UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA QUÍMICA Y TEXTIL

"ESTUDIO COMPARATIVO ENTRE EMPAQUES ALEATORIOS Y ESTRUCTURADOS EN LA OPERACIÓN UNITARIA DE DESTILACION"

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO QUÍMICO

PRESENTADO POR:

BRUNO ALEXIS MOGOLLON ACOSTA SERGIO GONZALO DELGADO FERNÁNDEZ

LIMA – PERÚ

Digitalizado por:

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse 2011

RESUMEN

En los últimos años la industria de elementos de transferencia de masa para operaciones unitarias tales como destilación viene desarrollando diferentes tipos de empaques aleatorios y estructurados y el tipo grid o rejilla.

Los empaques estructurados tienen características diferentes mejorando la transferencia de masa, transferencia de calor, reduciendo la caída de presión y el comportamiento en servicios con alto factor de ensuciamiento de acuerdo al sistema o servicio donde se encuentren operando.

Por tal motivo la presente Tesis tiene como objetivo realizar la comparación experimental de los empaques aleatorios y empaques estructurados, en la operación unitaria de Destilación, desde el punto de vista hidráulico como caída de presión, capacidad de operación, porcentaje de inundación, HETP (Altura equivalente de un plato teórico); así como también porcentaje de recuperación alcohólica y la estimación del área interfacial efectiva de transferencia de masa.

Estas pruebas experimentales se realizaron en el Laboratorio Nº 23 de Operaciones Unitarias, de la Facultad de Ingeniería Química; se trabajó con una columna de Destilación a nivel planta piloto, trabajándose con el sistema binario etanol – agua.

A Dios, mis Padres José Luis Delgado y Clara Fernández y mi Familia

S. Delgado Fernández

A Dios, mis Padres Bruno Mogollón, Amanda Acosta I., y mi hermano Paolo Mogollón

B. Mogollón Acosta

RECONOCIMIENTOS

Reconocer significa dar las gracias. Dado que son muchas las personas que han permitido con su apoyo y consejos, lograr los objetivos planteados, no será posible nombrarlos a todos, pero estaremos eternamente agradecidos.

Este trabajo no hubiera sido posible sin la valiosa orientación del Ingeniero Rafael Chero Rivas y el apoyo de Don Víctor Rojas Medina. A ellos el mayor de los agradecimientos.

Debemos agradecer especialmente a la empresa Repsol "Refinería La Pampilla S.A.", por la donación del empaque estructurado perteneciente a una de las columnas de Destilación el que posteriormente fue modificado, ya que sin ellos no hubiera sido posible el desarrollo de esta tesis.

Debemos gratitud a nuestros compañeros de la facultad, sin cuyo apoyo el desarrollo experimental de la tesis habría sido más escabroso.

Finalmente deseamos agradecer a nuestras familias por la formación brindada, apoyo y comprensión recibidos en más de 23 años.

ÍNDICE GENERAL

RESUMEN

ÍNDICE GENERAL

ÍNDICE DE FIGURAS

ÍNDICE DE TABLAS

INTRODUCCION

NOMENCLATURA

CAPITULO	I: TORRES EMPACADAS	1
1.1. Descr	ipción General	3
1.2. Const	tituyentes internos	4
1.2.1.	Distribuidores de Líquido	5
1.2.2.	Sistemas de Alimentación	8
1,2.3.	Retenedores de Empaque	11
1.2.4.	Soportes de Empaque	11
1.2.5.	Colectores de líquido	14
1.2.6.	Constituyentes internos especiales para servicios líquido – líquido	16
1.3. Empa	ques	16
1.3.1.	Función	17
1.3.2.	Tipos de empaque	17
· a.	Empaques al azar	17
b.	Empagues estructurados	17

1.3.3.	Selección de empaques	22
1.3.4.	Modelamiento	25
a.	Modelo de partícula	25
b.	Modelo de canal	26
CAPITULO COLUMNAS	II: HIDRÁULICA Y TRANSFERENCIA DE MASA EN S EMPACADAS: CONCEPTOS BASICOS	28
2.1. Desci	ripción General	28
2.2. Geom	netría del Empaque	29
2.3. Área	Específica	31
2.4. Caída	a de Presión	33
2.4.1.	Caída de Presión Seca	34
2.4.2.	Caída de Presión Irrigada	34
2.5. Reter	nción de Líquido	35
2.5.1.	Retención Estática	36
2.5.2.	Retención Dinámica	36
2.6. Funda	amento Teórico	36
2.6.1.	Factor de Fricción	36
2.6.2.	Teoría de la Película	38
2.6.3.	Teoría de la Penetración	39
2.6.4.	Teoría de la Superficie Renovada	41
2.6.5.	Teoría Película-Penetración	41
2.6.6.	Teoría de Doble Película	42

2.6.7. Difusión en una Película Líquida Descendente	46
2.7. Eficiencia de las Columnas Empacadas	48
2.7.1. HETP: Altura Equivalente de un Plato Teórico	49
2.7.2. Eficiencia con respecto a los Regímenes de Flujo	54
CAPITULO III: DESTILACION DE UN SISTEMA BINARIO	58
3.1. Columna de Destilación	59
3.2. Columna de Destilación Empacada	60
3.3. Azeotropos	61
3.4. Descripción del comportamiento de la mezcla Etanol-Agua	63
3.4.1. Etanol-Agua	63
3.5. Método de McCabe-Thiele	65
3.5.1. Sección de enriquecimiento	65
3.5.2. Sección de Agotamiento	67
3.5.3. Introducción de la mezcla de alimentación	69
3.5.4. Localización del plato de alimentación	70
3.5.5. Relación de reflujo mínimo	71
3.6. La unidad de Transferencia	74
CAPITULO IV: ANALISIS EXPERIMENTAL Y RESULTADOS	77
4.1. Medidas experimentales	83
4.2. Balances de Masa	84
4.2.1. Composición de Destilado en Empaque Aleatorio	84
4.2.2. Composición de Destilado en Empaque Estructurado.	85

.

4.2.3. Comparación de la Composición de destilado entre empaque Estructurado y Aleatorio	86
4.3. Caída de Presión	87
4.3.1. Caída de Presión en Empaque Aleatorio	87
4.3.2. Caída de Presión en Empaque Estructurado	90
4.3.3. Comparación de la caída de presión entre empaque Estructurado y Aleatorio	93
4.4. Punto de Inundación	95
4.4.1. Inundación en empaque aleatorio	95
4.4.2. Inundación en empaque estructurado	98
4.4.3. Comparación del porcentaje de Inundación entre empaque Estructurado y Aleatorio	100
4.5. Capacidad	103
4.5.1. Capacidad en empaque aleatorio	103
4.5.2. Capacidad en empaque estructurado	105
4.5.3. Comparación de las capacidades entre empaque estructurado y aleatorio	107
4.6. Altura Equivalente de Etapa Teórica HETP	109
4.6.1. HETP en empaque aleatorio	109
4.6.2. HETP en empaque estructurado	111
4.6.3. Comparación de HETP para empaque estructurado y aleatorio	113
4.7. Recuperación de la Mezcla Alcohólica	116
4.7.1. Recuperación con empaque aleatorio	116

4.7.2. Recuperación con empaque estructurado	117
4.7.3. Comparación de la Recuperación entre empaque estructurado y aleatorio	118
4.8. Área Interfacial Efectiva de Transferencia de Masa	119
4.8.1. Empaque Aleatorio: Anillos Raschig de ½"	119
4.8.2. Empaque Estructurado: Mellapack 250Y	124
4.8.3. Área Interfacial Efectiva: Empaque Aleatorio vs. Empaque Estructurado	127
CAPITULO V: CONCLUSIONES Y RECOMENDACIONES	130
BIBLIOGRAFÍA	134
APÉNDICES	137
A. Balances de Masa	

·

- B. Unidades de Transferencia
- C. Área Interfacial
- D. Caída de Presión
- E. Curva Entálpica
- F. Empaques Comerciales

INDICE DE FIGURAS

Figura 1.1	Esquema General de una Torre Empacada	3
Figura 1.2	Distribuidor de líquido tipo "V"	6
Figura 1.3	Distribuidor tipo plato de orificios	7
Figura 1.4	Distribuidor tipo VRD tubería con orificios	7
Figura 1.5	Sistemas de alimentación de gas	9
Figura 1.6	Sistemas de alimentación de líquido	10
Figura 1.7	Plato soporte tipo TEB / TSB	12
Figura 1.8	Plato soporte tipo TE / TS	13
Figura 1.9	Plato soporte para Random Packing tipo GIS / EMS	13
Figura 1.10	Plato soporte para Random Packing tipo RPB	14
Figura 1.11	Colector de líquido tipo riser	15
Figura 1.12	Colector de líquido tipo Chevron	15
Figura 1.13	Comparación entre empaques al azar	18
Figura 1.14	Comparación entre empaques al azar y estructurado.	23
Figura 2.1	Descripción Geométrica del Empaque	29
Figura 2.2	Sección Transversal de una Columna	30
Figura 2.3	Flujos de la Fase Gaseosa y Líquida	31
Figura 2.4	Diferentes tipos de áreas presentes en la columnas empacadas	33
Figura 2.5	Caída de presión vs. Velocidad del gas. Empaque Intalox de 1 ½" pulgada, fabricado de cerámica	35

Figura 2.6	Modelo de película para la transferencia de masa	38
Figura 2.7	Modelo de Penetración	40
Figura 2.8	Modelo Doble Partícula	44
Figura 2.9	Modelo Doble Descendente	47
Figura 2.10	Propiedades en la interfase en términos de las propiedades del seno de los fluidos	50
Figura 2.11	Composición en la interfase	51
Figura 2.12	Contacto Diferencial en una Columna de Absorción a Contra Corriente	54
Figura 2.13	Eficiencia Característica de la mayoría de los Empaques Estructurados	56
Figura 3.1	Diagrama básico de la una columna de destilación	59
Figura 3.2	Mezcla binaria con comportamiento ideal	62
Figura 3.3	Mezcla binaria no ideal, azeotrópica	62
Figura 3.4	Equilibrio a presión constante vapor líquido para el etanol agua	64
Figura 3.5	Diagrama de equilibrio x-y para el etanol agua	65
Figura 3.6	Balances de Materia en una columna de destilación	68
Figura 3.7	Localización de la línea <i>q</i> para condiciones típicas de alimentación	70
Figura 3.8	Efecto de la Relación de Reflujo sobre las rectas de operación: (a) Total, (b) Reflujo < Reflujo mínimo	72
Figura 3.9	Efecto de la Relación de Reflujo sobre las rectas de operación: (c) Reflujo = Reflujo mínimo, (d) Reflujo = Reflujo Total	73

Figura 3.10	Fraccionamiento de una torre empacada	75
Figura 4.1	Equipo de Destilación Continua, de la Facultad de Ingeniería Química, Laboratorio Operaciones Unitarias Nº 23	78
Figura 4.2	Distribuidor tipo Spray	79
Figura 4.3	Rotámetro de Reflujo	80
Figura 4.4	Empaque Estructurado Tipo Mellapack 250Y	82
Figura 4.5	Empaque Estructurado Tipo Mellapack 250Y – vista de planta	82
Figura 4.6	Empaque Estructurado instalado en ambas zonas Enriquecimiento y Empobrecimiento	83
Figura 4.7 C	Composición de destilado para Empaque Estructurado vs Empaque Aleatorio con Z _F = 10%	86
Figura 4.8 C	Composición de destilado para Empaque Estructurado vs Empaque Aleatorio con Z _F = 20%	87
Figura 4.9	Ultima versión de la Gráfica Generalizada de Caída de Presión por Eckert (1975)	88
Figura 4.10	Caída de Presión para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento Z_F = 10%	93
Figura 4.11	Caída de Presión para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento Z _F = 10%	94
Figura 4.12	Caída de Presión para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento Z _F = 20%	94

95	 13 Caída de Presión para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento Z_F = 20% 	Figura 4.13
96	14 Curva de inundación presentada por Sherwood	Figura 4.14
101	15 Porcentaje de inundación para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento Z _F = 10%	Figura 4.15
101	16 Porcentaje de inundación para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento Z _F = 10%	Figura 4.16
102	4.17 Porcentaje de inundación para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento Z _F = 20%	Figura 4.17
102	4.18 Porcentaje de inundación para Empaque Estructurado vs Empaque Aleatorio en zona de empobrecimiento Z _F = 20%	Figura 4.18
107	19 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento Z _F = 10%	Figura 4.19
108	20 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento Z_F = 10%	Figura 4.20
108	21 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento Z _F = 20%	Figura 4.21
109	22 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 20\%$	Figura 4.22
114	23 HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento Z _F = 10%	Figura 4.23
114	24 HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 10\%$	Figura 4.24

.

'n

Figura 4.25	HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento $Z_F = 20\%$	115
Figura 4.26	HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 20\%$	115
Figura 4.27	Recuperación para Empaque Estructurado vs Empaque Aleatorio en destilación z _F = 10%	118
Figura 4.28	Recuperación para Empaque Estructurado vs Empaque Aleatorio en destilación z _F = 20%	119
Figura 4.29	Gráfico a_e (Empaque Estructurado vs Empaque Aleatorio) – Zona de Enriquecimiento z_F = 10%	128
Figura 4.30	Gráfico a _e (Empaque Estructurado vs Empaque Aleatorio) – Zona de Empobrecimiento z _F = 10%	128
Figura 4.31	Gráfico a _e (Empaque Estructurado vs Empaque Aleatorio) – Zona de Enriquecimiento z _F = 20%	129
Figura 4.32	Gráfico a_e (Empaque Estructurado vs Empaque Aleatorio) – Zona de Empobrecimiento z_F = 20%	129

.

.

INDICE DE TABLAS

-

Tabla 1.1	Operaciones en las cuales se emplean torres empacadas	2
Tabla 1.2	Temperatura máxima de operación y peso relativo al polipropileno para diferentes materiales plásticos.	20
Tabla 3.1	Datos del equilibrio líquido vapor para etanol-agua	64
Tabla 3.2	Condición térmica de una mezcla de alimentación	70
Tabla 4.1. (a) Composición de destilado para empaque Raschig ½" con z _F = 10%	84
Tabla 4.1. (b) Composición de destilado para empaque Raschig ½" con z _F = 20%	85
Tabla 4.2.	(a) Composición de destilado para empaque estructurado con z _F = 10%	85
Tabla 4.2.	(b) Composición de destilado para empaque estructurado con z _F = 20%	86
Tabla 4.3	Características del empaque aleatorio	89
Tabla 4.4(a)	Caída de Presión para empaque Raschig ½" para z _F = 10% en Zona de Enriquecimiento	89
Tabla 4.4(b)	Caída de Presión para empaque Raschig ½" para z _F = 10% en Zona de Empobrecimiento	89
Tabla 4.5(a)	Caída de Presión para empaque Raschig ½" para z _F = 20% en Zona de Enriquecimiento	90
Tabla 4.5(b)	Caída de Presión para empaque Raschig $\frac{1}{2}$ " para $z_F = 20\%$ en Zona de Empobrecimiento	90

Tabla 4.6(a)	Caída de Presión para empaque estructurado z _F = 10% en Zona de Enriquecimiento	91
Tabla 4.6(b)	Caída de Presión para empaque estructurado z _F = 10% en Zona de Empobrecimiento	92
Tabla 4.7(a)	Caída de Presión para empaque estructurado z _F = 20% en Zona de Enriquecimiento	92
Tabla 4.7(b)	Caída de Presión para empaque estructurado z _F = 20% en Zona de Empobrecimiento	93
Tabla 4.8(a)	Porcentaje de inundación con empaque Raschig ½" para Z _F = 10% en Zona de Enriquecimiento	97
Tabla 4.8(b)	Porcentaje de inundación con empaque Raschig ½" para Z _F =10% en Zona de Empobrecimiento	97
Tabla 4.9 (a) Porcentaje de inundación con empaque Raschig ½" para Z _F = 20% en Zona de Enriquecimiento	97
Tabla 4.9 (b) Porcentaje de inundación con empaque Raschig ½" para Z _F = 20% en Zona de Empobrecimiento	98
Tabla 4.10)(a)Porcentaje de inundación con empaque estructurado para Z _F = 10% en Zona de Enriquecimiento	99
Tabla 4.10	(b) Porcentaje de inundación con empaque estructurado para Z _F = 10% en Zona de Empobrecimiento	99
Tabla 4.11	(a)Porcentaje de inundación con empaque estructurado para Z _F = 20% en Zona de Enriquecimiento	100
Tabla 4.11	l(b)Porcentaje de inundación con empaque estructurado para Z _F = 20% en Zona de Empobrecimiento	100

1

Tabla 4.12(a) Capacidad en empaque aleatorio para Z _F = 10% en Zona de Enriquecimiento	103
Tabla 4.12(b) Capacidad en empaque aleatorio para Z _F = 10% en Zona de Empobrecimiento	104
Tabla 4.13(a) Capacidad en empaque aleatorio para Z _F = 20% en Zona de Enriquecimiento	104
Tabla 4.13(b) Capacidad en empaque aleatorio para Z _F = 20% en Zona de Empobrecimiento	104
Tabla 4.14(a) Capacidad en empaque estructurado para Z _F = 10% en Zona de Enriquecimiento	105
Tabla 4.14(b) Capacidad en empaque estructurado para Z _F = 10% en Zona de Empobrecimiento	105
Tabla 4.15(a) Capacidad en empaque estructurado para Z _F = 20% en Zona de Enriquecimiento	106
Tabla 4.15(b) Capacidad en empaque estructurado para Z _F = 20% en Zona de Empobrecimiento	106
Tabla 4.16(a) HETP (m) en empaque aleatorio para Z _F = 10% en Zona de Enriquecimiento	110
Tabla 4.16(b) HETP (m) en empaque aleatorio para Z _F = 10% en Zona de Empobrecimiento	110
Tabla 4.17(a) HETP (m) en empaque aleatorio para Z_F = 20% en zona de Enriquecimiento	111
Tabla 4.17(b) HETP (m) en empaque aleatorio para Z _F = 20% en Zona de Empobrecimiento	111
Tabla 4.18(a) HETP (m) en empaque estructurado para Z _F = 10% en Zona de Enriquecimiento	112
Tabla 4.18(b) HETP (m) en empaque estructurado para Z _F = 10% en Zona de Empobrecimiento	112

.

•

Tabla 4.19(a) HETP (m) en empaque estructurado para Z _F = 20% en Zona de Enriquecimiento	113
Tabla 4.19(b) HETP (m) en empaque estructurado para Z _F = 20% en Zona de Empobrecimiento	113
Tabla 4.20(a) Recuperación de alcohol con empaque aleatorio con $z_F = 10\%$	116
Tabla 4.20(b) Recuperación de alcohol con empaque aleatorio con $z_F = 20\%$	116
Tabla 4.21(a) Recuperación de alcohol con empaque estructurado con z _F = 10%	117
Tabla 4.21(b) Recuperación de alcohol con empaque estructurado con z _F = 20%	117
Tabla 4.22 Características físicas de empaques tipo Raschig	121
Tabla 4.23 Tensión de superficie crítica de materiales de empaque	121
Tabla 4.24(a) Área Interfacial Efectiva para Empaque Aleatorio $z_F = 10\%$, Zona de Enriquecimiento	122
Tabla 4.24(b) Área Interfacial Efectiva para Empaque Aleatorio $z_F = 10\%$, Zona de Empobrecimiento	122
Tabla 4.25(a) Área Interfacial Efectiva para Empaque Aleatorio z _F = 20%, Zona de Enriquecimiento	123
Tabla 4.25(b) Área Interfacial Efectiva para Empaque Aleatorio $z_F = 20\%$, Zona de Empobrecimiento	123
Tabla 4.26(a) Área Interfacial Efectiva para Empaque Estructurado z _F = 10%, Zona de Enriquecimiento	125
Tabla 4.26(b) Área Interfacial Efectiva para Empaque Estructurado z_F = 10%, Zona de Empobrecimiento	126

Tabla	4.27(a)	Área	Interfacial	Efectiva	para	Empaque	
	Estru	ucturado	o z _F = 20%, 2	Zona de E	nriqueo	cimiento	126

Tabla 4.27(b)Área Interfacial Efectiva para EmpaqueEstructurado $z_F = 20\%$, Zona de Empobrecimiento..127

.

INTRODUCCIÓN

En la industria química y petroquímica, los procesos de separación de líquido / vapor, siendo el más conocido el de destilación, son utilizados para la separación y purificación de mezclas. Al principio de siglo pasado, estos procesos se realizaban mediante columnas de platos. Poco después aparecieron en los años 30's y principios de los 40's las columnas empacadas, conteniendo dos tipos de dispositivos, los aleatorios y los estructurados. La función de estos elementos es promover la transferencia de masa en este tipo de columnas. Al inicio, los empaques aleatorios tuvieron un gran auge a diferencia de los estructurados. En los años 50's se empezaron a desarrollar empagues estructurados de alta eficiencia. Impulsados por este desarrollo, en los años 70's los empagues estructurados comenzaron a ser ampliamente utilizados en la industria, y algunas columnas con empagues aleatorios fueron reconfigurados con empagues estructurados, esto motivado además del factor económico, por las siguientes ventajas: una alta eficiencia y una menor caída de presión y una mayor capacidad.

A pesar del amplio uso de los empaques estructurados en la industria, en la literatura abierta existe una marcada escasez acerca de datos experimentales de estos tipos de empaques. Esta situación se debe, por una parte a lo *novedoso* de estos empaques, y por otra parte el deseo de los proveedores de preservar la propiedad del conocimiento (*Know-how*).

Existen en la literatura abierta tres tipos de métodos para la predicción del comportamiento hidráulico y de transferencia de masa en las columnas empacadas. Estos pueden ser: métodos cortos, modelos mecanisticos y redes neuronales. Por un lado los métodos cortos son especialmente utilizados para proporcionar un estimado inicial, y por otro lado los modelos mecanisticos tratan de describir la fenomenología presente en estos empaques, lo anterior se logra aplicando las teorías de *transferencia de masa y de momentum*; dichos modelos utilizan varias constantes correlacionadas, las cuales carecen de un fundamento teórico y un significado físico, definición y/o justificación; adicionalmente los modelos reportados en la literatura no

son capaces de predecir el punto de *máxima eficiencia* por sí mismo. Por ese motivo, para determinar el intervalo de operación de la columna, requieren de la estimación del punto de inundación, el cual presenta una alta dificultad en su determinación.

Las condiciones que favorecen las columnas empacadas son:

- Los líquidos que tienden a generar espuma se manejan mejor en columnas empacadas, debido a que el grado de agitación del líquido por el gas es relativamente bajo.
- La retención del líquido es mínima en columnas empacadas, lo cual representa una gran ventaja cuando el líquido es térmicamente sensible.

Las condiciones desfavorables para las columnas empacadas son:

- Si el líquido o el gas contiene sólidos disueltos, las columnas empacadas no facilitan la limpieza misma.
- Durante la inserción del empaque en la columna, algunos materiales de éste se rompen con facilidad debido a la dilatación y la contracción térmica.
- Los flujos bajos de líquido traen como consecuencia el humedecimiento incompleto del empaque de la columna, lo que disminuye la eficiencia del contacto.

A continuación se hace una breve descripción de la tesis, en el cual se detalla grosso modo el contenido de cada una de las secciones que comprende este trabajo.

En el primer capítulo se presenta una breve descripción de las torres empacadas y una reseña de sus aplicaciones más importantes. Se relacionan, además, los principales constituyentes internos, con énfasis en los empaques y en la evolución de los mismos, y se realiza una comparación entre los empaques al azar y los empaques estructurados. Por último se alude a dos de los modelos teóricos propuestos para representar lechos empacados: el modelo de partícula y el modelo de canal.

En el capitulo dos (Hidráulica y Transferencia de Masa en Columnas empacadas: Conceptos básicos) se proporciona, en una forma breve los conceptos, las definiciones, así como el marco teórico referente a columnas empacadas.

En el capitulo tres (Destilación de un Sistema Binario), se explica brevemente sobre los conceptos de una destilación binaria así como también sobre el sistema que se trabajo en la presente tesis: Etanol – Agua.

Se muestra, en el capítulo cuatro, los resultados obtenidos para las corridas realizadas a concentraciones volumétricas de 10 y 20% de etanol, a diferentes flujos de alimentación, en la cual se demostrará experimentalmente el mayor beneficio de trabajar con un empaque estructurado.

En el capitulo cinco, se resaltan las conclusiones y recomendaciones, esta última sección de la tesis discurre sobre los alcances y limitaciones del trabajo realizado. Así mismo se sugieren algunas mejoras e ideas para trabajos posteriores.

NOMENCLATURA

Letras Latinas

Letra	Dimensión	Descripción
а	[m²/m³]	Área de transferencia de masa
a _e	$[m^{2}/m^{3}]$	Área efectiva de transferencia de masa
ai	[m²/m³]	Área de contacto entre líquido y gas
a _m	[m²/m³]	Área mojada de empaque
av	[m²/m³]	Área ofrecida por volumen de empaque
А	[-]	Componente A
В	[-]	Componente B
b	[m]	Base de corrugación
С	[mol/l]	Concentración
D	[m ² /s]	Difusividad
E	[J]	Energia
EA	[-]	Empaque Aleatorio
EE.	[-]	Empaque Estructurado
F	[N]	Fuerza
f	[-]	Factor de fricción
G	[m/s]	Velocidad de gas
g	[m/s ²]	Aceleración gravitacional
Ĥ	[m]	Altura
H	[-]	Constante de ley de Henry
hc	[m]	Altura de corrugación
HETP	[m]	Altura equivalente a un plato teórico
HTU _G	[m]	Altura de una unidad de transferencia basada en
		la fase gaseosa.
HTU _{OG}	[m]	Altura global de un unidad de transferencia
		basado en la fase gaseosa
HTU∟	[m]	Altura de una unidad de transferencia basada en
		la fase líquida.
HTU _{OL}	[m]	Altura global de un unidad de transferencia
		basado en la fase líquida
k	[m/s]	Coeficiente de transferencia de masa
L	[m/s]	Velocidad de la fase líquida
Ht	[m]	Altura de empaque
N	[mol/m ² s]	Flux molar de transferencia de masa
Nt	[-]	Número de etapas teóricas
Р	[bar]	Presión
р	[bar]	Presión parcial

v	[-]	Velocidad de transferencia de masa por unidad de volumen de cama empacada
S	[m ²]	Área transversal
S	[m]	Longitud de corrugación
Re	[-]	Número de Reynolds
t	[s]	Tiempo de exposición
V	[m/s]	Velocidad del fluido
x	[-]	Fracción mol de la fase líquida
у	[-]	Fracción mol de la fase gaseosa
Z	[-]	Composición en volumen de alcohol

Letras Griegas

Letra	Dimensión	Descripción
Delta	[-]	Gradiente
δ	[m]	Grosor
3	[-]	Fracción de vacio
Φ	[-]	Esfericidad del empaque
π	[-]	Constante geométrica
λ	[-]	Pendiente de equilibrio
μ	[Pa s]	Viscosidad dinámica
V	[m²/s]	Viscosidad cinemática
ρ	[kg/m ³]	Densidad
σ	[N/m]	Tensión superficial
θ	[°]	Angulo de contacto, ángulo de corrugación

Subíndices

Letra	Descripción
Α	Componente A
AB	Condiciones del componente A en el seno de B
Ai	Condiciones del componente A en la interfase
В	Componente B
D	Destilado
F	Alimentación (Feed)
eq	Caracteristica o propiedad equivalente en el modelo del canal
i	Condición de equilibrio, condición de interfase
G	Fase gaseosa

- Fase líquida Residuo L
- w

CAPITULO I: COLUMAS EMPACADAS

Las columnas empacadas son junto con la de platos, los equipos de transferencia de masa más empleados en la industria de transformación físico-química. Inicialmente su uso estaba restringido casi exclusivamente a laboratorios, plantas piloto y columnas industriales de diámetro pequeño o servicios con requerimientos de muy baja caída de presión y alta resistencia a la corrosión. Sin embargo hoy día su aplicación se considera en todas las operaciones que implican transferencia de masa y de calor y requieren en contacto directo entre fases. En la tabla 1.1 se relacionan las operaciones unitarias en las que se emplean columnas empacadas, y se presentan algunos ejemplos de aplicación **[1]**.

Operación	Ejemplos de aplicación
Absorción física	Remoción de contaminantes del aire, eliminación de olores.
Absorción química	Absorción de dióxido de carbono, en control de emisiones.
	Absorción en procesos de producción de ácido
	nítrico, ácido sulfúrico, cloro y fluoruro de hidrógeno.
Desorción	Decarbonatación de agua, despojamiento de
	amoniaco.
Destilación	Rectificación al vacío del crudo.
	Separación de sustancias termolábiles.
	Separación de isotopos.
Extracción líquido-	Recuperación de compuestos orgánicos de
líquido	corrientes acuosas.
Deshumidificación	Desalinización de agua.
Enfriamiento	Plantas térmicas y nucleares.
	Enfriamiento de cloro gaseoso.

Tabla 1.1 Operaciones en las cuales se emplean torres empacadas

A continuación se describen las características generales de las torres empacadas cuando operan a contracorriente, dado que es la disposición más común en la industria.¹

¹Sin embargo, en aquellos casos en los cuales la diferencia entre fuerzas impulsoras a contracorriente y en paralelo no es significativa, se prefiere operar de esta última forma [1]. Otra alternativa es llevar a cabo la operación con el flujo de gas transversal al del líquido descendente [7]

1.1. DESCRIPCIÓN GENERAL

Una torre empacada consiste en una coraza cilíndrica, o columna, equipada con sistemas de alimentación y distribución de las fases, así como con dispositivos para la salida, en el fondo y en la cima. Cuenta con un lecho de sólidos inertes que constituyen el empaque. El fluido menos denso, usualmente un gas o vapor, ingresan por el fondo de la columna y asciende a través del área transversal libre, en tanto que el fluido más denso se dirige hacia abajo desde la cima de la torre.

Figura 1.1 Esquema General de una Torre Empacada [3]

1.2. CONSTITUYENTES INTERNOS

Para el funcionamiento apropiado de una columna empacada se requieren ciertos elementos adicionales a la coraza y al empaque. Estos accesorios, denominados constituyentes internos, se identifican en la Figura 1.1.

Los constituyentes internos más importantes son:

- Distribuidores de Líquido
- Sistemas de alimentación
- Retenedores de empaque
- Soportes de empaque
- Colectores de líquido
- Eliminadores de arrastre

No todos los constituyentes de la lista están siempre presentes en la columna. La decisión de incorporarlos o no, es el resultado de un cuidadoso estudio costo/beneficio.

La oferta de estos accesorios es variada y completa, dado que los fabricantes compiten en el mercado con productos cuidadosamente diseñados para asegurar excelentes condiciones relativas a capacidad, eficiencia, versatilidad y flexibilidad, según el sistema y la condiciones bajo las cuales deban operar. Por lo tanto, resulta crítica la selección apropiada de cada constituyente, dado que una decisión inadecuada, aún empleando empaques de alta eficiencia, conlleva al mal funcionamiento de la columna, Los constituyentes internos que se describen a continuación se utilizan, en general, en operaciones gas/vapor-líquido. Al final de esta sección se hace referencia a algunos constituyentes específicos para servicios líquido-líquido.

1.2.1. Distribuidores de Líquido

La distribución uniforme de líquido en la cama de la torre es esencial para una operación eficiente. Por lo tanto, los distribuidores son claves en el diseño de cualquier columna empacada [7].

Un distribuidor de líquido debe proporcionar [5]:

- Distribución uniforme de líquido
- Resistencia a la obstrucción o taponamiento
- Gran flexibilidad a la variación en los flujos
- Baja caída de presión
- Mínima altura para permitir mayor espacio para el lecho
- Capacidad para mezclar el líquido a distribuir

La distribución perfecta del líquido puede definirse como la provisión de líquido a igual velocidad por unidad de área de superficie del lecho. El líquido puede aplicarse mediante rociadores (spray), rebosadores u orificios, a presión o por gravedad.

Los rociadores pueden humedecer casi totalmente la superficie del empaque, pero la variación de flujo punto a punto es muy alta. Los distribuidores de rebosadero proveen corrientes discretas de igual flujo, pero es difícil controlar las variaciones de carga. Al igual que los distribuidores de rebosadero, los de tipo orificio proveen corrientes discretas de líquido dirigidas directamente al empaque. Para asegurar una perfecta distribución se requerirá un número infinito de corrientes; sin embargo, por ejemplo, en el caso de los distribuidores tipo orificio, el tamaño del orificio, los riesgos de obstrucción y consideraciones de carácter mecánico restringen su número. En general una columna empacada consta de varias secciones de empaque, tanto para introducir y retirar corrientes intermedias, como para redistribuir las corrientes internas. Para lograr la distribución del líquido que ingresa en puntos intermedios de la columna y redistribuir las corrientes líquidas internas se incorporan redistribuidores de líquido entre lechos. Los redistribuidores presentan el mismo diseño mecánico que los distribuidores, pero adicionalmente incluyen elevadores semicubiertos (chimeneas) para el gas y, en algunos casos, limpiaparedes para redireccionar el líquido que desciende sobre la superficie de la carcaza.

Figura 1.2 Distribuidor de líquido tipo "V" [8]

Figura 1.3 Distribuidor tipo plato de orificios [9]

Figura 1.4 Distribuidor tipo VRD tubería con orificios [8]

1.2.2. Sistemas de alimentación

Lograr el desempeño deseado de una torre requiere el manejo apropiado de todas las corrientes que ingresan a la columna. La alimentación puede clasificarse en cuatro categorías principales [5]:

- Solo líquido, cuando contiene menos de 1% de vapor, en volumen
- Líquido y vapor sobre un lecho
- Sólo gas debajo de un lecho
- Retorno de un rehervidor

Los criterios empleados en el diseño y selección del sistema de alimentación para cada categoría son diferentes.

La selección de los alimentadores de sólo líquido, los cuales actúan como predistribuidores, depende del tipo de distribuidor y de la variación de flujo requerida.

Para alimentadores de mezclas líquido-vapor la selección depende del tipo de distribuidor de líquido debajo de la alimentación, las velocidades de flujo, el tipo de alimento, la altura del lecho empacado requerido para la separación de las fases y el mezclado de éstas con las corrientes que internamente ascienden o descienden.

Para la escogencia de alimentadores de gas o vapor es indispensable tener en cuenta dos factores: la energía cinética y la composición del gas que ingresa. La energía cinética se considera en relación con la caída de presión en el lecho, la disposición de la boquilla de entrada y la separación requerida. La composición del gas es importante cuando ingresa entre dos lechos, caso en el cual debe garantizarse una mezcla adecuada con la corriente interna de gas.

Para el retorno de rehervidores es necesario considerar, adicionalmente a los factores para la alimentación de sólo gas, el tipo de rehervidor.

Figura 1.5 Sistemas de alimentación de gas [9]

Figura 1.6 Sistemas de alimentación de líquido [9]

10

1.2.3. Retenedores de empaque

La función principal de este constituyente es prevenir la expansión o fluidización del lecho empacado, así como mantener horizontal su superficie. El retenedor no debe interferir con los flujos en la columna, por lo que su área libre ha de ser muy elevada.

Existen dos constituyentes internos diseñados para evitar el desplazamiento del empaque: limitadores de lecho y platos de retención.

El limitador de lecho es el tipo más común, en especial para empaques de plástico y de metal susceptibles de ser fluidizados por su bajo peso. Este constituyente se fija a las paredes de la columna mediante ganchos o sujetadores.

Los platos de retención se emplean con empaques de cerámica o carbón, normalmente muy frágiles, con los cuales no debe permitirse ningún movimiento. Estos platos reposan sobre el lecho y actúan por su propio peso.

Un constituyente adicional, afín a los anteriores, son las barras de antimigración, las cuales en realidad no evitan el desplazamiento de los empaque, sino que impiden que avancen hasta los elevadores de gas o los ductos de salida de la columna [5].

1.2.4. Soporte de empaque

El propósito primario de este dispositivo es soportar el lecho sin ofrecer una restricción excesiva al flujo de las fases. También puede servir como distribuidor de las dos corrientes.

A menos que se efectúe una acertada selección del plato soporte, puede causarse la inundación prematura de la columna. El área libre del soporte debe ser tan alta como la del lecho empacado. Existen dos tipos básicos: a contracorriente y con pasos separados para cada fase.

Los criterios a considerar en la selección del soporte son:

• Tipo de empaque (estructurado o al azar)
- Material del empaque
- Características del proceso tales como corrosión y temperatura de operación
- Carga máxima de diseño (profundidad del lecho, retención de líquido, peso del lecho y condiciones de flujo extremas, como las esperadas en eventos de emergencia).

Figura 1.7 Plato soporte tipo TEB / TSB [8]

Figura 1.9 Plato soporte para Random Packing tipo GIS / EMS [8]

Figura 1.10 Plato soporte para Random Packing tipo RPB [8]

1.2.5. Colectores de líquido

Los colectores de líquido son necesarios cuando debe retirarse una corriente lateral. Además, en columnas con empaques de alta eficiencia, desde el punto de vista técnico es recomendable, y aún exigible, instalarlos entre lechos, sobre cada distribuidor [2, 7].

El colector de líquido debe interrumpir el flujo ascendente. Una de sus funciones esenciales es lograr el mezclado efectivo del líquido antes de retirarlo o redistribuirlo, dado el desarrollo de importantes gradientes radiales de concentración.

Figura 1.11 Colector de líquido tipo riser [9]

Figura 1.12 Colector de líquido tipo Chevron [9]

1.2.6. Constituyentes internos especiales para servicios líquidolíquido

Las torres empacadas utilizadas para sistemas líquido-líquido a contracorriente, requieren constituyentes internos especiales con el fin de dispersar una de las fases. Su selección y arreglo depende de si la fase dispersa es la ligera o la pesada. En cualquier caso, para facilitar el control de la velocidad de alimento a dispersar se recomienda el uso de ductos ramificados, con diseño y orientación específicos. Es de extrema importancia alimentar apropiadamente la fase correspondiente.

Generalmente se recomienda dispersar la fase con la mayor velocidad de flujo para generar el máximo contacto interfacial. La excepción se presenta cuando la fase de mayor flujo volumétrico tiene la viscosidad más alta o mayor capacidad de humedecimiento del empaque.

Cuando es necesario dispersar la fase liviana, el plato soporte del empaque debe cumplir esta función. En tal caso esta fase forma una piscina debajo del plato, desde donde asciende a través de los orificios del soporte en forma de pequeñas gotas. Si se requiere dispersar la fase pesada, un tubo elevador permite a la fase ligera pasar a través del plato mientras la fase pesada genera una cabeza sobre el mismo y los orificios facilitan la formación de gotas de líquido.

El diseño de este constituyente es función de la tensión superficial interfacial, así como de las diferencias de viscosidad y de densidad. En torres con múltiples lechos cumplen el papel de redistribuidores [9].

1.3. EMPAQUES

El empaque constituye el elemento principal de esta clase de columnas. Por lo general un lecho empacado está formado por piezas discretas orientadas al azar, aunque para un creciente número de aplicaciones se utiliza estructurado, que se coloca o ensambla cuidadosamente en la columna hasta alcanzar la altura necesaria. La selección del empaque es un paso clave en el diseño.

A continuación se establece la función del empaque, se describen los diversos tipos y se delinean algunos criterios para su selección.

1.3.1. Función

El empaque tiene como función ofrecer su superficie especifica (que oscila entre 50 y 1000 m^2/m^3) como área humectable para favorecer el contacto entre las fases y así dinamizar los fluxes de transferencia entre las mismas. Debe procurarse una caída de presión tan baja como sea posible.

1.3.2. Tipos de empaque

Universalmente se clasifican los empaques, según su organización en un lecho, como empaques al azar y empaques estructurados.

a. Empaques al azar

En la evolución de los empaques al azar se reconocen tres generaciones, aunque recientemente se ha sugerido el inicio de una cuarta. La primera abarca los empaques de formas simples como los anillos Raschig y las montura -Berl, que dieron origen a los modernos empaques aleatorios. Estos precursores han sido superados en eficiencia y capacidad por los empaques modernos, por lo que solo se utilizan en algunas aplicaciones específicas.

La segunda generación comprende los empaques desarrollados desde finales de los años 50's hasta iniciados los 70's. Los anillos Pall y las monturas Intalox son los exponentes más notorios, y su uso en la industria moderna es aún bastante extendido.

La tercera generación incluye una multitud de geometrías diferentes, muchas evolucionadas a partir de las formas simples originales. En algunos casos su desarrollo obedece a aplicaciones específicas.

Una cuarta generación se considera conformada por empaques con diseños geométricos pensados para promover patrones de flujo determinados (tal como sucede con los empaques estructurados), más que para ofrecer mayor área de contacto o una estructura más abierta, aunque en muchos casos estas características también se cumplen.

En la figura 1.2 se presenta una comparación entre empaques de diferentes generaciones en términos del factor de empaque y del área superficial específica.² El factor de empaque puede considerarse como una medida gruesa de la capacidad, mientras que el área superficial puede tomarse como una medida de la eficiencia para la transferencia de masa [4].

Material

La selección del material del empaque depende básicamente de la resistencia a la corrosión y del costo. A continuación se presentan algunos comentarios generales, así como ciertos criterios a considerar en la selección.

Figura 1.13 Comparación entre empaques al azar [4]

²Los datos de la gráfica son tomados de la recopilación realizada por el autor, y la forma de presentación es tomada por Kister (1992) [4]

Metales: los empaques en metal, y en particular los de acero al carbono, constituyen usualmente la primera opción en servicios no corrosivos. Comparados con los de cerámica y los de plástico ofrecen mayor capacidad y eficiencia, amplia variedad de geometrías, gran flexibilidad para manejar cargas variadas (elevado turndown), resistencia a la ruptura y alta resistencia a la compresión (muy importante en el fondo del lecho). Los empaques de acero inoxidable cuestan entre tres y cinco veces más que en acero al carbono, en tanto que en otros metales y en aleaciones especiales son aún más costosos (aluminio, cobre, titanio, bronce, Monel, Hastelloy, carpenter, Incoloy, Durimet e Illium en sus diferentes grados).

Cerámicas: Los empaques en cerámica se emplean en servicios que requieren inercia química aún a elevadas temperaturas. Sin embargo, éstos han perdido campo de aplicación con el desarrollo de empaques plásticos de bajo costo. Los empaques cerámicos se rompen con facilidad, tiene baja capacidad y no están disponibles en muchas de las geometrías comunes. Son irremplazables, eso sí, en procesos altamente corrosivos, como por ejemplo, en servicios de ácido sulfúrico.

Plásticos: los empaques plásticos ofrecen bajas cargas en el fondo de la columna y buena resistencia química con muchos sistemas comunes. Con el desarrollo de nuevas formulaciones han desplazado a los empaques en cerámica, y se emplean de forma casi exclusiva en la remoción de contaminantes orgánicos de corrientes gaseosas y líquidas.

El polipropileno es económico y resulta una buena selección a temperaturas no muy elevadas. En la tabla 1.2 se presenta la máxima temperatura de estabilidad a largo plazo para diferentes materiales plásticos. En la práctica debe tenerse especial cuidado con la formación de puntos calientes que aceleren el deterioro del material. En el caso del polietileno no debe olvidarse que determinadas formulaciones promueven la formación de espuma en servicios alcalinos debido a la lixiviación de ciertos aditivos. Algunos solventes, la luz ultravioleta y las temperaturas muy bajas pueden degradar el plástico o volverlo demasiado frágil.

Una desventaja de los plásticos es su pobre humectabilidad. Mientras la naturaleza hidrofílica de las cerámicas y, en menor grado, de los metales, promueve la formación de una película de líquido sobre la superficie del empaque, aún a bajos flujos, el efecto hidrofóbico de los plásticos la dificulta. La formación de una película es aún más difícil en la etapa inicial de operación, por lo que pueden transcurrir varios días antes de lograr su estabilización, lo cual repercute en la eficiencia de la columna [6].

Material	Temperatura máxima (ºC)	Peso Relativo
Cloruro de polivinilo (PVC)	60	1.50
Polietileno (PE)	70	1.02
Polipropileno (PP)	80	1.00
Cloruro de polivinilo clorado (CPVC)	100	1.74
Corzan [™] (CPVC)	110	1.74
Polipropileno – Relleno de vidrio (10%)(PP- G)	100	1.17
Polipropileno – Relleno de vidrio (30%)(PP- G)	110	1.38
Noryl (Polióxido de fenilleno PPO)	110	1.24
Kynar (Fluoruro de polivinilideno PVDF)	140	1.98
Halar (Etileno-cloro-trifluoroetileno ECTFE)	145	1.86
Tefzel (Etileno-trifluroetileno ETFE)	180	1.93
Teflon (Poliperfluoralcoxido PFA)	205	2.45
Tefzel – Relleno de vidrio (25% Vidrio) (ETFE-G)	210	2.20

Tabla 1.2 Temperatura máxima de operación y peso relativo alpolipropileno para diferentes materiales plásticos [3]

.

Carbón: Los empaques en carbón se emplean solamente cuando los de cerámica y los de metal no son satisfactorios bajo condiciones de corrosión del medio; por ejemplo, en la destilación de mezclas que contienen ácido fluorhídrico.

Llenado de la columna

Una columna se llena con empaque al azar en seco o en ambiente húmedo. En este último caso se inunda la columna con un líquido, usualmente agua, a través del cual se dejan caer las piezas de empaque, cuando su densidad así lo permite. La experiencia indica que con esta técnica, recomendada fundamentalmente con empaques en cerámica o en carbón, la densidad del lecho tiende a ser más uniforme, con lo cual se reduce el riesgo de la aparición prematura de fenómenos de acanalamiento. Cuando la columna se empaca en seco, debe evitarse la caída libre desde distancias que provoquen la deformación de las piezas o cualquier otra clase de daño.

La instalación de empaques plásticos puede realizarse con una simple operación de soplado, en la cual el empaque se lanza por medio de un sistema neumático hacia el interior de la columna.

La facilidad para vaciar y llenar una columna, condición usual en acciones de mantenimiento, constituye un factor adicional a considerar en la selección del material del empaque.

b. Empaques estructurados

En un empaque al azar es inevitable cierto grado de heterogeneidad en la densidad del lecho, lo cual afecta adversamente la posibilidad de conservar una adecuada distribución del líquido y, por lo tanto, unos fluxes de transferencia de masa apropiados. Por esta razón, durante años se han hecho intentos para desarrollar empaques con estructuras ordenadas.

Stedman fue el primero en diseñar un empaque estructurado. Luego se diseñaron otros en los cuales la idea era lograr una estructura de hoja enrollable entre sí, concéntricamente, hasta ajustarla a la pared de la coraza. Sin embargo, estos primeros empaques, como el Panapak, nunca fueron de uso común.

La segunda generación de empaques estructurados se inició a finales de los 50's con empaques de malla de alambre de alta eficiencia, como el Goodloe y el Hyperfil. Éstos se hicieron muy populares en los 70's en servicios de destilación al vacio. Sin embargo el costo elevado y la baja capacidad limitaron su aplicación.

Los hermanos Sulzer rompieron con lo realizado hasta entonces en empaques estructurados al desarrollar una hoja corrugada, que dio lugar a la tercera generación, cuyo uso ha crecido desde la década de los 80's.

Un tipo particular de empaque estructurado, que se clasifica con frecuencia en un grupo especial, es la grilla o la rejilla. Las rejillas de madera, de metal y de plástico se han preferido durante mucho tiempo en torres de enfriamiento, aunque se emplean en destilación y absorción. La primera grilla moderna fue la Glitsch-C-grid, desarrollada a inicios de los 60s para aprovechar la hoja de metal residual que provenía de la fabricación de válvulas para platos. Las grillas modernas se fabrican con la intención de mejorar características como área libre, capacidad, resistencia a la obstrucción y al taponamiento y caída de presión. La eficiencia de las grillas es considerablemente más baja comparada con la de los otros empaques estructurados y aún con la de los empaques al azar de generaciones recientes. Las grillas se emplean principalmente para transferencia directa de calor y en operaciones de despojamiento [8].

1.3.3. Selección de empaques

La figura 1.3 compara los empaques, al azar y estructurados, de manera análoga a lo presentado para empaques al azar de diferentes generaciones en la figura 1.2. A una capacidad dada, los empaques estructurados ofrecen mayor área superficial especifica y por consiguiente mayor eficiencia. De igual forma, dada una eficiencia (igual área superficial específica) el factor de empaque de los empaques estructurados es menor, lo que corresponde a una mayor capacidad.

Figura 1.14 Comparación entre empaques al azar y estructurados [4]

En general los empaques estructurados tienen mayor eficiencia y capacidad y presenta menor caída de presión por plato teórico que los empaques al azar. Sin embargo, la eficiencia y la capacidad de los empaques estructurados disminuyen rápidamente al aumentar la presión o la velocidad de líquido, con lo cual se reduce su ventaja sobre los empaques al azar [4].

Cuando se requiere manejar fluidos con sólidos que tienden a formar depósitos, no es aconsejable el uso de empaques estructurados. En sistemas corrosivos y oxidantes el material de los empaques en hoja corrugada debe ser muy bien seleccionado, ya que típicamente se fabrican en láminas con calibres entre 30 (0.254 mm) y 20 (0.79375mm), por debajo del espesor normal de tolerancia a la corrosión (3mm). Además debe tenerse en cuenta el alto costo de los empaques estructurados, 3 a 10 veces mayor que el de los empaques al azar de 2 pulgadas [4], aún cuando el costo de operación, en particular para servicios a vacio, es mucho menor, puede conseguirse una reducción en

el costo inicial por la simplificación de los equipos auxiliares (condensadores, compresores o bombas de vacío).

A continuación se presenta una lista de criterios a considerar en la evaluación y selección de empaques [4]:

- Elevada área superficial específica; esto es, elevada área superficial por unidad de volumen de lecho empacado.
- Distribución uniforme del área superficial.³
- Geometría tal que promueva la distribución uniforme de las fases.⁴
- Baja retención estática, dado que el líquido estancado contribuye muy poco a la transferencia de masa y desperdicia superficie del empaque.
- Máxima superficie humectable, debido a que sólo el área humedecida es efectiva para la transferencia de masa.
- Alta fracción vacía, con el propósito de reducir la resistencia al flujo.
- Baja fricción, lo cual se promueve con una estructura abierta y aerodinámica.
- Resistencia baja y uniforme al flujo a través del lecho, lo cual depende de la geometría del empaque y de la homogeneidad en la porosidad del lecho.

³Por ejemplo los anillos Raschig y los anillos Pall del mismo tamaño tienen área superficial por unidad volumen, pero los anillos Pall tienen una distribución de área superior y por consiguiente son más eficientes.

⁴Por En empaques al azar se busca reducir la posibilidad de anidamiento e interbloqueo de las piezas.

- Forma tal que induzca turbulencia para favorecer los fenómenos de transferencia.
- Fácil separación de las fases, condición especialmente importante en servicios a elevada presión y altas velocidades de flujo.
- Capacidad para manejar variadas cargas de líquido y de gas, sin cambios significativos en la eficiencia.
- Resistencia a la deformación mecánica y al rompimiento.
- Inercia química frente a las sustancias con las cuales se trabaje, bajo las condiciones de operación.
- Resistencia apropiada a las temperaturas de operación y, en especial, a los choques térmicos.
- Peso liviano, para lograr un mínimo empuje lateral y fácil manipulación.
- Bajo costo.

1.3.4. Modelamiento

Debido al gran número de dimensiones geométricas involucradas en la estructura real de un lecho empacado, su modelamiento matemático resulta demasiado complejo. Por esta razón se ha intentado sustituir la estructura compleja por otras más simples, con la misma área específica e igual porosidad.

Se han propuesto dos modelos para representar la estructura de un lecho empacado: el modelo de partícula y el modelo de canal.

a. Modelo de Partícula

El empaque real se sustituye por un conjunto de partículas sólidas esféricas. Así, el empaque puede tratarse como una fase dispersa, dado que a porosidades altas ($\epsilon > 0.45$) las esferas no se tocan unas a otras. La relación entre la porosidad y el diámetro de partícula es:

$$1 - \varepsilon = \frac{V_{\rm P}}{V} = \frac{N (d_{\rm P})^3 \pi/6}{V}$$
(Ec 1.1)

Donde N es el número de esferas y V es el volumen del lecho.

El área superficial específica del lecho de esferas es:

$$a_p = \frac{A_S}{V} = \frac{N (d_p)^2 \pi}{V}$$
(Ec 1.2)

Al despejar d_p de las dos expresiones anteriores se tiene:

$$d_{\mathbf{p}} = \frac{\mathbf{6}(1-\varepsilon)}{a_{\mathbf{p}}} \tag{Ec 1.3}$$

Ecuación en la cual d_P corresponde al diámetro equivalente de la fracción sólida del lecho.

Un parámetro de caracterización empleado para empaques al azar, denominado esfericidad, relaciona el área superficial de una esfera con el mismo volumen de la pieza de empaque con el área superficial real de la pieza [10].

$$\emptyset = \left[\frac{6\left(1-\varepsilon\right)}{\pi N}\right]^{2/3} \left[\frac{\pi N}{a_{P}}\right]$$
(Ec 1.4)

b. Modelo del Canal

En este caso el empaque real se reemplaza por un sistema de canales o lecho de tubos con un equivalente, d_{eq} , seleccionado de forma tal que la porosidad y el área superficial específica correspondan a los mismos valores del empaque real [11]. Para la porosidad se tiene que:

$$\varepsilon = \frac{V_F}{V} = \frac{N \ Z \ (d_{sq})^2 \pi / 4}{V} \tag{Ec 1.5}$$

Donde N es el número de canales. El área superficial específica es:

$$a_P = \frac{A_S}{V} = \frac{N Z d_{eq} \pi}{V}$$
(Ec 1.6)

Si se relacionan estas dos ecuaciones se obtiene la siguiente expresión para el diámetro equivalente:

$$d_{sq} = \frac{4\varepsilon}{a_P} \tag{Ec 1.7}$$

 d_{eq} es el diámetro equivalente de la fracción libre del lecho. Las definiciones y el significado de d_p y d_{eq} son totalmente diferentes y no deben confundirse. El diámetro equivalente del canal puede expresarse en función del diámetro de partícula, d_p , como:

$$d_{sq} = \frac{2}{3} \frac{\varepsilon}{(1-\varepsilon)} d_P \tag{Ec 1.8}$$

Aunque con frecuencia no se considera el factor 2/3. [6].

CAPITULO II: HIDRÁULICA Y TRANSFERENCIA DE MASA EN COLUMNAS EMPACADAS: CONCEPTOS BASICOS

2.1. DESCRIPCIÓN GENERAL

En la industria química y petroquímica es común encontrar columnas empacadas en procesos de separación, tales como: destilación, absorción – agotamiento y extracción líquido – líquido, siendo los objetivos de los empaques [18]:

Mejorar la eficiencia de Transferencia de Masa:

- Maximizar el área superficial efectiva (área disponible para efectuar la transferencia de masa).
- > Distribuir uniformemente el área superficial.
- Favorecer la distribución uniforme del vapor y líquido a través de la columna.
- Que el líquido pueda fluir más libremente, para evitar el estancamiento del mismo.
- > Maximizar la mojabilidad de la superficie del empaque.
- > Disminuir los efectos adversos de mezclado axial.

Incremento de la capacidad:

- > Aumentar el espacio vacío por unidad de volumen de columna.
- > Minimizar la fricción.
- Asegurar una resistencia uniforme entre vapor y líquido a través de la columna.
- > Permitir una fácil separación de vapor líquido o gas líquido.

Otros Objetivos:

- Maximizar la resistencia a la deformación mecánica y/o rompimiento, especialmente a la deformación debido al peso de la cama.
- Abatir costos de operación.
- Reducir la retención de líquido.
- > Minimizar el deterioro por ambientes corrosivos.
- > Disminuir daños durante una operación irregular.

2.2. GEOMETRÍA DEL EMPAQUE

Los empaques estructurados consisten en elementos cilíndricos (Fig. 2.1 y 2.2), que son generalmente elaborados de hojas corrugadas metálicas, cerámicas o plásticas. Dichas hojas están realzadas y acanaladas horizontalmente para promover la turbulencia y mejorar el esparcimiento del líquido sobre la superficie de éstas.

Figura 2.1 Descripción Geométrica del Empaque, en este esquema se expone las dimensiones de un empaque tipo *Mellapack Y*, así como su estructura [27]. Las principales características geométricas de este tipo de empaques son la altura del elemento del empaque H y la corrugación, ésta última se determina por la altura h_c, la base b y la longitud s¹. Las corrugaciones están inclinadas con un ángulo θ con respecto al eje vertical, el cual puede variar entre 45° y 65°. Por ejemplo, para el tipo *Mellapack Y*, uno de los empaques más utilizados, tiene un ángulo de 45°. Las hojas metálicas están colocadas alternadamente por + θ y – θ (en el caso de *Mellapack Y*, están orientadas perpendicularmente). La estructura de los empaques define canales rectos y oblicuos con una sección transversal triangular, por donde asciende la fase gaseosa. La fase líquida desciende sobre las hojas corrugadas en aproximadamente una forma a contracorriente con la fase gaseosa; esto se muestra mediante el esquema de flujos de las fases involucradas (Fig. 2.3) **[18]**

Figura 2.2 Sección Transversal de una Columna, la cual contiene empaques de tipo estructurado [27]

¹La longitud de corrugación s también se conoce como longitud característica del empaque

Figura 2.3 Flujos de la Fase Gaseosa y Líquida [27]

2.3. ÁREA ESPECÍFICA

El área específica de transferencia de masa es un parámetro muy importante, ya que relaciona el aspecto de la transferencia de masa con la parte hidráulica, por lo que el cálculo de esta área es un término muy importante.

Hay varias definiciones de área por unidad de volumen de la cama del empaque que se emplean en el diseño de una columna [25], de las cuales las más importantes para el presente estudio son las siguientes:

- El área específica del empaque a_v: Es la ofrecida por el empaque para la transferencia de masa por unidad de volumen de empaque, la cual únicamente depende de la geometría específica de cada dispositivo.
- El área interfacial entre el líquido y el empaque solido a_m: El conocimiento de a_m es particularmente importante por dos razones, por un lado, es esencial para las consideraciones básicas relacionadas al flujo de las dos fases en empaques irrigados. Por otro lado puede ser usada como área superficial de

referencia cuando se consideran resultados experimentales de transferencia de masa. En el área superficial mojada, a_m, también se cuantifica el área del líquido en las zonas muertas, donde no existe transferencia de masa debido a que después de un lapso de tiempo el líquido se satura.

• El área efectiva para la transferencia de masa ae:

El Área Efectiva de Transferencia de Masa se define como aquella área en la interfase entre el gas y el líquido donde tiene lugar este fenómeno. Varios autores han propuesto al área del empaque que ha sido humedecida como el área efectiva. Sin embargo, esto no representa la fenomenología presente en las columnas empacadas.

Las principales diferencias entre estas dos áreas son que en el área de empaque humedecida está incorporada el área de las zonas muertas o saturadas, las cuales no participan en la transferencia de masa y por otro lado, que el área efectiva incluye el área de las gotas y chorros de la fase líquida, las cuales no están en contacto con el empaque o con las paredes de la columna, pero que también participa en la transferencia de masa. Siendo el área efectiva la suma de estas dos contribuciones. Este caso ocurre con el empaque estructurado pero más no para el empaque aleatorio **[27]**.

A partir de investigaciones sobre la influencia que tienen las propiedades del líquido en el área superficial mojada, es necesario determinar los efectos de la tensión superficial, el ángulo de contacto y la viscosidad de las diferentes substancias mediante estudios de *Dinámica de Fluidos* y consideraciones *Teóricas.*

- Zona muerta: Ésta se presente en algunas zonas del empaque en las cuales permanece atrapado el líquido y llega un momento en que se satura y no contribuye en la transferencia de masa.
- El área interfacial entre el líquido y el gas a_i: Es aquella donde ocurre el contacto entre la fase gaseosa y la fase líquida. Cabe

mencionar que no en toda esta área se presenta la transferencia de masa.

En la figura 2.4 se presenta un esquema sencillo donde se puede observar la diferencia entre estos tipos de áreas.

Figura 2.4 Diferentes tipos de áreas presentes en la columnas empacadas [27]

2.4. CÁIDA DE PRESIÓN

La presencia de los elementos del empaque provoca una restricción a fluir, tanto a la fase líquida como a la gaseosa. La resistencia del líquido a descender normalmente no es de gran importancia, debido a que el líquido fluye bajo la influencia de la gravedad, y principalmente tiene que vencer el gas que fluye a contracorriente. El gas que fluye hacia arriba debe vencer la resistencia ofrecida por los elementos del empaque. Ésta es mayor cuando en la columna está presente la fase líquida. Para el caso de empaques irrigados existe una oposición adicional provocada por la presencia del líquido, ya que la resistencia del gas a fluir aumenta drásticamente a mayor presencia de líquido **[19, 26]**. Dos métodos han sido utilizados para describir la fenomenología hidráulica en las columnas empacadas las cuales son: a) El *Modelo de Canal* y b) el *Modelo de Partícula*. En el primero se asume que el gas asciende dentro de varios canales pequeños, los cuales tienen una geometría definida; a medida que el líquido desciende por las paredes de los canales, el área de la sección transversal, por donde atraviesa la fase gaseosa, se ve disminuida, produciendo un incremento en la caída de presión.

Varios autores han utilizado este modelo para describir la caída de presión en columnas con empaques aleatorios y estructurados [12, 13, 14]. Por otra parte, en el Modelo de Partícula se asume que el gas fluye alrededor de los elementos del empaque; ésta tiene una geometría definida. La presencia de líquido produce un incremento en la dimensión en los dispositivos debido a que el líquido se adhiere a la superficie de éstos, provocando que la fracción de vacío se vea disminuida produciendo un aumento en la caída de presión en camas empacadas con una sola fase [16, 22].

2.4.1. Caída de Presión Seca

La caída de presión de un gas que fluye a través de un empaque seco es una base de criterio para fijar la condición de operación de una columna. Una gráfica (log-log) de *caída de presión* (Δ p) vs. la *velocidad del gas* (G), como se muestra en la figura 2.5, ofrece una pendiente constante llamada *línea de empaque seco*, ilustrada por la línea recta (Fig. 2.5) **[19, 26]**.

2.4.2. Caída de Presión Irrigada

En una columna empacada con flujos en contracorriente de líquido y gas, al momento en que la fase líquida empieza a fluir sobre el empaque (en forma de película, riachuelos y gotas), la fracción de vacio del empaque se ve reducida por el líquido retenido, provocando que la caída de presión sea mayor que la desarrollada solamente por el flujo de gas. Con una velocidad constante de líquido en una gráfica de *caída de presión* (Δ p) vs. la *velocidad del gas* (G), como la que se muestra en la figura 2.5; las líneas de operación empiezan con una línea paralela a la *línea de empaque seco*, (Sec. 2.4.1), la cual tiene un punto de inflexión que es conocido como *punto de carga* (Fig. 2.5). A mayores velocidades

de líquido, la pendiente de esta línea empieza a incrementarse rápidamente, debido a que el líquido retenido aumenta proporcionalmente a medida que se incrementa la velocidad del gas, provocando condiciones de inundación dentro de la columna **[19, 26]**.

Figura 2.5 Caída de presión vs. Velocidad del gas. Empaque Intalox de 1 ½" pulgada, fabricado de cerámica [26]

2.5. RETENCIÓN DE LÍQUIDO

Dentro de una columna empacada, la retención de líquido es una relación entre el líquido que se encuentra en el interior de la columna y el espacio vacío dentro de la columna empacada. La retención de líquido es de gran importancia ya que mediante este aspecto se puede relacionar la transferencia de masa y la fenomenología hidráulica. Hay dos tipos de *Retención de Líquido* en una columna empacada: la *Estática* y la *Dinámica*, las cuales se expondrán a continuación.

2.5.1. Retención Estática

La Retención de líquido Estática representa una relación entre el volumen del líquido y el volumen de empaque, después de haber sido drenado. Este tipo de retención depende del área superficial del empaque (a_E), la aspereza de la superficie de éste y el ángulo de contacto entre la superficie del empaque y del líquido [23].

2.5.2. Retención Dinámica

La Retención de líquido Dinámica, o también conocida como Retención Líquida de Operación, es el volumen de líquido drenado por volumen de empaque después de que han sido interrumpidos los flujos de líquido y gas. La cantidad de líquido retenido principalmente depende tanto de la velocidad del líquido como de la velocidad del gas. Mediante la retención líquida dinámica se pueden relacionar la fenomenología hidráulica y la de transferencia de masa [19, 26].

2.6. FUNDAMENTOS TEÓRICOS

Dentro de los procesos de separación existen dos aspectos de gran importancia: La *Fenomenología Hidráulica* y la *Transferencia de Masa* de un soluto en la interfase de los fluidos. Varios modelos teóricos han sido desarrollados para poder describir adecuadamente la fenomenología de transferencia de masa de un soluto en la interfase de los fluidos involucrados, así como la hidráulica presente en las columnas. A continuación se presenta un breve análisis de las teorías más utilizadas y estudiadas para la presentación de la fenomenología antes mencionada.

2.6.1. Factor de Fricción

En los trabajos de ingeniería, muchos sistemas presentan una alta dificultad para evaluar los perfiles de velocidad y de presión. Para estos sistemas se recurre a ciertos métodos para poder estimar estos dos términos. Para ello se requiere de datos experimentales de los perfiles de velocidad y presión con el propósito de elaborar gráficas o correlaciones que permiten evaluar el comportamiento en los puntos de interés. Estos sistemas se clasifican en dos fenomenologías: a) El fluido

circula por un canal recto de un área transversal constante² (S) y b) el fluido circula alrededor de un objeto sumergido que tiene un eje o un plano de simetría paralelo a la velocidad de aproximación del fluido **[21]**.

Si analizamos el primer sistema con un fluido estacionario con una densidad constante, este fluido ejercerá una fuerza F sobre la superficie sólida que puede dividirse en dos contribuciones: F_W que es la fuerza ejercida por el fluido debido a su peso, y la fuerza aportada por el comportamiento cinético del fluido F_C . El valor de F_C se puede expresar mediante el producto del área transversal constante S, una energía cinética característica por unidad de volumen, E_C , y un número adimensional, denominado factor de fricción, f, el cual se puede definir mediante la siguiente ecuación [21].

$$f = \frac{SE_C}{F_C} \tag{Ec 2.1}$$

Para un sistema determinado el factor de fricción f, está definido por los valores específicos de A y E_c; esta descripción es de gran utilidad, porque f puede estar definido como una función del número de Reynolds y la geometría del sistema [21].

$$f = f(Re) \tag{Ec 2.2}$$

teoría de pelicula

2.6.2. Teoría de la Película

El primero y el más simple de los modelos de transferencia de masa es el de la *Teoría de la Película* propuesto por *Nernst* en 1904.Este modelo está basado en la suposición de que un fluido se mueve turbulentamente sobre un sólido o un líquido. La resistencia total a la transferencia de masa reside en una delgada película estancada en la cercanía de la superficie, como se muestra en la figura 2.6. Para el caso de una interfase líquido / gas (donde el gas A es puro y se difunde en un líquido no volátil B, de tal manera que la concentración de A en el seno del gas es C_A ó en su defecto la presión parcial, p_A).

Se supone que en la interfase se encuentran en equilibrio las fases líquidas y la fase gaseosa por lo que en ésta la concentración es C_{Ai} ó p_{Ai} , en la delgada película estancada con un grosor δ . La difusión molecular sólo ocurre mediante el gradiente de concentración $C_{Ai} - C_{Ab}$. Asumiendo que la película es muy delgada, toda la difusión de A hacia el seno del líquido pasa a través de la película. Mediante un balance de

materia de un elemento diferencial obtenemos la siguiente ecuación [17, 24].

$$\frac{d^2 C_A}{dz^2} = 0 \tag{Ec 2.3}$$

El flux de transferencia de masa viene dado mediante la siguiente ecuación:

$$N_A = D_{AB} \frac{dC_A}{dz} \tag{Ec 2.4}$$

Basándose en los perfiles de concentración obtenemos el flux molar de A en términos del coeficiente de transferencia:

$$N_{A} = \frac{D_{AB}}{\delta} (C_{Ai} - C_{AB}) = k (C_{Ai} - C_{AB})$$
(Ec 2.5)

2.6.3. Teoría de la Penetración

Un modelo de *transferencia de Masa* más realista, es el de la *Teoría de Penetración*, el cual fue propuesto por *Higbie* en 1935, con el fin de describir de una manera más rigurosa el mecanismo de transferencia de masa en la superficie. *Higbie* propuso que la superficie de la película está compuesta de pequeños elementos, a los cuales llamó *Torbellinos*; estos se encuentran en contacto con la fase gaseosa, los cuales observan el siguiente ciclo [17, 24].

- Los torbellinos permanecen en la interfase durante un tiempo promedio, durante el cual se vuelven estáticos, llevándose en este lapso de tiempo la difusión molecular.
- Estos torbellinos abandonan la interfase para penetrar en el seno del líquido.
- Cada torbellino que penetra hacia el seno del líquido es reemplazado por otro elemento que proviene del seno del líquido.

Figura 2.7 Modelo de Penetración

Cuando un elemento se desplaza del seno del líquido hacia la interfase, reemplaza a un elemento estático; de esta manera los elementos se encuentran estáticos o en movimiento. Considerando la figura 2.7 en la cual el soluto A se difunde con el elemento de la interfase gas – líquido hacia el seno del líquido, aplicando un balance de materia, se puede describir el proceso de difusión mediante la siguiente ecuación **[17, 24]**:

$$D_{AB} \frac{\partial^2 C_A}{\partial x^2} = \frac{\partial C_A}{\partial z}$$
(Ec 2.6)

El flux promedio de transferencia de materia de A se obtiene integrando sobre un tiempo promedio t, dando la siguiente ecuación:

$$N_{A} = 2 \sqrt{\frac{D_{AB}}{\pi t}} (C_{Ai} - C_{AB}) = k (C_{Ai} - C_{AB})$$
(Ec 2.7)

Donde el coeficiente de transferencia de masa es:

$$k = 2 \sqrt{\frac{D_{AB}}{\pi t}}$$
(Ec 2.8)

2.6.4. Teoría de la Superficie Renovada

Con el fin de mejorar la *teoría de Penetración*, en 1951 *Danckwerts* propuso que el tiempo de exposición constante puede ser reemplazado por un tiempo promedio de exposición determinado por un tiempo de distribución asumido. El autor consideró que la probabilidad de que un elemento sea reemplazado en la superficie es independiente de la duración de exposición de dicho elemento **[17, 24]**. Basándose en esta teoría, el flux de transferencia de materia promedio se expresa:

$$N_{A} = (C_{At} - C_{AB}) \sqrt{\frac{D_{AB}}{\pi}} \int_{0}^{\infty} \frac{\tau(t)}{t^{1/2}} dt$$
(Ec 2.9)

donde $\tau(t)$ dt representa la fracción de la superficie que ocupa un elemento con un tiempo de exposición desde t hasta t + dt; la suma de todas las fracciones es igual a 1.0. *Danckwerts* presentó una forma analítica para la distribución de los tiempos de exposición, asumiendo que la velocidad de un elemento, al ser cambiado en la superficie con cierto tiempo de exposición, es proporcional al número de elementos con el mismo tiempo de exposición [17, 24], de tal manera que:

$$-\frac{d\tau}{dt} = s\tau$$
(Ec 2.10)

Donde s es la velocidad con que se renueva la superficie y es inversamente proporcional al tiempo de exposición de los *torbellinos*.

2.6.5. Teoría Película – Penetración

Tor y Marchello en 1958 combinaron las características de tres teorías: la teoría de Película, la teoría de Penetración y la Teoría de

Renovación de la Superficie, desarrollando un modelo de Película – Penetración [17, 24], el cual plantea las siguientes hipótesis:

- Toda la resistencia a la transferencia de masa se encuentra dentro de la película, la cual tiene un espesor fijo δ, Teoría de Película. (Sec. 2.6.2).
- Los torbellinos del flujo global entran y salen de la película, Teoría de Penetración (Sec. 2.6.3).
- El tiempo de residencia de los torbellinos es del tipo *Higbie y Danckerts*, Teoría de la Superficie Renovada (Sec. 2.6.4).

Este modelo³ predice la dependencia del coeficiente de transferencia, k, con la difusividad D_{AB}, el cual varía desde la raíz cuadrada de la difusividad $\sqrt{D_{AB}}$ hasta el valor íntegro de la difusividad, D_{AB} [17, 24].

2.6.6. Teoría de Doble Película

En 1923 *Whitman*, sugirió una extensión de la teoría de la Película (Sec. 2.6.2) a una de dos películas en serie. Cada una representa una resistencia a la transferencia de masa, donde las concentraciones de los dos fluidos en la interfase están en equilibrio, esto es, que no existe una resistencia extra en la transferencia de masa en la interfase de los fluidos. Esta teoría es ampliamente aplicada en la modelación de los procesos en estado estacionario de dos fases, tanto para gas-líquido⁴ como para líquido [17, 24].

³La solución de estas ecuaciones se pueden consultar en Separation Process Principles [24]

⁴Para el desarrollo de este trabajo solo es importante el caso de gas / líquido

Considerando el caso de un proceso estacionario de transferencia de masa, desde la fase gaseosa A a la fase líquida B atravesado la interfase en equilibrio, como se muestra en la figura 2.8, se puede establecer el flux de masa para ambas fases como:

$$N_{A} = \frac{(D_{AB})_{G}}{\delta_{G}} (p_{AB} - p_{Ai})_{G} = \frac{(D_{AB})_{L}}{\delta_{L}} (C_{Ai} - C_{AB})_{L}$$
(Ec 2.11)

Es posible expresar la velocidad de transferencia de masa (N_A), en términos de los coeficientes de masa de la fase gas (k_G) y líquida (k_L), mediante la ecuación 2.5 (Sec. 2.6.2) **[17, 24]**. De tal forma podemos escribir la velocidad de transferencia de masa en la fase gaseosa en términos de las presiones parciales:

$$N_A = k_G (p_{Ab} - p_{Ai})$$
 (Ec 2.12)

para la fase líquida, se puede usar las concentraciones molares:

$$N_A = k_L (C_{Ai} - C_{Ab})$$
(Ec 2.13)

En la interfase la concentración de A (C_{Ai}), y la presión parcial de A (p_{Ai}) están en equilibrio, aplicando la ley de *Henry*:

$$C_{Ai} = H_A p_{Ai} \tag{Ec 2.14}$$

Figura 2.8 Modelo Doble Película

Donde H_A es la constante de la ley de Henry para el componente A.

Las ecuaciones 2.12 - 2.14 son usualmente empleadas para calcular la velocidad de transferencia de masa en los procesos de vapor – líquido, para los cuales se usan los valores de las concentraciones de ambas fase **[17, 24]**; para este caso de estudio la concentración en la fase gaseosa se considera la presión parcial p_{Ab} y la fase líquida la concentración en el seno del líquido C_{Ab}. Resolviendo la ecuación 2.12 para p_{Ai} se tiene:

$$p_{Ai} = p_{Ab} - \frac{N_A}{k_G} \tag{Ec 2.15}$$

y resolviendo la ecuación 2.13 para CAi resulta:

$$C_{A\bar{c}} = C_{A\bar{b}} - \frac{N_A}{k_L} \tag{Ec 2.16}$$

Combinando las ecuaciones 2.16 y 2.14, para eliminar C_{Ai} y utilizando la ecuación 2.15, para eliminar p_{Ai} se llega a:

$$N_{A} = \frac{H_{A}p_{Ab} - C_{Ab}}{\frac{H_{A}}{k_{G}} + \frac{1}{k_{L}}}$$
(Ec 2.17)

Para poder manipular la ecuación anterior, es necesario definir dos puntos a) una concentración imaginaria de la fase líquida $C_A^+ = H_A p_{Ab}$, la cual es la concentración que está en equilibrio con la presión parcial, p_A , en el seno del gas; y b) un coeficiente de transferencia de masa global K_L. Partiendo de lo anterior se puede reescribir la ecuación 2.17 de la siguiente manera:

$$N_{A} = K_{L}(C_{A}^{*} - C_{Ab}) = \frac{C_{Ab}^{*} - C_{Ab}}{\frac{H_{A}}{k_{G}} + \frac{1}{k_{L}}}$$
(Ec 2.18)

donde

$$\frac{1}{K_L} = \frac{H_A}{k_G} + \frac{1}{k_L}$$
 (Ec 2.19)

En el cual K_L es el coeficiente global de transferencia de masa basado en la fase líquida. También se puede obtener una definición similar para un coeficiente global de transferencia de masa basado en la fase gaseosa (K_G)⁵, la cual se muestra a continuación:

$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{1}{H_A k_L}$$
(Ec 2.20)

2.6.7. Difusión en una Película Líquida Descendente

Es un modelo teórico simple propuesto por *Nernst* en 1904 para transferencia de materia en un líquido descendente con un flujo no turbulento. En este modelo se considera que la resistencia a la transferencia de materia se lleva a cabo dentro de una película de líquido y también se asume que solo ocurre la difusión molecular por el gradiente de concentración. Además se considera que el flujo viscoso y la difusión tienen lugar bajo condiciones tales que prácticamente puede considerarse que la velocidad del líquido no se ve afectada por la difusión. Para una mejor descripción del modelo se considera un gas A que es absorbido por una película laminar descendente del líquido B. En la figura 2.9 se puede apreciar que la especie A es transferida en la direcciones x, y.

En base a un balance de momento, el perfil de velocidad $v_Z(x)$ en la película es el siguiente:

$$v_{Z}(x) = v_{max} \left[1 - \frac{x^{2}}{\delta} \right]$$
(Ec 2.21)

1

⁵Se recomienda desarrollar la Ec. K_G para una mejor comprensión de la teoría de Doble Película.

Conociendo los perfiles de concentración, puede estimarse la velocidad total de transferencia de materia, la cual es:

$$N_{Ax}(z) = C_{AB} \sqrt{\frac{D_{AB} v_{max}}{\pi L}}$$
(Ec 2.22)

De esta demostración se deduce que la velocidad de transferencia de materia es proporcional a la raíz cuadrada de la difusividad e inversamente proporcional a la raíz cuadrada del tiempo de exposición t = L/v_{max} . Esta teoría se usa para estudios Hidrodinámicos y/o Transferencia de masa.
2.7. EFICIENCIA DE LAS COLUMNAS EMPACADAS

Las columnas empacadas son dispositivos que promueven el contacto entre las fases, en las cuales físicamente no se pueden distinguir etapas, al contrario de cómo sucede en las columnas de platos donde las etapas físicamente están bien definidas mediante los platos.

Debido a esto, para evaluar la eficiencia en columnas empacadas son mejores las consideraciones de transferencia de masa que las del concepto de etapas de equilibrio, sin embargo es común que el comportamiento de estas columnas se estime mediante el concepto de etapas de equilibrio, cuando una altura de empaque equivalente a una etapa (plato) teórica (en equilibrio); esta altura es llamada HETP⁶ y en otras palabras es la altura necesaria de empaque para realizar una transferencia de masa igual a la que realizaría un plato teórico **[18, 20]**.

$$HETP = \frac{Altura \, del \, empaque}{Número \, de \, etapas \, teóricas} = \frac{H_t}{N_t} \tag{Ec 2.23}$$

Desafortunadamente el concepto de HETP no tiene bases teóricas. Aunque los valores de HETP pueden relacionarse con los coeficientes de masa, estos valores son obtenidos por cálculos iterativos usando datos experimentales a nivel planta piloto o comercial, utilizando la ecuación 2.24. Para las columnas empacadas es preferible determinar la altura del empaque en base a un método más teórico, en el que estén involucrados las condiciones de operación y los coeficientes de transferencia de masa de las fases del líquido y del gas. Este modelo teórico ha sido estudiado bastamente **[18, 20]** y a continuación se explicará el desarrollo de éste.

⁶Por sus siglas en ingles, Hight Equivalent of Theorical Plate

2.7.1. HETP: Altura Equivalente de un Plato Teórico

La teoría de Doble Película (Sec. 2.6.6), puede ser aplicada como se muestra en la figura 2.10, donde existe un gradiente de concentraciones en cada una de las fases. En la interfase se asume que existe un equilibrio físico entre ambas fases. Así como sucede en las columnas de platos, en donde las líneas de operación y de equilibrio son de gran importancia, dichas líneas son esenciales para la determinación de la transferencia de masa presente en la columnas empacadas **[18, 20]**.

La velocidad de transferencia de masa para los procesos de destilación, absorción y agotamiento puede ser expresada en términos de coeficiente de transferencia de masa para ambas fases basados en una unidad de área. También es común el uso de los coeficientes volumétricos ka_e, donde a_e, representa el área efectiva de transferencia de masa por unidad de volumen de empaque.

Para la explicación del concepto de HETP se tomará como caso de estudio el proceso de absorción. La velocidad de transferencia de masa de un soluto que atraviesa la película de gas es igual a la velocidad con que atraviesa la película líquida; la velocidad de transferencia de masa por unidad de volumen de empaque Y, puede ser expresada en términos de los gradientes de fracción mol en cada una de las fases ó en términos del gradiente de presiones parciales para la fase gaseosa y el gradiente de concentraciones en la fase líquida [24], se define mediante la figura 2.10, por:

$$\tau = k_G a_g (y - y_i) = k_L a_g (x_i - x)$$
(Ec 2.24)

Figura 2.10 Propiedades en la interfase en términos de las propiedades del seno de los fluidos

La composición en la interfase depende de la relación de los coeficientes volumétricos de transferencia de masa, k_La_e/k_Ga_e; rearreglando la ecuación anterior:

$$\frac{y - y_i}{x - x_i} = -\frac{k_L a_g}{k_G a_e} \tag{Ec 2.25}$$

Una línea recta con pendiente - k_La_e/k_Ga_e desde un punto de vista de la línea de operación (x,y) intersecta la línea de equilibrio en el punto (x_i,y_i), el cual representa la composición en la interfase. Con el fin de evitar la evaluación de la composición en la interfase, los coeficientes de transferencia de masa totales pueden ser definidos en términos de los gradientes de transferencia de cada una de las fases **[24]** obteniendo:

$$\tau = K_G a_g (y - y^*) = K_L a_g (x^* - x)$$
(Ec 2.26)

Donde y^{*} es la fracción mol de vapor que está en equilibrio con la fracción mol x en el seno del líquido; de la misma forma x^{*} es la fracción mol de líquido que está en equilibrio con la fracción mol y en el seno del vapor (Fig. 2.12) **[24]**.

Combinando las ecuaciones 2.25 y 2.27, los coeficientes de masa totales para ambas fases, K_L y K_G , pueden ser expresados en función de los coeficientes de transferencia de ambas fases, k_L y k_G .

Fraccion mol del Soluto en el Liquido, x

Figura 2.11 Composición en la interfase

Para la fase gaseosa

$$K_{G}a_{G} = \frac{1}{k_{G}a_{G}} + \frac{1}{k_{L}a_{G}} \left(\frac{y_{i} - y^{*}}{x_{i} - x}\right)$$
(Ec 2.27)

Y para la fase líquida

$$K_L a_{\rm s} = \frac{1}{k_L a_{\rm s}} + \frac{1}{k_G a_{\rm s}} \left(\frac{x^* - x_i}{y - y_i} \right)$$
(Ec 2.28)

Para soluciones diluidas, donde la curva de equilibrio se puede asumir que es una línea recta (Fig. 2.11) [24], partiendo de esta suposición plantear las siguientes ecuaciones:

$$\frac{y_i - y^*}{x_i - x} = \frac{ED}{FB} = K$$
(Ec 2.29)
$$\frac{x^* - x_i}{y - y_i} = \frac{CF}{FB} = \frac{1}{K}$$
(Ec 2.30)

donde K es la constante de equilibrio. Combinando la ecuación 2.28 con 2.30 y de la misma manera la ecuación 2.29 con 2.31 se obtiene:

para la fase gaseosa:

$$\frac{1}{K_{c}a_{e}} = \frac{1}{k_{c}a_{e}} + \frac{K}{k_{L}a_{e}}$$
(Ec 2.31)

y para la fase líquida

$$\frac{1}{K_L a_{\rm g}} = \frac{1}{k_L a_{\rm g}} + \frac{1}{K k_G a_{\rm g}} \tag{Ec 2.32}$$

En la determinación de la altura del empaque de una columna, es usual el empleo de los coeficientes totales de transferencia de masa de la fase gaseosa (K_ya_e) y esto se debe a que comúnmente el líquido tiene afinidad para el soluto de tal manera que la resistencia a la transferencia de masa es mayor en el gas. En las columnas de platos se presenta la misma situación **[24]**.

Como caso de estudio se toma el ejemplo de una columna empacada a contracorriente para un sistema diluido, como se muestra en la figura 2.12. Un balance de materia diferencial para el soluto sobre una altura de empaque diferencial d_i está dada por:

$$-Gdy = K_y a_{\varepsilon} (y - y^*) S dH$$
(Ec 2.33)

donde S representa el área transversal de la columna. Integrando y colocando las constantes fuera de la integral se obtiene:

$$\frac{K_{G}a_{e}S}{G}\int_{0}^{H_{T}}dH = \frac{K_{G}a_{e}SH_{T}}{G} = \int_{y_{\text{sal}}}^{y_{\text{ent}}}\frac{dy}{y - y^{*}} \quad (\text{Ec 2.34})$$

despejando, la altura del empaque H_T queda:

$$H_T = \frac{G}{K_G a_e S} \int_{y_{sal}}^{y_{ext}} \frac{dy}{y - y^*}$$
(Ec 2.35)

Chilton y *Colburn* sugirieron que la parte derecha de la ecuación 2.36 puede ser escrita como el producto de 2 términos **[15]**.

$$H_T = H_{OG} N_{OG} \tag{Ec 2.36}$$

donde

$$HTU_{2G} = \frac{G}{K_G a_g S}$$
(Ec 2.37)

У

$$NTU_{OG} = \int_{y_{sal}}^{y_{ent}} \frac{dy}{y - y^*}$$
(Ec 2.38)

El primer término H_{OG} representa *La Altura Total de Transferencia de una Unidad* (HTU)⁷ basada en la fase gas. A partir de datos experimentales se muestra que HTU depende más fuertemente de los coeficientes totales de transferencia K_Ga_eA que el flujo molar de gas G.

⁷Por sus siglas en ingles, Hight of Transfer Unit

Figura 2.12 Contacto Diferencial en una Columna de Absorción a Contra Corriente

2.7.2. Eficiencia con respecto a los Regímenes de Flujo

Debido a que la eficiencia en una columna empacada es inversamente proporcional al valor numérico HETP, una manera de evaluar esta eficiencia es mediante una gráfica de HETP vs. L/G, esta forma es muy común al analizar el comportamiento de las columnas, En la figura 2.13 podemos observar la funcionalidad de la eficiencia a medida que la velocidad del gas se incrementa en una relación constante los flujos de las fases (L/G, por ejemplo la velocidad del líquido aumenta en la misma proporción que la del gas).

A la izquierda del punto "A" se encuentra la región de la mala distribución del líquido; a menores velocidades de la fase líquida, la irrigación del líquido sobre la cama del empaque es pobre, dando por consecuencia una baja eficiencia de la columna.

A medida que el flujo del líquido aumenta va mejorando su distribución en la columna, produciendo una mejora en la eficiencia de la misma. El punto "A" representa la relación mínima de L/G para humedecer la mayor parte de la superficie del empaque. Cuando la distribución del líquido es pobre, se requiere de una mayor cantidad de líquido para humedecer el empaque y el punto "A" se desplaza hacia la derecha.

Si la distribución es muy pobre, este punto no se podrá observar y la curva no presentará la región plana "A-B". En este caso, una curva de forma en "V" es indicativa de una pobre distribución [18].

La región "A-B", se conoce como *Precarga*, y sus características principales son: el empaque se encuentra casi húmedo en su totalidad, presenta un flujo turbulento en la película del líquido, exhibe una buena transferencia de masa y esencialmente una eficiencia constante. Está región es ideal para el diseño y operación de columnas.

Cuando la velocidad de gas aumenta, se pasa del punto "B" a la región de *Carga*, ("B-C"). Inicialmente la eficiencia se incrementa, debido a que la retención líquida aumenta y se tiene presente mayor área efectiva, pero esta mejora momentáneamente. Cuando el punto mínimo de HETP es alcanzado, la eficiencia exhibe un punto máximo, punto "E", y después disminuye drásticamente (zona "E-C") debido al arrastre e inundación de la columna [18].

Las columnas empacadas normalmente son diseñadas en la región de Precarga ("A-B"), a pesar de que en la región de carga la columna ofrece una mayor eficiencia; usualmente en el diseño de columnas empacadas, esta región no es empleada debido a que está muy próximo al punto de inundación (punto "C") [18].

Figura 2.13 Eficiencia Característica de la mayoría de los Empaques Estructurados

La curva de eficiencia descrita anteriormente es normalmente ideal. En la realidad, las curvas de eficiencia generalmente siguen los comportamientos mencionados, pero pueden desviarse de la forma mostrada en la figura 2.13. *Kunesh* muestra que el punto "E" no siempre se presenta, y que en muchos casos la curva entre los puntos "B-F" es plana. Los procesos Hidráulicos y de Transferencia de Masa que tienen lugar en las columnas empacadas son extremadamente complejos y pobremente interpretados. De lo anterior se pueden identificar los siguientes regímenes para la operación de columnas con empaques estructurados **[18]**.

El Régimen de la Mala Distribución: La operación de las columnas empacadas en esta zona se evita debido a la pobre eficiencia (cabe aclarar que la región a la izquierda del punto "A" en la figura 2.13, no es idéntica a la caída de presión).

- El Régimen de Precarga: La mayoría de las torres empacadas están diseñadas para operar en esta región, la eficiencia de la columna es independiente de las velocidades de las fases, y la caída de presión en la columna aumenta uniformemente con la velocidad de la fase gaseosa (intervalo "A-B" en la figura 2.13).
- El Régimen de Carga: El líquido reemplaza al gas como la fase continua a medida que la operación de la columna cambia de un estado normal a uno de inundación (trayecto "B-C" en la figura 2.13).
- El Régimen de Inundación: Esta zona está caracterizada por la inestabilidad en la operación, el fenómeno de arrastre y una pobre eficiencia en la columna. Y por tal motivo no se toma en consideración para el diseño de la columna.

CAPITULO III: DESTILACION DE UN SISTEMA BINARIO

El objetivo general de la destilación consiste en separar los compuestos que tienen diferentes presiones de vapor a una determinada temperatura [31]. La destilación, se refiere a la separación física de una mezcla líquida en dos o más fracciones que tienen distintos puntos de ebullición.

Si se calienta una mezcla líquida de dos materiales volátiles, el vapor que se separa tendrá una mayor fracción molar del material de menor punto de ebullición. Y así mismo el líquido tendrá una fracción molar mayor del material de mayor punto de ebullición. Considerando a la inversa, si se enfría un vapor caliente, el material de mayor punto de ebullición tiende a condensarse en mayor proporción que el material de menor punto de ebullición.

El objetivo de la destilación es separar, mediante vaporización, una mezcla líquida de substancias volátiles miscibles en sus componentes individuales, o bien, en algunos casos, en grupos de componentes.

La destilación se puede realizar en la práctica siguiendo dos métodos fundamentales **[32]**: El primero se basa en la producción de un vapor mediante la ebullición de la mezcla líquida que se desea separar, procediendo posteriormente a la condensación del vapor sin que nada del líquido retorne al rehervidor o se ponga en contacto con el vapor **[32]**. El segundo método se basa en el retorno de parte del condensado a la columna, en condiciones tales que el líquido que desciende se pone en contacto con el vapor que va hacia el condensador **[32]**.

Ambos métodos pueden ser llevados a cabo en forma continua o discontinua [32]. El equipo que se utiliza para realizar una destilación es la columna de destilación, en el presente trabajo se ha utilizado una columna de destilación de contacto continuo rellena de empaques aleatorio y estructurado.

3.1. COLUMNA DE DESTILACIÓN

Una columna de destilación consiste en un recipiente vertical con suficiente altura para que en su espacio interior hagan contacto las corrientes de vapor y el líquido con el propósito de que se efectúe una transferencia de masa entre las dos fases. El contacto de las dos fases en general se lleva a cabo mediante platos de destilación o lechos empacados

En condiciones normales de operación, una cierta cantidad de líquido se aloja encada plato y existen dispositivos internos (empaques, válvulas o cachuchas) para que los vapores ascendentes pasen a través del líquido y hagan contacto con él líquido que desciende y fluye del plato superior al plato inferior, y el vapor se eleva desde una etapa baja hasta la etapa siguiente superior, realizando en cada una de las etapas una transferencia de masa provocada por una transferencia de calor entre las corrientes vapor y liquida en contacto, como se muestra en la figura 1.

Figura 3.1 Diagrama básico de la una columna de destilación [36]

El requisito fundamental de una columna de destilación [45] es que proporcione una superficie de contacto para la transferencia de masa entre el líquido y el vapor a la velocidad deseada. Existen columnas de platos en las cuales el líquido fluye a contra corriente descendiendo por el mismo orificio por el cual se eleva el vapor. A medida que el vapor asciende por la columna, los componentes con punto de ebullición más alto comienzan a condensarse, mientras que los materiales con punto de ebullición inferior ascienden a las etapas más altas. Así se establece un gradiente de temperatura, y se alcanza la temperatura mas alta en la parte inferior de la columna y la temperatura más baja en la parte superior, de donde se puede retirar la solución con punto de ebullición más bajo.

Cuando dos componentes siguen la ley de Raoult, la proximidad de sus puntos de ebullición determina la cantidad de platos teóricos necesarios para la separación. Si los puntos de ebullición están bastantes separados bastan pocos platos, mientras que cuando los puntos de ebullición están muy cercanos se requieren muchos platos teóricos.

Aunque en ocasiones se emplea la palabra equilibrio para referirse a la columna en operación, es más correcto decir que la columna se encuentra en estado estable; pues en un sentido termodinámico, ni se establece un equilibrio verdadero en toda ella, ya que no existe una temperatura uniforme y hay un flujo a contracorriente de liquido y vapor, que es otra condición que no permite el equilibrio.

3.2. COLUMNA DE DESTILACIÓN EMPACADA

En los últimos años la necesidad de incrementar la capacidad o reducir la caída de presión acompañado del desarrollo de materiales más eficientes dio por resultado un uso más amplio de las columnas empacadas, con diámetros mayores. El empaque de las columnas como se mencionó en el capitulo uno pueden ser aleatorios como por ejemplo los anillos Raschig, sillas Berl o Intalox, o estructurado como los Flexigrid, Mellapack 250 X, 250 Y.

La selección de una columna platos o empacada se basa principalmente en los aspectos económicos, en los que se consideran los factores de eficiencia de contacto, capacidad de carga y caída de presión.

Las columnas empacadas deben tener una buena distribución inicial de líquido a través de la columna y una redistribución de líquido a diferentes intervalos de altura, que disminuyen a incrementarse el diámetro de la columna. Las columnas empacadas deben considerarse cuando:

- Se van a separar mezclas sensibles a la temperatura. Para evitar la descomposición y/o polimerización, quizá sea necesaria la operación al vacío. Tanto más pequeña es la retención de líquido y la caída de presión por etapa teórica de la columna empacada su operación es mejor.
- 2. Los materiales de construcción deseables, desde de un punto de vista anticorrosivo y de humedecimiento del líquido son la cerámica y el plástico.
- 3. El reacondicionamiento de una columna de platos es deseable para incrementar la capacidad y/o disminuir la caída de presión. En este caso se recomienda utilizar empaque estructurado.
- Las velocidades de líquido son muy bajas y/o las velocidades de vapor son muy altas en este caso es deseable los empaques ordenados.
- 5. La mezcla a separar es clara, no ensucia y se encuentra libre de sólidos y la limpieza interna de la columna no será necesaria.
- 6. La mezcla a separar tiende a formar espuma, que se aplasta más fácilmente en una columna empacada.
- 7. Se requiere una elevada recuperación de los componentes volátiles, mediante una operación intermitente. La retención de líquido en una columna empacada es mucho menor.

Los procedimientos de cálculo para determinar el diseño, rendimiento y características operacionales para columnas empacadas son los mismos que para columnas de platos. El método de cálculo utilizado en el presente trabajo es el Mc- Cabe-Thiele.

3.3. AZEOTROPOS

La separación simple de dos substancias se relaciona con líquidos que forman una mezcla que se comporta idealmente como el que se ve en la figura 2.

Figura 3.2 Mezcla binaria con comportamiento ideal [36].

Sin embargo, existen mezclas que no siguen la ley de Raoult (no ideales), como es la que se muestra en la figura 3, a este tipo de mezcla en particular se le denomina azeotropo.

Figura 3.3 Mezcla binaria no ideal, azeotrópica [36].

Un azeotrópo puede describirse como una mezcla que en ciertas condiciones de temperatura y presión se comporta como un compuesto puro, como una sola fase. En otras palabras, los dos líquidos que forman la mezcla tienen su punto de ebullición (cambio de fase) a la misma temperatura.

En general un estado azeotrópico se define como un estado en el cual ocurre una transferencia de masa entre dos fases mientras la composición de cada fase se mantiene constante [34].

Un azeotrópo representa un problema importante para la destilación, que como se explicó anteriormente, aprovecha la diferencia del punto de ebullición de los compuestos que forman una mezcla para poder llevar a cabo su separación. Sin embargo existen técnicas de destilación que permiten separar mezclas azeotrópicas.

3.4. DESCRIPCIÓN DEL COMPORTAMIENTO DE LA MEZCLA ETANOL - AGUA

Como se ha explicado anteriormente, es importante contar con un conocimiento suficiente del equilibrio de fases de la mezcla para poder llevar a cabo la separación de la mezcla en un proceso de destilación. Por lo que es fundamental conocer cómo se comporta la mezcla, para conocer la complejidad del problema.

La mezcla que se pretende separar es la mezcla etanol-agua, esta forma un azeotrópo que evita que la pureza de etanol supere el 89.4 % molar, a una presión de 1 atm, que es una concentración aproximada de 96 % volumétrico (alcohol comercial).

3.4.1. Etanol-Agua

Esta es la mezcla original a separar, el etanol forma un azeotrópo con el agua, ver figura 5, que limita la pureza del etanol obtenido de un proceso de destilación convencional a 89.4% mol **[29]**. Es por esta razón que no se puede obtener etanol por medio de una separación simple.

Los datos del equilibrio líquido - vapor para el etanol - agua a una presión de 101.3 Kpa.

		·····
l'emperatura	ļ	
(°C)	Liquido	Vapor
90.5	0.019	0.17
89	0.0721	0.3891
86.7	0.0966	0.4375
85.3	0.1238	0.4704
84.1	0.1661	0.5089
82.7	0.2337	0.5445
82.3	0.2608	0.558
81.5	0.3273	0.5826
80.7	0.3965	0.6122
79.8	0.5079	0.6564
79.7	0.5198	0.6599
79.3	0.5732	0.6841
78.74	0.6763	0.7385
78.41	0.7472	0.7815
78.15	0.8943	0.8943

Tabla 3.1 Datos del equilibrio líquido vapor para etanol-agua [37]

Figura 3.4 Equilibrio a presión constante vapor líquido para el etanol agua [36]

3.5. MÉTODO DE MCCABE-THIELE

Este método no requiere datos detallados de entalpía. Excepto cuando las pérdidas de calor o los calores de solución son extraordinariamente grandes, el método se adecua a la mayoría de los fines. Su adecuación depende de que, como aproximación, Las líneas de operación sobre el diagrama xy puedan considerarse rectas para cada sección de un fraccionador entre puntos de adición o eliminación de corrientes.

3.5.1. Sección de enriquecimiento

Considérese una sección del fraccionador totalmente debajo del punto de introducción de la mezcla de alimentación. El condensador elimina todo el calor latente del vapor principal, pero no enfría más el líquido resultante. Por lo tanto los productos de reflujo y destilado son líquidos en el punto de burbuja y $y_1 = y_D = x_0$. Los platos que se muestran son platos teóricos, de forma que la composición y_n del vapor del plato nsimo está en equilibrio con el líquido de composición x_n que sale del mismo plato. Por lo tanto, el punto (x_n, y_n) sobre coordenadas x, y, cae sobre la curva en el equilibrio. Un balance total de materia para el entorno de la figura 3.6:

$$G = L + D = D (R + 1)$$
 (Ec 3.1)

Para el componente A,

$$Gy_{n+1} = Lx_n + Dx_D \qquad (Ec 3.2)$$

De donde la línea de operación de la sección de enriquecimiento es:

$$y_{n+1} = \frac{L}{G} x_n + \frac{D}{G} x_D$$
 (Ec 3.3)

$$y_{n+1} = \frac{R}{R+1}x_n + \frac{x_D}{R+1}$$
 (Ec 3.4)

Esta es la ecuación de una línea recta sobre coordenadas x, y, de pendiente L/G = R/(R+1) y con una y igual a $x_D/(R+1)$. Haciendo $x_n = x_D$ se tiene $y_{n+1} = x_D$, de manera que la línea pasa a través del punto y = x = x_D sobre la diagonal de 45°. Este punto, junto con el valor obtenido de y = $x_D/(R+1)$, permite construir fácilmente la línea.

Se muestra la concentración de los líquidos y vapores para cada plato y se ve que la construcción usual de "escalera" entre la línea de operación y la curva en el equilibrio proporciona la variación teórica de la concentración del plato.

Al graficar la curva de equilibrio en la figura, generalmente se supone que la presión es constante en toda la torre. Si es necesario se puede permitir la variación de la presión de plato a plato después de determinar el número de platos reales, pero esto requiere de un procedimiento de prueba y error. Generalmente no es necesario, excepto para la operación a presiones muy bajas.

3.5.2. Sección de Agotamiento

Ahora considérese una sección del fraccionador abajo del punto de introducción de la mezcla de alimentación, los platos son teóricos. Los flujos de L y G son constantes de plato a plato, pero no son necesariamente iguales a los valores en la sección de enriquecimiento. Un balance total de materia:

$$L = G + W \tag{Ec 3.5}$$

y para el componente A

$$\overline{L}x_m = \overline{G}y_{m+1} + Wx_w \qquad (\text{Ec 3.6})$$

Estas ecuaciones proporcionan la ecuación de la línea de operación de la sección de agotamiento,

$$y_{m+1} = \frac{\overline{L}}{\overline{G}} x_m - \frac{W}{\overline{G}} x_w$$
 (Ec 3.7)

$$y_{m+1} = \frac{\overline{L}}{\overline{L} - \overline{W}} x_m - \frac{W}{\overline{L} - W} x_w$$
 (Ec 3.8)

Si el vapor rehervido y_w está en equilibrio con el residuo x_w , el primer escalón en la construcción de escalera representa el rehervidor.

3.5.3. Introducción de la mezcla de alimentación

La introducción de la mezcla de alimentación modifica al cambio en las pendientes de la línea de operación cuando se pasa de la sección de enriquecimiento a la de agotamiento del fraccionador.

La cantidad q es el calor necesario para convertir un mol de la mezcla de alimentación de su condición H_F hasta un vapor saturado, dividido entre el calor latente molal H_G - H_L . La mezcla de alimentación puede introducirse en cualquiera de las diferentes condiciones térmicas, desde un líquido por debajo de su punto de burbuja hasta un vapor sobrecalentado; para cada una de esas condiciones, el valor de q será diferente.

$$\frac{\overline{L}-L}{F} = \frac{H_G - H_F}{H_G - H_I} = q$$
 (Ec 3.9)

El lugar de intersección de las líneas de operación (la línea q), en una línea recta de pendiente q/(q-1) y puesto que y = z_F cuando x = z_F , pasa a través del punto x = y = z_F sobre la diagonal a 45°.

$$y = \frac{q}{q-1}x - \frac{z_F}{q-1}$$
 (Ec 3.10)

El intervalo de valores de la pendiente q/(q-1) está listado en la tabla 3.2; la interpretación grafica se muestra en la figura 3.7. Aquí se muestra la intersección de la línea de operación para un caso particular de alimentación, como la mezcla de un líquido y un vapor. Es claro que, para una condición dada de alimentación, el hecho de fijar la relación de reflujo en la parte superior de la columna establece automáticamente la relación líquido/vapor en la sección de agotamiento y la carga térmica del rehervidor.

Condición de la		Línea en la
alimentación	q	Fig 3.7
Líquido sub enfriado	> 1	(a)
Líquido saturado	1	(b)
Mezcla líquido vapor	0 < <i>q</i> < 1	(C)
Vapor saturado	0	(d)
Vapor sobrecalentado	< 0	(e)

Tabla 3.2 Condiciones térmicas de una mezcla de alimentación [35].

Figura 3.7 Localización de la línea *q* para condiciones típicas de alimentación [35]

3.5.4. Localización del plato de alimentación

La línea q es útil para simplificar la localización gráfica de la línea de agotamiento, pero el punto de intersección de las dos líneas de operación no establece necesariamente la delimitación entre las secciones de enriquecimiento y de agotamiento de la torre. Más bien, es la introducción de la mezcla de alimentación la que gobierna el cambio de una línea de operación a la otra y establece la delimitación; además, en el diseño de una nueva columna.

3.5.5. Relación de reflujo mínimo

Línea de balance de componente de la sección de rectificación se puede expresar en términos de la relación de reflujo.

$$y_{n+1} = \frac{R}{R+1} x_n^{-\frac{n}{4}} \frac{x_D}{R+1}$$
 (Ec 3.11)

Cuando la razón de reflujo disminuye, también disminuye la pendiente de la línea de balance de componente. El efecto de la relación de reflujo sobre las líneas de balance de componente se ilustra en la **Fig. 3.8**.

Toda separación práctica requiere que las líneas de balance de componente se interceptan debajo de la curva de equilibrio, así para una relación de reflujo de 3,0 en la **Fig. 3.8a**. La construcción de McCabe – Thiele correspondiente a esta razón es mostrada en la **Fig. 3.8c**. Si se proporciona insuficiente reflujo, las líneas de balance de componente se interceptan por sobre la curva de equilibrio, como para una relación de reflujo de 1,0 en la Fig. **3.8a**. La construcción de McCabe – Thiele para estas condiciones (**Fig. 3.8b**) muestra que aún con un número infinito de etapas no se puede conseguir la separación.

La separación es teóricamente posible si las líneas de balance de componente se interceptan inmediatamente debajo de la curva de equilibrio. La relación de reflujo correspondiente es denominada *reflujo mínimo*. La separación a reflujo mínimo requiere un número infinito de etapas. En la **Fig. 3.8**, la razón mínima de reflujo es 2,0. La construcción de McCabe –Thiele para esta relación se muestra en la **Fig. 3.8c.**

Figura 3.8 Efecto de la Relación de Reflujo sobre las rectas de operación: (a) Total, (b) R < R min [35].

.

Para determinar el reflujo mínimo, construir la línea-q e identificar su punto de intersección con la curva de equilibrio. Luego dibujar una línea desde el punto de composición del producto sobre la línea diagonal de 45° a este punto de intersección, la pendiente de la línea es $R_{min}/(R_{min} + 1)$, y la intersección de esta línea con el eje y es $x_D/(R_{min} + 1)$. El reflujo mínimo se puede determinar de cualquiera de estos puntos.

Figura 3.9 Efecto de la Relación de Reflujo sobre las rectas de operación: (c) R=R min, (d) R =Total [35]

Ninguna columna puede operar a reflujo mínimo ya que necesitaría un número infinito de etapas, lo cual es físicamente imposible. Sin embargo, una operación se puede aproximar a reflujo mínimo cuando la columna contiene un exceso grande de etapas.

3.6. LA UNIDAD DE TRANSFERENCIA

Para torres empacadas, los flujos se basan en la unidad de área de la sección transversal de la torre, mol/tiempo área. Para las columnas empacadas, con volumen diferencial dZ, la superficie interfacial es a_e dZ, en donde a es el área superficial interfacial. Ver figura 3.9

La cantidad de sustancia A en el vapor que pasa a través de la sección diferencial es Gy mol/tiempo (área), y la rapidez de la transferencia de masa es d(Gy) moles A/(h)(volumen diferencial). En forma similar, la rapidez de transferencia de masa es d(Lx). Aun en aquellos casos en que las suposiciones simplificadoras usuales no son estrictamente aplicables, G y L son, dentro de una sección de la columna, lo suficientemente constante para la contra difusión equimolar entre fases se debe cumplir:

$$N_A = -N_B \tag{Ec 3.12}$$

$$F_G = -k'_y \tag{Ec 3.13}$$

$$F_L = -k'_{\mathfrak{X}} \qquad (\text{Ec 3.14})$$

Y el flux de transferencia de masa es:

$$N_{A} = \frac{d(Gy)}{a \, dZ} = k'_{y}(y_{i} - y) = \frac{d(Lx)}{a \, dZ} = k'_{x}(x - x_{i})$$
(Ec 3.15)

Por lo tanto:

$$Z_{g} = \int_{0}^{Z_{g}} dZ = \int_{(Gy)_{0}}^{(Gy)_{2}} \frac{d(Gy)}{k'_{y}a(y_{i}-y)} = \int_{(Lx)_{0}}^{(Lx)_{2}} \frac{d(Lx)}{k'_{x}a(x-x_{i})}$$
(Ec 3.16)

Una expresión similar, con los límites apropiados de integración. Se aplica para la sección de agotamiento.

Para cualquier punto (x,y) sobre la línea de operación, el punto correspondiente $(x_i - x)$ sobre la curva en el equilibrio se obtiene en la intersección con una línea pendiente $-k_{x'} / k_{y'} = -k_{x'a} / k_{y'a}$ trazada desde (x,y). Para $k_{x'} > k_{y'}$, de forma que la resistencia principal a la transferencia de masa resida en el vapor, $y_i - y$ se lee más exactamente que x- x_i . Entonces, se utiliza mejor la integral central de la ecuación (9.152), evaluada gráficamente como el área bajo la curva con 1/ $k_{y'a} (y_i - y)$ como ordenada, Gy como abscisa, dentro de los límites apropiados. Para $k_{x'} < k_{y'}$, es mejor utilizar la última integral. De esta forma, se trabaja fácilmente con las variaciones en G, L, los coeficientes y con el área interfacial con localización sobre las líneas de operación.

Figura 3.10 Fraccionamiento de una torre empacada [35]

Para los casos en los que se pueden aplicar las suposiciones simplificadoras usuales, $G \ y \ L$, dentro de cualquier sección de la torre son constantes, las alturas de las unidades de transferencia Son algunas veces lo suficientemente constante de forma que la **ecuación 3.16** se puede escribirse:

$$H_{tG} = \frac{G}{k'_{y}a} \qquad H_{tL} = \frac{L}{k'_{x}a} \qquad (\text{Ec 3.17})$$

$$Z_{g} = H_{tG} \int_{y_{0}}^{y_{2}} \frac{dy}{y_{i} - y} = H_{tG} N_{tG}$$
(Ec 3.18)

$$Z_{s} = H_{tL} \int_{x_{0}}^{x_{2}} \frac{dx}{x - x_{i}} = H_{tL} N_{tL}$$
(Ec 3.19)

Con expressiones similares para Z_e . El número de unidades de transferencia N_{tG} y N_{tL} está dado por las integrales de las ecuaciones **3.18** y **3.19**. Debe recordarse, sin embargo, que el área interfacial *a* y los coeficientes de transferencia de masa dependen de los flujos de masa, los cuales, debido al cambio de los pesos moleculares promedio con la concentración, pueden variar considerablemente aun si los flujos molares son constantes. Por lo tanto, sin verificación, no debe suponerse que H_{tG} y H_{tL} son constantes.

Por lo general, la curva de equilibrio para cualquier sección de la torre experimenta en la pendiente el cambio suficiente para que no puedan utilizarse los coeficientes de transferencia de masa globales ni las alturas de las unidades de transferencia. Sin embargo, si la curva es básicamente recta, se puede escribir [35].

$$Z_{g} = H_{tOG} \int_{y_{0}}^{y_{2}} \frac{dy}{y^{*} - y} = H_{tOG} N_{tOG}$$
(Ec 3.20)

$$Z_{s} = H_{tOL} \int_{x_{0}}^{x_{2}} \frac{dx}{x - x^{*}} = H_{tOL} N_{tOL}$$
(Ec 3.21)

En donde:

$$H_{tOG} = \frac{G}{K'_{y}a} \qquad H_{tOL} = \frac{L}{K'_{x}a} \qquad (\text{Ec 3.22})$$

Aquí, y^* -y es una fuerza motriz global en función de las composiciones de vapor y x-x* es la correspondiente para el líquido [35].

CAPITULO IV: ANÁLISIS EXPERIMENTAL Y RESULTADOS

El propósito de este capítulo es detallar sobre los resultados comparativos obtenidos durante las corridas realizadas, estas fueron a dos concentraciones diferentes de alimentación (10 y 20% en volumen de Etanol).

Durante el desarrollo de esta tesis se usaron dos tipos de empaque; el primero del tipo aleatorio: *Anillos Raschig de ½*" y el segundo el empaque de tipo estructurado: *Mellapack 250Y*, de acero inoxidable, el cuál fue modificado, según recomendación de la empresa Sulzer, para poder ser adecuado a la columna de Destilación de 4" de diámetro interno.

Cuando se trabajó con el empaque aleatorio se trabajo a 5 rangos diferentes de flujo de alimentación, en cambio con el empaque estructurado se trabajo hasta 8 rangos diferentes de flujo de alimentación con el fin de demostrar que dicho empaque es de mayor eficiencia en la mayoría de los aspectos tanto hidráulicos como de transferencia de masa.

Previamente a los cálculos se mostrará unas figuras del Equipo de Destilación y sus partes internas con las cuales se trabajaron.

Figura 4.1 Equipo de Destilación Continua, de la Facultad de Ingeniería Química, Laboratorio Operaciones Unitarias Nº23

Para las corridas realizadas se trabajo con un distribuidor tipo spray, ya que para el empaque estructurado es fundamental que haya una buena distribución para asegurar el completo humedecimiento del empaque. Este distribuidor también se uso con el empaque aleatorio para así tener las mismas condiciones de operación.

El distribuidor se instaló tanto en la zona de alimentación como en la zona de reflujo.

Figura 4.2 Distribuidor tipo Spray

Adicionalmente se instaló un Rotámetro en el reflujo, con este equipo se evita el trabajo de que al final de cada corrida estar midiendo los vapores de tope para poder determinar al final la cantidad de reflujo. Esto permitió realizar las corridas de manera continua.

Figura 4.3 Rotámetro de Reflujo

La columna de Destilación inicialmente está diseñada para empaques aleatorios, *anillos Raschig ½*", para la primera etapa de la tesis que era la evaluación con el empaque aleatorio no hubo mayor dificultad, en la segunda etapa que era con los empaques estructurados, estos fueron modificados según recomendación de la empresa Sulzer, ya que el empaque que fue donado por la Empresa Repsol "Refinería La Pampilla", originalmente pertenecía a una columna de Destilación al Vacío de mayor diámetro.

Los empaques estructurados, trabajados en esta tesis son láminas corrugadas colocadas una seguida de otra de forma vertical dentro de la columna. Los ángulos de las corrugaciones en las placas van entre 45 y 90 grados, si la primera plancha corrugada tiene un ángulo de 45 grados con respecto a la vertical, la segunda tendrá corrugaciones de -45 grados. Las corrugaciones de los empaques estructurados permiten obtener una mayor área superficial por volumen de la columna a diferencia de los empaques aleatorios.

La disposición ordenada de las planchas corrugadas permite que el flujo de gas no tenga cambios de dirección demasiado abruptos en comparación con los empaques aleatorios. Esto se ve evidenciado en una menor caída de presión en lecho relleno con empaque estructurado. La disposición anteriormente mencionada también permite una menor retención de líquido a través del lecho lo cual permite tener un porcentaje de inundación menor en el lecho relleno con empaque estructurado entructurado en comparación con los empaques aleatorios.

La mayor área superficial generada por las planchas corrugadas genera mayor deposición de sólidos sobre la superficie para servicios con alto factor de ensuciamiento. En este tipo de destilaciones se recomienda el uso de empaque aleatorio ya que poseen menor área superficial y son más fáciles de retirar para limpieza y mantenimiento.

La fracción de espacios vacíos generado entre las corrugaciones de planchas paralelas es mayor que el generado por un lecho con empaque aleatorio, reduciendo la velocidad superficial del gas y generando mayor área libre para el trafico de líquido y vapor a través de la columna, esto se puede entender como mayor capacidad para los lechos rellenos con empaque estructurado.

En la **Figura 4.4, Figura 4.5** se muestran los empaques estructurados modificados las cuales se instalaron en ambas zonas de la columna, tanto enriquecimiento como empobrecimiento. Y en la **Figura 4.6** se muestran los empaques instalados en ambas zonas.

Figura 4.4 Empaque Estructurado Tipo Mellapack 250Y (medidas originales modificadas)

Figura 4.5 Empaque Estructurado Tipo Mellapack 250Y (medidas originales modificadas) – vista de planta

Figura 4.6 Empaque Estructurado instalado en ambas zonas Enriquecimiento y Empobrecimiento

4.1. MEDIDAS EXPERIMENTALES

En el presente trabajo se realizaron una serie de medidas experimentales durante las operaciones de destilación para el sistema etanol-agua. Las medidas experimentales fueron:

- ✓ Flujo de alimentación F
- ✓ Composición de la alimentación ZF
- ✓ Flujo de Destilado D
- ✓ Composición del destilado Xd
- ✓ Flujo del Residuo W
- ✓ Composición del destilado XW
- ✓ Reflujo
- ✓ Flujo de agua de enfriamiento, expresado como calor retirado en el condensador
- ✓ Presión del vapor de calentamiento y flujo de condensado, expresado como calor suministrado al reboiler.
- ✓ Temperaturas de Tope y Fondos de la columna.

Las medidas anteriormente mencionadas permitieron realizar los balances de masa para la destilación mediante el método McCabe-Thiele y son reportados detalladamente en el Apéndice A.

4.2. BALANCE DE MASA

4.2.1. Composición de Destilado en Empaque Aleatorio

Los valores de la fracción molar de etanol en el destilado para empaque aleatorio fueron obtenidos experimentalmente y medidos directamente con un alcoholímetro, el cual reporta el porcentaje en volumen de etanol en la mezcla. A continuación reportamos los resultados en fracción mol de etanol para la destilación con un alimentación $Z_F = 10\%$ y 20%.

Tabla 4.1. (a) Composición de destilado para empaque Raschig $\frac{1}{2}$ " con $z_F = 10\%$

Flujo de alimentación (kg/h)	Composición Xd (mol)
36.29	0.4066
45.36	0.5029
54.43	0.5508
58.97	0.5604
68.04	0.5684

Flujo de alimentación (kg/h)	Composición Xd (mol)
36.29	0.6266
45.36	0.6276
54.43	0.6263
58.97	0.6256
68.04	0.6238

Tabla 4.1. (b) Composición de destilado para empaque Raschig $\frac{1}{2}$ " con $z_F = 20\%$

4.2.2. Composición de Destilado en Empaque Estructurado

Los valores de la fracción molar de etanol en el destilado para empaque estructurado fueron obtenidos experimentalmente y medidos directamente con un alcoholímetro, el cual reporta el porcentaje en volumen de etanol en la mezcla. A continuación reportamos los resultados en fracción mol de etanol para la destilación con un alimentación $Z_F = 10\%$ y 20%.

Flujo de alimentación (kg/h)	Composición Xd (mol)
45.36	0.5173
54.43	0.6201
58.97	0.6717
68.04	0.7294
72.58	0.7297
77.11	0.7288
90.72	0.7274
99.79	0.7269

Tabla 4.2. (a) Composición de destilado para empaque estructurado con $z_F = 10\%$

Flujo de alimentación (kg/h)	Composición Xd (mol)
54.43	0.7399
58.97	0.7394
68.04	0.7383
72.58	0.7381
77.11	0.7376
90.72	0.736
99.79	0.736

Tabla 4.2. (b) Composición de destilado para empaque estructurado con $z_F = 20\%$

4.2.3. Comparación de la Composición de destilado entre empaque Estructurado y Aleatorio

Con los valores de fracción molar de etanol medidos experimentalmente procederemos a compararlos para empaques estructurado y aleatorio versus el flujo de alimentación.

Figura 4.7 Composición de destilado para Empaque Estructurado vs Empaque Aleatorio con $Z_F = 10\%$

Figura 4.8 Composición de destilado para Empaque Estructurado vs Empaque Aleatorio con $Z_F = 20\%$

4.3. CAÍDA DE PRESIÓN

4.3.1. Caída de Presión en Empaque Aleatorio

Para cálculos de caída de presión en empaque aleatorios se ha utilizado la correlación generalizada de Leva-Eckert (GPDC). Ellos estudian la caída de presión en tubos empacados y correlaciona los datos experimentales con los modelos utilizados en tubos vacíos. Posteriormente introducen una familia de curvas de caída de presión constante (ver figura 4.7). La carta de Leva-Eckert ha sido por varias décadas el estándar de la industria para predecir la caída de presión en columnas con empaques aleatorios.

Figura 4.9 Ultima versión de la Grafica Generalizada de Caída de Presión por Eckert (1975)

Para fines comparativos entre empaques aleatorios y estructurados mostramos los resultados de la caída de presión para empaques aleatorios versus el factor de gas (Ec 4.1), parámetro que es muy utilizado por los proveedores de empaques y relaciona la velocidad del gas que atraviesa el lecho empacado multiplicado por la raíz cuadrada de la densidad de gas como factor de corrección, dicho parámetro ha sido determinado experimentalmente en los trabajos realizados sobre lechos empacados.

$$F = V_S \sqrt{\rho_G} \tag{Ec 4.1}$$

F: Factor de gas $(m/s\sqrt{Kg/m^3})$.

 V_s : Velocidad superficial del gas (*m*/s).

 ρ_c : Densidad del gas (kg/m³)

En la tabla 4.1 se muestran las características del empaque aleatorio utilizado:

Empaque:	Anillos Raschig 1/2"	
Material:	Metal	
Espesor (mm)	0.8	
Área Superficial (m^2/m^3) (av):	364	
Fracción vacía ε	0.84	

 Tabla 4.3 Características del empaque aleatorio [37]

Los resultados de la caída de presión por metro de empaque aleatorio versus el factor de gas durante la destilación con una alimentación del $z_F = 10\%$ en volumen de etanol. La tabla 4.2(a) y (b) muestra la caída de presión en las zonas de enriquecimiento y empobrecimiento.

Tabla 4.4 (a) Caída de Presión para empaque Raschig ½"	para z _F =
10% en Zona de Enriquecimiento	

Alimentación F(m ³ /h)	F-Factor	ΔP/m (KPa/m)
36.29	0.00092	0.269
45.36	0.00106	0.316
54.43	0.00114	0.342
58.97	0.00116	0.348
68.04	0.00117	0.353

Tabla 4.4 (b) Caída de Presión para empaque Raschig $\frac{1}{2}$ " para $z_F = 10\%$ en Zona de Empobrecimiento.

Alimentación F(m ³ /h)	F-Factor	ΔP/m (KPa/m)
36.29	0.000563	0.44
45.36	0.000613	0.62
54.43	0.000690	1.02
58.97	0.000739	1.30
68.04	0.000837	2.08

lgualmente para la destilación realizada con una alimentación $z_F = 20\%$ en volumen de etanol con empaques Raschig ½" en las zonas de enriquecimiento y empobrecimiento, la tabla 4.3 (a) y (b) muestra los resultados de caída de presión por metro de empaque.

Tabla 4.5 (a) Caída de Presión para empaque Raschig $\frac{1}{2}$ " para $z_F = 20\%$ en Zona de Enriquecimiento

Alimentación F(m ³ /h)	F-Factor	ΔP/m (KPa/m)
36.29	0.00127	0.387
45.36	0.00127	0.388
54.43	0.00127	0.388
58.97	0.00128	0.389
68.04	0.00128	0.390

Tabla 4.5 (b) Caída de Presión para empaque Raschig ½"	' para z _F	=
20% en Zona de Empobrecimiento		

Alimentación F(m³/h)	F-Factor	ΔP/m (KPa/m)
36.29	0.00083	0.810
45.36	0.00101	1.166
54.43	0.00115	1.720
58.97	0.00121	2.095
68.04	0.00132	3.230

4.3.2. Caída de Presión Empaque Estructurado

La caída de presión para empaques estructurados ha sido evaluada con la correlación de Robbins, la misma correlación que el simulador Hysys utiliza para evaluar la caída de presión en empaques estructurados.

La caída de presión que tendría el gas si no hubiera flujo de líquido

$$\Delta P_d = 7.4 \times 10^{-8} G_f^2 10^{2.7 \times 10^{-3} L_f}$$
(Ec 4.2)

Y la caída de presión debido a la presencia de líquido en la columna Así la caída de presión total es:

$$\Delta P_T = \Delta P_d + \Delta P_L \tag{Ec 4.3}$$

En donde los parámetros de flujo $G_f y L_f$, se evalúan de la siguiente forma

$$G_{f} = 986u_{G}\rho_{G}^{0.5} \left(\frac{F_{p_{d}}}{20}\right)^{0.5}$$
(Ec 4.4)
$$L_{f} = L \left(\frac{62.4}{\rho_{L}}\right) \left(\frac{F_{p_{d}}}{20}\right)^{0.5} \mu_{L}^{0.1}$$
(Ec 4.5)

Donde F_{pd} , es el factor de empaque estructurado seco.

A continuación mostramos los resultados de la caída de presión por metro de empaque estructurado versus el factor de gas durante la destilación con una alimentación del $z_F = 10\%$ en volumen de etanol en las zonas de enriquecimiento y empobrecimiento se muestran en la tabla 4.4 (a) y (b).

Tabla 4.6 (a) Caída de Presión para empaque estructurado $z_F = 10\%$ en Zona de Enriquecimiento

Alimentación F(m³/h)	F-Factor	ΔP/m (KPa/m)
45.36	0.00108	0.00386
54.43	0.00126	0.00483
58.97	0.00134	0.00532
68.04	0.00144	0.00578
72.58	0.00145	0.00580
77.11	0.00144	0.00578
90.72	0.00144	0.00577
99.79	0.00144	0.00576

Alimentación F(m³/h)	F-Factor	ΔP/m (KPa/m)
45.36	0.00064	0.00655
54.43	0.00068	0.00763
58.97	0.00070	0.00831
68.04	0.00077	0.01433
72.58	0.00082	0.01571
77.11	0.00088	0.01750
90.72	0.00101	0.02033
99.79	0.00109	0.02300

Tabla 4.6 (b) Caída de Presión para empaque estructurado $z_F = 10\%$ en Zona de Empobrecimiento

Igualmente para la destilación realizada con una alimentación $z_F = 20\%$ en volumen de etanol con empaque estructurado en las zonas de enriquecimiento y empobrecimiento, la tabla 4.5 (a) y (b) muestra los resultados de caída de presión por metro de empaque.

Tabla 4.7 (a) Caída de Presión para empaque estructurado $z_F = 20\%$ en Zona de Enriquecimiento

Alimentación F (m ³ /h)	F-Factor	ΔP/m (KPa/m)
45.36	0.001427	0.00584
54.43	0.001458	0.00586
58.97	0.001462	0.00587
68.04	0.001467	0.00588
72.58	0.001468	0.00592
77.11	0.001472	0.00593
90.72	0.001479	0.00593
99.79	0.001490	0.00601

Alimentación F (m³/h)	F-Factor	ΔP/m (KPa/m)
45.36	0.00091	0.01068
54.43	0.00107	0.01229
58.97	0.00114	0.01314
68.04	0.00126	0.01511
72.58	0.00132	0.01616
77.11	0.00137	0.01717
90.72	0.00152	0.02067
99.79	0.00161	0.02345

Tabla 4.7 (b) Caída de Presión para empaque estructurado $z_F = 20\%$ en Zona de Empobrecimiento.

4.3.3. Comparación de la caída de presión entre empaque Estructurado y Aleatorio

Con los valores de caída de presión calculados en la sección 4.2.1 y 4.2.2 procederemos a comparar la caída de presión generada por los empaques estructurado y aleatorio versus el F-Factor en las zonas de enriquecimiento y empobrecimiento respectivamente.

Figura 4.12 Caída de Presión para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento $Z_F = 20\%$

Figura 4.13 Caída de Presión para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 20\%$

4.4. PUNTO DE INUNDACIÓN

4.4.1. Inundación en empaque aleatorio

Para la determinación del punto de inundación para la columna con empaque aleatorio Raschig ½" se ha utilizado la correlación de Sherwood. Las modificaciones propuestas por Eckert (1970) han permanecido como una herramienta estándar para la predicción del punto de inundación.

La Figura 4.12 muestra la correlación de Sherwood - Eckert, siendo la ordenada un factor de capacidad dado por:

$$Y = \frac{a_P G^2 \mu_L^{0.2}}{\varepsilon^3 \rho_G \rho_L g_c} = \frac{u_{G,H}^2}{g} \left(\frac{a_P}{\varepsilon^3}\right) \left(\frac{\rho_G}{\rho_L}\right) \mu_L^{0.2}$$
(Ec 4.6)

Figura 4.14 Curva de inundación presentada por Sherwood.

Para fines de comparación de los niveles de inundación alcanzados en las zonas de enriquecimiento y empobrecimiento, los datos serán presentados como porcentaje de inundación, siendo esta la relación entre el flujo de gas que atraviesa la zona de enriquecimiento o empobrecimiento y el flujo de gas de inundación obtenido de la correlación de Sherwood (Figura 4.12).

A continuación se muestran los valores del porcentaje de inundación en las zonas de enriquecimiento y empobrecimiento para las destilaciones con una alimentación del 10% en etanol.

Alimentación F (m³/h)	F-Factor	%. Inundación
36.29	0.00092	45.2
45.36	0.00106	48.8
54.43	0.00114	50.67
58.97	0.00116	51.07
68.04	0.00117	51.38

Tabla 4.8 (a)	Porcentaje de	inundación	con empaque	e Raschig ½"
pa	a <mark>ra</mark> Z _F = 10% er	n Zona de En	nriquecimient	0.

Tabla 4.8 (b)	Porcentaje	de inundación	con empac	ue Raschig ½"
pa	ra Z _F = 10%	en Zona de En	n pobrecim ie	ento.

Alimentación F (m ³ /h)	F-Factor	%. Inundación
36.29	0.00056	56.81
45.36	0.00061	64.8
54.43	0.00069	75.45
58.97	0.00074	80.19
68.04	0.00084	88.53

Igualmente presentamos los valores del porcentaje de inundación en las zonas de enriquecimiento y empobrecimiento para las destilaciones con una alimentación del 20% en etanol.

Tabla 4.9 (a)	Porcentaje de	inundación	con empa	ique Raschig	1⁄2"
pa	ara Z _F = 20% er	n Zona de Er	nriquecimi	ento.	

Alimentación F (m ³ /h)	F-Factor	%. Inundación
36.29	0.00127	53.59
45.36	0.00127	53.61
54.43	0.00127	53.65
58.97	0.00128	53.56
68.04	0.00128	53.48

Alimentación F (m ³ /h)	F-Factor	%. Inundación
36.29	0.00083	70.75
45.36	0.00101	78.13
54.43	0.00115	85.27
58.97	0.00121	88.68
68.04	0.00132	95.89

Tabla 4.9 (b) Porcentaje de inundación con empaque Raschig $\frac{1}{2}$ " para Z_F = 20% en Zona de Empobrecimiento.

4.4.2. Inundación en empaque estructurado

Para determinar el punto de inundación en empaques estructurados se utilizará la correlación de Kister y Gill. Basados en las observaciones realizadas por Zenz (1953), Striegle y Rukovena en empaques estructurados, Kister y Gill (1991) proponen la caída de presión para la condición de inundación únicamente en función del factor de empaque, así:

$$\Delta P_{FI} = 0.115 F_P^{0.7}$$
 (Ec 4.7)

Siendo:

 ΔP_{Fl} : Caída de Presión en el punto de inundación (Pa)

 F_P : Factor de empaque estructurado

Una vez obtenida la presión en el punto de inundación con la correlación de Robbins (Ec 4.2) obtenemos el flujo de gas de inundación.

A continuación se muestran los valores del porcentaje de inundación en las zonas de enriquecimiento y empobrecimiento para las destilaciones con una alimentación del 10% en etanol para el empaque estructurado.

Alimentación F (m³/h)	F-Factor	%. Inundación
45.36	0.00108	13.31
54.43	0.00126	14.88
58.97	0.00134	15.63
68.04	0.00144	16.29
72.58	0.00145	16.32
77.11	0.00144	16.29
90.72	0.00144	16.27
99.79	0.00144	16.28

Tabla 4.10 (a) Porcentaje de inundación con empaque estructurado para Z_F = 10% en Zona de Enriquecimiento

Tabla 4.10 (b) Porcentaje de inundación con empaque estructurado para $Z_F = 10\%$ en Zona de Empobrecimiento

Alimentación F (m ³ /h)	F-Factor	%. Inundación
45.36	0.00064	17.35
54.43	0.00068	18.72
58.97	0.00070	19.54
68.04	0.00077	25.67
72.58	0.00082	26.87
77.11	0.00088	27.75
90.72	0.00101	30.59
99.79	0.00109	32.58

De la misma forma presentamos los valores del porcentaje de inundación en las zonas de enriquecimiento y empobrecimiento para las destilaciones con una alimentación del 20% en etanol.

Alimentación F (m³/h)	F-Factor	% Inundación
45.36	0.001427	13.31
54.43	0.001458	14.88
58.97	0.001462	15.63
68.04	0.001467	16.29
72.58	0.001468	16.32
77.11	0.001472	16.29
90.72	0.001479	16.27
99.79	0.001490	16.28

Tabla 4.11 (a) Porcentaje de inundación con empaque estructurado para $Z_F = 20\%$ en Zona de Enriquecimiento.

Tabla 4.11 (b) Porcentaje de inundación con empaque estructurado para $Z_F = 20\%$ en Zona de Empobrecimiento.

Alimentación F (m ³ /h)	F-Factor	%. Inundación
45.36	0.00091	22.15
54.43	0.00107	23.77
58.97	0.00114	24.58
68.04	0.00126	26.36
72.58	0.00132	27.26
77.11	0.00137	28.15
90.72	0.00152	30.93
99.79	0.00161	32.58

4.4.3. Comparación del porcentaje de Inundación entre empaque Estructurado y Aleatorio

Con los valores de porcentaje de inundación calculados en la sección 4.2.1 y 4.2.2 se procede a compararlos con el empaque estructurado y aleatorio versus el F-Factor en las zonas de enriquecimiento y empobrecimiento respectivamente.

Figura 4.16 Porcentaje de inundación para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 10\%$

Figura 4.17 Porcentaje de inundación para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento $Z_F = 20\%$

Figura 4.18 Porcentaje de inundación para Empaque Estructurado vs Empaque Aleatorio en zona de empobrecimiento $Z_F = 20\%$

4.5. CAPACIDAD

Strigle **[7]** define la capacidad como la velocidad de vapor que asegura un comportamiento normal de empaque desde el punto de vista de eficiencia, sin embargo localizar este punto es bastante difícil por el grado de subjetividad que implica. Generalmente los fabricantes tanto de empaques estructurados y aleatorios expresan la capacidad con la siguiente ecuación:

$$C = V_s \sqrt{\frac{\rho_G}{\rho_L - \rho_G}}$$
(Ec 4.8)

4.5.1. Capacidad en empaque aleatorio.

Los valores de capacidad para empaque aleatorio han sido calculados con la ecuación Ec 4.8 y la estimación de las densidades de líquido y vapor se han realizado utilizando el simulador Hysys.

A continuación se muestran los valores de velocidad de vapor V_S y Capacidad para empaque aleatorio en las zonas de enriquecimiento y empobrecimiento con una alimentación de 10% en volumen de etanol.

Alimentación F (m ³ /h)	Vs(m/s)	F-Factor	Capacidad C
36.29	0.00091	0.00092	0.000032
45.36	0.00101	0.00106	0.000037
54.43	0.00106	0.00114	0.000040
58.97	0.00107	0.00116	0.000041
68.04	0.00108	0.00117	0.000041

Tabla 4.12 (a) Capacidad en empaque aleatorio para $Z_F = 10\%$ en Zona de Enriquecimiento

Alimentación F (m³/h)	Vs(m/s)	F-Factor	Capacidad C
36.29	0.00067	0.00056	0.000018
45.36	0.00072	0.00061	0.000020
54.43	0.00081	0.00069	0.000022
58.97	0.00086	0.00074	0.000024
68.04	0.00095	0.00084	0.000027

Tabla 4.12 (b) Capacidad en empaque aleatorio para $Z_F = 10\%$ en Zona de Empobrecimiento.

Los datos de velocidad de vapor V_S y Capacidad para empaque aleatorio en las zonas de enriquecimiento y empobrecimiento con una alimentación de 20% en volumen de etanol se muestran a continuación.

Tabla 4.13 (a) Capacidad en empaque aleatorio para Z_F = 20% en Zona de Enriquecimiento

Alimentación F (m ³ /h)	Vs(m/s)	F-Factor	Capacidad C
36.29	0.00114	0.00127	0.000045
45.36	0.00114	0.00127	0.000045
54.43	0.00115	0.00127	0.000045
58.97	0.00115	0.00128	0.000045
68.04	0.00115	0.00128	0.000045

Tabla 4.13 (b) Capacidad en empaque aleatorio para Z_F = 20% en Zona de Empobrecimiento.

Alimentación F (m ³ /h)	Vs(m/s)	F-Factor	Capacidad C
36.29	0.00087	0.00083	0.000027
45.36	0.00102	0.00101	0.000033
54.43	0.00113	0.00115	0.000038
58.97	0.00118	0.00121	0.000040
68.04	0.00128	0.00132	0.000044

4.5.2. Capacidad en empaque estructurado.

Los valores de capacidad para empaque estructurado han sido calculados con la misma ecuación utilizada en la sección 4.41 y la estimación de las densidades de líquido y vapor se ha realizado igualmente utilizando el simulador Hysys.

A continuación se muestran los valores de velocidad de vapor V_S y Capacidad para empaque estructurado en las zonas de enriquecimiento y empobrecimiento con una alimentación de 10% en volumen de etanol.

Tabla 4.14 (a) Capacidad en empaque estructurado para $Z_F = 10\%$ en
Zona de Enriquecimiento

Alimentación F (m³/h)	Vs(m/s)	F-Factor	Capacidad C
45.36	0.00103	0.00108	0.000038
54.43	0.00114	0.00126	0.000044
58.97	0.00119	0.00134	0.000048
68.04	0.00125	0.00144	0.000052
72.58	0.00125	0.00145	0.000052
77.11	0.00125	0.00144	0.000052
90.72	0.00125	0.00144	0.000052
99.79	0.00125	0.00144	0.000052

Tabla 4.14 (b) Capacidad en empaque estructurado para $Z_F = 10\%$ en
Zona de Empobrecimiento

Alimentación F (m³/h)	Vs(m/s)	F-Factor	Capacidad C
45.36	0.00071	0.00064	0.000021
54.43	0.00075	0.00068	0.000022
58.97	0.00078	0.00070	0.000023
68.04	0.00085	0.00077	0.000025
72.58	0.00091	0.00082	0.000027
77.11	0.00096	0.00088	0.000029
90.72	0.00110	0.00101	0.000033
99.79	0.00119	0.00109	0.000036

Los datos de velocidad de vapor V_S y Capacidad para empaque aleatorio en las zonas de enriquecimiento y empobrecimiento con una alimentación de 20% en volumen de etanol se muestran a continuación.

Alimentación F (m ³ /h)	Vs(m/s)	F-Factor	Capacidad C
45.36	0.00123	0.001427	0.000051
54.43	0.00126	0.001458	0.000052
58.97	0.00126	0.001462	0.000052
68.04	0.00126	0.001467	0.000053
72.58	0.00126	0.001468	0.000053
77.11	0.00126	0.001472	0.000053
90.72	0.00127	0.001479	0.000053
99.79	0.00127	0.001490	0.000053

Tabla 4.15 (a) Capacidad en empaque estructurado para Z_F = 20% en Zona de Enriquecimiento

Tabla 4.15 (b) Capacidad en empaque estructurado para $Z_F = 20\%$ en Zona de Empobrecimiento.

Alimentación F (m³/h)	Vs(m/s)	F-Factor	Capacidad C
45.36	0.00094	0.00091	0.000030
54.43	0.00108	0.00107	0.000035
58.97	0.00113	0.00114	0.000038
68.04	0.00123	0.00126	0.000042
72.58	0.00128	0.00132	0.000043
77.11	0.00133	0.00137	0.000045
90.72	0.00146	0.00152	0.000050
99.79	0.00154	0.00161	0.000053

4.5.3. Comparación de las capacidades entre empaque estructurado y aleatorio.

Con los valores de capacidad calculados en la sección 4.4.1 y 4.4.2 procederemos a compararlos con el empaque estructurado y aleatorio versus el flujo de alimentación en las zonas de enriquecimiento y empobrecimiento respectivamente.

Figura 4.19 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento $Z_F = 10\%$

Figura 4.20 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 10\%$

Figura 4.21 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento $Z_F = 20\%$

Figura 4.22 Capacidad para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 20\%$

4.6. ALTURA EQUIVALENTE DE ETAPA TEÓRICA HETP

La evaluación de las HETP para columnas rellenas con empaque estructurado y aleatorio se ha realizado con la correlación de Carrillo-Roselló. Este es un método corto para evaluar el HETP, el cual es aplicable a destilaciones a presión o vacío. Las variables necesarias son el área específica del empaque, densidades de vapor líquido y flujo de vapor. La relación de HETP:

$$HETP = \frac{P\sqrt{\rho_L}}{(2712 + 82.09P)(1 + 1.505 \left(\frac{\rho_G}{\rho_L}\right)^{0.25})^2}$$
(Ec 4.9)

4.6.1. HETP en empaque aleatorio

Los valores de HETP han sido evaluados con la ecuación de Carrillo – Roselló. Los valores de HETP para empaque aleatorio han sido calculados con la ecuación Ec 4.9 y la estimación de las densidades de líquido y vapor se han realizado utilizando el simulador Hysys **[38]**. A continuación se muestran los valores de *HETP (m)* para empaque aleatorio en las zonas de enriquecimiento y empobrecimiento con una alimentación de 10% en volumen de etanol.

Tabla 4.16 (a) HETP (m) en empaque aleatorio para $Z_F = 10\%$ en Zona de Enriguecimiento

Alimentación F (m³/h)	HETP(m)
36.29	0.6356
45.36	0.6201
54.43	0.6125
58.97	0.6110
68.04	0.6098

Tabla 4.16 (b) HETP (m) en empaque aleatorio para Z_F = 10% en Zona de Empobrecimiento

Alimentación F (m ³ /h)	HETP(m)
36.29	0.7040
45.36	0.7029
54.43	0.7015
58.97	0.6999
68.04	0.6965

Los datos de HETP (m) para empaque aleatorio en las zonas de enriquecimiento y empobrecimiento con una alimentación de 20% en volumen de etanol se muestran a continuación.

Alimentación F (m³/h)	HETP(m)
36.29	0.6011
45.36	0.6009
54.43	0.6010
58.97	0.6012
68.04	0.6015

Tabla 4.17 (a) HETP (m) en empaque aleatorio para $Z_F = 20\%$ en zona de Enriquecimiento

Tabla 4.17 (b) HETP (m) en empaque aleatorio para Z_F = 20% en Zona de Empobrecimiento

Alimentación F (m ³ /h)	HETP(m)
36.29	0.6790
45.36	0.6705
54.43	0.6665
58.97	0.6651
68.04	0.6633

4.6.2. HETP en empaque estructurado

Los valores de HETP han sido evaluados con la ecuación de Carrillo – Roselló. Los valores de HETP para empaque estructurado han sido calculados con la ecuación Ec 4.9 y la estimación de las densidades de líquido y vapor se han realizado utilizando el simulador Hysys **[38]**.

A continuación se muestran los valores de *HETP (m)* para empaque estructurado en las zonas de enriquecimiento y empobrecimiento con una alimentación de 10% en volumen de etanol.

Ŧ

Alimentación F (m ³ /h)	HETP(m)
45.36	0.6182
54.43	0.6021
58.97	0.5946
68.04	0.5867
72.58	0.5865
77.11	0.5867
90.72	0.5869
99.79	0.5870

Tabla 4.18 (a) HETP (m) en empaque estructurado para $Z_F = 10\%$ en Zona de Enriquecimiento

Tabla 4.18 (b) HETP (m) en empaque estructurado para Z_F = 10% en Zona de Empobrecimiento.

Alimentación F (m ³ /h)	HETP(m)
45.36	0.6957
54.43	0.6953
58.97	0.6948
68.04	0.6937
72.58	0.6929
77.11	0.6915
90.72	0.6897
99.79	0.6890

Los datos de HETP (m) para empaque estructurado en las zonas de enriquecimiento y empobrecimiento con una alimentación de 20% en volumen de etanol se muestran a continuación:

Alimentación F (m³/h)	HETP(m)
45.36	0.5849
54.43	0.5852
58.97	0.5852
68.04	0.5852
72.58	0.5848
77.11	0.5846
90.72	0.5844
99.79	0.5841

Tabla 4.19 (a) HETP (m) en empaque estructurado para Z_F = 20% en Zona de Enriquecimiento

Tabla 4.19 (b) HETP (m) en empaque estructurado para $Z_F = 20\%$ en Zona de Empobrecimiento

F(m³/h)	HETP(m)
45.36	0.6773
54.43	0.6710
58.97	0.6691
68.04	0.6664
72.58	0.6654
77.11	0.6646
90.72	0.6629
99.79	0.6621

4.6.3. Comparación de HETP para empaque estructurado y aleatorio.

Con los valores de HETP (m) calculados en la sección 4.4.1 y 4.4.2 procederemos a compararlos con el empaque estructurado y aleatorio versus el flujo de alimentación en las zonas de enriquecimiento y empobrecimiento respectivamente.

Figura 4.23 HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento $Z_F = 10\%$

Figura 4.24 HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 10\%$

Figura 4.25 HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Enriquecimiento $Z_F = 20\%$

Figura 4.26 HETP (m) para Empaque Estructurado vs Empaque Aleatorio en Zona de Empobrecimiento $Z_F = 20\%$

4.7. Recuperación de la Mezcla Alcohólica

La recuperación de la mezcla alcohólica para las operaciones de destilación con empaque estructurado y aleatorio ha sido calculada con la ecuación:

$$Recuperación = \frac{D * x_D}{F * z_F}$$
(Ec. 4.10)

4.7.1. Recuperación con empaque aleatorio

La recuperación de alcohol para la operación de destilación con la columna rellena con empaque aleatorio se ha calculado con la Ec 4.10.

Tabla 4.20 (a) Recuperación de alcohol con empaque aleatorio con $z_F = 10\%$

Flujo de alimentación (kg/h)	Recuperación
36.29	0.98
45.36	0.97
54.43	0.89
58.97	0.83
68.04	0.73

Tabla 4.20 (b) Recuperación	de alcohol	con empaque	aleatorio	con
	z _F = 20%			

Flujo de alimentación (kg/h)	Recuperación
36.29	0.74
45.36	0.59
54.43	0.49
58.97	0.46
68.04	0.39

4.7.2. Recuperación con empaque estructurado.

La recuperación de alcohol para la operación de destilación con la columna rellena con empaque estructurada se ha calculado con la Ec 4.10.

.

Tabla 4.21 (a) Recuperación de alcohol con empaque estructurado con $z_F = 10\%$

Flujo de alimentación (kg/h)	Recuperación
45.36	0.990
54.43	0.990
58.97	0.990
68.04	0.941
72.58	0.882
77.11	0.829
90.72	0.703
99.79	0.639

Tabla 4.21 (b) Recuperación de alcohol con empaque estructurado con $Z_F = 20\%$

Flujo de alimentación (kg/h)	Recuperación
54.43	0.99
58.97	0.99
68.04	0.95
72.58	0.89
77.11	0.84
90.72	0.71
99.79	0.65

4.7.3. Comparación de la Recuperación entre empaque estructurado y aleatorio.

Con los valores de Recuperación calculados en la sección 4.6.1 y 4.6.2 procederemos a compararlos con el empaque estructurado y aleatorio versus el flujo de alimentación.

Figura 4.27 Recuperación para Empaque Estructurado vs Empaque Aleatorio en destilación $z_F = 10\%$

Figura 4.28 Recuperación para Empaque Estructurado vs Empaque Aleatorio en destilación z_F = 20%

4.8. AREA INTERFACIAL EFECTIVA DE TRANSFERENCIA DE MASA

A continuación se explica cómo se evalúa el área interfacial efectiva para estos dos tipos de empaques que se realizaron durante las corridas comparativas.

4.8.1. Empaque Aleatorio: Anillos Raschig de 1/2"

Para el cálculo del área efectiva se consideró el modelo de Onda y colaboradores. Esta correlación se basa en una gran cantidad de datos para una variedad de empaques, con absorción y Desorción gaseosa, usando agua y disolventes orgánicos. La correlación para la fase gaseosa también incluye datos sobre la vaporización de líquidos puros. La mayor parte de los datos experimentales se encuentran dentro de un intervalo de \pm 20% del valor calculado mediante la correlación, pero en algunos casos la desviación llega a ser hasta de \pm 50% [27].

Estas incertidumbres son frecuentes en las correlaciones de transferencia de masa. Su causa puede ser la inexactitud de los datos o una correlación inadecuada.
Estas correlaciones incluyen datos sobre los siguientes tipos de empaques:

- Anillos Raschig: ¼ a 2 plg
- Albardilla Berl: ½ a 1 ½" plg
- Anillos Pall: 1 plg
- Esferas: ½ y 1 plg
- Barras: ¹/₂ y 1 plg.

La expresión para a_e, el área interfacial efectiva de transferencia de masa es:

$$\frac{a_{\theta}}{a_{V}} = 1 - \exp\left[-1.45 \left(\frac{\sigma_{G}}{\sigma}\right)^{0.75} \left(\frac{v_{L}}{a_{V}\mu_{L}}\right)^{0.1} \left(\frac{v_{L}^{2}a_{V}}{\rho_{L}^{2}g}\right)^{-0.05} \left(\frac{v_{L}^{2}}{\rho_{L}\sigma a_{V}}\right)^{0.2}\right]$$
(Ec 4.11)

Los términos de esta ecuación son adimensionales de manera que puede usarse cualquier conjunto consistente de unidades. A continuación se dan las unidades inglesas típicas con la definición de términos. (Las unidades del SI se dan entre paréntesis) [27].

 a_V : área superficial por unidad de volumen de empaque, pie²/pie³ (m²/m³) (Ver tabla 20)

ae: área interfacial efectiva de transferencia de masa, pie²/pie³ (m²/m³)

g: aceleración de la gravedad, 4,17 x 10⁸ pie/h² (9,81 m/s²)

v_L: velocidad de masa de la fase líquida, lb/h pie² (kg/s m²)

μ_L: viscosidad del líquido, lb/pie h (kg/m s)

ρ_L: densidad del líquido, lb/pie³ (kg/m³)

σ: tensión superficial del líquido, dinas/cm

 σ_{c} : tensión superficial crítica del material de empaque, dinas/cm (Ver tabla 4.21)

A continuación se presentan las siguientes tablas:

Anillo Raschig metálico (1/16 plg de pared)	% vacio (ε)	Superficie especifica (a _v) pie ² /pie ³	Factor de empaque F	Peso de carga Ib/pie ³
1/2	73	118	410	132
1	85	57	137	71
2	92	31,4	57	37

Tabla 4.22 Características físicas de empaques tipo Raschig [27]

Norton Co.

Tabla 4.23 Tensión de superficie crítica de materiales de empaque[27]

Material	σ _c dinas/cm
Carbón	56
Cerámica	61
Vidrio	73
Parafina	20
Polietileno	33
Policloruro de Vinilo	40
Acero	75

(J. Chem. Eng. Of Japan; Copyright 1967)

De los dos cuadros anteriores tenemos los siguientes datos, incluyendo otros datos necesarios como:

 $\sigma_{\rm C}$ = 75 dinas/cm <> 0,075 N/m

 $g = 9,81 \text{ m/s}^2$

Área transversal = 0,00811 m²

Los resultados del área interfacial efectiva para las dos corridas realizadas a concentraciones al 10% y 20% en volumen de etanol se muestran en las tablas 4.24 (a) y (b) y 4.25 (a) y (b) respectivamente:

Tabla 4.24 (a) Área Interfacial Efectiva para Empaque Aleatorio $z_F = 10\%$, Zona de Enriquecimiento

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
36,29	0,00092	156,84
45,36	0,00106	172,36
54,43	0,00114	181,32
58,97	0,00116	183,15
68,04	0,00117	184,70

Tabla 4.24 (b) Área Interfacial Efectiva para Empaque Aleatorio z _F =
10%, Zona de Empobrecimiento

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
36,29	0,00056	319,89
45,36	0,00061	326,34
54,43	0,00069	331,51
58,97	0,00074	333,81
68,04	0,00084	338,00

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
36,29	0,00127	196,55
45,36	0,00127	196,83
54,43	0,00127	196,64
58,97	0,00128	196,36
68,04	0,00128	196,02

Tabla 4.25 (a) Área Interfacial Efectiva para Empaque Aleatorio $z_F = 20\%$, Zona de Enriquecimiento

Tabla 4.25 (b) /	Area Interfacial	Efectiva para	Empaque	Aleatorio z _F =
	20%, Zona de	e Empobreci	miento	

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
36,29	0,00083	321,82
45,36	0,00101	329,98
54,43	0,00115	335,87
58,97	0,00121	338,11
68,04	0,00132	342,11

4.8.2. Empaque Estructurado: Mellapack 250Y

Shi y Mersmann en 1985 desarrollaron un modelo **[25]**; el cual describe la dinámica del líquido en columnas irrigadas. Los autores supusieron que el flujo del líquido se presenta de una manera uniformemente distribuida en riachuelos, los cuales humedecen parcialmente el área específica del empaque. En su modelo definieron a un riachuelo como una película de líquido que desciende gracias a la gravedad, el cual se distribuye libremente por el empaque.

De acuerdo con el modelo **[25]**, el empaque consiste en un conjunto de canales que están en paralelo, teniendo la misma sección transversal. Para cada tipo de empaque el número específico de canales es conocido.

Con el fin de encontrar una relación entre el área específica, el grosor del riachuelo, el flujo volumétrico y la geometría del empaque, los autores hicieron un análisis de las fuerzas que actúan en un elemento de riachuelo en la dirección del flujo **[25]**, para lo cual asumieron que el flujo del riachuelo estaba sobre un plano con un ángulo de inclinación de 45°; adicionalmente el fluido tenía una velocidad constante.

El modelo Bravo-Rocha- Fair [14], que ha sido utilizado para el cálculo del área interfacial efectiva para el empaque estructurado utilizado (*Mellapack 250 Y*), estos autores tomaron el estudio de Shi y Mersmann [28] donde F_{SE} es un factor que considera las variaciones en el área efectiva por los efectos de ángulo de contacto con la superficie [28]. Esta ecuación se muestra a continuación:

$$\frac{a_{6}}{a_{V}} = 29,12 F_{SE} \frac{\left[\left(\frac{v_{L}^{2} \rho_{L}}{a_{V} \sigma_{L}} \right) \left(\frac{v_{L}^{2} a_{V}}{g} \right) \right]^{0,15} s^{0,359}}{\left(\frac{v_{L}}{a_{V} \gamma_{L}^{0,2}} \right)^{0,2} s^{0,6} (1 - 0,93 \cos \delta) (\sin \theta)^{0,3}}$$
(Ec 4.12)

Donde:

a_v: área superficial por unidad de volumen de empaque, m²/m³

ae: área interfacial efectiva de transferencia de masa, m²/m³

 F_{SE} : Factor que considera las variaciones en el área efectiva por los efectos del ángulo de contacto con la superficie. ($F_{SE} = 0,26$)

g: aceleración de la gravedad, 9,81 m/s²

s: longitud de corrugación, m

ε: fracción de vacio del empaque

θ: ángulo de corrugación

δ: Angulo de contacto entre el sólido y la capa fílmica del líquido

V_L: velocidad del líquido, m/s

ρ_L: densidad del líquido, kg/m³

v_L: viscosidad cinemática del líquido, m²/s

σ_L: tensión superficial del líquido, N/m

Para la aplicación de la correlación se muestra los datos del empaque (Mellapack 250Y para un diámetro de columna de 4 plg), ofrecidos por la empresa Sulzer, incluyendo datos adicionales para el cálculo.

$$a_V = 350 \text{ m}^2/\text{m}^3$$

s = 0,019 m
 $\epsilon = 0,85 \text{ m}^3/\text{m}^3$
 $\theta = 45^\circ$

δ = 45°

 $g = 9,81 \text{ m/s}^2$

Área transversal = 0,00811 m²

Los resultados del área interfacial efectiva para las dos corridas realizadas a concentraciones al 10% y 20% en volumen de etanol se muestran en las tablas 4.26 (a) y (b) y 4.27 (a) y (b) respectivamente:

Tabla 4.26 (a) Área Interfacial Efectiva para Empaque Estructurado $z_F = 10\%$, Zona de Enriquecimiento

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
45,36	0,00108	486,76
54,43	0,00126	508,70
58,97	0,00134	532,89
68,04	0,00144	551,20
72,58	0,00145	551,07
77,11	0,00144	550,76
90,72	0,00144	550,27
99,79	0,00144	550,22

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
45,36	0,00064	721,05
54,43	0,00068	768,04
58,97	0,00070	789,91
68,04	0,00077	836,70
72,58	0,00082	861,14
77,11	0,00088	884,31
90,72	0,00101	947,25
99,79	0,00109	985,05

Tabla 4.26 (b) Área Interfacial Efectiva para Empaque Estructurado $z_F = 10\%$, Zona de Empobrecimiento

Tabla 4.27 (a) Área Interfacial Efectiva para Empaque Estructurado $z_F = 20\%$, Zona de Enriquecimiento

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
54,43	0,00146	554,54
58,97	0,00146	554,37
68,04	0,00147	554,05
72,58	0,00147	553,73
77,11	0,00147	553,58
90,72	0,00148	553,26
99,79	0,00149	553,07

Flujo de alimentación (kg/h)	F-Factor	a _e (m²/m³)
54,43	0,00107	815,12
58,97	0,00114	841,19
68,04	0,00126	888,54
72,58	0,00132	910,61
77,11	0,00137	931,50
90,72	0,00152	990,03
99,79	0,00161	1025,98

Tabla 4.27 (b) Área Interfacial Efectiva para Empaque Estructurado $z_F = 20\%$, Zona de Empobrecimiento

4.8.3. Área Interfacial Efectiva: Empaque Aleatorio vs. Empaque Estructurado

En los ítems 4.6.1 y 4.6.2 se mostraron tablas para cada corrida al 10 y 20% para cada zona enriquecimiento como empobrecimiento para cada empaque aleatorio y estructurado, a continuación se muestra las gráficas comparativas Área Interfacial efectiva (m^2/m^3) vs. Factor de Gas (F-Factor) (EA-Empaque Aleatorio vs. EE-Empaque Estructurado).

Figura 4.29 Gráfico Área Interfacial Efectiva (Empaque Estructurado vs Empaque Aleatorio) – Zona de Enriquecimiento $z_F = 10\%$

Figura 4.30 Gráfico Área Interfacial Efectiva (Empaque Estructurado vs Empaque Aleatorio) – Zona de Empobrecimiento $z_F = 10\%$

Figura 4.31 Gráfico Área Interfacial Efectiva (Empaque Estructurado vs Empaque Aleatorio) – Zona de Enriquecimiento z_F = 20%

Figura 4.32 Gráfico Área Interfacial Efectiva (Empaque Estructurado vs Empaque Aleatorio) – Zona de Empobrecimiento $z_F = 20\%$

CAPITULO V: CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

En el presente trabajo se demostró que el empaque estructurado utilizado es mucho más eficiente que el empaque aleatorio, desde el punto de vista hidráulico como de transferencia de masa.

- ✓ Para la destilación del sistema etanol agua con una alimentación de etanol al 10% a un flujo de 68.04 kg/h, la composición de destilado en la columna rellena con empaque aleatorio es de 0.5684 fracción mol de etanol, mientras que para la columna rellena con empaque estructurado es de 0.7294. El grado de rectificación para una columna rellena con empaque estructurado es mayor que para una columna rellena con empaque aleatorio.
- Para la destilación del sistema etanol agua con una alimentación de etanol al 20% a un flujo de 68.04 kg/h, la composición de destilado en la columna rellena con empaque aleatorio es de 0.6238 fracción mol de etanol, mientras que para la columna rellena con empaque estructurado es de 0.7383. Lo que confirma que el grado de rectificación alcanzado en una columna rellena con empaque estructurado es mayor que una columna rellena con empaque aleatorio.
- ✓ El rango de operación para la columna rellena con empaque estructurado es mayor que para una columna rellena con empaque aleatorio. El máximo flujo de alimentación alcanzado con empaque aleatorio fue de 68.04 kg/h por encima de este flujo aparece el fenómeno de inundación. Mientras que para empaques estructurados el flujo alcanzado fue de 99.79 kg/h sin presentar indicios del fenómeno de inundación.
- ✓ El porcentaje de inundación en la columna rellena con empaque estructurado es notoriamente menor que para la columna rellena

con empaque aleatorio. Para una alimentación del 10% en volumen de etanol, en la zona de enriquecimiento se alcanzo un 51.38% de inundación a un flujo de 68.04 kg/h con empaque aleatorio, mientras que con el empaque estructurado se alcanzó 16.28% de inundación a un flujo de 99.79 kg/h. Para la zona de empobrecimiento se verificó alcanzando el 88.53 % de inundación a un flujo de 68.04 kg/h con empaque aleatorio mientras que con el empaque estructurado se alcanzó 10.28% de inundación a un flujo de 68.04 kg/h con empaque aleatorio mientras que con el empaque estructurado se alcanzó 32.58.% de inundación a un flujo de 99.79 kg/h.

- ✓ Para la destilación con una alimentación del 20% en volumen de etanol, se verifica el mismo comportamiento en los porcentajes de inundación que para la destilación con una alimentación del 10% en volumen de etanol. En la zona de enriquecimiento se alcanzo un 53.48% de inundación a un flujo de 68.04 kg/h con empaque aleatorio mientras que con el empaque estructurado se alcanzó 16.28% de inundación a un flujo de 99.79 kg/h. Para la zona de empobrecimiento se verifica alcanzando 95.89% de inundación a un flujo de 68.04 kg/h con empaque aleatorio mientras que con el empaque estructurado se alcanzó 32.58% de inundación a un flujo de 99.79 kg/h.
- ✓ La caída de presión generada dentro de la columna por empaques estructurados es menor que la generada por empaques aleatorios. Debido a esta característica vienen siendo utilizados con mucha frecuencia en destilaciones del tipo al vacío. Para la destilación con una alimentación del 10% en volumen de etanol, en la zona de enriquecimiento la caída de presión por metro de empaque aleatorio es de 0.353 kPa/m a un flujo de 68.04 kg/h. mientras que la caída de presión por metro de empaque estructurado es de 0.00576 kPa/m. La caída de presión para la zona empobrecimiento con empaque aleatorio es de 2.077 kPa/m y para empaque estructurado de 0.023 kPa/m para los mismos flujos de alimentación respectivamente.
- ✓ Para la destilación con una alimentación del 20% en etanol se corroboró que la caída de presión generada por empaques estructurados es menor que para empaques aleatorios. En la zona de enriquecimiento la caída de presión por metro de

empaque aleatorio es de 0.390 kPa/m a un flujo de 68.04 kg/h. mientras que la caída de presión por metro de empaque estructurado es de 0.006 kPa/m. La caída de presión para la zona empobrecimiento con empaque aleatorio es de 3.23 kPa/m y para empaque estructurado de 0.024 kPa/m para los mismos flujos de alimentación respectivamente.

- ✓ Los valores de HETP calculados para la columna rellena con empaque estructurado son menores que para la columna rellena con empaque aleatorio. En términos de eficiencia, el empaque estructurado es más eficiente que el empaque aleatorio para la misma altura de columna. Para la destilación con una alimentación del 10% en etanol y 68.04 kg/h, en la zona de enriquecimiento, para empaque aleatorio el HETP es de 0.6098 m, mientras que para empaque estructurado es de 0.5897 m. Para la zona de empobrecimiento, el HETP en empaque aleatorio es de 0.6965 m y para empaque estructurado es de 0.693 m. Para la destilación al 20% se tiene valores similares.
- ✓ El grado de recuperación alcanzado con la columna rellena con empaque estructurado. En la destilación con una alimentación del 10% en etanol y 68.04 kg/h, la recuperación para empaque aleatorio fue de 0.73 mientras que para empaque estructurado es de 0.941. Para la destilación con una alimentación del 20% en etanol y 68.04 kg/h, la recuperación para empaque aleatorio fue de 0.34 mientras que para empaque estructurado es de 0.95.
- ✓ El cálculo de las áreas interfaciales está en función de los flujos de líquidos que atraviesan el lecho empacado sea para el caso de empaque aleatorio 0 empaque estructurado. Las áreas interfaciales para empagues estructurados son mucho mayores que para empaque aleatorio por lo que establecen una mayor área de transferencia. Para una alimentación del 10% etanol y 68.04 kg/h, en la zona de enriquecimiento, el área interfacial para empague aleatorio es de 176.40 m^{2/}m³ mientras que para es de 551.20 m^2/m^3 . empaque estructurado El mismo comportamiento sobre las áreas interfaciales se observa para la destilación al 20% de etanol.

RECOMENDACIONES

- Se recomienda el uso de empaques estructurados para las operaciones de destilación en la columna de LOU en lugar del empaque aleatorio. A escala industrial se recomienda utilizar empaques estructurados para sistemas donde se requiera baja presión como por ejemplo la destilación al vacío del crudo reducido en las refinerías de petróleo.
- Se recomienda el uso de empaques estructurados para destilaciones con bajas presiones de operación, donde los productos se pueden degradar a altas presiones y temperatura. Los empaques estructurados son muy utilizados en las columnas de destilación al vacío en las refinerías de petróleo.
- ✓ La instalación de los empaques estructurados en la columna de Destilación del laboratorio de operaciones unitarias deja la posibilidad de trabajos de investigación posteriores, como:
 - Validación de Modelos de Caída de Presión.
 - Validación de Modelos de Retención de Líquido.
 - Validación de Modelos de HETP.
 - Validación de Modelos de Área Interfacial Efectiva.
 - Evaluación de Propiedades Hidráulicas en Empaques Estructurados.
 - Evaluación de las Propiedades de Transferencia de Calor y Masa para un Empaque Estructurado.

Ya que dichos trabajos no estuvieron dentro del alcance de la presente tesis.

BIBLIOGRAFÍA

- [1] Beg, S.A. Hassan, M.M., y Naqvi M.S.M. 1996. Hydrodynamics and Mass Transfer in a Cocurrent Packed Column: A Theorical study. The Chemical Engineering Journal, 63, 93 -103.
- [2] Branan, C.R. 1998. Rules of Thumb for Chemical Engineers: A Manual of Quick, Accurate Solutions to Everyday Process Engineering Problems. 2nd Ed, Gulf Publishin Co. Houston.
- [3] Jaeger Products Inc. 200. Jaeger Tri-Packs. Product Bulletin 600. Houston, TX. USA.
- [4] Kister, H.Z. 1992. Distillation Design. Mc Graw Hill, USA.
- [5] Norton Chemical Process Product Corporation. 2001a. Packed Towers Internals Guide. TIG-2. Saint Gobain, Akron, OH, USA
- [6] Stichlmair, J.G. y Fair, J.R. 1998. Distillation: Principles and Practice. Wiley-VCH, USA.
- [7] Strigle, R.F. 1994. Packed Tower Design and Applications: Random and Structured Packings. 2nd Ed. Gulf Publishing Co. Houston, TX, USA.
- [8] Sulzer Chemtech, Switzerland. 2009, Internals for Packed Columns.
- [9] Koch-Glitsch, USA. 2010, Intalox Packed Tower Systems.
- [10] Larachi, F. Grandjean, B.P.A. y Chaouki, J. 2003. Mixing and Circulation of solids in Spouted Beds: Particle Tracking and Monte Carlo Emulation of the Gross Flow Pattern. Chemical Engineering Scince, 58, 1497 – 1507.
- [11] Billet, R. 1979. Distillation Engineering. Chemical Publishing Co. New York, NJ, USA.
- [12] G.G Bemer, G.A.J.Kalis. Mass Transfer in Packed Columns. Trans. Ind. Chem. Eng., 56: 200, 1978.
- [13] Billet, R. J. Mackowiak. Fette Seifen Anstricmittel, Packed Columns. 86: 349, 1984.

- [14] J.A. Bravo, J.L.: Rocha, J.R Fair. Pressure drop in structured Packing. Hydrocarbon Processing, 65: 45-49, 1986
- [15] T.H. Chilton, A.P. Colburn. Buscar en Kister. Ind. Eng. Chem., 27: 255-260, 1935
- [16] S Ergun. Chemical Engineering. Progr, 48: 89, 1952.
- [17] Anthony L. Hines, Robert Maddox. Mass Transfer Fundamentals and Applications. Prentice-Hall International, Inc, 1985.
- [18] Henry Z. Kister. Distillation Design. 2nd Mc Graw Hill, 1993.
- [19] Alfons Mersmann, Alfred Deixler. Packed columns, Germany Chemical Engineer, 9: 265-276, 1986.
- [20] Z. Olujic. Development of a complete simulation model for predicting the hydraulic and separation performance of distillation columns equipped with structured packings. Chem. Biochem. Eng. Q., 11, 1997
- [21] W.E. Stewart R. B. Bird, E.N. Lighfoot. Fenómenos de Transporte. Editorial Reverté, S.A., 1900
- [22] H.E. Rose Inst. Phys. Symp. Strona 50, 1950.
- [23] A.E. Sáez R.G Carbonell. Hydrodynamic parameters for gas liquid cocurrent flow in packed beds. AIChE J. 31: 52 – 59, 1985.
- [24] J.D. Seader, E.J. Henley. Separation Process Principles. Jonh Wiley and Sons, Inc., 1998
- [25] Mei Geng Shi, Mersmann Alfons. Effective interfacial area in packed columns. Ger. Chem. Eng, 8: 87 – 96, 1985.
- [26] R.F. Strigler, Random Packing and Packed Towers Design and Aplications. Mc Grawll Hill, 1987.
- [27] Alan S. Foust, Leonard A. Wenzel, Curtis W. Clump, Louis Maus, L. Bryce Andersen, Principios de Operaciones Unitarias. Jhon Wiley and Sons, Inc. 2004.

- [28] Bravo J. Luis Rocha, J. Antonio, James R. Fair. Distillation columns containing structured Packing: A comprensive model for their performance. 2. Mass-transfer model. Ind. Eng. Chem. Res., 35: 1660-1667, 1996.
- [29] Luyben, W. "Distillation Design and Control Using Aspen Simulation", Edit. Wiley, 2006.
- [30] Grassi II, V. "Practical distillation control", Edited by William L. Luyben, Edit. Van Nostrand Reinhold, 1992.
- [31] Holman, J. P., "Thermodynamics", McGraw-Hill Book Company, 1988.
- [32] Schmitz K., (1999), "Modelado y simulación de una torre de destilación Multicomponente", IPN.
- [33] Laidler K. & Meiser J., (2003), "Fisicoquímica", Edit. CECSA, primera edición, quinta reimpresión.
- [34] Doherty M., et al, "Conceptual Design of Distillation Systems", Edit. Mc Graw Hill, primera edición, 2001.
- [35] Robert E.Treybal "Operaciones de transferencia de masa" 2 edición 1986.
- [36] Rosendo Vargas Valle, Tesis de Maestria en Ciencias, "Simulación y control de una planta de destilación para producir etanol anhidro", 2008.
- [37] Robert H. Perry, W. Green, J. Maloney "Manual del Ingeniero Químico" Sexta edición, 1997.
- [38] Aspen Technology Inc. 2004. Aspen Plus[@] Unit Operation Models. Ver. 11.2. Cambridge, MA, USA.

いいとこ

B.1. Número de unidades de transferencia para la columna rellena con empaque aleatorio: Raschig ½"

Esta tabla muestra el número de unidades de transferencia y la altura de una unidad de transferencia, para las dos corridas realizadas.

		Flujo de	ALIMENTACI	IÓN 10% OH	ALIMENTAC	IÓN 20% OH	ALIMENTAC	IÓN 10% OH	AL IME NTAC	IÓN 20% OH	ALIMENTACIÓN 10% OH	ALIMENTACIÓN 20% OH
		(kg/h)	NTOG	нтоб	NTOG	нтоб	NTOL	HTOL	NTOL	HTOL	F-Factor	F-Factor
	CORRIDA 1	36,29	0,813	0,738	0,511	1,174	15,505	0,039	2,504	0,240	0,00056	0,00083
	CORRIDA 2	45,36	0,904	0,664	0,436	1,375	12,226	0,049	1,992	0,301	0,00061	0,00101
ZONA DE E MPOBRECIMIENTO	CORRIDA 3	54,43	0,762	0,787	0,403	1,489	5,543	0,108	1,775	0,338	0,00069	0,00115
	CORRIDA 4	58,97	0,700	0,857	0,387	1,552	4,625	0,130	1,674	0,358	0,00074	0,00121
	CORRIDA 5	68,04	0,621	0,967	0,368	1,631	14,036	0,043	1,559	0,385	0,00084	0,00132
	CORRIDA 1	36,290	0,611	0,983	1,456	0,412	1,143	0,525	1,203	0,499	0,00092	0,00127
	CORRIDA 2	45,360	0,905	0,663	1,464	0,410	1,261	0,476	1,207	0,497	0,00106	0,00127
ZONA DE E NR IQUE CIMIE NTO	CORRIDA 3	54,430	1,100	0,546	1,454	0,413	1,333	0,450	1,202	0,499	0,00114	0,00127
	CORRIDA 4	58,970	1,145	0,524	1,449	0,414	1,353	0,444	1,200	0,500	0,00116	0,00128
	CORRIDA 5	68,040	1,184	0,507	1,435	0,418	1,370	0,438	1,195	0,502	0,00117	0,00128

B.2. Número de unidades de transferencia para la columna rellena con empaque estructurado

Esta tabla muestra el número de unidades de transferencia y la altura de una unidad de transferencia, para las dos corridas realizadas.

		Flujo de alimentación	AL IME NTAC IÓ	N 10% OH	ALIMENTACI	IÓN 20% OH	AL IME NTAC	IÓN 10% OH	AL IME NTA	CIÓN 20% OH	ALIMENTACIÓN 10% OH	AL IMENTACIÓN 20% OH
		(Kg/n)	NTOG	HTOG	NTOG	HTOG	NTOL	HTOL	NTOL	HTOL	F-Factor	F-Factor
	CORRIDA 1	45,36	0,923	0,650			12,487	0,048			0,00064	0,00091
	CORRIDA 2	54,43	1,059	0,567	0,512	1,172	14,306	0,042	2,237	0,268	0,00068	0,00107
	CORRIDA 3	58,97	1,127	0,532	0,493	1,216	15,216	0,039	2,114	0,284	0,00070	0,00114
ZONA DE	CORRIDA 4	68,04	1,085	0,553	0,466	1,287	9,722	0,062	1,945	0,308	0,00077	0,00126
EMPOBRECIMIENTO	CORRIDA 5	72,58	0,950	0,632	0,457	1,312	6,658	0,090	1,885	0,318	0,00082	0,00132
	CORRIDA 6	77,11	0,865	0,693	0,449	1,338	5,494	0,109	1,832	0,327	0,00088	0,00137
	CORRIDA 7	90,72	0,744	0,806	0,430	1,397	4,253	0,141	1,719	0,349	0,00101	0,00152
	CORRIDA 8	99,79	0,701	0,856	0,421	1,424	3,882	0,155	1,668	0,360	0,00109	0,00161
	CORRIDA 1	45,36	0,959	0,626			1,280	0,469			0,00108	0,00143
	CORRIDA 2	54,43	1,495	0,401	3,242	0,185	1,509	0,398	2,027	0,296	0,00126	0,00146
	CORRIDA 3	58,97	1,972	0,304	3,225	0,186	1,709	0,351	2,008	0,299	0,00134	0,00146
ZONA DE	CORRIDA 4	68,04	3,030	0,198	3,188	0,188	2,178	0,276	1,990	0,302	0,00144	0,00147
ENRIQUECIMIENTO	CORRIDA 5	72,58	3,038	0,197	3,181	0,189	2,197	0,273	1,992	0,301	0,00145	0,00147
	CORRIDA 6	77,11	3,013	0,199	3,165	0,190	2,180	0,275	1,990	0,301	0,00144	0,00147
	CORRIDA 7	90,72	2,974	0,202	3,113	0,193	2,137	0,281	1,954	0,307	0,00144	0,00148
	CORRIDA 8	99,79	2,960	0,203	3,113	0,193	2,135	0,281	1,954	0,307	0,00144	0,00149

A FINDIGI G F

CLEULOVIE CLEVE COLOLIS

C.1. Área Interfacial Específica para empaque aleatorio: Raschig 1/2"

Los cálculos de área interfacial especifica se realizaron con la correlación de Onda y colaboradores. Las propiedades físicas como densidad, viscosidad y tensión superficial fueron evaluadas con el simulador de procesos Hysys.

Zona de Enriquecimiento

% VOL OH	L (kmol <i>f</i> h)	pL(kmol/m3)	L (m3/h)	ρL(kg <i>/</i> m3)	L (kg /h)	L (kg/s.m2)	μι (kg <i>f</i> m.s)	σι (N <i>/</i> m)	a _w (m2/m3)	F-Factor
	0,6200	28,63	0,02166	846,4	18,33	0,628	0,000436	0,04369	149,96	0,00092
	0,6200	25,72	0,02411	826,1	19,91	0,682	0,000441	0,03968	164,69	0,00106
10%	0,6204	24,38	0,02545	816	20,76	0,711	0,000442	0,03756	173,19	0,00114
	0,6204	24,13	0,02571	814	20,93	0,717	0,000442	0,03714	174,93	0,00116
	0,6200	23,92	0,02592	812,4	21,06	0,721	0,000442	0,03678	176,40	0,00117
	0,6196	22,5	0,02754	800,7	22,05	0,755	0,000443	0,0342	187,61	0,00127
	0,6200	22,47	0,02759	800,5	22,09	0,757	0,000443	0,03415	187,88	0,00127
20%	0,6200	22,49	0,02757	800,7	22,07	0,756	0,000443	0,03419	187,70	0,00127
	0,6196	22,52	0,02751	800,9	22,04	0,755	0,000443	0,03424	187,44	0,00128
	0,6200	22,56	0,02748	801,3	22,02	0,755	0,000443	0,03432	187,11	0,00128

Zona de Empobrecimiento

% VOL OH	L' (kmol/h)	ρL(kmol/m3)	L'(m3/ħ)	ρL '(kg /m3)	L'(kg/s.m2)	µ∟ (kg <i>/</i> m.s)	σι (N <i>/</i> m)	a _w (m2/m3)	F-Factor
	3,358	52,28	0,064	943,1	2,075	0,000264	0,05755	303,27	0,00056
	4,042	51,99	0,078	942,8	2,511	0,000264	0,05762	309,23	0,00061
10%	4,727	51,01	0,093	941,3	2,988	0,000275	0,05768	314,00	0,00069
	5,068	50,48	0,100	940,3	3,234	0,000283	0,05765	316,11	0,00074
	5,756	49,63	0,116	938,4	3,729	0,000293	0,05755	319,96	0,00084
	3,208	45,79	0,070	927	2,225	0,000330	0,05639	305,04	0,00083
	3,855	44,11	0,087	921	2,758	0,000342	0,05566	312,58	0,00101
20%	4,521	43,45	0,104	918,5	3,275	0,000347	0,05534	318,01	0,00115
	4,825	43,26	0,112	917,8	3,507	0,000348	0,05524	320,07	0,00121
	5,472	43,04	0,127	917	3,995	0,000350	0,05513	323,74	0,00132

C.2. Área Interfacial Específica para empaque estructurado

Los cálculos de área interfacial específica se realizaron con la correlación de Bravo-Rocha-Fair. Las propiedades físicas como densidad, viscosidad y tensión superficial fueron evaluadas con el simulador de procesos Hysys.

Zona de Enriquecimiento

% VOL OH	L (kmol/h)	pL (kmol/m3)	L (m3/h)	v L (m/s)	ρL (kg <i>/</i> m3)	σ∟ (N/m)	νι (m2/s)	aw (m2 <i>/</i> m3)	F-Factor
	0,6200	25,31	0,0245	0,00084	823	0,0391	5,36E-07	486,76	0,00108
	0,6200	22,64	0,0274	0,00094	802	0,0385	5,518E-07	508,70	0,00126
	0,6204	21,49	0,0289	0,00099	792	0,0322	5,582E-07	532,89	0,00134
1.0%	0,6204	20,3	0,0306	0,00105	781,3	0,0296	5,644E-07	551,20	0,00144
10%	0,6200	20,3	0,0305	0,00105	781,2	0,0296	5,644E-07	551,07	0,00145
	0,6200	20,32	0,0305	0,00105	781,4	0,0296	5,643E-07	550,76	0,00144
	0,6200	20,35	0,0305	0,00104	781,7	0,0297	5,642E-07	550,27	0,00144
	0,6200	20,35	0,0305	0,00104	781,8	0,0297	5,641E-07	550,22	0,00144
	0,6200	20,09	0,0309	0,00106	779,3	0,0291	5,654E-07	554,54	0,001458
	0,6204	20,11	0,0309	0,00106	779,5	0,0292	5,654E-07	554,37	0,001462
	0,6204	20,13	0,0308	0,00106	779,7	0,0292	5,653E-07	554,05	0,001467
20%	0,6200	20,14	0,0308	0,00105	779,7	0,0292	5,652E-07	553,73	0,001468
	0,6200	20,15	0,0308	0,00105	779,8	0,0292	5,652E-07	553,58	0,001472
	0,6200	20,17	0,0307	0,00105	780	0,0293	5,651E-07	553,26	0,001479
	0,6200	20,18	0,0307	0,00105	780,1	0,0293	5,65E-07	553,07	0,001490

Zona de Empobrecimiento

% VOL OH	L' (kmol/h)	pL (kmol/m3)	L (m3/h)	vı. (m/s)	ρL (kg <i>f</i> m3)	σι (N/m)	v∟ (m2/s)	aw (m2/m3)	F-Factor
	4,0167	52,35	0,076727639	0,002628882	943,1	0,05751	2,789E-07	721,05	0,00064
	4,7027	52,34	0,089849116	0,003078456	943	0,05751	2,789E-07	768,04	0,00068
	5,0445	52,34	0,096378923	0,003302184	943	0,05751	2,79E-07	789,91	0,00070
10%	5,7537	51,67	0,111353921	0,003815265	942,1	0,05759	2,799E-07	836,70	0,00077
	6,0963	51,09	0,119324444	0,004088355	941,2	0,05761	2,894E-07	861,14	0,00082
	6,4360	50,59	0,127218012	0,004358809	940,2	0,05759	2,97E-07	884,31	0,00088
	7,4631	49,62	0,15040463	0,00515324	938,1	0,05748	3,109E-07	947,25	0,00101
	8,1476	49,21	0,165568832	0,005672804	937,1	0,05741	3,163E-07	985,05	0,00109
	4,5038	44,53	0,101140116	0,003465314	922,5	0,05585	3,677E-07	815,12	0,00107
	4,8270	44,18	0,109258425	0,003743468	921,3	0,05569	3,71E-07	841,19	0,00114
	5,4732	43,76	0,125073941	0,004285347	919,7	0,05549	3,748E-07	888,54	0,00126
20%	5,7987	43,63	0,132907313	0,004553738	919,2	0,05542	3,76E-07	910,61	0,00132
	6,1203	43,53	0,140598986	0,004817274	918,8	0,05537	3,77E-07	931,50	0,00137
	7,0909	43,34	0,163611257	0,005605732	918,1	0,05528	3,787E-07	990,03	0,00152
	7,7374	43,27	0,178815927	0,006126683	917,8	0,05524	3,793E-07	1025,98	0,00161

いこう こう いしてい

	こう
	, Gardener 1. Benedister en provinser 2. J. N
Y	
and the factor	
	, 200 , 1
	TT
	<u> </u>
<u>e</u>	
	こう

CURVA DE ENTALPIAS PARA EL SISTEMA ALCOHOL ETILICO AGUA A P=1 atm.

÷.

							Tab	a A1 Em	paques	al Azar										
	Empaque	Material	Tamaño	Area	8	F _P	F _{Pd}	CLo	C _{FI}	Cp	C _H	Շլ	Cv	C ₁	C2	C ₃	¢	Peso	#	MWR
1	Ball 1/8	Cerámica	31	720	0.44												1.0000	1400	10517510	
2	Ball 1/4	Cerámica	6	520	0.44							ar - 1984				<u> </u>	1.0000	1300	3964068	
3	Ball 3/8	Cerámica	10	360	0.44												1.0000	1300	1314689	
4	Ball 1/2	Cerámica	12	275	0.45			··· _· _									1.0000	1300	607693	•••••
i i	Ball 5/8	Cerámica	15	225	0.45	· · · · · · · · · · · ·			·								1 0000	1300	332962	
	Boll 3/4	Cerámica	20	190	0 45			*******								·	1 0000	1300	200700	
	Poll 1	Cerámica	25	144	0.45									· •• · ••			1.0000	1300	87202	
		Corámica		120	0.45	· ~~ · · · · · · · · · ·											1.0000	1900	50576	
		Ceramica	00	120	0.45		· · · - · ··		····								1.0000	1000	50526	
	Bail 1 1/2	Ceramica	30	100	0.45												1.0000	1300	29267	
1.10	Ban 2	Ceramica	50	/2	0.45												1.0000	1300	10918	
11	Bailast Hing Metal 1	Metal	25.4	206.7	0.94	48	3/	·-··									0.1317	480	49600	
12	2 Ballast Ring Metal 1 1/2	Metal	38.1	128	0.95	28	30	-									0.1206	415	13000	
13	Ballast Ring Metal 2	Metal	50.8	101.7	0.96	20	19										0.1013	385	6040	
14	Ballast Ring Metal 3 1/2	Metal	88.9	88.6	0.97	15	14										0.0555	270	1170	
15	Ballast Ring Plastic 5/8	Plástico	15.88	341.2	0.87	97												119		
16	Ballast Ring Plastic 1	Plástico	25.4	213.25	0.9	52	42		1								0.1801	88	50100	
17	Ballast Ring Plastic 1 1/2	Plástico	38.1	131.2	0.91	32	34							-	í		0.1767	76	13600	
18	Ballast Ring Plastic 2	Plástico	50.8	105	0.92	25	20										0,1584	72	6360	
19	Ballast Bing Plastic 3 1/2	Plástico	88.9	85.3	0.93	16	13									r i	0.1015	68	1170	
20	Ballast Plus 2 1/2	Metal	60			14	14				and and	5 - 2 6 -2 - 77								
21	Ballast Saddle 1	Plástico	25.4	213.25	0.92	30	49		- a						<u>├</u>		0.1609	76	55800	
	Pallast Saddle 7	Plástico	50.8	111 55	0.04	20											0 1 2 1 5	64	7760	
20	Pallast Saddlo 2	Pláctico	76.0	01.0	0.04	16											0.0001	60	1500	
4		Cartalico	10.6	0000	0.50	10											0.0021	1000		
24	Beri Saddie 4	Ceramica	4	2000	0.00					~							0.0070	1000		
2	Berl Saddle 6	Ceramica	D.3D	1150	0.63	900	900		 								0.3376	900	3/80000	0.000018
26	Berl Saddle 8	Ceramica	8	980	0,65				·									850		
27	Berl Saddle 10	Cerámica	10	660	0.65													850		
28	Berl Saddle 12	Cerámica	12.7	510	0.67	240	274				0.833	1.364	0.232				0.4400	820	590000	0.000002
29	Berl Saddle 15	Cerámica	15	430	0.66									32	6	0.9	0.4433	780	529720	
30	Berl Saddle 20	Cerámica	19.05	280	0,68	170	142	-									0.4200	770	175000	0.0000022
3	Berl Saddle 25	Cerámica	25.4	205.4	0.695	110	94				0.62	1.246	0.387				0.4100	720	63920	0.0000027
32	2 Berl Saddle 35	Cerámica	38,1	178	0.73	65	47			· · · ·				33	14	1	0.4050	641	22778	0.0000034
33	Berl Saddle 50	Cerámica	50	120	0.75	45	31								1		0.3900	625	8800	0.0000045
34	4 Berl Saddle 76	Cerámica	76	58	0.78								–					490		
35	Bialecki Ring 1/2	Metal	12.7	340	0.932	76,2)								ĵ	0.0720			
36	Bialecki Bing 1	Metal	25.4	210	0.956	65.5		2.521	1.856	0.891	0.692	1.461	0.331	50	7	25	0.1100		48533	
3	7 Bialecki Bing 1 3/8	Metal	35	155	0.967	61		2,753	1.885	1.011	0.787	1.412	0.39		·····		0.0990		18177	
3	Bialecki Ring 2	Metal	50.9	121	0.966	53		2,916	1,896	0.719	0.799	1,791	0.302		h		0.0830		6279	
1-30	Bialecki Bing Plastic 2	Plástico	50.0	100	0.972	40		1 54	1 366	2.558	3 221						0.0700		38/0	·····
- 3		Plástico	1 00.0	gee	0.572					000	0,661			h		<u>∤</u> /	0.0700	170	0049	
4		Plástico	30	000	0.05	•• • • • • • • • • • • • • • • • • • • •			'									100		
- 4	Diploy 40	Plástico	30	320	0.9											{		100		
4		Plastico	10	640	0.82													180		
4	SIBIOIOX 38	Plastico	38	310	0.85													110		
4	4 Bio-Ring	Plastico	88,9	105	0,95													45		
4	5 Cascade Bio-Ring	Plástico	177.8	98.5	0,95													35.2		
4	6 Cascade Mini-Ring 1/2	Metal	12.7	356	0.952	91	55	2.644	2,178	0.882	1.338	2.038	0.495	ļ			0.1500	!	560811	
4	7 Cascade Mini-Ring 5/8	Metal	15.24	357	0.955	87]	1 • • • • • • • • •								0.1410	1	554	
41	B Cascade Mini-Ring 1	Metal	25.4	232.5	0.971	39	31	2.703	1.996	0.641	1.04			-2	-2	2	0.1100]	158467	0.0000043
4	9 Cascade Mini-Ring 1 1/4	Metal	31.75	208		36														
50	Cascade Mini-Ring 1 1/2	Metal	34.925	174.9	0.974	33		2.697	1.841	0.632	0.935		·	-2	-2	2	0.0950		60744	
5	1 Cascade Mini-Ring 2	Metal	42.8498	157	0.969	26	24						[-2	-2	2	0.0930		80000	0.000005
5	2 Cascade Mini-Ring 2 1/2	Metal	63.5	130	0.987	23			/								0.0900		82399	
5	3 Cascade Mini-Bing 3	Metal	66.675	102	0.97	18	13	·· · '									0.0880		22000	0.0000062
										المصد محمد الما				L	1	han <u>a an</u> a di		1	000	S.OUGOUL

Diseño de un Módulo para el Dimensionamiento Hidráulico de Torres Empacadas

3

						Tab	la A1 En	npaques	al Azar										
Empaque	Material	Tamaño	Area.	E	Fp	F _{Pd}	CLo	C _{FI}	Cp	С _н	CL	- Cv	C1	C ₂	C ₃	¢	Peso	# .	MWR
54 Cascade Mini-Ring 4	Metal	88.9	79	0.96	14	9.8						1	1		-	0.1543		10000	0.0000076
55 Cascade Mini-Ring 5	Metal	136.525	46		11			;					1	1	1	T.			
56 Cascade Mini-Ring Plastic 1A	Plástico	25.4	248	0.92	44	25		· · · · ·					1		1	0.2200	64.1	140000	0.0000065
57 Cascade Mini-Ring Plastic 2A	Plástico	50.8	161	0.93	33	15						[[1	0.2040	56.1	25000	
58 Cascade Mini-Ring Plastic 2	Plástico	63.5	106	0.93	20	_								1	{	0.2266	56	25000	0.0000092
59 Cascade Mini-Ring Plastic 3A	Plástico	76.2	81	0.94	17	12					*** ****** ,#** *		1	1		0.1790	51	7000	0.0000103
60 Cascade Mini-Ring Plastic 3 1/2	Plástico	88.9	124.7	0.94	12												51.3		
61 Cascade Mini-Ring Ceramic 50 x 36	Cerámica	50	105.6	0.774	84.7	38		1					1			0.3573	483	9300	
62 Cascade Mini-Ring Ceramic 50 x 30	Cerámica	50	108.8	0.787	68	24							1	1	1	0.3309	516	9091	
63 Cascade Mini-Ring Ceramic 76 x 45	Cerámica	76	63.4	0.795	38.4	18					·					0.3607	423	2517	
64 Chempak 1	Metal	25.4			29	29							1	1					
65 Chempak 2	Metal	50.8			17	17		1					1						
66 Cerapac 1 1/2	Cerámica	38.1	167	0.76	40			1								0.3500	657	30511	
67 Cerapac 2	Cerámica	50.8	118	0.787	30											0.3400	633	12561	
68 Cerapac 3	Cerámica	76.2	79	0.795	18											0.3200	601	3389	
69 Cross Partition Ring 50	Cerámica	50	118	0.71	··· · †	1 189 11-189						h	· · · · · ·	1	i	0.3226	769	5800	
70 Cross Partition Ring 80	Cerámica	80	85	0.67						· · · · · · · · ·		`	j		1		765		
71 Cross Partition Ring 100	Cerámica	100	67	0.67	·· - · - i							·				• • • • • •	769	j	
72 Cylindrical Ring 1/4 x 1/48	Metal	6	700	0.72	j												1466		· · · · · · · · · · · · · · · · · · ·
73 Cylindrical Ring 1/4 x 1/32	Metal	6	707	0.68	700			1				L · ·					2114		
74 Cylindrical Bing 5/16 x 1/64	Metal	8	629	0.91										· ·······························			977	··· ···	
75 Cylindrical Ring 3/8 x 1/64	Metal	10	499	0.89					-								817		
76 Cylindrical Bing 3/8 x 1/32	Metal	10	505	0.81	390			· · ·					}	1. 			1522		
77 Cylindrical Bing 1/2 x 1/32	Metal	12	429	0.85	300												1201		
78 Cylindrical Bing 1/2 x 1/16	Metal	12	433	0.84	410							├		l	<u> </u>		2170	'	
79 Cylindrical Bing 5/8 x 1/16	Metal	15	350	0.87	290			la ma casa a									2066		
80 Cylindrical Bing 3/4 x 1/32	Metal	18	300	0.89	155			i					·				833		
81 Cylindrical Bing 3/4 x 1/16	Metal	18	404	0.83	220			h									1506		
82 Cylindrical Bing 1 x 1/32	Metal	25	220	0.92	115			1				t	{				625		
83 Cylindrical Bing 1 x 1/16	Metal	25	224	0.86	133			·									1197		
84 Cylindrical Bing 1 1/4 x 1/16	Metal	32	174	0.87	110												003		
85 Cylindrical Bing 1 1/2 x 1/32	Metal	38	150	0.89							r		·	1			401		
86 Cylindrical Bing 2 x 1/16	Metal	50	130	0.9	57												795		
87 Cylindrical Bing 2 1/2 x 1/16	Metal	64	110	0.92													503		
88 Cylindrical Bing 3 x 1/16	Metal	75	75	0.95	32		arana ang ang ang ang ang ang ang ang ang						·				320		
89 Cylindrical Bing 15	Plástico	15	350	0.86	115			ես, <u>աստուտ</u> ք ն								+	164		
90 Cylindrical Bing 20	Plástico	20	290	0.87												<u></u> +	194		
91 Cylindrical Bing 25	Plástico	25	220	0.87		-											198		
92 Cylindrical Bing 35	Plástico	35	150	0.9		•	h			•··· •·						¦	90		
93 Cylindrical Bing 50	Plástico	50	110	0.91							··		h	 1			71		
94 Cylindrical Bing 60	Plástico	60	90	0.01	··· • •• •• ••							⊨						· ~ ·	
95 Cylindrical Bing 80	Plástico	80	65	0.91	·					····			+ ~~ · ~ ·				56	- ·	
96 Cylindrical Bing Carbon 12-19	Cathón	12	303	0.6	412			i									406		
97 Cylindrical Ring Carbon 20-20	Carbón	20	246	0.67											<u> </u>		640		
98 Cylindrical Ring Carbon 25-20	Carbón	25	173	0.74	150		~										400		
99 Cylindrical Ring Carbon 38-21	Carbón	38	105	0.67							•						490		
100 Cylindrical Ring Carbon 50-21	Carbón	50	100	0.07		• • • • • • • • • • • • • • • • • • • •	L	, <u>.</u>					· .				600		
101 Ovlindrical Ring Carbon 75-22	Carbón		50	0.74	10		~	·								{}	432		
101 Oyindiidal Ring Caronia 5	Cerámica	'2	1000	0.70	"			' mm							·		384		
102 Cylindrical Ring Ceramic 5	Corámica		0/0	0.03			· • ·	·									900		
103 Cylindrical Ring Ceramic 6	Corámico	<u>8</u>	550	0.64											<u> </u>		880		
105 Cullindrical Ring Ceramic 8	Cerémica		100	0.05	1000	·		+}									850		
105 Cylindrical Ping Ceramic 10	Corómica		445	0.00				'	··· -···								820		
106 Cylindrical Hing Ceramic 12	Ceramica	12	360	0.67			! -	' 1				I	L	l	L	لي ا	800		

Diseño de un Módulo para el Dimensionamiento Hidráulico de Torres Empacadas

A- 3

						Tabl	a A1 Em	paques	al Azar										
Empaque	Material	Tamaño	Area	8	Fp	F _{Pd}	CLo	C _{F1}	C _P	Сн	CL	Cv.	C ₁	°C ₂	C ₃	۰¢	Peso	#	MWR
107 Cylindrical Ring Ceramic 15	Cerámica	15	320	0.72	381							•••••••••••••••			araanan in ah	a di manife na	700	Anner# 61 76 1.1	
108 Cylindrical Ring Ceramic 20	Cerámica	20	240	0.74]										650		
109 Cylindrical Ring Ceramic 25	Cerámica	25	193	0.74	160	1											620		
110 Cylindrical Ring Ceramic 30	Cerámica	30	165	0.77	1								a constant descart		-		570		
111 Cylindrical Ring Ceramic 35	Cerámica	35	138	0.77	95]	1									Ĩ	560		1
112 Cylindrical Ring Ceramic 40	Cerámica	40	120	0.78						1							540		
113 Cylindrical Ring Ceramic 50	Cerámica	50	98	0.78	66	1								1			550		
114 Cylindrical Ring Ceramic 60	Cerámica	60	78	0.79			1	••••••••••••••••••••••••••••••••••••••					and in addition		ayun Julio di Chinadanagi		520		
115 Cylindrical Ring Ceramic 70	Cerámica	70	72	0.78													510		
116 Cylindrical Ring Ceramic 80	Cerámica	80	60	0.78													490		
117 Cylindrical Ring Ceramic 100	Cerámica	100	44	0.81					· · · · · · · · · · · · · · · · · · ·							I	450		
118 Cylindrical Ring Ceramic 120	Cerámica	120	35	0.83											har Serie e rrinen 18		420		
119 Envipac Ring 32	Plástico	31.8	138.9	0.936	24		2,944	2.012	0.549	1.039	1.517	0.459				0.2090		52681	
120 Envipac Ring 60	Plástico	60	98.4	0.961	12	î	2.987	1.864	0.338	0.794	1,522	0.296	ar 2000 a 2 474 metalar			0.1080		6773	
121 Envipac Ring 80	Plástico	80	60	0.955	11		2.846	1.522	0.358	0.641	1.603	0.257	A			0.1280	1	1962	
122 Fleximax 200	Metal	28.956	173.88	0.973			1												
123 Fleximax 300	Metal	36.83	137.8	0.979										ri					
124 Fleximax 400	Metal	60,198	85.3	0.987													+		
125 Fleximax 700	Metal	119,634	42.65	0,982			- '												
126 Flexiring 5/8	Metal	15.875	340	0.93	70	96	i									0.1440	593	210000	0.0000027
127 Flexiring 1	Metal	25.4	208	0.94	48	37						* ************************************	an chan cannadar magai			0.1310	480	49400	0.000004
128 Flexiring 1 1/2	Metal	38.1	128	0.95	28	28										0.1210	385	13200	0.0000051
129 Flexiring 2	Metal	50.8	102	0.96	20	15	·							+		0.1010	352	6040	0.0000068
130 Flexiring 3 1/2	Metal	88.9	65	0.97	16	11							a			0.1630	273	1160	0.0000092
131 Elexiring Plastic 5/8	Plástico	15.875	341	0.889	97	82	h									0.2170	112	214000	0.0000054
132 Elexiring Plastic 1	Plástico	25.4	207	0.895	52	49			a ayi'neen V in. ad a							0.1860	88	50800	0.000008
133 Elexiring Plastic 1 1/2	Plástico	38.1	128	0.914	40	32							*****			0.1820	76	13800	0.00001
134 Eleviring Plastic 2	Plástico	50.8	102	0.923	25	21		1						h		0 1630	68	6360	0.000013
135 Eleviring Plastic 3 1/2	Plástico	88.9	85	0.928	16	10			1					h{		0.1110	64	1170	0.000018
136 Elevisaddle 1	Cerámica	25.4	240	0.73	92											0.3750		88334	
137 Elevisaddle 1 1/2	Cerámica	38.1	167	0.77	52				~				-			0.2870		18245	
138 Elevisaddle 2	Cerámica	50.8	118	0.78	40		<u>-</u> 1						antanan salah as basan			0.3000		8058	
139 Elevisaddle 3	Cerámica	76.2	85	0.78	22											0.2650	+	2075	
140 Glitech 30P Bing	Metal	30	164	0.959	47		2 564	1 76	1.056	0.851	1.577	0.398				0.1100		31100	
141 Glitsch 30Pmk Bing	Metal	30	180.5	0.975	38		2,694	1 9	0.851	0.93	1.92	0.45				0.0700		29200	
142 Hiflow Bing Ceramic 20	Cerámica	20	286.2	0.758	61		2.875	2 41	0.628	1 167	1.744	0 465	10	5	1.1	0.3250		121314	
143 Hiflow Bing Ceramic 38	Cerámica	38.1	128	0.76	37		2.84	1.93	0.621		1.659	0.464				0.3550		14350	
144 Hitlow Bing Ceramic 50	Cerámica	50.8	89.7	0.809	26		2,819	1,694	0.538		1.377	0.379	·····			0.3080		5120	
145 Hiflow Bing Ceramic 75	Cerámica	76.2	54.1	0.868	15		2,903	1.565	0.435				1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	¦		0.2880		1904	
146 Hillow Ring Plastic 15-7	Plástico	15	313	0.91	54											0.1720	80	170198	
147 Hitlow Bing Plastic 25-7	Plástico	25	194.5	0.918	38		2.841	1,989	0.741		1.577	0.39				0.1650	79	46100	
148 Hiflow Bing Plastic 38-1	Plástico	38	125	0.94	23							0,00			***	0.1440	58	14273	
149 Hitlow Bing Plastic 50-0	Plástico	50	82	0.942	===		2 866	1 702	0 414	0.881	1 219	0.342				0 1410	54	6050	
150 Hitlow Ring Plastic 50-6	Plástico	50	117.1	0.925	15		2,894	1 871	0.327	1.038	1 478	0.345		} -†		0 1392	49	6815	
151 Hitlow Ring Plastic 90-6	Plástico	90	69.7	0.968	9		2,853	1.597	0.276							0.0860	41	1340	
152 Hitlow Bing Metal 25	Metal	25.4	202.9	0.962	51		2,918	2 177	0.689	0 799	1.641	0.402	e 1999 in 2019 in 2019			0.0930		40790	
153 Hiflow Bing Metal 50	Metal	50.8	92.3	0.977	16		2,702	1,626	0.421	0,876	1,168	0.408				0.0710		5000	
154 Hv-Pak Bing # 1	Metal	25.4	183	0.961	48	40				0.070						0.0940	312	29900	0.0000041
155 Hy-Pak Bing # 1 5	Metal	38.1	122	0.965	28	26		7 m +								0.0900	280	9300	0.0000047
156 Hy-Pak Ring # 2	Metal	50.8	88	0.971	18	17										0.0000	224	3670	0.000008
157 Hv-Pak Ring # 3	Motal	76.2	00	0.973	16	13								├		0.0750	208	1000	0.0000000
158 Impac 3 5/16	Plástico	83.8	213	0.914	15											0.0560	200	2017	0.00000
150 Impac 5 1/2	Pláctico	120 7	100	0.014	<u>د،</u> ۹											0.0300		2017	
Toompao o Tre	1 140100			0.00						h				3. mar connection		5.0000		102	

						Tab	<u>a A1 Em</u>	paques	al Azar										
Empaque	Material	Tamaño	Area	3	F _P	F _{Pd}	CLo	C _{FI}	Ср	Сн	CL	Cv	. C ₁	C2	C ₃	¢	Peso	, #	MWR
160 IMTP Ring 5/8	Metal	15.875			51	51						Ì							
161 IMTP Ring 1	Metal	25.4	207	0.962	41	43	1						1	1.6	2.1	0.1010		168425	0.0000041
162 IMTP Ring 1 1/2	Metal	38.1	151	0.971	24	26	1	1								0.0870		50140	0.0000051
163 IMTP Ring 2	Metal	50.8	98	0.977	18	17	1	-								0.0780		14685	0.0000068
164 IMTP Ring 2 1/2	Metal	60			16	15											}		
165 IMTP Ring 3	Metal	76.2	70	0.982	12	11										0.0700		4625	0.000008
166 Intalox Saddle 1/4	Cerámica	6.35	984.25	0.64	725	830	7									0.3995	875	4149470	
167 Intalox Saddle 3/8	Cerámica	9.525		0.67	330	330						(11				810	1760000	
168 Intalox Saddle 1/2	Cerámica	12.7	550	0.69	200	187										0.2540	745	730000	
169 Intalox Saddle 3/4	Cerámica	19.05	334.65	0.71	145	132							30	6	1.4	0.3690	710	199175	0.0000022
170 Intalox Saddle 1	Cerámica	25.4	256	0.733	98	94							32	7	1	0.3340	680	84000	0.0000027
171 Intalox Saddle 1 1/2	Cerámica	38.1	195	0.76	52	50				······································			30	6	1.2	0.3370	630	23310	0.0000034
172 Intalox Saddle 2	Cerámica	50.8	114.6	0.761	41	37			0.747							0.3420	600	8882	0.0000045
173 Intalox Saddle 3	Cerámica	76.2	91.86	0.77	22	20											600	1836	0.0000053
174 Intelox Saddle Plastic 1	Plástico	25.4	222	0.907	32			·								0 1800		64852	
175 Intalox Saddle Plastic 1 1/2	Plástico	38.1	170	0.91	25		2 317	1.6								0 1690		25827	
176 Intalox Saddle Plastic 2	Plástico	50.8	122.1	0 908	21		2 382	1 548	0 758				├~~			0.1600	~~~	8656	
177 Intalox Saddle Plastic 2	Plástico	76.2	89	0.000	14		4.002	1.040	0.750							0.1000		1/92	
177 Intelox Sadule Flastic 3	Plástico	5012	00	0.04	10	10									• • • • • • • • • • •	0.0070		1402	0.000016
170 Interpole 2/9	Motol	10	620	0.90	246			~~~~		•:						0.1214	40	4920	0.000018
1/9 Interpak 5/0	Motel	10	200	0.92	100	n											020		
180 merpak 5/6	Mahal	10	300	0.94	70				~~~~								040	·····	
181 Interpak 3/4	IVIEIAI	20	200	0.90	/3												104.0		
182 Jaeger Hing 5/8	Plastico	15.875	354.3	0.86)	97								}				124,9		
183 Jaeger Hing 1	Plastico	25.4	210	0.9	52		·			1181							94.5		
184 Jaeger Hing 1 1/2	Plastico	38.1	144.4	0.91	32								└ ─ ── ─				/6.9		
185 Jaeger Ring 2	Plastico	50.8	108,3	0.92	25			Ì				ļ					68.9		
186 Jaeger Ring 3 1/2	Plástico	88.9	85.3	0.93	16												60.9		
187 Jaeger Saddle 1	Plástico	25.4	196.85	0.91	33												75.3		
188 Jaeger Saddle 2	Plástico	50.8	98.4	0,94	21												52.9		
189 Jaeger Saddle 3	Plástico	76.2	65,6	0,95	16		 			_ ب بنجند م							44.9		
190 Lanpac 2 5/16	Plástico	58.4	223	0.89	21								L			0.0960	99.3	7063	
191 Lanpac 3 1/2	Plástico	88.9	144	0.925	14											0.0720	67.3	1766	
192 Lactec Saddle 1/2	Cerámica	12.7	623,4	0.717	200							L					720.8		
193 Lactec Saddle 3/4	Cerámica	19.05	334,65	0.73	130												688.8	1	
194 Lactec Saddle 1	Cerámica	25.4	253	0.73	85			-								0.3160	688.8	61679	
195 Lactec Saddle 1 1/2	Cerámica	38.1	164	0.75	50											0.3080	640.7	18080	
196 Lactec Saddle 2	Cerámica	50.8	115	0.774	37											0.2980	576.7	6945	
197 Lactec Saddle 3	Cerámica	76.2	92	0.755	24											0.3360	624.7	4320	
198 Lessing Experimental	Metal	38.1	1 autor - 1		30	30												1.0 mm	
199 Lessing Ring 25	Cerámica	25	226	0.66										And a second sec			801		
200 Lessing Ring 32	Cerámica	32	174	0.62													897		
201 Lessing Ring 38	Cerámica	38	131	0,6						·							929		
202 Lessing Ring 50	Cerámica	50	105	0.68													785		
2031 essing Bing 75	Cerámica	75	118	0.59													929		
204 Levapak 2	Plástico	50.8	143	0.94	16	16							1	1	2.3	0.1135	210	10500	
205 Maspac FN-200	Plástico	50.8	82	0.91	32	32			i		·		i				68.9		
206 Maspac EN-90	Plástico	88.9	141	0.91	20	20		i									72.1		
207 Munipak Bing 25	Plástico	25	163	0.93													56		
208 Munipak Ring 29	Plástico	38	144	0.00													64		
209 Munipak Ring 50	Plástico	50	95	0.00								h					41		
210 Munipak Ring 90	Plástico		50	0.94													56		
211 Nor-Pak o NSW Bing 5/8	Plástico	15 0	311 /	0.94			2 011	2 406	0.365							0.2160		300305	
21 DINUFFAN UNOW HILLY JO	Diáctico	- 10.9	011.4	0.010	04		7700	2.400	0.000	0 601	0.000	0.366			1 25	0.1150		20464	
212 NOT-Pak O NSW Hing I	riastico	23.4	202	0.927	38		3.211	2.4/2	0.397	0.001	0.003	0.300	I		1.35	0.1130		20464	

						Tabl	a A1 Em	naques	al Azar										
Empaque	Material	Tamañol	Area	. E	Fe ·	F _{Pd}	CLo	C _{FI}	C _P	- C _H	C _L	C _V	C ₁	.C ₂	C ₃	<u>.</u> Ф	Peso	#	MWR
213 Nor-Pak o NSW Bing 1 3/8	Plástico	35	141.8	0.944	26		3,179	2.242	0.371	0.587	0.756	0.425			22.2	0.1290		17450	er a seinendari
214 Nor-Pak o NSW Bing 1 1/2	Plástico	38.1	122	0.94	21											0.1590		17785	
215 Nor-Pak o NSW Bing 2	Plástico	50.8	86.8	0.947	14		2,959	1.786	0.35	0.651	1.08	0.322	h			0.1380		7330	
216 Nor-Pak o NSW Ring Metal 1	Metal	25.4	203	0.962	44							1				0.0930		40565	
217 Nor-Pak o NSW Ring Metal 2	Metal	50.8	92	0.977	19				· · · · · · · · · · · · · · · · · · ·		i				(a	0.0730		4991	
218 Novalox Plastic Saddle 1	Plástico	25.4	225	0.91									i	i j-			84		
219 Novalox Plastic Saddle 1 1/2	Plástico	38.1	170	0.91													80		
220 Novalox Plastic Saddle 2	Plástico	50.8	120	0.92													75		
221 Novalox Saddle 1/2	Cerámica	12.7	623	0.73	201		*	ĺ				1	1	1			685		
222 Novalox Saddle 3/4	Cerámica	19.05	335	0.74	131									1			660		
223 Novalox Saddle 1	Cerámica	25.4	256	0.74	97						1						640		
224 Novalox Saddle 1 1/2	Cerámica	38.1	183	0.75	52		1	1							1		620		
225 Novalox Saddle 2	Cerámica	50.8	121	0.77	40		1	1									580		
226 Novalox Saddle 3	Cerámica	76.2	92	0.77	22			1									570		
227 Nupac # 2	Plástico	63.5	180	0.909	16											0.0890	82	4414	
228 Nupac # 4	Plástico	114.3	125	0.942	8			1		1						0.0530	50	777	
229 Nutter Ring 3/4	Metal	19.05	226,4	0.978	39	39		1								0.0895	176	151853	0.0000043
230 Nutter Ring 1	Metal	25.4	167.3	0.978	27	27										0.0924	178	67380	0.0000064
231 Nutter Ring 1 1/2	Metal	381	125	0.978	20	20										0.0895	181	25603	0.0000082
232 Nutter Ring 2	Metal	50.8	95.2	0.979	17	17					1		1	1	2.65	0.0925	173	13702	0.000011
233 Nutter Ring 2 1/2	Metal	63.5	82	0.982	15	15								l		0.0789	144	7400	0.000013
234 Nutter Ring 3	Metal	76.2	65.6	0.984	11	11			_							0.0755	133	4202	0.000015
235 Pall Ring Metal 10	Metal	10	515	0.93]			520		
236 Pall Ring Metal 15	Metal	15,875	368.4	0.931	81	80	2.55	2.081	0.99	0,59					-	0.1390	385	229225	0.0000027
237 Pall Ring Metal 25	Metal	25.4	221	0.943	56	53	2.627	2,083	0.957	0.719	1.44	0.336	0.05	1	3	0.1260	385	47502	
238 Pall Ring Metal 25S	Metal	25.4	209	0.943	48												460		0.000004
239 Pall Ring Metal 35	Metal	35	139.4	0,946	40		2,629	1.679	0.967	0.644	1.012	0.341	0.1	0,1	2.1	0.1080		19517	
240 Pall Ring Metal 38	Metal	38.1	149,6	0.952	40	28			1.003				0.1	0.1	2.1	0.1150	310	15772	0.0000051
241 Pall Ring Metal 50	Metal	50.8	112.6	0.956	27	24	2,725	1.58	0.763	0.784	1.192	0.41	0.1	0.1	2.1	0.1040	320	6242	0.000068
242 Pall Ring Metal 76	Metal	76.2	71	0.965	20		L									0.0800	·····	1300	
243 Pall Ring Metal 80	Metal	80	80	0.965									· · - · · · · 				300		
244 Pall Ring Metal 90	Metal	88.9	66	0.97	18	16										0.0750	270	1170	0.0000092
245 Pall Ring Plastic 5/8	Plástico	15.875	350	0.897	97	106	i i									0.2180	116	214000	0.0000054
246 Pall Ring Plastic 1	Plástico	25.4	225	0.887	52	55	2.696	2.064	0.865	0.528	0.905	0.446				0.1870	88	52300	0.000008
247 Pall Ring Plastic 1 3/8	Plástico	35	151.1	0.906	50		2,654	1./42	0.927	0./18	0.856	0.38				0.1700		17000	
248 Pall Ring Plastic 1 1/2	Plástico	38.1	137	0.92	36	40	0.040	1 707	0.000		1 000	0.000				0.1820	76	13600	0.00001
249 Pall Ring Plastic 2	Plastico	50.8		0.919	26	25	2.816	1./5/	0.698	0.593	1.239	0.368				0.1590	/2	6/65	0.000013
250 Pall Ring Plastic 3 1/2	Plastico	88,9	90	0.945	16	13							-5	-4	2,3	0.1110	68		0.000018
251 Pall Hing Ceramic 15	Ceramica	15	000	0.741	107	150										0.0000	690	10104	0.0000007
252 Pall Ring Ceramic 25 - 3	Ceramica	25	220	0.741	107	150								4	1	0.3060	620	40194	0.0000027
253 Pall Ring Ceramic 25 - 3,3	Ceramica	25	195	0.73									10	3	1.2	0.3670	630	44500	
254 Pail Ring Ceramic 35	Ceramica	35	140	0.773	50	-									1,4	0.2710	540	9282	
255/Pall Ring Ceramic 35 - 4.5	Ceramica	CC CC	103	0.70	ER		┝ <u>-</u> -								!!!	0.2880	600	10400	0.0000004
256 Pall Ring Ceramic 38	Ceramica	30.1	110 5	0.770	30	0	0.046	1 010	0.000	1 005						0.3210		21212	0.0000034
257 Pall Ring Ceramic 50 - 5	Ceramica	50	6.011	0.763	43	40	2.040	1.913	_0.002	1.335				·		0.2730	500	6210	0.0000045
258 Mail Hing Ceramic 50 - 5.5	Cerámica			0.77												0.3230	540	5300	
259 Pall Ring Ceramic 75	Cerámica	/5	62	0.78			┝							· - ·			540		
260 Pail Ring Ceramic 80 - 8	Cerámica	00	00	0.79												0 2200	520		
201 Mail Hing Ceramic 80 -8.8	Corémica	100	00	0.77				• • • • • • • • • • • • • • • • • • • •						[-	• ••••	0.3390	100	1410	
262 Pail Hing Ceramic 100 - 10	Corémica	100	00	0.02												0 3360	400	705	
203 Pail King Ceramic 100 - 11	Motol	602		0.01						•		}				0.3200	525	125	
204 Pall Ring - High Strength	Corémico	50.8	105	0.74	24		¦				r						561		
2001 Periorateu Hing 2	Geramica	50.8	105	0.74	28		° al			L	أسد و ا		J.	i	ل		001		

	_					Tabl	a A1_Em	paques	al Azar										
Empaque	Material	Tamaño	Area	3	FP	F _{Pd}	C _{L0}	C _{FI}	C _P	Сн	CL	Cv	C1	C ₂	C ₃	¢	Peso	#	MWR
266 Perforated Ring 3	Plástico	76.2	65.6	0.92	26		}										69		
267 Protruded Ring	Metal	4		-	700	700			1								1		
268 Q-Pac Metal	Metal	30	196.9	0.972	24		,]								0.0649	272	23484	
269 Q-Pac Plastic #4	Plástico	101.6	98.4	0.963	7		1									0.0574	35	1165	
270 Q-Pac Plastic #7	Plástico	177.8	98.4	0.961	7											0.0317	34	177	
271 Quartz Rock	Cerámica	50.8			160		1			1									
272 Raflux Ring 15-3	Metal	15	360	0.95	74						4						380		
273 Raflux Ring 25-5	Metal	25	215	0.94	51												380		
274 Raflux Ring 38-5	Metal	38	145	0.97	34												250		
275 Raflux Ring 50-5	Metal	50	112	0.97	23	ł					1						195		
276 Raflux Ring 70-8	Metal	70	78	0.97	20								. 1				204		
277 Raflux Ring 90-8	Metal	90	65	0.97	18		1										182		
278 Raflux Ring 15	Plástico	15	307.9	0.894	97		2.825	2.4	0.595	0.491	1.913	0.37				0.2035	123.3	193522	
279 Raflux Ring 25	Plástico	25	210	0.9	54												88.1		
280 Raflux Ring 38	Plástico	38	144	0.91	40		1				. 1]					75.3		
281 Raflux Ring 50	Plástico	50	108	0.92	26			-				1					67.3	1	
282 Raflux Ring 90	Plástico	90	72	0.93	17	7					1		î			~ ~ ~ ~	59.3		
283 Raflux Ring 25-3	Cerámica	25	220	0.73	107												620		
284 Raflux Ring 35-4	Cerámica	35	165,	0.76	56												540		
285 Raflux Ring 50-5	Cerámica	50	120	0.78	43						-	[75	15	1.6		550		
286 Raflux Ring 75-8	Cerámica	75	98	0.8	· · · · · · · · · · · · · · · · · · ·		ار بیارہ ایک میں ہے۔ ا	-		-							540		• {
287 Raflux Ring 80-8	Cerámica	80	75	0.8		~		1		1					(520		
288 Raflux Ring 90-9	Cerámica	90	65	0.81			·;			1		· · · · · · · · · · · · · · · · · · ·					490		
289 Raflux Ring 100-10	Cerámica	100	55	0.81											•••	1	450	î	
290 Ralu Flow # 1	Plástico	25,4	165	0.94			3.612	2.401	0.485	0.64	1.486	0.36		~		0.1441	55	33000	
291 Ralu Flow # 2	Plástico	50.8	100	0.945)	3,412	2.174	0.35	0.64	1,27	0.32			· · ·	0.1163	54	4600	
292 Ralu Ring 25 x 0.4	Metal	25	215	0,96	49		2,627	2.083	0.957	0.714	1,44	0.336				0.0980	310	51000	
293 Ralu Ring 38 x 0.4	Metal	38	135	0.965			2.629	1.679	1.003	0.644	1.277	0.341			1	0.0935	210	14500	
294 Ralu Ring 38 x 0.5	Metal	38	135	0,97	28	41	استان د. ۱				i san utaan ti ji					0.0930	260	14500	0.0000081
295 Ralu Ring 50 x 0.4	Metal	50	105	0,975			2,725	1.58	0.763	0.784	1.192	0.345	î			0.0727	160	6300	
296 Ralu Ring 50 x 0.5	Metal	50	105	0.98	20	22		- and the second			i	1		í		0.0730	200	6300	0.000011
297 Ralu Ring 15	Plástico	15	320	0.94												0.1283	80	170000	
298 Ralu Ring 25	Plástico	25	190	0.94	41	43	2.841	1.989	0.8	0.719	1.32	0.333			1	0.1290	56	36000	0.000008
299 Ralu Ring 38	Plástico	38	150	0.95	24	23	2,843	1.812	0.672	0.64	1.32	0.333				0.1100	65	13500	0.00001
300 Ralu Ring 50	Plástico	50	95.2	0.983	17	17	2.843	1.812	0,468	0.64	1.52	0.303				0.1280	60	5770	0.000013
301 Ralu Ring 90	Plástico	90	75	0,96	12	8		-								0.0750	40	1000	0.000018
302 Ralu Ring 125	Plástico	125	60	0.97		· · · - · · · · ·	· · · · · · · · · · · · · · · · · · ·				†					0.0722	30	800	
303 Raschig Ring Ceramic 1/4	Cerámica	6.35	711,94	0.62	1600	1600			'				48	8	2	0.5151	960	3020000	0.000001
304 Raschig Ring Ceramic 3/8	Cerámica	9.525	475	0.624	1000	1000	j						48	8	2	0.4670	977	872272	0.0000014
305 Raschig Ring Ceramic 1/2	Cerámica	12.7	368	0.64	580	520							48	8	2	0,4880	880	378000	0.0000016
306 Raschig Ring Ceramic 15	Cerámica	15	330	0.7	305	293							48	10	2.3	0.4137	690	250000	
307 Raschig Ring Ceramic 5/8	Cerámica	15,875	310	0.675	380	380							48	10	2.3	0.4340	====================================	203432	
308 Baschig Bing Ceramic 3/4	Cerámica	19.1	266	0.733	255	255	,			·			48	8	2	0.3740	800	109000	
309 Baschig Bing Ceramic 25	Cerámica	25	200	0.78	137	122	, , ,			}	í		48	8	2	0.2577	580	25000	
310 Baschig Bing Ceramic 1	Cerámica	25.4	188	0.74	179	150	2.454	1.899	1.329	0.577	1.361	0.412	48	8	2	0.4000	670	47700	0.0000027
311 Raschig Ring Ceramic 1 1/4	Cerámica	31,75	138.18	0,735	125	125	1 202						48	8	2	0.4145	737	23661	
312 Raschig Ring Ceramic 1 1/2	Cerámica	38.1	119	0.75	93	80		{		•	'	f	48	8	2.15	0.4380	641	13500	0.0000034
313 Raschig Ring Ceramic 40	Cerámica	40	140	0.75	107	93				-		· ·	48	8	2.15	0.3198	570	12700	0.000000
314 Baschig Bing Ceramic 50	Cerámica	50	105	0.81	67	54						+	48	8	2.15	0.2826	540	6400	
315 Baschig Ring Ceramic 2	Cerámica	50.8	92	0.755	65	68	2.482	1,547			1.416	- 0.21	48		2.15	0.3340	625	5990	0 0000045
316 Baschig Bing Ceramic 3	Cerámica	76.2	62.34	0.765	37	37							48	8	2.15	0.3690	561	1766	0.0000045
317 Baschig Ring Ceramic 80	Cerámica	80	90	0.68	- 85	74				~~~ ·~ }			48	8	2 15	0.3110	670	1010	
318 Baschig Bing Ceramic 100	Cerámica	100		0.7		52							40		2 15	0.0119	680	1000	
Corol-masoning ming Octamic 100	Geranica							I	!		!	h	401		2.10	0.0090	000	1000	
Empaque Material Tamaño Area & Fp Fpd CLo CFI Cp CH CL Cv C1 C2 C3 0 Peso	# MWR																		
---	-------------------																		
310 Pacchia Bing Caramia 120 Caramia 120																			
	579																		
320 Raschig Ring Ceramic 150 Cerámica 150, 50 0.68 43 43	318																		
321 Raschig Ring 5 x 0.3 Metal 5 1000 0.87 0.2122 1000	5000000																		
322 Raschig Ring 6 x 0.3 Metal 6 900 0.89 0.1958 900	4000000																		
323 Raschig Ring 8 x 0.3 Metal 8 630 0.91 0.1765 700	1500000																		
324/Raschig Ring 10 x 0.3 Metal 10 500 0.92 0.1646 600	770000																		
325 Raschig Ring 10 x 0.5 Metal 10 500 0.89 020	770000																		
326 Raschig Ring 12 x 0.3 Metal 12 430 0.94 60 1 7.5 0.1321 500	450000																		
327 Raschig Ring 12 x 0.5 Metal 12 430 0.9 0.1857 820	450000																		
328 Raschig Ring 15 x 0.3 Metal 15 350 0.95 0.1149 380	230000																		
329/Raschig Ring 15 x 0.5 Metal 15 350 0.92 40 1 6 0.1572 600	230000																		
330/Raschig Ring 25 x 0.5 Metai 25 220 0.95 0.1099 400	50000																		
331 Raschig Ring 25 x 0.8 Metal 25 220 0.92 0.1504 600	50000																		
332 Raschig Ring 35 x 0.8 Metal 35 150 0.93 0.1461 430	19000																		
333 Raschig Ring 50 x 0.8 Metal 50 110 0.95 0.1114 320	6500																		
334 Raschig Ring 80 x 1.2 Metal 80 65 0.96 0.1018 300	1600																		
335 Raschig Ring 100 x 1.5 Metal 100 65 0.94 0.1291 300	1450																		
336 Raschig Ring 1/32 - 1/4 Metal 6.35 717 0.721 700 700 0.4220 2130	3110000 0.0000015																		
337 Raschig Ring 1/32 - 3/8 Metal 9.525 505 0.81 390 0.3115 1506	953496																		
338 Raschig Ring 1/32 - 1/2 Metal 12.7 420 0.85 300 300 0.2000 1201	402587 0.0000024																		
339 Raschig Ring 1/32 - 5/8 Metal 15.875 337.93 0.86 170 0.2801	382740																		
240[Raschig Ring 1/32 - 3/4 Metal 19.05 300] 0.89 155 0.1815	117951																		
941 Raschig Ring 1/32 - 1 Metal 25.4 220 0.92 115 0.1509 625	50500																		
342 Raschig Ring 1/16 - 1/2 Metal 12.7, 433 0.84 410 60. 11 7.5 0.2431 1201	402587																		
343 Raschig Ring 1/16 - 5/8 Metal 15.875 332 0.87 300 0.1990	207700																		
344 Raschig Ring 1/16 - 3/4 Metal 19.05 246.06 0.83 220 0.2899 1500	111000																		
345 Raschig Ring 1/16 - 1 Metal 25.4 197 0.86 144 150 0.2270 1140	46300 0.0000041																		
346 Raschig Ring 1/16 - 1 1/4 Metal 31.75 1 74 0.88 10 0,1993 993	25603																		
347 Raschig Ring 1/16 - 1 1/2 Metal 38.1 131 0.9 83 80 0.1 0.1930 785	14100 0.0000051																		
348 Raschig Ring 1/16 - 2 Metal 50.8 102 0.929 57 70 0.1570 590	5900 0.0000068																		
349 Raschig Ring 1/16 - 3 Metal 76.2 69 0.95 32 0.1160 400	1800																		
350 Raschig Ring Carbon 1/4 Carbón 6.35 695.53 0.55 1600	3000000																		
351 Raschig Ring Carbon 1/2 Carbón 12.7 351 0.705 540 396 0.432	374336																		
352 Raschig Ring Carbon 3/4 Carbón 19.05 245.06 0.67 270 0.4514 545	111241																		
353 Raschig Ring Carbon 1 Carbón 25.4 194 0.726 179 145 1 0.3830 432	46967																		
354 Raschig Ring Carbon 1 1/4 Carbón 31.75 125 497	23943																		
355 Raschig Ring Carbon 1 1/2 Carbón 38.1 124.67 0.67 100 88 0.4440 545	13773																		
356 Raschig Ring Carbon 2 Carbón 50.8 94 0.737 69 51 0.3820 432	5827																		
357 Raschig Ring Carbon 3 Carbón 76.2 62 0.78 35 0.3380 368	1766																		
358 Raschig Ring Plastic 3/8 Plástico 9.5 550 0.88 191 0.2070	903044																		
359 Raschig Ring Plastic 5/8 Plástico 15.9 336 0.87 115 0.2100	205160																		
360 Raschig Ring Plastic 1 Plástico 25 220 0.92 52 00.000 100	51000																		
361 Raschig Ring Plastic 1 1/2 Plástico 38 190 0.93 0.1042 85	14000																		
362 Raschig Ring Plastic 2 Plástico 50 110 0.95 0.1125 70	6700																		
363 Raschig Ring Glass 3/8 Vidrio 9.5 481 0.71 476 0.4600	1138604																		
364/Raschig Ring Glass 5/8 Vidrio 15.9 261 0.72 237 0.4700	207699																		
365 Raschig Super-Ring # 0.3 Metal 6.35 315 0.96 3.56 2.34 0.76 0.75 1.5 0.45 0.1014 340	180000																		
366 Raschig Super-Ring # 0.5 [Metal 12.7 250] 0.975 72 3.35 2.2 0.78 0.62 1.45 0.43 0.0870 275	145000																		
367 Raschig Super-Ring # 0.7 Metal 19.05 180 0.975 0.0820 1851	45500																		
368 Raschig Super-Ring # 1.0 Metal 25.4 160 0.98 32 3.491 2.2 0.5 0.75 1.29 0.44 0.0710 165	32000																		
369 Raschig Super-Ring # 1.5 Metal 38.1 120 0.98 0.0700 170	13100																		
370 Raschig Super-Ring # 2.0 Metal 50.8 97.6 0.985 26 3.326 2.096 0.464 0.72 1.323 0.4 0.0640 165	9500																		
1371 Raschig Super-Ring # 3.0 Metal 76.2 80 0.992 16 3.20 2.1 0.43 0.62 0.85 0.3 0.0680 150	4300																		

-

	Tabla A1 Empaques al Azar																			
	Empaque	Material	Tamaño	Area	ε.	Fp	F _{Pd}	CLo	C _{FI}	- C _P	C _H	CL	· C _V	C ₁	C ₂	C ₃	φ.	Peso	#	MWR
372	Raschig Super-Ring Plastic # 2	Plástico	50.8	100	0.96	20		3.326	2.096	0.377	0.72	1.25	0.337	-			0.1180	55	9000	
373	Rauschert Saddle 50	Plástico	50	98.4	0.94			,										56.1		
374	Rauschert Saddle 76	Plástico	76	65.6	0.95			ſ										43,2		
375	Rauschert Saddle 12-19	Cerámica	12	622	0.72					2 . K = % . K								685		
376	Rauschert Saddle 20-19	Cerámica	20	450	0.72							1						660		
377	Rauschert Saddle 25-19	Cerámica	25	225	0.74											and a many of a many sol a		640	· · · · · · · · · · · ·	
378	Rauschert Saddle 38-19	Cerámica	38	166	0.76			}		,								620		
379	Rauschert Saddle 50-19	Cerámica	50	120	0.79	1												580	• • • • •	
380	Rauschert Saddle 75-19	Cerámica	75	92	0.8													580	1	
381	Rauschert Saddle Ring 25	Metal	25	223	0.97													252		
382	Rauschert Saddle Ring 40	Metal	40	175	0.98			,	1									170		
383	Rauschert Saddle Ring 50	Metal	50	128	0.98													150	(
384	Rauschert Saddle Ring 60	Metal	60	95	0.98													130		
385	Rauschert Saddle Ring 70	Metal	70	58	0.99										[~ ~	100		
386	Snowflake Vertically Packed	Plástico	93.98	92	0.951	13	10										0.1200	45	4925	0.000016
387	Snowflake Horintally Packed	Plástico	93.98	92	0.951	14.5		,									0.1200	45	4925	0.000016
388	Snowflake Teflon	Plástico	93.98	92	0.951	16											0.1200	45	4925	
389	Super Intalox Saddle # 1 Plastic	Plástico	25.4	202	0.9	33	40		(~ ~ ~ ~ ~ ~					0.1990	83	57500	0.0000079
390	Super Intalox Saddle # 2 Plastic	Plástico	50.8	108	0,93	21	26										0.1430	61	6400	0.000013
391	Super Intalox Saddle # 3 Plastic	Plástico	76.2	89	0.94	16	14	1			1				1		0.0950	50	1483	0.000017
392	Super Intalox Saddle # 1	Cerámica	25.4	249	0.79	60	62										0.2570	625	45203	0.000003
393	Super Intalox Saddle # 2	Cerámica	50.8	105	0.81	30	31	·									0.2820	593	6886	0.0000047
394	Super Torus Saddle # 1	Plástico	25.4	240	0.9	50	50										0.1480	70	36600	0.000006
395	Super Torus Saddle # 2	Plástico	50.8	110	0.94	32	31										0.1200	62	5600	0.0000079
396	Super Torus Saddle # 3	Plástico	76.2	90	0.955	15	13						[0.0730	41	1245	0.000017
397	Teilerette #1	Plástico	45,974	180.5	0.87	36	40	2,913	2.132	0.538	0.588	0.899					0.1833	88.1	35315	
398	Tellerette #2	Plástico	69.85	124.7	0.93	18	20							r -			0.1420		37037	
399	Tellerette #3	Plástico	95.25	98.4	0.92	16											0.1710		6561	
400	Tellerette #2K	Plástico	82,55	91.9	0.95	11						_					0.1285	48.1	5827	
401	Tellerette #3K	Plástico	104.775	72,2	0,96	9											0.0971	49.7	1907	
402	Torus Helial Ring	Plástico	25	295	0.92	26		· · · ·										112.1		
403	Transferiox 1	Plástico	25.4		0.9													95	57500	
404	Transferlox 2	Plástico	50.8		0.93													60	6400	
405	Transferlox 3	Plástico	76.2		0.94			,										48	1400	
406	Transferpack 5/8	Plástico	16		0.87			1										95	214000	
407	Transferpack 1	Plástico	25		0.9													70	50500	
408	Transferpack 1 1/2	Plástico	38		0.91													70	14700	
409	Transferpack 2	Plástico	50		0.92]					[62	6200	
410	Transferpack 3 1/2	Plástico	90		0,92													55	1200	
411	Tri-Pak or Top-Pak Ring 30	Metal	30	200	0.972	37											0.0719		33287	
412	Tri-Pak or Top-Pak Ring 50	Metal	50	105.5	0.9715	26		2.528	1,579	0.604	0,881	1.326	0.389				0.0814		6871]
413	Tri-Pak or Top-Pak Ring 75	Metal	75	80	0.98	16												160.2		
414	Tri-Pak o Hackettes 1	Plástico	25.4	279	0.9	28	29										0.1617	99.3	81224	0.000008
415	Tri-Pak o Hackettes 1 1/4	Plástico	31.75	230	0,92	25	26										0.1498	89.7	56503	0.000009
416	Tri-Pak o Hackettes 2	Plástico	50	158	0.935	16	13	2,832	1.966	0,399	0.643						0.1170	67.3	13208	0.000013
417	Tri-Pak o Hackettes 3 1/2	j Plástico	90	125	0.95	12	10	L									0.0626	52,9	1695	0.000018
418	VSP Ring 1	Metal	25	199.6	0.975	32	26	2.755	1.97	0.782	1.369	1.376	0.405				0.0667	180	33434	
419	VSP Ring 1 1/2	Metal	40	132	0.98	21	17										0.0703	170	17657	
420	VSP Ring 2	Metal	50	104.6	0.98	20		_2.806	1.689	0.773	1.135	1.222	0.42				0.0677	160	7841	
421	VSP Ring Plastic 1	Plástico	25	185	0.93							J	· · · · · ·					60		
422	VSP Ring Plastic 2	Plástico	50	100	0.95													45		
423	VSP Ring Plastic 3 1/2	Plástico_	90	78	0.97													30]	

Tabla A2 Empaques Estructurados

Nombre	Material	Area	З	Fp	F _{Pd}	θ	Hc	S	Bc	C _{Lo}	C _{FI}	CP	Сн
1 Cross Partition Ring 75-40	Cerámica	121	0.55				1	!				······	"
2:Cross Partition Ring 75-41	Cerámica	141	0.48				i		'				
3 Cross Partition Ring 100-40	Cerámica	92	0.61					1					
4 Cross Partition Ring 100-41	Cerámica	92	0.61				·	1					
5 Cross Partition Bing 100-42	Cerámica	105	0.56					<u> </u>					
6 Cross Partition Bing 150-40	Cerámica	62	0.56		·····								
7 Cross Partition Bing 150-41	Cerámica	66	0.00					1					
9 Cross Partition Ping 90	Corámica	114	0.5	· · · · · · · · · · · · · · · · · · ·			•	}					
O'Cross Partition Ring 100	Cerámica	04	0.50		······;		}						
9 Cross Partition Ring 100	Ceramica	94	0.55		;		<u> </u>	 		{			
TU Cross Partition Ring 120	Ceramica	/8	0.54				ļ	ļ					
11 Cross Partition Ring 150	Ceramica	64	0.53			~ <u></u>							
12 Cross Partition Ring 200	Cerámica	48	0.65				į 	<u> </u>			l		
13 Durapack 280R	Vidrio	290	0.82									{	
14 Durapack 400R	Vidrio	400	0.72	į				į					
15 EuroForm PN-110	Plástico	110	0.936							3.075	1.975	0.25	0.511
16 Flexigrid Style 2	Metal		1		1			ļ	{	5			
17 Flexigrid Style 3	Metal				1			1	1				
18 Flexipac 1 Y	Metal	558	0.91	33	32	45	0.0064	0.009	0.0127			}	
19 Flexipac 2 Y	Metal	223	0.95	22	11	45	0.0125	0.0177	0.025	i			
20 Flexings 3 Y	Metal	134	0.96	16	45	45	0.0255	0.036	0.0500				
21 Elevinac 4 V	Metal	69	0.00		2.2	45	0.0200	0	0.0000				
22 Elovingo HC 1V	Motoi	03	0.30		۵.۵								
	Metel		••••••••							[
23'FIEXIPAC HC 21	Metal	<u>-</u>	}									ļ	
24 Flexipac HC 700Y	Metal												
25; Flexipac Plastic 2X	Plastico	206.69	0.844			60							
26 Flexipac Plastic 2Y	Plástico	206.69	0.844		l	45	t			i			
27 Flexiramic 28	Cerámica	272.31	0.648	40		45							
28 Flexiramic 48	Cerámica	167.32	0.765	24		45							
29 Flexiramic 88	Cerámica	101.71	0.855	15	}	45					1	1	
30 Gempac 0.75A	Metal		l	1	4	45				1			
31 Gempac 1A	Metal	114.83	0.96	9	7	45	0.0255	0.036	0.0509				
32 Gempac 1.5A	Metal	160.76	0.945	12	10	45			1	1	1		
33 Gempac 2A	Metal	202	0.977	16	13	45	0.0122	0.018	0.0268	2,986	2,099	0.344	0.678
34 Gempac 2AT	Metal	223 1	0.93			45			0.0200				0.0.0
			0.00	1						4	2		
25 Gempac 2 5A	Motal	(î	<u>j</u>	ľ	17	45				/ I			
35 Gempac 2.5A	Metal	209.56	0.02	01	17	45							
35 Gempac 2.5A 36 Gempac 3A	Metal Metal	298.56	0.92	21	17 21	45 45	0.0004	0.000	0.0107				
35 Gempac 2.5A 36 Gempac 2.5A 37 Gempac 3A 37 Gempac 4A	Metal Metal Metal	298.56 452.76	0.92 0.91	21 32	17 21 53	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A	Metal Metal Metal Metal	298.56 452.76	0.92 0.91	21 32	17 21 53 5	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe	Metal Metal Metal Metal Metal	298.56 452.76	0.92 0.91	21 32	17 21 53 5 5 50	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac	Metal Metal Metal Metal Metal Plástico	298.56 452.76 430	0.92 0.91 0.878	21 32	17 21 53 5 5 50	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 3A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A	Metal Metal Metal Metal Plástico Metal	298.56 452.76 430	0.92 0.91 0.878	21 32 6000	17 21 53 5 5 50 6000	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 3A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HellPak A 42 HeliPak B	Metal Metal Metal Metal Plástico Metal Metal	298.56 452.76 430	0.92	21 32 6000 2500	17 21 53 5 50 6000 2500	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Opac 41 HeliPak A 42 HeliPak B 43 HeliPak C	Metal Metal Metal Metal Plástico Metal Metal Metal	298.56 452.76 430	0.92	21 32 6000 2500 1000	17 21 53 5 50 6000 2500 1000	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak B 43 HeliPak B 43 HeliPak C 44 Hyperfil	Metal Metal Metal Metal Metal Plástico Metal Metal Metal	298.56 452.76 430	0.92	21 32 6000 2500 1000	17 21 53 5 50 6000 2500 1000 140	45 45 45	0.0064	0.009	0.0127				
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 40 HD-Qpac 41 HeliPak A 42 HeliPak B 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250	Metal Metal Metal Metal Plástico Metal Metal Metal Metal	298.56 452.76 430 250	0.92 0.91 0.878	21 32 6000 2500 1000	17 21 53 50 50 6000 2500 1000 140	45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal	298.56 452.76 430 430 250 96.7	0.92 0.91 0.878 0.875 0.975 0.838	21 32 6000 2500 1000	17 21 53 5 5 50 6000 2500 1000 140	45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 3A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak B 43 HeliPak B 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Cerámica Metal	298.56 452.76 430 250 96.7 315	0.92 0.91 0.878 0.878 0.975 0.838 0.95	21 32 6000 2500 1000	17 21 53 5 50 6000 2500 1000 140	45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Cerámica Metal	298.56 452.76 430 250 96.7 315	0.92 0.91 0.878 0.878 0.975 0.838 0.95	21 32 6000 2500 1000 28 28 22	17 21 53 5 50 6000 2500 1000 140	45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak B 43 HeliPak B 43 HeliPak B 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T 49 Intalox 2T	Metal Metal Metal Metal Plástico Metal Metal Metal Cerámica Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213	0.92 0.91 0.878 0.878 0.975 0.838 0.95	21 32 6000 2500 1000 2500 1000	17 21 53 5 5 50 6000 2500 1000 140	45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak B 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.878 0.975 0.838 0.955 0.935	21 32 6000 2500 1000 28 28 28 22 17 15	17 21 53 5 5 50 6000 2500 1000 140	45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak B 43 HeliPak B 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T	Metal Metal Metal Metal Plástico Metal Metal Metal Cerámica Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.875 0.838 0.95 0.97 0.97	211 322 60000 25000 10000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 25000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 1000 2000 10000 20000 20000 2000 2000000	17 21 53 5 5 50 2500 1000 140	45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Opac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 4T	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.975 0.975 0.838 0.95 0.97 0.97	21 32 6000 2500 1000 2500 1000 28 28 22 177 15 3.5	17' 21 53 5 5 50 2500 1000 140	45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1.5T 49 Intalox 2T 50 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 55 53 Intalox 55 54 Intalox 55 55 Intalox 55 56 Intalox 55 57 Intalox 55 58 Intalox 55 59 Intalox 55 59 Intalox 55 59 Intalox 55 50 Int	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.878 0.975 0.838 0.975 0.838 0.95 0.97 0.97	21 32 6000 2500 1000 2500 1000 2500 1000 28 28 22 17 15 13.5 9.5	17: 21 53 5 5 50 6000 2500 1000 140	45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak B 43 HeliPak B 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1T 50 Intalox 3T 51 Intalox 5S 53 Intalox 55 53 Intalox 57 54 Intalox 55 54 Intalox 55 55 Intalo	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 1777	0.92 0.91 0.878 0.878 0.975 0.838 0.95 0.95 0.97 0.97	211 322 60000 25000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 1000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000000	17: 21 53 5, 50 6000 2500 1000 140	45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak B 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intatox 1.5T 49 Intatox 2T 50 Intalox 3T 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 5T 54 Intalox GT	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.975 0.838 0.975 0.838 0.95 0.97 0.97	21 32 6000 2500 1000 2500 1000 28 28 22 177 155 13.5 13.5 13.5 13.5 29.5 12 8	17: 21 53 50 50 6000 2500 1000 140	45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HellPak A 42 HellPak A 43 HellPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 5S 53 Intalox 5T 54 Intalox Grid Packing 55 Intalox Grid Packing 55 Intalox Grid Packing 55 Intalox 4f	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.878 0.975 0.838 0.95 0.975 0.937	21 32 6000 2500 1000 2500 1000 2500 1000 28 28 22 17 15 13.5' 9.5 12 8 8 87 22	17: 21 53 5 50 6000 2500 1000 140	45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 49 Intalox 1 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 5S 53 Intalox Grid Packing 55 Intalox Grid Packing 55 Intalox HS-20 56 Intalox HS-10	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.975 0.975 0.838 0.95 0.97 0.97	21 32 6000 2500 1000 2500 1000 28 28 22 177 155 13.5 9.55 125 8 8 7 42	17: 21 53 5 50 6000 2500 1000 1400	45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61 2.664	1.996	0.262	0.431 1.9
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 5T 54 Intalox 5T 54 Intalox Grid Packing 55 Intalox HS-10 55 Intalox HS-10 57 Intalox Wire Gauze Packing	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177	0.92 0.91 0.878 0.878 0.975 0.838 0.95 0.97 0.97	21 32 6000 2500 1000 2500 1000 2500 1000 28 28 22 177 155 13.5 9.5 12 8 8 87 42 300	17: 21 53 5 5 50 6000 2500 1000 1400 140	45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 3T 51 Intalox 5S 53 Intalox 5S 53 Intalox 5T 54 Intalox Grid Packing 55 Intalox HS-20 56 Intalox HS-10 57 Intalox Wire Gauze Packing 58 Kerapak BX	Metal Metal Metal Metal Plástico Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal Metal	298.56 452.76 430 250 96.7 315 213 177 213 177 450	0.92 0.91 0.878 0.975 0.838 0.975 0.838 0.95 0.97 0.97	211 322 60000 25000 10000 2000 10000 2000 10000 2000 10000 2000000	17: 21 53 5 5 50 6000 2500 1000 140	45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intatox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 4T 54 Intalox Grid Packing 55 Intalox HS-20 56 Intalox HS-10 57 Intalox Wire Gauze Packing 58 Kerapak BX 59 Koch-Glitsch Wire Gauze BX	Metal Metal Metal Metal Plástico Metal	298.56 452.76 4300 2500 96.7 315 213 177 213 177 450 492	0.92 0.91 0.878 0.975 0.938 0.95 0.95 0.97 0.97	21 32 6000 2500 1000 2500 1000 28 28 22 17 15 13,5 9,5 12 8 8 87 42 300	17: 21 53 50 50 6000 2500 1000 140	45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HellPak A 42 HellPak A 43 HellPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 5S 53 Intalox 4ST 54 Intalox 4ST 55 Intalox 4ST 55 Intalox 4ST 56 Intalox 4ST 57 Intalox Wire Gauze Packing 58 Kerapak BX 59 Koch-Glitsch Wire Gauze BX 60 Koch-Glitsch Wire Gauze BX	Metal Metal Metal Metal Plástico Metal	298.56 452.76 430 250 96.7 315 213 177 450 450 450 492 700	0.92 0.91 0.878 0.878 0.975 0.838 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97	21 32 6000 2500 1000 2500 1000 2500 1000 28 28 22 17 15 13.5 9.5 12 8 8 7 42 30	17: 21 53 5 50 6000 2500 1000 140	45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 49 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 5S 53 Intalox 5S 53 Intalox Grid Packing 55 Intalox HS-20 56 Intalox HS-10 57 Intalox Wire Gauze Packing 58 Kerapak BX 59 Koch-Glitsch Wire Gauze DX	Metal Metal Metal Metal Plástico Metal	298.56 452.76 430 250 96.7 315 213 177 213 177 450 492 700	0.92 0.91 0.878 0.975 0.838 0.95 0.97 0.97 0.97 0.97	21 32 6000 2500 1000 2500 1000 28 28 22 177 155 125 125 8 8 7 42 300		45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1.5T 49 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 5T 54 Intalox 5T 54 Intalox 5T 55 Intalox HS-10 55 Intalox HS-20 56 Intalox HS-10 57 Intalox Wire Gauze Packing 58 Kerapak BX 59 Koch-Glitsch Wire Gauze DX 60 Koch-Glitsch Wire Gauze DX 62 Koch-Glitsch Wire Gauze DX	Metal Metal Metal Metal Plástico Metal	298.56 452.76 430 250 96.7 315 213 177 213 177 450 450 492 700	0.92 0.91 0.878 0.975 0.975 0.938 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97	21 32 6000 2500 1000 28 28 22 17 15 13.5 9.5 12 8 8 7 42 300		45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 42 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1T 50 Intalox 3T 51 Intalox 3T 51 Intalox 5S 53 Intalox 5T 54 Intalox 5T 54 Intalox 5T 55 Intalox 4T 52 Intalox 5S 53 Intalox 5T 54 Intalox 5S 53 Intalox 5T 54 Intalox 4T 55 Intalox 4T 55 Intalox 4T 55 Intalox 4T 57 Intalox 3T 54 Intalox 5S 53 Intalox 5S 53 Intalox 5S 53 Intalox 5T 54 Intalox 5S 55 Intalox HS-10 57 Intalox Wire Gauze Packing 58 Kerapak BX 59 Koch-Glitsch Wire Gauze BX 60 Koch-Glitsch Wire Gauze CY 61 Koch-Glitsch Wire Gauze EX 63 Max-Pak	Metal Metal Metal Metal Plástico Metal	298.56 452.76 430 250 96.7 315 213 177 213 177 450 450 492 700	0.92 0.91 0.878 0.975 0.838 0.975 0.838 0.975 0.97 0.97 0.97 0.97 0.97 0.85 0.85	211 322 60000 25000 10000 2500 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 10000 2000 1000 2000 1000 2000 10000 1000000	17: 21 53 50 50 6000 2500 1000 140 140	45 45 45 45 45 45 45 45	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431
35 Gempac 2.5A 36 Gempac 3A 37 Gempac 4A 38 Glitsch Grid EF25A 39 Goodloe 40 HD-Qpac 41 HeliPak A 42 HeliPak A 43 HeliPak C 44 Hyperfil 45 Impulse Packing 250 46 Impulse Packing 250 46 Impulse Packing 100 47 Intalox 1T 48 Intalox 1.5T 49 Intalox 2T 50 Intalox 3T 51 Intalox 4T 52 Intalox 5S 53 Intalox 4T 54 Intalox 4T 55 Intalox 4T 55 Intalox 4T 55 Intalox 4T 55 Intalox ST 54 Intalox 3T 55 Intalox ST 54 Intalox Grid Packing 55 Intalox HS-10 56 Intalox HS-10 57 Intalox Wire Gauze Packing 58 Kerapak BX 59 Koch-Glitsch Wire Gauze DX 60 Koch-Glitsch Wire Gauze DX 61 Koch-Glitsch Wire Gauze EX 63 Max-Pak 64 Mellanak 125X	Metal Metal Metal Metal Plástico Metal	298.56 452.76 430 250 96.7 315 213 177 450 450 450 450 492 700	0.92 0.91 0.878 0.975 0.838 0.95 0.975 0.97 0.97 0.97 0.97 0.97 0.975	21 32 6000 2500 1000 2500 1000 28 28 22 17 15 13.5 13.5 13.5 12 8 8 87 42 300 300	17: 21 53 5 50 50 2500 1000 140 140	45 45 45 45 45 45 45 45 45 45 45 45 45 4	0.0064	0.009	0.0127	2.61	1.996	0.262	0.431

	Nombre	CL	Cv	deq	C _o	Fmin	Fmax	Cmin	Cmáx	C1	C ₂	C ₃	Peso
1	Cross Partition Ring 75-40		i										1009
2	Cross Partition Ring 75-41												1169
3	Cross Partition Ring 100-40	1	ſ										993
4	Cross Partition Ring 100-41		,	1	;	1							864
5	Cross Partition Ring 100-42]		,							1	993
6	Cross Partition Ring 150-40	1	1			}							993
7	Cross Partition Ring 150-41	5	1	1									1121
8	Cross Partition Ring 80			1	, ,				Î				1086
9	Cross Partition Ring 100		•			1							1113
10	Cross Partition Ring 120		;	1		,			1				1118
; 11;	Cross Partition Ring 150	i	1					1					1145
12	Cross Partition Ring 200	ì	j			1						·····	866
13	Durapack 280R		}	1			1	İ	ŝ			, 1	
14	Durapack 400R		1										
15	EuroForm PN-110	0.973	0.167	ì					·				
16	Flexigrid Style 2	1	3	1	,	••••••••••••••							
17	Flexigrid Style 3												
18	Flexipac 1 Y			0.353	3.38	0	70	0.05	0.3			·	ł
19	Flexipac 2 Y	;		0.707	3.08	0	70	0.1	0.6				1
20	Flexipac 3 Y			1.414	4.5	0	70	0.12	0.6				ہــــــــــــــــــــــــــــــــــــ
21	Flexipac 4 Y	Ì		2.828	7.26	0	80	0.14	0.6				
22	Flexipac HC 1Y	· · · · · · · · · · · · · · · · · · ·	1				···· ··· ··· ··· ··· ··· ··· ··· ··· ·						
23	Flexipac HC 2Y	1		1	· •				1			***	
24	Flexipac HC 700Y	·····,		1	ر	i	i		······································				
25	Flexipac Plastic 2X	· ,·			1				1			لاء محمد مع	;
26	Flexipac Plastic 2Y								··	;		i	
27	Flexiramic 28		<u> </u>		í		יب	¦	ł		(
28	Flexiramic 48									i		·	
29	Flexiramic 88		/						í				
30	Gempac 0.75A			i	!			ا <u>ر محمد محمد محمد المحمد الم</u>	1			i	64
31	Gempac 1A			1 414	4.5	0	70	0.07	0.5				96
32	Gempac 1 5A		· · · · · · · · · · · · · · · · · · ·					0.07				'	96
	dompuo non		and the second second second	i	1			1					
33	Gemnar 24			0 707	3.08	0	70	0.06	0.45	3	24	0.31	96
33	Gempac 2A			0.707	3.08	0	70	0.06	0.45	3	2.4	0.31	96
33 34	Gempac 2A Gempac 2AT			0.707	3.08	0	70	0.06	0.45	3	2.4	0.31	96
33 34 35	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A			0.707	3.08	0	70	0.06	0.45	3	2.4	0.31	96
33 34 35 36	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A			0.707	3.08 3.87	0	70	0.06	0.45	3	2.4 2.3	0.31	96 160 272
33 34 35 36 37 29	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A Gempac 4A			0.707 0.53 0.353	3.08 3.87 3.38	0 0 0	70 70 60	0.06 0.05 0.05	0.45 0.45 0.35	3	2.4 2.3	0.31	96 160 272
33 34 35 36 37 38	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A Giltsch Grid EF25A Goodlee			0.707 0.53 0.353	3.08 3.87 3.38	0 0 0	70 70 60	0.06	0.45	3 3 3	2.4 2.3	0.31	96 160 272.
33 34 35 36 37 38 39 40	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A Giltsch Grid EF25A Goodloe HD-Orace		1 1 1 1 1	0.707	3.08 3.87 3.38	0 0 0'	70 70 60	0.06	0.45 0.45 0.35	3	2.4 2.3	0.31	96 160 272
33 34 35 36 37 38 39 40	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A Giltsch Grid EF25A Goodloe HD-Opac HD-Opac			0.707	3.08 3.87 3.38		70 70 60	0.06	0.45	3 3	2.4 2.3	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A Giltsch Grid EF25A Goodice HD-Opac HeilPak A HeilPak A			0.707	3.08 3.87 3.38	0 0 0	70 70 60	0.06	0.45	3	2.4 2.3	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 42	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gitsch Grid EF25A Goodloe HD-Opac HeilPak A HeilPak B HollBak C			0.707	3.08 3.87 3.38	0 0 0'	70 60	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 41 42 43	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Giltsch Grid EF25A Goodloe HD-Opac HeilPak A HeilPak C Humofil			0.707	3.08 3.87 3.38		70 70 60	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 42 43 43 44	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HeliPak A HeliPak B HeliPak C Hyperfil Imuleo Booking 260			0.707	3.08		70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 42 43 43 44 45	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Qpac HeliPak A HeliPak B HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100	0.983	0.27	0.707	3.08		70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 42 43 43 44 45 46 46	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gitsch Grid EF25A Goodloe HD-Qpac HeliPak A HeliPak B HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Impulse 17	0.983 ⁻ 1.317	0.27; 0.327;	0.707	3.08		70	0.06	0.45	3	2.4	0.31	96 160 272. 120
33 34 35 36 37 38 39 40 41 42 43 43 44 45 46 46 47	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Giltsch Grid EF25A Goodice HD-Opac HeilPak A HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intelox 1 ET	0.983	0.27	0.707	3.08		70	0.06	0.45	3	2.4	0.31	96 160 272. 120
33 34 35 36 37 38 39 40 41 42 43 44 45 46 46 47 48 49	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gitsch Grid EF25A Goodloe HD-Opac HeliPak A HeliPak B HeliPak B HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 1.5T	0.983	0.27	0.707	3.08		70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 46 47 48 9 950	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HeilPak A HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 1.5T Intalox 2T	0.983	0.27	0.707	3.08 3.87 3.38		70 70 60 	0.06	0.45	3	2.4	0.31	96 160 272. 120
33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 46 47 48 90 50	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HeliPak A HeliPak A HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 3T Intalox 3T Intalox 3T	0.983	0.27	0.707	3.08 3.87 3.38 		70 70 60 70 70 70 70	0.06	0.45	3	2.4	0.31	96 160 272. 120
33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 9 50 51	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HeliPak A HeliPak A HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 1.5T Intalox 2T Intalox 3T Intalox 4T Intalox 4T Intalox 4T	0.983	0.27	0.707	3.08 3.87 3.38 		70 60 20 20 20 70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HeliPak A HeliPak A HeliPak B HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 5S Intalox 5S	0.983	0.27	0.707	3.08 3.87 3.38 3.38 3.08		70 60	0.06	0.45	3	2.4	0.31	96 160 272 120
333 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 52 52 53	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Giltsch Grid EF25A Goodice HD-Opac HeilPak A HeilPak B HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 1.5T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 5S Intalox 5S Intalox 5T	0.983	0.27	0.707	3.08 3.87 3.38 3.38 3.08		70 70 60 70 70 70 70	0.06	0.45	3	2.3	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 42 43 44 42 43 44 45 46 47 48 50 51 52 53 54 5 52 53 54 55 55 55 55 55 55 55 55 55 55 55 55	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gitsch Grid EF25A Goodice HD-Opac HeliPak A HeliPak B HeliPak B HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 1.5T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 5S Intalox 5S Intalox 5S Intalox Grid Packing	0.983	0.27	0.707	3.08 3.87 3.38 3.38 3.08		70 70 60 70 70 70 70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 42 43 44 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HeilPak A HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 3T Intalox 5S Intalox 5T Intalox 5T Intalox Grid Packing Intalox HS-20 Intalox HS-10	0.983 1.317	0.27	0.707	3.08 3.87 3.38 3.38 3.08		70 60 20 20 20 20 20 20 20 20 20 20 20 20 20	0.06	0.45	3	2.4	0.31	96 160 272. 120 120
33 34 35 36 37 38 39 40 41 41 42 43 43 44 45 46 47 48 50 51 52 53 54 55 56	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 4A Giltsch Grid EF25A Goodloe HD-Opac HeilPak A HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 3T Intalox 5S Intalox 5S Intalox 5T Intalox 5T Intalox HS-20 Intalox HS-10 Intalox Intalox IS Intalox HS-10 Intalox IS	0.983	0.27	0.707	3.08		70 60 70 70 70 70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 41 42 43 43 44 45 46 47 7 8 9 9 50 51 52 53 54 55 56 6 57	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HD-Opac HeilPak A HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 5T Intalox SS Intalox 5T Intalox HS-10 Intalox HS-10 Intalox Wire Gauze Packing	0.983	0.27	0.707	3.08		70 60 70 60 70 70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 41 42 43 44 45 56 50 51 52 53 54 55 56 56 57 57 58	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 4A Gitsch Grid EF25A Goodloe HD-Opac HeliPak A HeliPak B HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 3T Intalox 4T Intalox 5S Intalox 5S Intalox 5T Intalox 5T Intalox 5T Intalox 4T Intalox 5S Intalox 5T Intalox 4T Intalox 4T Intalox 5T Intalox 4T Intalox 5T Intalox 4T Intalox	0.983	0.27	0.707	3.08		70 60 70 60 70 70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 38 39 40 41 41 42 43 44 45 56 50 51 53 54 55 56 57 58 59 57 58 59 50 57	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 4A Giltsch Grid EF25A Goodice HD-Opac HeilPak A HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 250 Impulse Packing 100 Intalox 1.5T Intalox 2T Intalox 2T Intalox 2T Intalox 2T Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 4F3-10 Intalox HS-20 Intalox Wire Gauze Packing Kerapak BX Koch-Giltsch Wire Gauze BX	0.983	0.27	0.707	3.08 3.87 3.38 3.08 3.08 3.08		70 60 60 70 70 70	0.06	0.45	3	2.3	0.31	96 160 272 120
33 34 35 36 37 37 38 39 40 41 42 43 44 45 46 47 43 44 45 50 51 52 53 54 55 56 56 56 57 58 59 60	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodice HD-Opac HeilPak A HeilPak B HeilPak B HeilPak B HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 1.5T Intalox 2T Intalox 2T Intalox 2T Intalox 3T Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 5S Intalox 4F-10 Intalox Wire Gauze Packing Kerapak BX Koch-Glitsch Wire Gauze DX	0.983	0.27	0.707	3.08		70 60 70 70 70 70	0.06	0.45	3	2.3	0.31	96 160 272 120 120
33 34 35 36 37 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54 55 55 57 59 60 61 61	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 4A Gitsch Grid EF25A Goodloe HD-Opac HeliPak A HeliPak B HeliPak B HeliPak C Hyperfil Impulse Packing 250 Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 3T Intalox 3T Intalox 5S Intalox 5S Intalox 5S Intalox 4T Intalox HS-20 Intalox HS-20 Intalox HS-10 Intalox HS-10 Intalox HS-10 Intalox Kire Gauze Packing Kerapak BX Koch-Glitsch Wire Gauze DX Koch-Glitsch Wire Gauze DX	0.983 1.317	0.27	0.707	3.08		70 60 70 70 70 70 70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 37 38 39 40 41 41 42 43 44 45 56 51 52 53 54 55 55 57 58 59 60 61 61 62	Gempac 2A Gempac 2AT Gempac 2.5A Gempac 3A Gempac 3A Gempac 3A Gempac 4A Glitsch Grid EF25A Goodloe HD-Opac HeilPak A HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 3T Intalox 3T Intalox 5S Intalox 5S Intalox 5S Intalox 4T Intalox HS-20 Intalox HS-20 Intalox HS-20 Intalox HS-20 Intalox HS-20 Intalox Wire Gauze Packing Kerapak BX Koch-Glitsch Wire Gauze DX Koch-Glitsch Wire Gauze DX Koch-Glitsch Wire Gauze DX	0.983	0.27	0.707	3.08		70 60 70 70 70 70 70	0.06	0.45	3	2.4	0.31	96 160 272 120
33 34 35 36 37 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 51 55 56 57 55 56 57 58 59 60 61 62 63	Gempac 2A Gempac 2AT Gempac 2AT Gempac 2AT Gempac 3A Gempac 3A Gempac 3A Godloe HD-Opac HD-Opac HeilPak A HeilPak B HeilPak C Hyperfil Impulse Packing 250 Impulse Packing 250 Impulse Packing 100 Intalox 1T Intalox 2T Intalox 2T Intalox 3T Intalox 3T Intalox 3T Intalox 5S Intalox SS Intalox SS	0.983	0.27	0.707	3.08		70 60 70 70 70 70 70 70	0.06	0.45	3	2.4	0.31	96 160 272 120

Tabla A2 Empaques Estructurados

Nombre	Material	Area	8	F. I	F _w 1	θ	He	S	Bo	- <u>C.</u> 1	- C - 1	<u> </u>	Cu
65 Mellanak 125Y	Metal	125	0.97	10		45	0.023	0.0171	0.0241			, se	
66 Mellanak 250X	Metal	250	0.07	25		60	0.020	0.0171	0.0241				
67.Mellapak 250V	Motal	250	0.00	2.0	÷ ;;-	45	0.0110	0.0171	0.0241	2 157	2 464	0.000	0 554
68 Mellanak 250V	Motal	250	0.373	20		45	0.0113	0.0171	0.0241		2.404	0.232	0.004
69 Mellapak 500Y	Metal	500	0.55	23			0.0059	0.0171	0.0241				
70 Mellenet E00V	Motol	500	0.91	7.0		45	0.0056	0.0171	0.0241			<u>-</u>	
70 Wellapak 5001	Iviela	500	0.95			40							
7 Nieliapak 7501		750	0.95			45				0.000	1 011		
72 Montz-Pak B1-100	wietai	100	0.987			40			··	3.089	1.911		0.626
73 Wontz-Pak B1-125	ivietai	125	0.97			45				i	·····		
74 Montz-Pak B1-150	Metal	150				45						l	
75 Montz-Pak B1-200	Metal	200	0.979			45	0.0149	0.025	0.0399	3.116	2.339	0.355	0.547
76 Montz-Pak B1-250	Metal	247	0.98	22	· }	45	0.012	0.0165	0.022		· · · · · · · · · · · · · · · · · · ·		
77 Montz-Pak B1-300	Metal	300	0.93		į	45			1	3.098	2.464	0.295	0.482
78 Montz-Pak B1-350	Metal	346	0.97			45	0.008		0.0167				
79 Montz-Pak B1-250 M	Metal	250	0.98				0.0116		0.02				
80 Montz-Pak B1-350 M	Metal	350	0.97	· · · · · · · · · · · · · · · · · · ·			0.008		0.0147	1		·	
81 Montz-Pak A2	Metal			23	23					I		}	
82 Montz-Pak A3-500	Metal	500	0.91	i		45					1		
83 Montz-Pak A3-750	Metal	750				45							
84 Montz-Pak BSH-250	Metal	250	0.95	:	1	45			1	,		1	
85 Montz-Pak BSH-300	Metal	300											
86 Montz-Pak BSH-350	Metal	350		1						1	1		
87 Montz-Pak BSH-400	Metal	400	ĺ		1						[
88.Montz-Pak BSH-500	Metal	500	0.91	1	1	45							
89 Montz-Pak BSH-750	Metal	750									1	1	
90 Montz-Pak C1-200	Plástico	200	0.954	· · · · · · · · · · · · · · · · · ·	,					1	i	0.453	
91 Montz-Pak C2-200	Plástico	200	0.9		;					2.653	1.973	0.481	
92 Montz-Pak C2-300	Plástico	300	0.9		<u>_</u>							0.252	
93 MS Pack 500M	Metal	500	0.97										
94 MS Pack 500S	Metal	500	0.07	·								·	
95 Multinak	Metal	320	0.65	}	1						¦		,*
96iNeo-Kloss	Metal		0.00	6	6								
97 Polypok 260VC	Motal	250	0.945			60			·	3 178	2 558	0 191	
09 Pembenak 4M	Motol	170	0.345	· !		00				0.170	2.000	0.101	
00 Romboook 6M	Motal	220	0.9745	;								i	
100 Domboook OM		230	0.9000								i		
100 Rombopak SW	Metal	330	0.9005										
101 Rombopak 12W	Metal	400	0.9323		i					——— i			
102 Romoopak S4M		200	0.97		;			·'					·····
103 Rombopak S6M	Metal	250	0.9625		1								
104 Suizer AX	Metal	250	0.95		i	00		0.0000	0.0100		·		
105 Sulzer BX	Metal	492	0.9	21	16	60	0.0064	0.0088	0.0128				
106,Sulzer CY	Metal	700	0.85	70		45					'		
107 Sulzer BX Plastico	Plástico	450	0.85	21		60			L		. <u></u>		
108 Technopack G500B	Metal	500	0.97									!	
109 Zehua 100Y	Cerámica	100	0.875				0.03	·	0.011				
110 Zehua 125X	Cerámica	125	0.85		i	60	0.023		0.015		ļ		
111 Zehua 160Y	Cerámica	160	0.84				0.017		0.022			, 	
112 Zehua 250Y	. Cerámica	250	0.82				0.013		0.03				
113 Zehua 350Y	Cerámica	350	0.8				0.009		0.042				
114 Zehua 400Y	Cerámica	400	0.78	ہ استیت میں	 	45					i 	! 	
115 Zehua 450X	Cerámica	450	0.76		İ	60	0.006		0.05				
116 Zehua 470X	Cerámica	470	0.715			60						i 	

Nombre			hh	C	Emin	Emay	Cmin	Cmáy		T		Dece
65 Mellanak 125V			eq 1	<u> </u>		- max	<u>Cinii</u>	Uniax	<u>-1</u>	2	~. 3	Peso
66 Mellanak 250Y			·· ·····			<u> </u>	i i					
67 Mellapak 250X	+				L	<u> </u>						
69 Mellapak 2501	- <u> </u> !	••••••••••••						Ļ	5	3	0.45	
60 Mellapak 500Y		. <u></u>				; ;	· · · · · · · · · · · · · · · · · · · ·	·				
70 Mellenels 500X		• •• •• •• •• •• •• ••					\ ,	[
70 Mellapak 500 f							ļ	i				
71 Wenapak 750Y	·}'	······	;				·					
72 Montz-Pak B1-100	+!		l			<u></u>	ļ		3	7	1	
73 Montz-Pak B1-125	i						ļ	·				
74 Montz-Pak B1-150	1		l					l			·	
75:Montz-Pak B1-200	0.971	0.39	· ·					·	2	4	1	
76 Montz-Pak B1-250							·		1			
77 Montz-Pak B1-300	1.165	0.422					1		2	3	0.9	
78 Montz-Pak B1-350	<u></u> ;	!	'				·			1		
79 Montz-Pak B1-250 M	4	۱ ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰										
80,Montz-Pak B1-350 M	; ;	ا } به								l	1	
81,Montz-Pak A2	1									1	1	
82 Montz-Pak A3-500	· · ·							<u>.</u>			1	
83 ^I Montz-Pak A3-750	·		1							1	i	
84 Montz-Pak BSH-250												
85 Montz-Pak BSH-300	1										1	
86 Montz-Pak BSH-350	1	1	\$						1)	1	
87 Montz-Pak BSH-400	;		}						1	1	1	
88 Montz-Pak BSH-500	1	í	i						1	Ţ	i	
89,Montz-Pak BSH-750	1 1	. 1	i		1			ł		i i i i i i i i i i i i i i i i i i i	į	
90 Montz-Pak C1-200	1.006	0.412	1)		ĺ	1	
91 Montz-Pak C2-200	0.739;	1	}					1			i	
92 Montz-Pak C2-300	j j	,		į				, í				
93 MS Pack 500M	1 1		i)				1		1	
94 MS Pack 500S	1	i									1	
95 Multipak		1						1				
96 Neo-Kloss	1				1			1				*********
97 Ralupak 250YC	1.334	0.385	ì		1			1	; 3		Ì	
98 Rombopak 4M	1	{	1					í í		*		'
99 Rombopak 6M		**************************************			i							;
100 Rombopak 9M	·	i									ì	
101 Rombopak 12M	1 ,	1	î									
102 Rombopak S4M	1 1		1									
103 Rombopak S6M	}	1	;					{				
104 Sulzer AX	(' . ــــ . جدر ــــ . ا	1					;		/	
105 Sulzer BX	1	'ı	0.353	3.38	0.3	5	0.03	0.33	15	2	0.35	+
106 Sulzer CY		·····								;		
107 Sulzer BX Plástico				i				i				
108 Technopack G500B	1 1			'	i							
109 Zebua 100Y	†;				·'							
110 Zehua 125X	†	·····			<u> </u>	;		í		;	——-i	
111iZebua 160Y				·			;			†		· ·
112 Zehua 250Y	······································	! [
113 Zehua 350Y	<u>+</u>	···						+			¦	{
114.Zehua 400Y	·	r			·							i
115 Zebua 450X	·							, in the second s	7			
116 Zebua 470X	<u>}</u> +			}								·······
	1							l		l.		

Tabla A2 Empaques Estructurados