.5	445	AP2	5170.00	8018.67
4160	028	HA55	1.28	6.20	4.5	400	CF13	5540.80	9824.15
4150	030	HA37	1.14	6.10	4.5	400	M42	4618.00	6077.89
4150	030	HA37	1.14	6.10	4.5	400	M41	4621.00	6085.79
4050	004	HA55	1.28	6.00	4.5	390	AA52	4400.00	6195.20
4050	004	HA55	1.28	6.00	4.5	390	AA52	4400.00	6195.20

Banco	Proyecto	Mezcla Explosiva ':		l Longitud de Darga (m)	Longitud de ; .Taco (m)		ID Ta <u>l</u> adro	VOD m/s	PD : Mpa
4160	030	HA46	1.90	5.00	4.5	445	BO45	4223.20	8471.82
4160	030	HA46	1.20	5.00	4.5	445	BO46	4502.20	6080.94
4080	021	HA46	1.20	5.00	4.5	450	V52	4043.50	4904.97
4160	031	HA46	1.21	5.50	4.5	430	CA57	4029.70	4912.14
4160	031	HA46	1.20	6.50	4.5	450	CC57	4197.10	5284.69
4070	022	HA46	1.20	5.50	4.5	445	AC68	4564.50	6250.40
4070	022	HA46	1.20	5.50	4.5	445	AC67	4790.00	6883.23
4070	023	HA46	1.20	6.20	4.5	445	E1	4789.50	6881.79
4030	005	HA46	1.19	6.40	4.5	415	R63	4839.70	6968.25
4030	005	HA46	1.21	6.50	4.5	420	Q64	4875.90	7191.76

4.5. Fragmentación

La ingeniería de la fragmentación es una importante parte en la minería, ya que las máquinas de carguío son más automatizadas y las fajas transportadoras son una

regla, en vez de una excepción, entonces será requerida una especificación del tamaño para el material fragmentado.

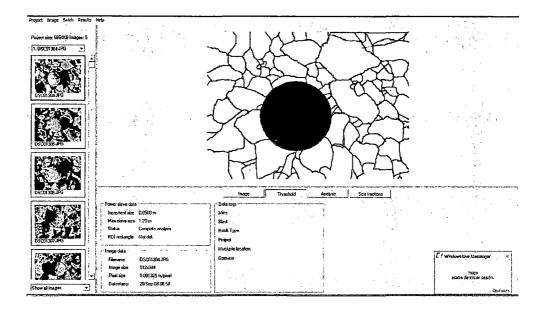
El objetivo principal de la voladura es fragmentar la roca a un tamaño que no presente inconvenientes en la chancadora, y que su costo sea bajo. Esta es una constante en todo proceso de voladura.

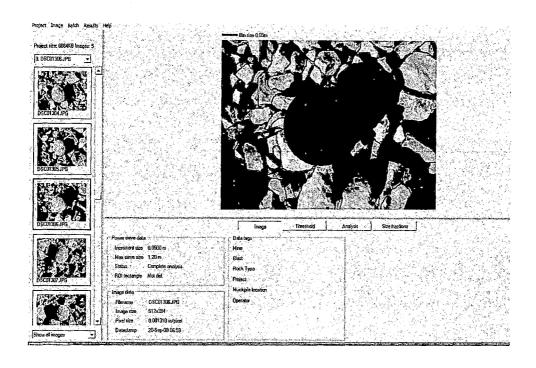
4.5.1. Impacto de la Fragmentación

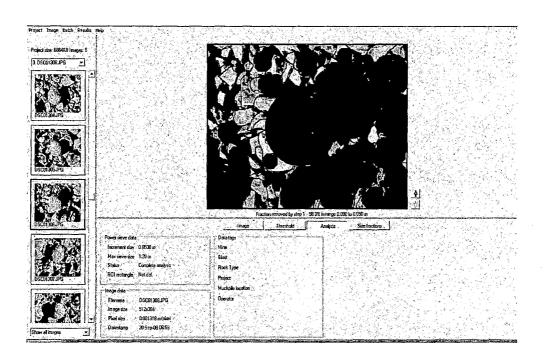
Al realizar las pruebas con explodeck se observó muy buenos resultados en la fragmentación lo que nos permitió predecir muchos beneficios en la operación.

Entre uno de los cuales tenemos la reducción del tiempo de carguío de la pala ya que los pases realizados eran muchos más rápidos debido a la fragmentación, un menor desgaste de las tolvas de los camiones, un ahorro en la energía ya que chancadora iba a requerir menos esfuerzo en triturar la roca, etc.

Es muy importante resaltar estos beneficios ya que cuantificados nos da un ahorro muy significativo para la empresa y lo más importante estaremos optimizando el ciclo de acarreo ya que la perforación y voladura es una actividad fundamental es la que inicia todo el ciclo y si obtenemos una mala fragmentación estaríamos elevando los costos, haciendo que nuestra operación no sea rentable.


4.5.2. Medición de la Fragmentación


Después de cada prueba realizada se analizaba la fragmentación a través del software Powersieve, a continuación mostramos los analices realizados en cada proyecto:


- PROYECTO 1-4030-001

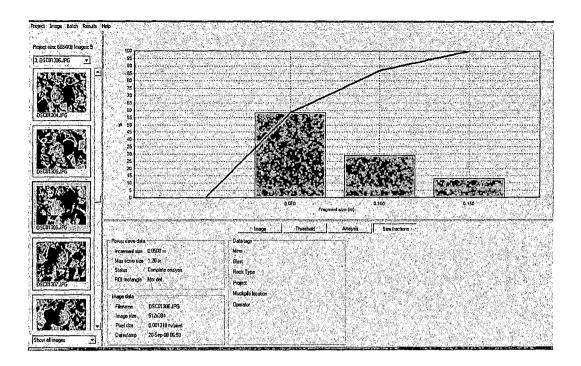
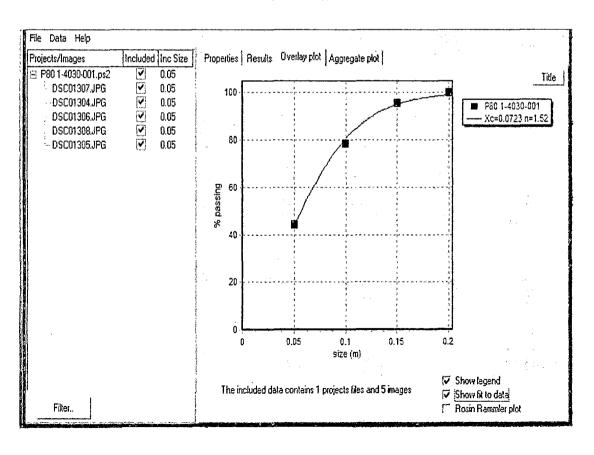
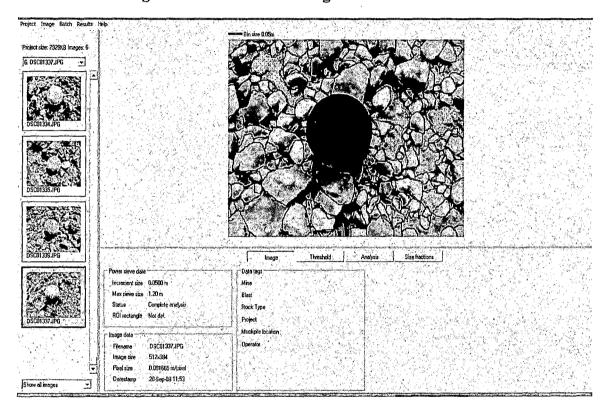
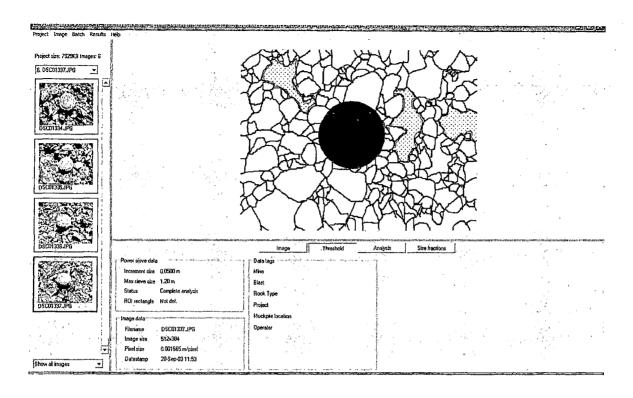

P80 < 9.90cm.

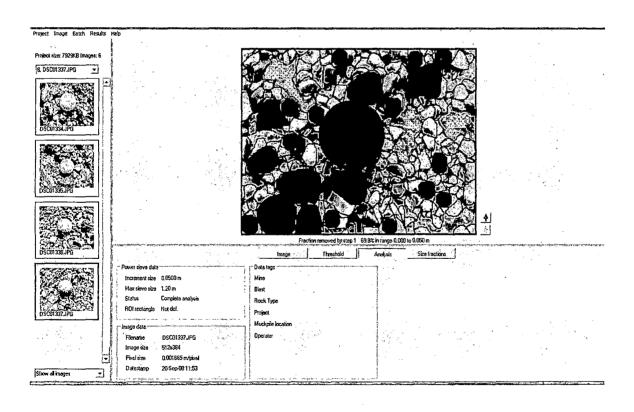
Figura 4.2: Resultados de fragmentación 1-4030-001



- Resultados


File Data Help Projects/Images P80 1-4030-001.ps2	Included Inc Size	Properties Results Overlay plot Aggregate plot				
DSC01307.JPG DSC01304.JPG	9 0.05 9 0.05	Selected P80 1-4030-001.ps2 (5 images)		gregate ** projects)	Section in the	and the project by the second
DSC01306.JPG	0.05	# Size (m) (%)in bin Cumulative(%)	#	Size (m)	(%)in bin	Cumulative(%)
DSC01308,JPG DSC01305,JPG	✓ 0.05✓ 0.05	1 0.050 44.2 44.2		0.050	44.2	44.2
D0001003.01 G	(2.) 0.00	2 0.100 34.5 78.7	2	0.100	34.5	78.7
		3 0.150 16.9 95.6	3	0.150	16.9	95.6
		4 0.200 4.4 100.0	4	0.200	4.4	100.0
Filter		Rosin Rammler fit Xc=0.0723(m) n=1.52 80% passing size is 0.0990(m) Total analysed area: 1.4274 square meters	8	0% passing	g size is 0.09	0723(m) n=1.52 90(m) 27 square meters




PROYECTO 1-4030-002

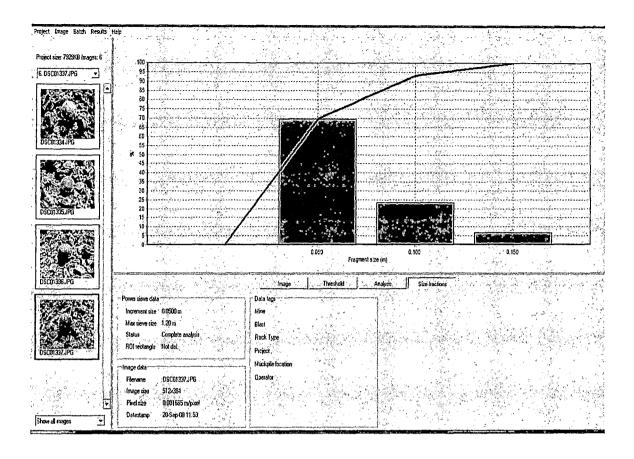
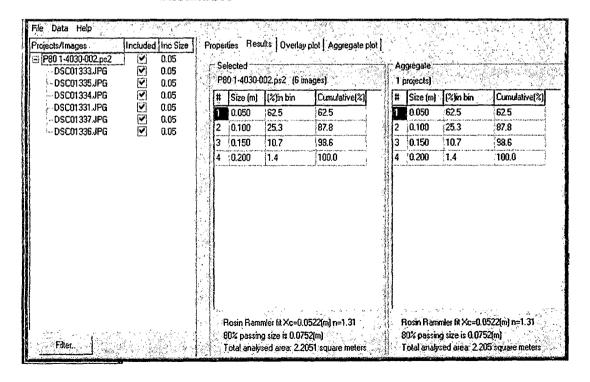
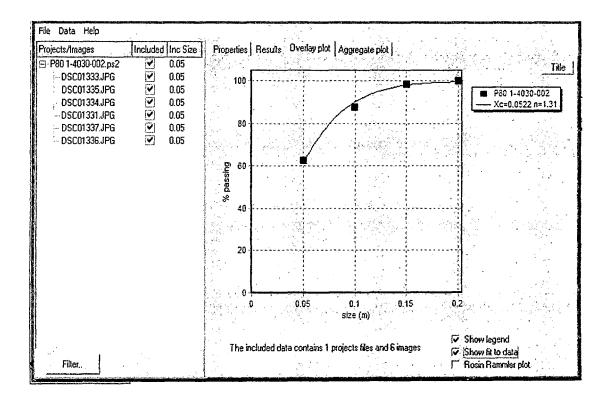
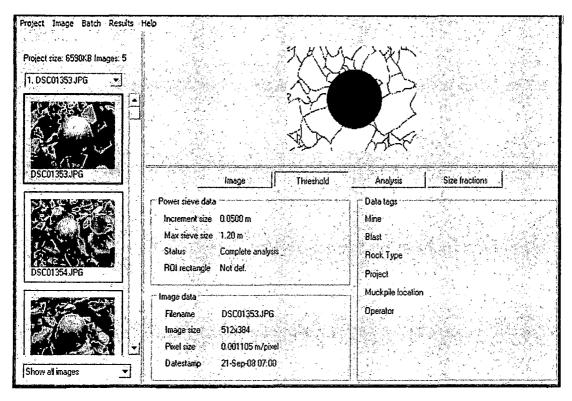

P80 < 7.52cm.

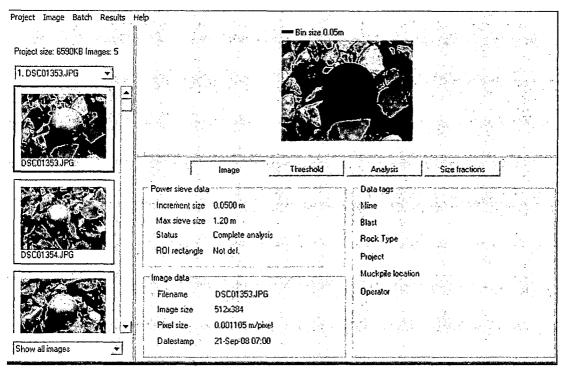
Figura 4.3: Resultados de fragmentación 1-4030-002

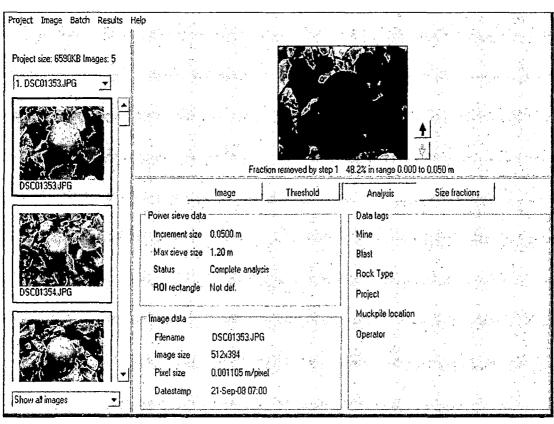


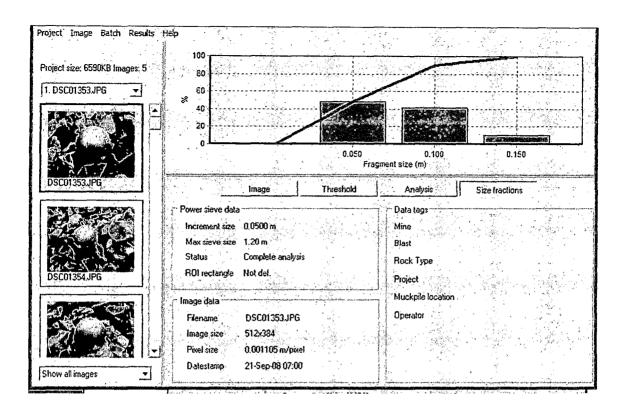


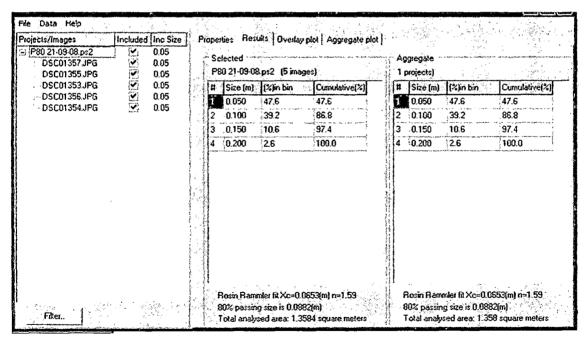
- Resultados

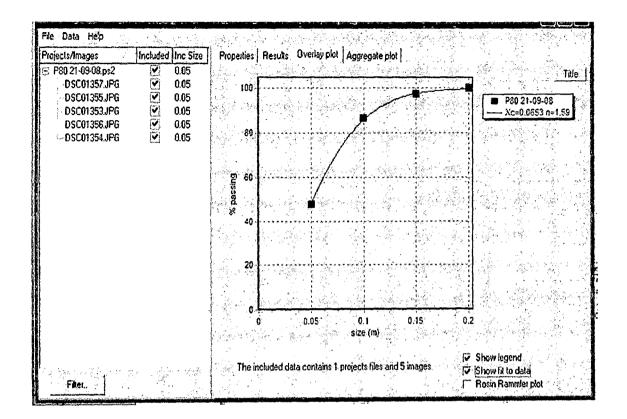


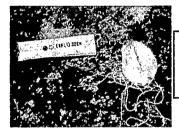



- PROYECTO 1-4030-003


P80 < 8.82cm.


Figura 4.4: Resultados de fragmentación 1-4030-003





CAPITULO V

5.1. Técnica de Voladura para Eliminar la Sobre Perforación en la Perforación, Mejorar la Fragmentación, Reducir el Consumo de Explosivos y Disminuir las Vibraciones

Una nueva técnica de voladura ha sido desarrollada por International Technologies, LLC. Para eliminar la sobreperforación en la perforación, disminuir las vibraciones en el terreno, mejorar la fragmentación y reducir el consumo de explosivos. Esta nueva técnica utiliza un accesorio de diseño único, con una cámara de aire en el fondo del taladro y una masa predeterminada de detritus encima del tapón. A esta combinación se le denomina el TaponexTM en ingles ó Taponex para Latino América.

Figura 5.1: Taponex

Para generar cámaras de aire:

TAPONEX O EXPLODECK?

El Elevador de Energía Tensional TAPONEX® es un accesorio especialmente diseñado para asegurar la creación y aplicación de ondas tensionales en el medio rocoso circundante al taladro cargado con explosivos, dando como origen el método de Voladura Tensional.

Su peculiar diseño producto de numerosas pruebas en campo y su construcción en un plástico de alta resistencia, aseguran que el TAPONEX® quede finalmente en la posición que se muestra en las figuras adjuntas. Esto garantiza una instalación simple y rápida, principalmente en los siguientes casos: sobre el explosivo, en la zona del Taco, como cámara de aire de retención; y/o bajo el explosivo, para control del piso en una voladura.

Adicionalmente puede ser usado en taladros secos y saturados con agua, además de poder sostener columnas de explosivos o material inerte con absoluta seguridad, así como sellar los taladros evitando la eyección de los tacos, e impidiendo la contaminación de los explosivos con material del taco en taladros saturados con agua.

5.1.1. Taponex

El Elevador de Energía TAPONEX® está compuesto por el recipiente plástico, una cuerda, y una vara de madera de 80 a 100 cm. de longitud. La longitud de la cuerda dependerá de la longitud del taladro donde se instalará el TAPONEX®. Para el caso de colocarlo en el fondo de los taladros el TAPONEX® se ofrece en la siguiente presentación:

el recipiente plástico, un vástago y una vara de madera de 1 metro de longitud en la mayoría de los casos, ésta longitud dependerá de la longitud de la cámara de aire que se elija dejar en el fondo.

5.1.2. Explodeck un accesorio de voladura que permite reducir el consumo de mezcla explosiva y obtener una buena fragmentación.

EXPLODECK es la única bolsa de aire autoinflable con gas 100% no combustible ó inflamable. Se infla con un aerosol incorporado en la bolsa que es amigable con la capa de ozono. Su aplicación es muy fácil. (Ver ANEXO A)

Su ingeniería hace que resista según sea el caso más de 800 kilos de peso. Su concepción y materiales de los que está hecho permiten que se fije perfectamente en el taladro, aún cuando éste no tenga paredes uniformes, ya que la bolsa se acomodará a cualquier geometría. Otros dispositivos rígidos no tienen esa propiedad y suelen resbalar por entre las paredes o no conseguir un sellado hermético en el caso del deck de aire.

El tipo de material con el que se construye y la forma como se afianza a las paredes del Hoyo ó Barreno, le permite retener la energía de la explosión por milésimas de segundo, tiempo suficiente para:

- Redireccionar la energía hacia los costados logrando una mejor y excelente fracturación de la roca.
- Evita el efecto "Fly Rock" en al menos un 50% reduciendo el riesgo de accidentes a personas y equipos.

Podemos reducir el volumen del explosivo entre 0.50 y 1 metro por columna, generando un efecto inmediato positivo en el flujo de caja al no tener que comprar 1 metro de explosivo por columna. El explodeck nos permite trabajar en pozos secos y/o con agua.

Con EXPLODECK también cerramos la sobreperforación, evitando colocar explosivo no necesario ó costosos movimientos de grava.

No contaminamos el medio ambiente, no daña a la capa de ozono, no es perjudicial para el hombre.

Su aplicación es muy sencilla y no requiere ni equipo ni mano de obra adicional y su instalación es de menos de cuarenta segundos por taladro y no requiere de aditamentos adicionales para su fijación.

En el caso del taponex para fijarlo hay que usar un palo atravesado en la boca del taladro desde donde se cuelga con una cuerda el taponex y para fijar se agrega peso (el propio steeming) para expandir el dispositivo y adherirlo a las paredes del taladro, pero sucede más o menos lo mismo que con el gorro chino y en un porcentaje no muy pequeño termina cediendo y cambiando los resultados de la voladura.

En promedio ambos dispositivos requieren el doble de tiempo para su instalación por cada taladro.

Explodeck puede permanecer en el taladro cargado con explosivo hasta 5 días garantizado (El record es 13 días). Sin sufrir deslizamiento ni pérdida de propiedades al momento de la voladura.

Explodeck es un dispositivo muy versátil, ya que en un sólo elemento hace los que muchos productos de la competencia:

- a) Creando un deck de aire se reduce la cantidad de explosivo a utilizar o se fragmenta mejor la roca.
- b) Se reducen las vibraciones
- c) Puede utilizarse al fondo del taladro si hubiera sobreperforación economizando explosivo. En este caso el de mayor carga puede soportar hasta 800 Kg de carga directa. El taponex no soporte ese peso y resbala.
- d) Cuando en el fondo del taladro hay cavernas por donde se pierde explosivo se puede poner como tapón. Igualmente si hay una caverna lateral se coloca el Explodeck sobre el explosivo al nivel de la caverna y sobre el explodeck se pone nuevamente explosivo hasta el nivel de diseño.
- e) Cuando tenemos en el fondo del taladro hasta 1,5 metro de agua se pone como tapón para aislar el agua del explosivo y no tener que utilizar Heavy Anfo.
- f) Puede trabajar sumergido en agua. Si los taladros tienen mucha agua y hay que trabajar sin bombeo y con heavy anfo, el deck que creamos es de

agua en vez de aire. Puede trabajar sumergido en agua hasta 6 mts de la boca del taladro.

- g) Se puede poner doble cámara en terrenos muy duros para confinar la onda expansiva y lograr mejor fragmentación.
- h) Permite utilizarlo en el precorte para logra paredes uniformes y evitar que queden talones al fondo que dificulten el accionar de las palas.
- i) Si tenemos problemas con los pisos se pueden utilizar al fondo del taladro para lograr pisos planos.

Los beneficios directos son:

- a) Mejor Fragmentación y
- b) ahorro de Explosivos

No menos importantes que los beneficios directos son los siguientes:

- a) Ahorro en herramientas de corte de las palas al hacer más fácil y más rápido el carguío.
- b) Menor deterioro de tolvas al conseguir mejor fragmentación al disminuir el impacto sobre ellas y al permitir mayor volumen de carga.
- c) Ahorro de Energía en Chancadoras

Formula	Content
C ₂ H ₆ O ₂	20.50%
C ₂ H ₆ 0	20%
NaNO ₂	0.66%
H ₂ O	58.84%
	C ₂ H ₆ O ₂ C ₂ H ₆ 0 NaNO ₂

5.1.3. Evaluación e Implementación de Cámara de aire en el fondo del taladro de voladura

El objetivo de la utilización de cámaras de aire es reducir los costos en perforación y voladura, sin perjudicar la productividad de los equipos de carguío. En los primeros análisis para la aplicación de cámaras de aire se utilizaron taponex.

5.2. Proyecto a prueba - TAPONEX

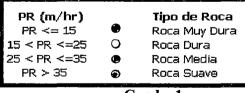
Proyecto: Josefa 2-4140-034

5.2.1. Análisis:

Para su realización se tuvo que indagar datos de proyectos anteriores para poder observar el comportamiento de la roca con los diversos parámetros de diseño y algo muy importante analizar la litología que se

encuentra en los proyectos que se van a llevar especificados en el plan semanal.

5.2.2. Ejecución


Para la ejecución de la prueba se tomó como referencia el proyecto 2-4140-032, para el cual se tuvo que analizar las durezas y litología. En el proyecto 2-4140-034 se pusieron a prueba 72 taladros:

El plano de dureza del proyecto se puede observar en el ANEXO R (Figura1)

De los 72 taladros tomados como prueba (Ver ANEXO C), la decisión de generar 1 metro de cámara de aire desde el piso utilizando TAPONEX fue previo análisis de las velocidades de penetración ya que debido a éste parámetro podemos obtener el tipo de roca, como se puede observar en el cuadro siguiente:

Figura 5.2: Clasificación de dureza

	TALADROS	%
MUY DURA	1	1.4
DURA	13	18.1
MEDIA	31	43.1
SUAVE	27	37.5
TOTAL	72	100

Cuadro1

Del cuadro se concluye que es un terreno de medio a suave.

Precios de mezcla explosiva (ANEXO R (Figura2))

5.2.3. Resultados

Mezcla explosiva: 39.4\$/m x 72m= \$2836.8 (NO UTILIZADO)

TAPONEX:

Cada unidad de taponex = \$ 5.95

Total: 72 x 5.95=\$428.4

AHORRO: \$2408.4

PROYECTOS A PRUEBA UTILIZANDO EXPLODECK

Presentación del Explodeck (Ver ANEXO D)

El Explodeck con la que se realizaron las pruebas tiene la siguiente presentación:

Figura 5.3: Estado inicial del explodeck

Figura 5.4: Estado final del explodeck

5.3.1. APLICACIÓN DE EXPLODECK EN PROYECTOS

5.3.1.1. Primer Proyecto: 1-4030-001

Para determinar si era conveniente la utilización del explodeck a 1 metro del piso, se realizó un análisis del macizo rocoso en la cual se iba a realizar la prueba.

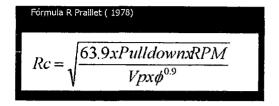
Se determinó los esfuerzos compresivos de los taladros que conformaban el proyecto.

5.3.1.2. Características del proyecto

Proyecto : 1-4030-001

Zona : Dafne

Taladros : 239


Mezcla explosiva : HA37

FC : 0.296

S : 6.06

B : 7.00

El esfuerzo compresivo fue analizado con la fórmula de Praillet:

: 54 MPA
: 183 MPA
: 103 MPA

1.- Ejemplo de cálculo del esfuerzo compresivo de un taladro del proyecto a prueba:

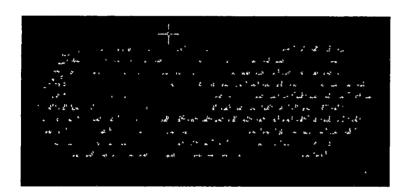
TALADRO	TIEMPO PERFORANDO	RPM	PRÉSION DE AIRE (PSI)	PRESION ROTACION (PSI)	PULL DOWN (PSI)	VELOCIDAD DE PENETRACION (MT/HR)	PROFUNDIDAD	PULL DOWN (KPA)	DIAMETRO (mm)	ESFUERZO COMPRESIVO (MPA)
H13	31.5	76.29	81.8	2261.72	1326.75	24.63	10.16	9147.68	251	112
H14	34.98	69.23	82.5	2302.44	1462.15	24.33	9.98	10081.23	251	113
H15	27.08	79.57	82.49	2264.84	1547.88	27.89	9,98	10672.32	251	116
BF1	23.57	79.42	82.54	2164.07	1262.12	29.34	9.98	8702.06	251	102

Cuadro 1

Para reemplazar en la fórmula, el Pulldown se tiene que llevar de PSI a KPA.

Sustituyendo los valores en la fórmula de Praillet: (datos en el cuadro 1)

Analizamos el taladro H13:


 $Rc = ((63.9*9147.68*76.29)/(24.63*(251^0.9)))^0.5$

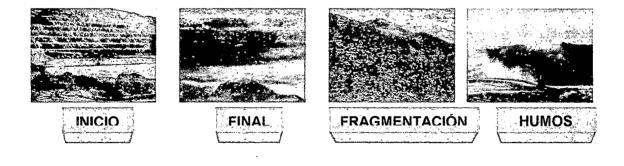
Rc= 112 MPA.

De esta manera podemos calcular el esfuerzo compresivo de cada taladro y poder determinar su comportamiento respecto a todo el proyecto.

2.- Para determinar su plano de durezas se debe de determinar la velocidad de penetración, esta velocidad es la división entre los metros perforados por taladro con el tiempo que demora hasta finalizar el taladro.

Figura 5.5: Plano de dureza del proyecto 1-4030-001

 PR (m/hr)
 Tipo de Roca


 PR <= 15</td>
 Roca Muy Dura

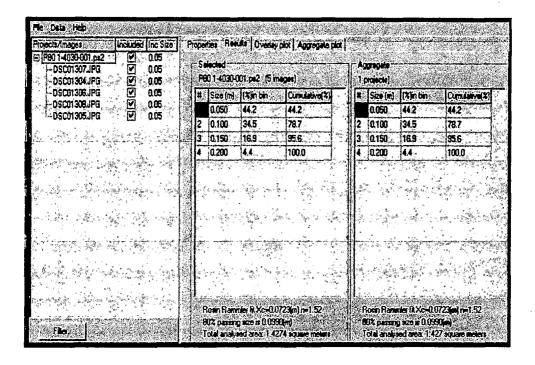
 15 < PR <=25</td>
 Roca Dura

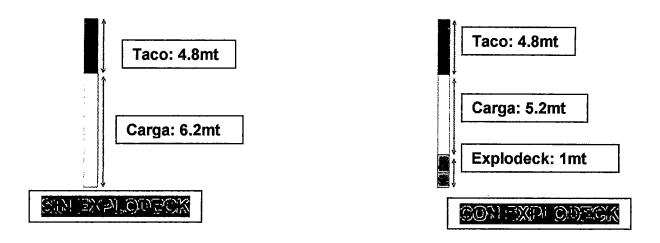
 25 < PR <=35</td>
 Roca Media

 PR > 35
 Roca Suave

Figura 5.6: Proyecto 1-4030-001

P80 < 10CM




Figura 5.7: Resultado del piso del proyecto 1-4030-001

Se obtuvo un buen piso final, no se presentó lomos que nos den indicios de que el explodeck no trabajó en algunos sectores.

El P80 nos indica que el 80% de los fragmentos del proyecto son menores del 10cm.

Figura 5.8: Diseño de taladros proyecto 1-4030-001

5.3.1.2. ANÁLISIS DE COSTOS PROYECTO 1-4030-001:

		SIN	CON
	PRECIO	EXPLODECK	EXPLODECK
TALADROS		239	239
MEZCLA HA37	35.4 \$/m	219.48 \$/tal	184.08 \$/tal
PROYECTO		\$ 52455.72	\$ 43995.12
EXPLODECK	5.95 \$/und	0	\$ 1422.05
TOTAL		\$ 52455.72	\$ 45417.17

En este proyecto se puede observar que se tuvo un ahorro con la utilización de Explodeck. (Ver ANEXOS F, G y H)

5.3.1.2. Segundo proyecto: 1-4030-002

Para determinar si era conveniente la utilización del explodeck a 1 metro del piso, se realizó un análisis del macizo rocoso en la cual se iba a realizar la prueba.

Se determinó los esfuerzos compresivos de los taladros que conformaban el proyecto. (ANEXO 4)

5.3.1.2.1. Características del proyecto

Proyecto

: 1-4030-002

Zona

: Dafne

Taladros

: 242

Mezcla explosiva

: HA28

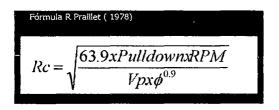
FC

: 0.242

Accesorio

: Explodeck

__EXPL @ DECK__

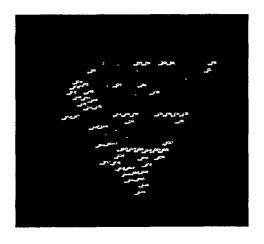

S

: 6.10

В

: 7.00

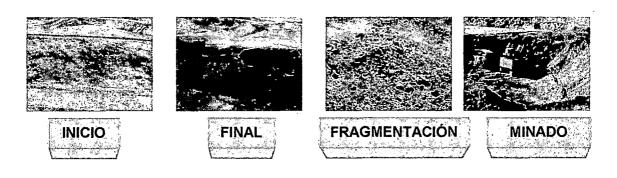
1.- El esfuerzo compresivo es calculado mediante la siguiente fórmula:



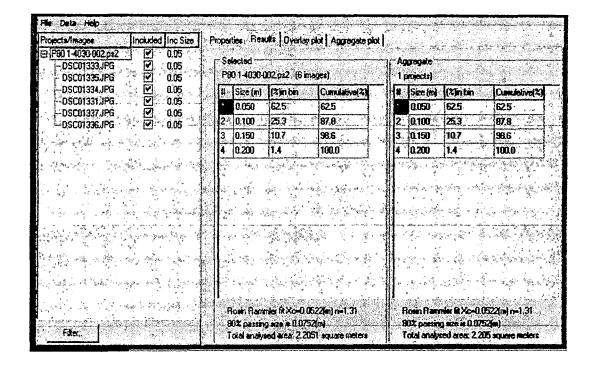
RC mín	: 55 MPA
RC máx	: 151 MPA
RC prom	: 105 MPA

2.-Determinación del plano de dureza a través de las velocidades de penetración:

Figura 5.9: Plano de dureza del proyecto 1-4030-002



1		
	PR (m/hr)	Tipo de Roca
	PR <= 15	Roca Muy Dura
	15 < PR <=25	Roca Dura
i	25 < PR <=35	Roca Media
	PR > 35	Roca Suave


3.- Con los siguientes datos obtenidos se procede a realizar el diseño de los taladros, es decir dejar 1 metro de cámara desde el piso, de esta manera estaremos ahorrando mezcla explosiva. Es muy importante realizar una comparación con las durezas dadas por geología en su logueo,

Con la determinación de este plano de dureza podemos determinar qué tipo de mezcla explosiva vamos a utilizar para determinadas zonas y así poder bajar nuestro factor de potencia pero sin perjudicar la fragmentación. "El factor de carga está dado en KG/TM."

Figura 5.10: Proyecto 1-4030-002

P80 < 9CM

5.3.1.2.2. Resultado del Piso

Figura 5.11: Resultado del piso del proyecto 1-4030-002

 El diseño de carga de los taladros son los mismos utilizados en el proyecto anterior, es decir se genera 1 metro de cámara de aire desde el piso.

5.3.1.2.3. Levantamiento de piso

Para la verificación del piso se diseñó una malla en el piso final del proyecto 1-4030-002, se llamó a un topógrafo para que realizará el levantamiento del piso y así poder asegurarnos de cómo quedó nuestro piso en el proyecto donde se empleó Explodeck.

La realización de este levantamiento tuvo como objetivo dos puntos muy importantes; uno de los cuales fue verificar si la pala estaba llevando un buen piso durante el carguío; y el otro, que para cuestiones de este proyecto era de una gran importancia, verificar que con la utilización del explodeck, estaba quedando un buen piso en las cuales no se distinguía ningún lomo o anomalías.

Dichos resultados del levantamiento del piso se pueden verificar en el ANEXO O.

Figura 5.12: Levantamiento topográfico

5.3.1.2.4. Análisis de Costos Proyecto 1-4030-002

		SIN	CON
	PRECIO	EXPLODECK	EXPLODECK
TALADROS		242	242
MEZCLA HA37	31.7 \$/m	196.54 \$/tal	164.84 \$/tal
PROYECTO		\$ 47562.68	\$ 39891.28
EXPLODECK	5.95 \$/und	0	\$ 1439.9
TOTAL		\$ 47562.68	\$ 41331.18

(Ver ANEXOS I, J y K)

5.3.1.3. Tercer Proyecto 1-4030-003

Características del proyecto

Proyecto

: 1-4030-003

Zona

: Dafne

Taladros

: 99

Mezcla explosiva

: HA28

FC

: 0.226

Accesorio

: Explodeck

 \mathbf{S}

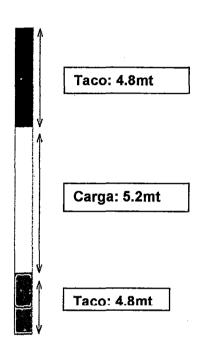
: 6.00

В

: 7.00

El esfuerzo compresivo fue analizado con la fórmula de Praillet:

1.- El esfuerzo compresivo es calculado mediante la siguiente fórmula:


Fórmula R	Praillet (1978)
Rc = 1	63.9xPulldownxRPM
1	$Vpx\phi^{0.9}$

RC mín	: 53 MPA
RC máx	: 157 MPA
RC prom	: 100 MPA

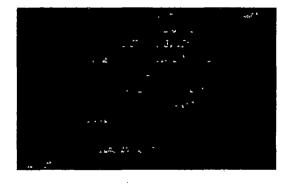

2.- Diseño del taladro:

Figura 5.13: Diseño del Taladro proyecto 1-4030-003

3.- Determinación del plano de dureza:

Figura 5.14: Plano de dureza del proyecto 1-4030-003

	· · · · · · · · · · · · · · · · · · ·
PR (m/hr)	Tipo de Roca
PR <= 15	Roca Muy Dura
15 < PR <=25	Roca Dura
25 < PR <=35	Roca Media
PR > 35	Roca Suave

4.- Este proyecto todavía no ha sido minado, pero los resultados del piso final serán los mismos que los proyectos anteriores.

5.3.1.3.1. Análisis De Costos Proyecto 1-4030-003

		SIN	CON
	Precio	EXPLODECK	EXPLODECK
TALADROS		99	99
MEZCLA HA37	31.7 \$/m	196.54 \$/tal	164.84 \$/tal
PROYECTO		\$ 19457.46	\$ 16319.16
EXPLODECK	5.95 \$/und	0	\$ 589.05
TOTAL		\$ 19457.46	\$ 16908.21

(Ver ANEXOS L, M y N)

5.4. Taponex Vs. Explodeck (Ver ANEXO E)

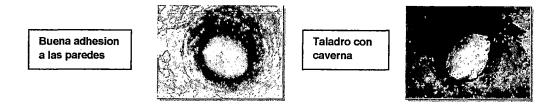
Característica principal - ambos son generadores de cámara de aire.

- TAPONEX

Cuando utilizamos taponex en los taladros, podemos ver que presenta muchas desventajas de adhesión a las paredes del taladro. Esto se debe a que un taladro es muy irregular y cuando se coloca el taponex este no queda bien adherido. Otra desventaja es cuando encontramos cavernas dentro de los taladros, el taponex tiende a quedar en el aire por lo que no se puede generar cámaras de aire.

Figura 5.15: Funcionamiento del taponex

Mala adhesion a las paredes


Taladro con caverna

EXPLODECK

A diferencia del Taponex, el Explodeck se adhiere bien a las paredes del taladro y puede soportar 800Kg de carga directa, la buena adhesión del Explodeck permite la generación de una resistencia de milésimas de segundo direccionando la energía hacia los costados. Disminuye las vibraciones, minimizamos el efecto de fly rock y lo más resaltante se adapta a la forma que presente el taladro.

Figura 5.16: Funcionamiento del explodeck (Ver ANEXO P)

En las fotografías se puede observar la gran ventaja del Explodeck respecto al Taponex.

5.4.1. Análisis Del Banco Superior Nivel 4040

Se realizó este análisis con la finalidad de determinar un esfuerzo compresivo promedio de banco superior, es decir saber qué relación tenía el nivel 4040 respecto al 4030.

En el cuadro tenemos un esfuerzo compresivo promedio de <u>103.5 MPA</u> en el banco 4040, y un esfuerzo compresivo promedio de <u>102.6 MPA</u> en el banco 4030.

Entonces podemos decir que el macizo rocoso guarda un relación en dicha zona (DAFNE), se puede predecir que el banco 4020 tendrá la misma geología y por ende una similitud en los esfuerzos compresivos.

Es importante resaltar que los proyectos analizados del nivel 4040 están exactamente en la parte superior de los proyectos en los que se aplicó cámaras de aire. No olvidemos que la roca es estocástica, en otras

palabras que el macizo rocoso es muy variable, podemos encontrar condiciones más favorables como desfavorables.

En el siguiente cuadro se muestra los esfuerzos compresivos de los proyectos superiores respecto a los implementados con explodeck (cámaras de aire).

Figura 5.17: Esfuerzo compresivo del Nivel 4040

	ESFUERZO COMPRESIVO (MPA)					
PROYECTO	MIN	MAX	PROM			
1-4040-001	16	181	104			
1-4040-002	57	170	111			
1-4040-003	55	161	100			
1-4040-004	24	160	104			
1-4040-005	24	162	100			
1-4040-006	62	153	102			
PRO	OMEDIO TOT	AL				

Figura 5.18: Nivel 4030 (Proyectos a Prueba).

	ESFUERZO COMPRESIVO (MPA)					
PROYECTO	MIN	MAX	PROM			
1-4030-001	54	183	103			
1-4030-002	55	151	105			
1-4030-003	52	157	100			
PRC	MEDIO TOT	AL	2.7			

- Análisis de los resultados obtenidos en los proyectos a prueba

En el siguiente resumen mostrado se puede observar que se realizó cuatro proyectos a prueba empleando cámaras de aire dentro de los taladros. Durante las pruebas, previo análisis se decidió utilizar Explodeck, los beneficios que nos ofrece este accesorio es muy resaltante. En un total de 652 taladros se obtuvo el siguiente ahorro:

TALADROS	ACCESORIO	AHORROS \$
72	Taponex	\$ 2408.40
239	Explodeck	\$ 7038.55
242	Explodeck	\$ 6231.50
99	Explodeck	\$ 2549.25
	72 239 242	72 Taponex 239 Explodeck 242 Explodeck

M1088C (CTCM) 5 388246C

5.4.2. Análisis Costo – Beneficio

En el análisis de costo beneficio se realizó una estadística de la cantidad de taladros perforados por mes, para de esta manera tener una visión de cuantos Explodeck se utilizaría. El siguiente cuadro nos muestra la cantidad de taladros reales vs budget:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	AVERAGE
REAL	2972	2417	2011	2537	3136	2781	3242	2447	2010	2328	2588
BUDGET	2942	2517	2638	2634	2577	2660	2683	2509	2667	2483	2631
BUDGET	2942	2517	2638	2634	25//	2660	2683	2509	2667	2483	4

Tenemos un promedio de 2588 taladros perforados por mes. En el siguiente análisis consideraremos la aplicación de explodeck para 1000 y 1500 taladros. Con respecto a la altura de cámaras de aire se evaluará para 1 metro y 0.50 metros.

1.- Para 1000 taladros:

Generando 1 metro de cámara de aire:

		Sin Explodeck			
		Mezcla 28 Mezcla 37			
\$ <i>I</i> mt.		28.5	31.7	39.4	
Altura carga	6.2	176,700.00	196,540.00	244,280.00	

		Con Explodeck			
		Mezcla28 Mezcla37 M			
\$ <i>I</i> mt.		28.5	31.7	39.4	
Altura carga	5.2	148,200.00	164,840.00	204,880.00	
Explodeck	5.95	5,950.00	5,950.00	5,950.00	
C osto tota	Costo total		170,790.00	210,830.00	

Ahorro mensual US\$	22,550.00	25,750.00	33,450.00
Ahorro anual US\$	270,600.00	309,000.00	401,400.00

Generando 0.50 cm de cámara de aire:

		Sin Explodeck		
		Mezcla28	M ezc la 37	Mezcla46
\$/m t.		28.5	31.7	39.4
Altura carga	6.2	176,700.00	196,540.00	244,280.00

			Con Explodeck		
		Mezcla28	M ezcla 37	Mezcla46	
\$/m t		28.5	31.7	39.4	
Altura carga	5.7	162,450.00	180,690.00	224,580.00	
Explodeck	5.95	5,950.00	5,950.00	5,950.00	
Costo total		168,400.00	186,640.00	230,530.00	

Ahorro mensual US\$	8,300.00	9,900.00	13,750.00
Ahorro anual US\$	99,600.00	118,800.00	165,000.00

2.- Para 1500 taladros:

Generando 1 metro de cámara de aire:

		Sin Explodeck			
		Mezcla28	Mezcla37	Mezcla46	
\$/mt.	_	28.5	31.7	39.4	
Altura carga	6.2	265,050.00	294,810.00	366,420.00	

		Con Explodeck		
		Mezcla28	Mezcla37	Mezcla46
\$/mt.		28.5	31.7	39.4
Altura carga	5.2	222,300.00	247,260.00	307,320.00
Explodeck	5.95	8,925.00	8,925.00	8,925.00
Costo t	otal	231,225.00	256,185.00	316,245.00
Costo t	otal	231,225.00	256,185.00	316,245.0
Ahorro men	sual US\$	33,825.00	38,625.00	50,175.00

405,900.00

463,500.00

602,100.00

Generando 0.50 cm de cámara de aire:

Ahorro anual US\$

		Sin Explodeck		
	Mezo		Mezcla37	Mezcia46
\$/mt.		28.5	31.7	39.4
Altura carga	6.2	265,050.00	294,810.00	366,420.00

			Con Explodeck		
		Mezcia28	Mezcla 37	Mezcia46	
\$/mt.		28.5	31.7	39.4	
Altura carga	5.7	243,675.00	271,035.00	336,870.00	
Explodeck	5.95	8,925.00	8,925.00	8,925.00	
Costo t	otal	252,600.00	279,960.00	345,795.00	

Ahorro mensual US\$	12,450.00	14,850.00	20,625.00
Ahorro anual US\$	149,400.00	178,200.00	247,500.00

En este análisis solo se proyecta de 1000 a 1500 taladros en donde se aplicaría cámaras de aire, aun sabiendo que tenemos un promedio de 2588 taladros por mes. No podemos generalizar un análisis ya que como sabemos la roca se dice que es estocástica, es decir es muy variable; tengamos en cuenta que podemos encontrar zonas en la que no se aplique cámaras de aire ya que los esfuerzos compresivos pueden ser muy altos y tengamos algunas variaciones en la fragmentación. Pero también se puede dar el caso que nos proyectemos a 2000 taladros los cuales nos significaría ahorros superiores a las expuestas líneas arriba. Pero según mi análisis el promedio estándar sería de 1000 a 1500 taladros. Realizando una extracción de los ahorros generados tenemos:

		AHORRO ANUAL		
CANTIDAD DE TAILADEROS	ALTURA DE CAMATRA DE AURIE(MIETROS)	MIEZCLA 23	MEZCLAS7	MEZZCLAMS
1000	1	\$270,600.00	\$309,000.00	\$401,400.00
1000	0.5	\$99,600.00	\$118,800.00	\$165,000.00
1500	1	\$405,900.00	\$463,500.00	\$602,100.00
1300	0.5	\$149,400.00	\$178,200.00	\$247,500.00

Los ahorros que obtenemos son muy importantes tanto para el área como para la empresa. Estos ahorros se incrementarían si lo aplicamos en más taladros, es importante mencionar que para el otro año la cantidad de taladros se incrementaría en un 10%, lo que quiere decir que estamos hablando de la aplicación de cámaras de aire en más taladros previa evaluación del comportamiento del macizo rocoso.

Entonces, con la aplicación de cámaras de aire en 1000 taladros es una buena línea base, ahora si nos enfocamos netamente a los beneficios que vamos a obtener en base a estos ahorros, tendría que ser algo en beneficio del área de perforación y voladura así como de la empresa.

5.4.3. Análisis Costo – Beneficio A Largo Plazo

RUBROS	0	2010	2011	2012	2013	2014	2015	2016	2017	2018
NGRESOS ,								10737		
Ahorro de HA (tn)		1,188	1,315	1,237	1,549	1,559	1,532	2,176	1,877	2,127
Precio de HA (US\$)		587	598.5	596.5	601.1	611.1	611.1	611.1	611.1	611.1
Total Ingresos	_	697,926	787,054	737,844	931,061	952,771	936,270	1,329,846	1,147,114	1,299,900
EGRESOS : #										
Costos de Inversión	13,000									
Pruebas Preliminares	8,000									
Gastos de Puesta en Marcha y otros	5,000									
Costos de Operación		819,949	803,283	769,224	807,789	807,106	806,631	889,686	861,700	881,060
Explodeck		117,047	101,159	68,893	105,680	105,028	104,575	183,801	157,105	175,572
Utilización de Botcat		5,902	5,123	3,331	5,109	5,078	5,056	8,886	7,595	8,488
Costo de voladura		697,000	697,000	697,000	697,000	697,000	697,000	697,000	697,000	697,000
Gasto Administrativos		1,180	1,014	500	766	762	758	1,333	1,139	1,273
Transporte/flete		1,180	1,014	500	766	762	758	1,333	1,139	1,273
Total Egresos	13,000	821,129	804,297	769,724	808,555	807,867	807,389	891,019	862,839	882,333
FLUJO DE CAJA ECONOMICO	-13,000	(123,203)	(17,243)	(31,879)	122,506	144,904	128,881	438,826	284,275	417,566
Amortización activos intangibles		-13,000								
FLUJO DE CAJA FINANCIERO	-13,000	-136,203	-17,243	-31,879	122,506	144,904	128,881	438,826	284,275	417,566

TIR: 45.10% VAN: 606,267 US\$ Tasa de descuento 10%

NOTAS

Pruebas preliminares, fue el valor de la orden de compra inicial para realizar las pruebas con Explodeck.

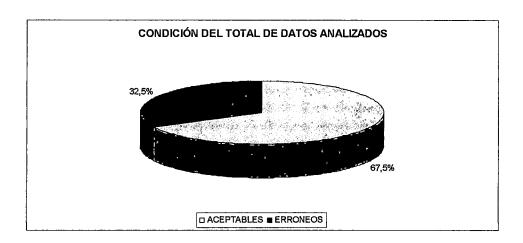
Gastos de puesta en marcha: capacitaciones y entrenamiento del personal de campo

Gastos administrativos: transporte y fletes de explodeck de Lima-Trujillo-Lagunas Amortización de activos intangibles: la inversión no fue ejecutada en activos fijos, fueron estudios, capacitaciones y prueba preliminares.

Periodo de recuperación 1 año.

CAPITULO VI

6.1. Análisis y Discusión de Datos


Durante el análisis de los proyectos ejecutados, se calculó la resistencia compresiva por cada taladro que conforma la malla, con este dato obtenido se realizó los cálculos para determinar las durezas y así poder elegir la mejor mezcla explosiva con su respectivo accesorio de voladura (explodeck). Se realizó un estudio para determinar la resistencia compresiva de un proyecto inferior con respecto a un proyecto a ser disparado.

Para este análisis se consideró los siguientes lineamientos:

- El taladro de perforación que se ejecuta en un nivel, con el taladro que se ejecuta en un nivel inferior tienen poca desviación, pudiéndose considerar similares, pero en qué porcentaje se aproximan, para estimar el porcentaje de aproximación, analicé 80 taladros, 34 del nivel 4130 y sus respectivos taladros del nivel inferior, y 6 del nivel 4040 con sus respectivos taladros del nivel inferior.
- La cantidad total de taladros con sus detalles se muestran en el ANEXO Q
- Del total de taladros mencionados en el párrafo anterior, el 67.5% presentan valores aceptables, mientras que el 32.5%, resultó en valores erróneos, como se muestra en el cuadro y la siguiente figura:

	CANTIDAD	PORCENTAJE
ACEPTABLES	27	67,5
ERRONEOS	13	32,5
TOTAL	40	100

Condición del total de taladros analizados

Condición del total de datos analizados.

La condición de valores erróneos se tomó para los casos en que los datos de origen no presentan buena relación o cuando el porcentaje de variación resulta demasiado excesivo.

De los taladros que se obtuvo valores aceptables, resulto que un 44.44% tienen valores positivos de desviación, mientras que el 55.56% dio resultados negativos, tal como se muestra en el cuadro siguiente:

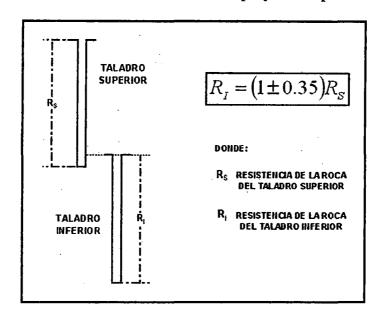
	CANTIDAD	PORCENTAJE
POSITIVOS	12	44,44
NEGATIVOS	15	55,56
TOTAL	27	100

Valores positivos y negativos.

Ya se ha determinado que la mayoría de taladros analizados tienen una variación aceptable, y que casi el 50% es positiva y el otro 50% es negativa, pero, ¿cuál es el porcentaje de variación, de la resistencia de una roca comparada con la de la roca de nivel superior?

	CANTIDAD	VARIACIÓN (%)
POSITIVOS	12	32,00
NEGATIVOS	15	36,00

Cuadro 18: Porcentaje de variación.


Como se observa en el cuadro 18, el porcentaje de variación de los datos positivos, es de 32%, mientras que la de los negativos es, 36%, promediando estos valores, resulta en 34%, redondeando este valor promedio, tenemos que:

"La resistencia de una roca es, + - 35% la resistencia de la roca del nivel superior"

Traduciendo esta frase a una fórmula y gráfica, se tiene:

Figura 6.1: Representación del cálculo de la resistencia de la roca.

Análisis de los resultados obtenidos en los proyectos a prueba

En el siguiente resumen mostrado se puede observar que se realizó cuatro proyectos a prueba empleando cámaras de aire dentro de los taladros. Durante las pruebas, previo análisis se decidió utilizar explodeck, los beneficios que nos ofrece este accesorio es muy resaltante. En un total de 652 taladros se obtuvo el siguiente ahorro:

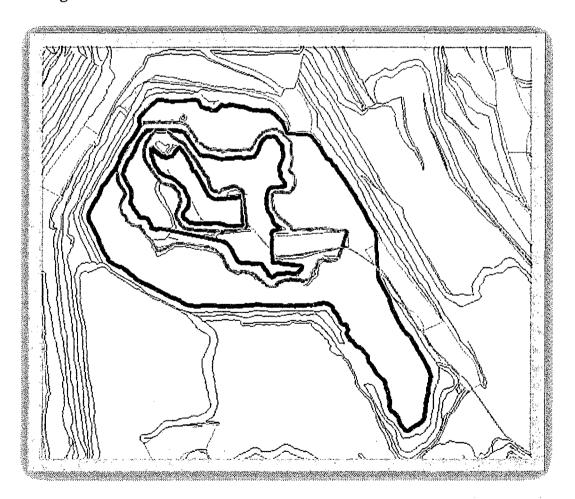
PROYECTOS	TALADROS	ACCESORIO	AHORROS \$
2-4140-034	72	Taponex	\$ 2408.40
1-4030-001	239	Explodeck	\$ 7038,55
1-4030-002	242	Explodeck	\$ 6231.50
1-4030-003	99	Explodeck	\$ 2549.25

 Otro de los resultados obtenidos es una excelente fragmentación por debajo del KPI que nos sugiere la empresa (P80<15.8cm);

PROYECTO	P80	KPI (P80<15.8cm)
1-4030-001	9.9	15.8
1-4030-002	7.52	15.8
1-4030-003	8.82	15.8

 Se obtuvieron buenos pisos finales, las cuales fueron levantados por el área de topografía, en dichos pisos no se llegaron a encontrar lomos, es decir donde exista uniformidades de nivel.

Figura 6.2: Piso Final del proyecto 1-4030-002



- Reduce los fly rock, brindando una mayor seguridad al personal; la interacción del Explodeck con el hombre no produce daños a la salud. El gas que contiene el aerosol no perjudica al hombre. Con respecto a la instalación del Explodeck, no existe ningún tipo de riesgo.
- Se redujo considerablemente el consumo de explosivos, por lo que la empresa pudo obtener un ahorro significativo. Cabe resaltar que este proyecto se realizó en la zona

de Dafne, se puede seguir realizando pruebas para que el Explodeck sea aplicado también en Alexa y Josefa.

- En el análisis que se realizó se proyectó a explotar la zona de Dafne a un nivel inferior, es decir al 4020, se solicitó la información al departamento de Ingeniería la cual nos brindó el siguiente gráfico y la cantidad de taladros a explotar en el siguiente banco.

Figura 6.3: Zona de Dafne

Son 2200 taladros a explotar, realizando un cálculo simple por cada taladro se ahorra un metro de mezcla explosiva:

	PRECIO	SIN EXPLODECK	CON EXPLODECK
TALADROS		2200	2200
MEZCLA HA37	35.4 \$/m	219.48 \$/tal	184.08 \$/tal
PROYECTO		\$ 482,856.00	\$404,976.00
EXPLODECK	5.95 \$/und	0	\$ 1422.05
TOTAL		\$ 482,856.00	\$406,398.05

CAPITULO VII

CONCLUSIONES

Este provecto tiene como objetivo principal minimizar costos en la voladura aplicando Explodeck (generador de cámaras de aire), un accesorio versátil que se ajusta a los taladros diseñados aquí en Lagunas Norte. Con este proyecto se demuestra que se obtiene un ahorro significativo en el consumo de mezcla explosiva (1 metro de mezcla explosiva por taladro), ya que como se pudo apreciar en los proyectos a prueba se consiguió obtener un ahorro muy significativo por proyecto lo cual hace que sigamos optimizando los costos. En el primer proyecto se ahorro pero a su vez obteniendo buenos resultados con lo que respecta a la fragmentación de rocas. Se llegó a conseguir un P80 por debajo se nuestro KPI que tenemos en la empresa (15.8"), con lo cual se logra una mayor eficiencia en la chancadora ya que no requiere de mucho esfuerzo para triturar la roca. El Explodeck fue implementado obteniendo resultados muy favorables, lo que nos permite saber que si se puede obtener resultados positivos en macizos rocosos medios a duros. Se dice que el Explodeck solo da resultado en rocas suaves, pero podemos desechar esa idea ya que se demostró que da resultados en rocas medias con un esfuerzo compresivo promedio de 105 MPA. A través de los análisis que realice puedo decir que puede dar resultados en rocas duras, pero en este caso sería interesante hacer una variación en el diseño de carga del taladro. Puedo tener la certeza que el macizo rocoso del banco 4020, tendrá las mismas condiciones que el macizo rocoso del banco 4030.

Es muy importante seguir realizando pruebas con el objetivo de que podamos zonificar la mina a través del esfuerzo compresivo y con las características geomecánicas. Uno de los indicativos de los buenos resultados fue la fragmentación obtenida, no existió fly rock y disminuyó las vibraciones permitiéndonos proteger la pared final y no causarles fracturas que puedan originar una inestabilidad.

A pesar de que la roca es muy aleatoria, podemos llegar a controlar las anomalías que presenta el macizo rocoso; siempre debemos recordar que las operaciones mineras unitarias de perforación y voladura tienen una influencia predominante en el ciclo de minado, porque de los resultados de éstas dependerá la producción y productividad y por ende los costos en US\$/TM .de las subsiguientes operaciones mineras unitarias que son: carguío, acarreo y chancado primario.

A mayor resultado que obtengamos con la aplicación de las cámaras de aire, podremos llegar a reemplazar por completo a los métodos convencionales que se basan en "prueba y errores". Toda prueba muy aparte de minimizar costos, debe evitar daños en la roca remanente y tratar de dejar después de la operación minera unitaria de voladura de rocas, una superficie rocosa competente, lisa y bien definida de tal manera de no producir agrietamientos excesivos de la roca, lo que conlleva a mejorar su estabilidad.

Toda implementación trae consigo un beneficio, y esto es lo que se logró con el uso de cámaras de aire en los taladros.

CAPITULO VIII

RECOMENDACIONES

- Seguir investigando el comportamiento del macizo rocoso por zonas para de esta manera tener un esfuerzo compresivo actual de la mina.
- Tener más información por parte del departamento de Geotecnia.
- Crear un departamento netamente que se dedique a la investigación.
- Proyectarnos a no solo exportar minerales, todo lo contrario debemos darle un valor agregado para poder ser más competitivos a nivel mundial.

CAPITULO IX

BIBLIOGRAFÍA

MELNIKOV, N. V. y MARCHENKO L. N. ed.

1971 "Effective methods of applications of explosion energy in mining and construction"

12th Symposium Dynamic Rock Mechanics

12th Symposium Dynamic Rock Mechanics. pp. 359-378.

KONYA, C. J. y ALBARRAN E.

1998 Diseño de Voladuras 1ra. Edición, pp30

CHIAPPETTA, R.F. y MEMMELE, M.E.

2004 "New Blasting Technique to Eliminate Subgrade Drilling, Improve Fragmentation, Reduce Explosive Consumption and Lower Ground Vibrations"

Proceedings of the 30th Annual Conference on Explosives and Blasting Technique

New Orleans, Louisiana

Dr. CAMERON MCKENZIE

Estado del arte de la tronadura.1994.

JUAN CARLOS ROJAS CUBA

Hipótesis de funcionamiento Asistente Gerencia Central FAMESA-Explosivos

BASE DE DATO DE PERFORACIÓN Y VOLADURA

Minera Barrick Misquichilca S.A. Área de Perforación y Voladura

CAPITULO X ANEXOS

ANEXO A:

Procedimiento de la utilización de Explodeck

1.- La bolsa o Airbag se engancha con una cuerda a la cinta de s

2.- Se acciona el disparador del mecanismo que activará el líquido aerosol para iniciar el proceso de inflado de la bolsa.

3.- La bolsa se lleva dentro del Hoyo o barreno a la profundidad deseada, al llegar se esperan 15 a 40 segundos para que termine el inflado.

4.- Luego se jala la cuerda dejando la bolsa posicionada a una distancia de 1 Mts del piso.

5.- Para terminar, el explosivo es vaciado sobre la bolsa Explodeck.

0.50cm a 1

ANEXO B:

"OZONE FRIENDLY CERTIFICATION"

CARBOTEC LABORATORIES (PTY) LTD.

(Reg No. 1969/002559/07)

Development and packaging of aerosol products.

Tel 392-2080 Fax 392-4530 P.O.Box 8353, Edengies 1613 20 Plane Rd Spartan Extension 1 Kempton Park

To Whom It May Concern:

We are members of the Aerosol Manufacturers Association in South Africa and are the packers of the aerosol inflator cans for Explodeck products manufactured by Riplog Pty Ltd.

We hereby warrant that all inflator cans, batch number 58016, marked at the base of cans contain no CFC's and are therefore completely ozone friendly.

P. www. Manen . Quality Assurance Director

ROHE Mann.
Mananging Director

CARBOTEC LABORATORIES (PTY) LTD.

27 de Septiembre de 2006

Scriures

IMNISTERIO DE LA PRODUCCION.

A traves del presente dejamos constancia que:

La carga despachada por RIPLOG (PTY) LTD en la Factura Nº 015 (liem # 1 consiste en 8640 Bolsas du Airo EOR 171/250 mm.

USO: para formar camatas de alte denivo de los boyes o barrenos y ast lograr el redireccionamiento de la energia para obtener mejor fracturación do la roca en la mina.

MODELO: EDR171/2300W

MARCA: EXPLODECK

La carga flegará al Cafao el 22 de Octubre del presente año, bajo conocimiento de embarcue Nº MS CULC234505, en la nave SAF ILLOVO V009, certificantes que nuestro producto EXPLODECK NO DARIA LA CAPA DE QXONO.

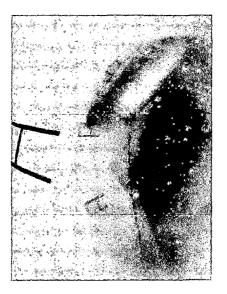
Esto lo informamos para los finas que estimen conveniente.

Cordal salura.

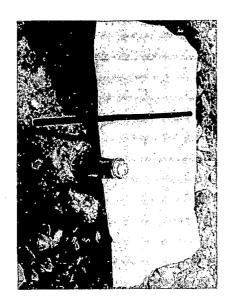
Quality Assuraínce Director

ANEXO C: DATOS PROYECTO 2-4140-034 CON TAPONEX

	AK51	AJ51	Al51	AH51	AG51	AF51	AE51	AD51	AC51	AB51	AA51	Z51	Y51.	X51	W51
Tiempo perforando	21.8	28.73	20.8	21.55	14.77	20.28	19,95	23.05	22.38	19,13	16.65	19	23.27	32.15	33.23
RPM	74.9	65,28	64.01	48.65	62.70	16.44	45.82	21.58	53.13	17.05	33.45	45.49	49.20	32.24	37.17
Presión de aire psi	59.54	52.40	59.54	52.40	51.89	52.40	52.40	53.42	52.91	52,91	52.40	52.40	.52.40	60.05	52.91
Presión rotacion psi	2,317.18	1,924.26	2,296.50	2,482.62	2,131.06	2,193.10	2,648.06	1,965.62	2,110.38	1,800.18	1,469,30	1,676.10	2,337.86	2,565.34	2,420.58
Pull Down psi	1,117.06	1,013.66	1,634.06	1,923.58	1,096.38	1,572.02	1,902.90	1,385.90	1,592.70	1,096.38	744.82	1,220,46	1,675.42	1,861.54	1,820.18
Velocidad penetracion mt/hr	48.06	33.26	42.50	44.93	56,15	44.98	40.04	42.64	40.00	38.47	54.32	44.14	32.34	25.66	23.13
Profundidad mts	11.15	11,39	11.15	11.15	11.15	11.15	10.91	11.15	10.91	10,91	11.15	11.15	11.15	11.15	11.15

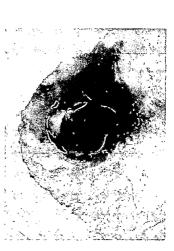

	AL52	AK52	AJ52	Al52	AH52	AG52	AF52	AE52	AD52	AC52	AB52	AA52	Z52	Y52	X52
Tiempo perforando	24.42	23.18	23.58	20,45	22.67	22.73	29.72	25.5	26.45	17.83	16.9	24.9	15.67	16.62	16.15
RPM	15.81	34.4	25.7	12.64	50.4	43.88	42.04	59.77	13.95	14.37	21.41	15.14	32.17	47.16	34.32
Presión de aire psi	55.97	78.41	52.91	64.64	52.40	51.89	52.40	52.40	52.91	52.40	61.07	50.87	51.89	53.42	61.07
Presión rotacion psi	1,882.90	1,241.82	2,482.62	1,986.30	1,903.58	1,800.18	2,358.54	1,717.46	2,255.14	2,420.58	2,296.50	2,441.26	2,565.34	1,862.22	2,854.86
Pull Down psi 1	1,323.86	744.82	1,716.78	1,509.98	1,179.10	1,261.82	1,737.46	1,055.02	1,137.74	1,902,90	1,737.46	1,737.46	1,799.50	1,241.14	1,675.42
Velocidad penetracion mt/hr	34.76	41.96	33.09	43.23	37.45	39.12	33.09	30.15	30.17	46.82	50.81	33.79	52,71	56.31	53.10
Profundidad mts	11.39	0.48	11.15	10.91	11.15	10.91	11.15	10.91	11.15	8,48	11.15	11.15	10.91	11.15	11.15

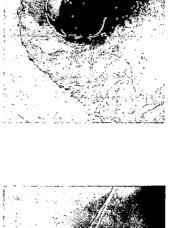
	AL53	AK53	AJ53	Ał53	AH53	AG53	AF53	AE53	AD53	AC53	AB53	AA53	Z53	Y53
Tiempo perforando	22.52	24.58	25.5	14.83	30.37	16,28	17.98	21.28	23.45	17,12	14.05	12.22	12.15	11.25
RPM	71.97	60.39	71.88	75.58	74.85	100	77.56	84.75	77.61	81.15	79.55	92.02	85.07	72.43
Presión de aire psi	76.33	53.42	55,46	75.82	55.46	77.36	77.36	77.36	54.44	62.09	53.93	54.44	54.95	59.03
Presión rotacion psi	2,152.04	3,144.38	2,089.70	2,462.24	2,399,90	3,103.32	2,441.56	3,144.68	2,317.18	3,392.54	2,978.94	2,958.26	2,523.98	1,614.06
Pull Down psi	1,365.52	1,985.62	1,509.98	993.28	1,427,26	1,841.16	2,130,68	2,047.96	1,964.94	2,233.78	1,985.62	2,213.10	1,985.62	910.26
Velocidad penetracion mt/hr	39.94	32.82	38.40	50.84	27.88	44.35	42.29	34.89	33.82	40.50	51.26	58.30	65.06	79.24
Profundidad mts	11.62	11.45	11.09	11.25	11.09	10.89	10,89	11.25	10.91	10.91	10.91	11.09	11.09	11.45


	AL54	AK54	AJ54	AI54	AH54	AG54	AF54	AE54	AD54	AC54	AB54	AA54	Z54
Tiempo perforando	15.82	18.37	7,57	10.6	17.03	26.15	31.23	30.45	31.37	21.1	29.22	25	13.87
RPM	106.51	96,26	116.73	99.89	83.81	60.39	67.24	68	66.09	64,29	68.26	65.47	12.17
Presión de aire psi	53.93	53.93	53,93	53.93	75.82	88.09	52.40	83.49	72.25	57.50	85.02	86.04	52.91
Presión rotacion psi	2,751.46	2,958.26	2,875.54	3,413.22	2,689.72	2,172.72	2,523.98	2,152.04	2,007.28	2,006.98	2,524.28	2,255.44	1,965.62
Pull Down psi	1,323.86	2,378.54	2,130,38	2,523.30	1,882.52	1,365.52	1,406.58	1,386.20	1,117.36	1,365.22	1,882.52	1,882.52	1,592.70
Velocidad penetracion mt/hr	49.30	39.20	93.47	76.79	48.53	29.34	23,92	24.96	24.37	38.58	26.67	34.33	62.26
Profundidad mts	11.27	10,91	10.73	10.91	10.89	10.53	10.91	10,71	10.71	10.91	10.71	11.43	11.15

	AJ50	AJ50	AH50	AG50	AF50	AE50	AD50	AC50	AB50	AA50	Z50	Y50	X50	W50	V50
Tiempo perforando	32.15	24	25.32	23.45	17.43	15.38	15.57	16,58	13.72	13.3	16.25	22.83	26,58	32.12	56.02
RPM .	72.04	75.04	66.86	74.62	86.43	82.79	96.34	94.24	86.27	107.14	107.14	70.89	70.89	64.67	62.41
Presión de aire psi	74,29	74.29	85.53	75.31	74.80	84.00	76.33	75.31	75.31	85.02	62.60	75.31	52.91	53.93	61.58
Presion rotacion psi	1,862.52	1,779.80	1,490.28	1,945.24	2,420.88	1,965.92	2,152.04	1,717.76	3,496.24	2,565.64	2,565.34	3,558,28	3,557.98	2,275.82	3,103.02
Pull Down psi	1,117.36	931.24	869.20	910.56	1,696.40	1,158.72	1,200.08	1,282.80	1,282,80	2,068.64	2,068,34	1,737.76	1,737.46	1,985.62	1,675.42
Velocidad penetracion mt/hr	48.21	49.96	54,33	54.92	61.45	63.58	62.66	68.71	85,57	69,73	69.73	47.73	47.73	24.64	13.94
Profundidad mts	11.43	11.07	11.25	11.07	11.07	10.89	10.89	11.25	11.25	11.07	11.09	11.21	11.82	11.09	10.91

ANEXO D: PRESENTACIÓN Y COMPONENTES DEL EXPLODECK





ANEXO E: TAPONEX VS EXPLODECK

TAPONEX:

EXPLODECK:

ANEXO F: DATOS PROPECTO 1-4030-001

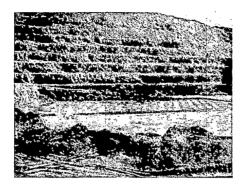
Maga-001 BF1 23.57 79.42 25.54 21640 77 1262.12 25.8 9.98 870.208 251 109 METERS 14090-001 BF1 17.35 79.42 25.54 21640 77 1262.13 25.8 9.98 870.208 251 109 METERS 14090-001 BF1 17.35 54.4 84.8 21.21 55.11 129.52 33.8 10.43 8835.59 251 104 SUJA 14090-001 BF1 17.35 54.4 84.8 22.21 15.51 1129.62 33.8 10.43 8835.59 251 104 SUJA 14090-001 BF1 17.35 34.8 84.22 2161.55 1129.62 33.5 11.07 7408.60 251 251 262 SUJA 14090-001 BF1 17.52 53.33 83.52 2158.81 1955.16 43.6 11 9412.51 251 120 METER 14090-001 BF1 15.23 95.33 83.52 2158.81 1955.16 43.6 11 9412.51 251 55 SUJA 14090-001 BF1 52.3 78.32 80.97 2194.32 1311.97 25.2 10.16 8045.77 251 112 DUJA 14090-001 BF1 52.3 78.52 80.97 2194.32 1311.97 25.2 10.16 8045.77 251 112 DUJA 14090-001 BF1 52.33 73.55 79.2 2292.32 1562.89 39.5 10.34 11611.26 251 102 SUJA 14090-001 BF1 23.03 63.19 78.42 2261.97 1684.06 27.3 10.34 11611.26 251 111 SUJA 14090-001 BF1 23.03 63.19 78.42 2261.97 1684.06 27.3 10.34 11611.26 251 111 SUJA 14090-001 BF2 21.63 78.25 81.53 2291.16 1532.46 27.8 9.98 10566.01 251 115 SUJA 14090-001 BF2 21.63 78.25 81.53 2291.16 1532.46 27.8 9.98 10566.01 251 115 SUJA 14090-001 BF2 23.78 71.98 23.91 27.18 2							PROYE	CTO 1-4030-0	01				
1409-001 BF10 18.87 91.94 83.81 2163.81 1295.99 33.8 10.43 8935.99 251 104 \$U4030-001 BF11 1713 95.44 84.22 2161.95 1129.92 33.5 11.07 7408.00 251 92 \$U4030-001 BF12 18.85 84.59 80.33 1943.02 1074.92 32.7 11.07 7408.00 251 92 \$U4030-001 BF13 21.3 91.38 84.56 2246.06 1493.99 28.3 11 10055.31 251 251 95 \$U4030-001 BF13 21.3 91.38 84.56 2246.06 1493.99 28.3 11 10055.31 251 251 95 \$U4030-001 BF14 15.23 85.33 83.52 2158.81 1365.16 43.6 11 9412.51 251 95 \$U4040-001 BF14 15.23 85.03 80.97 2194.92 1311.97 252.2 10.16 90.45.77 251 112 DU1 14030-001 BF16 9.5 82.61 77.92 2137.78 1108.8 30 10.53 7644.95 251 102 \$U4040-001 BF16 9.5 82.61 77.92 2137.78 1108.8 30 10.53 7644.95 251 102 \$U4040-001 BF17 15.93 73.55 79.2 229.32 1562.89 39.5 10.34 10775.81 251 94 \$U4040-001 BF18 22.03 86.19 78.42 2261.97 1684.06 27.3 10.34 11611.26 251 111 \$U4040-001 BF19 13.03 70.01 77.71 2383.51 1612.23 48.2 10.42 11116.00 251 35 \$U4040-001 BF2 21.63 78.25 61.53 2291.16 1532.46 27.8 9.98 10566.01 251 115 \$U4040-001 BF2 22.75 77.88 78.99 2312.77 14403.03 34.8 10.71 34.80 10.95 251 115 \$U4040-001 BF2 22.75 77.83 78.65 61.09 2369.72 1666.12 26.3 10.16 10823.04 251 117 MEI 4090-001 BF2 22.75 77.33 78.65 61.09 2369.72 1666.12 26.3 10.16 10823.04 251 125 MEI 4090-001 BF2 22.75 77.33 33.42 2233.26 1412.9 24.6 9.98 9741.66 251 117 MEI 4090-001 BF2 22.75 77.33 26.82 22.20.56 1433.2 20 9.98 9816.53 251 122 MEI 4090-001 BF2 23.55 63.64 62.2 27.75 26.22 24.64 59.59 9.98 9816.53 251 122 MEI 4090-001 BF2 43.2 77.52 62.25 250.56 1433.2 20 9.98 9816.53 251 122 MEI 4090-001 BF2 43.2 77.8 80.50 2		TALADRO		RPM					PROFUNDIDAD		DIAMETRO(mm)		DUREZA
14439-0071 BP11 17.13 55.44 84.22 2161.95 1129.92 38.5 11 7790.57 251 82 SUM-14439-0071 BP12 18.65 84.39 0.33 1945.02 1074.52 32.7 11.07 7409.60 251 92 SUM-14439-0071 BP13 21.3 91.38 84.56 2346.06 1458.39 28.3 11 1055.531 251 120 MET 14439-0071 BP14 15.23 95.33 83.52 2158.81 1395.16 43.6 11 9412.51 251 95.3 1251 120 MET 14439-0071 BP14 15.23 95.33 83.62 2158.81 1395.16 43.6 11 19412.51 251 95.3 1251 14.030.0071 BP15 24.3 78.32 80.97 2194.32 1311.97 25.2 10.16 9045.77 251 11.2 DUI 14.030.0071 BP16 24.3 78.32 80.97 2194.32 1311.97 25.2 10.16 9045.77 251 11.2 DUI 14.030.0071 BP16 95. 92.61 17.792 2137.78 1108.8 30 10.53 7644.95 251 10.2 SUM-14.030.0071 BP16 95. 92.61 77.92 2137.78 1108.8 30 10.53 7644.95 251 10.2 SUM-14.030.0071 BP17 15.93 78.55 78.2 2229.32 1592.89 39.5 10.34 10775.61 251 94 SUM-14.030.0071 BP18 22.03 66.19 78.42 2269.97 1884.06 27.3 10.34 1617.56 251 94 SUM-14.030.0071 BP18 20.30 66.19 78.42 2269.97 1884.06 27.3 10.34 1617.56 251 111 SUM-14.030.0071 BP19 13.03 70.01 77.71 2335.51 1612.23 48.2 10.42 11116.00 251 85 SUM-14.030.0071 BP19 13.03 70.01 77.71 2335.51 1612.23 48.2 10.42 11116.00 251 85 SUM-14.030.0071 BP2 21.03 78.25 81.53 2291.16 1532.46 27.8 9.96 10.566.07 251 85 SUM-14.030.0071 BP2 21.03 78.25 81.53 2291.16 1532.46 27.8 9.96 10.566.07 251 85 SUM-14.030.0071 BP2 22.23 78.25 81.53 2291.6 1532.45 77.01 28.4 10.13 12001.65 251 115 SUM-14.030.0071 BP2 22.23 78.55 81.53 2291.6 1532.45 77.0 251.0 10.10 187.7 188 78.99 238.72 1666.12 26.3 10.16 1147.56 251 115 SUM-14.030.0071 BP2 22.23 33 78.56 81.09 238.87 1444.03 34.8 10.71 9898.30 251 95 SUM-14.030.0071 BP2 22.33 37.56 81.09 238.87 1444.03 34.8 10.71 9898.30 251 95 SUM-14.030.0071 BP2 30.25 66.71 82.99 2185.8 1898.7 24.00 10.16 1147.56 251 119 SUM-14.030.0071 BP2 30.25 66.71 82.99 2185.8 1898.3 1412.9 24.6 9.98 974.16 5.251 119 SUM-14.030.0071 BP2 30.25 66.71 82.99 2185.8 1898.3 1412.9 24.6 9.98 974.16 5.251 10.0 SUM-14.030.0071 BP3 30.25 66.78 80.98 235 188.8 22.25 14.25 99.8 10.061.49 251 10.5 10.0 SUM-14.030.0071 BP3 30.25 66.78 80.95	1-4030-001	BF1	23.57	79.42	82.54	2164.07	1262.12	25.8	9.98	8702.06	251	109	MEDIA
14490-001 BF13	1-4030-001	BF10	18.87	91.94	83.81	2163.81	1295.99	33.8	10,43	8935.59	251	104	SUAVE
14493-001 BF13	1-4030-001	BF11	17.13	95.44	84.22	2181.95	1129.92	38.5	_ 11	7790.57			SUAVE
14090-001 BP14 15,23 86,33 83,52 2158,81 1365,16 43,6 11 9412,51 251 95 SUA 14030-001 BP16 243 78,32 80,97 2194,32 1311,97 252 10.16 8045,77 251 112 DU 14030-001 BP16 95 82,61 77,92 1213,78 1108,8 30 10,53 7644,95 251 102 SUA 14030-001 BP17 15,83 73,55 79.2 2223,2 1562,89 39.5 10,34 1077,851 251 94 SUA 14030-001 BP18 123,03 65,19 78,42 2261,97 1684,06 27,3 10,34 1077,851 251 94 SUA 14030-001 BP18 123,03 70,01 77,71 233,51 1012,23 42.2 10,42 11116,00 251 85 SUA 14030-001 BP19 130,3 70,01 77,71 233,51 1012,23 42.2 10,42 11116,00 251 85 SUA 14030-001 BP2 216,3 76,25 15,53 2291,16 1532,46 27,8 9,8 10566,01 251 111 SUA 14030-001 BP2 216,3 76,25 15,53 2291,16 1532,46 27,8 9,8 10566,01 251 115 SUA 14030-001 BP2 115,7 71,88 79,99 231,27 1444,03 34,8 10,71 9956,30 251 95 SUA 14030-001 BP2 12,23 76,85 10,96 239,87 166,12 253 10,14 10,17 1	1-4030-001	BF12	18.85	84.39	80.33	1943.02	1074.52	32.7	11.07	7408.60	251	92	SUAVE
1-409-001 BF16 9-5 92-61 77.92 2194.32 1311.97 25.2 10.16 9045.77 251 112 DUI 1-409-001 BF16 9-5 92-61 77.92 2197.78 108.8 30 10.53 764.95 251 102 SUI 1-409-001 BF17 15.33 73.55 79.2 2229.32 1562.89 9-5 10.34 1617.56 251 94 SUI 1-409-001 BF18 23.03 65.19 78.42 2226.197 184.06 27.3 10.34 1617.56 251 94 SUI 1-409-001 BF19 13.03 70.01 77.71 2385.51 1612.23 42.2 10.42 11116.00 251 85 SUI 1-409-001 BF2 13.03 70.01 77.71 2385.51 1612.23 42.2 10.42 11116.00 251 85 SUI 1-409-001 BF2 21.63 78.25 81.53 2291.16 1532.46 27.8 9.98 10568.01 251 115 SUI 1-409-001 BF2 22.75 71.88 78.99 2381.27 1444.03 34.8 10.71 9856.30 251 95 SUI 1-409-001 BF2 22.75 73.1 79.64 2273.54 7740.71 28.4 10.13 2001.65 251 117 MEI 1-409-001 BF2 23.33 73.65 81.09 2388.72 1666.12 26.3 10.16 11407.65 251 119 SUI 1-409-001 BF2 30.25 66.71 82.59 2185.28 1569.74 20.4 10.16 10823.04 251 125 MEI 1-409-001 BF2 30.52 68.75 68.32 2185.28 1569.74 20.4 10.16 10823.04 251 125 MEI 1-409-001 BF2 30.52 67.65 62.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 1-409-001 BF2 30.82 67.9 82.85 20.44.21 1397.65 15.7 10.2 9636.52 251 136 DUI 1-409-001 BF2 30.82 67.9 82.85 20.44.21 1397.65 15.7 10.2 9636.52 251 136 DUI 1-409-001 BF2 30.82 67.9 82.85 20.44.21 1397.65 15.7 10.2 9636.52 251 136 DUI 1-409-001 BF2 30.82 67.9 82.85 20.44.21 1397.65 15.7 10.2 9636.52 251 136 DUI 1-409-001 BF2 14.32 70.04 80.99 2460.02 1526.01 42.9 10.16 1733.8 251 142 DUI 1-409-001 BF2 14.32 70.04 80.99 2460.02 1526.01 42.9 10.16 173.35 251 136 DUI 1-409-001 BF2 14.32 70.04 80.99 2460.02 1526.01 42.9 10.16 1774.18 251 88 SUI 1-4	1-4030-001	BF13	21.3	91.36	84.56	2346.06	1458.39	28.3	. 11	10055.31	251	120	MEDIA
1-409-0-01 BF16	1-4030-001	BF14	15.23	95.33	83.52	2158.81	1365,16	43.6	11	9412.51	251	95	SUAVE
14030-001 BF18 23.03 65.19 78.42 2229.32 1562.89 39.5 10.34 10775.81 251 94 SUV-14030-001 BF18 23.03 65.19 78.42 2261.97 1584.06 27.3 10.34 11611.26 251 111 SIV-14030-001 BF19 13.03 70.01 77.71 2383.51 1512.23 48.2 10.42 11116.00 251 85 SIV-14030-001 BF2 21.83 78.25 51.53 2291.16 1532.46 27.8 9.8 10586.01 251 115 SIV-14030-001 BF2 21.83 78.25 51.53 2291.16 1532.46 27.8 9.8 10586.01 251 115 SIV-14030-001 BF2 21.25 77.88 78.99 2381.27 1444.03 34.8 10.71 9958.30 251 95 SIV-14030-001 BF2 21.25 77.13 78.84 2273.54 1740.71 25.4 10.13 12001.85 251 117 MBE 1-4030-001 BF2 21.25 77.13 178.84 2273.54 1740.71 25.4 10.13 12001.85 251 117 MBE 1-4030-001 BF2 21.25 77.13 178.84 2273.54 1740.71 25.4 10.13 12001.85 251 117 MBE 1-4030-001 BF2 21.25 77.13 25.9 1285.28 1593.74 20.4 10.16 10823.04 251 125 MBE 1-4030-001 BF2 21.25 77.13 25.3 42.23 28 1412.9 24.6 9.89 9741.65 251 112 SIV-14030-001 BF2 21.25 12.2 12.2 MBE 1-4030-001 BF2 21.2 12.2 12.2 MBE 1-4030-001 BF2 21.2 12.2 12.2 12.2 12.2 12.2 12.2 12	1-4030-001	BF15	24.3	78.32	80.97	2194.32	1311.97	25.2	10.16			112	DURA
14030-001 BF19 130.3	1-4030-001	BF16	9.5	92.61	77.92	2137.78	1108.8	30	10.53	7644.95		102	SUAVE
144030-001 BF19	1-4030-001	BF17	15.93	73.55	79.2	2229.32	1562.89	39.5	10.34	10775.81	251	94	SUAVE
14030-001 BF20	1-4030-001	BF18	23.03	65,19	78.42	2261.97	1684.06	27.3	10.34	11611.26	251	111	SUAVE
1-4030-001 BF20	1-4030-001	BF19	13.03	70.01	77.71	2383.51	1612.23	48.2	10.42	11116.00	251	85	SUAVE
1-4030-001 BF20	1-4030-001	BF2	21.63	78.25	81.53	2291.16	1532.46	27.8	9.98	10566.01	251	115	SUAVE
1-4030-001 BF22 23.33 73.65 B1.09 2398.72 1666.12 26.3 10.16 11487.56 251 119 SUP-14030-001 BF23 30.25 66.71 82.99 2185.28 1559.74 20.4 10.16 10623.04 251 125 MEI 14030-001 BF24 24.57 71.52 83.34 2233.26 1412.9 24.6 9.98 9741.66 251 112 SUP-14030-001 BF25 30.52 67.65 82.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 14030-001 BF26 30.25 67.65 82.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 14030-001 BF26 30.25 67.65 82.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 14030-001 BF26 30.25 67.9 82.85 2044.21 1397.65 15.7 10.2 9636.52 251 138 DU 144030-001 BF28 20.65 61.59 78.81 2160.31 1575.31 29.5 9.98 10861.45 251 100 SUP-14030-001 BF29 14.52 70.84 80.09 2400.2 1528.01 42.9 10.16 10535.32 251 88 SUP-14030-001 BF30 10.22 8471 80.98 2444.15 1562.35 30 10.2 10.16 10535.32 251 99 SUP-14030-001 BF30 10.22 8471 80.98 2444.15 1562.35 30 10.2 10.77.09 251 116 SUP-14030-001 BF30 10.22 8471 80.98 2444.15 1562.35 30 10.2 10.77.09 251 116 SUP-14030-001 BF3 16.4 87.66 81.72 2127.79 128.09 33.7 10.59 8522.59 251 99 SUP-14030-001 BF3 16.4 87.68 81.72 2127.79 118.84 35.7 10.16 7714.18 251 88 SUP-14030-001 BF6 15.52 81.95 80.35 1886.39 1010.58 30 9.8 6967.75 251 101 SUP-14030-001 BF6 15.52 81.95 82.12 1804.62 1004.65 37.6 9.98 7476.44 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.18 83.2 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.18 83.2 2034.73 1112.47 42.1 10.2 7670.26 251 85 SUP-14030-001 BF8 14.37 83.75 83.8 20.65 267.74 59.68 85.38 83.1 10.07 9903.48 251 135 DU 14030-001 H1 3 31.5 76.29 81.8 224.9 224.8 154.8 20.5 13.5 11.07 9001.23 251 134 MEI 14030-001 H1 3 48.	1-4030-001	BF20	18.57	71.88						9956.30		95	SUAVE
1-4030-001 BF22 23.33 73.65 B1.09 2398.72 1666.12 26.3 10.16 11487.56 251 119 SUP-14030-001 BF23 30.25 66.71 82.99 2185.28 1559.74 20.4 10.16 10623.04 251 125 MEI 14030-001 BF24 24.57 71.52 83.34 2233.26 1412.9 24.6 9.98 9741.66 251 112 SUP-14030-001 BF25 30.52 67.65 82.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 14030-001 BF26 30.25 67.65 82.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 14030-001 BF26 30.25 67.65 82.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 14030-001 BF26 30.25 67.9 82.85 2044.21 1397.65 15.7 10.2 9636.52 251 138 DU 144030-001 BF28 20.65 61.59 78.81 2160.31 1575.31 29.5 9.98 10861.45 251 100 SUP-14030-001 BF29 14.52 70.84 80.09 2400.2 1528.01 42.9 10.16 10535.32 251 88 SUP-14030-001 BF30 10.22 8471 80.98 2444.15 1562.35 30 10.2 10.16 10535.32 251 99 SUP-14030-001 BF30 10.22 8471 80.98 2444.15 1562.35 30 10.2 10.77.09 251 116 SUP-14030-001 BF30 10.22 8471 80.98 2444.15 1562.35 30 10.2 10.77.09 251 116 SUP-14030-001 BF3 16.4 87.66 81.72 2127.79 128.09 33.7 10.59 8522.59 251 99 SUP-14030-001 BF3 16.4 87.68 81.72 2127.79 118.84 35.7 10.16 7714.18 251 88 SUP-14030-001 BF6 15.52 81.95 80.35 1886.39 1010.58 30 9.8 6967.75 251 101 SUP-14030-001 BF6 15.52 81.95 82.12 1804.62 1004.65 37.6 9.98 7476.44 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.18 83.2 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP-14030-001 BF8 14.37 83.18 83.2 2034.73 1112.47 42.1 10.2 7670.26 251 85 SUP-14030-001 BF8 14.37 83.75 83.8 20.65 267.74 59.68 85.38 83.1 10.07 9903.48 251 135 DU 14030-001 H1 3 31.5 76.29 81.8 224.9 224.8 154.8 20.5 13.5 11.07 9001.23 251 134 MEI 14030-001 H1 3 48.	1-4030-001	BF21	22.75	73.1	79.64	2273.54	1740.71	28.4	10.13	12001.85	251	117	MEDIA
1-4030-001 BF28	1-4030-001	BF22	23.33	73.65	81.09	2398.72	1666.12	26.3	10.16	11487.56	251	119	SUAVE
1-4030-001 BF25 30.52 67.85 82.2 2300.56 1433.2 20 9.98 9881.63 251 122 MEI 1-4030-001 BF26 39.25 63.84 82.32 2177.52 1622.54 15.6 10.16 11187.09 251 142 DU 1-4030-001 BF27 33.92 67.9 82.85 2044.21 1397.65 15.7 10.2 9636.52 251 136 DU 1-4030-001 BF28 20.65 61.59 78.81 2160.31 1575.31 29.5 9.98 10861.45 251 100 SUP 1-4030-001 BF28 14.32 70.84 80.09 2460.02 1528.01 42.9 10.16 10535.32 251 88 SUP 1-4030-001 BF3 16.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SUP 1-4030-001 BF3 16.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SUP 1-4030-001 BF3 16.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 16 SUP 1-4030-001 BF3 16.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 100 SUP 1-4030-001 BF4 17.35 99.05 80.35 1896.36 1010.59 30 9.8 8687.75 251 101 SUP 1-4030-001 BF6 17.93 80.65 81.12 1866.52 1118.84 35.7 10.16 7714.18 251 88 SUP 1-4030-001 BF6 15.92 81.95 82.12 1804.62 1084.65 37.8 9.98 7478.44 251 88 SUP 1-4030-001 BF7 18.02 86.04 80.29 1755.36 935.38 33.4 9.98 6449.26 251 86 SUP 1-4030-001 BF9 19.37 84.12 18.02 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP 1-4030-001 BF9 19.37 84.12 18.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SUP 1-4030-001 BF9 13.37 84.12 18.22 12.34.76 1514.92 18.2 10.53 11133.38 251 134 MEI 1-4030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 1-4030-001 H11 34.88 69.23 82.5 2302.44 1482.15 30 9.98 10081.23 251 191 SUP 1-4030-001 H14 34.98 69.23 82.5 2302.44 1482.15 30 9.98 10081.23 251 191 SUP 1-4030-001 H14 34.98 69.23 82.5 2302.44 1482.15 30 9.98 10081.23 251 130 MEI 1-4030-001 H14 34.98 69.23 82.5 2302.44 1482.15 30 9.98 10081.23 251 137 MUY 1-4030-001 H14 34.98 69.23 82.5 2302.44 1482.15 30 9.98 10081.23 251 130 MEI 1-4030-001 H14 34.98 69.23 82.5 2302.44 1482.15 30 9.98 10081.23 251 130 MEI 1-4030-001 H14 34.98 69.23 82.5 2302.44 1482.15 30 9.98 10081.23 251 130 MEI 1-4030-001 H14 34.98 69.23 82.5 2302.44 1483.95 13.1 11.07 90.01.23 251 130 MEI 1-4030-001 H14 34.98 69.23 77.78 82.49 2264.84 1547.85 13.8 11.07 90.03.88 251 137 MUY 1-40	1-4030-001	BF23	30.25	66.71	82.99	2185,28	1569.74	20.4	10.16	10823.04	251	125	MEDIA
1-4030-001 BF26 39.25 63.84 62.32 2177.52 1622.54 15.6 10.16 11187.09 251 142 DU 14030-001 BF27 38.92 67.9 82.85 2044.21 1397.65 15.7 10.2 9636.52 251 136 DU 14030-001 BF28 20.65 61.59 78.81 2160.31 1575.31 29.5 9.88 10861.45 251 100 SU 14030-001 BF28 14.32 70.84 80.09 2460.02 1528.01 42.9 10.16 10535.32 251 88 SU 14030-001 BF3 18.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SU 14030-001 BF3 18.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SU 14030-001 BF3 18.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 116 SU 14030-001 BF3 17.33 99.05 80.35 1896.36 1010.58 30 9.8 6967.75 251 101 SU 14030-001 BF5 17.33 80.65 81.12 1866.52 1118.84 35.7 10.16 7714.18 251 88 SU 14030-001 BF6 15.52 81.95 81.95 82.12 1804.62 1084.65 37.8 9.88 7478.44 251 85 SU 14030-001 BF7 18.02 86.04 80.29 1755.36 935.38 33.4 9.98 6449.26 251 86 SU 14030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SU 14030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 134 MEI 14030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 14030-001 H12 35.05 72.12 81.98 2234.76 1514.92 10.91 11.33 11.33 251 134 MEI 14030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 135 DU 14030-001 H14 34.98 89.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 135 DU 14030-001 H14 34.98 89.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 135 DU 14030-001 H14 34.98 89.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 135 DU 14030-001 H14 34.98 89.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 134 MI 14030-001 H15 70.70 11 14.99.20 64.27 79.9 2178.82 1305.51 13.6 11.07 9001.39 251 149 DU 14030-001 H14 34.98 89.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 135 DU 14030-001 H14 34.98 89.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 135 DU 14030-001 H14 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 149 DU 14030-001 H14 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 149 DU 14030-001 H15 70.8 69.7 74.82 79.9 2178.82 1305.51 13.6 11.07 9003.48 251 149 DU 14030-001 H14 34.92 64.27 79.9 2178.	1-4030-001	BF24	24.57	71.32	83.34	2233,26	1412.9	24.6	9.98	9741.66	251	112	SUAVE
1-4030-001 BF28 39.25 63.84 62.32 2177.52 1622.54 15.6 10.16 11187.09 251 142 DU 14030-001 BF27 38.92 67.9 82.85 2044.21 1397.65 15.7 10.2 9636.52 251 136 DU 14030-001 BF28 20.65 61.59 78.81 2160.31 1575.31 29.5 9.88 10861.45 251 100 SUA 14030-001 BF28 14.32 70.84 80.09 2460.02 1528.01 42.9 10.16 10535.32 251 88 SUA 14.030-001 BF3 18.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SUA 14030-001 BF3 18.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SUA 14030-001 BF3 17.33 99.05 80.35 1896.36 1010.58 30 10.2 10772.09 251 116 SUA 14030-001 BF5 17.33 80.65 81.12 1866.52 1118.84 35.7 10.16 7714.18 251 88 SUA 14030-001 BF6 15.52 81.95 81.95 82.12 1804.62 1084.65 37.8 9.88 7478.44 251 88 SUA 14030-001 BF6 15.92 81.95 82.22 1755.36 935.38 33.4 9.88 6449.26 251 86 SUA 14030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 134 ME1 14030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 134 MEI 14030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 134 MEI 14030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 14030-001 H12 35.05 72.12 81.98 2234.76 1514.92 182 10.53 11133.38 251 134 MEI 14030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 135 DU 14030-001 H12 35.05 72.12 81.98 2234.76 1514.92 136.75 19.7 10.16 9147.68 251 135 DU 14030-001 H12 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 134 MI 14030-001 H14 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 135 DU 14030-001 H14 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 135 DU 14030-001 H14 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 149 DU 14030-001 H14 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 149 DU 14030-001 H14 34.98 69.23 62.5 2302.44 1462.15 30 9.98 10081.23 251 149 DU 14030-001 H15 91.77 74.82 79.9 2178.82 1305.51 13.6 11.07 9003.48 251 149 DU 14030-001 H15 91.77 74.82 30.79 3029.55 155.08 30 10.5 10899.86 251 149 DU 14030-001 H15 91.77 74.82 30.79 3029.55 155.08 30 10.5 10899.86 251 140 DU 14030-001 H16 33.75 77.23 81	1-4030-001	BF25	30.52	67.85	82.2	2300.56	1433.2	20	9,98	9881.63	251	122	MEDIA
1-4030-001 BF28	1-4030-001	BF26	39.25	63.84	82.32	2177.52	1622.54	15.6	10.16	11187.09		142	DURA
1-4030-001 BF28	1-4030-001	BF27	38.92	67.9	82.85	2044.21	1397.65	15.7	10.2	9636.52	251	136	DURA
1-4030-001 BF3 18.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SUA 1-4030-001 BF30 10.22 84.71 80.98 2444.15 1562.35 30 10.2 10772.09 251 116 SUA 1-4030-001 BF4 17.35 99.05 80.35 1896.36 1010.58 30 9.8 6967.75 251 101 SUA 1-4030-001 BF5 17.33 80.65 81.12 1866.52 1118.84 35.7 10.16 7714.18 251 88 SUA 1-4030-001 BF6 15.92 81.95 82.12 1804.62 1084.65 37.8 9.98 7478.44 251 85 SUA 1-4030-001 BF7 18.02 86.04 80.29 1755.36 935.38 33.4 9.98 6449.26 251 86 SUA 1-4030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 82 SUA 1-4030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SUA 1-4030-001 H12 35.05 72.12 81.98 2234.76 1514.92 18.2 10.53 1193.38 251 134 ME1 1-4030-001 H13 31.5 762.9 81.8 2234.76 1514.92 18.2 10.53 10445.07 251 135 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H1 49.28 64.27 79 2178.62 130.57 13.8 11.07 9901.23 251 149 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 91.97 74.82 30.79 2178.82 130.57 13.8 11.07 9901.38 251 149 DU 1-4030-001 H1 49.28 64.27 79 2178.82 130.57 13.8 11.07 9901.38 251 149 DU 1-4030-001 H1 4 45.82 64.82 79.9 2178.82 130.57 13.8 11.07 9903.48 251 146 MUY 1-4030-001 H1 4 45.82 64.82 79.9 2147.21 1479.95 14.55 10.89 10203.96 251 142 DU 1-4030-001 H16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 140 DU 1-4030-001 H16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 140 DU 1-4030-001 H16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 140 DU 1-4030-001 H16 34.18 72.91 79.86 2676.77 150.69 20.4 11.43 11.59 70.01.25 151 150 DU 1-4030-001 H18 38.72 77.88 5.99 2768.67 77.58 5.90 20.4 11.43 11759.70 251 151 DU 1-4030-001 H19 20.22 35.52 79.42 2573.78 1402.47 33.3 11.07 9905.75 251 104	1-4030-001	BF28	20.65	61,59	78,81	2160.31	1575.31		9.98	10861.45		100	SUAVE
1-4030-001 BF3 18.4 87.86 81.72 2127.79 1236.09 33.7 10.53 8522.59 251 99 SUA 1-4030-001 BF30 10.22 84.71 80.98 2444.15 1562.35 30 10.2 10772.09 251 116 SUA 1-4030-001 BF4 17.35 99.05 80.35 1896.36 1010.58 30 9.8 6967.75 251 101 SUA 1-4030-001 BF5 17.33 80.65 81.12 1866.52 1118.84 35.7 10.16 7714.18 251 88 SUA 1-4030-001 BF6 15.92 81.95 82.12 1804.62 1084.65 37.8 9.98 7478.44 251 85 SUA 1-4030-001 BF7 18.02 86.04 80.29 1755.36 935.38 33.4 9.98 6449.26 251 86 SUA 1-4030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 82 SUA 1-4030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SUA 1-4030-001 H12 35.05 72.12 81.98 2234.76 1514.92 18.2 10.53 1193.38 251 134 ME1 1-4030-001 H13 31.5 762.9 81.8 2234.76 1514.92 18.2 10.53 10445.07 251 135 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H1 49.28 64.27 79 2178.62 130.57 13.8 11.07 9901.23 251 149 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 91.97 74.82 30.79 2178.82 130.57 13.8 11.07 9901.38 251 149 DU 1-4030-001 H1 49.28 64.27 79 2178.82 130.57 13.8 11.07 9901.38 251 149 DU 1-4030-001 H1 4 45.82 64.82 79.9 2178.82 130.57 13.8 11.07 9903.48 251 146 MUY 1-4030-001 H1 4 45.82 64.82 79.9 2147.21 1479.95 14.55 10.89 10203.96 251 142 DU 1-4030-001 H16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 140 DU 1-4030-001 H16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 140 DU 1-4030-001 H16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 140 DU 1-4030-001 H16 34.18 72.91 79.86 2676.77 150.69 20.4 11.43 11.59 70.01.25 151 150 DU 1-4030-001 H18 38.72 77.88 5.99 2768.67 77.58 5.90 20.4 11.43 11759.70 251 151 DU 1-4030-001 H19 20.22 35.52 79.42 2573.78 1402.47 33.3 11.07 9905.75 251 104	1-4030-001	BF29	14.32	70.84	80.09	2460.02	1528.01	42.9	10.16	10535.32	251	88	SUAVE
1-4030-001 BF30	1-4030-001	BF3											SUAVE
1-4030-001 BF5 17.33 80.65 81.12 1866.52 1118.84 35.7 10.16 7714.18 251 88 SU/I 1-4030-001 BF6 15.92 81.95 62.12 1804.62 1084.65 37.8 9.98 7478.44 251 85 SU/I 1-4030-001 BF7 18.02 86.04 80.29 1755.36 935.38 33.4 9.98 6449.26 251 86 SU/I 1-4030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SU/I 1-4030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SU/I 1-4030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 1-4030-001 H13 31.5 76.29 81.8	1-4030-001	BF30	10.22	84.71		2444.15				10772.09			SUAVE
1-4030-001 BF5 17.33 80.65 81.12 1866.52 1118.84 35.7 10.16 7714.18 251 88 SU/I 1-4030-001 BF6 15.92 81.95 62.12 1804.62 1084.65 37.8 9.98 7478.44 251 85 SU/I 1-4030-001 BF7 18.02 86.04 80.29 1755.36 935.38 33.4 9.98 6449.26 251 86 SU/I 1-4030-001 BF8 14.37 83.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SU/I 1-4030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SU/I 1-4030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 1-4030-001 H13 31.5 76.29 81.8	1-4030-001	BF4	17.35	99.05	80.35	1896.36	1010.58	30	9.8	6967.75	251	101	SUAVE
14030-001 BF6 15.92 81.95 82.12 1804.62 1084.65 37.8 9.98 7478.44 251 85 SU/I 14030-001 BF7 18.02 86.04 80.29 1755.36 935.38 33.4 9.98 6449.26 251 86 SU/I 14030-001 BF8 14.37 33.13 83.22 2034.73 1112.47 42.1 10.2 7670.26 251 86 SU/I 14030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SU/I 14030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 14030-001 H12 35.05 77.212 81.98 2234.76 1514.92 18.2 10.53 1045.07 251 135 DU 14030-001 H13 34.98 69.23 82.5 <td< td=""><td>1-4030-001</td><td>BF5</td><td>17.33</td><td>80.65</td><td></td><td></td><td></td><td></td><td>10.16</td><td></td><td></td><td></td><td>SUAVE</td></td<>	1-4030-001	BF5	17.33	80.65					10.16				SUAVE
1-4030-001 BF8 14.37 83.13 63.22 2034.73 1112.47 42.1 10.2 7670.26 251 82 SU/F 1-4030-001 BF9 19.97 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SU/F 1-4030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 1-4030-001 H12 35.05 72.12 81.98 2234.76 1514.92 18.2 10.53 10445.07 251 135 DU 1-4030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 125 DU 1-4030-001 H14 34.98 89.23 82.5 2302.44 1462.15 30 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 86.48	1-4030-001	BF6	15.92		82.12	1804.62	1084.65	37.8	9.98	7478.44		85	SUAVE
1-4030-001 BF8 14.37 83.13 63.22 2034.73 1112.47 42.1 10.2 7670.26 251 82 SU/F 1-4030-001 BF9 19.97 84.12 79.77 2015.23 1067.65 33.1 10.53 7361.23 251 91 SU/F 1-4030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 1-4030-001 H12 35.05 72.12 81.98 2234.76 1514.92 18.2 10.53 10445.07 251 135 DU 1-4030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 125 DU 1-4030-001 H14 34.98 89.23 82.5 2302.44 1462.15 30 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 86.48													SUAVE
1-4030-001 BF9 19.37 84.12 79.77 2015.23 1067.65 33.1 10.53 7361,23 251 91 SUF 1-4030-001 H11 30 77.72 82.27 2399.84 1614.75 21.2 10.53 11133.38 251 134 MEI 1-4030-001 H12 35.05 72.12 81.98 2234.76 1514.92 18.2 10.53 10445.07 251 135 DU 1-4030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 125 DU 1-4030-001 H14 34.98 69.23 82.5 2302.44 1462.15 30 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10081.23 251 130 MEI 1-4030-001 H15 51.08 62.47 78.65		BF8	14.37	83.13					10.2	7670.26			SUAVE
1-4030-001 H12 35.05 72.12 81.98 2234.76 1514.92 18.2 10.53 10445.07 251 135 DU 1-4030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 125 DU 1-4030-001 H14 34.98 69.23 82.5 2302.44 1462.15 30 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 149 DU 1-4030-001 H12 49.28 64.27 79 2178.82 1305.51 13.6 11.07 9001.23 251 149 DU 1-4030-001 H13 48.25 67.21 80.65 <t< td=""><td>1-4030-001</td><td>BF9</td><td>19.37</td><td></td><td>79.77</td><td></td><td>1067.65</td><td>33.1</td><td>10.53</td><td>7361,23</td><td>251</td><td>91</td><td>SUAVE</td></t<>	1-4030-001	BF9	19.37		79.77		1067.65	33.1	10.53	7361,23	251	91	SUAVE
1-4030-001 H12 35.05 72.12 81.98 2234.76 1514.92 18.2 10.53 10445.07 251 135 DU 1-4030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 125 DU 1-4030-001 H14 34.98 69.23 82.5 2302.44 1462.15 30 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 149 DU 1-4030-001 H12 49.28 64.27 79 2178.82 1305.51 13.6 11.07 9001.23 251 149 DU 1-4030-001 H13 48.25 67.21 80.65 <t< td=""><td>1-4030-001</td><td>H11</td><td>30</td><td>77.72</td><td>82.27</td><td>2399.84</td><td>1614.75</td><td>21.2</td><td>10.53</td><td>11133.38</td><td>251</td><td>134</td><td>MEDIA</td></t<>	1-4030-001	H11	30	77.72	82.27	2399.84	1614.75	21.2	10.53	11133.38	251	134	MEDIA
1-4030-001 H13 31.5 76.29 81.8 2261.72 1326.75 19.7 10.16 9147.68 251 125 DU 1-4030-001 H14 34.98 69.23 82.5 2302.44 1462.15 30 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H15 51.08 62.47 78.65 2267.47 1519.68 13.1 11.07 10477.89 251 149 DU 1-4030-001 H12 49.28 64.27 79 2178.82 1305.51 13.6 11.07 9001.23 251 137 MUY! 1-4030-001 H3 49.25 67.21 80.65 2161.91 1436.37 13.8 11.07 9903.48 251 146 MUY! 1-4030-001 H4 45.82 64.82 79.9	1-4030-001	H12	35.05	72.12	81.98	2234.76	1514.92	18.2	10.53	10445.07	251	135	DURA
1-4030-001 H14 34.98 69.23 82.5 2302.44 1462.15 30 9.98 10081.23 251 101 DU 1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H1 51.08 62.47 78.65 2267.47 1519.68 13.1 11.07 10477.89 251 149 DU 1-4030-001 H12 49.28 64.27 79 2178.62 1305.51 13.6 11.07 9001.23 251 137 MUY 1-4030-001 H3 49.25 67.21 80.65 2161.19 1436.37 13.8 11.07 9903.48 251 146 MUY 1-4030-001 H4 45.82 64.82 79.9 2147.21 1479.95 14.5 10.89 10203.96 251 142 DU 1-4030-001 H5 91.97 74.82 30.79 <	1-4030-001	H13	31.5	76,29	81.8	2261.72	1326,75	19.7	10.16	9147.68		125	DURA
1-4030-001 H15 27.08 79.57 82.49 2264.84 1547.88 22.2 9.98 10672.32 251 130 MEI 1-4030-001 H1 51.08 62.47 78.65 2267.47 1519.68 13.1 11.07 10477.89 251 149 DU 1-4030-001 H12 49.28 64.27 79 2178.82 1305.51 13.6 11.07 9001.23 251 137 MUY 1-4030-001 H3 48.25 67.21 80.65 2161.19 1436.37 13.8 11.07 9003.48 251 146 MUY 1 1-4030-001 H4 45.82 64.82 79.9 2147.21 1479.95 14.5 10.89 10203.96 251 142 DU 1-4030-001 H5 91.97 74.82 30.79 3029.56 1575.08 30 10.5 10859.86 251 109 MUY 1-4030-001 H6 34.18 72.91	1-4030-001	H14	34.98			2302.44	1462.15		9.98	10081,23			DURA
1-4030-001 I11 51.08 62.47 78.65 2267.47 1519.68 13.1 11.07 10477.89 251 149 DU 1-4030-001 I12 49.28 64.27 79 2178.82 1305.51 13.6 11.07 9001.23 251 137 MUY! 1-4030-001 I13 48.25 67.21 80.65 2161.19 1436.37 13.8 11.07 9903.48 251 146 MUY! 1-4030-001 I14 45.82 64.82 79.9 2147.21 1479.95 14.5 10.89 10203.96 251 142 DU 1-4030-001 I15 91.97 74.82 30.79 3029.56 1575.08 30 10.5 10859.86 251 109 MUY! 1-4030-001 I16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 151 DU 1-4030-001 I17 33.75 77.23 81.43	1-4030-001	H15	27.08	79.57	82.49	2264.84	1547.88	22.2	9.98	10672.32	251	130	MEDIA
1-4030-001 I12 49.28 64.27 79 2178.82 1305.51 13.6 11.07 9001.23 251 137 MUY I 1-4030-001 I13 48.25 67.21 80.65 2161.19 1436.37 13.8 11.07 9903.48 251 146 MUY I 1-4030-001 I14 45.82 64.82 79.9 2147.21 1479.95 14.5 10.89 10203.96 251 142 DU 1-4030-001 I15 91.97 74.82 30.79 3029.56 1575.08 30 10.5 10859.86 251 109 MUY I 1-4030-001 I16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 151 DU 1-4030-001 I17 33.75 77.23 81.43 2545.62 1705.59 20.4 11.43 11759.70 251 140 DU 1-4030-001 I18 38.72 71.78 80.59	1-4030-001	111		62.47				13.1	11.07				DURA
1-4030-001 I13 48.25 67.21 80.65 2161.19 1436.37 13.8 11.07 9903.48 251 146 MUY I 1-4030-001 I14 45.82 64.82 79.9 2147.21 1479.95 14.5 10.89 10203.96 251 142 DU 1-4030-001 I15 91.97 74.82 30.79 3029.56 1575.08 30 10.5 10859.86 251 109 MUY I 1-4030-001 I16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 151 DU 1-4030-001 I17 33.75 77.23 81.43 2545.62 1705.59 20.4 11.43 11759.70 251 140 DU 1-4030-001 I18 33.72 71.78 80.59 2766.77 1820.81 17.5 11.25 12554.12 251 151 DU 1-4030-001 I19 20.22 83.52 79.42 2573.78 1402.47 33.3 11.07 9669.75 251 104 SU/		112											MUY DURA
1-4030-001 114 45.82 64.82 79.9 2147.21 1479.95 14.5 10.89 10203.96 251 142 DU 1-4030-001 115 91.97 74.82 30.79 3029.56 1575.08 30 10.5 10859.86 251 109 MUY 1 1-4030-001 116 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 151 DU 1-4030-001 117 33.75 77.23 81.43 2545.62 1705.59 20.4 11.43 11759.70 251 140 DU 1-4030-001 118 38.72 71.78 80.59 2766.77 1820.81 17.5 11.25 1254.12 251 151 DU 1-4030-001 119 20.22 83.52 79.42 2573.78 1402.47 33.3 11.07 9669.75 251 104 SU/													MUY DURA
1-4030-001 I15 91.97 74.82 30.79 3029.56 1575.08 30 10.5 10859.86 251 109 MUY I 1-4030-001 I16 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 151 DU 1-4030-001 I17 33.75 77.23 81.43 2545.62 1705.59 20.4 11.43 11759.70 251 140 DU 1-4030-001 I18 38.72 71.78 80.59 2766.77 1820.81 17.5 11.25 1254.12 251 151 DU 1-4030-001 I19 20.22 83.52 79.42 2573.78 1402.47 33.3 11.07 9669.75 251 104 SU/A													DURA
1-4030-001 If6 34.18 72.91 79.86 2677.45 1940 18.8 10.71 13375.91 251 151 DU 1-4030-001 I17 33.75 77.23 81.43 2545.62 1705.59 20.4 11.43 11759.70 251 140 DU 1-4030-001 I18 38.72 71.78 80.59 2766.77 1820.81 17.5 11.25 12554.12 251 151 DU 1-4030-001 I19 20.22 83.52 79.42 2573.78 1402.47 33.3 11.07 9669.75 251 104 SU/A													MUY DURA
1-4030-001 I17 33.75 77.23 81.43 2545.62 1705.59 20.4 11.43 11759.70 251 140 DU 1-4030-001 I18 38.72 71.78 80.59 2766.77 1820.81 17.5 11.25 12554.12 251 151 DU 1-4030-001 I19 20.22 83.52 79.42 2573.78 1402.47 33.3 11.07 9669.75 251 104 SU/													DURA
1-4030-001 118 38.72 71.78 80.59 2766.77 1820.81 17.5 11.25 12554.12 251 151 DU 1-4030-001 119 20.22 83.52 79.42 2573.78 1402.47 33.3 11.07 9669.75 251 104 SU/													DURA
1-4030-001 119 20.22 83.52 79.42 2573.78 1402.47 33.3 11.07 9669.75 251 104 SU/													DURA
													SUAVE
													SUAVE
1-4030-001 21 15.07 82.51 79.79 2444.95 1125.16 44.6 11.07 7757.75 251 80 SU/													SUAVE

1-4030-001 123 23,77 84,27 83,15 1977,98 1034,3 27,8 10,89 7191,29 251 98 1-4030-001 124 21,72 84,47 80,26 2128,85 1040,84 30,4 10,89 7176,38 251 94 5 1-4030-001 126 39,78 75,566 82,07 1954,39 993,62 16.8 11 6850,81 251 1477 1 1-4030-001 126 19,72 78,23 81,07 2209,88 1298,31 35,5 11,62 8951,59 251 93 14030-001 127 18,18 82,11 78,97 2441,88 1302,21 39.4 11,8 8978,48 251 91 \$ 1,4030-001 128 19,47 82,94 81,6 2365,08 1682,46 36,7 11,43 11669,17 251 110 \$ 1,4030-001 130 27,1 70,74 78,96 2351,17 1585,29 252 11,55 1091,440 2	SUAVE MEDIA SUAVE MEDIA SUAVE SUAVE SUAVE SUAVE SUAVE MEDIA SUAVE MEDIA SUAVE DURA
1-4930-001 124 21.72 84.47 80.26 2128.95 1040.84 30.4 10.89 7/76.38 251 94 5 14930-001 126 39.78 75.96 82.07 1954.39 893.62 16.8 11 8850.81 251 117 17 17 14930-001 126 19.72 78.23 81.07 2209.88 1288.31 35.5 11.62 8951.59 251 93 5 14930-001 127 18.18 82.11 78.97 2441.88 1302.21 39.4 11.8 8978.48 251 91 \$ 1.4930-001 128 19.47 82.94 81.8 2865.08 1692.46 36.7 11.43 11699.17 251 110 \$ 1.4930-001 129 19.77 78.77 80.27 2427.12 1707.89 35.2 11.43 11775.56 251 108 \$ 1.4930-001 130 27.1 70.74 78.96 2351.17 1582.99 25.2 11.55 1091.4.0 251 116 14030-001 131 28.63 80.4 81.89 2335.49 1684.38 23.9 11.25 11475.57 251 131 \$ 1.4930-001 131 28.63 80.4 81.89 2335.49 1684.38 23.9 11.25 11475.57 251 131 \$ 1.4930-001 131 28.63 80.4 81.89 2335.49 1684.38 23.9 11.25 11475.57 251 131 \$ 1.4930-001 131 28.63 80.4 81.89 2335.49 1684.38 23.9 11.25 11475.57 251 131 \$ 1.4930-001 131 28.63 80.4 81.89 2335.49 1684.38 23.9 11.25 11475.57 251 131 \$ 1.4930-001 131 28.63 80.4 81.89 2335.49 1684.38 23.9 11.25 11475.57 251 131 \$ 1.4930-001 131 39.23 65.54 80.69 2211.08 1529.29 17.2 11.66 10544.15 251 133 1.4930-001 134 41.78 67.54 81.16 2333.5 1689.06 16.2 11.25 10291.18 251 133 1.4930-001 134 39.23 65.54 80.69 2211.08 1529.29 17.2 11.65 10544.15 251 133 1.4930-001 134 34.15 67.81 82.06 2199.84 1573 19.7 11.07 10835.80 251 147 14930-001 136 29.12 71.67 82.14 2339.16 1678.05 30 11.25 11645.73 251 147 147 14930-001 136 29.12 71.67 82.14 2339.16 1678.05 30 11.25 11645.73 251 111 11 14930-001 138 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 12224.62 251 137 14930-001 138 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 10833.80 251 120 11.4930-001 138 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 12224.62 251 137 14930-001 132 22.18.38 83.8 78.85 2408.87 1402.54 33.4 11.25 11834.30 251 135 14930-001 132 22.18.38 83.8 78.85 2408.87 1402.54 33.4 11.25 11834.30 251 135 14930-001 132 22.28 80.88 78.85 2408.87 1402.54 33.4 11.25 11834.30 251 135 14930-001 132 22.28 80.88 83.8 78.85 2408.87 1402.54 33.4 11.25 11834.30 251 135 114930-001 132 22.28 80.88 83.8 78.85 2	SUAVE MEDIA SUAVE SUAVE SUAVE MEDIA SUAVE
1-4930-001 128 19.72 78.23 81.07 1954.39 993.62 16.8 11 8850.81 251 1177 1 1-4930-001 128 19.72 78.23 81.07 2209.88 1298.31 35.5 11.62 8951.59 251 93 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	MEDIA SUAVE SUAVE SUAVE MEDIA SUAVE
1-4030-001 126 19.72 78.23 81.07 2209.88 1298.31 35.5 11.62 8951.59 251 93 5 1-4030-001 127 18.18 62.11 78.97 2441.88 1302.21 39.4 11.8 8978.48 251 91 3 1-4030-001 128 19.47 78.77 80.27 2427.12 1707.89 35.2 11.43 11776.56 251 108 5 1-4030-001 130 27.1 70.74 78.96 2351.17 1582.99 25.2 11.55 10914.40 251 116 1 14930-001 31 28.63 80.4 31.89 2335.49 1664.38 23.9 11.25 11475.57 251 131 5 14030-001 111 48.3 66.05 81.68 2685.58 1225.59 30 11.1 8450.20 251 131 5 14030-001 112 41.28 80.83 81.15 2232.43 1492.6 16.5	SUAVE SUAVE SUAVE SUAVE MEDIA SUAVE
1-4930-001 127 18.18 52.11 73.97 2441.88 1302.21 39.4 11.8 8978.48 251 91 14930-001 128 19.47 52.94 81.6 2365.08 1692.48 35.7 11.43 11669.17 251 110 52 120	SUAVE SUAVE SUAVE MEDIA SUAVE
1-4030-001 128 19.47 82.94 81.6 2365.08 1692.48 35.7 11.43 11689.17 251 110 5 1-4030-001 129 19.77 78.77 80.27 2427.12 1707.88 35.2 11.43 11775.56 251 108 5 1-4030-001 30 27.1 70.74 78.96 2351.17 1582.99 25.2 11.55 10914.40 251 116 1 1-4030-001 31 28.63 80.4 81.89 2335.49 1664.33 23.9 11.25 11475.57 251 131 5 1-4030-001 31 28.63 80.4 81.89 2335.49 1664.33 23.9 11.25 11475.57 251 131 5 1-4030-001 31 41.28 63.83 81.15 2232.43 1492.6 16.5 11.25 10291.18 251 133 1-4030-001 31 39.23 65.54 80.69 2211.08 1529.29 17.2 11.65 10544.15 251 133 1-4030-001 31 39.23 65.54 80.69 2211.08 1529.29 17.2 11.65 10544.15 251 133 1-4030-001 31 41.78 67.54 81.16 2353.5 1689.06 16.2 11.25 11645.73 251 147 1-4030-001 316 29.12 71.87 82.14 2339.16 1678.05 30 11.25 11645.73 251 147 1-4030-001 316 29.12 71.87 82.14 2339.16 1678.05 30 11.25 1588.82 251 111 11.4030-001 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 1834.30 251 120 1-4030-001 319 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 1834.30 251 135 1-4030-001 32 20.28 80.38 78.85 2408.87 1402.54 33.4 11.07 10833.80 251 135 1-4030-001 32 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 87.62 251 101 14030-001 32 22.85 83.88 78.87 2218.09 1669.24 21.5 12.16 11509.08 251 135 14030-001 32 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 14030-001 32 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 87.62 251 101 14030-001 32 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 87.65 551 101 14030-001 32 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 87.65 551 101 14030-001 32 22.87 80.66 80.83 22.87 1350.87	SUAVE SUAVE MEDIA SUAVE
1-4030-001 128 19.77 78.77 80.27 2427.12 1707.89 35.2 11.43 11776.56 251 108 51.4030-001 30 27.1 70.74 78.96 2351.17 1582.99 25.2 11.55 10914.40 251 116 11.4030-001 31 28.63 80.4 81.89 2335.49 1664.33 23.9 11.25 11475.57 251 131 55 1.4030-001 31 28.63 80.4 81.89 2335.49 1664.33 23.9 11.25 11475.57 251 131 55 1.4030-001 31 48.3 66.05 81.68 2685.58 1225.59 30 11.1 8450.20 251 91 1.4030-001 31 39.23 65.54 80.69 2211.03 1492.6 16.5 11.25 10291.18 251 133 1.4030-001 31 39.23 65.54 80.69 2211.03 1529.29 37.2 11.65 10544.15 251 133 1.4030-001 31 39.23 65.54 80.69 2211.03 1529.29 37.2 11.65 10544.15 251 133 1.4030-001 31 39.23 65.54 80.69 2211.03 1529.29 37.2 31.25 31.45 31.35 31.4030-001 31 39.23 65.54 80.69 2211.03 32.93	SUAVE MEDIA SUAVE
1-4030-001 130	MEDIA SUAVE
1-4030-001 131 28.63 80.4 81.89 2335.49 1664.38 23.9 11.25 11476.57 251 131 5	UAVE
1-4030-001 J11	
1-4030-001 J12 41.28 63.83 61.15 2232.43 1492.6 16.5 11.25 10291.18 251 133 1-4030-001 J13 39.23 65.54 80.69 2211.08 1529.29 17.2 11.65 10544.15 251 133 1-4030-001 J14 41.78 67.54 81.16 2353.5 1689.06 16.2 11.25 11.657.3 251 147 1-4030-001 J15 34.15 67.81 82.06 2199.84 1573 19.7 11.07 10845.52 251 129 1-4030-001 J16 29.12 71.87 82.14 2339.16 1678.05 30 11.25 11569.82 251 111 11 1-14030-001 J17 28.78 70.52 79.93 2426.64 1571.3 23.4 11.07 10833.80 251 120 1-4030-001 J18 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 10833.80 251 120 1-4030-001 J19 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 11834.30 251 135 1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 132 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 12 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 11 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 134 120 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 134 120 1-4030-001 J26 20.52 77.83 79.16 162 237.06 1406.55 33.4 11.43 9697.88 251 134 1-4030-001 J26 20.52 77.83 79.16 162 237.06 1406.55 33.4 11.43 9697.88 251 100 1-4030-001 J26 20.52 77.83 79.16 129.70 1406.43 126.55 33.4 11.43 9697.88 251 100 1-4030-001 J27 21.8 80.78 80.27 1974.97 1276.56 30 11.62 8387.94 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 100 1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 7185.69 251 100 1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 7185.69 251 100 1-4030-001 J31 24.4 71.68 81.31 2291.38 1680.98 27.	DURA
1-4030-001 J13 39.23 65.54 80.69 2211.08 1529.29 17.2 11.65 10544.15 251 133 1-4030-001 J14 41.78 67.54 81.16 2353.5 1689.06 16.2 11.25 11645.73 251 147 1-4030-001 J15 34.15 67.81 82.06 2199.84 1573 19.7 11.07 10845.52 251 129 1 1-4030-001 J16 22.12 71.87 82.14 2339.16 1678.05 30 11.25 11569.82 251 111 1 1-4030-001 J17 28.78 70.52 79.93 2426.64 1571.3 23.4 11.07 10833.80 251 120 1-4030-001 J18 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 12224.62 251 137 1-4030-001 J19 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 11834.30 251 1355 1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 135 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 1-4030-001 J22 1.53 83.18 78.47 2100.17 1271.27 31.5 110.7 8765.15 251 101 1-4030-001 J22 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 134 120 1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 1.07 9590.32 251 134 120 1-4030-001 J26 32.6 80.54 83.39 2253.73 1505.87 20.6 11 1.07 9590.32 251 134 1-4030-001 J26 32.6 80.54 83.99 2253.73 1505.87 20.6 11 1.07 9590.32 251 100 1-4030-001 J26 32.6 80.54 83.99 2253.73 1505.87 20.6 11 1.07 8765.15 251 100 1-4030-001 J26 32.6 80.54 83.99 2253.73 1505.87 30.4 11.43 9697.88 251 100 1-4030-001 J27 21.8 80.78 80.27 1974.97 1216.56 30 11.62 8387.94 251 100 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 1400-01 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 1400-01 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 14000-01 J29 22.87 76.37 80.78 1804.32 1042.99 30 11.43 7185.69 251 90 14000-01 J29 22.87 76.37 80.78 1804.32 1042.99 30 11.43 7185.69 251 90 14000-01 J29 22.87 76.37 80.78 1804.32 1042.99 30 11.43 7185.69 251 90 15 14000-01 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 116 14000-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 116 14000-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 116 14	
1-4030-001 J14 41.78 67.54 81.16 2353.5 1689.06 16.2 11.25 11645.73 251 147 1-4030-001 J15 34.15 67.81 82.06 2199.84 1573 19.7 11.07 10845.52 251 129 1 1-4030-001 J16 29.12 71.87 82.14 2339.16 1678.05 30 11.25 11569.82 251 111 1-4030-001 J17 26.78 70.52 79.93 2426.64 1571.3 23.4 11.07 10833.80 251 120 1 1-4030-001 J18 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 12224.62 251 137 1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 137 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25	DURA
1-4030-001 J16 34.15 67.81 82.06 2199.84 1573 19.7 11.07 10845.52 251 129 1 1-4030-001 J16 29.12 71.87 82.14 2339.16 1678.05 30 11.25 11569.82 251 111 1 1-4030-001 J17 28.78 70.52 79.93 2426.64 1571.3 23.4 11.07 10833.80 251 120 1 1-4030-001 J18 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 12224.62 251 337 1 1-4030-001 J19 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 11834.30 251 135 1 1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 132 1 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 1 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 15 1 1-4030-001 J23 29.03 80.32 83.28 2026.58 1335.19 22.8 10.89 9205.87 251 119 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1330.95 24.1 11.07 9590.32 251 119 1 1-4030-001 J26 32.6 80.54 83.39 2253.73 1505.87 20.6 11 11.07 9590.32 251 100 1 1-4030-001 J26 20.52 77.83 79.16 2237.08 1406.55 33.4 11.43 9697.88 251 100 1 1-4030-001 J27 21.8 80.78 80.27 1974.97 1216.56 30 11.62 8387.94 251 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 140 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 1400 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 100 1	DURA
1-4030-001 J16 29.12 71.87 82.14 2339.16 1678.05 30 11.25 11569.82 251 1111 1 14030-001 J17 28.78 70.52 79.93 2426.64 1571.3 23.4 11.07 10833.80 251 120 1 14030-001 J18 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 10833.80 251 137 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DURA
1-4030-001 J17 28.78 70.52 79.93 2426.64 1571.3 23.4 11.07 10833.80 251 120 1 1-4030-001 J18 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 12224.62 251 137 1 1-4030-001 J19 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 1834.30 251 135 1 1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 135 1 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 1 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 110.7 8765.15 251 101 1 1-4030-001 J22 21.53 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 120 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1 1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 10382.67 251 134 1 1-4030-001 J26 20.52 77.83 79.16 2237.06 1505.87 20.6 11 10382.67 251 100 1 1-4030-001 J26 32.6 80.54 80.27 1974.97 1216.56 30 11.62 8387.94 251 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 1400 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 1400 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 14000-01 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 7185.69 251 90 51 14000-01 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.07 11658.97 251 1102 11.07 11658.97 251 1100 11.09 11.0900-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 100 120 11.0900-001 J31 24.4 71.68 81.31 2291.38 1690.98 27.6 11.07 11658.97 251 1100 1	ΛΕD∤Α
1-4030-001 J18 32.47 71.03 81.47 2301.55 1773.02 20.6 11.07 12224.62 251 137 1-4030-001 J19 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 11834.30 251 135 1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 135 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 1 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 1 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 5 1-4030-001 J24 27.8 80.66 80.83 2146.62 1380.95 24.1<	MEDIA
1-4030-001 J19 31.75 74.26 81.13 2241.43 1716.41 21.4 11.25 11834.30 251 135 1 1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 132 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 1 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 1 1-4030-001 J23 29.03 80.32 83.28 2026.58 1335.19 22.8 10.89 9205.87 251 120 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1-4030-001 J26 20.52 77.83 79.16 2237.06 1406.55	MEDIA
1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 132 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 1 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 5 1-4030-001 J23 29.03 80.32 83.28 2026.58 1335.19 22.8 10.89 9205.87 251 120 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 10382.67 251 134 1-4030-001 J26 20.52 77.83 79.16 2237.06 1468.55 33.4	VEDIA
1-4030-001 J20 34 73.84 78.22 2218.09 1669.24 21.5 12.16 11509.08 251 132 1-4030-001 J21 20.28 80.38 78.85 2408.87 1402.54 33.4 11.25 9670.23 251 101 1 1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 5 1-4030-001 J23 29.03 80.32 83.28 2026.58 1335.19 22.8 10.89 9205.87 251 120 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 10382.67 251 134 1-4030-001 J26 20.52 77.83 79.16 2237.06 1408.55 33.4	MEDIA
1-4030-001 J22 21.53 83.18 78.47 2100.17 1271.27 31.5 11.07 8765.15 251 101 \$ 1-4030-001 J23 29.03 80.32 83.28 2026.58 1335.19 22.8 10.89 9205.87 251 120 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 10382.67 251 134 1-4030-001 J26 20.52 77.83 79.16 2237.06 1405.55 33.4 11.43 9697.88 251 100 1403.00 1403.00 11.62 8387.94 251 100 1403.00 1403.00 11.62 8387.94 251 100 1403.00 14.00 11.07 8739.43 251 87 5 14.00 14.00 11.07 8739.43<	DURA
1-4030-001 J23 29.03 80.32 83.28 2026.58 1335.19 22.8 10.89 9205.87 251 120 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 10382.67 251 134 1-4030-001 J26 20.52 77.83 79.16 2237.06 1406.55 33.4 11.43 9697.88 251 100 1 1-4030-001 J27 21.8 80.78 80.27 1974.97 1216.56 30 11.62 8387.94 251 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 5 1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19	MEDIA
1-4030-001 J23 29.03 80.32 83.28 2026.58 1335.19 22.8 10.89 9205.87 251 120 1 1-4030-001 J24 27.8 80.66 80.83 2146.62 1390.95 24.1 11.07 9590.32 251 119 1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 10382.67 251 134 1-4030-001 J26 20.52 77.83 79.16 2237.06 1406.55 33.4 11.43 9697.88 251 100 14030-001	UAVE
1-4030-001 J25 32.6 80.54 83.39 2253.73 1505.87 20.6 11 10382.67 251 134 1-4030-001 J26 20.52 77.83 79.16 2237.06 1406.55 33.4 11.43 9697.88 251 100 1 14030-001 J27 21.8 80.78 80.27 1974.97 1216.56 30 11.62 8387.94 251 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 3 1-4030-001 J29 32.87 76.37 80.78 1944.32 1042.19 30 11.43 7185.69 251 90 5 1-4030-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 5 1-4030-001 J31 24.4 71.68 81.31 2291.38 1690.98 27.6 11.07	MEDIA
1-4030-001 J26 20.52 77.83 79.16 2237.06 1406.55 33.4 11.43 9697.88 251 100 1 1-4030-001 J27 21.8 80.78 80.27 1974.97 1216.56 30 11.62 8387.94 251 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 5 1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 9697.88 251 100 1 1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 9697.88 251 100 1 1-4030-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 5 1-4030-001 J31 24.4 71.68 81.31 2291.38	DURA
1-4030-001 J27 21,8 80.78 60.27 1974.97 1216.56 30 11.62 8387.94 251 100 1 1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 \$ 1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 7185.69 251 90 \$ 1-4030-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 \$ 1-4030-001 J31 24.4 71.68 81.31 2291.38 1690.98 27.6 11.07 11658.97 251 116 1	VIEDIA
1-4030-001 J28 16.38 79.29 79.01 1936.43 1267.54 40.8 11.07 8739.43 251 87 1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 7185.69 251 90 8 1-4030-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 1-4030-001 J31 24.4 71.68 81.31 2291.38 1690.98 27.6 11.07 11658.97 251 116	VIEDIA
1-4030-001 J29 22.87 76.37 80.78 1804.32 1042.19 30 11.43 7185.69 251 90 5 1-4030-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 5 1-4030-001 J31 24.4 71.68 81.31 2291.38 1690.98 27.6 11.07 11658.97 251 116	VEDIA
1-4030-001 J30 19.07 81.33 77.87 2296.8 1489.6 35.2 11.23 10270.49 251 102 5 1-4030-001 J31 24.4 71.68 81.31 2291.38 1690.98 27.6 11.07 11658.97 251 116	SUAVE
1-4930-001 J31 24.4 71.68 81.31 2291.38 1690.98 27.6 11.07 11658.97 251 116	SUAVE
	SUAVE
1-4030-001 32 35.6 66.32 81.3 1796.75 1266.75 18.9 11 8733.99 251 116	MEDIA
	SUAVE
1-4030-001 K11 39.48 79.84 59.56 2667.66 1541.66 16.6 10.89 10629.44 251 150	DURA
1-4030-001 K12 32.32 81.23 59.02 2602.86 1465.12 30 10.89 10101.71 251 110	MEDIA
1-4030-001 K13 40.82 82.31 59.4 2572.53 1536.82 16 10.89 10596.07 251 155	DURA _
	MEDIA
	MEDIA
	MEDIA
	DURA
	MEDIA
	MEDIA
	DURA
	DURA
1-4030-001 K22 37.57 66.88 81.47 2049.67 1498.22 17.5 10.89 10329.93 251 132	DURA
	MEDIA
	MEDIA
	MEDIA
	SUAVE
	SUAVE
1-4030-001 K28 17 83.9 79.49 2027.28 1326.19 39.7 11.1 9143.81 251 92	SUAVE

1-4030-001	K29	16,12	80.39	82.26	2022.29	1289,14	42.1	11.25	8888.36	251	87	SUAVE
1-4030-001	K30	24.25	71.24	80,68	2216.45	1408.91	28	11,02	9714.15	251	105	SUAVE
1-4030-001	K31	20.83	74.43	80.65	2143.23	1586,26	32	10,9	10936.95	251	106	SUAVE
1-4030-001	K32	22.65	82,19	80.04	2115.09	1437.39	29.5	11	9910.52	251	111	SUAVE
1-4030-001	K33	28.78	68.04	80.96	2186.28	1767.98	23.1	11.07	12189.87	251	126	MEDIA
1-4030-001	L11	38.65	78.96	59.89	2622.07	1652.24	16.8	10.71	11391.86	251	154	DURA
1-4030-001	L12	37.53	82.36	58.81	2330.92	1508.21	17.5	10.89	10398.81	251	147	DURA
1-4030-001	L13	37.67	80.74	59.44	2398.1	1642.07	17.3	10.71	11321.74	251	153	DURA
1-4030-001	L14	42.77	79.21	59.06	2246.88	1602.98	15.2	10.53	11052.23	251	160	DURA
1-4030-001	L15	29.55	78.32	54.52	2180.78	1412.14	22.1	10.71	9736.42	251	124	SUAVE
1-4030-001	L16	34.52	79.11	58.66	2559.33	1536.22	18.7	10.71	10591.93	251	141	DURA
1-4030-001	L17	40.83	78.56	59.85	2440.53	1481.33	16.1	10.89	10213.47	251	148	DURA
1-4030-001	L18	40.08	79.56	59.6	2415.79	1667.24	16.7	11.07	11495.29	251	156	DURA
1-4030-001	L19	32.6	80.12	59.75	2357.81	1510.28	20.3	10.89	10413.08	251	135	DURA
1-4030-001	L20	44.75	78.41	58,28	2328.83		14.9	11.07	11025.47		160	DURA
1-4030-001		42.55	80.63	58.9		1599.1				251	160	
1-4030-001	L21 L22	42.55	77.45	58.67	2321.96	1617.13	15.6	10,89	11149.79	251		MUY DURA
					2261.2	1536.05	15.3	11.07	10590.76	251	154	MUY DURA
1-4030-001	L23	50.38 22.45	79.32 73.76	58.84 83.33	2438.22	1295.47	13.6	11.25	8932.01	251	152	MUY DURA
	L24				2373.66	1647.8	29.6	11.07	11361.25	251	112	SUAVE
1-4030-001	L25	24.98	75.73	77.15	2125	1433.29	28.3	11.8	9882.25	251	108	SUAVE
1-4030-001	L26	23.5	79.88	60.06	1778.8	1051.59	28.4	11.07	7250,50	251	95	SUAVE
1-4030-001	L27	17.55	89.45	79.83	1996.27	1158.72	39	11.25	7989.14	251	90	SUAVE
1-4030-001	L28	15.8	87.58	79.07	2164.84	1379.96	30	11.43	9514.55	251	111	SUAVE
1-4030-001	L29	13.27	85.82	79.06	2069.99	1373.19	51.6	11.25	9467.87	251	83	SUAVE
1-4030-001	L30	18.95	80.05	79.88	2131.03	1462.02	36.3	11.43	10080.34	251	99	SUAVE
1-4030-001	L31	21.13	71.74	80.86	2148.31	1581.37	31.6	11.07	10903.23	251	105	SUAVE
1-4030-001	L32	25.63	72.39	80.04	2258.78	1609.01	26.6	11,25	11093.80	251	116	SUAVE
1-4030-001	L34	32.95	57.27	83.18	2311.97	1844.61	20.1	10.89	12718.22	251	127	MEDIA
1-4030-001	M12	45.1	77.52	59.34	2528.69	1560.79	25.2	11.07	10761.33	251	121	DURA
1-4030-001	M13	47.82	79.54	59.42	2450.04	1504.86	14.8	11.07	10375.71	251	157	DURA
1-4030-001	M14	41.87	75.89	58.88	2622.59	1476.38	14	11.07	10179,34	251	156	DURA
1-4030-001	M15	42.6	80.12	59.31	2647.43	1318,99	16	10.89	9094.17	251	142	DURA
1-4030-001	M16	29.25	78.54	69.69	2524.28	1593	15.3	11	10983.42	251	158	DURA
1-4030-001	M17	32.28	79.23	58.82	2279.51	1647.58	30	11.07	11359.73	251	115	DURA
1-4030-001	M18_	30.53	80.21	58.52	2381.22	1678.43	20.8	11.07	11572.44	251	141	MEDIA
1-4030-001	M19	33.77	76.15	71.05	2320.63	1601.96	21.9	10.8	11045.19	251	130	MEDIA
1-4030-001	M20	39.38	78.56	65.89	2329.96	1441.82	19.1	10.9	9941.06	251	134	MEDIA
1-4030-001	M21	32.56	78.54	59.65	2254.12	1421.32	16.2	10.89	9799.72	251	145	MEDIA
1-4030-001	M22	28.17	80.21	60.02	2131.36	1472.55	30	11	10152.94	251	110	MEDIA
1-4030-001	M23	32.8	79.41	59.42	2177.28	1498,36	22	11	10330.89	251	128	MEDIA
1-4030-001	M24	23.3	81.8	78.8	2502.91	1892.17	19.6	10.89	13046.13	251	155	SUAVE
1-4030-001	M25	50.37	68.25	80.9	2048.98	1531.64	28.5	11.1	10560.35	251	106	DURA
1-4030-001	M26	26.02	74.54	59.94	1875.74	1072,61	30	11.2	7395.43	251	90	SUAVE
1-4030-001	M27	25.92	74.88	60.01	1849.42	1171.13	25.9	11	8074.71	251	102	SUAVE
1-4030-001	M28	14.47	75.11	60.75	2081.38	1057.39	25.8	10.89	7290.49	251	97	SUAVE
1-4030-001	M29	14.27	81,33	79.86	1948,37	1238.31	45.7	11.98	8537.90	251	82	SUAVE
1-4030-001	M30	19.35	74.93	77.61	2201.3	1845.23	50.6	11.07	12722.49	251	91	MEDIA
1-4030-001	M31	25.58	82.59	82.59	2224.24	1594,33	34.9	11.45	10992.59	251	107	SUAVE
1-4030-001	M32	29.38	67.97	81.61	2277.45	1581,99	26,5	11.25	10907.50	251	111	MEDIA
1-4030-001	M33	30	66.25	81.99	2157.04	1704.07	23.1	11.25	11749.22	251	122	SUAVE
1-4030-001	M34	31.78	69.63	81.3	2182.89	1598.39	22.5	11.07	11006.79	251	123	SUAVE
1-4030-001	M35	28.22	69.94	82.93	2335.83	1596	21.2	11.4	11004.10	251	127	SUAVE
1.4000-001	11120	20.22	100.04	02.00	2000.00	1220		1 11.77	1 1004.10	401	14/	COUNT

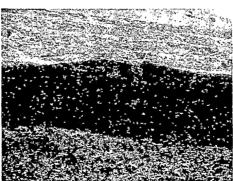
1-4030-001 N 1-4030-001 N 1-4030-001 N	N13 N14	32.3 34.5	78.95	61.08	2276.12	1549.5	24	11	10683.49	251	125	ו גמווח ו
1-4030-001 N 1-4030-001 N		34.5										DURA
1-4030-001 N			80.41	59.51	2493.94	1455.95	19.7	10.9	10038.48	251	135	MEDIA
	N15	31.57	79.25	59.3	2296.8	1423	18.7	11	9811.30	251	136	MEDIA
	N16	29.58	78.54	59.58	2232.62	1519.55	20.4	10.8	10476.99	251	134	DURA
	N17	30,15	81.86	59.61	2338.39	1540.39	21.4	10.8	10620.68	251	134	DURA
	N18	31.52	79.23	58.77	2175.57	1548.43	20.9	10.7	10676.12	251	134	MEDIA
1-4030-001 N	N19	31.08	78.63	58.35	2160.24	1537.37	20	10.8	10599.86	251	136	MEDIA
1-4030-001 N	N20	27.5	79.21	58.53	2231.96	1442.28	20.3	10.71	9944.23	251	131	MEDIA
	N21	34.53	78.41	58.64	2258.65	1581.59	23.4	10.7	10904.75	251	127	DURA
1-4030-001 N	N22	27.52	78.63	59.61	2434.2	1509.93	18.5	10.8	10410.67	251	140	MEDIA
1-4030-001 N	N23	35.07	78.56	59.18	2272.05	1613	23.6	10.9	11121.31	251	128	MEDIA
1-4030-001 N	N24	40.15	66.38	81.38	2252.1	1672.38	19	11	11530.73	251	133	DURA
1-4030-001 N	N25	29.72	70.5	79.95	2222.75	1694.4	16.8	11.25	11682.55	251	147	MEDIA
1-4030-001 N	N26	29.88	75.41	60.3	1931.9	1178.07	23,1	11.25	8122.56	251	108	MEDIA
1-4030-001 N	N27	27.23	76.32	59.87	1951	1219.74	22.9	11.07	8409,86	251	111	SUAVE
	N28	15.37	78.52	60.07	1945.92	1074.3	24.5	10,9	7407.08	251	102	SUAVE
1-4030-001 N	N29	12.72	72.31	60.16	1950.41	1067.73	43.2	10.89	7361.78	251	74	SUAVE
1-4030-001 N	N30	19.88	72.33	59.96	1999.35	1184.57	50.2	10.89	8167.37	251	72	SUAVE
1-4030-001 N	N31	30.02	75.69	59.82	2147.97	1455.02	33.2	11.07	10032.07	251	101	SUAVE
1-4030-001 N	N32	32.05	71.19	60.23	2055.76	1452.99	22.2	11.07	10018.08	251	119	SUAVE
1-4030-001 N	N33	24.82	70.51	80.11	2102.34	1645.03	20.9	11.25	11342.15	251	130	SUAVE
1-4030-001 N	N34	28	68.16	79.74	2105.26	1610.29	27.3	11.07	11102.63	251	111	MEDIA
1-4030-001 N	N35	28.5	71.91	81.44	2242.1	1817.14	24	11.25	12528.82	251	129	MEDIA
1-4030-001 N	N36	20.8	75.46	79.65	2129.17	1356.12	23.7	11.98	9350,18	251	115	SUAVE
1-4030-001 C	014	29.08	73.89	60.81	2292.45	1480.53	35	10.34	10207.96	251	98	MEDIA
1-4030-001 C	015	30.48	75.62	58.81	2280.4	1556.28	21.7	10,53	10730.24	251	129	MEDIA
1-4030-001 C	016	34.68	78.84	58.27	2450.79	1283.91	20.8	10,78	8852.30	251	122	DURA
1-4030-001 C	017	36.58	74.25	59	2769.63	1322.13	17.8	11.07	9115.82	251	130	MEDIA
1-4030-001 C	018	39.5	78.54	58.43	2365.85	1165.03	18.2	10,71	8032.65	251	124	MEDIA
1-4030-001 C	019	37.4	72.35	58.5	2350.78	1310.49	16.5	10.71	9035.57	251	132	DURA
1-4030-001 C	020	43.32	73.1	57.68	2133.69	1346.47	17.2	11,25	9283.64	251	132	DURA
1-4030-001 C	021	38.43	75.84	58.1	2310.82	1405.48	15.7	10.71	9690.50	251	144	MEDIA
1-4030-001 C	022	54.15	80.12	58.29	2815.94	1063.52	17	10.53	7332.76	251	124	MEDIA
1-4030-001 C	023	51.05	77.63	59.41	2065.93	1207.2	11.7	11.07	8323.40	251	156	DURA
1-4030-001 C	024	64.58	79.21	58.09	1965.24	1107.19	13	11.07	7633.85	251	143	MUY DURA
1-4030-001 C	025	27.42	78.58	78.98	2214.56	1421.47	10.3	10,9	9800.75	251	182	SUAVE
1-4030-001 C	026	36.45	78.32	59.9	2039.33	1336.91	30	10.89	9217.73	251	103	MEDIA
1-4030-001	027	29.4	77.44	60.01	2099.49	1383.49	18	11	9538.89	251	135	SUAVE
1-4030-001 C	028	24.23	73.69	60.06	2051.06	1238.05	30	11.1	8536.11	251	96	SUAVE
1-4030-001 C	029	14.48	74.23	59.67	1777.8	930.57	27.4	11.57	6416.09	251	88	SUAVE
1-4030-001 C	O30	16.58	71.12	58.72	2043.38	1130.14	30	9.98	7792.09	251	90	SUAVE
1-4030-001 C	031	28.38	77.58	59.91	2099.31	1414.34	23.4	11.2	9751.59	251	120	SUAVE
	032	32.16	76.81	58.83	2172.72	1565.9	19.9	10.53	10796.57	251	136	DURA
1-4030-001 C	O33	24.62	74.64	80.17	2150.37	1664.71	27.5	11.25	11477.84	251	117	SUAVE
	034	24.95	72.51	80.5	2503.6	1703.86	27	11,07	11747.77	251	118	SUAVE
1-4030-001	035	30.58	70.08	81.86	2278.79	1749.43	22.2	11.25	12061.97	251	130	MEDIA
	O36	18.65	68.55	81.62	2210.41	1560.31	36.6	11.1	10758.03	251	94	SUAVE
1-4030-001 F	P15	22.4	78.41	58.72	2376.3	1430.78	21,9	10,9	9864.94	251	125	MEDIA

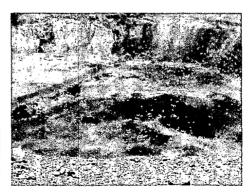
4 4000 004	D40	20.45	70.04	F0.00	2000 00	4000 47	60.7	44.05	9044.00	054	115	MEDIA
1-4030-001	P16	28.45 37.75	78.91	58.23	2092.33	1292.47	23.7 17.2	11.25	8911.32	251 251	150	MEDIA
1-4030-001	P17		79.54	58.72	2481.83	1588.65		10.71	10953,42		90	SUAVE
1-4030-001	P18_	21.92	77.63	58.85	1799.99	1020.16	30.1	10.89	7033.80	251	113	
1-4030-001	P19	26.48	78.54	59	2148.99	1293.67	24.3	10.71	8919.60	251		MEDIA MEDIA
1-4030-001	P20	26.67	79.58	60.11	2072.95	1251.6	23.5	10.34	8629.53	251	114	SUAVE
1-4030-001	P21	27.6	80.12	59.09	2019.9	1238.99	23.3	10.71	8542,59	251	114	
1-4030-001	P22	23.33	78.89	60.12	1991.24	1273.89	27,3	10.53	8783.22	251	106	SUAVE
1-4030-001	P23	25.13	77.52	58.73	2068.61	1182.97	25.9	10.87	8156.34	251	104	SUAVE
1-4030-001	P24	29.73	81.41	59.32	2128.91	1226.51	21.9	11	8456.54	251	118	MEDIA
1-4030-001	P25_	33.03	77.21	59.33	1927.23	1229.1	20.5	11.25	8474.40	251	119	SUAVE
1-4030-001	P26	28.7	79.23	58.81	2040.71	1266.26	23.2	10.89	8730.61	251	115	SUAVE
1-4030-001	P27_	29.13	73.19	58.6	2193.4	1456.72	23	11.07	10043.79	251	119	SUAVE
1-4030-001	P28	23.7	73.21	58.74	2421.91	1402.74	27.6	10.89	9671.61	251	107	MEDIA
1-4030-001	P29	15.57	71.42	59,9	2192.73	992.61	43.6	11.25	6843.85	251	70	SUAVE
1-4030-001	P30	17.92	77.25	58.61	2062.2	1208.89	37.5	10.78	8335.05	251	87	SUAVE
1-4030-001	P31	34.13	74.44	59.8	2101.37	1425.15	30	10,89	9826.12	251	104	SUAVE
1-4030-001	P32	31.7	74.89	59.63	2186,74	1401.54	21.5	11,25	9663.34	251	122	SUAVE
1-4030-001	P33	29.22	73.49	34.46	2095.51	1553.02	22.6	10.89	10707.76	251	124	MEDIA
1-4030-001	P34	25.93	75.89	79.99	2155.14	1706.74	25.5	10.7	11767.63	251	124	MEDIA
1-4030-001	P35_	29.7	72.66	80.07	2097.46	1548.59	22.5	11.1	10677.22	251	124	SUAVE
1-4030-001	P36	31.63	72.11	79.38	1965.31	1363.39	23.6	11.8	9400.30	251	113	SUAVE
1-4030-001	Q16	25.931	71.12	79.98	2383.19	1532.96	26.1	11.25	10569.45	251	113	MEDIA
1-4030-001	Q17	28.57	68.13	81.01	2468.58	1434.23	23.7	11.2	9888.73	251	112	SUAVE
1-4030-001	Q18_	28.37	69.97	79.29	2167.14	1606.79	24.3	11.43	11078.50	251	119	MEDIA
1-4030-001	Q19	26.45	68.67	80.65	2187.49	1471.25	25,6	11.23	10143.97	251	110	MEDIA
1-4030-001	Q20	21.55	72.45	79.83	2208.66	1563.84	31.2	11.07	10782.36	251	105	SUAVE
1-4030-001	Q21	19.18	72.43	78.66	2225.95	1776.41	35	11.07	12247.99	251	106	SUAVE
1-4030-001	Q22	15.1	76.85	77.08	2333.07	1660.46	44.7	11.07	11448.54	251	93	SUAVE
1-4030-001	Q23	21.68	70.24	78.42	2196.11	1602.15	30.9	11	11046.50	251	105	SUAVE
1-4030-001	Q24	17.28	72.34	78.23	2347.31	1598.42	38.7	11	11020.79	251	95	SUAVE
1-4030-001	Q25	18.85	71.85	79.25	2188,4	1479.26	36	11.25	10199.20	251	95	SUAVE
1-4030-001	Q26	28.08	80.1	58.98	1882.86	1194.99	23.7	11.07	8239.22	251	111	SUAVE
1-4030-001	Q27	23.6	78.14	57.96	2019	1200.08	27.8	10.89	8274.31	251	101	SUAVE
1-4030-001	Q28	28.52	72.41	60.09	2193.06	1419.42	23.4	11.07	9786.62	251	116	SUAVE
1-4030-001	Q29	31.41	79.41	77.89	2147.54	1289.58	50.1	11.1	8891.40	251	79	SUAVE
1-4030-001	Q30	13.33	72.56	58.37	2154.41	1068.54	22	11.07	7367.37	251	104	SUAVE
1-4030-001	Q31	30.37	75.55	59.88	2093.73	1388.91	25.1	11	9576.26	251	113	SUAVE
1-4030-001	Q32	26.72	69.98	60.34	2293.76	1708.07	17.3	10.9	11776.80	251	145	SUAVE
1-4030-001	Q33	38.22	72.36	61.81	2248.89	1708.81	16	11	11781.90	251	154	MEDIA
1-4030-001	Q34	41.23	78.96	54.74	1855.28	1422.5	21.3	10.89	9807.85	251	127	SUAVE
1-4030-001	Q35	31.73	67.34	82.34	2192.73	1605.34	31	11.25	11068.50	251	103	MEDIA
1-4030-001	Q36	21.78	71.99	79.99	2365,84	1561.31	44.99	11.25	10764.92	251	87	SUAVE


ANEXO G: SECUENCIA DE SALIDA DEL PROYECTO 1-4030-001

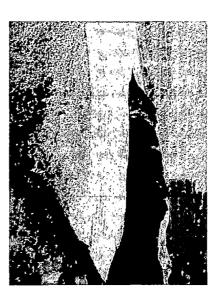
1298 H12 238 111 1328 HI3 1231, 112 1134 J14 1353, H44 1291 411 1184 112 1087 KII 1288,H15 1261,114 1194,113 1097,K12 1000,L11 Proyecto 4030-001 Dafne 1440 BF3 182 155 1224 1137 676 1840 L 2 1511_8F4 1381417 1224_516 1187_K15 1093_L'4 1066_M13 1824_E77 1441[115 1344_138 1247_K]* 1150_L15 1150_L15 1160_L15 1595_8F8 47 , L20 13*4_119 1277 , 418 1180 , L17 (25, W16) 1193 , NIS 1800, O14 1613_6-6 -657_6FHC 15/m_E1 1404_J20 1307_K19 1210_L18 12:03M17 1233_NIG 1350_D15 1053 BF11 1581 122 1134 1121 1337 820 1240 119 1246 8 6 1255 M17 1280 C16 1267 P15 1975_8F-2 165 25 1456 J22 1367_K21 1270_L20 1275_M16 1263_N18 1260_O17 1287_P16 1721 BF14 (491) 124 (494) 125 (391 K22 1320 129 1395 M22 313, N18 1320, 018 1827-P17 (331, 016 16 1621 125 1524 24 1427 602 1339 1222 1336 U21 1540 N20 1350 O16 1357 F18 1361 Q17 1724, B=11 1661, 125 1554, 125 1457, K24, 1660, 122 1375, M22 1373, M2: 1380, O20 1387, P19 (201394, C18 718 4 531 JE7) 3554 JUSS 1487 HZS 1350 LZ4 1556 JUZO 203 HZZ 1410 021 1417 P20 1424 OIE 1866, 58-78 1864, 128 1846, 27 1517, 450 0 1250, 125 1425, We 1455, 463 1440, QZZ 1647, P21 1451, 020 1863_BF21 12#1_65 16#4_728 1547_K27 . 1450_L20 1456_M25 1563_N24 170_025 1417_P22 1481_021 1862_EF2Z 1771_J30 1973_J20 ,1677_K2844; 436_L27 663, 406 1435_N25 502,004 4607_F23 1514;022 1850_8[65]_S1 1704_U30 ISBF_K28Pc 1519_L28 (515_M27 1523_N25^M 1506_025 527_P24 54544_G23 1824_BF24 1734_151 -1837_K83:: 1844_L25 -15-6_M28 15-5_M27 1565_026 15-57-825 -574_024 1734,432 1867,43 20 1570,130 1576,7120 1883,N3B 1890,027 1897,525 1891,025 1772_3F27_K33_; 14.51_E32 1536_L57 1543_R30 1660_029 1667_P28 16631/027 748_BE22 1666_L53 1665_MS2 1573_MS1 1699_O3C 1667_P28 1094_O2 1880, L94 - 955, L135 1730, 1832 1740, C81 1717, P31 - 7724, O29 1720 BF2E 1725 Kt4 1735 K135 1740 O22 1747 F51 101754 Q30 1786 EF-9 1856 1852 HEA 1770 O33 -777 P32 1784 C3 1798, N35 FRC C34, 1697, P33 cm1814, 032 1963 BE30 468 1833 03E 1832 PS4 - 1841 038 1350_C30 189/₀F35 ₃₀ (874_C3-1897,2861904,Q35


Proyecto 4030-001 Dafne




ANEXO H: INICIO- FRAGMENTACIÓN -PISO FINAL PROYECTO 1-4030-001 PROYECTO INICIAL

FRAGMENTACIÓN

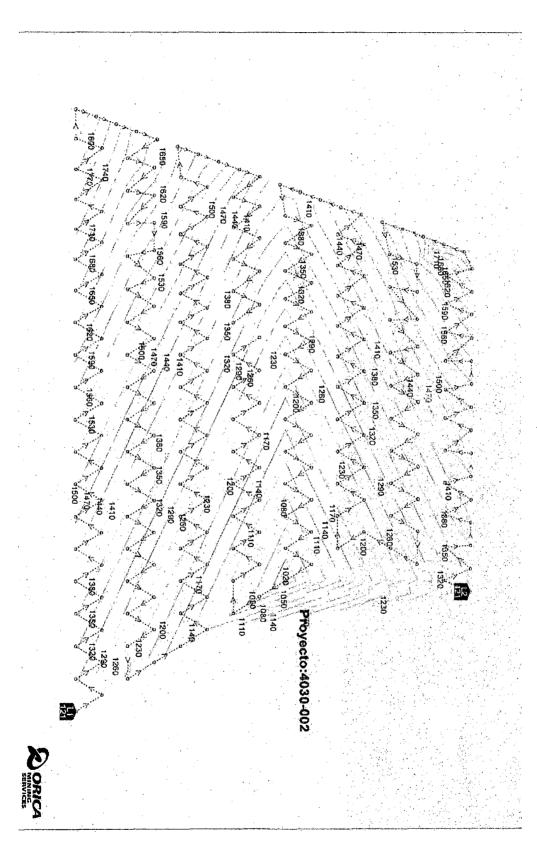


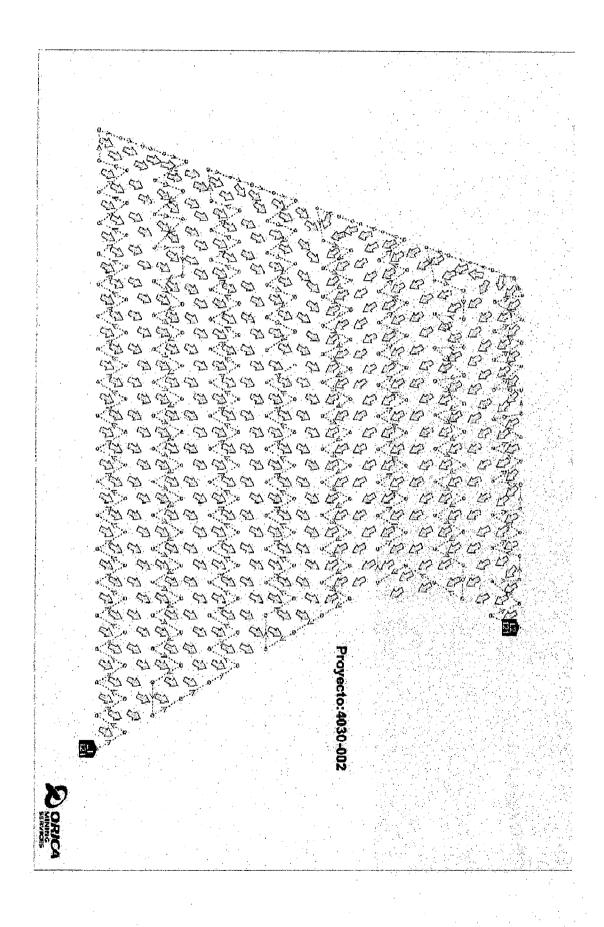
PISO FINAL

ANEXO I: DATOS PROPECTO 1-4030-002

Jaladio	Malla	" Vel. Pen" (mt/hr)	RPM	PSI Aire	PSI Rotación	Pull Down	Puli down (KPA)	ESFUERZO (MPA)
AA35	1-4030-002	38.03	80.10999298	76.84399796	2131.360046	1779.120056	12266,67696	107
AA36	1-4030-002	53.46	92.77999878	75.31099701	1510.960083	1034.640015	7133.635973	74
AA37	1-4030-002	44.20	85.82500076	75.8219986	3082.640015	2523,600098	17399.71795	122
AA38	1-4030-002	57.47	104.0176909	83.66780888	3131.953923	2416.382223	16660,47215	115
AA39	1-4030-002	57.69		76.33299255	4054.600098	2523,600098	17399.71795	0
AA40	1-4030-002	58.38	107.4949989	78.63249207	2937.880127	2523,600098	17399.71795	119
AA41	1-4030-002	49.66	95.55999756	75.31099701	2710.400146	2523.600098	17399,71795	122
AA42	1-4030-002	51.12	115.5699997	75.8219986	3103.320068	2358,160156	16259.04265	128
AA43	1-4030-002	42.32	83.23048284	81.98696272	2859.829765	2245.754245	15484,02637	116
AA44	1-4030-002	22.67	62.52659542	82.73680342	2246.640061	1645.360065	11344.42857	118
AA45	1-4030-002	22.55	60.79914832	84.42201541	2390.520064	1754.920063	12099.82285	120
AA46	1-4030-002	37.09	65.46765956	86.80305871	2291.080072	1680.560064	11587.12553	95
AB36	1-4030-002	43.43	88.28809441	81.98643978	2773.096579	2308.921961	15919,55514	120
AB37	1-4030-002	42.65	83.732342	82,75243425	2732.695692	2257.668182	15566.17058	116
AB38	1-4030-002	41.30	83.33000183	76.84398651	2793.120117	2399.52002	16544.21063	122
AB39	1-4030-002	35.77	75.06876843	82.37851457	2909.246227	2422.745284	16704.34419	125
AB40	1-4030-002	31.36	77.91999817	75.31099701	3516.920166	2502.920166	17257 13396	138
AB41	1-4030-002	55.17	84.19833235	82.55016234	3194.81341	1975.580055	13621.22936	96
AB42	1-4030-002	40.60	79.70532097	82.59686648	2619.674901	1842,160697	12701,32957	105_
AB43	1-4030-002	30.69	77.24126907	82.63532996	2472.415934	1800.456573	12413.78798	118
AB44	1-4030-002	42.02	82.33000183	76.33299255	2731.080078	1572.320068	10840,83241	97
AB45	1-4030-002	38.11	102.2699966	76.33299255	3186.040039	2523.600098	17399,71795	144
AB46	1-4030-002	36.18	86.47249603	77.61049652	3118.830078	2518.430115	17364,07196	135
AC37	1-4030-002	23.19	62.04458308	84.33866326	2390.290896	1674.858401	11547.8137	117
AC38	1-4030-002	25.90	64.80479177	82.98664157	2367.456721	1839.867569	12685,51891	118
AC39	1-4030-002	29.32	70.17244837	72.66213993	2065.5217	1622.120875	11184.19901	109
AC40	1-4030-002	29.98	68.51061218	81.18228445	2556.355165	1616.212308	11143.46062	106
AC41	1-4030-002	29.06	70.53749967	79.71837362	2426.911741	1687.783381	11636,92886	112
AC42	1-4030-002	33.06	76.95680659	80.72542361	2456.080069	1591.24003	10971.28176	106
AC43	1-4030-002	60,35	68.37422248	79.67153015	2225.568953	1712.944057	11810.40668	77_
AC44	1-4030-002	22.90	68.57466634	80.31879578	2399.740508	1423,883603	9817.392668	114
AC45	1-4030-002	33.73	76.24468648	82.82429385	2671.301943	2191.104442	15107.2269	123
AC46	1-4030-002	33.25	87.25998688	75.8219986	3330.800049	2502.920166	17257.13396	142
AD38	1-4030-002	15,96	61.71266641	79.13781942	1939.265835	1495.574265	10311.68544	133
AD39	1-4030-002	19.33	66,69377666	79.41035275	2324.832966	1635,279156	11274.92272	131
AD40	1-4030-002	17.13	65.17822181	78.71766086	2219.135167	1673.422267	11537.91185	139
AD41	1-4030-002	20.36	73.25347676	80.36544999	2344.453979	1251.33048	8627,673395	117
AD42	1-4030-002	18.63	71.80749989	78.60055713	1834.946729	1125.115042	7757.443194	115
AD43	1-4030-002	22,66	80.28849881	82.65236053	2282.668736	1511.658714	10422.5845	128
AD44	1-4030-002	26.24	73.80934399	80.37073392	2239.845308	1489.261035	10268,15699	113
AD45	1-4030-002	30.12	72.67349092	80.12899768	2499.004509	1760.409585	12137.672	114
AD46	1-4030-002	21.14	66.10888841	81.7268826	2364.814285	1254.307595	8648,200009	109
AE39	1-4030-002	18.92	74.26244397	80.90928616	1998.548505	1183.9956	8163.412863	119
AE40	1-4030-002	14.13	66,99804256	81.04308203	2011.775705	1246,834832	8596,676801	134

A = 44	1 4 4000 000 1	40.75	1 00 4050000		0000 400700	4004007400	0500 704400	447
AE41	1-4030-002	18.75	68.4859993	79.6828854	2062.426732	1234.087162	8508.784166	117
AE42	1-4030-002	21.85	69,3151515	80.12151	2154.11155	1250.615313	8622.742461	110
AE43	1-4030-002	25.22	73.05622126	81.37486131	2283.013392	1287.395607	8876.33523	107
AE44	1-4030-002	23.21	74.28599892	79.51822637	2218.216077	1587.140723	10943.01785	124
AE45	1-4030-002	27.96	75.0580323	79.93512913	2388.673497	1710.977753	11796.84941	118
AF40	1-4030-002	25.18	71.81162777	80.07637059	2240.050303	1397.261433	9633.838131	110
AF41	1-4030-002	20.39	66.49955436	78.161242	1972.813395	1212.028493	8356.694051	110
AF42	1-4030-002	39.22	71.55199949	69.78084145	1949.376048	1392.174261	9598.763093	88
AF43	1-4030-002	27.99	66.81799978	80.69352926	2394.685402	1357.248069	9357.953983	99
AF44	1-4030-002	27,40	66,77787196	78.95323116	2192.960056	1616.320059	11144.20354	110
AF45	1-4030-002	18.99	65.25702034	79.2576552	2232,560077	1573.640063	10849.9335	128
AG41	1-4030-002	30,11	88.04000092	76.84398651	2255.439941	1220.76001	8416.896115	104
AG42	1-4030-002	17.46	62,14754133	79.53302727	2020,16269	1345.857098	9279.415517	121
AG43	1-4030-002	18,76	67,1611286	80.19846418	2023,290383	1272.126502	8771.057808	118
AG44	1-4030-002	23.83	64.22804327	78.48808405	2188.904411	1379.456567	9511.077137	106
AG45	1-4030-002	20,17	66,00891221	79.67671436	2339,059193	1664,480912	11476.26299	129
AH42	1-4030-002	29.24	81.76492139	80.41313582	1981.509598	1201.670808	8285,279889	101
AH43	1-4030-002	21.13	56.87032252	79.71218872	1889.871036	1188.072305	8191.520929	99
AH44	1-4030-002	22.97	63.2577778	78.62843444	2175.346099	1388.497827	9573.414817	108
AH45	1-4030-002	20.44	70,20158571	79.15566387	2159,918162	1252.92893	8638.694386	115
Al43	1-4030-002	24.12	64.17190403	79.29354822	1802.449583	1019.540367	7029.526919	91
A144	1-4030-002	30.48						83
AJ44			64.03734338	81.5148555	1805.973195	1075.030677	7412.121511	90
	1-4030-002	24.43	63.12206302	80.23444173	1815.251492	1021.181633	7040.843122	
BF31	1-4030-002	35.24	24.14442633	217.394124	1496.721362	571.8826754	3943.01667	35
BF32	1-4030-002	58.32	29,84910667	229.0946192	1462,95291	569,7093342	3928.031918	30
BF33	1-4030-002	50,63	24,49637928	233.6505119	1802.619373	600,0034916	4136.904074	30
BF34	1-4030-002	42.22	28.53465523	230.5140286	1855.745578	589,3069416	4063.153501	35
BF35	1-4030-002	40.83	33.49517873	231.0838691	1926,406496	600,7293298	4141.908583	39
BF36	1-4030-002	33.88	27,73999977	234.2319946	1841.840088	600,3600159	4139,362237	39
BF37	1-4030-002	39.84	20.07351844	232.3204758	1598.658577	591.9348597	4081,27247	30
BF38	1-4030-002	37.22	22.94690916	233.3307764	1711.368058	614.2720381	4235.282849	34
BF39	1-4030-002	35.23	19.60145447	234.2319946	1688.056052	629,6880349	4341.573063	33
BF40	1-4030-002	23,90	22.68481481	229.9831235	1563.808942	576.6163432	3975.654363	41
BF41	1-4030-002	23.70	22.71370361	233,3330132	1438.197088	602.6578217	4155,205149	42
BF42	1-4030-002	19.58	21.02962264	231.9180324	2069.320063	569.9253269	3929.521144	43
BF43	1-4030-002	81,65	17,87000084	234,2319946	1283,480103	517.6400146	3569.024373	19
BF44	1-4030-002	33.36	20.60740739	232.9923463	1588.318573	569,7230145	3928.126241	33
BF45	1-4030-002	31.78	18,74905665	224.821881	1526.957794	563,6823109	3886,476797	32
BF46	1-4030-002	25.50	18,92944438	233.4371055	1552,70301	554,404489	3822,508071	35
BF47	1-4030-002	23.60	17,66890874	227,5239577	1526.376049	560,8800459	3867.155741	36
BF48	1-4030-002	45.89	20,2121211	225.9414594	1625.769721	560,4262548	3864.026942	27
BF49	1-4030-002	42.78	18,3115151	224.4317433	1721.083625	555,3071954	3828.732051	27
BF50	1-4030-002	42.06	19.3131531	227,0600643	1631.411985	570.247065	3931,739463	28
BF51	1-4030-002	48.22	21.15315314	219.6102215	1864.696909	596,3691701	4111.846154	28
BF52	1-4030-002	35.50	20.15545454	221.7171396	1679.032063	566.52005	3906.042441	20 31
BF53	1-4030-002	34.23	96.32417929		2270.480083			112
BF54	1-4030-002			77.62443043		1455.760059	10037.17445	
BF55		36.18	87.70636132	77.68017758	2264.840067	1478.696046	10195.3135	105
	1-4030-002	28.91	82.77999878	77.63787052	2073.382204	1298.310054	8951.588162	106
BF56	1-4030-002	32.09	88.7043627	77.90316023	2341.168055	1478.696057	10195,31357	112
BF57	1-4030-002	23,42	78.77767685	77.9754937	2035,71506	1241.070765	8556.934709	113
BF58	1-4030-002	29.36	89.69245227	79.64967533	2168.818158	1286,701935	8871.552504	110
BF59	1-4030-002	29.44	85.17321307	79.35336917	2111.049329	1199,341478	8269,219619	103
BF60	1-4030-002	26.81	89.66892658	81.58899689	2227.00506	1400.971485	9659.418192	120
BF61	1-4030-002	31.09	92.7533315	79.39899953	2365.733398	1434.45341	9890,26937	114
BF62	1-4030-002	27.44	79.86236288	77.83812145	1844.096053	1065.848047	7348,809114	97

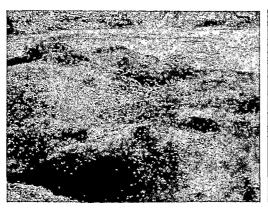

BF58	1 1-4030-002 l	29.36	89.69245227	79.64967533	2168.818158	1286.701935	8871.552504	110 I
BF59	1-4030-002	29.44	85.17321307	79.35336917	2111.049329	1199.341478	8269,219619	103
BF60	1-4030-002	26.81	89.66892658	81.58899689	2227.00506	1400.971485	9659.418192	120
BF61	1-4030-002	31.09	92.7533315	79.39899953	2365,733398	1434,45341	9890,26937	114
BF62	1-4030-002	27.44	79.86236288	77.83812145	1844.096053	1065.848047	7348.809114	97
BF63	1-4030-002	28.94	83.08555482	77.60644144	1744.020375	967.0197182	6667,407553	92
BF64	1-4030-002	38.29	82.53368297	77.64187395	2096,530582	1192.461105	8221.780824	89
BF65	1-4030-002	42.16	76,42086062	81.71611786	1538,057991	924.1090056	6371.546772	71
037	1-4030-002	45.92	59.36204046	80.38970994	1557,384538	926,1755608	6385,795256	60
P37	1-4030-002	37.14	59.96936141	81.07333829	1441,440056	879.7600474	6065,769575	66
P38	1-4030-002	46.92	63.86530584	85,73956859	1904.724145	1059.118409	7302.409609	66
Q37	1-4030-002	42.19	58.50425505	85.18308161	1799,60006	979.6400484	6754.422206	64
Q38	1-4030-002	67.15	64.88937465	86.1697456	1984.015063	1108,312562	7641.593455	57
Q39	1-4030-002	59.17	64.73063676	87.53150567	2357.080044	1365,080043	9411.953881	67
R26	1-4030-002	24.00	57.79021694	82.62051624	2156,535711	963,1591677	6640,78983	84
R27	1-4030-002	26.61	74.15152135	82.39834246	1892,640925	1104.322654	7614.083838	97
R28	1-4030-002	47.48	70.22044356	82.32872908	1551,860502	969.3831624	6683,703028	66
R29	1-4030-002	28.15	65.31782557	83.83136467	1923,21137	1256,725257	8664.869301	94
R30	1-4030-002	52.30	60.3378718	82.93250551	1582,240056	932.1200367	6426,781229	57
R31	1-4030-002	21.87	57.28608679	84.93112348	1682,244405	981,5913404	6767,875974	89
R32	1-4030-002	18.84	58.46808519	83.73705779	1900.36007	1336,920062	9217,796444	112
R33	1-4030-002	126.52	59.12313135	82.21153415	1854.321131	1325.211135	9137,065735	43
R34	1-4030-002	18,63	53.81456516	81.07640888	1885.897453	1283.699167	8850,849017	106
R35	1-4030-002	21.59	56.98279066	85.03187951	1837.99261	1179,400053	8131.727484	97
R36	1-4030-002	25.22	71.30999756	75.8219986	2131.360107	1076	7418.8048	96
R37	1-4030-002	38.18	54.75361723	81.04071986	1625.800051	962.9200375	6639.141074	65
R38	1-4030-002	49.26	62.02958314	83.88089085	2110.680049	1422.390052	9807.094927	74
R39	1-4030-002	46.78	68.29739106	86.05310307	1902.081804	1108.818326	7645.080596	70
R40	1-4030-002	34.37	62.9795645	84.87557983	2176,766141	1269.762679	8754.759722	84
S27	1-4030-002	24,31	68.13717378	81.43188228	1834.197443	1089,936566	7514.894635	97
S28	1-4030-002	40.52	68.93695591	86.04199302	2009.527902	1142.086135	7874,455485	77
S29	1-4030-002	33.32	68.90891258	82.37612616	2067.5218	1310.673067	9036.828659	91
S30	1-4030-002	54.85	71.23711149	84.00935059	2166,286286	1477.192048	10184.94373	76
S31	1-4030-002	40.00	70.0702121	84.69382509	2415.160087	1622.480052	11186.67546	93
S32	1-4030-002	33.72	64,20333286	83.88443841	2341.376942	1697.319168	11702.6762	99
S33	1-4030-002	33.46	63.64177721	81.69281531	2381.358278	1436.291603	9902.943344	91
S34	1-4030-002	32.48	61.71666701	81.99941525	2292.664068	1604,488946	11062.63038	96
\$35	1-4030-002	30.61	59.31195657	80.88755815	2487.415742	1628,965276	11231.38979	98
S36	1-4030-002	46.53	62.91777759	80.17495501	2641.46672	1854.946719	12789.48664	87
S37	1-4030-002	39.25	65.4391098	82.04483914	2147.444493	1253.84805	8645,031532	80

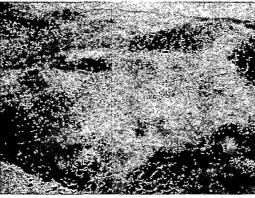

S38	1-4030-002	38.12	66.21121	80.23151531	2245.641353	1365.31313	9413.560969	85
S39	1-4030-002	40.96	67.2331515	81.11316414	2247.311315	1352.314542	9323.938301	82
S40	1-4030-002	36.84	65.19642812	79.2894892	2260.856248	1461.041954	10073.59207	89
S41	1-4030-002	21.77	61.56235302	85.31056213	2210.430657	1747.897283	12051.40218	123
T28	1-4030-002	49.03	67.61000061	77.35500336	2544.959961	1200.080078	8274.312123	71
T29	1-4030-002	50.58	69.31984093	84.53333161	2340.129592	1500.10417	10342.91823	79
T30	1-4030-002	38.66	65.20790315	84.58317221	2491.925889	1587.329731	10944.32103	90
T31	1-4030-002	27.61	71.15548251	84.79746566	2298.134264	1803.802656	12436.85855	119
T32	1-4030-002	33.63	70.33000183	79.39898682	2462.23999	2130.680176	14690.61368	117
T33	1-4030-002	25.94	68.48222169	85.25521838	2283,341648	1750.561965	12069.77464	119
T34	1-4030-002	34.62	76.75	82.97599792	2358.840088	2254.76001	15546.11932	123
T35	1-4030-002	27.85	76.0385704	85.67699723	2331.266729	1990.515608	13724.20701	129
T36	1-4030-002	27.03	78.42999649	82.33725166	2870.670166	2523.600037	17399.71753	149
T37	1-4030-002	29.82	69.77787221	81.3125237	2013,880057	1152.120041	7943.637256	91
T38	1-4030-002	53,54	72.74760827	79.79890376	2078.311368	1284.148747	8853.948778	73
T39	1-4030-002	42.97	75.11313131	79.111314	2000.1313	1260.135131	8688.379701	82
T40	1-4030-002	49.92	77.76847632	79.61006131	1919.165279	1250.431354	8621.4741	77
T41	1-4030-002	44.70	75.13108535	76.95508426	2308.93832	1525.115707	10515.36777	88
T42	1-4030-002	31.26	61.16586901	79.13238857	2357.0418	1633.011384	11259.28689	99
U29	1-4030-002	57.27	61.09999847	76.33299255	2565.640137	2234.080078	15403.53532	85
U30	1-4030-002	52.77	84.72000122	76.84398651	2544.959961	2523.600098	17399.71795	111
U31	1-4030-002	74.19	68.71578074	82.80033994	2575.656944	2284.810671	15753.31261	80
U32	1-4030-002	46.37	69.52538308	83.92724292	2691.947147	2359.750856	16270.0102	104
U33	1-4030-002	26.57	77.33578026	82.85623109	2089.030684	1361.965673	9390.480925	110
U34	1-4030-002	26,55	80.27714169	85.12544166	2149.414035	1620.245127	11171.2661	122
U35	1-4030-002	31.88	71.21951534	84.41833238	2339.160716	1896.529098	13076.18883	114
U36	1-4030-002	19.29	64.3309829	84.30794763	2047.622996	1296.021698	8935.810407	115
U37	1-4030-002	33.82	67.96426166	85.10376952	2236.116139	1284.834154	8858.674528	89
U38	1-4030-002	29.83	69.8464609	84.02944066	2336.569291	1387.790818	9568.540135	100
U39	1-4030-002	22.31	70.0024991	84.18163443	2294.861319	1345.809419	9279.08678	114
U40	1-4030-002	52.48	74.47111087	84.7928858	2471.102924	1507.32577	10392,70972	81
U41	1-4030-002	44.80	76.78999964	79.90999603	2476.026774	1468.920044	10127.90992	88
U42	1-4030-002	37.22	73.58000183	78.88799286	2917.200195	2482.23999	17114.54828	122
U43	1-4030-002	19.24	67.21507869	84.02232869	2154.994362	1668.826723	11506.22649	133
V30	1-4030-002	59.83	65.20999961	81.36315036	2538.497587	1855.054424	12790.22924	79
V31	1-4030-002	54.39	83.97442442	84.80219406	2426,304333	1300.767903	8968.53454	78
V32	1-4030-002	36.56	77.81081872	83.35296393	2282.561386	1800.13907	12411.59886	108
V33	1-4030-002	41.06	84.15114606	82.78332419	2373.417769	1569.268909	10819.79527	99
V34	1-4030-002	26.18	83.89516582	84.73894577	2384.000734	1956.278731	13488,1506	138
V35	1-4030-002	24.94	75.02180225	83.1351611	2291.036788	1839.803974	12685.08044	130

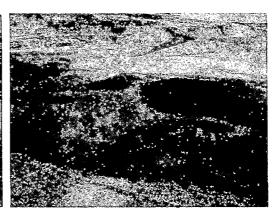
l V36	l 1-4030-002 l	26.99	91.69999695	77.35500336	3061.959961	2544.280029	17542.30195 I	162
V37	1-4030-002	41.38	86.02966468	82.55016136	2462.240057	1817.722724	12532.83464	107
V38	1-4030-002	51.03	83.07098307	82.43148791	2717,519407	1931,338417	13316.19212	98
V39	1-4030-002	33.22	76.99983516	85.1959136	2505.634172	2092.371216	14426,48106	122
V40	1-4030-002	50.95	81.44852332	84.79381561	2539,535807	1924.558093	13269.44314	97
V41	1-4030-002	49.82	89.456998	85,36066233	2296.455405	1567,150046	10805.18614	93
V42	1-4030-002	29.03	78.23216483	84.33014641	2468.788735	1617.816052	11154.51812	115
V43	1-4030-002	22,68	75.30649891	84.96038183	2507.391406	1543.368048	10641.21402	125
V44	1-4030-002	14.14	67.82627035	82.67286036	2291,542425	2084.763464	14374.02713	175
W31	1-4030-002	76.58	60	75.8219986	3392,840088	2213.400146	15260.95133	73
W32	1-4030-002	29.50	75.3668842	82.66604314	2496.141692	1781.154156	12280.70167	118
W33	1-4030-002	36.29	77.14147411	85.47235633	2404.26827	1653.005948	11397.14541	104
W34	1-4030-002	35.40	80.49868768	82.99274907	2497.15874	1827.938418	12603.2698	113
W35	1-4030-002	32.76	81.536332	84.73894869	2384.345398	2118.961383	14609.81494	127
W36	1-4030-002	25.98	45.94108698	81.20971199	2639.368761	1868.5835	12883,50952	100
W37	1-4030-002	65.45	56,15313131	82.15313131	2456,113435	1753.511352	12090.11007	68
W38	1-4030-002	42.65	69.74872232	84.85690892	2362.360058	1457.92004	10052.06709	85
W39	1-4030-002	33.04	65.29130405	85.13108129	1960.525261	1317.866125	9086.423357	89
W40	1-4030-002	30.70	57.07804365	82.53164789	2195.19833	1452.286139	10013.22247	91
W41	1-4030-002	25.02	53.58260876	84.44234268	1844.087889	1088.587877	7505.595697	84
W42	1-4030-002	37.98	59.13466653	80.63675266	2152.040074	1471.217841	10143.75277	84
W43	1-4030-002	23.20	57.52212752	80.88850322	2496.56007	1441.640048	9939.819806	104
W44	1-4030-002	15.83	68.46466637	79.79076309	2555.300077	1889.758073	13029.50396	158
W45	1-4030-002	18.07	58,05499992	80.91496315	2331.956061	2001.774678	13801.83605	140
X32	1-4030-002	29.29	57.45723067	82,70870338	2261.803137	1741.896051	12010.02489	102
X33	1-4030-002	32.86	69.31819612	80.47125532	2212.724007	1534.689239	10581.37537	99
X34	1-4030-002	43,90	82.69015909	84.94581961	2588.988449	2109.332955	14543.42886	110
X35	1-4030-002	53,59	87.02163684	81.31733866	2377.485976	1716.741045	11836.58616	92
X36	1-4030-002	25.29	58.67586949	80.7986903	2188.904406	1596.59657	11008.21403	106
X37	1-4030-002	26.90	59.46340439	81.92137747	2137.080057	1521.280037	10488.9216	101
X38	1-4030-002	25.88	62.2849991	81.72071407	2364.234851	1647.847017	11361.57561	110
X39	1-4030-002	27.99	58.11222237	80.55726454	2105.624946	1519.930726	10479.61837	98
X40	1-4030-002	28.83	61.62533357	78,88799947	2169.962727	1321.402719	9110.80747	93
X41	1-4030-002	29.77	64.36565175	82.07619294	2120.120932	1376.309621	9489.379573	95
X42	1-4030-002	30.59	62.63911014	81.52248467	2109.760935	1375.630263	9484.695534	93
X43	1-4030-002	24.51	57.47454557	82.05851954	2145.930054	1751.860069	12078.7248	112
X44	1-4030-002	20.79	59.02044423	82.90786251	2117.573395	1789.689834	12339.55347	124

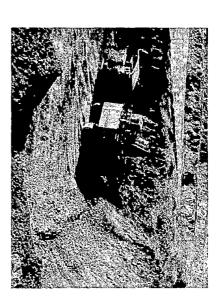
X45	1-4030-002	15.46	59.42931843	81.76817842	2169.430056	1701.570045	11731.98514	141
X46	1-4030-002	14.69	56.04522731	81.76817877	2147.810052	1720.370069	11861.60755	141
Y33	1-4030-002	19.47	56.36577767	79.68288574	2029.338733	1353.571609	9332.605531	109
Y34	1-4030-002	20.46	56.16214262	79.37466231	2309.601975	1514.219106	10440.23789	113
Y35	1-4030-002	19.16	53.60000013	82.38723473	1780.699205	1110.616567	7657.479103	97
Y36	1-4030-002	22.17	59.10847797	81.79847203	1856.226146	1059.366129	7304.117584	93
Y37	1-4030-002	29.35	63.05260849	84.27571139	2232.512244	1556.135709	10729,24449	101
Y38	1-4030-002	28.20	62.82152176	83.43144856	2463.139195	1700.446142	11724,23606	107
Y39	1-4030-002	21.52	68.64820023	83.66073166	2080.900865	1580.592059	10897,86613	124
Y40	1-4030-002	21.50	59.29574471	83.73705957	2275,680069	1435.920054	9900.381591	110
Y41	1-4030-002	22.68	56.49599991	84.35001763	2138.712927	1573.23916	10847.16936	109
Y42	1-4030-002	26.19	57.86282589	85.431019	2416.833986	1649.195721	11370.87466	105
Y43	1-4030-002	25.46	60.09369535	84.2090615	2209.134851	1505.784397	10382.08226	104
Y44	1-4030-002	28.31	59.79717412	85.08664803	2174.967894	1554.337439	10716.84578	100
Y45	1-4030-002	33.85	65.74957413	84.23718797	2362.800072	1709.600052	11787,35044	101
Y46	1-4030-002	11.82	44.2619998	82.38834775	2334.024068	2027.969398	13982.44341	152
Y47	1-4030-002	27.43	69.88257925	83.57765788	2742.420711	2347.152934	16183.15005	135
Z34	1-4030-002	22.59	53.39695665	80.59873498	2170.472224	1540.850492	10623.85597	105
Z35	1-4030-002	26.01	71.38716628	80.42951304	2425.705408	1621.607386	11180.65861	117
Z36	1-4030-002	34.36	77.54229417	80.10266826	2296.461046	1516.721362	10457.49044	102
Z37	1-4030-002	28.00	69.25934451	80.69743785	2563.266949	1968.291208	13570.97422	122
Z38	1-4030-002	27.98	65.57403165	80.04186569	2417.211039	1876.849733	12940.50354	116
Z39	1-4030-002	25.38	63,6381961	80.55502757	2410.709565	1927.270235	13288.14281	121
Z40	1-4030-002	24.87	74.89344162	82.77494537	2457.154815	1974.732519	13615.38577	135
Z41	1-4030-002	28.12	73,63916575	79.96961454	2471.890747	1726.041392	11900.71019	117
Z42	1-4030-002	26.99	65,93116665	78.9901961	2418.467413	1811.518733	12490.05936	116
Z43	1-4030-002	28.03	68.62900003	78.896514	2531.862756	1923.190722	13260.01539	120
Z44	1-4030-002	25.72	61.26866703	78.33441188	2512.906071	1763.610067	12159.73869	113
Z45	1-4030-002	35.47	66.64297761	85.62884684	2238,720068	1516.440062	10455.55094	93
Z46	1-4030-002	30.00	61.92446745	82.49761395	2335.52006	1580.680058	10898.47286	100
Z47	1-4030-002	20.93	56.94553205	84.93301668	2108.480071	1769.440053	12199.93528	121

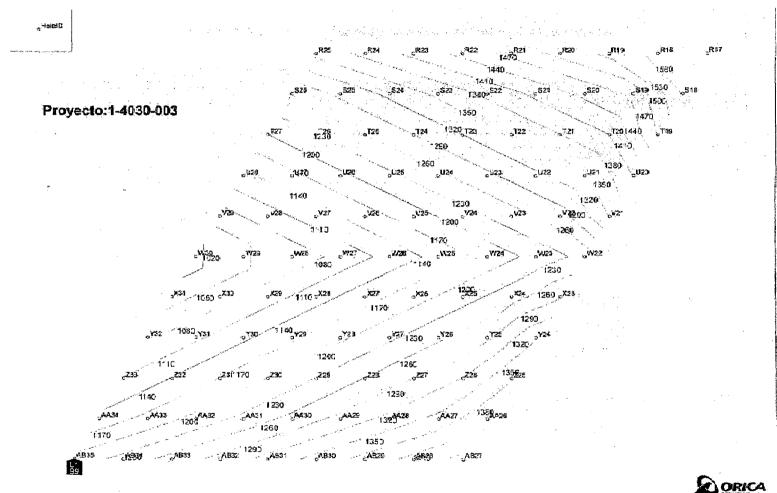
ANEXO J: SECUENCIA DE SALIDA DEL PROYECTO 1-4030-002






ANEXO K: INICIO- FRAGMENTACIÓN -PISO FINAL PROYECTO 1-4030-002 PROYECTO INICIAL

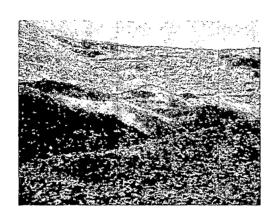

FRAGMENTACIÓN

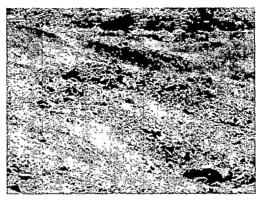


ANEXO L: DATOS DEL PROYECTO 1-4030-003

. Malja	Taladr	Vel.	RPM	PSJ Aire	PSI Rolación	-Pull Down.	PULL DOWN	DIAMETRO	-ESFUERZO
1-4030-003	AA27	28.49	72.546	82,5215	2487.2565	1842.536	12703.91721	251	120
1-4030-003	AA28	26.60	68.956	81.27016011	2577.804793	1868.834758	12885.24189	251	122
1-4030-003	AA29	23.76	61.83244375	83.96392975	2408.012507	1432.155604	9874.426461	251	107
1-4030-003	AA30	24.56	74.39110989	36,84405475	2220.973389	1723.973368	11886.45158	251	126
1-4030-003	_AA31	23.71	76.88956385	86.24195397	1893.989616	1272.01049	8770.257927	251	112
1-4030-003	AA32	35.56	73.17711021	86.17826318	2055.992955	1081.055169	7453.659179	251	82
1-4030-003	AA33	32.22	71.82733205	87.38195123	2018.309384	1294.748494	8927.03192	251	94
1-4030-003	AA34	28.06	70.40522671	88.38794986	2271.890051	1095.740053	7554.908515	251	92
1-4030-003	AB27	29.00	69.69755486	89.0625746	1860.222289	1141.716496	7871.906895	251_	91
1-4030-003	AB28	31.46	66.1347818	86.03088595	1743.385279	1030.593965	7105.73927	251	81
1-4030-003	AB29	34.49	74.02644348	86.23504011	2045.423165	1089.327155	7510.69287	251	84
1-4030-003	AB30	27.27	74.4771108	88.51750505	2043.125385	1148.609827	7919.435033	251	98
1-4030-003	AB31	30.98	72.39822108	86.93908471	2101.948492	1160.558283	8001.817251	251	91
1-4030-003	AB32	35.06	80,83288735	86,80281677	1874.008968	1033.720942	7127.29915	251	85
1-4030-003	AB33	35.90	75.4626653	85.31523963	1996.25073	1141.256943	7868.738371	251	86
1-4030-003	AB34	31.61	72,37045357	88.74796971	2142.170058	1253,190059	8640.494821	251	94
1-4030-003	AB35	24.44	76.5941	85.245	2245,63	1458.625	10056.92765	251	118
1-4030-003	R18	17.20	75.6521	79.39899759	2378.863568	1842.144821	12701.22011	251	157
1-4030-003	R19	31.47	74.42393979	82.91405672	2446.573383	999.5467141	6891.674684	251	85
1-4030-003	R20	37.04	73.99363552	87.42401973	1963.570046	956.1500577	6592.463418	251	76
1-4030-003	R21	30.86	64.46630461	85,55321387	2152.040078	960.4617734	6622.191835	251	78
1-4030-003	R22	25.01	71.91249908	84.28833753	1972.970065	1019.600044	7029.93838	251	95
1-4030-003	R23	16.73	65.30063816	81.14943971	2209.680067	1266,520058	8732.402499	251	123
1-4030-003	R24	32.99	64.2444411	88,35852865	2129.521825	1435.832069	9899.774951	251	92
1-4030-003	R25	29.36	69.28914902	90.0756336	1918.840057	1145.52004	7898.131574	251	91
1-4030-003	S19	30.80	70.254	79.50614191	2433.554911	1601.005214	11038.61075	251	106
1-4030-003	S20	41.45	69.67266668	83.37344089	2565.640065	1146,771601	7906.760835	251	77
1-4030-003	S21	25.03	73.26681744	83.74249476	2219.720068	1082.110059	7460.932434	251	98
1-4030-003	\$22	20.31	58,94326036	86.24194966	2125.515711	1429.358302	9855.139618	251	112
1-4030-003	S23	21.40	75.61272638	82.97599584	2237.580061	1536.600053	10594.55005	251	129
1-4030-003	S24	25.87	66,57978723	93.18512304	2354.880054	1818.280064	12536.67739	251	119
1-4030-003	S25	31.27	64.66744618	89,93429306	2354.44008	1574.080051	10852.96713	251	100
1-4030-003	S26	25.97	65.86826067	88.50812647	2406.493976	1543.547865	10642.45382	251	109
1-4030-003	T20	41.05	68.9874	79.22307987	2849.057759	1830.650575	12621.96958	251	97
1-4030-003	T21	31.73	65.23688829	86.80281847	2543.581401	1170.668496	8071.525149	251	86
1-4030-003	T22	31.66	78.86181649	83.24310875	2402.080056	1573.260068	10847.31352	251	109
1-4030-003	T23	18.43	60.9213334	83.37343682	2391.468517	1834.726264	12650.07065	251	136
1-4030-003	T24	24.36	69.84066679	84.73610518	2186.506737	1425.262279	9826.898361	251	112
1-4030-003	T25	26.22	71.31266564	83,31666361	1969.136949	1420.666724	9795.212926	251	109
1-4030-003	T26	18.38	59.10304269	86.07532352	2396.603534	1527.813096	10533.96573	251	122
1-4030-003	T27	37.41	63.61851055	90.84756973	2202.200046	1452.640073	10015.66278	251	87
1-4030-003	U21	39.29	65.23	78,7066707	2698.392335	2002.931026	13809.80884	251	101
1-4030-003	U22	23.67	71.54659081	81.80301528	2111.150048	1290,790054	8899.739267	251	109
1-4030-003	U23	46.90	76.61886345	87.36594928	2474.460073	1687.940061	11638.00913	251	92

4 4000 000	1104								
1-4030-003	U24	24.46	61.85066634	85.34930725	2068.860518	1338.406268	9228.043534	251	102
1-4030-003	U25	30.03	74.04863635	83.18504039	2349.440066	1512.630058	10429.28172	251	107
1-4030-003	U26	31.92	72.17022035	81.10233002	2322.53517	1523.607161	10504.96666	251	103
1-4030-003	U27	31.85	58.66652174	89.15243149	2244.65051	1392.943516	9604.066954	251	88
1-4030-003	U28	23.67	65,11085007	87.83593393	1905.640064	1101.520058	7594.760499	251	96
1-4030-003	V22	36.49	70.5845	80.50476499	2603.270919	1887.605329	13014.66122	251	106
1-4030-003	V23	28.13	72.36136202	81.7101078	2221.130058	1400.770061	9658,029418	251	105
1-4030-003	V24	37.09	71.69113567	87.07560886	2418.530065	1766.430037	12179,18182	251	102
1-4030-003	V25	22.29	63.59608659	84.64230081	2199.693967	1436.551369	9904.734379	251	112
1-4030-003	V26	20.23	58.55021734	86.97512618	2185.307888	1220.310481	8413.796701	251	104
1-4030-003	_V27	27.74	74.45088789	84.02070618	2206,727171	1412.394716	9738,179086	251	108
1-4030-003	V28	35.55	63.57608679	87.20840902	2040.997448	1258.073956	8674.168312	251	83
1-4030-003	V29	39.60	70.16042523	88.86880363	1718.200061	957.6400484	6602.736606	251	72
1-4030-003	W23	41.94	70.23565	80.53827355	2850.752863	1903.878101	13126.85873	251	99
1-4030-003	W24	24.64	69.64232431	81.32415754	2176.086585	1323.198187	9123.186859	251	107
1-4030-003	W25	29.44	68,45883613	88,62076161	2557.945185	1508.356337	10399.81528	251	103
1-4030-003	_W26	27.01	63.85199933	84.22510817	2106.544067	1298.424912	8952.380082	251	97
1-4030-003	W27	24.06	53.3452175	87.53056053	2166.875709	1445.542673	9966.727621	251	99
1-4030-003	W28	40.92	74.70444336	82.21517537	1879.064056	1076.919151	7425.142166	251	77
1-4030-003	W29	33.97	61.65521688	85.73095521	1915.119174	1119.158299	7716.372638	251	79
1-4030-003	W30	47.57	70,22928483	90.71399634	1870.398153	1064.675289	7340.72318	251	69
1-4030-003	X24	61.30	70.25454	79.58594848	2616.079108	1888.068361	13017.85373	251	81
1-4030-003	X25	24.58	72.11318146	80,96683294	2276.12007	1046,860038	7217.89059	251	97
1-4030-003	X26	32,63	73.20613584	86,85495047	2311,840048	1380.090059	9515.444937	251	97
1-4030-003	X27	25.52	60,17391304	82,46499634	2093,147019	1245.486125	8587.377735	251	95
1-4030-003	X28	24.66	54,63282639	87.06399486	2336.811367	1478.810506	10196.10267	251	100
1-4030-003	X29	41.81	75,84555376	83,21446194	2106,544054	1219.381386	8407.390778	251	82
1-4030-003	X30	28.31	65,16173864	85,64208619	2223,520928	1373.612218	9470.781524	251	98
1-4030-003	X31	61.13	69.87847801	89.49679831	1273,140045	803.1139513	5537.310071	251	53
1-4030-003	Y25	35.74	72.5412	82.03776438	2756.167264	2040.5017	14068.85112	251	112
1-4030-003	Y26	27.64	74.54666579	81.82908427	2198,914733	1390.795611	9589.257578	251	107
1-4030-003	Y27	33.23	64.32545332	85,54261034	2118.670073	1368.810038	9437.671449	251	90
1-4030-003	Y28	27.67	63,60466622	82.94193047	2281.63473	1441.346711	9937,797302	251	101
1-4030-003	Y29	26.42	52.97413022	86,67519163	2226,667886	1547.593989	10670.35103	251	97
1-4030-003	Y30	24.70	67,67599962	82,18110792	2142,38941	1249.712046	8616.514612	251	102
1-4030-003	Y31	36.83	63.3821735	83.77582417	1908.825267	1180.299165	8137.926684	251	79
1-4030-003	Y32	28.77	68,35085086	88.85793304	2134.000065	1174.560035	8098.356531	251	92
1-4030-003	Z26	34.70	74.569	82.18855023	2764.642708	1921.167928	13246.06863	251	112
1-4030-003	Z27	25.79	77.36133245	81.76094649	2237.976957	1304.399167	8993.571378	251	109
1-4030-003	Z28	33.79	71.11599901	87.12077484	2178.694278	1438.589399	9918.786187	251	96
1-4030-003	Z29	25.76	56,43217377	84.20906083	1981.205288	1115.561784	7691.575385	251	86
1-4030-003	Z31	14.01	66,01458335	82.92276939	2378.658394	1617.126736	11149.76542	251	152
1-4030-003	Z32	39.07	72,13999997	84.67562883	2610,147031	1564.677427	10788.13792	251	94
1-4030-003	Z33	26.38	64,90804349	86,31971459	2290.955704	1327.756581	9154.616076	251	100

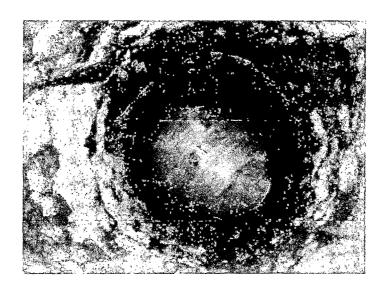

ANEXO M: SECUENCIA DE SALIDA DEL PROYECTO 1-4030-003

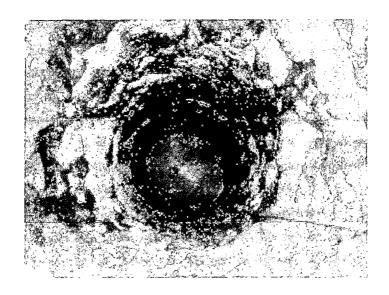


10 CE CENT CONTRACT C es () ()

MINING

ANEXO N: FRAGMENTACIÓN – PISO FINAL DEL PROYECTO 1-4030-003 FRAGMENTACIÓN


PISO FINAL



ANEXO O: LEVANTAMIENTO TOPOGRAFICO PISO 4030

1	803756.352	9121272.23	4029.53	ele	4030
2	803761.6	9121270.26	4029.723	ele	4030
3	803767.623	9121268.57	4029.776	ele	4030
4	803766.895	9121260.07	4029.575	ele	4030
5	803761.181	9121261.95	4029.612	ele	4030
6	803755.442	9121263.18	4029.472	ele	4030
7	803754.482	9121255.24	4029.589	ele	4030
8	803759.795	9121254.62	4029.521	ele	4030
9	803765.659	9121253.82	4029.56	ele	4030
10	803765.152	9121246.93	4029.463	ele	4030
11	803759.215	9121248.67	4029.699	ele	4030
12	803753.649	9121248.65	4029.667	ele	4030
13	803752.853	9121242.02	4029.641	ele	4030
14	803758.476	9121242.03	4029.573	ele	4030
15	803764.627	9121241.63	4029.488	ele	4030
16	803764.126	9121234.28	4029.533	ele	4030
17	803758,425	9121234.97	4029.603	ele	4030
18	803752.681	9121235.04	4029.637	ele	4030
19	803752.412	9121229.55	4029.601	ele	4030
20	803757.712	9121229.26	4029.633	ele	4030
21	803762.846	9121229.04	4029.592	ele	4030
22	803762,699	9121220.4	4029.484	ele	4030
23	803762.428	9121212.56	4029.389	ele	4030
24	803762.297	9121204.62	4029.31	ele	4030
25	803762.17	9121196.51	4029.217	ele	4030
26	803762.662	9121188.98	4029.32	ele	4030
27	803768.909	9121189.13	4029.317	ele	4030
	803775.856	9121189.48	4029.46	ele	4030
28	803774.498	9121109.48	4029.46	ele	4030
29	803774.498		4029.463	ele	4030
30		9121209.52	•		4030
31	803773.836	9121216.94	4029.449	ele	4030
32	803774,642	9121223.58	4029.52 4029.421	ele ele	4030
33	803775.074	9121231.37			
34	803775,565	9121237.69	4029.4	ele	4030 4030
35	803782.495	9121236.38	4029,491	ele	
36	803791.949	9121234.28	4029.631	ele	4030
37	803799.008	9121231.19	4029.731	ele	4030
38	803806.511	9121230.05	4029.666	ele	4030
39	803806.379	9121222.28	4029.637	ele	4030
40	803805.469	9121215.04	4029.536	ele	4030
41	803804.151	9121208.54	4029.514	ele	4030
42	803800.685	9121202.6	4029.518	ele	4030
43	803797.663	9121200.16	4029.533	ele	4030
44	803793.531	9121197.75	4029.632	ele	4030
45	803794.257	9121204.59	4029.524	ele	4030
46	803796.509	9121209.8	4029.467	ele	4030
47	803797.002	9121215.34	4029.481	ele	4030
48	803790.818	9121215.53	4029.498	ele	4030
49	803790.888	9121209.87	4029.482	ele	4030
50	803788.242	9121206,61	4029.493	ele	4030
51	803787.203	9121200.48	4029.534	ele	4030
52	803787.61	9121194.36	4029.556	ele	4030
53	803783.37	9121193	4029.518	ele	4030
54	803779.696	9121209.82	4029.478	ele	4030
55	803785.125	9121210.07	4029.436	ele	4030
56	803785.43	9121215.53	4029.474	ele	4030

ANEXO P: EXPLODECK DENTRO DE UN TALADRO

ANEXO Q: PORCENTAJE DE VARIACIÓN DE UN TALADRO CON RESPECTO A SU PAR SUPERIOR

SUPERIOR								
TALADRO	MALLA	VP	PD	RPM	RCS			
X143	4130-024	21.14	2192.72	159.29	393.57			
AE146	4130-027	37.56	2192.72	94.20	56.11			
AF143	4130-027	37.44	1882.52	96.19	37.61			
B11	4130-027	39.78	1779.12	109.92	39.71			
Q173	4130-023	56.77	1965.24	100.42	10.26			
T169	4130-023	28.58	2440.58	169.01	342.01			
W167	4130-023	29.90	1923.88	81.65	48.97			
W174	4130-023	24.91	2151.06	96.00	149.92			
W151	4130-024	31.65	2234.08	71.53	43.28			
W155	4130-024	27.65	2110.00	77.09	67.89			
W160	4130-024	41.93	1593.00	96.60	13.09			
Q145	4130-024	57.84	1841.16	93.54	4.74			
Q155	4130-024	27.58	2544.28	82.70	126.79			
Q161	4130-024	20.56	1778.82	72.25	79.74			
L146	4130-024	31.47	2544.28	86.71	105.27			
L152	4130-024	56.44	2378.84	123.71	47.85			

INFERIOR								
TALADRO	MALLA	VP	PD	RPM	RCS			
G87	4120-032	28.78	2440.88	94.08	139.08			
N83	4120-032	25.22	2316.80	97.67	173.71			
O79	4120-032	38.40	2089.32	91.19	40.92			
S80	4120-032	27.05	2027.28	84.41	82.17			
R110	4120-029	26.17	2378.84	64.21	66.46			
U105	4120-029	15.86	2151.36	81.98	245.42			
X101	4120-029	24.34	2509.92	101.69	225.04			
X108	4120-029	24.10	2502.92	64.17	93.51			
X85	4120-029	42.95	2089.32	70.20	9.45			
X89	4120-029	19.66	2192.72	55.32	77.05			
X94	4120-029	19.17	2047.96	68.57	116.21			
R82	4120-029	35.45	2006.60	76.25	25.20			
R92	4120-029	17.38	2440.88	77.64	238.62			
R98	4120-029	24.58	2544.28	75.19	132.16			
M86	4120-029	27.90	2585.64	84.88	135.08			
M92	4120-029	40.25	2110.00	117.65	77.03			

% DE VARIACIÓN
-64.66
209.58
8.78
106.93
547.67
-28.24
359.54
-37.62
-78.16
13.50
787.65
431.95
88.19
65.74
28.32
61.00

L159	4130-024	42.11	1923.58	187.50	159.62
N161	4130-024	23.83	2295.92	103.45	207.73
N169	4130-023	26.40	1820.48	147.95	215.57
O175	4130-023	29.49	2337.48	173.91	324.50
S172	4130-023	38.74	2275.44	166.67	201.79
T164	4130-023	32.43	2502.92	49.64	15.75
W170	4130-023	28.39	2254.46	79.04	80.56
M144	4130-024	31.31	2502.92	111.11	170.63
T147	4130-024	35.98	2647.68	109.64	142.23
T151	4130-024	34.03	1758.44	73.91	15.53
P147	4130-024	26.45	1965.40	71.59	50.84
L149	4130-024	20.81	2027.28	81.71	138.46
O151	4130-024	19.00	1655.04	70.72	76.75
T154	4130-024	48.05	1944.56	113.51	31.56
T159	4130-024	19.14	2399.52	81.90	217.68
O157	4130-024	29.63	2006.30	105.19	109.14
L155	4130-024	44.68	2502.92	75.00	22.78
K162	4130-024	23.47	2130.38	91.37	150.09
AO105	4040-004	31.41	1903.20	122.45	119.51

M99	4120-029	28.39	2482.24	92.75	143.68
O100	4120-029	20.63	2358.16	87.82	210.21
O108	4120-029	28.43	2006.60	71.32	42.86
P113	4120-029	24.83	2461.56	146.34	343.99
T108	4120-029	24.28	2337.48	96.00	183.03
U100	4120-029	32.24	2544.28	81.90	86.75
X104	4120-029	21.18	2399.52	71.67	144.04
N83	4120-029	22.31	2544.28	73.62	153.68
U83	4120-029	22.01	2110.00	74.86	111.09
U87	4120-029	21.69	1965.24	71.55	87.44
Q85	4120-029	20.81	2296.12	64.46	108.85
M89	4120-029	22.91	2358.16	66.91	101.06
P89	4120-029	17.65	2440.88	73.34	213.60
U90	4120-029	26.45	2275.44	67.63	65.86
U95	4120-029	17.87	2275.44	72.39	182.21
P95	4120-029	24.97	2399.52	78.90	125.14
M95	4120-029	38.22	1737.76	115.83	49.32
BF22	4120-029	21.35	2089.32	85.11	151.34
Q38	4030-002	66.27	1593.00	80.34	0.26

-9.99
1.20
-80.12
6.01
-9.30
450.96
78.79
-9.93
-21.89
463.12
114.09
-27.01
178.30
108.68
-16.29
14.65
116.53
0.83
-99.79
L

AR106	4040-004	19.21	1799.80	77.18	112.97
AR100	4040-004	21.07	1605.54	80.65	76.34
AR96	4040-004	31.31	1923.88	117.44	112.44
AN95	4040-004	23.00	1572.32	76.07	47.43
AL92	4040-004	25.20	2109.70	78.15	89.40
		I i		ĺ	ĺ

S41	4030-002	21.84	1944.56	78.95	105.93
Y41	4030-002	22.66	1861.84	63.65	48.29
AC41	4030-002	29.51	2213.40	104.65	134.52
Z37	4030-002	27.58	2358.16	81.52	103.92
AA35	4030-002	37.97	2523.60	92.78	76.96

-6.22
-36.75
19.64
119.08
-13.91

ANEXO R: PLANO DE DUREZA PROYECTO 2-4140-034

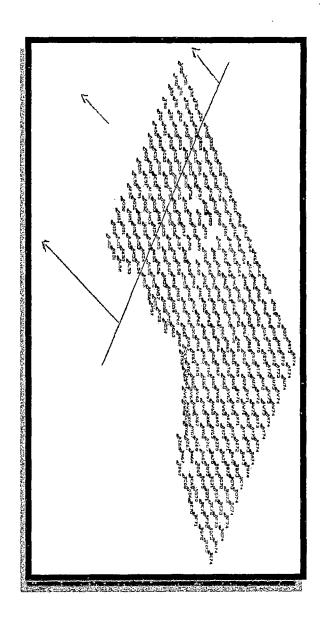


Figura 1

PRECIOS DE LAS MEZCLAS EXPLOSIVAS

Kg/m	Emulsión	ANFO	Nitrato	Petróleo	gal	\$/m	\$/Kg
40	0	40	37.6	2.4	0.74	28.5	0.713
47	9.4	37.6	35.344	2.256	0.69	31.7	0.675
54	16.2	37.8	35.532	2.268	0.7	35.4	0.655
			a 34.968				
64	32	32	30.08	1.92	0.59	39.5	0.617
65	39	26	24.44	1.56	0.48	38.8	0.597
	40 47 54 \$ 62 64	40 0 47 9.4 54 16.2 24.62 24.8 24.8	40 0 40 47 9.4 37.6 54 16.2 37.8 24.62 24.8 37.2 37.2 32	40 0 40 37.6 47 9.4 37.6 35.344 54 16.2 37.8 35.532 24.62 24.8* 37.2 34.968 64 32 32 30.08	40 0 40 37.6 2.4 47 9.4 37.6 35.344 2.256 54 16.2 37.8 35.532 2.268 54 2.24.8 37.2 34.968 2.2232 64 32 32 30.08 1.92	40 0 40 37.6 2.4 0.74 47 9.4 37.6 35.344 2.256 0.69 54 16.2 37.8 35.532 2.268 0.7 24.62 24.8 37.2 34.968 2.232 0.69 64 32 32 30.08 1.92 0.59	40 0 40 37.6 2.4 0.74 28.5 47 9.4 37.6 35.344 2.256 0.69 31.7 54 16.2 37.8 35.532 2.268 0.7 35.4 24.62 24.8 37.2 34.968 22.232 0.69 39.48 64 32 32 30.08 1.92 0.59 39.5

Figura 2