UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

TESIS

Para optar el Título Profesional de:

INGENIERO CIVIL

VERONICA VIVIANA CASAS TUANAMA

Lima-Perú

2015

Digitalizado por:

Consorcio Digital del Conocimiento MebLatam, Hemisferio y Dalse

A mi asesor el Dr. Javier Arrieta Freyre, por su paciencia, comprensión y ayuda.
A mi co-asesor el Mag. Carlos Villegas Martínez por haberme brindado su apoyo en los ensayos de laboratorio.

A todo el personal del Laboratorio de Ensayo de Materiales de la FIC-UNI, por su ayuda infinita, y a todas las personas que me han ayudado en la tesis, entre ellos mis profesores, amigos y colaboradores de la universidad.

A mis padres, que siempre me han apoyado, para que yo pueda salir adelante y luchar por mis metas.

A Dios, porque es el único que juzga el esfuerzo de las personas por lograr el éxito.

A mi hija Kiara Luciana.

ÍNDICE

	Pag
RESUMEN	iv
LISTA DE CUADROS	v
LISTA DE FIGURAS	viii
LISTA DE TABLAS	хi
LISTA DE SÍMBOLOS Y DE SIGLAS	xii
INTRODUCCIÓN	xiv
CAPÍTULO I: CARACTERIZACIÓN DE LA ZONA	1
1.1 UBICACIÓN GEOGRÁFICA	1
1.2 CLIMA	2
1.3 HIDROGRAFÍA	4
1.4 CARACTERÍSTICAS GEOLÓGICAS	5
1.5 DEMOGRAFÍA	6
1.6 VÍAS DE COMUNICACIÓN	8
1.7 EL PROCESO DE URBANIZACIÓN DE IQUITOS	9
CAPÍTULO II: EL MÓDULO DE ELASTICIDAD	. 10
2.1 CONCEPTOS GENERALES	10
2.1.1 Relaciones esfuerzo – deformación	10
2.1.2 Comportamiento elástico. Relación de Poisson. Ley de Hooke	11
2.2 MÓDULO DE ELASTICIDAD	13
CAPÍTULO III: PROPIEDADES DE LOS AGREGADOS FINOS	15
3.1 EVALUACIÓN DE LAS CANTERAS DE AGREGADOS FINOS	15
3.2 UBICACIÓN DE LAS CANTERAS EN ESTUDIO	15
3.3 DESCRIPCIÓN MINERALÓGICA DE LAS CANTERAS A ESTUDIAR	15
3.4 TIPO DE EXPLOTACIÓN DEL AGREGADO FINO	20
3.5 PROPIEDADES FÍSICAS DEL AGREGADO FINO	21
3.5.1 Granulometría	22
3.5.2 Contenido de humedad	26
3.5.3 Peso Unitario	27
3.5.4 Peso Específico y Absorción	28
3.5.5 Material que pasa la malla N° 200	30
3.5.6 Impurezas orgánicas	32
3.6 RESUMEN DE RESULTADOS	35

CAPÍTULO IV: SELECCIÓN DE LAS PROPORCIONES DE MEZCLA	36
4.1 PROCESO DE DOSIFICACIÓN	36
4.2 MATERIALES PARA EL DISEÑO DE MEZCLAS	36
4.2.1 Agregado fino	36
4.2.2 Cemento	36
4.2.3 Agua	37
4.3 PROPORCIONES PARA LAS MEZCLAS DE MORTERO	37
4.4 MÉTODO DEL DISEÑO DE MEZCLAS	37
4.5 CONSIDERACIONES PARA EL DISEÑO DE MEZCLAS	38
4.6 SELECCIÓN DE LAS PROPORCIONES DE MEZCLA	39
4.6.1 Selección de las proporciones de mezcla para	
una resistencia de $f'_{cm} = 175 \ kg/cm^2$	40
4.6.2 Selección de las proporciones de mezcla para	
una resistencia de $f'_{cm} = 210 kg/cm^2$	42
4.6.3 Selección de las proporciones de mezcla para	
una resistencia de $f'_{cm} = 280 kg/cm^2$	44
CAPÍTULO V : PROPIEDADES DEL MORTERO FRESCO	48
5.1 MEZCLADO, COLOCACIÓN Y MANIPULACIÓN	
DEL MORTERO FRESCO	48
5.2 PROPIEDADES DEL MORTERO FRESCO	48
5.2.1 Consistencia	49
5.2.2 Peso unitario	50
5.2.3 Contenido de aire	51
5.2.4 Exudación	52
5.2.5 Tiempo de fraguado	55
CAPÍTULO VI: PROPIEDADES DEL MORTERO ENDURECIDO	57
6.1 CONCEPTOS GENERALES	57
6.2 ENSAYO DE RESISTENCIA A LA COMPRESIÓN	58
6.2.1 Desviación estándar de la muestra	58
6.2.2 Resistencia promedio requerida	59
6.2.3 Resumen de resultados de ensayos de compresión	68
6.3 ENSAYO DE MÓDULO DE ELASTICIDAD EN ESTADO ENDURECIDO	71
6.3.1 Procedimiento para realizar el ensayo de módulo de elasticidad	72
6.4 COFFICIENTE DE POISSON	86

6.4.1 Procedimiento para la determinación del	
coeficiente de Poisson de las probetas de mortero	88
CAPÍTULO VII: DETERMINACIÓN DEL COEFICIENTE C	94
7.1 MÓDULO DE ELASTICIDAD TEÓRICO	94
7.2 DENSIDAD O PESO UNITARIO DEL MORTERO ENDURECIDO	95
7.3 PROCEDIMIENTO PARA CALCULAR EL	
COEFICIENTE "C" DE LA FÓRMULA DEL MÓDULO	
DE ELASTICIDAD PARA MORTEROS	98
7.3.1 Determinación de "C", de acuerdo a cada cantera en estudio	98
CAPÍTULO VIII: CONCLUSIONES Y RECOMENDACIONES	105
8.1 CONCLUSIONES	105
8.2 RECOMENDACIONES	106
BIBLIOGRAFÍA	108
ANEXOS	110

RESUMEN

Este estudio se realiza teniendo como punto de partida el conocimiento de que la gran mayoría de construcciones de la ciudad de Iquitos y demás localidades de nuestra selva baja se realizan con el empleo del mortero en vez del concreto, ya que no existe el agregado grueso en este sector del Perú.

Asimismo a la fecha, para esta ciudad se carece de estudios técnicos del material en referencia, toda la bibliografía correspondiente que existe está referida al concreto.

Previo estimado del volumen necesario de la cantidad de arena para el estudio, se tomaron las acciones correspondientes para la adquisición y transporte de este material desde las canteras hasta el laboratorio de la UNI, donde se hicieron los ensayos respectivos para poder llegar a establecer una expresión numérica del módulo de elasticidad para el mortero.

Utilizando los principios básicos de la mecánica de materiales, se presentan aspectos fundamentales del comportamiento del concreto y su módulo de elasticidad, que hicieron posible poder desarrollar la presente tesis para el caso del mortero, y que de esa forma, permita a los interesados poder conocer y profundizar aspectos más avanzados del comportamiento de este mortero muy usado en nuestra selva nacional.

LISTA DE CUADROS

		Pág.	
Cuadro N°3.1	Minerales observados en cada tamiz	20	
Cuadro N°3.2	Cantidad de ensayos realizados por canteras	22	
Cuadro N°3.3	Análisis Granulométrico, cantera San Martín de Porres		
Cuadro N°3.4	Análisis Granulométrico, cantera Don Segundo	25	
Cuadro N°3.5	Contenido de humedad, cantera San Martin de Porres	26	
Cuadro N°3.6	Contenido de humedad, cantera Don Segundo	27	
Cuadro N°3.7	Peso Unitario Suelto y Compactado, cantera		
	San Martin de Porres	28	
Cuadro N°3.8	Peso Unitario Suelto y Compactado, cantera		
	Don Segundo	28	
Cuadro N°3.9	Peso Específico y Absorción, cantera San Martin		
	de Porres	30	
Cuadro N°3.10	Peso Específico y Absorción, cantera Don Segundo	30	
Cuadro N°3.11	Porcentaje de finos, cantera San Martin de Porres	31	
Cuadro N°3.12	Porcentaje de finos, cantera Don Segundo	31	
Cuadro N°3.13	Determinación del valor del color estándar		
	para el contenido de impurezas orgánicas,		
	cantera San Martin de Porres	33	
Cuadro N°3.14	Determinación del valor del color estándar		
	para el contenido de impurezas orgánicas,		
	cantera Don Segundo	34	
Cuadro N°3.15	Resumen de resultados de ensayos realizados	35	
Cuadro N°4.1	Ensayo de resistencia a la compresión		
	a los 7 días de la cantera San Martín de Porres,		
	f'cm=175 kg/cm ²	42	
Cuadro N°4.2	Ensayo de resistencia a la compresión		
	a los 7 días de la cantera San Martín de Porres,		
	f'cm=210 kg/cm ²	44	
Cuadro N°4.3	Ensayo de resistencia a la compresión		
	a los 7 días de la cantera San Martín de Porres,		
	f'cm=280 kg/cm ²	47	
Cuadro N°5.1	Asentamientos de las mezclas de mortero	50	
Cuadro N°5.2	Datos para peso unitario del mortero	51	

Cuadro N°5.3	Datos para exudación del mortero	54
Cuadro N°5.4	Resultados para exudación del mortero	55
Cuadro N°5.5	Datos de fragua del mortero	56
Cuadro N°6.1	Ensayo de compresión de mortero con arenas	
	de la cantera Don Segundo, edad 28 días	60
Cuadro N°6.2	Desviación estándar y resistencia promedio	
	requerida a los 28 días de la cantera Don Segundo	60
Cuadro N°6.3	Ensayo de compresión de mortero con arenas	
	de la cantera Don Segundo, edad 45 días	61
Cuadro N°6.4	Desviación estándar y resistencia promedio	
	requerida a los 45 días de la cantera Don Segundo	61
Cuadro N°6.5	Ensayo de compresión de mortero con arenas	
	de la cantera San Martín de Porres, edad 28 días	62
Cuadro N°6.6	Desviación estándar y resistencia promedio	
	requerida a los 28 días de la cantera San Martín	
	de Porres	62
Cuadro N°6.7	Ensayo de compresión de mortero con arenas	
	de la cantera San Martín de Porres, edad 45 días	63
Cuadro N°6.8	Desviación estándar y resistencia promedio	
	requerida a los 45 días de la cantera San Martín	
	de Porres	63
Cuadro N°6.9	Resumen de resultados para la cantera	
	Don Segundo	66
Cuadro N°6.10	Resumen de resultados para la cantera	
	San Martín de Porres	67
Cuadro N°6.11	Resumen de resultados para las canteras	
	Don Segundo y San Martín de Porres	68
Cuadro N°6.12	Relación agua/cemento para resistencias de diseño	70
Cuadro N°6.13	Cargas repartidas para el ensayo de módulo de	
	elasticidad para la cantera Don Segundo a los 28 días	72
Cuadro N°6.14	Cargas repartidas para el ensayo de módulo de	
	elasticidad para la cantera Don Segundo a los 45 días	73
Cuadro N°6.15	Cargas repartidas para el ensayo de módulo de	
	elasticidad para la cantera San Martín de Porres	
	a los 28 días	74

Cuadro N°6.16 Cargas repartidas para el ensayo de módulo de		
	elasticidad para la cantera San Martín de Porres	
	a los 45 días	75
Cuadro N°6.17	Módulo de elasticidad a los 28 días para	
	la relación a/c=0.70	81
Cuadro N°6.18	Módulo de elasticidad para la cantera	
	Don Segundo a los 28 días	82
Cuadro N°6.19	Módulo de elasticidad para la cantera	
	Don Segundo a los 45 días	83
Cuadro N°6.20	Módulo de elasticidad para la cantera	
	San Martín de Porres a los 28 días	84
Cuadro N°6.21	Módulo de elasticidad para la cantera	
	San Martín de Porres a los 45 días	85
Cuadro N°6.22	Módulos de elasticidad obtenidos para	
	las diferentes relaciones a/c	86
Cuadro N°6.23	Coeficiente de Poisson de la cantera	
	San Martín de Porres para la relación a/c=0.70	90
Cuadro Nº6.24 _,	Coeficiente de Poisson de la cantera	
	San Martín de Porres para la relación a/c=0.65	91
Cuadro N°6.25	Coeficiente de Poisson de la cantera	
	San Martín de Porres para la relación a/c=0.60	92
Cuadro N°6.26	Coeficientes de Poisson obtenidos para	
	las diferentes relaciones a/c	93
Cuadro N°7.1	Pesos unitarios correspondientes a la cantera	
	Don Segundo	.96
Cuadro N°7.2	Pesos unitarios correspondientes a la cantera	
•	San Martín de Porres	97
Cuadro N°7.3	Coeficiente C a los 28 días para la cantera Don Segundo	99
Cuadro N°7.4	Coeficiente C a los 45 días para la cantera Don Segundo	100
Cuadro N°7.5	Coeficiente C a los 28 días para la cantera San Martín	
	de Porres	101
Cuadro N°7.6	Coeficiente C a los 45 días para la cantera San Martín	
	de Porres	102
Cuadro N°7.7	Resumen de los valores del coeficiente C obtenidos	103

LISTA DE FIGURAS

	•	Pag
Figura N°1.1	Mapa de la región Loreto	1
Figura N°1.2	Límites de la ciudad de Iquitos	2
Figura N°1.3	Acostumbrado escenario Iluvioso en	
	lquitos a inicios de abril	3
Figura N°1.4	Recorrido del río Amazonas	4
Figura N°1.5	Típico aspecto de un suelo arenoso	5
Figura N°1.6	Zonas sísmicas	6
Figura N°1.7	Aeropuerto Internacional de Iquitos	8
Figura N°2.1	Diagramas típicos monoaxiales esfuerzo-deformación	
	para algunos materiales de ingeniería	10
Figura N°2.2	Ecuación de Hooke generalizada	12
Figura N°2.3	Comportamiento elástico: (a) lineal y (b) no lineal	12
Figura N°2.4	Método para aproximar el módulo	14
Figura N°3.1	Arena fina tamizada	16
Figura N°3.2	Composición de la arena vista a través del microscopio	16
Figura N°3.3	Arena blanca vista a través de la malla N° 16	17
Figura N°3.4	Arena blanca vista a través de la malla N° 30	18
Figura N°3.5	Arena blanca vista a través de la malla N° 50	18
Figura N°3.6	Arena blanca vista a través de la malla N° 100	19
Figura N°3.7	Arena blanca vista a través de la malla N° 200	19
Figura N°3.8	Extracción del agregado fino de la cantera	
	San Martin de Porres	20
Figura N°3.9	Extracción del agregado fino de la cantera	
	Don Segundo	21
Figura N°3.10	Ensayo de granulometría	23
Figura N°3.11	Curva granulométrica, cantera San Martín de Porres	24
Figura N°3.12	Curva granulométrica, cantera Don Segundo	25
Figura N°3.13	Muestra en el horno	26
Figura N°3.14	Compactación de la arena para el P.U.C.	27
Figura N°3.15	Ensayo de peso específico y absorción	29
Figura N°3.16	Condición superficialmente seca de la arena	29
Figura N°3.17	Lavado de la arena fina en el tamiz N°200	31

Figura N°3.18	Ensayo de impurezas orgánicas	32
Figura N°3.19	Impurezas orgánicas para la cantera	
	San Martín de Porres	33
Figura N°3.20	Impurezas orgánicas para la cantera	
	Don Segundo	34
Figura N°5.1	Ensayo de asentamiento de la mezcla de	
	mortero para la cantera Don Segundo,	
	a/c=0.70, 0.65 y 0.60	49
Figura N°5.2	Ensayo de asentamiento de la mezcla de	
	mortero para la cantera San Martín de Porres,	
	a/c=0.70, 0.65 y 0.60	50
Figura N°5.3	Método de apisonado aplicado a la mezcla del mortero	51
Figura N°5.4	Lectura del equipo de Washington	52
Figura N°5.5	Extracción del agua de la mezcla	53
Figura N°5.6	Ensayo de tiempo de fraguado para el mortero	55
Figura N°5.7	Gráfica resistencia a la penetración versus	
	el tiempo absoluto acumulado	56
Figura N°6.1	Cantidad de probetas de mortero por cada tanda	57
Figura N°6.2	Ensayo de resistencia a la compresión	58
Figura N°6.3	Resistencia vs (a/c) para la cantera	
	Don Segundo a los 28 días	64
Figura N°6.4	Resistencia vs. (a/c) para la cantera	
	Don Segundo a los 45 días	64
Figura N°6.5	Resistencia vs. (a/c) para la cantera	
	San Martín de Porres a los 28 días	65
Figura N°6.6	Resistencia vs. (a/c) para la cantera	
	San Martín de Porres a los 45 días	65
Figura N°6.7	Curva de resistencia según edad, para	
	la cantera Don Segundo	66
Figura N°6.8	Curva de resistencia según edad, para	
	la cantera San Martín de Porres	67
Figura N°6.9	Curva de resistencia según edad, relación a/c=0.70	69
Figura N°6.10	Curva de resistencia según edad, relación a/c=0.65	69
Figura N°6.11	Curva de resistencia según edad, relación a/c=0.60	69

Figura N°6.12	Curva de resistencia según la relación		
	agua/cemento, para los 28 días del ensayo de mortero	70	
Figura N°6.13	Mediciones del diámetro, altura y peso de la probeta	76	
Figura N°6.14	Ajuste del compresómetro para realizar		
	el ensayo de módulo de elasticidad	76	
Figura N°6.15	Distancias entre eje de la probeta y eje del pivote	77	
Figura N°6.16	Compresómetro instalado en la probeta de mortero	77	
Figura N°6.17	Ensayo de módulo de elasticidad	78	
Figura N°6.18	Probeta ensayada a compresión después del		
	ensayo de módulo de elasticidad, con falla tipo 5	78	
Figura N°6.19	Comportamiento de un material isotrópico	87	
Figura N°7.1	Módulo de elasticidad vs. Resistencia a la compresión	104	

LISTA DE TABLAS

		Pág.
Tabla N°1.1	Parámetros climáticos promedio de Iquitos	3
Tabla N°1.2	Población histórica de Iquitos	7
Tabla N°3.1	Requisitos granulométricos del	
	agregado fino para mortero	22
Tabla N°3.2	Placa orgánica	33
Tabla N°6.1	Resistencia promedio a la compresión requerida	
	cuando hay datos disponibles para establecer	
	una desviación estándar de la muestra	59
Tabla N°6.2	Valores de módulo de elasticidad en otros sistemas	
	de unidades	71
Tabla N°7.1	Clasificación del concreto según su peso unitario	95

LISTA DE SÍMBOLOS Y DE SIGLAS

Abs : Absorción expresada en porcentaje

ACI : Instituto Americano del Concreto

a/c : Relación agua/cemento

ASTM: Sociedad Estaunidense para Pruebas y Materiales

C : Coeficiente que relaciona el Módulo de Elasticidad con la resistencia a

compresión

CH : Contenido de humedad expresada en porcentaje

Cv : Coeficiente de variación

E : Módulo de elasticidad o Módulo de Young

Ecm : Módulo de elasticidad del mortero

Feld : Feldespato

f'cm : Resistencia a la compresión del mortero

f'cr : Resistencia promedio requerida

M.F : Módulo de finura

NTP: Norma Técnica Peruana

Ox : Óxido ferroso

P.e. : Peso específico

P.U.C: Peso Unitario Compactado

P.U.O: Peso unitario en obra

P.U.S: Peso Unitario Suelto

Qz : Cuarzo

Ss : Desviación estándar de la muestra

W.U.S: Peso Unitario Seco

σ : Esfuerzo normal

ε : Deformación normal

 $arepsilon_{l}$: Deformación lateral

 $arepsilon_a$: Deformación axial

u: Relación de Poisson

INTRODUCCIÓN

El mortero es un material comúnmente usado en la construcción, en zonas donde hay escasez de agregado grueso. Por ello en la presente tesis se realizaron estudios acerca de los agregados finos utilizados en la ciudad de Iquitos, primero se detallaron algunos aspectos más generales de la ciudad. como el clima, la población, topografía, entre otros, con el fin de que estos datos nos puedan servir como referencia para entender el tipo de construcción y disponibilidad de los materiales que hay en la zona. En el capítulo II se explica acerca del módulo de elasticidad, para qué se usa, en qué casos se usa, y su importancia en el diseño de estructuras. Para realizar los estudios, se eligieron dos canteras de la ciudad de Iquitos, y en el capítulo III, se calcularon sus propiedades físicas de cada cantera. Cuando se conocieron las propiedades físicas del agregado fino, en el capítulo IV se realizaron tres diseños de mezcla. es decir, el objetivo era llegar a resistencias de 175 kg/cm², 210 kg/cm² y 280 kg/cm², que son los diseños más utilizados para las construcciones en general. Cuando se encontraron las proporciones de mezcla que cumplen con los diseños requeridos, en el capítulo V se estima el cálculo de las principales propiedades del mortero en estado fresco, entre las principales tenemos su consistencia, tiempo de fraguado, entre otras cosas. En el capítulo VI, se realizaron los ensayos de compresión a las probetas de mortero, a los 28 días y 45 días, tiempos en los cuáles, el mortero llega a su máxima resistencia a la compresión. en conjuntos con éstos ensayos, se realizaron los ensayos de módulo de elasticidad estático, muy utilizados este módulo, en los diseños de proyectos de construcción. Teniendo los valores de resistencia a la compresión y módulo de elasticidad, en el capítulo VII se calcularon por promedios aritméticos, las expresiones de la fórmula de módulo de elasticidad para el caso de morteros con arena blanca. Finalmente en el capítulo VIII, se dan a conocer los resultados más resaltantes del estudio del módulo de elasticidad para morteros, a través a las conclusiones y recomendaciones.

CAPÍTULO I : CARACTERIZACIÓN DE LA ZONA

1.1 UBICACIÓN GEOGRÁFICA

La ciudad de Iquitos se localiza en el noreste del Perú, y en el extremo sur de la provincia de Maynas (ver figura N°1.1). Asentada en una llanura llamada la Gran Planicie, la ciudad tiene una extensión de 5932.25 km². Se encuentra aproximadamente en las coordenadas geográficas 03°43'46" de latitud sur y 73°14'18" de longitud oeste a 106 metros sobre el nivel del mar, siendo dentro de las ciudades de la Región Oriente la que se encuentra a menor altitud. Está asentada en la margen izquierda del río Amazonas, limitando por el norte con el río Nanay; por el este con el río Amazonas; por el sur con el río Itaya; y por el oeste con el lago Moronacocha y río Nanay (ver figura N°1.2).

Además de ser la capital de la Provincia de Maynas, es la capital de la Región Loreto y por lo tanto es sede de la dirección administrativa.

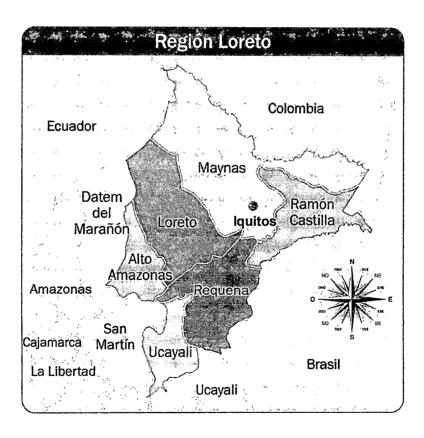


Figura N°1.1 Mapa de la región Loreto. Referencia: http://www.amazonia.pe/loreto.

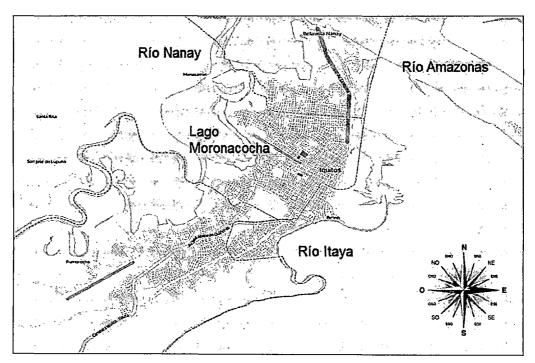


Figura N°1.2 Límites de la ciudad de Iquitos. Referencia: http://www.bdvilles.ird.fr/lortic_pages/pages_2012/cuidades_amazonicas/cuidades_s.php3.

1.2 CLIMA

La zona geográfica en la que se encuentra la ciudad de Iquitos está caracterizada por presentar fuertes precipitaciones y elevadas temperaturas. Las precipitaciones para la ciudad de Iquitos, alcanza los 3000 mm anuales siendo el más elevado de toda la Región Loreto.

Iquitos experimenta un clima ecuatorial. A lo largo del año tiene precipitaciones constantes por lo que no hay una estación seca bien definida, y tiene temperaturas que van desde los 21 °C a 33 °C (ver tabla N°1.1). La temperatura promedio anual de Iquitos es 26.7 °C. La Iluvia promedia en Iquitos es 2,616.2 mm por año. Debido que las estaciones del año no son sensibles en la zona ecuatorial, Iquitos tiene exclusivamente dos estaciones: invierno y verano.

Tiene un pluvioso invierno, que llega en noviembre y termina en mayo, con marzo y abril tendiendo a incluir el clima más húmedo (ver figura N°1.3). Las precipitaciones alcanzan alrededor de 300 mm y 280 mm, respectivamente. En mayo, el río Amazonas, uno de los ríos circundantes de la ciudad, alcanza sus niveles más altos, cayendo constantemente unos 9 metros ó 12 metros a su punto más bajo en octubre, y luego aumenta de manera constante cíclicamente.

El verano ofrece un clima muy diferente. A pesar de que julio y agosto son los meses más secos, se mantienen algunos períodos de aguaceros. Los días soleados y el buen tiempo son usuales, alcanzando temperaturas elevadas de 30 °C y como promedio 32 °C.

Iquitos también experimenta microclimas: La lluvia o garúa puede estar presente en algunas zonas de los distritos, mientras otros lugares de la ciudad se encuentran ligeramente nublados o despejados. La temperatura quizás varíe. El clima urbano es ligeramente más cálido que el clima natural, y estaría reflejado por la sensación térmica. También sufre un fenómeno urbano llamado isla de calor, donde el calor tiene una dificultad en disiparse en las horas nocturnas.

Parámetros climáticos promedio de Iguitos Mes Abr Mav Oct Ene Feb Dic Anual Temperatura máxima absoluta (°C) 21 Temperatura máxima media (°C) Temperatura media (°C) 258 Temperatura minima media (°C) 21.3 Temperatura mínima absoluta (°C) 11.8 11 13.8 12.9 Precipitación total (mm) 173.8 292.1 254.2 266.1 210.1 316.6 292.1 189.7 187.3 209.5 286.9 301.2 Horas de sol 97.11 105.8 | 97.38 | 110.3 | 113.72 | 140.84 | 154.74 | 138.96 | 131.76 | 124.19 | 124.64 Humedad relativa (%)

Tabla N°1.1 Parámetros climáticos promedio de Iquitos

Referencia: http://www.tutiempo.net/clima/lquitos/2012/843770.htm.

Figura N°1.3 Acostumbrado escenario lluvioso en Iquitos a inicios de abril, durante la etapa más húmeda de su estación lluviosa. Referencia: https://upload.wikimedia.org/wikipedia/commons/3/3e/Iquitos_en_lluvia.jpg.

1.3 HIDROGRAFÍA

La ciudad de Iquitos se encuentra situada a la orilla izquierda del principal río de la región: el Amazonas, situación que le permite tener una dinámica importante en la vida económica de la región, especialmente en lo que a transporte y comercio se refiere.

El río Amazonas por tener su origen en los Andes peruanos tiene sus aguas de consistencia espesa y de color marrón debido a la arcilla y limo que arrastra y que permite grandes sedimentaciones para la agricultura temporal. La presencia de abundante plancton hace del Amazonas un río ictiológicamente rico.

Así mismo el Amazonas es el río más navegable y navegado del oriente, lo que permite la presencia de barcos transoceánicos (ver figura N°1.4), hasta de 20 pies de calado, en el puerto de Iguitos, durante casi todo el año.



Figura N°1.4 Recorrido del río Amazonas. Referencia:

http://cf067b.medialib.glogster.com/media/cd/cd8eb46b484acfa43e525c3bf207aa 59339bcc602c1142892a6b36635f0613da/mapa-de-amazonas-png.png.

Existen otros ríos como el Itaya y Nanay, ambos desembocan en el río Amazonas.

Además de estos ríos mencionados existen un sinnúmero de lagos y cochas que son originados por los meandros de los ríos al cambiar de cauce, tal como el de Moronacocha.

1.4 CARACTERÍSTICAS GEOLÓGICAS

Según la Oficina Nacional de Evaluación de Recursos Naturales (ONERN), la ciudad de Iquitos geológicamente se encuentra en una formación de origen terciario superior – cuaternario (ver Anexo 1) conformada litológicamente por lutitas gris oscuras, poco consolidadas, con restos de flora y fauna, y con numerosos lentes de arena blanca con alto contenido de sílice (ver figura N° 1.5).

Figura N°1.5 Típico aspecto de un suelo arenoso.

Los suelos residuales originados por los sedimentos que constituyen esta formación son arenosos, arena – arcillosos y de profundidad variable.

Desde el punto de vista sismológico, la ciudad de Iquitos se encuentra ubicada en la zona 1 del Mapa de zonificación sísmica del Perú (ver figura N°1.6), que corresponde al Reglamento Nacional de Edificaciones (RNE), por lo que corresponde a esta ciudad el coeficiente sísmico de menor valor para las tres macrozonas en que se encuentra dividido el país.

Figura N°1.6 Zonas Sísmicas. Referencia:

http://www.bibliocad.com/library/peruvian-norms-structural-design_35619.

1.5 DEMOGRAFÍA

Iquitos es la ciudad más populosa de la Amazonia Peruana y de la región Loreto, con un estimado de 457,865 residentes hasta el 2012. Hasta el censo peruano de 2007, la población de la ciudad tuvo una población de 406,340 habitantes.

Según el censo de 2007, el 60% y 80% de la población iquiteña es indígena o se considera descendientes de indígenas. Es decir, una población indígena en lquitos está conformada entre 220 y 300 mil habitantes aproximadamente, proviniendo principalmente de los pueblos *boráa* (bora), witoto (huitoto), yagua, tikuna, ocaina, y sobre todo *kukama* (cocama) y kichwa.

En 1808, Hipólito Sánchez Rangel, el obispo de Maynas, reportó que el caserío de Iquitos tenía 171 habitantes y para el 8 de junio de 1842, fecha en la que lquitos fue elevada a distrito, contaba con algo más de 200 habitantes. En 1860, según Paz Soldán, el pueblo tenía sólo 300 habitantes. Dos años más tarde, la población se incrementó a cerca de 431 pobladores y en 1864, se registran 648 habitantes, predominantemente mestizos por la presencia de familias procedentes de Borja, Santiago, Santa Teresa, Barranca y otros, que huyeron del ataque de nativos Huambisas y Aguarunas que destruyeron estos pueblos. Según Jenaro Herrera, en 1866 Iquitos contaba con una población de 648

personas. Para 1876, nuevamente el mismo autor reporta una población de 1,475 habitantes.

En 1903, en plena época del caucho, Iquitos contaba con 9,438 habitantes (según censo de Benito Lores), entre los cuales habían 542 extranjeros; la mayoría de ellos eran de España (95), Brasil (80), China (74), Portugal (64) y otros tantos de Italia, Inglaterra, Francia, Ecuador, Estados Unidos de América, Rusia, Suiza y Marruecos. En 1928, Iquitos contaba con 22,575 habitantes, con un incremento población rápido entre 1903 y 1928 con 139.5% debido a la inmigración. Y hasta 1994, la población creció 40.98% en un lapso de 12 años, el cual se debió al incremento del personal de las Fuerzas Armadas por efectos de los conflictos fronterizos con Colombia en 1932 y con Ecuador en 1941. Según el censo de 1961, la población de Iquitos alcanzó la cifra de 57,772 personas que correspondía al 100% de la población urbana del distrito de Iquitos. En 1964, alcanzó los 76,400 habitantes (ver tabla N°1.2).

Tabla N°1.2 Población histórica de Iquitos

Población histórica		
Año	Población	
1808	171	
1842	200	
1860	300	
1862	431	
1864	648	
1876	1475	
1903	9438	
1928	22575	
1961	57772	
1964	76400	
1972	110242	
1981	173629	
1993	252312	
2007	406340	
2012	457865	

Fuente: 1903 – 1981(Instituto de Investigación de la Amazonía Peruana); 1862, 1876, 1993 (Panorama Histórico de la Amazonía Peruana); 2007 (Censos Nacionales 2007 XI de Población y VI de Vivienda); 2012 (Instituto Nacional de Estadística e Informática).

1.6 VÍAS DE COMUNICACIÓN

La red fluvial a través de los ríos es la que constituye el principal medio de transporte entre lquitos e innumerables puntos situados en las márgenes de los ríos, especialmente el río Amazonas. Pero en la década de los 70, el flujo de transporte fluvial se ha visto incrementado considerablemente, debido a la necesidad de materiales para los trabajos petroleros.

Iquitos cuenta con un muelle situado a la margen izquierda del río Amazonas y está conectada a la ciudad por una carretera de concreto con doble vía. El muelle de Iquitos constituye el último punto de atraco de las naves transoceánicas de la Amazonía. Entre 190 y 1975 la carga general movilizada por el muelle de Iquitos se incrementó en un 670%. Este alto incremento es explicado por la actividad petrolera.

En lo que se refiere al transporte aéreo, Iquitos cuenta con la mejor infraestructura para la aviación comercial a través del Aeropuerto Internacional "Coronel FAP Francisco Secada Vignetta" (ver figura N°1.7).

El transporte aéreo intrarregional se hace en forma permanente entre Iquitos, la capital de La República y otras ciudades de la zona. El transporte internacional une a Iquitos con Miami (Estados Unidos), con Manaos (Brasil), Leticia (Colombia). De todos ellos el más importante en cuanto al volumen de pasajeros es el que une Iquitos con la capital Lima.

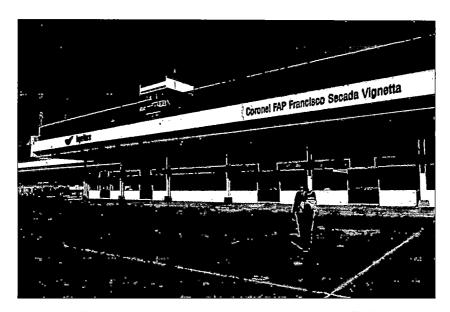


Figura N°1.7 Aeropuerto Internacional de Iquitos. Referencia: http://www.aeropuertos.net/aeropuerto-internacional-coronel-fap-francisco-secada-vignetta.

1.7 EL PROCESO DE URBANIZACIÓN DE IQUITOS

El crecimiento poblacional apreciado anteriormente (ver página 25), sirvió de base para el inicio de un proceso de urbanización, mediante la instalación de importantes obras de infraestructura urbana: en 1905 se instaló el alumbrado eléctrico particular; se inauguró el ferrocarril urbano (28 de Octubre del mismo año); el 16 de junio de 1912 se estableció la telegrafía inalámbrica entre Lima e lquitos. Es más, durante el gobierno del Presidente Leguía se aprobó el 3 de noviembre de 1911, la Ley 1437 para concertar un empréstito de 200 mil libras con el objeto de llevar a cabo la instalación de agua potable, canalización y pavimentación de la ciudad de lquitos.

Con la ejecución de las obras mencionadas Iquitos había alcanzado ya el rango de ciudad y se asentaba definitivamente a la orilla izquierda del río Amazonas, entre los ríos Nanay, Itaya y el lago Moronacocha, a su vez quedaba sellado su carácter de ciudad comercial — militar — administrativa, fluctuando la hegemonía de uno de estos aspectos de acuerdo a la coyuntura económica y política.

Por Ley 4126 del 12 de mayo de 1920, el poder Ejecutivo quedaba autorizado para realizar los contratos respectivos a fin de dotar de servicios apropiados de agua, desagüe, pavimentación y eliminación de basura aprovechando las instalaciones existentes en 32 ciudades del país, dentro de las cuales se consideraba a la ciudad de Iguitos.

Considerada una de las urbes más importantes del Perú por su histórica europeización, tuvo protagonismo en la fiebre del caucho (1880 – 1914), período de gran desarrollo económico y social que dotó su particular identidad urbana y cultural. Posteriormente, la ciudad se consolidó en sus cuatro municipalidades lquitos, Belén, Punchana y San Juan Bautista hasta 1999. Es una ciudad cosmopolita con fuertes raíces amazónicas.

CAPÍTULO II : EL MÓDULO DE ELASTICIDAD

2.1 CONCEPTOS GENERALES

Los materiales se deforman en respuesta a las cargas o fuerzas. Para ello se debe tomar en cuenta los siguientes conceptos que se utilizarán más adelante para realizar los ensayos:

2.1.1 Relaciones esfuerzo-deformación

En 1678, Robert Hooke publicó los primeros hallazgos que documentaban una relación lineal entre la cantidad de fuerza aplicada a un elemento y su deformación. La cantidad de deformación es proporcional a las propiedades del material y sus dimensiones. El efecto de las dimensiones se puede normalizar. Dividiendo la fuerza entre el área de la sección transversal del elemento se normaliza el efecto del área cargada. La fuerza por unidad de área se define como el esfuerzo σ ejercido sobre el elemento (es decir, σ = Fuerza/Área).

El cociente entre el alargamiento y la longitud se define como la deformación unitaria ε del elemento (es decir, ε = Variación de longitud/Longitud original). A partir del diagrama esfuerzo—deformación es posible obtener mucha información útil acerca de un material.

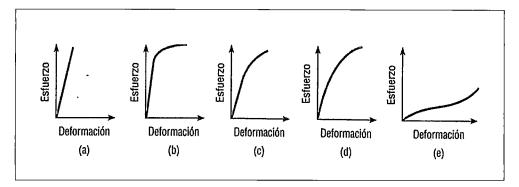


Figura N°2.1 Diagramas típicos monoaxiales esfuerzo – deformación para algunos materiales de ingeniería. Fuente: "Materiales para Ingeniería Civil", Mamlouk Z.

La figura N°2.1 muestra varias curvas típicas monoaxiales de esfuerzodeformación para tracción o compresión para diversos materiales de ingeniería. La figura N°2.1(a) muestra la relación esfuerzo-deformación lineal hasta cierto punto en que falla el material. La figura N°2.1(b) muestra el comportamiento del acero sometido a tensión. Aquí se obtiene una relación lineal hasta un cierto punto (límite de proporcionalidad), después del cual el material se deforma sin que se produzca un gran incremento de esfuerzo. Por otro lado, las aleaciones de aluminio exhiben una relación esfuerzo—deformación lineal hasta un límite de proporcionalidad, después del cual existe una relación no lineal, como se ilustra en la figura N°2.1(c). La figura N°2.1(d) muestra una relación no lineal a lo largo de todo el rango. El concreto y otros materiales presentan este tipo de relación, aunque la primera parte de la curva correspondiente al concreto es bastante próxima al caso lineal. El caucho blando sometido a tensión difiere de la mayoría de los materiales, en el sentido de que muestra una relación esfuerzo-deformación casi lineal seguida de una curva invertida, como muestra la figura N°2.1(e).

2.1.2 Comportamiento elástico. Relación de Poisson. Ley de Hooke

Si un material exhibe un verdadero comportamiento elástico, debe tener una deformación instantánea a la carga, y el material debe volver a su forma original cuando la carga se elimina. Muchos materiales, incluyendo la mayoría de los metales, presentan un comportamiento elástico, al menos para niveles de esfuerzo bajos. La deformación elástica no modifica la disposición de los átomos dentro del material, sino lo que hace es provocar un estiramiento de los enlaces existentes entre los átomos. Cuando se elimina la carga, los enlaces atómicos vuelven a su posición original.

En la prueba de compresión axial, a medida que el material se contrae, se produce un aumento de la sección transversal en la dirección lateral. La relación entre la deformación lateral, ε_l , y la deformación axial, ε_a , se denomina *relación de Poisson*,

$$v = \frac{-\varepsilon_l}{\varepsilon_a}$$

Puesto que las deformaciones axial y lateral siempre tendrán signo distinto, se incluye un signo negativo en esta última ecuación para hacer que la relación sea positiva. La relación de Poisson tiene un rango teórico que va de 0.0 a 0.5, donde 0.0 es para un material compresible en el que las direcciones axial y lateral no se afecten entre sí. El valor 0.5 corresponde a un material que no cambia de volumen cuando se aplica la carga. La mayoría de los sólidos presentan relaciones de Poisson comprendidas entre 0.10 y 0.45.

La ley de elasticidad de Hooke o ley de Hooke, originalmente formulada para casos de estiramiento longitudinal, establece que el alargamiento unitario que experimenta un material elástico es directamente proporcional a la fuerza aplicada sobre el mismo:

$$\varepsilon = \frac{\delta}{L} = \frac{F}{AE}$$

Aunque el módulo de Young y la relación de Poisson se definieron para la condición de esfuerzo monoaxial, también son importantes a la hora de describir las relaciones esfuerzo—deformación tridimensionales. Si se somete a un elemento cúbico homogéneo e isotrópico con respuesta elástica lineal a esfuerzos normales σ_x , σ_y y σ_z en las tres direcciones ortogonales (como se muestra en la figura N°2.2), pueden calcularse las deformaciones normales ε_x , ε_y y ε_z mediante la *ley de Hooke generalizada*.

$$\varepsilon_{x} = \frac{1}{E} [\sigma_{x} - \nu (\sigma_{y} + \sigma_{z})]$$

$$\varepsilon_{y} = \frac{1}{E} [\sigma_{y} - \nu (\sigma_{x} + \sigma_{z})]$$

$$\varepsilon_{z} = \frac{1}{E} [\sigma_{z} - \nu (\sigma_{x} + \sigma_{y})]$$

Figura N°2.2 Ecuación de Hooke generalizada.

Fuente: "Materiales para Ingeniería Civil", Mamlouk Z.

No hay que confundir linealidad con elasticidad. La relación esfuerzodeformación de un material lineal sigue una línea recta. Por ejemplo, la figura N°2.3(a) representa un comportamiento elástico lineal, mientras que la figura N°2.3(b) representa un comportamiento elástico no lineal.

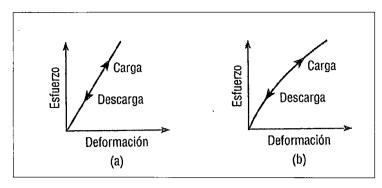


Figura N°2.3 Comportamiento elástico: (a) lineal y (b) no lineal.

Fuente: "Materiales para Ingeniería Civil", Mamlouk Z.

2.2 MÓDULO DE ELASTICIDAD

El módulo de elasticidad, definido por la letra E (esfuerzo/deformación), es una medida de la rigidez, o sea la resistencia del mortero a la deformación.

El mortero no es un material verdaderamente elástico, pero el mortero que ha endurecido por completo y se ha cargado en forma moderada tiene una curva de esfuerzo de compresión-deformación que, en esencia, es una recta dentro del rango de los esfuerzos usuales de trabajo.

Young observó que los diferentes materiales elásticos presentan constantes de proporcionalidad entre el esfuerzo y la deformación diferentes. Para un material elástico, homogéneo, isotrópico y lineal, la constante de proporcionalidad entre el esfuerzo normal y la deformación normal de un elemento axialmente cargado es el módulo de elasticidad o módulo de Young, E, que es igual a:

$$E=\frac{\sigma}{\varepsilon}$$

Donde σ es el esfuerzo normal y ε es la deformación normal.

El mortero no tiene un módulo de elasticidad bien definido. Su valor varía con las diferentes resistencias del mortero, con la edad de éste con el tipo de carga y con las características del cemento y los agregados. Además hay varias definiciones del módulo. Para los materiales que no muestran un comportamiento lineal, como el mortero y el suelo, puede resultar problemático determinar el módulo de Young o módulo de elasticidad. Para estos materiales, existen diversas opciones para definir arbitrariamente el módulo. La figura N°2.4 muestra cuatro opciones: los módulos de tangente inicial, de tangente, de

secante y de cuerda. La selección del módulo que hay que usar para un material no lineal dependerá del nivel de esfuerzo o de deformación con el que se vaya a utilizar normalmente el material. Asimismo, al determinar los módulos de tangente, de secante o de cuerda, es necesario definir los niveles de esfuerzo o deformación.

- Módulo de tangente inicial. Es la pendiente de la tangente a la curva de esfuerzo – deformación en el origen.
- 2) Módulo de tangente. Es la pendiente de la tangente en un punto determinado de la curva esfuerzo deformación.
- 3) Módulo de secante. Es la pendiente de una cuerda trazada entre el origen y un punto arbitrario de la curva esfuerzo deformación.
- 4) Módulo de cuerda. Es la pendiente de una cuerda trazada entre dos puntos de la curva esfuerzo deformación.

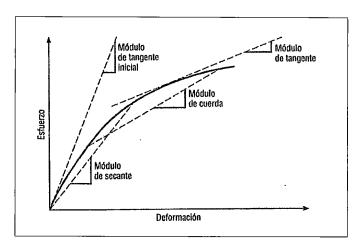


Figura N°2.4 Método para aproximar el módulo.

Fuente: "Materiales para Ingeniería Civil", Mamlouk Z.

Para el caso de la presente tesis, según describe la norma ASTMC-469, se utilizará el módulo secante para realizar los ensayos de módulo de elasticidad en morteros.

CAPÍTULO III : PROPIEDADES DE LOS AGREGADOS FINOS

3.1 EVALUACIÓN DE LAS CANTERAS DE AGREGADOS FINOS

Los ingenieros civiles evalúan los agregados según su capacidad para satisfacer los requisitos específicos de cada proyecto, más que según su historia geológica. Las propiedades físicas y químicas de las rocas determinan la aceptabilidad de una cantera de agregados para un determinado proyecto de construcción. Estas características varían dentro de una misma cantera, lo que hace necesario muestrear y someter a pruebas continuamente a medida que se producen los agregados.

Uno de los principales desafíos a los que se enfrentan los ingenieros civiles en un proyecto es cómo utilizar los materiales localmente disponibles de la manera más económica posible.

Las canteras de agregados finos suelen evaluarse de acuerdo con la naturaleza y cantidad de los materiales más finos y la composición granulométrica del agregado.

El precio y la disponibilidad son criterios universales que son relevantes para todas las aplicaciones de los agregados.

3.2 UBICACIÓN DE LAS CANTERAS EN ESTUDIO

La cantera Don Segundo se encuentra ubicada a 9.5 km. y la cantera San Martin de Porres se encuentra ubicada a 25.3 km. de la carretera Iquitos – Nauta (ver Anexo 2).

3.3 DESCRIPCIÓN MINERALÓGICA DE LAS CANTERAS A ESTUDIAR

En la página 5 correspondiente al capítulo I se describe la geología de la ciudad de Iquitos, se puede ver que está conformada por arena blanca con alto contenido de sílice.

Sílice: $SiO_2 \rightarrow Cuarzo$

El cuarzo es un mineral muy común en los suelos, debido a: 1) su abundancia natural en la mayor parte de las rocas; y 2) su resistencia al ataque químico.

Para observar las características del mineral, se realizó un tamizaje a una muestra de arena de 500 gramos (ver figura N°3.1), cada muestra retenida fue

observada a través del microscopio (ver figura N°3.2). Los resultados están descritos en el Anexo 3.

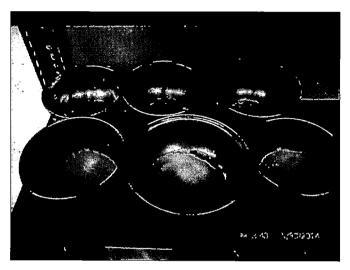


Figura N°3.1 Arena fina tamizada.

Figura N°3.2 Composición de la arena vista a través del microscopio.

Según lo observado en el microscopio se tiene:

- Minerales transparentes. Estos minerales son cuarzos y son de forma redondeados. Están representados por el símbolo Qz.
- Minerales oscuros. Estos minerales son cuarzos redondeados que contienen impurezas. Están representados por el símbolo Qz.
- Minerales blancos o lechosos. Estos minerales son cuarzos y son de forma tubulares, cuyos granos son generalmente más grandes que los cuarzos transparentes y oscuros. También reciben el nombre de

feldespatos y contienen potasio, sodio y calcio, por lo que su coloración tiende a ser blanquecina. Están representados por el símbolo Feld.

 Minerales con puntos negros. Estos minerales son cuarzos con impregnaciones de fierro. Están representados por el símbolo Ox.

Los resultados que se hacen a continuación son aproximados, debido a la gran cantidad de partículas vistas a través del microscopio.

Primera muestra: Malla N°16 (ver figura N°3.3)

Cantidad = 0.9 gramos.

Cuarzo = 85%

Feldespato = 15%

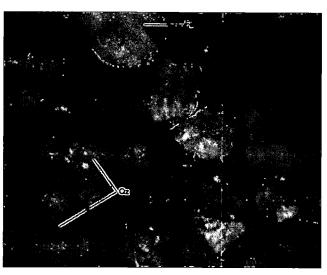


Figura N°3.3 Arena blanca vista a través de la malla N° 16.

Segunda muestra: Malla N°30 (ver figura N°3.4)

Cantidad = 14.5 gramos.

Cuarzo = 80%

Feldespato = 20%

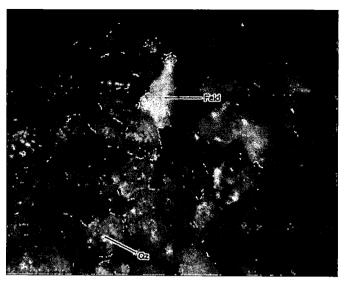


Figura N°3.4 Arena blanca vista a través de la malla N° 30.

Tercera muestra: Malla N°50 (ver figura N°3.5)

Cantidad = 103.9 gramos.

Cuarzo = 90%

Feldespato = 10%

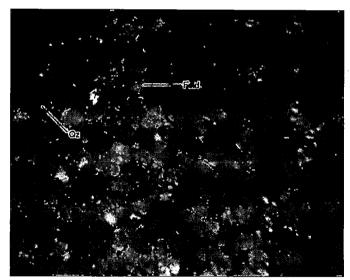


Figura N°3.5 Arena blanca vista a través de la malla N° 50.

Cuarta muestra: Malla N°100 (ver figura N°3.6)

Cantidad = 103.9 gramos.

Cuarzo = 94% Feldespato = 5%

Óxido ferroso = 1%

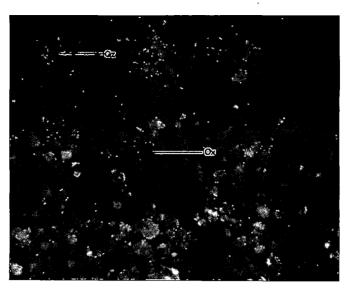


Figura N°3.6 Arena blanca vista a través de la malla N° 100.

Quinta muestra: Malla N°200 (ver figura N°3.7)

Cantidad = 103.9 gramos.

Cuarzo = 93%

Feldespato = 5%

Óxido ferroso = 2%

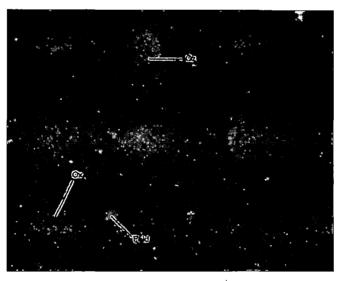


Figura N°3.7 Arena blanca vista a través de la malla N° 200.

En el siguiente cuadro resumen, se muestra la cantidad en porcentaje de los minerales observados en cada tamiz retenido, para una muestra de 500 gramos de arena blanca.

Promedio

100

%Minerales retenidos Malla feldespato óxido ferroso total cuarzo N° 16 85 15 0 100 N° 30 10 90 0 100 N° 50 95 0 100 5 N° 100 90 3 7 100 N° 200 90 2 8 100

Cuadro N°3.1 Minerales observados en cada tamiz

Fuente: Elaboración propia.

En resumen, en una muestra de arena se observa que el 90% es cuarzo, 7% feldespatos y 3% de óxido ferroso. Los feldespatos y óxidos de fierro, suelen ser componentes minoritarios, heredados o residuales de la roca sobre la que se forma en el suelo, tendiendo a transformarse en minerales de la arcilla.

3.4 TIPO DE EXPLOTACIÓN DEL AGREGADO FINO

90

En el caso de las canteras de la ciudad de Iquitos, son depósitos fluviales, y se realizan explotación por arrastre, y consiste en extraer el material por medios mecánicos, lo cual generalmente se hace a cielo abierto, según la localización a nivel superficial (lecho de un río) o profundo (por ejemplo cantos rodados en una matriz de arcilla) del yacimiento. En la figura N°3.8 se observa la extracción de agregado fino de la cantera San Martín de Porres, de manera natural, para luego realizar los ensayos de materiales y determinar sus propiedades físicas y mecánicas para la elaboración de morteros.

Figura N°3.8 Extracción del agregado fino de la cantera San Martin de Porres.

Asimismo, se observa en la figura N°3.9, el traslado de la arena de la cantera Don Segundo al camión, cuya extracción fue similar al de la cantera San Martín de Porres.

Figura N°3.9 Extracción del agregado fino de la cantera Don Segundo.

3.5 PROPIEDADES FÍSICAS DEL AGREGADO FINO

Los requerimientos para los agregados finos para mortero se encuentran en las normas: Granulometría (N.T.P. 400.012), Contenido de humedad (N.T.P. 339.185), Peso unitario (N.T.P. 400.017), Peso específico y absorción (N.T.P. 400.022), Material que pasa la malla N° 200 (N.T.P. 400.018) e Impurezas orgánicas (N.T.P. 400.024).

En el siguiente cuadro se observa la cantidad de ensayos hechos para cada cantera en estudio.

Cuadro N°3.2 Cantidad de ensayos realizados por canteras

Ensayo	Norma técnica	canteras		
Lisayo	Norma tecnica	San Martin de Porres	Don Segundo	
Granulometría	N.T.P. 400.012	3	3	
Contenido de humedad	N.T.P. 339.185	3	3	
Peso unitario suelto	N.T.P. 400.017	3	3	
Peso unitario compactado	N.T.P. 400.017	3	3	
Peso específico	N.T.P. 400.022	3	3	
Absorción	N.T.P. 400.022	3	3	
Malla N° 200	N.T.P. 400.018	3	3	
Impurezas orgánicas	N.T.P. 400.024	3	3	

Fuente: Elaboración propia.

Los resultados de los ensayos anteriormente mencionados se encuentran descritos en el Anexo 4.

3.5.1 Granulometría (N.T.P. 400.012)

La granulometría describe la distribución de tamaños de las partículas del agregado. Esta distribución es un atributo importante de los agregados, y los requisitos que deben cumplir los agregados finos se observan en la siguiente tabla:

Tabla N°3.1 Requisitos granulométricos del agregado fino para mortero

TA	MIZ	Porcentaje que pasa (%)	
pulg	mm	Arena natural	Arena procesada
N°4	4.75	100	100
N°8	2.38	95 - 100	95 - 100
N°16	1.19	75 - 100	70 - 100
N°30	0.6	40-75	40 - 75
N°50	0.3	10 - 35	20 - 40
N°100	0.15	2 - 15	10 - 25

Fuente: "Tecnología del Concreto", Jairo René Niño Hernández, año 2014.

De los requisitos granulométricos del agregado fino para mortero, para la presente tesis, corresponde para arena natural, ya que el agregado utilizado en la elaboración de morteros se explota de manera natural.

Las mallas usadas para determinar la gradación de los agregados finos son las N°4, N°8, N°16, N°30, N°50, N°100, y están de acuerdo con sus aberturas cuadradas (ver figura N°3.10).

Módulo de finura: Se define como el número que se obtiene al dividir por 100 la suma de los porcentajes retenidos acumulados en los tamices de la serie normalizada. El valor de este módulo es mayor cuando el agregado contiene granos más gruesos y decrece cuando el agregado disminuye de tamaño. Se interpreta, como la indicación del tamiz en que, supuestamente, quedaría retenido o pasaría el 50% del material.

Figura N°3.10 Ensayo de granulometría.

 En el cuadro N°3.3 se presentan los resultados del análisis granulométrico de la cantera San Martín de Porres, y la curva granulométrica se observa en la figura N°3.11.

Cuadro N°3.3 Análisis Granulométrico, cantera San Martín de Porres

Tar	miz	Peso % Peso % Reter		% Retenido	% Acumulado
(Pulg)	(mm)	Retenido (gr.)	Retenido	Acumulado	Pasa
N°4	4.75	0.0	0.0	0.0	100.0
N°8	2.38	0.0	0.0	0.0	100.0
N°16	1.19	0.3	0.1	0.1	99.9
N°30	0.60	6.6	1.3	_1.4	98.6
N°50	0.30	87.6	17.5	18.9	81.1
N°100	0.15	308.5	61.7	80.6	19.4
FONDO	0.075	97.1	19.4	100.0	0.0

Fuente: Elaboración propia.

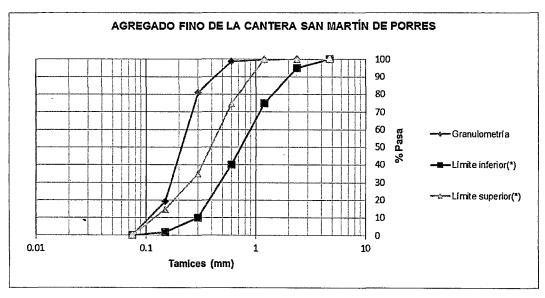


Figura N°3.11 Curva granulométrica, cantera San Martín de Porres.

(*) Los límites corresponden al huso granulométrico para la arena fina, que se muestra en la Tabla N°3.1.

Cálculo del módulo de finura de la cantera San Martín de Porres:

$$M.F. = (0 + 0 + 0.1 + 1.4 + 18.9 + 80.6) / 100$$

M.F. = 1.01

De la figura anterior se observa que la granulometría no cumple con los requisitos especificados en la Norma Técnica Peruana, y se ve reflejado en el módulo de finura, donde indica que se trata de un agregado muy fino, de ahí se ve cuanto influye en la elaboración del mortero.

 En el cuadro N°3.4 se presentan los resultados del análisis granulométrico de la cantera Don Segundo, y la curva granulométrica se observa en la figura N°3.12.

Tamiz Peso % Peso % Retenido % Acumulado (Pulg) Retenido (gr.) Retenido Acumulado Pasa (mm) 100.0 N°4 4.75 0.0 0.0 0.0 N°8 2.38 0.0 0.0 0.0 100.0 N°16 1.19 0.9 0.2 0.2 99.8 N°30 0.60 15.2 3.0 3.2 96.8 N°50 0.30 216.5 43.3 46.5 53.5 N°100 150.6 76.6 0.15 30.1 23.4 FONDO 116.8 100.0 0.075 23.4 0.0

Cuadro N°3.4 Análisis Granulométrico, cantera Don Segundo

Fuente: Elaboración propia.

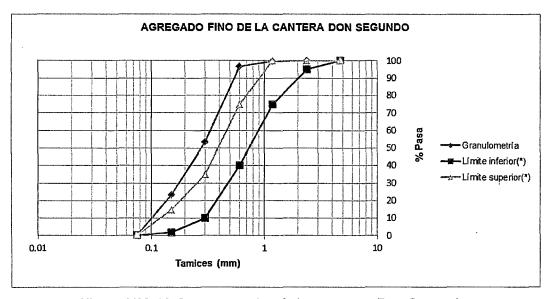


Figura N°3.12 Curva granulométrica, cantera Don Segundo.

(*) Los límites corresponden al huso granulométrico para la arena fina, que se muestra en la Tabla N°3.1.

Cálculo del módulo de finura de la cantera Don Segundo:

$$M.F. = (0 + 0 + 0.2 + 3.2 + 46.5 + 76.6) / 100$$

M.F. = 1.26

De la figura anterior se observa que la granulometría no cumple con los requisitos especificados en la Norma Técnica Peruana, y se ve reflejado en el módulo de finura, cuyo valor resultó mayor que la primera cantera, de igual manera indica que se trata de un agregado muy fino.

3.5.2 Contenido de humedad (N.T.P. 339.185)

Es la cantidad de agua que contiene el agregado en un momento dado. Los agregados generalmente se encuentran húmedos, y varían con el estado del tiempo, razón por la cual se debe determinar frecuentemente el contenido de humedad, para luego corregir las proporciones de una mezcla. En la figura N°3.13 se observa la colocación de las muestras húmedas en el horno para calcular el contenido de humedad a una temperatura constante de 110°C.

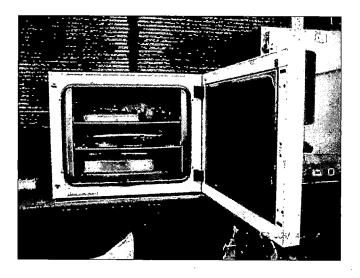


Figura N°3.13 Muestra en el horno.

 En el cuadro N°3.5 se presenta el resultado de los ensayos de contenido de humedad para la cantera San Martín de Porres.

Cuadro N°3.5 Contenido de humedad, cantera San Martin de Porres

Peso de la muestra en estado ambiental	500	gr.
Peso de la muestra seca al horno	493.8	gr.
Peso del agua perdida	6.2	gr.
Contenido de humedad	1.26	%

Fuente: Elaboración propia.

 En el cuadro N°3.6 se presenta el resultado de los ensayos de contenido de humedad para la cantera Don Segundo.

Cuadro N°3.6 Contenido de humedad, cantera Don Segundo

Peso de la muestra en estado ambiental	500	gr.
Peso de la muestra seca al horno	489.9	gr.
Peso del agua perdida	10.1	gr.
Contenido de humedad	2.07	%

Fuente: Elaboración propia.

3.5.3 Peso Unitario (N.T.P. 400.017)

Para establecer las proporciones de las mezclas para mortero de cemento portland, es necesario conocer el peso unitario del agregado, y es simplemente su peso por unidad de volumen. Este peso es variable dependiendo del grado de compacidad, además varía con el tamaño, forma y granulometría del agregado. En la figura N°3.14 se observa la compactación de la arena para el caso del cálculo de peso unitario compactado.

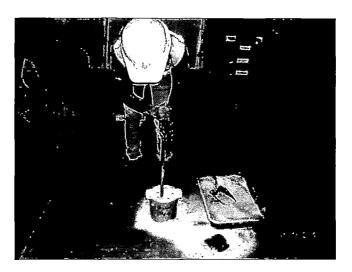


Figura N°3.14 Compactación de la arena para el P.U.C.

 En el cuadro N°3.7 se presentan los resultados de los ensayos de peso unitario suelto y compactado para la cantera San Martín de Porres.

Cuadro N°3.7 Peso Unitario Suelto y Compactado, cantera San Martin de Porres

Descripción	P.U.S.	P.U.C.	Unidad
Peso de la muestra + recipiente	5.70	6.34	kg.
Peso del recipiente	1.60	1.60	kg.
Peso de la muestra	4.10	4.74	kg.
Volumen del recipiente	0.0028	0.0028	m³.
Resultado	1460	1690	kg/m ³ .

Fuente: Elaboración propia.

 En el cuadro N°3.8 se presentan los resultados de los ensayos de peso unitario suelto y compactado para la cantera Don Segundo.

Cuadro N°3.8 Peso Unitario Suelto y Compactado, cantera Don Segundo

Descripción	P.U.S.	P.U.C.	Unidad
Peso de la muestra + recipiente	6.03	6.62	kg.
Peso del recipiente	1.60	1.60	kg.
Peso de la muestra	4.43	5.02	kg.
Volumen del recipiente	0.0028	0.0028	m^3 .
Resultado	1580	1790	kg/m ³ .

Fuente: Elaboración propia.

3.5.4 Peso Específico y Absorción (N.T.P. 400.022)

Peso específico. Las características de peso – volumen de los agregados no son un indicador importante de la cualidad del agregado, pero sí son importantes en el diseño de mezclas de mortero. El peso específico de masa se utiliza para los cálculos cuando el agregado fino está seco o se asume que está seco. El peso específico de masa superficialmente seco se usa si el agregado fino está húmedo, es decir, si su absorción se ha cumplido. El peso específico aparente se refiere al material sólido que componen las partículas constituyentes, este valor no se utiliza comúnmente en la construcción con agregados.

Absorción. La cantidad de agua que absorbe el agregado fino es importante en el diseño del mortero de cemento portland, ya que la humedad capturada en los huecos del agregado no estará disponible para mejorar la facilidad de trabajar el mortero plástico y para reaccionar con el cemento. Es la cantidad de agua absorbida por el agregado después de ser sumergido 24 horas en este, y se expresa como porcentaje del peso.

En la figura N°3.15, se muestra la arena extendida sobre una superficie plana no absorbente, esta muestra se mueve frecuentemente hasta encontrar una condición de flujo libre.

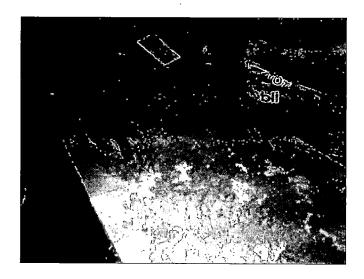


Figura N°3.15 Ensayo de peso específico y absorción.

Realizar la prueba de humedad superficial con la ayuda de un molde a intervalos de tiempo, hasta que la prueba indique que la muestra ha alcanzado una condición de superficie seca, como se observa en la figura N°3.16.

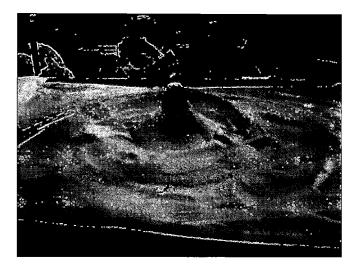


Figura N°3.16 Condición superficialmente seca de la arena.

 En el cuadro N°3.9 se presentan los resultados de los ensayos de peso específico y absorción de las arenas para la cantera San Martín de Porres.

Cuadro N°3.9 Peso Específico y Absorción, cantera San Martin de Porres

Peso de la arena saturada superficialmente seca	500	gr.
Peso de la arena superficial + peso del balón+peso del agua	988.2	gr.
Peso del balón	178.1	gr.
Peso del agua	310.1	gr.
Peso de la arena seca al horno	498.3	gr.
Volumen del balón	500	cm ³ .

Peso específico de masa	2.62	gr./cm ³ .
Peso específico de masa superficialmente seco	2.63	gr./cm ³ .
Peso específico aparente	2.65	gr./cm ³ .
Absorción	0.3	%

Fuente: Elaboración propia.

 En el cuadro N°3.10 se presentan los resultados de los ensayos de peso específico y absorción para la cantera Don Segundo.

Cuadro N°3.10 Peso Específico y Absorción, cantera Don Segundo

Peso de la arena saturada superficialmente seca	500	gr.
Peso de la arena superficial + peso del balón+peso del agua	984.6	gr.
Peso del balón	178.6	gr.
Peso del agua	306.0	gr.
Peso de la arena seca al horno	498.8	gr.
Volumen del balón	500	cm ³ .

Peso específico de masa	2.57	gr./cm ³ .
Peso específico de masa superficialmente seco	2.58	gr./cm ³ .
Peso específico aparente	2.59	gr./cm ³ .
Absorción	0.2	%

Fuente: Elaboración propia.

3.5.5 Material que pasa la malla N° 200 (N.T.P. 400.018)

Es un material muy fino constituido por arcilla y limo, este material en exceso es nocivo para el mortero, ya que disminuye la adherencia del agregado con la pasta e incrementa los requerimientos de agua en la mezcla. En la figura N°3.17

se observa el lavado de la arena en el tamiz N°200, para que la muestra restante sea puesta en el horno para posteriormente realizar el cálculo del porcentaje de finos.

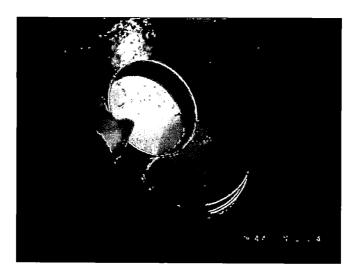


Figura N°3.17 Lavado de la arena fina en el tamiz N°200.

 En el cuadro N°3.11 se presenta el resultado de los ensayos de porcentaje de finos para la cantera San Martín de Porres.

Cuadro N°3.11 Porcentaje de finos, cantera San Martin de Porres

Peso inicial seco	500	gr.
Peso seco lavado	472	gr.
Pérdida de peso	28	gr.
% que pasa la malla N° 200	5.6	%

Fuente: Elaboración propia.

 En el cuadro N°3.12 se presenta el resultado de los ensayos de porcentaje de finos para la cantera Don Segundo.

Cuadro N°3.12 Porcentaje de finos, cantera Don Segundo

Peso inicial seco	500	gr.
Peso seco lavado	477.2	gr.
Pérdida de peso	22.8	gr.
% que pasa la malla N° 200	4.6	%

Fuente: Elaboración propia.

3.5.6 impurezas orgánicas (N.T.P. 400.024)

Son sustancias que perjudican notablemente el mortero, especialmente en las reacciones químicas de hidratación durante el fraguado, es la materia orgánica que generalmente proviene de la descomposición de material vegetal, como hojas, tallos y raíces y se manifiesta en forma de humus.

Este humus, en cierta cantidad, impide parcial o totalmente el fraguado del cemento, por lo cual hay que controlar su presencia en los agregados, especialmente en la arena, la cual, debido al tamaño de sus partículas, suele retener la materia orgánica finamente dividida y que se encuentra el proceso de descomposición.

Para definir con mayor precisión el color del líquido sobrenadante de la muestra de ensayo, se utilizará una placa orgánica que contiene cinco colores estandarizados (ver Tabla N°3.2). Cuando una muestra sujeta a este procedimiento de ensayo produzca un color más oscuro que el color estándar, se considera que el agregado fino bajo ensayo posiblemente presente contenido de impurezas orgánicas no deseadas. En la figura N°3.18 se observa la colocación de la solución de hidróxido de sodio en la muestra de arena para luego agitar la botella y dejar reposar la muestra durante 24 horas.

Figura N°3.18 Ensayo de impurezas orgánicas.

Tabla N°3.2 Placa orgánica

Placa orgánica N°
1
2
3 (estándar)
4
5

Fuente: NTP 400.024

En la figura N°3.19 se presenta una comparación entre la muestra de finos en solución de hidróxido de sodio y la Placa orgánica, para la cantera San Martín de Porres, dando como resultado el color número 5, ver cuadro N°3.13.

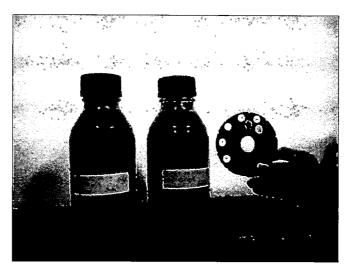


Figura N°3.19 Impurezas orgánicas para la cantera San Martín de Porres.

Cuadro N°3.13 Determinación del valor del color estándar para el contenido de impurezas orgánicas, cantera San Martín de Porres

_	
Р	laca orgánica N°
	1
	2
	3 (estándar)
	4
	5

Fuente: Elaboración propia.

Del cuadro anterior se observa que las arenas de la cantera San Martín de Porres contienen un alto porcentaje de impurezas orgánicas, es posible que esto influya en la disminución de la resistencia a la compresión de las probetas de mortero diseñadas con ésta cantera.

 En la figura N°3.20 se presenta una comparación entre la muestra de finos en solución de hidróxido de sodio y la Placa orgánica, para la cantera Don Segundo, dando como resultado el color número 3, ver cuadro N°3.14.

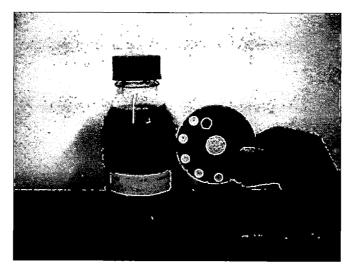


Figura N°3.20 Impurezas orgánicas para la cantera Don Segundo.

Cuadro N°3.14 Determinación del valor del color estándar para el contenido de impurezas orgánicas, cantera Don Segundo

Placa orgánica Nº	_
1 .	
2	
ී (පන්ජිගේවා)	Ī
4	
5	

Fuente: Elaboración propia.

Del cuadro anterior se observa que las arenas de la cantera Don Segundo no contienen muchas impurezas orgánicas, según la norma técnica N.T.P.400.024, esto indica que no influirá de manera negativa en los resultados de los ensayos a compresión de las probetas elaboradas con esta cantera.

3.6 RESUMEN DE RESULTADOS

En el cuadro N°3.15 se muestra el resumen de resultados obtenidos mediante los ensayos de laboratorio, cuyos valores obtenidos están detallados en el Anexo 7 de la presente tesis.

Cuadro N°3.15 Resumen de resultados de ensayos realizados

Ensayo	San Martin de Porres	Don Segundo
Granulometría	Fuera del Huso(*)	Fuera del Huso(*)
Módulo de Finura	1.01	1.26
Contenido de humedad	1.26%	2.07%
Peso unitario suelto	1460 kg/m ³	1580 kg/m³
Peso unitario compactado	1690 kg/m ³	1790 kg/m³
Peso específico	2620 kg/m ³	2570 kg/m ³
Absorción	0.3%	0.2%
Malla N° 200	5.6%	4.6%
Impurezas orgánicas	perjudicial	no perjudicial

Fuente: Elaboración propia.

(*) El Huso granulométrico para la arena fina, que se muestra en la Tabla N°3.1.

CAPÍTULO IV : SELECCIÓN DE LAS PROPORCIONES DE MEZCLA

4.1 PROCESO DE DOSIFICACIÓN

El proceso de dosificación es la determinación de la combinación más económica y práctica de materiales para mortero que sea manejable en su estado plástico y que se desarrolle las propiedades requeridas cuando endurezca. Así, una mezcla para mortero correctamente dosificada logra tres objetivos.

- Manejabilidad del mortero recién mezclado.
- Durabilidad, resistencia y apariencia uniforme del mortero endurecido.
- Ser económica.

4.2 MATERIALES PARA EL DISEÑO DE MEZCLAS

El mortero es una mezcla de cemento Pórtland, agregado fino, aire y agua en proporciones adecuadas para obtener ciertas propiedades prefijadas, especialmente la resistencia.

4.2.1 Agregado fino

Una buena gradación de los agregados finos da lugar a morteros de mejores características y más económicos. Los agregados deben estar libres de partículas orgánicas, sales, que puedan afectar las reacciones químicas del fraguado o produzcan porosidades o reacciones indeseables que perjudiquen la calidad del mortero.

4.2.2 Cemento

Es el material ligante de los diferentes componentes del mortero. El cemento para morteros estructurales debe ser tipo Pórtland (Clinker Pórtland + yeso).

Existen varios tipos de cemento Pórtland, entre los más importantes se pueden mencionar:

Tipo I: De uso general.

Tipo II: Resistente al ataque moderado de sulfatos.

Tipo III: Altas resistencias a edades tempranas (3 y 7 días).

Tipo IV: Bajo calor de hidratación.

Tipo V: Resistente a los sulfatos.

En la ciudad de Iquitos se dispone permanentemente de cemento Pórtland tipo I, y de las marcas Andino (utilizado en esta tesis), Sol y Argos (proveniente de Colombia). El cemento utilizado en la fabricación de mortero debe estar totalmente seco y suelto, y no debe presentar grumos de fraguado anticipado.

4.2.3 Agua

El agua utilizada en el mortero debe ser potable en lo posible y cumplir con la norma NTP 339.088 o al menos debe estar libre de impurezas.

La función del agua es básicamente la hidratación del cemento, por lo que la cantidad de agua está en relación con la cantidad de cemento a usar. Un exceso de agua en el diseño, provocará que el mortero en estado fresco sea susceptible de segregación y en estado endurecido tenga una baja resistencia y alta permeabilidad, lo cual es perjudicial.

4.3 PROPORCIONES DE LAS MEZCLAS DE MORTERO

El ingeniero civil es responsable de garantizar que se utilice la mezcla apropiada para el mortero y de que este se mezcle, se coloque y se cure de manera que exhiba las especificaciones dadas por el diseñador.

Se han desarrollado diversos métodos de mezcla a lo largo de los años, que van desde un método arbitrario basado en el volumen, hasta los métodos basados en peso y en el volumen absoluto prescritos por el Comité 211 del Instituto Americano del Concreto (ACI). El método basado en el peso proporciona técnicas relativamente simples para determinar las proporciones de las mezclas, utilizando un peso específico de cada material utilizado en el mortero. El método basado en el volumen absoluto utiliza los pesos unitarios sueltos de cada material para calcular el volumen unitario que cada uno de ellos ocupará dentro de una unidad de volumen de mortero. El proceso de diseño de la mezcla para los métodos basados en peso y en volumen absoluto solo difiere en la forma de determinar la cantidad de agregado fino.

4.4 MÉTODO DEL DISEÑO DE MEZCLAS

El método de diseño que se aplicó en este trabajo, utilizó como referencia el método del Comité ACI 211, el cuál se tuvo que ajustar a las condiciones de ausencia de agregado grueso, siendo los valores de (a/c) a estudiar: 0.60, 0.65 y 0.70, para un asentamiento de 3" a 5", trabajabilidad que mayormente es usado

en la elaboración de mortero, para una dosificación de materiales en volumen, para un metro cúbico de mortero.

4.5 CONSIDERACIONES PARA EL DISEÑO DE MEZCLAS

Para la determinación del diseño de mezcla patrón se tuvieron las consideraciones al momento de calcular las proporciones:

- 1. De las propiedades físicas del agregado fino a emplear en el diseño, para el caso de las canteras en estudio, se utilizaron los siguientes datos: contenido de humedad, peso unitario suelto, peso específico y absorción del agregado fino. El peso específico del cemento Andino tipo I es 3150kg/m³, y todos estos valores se encuentran en el cuadro N°3.17 del capítulo III de la presente tesis.
- Para la elección de la relación agua/cemento, se tomó como referencia la resistencia a la compresión requerida de diseño, es decir, para 175kg/cm², 210kg/cm² y 280kg/cm², se tomaron las siguientes relaciones de (a/c): 0.70, 0.65 y 0.60 respectivamente.
- 3. La elección del asentamiento según las condiciones de trabajabilidad, se diseñaron mezclas para un asentamiento de 3" a 5".
- 4. En la determinación de la cantidad de agua de mezclado se realizaron mezclas de prueba para encontrar la trabajabilidad de diseño. Para el caso de la presente tesis, la cantidad de agua utilizada para obtener buena trabajabilidad es de 315 litros/m³. Esto nos ayuda a determinar al mismo tiempo la cantidad de cemento a utilizar, con la relación (a/c) de la siguiente manera:

$$Cemento = \frac{315}{(\frac{a}{c})}$$

- 5. Para el valor del aire atrapado se considera un porcentaje aproximado del 3% del volumen de la mezcla, un poco más de lo que se considera en el caso del concreto, debido a la cantidad de finos.
- 6. El Volumen en el diseño seco se calcula de la siguiente manera:

$$Volumen = \frac{Peso\ Seco}{P.\ e}$$

Se tiene que la suma de volúmenes absolutos del agua, cemento, agregado y aire nos da la unidad (1 m³). Esto con el fin de encontrar el Peso seco de la arena, de la siguiente manera:

Volumen de la arena = 1 - (Volumen del cemento + Volumen del agua + 0.03)

Por lo tanto: $Peso\ seco\ de\ la\ arena = Volumen\ de\ la\ arena * P. e.$

7. Calculamos el peso unitario seco (W.U.S.) para la arena y el agua de la siguiente manera:

$$W.U.S. = \frac{Peso\ Seco}{Peso\ del\ cemento}$$

8. Las correcciones por humedad y absorción se calcularon de la siguiente manera:

$$Agua = Peso \ del \ agua - \frac{Peso \ seco \ de \ la \ arena*(CH-Abs)}{100}$$

Arena = Peso seco de la arena *
$$(1 + \frac{CH}{100})$$

9. Para el cálculo del Volumen de los materiales en pie³ se utilizó la siguiente fórmula:

$$Vol(pie^3) = \frac{(P.U.0 * 42.5) * 35.31}{P.U.S}$$

10. Con los valores obtenidos se preparan tandas de prueba en el laboratorio, realizándose los ajustes necesarios en la mezcla.

4.6 SELECCIÓN DE LAS PROPORCIONES DE MEZCLA

Con la finalidad de encontrar la dosificación de los componentes del mortero patrón para resistencias de f'cm=175kg/cm², f'cm=210kg/cm² y f'cm=280kg/cm², con una trabajabilidad de 3" a 5".

4.6.1 Selección de las proporciones de mezcla para una resistencia de $f'_{cm} = 175 \ kg/cm^2$

Se realizó un diseño de mezcla para un a/c=0.70 y el agua se obtuvo 315 lt/m³ para una trabajabilidad de 3" a 5".

DISEÑO PRELIMINAR DE MEZCLA DE MORTERO A LOS 7 DÍAS f'cm= 175 kg/cm²

Cantera : San Martin de Porres

Ubicación : Km. 25.3 Carretera Iguitos Nauta

Resistencia específica : fcm= 175 kg/cm²
Resistencia requerida: : fcm= 175 + 70 kg/cm²

1.- MATERIALES:

CEMENTO : CEMENTO ANDINO TIPO !

Peso específico = 3.15 gr/cc

AGREGADOS FINOS : ARENA COLOR BLANCO PARTÍCULAS FINAS

Peso específico = 2.62 gr/cc
Porcentaje de absorción = 0.3 %
Peso Volumétrico Suelto = 1460 kg/m³
Peso Volumétrico Varillado = 1690 kg/m³
Contenido de humedad = 0.1 %
Módulo de finura = 1.01

2. CARACTERÍSTICAS:

DATOS PARA LA DOSIFICACIÓN

Asentamiento Slump = 3" - 5"
Estimación del Agua = 315 lts/m³
Relación Agua/Cemento (A/C) = 0.70

Factor Cemento = 315/0.70 450.00 kg $10.59 Bls/m^3$

Contenido de Aire Atrapado = 3 %

3. CÁLCULO:

3.1 CÁLCULO DE VOLÚMENES ABSOLUTO DE LA MEZCLA

 Cemento
 =
 450 kg/3150 kg/m³
 0.143 m³

 Agua
 =
 315/1000
 0.315 m³

 Aire Atrapado
 =
 3/100
 0.03 m³

 0.488 m³

Volumen Absoluto 1.00-0.488 = 0.512 m³

Peso de la Arena = 1341.81 kg por m³

3.2 VALORES DEL DISEÑO

 Cemento
 =
 450.00 kg/m^3

 Agua
 =
 315 lt/m^3

 Arena
 =
 1341.81 kg/m^3

3.3 CORRECCIÓN POR HUMEDAD DE LA ARENA

Peso Húmedo de la Arena 1341.81*1.001 = 1343.16 kg/m^3 Humedad superficial de la arena 0.1-0.3 = -0.2 %

Aporte de humedad:

Arena 1343.16x(-0.2/100) = -2.68 lts/m^3 Agua efectiva 315-(-2.68) = 317.68 lts/m^3

3.4 PESO DE MATERIALES CORREGIDOS POR HUMEDAD

 Cemento
 =
 450.00 kg/m^3

 Agua efectiva
 =
 317.68 lts/m^3

 Arena
 =
 1343.16 kg/m^3

 2110.84 kg/m³

3.5 PROPORCIÓN EN PESO (KG)

Cemento = 450.00 = 1

Arena = <u>1343.16</u> = 2.98 <u>450.00</u>

Agua = 0.71 x 42.5= 30.00 lts/bls

DOSIFICACIÓN EN PESO:

C	a agua
1	2.98 30.00

3.6 PROPORCIÓN EN VOLUMEN (M3)

Peso Unitario Suelto de la Arena = 1460 kg/m³ Peso Unitario Suelto del Cemento = 1500 kg/m³

Cemento = $\frac{450.00}{42.5}$ = 10.59 Pie^3

Arena = <u>1343.16</u> x 35.31 32.48 Pie³

Agua = 317.68 tts

Entonces la proporción en volumen será: 10.59 32.48 317.68 10.59 10.59 10.59

DOSIFICACIÓN EN VOLUMEN:

С	а	agua
1	3.07	30.00

3.7 DOSIFICACIÓN POR BOLSA DE CEMENTO

 Cemento
 =
 42.50 kg/bolsa

 Agua efectiva
 =
 30.00 lt/bolsa

 Arena
 =
 130.39 kg/bolsa

41

Esta mezcla dió como resultado un asentamiento de 3".

Los resultados de resistencia a la compresión a los 7 días se pueden ver en el siguiente cuadro:

Cuadro N°4.1 Ensayo de resistencia a la compresión a los 7 días de la cantera San Martín de Porres, f'cm=175 kg/cm²

FECHA

: LIMA, 23 DE SETIEMBRE DEL 2014

f'cm de Diseño

: 175 kg/cm²

slump : 3" a 5"

							_			
N°	Estructura o	Fecha de	Fecha de	Edas	Diam.	Carga	Área	Res. Obt.	Resist.	% de 175
Mst.	identificación	vaceado	ensayo	_(días)	(cm)	Max. (Kgf)	(cm²)	(kg/cm ²)	Promedio	kg/cm ²
1		16/09/2014	23/09/2014	_ 7	15.36	26000	185.3	140		
2	Diseño f'cm= 175	16/09/2014	23/09/2014	7	15.36	26400	185.3	142	141	81
3	Ì	16/09/2014	23/09/2014	7	15.35	26200	185.1	142		

Fuente: Elaboración propia.

4.6.2 Selección de las proporciones de mezcla para una resistencia de $f_{cm}' = 210 \ kg/cm^2$

Se realizó un diseño de mezcla para un a/c=0.65 y el agua se obtuvo 315 lt/m³ para una trabajabilidad de 3" a 5".

DISEÑO PRELIMINAR DE MEZCLA DE MORTERO A LOS 7 DÍAS f'cm= 210 kg/cm²

Cantera

San Martín de Porres

Ubicación

Km. 25.3 Carretera Iquitos Nauta

Resistencia específica

fcm= 210 kg/cm²

Resistencia requerida:

fcmr= 210 + 84 kg/cm²

1.- MATERIALES:

CEMENTO

CEMENTO ANDINO TIPO I

Peso específico

Módulo de finura

=

3.15 gr/cc

AGREGADOS FINOS

ARENA COLOR BLANCO PARTÍCULAS FINAS

Peso específico =
Porcentaje de absorción =
Peso Volumétrico Suelto =
Peso Volumétrico Varillado =
Contenido de humedad =

1460 kg/m³ 1690 kg/m³ 0.1 %

2.62 gr/cc

0.3 %

1.01

=

2. CARACTERÍSTICAS:

DATOS PARA LA DOSIFICACIÓN

Asentamiento Slump = 3" - 5"

Estimación del Agua = 315 lts/m³

Relación Agua/Cemento (A/C) = 0.65

Factor Cemento = 315/0.65 484.62 kg 11.40 Bls/m³

Contenido de Aire Atrapado = 3 %

3. CÁLCULO:

3.1 CÁLCULO DE VOLÚMENES ABSOLUTO DE LA MEZCLA

Cemento = $484.62 \text{ kg}/3150 \text{ kg/m}^3$ 0.154 m³

Agua = 315/1000 0.315 m³ Aire Atrapado = 3/100 0.03 m³

0.499 m³

Volumen Absoluto 1.00-0.499 = 0.501 m³

Peso de la Arena = 1313.02 kg por m³

3.2 VALORES DEL DISEÑO

 Cemento
 =
 484.62 kg/m^3

 Agua
 =
 315 lt/m^3

 Arena
 =
 1313.02 kg/m^3

3.3 CORRECCIÓN POR HUMEDAD DE LA ARENA

Peso Húmedo de la Arena 1313.02*1.001 = 1314.34 kg/m³ Humedad superficial de la arena 0.1-0.3 = -0.2 %

Aporte de humedad:

Arena 1313.02x(-0.2/100) = -2.63 lts/m³
Agua efectiva 315-(-2.63) = 317.63 lts/m³

3.4 PESO DE MATERIALES CORREGIDOS POR HUMEDAD

 Cemento
 =
 484.62 kg/m^3

 Agua efectiva
 =
 317.63 lts/m^3

 Arena
 =
 1314.34 kg/m^3

2116.58 kg/m³

3.5 PROPORCIÓN EN PESO (KG)

Cemento = <u>484.62</u> = 1 484.62

Arena = <u>1314.34</u> = 2.71 484.62

Agua = $0.66 \times 42.5 = 27.86 \text{ lts/bls}$

, 9...

 DOSIFICACIÓN EN PESO:
 c
 a
 agua

 1
 2.71
 27.86

3.6 PROPORCIÓN EN VOLUMEN (M3)

Peso Unitario Suelto de la Arena = 1460 kg/m³ Peso Unitario Suelto del Cemento = 1500 kg/m³

Cemento = $\frac{484.62}{42.5}$ = 11.40 Pie³

Arena = <u>1314.34</u> x 35.31 31.79 Pie³

Agua = 317.63 317.63 its

Entonces la proporción en volumen será: 11.40 31.79 317.63 11.40 11.40 11.40

DOSIFICACIÓN EN VOLUMEN:

C	а	agua
1 :	2.79	27.86

3.7 DOSIFICACIÓN POR BOLSA DE CEMENTO

 Cemento
 =
 42.50 kg/bolsa

 Agua efectiva
 =
 27.86 lt/bolsa

 Arena
 =
 118.48 kg/bolsa

Esta mezcla dió como resultado un asentamiento de 3 1/2".

Los resultados de resistencia a la compresión a los 7 días se pueden ver en el siguiente cuadro:

Cuadro N°4.2 Ensayo de resistencia a la compresión a los 7 días de la cantera San Martín de Porres, f'cm=210 kg/cm²

FECHA : LIMA, 24 DE SETIEMBRE DEL 2014

f'cm de Diseño : 210 kg/cm² slump : 3" a 5"

N°	Estructura o	Fecha de	Fecha de	Edas	Diam.	Carga	Área	Res. Obt.	Resist.	% de 210
Mst.	identificación	vaceado	ensayo	(días)	(cm)	Max. (Kgf)	_ (cm ²)	(kg/cm ²)	Promedio	kg/cm ²
1		17/09/2014	24/09/2014	7	15.36	27800	185.3	150		
2	Diseño f'cm= 210	17/09/2014	24/09/2014	· 7	15.36	27600	185.3	149	149	71
3		17/09/2014	24/09/2014	7	15.35	27700	185,1	150		

Fuente: Elaboración propia.

4.6.3 Selección de las proporciones de mezcla para una resistencia de $f'_{cm} = 280 \ kg/cm^2$

Se realizó un diseño de mezcla para un a/c=0.60 y el agua se obtuvo 315 lt/m³ para una trabajabilidad de 3" a 5".

DISEÑO PRELIMINAR DE MEZCLA DE MORTERO A LOS 7 DÍAS f'cm= 280 kg/cm²

Cantera : San Martín de Porres

Ubicación : Km. 25.3 Carretera Iquitos Nauta

Resistencia específica : fcm= 280 kg/cm²

Resistencia requerida: : fcmr= 280 + 84 kg/cm²

1.- MATERIALES:

CEMENTO : CEMENTO ANDINO TIPO I

Peso específico = 3.15 gr/cc

AGREGADOS FINOS : ARENA COLOR BLANCO PARTÍCULAS FINAS

Peso específico = 2.62 gr/cc
Porcentaje de absorción = 0.3 %
Peso Volumétrico Suelto = 1460 kg/m³
Peso Volumétrico Varillado = 1690 kg/m³
Contenido de humedad = 0.1 %
Módulo de finura = 1.01

2. CARACTERÍSTICAS:

DATOS PARA LA DOSIFICACIÓN

Asentamiento Slump = 3" - 5"

Estimación del Agua = 315 lts/m³ Relación Agua/Cemento (A/C) = 0.60

Factor Cemento = 315/0.60 525.00 kg 12.35 Bls/m³

Contenido de Aire Atrapado = 3 %

3. CÁLCULO:

3.1 CÁLCULO DE VOLÚMENES ABSOLUTO DE LA MEZCLA

 Cemento
 =
 525 kg /3150 kg/m³
 0.167 m³

 Agua
 =
 315/1000
 0.315 m³

 Aire Atrapado
 =
 3/100
 0.03 m³

 0.512 m³

Volumen Absoluto 1.00-0.512 = 0.488 m³

Peso de la Arena = 1279.43 kg por m³

3.2 VALORES DEL DISEÑO

 Cemento
 =
 525.00 kg/m^3

 Agua
 =
 315 lt/m^3

 Arena
 =
 1279.43 kg/m^3

3.3 CORRECCIÓN POR HUMEDAD DE LA ARENA

Peso Húmedo de la Arena 1279.43*1.001 = 1280.71 kg/m³ Humedad superficial de la arena 0.1-0.3 = -0.2 %

Aporte de humedad:

Arena 1279.43x(-0.2/100) = -2.56 lts/m^3 Agua efectiva 315-(-2.56) = 317.56 lts/m^3

3.4 PESO DE MATERIALES CORREGIDOS POR HUMEDAD

 Cemento
 =
 525.00 kg/m^3

 Agua efectiva
 =
 317.56 lts/m^3

 Arena
 =
 $\frac{1280.71 \text{ kg/m}^3}{2123.27 \text{ kg/m}^3}$

3.5 PROPORCIÓN EN PESO (KG)

Cemento = <u>525.00</u> = 1

Arena = 1280.71 = 2.44 525.00

Agua = $0.60 \times 42.5 = 25.71 \text{ lts/bls}$

DOSIFICACIÓN EN PESO:

С	а	agua
<u></u> ∴.1	2.44	25.71

3.6 PROPORCIÓN EN VOLUMEN (M3)

Peso Unitario Suelto de la Arena = 1460 kg/m³
Peso Unitario Suelto del Cemento = 1500 kg/m³

Cemento = <u>525.00</u> = 12.35 Pie³ 42.5

Arena = <u>1280.71</u> x 35.31 30.97 Pie³ 1460

Agua = 317.56 lts

Entonces la proporción en volumen será: 12.35 30.97 317.56 12.35 12.35 12.35

DOSIFICACIÓN EN VOLUMEN:

C	a 🔭 agua
1000	
	2 51 25 71
Z 4, 14, 1	2.01 2 20.71

3.7 DOSIFICACIÓN POR BOLSA DE CEMENTO

 Cemento
 =
 42.50 kg/bolsa

 Agua efectiva
 =
 25.71 lt/bolsa

 Arena
 =
 106.57 kg/bolsa

Esta mezcla dió como resultado un asentamiento de 3 1/2".

Los resultados de resistencia a la compresión a los 7 días se pueden ver en el siguiente cuadro:

Cuadro N°4.3 Ensayo de resistencia a la compresión a los 7 días de la cantera San Martín de Porres, f'cm=280 kg/cm²

FECHA

: LIMA, 15 DE SETIEMBRE DEL 2014

f'cm de Diseño

: 280 kg/cm²

slump : 3" a 5"

Ν°	Estructura o	Fecha de	Fecha de	Edas	Diam.	Carga	Área	Res. Obt.	Resist.	% de 280
Mst.	identificación	vaceado	ensayo	(días)	(cm)	Max. (Kgf)	(cm ²)	(kg/cm ²)	Promedio	kg/cm ²
1		08/09/2014	15/09/2014	7	15.53	43692	189.4	231		
2	Diseño fcm= 280	08/09/2014	15/09/2014	7	15.34	41602	184.8	225	228	81
3		08/09/2014	15/09/2014	7	15.35	42140	185.1	228		

Fuente: Elaboración propia.

mezcladas.

CAPÍTULO V : PROPIEDADES DEL MORTERO FRESCO

5.1 MEZCLADO, COLOCACIÓN Y MANIPULACIÓN DEL MORTERO FRESCO

El mortero fresco es el producto inmediato de la mezcla de sus componentes. Desde el primer momento se están produciendo en su mezcla reacciones químicas que condicionan sus características finales como material endurecido. El mortero fresco es una mezcla heterogénea de fases sólidas, líquidas y gaseosas que se distribuyen en igual proporción, siempre y cuando, estén bien

El mortero debe mezclarse completamente en una mezcladora hasta que adquiera una apariencia uniforme y todos los componentes se hayan distribuido. No debe utilizarse mortero al que después de preparado se le adicione agua, ni que haya sido mezclado después de su fraguado inicial. Todo mortero debe compactarse cuidadosamente por medios adecuados durante la colocación en las probetas.

El mortero debe mantenerse a una temperatura por encima de 10°C y en condiciones de humedad por lo menos durante los 7 primeros días después de la colocación.

5.2 PROPIEDADES DEL MORTERO FRESCO

Las propiedades del mortero dependen de las proporciones de sus componentes y de los métodos de colocación y curado utilizado. Generalmente, los diseñadores especifican o asumen una cierta resistencia o módulo de elasticidad del mortero a la hora de determinar las dimensiones estructurales.

Las proporciones de la mezcla de mortero afectan a sus propiedades, tanto en estado plástico como sólido. En el estado plástico, lo que preocupa es la facilidad de trabajar el mortero y las características del acabado.

Los requerimientos para morteros en estado fresco se encuentran en las normas: Consistencia (N.T.P. 339.035), Peso unitario (N.T.P. 339.046), Contenido de aire (N.T.P. 339.083), Exudación (N.T.P. 339.077) y Tiempo de fraguado (N.T.P. 339.082).

5.2.1 Consistencia (N.T.P. 339.035)

La consistencia se refiere a su estado de fluidez, es decir, qué tan dura (seca) o blanda (fluida) es una mezcla de mortero cuando se encuentra en estado plástico, por lo cual se dice que es el grado de humedad de la mezcla.

El ensayo más ampliamente usado por su simplicidad y rapidez, es el ensayo de asentamiento, el cual mide la consistencia o fluidez de una mezcla fresca de mortero.

El ensayo de asentamiento debe considerarse como un medio para determinar si están bien proporcionadas las cantidades de agua y de otros materiales empleados en la mezcla, debido a que este ensayo puede reflejar cambios en la granulometría de los agregados, en las propiedades del cemento o de los aditivos, en la cantidad de aire incluido y en la temperatura. Así pues, el resultado del ensayo es un indicador de las variaciones que puede sufrir la mezcla durante el tiempo de su producción.

 En las figuras N°5.1 y N°5.2 se muestran los asentamientos de las mezclas de mortero para las canteras Don Segundo y San Martín de Porres respectivamente.

Figura N°5.1 Ensayo de asentamiento de la mezcla de mortero para la cantera Don Segundo, a/c=0.70, 0.65 y 0.60.

Figura N°5.2 Ensayo de asentamiento de la mezcla de mortero para la cantera San Martín de Porres, a/c=0.70, 0.65 y 0.60.

En el siguiente cuadro se muestra el resumen de asentamientos de ambas canteras:

Cuadro N°5.1 Asentamientos de las mezclas de mortero

Relación a/c	Slump			
Relacion a/c	Don Segundo	San Martín de Porres		
0.70	3 1/2"	3 3/4"		
0.65	3 1/4"	3"		
0.60	3 1/8"	4"		

Fuente: Elaboración propia.

5.2.2 Peso unitario (N.T.P. 339.046)

Es el peso requerido para llenar un molde de volumen conocido expresado en (kg/m³).

Para realizar el ensayo de peso unitario se selecciona el método de consolidación del mortero en ensayo, en función al sentamiento del mismo. Los métodos de consolidación son apisonado y vibración interior. Para morteros con un asentamiento mayor a 75 mm (3 pulg.) se debe aplicar el método de apisonado. Para morteros con asentamiento entre 25 mm a 75 mm se aplica apisonado o vibrado. Morteros con asentamiento menor de 25mm se debe aplicar el método de consolidación por vibración.

Para la presente tesis se seleccionó el método de apisonado por tener un asentamiento mayor a 75 mm ó 3 pulg. (Ver figura N°5.3).

Resultados:

Cantera Don Segundo. Para la relación a/c=0.70, f'cm=175 kg/cm², ver el siguiente cuadro:

Cuadro N°5.2 Datos para peso unitario del mortero

Descripción	Símbolo	Cantidad	Unidad
Peso del mortero + recipiente	Mc	17.18	kg
Peso del recipiente	Mm	2.43	kg
Volumen del recipiente de medición	Vm	0.007	m ³
Peso Unitario	P.U.	2107.1	kg/m ³

Fuente: Elaboración propia.

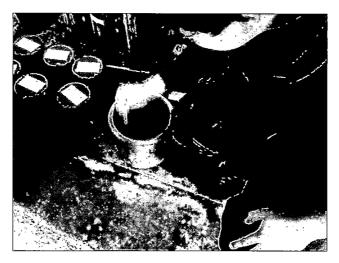


Figura N°5.3 Método de apisonado aplicado a la mezcla del mortero.

5.2.3 Contenido de aire (N.T.P. 339.083)

El ensayo de contenido de aire se realiza para saber qué cantidad de vacíos tiene internamente el mortero en toda su masa. Se sabe que mientras más aire tenga internamente el mortero su resistencia a la compresión disminuirá. El contenido de aire en el mortero fresco se determinará mediante el método de presión.

El método de presión se basa en la medición del cambio de volumen del mortero sometido a un cambio de presión. El equipo que se especifica para este ensayo es el aparato tipo Washington, el que está equipado con un dial que registra directamente el contenido de aire, en %, con respecto al volumen del mortero.

Resultados:

Cantera Don Segundo. Para la relación a/c=0.70, f'cm=175 kg/cm², ver figura N°5.4.

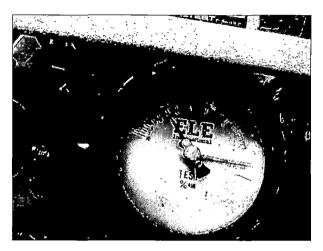


Figura N°5.4 Lectura del equipo de Washington.

 De la figura anterior, según la lectura del equipo de Washington, el contenido de aire es el 5.0% de un volumen determinado de mortero.

5.2.4 Exudación (N.T.P. 339.077)

La exudación o sangrado, consiste en qué parte del agua de mezclado tiende a elevarse a la superficie del mortero recién colocado o durante el proceso del fraguado (ver figura N°5.5). Por tal razón, se dice que es una forma especial de segregación o de sedimentación de las partículas, las cuales no pueden retener toda el agua cuando se asientan.

Figura N°5.5 Extracción del agua de la mezcla.

Tanto la cantidad de agua de exudación como la velocidad a la cual ésta llega a la superficie del mortero, tienen mucho que ver con la evaporación, debido a que si la velocidad de evaporación es menor que la velocidad de exudación, se forma una película de agua que aumenta la relación agua-cemento en la superficie, que posteriormente queda porosa y con baja resistencia al desgaste. Por otro lado, si la velocidad de evaporación es mayor que la velocidad de exudación se pueden producir grietas de contracción plástica.

De otra parte, en algunas ocasiones el agua al subir queda atrapada bajo las partículas más gruesas del agregado o del acero de refuerzo, lo cual genera zonas de baja adherencia. Adicionalmente al subir, deja pequeños caminos capilares que aumentan la permeabilidad del mortero. Sin embargo, la exudación puede ser controlada por medio del uso de aditivos inclusores de aire, cementos más finos y control del contenido de arena.

Para el ensayo de exudación se calcula el volumen de agua de exudación por unidad de superficie con la siguiente ecuación:

$$V = \frac{V1}{A}$$

Donde:

V1= volumen en centímetros cúbicos del agua de exudación, durante un intervalo seleccionado.

A= Área expuesta del mortero, en centímetros cuadrados

Se calcula el agua acumulada de exudación, expresada como porcentaje del agua de mezclado contenido en la probeta de ensayo:

$$C = \frac{w}{W} * S$$

$$E = \frac{D}{C} * 100$$

C= Peso del agua en la probeta de ensayo, en gramos.

W= Peso total de la mezcla, en kilogramos.

w= Peso neto del agua en la mezcla, en kilogramos.

S= Peso de la muestra, en kilogramos.

D= Volumen total de agua de exudación extraída de la probeta de ensayo en cm3 multiplicada por 1gr/cm3 o más del agua de exudación en gramos.

Resultados:

Cantera Don Segundo. Para la relación a/c=0.70, f'cm=175 kg/cm², ver cuadro N°5.3 y N°5.4.

Cuadro N°5.3 Datos para exudación del mortero

Tiempo (hora)	Intervalo (min)	Volumen	Volumen	Volumen/Área	
Tiempe (nera)	intervale (IIIII)	V1 (ml)	acumulado (mi)	V (ml/cm ²)	
14:02	10	0.0	0	0	
14:12	10	18.0	18.0	0.036	
14:22	10	9.0	27.0	0.018	
14:32	10	13.0	40.0	0.026	
15:02	30	51.0	91.0	0.101	
15:32	30	64.5	155.5	0.127	
16:02	30	37.0	192.5	0.073	
16:32	30	41.5	234.0	0.082	
17:02	30	41.0	275.0	0.081	
17:32	30	30.0	305.0	0.059	
18:02	30	14.0	319.0	0.028	
18:32	30	1.0	320.0	0.002	

Fuente: Elaboración propia.

Cuadro N°5.4 Resultados para exudación del mortero

Descripción	Símbolo	Valor	Unidad
Área	A=	506.71	cm ²
Agua de mezclado	w=	7.69	kg
Peso total de la tanda	W=	54	kg
Peso del recipiente	P=	5.04	kg
Peso del recipiente+muestra	T=	31.13	kg
Peso de la muestra (T-P)	S=	26090	gr
Peso del agua de exudación	D=	320	gr
Peso del agua en la muestra de ensayo	C=	3715.41	gr
Exudación	E=	8.61	%

Fuente: Elaboración propia.

5.2.5 Tiempo de fraguado (N.T.P. 339.082)

El fraguado es un proceso de endurecimiento del mortero, por lo tanto este ensayo tiene por finalidad determinar el tiempo que demorará en endurecer, desde que se realiza el ingreso de los materiales en la mezcladora. La norma establece el método de ensayo para determinar el tiempo de fraguado del mortero, mediante la penetración de agujas sobre la muestra tamizada (ver figura N°5.6).

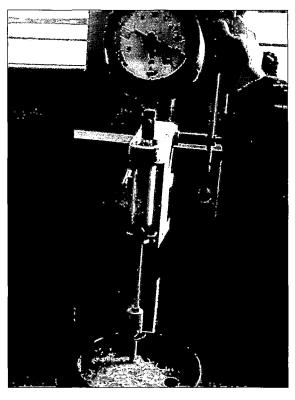


Figura N°5.6 Ensayo de tiempo de fraguado para el mortero.

El fraguado se divide en dos periodos:

- Fraguado inicial: Se caracteriza por el aumento en la viscosidad y en la temperatura de la mezcla, se considera la fragua inicial cuando la presión de penetración sea de 35 kg/cm² o de 500 lb/pulg².
- Fraguado final: Se caracteriza por endurecimiento como lógica consecuencia del aumento de su resistencia, se considera la fragua final, cuando la penetración sea de 276 kg/cm² o de 4000 lb/pulg².

Resultados:

Cantera Don Segundo. Para la relación a/c=0.65, f'cm=210 kg/cm², ver cuadro N°5.5 y figura N°5.7.

Cuadro N°5.5 Datos de fragua del mortero

Tiempo real	Tiempo absoluto	Tiempo absoluto	Fuerza	Fuerza	Aguja		Area en	Resister penetra	
		acumulado	(libras)	(kilogramos)	N°	(pul ²)	(cm ²)	(lbs/pulg ²)	(kg/cm ²)
(hora)	(hora)	(minutos)	(1)	(2)		(3)	(4)	(1/3)	(2/4)
12:44	00:00	0	0	0.00	-	-	-	-	-
14:05	01:21	81	176	79.83	1	1.000	6.450	176	12.377
14:23	01:39	99	92	41.73	2	0.500	3.225	184	12.940
15:10	02:26	146	176	79.83	3	0.250	1.613	704	49.509
16:30	03:46	226	180	81.65	4	0.100	0.645	1800	126.585
17:00	04:16	256	130	58.97	5	0.050	0.323	2600	182.845
17:41	04:57	297	105	47.63	6	0.025	0.161	4200	295.366

Fuente: Elaboración propia.

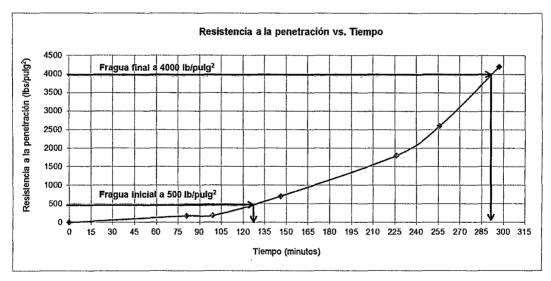


Figura N°5.7 Gráfica resistencia a la penetración versus el tiempo absoluto acumulado.

De la gráfica se concluye que:

- El tiempo de fragua inicial es de 127 minutos = 2 horas 7 min.
- El tiempo de fragua final es de 292 minutos = 4 horas 52 min.

CAPÍTULO VI : PROPIEDADES DEL MORTERO ENDURECIDO

6.1 CONCEPTOS GENERALES

El mortero presenta una alta resistencia a los esfuerzos de compresión y muy poca a los de tracción, razón por la cual, la resistencia a la compresión simple es la propiedad a la que se le da mayor importancia.

Cuando el mortero ha sido curado durante 28 días, obtiene su máxima resistencia, el cuál puede ser determinado por ensayos netamente en laboratorio para encontrar sus propiedades que caracterizan al mortero en estudio, estas propiedades son:

- Ensayo de resistencia a la compresión.
- Ensayo de módulo de elasticidad en estado endurecido.

Los requerimientos para el ensayo resistencia a la compresión y módulo de elasticidad del mortero endurecido se encuentran en la norma ASTM C469. Los resultados de los ensayos realizados se encuentran en los anexos (ver Anexo 7).

Para realizar los ensayos de Resistencia a la compresión y módulo de elasticidad, se hicieron 36 tandas de mezclas de mortero, cada tanda de mezcla de 54 Kg., obteniéndose cuatro probetas, dos se utilizaban para el ensayo de resistencia a la compresión y las otros dos para el ensayo del Módulo de elasticidad (ver figura N°6.1).

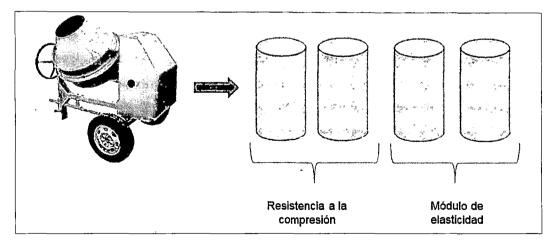


Figura N°6.1 Cantidad de probetas de mortero por cada tanda.

6.2 ENSAYO DE RESISTENCIA A LA COMPRESIÓN (N.T.P. 339.034)

El ensayo de resistencia a la compresión es usado para el control de la calidad del concreto o mortero, para el cumplimiento de las especificaciones técnicas del diseño de mezcla, en la figura N°6.2 se aprecia el ensayo de compresión.

Para realizar los ensayos de compresión, se elaboraron mezclas para tres diseños, de acuerdo a la relación agua/cemento (0.70, 0.65 y 0.60), para su rotura a edades de 28 y 45 días.

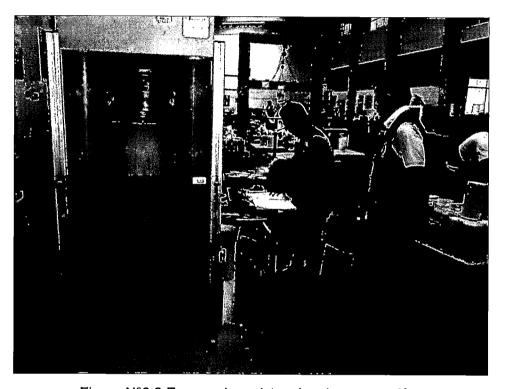


Figura N°6.2 Ensayo de resistencia a la compresión.

6.2.1 Desviación estándar de la muestra

Los registros de ensayos a partir de los cuales se calcula la desviación estándar (Ss) deben cumplir las siguientes condiciones:

Representar un mortero producido para que cumpla con una resistencia o resistencias a la compresión especificadas, dentro de 70 kg/cm² de f'cm.

La Ss se calcula de acuerdo a la siguiente fórmula:

$$S_s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

La desviación estándar expresada como porcentaje de la resistencia promedio es llamada coeficiente de variación, y se expresa con la siguiente fórmula:

$$C_v = \frac{S_s}{\bar{r}} * 100$$

Donde:

 $S_s = Desviación estándar de la muestra, en kg/cm^2$

 $x_i = Ensayo individual de resistencia$

 \bar{x} = Promedio de n resultados de ensayos de resistencia

n = Número de ensayos consecutivos de resistencia

 $C_{\nu} = Coeficiente de variación, en %$

6.2.2 Resistencia promedio requerida

La resistencia promedio a la compresión requerida f'cr, usada como base para la dosificación del mortero debe ser determinada según la siguiente tabla:

Tabla N°6.1 Resistencia promedio a la compresión requerida cuando hay datos disponibles para establecer una desviación estándar de la muestra

Resistencia especificada	Resistencia promedio requerida
a la compresión	a la compresión, kg/cm²
2	Usar el mayor valor obtenido de las ecuaciones (1) y (2)
f'cm≤ 350 kg/cm²	fcr= fcm + 1.34*Ss (1)
	fcr= fcm + 2.33*Ss - 35 (2)
2	Usar el mayor valor obtenido de las ecuaciones (3) y (4)
fcm> 350 kg/cm ²	f'cr=f'cm + 1.34*Ss (3)
	f'cr= 0.9*f'cm + 2.33*Ss (4)

Fuente: Requisitos de Reglamento para Concreto Estructural, ACI 318-11, TABLA 5.3.2.1.

Los diseños de mezclas del mortero para las relaciones (a/c) de 0.70, 0.65 y 0.60, se encuentran descritas en el capítulo V. A cada cantera le corresponde dos cuadros y una gráfica según edad de curado. A continuación se describen los resultados que se obtuvieron en el laboratorio, para cada cantera:

59

-Para la cantera Don Segundo se muestran los valores obtenidos en el ensayo de resistencia a la compresión a la edad de 28 días (ver cuadro N°6.1) cuya gráfica resistencia versus a/c se muestra en la figura N°6.3, y su desviación estándar y resistencia promedio requerida se muestran en el cuadro N°6.2.

Cuadro N°6.1 Ensayo de compresión de mortero con arenas de la cantera Don Segundo, edad 28 días

a/c	Muestra	Diámetro (cm)	Área (cm²)	Carga (kg)	Carga promedio (kg)	fcm (kg/cm²)	fcm promedio	
_	C1	15.32	184.3	47700		259		
<u> </u>	C2	15.32	184.3	49452		268		
0.70	СЗ	15.33	184.6	60011	50001	325	204	
0.70	C4	15.30	183.9	59503	52281	324	284	
]	C5	15.32	184.3	51703		280		
	C6	15.31	184.1	45318		246		
	C7	15.27	183.1	63352		346		
	C8	15.29	183.6	61847		337	348	
	C9	15,28	183.4	63653		347		
0.65	C10	15.29	183.6	59073	04004	322		
0.65	C11	15.31	184.1	64093	64081	348		
	C12	15.29	183.6	63732		347		
	C13	15.43	187.0	71063		380		
	C14	15.39	186.0	65832		354		
	C15	15.28	183.4	65283		356		
,	C16	15.30	183.9	72452		394		
0.00	C17	15.26	182.9	68811	COCOE	376		
0.60	C18	15.28	183.4	70252	69695	383	380	
	C19	15.28	183.4	70494		384		
	C20	15.28	183.4	70879		387		

Fuente: Elaboración propia.

Cuadro N°6.2 Desviación estándar y resistencia promedio requerida a los 28 días de la cantera Don Segundo

a/c	fcm	Desviación estándar (Ss)	Cv (%)	Resistencia requerida (fcr)
0.70	210	33.53	11.81	255
0.65	280	16.31	4.69	302
0.60	350	13.13	3.46	368

-El siguiente cuadro N°6.3 corresponde a la cantera Don Segundo con valores de resistencia a la compresión a la edad de 45 días, cuya gráfica resistencia versus a/c se muestra en la figura N°6.4, y su desviación estándar y resistencia promedio requerida se muestran en el cuadro N°6.4.

Cuadro N°6.3 Ensayo de compresión de mortero con arenas de la cantera Don Segundo, edad 45 días

a/c	Muestra	Diámetro (cm)	Área (cm²)	Carga (kg)	Carga promedio (kg)	f'cm (kg/cm²)	fcm promedio	
	C21	15.37	185.5	64119		346		
	C22	15.24	182.4	54276		298		
}	C23	15.36	185.3	63410		342		
0.70	C24	15.27	183.1	60752	60047	332	326	
	C25	15.37	185.5	61332		331		
	C26	15.35	185.1	60068		325		
	C27	15.23	182.2	56370		309		
	C28	C28 15.25 182.7 66171	66171		362			
	C29	15.23	182.2	60787		334		
0.65	C30	15.30	183.9	65731	63984	358	349	
0.05	C31	15.30	183.9	69292		377	349	
	C32	15.27	183.1	61617		336		
	C33	15.29	183.6	60305		328		
	C34	15.28	183.4	87213		476		
	C35	15.40	186.3	77611		417	415	
0.60	C36	15.48	188.2	76116	76802	404		
0.00	C37	15.40	186.3	74759	/0002	401		
	C38	15.33	184.6	65097		353		
	C39	15.28	183.4	80015		436		

Fuente: Elaboración propia.

Cuadro N°6.4 Desviación estándar y resistencia promedio requerida a los 45 días de la cantera Don Segundo

2/2	Ø 0, 100	Desviación estándar	Cv	Resistencia requerida
a/c	f'cm _	(Ss)	(%)	(fcr)
0.70	、210	17.28	5.30	233
0.65	280	19.33	5.54	306
0.60	350	40.81	9.83	410

-Para la cantera San Martín de Porres se muestran los valores obtenidos en el ensayo de resistencia a la compresión a la edad de 28 días (ver cuadro N°6.5) cuya gráfica resistencia versus a/c se muestra en la figura N°6.5, y su desviación estándar y resistencia promedio requerida se muestran en el cuadro N°6.6.

Cuadro N°6.5 Ensayo de compresión de mortero con arenas de la cantera San Martín de Porres, edad 28 días

a/c	Muestra	Diámetro (cm)	Área (cm²)	Carga (kg)	Carga promedio (kg)	fcm (kg/cm²)	fcm promedio
	C40	15.28	183.4	41856		228	
	C41	15.27	183.1	41418		226 .	
0.70	C42	15.33	184.6	45357	40404	246	004
0.70	C43	15.33	184.6	46800	42481	254	231
	C44	15.28	183.4	36706		200	
	C45	15.23	182.2	42746		235	
	C46	15.37	185.5	38029		205	- 237
	C47	15.32	184.3	46368		252	
0.05	C48	15.32	184.3	41633	42000	226	
0.65	C49	15.30	183.9	48278	43686	263	
	C50	15.30	183.9	46721	1	254	
	C51	15.27	183.1	41089		224	
	C52	15.22	181.9	50097		275	
	C53	15.25	182.7	53968]	295	1
0.60	C54	15.30	183.9	55346	53073	301	290
	C55	15.30	183.9	54536		297	
	C56	15.30	183.9	51418		280	

Fuente: Elaboración propia.

Cuadro N°6.6 Desviación estándar y resistencia promedio requerida a los 28 días de la cantera San Martín de Porres

0/0	fo	Desviación estándar	Cv	Resistencia requerida
a/c	fcm	(Ss)	(%)	(fcr)
0.70	175	18.78	8.13	200
0.65	210	22.38	9.44	240
0.60	280	11.39	3.93	295

-El siguiente cuadro N°6.7 corresponde a la cantera San Martín de Porres con valores de resistencia a la compresión a la edad de 45 días, cuya gráfica resistencia versus a/c se muestra en la figura N°6.6, y su desviación estándar y resistencia promedio requerida se muestran en el cuadro N°6.8.

Cuadro N°6.7 Ensayo de compresión de mortero con arenas de la cantera San Martín de Porres, edad 45 días

a/c	Muestra	Diámetro (cm)	Área (cm²)	Carga (kg)	Carga promedio (kg)	fcm (Kg/cm²)	fcm promedio
	C57	15.22	181.9	46802		257	
	C58	15.32	184.3	48974		266	;
0.70	C59	15.35	185.1	40665	42800	220	000
0.70	C60	15.28	183.4	37793	43896	206	239
	C61	15.29	183.6	42868		233	
	C62	15.27	183.1	46276		253	
	C63	15.34	184.8	49272		267	256
	C64	15.30	183.9	47250		257	
0.65	C65	15.32	184.3	49852	47041	270	
0.05	C66	15.27	183.1	48257	47041	264	
	C67	15.29	183.6	42866		233	
	C68	15.27	183.1	44747		244	
	C69	15.31	184.1	59905		325	
·	C70	15.29	183.6	57901		315	300
0.60	C71	15.24	182.4	51328	55000	281	
0.60	C72	15.29	183.6	52139	55022	284	
	C73	15.28	183.4	53328		291	
	C74	15.23	182.2	55530		305	

Fuente: Elaboración propia.

Cuadro N°6.8 Desviación estándar y resistencia promedio requerida a los 45 días de la cantera San Martín de Porres

		Desviación estándar Cv		Resistencia requerida	
a/c	fcm	(Ss)	(%)	(fcr)	
0.70	175	23.39	9.79	206	
0.65	210	14.52	5.67	229	
0.60	280	17.74	5.91	304	

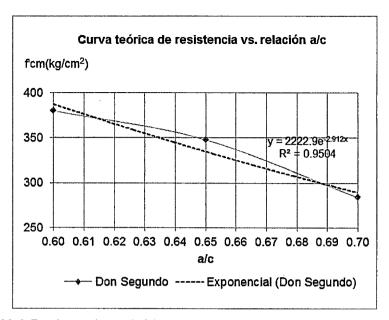


Figura N°6.3 Resistencia vs (a/c) para la cantera Don Segundo a los 28 días.

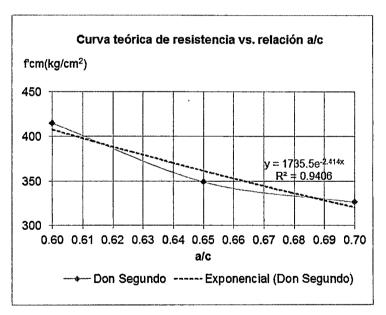


Figura N°6.4 Resistencia vs. (a/c) para la cantera Don Segundo a los 45 días.

Dado que la relación a/c tiene una relación inversa con la resistencia a compresión del mortero, se realizó un ajuste de curva en las figuras N°6.3 y N°6.4 para que tengan una tendencia exponencial y poder encontrar una ecuación en base a la relación a/c, que de un valor aproximado y referencial de resistencia a la compresión para la cantera Don Segundo.

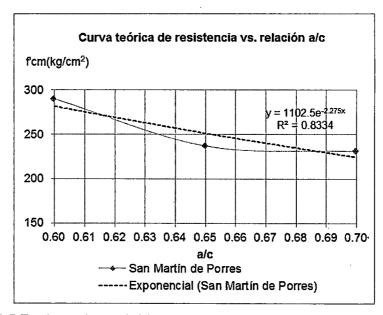


Figura N°6.5 Resistencia vs. (a/c) para la cantera San Martín de Porres a los 28 días.

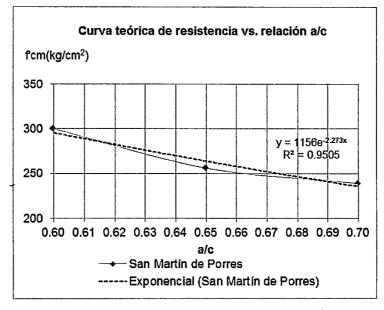


Figura N°6.6 Resistencia vs. (a/c) para la cantera San Martín de Porres a los 45 días.

La misma relación corresponde en caso de la cantera San Martín de Porres, Dado que la relación a/c tiene una relación inversa con la resistencia a compresión del mortero, se realizó un ajuste de curva en las figuras N°6.5 y N°6.6 para que tengan una tendencia exponencial y poder encontrar una ecuación en base a la relación a/c, que de un valor aproximado y referencial de resistencia a la compresión.

En el cuadro N°6.9 se muestra un resumen de los valores promedios obtenidos de carga máxima y de resistencia a la compresión para el mortero elaborado con la cantera Don Segundo.

Cuadro N°6.9 Resumen de resultados para la cantera Don Segundo

a/c	Edad (días)	Carga (kg)	fcm (kg/cm²)
0.70	28	52281	284
0.70	45	60047	326
0.65	28	64081	348
0.65	45	63984	349
0.60	28	69695	380
0.60	45	76802	415

Fuente: Elaboración propia.

La gráfica de resistencia a la compresión con respecto a la edad de ensayo del mortero se muestra en la figura N°6.7.

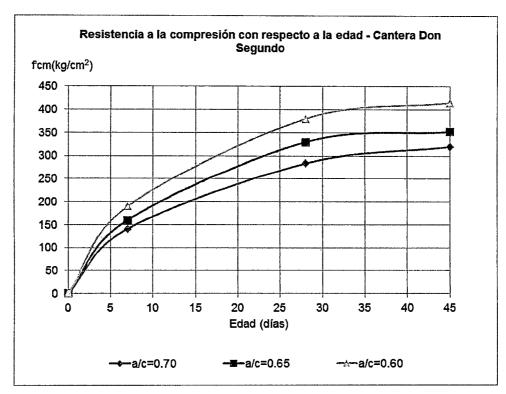


Figura N°6.7 Curva de resistencia según edad, para la cantera Don Segundo.

En el cuadro N°6.10 se muestra un resumen de los valores promedios obtenidos de carga máxima y de resistencia a la compresión para el mortero elaborado con la cantera Don Segundo.

Cuadro N°6.10 Resumen de resultados para la cantera San Martín de Porres

a/c	Edad (días)	Carga (kg)	fcm (kg/cm ²)
0.70	28	42481	231
0.70	45	43896	239
0.65	28	43686	237
0.65	45	47041	256
0.60	28	53073	290
0.60	45	55022	300

Fuente: Elaboración propia.

La gráfica de resistencia a la compresión con respecto a la edad de ensayo del mortero se muestra en la figura N°6.8.

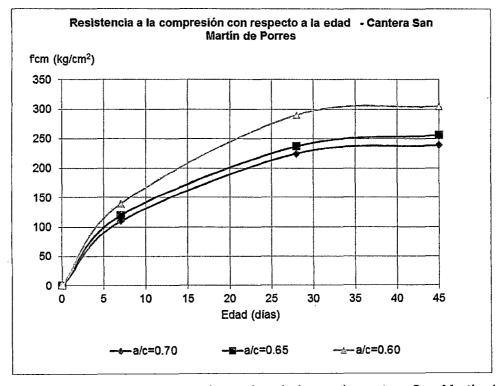


Figura N°6.8 Curva de resistencia según edad, para la cantera San Martín de Porres.

6.2.3 Resumen de resultados de ensayos de compresión

En el cuadro N°6.11 se muestra el resumen de resultados ya mostrados en cuadros anteriores de este capítulo, cuyos valores están graficados en las figuras N°6.9 para la relación a/c=0.70, figura N°6.10 para la relación a/c=0.65 y figura N°6.11 para la relación a/c=0.60.

Cuadro N°6.11 Resumen de resultados para las canteras Don Segundo y San Martín de Porres

a/c	Cantera	Edad (días)	Carga (kg)	fcm (kg/cm ²)
0.70	D.S.	28	52281	284
0.70	S.M.P.	28	42481	231
0.70	D.S.	45	60047	326
0.70	S.M.P.	45	43896	239
0.65	D.S.	28	64081	348
0.65	S.M.P.	28	43686	237
0.65	D.S.	45	63984	349
0.65	S.M.P.	45	47041	256
0.60	D.S.	28	69695	380
0.60	S.M.P.	28	53073	290
0.60	D.S.	45	76802	415
0.60	S.M.P.	45	55022	300

Fuente: Elaboración propia.

Nota:

D.S. (Cantera Don Segundo)

S.M.P. (Cantera San Martín de Porres)

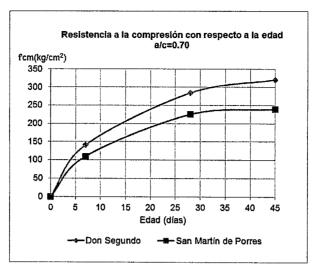


Figura N°6.9 Curva de resistencia según edad, relación a/c=0.70.

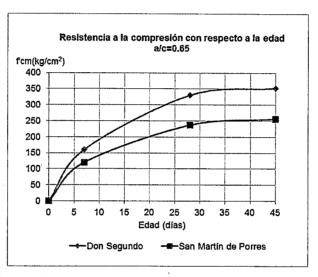


Figura N°6.10 Curva de resistencia según edad, relación a/c=0.65.

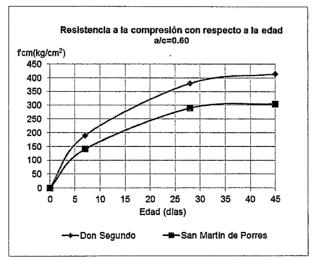


Figura N°6.11 Curva de resistencia según edad, relación a/c=0.60.

En la figura N°6.12 se muestra la tendencia de la resistencia a compresión en función de la relación agua/cemento para cuando el mortero alcanza los 28 días.

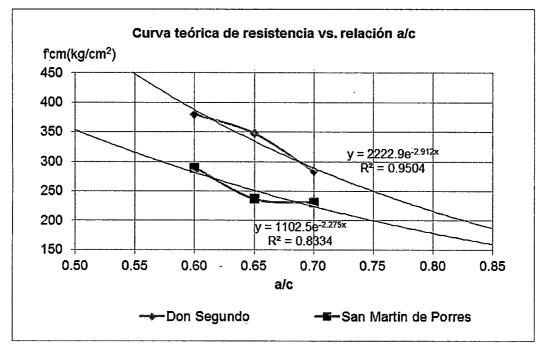


Figura N°6.12 Curva de resistencia según la relación agua/cemento, para los 28 días del ensayo de mortero.

De la figura N°6.12 se determinaron posibles valores aproximados de resistencias de diseño de mortero para ensayo a los 28 días, según la relación agua/cemento (a/c), a través del siguiente cuadro:

Cuadro N°6.12 Relación agua/cemento para resistencias de diseño

Resistencia	relación agua/cemento			
especificada a la compresión(fcm)		Don Segundo		
175	0.75	0.85		
210	0.70	0.80		
245	0.65	0.75		
280	0.60	0.70		
350	0.50	0.60		

6.3 ENSAYO DE MÓDULO DE ELASTICIDAD EN ESTADO ENDURECIDO (ASTMC 469)

Es importante realizar este ensayo, ya que de ello se quiere demostrar que un material que tiene una pendiente más pronunciada en su curva de esfuerzo-deformación será más rígido y se deformará menos bajo carga que uno de pendiente menos pronunciada.

Cuando el nivel de esfuerzo en un material bajo carga está por debajo del límite proporcional y existe una relación de línea recta entre esfuerzo y deformación, se dice que la ley de Hooke es válida.

Muchas de las fórmulas utilizadas para análisis de esfuerzo están basadas en la suposición de que la ley de Hooke se les aplica. Este concepto también es útil para técnicas de análisis experimental de esfuerzos en las que la deformación se mide en un punto, como es el caso de la presente tesis. El esfuerzo correspondiente en dicho punto se calcula bajo la ecuación fundamental:

$$\sigma = E * \varepsilon$$

Siendo esta ecuación válida únicamente donde la deformación ocurre en sólo una dirección. Esto se llama deformación uniaxial y se aplica a miembros sometidos a tensión o compresión axial y vigas sometidas a flexión pura, como es el caso de los ensayos de módulo de elasticidad, donde cada probeta es sometida a compresión.

En la siguiente tabla se muestra los intervalos de valores del Módulo de elasticidad para el caso del concreto.

Tabla N°6.2 Valores de módulo de elasticidad en otros sistemas de unidades

Sistema de uso común en USA	Sistema Internacional	Sistema Técnico usado en el Perú	
2500 - 4500 Ksi	17000 - 31000 MPa	170000 - 310000 kg/cm ²	

Fuente: "Mecánica de Materiales", Gere+Goodno, anexo H.

6.3.1 Procedimiento para realizar el ensayo de módulo de elasticidad

1) De los resultados del ensayo a compresión, se promedian los resultados de las cargas de rotura. Luego el promedio de éstas cargas se multiplicaba por el 40% para encontrar el valor de la carga que se aplica a las otras dos probetas de la misma mezcla, como lo indica Los cuadros N°6.13, N°6.14, N°6.15 y N°6.16.

Cuadro N°6.13 Cargas repartidas para el ensayo de módulo de elasticidad para la cantera Don Segundo a los 28 días

a/c	Muestra	Carga de rotura (kg)	Carga promedio de rotura (kg)	40% Carga promedio de rotura (kg)	Muestra para ensayo
	C1	47700	49576	10500	E1
	C2	49452	48576	19500	E2
0.70	C3		24000	E3	
0.70	C4	59503	- 59757	24000	E4
	C5	51703	40544	20000	E5
	C6	45318	48511	20000	E6
	C7	63352	62600	25000	E7
	C8	61847	02000	25000	E8
	C9	63653	64262	25000	E9
0.65	C10	59073	61363	25000	E10
0.05	C11	64093	63913	25500	E11
	C12	63732	03913	25500	E12
	C13	71063	68448	27000	E13
	C14	65832	00440	27000	
	C15	65283	- 68868	27500	E14
	C16	72452	00000	27300	E15
0.60	C17	68811	69532	27500	E16
0.00	C18	70252	09002	27300	E17
	C19	70494	70687 28000	E18	
	C20	70879		20000	E19

Cuadro N°6.14 Cargas repartidas para el ensayo de módulo de elasticidad para la cantera Don Segundo a los 45 días

a/c	Muestra	Carga de rotura (kg)	Carga promedio de rotura (kg)	40% Carga promedio de rotura (kg)	Muestra para ensayo
	C21	64119	59198	24000	E20
	C22	54276	59190	24000	E21
	C23	63410	63410	25000	E22
0.70	C24	60752	61042	24000	E23
	C25	61332	61042	24000	E24
	C26	60068	E9340	24000	E25
	C27	56370	58219	21000	E26
	C28	66171	63479	25000	E27
	C29	60787	03479		E28
0.65	C30	65731	67512	27000	E29
0.05	C31	69292	0/512		E30
}	C32	61617	60961	24000	E31
	C33	60305	00901	24000	E32
	C34	87213	82412	33000	E33
}	C35	77611	02412	33000	E34
0.60	C36	76116	75438	75.400	E35
0.00	C37	74759	7 0436	30000	E36
	C38	65097	72556	30000	E37
	C39	80015	/ 2000	30000	E38

Cuadro N°6.15 Cargas repartidas para el ensayo de módulo de elasticidad para la cantera San Martín de Porres a los 28 días

a/c	Muestra	Carga de rotura (kg)	Carga promedio de rotura (kg)	40% Carga promedio de rotura (kg)	Muestra para ensayo
	C40	41856	41637	16000	E39
	C41	41418	41037	16000	E40
0.70	C42	45357	46079	18000	E41
0.70	C43	46800	40079	18000	E42
	C44	36706	39726	16000	E43
	C45	42746	39720	16000	E44
	C46	38029	42199	18000	E45
	C47	46368	42199	10000	E40
0.65	C48	41633	44955.5	18000	E46
0.05	C49	48278	44900.0	18000	E47
	C50	46721	43905	17000	E48
	C51	41089	43905	17000	E49
	C52	50097	52033	20000	E50
	C53	53968	52055	20000	E51
0.60	C54	55346	54941	21000	E52
	C55 54536) 3494 I	21000	E53
	C56	51418	51418	20000	E54

Cuadro N°6.16 Cargas repartidas para el ensayo de módulo de elasticidad para la cantera San Martín de Porres a los 45 días

a/c	Muestra	Carga de rotura (kg)	Carga promedio de rotura (kg)	40% Carga promedio de rotura (kg)	Muestra para ensayo
	C57	46802	47888	18000	E55
ļ	C58		4/000	18000	E56
0.70	C59	40665	39229	14000	E57
0.70	C60	37793	39229	14000	E58
	C61	42868	44570	16000	E59
	C62	46276	44572	16000	E60
	C63	49272	48261	18000	E61
	C64	47250	40201	10000	E62
0.65	C65	49852	49055	18000	E63
0.05	C66	48257	49000	10000	E64
	C67	42866	43807	16000	E65
	C68	44747	43007	16000	E66
	C69	59905	58903	18000	E67
	C70	57901	30903	18000	E07
0.60	C71	51328	51734	20000	E68
0.60	C72	52139	01/04	20000	E69
	C73	53328	54420	21000	E70
	C74	54429 55530	21000	E71	

2) Para iniciar el ensayo del módulo de elasticidad, se toman las medidas de las dimensiones de cada probeta (diámetro, altura) y su peso, como se indica en la figura N°6.13.

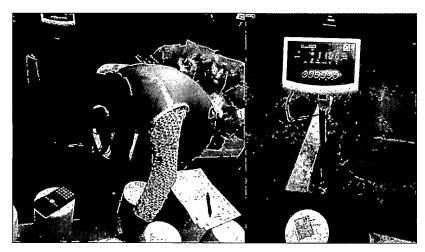


Figura N°6.13 Mediciones del diámetro, altura y peso de la probeta.

3) Se coloca el equipo denominado compresómetro para determinar el módulo de elasticidad a la probeta de mortero, siguiendo el procedimiento descrito en la norma ASTMC 469-2. (ver figura N°6.14).

Figura N°6.14 Ajuste del compresómetro para realizar el ensayo de módulo de elasticidad.

Importante: Al momento de colocar el compresómetro se tomará como datos:

- Dos distancias, e_r y e_f, del eje de la probeta hacia los ejes radiales del instrumento, como lo indica la figura N°6.15.
- La longitud efectiva Gage, como lo indica la figura N°6.16, este valor por lo general se mantiene constante.

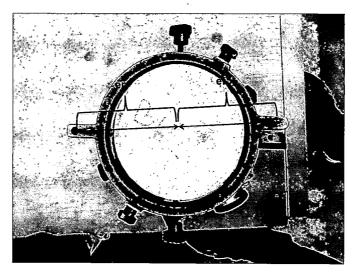


Figura N°6.15 Distancias entre eje de la probeta y eje del pivote.

Nota:

 e_r = distancia perpendicular, medida en milímetros desde la barra de pivote al plano vertical que pasa a través de los dos puntos de soporte del anillo rotativo. e_f = distancia perpendicular, medida en milímetros desde el deformímetro al plano vertical que pasa por los dos puntos de soporte del anillo rotativo.

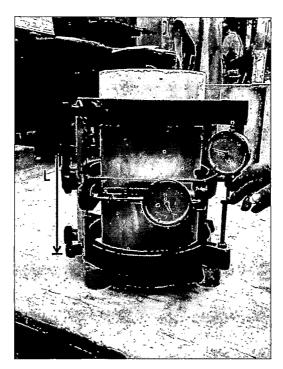


Figura N°6.16 Compresómetro instalado en la probeta de mortero.

Nota:

L= longitud efectiva gage.

4) La probeta se somete a una carga de compresión, y el dispositivo sensor adherido mide la deformación longitudinal para el módulo de elasticidad y diametral para la relación de Poisson. Someter a carga a la probeta por lo menos tres veces para que la repetitividad de la carga se pueda notar. No registrar datos durante la primera carga. Se toma nota de las lecturas de ambos diales (ver figura N°6.17).

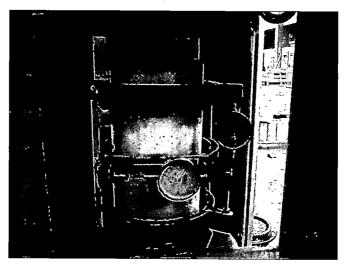


Figura N°6.17 Ensayo de módulo de elasticidad.

5) Después del ensayo de módulo de elasticidad se procede a realizar el ensayo de compresión a la probeta, este ensayo servirá más adelante para calcular el coeficiente C ($Ecm = C * \sqrt{f'cm}$) que involucra la relación entre el valor del módulo de elasticidad y la resistencia a compresión del mortero (ver figura N°6.18).

Figura N°6.18 Probeta ensayada a compresión después del ensayo de módulo de elasticidad.

6) Cada línea del dial que se tomó como dato se encuentra en 0.0001 pulgadas, se saca el promedio, se multiplica por un factor "d" indicado en la norma ASTMC 469.

$$d = \frac{er}{(er + ef)}$$

$$Prom(pulg) = \left(\frac{lect1 + le2}{2}\right) * d * 0.0001$$

Donde:

Lect1= primera lectura de cargas intermedias

Lect2= segunda lectura de cargas intermedias

d = 0.50 cuando la probeta está centrada (ver figura N°6.16)

7) El valor promedio obtenido se transforma a unidades en cm, de la siguiente manera:

$$Prom(cm) = \delta(cm) = Prom(pulg) * 2.54$$

8) Con el diámetro de la probeta, se calcula el área en cm², con la siguiente fórmula:

$$\acute{\mathrm{A}}rea(cm^2) = \frac{\pi*(di\acute{\mathrm{a}}metro)^2}{4}$$

9) El esfuerzo de acuerdo a la carga sometida a la probeta, se calcula con la siguiente fórmula:

$$Esfuerzo\left(\frac{kgf}{cm^2}\right) = \frac{Fuerza(kgf)}{\text{Á}rea(cm^2)}$$

10) Se calcula la deformación unitaria de la siguiente manera:

$$\varepsilon(\frac{cm}{cm}) = \frac{\delta(cm)}{L(cm)}$$

Donde:

$$\delta(cm) = deformación longitudinal$$

 $L(cm) = Longitud efectiva Gate$

- 11) Si la deformación unitaria inicial fuese diferente de cero, entonces realizar la corrección con el fin de que ambos valores iniciales sean ceros.
- 12) Para calcular el valor del módulo de elasticidad para cada probeta de mortero, se realiza del siguiente modo:

$$E\left(\frac{kgf}{cm^2}\right) = \frac{S2 - S1}{\varepsilon^2 - \varepsilon^2}$$

Donde:

Ecm = M'odulo de elasticidad secante

S1 = Esfuerzo correspondiente a la deformación longitudinal, de 0.00005 (éste valor se obtiene extrapolando o interpolando los esfuerzos con sus respectivas deformaciones según sea el caso)

S2 = Esfuerzo correspondiente a una deformación del 40% de la carga última

 $\varepsilon 2 = Deformación unitaria producida al esfuerzo S2$

 $\varepsilon 1 = 0.00005$

Este procedimiento de ensayo los podemos observar en el siguiente cuadro N°6.17. Todas las tablas de ensayos de módulo de elasticidad, realizadas a 71 probetas de mortero, de ambas canteras y condiciones de curado de 28 y 45 días, se encuentran en el Anexo 8.

Cuadro N°6.17 Módulo de elasticidad a los 28 días para la relación a/c=0.70

MÓDULO DE ELASTICIDAD ESTÁTICO


Edad: 28 días

Relación a/c: 0.70

Muestra: E1

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	probetas cilínd	ricas de mortero		4	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	0	0.0000	0.0000	15.30	183.9	20.30	0.00	0.00000	0.00000
2000	13	13	0.0007	0.0017	15.30	183.9	20.30	10.88	80000.0	0.00008
4000	21	21	0.0011	0.0027	15.30	183.9	20.30	21.76	0.00013	0.00013
6000	28	29	0.0014	0.0036	15.30	183.9	20.30	32.63	0.00018	0.00018
8000	36	36	0.0018	0.0046	15.30	183.9	20.30	43.51	0.00023	0.00023
10000	44	44	0.0022	0.0056	15.30	183.9	20.30	54.39	0.00028	0.00028
12000	51	51	0.0026	0.0065	15.30	183.9	20.30	65.27	0.00032	0.00032
14000	58	59	0.0029	0.0074	15.30	183.9	20.30	76.15	0.00037	0.00037
16000	65	65	0.0033	0.0083	15.30	183.9	20.30	87.03	0.00041	0.00041
18000	72	73	0.0036	0.0092	15.30	183.9	20.30	97.90	0.00045	0.00045
19500	78	77	0.0039	0.0098	15.30	183.9	20.30	106.06	0.00048	0.00048

d=ge_r/(e_r+e_t)
e_r (mm) 128.5
e_t (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

f'em=	291
S2=	106.06
ε2=	0.00048
S1=	4.07
ε1=	0.00005

Módulo Elástico	224540
Estático [kgf/cm²]	234548

Los valores encontrados en el Anexo N°8 se encuentran resumidas para la cantera Don Segundo en los cuadros N°6.18 y N°6.19, y para la cantera San Martín de Porres en los cuadros N°6.20 y N°6.21.

Cuadro N°6.18 Módulo de elasticidad para la cantera Don Segundo a los 28 días

a/c	Muestra	fcm (kg/cm ²)	fcm promedio (kg/cm ²)	E (kg/cm ²)	E promedio (kg/cm²)
	E1	291		234548	
	E2	236		242179	
0.70	E3	309	007	267527	050040
0.70	E4	300	287	251089	253848
	E5	271		257227	
	E6	314		270515	
	E7	360		261581	
	E8	318		264007	
	E9	375		270507	
0.65	E10	375	354	260080	271081
	E11	361		282645	
	E12	312		279679	
	E13	376		279070	
	E14	350		268559	
	E15	377		300143	
0.60	E16	392	390	300933	281571
	E17	416] 390	268175	2013/1
	E18	392		274625	
	E19	410	Ì	276989	

Cuadro N°6.19 Módulo de elasticidad para la cantera Don Segundo a los 45 días

a/c	Muestra	fcm (kg/cm²)	fcm promedio (kg/cm²)	E (kg/cm²)	E promedio (kg/cm²)
	E20	334		285721	
	E21	309		260284	
	E22	327		277923	
0.70	E23	322	320	264448	268984
	E24	323		276547	
	E25	297		254430	
	E26	324		263535	
	E27	380		294177	
:	E28	349		296545	
0.65	E29	355	355	264598	270000
0.65	E30	363	355	274547	279060
	E31	329		274389	
	E32	351		270104	
	E33	391		290357	
	E34	427	427 30366		·
0.60	E35	405	400	274369	202709
0.60	E36	381	400	295143	292798
	E37	391		283880	
	E38	405		309373	

Cuadro N°6.20 Módulo de elasticidad para la cantera San Martín de Porres a los 28 días

a/c	dentificació	fcm (kg/cm ²)	f'cm promedio (kg/cm²)	E (kg/cm ²)	E promedio (kg/cm²)	
	E39	217		229632		
	E40	225		216655		
0.70	E41	259	234	231131	228196	
0.70	E42	244	234	229173	220190	
	E43	224		236436		
	E44	237		226150		
	E45	213		229494		
	E46	270		240232		
0.65	E47	255	245	258786	238440	
	E48	240		222769		
	E49	247		240921		
	E50	309		279517		
	E51	269		255578		
0.60	E52	290	295	264886	260216	
	E53	313		260319		
	E54	293		240778		

Cuadro N°6.21 Módulo de elasticidad para la cantera San Martín de Porres a los 45 días

a/c	Muestra	fcm (kg/cm²)	f'cm promedio (kg/cm²)	E (kg/cm ²)	E promedio (kg/cm²)
	E55	262		234546	
	E56	241		265714	
0.70	E57	222	241	217028	224204
0.70	E58	226	241	256259	234304
	E59	259		216849	
	E60	237		215431	
	E61	276		238666	
	E62	278		239786	
0.65	E63	257	256	254828	240012
0.05	E64	242	256	236661	240012
	E65	238		247094	
	E66	246		223039	
	E67	310		259438	
	E68	282		254234	
0.60	E69	295	299	260402	259693
	E70	310		263569	
	E71	296		260820	

A continuación se muestra un cuadro comparativo de los módulos de elasticidad obtenidos para las diferentes relaciones a/c, en el sistema Técnico, sistema Inglés, y sistema Internacional de unidades, que se obtienen mediante los siguientes conversión de unidades:

$$1\frac{Kg}{cm^2} = 0.1MPa$$

$$1\frac{Kg}{cm^2} = 0.01419 \, Ksi$$

Cuadro N°6.22 Módulos de elasticidad obtenidos para las diferentes relaciones a/c

a/c	Cantera	Edad (días)	Ecm (kg/cm²)	Ecm (Ksi)	Ecm (MPa)
	D.S.	28	253848	3602	25385
0.70	S.M.P.		228196	3238	22820
0.70	D.S.	45	268984	3817	26898
	S.M.P.	45	234304	3325	23430
	D.S.	28	271081	3847	27108
0.65	S.M.P.	20	238440	3383	23844
0.05	D.S.	45	279060	3960	27906
	S.M.P.	45	240012	3406	24001
	D.S.	28	281571	3995	28157
0.60	S.M.P.	20	260216	3692	26022
0.60	D.S.	45	292798	4155	29280
	S.M.P.	45	259693	3685	25969

6.4 COEFICIENTE DE POISSON (ASTMC-469)

En todos los materiales usados en ingeniería civil, el alargamiento producido por una carga de compresión en una dirección dada, está acompañado de una contracción en cualquier dirección transversal. Se considera que el material es homogéneo. Además se supondrá que es isotrópico, es decir, $\varepsilon_y = \varepsilon_z$ (ver figura N°6.19).

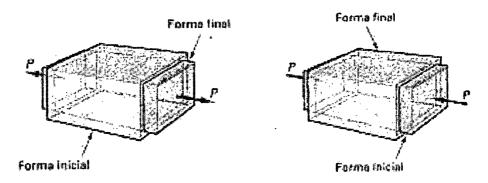


Figura N°6.19 Comportamiento de un material isotrópico. Referencia: http://www.faringa.net/posts/ciencia-educacion/8211001/Modulo-de-Poisson.html

Este valor es la deformación lateral y el valor absoluto de la relación entre la deformación lateral y la axial es el coeficiente de Poisson y se denota por la letra griega ν

$$\nu = \left| \frac{deformación unitaria en la dirección transversal}{deformación unitaria en la dirección cargada} \right|$$

ó

$$u = -rac{arepsilon_y}{arepsilon_r} = -rac{arepsilon_Z}{arepsilon_r}$$
.....(a)

Se sabe que:

$$arepsilon_{\chi}=rac{\sigma_{\chi}}{E}$$
....(b)

Reemplazando (b) en (a)

$$\varepsilon_y = \varepsilon_z = -\frac{\nu * \sigma_x}{F}$$

El ensayo para la determinación del coeficiente de Poisson se realizó en conjunto con el ensayo del módulo de elasticidad.

En el caso del concreto, ν varía ampliamente según el grado y el esfuerzo aplicado, pero en general queda comprendido entre 0.1 y 0.25.

- 6.4.1 Procedimiento para la determinación del coeficiente de Poisson de las probetas de mortero
 - En ensayo de coeficiente de Poisson se realiza en simultáneo con el ensayo del módulo de elasticidad, ya que se necesita saber las deformaciones en ambos ejes, longitudinal y transversal, actuando bajo una misma carga de compresión.
 - 2) Se realizan de dos a tres ensayos por cada probeta de mortero, donde al realizar las lecturas una unidad que se lee en el dial se encuentra en 0.0001 pulgadas, se saca el promedio, se multiplica por un factor "d" indicado en la norma ASTMC 469.

$$d = \frac{er}{(er + ef)}$$

$$Prom(pulg) = \left(\frac{lect1 + le2}{2}\right) * d * 0.0001$$

Donde:

d = 0.50 cuando la probeta está centrada (ver figura N°6.16)

3) El valor promedio obtenido se transforma a unidades en cm, de la siguiente manera:

$$Prom(cm) = \delta(cm) = Prom(pulg) * 2.54$$

4) Con el diámetro de la probeta, se calcula el área en cm², con la siguiente fórmula:

$$\acute{\mathrm{A}}rea(cm^2) = \frac{\pi*(di\acute{\mathrm{a}}metro)^2}{4}$$

5) El esfuerzo de acuerdo a la carga sometida a la probeta, se calcula con la siguiente fórmula:

$$Esfuerzo\left(\frac{kgf}{cm^2}\right) = \frac{Fuerza(kgf)}{\text{Á}rea(cm^2)}$$

6) Se calcula la deformación unitaria transversal de la siguiente manera:

$$\varepsilon(\frac{cm}{cm}) = \frac{\delta(cm)}{d(cm)}$$

Donde:

 $\delta(cm) = deformación transversal$

d(cm) = Diámetro de la probeta

- 7) Si la deformación unitaria inicial fuese diferente de cero, entonces realizar la corrección con el fin de que ambos valores iniciales sean ceros.
- 8) Para calcular el valor del coeficiente de Poisson para cada probeta de mortero, se realiza del siguiente modo:

$$Relación de Poisson\left(\frac{cm}{cm}\right) = \frac{\varepsilon_{t2} - \varepsilon_{t1}}{\varepsilon 2 - \varepsilon 1}$$

Donde:

 $arepsilon_{t2} = Deformación transversal correspondiente al esfuerzo máximo de ensayo$

 $\varepsilon_{t1} = Deformación transversal correspondiente al esfuerzo cuya deformación unitaria en la dirección cargada es <math>0.00005$

 $\varepsilon 2 = Deformación unitaria correspondiente al esfuerzo S2$

 $\varepsilon 1 = 0.00005$

A continuación en los cuadros N°6.23, N°6.24 y N°6.25 se muestran los ensayos de módulo de elasticidad realizadas a 3 probetas de mortero, de la cantera San Martín de Porres y condiciones de curado de 45 días.

Cuadro N°6.23 Coeficiente de Poisson de la cantera San Martín de Porres para la relación a/c=0.70

COEFICIENTE DE POISSON

Edad: 45 días

Relación a/c: 0.70

Muestra: E55

And	Lectura	s (Gage)	Deformación Transversál		Dimensión de las probetas cilíndricas de mortero		Esfuerzo		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	(kgf/cm ²)	ε=δ/d (cm/cm)	Unitaria (cm/cm)
0	3	4	0.0002	0.0004	15.26	182.9	0.00	0.00003	0.00000
2000	4	5	0.0002	0.0006	15.26	182.9	10.94	0.00004	0.00001
4000	5	6	0.0003	0.0007	15.26	182.9	21.87	0.00005	0.00002
6000	6	7	0.0003	0.0008	15.26	182.9	32.81	0.00005	0.00002
8000	7	8	0.0004	0.0010	15.26	182.9	43.74	0.00006	0.00003
10000	8	9	0.0004	0.0011	15.26	182.9	54.68	0.00007	0.00004
12000	9	10	0.0005	0.0012	15.26	182.9	65.61	0.00008	0.00005
14000	10	11	0.0005	0.0013	15.26	182.9	76.55	0.00009	0.00006
16000	11	12	0.0006	0.0015	15.26	182.9	87.48	0.00010	0.00007
18000	12	13	0.0006	0.0016	15.26	182.9	98.42	0.00010	0.00007

d=ge_r/(e_r+e_f)
e_r (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

	COEFIC	CIENTE DI	POISSO	N; ;
120				
f/cm ,				
Estuerzo (kgt/cm/2) 80				
40				
OFFICE	2.6.05	A.E.OS	6.E.OS	& Ligh
Deformación unitaria (cm/cm)				

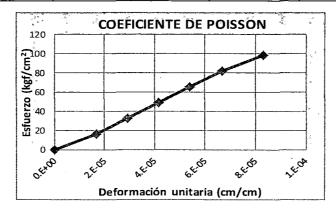
f'em=	262
S2=	98.42
εt2=	0.00007
S1=	11.83
εt1≔	9.0E-06

ε2=	0.00042
ε1=	0.00005

Relación de Poisson	0.18

Cuadro N°6.24 Coeficiente de Poisson de la cantera San Martín de Porres para la relación a/c=0.65

COEFICIENTE DE POISSON


Edad: 45 días

Relación a/c: 0.65

Muestra: E61

S S	Lectura	s (Gage)	Deformación Transversal		Dimensión de las probetas cilíndricas de mortero		Esfuerzo	- 5/42	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	(kgf/cm ²)	ε=δ/d (cm/cm)	Unitaria (cm/cm)
0	3	3	0.0002	0.0004	15.25	182.7	0.00	0.00002	0.00000
3000	5	5	0.0003	0.0006	15.25	182.7	16.42	0.00004	0.00002
6000	7	6	0.0003	0.0008	15.25	182.7	32.85	0.00005	0.00003
9000	8	8	0.0004	0.0010	15.25	182.7	49.27	0.00007	0.00004
12000	10	9	0.0005	0.0012	15.25	182.7	65.70	0.00008	0.00005
15000	11	11	0.0006	0.0014	15.25	182.7	82.12	0.00009	0.00007
18000	13	13	0.0007	0.0017	15.25	182.7	98.55	0.00011	0.00008

d=ge_r/(e_r+e_f)
e_r (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

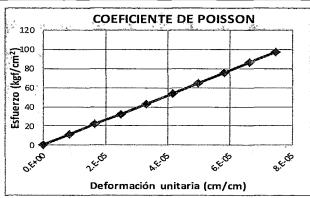
f'em=	276
S2=	98.55
εt2=	0.00008
S1=	5.21
εt1≔	8.1E-06

ε2=	0.00044
ε1=	0.00005

Relación de Poisson	0.19
Relación de Poisson	0.19

Cuadro N°6.25 Coeficiente de Poisson de la cantera San Martín de Porres para la relación a/c=0.60

COEFICIENTE DE POISSON


Edad: 45 días

Relación a/c: 0.60

Muestra: E67

Fuerza (kgf)	Lecturas (Gage)		Deformación Transversal		Dimensión de las probetas cilíndricas de mortero		Esfuerzo	م څاره	Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	(kgf/cm ²)	ε=δ/d (cm/cm)	Unitaria (cm/cm)
0	1	3	0.0001	0.0003	15.33	184.6	0.00	0.00002	0.00000
2000	2	4	0.0002	0.0004	15.33	184.6	10.84	0.00002	0.00001
4000	3	5	0.0002	0.0005	15.33	184.6	21.67	0.00003	0.00002
6000	4	6	0.0003	0.0006	15.33	184.6	32.51	0.00004	0.00002
8000	5	7	0.0003	0.0008	15.33	184.6	43.34	0.00005	0.00003
10000	6	8	0.0004	0.0009	15.33	184.6	54.18	0.00006	0.00004
12000	7	9	0.0004	0.0010	15.33	184.6	65.01	0.00007	0.00005
14000	8	10	0.0005	0.0011	15.33	184.6	75.85	0.00007	0.00006
16000	9	11	0.0005	0.0013	15.33	184.6	86.69	0.00008	0.00007
18000	10	12	0.0006	0.0014	15.33	184.6	97.52	0.00009	0.00007

d=ge_r/(e_r+e_f) e_r (mm) 128.5 e_f (mm) 128.5 er/(er+ef) 0.500 según ASTM C-469

f'cm=	310
S2=	97.52
εt2=	0.00007
S1=	13.92
εt1=	1.06E-05

	ε2=	0.00037
_	ε1=	0.00005

· -		
Relación de Poisson	0.20	

 En el cuadro N°6.26 se muestra un cuadro comparativo de los coeficientes de Poisson obtenidos para las diferentes relaciones a/c de la cantera San Martín de Porres.

Cuadro N°6.26 Coeficientes de Poisson obtenidos para las diferentes relaciones a/c

a/c	fcm(kg/cm²)	Coeficiente de poisson
0.70	262	0.18
0.65	276	0.19
0.60	310	0.20

Fuente: Elaboración propia.

Del cuadro anterior se puede resumir que las relaciones de Poisson varían 0.18, 0.19 y 0.20 aproximadamente.

CAPÍTULO VII : DETERMINACIÓN DEL COEFICIENTE C

7.1 MÓDULO DE ELASTICIDAD TEÓRICO

En el Reglamento Nacional de Edificaciones, La Norma de diseño en Concreto Armado E-060, indica que en concretos preparados con cemento Portland Normal, el cálculo del Módulo de Elasticidad de concretos de peso unitario normal (2300 kg/cm3), puede efectuarse empleando la ecuación:

$$Ec = 4700 * \sqrt{f'c}$$
 (en MPa)(a)

Haciendo el cambio de unidades sería:

$$1MPa = 10^6 \frac{N}{m^2} = 10^6 \frac{N}{m^2} * \frac{1kg}{9.81N} * \frac{1m^2}{10^4 cm^2} = 10.19 \frac{kg}{cm^2} \dots \dots (b)$$

Reemplazando (b) en (a) se tiene:

$$Ec = 4700 * \sqrt{\left(f'c\frac{kg}{cm^2}\right) * \frac{1MPa}{10.19\frac{kg}{cm^2}}} * 1MPa * \frac{10.19\frac{kg}{cm^2}}{1MPa} = 15000 * \sqrt{f'c}$$

En resumen:

$$Ec = 15000 * \sqrt{f'c} (en \frac{kg}{cm^2})$$

Teniendo en cuenta ésta fórmula para el concreto de peso normal, en la presente tesis se quiere calcular el coeficiente para el caso de morteros con arenas de las canteras de la ciudad de Iquitos, donde la ecuación quedaría expresada de la siguiente manera:

$$Ecm = C * \sqrt{f'cm} \ (en \frac{kg}{cm^2})$$

Donde "C" representa el coeficiente que relaciona la resistencia en compresión con el módulo de elasticidad, el valor de "C" será obtenido como un promedio de

los valores hallados en los diferentes especímenes ensayados para diferentes relaciones agua/cemento, y utilizando dos canteras de agregados finos, esto con el fin de obtener un valor más acorde al comportamiento de morteros preparados con arenas finas.

7.2 DENSIDAD O PESO UNITARIO DEL MORTERO ENDURECIDO

Antes de calcular el coeficiente "C" que se utiliza en la fórmula del módulo de elasticidad, es importante saber para qué valores de pesos unitarios del mortero en estado endurecido se cumple la fórmula, es decir, antes de iniciarse los ensayos correspondientes al módulo de elasticidad, se determinó los pesos de las probetas mediante la balanza electrónica, y las dimensiones, para calcular el peso por unidad de volumen, mediante la siguiente fórmula:

Volumen
$$(m^3) = \text{Área}(cm^2) * Altura(cm) * 10^{-6}$$

Peso unitario
$$\left(\frac{kg}{m^3}\right) = \frac{masa(kg)}{Volumen(m^3)}$$

Se determinará el intervalo de valores en el que se encuentra el peso unitario del mortero de acuerdo a los valores obtenidos en los cuadros N°7.1 y N°7.2 correspondientes a las canteras Don Segundo y San Martín de Porres respectivamente.

Los resultados que se obtengan serán relacionados dentro de clasificación del concreto según su peso unitario, esto se muestra en la siguiente tabla:

Tabla N°7.1 Clasificación del concreto según su peso unitario

Peso unitario (kg/m³)	Descripción
500 - 2000	Concreto ligero
2000 - 2500	Concreto normal
2600 - 5600	Concreto pesado

Fuente: "Tecnología del Concreto", Jairo René Niño Hernández, año 2014.

Cuadro N°7.1 Pesos unitarios correspondientes a la cantera Don Segundo

Muestra	Diámetro (cm)	Área (cm²)	Altura (cm)	Volumen (m³)	Masa (kg)	Peso unitario (kg/m³)
E1	15.30	183.9	30.0	0.00552	12.07	2188
E2	15.31	184.1	30.0	0.00552	12.00	2173
E3	15.29	183.6	30.0	0.00551	12.22	2218
E4	15.27	183.1	30.0	0.00549	12.27	2233
E5	15.29	183.6	30.0	0.00551	12.11	2198
E6	15.26	182.9	30.0	0.00549	12.04	2194
E7	15.29	183.6	30.0	0.00551	11.98	2175
E8	15.30	183.9	30.0	0.00552	11.98	2172
E9 -	15.31	184.1	30.0	0.00552	11.83	2142
E10	15.3	183.9	30.0	0.00552	11.84	2147
E11	15.24	182.4	30.0	0.00547	11.88	2171
E12	15.29	183.6	30.0	0.00551	11.88	2157
E13	15.15	180.3	30.0	0.00541	11.64	2152
E14	15.24	182.4	30.0	0.00547	12.20	2229
E15	15.24	182.4	30.0	0.00547	12.25	2238
E16	15.25	182.7	30.0	0.00548	12.17	2221
E17	15.30	183.9	30.0	0.00552	12.21	2214
E18	15.26	182.9	30.0	0.00549	12.13	2211
E19	15.29	183.6	30.0	0.00551	12.15	2206
E20	15.36	185.3	30.0	0.00556	12.10	2177
E21	15.35	185.1	30.0	0.00555	12.01	2163
E22	15.31	184.1	30.0	0.00552	11.76	2129
E23	15.40	186.3	30.0	0.00559	12.19	2181
E24	15.35	185.1	30.0	0.00555	12.00	2161
E25	15.26	182.9	30.0	0.00549	11.77	2145
E26	15.41	186.5	30.0	0.00560	12.02	2148
E27	15.23	182.2	30.0	0.00547	12.01	2198
E28	15.24	182.4	30.0	0.00547	11.96	2185
E29	15.28	183.4	30.0	0.00550	11.85	2154
E30	15.30	183.9	30.0	0.00552	11.88	2154
E31	15.29	183.6	30.0	0.00551	11.91	2162
E32	15.29	183.6	30.0	0.00551	11.95	2169
E33	15.30	183.9	30.0	0.00552	12.25	2221
E34	15.30	183.9	30.0	0.00552	12.25	2221
E35	15.32	184.3	30.0	0.00553	12.38	2239
E36	15.36	185.3	30.0	0.00556	12.55	, 2258
E37	15.28	183.4	30.0	0.00550	12.11	2201
E38	15.35	185.1	30.0	0.00555	12.35	2225

Fuente: Elaboración propia.

Del cuadro anterior se observa que el valor mínimo del peso unitario del mortero para la cantera Don Segundo es 2129 kg/m³, y el valor máximo es 2258 kg/m³.

Cuadro N°7.2 Pesos unitarios correspondientes a la cantera San Martín de Porres

Mussins	Diáma atua (aua)	á (2)	Altura (ama)	3	Mana (ka)	Peso unitario
Muestra	Diámetro (cm)	Area (cm ⁻)	Altura (cm)	volumen (m²)	Masa (kg)	(kg/m³)
E39	15.30	183.9	30.0	0.00552	11.61	2105
E40	15.32	184.3	30.0	0.00553	11.83	2139
E41	15.26	182.9	30.0	0.00549	11.80	2151
E42	15.26	182.9	30.0	0.00549	11.81	2152
E43	15.40	186.3	30.0	0.00559	12.02	2151
E44	15.26	182.9	30.0	0.00549	11.81	2152
E45	15.33	184.6	30.0	0.00554	11.71	2115
E46	15.30	183.9	30.0	0.00552	11.90	2158
E47	15.36	185.3	30.0	0.00556	11.78	2119
E48	15.30	183.9	30.0	0.00552	11.88	2154
E49	15.31	184.1	30.0	0.00552	11.96	2166
E50	15.21	181.7	30.0	0.00545	11.87	2178
E51	15.24	182.4	30.0	0.00547	11.83	2162
E52	15.22	181.9	30.0	0.00546	11.63	2131
E53	15.22	181.9	30.0	0.00546	11.66	2136
E54	15.33	184.6	30.0	0.00554	11.73	2118
E55	15.26	182.9	30.0	0.00549	11.72	2136
E56	15.25	182.7	30.0	0.00548	11.70	2135
E57	15.30	183.9	30.0	0.00552	11.71	2123
E58	15.37	185.5	30.0	0.00557	11.81	2122
E59	15.25	182.7	30.0	0.00548	11.51	2101
E60	15.30	183.9	30.0	0.00552	11.48	2081
E61	15.25	182.7	30.0	0.00548	11.79	2152
E62	15.25	182.7	30.0	0.00548	11.80	2153
E63	15.27	183.1	30.0	0.00549	11.71	2131
E64	15.25	182.7	30.0	0.00548	11.72	2139
E65	15.23	182.2	30.0	0.00547	11.66	2133
E66	15.22	181.9	30.0	0.00546	11.74	2151
E67	15.33	184.6	30.0	0.00554	11.78	2127
E68	15.28	183.4	30.0	0.00550	11.65	2118
E69	15.24	182.4	30.0	0.00547	11.66	2131
E70	15.22	181.9	30.0	0.00546	11.64	2133
E71	15.30	183.9	30.0	0.00552	11.74	2129

Fuente: Elaboración propia.

Del cuadro anterior se observa que el valor mínimo del peso unitario del mortero para la cantera San Martín de Porres es 2081 kg/m³, y el valor máximo es 2178kg/m³.

Se concluye que el peso por volumen del mortero varía entre 2050 y 2300 kg/m³, clasificándose como un mortero de peso normal.

7.3 PROCEDIMIENTO PARA CALCULAR EL COEFICIENTE "C" DE LA FÓRMULA DEL MÓDULO DE ELASTICIDAD PARA MORTEROS

El procedimiento a seguir para la determinación de este coeficiente es el siguiente:

- Del capítulo VI, se obtuvieron los valores del Módulo de Elasticidad y de la Resistencia en Compresión para cada uno de los especímenes elaborados.
- 2) Reemplazando estos valores obtenidos en el capítulo VII, en la ecuación:

$$C = \frac{E}{\sqrt{f_{cm}'}}$$

- 3) De todos estos valores que se obtienen para "C" se sacará el promedio, este valor nos representará al coeficiente de relación entre la resistencia a la compresión y el módulo de elasticidad.
- 7.3.1 Determinación de "C", de acuerdo a cada cantera en estudio Los cálculos realizados a las edades de 28 y 45 días, se encuentran resumidos en los siguientes cuadros N°7.3 y N°7.4 para la cantera Don Segundo, y cuadros N°7.5 y N°7.6 para la cantera San Martín de Porres.

Cuadro N°7.3 Coeficiente C à los 28 días para la cantera Don Segundo

a/c	Muestra	fcm (kg/cm²)	E (kg/cm ²)	$C = \frac{E}{\sqrt{f'cm}}$	C(promedio)	Desviación estándar (Ss)	Cv (%)
	E1	. 291	234548	13744	·		
	E2	236	242179	15766			
0.70	E3	309	267527	15216	45004	707.04	5.44
0.70	E4	300	251089	14492	15021	767.24	5.11
	E5	271	257227	15633			
	E6	314	270515	15277			
	E7	360	261581	13790			5.62
	E8	318	264007	14796	14441	811.11	
	E9	375	270507	13966			
0.65	E10	375	260080	13434			
	E11	361	282645	14873			
	E12	312	279679	15844			
	E13	376	279070	14383			
	E14	350	268559	14357			
	E15	377	300143	15459			
0.00	E16	392	300933	15205	4 4005	000.00	0.00
0.60	E17	416	268175	13142	14285	903.36	6.32
	E18	392	274625	13869			
	E19	410	276989	13677			

Cuadro N°7.4 Coeficiente C a los 45 días para la cantera Don Segundo

a/c	Muestra	fcm (kg/cm²)	E (kg/cm ²)	$C = \frac{E}{\sqrt{f'cm}}$	C(promedio)	Desviación estándar (Ss)	Cv (%)
	E20	334	285721	15631			
	E21	309	260284	14801			
	E22	327	277923	15377			
0.70	E23	322	264448	14731	15045	405.49	2.70
	E24	323	276547	15388			
	E25	297	254430	14753			
	E26	324	263535	14631			
	E27	380	294177	15095		670.13	4.52
	E28	349	296545	15882	14827		
0.05	E29	355	264598	14037			
0.65	E30	363	274547	14402			
	E31	329	274389	15128			
	E32	351	270104	14420			
	E33	391	290357	14676			
	E34	427	303667	14692			
0.00	E35	405	274369	13636	44040	040.70	4.40
0.60	E36	381	295143	15130	14643	612.78	4.18
	E37	391	283880	14351			
	E38	405	309373	15376			

Cuadro N°7.5 Coeficiente C a los 28 días para la cantera San Martín de Porres

a/c	Muestra	fcm (kg/cm²)	E (kg/cm ²)	$C = \frac{E}{\sqrt{f'cm}}$	C(promedio)	Desviación estándar (Ss)	Cv (%)
	E39	217	229632	15590	»		
	E40	225	216655	14442			
0.70	E41	259	231131	14372	14027	607.43	4.07
0.70	E42	244	229173	14685	14927	607.43	4.07
	E43	224	236436	15790			
	E44	237	226150	14685			
	E45	213	229494	15741		762.18	5.00
	E46	270	240232	14621			
0.65	E47	255	258786	16210	15256		
	E48	240	222769	14379	1		
ı	E49	247	240921	15331			
	E50	309	279517	15897			
	E51	269	255578	15587			
0.60	E52	290	264886	15545	15162	753.33	4.97
	E53	313	260319	14716			
	E54	293	240778	14065			_

Cuadro N°7.6 Coeficiente C a los 45 días para la cantera San Martín de Porres

a/c	Muestra	fcm (kg/cm ²)	E (kg/cm²)	$C = \frac{E}{\sqrt{f'cm}}$	C(promedio)	Desviación estándar (Ss)	Cv (%)
	E55	262	234546	14497			
	E56	241	265714	17129			
0.70	E57	222	217028	14565	45400	4500.04	40.45
0.70	E58	226	256259	17060	15120	1580.04	10.45
	E59	259	216849	13466			
	E60	237	215431	14001			
	E61	276	238666	14353		812.01	5.41
	E62	278	239786	14372			
0.65	E63	257	254828	15907	45040		
0.65	E64	242	236661	15207	15010		
	E65	238	247094	16005			
	E66	246	223039	14219			ļ
	E67	310	259438	14725	-		
	E68	282	254234	15144			
0.60	E69	295	260402	15167	15033	190.35	1.27
	E70	310	263569	14968			
	E71	296	260820	15159			

De los cuadros anteriores se determinó el valor de C, utilizando los promedios obtenidos para cada relación a/c, como se muestra en el siguiente cuadro N°7.7:

Cuadro N°7.7 Resumen de los valores del coeficiente C obtenidos

CANTERA	CANTERA a/c edad		C (promedio)	
	0.70		15021	
	0.65	28	14441	
D.S.	0.60		14285	
D.S.	0.70		15045	
	0.65	45	14827	
	0.60		14643	
	0.70		14927	
	0.65	28	15256	
S.M.P.	0.60		15162	
J.IVI.F.	0.70		15120	
	0.65	45	15010	
	0.60	_	15033	
	14898			
Desv	296.98			
	Cv en (%)			

Fuente: Elaboración propia.

De los valores que se presentan en el cuadro N°7.7, se puede concluir que para morteros preparados con arenas de la cantera Don Segundo, se puede adoptar un valor de C= 14898.

Quedando entonces la siguiente ecuación:

$$E_{cm} = 14898 * \sqrt{f'_{cm}} (en \frac{kg}{cm^2})$$

Las ecuaciones dadas para las canteras Don Segundo y San Martín de Porres se pueden apreciar en la figura N°7.1.

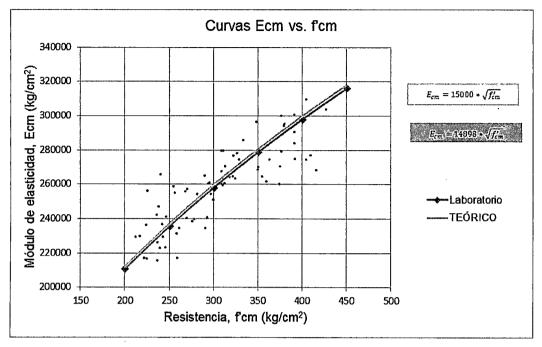


Figura N°7.1 Módulo de elasticidad vs. Resistencia a la compresión.

En el gráfico anterior se muestra las dos ecuaciones del módulo de elasticidad, la que se determinó por medio de ensayos de laboratorio y la ecuación para un concreto convencional del Reglamento Nacional de Edificaciones E-060.

CAPÍTULO VIII : CONCLUSIONES Y RECOMENDACIONES

8.1 CONCLUSIONES

- El coeficiente que relaciona el módulo de elasticidad y la resistencia del mortero a compresión varía muy poco respecto al coeficiente establecido en las fórmulas para concretos convencionales. Siendo la ecuación calculada en el capítulo VII:

$$E_{cm} = 14898 * \sqrt{f'_{cm}} (en \frac{kg}{cm^2})$$

- La presencia de feldespatos y óxido de fierro (Fe₂O₃) en las arenas blancas, no constituyen peligro para que los agregados de las canteras de Iquitos sean usados en la elaboración de morteros, ya que representan el 15% y el cuarzo representa el 85% en una muestra de arena blanca, siendo éste mineral un material inerte y resistente a las reacciones químicas.
- La cantidad de finos en las arenas blancas, resultaron alrededor del 5.1%, este porcentaje hace que el contenido de agua en el diseño de mezclas se incremente con el fin de que se pueda llegar a una cantidad en la que la mezcla de mortero pueda ser trabajable, al incrementar el agua, también se incrementa la cantidad de cemento, debido a la relación utilizada para el cálculo de las proporciones, por ello es que se utiliza grandes cantidades de agua y cemento en la elaboración de morteros.
- El cemento Andino tipo I es de fragua lenta, es decir, a los 7 días de curado, llega exactamente al 70% de la resistencia de diseño, pero al transcurrir los días de curado, cuando el mortero llega a la edad de 28 días, su resistencia sobrepasa considerablemente a la resistencia de diseño. Esto genera un poco de incertidumbre al momento de hacer las pruebas de mezclas para cada diseño que se quiera lograr.
- Las propiedades del mortero fresco son diferentes al del concreto convencional, así se ve que su peso unitario es 12% menor que del concreto normal, tiene un contenido de aire, cuyo valor es el doble con respecto al concreto convencional, debido a la porosidad del agregado, y una considerable exudación que se presenta por el tipo de material fino que se asienta en el fondo del recipiente, liberando gran cantidad de agua, y es contrarrestado por el rápido fraguado debido a la cantidad de cemento utilizado en la mezcla.

- Los resultados de resistencia a la compresión de las probetas elaboradas con ambas canteras tuvieron buenos resultados en general, resaltando siempre que por lo mismo que la cantera Don Segundo tiene mejores propiedades físicas de sus agregados, los resultados fueron alrededor del 35% mayores respecto a los ensayos de resistencia a la compresión de las probetas hechas con arenas de la cantera San Martín de Porres.
- Las cargas de rotura a los 45 días difieren un valor promedio de 7000 kg. sobre las cargas de rotura para la edad de 28 días, esto ocurrió en las mejores condiciones de curado, ya que por la cantidad de probetas de mortero que se elaboraron, no todas fueron curadas bajos las mismas condiciones.
- El peso unitario del mortero endurecido varía entre 2129 kg/m³ y 2258 kg/m³, perteneciendo según la clasificación de concretos de acuerdo a su peso, a un mortero de peso normal.
- Los valores del módulo de elasticidad de las probetas a los 28 días, generalmente eran menores que las que serían calculadas aplicando la fórmula descrita en el Reglamento Nacional de Edificaciones. En cambio no ocurre lo mismo a los 45 días, donde generalmente el valor del módulo de elasticidad es muy cercano al valor como se calcularía según el Reglamento.
- Los coeficientes de Poisson calculados en las tres probetas de mortero, dieron como resultado valores situados dentro del rango de valores para el caso de concreto convencional, es decir, entre 0.18 y 0.20.

8.2 RECOMENDACIONES

- Cuando las canteras tengan agregados que resulten perjudiciales, es recomendable realizar el tamizado y lavado de arenas para quitar todo materia perjudicial para el diseño de morteros.
- Realizar siempre los ensayos de las propiedades de las canteras, ya que si bien es cierto que son del mismo tipo de agregados, cada cantera tiene sus propiedades que pueden ser favorables o desfavorables con respecto de otras.
- Al realizar las mezclas de mortero, realizar de preferencia cuando el trompo este limpio y seco para que la arena con el cemento se puedan mezclar bien, y luego echar progresivamente el agua.
- En cualquier construcción, tener en cuenta las propiedades del mortero en estado fresco, ya que es muy importante conocer acerca de la exudación,

tiempo de fraguado, contenido de aire, trabajabilidad, entre otros aspectos, para que cuando el mortero este en estado endurecido, pueda dar resultados deseados. En el caso del mortero con arenas de Iquitos, es notable la excesiva exudación, por ello se debe hacer ensayos con aditivos que puedan controlar la cantidad de agua, y observar en que otro aspecto podría afectar al mortero cuando esté en estado endurecido.

- Es importante preparar el lugar suficientemente amplio donde las probetas serán curadas, y obtener excelentes resultados.
- La ecuación del módulo determinada para el caso del mortero es útil solamente a nivel de anteproyecto, para el proyecto final se recomienda realizar ensayos de probetas muestreadas del vaciado en obra.

BIBLIOGRAFÍA

- 1. Beer Ferdinand P., Johnston, Jr., "Mecánica de Materiales", Segunda edición, McGraw-Hill Interamericana S.A., Santafé de Bogotá, 1996.
- 2. Gere James M., Goodno Barry J., "Mecánica de Materiales", Séptima edición, Cengage Learning Editores S.A de C.V., México D.F., 2009.
- 3. Mamlouk Michael S., Zaniewski John P., "Materiales para Ingeniería Civil", 2ª edición, Pearson Educación S.A., Madrid, 2009.
- Martínez Bordoy César Aquiles, "Estudio de los materiales de construcción para obras de edificación en la ciudad de Iquitos", Tesis de Grado UNI – FIC, Lima, 1993.
- 5. Mott Robert L., "Resistencia de materiales", Quinta edición, Pearson Education S.A. de C.V., México, 2009.
- 6. Niño Hernández Jairo René, "Tecnología del Concreto", Tercera edición, ASOCRETO, Bogotá, 2014.
- 7. Normas Técnicas, Agregados Especificaciones normalizadas para agregados en concreto, N.T.P.400.037, Lima, 2014.
- 8. Normas Técnicas, Agregados Ensayo de granulometría, N.T.P. 400.012, Lima, 2001.
- Normas Técnicas, Agregados Ensayo de contenido de humedad, N.T.P. 400.010. Lima, 2011.
- Normas Técnicas, Agregados Ensayos de pesos unitarios, N.T.P. 400.017, Lima, 1999.
- Normas Técnicas, Agregados Ensayos de peso específico y absorción,
 N.T.P. 400.022, Lima, 2013.
- 12. Normas Técnicas, Agregados Ensayo de determinación del material que pasa la malla N° 200, N.T.P. 400.018, Lima, 2013.
- Normas Técnicas, Agregados Ensayo para determinar el efecto de las impurezas orgánicas del agregado fino sobre la resistencia de morteros, N.T.P. 400.013, Lima, 2013.
- Normas Técnicas, Agregados Ensayo para determinar los terrones de arcilla y partículas friables en el agregado fino, N.T.P. 400.015, Lima, 2013.
- 15. Normas Técnicas, Concreto Ensayo de asentamiento, N.T.P. 339.035, Lima, 2009.

- Normas Técnicas, Concreto Ensayo de peso unitario, N.T.P. 339.046,
 Lima, 2008.
- 17. Normas Técnicas, Concreto Ensayo de exudación, N.T.P. 339.077, Lima, 2013.
- Normas Técnicas, Concreto Ensayo de tiempo de fraguado, N.T.P.
 339.082, Lima, 2011.
- Normas Técnicas, Concreto Ensayo de resistencia a la compresión,
 N.T.P. 339.034, Lima, 2008.
- Norma ASTMC-469-02 Standard Test Method for Static Modulus of Elasticy and Poisson's Ratio of Concrete in Compression, United States, 2012.
- 21. Pinedo Reátegui Nelson, "Geotecnia y los Deslizamientos en Iquitos-Perú", Tesis de Grado UNI – FIC, Lima, 1985.
- 22. Reglamento Nacional de edificaciones, Norma E-060, Tercera edición, Macro E.I.R.L., Lima, 2010.
- 23. Rivva López Enrique, "Naturaleza y Materiales del Concreto", Primera Edición, Capítulo Peruano del American Concrete Institute, Lima, 2000.
- 24. Rivva López Enrique, "Diseño de Mezclas", Segunda Edición, reservada, Lima, Perú, 2007.
- 25. Sánchez de Guzmán Diego, "Tecnología de Concreto y del Mortero", Quinta Edición, Bhandar editores Ltda., Santafé de Bogotá, 2001.
- 26. Singer Ferdinand L., "Resistencia de Materiales", Segunda edición, Ediciones del Castillo S.A., Madrid, 1971.
- 27. Torre Carrillo Ana, "El módulo de Elasticidad de Concretos Preparados con Cemento Portland Puzolánicos Atlas IP", Tesis de Grado UNI FIC, Lima, 1993.

ANEXOS

- **ANEXO 1: ERAS GEOLÓGICAS**
- ANEXO 2: MAPA DE UBICACIÓN DE LAS CANTERAS SAN MARTÍN DE PORRES Y DON SEGUNDO
- ANEXO 3: DESCRIPCIÓN MINERALÓGICA DE LAS CANTERAS DE IQUITOS
- ANEXO 4: FORMATO DE PROPIEDADES FÍSICAS DE LAS CANTERAS
- ANEXO 5: DISEÑO DE MEZCLAS PARA CADA UNA DE LAS CANTERAS
- ANEXO 6: FORMATO DE MORTERO FRESCO DE LA CANTERA DON SEGUNDO
- ANEXO 7: ENSAYOS DE RESISTENCIA A LA COMPRESIÓN DE LAS CANTERAS DON SEGUNDO Y SAN MARTÍN DE PORRES
- ANEXO 8: ENSAYOS DE MÓDULO DE ELASTICIDAD DE LAS CANTERAS DON SEGUNDO Y SAN MARTÍN DE PORRES

ANEXO 1: ERAS GEOLÓGICAS

Eras	Periodos	millones de años	Geología	Fauna	Flora
Precámbrica	Arcaico	2500 - 3800	Se formaron los primeros océanos.	Bacterias	Algas aerobias
_	Proterozoico		Se produjeron grandes plegamientos.		
	Cámbrico		El supercontinente Pannotia se desintegra.		
	Ordovícico		Se elevaron las montañas en una nueva orogenia.	Dominaban los invertebrados y también las	
Paleozoica	Silúrico		Amplias áreas terrestres se elevan y otras emergen.	medusas, gusanos, moluscos, caracoles y corales.	Plantas simples llamadas psilofitas
	Devónico		Europa choca con América del Norte, formando el Continente de Laurasia.		Helechos gigantes
	Carbonífero		Se originan cadenas de montañas.	Aparecieron los primeros vertebrados: peces con cuerpo	Bosques exuberantes en los pantanales
	Pérmico		Las zonas de la tierra se unieron en un único continente Pangea.	cubierto con una coraza ósea.	Plantas semejantes a las palmeras
	Triásico	ſ	No se da una gran orogénesis. Es un período de sedimentación.	Surgieron reptiles como los dinosaurios y las tortugas	Nuevos grupos florales como coníferas
Mesozoica	Jurásico		El supercontinente Pangea se divide en dos: Laurasia y Gondwana.	Aparecieron los pájaros primitivos	
	Cretácico		Gondwana en proceso de desintegración. Hay una gran actividad tectónica.	Los dinosaurios desaparecen al final de este periodo.	Aparecieron las plantas con flores
	Terciario		La intensa actividad orogénica conformó cordilleras tan importantes como los Andes,	Se desarrollaron nuevos grupos de mamíferos como	La hierba era más prominente, y esto
Cenozoica			los Alpes y el Himalaya.	caballos pequeños, los rinocerontes, los tapires, las ballenas	provocó cambios en la dentición de
1	Cuaternario		Los glaciares cubrieron la cuarta parte de la superficie terrestre, y el clima fue muy	y los antiguos elefantes. Aparece el hombre.	los animales herbívoros.
	L	<u> </u>	frío	<u> </u>	

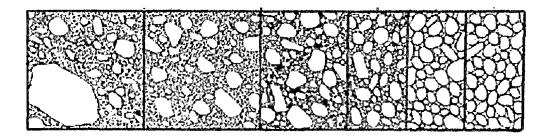
ANEXO 2: MAPA DE UBICACIÓN DE LAS CANTERAS SAN MARTÍN DE PORRES Y DON SEGUNDO

NEXO 3: DESCRIPCIÓN MINERALÓGICA DE LAS CANTERAS DE

IQUITOS

LABORATORIO N°8 ESCUELA DE GEOLOGIA FIGMM

CANTERA SAN MARTIN DE PORRES


De la muestra analizada se determinó:

Tamaño: Comprendido entre 0.063 y 10 mm

Homogeneidad: Referente al tamaño de los granos

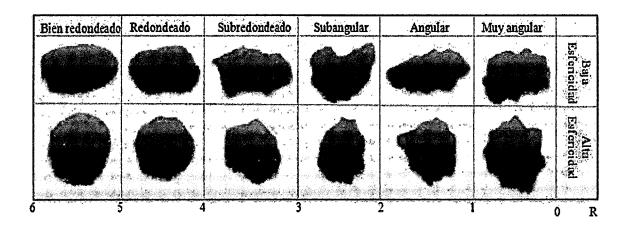
Poco homogénea

Muy homogénea

La Forma, esfericidad y redondez es producto de la meteorización y erosión de los granos debido al transporte y sedimentación.

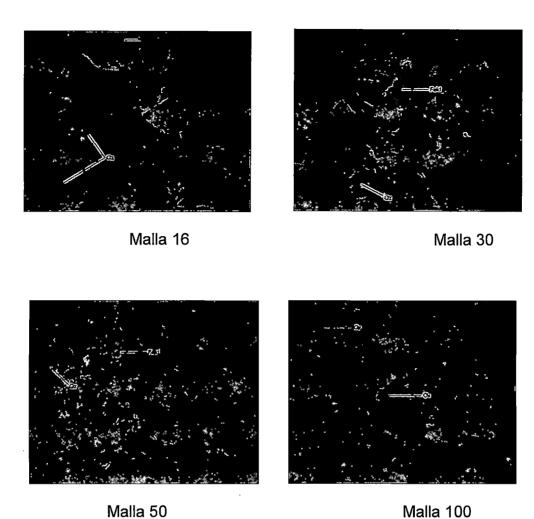
Forma: Varia ampliamente, puede definirse de acuerdo a las características geométricas o la relación entre los ejes de un rodado (a, b y c). Se puede distinguir entre un rodado prolado (un eje largo y dos cortos) de otro oblado (dos eje largos y uno corto), una partícula puede tener la forma aproximada a:

Esfera: Los tres ejes casi de la misma longitud

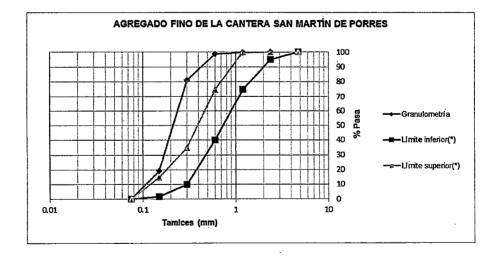

Oblate o plano (disco o un plano) dos ejes largos y uno corto

Prolados o cilíndrico (rodillo o vara) un eje largo y dos cortos

Cualquier forma intermedia (planares, aciculares)


Esfericidad: Relación entre las dimensiones del grano (ancho, largo y alto). Será mas esférica si estas dimensiones son similares

Redondez: Desgaste de los bordes por abrasión durante el transporte, se mide por lo general por comparación visual de granos del mismo tamaño y frecuentemente se usa el cuarzo.


Gráficas de comparación visual para la determinación de la esfericidad y la redondez, basadas en Powers (1953),Folk (1955)

Mana 50 Mana 100

La muestra es homogénea, subangular a subredondeado y de baja esfericidad.

Su distribución nos indican el tipo de arena.

Promedio: Medida de la tendencia central, principal o máximo. Mediana o percentil 50 **Md = 0.27**

Los sedimentos con una media cercana a 0.2 logran una mejor selección que los más finos o más gruesos

Selección: Corresponde a una dispersión alrededor de la tendencia central. Refleja el grado de variación entre los distintos tamaños de grano, se mide por el coeficiente de selección S.

Puede calcularse como la raíz cuadrada de la razón entre el tercer y primer cuartil.

$$S = \sqrt{\frac{\varphi 75}{\varphi 25}}$$
 $S = \sqrt{\frac{0.43}{0.17}}$

Según Trask (1932); los valores de S = 1 sedimento perfectamente seleccionado, S < 2.5 indican buena selección (tamaños de grano poco variables), S \approx 3.0 indica selección moderada y S > 4.5 mala selección asociada a una gran variabilidad de tamaños

$$S = 1.59$$

Simetría o asimetría: Predominancia de mezclas gruesas o finas, el coeficiente es Sk, es el producto de los cuartiles dividido por el cuadrado de la media.

$$Sk = \frac{\varphi 75 * \varphi 25}{Md2}$$

$$Sk = \frac{0.43 * 0.17}{(0.27 * 0.27)}$$

$$Sk = 1.002$$

Escala de Asimetría Sk de Folk y Ward (1957)

Asimetría negativa marcada	-1.00 a -0.296
Asimetría negativa	-0.30 a -0.11
Asimetría	-0.10 a 0.10
Asimetría positiva	0.11 a 0.29
Asimetría positiva marcada	0.30 a 1.00

Curtosis: Se define como la agudeza relativa del centro de distribución respecto a las colas o como el grado de selección del centro respecto a la de las colas, esta determinado por el coeficiente de curtosis (K)

$$K = \frac{\varphi 75 - \varphi 25}{2(P90 - P10)} \qquad K = \frac{0.43 - 0.17}{2(0.53 - 0.1)}$$

K = 0.302

Escala de curtosis (K) de Folk y Ward (1957)

Muy platicúrtica	Menos de 0.67
Platicúrtica	0.68 a 0.90
Mesocúrtica	0.91 a 1.1
Leptocúrtica	1.12 a 1.50
Muy leptocúrtica	1.51 a 3.00
Extremadamente leptocúrtica	Mas de 3.01

Arena submadura con Mediana o percentil 50 Md = 0.27, bien seleccionada, con asimetría positiva marcada y muy platicúrtica

Composición mineralógica:

Cuarzo 90%, feldespatos 7% otros 3%

ANEXO 1: ERAS GEOLÓGICAS

Eras	Periodos	millones de años	Geología	Fauna	Flora
	Arcaico		Se formaron los primeros océanos.		
Precámbrica		2500 - 3800		Bacterias	Algas aerobias
	Proterozoico		Se produjeron grandes plegamientos.		
	Cámbrico		El supercontinente Pannotia se desintegra.		
ļ	Ordovícico		Se elevaron las montañas en una nueva orogenia.	Dominaban los invertebrados y también las	
Paleozoica	Silúrico		Amplias áreas terrestres se elevan y otras emergen.	medusas, gusanos, moluscos, caracoles y corales.	Plantas simples llamadas psilofitas
	Devónico	290 - 560	Europa choca con América del Norte, formando el Continente de Laurasia.		Helechos gigantes
	Carbonífero	•	Se originan cadenas de montañas.	Aparecieron los primeros vertebrados: peces con cuerpo	Bosques exuberantes en los pantanales
	Pérmico		Las zonas de la tierra se unieron en un único continente Pangea.	cubierto con una coraza ósea.	Plantas semejantes a las palmeras
	Triásico		No se da una gran orogénesis. Es un periodo de sedimentación.	Surgieron reptiles como los dinosaurios y las tortugas	Nuevos grupos florales como coníferas
Mesozoica	Jurásico	145 - 250	El supercontinente Pangea se divide en dos: Laurasia y Gondwana.	Aparecieron los pájaros primitivos	
	Cretácico		Gondwana en proceso de desintegración. Hay una gran actividad tectónica.	Los dinosaurios desaparecen al final de este periodo.	Aparecieron las plantas con flores
	Terciario		La intensa actividad orogénica conformó cordilleras tan importantes como los Andes,	Se desarrollaron nuevos grupos de mamíferos como	La hierba era más prominente, y esto
Cenozoica		1 - 65	los Alpes y el Himalaya.	caballos pequeños, los rinocerontes, los tapires, las ballenas	provocó cambios en la dentición de
	Cuaternario		Los glaciares cubrieron la cuarta parte de la superficie terrestre, y el clima fue muy	y los antiguos elefantes. Aparece el hombre.	los animales herbívoros.
			frío		

VERSIDAD NACIONAL DE INGENIERÍA CULTAD DE INGENIERÍA CIVIL	ANEX
·	
ANEXO 4: FORMATO DE PROPIEDADES FÍ	SICAS DE LAS CANTERAS

GRANULOMETRÍA

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Cantera	San Martín de Porres
Ubicación	Carretera Iquitos-Nauta Km. 25.3
Fecha de ensayo	LIMA, 04 DE JUNIO DEL 2014

	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	0/ B
		(gr.)	correg.(gr.)	Retenido	Acumulado	% Pasa
	N°4	0	0.0	0.0	0.0	100.0
	N°8	0	0.0	0.0	0.0	100.0
1	N°16	0.3	0.3	0.1	0.1	99.9
1 '	N°30	6.2	6.2	1.2	1.3	98.7
	N°50	82.9	83.2	16.6	17.9	82.1
	N°100	307. <u>1</u>	308.1	61.6	79.6	20.4
	FONDO	101.9	102.2	20.4	100.0	0.0
	TOTAL	498.4	500.0	100.0		

	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	0/ Desa
		(gr.)	correg.(gr.)	Retenido	Acumulado	% Pasa
	N°4	0	0.0	0.0	0.0	100.0
ļ	N°8	0	0.0	0.0	0.0	100.0
2	N°16	0.3	0.3	0.1	0.1	99.9
-	N°30	6.6	6.6	1.3	1.4	98.6
	N°50	90.7	90.9	18.2	19.6	80.4
	N°100	313	313.6	62.7	82.3	17.7
	FONDO	88.4	88.6	17.7	100.0	0.0
	TOTAL	499	500.0	100.0		

	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	0/ D
		(gr.)	correg.(gr.)	Retenido	Acumulado	% Pasa
	N°4	0	0.0	0.0	0.0	100.0
	N°8	0	0.0	0.0	0.0	100.0
3	N°16	0.2	0.2	0.0	0.0	100.0
J	N°30	6.9	6.9	1.4	1.4	98.6
	N°50	88.3	88.6	17.7	19.1	80.9
	N°100	302.8	303.8	60.8	79.9	20.1
	FONDO	100.1	100.4	20.1	100.0	0.0
	TOTAL	498.3	500.0	100.0		

	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	º/ Dana
		(gr.)	correg.(gr.)	Retenido	Acumulado	% Pasa
	N°4	0.0	0.0	0.0	0.0	100.0
	N°8	0.0	0.0	0.0	0.0	100.0
Р.	N°16	0.3	0.3	0.1	0.1	99.9
' '	N°30	6.6	6.6	1.3	1.4	98.6
	N°50	87.3	87.6	17.5	18.9	81.1
	N°100	307.6	308.5	61.7	80.6	19.4
	FONDO	96.8	97.1	19.4	100.0	0.0
	TOTAL	498.6	500.0	100.0		

GRANULOMETRÍA

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Cantera	Don Segundo
Ubicación	Carretera Iquitos-Nauta Km. 9.5
Fecha de ensayo	LIMA, 19 DE JUNIO DEL 2014

	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	0/ D
		(gr.)	correg.(gr.)	Retenido	Acumulado	% Pasa
)	N°4	0	0.0	0.000	0.000	100.000
	N°8	0	0.0	0.000	0.000	100.000
1 1	N°16	0.9	0.9	0.180	0.180	99.820
	N°30	15.8	15.8	3.166	3.347	96.653
1	N°50	223.1	223.5	44.709	48.056	51.944
İ	N°100	148.4	148.7	29.739	77.796	22,204
İ	FONDO	110.8	111.0	22.204	100.000	0.000
	TOTAL	499	500.0	100.000		

	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	0/ D
1		(gr.)	correg.(gr.)	Retenido	Acumulado	% Pasa
i	N°4	0	0.0	0.000	0.000	100.000
	N°8	0	0.0	0.000	0.000	100.000
2	N°16	0.9	0.9	0.180	0.180	99.820
_	N°30	15.8	15.8	3.164	3.345	96.655
	N°50	215.9	216.2	43.241	46.585	53.415
	N°100	154.1	154.3	30.863	77.448	22.552
	FONDO	112.6	112.8	22.552	100.000	0.000
	TOTAL	499.3	500.0	100.000	_	

	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	0/ D
		(gr.)	correg.(gr.)	Retenido	Acumulado	% Pasa
	N°4	0	0.0	0.000	0.000	100.000
	N°8	0	0.0	0.000	0.000	100.000
3	N°16	1	1.0	0.200	0.200	99.800
	N°30	13.9	13.9	2.785	2.985	97.015
i	N°50	209.3	209.7	41.935	44.921	55.079
	N°100	148.4	148.7	29.734	74.654	25.346
	FONDO	126.5	126.7	25.346	100.000	0.000
	TOTAL	499.1	500.0	100.000		

<u></u>	Tamiz	Peso Ret.	Peso Ret.	%	% Retenido	% Pasa
	'	(gr.)	correg.(gr.)	Retenido	Acumulado	70 Fasa
	N°4	0.0	0.0	0.0	0.0	100.0
	N°8	0.0	0.0	0.0	0.0	100.0
P	N°16	0.9	0.9	0.2	0.2	99.8
•	N°30	15.2	15.2	3.0	3.2	96.8
	N°50	216.1	216.5	43.3	46.5	53.5
	N°100	150.3	150.6	30.1	76.6	23.4
	FONDO	116.6	116.8	23.4	100.0	0.0
	TOTAL	499.1	500.0	100.0		

CONTENIDO DE HUMEDAD

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	San Martín de Porres		
Ubicación	Carretera Iquitos-Nauta Km. 25.3		
Fecha de ensayo	LIMA, 04 DE JUNIO DEL 2014		

		1	2	3
Peso de la muestra en estado ambiental	(gr.)	500	500	500
Peso de la muestra seca al horno	(gr.)	494.2	494	493.2
Peso del agua perdida	(gr.)	5.8	6	6.8
Contenido de humedad	%	1.17	1.21	1.38
Promedio	%		1.26	

CONTENIDO DE HUMEDAD

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO

CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Cantera	Don Segundo		
Ubicación	Carretera Iquitos-Nauta Km. 9.5		
Fecha de ensayo	LIMA, 17 DE JUNIO DEL 2014		

		1	2	3
Peso de la muestra en estado ambiental	(gr.)	500	500	500
Peso de la muestra seca al horno	(gr.)	489.3	489.6	490.7
Peso del agua perdida	(gr.)	10.7	10.4	9.3
Contenido de humedad	%	2.19	2.12	1.90
Promedio	%	-	2.07	

PESO UNITARIO SUELTO

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	San Martín de Porres
Ubicación	Carretera Iquitos-Nauta Km. 25.3
Fecha de ensayo	LIMA, 04 DE JUNIO DEL 2014

		1	2	3
Peso de la muestra + recipiente	(kg)	5.70	5.70	5.70
Peso del recipiente	(kg)	1.60	1.60	1.60
Peso de la muestra	(kg)	4.10	4.10	4.10
Volumen del recipiente	(m ³)	0.0028	0.0028	0.0028
Peso unitario suelto	(kg/m³)	1464	1464	1464
Promedio ponderado	(kg/m ³)		1464	

PESO UNITARIO SUELTO

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Cantera	Don Segundo
Ubicación	Carretera lquitos-Nauta Km. 9.5
Fecha de ensayo	LIMA, 17 DE JUNIO DEL 2014

		1	2	3
Peso de la muestra + recipiente	(kg)	6.05	6.00	6.05
Peso del recipiente	(kg)	1.60	1.60	1.60
Peso de la muestra	(kg)	4.45	4.4	4.45
Volumen del recipiente	(m ³)	0.0028	0.0028	0.0028
Peso unitario suelto	(kg/m ³)	1589	1571	1589
Promedio ponderado	(kg/m ³)		1583	

PESO UNITARIO COMPACTADO

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	San Martín de Porres
Ubicación	Carretera lquitos-Nauta Km. 25.3
Fecha de ensayo	LIMA, 04 DE JUNIO DEL 2014

		1	2	3
Peso de la muestra + recipiente	(kg)	6.34	6.35	6.34
Peso del recipiente	(kg)	1.60	1.60	1.60
Peso de la muestra	(kg)	4.74	4.75	4.74
volumen del recipiente	(m ³)	0.0028	0.0028	0.0028
Peso unitario compactado	(kg/m ³)	1693	1696	1693
Promedio ponderado	(kg/m ³)		1694	

PESO UNITARIO COMPACTADO

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Cantera	Don Segundo
Ubicación	Carretera lquitos-Nauta Km. 9.5
Fecha de ensayo	LIMA, 17 DE JUNIO DEL 2014

		1	2	3 ·
Peso de la muestra + recipiente	(kg)	6.60	6.60	6.65
Peso del recipiente	(kg)	1.60	1.60	1.60
Peso de la muestra	(kg)	5.00	5.00	5.05
volumen del recipiente	(m ³)	0.0028	0.0028	0.0028
Peso unitario compactado	(kg/m³)	1785.71	1785.71	1803.57
Promedio ponderado	(kg/m³)		1792	

PESO ESPECÍFICO Y ABSORCIÓN

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	San Martín de Porres
Ubicación	Carretera Iquitos-Nauta Km. 25.3
Fecha de ensayo	LIMA, 09 DE JUNIO DEL 2014

· <u>·</u>		1	2	3	PROMEDIO
Peso de la arena superficialmente	seca	500	500	500	
Peso de la arena superficial + pes	o del balón+peso del agua	988.2	988.3	988	
Peso del balón		178.1	178.1	178.1	
Peso del agua	W	310.1	310.2	309.9	
Peso de la arena seca al horno	Α	498.5	498.7	497.7	
Volumen del balón	V	500	500	500	
Peso específico de masa	A/(V-W)	2.63	2.63	2.62	2.62
Peso específico de masa superficialmente seco 500/(V-W)		2.63	2.63	2.63	
Peso específico aparente	A/(V-W)-(500-A)	2.65	2.65	2.65	
Absorción	(500-A)X100/A	0.3	0.3	0.5	0.3

PESO ESPECÍFICO Y ABSORCIÓN

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Cantera	Don Segundo
Ubicación	Carretera Iquitos-Nauta Km. 9.5
Fecha de ensayo	LIMA, 23 DE JUNIO DEL 2014

		1	2	3	PROMEDIO
Peso de la arena superficialmente seca		500	500	500	
Peso de la arena superficial + peso d	el balón+peso del agua	982.5	985.1	986.1	
Peso del balón		178.8	178.5	178.5	
Peso del agua	W	303.7	306.6	307.6	
Peso de la arena seca al horno	A	498.4	499	498.9	
Volumen del balón V		500	500	500	
Peso específico de masa	A/(V-W)	2.54	2.58	2.59	2.57
Peso específico de masa superficialmente seco 500/(V-W)		2.55	2.59	2.60	
Peso específico aparente	A/(V-W)-(500-A)	2.56	2.59	2.61	
Absorción	(500-A)X100/A	0.32	0.20	0.22	0.2

MALLA N°200

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	San Martín de Porres
Ubicación	Carretera Iquitos-Nauta Km. 25.3
Fecha de ensayo	LIMA, 05 DE JUNIO DEL 2014

	1	2	3
Peso inicial seco	500	500	500
Peso seco lavado	471.9	472.1	472.0
Pérdida de peso	28.1	27.9	28.0
% que pasa la malla 200	5.62	5.58	5.60
% promedio		5.60	

MALLA N°200

TESIS

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Cantera	Don Segundo
Ubicación	Carretera Iquitos-Nauta Km. 9.5
Fecha de ensayo	LIMA, 19 DE JUNIO DEL 2014

	1	2	3
Peso inicial seco	500	500	500
Peso seco lavado	479.3	475.1	476.6
Pérdida de peso	20.7	24.9	23.4
% que pasa la malla 200	4.14	4.98	4.68
% promedio		4.60	

ANEXO 5: DISEÑO DE MEZCLAS PARA CADA UNA DE LAS CANTERAS

Ensayo	San Martín de Porres	Don Segundo		
Granulometría	Fuera del Huso	Fuera del Huso		
Módulo de Finura	1.01	1.26		
Contenido de humedad	0.1 %	1.6 %		
Peso unitario suelto	1460 kg/m ³	1580 kg/m ³		
Peso unitario compactado	1690 kg/m ³	1790 kg/m ³		
Peso específico	2620 kg/m ³	2570 kg/m ³		
Absorción	0.3 %	0.2 %		
Malla N°200	5.6 %	4.6 %		
Impurezas orgánicas	perjudicial	no perjudicial		

Peso específico del cemento:

3150 kg/m³

 $f'cm = 175 kg/cm^2$

 $0.66 \le a/c \le 0.70$

(a/c)=

0.70

1° Diseño f'cm = 175 kg/cm²

slump= 3" - 5"

2° Agua =

315

3° Aire atrapado =

3 9

4° Cemento: 5° Diseño: (a/c) = A/C

C= 450

Vol(pie3)=(P.U.OX42.5)*35.31/P.U.S

 $F = \frac{54}{\sum P.U.O.}$

CANTERA SAN MARTÍN DE PORRES

		Diseño	o Seco		Diseño en obra				Prueba
	(1) Peso Seco	(2) P.e.	(3) Volumen	(4) W.U.S	(5) P.O.	(6) P.U.O	(7) P.U.O.X42.5	(8) Vol (pie3)	(9) P.U.O. x F
Cemento	450	3150	0.143	1	450	1	42.5	1	11.51
Agua	315	1000	0.315	0.7	318	0.71	30.00	30.0	8.13
Arena	1342	2620	0.512	2.98	1343	2.98	126.9	3.1	34.36
Aire atrap.	3		0.030				_		<u></u>
_	· 	Σ	1		2110.84	4.69			

Dosificación en volumen

Cemento	Arena	Agua							
1	3.07	30.00							

F= 11.51

CANTERA DON SEGUNDO

				CANTENAD	ON SECONO				
		Diseño	o Seco		Diseño en obra				Prueba
	(1) Peso Seco	(2) P.e.	(3) Volumen	(4) W.U.S	(5) P.O.	(6) P.U.O.	(7) P.U.O.X42.5	(8) Vol (pie3)	(9) P.U.O. x F
Cemento	450	3150	0.143	1	450	1	42.5	1	11.66
Agua	315	1000	0.315	0.7	297	0.66	28.0	28.0	7.69
Arena	1316	2570	0.512	2.92	1337	2.97	126.3	2.8	34.65
Aire atrap.	3		0.030						
		Σ	1		2083.84	4.63			

Dosificación en volumen

Cemento	Arena	Agua		
1	2.8	28.0		

F= 11.66

 $f'cm = 210 \text{ kg/cm}^2$

0.60 ≤ a/c ≤ 0.65

(a/c)=

0.65

1° Diseño f'cm = 210 kg/cm^2

slump=

514111 53221

2° Agua = 3° Aire atrapado =

3 %

3" - 5"

4° Cemento:

(a/c) = A/C

C = 485

Vol(pie3)=(P.U.OX42.5)*35.31/P.U.S

5° Diseño:

 $\mathsf{F} = \frac{54}{\sum P.U.O.}$

CANTERA SAN MARTÍN DE PORRES

	CANTERA SAN WARTIN DET ORRES										
		Diseño Seco				Diseño en obra					
	(1) Peso Seco	(2) P.e.	(3) Volumen	(4) W.U.S	(5) P.O.	(6) P.U.O	(7) P.U.O.X42.5	(8) Vol (pie3)	(9) P.U.O. x F		
Cemento	485	3150	0.154	1	485	1	42.5	1	12.36		
Agua	315	1000	0.315	0.65	318	0.66	27.86	27.9	8.10		
Arena	1313	2620	0.501	2.71	1314	2.71	115.3	2.8	33.53		
Aire atrap.	3		0.030								
		Σ	1		2116.58	4.37					

Dosificación en volumen

	Cemento Arena Agua				
	Cemento	Arena	Agua		
ſ	1	2.79	27.86		

F= 12.36

CANTERA DON SEGUNDO

		CANTERA BON SEGONDO									
		Diseño	o Seco		Diseño en obra				Prueba		
	(1) Peso Seco	(2) P.e.	(3) Volumen	(4) W.U.S	(5) P.O.	(6) P.U.O.	(7) P.U.O.X42.5	(8) Vol (pie3)	(9) P.U.O. x F		
Cemento	485	3150	0.154	1	485	_ 1	42.5	1	12.52		
Agua	315	1000	0.315	0.65	297	0.61	26.0	26.0	7.67		
Arena	1288	2570	0.501	2.66	1309	2.70	114.8	2.6	33.81		
Aire atrap.	3		0.030								
	-	Σ	1	<u> </u>	2090.16	4.31					

Dosificación en volumen

Cemento	Arena	Agua
1	2.6	26.0

F= 12.52

f'cm= 280 kg/cm²

 $0.45 \le a/c \le 0.50$

(a/c)=

1° Diseño f'cm = 280 kg/cm^2

slump=

3" - 5"

2° Agua =

3° Aire atrapado =

315

4° Cemento: 5° Diseño:

(a/c) = A/C

C= 525

Vol(pie3)=(P.U.OX42.5)*35.31/P.U.S

 $\Sigma P.U.O.$

CANTERA SAN MARTÍN DE PORRES

		Diseño Seco				Diseño en obra			
<u> </u>	(1) Peso Seco	(2) P.e.	(3) Volumen	(4) W.U.S	(5) P.O.	(6) P.U.O	(7) P.U.O.X42.5	(8) Vol (pie3)	(9) P.U.O. x F
Cemento	525	3150	0.167	1	525	1	42.5	1	13.35
Agua	315	1000	0.315	0.6	318	0.60	25.71	25.7	8.08
Arena	1279	2620	0.488	2.44	1281	2.44	103.7	2.5	32.57
Aire atrap.	3	<u>-</u> -	0.030						
	<u> </u>	Σ	1		2123.27	4.04			

Dosificación en volumen

Cemento	Arena	Agua
1	2.51	25.71

F= 13.35

CANTERA DON SEGUNDO

		Diseño	o Seco		Diseño en obra				Prueba	
	(1) Peso Seco	(2) P.e.	(3) Volumen	(4) W.U.S	(5) P.O.	(6) P.U.O.	(7) P.U.O.X42.5	(8) Vol (pie3)	(9) P.U.O. x F	
Cemento	525	3150	0.167	1	525	1	42.5	1	13.52	
Agua	315	1000	0.315	0.6	297	0.57	24.1	24.1	7.66	
Arena	1255	2570	0.488	2.39	1275	2.43	103.2	2.3	32.83	
Aire atrap.	3		0.030							
	<u>, </u>	Σ	1		2097.53	4.00				

Dosificación en volumen

Cemento	Arena	Agua
1	2.3	24.1

F= 13.52

ANEXO 6: FORMATO DE MORTERO FRESCO DE LA CANTERA DON SEGUNDO

ENSAYO DE ASENTAMIENTO

TESIS:

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	Don Segundo
Ubicación	Carretera Iquitos-Nauta Km.9.5
Fecha de ensayo	LIMA, 01 DE OCTUBRE DEL 2014

Relación agua/cemento

		0.70	0.65	0.60	
Asentamiento	(pulg.)	3 1/2	3 1/4	3 1/8	

ENSAYO DE ASENTAMIENTO

TESIS:

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	San Martín de Porres
Ubicación	Carretera Iquitos-Nauta Km.25.3
Fecha de ensayo	LIMA, 13 DE OCTUBRE DEL 2014

Relación agua/cemento

		0.70	0.65	0.60
Asentamiento	(pulg.)	3 3/4	3	4

PESO UNITARIO

TESIS:

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	Don Segundo
Ubicación	Carretera Iquitos-Nauta Km.9.5
Fecha de ensayo	LIMA, 01 DE OCTUBRE DEL 2014
Relación a/c	0.70

Descripción	Símbolo	Cantidad	Unidad
Peso del mortero + recipiente	Mc	17.18	kg
Peso del recipiente	Mm	2.43	kg
Volumen del recipiente de medición	Vm	0.007	m ³
Peso Unitario	P.U.	2107.1	kg/m ³

EXUDACIÓN

TESIS:

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	Don Segundo
Ubicación	Carretera Iquitos-Nauta Km.9.5
Fecha de ensay	LIMA, 01 DE OCTUBRE DEL 2014
Relación a/c	0.70

Tiempo (hora)	Intervalo (min)	Volumen V1 (ml)	Volumen acumulado (ml)	Volumen V (ml)
14:02	10	0.0	0	0
14:12	10	18.0	18.0	0.036
14:22	10	9.0	27.0	0.018
14:32	10	13.0	40.0	0.026
15:02	30	51:0	91.0	0.101
15:32	30	64.5	155.5	0.127
16:02	30	37.0	192.5	0.073
16:32	30	41.5	234.0	0.082
17:02	30	41.0	275.0	0.081
17:32	30	30.0	305.0	0.059
18:02	30	14.0	319.0	0.028
18:32	30	1.0	320.0	0.002

Descripción	Símbolo	Valor	Unidad
Área	A=	506.71	cm ²
Agua de mezclado	w=	7.69	kg
Peso total de la tanda	VV=	54	kg
Peso del recipiente	P=	5.04	kg
Peso del recipiente+muestra	T=	31.13	kg
Peso de la muestra (T-P)	S=	26090	gr
Peso del agua de exudación	D=	320	gr
Peso del agua en la muestra de ensayo	C=	3715.41	gr
Exudación	E=	8.61	%

TIEMPO DE FRAGUADO

TESIS:

EL MÓDULO DE ELASTICIDAD EN MORTEROS DE CEMENTO CON ARENAS DE LAS CANTERAS DE LA CIUDAD DE IQUITOS

Datos de campo

Cantera	Don Segundo
Ubicación	Carretera Iquitos-Nauta Km.9.5
Fecha de ensayo	LIMA, 02 DE OCTUBRE DEL 2014

TIEMPO DE FRAGUA INICIAL=	127 minutos
•	2 horas 7 min
TIEMPO DE FRAGUA FINAL=	292 minutos
	4 horas 52 min

DISEÑO: RELACIÓN AGUA/CEMENTO = 0.65 DEL DISEÑO PATRÓN CLIMA: $22.2\,^{\circ}\text{C}$

Tiempo real	Tiempo absoluto	Tiempo absoluto	Fuerza	Fuerza	Aguja		Area en	Resister penetra	ncia a la ción en
		acumulado	(libras)	(kilogramos)	N°	(pul ²)	(cm ²)	(lbs/pulg ²)	(kg/cm ²)
(hora)	(hora)	(minutos)	(1)	(2)		(3)	(4)	(1/3)	(2/4)
12:44	00:00	0	0	0.00	•		-	-	-
14:05	01:21	81	176	79.83	1	1.000	6.450	176	12.377
14:23	01:39	99	92	41.73		0.500	3.225	184	12.940
15:10	02:26	146	176	79.83	3	0.250	1.613	704	49.509
16:30	03:46	226	180	81.65	4	0.100	0.645	1800	126.585
17:00	04:16	256	130	58.97	5	0.050	0.323	2600	182.845
17:41	04:57	297	105	47.63	6	0.025	0.161	4200	295.366

ANEXO 7: ENSAYOS DE RESISTENCIA A LA COMPRESIÓN DE LAS CANTERAS DON SEGUNDO Y SAN MARTÍN DE PORRES

INFORME

Tesis : EL MÓDULO DE ELASTICIDAD EN MORTEROS DE

CEMENTO CON ARENAS DE LAS CANTERAS DE LA

CIUDAD DE IQUITOS.

Asunto : Ensayo de Resistencia a la Compresión

Fecha de Emisión : 02/02/2015

1.0 DE LA MUESTRA : Probetas de Concreto Cilíndricas de 15cmx30cm

2.0 DEL EQUIPO : Prensa marca TONI/TECHNIK

SNM Certificado de Calibración LFP-001-2014

3.0 MÉTODO DE ENSAYO : Norma de Referencia NTP 339.034:2013

Procedimiento Interno AT-PR-12

4.0 RESULTADOS

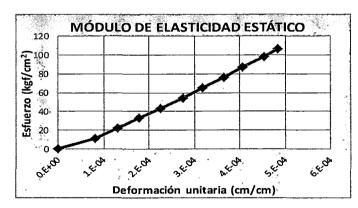
Nr	Muestra	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA cm²	CARGA DE ROTURA kg	RESISTENCIA A LA COMPRESIÓN kg/cm²
1	C1	30/09/2014	28/10/2014	184.3	47700	259
2	C2	30/09/2014	28/10/2014	184.3	49452	268
5	E1	30/09/2014	28/10/2014	183.9	53544	291
8	EZ	30/09/2014	28/10/2014	184.1	43439	236
 9	C3	30/09/2014	29/10/2014	184.6	60011	325
10	C4	30/09/2014	29/10/2014	183.9	59503	324
14	E3	30/09/2014	29/10/2014	183.6	56760	309
17	E4	30/09/2014	29/10/2014	183.1	54972	300
18	C5	30/09/2014	29/10/2014	184.3	51703	281
19	C6	30/09/2014	29/10/2014	184.1	45318	246
23	E5	30/09/2014	29/10/2014	183.6	49709	271
26	E6	30/09/2014	29/10/2014	182.9	57348	314
27	C7	01/10/2014	31/10/2014	183.1	63352	346
28	C8	01/10/2014	31/10/2014	183.6	61847	337
31	E7	01/10/2014	31/10/2014	183.6	66063	360
34	E8	01/10/2014	31/10/2014	183.9	58534	318
35	C9	01/10/2014	03/11/2014	183.4	63653	347
36	C10	01/10/2014	03/11/2014	183.6	59073	322
39	E9	01/10/2014	03/11/2014	184.1	69064	375
42	E10	01/10/2014	03/11/2014	183.9	68911	375
43	C11	01/10/2014	03/11/2014	184.1	64093	348
44	C12	01/10/2014	03/11/2014	183.6	63732	347
48	E11	01/10/2014	03/11/2014	182.4	65882	361
51	E12	01/10/2014	03/11/2014	183.6	57213	312
52	C13	01/10/2014	04/11/2014	187.0	71063	380
53	C14	01/10/2014	05/11/2014	186.0	65832	354
56	E13	01/10/2014	05/11/2014	180.3	67869	377
57	C15	09/10/2014	07/11/2014	183.4	65283	356
58	C16	09/10/2014	07/11/2014	183.9	72452	394
62	E14	09/10/2014	07/11/2014	182.4	63826	350
66	E15	09/10/2014	07/11/2014	182:4	68762	377
67	C17	09/10/2014	07/11/2014	182.9	68811	376
68	C18	09/10/2014	07/11/2014	183.4	70252	383
72	E16	09/10/2014	10/11/2014	182.7	71544	392
75	E17	09/10/2014	10/11/2014	183.9	76562	417
76	C19	09/10/2014	10/11/2014	183.4	70494	385
77	C20	09/10/2014	10/11/2014	183.4	70879	387
80	E18	09/10/2014	10/11/2014	182.9	71711	392
83	E19	09/10/2014	10/11/2014	183.6	75304	410

	Muestra	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA	CARGA DE ROTURA	RESISTENCIA A LA COMPRESIÓN
Nr				cm²	kg	kg/cm²
11	C21	01/10/2014	17/11/2014	185.5	64119	346
2	C22	01/10/2014	17/11/2014	182.4	54276	298
6	E20	01/10/2014	17/11/2014	185.3	61912	334
10	E21	01/10/2014	18/11/2014	185.1	57233	309
11	C23	01/10/2014	18/11/2014	185.3	63410	342
14	E22	01/10/2014	18/11/2014	184.1	60139	327
15	C24	01/10/2014	18/11/2014	183.1	60752	332
16	C25	01/10/2014	19/11/2014	185.5	61332	331
20	E23	01/10/2014	19/11/2014	186.3	60029	322
24	E24	01/10/2014	19/11/2014	185.1	59768	323
25	C26	06/10/2014	27/11/2014	185.1	60068	325
26	C27	06/10/2014	27/11/2014	182.2	56370	310
30	E25	06/10/2014	27/11/2014	182.9	54395	298
33	E26	06/10/2014	27/11/2014	186.5	60510	325
34	C28	06/10/2014	21/11/2014	182.7	66171	362
35	C29	06/10/2014	21/11/2014	182.2	60787	334
38	E27	06/10/2014	21/11/2014	182.2	69187	380
41	E28	06/10/2014	24/11/2014	182.4	63599	349
42	C30	06/10/2014	24/11/2014	183.9	65731	358
43	C31	06/10/2014	24/11/2014	183.9	69292	377
47	E29	06/10/2014	24/11/2014	183.4	65158	355
50	E30	06/10/2014	24/11/2014	183.9	66817	364
51	C32	06/10/2014	24/11/2014	183.1	61617	337
52	C33	06/10/2014	24/11/2014	183.6	60305	329
55	E31	06/10/2014	26/11/2014	183.6	60406	329
58	E32	06/10/2014	26/11/2014	183.6	64418	351
59	C34	09/10/2014	27/11/2014	183.4	87213	476
60	C35	09/10/2014	27/11/2014	186.3	77611	417
63	E33	09/10/2014	27/11/2014	183.9	71966	392
66	E34	09/10/2014	27/11/2014	183.9	78541	427
67	C36	09/10/2014	27/11/2014	188.2	76116	405
68	C37	09/10/2014	27/11/2014	186.3	74759	401
71	E35	09/10/2014	27/11/2014	184.3	74630	405
75	E36	09/10/2014	27/11/2014	185.3	70510	381
76	C38	09/10/2014	28/11/2014	184.6	65097	353
77	C39	09/10/2014	28/11/2014	183.4	80015	436
80	E37	09/10/2014	28/11/2014	183.4	71756	391
83	E38	09/10/2014	28/11/2014	185.1	74920	405

Nr	Muestra	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA cm²	CARGA DE ROTURA kg	RESISTENCIA A LA COMPRESIÓN kg/cm²
1	C40	13/10/2014	11/11/2014	183.4	41856	228
2	C41	13/10/2014	11/11/2014	183.1	41418	226
6	E39	13/10/2014	11/11/2014	183.9	39886	217
10	E40	13/10/2014	12/11/2014	184.3	41487	225
11	C42	13/10/2014	12/11/2014	184.6	45357	246
12	C43	13/10/2014	12/11/2014	184.6	46800	254
15	E41	13/10/2014	12/11/2014	182.9	47299	259
20	E42	13/10/2014	13/11/2014	182.9	44544	244
21	C44	13/10/2014	13/11/2014	183.4	36706	200
22	C45	13/10/2014	13/11/2014	182.2	42746	235
26	E43	13/10/2014	13/11/2014	186.3	41765	224
31	E44	13/10/2014	13/11/2014	182.9	43378	237
32	C46	15/10/2014	14/11/2014	185.5	38029	205
33	C47	15/10/2014	14/11/2014	184.3	46368	252
36	E45	15/10/2014	14/11/2014	184.6	39235	213
37	C48	16/10/2014	14/11/2014	184.3	41633	226
38	C49	16/10/2014	14/11/2014	183.9	48278	263
42	E46	16/10/2014	14/11/2014	183.9	49637	270
45	E47	16/10/2014	14/11/2014	185,3	47226	255
46	C50	16/10/2014	14/11/2014	183.9	46721	254
47	C51	16/10/2014	14/11/2014	183.1	41089	224
51	E48	16/10/2014	14/11/2014	183.9	44129	240
55	E49	16/10/2014	14/11/2014	184.1	45464	247
56	C52	21/10/2014	20/11/2014	181.9	50097	275
57	C53	21/10/2014	20/11/2014	182.7	53968	296
61	E50	21/10/2014	20/11/2014	181.7	56174	309
64	E51	21/10/2014	20/11/2014	182.4	49042	269
65	C54	21/10/2014	20/11/2014	183.9	55346	301
66	C55	21/10/2014	20/11/2014	183.9	54536	297
70	E52	21/10/2014	20/11/2014	181.9	52828	290
73	E53	21/10/2014	20/11/2014	181.9	56931	313
74	C56	21/10/2014	20/11/2014	183.9	51418	280
79	E54	21/10/2014	20/11/2014	184.6	54092	293

···········	Muestra	FECHA DE OBTENCIÓN	FECHA DE ENSAYO	ÁREA	CARGA DE ROTURA	RESISTENCIA A LA COMPRESIÓN
Nr				cm²	kg	kg/cm²
1	C57	13/10/2014	28/11/2014	181.9	46802	257
2	C58	13/10/2014	28/11/2014	184.3	48974	266
6	E55	13/10/2014	28/11/2014	182.9	47874	262
9	E56	13/10/2014	28/11/2014	182.7	43955	241
10	C59	13/10/2014	02/12/2014	185.1	40665	220
11	C60	13/10/2014	02/12/2014	183.4	37793	206
15	E57	13/10/2014	02/12/2014	183.9	40820	222
19	E58	13/10/2014	02/12/2014	185.5	41864	226
20	. C61	13/10/2014	03/12/2014	183.6	42868	234
21	C62	13/10/2014	03/12/2014	183.1	46276	253
25	E59	13/10/2014	03/12/2014	182.7	47368	259
29	E60	13/10/2014	03/12/2014	183.9	43527	237
30	C63	16/10/2014	04/12/2014	184.8	49272	267
31	C64	16/10/2014	04/12/2014	183.9	47250	257
35	E61	16/10/2014	04/12/2014	182.7	50501	277
39	E62	16/10/2014	04/12/2014	182.7	50843	278
40	C65	16/10/2014	05/12/2014	184.3	49852	271
41	C66	16/10/2014	05/12/2014	183.1	48257	264
45	E63	16/10/2014	05/12/2014	183.1	46998	257
49	E64	16/10/2014	05/12/2014	182.7	44240	242
50	C67	16/10/2014	05/12/2014	183.6	42866	234
51	C68	16/10/2014	05/12/2014	183.1	44747	244
54	E65	16/10/2014	05/12/2014	182.2	43424	238
58	E66	16/10/2014	05/12/2014	181.9	44768	246
59	C69	21/10/2014	09/12/2014	184.1	59905	326
60	C70	21/10/2014	09/12/2014	183.6	57901	315
63	E67	21/10/2014	09/12/2014	184.6	57295	311
64	C71	21/10/2014	09/12/2014	182.4	51328	281
65	C72	21/10/2014	09/12/2014	183.6	52139	284
69	E68	21/10/2014	09/12/2014	183.4	51683	282
73	E69	21/10/2014	09/12/2014	182.4	53773	295
74	C73	21/10/2014	09/12/2014	183.4	53328	291
75	C74	21/10/2014	09/12/2014	182.2	55530	305
79	E70	21/10/2014	09/12/2014	181.9	56412	310
83	E71	21/10/2014	09/12/2014	183.9	54426	296

ANEXO 8: ENSAYOS DE MÓDULO DE ELASTICIDAD DE LAS CANTERAS DON SEGUNDO Y SAN MARTÍN DE PORRES


Edad: 28 días

Relación a/c: 0.70

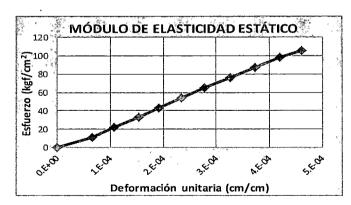
Muestra: E1

	Lecturas	s (Gage)	Deformación	Longitudinal	Dimensión de la	mensión de las probetas cilíndricas de mortero			18 U 1	Deformación
Fuerza (kgf)	1 (pulg) .x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε <u>≐</u> δ/L (cm/cm)	Unitaria (cm/cm)
0	0	0	0.0000	0.0000	15.30	183.9	20.30	0.00	0.00000	0.0000
2000	13	13	0.0007	0.0017	15.30	183.9	20.30	10.88	80000.0	80000.0
4000	21	21	0.0011	0.0027	15.30	183.9	20.30	21.76	0.00013	0.00013
6000	28	29	0.0014	0.0036	15.30	183.9	20.30	32.63	0.00018	0.00018
8000	36	36	0.0018	0.0046	15.30	183.9	20.30	43.51	0.00023	0.00023
10000	44	44	0.0022	0.0056	15.30	183.9	20.30	54.39	0.00028	0.00028
12000	51	51	0.0026	0.0065	15.30	183.9	20.30	65.27	0.00032	0.00032
14000	58	59	0.0029	0.0074	15.30	183.9	20.30	76.15	0.00037	0.00037
16000	65	65	0.0033	0.0083	15.30	183.9	20.30	87.03	0.00041	0.00041
18000	72	73	0.0036	0.0092	15.30	183.9	20.30	97.90	0.00045	0.00045
19500	78	77	0.0039	0.0098	15.30	183.9	20.30	106.06	0.00048	0.00048

d=ge,/(e,+e,)
e, (mm) 128.5
e, (mm) 128.5
er/(er+ef) 0.500
según-ASTM C-469

f'em=	291
S2=	106.06
ε2=	0.00048
S1=	4.07
ε1=	0.00005

Módulo Elástico	234548
Estático [kgf/cm²]	234348


Modulo teórico	255983
(kgf/cm2)	255985

Edad: 28 días

Relación a/c: 0.70

Muestra: E2

	Lectura	as (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilíndo	ricas de mortero	8		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (Promedio (cm)		Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)		
0	0	0	0.0000	0.0000	15.31	184.1	20.30	0.00	0.00000	0.00000
2000	10	11	0.0005	0.0013	15.31	184.1	20.30	10.86	0.00007	0.00007
4000	17	17	0.0009	0.0022	15.31	184.1	20.30	21.73	0.00011	0.00011
6000	24	25	0.0012	0.0031	15.31	184.1	20.30	32.59	0.00015	0.00015
8000	30	31	0.0015	0.0039	15.31	184.1	20.30	43.46	0.00019	0.00019
10000	37	38	0.0019	0.0048	15.31	184.1	20.30	54.32	0.00023	0.00023
12000	44	45	0.0022	0.0057	15.31	184.1	20.30	65.18	0.00028	0.00028
14000	52	52	0.0026	0.0066	15.31	184.1	20.30	76.05	0.00033	0.00033
16000	59	60	0.0030	0.0076	15.31	184.1	20.30	86.91	0.00037	0.00037
18000	67	67	0.0034	0.0085	15.31	184.1	20.30	97.78	0.00042	0.00042
19500	74	73	0.0037	0.0093	15.31	184.1	20.30	105.92	0.00046	0.00046

f'em=	236
S 2=	105.92
ε2=	0.00046
S 1=	6.67
ε1=	0.00005

Módulo Elástico	242179
Estático [kgf/cm²]	242179

Modulo teórico	230415
(kgf/cm2)	

Edad: 28 días

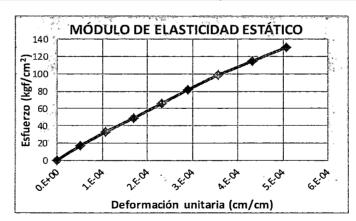
Relación a/c: 0.70

Muestra: E3

Fuerza (kgf)	Lectura	as (Gage)	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				e da	Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	0	0.0000	0.0000	15.29	183.6	20.30	0.00	0.00000	0.00000
3000	14	14	0.0007	0.0018	15.29	183.6	20.30	16.34	0.00009	0.00009
6000	24	23	0.0012	0.0030	15.29	183.6	20.30	32.68	0.00015	0.00015
9000	33	33	0.0017	0.0042	15.29	183.6	20.30	49.02	0.00021	0.00021
12000	43	42	0.0021	0.0054	15.29	183.6	20.30	65.35	0.00027	0.00027
15000	53	52	0.0026	0.0067	15.29	183.6	20.30	81.69	0.00033	0.00033
18000	62	61	0.0031	0.0078	15.29	183.6	20.30	98.03	0.00038	0.00038
21000	73	71	0.0036	0.0091	15.29	183.6	20.30	114.37	0.00045	0.00045
24000	84	81	0.0041	0.0105	15.29	183.6	20.30	130.71	0.00052	0.00052

f'cm=	309
S2=	130.71
ε2=	0.00052
S1=	6.01
ε1=	0.00005

Módulo Elástico	267527
Estático [kgf/cm²]	267527


Modulo teórico	262720
(kgf/cm2)	263730

Edad: 28 días

Relación a/c: 0.70

Muestra: E4

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de la	s probetas cilínd	ricas de mortero	, , , , , , , , , , , , , , , , , , ,	·	Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.27	183.1	20.30	0.00	0.00001	0.00000
3000	8	10	0.0005	0.0011	15.27	183.1	20.30	16.38	0.00006	0.00005
6000	17	19	0.0009	0.0023	15.27	183.1	20.30	32.76	0.00011	0.00011
9000	27	29	0.0014	0.0036	15.27	183.1	20.30	49.14	0.00018	0.00017
12000	37	39	0.0019	0.0048	15.27	183.1	20.30	65.53	0.00024	0.00023
15000	46	49	0.0024	0.0060	15.27	183.1	20.30	81.91	0.00030	0.00029
18000	56	60	0.0029	0.0074	15.27	183.1	20.30	98.29	0.00036	0.00036
21000	69	71	0.0035	0.0089	15.27	183.1	20.30	114.67	0.00044	0.00043
24000	81	83	0.0041	0.0104	15.27	183.1	20.30	131.05	0.00051	0.00051

f'cm=	300
S2=	131.05
ε2=	0.00051
S1=	16.37
ε1=	0.00005

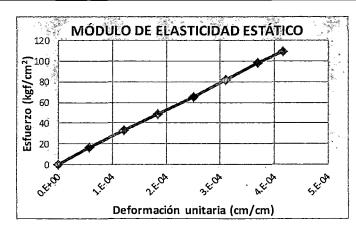
Módulo Elástico	251089
Estático [kgf/cm²]	251089

Modulo teórico 259883 (kgf/cm2)	1 259883
---------------------------------	----------

Edad: 28 días

Relación a/c: 0.70

Muestra: E5


Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de la	s probetas cilíndi	ricas de mortero	in a second	*	Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	3	3	0.0002	0.0004	15.29	183.6	20.30	0.00	0.00002	0.00000
3000	12	12	0.0006	0.0015	15.29	183.6	20.30	16.34	0.00008	0.00006
6000	22	23	0.0011	0.0029	15.29	183.6	20.30	32.68	0.00014	0.00012
9000	32	33	0.0016	0.0041	15.29	183.6	20.30	49.02	0.00020	0.00018
12000	42	44	0.0022	0.0055	15.29	183.6	20.30	65.35	0.00027	0.00025
15000	52	53	0.0026	0.0067	15.29	183.6	20.30	81.69	0.00033	0.00031
18000	62	62	0.0031	0.0079	15.29	183.6	20.30	98.03	0.00039	0.00037
20000	70	69	0.0035	0.0088	15.29	183.6	20.30	108.92	0.00043	0.00042

d=ge_r/(e_r+e_f)

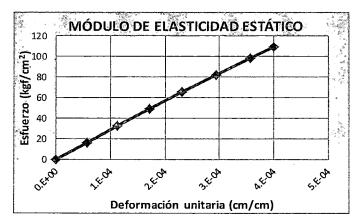
e_r (mm) 128.5 e_f (mm) 128.5

er/(er+ef) 0.500

según ASTM C-469

f'em=	271
S2=	108.92
ε2=	0.00042
S1=	14.77
ε1=	0.00005

Módulo Elástico 257227 Estático [kgf/cm²]


Modulo teórico (kgf/cm2) 246806

Edad: 28 días

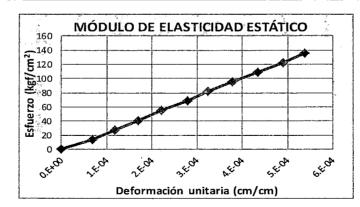
Relación a/c: 0.70

Muestra: E6

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			\$.		Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	۰ 0	1	0.0000	0.0001	15.26	182.9	20.30	0.00	0.00000	0.00000
3000	9	10	0.0005	0.0012	15.26	182.9	20.30	16.40	0.00006	0.00006
6000	18	19	0.0009	0.0023	15.26	182.9	20.30	32.81	0.00012	0.00011
9000	27	29	0.0014	0.0036	15.26	182.9	20.30	49.21	0.00018	0.00017
12000	37	38	0.0019	0.0048	15.26	182.9	20.30	65.61	0.00023	0.00023
15000	47	48	0.0024	0.0060	15.26	182.9	20.30	82.01	0.00030	0.00029
18000	57	58	0.0029	0.0073	15.26	182.9	20.30	98.42	0.00036	0.00036
20000	64	65	0.0032	0.0082	15.26	182.9	20.30	109.35	0.00040	0.00040

f'cm=	314
S2=	109.35
ε2=	0.00040
S1=	14.57
ε1=	0.00005

Módulo Elástico	270515
Estático [kgf/cm²]	270515


Modulo teórico	265614
(kgf/cm2)	203014

Edad: 28 días

Relación a/c: 0.65

Muestra: E7

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	5	4	0.0002	0.0006	15.29	183.6	20.30	0.00	0.00003	0.00000
2500	16	15	0.0008	0.0020	15.29	183.6	20.30	13.62	0.00010	0.00007
5000	24	23	0.0012	0.0030	15.29	183.6	20.30	27.23	0.00015	0.00012
7500	32	31	0.0016	0.0040	15.29	183.6	20.30	40.85	0.00020	0.00017
10000	40	40	0.0020	0.0051	15.29	183.6	20.30	54.46	0.00025	0.00022
12500	49	49	0.0025	0.0062	15.29	183.6	20.30	68.08	0.00031	0.00028
15000	57	56	0.0028	0.0072	15.29	183.6	20.30	81.69	0.00035	0.00033
17500	65	65	0.0033	0.0083	15.29	183.6	20.30	95.31	0.00041	0.00038
20000	74	74	0.0037	0.0094	15.29	183.6	20.30	108.92	0.00046	0.00043
22500	83	83	0.0042	0.0105	15.29	183.6	20.30	122.54	0.00052	0.00049
25000	90	91	0.0045	0.0115	15.29	183.6	20.30	136.16	0.00057	0.00054

f'em=	360
S2=	136.16
ε2=	0.00054
S1=	8.50
ε1=	0.00005

Módulo Elástico	264504
Estático [kgf/cm²]	261581

Modulo teórico	284523
(kgf/cm2)	284325

Edad: 28 días

Relación a/c: 0.65

Muestra: E8

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			· .		Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	4	4	0.0002	0.0005	15.30	183.9	20.30	0.00	0.00003	0.00000
2500	15	1.5	0.0008	0.0019	15.30	183.9	20.30	13.60	0.00009	0.00007
5000	23	24	0.0012	0.0030	15.30	183.9	20.30	27.20	0.00015	0.00012
7500	31	32	0.0016	0.0040	15.30	183.9	20.30	40.79	0.00020	0.00017
10000	39	40	0.0020	0.0050	15.30	183.9	20.30	54.39	0.00025	0.00022
12500	48	48	0.0024	0.0061	15.30	183.9	20.30	67.99	0.00030	0.00028
15000	56	56	0.0028	0.0071	15.30	183.9	20.30	81.59	0.00035	0.00033
17500	64	64	0.0032	0.0081	15.30	183.9	20.30	95.18	0.00040	0.00038
20000	73	73	0.0037	0.0093	15.30	183.9	20.30	108.78	0.00046	0.00043
22500	80	81	0.0040	0.0102	15.30	183.9	20.30	122.38	0.00050	0.00048
25000	89	89	0.0045	0.0113	15.30	183.9	20.30	135.98	0.00056	0.00053

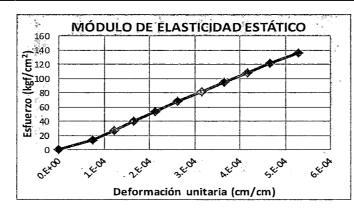
f'cm=	318
S2=	135.98
ε2=	0.00053
S1=	8.79
ε1=	0.00005

Módulo Elástico	254007
Estático [kgf/cm²]	264007

Modulo teórico	267645
(kgf/cm2)	207043

Edad: 28 días

Relación a/c: 0.65


Muestra: E9

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			- A	7.	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	4	6	0.0003	0.0006	15.31	184.1	20.30	0.00	0.00003	0.00000
2500	15	19	0.0009	0.0022	15.31	184.1	20.30	13.58	0.00011	0.00008
5000	23	26	0.0012	0.0031	15.31	184.1	20.30	27.16	0.00015	0.00012
7500	30	33	0.0016	0.0040	15.31	184.1	20.30	40.74	0.00020	0.00017
10000	37	41	0.0020	0.0050	15.31	184.1	20.30	54.32	0.00024	0.00021
12500	45	49	0.0024	0.0060	15.31	184.1	20.30	67.90	0.00029	0.00026
15000	54	57	0.0028	0.0070	15.31	184.1	20.30	81.48	0.00035	0.00032
17500	62	65	0.0032	0.0081	15.31	184.1	20.30	95.06	0.00040	0.00037
20000	69	74	0.0036	0.0091	15.31	184.1	20.30	108.64	0.00045	0.00042
22500	78	81	0.0040	0.0101	15.31	184.1	20.30	122.22	0.00050	0.00047
25000	88	91	0.0045	0.0114	15.31	184.1	20.30	135.80	0.00056	0.00053

d=ge_r/(e_r+e_f)

e_r (mm) 128.5 e_f (mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

f'em=	375
S2=	135.80
ε2≔	0.00053
S1=	6.32
ε1≕	0.00005

Módulo Elástico	270507
Estático [kgf/cm²]	270307

Modulo teórico	290534
(kgf/cm2)	290534

Edad: 28 días

Relación a/c: 0.65

Muestra: E10

n 3, *e

ean .	Lectura	s (Gage)	Deformación	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			* * * * * * * * * * * * * * * * * * *	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	2	3	0.0001	0.0003	15.30	183.9	20.30	0.00	0.00002	0.00000
2500	12	14	0.0007	0.0017	15.30	183.9	20.30	13.60	0.00008	0.00007
5000	20	21	0.0010	0.0026	15.30	183.9	20.30	27.20	0.00013	0.00011
7500	28	29	0.0014	0.0036	15.30	183.9	20.30	40.79	0.00018	0.00016
10000	35	37	0.0018	0.0046	15.30	183.9	20.30	54.39	0.00023	0.00021
12500	43	45	0.0022	0.0056	15.30	183.9	20.30	67.99	0.00028	0.00026
15000	52	54	0.0027	0.0067	15.30	183.9	20.30	81.59	0.00033	0.00032
17500	60	61	0.0030	0.0077	15.30	183.9	20.30	95.18	0.00038	0.00036
20000	69	71	0.0035	0.0089	15.30	183.9	20.30	108.78	0.00044	0.00042
22500	77	80	0.0039	0.0100	15.30	183.9	20.30	122.38	0.00049	0.00048
25000	88	89	0.0044	0.0112	15.30	183.9	20.30	135.98	0.00055	0.00054

 $d=ge_r/(e_r+e_f)$

er/(er+ef)

e_r (mm) 128.5 e_f (mm) 128.5

0.500

según ASTM C-469

f'cm=	375
S2=	135.98
ε2=	0.00054
S1=	9.05
ε1=	0.00005

Módulo Elástico	200000
Estático [kgf/cm²]	260080

Modulo teórico 290402 (kgf/cm2)

Edad: 28 días

Relación a/c: 0.65

Muestra: E11

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilínd	ricas de mortero	Februaria		
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	, , ,	Unitaria (cm/cm)
0	0	0	0.0000	0.0000	15.24	182.4	20.30	0.00	0.00000	0.00000
3000	10	9	0.0005	0.0012	15.24	182.4	20.30	16.45	0.00006	0.00006
6000	17	18	0.0009	0.0022	15.24	182.4	20.30	32.89	0.00011	0.00011
9000	26	26	0.0013	0.0033	15.24	182.4	20.30	49.34	0.00016	0.00016
12000	35	36	0.0018	0.0045	15.24	182.4	20.30	65.78	0.00022	0.00022
15000	45	45	0.0023	0.0057	15.24	182.4	20.30	82.23	0.00028	0.00028
18000	55	55	0.0028	0.0070	15.24	182.4	20.30	98.68	0.00034	0.00034
21000	64	65	0.0032	0.0082	15.24	182.4	20.30	115.12	0.00040	0.00040
24000	74	74	0.0037	0.0094	15.24	182.4	20.30	131.57	0.00046	0.00046
25500	80	79	0.0040	0.0101	15.24	182.4	20.30	139.79	0.00050	0.00050

f'cm=	361
S2=	139.79
ε2=	0.00050
S1=	13.35
ε1=	0.00005

Módulo Elástico	282645
Estático [kgf/cm²]	282645

Modulo teórico	285066
(kgf/cm2)	283000

Edad: 28 días

Relación a/c: 0.65

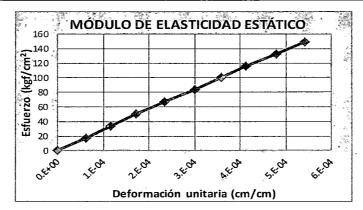
Muestra: E12

	Lectura	as (Gage)	(Gage) Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) ×10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	1	0.0000	0.0001	15.29	183.6	20.30	0.00	0.00000	0.00000
3000	10	11	0.0005	0.0013	15.29	183.6	20.30	16.34	0.00007	0.00006
6000	19	21	0.0010	0.0025	15.29	183.6	20.30	32.68	0.00013	0.00012
9000	29	29	0.0015	0.0037	15.29	183.6	20.30	49.02	0.00018	0.00018
12000	38	39	0.0019	0.0049	15.29	183.6	20.30	65.35	0.00024	0.00024
15000	47	49	0.0024	0.0061	15.29	183.6	20.30	81.69	0.00030	0.00030
18000	57	59	0.0029	0.0074	15.29	183.6	20.30	98.03	0.00036	0.00036
21000	66	68	0.0034	0.0085	15.29	183.6	20.30	114.37	0.00042	0.00042
24000	75	77	0.0038	0.0097	15.29	183.6	20.30	130.71	0.00048	0.00047
25500	80	81	0.0040	0.0102	15.29	183.6	20.30	138.88	0.00050	0.00050

d=ge,/(e,+ef)
e, (mm) 128.5
e, (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

f'cm=	312
S2=	138.88
ε2≔	0.00050
S1=	12.89
ε1=	0.00005

Módulo Elástico	279679
Estático [kgf/cm²]	2/96/9


Modulo teórico	264781
(kgf/cm2)	204781

Edad: 28 días

Relación a/c: 0.65

Muestra: E13

	Lecturas	s (Gage)	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			7 . %	* * *	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.15	180.3	20.30	0.00	0.00001	0.00000
3000	10	12	0.0006	0.0014	15.15	180.3	20.30	16.64	0.00007	0.00006
6000	19	20	0.0010	0.0025	15.15	180.3	20.30	33.28	0.00012	0.00012
9000	28	29	0.0014	0.0036	15.15	180.3	20.30	49.93	0.00018	0.00017
12000	38	39	0.0019	0.0049	15.15	180.3	20.30	66.57	0.00024	0.00023
15000	48	50	0.0025	0.0062	15.15	180.3	20.30	83.21	0.00031	0.00030
18000	58 .	59	0.0029	0.0074	15.15	180.3	20.30	99.85	0.00037	0.00036
21000	66	68	0.0034	0.0085	15.15	180.3	20.30	116.49	0.00042	0.00041
24000	76	79	0.0039	0.0098	15.15	180.3	20.30	133.14	0.00048	0.00048
27000	88	87	0.0044	0.0111	15.15	180.3	20.30	149.78	0.00055	0.00054

f'cm=	376
S2=	149.78
ε2=	0.00054
S1=	12.71
ε1=	0.00005

Módulo Elástico	279070
Estático [kgf/cm²]	2/90/0

Modulo teórico	291051
(kgf/cm2)	

Edad: 28 días

Relación a/c: 0.60

Muestra: E14

100

1.65 1.48 1.41 1.41	Lectura	s (Gage)	Deformación	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	.2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	3	0.0001	0.0002	15.24	182.4	20.30	0.00	0.00001	0.00000
3000	10	13	0.0006	0.0015	15.24	182.4	20.30	16.45	0.00007	0.00006
6000	20	22	0.0011	0.0027	15.24	182.4	20.30	32.89	0.00013	0.00012
9000	29	31	0.0015	0.0038	15.24	182.4	20.30	49.34	0.00019	0.00018
12000	38	41	0.0020	0.0050	15.24	182.4	20.30	65.78	0.00025	0.00024
15000	45	50	0.0024	0.0060	15.24	182.4	20.30	82.23	0.00030	0.00029
18000	56	60	0.0029	0.0074	15.24	182.4	20.30	98.68	0.00036	0.00035
21000	65	69	0.0034	0.0085	15.24	182.4	20.30	115.12	0.00042	0.00041
24000	77	80	0.0039	0.0100	15.24	182.4	20.30	131.57	0.00049	0.00048
27500	90	93.	0.0046	0.0116	15.24	182.4	20.30	150.76	0.00057	0.00056

f'cm=	350
S2=	150.76
ε2≔	0.00056
S1=	12.97
ε1=	0.00005

Módulo Elástico	268559
Estático [kgf/cm²]	268559

Modulo teórico	280582
(kgf/cm2)	280382

Edad: 28 días

Relación a/c: 0.60

Muestra: E15

	Lectur	as (Gage)	Deformación	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			e e e e e e e e e e e e e e e e e e e	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	1	1	0.0001	0.0001	15.24	182.4	20.30	0.00	0.00001	0.00000
3000	10	10	0.0005	0.0013	15.24	182.4	20.30	16.45	0.00006	0.00006
6000	19	19	0.0010	0.0024	15.24	182.4	20.30	32.89	0.00012	0.00011
9000	27	28	0.0014	0.0035	15.24	182.4	20.30	49.34	0.00017	0.00017
12000	36	36	0.0018	0.0046	15.24	182.4	20.30	65.78	0.00023	0.00022
15000	45	46	0.0023	0.0058	15.24	182.4	20.30	82.23	0.00028	0.00028
18000	54	55	0.0027	0.0069	15.24	182.4	20.30	98.68	0.00034	0.00033
21000	63	63	0.0032	0.0080	15.24	182.4	20.30	115.12	0.00039	0.00039
24000	72	73	0.0036	0.0092	15.24	182.4	20.30	131.57	0.00045	0.00045
27500	81	82	0.0041	0.0104	15.24	182.4	20.30	150.76	0.00051	0.00050

 $d=ge_r/(e_r+e_f)$

e_r(mm) 128.5 e_f(mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

_	
f'cm=	377
S2=	150.76
ε2=	0.00050
S1=	14.60
ε1=	0.00005

Módulo Elástico	200142
Estático [kgf/cm²]	300143

Modulo teórico	291230
(kgf/cm2)	291230

Edad: 28 días

Relación a/c: 0.60

Muestra: E16

	Lectura	s (Gage)	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			Esfuerzo	- 6/1	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	(kgf/cm ²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	3	3	0.0002	0.0004	15.25 .	182.7	20.30	0.00	0.00002	0.00000
3000	14	14	0.0007	0.0018	15.25	182.7	20.30	16.42	0.00009	0.00007
6000	23	24	0.0012	0.0030	15.25	182.7	20.30	32.85	0.00015	0.00013
9000	32	32	0.0016	0.0041	15.25	182.7	20.30	49.27	0.00020	0.00018
12000	41	41	0.0021	0.0052	15.25	182.7	20.30	65.70	0.00026	0.00024
15000	49	51	0.0025	0.0064	15.25	182.7	20.30	82.12	0.00031	0.00029
18000	57	55	0.0028	0.0071	15.25	182.7	20.30	98.55	0.00035	0.00033
21000	65	66	0.0033	0.0083	15.25	182.7	20.30	114.97	0.00041	0.00039
24000	74	75	0.0037	0.0095	15.25	182.7	20.30	131.40	0.00047	0.00045
27500	84	86	0.0043	0.0108	15.25	182.7	20.30	150.56	0.00053	0.00051

f'cm=	392
S2=	150.56
ε2≕	0.00051
S1=	11.22
ε1=	0.00005

Módulo Elástico	200022
Estático [kgf/cm²]	300933

Modulo ted	rico	296868
(kgf/cm2	2)	290000

Edad: 28 días

Relación a/c: 0.60

Muestra: E17

ñ N	Lectura	ıs (Gage)	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			F.E	- 1	Déformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) × x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	3	0.0001	0.0002	15.30	183.9	20.30	0.00	0.00001	0.00000
3000	9	11	0.0005	0.0013	15.30	183.9	20.30	16.32	0.00006	0.00005
6000	17	20	0.0009	0.0023	15.30	183.9	20.30	32.63	0.00012	0.00011
9000	26	28	0.0014	0.0034	15.30	183.9	20.30	48.95	0.00017	0.00016
12000	35	39	0.0019	0.0047	15.30	183.9	20.30	65.27	0.00023	0.00022
15000	45	48	0.0023	0.0059	15.30	183.9	20.30	81.59	0.00029	0.00028
18000	55	57	0.0028	0.0071	15.30	183.9	20.30	97.90	0.00035	0.00034
21000	65	67	0.0033	0.0084	15.30	183.9	20.30	114.22	0.00041	0.00040
24000	75	76	0.0038	0.0096	15.30	183.9	20.30	130.54	0.00047	0.00046
27500	89	90	0.0045	0.0114	15.30	183.9	20.30	149.58	0.00056	0.00055

f'cm=	416
S2=	149.58
ε2=	0.00055
S1=	15.34
ε1=	0.00005

Módulo Elástico	260475
Estático [kgf/cm²]	268175

Modulo t (kgf/ci	1 306099	
---------------------	----------	--

Edad: 28 días

Relación a/c: 0.60

Muestra: E18

19 0 148 x	Lectura	s (Gage)	Deformación	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm ²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	5	8	0.0003	0.0008	15.26	182.9	20.30	0.00	0.00004	0.00000
3500	16	18	0.0009	0.0022	15.26	182.9	20.30	19.14	0.00011	0.00007
7000	26	30	0.0014	0.0036	15.26	182.9	20.30	38.27	0.00018	0.00013
10500	37	39	0.0019	0.0048	15.26	182.9	20.30	57.41	0.00024	0.00020
14000	47	51	0.0025	0.0062	15.26	182.9	20.30	76.55	0.00031	0.00027
17500	59	62	0.0030	0.0077	15.26	182.9	20.30	95.68	0.00038	0.00034
21000	70	73	0.0036	0.0091	15.26	182.9	20.30	114.82	0.00045	0.00041
24500	82	85	0.0042	0.0106	15.26	182.9	20.30	133.96	0.00052	0.00048
28000	94	96	0.0048	0.0121	15.26	182.9	20.30	153.09	0.00059	0.00055

f'cm=	392
S2=	153.09
ε2=	0.00055
S1=	14.77
ε1=	0.00005

Módulo Elástico	274625
Estático [kgf/cm²]	2/4625

1		
	Modulo teórico	297019
	(kgf/cm2)	297019

Edad: 28 días

Relación a/c: 0.60

Muestra: E19

y 2	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	5	6	0.0003	0.0007	15.29	183.6	20.30	0.00	0.00003	0.00000
3500	15	16	0.0008	0.0020	15.29	183.6	20.30	19.06	0.00010	0.00006
7000	26	27	0.0013	0.0034	15.29	183.6	20.30	38.12	0.00017	0.00013
10500	36	37	0.0018	0.0046	15.29	183.6	20.30	57.19	0.00023	0.00019
14000	47	48	0.0024	0.0060	15.29	183.6	20.30	76.25	0.00030	0.00026
17500	58	59	0.0029	0.0074	15.29	183.6	20.30	95.31	0.00037	0.00033
21000	67	71	0.0035	0.0088	15.29	183.6	20.30	114.37	0.00043	0.00040
24500	82	82	0.0041	0.0104	15.29	183.6	20.30	133.43	0.00051	0.00048
28000	92	93	0.0046	0.0117	15.29	183.6	20.30	152.49	0.00058	0.00054

d=ge_r/(e_r+e_f)

e_r (mm) 128.5 e_f (mm) 128.5

er/(er+ef) 0.500

según ASTM C-469

f'em=	410
S 2=	152.49
ε2=	0.00054
S1=	15.58
ε1=	0.00005

Módulo Elástico	276989
Estático [kgf/cm²]	276989

Modulo teórico	303772
(kgf/cm2)	303772

Edad: 45 días

Relación a/c: 0.70

Muestra: E20

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			* * * * * * * * * * * * * * * * * * *		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.36	185.3	20.30	0.00	0.00001	0.00000
3000	10	11	0.0005	0.0013	15.36	185.3	20.30	16.19	0.00007	0.00006
6000	18	20	0.0010	0.0024	15.36	185.3	20.30	32.38	0.00012	0.00011
9000	27	29	0.0014	0.0036	15.36	185.3	20.30	48.57	0.00018	0.00017
12000	37	38	0.0019	0.0048	15.36	185.3	20.30	64.76	0.00023	0.00023
15000	45	47	0.0023	0.0058	15.36	185.3	20.30	80.95	0.00029	0.00028
18000	54	56	0.0028	0.0070	15.36	185.3	20.30	97.14	0.00034	0.00034
21000	64	64	0.0032	0.0081	15.36	185.3	20.30	113.33	0.00040	0.00039
24000	74	74	0.0037	0.0094	15.36	185.3	20.30	129.52	0.00046	0.00046

f'em=	334
S2=	129.52
ε2=	0.00046
S1=	13.32
ε1=	0.00005

Módulo Elástico	205724
Estático [kgf/cm²]	285721

Modulo teórico	274184
(kgf/cm2)	274104

Algeria

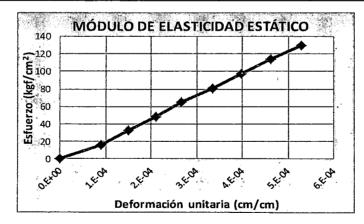
MÓDULO DE ELASTICIDAD ESTÁTICO

Edad: 45 días

Relación a/c: 0.70

o din

Muestra: E21


. .

1 6

A PAGE

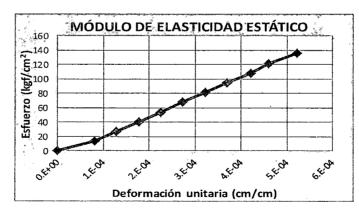
34,

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	Deformación
Fuerza (kgf)	1 (pulg) x10 4	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.35	185.1	20.30	0.00	0.00001	0.00000
3000	15	16	0.0008	0.0020	15.35	185.1	20.30	16.21	0.00010	0.00009
6000	25	25	0.0013	0.0032	15.35	185.1	20.30	32.42	0.00016	0.00015
9000	34	35	0.0017	0.0044	15.35	185.1	20.30	48.63	0.00022	0.00021
12000	43	44	0.0022	0.0055	15.35	185.1	20.30	64.84	0.00027	0.00027
15000	53	56	0.0027	0.0069	15.35	185.1	20.30	81.06	0.00034	0.00033
18000	64	65	0.0032	0.0082	15.35	185.1	20.30	97.27	0.00040	0.00040
21000	75	75	0.0038	0.0095	15.35	185.1	20.30	113.48	0.00047	0.00046
24000	86	85	0.0043	0.0109	15.35	185.1	20.30	129.69	0.00053	0.00053

f'cm=	309
S2=	129.69
ε2=	0.00053
S1=	5.11
ε1=	0.00005

Módulo Elástico	260204
Estático [kgf/cm²]	260284

Modulo teórico	263792
(kgf/cm2)	203/92


Edad: 45 días

Relación a/c: 0.70

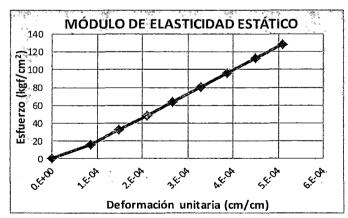
1,1%

Muestra: E22

- 10 - 10 - 10	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	1	2	0.0001	0.0002	15.31	184.1	20.30	0.00	0.00001	0.00000
2500	14	15	0.0007	0.0018	15.31	184.1	20.30	13.58	0.00009	0.00008
5000	22	22	0.0011	0.0028	15.31	184.1	20.30	27.16	0.00014	0.00013
7500	30	30	0.0015	0.0038	15.31	184.1	20.30	40.74	0.00019	0.00018
10000	37	38	0.0019	0.0048	15.31	184.1	20.30	54.32	0.00023	0.00023
12500	45	45	0.0023	0.0057	15.31	184.1	20.30	67.90	0.00028	0.00027
15000	53	53	0.0027	0.0067	15.31	184.1	20.30	81.48	0.00033	0.00032
17500	60	61	0.0030	0.0077	15.31	184.1	20.30	95.06	0.00038	0.00037
20000	69	69	0.0035	0.0088	15.31	184.1	20.30	108.64	0.00043	0.00042
22500	76	74	0.0038	0.0095	15.31	184.1	20.30	122.22	0.00047	0.00046
25000	85	85	0.0043	0.0108	15.31	184.1	20.30	135.80	0.00053	0.00052

f'em=	327
S2=	135.80
ε2=	0.00052
S1=	4.51
ε1=	0.00005

Módulo Elástico	277022
Estático [kgf/cm²]	277923


Modulo teórico (kgf/cm2) 271112

Edad: 45 días

Relación a/c: 0.70

Muestra: E23

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de las	ón de las probetas cilíndricas de mortero				Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)		ε=δ/L (cm/cm)) Unitaria
0	2	2	0.0001	0.0003	15.40	186.3	20.30	0.00	0.00001	0.00000
3000	15	16	0.0008	0.0020	15.40	186.3	20.30	16.11	0.00010	80000.0
6000	25	26	0.0013	0.0032	15.40	186.3	20.30	32.21	0.00016	0.00015
9000	35	36	0.0018	0.0045	15.40	186.3	20.30	48.32	0.00022	0.00021
12000	44	45	0.0022	0.0057	15.40	186.3	20.30	64.42	0.00028	0.00027
15000	54	55	0.0027	0.0069	15.40	186.3	20.30	80.53	0.00034	0.00033
18000	63	65	0.0032	0.0081	15.40	186.3	20.30	96.64	0.00040	0.00039
21000	73	75	0.0037	0.0094	15.40	186.3	20.30	112.74	0.00046	0.00045
24000	83	84	0.0042	0.0106	15.40	186.3	20.30	128.85	0.00052	0.00051

f'em=	322
S2=	128.85
ε2=	0.00051
S1=	7.24
ε1=	0.00005

Módulo Elástico	364448
Estático [kgf/cm²]	264448

Modulo teórico	360301
(kgf/cm2)	269281

. .

MÓDULO DE ELASTICIDAD ESTÁTICO

Edad: 45 días

restate the

Relación a/c: 0.70

1 202

1981

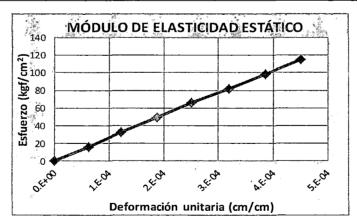
Muestra: E24

	Lectura	s (Gage)	Deformación Longitudinal Dimensión de las probetas cilíndricas de mortero			See Fig.		Deformación		
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	e=δ/L	Unitaria (cm/cm)
0	2	2	0.0001	0.0003	15.35	185.1	20.30	0.00	0.00001	0.00000
3000	14	14	0.0007	0.0018	15.35	185.1	20.30	16.21	0.00009	0.00008
6000	23	22	0.0011	0.0029	15.35	185.1	20.30	32.42	0.00014	0.00013
9000	32	32	0.0016	0.0041	15.35	185.1	20.30	48.63	0.00020	0.00019
12000	41	40	0.0020	0.0051	15.35	185.1	20.30	64.84	0.00025	0.00024
15000	50	50	0.0025	0.0064	15.35	185.1	20.30	81.06	0.00031	0.00030
18000	60	60	0.0030	0.0076	15.35	185.1	20.30	97.27	0.00038	0.00036
21000	70	70	0.0035	0.0089	15.35	185.1	20.30	113.48	0.00044	0.00043
24000	80	80	0.0040	0.0102	15.35	185.1	20.30	129.69	0.00050	0.00049

f'cm=	323
S2=	129.69
ε2=	0.00049
S1=	8.57
ε1=	0.00005

Módulo Elástico	276547
Estático [kgf/cm²]	276547

23.0


MÓDULO DE ELASTICIDAD ESTÁTICO

Edad: 45 días

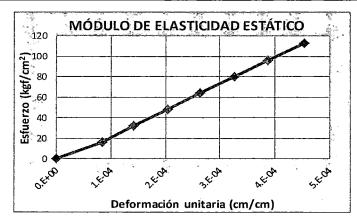
Relación a/c: 0.70

Muestra: E25

	Lecturas (Gage)		Deformación	formación Longitudinal Dimensión de		probetas cilínd	ricas de mortero			Deformación
Fuerzą (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	5	9	0.0004	0.0009	15.26	182.9	20.30	0.00	0.00004	0.00000
3000	15	19	0.0009	0.0022	15.26	182.9	20.30	16.40	0.00011	0.00006
6000	25	28	0.0013	0.0034	15.26	182.9	20.30	32.81	0.00017	0.00012
9000	35	39	0.0019	0.0047	15.26	182.9	20.30	49.21	0.00023	0.00019
12000	45	49	0.0024	0.0060	15.26	182.9	20.30	65.61	0.00029	0.00025
15000	56	60	0.0029	0.0074	15.26	182.9	20.30	82.01	0.00036	0.00032
18000	67	70	0.0034	0.0087	15.26	182.9	20.30	98.42	0.00043	0.00038
21000	77	81	0.0040	0.0100	15.26	182.9	20.30	114.82	0.00049	0.00045

f'em=	297
S2=	114.82
ε2=	0.00045
S1=	12.94
ε1=	0.00005

Módulo Elástico	254430
Estático [kgf/cm²]	234430


Modulo teórico	258685
(kgf/cm2)	258085

Edad: 45 días

Relación a/c: 0.70

Muestra: E26

	Lecturas	s (Gage)	Deformación	Longitudinál	Dimensión de las probetas cilíndricas de mortero			2	, p	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	3	4	0.0002	0.0004	15.41	186.5	20.30	0.00	0.00002	0.00000
3000	17	17	0.0009	0.0022	15.41	186.5	20.30	16.09	0.00011	0.00008
6000	25	27	0.0013	0.0033	15.41	186.5	20.30	32.17	0.00016	0.00014
9000	35	37	0.0018	0.0046	15.41	186.5	20.30	48.26	0.00023	0.00020
12000	45	46	0.0023	0.0058	15.41	186.5	20.30	64.34	0.00028	0.00026
15000	55	56	0.0028	0.0070	15.41	186.5	20.30	80.43	0.00035	0.00033
18000	65	66	0.0033	0.0083	15.41	186.5	20.30	96.51	0.00041	0.00039
21000	75	77	0.0038	0.0097	15.41	186.5	20.30	112.60	0.00048	0.00045

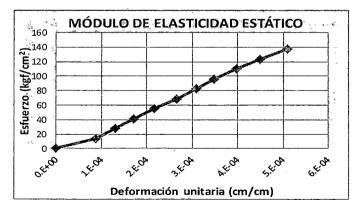
f'em=	324
S2=	112.60
ε2=	0.00045
S 1=	6.24
ε1=	0.00005

Módulo Elástico	262525
Estático [kgf/cm²]	263535

Modulo teórico	270183
(kgf/cm2)	270183

Edad: 45 días

Relación a/c: 0.65


Muestra: E27

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			*** *		Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.23	182.2	20.30	0.00	0.00001	0.00000
2500	16	14	0.0008	0.0019	15.23	182.2	20.30	13.72	0.00009	0.00009
5000	22	22	0.0011	0.0028	15.23	182.2	20.30	27.45	0.00014	0.00013
7500	28	29	0.0014	0.0036	15.23	182.2	20.30	41.17	0.00018	0.00017
10000	36	35	0.0018	0.0045	15.23	182.2	20.30	54.89	0.00022	0.00022
12500	44	43	0.0022	0.0055	15.23	182.2	20.30	68.62	0.00027	0.00027
15000	51	50	0.0025	0.0064	15.23	182.2	20.30	82.34	0.00032	0.00031
17500	56	57	0.0028	0.0072	15.23	182.2	20.30	96.06	0.00035	0.00035
20000	65	64	0.0032	0.0082	15.23	182.2	20.30	109.78	0.00040	0.00040
22500	74	72	0.0037	0.0093	15.23	182.2	20.30	123.51	0.00046	0.00045
25000	83	82	0.0041	0.0105	15.23	182.2	20.30	137.23	0.00052	0.00051

d=ge_r/(e_r+e_f)

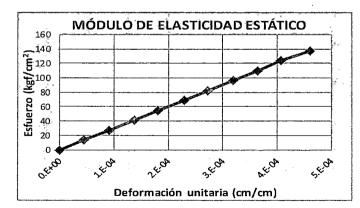
e_r(mm) 128.5 e_f(mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

f'cm=	380
S2=	137.23
ε2=	0.00051
S1=	1.94
ε1=	0.00005

Módulo Elástico	204477
Estático [kgf/cm²]	294177

Modulo teórico (kgf/cm2)	292320
-----------------------------	--------


Edad: 45 días

Relación a/c: 0.65

Muestra: E28

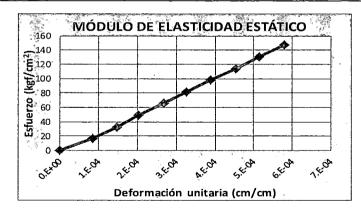
5. 49

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			Esfuerzo	v .	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	(kgf/cm ²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	1	2	0.0001	0.0002	15.24	182.4	20.30	0.00	0.00001	0.00000
2500	9	8	0.0004	0.0011	15.24	182.4	20.30	13.71	0.00005	0.00004
5000	16	16	0.0008	0.0020	15.24	182.4	20.30	27.41	0.00010	0.00009
7500	23	24	0.0012	0.0030	15.24	182.4	20.30	41.12	0.00015	0.00014
10000	30	31	0.0015	0.0039	15.24	182.4	20.30	54.82	0.00019	0.00018
12500	38	38	0.0019	0.0048	15.24	182.4	20.30	68.53	0.00024	0.00023
15000	45	45	0.0023	0.0057	15.24	182.4	20.30	82.23	0.00028	0.00027
17500	52	53	0.0026	0.0067	15.24	182.4	20.30	95.94	0.00033	0.00032
20000	60	59	0.0030	0.0076	15.24	182.4	20.30	109.64	0.00037	0.00036
22500	67	66	0.0033	0.0084	15.24	182.4	20.30	123.35	0.00042	0.00041
25000	75	75	0.0038	0.0095	15.24	182.4	20.30	137.05	0.00047	0.00046

f'em=	349
S2=	137.05
ε2=	0.00046
S1=	15.52
ε1=	0.00005

Módulo Elástico	296545
Estático [kgf/cm²]	296545

Modulo teórico (kgf/cm2)	280083
-----------------------------	--------


Edad: 45 días

Relación a/c: 0.65

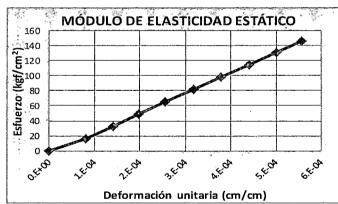
Muestra: E29

a for	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			7		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	3	4	0.0002	0.0004	15.28	183.4	20.30	0.00	0.00002	0.00000
3000	17	17	0.0009	0.0022	15.28	183.4	20.30	16.36	0.00011	0.00008
6000	27	27	0.0014	0.0034	15.28	183.4	20.30	32.72	0.00017	0.00015
9000	36	36	0.0018	0.0046	15.28	183.4	20.30	49.08	0.00023	0.00020
12000	47	46	0.0023	0.0059	15.28	183.4	20.30	65.44	0.00029	0.00027
15000	55	56	0.0028	0.0070	15.28	183.4	20.30	81.80	0.00035	0.00033
18000	65	66	0.0033	0.0083	15.28	183.4	20.30	98.16	0.00041	0.00039
21000	76	76 ·	0.0038	0.0097	15.28	183.4	20.30	114.52	0.00048	0.00045
24000	86	85	0.0043	0.0109	15.28	183.4	20.30	130.88	0.00053	0.00051
27000	96	96	0.0048	0.0122	15.28	183.4	20.30	147.24	0.00060	0.00058

d=ge,/(e_r+e_f)
e, (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

f'em=	355
S2=	147.24
ε2=	0.00058
S1=	7.35
ε1=	0.00005

Módulo Elástico	264598
Estático [kgf/cm²]	204598


Modulo teórico (kgf/cm2)	282753
-----------------------------	--------

Edad: 45 días

Relación a/c: 0.65

Muestra: E30

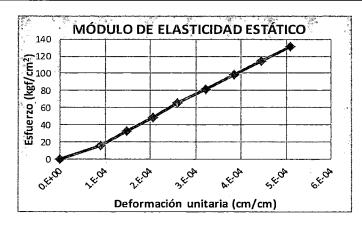
- N - 1 - 4	L'écturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			Ésfuerzo	*	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	(kgf/cm ²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	2	3	0.0001	0.0003	15.30	183.9	20.30	0.00	0.00002	0.00000
3000	15	16	0.0008	0.0020	15.30	183.9	20.30	16.32	0.00010	80000.0
6000	25	25	0.0013	0.0032	15.30	183.9	20.30	32.63	0.00016	0.00014
9000	34	34	0.0017	0.0043	15.30	183.9	20.30	48.95	0.00021	0.00020
12000	43	44	0.0022	0.0055	15.30	183.9	20.30	65.27	0.00027	0.00026
15000	53	54	0.0027	0.0068	15.30	183.9	20.30	81.59	0.00033	0.00032
18000	62	64	0.0032	0.0080	15.30	183.9	20.30	97.90	0.00039	0.00038
21000	73	73	0.0037	0.0093	15.30	183.9	20.30	114.22	0.00046	0.00044
24000	82	83	0.0041	0.0105	15.30	183.9	20.30	130.54	0.00052	0.00050
27000	91	92	0.0046	0.0116	15.30	183.9	20.30	146.86	0.00057	0.00056

f'em=	363
S2=	146.86
ε2=	0.00056
S1=	7.72
ε1=	0.00005

Módulo Elástico	274547
Estático [kgf/cm²]	274547

Modulo teórico	285955
(kgf/cm2)	285955

*


MÓDULO DE ELASTICIDAD ESTÁTICO

Edad: 45 días

Relación a/c: 0.65

Muestra: E31

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	3	0.0001	0.0002	15.29	183.6	20.30	0.00	0.00001	0.00000
3000	15	17	0.0008	0.0020	15.29	183.6	20.30	16.34	0.00010	0.00009
6000	24	26	0.0013	0.0032	15.29	183.6	20.30	32.68	0.00016	0.00015
9000	34	35	0.0017	0.0044	15.29	183.6	20.30	49.02	0.00022	0.00021
12000	42	44	0.0022	0.0055	15.29	183.6	20.30	65.35	0.00027	0.00026
15000	52	54	0.0027	0.0067	15.29	183.6	20.30	81.69	0.00033	0.00032
18000	62	64	0.0032	0.0080	15.29	183.6	20.30	98.03	0.00039	0.00038
21000	72	73	0.0036	0.0092	15.29	183.6	20.30	114.37	0.00045	0.00044
24000	83	83	0.0042	0.0105	15.29	183.6	20.30	130.71	0.00052	0.00051

f'cm=	329
S2=	130.71
ε2;=	0.00051
S1=	4.52
ε1=	0.00005

Módulo Elástico	274200
Estático [kgf/cm²]	274389

Modulo teórico (kgf/cm2)	272069
(kgf/cm2)	272069

Edad: 45 días

Relación a/c: 0.65

Muestra: E32

,	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			2 m.		Deformación
Fuerza (kgf)	·1 (pulg)	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.29	183.6	20.30	0.00	0.00001	0.00000
3000	14	15	0.0007	0.0018	15.29	183.6	20.30	16.34	0.00009	0.00008
6000	24	25	0.0012	0.0031	15.29	183.6	20.30	32.68	0.00015	0.00015
9000	33	34	0.0017	0.0043	15.29	183.6	20.30	49.02	0.00021	0.00020
12000	43	44	0.0022	0.0055	15.29	183.6	20.30	65.35	0.00027	0.00027
15000	52	54	0.0027	0.0067	15.29	183.6	20.30	81.69	0.00033	0.00033
18000	62	63	0.0031	0.0079	15.29	183.6	20.30	98.03	0.00039	0.00038
21000	72	72	0.0036	0.0091	15.29	183.6	20.30	114.37	0.00045	0.00044
24000	82	82	0.0041	0.0104	15.29	183.6	20.30	130.71	0.00051	0.00051

f'em=	351
S2=	130.71
ε2=	0.00051
S1=	7.34
ε1=	0.00005

Módulo Elástico	270404
Estático [kgf/cm²]	270104

Modulo teórico (kgf/cm2)	280959
(Ng)/ CIIIZ/	
	Modulo teórico (kgf/cm2)

Edad: 45 días

Relación a/c: 0.60

Muestra: E33

w	Lectura	as (Gage)	Deformación	Longitudinal	Dimensión de las	Dimensión de las probetas cilíndricas de mortero			.*	Deformación
Fuerza (kgf)	1 (pulg) 2 x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.30	183.9	20.30	0.00	0.00001	0.00000
4000	16	17	0.0008	0.0021	15.30	183.9	20.30	21.76	0.00010	0.00010
8000	26	29	0.0014	0.0035	15.30	183.9	20.30	43.51	0.00017	0.00017
12000	36	39	0.0019	0.0048	15.30	183.9	20.30	65.27	0.00023	0.00023
16000	47	50	0.0024	0.0062	15.30	183.9	20.30	87.03	0.00030	0.00030
20000	59	62	0.0030	0.0077	15.30	183.9	- 20.30	108.78	0.00038	0.00037
24000	71	73	0.0036	0.0091	15.30	183.9	20.30	130.54	0.00045	0.00044
28000	85	87	0.0043	0.0109	15.30	183.9	20.30	152.29	0.00054	0.00053
33000	104	104	0.0052	0.0132	15.30	183.9	20.30	179.49	0.00065	0.00064

d=ge_r/(e_r+e_f)

e_r (mm) 128.5 e_f (mm) 128.5

er/(er+ef) 0.500

según ASTM C-469

f'em=	391
S2=	179.49
ε2=	0.00064
S1=	6.91
ε1=	0.00005

Módulo Elástico 290357
Estático [kgf/cm²]

Modulo teórico (kgf/cm2) 296769

Edad: 45 días

Relación a/c: 0.60

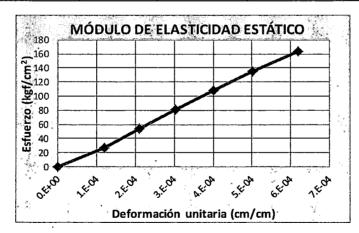
Muestra: E34

	Lectura	s (Gage)	Deformación	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			- 4	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	.ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	4	0.0001	0.0003	15.30	183.9	20.30	0.00	0.00001	0.00000
4000	15	18	0.0008	0.0021	15.30	183.9	20.30	21.76	0.00010	0.00009
8000	26	30	0.0014	0.0036	15.30	183.9	20.30	43.51	0.00018	0.00016
12000	37	40	0.0019	0.0049	15.30	183.9	20.30	65.27	0.00024	0.00023
16000	48	51	0.0025	0.0063	15.30	183.9	20.30	87.03	0.00031	0.00030
20000	58	61	0.0030	0.0076	15.30	183.9	20.30	108.78	0.00037	0.00036
24000	70	74	0.0036	0.0091	15.30	183.9	20.30	130.54	0.00045	0.00044
28000	83	86	0.0042	0.0107	15.30	183.9	20.30	152.29	0.00053	0.00052
33000	98	101	0.0050	0.0126	15.30	183.9	20.30	179.49	0.00062	0.00061

f'cm=	427
S2=	179.49
ε2=	0.00061
S1=	9.44
ε1=	0.00005

Módulo Elástico	303667
Estático [kgf/cm²]	303667

Modulo teórico	310030			
(kgf/cm2)	310030			


Edad: 45 días

Relación a/c: 0.60

Muestra: E35

	Lectura	s (Gage)	Deformación	Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			en en	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	6	0.0002	0.0004	15.32	184.3	20.30	0.00	0.00002	0.00000
5000	19	25	0.0011	0.0028	15.32	184.3	20.30	27.12	0.00014	0.00012
10000	34	39	0.0018	0.0046	15.32	184.3	20.30	54.25	0.00023	0.00021
15000	49	54	0.0026	0.0065	15.32	184.3	20.30	81.37	0.00032	0.00030
20000	64	70	0.0034	0.0085	15.32	184.3	20.30	108.50	0.00042	0.00040
25000	80	86	0.0042	0.0105	15.32	184.3	20.30	135.62	0.00052	0.00050
30000	100	104	0.0051	0.0130	15.32	184.3	20.30	162.75	0.00064	0.00062

d=ge_r/(e_r+e_f)
e_r (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

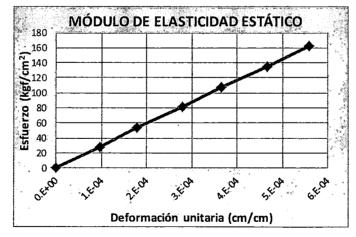
f'em=	405
S2=	162.75
ε2=	0.00062
S1=	6.53
ε1=	0.00005

1

Módulo Elástico	274369
Estático [kgf/cm²]	2/4309

Modulo teórico	301817
(kgf/cm2)	

Edad: 45 días


Relación a/c: 0.60

Muestra: E36

8.5

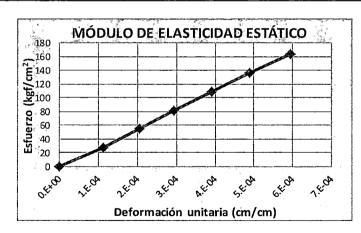
	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			, a		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.36	185.3	20.30	0.00	0.00001	0.00000
5000	15	18	0.0008	0.0021	15.36	185.3	20.30	26.98	0.00010	0.00010
10000	27	32	0.0015	0.0037	15.36	185.3	20.30	53.97	0.00018	0.00018
15000	43	48	0.0023	0.0058	15.36	185.3	20.30	80.95	0.00028	0.00028
20000	57	62	0.0030	0.0076	15.36	185.3	20.30	107.93	0.00037	0.00037
25000	73	78	0.0038	0.0096	15.36	185.3	20.30	134.92	0.00047	0.00047
30000	90	91	0.0045	0.0115	15.36	185.3	20.30	161.90	0.00057	0.00056

d=ge_r/(e_r+e_f)
e_r (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

f'cm=	381
S2=	161.90
ε2=	0.00056
S1=	11.40
ε1=	0.00005

v 6.9

Módulo Elástico	295143
Estático [kgf/cm²]	295143


Modulo teórico	292604
(kgf/cm2)	292004

Edad: 45 días

Relación a/c: 0.60

Muestra: E37

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			i		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.28	183.4	20.30	0.00	0.00001	0.00000
5000	18	20	0.0010	0.0024	15.28	183.4	20.30	27.27	0.00012	0.00011
10000	33	35	0.0017	0.0043	15.28	183.4	20.30	54.53	0.00021	0.00021
15000	47	49	0.0024	0.0061	15.28	183.4	20.30	81.80	0.00030	0.00029
20000	62	65	0.0032	0.0081	15.28	183.4	20.30	109.07	0.00040	0.00039
25000	78	80	0.0040	0.0100	15.28	183.4	20.30	136.33	0.00049	0.00049
30000	96	96	0.0048	0.0122	15.28	183.4	20.30	163.60	0.00060	0.00059

f'em=	391
S2=	163.60
ε2=	0.00059
S1=	9.07
ε1=	0.00005

Módulo Elástico	202000
Estático [kgf/cm²]	283880

Modulo teórico	296724
(kgf/cm2)	290724

Edad: 45 días

Relación a/c: 0.60

Muestra: E38

1 , 8 m y y	Lectura	s (Gage)	Deformación	Deformación Longitudinal Dimensión de la		s probetas cilíndricas de mortero		3		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	1	4	0.0001	0.0003	15.35	185.1	20.30	0.00	0.00002	0.00000
5000	19	21	0.0010	0.0025	15.35	185.1	20.30	27.02	0.00013	0.00011
10000	32	34	0.0017	0.0042	15.35	185.1	20.30	54.04	0.00021	0.00019
15000	45	48	0.0023	0.0059	15.35	185.1	20.30	81.06	0.00029	0.00028
20000	59	61	0.0030	0.0076	15.35	185.1	20.30	108.07	0.00038	0.00036
25000	75	75	0.0038	0.0095	15.35	185.1	20.30	135.09	0.00047	0.00045
30000	90	91	0.0045	0.0115	15.35	185.1	20.30	162.11	0.00057	0.00055

d=ge_r/(e_r+e_f) e_r(mm) 12 e_f(mm) 12

128.5 128.5

er/(er+ef) 0.500

según ASTM C-469

f'em=	405
S2=	162.11
ε2=	0.00055
S1=	7.26
ε1=	0.00005

Módulo Elástico	200272
Estático [kgf/cm²]	309373

Modulo teórico (kgf/cm2)	301812
-----------------------------	--------

Edad: 28 días

Relación a/c: 0.70

Muestra: E39

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	ε=δ/L (cm/cm) Unitaria (cm/cm)
0	9	9	0.0005	0.0011	15.30	183.9	20.30	0.00	0.00006	0.00000
2000	16	17	0.0008	0.0021	15.30	183.9	20.30	10.88	0.00010	0.00005
4000	24	24	0.0012	0.0030	15.30	183.9	20.30	21.76	0.00015	0.00009
6000	31	31	0.0016	0.0039	15.30	183.9	20.30	32.63	0.00019	0.00014
8000	37	38	0.0019	0.0048	15.30	183.9	20.30	43.51	0.00023	0.00018
10000	45	45	0.0023	0.0057	15.30	183.9	20.30	54.39	0.00028	0.00023
12000	53	54	0.0027	0.0068	15.30	183.9	20.30	65.27	0.00033	0.00028
14000	62	61	0.0031	0.0078	15.30	183.9	20.30	76.15	0.00038	0.00033
16000	70	69	0.0035	0.0088	15.30	183.9	20.30	87.03	0.00043	0.00038

d=ge_r/(e_r+e_f)

e_r (mm) 128.5 e_f (mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

f'em=	217
S2=	87.03
ε2=	0.00038
S1=	11.59
ε1=	0.00005

Módulo Elástico	220522
Estático [kgf/cm²]	229632

Modulo teórico	220935
(kgf/cm2)	220935

Edad: 28 días

Relación a/c: 0.70

Muestra: E40

2 4

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	7	8	0.0004	0.0010	15.32	184.3	20.30	0.00	0.00005	0.00000
2000	15	15	0.0008	0.0019	15.32	184.3	20.30	10.85	0.00009	0.00005
4000	22	23	0.0011	0.0029	15.32	184.3	20.30	21.70	0.00014	0.00009
6000	30	31	0.0015	0.0039	15.32	184.3	20.30	32.55	0.00019	0.00014
8000	37	38	0.0019	0.0048	15.32	184.3	20.30	43.40	0.00023	0.00019
10000	45	43	0.0022	0.0056	15.32	184.3	20.30	54.25	0.00028	0.00023
12000	53	55	0.0027	0.0069	15.32	184.3	20.30	65.10	0.00034	0.00029
14000	62	63	0.0031	0.0079	15.32	184.3	20.30	75.95	0.00039	0.00034
16000	70	72	0.0036	0.0090	15.32	184.3	20.30	86.80	0.00044	0.00040

f'em=	225
S2=	86.80
ε2=	0.00040
S1=	11.56
ε1=	0.00005

Módulo Elástico	216655
Estático [kgf/cm²]	216655

Modulo teórico	225032
(kgf/cm2)	220002

Edad: 28 días

Relación a/c: 0.70

at gr

Muestra: E41

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilínd	ricas de mortero		ε=δ/L (cm/cm)	Deformación Unitaria (cm/cm)
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)		
0	0	3	0.0001	0.0002	15.26	182.9	20.30	0.00	0.00001	0.00000
2000	7	12	0.0005	0.0012	15.26	182.9	20.30	10.94	0.00006	0.00005
4000	15	19	0.0009	0.0022	15.26	182.9	20.30	21.87	0.00011	0.00010
6000	22	27	0.0012	0.0031	15.26	182.9	20.30	32.81	0.00015	0.00014
8000	29	34	0.0016	0.0040	15.26	182.9	20.30	43.74	0.00020	0.00019
10000	36	41	0.0019	0.0049	15.26	182.9	20.30	54.68	0.00024	0.00023
12000	44	49	0.0023	0.0059	15.26	182.9	20.30	65.61	0.00029	0.00028
14000	52	56	0.0027	0.0069	15.26	182.9	20.30	76.55	0.00034	0.00033
16000	61	64	0.0031	0.0079	15.26	182.9	20.30	87.48	0.00039	0.00038
18000	69	71	0.0035	0.0089	15.26	182.9	20.30	98.42	0.00044	0.00043

 $d=ge_r/(e_r+e_f)$

e_r (mm) 128.5 e_f (mm) 128.5

er/(er+ef) 0.500

según ASTM C-469

f'em=	259
S2=	98.42
ε2=	0.00043
S1=	10.92
ε1=	0.00005

Módulo Elástico	224424
Estático [kgf/cm²]	231131

Modulo teórico	241222
(kgf/cm2)	241222

Edad: 28 días

Relación a/c: 0.70

Muestra: E42

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de las probetas cilíndricas de mortero		1 1		Deformación	
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Uṇitaria (cm/cm)
0	6	6	0.0003	0.0008	15.26	182.9	20.30	0.00	0.00004	0.00000
2000	13	13	0.0007	0.0017	15.26	182.9	20.30	10.94	0.00008	0.00004
4000	20	21	0.0010	0.0026	15.26	182.9	20.30	21.87	0.00013	0.00009
6000	27	28	0.0014	0.0035	15.26	182.9	20.30	32.81	0.00017	0.00013
8000	34	35	0.0017	0.0044	15.26	182.9	20.30	43.74	0.00022	0.00018
10000	42	41	0.0021	0.0053	15.26	182.9	20.30	54.68	0.00026	0.00022
12000	50	50	0.0025	0.0064	15.26	182.9	20.30	65.61	0.00031	0.00028
14000	57	58	0.0029	0.0073	15.26	182.9	20.30	76.55	0.00036	0.00032
16000	65	65	0.0033	0.0083	15.26	182.9	20.30	87.48	0.00041	0.00037
18000	74	74	0.0037	0.0094	15.26	182.9	20.30	98.42	0.00046	0.00043

f'cm=	244
S2=	98.42
ε2=	0.00043
S1=	12.38
ε1=	0.00005

Módulo Elástico	220472
Estático [kgf/cm²]	229173

Modulo teórico	234092
(kgf/cm2)	234092

Edad: 28 días

Relación a/c: 0.70

Muestra: E43

The said of the

The state of the s	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilíndr	icas de mortero		Deformación	
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	6	6	0.0003	0.0008	15.40	186.3	20.30	0.00	0.00004	0.00000
2000	12	13	0.0006	0.0016	15.40	186.3	20.30	10.74	80000.0	0.00004
4000	18	19	0.0009	0.0023	15.40	186.3	20.30	21.47	0.00012	0.00008
6000	27	27	0.0014	0.0034	15.40	186.3	20.30	32.21	0.00017	0.00013
8000	34	33	0.0017	0.0043	15.40	186.3	20.30	42.95	0.00021	0.00017
10000	41	41	0.0021	0.0052	15.40	186.3	20.30	53.69	0.00026	0.00022
12000	47	48	0.0024	0.0060	15.40	186.3	20.30	64.42	0.00030	0.00026
14000	55	55	0.0028	0.0070	15.40	186.3	20.30	75.16	0.00034	0.00031
16000	63	63	0.0032	0.0080	15.40	186.3	20.30	85.90	0.00039	0.00036

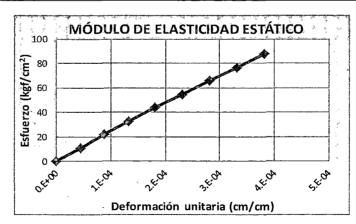
 $d=ge_r/(e_r+e_f)$

e_r(mm) 128.5 e_f (mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

f'em=	224
S2=	85.90
ε2=	0.00036
S1=	13.41
ε1=	0.00005

2511 5111	
Módulo Elástico	236436
Estático [kgf/cm²]	230430


Modulo teórico	224611
(kgf/cm2)	224611

Edad: 28 días

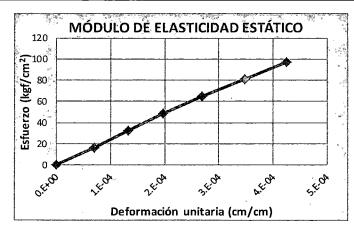
Relación a/c: 0.70

Muestra: E44

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				<i>p</i>	Deformación
Fuerzą (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	11	10	0.0005	0.0013	15.26	182.9	20.30	0.00	0.00007	0.00000
2000	18	17	0.0009	0.0022	15.26	182.9	20.30	10.94	0.00011	0.00004
4000	25	24	0.0012	0.0031	15.26	182.9	20.30	21.87	0.00015	0.00009
6000	32	31	0.0016	0.0040	15.26	182.9	20.30	32.81	0.00020	0.00013
8000	40	39	0.0020	0.0050	15.26	182.9	20.30	43.74	0.00025	0.00018
10000	48	47	0.0024	0.0060	15.26	182.9	20.30	54.68	0.00030	0.00023
12000	55	56	0.0028	0.0070	15.26	182.9	20.30	65.61	0.00035	0.00028
14000	64	63	0.0032	0.0081	15.26	182.9	20.30	76.55	0.00040	0.00033
16000	72	71	0.0036	0.0091	15.26	182.9	20.30	87.48	0.00045	0.00038

f'em=	237
S2=	87.48
ε2=	0.00038
S1=	12.49
ε1=	0.00005

Módulo Elástico	226450
Estático [kgf/cm²]	226150


Modulo teórico	231008
(kgf/cm2)	251000

Edad: 28 días

Relación a/c: 0.65

Muestra: E45

No. 1 No. 18	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				. A 2	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	1	3	0.0001	0.0003	15.33	184.6	20.30	0.00	0.00001	0.00000
3000	12	14	0.0007	0.0017	15.33	184.6	20.30	16.25	0.00008	0.00007
6000	22	24	0.0012	0.0029	15.33	184.6	20.30	32.51	0.00014	0.00013
9000	32	35	0.0017	0.0043	15.33	184.6	20.30	48.76	0.00021	0.00020
12000	44	46	0.0023	0.0057	15.33	184.6	20.30	65.01	0.00028	0.00027
15000	56	59	0.0029	0.0073	15.33	184.6	20.30	81.27	0.00036	0.00035
18000	69	71	0.0035	0.0089	15.33	184.6	20.30	97.52	0.00044	0.00043

f'em=	213
S2=	97.52
ε2=	0.00043
S1=	11.36
ε1=	0.00005

Módulo Elástico	229494
Estático [kgf/cm²]	229494

Modulo teórico	218696
(kgf/cm2)	

Edad: 28 días

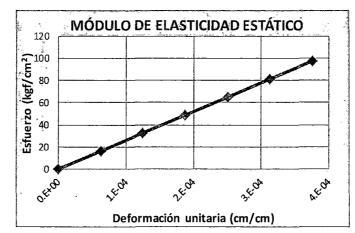
Relación a/c: 0.65

Muestra: E46

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilíndr	icas de mortero	Life Table Back to the	e e e e e e e e e e e e e e e e e e e	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²).	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm ²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.30	183.9	20.30	0.00	0.00001	0.00000
3000	10	13	0.0006	0.0015	15.30	183.9	20.30	16.32	0.00007	0.00007
6000	20	23	0.0011	0.0027	15.30	183.9	20.30	32.63	0.00013	0.00013
9000	30	33	0.0016	0.0040	15.30	183.9	20.30	48.95	0.00020	0.00019
12000	42	44	0.0022	0.0055	15.30	183.9	20.30	65.27	0.00027	0.00026
15000	54	55	0.0027	0.0069	15.30	183.9	20.30	81.59	0.00034	0.00033
18000	65	67	0.0033	0.0084	15.30	183.9	20.30	97.90	0.00041	0.00041

f'cm=	270
S2=	97.90
ε2=	0.00041
S1=	12.23
ε1=	0.00005

Módulo Elástico	240232
Estático [kgf/cm²]	240232


Modulo teórico	246466
(kgf/cm2)	240400

Edad: 28 días

Relación a/c: 0.65

Muestra: E47

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de las	probetas cilínd	ricas de mortero			Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	1	0.0000	0.0001	15.36	185.3	20.30	0.00	0.00000	0.00000
3000	10	11	0.0005	0.0013	15.36	185.3	20.30	16.19	0.00007	0.00006
6000	20	21	0.0010	0.0026	15.36	185.3	20.30	32.38	0.00013	0.00013
9000	30	31	0.0015	0.0039	15.36	185.3	20.30	48.57	0.00019	0.00019
12000	40	41	0.0020	0.0051	15.36	185.3	20.30	64.76	0.00025	0.00025
15000	50	51	0.0025	0.0064	15.36	185.3	20.30	80.95	0.00032	0.00031
18000	60	61	0.0030	0.0077	15.36	185.3	20.30	97.14	0.00038	0.00038

f'cm=	255
S2=	97.14
ε2=	0.00038
S1=	12.94
ε1=	0.00005

Módulo Elástico	250706
Estático [kgf/cm²]	258786

	Modulo teórico	239467
ł	(kgf/cm2)	

Edad: 28 días

Relación a/c: 0.65

Muestra: E48

	Lectura	as (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilínd	lricas de mortero			Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	9	9	0.0005	0.0011	15.30	183.9	20.30	0.00	0.00006	0.00000
2000	16	16	0.0008	0.0020	15.30	183.9	20.30	10.88	0.00010	0.00004
4000	23	24	0.0012	0.0030	15.30	183.9	20.30	21.76	0.00015	0.00009
6000	30	31	0.0015	0.0039	15.30	183.9	20.30	32.63	0.00019	0.00013
8000	39	39	0.0020	0.0050	15.30	183.9	20.30	43.51	0.00024	0.00019
10000	46	47	0.0023	0.0059	15.30	183.9	20.30	54.39	0.00029	0.00023
12000	55	55	0.0028	0.0070	15.30	183.9	20.30	65.27	0.00034	0.00029
14000	62	62	0.0031	0.0079	15.30	183.9	20.30	76.15	0.00039	0.00033
17000	75	74	0.0037	0.0095	15.30	183.9	20.30	92.46	0.00047	0.00041

240	f'cm=
92.46	S2=
0.00041	ε2=
12.32	S1=
0.00005	ε1=

Módulo Elástico	r 222760	
Estático [kgf/cm²]	222769	

Modulo teórico (kgf/cm2)	232390
-----------------------------	--------

Edad: 28 días

Relación a/c: 0.65

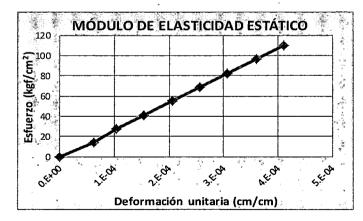
Muestra: E49

8	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				,	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	8	9	0.0004	0.0011	15.31	184.1	20.30	0.00	0.00005	0.00000
2000	14	15	0.0007	0.0018	15.31	184.1	20.30	10.86	0.00009	0.00004
4000	21	22	0.0011	0.0027	15.31	184.1	20.30	21.73	0.00013	0.00008
6000	28	29	0.0014	0.0036	15.31	184.1	20.30	32.59	0.00018	0.00013
8000	36	36	0.0018	0.0046	15.31	184.1	20.30	43.46	0.00023	0.00017
10000	43	44	0.0022	0.0055	15.31	184.1	20.30	54.32	0.00027	0.00022
12000	50	50	0.0025	0.0064	15.31	184.1	20.30	65.18	0.00031	0.00026
14000	57	59	0.0029	0.0074	15.31	184.1	20.30	76.05	0.00036	0.00031
17000	68	69	0.0034	0.0087	15.31	184.1	20.30	92.34	0.00043	0.00038

f'cm=	247
S2=	92.34
ε2=	0.00038
S1=	13.96
ε1=	0.00005

Módulo Elástico	240024
Estático [kgf/cm²]	240921

Modulo teórico	235725
(kgf/cm2)	255725


Edad: 28 días

Relación a/c: 0.60

Muestra: E50

3. S.

	Lectura	Lecturas (Gage) Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			The state of the s		Deformación	
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.21	181.7	20.30	0.00	0.00001	0.00000
2500	11	11	0.0006	0.0014	15.21	181.7	20.30	13.76	0.00007	0.00006
5000	17	18	0.0009	0.0022	15.21	181.7	20.30	27.52	0.00011	0.00010
7500	25	26	0.0013	0.0032	15.21	181.7	20.30	41.28	0.00016	0.00015
10000	33	35	0.0017	0.0043	15.21	181.7	20.30	55.04	0.00021	0.00021
12500	41	43	0.0021	0.0053	15.21	181.7	20.30	68.80	0.00026	0.00026
15000	49	51	0.0025	0.0064	15.21	181.7	20.30	82.55	0.00031	0.00031
17500	58	59	0.0029	0.0074	15.21	181.7	20.30	96.31	0.00037	0.00036
20000	66	67	0.0033	0.0084	15.21	181.7	20.30	110.07	0.00042	0.00041

f'cm=	309
S2=	110.07
ε2=	0.00041
S1=	9.51
ε1=	0.00005

Módulo Elástico	279517
Estático [kgf/cm²]	2/951/

Modulo teórico (kgf/cm2)	263745
(kgf/cm2)	203743

Edad: 28 días

Relación a/c: 0.60

Muestra: E51

· · · · · · · · · · · · · · · · · · ·	Lectura	as (Gage)	Deformación	Deformación Longitudinal		ongitudinal Dimensión de las probetas cilíndricas de mortero				Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	1	1	0.0001	0.0001	15.24	182.4	20.30	0.00	0.00001	0.00000
2500	9	9	0.0005	0.0011	15.24	182.4	20.30	13.71	0.00006	0.00005
5000	17	17	0.0009	0.0022	15.24	182.4	20.30	27.41	0.00011	0.00010
7500	24	25	0.0012	0.0031	15.24	182.4	20.30	41.12	0.00015	0.00015
10000	33	34	0.0017	0.0043	15.24	182.4	20.30	54.82	0.00021	0.00020
12500	41	42	0.0021	0.0053	15.24	182.4	20.30	68.53	0.00026	0.00025
15000	50	51	0.0025	0.0064	15.24	182.4	20.30	82.23	0.00032	0.00031
17500	59	60	0.0030	0.0076	15.24	182.4	20.30	95.94	0.00037	0.00037
20000	69	69	0.0035	0.0088	15.24	182.4	20.30	109.64	0.00043	0.00043

d=ge_r/(e_r+e_f)
e_r (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

f'cm=	269
S2=	109.64
ε2=	0.00043
S1=	13.69
ε1=	0.00005

Módulo Elástico	255579
Estático [kgf/cm²]	255578

Modulo teórico 245949 (kgf/cm2)

Edad: 28 días

Relación a/c: 0.60

Muestra: E52

9 (1.5%)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			- 4. 		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	1	0.0000	0.0001	15.22	181.9	20.30	0.00	0.00000	0.00000
2500	9	9	0.0005	0.0011	15.22	181.9	20.30	13.74	0.00006	0.00005
5000	15	16	0.0008	0.0020	15.22	181.9	20.30	27.48	0.00010	0.00009
7500	23	25	0.0012	0.0030	15.22	181.9	20.30	41.22	0.00015	0.00015
10000	32	33	0.0016	0.0041	15.22	181.9	20.30	54.96	0.00020	0.00020
12500	41	42	0.0021	0.0053	15.22	181.9	20.30	68.71	0.00026	0.00026
15000	49	51	0.0025	0.0064	15.22	181.9	20.30	82.45	0.00031	0.00031
17500	59	59	0.0030	0.0075	15.22	181.9	20.30	96.19	0.00037	0.00037
21000	70	71	0.0035	0.0090	15.22	181.9	20.30	115.43	0.00044	0.00044

f'cm=	290
S2=	115.43
ε2=	0.00044
S1=	12.67
ε1=	0.00005

Módulo Elástico	364006
Estático [kgf/cm²]	264886

Modulo teórico	255602
(kgf/cm2)	233602

Edad: 28 días

Relación a/c: 0.60

Muestra: E53

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				, % - y, t,	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.22	181.9	20.30	0.00	0.00001	0.00000
2500	9	10	0.0005	0.0012	15.22	181.9	20.30	13.74	0.00006	0.00005
5000	16	18	0.0009	0.0022	15.22	181.9	20.30	27.48	0.00011	0.00010
7500	24	26	0.0013	0.0032	15.22	181.9	20.30	41.22	0.00016	0.00015
10000	32	34	0.0017	0.0042	15.22	181.9	20.30	54.96	0.00021	0.00020
12500	40	45	0.0021	0.0054	15.22	181.9	20.30	68.71	0.00027	0.00026
15000	49	52	0.0025	0.0064	15.22	181.9	20.30	82.45	0.00032	0.00031
17500	58	61	0.0030	0.0076	15.22	181.9	20.30	96.19	0.00037	0.00037
21000	71	73	0.0036	0.0091	15.22	181.9	20.30	115.43	0.00045	0.00044

f'em=	313
S2=	115.43
ε2=	0.00044
S1=	12.81
ε1=	0.00005

Módulo Elástico	250246
Estático [kgf/cm²]	260319

	Modulo teórico	265342
į	(kgf/cm2)	265342

Edad: 28 días

Relación a/c: 0.60

Muestra: E54

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				s	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	1	0.0000	0.0001	15.33	184.6	20.30	0.00	0.00000	0.00000
2500	9	10	0.0005	0.0012	15.33	184.6	20.30	13.54	0.00006	0.00006
5000	17	19	0.0009	0.0023	15.33	184.6	20.30	27.09	0.00011	0.00011
7500	25	27	0.0013	0.0033	15.33	184.6	20.30	40.63	0.00016	0.00016
10000	34	35	0.0017	0.0044	15.33	184.6	20.30	54.18	0.00022	0.00021
12500	43	44	0.0022	0.0055	15.33	184.6	20.30	67.72	0.00027	0.00027
15000	53	54	0.0027	0.0068	15.33	184.6	20.30	81.27	0.00033	0.00033
17500	63	63	0.0032	0.0080	15.33	184.6	20.30	94.81	0.00039	0.00039
20000	72	73	0.0036	0.0092	15.33	184.6	20.30	108.36	0.00045	0.00045

d=ge_r/(e_r+e_f)

e_r (mm) 128.5 e_f (mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

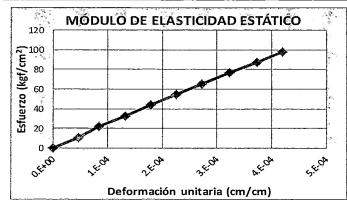
f'em=	293
S 2=	108.36
ε2=	0.00045
S1=	11.94
ε1=	0.00005

Módulo Elástico	240770
Estático [kgf/cm²]	240778

Modulo teórico	256786
(kgf/cm2)	250780

Edad: 45 días

Relación a/c: 0.70


Muestra: E55

al de	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			*		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	3	0.0001	0.0002	15.26	182.9	20.30	0.00	0.00001	0.00000
2000	8	10	0.0005	0.0011	15.26	182.9	20.30	10.94	0.00006	0.00005
4000	14	16	0.0008	0.0019	15.26	182.9	20.30	21.87	0.00009	0.00008
6000	21	24	0.0011	0.0029	15.26	182.9	20.30	32.81	0.00014	0.00013
8000	29	31	0.0015	0.0038	15.26	182.9	20.30	43.74	0.00019	0.00018
10000	36	39	0.0019	0.0048	15.26	182.9	20.30	54.68	0.00023	0.00023
12000	44	46	0.0023	0.0057	15.26	182.9	20.30	65.61	0.00028	0.00027
14000	52	54	0.0027	0.0067	15.26	182.9	20.30	76.55	0.00033	0.00032
16000	60	62	0.0031	0.0077	15.26	182.9	20.30	87.48	0.00038	0.00037
18000	68	69	0.0034	0.0087	15.26	182.9	20.30	98.42	0.00043	0.00042

 $d=ge_r/(e_r+e_f)$

e_r (mm) 128.5 e_f (mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

f'em=	262
S2=	98.42
ε2=	0.00042
S1=	11.83
ε1≔	0.00005

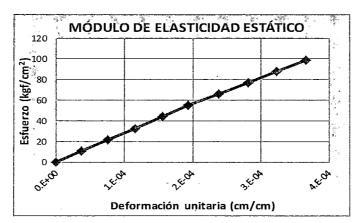
Módulo Elástico	224546
Estático [kgf/cm²]	234546

Modulo teórico	242524
(kgf/cm2)	242684

Edad: 45 días

Relación a/c: 0.70

Muestra: E56


a	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	4	7	0.0003	0.0007	15.25	182.7	20.30	0.00	0.00003	0.00000
2000	10	13	0.0006	0.0015	15.25	182.7	20.30	10.95	0.00007	0.00004
4000	16	19	0.0009	0.0022	15.25	182.7	20.30	21.90	0.00011	0.00008
6000	22	26	0.0012	0.0030	15.25	182.7	20.30	32.85	0.00015	0.00012
8000	29	32	0.0015	0.0039	15.25	182.7	20.30	43.80	0.00019	0.00016
10000	35	38	0.0018	0.0046	15.25	182.7	20.30	54.75	0.00023	0.00019
12000	42	45	0.0022	0.0055	15.25	182.7	20.30	65.70	0.00027	0.00024
14000	49	52	0.0025	0.0064	15.25	182.7	20.30	76.65	0.00032	0.00028
16000	56	58	0.0029	0.0072	15.25	182.7	20.30	87.60	0.00036	0.00032
18000	63	65	0.0032	0.0081	15.25	182.7	20.30	98.55	0.00040	0.00037

d=ge_r/(e_r+e_f)

e_r(mm) 128.5 e_f(mm) 128.5

er/(er+ef) 0.500

según ASTÍVI C-469

f'em=	241
S2=	98.55
ε2=	0.00037
S1=	14.59
ε1=	0.00005

Módulo Elástico	265744
Estático [kgf/cm²]	265714

Modulo teórico 232692 (kgf/cm2)

Edad: 45 días

Relación a/c: 0.70

Muestra: E57

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilíndr	icas de mortero			Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	έ=δ/Ľ (cm/cm)	Unitaria (cm/cm)
0	3	3	0.0002	0.0004	15.30	183.9	20.30	0.00	0.00002	0.00000
2000	11	10	0.0005	0.0013	15.30	183.9	20.30	10.88	0.00007	0.00005
4000	18	17	0.0009	0.0022	15.30	183.9	20.30	21.76	0.00011	0.00009
6000	26	25	0.0013	0.0032	15.30	183.9	20.30	32.63	0.00016	0.00014
8000	33	33	0.0017	0.0042	15.30	183.9	20.30	43.51	0.00021	0.00019
10000	41	40	0.0020	0.0051	15.30	183.9	20.30	54.39	0.00025	0.00023
12000	49	49	0.0025	0.0062	15.30	183.9	20.30	65.27	0.00031	0.00029
14000	59	58	0.0029	0.0074	15.30	183.9	20.30	76.15	0.00037	0.00035

d=ge_r/(e_r+e_f)
e_r (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500

según ASTM C-469

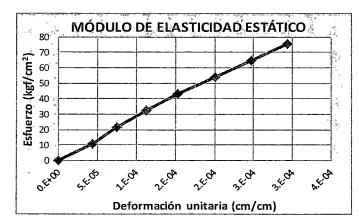
f'cm=	222
S2=	76.15
ε2=	0.00035
S1=	11.64
ε1=	0.00005

Módulo Elástico 217028 Estático [kgf/cm²]

Modulo teórico (kgf/cm²) 223507

Edad: 45 días

Relación a/c: 0.70


Muestra: E58

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de las probetas cilíndricas de mortero			, a , i	4 8	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	1	0.0000	0.0001	15.37	185.5	20.30	0.00	0.00000	0.00000
2000	7	8	0.0004	0.0010	15.37	185.5	20.30	10.78	0.00005	0.00004
4000	12	13	0.0006	0.0016	15.37	185.5	20.30	21.56	0.00008	0.00008
6000	18	19	0.0009	0.0023	15.37	185.5	20.30	32.34	0.00012	0.00011
8000	24	26	0.0013	0.0032	15.37	185.5	20.30	43.12	0.00016	0.00015
10000	32	33	0.0016	0.0041	15.37	185.5	20.30	53.90	0.00020	0.00020
12000	39	41	0.0020	0.0051	15.37	185.5	20.30	64.68	0.00025	0.00025
14000	47	48	0.0024	0.0060	15.37	185.5	20.30	75.46	0.00030	0.00029

d=ge_r/(e_r+e_f) e_r (mm)

e_f (mm) 128.5 e_f (mm) 128.5 er/(er+ef) 0.500

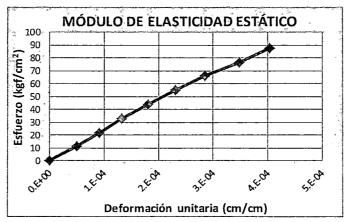
según ASTM C-469

f'cm=	226
S2=	75.46
ε2=	0.00029
S1=	12.92
ε1=	0.00005

Módulo Elástico	256259
Estático [kgf/cm²]	236239

Modulo teórico	225216
(kgf/cm2)	225316

Edad: 45 días


Relación a/c: 0.70

Muestra: E59

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				· · · · · ·	Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	5	2	0.0002	0.0004	15.25	182.7	20.30	0.00	0.00002	0.00000
2000	13	10	0.0006	0.0015	15.25	182.7	20.30	10.95	0.00007	0.00005
4000	20	16	0.0009	0.0023	15.25	182.7	20.30	21.90	0.00011	0.00009
6000	26	23	0.0012	0.0031	15.25	182.7	20.30	32.85	0.00015	0.00013
8000	34	31	0.0016	0.0041	15.25	182.7	20.30	43.80	0.00020	0.00018
10000	42	39	0.0020	0.0051	15.25	182.7	20.30	54.75	0.00025	0.00023
12000	50	48	0.0025	0.0062	15.25	182.7	20.30	65.70	0.00031	0.00028
14000	60	58	0.0030	0.0075	15.25	182.7	20.30	76.65	0.00037	0.00035
16000	70	66	0.0034	0.0086	15.25	182.7	20.30	87.60	0.00043	0.00040

d=ge_r/(e_r+e_f) e_r(mm) 128.5 e_f(mm) 128.5 er/(er+ef) 0.500

según ASTM C-469

f'em=	259
S2=	87.60
ε2=	0.00040
S1=	10.94
ε1=	0.00005

Módulo Elástico	216849
Estático [kgf/cm²]	216849

Modulo teórico 241557 (kgf/cm2)

Edad: 45 días

Relación a/c: 0.70

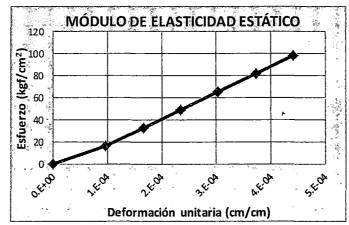
Muestra: E60

Fuerza (kgf)	Lectura	ıs (Gagė)	Deformación	Longitudinal	Dimensión de las	probetas cilínd	ricas de mortero	#	ε=δ/L Un	Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)		Unitaria (cm/cm)
0	4	3	0.0002	0.0004	15.30	183.9	20.30	0.00	0.00002	0.00000
2000	12	11	0.0006	. 0.0015	15.30	183.9	20.30	10.88	0.00007	0.00005
4000	19	18	0.0009	0.0023	15.30	183.9	20.30	21.76	0.00012	0.00009
6000	27	26	0.0013	0.0034	15.30	183.9	20.30	32.63	0.00017	0.00014
8000	35	34	0.0017	0.0044	15.30	183.9	20.30	43.51	0.00022	0.00019
10000	43	42	0.0021	0.0054	15.30	183.9	20.30	54.39	0.00027	0.00024
12000	51	50	0.0025	0.0064	15.30	183.9	20.30	65.27	0.00032	0.00029
14000	60	59	0.0030	0.0076	15.30	183.9	20.30	76.15	0.00037	0.00035
16000	69	67	0.0034	0.0086	15.30	183.9	20.30	87.03	0.00043	0.00040

f'em=	237
1 cm-	237
S2=	87.03
ε2=	0.00040
S1=	10.87
ε1=	0.00005

Módulo Elástico	245424
Estático [kgf/cm²]	215431

Modulo teórico	230799
(kgf/cm2)	230799


Edad: 45 días

Relación a/c: 0.65

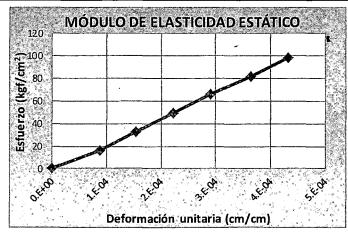
Muestra: E61

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilíndr	icas de mortero			Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	1	0.0000	0.0001	15.25	182.7	20.30	0.00	0.00000	0.0000
3000	15	17	0.0008	0.0020	15.25	182.7	20.30	16.42	0.00010	0.00010
6000	26	28	0.0014	0.0034	15.25	182.7	20.30	32.85	0.00017	0.00017
9000	37	39	0.0019	0.0048	15.25	182.7	20.30	49.27	0.00024	0.00023
12000	48	50	0.0025	0.0062	15.25	182.7	20.30	65.70	0.00031	0.00030
15000	59	61	0.0030	0.0076	15.25	182.7	20.30	82.12	0.00038	0.00037
18000	70	72	0.0036	0.0090	15.25	182.7	20.30	98.55	0.00044	0.00044

d=ge_r/(e_r+e_f)
e_r (mm) 128.5
e_f (mm) 128.5
er/(er+ef) 0.500
según ASTM C-469

f'cm=	276
S2=	98.55
ε2=	0.00044
S1=	5.21
ε1=	0.00005

Módulo Elástico	238666
Estático [kgf/cm²]	238000

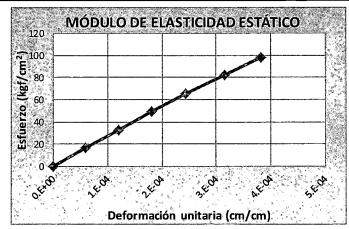

Modulo teórico 249417 (kgf/cm2)

Edad: 45 días

Relación a/c: 0.65

Muestra: E62

Fuerza (kgf)	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilínd	ricas de mortero			Deformación
	1 (pulg) ×10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	2	0.0001	0.0001	15.25	182.7	20.30	0.00	0.00001	0.00000
3000	11	19	0.0008	0.0019	15.25	182.7	20.30	16.42	0.00009	0.00009
6000	21	30	0.0013	0.0032	15.25	182.7	20.30	32.85	0.00016	0.00015
9000	32	41	0.0018	0.0046	15.25	182.7	20.30	49.27	0.00023	0.00022
12000	43	52	0.0024	0.0060	15.25	182.7	20.30	65.70	0.00030	0.00029
15000	55	63	0.0030	0.0075	15.25	182.7	20.30	82.12	0.00037	0.00036
18000	66	74	0.0035	0.0089	15.25	182.7	20.30	98.55	0.00044	0.00043


f'cm=	278
S2=	98.55
ε2=	0.00043
S1=	7.03
ε1=	0.00005

Módulo Elástico	239786
Estático [kgf/cm²]	239786

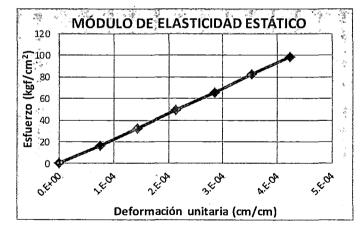
0260
c

Edad: 45 días Relación a/c: 0.65 Muestra: E63

	Lectura	s (Gage)	Deformación	Longitudinal	Dimensión de la	s probetas cilíndi	icas de mortero			Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	e=δ/L (cm/cm)	Unitaria (cm/cm)
0	4	4	0.0002	0.0005	15.27	183.1	20.30	0.00	0.00003	0.00000
3000	13	14	0.0007	0.0017	15.27	183.1	20.30	16.38	0.00008	0.00006
6000	23	23	0.0012	0.0029	15.27	183.1	20.30	32.76	0.00014	0.00012
9000	33	33	0.0017	0.0042	15.27	183.1	20.30	49.14	0.00021	0.00018
12000	43	43	0.0022	0.0055	15.27	183.1	20.30	65.53	0.00027	0.00024
15000	55	54	0.0027	0.0069	15.27	. 183.1	20.30	81.91	0.00034	0.00032
18000	65	65	0.0033	0.0083	15.27	183.1	20.30	98.29	0.00041	0.00038

f'cm=	257
S2=	98.29
ε2=	0.00038
S1=	13.78
ε1=	0.00005

Módulo Elástico	254828
Estático [kgf/cm²]	254828


ſ	Modulo teórico	240296
	(kgf/cm2)	240296

Edad: 45 días

Relación a/c: 0.65

Muestra: E64

r r r r r r r r r r r r r r r r r r r	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			L .		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²) ~	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	0	0.0000	0.0000	15.25	182.7	20.30	0.00	0.00000	0.00000
3000	12	12	0.0006	0.0015	15.25	182.7	20.30	16.42	0.00008	80000.0
6000	23	23	0.0012	0.0029	15.25	182.7	20.30	32.85	0.00014	0.00014
9000	34	34	0.0017	0.0043	15.25	182.7	20.30	49.27	0.00021	0.00021
12000	45	46	0.0023	0.0058	15.25	182.7	20.30	65.70	0.00028	0.00028
15000	56	57	0.0028	0.0072	15.25	182.7	20.30	82.12	0.00035	0.00035
18000	67	68	0.0034	0.0086	15.25	182.7	20.30	98.55	0.00042	0.00042

f'cm=	242
S2=	98.55
ε2=	0.00042
S1=	10.44
ε1=	0.00005

Módulo Elástico	225551
Estático [kgf/cm²]	236661

Modulo teórico	233445
(kgf/cm2)	

Edad: 45 días

Relación a/c: 0.65

Muestra: E65

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	2	4	0.0002	0.0004	15.23	182.2	20.30	0.00	0.00002	0.00000
2000	15	15	0.0008	0.0019	15.23	182.2	20.30	10.98	0.00009	0.00008
4000	22	23	0.0011	0.0029	15.23	182.2	20.30	21.96	0.00014	0.00012
6000	29	30	0.0015	0.0037	15.23	182.2	20.30	32.94	0.00018	0.00017
8000	36	37	0.0018	0.0046	15.23	182.2	20.30	43.91	0.00023	0.00021
10000	43	44	0.0022	0.0055	15.23	182.2	20.30	54.89	0.00027	0.00025
12000	50	51	0.0025	0.0064	15.23	182.2	20.30	65.87	0.00032	0.00030
14000	57	58	0.0029	0.0073	15.23	182.2	20.30	76.85	0.00036	0.00034
16000	64	65	0.0032	0.0082	15.23	182.2	20.30	87.83	0.00040	0.00038

f'em=	238
S2=	87.83
ε2=	0.00038
S1=	5.11
ε1=	0.00005

	·
Módulo Elástico	247004
Estático [kgf/cm²]	247094

_		
M	odulo teórico	231585
	(kgf/cm2)	231383

Edad: 45 días

Relación a/c: 0.65

Muestra: E66

, , , , , , , , , , , , , , , , , , ,	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero				* * * * * * * * * * * * * * * * * * *	Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	3	0.0001	0.0002	15.22	181.9	20.30	0.00	0.00001	0.00000
2000	15	18	0.0008	0.0021	15.22	181.9	20.30	10.99	0.00010	0.00009
4000	22	26	0.0012	0.0030	15.22	181.9	20.30	21.99	0.00015	0.00014
6000	30	34	0.0016	0.0041	15.22	181.9	20.30	32.98	0.00020	0.00019
8000	38	42	0.0020	0.0051	15.22	181.9	20.30	43.97	0.00025	0.00024
10000	46	50	0.0024	0.0061	15.22	181.9	20.30	54.96	0.00030	0.00029
12000	54	58	0.0028	0.0071	15.22	181.9	20.30	65.96	0.00035	0.00034
14000	62	66	0.0032	0.0081	15.22	181.9	20.30	76.95	0.00040	0.00039
16000	70	74	0.0036	0.0091	15.22	181.9	20.30	87.94	0.00045	0.00044

f'cm=	246
S2=	87.94
ε2=	0.00044
S1=	0.72
εl=	0.00005

Módulo Elástico	222020
Estático [kgf/cm²]	223039

Modulo teórico	235297
(kgf/cm2)	233237

MÓDULO DE ELASTICIDAD ESTÁTICO

Edad: 45 días

Relación a/c: 0.60

Muestra: E67

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	0	1	0.0000	0.0001	15.33	184.6	20.30	0.00	0.00000	0.00000
2000	6	7	0.0003	0.0008	15.33	184.6	20.30	10.84	0.00004	0.00004
4000	14	13	0.0007	0.0017	15.33	184.6	20.30	21.67	0.00008	0.00008
6000	19	19	0.0010	0.0024	15.33	184.6	20.30	32.51	0.00012	0.00012
8000	25	25	0.0013	0.0032	15.33	184.6	20.30	43.34	0.00016	0.00015
10000	32	32	0.0016	0.0041	15.33	184.6	20.30	54.18	0.00020	0.00020
12000	38	39	0.0019	0.0049	15.33	184.6	20.30	65.01	0.00024	0.00024
14000	45	46	0.0023	0.0058	15.33	184.6	20.30	75.85	0.00028	0.00028
16000	52	52	0.0026	0.0066	15.33	184.6	20.30	86.69	0.00033	0.00032
18000	60	60	0.0030	0.0076	15.33	184.6	20.30	97.52	0.00038	0.00037

f'em=	310
S2=	97.52
ε2=	0.00037
S1=	13.92
ε1=	0.00005

Módulo Elástico	250428
Estático [kgf/cm²]	259438

Modulo teórico	264279
(kgf/cm2)	2042/9

Edad: 45 días

Relación a/c: 0.60

Muestra: E68

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			F-6	*	Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	11	10	0.0005	0.0013	15.28	183.4	20.30	0.00	0.00007	0.00000
2000	17	16	0.0008	0.0021	15.28	183.4	20.30	10.91	0.00010	0.00004
4000	25	24	0.0012	0.0031	15.28	183.4	20.30	21.81	0.00015	0.00009
6000	32	31	0.0016	0.0040	15.28	183.4	20.30	32.72	0.00020	0.00013
8000	39	38	0.0019	0.0049	15.28	183.4	20.30	43.63	0.00024	0.00018
10000	46	44	0.0023	0.0057	15.28	183.4	20.30	54.53	0.00028	0.00022
12000	52	52	0.0026	0.0066	15.28	183.4	20.30	65.44	0.00033	0.00026
14000	58	58	0.0029	0.0074	15.28	183.4	20.30	76.35	0.00036	0.00030
16000	66	65	0.0033	0.0083	15.28	183.4	20.30	87.25	0.00041	0.00034
18000	72	72	0.0036	0.0091	15.28	183.4	20.30	98.16	0.00045	0.00038
20000	79	78	0.0039	0.0100	15.28	183.4	20.30	109.07	0.00049	0.00043

f'cm=	282
S2=	109.07
ε2=	0.00043
S1=	13.62
ε1=	0.00005

Módulo Elástico	254234
Estático [kgf/cm²]	254234

Λ	Aodulo teórico	251824
	(kgf/cm2)	251024

Edad: 45 días Relación a/c: 0.60

Muestra: E69

Fuerza (kgf)	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
	1 (pulg) x10 ⁻⁴	2 (pulg) x10.4	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	6	3	0.0002	0.0006	15.24	182.4	20.30	0.00	0.00003	0.00000
2000	12	9	0.0005	0.0013	15.24	182.4	20.30	10.96	0.00007	0.00004
4000	18	16	0.0009	0.0022	15.24	182.4	20.30	21.93	0.00011	0.00008
6000	24	22	0.0012	0.0029	15.24	182.4	20.30	32.89	0.00014	0.00012
8000	31	28	0.0015	0.0037	15.24	182.4	20.30	43.86	0.00018	0.00016
10000	38	35	0.0018	0.0046	15.24	182.4	20.30	54.82	0.00023	0.00020
12000	45	42	0.0022	0.0055	15.24	182.4	20.30	65.78	0.00027	0.00024
14000	52	49	0.0025	0.0064	15.24	182.4	20.30	76.75	0.00032	0.00029
16000	59	56	0.0029	0.0073	15.24	182.4	20.30	87.71	0.00036	0.00033
18000	66	63	0.0032	0.0082	15.24	182.4	20.30	98.68	0.00040	0.00038
20000	72	70	0.0036	0.0090	15.24	182.4	20.30	109.64	0.00044	0.00042

f'em=	295
S2=	109.64
ε2=	0.00042
S1=	14.32
ε1=	0.00005

Módulo Elástico	260402
Estático [kgf/cm²]	260402

Modulo teórico (kgf/cm2)	257539
-----------------------------	--------

Edad: 45 días

Relación a/c: 0.60

Muestra: E70

	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero					Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	2	6	0.0002	0.0005	15.22	181.9	20.30	0.00	0.00003	0.00000
3000	12	16	0.0007	0.0018	15.22	181.9	20.30	16.49	0.00009	0.00006
6000	22	26	0.0012	0.0030	15.22	181.9	20.30	32.98	0.00015	0.00013
9000	32	36	0.0017	0.0043	15.22	181.9	20.30	49.47	0.00021	0.00019
12000	42	46	0.0022	0.0056	15.22	181.9	20.30	65.96	0.00028	0.00025
15000	52	56	0.0027	0.0069	15.22	181.9	20.30	82.45	0.00034	0.00031
18000	62	66	0.0032	0.0081	15.22	181.9	20.30	98.94	0.00040	0.00038
21000	72	76	0.0037	0.0094	15.22	181.9	20.30	115.43	0.00046	0.00044

f'cm=	310
S2=	115.43
ε2=	0.00044
S1=	13.18
ε1=	0.00005

Módulo Elástico	
Estático [kgf/cm²]	263569

Modulo teórico	264130
(kgf/cm2)	204130

Edad: 45 días

Relación a/c: 0.60

Muestra: E71

ž	Lecturas (Gage)		Deformación Longitudinal		Dimensión de las probetas cilíndricas de mortero			-		Deformación
Fuerza (kgf)	1 (pulg) x10 ⁻⁴	2 (pulg) x10 ⁻⁴	Promedio (pulg)	Promedio (cm)	Diámetro Promedio (cm)	Área (cm²)	Longitud Efectiva Gage (cm)	Esfuerzo (kgf/cm²)	ε=δ/L (cm/cm)	Unitaria (cm/cm)
0	8	8	0.0004	0.0010	15.30	183.9	20.30	0.00	0.00005	0.00000
3000	18	18	0.0009	0.0023	15.30	183.9	20.30	16.32	0.00011	0.00006
6000	28	28	0.0014	0.0036	15.30	183.9	20.30	32.63	0.00018	0.00013
9000	38	38	0.0019	0.0048	15.30	183.9	20.30	48.95	0.00024	0.00019
12000	48	48	0.0024	0.0061	15.30	183.9	20.30	65.27	0.00030	0.00025
15000	58	58	0.0029	0.0074	15.30	183.9	20.30	81.59	0.00036	0.00031
18000	68	68	0.0034	0.0086	15.30	183.9	20.30	97.90	0.00043	0.00038
21000	78	78	0.0039	0.0099	15.30	183.9	20.30	114.22	0.00049	0.00044

f'cm=	296
S2=	114.22
ε2=	0.00044
S1=	13.04
ε1=	0.00005

Módulo Elástico	260020
Estático [kgf/cm²]	260820

Modulo teórico	258082
(kgf/cm2)	230002