UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

ANÁLISIS COMPARATIVO DEL COMPORTAMIENTO DEL CONCRETO SECO EN CONDICIONES PRODUCIDAS Y RECOMENDADAS

TESIS

Para optar el Titulo Profesional de:

INGENIERO CIVIL

KENYI NILO ROJAS RAYME

Lima - Perú

2010

INDICE

RESUMEN	4
Lista de cuadros y tablas	5
Lista de gráficos y figuras	11
Lista de símbolos y siglas	17
INTRODUCCIÓN	19
CAPITULO 1 CONCEPTOS Y GENERALIDADES DEL CONCRETO SECO	20
1.1 DEFINICIÓN	20
1.2 MATERIALES COMPONENTES	20
1.2.1 Cemento	20
1.2.2 Agregados	20
1.2.3 Agua	21
1.3 ENVASE (BOLSA DE PAPEL)	21
1.4 PROCESO DE LA FABRICACIÓN DEL CONCRETO SECO	22
1.4.1 Planta del concreto seco	22
1.4.2 Producción del concreto seco	23
1.5 VENTAJAS DEL PRODUCTO	26
1.5.1 Ventajas de los concretos industriales frente a los concretos preparados en obra	26
1.5.2 Ventajas de los concretos secos frente a los concretos premezclados	26
1.5.3 Ventajas de los concretos secos frente a los concretos preparados en obra	28
CAPITULO 2 PROPIEDADES DEL CONCRETO SECO	29
2.1 PROPIEDADES DEL CONCRETO EN ESTADO FRESCO	33
2.1.1 Introducción	33
2.1.2 Consistencia	33
2.1.3 Peso Unitario	36
2.1.4 Tiempo de Fraguado	40
2.2 PROPIEDADES DEL CONCRETO EN ESTADO ENDURECIDO	66

2.2.1 Introducción	66
2.2.2 Resistencia a la Compresión	67
2.2.3 Resistencia a la tracción por Compresión Diametral	81
CAPITULO 3 ANÁLISIS DEL CAMBIO DE SUS PROPIEDADES	89
3.1 DEBIDO A LA FORMA DE MEZCLADO	89
3.1.1 Comparación del concreto en estado fresco	89
3.1.2 Comparación del concreto en estado endurecido	90
3.2 DEBIDO AL ALMACENAMIENTO DE LAS BOLSAS	94
3.2.1 Comparación del concreto en estado fresco	94
3.2.2 Comparación del concreto en estado endurecido	95
3.3 DEBIDO A LA VARIACIÓN DE AGUA A AÑADIR	99
3.3.1 Comparación del concreto en estado fresco	99
3.3.2 Comparación del concreto en estado endurecido	100
CAPITULO 4 MUESTREO EN OBRA	104
CAPITULO 5 IMPACTO AMBIENTAL	108
5.1 CONTRIBUCIÓN DEL CONCRETO SECO	108
5.1.1 Contribución del concreto seco	109
5.1.2 Contribución puesta en obra	110
5.1.3 Contribución en el fin de la obra	111
CAPITULO 6 MANUAL DE PROCEDIMIENTOS DE USO EN OBRA	112
6.1 ALCANCE	112
6.2 MEZCLADO DEL CONCRETO EMBOLSADO	112
6.3 CANTIDAD DEL AGUA DEL CONCRETO EMBOLSADO	113
6.4 ALMACENAMIENTO DEL CONCRETO EMBOLSADO	114
6.5 RECOMENDACIONES PARA EL USO DEL PRODUCTO	115
6.6 PRECAUCIONES EN SU USO	115
CONCLUSIONES	116
RECOMENDACIONES	118
BIBLIOGRAFÍA	119
ANEXOS	121

RESUMEN

El presente documento, muestra los resultados de una investigación sobre los análisis comparativos de concretos embolsados en su estado fresco y endurecido usando los dos productos existentes en el mercado QUIKRETE Y FIRTH. El factor de estudio de la presente Tesis fue el cambio de sus propiedades de acuerdo a las condiciones producidas y recomendadas.

Se utilizaron los dos productos embolsados de acuerdo a la forma de mezclado (Manual y Trompo), cantidad de agua añadida (menor y mayor cantidad de agua) y forma de almacenamiento (almacenamiento a la intemperie y de manera óptima durante 30 días). Para cada diseño se evaluó el asentamiento, peso unitario, tiempo de fragua inicial y final, resistencia a la compresión y resistencia a la tracción por compresión diametral.

Se muestran diferentes resultados dependiendo del tipo de producto y de las diferentes condiciones de producción, destacándose características en concreto endurecido superiores a las diseñadas por el producto para usos inmediatos y características aceptables para usos después del periodo de almacenamiento, las principales ventajas del producto fueron sus altas resistencias a tiempos iniciales y medios de acuerdo a la resistencia de diseño a compresión y sus desventajas principales fueron sus altos tiempos de fragua inicial y final.

En el capítulo 6, se desarrolla un manual de procedimientos de uso en obra, el cual servirá de ayuda para el uso y la aplicación de este nuevo producto en el mercado nacional.

En términos generales el producto está diseñado para responder a las necesidades del mercado, para su uso de soluciones puntuales donde se necesite concreto.

INTRODUCCIÓN

Dentro de la construcción en el Perú, el concreto es el elemento principal para poder consolidar las obras civiles, con el paso del tiempo las tecnologías se van mejorando y las dificultades en su manejo son mayores, es así que, por una necesidad de tener un concreto ya preparado en pequeñas proporciones, nace el Concreto Seco.

Actualmente, en el ámbito nacional, cuando una persona de bajos recursos quiere construir, realizar una ampliación, o remodelación recurre a la autoconstrucción. Compra los materiales poco a poco, teniéndolos expuestos a la intemperie hasta poder juntar los recursos para iniciar la construcción, lo que conlleva a que el concreto final tenga materiales de baja calidad debido a la contaminación de los agentes externos y por consiguiente se obtendrá un mal concreto, cuando uno requiere comprar los materiales de construcción, éstos no se venden en cantidades pequeñas y si es el caso se venden a un excesivo costo, lo cual implica que este concreto final para ampliaciones o refacciones tenga un elevado precio.

Los concretos secos son mezclados en planta siguiendo ciertos parámetros de diseño ya estipulados en las normas así como procesos que aseguran su calidad, pero desde el momento en que el acreedor del producto lo recibe sufre diferentes problemas ya sea en el uso de la cantidad de agua recomendada, la forma de almacenamiento no es la optima y a su vez entrará a tallar la forma en que será mezclada el producto.

El producto es comercializado especificando en el empaque solamente su resistencia, por lo cual, la presente tesis analizó las condiciones adecuadas para poder obtener el concreto tanto en su estado fresco como endurecido con las características deseadas, ya que posiblemente no serán las mismas al momento del uso pasando por los diferentes problemas ya explicados como cantidad de agua, forma de mezclado, el sistema de almacenamiento.

CAPITULO 1 CONCEPTOS Y GENERALIDADES DEL CONCRETO SECO

1.1.- DEFINICIÓN

El Concreto Seco se puede definir como un concreto industrial, clasificado y mezclado en una fábrica que se suministra en estado seco listo para amasarlo con agua, obtenido de la mezcla ponderal de sus componentes básicos: conglomerantes, agregados y/o aditivos que se añaden para mejorar sus características y comportamientos.

1.2.- MATERIALES COMPONENTES

Los componentes básicos del concreto seco, son los mismos que se han utilizado tradicionalmente en las obras, es decir, conglomerante (cemento) que denominamos componentes activos y los agregados que denominamos componentes inertes.

El agua precisa para efectuar su mezcla y la necesaria hidratación del concreto se añade en la obra, la cantidad es señalada en el embolsado.

Los materiales utilizados como ingredientes en empaques de materiales combinados para concretos secos se conformaran con los requisitos siguientes:

1.2.1.- Cemento

- Cemento Portland, especificados en la NTP 334.009.
- Cementos adicionados, cumplirán con la NTP 334.082 ó NTP 334.090
- Cementos de albañilería, conforme a la NTP 334,069.

El cemento es un conglomerante hidráulico que cuando se mezcla con áridos y agua tiene la propiedad de conformar una masa pétrea resistente y duradera denominada concreto debido a las transformaciones químicas en su masa. Es el más usual en la construcción.

1.2.2.- Agregados

Los agregados deberán cumplir con lo especificado en la NTP 400.037. El tamaño máximo del agregado grueso no excederá de 25 mm. En el proceso de la preparación del producto todos los agregados deberán ser secados sin desintegrarlos, a un contenido de humedad menor de 0,1%

de la masa, calculado sobre el material substancialmente secado a porcentaje de masa constante entre 105°C a 110°C.

Figura 1.1 Agregados saliendo de las tolvas de almacenamiento.

1.2.3.- Agua

Es evidente que si se trata de concretos secos, el agua queda en un segundo plano, desde el punto de vista industrial, pues se añade en la obra o punto de consumo del concreto y una vez efectuado el suministro. El agua empleada en la preparación deberá cumplir con los requerimientos de la norma NTP 334.088 y ser de preferencia, potable. El agua, sea o no potable, que se encuentran en las obras, es generalmente satisfactoria para los efectos de la preparación del concreto.

1.3.- ENVASE (BOLSA DE PAPEL)

El envase consiste en una bolsa de papel de dos pliegues, las cuales están encoladas, el saco lleva una abertura en la esquina superior del empaque por donde es llenada mediante la maquina envasadora – pesadora automática.

Características del envase:

Las características que presentará el envase serán derivados integramente de las propiedades que presenten las hojas del papel, así

como el proceso de fabricación del envase. El saco de papel deberá soportar los rigores de la producción, envasado y almacenamiento. La bolsa de concreto embolsado tiene una capacidad de 40 kilogramos,

pero de diferentes dimensiones dependiendo del producto.

Figura 1.2 Bolsa de Concrelisto

Figura 1.3 Bolsa de Concreto fácil

1.4.- PROCESO DE LA FABRICACIÓN DEL CONCRETO SECO

1.4.1.- Planta del concreto seco

La planta de fabricación del concreto seco es una planta integral para la dosificación, mezclado, elaboración y almacenamiento de dicho producto u otros granulados en garantías en cuanto a la calidad de sus especificaciones.

La planta permite la modificación de la calidad o características preestablecidas del producto final, ya sea mediante, la alteración de la relación a/c, en fases particulares de la producción, o bien añadiendo también en fases parciales, diversos aditivos para aplicaciones

particulares, de modo que con una sola planta es posible la obtención de una producción diversificada según las necesidades especificas de cada momento.

La planta está diseñada, para el almacenamiento y conservación de dichos productos de manera hermética, y sin contacto con el exterior, mientras que se encuentran en su estado pulverulento, quedando a resquardo de los vientos.

Figura 1.4 Planta de Concreto Listo Firth

1.4.2.- Producción del concreto seco

El proceso comienza desde la recepción de los agregados, los cuales son almacenados y cubiertos para que no sean deteriorados por el medio ambiente, estos agregados serán suministrados mediante un cargador frontal a las respectivas tolvas de agregados, según el requerimiento de la planta.

Después del cargado de los materiales con el cargador frontal, todo el movimiento del proceso de producción será hecho por fajas transportadoras.

El agregado grueso pasará directamente a un silo de almacenamiento, cumpliendo con tener menos del 0,4% de humedad, un porcentaje mayor al de la norma NTP 400.037.

El agregado fino antes de pasar a su respectivo silo de almacenamiento, tendrá que pasar primeramente por una zona de secado donde se producirá un venteado por paletas internas que levantarán el agregado y lo dejaran caer para que optimice el proceso de secado que tendrá porcentajes menores al 0,4% de humedad al igual que el agregado grueso, dependiendo de la humedad del agregado fino la temperatura del secador variara entre 60°C a 100°C así como el tiempo que permanezca en este proceso. El objetivo de esta fase será eliminar la humedad que tenga el agregado para que no se hidrate el conglomerante en el producto embolsado, siempre se cuidará que los agregados no lleguen al punto de calcinación. Después de que el agregado salga de la zona de secado, pasará por un proceso de tamizado donde una zaranda seleccionará los agregados de granulometría óptima.

Los silos estarán divido total o parcialmente en compartimentos y estarán dotados con características de hermeticidad, si está dividido en dos compartimientos iguales, el eje de la pared deberá coincidir aproximadamente con el eje de las fajas transportadoras, para con ello facilitar las operaciones de carga en los silos.

Los materiales son movilizados desde sus silos de almacenamiento hacia la cámara de mezclado, mediante un proceso de dosificación que se realiza modulando la velocidad de las fajas, ya que los silos depositaran el material en su respectivas fajas a velocidad constante y estas últimas dependiendo de la velocidad con que se movilizan regirán el volumen de cada material que se depositara en la cámara de mezclado.

En la cámara de mezclado se producirá un mezclado selectivo en seco, producido esencialmente por tornillos sin-fin y otros sistemas de disposición y accionamiento vertical para la obtención de un producto homogéneo final, inferiormente a dicha cámara de mezclado se dispone una cámara de embolsado, en la que el concreto seco a granel es

descargado a través de las pertinentes salidas y pesado manualmente, verificando su peso con los adecuados medios de control por una persona encargada para después colocar el producto embolsado en la faja de salida.

El producto es colocado en parihuelas cada 40 bolsas para almacenarlas. Se verificará el funcionamiento de las fajas en el proceso de producción después de cada 200 bolsas producidas.

El producto elaborado finalmente es un producto embolsado de concreto seco cuyos componentes han sido sometidos a tratamientos específicos de modo que en su conjunto presentan un grado de humedad residual ínfimo, lo que asegurará una longevidad del producto.

El producto tiene dos hojas de papel de recubrimiento como una bolsa de cemento. Al momento de la preparación del concreto el agua añadida viene a ser el agua libre de diseño más el agua de saturación de los agregados.

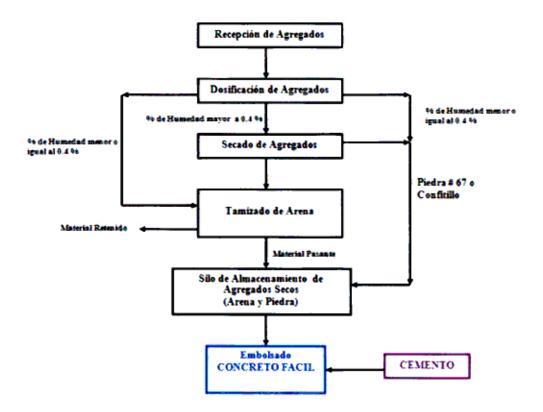


Figura 1.5 Diagrama del proceso de producción en planta del concreto embolsado.

1.5.- VENTAJAS DEL PRODUCTO

1.5.1.- Ventanas de los concretos industriales frente a los concretos preparados en obra

Los concretos preparados en instalaciones industriales presentan una serie de ventajas genéricas desde el punto de vista logístico, económico, técnico y medio ambiental. Estos ocupan poco espacio en obra, minimizan las mermas producidas por el mezclado, además de ofrecer una puesta en servicio rápida y limpia. La utilización de este tipo de concreto depende del volumen de obra, las condiciones meteorológicas, la ubicación y la distancia al centro productor.

El desarrollo en los últimos años de la industria del concreto seco en el mundo está permitiendo aplicar mejoras tecnológicas en las plantas y en los productos, consiguiendo concretos que satisfacen las exigencias de los constructores facilitando a su vez su puesta en obra cumpliendo los requerimientos exigidos.

El suministro se proporciona en bolsas de 40 Kg., cabe resaltar que en países desarrollados se puede suministrar en un camión cisterna que descarga a un silo previamente en la obra, el silo lleva incorporado en su parte inferior un mezclador al cual se le conecta una manguera de agua para proceder al mezclado automático del concreto.

1.5.2.- Ventajas de los concretos secos frente a los concretos premezclados

Las Plantas de concreto premezclado suministran mediante mixers el concreto en estado fresco, ya amasado para su uso inmediato. Las empresas de concreto premezclado garantizan las características del concreto solicitado hasta (2 a 2.5 horas aproximadamente) desde que el concreto llego a la obra, después de este tiempo el proveedor no se hace responsable de las variaciones de las características sufridas por el concreto en comparación al concreto solicitado (información indicada en la guía de recepción del mixer en obra de las empresas proveedoras). Si

se tiene una variación en el programa de vaciado, las características del concreto podrían ser otras.

Las plantas industriales diseñadas para la producción del concreto premezclado son habitualmente instalaciones fijas, de producción mediana y grande, que trabajan con los mismos principios, siendo la característica notable común a todas ellas, la dosificación y mezclado del concreto fresco que indefectiblemente ha de ser consumido, transportándolo en un mixer en constante mezclado. Las plantas no habituales son las plantas móviles de concreto premezclado, ubicadas en asentamientos mineros mayormente o en sitios donde las necesidades la requieran.

El sistema de suministro de concreto fresco con arreglo a la técnica conocida presenta evidentes problemas, las cuales detallaremos a continuación:

- 1.- Como el concreto o cualquier otro producto granulado que lleve incorporado un conglomerante hidráulico, una vez terminado el mezclado, tiene que consumirse en un corto periodo de tiempo, debiendo ser elaborado y transportado en el momento de ser solicitado por el consumidor final.
- 2.- Cuando un mixer sale cargado de la fábrica, el tiempo de utilización en condiciones óptimas es muy corto y es frecuente que existan innumerables imprevistos en las obras, por lo cual es frecuente utilizar concretos ya mezclados fuera del límite del uso establecido y por tanto, con un resultado del producto final carentes de toda garantía técnica. Cuando eventualmente se detecta el problema se devuelve el producto, que no puede volver a ser utilizado, ni ser sometido a proceso reacondicionado alguno, sino que ha de ser simplemente desechado, con las pérdidas económicas que ello supone.
- 3.- Al no poder fabricarse concreto mientras que no exista un pedido de concreto por parte del consumidor, hasta las plantas de fabricación más pequeñas precisan estar sobredimensionadas tanto en cuanto a medios de producción propiamente dichos, como a medios de transporte (mixer),

ya que de otro modo no sería posible atender a las demandas en los momentos puntuales de trabajo.

- 4.- Dado que una vez elaborado hasta su empleo en obra el concreto húmedo no puede dejar de ser mezclado, los mixers han de estar en continuo funcionamiento, tanto durante, las operaciones de carga en fábrica y transporte, como durante el vaciado del concreto en la obra, lo que determina elevados consumos de combustible.
- 5.- La poca duración del concreto en estado fresco, hace que el radio de acción de actividad empresarial de cada planta sea muy corto en distancia, pues incluido el transporte, el periodo máximo de utilización en condiciones idóneas del concreto en estado fresco, es de aproximadamente tres a cuatro horas desde que termino el proceso de mezclado.
- 6.- El concreto fresco es un producto cuyas características técnicas no pueden ser alteradas una vez que el mismo ha sido elaborado con arreglo a unas determinadas especificaciones, si hubiera una equivocación en la preparación del concreto conllevaría a un coste económico no recuperable.

1.5.3.- Ventajas de los concretos secos frente a los concretos preparados en Obra

- La elaboración del concreto en obra presenta actualmente inconvenientes, que no son producidos por el producto final sino por el personal encargado del proceso, el concreto seco como producto librará al encargado de responsabilidades que no podrá afrontar sino tiene la capacitación tecnica pertinente. Elimina los derivados de la fabricación a distancia pero presenta otros problemas. :
- 1.- Los medios de producción en obra, en especial las obras pequeñas, carecen de los adecuados medios de control para garantizar una adecuada calidad del producto final.
- 2.- Las materias primas se descargan y almacenan a la intemperie con lo que quedan sometidas a los efectos atmosféricos y a los agentes externos contaminantes.

CAPITULO 2 PROPIEDADES DEL CONCRETO SECO

Al analizar el concreto seco en sus diferentes formas de trabajo, cantidad de agua y forma de almacenamiento se obtendrán diferentes propiedades que definirán su modo de uso, sus ventajas y desventajas de acuerdo al fin que conlleva la mezcla requerida.

Las propiedades del concreto seco son enmarcadas por sus agregados, el cemento y el modo de producción, que vienen a ser componentes ya especificados por las empresas proveedoras, el punto de partida para el análisis se tomará desde el producto existente en el mercado.

En el saco de papel se especifica la resistencia (210 kg/cm²) y el agua recomendada, en el presente capitulo se medirán las diferentes propiedades en estado fresco y endurecido que se consideraran necesarias para su uso y propiedades que sean requeridas para investigaciones posteriores.

Los ensayos en el laboratorio se realizarán tanto en estado fresco y en estado endurecido, los cuales pasaremos a detallar a continuación.

 Ensayos en estado fresco, se realizarán: ensayos de consistencia, ensayos para hallar el peso unitario y ensayos para hallar el tiempo de fraguado inicial y final, en el número siguiente:

ENSAYOS EN ESTADO FRESCO	NÚMERO DE ENSAYOS
CONSISTENCIA	2
PESO UNITARIO	2
TIEMPO DE FRAGUA	1

Cuadro 2.1 Ensayos en estado fresco del concreto embolsado y el número de ensayos

 Ensayos en estado endurecido, se realizarán: ensayos de resistencia a compresión y ensayos de resistencia a la tracción por compresión diametral, en el numero siguiente:

ENSAYOS EN ESTADO ENDURECIDO	DO ENDURECIDO TIEMPO	
	3 DIAS	3
ENSAYO DE RESISTENCIA A LA COMPRESIÓN	7 DÍAS	3
	14 DIAS	3
	28 DÍAS	3
ENSAYO DE RESISTENCIA A LA TRACCIÓN	7 DÍAS	2
POR COMPRESIÓN DIAMETRAL	28 DÍAS	2

Cuadro 2.2 Ensayos en estado endurecido del concreto embolsado y el número de ensayos

Se analizará nuestro concreto de 6 formas diferentes, para los dos productos existentes en el mercado:

ANÁLISIS DEL CAMBIO DE SUS PROPIEDADES						
	FORMA DE MEZCLADO	MEZCLADO MANUAL				
Ош	FORMA DE MEZCLADO	MEZCLADO CON TROMPO				
E E	CANTIDAD DE AGUA A	MEZCLADO CON MENOS AGUA				
PRODUCTO QUIKRETE	AÑADIR	MEZCLADO CON MÁS AGUA				
8 2	FORMA DE	DEJADO A LA INTEMPERIE				
	ALMACENAMIENTO	DEJADO EN CONDICIONES ÓPTIMAS				
	FORMA DE MEZCLADO	MEZCLADO MANUAL				
0	FORMA DE MEZCLADO	MEZCLADO CON TROMPO				
[CANTIDAD DE AGUA A	MEZCLADO CON MENOS AGUA				
3 5	AÑADIR	MEZCLADO CON MÁS AGUA				
PRODUCTO FIRTH	FORMA DE	DEJADO A LA INTEMPERIE				
<u>a</u>	ALMACENAMIENTO	DEJADO EN CONDICIONES ÓPTIMAS				

Cuadro 2.3 Ensayos Totales del concreto embolsado.

De lo explicado se realizarán 21 ensayos para cada una de las 6 formas de análisis del cambio de sus propiedades, para los dos tipos de producto, por lo tanto, se realizaran 251 ensayos en total.

En lo que respecta a la forma de mezclado:

 El producto recomienda mezclarlo de manera manual, es decir por medio de una lampa. El producto de mezclado manual se comparó con el mezclado con trompo durando el mezclado aproximadamente 3 minutos (el tiempo normal para el mezclado de una mezcla de concreto).

En lo que respecta a la cantidad de agua a añadir:

- Se tomó como patrón el agua recomendada en el embolsado del producto, la que para concreto Quikrete es de 4,5 litros por bolsa y para concreto Firth es de 4,375 por bolsa.
- Se tomó como mayor o menor cantidad de agua agregada al producto, al agregarle o restarle 0,5 litros de agua a la cantidad recomendada en el empaque.

En lo que respecta a la forma de almacenamiento:

Se tomó un tiempo fijo de 30 días, en el cual el concreto fue:
 Almacenado a la intemperie, conociéndose esto como la colocación de concreto embolsado en el piso, sin ninguna protección exterior, sufriendo el ataque de la humedad.

Figura 2.1 Concreto Quikrete almacenado a la intemperie.

Almacenado de manera óptima, conociéndose esto como la colocación del concreto embolsado en la parte superior de un tablón para que aísle la humedad proveniente del piso y a su vez recubierto por el contorno y la

parte superior por una faja térmica de embalaje (Strech Film), usada como protección por las empresas proveedoras, la cual aísla al producto de los agentes externos que varían las propiedades del concreto embolsado.

Figura 2.2 Concreto Quikrete almacenado de manera óptima.

Strech Film es un rollo de polietileno fabricado con el objetivo de proteger los productos en su traslado y almacenamiento. Tiene una presentación de 25cm. de ancho por aproximadamente 23/25 micrones de espesor, extruido en 5 capas con propiedades de estiramiento capaces de sostener, comprimir y sobretodo proteger todo tipo de cargas y productos.

Figura 2.3 Strech Film.

2.1 PROPIEDADES DEL CONCRETO EN ESTADO FRESCO

2.1.1.- Introducción

El estudio de las propiedades que tiene el concreto en el estado fresco

son de gran importancia ya que permiten evaluar y controlar ciertos

parámetros muy usados que van a influir tanto en las propiedades del

concreto en el estado fresco y endurecido, pudiendo evitar los efectos

negativos que se pudieran tener cuando exceden o no cumplen ciertos

límites que se establecen según cada aplicación.

En el presente subcapítulo 2.1, se estudian las propiedades del concreto

en estado fresco, mediante la realización de los ensayos respectivos

siguiendo procedimientos estandarizados.

Los ensayos de consistencia, peso unitario y tiempo de fragua inicial y

final, son los más representativos en lo que respeta al estado fresco del

concreto.

2.1.2.- Consistencia

Norma utilizada: NTP 339.035

La consistencia del concreto es la primera propiedad medida en obra que

nos permite ver de manera indirecta la trabajabilidad, la que conlleva a

una aceptación o rechazo de la mezcla obtenida.

Al retirar el cono de Abrams a velocidad constante, el concreto disminuirá

su altura original respecto al molde, por efecto de su fluidez y de su peso,

dicha disminución de altura (slump) se medirá con la ayuda de una

wincha invirtiendo el molde y colocando junto a la muestra; dicha medida

debe estar comprendida según los parámetros establecidos en el

proyecto.

En general, para secciones pequeñas de vaciado y muy armadas se

requieren concretos de un slump alto, principalmente para su colocación

óptima, mientras que, por el contrario, en estructuras masivas, de

grandes secciones y sin armar pueden colocarse concretos de bajo

slump, principalmente para reducir la exudación. Es recomendable emplear concreto de slump compatible con la estructura particular a vaciar.

Figura 2.4 Prueba del Cono de Abrams.

ASENTAMIENTO DEL CONCRETO

Norma Utilizada: NTP 339.035

QUIKRETE

PRODUCTO			QL	JIKRETE		
CARA	CARACTERÍSTICA		FORMA DE MEZCLAI			
FORMA DE MEZCLADO	AGUA POR TANDA DE 40 KG.	SLUMP		TOLERANCIA ASTM C94		
	litros	pulgadas		pulgadas		
MANUAL	4,5	23/4	33/4	+/- 1		
TROMPO	4,5	51/2	6	+/- 1		

Cuadro 2.4 Asentamiento del concreto embolsado Quikrete - Característica:

Forma de mezclado (Manual y Trompo).

PRODUCTO CARACTERÍSTICA			PRODUCTO QUIKRETE				
			CANTIDAD DE A				
	AGUA POR TANDA DE 40 KG.	SLUMP pulgadas		TOLERANCIA ASTM C94			
	litros			pulgadas			
MANUAL	4,0	3/4 1		+/- 1			
MANUAL	5,0	7	71/2	+/- 1			

Cuadro 2.5 Asentamiento del concreto embolsado Quikrete – Característica:

Cantidad de Agua (4,0 litros y 5,0 litros).

PR		QL	IKRETE				
CARACTERÍSTICA				FORMA DE ALMACENAMIENTO			
FORMA DE ALMACENAMIENTO	FORMA DE MEZCLADO	AGUA POR TANDA DE 40 KG		JMP	TOLERANCIA ASTM C94		
30 días		litros	pulg	adas	pulgadas		
INTEMPERIE	MANUAL	4,5	11/2 11/2		+/- 1		
OPTIMO	MANUAL	4,5	3	31/2	+/- 1		

Cuadro 2.6 Asentamiento del concreto embolsado Quikrete – Característica: Forma de almacenamiento (Intemperie y Óptimo).

FIRTH

PRODUCTO			FIRTH			
CARA	CARACTERÍSTICA		FORMA DE MEZCLA			
FORMA DE MEZCLADO			TOLERANCIA ASTM C94			
	litros	pulgadas		pulgadas		
MANUAL	4,375	2 3		+/- 1		
TROMPO	4,375	6	61/2	+/- 1		

Cuadro 2.7 Asentamiento del concreto embolsado Firth – Característica: Forma de mezclado (Manual y Trompo).

PRODUCTO CARACTERÍSTICA			PRODUCTO FIRTH				
			RACTERÍSTICA CANTIDAD DE AG				
FORMA DE MEZCLADO	AGUA POR TANDA DE 40 KG.	SLUMP pulgadas		TOLERANCIA ASTM C94			
	litros			pulgadas			
MANUAL	3,875	3/4 1		+/- 1			
MANUAL	4,875	7	71/2	+/- 1			

Cuadro 2.8 Asentamiento del concreto embolsado Firth – Característica: Cantidad de Agua (3,875 litros y 4,875 litros).

PRODUCTO					FIRTH		
CARACTERÍSTICA				FORMA DE ALMACENAMIENTO			
FORMA DE ALMACENAMIENTO	FORMA DE MEZCLADO	AGUA POR TANDA DE 40 KG	SL	.UMP	TOLERANCIA ASTM C94		
30 días		litros	pul	gadas	pulgadas		
INTEMPERIE	MANUAL	4,375	3 4		+/- 1		
OPTIMO	MANUAL	4,375	3	31/2	+/- 1		

Cuadro 2.9 Asentamiento del concreto embolsado Firth – Característica: Forma de almacenamiento (Intemperie y Óptimo).

2.1.3.- Peso Unitario

Norma utilizada: NTP 339.046

El peso unitario del concreto varia normalmente entre los 2200 kg/m³ y 2400 kg/m³, dependiendo por la cantidad y el tipo de agregado, la cantidad de agua añadida y la cantidad de cemento. Existen concretos especiales diseñados para diferentes necesidades, se puede encontrar concretos ligeros o celulares de 1350 kg/m³, como también concretos pesados de 6400 kg/m³.

Este valor es bastante importante ya que se emplea para comprobar el rendimiento de la mezcla. De manera práctica se considera la densidad del concreto armado en 2400 kg/m³.

$$PUC = \left[\frac{(Wm + Wb) - Wb}{1/3.pie^3}\right] \cdot \frac{Kg}{m^3}$$

Figura 2.5 Ensayo del Peso Unitario Compactado del concreto.

PESO UNITARIO

Norma Utilizada: NTP 339.046

QUIKRETE

PRODUCTO		QUIKRETE				
CARACTERÍSTICA		FORMA DE MEZCLADO				
VOLUMEN DEL BALDE		0,009433 m ³				
FORMA DE MEZCLADO	AGUA POR TANDA DE 40 KG	PESO DEL PESO DE LA MEZCLA PU				
	litros	kilogramos	kilogramos	Kg/m ³	Kg/m ³	
MANUAL	4,5	6,95	21,70	2300	2303	
MANUAL	4,5	6,95	21,75	2306	2303	
TROMPO	4,5	6,95	21,20	2247	2242	
TROMPO	4,5	6,95	21,10	2237	2242	

Cuadro 2.10 Peso unitario del concreto embolsado Quikrete - Característica:

Forma de mezclado (Manual y Trompo).

PRODUCTO CARACTERÍSTICA		QUIKRETE CANTIDAD DE AGUA				
FORMA DE AGUA POR TANDA DE 40 KG		PESO DEL BALDE	PESO DE LA MEZCLA	PU	PUP	
	litros	kilogramos	kilogramos	Kg/m ³	Kg/m³	
MANUAL	4,0	6,95	21,79	2310	2311	
MANUAL	4,0	6,95	21,81	2312	2311	
MANUAL	5,0	6,95	21,35	2263	2261	
MANUAL	5,0	6,95	21,30	2258	2201	

Cuadro 2.11 Peso unitario del concreto embolsado Quikrete – Característica: Cantidad de Agua (4,0 litros y 5,0 litros).

PRODUCTO CARACTERÍSTICA		QUIKRETE				
		FORMA DE ALMACENAMIENTO				
FORMA DE M			MANUAL			
VOLUMEN DE	OLUMEN DEL BALDE					
FORMA DE ALMACENADO	AGUA POR TANDA DE 40 KG	PESO DEL BALDE	PESO DE LA MEZCLA	PU	PUP	
30 días	litros	kilogramos	kilogramos	Kg/m ³	Kg/m ³	
INTEMPERIE	4,5	6,95	21,41	2270	2273	
INTEMPERIE	4,5	6,95	21,46	2275	2213	
ÓPTIMO	4,5	6,95	21,60	2290	2291	
ÓPTIMO	4.5	6.95	21,62	2292	2291	

Cuadro 2.12 Peso unitario del concreto embolsado Quikrete – Característica: Forma de almacenamiento (Intemperie y Óptimo).

<u>FIRTH</u>

PRODUCTO CARACTERÍSTICA		FIRTH				
		FOR	FORMA DE MEZCLADO			
VOLUMEN I	DEL BALDE					
FORMA DE AGUA POR TANDA DE 40 KG		PESO DEL PESO DE PU		PU	PUP	
	litros	kilogramos	kilogramos	Kg/m ³	Kg/m ³	
MANUAL	4,375	6,95	21,75	2306	2306	
MANUAL	4,375	6,95	21,75	2306	2306	
TROMPO	4,375	6,95	21,15	2242	2245	
TROMPO	4,375	6,95	21,20	2247	2245	

Cuadro 2.13 Peso unitario del concreto embolsado Firth – Característica: Forma de mezclado (Manual y Trompo).

PRODUCTO CARACTERÍSTICA		FIRTH CANTIDAD DE AGUA				
FORMA DE AGUA POR TANDA DE 40 KG		DA PESO DEL	PESO DE LA MEZCLA	PU	PUP	
	litros	kilogramos	kilogramos	Kg/m ³	Kg/m ³	
MANUAL	3,875	6,95	21,95	2327	2332	
MANUAL	3,875	6,95	22,04	2337	2332	
MANUAL	4,875	6,95	20,55	2178	2176	
MANUAL	4,875	6,95	20,50	2173	2176	

Cuadro 2.14 Peso unitario del concreto embolsado Firth - Característica:

Cantidad de Agua (3,875 litros y 4,875 litros).

PRODU	СТО	FIRTH					
CARACTERÍSTICA		FORMA DE ALMACENAMIENTO					
FORMA DE M	EZCLADO		MANUAL				
VOLUMEN DE	DEL BALDE 0,009433 m ³			3			
FORMA DE ALMACENADO	AGUA POR TANDA DE 40 KG	PESO DEL BALDE	PESO DE LA MEZCLA	PU	PUP		
30 dias	litros	kilogramos	kilogramos	Kg/m ³	Kg/m ³		
INTEMPERIE	4,375	6,95	21,46	2275	2278		
INTEMPERIE	4,375	6,95	21,51	2280	22/8		
ÓPTIMO	4,375	6,95	21,60	2290	2288		
ÓPTIMO	4,375	6,95	21,56	2286	2200		

Cuadro 2.15 Peso unitario del concreto embolsado Firth – Característica: Forma de almacenamiento (Intemperie y Óptimo).

2.1.4.- Tiempo de Fraguado

Norma: NTP 339.082

Cuando la mezcla seca entra en contacto con el agua, se produce una reacción exotérmica, produciéndose desde ese momento el endurecimiento de la mezcla.

El tiempo de fraguado de una muestra varía de acuerdo a factores como temperatura, proporción de agua a cemento, tipo de cemento y aditivos añadidos.

El tiempo de fragua inicial viene a ser el tiempo medido desde que se mezclan los materiales hasta cuando la mezcla ha perdido cierta plasticidad y el Tiempo de Fragua Final es el tiempo medido desde que se mezclan los materiales hasta que la mezcla pierda su total plasticidad.

Después del TFI no es recomendable colocar el concreto, ya que la resistencia del concreto tiende a disminuir.

El TFI del concreto convencional en Lima es 150 minutos, al tener un clima templado, pero en ciudades donde la temperatura es mayor como Piura el TFI disminuye y por el contrario, en ciudades donde la temperatura es menor como Huancayo TFI aumenta.

El tiempo de fraguado inicial y final tienen una trascendencia primordial en obra, ya que dará la pauta del tiempo que se dispone en el proceso constructivo para las operaciones de colocación y acabado.

Figura 2.6 Aguja de Vicat usada para la determinación del Tiempo de fragua por medio de la resistencia a la penetración.

Figura 2.7 Mesa de sacudidas usada para la separación del agregado grueso.

TIEMPO DE FRAGUADO

Norma Utilizada: NTP 339.082

QUIKRETE

CONC	CONCRETO QUIKRETE - FORMA DE MEZCLADO: "MANUAL"							
Tiempo	Diámetro	Área	Fuerza	Resistencia				
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)		
(t) minutos	pulgadas	Plg²	libras	(RP) lb/plg ²				
240	1.125	0.9940	170	171.0224	2.3802	2.2331		
270	1.125	0.9940	230	231.3832	2.4314	2.3643		
300	0.8125	0.5185	160	308.5904	2.4771	2.4894		
330	0.5625	0.2485	170	684.0896	2.5185	2.8351		
360	0.3125	0.0767	130	1694.9325	2.5563	3.2292		
390	0.25	0.0491	160	3259.4856	2.5911	3.5131		
420	0.1875	0.0276	170	6156.8062	2.6232	3.7894		

Cuadro 2.16 Tiempo de fraguado del concreto embolsado Quikrete –

Característica: Forma de mezclado (Manual).

Luego:

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

Log (RP)=6.7184xlog (t)-13.949

RP=Resistencia a la penetración

t=tiempo transcurrido

R=coeficiente de correlación=0.974

(RP) lb/plg2		TIEMPO			
500	t = 300,58 min.	TFI = 5:00:35(hr:min:seg)			
4000	t = 409,63 min.	TFF = 6:49:38(hr:min:seg)			

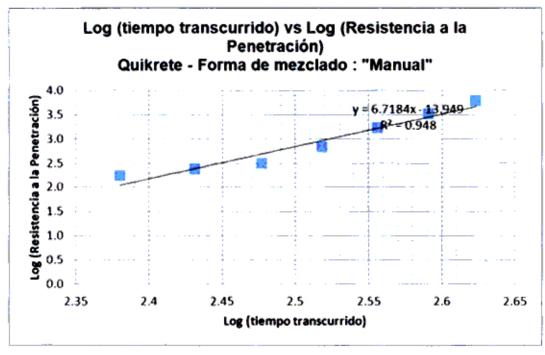


Grafico 2.1 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Quikrete – Característica: Forma de mezclado (Manual).

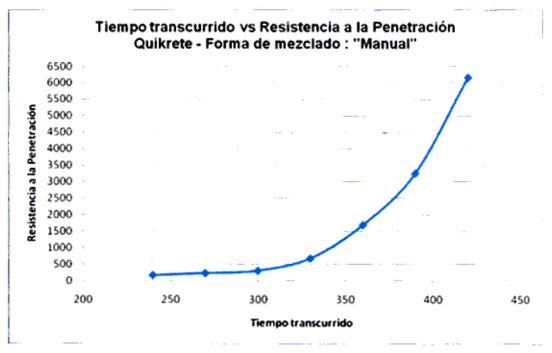


Grafico 2.2 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Quikrete – Característica: Forma de mezclado (Manual).

CONC	CONCRETO QUIKRETE - FORMA DE MEZCLADO: "TROMPO"							
Tiempo	Diámetro	Área	Fuerza	Resistencia				
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)		
(t) minutos	pulgadas	Plg²	libras	(RP) lb/plg ²				
180	1.125	0.9940	40	40.2406	2.2553	1.6047		
210	1.125	0.9940	60	60.3608	2.3222	1.7808		
240	0.8125	0.5185	80	154.2952	2.3802	2.1884		
270	0.5625	0.2485	110	442.6462	2.4314	2.6461		
300	0.3125	0.0767	70	912.6560	2.4771	2.9603		
330	0.25	0.0491	105	2139.0374	2.5185	3.3302		
360	0.1875	0.0276	130	4708.1459	2.5563	3.6728		

Cuadro 2.17 Tiempo de fraguado del concreto embolsado Quikrete –

Característica: Forma de mezclado (Trompo).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9893

(RP) lb/plg2		TIEMPO		
500	t = 271,88 min.	TFI = 4:31:53(hr:min:seg)		
4000	t = 363,75 min.	TFF = 6:03:45(hr:min:seg)		

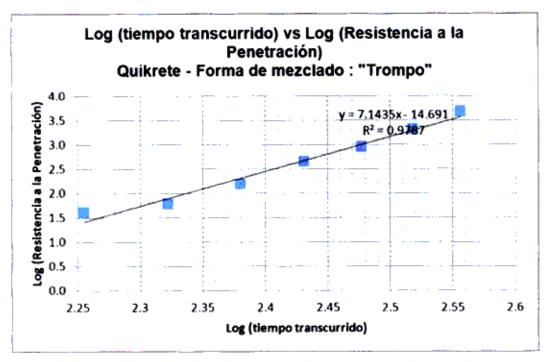


Grafico 2.3 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Quikrete – Característica: Forma de mezclado (Trompo).

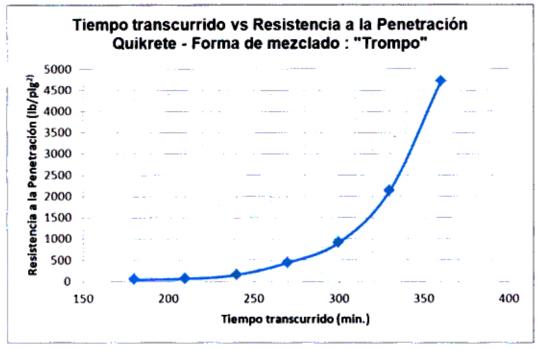


Grafico 2.4 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Quikrete – Característica: Forma de mezclado (Trompo).

CONC	CONCRETO QUIKRETE - CANTIDAD DE AGUA: "4,0 LITROS"							
Tiempo	Diámetro	Área	Fuerza	Resistencia				
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)		
(t) minutos	pulgadas	Plg ²	libras	(RP) lb/plg ²				
120	1.125	0.9940	200	201.2028	2.0792	2.3036		
150	0.8125	0.5185	150	289.3035	2.1761	2.4614		
180	0.5625	0.2485	100	402.4056	2.2553	2.6047		
210	0.3125	0.0767	50	651.8971	2.3222	2.8142		
240	0.25	0.0491	60	1222.3071	2.3802	3.0872		
270	0.1875	0.0276	70	2535.1555	2.4314	3.4040		
300	0.1875	0.0276	120	4345.9808	2.4771	3.6381		

Cuadro 2.18 Tiempo de fraguado del concreto embolsado Quikrete –

Característica: Cantidad de Agua (4,0 litros).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9659

(RP) lb/plg2	TIEMPO			
500	t = 174,88 min.	TFI = 2:54:53(hr:min:seg)		
4000	t = 324,40 min.	TFF = 5:24:24(hr:min:seq)		



Grafico 2.5 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Quikrete – Característica: Cantidad de agua (4,0 litros).

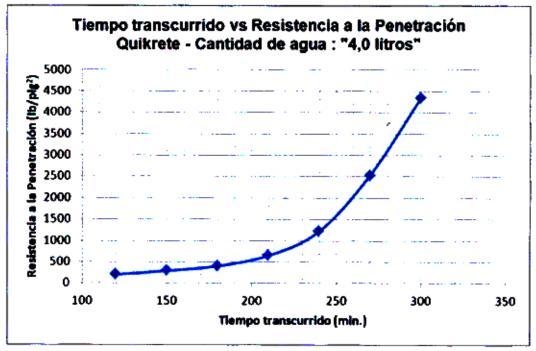


Grafico 2.6 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Quikrete – Característica: Cantidad de agua (4,0 litros).

CONCRETO QUIKRETE - CANTIDAD DE AGUA: "5,0 LITROS"							
Tiempo	Diámetro	Área	Fuerza	Resistencia	Log (T)	Log (RP)	
transcurrido	aguja	Aguja	Aplicada	Penetración			
(t) minutos	pulgadas	Plg ²	libras	(RP) lb/plg ²			
240	1.125	0.9940	140	140.8420	2.3802	2.1487	
270	1.125	0.9940	170	171.0224	2.4314	2.2331	
300	0.8125	0.5185	190	366.4510	2.4771	2.5640	
330	0.5625	0.2485	195	784.6910	2.5185	2.8947	
360	0.3125	0.0767	120	1564.5531	2.5563	3.1944	
390	0.25	0.0491	120	2444.6142	2.5911	3.3882	
420	0.1875	0.0276	90	3259.4856	2.6232	3.5131	
450	0.1875	0.0276	120	4345.9808	2.6532	3.6381	

Cuadro 2.19 Tiempo de fraguado del concreto embolsado Quikrete – Característica: Cantidad de Agua (5,0 litros).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9904

(RP) lb/plg2 500	TIEMPO			
	t = 307,44 min.	TFI = 5:07:26(hr:min:seg)		
4000	t = 434,02 min.	TFF = 7:14:01(hr:min:seg)		

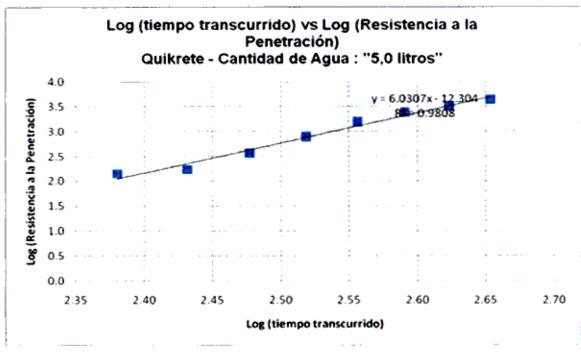


Grafico 2.7 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Quikrete – Característica: Cantidad de agua (5,0 litros).

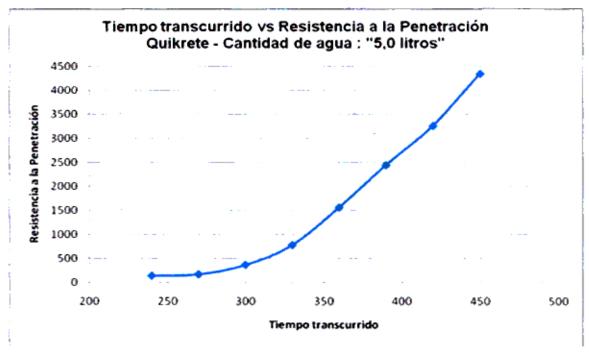


Grafico 2.8 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Quikrete – Característica: Cantidad de agua (5,0 litros).

CONCRETO QUIKRETE - FORMA DE ALMACENAMIENTO: "INTEMPERIE"								
Tiempo	Diámetro	Área	Fuerza	Resistencia				
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)		
(t) minutos	pulgadas	Plg ²	libras	(RP) lb/plg ²				
240	1.125	0.9940	70	70.4210	2.3802	1.8477		
270	1.125	0.9940	120	120.7217	2.4314	2.0818		
300	0.8125	0.5185	120	231.4428	2.4771	2.3644		
330	0.5625	0.2485	130	523.1273	2.5185	2.7186		
360	0.3125	0.0767	100	1303.7942	2.5563	3.1152		
390	0.25	0.0491	90	1833.4607	2.5911	3.2633		
420	0.1875	0.0276	100	3621.6507	2.6232	3.5589		
450	0.1875	0.0276	150	5432.4760	2.6532	3.7350		

Cuadro 2.20 Tiempo de fraguado del concreto embolsado Quikrete – Característica: Forma de almacenamiento (Intemperie).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9956

De donde :

(RP) lb/plg2 TIEMPO 500 t = 326,65 min. TFI = 5:23:38(hr:min:seg) 4000 t = 430,95 min. TFF = 7:10:57(hr:min:seg)

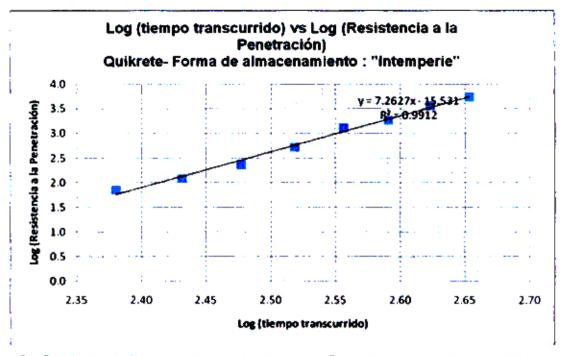


Grafico 2.9 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Quikrete – Característica: Forma de almacenamiento (Intemperie).

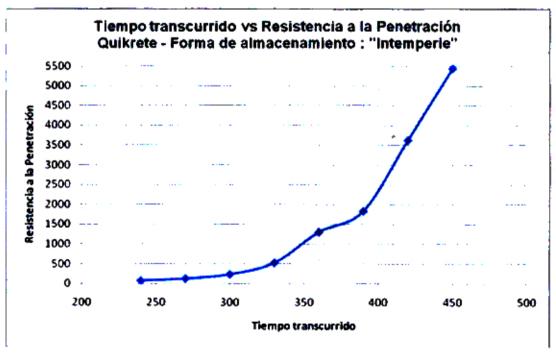


Grafico 2.10 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Quikrete – Característica: Forma de almacenamiento (Intemperie).

CONCRETO QUIKRETE - FORMA DE ALMACENAMIENTO: "OPTIMO"						
Tiempo	Diámetro	Área	Fuerza	Resistencia		
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)
(t) minutos	pulgadas	Plg ²	libras	(RP) lb/plg ²		
240	1.125	0.9940	60	60.3608	2.3802	1.7808
270	1.125	0.9940	140	140.8420	2.4314	2.1487
300	0.8125	0.5185	200	385.7379	2.4771	2.5863
330	0.5625	0.2485	200	804.8113	2.5185	2.9057
360	0.3125	0.0767	130	1694.9325	2.5563	3.2292
390	0.25	0.0491	120	2444.6142	2.5911	3.3882
420	0.1875	0.0276	100	3621.6507	2.6232	3.5589
450	0.1875	0.0276	130	4708.1459	2.6532	3.6728

Cuadro 2.21 Tiempo de fraguado del concreto embolsado Quikrete –

Característica: Forma de almacenamiento (Óptimo).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9926

(RP) lb/plg2	TIEMPO				
500	t = 315,87 min.	TFI = 5:15:52(hr:min:seg)			
4000	t = 422,40 min.	TFF = 7:02:24(hr:min:seg)			

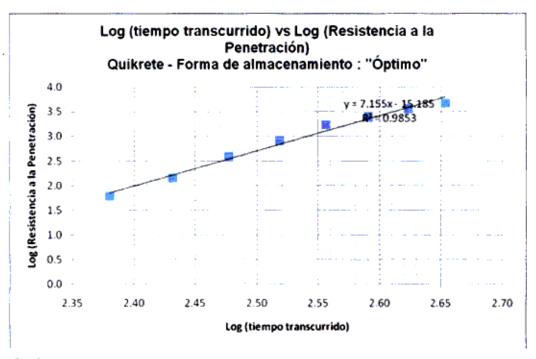


Grafico 2.11 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Quikrete – Característica: Forma de almacenamiento (Óptimo).

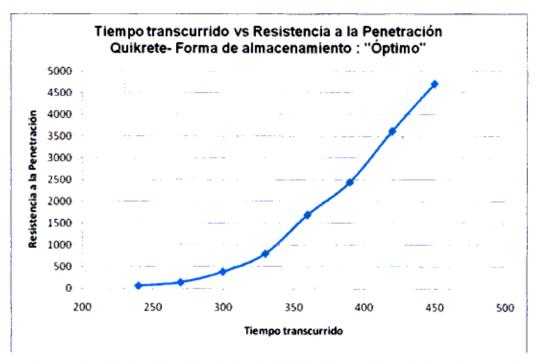


Grafico 2.12 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Quikrete – Característica: Forma de almacenamiento (Óptimo).

FIRTH

col	NCRETO FIR	TH - FOR	RMA DE M	EZCLADO: "M	ANUAL"	
Tiempo	Diámetro	Área	Fuerza	Resistencia		
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)
(t) minutos	pulgadas	Plg ²	libras	(RP) lb/plg ²		
240	1.125	0.9940	220	221.3231	2.3802	2.3450
270	0.8125	0.5185	200	385.7379	2.4314	2.5863
300	0.5625	0.2485	180	724.3301	2.4771	2.8599
330	0.3125	0.0767	80	1043.0354	2.5185	3.0183
360	0.25	0.0491	90	1833.4607	2.5563	3.2633
390	0.1875	0.0276	90	3259.4856	2.5911	3.5131
420	0.1875	0.0276	130	4708.1459	2.6232	3.6728

Cuadro 2.22 Tiempo de fraguado del concreto embolsado Firth – Característica: Forma de mezclado (Manual).

Luego:

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9976

(RP) lb/plg2		TIEMPO
500	t = 281,76 min.	TFI = 4:41:46(hr:min:seg)
4000	t = 410,87 min.	TFF = 6:50:52(hr:min:seg)

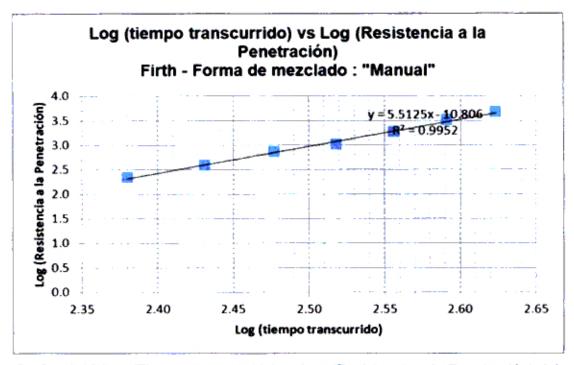


Grafico 2.13 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Firth – Característica: Forma de mezclado (Manual).

Grafico 2.14 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Firth – Característica: Forma de mezclado (Manual).

	_					
cor	CONCRETO FIRTH - FORMA DE MEZCLADO: "TROMPO"					
Tiempo	Diámetro	Área	Fuerza	Resistencia		
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)
(t) minutos	pulgadas	Plg ²	libras	(RP) lb/plg ²		
210	1.125	0.9940	160	160.9623	2.3222	2.2067
240	1.125	0.9940	190	191.1427	2.3802	2.2814
270	0.8125	0.5185	230	443.5986	2.4314	2.6470
300	0.5625	0.2485	260	1046.2546	2.4771	3.0196
330	0.3125	0.0767	150	1955.6914	2.5185	3.2913
360	0.25	0.0491	150	3055.7678	2.5563	3.4851
390	0.1875	0.0276	120	4345.9808	2.5911	3.6381

Cuadro 2.23 Tiempo de fraguado del concreto embolsado Firth – Característica: Forma de mezclado (Trompo).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9881

(RP) lb/plg2	TIEMPO				
500	t = 267,50 min.	TFI = 4:27:30(hr:min:seg)			
4000	t = 381,24 min.	TFF = 6:21:14(hr:min:seg)			

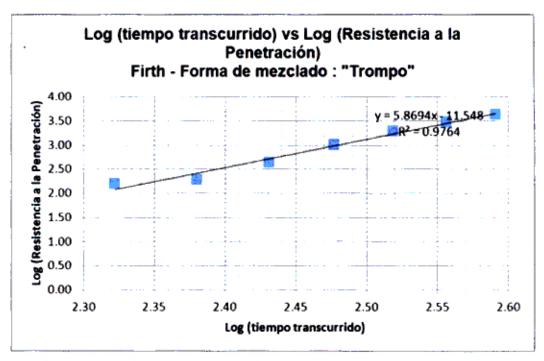


Grafico 2.15 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Firth – Característica: Forma de mezclado (Trompo).

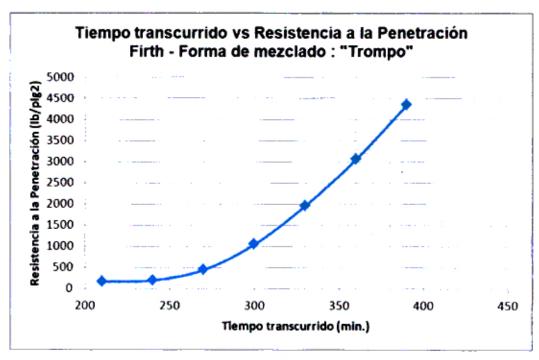


Grafico 2.16 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Firth – Característica: Forma de mezclado (Trompo).

CON	CONCRETO FIRTH - CANTIDAD DE AGUA: "3,875 LITROS"					
Tiempo	Diámetro	Área	Fuerza	Resistencia		
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)
(t) minutos	pulgadas	Plg²	libras	(RP) lb/plg ²		
180	1.125	0.9940	150	150.9021	2.2553	2.1787
210	1.125	0.9940	300	301.8042	2.3222	2.4797
240	0.8125	0.5185	405	781.1193	2.3802	2.8927
270	0.5625	0.2485	300	1207.2169	2.4314	3.0818
300	0.3125	0.0767	150	1955.6914	2.4771	3.2913
330	0.25	0.0491	160	3259.4856	2.5185	3.5131
360	0.1875	0.0276	140	5070.3110	2.5563	3.7050

Cuadro 2.24 Tiempo de fraguado del concreto embolsado Firth – Característica: Cantidad de Agua (3,875 litros).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9978

(RP) lb/plg2		TIEMPO
500	t = 227,61 min.	TFI = 3:47:37(hr:min:seg)
4000	t = 343.07 min.	TFF = 5:43:04(hr:min:seq)

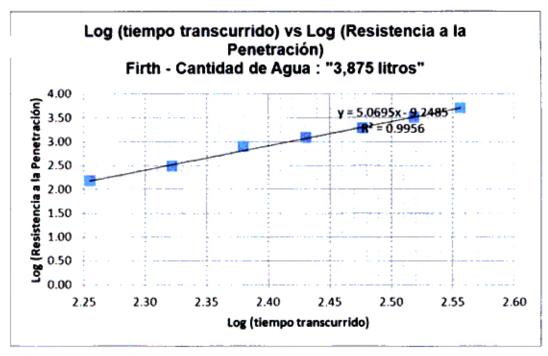


Grafico 2.17 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Firth – Característica: Cantidad de agua (3,875 litros).

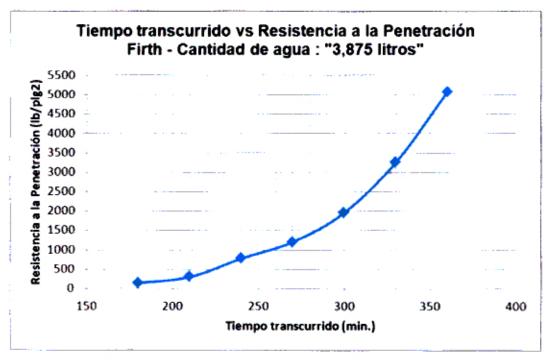


Grafico 2.18 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Firth – Característica: Cantidad de agua (3,875 litros).

CON	CONCRETO FIRTH - CANTIDAD DE AGUA: "4,875 LITROS"					
Tiempo	Diámetro	Área	Fuerza	Resistencia		
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)
(t) minutos	pulgadas	Plg²	libras	(RP) lb/plg ²		
240	1.125	0.9940	80	80.4811	2.3802	1.9057
270	1.125	0.9940	160	160.9623	2.4314	2.2067
300	0.8125	0.5185	220	424.3117	2.4771	2.6277
330	0.5625	0.2485	220	885.2924	2.5185	2.9471
360	0.3125	0.0767	130	1694.9325	2.5563	3.2292
390	0.25	0.0491	130	2648.3321	2.5911	3.4230
420	0.1875	0.0276	100	3621.6507	2.6232	3.5589
450	0.1875	0.0276	125	4527.0634	2.6532	3.6558

Cuadro 2.25 Tiempo de fraguado del concreto embolsado Firth – Característica:

Cantidad de Agua (4,875 litros).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9924

(RP) lb/plg2	TIEMPO				
500	t = 310,76 min.	TFI = 5:10:46(hr:min:seg)			
4000	t = 423,21 min.	TFF = 7:03:13(hr:min:seq)			

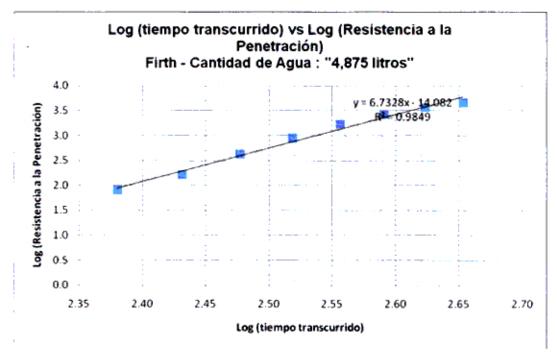


Grafico 2.19 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Firth – Característica: Cantidad de agua (4,875 litros).

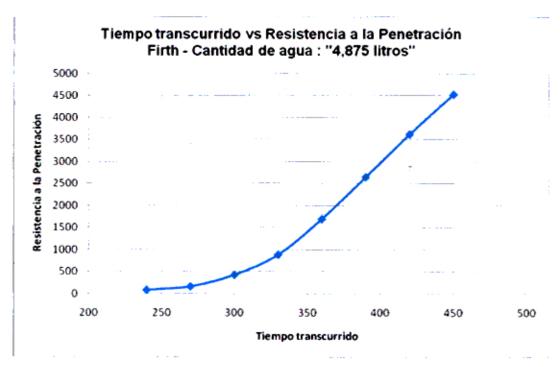


Grafico 2.20 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Firth – Característica: Cantidad de agua (4,875 litros).

CONCRETO FIRTH - FORMA DE ALMACENAMIENTO: "INTEMPERIE"						
Tiempo	Diámetro	Área	Fuerza	Resistencia		
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)
(t) minutos	pulgadas	Plg²	libras	(RP) lb/plg ²		
240	1.125	0.9940	80	80.4811	2.3802	1.9057
270	1.125	0.9940	170	171.0224	2.4314	2.2331
300	0.8125	0.5185	145	279.6600	2.4771	2.4466
330	0.5625	0.2485	130	523.1273	2.5185	2.7186
360	0.3125	0.0767	95	1238.6045	2.5563	3.0929
390	0.25	0.0491	125	2546.4731	2.5911	3.4059
420	0.1875	0.0276	115	4164.8983	2.6232	3.6196

Cuadro 2.26 Tiempo de fraguado del concreto embolsado Firth – Característica: Forma de almacenamiento (Intemperie).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.9937

(RP) lb/plg2	TIEMPO			
500	t = 316,61 min.	TFI = 5:16:37(hr:min:seg)		
4000	t = 423,31 min.	TFF = 7:03:19(hr:min:seg)		

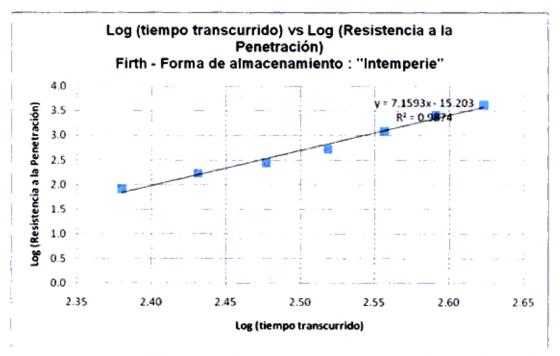


Grafico 2.21 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Firth – Característica: Forma de almacenamiento (Intemperie).

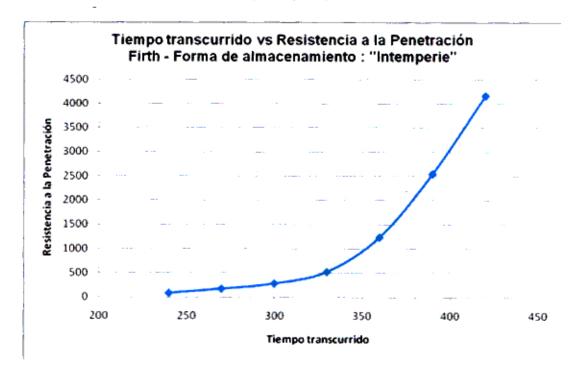


Grafico 2.22 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Firth – Característica: Forma de almacenamiento (Intemperie).

CONCRETO FIRTH - FORMA DE ALMACENAMIENTO: "OPTIMO"												
Tiempo	Diámetro	Área	Fuerza	Resistencia								
transcurrido	aguja	Aguja	Aplicada	Penetración	Log (T)	Log (RP)						
(t) minutos	pulgadas	Plg ²	libras	(RP) lb/plg ²		7 = 2 7						
240	1.125	0.9940	110	110.6615	2.3802	2.0440						
270	1.125	0.9940	200	201.2028	2.4314	2.3036						
300	0.8125	0.5185	260	501.4593	2.4771	2.7002						
330	0.5625	0.2485	230	925.5330	2.5185	2.9664						
360	0.3125	0.0767	130	1694.9325	2.5563	3.2292						
390	0.25	0.0491	140	2852.0499	2.5911	3.4552						
420	0.1875	0.0276	120	4345.9808	2.6232	3.6381						

Cuadro 2.27 Tiempo de fraguado del concreto embolsado Firth –
Característica: Forma de almacenamiento (Óptimo).

Haciendo análisis de regresión lineal entre los logaritmos de Resistencia a la Penetración y Tiempo transcurrido tenemos

RP=Resistencia a la penetración t=tiempo transcurrido

R=coeficiente de correlación=0.998

(RP) lb/plg2		TIEMPO
500	t = 302,42 min.	TFI = 5:02:25(hr:min:seg)
4000	t = 411,39 min.	TFF = 6:51:23(hr:min:seg)

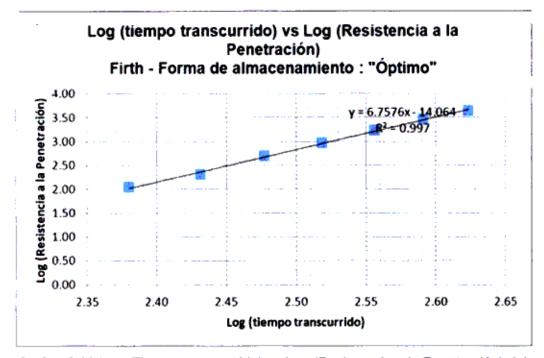


Grafico 2.23 Log (Tiempo transcurrido) vs Log (Resistencia a la Penetración) del concreto embolsado Firth – Característica: Forma de almacenamiento (Óptimo).

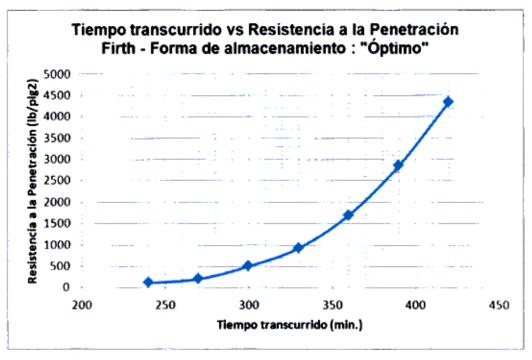


Grafico 2.24 Tiempo transcurrido vs Resistencia a la Penetración del concreto embolsado Firth – Característica: Forma de almacenamiento (Óptimo).

2.2 PROPIEDADES DEL CONCRETO EN ESTADO ENDURECIDO

2.2.1.- Introducción

El estudio de las propiedades que tiene el concreto en el estado endurecido son de gran importancia ya que permiten evaluar y controlar la resistencia y es muchos casos la cuantificación de esta su principal característica. El mejor comportamiento en su estado endurecido es el de compresión, en comparación con la tracción, debido a las propiedades adherentes de la pasta de cemento.

En la etapa del material ya endurecido, las propiedades del concreto evolucionan con el tiempo, dependiendo de las características y proporciones de los materiales que lo componen y de las condiciones ambientales a que está expuesto.

En el presente subcapítulo 2.2, se estudian las propiedades del concreto en estado endurecido, mediante la realización de los ensayos respectivos siguiendo procedimientos estandarizados.

Figura 2.8 Testigos para pruebas del concreto endurecido.

2.2.2.- Resistencia a la Compresión

Norma utilizada: NTP 339.034

La calidad del concreto generalmente se establece por su resistencia a la compresión, debido a las funciones estructurales estáticas y dinámicas que cumple este material al soportar cargas y esfuerzos.

La resistencia se ve influenciada mediante el tiempo de curado inicial, el tamaño de la probeta, la velocidad de carga, la esbeltez de la probeta, el estado de humedad y el correcto uso de las almohadillas de neopreno.

Los resultados de las pruebas de las probetas a compresión son utilizadas entre otros casos para:

- El control de calidad para la aceptación del concreto en las estructuras vaciadas.
- Estimar la resistencia del concreto en edades tempranas para la programación de las operaciones de construcción, tales como el desencofrado o la puesta en servicio de estructuras.
- Evaluar la protección suministrada a la estructura.

Las pruebas a los 3, 7 y 14 días pueden ayudar a detectar problemas potenciales relacionados con la calidad del concreto o con los procedimientos de las pruebas en el laboratorio pero no constituye el criterio para rechazar el concreto.

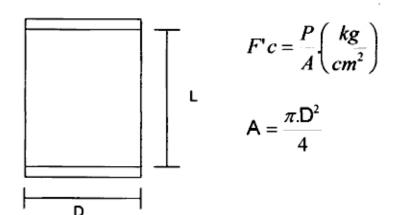


Figura 2.9 Prueba de Compresión.

PRODUCTO		QUIKRETE											
CARACTERÍSTICA				F	ORMA D	E MEZO	LADO (MANUA	L)				
EDAD		3 dias			7 días			14 días		28 días			
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	
D(cm)	15.2	15.1	15.15	15.25	15.1	15.2	15.05	15.1	15.05	15.15	15.15	15.2	
A(cm²)	181.46	179.08	180.27	182.65	179.08	181.46	177.90	179.08	177.90	180.27	180.27	181.46	
F(kg)	30900	28950	29500	38750	36500	37200	43000	45300	43200	49854	51163	51617	
F'c (kg/cm²)	170.29	161.66	163.65	212.15	203.82	205.01	241.72	252.96	242.84	276.56	283.82	284.46	
σ		4.52			4.51			6.19			4.39		
Cv		2.73			2.18			2.52			1.56		
Máximo Cv (ASTM C39)		7.8			7.8			7.8		7.8			
F'c promedio (Kg/cm²)	16	5.2 Kg/c	m²	206	.99 Kg/	cm²	245.84 Kg/cm ²			281.61 Kg/cm ²			
CARACTERÍSTICA				F	ORMA D	E MEZO	LADO (TROMP	0)				
EDAD		3 días			7 días		14 días			28 días			
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	
D(cm)	15.2	15.15	15.2	15.2	15.1	15.1	15.15	15.3	15.2	15.1	15.1	15.1	
A(cm²)	181.46	180.27	181.46	181.46	179.08	179.08	180.27	183.85	181.46	179.08	179.08	179.08	
F(kg)	29900	31700	30300	38800	39600	37800	43700	46500	46400	47100	50000	50300	
F'c (kg/cm²)	164.78	175.85	166.98	213.82	221.13	211.08	242.42	252.92	255.71	263.01	279.21	280.88	
σ		5.86			5.20			7.01			9.87		
Cv		3.46			2.41		2.80			3.60			
Máximo Cv (ASTM C39)		7.8			7.8			7.8			7.8		
F'c promedio (Kg/cm²)	169	.20 Kg/	cm²	215	.34 Kg/	cm²	250	.35 Kg/d	cm²	274	1.37 Kg/	cm²	

Cuadro 2.28 Resistencia a Compresión del concreto embolsado Quikrete - Característica: Forma de mezclado.

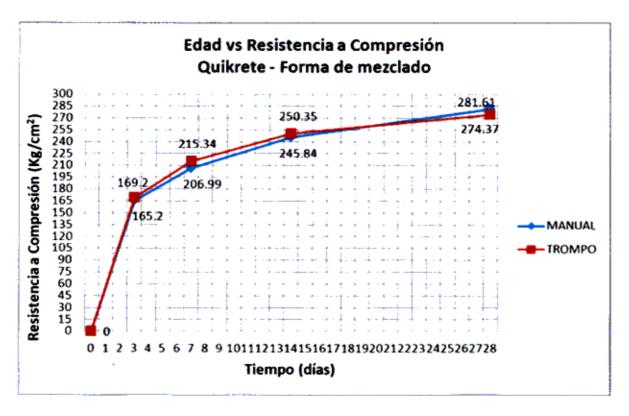


Grafico 2.25 Edad vs Resistencia a Compresión del concreto embolsado Quikrete - Característica: Forma de Mezclado.

PRODUCTO		QUIKRETE										
CARACTERÍSTICA				C	ANTIDA	D DE A	3UA (4,0	LITRO	S)			
EDAD		3 días			7 días			14 días		28 días		
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3
D(cm)	15.15	15.2	15.1	15.05	15.1	15.1	15.1	15.05	15.15	15.1	15.1	15.2
A(cm²)	180.27	181.46	179.08	177.90	179.08	179.08	179.08	177.90	180.27	179.08	179.08	181.46
F(kg)	26200	27900	24900	30200	33900	32200	36000	38600	35600	44900	42600	41900
F'c (kg/cm²)	145.34	153.75	139.04	169.76	189.30	179.81	201.03	216.98	197.48	250.73	237.88	230.91
σ		7.38			9.77			10.39			10.05	
Cv		5.05			5.44			5.06			4.19	
Máximo Cv (ASTM C39)		7.8			7.8			7.8		7.8		
F'c promedio (Kg/cm²)	146	5.05 Kg/	cm²	179	.62 Kg/	cm²	205	5.17 Kg/c	cm²	239.84 Kg/cm ²		
CARACTERÍSTICA				CANTIDAD DE AC			GUA (5,0 LITROS)					
EDAD		3 días			7 días			14 días		28 días		
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Deah 2			Dank A	D		D L A	
		11002	F100 3	PIOD I	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3
D(cm)	15.25	15.2	15.2	15.3	15.2	15.2	Prob 1 15.2	14.95	15.3	15.15	15.2	Prob 3 15.2
D(cm) A(cm²)	15.25 182.65	15.2		15.3	15.2	15.2	15.2		15.3	15.15		15.2
		15.2	15.2	15.3	15.2	15.2	15.2 181.46	14.95	15.3 183.85	15.15	15.2	15.2 181.46
A(cm²)	182.65	15.2 181.46 29484	15.2 181.46	15.3 183.85 36648	15.2 181.46 35834	15.2 181.46	15.2 181.46 41900	14.95 175.54	15.3 183.85 42700	15.15 180.27	15.2 181.46 50710	15.2 181.46 49802
A(cm²) F(kg)	182.65 30844	15.2 181.46 29484	15.2 181.46 30844	15.3 183.85 36648	15.2 181.46 35834	15.2 181.46 35019	15.2 181.46 41900	14.95 175.54 39000	15.3 183.85 42700	15.15 180.27 47586	15.2 181.46 50710	15.2 181.46 49802
A(cm²) F(kg) F'c (kg/cm²)	182.65 30844	15.2 181.46 29484 162.48	15.2 181.46 30844	15.3 183.85 36648	15.2 181.46 35834 197.48	15.2 181.46 35019	15.2 181.46 41900	14.95 175.54 39000 222.17	15.3 183.85 42700	15.15 180.27 47586	15.2 181.46 50710 279.46	15.2 181.46 49802
A(cm²) F(kg) F'c (kg/cm²) σ	182.65 30844 168.87	15.2 181.46 29484 162.48 4.04	15.2 181.46 30844	15.3 183.85 36648	15.2 181.46 35834 197.48 3.26	15.2 181.46 35019	15.2 181.46 41900	14.95 175.54 39000 222.17 5.47	15.3 183.85 42700	15.15 180.27 47586	15.2 181.46 50710 279.46 7.90	15.2 181.46 49802

Cuadro 2.29 Resistencia a Compresión del concreto embolsado Quikrete – Característica: Cantidad de agua.

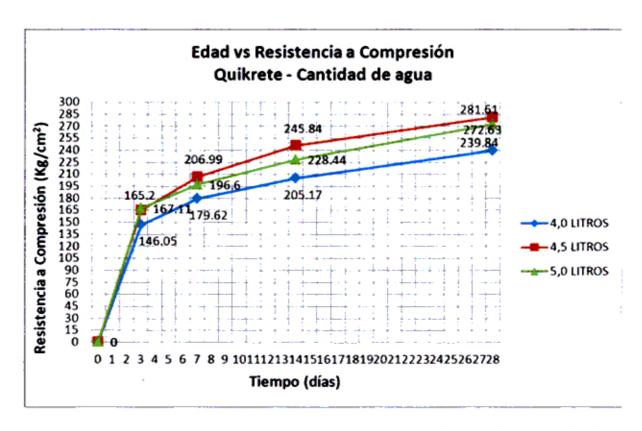


Grafico 2.26 Edad vs Resistencia a Compresión del concreto embolsado Quikrete - Característica: Cantidad de Agua.

PRODUCTO						QUIK	RETE						
CARACTERÍSTICA				FORMA	DE ALM	ACENA	MIENTO	(INTER	APERIE))			
EDAD		3 días			7 días			14 días		28 días			
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	
D(cm)	15.2	15.15	15.2	15.2	15.2	15.2	15.15	15.2	15.15	15.2	15.15	15.1	
A(cm²)	181.46	180.27	181.46	181.46	181.46	181.46	180.27	181.46	180.27	181.46	180.27	179.08	
F(kg)	21319	22226	21319	26216	25948	28123	34380	36195	33751	38400	37800	37600	
F'c (kg/cm²)	117.49							199.47	187.23	211.62	209.69	209.96	
σ		3.35			6.54			6.31			1.04		
Cv		2.81			4.43			3.28			0.50		
Máximo Cv (ASTM C39)		7.8			7.8			7.8					
F'c promedio (Kg/cm²)	119	.42 Kg/	cm²	147	.48 Kg/	cm²	192	.47 Kg/	cm²	210.42 Kg/cm ²			
CARACTERÍSTICA				FORM	IA DE A	LMACE	ENAMIENTO (ÓPTIMO)						
EDAD		3 días			7 días			14 días		28 días			
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	
D(cm)	15.2	15.15	15.2	15.1	15.2	15.2	15.2	15.15	15.2	15.05	15.1	15.1	
A(cm²)	181.46	180.27	181.46	179.08	181.46	181.46	181.46	180.27	181.46	177.90	179.08	179.08	
F(kg)	22680	21546	22453	29030	31751	29937	40184	38287	39463	42300	45400	44000	
F'c (kg/cm²)	124.99	119.52	123.74	162.11	174.98	164.98	221.45	212.39	217.48	237.78	253.52	245.70	
σ		2.86		Ĺ	6.76			4.54			7.87		
Cv		2.33			4.04		2.09			3.20			
Máximo Cv (ASTM C39)		7.8			7.8		7.8			7.8			
F'c promedio (Kg/cm²)	122	122.75 Kg/cm ² 167.35 Kg/cm ² 217.11 Kg/cm ²								245	.67 Kg/	cm²	

Cuadro 2.30 Resistencia a Compresión del concreto embolsado Quikrete - Característica: Forma de almacenamiento.

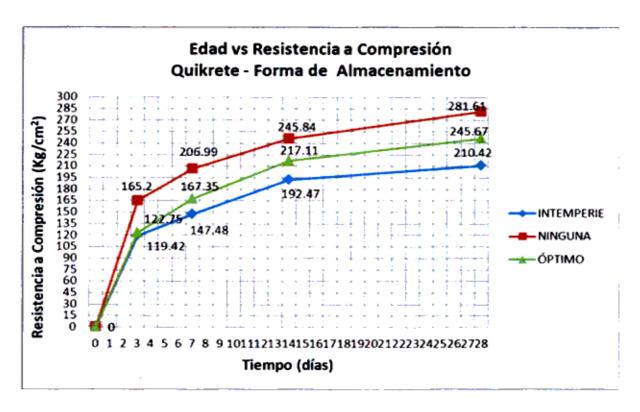


Grafico 2.27 Edad vs Resistencia a Compresión del concreto embolsado Quikrete - Característica: Forma de almacenamiento.

PRODUCTO						FIR	TH					
CARACTERÍSTICA				F	ORMA D	E MEZO	LADO (MANUA	L)			
EDAD		3 días			7 días			14 días		28 días		
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3
D(cm)	15.3	15.2	15.3	15.3	15.3	15.2	15.15	15.15	15	15.2	15.2	15.15
A(cm²)	183.85	181.46	183.85	183.85	183.85	181.46	180.27	180.27	176.72	181.46	181.46	180.27
F(kg)	26216	27216	26401	31844	32205	32112	41450	42700	42500	45359	45586	47627
F'c (kg/cm²)	142.59	149.98	143.60	173.20	175.17	176.97	229.94	236.87	240.50	249.97	251.22	264.20
σ		4.01			1.88			5.37			7.88	
Cv		2.76			1.07			2.28			3.09	
Máximo Cv (ASTM C39)		7.8			7.8			7.8		7.8		
F'c promedio (Kg/cm²)	145	.39 Kg/d	cm²	175	.11 Kg/	cm²				255	5.13 Kg/	cm²
CARACTERÍSTICA				F	FORMA DE MEZCLADO (TROMPO)							
EDAD		3 días			7 días		14 días			28 días		
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3
D(cm)	15.15	15.25	15.1	15.25	15.2	15.2	15.15	15.2	15.25	15.1	15.1	15.2
A(cm²)	180.27	182.65	179.08	182.65	181.46	181.46	180.27	181.46	182.65	179.08	179.08	181.46
F(kg)	24500	26000	25300	32800	31600	32200	40000	41800	40300	43500	43000	45300
F'c (kg/cm²)	135.91	142.35	141.28	179.57	174.14	177.45	221.89	230.36	220.64	242.91	240.12	249.64
σ		3.45			2.74			5.29		4.90		
Cv		2.47			1.55		2.36				2.01	
Máximo Cv (ASTM C39)		7.8		7.8			7.8			7.8		
F'c promedio (Kg/cm²)	139	.84 Kg/d	cm²	177.06 Kg/cm ²			224.29 Kg/cm ²			244.22 Kg/cm²		

Cuadro 2.31 Resistencia a Compresión del concreto embolsado Firth – Característica: Forma de mezclado.

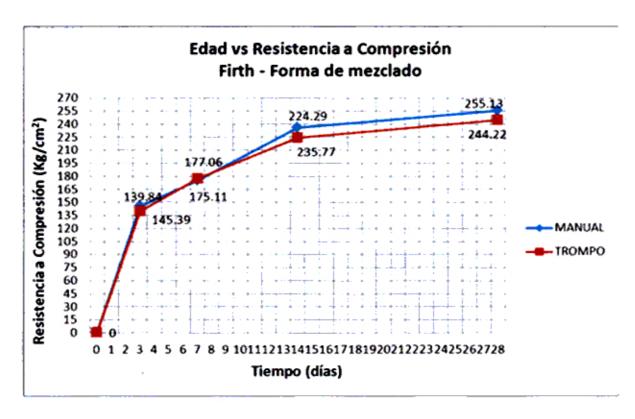


Grafico 2.28 Edad vs Resistencia a Compresión del concreto embolsado Firth - Característica: Forma de mezclado.

PRODUCTO						FIR	TH		-				
CARACTERÍSTICA				CA	NTIDAD	DE AG	UA (3,87	5 LITRO	OS)				
EDAD		3 dias			7 días			14 días		28 días			
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	
D(cm)	15.2	15.2	15.1	15.1	15.2	15.1	15.1	15.2	15.1	15.2	15.2	15.1	
A(cm²)	181.46	181.46	179.08	179.08	181.46	179.08	179.08	181.46	179.08	181.46	181.46	179.08	
F(kg)	25548	23580	25716	33900	32000	33500	39000	37500	36000	42545	40102	42545	
F'c (kg/cm²)	140.79	129.95	143.60	189.30	176.35	187.07	217.78	206.66	201.03	234.46	221.00	237.58	
σ		7.21			6.92			8.52			8.81		
Cv		5.22			3.76			4.09			3.81		
Máximo Cv (ASTM C39)		7.8			7.8			7.8		7.8			
F'c promedio (Kg/cm²)	138	.11 Kg/c	cm²	184	.24 Kg/c	cm²	208.49 Kg/cm ²			231.01 Kg/cm ²			
CARACTERÍSTICA				CA	NTIDAD	DE AG	UA (4,875 LITROS)						
EDAD		3 días			7 días			14 días			28 días		
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	
D(cm)	15.3	15.2	15.3	15.1	15.3	15.15	15.05	15	14.9	15.15	15.1	15.2	
A(cm²)	183.85	181.46	183.85	179.08	183.85	180.27	177.90	176.72	174.37	180.27	179.08	181.46	
F(kg)	25174	24272	26076	34019	34019	31751	40100	41600	41000	45300	45000	46500	
F'c (kg/cm²)	136.92	133.76	141.83	189.97	185.03	176.13	225.41	235.41	235.14	251.29	251.29	256.26	
σ		4.07			7.01			5.69			2.87		
Cv		2.96			3.82			2.45			1.13		
Máximo Cv (ASTM C39)		7.8			7.8			7.8			7.8		
F'c promedio (Kg/cm²)	137	.50 Kg/	cm²	183	.71 Kg/c	cm²	231	.99 Kg/	cm²	252	2.95 Kg/	cm²	

Cuadro 2.32 Resistencia a Compresión del concreto embolsado Firth - Característica: Cantidad de agua.



Grafico 2.29 Edad vs Resistencia a Compresión del concreto embolsado Firth - Característica: Cantidad de agua.

PRODUCTO		FIRTH												
CARACTERÍSTICA				FORMA	DE ALM	MACENA	MIENT	(INTE	MPERIE:)				
EDAD		3 días			7 días			14 días		28 días				
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3		
D(cm)	15.2	15.2	15.2	15.2	15.15	15.2	15.2	15.2	15.15	15.1	15.1	15.15		
A(cm²)	181.46	181.46	181.46	181.46	180.27	181.46	181.46	181.46	180.27	179.08	179.08	180.27		
F(kg)	17237	18144	18370	25216	23772	24040	34019	33634	32591	39100	36700	37800		
F'c (kg/cm²)	94.99 99.99 101.24						187.48	185.35	180.79		204.94	209.69		
σ	3.30				3.93	-		3.41			6.79			
Cv		3.35			2.92			1.85			3.22			
Máximo Cv (ASTM C39)		7.8			7.8			7.8						
F'c promedio (Kg/cm²)	98	.74 Kg/c	m²	134	.44 Kg/	cm²	184	1.54 Kg/d	cm²	7.8 210.99 Kg/cm²				
CARACTERÍSTICA				FORM	FORMA DE ALMACENAMIENTO (ÓPTIMO)									
EDAD		3 días			7 días		14 días			28 días				
ENSAYO	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3	Prob 1	Prob 2	Prob 3		
D(cm)	15.2	15.2	15.25	15.2	15.2	15.2	15.15	15.2	15.2	15.2	15.25	15.15		
A(cm²)	181.46	181.46	182.65	181.46	181.46	181.46	180.27	181.46	181.46	181.46	182.65	180.27		
F(kg)	23080	25001	24948	30844	29030	30937	38555	38102	40823	46200	42400	44400		
F'c (kg/cm²)	127.19	137.78	136.59	169.98	159.98	170.49	213.88	209.98	224.97	254.60	232.13	246.30		
_	5.80				5.93			7.78			11.36			
σ		5.00							3.60					
Cv		4.33			3.55			3.60			4.65			
					3.55 7.8			3.60 7.8			4.65 7.8			

Cuadro 2.33 Resistencia a Compresión del concreto embolsado Firth – Característica: Forma de almacenamiento.

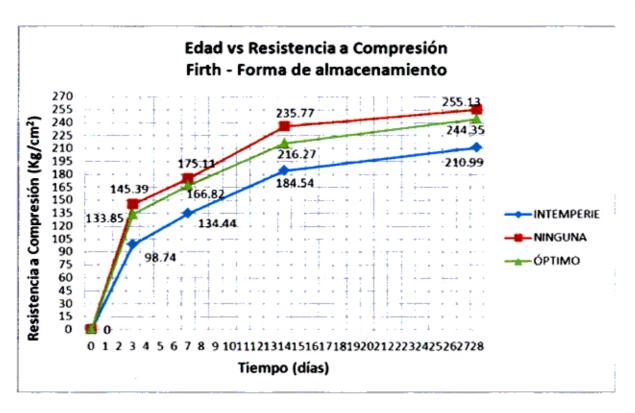


Grafico 2.30 Edad vs Resistencia a Compresión del concreto embolsado Firth - Característica: Forma de almacenamiento.

2.2.3.- Resistencia a la Tracción por Compresión Diametral

Norma Utilizada: NTP 339.084

Para la realización de este ensayo se utilizan las mismas probetas del ensayo a compresión, pero en vez de utilizar almohadillas de neopreno se utilizaran listones de madera para colocarlas en la zona de contacto. por donde se ejercerá la carga.

Se cargan con una velocidad entre 5 a 10 Ton/min, mucho más baja con respecto al ensayo a compresión, donde se tomara mucho cuidado en que el centrado sea perfecto.

Al aplicar la carga se producen esfuerzos de Tensión en el plano de carga y esfuerzos de compresión alrededor de la carga aplicada, pero el esfuerzo a tracción será el esfuerzo que hará fallar a la probeta, debido a que el área de carga a compresión es triaxial, mientras que el área a tracción es uniaxial, de aquí la importancia del uso de los listones de madera para que la probeta no falle por aplastamiento, se recomienda que el ancho de los listones sean la décima parte del diámetro del cilindro.

Si bien existen varias maneras de medir la Resistencia a la Tracción del Concreto como la Prueba de Tracción Directa o la Prueba de Tracción en Especímenes Prismáticos (vigas), se optó por la Resistencia a la Tracción por Compresión Diametral debido a su procedimiento relativamente sencillo, rápido y económico, así como la aceptable uniformidad en sus resultados.

Cuando el concreto se encuentra en servicio, se asume generalmente que no resiste esfuerzos a tracción, pero aproximadamente fluctúa en el 10% de la Resistencia a Compresión, estos ensayos toman la relativa importancia cuando el concreto es usado para la elaboración de pavimentos rígidos de concreto.

$$TI = \frac{2.P}{L.D.\pi} \cdot \left(\frac{kg}{cm^2}\right)$$

Figura 2.10 Prueba de Tracción por Compresión Diametral.

	PRODUCTO: QUIKRETE													
CARACTERÍSTICA: FORMA DE MEZCLADO														
	MANUAL TROMPO													
EDAD	7 d	lías	28 (tías	7 d	ías	28 (días						
ENSAYO	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2						
D(cm.)	15.1	15.15	15.15	15.2	15.2	15.2	15.1	15.1						
L(cm.)	30.4	30.5	30.4	30.4	30.50	30.50	30.50	30.50						
P (kg)	19600	20400	20800	21250	18000	16800	19000	18000						
TI (Kg/cm²)	27.18	28.11	28.75	29.28	24.72	23.07	26.26	24.88						
TI Promedio														

Cuadro 2.34 Resistencia a Tracción por Compresión Diametral del concreto embolsado Quikrete – Característica: Forma de mezclado.

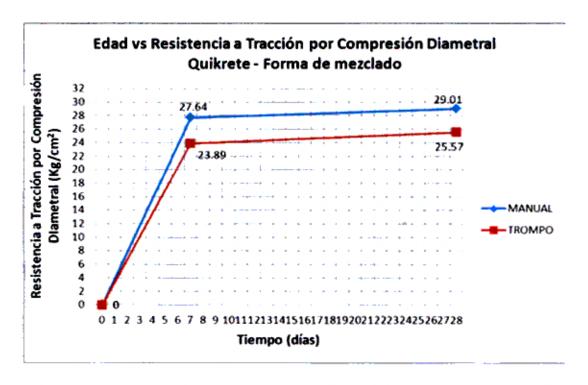


Grafico 2.31 Edad vs Resistencia a la Tracción por Compresión Diametral del concreto embolsado Quikrete – Característica: Forma de mezclado.

	PRODUCTO: QUIKRETE													
	CARACTERÍSTICA: CANTIDAD DE AGUA													
		4,0 LI	TROS			5,0 LI	TROS							
EDAD	7 d	ías	lías	28 (días									
ENSAYO	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2						
D(cm.)	15.1	15.1	15.1	15.3	15.2	15.3	15.2	15.3						
L(cm.)	30.50	30.50	30.50	30.50	30.30	30.30	30.40	30.40						
P (kg)	18150	16950	19000	17900	19200	19000	20500	19150						
TI (Kg/cm²)	25.09	23.43	26.26	24.42	26.54	26.09	28.24	26.21						
TI Promedio														

Cuadro 2.35 Resistencia a Tracción por Compresión Diametral del concreto embolsado Quikrete – Característica: Cantidad de Agua.

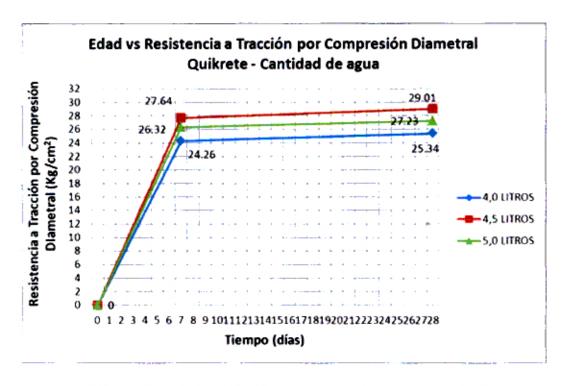


Grafico 2.32 Edad vs Resistencia a la Tracción por Compresión Diametral del concreto embolsado Quikrete – Característica: Cantidad de agua.

	PRODUCTO: QUIKRETE													
CARACTERÍSTICA: FORMA DE ALMACENAMIENTO														
		INTEM	PERIE			ÓPT	IMO							
EDAD	7 d	ías	28 (días	7 d	ías	28 (días						
ENSAYO	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2						
D(cm.)	15.2	15.1	15.2	15.2	15.2	15.25	15.1	15.1						
L(cm.)	30.50	30.50	30.50	30.40	30.35	30.50	30.40	30.50						
P (kg)	11600	12400	16300	18050	14600	15500	17900	17100						
TI (Kg/cm²)	15,93	17.14	22.38	24.87	20.15	21.21	24.82	23.64						
TI Promedio	16.53 l	Kg/cm²	23.63 I	Kg/cm²	20.68	Kg/cm²	24.23	(g/cm²						

Cuadro 2.36 Resistencia a Tracción por Compresión Diametral del concreto embolsado Quikrete – Característica: Forma de almacenamiento.



Grafico 2.33 Edad vs Resistencia a la Tracción por Compresión Diametral del concreto embolsado Quikrete – Característica: Forma de almacenamiento.

	PRODUCTO: FIRTH													
CARACTERÍSTICA: FORMA DE MEZCLADO														
MANUAL TROMPO														
EDAD	7 días 28 días 7 días 28 días													
ENSAYO	Prob 1 Prob 2 Prob 1 Prob 2 Prob 1 Prob 2 Prob 1 Prob													
D(cm.)	15.1	15.05	15.2	15.2	15.3	15.1	15.2	15.1						
L(cm.)	30.50	30.50	30.40	30.40	30.50	30.50	30.50	30.50						
P (kg)	20200	18350	23700	22200	16700	16950	18300	19500						
TI (Kg/cm²)	27.92	25.45	32.65	30.59	22.78	23.43	25.13	26.95						
TI Promedio	26.69	Kg/cm²	31.62	Kg/cm²	23.11	Kg/cm²	26.04	Kg/cm²						

Cuadro 2.37 Resistencia a Tracción por Compresión Diametral del concreto embolsado Firth – Característica: Forma de mezclado.

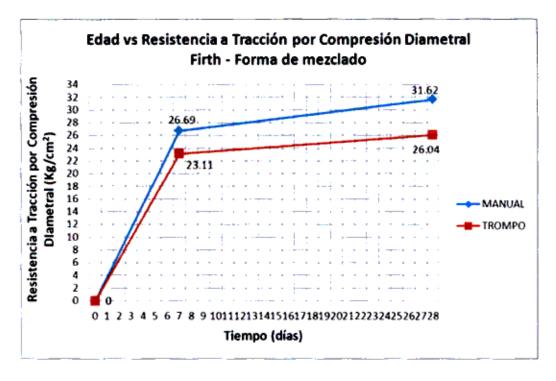


Grafico 2.34 Edad vs Resistencia a la Tracción por Compresión Diametral del concreto embolsado Firth – Característica: Forma de mezclado.

PRODUCTO: FIRTH								
	CARACTERÍSTICA: CANTIDAD DE AGUA							
		3,875 L	ITROS			4,875 L	ITROS	
EDAD	7 días 28 días			7 d	ias	28 días		
ENSAYO	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2
D(cm.)	15.1	15.1	15.1	15.1	15.1	15.2	15.2	15.15
L(cm.)	30.50	30.50	30.30	30.50	30.50	30.50	30.30	30.30
P (kg)	18750	18650	18900	19200	16000	15650	19250	18000
TI (Kg/cm²)	25.92	25.78	26.30	26.54	22.12	21.49	26.61	24.96
TI Promedio			21.80 Kg/cm ²		25.79 Kg/cm ²			

Cuadro 2.38 Resistencia a Tracción por Compresión Diametral del concreto embolsado Firth – Característica: Cantidad de Agua.

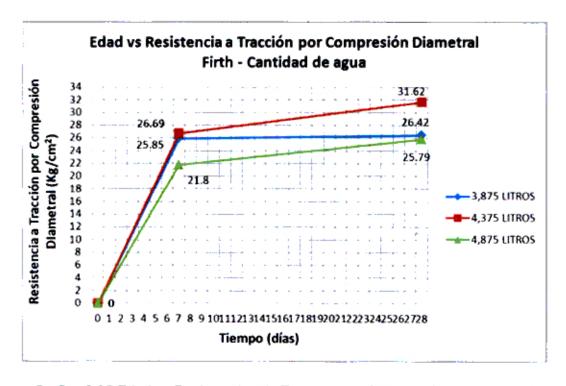


Grafico 2.35 Edad vs Resistencia a la Tracción por Compresión Diametral del concreto embolsado Firth – Característica: Cantidad de agua.

	PRODUCTO: FIRTH							
CA	CARACTERÍSTICA: FORMA DE ALMACENAMIENTO							
	INTEMPERIE ÓPTIMO							
EDAD	7 d	7 días 28 días			7 d	ías	28 días	
ENSAYO	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2	Prob 1	Prob 2
D(cm.)	15.1	15.15	15.3	15.2	15.15	15.05	15.2	15.1
L(cm.)	30.50	30.50	30.50	30.50	30.50	30.50	30.50	30.50
P (kg)	13400	13700	18050	17000	15500	13500	20800	19850
TI (Kg/cm²)	18.52	18.88	24.62	23.34	21.35	18.72	28.56	27.44
TI Promedio	18.70	Kg/cm²	23.98	Kg/cm²	20.04 Kg/cm ²		28.00 Kg/cm ²	

Cuadro 2.39 Resistencia a Tracción por Compresión Diametral del concreto embolsado Firth – Característica: Forma de almacenamiento.

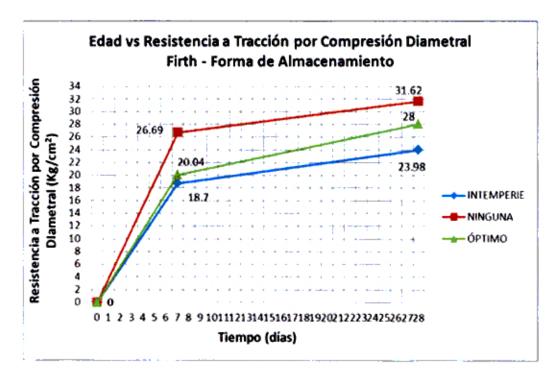


Grafico 2.36 Edad vs Resistencia a la Tracción por Compresión Diametral del concreto embolsado Firth – Característica: Forma de almacenamiento.

CAPITULO 3 ANÁLISIS DEL CAMBIO DE SUS PROPIEDADES

3.1 DEBIDO A LA FORMA DE MEZCLADO

3.1.1.- Comparación del concreto en estado fresco

FORMA DE MEZCLADO		PUP	TFI	TFF
QUIKRETE	pulgadas	Kg/m ³	min	min
MANUAL	3 1/4"	100%	100%	100%
TROMPO	5 3/4"	97,35%	90,45%	88,80%

Cuadro 3.1 Comparación del concreto en estado fresco según la forma de mezclado del concreto embolsado Quikrete.

CONCRETO DE REFERENCIA: QUIKRETE-MEZCLADO-MANUAL

- Aumenta el asentamiento del concreto mezclado con trompo.
- Disminuye el PU del concreto mezclado con trompo.
- Disminuye el tiempo de fragua del concreto mezclado con trompo.

FORMA DE MEZCLADO		PUP	TFI	TFF
FIRTH	pulgadas	Kg/m ³	min	min
MANUAL	2 1/2"	100%	100%	100%
TROMPO	6 1/4"	97,35%	94,94%	92,79%

Cuadro 3.2 Comparación del concreto en estado fresco según la forma de mezclado del concreto embolsado Firth.

CONCRETO DE REFERENCIA: FIRTH-MEZCLADO-MANUAL

- Aumenta el asentamiento del concreto mezclado con trompo.
- Disminuye el PU del concreto mezclado con trompo.
- Disminuye el tiempo de fragua del concreto mezclado con trompo.

3.1.2 Comparación del concreto en estado endurecido

FORMA DE MEZCLADO	RESISTENCIA A COMPRESIÓN				
QUIKRETE	3 días		14 días		
MANUAL	78.67%	98.57%	117.07%	134.10%	
TROMPO			119.21%		

Cuadro 3.3 Comparación de resistencias a compresión según la forma de mezclado del concreto embolsado Quikrete.

CONCRETO DE REFERENCIA: MEZCLA DE DISEÑO (210 Kg/cm²)

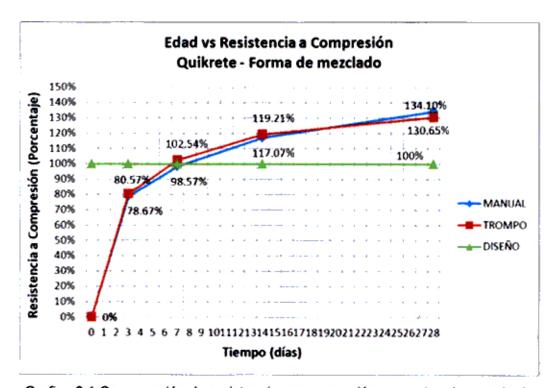


Grafico 3.1 Comparación de resistencias a compresión respecto a la mezcla de diseño según la forma de mezclado del concreto embolsado Quikrete.

	RESISTENCIA A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL		
QUIKRETE	7 días	28 días	
MANUAL	132%	138%	
TROMPO	114%	122%	

Cuadro 3.4 Comparación de resistencias a tracción por compresión diametral según la forma de mezclado del concreto embolsado Quikrete.

CONCRETO DE REFERENCIA: 10% DE LA MEZCLA DE DISEÑO (21 Kg/cm²)

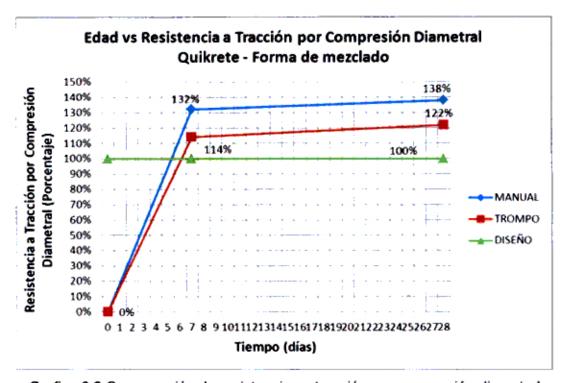


Grafico 3.2 Comparación de resistencias a tracción por compresión diametral respecto al 10% de la mezcla de diseño según la forma de mezclado del concreto embolsado Quikrete.

FORMA DE MEZCLADO	DEGIG FENCIA A COMBUDEGICAL				
FIRTH	3 días	7 días	14 días	28 días	
MANUAL	69.23%	83.39%	112.27%	121.49%	
TROMPO	66.59%	84.31%	106.80%	116.30%	

Cuadro 3.5 Comparación de resistencias a compresión según la forma de mezclado del concreto embolsado Firth.

CONCRETO DE REFERENCIA: MEZCLA DE DISEÑO (210 Kg/cm²)

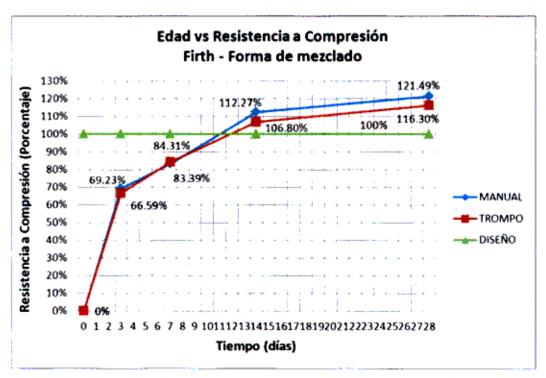


Grafico 3.3 Comparación de resistencias a compresión respecto a la mezcla de diseño según la forma de mezclado del concreto embolsado Firth.

FORMA DE MEZCLADO	RESISTENCIA A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL			
FIRTH	7 días	28 días		
MANUAL	127%	151%		
TROMPO	110%	124%		

Cuadro 3.6 Comparación de resistencias a tracción por compresión diametral según la forma de mezclado del concreto embolsado Firth.

CONCRETO DE REFERENCIA: 10% DE LA MEZCLA DE DISEÑO (21 Kg/cm²)

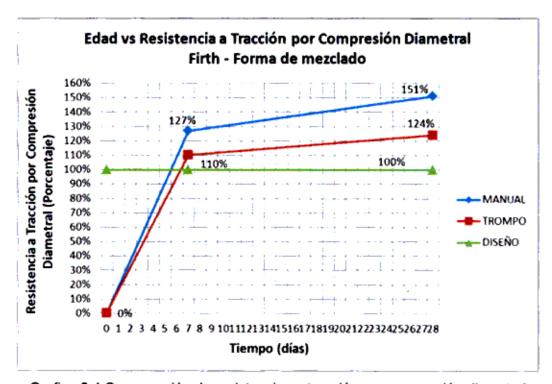


Grafico 3.4 Comparación de resistencias a tracción por compresión diametral respecto al 10% de la mezcla de diseño según la forma de mezclado del concreto embolsado Firth.

3.2 DEBIDO AL ALMACENAMIENTO DE LAS BOLSAS

3.2.1.- Comparación del concreto en estado fresco

FORMA DE ALMACENAMIENTO	SLUMP PROM	PUP	TFI	TFF
QUIKRETE	pulgadas	Kg/m ³	min	min
SIN ALMACENAMIENTO	3 1/4"	100%	100%	100%
INTEMPERIE	3 1/2"	98,70%	108,67%	105,20%
ÓPTIMO	3 1/4"	99,48%	105,09%	103,12%

Cuadro 3.7 Comparación del concreto en estado fresco según la forma de almacenamiento del concreto embolsado Quikrete.

- CONCRETO DE REFERENCIA: QUIKRETE-MEZCLADO-MANUAL
- · No sufre mayor variación en el asentamiento
- Disminuye el PU, especialmente el almacenado a la intemperie.
- Aumentan los tiempos de fragua, especialmente el almacenado a la intemperie.

FORMA DE ALMACENAMIENTO	SLUMP PROM	PUP	TFI	TFF
FIRTH	pulgadas	Kg/m ³	min	min
SIN ALMACENAMIENTO	2 1/2"	100%	100%	100%
INTEMPERIE	3 1/2"	98,79%	112,37%	103,03%
ÓPTIMO	3 1/4"	99.22%	107,33%	100.13%

Cuadro 3.8 Comparación del concreto en estado fresco según la forma de almacenamiento del concreto embolsado Firth.

- CONCRETO DE REFERENCIA: FIRTH-MEZCLADO-MANUAL
- Sufre una elevación del asentamiento, especialmente el almacenado a la intemperie.
- Disminuye el PU, especialmente el almacenado a la intemperie.
- Aumentan los tiempos de fragua, especialmente el almacenado a la intemperie.

3.2.2.- Comparación del concreto en estado endurecido

FORMA DE ALMACENAMIENTO					
QUIKRETE	3 días	7 días	14 días	28 días	
INTEMPERIE	56.87%	70.23%	91.65%	100.20%	
ÓPTIMO	58.45%	79.69%	103.39%	116.99%	

Cuadro 3.9 Comparación de resistencias a compresión según la forma de almacenamiento del concreto embolsado Quikrete.

CONCRETO DE REFERENCIA: MEZCLA DE DISEÑO (210 Kg/cm²)

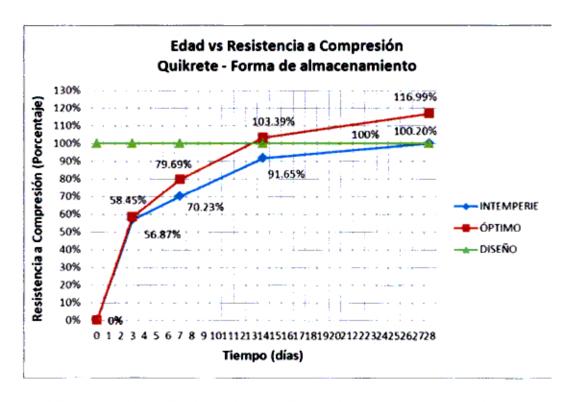


Grafico 3.5 Comparación de resistencias a compresión respecto a la mezcla de diseño según la forma de almacenamiento del concreto embolsado Quikrete.

FORMA DE ALMACENAMIENTO	RESISTENCIA A LA TRACCIÓ POR COMPRESIÓN DIAMETR		
QUIKRETE	7 dias	28 dias	
INTEMPERIE	79%	113%	
ÓPTIMO	98%	115%	

Cuadro 3.10 Comparación de resistencias a tracción por compresión diametral según la forma de almacenamiento del concreto embolsado Quikrete.

CONCRETO DE REFERENCIA: 10% DE LA MEZCLA DE DISEÑO (21 Kg/cm²)

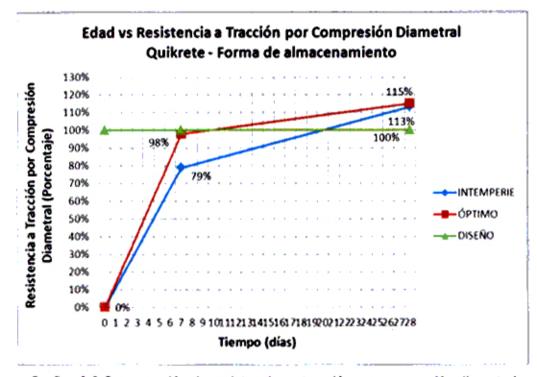


Grafico 3.6 Comparación de resistencias a tracción por compresión diametral respecto al 10% de la mezcla de diseño según la forma de almacenamiento del concreto embolsado Quikrete.

FORMA DE ALMACENAMIENTO				
FIRTH	3 días	7 días	14 días	28 días
INTEMPERIE	47.02%	64.02%	87.88%	100.47%
ÓPTIMO	63.74%	79.44%	102.99%	116.36%

Cuadro 3.11 Comparación de resistencias a compresión según la forma de almacenamiento del concreto embolsado Firth.

CONCRETO DE REFERENCIA: MEZCLA DE DISEÑO (210 Kg/cm²)

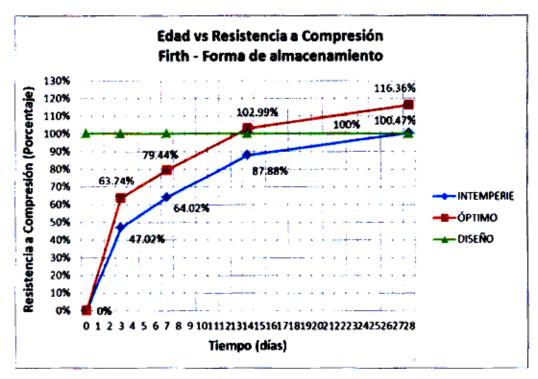


Grafico 3.7 Comparación de resistencias a compresión respecto a la mezcla de diseño según la forma de almacenamiento del concreto embolsado Firth.

FORMA DE ALMACENAMIENTO	RESISTENCIA A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL	
FIRTH	7 días	28 días
INTEMPERIE	89%	114%
ÓPTIMO	95%	133%

Cuadro 3.12 Comparación de resistencias a tracción por compresión diametral según la forma de almacenamiento del concreto embolsado Firth.

CONCRETO DE REFERENCIA: 10% DE LA MEZCLA DE DISEÑO (21 Kg/cm²)

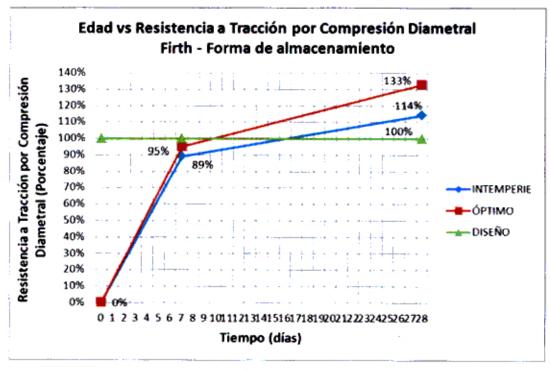


Grafico 3.8 Comparación de resistencias a tracción por compresión diametral respecto al 10% de la mezcla de diseño según la forma de almacenamiento del concreto embolsado Firth.

3.3 DEBIDO A LA VARIACIÓN DE AGUA A AÑADIR

3.3.1.- Comparación del concreto en estado fresco

AGUA POR TANDA DE 40 KG.	SLUMP	PUP	TFI	TFF
litros	pulgadas	Kg/m ³	min	min
4,0 litros	7/8*	100,35%	58,18%	79,19%
4,5 litros	3 1/4"	100%	100%	100%
5,0 litros	7 1/4"	98,18%	102,28%	105,95%

Cuadro 3.13 Comparación del concreto en estado fresco según la cantidad de agua a añadir del concreto embolsado Quikrete.

- CONCRETO DE REFERENCIA: QUIKRETE-MEZCLADO-MANUAL
- Los asentamientos varían drásticamente, en los dos casos convirtiéndolos en poco trabajables.
- El PU varia moderadamente en los dos casos.
- El tiempo de fragua varía moderadamente con el aumento de agua, pero drásticamente al disminuir la cantidad de agua añadida.

AGUA POR TANDA DE 40 KG.	SLUMP PROM	PUP	TFI	TFF
litros	pulgadas	Kg/m ³	min	min
3,875 litros	7/8"	104.01%	80,08%	83,35%
3,375 litros	2 ½"	100%	100%	100%
4,875 litros	7 1/4"	97,06%	110,29%	103%

Cuadro 3.14 Comparación del concreto en estado fresco según la cantidad de agua a añadir del concreto embolsado Firth.

- CONCRETO DE REFERENCIA: FIRTH-MEZCLADO-MANUAL
- Los asentamientos varían drásticamente, en los dos casos convirtiéndolos en poco trabajables.
- El PU varía moderadamente en los dos casos.
- El tiempo de fragua varía moderadamente con el aumento de agua y mayor aun al disminuir la cantidad de agua añadida.

3.3.2.- Comparación del concreto en estado endurecido

CANTIDAD DE AGUA	RESISTENCIA A COMPRESIÓN				
QUIKRETE					
4,0 litros	69.55%	85.53%	97.70%	114.21%	
5,0 litros	79.58%	93.62%	108.78%	129.82%	

Cuadro 3.15 Comparación de resistencias a compresión según la cantidad de agua a añadir del concreto embolsado Quikrete.

CONCRETO DE REFERENCIA: MEZCLA DE DISEÑO (210 Kg/cm²)

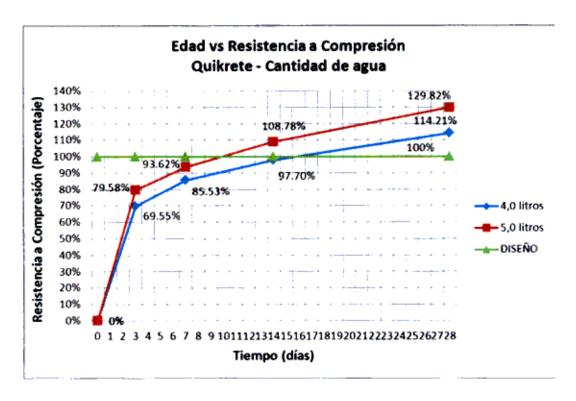


Grafico 3.9 Comparación de resistencias a compresión respecto a la mezcla de diseño según la cantidad de agua a añadir del concreto embolsado Quikrete.

	RESISTENCIA A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL			
QUIKRETE	7 días	28 días		
4,0 litros	116%	121%		
5,0 litros	125%	130%		

Cuadro 3.16 Comparación de resistencias a tracción por compresión diametral según la cantidad de agua a añadir del concreto embolsado Quikrete.

CONCRETO DE REFERENCIA: 10% DE LA MEZCLA DE DISEÑO (21 Kg/cm²)

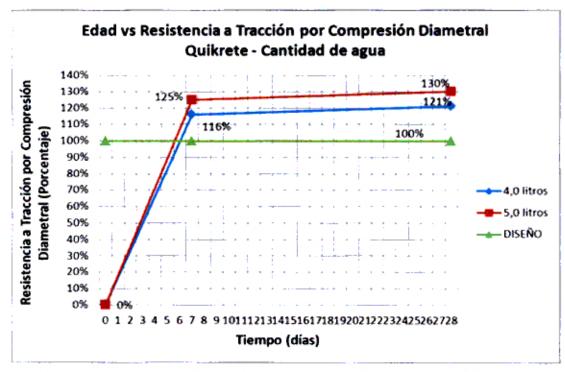


Grafico 3.10 Comparación de resistencias a tracción por compresión diametral respecto al 10% de la mezcla de diseño según la cantidad de agua a añadir del concreto embolsado Quíkrete.

CANTIDAD DE AGUA	RESISTENCIA A COMPRESIÓN				
FIRTH	3 dias	7 dias	14 días	28 días	
3,875 litros	65.77%	87.73%	99.28%	110.00%	
4,875 litros	65.48%	87.48%	110.47%	120.45%	

Cuadro 3.17 Comparación de resistencias a compresión según la cantidad de agua a añadir del concreto embolsado Firth.

CONCRETO DE REFERENCIA: MEZCLA DE DISEÑO (210 Kg/cm²)

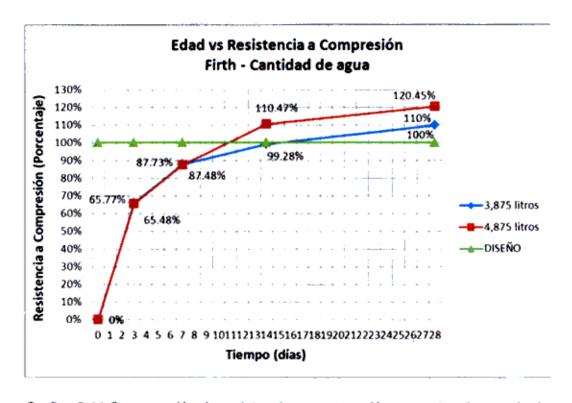


Grafico 3.11 Comparación de resistencias a compresión respecto a la mezcla de diseño según la cantidad de agua a añadir del concreto embolsado Firth.

CANTIDAD DE AGUA	RESISTENCIA A LA TRACCIÓN POR COMPRESIÓN DIAMETRAL			
FIRTH	7 días	28 días		
3,875 litros	123%	126%		
4,875 litros	104%	123%		

Cuadro 3.18 Comparación de resistencias a tracción por compresión diametral según la cantidad de agua a añadir del concreto embolsado Firth.

CONCRETO DE REFERENCIA: 10% DE LA MEZCLA DE DISEÑO (21 Kg/cm²)

Grafico 3.12 Comparación de resistencias a tracción por compresión diametral respecto al 10% de la mezcla de diseño según la cantidad de agua a añadir del concreto embolsado Firth.

CAPITULO 4 MUESTREO EN OBRA

Los concretos embolsados entraron al mercado como una solución a aquellos problemas que no eran solucionados o no solucionados de la mejor manera por las formas de preparación de concreto convencionales.

La mayoría de clientes son las empresas en el rubro de la construcción y personas naturales que requieren concreto en mínimas cantidades, por ejemplo:

- Las empresas prestadoras de servicios para la ejecución de actividades de mantenimiento de los sistemas de agua potable y alcantarillado.
- Las empresas contratistas que ejecutan la colocación de torres de alta tensión en lugares inaccesibles.
- Las personas naturales que requieren hacer reparaciones o pequeños vaciados de concreto en sus viviendas.

La empresa CONCYSSA, prestadora de servicios de SEDAPAL, utiliza aproximadamente 13000 bolsas del producto mensualmente, por tal motivo, se hizo seguimiento a la utilización del producto.

El proceso de mezclado se realiza de forma manual, agregándole agua hasta que la mezcla sea trabajable, en esta oportunidad se usó el producto para reparar una vereda la cual interfería para la instalación de un nuevo punto de desagüe.

Figura 4.1 Utilización del concreto embolsado.

A continuación se pasara a detallar los problemas antes de usar los concretos embolsados:

- La compra de materiales en cantidades pequeñas y de manera separada.
- Mermas de cemento, ya que en cada punto de reparación se tenía que dejar al menos una bolsa de cemento.
- Mermas de agregados, ya que habían muchos puntos de movilizaciones (almacén, transporte, colocación en cada punto de trabajo), en la última movilización era donde se producían las mermas más altas, ya que los agregados dejados ya no eran recuperables.
- La productividad era baja debido a todas las tareas tradicionales que acarrea el mezclado del concreto.
- La variabilidad de la resistencia del concreto, ya que no se puede estimar la resistencia final debido a la variación de dosificaciones.

Cuando se empezó a usar los productos embolsados los costos de producción se redujeron, debido a que:

- Se corrigió el gasto innecesario de materiales no reutilizables, en cada punto de trabajo ahora se dejaban las bolsas en número, se utilizaban las necesarias y las sobrantes se recogían junto con el personal para utilizarlas en próximas reparaciones.
- Se mejoro la productividad del personal, debido a las múltiples tareas que el obrero ya no tenía que realizar.
- La resistencia de concreto se estandarizo debido a que la mezcla es común para todas las reparaciones.

Figura 4.2 Acopio del material antes de su uso.

Costo de producción del concreto (solo materiales):

- * Al usarlo de manera puntual, se tendría que comprar:
- Por el método tradicional:

UNIDAD	PESO (Kg.)	MATERIAL	COSTO (S/.)
1 BOL	42.5	CEMENTO	17
1 BOL	40	ARENA GRUESA	4.1
1 BOL	40	PIEDRA CHANCADA	4.3
TOTAL			25.4

Cuadro 4.1 Costo de producción de concreto para mínimos usos por el método tradicional (solo materiales).

- Por el nuevo método:

UNIDAD	PESO (Kg.)	MATERIAL	COSTO (S/.)
1 BOL	40	CONCRETO EMBOLSADO	7.4
TOTAL			7.4

Cuadro 4.2 Costo de producción de concreto para mínimos usos por el nuevo método (solo materiales).

Se puede observar que en pequeñas cantidades el concreto embolsado es mejor tanto en el aspecto económico como la producción de la mezcla, ya que solo faltaría agregarle agua y un batido rápido.

- * Al usarlo en cantidades grandes como la utilización de 1m3 de concreto se tendría que comprar:
- Por el método tradicional:

UNIDAD	CANTIDAD	MATERIAL	COSTO (S/.)
BOL	9	CEMENTO	153
М3	0.42	ARENA GRUESA	13.5
M3	0.85	PIEDRA CHANCADA	38.30
TOTAL			204.8

Cuadro 4.3 Costo de producción de concreto para 1M3 por el método tradicional (solo materiales).

- Por el nuevo método:

UNIDAD	PESO (Kg.)	MATERIAL	COSTO (S/.)
55 BOL	40	CONCRETO EMBOLSADO	385
TOTAL			385

Cuadro 4.4 Costo de producción de concreto para 1M3 por el nuevo método (solo materiales).

Se puede observar que en grandes cantidades el concreto tradicional es mejor en el aspecto económico.

Como se puede ver el concreto embolsado es recomendable para cantidades pequeñas de uso, analizando solo el costo de materiales.

CAPITULO 5.- IMPACTO AMBIENTAL

La Comisión Mundial sobre el Medio Ambiente de las Naciones Unidas, publicó en 1987, un informe llamado el Informe Brudland donde se utilizó por primera vez el término desarrollo sostenible, definido como aquel que satisface las necesidades del presente sin comprometer las necesidades de las futuras generaciones, punto importante donde implica un cambio en cuanto a la idea de sustentabilidad, principalmente ecológica, en un marco que da énfasis al contexto socioeconómico de desarrollo.

La preocupación por el agotamiento de los recursos naturales de la tierra motivó a otra cumbre llamada la Cumbre de la Tierra de las naciones unidas de 1992, más conocida como la Cumbre de Río, dando como resultado la comisión de desarrollo sostenible que aprobó un programa de trabajo sobre indicadores de desarrollo sostenible.

Después de estas reuniones entre naciones pasa a ser considerado por muchos gobiernos como uno de los objetivos del modelo económico y por cual la prosperidad económica no puede ir de la mano con la contaminación del medio ambiente. Las tecnologías que se usen hoy y en el futuro son y serán limpias, lo que puede generar importantes beneficios derivados de la reutilización de recursos.

5.1.- CONTRIBUCIÓN DEL CONCRETO SECO

Dentro de los últimos años la evolución y tecnificación de los concretos está desplazando a los concretos hechos in situ a favor de los concretos premezclados (húmedos y secos) y en estos últimos años la aparición de los concretos embolsados sigue contribuyendo a implantar soluciones más sostenibles y eficaces dentro del sector de la construcción basado en:

- Optimización del uso de recursos evitando el derroche y la mala utilización de materiales, agua y energía para colaborar con el desarrollo sostenible.
- Minimización de los efectos ocasionados por residuos, reduciendo la generación de residuos en cantidad y propiciando la gestión ambientalmente más correcta de los producidos.
- Contribución a la mejora de las condiciones de trabajo eliminando la exposición a riesgos potencialmente peligrosos a los recursos humanos.

Las ventajas en el uso del concreto desde el punto de vista medioambiental y de la seguridad y salud de los trabajadores se manifiesta en todas las fases, las cuales son:

5.1.1.- Contribución en la fabricación del producto

La Fabricación industrial del concreto seco presenta una serie de ventajas frente a la fabricación tradicional en obra. La producción en una fábrica permite la optimización del proceso de producción del concreto, aportando importantes mejoras desde el punto de vista de los impactos medioambientales y de las condiciones de seguridad.

El concreto elaborado en una fábrica, dentro de un proceso cerrado, presenta las ventajas de un proceso industrializado.

- a) El almacenamiento en silos de las materias primas y los productos terminados y el flujo de material en proceso cerrado permite un aprovechamiento máximo, disminuyendo las pérdidas de material, minimizando la generación de residuos, permitiendo el control de emisiones y evitando los posibles vertidos.
- b) Las fábricas disponen además de mecanismos de control de emisiones de polvo, normalmente a través de filtros.
- c) La automatización del proceso y su gestión por personal calificado permite el control de todos los parámetros de la planta y la optimización del proceso. Esto repercute en la eliminación de impactos para una mejor gestión de los recursos como el agua y la energía.
- d) La mecanización y la automatización del proceso elimina la exposición de los trabajadores a importantes riesgos potenciales: se elimina la manipulación de cargas, la exposición a polvo, la utilización de equipos de trabajo potencialmente peligrosos y se evita el contacto de los trabajadores con las materias primas y los productos terminados.
- e) La industrialización de la fabricación facilita el establecimiento de prácticas seguras y procedimiento por escrito que repercuten directamente en una mejor gestión de la seguridad y el medio ambiente.
- f) Se reduce el consumo de materias primas:
 Las materias primas fundamentales en la fabricación del concreto son cemento y agregados.

El cemento es uno de los productos más utilizados en la construcción. Sus materias primas proceden de recursos no renovables y su extracción tiene un notable impacto ambiental, como suele suceder con todas las extracciones de minerales. En lo referente al proceso industrial, la obtención del clinker implica un elevado consumo de energía y, posteriormente, emisiones de gases y polvo en la molienda.

Los agregados se obtienen de recursos naturales no renovables mediante actividades de extracción que tienen un impacto irreversible en la naturaleza. Así mismo, cabe añadir el consumo de energía que supone dichas actividades y el transporte del material.

La reducción del consumo de estos recursos tiene una incidencia muy relevante. El concreto seco fabricado en procesos industrializados permite optimizar el consumo de estos recursos por dos factores importantes:

- La dosificación exacta reduce el consumo de agregados y cemento.
- Elimina la pérdida de material en los acopios.
- g) La fabricación de los concretos secos se realiza por mezclado de productos sin consumo de agua. El agua es añadida posteriormente en la puesta en obra, en dosificación exacta para la cantidad de bolsas a utilizar. Esto aporta ventajas importantes:
 - Optimización del uso de un importante recurso como el agua.
 - Eliminación de vertidos de concreto durante la fabricación.
 - Minimización de la manipulación del concreto hidratado por parte del trabajador.

5.1.2.- Contribución puesta en obra

El concreto seco presenta importantes ventajas en la fase de puesta en obra frente al concreto fabricado de forma tradicional:

- a) La gestión del espacio ocupado en obra representa un factor relevante. El almacenamiento del producto en bolsas reduce la ocupación de terreno y mejora la gestión del espacio en obra al eliminar los acopios de material.
- b) Se optimiza el espacio y se mejora el orden y la limpieza de la obra.
- c) La eliminación de los acopios evita la emisión de polvo, además de evitar la exposición de los trabajadores al polvo proveniente de los acopios de arena.

- d) Se elimina el consumo de agua utilizada para la humidificación de los agregados en los acopios.
- e) El transporte del concreto húmedo hasta el punto de utilización incrementa el riesgo de derrames de producto, provocando las pérdidas del material y contribuyendo a la generación de residuos.

5.1.3.- Contribución en el fin de la obra

Una vez terminada la aplicación del concreto, la utilización de los concretos secos presenta también ventajas a la hora de concluir los trabajos:

- a) El mezclado de los concretos en cantidades exactas a las demandas evita la generación de residuos y desechos del material sobrante.
- b) El desperdicio de material es mínimo, al no existir acopios.
- No se precisa movimiento del material sobrante no utilizado ni consumido durante la obra.

CAPITULO 6 MANUAL DE PROCEDIMIENTOS DE USO EN OBRA

6.1.- ALCANCE

El presente manual de procedimiento de uso en obra trata de establecer los procedimientos a ser cumplidos por los responsables del uso del concreto embolsado, especialmente en el procedimiento de preparado del concreto tanto del concreto simple como el armado.

6.2.- MEZCLADO DEL CONCRETO EMBOLSADO

Para obtener un concreto de calidad óptima debemos de mezclar de manera uniforme los ingredientes estando igualmente humedecidos con la cantidad de agua requerida, las formas más usuales de hacerlo son:

Manual, este tipo de mezclado es recomendable al hacerlo en cantidades pequeñas (aproximadamente 3 bolsas), utilizando una lampa, donde el mezclado se debe continuar hasta conseguir una mezcla homogénea y de consistencia aceptable.

Trompo, este tipo de mezclado es recomendable siempre y cuando controlemos el tiempo de mezclado, el tiempo de mezclado debe ser menor a 90 segundos debido a que el producto solo necesitaría hidratarse ya que está mezclado en seco, si se mezclaría mayor tiempo de lo debido la mezcla se podría segregar. La mejor manera de mezclarlo es añadiendo primeramente una cantidad de agua, seguida por el producto embolsado que se adicionara acompañado del agua restante.

A continuación se presenta la variación de las resistencias a compresión debido a la forma de mezclado, el mezclado con trompo se realizó con un tiempo mayor al recomendado.

FORMA DE MEZCLADO	I DEGLETERICIA A COMODEGIORI I				
QUIKRETE					
MANUAL	78.67%	98.57%	117.07%	134.10%	
TROMPO	80.57%	102.54%	119.21%	130.65%	

FORMA DE MEZCLADO	DEGLETERICIA A COMBODEGIORI				
FIRTH	3 días	7 días	14 días	28 días	
MANUAL	69.23%	83.39%	112.27%	121.49%	
TROMPO	66.59%	84.31%	106.80%	116.30%	

6.3.- CANTIDAD DE AGUA DEL CONCRETO EMBOLSADO

La cantidad de agua del concreto embolsado recomendable será la recomendada por el producto, ya que con esta alcanzaremos las máximas resistencias, a continuación se presentara la variación de resistencias a compresión respecto a la cantidad de agua añadida:

CANTIDAD DE AGUA	RESISTENCIA A COMPRESIÓN				
QUIKRETE	3 días	7 días	14 días	28 días	
4,0 litros	69.55%	85.53%	97.70%	114.21%	
5,0 litros	79.58%	93.62%	108.78%	129.82%	

CANTIDAD DE AGUA	RESISTENCIA A COMPRESIÓN				
FIRTH	3 dias	7 días	14 días	28 dias	
3,875 litros	65.77%	87.73%	99.28%	110.00%	
4,875 litros	65.48%	87.48%	110.47%	120.45%	

Con respecto al asentamiento, al variar la cantidad de agua añadida recomendada a la mezcla (+/- 0,5 litros) se obtendrán asentamientos no trabajables.

AGUA POR TANDA DE 40 KG.	SLUMP PROMEDIO	PRODUCTO
litros	pulgadas	
4,0 litros	7/8"	QUIKRETE
4,5 litros	3 1/4"	QUIKRETE
5,0 litros	7 1/4"	QUIKRETE

AGUA POR TANDA DE 40 KG.	SLUMP PROMEDIO	PRODUCTO
litros	pulgadas	
3,875 litros	7/8"	FIRTH
3,375 litros	2 ½"	FIRTH
4,875 litros	7 1/4"	FIRTH

6.4.- ALMACENAMIENTO DEL CONCRETO EMBOLSADO

El concreto deberá almacenarse de una forma que evite su deterioro o contaminación con sustancias nocivas ya sea humedad o agentes patógenos, el producto embolsado deteriorado no se deberá emplear en obra.

El concreto se deberá aislar de los agentes externos:

- se almacenara en un lugar techado, alejado del agua y la humedad.
- Se colocaran lo más juntas posible para que menor aire recorra entre ellas.
- Se las cubrirá con un plástico preferiblemente strech film (por los resultados comprobados en la presente tesis).
- Se colocaran los productos encima de un tablón o panel de madera para proteger a las bolsas de la humedad del suelo.

A continuación se presentara la variación de resistencias a compresión respecto a la forma de almacenamiento:

FORMA DE ALMACENAMIENTO	RESISTENCIA A COMPRESIÓN			
QUIKRETE	3 días	7 días	14 días	28 días
INTEMPERIE	56.87%	70.23%	91.65%	100.20%
ÓPTIMO	58.45%	79.69%	103.39%	116.99%

FORMA DE ALMACENAMIENTO	RESISTENCIA A COMPRESIÓN				
FIRTH	3 días	7 días	14 días	28 días	
INTEMPERIE	47.02%	64.02%	87.88%	100.47%	
ÓPTIMO	63.74%	79.44%	102.99%	116.36%	

6.5.- RECOMENDACIONES PARA EL USO DEL PRODUCTO

Los concretos embolsados alcanzan resistencias a compresión muy altas siguiendo las recomendaciones del proveedor, debido a que estos concretos al ser embolsados y estar almacenados en diferentes partes hasta el momento de su uso deben de conservar la resistencia de diseño estipulada en el empaque, por tal razón son diseñados para resistencias mayores a las establecidas.

El concreto es recomendable para usarlo en pequeñas cantidades, ya que es factible de acuerdo al precio como a la preparación, pero cuando se requiere grandes cantidades es recomendable hacerlo de la manera tradicional.

6.6.- PRECAUCIONES EN SU USO

Los concretos embolsados en general, tienen altos tiempos de Fragua inicial y final, por esto es recomendable que se usen aditivos aceleradores de fragua si es que las necesidades lo ameritan.

CONCLUSIONES

- Los concretos embolsados alcanzan altas resistencias a compresión siguiendo las recomendaciones del proveedor, llegando a la resistencia de diseño a los 14 días debido a que estos concretos al ser embolsados y estar almacenados en diferentes partes hasta el momento de su uso deben de conservar la resistencia de diseño estipulada en el empaque, por tal razón son diseñados para resistencias mayores a las establecidas.
- La resistencia a compresión para usos inmediatos, siguiendo las recomendaciones del proveedor, llegan aproximadamente a 125% de la resistencia de diseño, es decir aproximadamente 260 Kg/cm².
- La resistencia a compresión para concretos almacenados, almacenándolos de manera optima por 30 días, llegan aproximadamente a los 116% de la resistencia de diseño, es decir 244 Kg/cm2 aproximadamente y los concretos almacenados a la intemperie por 30 días, llegan solo a cumplir la resistencia de diseño.
- Los concretos embolsados en general, tienen altos tiempos de Fragua inicial y final, debido a que contienen retardadores de fragua.
- La mezcla de manera manual y con trompo tienen variaciones considerables en las propiedades del concreto fresco, especialmente en el asentamiento, debido al segregado de la mezcla ya que es necesario hacer un batido mínimo para lograr solo la hidratación de la mezcla y no llegar a la segregación del material.
- La mezcla con menor y mayor cantidad de agua producen variaciones muy marcadas en las propiedades del concreto, tales como: asentamiento, peso unitario, tiempo de fragua, resistencia a compresión y resistencia a la tracción por compresión diametral. Las propiedades del

esis: "Análisis Comparativo del Comportamiento del Concreto Seco en Condiciones Producidas y Recomendadas"

concreto se degradan en mayor forma al usar menor cantidad de agua, debido a que no es plenamente trabajable, por lo que generara cangrejeras.

RECOMENDACIONES

- Los concretos embolsados son recomendables para trabajos donde se necesiten pequeñas o mínimas cantidades de concreto, ya que en grandes volúmenes son antieconómicos, como se detalló en el capítulo 4 de la presente tesis.
- Si se requiere almacenar por cierto tiempo se recomienda almacenarlo de manera óptima (como se hizo en la presente tesis), para que las propiedades del concreto se conserven, si bien al almacenarlo a la intemperie se pudo llegar resistencias a compresión de 210 Kg/cm², eso no nos asegura que para tiempos mayores y condiciones más severas se puedan alcanzar dichas resistencias.
- Se recomienda usar concreto embolsado Quikrete debido a su más alta resistencia a compresión, en comparación al concreto embolsado Firth, así como su mejor trabajabilidad al usar agregado grueso de menor dimensión.
- Los concretos embolsados en general, tienen altos tiempos de Fragua inicial y final, por esto es recomendable que se usen aditivos aceleradores de fragua si es que las necesidades lo ameritan, pero como los concretos embolsados están siendo producidos para trabajos puntuales y no para trabajos masivos, esta propiedad no será tan relevante en comparación a los aspectos positivos de este concreto.
- Continuar con las investigaciones acerca de los productos embolsados, ya que es el camino hacía la industrialización y masificación del control de calidad en vaciados puntuales del concreto.

BIBLIOGRAFÍA

1. De Lucas, Gerardo

Mortero Seco desde el inicio a la actualidad

Editorial Extraordinario

Madrid-España 2005

Ing. Aranda, Jorge

Ing. Quispe A., Miguel

Ing. La Jara, Hernán

Variación de las propiedades del cemento portland tipo I, almacenado en condiciones no favorable durante largos periodos

Cementos Andino S A

Lima-Perú

Neville, A.M. y Brooks, J. J.

Tecnología del Concreto

Editorial Trillas

Ciudad de México. México 1998

4. Pagenkemper, Bernhard

Estado actual de la técnica de ensacado automático de productos químicos y morteros en seco para la construcción.

Editorial Cemento-Hormigón

Madrid-España 1997

- 5. Pagina web: www.quikrete.com
- 6. Pagina web: www.guiademateriales.com
- Pasquel Carvajal, Enrique

Tópicos de Tecnología del Concreto

Editorial CIP

Lima-Perú 1993

Ramírez Salas, Arturo

Tesis: Estudio del comportamiento del cemento Portland tipo I "sol" con envase protector de plástico.

Biblioteca FIC - UNI

Lima-Perú 1999

 Rivva López, Enrique
 Supervisión del Concreto en Obra Editorial ICG
 Lima-Perú 2008

 Rivva López, Enrique Tecnología del Concreto Editorial ACI Lima-Perú 1993