UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

ESTUDIO BASICO PARA EL DESARROLLO DE LA INGENIERIA DEL CANAL PRINCIPAL CHINECAS TRAMO: NEPEÑA - CASMA - SECHIN

TESIS

Para optar el Título Profesional de:

INGENIERO CIVIL

ERNESTO MODESTO MORALES BELLIDO

Digitalizado por:

Lima - Perú 2000

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse

Quiero dedicar esta Tesis a mis padres **Eugenio y Albina**, a mi gran amor mi esposa **Julia**, quienes representa el porque de mi existencia.

PRESENTACION

La necesidad de desarrollar nuestro nivel técnico a través del proceso de difusión de experiencias técnicas y aplicación de conceptos teóricos adecuadamente elaborados me ha motivado ha desarrollar esta documentación con la finalidad de presentarle de alguna manera los pasos ha seguir para el desarrollo del estudio de una obra hidráulica, que para este caso el estudio del Canal Principal Chinecas.

En esta documentación he querido de una manera práctica y entendible mostrarle los problemas y las soluciones adoptadas a lo largo del desarrollo del estudio del Canal Principal entorno al área en donde será emplazada, la necesidad de ubicar áreas de prestamos de materiales para su construcción su análisis y explotación. Además presentar los pasos ha seguir para la evaluación geotécnica de un Túnel de conducción.

Deseo agradecer de manera especial a los directivos de la Empresa S & Z Consultores Asociados S.A., Dr. Juan Solidoro Cuellar y al Ing. Miguel Suazo Giovannini, por el apoyo brindado para la elaboración de este documento.

Al Ing. Luis Chillitupa C., a mi asesor Ing. Eddy Scipión P, al Ing. Ricardo Torres y al Ing. Flavio Ramos Vega, por su asesoramiento brindado.

Por otro lado quiero agradecer a las siguientes personas por su desinteresada colaboración durante la realización de la Tesis.

- Sr. Jorge Flores R.
- Sr. Ricardo Zamora L.

A todos mis compañeros y amigos, que siempre han sabido brindarme su aliento durante el desarrollo de la tesis. Espero que este documento sirva de base para realizaciones de futuros proyectos.

INDICE

		Pag.
CAF	PITULO I : INTRODUCCION	
1.1	GENERALIDADES	9
1.2		10
1.3	UBICACIÓN Y ACCESIBILIDAD	11
1.4	DESCRIPCION GENERAL DEL PROYECTO	11
1.5	GEOGRAFIA	13
	1.5.1 Medio Ambiente	14
	1.5.2 Clima	15
	1.5.3 Ríos Importantes	15
	1.5.3.1 Río Nepeña	15
	1.5.3.2 Río Sechín	16
CAP	PITULO II : TOPOGRAFIA	
2.1	GENERALIDADES	20
	2.1.1 Metodología de Trabajo	20
2.2	PROCEDIMIENTO	22
	2.2.1 Trazado	22
	2.2.2 Control Altimétrico	23
	2.2.2.1 Monumentación de B.M.	23
	2.2.2.2 Señalización	24
	2.2.2.3 Instrumentos	24
	2.2.2.4 Cálculos	24
	2.2.3 Control Planimétrico	25
	2.2.3.1 Monumentación	26
	2.2.3.2 Señalización	26
	2.2.3.3 Angulo Horizontal	27

	2.2.3.4 Angulo zenital	27
	2.2.3.5 Medición de Distancias	27
	2.2.3.6 Cierre	27
	2.2.3.7 Instrumentos	28
	2.2.3.8 Cálculos	28
	2.2.4 Levantamientos Topográficos de Faja	30
2.3	RESULTADOS	30
CAP	ITULO III : HIDROLOGIA	
3.1	GENERALIDADES	33
	3.1.1 Información Básica	34
	3.1.1.1 Cartografía	34
	3.1.1.2 Hidrología	34
	3.1.2 Descripción de la Zona de Proyecto	35
3.2	PRECIPITACION	36
	3.2.1 Precipitación Máxima Diaria	37
	3.2.1.1 Probabilidad de Diseño	37
	3.2.1.2 Gumbel Tipo I	37
	3.2.1.3 Distribución Log - Pearson Tipo III	38
3.3	ESTIMACION DE CAUDALES MAXIMOS	40
	3.3.1 Método Racional	41
	3.3.2 Método SCS	43
	3.3.3 Resultados	48
CAPI	ITULO IV : GEOTECNIA	
4.1	GENERALIDADES	60
	4.1.1 Introducción	60
	4.1.2 Reconocimiento del Area	60
	4.1.3 Programa de Trabajos geológicos	61
	4.1.4 Programa de Investigaciones Geotécnicas de Cimentación	62

.

	4.1.5	Programa de Ensayos de Laboratorio	63
	4.1.6	Programa de Investigaciones de Canteras	63
	4.1.7	Evaluación Geotécnicas para tramos en Túneles	63
4.2	GEOL	OGIA GENERAL	64
	4.2.1	Marco Geológico regional	64
	4.2.2	Geomorfología	64
	4.2.3	Litoestratigrafía	65
	4.2.3.1	Grupo Casma	65
	4.2.3.2	Depósitos Cuaternarios	65
	4.2.3.3	Rocas Intrusivas	67
	4.2.4	Geología Estructural	67
	4.2.5	Geodinámica Externa	67
4.3	GEOTI	ECNIA DE LOS MATERIALES DE FUNDACION	68
	4.3.1	Generalidades	68
	4.3.2	Investigaciones Insitu	69
	4.3.2.1	Calicatas	69
	4.3.2.2	Densidad Insitu	70
	4.3.2.3	Ensayo de Penetración Ligera (SPL)	71
	4.3.3	Ensayos de Laboratorio	73
	4.3.4	Parámetros Deducidos	73
	4.3.4.1	Coeficiente de Uniformidad (Cu)	73
	4.3.4.2	Dimensión Efectiva (D10)	73
	4.3.4.3	Densidad relativa (Dr)	74
	4.3.5	Clasificación y Características de los Materiales	74
	4.3.5.1	Suelos de Origen Marino	74
	4.3.5.2	Suelos de Origen Eólico	76
	4.3.5.3	Suelos de Origen Aluvial	77
	4.3.5.4	Suelos de Origen Coluvio – Aluvial	78
	4.3.5.5	Rocas de Origen Intrusivo	80
4.4	EVAL	UACION DE SUELOS COMO CIMENTACION	80
	4.4.1	Generalidades	81 .
	4.4.2	Capacidad Portante	81

	4.4.3 Presión Admisible	81
	4.4.3.1 Suelos de origen Marino y Eólico	82
	4.4.3.2 Suelos de origen Aluvial y Coluvio - Aluvial	82
	4.4.4 Estabilidad de taludes	83
	4.4.4.1 Suelos de origen marino	83
	4.4.4.2 Suelos de origen Eólico	84
	4.4.4.3 Suelos de origen Aluvial y Coluvio - Aluvial	84
	4.4.5 Inestabilidad Interna de los Suelos Arenosos	84
	4.4.5.1 Probabilidad de Ocurrencia de Fenómenos de Licuación	84
	4.4.5.2 Susceptibilidad de Suelos al Colapso	85
	4.4.5.3 Expansibilidad del Suelo	85
4.5	MATERIALES DE CONSTRUCCION	85
	4.5.1 Generalidades	85
	4.5.2 Agregados para Concreto	87
	4.5.2.1 Cantera 1 – Río Nepeña	88
	4.5.2.2 Cantera 2 – Qda las Yuntas	90
	4.5.2.3 Cantera 3 – Qda S/N	92
	4.5.2.4 Cantera 4 – Río Sechín	94
	4.5.3 Materiales para Afirmados	96
	4.5.3.1 Cantera 5 – Buenavista	97
	4.5.3.2 Cantera 6 – San Jacinto	97
	4.5.3.3 Cantera 7 – Pampa Colorada	98
	4.5.3.4 Cantera 8 – Tortugas	99
4.6	EVALUACION GEOTECNICA DE LOS TUNELES	100
	4.6.1 Generalidades	100
	4.6.2 Criterios para la selección del Trazo	100
	4.6.3 Investigación de Campo	102
	4.6.4 Clasificación Geomecánica del Macizo rocoso	103
	4.6.4.1 Indice de calidad de la roca (R.Q.D.)	103
	4.6.4.2 Sistema Q (N.G.I.)	105
	4.6.4.3 Sistema R.M.R.	106
	4 6 4 4 Comparación entre los sistemas de Clasificación de macizos	

		rocosos	107
	4.6.5	Diseño y Clases de Sostenimiento	108
	4.6.5.1	Parámetros que inciden en el requerimiento de medidas de	
		sostenimiento	108
	4.6.5.2	2 Método de diseño	109
	4.6.6	Comparación de los sistemas de clasificación geomecánica	
		con el adoptado para el Proyecto.	111
	4.6.7	Descripción geotécnica de los Túneles	112
	4.6.7.1	Túnel 3	112
	4.6.7.2	Túnel 4	115
	4.6.7.3	Túnel 5	118
	4.6.7.4	Túnel 6	121
	4.6.7.5	Túnel 7	123
	4.6.7.6	Túnel 8	126
	4.6.7.7	Túnel 9	127
CAP	ITULO V	: CRITERIOS Y PARAMETROS DE DISEÑO	
5.1	GENE	RALIDADES	147
5.2	CRIET	RIOS DE DISEÑO	149
	5.2.1	Velocidad Mínima de Sedimentación	150
	5.2.2	Velocidad Máxima de Erosión	150
	5.2.3	Relación de Máxima Eficiencia Hidráulica	150
	5.2.4	Coeficiente de Rugosidad	151
	5.2.5	Taludes Recomendados	151
	5.2.6	Tirantes Críticos	152
	5.2.7	Bordes Libres	152
5.3	CANA	LES ABIERTOS	153
5.4	TUNE	LES	154
5.5	COND	UCTOS CUBIERTOS	156
5.6	ACUE	DUCTOS	157
5.7	ODD 4	S DE ARTE PRINCIPAL	158

	5.7.1	Aliviaderos Laterales	158
	5.7.2	Aliviadero Final	158
	5.7.3	Cruces de Quebradas	159
5.8	OBRA	S DE ARTE COMPLEMENTARIOS	159
	5.8.1	Transiciones	160
	5.8.2	Alcantarillas	160
	5.8.3	Canoas	160
	5.8.4	Tomas	161
	5.8.5	Puentes Vehículares	161
	5.8.6	Puentes Peatonales	161
6.1	CONC	LUSIONES Y RECOMENDACIONES	165
BIBLI		FIA Y REFERENCIAS	170
FOTO	os		
ANEX	COS		
ANEX	KO A	: LEVANTAMIENTO TOPOGRAFICO	
ANEX	ко в	: INFORMACION HIDROMETEOROLOGICA	
ANEX	KO C	: INVESTIGACIONES GEOTECNICAS	
PLAN	OS		

ESTUDIO BASICO PARA EL DESARROLLO DE LA INGENIERIA DEL CANAL PRINCIPAL CHINECAS

TRAMO: NEPEÑA - CASMA - SECHIN

CAPITULO I

INTRODUCCION

1.1 GENERALIDADES

El presente trabajo de tesis presenta los estudios Básicos para el desarrollo de la Ingeniería del Canal de Conducción CHINECAS Tramo NEPEÑA-CASMA-SECHIN, que tiene su inicio en la progresiva 72+360, ubicado en el valle del río Nepeña abarcando una longitud de 61.44 km. terminando en la progresiva 133+800 ubicado en el río Sechín.

Este Estudio al nivel de definitivo, ha tenido como finalidad de determinar las características Geotécnicas de los materiales del área en donde se emplazará el canal y del entorno donde se ubicará las obras de arte, conjuntamente se ha cuantificado los caudales de avenida con diferentes períodos de retorno basándose en las informaciones Hidrometeorológicas.

El Canal de Conducción Tramo Nepeña – Casma – Sechín, es la continuación del primer tramo de conducción Cascajal – Nepeña, del Proyecto Especial CHINECAS, este Proyecto Especial contempla el aprovechamiento de los recursos hídricos superficiales y subterráneos disponibles de las cuencas de los ríos Santa, Nepeña, Casma y Sechín, con la finalidad de lograr rehabilitar nuevas tierras de cultivo y además de suministrar de agua potable para la población proyectada hasta el año 2015, asentadas en las localidades de Chimbote, Buenos Aires y los centros poblados ubicados en el ámbito del Proyecto.

El presente trabajo de tesis se ha realizado tomando como referencia el primer tramo Cascajal – Nepeña, que cuenta con estudios y diseños al nivel de Ingeniería de detalle, tiene una longitud de 69,482 m y una capacidad de conducción variable entre 20.0 m³ / s y 7.5 m³ / s, disminuyendo la sección telescópicamente conforme se va derivando el agua de riego a las 20 tomas laterales. Este tramo se encuentra actualmente en construcción.

El tramo de estudio, Nepeña - Casma - Sechín, está constituido por una conducción de 61,440 m, al final de la cual se ubica el aliviadero de demasías que

descarga al río Sechín. De la longitud total de desarrollo, 46,132.5 m corresponde a canales abierto, 5,362 m a túneles, 8,346.5 m a conductos cubiertos, 593 m a canales rectangulares para cruce de seis (6) quebradas, 989 m a transiciones y 18 m. a aliviaderos laterales de demasías.

El caudal entregado es de $7.5~\text{m}^3$ / seg. y varía telescópicamente conforme se va derivando el agua de riego a las doce (12) tomas Laterales haciendo su entrega al río Sechín con $4.0~\text{m}^3$ / seg., cuyas características y ubicaciones se muestran en la tabla N° 5.8.1.

Este proyecto permitirá el mejoramiento de riego de 14,550 Ha e incorporación de 14,450 Ha de tierras nuevas para cultivo entorno al área que atravesará el canal.

Este estudio tuvo como primer paso de recopilar toda la información necesaria, (bibliografía, planos, estudios existentes etc.) desarrollándose mediante esta información recopilada cada capítulo del plan de tesis.

1.2 OBJETIVOS DE LA TESIS

- Cálculo de los caudales de avenidas con diferentes períodos de retorno
- Realizar las investigaciones Geotécnicas y Geológicas de los diferentes tipos de materiales (rocas y suelos) de los terrenos de fundación para la cimentación del Canal de Conducción y de los diferentes obras arte.
- Determinar los parámetros Geomecánicos del Subsuelo, necesario para el cálculo de las fundaciones (Capacidad de carga admisible del suelo)
- Evaluar las Canteras de Agregados gruesos y finos, para obtener los materiales de construcción necesarios. Las canteras de Afirmados para los caminos de acceso al Canal.

- Conjuntamente con estos objetivos realizar la metodología de trabajo de Levantamiento Topográfico necesario.

1.3 UBICACIÓN Y ACCESIBILIDAD

La zona interesada, se encuentra ubicada a una altitud media del orden de 188 y 120 m.s.n.m., entre los ríos Nepeña y Sechín, provincias de Santa y Huarmey en el departamento de Ancash.

Abarca los valles costeros de los ríos Nepeña y Casma-Sechín. Geográficamente, se ubica entre lo meridianos 78°03' y 78°39' de longitud oeste y entre los paralelos 08°40' y 09°32' de latitud sur (ver plano CHI-01).

El acceso a la zona del Proyecto se realiza a través de la carretera Panamericana Norte, entre el km. 361 y 450, a través de las siguientes carreteras secundarias:

- Carretera Santa Huallanca y Desvío hacia el canal Carlos Leight
- Carretera Cambio Puente Cascajal
- Carretera asfaltada a Nepeña y San Jacinto
- Carretera al valle de Casma a partir del km. 370 de la Panamericana

1.4 DESCRIPCION GENERAL DEL PROYECTO

Para la realización de este estudio primeramente se realizó el trazado del canal, donde se corrió la línea de gradiente siguiendo el trazo básico realizado y apoyado en el control vertical con pendientes establecidos por el caudal de diseño. Sobre la línea de gradiente se efectuó el trazo del canal colocándose en el terreno los vértices (PI) de los alineamientos, luego se procedió al estacado faltante utilizando estacas de madera que fueron clavadas en el terreno cada 20 m.

Durante el desarrollo del estudio se ha definido en la zona cuatro tipos de suelos; Suelos de origen Marino, Suelos de Origen eólico, Suelos de Origen Aluvial y Suelos de origen Coluvio - Aluvial. Se ha definido tres tipos de rocas que por las medidas de sostenimiento a ser aplicados en obras y de sus características físicas y mecánicas se han denominado Tipo I, II y III, rocas de origen Intrusivo (Granodiorita y Diorita) y en poca proporción de origen volcánico (Andesitas).

La alternativa de conducción (sección tipo trapezoidal, rectangular y abovedado) dependió básicamente del tipo de suelo en donde va ser emplazado el sistema de conducción, así también los accidentes morfológicos de la zona (quebradas, altas depresiones), significó la ubicación de las obras de arte complementario. Esta también correspondió la solución que satisface los requerimientos tanto en Ingeniería como en costos.

Se ha previsto en el trazo del Canal, el estudio de 7 Túneles de Conducción, esto determinado por un análisis Técnico – Económico, cuya sección diseñada es de Tipo abovedada (tomada como referencia del primer tramo Cascajal – Nepeña), de 2.00 m de ancho por 2.80 m de altura y 1.00 m de radio de la bóveda, de la descripción de las secciones típicas, dependiendo del grado de dificultad determinará el tipo de excavación en roca, que serán revestidas de concreto con un espesor tipo teórico en los casos que se estime necesario.

Para los canales abiertos han sido proyectados de sección tipo trapezoidal, con taludes variables entre 1: 1 y 1.5 : 1, dependiendo de las características del material por donde pasará el eje del canal, habiéndose adoptado el primer valor para tramos en roca y materiales gravosos y el segundo valor para tramos en material suelto de cualquier tipo. Las dimensiones de las plantillas y las alturas de caja, son variables y dependientes del caudal de diseño y del Talud, estas serán revestidas de concreto con un espesor variable de 0.075 m y 0.065 m dependiendo del tipo de sección.

En zonas de movimiento eólico intenso, se ha proyectado conductos cubiertos de concreto armado sección rectangular y en tramos por donde el trazo cruce zonas de dunas se ha proyectado conducto cubierto abovedado (por las solicitaciones de carga que pueda tener el techo del conducto al acumularse gran cantidad de este material). Se han colocado obras de arte complementario cuyos objetivos son de vencer

obstáculos que puedan presentarse así como la protección del mismo canal; Se ha proyectado dos tipos de transiciones, una para la conexión de la sección trapezoidal del canal con la sección de herradura de los túneles ó conducto cubierto y el otro requerida para unir dos secciones trapezoidales del canal, cuyas dimensiones puedan variar como consecuencia de los cambios de caudal o los cambios de talud.

Se ha proyectado una estructura típica conformada por un primer tramo de canal rectangular de concreto armado de 3.40 m de ancho por 2.00 m de altura y un segundo tramo que corresponde a un conducto aéreo (acueducto), sustentado en estribos y pilares de concreto reforzado en tramos de 15 – 20 m, de manera que las descargas de la quebrada en época de avenidas pase por debajo del conducto.

Se han proyectado alcantarillas para proteger al canal de la escorrentía superficial de las quebradas que cruza el trazo; Canoas que tendrá como finalidad recolectar el agua de lluvia de las quebradas que atraviesa el trazo mediante un conducto rectangular de concreto reforzado apoyados sobre dos pilares dispuestos en los extremos del ancho superficial del canal, conducirlas por encima del mismo y descargarla en la quebrada original sin ocasionar daños en el canal. Tomas, que permitirá derivar el caudal requerido por los canales laterales para su posterior entrega a las tierras de cultivo.

Para el tránsito vehículares y peatonales se han previsto puentes que han sido colocados en puntos estratégicos a lo largo del trazo.

Como se puede notar este documento se describen las principales características del canal y obras de arte previstas a lo largo de su trazo. Así mismo, se incluye los Estudios Básicos de Ingeniería realizados, referidos a Topografía y Hidrología.

1.5 GEOGRAFIA

La zona de estudio se encuentra ubicada en la vertiente pacífica de los Andes. En los cerros al nordeste del Cuadrángulo de Casma se presenta las mayores alturas, llegando a 4450 m.s.n.m. debido a su proximidad con la cordillera negra; hacia el Oeste la morfología se va haciendo menos agreste hasta llegar a la costa pacífica.

En la parte oriental de los cuadrángulos de Casma y Culebras se notan las quebradas más angostas, así como cañones y escarpas. Toda esta topografía se torna menos abrupta hacia el centro y oeste del área de estudio, donde las quebradas se hacen más amplias y las elevaciones presentan menores alturas, inclusive se notan extensas áreas descritas geomorfológicamente como pampas.

La lluvia en la Cordillera Negra es una de las más pobres del Sistema de Cordillera del Perú; esto se debe al efecto de barrera de nubes que produce la Cordillera Blanca que se encuentra al Este; de ahí que la sierra tenga un clima seco. Hacia el Oeste las lluvias disminuyen con la altitud y en el extremo occidental, en una franja de 8 km. De ancho en los cuadrángulos de Casma y Culebras, la agricultura lejos de los valles es imposible sin irrigación. La lluvia debajo de 2000 m.s.n.m. es virtualmente nula y cuando esta ocurre se presenta de manera muy abundante y copiosa. Sin embargo, son comunes en los desiertos de la costa las nubes densas, las que son el resultado, en el continente, de la Corriente Marina Peruana.

1.5.1 Medio Ambiente

Las variadas condiciones de clima (figura 1:5.1), suelos y geomorfología han dado lugar a la manifestación de distintos tipos de medio ambiente, caracterizados por la morfología y/o presencia de vegetación típica para cada uno de ellos.

El suelo y la vegetación tipo pastos se incrementan hacia la margen Este del área. Al Oeste de la zona y lejos de los principales valles el suelo es arenoso, de poco espesor o no se presenta. La presencia de vida es evidenciada sólo por variedades de cactus y otras plantas adaptadas a las condiciones desérticas, mientras que de manera local se nota flora relativamente abundante en las quebradas secas, que indica la existencia de la napa freática a poca profundidad. En algunos lugares esta napa puede ser expuesta mediante una calicata. El ambiente desértico limita la fauna por la que rara vez puede observarse reptiles y zorros; siendo los insectos y aves de mayor presencia.

El puerto de Chimbote es el principal centro poblado de la región, siendo además el más importante puerto pesquero e industrial del Perú.

Los pueblos de Jimbe, Moro, Nepeña, Samanco, Quillo, Buenavista y Casma son los principales pueblos y capitales de distritos de la zona, encontrándose todos ellos dentro del cuadrángulo de Casma.

Aparte de Chimbote, la mayor parte de la población de la zona se encuentra dispersa en caseríos y fundos, los que se hallan ubicados en los valles. La actividad principal en los valles es la agricultura, mientras que en las pequeñas caletas y playas la actividad principal es la pesca artesanal; siendo a nivel industrial en los puertos de Chimbote, Samanco y Casma.

1.5.2 Clima

La temperatura varía en sentido inverso con respecto de la altitud (Fig. 1.5.2), esto disminuye conforme se asciende de la costa a la sierra. Mientras, en la faja costera la temperatura promedio anual es el orden de los 21° C, en la puna (por encima de los 3800 m.s.n.m.) tiene un promedio anual de 5° C.

1.5.3 Ríos Importantes

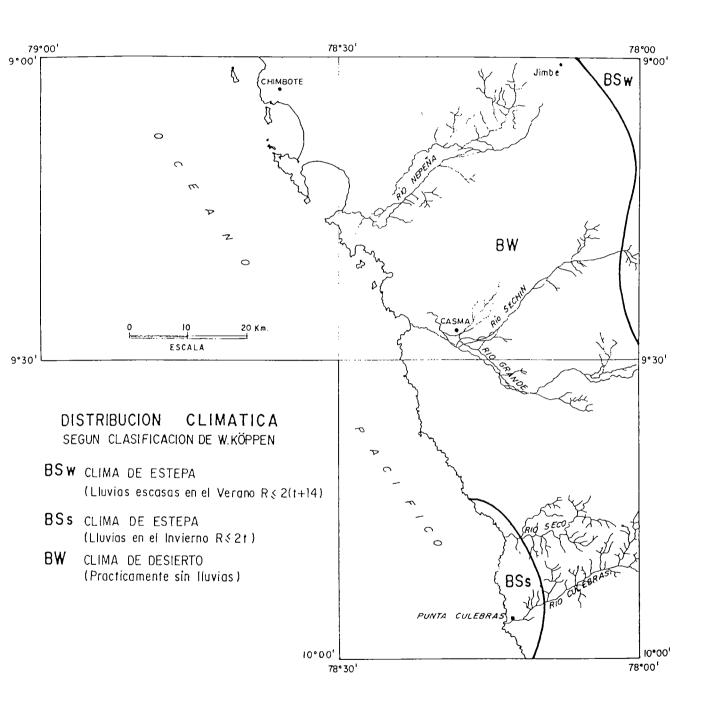
Los ríos principales que discurren en el área de estudio son los ríos Nepeña, Casma - Sechín.

1.5.3.1 Río Nepeña

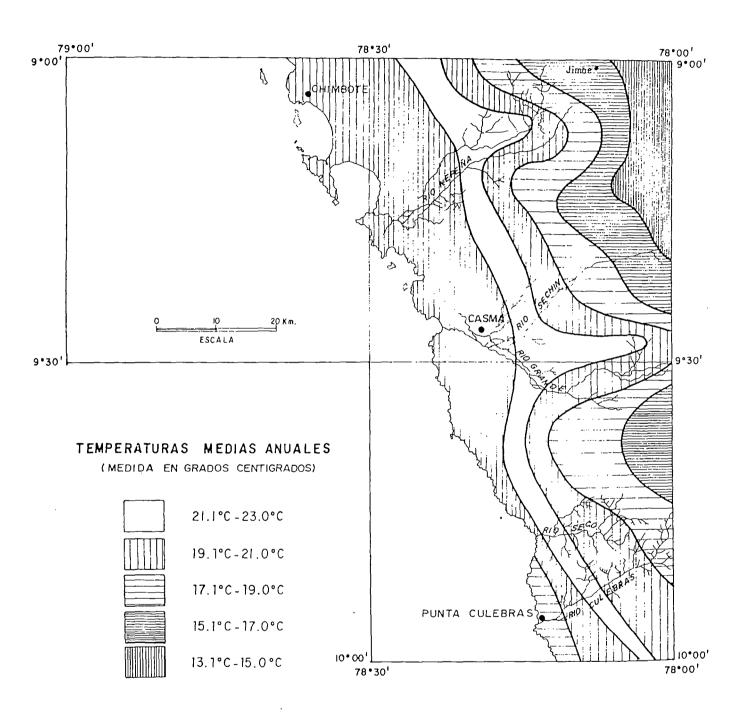
El Río Nepeña resulta de la confluencia de los ríos Jimbe, Chumbe y Loco, nace en las alturas de la laguna de Chupicocha a 4600 m.s.n.m.; alimentándose con las precipitaciones que ocurren en las partes altas del flanco occidental de la Cordillera Negra.

La cuenca del río Nepeña cuenta con un área de drenaje total, hasta su desembocadura en el Océano Pacífico, de 1900 km2 y una longitud máxima de recorrido desde sus nacientes de 73.5 km; presentando una pendiente promedio del 6%, la cual se hace más fuerte en el tramo de la parte alta comprendido en la laguna Mataracocha y Colcap, donde la pendiente alcanza aproximadamente 22%. Asimismo la superficie de la cuenca húmeda o imbrífera es de 900 km², es decir, que el 47% del área contribuye sensiblemente al escurrimiento superficial.

El curso del río Nepeña, desde sus nacientes hasta su desembocadura, es algo sinuoso, siguiendo en general una dirección predominantemente noreste a sudoeste; a la altura de la localidad de Huambacho adopta una dirección Este a Oeste y desemboca al océano Pacífico en las cercanías de la bahía de Samanco.


1.5.3.2 Río Sechín

Perteneciente a la cuenca del río Casma, nace en las alturas de las lagunas Teclio, Mangón y Shaullán a una elevación de 4800 m.s.n.m., aproximadamente, sus nacientes son alimentadas por las precipitaciones que caen en las alturas del flanco occidental de la Cordillera Negra. La subcuenca del río Sechín tiene una extensión de 800 km².


El área de drenaje total de la cuenca del río Casma es de 2775 km² y una longitud máxima de 100 km de recorrido con una pendiente que varía entre 4% y 5%, haciendo mucho mas pronunciada en la parte alta de la cuenca.

El curso tiene una dirección de nordeste hasta su desembocadura, el relieve es el que caracteriza a todos los ríos de la costa, es decir, el de una hoyada hidrográfica alargada, de fondo profundo y quebrado y pendiente pronunciada. Presenta un relieve escarpado y en parte abrupto, cortado por quebradas profundas en su tramo superior.

FIGURA Nº 1.5.1

FIGURA Nº 1.5.2

CAPITULO II

TOPOGRAFIA

2.1 GENERALIDADES

Los presentes trabajos topográficos a lo largo del tramo que interesa el Canal Principal Nepeña – Casma – Sechín, han sido ejecutados de acuerdo a la metodología adoptada para este propósito.

Los puntos de referencia (PIs y BMs) a partir de los cuales se han iniciado los trabajos, corresponden a los determinados y monumentados para el replanteo del último tramo del canal Cascajal – Nepeña, en actual ejecución. Las coordenadas y altitudes correspondientes a cada punto han sido proporcionadas por el CONSORCIO CHINECAS y se detallan a continuación:

Puntos de Partida de Control Topográfico Control Altimétrico			
BM 65	Km. 65 + 090	170.479	
BM 66	Km. 66 + 025	168.182	
Control Planimétrico	ł.,		
Descripción	Norte (m)	Este (m)	
Vértice PI 290	8'984,666.870	793,368.870	
Vértice PI 291	8'984,082.575	793,749.057	
Vértice PI 291	8′984,082.575	793,749.0	

2.1.1 Metodología de Trabajo

La metodología de los trabajos topográficos dependió básicamente del reconocimiento de la zona de estudio, identificando los accidentes topográficos, las cuales podemos identificar las zonas en donde se podrá ubicar las diferentes alternativas de obras de cruce y obras de protección, además en este reconocimiento se observado las características geomorfológica a lo largo del trazo del canal dividiéndose esta en tres partes importantes de manera general.

Un primer tramo Desde el inicio hasta la salida del túnel 5 aproximadamente, el canal bordea el apófisis de la Cordillera Occidental (formada por rocas intrusivas), presenta una topografía accidentada de pendiente fuerte, presenta además tramos cortos de áreas subhorizontales correspondiente a suelos aluviales en algunos casos cubierta de arena eólica y marina.

Un segundo tramo Desde la salida del túnel 5 hasta la entrada del túnel 7, el canal cruza grandes áreas subhorizontales, con pendiente hacia la línea de costa, estas se encuentran cubiertas en su totalidad por arenas eólicas y marinas, con potencia que varía de 8 a 10 m. En este tramo se presenta gran movimiento eólico que dan como origen la formación de grandes dunas (depósitos de arena eólicos) y mantos de arena.

Un tercer tramo Desde la salida del túnel 7 hasta el final, el canal bordea nuevamente el apófisis de la cordillera occidental con pendiente moderada, esta se encuentra disectada por pequeñas quebradas que conforman tramos de áreas subhorizontales compuestas por suelos de origen aluvial. Hacia el final del tramo el valle del río Sechín.

Con este reconocimiento se planteó establecer un control Planimétrico y Altimétrico a lo largo de toda la longitud del tramo. Dicho control nos permitió establecer con precisión un sistema de referencia para la ejecución de todos los trabajos en la zona.

El control Planimétrico se efectuó empleando un Sistema de Posicionamiento Global (GPS) de precisión Geodésica, estableciendo 3 puntos base ubicados de tal forma que abarcaron todo el tramo con áreas circulares de 20 km. de diámetro, las cuales fueron ubicados en lugares fácilmente accesibles, con horizontes sin obstáculos y con seguridad adecuada por la permanencia de los equipos en períodos prolongados de lectura. Los períodos de lectura fueron de 3 horas de duración, con lo que se consiguió precisiones del orden de +/- 60 mm en posición para el punto más desfavorable. Empleando como base estos puntos se establecieron puntos de control por parejas a distancias no mayores de 5 km. a lo largo del tramo, la ubicación de

estos dependió de la zona de interés. Con estos puntos de control se pudo efectuar poligonales de control con cierres de posición y azimut con una precisión uniforme.

El control Vertical se estableció por nivelación geométrica electrónica en circuito cerrado, con una precisión de 4 mm / km.

Establecido el control se procedió a efectuar los levantamientos topográficos. El método empleado fue el de radiación. Toda la información era almacenada en la memoria de los equipos, efectuándose esquemas de referencia los que nos permitió elaborar un modelo digital consistente con el área levantada.

2.2 PROCEDIMIENTO

2.2.1 Trazado

Para el trazado del canal se corrió previamente una línea de gradiente con las pendientes indicadas en los diseños siguiendo el antiguo trazo del proyecto básico.

Sobre la línea de gradiente se efectuó el trazo del eje del canal colocándose en el terreno los vértices (PI) de los alineamientos que faltasen.

Para el estacado que faltasen se utilizaron estacas de madera de 1 ½" x 1 ½" de escuadría por 12" de longitud. Estas estacas eran clavadas sobre el terreno cada 20 m en el tramo recto y 10 m en tramo curvo, sobresaliendo 3" como máximo. En el centro de las estacas se colocó un clavo sobresaliendo 1/8" para que sirva como alineamiento.

Sobre cada estaca se colocó el número correspondiente de la progresiva con tinta indeleble. Las estacas de los PIs eran fijadas mediante un bloque de concreto de 0.20 m por 0.20 m en planta, sobre cuya superficie se marcaba el número del PI y la progresiva.

2.2.2 Control Altimétrico

Para el control Altimétrico se empleó el método de Nivelación Geométrica Diferencial, con triple lectura y circuito cerrado. Para las mediciones se utilizó un nivel de alta precisión Leica NA 3003 de lectura digital, 2 miras de madera con escala de código de barras y nivel esférico incorporado marca Leica, bases metálicas pesadas (Sapos) y puntales de madera.

Las nivelaciones fueron cerradas, las mediciones se efectuaron con una precisión de 4 mm x (K)^{0.5}, donde K representa la longitud de los tramos nivelados en kilómetros. Esta restricción corresponde a la nivelación de segundo orden según el Interamerican Geodetic Survey (IAGS), que se denota en el cuadro adjuntada en el anexo 'A'.

El registro de campo se llevó en forma manual. Se efectuaron tres lecturas como mínimo en cada punto de cambio, cuyos valores no debían discrepar en más de 2 décimas de milímetro del valor mediano. En caso de no cumplir esta condición, se procedió a efectuar una medida adicional, descartándose el valor discrepante. El procedimiento se repitió en caso de persistir la diferencia.

Se efectuaron itinerarios de ida y vuelta cada 0.5 km., salvo en el caso de la nivelación de enlace al BM de referencia (BM 65.0) donde los circuitos fueron mayores. Los cierres se muestran en el cuadro de Información Básica - Nivelación Geométrica BM 65.0 - BM 72.5 - BM 90.0, donde se aprecia que los resultados cumplen ampliamente con la tolerancia especificada.

El punto de referencia empleado corresponde al BM 65.0 del PROYECTO CHINECAS, cuyo valor Altimétrico igual a 170.479 m.s.n.m, fue proporcionado por el CONSORCIO CHINECAS.

2.2.11 Monumentación de B.M.

Los B.M. fueron monumentados con hitos de concreto de 0.25 x 0.25 m en planta y 0.80 m de altura, perfectamente empotrados en terreno firme y sobresaliente 5 cm de la superficie del terreno.

En el centro de cada hito se empotró una varilla de fierro de ½" de diámetro por 0.50 m de longitud, sobresaliendo 1 cm de la superficie del concreto.

Estos fueron colocados en lugares seguros para evitar su destrucción y se monumentaron cada 500 m.

2.2.1.2 Señalización

Esta se coloca en los hitos de concreto previamente realizados, el formato utilizado fue de acuerdo a las especificaciones dadas por el CONSORCIO CHINECAS.

2.2.1.3 Instrumentos

Para las mediciones se utilizó un nivel de alta precisión Leica NA 3003 de lectura digital, 2 miras de madera con escala de código de barras y nivel esférico incorporado marca Leica, bases metálicas pesadas (Sapos) y puntales de madera.

El nivel Leica NA 3003 contiene programas de medición integrados ejecutan los tipos de nivelación más diversos y optimizan el trabajo en el campo.

2.2.1.4 Cálculos

El cuadro de resultados de nivelación geométrica incluye la información correspondiente al promedio de diferencias de nivel del tramo especificado, cota calculada y promediada, error de cierre absoluto, longitud del circuito medida en forma efectiva, error de cierre permisible. Asimismo, se señala como observación si el hito correspondiente a cada B.M. esta monumentado y corresponde al proyecto

original (B.M. PROY.) o si ha sido reconstruido como parte del presente trabajo (B.M. PTZ).

Por otro lado, como los itinerarios de nivelación son lineales, la compensación efectuada es de promedio simple.

Los diagramas de nivelación incluyen información correspondiente a los itinerarios seguidos en el control vertical, así como los errores correspondientes a cada circuito.

El formato empleado para el registro de campo corresponde al de triple lectura. La primera columna los puntos a los cuales se ha tomado medida, siguiendo la secuencia vista atrás, vista adelante. En la segunda columna se encuentra la lectura en metros con una precisión de 1/10 de milímetro, en vista atrás. En la tercera columna la lectura correspondiente a la vista adelante. En la cuarta columna la diferencia de nivel por medida. Las lecturas anuladas por no cumplir con la tolerancia especificada se registran como canceladas. Al final de cada secuencia se encuentra el promedio de las diferencias de nivel válidas.

Los registros contenidos en las libretas de campo consignan lecturas válidas y anuladas, circuitos de ida y vuelta, etc.

2.2.2 Control Planimétrico

Para el control Planimétrico se realizó tomando como apoyo la Poligonal Electrónica de Tercer Orden, Clase I de acuerdo a la clasificación del Comité Federal de Control Geodésico de los Estados Unidos de Norteamérica, cuyo extracto se encuentra en el anexo 'A'.

El control Planimétrico ha sido ejecutado en dos fases; Un control GPS, establecido por posicionamiento diferencial a partir del punto de referencia PI-291, donde se efectuaron mediciones de los puntos establecidos por parejas consecutivas

aproximadamente cada 5.0 km. Dichas mediciones se efectuaron con intervalos de 1 hora para los puntos más cercanos y de 2 horas para los puntos más lejanos. Para este control se emplearon tres equipos de posicionamiento global SR 9500 marca Leica de doble frecuencia y doce canales, los que tienen una precisión de +/- (5 mm + 1 ppm).

La segunda fase comprendió el establecimiento de una Poligonal Principal de control a lo largo de los tramos ejecutados. Para ello se empleó una estación total T1800 - D1 1600, con una precisión angular de 1" y lineal de 5 mm + 2 mm/km. En forma simultánea con el control horizontal se procedió a determinar la posición de los PIs por el método de radiación efectuándose a cada punto un mínimo de 8 lecturas con anteojo directo e invertido. Asimismo, con el propósito de llevar un control Altimétrico adicional de la poligonal se efectúo el enlace de la misma con los BMs de referencia.

2.2.2.1 Monumentación

Los vértices de la poligonal fueron monumentados con hitos de concreto de 0.25 x 0.25 m en planta y 0.80 m de altura, perfectamente empotrados en terreno firme y sobresaliente 5 cm de la superficie del terreno.

En el centro de cada hito se empotró una varilla de fierro de ½" de diámetro por 0.50 m de longitud, sobresaliendo 1 cm de la superficie del concreto.

Terminado el vaciado del concreto, el hito fue protegido con una capa de arena, para evitar que se deteriore por la acción del intemperismo.

2.2.2.2 Señalización

La señalización es fundamental para la identificación de los vértices establecidos en campo, esta se colocan en los hitos de concreto previamente realizados, el formato utilizado fue de acuerdo a las especificaciones dadas por el

CONSORCIO CHINECAS.

2.2.2.3 Angulo Horizontal

Para el control horizontal se efectuaron un mínimo de ocho (8) observaciones en directo e invertido, teniendo cuidado en no sobrepasar la discrepancia mayor de 8" (ocho segundos) del promedio.

Luego se midió el ángulo de cierre al horizonte, siendo el error permisible el siguiente:

$$A + B = 360^{\circ} + 8$$
"

Donde:

A = Promedio de posiciones

B = Cierre del horizonte

2.2.2.4 Angulo Zenital

Se observaron dos (02) posiciones en directo y reverso respectivamente, tratando de no sobrepasar la discrepancia de 10" (diez segundos) entre las dos posiciones. Los ángulos zenitales entre dos estaciones se observaron en forma recíproca (en ambas direcciones).

2.2.2.5 Medición de Distancias

La medición de las distancias entre dos estaciones se hicieron en ambos sentidos. Se hicieron un mínimo de dos mediciones en cada sentido con discrepancia máxima de 1: 60,000.

2.2.2.6 Cierre

El control de cierre se efectuó cada 5 km. siguiendo el mismo itinerario, con la finalidad de enlazar los puntos intermedios y terminar en el punto de partida conformando un anillo, o en otro caso se determinó las Coordenadas Planimétricas y altitud de uno de los vértices de la poligonal cada 5 km., con el propósito de determinar los errores de cierre respectivo.

Se verificó el cierre angular que para este tipo de poligonal según las especificaciones que no deberá ser mayor de 8" o bien 10" (N)^{0.5}, siendo N el número de vértices de la poligonal. Con un límite de cierre lineal de 1: 60,000.

2.2.2.7 Instrumentos

En los trabajos de control Planimétrico se utilizaron equipos de gran tecnología digital computarizada.

Para el posicionamiento de los vértices se utilizó GPS SR9500 de marca Leica, es un censor GPS de doble frecuencia de 12 canales se emplea generalmente con la antena AT302. El equipo es liviano, compacto y ofrece la más alta precisión.

El SR9500 se adapta a todas las unidades de control GPS de Leica y se integra perfectamente en cualquier sistema Leica existente. En el campo, el operador puede emplearlo con cualquier otro censor GPS de Leica. Los datos pueden importarse directamente en el programa SKI, a fin de calcular líneas base con una precisión de 5mm + 1ppm. Si uno quiere obtener más alta precisión, el operador puede utilizar el SR9500 con un SR399/399E u otro SR9500.

Para la Poligonal Principal se utilizo una Estación Total T1800 – D1 1600, con una precisión angular de 1" y lineal de 5mm + 2mm/km.

Para mas detalle de este equipo se puede ver en el anexo 'A' de este documento.

2.2.2.8 Cálculos

Los cálculos se efectuaron de la siguiente forma:

Control GPS

Se empleó el programa SKI para ajuste de lectura con equipos GPS. En la conversión de coordenadas del sistema WGS 84 al PSAD 56 se emplearon los parámetros de transformación del DMA.

Poligonal Principal Coordenadas UTM y Verificación del Cierre Angular

A partir de los valores obtenidos por Posicionamiento Global, se procedió a ajustar los valores de la Poligonal Principal. Se empleó para ello el programa StarNet. Los cálculos se efectuaron en el sistema de Coordenadas Geodésicas PSAD 56. Como parte de este cálculo se procedió a verificar el cumplimiento de cierre angular, acumulando los valores obtenidos de corrección angular y comparándolos con los valores permisibles para cada tramo. Verificándose el cumplimiento de la especificación.

Poligonal Principal, Verificación de Cierre Lineal

Tomando los valores angulares corregidos se procedió a efectuar el recalculo de la poligonal, dejando los extremos de cierres libres, como si tratara de una poligonal abierta. La comparación de la posición de cierre con la obtenida por la poligonal abierta nos proporciona la distancia absoluta del cierre. Una vez comparada esta distancia con la longitud de la poligonal, obtiene el valor de cierre relativo, el que comparamos con el valor permisible (1: 60,000), verificándose el cumplimiento de la especificación.

- Poligonal Principal Coordenadas UTM, Radiación de PIs

Realizado el cálculo de la poligonal principal y empleando el sistema de coordenadas Geodésicas PSAD 56 Proyección UTM (17), se procedió a incorporar las

lecturas de radiación a los PIs obteniéndose sus valores de coordenadas UTM dentro de este mismo sistema.

Poligonal Principal Coordenadas Topográficas, Radiación de PIs

Sobre la base de los valores ajustados obtenidos como resultado del cálculo de la Poligonal Principal Geodésica, y tomando como referencia los valores de coordenadas topográficas de los últimos PIs se determinaron las coordenadas Topográficas respectivas. El cálculo se efectuó en el sistema de Coordenadas Locales.

Poligonal Secundaria Coordenadas Topográficas

Tomando como valores de referencia los obtenidos en "Poligonal Principal Coordenadas topográficas, Radiación de PIs" se efectuó el ajuste de la poligonal secundaria empleada para el Levantamiento Topográfico. Los cálculos se efectuaron en Coordenadas Locales.

2.2.3 Levantamientos Topográficos de Faja

El levantamiento de faja se efectúa basándose en la Poligonal secundaria. La faja levantada tiene un ancho mínimo de 60 metros, poniendo especial detalle en el cruce de sectores donde se han proyectado obras de arte. El trabajo de campo se efectúo empleando una estación total TC 805 L de presión angular 3" marca LEICA la que tiene una capacidad de almacenamiento de 3,000 lecturas.

La información así levantada se procesó con el programa StarNet en el modo de Coordenadas locales. El dibujo de detalles se efectuó empleando AUTOCAD 14. El modelo digital de terreno así como la edición de la superficie y generación de curvas de nivel se efectuó en el programa AUTODESK CIVIL SURVEY S8.

2.3 RESULTADOS

Los valores de las Coordenadas UTM – PSAD56 y topografías de cada uno de los vértices de las poligonales ejecutadas, así como de los Bench Mark con sus respectivos cotas se muestran en el anexo 'A' (Cuadro Nº 2.2.1).

La información que debe ser utilizada para el trazo y replanteo de las obras en campo corresponde a las coordenadas topográficas de los vértices de las poligonales trazadas en campo, así como de los puntos de intersección (PIs) que definen el trazo del canal.

En el anexo 'A' Levantamiento Topográfico se muestra mediante un diagrama la red utilizada en los levantamiento Topográfico, así como las ubicaciones de los PIs.

CAPITULO III HIDROLOGIA

3.1 GENERALIDADES

El presente capítulo tiene como objetivo cuantificar los caudales de avenidas con diferentes períodos de retorno para el desarrollo de la Ingeniería del Canal Chinecas para el Tramo Nepeña-Casma-Sechín de 61,440 m de longitud, entre las progresivas km 72+360 y km 133+800.

Según Wendor Chereque Morán la mayoría de los problemas hidrológicos se pueden agrupar en tres categorías principales de acuerdo al objetivo principal del proyecto:

- A Diseños de estructuras Hidráulicas, siendo necesaria la evaluación y cuantificación de los valores extremos (máximos y mínimos) del escurrimiento superficial
- B Satisfacción de demandas, siendo necesaria evaluar y cuantificar las descargas disponibles en el punto de interés.
- C Diseño y operación de embalses, siendo necesario evaluar y cuantificar la variación del escurrimiento superficial en todas sus características estadísticas, como valores medios, máximos y mínimos.

Para nuestro estudio nos compete el análisis del caso A.

Con esta finalidad se ha recopilado y analizado la información referente a planos topográficos y registros hidrometeorológicos. La información cartográfica fue obtenida del Instituto Geográfico Nacional (IGN) y la concerniente a hidrometeorología fue adquirida del Servicio Nacional de Meteorología e Hidrología - SENAMHI.

La metodología de trabajo se basa principalmente a la información Hidrometeorológica con que se pueda contar, ya que dependerá del método a aplicarse

en el cálculo de avenidas. Adicionalmente, se llevó a cabo el reconocimiento de la zona siguiendo la dirección del trazo del canal, verificando las características principales de las quebradas de interés.

La zona de estudio no cuenta con información Hidrométrica, solo se cuenta con información Pluviométrica, por lo que se planteó el calculo de los caudales de diseño empleando métodos empíricos que relacionan la precipitación con la escorrentía. Los resultados de estos métodos fueron comparados, tomándose los valores conservadores.

3.1.1 Información Básica

La información básica existente, recopilada para la elaboración del presente Estudio Hidrológico, comprende los siguientes aspectos:

3.1.1.1 Cartografía

De acuerdo a los alcances del estudio, la información cartográfica para su elaboración fue obtenida de la Carta Nacional a escala 1:100,000 - hoja 19-g del Instituto Geográfico Nacional (IGN).

3.1.1.2 Hidrología

La información hidrometeorológica en la zona del Proyecto es escasa y no existen registros de caudales.

Por esta razón, para determinar los caudales de máximas avenidas en los puntos de interés, fue necesario recopilar los datos de lluvias máximas en 24 horas registrados en dos (2) estaciones ubicadas en la cuenca del río Sechín, en inmediaciones de la zona del Proyecto, identificadas como Buenavista y Quillo en las cuales la precipitación media anual es de 104.1 y 7.0 mm de acuerdo al Atlas de Hidrología de la Misión Alemana.

Las características principales de estas estaciones y la Precipitación Máxima en 24 horas se señalan a continuación:

Estación	Tipo	Fuente	Elev.	Período de	Pmax	Ubic	ación
			(msnm)	Registro (años)	(mm)	Lat.	Long.
Buenavista Quillo	CO PLU	SEN SEN	209 1215	65-98 65-71	8.0 34.9	09° 26′ 09° 20′	78° 12′ 78° 02′

donde:

CO = Estación completa (Hidrometeorológica)

PLU = Estación Pluviométrica

SEN = SENAMHI

Pmax = Precipitación máxima en 24 horas (valor máximo maximorum)

En las Tablas 3.2.1 y 3.2.2 del anexo 'B' se muestra los registros de precipitaciones máximas en 24 horas de cada estación, las mismas que corresponden a los registros históricos proporcionados por SENAMHI.

3.1.2 Descripción de la Zona del Proyecto

La zona interesada por el proyecto, se ubica a una altitud media del orden de 200 msnm, entre los ríos Nepeña y Sechín, provincias de Santa y Huarmey en el departamento de Ancash. La zona es árida, con una precipitación media anual bajas y de carácter aleatorio, pudiendo alcanzar un valor del orden de los 100 mm. La precipitación entre los meses de Enero y Marzo puede alcanzar al 70% del promedio anual; en el resto del año la precipitación es baja y sin efectos en la escorrentía.

En el plano CHI-01 se muestra la ubicación y accesos a la zona del Proyecto. En el plano CHI-02 se muestra el trazo básico del canal, así como la delimitación de las cuencas y características principales de las quebradas que cruza a lo largo de su desarrollo. Los parámetros principales de las cuencas de drenaje se resumen en la

Tabla 3.1.1

En general el cauce de las quebradas es escarpado, con pendientes longitudinales mayores al 2%. Las cuencas en su mayor parte se encuentran cubiertas por materiales arenosos de origen eólico. El escurrimiento superficial es nulo en algunas quebradas y en otras limitado y esporádico con corto tiempo de duración. Las descargas generalmente se presentan durante el período de avenidas (Enero a Marzo).

La subcuenca más extensa es la quebrada Grande Seca con 136.7 km² de superficie y se inicia encima de los 1440 msnm de altitud, zona en la cual las precipitaciones son de carácter permanente en el verano.

3.2 PRECIPITACIÓN

El régimen de las precipitaciones en la zona es típica de la región costera, caracterizada por precipitaciones nulas con grandes irregularidades en los meses de Enero a Marzo durante la ocurrencia de la perturbación climatológica conocida como Fenómeno del Niño. En años normales las precipitaciones son nulas o escasas. Normalmente la corriente fría de Humboldt, que discurre de Sur a Norte por la costa del Pacífico reduce la evaporación marítima. Esta da lugar a precipitaciones escasas en la Costa y abundancia de neblinas.

El Fenómeno del Niño, ocasiona el ingreso de aguas cálidas procedentes de la zona tropical dando origen a un mayor nivel de evaporación en la zona costera y a un fuerte incremento de las precipitaciones en los meses de verano. Las descargas de los ríos y quebradas, nulas en otras épocas, se incrementan notablemente.

A pesar de la frecuencia de este fenómeno (7 a 10 años) no existen registros históricos de caudales.

Con el propósito de contar con la información y parámetros de diseño que permitan determinar los caudales de máximas avenidas en las quebradas que el canal cruza a lo largo de su desarrollo, se analiza y evalúa la información pluviométrica

disponible.

3.2.1 Precipitación Máxima Diaria

La información necesaria para la estimación de caudales de avenida corresponde a los datos de precipitaciones máximas en 24 horas (valores extremos) registradas en las estaciones pluviométricas Buenavista y Quillo. Los valores se consignan en las Tablas 3.2.1 y 3.2.2 del anexo 'B'.

3.2.1.1 Probabilidad de Diseño

Frente a un caso concreto el Ingeniero debe decidir el período de retorno de su crecida de diseño, Para ello se debe precisar la vida útil de la obra, luego se preguntará la probabilidad de ocurrencia en ese período.

Para el estudio se escogió un porcentaje adecuado de riesgo determinándose el período de crecida de diseño con la ley de Gumbel o la distribución de Log Pearson tipo III.

El análisis de frecuencia de las precipitaciones máximas registradas se ha realizado utilizando los modelos de Gumbel Tipo I y Log-Pearson III, porque los valores de la precipitación máxima horaria o diaria se ajustan bien a tales distribuciones (Hidrología – Wendor Chereque M.). La probabilidad de excedencia o frecuencia (P) fueron propuesta de acuerdo a la vida útil de la estructura, ya que el período de retorno es inversamente proporcionar a la probabilidad de excedencia.

3.2.1.2 Gumbel Tipo I

La ley de Gumbel está dada por la expresión:

$$P = 1 - e^{-e^{-y}}$$

P = Probabilidad de que un valor x sea igualado o excedido

y = variable reducida, dada por la expresión:

$$y = a(x-u)$$

u = moda de la distribución

a = parámetro de dispersión

Para una muestra de tamaño finito, Gumbel encontró que:

$$u = \overline{x} + \sigma_x \frac{\overline{y}_n}{\sigma_n}$$

$$a = \frac{\sigma_n}{\sigma_x}$$

 y_n = valor medio esperado de la variable reducida

 σ_n = desviación estándar de la variable reducida

Ambos valores son función del tamaño de la muestra.

N	20	30	40	50	100	200
Valor medio esperado	0.52	0.54	0.54	0.55	0.56	0.57
Desviación estándar de la variable	1.06	1.11	1.14	1.16	1.21	1.24

N = Número de registros

3.2.1.3 Distribución Log - Pearson Tipo III

Para el uso de esta distribución se escogen los valores más representativos de los valores máximos anuales de los registros de precipitación máxima diaria, se

convierte los valores de la serie a sus logaritmos decimales y se hallan los siguientes parámetros:

Media
$$\overline{\log x} = \frac{\sum \log x}{n}$$
 desviación estándar
$$\sigma \log x = \sqrt{\frac{\sum (\log x - \overline{\log x})^2}{n-1}}$$
 Coeficiente de asimetría
$$Ag = \frac{n \sum (\log x - \overline{\log x})^3}{(n-1)(n-2)(\sigma \log x)^3}$$

El valor de "x" para cualquier nivel de probabilidad para estas expresiones se puede calcular a partir de la expresión de Vente Chow:

$$x = \bar{x} + k \sigma_x$$

x = Precipitación con una probabilidad dada

x = media de la serie de precipitaciones máximas diarias

k = una factor de frecuencias definido por cada distribución. Es una función
 del nivel de probabilidad signado a 'x'.

 σ_x = desviación estándar de la serie

Los resultados obtenidos permiten seleccionar a la distribución Gumbel I considerando que brinda un buen ajuste para valores meteorológicos extremos, conforme se puede apreciar en las Tablas 3.2.3 y 3.2.4.

Teniendo en cuenta que los registros de precipitación máxima diaria han sido obtenidos mediante pluviómetros y no pluviógrafos, con lecturas diarias que pueden provocar normalmente la subestimación del valor real, los valores obtenidos del análisis de frecuencias, han sido incrementados por un factor igual a 1.13 (según

recomendación Hidrología para Ingenieros - Linsley año 1975) antes de su aplicación en el cálculo de avenidas.

Es necesario considerar además que los valores así corregidos corresponden a un valor puntual pico. A su vez, este valor, antes de su aplicación en el cálculo de avenidas, debería ser afectado de un factor que depende de la extensión de la superficie que drena cada cuenca, cuyo valor se obtiene de las curvas elaboradas por el US National Weather Service (Linsley 1975), pero el factor es menor de la unidad por lo que no fue afectado, conservando los valores anteriores (Figura 3.2.1 en el anexo 'B').

Considerando que la precipitación registrada en la estación Buenavista predominantemente es nula, y en la estación Quillo tiene valores marcadamente superiores, conservadoramente para estimar los caudales de avenidas de las quebradas, se adoptan los registros de la estación Quillo.

Los resultados de los análisis realizados son:

Período de Retorno (años)	Pmax (mm)
2	9.07
5	22.67
10	31.67
20	40.30
50	51.48
100	59.85
200	68.20
500	79.21

Pmax: Precipitación máxima en 24 horas.

3.3 ESTIMACION DE CAUDALES MAXIMOS

A lo largo del desarrollo del Canal Chinecas (Nepeña - Casma - Sechín), se han identificado once (11) quebradas, cuyas descargas de máximas avenidas deben ser

cuantificadas con el propósito de definir la estructura en cada punto de cruce, con fines de seguridad de las obras. La ubicación y características de las quebradas se

muestran en la Tabla 3.1.1 y en el plano CHI-02. Estas características son factores

que intervienen directamente con la cuantificación de las descargas máximas

avenidas(pendiente, orientación, forma y otros).

En casos de ausencia de registros de descarga en la zona de interés, como es el

caso que nos ocupa, se procede a la estimación de los caudales de avenidas, mediante

la aplicación de las metodologías siguientes:

Método Racional

Método del Soil Conservation Service - SCS

La información de precipitación a ser utilizada en ambos métodos corresponde

a las precipitaciones máximas en 24 horas para diferentes valores del período de

retorno.

3.3.1 Método Racional

Este método consiste en la aplicación de una ecuación empírica en la que se

relaciona el coeficiente de escorrentía de la cuenca, la intensidad de precipitación

correspondiente a la lluvia considerada y la superficie de cuenca drenada hasta el

punto de control. La expresión de la ecuación es:

 $Q = \underline{Ce I A}$

360

Donde:

 $O = Caudal en m^3/s$

Ce = Coeficiente de escorrentía

I = Intensidad de lluvia en mm/hora (según período de retorno)

41

A = Area de drenaje en ha

Considerando los resultados del análisis y evaluación de las precipitaciones correspondientes a la estación Quillo, se ha determinado, para cada período de retorno, la correspondiente intensidad de lluvia en mm/hora, utilizando para ello el perfil de lluvia Tipo II que corresponde a una tormenta convectiva conforme se producen las lluvias en la Costa Peruana (Ver Figura 3.3.1 del anexo 'B'). La ecuación que expresa la precipitación máxima en intensidad de lluvia es:

$$I = Pmax 0.43$$

3

donde:

I = Intensidad mm/hr

Pmax = Precipitación máxima en 24 hr

Los resultados obtenidos de la aplicación de esta ecuación son:

Tr (años)	Pmax (mm)	i max (mm/hora)
2	9.07	1.30
5	22.67	3.25
10	31.67	4.54
20	40.30	5.78
50	51.48	7.38
100	59.85	8.58
200	68.20	9.77
500	79.21	11.35

donde:

Tr = Tiempo de retorno

Pmax = Precipitación máxima en 24 horas

Imax = Intensidad Máxima

Para la estimación de los caudales máximos, fueron establecidos los valores del coeficiente de escorrentía según las características de los materiales predominantes en la cuenca de drenaje. Con este propósito se han adoptado los siguientes valores:

TIPO DE TERRENO	COEFICIENTE DE ESCORRENTIA
Superficies con valores altos de permeabilidad	0.20
Superficies con valores bajos de permeabilidad	0.40

Los resultados obtenidos se muestran en la Tabla 3.3.1. Cabe mencionar que para el caso de las quebradas Grande Seca y las Yuntas, se ha considerado como área de influencia sólo el área de la subcuenca húmeda, considerando que en esta área se concentra la mayor parte de las precipitaciones y existe mayor posibilidad que se produzca escorrentía superficial.

Lo caudales máximos para un período de retorno de 100 años son:

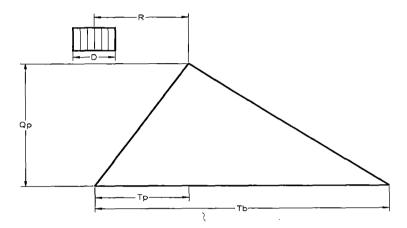
No.	Quebrada	Area (km²)	Caudal (m³/s)
1	Los Incas	10.65	10.15
2	Huambacho	9.30	8.86
3	S/n	2.28	2.17
4	S/n	4.14	3.95
5	S/n	15.81	15.08
6	Grande Seca	54.90	52.34
7	Las yuntas	84.40	80.46
8	S/n	20.21	9.63
9	Jayhua (1)	14.72	7.01
10	Jayhua (2)	15.85	7.55
11	Pampa Afuera	3.00	2.86

s/n: Sin nombre

3.3.2 Método SCS

La metodología del U.S Soil Conservation Service permite estimar los hidrogramas de avenidas y los valores picos del caudal en función de la tormenta de diseño seleccionada. Este método fue desarrollado inicialmente para estimar avenidas en cuencas pequeñas.

Básicamente el método consiste en estimar un hidrograma triangular sintético a partir de las características físicas de la cuenca y un perfil de precipitación efectiva, los cuales convergen para producir un hidrograma compuesto de la avenida. La geometría del hidrograma unitario es mostrada a continuación:


R : Retardo entre centro de la precipitación efectiva y el caudal pico en horas.

D : Duración del incremento unitario de precipitación efectiva en horas.

Tp: Tiempo al pico, en horas.

Tb: Tiempo base, en horas

Qp: Caudal pico del hidrograma unitario para duración D.

Además el método señala que existen las siguientes relaciones:

$$D = 0.4 R$$

$$Tp = R + D/2 = 3D$$

$$Tb = 2.67 Tp$$

$$Qp = (0.208 \text{ A})/Tp$$

donde: A es el área de la cuenca en km²

$$R = (L^{0.8} (S + 1)^{1.67}) / (13.9 I^{0.5})$$

$$S = 1000 / CN - 10$$

donde:

L : Longitud del curso principal (km)

I : Pendiente del curso principal (%)

S: Máxima retención potencial en pulgadas

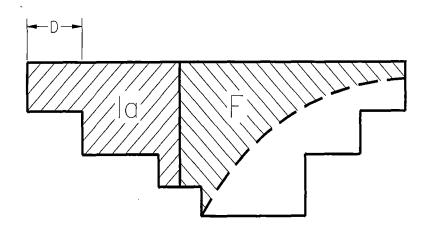
CN: número de curva típica

La definición del CN se realiza normalmente por calibración. Su determinación es un paso importante pues influye en forma significativa sobre el resultado final.

Con el propósito de definir con mayor aproximación, este parámetro hidrológico, requerido para el cálculo de los caudales de avenidas en cada quebrada, se ha calculado mediante el Método SCS los caudales correspondientes a la quebrada Pampa de Toro.

Según información proporcionada por el CONSORCIO CHINECAS, durante la ocurrencia del Fenómeno del Niño de 1998, los caudales de máximas avenidas que se han presentado en la quebrada Pampa de Toro, ubicada en el tramo Cascajal - Nepeña, han alcanzado valores superiores a los previstos en el Estudio Definitivo. Estos valores fueron aproximadamente 100 m³/s y 17 m³/s respectivamente.

Los resultados obtenidos son:


Tr	(1)			(2)			
(años)	CN	Pmax (mm)	Q (m³/s)	CN	Pmax (mm)	Q (m³/s)	
20				80	40.3	18.9	
25	84	25.4	9.03				
50	84	28.4	12.69	80	51.5	34.4	
100	84	31.4	17.12	80	59.9	48.2	
500		<u> </u>		80	79.2	88.7	

- (1) Del Estudio Definitivo Tramo Cascajal Nepeña
- (2) Presente Estudio

Los resultados obtenidos permiten señalar que el caudal presentado correspondería a un período de retorno del orden de 500 años y el coeficiente CN igual a 80. Por lo tanto, para los fines del Proyecto se asume conservadoramente el valor de CN igual a 80. Excepcionalmente y con criterio conservador para el caso de la Quebrada No. 8 se ha considerado un CN igual a 75.

Por otro lado, las precipitaciones, dependiendo del tipo, se agrupan en dos curvas típicas, las mismas que se muestran en la Figura 3.3.1 del anexo 'B'. La del Tipo I corresponde a tormentas frontales y la del tipo II a tormentas convectivas. Considerando que la zona del Proyecto se ubica en la vertiente del Pacífico caracterizada por precipitaciones esporádicas y temporales, la curva adoptada para los fines del estudio corresponde a la tormenta del Tipo II.

El método SCS asume que la escorrentía es producida por la precipitación efectiva, es decir, luego de descontar las pérdidas por la abstracción inicial la y las pérdidas continuas F durante el resto de la tormenta.

La escorrentía se inicia cuando la precipitación excede a Ia, asumiéndose que Ia = 5.08 S mm.

La escorrentía acumulada en mm, está dada por la expresión:

ROi =
$$(Pi - 5.08 S)^2 / (Pi + 20.32 S)$$

donde:

Pi: Precipitación acumulada hasta el tiempo i.

El incremento de escorrentía entre el período i + 1 e i será entonces:

ROi =
$$\sum (ROi + 1) - \sum (ROi)$$

El caudal pico del hidrograma que comienza en el período i será igual a:

$$Qpi = (ROi) (0.208 A) / (Tp)$$

Los puntos intermedios del hidrograma se obtienen a partir de la geometría del hidrograma triangular, expresados como una proporción de Qp:

Tiempo en Und.	· · · · · · · · · · · · · · · · · · ·								
D	0	1	2	3	4	5	6	7	8
Descarga Q/Qp	0	0.33	0.67	1.00	0.80	0.60	0.40	0.20	0

Las tormentas de diseño han sido determinadas a partir de las precipitaciones máximas en 24 horas de la estación Quillo, que es la que presenta valores más conservadores para la zona en estudio.

Siguiendo el método descrito y basándose en los datos de precipitación se determinó el valor de las avenidas para diferentes períodos de retorno de 5, 10, 20, 50, 100, 200 y 500 años. En la Tabla 3.3.2 se resumen los resultados obtenidos con el método del SCS. Los caudales con período de retorno de 100 años, son:

No.	Quebrada	Area (km²)	Caudal (m³/s)
1	Los Incas	10.65	12.33
2	Huambacho	9.30	13.31
3	s/n	2.28	6.50
4	s/n	4.14	6.87
5	s/n	15.81	12.73
6	Grande Seca	54.90	48.66
7	Las Yuntas	84.40	62.68
8	s/n	20.21	7.09
9	Jayhua (1)	14.72	15.66
10	Jayhua (2)	15.85	9.73
11	Pampa Afuera	3.00	2.64

En las Figuras 3.3.2 a 3.3.12 del anexo 'B', se grafican las curvas de caudales para los diferentes períodos de retorno considerados.

3.3.3 Resultados

Con el propósito de comparar y analizar los resultados obtenidos por ambos métodos se ha elaborado la Tabla 3.3.3. La comparación permite señalar lo siguiente:

Los valores obtenidos aplicando el método racional para períodos de retorno inferiores a los 50 años son mayores a los obtenidos aplicando el método SCS. Esta relación se invierte para períodos de retorno superiores a 50 años.

Los caudales obtenidos para la quebrada Las Yuntas presentan los mayores valores calculados por ambos métodos, esto se explica por que esta quebrada drena la subcuenca de mayor área.

La avenida de diseño a ser considerada para el cruce de cada quebrada, corresponde a los valores obtenidos por el método SCS con período de retorno de 100 años. Estos valores son mayores a los obtenidos con el Método Racional.

AVENIDAS DE DISEÑO CANAL CHINECAS (CASMA - SECHIN)

No.	Quebrada	Q ₁₀₀ (m³/s)
1	Los Incas	12.33
2	Huambacho	13.31
3	Sin nombre	6.50
4	Sin nombre	6.87
5	Sin nombre	12.73
6	Grande Seca	48.66
7	Las Yuntas	62.68
8	Sin nombre	7.09
9	Jayhua 1	15.66
10	Jayhua 2	9.73
11	Pampa Afuera	2.64

 Q_{100} = Caudal de avenidas con 100 años de período de retorno.

Considerando que la información hidrometeorológica es escasa y limitada en la zona, los valores de avenidas de la tabla anterior han sido verificados tomando en cuenta la información registrada en la Quebrada Lacramarca como producto del último evento del Fenómeno del Niño ocurrido en 1998. La Quebrada Lacramarca se ubica en el tramo anterior del canal, denominado Cascajal – Nepeña.

El análisis realizado, consiste en comparar la avenida índice (ai) de la Quebrada Lacramarca (0.50 m³/s/km²) respecto a la avenida índice de cada quebrada de interés. Los resultados permiten señalar que la avenida índice en la mayoría de las Quebradas es superior a la determinada para la quebrada Lacramarca, razón por la que se concluye que el caudal de avenidas determinado para cada quebrada, considera los valores extremos del Fenómeno del Niño, salvo el caso de las quebradas Nº 6 y 8 en el que la avenida índice (ai) es inferior a la de Lacramarca y es necesario ajustar los caudales considerando como ''ai'' 0.50 m³/s/km².

Los valores ajustados son:

N°	Quebrada	Ω ₁₀₀ (m³/s)
6	Grande Seca	68
8	Huambacho	10

TABLA 3.1.1
CARACTERISTICAS DE LAS SUBCUENCAS

No	QUEBRADA	AREA (km²)	L (km)	E inicio (msnm)	E final (msnm)	DH (m)	S (%)
1	LOS INCAS	10,65	3,25	348	195	272	4,71
2	HUAMBACHO	9,30	2,69	400	195	298	7,61
3	S/N	2,28	0,80	250	150	200	12,45
4	S/N	4,14	2,42	395	150	273	10,12
5	S/N	15,81	5,83	350	150	250	3,43
6	GRANDE SECA	136,69	15,31	550	143	347	2,66
7	LAS YUNTAS	108,66	20,09	1400	150	775	6,22
8	S/N	20,21	8,19	380	150	265	2,81
9	JAYHUA (1)	14,72	3,08	250	150	200	3,24
10	JAYHUA (2)	15,85	9,22	400	150	275	2,71
11	PAMPA AFUERA	3,00	4,03	250	150	200	2,48
				<u> </u>			

Area :Area de subcuenca

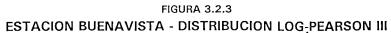
L :Longitud del cauce principalE inicio :Elevación del cauce inicialE final :Elevación del cauce final

DH :Desnivel

S :Pendiente media del cauce principal

S/N :Sin nombre

TABLA 3.2.3
ESTACION BUENAVISTA - PRECIPITACION MAXIMA EN 24 HORAS
METODO DE GUMBEL Y LOG-PEARSON III


i	Año	Pmax	log(Pmax)	Diferencia	^2	^3
1	1965	0,80	-0,097	-0,517	0,268	-0,138
2	1966	1,60	0,204	-0,216	0,047	-0,010
3	1967	8,00	0,903	0,483	0,233	0,112
4	1969	1,00	0,000	-0,420	0,177	-0,074
5	1970	5,30	0,724	0,304	0,092	0,028
6	1971	4,00	0,602	0,182	0,033	0,006
7	1972	0,50	-0,301	-0,721	0,521	-0,376
8	1973	3,60	0,556	0,136	0,018	0,003
9	1980	3,60	0,556	0,136	0,018	0,003
10	1981	1,00	0,000	-0,420	0,177	-0,074
11	1983	7,50	0,875	0,455	0,207	0,094
12	1989	3,60	0,556	0,136	0,018	0,003
13	1998	7,70	0,886	0,466	0,217	0,101
Max =		8,00	0,90	Suma =	2,026	-0,324
Prom =		3,71	0,420		•	•
Desv =		2,73	0,411			
Ag =		•	-0,460			
n =		13				
yn =		0,520				
gam =		1,060				

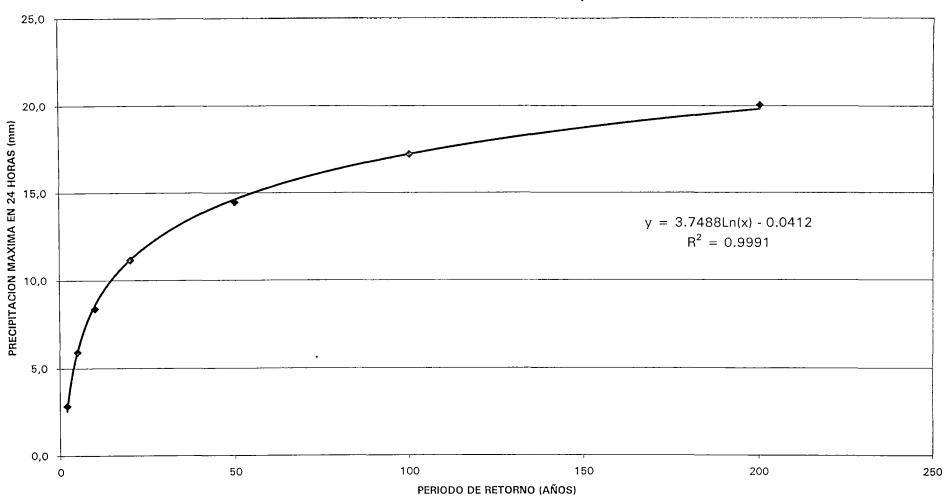

	Dist	ribución Gu	mbel	Distribución log-pearson III
Т Т	у	k	Pi	k Pi
años			mm	. mm
	0.007	0.445	0.0	0.0704
2	0,367	-0,145	3,3	0,0761 2,8
5	1,500	0,924	6,2	0,8556 5,9
10	2,250	1,632	8,2	1,2221 8,4
20	2,970	2,312	10,0	11,2
50	3,902	3,191	12,4	1,8000 14,5
100	4,600	3,849	14,2	1,9849 17,2
200	5,296	4,505	16,0	2,1456 20,0
500	6,214	5,371	18,4	23,2
1000	6,907	6,026	20,1	
10000	9,210	8,198	26,1	

TABLA 3.2.4
ESTACION QUILLO - PRECIPITACION MAXIMA EN 24 HORAS
METODO DE GUMBEL Y LOG-PEARSON III

i	Año	Pmax	log(Pmax)	Diferencia	^2	^3
1	1965	2,20	0,342	-0,485	0,235	-0,114
2 3	1966 1967	5,90 34,90	0,771 1,543	-0,056 0,716	0,003 0,512	0,000 0,366
4 5	1968 1969	4,80 6,00	0,681 0,778	-0,146 -0,049	0,021 0,002	-0,003 0,000
6 7	1970 1971	6,40 7,40	0,806 0,869	-0,021 0,042	0,000 0,002	0,000
Max =	, •	34,90	1,54	Suma =	0,776	0,249
Prom =		9,66	0,827	Suma –	0,776	0,249
Desv = Ag =		11,25	0,360 1,249			
n = yn =		7 0,520				
gam =		1,060				

	Dist	ribución Gu	ımbel	Distribución log-pearson III
Т	у	k	Pi	k Pi
años			mm	mm
2	0,367	-0,145	8,0	-0,2023 5,7
5	1,500	0,924	20,1	0,7254 12,3
10	2,250	1,632	28,0	1,3393 20,4
20	2,970	2,312	35,7	46,6
50	3,902	3,191	45,6	2,6455 60,1
100	4,600	3,849	53,0	3,1788 93,5
200	5,296	4,505	60,4	97,9
500	6,214	5,371	70,1	118,3
1000	6,907	6,026	77,5	
10000	9,210	8,198	101,9	

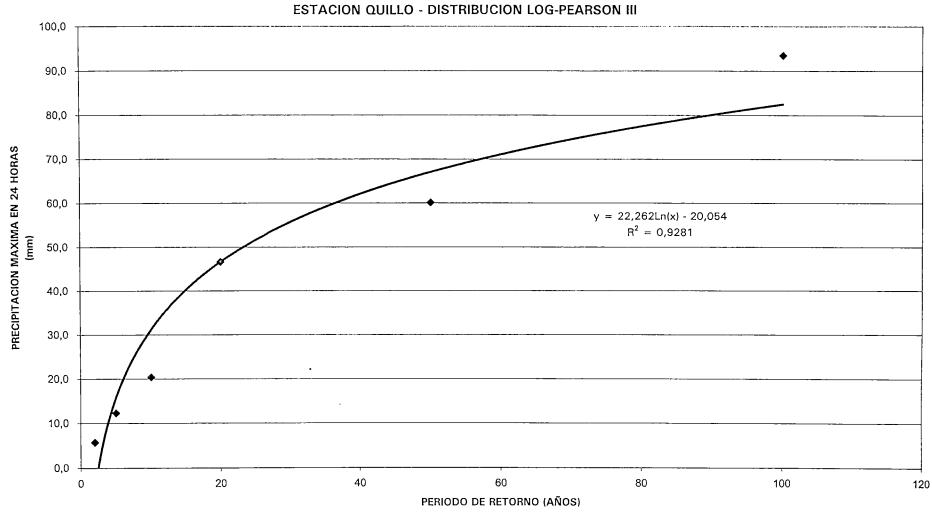


FIGURA 3.2.4

TABLA 3.3.1
ESTIMACION DE CAUDALES MAXIMOS (m³/s)
METODO RACIONAL

							INTE	NSIDAD MA	XIMA (mm/	hora)		
					1,30	3,25	4,54	5,78	7,38	8,58	9,77	11,35
No	QUEBRADA	E media	AREA	Се			PE	RIODO DE R	ETORNO (añ	ios)		
		(msnm)	(km²)		2,33	5	10	20	50	100	200	500
1	Los Incas	271,5	10,65	0,40	1,54	3,84	5,37	6,84	8,73	10,15	11,56	13,42
2	Huambacho	297,5	9,30	0,40	1,34	3,36	4,69	5,97	7,62	8,86	10,09	11,72
3	S/N	200,0	2,28	0,40	0,33	0,82	1,15	1,46	1,87	2,17	2,47	2,87
4	S/N	272,5	4,14	0,40	0,60	1,49	2,09	2,66	3,39	3,95	4,49	5,22
5	S/N	250,0	15,81	0,40	2,28	5,71	7,98	10,16	12,97	15,08	17,17	19,94
6	Grande Seca	346,5	54,90	0,40	7,93	19,83	27,69	35,26	45,02	52,34	59,60	69,24
7	Las Yuntas	775,0	84,40	0,40	12,19	30,48	42,58	54,20	69,21	80,46	91,62	106,4
8	S/N	265,0	20,21	0,20	1,46	3,65	5,10	6,49	8,29	9,63	10,97	12,74
9	Jayhua (1)	200,0	14,72	0,20	1,06	2,66	3,71	4,73	6,03	7,01	7,99	9,28
10	Jayhua (2)	275,0	15,85	.0,20	1,14	2,86	4,00	5,09	6,50	7,55	8,60	9,99
11	Pampa Afuer	200,0	3,00	0,40	0,43	1,08	1,51	1,92	2,46	2,86	3,25	3,78

S/N: Sin Nombre

TABLA 3.3.2
ESTIMACION DE CAUDALES MAXIMOS (m3/s)
METODO SCS

No	Quebrada	AREA	LONGITUD	PENDIENTE			PERIODO	DE RETOF	NO (años)		
		(km2)	(km)	(%)	5	10	20	50	100	200	500
1	Los Incas	10,65	3,25	4,7	0,37	1,55	3,84	8,09	12,33	16,46	23,03
2	Huambacho	9,30	2,69	7,6	0,35	1,42	3,93	8,91	13,31	18,48	25,56
3	S/N	2,28	0,80	12,5	0,06	0,54	1,91	4,52	6,50	8,80	12,03
4	S/N	4,14	2,42	10,1	0,16	0,66	2,00	4,64	6,87	9,48	13,06
5	S/N	15,82	5,83	3,4	0,50	1,91	4,33	8,81	12,73	17,02	23,08
6	Grande Seca	54,90	9,24	10,2	1,77	. 7,11	16,72	34,37	48,66	66,98	92,60
7	Las Yuntas	84,39	12,70	8,7	2,61	9,56	21,68	43,22	62,68	85,99	117,38
8	S/N	20,21	8,19	2,8	0,22	0,94	2,22	4,74	7,09	9,77	14,34
9	Jayhua 1	14,72	3,08	3,2	0,50	2,08	5,09	10,66	15,66	21,02	29,38
10	Jayhua 2	15,85	9,22	2,7	0,47	1,60	3,47	7,01	9,73	13,26	18,27
11	Pampa Afuera	3,00	4,02	2,5	0,10	0,38	0,87	1,84	2,64	3,54_	4,92

S/N: Sin Nombre

TABLA 3.3.3
COMPARACION ENTRE CAUDALES PICO OBTENIDOS POR LOS METODOS SCS Y RACIONAL

Método SCS

						PE	RIODO D	E RETOR	NO (años)	
No	Quebrada	Area (km2)	Longitud (km)	Pendiente (%)	5	10	20	50	100	200	500
											·
1	Los Incas	10,65	3,25	4,7	0,37	1,55	3,84	8,09	12,33	16,46	23,03
2	Huambacho	9,30	2,69	7,6	0,35	1,42	3,93	8,91	13,31	18,48	25,56
3	Sin Nombre	2,28	0,80	12,5	0,06	0,54	1,91	4,52	6,50	8,80	12,03
4	Sin Nombre	4,14	2,42	10,1	0,16	0,66	2,00	4,64	6,87	9,48	13,06
5	Sin Nombre	15,82	5,83	3,4	0,50	1,91	4,33	8,81	12,73	17,02	23,08
6	Grande Seca	54,90	9,24	10,2	1,77	7,11	16,72	34,37	48,66	66,98	92,60
7	Las Yuntas	84,39	12,70	8,7	2,61	9,56	21,68	43,22	62,68	85,99	117,38
8	Sin Nombre	20,21	8,19	2,8	0,22	0,94	2,22	4,74	7,09	9,77	14,34
9	Jayhua 1	14,72	3,08	3,2	0,50	2,08	5,09	10,66	15,66	21,02	29,38
10	Jayhua 2	15,85	9,22	2,7	0,47	1,60	3,47	7,01	9,73	13,26	18,27
11	Pampa Afuera	3,00	4,02	2,5	0,10	0,38	0,87	1,84	_2,64	3,54	4,92

Método Racional

						PE	RIODO D	E RETOR	NO (años)	
No	Quebrada	Area (km2)	Ce	Pendiente (%)	5	10	20	50	100	200	500
1	Los Incas	10,65	0,4	4,7	3,84	5,37	6,83	8,73	10,15	11,56	13,43
2	Huambacho	9,30	0,4	7,6	3,36	4,69	5,97	7,62	8,86	10,10	11,73
3	Sin Nombre	2,28	0,4	12,5	0,82	1,15	1,46	1,87	2,17	2,47	2,87
4	Sin Nombre	4,14	0,4	10,1	1,49	2,09	2,66	3,39	3,95	4,50	5,22
5	Sin Nombre	15,82	0,4	3,4	5,71	7,98	10,15	12,96	15,07	17,18	19,95
6	Grande Seca	54,90	0,4	10,2	19,82	27,69	35,24	45,01	52,33	59,63	69,25
7	Las Yuntas	84,39	0,4	8,7	30,47	42,57	54,17	69,19	80,45	91,67	106,46
8	Sin Nombre	20,21	0,2	2,8	3,65	5,10	6,49	8,28	9,63	10,97	12,75
9	Jayhua 1	14,72	0,2	3,2	2,66	3,71	4,72	6,03	7,01	7,99	9,28
10	Jayhua 2	15,85	0,2	2,7	2,86	4,00	5,09	6,50	7,55	8,61	10,00
11	Pampa Afuera	3,00	0,4	2,5	1,08	1,51	1,92	2,46	2,86	3,26	3,78

Tabla N° 3.3.4

VERIFICACION DE CAUDALES DE AVENIDAS DE DISEÑO CON Tr = 100 Años

N°	QUEBRADA	CUENCA DRENADA (km2)	CAUDAL DE AVENIDA CALCULADA (SCS) (m3/s)	CAUDAL DE AVENIDA REGISTRADA (m3/s)	AVENIDA INDICE (Ai) (m3/s/km2)	FACTOR DE CORRECCION RESPECTO A QUEBRADA LACRAMARCA (AIL/AIQ)	CAUDAL DE AVENIDA DE DISEÑO (m3/s)
*	LACRAMARCA	501,0	-	250,00	0,50	1,00	250,00
1	LOS INCAS	10,7	12,30	-	1,15	1,00	12,30
2	HUAMBACHO	9,3	13,30	-	1,43	1,00	13,30
3	S/N	2,3	6,50	-	2,83	1,00	6,50
4	S/N	4,1	6,90	~	1,68	1,00	6,90
5	S/N	15,8	12,70	-	0,80	1,00	12,70
6	GRANDE SECA	136,7	48,70	-	0,36	1,40	68,18
7	LAS YUNTAS	108,7	62,70	-	0,58	1,00	62,70
8	S/N	20,2	7,10	-	0,35	1,42	10,08
9	JAYHUA 1	14,7 •	15,70	-	1,07	1,00	15,70
10	JAYHUA 2	15,9	9,70	-	0,61	1,00	9,70
11	PAMPA AFUERA	3,0	2,60	-	0,87	1,00	2,60

NOTA

: La corrección de las avenidas que se pueden presentar en las quebradas de interés para el proyecto, se realiza tomando como referencia y como valor mínimo la avenida índice de la Qda. Lacramarca. El factor de correción es el cociente de Ai de Lacramarca entre Ai de la quebrada de interés. Si el factor (AiL/AiQ) determinado es < 1, se adopta 1. AiL corresponde a la Qda Lacramarca

^(*) Información Proporcionada por el CONSORCIO CHINECAS

CAPITULO IV GEOTECNIA

4.1 GENERALIDADES

4.1.1 Introducción

El presente documento tiene por objeto detallar los trabajos ejecutados relacionados con el estudio Geológico-Geotécnico como parte de la Ingeniería del Canal Principal Chinecas - Tramo Nepeña-Casma, Sechín, con el propósito de conocer las características geotécnicas de los materiales que interesa a lo largo de su trazo, determinar su incidencia respecto al total del proyecto, así como señalar las recomendaciones que han sido consideradas en el diseño de las estructuras que conforma el proyecto. Asimismo, incluye la descripción, resultados y evaluación de las canteras y materiales que serán utilizados en la construcción de las obras, tanto agregados para fabricación de concreto, como materiales para rellenos y afirmado de los caminos de mantenimiento.

Las principales actividades que fueron ejecutadas durante el desarrollo del Estudio fueron:

- Reconocimiento del área del proyecto
- Programa de Levantamientos geológicos de campo
- Programa de investigaciones Geotécnicas de Cimentación
- Programa de ensayos de laboratorio
- Programa de investigación y evaluación de canteras
- Evaluación geotécnica de los túneles
- Recomendaciones

4.1.2 Reconocimiento del Area

Al inicio de los estudios se realizó el reconocimiento del área del proyecto con el propósito de verificar in situ las principales características geológicas y geotécnicas de los materiales existentes en el área. Se dedicó especial atención a la distribución de los principales tipos de materiales existentes a lo largo del trazo del canal a fin de

planificar y ejecutar un programa de investigación geotécnica, así como la ejecución de ensayos de campo.

4.1.3 Programa de Trabajos Geológicos

Sobre la base de la visita de reconocimiento realizada al área de interés, se programó la ejecución de los siguientes trabajos:

- Levantamiento geológico regional a escala 1:25,000
- Levantamiento geológico geotécnico a escala 1:2,000

a) <u>Levantamiento geológico regional, escala 1:25,000</u>

Fue realizado para tener una visión generalizada de los diferentes tipos de material que se presentan en el área.

La escala de trabajo fue determinada en base a la extensión espacial de los materiales.

b) <u>Levantamiento geológico - geotécnico, escala 1:2,000</u>

Se realizaron los trabajos de campo correspondientes al cartografiado geológico - geotécnico en planos a escala 1: 2,000 conforme se puede apreciar en el primer kilómetro mostrado y realizado al todo lo largo del trazo, que forman parte del Proyecto materia de estudio (Planos de Planta y Perfil Longitudinal por cada kilómetro).

Durante el levantamiento geológico se reconocieron los diversos tipos de material sobre los que se emplazará el canal y se cimentará las obras de arte (acueductos, canoas, alcantarillas, etc.). El levantamiento consideró un ancho de faja de 50 m a cada lado del eje de trazo. En tramos en roca se identificó el tipo de litología y las características principales de los mismos, tales como grado de

fracturamiento, meteorización y resistencia a la compresión. En los tramos de material suelto, se identificó el tipo de suelo de acuerdo a su origen y se determinaron sus características geotécnicas principales a partir de ensayos en secciones típicas.

4.1.4 Programa de Investigaciones Geotécnicas de Cimentación

Con el fin de reconocer las características geotécnicas de los materiales existentes a lo largo del trazo del canal, se realizó un programa de investigación con ensayos in situ consistente en las siguientes actividades:

- Excavación de calicatas
- Ensayos de densidad natural
- Ensayos de penetración con Penetrómetro ligero (SPL)
- Perforaciones con equipo manual (barreno manual)
- Toma de muestras

Las calicatas fueron excavadas cada 400 m en promedio o donde las características de los materiales lo requerían. En el Anexo C.1 se presentan algunos registros representativos de las calicatas excavadas.

Los ensayos de densidad natural fueron realizados en correspondencia a cada tipo de material identificado en el campo y donde el terreno requería la realización de una verificación. En el Anexo C. 2 se muestra los resultados de estos ensayos.

También se realizaron pruebas de resistencia a la penetración con el equipo de penetración ligero (SPL). Este tipo de ensayo permitió identificar las características de los materiales por comparación con el ensayo de penetración estándar (SPT). Los resultados de estos trabajos se adjunta en el Anexo C.3.

Con el fin de conocer las características de los materiales sobre los que se cimentarán las estructuras, en algunos tramos en que la rasante del canal se ubica a profundidades mayores de 2 m, se realizaron perforaciones con barreno manual.

4.1.5 Programa de Ensayos de Laboratorio

Para la identificación de las características geotécnicas de cada tipo de material se realizaron los siguientes ensayos de laboratorio:

- Granulometría
- Límites de Consistencia (líquido y plástico)
- Pesos específicos de sólidos
- Humedades naturales
- Densidades Máximas y mínimas
- Clasificación de Suelos

En el Anexo C.4 se adjuntan los resultados de los ensayos de laboratorio

4.1.6 Programa de Investigación de Canteras

Con el propósito de determinar la disponibilidad y características de los materiales a ser utilizados en la construcción del canal y obras conexas, se identificaron fuentes de materiales para los siguientes usos:

- Canteras para agregados de concreto
- Canteras para rellenos
- Canteras para afirmados.

4.1.7 Evaluación Geotécnica para Tramos en Túneles

El Segundo Tramo del Canal Chinecas a lo largo de su trazo presenta siete (7) túneles de longitudes variables. Con el propósito de pronosticar las características de los materiales, así como la incidencia de los mismos a lo largo de cada uno de los túneles se realizó una evaluación geotécnica, la misma que se incluye en el presente informe.

4.2 GEOLOGIA GENERAL

4.2.1 Marco Geológico Regional

En el área del proyecto se tienen rocas intrusivas y arenas de origen marino y eólico principalmente. En menor proporción se tienen depósitos de origen aluvial, depósitos coluvio - Aluvial y rocas de origen volcánico.

El trazo se desarrolla paralelo al límite entre los apófisis de la Cordillera occidental y las pampas y llanuras costeras, sobre la cota 200 msnm aproximadamente.

4.2.2 Geomorfología

El trazo del Canal Principal Chinecas corre paralelo a la costa con dirección Norte – Sur, sobre una superficie de suave morfología donde se ha podido diferenciar las siguientes unidades morfológicas:

a) <u>Unidad de Montes Islas</u>

Esta Unidad corresponde a cerros aislados de baja altura cercana a la línea de costa y de formas redondeadas cubiertas por un manto de cantos y/o suelos producto del intemperismo de la roca.

b) Pampas Costeras

Estas unidades corresponden a grandes áreas subhorizontales, con pendiente hacia la línea de costa cubiertas en su totalidad por arenas eólicas o marinas. Su origen corresponde a fondos marinos emergidos. El trazo del canal se desarrolla principalmente en esta unidad.

c) <u>valles</u>

Esta unidad corresponde a los cauces de los ríos Nepeña y Sechín, los mismos que en la zona presentan cauces amplios con direcciones SW - NE y actividad fluvial estacional entre los meses de Noviembre a Abril. El trazo del primer tramo del canal cruza el río Nepeña.

d) Ouebradas

Esta unidad corresponde a antiguos cauces con evidencias de fuerte escorrentía superficial. Presenta cauces amplios y rellenos con material granular. Por lo general se muestran cubiertas casi en su totalidad por depósitos aluviales, coluviales y eólicos. En algunas quebradas que cruza el canal a lo largo de su trazo, se observan indicios relativamente recientes de flujos de agua y material sólido.

e) Apófisis de la Cordillera Occidental

Esta unidad corresponde al frente occidental de la Cordillera Occidental. El trazo del canal corre paralelo a la zona de contacto entre esta unidad y la denominada Pampas Costeras.

4.2.3 Litoestratigrafía

En el área de estudio se exponen rocas intrusivas y volcánicas con rango geocronológico comprendido entre el Cretáceo y el Reciente.

4.2.3.1 Grupo Casma

En el área del Proyecto se expone en tramos muy puntuales y de poca extensión. Corresponde a afloramientos de andesita de textura afanítica a porfíritica, de color gris oscuro a gris claro con tonalidad verdosa.

4.2.3.2 Depósitos Cuaternarios

a) Depósitos Arenas Marinas

Estos depósitos corresponden a arenas finas, medias o gruesas, semi densas a densas. Morfológicamente conforman grandes pampas con pendientes hacia el mar. Se trata de antiguos fondos marinos de litoral, emergidos durante el pleistoceno.

En superficie presenta una cobertura de piedras angulosas, las mismas que persisten en profundidad. El origen de estos materiales corresponde a bloques arrancados de la antigua línea de costa y transportados y depositados en las arenas de litoral. En algunos casos estas arenas engloban fragmentos de roca producto de la erosión por golpeteo de las olas contra los afloramientos rocosos.

b) <u>Depósitos Eólicos</u>

En el área se tiene una intensa actividad eólica, que produce acumulaciones de arena que dan lugar a la formación de grandes campos de dunas.

Estas estructuras están conformadas por arena fina con compacidad suelta a muy suelta, en constante migración. También se tiene acumulaciones fósiles que generalmente cubren las laderas de los cerros. En ciertos sectores se presenta vegetación típica de ambientes desérticos, conocida localmente con el nombre de achupalla.

c) <u>Depósitos Aluviales</u>

Estos depósitos se ubican puntualmente en algunos sectores del área de estudio y corresponden a fragmentos de roca subangulosos de diversos tamaños englobados en una matriz areno-limoso, son producto del acarreo por corrientes de agua temporales.

d) <u>Depósitos Coluvio - Aluviales</u>

Estos corresponden a depósitos acumulados por la acción de la gravedad y deposi

-tados a cierta distancia por corrientes temporales de agua, conformados por fragmentos de roca de variados tamaños englobados en una matriz arenosa.

4.2.3.3 Rocas Intrusivas

Los plutones que afloran en el área pertenecen al batolito de la Costa, siguen una secuencia de básica a ácida, están emplazados como pulsaciones y tienen un amplio rango de edad que va desde los 95 a los 100 M.A.

En el área de estudio afloran rocas intrusivas que de acuerdo a su composición mineralógica son clasificadas como granitos, granodioritas y dioritas, predominando las dos primeras. La diorita corresponde al 5% de las rocas intrusivas aflorantes en el área y se ubica entre el Km 87 (Túnel 3 – Salida) al Km 90.5 (Túnel 4 – Entrada).

4.2.4 Geología Estructural

Las estructuras que se observan en el área corresponden a la Tectónica Andina, caracterizadas por una serie de fases de compresión, separadas por intervalos marcados. El emplazamiento de las rocas intrusivas aflorantes en el área está relacionadas con la Fase Peruana.

En el área del Proyecto no se tiene presencia de fallas importantes; un gran número de diaclasas afecta al basamento rocoso y están distribuidas en varias direcciones, que constituyen "Sistemas de diaclasas", que en muchos casos son acompañadas por disyunción tabular y esferoidal.

Es importante notar la existencia de enjambre de dique subparalelos de naturaleza andesítica y aplitica, que se encuentran intruyendo al macizo intrusivo, estos diques siguen una dirección predominante de NW-SE.

4.2.5 Geodinámica Externa

Los riesgos por peligro geodinámica externa están en función de la probabilidad de ocurrencia de fuertes variaciones climáticas que podrían dar lugar a intensas precipitaciones pluviales con el consiguiente acarreo de materiales en las quebradas que cruza el canal a lo largo de su trazo, razón por la que se ha previsto estructuras de cruce apropiadas, tomando en cuenta además, las evidencias que se han verificado en el campo.

a) Aluviones

En varios tramos a lo largo del trazo de canal existen evidencias de antiguos aluviones, tales como en la Qda. Los Incas, Qda. Huambacho, Qda. Las Yuntas, Qda. Grande Seca y otras sin nombre, éstas se manifiestan en diferentes magnitudes de acuerdo a las dimensiones de los fragmentos desplazados, desde arenas hasta bolones de roca de hasta 15" de diámetro. En el caso de lluvias excepcionales podrían ocurrir nuevos movimientos de material suelto.

Estas escorrentías superficiales pueden ser de variada magnitud desde huaycos hasta simples flujos de barro.

b) <u>Acumulación Eólica</u>

En el área se observa zonas con acumulación de grandes mantos de arena eólica y dunas migratorias, que se ubican principalmente en el tramo de canal que cruza la Qda. Grande Seca. En la superficie de las dunas y mantos eólicos, son muy característicos las rizaduras producidas por el viento que indican que la dirección de migración de arenas es predominantemente de SW-EN, La migración se manifiesta en diferentes intensidades, por lo que para evitar el ingreso de arenas en el canal en ciertos tramos se hace necesario la construcción de conductos cubiertos.

4.3 GEOTECNIA DE LOS MATERIALES DE FUNDACION

4.3.1 Generalidades

Con el objetivo de conocer las características geotécnicas del terreno de fundación de las obras de conducción, se efectuó un programa de investigaciones geotécnicas que comprendió la excavación de calicatas, ensayos de mecánica de suelos in - situ y ensayos de laboratorio a muestras representativas.

Las investigaciones del terreno de fundación estuvieron orientadas a conocer las características de los materiales que lo conforman y sus parámetros geotécnicos, entre estos, los que están relacionados con la estabilidad de las estructuras, presión admisible, inestabilidad interna, agresividad de los suelos y la calidad de los materiales de cantera para la construcción de las obras.

4.3.2 Investigaciones In Situ

El estudio de las condiciones geotécnicas de cimentación fue efectuado mediante la ejecución de calicatas. Las profundidades fueron variables de acuerdo a los requerimientos de niveles de cimentación realizándose profundizaciones con barreno manual cuando se requerían.

Paralelamente se ejecutaron ensayos de penetración dinámica con el Penetrómetro Ligero (SPL). También se realizaron ensayos de densidad in-situ con el método del cono de arena.

4.3.2.1 Calicatas

a.- Objetivo

Para conocer las características del suelo de cimentación se excavaron calicatas en varios puntos del trazo de canal donde la variación del material lo justificaba y/o cada 400 m, levantando información referente a la descripción del perfil excavado. Para la clasificación de los materiales se uso el Sistema Unificado de Clasificación de Suelos (SUCS), tomándose muestras representativas para su análisis de laboratorio. En el cuadro 4.3.1 se muestra la relación de las 169 calicatas realizadas a lo largo del

trazo del canal, indicando su ubicación, profundidad y el tipo de suelo superficial.

En el cuadro 4.3.2 se muestran el resumen de los ensayos Físicos Mecánicos realizados en laboratorio y campo.

b.- Registro de Calicatas

En cada una de las calicatas de exploración efectuadas se realizó su registro de excavación correspondiente. En este registro se indica el tipo de suelo de acuerdo a la clasificación SUCS, perfil estratigráfico y descripción del suelo.

En el Anexo C.1, se adjuntan algunos registros representativos de excavación de calicatas.

4.3.2.2 Densidad In Situ

a.- Objetivo

El método empleado en campo es el del cono de arena. Este se basa en obtener el peso del suelo de una pequeña excavación hecha sobre la superficie del suelo y proceder a determinar el volumen mediante diferencia de pesos con la arena usada la misma que se encuentra calibrada.

b.- Procedimiento

El procedimiento corresponde al método del cono de arena. Se utilizo un cono y arena calibrada. Fue realizado principalmente para conocer la densidad de las arenas que se tienen a lo largo del trazo del canal. La muestra del suelo de la cavidad y la arena que la reemplazaba fue recogida en recipientes y posteriormente pesado en el laboratorio.

c.- Resultados

En el Anexo C.2, se muestran los resultados de laboratorio, en el que se obtiene que la densidad natural de las muestras ensayadas. Los resultados varían de 1.134 a 2.177 gr./cm³.

4.3.2.3 Ensayo de Penetración Ligera (SPL)

a.- Objetivo

Con la finalidad de conocer las características del material (arenas) principalmente en lo referente a la compacidad relativa y capacidad de soporte, se realizaron ensayos de penetración ligera (SPL). Estos ensayos fueron ejecutados de acuerdo a la Norma DIN 4094.

b.- Características del Equipo Utilizado

Las características del equipo utilizado son:

Punta cónica de acero de 90° de 35.6 mm de diámetro

Varillas huecas de 1 m de longitud con marcas cada 10 cm

El martillo que pesa 10 Kg

La guía de 1 m para una caída libre de 50 cm

c.- Procedimiento

Este ensayo consiste en hincar en el terreno una punta cónica, colocada en el extremo inferior de una columna de varillas, mediante el impacto de un martillo. El martillo tiene una altura de caída constante (50 cm.).

Al sondear por percusión se introduce la sonda en el subsuelo, se cuenta el número de golpes requeridos para la penetración de 10 cm de una punta cónica, con una frecuencia de 15 a 30 golpes por minuto. La resistencia a la penetración se representa por el número de golpes necesarios para penetrar los últimos 20 cm, por

cuanto los primeros 10 cm podría encontrarse en estado alterado

d.- Equivalencia del SPT (N₃₀) con el SPL (N₁₀)

El número de golpes N_{10} del SPL fue correlacionado con el número de golpes N_{30} del ensayo de SPT a partir de las siguientes expresiones que relacionan la densidad relativa:

Norma DIN 4094, para el Penetrómetro dinámico de peso ligero $Dr = 0.10 + 0.365 \ log \ N_{10}$

Norma ASTM D-1586-63T, para el ensayo de penetración estandard $Dr = 0.10\,+\,0.385\,log\,\,N_{30}.$

Donde:

Dr = Densidad relativa (%)

 N_{30} = Numero de golpes del SPT

 N_{10} = Numero de golpes del SPL

Cuadro de equivalencia para suelos arenosos.

NUMERO DE GOLPES		COMPACIDAD RELATIVA
SPL	SPT	
0 – 2	0 – 2	Muy suelta
3 – 7	3 – 6	Suelta
7 – 13	6 – 11	Medianamente Suelta
13 – 24	11 – 20	Medianamente Densa
24 – 62	20 – 50	Densa
62	50	Muy densa

Existen dos procedimientos para calcular la capacidad portante del suelo; Uno de ellos parte del conocimiento de las características de resistencia al corte que son obtenidos mediante ensayos de laboratorio.

El otro método esta basados en los resultados de ensayos "in situ", esta última recomendada para arenas secas. En este caso la presión admisible se calcula en base a los resultados obtenidos en los ensayos de penetración.

e.- Registros de los Ensayos Ejecutados

Los ensayos de penetración se muestran en los registros adjuntos al Anexo C3, donde se indica su ubicación así como la compacidad relativa del suelo ensayado.

f.- Resultados de los Ensayos

Según los datos de los resultados obtenidos se concluye que la compacidad relativa de las muestras ensayadas, varia de medianamente densa a densa.

4.3.3 Ensayos de Laboratorio

Las muestras representativas fueron procesadas en el laboratorio para la determinación de su Granulometría, clasificación SUCS y propiedades físicas. También se realizaron los ensayos de densidades máximas y mínimas (para determinar la densidad relativa) y humedad.

En el Anexo C.4 se muestran los resultados de laboratorio.

4.3.4 Parámetros deducidos

4.3.4.1 Coeficiente de Uniformidad (Cu)

Representa una medida simple de la uniformidad de los granos cuando su valor es < 3. Las arenas encontradas tienen un coeficiente que varia de 1.60 a 28.35 y ocasionalmente 224.39, indicativo de que en el área investigada predominan arenas mal graduadas y ocasionalmente bien graduadas.

4.3.4.2 Dimensión Efectiva (D10)

Es el valor que viene a ser el tamaño de los granos que se hallan en porcentaje menor al 10% en peso, de acuerdo a los ensayos de Granulometría, la dimensión efectiva varia de 0.074 a 0.158 mm para el caso de arenas y ocasionalmente a 0.30 en gravas.

4.3.4.3 Densidad Relativa (Dr)

Es la relación que define el estado de densidad de las arenas y es expresado en porcentaje.

La determinación se realizo directamente por medio de la densidad del terreno y con las densidades máximas y mínimas.

También se uso el concepto de la resistencia a la penetración. Una vez obtenida en el campo los valores de N₁₀, se calcularon los valores de acuerdo con la fórmula especificada por la norma DIN 4094, para el Penetrómetro dinámico de peso ligero.

$$Dr = 0.10 + 0.365 Log N_{10}$$

En el cuadro Nº4.3.3, se muestran los resultados obtenidos de las muestras de suelos.

4.3.5 Clasificación y Características de los Materiales

De acuerdo a los estudios se ha diferenciado cinco tipos de terreno: Arenas medianamente densa a densa de origen marino, arenas sueltas a muy sueltas de origen eólico, gravas arenosas y arenas gravosas de origen aluvial, suelos gravo-arenosos de origen coluvio - Aluvial y basamento rocoso.

4.3.5.1 Suelos de Origen Marino

A.- Descripción Geológica

Corresponden a arenas finas a medias y muy ocasionalmente gruesas, en ciertos sectores estas arenas engloban a fragmentos de roca subangulosos a subredondeados (de 10 a 20%), presentan un color gris claro, seca. En algunos casos presenta superficialmente una cobertura de gravilla. Su excavación puede efectuarse por medios mecánicos.

B.- Características Geotécnicas

a) <u>Densidad</u>

La densidad relativa de este tipo de suelos varía de 56% a 75%, con valores esporádicos más bajos.

b) Resistencia a la Penetración

De acuerdo a los resultados de las pruebas de penetración dinámica ligero, en este tipo de arena el número de golpe de los últimos 20 cm varía dentro del rango de 10 a 58 golpes, por lo tanto se deduce que la arena existente en el área es medianamente suelta a densa, aumentando su grado de compacidad en profundidad.

c) Capacidad Portante

En cuanto a la calidad como material de fundación, por su aceptable grado de compacidad (medianamente suelta a densa) resulta ser material apropiado para base de estructuras del sistema de irrigación.

d) <u>Clasificación Granulométrica</u>

Este tipo de depósito corresponde a arenas que presentan una Granulometría uniforme (mal gradada - SP), el tamaño de los granos varía de 0.1 a 1 mm. El tamaño de los fragmentos de roca varía de 5 mm a 40 mm ocasionalmente de mayores dimensiones, siendo estos subangulosos a subredondeados.

C.- Características para Construcción

La excavación en estos materiales puede realizarse por medios mecánicos, los taludes de corte serán de 1.5 (h): 1 (v). Se requiere para el refine previo al revestimiento el humedecimiento de la superficie.

La estructura de conducción recomendada en este tipo de material es el canal trapezoidal.

4.3.5.2 Suelos de Origen Eólico

A.- Descripción Geológica

Estos depósitos corresponden a arenas finas a medias, color gris claro, en ciertos casos presenta una tonalidad amarillenta, seca; se originan por la acumulación de arenas acarreadas por el viento. En algunos casos en dunas fósiles se encuentran restos de raíces de arbustos propias del medio desértico. Su excavación puede realizarse por medios mecánicos. Se las encuentra conformando grandes cordones o campos de dunas que generalmente cruzan al trazo de la conducción.

B.- Características Geotécnicas

a) <u>Densidad</u>

La densidad relativa de este suelo varía de 20% en su estado muy suelto a 50%.

b) Resistencia a la Penetración

De acuerdo a los resultados de las pruebas de penetración, en este tipo de arena el número de golpes de los últimos 20 cm varía de 2 en la superficie a 10 golpes, por lo tanto se deduce que las arenas existentes en el área son muy sueltas a

sueltas, aumentando ligeramente su grado de compacidad hacia la profundidad.

c) <u>Capacidad Portante</u>

En cuanto a la calidad como material de fundación, no presenta un buen grado de compacidad (muy sueltas a sueltas).

d) <u>Clasificación Granulométrica</u>

Este tipo de depósito corresponde a arenas limpias cuya Granulometría es uniforme (mal gradada - SP), el tamaño de los granos varía de 0.1 a 0.5 mm.

C.- Características para Construcción

En este tipo de material se tiene previsto que la conducción corresponda a conductos cubiertos. Los taludes de corte serán temporales.

Para la cimentación de las estructuras será necesario la colocación de una base granular compactada y un solado de concreto pobre.

4.3.5.3 Suelos de Origen Aluvial

A.- Descripción Geológica

Estos depósitos son producto del acarreo por corrientes temporales de agua y corresponden a depósitos caóticos que incluyen a fragmentos de tamaño heterometrico desde arenas medias hasta bloques de roca. Estos suelos por lo general presentan un color gris oscuro a claro. Su excavación puede efectuarse por medios mecánicos.

B.- Características Geotécnicas

a) Densidad

La densidad relativa de este tipo de suelo es mayor de 75%.

b) Resistencia a la Penetración

De acuerdo a los resultados de las pruebas de penetración, en este tipo de arena el número de golpes de los últimos 20 cm es mayor de 50 golpes, por lo tanto se deduce que las arenas existentes en el área son densas a muy densas. Superficialmente suelen presentarse en algunos casos a ligeramente sueltos a medianamente densos.

c) <u>Capacidad Portante</u>

En cuanto a la calidad como material de fundación, debido a su buena compacidad (densas) resulta apropiado para base de estructuras.

d) <u>Clasificación Granulométrica</u>

Estos depósitos están constituidos por suelos clasificados de acuerdo a la Clasificación Unificada de Suelos (SUCS) como GP, GW, SP. El tamaño de los fragmentos de roca puede variar de 5 a 30 cm, ocasionalmente mayores de 30 cm, siendo estos fragmentos subangulosos.

C.- Características para Construcción

La excavación en estos materiales puede realizarse por medios mecánicos, los taludes de corte serán de 1(h): 1(v) para caja de canal y 0.5 (h): 1 (v) para nivel de plataforma. La estructura de conducción apropiada en este tipo de material es el canal trapezoidal.

3.4.5.4 Suelos de Origen Coluvio - Aluvial

A.- Descripción Geológica

Estos depósitos corresponden a depósitos caóticos que incluyen a fragmentos de tamaño heterometrico desde arenas hasta bloques de roca. Acumulación de fragmentos producto del desprendimiento por gravedad y depositados a cierta distancia por corrientes temporales de agua. Su excavación puede efectuarse por medios mecánicos.

B.- Características Geotécnicas

a) Densidad

La densidad relativa de este tipo de suelo varía de 40% a 70%.

La cual se deduce que el estado de compacidad varía de suelta a medianamente densa.

b) <u>Capacidad Portante</u>

En cuanto a la calidad como material de fundación, por su aceptable buen grado de compacidad (densas) resulta apropiado para base de estructuras del sistema de irrigación.

c) <u>Clasificación Granulométrica</u>

Estos depósitos están constituidos por suelos clasificados de acuerdo a la Clasificación Unificada de Suelos (SUCS) como SP. El tamaño de los fragmentos de roca puede variar de 5 a 30 cm, ocasionalmente mayores de 30 cm, siendo estos fragmentos subangulosos.

C.- Características para Construcción

La excavación en estos materiales puede realizarse por medios mecánicos, los taludes de corte serán de 1(h): 1(v).

La estructura de conducción en este tipo de material es el canal trapezoidal.

3.4.5.5 Rocas de origen Intrusivo

A.- Descripción Geológica

a) Granito - Granodiorita

Rocas intrusivas de color gris blanquecino, que en ciertos tramos el granito presenta tonalidades rosadas, mientras que la Granodiorita es de color gris claro, leucocrata a mesocrata, de grano medio a grueso, fracturamiento amplio a moderado, ligera a moderadamente meteorizada en superficie, muy puntualmente intensamente meteorizada. De acuerdo a sus características indicadas se recomienda que para su excavación será necesario la utilización de explosivos.

b) Diorita - Gabrodiorita

Rocas intrusivas de color gris oscuro, melanocrata, de grano medio, fracturamiento moderado, intensa a moderadamente meteorizada. De acuerdo a sus características indicadas recomiendan que para su excavación será necesario la utilización de explosivos.

B.- Características Geotécnicas

Por tratarse de rocas de mediana a buena calidad para la excavación será necesario el uso de explosivos.

C.- Características para Construcción

Los taludes de corte en caja de canal trapezoidal serán de 1:1. Los taludes de corte hasta el nivel de plataforma serán de 1(h): 10(v).

4.4 EVALUACION DE LOS SUELOS COMO CIMENTACION

4.4.1 Generalidades

En este capítulo se trata sobre las características físicas de los materiales para la cimentación de las estructuras.

Se tiene previsto que la caja canal sea realizada en corte y en algunos tramos debido a la topografía deberán realizarse rellenos.

También se tienen algunas estructuras importantes como son acueductos y conductos cubiertos, puentes vehículares y peatonales, así como alcantarillas y canoas.

Para la cimentación de estas estructuras se debe considerar la presión admisible, el asentamiento del suelo, la estabilidad de los taludes y la inestabilidad interna de los suelos.

En el caso de la cimentación del canal se puede considerar el siguiente principio; se trata de que el peso del material de fundación excavado es igual o menor al peso de la estructura, en este caso al peso del revestimiento mas el agua que conducirá el canal, de manera que al nivel del desplante no sienta la substitución efectuada por no llegar ninguna presión adicional a la originalmente existente.

4.4.2 Capacidad Portante

Es la capacidad que puede soportar un suelo de cimentación sin que su estabilidad sea amenazada.

4.4.3 Presión Admisible

Es la Capacidad portante dividida por un factor de seguridad, su valor dependerá de la experiencia del especialista.

Para este Proyecto se usó un valor conservador de 3 para el cálculo de la presión admisible en suelos gravosos.

4.4.3.1 Suelos de Origen Marino y Eólico

Para el cálculo de la presión admisible por asentamiento, se empleó la expresión dada por Terzaghi y Peck, que relacionan los asentamientos reales en arena, con los resultados de los Ensayos de Penetración Estandard. Esta correlación empírica puede expresarse aproximadamente como:

$$q_a = 0.338 \text{ (N-3)} ((B+0.3) / 2B)^2$$

donde:

q_a = Capacidad de carga neta permisible, en Kg / cm², correspondiente aproximadamente a un asentamiento de 2.5 cm.

 Número de golpes en la prueba de penetración estándar representativo para la zona del subsuelo afectada por la zapata

B = Ancho de la zapata, en centímetros

En el Cuadro Nº 4.4.1 se muestran los resultados obtenidos en suelos de origen eólicos y en el cuadro Nº 4.4.2 se muestran los resultados obtenidos en suelos de origen marinos, lo cual podemos concluir que en la zona la capacidad portante en suelos de origen eólicos varían de 0.72 kg/cm² a 1.01 kg/cm² y en suelos de origen marinos varían de 1.00 kg/cm² a 7.60 kg/cm².

4.4.3.2 Suelos de Origen Aluvial y Coluvio - Aluvial

La capacidad de carga última respecto a falla local queda dado por la expresión propuesta por K. Terzaghi para suelos friccionantes:

Zapata cuadrada

$$qc = y D_f N_q + 0.4 y B N_y$$

donde:

qc = Capacidad última (kg/cm²)

y = Peso volumétrico (gr./cm³)

D_f = Profundidad de cimentación (m)

B = Ancho de la zapata (m)

N_q y N_y = Factores de corrección, dependen del valor del ángulo de

fricción

En el cuadro Nº 4.4.3 se muestran los resultados, podemos decir que la capacidad portante admisible de los suelos aluviales y coluvio - aluvial en la zona del canal varía de 3.65 kg/cm² a 4.87 kg/cm² a una profundidad de desplante de 1.20 m y de 4.33 kg/cm² a 5.78 kg/cm² a una profundidad de desplante de 1.50 m.

4.4.4 Estabilidad de Taludes

La inestabilidad de un talud esta en función de su ángulo de fricción interna, en el caso de que el ángulo de inclinación de un talud sea igual a su ángulo de fricción interna, estará en su condición de estabilidad extrema. Se considera que 1º a 2º menos que el ángulo de fricción es suficiente para garantizar la estabilidad del talud.

El ángulo de fricción interna (Ø) fue calculado a partir de la siguiente expresión de MEYERHOF

 $\emptyset = 25 + 0.15 \,\mathrm{Dr}$ más de 5% de arenas finas y limos

Los resultados se pueden mostrar en el cuadro Nº 4.3.1 de las muestras ensayadas.

4.4.4.1 Suelos de Origen Marino

Para estos suelos se ha obtenido un ángulo de fricción de 32° a 38°, asumiendo un factor de seguridad de 1.10, se tiene un valor de 29.1° a 34.5°, por lo que se recomienda un talud de 1.5: 1 tanto para caja de canal como para corte en plataforma.

4.4.4.2 Suelos de Origen Eólico

Para estos suelos se ha obtenido un ángulo de fricción de 28° a 34°, asumiendo un factor de seguridad de 1.10, se tiene un valor de 25.5° a 30.9°, por lo que se recomienda un talud de 1.5: 1 para caja de canal y de 2: 1 para corte en plataforma en el caso de construirse una estructura trapezoidal.

4.4.4.3 Suelos de Origen Aluvial y Coluvio - Aluvial

Para estos suelos se ha obtenido un ángulo de fricción en el rango de 36° en superficie a 60°, asumiendo un factor de seguridad de 1.10, se tiene un valor de 32.7° a 54.5°, por lo que se recomienda un talud de 1.5: 1 para caja de canal y de 1: 2 para corte en plataforma.

4.4.5 Inestabilidad interna de los suelos arenosos

4.4.5.1 Probabilidad de Ocurrencia de Fenómenos de Licuación

Para que un suelo sea susceptible a licuefactarse, deben presentarse condiciones como tipo de suelo, densidad relativa del suelo, presencia de nivel freático, intensidad y duración de un posible sismo.

Según Terzaghi, los suelos susceptibles a la ocurrencia de tal fenómeno son aquellos suelos cuyas arenas son de grano redondeado y uniforme (Cu < 5), que tengan un diámetro efectivo de D10 < 0.1 mm y la densidad relativa sea menor de 40%. De acuerdo a investigaciones efectuadas por científicos japoneses del fenómeno, basados en análisis de eventos ocurridos, concluyeron que además de las características mencionadas es necesario que se encuentre sumergida y que él numero de golpes equivalentes del SPT sea menor de 15.

Del análisis efectuado de las condiciones del suelo, se puede concluir que las probabilidades de que ocurra Licuación de los suelos arenosos son muy remotas,

encontrándose algunos tramos con algunas características como son el diámetro efectivo y el coeficiente de uniformidad dentro de los márgenes mencionados anteriormente. Sin embargo la posibilidad de que las arenas se encuentren totalmente inundadas es mínima, por lo que se descarta la posibilidad de producirse fenómenos de Licuación de suelos en el trazo del canal.

4.4.5.2 Susceptibilidad de los Suelos al Colapso

Un suelo colapsable es aquel que bajo carga y/o saturación sufre asentamientos bruscos. La ocurrencia de este fenómeno es más propensa en limos y arenas finas de grano redondeado. De acuerdo al análisis granulométrico de las muestras, la existencia de arenas finas y arenas con limo ameritan un análisis a fin de descartar el fenómeno.

Uno de los factores para que se produzca el colapso es que un suelo se sature, condición poco probable ya que en la zona del Proyecto la precipitación es prácticamente nula. Otra de las condiciones para que se produzca este tipo de inestabilidad es que el suelo presente una compacidad de suelta a muy suelta es decir una densidad relativa Dr < 40%, que solo se tiene en las zonas de dunas, donde se construirán estructuras cubiertas previa compactación de la base.

4.4.5.3 Expansividad del Suelo

La presencia de suelos expansivos no ha sido detectada durante las investigaciones geológicas. Sin embargo se recomienda que durante la etapa de construcción se efectúe un seguimiento a fin de identificar la presencia de minerales expansivos en aquellos tramos de roca volcánica altamente meteorizada.

4.5 MATERIALES DE CONSTRUCCION

4.5.1 Generalidades

Con el objeto de verificar la existencia de materiales apropiados para ser usados en las diferentes obras del proyecto se exploraron áreas para tres tipos de materiales:

- Agregados para concreto
- Materiales para afirmados
- Materiales para reemplazos

La ubicación de las áreas investigadas se pueden ver en el plano CHI-06 de este informe.

Durante el desarrollo del estudio se investigaron las canteras de agregados denominados 1, 2, 3 y 4.

También fueron investigadas canteras para afirmados denominados 5, 6, 7 y 8 y para reemplazos.

Las muestras de materiales fueron procesadas para ensayos estandard en el laboratorio de campo ubicado en el campamento Consorcio Chinecas. Estos ensayos fueron básicamente los siguientes:

- Granulometría completa
- Granulometría del agregado grueso
- Granulometría del agregado fino
- Material mas fino que el tamiz # 200
- Gravedad específica y absorción
- Límites de consistencia
- Clasificación de suelos
- Pesos específicos

El resumen de estos ensayos Físicos Mecánicos se puede ver el Cuadro Nº 4.5.1 adjunto.

A partir de estos ensayos se tomaron muestras representativas para la realización de ensayos especiales, las cuales fueron procesadas por el laboratorio E Y P DE INGENIERIA SRL, estos ensayos fueron:

- Abrasión
- Intemperismo
- Análisis químicos de contenido de sulfatos, cloruros y sales solubles

4.5.2 Agregado para concreto

Para evaluar las características de los materiales se debe tener en cuenta la especificación C-33 ASTM para la gradación de los agregados. En esta se señala los siguientes requisitos para el agregado fino:

MALLA	% QUE PASA		
3/8	100		
N° 4	95 – 100		
Nº 8	80 – 95		
Nº 16	50 – 85		
N° 30	25 – 60		
Nº 50	10 – 30		
Nº 100	2 – 10		

y para el agregado grueso, teniendo en cuenta un tamaño máximo de 3":

MALLA	% QUE PASA
2 ½"	100
2"	95 - 100
1"	35 - 70
½"	10 - 30
N° 4	0 - 5

El módulo de fineza del agregado fino debe estar en el rango de 2.3 a 3.1, y el porcentaje de finos menores a la malla # 200 no debe de exceder del 5%.

En cuanto al ensayo de abrasión al desgaste no debe ser mayor del 50% para

500 revoluciones, para el ensayo de durabilidad el límite permitido para el agregado fino es de 8% y el agregado grueso de 10% usando sulfato de sodio en el ensayo. Las sales solubles no debe de ser mayor a 150 p.p.m.

Las calicatas excavadas en las canteras 1, 2, 3 y 4 fueron muestreadas y procesadas en laboratorio, determinándose los porcentajes granulométricas para luego ser procesada su curva granulométricas con referencia a las curvas limite.

4.5.2.1 Cantera 1 - Río Nepeña

Se encuentra ubicado en el río Nepeña a 0.6 Km aproximadamente del trazo del canal (aproximadamente en la progresiva 75+000), cuyas coordenadas UTM son: 0791500 E - 8985500 N. Se trata de un depósito de origen aluvial, producido por el acarreo de rocas de origen variado (ígneas intrusivas y extrusivas etc.), que han tenido transporte, por lo cual los fragmentos son de media a alta esfericidad y redondez. Las características granulométricas del material se pueden ver en el Anexo C.5.1.

De estas se desprende que el agregado fino presenta un composición Granulométrica que está dentro de las curvas límites.

El agregado grueso presenta una composición Granulométrica que no cumple con los límites por lo que requerirá se realice seleccionado.

El contenido de material más fino que el tamiz Nº 200 representa el 0.94 % valor considerado aceptable.

En cuanto al módulo de fineza del agregado fino es de 2.65, el cual está en el rango permisible.

En el diseño de mezclas de concreto, una alta gravedad específica indica un material satisfactorio con respecto a la estabilidad y a la resistencia ya que el peso unitario del concreto depende en gran medida de la gravedad específica de los agregados. En el caso de esta cantera el resultado fue el siguiente:

MUESTRA	GRAVEDAD
1	ESPECIFICA
Agregado grueso	2.760
Agregado fino	2.769

De lo cual se deduce que la gravedad específica tanto de la arena como de la grava son aceptables.

El ensayo de absorción determina la cantidad de agua que un agregado puede necesitar en el estado saturado de superficie seca, y es empleado para calcular el factor agua: cemento de un concreto. La absorción de un material se considera aceptable cuando es menor de 1%. En el caso de esta cantera el resultado fue:

MUESTRA	ABSORCION		
	%		
Agregado grueso	0.46		
Agregado fino	0.60		

De lo cual se puede decir que el porcentaje de absorción es aceptable.

En cuanto al ensayo de abrasión el desgaste del material es de 18.9 % para 500 revoluciones, inferior al mínimo permisible, los resultados se pueden ver en el Anexo C.5.1.1

De otro lado el ensayo de intemperismo se obtuvo perdidas totales de 1.02 % para el agregado grueso y 2.30 % para el agregado fino, resultados por debajo del límite permisible, el resultado se puede ver en el Anexo C.5.1.2

El análisis químico realizado en los agregados de esta cantera, indica que la cantidad de cloruros (CL) que presenta esta en el orden de 6.75 p.p.m., el mismo que no es considerado agresivo a las armaduras (ver Anexo C.5.1.3).

El de sulfatos (SO₄) indica un contenido de 22.24 p.p.m. que esta por debajo

de los límites y no requiere el uso de cementos especiales (ver Anexo C.5.1.3).

En cuanto al rendimiento de esta cantera, se trata de un área medianamente extensa, abarcando una extensión aproximada de 5 Ha. En la Tabla Nº 1 se puede apreciar la disponibilidad de materiales de esta cantera.

TABLA Nº 1

VOLUMEN	DISPONIBILIDAD				
TOTAL EXPLORADO	HASTA				
(M3)	3" 1 ½" ¾" N° 4				
40000	34000	29540	23744	16688	

4.5.2.2 Cantera 2 - Qda las Yuntas

Se encuentra en la quebrada Las Yuntas a 3 Km del trazo del canal (a la altura de la progresiva 111+500), cuyas coordenadas son: 0799214 E - 8966893 N. Es un depósito de origen fluvio-aluvial, producto del acarreo de materiales de rocas variadas (ígneas intrusiva y extrusivas etc.), que han tenido poco transporte, por lo cual los fragmentos son mayormente angulosos de baja esfericidad y redondez.

Las características granulométricas del material se pueden ver en el Anexo C.5.1.

De estas se desprende que el agregado fino presenta una composición granulométrica que esta dentro de las curvas límites

Así mismo el agregado grueso no cumple con los requisitos de gradación especificada, por lo que requerirá seleccionado previo a su uso.

El contenido de material más fino que el tamiz # 200 representa el 2.71% valor considerado aceptable. En cuanto al módulo de fineza del agregado fino es de 2.65 valor considerado aceptable.

La gravedad específica de los agregados de esta cantera muestra los siguiente

resultados:

MUESTRA	GRAVEDAD
	ESPECIFICA
Agregado grueso	2.782
Agregado fino	2.762

De lo cual se deduce que la gravedad específica es aceptable.

La absorción de un material se considera aceptable cuando es menor de 1%. En el caso de esta cantera el resultado fue:

MUESTRA	ABSORCION		
·	%		
Agregado grueso	0.92		
Agregado fino	0.75		

De lo cual se puede decir que el porcentaje de absorción es aceptable.

En cuanto al ensayo de abrasión el desgaste del material es de 29.7 % en 500 revoluciones, inferior al límite permisible, los resultados se pueden ver en el Anexo C.5.1.1.

De otro lado el ensayo de intemperismo se obtuvo perdidas totales de 7.49 % para el agregado grueso y 2.39 % para el agregado fino, resultados por debajo de los valores permisibles, el resultado se puede ver en el Anexo C.5.1.2.

El análisis químico realizado en los agregados de esta cantera, indica que presenta 174.64 p.p.m. de cloruros (CL), que no afectan a las armaduras, 189.24 p.p.m. de sulfatos (SO₄), que no afectan al concreto los resultados pueden verse en el Anexo C.5.1.3.

En cuanto al rendimiento de esta cantera, se trata de un área extensa,

abarcando una extensión aproximada de 30 Ha. En la Tabla Nº 2 se puede apreciar la disponibilidad de materiales de esta cantera.

TABLA Nº 2

VOLUMEN	DISPONIBILIDAD			
TOTAL EXPLORADO	HASTA (en m³)			
(m³)	3″	1 ½"	3/4"	N° 4
160000	136000	126384	115424	79392

4.5.2.3 Cantera 3 - Qda S/N

Se encuentra en la quebrada S.N. a 2 km. del trazo del canal (a la altura de la progresiva 126+800, aguas arriba del túnel 8), cuyas coordenadas son: 0801799 E - 8959938 N. Es un depósito de origen fluvio-aluvial, producto del acarreo de materiales de rocas variadas (ígneas intrusiva y extrusivas etc.), que han tenido poco transporte, por lo cual los fragmentos son mayormente angulosos de baja esfericidad y redondez.

Las características granulométricas del material se pueden ver en el Anexo C.5.1.

De estas se desprende que el agregado fino presenta una composición Granulométrica no apropiada para su uso por lo que requiere selección. Así mismo el agregado grueso no cumple con los requisitos de gradación especificada, por lo que requerirá el chancado previo a su uso.

El contenido de material más fino que el tamiz # 200 representa el 2.69% valor considerado aceptable. En cuanto al módulo de fineza del agregado fino es de 2.91 valor considerado aceptable.

La gravedad específica de los agregados de esta cantera muestra los siguiente resultados:

MUESTRA	GRAVEDAD
	ESPECIFICA
Agregado grueso	2.913
Agregado fino	2.842

De lo cual se deduce que la gravedad específica es aceptable.

La absorción de un material se considera aceptable cuando es menor de 1%. En el caso de esta cantera el resultado fue:

MUESTRA	ABSORCION		
	%		
Agregado grueso	0.91		
Agregado fino	0.75		

Valores inferiores a 1% considerado como límite.

En cuanto al ensayo de abrasión el desgaste del material es de 29.4 % para 500 revoluciones, valor inferior al límite permitido. Los resultados se pueden ver en el Anexo C.5.1.1.

De otro lado el ensayo de intemperismo se obtuvo pérdidas totales de 7.44 % para el agregado grueso y 4.93 % para el agregado fino, resultados por debajo de los valores permitidos, el resultado se puede ver en el Anexo C.5.1.2.

El análisis químico realizado en los agregados de esta cantera, indica la presencia de 58.33 p.p.m. de cloruros (CL), que no afectan a las armaduras, 50.43 p.p.m. de sulfatos (SO₄), que no afectan al concreto, los resultados pueden verse en el Anexo C.5.1.3.

En cuanto al rendimiento de esta cantera, se trata de un área extensa, abarcando una extensión aproximada de 20 Ha. En la Tabla Nº 3 se puede apreciar la disponibilidad de materiales de esta cantera.

TABLA Nº 3

VOLUMEN	DISPONIBILIDAD			
TOTAL EXPLORADO	HASTA			
(m³)	3″	1 ½"	3/4"	Nº 4
160000	144000	137232	126048	98016

4.5.2.4 Cantera 4 - Río Sechín

Se encuentra ubicado en el río Sechín frente a la salida del túnel #9, cuyas coordenadas son: 0803000 E - 8954000 N. Es un depósito de origen aluvial, producto del acarreo de materiales de rocas variadas (ígneas intrusiva y extrusivas etc.), que han tenido mayor transporte, por lo cual los fragmentos son mayormente subredondeados de media a alta esfericidad y redondez.

Las características granulométricas del material se pueden ver en el Anexo C.5.1.

De estas se desprende que el agregado fino presenta una composición Granulométrica que esta dentro de las curvas límites.

Así mismo el agregado grueso cumple con los requisitos de gradación especificada hasta la malla 11/2".

El contenido de material más fino que el tamiz # 200 representa el 1.17 % valor considerado aceptable. En cuanto al módulo de fineza del agregado fino es de 2.75 valor considerado aceptable.

La gravedad específica de los agregados de esta cantera muestra los siguientes resultados:

MUESTRA	GRAVEDAD	
	ESPECIFICA	
Agregado grueso	2.789	
Agregado fino	2.754	

De lo cual se deduce que la gravedad específica es aceptable.

La absorción de un material se considera aceptable cuando es menor de 1%. En el caso de esta cantera el resultado fue:

MUESTRA	ABSORCION	
	%	
Agregado grueso	0.49	
Agregado fino	0.81	

Valores inferiores a 1% considerado como límite.

En cuanto al ensayo de abrasión el desgaste del material es de 18.5 % para 500 revoluciones, valor por debajo del límite permisible. Los resultados se pueden ver en el Anexo C.5.1.1.

De otro lado el ensayo de Intemperismo se obtuvo perdidas totales de 0.89 % para el agregado grueso y 1.73 % para el agregado fino, resultados por debajo de los valores permisibles. Los resultados se pueden ver en el Anexo C.5.1.2.

El análisis químico realizado en los agregados de esta cantera, indica la presencia de 14.23 p.p.m. de cloruros (CL), que no afectan a las armaduras, (ver Anexo C.5.1.3). Sulfatos en 32.13 % (SO₄) que no afectan al concreto, (ver Anexo C.5.1.3).

En cuanto al rendimiento de esta cantera, se trata de un área medianamente extensa, abarcando una extensión aproximada de 5 Ha. En la Tabla Nº 4 se puede apreciar la disponibilidad de materiales de esta cantera.

TABLA Nº 4

VOLUMEN	DISPONIBILIDAD HASTA			
TOTAL EXPLORADO				
(M3)	3″	1 ½"	3/4"	Nº 4
40000	32000	26576	22220	15356

En el Anexo III.5.1.4, se puede mostrar los registros de calicatas de las canteras exploradas, donde se indica la Ubicación, Profundidad, clasificación según SUCS y descripción del material.

Los resultados de los ensayos indican que podrán usarse las canteras investigadas, requiriendo en algunos casos el lavado o selección previos.

El aprovechamiento de las canteras estará determinada por la ubicación de las plantas de concreto y por las fuentes de agua.

4.5.3 Materiales para afirmados

La exploración realizada considera el reconocimiento de zonas con materiales apropiados para ser usados como afirmados en los caminos de acceso y a la toma de muestras de calicatas para su evaluación. Las áreas investigadas corresponden a depósitos de origen volcánico, los cuales se encuentran fuertemente alterados, y con quebradas rellenadas con materiales provenientes de la erosión de estas rocas.

Para ser usados como material para afirmados se deben cumplir con las Especificaciones Técnicas siguientes:

MALLA N°	PORCENTAJE QUE PASA
3"	100 - 100
11/2"	100 - 70
1"	90 - 55
¾"	80 - 45
3/8"	70 - 30
N° 4	65 - 25
N° 10	60 - 15
N° 40	12 - 48
N° 200	2 - 16

Además debe de cumplir ciertos parámetros:

Límite líquido <= 30%

Indice de plasticidad 6% < IP < 9%

Las áreas han sido denominadas canteras 5, 6, 7 y 8. Las canteras 5 y 6, corresponde a quebradas rellenadas con materiales provenientes de la erosión de rocas volcánicas. Las canteras 7 y 8, son afloramientos rocosos fuertemente alterados.

4.5.3.1 Cantera 5 - Buenavista

La cantera 5 se encuentra ubicada en la localidad de Buenavista, Provincia de Huarmey, en el desvío hacia Huaraz alt. Km 8 (altura del km 371.5 de la carretera panamericana norte). Corresponde a material rellenado, conformado por arena con grava semiangulosa, bien gradada con limos. El conjunto presenta una coloración rojiza anaranjada.

Las características granulométricas del material pueden verse en el Anexo C.5.2, De estas se desprende que el material cae dentro de las curvas límites cumpliendo con las recomendaciones de gradación.

Con respecto a las propiedades índice, no presenta índice de plasticidad IP=0, por lo que no cumple con las especificaciones dadas.

Del ensayo Proctor Estándar se obtiene que para una humedad óptima de 8.05 % se tiene una densidad máxima seca de 2.245 gr/cm³. ver Anexo C.5.2.1.

Los resultados de los ensayos de laboratorio se pueden ver en le Anexo C.5.2. La clasificación SUCS indica que estos materiales son SW - SM.

4.5.3.2 Cantera 6 - San Jacinto

Se ubica a la altura del km 20 de la carretera hacia moro (desvío a San Jacinto km. 443 de la Panamericana Norte).

Se trata de terrazas deluvio - coluviales, compuesta por gravas arenosas subangulosos, bien gradadas. Tienen una coloración gris claro con tonalidades anaranjado. Las características granulométricas del material se pueden ver en el Anexo C.5.2, de éstas se desprende que el material no cumple con las especificaciones de gradación en su totalidad.

No presenta índice de plasticidad por lo que no cumple con los rangos establecidos. Del ensayo Proctor Estándar se obtiene que para una humedad óptima de 9.42 % se tiene una densidad máxima seca de 2.113 gr/cm³. Ver Anexo C.5.2.1

De los resultados de laboratorio lo clasifican según SUCS como GW, estos se pueden mostrar en el Anexo C.5.2.

4.5.3.3 Cantera 7 - Pampa Colorada

Se encuentra ubicado en la localidad de San Jacinto (en la pampa colorado, frente a los plantaciones de caña). Se trata de materiales provenientes de la erosión de rocas volcánicas, esta compuesta por arena limosa con gravas angulosa, color anaranjado con tonalidades rojizas.

Las características granulométricas del material se pueden ver en el Anexo C.5.2. De éstas se desprende que el material cae dentro de las recomendaciones de gradación.

Presenta un índice de plasticidad de 1.72, lo cual no cumple con los rangos establecidos.

Los resultados de laboratorio lo clasifican según SUCS como SM, estos se pueden mostrar en el Anexo C.5.2.

4.5.3.4 Cantera 8 - Tortugas

Se ubica a 2 km hacia el sur del Balneario de Tortugas frente a la Panamericana Norte. Se trata de materiales provenientes de la erosión de rocas volcánicas, compuesto de grava limosa angulosa. El espesor del depósito es de 0.50 m, el color del conjunto es marrón claro.

Las características granulométricas se pueden ver en el Anexo C.5.2. De éstas se desprende que el material cae dentro de la gradación granulométrico.

No presenta índice de plasticidad, por lo que no cumple con las especificaciones establecidas.

Los resultados de laboratorio lo clasifican según SUCS como GM, esta se pueden mostrar en el Anexo C.5.2.

De los resultados obtenidos podemos decir lo siguiente:

- Las canteras 1, 2, 3 y 4, son apropiadas para ser utilizados en la preparación del concreto para el canal de conducción, por que estas cumplen con las especificaciones establecidas.
- Los requerimientos de agregados para concreto podrán ser cubiertos por estas canteras, los rendimientos pueden verse en el Anexo C.5.1.
- Las canteras para afirmados indicadas en el proyecto original no corresponden a materiales apropiados para su uso, se trata de materiales granulares sin finos.
- Las canteras exploradas 5, 6, 7 y 8 para afirmados, tampoco reúnen las características apropiadas para su uso en los caminos de servicio. Podrían ser usados para los caminos de acceso.

- Para los caminos de servicio y vigilancia deberá utilizarse los materiales de las canteras del tramo Cascajal Nepeña.
- Las excavaciones fueron realizadas manualmente hasta profundidades de 3 m para luego proceder a la toma de muestras representativas.
- En el Anexo C.5.2. se puede ver las características del material, así como su composición Granulométrica.
- En el Anexo C.5.2.2 se puede mostrar los registros de las calicatas exploradas de las canteras.

4.6 EVALUACION GEOTECNICA DE LOS TUNELES

4.6.1 Generalidades

El trazo, entre el cruce del río Nepeña hasta el río Sechín, cruza diferentes cuencas, las mismas que se encuentran separadas por zonas positivas. Para vencer estos obstáculos se han proyectado siete (7) túneles de diferentes longitudes, siendo estas económicamente más apropiadas que una conducción en superficie.

Los túneles proyectados son los siguientes:

TUNEL	INICIO	FINAL	LONG.
03	86 + 184	86+899	715.00
04	90 + 234	91 + 909	1,675.00
05	94+061	95 + 896	1,835.00
06	100+003	100 + 218	215.00
07	123 + 778	124 + 194	274.00
08	127 + 787	127 + 931	144.00
09	132+343	132+847	504.00

4.6.2 Criterios Para la Selección del Trazo

Para el alineamiento se ha tenido en cuenta las condiciones Geomorfológicas,

litológicas y estructurales (fallamientos y plegamientos) y zonas favorables para su construcción.

Diferentes condiciones geológicas y morfológicas pueden influir de distintas formas en la construcción así como la futura seguridad y uso de la excavación subterránea. Es necesario conocer bien esas influencias, por lo tanto es necesario que las investigaciones se lleven en forma adecuada con el fin de obtener la información con relación a:

- Resistencia y Dureza

Las rocas pueden variar enormemente en resistencia y dureza. Es importante conocer la resistencia del material que va a formar parte de la construcción. En vista que se va ha perforar y volar el material también es necesario conocer la dureza y desgaste.

- Fracturación

La fracturación hace que la masa de roca esté compuesta por material discontinuo. La extensión de las fracturas será de gran importancia para saber como reaccionarán las masas de roca como material ante diferentes influencias, como por ejemplo: la voladura y el uso de máquinas perforadoras de túneles, además, la seguridad contra los derrumbes de roca en excavaciones subterráneas y túneles hasta cierto punto depende de la cantidad y naturaleza de las fracturas, así como de su orientación en relación al techo y paredes.

Zonas Débiles

Las zonas débiles, como por ejemplo las fallas, las zonas de corrimiento y las zonas de compresión son los elementos geológicos que pueden ejercer mayor influencia en la excavación y estabilidad de un túnel o excavación subterránea. Mas de una vez, ha sucedido que uno se ha visto forzado a abandonar la perforación a lo largo de una ruta planeada debido a grandes derrumbes provenientes de zonas transversales débiles.

Las zonas débiles pueden estar compuestas de rocas más o menos fracturadas o

descompuestas así como de una amplia variedad de minerales. Son comunes los minerales de arcilla expansiva del grupo esmectita. Dichos minerales hacen que el problema de estabilidad se vuelva más complicado. Varias veces ha sucedido que los túneles, que durante la construcción parecía estables han ocasionado grandes derrumbes después que este ha sido llenado con agua. Las capas de arcilla que contienen arcilla expansiva son las usualmente provocan desprendimientos en los túneles llenos de agua.

Situación de Tensión

La tensión en la periferie de una excavación subterránea es el resultado de la forma geométrica de la excavación y tensiones primarias en la masa de roca. Las combinaciones desfavorables de estos dos factores pueden producir tensiones más altas de las que la masa de roca pueda resistir. En casos como estos puede ocurrir estallido de rocas o astillamiento. Las tensiones primarias en una masa de roca generalmente están en función de la topografía circundante. Además de tensiones residuales en rocas metamórficas e ígneas.

Fugas de Agua

Las fugas de agua en los túneles y excavaciones subterráneas pueden influir bastante en las condiciones de trabajo. En los peores casos podría arruinar túneles debido al fuerte flujo de agua. Las fugas de aguas más difíciles generalmente se encuentran en las zonas más profundas del túnel donde el agua, bajo una presión alta podría desembocar en él.

4.6.3 Investigaciones de Campo

El reconocimiento se realizó con personal experimentado, quienes recogieron de una manera visual las características morfoestructurales del macizo rocoso. La metodología empleado fue el del reconocimiento de los afloramientos de roca, que consiste en observar y registrar directamente en el campo estas características, siendo estas; el grado de compresión mediante el uso del martillo de geólogo, evaluación de las discontinuidades (fracturas, fallas etc.), teniendo en cuenta el tipo de

discontinuidad, abertura, tipo de relleno, rugosidad de los planos de la discontinuidad, disposición espacial respecto al eje, grado de espaciamiento y persistencia de la discontinuidad. Esto permitió diferenciar los diferentes tipos de roca y poder agruparlos en unidades tipo I, II y III según el tipo de sostenimiento.

Durante este reconocimiento también se estudió la profundidad del intemperismo y las condiciones del agua subterránea.

En los cuadros Nº 4.6.1, 4.6.2 y 4.6.3 se muestran los grados de resistencia a la compresión, de meteorización y fracturamiento de diferentes tipos de roca normado por el ISMR.

4.6.4 Clasificación Geomecánica del Macizo Rocoso

La clasificación de la masa rocosa se efectuó a partir de las clasificaciones Geomecánicas empleando métodos empíricos útiles para definir y controlar la estabilidad de los túneles que se ejecuten en estas rocas.

Existen numerosas clasificaciones geomecánicas aplicadas a obras subterráneas, entre estas se tienen la de Terzaghi, Protodyakonov, Lauffer, Wickmann, Barton, Bieniawski y otros. Son métodos empíricos, que han planteando parámetros de calidad de roca sobre la base de sus características mecánicas, de su capacidad de soporte a las solicitaciones de carga y su comportamiento por un determinado tiempo, entre las mas importantes podemos citar.

4.6.4.1 Indice de Calidad de la Roca (RQD)

Propuesto por John Deere en 1964, se basa en la recuperación de núcleos con perforación diamantina. Es muy útil en la selección del sostenimiento en los túneles a pesar que cuenta con ciertas limitaciones como el caso de fracturas con finos rellenos de arcilla o de material meteorizado y además que no considera la orientación de las diaclasas.

El R.Q.D. se define como el porcentaje de núcleos que se recuperan en piezas enteras de 100 mm. o más, del largo total del barreno.

R.Q.D.(%) =
$$100 \left(\frac{\text{Longitud de núcleos mayores de } 100 \,\text{mm}}{\text{Largo del barreno}} \right)$$

Esto se establece para núcleos de cuando menos de 50 mm de diámetro (NX), recuperado por una perforadora de diamante de doble barril.

Para fines prácticos cuando no se cuenta con núcleos de perforación, el RQD se puede estimar por la cantidad de fisuras por unidad de volumen de roca sin arcilla.

$$RQD = 115 - 3.3 Jv$$

donde:

Por lo tanto:

 $Jv = N^o$ de fracturas por m^3 de roca.

Deere propuso la siguiente relación entre el valor numérico de RQD y la calidad de la roca.

RQD CALIDAD DE LA ROCA	
Muy mala	
Mala	
Regular	
Buena	
Muy buena	

Aparte de la limitación de fracturas con rellenos delgados de arcilla, el R.Q.D. no toma en cuenta otros factores como la orientación de las juntas, lo que también tiene importancia para el comportamiento de la roca alrededor de una obra subterránea.

El método del R.Q.D., es rápido y económico para dar indicios, por lo que es cierto que no prevé información adecuada sobre muchos fenómenos de comportamiento de la roca que se puedan presentar en una excavación.

4.6.4.2 Sistema Q (N.G.I.)

El sistema Q (ROCK MASS QUALITY), desarrollado por N. Barton, R. Lien y J. Lunde del Norwegian Geotechnical Institute (N.G.I.) (Instituto de Geotecnia de Noruega) en 1974, determina la calidad del macizo rocoso en base a 6 parámetros, para los que establecen sus correspondientes valuaciones. El valor numérico de este Indice Q se define

$$Q = \left(\frac{R.Q.D.}{Jn}\right) x \left(\frac{Jr}{Ja}\right) x \left(\frac{Jw}{SRF}\right)$$

donde:

RQD = Indice de calidad de la roca de Deere (Rock Quality Designation)

Jn = Número de sistema de fisuras (Joint Set Number)

Jr = Número de la rugosidad de las fisuras (Joint roughness Number)

Ja = Número de la alteración de las fisuras (Joint Alteration Number)

Jw = Factor de reducción por agua en las fisuras (Joint Water Reduction

Factor)

SRF = Factor de reducción por esfuerzos (Stress Reduction Factor)

Por lo tanto el Indice Q esta en función de 3 condiciones:

- Tamaño de bloques (RQD / Jn)
- Resistencia al esfuerzo cortante entre bloques (Jr / Ja)
- Esfuerzos actuantes (Jw / SRF)

Las categorías de roca en función del valor del Q están designadas como siguen:

CLASE	VALOR	CARACTERÍSTICAS
 V 	400 - 1000 100 - 400 40 - 100 10 - 40 4 - 10 1 - 4 0.1 - 1 0.01 - 0.1 0.001 - 0.01	Roca excepcionalmente buena Roca extremadamente buena Roca muy buena Roca buena Roca media Roca mala Roca muy mala Roca extremadamente mala Roca excepcionalmente mala

4.6.4.3 Sistema RMR

Sistema desarrollado por Z.T. Bieniawski en 1973, que relaciona los factores como el R.Q.D. (Designación de la Calidad de la Roca) y la influencia de los rellenos arcillosos.

El valor de RMR se obtiene de la suma de cinco parámetros básicos mas una corrección por el rumbo y buzamiento después de evaluar los parámetros básicos.

Estos parámetros básicos son los siguientes:

- Resistencia de la roca inalterada, la cual emplea la resistencia uniaxial de la roca que proponen Deere y Miller y se señala en la tabla Nº 4.6.4
- Designación de la calidad de la roca (RQD), según Deere.
- Espaciamiento de fisuras, aquí nuevamente utiliza la clasificación propuesta por Deere y se señala en la tabla Nº 4.6.5
- Estado de las fisuras, que toma en cuenta la separación o abertura de las fisuras, su continuidad, la rugosidad se su superficie, el estado de las paredes(duras o blandas) y la presencia de rellenos en las fisuras.
- Condiciones de agua subterránea, la cual hace un intento de medir la influencia
 del flujo de aguas subterráneas sobre la estabilidad de las excavaciones en

términos del caudal; observado.

Tabla Nº 4.6.4
Clasificación de la resistencia de roca de Deere y Miller

Descripción	Resistencia	a la Compres	Ejemplos de roca	
·	Lfb/puig ²	Kgf./cm ²	Мра	Características
Resistencia muy baja	150 – 3500	10 - 250	1 – 25	Yeso, sal de roca
Resistencia baja Resistencia media Resistencia alta Resistencia muy alta	3500 - 7500 7500 - 15000 15000 - 30000 > 30000	250 - 500 500 - 1000 1000 - 2000 > 2000	25 - 50 50 - 100 100 - 200 > 200	Carbón, Limolita, esquisto Arenisca, pizarra, lutitas Mármol, granito, gneis Cuarcita, dolerita, gabro, basalto

Tabla Nº 4.6.5

Clasificación de Deere para el espaciamiento de fisuras

Descripcion	Espaciamient	to de Fisuras	Apreciación de la roca	
Muy separado Separado	> 3m 1 m a 3 m	> 10 pie 3 pie a 10 pie	Sólida Masiva	
Medianamente cerca	0.3 m a 1 m	1 pie a 3 pie	Bloque junteados	
Cerca	50 mm a 300 mm	2 pulg. a 1 pie	Fracturada	
Muy cerca	< 50 mm	< 2 pulg.	Triturada y molida	

La forma como estos parámetros han sido incorporados en la clasificación se muestra en el cuadro Nº 4.6.6.

Las categorías de roca en función del valor del RMR están designadas como:

CLASE	VALOR	CARACTERÍSTICAS
	81 - 100 61 - 80 41 - 60 21 - 40	Roca muy buena Roca buena Roca media Roca mala
V	0 – 20	Roca muy mala

4.6.4.4 Comparación entre los sistemas de clasificación de macizos rocosos

Todos los sistemas de clasificación de macizo rocoso son productos de observaciones y se han desarrollado empíricamente planteando parámetros de calidad

de roca sobre la base de las características mecánicas, de su capacidad de soporte a las solicitaciones de carga y su comportamiento por un determinado tiempo.

Los sistemas R.Q.D. y Q (N.G.I.) incluyen un número suficientes de datos físicos y mecánicos de la roca para evaluar todos sus factores que influyen en la estabilidad de una excavación subterránea.

Bieniawski correlacionó el Sistema RMR con el Sistema Q mediante la ecuación siguiente:

$$RMR = 9 Log Q + 44$$

4.6.5 Diseño y Clases de Sostenimiento

El diseño del sostenimiento para la obra subterránea es encarado por diversos métodos o técnicas, todos ellos tienen en cuenta dos aspectos principales:

- Las cargas actuantes del macizo rocoso que debe ser soportado por el sistema
- La capacidad portante de los diversos sistemas de sostenimiento susceptibles a ser usados

4.6.5.1Parámetros Que Inciden en el Requerimiento de Medidas Sostenimiento

a.- Geología Estructural

La inestabilidad ocasionada por una geología adversa suele ocurrir cuando el macizo rocoso presenta discontinuidades inclinadas, entonces la estabilidad estaría gobernada por la caída de bloques debido a la gravedad.

La presencia de varios sistemas de fractura que al interceptarse puede producir la formación de cunas inestables.

Así mismo, las características de lasa discontinuidades como tipo de estructura,

abertura, tipo de relleno, grado de rugosidad, espaciamiento, etc. Pueden influir en la inestabilidad del macizo rocoso.

b.- Meteorización y/o Expansión

Causas de inestabilidad puede ocasionar el grado de meteorización del macizo rocoso y así como la presencia de material expansivo, puede además de las presiones verticales producirse presiones laterales.

c.- Presencia de agua

La presencia de agua puede producir el cambio de las propiedades en el macizo rocoso, presiones intersticiales que puedan afectar la resistencia al corte de las discontinuidades. Su grado de importancia depende del grado de saturación, caudal de afluencia y presencia de sales solubles. Este factor no alcanzara serias proporciones si no esta asociado con otro tipo de inestabilidad.

d.- Esfuerzos Exagerados

En todo macizo rocoso inalterado, existe un campo de esfuerzos originados por el peso de la roca; al efectuarse una excavación subterránea este campo sufre modificaciones. En la zona del macizo que circunda al límite de la excavación pueden crearse contracciones que pueden sobrepasar a las tensiones admitidas por la roca, entonces la excavación es inestable.

De acuerdo a la magnitud del proyecto se realiza mediciones de esfuerzos in situ para determinar con mayor precisión.

4.6.5.2 Método de Diseño

El método empírico, se basa en los sistemas de clasificación geomecánica debido a que estos nos dan una evidencia cualitativa y cuantitativa del comportamiento

del túnel.

Este método sigue el procedimiento siguiente:

- Identificación de los dominios estructurales de acuerdo a características geológicas ingenieriles uniformes
- Clasificación del macizo rocoso con los sistemas de clasificación
- Determinación de la luz autoportante y máxima luz
- Estimación del tiempo de autosoporte
- Selección de los tipos de soporte primarios según los sistemas de clasificación
- Selección de los tipos de soportes definitivos o tipo de revestimiento
- Cálculo de las cargas de roca y propiedades geomecánicas del macizo rocoso (Módulo de deformación, cohesión y ángulo de fricción).

Barton, Lien y Lunde, inventaron un elemento cuantitativo adicional que llamaron la dimensión equivalente "De" de la excavación. Esta se obtiene de la siguiente expresión:

De = Ancho de la excavación, diámetro o altura (m) Relación de soporte de la excavación (ESR)

ESR, depende del tipo de excavación. Barton da los siguientes valores supuestos para ESR.

	TIPO DE EXCAVACION	ESR
A.	Excavaciones mineras provisionales	3 – 5
В.	Excavaciones mineras permanentes, Túneles de conducción de agua para obras hidroeléctricas (con la excepción de las cámaras de alta presión para compuertas), túneles pilotos (exploración), excavaciones parciales para cámaras subterráneas grandes	1.6
C.	Cámaras de almacenamiento, plantas subterráneas para el tratamiento de aguas, túneles carreteros y ferrocarriles pequeños, cámaras de alta presión, túneles auxiliares.	1.3

	TIPO DE EXCAVACION	ESR
D.	Casas de máquina, túneles carreteros y ferrocarrileros mayores, refugios de defensa civil, portales y cruces de túnel.	1.0
E.	Estaciones nucleoeléctricas subterráneas, estaciones de ferrocarril, instalaciones para deportes y reuniones, fábricas.	0.8

La ESR es más o menos análogo al inverso del Factor de Seguridad empleada en el diseño de taludes.

La relación entre el Indice de calidad para túneles "Q" y la dimensión equivalente "De" de una excavación que se sostendrá sin soporte, se ilustra en la figura 4.6.1.

4.6.6 Comparación de los Sistemas de Clasificación Geomecánica con el Adoptado para el Proyecto

Los tipos de roca adoptada para la construcción de los túneles proyectados fueron hechos en base a las medidas de sostenimiento a ser aplicados en obra.

Para el análisis de la clasificación de roca de los túneles se ha calculado el "De", y con la figura 4.6.1 se ha obtenido el valor de "Q".

De donde:

$$De = 2.60/1.30 = 2.00$$

$$Q = 0.80$$

Un valor de Q > o = 0.80, significa que no requiere de soporte. Un valor de Q < 0.80, significa que requiere de sostenimiento a excepción de pernos puntuales.

Comparando con el RMR según la expresión:

$$RMR = 9Log Q + 44$$

Reemplazando el valor de Q crítico tenemos que

RMR = 44

En el cuadro siguiente se muestra la clasificación de los tipos de roca de la obra:

	ICACION ADOPTADO RQD RMR Q PARA LA OBRA Según Merrit		MEDIDAS DE SOSTENIMIENTO		
Tipo	Descripción	Valor	Valor	Valor	
ĺ	Buena	55 – 100	exc		No requiere medidas de soporte, excepto pernos de anclaje esporádicos
II	Regular	10 - 55	25 – 44	0.008 – 1	Pernos de anclaje sistemáticos, shotcrete con o sin malla metálica
III	Mala	< 10	< 25	< 0.008	Cimbras, shotcrete con o sin malla metálica, pernos de anclaje

Para la clasificación de la roca en la entrada y salida de los Túneles se ha usado el método propuesto por Bieniaski – Sistema R.M.R (Rock Mass Ratting).

4.6.7 Descripción Geotécnica de los Túneles

4.6.7.1 Túnel 3

a) Generalidades

De acuerdo a lo proyectado, este túnel tendrá una longitud de 715.00 m, comprendido entre las progresivas km 86+184 y km 86+899.

El trazo ha sido mejorado con relación al del proyecto original, con el fin de evitar, en la zona del portal de ingreso, algunas quebradas con evidencias de escorrentía superficial que podrían comprometer la seguridad de la conducción

La roca aflorante en el área donde se emplazará el túnel 3 corresponde a un granito que presenta una diferenciación magmática que varía a granodiorita.

Esta roca pertenece al Batolito de la Costa, de Edad Cretáceo Superior (Ksgd). Esta compuesta por plagioclasas, ortosa, cuarzo y biotita; localmente se encuentra cortada por venillas de cuarzo.

Cercano a ambas bocas tanto de entrada como salida se encuentran pequeñas quebradas cubiertas de material cuaternario de origen aluvial.

Adyacente al área se tiene la presencia de una falla que sigue un rumbo N-S, la misma que no interesa al trazo del túnel.

Asimismo, se tienen diques andesíticos de color gris oscuro con tonalidades verdosas, tiene un rumbo SW-NE, tales diques no serán cortados durante el proceso de excavación del túnel.

b) <u>Portal de Entrada</u>

El afrontonamiento del túnel 3 se hará totalmente en roca de naturaleza granítica de color gris claro, de grano medio a grueso, textura fanerítica. En superficie la roca es moderadamente resistente (R3) (de la tabla Nº 4.6.1) por lo que se estima que la resistencia a la compresión de la roca ha cortar es de resistencia media a alta (R4-R5), el espaciamiento de fracturas varía de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla Nº 4.6.3), la fracturas presentan una abertura de 1 a 5 mm y ocasionalmente cerradas con rellenos de calcitas, el RQD se estima en 80%.

La clasificación geomecánica de esta roca por el método RMR es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
12	17	10	6	10	-25	30	IV

Los taludes de corte recomendados para la excavación del portal en roca son de 1:10 (H:V).

c) Túnel de Conducción

Desde la entrada hasta la salida del túnel la excavación se hará en roca granitogranodiorita de color gris claro, de grano medio a grueso, textura fanerítica.

Superficialmente la roca tiende a presentarse de ligera a medianamente alterada (M2 - M3) (de la tabla Nº 4.6.2) por lo que se prevé que en toda la longitud del túnel se presentará ligeramente alterada a sana (M1-M2).

A todo lo largo del túnel, la roca ha excavar se prevé que presente una resistencia a la compresión alta (R4 - R5) (de la tabla N° 4.6.1).

La clasificación geomecánica pronosticada a lo largo del túnel es la siguiente:

Tipo de Roca	%	Longitud (m)
Ī	90	644
Н .	8	57
III	_ 2	14
TOTAL	100	715

d) Portal de Salida

El afrontonamiento del túnel 3 se hará totalmente en roca de naturaleza granítica de color gris claro, de grano medio a grueso, textura fanerítica. En superficie la roca es moderadamente resistente (R3) (de la tabla Nº 4.6.1) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia media a alta (R4-R5), el espaciamiento de fracturas varía de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla Nº 4.6.3), el plano de fracturas se presentan ligeramente rugosos con aberturas menores de 2 mm, el RQD se estima en 85%.

La clasificación geomecánica es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca	_	Espaciamiento	Estado	Subterráneas			
12	17	10	12	10	-25	36	IV

Los taludes de corte recomendado, siendo la roca encajonante ha excavar una roca dura y ligeramente alterada, son de 1:10 (H:V)

e) Evaluación del Sostenimiento del Túnel

Las cantidades de soporte a utilizar en el túnel, de acuerdo a las características de los materiales serian las siguientes:

SOPORTE	PORTAL INGRESO	ORTAL INGRESO TUNEL CONDUCCION PORTAL SALIDA TIPO DE ROCA I II III		TOTAL		
]]		
Cerchas metálicas	8 @ 0.8m				8 @ 0.8 m	16
Planchas acanaladas	Bóveda @ 5 entre cerchas = 30				Bóveda @ 5 entre cerchas = 30	60
Pernos de anclaje	En frontón @ 6	1@25m = 2 5	1@2m = 27		En frontón @ 6	64
Malla metálica	En frontón 4 m²		40 m ²		En frontón 4 m²	48
Shotcrete	1.5 m ³		11 m ³		1.5 m ³	9

4,6.7.2 Túnel 4

a) Generalidades

Este túnel tendrá una longitud de 1,675.00 m, comprendido entre las progresivas km 90+234 y km 91+909.

Se tiene, a lo largo del túnel, dos tipos de rocas intrusivas, una diorita que aflora hacia la boca de entrada mientras que hacia la boca de salida aflora rocas graníticas. Estas rocas pertenecen al Batolito de la Costa, de Edad Cretáceo Superior (Ks-gd).

Cercano a ambas bocas tanto de entrada como salida se encuentran depósitos cuaternarios consistentes en gravas arenosas de origen aluvial y depósitos eólico consistentes en arenas medias a finas sueltas a ligeramente densas.

b) Portal de Entrada

El afrontonamiento del portal de entrada del túnel 4 se hará totalmente en roca de naturaleza dioritica, de color gris oscuro, de grano grueso, textura fanerítica.

En superficie la roca es generalmente resistente (R4) (de la tabla N° 4.6.1) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia alta a muy alta (R4-R5).

El espaciamiento de fracturas varía de 0.30 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla Nº 4.6.3), el plano de fracturas son algo rugosas la abertura es menor de 1 mm, el RQD se estima en 85%.

La clasificación geomecánica de esta roca es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
12	17	10	20	10	-25	44	IV

Siendo la roca encajonante ha excavar una roca dura y poco alterada se recomienda un talud de corte de 1:10 (H:V).

c) <u>Túnel de Conducción</u>

A lo largo del túnel 4 se tendrá la presencia de 02 tipos de roca diferentes, hacia la boca de entrada se excavará en roca dioritica de color gris oscuro, de grano grueso, textura fanerítica y hacia el tramo de salida del túnel la excavación se hará en roca granítica de color gris claro, de grano medio a grueso, textura fanerítica.

Superficialmente la roca que se presenta hacia la boca de entrada tiende a presentarse ligeramente alterada (M2) (de la tabla N° 4.6.2), mientras que hacia la salida se tiene una roca moderadamente alterada (M3) por lo que se prevé que en toda la longitud del túnel se presentará ligeramente alterada a sana.

A todo lo largo del túnel, se prevé que la roca a excavar presente una resistencia a la compresión alta (R5) (de la tabla Nº 4.6.1) a excepción de un pequeño tramo ubicado hacia la boca de salida que podría presentar una resistencia media a moderada (R4-R5).

En la segunda porción del túnel se tiene una fuerte presencia de diques andesíticos que tienen dirección oblicua al eje del túnel. Esto producirá tramos de roca mala alternada con roca mediana.

La clasificación geomecánica a lo largo del túnel es la siguiente:

Tipo de Roca	%	Longitud (m)
ī	85	1424
11	12	201
l III	_ 3	50
TOTAL	100	1675

d) Portal de Salida

El afrontonamiento del portal de salida del túnel 4 se hará totalmente en roca de naturaleza granítica de color gris claro, de grano medio a grueso, textura fanerítica.

En superficie la roca es generalmente moderadamente resistente (R3) (de la tabla N° 4.6.1) existiendo algunos sectores de roca algo débil (R2-R3) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia media a alta (R4-R5), el espaciamiento de fracturas varía de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla N° 4.6.3), el plano de fracturas se encuentra algo rugosas con abertura mayor de 1 mm, el RQD se estima en 90%.

La clasificación geomecánica RMR, de esta roca es la siguiente:

Resistencia	RQD	Fisuras Fotodo (Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
7	17	20	6	10	-25	35	IV

Siendo la roca encajonante a excavar una roca dura y moderadamente alterada se recomienda un talud de corte de 1:10 (H:V).

e) Evaluación del Sostenimiento del Túnel

SOPORTE	PORTAL INGRESO	TUNEL CONDUCCION TIPO DE ROCA		PORTAL SALIDA	TOTAL	
		1	II	Ш		
Cerchas metálicas	4 @ 1.0 m			39	8 @ 0.8 m	51
Planchas acanaladas	Bóveda @ 5 entre cerchas = 15			160	Bóveda @ 5 entre cerchas = 26	201
Pernos de anclaje	En frontón @ 6	1@25m=5 6	1@2m= 100		En frontón @ 6	112
Malla metálica	En frontón 4 m²		250 m ²		En frontón 4 m²	258
Shotcrete	1.5 m ³		44 m ³		1.5 m ³	38

4.6.7.3 Túnel 5

a) Generalidades

De acuerdo a lo proyectado, este túnel tendrá una longitud de 1835.00 m, comprendido entre las progresivas km 94+061 y km 95+896.

La roca aflorante en el área donde se emplazará el túnel 5 corresponde a un granito que por diferenciación magmática varía a granodiorita, tal intrusivo pertenece al Batolito de la Costa, de Edad Cretáceo Superior (Ks-gd). Esta compuesta por plagioclasas, ortosa, cuarzo y biotita.

Adyacente al sector del portal de entrada del túnel se ubican arenas semi densas a densas de origen marino. Hacia la boca de salida se encuentran depósitos cuaternarios consistentes en gravas arenosas de origen aluvial que rellenan las quebradas adyacentes. A todo lo largo del túnel se encuentran depósitos de arena suelta a semi densa de origen eólico.

b) Portal de Entrada

El afrontonamiento del portal de entrada del túnel 5 se hará totalmente en roca de naturaleza granítica de color gris claro, de grano medio a grueso, textura fanerítica.

En superficie la roca es moderadamente resistente (R3) (de la tabla N° 4.6.1) existiendo algunos sectores de roca algo débil (R2-R3) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia media a alta (R4-R5), el espaciamiento de fracturas varía de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla 4.6.3), el plano de fracturas se encuentra algo rugosas con abertura de 1 a 5 mm, el RQD se estima en 85%.

Hacia la corona del portal se hará corte en material suelto consistente en arenas semi densas de origen marino.

La clasificación geomecánica por el sistema RMR de esta roca es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas	_		
12	17_	10	12	10	-25	36	IV

Los taludes de corte recomendados para la excavación del portal son de 10:1 para roca y 2:1 para material arenoso.

c) <u>Túnel de Conducción</u>

Desde la entrada hasta la salida del túnel la excavación se hará en roca granito-granodiorita de color gris claro, de grano medio a grueso, textura fanerítica.

Superficialmente la roca que se presenta hacia la boca de entrada esta moderadamente alterada (M3) (de la tabla 4.6.2). En la salida tiende a presentarse ligeramente alterada (M2), que por lo que se prevé que en toda la longitud del túnel se presentará ligeramente alterada a sana.

A todo lo largo del túnel, se prevé que la roca a excavar presente una resistencia a la compresión alta (R5) (de la tabla N° 4.6.1).

La clasificación geomecánica pronosticada para este túnel es la siguiente:

Tipo de Roca	%	Longitud (m)
1	85	1560
ll l	10	184
111	5	91
TOTAL	100	1835

d) Portal de Salida

El afrontonamiento del túnel 5 se hará totalmente en roca de naturaleza granodioritica de color gris claro, de grano medio a grueso, textura fanerítica.

En superficie la roca es de moderada a muy resistente (R3-R4) (de la tabla Nº 4.6.1) por lo que se estima que la resistencia a la compresión de la roca a cortar es de media a alta (R4-R5). El espaciamiento de fracturas varía de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla Nº 4.6.3), el plano de fracturas se encuentra algo rugosas con paredes dura con aberturas de 1 a 5mm, el RQD se estima en 80 %.

La clasificación geomecánica asignada por el método del RMR es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
12	17	10	20	10	-25	44	111

Los taludes de corte recomendados serán para corte en roca de 10:1, en material suelto de 1.5:1.

e) <u>Evaluación del Sostenimiento del Túnel</u>

SOPORTE	PORTAL INGRESO		CONDUCCIO O DE ROCA	PORTAL SALIDA	TOTAL	
		<u> </u>	II II		i _ i	
Cerchas metálicas	8 @ 1.0 m			35	8 @ 0.8 m	51
Planchas acanaladas	Bóveda @ 5 entre cerchas = 35			160	Bóveda @ 5 entre cerchas = 25	220
Pernos de anclaje	En frontón @ 6	1@25m=5 6	1@2m=91		En frontón @ 6	159
Malla metálica	En frontón 4 m²		250 m²		En frontón 4 m²	258
Shotcrete	1.5 m ³		40 ³		1.5 m ³	43

4.6.7.4 Túnel 6

a) Generalidades

De acuerdo a lo proyectado, este túnel tendrá una longitud de 215.00 m, comprendido entre las progresivas km 100+003 y km 100+218.

La excavación de este túnel ha sido prevista para cruzar un promontorio rocoso. Presenta algunas dificultadas para su afrontonamiento en ambos lados por lo que se ha considerado conductos cubiertos para la aproximación hacia los portales de ingreso y salida.

La roca aflorante en el área donde se emplazará el túnel 6 corresponde al granito del Batolito de la Costa, de Edad Cretáceo Superior (Ks-gd). Esta compuesta por plagioclasas, ortosa, cuarzo y biotita; localmente se encuentra cortada por venillas de cuarzo.

Hacia el sector del portal de entrada del túnel se tiene depósitos de arena en un estado semi denso a denso de origen marino. Hacia el sector del portal de salida se se tiene depósitos de arena suelta de origen eólicos.

b) Portal de Entrada y de Salida

El afrontonamiento del portal de entrada del túnel 6 se hará totalmente en roca

de naturaleza granítica de color gris claro, de grano medio a grueso, textura fanerítica.

La roca presenta una resistencia ligera a moderada (R2-R3) (de la tabla Nº 4.6.1) por lo que se estima que la resistencia a la compresión sea moderada (R3-R4).

El espaciamiento de fracturas varía de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla Nº 4.6.3), el plano de fracturas se encuentra algo rugosas de paredes suaves con aberturas de mayores a 5 mm, el RQD se estima en 75 %.

Hacia la corona del portal se tiene una cobertura potente de material suelto consistente en arenas semidensas de origen marino.

La clasificación geomecánica RMR para esta roca es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			_ :
12	17	10	12	10	-25	36	IV

Las excavaciones del portal de entrada y de salida en roca que se presenta moderadamente alterada tendrán un talud 1:10 (H:V).

En el portal de entrada se tiene un potente depósito de arena de origen marino, para el que se recomienda efectuar un corte 1.5: 1 (H:V).

En el portal de salida se tiene un potente depósito eólico que presentara problemas de estabilidad por lo que se esta considerando a continuación del portal, un conducto cubierto.

c) Túnel de Conducción

Desde la entrada hasta la salida del túnel la excavación se hará en roca granitogranodiorita de color gris claro, de grano medio a grueso, textura fanerítica. Superficialmente la roca tiende a presentarse de ligera a medianamente alterada (M2 - M3) (de la tabla Nº 4.6.2) por lo que se prevé que en toda la longitud del túnel se presentará ligeramente alterada (M2).

A todo lo largo del túnel, la roca a excavar se prevé que presente una resistencia a la compresión alta (R4 - R5) (de la tabla Nº 4.6.1).

La clasificación geomecánica RMR es la siguiente:

Tipo de Roca	%	Longitud (m)
1	68	146
11	22	47
HI	10	22
TOTAL	100	215

d) Evaluación del Sostenimiento del Túnel

SOPORTE	PORTAL INGRESO	TUNEL CONDUCCION TIPO DE ROCA			PORTAL SALIDA	TOTAL
		I I		111		
Cerchas metálicas	4 @ 1.0 m			10	8 @ 0.8 m	22
Planchas acanaladas	Bóveda @ 5 entre cerchas = 15			40	Bóveda @ 5 entre cerchas = 26	81
Pernos de anclaje	En frontón @ 6	1@25m =6	1@2m = 22		En frontón @ 6	40
Malia metálica	En frontón 4 m²		120 m ²		En frontón 4 m²	128
Shotcrete	1.5 m ³		10 m ³		1.5 m ³	12

4.6.7.5 Túnel 7

a) Generalidades

De acuerdo a lo proyectado, este túnel tendrá una longitud de 274.00 m, comprendido entre las progresivas km 123+778.00 y km 124+194.00.

La roca aflorante en el área donde se emplazará el túnel 7 corresponde a una granodiorita del Batolito de la Costa, de Edad Cretáceo Superior (Ks-gd). Esta compuesta por plagioclasas, ortosa, cuarzo y biotita.

b) Portal de Entrada

El afrontonamiento del portal de entrada del túnel 7 se hará totalmente en roca de naturaleza granodioritica de color gris claro, mesocrata, de grano medio a grueso, textura fanerítica.

En superficie la roca es moderadamente resistente (R3) (de la tabla N° 4.6.1) existiendo algunos sectores de roca algo débil (R2-R3) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia media a alta (R4-R5).

El espaciamiento de fracturas varia de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla Nº 4.6.3), el plano de fracturas se encuentra algo rugosas de paredes dura con abertura mayores a 3 mm, el RQD se estima en 70%.

La clasificación RMR geomecánica de esta roca es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
12	13	10	20	10	-25	40	IV

Los taludes de corte para las excavaciones serán de 1:10 (H:V).

c) <u>Túnel de Conducción</u>

Desde la entrada hasta la salida del túnel la excavación se hará en roca granodiorita de color gris claro, de grano medio a grueso, textura fanerítica.

Superficialmente la roca tiende a presentarse de ligera a medianamente alterada (M2 - M3) (de la tabla Nº 4.6.2) por lo que se prevé que en toda la longitud del túnel se presentará ligeramente alterada a sana (M1-M2).

A todo lo largo del túnel, la roca ha excavar se prevé que presente una resistencia a la compresión alta (R5) (de la tabla Nº 4.6.1).

La clasificación geomecánica es la siguiente:

Tipo de Roca	%	Longitud (m)
1	82	225
11	10	27
HI	8	22
TOTAL	100	274

d) Portal de Salida

El afrontonamiento del portal de salida del túnel 7 se hará totalmente en roca de naturaleza granodioritica de color gris claro, mesocrata, de grano medio a grueso, textura fanerítica.

En superficie la roca es moderadamente resistente (R3) (de la tabla N° 4.6.1) existiendo algunos sectores de roca algo débil (R2-R3) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia media a alta (R4-R5).

El espaciamiento de fracturas varia de 0.20 a 1.50 m por lo que se considera de fracturado a poco fracturado (F2-F3) (de la tabla Nº 4.6.3), el plano de fracturas se encuentra algo rugosas de paredes dura con abertura mayores a 5 mm, el RQD se estima en 70%.

La clasificación geomecánica RMR es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
12	13	10	20	10	-25	40	IV

Los taludes de corte recomendados son de 1:10 (H:V).

e) Evaluación del Sostenimiento del Túnel

SOPORTE	PORTAL INGRESO		CONDUCCI O DE ROCA	ON	PORTAL SALIDA	TOTAL
		1	11	111]	
Cerchas metálicas	9 @ 0.8 m				10 @ 0.8 m	19
Planchas acanaladas	Bóveda @ 5 entre cerchas = 40				Bóveda @ 5 entre cerchas = 45	85
Pernos de anclaje	En frontón @ 6	1@25m = 7	1@2m= 10		En frontón @ 6	29
Malla metálica	En frontón 4 m²		12 m²		En frontón 4 m²	20
Shotcrete	1.5 m ³		_6 m ³		1.5 m ³	9

4.6.7.6 Túnel 8

a) Generalidades

De acuerdo a lo proyectado, este túnel tendrá una longitud de 144.00 m, comprendido entre las progresivas km 127+787 y km 127+931.

La roca aflorante en el área donde se emplazará el túnel 7 corresponde a roca de naturaleza granodiorita.

El trazo de este túnel se ha realizado para cruzar un apófisis rocoso de fuerte pendiente en las laderas.

b) Portal de Entrada y de Salida

El afrontonamiento del portal de entrada y de salida del túnel 8 se hará totalmente en roca de naturaleza granodioritica de color gris claro, mesocrata, de grano medio a grueso, textura fanerítica.

En superficie la roca es moderadamente resistente (R3) (de la tabla N° 4.6.1) existiendo algunos sectores de roca algo débil (R2-R3) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia media a alta (R4-R5). La clasificación geomecánica RMR de esta roca es la siguiente:

Resistencia	RQD	Fisuras	···	Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
12	17	10	6	10	-25	30_	IV

Los taludes de roca recomendados son de 1:10 (H:V) en roca.

c) <u>Túnel de Conducción</u>

Desde la entrada hasta la salida del túnel la excavación se hará en roca granodiorita de color gris claro, de grano medio a grueso, textura fanerítica.

Superficialmente la roca tiende a presentarse de ligera a medianamente alterada (M2 - M3) (de la tabla N° 4.6.2), por lo que se prevé que en toda la longitud del túnel se presentará ligeramente alterada (M2).

A todo lo largo del túnel, la roca a excavar se prevé que presente una resistencia a la compresión alta (R4-R5) (de la tabla Nº 4.6.1).

La clasificación del tipo de roca de excavación es la siguiente:

Tipo de Roca	%	Longitud (m)
l	57	82
l II	35	50
III	8	12
TOTAL	100	144

d) Evaluación del Sostenimiento del Túnel

SOPORTE	PORTAL INGRESO	_	L CONDUCC PO DE ROCA		PORTAL SALIDA	TOTAL
		i i	II	III		
Cerchas metálicas	8 @ 1.0 m				10 @ 0.8 m	18
Planchas acanaladas	Bóveda @ 5 entre cerchas = 35				Bóveda @ 5 entre cerchas = 35	70
Pernos de anclaje	En frontón @ 6	15	20		En frontón @ 6	47
Malla metálica	En frontón 4 m²		5 m²		En frontón 4 m²	13
Shotcrete	1.5 m ³		3 m ³	1	1.5 m ³	6

4.6.7.7 Túnel 9

a) Generalidades

De acuerdo a lo proyectado, este túnel tendrá una longitud de $504.00~\mathrm{m}$, comprendido entre las progresivas km $132+343~\mathrm{y}$ km 132+847.

La roca aflorante en el área donde se emplazara el túnel 6 corresponde a un granito.

Tanto en el sector del portal de entrada como hacia la boca de salida se ubican depósitos de naturaleza coluvial consistente en fragmentos de roca subangulosos de variados tamaños englobados en una matriz arenosa.

b) Portal de Entrada y de Salida

El afrontonamiento del portal de entrada y de salida se hará totalmente en roca de naturaleza granítica de color gris claro, de grano medio a grueso, textura fanerítica.

En superficie la roca es moderadamente resistente (R3) (de la tabla Nº 4.6.1) por lo que se estima que la resistencia a la compresión de la roca a cortar es de resistencia media a alta (R4-R5).

El espaciamiento de fracturas varía de 0.20 a 1.20 m por lo que se considera de poco fracturado a moderadamente fracturado (F2-F3) (de la tabla Nº 4.6.3), el plano de fracturas se encuentran algo pulidas con aberturas mayor de 1 mm, el RQD se estima en un 85 %.

La clasificación geomecánica RMR es la siguiente:

Resistencia	RQD	Fisuras		Aguas	Corrección	Valor	Clase
De la roca		Espaciamiento	Estado	Subterráneas			
12	17	10	6	10	-25	30	IV

Los taludes de corte recomendados en roca para los afrontonamiento de entrada y de salida es de 1:10 (H:V).

c) <u>Túnel de Conducción</u>

Desde la entrada hasta la salida del túnel la excavación se hará en roca granítica de color gris claro, de grano medio a grueso y textura fanerítica.

Superficialmente la roca tiende a presentarse de ligera a medianamente alterada (M2 - M3) (de la tabla N° 4.6.2), por lo que se prevé que en toda la longitud del túnel se presentará ligeramente alterada a sana (M1-M2).

A todo lo largo del túnel, la roca a excavar se prevé que presente una resistencia a la compresión alta (R4-R5) (de la tabla Nº 4.6.1).

La clasificación del tipo de roca de excavación es la siguiente:

Tipo de Roca	%	Longitud (m)
1	84	423
II	12	61
10	4	20
TOTAL	100	504

d) Evaluación del Sostenimiento del Túnel

SOPORTE	PORTAL INGRESO		CONDUCCION DE ROCA	N	PORTAL SALIDA	TOTAL
_		<u></u>	II	III]	
Cerchas metálicas	9 @ 1.0 m				10 @ 0.9 m	18
Planchas acanaladas	Bóveda @ 5 entre cerchas = 40				Bóveda @ 5 entre cerchas = 40	80
Pernos de anclaje	En frontón @ 6	1@25m = 1 5	1@2m = 2 7		En frontón @ 6	54
Malla metálica	En frontón 4 m²		30 m²		En frontón 4 m²	38
Shotcrete	1.5 m ³		12 m³		1.5 m ³	15

Cuadro Nº 4.3.1

CALICATAS EXPLORATORIAS EN CIMENTACION DE CANAL DE CONDUCCION NEPEÑA-CASMA-SECHIN

N°	EXCAVACION N°	PROGRESIVA (km + m)	PROFUNDIDAD (m)	TIPO DE DEPOSITO DE SUPERFICIE	OBSERVACIONES
	-	(,,,,,	, , , ,	22 00. 2111 1012	
1	C-01A	72 + 760	2,20	FLUVIAL-MARINO	a 25m a la derch del eje
2	C-01	72+966	2,00	MARINO	a 2m a la derch del eje
3	C-02	73+380	3,80	MARINO	a 8m a la derch del eje
4	C-03	73+490	2,20	MARINO	a 14m a la derch del eje
5	C-04	73 + 945	2,80	COLUVIAL-MARINO	a 4m ala derch del eje
6	C-05	74 + 288	2,00	COLUVIAL	
7	C-06	75 + 130	4,40	COLUVIAL	
8	C-07	75 + 150	1,80	COLUVIAL	
9	C-08	75 + 404	5,00	EOLICO-MARINO	
10	C-08A	75 + 830	2,60	MARINO	
11	C-08B	76+020	2,00	MARINO	
12	C-09	76 + 260	1,70	EOLICO-MARINO	
13	C-10	76 + 850	3,20	MARINO	
14	C-11	77 + 310	1,40	MARINO-ELUVIAL	
15	C-12	77 + 784	3,20	EOLICO-MARINO	
16	C-12A	78 + 240	2,00	MARINO	
17	C-12B	78 + 920	0,70	MARINO	a 4m a la derch del eje
18 19	C-12C C-13	79 + 270 79 + 725	1,80 3,40	MARINO MARINO	
20	C-13 C-14	79 + 725 79 + 810	2,00	ALUVIAL	
21	C-14 C-15	79 + 850	2,00	ALUVIAL	•
22	C-16	79 + 930 79 + 930	3,60	MARINO	
23	C-10	79 + 990	1,20	MARINO	
24	C-18	80+010	1,20	MARINO	[[
25	C-19	80+090	2,90	MARINO	
26	C-19A	80+610	2,80	MARINO	
27	C-19B	80+662	0,50	MARINO	
28	C-19C	80+694	0,50	ALUVIAL	
29	C-20	81 + 226	2,80	MARINO	
30	C-21	81 + 660	2,00	ALUVIAL	
31	C-22	81 + 904	1,60	ALUVIAL	
32	C-23	82 + 940	1,20	ROCA DESCOMPUESTA	,
33	C-24	83+140	3,50	MARINO	
34	C-25	83 + 188	1,80	MARINO	
35	C-25A	83 + 220	1,00	ALUVIAL	
36	C-25B	83 + 240	1,40	ALUVIAL	
37	C-26	83 + 304	1,70	EOLICO	
38	C-27	83 + 745	2,00	ALUVIAL	
39	C-28	83+890	1,60	MARING	
40	C-29	85 + 460	1,50	MARINO	
41	C-30	85+680	0,70	ALUVIAL	
42 43	C-31 C-32	85 + 760 86 + 104	2,80 1,40	MARINO ALUVIAL	a 24m a la derch del eje
43	C-32 C-33	86 + 104 86 + 952	1,40	EOLICO-ALUVIAL	2 min a la deterr der eje
45	C-33 C-34	87 + 012	1,70	MARINO	
46	C-35	87 + 140	3,60	MARINO	a 2m a la derch del eje
47	C-35A	87 + 400	1,30	EOLICO - ALUVIAL	
48	C-36	87 + 998	2,80	MARINO	
49	C-37	88+086	0,70	EOLICO	
50	C-38	88 + 112	3,25	EOLICO-MARINO	
51	C-39	88 + 228	1,50	MARINO	
52	C-40	88 + 628	4,00	MARINO	a 2m a la derch del eje
53	C-41	89+112	3,40	MARINO	a 1m a la derch del eje
54	C-42	89 + 330	1,60	MARINO	a 2m a la derch del eje
55	C-43	89+436	3,80	MARINO	a 1m a la Izq del eje
56	C-44	89 + 756	3,60	MARINO	a 3m a la derch del eje
57	C-45	89 + 840	1,20	MARINO	a 3m a la derch del eje
58	C-46	90+110	1,50	ALUVIAL	a 60m a la Izq del eje
59	C-47	90 + 120	1,80	MARINO	a 80m a la Izq del eje
60	C-48	90 + 190	5,80	EOLICO-MARINO	a 168m a la Izq del eje
61	C-49	90+210	7,50	EOLICO-MARINO	a 180m a la Izq del eje
1			<u> </u>	l	L

Cuadro Nº 4.3.1

CALICATAS EXPLORATORIAS EN CIMENTACION DE CANAL DE CONDUCCION NEPEÑA-CASMA-SECHIN

N°	EVCAVACION	DDOGDECIVA	PROFUNDIDAD	TIPO DE DEPOSITO	OPCEDVACIONES
IN T	EXCAVACION N°	PROGRESIVA (km+m)	(m)	DE SUPERFICIE	OBSERVACIONES
	14	(KIII + III)	(111)	DE OUFERFICIE	
62	C-49A	90 + 250	3,50	EOLICO-MARINO	a 100m a la lzq del eje
63	C-49B	90 + 260	3,00	EOLICO-MARINO	a 100m a la izq del eje
64	C-50	91 + 920	1,60	EOLICO	a room a la izq del eje
65	C-51	91+980	1,10	EOLICO-ALUVIAL	1
66	C-51B	91 + 980	0,50	ALUVIAL	a 10m a la lzg del eje
67	C-52	92+032	1,10	EOLICO-ALUVIAL	a 4m a la derch del eje
68	C-53	92 + 260	4,00	EOLICO-MARINO	a ma a acron don ojo
69	C-54	92+300	1,00	MARINO	
70	C-55	92 + 520	0,50	MARINO	
71	C-56	92+546	2,00	EOLICO-MARINO	
72	C-57	92+620	1,50	EOLICO-MARINO	
73	C-58	92+968	1,30	EOLICO-MARINO	
74	C-59	93+020	1,00	EOLICO-MARINO	a 3m a la derch del eje
75	C-60	93+050	1,60	EOLICO-MARINO	1
76	C-61	93+068	1,35	MARINO	a 2m a la Izq del eje
77	C-62	93 + 340	1,80	MARINO	i
78	C-63	93 + 760	4,50	MARINO	
79	C-64	93 + 795	6,80	MARINO	
80	C-65	95+985	2,00	ALUVIAL	
81	C-66	96+408	3,00	MARINO	
82	C-67	96+625	1,60	ALUVIAL	
83	C-68	96 + 720	3,00	MARINO	1
84	C-69	96+880	2,60	MARINO	
85	C-70	97 + 415	2,80	MARINO	
86	C-71	97 + 480	2,40	MARINO	
87	C-72	97 + 510	1,70	MARINO	
88	C-73	97 + 570	0,90	MARINO-ELUVIAL	
89	C-74	97 + 740	2,80	MARINO-ELUVIAL	
90	C-75	98 + 390	2,10	MARINO	
91	C-76	98+625	4,10	MARINO FOLICO MARINO	a 2m a la derch del eje
92	C-77	98+970	2,80 2,00	EOLICO-MARINO MARINO	a zin a la dercit del eje
93	C-78 C-79	99+825 99+870	2,40	EOLICO-MARINO	
95	C-79 C-80	100 + 550	1,50	EOLICO	a 8m a la Izq del eje
96	C-80 C-81	100+330	3,00	EOLICO-MARINO	a 2.20m a la Izq del eje
97	C-82	101 + 500	2,80	MARINO	a 40m a la Izq del eje
98	C-83	102 + 715	2,30	MARINO	4 10111 4 14 124 461 976
99	C-84	103+090	1,70	EOLICO-MARINO	
100	C-85	103 + 160	1,20	EOLICO-ALUVIAL	
101	C-86	103 + 440	1,30	EOLICO-ALUVIAL	
102	C-87	103 + 620	1,00	EOLICO	
103	C-88	103 + 740	0,65	EOLICO-ALUVIAL	
104	C-89	103 + 780	1,50	EOLICO	
105	C-90	110+880	2,70	EOLICO	
106	C-91	111+015	2,00	EOLICO-ALUVIAL	
107	C-92	111+360	1,50	ALUVIAL	
108	C-93	111+815	1,40	EOLICO-ALUVIAL	
109	C-94	112+060	1,70	ALUVIAL	
110	C-95	112+520	0,70	EOLICO-ALUVIAL	
111	C-96	113+060	4,40	MARINO	
112	C-97	113+250	1,00	EOLICO-MARINO	
113	C-98	113+875	2,20	EOLICO MARINO	
114	C-99	114+290	2,50	EOLICO-MARINO EOLICO-MARINO	
115	C-100	114+670	2,60		
116	C-101	115+085	2,50	MARINO	
117	C-102	115 + 515	2,20	MARINO EOLICO-MARINO	1
118	C-103	115+840	2,50	EOLICO-MARINO	
119	C-104	116+260	2,30	EOLICO-MARINO	
120	C-105	116+650	2,50	EOLICO-MARINO	1
121	C-106	117+065 117+415	2,80 2,80	EOLICO-MARINO EOLICO-MARINO	
122	C-107	11/+415	2,00	EOLIOO-WATHING	
	L		<u> </u>	L	I

Cuadro N° 4.3.1

CALICATAS EXPLORATORIAS EN CIMENTACION
DE CANAL DE CONDUCCION NEPEÑA-CASMA-SECHIN

N°	EXCAVACION	PROGRESIVA	PROFUNDIDAD	TIPO DE DEPOSITO	OBSERVACIONES
	N°	(km + m)	(m)	DE SUPERFICIE	
					į
123	C-108	117+830	2,60	EOLICO-MARINO	1
124	C-109	118+080	2,60	EOLICO-MARINO	1
125	C-110	118+030	2,30	EOLICO-MARINO	1
126	C-111	118+950	1,80	EOLICO-MARINO	
127	C-112	119+360	2,80	EOLICO-MARINO	
128	C-113	119 + 740	3,30	MARINO	}
129	C-114	119+825	4,20	MARINO	
130	C-115	119+970	1,60	COLUVIAL-MARINO	ŀ
131	C-116	120+400	2,00	MARINO	Ì
132	C-117	120 + 585	0,85	MARINO	ł.
133	C-118	120+695	2,80	EOLICO-MARINO]
134	C-119	120+990	3,00	MARINO	
135	C-120	121 + 425	2,50	MARINO	
136	C-121	122 + 260	6,50	MARINO	
137	C-122	122+375	3,20	MARINO	
138	C-123	122+515	2,00	MARINO	l.
139	C-124	122 + 750	1,10	ELUVIAL	
140	C-125	122 + 825	1,80	ALUVIAL	
141	C-126	123 + 560	1,60	ALUVIAL	a 48m a la Izq. del eje
142	C-127	124+620	2,50	MARINO	
143	C-128	124 + 888	1,70	MARINO	
144	C-129	125 + 100	2,00	ALUVIAL	1
145	C-130	125 + 120	2,00	ALUVIAL	1
146	C-131	125 + 500	2,10	MARINO	
147	C-132	125 + 690	2,20	MARINO	
148	C-133	125 + 804	0,60	COLUVIAL-ELUVIAL	
149	C-134	126+480	0,80	MARINO	
150	C-135	126 + 850	3,80	MARINO	ļ
151	C-136	126+760	1,50	ALUVIAL	1
152	C-137	126+916	2,00	ALUVIAL	1
153	C-138	127 + 190	1,70	MARINO	
154	C-139	127 + 560	3,20	MARINO.	
155	C-140	128 + 048	3,00	MARINO	
156	C-141	128 + 406	1,20	MARINO	
157	C-142	128+840	1,00	MARINO	1
158	C-143	129 + 140	1,80	MARINO]
159	C-144	129 + 414	1,80	MARINO	
160	C-145	129 + 574	2,40	MARINO	
161	C-146	129 + 800	2,80	COLUVIAL-MARINO	
162	C-147	130 + 196	1,50	MARINO	
163	C-148	130 + 572	1,50	COLUVIAL-MARINO	1
164	C-149	130+840	2,00	MARINO	
165	C-150	130+890	1,25	MARINO	
166	C-151	131 + 420	2,60	MARINO	a 6m a la Izq. del eje
167	C-152	131+636	1,00	MARINO	
168	C-153	131 + 780	3,60	MARINO	
169	C-154	132+136	1,50	MARINO	1
					<u> </u>

Cuadro Nº 4.3.2

RESUMEN DE ENSAYOS FISICO - MECANICOS

PROYECTO : Ingeniería del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash
MUESTRA : Cimentacion

MUESTRA	PROGRESIVA	PROFUNDIDAD			GRA	NULOME	TRIA			H.N.	LIMITE	DE CONSI	STENCIA	CLASIFICACION	DISTRIE	BUCION	Gravedad	Densidad	DI	NSIDAD	ES
N°		(m)			% ACUM	ULADO Q	UE PASA			(%)	L.L.	L.P.	I.P.	sucs	3" a Nº 4	MENOR Nº 4	Específica	Natural	Máxima	Mínima	Relativa
			3''	2''	1 1/2"	3/4''	3/8"	N° 4	Nº 10		(%)	(%)			GRAVA (%)	ARENA (%)	Rel. Sólidos	(gr/cm3)	(gr/cm3)	(gr/cm3)	(%)
	70 700	0.00 0.00		400.00	100.00	100,00	100,00	100,00	98,82	0,67			N.P.	SP	0.00	95.52	2.736				1
C-01A	72+760	0.80 - 2.20	100,00	100,00	100,00	100,00	100,00	100,00	96.62	0,67	-]	N.F.)	0,00	33,32	2,730	1,582	1,684	1,381	70.70
D-1	72 + 700	0,20				1												1,606	1,793	1,432	53.80
D-2	73+380	1,50												1				1,614	1,753	1,432	33,60
D-3	73+400	0,10							<u>-</u>					6.5	2.20	00.40	2210	1,014			i
C-03	73 + 490	0.60 - 2.20	100,00	100,00			100,00	97,14	91,47	0,44		•	N.P.	SP	3,38	92,48	2,710				l
C-08A	75 + 830	2.00 - 2.50	100,00	100,00	100,00	1	100,00	100,00		4,03			N.P.	SP	0,00	95,21	2,740				l
C-08B	76+020	0.00 - 2.00	100,00	100,00	100,00	100,00	100,00	100,00	99,27	0,72		•	N.P.	SP	0,00	95,65	2,714				1
D-4	76 + 455	0,20						1										1,549	1,635	1,359	72,70
D-5	77 + 784	0,90			ł													1,581			l
D-6	79 + 190	0,20			İ													1,561	1,647	1,390	70,30
C-13	79 + 725	0.70 - 0.90	100,00	100,00	100,00	100,00	100,00	100,00	89,90	1,95	-	-	N.P.	SP	0,00	98,05	2,714	1,277			l
D-8	79 + 850	0,80		ļ	ļ			!		i				1				2,035			l
C-19B	80 + 662	0.00 - 0.50	100,00	100,00	100,00	96,43	91,68	87,62	83,41	0,47	-	-	N.P.	SP - SM	12,38	79,12	2,759				l
C-19C	80 + 694	0.00 - 0.50	100,00	72,80	57,89	34,26	29,60	27,12	25,03	0,32	-		N.P.	GP	72,88	26,07	2,766				l
D-9	81 + 800	0,20		[ĺ	Ι.		1	ĺ	{	ĺ		ĺ	[[[2,397			i
C-25	83 + 188	0.00 - 1.80	100,00	100,00	100,00	97,09	95,25	94,16	92,83	2,26			N.P.	SP	5,84	92,83	2,721	1,557	1,638	1,385	71,60
C-25A	83 + 220	0.00 - 1.00	100,00	100,00	98,70	96,36	93,65	90,98	88,39	0,15	-		N.P.	SP	9,02	87,89	2,736				i
D-11	83 + 236	0,20				ļ	}				ļ							1,941			i
D-12	83 + 240	1,00			1													1,683			i
D-13	85+680	0,20			ļ]		,							1,761			i
D-14	85+760	0,20				ļ	ŀ			1								1,785	1,843	1,525	84,30
D-15	89 + 756	0,65	ļ				ļ				ļ	l						2,147			ı
D-16	89 + 756	1,80				1		1					1					1,558			ł
C-51	91+980	0.00 - 1.10	100,00	95,33	91,50	79,87	72,18	62,42	41.53	0,27			N.P.	SP	37,58	58,97	2,841	1,828			i
C-51	92+260	0.00 - 4.00	100,00	1		1	100,00	100,00	1 .				N.P.	SP	0,00	99,35	2,736	1,568	1,685	1,458	52,00
C-53	92+546	0.00 - 2.00	100,00	1	1		1	1	1	1	1 .		N.P.	SP	0.00	98.80	2,714		.,		,50
		0.00 - 2.00	100,00	1	1 .	97,57	93,65	85,33	70,94	0,33	15,49		N.P.	SP - SM	14.67	74,68	2.814				i
C-61	93+068	l .	1	1	1	1	96,49	82,48	54,99	0,33	1		N.P.	SP	17,52	77.20	2,765	1.652	1,746	1,464	70,40
C-61	93+068	0.60 - 1.00	100,00	100,00	100,00	30,03	30,49	02,40	34,33	0,2,			''''	"	'',52	,,,20	2,703	1,002	1,,,40	1,404	,0,40

Cuadro Nº 4.3.2

RESUMEN DE ENSAYOS FISICO - MECANICOS

PROYECTO: Ingeniería del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash
MUESTRA : Cimentacion

MUESTRA	PROGRESIVA	PROFUNDIDAD			GRA	NULOME	TRIA			H.N.	LIMITE	DE CONSI	STENCIA	CLASIFICACION	DISTRI	BUCION	Gravedad	Densidad	D1	ENSIDAD	ES
N°		(m)			% ACUN	IULADO Ω	UE PASA	_		(%)	L.L.	L.P.	1.P.	sucs	3" a Nº 4	MENOR Nº 4	Específica	Natural	Máxima	Mínima	Relative
			3''	2''	1 1/2"	3/4"	3/8''	N° 4	Nº 10		(%)	(%)	<u> </u>		GRAVA (%)	ARENA (%)	Rel. Sólidos	(gr/cm3)	(gr/cm3)	(gr/cm3)	(%)
						ļ '															ĺ
C-65	95+985	0.60 - 1.20	100,00	100.00	91.26	87.27	82.42	78.81	66.62	0,25			N.P.	SP	21,19	76,12	2,770] .		j
D-20	96 + 408	0,20			ŀ	'						İ						1,719			1
C-68	96+720	0.00 - 0.50	100,00	100,00	100,00	100,00	100.00	94.92	91.64	0.17	-	.	N.P.	SP - SM	5,08	89,36	2,751	1,655	1,767	1,436	70,60
C-68	96+720	1.00 - 3.00	100,00	100,00	100,00	100,00	100,00	100,00	100.00	1,75	-	-	N.P.	SP	0,00	96,70	2,732		·		
C-72	97+510	0.00 - 1.70	100,00	100,00	100,00	100,00	100,00	100.00	98.40	0,39	-	-	N.P.	SP	0,00	95,30	2,706				l
D-22	97 + 548	0,20								1		}						1,722			
C-75	98 + 390	0.00 - 2.10	100,00	100,00	100,00	100,00	97.17	86.42	62.53	1,46	-		N.P.	SP	13,58	85,30	2,707				
D-23	98 + 488	0,20			}	ì			1	{		ł	1	1			ł i	1,649	1,832	1,510	48,00
C-76	98+625	0.00 - 0.50	100,00	100,00	100,00	100,00	100,00	100.00	98.90	0,32		-	N.P.	SP - SM	0,00	93,15	2,766				1
C-76	98+625	0.50 - 3.20	100,00	100,00	100,00	100,00	100,00	100,00	100.00	0,36	-	-	N.P.	SP	0,00	98,50	2,743				ĺ
C-76	98+625	3.20 - 4.10	100,00	100,00	100,00	100,00	100,00	100,00	100.00	0,66	-		N.P.	SP	0,00	97,05	2,710				1
C-78	99+825	0.00 - 0.70	100,00	100,00	100,00	100,00	99.42	98.68	95.67	0,36	-		N.P.	SP	1,32	94,74	2,732				1
D-24	102 + 705	0,20			1		1			ļ								1,657			l
D-25	103+090	0,60	ļ		j	ļ]		J]]]	}]		J J	1,586]		ĺ
D-26	103+160	0,40	ł	İ]	1,450			1
C-88	103 + 740	0.00 - 0.65	100,00	100,00	100,00	99.06	92.51	77.89	53,76	0,31	-		N.P.	SP	22,11	75,41	2,756				l
D-27	109 + 406	0,20	1	ł					ĺ									1,543	1,654	1,430	54,00
D-28	111+015	0,20		1		ł						}					l i	1,583			1
D-29	111+015	1,00																1,760		i	1
D-30	111+360	1,50			l													1,689			l
C-94	112+060	0.60 - 0.90	100,00	95.88	92.05	80.75	72.48	66.31	59.87	0,89	-	-	N.P.	SP	33,69	64,01	2,725	2,277	ľ		l
D-32	113+875	0.20			ì					1				1				1,540	1,686	1,437	45,40
D-33	115+515	0,20]	l]									1,582	1,747	1,377	61,20
D-34	117+415	0,60					1											1,644	1,845	1,517	43,40
C-114	119+825	2.00 - 2.90	100.00	100,00	100,00	100,00	100,00	100.00	98.58	1,41			N.P.	SP - SM	0,00	94,40	2,801	1,714			i
D-36	120+410	0,20							1									1,732	1,817	1,518	75,10
D-37	122+755	0,20	}	ļ]	1)	ļ	J]		1	l	ļ				1,793			1
D-37	124 + 700	0,20	1			1	1						1					1,759	1,825	1,482	83,90
0-36	1247700	0,20	1		1								l					.,		.,	100,00

Cuadro Nº 4.3.2

RESUMEN DE ENSAYOS FISICO - MECANICOS

PROYECTO : Ingeniería del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash
MUESTRA : Cimentacion

MUESTRA	PROGRESIVA	PROFUNDIDAD			GRAI	NULOME	TRIA			H.N.	LIMITE	DE CONSI	STENCIA	CLASIFICACION	DISTRI	BUCION	Gravedad	Densidad	D	ENSIDAD	ES
l N° ¹	1	(m)			% ACUM	ULADO Q	UE PASA			(%)	L.L.	L.P.	I.P.	sucs	3" a № 4	MENOR Nº 4	Específica	Natural	Máxima	Mínima	Relativa
1			3''	2"	1 1/2"	3/4"	3/8"	N° 4	Nº 10		(%)	(%)			GRAVA (%)	ARENA (%)	Rel. Sólidos	(gr/cm3)	(gr/cm3)	(gr/cm3)	(%)
D-39	129+120	0,20																1,705	1,796	1,462	76,60
C-141	128+400	0.30 - 0.60	100,00	100,00	100,00	100,00	100.00	95.56	82.84	0,75	-		N.P.	SP - SM	4,44	89,15	2,766				
C-144	129+404	1.20 - 1.50	100,00	100,00	100,00	100,00	100.00	96.14	87.29	1,72	-	١.	N.P.	SP	3,86	91,74	2,786				1 1
C-145	129+560	0.90 - 1.30	100,00	100,00	100,00	100,00	100,00	100,00	99,30	1,88	15,94		N.P.	SM	0,00	86,17	2,778				
C-148	130 + 560	1.40 - 1.50	100,00	100,00	100,00	100,00	100,00	100,00	98,87	0,73	-	-	N.P.	SM	0.00	87,96	2,817				1 1
C-151	131+412	0.00 - 2.40	100,00	100,00	100,00	100,00	96,07	95,04	92,64	0,10			N.P.	SP - SM	4,96	88,16	2,786				
C-153	131+770	1.35 - 1.50	100,00	100,00	100,00	93,54	86,99	74,04	51,27	0,34	-		N.P.	sw	25,96	71,00	2,795	1,858	1,972	1,598	77,10
D-41	131+770	1,70											-					1,942			

Cuadro N° 4.3.3

PARAMETROS GEOTECNICOS

CALICATA N°	PROGRESIVA (km+m)	PROFUNDIDAD (m)	DENSIDAD RELATIVA Dr (%)	DIAMETRO D10 (mm)	DIAMETRO D60 (mm)	COEFICIENTE DE UNIFORMIDAD Cu = D60/D10	ANGULO DE FRICCION INTERNA (ذ)	TIPO DE SUELO
0.044	72 + 760	0.80 - 2.20	50	0,100	0,210	2.10	22	MARINO
C-01A	1		53	'	'	2,10	33	
C-03	73+490	0.60 - 2.20	52	0,115	0,217	1,89	33	MARINO
C-08A	75 + 830	2.00 - 2.50	53 51	0,091 0,091	0,217 0,200	2,38	33 33	MARINO
C-08B	76+020					2,20		MARINO
C-13	79 + 725	0.70 - 0.90	55 60	0,098	0,228	2,33	33	MARINO
C-19B	80+662	0.00 - 0.50	60	0,083	0,240	2,89	34	MARINO
C-19C	80+694	0.00 - 0.50	61	0,183	41,063	224,39	34	ALUVIAL
C-25	83 + 188	0.00 - 1.80	63	0,110	0,204	1,85	34	MARINO
C-25A	83 + 220	0.00 - 1.00	50	0,098	0,211	2,15	33	ALUVIAL
C-51	91 + 980	0.00 - 1.10	75	0,158	4,450	28,16	36	ALUVIAL
C-53	92 + 260	0.00 - 4.00	61	0,151	0,309	2,05	34	EOLICO
C-56	92 + 546	0.00 - 2.00	51	0,108	0,217	2,01	33	EOLICO
C-61	93+068	0.00 - 0.20	45	0,074	1,044	14,11	32	MARINO
C-61	93+068	0.60 - 1.00	59	0,112	2,546	22,73	34	MARINO
C-65	95-985	0.60 - 1.20	55	0,149	1,603	10,76	33	ALUVIAL
C-68	96 + 720	0.00 - 0.50	50	0,095	0,234	2,46	33	MARINO
C-68	96 + 720	1.00 - 3.00	62	0,134	0,223	1,66	34	MARINO
C-72	97 + 510	0.00 - 1.70	52	0,131	0,224	1,71	33	MARINO
C-75	98 + 390	0.00 - 2.10	56	0,149	1,830	12,28	33	MARINO
C-76	98 + 625	0.00 - 0.50	50	0,084	0,211	2,51	33	MARINO
C-76	98 + 625	0.50 - 3.20	61	0,133	0,228	1,71	34	MARINO
C-76	98 + 625	3.20 - 4.10	62	0,128	0,223	1,74	34	MARINO
C-78	99 + 825	0.00 - 0.70	55	0,093	0,217	2,33	33	MARINO
C-88	103 + 740	0.00 - 0.65	46	0,149	2,777	18,64	32	EOLICO
C-94	112+060	0.60 - 0.90	75	0,158	2,380	15,06	36	ALUVIAI
C-114	119+825	2.00 - 2.90	52	0,087	0,217	2,49	33	MARINO
C-141	128 + 406	0.30 - 0.60	50	0,086	0,356	4,14	33	MARINO
C-144	129+414	1.20 - 1.50	55	0,146	0,234	1,60	33	MARINO
C-145	129 + 574	0.90 - 1.30	56	0,074	0,205	2,77	33	MARINO
C-148	130 + 572	1.40 - 1.50	63	0,074	0,177	2,39	34	MARINO
C-151	131 + 420	0.00 - 2.40	61	0,081	0,205	2,53	34	MARINO
C-153	131 + 780	1.35 - 1.50	64	0,149	3,117	20,92	35	MARINO

Cuadro N° 4.4.1

ENSAYOS MANUALES DE PENETRACION LIGERA (SPL)
EN SUELOS EOLICOS Y SU EVALUACION

SONDEO Nº	PROGRESIVA (km+m)	N10 SPL PROMEDIO	DENSIDAD RELATIVA %	N (SPT) EQUIVALENTE	CAPACIDAD PORTANTE (kg/cm2)
1.4	00 - 110	0	4.0	_	0.70
14	88 + 112	8	43	/	0,72
18	93+020	8	43	7	0,72
24	100 + 550	8	43	7	0,72
26	103 + 620	9	45	8	0,87
27	103 + 780	10	47	9	1,01
29	113+875	8	43	7	0,72
30	117+415	9	45	8	0,87

OBSERVACION: Valores hallados para una profundidad de dezplante, Df = 1.50 m y un ancho de zapata, B = 0.70 m

Cuadro N° 4.4.2

ENSAYOS MANUALES DE PENETRACION LIGERA (SPL)
EN SUELOS MARINOS Y SU EVALUACION

SONDEO N°	PROGRESIVA (km+m)	N10 SPL PROMEDIO	DENSIDAD RELATIVA %	N (SPT) EQUIVALENTE	CAPACIDAD PORTANTE (kg/cm2)
				-	
1	72 + 760	15	53	13	1,78
2	73 + 490	14	52	12	1,63
3	75 + 830	15	53	13	1,78
4	78 + 240	11	48	10	1,15
5	79 + 270	17	54	14	1,94
6	79 + 725	18	55	15	2,09
7	80+610	13	51	12	1,47
8	80 + 662	23	60	20	2,86
9	83 + 188	28	63	23	3,47
10	83 + 220	12	50	11	1,31
11	83 + 240	12	50	11	1,31
12	83 + 745	10	47	9	1,01
13	88+086	10	47	9	1,01
15	89 + 112	19	56	16	2,25
16	92 + 260	19	56	16	2,25
17	92 + 546	13	51	12	1,47
19	93+068	22	59	19	2,71
20	96 + 720	26	62	22	3,31
21	97 + 510	14	52	12	1,63
22	98 + 625	25	61	21	3,16
23	99 + 870	19	56	16	2,25
25	102 + 715	19	56	16	2,25
28	111+015	10	46	9	1,00
31	118+080	13	51	12	1,47
32	119+825	14	52	. 12	1,63
33	128+048	22	59	19	2,71
34	128+840	12	50	11	1,31
35	129 + 414	18	55	15.	2,09
36	129 + 574	19	56	16	2,25
37	130+196	31	64	26	3,92
38	130 + 572	29	63	24	3,62
39	130 + 840	58	74	47	7,60
40	131 + 420	25	61	21	3,16
41	132+136	30	64	25	3,77

 ${f OBSERVACION}: {f Valores}$ hallados para una profundidad de dezplante, ${f Df}=1.50$ m y un ancho de zapata, ${f B}=0.70$ m

Cuadro Nº 4.4.3

CAPACIDAD DE CARGA ADMISIBLE PARA
PARA SUELOS ALUVIALES

PROGRESIVA (km+m)	DENSIDAD NATURAL (gr/cm3)	ANCHO DE ZAPATA (m)	PROFUNDIDAD DE CIMENTACION (m)	CAPACIDAD DE CARGA ADMISIBLE (Kg/cm²)
79 + 850	2,159	0,70	1,20 1,50	4,37 5,19
81 + 800	2,403	0,70	1,20 1,50	4,87 5,78
91 + 980	1,833	0,70	1,20 1,50	3,71 4,41
111+360	1,801	0,70	1,20 1,50	3,65 4,33
112+060	2,352	0,70	1,20 1,50	4,77 5,65

OBSERVACION: Valores calculados para un ángulo de fricción de 33° , para una densidad relativa de 75 % y un factor de seguridad de 3

Cuadro Nº 4.5.1

RESUMEN DE ENSAYOS FISICO - MECANICOS

PROYECTO : Ingeniería del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

MUESTRA : Agregados - Afirmados - Rellenos

	CALICATA	PROFUNDIDAD		-	GRAI	NULOME	TRIA				LIMITE	DE CONSI	STENCIA	CLASIFICACION	DISTRI	BUCION	Gravedad	PRO	CTOR
MUESTRA	DE CANTERA	(m)			% ACUM	ULADO Q	UE PASA			M.F.	L.L.	L.P.	I.P.	SUCS	3" a N° 4	MENOR Nº 4	Específica	Máxima	Húmedad
]]	N°	de - a	3''	2''	1 1/2"	3/4''	3/8''	N° 4	N° 200	<u> </u>	(%)	(%)			GRAVA (%)	ARENA (%)	Rel. Sólidos	(gr/cm3)	óptima (%)
	CC-1	0.00 - 2.00	100,0	97,09	88,85	74,36	64,31	56,72	0,94	2,65	-	-	N.P.	SP	43,28	55,78	2,769		
	CC-2	0.00 - 2.00	100,0	96,93	93,99	87,14	76,79	69,26	2,71	2,65	-	-	N.P.	SP	35,38	61,91	2,762		
AGREGADOS	CC-3	0.00 - 2.00	100,0	97,39	95,77	91,83	81,04	71,26	2,69	2,91	•	-	N.P.	sw	28,74	68,57	2,842		
	CC-4	0.00 - 2.00	100,0	92,72	86,44	75,55	66,57	58,39	1,17	2,75	-	-	N.P.	SP	41,61	57,22	2,754		
	CC-5	0.00 - 4.00	100,0	98,44	95,11	81,61	70,54	58,97	7,54		15,29	-	N.P.	SW - SM	41,03	51,43	2,744	2,245	8,05
AFIRMADOS	CC-6	0.00 - 4.00	100,0	92,44	81,30	*61,55	46,02	33,08	4,13		21,65	-	N.P.	GW	66,92	28,95	2,769	2,113	9,42
RELLENOS	CC-7	0.00 - 2.00	100,0	98,20	95,72	80,91	65,58	53,00	24,87		16,44	14,72	1,72	SM	47,00	28,13	2,821		
:	CC-8	0.00 - 0.50	100,0	98,95	97,11	84,77	66,63	50,39	13,67		15,74		N.P.	GM	49,61	36,72	2,894		

Nota : De las muestras de Agregados, el porcentaje de bolonería (gravas > 3") es como sigue

CC-1 = 15 % CC-3 = 10 % CC-2 = 15 % CC-4 = 20 %

CUADRO Nº 4.6.1 GRADOS DE RESISTENCIA A LA COMPRESION DEL MACIZO ROCOSO (ISRM - 1978)

GRADO	DESCRIPCION	IDENTIFICACION	RANGO APROX RESISTENCIA A COMPRESION UNIAXIAL (MPa)
RO	Roca extremadamente débil	Es indentado por la uña del dedo pulgar.	0.25 - 1.00
R1	Roca muy débil	Se desmorona bajo golpes firmes con la punta del martillo de geólogo martillo de geólogo, puede ser descascarado por un cuchillo de bolsillo	1.00 - 5.00
R2	Roca débil	Puede ser descascarado por un cuchillo de bolsillo con dificultad; cavidades poco profundas se forman con golpes firmes con la punta del martillo	5.00 - 25.00
R3	Roca moderadamente resistente	No puede ser raspado por un cuchillo de bolsillo, el espécimen puede ser fracturado con un golpe firme del martillo	25.00 - 50.00
R4	Roca Resistente	El espécimen requiere mas de un golpe con el martillo de geólogo para fracturarlo	50.00 - 100.00
R5	Roca muy resistente	El espécimen requiere de muchos golpes con el martillo de geólogo para fracturarlo.	100.00 - 250.00
R6	Roca extremadamente resistente	El espécimen puede ser solamente descascarado con los golpes del martillo de geólogo.	> 250.00

CUADRO Nº 4.6.2

GRADOS DE METEORIZACION DEL MACIZO ROCOSO

(ISRM - 1980)

TERMINO	DESCRIPCION	GRADO
FRESCA	Signos no visibles de meteorización del material rocoso, tal vez ligera decoloración sobre las superficies de las discontinuidades.	M1
LIGERAMENTE METEORIZADA	La decoloración indica meteorización del material rocoso y superficies de las discontinuidades. Externamente todo el material puede estar algo más débil que en su condición fresca.	M2
MODERADAMENTE METEORIZADA	Menos de la mitad del material rocoso esta descompuesta y / o desintegrado a un suelo. La roca fresca o decolorada está presente aun como una red o esqueleto discontinuo o como núcleos de roca.	М3
ALTAMENTE METEORIZADA	Mas de la mitad del material rocoso esta descompuesto y/o desintegrado a suelo. La roca fresca o decolorada está presente aun como una red o esqueleto discontinuo o como núcleos de roca.	M4
COMPLETAMENTE	Todo el material rocoso esta descompuesto y/o desintegrado a suelo. La estructura original del material esta aun presente.	M5

CUADRO Nº 4.6.3

GRADOS DE FRACTURAMIENTO DEL MACIZO ROCOSO

(ISRM - 1978)

INTERVALO (cm)	SIMBOLOS	TERMINOS DESCRIPTIVOS
> 200	F1	MASIVO
60 - 200	F2	POCO FRACTURADO
20 - 60	F3	FRACTURADO
6 - 20	F4	MUY FRACTURADO
< 6	F5	TRITURADO

CUADRO Nº 4.6.6

CLASIFICACIÓN GEOMECÁNICA CSIR DE MACIZOS DE ROCA FISURADA - RMR

A. CLASIFICACIÓN DE LOS PARÁMETROS Y SU EVALUACIÓN

	Para	ámetro)			Escala de v	alores			
1	Resiste ncia de la roca	Indice carga	de la de punta	>8 Mpa	4-8 Mpa	2-4 MPa	1-2 MPa	baja se prueba resiste	Para esta escala baja se prefiere prueba de la resistencia a la comp. uniaxial	
1	Inaltera da		encia a uniaxial	>200 Mpa	100-200 MPa	50-100 MPa	25-500 MPa	10- 25 MPa	3- 10 MPa	1- 3 MPa
	\	/aluació	n	15	12	7	44	2	1	0
2	Calidad de corazones explosión, RQD			90%-100%	75%-90%	50%-75%	25%-50%		<25%	
	\	/aluació	n	20	17	13	8		3	
	Espaciar	niento d	de juntas	>3 m	1-3 m	0.3-1 m	50-300 mm	<50 mm		n
3	Valuación		30	25	20	10		5		
4	Estado de fisuras		Superficies muy rugosas, sin continuidad, sin separación. Paredes de roca dura	Superficies algo rugosas, separación < 1mm. Paredes de roca dura	Superficies algo rugosas, separación < 1mm. Paredes de roca suave	Superficies pulidas o relleno < 5mm Esp. o Fisuras abiertas 1-5 mm fisuras continuas	Relleno blando <5mm o Fisuras abiertas < 5mm Fisuras continuas		ıras ım	
	\	/aluació	n	25	20	12	6		0	
		Infilt	idad de tración n túnel	Ning	guna	< 25 litros/min	25-125 litros/min	> 1	25 litros	s/min
	Aguas Subterrá	Relac	Presión de agua o en fisura	C	ero	0.0-0.2	0.2-0.5		> 0.5	
5	neas	ión Esfue princ o ma								· · · · · · · · · · · · · · · · · · ·
		Situación general		Totalme	nte seco	Sólo húmedo (agua de intersticios)	Ligera presión de agua	Serio	25 10 3 MPa MPa MPa 2 1 0 <25% 3 <50 mm 5 Relleno blando <5mm o Fisuras abiertas < 5mm Fisuras continuas 0 > 125 litros/min	
	\	/aluació	n	1	0	7	4		0	

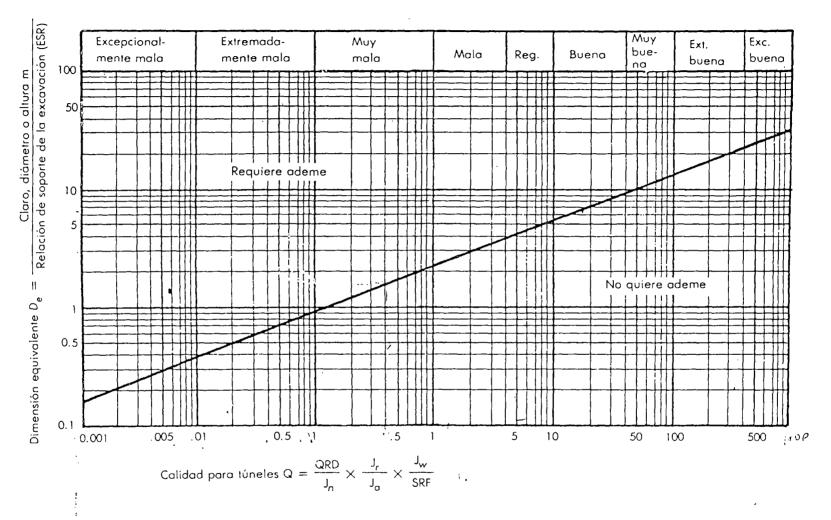
FUENTE: E. HOEK / E.T. BROWN - EXCAVACIONES SUBTERRANEAS EN ROCA - PAG. 32 y 33

B. AJUSTE EN LA VALUACIÓN POR ORIENTACIÓN DE FISURAS

Orientación de rumbo y echado de fisuras		Muy favorable	Favorable	Regular	Desfavorable	Muy desfavorabl e
	Túneles	0	-2	-5	-10	-12
Valuación	Cimentacion es	0	-2	-7	-15	-25
	Taludes	0	-5	-25	-50	-60

FUENTE: E. HOEK / E.T. BROWN - EXCAVACIONES SUBTERRANEAS EN ROCA - PAG. 33

C. CLASIFICACIÓN DE ROCAS SEGÚN EL TOTAL DE VALUACIÓN


Valuación	100 – 81	80 - 61	60 - 41	40 - 21	< 20
Clasificación Nº	1	П	111	IV	>
Descripción	Muy buena roca	Buena roca	Roca regular	Roca mala	Roca muy mala

FUENTE: E. HOEK / E.T. BROWN - EXCAVACIONES SUBTERRANEAS EN ROCA - PAG. 34

D. SIGNIFICADO DE LA CLASIFICACIÓN DEL MACIZO ROCOSO

Clasificación Nº	l	11	III	١٧	V
Tiempo medio de sostén	10 años para claro de 5 m	6 meses para claro de 4 m	1 semana para claro de 3 m	·5 horas para claro de 15 m	10 minutos para claro de 0.5 m
Cohesión de la roca	> 300 KPa	200-300 KPa	150-200 KPa	100-150 KPa	< 100 KPa
Angulo de fricción de la roca	> 45°	40°- 45°	35°- 40°	30°- 35°	<30°

FUENTE: E. HOEK / E.T. BROWN - EXCAVACIONES SUBTERRANEAS EN ROCA - PAG. 34

Relación entre la dimensión equivalente máxima D_e de una excavación subterránea sin ademe y del índice Q de la calidad para túneles (NGI) (Según Barton, Lien y Lunde¹)

CAPITULO V CRITERIO Y PARAMETROS DE DISEÑO

5.1 GENERALIDADES

El diseño, construcción y mantenimiento de un sistema de conducción y distribución es una parte integral de la mayoría de los aprovechamientos de los recursos Hidráulicos, sean pequeños o grandes, simples o complejos y ya sean que sirvan para uno o diferentes usos. En la mayoría de casos serán de usos múltiples.

Son muy variados los factores que se deben considerar para obtener un valor adecuado par la capacidad de conducción, dependiendo del tipo de aprovechamiento y de las características particulares de cada uno de ellos.

Antes de entrar en detalle con las diversas estructuras de cruce adoptadas a lo largo del canal según los análisis realizados, no podemos dejar de lado lo correspondiente a perdidas a lo largo de la conducción que se puede atribuir a Infiltración, Evaporación y Perdidas por Operación. De las tres anteriores, las perdidas por Infiltración pueden llegar a ser la de mayor consideración.

Casi el 85% del trazo del canal atraviesa por suelo porosos constituido por; Arenas finas semi compactas y Gravas arenosas, por lo que se ha adoptado el revestimiento del canal con concreto en toda su longitud con espesores variable (dependiendo del tipo de sección a ser adoptado), la cual reduciría las pérdidas por filtración y además de proteger las paredes del canal de la erosión del agua que conducirá el canal. En tramo donde el canal cruzará la roca el revestimiento dependerá del tipo de roca.

La reducción de las perdidas permitieron diseñar un canal con menor sección, con el mismo caudal de diseño. Por lo que se podría decir menor costo de construcción, mantenimiento y además con una ganancia en el costo del agua directamente aprovechada.

La ubicación y selección del tipo de estructura de cruce (Estructura de protección, Estructura de regulación y Estructura tipo), tuvo como objetivos

principales; vencer obstáculos, protección y operación del canal de conducción. Cabe indicar también que el tipo de suelo con sus características geotécnicas influyeron en el diseño de los mismos.

Para el Diseño de las Conducciones se consideraron como datos básicos lo siguiente:

- La capacidad o el gasto máximo por conducir.
- Pendiente del fondo.
- Coeficiente de fricción, como función de la rugosidad de los materiales que forman la sección del conducto.
- Velocidades límites del agua, cuando haya necesidad de tomarlas en cuenta.
- Plano Topográfico con la configuración del terreno a lo largo de la localización.
- Plano con Geología superficial a lo largo del trazo.
- Pozos a cielo abierto a cierta equidistancia, de acuerdo con la Geología Superficial.
- Pruebas de mecánica de suelos de los materiales a lo largo del trazo.

Estos considerados del primer tramo Cascajal - Nepeña.

Con estos datos básicos se pudo seleccionar el tipo de estructura adecuado y ubicado en zonas en la que se requerían su uso. A lo largo del trazo del canal se ha adoptado la sección trapezoidal, rectangular y abovedada.

A continuación se resume los principales componentes del esquema de obras:

Descripción	Caudal de Diseño	Longitud
	(m³/s)	(m)
Canal D-I	7.5	15.127
Canal D-II	7.5	5.277
Canal E-I	5.5	14.808
Canal E-II	5.5	2.656
Canal F-I	4.0	7.154
Canal F-II	4.0	1.111

Descripción	Caudal de Diseño	Longitud
	(m³/s)	(m)
Sub Total		46.133
CCC-7.5 CCC-5.5 CCD-7.5 CCD-5.5 Acueducto 7.5	7.5 5.5 7.5 5.5 7.5	1.623 4.984 602 1.137 466
Acueducto 5.5 Sub Total	7.5	127 8.939
Túnel 3 Túnel 4 Túnel 5 Túnel 6 Túnel 7 Túnel 8 Túnel 9	7.5 7.5 7.5 7.5 5.5 4.0 4.0	715 1.675 1.835 215 274 144 504
Sub Total		5.362
Transiciones Aliviadero No. 1 Aliviadero No. 2	Variable 2.0 1.5	989 10 8
Sub Total		1.007
Total		61.440
Obras de Arte		
Alcantarillas Canoas Entradas Acueductos Aliviaderos		21 13 0 6 3
Puentes Vehiculares Puente Peatonales		3 A ser definido

CCC = Conducto Cubierto Rectangular

CCD = Conducto Cubierto Abovedado

D, E y F = Sección Trapezoidal para caudales de diseño de 7.5, 5.5 y 4.0 m^3/s

5.2 CRITERIOS DE DISEÑO

5.2.1 Velocidad Mínima de Sedimentación

La velocidad del flujo no debe descender de cierto límite inferior equivalente a la velocidad de deposición del material en suspensión que acarrea el agua en el canal.

Según Robert Kennedy

$$U = b \times d^{0.64}$$

Donde:

U = velocidad límite que no produce sedimentación

b = coeficiente de sedimentación

d = tirante de agua

5.2.2 Velocidad Máxima de Erosión

La velocidad del flujo no debe ser mayor que aquella velocidad que produce destrozos en las paredes y fondo del canal, dañando los revestimientos o modificando el contorno de los cauces naturales.

De acuerdo al material del revestimiento algunas velocidades máximas son:

Arena suelta 0.45 m/seg

Suelo con grava 1.50 m/seg

Concreto 4.40 m/seg

Planchas de acero 12.00 m/seg

Para el diseño del canal se tomó el valor en consideración de 4.40 m/seg, que comparado con los valores obtenidos no sobrepasan este límite.

5.2.3 Relación de Máxima Eficiencia Hidráulica

En general la relación de M.E.H. se obtiene cuando el radio medio hidráulico es máximo y cuando el perímetro mojado es mínimo se expresa:

$$X = 2 \times d ((1+z^2)^{0.5} - z)$$

5.2.4 Coeficiente de Rugosidad

Es la resistencia al flujo de agua que presentan los revestimientos de los canales artificiales y la naturaleza del lecho en los cauces naturales.

Algunos valores son:

Ladrillos vitrificado	0.011
Madera cepillada	0.010
Concreto	0.012
Piedras Grandes	0.030
Canales de tierra	0.025
Cauces naturales limpios	0.025
Cauces con vegetación	0.030

Para el diseño se tomó el valor de 0.012 para el caso de revestimiento de concreto.

5.2.5 Taludes Recomendados

La inclinación de las paredes de lo canales depende de la geología de los materiales de excavación y relleno por lo que atraviese.

Para el caso de las paredes de excavación y relleno del canal se ha optado los valores siguientes:

Talud de Corte:

Suelo arenoso 1.5:1

Roca y Suelo con grava 1.0:1

Talud de Rellenos:

Suelo arenoso 1.5:1

5.2.6 Tirantes Críticos

Depende del tipo de sección y son los siguientes:

Rectangular
$$dc = (2/3)x((v^2/2g-d))$$

Trapezoidal
$$dc = (4B/(5B+f))+v^2/2g$$

5.2.7 Bordes Libres

Para dar seguridad al canal es conveniente considerar bordes libres de acuerdo al tirante y velocidad del canal. Cuando el gasto es menor de 2 m3/seg es suficiente un borde libre de 0.30 m, si el caudal es mayor el Bureu of Reclamation utiliza para canales de régimen supercrítico la fórmula:

$$fb = 0.60 + 0.0037 \text{ v}^3 \text{ x d}^{0.5}$$

donde fb, es el borde libre

v, la velocidad del flujo en m.

d, el tirante en m.

Se ha usado la segunda expresión ya que los caudales de diseño sobrepasan el límite establecido. Para el cálculo las características hidráulicas se ha usado el programa FLOW MASTER.

5.3 CANALES ABIERTOS

Como el canal de conducción es variable de 7.50 a 4.00 m³/seg, disminuyendo la sección telescópicamente conforme se va derivando el agua de riego a los terrenos de cultivo y según los datos geotécnicos (tipo de suelo), los canales abiertos han sido proyectados de sección trapezoidal, con inclinación de taludes variables entre 1: 1 y 1.5: 1 (H: V), dependiendo de las características del material que atraviesa el canal, habiéndose adoptado el primer valor para tramos en roca y materiales gravosos y el segundo valor para tramos en arena.

Las dimensiones de las plantillas y las alturas de caja, también son variables y dependientes del caudal de diseño y de la inclinación del talud. A lo largo del canal se ha adoptado tres (03) tipos de sección; D, E y F, para caudales de diseño de 7.5, 5.5 y 4.0 m³/s, adoptándose:

D-I, E-I, F-I

en material suelto

D-II, E-II, F-II

en roca

La ubicación esta dado:

SECCION	PROGRESIVA (km.)	LONGITUD (m)	(%)
D-I	72+360 A 100+480	15,073	53.60
D-II	72+360 A 100+480	5,250	18.67
E-I	100+480 A	14,808	61.13
	124 + 704		
E-II	100 + 480 A	2,655	10.96
	124 + 704		
F-I	124+704 A	7,156	78.65
	133+802		
F-II	124 + 704 A	2,080	9.80
	133 + 802		

Las secciones típicas de diseño se muestran en los planos CHI-04 1/2 y CHI-04 2/2.

A continuación se muestra un cuadro con el resumen de las características hidráulicas de las secciones típicas:

Características Hidráulicas del Canal Principal

Tipo		Q (m³/s)	B (m)	Z	S (m/m)	D (m)	D (m)	v (m/s)	Progresiva
D	1	7.50	1.50	1.50	0.0005	1.60	1.95	1.38	70+910
	li.	7.50	1.00	1.00	0.0005	1.58	1.95	1.43	100 + 480
E	Ī	5.50	1.50	1.50	0.0006	1.34	1.65	1.37	100+480
		5.50	1.00	1.00	0.0006	1.33	1.65	1.41	124 + 704
F	Ι	4.00	1.50	1.50	0.0008	1.08	1.40	1.41	124 + 704
	11	4.00	1.00	1.00	0.0008	1.10	1.40	1.45	133+800

El espesor de revestimiento del canal es de 0.065 m con concreto simple.

Los canales abiertos, contarán con un camino de vigilancia y mantenimiento de 4.50 m de ancho, ubicado en la margen derecha del canal y lastrado con una superficie de rodadura de 0.20 m de espesor.

En la margen izquierda, se dispondrá de una berma de ancho variable de 4.00 m para tramos de arena móviles, a 2.50 m en tramos de roca y conglomerado, la misma que será protegida con una capa de material con las mismas características a la superficie de rodadura del camino de vigilancia.

En cortes profundos de plataforma, se ha previsto la construcción de bermas banquetas de 2.0 m de ancho, cada 10.0 m de altura como máximo.

5.4 TÚNELES

En el Canal Principal, Tramo Nepeña - Casma, Sechín, se ha previsto la construcción de 7 túneles que representa el 8.6% de la longitud total del canal, diseñados con sección tipo abovedada, de 2.00 m de ancho por 2.80 m de altura y 1.00 m de radio en la bóveda (tomado de referencia del primer tramo). El funcionamiento hidráulico de los túneles es a pelo libre, con una relación tirante/diámetro máxima de 0.75.

En el plano CHI-05 se muestran las secciones típicas de diseño. Las características hidráulicas y de construcción de los túneles proyectados se muestran a continuación:

Características Hidráulicas de los Túneles

Túnel No.	Progresiva	L (m)	Q (m³/s)	s (-)	d (m)	B (m)	H (m)	d/H	V (m/s)	Sección Tipo
					` '				, , , ,	1.50
3	86 + 184 86 + 899	715	7.50	0.0015	1.82	2.00	2.80	0.65	1.75	Abovedada
4	90 + 234 91 + 909	1675	7.50	0.0015	1.82	2.00	2.80	0.65	1.75	Abovedada
5	94+061 95+896	1835	7.50	0.0015	1.82	2.00	2.80	0.65	1.75	Abovedada
6	100+003 100+218	215	7.50	0.0015	1.82	2.00	2.80	0.65	1.75	Abovedada
7	123 + 778 124 + 194	274	5.50	0.0006	2.05	2.00	2.80	0.73	1.34	Abovedada
8	127 + 787 127 + 931	144	4.00	0.0006	1.58	2.00	2.80	0.57	1.26	Abovedada
9	132+343 132+847	504	4.00	0.0006	1.58	2.00	2.80	0.57	1.26	Abovedada

Los túneles contarán con un revestimiento de concreto de 0.20 m de espesor teórico, el mismo que dependiendo de las características de la roca, podrá requerir de armadura. La necesidad de revestimiento de la bóveda en los túneles será definida en obras de acuerdo a las características y condiciones en que se encuentra la roca una vez realizada la excavación.

Para fines de excavación, se han dividido los túneles en tres tipos, de roca tipo I, II y III, las mismas que serán función del tipo de sostenimiento requerido para la excavación, que puede requerir pernos aislados, pernos sistemáticos, concreto rociado con o sin malla de acero, cerchas con planchas acanaladas y concreto rociado armado, etc.

La roca que interesará los túneles proyectados, corresponden a rocas del tipo intrusivo (grano diorita) del Batolito de la Costa, siendo en general de características competentes para la excavación. No se espera encontrar agua ni presencia de gases o altas temperaturas durante la excavación de los túneles.

5.5 CONDUCTOS CUBIERTOS

Se ha previsto la construcción de conductos cubiertos en tramos en que canal cruza quebradas o zonas en las que se evidencia un movimiento eólico intenso que da lugar a la formación de dunas. En los tramos que el canal cruza quebradas se ha previsto una sección rectangular cubierta con relleno y enrocado a fin de evitar que el canal sea afectado por la descarga a través de la quebrada de agua y material sólido producto de una avenida.

En los tramos en que se evidencia una intensa actividad eólica, que da lugar al transporte de arenas que podrían ingresar al canal, también se ha previsto la construcción de conductos cubiertos de sección rectangular. Para los tramos en que la actividad eólica es aún más intensa, que da lugar a la formación de dunas con alturas del orden de 15 m a 18 m por encima de la plataforma del canal, se ha previsto la construcción de conductos cubiertos abovedados con sección igual a la de los túneles. Los criterios hidráulicos utilizados para su diseño son los mismos a los considerados para los túneles.

Las características hidráulicas y de construcción de los conductos cubiertos, se muestran a continuación:

СС	Progr	esiva	L	Q	s	d	В	Н	Sección
No.	De	Α	(m)	(m³/s)		(m)	(m)	(m)	Tipo
1	81 + 397	81 + 924	527.0	7.50	0.0008	1.61	2.80	2.00	Rectangular
2	86 + 144	86+181	37.0	7.50	0.0008	1.61	2.80	2.00	Rectangular
3	89 + 887	90+085	198.0	7.50	0.0008	1.61	2.80	2.00	Rectangular
4	97+796	98 + 267	471.0	7.50	0.0008	1.61	2.80	2.00	Rectangular
5	99 + 187	99+398	211.0	7.50	0.0008	1.61	2.80	2.00	Rectangular
6	99 + 400	99+820	420.0	7.50	0.0010	2.16	2.00	2.80	Abovedada
7	99+822	100+001	179.0	7.50	0.0008	1.61	2.80	2.00	Rectangular
8	100+218	100 + 400	182.0	7.50	0.0010	2.16	2.00	2.80	Abovedada

CC	Progr	esiva	L	Q	s	d	В	Н	Sección
No.	De	Α	(m)	(m³/s)		(m)	(m)	(m)	Tipo
9	102+394	102 + 596	202.0	5.50	0.0008	1.37	2.60	1.70	Rectangular
10	102+801	102+995	194.0	5.50	0.0008	1.37	2.60	1.70	Rectangular
11	103 + 127	105+039	1912.0	5.50	0.0008	1.37	2.60	1.70	Rectangular
12	107+644	109+014	1370.0	5.50	0.0006	2.05	2.00	2.80	Abovedada
13	109+675	110+670	995.0	5.50	0.0008	1.37	2.60	1.70	Rectangular
14	111+077	111+743	666.0	5.50	0.0008	1.37	2.60	1.70	Rectangular
15	121 + 793	122+366	573.0	5.50	0.0008	1.37	2.60	1.70	Rectangular
16	123+710	123+776	66.5	5.50	0.0008	1.37	2.60	1.70	Rectangular
17	123+778	123+920	142.0	5.50	0.0006	2.05	2.00	2.80	Abovedada

CC = Conducto Cubierto

La longitud total de conductos cubiertos representa el 13.6% del longitud total del canal.

5.6 ACUEDUCTOS

Las obras de arte requeridas para el cruce de seis (6) quebradas importantes existentes a lo largo del trazo del canal, corresponden a acueductos con sección rectangular a ser construidos de concreto reforzado, apoyados sobre relleno compactado. Se instalarán conductos circulares conformados por estructuras multiplate de planchas de acero corrugada galvanizada.

Las características principales de estas estructuras son:

Túnel	Progresiva	Canal				
No.	(km + m)	Q (m³/s)	B (m)	H (m)	s (m/m)	D (m)
1	79+842	7.5	3.40	2.00	0.0005	1.58
2	80+685	7.5	3.40	2.00	0.0005	1.58
3	85 + 553	7.5	3.40	2.00	0.0005	1.58

Túnel	Progresiva	Canal				
No.	(km + m)	Q (m³/s)	B (m)	H (m)	s (m/m)	D (m)
4	85+913	7.5	3.40	2.00	0.0005	1.58
5	122+816	5.5	3.00	1.65	0.0006	1.33
6	123 + 553	5.5	3.00	1.65	0.0006	1.33

Q = Caudal de Diseño B = Ancho de Fondo

H = Altura Total

s = Pendiente Longitudinal

d = Tirante de Agua

5.7 OBRAS DE ARTE PRINCIPALES

5.7.1 Aliviaderos Laterales

Con el propósito de evitar desbordes en el canal Principal aguas abajo de un cambio en su capacidad de conducción frente a una mala operación de las tomas laterales existentes a lo largo de su desarrollo, se han ubicado dos (2) aliviaderos laterales de demasías con capacidad de descarga de 2.0 m³/s y 1.5 m³/s respectivamente.

Las características principales de estas estructuras son:

Aliviadero Nº	Progresiva (km + m)	(m)	Q (m³/s)	H (m)	BL (m)
1	100+480	10.0	2.00	0.30	0.25
2	124 + 704	8.0	1.50	0.30	0.25

L = Longitud del vertedero lateral

Q = Caudal de diseño (descarga)

H = Carga de agua sobre la cresta del vertedero

BL = Borde Libre

5.7.2 Aliviadero Final

En el extremo final del Canal Principal Chinecas se ha previsto la construcción

de un aliviadero de demasías cuya finalidad es eliminar hacia el río Sechín los caudales que no son captados por las tomas laterales ubicados aguas arriba del mismo. La estructura se inicia en la progresiva 133+800 y su capacidad de evacuación alcanza hasta 4.0 m³/s, valor que corresponde al caudal de diseño del último tramo del canal. Sus características principales son:

Progresiva	(m)	Q	H	BL
(km + m)		(m³/s)	(m)	(m)
133+800	18.0	4.00	0.25	0.16

L = Longitud del vertedero lateral Q = Caudal de diseño (descarga)

H = Carga de agua sobre la cresta del vertedero

BL = Borde Libre

5.7.3 Cruces de quebradas

El Canal Principal a lo largo de su desarrollo cruza seis (6) quebradas cuya descarga debe ser mantenida en forma de no afectar la seguridad del canal. Con este propósito se ha previsto terraplenes sobre los que se apoya el canal en concreto de sección rectangular, discurriendo el agua de la quebrada por conductos circulares de descarga conformados por estructuras multiplate de planchas de acero corrugado galvanizado de gran diámetro. Para el caso del acueducto No. 1 la solución prevista corresponde a un puente canal de concreto reforzado de tres (3) tramos con luz libre de 18 m cada uno. La ubicación y características principales de estas estructuras son:

ACU	IEDUCTO	ESPESOR	DIAMETRO	AREA LIBRE	LONGITUD	N° DE CONDUCTOS
Nº	Progresiva	(mm)	(m)	(m2)	(m)	(und)
1	79+842	Puente Ca	anal de Concre	 eto Reforzado d uno	e tres vanos d	l de 18 m cada
2	80+685	2.50	4.61	16.69	27.00	1
3	85 + 553	2.50	4.61	16.69	38.00	1
4	85+914	2.50	4.30	14.52	22.00	1
5	122+816	2.50	4.61	16.69	30.00	1
6	123 + 553	2.50	4.61	16.69	19.00] 1

5.8 OBRAS DE ARTE COMPLEMENTARIAS

5.8.1 Transiciones

Se ha proyectado dos tipos de transiciones a lo largo del Canal Principal; las primeras, diseñadas en concreto reforzado, y que corresponden a la conexión de la sección trapezoidal del canal con la sección abovedada de los túneles o conducto cubierto, tanto a la entrada como a la salida. Está conformada por una transición tipo "broken back" que va de la sección trapezoidal a una sección rectangular de ancho igual al del túnel o conducto cubierto.

El segundo tipo de transición, corresponde a la requerida para unir dos secciones trapezoidales del canal, cuyas dimensiones pueden variar como consecuencia de los cambios de caudal y/o los cambios de talud. Estas transiciones han sido proyectadas en concreto simple, manteniendo los criterios del revestimiento en cuanto a sus juntas y bruñas.

5.8.2 Alcantarillas

Con el propósito de proteger el Canal Principal de la escorrentía superficial de las quebradas que el canal cruza a lo largo de su trazo, se han proyectado 21 alcantarillas, a fin de permitir el paso de los caudales que descargan las quebradas interesadas.

Estas estructuras constan de un conducto rectangular cerrado de concreto reforzado de sección cuadrada y longitud variable, con transición de entrada y salida para conexión con la quebrada drenada.

5.8.3 Canoas

A lo largo de este tramo de Canal Principal, se ha previsto la construcción de 13 canoas, que son estructuras cuya finalidad, al igual que las alcantarillas, es descargar los caudales drenados por las quebradas que atraviesa el canal en su desarrollo. Estas estructuras son de sección rectangular, de concreto reforzado,

apoyadas sobre dos estribos ubicados a cada lado del canal, permitiendo conducir los caudales descargados por encima del Canal Principal.

5.8.4 Tomas

Se han proyectado doce (12) tomas laterales a lo largo del canal, que corresponden a estructuras que permitirán derivar el caudal requerido por los usuarios del sistema, a través de los canales laterales para su posterior entrega a los terrenos de cultivo.

La estructura prevista consta básicamente de una caja de sección rectangular abierta en el talud del Canal Principal, una compuerta de regulación con su losa de operación y un conducto cerrado (tubo de concreto reforzado) para atravesar el camino de servicio. La transición de salida será definida en función de la estructura de conexión con la infraestructura secundaria de riego.

Las dimensiones de las compuertas y conducto de cruce del camino de servicio del canal son variables. Para los conductos se ha previsto el uso de tuberías de concreto reforzado (La ubicación se muestra en la tabla 5.8.1).

5.8.5 Puentes Vehículares

Se han proyectado tres (3) puentes vehículares a lo largo del Canal Principal. Cada estructura que consta de un tablero conformado por una loza apoyada en dos estribos de concreto reforzado. El tablero cuenta además con barandas de concreto reforzado y tuberías de drenaje.

Los puentes vehículares serán diseñados para una sobrecarga HS-20 según las normas AASSHO.

5.8.6 Puentes Peatonales

La estructura proyectada esta conformada por una viga cajón de concreto reforzado, apoyada en dos dados de concreto ubicados en los extremos del ancho superficial del canal. La ubicación y número de estas estructuras será definida y aprobada durante la ejecución de las obras.

Tabla 5.8.1

UBICACIÓN DE TOMAS LATERALES

Toma No.	Progresiva (km + m)	Caudal (m³/s)
	((/5/
21	72+450	0.30
22	76 + 850	0.45
23	81 + 385	0.45
24	89 + 240	0.40
25	97 + 200	0.40
26	102 + 000	0.75
27	106 + 050	0.75
28	111 + 050	0.75
29	120 + 700	0.50
30	125 + 120	0.60
31	129 + 200	0.60
32	133+160	0.35
Тс	otal	6.30
	JLdI	0.30

CAPITULO VI CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES Y RECOMENDACIONES

- 1. El Canal Principal CHINECAS Tramo Nepeña Casma y Sechín empieza en el Departamento de Ancash, provincia del Santa en la progresiva 72 + 360 Km, ubicado en el valle del río Nepeña, abarcando una longitud de 61.44 km. Terminando en la progresiva 133+800 Km, ubicado en el río Sechín, encontrándose a lo largo del trazo del canal zonas de diversa morfología y litología.
- 2. Las características Geomorfológicas a lo largo del trazo del canal se divide en tres partes importantes:
 - Un primer tramo desde el inicio hasta la salida del túnel 5, el canal bordea el apófisis de la Cordillera Occidental (Prolongación de la Cordillera, formada por rocas intrusivas), el trazo presenta una topografía accidentada con pendientes fuertes, con tramos cortos de morfología subhorizontal, correspondientes a suelos aluviales en algunos casos cubierta de arena eólica y marina.
 - Un segundo tramo Desde la salida del túnel 5 hasta la entrada del túnel 7, el canal cruza grandes áreas subhorizontales, con pendiente suave hacia la linea de costa, estas se encuentran cubiertas en su totalidad por arenas eólicas y marinas con potencia variable de 8 a 10 m. En este tramo se presenta gran movimiento eólico que dan como origen la formación de grandes dunas (depósitos de arena eólicos) y mantos de arena.
 - Un tercer tramo Desde la salida del túnel 7 hasta la conclusión del Proyecto, el canal bordea nuevamente el apófisis de la cordillera occidental de pendiente moderada, esta se encuentra disectada por pequeñas quebradas que conforman tramos de áreas subhorizontales compuestas por suelos de origen aluvial, hacia el final del tramo el valle del río Sechín.

3. La avenida de diseño a ser considerada para el cruce de cada quebrada, corresponde a los valores obtenidos por el método SCS con período de retorno de 100 años. Estos valores son mayores a los obtenidos con el Método Racional. No con estas, las estructuras no están sobredimensionadas.

AVENIDAS DE DISEÑO
CANAL CHINECAS (CASMA - SECHIN)

No.	Quebrada	Q ₁₀₀
		(m³/s)
1	Los Incas	12.33
2	Huambacho	13.31
3	Sin nombre	6.50
4	Sin nombre	6.87
5	Sin nombre	12.73
6	Grande Seca	48.66
7	Las Yuntas	62.68
8	Sin nombre	7.09
9	Jayhua 1	15.66
10	Jayhua 2	9.73
11	Pampa Afuera	2.64

Q₁₀₀ = Caudal de avenidas con 100 años de período de retorno.

Considerando que la información hidrometeorológica es escasa y limitada en la zona, los valores de avenidas da la tabla anterior han sido verificados tomando en cuenta la información registrada en la Quebrada Lacramarca como producto del último evento del Fenómeno del Niño ocurrido en 1998. La Quebrada Lacramarca se ubica en el tramo anterior del canal, denominado Cascajal – Nepeña.

El análisis realizado, consiste en comparar la avenida índice (ai) de la Quebrada Lacramarca (0.50 m³/s/km²) respecto a la avenida índice de cada quebrada de interés. Los resultados permiten señalar que la avenida índice en la mayoría de las Quebradas es superior a la determinada para la quebrada

Lacramarca, razón por la que se concluye que el caudal de avenidas determinado para cada quebrada, considera los valores extremos del Fenómeno del Niño, salvo el caso de las quebradas Nº 6 y 8 en el que la avenida índice (ai) es inferior a la de Lacramarca y es necesario ajustar los caudales considerando como "ai" 0.50 m³/s/km² (Ver tabla de resultados Nº 3.3.4).

Los valores ajustados son:

N°	Quebrada	Q ₁₀₀ (m³/s)
6	Grande Seca	68
8	Huambacho	10

- 4. La Sectorización Geológica Geotécnica de Campo, ha permitido en el tramo donde se emplazará el canal con sus respectivas obras de arte, diferenciar cuatro tipos de Suelos:
 - a. Suelo de Origen Marino
 - b. Suelo de Origen Eólico
 - c. Suelo de Origen Aluvial
 - d. Suelo de Origen Coluvio Aluvial

Que en la distribución espacial representa un 85 %.

Afloramientos de rocas de naturaleza Intrusiva (Granodiorita y Diorita), que por las medidas de sostenimiento hacer aplicados en obras se han clasificado en tres tipos:

ROCA TIPO	DESCRIPCION	RQD	RMR
		VALOR	VALOR
I II III	BUENA REGULAR MALA	55 - 100 10 - 55 < 10	44 25 – 44 < 25

Que en la distribución espacial representa un 15 %.

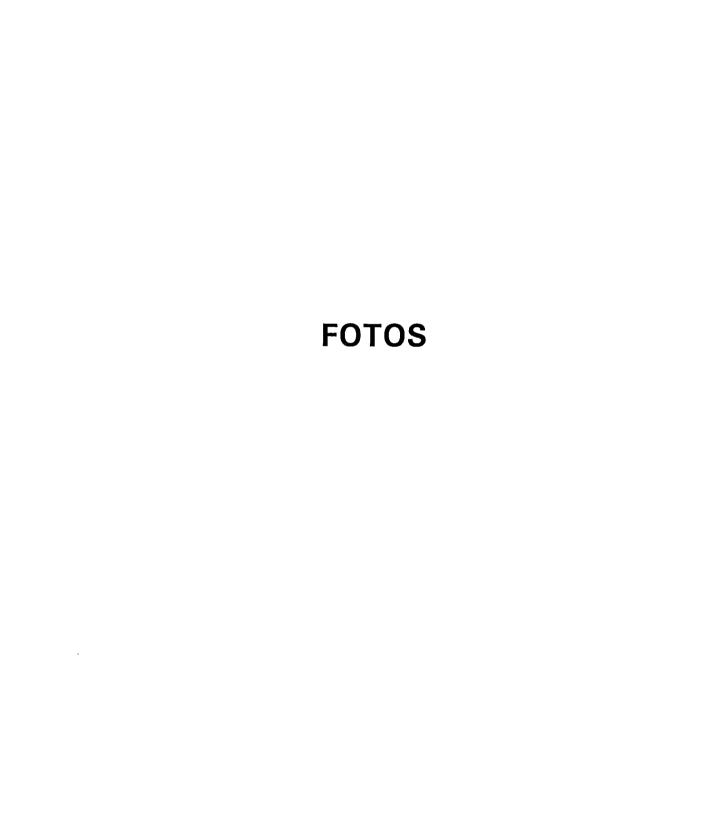
- 5. La capacidad de soporte admisible en los diferentes tipos de suelos, fue determinada en función del asentamiento total de 25 mm que es, lo recomendable, para un ancho de zapata promedio de 0.70 m, y se obtiene la capacidad admisible, estos resultados nos dice que:
 - a. La capacidad admisible en los suelos de origen eólico a lo largo del trazo del canal varía de 0.72 a 1.01 kg/cm².
 - b. La capacidad admisible en los suelos de origen marino a lo largo del trazo del canal varía de 1.00 a 7.60 kg/cm².
 - c. La capacidad admisible para los suelos aluviales y coluvio aluvial a lo largo del trazo del canal varía de 3.65 a 4.87 kg/cm².
 - "a" y "b" hallados en base a los ensayos de penetración dinámica (SPL), y "c" por fórmulas empíricas propuestas por K. Terzagui para suelos friccionantes.
- 6. La compacidad relativa de los diferentes tipos de suelos de acuerdo a los ensayos de SPL, se estima para el suelo marino 56 %, para el suelo eólico en 45 %, que comprendida en promedio como compacidad media.
- 7. No se ha observado fenómenos de geodinámica externa de gran magnitud que puedan comprometer la estabilidad del canal, siempre y cuando se tome las consideraciones del caso de los ya mencionados en el capítulo IV.
- 8. La clasificación del tipo de roca de excavación a lo largo del trazo del canal en túnel es la siguiente:

TIPO DE ROCA	%	RESISTENCIA A LA COMPRESION UNIAXIAL (Mpa)
III II	78 16 6	50 25 5

Valores considerados promedios.

9. De acuerdo a las características geológicas y corroboradas con las pruebas de laboratorio tanto las gravas y las arenas que conforma el depósito aluvial y fluvio – aluvial, constituyen buen material de canteras de agregados para concreto.

Los aprovechamientos de las canteras estarán determinada por la ubicación de las plantas de concreto y por las fuentes de agua.


- 10. La presencia del tramo del canal una vez terminada, dará lugar a impactos ambientales inducidos, los que serán mucho más positivos que negativos, entre los principales tenemos:
 - Este proyecto permitirá el mejoramiento de riego de 14,550 Ha e incorporación de 14,450 Ha de tierras nuevas para cultivo entorno al área que atravesará el canal.
 - Inducirá al desarrollo socio económico de la zona a corto y mediano plazo, así el suministro de agua a las tierras de cultivo, puede desarrollar actividades económicas dentro de los hogares, así como la creación de nuevas zonas industriales que generarán empleo. Igualmente permitirá diseñar nuevos proyectos de desarrollo.

BIBLIOGRAFIA Y REFERENCIAS

- COMISION FEDERAL DE ELECTRICIDAD, INSTITUTO DE INVESTIGACIONES ELECTRICAS.
 MANUAL DE DISEÑO DE OBRAS CIVILES, HIDROTECNIA: A.1.5 RELACION ENTRE PRECIPITACION Y ESCURRIMIENTO. México, C.F.E, 1979
- COMISION FEDERAL DE ELECTRICIDAD, INSTITUTO DE INVESTIGACIONES ELECTRICAS.
 MANUAL DE DISEÑO DE OBRAS CIVILES, HIDROTECNIA: A.1.10 AVENIDA DE DISEÑO.
 México, C.F.E, 1979
- LINSLEY, KOHLER, PAULHUS.
 HIDROLOGIA PARA INGENIEROS.
 Bogotá, Mc Graw Hill, Segunda Edición 1977
- INGEMET, BOLETIN Nº 59 SERIE A; CARTA GEOLOGICA NACIONAL.
 GEOLOGIA DE LOS CUADRANGULOS DE CHIMBOTE CASMA Y CULEBRAS.
 Lima, E.I.R.L., Primera Edición 1995
- HOEK & BROWN
 EXCAVACIONES SUBTERRANEAS EN ROCA
 México, Mc Graw Hill, Segunda Edición 1986
- 6. JIMENES SALAS & L. DE JUSTO ALPAÑES
 GEOTECNIA Y CIMIENTOS I : PROPIEDADES DE LOS SUELOS Y DE
 LAS ROCAS
 España, Ruedas, Segunda Edición 1975
- 7. SANGLERAT TRADUCIDO POR G. NNVACERRAS FARIAS EL PENETROMETRO Y EL RECONOCIMIENTO DE LOS SUELOS España, DOUNOP, 1965
- 8. NERIO ROBLES
 EXCAVACION Y SOSTENIMIENTO DE TUNELES EN ROCA
 Perú, Primera Edición 1994
- 9. PETER L. BERRY DAVID REID MECANICA DE SUELOS Colombia, Martha Edna Suarez R., 1998
- 10. ABB ASEAN BROW BOVERY

ESTUDIO GEOTECNICO Y DE SUELOS DE LA LINEA DE TRANSMISION DE 220 KV. AGUAYTIA – PARAMONGA Lima, 1996

- 11. BADILLO J., ALONZO R.
 MECANICA DE SUELOS: TEORIA Y APLICACIÓN TOMO II
 México, Limusa, Segunda Edición 1984
- 12. BIENIASWSKI Z. , SOUTH AFRICAN FOR SCIENTIFIC AND INDUSTRIAL RESEARCH (CSSIR SISTEMA R.M.R)
 SISTEMA DE CLASIFICACION DE MACIZO ROCOSO
- COMISION FEDERAL DE ELECTRICIDAD, INSTITUTO DE INVESTIGACIONES ELECTRICAS.
 MANUAL DE DISEÑO DE OBRAS CIVILES, GEOTECNIA México, C.F.E, 1981
- 14. JIMENEZ J. DE JUSTUS J., APAÑES L
 GEOTECNIA Y CIMIENTOS : MECANICA DE SUELOS Y DE ROCAS
 TOMO II
 Madrid, Ruedas, Segunda Edición 1981
- 15. F. TORRES HERRERA
 OBRAS HIDRAULICAS
 México, Limusa. Primera Edición 1980
- 16 FRANCISCO JAVIER DOMINGUEZ S. HIDRAULICA
 Chile, Universitaria, Quinta Edición 1978

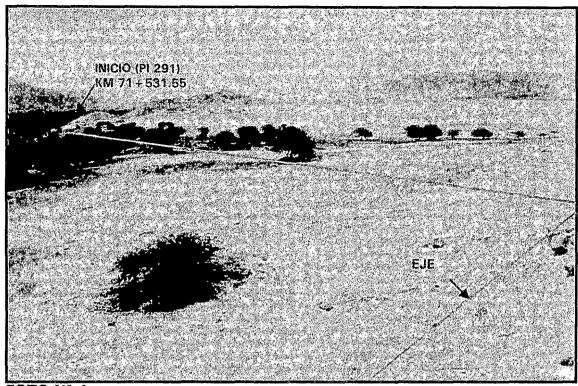


FOTO Nº 1:

Inicio del trazo del canal tramo: Nepeña – Casma – Sechín, se observa material orgánico desde su inicio para luego entrar en arena fina semicompacta de origen marino.

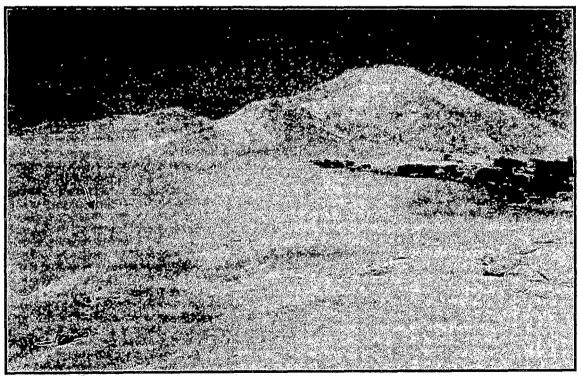


FOTO N° 2:

Vista preliminar del trazo del canal, se puede notar el intercambio de material, de una arena marina, el eje cruza la roca de origen volcánico (Granito).

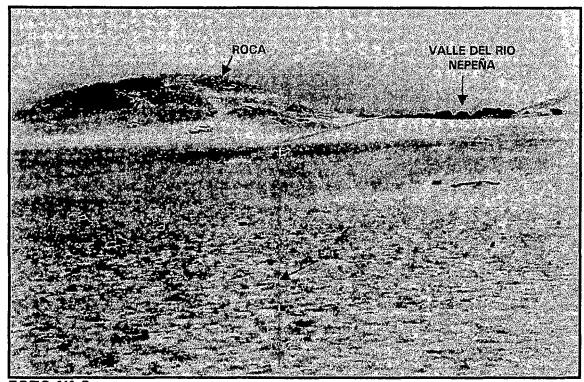
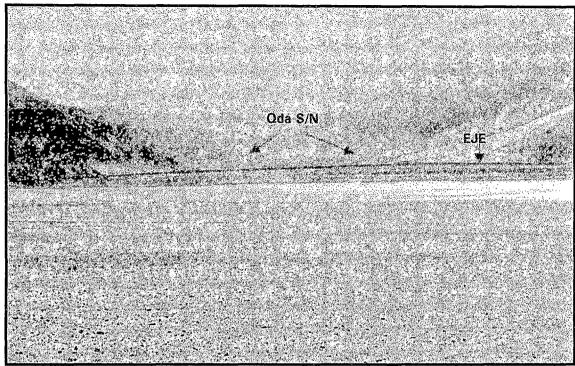



FOTO N° 3: Altura del Km 73 + 00, el canal cruza un manto de arena fina semicompacta de origen marino.

Vista preliminar del trazo del canal, altura del km 83+00 a 85+00. Hacia el fondo el valle del río Nepeña.

FOTO N° 5:

Altura del km 82+00, se observa que le trazo del canal cruza una quebrada de pendiente moderada, aquí se ha previsto terraplenes sobre los que se apoya el canal de concreto de sección rectangular descritos en el Cap. V.

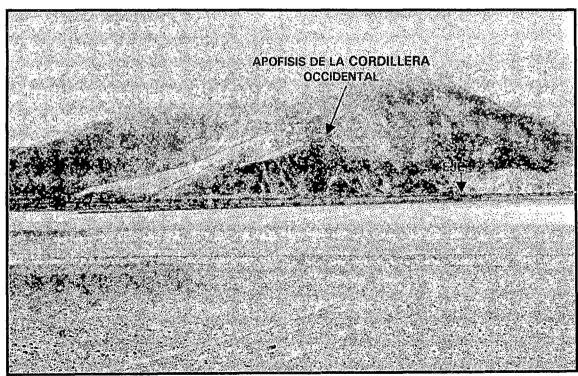


FOTO Nº 6:

Vista preliminar del trazo del canal, se observa que el canal bordea el apófisis de la Cordillera Occidental de fuerte pendiente.

FOTO Nº 7:

Vista preliminar del trazo, altura del km 83+00 al 85+00, se observa que el trazo bordea el apófisis de la cordillera. Hacia el fondo se observa la entrada del túnel N° 3.

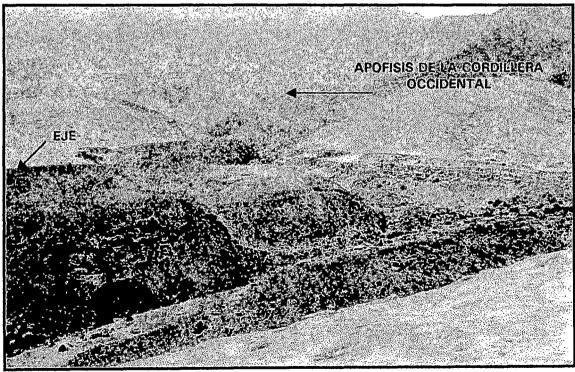
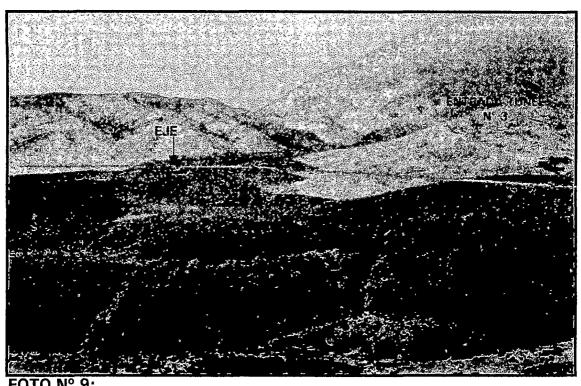



FOTO Nº 8:

Altura del km 85 + 00, se observa una topografía muy accidentada, por lo que se ha adoptado ubicar obras de arte (acueductos y alcantarillas) en este tramo para vencer estos obstáculos.

Altura del km 85 + 00, recorrido del trazo por zona muy accidentada.

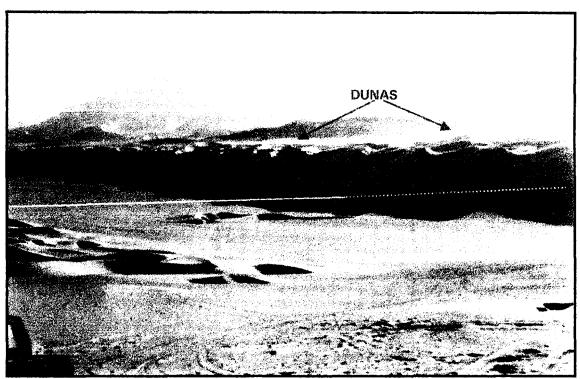


FOTO Nº 10:

Altura del km 98+00, zona de gran movimiento eólico intenso que da lugar a la formación de dunas, aquí se ha previsto la construcción de conductos cubiertos abovedados en este tramo.

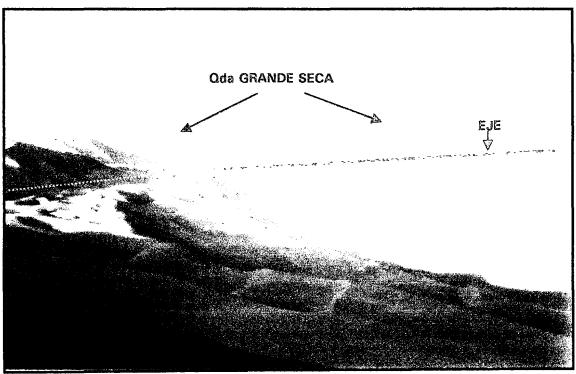


FOTO Nº 11:

Vista preliminar de la quebrada seca más grande por donde el canal será emplazado. Se ha previsto la construcción de conductos cubiertos.

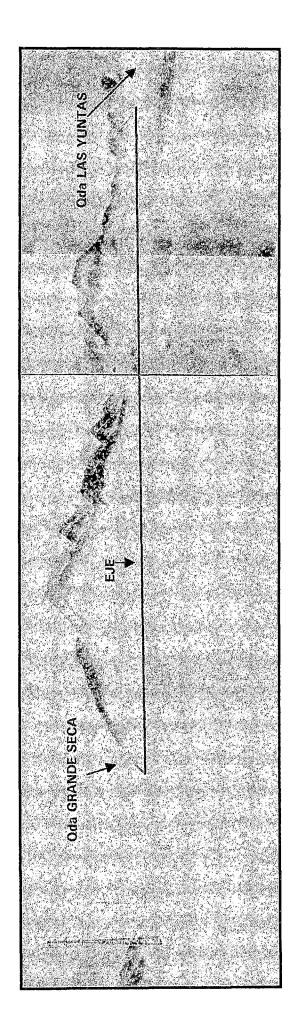


FOTO N° 12: Vista preliminar del trazo del canal, se puede observar que el eje del canal cruza mantos de arena eólica con potencia variable de 8 a 10 m.

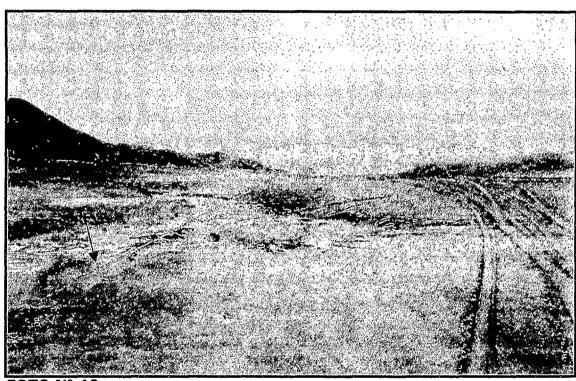


FOTO Nº 13:

Altura del km 124+00, el canal nuevamente cruza el manto de arena fina de origen marino de poca potencia (2 – 6 m), hasta entrar en tramos en roca de pendiente moderada, disectadas por pequeñas quebradas.

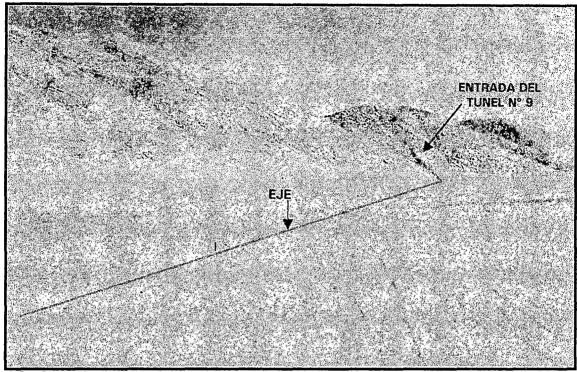
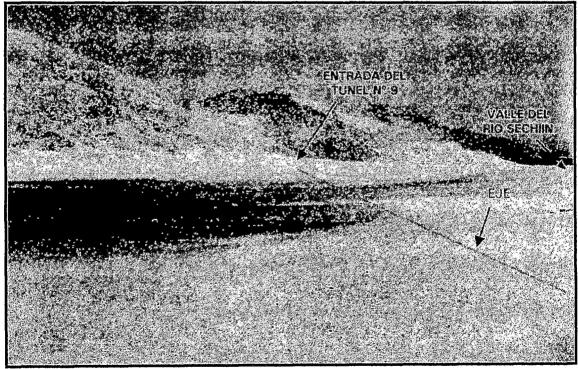
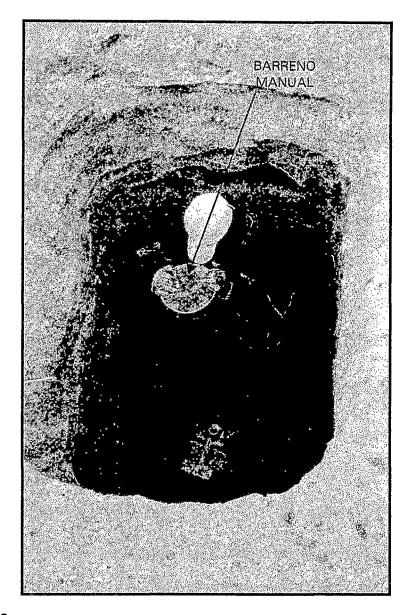
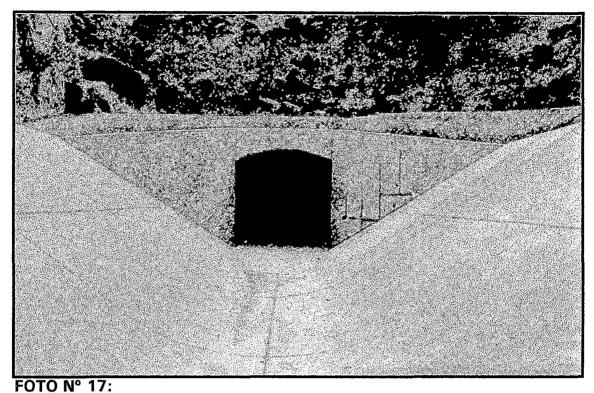


FOTO Nº 14:

Altura del km 132+00, el canal cruza por mantos de arena media y gruesa, hasta llegar a la entrada del túnel 9, para finalmente hacer entrega al río Sechín.


FOTO Nº 15:

Vista en otro ángulo de la entrada al túnel 9.

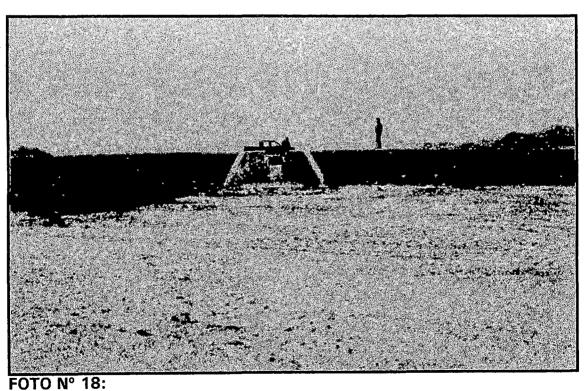
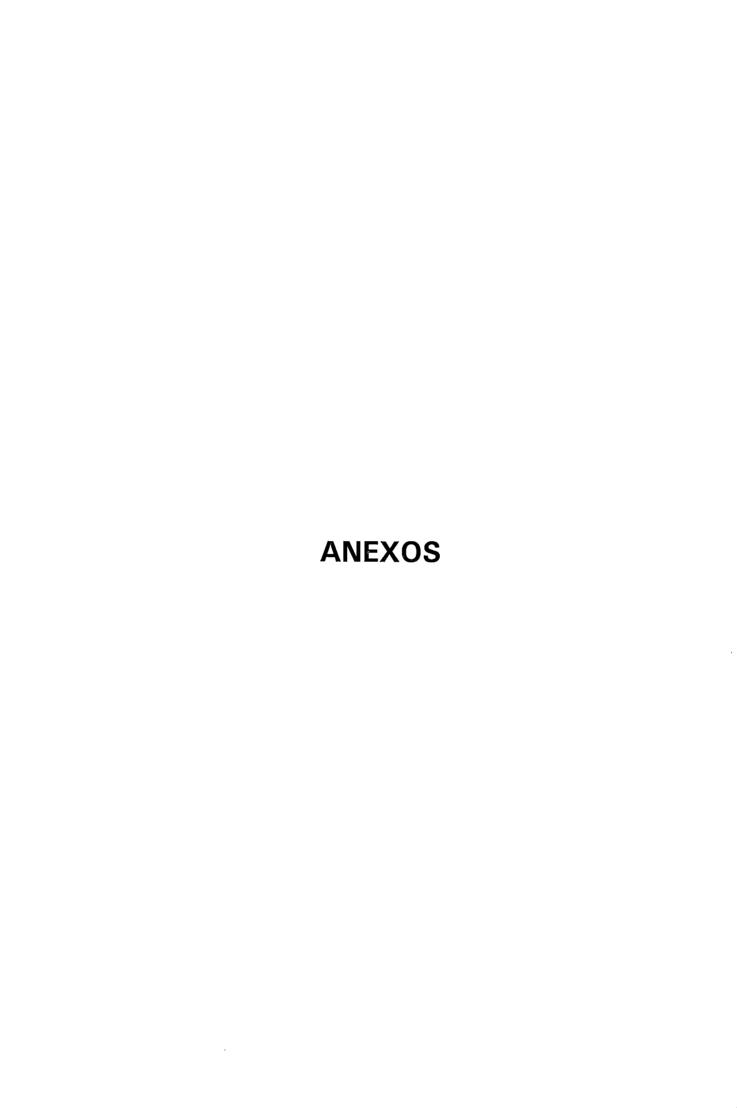


FOTO Nº 16:

Calicata C - 122, a la altura del km 124+00, se puede notar el método empleado para su excavación en este tipo de suelo, las paredes eran estabilizadas con agua. Se puede notar además el empleo del Barreno Manual que permitió profundizar la excavación.

Sección Abovedada típica construido en el primer tramo Cascajal - Nepeña.



Canoa, obra de arte de protección, utilizada en el primer tramo Cascajal - Nepeña.

FOTO Nº 19:

Toma, estructura que permiten derivar el caudal requerido por los usuarios. Sistema adoptado en el primer tramo y tomados en cuenta para este segundo tramo.

ANEXO A LEVANTAMIENTO TOPOGRAFICO

Tabla Nº 2.2.1

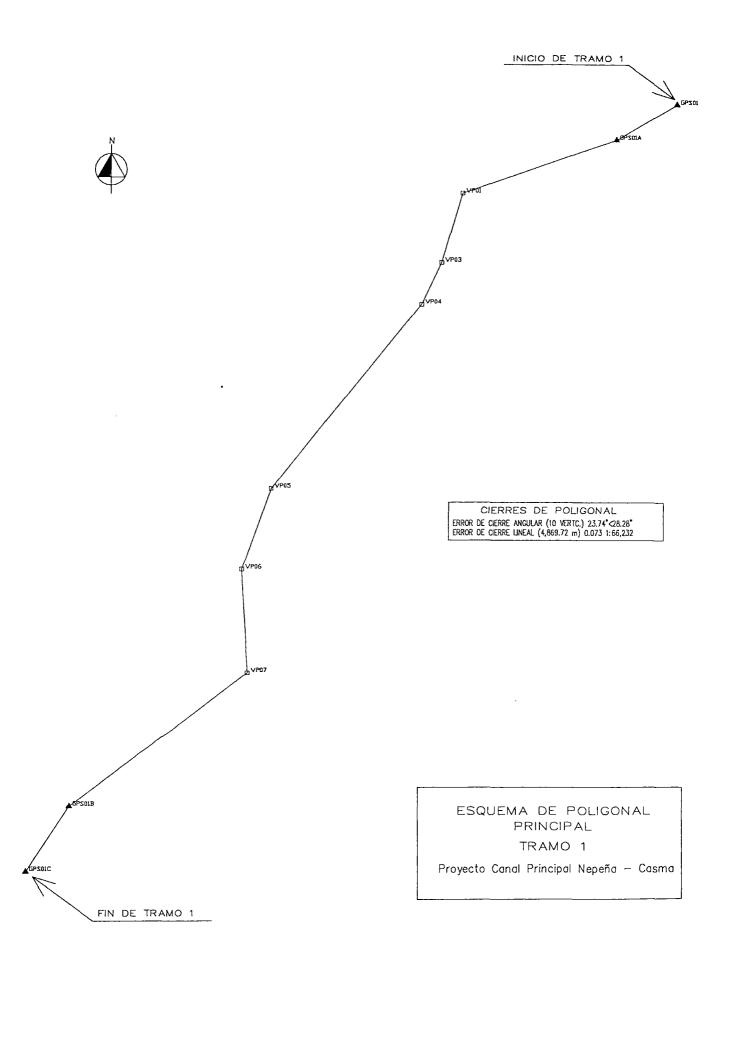
	COORDENADAS	UTM - PSAD 56	COORDENADAS	TOPOGRAFICAS	ALTURA
PTO.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
BM73.5	8.982.415,143	793.133,303	8.982.413,201	793.133,725	164,677
BM74.0	8.981.993,749	792.834,907	8.981.992,072	792.835,523	165,926
BM74.5	8.982.269,257	792.368,052	8.982.267,409	792.368,971	156,212
BM75.0	8.981.951,036	792.075,076	8.981.949,348	792.076,185	159,104
BM75.5	8.981.467,191	791.971,786	8.981.465,814	791.972,982	165,279
BM76.0	8.981.005,079	791.990,465	8.981.003,998	791.991,662	165,830
BM76.5	8.980.628,257	791.649,440	8.980.627,434	791.650,832	164,510
BM77.0	8.980.460,147	791.225,639	8.980.459,400	791.227,297	162,937
BM77.5	8.980.167,286	790.916,816	8.980.166,674	790.918,722	166,581
BM78.0	8.979.705,483	790.763,702	8.979.705,154	790.765,696	164,142
BM78.5	8.979.417,748	791.119,600	8.979.417,635	791.121,365	166,650
BM79.0	8.979.458,927	791.576,817	8.979.458,782	791.578,293	161,785
BM79.5	8.979.357,112	791.914,699	8.979.357,027	791.915,963	161,710
BM80.0	8.978.933,649	791.644,461	8.978.933,832	791.645,892	165,841
BM80.5 BM81.0	8.978.740,857 8.978.421,026	791.282,070 790.933,165	8.978.741,164 8.978.421,534	791.283,727	160,401
BM81.5	8.978.022,297	790.798,306	8.978.023,055	790.935,037 790.800,257	168,417 158,704
BM82.0	8.977.963,634	790.439,579	8.977.964,428	790.441,726	156,326
BM82.5	8.978.292,468	789.699,236	8.978.293,060	789.701,866	163,661
BM83.0	8.978.000,357	789.586,241	8.978.001,081	789.588,996	169,221
BM83.5	8.977.807,707	789.101,108	8.977.808,546	789.104,150	163,388
BM84.0	8.977.845,676	788.889,474	8.977.846,499	788.892,641	155,238
BM84.50	8.978.008,863	788.499,556	8.978.009,584	788.502,961	143,660
BM85.0	8.977.879,362	788.174,116	8.977.880,161	788.177,718	130,277
BM85.5	8.977.265,242	787.978,030	8.977.266,446	787.981,765	169,886
BM86.0	8.976.752,240	787.613,646	8.976.753,656	787.617,789	162,421
BM87.0	8.976.022,271	787.160,869	8.976.024,159	787.165,097	158,992
BM87.5	8.975.802,041	786.831,930	8.975.804,052	786.836,356	155,232
BM88.0	8.975.439,802	786.585,270	8.975.442,022	786.589,842	162,404
BM88.5	8.975.066,497	786.512,779	8.975.068,935	786.517,404	158,630
BM89.0	8.974.796,077	786.622,578	8.974.798,678	786.627,151	161,856
BM89.5	8.974.308,729	786.737,384	8.974.311,624	786.741,909	157,040
BM90.0	8.973.918,755	786.893,511	8.973.921,888	786.897,966	168,123
BM92.0	8.972.106,549	787.414,125	8.972.110,787	787.418,408	163,809
BM92.5	8.971.879,227	787.569,470	8.971.883,612	787.573,678	154,776
BM93.0	8.971.592,728	787.973,670	8.971.597,317	787.977,659	153,398
BM93.5	8.970.979,008	787.902,997 789.590,651	8.970.983,960	787.907,081 789.593,819	165,882 154,642
BM96.0 BM96.5	8.969.837,462 8.969.857,296	789.824,290	8.969.843,256 8.969.863,100	789.827,315	151,565
BM97.0	8.969.651,181	790.206,646	8.969.657,148	790.209,455	153,408
BM97.5	8.969.960,112	790.484,960	8.969.965,915	790.487,567	150,999
BM98.0	8.969.511,771	791.098,954	8.969.517,912	791.101,225	154,280
BM98.5	8.969.285,156	791.287,029	8.969.291,456	791,289,205	149,667
вм99.0	8.969.142,062	791.541,426	8.969.148,477	791.543,457	155,833
BM99.5	8.969.601,957	791.788,833	8.969.608,108	791.790,664	168,392
BM100.0	8.969.789,566	792.235,047	8.969.795,644	792.236,582	165,651
ВМ100.5	8.969.616,930	792.771,529	8.969.623,168	792.772,743	132,949
BM101.0	8.970.296,101	793.195,384	8.970.301,950	793.196,266	139,880
BM101.5	8.970.703,499	793.510,610	8.970.709,115	793.511,253	149,046
BM102.0	8.971.064,932	793.784,117	8.971.070,340	793.784,552	142,610
BM102.5	8.970.892,916	794.104,414	8.970.898,463	794.104,658	145,248
BM103.0	8.970.880,343	794.505,214	8.970.885,933	794.505,199	144,598
BM103.5	8.970.715,864	795.086,009	8.970.721,613	795.085,631	144,254
BM104.0	8.970.390,515	795.262,877	8.970.396,492	795.262,413	148,193
BM104.5	8.969.890,486	795.303,464	8.969.896,793	795.303,020	152,543
BM105.0	8.969.394,672	795.138,525	8.969.401,288	795,138,237	146,579 146,276
BM105.5	8.968.846,681	794.969,379	8.968.853,637 8.968.491,364	794.969,256 794.769,392	143,895
BM106.0	8.968.484,192	794.769,347	0.000,401,304	107.100,002	1.40,030

	COORDENADAS	UTM - PSAD 56	COORDENADAS	TOPOGRAFICAS	ALTURA
РТО.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
BM106.5	8.968.091,651	794.770,133	8.968.099,078	794.770,220	144,218
BM107.0	8.967.626,545	794.939,519	8.967.634,294	794.939,547	147,808
BM107.5	8.967.258,490	795.189,120	8.967.266,509	795.189,026	145,448
BM108.0 BM108.5	8.966.669,439	795.263,641	8.966.677,852	795.263,566	143,021
BM109.0	8.966.289,722 8.966.095,600	794.880,209 794.487,643	8.966.298,338 8.966.104,295	794.880,431	146,853
BM109.5	8.965.843,030	794.521,646	8.965.851,894	794.488,145 794.522,158	149,853 155,036
BM110.0	8.965.792,145	795.051,780	8.965.801,108	795.051,952	143,011
BM110.5	8.965.413,312	795.393,683	8.965.422,566	795.393,678	136,009
BM111.0	8.965.533,084	795.784,882	8.965.542,309	795.784,605	139,408
BM111.5	8.965.080,740	796.006,857	8.965.090,292	796.006,490	138,403
BM112.0	8.964.746,377	796.353,482	8.964.756,196	796.352,928	139,147
BM112.5	8.964.363,321	796.524,732	8.964.373,418	796.524,115	140,065
BM113.0	8.964.187,679	796.047,942	8.964.197,828	796.047,666	145,711
BM113.5	8.963.869,091	795.760,808	8.963.879,413	795.760,766	140,950
BM114.0	8.963.363,844	795.632,580	8.963.374,481	795,632,693	139,564
BM114.5 BM115.0	8.962.937,810	795.373,052	8.962.948,689	795.373,396	140,830
BM115.0 BM115.5	8.962.508,641 8.962.051,186	795.137,379	8.962.519,767 8.962.062,580	795.137,940	139,874
BM116.0	8.961.626,711	794.926,497 794.669,347	8.961.638,343	794.927,265 794.670,347	139,204 138,704
BM116.5	8.961.196,780	794.445,835	8.961.208,657	794.447,047	137,812
BM117.0	8.960.740,650	794.350,284	8.960.752,808	794.351,631	142,202
BM117.5	8.960.284,188	794.420,415	8.960,296,655	794,421,791	141,095
BM118.0	8.959.781,827	794.443,211	8.959.794,624	794.444,654	138,834
BM118.5	8.959.394,976	794.724,413	8.959.408,072	794.725,738	138,528
BM119.0	8.959.013,253	794.975,032	8.959.026,641	794.976,260	139,944
BM119.5	8.958.885,091	795.369,203	8.958.898,631	795.370,196	137,155
BM120.0	8.958.965,017	795.696,001	8.958.978,561	795.696,765	137,871
BM120.5	8.958.917,322	796.182,382	8.958.930,982	796.182,833	136,893
BM121.0	8.958.714,852	796.653,958	8.958.728,728	796.654,130	133,897
BM121.5 BM122.0	8.958.265,778	796.789,201	8.958.279,978	796.789,363	136,162
BM122.5	8.957.808,341 8.957.600,015	797.055,875 797.361,414	8.957.822,893 8.957.614,763	797.055,941 797.361,313	147,657 136,984
BM123.0	8.957.199,490	797.616,580	8.957.214,553	797.616,382	135,932
BM123.5	8.957.060,261	798.051,617	8.957.075,499	798.051,151	132,605
BM124.0	8.957.518,735	798.405,219	8.957.533,728	798.404,430	145,134
BM124.5	8.957.517,943	798.832,241	8.957.533,015	798.831,162	134,937
BM125.0	8.957.670,213	799.240,939	8.957.685,255	799.239,554	130,867
BM125.5	8.957.293,309	799.450,391	8.957.308,648	799.448,931	135,031
BM126.0	8.957.266,958	799.853,531	8.957.282,387	799.851,796	129,017
BM126.5	8.957.696,817	800.214,520	8.957.712,013	800.212,458	131,968
BM127.0	8.957.365,479	800.380,440	8.957.380,935	800.378,322	133,180
BM127.5 BM128.0	8.956.981,010 8.956.592,868	800.164,832 800.291,160	8.956.996,694 8.956.608,843	800.162,934 800.289,248	132,902 127,475
BM128.5	8.956.263,889	800.527,183	8.956.280,135	800.525,170	130,182
BM129.0	8.956.229,218	801.008,743	8.956.245,580	801.006,399	127,376
BM129.5	8.955.861,456	801.194,488	8.955.878,110	801.192,084	129,133
BM130.0	8.955.424,315	801.419,733	8.955.441,319	801.417,255	126,647
ВМ130.5	8.955.166,896	801.217,988	8.955.184,042	801.215,703	128,876
BM131.0	8.954.845,691	801.306,593	8.954.863,079	801.304,309	127,247
BM131.5	8.954.386,964	801.575,669	8.954.404,729	801.573,288	130,865
BM132.0	8.953.958,248	801.683,178	8.953.976,336	801.680,808	133,954
BM133.0	8.953.592,412	802.146,682 802.742.083	8.953.610,857 8.953.767,571	802.144,065 802.739,011	135,722 123,601
BM133.5 ET03A	8.953.749,113 8.976.675,217	802.742,083 787.540,232	8.976.676,652	787.544,446	171,182
ET04	8.973.605,028	786.802,960	8.973.608,343	786.807,478	166,607
ET04X	8.973.605,017	786.802,931	8.973.608,331	786.807,458	166,623
ET05	8.971.039,062	788.024,335	8.971.043,988	788.028,341	168,073
ET06	8.969.666,864	792.258,545	8.969.673,022	792.260,077	160,820
ET07	8.957.234,806	798.284,741	8.957.249,969	798.284,085	140,676

	COORDENADAS	UTM - PSAD 56	6 COORDENADAS TOPOGRAFICAS		ALTURA
PTO.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
ET08	8.956.841,358	800.032,894	8.956.857,115	800.031,113	135,794
ET09	8.953.716,648	801.643,019	8.953.734,898	801.640,727	139,400
ET3	8.976.629,703	787.517,661	8.976.631,167	787.521,732	179,827
F1468A GPS01	8.982.023,728	792.846,610	8.982.022,032	792.847,218	164,050
GPS01A	8.982.766,110 8.982.533,096	793.526,150	8.982.763,948	793.526,319	172,880
GPS01B	8.978.294,726	793.140,294 789.688,533	8.982.531,079 8.978.295.276	793.140,710	191,480
GPS01C	8.977.879,201	789,419,677	8.977.879,995	789.691,209 789.422,534	164,153 170,035
GPS02	8.970.588,914	795.413,726	8.970.594,774	795.413,145	173,664
GPS02A	8.970.205,112	795.387,741	8.970.211,221	795.387,213	159,849
GPS03	8.953.403,268	803.211,527	8.953.422,071	803.208,191	134,919
GPS03A	8.953.937,322	802.553,764	8.953.955,606	802.550,788	130,950
H01	8.977.039,238	787.709,713	8.977.040,467	787.713,649	163,883
H01A	8.976.966,630	787.679,035	8.976.967,941	787.683,062	156,518
H02	8.976.942,265	787.612,014	8.976.943,567	787.616,090	151,582
H03	8.976.771,262	787.552,532	8.976.772,645	787.556,705	178,220
H04	8.976.644,514	787.519,373	8.976.645,960	787.523,610	181,379
NO1	8.982.472,231	793.212,097	8.982.470,254	793.212,468	168,621
N02	8.983.100,387	793.713,924	8.983.098,012	793.713,971	167,715
NO3	8.983.222,408	793.759,858	8.983.219,955	793.759,875	163,892
N04 N05	8.982.227,871	792.552,447	8.982.226,035	792.553,266	153,090
N06	8.982.173,360 8.982.068,467	792.248,037 792.087,647	8.982.171,535 8.982.066,709	792.249,031 792.088,744	170,187
N07	8.981.837,534	792.021,506	8.981.835.919	792.000,744	149,183 167,553
N08	8.981.630,123	792.078,541	8.981.628,651	792.079,659	182,982
N09	8.981.445,391	791.995,211	8.981.444,030	791.996,390	170,036
N10	8.980.504,578	791.426,535	8.980.503,820	791,428,064	175,933
N11	8.979.554,706	790.776,426	8.979.554,495	790.778,415	155,678
N12	8.979.221,351	791.383,317	8.979.221,360	791.384,913	144,709
N13	8.979.318,394	791.633,063	8.979.318,335	791.634,503	154,261
N14	8.978.721,017	791.093,905	8.978.721,337	791.095,679	150,605
N15	8.978.682,364	790.956,474	8.978.682,709	790.958,335	143,091
N16	8.978.338,985	790.761,491	8.978.339,547	790.763,469	148,573
N17	8.978.380,268	790.238,952	8.978.380,782	790.241,254	137,417
N18	8.978.501,596	789.907,031 789.782.159	8.978.502,031	789.909,562	126,896
N19 N20	8,978,390,920 8,978,192,343	789.669,148	8.978.391,425 8.978.192,954	789.784,766 789.671,841	127,921 151,753
N21	8.978.114.667	789.580,075	8.978.115,322	789.582,828	148,369
N22	8.977.843,586	789.282,089	8.977.844,401	789.285,021	167,982
N23	8.977.735,293	788.963,607	8.977.736,183	788.966,729	160,028
N24	8.977.942,004	788.779,700	8.977.942,767	788.782,933	166,169
N25	8.978.029,513	788.299,346	8.978.030,221	788.302,872	163,811
N27	8.977.670,057	787.982,552	8.977.670,981	787.986,271	107,912
N28	8.977.427,530	787.966,402	8.977.428,601	787.970,135	150,731
PI290	8.984.666,874	793.368,874	8.984.666,870	793.368,870	163,441
PI291	8.984.082,580	793.749,060	8.984.082,575	793.749,057	162,820
PI292	8.983.235,877	793.755,415	8.983.233,416	793.755,435	162,560
PI292AX	8.983.100,379	793.713,883	8.983.098,004	793.713,929	167,647
PI292AY	8.983.222,342	793.759,970	8.983.219,889	793.759,987	163,822 163,520
PI293	8.983.070,293 8.982.899,396	793.712,488 793.702,357	8.983.067,938 8.982.897,151	793.712,535 793.702,412	163,921
PI294 PI294AX	8.982.863,377	793.649,625	8.982.861,154	793.649,714	162,090
PI294AX	8.982.775,098	793.597,290	8.982.772,931	793.597,413	164,434
PI296	8,982,729,541	793.509,273	8.982.727,403	793,509,452	164,634
PI297	8.982.628,757	793.435,722	8.982.626,683	793.435,949	163,962
PI298	8.982.585,322	793.296,717	8.982.583,274	793.297,033	163,095
PI299	8.982.235,988	793.007,007	8.982.234,159	793.007,511	163,053
Pl300	8.981.999,595	792.867,912	8.981.997,914	792.868,507	165,336
PI301	8.982.135,033	792.687,468	8.982.133,265	792.688,176	162,972
PI302	8.982.124,208	792.539,295	8.982.122,444	792.540,096	170,736

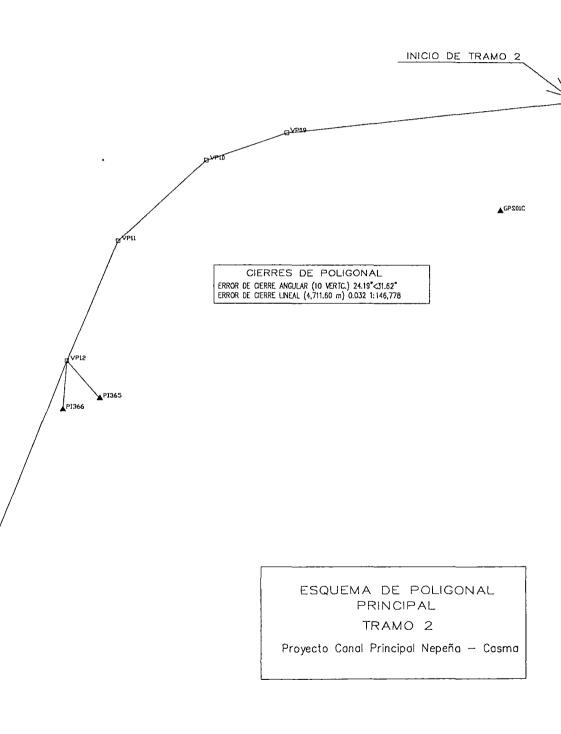
	COORDENADAS	UTM - PSAD 56	COORDENADAS TOPOGRAFICAS		ALTURA
РТО.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
PI303	8.982.181,780	792.434,957	8.982.179,979	792.435,823	169,605
PI304	8.982.253,296	792.352,822	8.982.251,448	792.353,741	163,895
PI305	8.982.181,800	792.204,389	8.982.179,996	792.205,398	167,412
PI306	8.982.124,596	792.162,887	8.982.122,828	792.163,923	165,456
PI307	8.982.032,992	792.146,173	8.982.031,281	792.147,221	168,458
PI308	8.981.978,867	792.096,583	8.981.977,190	792.097,664	164,241
P I 309 PI310	8.981.922,721	792.103,281	8.981.921,079	792.104,358	166,297
PI311	8.981.884,751 8.981.790,329	792.025,860	8.981.883,132	792.026,986	161,545
PI312	8.981.686,119	792.000,418 792.048,841	8.981.788,768 8.981.684,624	792.001,561	163,359
PI313	8.981.557,343	792.040,841	8.981.555,929	792.049,956 792.013,559	162,798
PI314	8.981.469,521	791.945,255	8.981.468,161	791.946,437	164,408 161,863
PI315	8.981.247,986	791.994,205	8.981.246,766	791.995,362	162,808
PI315Z	8.980.978,336	791.933,321	8.980.977,268	791.934,553	161,978
PI316	8.980.978,766	791.933,578	8.980.977,715	791.934,777	161,853
Pl317	8.980.752,420	791.827,093	8.980.751,509	791.828,364	162,203
PI318	8.980.628,341	791.580,409	8.980.627,502	791.581,839	162,539
PI319	8.980.637,055	791.365,225	8.980,636,205	791.366,789	159,279
PI320	8.980.423,060	791.165,689	8.980.422,339	791.167,381	162,439
PI321	8.980.369,300	790.942,210	8.980.368,607	790.944,043	160,199
PI321Z	8.980.504,577	791.426,550	8.980.503,812	791.428,078	175,887
PI322	8.980.138,553	790.886,297	8.980.138,003	790.888,170	161,492
PI323	8.979.801,963	790.716,550	8.979.801,617	790.718,538	159,944
PI324	8.979.671,101	790.753,296	8.979.670,837	790.755,265	159,987
PI325	8.979.510,097	790.850,231	8.979.509,935	790.852,144	159,575
PI325X	8.978.537,864	791.124,960	8.978.538,298	791.126,711	167,415
PI326	8.979.439,910	790.999,179	8.979.439,797	791.001,002	168,257
PI327	8.979.354,488	791.233,625	8.979.354,436	791.235,304	160,503
PI328	8.979.335,420	791.373,073	8.979.335,384	791.374,665	162,530
PI329	8.979.422,607	791.528,022	8.979.422,522	791.529,514	161,154
PI330 PI331	8.979.557,151 8.979.275,949	791.903,134	8.979.556,993	791.904,386	163,940
PI332	8.978.972,774	791.888,801 791.719,600	8.979.275,967 8.978.972,978	791.890,070 791.720,986	159,980 164,498
PI333	8,978,992,775	791.471,591	8.978.992,957	791.473,132	161,253
PI334	8.978.894,988	791.323,005	8.978.895,227	791.324,642	160,249
PI335	8.978.537,817	791.125,000	8.978.538,272	791.126,775	167,394
PI336	8.978.532,645	791.055,939	8.978.533,101	791.057,758	163,767
PI337	8.978.459,127	790.923,670	8.978.459,623	790.925,574	160,632
PI338	8.978.240,453	790.917,147	8.978.241,085	790.919,063	165,132
PI339	8.977.989,884	790.869,495	8.977.990,672	790.871,452	159,894
P1340	8.977.922,547	790.411,760	8.977.923,357	790.414,004	162,823
PI341	8.977.945,286	790.297,482	8.977.946,077	790.299,796	161,760
PI342	8.978.215,600	790.175,777	8.978.216,219	790.178,155	164,435
PI343	8.978.249,782	790.142,285	8.978.250,378	790.144,683	161,745
PI344	8.978.257,964	790.060,574	8.978.258,552	790.063,022	165,755
Pl345	8.978.282,708	789.944,595	8.978.283,276	789.947,113	165,596
PI346	8.978.254,166	789.818,866	8.978.254,746	789.821,463	162,923
P1347	8.978.279,487	789,722,993	8.978.280,048	789.725,648	164,985
PI348	8.978.124,486	789.718,497 789.561.128	8.978.125,142	789.721,161 789.563.892	165,327 158.843
P1349	8.978.034,285 8.977.860.013	789.561,128 789.361,739	8.978.034,990 8.977.860,816	789.563,892 789.364,633	158,843 162,797
PI350 PI351	8.977.860,013 8.977.857,751	789.284,052	8.977.858,598	789.287,031	163,263
PI351 PI352	8.977.831,365	789.088,958	8.977.832,195	789.092,002	158,763
PI353	8.977.759,803	789.026,155	8.977.760,676	789.029,237	160,401
PI354	8.977.705,314	788.910,110	8.977.706,220	788.913,263	160,277
PI355	8.977.950,839	788.788,465	8.977.951,595	788.791,691	161,492
PI356	8.977.950,571	788.699,679	8.977.951,328	788.702,962	160,717
P1357	8.977.886,848	788.623,711	8.977.887,644	788.627,040	167,474
PI358	8.977.968,846	788.560,720	8.977.969,592	788.564,088	163,161
PI359	8.977.948,529	788.454,850	8.977.949,287	788.458,282	161,370

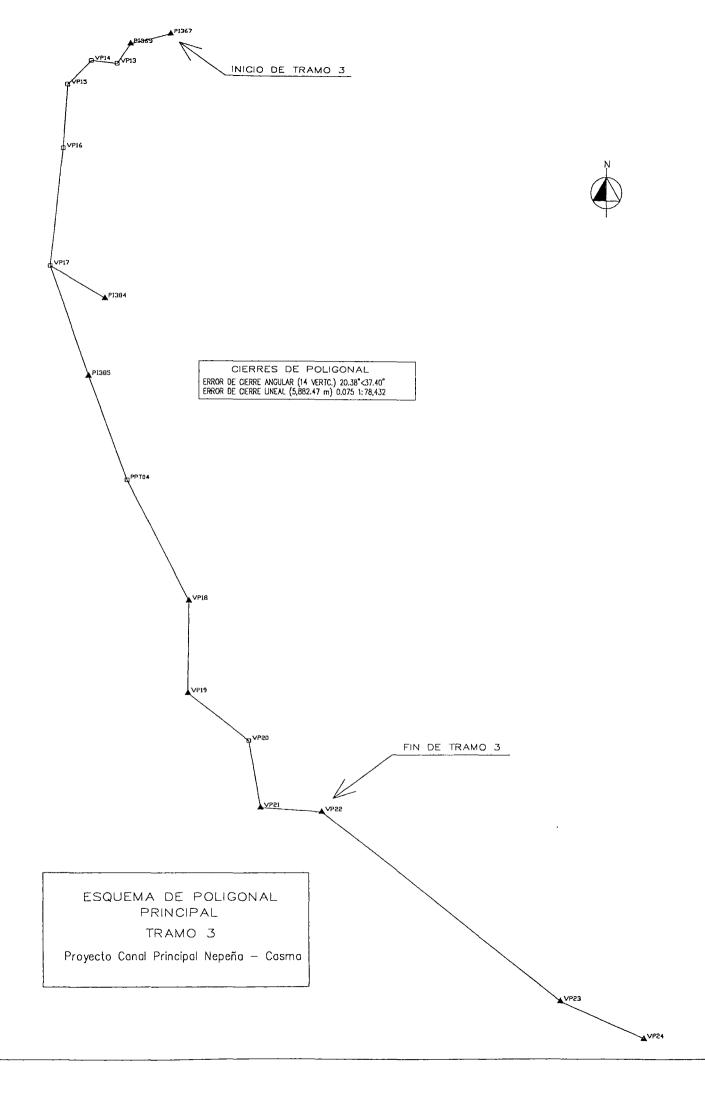
(m)	0RTOMETRICA (msnm) 163,104 167,625 164,403 163,550 168,468 182,306 164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050 155,111
(m) (m) (m) (m) BM72.5 8.983.101,259 793.688,870 8.983.098,883 793.688,933 BM73.0 8.982.775,345 793.504,010 8.982.773,177 793.504,193 P1360 8.978.003,482 788.326,634 8.978.004,205 788.330,143 P1361 8.977.932,913 788.273,869 8.977.933,679 788.277,410 P1362 8.977.744,488 788.308,538 8.977.745,369 788.312,061 P1363 8.977.670,948 788.189,954 8.977.671,870 788.193,547 P1364 8.977.485,609 788.024,870 8.977.486,642 788.028,565 P1365 8.977.164,506 787.990,392 8.977.165,735 787.904,167 P1366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 P1367 8.975.912,865 787.102,010 8.975.914,816 787.102,010 8.975.914,816 787.102,010 8.975.953,004 786.966,092 8.975.954,929 786.970,437 P1370 8.975.813,801 786.996,092 8.975.815,808 786.	(msnm) 163,104 167,625 164,403 163,550 168,468 182,306 164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
BM73.0 8.982.775,345 793.504,010 8.982.773,177 793.504,193 PI360 8.978.003,482 788.326,634 8.978.004,205 788.330,143 PI361 8.977.932,913 788.273,869 8.977.933,679 788.277,410 PI362 8.977.744,488 788.308,538 8.977.745,369 788.312,061 PI363 8.977.670,948 788.189,954 8.977.671,870 788.193,547 PI364 8.977.485,609 788.024,870 8.977.486,642 788.028,565 PI365 8.977.164,506 787.900,392 8.977.165,735 787.904,167 PI366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 PI367 8.976.018,259 787.102,010 8.975.914,816 787.106,274 PI368 8.975.912,865 787.102,010 8.975.954,929 786.970,437 PI370 8.975.813,801 786.966,092 8.975.954,929 786.9970,437 PI371 8.975.678,581 786.868,221 8.975.789,990 786.872,626 PI372 8.975.690,144 786.633,495	167,625 164,403 163,550 168,468 182,306 164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
BM73.0 8.982.775,345 793.504,010 8.982.773,177 793.504,193 PI360 8.978.003,482 788.326,634 8.978.004,205 788.330,143 PI361 8.977.932,913 788.273,869 8.977.933,679 788.277,410 PI362 8.977.744,488 788.308,538 8.977.745,369 788.312,061 PI363 8.977.670,948 788.189,954 8.977.671,870 788.193,547 PI364 8.977.485,609 788.024,870 8.977.486,642 788.028,565 PI365 8.977.122,958 787.758,990 8.977.165,735 787.904,167 PI366 8.977.122,958 787.7219,751 8.976.020,150 787.223,944 PI367 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.868,221 8.975.789,990 786.872,626 PI371 8.975.678,581 786.839,047 8.975.692,219 786.638,036 PI372 8.975.699,144 786.633,495	167,625 164,403 163,550 168,468 182,306 164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI361 8.977.932,913 788.273,869 8.977.933,679 788.277,410 PI362 8.977.744,488 788.308,538 8.977.745,369 788.312,061 PI363 8.977.670,948 788.189,954 8.977.486,642 788.028,565 PI364 8.977.485,609 788.024,870 8.977.486,642 788.028,565 PI365 8.977.164,506 787.900,392 8.977.165,735 787.904,167 PI366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 PI367 8.976.018,259 787.219,751 8.976.020,150 787.223,944 PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.94,929 786.970,437 PI370 8.975.813,801 786.997,889 8.975.849,999 786.872,626 PI371 8.975.678,581 786.839,047 8.975.680,666 786.872,626 PI372 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 <	163,550 168,468 182,306 164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI362 8.977.744,488 788.308,538 8.977.745,369 788.312,061 PI363 8.977.670,948 788.189,954 8.977.671,870 788.193,547 PI364 8.977.485,609 788.024,870 8.977.486,642 788.028,565 PI365 8.977.164,506 787.900,392 8.977.165,735 787.904,167 PI366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 PI367 8.976.018,259 787.219,751 8.976.020,150 787.223,944 PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.997,7889 8.975.818,08 786.982,228 PI371 8.975.678,581 786.886,221 8.975.789,990 786.872,626 PI372 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI373 8.975.509,254 786.702,410 8.975.504,892 786.678,503 PI376 8.975.426,464 786.637,983	168,468 182,306 164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI363 8.977.670,948 788.189,954 8.977.671,870 788.193,547 PI364 8.977.485,609 788.024,870 8.977.486,642 788.028,565 PI365 8.977.164,506 787.900,392 8.977.165,735 787.904,167 PI366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 PI367 8.976.018,259 787.219,751 8.976.020,150 787.223,944 PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.678,581 786.863,221 8.975.680,666 786.872,626 PI372 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI373 8.975.509,254 786.702,410 8.975.504,892 786.678,503 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.504,934 786.468,357	182,306 164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI364 8.977.485,609 788.024,870 8.977.486,642 788.028,565 PI365 8.977.164,506 787.900,392 8.977.165,735 787.904,167 PI366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 PI367 8.976.018,259 787.219,751 8.976.020,150 787.223,944 PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.678,581 786.868,221 8.975.789,990 786.872,626 PI372 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI373 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.504,892 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.547,004 PI378 8.975.050,848 786.648,357	164,181 164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI365 8.977.164,506 787.900,392 8.977.165,735 787.904,167 PI366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 PI367 8.976.018,259 787.219,751 8.976.020,150 787.223,944 PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.787,971 786.868,221 8.975.789,990 786.872,626 PI372 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI373 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.504,892 786.522,190 PI376 8.975.502,711 786.517,578 8.975.504,892 786.5473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368	164,471 156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI366 8.977.122,958 787.758,990 8.977.124,211 787.762,852 PI367 8.976.018,259 787.219,751 8.976.020,150 787.223,944 PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.787,971 786.868,221 8.975.789,990 786.872,626 PI372 8.975.678,581 786.839,047 8.975.680,666 786.843,467 PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.053,296 786.548,626 PI379 8.975.050,848 786.544,016	156,939 157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI367 8.976.018,259 787.219,751 8.976.020,150 787.223,944 PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.787,971 786.868,221 8.975.789,990 786.872,626 PI372 8.975.678,581 786.839,047 8.975.680,666 786.843,467 PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368	157,609 156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI368 8.975.912,865 787.102,010 8.975.914,816 787.106,274 PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.787,971 786.868,221 8.975.789,990 786.872,626 PI372 8.975.678,581 786.839,047 8.975.680,666 786.843,467 PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453	156,862 161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI369 8.975.953,004 786.966,092 8.975.954,929 786.970,437 PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.787,971 786.868,221 8.975.789,990 786.872,626 PI372 8.975.678,581 786.839,047 8.975.680,666 786.843,467 PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	161,058 158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI370 8.975.813,801 786.977,889 8.975.815,808 786.982,228 PI371 8.975.787,971 786.868,221 8.975.789,990 786.872,626 PI372 8.975.678,581 786.839,047 8.975.680,666 786.843,467 PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	158,121 155,582 162,225 160,191 160,301 157,409 153,050
PI371 8.975.787,971 786.868,221 8.975.789,990 786.872,626 PI372 8.975.678,581 786.839,047 8.975.680,666 786.843,467 PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	155,582 162,225 160,191 160,301 157,409 153,050
PI372 8.975.678,581 786.839,047 8.975.680,666 786.843,467 PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	162,225 160,191 160,301 157,409 153,050
PI373 8.975.690,144 786.633,495 8.975.692,219 786.638,036 PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	160,191 160,301 157,409 153,050
PI374 8.975.509,254 786.702,410 8.975.511,434 786.706,912 PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	160,301 157,409 153,050
PI375 8.975.426,464 786.673,983 8.975.428,693 786.678,503 PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	157,409 153,050
PI376 8.975.502,711 786.517,578 8.975.504,892 786.522,190 PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	153,050
PI377 8.975.240,934 786.468,357 8.975.243,268 786.473,004 PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	
PI378 8.975.050,848 786.544,016 8.975.053,296 786.548,626 PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	199.111
PI379 8.975.049,145 786.649,368 8.975.051,598 786.653,915 PI380 8.974.828,657 786.592,453 8.974.831,238 786.597,042	155,547
	159,281
	155,010
PI381 8.974.613,901 786.617,224 8.974.616,610 786.621,807	155,671
PI382 8.974.487,672 786.685,301 8.974.490,459 786.689,849	156,136
PI383 8.974.397,328 786.694,681 8.974.400,169 786.699,227	155,062
PI384 8.974.323,727 786.816,078 8.974.326,620 786.820,552	164,888
Pl385 8.973.834,053 786.717,505 8.973.837,226 786.722,069	156,679
PI386 8.972.072,844 787.374,408 8.972.077,098 787.378,718	157,763
PI387 8.971.786,614 787.279,005 8.971.791,031 787.283,394	147,392
Pl388 8.971.777,964 787.427,695 8.971.782,398 787.431,996	153,734
PI389 8.971.865,330 787.529,455 8.971.869,720 787.533,688	153,399
Pl390 8.971.711,140 787.690,234 8.971.715,635 787.694,384	155,817
PI391 8.971.799,723 787.877,064 8.971.804,179 787.881,094	153,103
P 392	151,716 153,922
PI394 8.971.337,143 787.698,394 8.971.341,862 787.702,570	151,927
PI395 8.971.322,147 787.827,826 8.971.326,886 787.831,925	151,807
Pl396 8.971.128,091 787.916,062 8.971.132,954 787.920,125	154,753
PI397 8.969.733,743 789.611,269 8.969.739,603 789.614,434	147,897
Pl398 8.969.688,751 789.751,763 8.969.694,652 789.754,847	153,603
Pl399 8,969,680,158 789,885,436 8,969,686,077 789,888,440	148,625
Pl400 8.970.000,418 789.847,254 8.970.006,137 789.850,250	149,663
PI401 8.969.832,331 789.968,781 8.969.838,164 789.971,718	147,874
PI402 8.969.733,841 790.120,466 8.969.739,750 790.123,320	149,983
PI403 8.969.672,384 790.162,031 8.969.678,334 790.164,866	148,351
PI404 8.969.672,872 790.238,252 8.969.678,829 790.241,039	148,997
PI405 8.969.764,883 790.258,257 8.969.770,785 790.261,023	148,883
PI406 8,969.861,474 790.242,154 8.969.867,315 790.244,921	148,206
PI407 8.969.946,000 790.330,834 8.969.951,797 790.333,538	147,911
PI408 8.969.920,360 790.545,050 8.969.926,193 790.547,623	147,969 145,278
PI409 8.969.812,547 790.667,689 8.969.818,459 790.670,197 PI410 8.969.535,153 791.118,342 8.969.541,281 791.120,598	145,278 153,534
PI410 8,969.535,153 791.118,342 8.969.541,281 791.120,598 PI411 8.969.530,349 791.219,092 8.969.536,490 791.221,285	147,673
PI412 8.969.004,206 791.517,734 8.969.010,705 791.519,793	146,706
PI413 8.969.326,252 791.682,675 8.969.332,566 791.684,599	155,810
PI414 8.969.624,473 792.104,066 8.969.630,642 792.105,699	147,624
PI415 8.969.772,088 792.642,059 8.969.778,215 792.643,340	151,509
PI416 8.969.950,538 792.717,440 8.969.956,560 792.718,656	145,356
PI417 8.970.245,697 793.019,851 8.970.251,561 793.020,847	146,816
PI418 8.970.237,274 793.123,827 8.970.243,153 793.124,760	145,086
Pl419 8.970.264,348 793.148,833 8.970.270,212 793.149,747	146,029


	COORDENADAS	UTM - PSAD 56	COORDENADAS	TOPOGRAFICAS	ALTURA
PTO.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793,688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
PI420	8.970.354,613	793.132,010	8.970.360,419	793.132,926	150,592
PI421	8.970.870,300	793.573,759	8.970.875,814	793.574,346	145,317
PI422	8.971.164,348	793.775,064	8.971.169,691	793.775,496	145,939
PI423	8.971.064,183	793.929,008	8.971.069,604	793.929,349	144,539
PI424	8.970.829,552	794.054,551	8.970.835,135	794,054,832	143,709
PI425 PI426	8,970,777,357	794.372,029	8.970.783,003	794.372,109	143,931
PI420	8.970.818,443 8.970.709,456	794.536,716 794.690,110	8.970.824,076 8.970.715,174	794.536,686	143,765
PI428	8.970.712,353	794.829,655	8.970.718,080	794.689,990 794.829,445	145,963 142,856
PI429	8.970.612,940	795.287,298	8.970.618,773	795.286,798	143,930
PI430	8.970.373,560	795.206,324	8.970.379,543	795.205,899	143,055
PI431	8.970.103,031	795.234,867	8.970.109,193	795.234,447	143,709
PI432	8.969.942,488	795.212,758	8.969.948,753	795.212,369	144,979
PI433	8.969.538,904	795.138,781	8.969.545,425	795.138,478	142,601
PI434	8.969.228,292	795.038,649	8.969.235,006	795.038,442	142,588
PI435	8.969.001,595	795.049,337	8.969.008,458	795.049,147	144,257
PI436	8.968.824,062	794.895,639	8.968.831,026	794.895,566	144,602
PI437	8.968.682,879	794.834,731	8.968.689,928	794.834,713	142,017
PI438	8.968.531,208	794.731,028	8.968.538,345	794.731,093	142,157
PI439	8.968.321,280	794.709,860	8.968.328,551	794.709,962	141,498
PI440	8.968.244,633	794.664,200	8.968.251,949	794.664,339	141,902
PI441	8.967.855,962	794.819,790	8.967.863,549	794.819,870	141,454
P1442	8.967.377,916	794.951,561	8.967.385,829	794.951,609	141,172
PI443	8.967.275,142	795.139,359	8.967.283,144	795.139,295	141,345
PI444	8.967.174,951	795.140,981	8.967.183,019	795.140,928	141,093
PI445	8.967.020,139	795.198,424	8.967.028,315	795.198,352	141,034
PI446	8.966.632,564	795.211,787	8.966.640,995	795.211,750	140,791
PI447 PI448	8.966.410,601 8.966.260,204	794.998,875 794.806,988	8.966.419,153 8.966.268,831	794.999,005 794.807,262	141,759 141,824
PI449	8.966.152,803	794.625,392	8.966.161,477	794.625,797	142,601
P1450	8.966.143,232	794.483,315	8.966.151,896	794.483,815	139,765
PI451	8.966.090,832	794.434,691	8.966.099,524	794.435,228	140,339
PI452	8.965.964,007	794.482,218	8.965.972,787	794.482,740	142,999
PI453	8.965.775,816	794.402,239	8.965.784,709	794.402,837	137,653
PI454	8.965.765,179	794.478,365	8.965.774,088	794.478,915	139,984
PI455	8.965.890,954	794.666,117	8.965.899,805	794.666,529	140,888
PI456	8.965.864,716	794.952,474	8.965.873,620	794.952,702	143,323
PI457	8.965.743,086	795.040,906	8.965.752,080	795.041,091	139,403
PI458	8.965.527,689	795.073,853	8.965.536,828	795.074,044	138,666
PI459	8.965.462,133	795.199,335	8.965.471,331	795.199,451	141,248
PI460	8.965.456,547	795.395,654	8.965.465,773	795.395,642	141,106
PI461	8.965.599,292	795.683,706	8.965.608,461	795.683,487	139,408
PI462	8.965.439,798	795.798,254 796.046,405	8.965.449,086 8.964.932,782	795.797,979 796.046,032	138,512 137,783
Pi463 Pi464	8.964.923,120 8.964.505,788	796.610,609	8.964.515,802	796.609,917	138,569
PI465	8.964.327,639	796.443,314	8.964.337,749	796.442,757	138,438
PI466	8.964.285,778	796.301,197	8.964.295,897	796.300,739	139,433
PI467	8.964.285,438	796.216,196	8.964.295,546	796.215,795	140,726
PI468	8.964.221,946	796.090,409	8.964.232,079	796.090,100	140,542
P1469	8.964.204,703	795.987,318	8.964.214,833	795.987,080	141,698
PI470	8.964.169,116	795.953,993	8.964.179,265	795.953,782	142,072
PI471	8.964.137,868	795.838,064	8.964.148,022	795.837,934	139,681
PI472	8.964.004,087	795.770,800	8.964.014,321	795.770,732	138,062
PI473	8.963.802,981	795.712,777	8.963.813,340	795.712,775	137,349
P1474	8.963.626,064	795.646,191	8.963.636,530	795.646,258	136,848
PI475	8.963.442,850	795.645,518	8.963.453,437	795.645,612	137,650
PI476	8.963.112,408	795.496,780	8.963.123,192	795.497,019	137,534
PI477	8.962.893,581	795.307,356	8.962.904,480	795.307,749	136,479
PI478	8.962.674,558	795.228,719	8.962.685,589	795.229,197	136,793
PI479	8.962.494,146	795.097,053	8.962.505,276	795.097,643	135,516

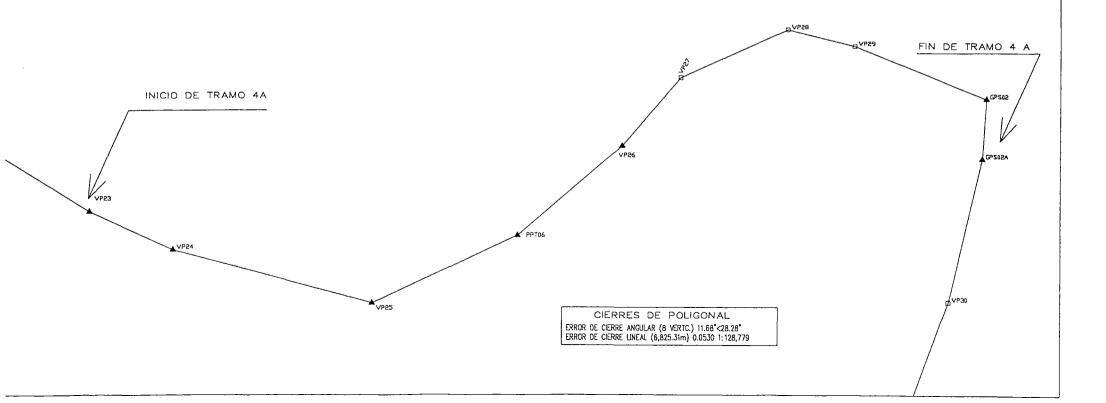
		UTM - PSAD 56	COORDENADAS	TOPOGRAFICAS	ALTURA
PTO.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
01470.5	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
PI480	8.962.223,314	794.993,631	8.962.234,606	794.994,329	136,015
PI481 PI482	8.961.993,803	794.868,142	8.962.005,226	794.868,957	136,857
PI483	8.961.843,748 8.961.667,182	794.737,797	8.961.855,249	794.738,720	135,289
P1484	8.961.498,094	794.671,086 794.543,620	8.961.678,787 8.961.509,790	794.672,079	135,942
PI485	8.961.363.303	794.509,863	8.961.375,082	794.544,722 794.511,007	134,803
PI486	8.961.187,417	794.412,531	8.961.199,295	794.413,767	135,665 135,511
PI487	8.961.061,369	794.422,271	8.961.073,331	794,423,520	135,443
PI488	8.960.702,933	794.286,429	8.960.715,106	794.287,824	134,953
PI489	8.960.598,727	794.366,928	8.960.610,980	794.368,287	136,121
PI490	8.960.408,356	794.330,397	8.960.420,727	794.331,810	135,673
PI491	8.960.239,649	794.392,304	8.960.252,140	794.393,705	135,853
PI492	8.959.958,711	794.377,260	8.959.971,382	794.378,717	134,689
PI493	8.959.857,864	794.421,716	8.959.870,608	794.423,161	135,120
PI494	8.959.787,390	794.393,091	8.959.800,175	794.394,566	139,019
P1495	8.959.647,956	794.483,598	8.959.660,847	794.485,038	134,344
PI496	8.959.560,266	794.574,606	8.959.573,229	794.576,002	133,984
PI497	8.959.364,357	794.691,209	8.959.377,467	794.692,561	133,877
PI498	8.959.212,846	794.807,249	8.959.226,075	794.808,552	134,300
P1499	8.958.990,489	794.881,257	8.959.003,875	794.882,551	133,733
PI500	8.958.974,073	795.005,567	8.958.987,492	795.006,782	135,392
PI501	8.958.913,443	795.012,369	8.958.926,903	795.013,590	131,129
PI502	8.958.992,100	795.144,628	8.959.005,531	795.145,749	135,115
PI503	8.958.980,772	795.278,928	8.958.994,233	795.279,963	133,976
PI504	8.958.840,750	795.349,245	8.958.854,316	795.350,257	134,144
PI505	8.958.759,246	795.591,911	8.958.772,908	795.592,780	131,550
PI506	8.958.950,521	795.728,505	8.958.964,080	795.729,251	134,689
PI507 PI508	8.958.998,588	795.935,533	8.959.012,152	795.936,133	133,721
PI509	8.958.878,807 8.958.922,487	796.177,745 796.263,904	8.958.892,491 8.958.936,158	796.178,205 796.264,300	131,856 133,103
PI510	8.958.799,121	796.541,852	8.958.812,922	796.542,085	132,951
PI511	8.958.561,302	796.738,808	8.958.575,296	796.738,951	133,308
PI512	8.958.339,908	796.759,881	8.958.354,053	796.760,049	132,408
PI513	8.958.219,734	796.730,412	8.958.233,954	796.730,621	132,443
PI514	8.957.917,871	797.072,116	8.957.932,353	797.072,151	147,814
PI515	8.957.530,666	797.285,596	8.957.545,447	797.285,559	130,636
PI516	8.957.546,040	797.384,029	8.957.560,828	797.383,923	135,020
PI517	8.957.467,702	797.448,114	8.957.482,554	797.447,979	132,807
PI518	8.957.428,635	797.585,848	8.957.443,539	797.585,628	137,226
PI519	8.957.286,003	797.580,303	8.957.301,002	797.580,112	136,985
PI520	8.957.073,161	797.764,098	8.957.088,337	797.763,824	132,985
PI521	8.957.039,493	797.859,615	8.957.054,709	797.859,283	138,459
PI522	8.957.083,080	797.980,203	8.957.098,289	797.979,782	133,974
PI523	8.957.151,920	798.006,219	8.957.167,088	798.005,767	138,997
PI524	8.957.102,207	798.074,344	8.957.117,421	798.073,855	135,821
PI525	8.957.071,220	798.168,114	8.957.086,472 8.957.492,183	798.167,568	136,213
PI526	8.957.477,152 8.956.774,513	798.457,531 798.251,496	8.956.789,982	798.456,714 798.250,948	141,443 106,008
PI527 PI528	8.957.444,100	799.008,726	8.957.459,255	799.007,541	130,106
PI529	8,957,468,876	799.161,203	8.957.484,042	799.159,909	132,961
PI530·	8.957.613,882	799.218,705	8.957.628,959	799,217,345	137,715
PI531	8.957.668,531	799.338,952	8.957.683,591	799.337,499	130,948
PI532	8.957.365,978	799.386,082	8.957.381,255	799.384,653	130,066
PI533	8.957.197,440	799.452,172	8.957.212,846	799.450,728	129,661
PI534	8.957.184,498	799.532,666	8.957.199,926	799.531,168	133,749
PI535	8.957.235,645	799.651,552	8.957.251,059	799.649,962	131,536
PI536	8.957.182,879	799.722,132	8.957.198,342	799.720,504	130,509
PI537	8.957.231,460	799.764,578	8.957.246,898	799.762,912	131,096
PI538	8.957.251,704	799.802,814	8.957.267,135	799.801,118	130,227
PI539	8.957.318,553	799.838,288	8.957.333,944	799.836,555	133,933

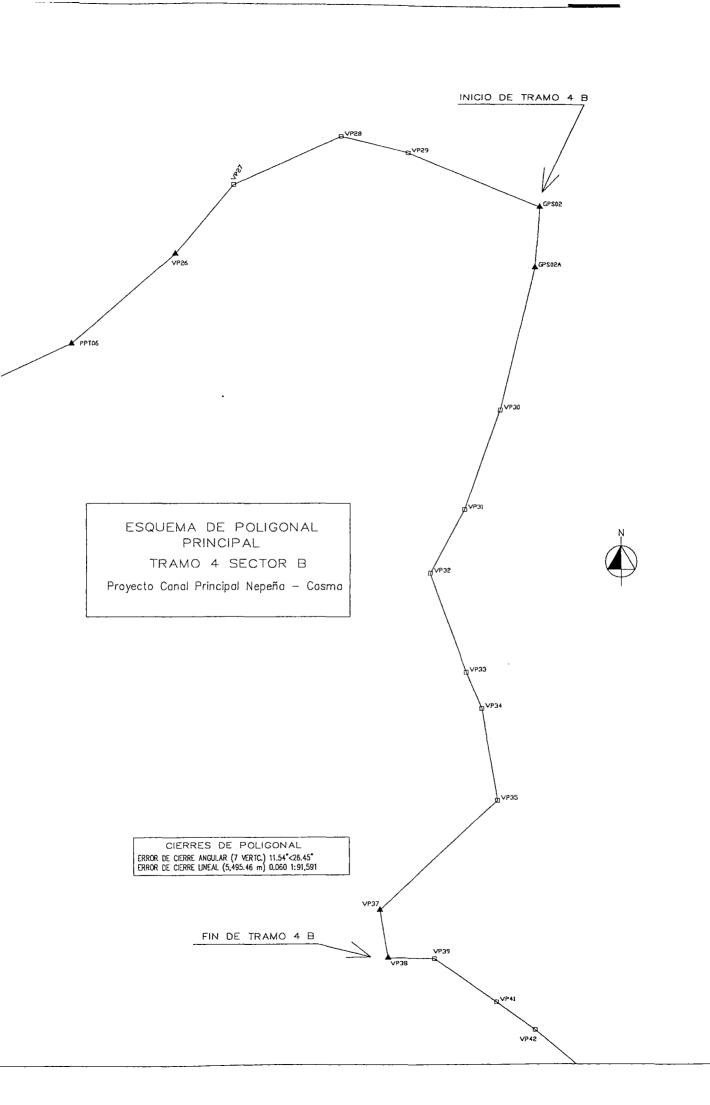
	COORDENADAS	COORDENADAS UTM - PSAD 56 COORDENADAS TOPOGRAFICAS		ALTURA	
PTO.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
PI540	8.957.289,812	799.917,010	8.957.305,237	799.915,228	126,716
PI542	8.957.480,422	800.006,565	8.957.495,731	800.004,686	127,865
PI543	8.957.584,297	799.998,530	8.957.599,535	799.996,640	136,533
PI544	8.957.669,522	800.168,039	8.957.684,728	800.166,013	129,575
PI545	8.957.614,834	800.425,515	8.957.630,125	800.423,321	128,350
PI546	8.957.406,671	800.357,812	8.957.422,095	800.355,701	128,553
PI547	8.957.001,908	800.141,555	8.957.017,573	800.139,669	128,046
PI548	8.956.854,007	800.021,589	8.956.869,753	800.019,813	128,213
PI549	8.956.575,944	800.269,648	8.956.591,926	800.267,754	126,491
PI550	8.956.274,826	800.382,972	8.956.291,038	800.381,056	127,790
PI551	8.956.305,031	800.422,632	8.956.321,230	800.420,683	125,811
PI552	8.956,247,568	800.554,736	8.956.263,831	800.552,706	126,299
PI553	8.956.205,997	800.725,893	8.956.222,322	800.723,751	126,132
P1554	8.956.209,395	800.794,797	8.956.225,730	800.792,607	126,124
PI555 PI556	8.956.173,186 8.956.226,845	800.860,780	8.956.189,559	800.858,550	127,504
PI556 PI557	8.956.028,682	801.125,862 801.192,155	8.956.243,230	801.123,437	125,964
PI558	8.955.803,803	801.192,155	8.956.045,219 8.955.820,493	801.189,721 801.164,887	125,733 125,389
PI559	8.955.589,344	801.301,013	8.955.606,210	801,298,587	125,369
PI560	8.955.521,825	801.394,904	8.955.538,756	801.392,424	125,058
PI561	8.955.311,629	801.370,612	8.955.328,704	801.368,191	124,685
Pi562	8.955.200,649	801.439,929	8.955.217,815	801,437,481	125,002
PI563	8.955.100,562	801.410,871	8.955.117,793	801.408,463	125,225
PI564	8.955.198,257	801.204,967	8.955.215,379	801.202,684	124,877
PI565	8.955.148,308	801.160,015	8.955.165,455	801.157,773	125,537
PI566	8.955.022,732	801.092,528	8.955.039,954	801.090,359	123,816
PI567	8.954.905,315	801.218,438	8.954.922,644	801.216,204	124,711
PI568	8.954.413,810	801.546,947	8.954.431,550	801.544,581	130,185
PI569	8.953.730,158	801.489,277	8.953.748,367	801.487,092	123,741
PI570	8.953.663,228	802.251,248	8.953.681,645	802.248,542	125,435
PI571	8.953.783,037	802.347,734	8.953.801,389	802.344,936	124,884
PI572	8.953.888,546	802.523,192	8.953.906,859	802.520,247	124,739
PI573	8.953.730,746	802.741,801	8.953.749,216	802,738,733	123,069
PI574	8.953.701,041	802.842,922	8.953.719,554	802.839,788	123,050
PI575	8.953.699,602	802.958,816	8.953.718,140	802.955,600	123,349
PO541	8.957.355,204	799.926,131	8.957.370,585	799.924,330	132,026
PP1T07	8.957.325,476	798.349,367	8.957.340,590	798.348,651	162,683
PP2T07	8.957.401,476	798.403,549	8.957,416,549	798.402,783	166,087
PPT03	8.976.400,700	787.406,155	8.976.402,370	787.410,232	302,031
PPT04	8.973.174,306	786.963,597	8.973.177,881	786.968,061	257,226
PPT04Z	8.973.018,947	787.021,552	8.973.022,616	787.025,993	249,064
PPT05 PPT05A	8.970.526,868 8.971.001,297	788.647,250 788.070,259	8.970.532,157 8.971.006,249	788.650,925 788.074,241	216,181 179,821
PPT05A	8.969.718,245	792.445,781	8.969.724,388	792.447,190	206,426
PPT08	8.956.793,576	800.075,504	8.956.809,372	800.073,704	176,199
PPT09	8.953.700,755	801.824,017	8.953.719,056	801.821,603	226,277
PPT3	8.976.400,699	787.406,155	8.976.402,370	787.410,232	302,031
PPY04A	8.973.126,267	786.895,172	8.973.129,858	786.899,662	272,355
ST04	8.972.333,669	787.277,153	8.972,337,761	787.281,499	165,316
ST05	8.969.848,377	789.471,919	8.969.854,153	789,475,159	160,293
ST06	8.969.750,237	792.562,146	8.969.756,373	792.563,481	165,103
ST07	8.957.454,056	798.441,082	8.957.469,099	798.440,280	142,521
ST08	8.956.739,350	800.123,928	8.956.755,191	800.122,105	134,560
ST09	8.953.674,773	802.119,834	8.953.693,155	802.117,219	139,200
ST3	8.976.090,584	787.255,018	8.976.092,343	787.259,270	169,013
VP01	8.982.189,102	792.169,506	8.982.187,293	792.170,538	166,148
VP02	8.981.896,677	792.087,043	8.981.895,051	792.088,130	170,436
VP03	8.981.749,138	792.039,247	8.981.747,604	792.040,367	174,008
VP04	8.981.482,575	791.912,564	8.981.481,206	791.913,767	155,637
VP05	8.980.316,056	790.962,269	8.980.315,397	790.964,091	168,565

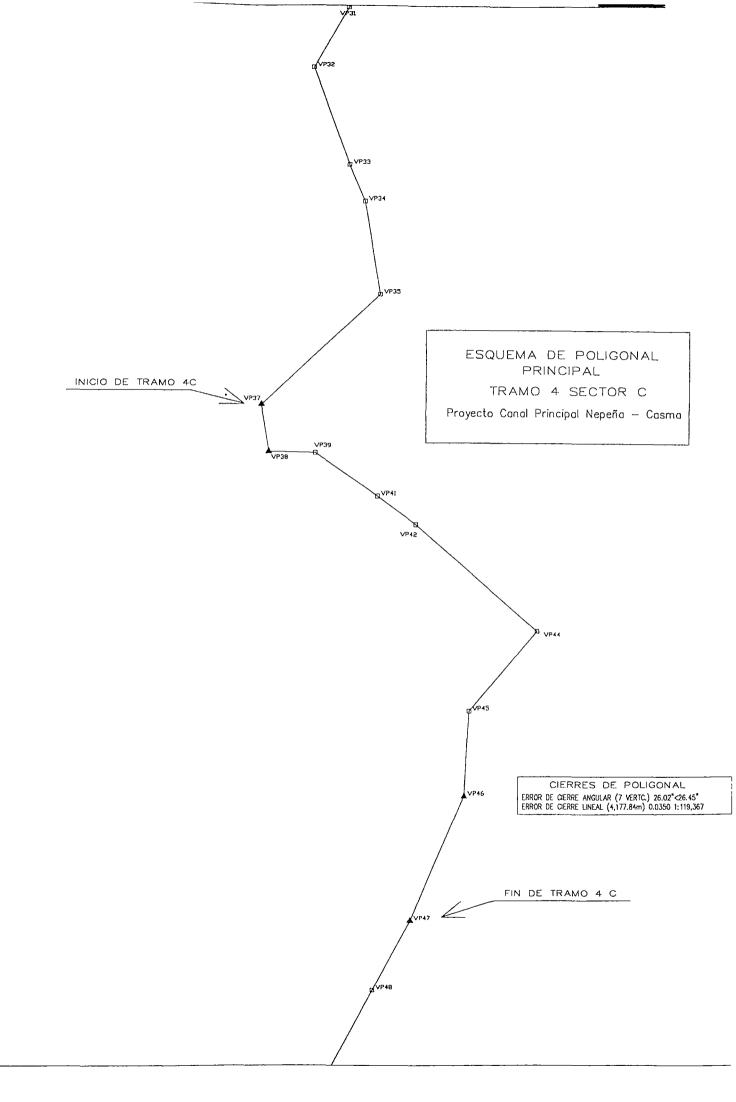

	COORDENADAS	UTM - PSAD 56	COORDENADAS	TOPOGRAFICAS	ALTURA
PTO.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
Li	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
ВМ73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
VP06	8.979.802,152	790.778,337	8.979.801,764	790.780,319	172,972
VP07	8.979.147,254	790.814,612	8.979.147,267	790.816,580	135,291
VP08	8.979.036,043	791.487,776	8.979.036,199	791.489,306	156,802
VP09	8.978.173,772	788.608,169	8.978.174,392	788.611,507	114,154
VP10	8.978.068,885	788.302,949	8.956.755,191	800.122,105	134,560
VP11	8.977.762,938	787.968,291	8.953.693,155	802.117,219	139,200
VP12 VP13	8.977.308,576	787.775,224	8.976.092,343	787.259,270	169,013
VP13	8.975.823,501 8.975.838,593	786.882,320 786.719,355	8.982.187,293	792.170,538	166,148
VP15	8.975.681,371	786.574,091	8.981.895,051 8.981.747,604	792.088,130 792.040,367	170,436 174,008
VP16	8.975.270,984	786.549,220	8.981.481,206	791.913,767	155,637
VP17	8.974.529,809	786.473,834	8.980.315,397	790.964,091	168,565
VP18	8.972.414,052	787.361,881	8.979.801,764	790.780,319	172,972
VP19	8.971.825,480	787.357,789	8.979.147,267	790.816,580	135,291
VP20	8.971.525,100	787.743,458	8.979.036,199	791.489,306	156,802
VP21	8.971.095,708	787.816,728	8.978.174,392	788.611,507	114,154
VP22	8.971.068,635	788.200,914	8.971.073,558	788.204,812	174,488
VP23	8.969.869,163	789.721,129	8.969.874,950	789.724,215	195,959
VP24	8.969.630,524	790.247,711	8.969.636,508	790.250,497	157,434
VP25	8.969.292,541	791.519,813	8.969.298,859	791.521,842	176,993
VP26	8.970.285,412	793.105,559	8.970.291,259	793.106,499	163,104
VP27	8.970.723,999	793.476,695	8.970.729,599	793.477,358	154,164
VP28	8.971.031,502	794.155,103	8.971.036,964	794.155,302	147,915
VP29	8.970.926,842	794.577,317	8.970.932,409	794.577,251	145,804
VP30	8.969.302,745	795.170,988	8.969.309,424	795.170,688	151,153
VP31	8.968.668,641	794.946,513	8.968.675,711	794.946,424	153,433
VP32	8.968.269,012	794.729,344	8.968.276,319	794.729,438	146,301
VP33 VP34	8.967.640,854	794.959,031	8.967.648,596	794.959,044	149,510
VP34 VP35	8.967.410,284 8.966.821,243	795.058,359 795.157,518	8.967.418,188 8.966.829,545	795.058,333 795.157,495	149,584 140,049
VP36	8.966.360,615	794.769,835	8.966.369,172	794.770,121	124,607
VP37	8.966.124,704	794.409,477	8.966.133,371	794.410,026	132,871
VP38	8.965.826,417	794.457,967	8.965.835,284	794.458,522	156,615
VP39	8.965.819,567	794.753,576	8.965.828,475	794.753,940	139,507
VP40	8.965.814,421	795.127,949	8.965.823,379	795.128,068	154,004
VP41	8.965,545,667	795.147,672	8.965.554,804	795.147,812	144,718
VP42	8.965.367,525	795.391,976	8.965.376,809	795.391,978	137,751
VP43	8.965.104,664	795.899,919	8.965.114,187	795.899,620	137,377
VP44	8.964.696,253	796.167,208	8.964.706,081	796.166,785	137,293
VP45	8.964.186,793	795.734,800	8.964.196,901	795.734,731	124,221
VP46	8.963.641,091	795.704,192	8.963.651,555	795.704,219	152,374
VP47	8.962.849,639	795.361,847	8.962.860,575	795.362,211	148,077
VP48	8.962.416,810	795.120,083	8.962.427,994	795.120,670	144,021
VP49	8.961.840,492	794.811,899	8.961.852,006	794.812,774	143,711 146,761
VP50	8.961.525,306	794.638,271 794.363,150	8.961.536,999 8.961.153,541	794.639,307 794.364,425	146,761 132,144
VP51 VP52	8.961.141,641 8.960.755,479	794.353,150	8.960.767,629	794.354,425 794.354,086	142,920
VP52 VP53	8.960.434,860	794.386,758	8.960.447,223	794.388,131	142,835
VP54	8.959.820,718	794.452,726	8.959.833,491	794.454,157	142,921
VP55	8.959.468,652	794.694,969	8.959.481,695	794.696,302	141,504
VP56	8.959.021,284	794.896,481	8.959.034,653	794.897,759	149,049
VP57	8.958.731,195	795.446,946	8.958.744,850	795.447,914	154,368
VP58	8.958.949,200	796.165,514	8.958.962,836	796.165,971	147,105
VP59	8.958.558,453	796.615,622	8.958.572,427	796.615,847	129,711
VP60	8.958.208,081	796.861,606	8.958.222,332	796.861,730	141,453
VP61	8.957.859,242	797.229,963	8.957.873,792	797.229,903	157,223
VP62	8.957.517,204	797.520,094	8.957.532,036	797.519,902	139,335
VP63	8.957.189,426	797.641,324	8.957.204,501	797.641,110	140,227
VP64	8.957.142,662	797.875,359	8.957.157,812	797.874,997	160,995
VP65	8.957.039,890_	798.150,300	8.957.055,160	798.149,771	141,251

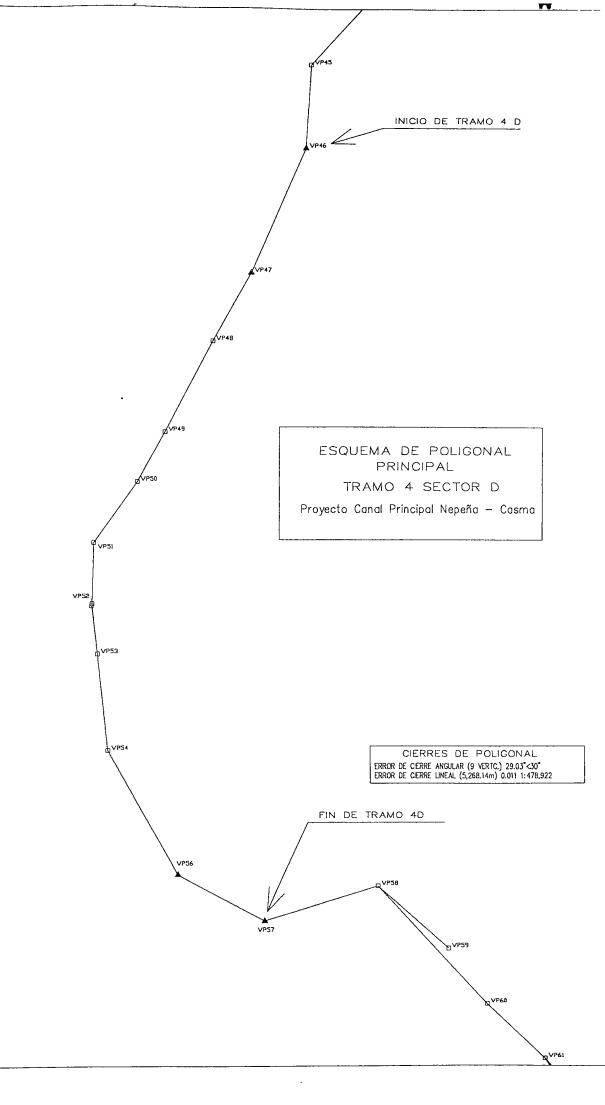

	COORDENADAS	UTM - PSAD 56	COORDENADAS	COORDENADAS TOPOGRAFICAS	
PTO.	NORTE	ESTE	NORTE	ESTE	ORTOMETRICA
_	(m)	(m)	(m)	(m)	(msnm)
BM72.5	8.983.101,259	793.688,870	8.983.098,883	793.688,933	163,104
BM73.0	8.982.775,345	793.504,010	8.982.773,177	793.504,193	167,625
VP66	8.957.428,992	798.361,821	8.957.444,038	798.361,077	172,078
VP70	8.957.546,697	799.064,978	8.957.561,791	799.063,736	143,989
VP71	8.957.352,279	799.439,428	8.957.367,576	799.437,964	138,251
VP72	8.957.113,313	799.481,272	8.957.128,781	799.479,823	131,454
VP73	8.957.201,608	799.966,170	8.957.217,103	799.964,369	118,436
VP74	8.957.542,069	800.231,808	8.957.557,375	800.229,761	125,373
VP75	8.956.765,384	800.048,207	8.956.781,195	800.046,430	183,835
VP76	8.956.325,407	800.329,693	8.956.341,573	800.327,805	138,659
VP77	8.956.201,867	800.861,572	8.956.218,220	800.859,336	133,602
VP78	8.955.767,969	801.240,055	8.955.784,698	801.237,638	136,189
VP79	8.955.287,418	801.454,626	8.955.304,526	801.452,150	130,665
VP80	8.955.140,241	801.207,217	8.955.157,403	801.204,944	137,205
VP81	8.954.804,842	801.024,946	8.954.822,203	801.022,867	136,467
VP82	8.954.611,494	801.469,752	8.954.629,079	801.467,401	139,707
VP86	8.954.367,122	801.468,177	8.954.384,879	801.465,876	138,839
VP87	8.953.938,845	801.433,244	8.953.956,896	801.431,054	122,064
VP88	8.953.623,613	801.463,665	8.953.641,892	801.461,519	122,801
VP89	8.953.842,763	802.087,094	8.953.861,019	802.084,467	146,339
VP90	8.953.680,497	802.965,878	8.953.699,050	802.962,660	123,305

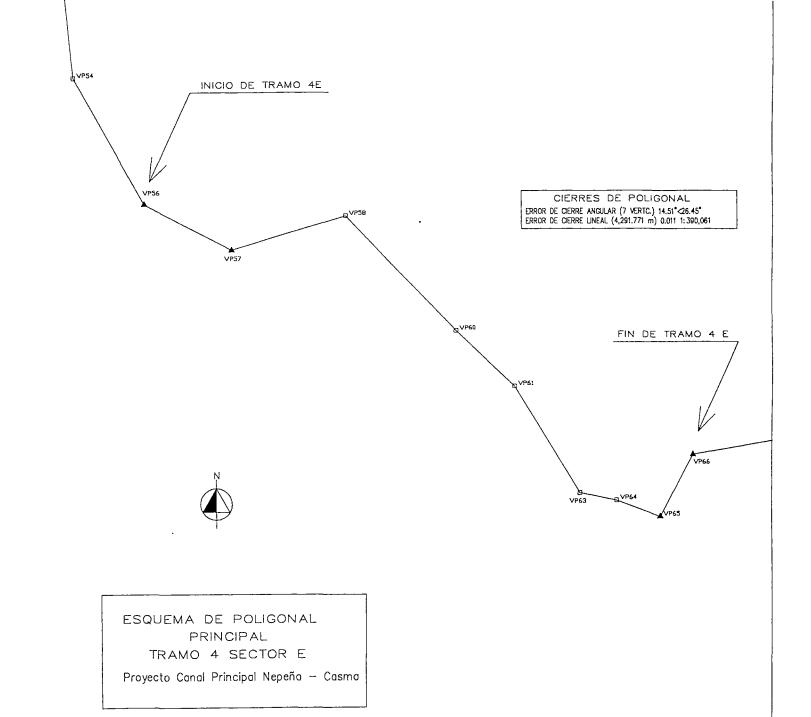
FIN DE TRAMO 2

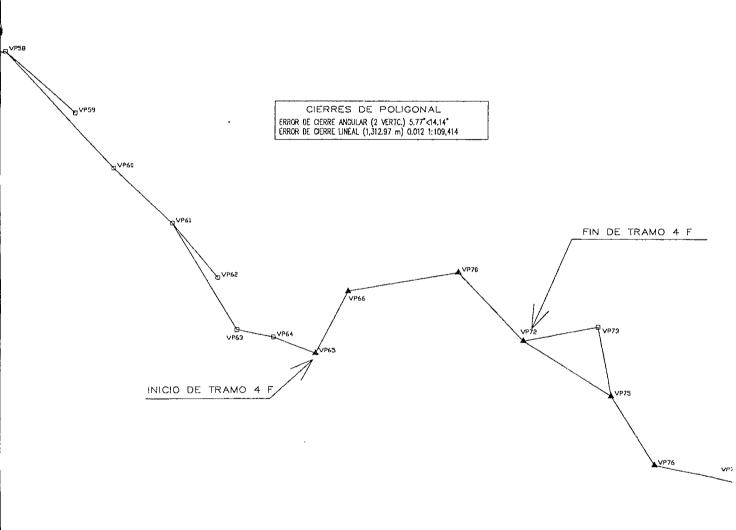


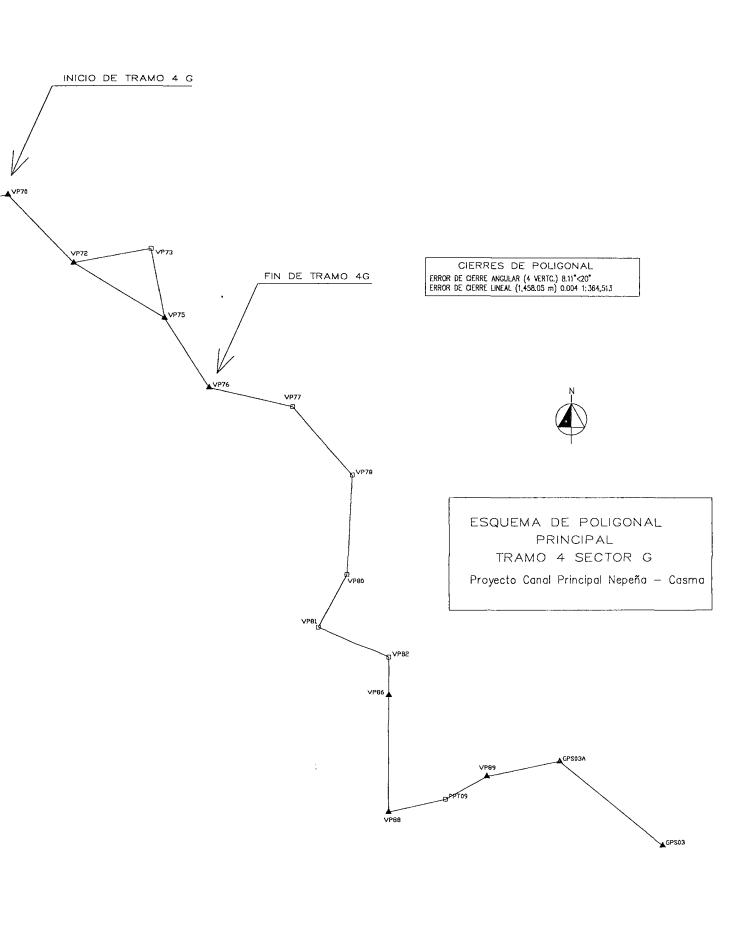


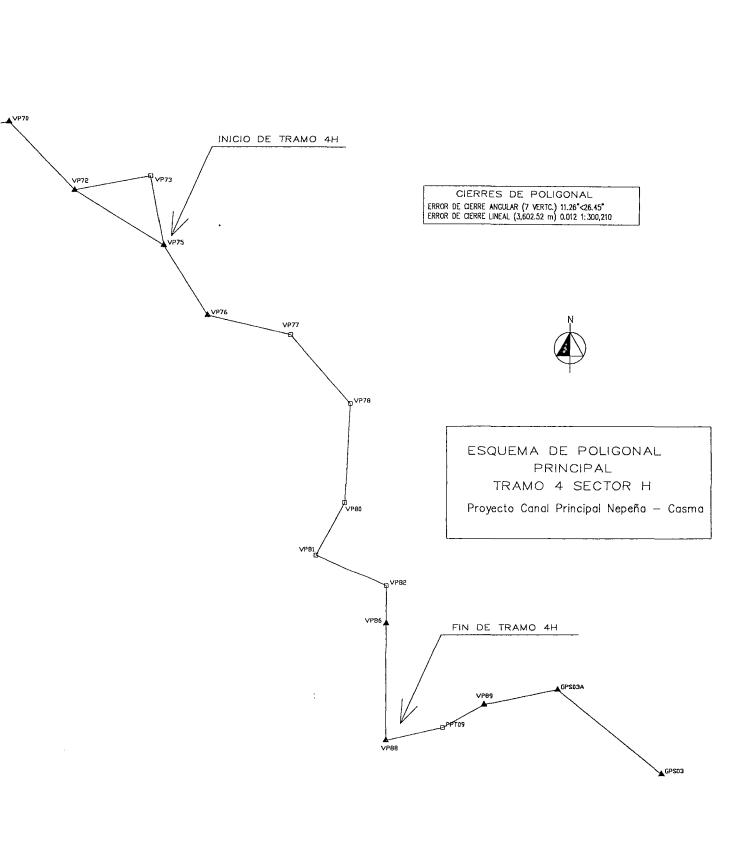

ESQUEMA DE POLIGONAL. PRINCIPAL

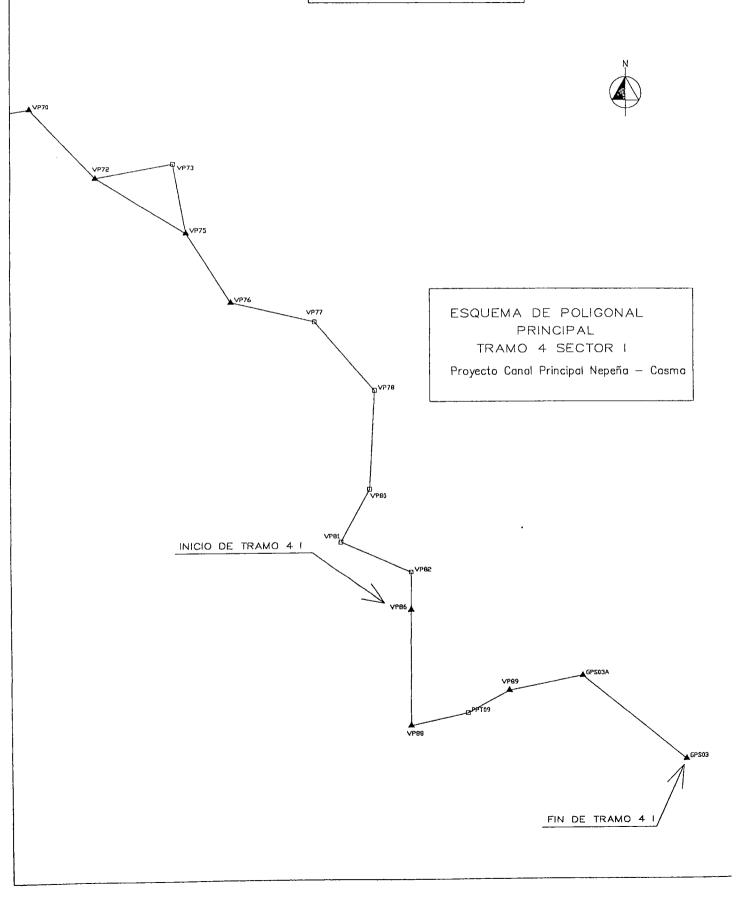

TRAMO 4 SECTOR A


Proyecto Canal Principal Nepeña — Casma

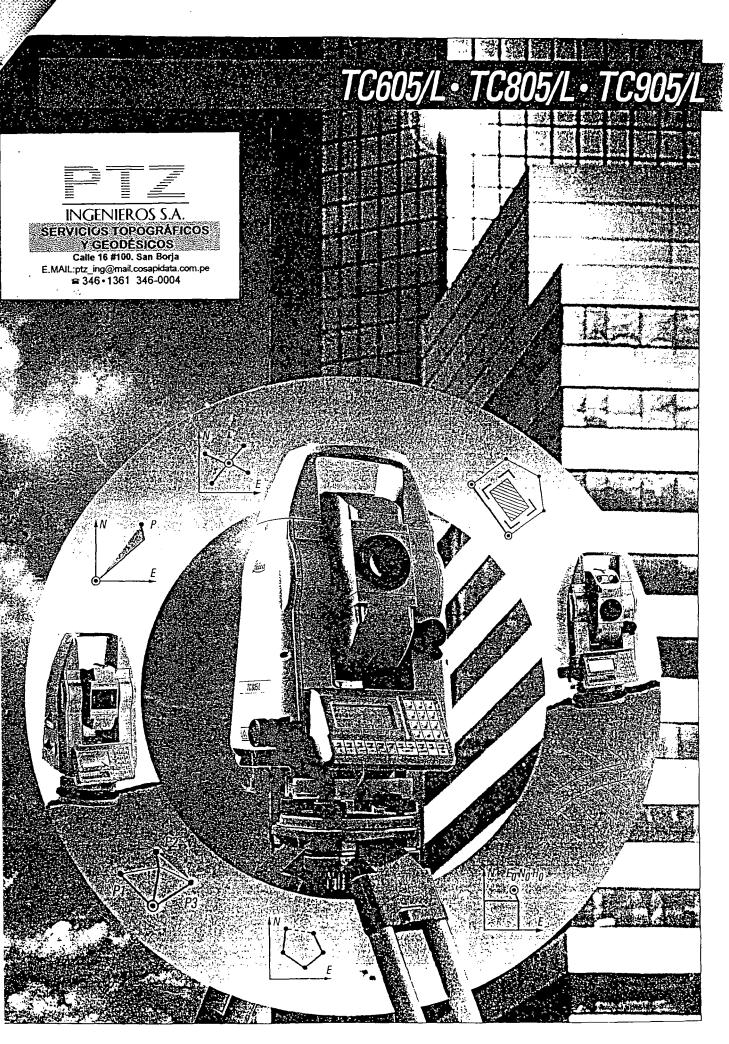







ESQUEMA DE POLIGONAL PRINCIPAL TRAMO 4 SECTOR F

Proyecto Canal Principal Nepeña — Casma



CIERRES DE POLIGONAL ERROR DE CIERRE ANGULAR (4 VERTC.) 19.46°<0° ERROR DE CIERRE LINEAL (1,982.46 m) 0.028 1:71,052

Classification	1 .rst-Order	Second-Ord	ler	Third-Order	
	- -	Class 1	Class II	Class 1	Class 11
Recommended spacing of principal stations	Network stations 10-15 km Other surveys seldom less than 3 km.	Principal stations seldom less than 4 km except in metro- politan area surveys where the limitation is 0.3 km.	Principal stations sel- dom less than 2 km except in metropoli- tan area surveys where the limitation is 0.2 km.	Seldom less than 0.1 k veys in metropolitan required for other surv	area surveys. As
Horizonial directions or angles!					
Instrument Number of observations Rejection limit from mean	0".2 16 4"	0".2 } { 1".0 8 } or { 12* 4" } } 5"	0".2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1".0 4 5"	1".0 2 5~
Length measurements			•		
Standard error 1	1 part in 600,000	1 part in 300,000	. 1 part in 120,000	1 part in 60,000	1 part in 30,000
Reciprocal vertical angle observations					
Number of and spread between observations	3 D/R—10"	3 D/R—10"	2 D/R—10"	2 D/R—10"	2 D/R-20°
Number of stations between known elevations	4-6	6-8	8-10	10-15	15-20
A gro azimuths					
Number of courses between azimuth checks?	5.6	10-12	15-20	20-25	30-40
No. of obs./night	16	16	12	8	4
No. of nights	2	2 .	1	t	. 1
Standard error	042	0.47	1.5	3" ()	R., 'O
Azimuth closure at azimuth check point not to exceed *	1".0 per station or 2" \langle N	1" 5 per station or 3" \sqrt{N} . Metropolitan area surveys seldom to exceed 2".0 per station or 3" \sqrt{N}	VN. Metropolitan	3".0 per station or 10" √N. Metropolitan area surveys seldom to exceed 6".0 per station or 15" √N	8° per station or 30° √N
Position closure ** after azimuth adjustment	$0.04 \mathrm{m} / \overline{\mathrm{K}}$ or 1:100,000	0.08m √K or 1:50,000	0.2m√K or 1:20,000	0.4m \sqrt{K} or $1:10.000$	0.8m √K or 1;5,000

[•] May be reduced to 8 and 4, respectively, in metropolitan areas.

Leica

INGENIEROS S.A. **SERVICIOS TOPOGRÁFICOS** Y GEODÉSICOS

Calle 16 #100. San Borja E.MAIL:ptz_ing@mail.cosapidata.com.pe ≈ 346 • 1361 346-0004

Datos técnicos

	TC605 /L	TC805 /L	TC905 /L			
Anteojo .						
Imagen	derecha	derechu	derecha			
Diámetro libre del objetivo	28 mm (1.1 in)	+2 mm (1.7in)	42 mm (1.7in)			
Distancia mínima de enfoque	2 m (6.5 ft)	1.7 m (5.6 ft)	1.7 m (5.6 ft)			
Campo visual	1° 30° (26 m, 85ft / 1000 m, 3280ft)	1° 30′ (26 m, 85ft / 1000 m, 3280ft)	1° 30′ (26 m. 85ft / 1000 m. 3280ft)			
Aumentos	28x	30x	30x			
Medida de ángulos	absoluta, continua	absoluta, continua	absoluta, continua			
Desviación estándar HZ y V (DIN18723)	5" (1.5 mgon)	3" (1 mgon)	2" (0.6 mgon)			
Resolución	10", 5", 1" (2, 1, 0,2 mgon)	10", 5", 1" (2, 1, 0,2 mgon)	10", 5", 1" (1, 0.5, 0.1 mgon)			
Medida de distancias		The second secon				
Rango: 1) condiciones malas- 1/3 prisma(s)	800 m/1000 m, 2600 tt/3300 ft	1200 m/1500 m. :	3900 ft/4900 ft			
 2) condiciones normales - 1/3 prisma(s) 	1100 m/1600 m, 3600 ft/5200 ft	2500 m/3500 m. 8	200 ft/11500 ft			
 condiciones muy buenas - 1/3 prisma(s) 	1300 m/2000 m, 4300 ft/6500 ft	3500 m/5000 m, L	1500 ft/16400 ft			
Desviación estándar: Medida normal	3 mm + 3 ppm	2 mm + :	2 ppm			
Medida de precisión		3 mm + 2				
Medida de seguimiento	10 mm + 3 ppm	5 mm + 3	2 ppm			
Duración: Medida normal	4 seg	2.5 si				
Medida de precisión		0.9 se				
Medida de seguimiento	0.5 seg	0.3 se				
Unidad mínima Pantalla	1 mm (siempre)	I mm (sie	empre)			
Teclado		cristal líquido, 4 líneas de 16 caracteres				
Cuntidad / tipo de teclas	1.16	4/-16	dos / alfanuméricas			
Campensador	uno / alfanuméricas					
ecciones automáticas	adiamilia Uz fadina na	líquido / dos ejes tical, curvatura terrestre y refracción, inclinac	Sin discussion (des Sin)			
abación de datos		ries de datos o 4000 puntos con coordenadas /				
Programas integrados		o. Estación libre, Distancia de enlace. Línea de				
Características especiales		dir. grabar v codificar con una sola presión de				
Ylomada	Eista de Chargos, Codificación rapida inic	on grada reconnect con una sola presion de	tectas, formatos de sanda personanzados			
Plomada óptica	ubicada en	la base nivelante, aumentos 2x, precisión 0.5 i	mm a 1.5 m			
Plomada láser		alidada, gira con el instrumento, precisión 0.5				
Sensibilidad de los niveles	and the contract of the contra					
Nivel esférico		4' / 2 mm				
Nivel electrónico		5"				
Peso						
Instrumento y batería	4.3 kg (9.5 lbs)	5.6 kg (12.3 lbs)	5.6 kg (12.3 lbs)			
Base nivelante y peso		OF12 0.7 kg (1.5 lbs), GDF21 0.77 kg (1.7 lbs				
Alimentación	Medida de ángulos: 10 horas, medida o	de angulos y distancias: 5 horas -medidas de 7	700 a 800 puntos cuando la batería está			
n		completamente cargada	Į			
Bateria integrada	NiCd 12 V / 0.6 Ah					
Tiempo de carga con GKL23	1,0 hora					
temperaturas de trabajo		Temperaturas de trabajo -20°C (-4 °F) a +50 °C (122 °F)				

Distanciómetro y EGLT:

DEL clase 1 conforme a la norma IEC 825-1 y EN 60825-1

Plomada láser:

Producto láser clase 2 conforme a la norma EC 825-1 y EN 60825-1 Producto láser clase II conforme a la norma FDA 21 CFR Ch.1 §1040

CAUTION. LASER RADIATION - DO NOT STARE INTO BEAM 620-690mm/0.95mW ma CLASS II LASER PRODUCT

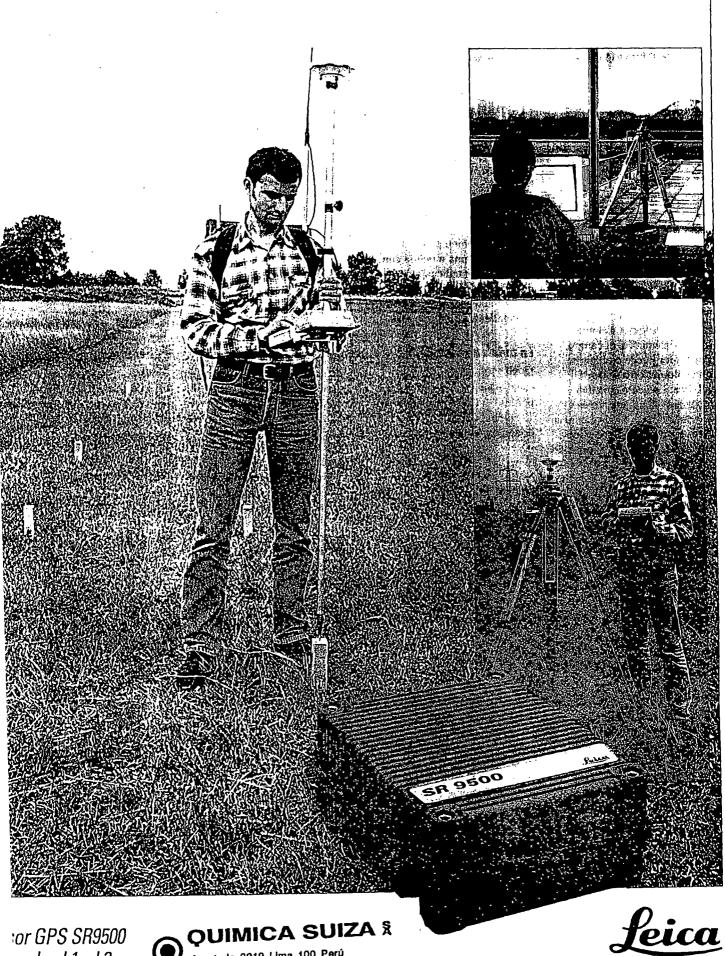
los datos técnicos, illustraciones y descripciones no son vine maites y pueden ser modificados

Spyright Leica Georystenis, AG, Heerbrigge, Swar Schant 1997 7, 863 068 All 97 PDV

Leica.

150 9001

Total Quality Management -Nuestro cometido para complacer totalmente a nuestros clientes

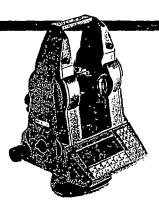

 $1) \ Condiciones \ may \ buenus; \ cubierto, \ sin \ bruma, \ visibilidad \ unos \ 30 \ km, \ sin \ centelleo \ del \ are$ 2) Condiciones normales; poco brumoso, parcialmente solcado y ligero centelleo del arc

Salicite mayor información acerca de nuestro programa TOM on su agencia cerca

Leica Geosystems AG Geodesy CH-9435 Heerbrugg (Switzerland) Phone +41 71 727 31 31 Fax +41 71 727 46 73 AUVIV erea com

Topografía GPS - SR9500

inales L1 y L2

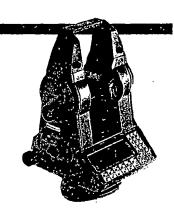

Apartado 3919 Lima 100 Perú 2577 Avenida República de Panamá Teléfonos 470 84 84 470 62 62

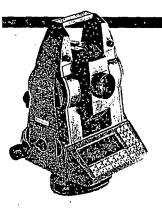
Medición manual o motorizada: más sencilla y fiable que nunca

eodolitos y taquímetros gusto de todos

Ventajas comunes de los instrumentos del TPS-System 1000:

- Comodidad: diálogos y menús en el propio idioma. Basta con echar un vistazo a la pantalla para informarse de todos los datos relevantes (hasta 16 posiciones).
- Concepto de empleo apoyado en Windows™: con una sencilla y cómoda guía de usuario.
- Compensador de dos ejes: le garantiza la mayor precisión también en visuales inclinadas.
- Programas de aplicación integrados: para facilitarle el trabajo en levantamientos y replanteos.
- Óptimo confort de medición: los métodos de medición, los parámetros y las secuencias de programas se pueden configurar de forma individual.

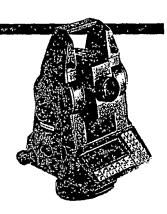

T1100: 1 mgon (3") T1800: 0,3 mgon (1")


Teodolitos electrónicos que pueden ser equipados con un distanciómetro Leica para las medidas de distancia.

T1800 – para trabajos que requieren una precisión de segundo.

TM1100: 1 mgon (3") TM1800: 0,3 mgon (1")

Teodolitos motorizados que dirigen automáticamente la visual a puntos conocidos. En combinación con un distanciómetro de la Serie DI3000S, estos instrumentos resultan idóneos para el telecontrol de terrenos con peligro de desprendimiento de tierras, el barrido de superficies y fachadas, etc.



TC1100: 1 mgon (3"); 2mm + 2ppm TC1700: 0,5 mgon (1,5"); 2mm + 2ppm TC1800: 0,3 mgon (1"); 2mm + 2ppm

La serie clásica de taquímetros electrónicos para cualquier trabajo topográfico diario.

TCM1100: 1 mgon (3"); 2mm + 2ppm TCM1800: 0,3 mgon (1"); 2mm + 2ppm

Los taquímetros motorizados que le simplifican el trabajo y economizan tiempo. Con pulsar un botón, dirigen la visual allí donde usted lo requiere, en replanteos, mediciones de deformación y de repetición. En mediciones de series, los instrumentos también se desplazan automáticamente a la segunda posición de anteojo.

NA 2002 · NA 3003 – Mayor productividad en la medición

Programas de medición hechos a medida

Los programas de medición integrados ejecutan los tipos de nivelación más diversos y optimizan el trabajo en el campo.

Measure only

Lectura de mira y medición de la distancia entre el instrumento y la mira. Medición aislada o medición múltiple con promediación/ mediana.

Start levelling

Entrada de la altitud inicial para comenzar el itinerario. Adquisición de la altitud inicial del módulo REC.

Continue levelling

Programa con guía de usuario para nivelaciones de líneas con visuales intermedias Replanteo de las altitudes almacenadas en el módulo REC Cálculo automático de la diferencia entre la altitud medida y la altitud teórica Cálculo continuo de la altura del instrumento y la altitud de base. Método de nivelación EF. EFFE: cálculo continuo de la compensación de distancia (distancia de visual de espalda a distancia de visual al frente) con comparación del valor de tolerancia definido por el usuario.

Check and adjust

NUEVO: 2 pruebas de nivel con guía de usuario. También se incluye la prueba a partir del centro de la distancia.

Erase data

Borrado de los archivos del módulo REC

NUEVO: Send data

Transferencia de los datos del módulo REC a un medio de grabación. Método muy práctico para guardar los datos en un entorno seguro cuando se está en el campo.

Paquete de software DELTA / LEVNET

144 DELTA/LEVNET es un probado soporte lógico para el tratamiento de datos que permite cargarse en un ordenador portátil para su posterior empleo en el campo. Gracias a su amplio margen de aplicación, resulta idóneo para gabinetes de proyectos, de ingenieros, y por supuesto, topográficos.

Entre las prestaciones de DELTA/LEVNET destacan:

- nivelaciones de líneas
- · itinerarios altimétricos con visuales intermedias
- compensaciones de líneas con des niveles
- evaluación del control del instrumento
- edición e impresión de los datos de medición
- representación e impresión de perfiles
- · creación de tablas de medición de hundimientos válidas durante largos períodos de tiempo
- banco de dátos
- · manual on-line activable

Amplio surtido de miras de nivelación

Leica ofrece para los niveles digitales WILD NA2002 y NÃ3003 una extensa gama de miras:

 Miras de ínvar para mediciones de precisión Miras de código de barras para aplicaciones en la industria

- Escala de invar con código de barras
- Mira de nivelación combinada con divisiones código de barras/clásica
- Mira plegable de madera (GNLE4C)
- Miras de elementos acoplables de aluminio (GBNL4C), elementos de 1 m

Accesorios

La lámpara para miras GEB89 permite fijarse y ajustarse en altura en todas las miras Leica. Con ella, pueden llevarse a cabo tareas bajo tierra (túncles, galerías, etc.), en condiciones insuficientes de luz (obras en interiores), así como al atardecer o de noche.

WILD NA 2002/NA 3003 Desviación típica WILD NA2002/NA3003 (en 1 km de nivelación doble)

Medición electrónica Medición óptica

Margen de medición Medición electrónica

Medición óptica

Precisión en medición de distancia

Pantalla

Valores indicados

Cifras decimales de la lectura de mira

metros pies pulgadas

Tiempos de medición típicos para medición electrónica

Método de nivelación Mados de medición

Valor medio NUEVO: Valor medio

NUEVO: Mediana

NUEVO: Tiempos de integración (NA3003)

Grabación

Suministro de corriente Batería interna GI7B79

Alimentación externa

Anteojo

Aumento Diámetro libre del objetivo Diámetro del campo visual a 100 m 3,5 m

Compensador de péndulo Margen de inclinación Precisión de estabilización

Sensibilidad de la burbuja

Circulo horizontal

NA2002/NA3003

Miras de nivelación

niveles

- especificación NA3003 GNLE4C, GBNL4C

Mira Mira niv. combinada código invar GPČL2/GPCL3 GKNL4** 1,5 mm/1,2 mm* 0,9 mm/0,4 mm* 2,0 mm/2,0 mm*

1.8 m a 60 m con GPCL2/GPCL3 1,8 m a 100 m con GRN1A a partir de 0,6 m

3 mm - 5 mm /10 m (precisión de cinta de medición)

2 líneas de 8 caracteres cada una, guía Lectura de la mira, distancia horizontal, altura del instrumento, altura del punto medido

NA2002 NA3003

Lmm /0.1 mm n 100,0\text{\text{n} 10,0}

0.1 mm /0.01 mm 1.0 (0.0) 1 (0.00) 0,0005 inch

4 s

NA2002: EF NA3003: EF, EFFE

n = 1-99 (número de medidas) con indicación de la desviación típica y climinación de valores aberrantes.

n = 1.20

automático o introducción manual (3-9s)

Módulo REC GRM10, terminal GREA, GPC1 o a un sistema conectado online

NiCd, recargable, 500 mAh, suficiente para un día p.ej. con Wild GEB70

2.1 × 36 mm

con control electrónico del sector

NA2002; ±0.8" NA3003: +0,4"

872 mm

400 gon ó 360°

2,5 kg, incl. batería GEB79 consulte el prospecto de accesorios de

Total Quality Management – Nuestro cometido para complacer totalmente a nuestros clientes

Solicite mayor información acerca de nuestro programa TQM en su agencia Leica.

Los datos técnicos, ilustraciones y descripciones no son vinculantes y pueden set modificados sin previo aviso Impreso en Suiza Copyright Leien AG, Heerburgg, Switzerland, 1996

GURIDES VIII 96 RDV

Leica AG CH-9435 Heerbrugg (Suiza) Teléfono +41 71 727 31 31 Telefax +41 71 727 46 73 Télex 881 222 wi ch

La compañía Leica AG, Heerbrugg, aplica un sistema de calidad que, avalado por el Certificado SOS, categoría ISO 9001, responde a las normas internacionales vigentes.

ANEXO B INFORMACION HIDROMETEOROLOGICAS

· Popular

TABLA 3.2.1 PRECIPITACION MAXIMA EN 24 horas ESTACION BUENAVISTA

(mm)

ELEVACION	: 419 msn	m									FUENTE	: SENAMHI	
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ост	NOV	DIC	MAX
1005	9.0	0.5	2.0	0.5			-	0.17					
1965	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0,00	0,80	0,00	0,80
1966 1967	1,60	0,00	S/D T	S/D	S/D	T	T	T	T -	0,10	0,10	T	1,60
1967	2,30 T	8,00 T	<u> </u>	7	0,00 T	T T	1,00	T -	T	T	T	T	8,00
				0,00		T	T	T	T	0,00	0,00	0,00	0,00
1969	0,00	0,60	0,50	0,00	0,00		T	T	T	1,00	0,00	0,10	1,00
1970	0,00	0,80	0,40	0,00	0,40	0,00	S/D	S/D	0,00	0,70	5,30	0,00	5,30
1971	4,00	3,60	1,80	0,00	0,00	0,00	0,00	0,00	0,00	1,20	0,20	0,00	4,00
1972	0,00	T	0,50	0,00	0,00	0,00	0,00	T	0,00	0,00	0,00	0,00	0,50
1973	3,40	3,60	0,50	0,00	0,00	S/D	S/D	S/D	S/D	S/D	0,00	0,00	3,60
1974	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1975	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1976	0,00	0,00	0,00	0,00	S/D	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1977	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1978	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Т	0,00	0,00	0,00
1979	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1980	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,60	0,00	0,00	3,60
1981	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00
1982	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1983	0,00	0,00	7,50	4,70	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	7,50
1984	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1985	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1986	0,00	0,00	0,00	0,00	0,00	0,00	0,00	T	0,00	0,00	0,00	0,00	0,00
1987	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1988	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1989	0,00	0,00	0,00	0,00	3,60	0,00	0,00	0,00	0,00	0,00	0,00	0,00	3,60
1990	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
1991	0,00	0,00	0,00	0,00	0,00	0,00	Т	0,00	0,00	0,00	0,00	0,00	0,00
1992	0,00	0,00	0,00	0,00	S/D	S/D	S/D	S/D	S/D	S/D	S/D	S/D	0,00
1993	0,00	0,00	0,00	0,00	0,00	0,00	T	Т	Т	0,00	0,00	0,00	0,00
1994	0,00	0,00	0,00	0,00	0,00	0,00	Т	T	T	Т	T	0,00	0,00
1995	0,00	0,00	0,00	0,00	0,00	Т	Т	0,00	0,00	0,00	0,00	0,00	0,00
1996	0,00	Т	0,00	0,00	0,00	Т	0,00	Т	0,00	0,00	T	\ <u> </u>	0,00
1997	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Т	S/D	0,00	Т	Т	0,00
1998	0,00	6,40	7,70	0,00	Т	Т	Т	0,00	Т	0,00	0,00	0,00	7,70
MAX	4,00	8,00	7,70	4,70	3,60	0,00	1,00	0,00	0,00	3,60	5,30	0,10	8,00
PROM	0,38	0,77	0,63	0,15	0,14	0,00	0,05	0,00	0,00	0,23	0,22	0,00	1,42
MIN	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
DESV	1,01	1,98	1,93	0,84	0,68	0,00	0,21	0,00	0,00	0,72	0,99	0,02	2,46

S/D: Sin Dato T: Trazas

TABLA 3.2.2 PRECIPITACION MAXIMA EN 24 horas ESTACION QUILLO

(mm)

ELEVACION: 1215 msnm FUENTE : SENAMHI

AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ост	NOV	DIC	мах
1965	S/D	S/D	0,40	0,80	0,00	0,00	0,00	0,00	0,00	0,50	2,20	0,80	2,20
1966	5,90	2,00	0,80	0,10	Т	0,00	0,00	0,00	0,00	2,00	3,90	1,40	5,90
1967	6,10	34,90	6,70	2,30	0,40	0,00	0,40	0,00	0,00	1,50	2,40	3,20	34,90
1968	4,80	3,40	2,40	2,40	0,00	0,00	0,00	1,40	4,00	3,90	0,00	0,00	4,80
1969	3,00	4,20	6,00	3,40	0,00	0,00	0,00	0,00	1,10	4,50	3,00	S/D	6,00
1970	6,40	1,60	2,60	2,60	2,70	Т	S/D	0,00	3,50	3,20	2,60	0,00	6,40
1971	4,20	3,30	7,40	0,00	0,00	0,00	S/D	S/D	S/D	S/D	S/D	S/D	7,40
													1
MAX	6,40	34,90	7,40	3,40	2,70	0,00	0,40	1,40	4,00	4,50	3,90	3,20	34,90
PROM	5,07	8,23	3,76	1,66	0,52	0,00	0,08	0,23	1,43	2,60	2,35	1,08	9,66
MIN	3,00	1,60	0,40	0,00	0,00	0,00	0,00	0,00	0,00	0,50	0,00	0,00	2,20
DESV	1,31	13,10	2,89	1,34	1,08	0,00	0,18	0,57	1,85	1,53	1,30	1,32	11,25

S/D: Sin Dato

T: Trazas

Figura 3.3.2

Hidrogramas de Avenidas Los Incas

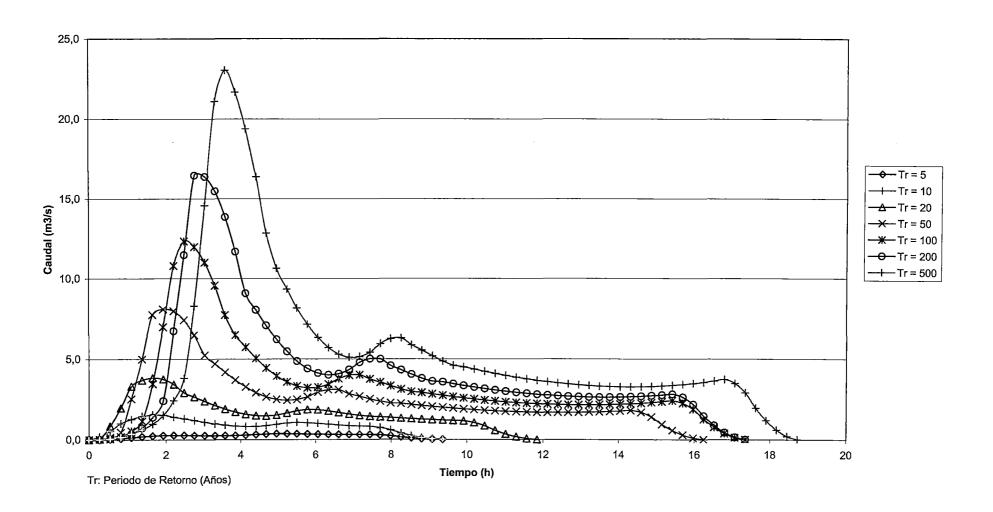


Figura 3.3.3

Hidrograma de Avenidas Huambacho

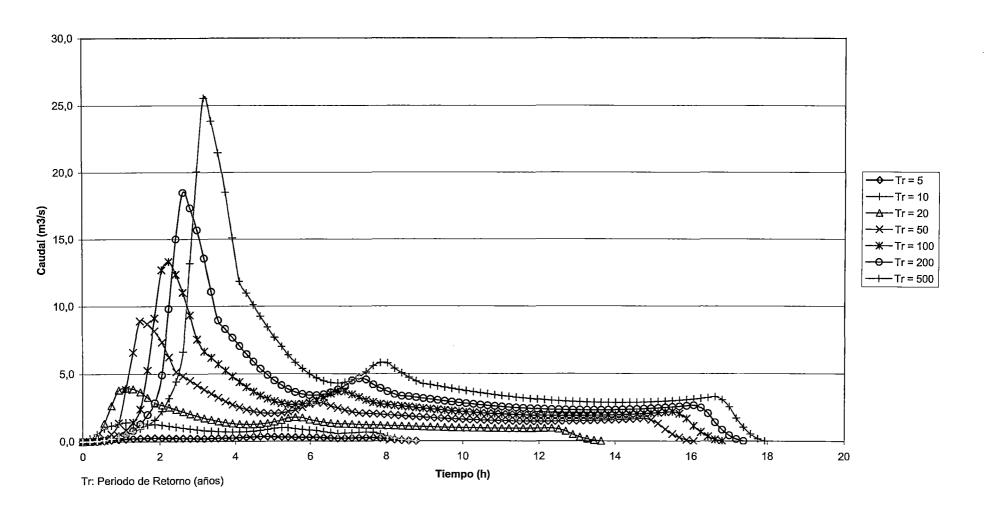


Figura 3.3.4

Hidrograma de Avenidas Sin Nombre (3)

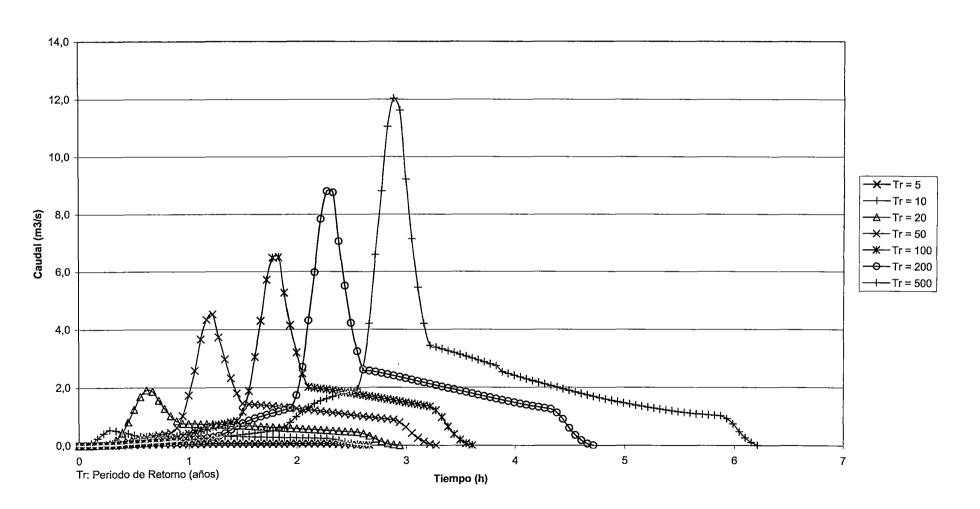
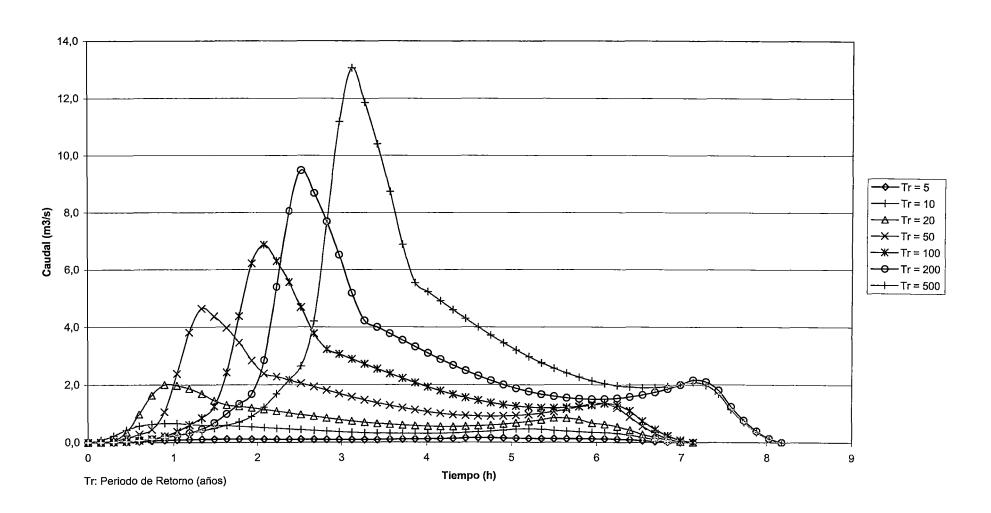



Figura 3.3.5

Hidrograma de Avenidas Sin Nombre (4)

Hidrograma de Avenida Sin Nombre (5)

-0-Tr = 200 -1-Tr = 500 —<u>A</u>—Tr = 20 —X—Tr = 50 —**※**—Tr =100 +-Tr=10 20 Tiempo (h) 10 (a\&m) lsbus 2 5 0 0 25,0 -20,0 5,0 15,0

Figura 3.3.7

Hidrograma de Avenidas Quebrada Grande Seca

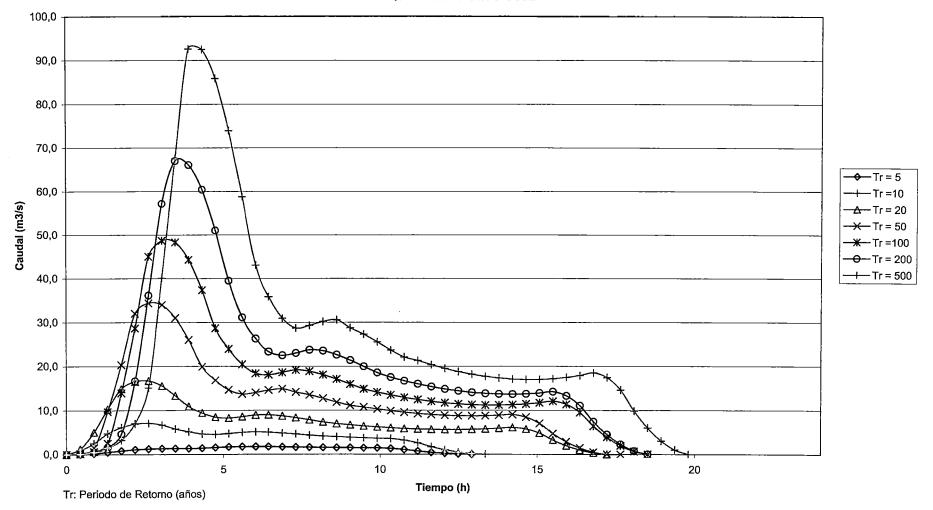


Figura 3.3.8

Hidrograma de Avenidas Las Yuntas

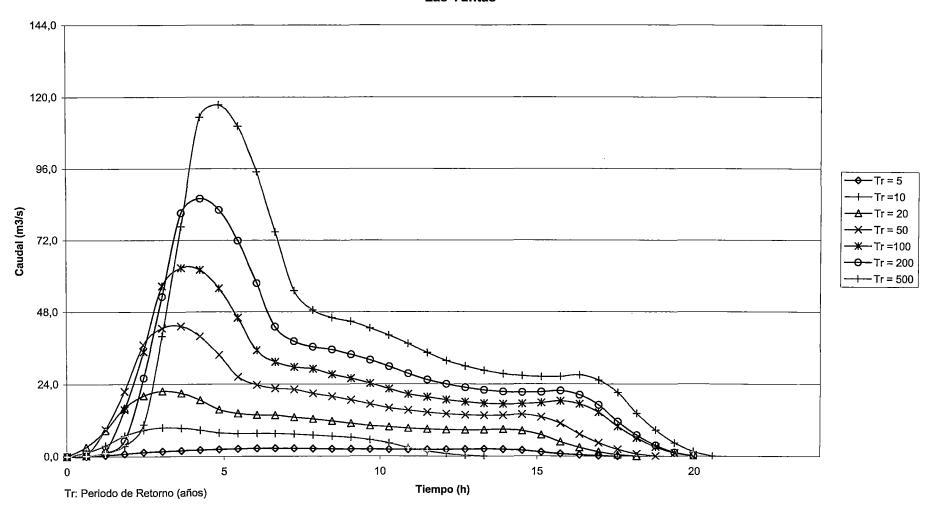


Figura 3.3.9

Hidrograma de Avenida Sin Nombre (8)

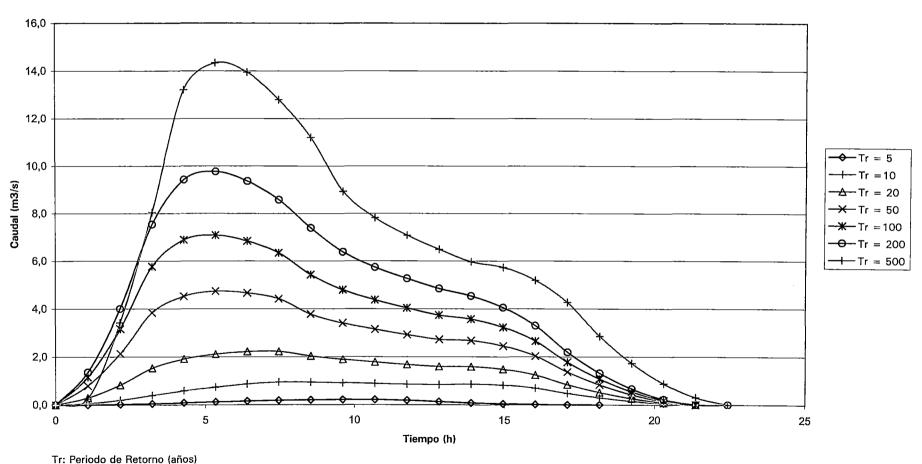


Figura 3.3.10

Hidrograma de Avenidas Jayhua 1

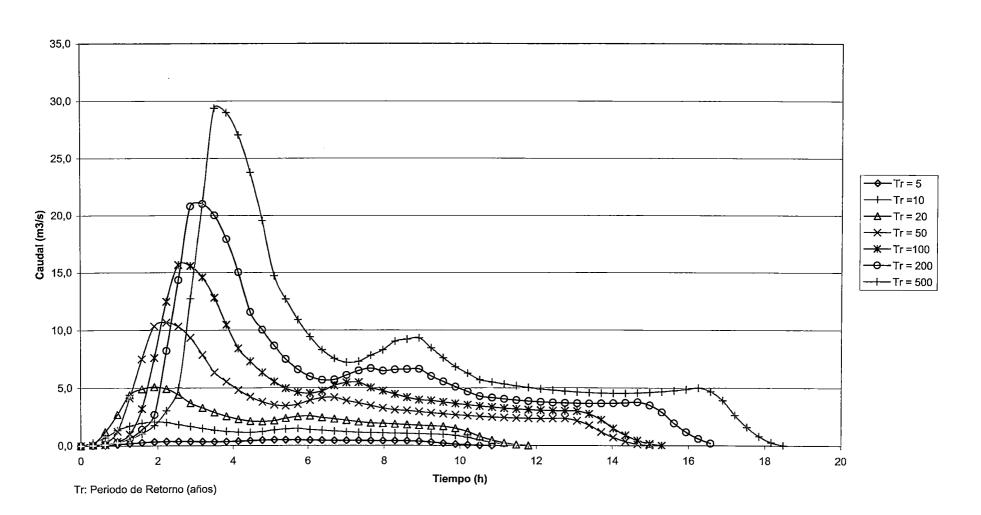


Figura 3.3.11

Hidrograma de Avenidas Jayhua 2

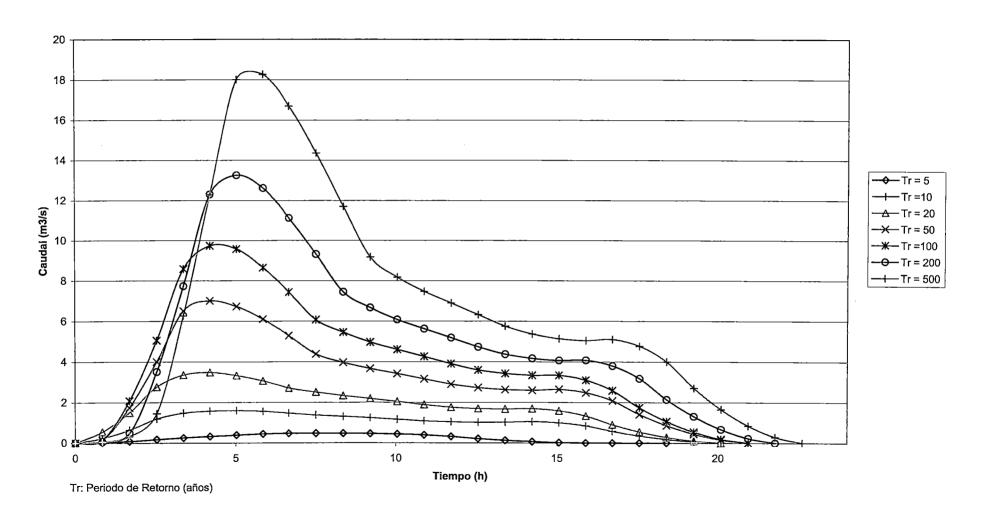


Figura 3.3.12

Hidrograma de Avenidas Pampa Afuera

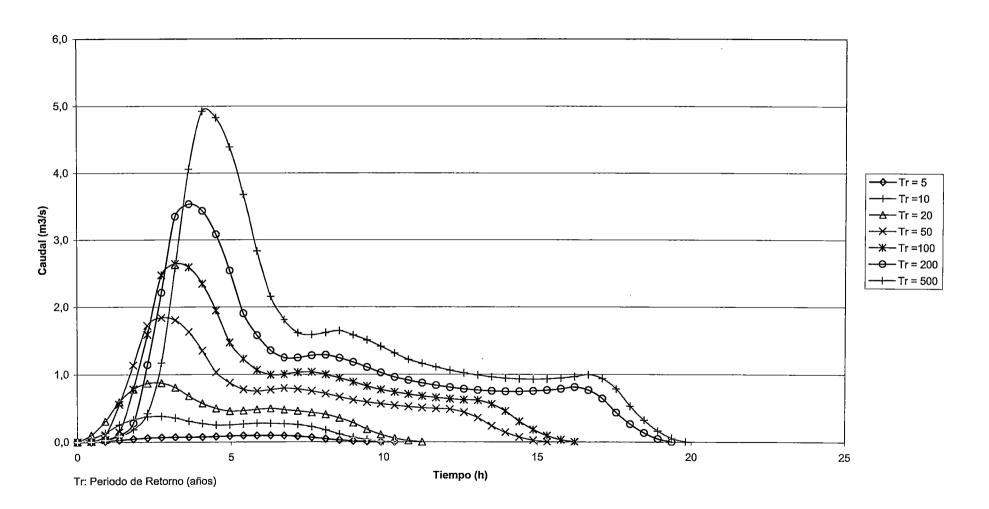


FIGURA Nº 3.2.1

VALORES DE LA REDUCCION EN FUNCION AL AREA DE DRENAJE PARA LOS VALORES PUNTUALES DE PRECIPITACION

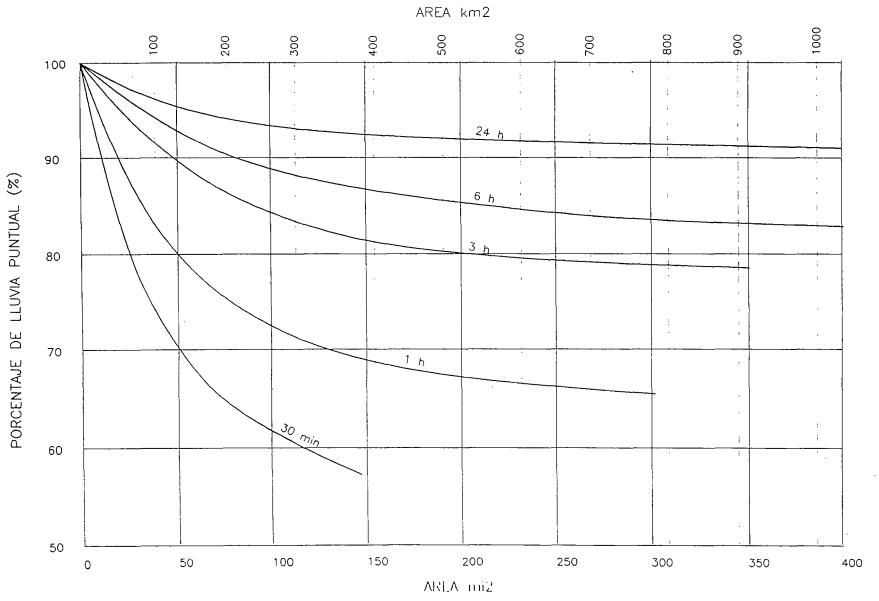
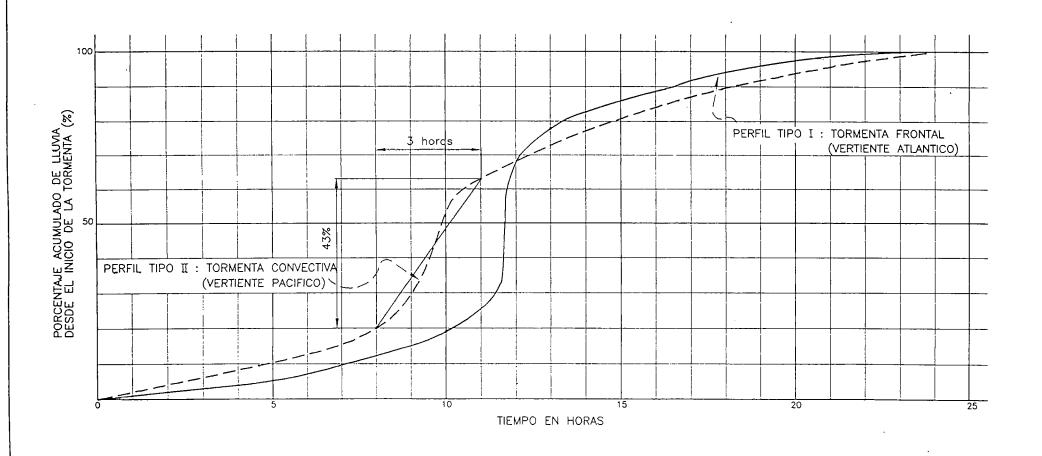



FIGURA N° 3.3.1

PERFILES DE LLUVIA PARA 24 HORAS

ANEXO C INVESTIGACIONES GEOTECNICAS

ANEXO C.1 REGISTROS DE CALICATAS

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

PROFUNDIDAD: 2.20 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA

CALICATA: C-01A

UBICACION : 72+760 (A 25m. A LA DERECHA DEL EJE)

MUES	STRA	CLASIFIC	CACION	O P O	DIDAD	
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-id	SM	0.20	*	ARENA FINA LIMOSA CON MATERIAL ORGANICO, COLOR MARRON OSCURO
		Q-id	SM			ARENA FINA LIMOSA CON MATERIAL ORGANICO, COLOR MARRON CLARO CON RESTOS DE RAICES.
		Q-ma	SP	2.0 —		ARENA FINA SUELTA A MEDIANAMENTE COMPACTA QUE ENGLOBA A FRAGMENTOS DE ROCA SUBANGULOSOS HASTA 10 cm DE DIAMETRO.
				3.0		

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-03

PROFUNDIDAD : 2.20 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION : 73+490 (A 14m A LA DERECHA DEL EJE)

MUES	STRA	CLASIFI	CACION	SIDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q—ma	SP	0.60		ARENA GRUESA A MEDIA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO. SUPERFICIALMENTE GRAVILLA DE NATURALEZA GRANITICA.
		Q-ma	SP	2.0		ARENA MEDIA CON ARENA GRUESA, MAL GRADADA MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO. ARENA MEDIA 70% ARENA GRUESA 30%
				3.0		

CLIENTE

: CONSORCIO CHINECAS

PROYECTO: INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-08B

PROFUNDIDAD : 2.00 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION : 76±020

UBICA	ACION	:	76+02	20		REVISADO:					
MUES	TRA	CLASIFI	CACION	IDAD							
ALTERADA	INALTERADA	GEOLOG.	SUCS	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION					
		Q-ma	SP	2.0		ARENA FINA, MAL GRADADA, DENSA, SECA, COLOR GRIS CLARO.					

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-13 PROFUNDIDAD : 3.40 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA:

UBIC	ACION		79 +7 2		A-CASMA-SECI	REVISADO:
MUES	STRA	CLASIFIC	CACION	DAD		
ALTERADA	INALTERADA	GEOLOG.	SOCS	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
	_	Q—ma	SP	0.10		ARENA FINA CON GRUESA, SUELTA, SECA, COLOR GRIS CLARO.
		Q-ma	SP	 0.40		ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO.
		Q-ma	SP	0.50		ARENA FINA CON GRUESA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.
		Q—ma	SP	0.70		ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.
		Q-ma	SP	_ 0.90		ARENA FINA CON GRUESA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.
		Q—ma	SP	1.0 —		ARENA MEDIA A FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO.

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-19B PROFUNDIDAD : 0.50 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION : 80+662

nBic/	ACION	;	80+66	2		REVISADO :
MUES	TRA	CLASIFI	CACION	JIDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-ma	SP-SM	0.50		ARENA FINA CON GRAVA, POCA CANTIDAD DE LIMOS, SUELTA, SECA, COLOR GRIS. GRAVA DE 0.5 A 5cm EN 10% , LIMOS 6%.
				_		
				1.0 —		
·						
				2.0 —		
				3.0 —		

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-19C PROFUNDIDAD : 0.50 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION: 80+694

UBICA	ACION	:	80+69	4		REVISADO :
MUES	TRA	CLASIFI	CACION	NDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-al	GP	0.50	00000000000000000000000000000000000000	GRAVA CON ARENA FINA, MAL GRADADA, DENSA, SECA, COLOR GRIS CLARO CON TONALIDAD AMARILLENTA. > 5cm EN 15% ARENA FINA 25% 1 A 4cm EN 45% < 1cm EN 15%
				2.0		

CLIENTE

: CONSORCIO CHINECAS

PROYECTO

: INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

CALICATA : C-25 PROFUNDIDAD: 1.80 m.

FECHA : REVISADO:

UBICACION : 83+188

OBICA	ACION	:	83+18	88		REVISADO:
MUES	TRA	CLASIFI	CACION	IDAD		
ALTERADA	INALTERADA	GEOLOG.	sons	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-ma	SP	1.0 —		ARENA FINA CON GRAVA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO. EL PORCENTAJE DE GRAVA ES DE 10%.
				1.80 2.0 — — — 3.0 —		

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-25A PROFUNDIDAD : 1.00 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION: 83+220

UBICA	CION	: '	83+22	.0		REVISADO :
MUES	TRA	CLASIFI	CACION	IDAD		
ALTERADA	INALTERADA	GEOLOG.	sons	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-al	SP		0 0	ARENA FINA CON GRAVA, MAL GRADADA, SUELTA A LIGERAMENTE DENSA, SECA, COLOR GRIS. EL PORCENTAJE DE GRAVA ES DE 10%.
				_		
				2.0 —		
				3.0		
						,

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

: 91+980 UBICACION

CALICATA : C-51

PROFUNDIDAD : 1.10 m.

FECHA

REVISADO ·

UBIC,	ACION	:	91+98	0		REVISADO :
MUES	STRA	CLASIFI	CACION	DIDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-e	SP	1.0		ARENA FINA, MAL GRADADA, SUELTA, SECA, COLOR MARRON CLARO.
		Q-al		2.0		MATERIAL ALUVIAL CONFORMADO POR: GRAVA 40%. ARENA GRUESA 30%. ARENA FINA 30%.

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

PROFUNDIDAD : 4.00 m.

CALICATA : C-53

FECHA :

UBICACION: 92+260

UBICA	CION	:	92+26	0		REVISADO :
MUES	TRA	CLASIFI	CACION	DAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
ALT	INA	99 e e Q	SP SP	(m)		ARENA FINA EOLICA, MAL GRADADA, SUPERFICIALMENTE SUELTA VARIANDO A DENSA EN PROFUNDIDAD, COLOR GRIS CLARO.
				6.0 — 7.0 — 8.0 —	,	

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

CALICATA : C-56

PROFUNDIDAD : 2.00 m.

REVISADO:

UBICACION : 92+546

UBICACION . 92+340		.0		REVISADO .		
MUES	STRA	CLASIF	CACION	OIDAD	PERFIL ESTRATIGRAFICO	
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD		DESCRIPCION
		Q-e	SP	_		ARENA FINA, MAL GRADADA, SUELTA, SECA, COLOR GRIS CLARO.
		Q—ma	SP	1.0 —		ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO.
				3.0	x x x x	ROCA ALTERADA.

CLIENTE

CONSORCIO CHINECAS

PROYECTO

INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

THE WAS THE CITY OF SHOW THE SECOND

CALICATA : C-61

PROFUNDIDAD : 1.35 m.

FECHA

UBICACION 93+068 (A 2m. A LA IZQUIERDA DEL EJE) **REVISADO:** MUESTRA CLASIFICACION PROFUNDIDAD PERFIL NALTERADA DESCRIPCION ALTERAD/ **ESTRATIGRAFICO** CEOLOG. SUCS (m) .~.~. ARENA FINA CON LIMOS, MAL GRADADA, DENSA, SECA, COLOR ANARANJADO. |Q-ma|SP-SM| % DE LIMOS 10%. 0.20 INTERCALACIONES DE CAPAS DE ARENA FINA CON ARENA GRUESA, MAL GRADADA, SP Q-ma DENSA, SECA, COLOR GRIS CLARO. 0.60 ARENA GRUESA CON ARENA FINA, MAL GRADADA, DENSA, SECA, COLOR GRIS CLARO. CON PORCENTAJE DE GRAVA DE 4 A 10cm. EN 5%. SP Q-ma 1.0 ARENA FINA, MAL GRADADA, DENSA, SECA, COLOR MARRON CLARO. SP |Q−ma| 1.35 2.0 -3.0 -

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA: C-65 PROFUNDIDAD: 2.00 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA

UBICACION

: 95+985

Obio	HOIOIN	• •	92790			NEVISADO .		
MUES	TRA	CLASIFIC	CLASIFICACION					
ALTERADA	INALTERADA	GEOLOG.	SOCS	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION		
		Q-la	SP	0.60		ARENA GRUESA CON NIVELES DE ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.		
		Q-la	SP	1.0		ARENA GRUESA CON GRAVILLA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO. CONTIENE: GRAVILLA DE 0.5 A 2cm. EN 30%. FRAGMENTOS DE ROCA DE 2 A 6cm. EN 10%.		
		Q-la	SP	2.0		INTERCALACIONES DE ARENA GRUESA Y ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA COLOR GRIS CLARO. PRESENTA NIVELES DE LIMO ARENOSO.		
				3.0				

CLIENTE

: CONSORCIO CHINECAS

PROYECTO

: INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

UBICACION : 96+720

CALICATA : C-68

PROFUNDIDAD : 3.00 m.

FECHA

OBICACION		:	96+72	20	REVISADO :		
MUES	MUESTRA		CLASIFICACION				
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION	
		Q-al	SP-SM	0.50		ARENA FINA CON ARENA GRUESA (10%), LIMOS (10%), MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO A MEDIA MARRON CLARO. PRESENTA 5% DE GRAVILLA.	
		Q-ma	SP	2.0		ARENA FINA CON UN 5% DE LIMOS, MAL GRADADA, MEDIANAMENTE DENSA A DENSA, SECA, COLOR MARRON CLARO.	
				3.0			

CLIENTE

JBICACION

: CONSORCIO CHINECAS

PROYECTO

: INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-72

PROFUNDIDAD : 1.70 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

: 97+510 REVISADO:

MUESTRA		CLASIFICACION		IDAD		
ALTERADA	INALTERADA	GEOLOG.	sons	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-ma	SP	1.0 —		ARENA FINA CON ARENA GRUESA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO. PRESENTA UN 5% DE GRAVILLA.
					××××	ROCA GRANITICA FRACTURADA.
				3.0		

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-75

PROFUNDIDAD: 2.10 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION: 98+390

MUESTRA CLASIFICACION S					 	
MUEST			CACION	DIDAE		
ALTERADA	INALTERADA	GEOLOG.	SOCS	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-ma	SP	1.0 —		ARENA GRUESA QUE CONTIENE UN PEQUEÑO PORCENTAJE DE GRAVA (10%), MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.
				3.0		

CLIENTE

JBICACION

: CONSORCIO CHINECAS

PROYECTO

: INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-76

PROFUNDIDAD: 4.10 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

: 98+625

MUES	TRA	CLASIF	ICACION	QV C		
ALTERADA	INALTERADA	GEOLOG.	sons	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
		Q-ma	SP-SM	0.50		ARENA FINA LIMOSA CON PEQUEÑA PROPORCION DE ARENA GRUESA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.
				1.0		
		Q-ma	SP	2.0		ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.
				3.0 — 3.20		·
		Q-mo	SP	0.4 4.10		ARENA FINA CON UN 5% DE LIMOS, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS BLANQUECINO CON TONALIDADES MARRONES.
				5.0 —		
				6.0 —		
				7.0		
				8.0 —		A.R.\. C:\PROYECTO\CALICATAS\CAL. 76.DWG

JBICACION : 99+825

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-78

PROFUNDIDAD: 2.00 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

MUESTRA		CLASIFICACION		OAD			
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION	
		Q-ma	SP	 0.70		ARENA FINA CON UN 15% DE ARENA GRUESA, MAL GRADADA, LIGERAMENTE DENSA, SECA, COLOR GRIS BLANQUECINO CON TONALIDAD AMARILLENTA.	
		Qma	SP	1.0		ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.	
				3.0			

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-88

PROFUNDIDAD : 0.65 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

JBICACION: 103+740

JBICACION	:	103+7	40		REVISADO :				
MUESTRA	CLASIFIC	CLASIFICACION							
ALTERADA INALTERADA	GEOLOG.	SNCS	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION				
	Q-e	SP	0.65		ARENA FINA, MAL GRADADA, SUELTA, SECA, COLOR GRIS CLARO.				
	Q-al			0:0:0	MATERIAL ALUVIAL.				
			1.0 —						
			2.0						
			3.0						

CLIENTE

UBICACION

: CONSORCIO CHINECAS

PROYECTO

: INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

: 112+060

CALICATA : C-94

PROFUNDIDAD: 1.70 m.

FECHA :

MUESTRA	CLASIFI	CACION	DIDAD						
ALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION				
	Q-al	SP			ARENA GRUESA MEDIA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.				
	Q-al	SP	0.90		ARENA GRUESA CON GRAVA DE 1 A 10cm. (20%), MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.				
	Q-al	SP	1.0		ARENA GRUESA A MEDIA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.				
	Q-al	SP			ARENA GRUESA CON GRAVA DE 1 A 10cm. (30%), MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO.				
			3.0 —						

CLIENTE : CONSORCIO CHINECAS

TRAMO NEPEÑA-CASMA-SECHIN

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-114

PROFUNDIDAD: 4.20 m.

UBICACION: 119+825

FECHA : REVISADO:

ODIO	ACIOIN	•	, 10 10	20		TIEVIONIDO I				
MUES	STRA	CLASIFICACION		IDAD						
ALTERADA	INALTERADA	GEOLOG.	sncs	B PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION				
		Q-ma	SP	1.0 —		ARENA FINA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO .				
		Q—ma		_		ARENA FINA CON UN 35% DE ARENA GRUESA Y UN 10 % DE LIMOS, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO A MEDIO ANARANJADO .				
		Q-ma		3.0 — — — — 4.0 — 4.20		ARENA FINA CON UN 35% DE ARENA GRUESA Y 10% DE GRAVILLA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS .				
				5.0 —	× × ×	ROCA GRANITICA.				

CLIENTE

: CONSORCIO CHINECAS

PROYECTO

OUNSOINOIO CIMILOAS

INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

PROFUNDIDAD : 1.20 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA

CALICATA : C-141

UBICACION: 128+400

CLAS	FICACION	IDAD				
INALTERADA GEOLOG.	SUCS	3 PROFUND	PERFIL ESTRATIGRAFICO	DESCRIPCION		
Q-m	a SP	0.30		ARENA FINA CON ARENA GRUESA (40%), MAL GRADADA , MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO .		
Q-m	a SP-SN	0.60		ARENA FINA CON ARENA GRUESA (40%), 10% DE LIMO, MAL GRADADA MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO .		
Q-m	a SP	0.90		ARENA FINA CON ARENA GRUESA (40%), MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO .		
Q-m	a SP	1.0	0 0	ARENA GRUESA CON GRAVA DE 1 cm. EN UN 5%, MAL GRADADA, DENSA, SECA, COLOR GRIS CLARO .		
		_	××××	ROCA		
		_				
		2.0				
				·		
		_				
		3:8				
_	INALIERADA	Q-ma SP-SM	Q-ma SP	Q-ma SP		

CLIENTE PROYECTO PROYECTO : CONSORCIO CHINECAS

: INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-144 PROFUNDIDAD : 1.80 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA

UBICACION: 129+404

MUES	TRA	CLASIFIC	CACION	8						
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION				
		Q-ma	SP	1.0		ARENA FINA CON ARENA GRUESA (10%), MAL GRADADA, MEDIANAMENTE DENSA SECA, COLOR MARRON CLARO .				
		Q-ma	SP	1.50		ARENA FINA CON ARENA GRUESA (40%), MAL GRADADA DENSA, SECA, COLOR GRIS CLARO .				
		Q-ma	SP	1.80		ARENA FINA CON ARENA GRUESA (20%), MAL GRADADA MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO .				
				2.0 —						

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-145 PROFUNDIDAD : 2.40 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION : 129+560 REVISADO:

MUESTRA CLASIFICACION		CACION	g.			
ALTERADA	INALTERADA	GEOLOG.	SONCS	PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
ALT		. CEC	SU	(m)	0	
		Q-ma	SP		, o	ARENA FINA CON GRAVILLA 10% (0.5 cm.), ARENA GRUESA (5%) MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO CON TONALIDADES MARRONES.
		Q-ma	SM	1.0		ARENA FINA LIMOSA, DENSA, SECA, COLOR GRIS CLARO CON TONALIDADES MARRONES.
		Q-ma	SP	2.0		ARENA FINA CON UN 5% DE ARENA GRUESA, MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR GRIS CLARO CON TONALIDADES MARRONES.
		Q-ma	SP	2.40		ARENA GRUESA CON ARENA FINA (15%) , DENSA, SECA, COLOR GRIS CLARO CON TONALIDADES MARRONES.
				3.0	× × ×	ROCA FRACTURADA

CLIENTE

CONSORCIO CHINECAS

PROYECTO

INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-148

TRAMO NEPEÑA-CASMA-SECHIN

PROFUNDIDAD: 1.50 m.

FECHA

UBIC	ACION	:	130+5			REVISADÓ :				
MUES	TRA	CLASIFIC	CACION	JIDAD						
ALTERADA	INALTERADA	GEOLOG.	SONS	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION				
		Q-ma	SP	0.80	0	ARENA FINA CON GRAVILLA (15%), MAL GRADADA, MEDIANAMENTE DENSA, SECA, COLOR MARRON CLARO .				
		Q-ma	SM	1.0	~ ~ ~	ARENA FINA LIMOSA, DENSA, SECA, COLOR GRIS BLANQUECINO CON TONALIDAD LIGERAMENTE ANARANJADO.				
		Q-ma	SP		0 o	ARENA FINA CON ARENA GRUESA (35%) . GRAVA DE 1-5 cm. (5%), MAL GRADADA, SECA, DENSA, COLOR GRIS CLARO .				
	_	Q-ma	SM	1.50	~ ~ ~ ~ ~	ARENA FINA LIMOSA, DENSA, SECA, COLOR GRIS BLANQUECINO CON TONALIDAD LIGERAMENTE ANARANJADO.				
				3.0						
	<u></u>	,	ļ !	<u> </u>						

CLIENTE : CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

PROFUNDIDAD : 2.60 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

CALICATA : C-151

UBICACION: 131+412 (A 6 m. A LA IZQ. DEL EJE)

UBICAC	ION		131+4	12 (A	6 m. A LA IZ	Q. DEL EJE) REVISADO :				
MUESTRA	A	CLASIFI	CACION	OIDAD						
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION				
		Q—ma	SP-SM	2.0 —		ARENA FINA CON 10% DE LIMOS, 15% DE ARENA GRUESA, MAL GRADADA, MEDIANAMENTE DENSA A DENSA HACIA EL FONDO, SECA, COLOR MARRON CLARO .				
		Q-ma	SP	2.60		ARENA GRUESA CON ARENA FINA (10%), MAL GRADADA, DENSA, SECA, COLOR GRIS CLARO .				
				3.0 —	× × × ×	ROCA				

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : INGENIERIA DE DETALLE DEL CANAL PRINCIPAL CHINECAS

CALICATA : C-153 PROFUNDIDAD: 3.60 m.

TRAMO NEPEÑA-CASMA-SECHIN

FECHA :

UBICACION: 131+770

MUES	STRA	CLASIFIC	CACION	OPOIC						
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION				
		Q-ma	SP	1.0 —	0. 0.	ARENA FINA CON INTERCALACIONES DE ARENA GRUESA MAL GRADADA, MEDIANAMENTE DENSA SECA, COLOR MARRON CLARO. PRESENTA 15% DE GRAVILLA. GRAVA DE 0.5 A 1cm. EN 10%.				
		Q-ma	SW	0.50 —	0000000	ARENA CON GRAVA, BIEN GRADADA DENSA, SECA, COLOR GRIS CLARO.				
		Q-ma	_	2.0	0 0	ARENA GRUESSA, CON GRAVA DE 1 A 2.5cm. 10% >2.5 EN 5%, MAL GRADADA DENSA, SECA, COLOR GRIS CLARO.				
		Q-ma	SP-SM	2.90	~~~_;~ ~;~	ARENA CON LIMOS (10%), DENSA, COLOR MARRON CLARO.				
		Q-ma		3.0 3.60		ARENA GRUESA, MAL GRADADA, DENSA, SECA, COLOR GRIS CLARO. PRESENTA 15% DE ARENA FINA.				
				4.0 — 5.0 — 6.0 — 7.0 — 8.0 —						

ANEXO C.2 ENSAYOS DE DENSIDADES NATURALES IN SITU

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash

CLIENTE ESTRUCTURA

: CONSORCIO CHINECAS : Canal Principal CHINECAS

FECHA

: Octubre de 1999

MUESTRA	PROGRESIVA	PROFUNDIDAD	PORCENTAJE	DENSID	AD NATURAI	_ (gr/cm3)
N°		(m)	DE GRAVA (%)	Húmeda Total	Seca Total	Material que pasa el Nº 4
1	72+700	0,20	-	_	_	1,582
2	73+380	1,50	4,62	1,810	1,606	1,578
3	73+400	0,10	4,32	1,772	1,614	1,588
4	76+455	0,20	-	-	-	1,549
5	77+784	0,90	-	-	-	1,581
6	79+190	0,20	-	-	-	1,561
7	79+725	0,20	-	-	-	1,277
8	79+850	0,80	21,53	2,159	2,035	1,886
9	81+800	0,20	35,53	2,403	2,397	2,177
10	83+188	0,20	-	-	-	1,557
11	83+236	0,20	14,29	1,945	1,941	1,843

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN: Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS
ESTRUCTURA : Canal Principal CHINECAS

FECHA : Octubre de 1999

MUESTRA	PROGRESIVA	PROFUNDIDAD	PORCENTAJE	DENSID	AD NATURAL	(gr/cm3)
			DE GRAVA	Húmeda	Seca	Material que
Nº		(m)	(%)	Total	Total	pasa el Nº 4
12	83+240	1,00	7,64	1,774	1,683	1,631
13	85+680	0,20	4,24	1,904	1,761	1,734
14	85+760	0,20	10,87	1,942	1,785	1,707
15	89+756	0,65	22,22	2,382	2,147	2,005
16	89+756	1,80	-	-	-	1,558
17	91+980	0,20	23,19	1,833	1,828	1,648
18	92+260	0,20	-	-	-	1,568
19	93+068	0,40	-	-	-	1,652
20	96+408	0,20	1,06	1,722	1,719	1,714
21	96+720	0,20	2,36	1,659	1,655	1,640
22	97+548	0,20	1,00	1,754	1,722	1,716
				<u>.</u>		

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash

CLIENTE

: CONSORCIO CHINECAS **ESTRUCTURA**: Canal Principal CHINECAS

FECHA

: Octubre de 1999

MUESTRA	PROGRESIVA	PROFUNDIDAD	PORCENTAJE	DENSID	AD NATURAL	(gr/cm3)
			DE GRAVA	Húmeda	Seca	Material que
Nº .		(m)	(%)	Total	Total	pasa el Nº 4
23	98+488	0,20	-	<u>-</u>	-	1,649
24	102+705	0,20	-	-	-	1,657
25	103+090	0,60	-	<u>-</u>	-	1,586
26	103+160	0,40	-	-	-	1,450
27	109+406	0,20	-	-	-	1,543
28	111+015	0,20	-	-	-	1,583
29	111+015	1,00	-	-	-	1,760
30	111+360	1,50	30,27	1,801	1,689	1,457
31	112+060	1,30	52,65	2,352	2,277	1,942
32	113+875	0,20	-	-	-	1,540
33	115+515	0,20	-	-	_	1,582
			_			

PROYECTO: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN: Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS
ESTRUCTURA : Canal Principal CHINECAS

FECHA : Octubre de 1999

MUESTRA	PROGRESIVA	PROFUNDIDAD	PORCENTAJE	DENSID	AD NATURAL	_ (gr/cm3)
			DE GRAVA	Húmeda	Seca	Material que
Nº .		(m)	(%)	Total	Totai	pasa el Nº 4
34	117+415	0,60	-	-	-	1,644
35	119+825	0,20	1,50	1,750	1,714	1,705
36	120+410	0,20	-	-	=	1,732
37	122+755	0,20	6,86	1,797	1,793	1,751
38	124+700	0,20	-	-	-	1,759
39	129+120	0,20	-	-	-	1,705
40	131+770	1,70	4,54	1,949	1,942	1,924
41	131+770	1,35	2,54	1,863	1,858	1,849

ANEXO C.3 ENSAYOS DE PENETRACION LIGERA (SPL)

SONDEOS MANUALES CON ENSAYOS DE PENETRACION LIGERA (SPL)

SOND	PROGRESIVA	PROFUNDIDAD DE ENSAYOS (m)	NUMERO DE GOLPES (N10)	COMPACIDAD	OBSERVACIONES
1	72+760	1.00 - 1.30 1.50 - 1.80	14 16	Med. Densa Med. Densa	
2	73+490	1.00 - 1.30 2.00 - 2.30	14 14	Med. Densa Med. Densa	
3	75+830	1.00 - 1.30 2.00 - 2.30	15 62	Med. Densa Muy Densa	Penetraron 26 cm
4	78 + 240	1.00 - 1.30 2.00 - 2.30	11 14	Med. Suelta Med. Densa	
5	79+270	1.00 - 1.30 2.00 - 2.30	17 17	Med. Densa Med. Densa	
6	79+725	1.00 - 1.30 2.00 - 2.30	18 19	Med. Densa Med. Densa	
7	80+610	1.00 - 1.30 2.10 - 2.40	13 19	Med. Densa Med. Densa	
8	80+662	0.50 - 0.80 1.00 - 1.30	22 24	Med. Densa Densa	
9	83+188	1.00 - 1.30 1.80 - 2.10	28 30	Densa Densa	
10	83+220	0.20 - 0.50 1.00 - 1.30	10 14	Med. Suelta Med. Densa	
11	83 + 240	1.00 - 1.30 1.40 - 1.80	12 14	Med. Suelta Med. Densa	
12	83 + 745	0.20 - 0.50	10	Med. Suelta	
13	88+086	0.70 - 1.00	10	Med. Suelta	
14	88+112	0.70 - 1.00	8	Med. Suelta	
15	89+112	0.20 - 0.50 1.00 - 1.30 2.00 - 2.30	5 19 19	Suelta Med. Densa Med. Densa	
16	92+260	0.50 - 0.80 1.00 - 1.30 1.70 - 2.00 3.20 - 3.50	7 19 21 18	Med. Suelta Med. Densa Med. Densa Med. Densa	
17	92+546	1.00 - 1.30 1.60 - 1.90	13 32	Med. Densa Densa	
18	93+020	1.00 - 1.30	8	Med. Suelta	
19	93+068	1.00 - 1.30 1.35 - 1.65	22 22	Med. Densa Med. Densa	Penetraron 8cm

SONDEOS MANUALES CON ENSAYOS DE PENETRACION LIGERA (SPL)

SOND	PROGRESIVA	PROFUNDIDAD DE ENSAYOS (m)	NUMERO DE GOLPES (N10)	COMPACIDAD	OBSERVACIONES
20	96+720	1.00 - 1.30 2.00 - 2.30 3.00 - 3.30	24 26 33	Densa Densa Densa	
21	97+510	0.50 - 0.80 1.00 - 1.30	13 15	Med. Densa Med. Densa	
22	98+625	0.20 - 0.50 1.00 - 1.30 2.00 - 2.30	6 25 39	Suelta Densa Densa	
23	99+870	1.00 - 1.30 2.00 - 2.30	19 20	Med. Densa Med. Densa	
24	100+550	1.00 - 1.30	8	Med. Suelta	
25	102+715	1.00 - 1.30 2.00 - 2.30	19 20	Med. Densa Med. Densa	
25	103+420	0.20 - 0.50	9	Med. Suelta	
26	103+620	0.70 - 1.00	9	Med. Suelta	
27	103+780	1.20 - 1.50	10	Med. Suelta	
28	111+015	1.00 - 1.30	10	Med. Suelta	
29	113+875	0.20 - 0.50 0.50 - 0.80	5 10	Suelta Med. Suelta	
30	117+415	0.20 - 0.50	9	Med. Suelta	
31	118+080	0.50 - 0.80 1.00 - 1.30 2.10 - 2.40	4 13 22	Suelta Med. Densa Med. Densa	
32	119+825	1.00 - 1.30 2.00 - 2.30	14 50	Med. Densa Densa	Penetraron 10cm
33	128+048	1.00 - 1.30 1.70 - 2.00	22 24	Med. Densa Med. Densa	
34	128+840	1.00 - 1.30	12	Med. Suelta	
35	129+404	1.00 - 1.30 1.80 - 2.10	18 20	Med. Densa Med. Densa	
36	129 + 560	1.00 - 1.30 2.20 - 2.50	19 82	Med. Densa Muy Densa	,
37	130+186	0.50 - 0.80 1.00 - 1.30	16 31	Med. Densa Densa	
38	130+560	1.00 - 1.30 1.50 - 1.80	30 29	Densa Densa	

SONDEOS MANUALES CON ENSAYOS DE PENETRACION LIGERA (SPL)

SOND	PROGRESIVA	PROFUNDIDAD DE ENSAYOS (m)	NUMERO DE GOLPES (N10)	COMPACIDAD	OBSERVACIONES
39	130+830	1.50 - 1.80 2.00 - 2.30	58 57	Densa Densa	
40	131+412	1.00 - 1.30	25	Densa	
41	132 + 130	2.00 - 2.30 1.00 - 1.30	27 25	Densa Densa	
	.5_ 1 100	1.50 - 1.80	30	Densa	

ANEXO C.4 ENSAYOS DE LABORATORIO

: Ingeniería de Detalle de Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin **PROYECTO**

UBICACIÓN : Dpto. Ancash

: CONSORCIO CHINECAS CLIENTE ESTRUCTURA : Canal Principal CHINECAS

: Cimentación MUESTRA

			Análisis granulométrico por tamices vía húmeda, ASTM-D-422												
CALICATA	PROGRESIVA	PROFUNDIDAD				F	orcenta orc	je acum	ulativo d	que pas	a en pes	0			
N°		(m)	2"	11/2"	3/4"	1/2"	3/8"	1/4"	N° 4	N° 10	N° 20	N° 40	N° 60	N° 100	N° 200
C-01A	72+760	0.80 - 2.20	-	-	-	-	-	-	100.00	98.82	96.69	91.44	80.71	22.63	4.48
C-03	73+490	0.60 - 2.20	-	-	-	-	100.00	97.48	96.62	91.47	86.39	83.04	77.55	18.51	4.14
C-08A	75+830	2.00 - 2.50	-	-	-	-	-	-	100.00	99.19	97.43	87.81	76.60	27.93	4.79
C-08B	76+020	0.00 - 2.00	-	-	-	-	-	-	100.00	99.27	97.00	94.49	84.19	28.53	4.35
C-13	79+725	0.70 - 0.90	-	-	-	-	_	-	100.00	89.90	76.70	73.20	66.80	23.65	1.95
C-19B	80+662	0.00 - 0.50	-	100,00	96.43	93.79	91.68	89.09	87.62	83.41	79.64	76.09	63.39	24.14	8.50
C-19C	80+694	0.00 - 0.50	72.80	57.89	34.26	30.65	29.60	27.94	27.12	25.03	23.55	22.19	19.44	4.97	1.05
C-25	83+188	0.00 - 1.80	-	100,00	97.09	95.59	95.25	94.60	94.16	92.83	92.09	91.62	89.75	19.56	1.33
C-25A	83+220	0.00 - 1.00	100.00	98.70	96.36	95.33	93.65	91.80	90.98	88.39	86.93	85.52	80.88	22.56	3.09
C-51	91+980	0.00 - 1.10	95.33	91.50	79.87	74.80	72.18	66.93	62.42	41.53	32.00	27.96	24.59	8.71	3.45
C-53	92+260	0.00 - 4.00	-	-	-	-	-	-	-	-	100.00	93.55	46.60	8.90	0.65
C-56	92+546	0.00 - 2.00	l -	-	-	-	-	-	-	100.00	96.39	94.37	74.27	19.48	1.20
C-61	93+068	0.00 - 0.20	100.00	97.85	97.57	95.63	93.65	89.14	85.33	70.94	56.95	51.26	46.68	28.11	10.65
C-61	93+068	0.60 - 1.00	-	100,00	98.83	97.77	96.49	90.61	82.48	54.99	46.82	44.43	41.68	14.13	5.28
C-65	95+985	0.60 - 1.20	100.00	91.26	87.27	84.76	82.42	81.64	78.81	66.62	47.73	34.36	26.01	9.99	2.69
C-68	96+720	0.00 - 0.50	-	-	-	-	100.00	96.16	94.92	91.64	87.20	84.48	67.20	22.48	5.56

PROYECTO

: Ingeniería de Detalle de Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash

CLIENTE

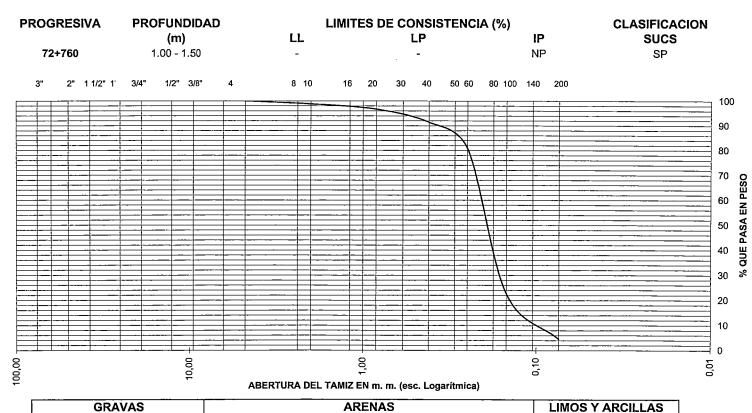
: CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

MUESTRA

: Cimentación

CALICATA	PROGRESIVA	PROFUNDIDAD	Análisis granulométrico por tamices vía húmeda, ASTM-D-422 Porcentaje acumulativo que pasa en peso													
N°	TROOREGIVA	(m)	2"	1½"	3/4"	1/2"	3/8"	1/4"	N° 4	N° 10	N° 20	N° 40	N° 60	N° 100	N° 200	
			_			_				_						
C-68	96+720	1.00 - 3.00	-	-	-	-	-	-	-	100.00	99.60	98.90	79.80	12.25	3.30	
C-72	97+510	0.00 - 1.70	-	-	-	-	-	-	100.00	98.40	96.10	94.10	72.45	12.90	4.70	
C-75	98+390	0.00 - 2.10	-	-	-	100.00	97.17	92.21	86.42	62.53	48.83	42.78	34.09	9.63	1.12	
C-76	98+625	0.00 - 0.50	-	-	-	-	- :	-	100.00	98.90	94.15	84.15	76.10	31.85	6.85	
C-76	98+625	0.50 - 3.20	-		_	_	- 1	-	_	100.00	99.85	98.25	70.20	12.95	1.50	
C-76	98+625	3.20 - 4.10	-	-	-	<u> -</u>	-	_	-	100.00	99.80	97.60	76.85	12.75	2.95	
C-78	99+825	0.00 - 0.70	_	-	-	100.00	99.42	99.07	98.68	95.67	93.15	88.02	75.68	27.33	3.94	
C-88	103+740	0.00 - 0.65	_	100.00	99.06	95.78	92.51	85.13	77.89	53,76	42,39	37,33	30,01	10,19	2,48	
C-94	112+060	0.60 - 0.90	95.88	92.05	80.75	75.48	72.48	68.33	66.31	59.87	54.87	44.66	24.60	8.00	2.30	
C-114	119+825	2.00 - 2.90	_	_	_	-	-	-	100.00	98.58	96.89	92.36	74.58	30.22	5.60	
C-141	128+400	0.30 - 0.60	-	_	_	_	100.00	97.92	95.56	82.84	70.50	62.67	56.95	27.39	6.41	
C-144	129+404	1.20 - 1.50	_	-	_	-	100.00	97.40	96.14	87.29	79.34	74.10	65.41	33.97	4.40	
C-145	129+560	0.90 - 1.30	_	_	_	l <u>-</u>	_	-	100.00	99.30	95.44	83.91	71.15	40.59	13.83	
C-148	130+560	1.40 - 1.50	-	_	_	_	_	_	100.00	98.87	97.39	95.61	93.16	43.06	12.04	
C-151	131+412	0.00 - 2.40	_	_	_	100.00	96.07	95.17	95.04	92.64	86.91	80.18	72.61	36.68	6.88	
C-153	131+770	1.35 - 1.50	_	100,00	93.54	90.07	86.99	80.23	74.04	51.27	33.94	24.30	20.64	10.31	3.04	
				,				30.20	' '''	3,,,,,	30.04	24.00	20.04	10.51	3.04	

ANALISIS GRANULOMETRICO (ASTM - D - 422)

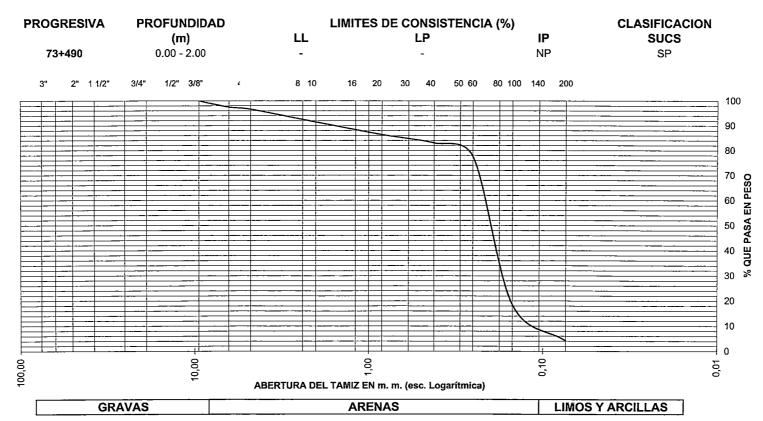

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS



ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash MUESTRA : Cimentación

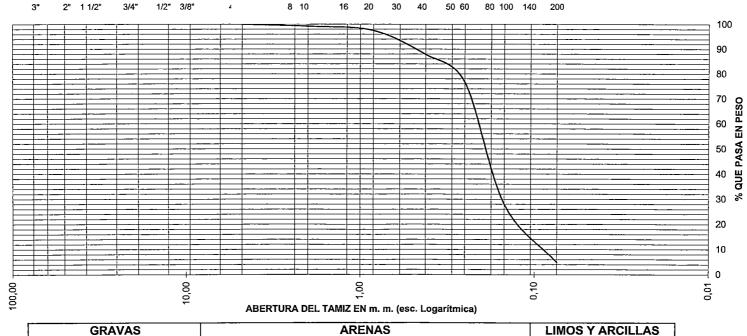
CLIENTE : CONSORCIO CHINECAS FECHA : Octubre de 1999

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA


: Dpto. Ancash : Cimentación

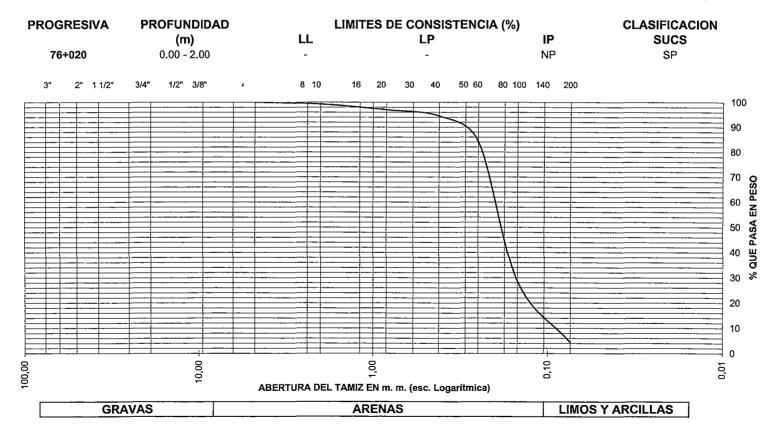
CLIENTE

: CONSORCIO CHINECAS

FECHA: Octubre de 1999

PROGRESIVA PROFUNDIDAD LIMITES DE CONSISTENCIA (%) CLASIFICACION (m) LL ΙP SUCS 75+830 2.00 - 2.50 SP

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

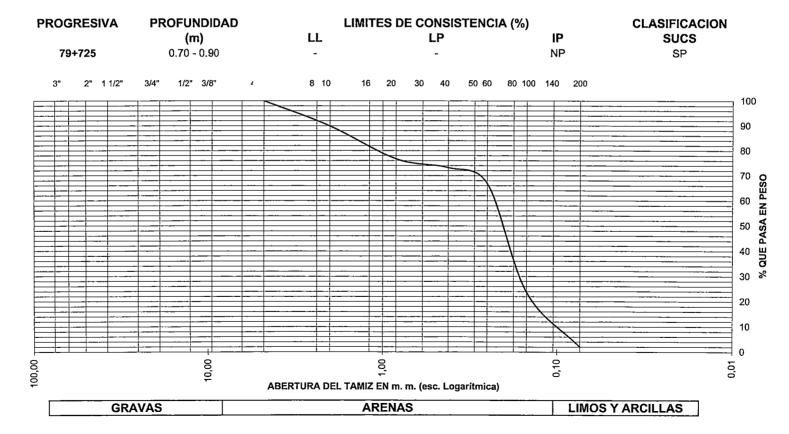
: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN


: Dpto. Ancash

MUESTRA

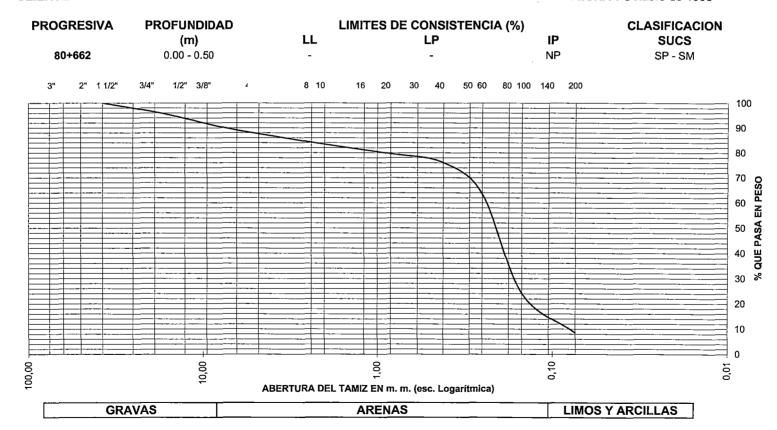
: Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO


: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

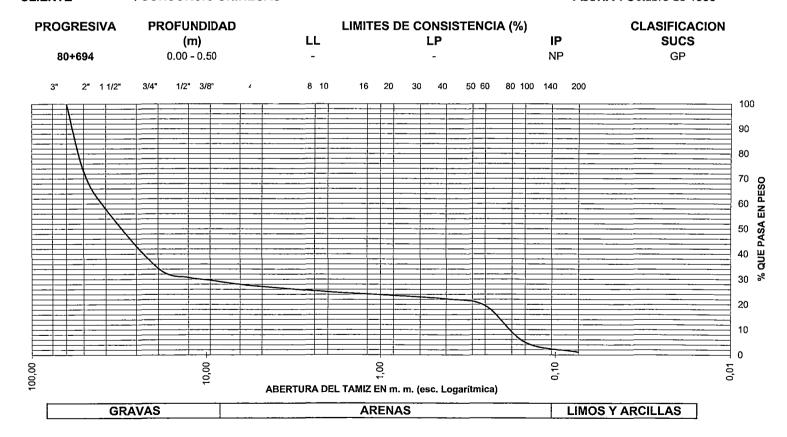
UBICACIÓN

: Dpto. Ancash : Cimentación

MUESTRA CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

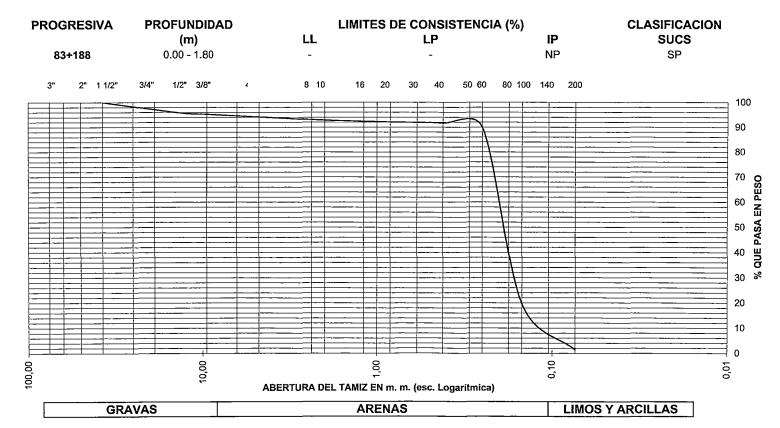
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash : Cimentación

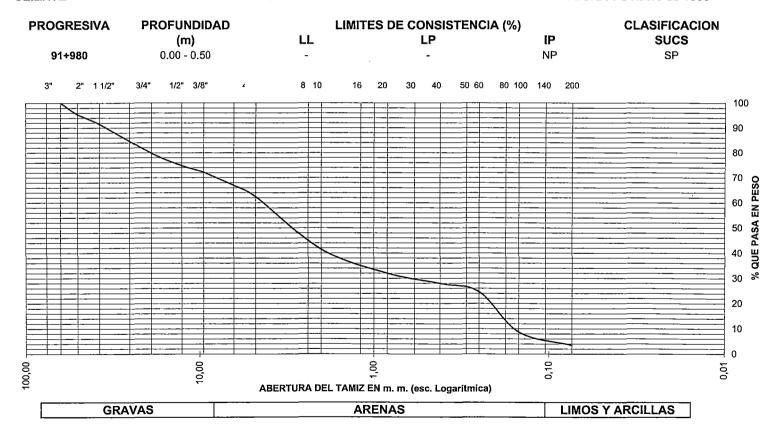
MUESTRA CLIENTE

: CONSORCIO CHINECAS FECHA: Octubre de 1999

PROFUNDIDAD CLASIFICACION PROGRESIVA LIMITES DE CONSISTENCIA (%) ΙP (m) LL SUCS NΡ SP 83+220 0.00 - 1.001/2" 3/8" 50 60 80 100 140 200 100 90 80 50 40 30 % 20 10 10,00 0,01 ABERTURA DEL TAMIZ EN m. m. (esc. Logarítmica) **GRAVAS** ARENAS LIMOS Y ARCILLAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO


: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

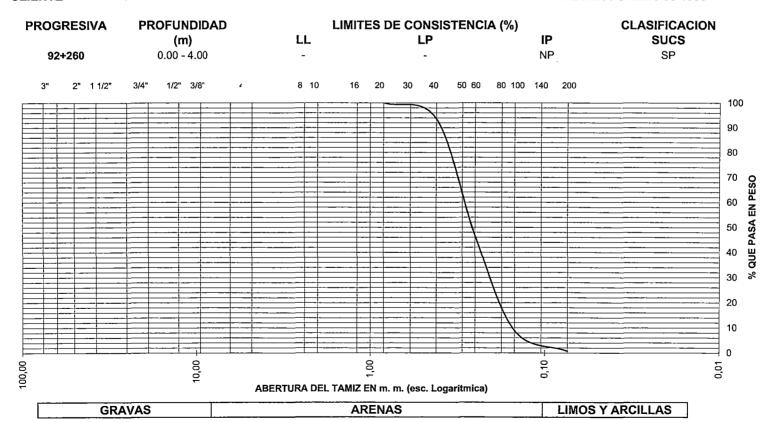
UBICACIÓN

: Dpto. Ancash : Cimentación

MUESTRA CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

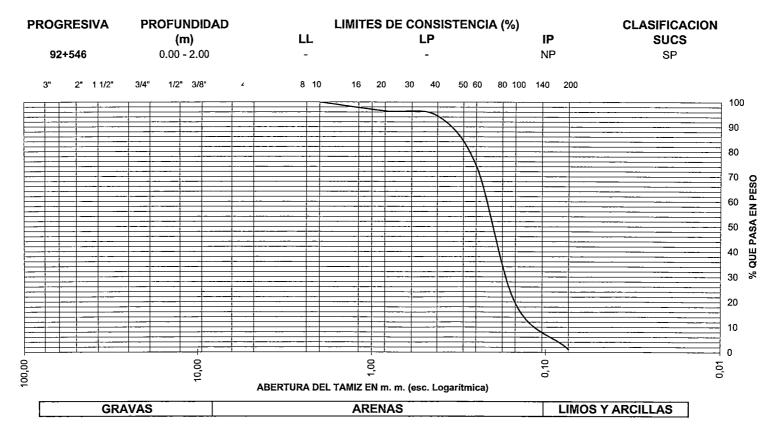
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

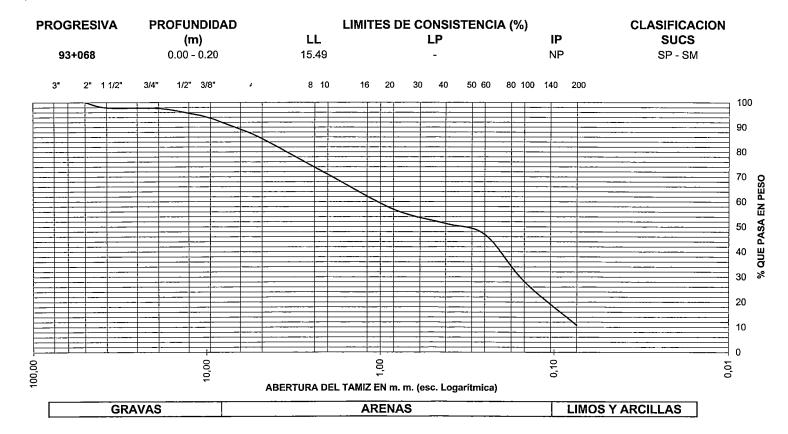
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

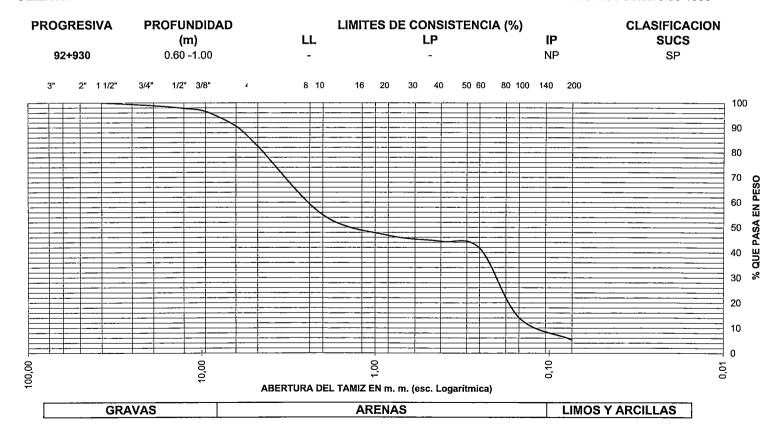
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

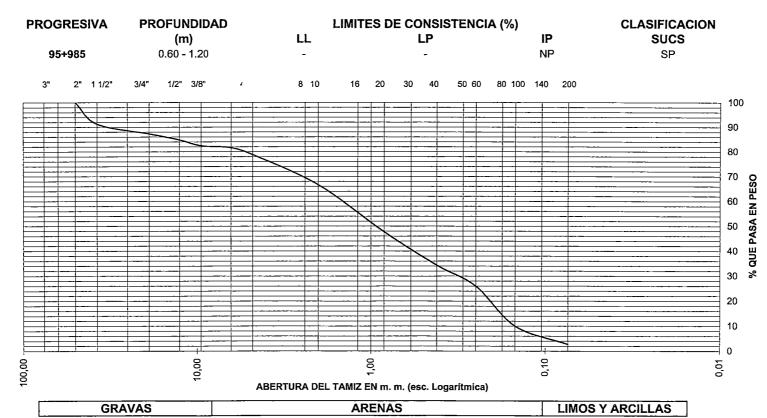
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

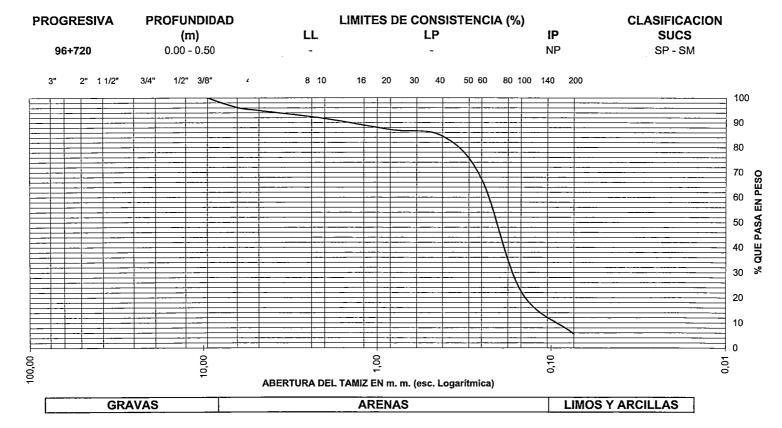
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

PROYECTO


: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

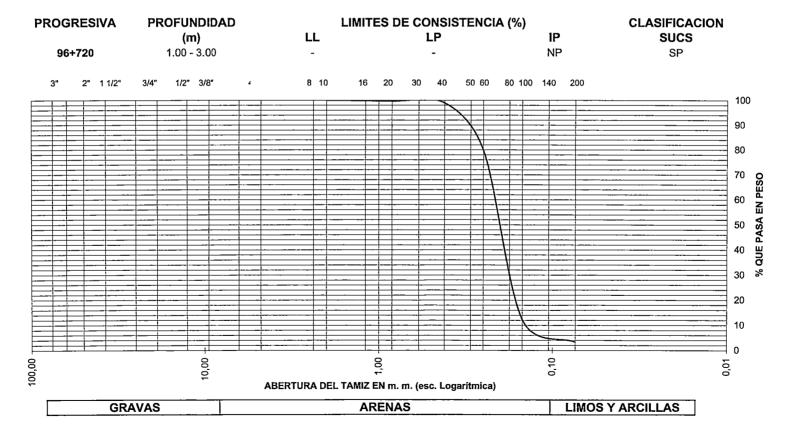
: Dpto. Ancash : Cimentación

MUESTRA CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO


: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

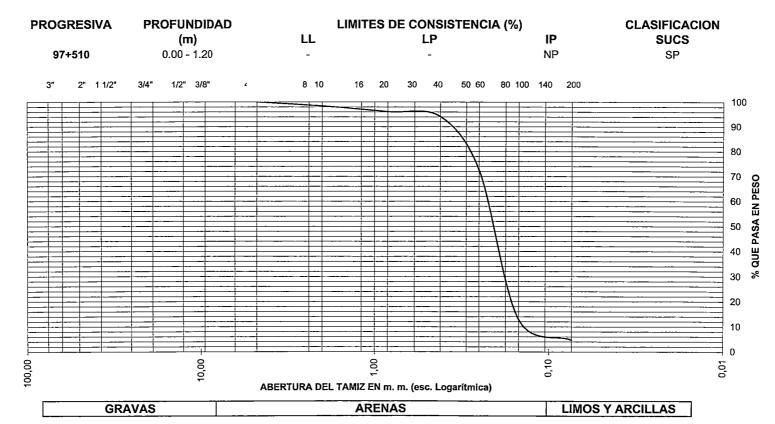
UBICACIÓN MUESTRA

: Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS FECHA: Octubre de 1999

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

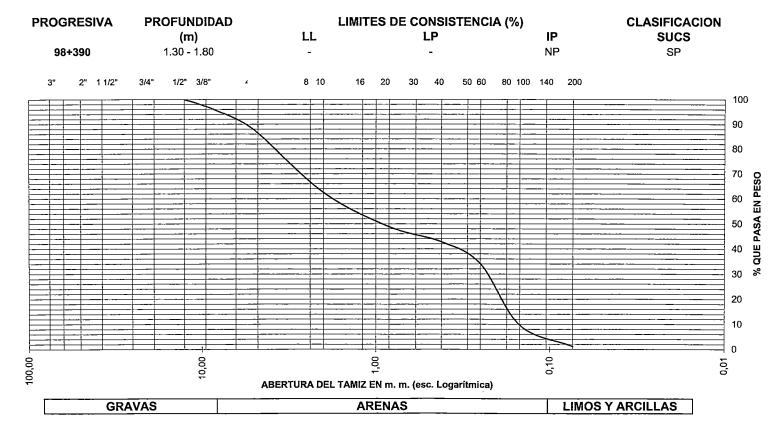
CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin


UBICACIÓN

: Dpto. Ancash : Cimentación

MUESTRA

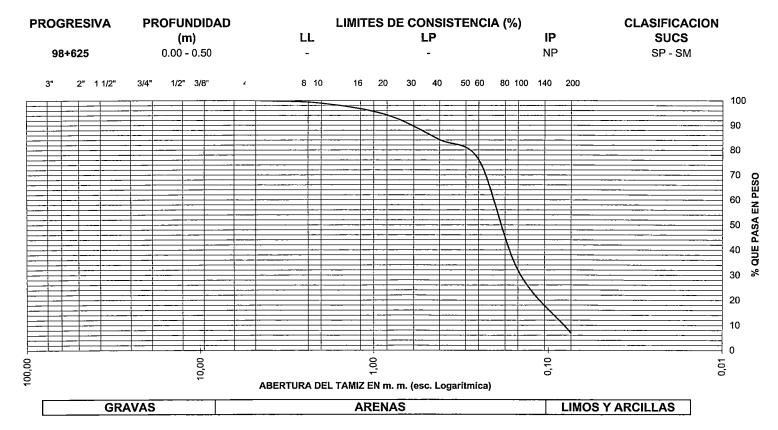
CLIENTE

: CONSORCIO CHINECAS

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

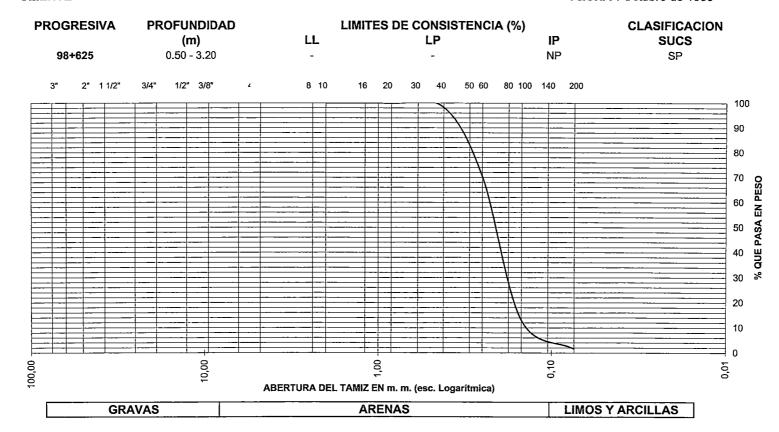

: Dpto. Ancash

MUESTRA

: Cimentación

CLIENTE :

: CONSORCIO CHINECAS

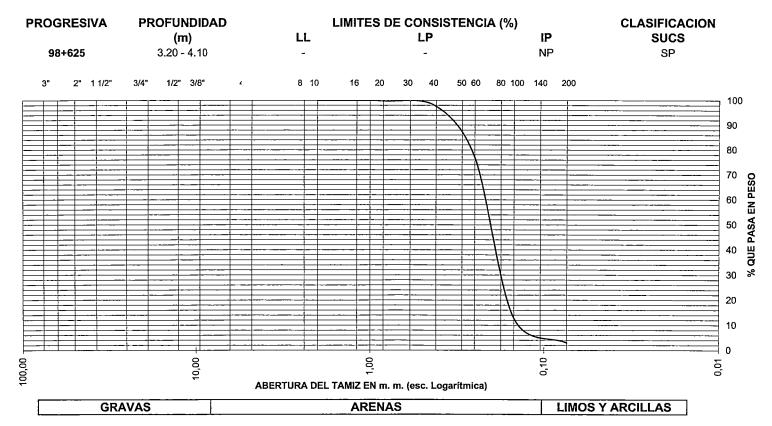

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash

MUESTRA CLIENTE : Cimentación : CONSORCIO CHINECAS



PROYECTO

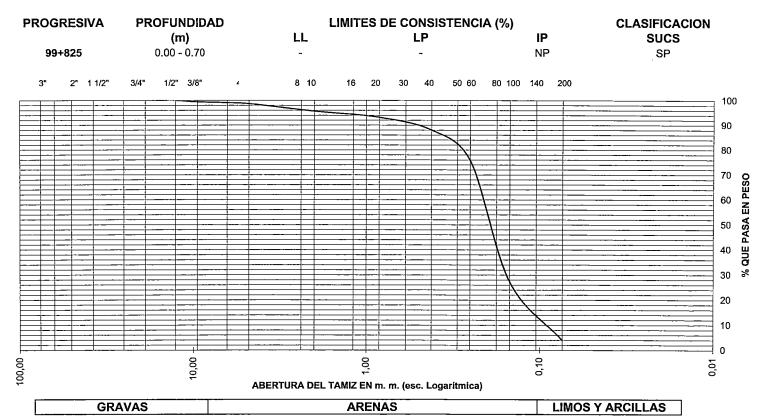
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash MUESTRA : Cimentación

CLIENTE : CONSORCIO CHINECAS FECHA : Octubre de 1999

ANALISIS GRANULOMETRICO (ASTM - D - 422)

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin


: Dpto. Ancash

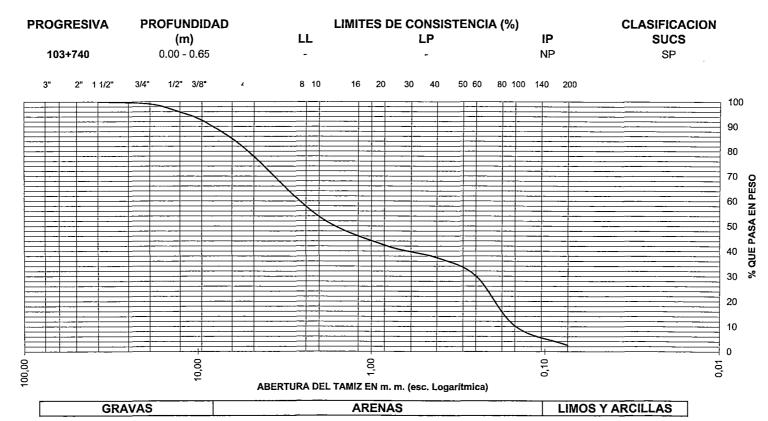
UBICACIÓN MUESTRA

: Cimentación

CLIENTE

: CONSORCIO CHINECAS

PROYECTO


: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

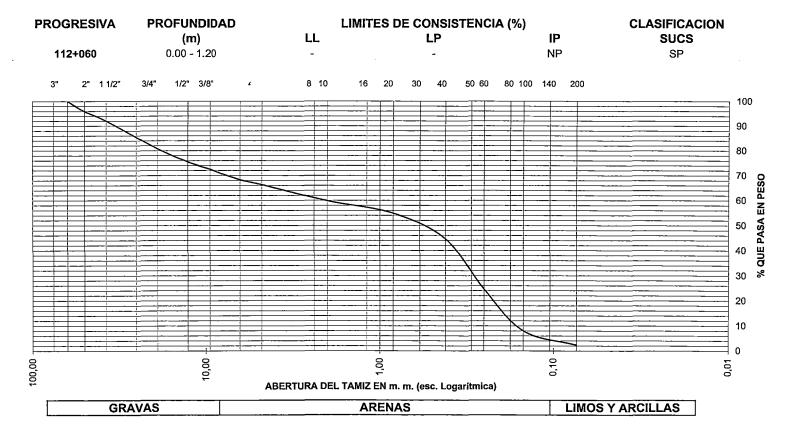
UBICACIÓN

: Dpto. Ancash : Cimentación

MUESTRA CLIENTE

: CONSORCIO CHINECAS

PROYECTO


: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash : Cimentación

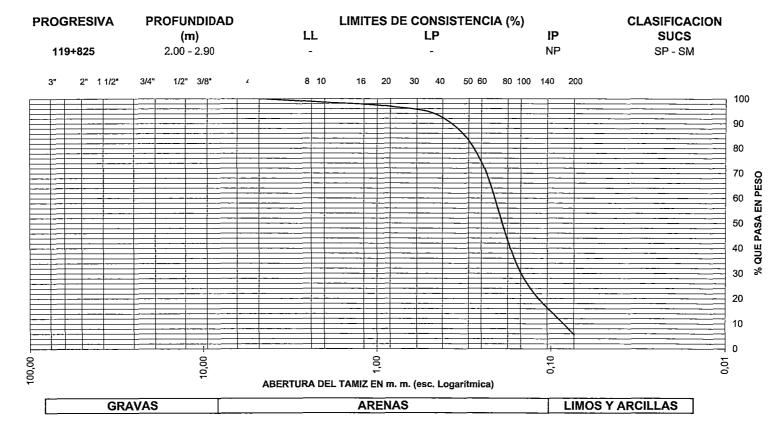
MUESTRA CLIENTE

: CONSORCIO CHINECAS

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

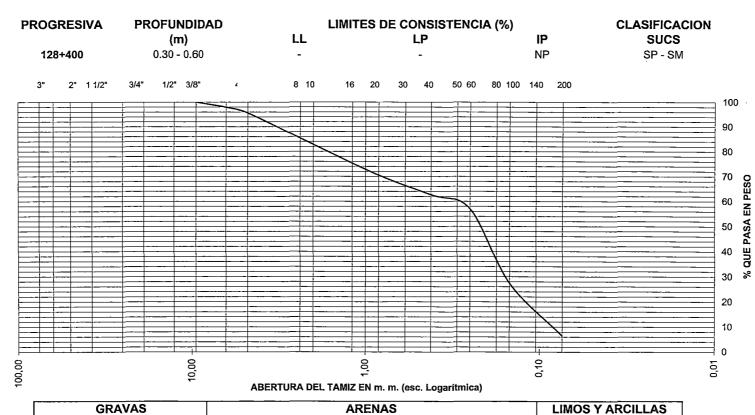

: Dpto. Ancash

MUESTRA

: Cimentación

CLIENTE

: CONSORCIO CHINECAS

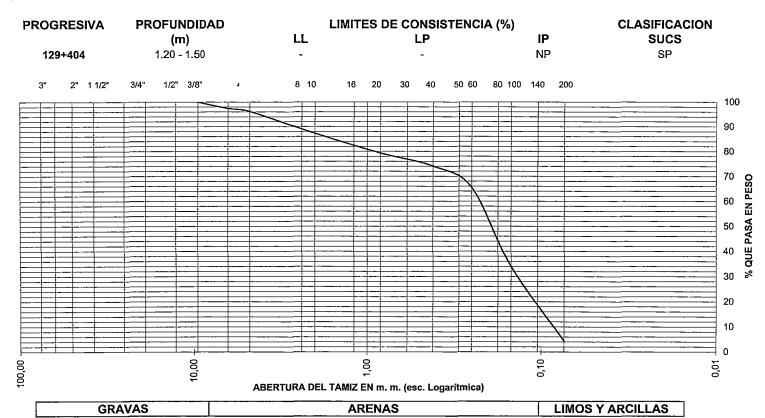

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS


PROYECTO

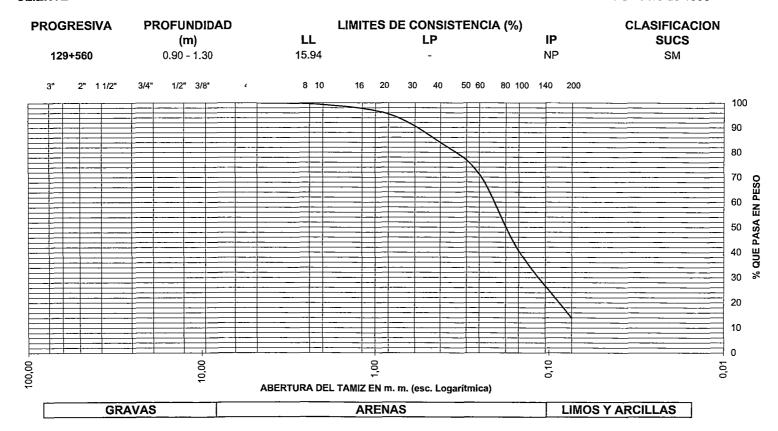
: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

ANALISIS GRANULOMETRICO (ASTM - D - 422)


PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

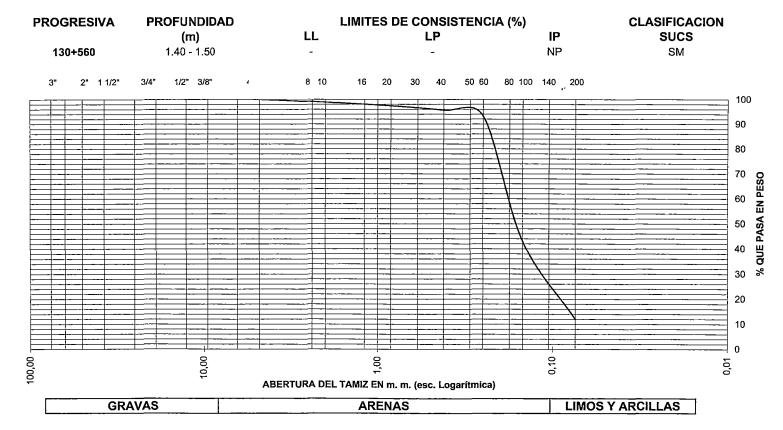
UBICACIÓN MUESTRA : Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin


UBICACIÓN

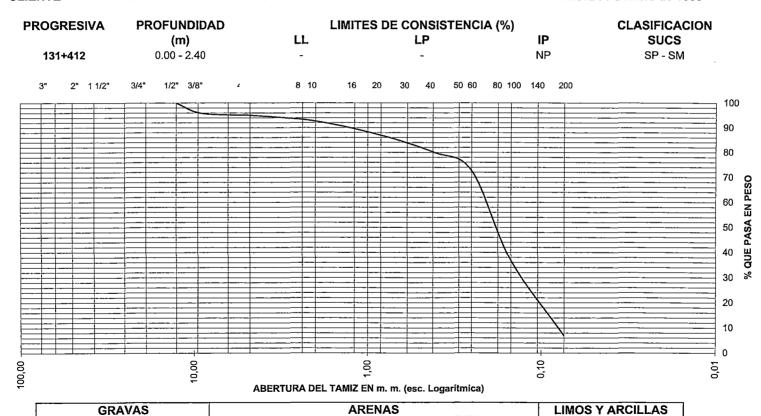
: Dpto. Ancash : Cimentación

MUESTRA

CLIENTE

: CONSORCIO CHINECAS

PROYECTO


: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash : Cimentación

MUESTRA CLIENTE

: CONSORCIO CHINECAS

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN MUESTRA

: Dpto. Ancash : Cimentación

CLIENTE

: CONSORCIO CHINECAS

PROYECTO : Ingeniería de Detalle de Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE: CONSORCIO CHINECAS
ESTRUCTURI: Canal Principal CHINECAS

MUESTRA : Cimentación

CALICATA			PESO ESPECIFICO DE GRAVAS			1	PESO ES	PECIFICO	DE FINOS		LIMITES	DE CONSIS	CLASIFICACION	
CALICATA	PROGRESIVA	PROFUNDIDAD				ABSORCION	(/	ASTM D854-	58)	ABSORCION	L.L.	L.P.	I.P.	DE SUELOS
N°		(m)	BULK.	S.S.S	APARENTE	%	BULK.	S.S.S	APARENTE	%	ASTM 423-66	ASTM 424-59		S.U.C.S
	70.700								0.700					
C-01A	72+760	0.80 - 2.20	-	-	_	- i	-	i -	2,736	-	-	-	N.P.	· SP
C-03	73+490	0.60 - 2.20	-	-	-	-	-	-	2,710	- 1	-	-	N.P.	SP
C-08A	75+830	2.00 - 2.50	-	-	-	-	-	-	2,740	- i	-	-	N.P.	SP
C-08B	76+020	0.00 - 2.00	-	-	-	-	-	-	2,714	-	-	-	N.P.	SP
C-13	79+725	0.70 - 0.90	-	-	-	-	-	-	2,714	-	-	-	N.P.	SP
C-19B	80+662	0.00 - 0.50	2,761	2,795	2,859	1.24	-	-	2,759	-	-	-	N.P.	SP - SM
C-19C	80+694	0.00 - 0.50	2,827	2,846	2,881	0.66	-	-	2,766	- 1	-		N.P.	GP
e C-25	83+188	0.00 - 1.80	-	-	2,775	-	-	-	2,721	-	- .	-	N.P.	SP
C-25A	83+220	0.00 - 1.00	-	-	2,856	-	-	-	2,736	-		-	N.P.	SP
C-51	91+980	0.00 - 1.10	2,830	2,848	2,880	0.61	2,760	2,789	2,841	1.03	-	-	N.P.	SP
C-53	92+260	0.00 - 4.00	- 1	-	-	- 1	-	-	2,736	-	-	-	N.P.	SP
C-56	92+546	0.00 - 2.00	- 1	-	-	-	-	-	2,714	-	-	- 1	N.P.	I SP
C-61	93+068	0.00 - 0.20	2,717	2,735	2,779	0.82	2,792	2,800	2,814	0.28	15.49	-	N.P.	SP-SM
C-61	93+068	0.60 - 1.00	2,695	2,723	2,750	0.98	2,714	2,732	2,765	0.68	-	-	N.P.	SP
C-65	95+985	0.60 - 1.20	2,466	2,505	2,567	1.60	-	-	2,770	_	_	-	N.P.	SP
C-68	96+720	0.00 - 0.50	-	-	-	-	_	-	2,751	-	_	-	N.P.	SP-SM
C-68	96+720	1.00 - 3.00	_	-	-	-	-	_	2,732	_	-	- 1	N.P.	SP
C-72	97+510	0.00 - 1.70	-	_	-	-	-	-	2,706	_	_	_	N.P.	SP
C-75	98+390	0.00 - 2.10	-	-	2,565	_	_	-	2,707	_	_	_	N.P.	SP I
C-76	98+625	0.00 - 0.50	_	_	· -	-	_	-	2,766	_	_	_	N.P.	SP-SM
C-76	98+625	0.50 - 3.20	_	-	-	-	-	_	2,743	_	_	_	N.P.	SP
C-76	98+625	3.20 - 4.10	_	_	-		_	-	2,710	-	_	_	N.P.	SP
C-78	99+825	0.00 - 0.70	-	-	-	-	-	-	2,732	-	-	-	N.P.	SP

FECHA: Octubre de 1999

PROYECTO : Ingeniería de Detalle de Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS
ESTRUCTUR/: Canal Principal CHINECAS

MUESTRA : Cimentación

			PESO ESF	PECIFICO D	E GRAVAS		PESO ES	PECIFICO	DE FINOS		LIMITES	CLASIFICACION		
CALICATA	PROGRESIVA	PROFUNDIDAD				ABSORCION	(/	STM D854-	58)	ABSORCION	L.L.	L.P.	I.P.	DE SUELOS
N°	1	(m)	BULK.	S.S.S	APARENTE	%	BULK.	s.s.s	APARENTE	%	ASTM 423-66	ASTM 424-59	_	S.U.C.S
C-88	103+740	0.00 - 0.65	2.746	2.781	2,847	1.30	2.705	2.723	2,756	0.68		_	N.P.	SP
C-94	112+060	0.60 - 0.90	2,675	2,693	2,723	0.66	-	-	2,735	-	-		N.P. N.P.	SP
C-114	119+825	2.00 - 2.90	-	· -	-	-	-	-	2,801	-	_	- 1	N.P.	SP - SM
C-141	128+400	0.30 - 0.60	-	-	-	-	-	-	2,766	-	-	-	N.P.	SP - SM
C-144	129+404	1.20 - 1.50	-	-	-	- 1	-	-	2,786	-	-	-	N.P.	SP
C-145	129+560	0.90 - 1.30	-	-	1 -	-	-	-	2,778	-	15.94		N.P.	SM
C-148	130+560	1.40 - 1.50	-	-	-	-	-	-	2,817	-	-	-	N.P.	SM
C-151	131+412	0.00 - 2.40	-	-	-	-]	-	-	2,786	-	-	- 1	N.P.	SP - SM
C-153	131+770	1.35 - 1.50	2,701	2,744	2,808	1.31	2,740	2,759	2,795	0.73	-	-	N.P.	sw

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo

Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash

CLIENTE ESTRUCTURA : CONSORCIO CHINECAS : Canal Principal CHINECAS

FECHA

: Octubre de 1999

MAXIMAS Y MINIMAS

MUESTRA	PROGRESIVA	DENSIDA	D (gr/cm3)
Nº	<u> </u>	Máxima	Mínima
1	72+700	1,684	1,381
2	73+380	1,793	1,432
3	76+455	1,635	1,359
4	79+190	1,647	1,390
5	83+188	1,638	1,385
6	85+760	1,843	1,525
7	92+260	1,685	1,458
8	93+068	1,746	1,464
9	96+720	1,767	1,436
10	98+488	1,832	1,510
11	109+406	1,654	1,430
12	113+875	1,686	1,437
13	115+515	1,747	1,377
14	117+415	1,845	1,517
15	120+410	1,817	1,518
16	124+700	1,825	1,482
17	129+120	1,796	1,462
18	131+770	1,972	1,598

Observación: Los resultados obtenidos son promedio de un mínimo de 03 (tres) ensayos, en cada caso.

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Dpto. Ancash

CLIENTE

: CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

FECHA

: Octubre de 1999

DENSIDAD RELATIVA (ASTM D2049-69)

PROGRESIVA	DENSIDAI	O (gr./cm3)	DENSIDAD NATURAL	DENSIDAD RELATIVA
	Máxima	Mínima	(gr./cm3)	(%)
72+700	1,684	1,381	1,582	70,7
73+380	1,793	1,432	1,606	53,8
76+455	1,635	1,359	1,549	72,7
79+190	1,647	1,390	1,561	70,3
83+188	1,638	1,385	1,557	71,6
85+760	1,843	1,525	1,785	84,3
92+260	1,685	1,458	1,568	52,0
93+068	1,746	1,464	1,652	70,4
96+720	1,767	1,436	1,655	70,6
98+488	1,832	1,510	1,649	48,0
109+406	1,654	1,430	1,543	54,0
113+875	1,686	1,437	1,540	45,4
115+515	1,747	1,377	1,582	61,2
117+415	1,845	1,517	1,644	43,4
120+410	1,817	1,518	1,732	75,1
124+700	1,825	1,482	1,759	83,9
129+120	1,796	1,462	1,705	76,6
131+770	1,972	1,598	1,858	77,1

ANEXO C.5

MATERIALES PARA CONSTRUCCION

C.5.1 AGREGADOS

C.5.2 AFIRMADOS Y RELLENOS

ANEXO C.5.1

AGREGADOS

C.5.1.1	REGISTROS DE CALICATAS
C.5.1.2	RESULTADOS DE ENSAYOS ESTANDAR
C 5 1 3	RESULTADOS DE ENSAYOS ESPECIALES

ANEXO C.5.1.1 REGISTROS DE CALICATAS

CANTERA N° : 1

UBICACION : RIO NEPEÑA

COORDENADAS: 0791500 E - 8985500 N

PROFUNDIDAD : 2.00 m.

FECHA : OCTUBRE DE 1999

NAPA FREATICA: 1.50 m.

MUES	TRA	CLASIFIC	CACION	OIDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	B PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
			SP	1.0		ARENA GRAVOSA, COLOR BEIGE A GRIS CLARO. GRAVA SUBREDONDEADA, BOLONES Y ARENA MEDIA Y FINA, POBREMENTE GRADADA. 15% DE BOLONERIA >3" 35% DE GRAVA 50% DE ARENA
				3.0		

CANTERA N° : 2

UBICACION : QUEBRADAS LAS YUNTAS

COORDENADAS: 0799214 E - 8966893 N

PROFUNDIDAD : 2.00 m.

FECHA : OCTUBRE DE 1999

NAPA FREATICA: SECO

MUESTRA CLASIFICACION Q PERFIL PERFIL ESTRATIGRAFICO DESCRIPCION MUESTRA PERFIL PERFIL ESTRATIGRAFICO O O O O O O O O O O O O	
1. P. P. P. P. P. P. P. P. P. P. P. P. P.	
SP 1.0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ENTE GRADADA.

CANTERA N° : 3

UBICACION : A 2 km. DEL TUNEL 8

COORDENADAS: 0801799 E - 8959938 N

PROFUNDIDAD : 2.00 m.

FECHA : OCTUBRE DE 1999

NAPA FREATICA: SECO

		г				
MUES	TRA	CLASIF	ICACION	DIDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
			SW	1.0		ARENA GRAVOSA, COLOR BEIGE A GRIS CLARO. GRAVA SUBANGULAR A ANGULAR, CON BOLONES Y ARENA GRUESA BIEN GRADADA. 10% DE BOLONERIA >3" 25% DE GRAVA 65% DE ARENA
				3.0		

CANTERA N° : 4

UBICACION : RIO SECHIN

COORDENADAS: 0803000 E - 8954000 N

PROFUNDIDAD : 2.00 m.

FECHA : OCTUBRE DE 1999

NAPA FREATICA: 1.15 m.

<u></u>						
MUES	STRA	CLASIF	CACION	OIDAD		
ALTERADA	INALTERADA	GEOLOG.	SDCS	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
			SP	1.0		ARENA GRAVOSA, COLOR BEIGE A GRIS CLARO. GRAVA SUBREDONDEADA, CON BOLONES Y ARENA MEDIA Y FINA, POBREMENTE GRADADA. 20% DE BOLONERIA >3" 30% DE GRAVA 50% DE ARENA
				3.0		

ANEXO C.5.1.2

RESULTADOS DE ENSAYOS ESTANDAR

- Granulometrĺa
- Límites de Consistencia
- Peso Específico de Sólidos
- Clasificación de Suelos

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

MUESTRA : Agregados

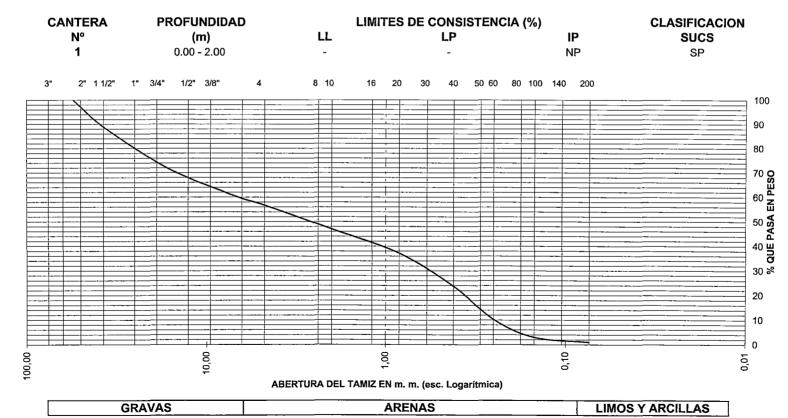
FECHA : Octubre de 1999

Cantera	Calicata	Muestra		Análisis granulométrico por tamices vía húmeda, ASTM - D - 422													
		(m)		Porcentaje Acumulativo que pasa en peso													
N°	N°	De - a	21/2"	2"	1½"	1"	3/4"	1/2"	3/8"	1/4"	N° 4	N° 10	N° 20	N° 40	N° 60	N° 100	N° 200
1	C-1	0.00 - 2.00	100.00	97.09	88.85	79,10	74.36	67.95	64.31	59.46	56.72	47.04	37.15	23.71	10.25	2.97	0.94
2	C-2	0.00 - 2.00	98.63	96.93	93.99	90.41	87.14	81.50	76.79	69.26	64.62	50.82	37.38	24.19	14.42	7.07	2.71
3	C-1	0.00 - 2.00	100.00	97.39	95.77	91.83	88.78	84.38	81.04	75.28	71.26	50.17	33.26	23.28	19.03	9.25	2.69
4	C-1	0.00 - 2.00	96.82	92.72	86.44	79.58	75.55	70.03	66.57	61.69	58.39	47.89	35.32	20.65	9.32	3.48	1.17

Tamaño máximo del agregado 3"

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin


UBICACIÓN

: Río Nepeña - Dpto. Ancash

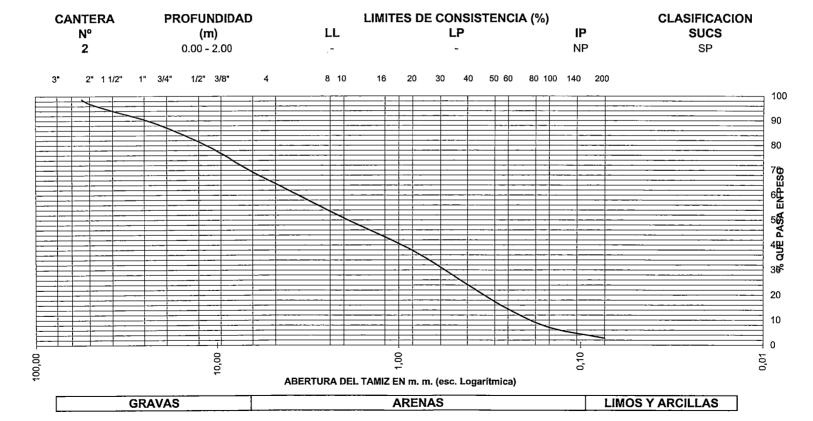
MUESTRA

: Agregados

CLIENTE : CONSORCIO CHINECAS

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin


UBICACIÓN

: Quebrada las Yuntas - Dpto. Ancash

MUESTRA

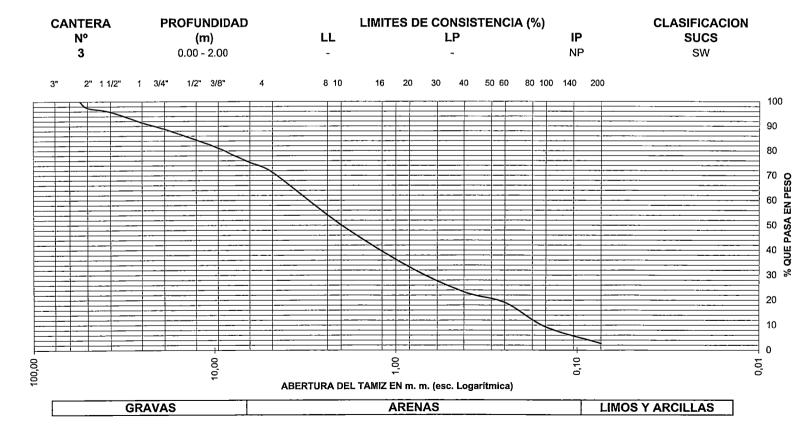
: Agregados

CLIENTE : CONSORCIO CHINECAS

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN


: a 2 km. del Túnel 8 - Dpto. Ancash

MUESTRA

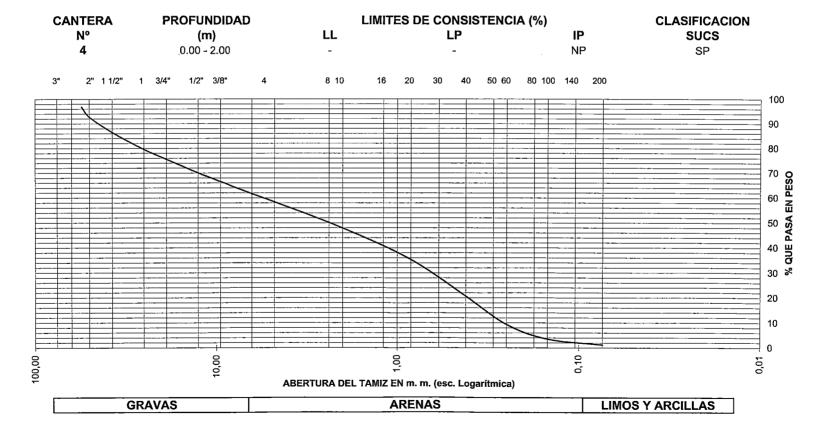
: Agregados

CLIENTE : CON

: CONSORCIO CHINECAS FECHA: Octubre de 1999

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin


UBICACIÓN

: Río Sechin - Dpto. Ancash

MUESTRA

: Agregados

CLIENTE : CONSORCIO CHINECAS

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

MUESTRA : Agregados FECHA : Octubre de 1999

Cantera	Calicata	Muestra		Análisis granulométrico por tamices vía húmeda, ASTM - D - 422 Porcentaje Acumulativo que pasa en peso									Módulo de					
_		(m)	04/11	AGREGADO GRUESO						N10 O	AGREGADO FINO 8 N° 16 N° 30 N° 50 N° 100 N° 200							
N°	N°	De - a	2½"	2"	1½"	1"	3/4"	1/2"	3/8"	N° 4	N° 4	N° 8	N* 16	N° 30	N 50	N° 100	N° 200	(M.F.)
1	C-1	0.00 - 2.00	100.00	91.47	74.02	54,00	40.68	26.04	17.51	0.00	100,00	85.37	71.42	51.70	21.98	4.48	1.23	2.65
2	C-2	0.00 - 2.00	96.13	91.31	83.01	72.92	63.66	47.72	34.40	0.00	100,00	82.33	66.91	47.86	27.01	11.33	4.28	2,65
3	C-1	0.00 - 2.00	100.00	90.93	85.31	71.70	60.99	45.66	34.05	0.00	100,00	75. 02	54.34	38.12	27.57	13.52	3.64	2.91
4	C-1	0.00 - 2.00	92.35	82.50	67.41	50.92	41.23	27.97	19.66	0.00	100,00	84.80	68. 82	46.32	19.84	5.37	1.85	2.75

Tamaño máximo del agregado grueso 3"

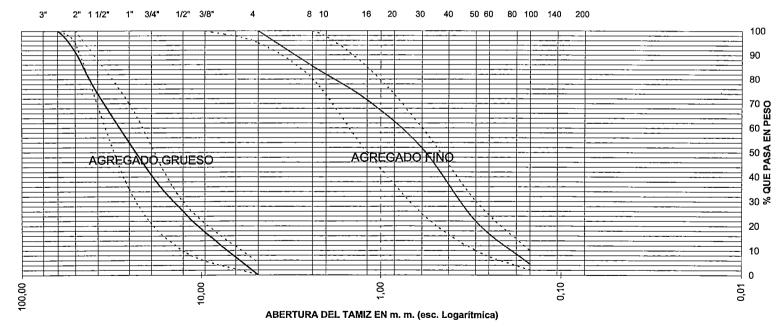
Tamaño máximo del agregado fino N° 4

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Río Nepeña - Dpto. Ancash


MUESTRA

: Agregados

CLIENTE

: CONSORCIO CHINECAS

FECHA: Octubre de 1999

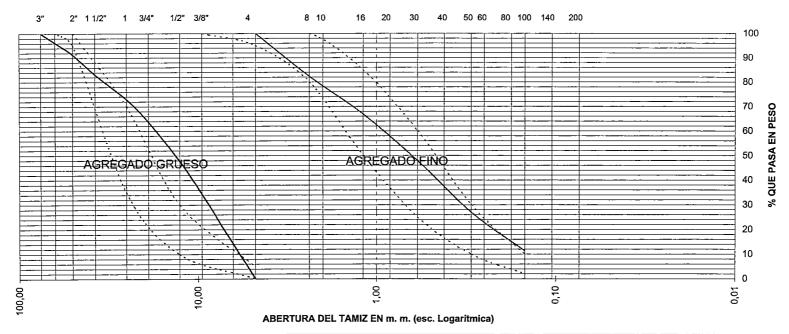
GRAVAS	ARENAS	LIMOS Y ARCILLAS

ANALISIS GRANULOMETRICO (ASTM D-422)

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN


: Quebrada las Yuntas - Dpto. Ancash

MUESTRA CLIENTE

: CONSORCIO CHINECAS

: Agregados

FECHA: Octubre de 1999

Γ	GRAVAS	ARENAS	LIMOS Y ARCILLAS
_			

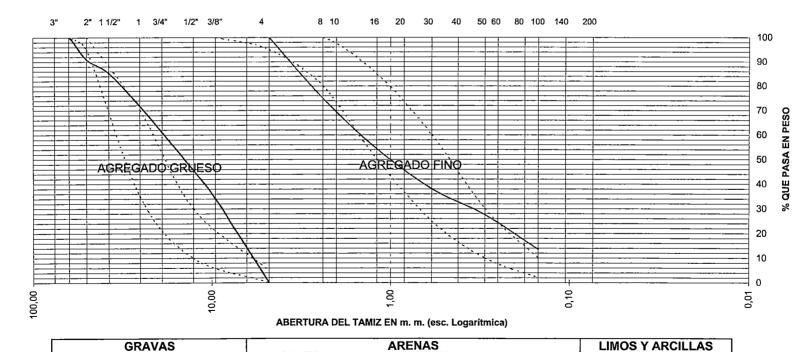
ANALISIS GRANULOMETRICO (ASTM D-422)

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: a 2 km del Túnel 8 - Dpto. Ancash


MUESTRA

: Agregados

CLIENTE : CONSORCIO CHINECAS

FECHA: Octubre de 1999

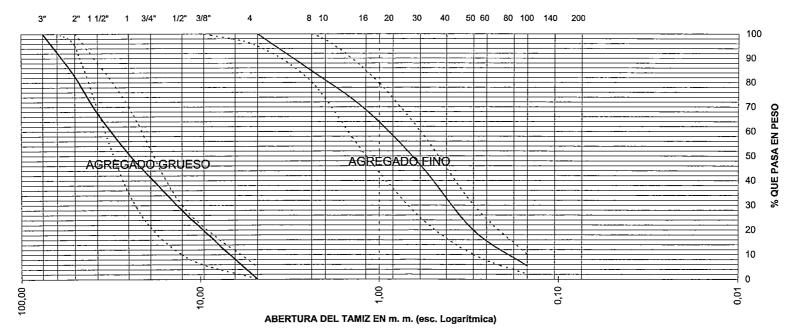
ANALISIS GRANULOMETRICO (ASTM D-422)

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Río Sechin - Dpto. Ancash


MUESTRA

: Agregados

CLIENTE

: CONSORCIO CHINECAS

FECHA: Octubre de 1999

GRAVAS ARENAS LIMOS Y ARCILLAS

PROYECTO: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE: CONSORCIO CHINECAS
ESTRUCTURA: Canal Principal CHINECAS

MUESTRA : Agregados

FECHA: Octubre de 1999

Cantera	Calicata	Muestra	Límite	Límites de Consistencia (%)				
		(m)	Límite Líquido	Límite Plástico	Indice de	de Suelos		
N°	N°	De - a	ASTM-D-423	ASTM-D-424	Plásticidad	SUCS		
1	C-1	0.00 - 2.00	-	-	N.P.	SP		
2	C-2	0.00 - 2.00	-	-	N.P.	SP		
3	C-1	0.00 - 2.00	-	-	N.P.	sw		
4	C-1	0.00 - 2.00	-	-	N.P.	SP		

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña-Casma-Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

MUESTRA : Agregados FECHA : Octubre de 1999

MATERIAL MAS FINO QUE EL TAMIZ N° 200 ASTM - C - 117

Cantera	Calicata	Muestra (m)	Material que pasa el tamiz N° 200		
N°	N° N°		(%)		
1	C-1	0.00 - 2.00	0.94		
2	C-2	0.00 - 2.00	2.71		
3	C-1	0.00 - 2.00	2.69		
4	C-1	0.00 - 2.00	1.17		

PROYECTO: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

MUESTRA: Agregados
FECHA: Octubre de 1999

PESO ESPECIFICO Y ABSORCION (p.e.s.s.s.)

Cantera	Calicata	Muestra	AGF	AGREGADO GRUESO ASTM-C-127			AGREGADO FINO ASTM-C-128				
N°	N°	(m) De - a	Peso Específico Aparente	Peso Específico Bulk. s.s.s.	Peso Específico Bulk.	Absorción (%)	Peso Específico Aparente	Peso Específico Bulk. s.s.s.	Peso Específico Bulk.	Absorción (%)	
1	C-1	0.00 - 2.00	2,760	2,738	2,726	0.46	2,769	2,740	2,723	0.60	
2	C-2	0.00 - 2.00	2,782	2,738	2,713	0.92	2,762	2,726	2,706	0.75	
3	C-1	0.00 - 2.00	2,913	2,863	2,837	0.91	2,842	2,804	2,784	0.75	
4	C-1	0.00 - 2.00	2,789	2,765	2,751	0.49	2,754	2,716	2,694	0.81	

ANEXO C.5.1.3

RESULTADOS DE ENSAYOS ESPECIALES

- Abrasión
- Intemperismo
- Análisis Químico

PROYECTO

: Ingeniería de detalle del Canal Principal Nepeña-

Casma-Sechin

UBICACION

: Dpto. Ancash

CONSTRUCTOR: CONSORCIO CHINECAS

CLIENTE: S & Z CONSULTORES ASOCIADOS S.A.

MUESTRA

: Indicada

FECHA

: SET.99

ABRASION-ASTM-C-131 Máquina de los Angeles

Cantera	Calicata	Muestra m	Porcentaje đe	
N°	N°	De-a	desgaste	
1	MC-1	0.00-2.00	18.9	
2	MC-2	0.00 - 2.00	29.7	
3	MC-3	0.00 - 2.00	29.4	
4	MC-4	0.00 - 2.00	18.5	

Gradación	Tipo "A"
Número de esferas	12
Revoluciones	500

Muestras enviadas a nuestro laboratorio para su procesamiento.

E yP DE INGENIERIA SCRI

INGENIERO CIVIL C.I.P No.6314

PROYECTO

: Ingeniería de detalle del Canal Principal Nepeña-

Casma-Sechin

UBICACION

: Dpto. Ancash

CONSTRUCTOR: CONSORCIO CHINECAS

MUESTRA

CLIENTE: S & Z CONSULTORES ASOCIADOS S.A.

: Cantera 1 MC-1 0.00m-2.00m Río Nepeña, ubicada a la altura de la progresiva 74+000

FECHA

: SET.99

DURABILIDAD - ASTM-C-88 Método del sulfato de sodio - Cinco ciclos

AGREGADO GRUESO

Tamices N°		Peso	Peso gr	Gradación	Pérdida %		
De	-	a	Inicial	Final	%	Real	Corregida
2"	_	1"	3000	2972	34.73	0.93	0.32
1"	_	1/2"	1500	1487	37.45	0.87	0.33
1/2"	_	N°4	300	296	27.82	1.33	0.37
, –						TOTAL	$\overline{1.02}$

AGREGADO FINO

Tamices N°		Peso	so gr	Gradación	Pérdida %		
De	-	а	Inicial	Final	%	Real	Corregida
N°4	_	N°8	100.00	98.45	14.75	1.55	0.23
N°8	-	N°16	100.00	97.95	16.10	2.05	0.33
N°16	_	N°30	100.00	97.37	21.48	2.63	0.56
N°30	_	N°50	100.00	95.38	25.51	4.62	<u>1.18</u>
		-				TOTAL	2.30

Muestras enviadas a nuestro laboratorio para su procesamiento.

E y P DE INGENIERIA SCRI

PROYECTO

: Ingeniería de detalle del Canal Principal Nepeña-

Casma-Sechin

UBICACION

: Dpto. Ancash

CONSTRUCTOR: CONSORCIO CHINECAS

CLIENTE MUESTRA : S & Z CONSULTORES ASOCIADOS S.A. : Cantera 2 MC-2 0.00m-2.00m

Ubicada en la Quebrada Las Yuntas

FECHA

: SET.99

DURABILIDAD - ASTM-C-88 Método del sulfato de sodio - Cinco ciclos

AGREGADO GRUESO

Tamices N°		Peso gr		Gradación	Pérdida %		
De	-	а	Inicial	Final	%	Real	Corregida
2"	_	1"	3000	2616	20.19	12.80	2.58
1"	_	1/2"	1500	1432	27.57	4.53	1.25
1/2"	_	Ѱ4	300	279	52.24	7.00	<u>3.66</u>
,						TOTAL	7.49

AGREGADO FINO

Tamices N°		Peso	gr	Gradación	Pérdida %		
Dе	-	а	Inicial	Final	%	Real	Corregida
N°4	_	N°8	100.00	95.76	18.42	4.24	0.78
N°8	_	N°16	100.00	98.44	19.34	1.56	0.30
N°16	_	N°30	100.00	96.65	19.48	3.35	0.65
N°30	_	N°50	100.00	96.26	17.61	3.74	<u>0.66</u>
		- · - ·				TOTAL	2.39

Muestras enviadas a nuestro laboratorio para su procesamiento.

E y P DE INGENIERIA SCRI

PROYECTO: Ingeniería de detalle del Canal Principal Nepeña-

Casma-Sechin

UBICACION: Dpto. Ancash

CONSTRUCTOR: CONSORCIO CHINECAS

CLIENTE : S & Z CONSULTORES ASOCIADOS S.A.

MUESTRA : Cantera 3 MC-3 0.00m-2.00m

Ubicada a 2 Km. de la entrada del Tunel 8

FECHA : SET.99

DURABILIDAD - ASTM-C-88 Método del sulfato de sodio - Cinco ciclos

AGREGADO GRUESO

Tamices N°		Peso g	gr	Gradación	Pérdida %		
De	-	a	Inicial	Final	%	Real	Corregida
2"	_	1"	3000	2688	21.28	10.40	2.21
1"	-	1/2"	1500	1445	28.51	3.67	1.05
1/2"	-	N°4	300	275	50.21	8.33	<u>4.18</u>
•						TOTAL	7.44

AGREGADO FINO

Tamices N°		Peso	gr	Gradación	Pérdida %		
De	-	a	Inicial	Final	%	Real	Corregida
3/8"	_	N°4	300	276	12.07	8.00	0.97
Ѱ4	_	N°8	100.00	93.18	22.45	6.82	1.53
N°8	_	N°16	100.00	95.17	19.92	4.83	0.96
N°16	_	N°30	100.00	92.38	13.22	7.62	1.01
N°30	_	N°50	100.00	93.96	7.64	6.04	<u>0.46</u>
		_				TOTAL	4.93

Muestras enviadas a nuestro laboratorio para su procesamiento.

E y P DE INGENIERIA SCRI

PROYECTO: Ingeniería de detalle del Canal Principal Nepeña-

Casma-Sechin

UBICACION: Dpto. Ancash

CONSTRUCTOR: CONSORCIO CHINECAS

CLIENTE : S & Z CONSULTORES ASOCIADOS S.A.

MUESTRA: Cantera 4 MC-4 0.00m-2.00m Río Sechin,

ubicada a la salida del Tunel 9

FECHA : SET.99

DURABILIDAD - ASTM-C-88 Método del sulfato de sodio - Cinco ciclos

AGREGADO GRUESO

Tamices N°		Peso	gr	Gradación	Pérdida %				
De	-	a	Inicial	Final	%	Real	Corregida		
2"	_	1"	3000	2986	38.27	0.47	0.18		
1"	_	1/2"	1500	1486	27.81	0.93	0.26		
1/2"	_	N°4	300	296	33.92	1.33	0.45		
,						TOTAL	0.89		

AGREGADO FINO

Tamices N°		Peso	gr	Gradación	Pérdida %				
De	-	а	Inicial	Final	%	Real	Corregida		
N°4	_	N°8	100.00	97.74	15.50	2.26	0.35		
N°8	_	N° 16	100.00	98.15	19.57	1.85	0.36		
N°16	_	N°30	100.00	97.68	23.21	2.32	0.54		
N°30	_	N°50	100.00	97.83	22.20	2.17	<u>0.48</u>		
						TOTAL	1.73		

Muestras enviadas a nuestro laboratorio para su procesamiento.

E y P DE INGENIERIA SCRÎ

Análisis Químico

- Cloruros
- Sulfatos

PROYECTO : Ingeniería de detalle del Canal Principal Nepeña-

Casma-Sechin

UBICACION: Dpto. Ancash

CONSTRUCTOR: CONSORCIO CHINECAS

CLIENTE : S & Z CONSULTORES ASOCIADOS S.A.

MUESTRA : Indicada FECHA : SET.99

ANALISIS QUIMICO

Cantera	Calicata	Muestra	Cloruros	Sulfatos en términos de
		m	C1	SO ₄
N°	N°	De-a	p.p.m.	p.p.m.
1	MC-1	0.00-2.00	6.75	22.24
2	MC-2	0.00 - 2.00	174.64	189.24
3	MC-3	0.00 - 2.00	58.33	50.43
4	MC-4	0.00-2.00	14.23	32.13

Muestras enviadas a nuestro laboratorio para su procesamiento.

E y P DE INGENIERIA SCRI

CESAR VILCA GHEZZ: INGENIERO CIVIL C.I.P No.6314

VALORES MAXIMOS TOLERABLES RECOMENDADOS PARA EL AGUA DE MEZCLA (mg/lt excepto para el Ph)

		мтс	RIVVA L.		NORMAS PA	ARA EL AGU	A POTABLE
	TOLERANCIA REFERENCIA	(1)	(2)	ITINTEC	SEDAPAL	AMER.	EUROPA
-	Cloruros (cl)	* 183	300	*** 1000	-	25,0	350
_	Sulfatos (SO4)	300	50	*** 600	250	250	250
-	Sales solubles totales	1500	300	-	_	300	-
-	Sales de Magnesio (Mg)	-	125	-	125	125	- **
-	Sólidos en suspensión	1000	10	5000	_	10	-
-	Ph	No < 7	No < 8	Entre 5.5 y 8.0	7.2	7.2	7.2
-	Materia orgánica expresada como oxigeno	16	0.001	3	1-2	1	1
-	Carbonatos y bicarbonatos Alcalinos	· _	1	1000	_	-	

- (1) Dirección de Estudios Especiales. División de Mecánica de Suelos y ensayo de materiales.
- (2) Para concretos que han de estar expuestos a ataques por sulfatos.
 - * Obtenido a partir del límite de 300 ppm expresado como Cl Na
 - ** 30 mg/lt para 250 mg/lt de SO4 125 mg/lt, para concentraciones menores.
- *** Para el caso de los agregados se especifican máximo de 1000 mg/lt y de 10,000 mg/lt para cloruros y sulfatos respectivamente (proyecto de Norma Técnica 400-037/Marzo 1986)

Referencias: Germán Vivar Romero. "Algunos conceptos sobre ataque químico al Concretc"

ANEXO C.5.2

AFIRMADOS Y RELLENOS

- C.5.2.1 REGISTROS DE CALICATAS
- C.5.2.2 RESULTADOS DE ENSAYOS ESTANDAR

ANEXO C.5.2.1 REGISTROS DE CALICATAS

REGISTRO DE CALICATAS AFIRMADOS Y RELLENO

CANTERA N° : 5

COORDENADAS: -

FECHA : OCTUBRE DE 1999

UBICACION : BUENAVISTA - A 8km DEL DESVIO HACIA HUARAZ PROFUNDIDAD : 0.00 - 4.00 m

l LECU	A	•	OCTOB	KE DE	1999	NAPA FREATICA : SECO
MUES	TRA	CLASIF	CACION	IDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
MIT ALT	INA		SW-SM	1.0 —		AREMA CON GRAVA SEMANGULOSO, BIEN GRADADA, DENSA COLOR ANARANJADO CLARO, SECA. PRESENTA UN 87 DE LIMOS. GRAVAS DE 0.5 - 1 cm DE DIAMETRO EN UN 20% GRAVAS DE 0.5 - 1 cm DE DIAMETRO EN UN 20% AREMA EN 52% LL=15.29% IP=- IP=N.P.
				7.0 —		
1 1				8.0	-	

COORDENADAS: -

REGISTRO DE CALICATAS **AFIRMADOS Y RELLENO**

CANTERA N° : 6

UBICACION : A 20km DE LA CARRETERA HACIA MORO PROFUNDIDAD : 0.00 – 4.00 m

FECHA : OCTUBRE DE 1999

MUES	TRA	CLASIF	ICACION	IDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
			GW	1.0 — 1.0 —		GRAVA ARENOSA SEMIANGULOSA, BIEN GRADADA, DENSO COLOR GRIS CLARO A MEDIO ANARANJADO, SEMI HUMEDO. PRESENTA UN 5% DE LIMOS. GRAVAS EN 10 60% LL=21.65.30 LP=1.19=1.P. IP=N.P.

REGISTRO DE CALICATAS AFIRMADOS Y RELLENO

CANTERA N° : 7

UBICACION : SAN JACINTO (CERRO)

COORDENADAS: -

PROFUNDIDAD : 0.00 - 2.00 m

FECHA : OCTUBRE DE 1999

	· · · · · · · · · · · · · · · · · · ·					
MUES		CLASIFI	ICACION	DIDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
			SM	1.0		ARENA LIMOSA, PRESENTA GRAVAS ANGULOSAS, DENSA COLOR ANARANJADO CLARO, SECA. GRAVAS MAYOR A 4cm EN 5% GRAVAS MENOR A 4cm EN 35% ARENA EN 25% LL=16.44% LP=14.72% IP=1.72
				3.0		

REGISTRO DE CALICATAS AFIRMADOS Y RELLENO

CANTERA Nº : 8

FECHA

COORDENADAS: --

: OCTUBRE DE 1999

UBICACION : A 2km HACIA EL SUR DEL BALNEARIO DE TORTUGAS
PROFUNDIDAD : 0.00 - 0.50 m

MUES	STRA	CLASIF	CACION	OIDAD		
ALTERADA	INALTERADA	GEOLOG.	sncs	3 PROFUNDIDAD	PERFIL ESTRATIGRAFICO	DESCRIPCION
			GM		0-0-0	GRAVA LIMOSA ANGULOSA, DENSA, COLOR MARRON CLARO A MEDIO ANARANJADO, SECA. PRESENTA GRAVAS MAYOR A 4cm EN UN 10% GRAVAS MENORES A 4cm EN UN 40%, ARENA EN UN 37%, LIMOS EN UN 13%. LL=15.74% LP=- IP=N.P.
				1.0 — — — — — — — — — — — — — — — — — — —		
	!			7.0 —		

ANEXO C.5.2.2

RESULTADOS DE ENSAYOS ESTANDAR

- Granulometría
- Límites de Consistencia
- Peso Específico de Sólidos
- Clasificación de Suelos
- Ensayo de Compactación

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN : Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

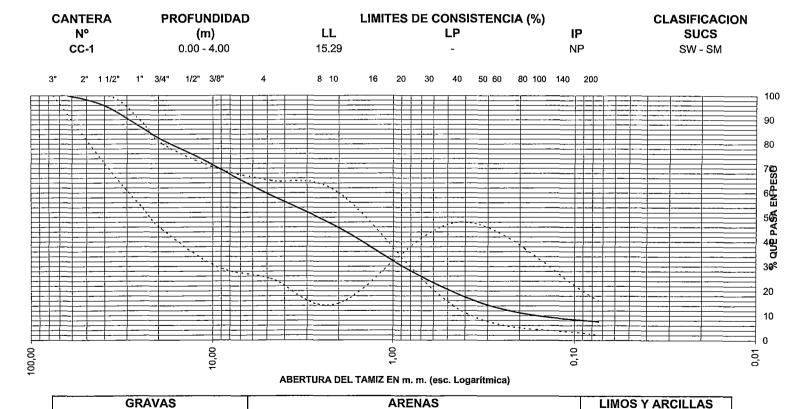
MUESTRA : Afirmados - Rellenos FECHA : Octubre de 1999

Calicata De Cantera	Muestra (m)	Ubicación	Análisis granulométrico por tamices vía húmeda, ASTM - D - 422 Porcentaje Acumulativo que pasa en peso														
N° _	De - a		21/2"	2"	11/2"	1"	3/4"	1/2"	3/8"	1/4"	N° 4	N° 10	N° 20	N° 40	N° 60	N° 100	N° 200
CC-1	0.00 - 4.00	Desvío hacia Huaraz altur. km 8 - sechin (altu. Km. 371.5 de la panamericana norte)	100.00	98.44	95.11	87.19	81.61	75.38	70.54	63.63	58.97	45.71	29.04	18.17	12.73	9.67	7.54
CC-2	0.00 - 4.00	altur. km 20 de la carretera hacia moro (margen derecha del río moro)	100,00	92,44	81,30	70,00	61,55	52,05	46,02	37,59	33,08	23,43	17,53	12,48	8,45	5,78	4,13
CC-3	0.00 - 2.00	San Jacinto (cerro)	100,00	98,20	95,72	86,20	80,91	72,85	65,58	57,10	53,00	42,45	38,48	36,71	35,42	32,00	24,87
CC-4	0.00 - 0.50	a 2 km. hacia el sur de Tortugas	100,00	98,95	97,11	92,07	84,77	74,20	66,63	55,91	50,39	39,12	33,83	31,93	30,60	21,53	13,67

Tamaño máximo de las partículas 3"

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

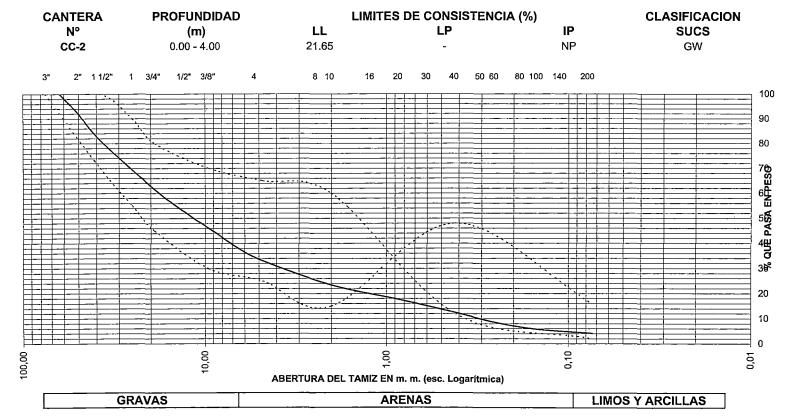

UBICACIÓN

: Cantera Buenavista (altu. km 8 del desvío hacia Huaraz - sechín)

MUESTRA

: Afirmados

CLIENTE : CONSORCIO CHINECAS



PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

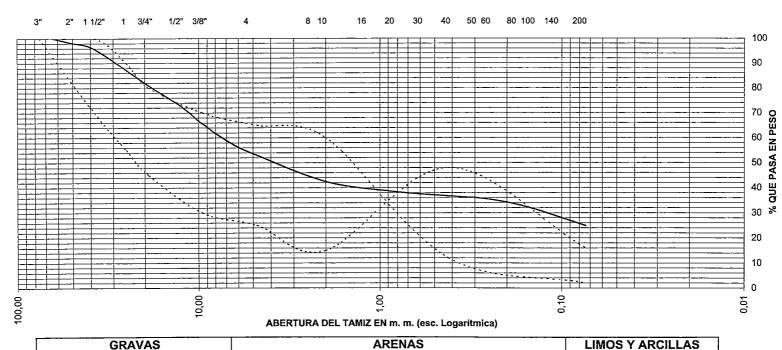
UBICACIÓN : Altura del km. 20 de la carretera hacia moro (margen derecha del río)

CLIENTE : CONSORCIO CHINECAS Especificaciones : ------

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN


: San Jacinto (cerro)

MUESTRA

: Afirmados - Rellenos

CLIENTE : CONSORCIO CHINECAS

CANTERA	PROFUNDIDAD	LIMIT	CLASIFICACION		
N°	(m)	LL	LP	IP	SUCS
CC-3	0.00 - 2.00	16.44	14.72	1.72	SM

PROYECTO

: Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN

: Tortugas (a 2 km hacia el sur)

MUESTRA CLIENTE : Afirmados - Rellenos

: CONSORCIO CHINECAS

Especificaciones : -----

Curva Granulometrica: ---

CANTERA **PROFUNDIDAD LIMITES DE CONSISTENCIA (%) CLASIFICACION** LL LP ΙP **SUCS** Ν° (m) 15.74 NP GM CC-4 0.00 - 0.502" 1 1/2" 1 3/4" 1/2" 3/8" 8 10 20 30 50 60 80 100 140 200 100 90 80 QUE PASA ENPESO 3€ 20 10 0 10,00 0,10 100,00 8, 0,01 ABERTURA DEL TAMIZ EN m. m. (esc. Logarítmica) **GRAVAS ARENAS LIMOS Y ARCILLAS**

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

UBICACIÓN: Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

MUESTRA: Afirmados - Rellenos FECHA: Octubre de 1999

Calicata De	Muestra		Límite	Límites de Consistencia (%)					
Cantera	(m)	Ubicación	Límite	Límite	Indice	de			
N°	De - a		Líquido ASTM-D-423	Plástico ASTM-D-424	de Plásticidad	Suelos SUCS			
CC-1	0.00 - 4.00	Desvío hacia Huaraz altu. Km. 8 - sechin (altu. Km. 371.5 de la panamericana norte)	15.29	-	N.P.	SW - SM			
CC-2	0.00 - 4.00	altur. km 20 de la carretera hacia moro (margen derecha del río moro)	21,65	-	N.P.	GW			
CC-3	0.00 - 2.00	San Jacinto (cerro)	16,44	14,72	1,72	SM			
CC-4	0.00 - 0.50	a 2 km. hacia el sur de Tortugas	15,74	-	N.P.	GM			

PROYECTO : Ingeniería de Detalle del Canal Principal CHINECAS Tramo Nepeña-Casma-Sechin

UBICACIÓN: Dpto. Ancash

CLIENTE : CONSORCIO CHINECAS ESTRUCTURA : Canal Principal CHINECAS

MUESTRA: Afirmados - Rellenos FECHA: Octubre de 1999

PESO ESPECIFICO DE SOLIDOS ASTM - D - 854

Calicata De Cantera N°	Muestra (m) De - a	Ubicación	Peso Específico de Sólidos (Material < # 4)
CC-1	0.00 - 4.00	Desvío hacia Huaraz altu. Km. 8 - sechin (altu. Km. 371.5 de la panamericana norte)	2,744
CC-2	0.00 - 4.00	altur. km 20 de la carretera hacia moro (margen derecha del río moro)	2,769
CC-3	0.00 - 2.00	San Jacinto (cerro)	2,821
CC-4	0.00 - 0.50	a 2 km. hacia el sur de Tortugas	2,894

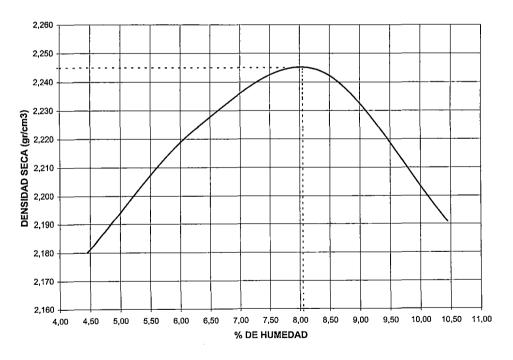
ENSAYO DE COMPACTACION

ENSAYO PROCTOR

S & Z consultores asociados

PROYECTO : Ingeniería de Detalle de Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

CLIENTE : CONSORCIO CHINECAS


UBICACION : Cantera Buenavista (altu. km 8 del desvío hacia Huaraz-sechín) Fecha : Oct 99

PROFUNDIDAD: 0.00 - 4.00 m N.F.:- Revisado:

Método de Compactación	: AASHTO T - 180	NUMEROS DE GOLPES
Número de Capas	: 05	56

CALCULO DE DENSIDAD HUMEDAD				
1- Peso del Suelo húmedo + moide	11236	11419	11560	11537
2- Peso del molde	6450	6450	6450	6450
3- Volumen del molde	2102,0	2102,0	2102,0	2102,0
4- Peso del Suelo húmedo (1-2)	4786	4969	5110	5087
5- Densidad del Suelo húmedo	2.277	2.364	2.431	2.420

HUMEDAD								
1 - Cápsula								
2 - Peso del Suelo húmedo + cápsula	442,2	436,6	491,8	463,2	421,5	445,3	405,9	383,8
3 - Peso del Suelo seco + cápsula	424,0	417,4	463,0	435,6	389,4	410,7	367,8	347,2
4 - Peso del agua (2 - 3)	18,2	19,2	28,8	27,6	32,1	34,6	38,1	36,6
5 - Peso de la cápsula	<u> </u>	_			-	-	1	7
6 - Peso del Suelo seco (3 - 5)	424,0	417,4	463,8	435,6	389,4	410,7	367,8	347,2
7 - % de humedad (4/6)	4,29	4,60	6,22	6,34	8,24	8,42	10,36	10,54
8 - Promedio de Humedad (%)	4,	45	6,	28	8,	33	10	,45
9 - Densidad del Suelo seco (gr / cm3)	2,	180	2,2	224	2,2	244	2,1	191

DENSIDAD MAXIMA: 2.245 gr/cm3

HUMEDAD OPTIMA: 8.05 %

TEC. LABORATORIO

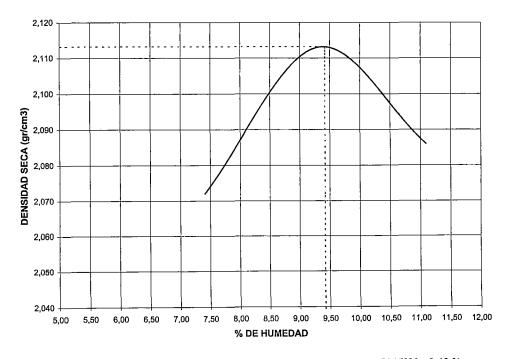
ING. LABORATORIO

ENSAYO DE COMPACTACION

ENSAYO PROCTOR

PROYECTO : Ingeniería de Detalle de Canal Principal CHINECAS Tramo Nepeña - Casma - Sechin

CLIENTE : CONSORCIO CHINECAS


UBICACION : Altura del km. 20 de la carretera hacia moro Fecha : Oct 99

PROFUNDIDAD: 0.00 - 4.00 m N.F.: - Revisado:

Método de Compactación	: AASHTO T - 180	NUMEROS DE GOLPES
Número de Capas	: 05	25

CALCULO DE DENSIDAD HUMEDAD				
1- Peso del Suelo húmedo + molde	5678	5743	5822	5830
2- Peso del molde	3646	3646	3646	3646
3- Volumen del molde	942,5	942,5	942,5	942,5
4- Peso del Suelo húmedo (1-2)	2032	2097	2176	2184
5- Densidad del Suelo húmedo	2,156	2,225	2,309	2,317

HUMEDAD								
1 - Cápsula								
2 - Peso del Suelo húmedo + cápsula	139,5	169,3	136,0	168,4	136,3	126,5	138,8	153,8
3 - Peso del Suelo seco + cápsula	132,2	160,2	126,6	156,8	124,4	116,0	125,0	138,4
4 - Peso del agua (2 - 3)	7,3	9,1	9,4	11,6	11,9	10,5	13,8	15,4
5 - Peso de la cápsula	-	1			•	-	-	-
6 - Peso del Suelo seco (3-5)	132,2	160,2	126,6	156,8	124,4	116,0	125,0	138,4
7 - % de humedad (4/6)	5,52	5,68	7,42	7,40	9,53	9,05	11,04	11,13
8 - Promedio de Humedad (%)	5,60		7,41		9,29		11,09	
9 - Densidad del Suelo seco (gr / cm3)	2,0)42	2,0)72	2,1	113	2,0)86

DENSIDAD MAXIMA: 2.113 gr/cm3

HUMEDAD OPTIMA : 9.42~%

TEC. LABORATORIO

ING. LABORATORIO