UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

DISEÑO DE UNA RED USANDO TECNOLOGÍAS DWDM Y SDH SOBRE UNA RED DE TRANSPORTE DE FIBRA ÓPTICA EXISTENTE ENTRE LOS DEPARTAMENTOS DE PUNO Y MADRE DE DIOS

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO DE TELECOMUNICACIONES

PRESENTADO POR
ALAN NAPOLEON SANCHEZ PEREZ

PROMOCIÓN 2009-l

LIMA PERU 2013

SOBRE UNA RED TR	ANSPORTE DE FIB	OLOGÍAS DWDM Y SDH RA ÓPTICA EXISTENTE NO Y MADRE DE DIOS

Agradecimiento:

A mis padres, por su apoyo en cada decisión que he tomado en la vida. A mi hermana, que siempre supo ser un soporte para mí. A Victoria, mi compañera desde que pisé por primera vez mi segunda casa, mi universidad. Y a todos aquellos que me brindaron su confianza para salir adelante.

SUMARIO

El presente trabajo está basado en un proyecto encargado a PROINVERSION para seleccionar el operador de telecomunicaciones que tendrá a su cargo la implementación del "Servicio de Banda Ancha Rural Juliaca – San Gabán" y "Servicio de Banda Ancha Rural San Gabán – Puerto Maldonado". El alcance de este trabajo contempla el diseño y parte de la implementación de la red troncal DWDM (es el acrónimo, en inglés, de Dense Wavelength Division Multiplexing, que significa Multiplexación por división en longitudes de onda densas) y como complemento de dicha red se sumará a esta una red SDH (es el acrónimo, en inglés, de Synchronous Digital Hierarchy, que significa Jerarquía Digital Síncrona).

Primero, se describirán los requerimientos necesarios para diseñar una red a nivel DWDM y complementarla con el diseño de una red con tecnología SDH en cada nodo. La red SDH nos ayudará a repartir la gran capacidad de los servicios que transporta el DWDM. Luego, se detallará el equipamiento a implementar y el consumo de energía de los equipos DWDM y SDH. También, se explicarán temas relacionados a la sincronización de la red SDH. Para los equipos de red y energía se ha considerado la marca del proveedor Huawei y Valere Power respectivamente.

Adicionalmente, se desarrollará temas de interconexión de esta nueva red con la red existente del operador lo cual implica su interconexión a la Red Troncal Nacional, la gestión de la nueva red, y la consideración de equipamiento de repuesto para la fase de operación y mantenimiento.

Finalmente, se presentará un cronograma de implementación del proyecto considerando el trabajo en campo. Además, se presentará un listado de costos aproximados del equipamiento por nodo de acuerdo al mercado actual.

ÍNDICE

INTRO	DDUCCIÓN	1
CAPÍT	TULO I	
PLAN	TEAMIENTO DE INGENIERÍA DEL PROBLEMA	2
1.1	Descripción del problema	2
1.2	Objetivo del trabajo	2
1.3	Evaluación del problema	3
1.3.1	Disposición a pagar de los hogares por medios de comunicación	10
1.3.2	Caracterización de la población objetivo	10
CAPÍT	TULO II	
MARC	O TEÓRICO CONCEPTUAL DE LA TECNOLOGÍA DWDM	11
2.1	Descripción del principio DWDM	11
2.2	Ventajas de la tecnología DWDM	13
2.2.1	Gran capacidad	13
2.2.2	Transmisión transparente de datos	13
2.2.3	Inversión asegurada durante la expansión del sistema	14
2.2.4	Alta flexibilidad de red, economía y fiabilidad	14
2.2.5	Compatibilidad con otras redes ópticas	14
2.3	Métodos de transmisión en los equipos WDM	14
2.3.1	WDM unidirectional	14
2.3.2	WDM bidireccional	15
2.4	Sistema abierto e integrado en DWDM	16
2.5	Elementos del sistema DWDM en un nodo	16
2.6	Topología de red DWDM	18
2.7	Elementos de la red DWDM	18

2.8	Degradación de la señal	. 21
2.8.1	Parámetros importantes en un sistema de transmisión por fibra óptica	. 21
2.8.2	Efectos lineales en la fibra óptica	. 22
2.8.3	Efectos no lineales en la fibra óptica	. 26
2.9	Fibras monomodo	. 27
2.9.1	Ventajas y desventajas de la fibra óptica monomodo	. 28
2.9.2	Tipos de fibras ópticas monomodo	. 28
2.10	Tecnología DWDM	. 29
2.10.1	Transmisor óptico	. 29
2.10.2	Receptor óptico.	. 30
2.10.3	Amplificadores ópticos	. 30
2.10.4	Ganancia	. 31
2.10.5	Multiplexadores (MUX) y demultiplexadores (DEMUX)	. 31
2.10.6	Interfaces a DWDM	. 33
CAPIT	ULO III	
INGEN	NIERÍA DEL PROYECTO	. 35
3.1	Datos previos al diseño de la red	. 35
3.1.1	Matriz de tráfico	. 36
3.1.2	Especificaciones de la fibra	. 39
3.1.3	Topología de red DWDM	. 43
3.2	Diseño de red	. 46
3.2.1	Consideraciones de diseño	. 46
3.2.2	Diseño de los amplificadores	. 46
3.2.3	Diseño de DCM (Módulos de Compensación de Dispersión)	. 49
3.2.4	Penalidades del PMD según proveedor (Dispersión por modo de polarización) .	. 49
3.2.5	Diseño de red DWDM mediante software	. 50
3.2.6	Diseño de red DWDM de forma empírica o manual	. 52
3.2.7	Comparación de los diseños de la red DWDM	. 58
3.2.8	Requerimientos de OSNR en los transponders	. 59

3.2.9	Cálculo de potencias ópticas	. 59
3.3	Resultados del diseño de red	67
3.3.1	Diagrama de red	67
3.3.2	Equipamiento DWDM de la red	. 68
3.3.3	Condiciones ambientales del equipo DWDM: OSN 6800	. 70
3.3.4	Equipamiento SDH de la red	. 72
3.3.5	Condiciones ambientales del equipo SDH: OSN 7500	. 74
3.3.6	Cantidad de equipos a instalar	. 75
3.3.7	Esquema de fibras y tarjetería dentro de los equipos DWDM y SDH	. 76
3.3.8	Consumo de energía de los equipos DWDM y SDH por nodo	. 79
3.3.9	Equipamiento y distribución de DDF y ODF por nodo	. 80
3.3.10	Sistema de sincronismo para la red SDH	. 81
3.3.11	Equipamiento de sincronismo para la red SDH	. 84
3.3.12	Condiciones ambientales del equipo de sincronismo: BITS	. 85
3.3.13	Integración con la red existente	. 86
3.3.14	Gestión de la red	. 87
3.3.15	Listado de tarjetas de repuestos	. 90
3.4	Cronograma de implementación del proyecto	91
3.5	Costo aproximado de los equipos a implementar	. 93
3.5.1	Costo aproximado del equipamiento DWDM	. 94
3.5.2	Costo aproximado del equipamiento SDH	. 95
3.5.3	Costo aproximado del equipamiento de sincronismo	. 95
3.5.4	Costo aproximado del equipamiento de reflejos: ODF, DDF y patch panels	96
3.5.5	Costo aproximado del equipamiento de energía	. 97
3.5.6	Costo total aproximado del equipamiento	. 98
CONC	LUSIONES Y RECOMENDACIONES	99
ANEX	O A1	101
	ROS POBLADOS DE LOS PROYECTOS "BANDA ANCHA RURAL JULIACA — GABÁN" Y "BANDA ANCHA RURAL SAN GABÁN — PUERTO MALDONADO" 1	101
ANEX	O B	117

DESPLIEGUE DE FIBRA ÓPTICA EN EL PAÍS A MARZO DEL 2011	117
ANEXO C	119
MATERIALES PARA INSTALACIÓN DE EQUIPOS DWDM Y SDH	119
ANEXO D	122
CONFIGURACIONES DE DISEÑO USANDO MDS6600	122
ANEXO E	127
COMPARACIÓN ENTRE PRINCIPALES PROVEDORES	127
ANEXO F	129
GLOSARIO DE TÉRMINOS	129
BIBLIOGRAFÍA	135

INTRODUCCIÓN

El gobierno en los últimos años ha brindado una serie de lineamientos de políticas para promover un mayor acceso a los servicios de telecomunicaciones en áreas rurales y lugares de preferente interés social. Entre estos lineamientos se encuentran: el Decreto Supremo Nº 049- 2003-MTC cuyo objetivo es acelerar la incorporación de las poblaciones rurales a las oportunidades que ofrecen las Tecnologías de la Información y las Comunicaciones (TICs) y el Decreto Supremo N° 031-2006, mediante el cual faculta al Ministerio de Transportes y Comunicaciones (MTC) la utilización de esquemas de asociación público-privado a fin de fomentar la participación del sector privado en la provisión de servicios de telecomunicaciones en áreas rurales y lugares de preferente interés social.

Este informe se basa en la ejecución de dos proyectos rurales: "Servicio de Banda Ancha Rural Juliaca - San Gabán" y "Servicio de Banda Ancha Rural San Gabán - Puerto Maldonado", llevados a cabo por el Fondo de Inversión en Telecomunicaciones (FITEL) y la empresa América Móvil Perú S.A.C, operador de telecomunicaciones ganador de la Buena Pro. Dichos proyectos serán tratados como un solo proyecto entre los departamentos de Puno y Madre de Dios con el fin de brindar una solución a la implementación de una Red Troncal de alta capacidad usando tecnología DWDM y SDH sobre una red de transporte de fibra óptica existente a lo largo de las áreas involucradas entre Juliaca (Puno) y Puerto Maldonado (Madre de Dios). Con el uso de esta Red Troncal de nodos primarios se podrá continuar con la implementación de los routers desagregadores Ethernet y redes inalámbricas de última milla (nodos secundarios), estos últimos no serán tratados en el presente informe.

De acuerdo a los informes "Elaboración de estudio base del proyecto banda ancha Juliaca – San Gabán" y "Elaboración de estudio base del proyecto banda ancha San Gabán – Puerto Maldonado" los proyectos beneficiarán a un total de 370 localidades, donde se instalará la infraestructura necesaria para brindar como mínimo algún servicio básico de telecomunicaciones (telefonía pública, telefonía de abonados y/o acceso a Internet de banda ancha) favoreciendo directamente a más de 86,400 habitantes.

CAPÍTULO I PLANTEAMIENTO DE INGENIERÍA DEL PROBLEMA

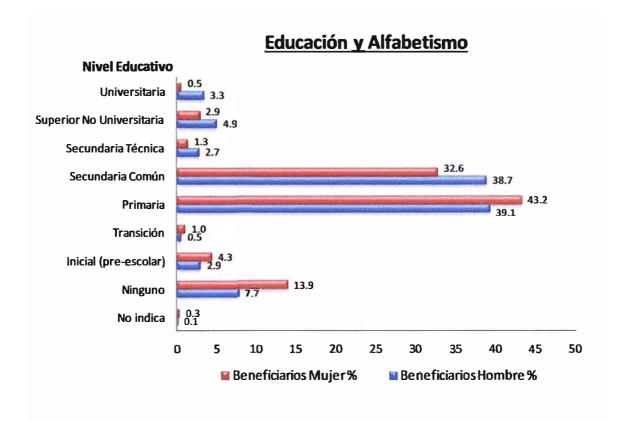
1.1 Descripción del problema

La información de los estudios "Elaboración de estudio base del proyecto banda ancha Juliaca – San Gabán" y "Elaboración de estudio base del proyecto banda ancha San Gabán – Puerto Maldonado", realizados por el instituto "Cuanto", muestran que las localidades rurales involucradas tienen una serie de restricciones que constituyen limitantes para su desarrollo social y económico. Estas limitaciones como son: el bajo nivel educativo de la población, deficiencias en los sistemas de salud, ausencia de servicios básicos en la mayoría de localidades, y la presencia de actividades económicas de pequeña escala y con baja productividad configuran un escenario propicio para la generación de un círculo vicioso que intensifique y amplíe la pobreza y un bajo nivel de desarrollo rural en las potenciales áreas beneficiarias del proyecto.

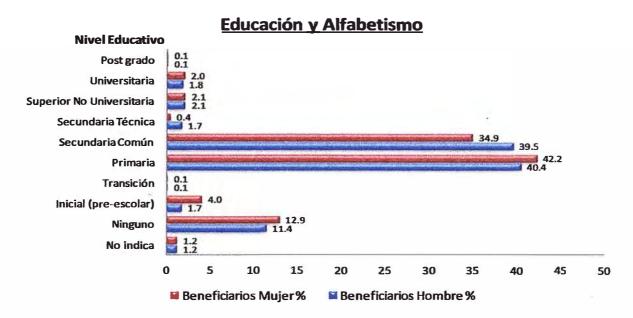
En este contexto, una de las restricciones más notorias para el desarrollo rural constituye la poca capacidad de comunicación e interacción de los hogares, negocios e instituciones con sus pares dentro y fuera de la localidad. El bajo acceso a sistemas de telecomunicaciones restringe las posibilidades de obtener mayor información de diversa índole, desde educativa hasta económica, para sustentar mejor el desenvolvimiento y las decisiones locales, lo cual va en desmedro del fortalecimiento de las capacidades técnicas e institucionales rurales.

1.2 Objetivo del trabajo

El objetivo del presente trabajo es diseñar principalmente una red troncal DWDM y complementar dicha red con una red SDH que distribuya la gran capacidad de la red troncal, el diseño de red involucrará a los departamentos de Puno y Madre de Dios, y utilizará la fibra óptica de planta externa existente entre dichos departamentos.


El diseño de esta red DWDM y SDH permitirá la ejecución de los proyectos rurales "Servicio de Banda Ancha Rural Juliaca - San Gabán" y "Servicio de Banda Ancha Rural San Gabán - Puerto Maldonado" que buscan promover un mayor acceso a los servicios de telecomunicaciones en áreas rurales y lugares de preferente interés social. Se espera

que el acceso a los servicios de telecomunicaciones y el uso productivo de las TIC permita a los pobladores de las zonas rurales potenciar sus actividades económicas y sociales, identificar nuevas oportunidades de negocio y/o adquirir conocimientos para mejorar los negocios que ya tengan en marcha. De esta manera, el proyecto contribuirá al desarrollo socioeconómico en las áreas rurales y lugares de preferente interés social en el área de influencia.


1.3 Evaluación del problema

Las características demográficas y sociales de la población que vive en el ámbito del estudio (Puno - Madre de Dios) describen a una población que es mayoritariamente joven, que el 88.5% tiene como lengua materna el castellano, que ha alcanzado un nivel educativo de primaria o secundaria en su mayoría, y que vive generalmente en casas independientes, propias y construidas de modo precario.

La Fig. 1.1 nos muestra el nivel educativo y alfabetismo con relación a población masculina y femenina en el departamento de Puno comprendida entre Juliaca y San Gabán; mientras que la Fig. 1.2 es análoga a la Fig. 1.1 pero se enfoca en el departamento de Madre de Dios entre San Gabán y Puerto Maldonado.

Fig. 1.1 Nivel Educativo alcanzado por la población de 3 años y más en el ámbito de estudio entre Juliaca y San Gabán, según sexo (fuente: Instituto Cuanto).

Fig. 1.2 Nivel Educativo alcanzado por la población de 3 años y más en el ámbito de estudio entre San Gabán y Puerto Maldonado, según sexo (fuente: Instituto Cuanto).

El perfil económico de la población del ámbito de estudio es típicamente del sector primario, donde la actividad económica más importante es la agropecuaria, y en la cual desarrollan sus principales ocupaciones la población, ya sea como agricultor independiente, peón agrícola, o trabajador familiar no remunerado. Las explotaciones agrícolas son pequeñas y en general de baja productividad.

Los trabajadores perciben bajos niveles de ingresos, un tercio de ellos obtienen un ingreso menor a 500 soles mensuales, sumando los ingresos de sus actividades principales como secundarias. Además, se manifiesta una alta desigualdad de ingresos entre los trabajadores, dado que los trabajadores del quintil de más altos ingresos perciben un ingreso promedio que es 7 veces mayor al ingreso del quintil de menores ingresos. La relación entre los quintiles e ingresos se especifican en la TABLA N° 1.1 y TABLA N° 1.2. Asimismo, de acuerdo al criterio de necesidades básicas insatisfechas, aproximadamente 8 de 10 hogares del área beneficiaria del proyecto son pobres.

TABLA N° 1.1 Ingreso promedio mensual por trabajador, separado por quintiles entre Juliaca y San Gabán (fuente: Instituto Cuanto).

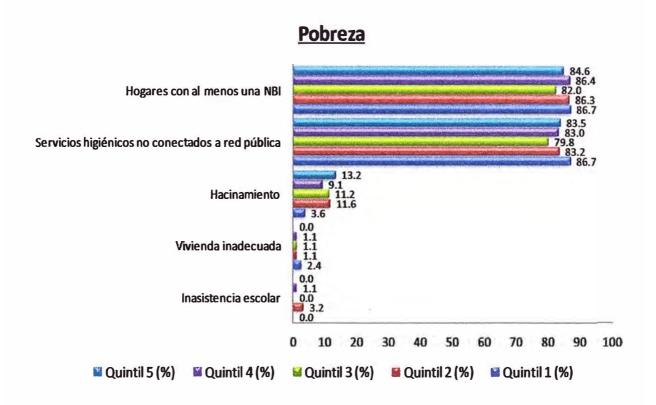
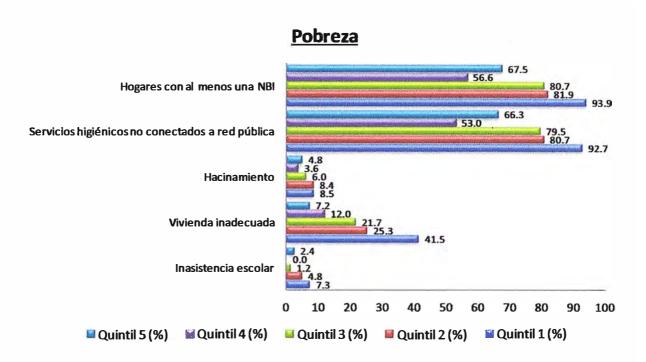

Quintil	Total S/.
Quintil 1	121.5
Quintil 2	210.9
Quintil 3	297.8
Quintil 4	426.1
Quintil 5	805.7

TABLA N° 1.2 Ingreso promedio mensual por trabajador, separado por quintiles entr	е
San Gabán y Puerto Maldonado (fuente: Instituto Cuanto).	


Quintil	Total S/.
Quintil 1	213.8
Quintil 2	543.6
Quintil 3	847.3
Quintil 4	1117.0
Quintil 5	2166.5

El quintil de ingreso se calcula ordenando a la población (de una región, país, etc.) desde el individuo más pobre al más adinerado, para luego dividirla en 5 partes de igual número de individuos; con esto se obtienen 5 quintiles ordenados por sus ingresos, donde el primer quintil (Quintil 1) representa la porción de la población más pobre; el segundo quintil (Quintil 2) el siguiente nivel y así sucesivamente hasta el quinto quintil (Quintil 5) representante de la población más rica.

La Fig. 1.3 nos muestra el nivel de carencia de alguna necesidad con relación a los quintles de ingresos, definidos en la TABLA N° 1.1, en el departamento de Puno entre Juliaca y San Gabán; mientras que la Fig. 1.4 es análoga a la Fig. 1.3 pero se enfoca en el departamento de Madre de Dios entre San Gabán y Puerto Maldonado.

Fig. 1.3 Hogares por necesidades básicas insatisfechas, según quintiles de ingreso (%). Entre Juliaca y San Gabán (fuente: Instituto Cuanto).

Fig. 1.4 Hogares por necesidades básicas insatisfechas, según quintiles de ingreso (%). Entre San Gabán y Puerto Maldonado (fuente: Instituto Cuanto).

La población que vive en las localidades del ámbito de estudio no es totalmente ajena al conocimiento y uso de los medios de comunicación. En general, el grado de conocimiento de los servicios de telecomunicación está relacionado directamente con los niveles de ingreso de la población.

Casi 1 de cada 4 personas mayores de 6 años tiene conocimiento de lo que es la Internet. Asimismo, los que lo usan lo hacen principalmente por razones de estudio, comunicación y distracción. Los tipos de servicios más usados son el correo electrónico y el "Chat". Las principales razones de no uso son la falta de este servicio en la localidad y que no saben usarlo. Para mayor detalle véase la Fig. 1.5 para Puno y la Fig. 1.9 para Madre de Dios.

En el caso del teléfono público la gran mayoría de la población mayor de 6 años conoce este servicio, y de ellos un tercio lo utiliza. La principal restricción para su uso es la falta de disponibilidad del servicio en las localidades. En el caso del teléfono domiciliario, si bien cerca de dos tercios de la población lo conocen, sólo una pequeña proporción de ellos hacen uso del servicio, principalmente porque no existe el servicio en la localidad. Para mayor detalle véase la Fig. 1.6 para Puno y la Fig. 1.10 para Madre de Dios.

Con relación al celular, el 86.1% lo conoce y de ellos un poco más de 40% lo utiliza, los que no lo usan es porque no tienen el equipo o no existe señal en la localidad. Para mayor detalle véase la Fig. 1.7 para Puno y la Fig. 1.11 para Madre de Dios.

Un dato resaltante es que la mitad de jefes de hogar de las localidades beneficiarias disponen de celular, y 1 de cada 4 personas de 6 años y más de edad sabe cómo usar una computadora. De igual manera, el teléfono público y celular son los medios más utilizados para comunicarse con familiares fuera de la localidad. Además, en lugares fuera de la localidad los teléfonos móvil y público también son los más usados, aunque para poder acceder a ellos se deba utilizar cerca de 2,4 horas en traslado. Cabe mencionar que los hogares están dispuestos a pagar para contar con los servicios de telecomunicaciones [10] [11]. Para mayor detalle véase la Fig. 1.8 para Puno y la Fig. 1.12 para Madre de Dios.

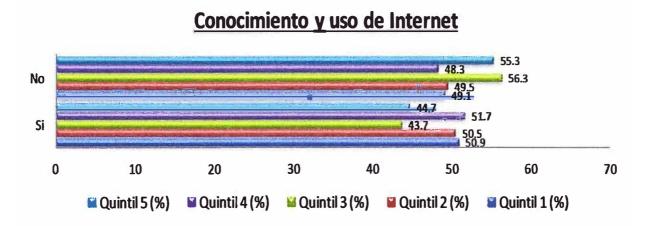
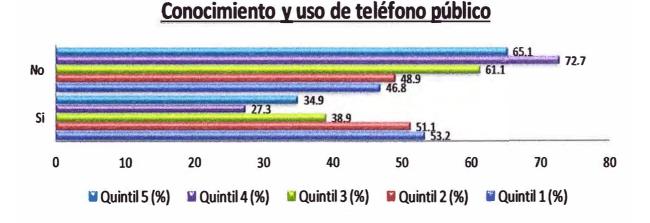
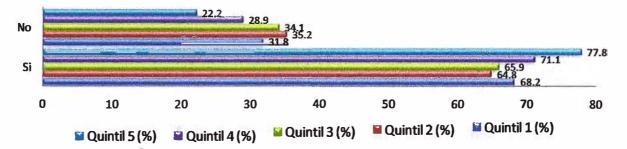
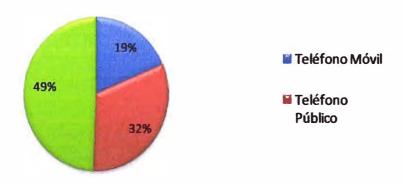




Fig. 1.5 Conocimiento y uso de Internet de la población de 6 años y más de edad, por quintiles de ingreso (%) entre Juliaca y San Gabán (fuente: Instituto Cuanto).


Fig. 1.6 Conocimiento y uso de teléfono público de la población de 6 años y más de edad, por quintiles de ingreso (%) entre Juliaca y San Gabán (fuente: Instituto Cuanto).

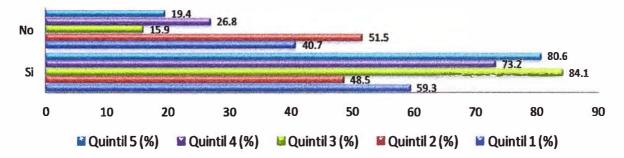
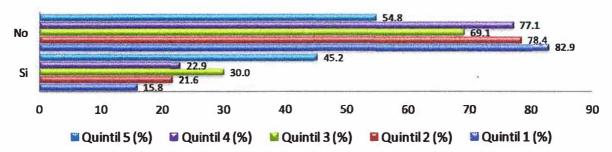
Conocimiento y uso de teléfono celular

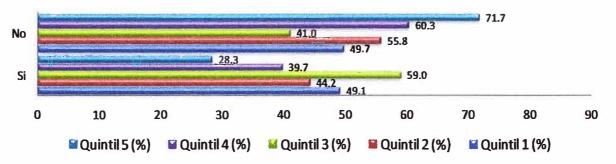
Fig. 1.7 Conocimiento y uso de teléfono celular de la población de 6 años y más de edad, por quintiles de ingreso (%) entre Juliaca y San Gabán (fuente: Instituto Cuanto).

Uso de servicios de comunicación fuera de la localidad

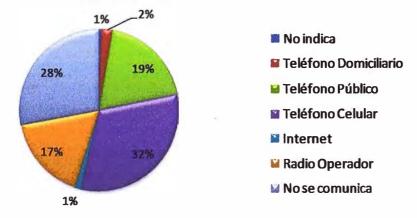
Fig. 1.8 Tipo de servicios de comunicaciones que utiliza la población de 12 años y más, fuera de su localidad entre Juliaca y San Gabán (fuente: Instituto Cuanto).

Conocimiento y uso de Internet


Fig. 1.9 Conocimiento y uso de Internet de la población de 6 años y más de edad, por quintiles de ingreso (%) entre San Gabán y Puerto Maldonado (fuente: Instituto Cuanto).

Conocimiento y uso de teléfono público


Fig. 1.10 Conocimiento y uso de teléfono público de la población de 6 años y más de edad, por quintiles de ingreso (%) entre San Gabán y Puerto Maldonado (fuente: Instituto Cuanto).

Conocimiento y uso de teléfono celular

Fig. 1.11 Conocimiento y uso de teléfono celular de la población de 6 años y más de edad, por quintiles de ingreso (%) entre San Gabán y Puerto Maldonado (fuente: Instituto Cuanto).

Uso de servicios de comunicación fuera de la localidad

Fig. 1.12 Tipo de servicios de comunicaciones que utiliza la población de 12 años y más, fuera de su localidad entre San Gabán y Puerto Maldonado (fuente: Instituto Cuanto).

1.3.1 Disposición a pagar de los hogares por medios de comunicación

Los hogares del ámbito de estudio han expresado su disposición a pagar por diversos servicios de telecomunicaciones. A pesar de haber ciertas diferencias en la disposición de pago, los montos que los hogares están dispuestos a pagar en las dos áreas de estudio son muy similares, los hogares del área beneficiaria estarían dispuestos a pagar: 47.1 nuevos soles por un curso de capacitación de Internet, 2.2 nuevos soles por una hora de uso de Internet en su localidad, 60.1 nuevos soles por instalación de teléfono fijo en el domicilio, 90.3 nuevos soles por un equipo de teléfono celular prepago [10] [11].

1.3.2 Caracterización de la población objetivo

Existe una potencial demanda de servicios de telecomunicaciones en el área de intervención, la principal restricción para el uso de estos servicios es la falta de disponibilidad de ellos en las localidades. Asimismo, otros elementos que abonan en favor de la existencia de una potencial demanda de estos servicios es el interés expresado por la población carente en recibir nuevas tecnologías en las localidades, la percepción favorable de que los niños y niñas aprendan a usar nuevas tecnologías, y la disposición a pagar expresada por los jefes de hogar para contar con los servicios de telecomunicaciones.

Dado el perfil descrito, se hace previsible un impacto positivo la disponibilidad de servicios de telecomunicaciones sobre los aspectos educativos y culturales de la población, sobre las actividades económicas de las localidades, y en general sobre las condiciones de vida de la población de las áreas beneficiarias del proyecto, gracias tanto a la facilitación de un mayor acceso a la información, así como de una mayor interacción entre los diversos agentes sociales y económicos dentro y fuera del área favorecida. Los beneficios más directos e inmediatos de la disponibilidad de telecomunicaciones sería el ahorro de costos en su uso, tanto en dinero por el pago de pasajes y otros gastos, así como en el tiempo de traslado a otros lugares. Un elemento a tomar en cuenta para aumentar el impacto de estos servicios en el área beneficiaria, es la realización de campañas de capacitación en el uso de estas tecnologías entre los potenciales usuarios.

Para finalizar, cabe mencionar que FITEL interviene de acuerdo a sus objetivos: reduciendo la brecha en el acceso a los servicios de telecomunicaciones, promoviendo el desarrollo social y económico, procurando el acceso a servicios de telecomunicaciones y la capacitación de la población en el uso de las tecnologías de la información y capacitación, y finalmente incentivando la participación del sector privado en la prestación de los servicios de telecomunicaciones en áreas rurales y en lugares de preferente interés social [10] [11].

CAPÍTULO II MARCO TEÓRICO CONCEPTUAL DE LA TECNOLOGÍA DWDM

2.1 Descripción del principio DWDM

Basado en las características del ancho de banda y la baja pérdida de la fibra óptica monomodo, la tecnología DWDM usa múltiples longitudes de onda como portadores y permite a las señales ser transmitidas de forma simultánea por los canales de transporte de fibra óptica. En comparación con el sistema general de un solo canal, el DWDM no sólo aumenta drásticamente la capacidad de comunicación del sistema de red y utiliza muy bien el ancho de banda de la fibra óptica, sino también tiene muchas ventajas como una expansión de red sencilla y un rendimiento confiable, especialmente se puede acceder directamente a múltiples servicios motivo por el cual esta tecnología goza de buenas perspectivas.

En los sistemas de portadores analógicos, el método de multiplexación por división de frecuencia (FDM) es adoptado para hacer un uso completo de los recursos de ancho de banda de los cables y mejorar la capacidad de transmisión del sistema. Es decir, para transmitir simultáneamente varias señales de diferentes frecuencias en el mismo cable, y para recibir estas señales, se utilizan filtros pasa banda para filtrar la señal en cada canal de acuerdo a las diferencias de frecuencia entre los portadores. De la misma manera, en sistemas de comunicación por fibra óptica, el método óptico de multiplexación por división de frecuencia también puede ser utilizado para mejorar la capacidad de transmisión de los sistemas. De hecho, este método de multiplexación es muy efectivo en los sistemas de comunicación óptica. A diferencia de la multiplexación por división de frecuencia en los sistemas de comunicación de portadores analógicos, los sistemas de comunicación por fibra óptica utilizan longitudes de onda como portadores de señal, dividiendo la ventana de baja atenuación de la fibra óptica en varios canales de acuerdo a la diferencia de frecuencia (o longitud de onda) de cada canal e implementando la transmisión multiplexada de señales ópticas multi-canales en una sola fibra.

Dado que algunos componentes ópticos (como los filtros ópticos de banda estrecha y la fuente de luz coherente) no están muy desarrollados actualmente, es difícil aplicar la multiplexación por división de frecuencia ultra densa (tecnología de fuente de luz

coherente) de canales ópticos. Sin embargo, la alternativa de multiplexación de canales ópticos por división de frecuencia puede ser implementada basada en los componentes de la tecnología actual. Usualmente, la multiplexación con una gran separación de canales (incluso en diferentes ventanas de fibra óptica) es llamada multiplexación por división de longitud de onda (WDM) y la multiplexación con una pequeña separación de canales es llamada multiplexación por división de longitud de onda densa (DWDM). Con el avance de las ciencias y la tecnología, la multiplexación de longitud de onda con separaciones nanométricas será implementada mediante el uso de tecnologías modernas. Incluso se podría implementar la multiplexación de longitud de onda con espacios sub-manométricos, pero se necesita requisitos más estrictos en los componentes técnicos. Actualmente, la multiplexación de 16, 40, 80 o más longitudes de onda con pequeños espacios entre las longitudes de onda es llamada DWDM. El conjunto de frecuencias definidas por la ITU-T (International Telecommunication Union, Telecommunication Standardization Sector) G.694.1 soporta una variedad de espacio entre canales que van desde 12.5 GHz hasta 100 GHz y más amplios (múltiplos de 100 GHz), las distancias de espaciamiento desigual también están permitidas.

En la Fig. 2.1 se muestra el diagrama de la estructura del sistema DWDM y su espectro.

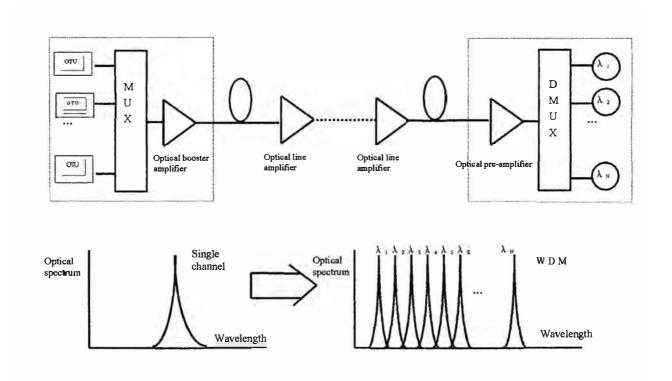


Fig. 2.1 Composición e ilustración del espectro de un sistema DWDM

En el extremo de transmisión, el transmisor óptico envía señales ópticas cuyas longitudes de onda son diferentes pero cuya exactitud y estabilidad cumplen ciertos requisitos, como por ejemplo las señales son multiplexadas juntas a través del multiplexor óptico de longitudes de onda y enviado al amplificador (EDFA-Erbium Doped Fiber Amplifier), el EDFA se utiliza principalmente para compensar la pérdida de potencia óptica causada por el multiplexor y mejorar la potencia transmisión de las señales ópticas. Luego el amplificador de señal óptico multicanal enviará la señal a la fibra óptica para la transmisión, cuando estas señales llegan al extremo receptor a través del amplificador de línea o sin este, estas señales serán amplificadas por el pre-amplificador, que es usado para mejorar la sensibilidad de la recepción y aumentar la distancia de transmisión. Después la señal será enviada al demultiplexor óptico de longitudes de onda con el objetivo de separar los canales de la señal óptica, llegando finalmente al receptor.

2.2 Ventajas de la tecnología DWDM

La fibra óptica se ha convertido en un medio popular para muchos requerimientos de comunicaciones. Su atractivo se puede atribuir a las muchas ventajas que presenta sobre otros métodos de transmisión eléctricos convencionales, en la siguientes subsecciones se describen algunas de ellas.

2.2.1 Gran capacidad

El ancho de banda actual que se transmite por la fibra convencional es muy amplio, pero su utilización es aún baja. Mediante el uso de la tecnología DWDM, la capacidad de transmisión de una sola fibra óptica se incrementa por varias decenas, o incluso de cientos de veces en comparación con la capacidad de transmisión de los sistemas de una sola longitud de onda.

2.2.2 Transmisión transparente de datos

Los sistemas DWDM realizan la multiplexación y demultiplexación en términos de diferencias de longitud de onda óptica y son independientes de los tipos de señal y los modos de modulación, lo cual es transparente para la data. Una longitud de onda del sistema DWDM puede llevar una señal de muchos formatos tales como ATM (Asynchronous Transfer Mode), IP (Internet Protocol), SDH (Synchronous Digital Hierarchy) u otras que podrían aparecer en el futuro. Para las señales en la capa de servicio, cada canal de longitud de onda óptica en los sistemas DWDM es como una fibra óptica virtual con lo cual DWDM ofrece una transmisión transparente.

2.2.3 Inversión asegurada durante la expansión del sistema

En la expansión y desarrollo de la red, no es necesario hacer cambios de las líneas de cable óptico, sólo es necesario cambiar la capacidad/cantidad del transmisor y receptor óptico. Debido a esto los sistemas de comunicación por fibra son un método ideal de expansión y también una manera conveniente de introducir servicios de banda ancha (CATV, HDTV, B-ISDN, etc.). Con una longitud de onda adicional sobre la misma fibra se puede agregar cualquier servicio nuevo o aumentar la capacidad según se desee.

2.2.4 Alta flexibilidad de red, economía y fiabilidad

En comparación con las tradicionales redes de comunicaciones que usan TDM, las nuevas redes de basadas en la tecnología DWDM simplifican en gran medida la arquitectura de red y tienen capas transparentes. El envío de distintos servicios puede ser implementado simplemente habilitando una longitud de onda sin hacer cambios en el medio de transmisión, lo cual permite ahorrar un nuevo despliegue en planta externa y en muchos casos ahorrar en equipamiento. Adicionalmente la fibra óptica es un medio de trasmisión confiable debido a que no puede ser simplemente vulnerado.

2.2.5 Compatibilidad con otras redes ópticas

Es previsible que en todas las redes ópticas que se desarrollaran en el futuro, el procesamiento de los servicios de telecomunicaciones como la agregación, desagregación y conexiones cruzadas sean llevadas a cabo mediante el cambio y ajuste de las longitudes de onda de la señal óptica. En consecuencia, la tecnología DWDM es unas las tecnologías claves para implementar redes ópticas, pues esta tecnología esta normada a nivel mundial. Además, los sistemas DWDM pueden ser compatibles en el futuro con todas las redes ópticas, es posible implementar transparentemente y con alta supervivencia las redes ópticas basadas en el sistema DWDM existente.

2.3 Métodos de transmisión en los equipos WDM

2.3.1 WDM unidireccional

Como se muestra en la Fig. 2.2, el sistema unidireccional WDM adopta dos fibras ópticas. Una fibra es usada para la transmisión de las señales en una dirección mientras que la otra es usada para transmitir la señal en la dirección opuesta.

Este tipo de sistema WDM puede aprovechar plenamente los recursos de ancho de banda de la fibra óptica y ampliar la capacidad de transmisión de una sola fibra óptica en varias decenas de veces

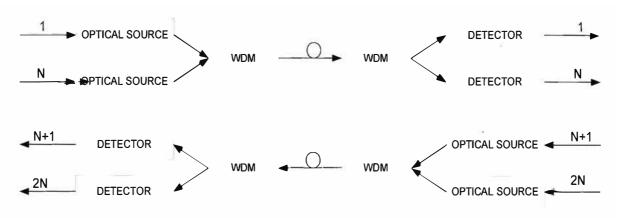


Fig. 2.2 Modo de transmisión unidireccional en WDM

En redes de largo alcance, la capacidad se puede ampliar mediante la adición gradual de longitudes de onda (sobre la misma fibra optica) de acuerdo a la demanda de tráfico, lo cual es muy flexible. En el presente diseño de red usamos este método de transmisión en los sistemas de 10 Gbit/s ya que nos permite implementar una ultra-larga capacidad de transmisión. Este método de transmisión es el más usado para transmisión por DWDM.

2.3.2 WDM bidireccional

Como se muestra en la Fig. 2.3, el sistema WDM de onda bidireccional utiliza solo una fibra óptica. Una sola fibra transmite señales simultáneamente en ambas direcciones, para las señales en direcciones diferentes se asignarán longitudes de onda diferentes.

Esta única fibra con modo de transmisión bidireccional permite llevar canales full dúplex y ahorra la mitad de la fibra de transmisión. Dado que las señales transmitidas en ambas direcciones no interactúan y no crean el FWM (Four-Wave Mixing), su efecto total de FWM es menor que las transmisiones unidireccionales en dos fibras. Sin embargo, la desventaja de este sistema es que se requiere una medición especial para hacer frente a la reflexión de la luz (incluyendo la reflexión discreta como resultado de los conectores ópticos y la reflexión hacia atrás) y evitar la interferencia multicamino. Cuando se desea incrementar la distancia de transmisión, se necesita amplificar la señal por lo que se requiere de los amplificadores de fibra óptica bidireccional, tener en cuenta que el ruido que aportan estos amplificadores es mínimo.

En las recomendaciones de la ITU-T para el documento G.692 no se da una opinión clara sobre la adopción de una sola fibra con modo de trasmisión WDM bidireccional o de dos fibras con modo de transmisión WDM unidireccional, pero es más frecuente adoptar el modo de transmisión WDM unidireccional por las distancias a las que se puede llegar y la capacidad a transportar.

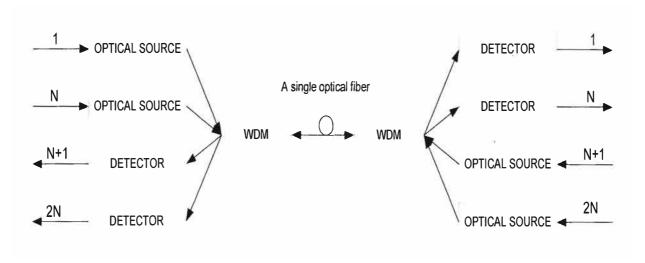


Fig. 2.3 Modo de transmisión bidireccional en WDM

2.4 Sistema abierto e integrado en DWDM

La tecnología DWDM es usualmente aplicada en dos modos:

DWDM abierto

DWDM integrado

El sistema DWDM abierto no tiene requerimientos especiales para las interfaces ópticas del transponder, el único requisito es que dichas interfaces cumplan con los estándares de interfaces ópticas definidas por la ITU-T. El sistema DWDM abierto adopta la tecnología de conversión de longitud de onda para convertir la señal óptica del transponder a una longitud de onda específica. Señales ópticas de diferentes equipos terminales son convertidas en diferentes longitudes de onda específicas cumpliendo las recomendaciones de la ITU-T para luego ser multiplexadas.

Por el contrario el sistema DWDM integrado no adopta la tecnología de conversión de longitud de onda, este sistema requiere que la longitud de onda de las señales ópticas en el transponder se ajuste a las especificaciones del sistema DWDM, según las recomendaciones ITU-T, y que un equipo terminal multiplexor diferente envíe distintas longitudes de onda especificas, cumpliendo con los requerimientos de la ITU-T.

Los diferentes modos de aplicación pueden ser usados de acuerdo a las exigencias de la ingeniería. En las aplicaciones prácticas los sistemas DWDM abierto e integrado pueden ser combinados. En nuestro caso usaremos el sistema DWDM abierto.

2.5 Elementos del sistema DWDM en un nodo

La estructura general del sistema DWDM de n-canales de longitud de onda, en un nodo, independientemente del elemento de red que sea (ver sección 2.7) se compone de

distintas unidades que van desde el transmisor/receptor, multiplexor/demultiplexor, amplificadores ópticos y módulos de supervisión, tal como se puede apreciar en la Fig. 2.4 estos elementos deben ser ubicados en posiciones especificas. A continuación se describirán los elementos usados y sus siglas.

- Unidad de transponder óptico (OTU)
- Multiplexor por división de longitud de onda: Unidad de multiplexor óptico/demultiplexor óptico (OMU/ODU)
- Amplificador óptico (BA/LA/PA)
- Canal de supervisión óptico (OSC)

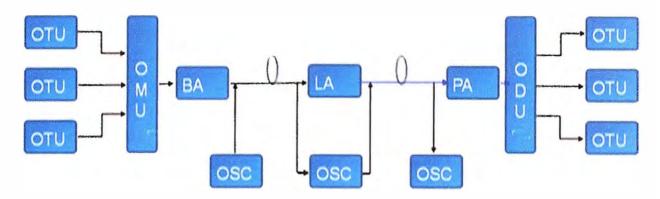


Fig. 2.4 Elementos del sistema DWDM en un nodo

La unidad de transponder óptico convierte las longitudes de onda en longitudes de onda estándar recomendadas por la ITU-T. El sistema utiliza la conversión óptica/eléctrica/óptica (O/E/O), es decir utiliza fotodiodos para convertir la señal óptica recibida en una señal eléctrica, luego la señal eléctrica se convierte en señal óptica con una longitud de onda específica, y de esta manera se obtiene una la señal óptica que cumple los requerimientos DWDM de la ITU-T.

El multiplexor por división de frecuencia se puede clasificar dentro de los multiplexores ópticos de transmisión. El multiplexor óptico es usado en el extremo de transmisión del sistema. Es un componente con varios puertos de entrada y solo un puerto de salida, por cada uno de estos puertos de entrada ingresa una longitud de onda establecida para ser multiplexada y enviada hacia el mismo puerto de salida. El demultiplexor óptico, es usado en el extremo receptor del sistema y, a diferencia del multiplexor óptico, tiene un puerto de entrada y varios puertos de salida los cuales extraen las señales ópticas en diferentes longitudes de onda.

El amplificador óptico amplifica directamente la señal óptica, y debe cumplir con ciertas características como alta ganancia, banda ancha y bajo ruido. Es el componente clave en los nuevos sistemas de comunicación por fibra óptica. El amplificador actualmente utiliza la tecnología EDFA (Erbium-Doped Fiber Amplifier), SOA

(Semiconductor Optical Amplifier) y FRA (Fiber Raman Amplifier). Entre estas tecnologías, el EDFA es el mayormente usado en los sistemas de comunicación por fibra de largas distancias, gran capacidad, alta tasa de datos, y adicionalmente es usado como preamplificador, amplificador de línea y amplificador de potencia.

El canal óptico de supervisión es usado para la supervisión del sistema óptico de trasmisión DWDM. Para este canal es adoptada la longitud de onda de 1510nm, con una capacidad de 2Mbit/s, la sensibilidad de recepción llega hasta -50dBm trabajando normalmente. El OSC debe descargar antes del amplificador óptico de entrada y cargarse después del amplificador óptico de salida en el camino óptico.

2.6 Topología de red DWDM

La topología de red es la cadena de comunicación usada por los nodos que conforman la red, en este proyecto se ha considerado una topología punto a punto, tal como se aprecia en la Fig. 2.5 (existen cuatro arquitecturas básicas de topología: punto a punto/bus, estrella, anillo y malla). Hay que tener en cuenta que la distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.

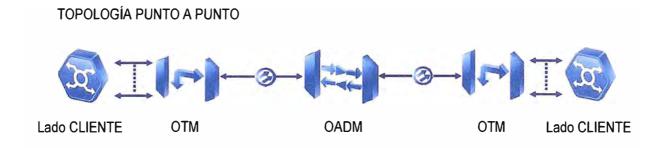


Fig. 2.5 Topología punto a punto de una red DWDM

2.7 Elementos de la red DWDM

OTM (Optical Terminal Multiplexer): Realiza la carga y/o descarga total de servicios y la conversión O/E/O de todos los canales ópticos, para mayor detalle ver la Fig. 2.7.

OLA (Optical Line Amplifier): Compensa la pérdida de potencia causada por la fibra y otros componentes ópticos pasivos, amplificando la señal, para mayor detalle ver la Fig. 2.8.

OADM (Add/Drop Multiplexer): Realiza la carga/descarga de una parte del total de canales y restante de canales pasan transparentemente, para mayor detalle ver la Fig. 2.9.

REG (Regenerator): Realiza la conversión O/E/O de todos los canales ópticos con la función 3R. Tienen un costo muy alto y se debe evitar su uso, excepto para señales muy degradadas para ser recibidas por los transponders, para mayor detalle ver la Fig. 2.10.

La Fig. 2.6 nos muestra todos los elementos principales de una red DWDM lineal. Para cualquier otra topología los elementos no cambian.

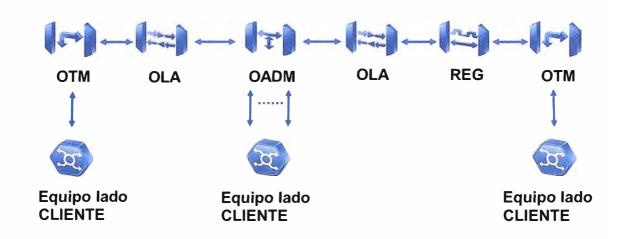


Fig. 2.6 Elementos de la Red DWDM

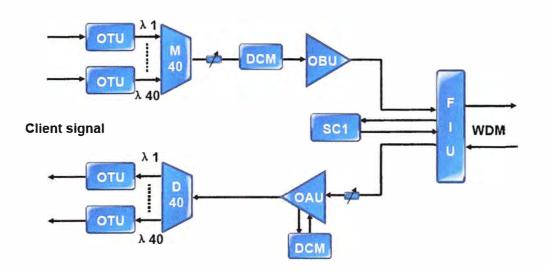


Fig. 2.7 Composición del OTM (Optical Terminal Multiplexer)

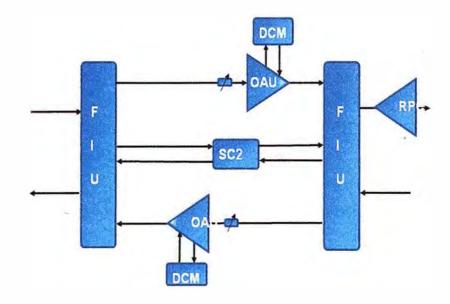


Fig. 2.8 Composición del OLA (Optical Line Amplifier)

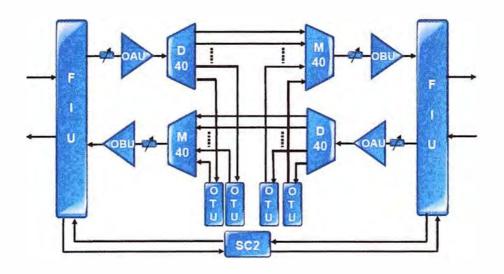


Fig. 2.9 Composición del OADM (Add/Drop Multiplexer)

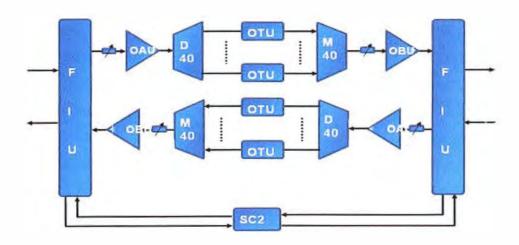


Fig. 2.10 Composición del REG (Regenerator)

2.8 Degradación de la señal

En la fibra óptica, a pesar de sus excelentes propiedades, existen efectos y parámetros críticos que limitan la distancia de los repetidores, amplificadores y el ancho de banda de la fibra. En un sistema hay muchos parámetros importantes y efectos que producen problemas, estos últimos se pueden separar en dos grandes grupos: los efectos lineales y los efectos no lineales.

2.8.1 Parámetros importantes en un sistema de transmisión por fibra óptica

a) Tasa de errores de bit (BER)

Normalmente los sistemas se caracterizan por requisitos de funcionamiento basados en un BER específico, cuyo valor generalmente depende de la fuente del usuario para una aplicación específica. Esta podría tener un valor tan alto como 10⁻³ para las aplicaciones como la voz digitalizada o tan bajo como 10⁻¹² para datos científicos.

Nos podemos formular la siguiente pregunta: ¿el diseño de un enlace nos proporcionará el BER requerido? Para contestar esta pregunta debemos ver la sensibilidad del receptor. Esta especificación indica cuanta potencia óptica del enlace debe recibir para obtener el BER requerido.

b) Relación señal a ruido óptico (OSNR)

Aunque el BER es el parámetro que mejor caracteriza el comportamiento de un enlace, esta principalmente determinado por la relación señal a ruido óptico (OSNR). El OSNR se representa gráficamente como la razón entre la señal y potencia de ruido como una función de longitud de onda.

El ruido óptico ha asumido una nueva importancia desde la introducción de amplificadores ópticos en los sistemas de transmisión, se debe principalmente a la emisión espontánea amplificada (ASE) en los EDFAs (Erbium Doped Fiber Amplifier). Aunque los fabricantes tienen probados los EDFAs individualmente, es importante verificar su comportamiento en campo (en cascada) con todos los canales ópticos en funcionamiento, para confirmar las expectativas de actuación global que estos reúnen. La variación de ganancia merece especial atención en los sistemas de multi- amplificación, ya que afectará directamente al cuan alineadas (planas) están las potencias del sistema. Es decir, afectará la potencia de las distintas longitudes de onda, produciendo diferencia de potencia entre ellas. El ASE puede ser significante particularmente en algunas configuraciones, ya que este fenómeno degrada la relación señal a ruido en todos los canales ópticos.

c) Longitud de onda central

La longitud de onda central de la señal de cada canal es una característica muy importante. La exactitud de la longitud de onda central aumenta en importancia con la disminución del espaciamiento entre las longitudes de ondas y ancho de banda del canal. La norma internacional para el esparcimiento entre canales define múltiplos de 100 GHz (aprox. 0,8 nm). Este esparcimiento fue escogido porque ofrece un buen compromiso entre alta capacidad y características técnicas, pero todavía representa una tolerancia exigente para todos los equipos existentes en el enlace. El espaciado de 50 GHz normalmente se usa para las nuevas instalaciones.

2.8.2 Efectos lineales en la fibra óptica

Estos efectos son los más conocidos en el estudio de las fibras ópticas, se trata de aquellos fenómenos que pueden ser modelados por sistemas o ecuaciones lineales, de ahí su nombre. En las siguientes sub-secciones se hará referencia a los efectos lineales más conocidos en las fibras.

a) Atenuación

Uno de los parámetros claves a la hora de implementar un enlace óptico es la atenuación (pérdida) que sufre la señal en el trayecto del enlace, puesto que determina la distancia máxima a la que puede viajar una señal, de manera que se obtenga una recepción aceptable de ésta. Por lo tanto, determina la separación y el número de repetidoras entre la emisión de una señal y la recepción de la misma.

La atenuación $A(\lambda)$ a una longitud de onda λ , entre dos puntos de un enlace de fibra óptica separados una distancia L se define como sigue:

$$A(\lambda) = 10 \log \left(\frac{P_1(\lambda)}{P_2(\lambda)} \right) [dB] \quad (2.1)$$

Donde $P_1(\lambda)$ corresponde a la potencia de la señal de entrada (o transmitida, P_{IN}), y $P_2(\lambda)$ corresponde a la potencia de la señal de salida (o recibida, P_{OUT}), en un enlace óptico para una longitud de onda en particular λ .

Para una fibra uniforme, es posible definir una atenuación por unidad de longitud, o también llamado Coeficiente de Atenuación (α), tal como sigue:

$$\alpha(\lambda) = \frac{A(\lambda)}{L} \left[\frac{dB}{unidad \ de \ longitud} \right] (2.2)$$

Las pérdidas por atenuación de la señal son causadas por diversos factores y pueden clasificarse en pérdidas intrínsecas y extrínsecas:

Intrínsecas:

- Pérdidas inherentes a la fibra (absorción, dispersión de Rayleigh)
- Pérdidas por radiación (curvaturas y microcurvaturas)
- Pérdidas que resultan en la fabricación
- Reflexión de Fresnel

Extrínsecas:

- Pérdidas por curvatura (radiación)
- Pérdidas por conexión y empalmes (mecánicos y fusión)

b) Dispersión

Dispersión es el nombre dado a algunos efectos donde diferentes componentes de frecuencia de la señal transmitida viajan a diferentes velocidades, llegando en diferentes tiempos al receptor. Un pulso es transmitido a través de una fibra y se ensancha a lo largo de esta, ver Fig. 2.11, produciendo una superposición de las colas de los pulsos con el comienzo de los otros, dando como resultado un incremento de errores de detección en el receptor óptico, ver Fig. 2.12.

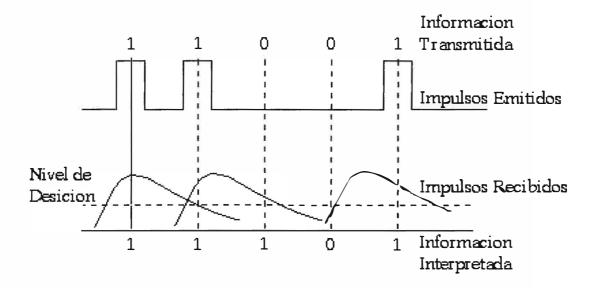


Fig. 2.11 Distorsión de una señal en un enlace óptico.

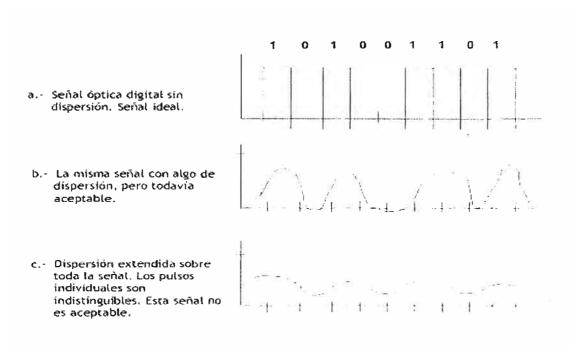


Fig. 2.12 Señal distorsionada

Existen diferentes tipos de dispersión que ocurren en la Fibra Óptica, dos de los más importantes son la dispersión cromática y la dispersión por modo de Polarización (PMD). La dispersión cromática puede ser posteriormente subdividida en dispersión guía-onda y dispersión material.

c) Dispersión cromática (CD)

La principal forma de dispersión en fibras es la dispersión cromática, que tiene un profundo impacto en los sistemas diseñados con fibras monomodo y existe debido a que los diferentes componentes de frecuencia del pulso viajan a distintas velocidades y llegan en diferentes tiempos en el lado receptor. Este tipo de dispersión puede ser causada por las propiedades dispersivas del material y la dispersión por guía de ondas, tal como se aprecia en la Fig. 2.13.

La primera se debe porque en el índice de refracción del Silicio, material con que se construyen las fibras, cambia con respecto a la frecuencia óptica de las señales, en cambio la segunda se produce porque las características de propagación de una fibra óptica dependen de la longitud de onda que pase por ella.

La dispersión usualmente es medida en unidades de ps/(nm-Km), donde **ps** representa el tiempo de ensanchamiento del pulso, **nm** representa el ancho espectral del pulso y **Km** corresponde a la longitud del enlace que cubre la fibra. En fibras monomodo, la dispersión cromática tiene dos contribuciones, dispersión del material y dispersión de guía de onda.

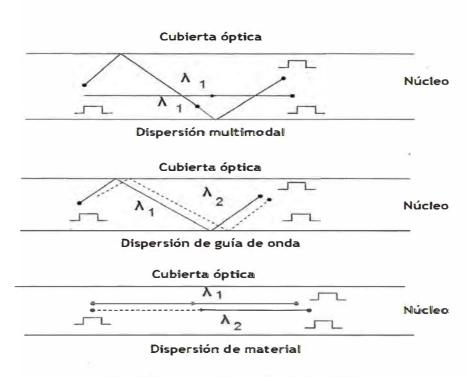


Fig. 2.13 Dispersión en la fibra óptica

d) Dispersión por Modo de Polarización (PMD)

La Dispersión del Modo de Polarización (PMD) es un problema para los sistemas de comunicación por fibra óptica de muy alta velocidad, y especialmente para las que operan a 10 Gbps o más. La señal óptica puede dividirse en dos modos de polarización opuestos ortogonalmente que viajan a través de la fibra a diferente velocidad, lo que provoca un ensanchamiento del impulso que se detecta como un error de bit tras la regeneración de la señal. Si la dispersión PMD supera ciertos límites, la tasa de errores de bit aumenta rápidamente, limitando la longitud del enlace y la velocidad de transmisión.

La Dispersión por Modo de Polarización, es una característica fundamental de la fibra óptica mono-modo en los cuales la energía de la señal a una longitud de onda dada está compuesta de dos modos de polarización ortogonales de velocidades de propagación ligeramente diferentes. Esta diferencia del tiempo de propagación entre los modos de polarización ortogonales recibe el nombre de "Retardo de Grupo Diferencial", comúnmente simbolizado $\Delta \tau$.

Los efectos producidos por este fenómeno son muy parecidos a los de la Dispersión Cromática, pero existe una importante diferencia. La Dispersión Cromática es un fenómeno relativamente estable. La Dispersión Cromática total de un enlace de telecomunicaciones puede calcularse de la suma de sus componentes, y puede diseñarse de antemano la ubicación y el valor de compensación de dispersión. En cambio, la PMD de una fibra óptica mono-modo en una longitud de onda dada no es

estable, los diseñadores de los sistemas fuerzan las predicciones de los efectos de la PMD y resulta imposible la compensación pasiva de dicha dispersión.

2.8.3 Efectos no lineales en la fibra óptica

Mientras las potencias de las señales luminosas dentro de las fibra óptica se mantengan en un nivel bajo, la fibra puede ser tratada como un medio lineal. Si la potencia esta en un nivel alto, hay que preocuparse por los efectos no lineales que comienzan a aparecer en el interior de la fibra. Los efectos lineales pueden ser compensados, pero los efectos no lineales son acumulativos.

a) Automodulación de fase (SPM) y modulación de fase cruzada (CPM)

Estos fenómenos ocurren debido a que dos o más ondas son colocadas en una misma fibra y porque el índice de refracción de una onda no solo depende de la intensidad de la onda, sino también de las ondas que están co-propagándose. En la práctica, SPM puede tener un papel sobresaliente en sistemas que se diseñan para trabajar sobre los 10 Gbps y conduce a una restricción de la potencia por canal. Mientras que la CPM no es un problema en sistemas de DWDM a menos que los esparcimientos de los canales sean extremadamente estrechos (aprox. de 10 GHz).

b) Mezcla de cuatro ondas (FWM)

La mezcla de cuatro ondas es causada por la naturaleza no lineal del índice de refracción de la fibra óptica. Interacciones no lineales entre diferentes canales DWDM crean bandas laterales que pueden causar interferencia entre canales, tal como se aprecia en la Fig. 2.14. En la figura siguiente se muestra tres frecuencias que se interaccionan produciendo una cuarta como resultado de la diafonía (crosstalk) y la degradación por la relación señal/ruido.

La Mezcla de Cuatro ondas es sensible a:

Un aumento en la potencia del canal

Una disminución en el espaciado entre canales

Un aumento en el número de canales (aunque se puede alcanzar un valor de saturación)

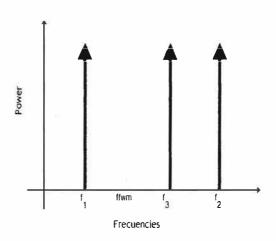


Fig. 2.14 Mezcla de cuatro ondas

c) Dispersión estimulada de Raman (SRS) y Dispersión estimulada de Brillouin (SBS)

La SRS es un efecto de banda ancha mediante el cual, si se introducen en una fibra dos o más señales a diferentes longitudes de onda se produce una transferencia de potencia de la señal de mayor frecuencia a la de menor frecuencia. Además, el acoplo de potencia se puede producir tanto en el sentido de la propagación de las señales como en el sentido inverso, siempre y cuando en ese momento haya presencia de potencia en los dos canales.

El origen de la SBS es similar al de la SRS, un fotón de la onda incidente desaparece para dar lugar a un fotón de frecuencia inferior y un fonón con la energía y el momento adecuado. Sin embargo existen algunas diferencias. En la SBS la onda Stokes (onda a la que se transfiere la potencia) se propaga en el sentido opuesto al de la onda incidente, mientras que en la SRS podía propagarse en los dos sentidos, y el umbral de potencia depende de la anchura espectral de la onda incidente. Estas diferencias se deben a que en la SBS se ven involucrados fonones acústicos en lugar de ópticos como era el caso de la SRS.

Finalmente, se debe tener en cuenta que todos los efectos no lineales dependen de la potencia de las longitudes de onda, de acuerdo a la norma ITU-T G.663 (Cuadro II.1) los efectos no lineales anteriormente citados deben superar una potencia de 5mW (7dBm) para que puedan inducir sus efectos. Para el presente diseño se han usado transponders y amplificadores en los cuales la máxima potencia de salida es de alrededor de 2dBm por que los efectos no lineales no serán tomados en consideración para el diseño de red.

2.9 Fibras monomodo

Potencialmente las fibras monomodo ofrecen la mayor capacidad de transporte de información, a comparación de la fibra multimodo, y tienen un ancho de banda del orden de los 100 GHzKm. Los mayores flujos se consiguen con la fibra monomodo, pero también es la más compleja de implementar. Debido al pequeño tamaño del núcleo es muy difícil acoplar la luz a la fibra. Para todas las conexiones y empalmes de la fibra se deben utilizar componentes de alta precisión. Esta clase de fibras sólo permite una sola trayectoria para los rayos de luz que se propagan por su núcleo, esto se logra reduciendo el diámetro del núcleo de la fibra. Como resultado de ello, la señal se atenúa menos y por tanto se alcanzan mayores distancias. En las fibras monomodo, la dispersión modal es nula y es por este motivo que las fibras ópticas monomodo pueden transmitir simultáneamente mayores volúmenes de información.

2.9.1 Ventajas y desventajas de la fibra óptica monomodo

Entre las ventajas que posee la fibra monomodo podemos citar las siguientes: Posee una dispersión mínima y nos brinda un mayor ancho de banda lo cual se traduce en una mayor velocidad de transmisión.

Entre las desventajas que posee la fibra monomodo tenemos que: Su núcleo es muy pequeño y es más difícil acoplar la luz (señal óptica), como consecuencia de esto tiene una menor apertura numérica. Todo anteriormente citado ocasiona que la fuente de luz y los dispositivos de empalmes sean más costosos.

2.9.2 Tipos de fibras ópticas monomodo

El tipo más común de fibra es la monomodo, la cual es normalmente llamada como el estándar de la fibra monomodo. La ITU-T define diferentes tipos de estas fibras: fibra de dispersión no desplazada (G.652), fibra de dispersión desplazada (G.653), 1550-nm pérdida minimizada (G.654), y fibra de dispersión desplazada no nula (G.655).

a) Fibra de dispersión no desplazada (ITU-T G.652)

A este tipo de fibra monomodo también se llama fibra monomodo estándar, y es la fibra normalmente desplegada. Se perfeccionan las fibras de dispersión no desplazada cambiadas para la región de 1310 nm y tiene dispersión cero a una longitud de onda de 1310 nm. También se pueden usar este tipo de fibras en las regiones de 1550 nm, pero no están perfeccionadas para esa región. La dispersión cromática a 1550 nm es alta (18ps/nm-km) y para altas tasas de transferencia se tienen que emplear los compensadores de dispersión. Un ejemplo de este tipo de fibra es "corning SMF-28".

b) Fibra de dispersión desplazada (ITU-T G.653)

En la fibra de dispersión desplazada, la longitud de onda de dispersión cero se ha cambiado de 1310 nm a 1550 nm. Las fibras de dispersión desplazada se perfeccionan por operar en la región entre 1500-1600 nm y el coeficiente de dispersión aumenta de acuerdo al aumento de la longitud de onda. Cuando este tipo de fibra fue desarrollado, su objetivo fue aprovechar los amplificadores dopados y operar con canales múltiples en los sistemas de DWDM.

c) Fibra de pérdida minimizada a 1550 nm (ITU-T G.654)

Este tipo de fibra es una variante especial del estándar de fibra monomodo que tiene una baja pérdida en la ventana de 1550 nm. ITU-T G.654 se perfecciona para la

región 1500-1600 nm. La baja pérdida puede lograrse usando un núcleo puro de silicio. Las fibras de ITU G.654 son caras en su fabricación y raramente se usan. Estos tipos de fibras podrían satisfacer de una mejor manera aplicaciones submarinas (de fibra bajo el mar) y en aplicaciones extendidas de larga distancia.

d) Fibra de dispersión desplazada no nula (ITU-T G.655)

Las fibras de dispersión desplazada no nula (NZ-DSF por sus siglas en ingles) son fibras monomodo que tienen una dispersión cromática no nula a lo largo de la banda C (1500-1600nm). Esta dispersión reduce el efecto de no linealidad como la mezcla de cuatro ondas, automodulación de fase, y modulación de fase cruzada que se ven en los sistemas DWDM.

Están disponibles dos tipos de fibra NZ-DSF, si la inclinación de dispersión (también llamado perfil de dispersión) de NZ-DSF disminuye con respecto a la longitud de onda, en otros términos, hay una pendiente negativa para la dispersión como una función de longitud de onda, la fibra se llama -NZDSF. Igualmente si la inclinación de dispersión aumenta con el aumento en la longitud de onda, la fibra se llama +NZDSF.

2.10 Tecnología DWDM

2.10.1 Transmisor óptico

Los dispositivos emisores de luz usados en la transmisión óptica (señales eléctricas convertidas a pulsos de luz) deben ser compactos, monocromáticos, estables y de larga duración. Se usan dos tipos generales de dispositivos emisores de luz en transmisión óptica, los LEDs (Light-Emitting Diodes) y los láseres (diodos o semiconductores).

Los LEDs son dispositivos lentos, útiles para velocidades inferiores a 1 Gbps, tienen un espectro relativamente ancho y transmiten la luz en un cono relativamente ancho. Estos dispositivos baratos se usan a menudo en comunicaciones con fibra óptica multimodo.

Por otro lado, los láseres semiconductores tienen como característica un rendimiento mejor, en comparación con los LED, y se pueden utilizar en aplicaciones con fibra óptica monomodo. Los requerimientos para láseres incluyen una longitud de onda precisa, un ancho del espectro estrecho, suficiente potencia, y control del chirp (el cambio en frecuencia de una señal en el tiempo). Los tipos de láseres semiconductores habituales son: láseres monolíticos Fabry- Perot, y láseres con realimentación distribuida (DFB) los cuales tienen una favorable relación señal/ruido, y una linealidad superior.

2.10.2 Receptor óptico

Son dispositivos fotodetectores en el lado receptor que convierten los pulsos de luz en señales eléctricas, los fotodetectores son dispositivos de banda ancha.

Se utilizan fundamentalmente dos tipos de fotodetectores, el fotodiodo PIN (Positive- Intrinsic-Negative) y el fotodiodo de avalancha (APD). El fotodiodo PIN trabaja bajo principios similares a los LEDs pero al revés, es decir, la luz es absorbida más que emitida, y los fotones se convierten en electrones en una relación 1:1. Los APDs son dispositivos con un funcionamiento similar a los fotodiodos PIN, pero su ganancia se obtiene a través de un proceso de amplificación. Los fotodiodos PIN tienen muchas ventajas, incluido su coste y su fiabilidad, pero los APDs tienen mayor sensibilidad de recepción y mayor exactitud.

2.10.3 Amplificadores ópticos

La distancia de transmisión de los sistemas de fibra óptica esta generalmente limitada por la atenuación en la fibra. Si las distancias son muy grandes es necesaria una regeneración de la señal (por cada una), pero son muy caros. Un enfoque alternativo para compensar dichas pérdidas es el uso de amplificadores ópticos (OA). El OA ha hecho posible poder amplificar todas las longitudes de onda a la vez y sin conversión óptica-eléctrica (OEO – Optical Electric Optical).

a) Amplificador de fibra dopado con erbio

El EFDA (Erbium Doped Fiber Amplifier) fue una tecnología clave para hacer posible el transporte de gran cantidad de información por largas distancias. El erbio es un elemento que, cuando se excita, emite luz alrededor de 1,54 μm, de esta manera la luz inyectada por el laser estimula los átomos de erbio que liberan su energía almacenada como luz adicional de 1550 nm. Las emisiones espontáneas en el EFDA también añaden ruido a la señal.

Los parámetros clave de los amplificadores ópticos son la ganancia (la igualdad de ganancia para todas las lambdas), el nivel de ruido y la potencia de salida. Típicamente los EFDAs tienen ganancias de hasta 30 dB o más y potencias de salida de +17 dB o más. Sin embargo los parámetros más importantes cuando se selecciona un EFDA son el bajo ruido y la igualdad de la ganancia para todas las lambdas. Los EFDAs se pueden emplear en las bandas C y L.

El bajo ruido es importante porque el ruido es amplificado con la señal. Dado que su efecto es acumulativo y no se puede filtrar, la relación señal /ruido es un factor limitativo en el número de amplificadores que se pueden concatenar y, por tanto, la longitud del

enlace de una sola fibra. En la práctica, las señales pueden viajar hasta 120 km. entre amplificadores, pero a distancias superiores a 600 km. la señal se debe regenerar.

2.10.4 Ganancia

La amplificación óptica es uno de los parámetros más importantes a medir, debido a que la ganancia es la función esencial del amplificador. La ganancia es la función de muchos parámetros que, separadamente o en conjunto, pueden modificar el funcionamiento del dispositivo. La ganancia varía con la longitud de onda de la señal, el estado de polarización de entrada y la potencia.

$$G(dB) = 10 \log_{10} \left[\frac{P_{OUT}(\lambda) - P_{ASE}}{P_{IN}(\lambda)} \right]$$
 (2.3)

Donde:

G : Ganancia en dB

 $P_{OUT}(\lambda)$: Potencia efectiva de salida a la longitud de onda de canal en mW.

 P_{ASE} : Potencia de emision espontánea amplificada (ruido óptico) en mW

 $P_{N}(\lambda)$ Potencia efectiva de entrada en mW.

Longitud de onda de la señal de entrada.

2.10.5 Multiplexadores (MUX) y demultiplexadores (DEMUX)

Dado que los sistemas DWDM envían señales de varias fuentes sobre una sola fibra, debemos incluir algunos dispositivos para combinar y separar las señales. Lo primero lo hace un multiplexador, que toma las longitudes de onda ópticas de múltiples fibras y las combina (multiplexa) en una nueva señal DWDM. La Fig. 2.15 nos muestra un ejemplo del MUX. En el extremo receptor, el sistema debe poder separar las longitudes de onda especificas de la señal de entrada y así que puedan ser discretamente detectados y acoplándolos a una fibra individual, esto es lo que realiza el demultiplexor.

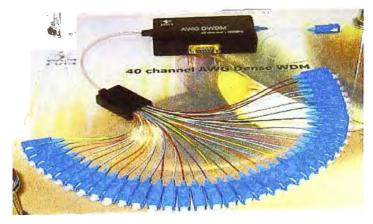


Fig. 2.15 Multiplexor DWDM

Los multiplexadores y los demultiplexador pueden ser de diseño pasivo o activo. Los principales retos en estos dispositivos es minimizar la diafonía y maximizar la separación de canal. La diafonía es una medida de cuanto están separados los canales, mientras que la separación de canal se refiere a la posibilidad de distinguir cada longitud de onda.

a) Técnicas de multiplexación y demultiplexación

Un dispositivo AWG (matriz de rejillas de guía de onda), a veces llamado enrutador óptico de guía de onda, consiste en una matriz de guías de onda curvadas con una diferencia fija en la longitud del camino entre canales adyacentes, ver Fig. 2.16. Las AWGs también se basan en los principios de la difracción. Las guías de onda están conectadas a cavidades en la entrada y la salida, cuando la luz entra en la cavidad de entrada es difractada y entra en la matriz de guías de onda. Allí la diferente longitud óptica de cada guía de onda introduce un desfase en la cavidad de salida, donde un conjunto de fibras está acoplado. El proceso consigue que diferentes longitudes de onda tengan la máxima interferencia en diferentes ubicaciones que corresponden a los puertos de salida, obteniéndose la longitud de onda deseada.

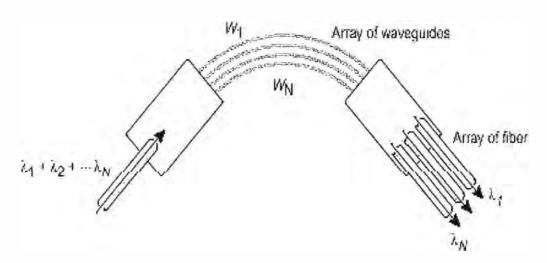


Fig. 2.16 Demultiplexor

Otra tecnología usa dispositivos con filtros de interferencia, llamados filtros de película delgada o filtros de interferencia multicapas, ver Fig. 2.17. Mediante el empleo de varios filtros de película delgada en el camino óptico se pueden demultiplexar las longitudes de onda. La propiedad de cada filtro es tal que transmite una longitud de onda mientras refleja las demás. Colocando en cascada varios filtros, se pueden demultiplexar muchas longitudes de onda.

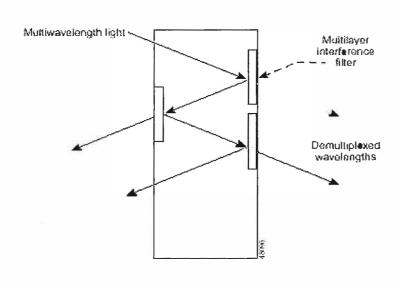


Fig. 2.17 Filtro de interferencia multicapa

2.10.6 Interfaces a DWDM

La mayoría de los sistemas DWDM soportan las interfaces ópticas estándar de corto alcance de SONET/SDH a las cuales se puede conectar cualquier dispositivo cliente. Además soportan otras interfaces importantes de redes metropolitanas y de acceso: Ethernet (incluido Fast Ethernet y Giga Ethernet) y Fiber Channel. El nuevo estándar 10 Gigabit Ethernet es soportado mediante una interface OC-192 VSR (Very Short Reach) sobre fibra monomodo entre el equipo 10 Gigabit Ethernet y DWDM. En el lado cliente puede haber terminales SONET/SDH o ADMs, conmutadores ATM o enrutadores. Dentro de un sistema DWDM, un transponder convierte la señal óptica cliente a una señal eléctrica y realiza las funciones 3R (Reshape, Retime, Retransmit). Cada transponder dentro del sistema convierte su señal cliente a una longitud de onda distinta, normada por la ITU-T. Las longitudes de onda de todos los transponders del sistema son entonces multiplexadas ópticamente. En la recepción del sistema DWDM, tiene lugar el proceso inverso. Las longitudes de onda individuales son filtradas desde las fibras multiplexadas y alimentan a los transponders individuales, que convierten la señal y la dirigen a través de un interface estándar al cliente.

a) Operación de un transponder basado en el sistema DWDM

La Fig. 2.18 muestra una operación extremo a extremo de un sistema DWDM unidireccional.

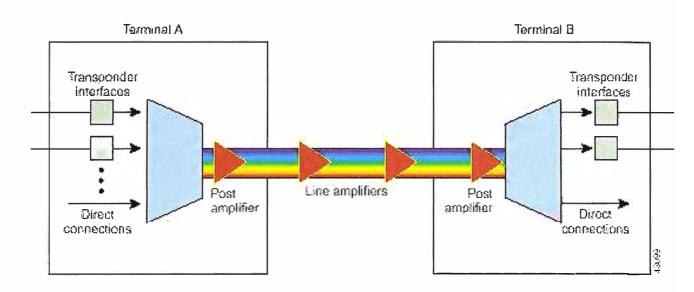


Fig. 2.18 Operación de un transponder en el sistema DWDM

Los siguientes pasos describen el sistema de la figura anterior:

- 1. El transponder acepta la entrada de una señal de un láser estándar monomodo. La entrada puede venir de distinto medio físico, diferentes protocolos y tipos de tráfico.
- 2. La longitud de onda de cada señal de entrada es mapeada a una longitud de onda DWDM.
- Las longitudes de onda DWDM del transponder son multiplexadas en una sola señal óptica y enviada por a la fibra. El sistema también puede incluir la posibilidad de aceptar señales ópticas directas al multiplexador.
- 4. Un post-amplificador refuerza la señal óptica a la salida del sistema (opcional).
- 5. Los amplificadores ópticos se usan a lo largo del enlace óptico según necesidades (opcional).
- 6. Un pre-amplificador refuerza la señal antes de que entre en un extremo del sistema (opcional).
- 7. La señal de entrada es demultiplexada en lambdas DWDM individuales (o longitudes de onda).
- 8. Cada lambda individual DWDM es mapeada según el tipo de salida requerido (por ejemplo, fibra monomodo OC-48) y enviada a través del transponder.

CAPITULO III INGENIERÍA DEL PROYECTO

3.1 Datos previos al diseño de la red

Previamente al diseño de la red se debe tener los siguientes datos por parte del operador de telecomunicaciones:

La matriz de tráfico que se desea cursar entre los nodos y la capacidad de la red.

La Topología que se implementará en la red.

Las especificaciones de la fibra de planta externa y factores que puedan influenciar en esta.

El diseño se debe obtener con los tipos de nodos a implementar, los multiplexores, demultiplexores, módulos de compensación de dispersión, amplificadores y el nivel de OSNR de los enlaces. Los equipos SDH se conectarán a los equipos DWDM que serán los medios de transporte entre cada nodo. Finalmente, con los pasos anteriormente mencionados obtendremos el diagrama de la red a implementar. La Fig. 3.1 nos muestra todo el proceso de diseño utilizado en este proyecto.

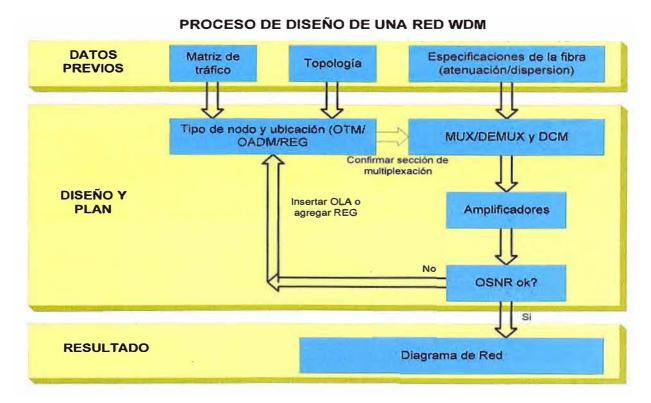


Fig. 3.1 Proceso de diseño de una red DWDM

3.1.1 Matriz de tráfico

La matriz de tráfico brindada por el operador proporciona información del volumen de tráfico que circula en la red, en forma de una matriz basada en pares de direcciones, para correlacionar el flujo de comunicación en los nodos o áreas más activas.

La TABLA N° 3.1 nos muestra los 8 nodos de la red de fibra óptica entre Puno (Llallahuani) y Madre de Dios (Puerto Maldonado).

TABLA Nº 3.1 Nodos de fibra óptica

Towns of the state	Nodo de f	ibra óptica	
Tramo	Origen	Destino	
Llallahuani - Juliaca	Llallahuani	Juliaca	
Juliaca - Azángaro	Juliaca	Huisonroque	
Juliaca - Azángaro	Huisonroque	Antauta	
Azángaro - San Gabán	Antauta	San Gabán	
San gabán - Puerto Maldonado	San Gabán	Chaspi	
San gabán - Puerto Maldonado	Chaspi	Florida Alta	
San gabán - Puerto Maldonado	Florida Alta	Puerto Maldonado	

La TABLA N° 3.2 nos muestra la matriz de trafico de E1's que necesita el cliente para interconectar los nodos.

TABLA Nº 3.2 Matriz de tráfico de E1-2Mbps

Nodos	Llallahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Fiorida Alta	Puerto Maldonado
Llallahuani		63	63	63	63	63	63	63
Juliaca	63							
Huisonroque	63							
Antauta	63				E .			
San Gabán	63				un Santa			
Chaspi	63					- 77 12 7		
Florida Alta	63							
Puerto Maldonado	63							
Total	441	63	63	63	63	63	63	63

La TABLA N° 3.3 nos muestra la matriz de trafico de enlaces STM-1 que necesita el cliente para interconectar los nodos, y la TABLA N° 3.4 hace lo mismo para los enlaces Gigabit Ethernet.

TABLA Nº 3.3 Matriz de tráfico de SMT-1

Nedos	Llallahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto Maldonado
Liallahuani		5	5	5	5	5	5	5
Juliaca	5							
Huisonroque	5		PACTURE .					
Antauta	5							
San Gabán	5							
Chaspi	5							
Florida Alta	5							
Puerto Maldonado	5							
Total	35	5	5	5	5	5	5	5

TABLA N° 3.4 Matriz de tráfico Gigabit Ethernet

Nodos	Llallahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Atta	Puerto Maldonado
Llallahuani		1		1	1			1
Juliaca	1					-		
Huisonroque								
Antauta	1				h .			
San Gabán	1							
Chaspi								
Florida Alta								
Puerto Maldonado	1							E Link
Total	4	1		1	1			1

La TABLA N° 3.5 nos muestra la matriz de trafico de enlaces Fast Ethernet que necesita el cliente para interconectar los nodos, y la TABLA N ° 3.6 hace lo mismo para los enlaces 10 Gigabit Ethernet a nivel DWDM.

TABLA N° 3.5 Matriz de tráfico Fast Ethernet

Nodos	Lialiahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto
Llallahuani		4	4	4	4	4	4	4
Juliaca	4							
Huisonroque	4		St. 5	5				
Antauta	4		5		5			
San Gabán	4			5				
Chaspi	4					P. P. VIII		
Florida Alta	4							(1)
Puerto Maldonado	4							
Total	28	4	9	14	9	4	4	4

TABLA N° 3.6 Matriz de tráfico 10 Gigabit Ethernet -DWDM

Nodos	Llallahuaní	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto Maidonado
Lialiahuani		2						
Juliaca	2		2					
Huisonroque		2		2				
Antauta			2		2			
San Gabán				2		2		
Chaspi					2		2	
Florida Alta						2		2
Puerto Maldonado							2	
Total	2	4	4	4	4	4	4	2

La TABLA N° 3.7 nos muestra la matriz de lambdas a nivel DWDM por donde pasará todo el tráfico mencionado en las TABLAS 3.2, 3.3, 3.4, 3.5 y 3.6.

Lambda (THz)

Pare-to Matriz de lambdas 10G DWDM

Lambda (THz)

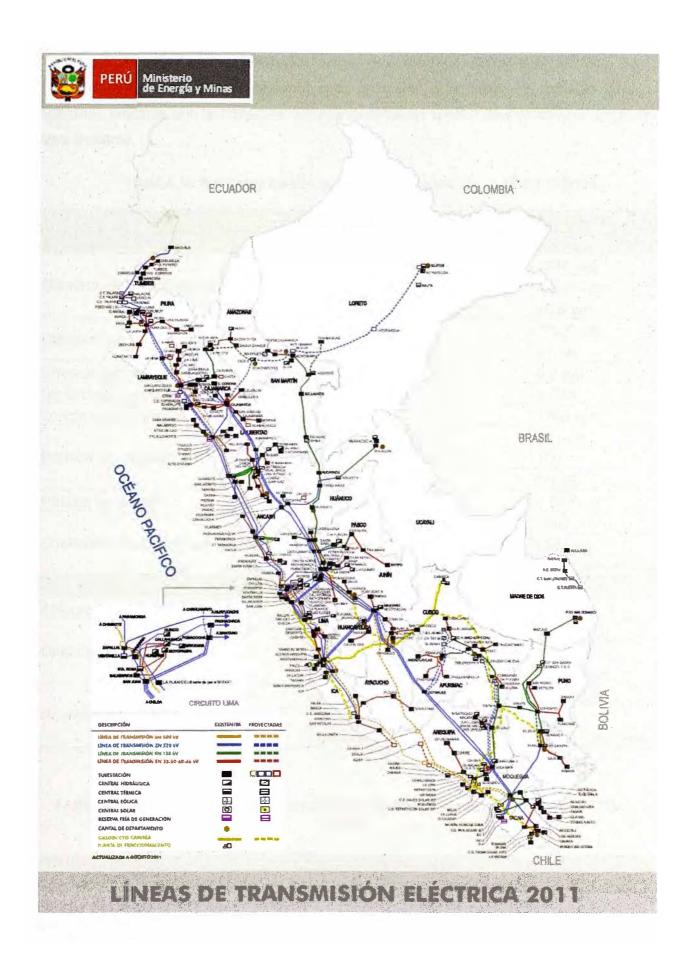
Pare-to Maile Duscon D

TABLA N° 3.7 Matriz de lambdas 10G DWDM

Los equipos DWDM se usarán como transporte de los servicios de los equipos SDH. A su vez los servicios que serán encapsulados en el equipo con tecnología SDH se encuentran: tráfico E1s – 2 Mbps, tráfico STM-1, tráfico GiEth y tráfico Fast Ethernet.

3.1.2 Especificaciones de la fibra

La fibra óptica a usar será la que se encuentra instalada en las líneas de transmisión eléctrica de 138Kv, entre Puno y Puerto Maldonado.


De acuerdo a los datos proporcionados por el operador de telecomunicaciones, la fibra óptica instalada para la implementación del presente proyecto es una fibra nueva tipo G.652, con excepción de tramo Azángaro - San Gabán que tiene una fibra óptica tipo G.652 pero de mas antigüedad.

La primera parte del proyecto se desarrolla en la región Puno, en el trayecto de Juliaca a San Gabán, a lo largo del recorrido de la línea eléctrica de alta tensión de la empresa Red de Energía del Perú S.A. (80Km - tramo Juliaca - Azángaro) y de la empresa de Generación Eléctrica San Gabán S.A. (160Km - tramo Azángaro - San Gabán). En dichos tramos se tendrá un uso compartido de la infraestructura eléctrica de alta tensión de las empresas mencionadas, la cual servirá de soporte al tendido de cable de fibra óptica (cabe indicar que la empresa eléctrica San Gabán posee tendido de cable óptico OPGW en el tramo Azángaro - San Gabán), el cual constituye el medio principal de transporte de la red de comunicaciones del proyecto en un recorrido total de 240Km.

La segunda parte del proyecto se desarrolla en la región Madre de Dios y tiene como eje de actuación la línea de alta tensión construida por la Empresa Electro Sur Este S.A.A. (ELSE) en el tramo de 231 Km de San Gabán a Puerto Maldonado a un costo aproximado de US\$ 10 millones y que permitirá que desde la Hidroeléctrica de San Gabán se pueda proveer de energía eléctrica de buena calidad a las poblaciones aledañas a la carretera Interoceánica en el tramo que va desde San Gabán a Puerto Maldonado, pasando por localidades importantes, como Masuko y Laberinto.

Cabe indicar que la línea de transmisión San Gabán - Puerto Maldonado, prolonga la ya existente entre San Gabán - Azángaro - Juliaca; que permite conectar a la Hidroeléctrica de San Gabán al Sistema Eléctrico Interconectado del país. Asimismo, permitirá que con la fibra óptica a instalar en dichos tramos, se pueda interconectar en la ciudad de Juliaca al backbone nacional de fibra óptica existente.

La Fig. 3.2 nos muestra el mapa de las líneas de transmisión desplegadas a nivel nacional al 2011, de las cuales se usarán los pertenecientes a las empresas Red de Energía del Perú y Empresa Electro Sur Este en el tramo de Puno a Madre de Dios.

Fig. 3.2 Líneas de transmisión eléctrica a usarse como ruta para la fibra óptica en el proyecto Juliaca — Puerto Maldonado

La TABLA N° 3.8 nos muestra los valores recomendados de los atributos de la fibra de planta externa que se considerará para el diseño, esto según lo indicado por el operador; mientras que la TABLA N° 3.9 nos muestra los coeficientes de atenuación de la fibra a usarse.

TABLA Nº 3.8 Tabla de Valores Recomendados según ITU-T G.652.D

A	tributos de la fibra		
Atributos	Detalles	Valores	
	Longitud de onda	1310 nm	
Diámetro del modo de campo	Rango de valores nominales	8.6-9.5 µm	
	Tolerancia	±0.6 µm	
Diámetro de la cubierta	Nominal	125.0 μm	
Diametro de la cubierta	Tolerancia	±1 µm	
Error de concentricidad del núcleo	Máximo	0.6 µm	
No circularidad del revestimiento	Máximo	1.00%	
Longitud de onda de corte del cable	Máximo	1260 nm	
	Radio	30 mm	
Pérdida por curvatura	Número de vueltas	100	
	Máximo a 1625 nm	0.1 dB	
Prueba de tensión	Mínimo	0.69 Gpa	
	λ0min	1300 nm	
Coeficiente de dispersión cromática	λ0max	1324 nm	
	S0 (slope coefficient) max	0.092 ps/nm ² × km	
A	tributos del cable		
Atributos	Detalles	Valores	
	Máxima a partir de 1310 nm	0.4 dB/km	
Coeficiente de atenuación	Máximo a 1383 nm	0.4 dB /km	
	Máximo a 1550 nm	0.3 dB /km	
	М	20 tramos	
Coeficiente de PMD	Q	0.01%	
	Máximo PMDQ	0.20 ps/ sqr(km)	

TABLA N° 3.9 Tabla de Valores Comúnmente típicos según la recomendación ITU-T G.652

Coeficiente de atenuación	Rango de longitud de onda	Valor tipico del enlace	
El valor típico del enlace corresponde al	1260 nm-1360 nm	0.5 dB/km	
coeficiente de atenuación usado en la	1530 nm-1565 nm	0.275 dB/km	
ITU-T G.957 y ITU-T G.691.	1565 nm-1625 nm	0.35 dB/km	
	D1550	17 ps/nm × km	
Coeficiente de dispersión cromática.	S1550	0.056 ps/nm ² × km	

La TABLA N° 3.10, nos indica los valores de PMD. Los valores y características brindados por el operador de Telecomunicaciones referente al tipo de fibra que se usará para el diseño de la red se refieren a los valores brindados por la ITU-T para el tipo de fibra G.652.

TABLA Nº 3.10 Tabla de valores de PMD y DGD – Recomendación según ITU-T G.652

Máximo PMDQ [ps/ sqrt(km)]	Longitud del enlace[Km]	Máximo DGD inducido en la fibra [ps]	Tasa de canal de bit						
Sin especificación			hasta 2.5 Gbit/s						
	400	25.0	10 Gbit/s						
0.5	40	19.0 (Nota)	10 Gbit/s						
	2	7.5	40 Gbit/s						
0.2	3000	19.0	10 Gbit/s						
0.2	80	7.0	40 Gbit/s						
0.1	>4000	12.0	10 Gbit/s						
0.1	400	5.0	40 Gbit/s						
Nota – Estos valores tambiér	ota – Estos valores también son validos para sistemas de 10 Gigabit Ethernet.								

3.1.3 Topología de red DWDM

La topología de red es la cadena de comunicación usada por los nodos que conforman la red, en este proyecto se ha considerado una topología punto a punto y elementos de red tales como OTM y OADM que han sido definidos en el capítulo anterior.

La TABLA N° 3.11 nos muestra las ubicaciones geográficas de los nodos donde ubicarán los equipos DWDM y SDH; mientras que la TABLA N° 3.12 nos indica la distancia aproximada que hay entre los nodos.

TABLA Nº 3.11 Ubicaciones de los nodos de fibra óptica

Departamento	Nodo	Latitud	Longitud
Puno	Llallahuani	15°48'48.00"S	70° 0'59.80"O
Puno	Juliaca	15°29'36.00"S	70° 7'45.00"O
Puno	Puno Huisonroque		70°13'23.00"O
Puno	Antauta	14°17'50.40"S	70°18'18.90"O
Puno	San Gabán	13°38'49.00"S	70°27'49.00"O
Madre de dios	Chaspi	12°17′2.00"S	70°26'0.00"O
Madre de dios	Florida Alta	12°48'27.63"S	69°37'55.43"O
Madre de dios	Puerto Maldonado	12°35'45.30"S	69°11'18.00"O

TABLA Nº 3.12 Distancia aproximada entre los nodos de fibra óptica

Tramo	Nodo de fib	ora óptica	Distancia (Km)
rraino	Origen	Destino	Distancia (Km)
Llallahuani - Juliaca	Llallahuani	Juliaca	41.15
Juliaca - Azángaro	Juliaca	Huisonroque	53.00
Juliaca - Azángaro	Huisonroque	Antauta	107.00
Azángaro - San Gabán	Antauta	San Gabán	80.00
San gabán - Puerto Maldonado	San Gabán	Chaspi	81.00
San gabán - Puerto Maldonado	Chaspi	Florida Alta	96.00
San gabán - Puerto Maldonado	Florida Alta	Maldonado	60.00

La TABLA N° 3.13 y TABLA N° 3.14 nos indican los valores de atenuación de conectores-empalmes y las pérdidas totales de la fibra respectivamente.

TABLA N° 3.13 Pérdidas totales de potencia óptica por empalmes y conectores de la fibra de planta externa

	Nodo de f	ibra óptica		Asumiendo	Pérdida	Atenuació
Tramo	Origen	Destino	Distancia (Km)	un empalme cada 4km con atenuación 0.15dB (dB)	por dos conectores extremos (dB)	n total de conector y empalme (dB)
Llallahuani – Juliaca	Llallahuani	Juliaca	41.15	1.50	1.00	2.50
Juliaca – Azángaro	Juliaca	Huisonroque	53.00	1.95	1.00	2.95
Juliaca – Azángaro	Huisonroque	Antauta	107.00	3.90	1.00	4.9
Azángaro – San Gabán	Antauta	San Gabán	80.00	2.85	1.00	3.85
San gabán – Puerto Maldonado	San Gabán	Chaspi	81.00	3.00	1.00	4.00
San gabán – Puerto Maldonado	Chaspi	Florida Alta	96.00	3.45	1.00	4.45
San gabán – Puerto Maldonado	Florida Alta	Maldonado	60.00	2.1	1.00	3.1

NOTA: Para efectos de diseño se redondeará la atenuación total de conectores y empalmes a 4dB en todos los tramos. Los valores asumidos en la TABLA N° 3.13 han sido extraídos de la recomendación ITU-T G.671

TABLA Nº 3.14 Pérdidas totales de potencia óptica entre los nodos de fibra óptica

	Nodo de fibra óptica				Pérdida	Atenuación	
Tramo	Origen	Destino	Distancia (Km)	Atenuación (0.28 dB/Km)	por conectores y empalmes (dB)	total de planta externa (dB)	
Llallahuani – Juliaca	Llallahuani	Juliaca	41.15	11.52	4.00	15.522	
Juliaca – Azángaro	Juliaca	Huisonroque	53.00	14.84	4.00	18.84	
Juliaca – Azángaro	Huisonroque	Antauta	107.00	29.96	4.00	33.96	
Azángaro – San Gabán	Antauta	San Gabán	80.00	22.40	4.00	26.40	
San gabán – Puerto Maldonado	San Gabán	Chaspi	81.00	22.68	4.00	26.68	
San gabán – Puerto Maldonado	Chaspi	Florida Alta	96.00	26.88	4.00	30.88	
San gabán – Puerto Maldonado	Florida Alta	Maldonado	60.00	16.80	4.00	20.80	

La Fig. 3.3 nos muestra la topología de la red a implementar considerando las ubicaciones y las distancias entre los nodos.

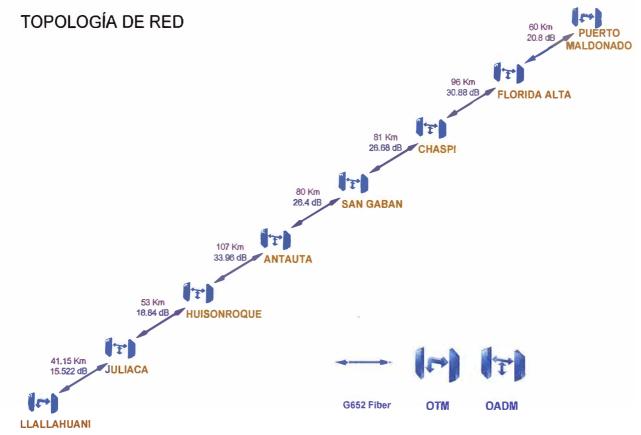


Fig. 3.3 Topología de Red

3.2 Diseño de red

3.2.1 Consideraciones de diseño

El diseño de la red se centrará exclusivamente en el transporte DWDM de la red ya que los equipos SDH se localizarán en cada nodo donde existirá un equipo DWDM, y básicamente la configuración y tarjetería de los equipos SDH dependen de la matriz de tráfico brindada por el operador.

Capacidad de Sistema DWDM: Plataforma unificada de lambdas de 10Gbps, por lo tanto los transponder a usar será los de 10Gbps de capacidad.

Capacidad inicial de DWDM hasta: 40 lambdas de 10Gbps (40 canales)

Tipo de equipo DWDM: OptiX OSN6800, Configuración OTM, con M40V/D40

Tipo de fibra planta externa : G.652.D, nueva excepto en spams Azángaro-Antauta-San Gabán (Fibra brindada por la Hidroeléctrica San Gabán)

Coeficiente de atenuación de fibra de planta externa asumido: 0.28dB/km

Margen de Fibra, incluye empalmes y otras pérdidas como conectores: 4dB

Se está considerando una margen de atenuación adicional de 4dB, en caso ocurran problemas inesperados en la red, el cual es sumado al margen de atenuación por conectores que también es de 4dB.

Coeficiente de Dispersión Cromática (CD) asumido: 17ps/nm

Coeficiente de Dispersión por Modo de Polarización (PMD) asumido: 0.2ps/sqrt(Km)

3.2.2 Diseño de los amplificadores

Los amplificadores a usar se escogen de acuerdo a los requerimientos del sistema debido a la atenuación de la planta externa y a la atenuación de los DCM usados para mitigar la dispersión cromática. Los tipos de amplificadores en el sistema han sido escogidos por el software de gestión MDS6600 de propiedad del proveedor de los equipos. Dichos amplificadores cubren las características necesarias para establecer un buen enlace y las especificaciones las encontremos a continuación.

a) Especificaciones técnicas de los amplificadores ópticos tipo OAU

La TABLA N° 3.15 nos muestra las especificaciones técnicas de los amplificadores tipo OAU usados en el diseño de la red.

TABLA Nº 3.15 Especificaciones técnicas de los amplificadores ópticos tipo OAU

Ítem				Valor	. Little of the Spatistic
		Unidades	OAU100	OAU101	OAU103
Rango de longitud d	nm	1529 a 1561	1529 a 1561	1529 a 1561	
Ganancia Nominal		dB	22	26	29
Rango mínimo de la entrada	potencia de	dBm	-26 a -4	-32 a -6	-32 a -9
Rango de potencia o	40 canales	dBm	-32 a -20	-32 a -22	-32 a -25
entrada por canal	80 canales	dBm	-32 a -23	-32 a -25	-32 a -28
Potencia óptica nominal de entrada	40 canales	dBm	-20	-22	-25
de una longitud de onda	80 canales	dBm	-23	-25	-28
Figura de ruido (NF)	1	dB	≤5.5	≤5.5	≤5.5
Tiempo de respuesta agregando o quitand	ms	<10	<10	<10	
Ganancia por canal		dB	16 a 25.5	20 a 31	24 a 36
Ganancia flatness	dB	≤2.0	≤2.0	≤2	
Diferencial de ganan	cia multicanal	dB/dB	≤2.0	≤2.0	≤2
Reflectancia de entra	ada	dB	<-40	<-40	<-40
Reflectancia de salid	а	dB	<-40	<-40	<-40
Bomba de fugas a la	entrada	dBm	<-30	<-30	<-30
Máxima tolerancia de entrada	e reflactancia a la	dB	-27	-27	-27
Máxima tolerancia do salida	e reflactancia a la	dB	-27	-27	-27
Máxima potencia ópt salida	ica total de	dBm	18	20	20
Pérdida dependiente polarización	dB	≤0.5	≤0.5	≤0.5	
Pérdida de inserción		dB	≤1.5		
VI-VO Rang dinán	o de atenuación nica	dB	20		
Ajuste de precisión	dB	1			

b) Especificaciones técnicas de los amplificadores ópticos tipo OBU

La TABLA N° 3.16 nos muestra las especificaciones técnicas de los amplificadores tipo OBU usados en el diseño de la red.

TABLA Nº 3.16 Especificaciones técnicas de los amplificadores ópticos tipo OBU

Ítem				Valor	- <u>4 </u>
		Unidades	OBU101	OBU103	OBU104
Rango de longitud de d	nm	1529-1561	1529-1561	1529-1561	
Rango nominal de pote	ncia de entrada	dBm	-32 a -4	-32 a -3	-32 a -1
Rango de potencia de	40 canales	dBm	-32 a -20	-32 a -19	-32 a -17
entrada por canal	80 canales		-32 a -23	-32 a -22	-32 a -20
Potencia óptica nomina de entrada de una	40 canales	dBm	-20	-19	-17
longitud de onda	80 canales		-23	-22	-20
Figura de ruido (NF)		dB	≤5.5	≤6.0	≤5.5
Ganancia Nominal		dB	20	23	17
Tiempo de respuesta d agregando o quitando o	ms	<10	<10	<10	
Ganancia por canal		dB	20±1.5	23±1.5	17±1.5
Ganancia flatness		dB	≤2.0	≤2.0	≤2.0
Reflectancia de entrada		dB	<-40	<-40	<-40
Reflectancia de salida		dB	<-40	<-40	<-40
Bomba de fugas a la er	trada	dBm	<-30	<-30	<-30
Máxima tolerancia de re entrada	eflactancia a la	dB	-27	-27	-27
Máxima tolerancia de resalida	eflactancia a la	dB	-27	-27	-27
Máxima potencia óptica	total de salida	dBm	16	20 16	
Diferencial de ganancia	dB	≤2.0	≤2.0 ≤2.0		
Pérdida dependiente de	dB	≤0.5	≤0.5 ≤0.5		
inherer	Pérdida de inserción inherente		≤1.5		
VI-VO Rango dinámic	de atenuación ca	dB	20		
Ajuste de precisión	dB	1			

3.2.3 Diseño de DCM (Módulos de Compensación de Dispersión)

a) Características de los módulos de compensación de dispersión

En la TABLA N° 3.17 encontraremos las pérdidas de inserción debido a los DCM, estos módulos son propietarios del proveedor de equipos y se usan de acuerdo a las distancias entre nodos y así contrarrestar la dispersión cromática.

TABLA Nº 3.17 Características de los módulos de compensación de dispersión

DCM	Pérdida de inserción (dB)	DGD of DCM (ps)
DCM(S) - para G.652 -5km	<2.3	<0.3
DCM(T) - para G.652 -10km	<2.8	<0.3
DCM(A) - para G.652 -20km	<3.1	<0.4
DCM(B) - para G.652 -40km	<4.5	<0.5
DCM(C) - para G.652 -60km	<5.8	<0.6
DCM(D) - para G.652 -80km	<7.1	<0.7
DCM(E) - para G.652 -100km	<8.2	<0.8
DCM(F) - para G.652 -120km	<9.0	<0.8

b) Reglas la configuración de los DCMs

Existen 2 clases de configuración de DCM en la red:

Compensación exacta: es una compensación de dispersión aproximadamente al 100% que se realiza en un solo nodo de una sección de multiplexación (un tramo para este caso). Hay que considerar que la dispersión residual por sección de multiplexación puede estar variando entre: -10Km ~ +10Km.

Pre-compensación: es una compensación de dispersión que se da en ambos nodos de una tramo, para esto se configura un DCM de 20 Km (DCM A) en el punto de transmisión de la sección de multiplexación y en el punto de recepción de la sección de multiplexación se configura una compensación completa o exacta, la dispersión residual debe cumplir los requerimientos del transponder.

La tolerancia del OSNR en el modelo Pre-compensación es 1 dB mejor que la compensación exacta, por lo que este ultimo método es el que utilizaremos en el diseño.

3.2.4 Penalidades del PMD según proveedor (Dispersión por modo de polarización)

Código de línea NRZ, que es el usado por los transponders a implementarse:

DGD (retardo diferencial de grupo) ≤5ps, No se considera penalidad en el OSNR.

5ps < DGD ≤10ps, agregar 0.5dB de penalidad en el OSNR.

10ps < DGD ≤15ps, agregar 1.5dB de penalidad en el OSNR.

DGD >15ps, seleccionar DRZ como código de línea o agregar un nodo regenerador.

Código de línea DRZ (de referencia):

- DGD ≤12ps, No se considera penalidad en el OSNR.
- 12ps < DGD ≤15ps, agregar 0.5dB de penalidad en el OSNR.
- 15ps < DGD ≤18ps, agregar 1.5dB de penalidad en el OSNR.
- 18ps < DGD ≤20ps, agregar 3dB de penalidad en el OSNR.

El operador pide tomar los valores estándares de PMD para el tipo de fibra G.652 el cual es 0.2ps/sqrt(Km). Si tomamos la distancia máxima de los tramos, que es 107 Km, tendríamos un DGD máximo de 2ps, lo cual está en rango de no penalización. Adicionalmente es bueno tener en cuenta que, según la ITU-T G.691 e ITU-T G.959.1 se penaliza con 1dB al OSNR cuando el DGD alcanza los 30ps.

3.2.5 Diseño de red DWDM mediante software

Para el diseño de la red el proveedor ha usado un software propietario llamado MDS6600, dicho programa se encarga de establecer los tipos de tarjetas amplificadoras a usar de acuerdo a la atenuación de la planta externa, establece los tipos de módulos de compensación de dispersión y se encarga de simular los valores de OSNR, siendo este último parámetro el principal punto que tiene en consideración para el diseño.

La TABLA N° 3.18 nos muestra los valores de OSNR obtenidos por el software de diseño propietario del proveedor de equipos (Huawei).

TABLA Nº 3.18 OSNR entre nodos - según software de diseño MDS 6600

	Nodo de fi	Nodo de fibra óptica		a por ores y es (dB)	ta de in de la iU (dB)	a total 3}	NR (dB) software diseño
Tramo	Origen	Destino	Atenuación (dB/Km)	Pérdida por conectores y empalmes (dB)	Pérdida de inserción de la tarjeta FIU (dB)	Pérdida total (dB)	OSNR (dB) según software de diseño
Llallahuani - Juliaca	Llallahuani	Juliaca	11.52	4	2	17.522	32.338
Juliaca - Azángaro	Juliaca	Huisonroque	14.84	4	2	20.84	32.694
Juliaca - Azángaro	Huisonroque	Antauta	29.96	4	2	35.96	21.903
Azángaro - San Gabán	Antauta	San Gabán	22.40	4	2	28.40	28.309
San Gabán - Puerto Maldonado	San Gabán	Chaspi	22.68	4	2	28.68	28.098
San Gabán - Puerto Maldonado	Chaspi	Florida Alta	26.88	4	2	32.88	24.615
San Gabán - Puerto Maldonado	Florida Alta	Maldonado	16.80	4	2	22.8	31.661

Nota 1: Los módulos DCMs no introducen ruido al sistema por lo que su atenuación no es considerada en el cálculo del OSNR.

Nota 2: La Pérdida Total (L) es la suma de la atenuación, la perdida por conectores y empalmes, pero también hay que considerar la pérdida por inserción de la tarjeta FIU que es para ambos extremos 2.5dB. En el software de diseño no se considera margen de pérdida adicional (4dB)

La Fig. 3.4 nos muestra el diagrama del diseño de la red usando el software de diseño del proveedor (las atenuaciones mostradas solo pertenecen a la fibra de planta externa) y la Fig. 3.5 nos muestra su leyenda.

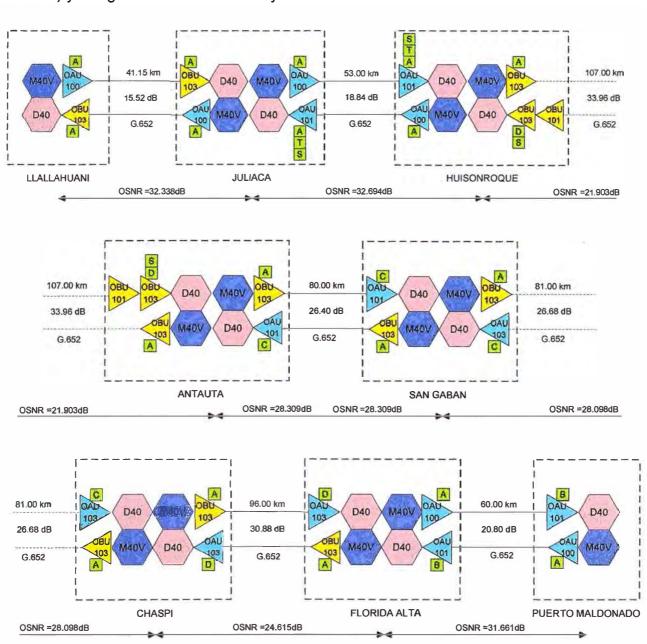


Fig. 3.4 Diseño de red – usando software MDS6600

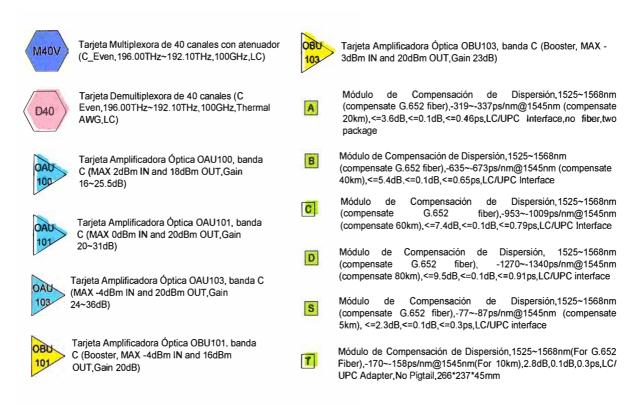


Fig. 3.5 Leyenda del diseño de red – usando software MDS6600

3.2.6 Diseño de red DWDM de forma empírica o manual

Adicionalmente al diseño ejecutado por el software MDS6000, he establecido un diseño manual teniendo como principal factor a considerar el OSNR de los enlaces.

Para esto se ha tomado la definición de OSNR brindada por la ITU-T en la recomendación G.692, ubicada en el apéndice I de dicha recomendación. En el siguiente párrafo se muestra un extracto de la definición:

La relación señal/ruido óptica es aproximadamente:

$$OSNR = Pout - L - NF - 10Log[N] - 10Log[hvDvo]$$
 (3.1)

Donde *Pout* es la potencia de salida del amplificador de transmisión (por canal) en dBm, L es la atenuación del vano entre amplificadores en dB (pérdida total), NF es la figura de ruido externa en dB, Du0, es la anchura de banda óptica, N es el número de vanos de la cadena, habiéndose supuesto que todos los vanos tienen la misma atenuación. En la banda de 1,55 μ m, 10Log[hvDvo] = -58 dBm en la anchura de banda óptica de 0,1 nm. Este enfoque puede aplicarse a un sistema en el que las atenuaciones de los distintos vanos difieran, siempre que todas las atenuaciones sean iguales o menores que L, obteniéndose así el caso más desfavorables de OSNR.

La relación anterior proporciona una predicción práctica y útil ya que el OSNR a la entrada del receptor (punto Rn que se muestra en la Fig. 3.6) es el promedio del valor cuadrático medio de N fuentes de ruido efectivas, de forma que las pequeñas diferencias entre la atenuación que sufre la potencia de salida en los distintos vanos tiende a un valor promedio.

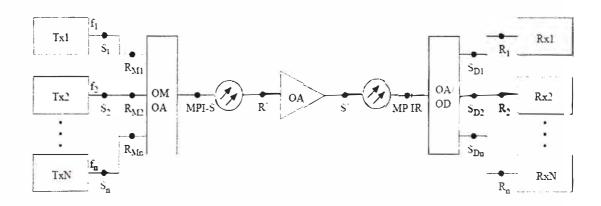


Fig. 3.6 Representación de las interfaces de un sistema de línea óptico

En sistemas WDM reales, la potencia de salida de canal variará debido a diferentes niveles de ganancia, pudiendo también existir diferencias en las figuras de ruido de los distintos amplificadores y de los distintos canales. Además, probablemente las pérdidas del vano no serán las mismas para todos. No obstante, la ecuación 3.1 es útil para establecer los niveles mínimos de potencia de canal, ya que sólo es necesario considerar el caso más desfavorable (es decir, con todas las pérdidas de vano iguales al valor más elevado y teniendo en cuenta el canal con la potencia de salida más baja).

Dado que los factores aplicados a este diseño de red están dentro de las consideraciones de la ITU-T G.692 para obtener el OSNR podremos aplicar la ecuación 3.1 para obtener el OSNR en cada tramo del la red como se muestra a continuación.

a) Cálculo del OSNR:

$$OSNR = Pout + 58 - L - 10Log[N] - NF \quad (3.2)$$

Consideraciones previas:

- N = número de tramos = 1, cada tramo es un nodo OADM (Optical add drop multiplexer). Entonces 10log1 = 0.
- La ubicación de los módulos de compensación de dispersión (DCM) es tal que no son considerados en la atenuación entre los amplificadores, motivo por el cual solo son considerados para establecer los tipos de amplificadores usar (establecer ganancias) mas no son considerados para los cálculos del OSNR.

- Se está considerando una margen de atenuación adicional de 4dB, en caso ocurran problemas inesperados en la red, el cual es sumado al margen de atenuación por conectores y empalmes que también es de 4dB.
- La Pérdida Total (L) es la suma de la atenuación, la perdida por conectores y empalmes, inserción FIU. (ver TABLA N° 3.18)
- Pout (potencia de salida del amplificador calibrado) = Potencia óptica nominal de entrada de una longitud de onda + Ganancia Nominal. Estos últimos datos y la figura de ruido NF los obtenemos de las TABLAS N° 3.15 y 3.16
- Ampl tx indica el tipo de amplificador de transmisión que se usa en el enlace; mientras que Ampl rx, indica el tipo de amplificador de recepción (ver sección 3.2.2). Teniendo en cuenta lo antes mencionado el cálculo del OSNR quedaría así:

$$OSNR = Pout + 58 - L - NF \quad (3.3)$$

Las Fig. 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 nos muestran el diagrama de configuración de los diferentes nodos y los de amplificadores usados. Además, tenemos los datos necesarios según la ficha técnica para despejar la ecuación 3.3 y obtener el OSNR. (Ver la Fig. 3.5 para a más detalle de la leyenda de los gráficos usados)

Cálculo de OSNR en el primer tramo: Llallahuani-Juliaca

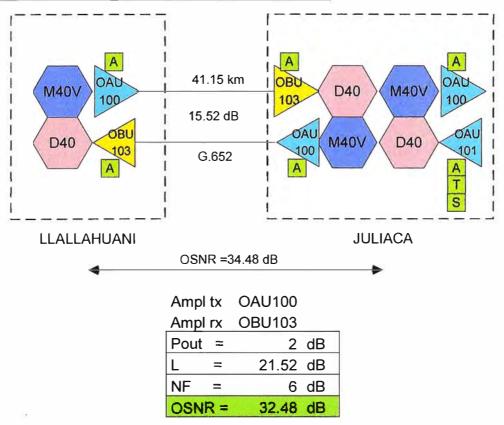


Fig. 3.7 Diagrama y cálculo del OSNR entre Llallahuani – Juliaca

Cálculo de OSNR en el segundo tramo: Juliaca-Huisonroque

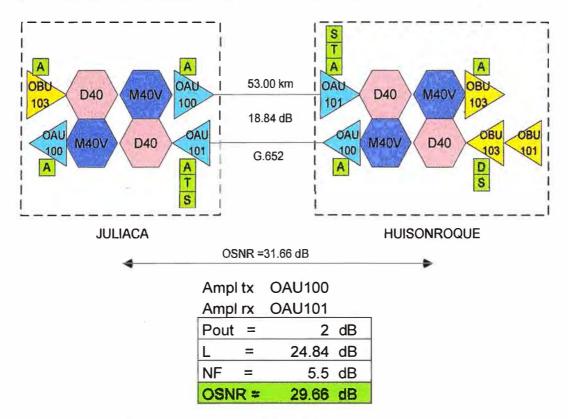


Fig. 3.8 Diagrama y cálculo del OSNR entre Juliaca - Huisonroque

Cálculo de OSNR en el tercer tramo: Huisonroque-Antauta

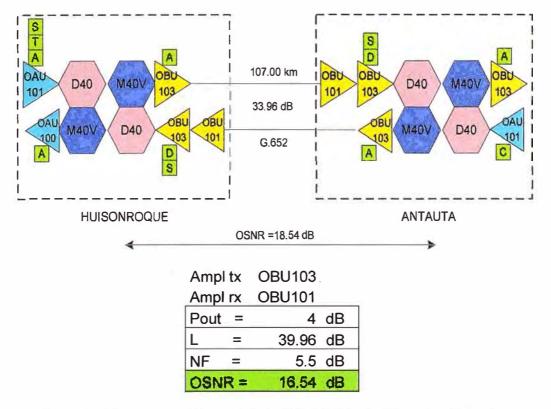


Fig. 3.9 Diagrama y cálculo del OSNR entre Huisonroque - Antauta

Cálculo de OSNR en el cuarto tramo: Antauta-San Gabán D A 80.00 km OBU OBU OBU M401 D40 M40\ D40 103 103 26.40 dB OAU OBL M40V D40 D40 M401 103 101 103 103 G.652 A C **ANTAUTA** SAN GABAN OSNR =26.1 dB Ampl tx **OBU103** Ampl rx **OAU101** Pout = 4 dB 32.4 dB = NF 5.5 dB

Fig. 3.10 Diagrama y cálculo del OSNR entre Antauta – San Gabán

24.1 dB

OSNR =

Cálculo de OSNR en el quinto tramo: San Gabán-Chaspi

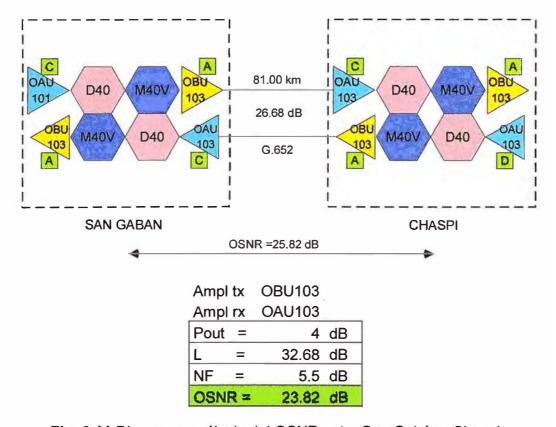


Fig. 3.11 Diagrama y cálculo del OSNR entre San Gabán - Chaspi

C 96.00 km DAU OBU OAU D40 M40V D40 M40V 103 103 100 103 30.88 dB OAU M40V **D40** M40V 103 103 101 G.652 A B **CHASPI** FLORIDA ALTA OSNR =21.62 dB Ampl tx **OBU103** Ampl rx **OAU103** Pout = 4 dB 36.88 dB NF 5.5 dB = OSNR = 19.62 dB

Fig. 3.12 Diagrama y cálculo del OSNR entre Antauta – San Gabán

Cálculo de OSNR en el séptimo tramo: Florida Alta-Puerto Maldonado

Cálculo de OSNR en el sexto tramo: Chaspi-Florida Alta

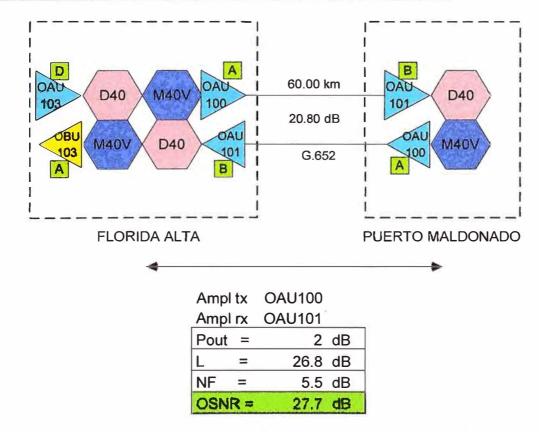


Fig. 3.13 Diagrama y cálculo del OSNR entre Antauta - San Gabán

En la TABLA N° 3.19 encontramos un cuadro resumen del OSNR calculado de forma manual a lo largo de toda la red.

TABLA Nº 3.19 OSNR entre nodos - cálculo manual según recomendación ITU-T G.692

	Nodo de fi	ibra óptica	1 (0.28	por conectores palmes (dB)	rgen de pérdida adicional (dB)	nserción de FIU (dB)	al (dB)	dB) anual
Tramo	Origen	Destino	Atenuación (0.28 dB/Km)	Atenuacion (dB/Km) Pérdida por con y empalmes		Pérdida de inserción la tarjeta FIU (dB)	Pérdida total (dB)	OSNR (dB) cálculo manual
Llallahuani - Juliaca	Llallahuani	Juliaca	11.52	4.00	4.00	2.00	21.522	32.48
Juliaca - Azángaro	Juliaca	Huisonroque	14.84	4.00	4.00	2.00	24.84	29.66
Juliaca - Azángaro	Huisonroque	Antauta	29.96	4.00	4.00	2.00	39.96	16.54
Azángaro - San Gabán	Antauta	San Gabán	22.40	4.00	4.00	2.00	32.40	24.10
San Gabán - Puerto Maldonado	San Gabán	Chaspi	22.68	4.00	4.00	2.00	32.68	23.82
San Gabán - Puerto Maldonado	Chaspi	Florida Alta	26.88	4.00	4.00	2.00	36.88	19.62
San Gabán - Puerto Maldonado	Florida Alta	Maldonado	16.80	4.00	4.00	2.00	26.80	27.70

Nota: Estos valores de OSNR ya tienen un margen de atenuación de 4 dB adicional, a diferencia de los valores de ONSR calculados mediante software propietario.

3.2.7 Comparación de los diseños de la red DWDM

La TABLA N° 3.18 nos muestra los valores calculados por software y la TABLA N° 3.19 nos muestra los valores calculados de forma manual.

Los valores de OSNR calculados por el software propietario son ligeramente mayores que los valores calculados de forma manual, pero en el cálculo de forma manual se está considerando el margen de atenuación adicional de 4 dB (cosa que no ocurre en los valores calculados por software), con este margen ambos valores de OSNR calculados son aproximadamente iguales lo cual corrobora que en ambos casos las consideraciones generales de diseño son similares.

Cabe resaltar que el menor valor de OSNR registrado es entre los nodos Huisonroque y Antauta, con un valor de OSNR calculado de forma manual de 16.54dB considerando ya una atenuación de 4dB (de margen adicional) lo cual es un valor aceptable ya que los transponders usados soportan un umbral de 16 dB (ver la siguiente sección 3.2.8)

3.2.8 Requerimientos de OSNR en los transponders

En la TABLA N° 3.20 encontramos los requerimientos mínimos de OSNR de los transponders a instalarse, para este caso se tomaran los valores sombreados en amarillo.

Tasa	Modo FEC	Formato de código de línea	Requerimiento de OSNR (dB)
0.5.Ch:h/s	FEC	NRZ	15.0
2.5 Gbit/s	No FEC	NRZ	20.0
5 Gbit/s	FEC	NRZ	20.0
10 Gbit/s	FEC	NRZ	20.0
	AFEC	NRZ	16.0
	AFEC	ODB	16.0
	AFEC	DRZ	14.5
40 Chit/s	۸۲۲۸	ODB	20.5
40 Gbit/s	AFEC	DQPSK	18.0

TABLA N° 3.20 OSNR en los transponders

Estos valores de referencia aseguran que el BER del sistema después de la corrección de error sea 1.0 x 10⁻¹². Como se puede apreciar todos los valores del OSNR obtenidos en el diseño se encuentran por encima de los 16 dB que se requiere en los transponders. Se considera que los multiplexores no incrementan en ruido.

Para nuestro diseño tomaremos los valores de OSNR igual a 16 dB, en los cuales se asume una tasa de 10 Gbits/s con un código de línea NRZ en los transponders.

3.2.9 Cálculo de potencias ópticas

Para el cálculo de potencias ópticas punto a punto se ha considerado la potencia mínima de transmisión del transponder del lado opuesto, todas las atenuaciones y los peores casos que se tiene en la ruta hasta llegar al transponder de recepción, tal como se muestra en la siguiente ecuación:

Potencia Rx Transponder = Ptx min de transponder (lado opuesto) – Pérdida inserción

MUX – Pérdida Inserción FIU tx + Ganancia Amp tx – Lext (con DCM) + Ganancia Amp rx

– Pérdida Inserción FIU rx – Pérdida inserción DMUX (5.4)

Cabe mencionar que la calibración del sistema se realiza de acuerdo a las especificaciones de potencia de entrada y salida de los amplificadores, como regularmente las potencias se encuentran por encima de los rangos establecidos se utiliza los atenuadores incluidos en los amplificadores y los atenuadores incluidos en las tarjetas multiplexoras (M40V); en caso se necesite atenuar la señal óptica en alguna tarjeta que no sean las antes mencionadas se puede hacer uso de atenuadores físicos.

Consideraciones previas:

Ampl tx indica el tipo de amplificador de transmisión que se usa en el enlace; mientras que Ampl rx, indica el tipo de amplificador de recepción (ver sección 3.2.2). Ptx min es la potencia de transmisión mínima del transponder (TABLA N° 3.23) del lado opuesto al transponder donde se calculará la potencia de recepción.

En el cálculo de potencias se considera a la tarjeta FIU que es la interface hacia planta externa que hace el MUX/DEMUX la señal óptica de datos con la de supervisión. Tenemos una tarjeta FIU en el lado de transmisión y otra en el lado de recepción y su pérdida inserción total es de 2dB (TABLA N° 3.25, IN-TC, OUT-RC). Lext (con DCM) es la atenuación total de la fibra de planta externa (ver TABLA N° 3.14) más la pardida de inserción de las DCM dependiende del tipo de DCM externa

3.14) más la perdida de inserción de los DCM, dependiendo del tipo de DCM estas pérdidas varían (ver TABLA N° 3.17). Adicionalmente los DCM varían en modelo y cantidad para cada tramo según las distancias, ver sección 3.2.3.

Ganancia Amp tx+rx hace referencia a la ganancia del amplificador de transmisión mas la ganancia del amplificador de recepción (ver TABLAS N° 3.15 y 3.16)

Pérdida de inserción MUX/DMUX indica la suma de las pérdidas de los multiplexores y demultiplexores (ver TABLAS N° 3.21 y 3.22)

Pot rx transponder es la potencia de recepción del transponder calculada a partir de la ecuación 5.4.

Todos los transponders usados en el proyecto son del tipo LSX (ver TABLAS N° 3.23 y 3.24). Los transponders son ubicados después de los MUX/DEMUX (Fig 2.4).

Las Fig. 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20 nos muestran el diagrama de configuración de los diferentes nodos. (Ver la Fig. 3.5 para a más detalle de la leyenda de los gráficos usados).

Cálculo de potencias ópticas en el primer tramo: Llallahuani-Juliaca

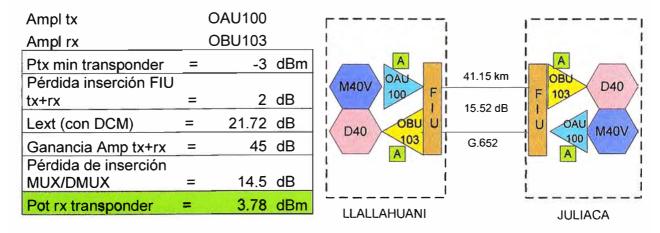


Fig. 3.14 Diagrama y cálculo de potencias entre Llallahuani – Juliaca

Cálculo de potencias ópticas en el segundo tramo: Juliaca-Huisonroque

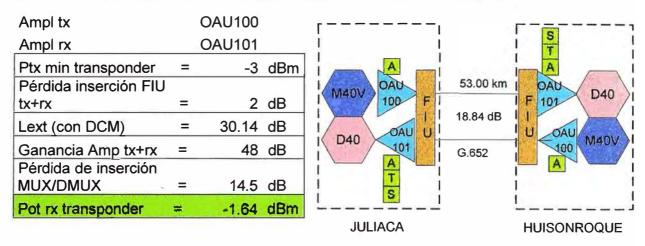


Fig. 3.15 Diagrama y cálculo de potencias entre Juliaca - Huisonroque

Cálculo de potencias ópticas en el tercer tramo: Huisonrogue-Antauta

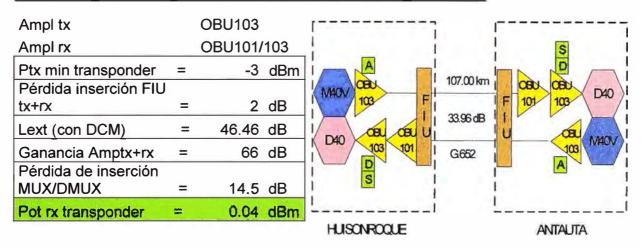


Fig. 3.16 Diagrama y cálculo de potencias entre Huisonroque - Antauta

Cálculo de potencias ópticas en el cuarto tramo: Antauta-San Gabán

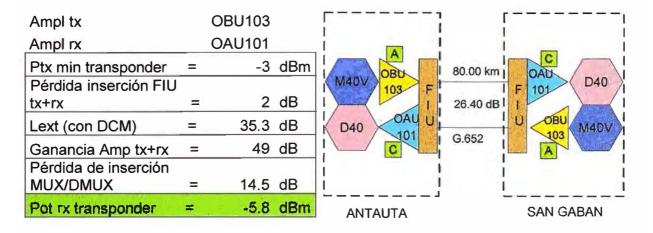


Fig. 3.17 Diagrama y cálculo de potencias entre Antauta – San Gabán

Cálculo de potencias ópticas en el quinto tramo: San Gabán-Chaspi

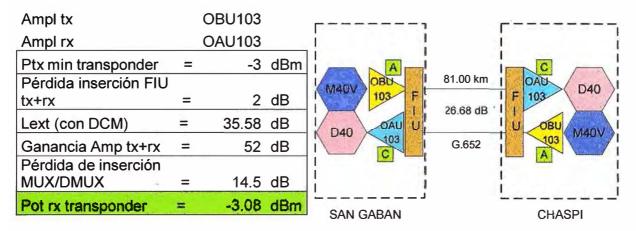


Fig. 3.18 Diagrama y cálculo de potencias entre San Gabán - Chaspi.

Cálculo de potencias ópticas en el sexto tramo: Chaspi-Florida Alta

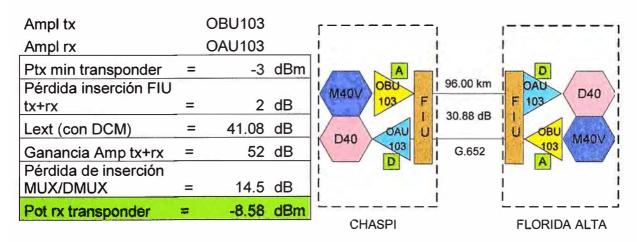


Fig. 3.19 Diagrama y cálculo de potencias entre Chaspi – Florida Alta

Cálculo de potencias ópticas en el segundo tramo: Florida Alta-Puerto Maldonado

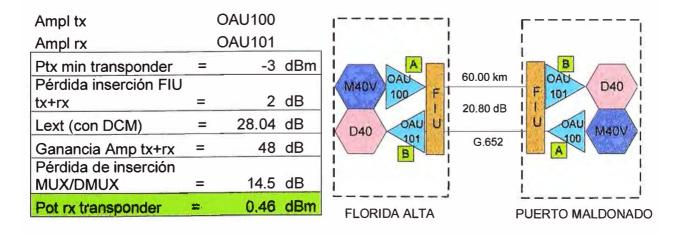


Fig. 3.20 Diagrama y cálculo de potencias entre Florida Alta — Puerto Maldonado

En todos los casos, las potencias ópticas de recepción sumada al margen de atenuación adicional, el cual es 4 dB, es menor al nivel de sensibilidad mínima de los transponders tipo LSX usados en el diseño, cuya sensibilidad es -16 dBm. Esto se puede corroborar tomando el tramo más crítico que es el de Chaspi-Florida Alta con una recepción de -8.58 dBm y restándole el margen de atenuación adicional nos da -12.58 dBm con suficiente margen hacia el umbral de sensibilidad mínima.

El cálculo de los valores de las potencias de las lambdas de supervisión (canales OSC) que son las que nos permiten la gestión de los equipos por fibra óptica, tarjetas SC1 o SC2, están en un rango óptimo. Esto debido a que la peor potencia de transmisión de estas tarjetas es -4 dBm y la máxima atenuación de todos los tramos, incluyendo las FIU y el margen adicional de atenuación, es 39.96 dB (ver TABLA N° 3.19) dando una potencia de recepción en el peor de los casos de de -43.96 dBm la cual está en el rango de recepción de la tarjeta SC que tiene un umbral de se sensibilidad mínimo de -48dBm.

a) Especificaciones técnicas de los multiplexores M40V

La TABLA N° 3.21 nos muestra las especificaciones técnicas de los multiplexores a usarse en el diseño de red.

TABLA N° 3.21 Especificaciones técnicas de los multiplexores M40V

Ítem	Unidades	Valores
Separación de canales adyacentes	GHz	100
Pérdida de inserción	dB	≤8
Reflectancia	dB	<-40
Rango de longitud de onda	nm	1529-1561
Aislamiento de canal adyacente	dB	>22
Aislamiento de canal no adyacente	dB	>25
Rango de atenuación	dB	0-15
Pérdida de precisión	dB	≤1 (0 a 10 dB)
Pérdida dependiente de la polarización	dB	≤0.5
Máxima diferencia de pérdida de inserción por canal	dB	≤3

b) Especificaciones técnicas de los demultiplexores D40

La TABLA N° 3.22 nos muestra las especificaciones técnicas de los demultiplexores a usarse en el diseño de red

TABLA N° 3.22 Especificaciones técnicas de los multiplexores D40

Ítem	Unidades	Valores
Separación de canales adyacentes	GHz	100
Pérdida de inserción	dB	≤6.5
Reflectancia	dB	<-40
Rango de longitud de onda	nm	1529-1561
Aislamiento de canal adyacente	dB	>25
Aislamiento de canal no adyacente	dB	>25
Pérdida dependiente de la polarización	dB	≤0.5
Características de temperatura	nm/°C	<0.002
Máxima diferencia de pérdida de inserción por canal	dB	≤3
-1 dB ancho de banda	nm	≥0.2
-20 dB ancho de banda	nm	<1.4

c) Especificaciones técnicas de los transponders LSX

La TABLA N° 3.23 nos muestra las especificaciones técnicas de los transponders para el lado DWDM a usarse en el diseño de red. El lado DWDM es la parte del sistema DWDM que se miran entre los diferentes nodos.

La TABLA N° 3.24 nos muestra las especificaciones técnicas de los transponders para el lado CLIENTE usarse en el diseño de red. El lado CLIENTE es la parte del sistema DWDM que se mira hacia el ODF de servicios o hacia otros equipos desagregadores del cliente.

 $\textbf{TABLA N° 3.23} \ \textbf{Especificaciones técnicas de los transponders LSX}, \ \textbf{Iado DWDM}$

Ítem		Valores					
Tipo de modulo óptico	Unidades	800 ps/nm -NRZ- sintonizable	800ps/nm- DRZ- sintonizable				
Formato de código de línea	-	NRZ- 80 canales sintonizables	DRZ- 80 canales sintonizables				
Especificaciones del parámetro de t	ransmisión	en el punto S					
Máxima potencia media de lanzamiento	dBm	2	2				
Mínima potencia media de lanzamiento	dBm	-3	-3				
Mínimo radio de extinción	dB	10	10				
Frecuencia central	THz	192.10 a	196.05				
Desviación central de frecuencia	GHz	±5	±5				
Ancho espectral máximo de -20 dB	nm	0.3	0.3				
Mínima proporción de modo de supresión	dB	35	35				
Tolerancia a la dispersión	ps/nm	800	800				
Especificaciones del parámetro de r	ecepción e	n el punto R					
Tipo de receptor	-	PIN	PIN				
Rango de longitud de onda de operación	nm	1200 a 1650					
Sensibilidad de recepción (con FEC) EOL	dBm	-16	-16				
Sobrecarga mínima del receptor	dBm	0	0				
Máxima reflectancia	dB	-27	-27				

TABLA N° 3.24 Especificaciones técnicas de los transponders LSX, lado Cliente

İtem	Unidades	Valores
Tipo de modulo óptico		800 ps/nm (XFP)
Formato de código de línea	-	NRZ – 40 canales fijos
Especificaciones del parámetro de transmisión en	el punto S	
Máxima potencia media de lanzamiento	dBm	2
Mínima potencia media de lanzamiento	dBm	-3
Mínimo radio de extinción	dB	9
Rango de frecuencia de operación	THz	192.10 a 196.00
Desviación central de frecuencia	GHz	±10
Ancho espectral máximo de -20 dB	nm	0.3
Mínima proporción de modo de supresión	dB	35
Tolerancia a la dispersión	ps/nm	800
Especificaciones del parámetro de recepción en el	punto R	
Tipo de receptor	-	PIN
Rango de longitud de onda de operación	nm	1200 a 1650
Sensibilidad de recepción (con FEC) EOL	dBm	-16
Sobrecarga mínima del receptor (con FEC)	dBm	0
Máxima reflectancia	dB	-27

d) Especificaciones técnicas de la FIU

La TABLA N° 3.25 nos muestra las especificaciones técnicas de la tarjeta FIU, que es la tarjeta de borde del sistema DWDM ya que desde esta tarjeta se hace el cableado hacia el ODF de planta externa.

TABLA Nº 3.25 Especificaciones técnicas de la FIU.

Interface	İtem	Unidades	Valores
- 400-22	Rango de longitud de onda de operación	nm	1529-1561
-	Rango de longitud de onda de operación del canal óptico de supervisión.	nm	1500-1520
-	Pérdida de retorno óptico	dB	>40
IN-TM	Pérdida de inserción	4D	≤1.5
RM-OUT	Perdida de Inserción	dB	€1.5
IN-TC	Pérdida de inserción	4D	
RC-OUT	Perdida de inserción	dB	≤1
IN-TM	Aislamiento	dB	>40
IN-TC	Aislamiento	dB	>12
L	Pérdida dependiente de la polarización	dB	<0.2

3.3 Resultados del diseño de red

3.3.1 Diagrama de red

La Fig. 3.21 nos muestra el diagrama de red, basado en la cantidad de nodos y en la topología a usar, además de una pequeña leyenda donde podremos identificar los equipos de la red. Se ha considerado tener en un nodo como mínimo dos gabinetes, los cuales estarán uno en dirección a Llallahuani y otro en la dirección a Puerto Maldonado.

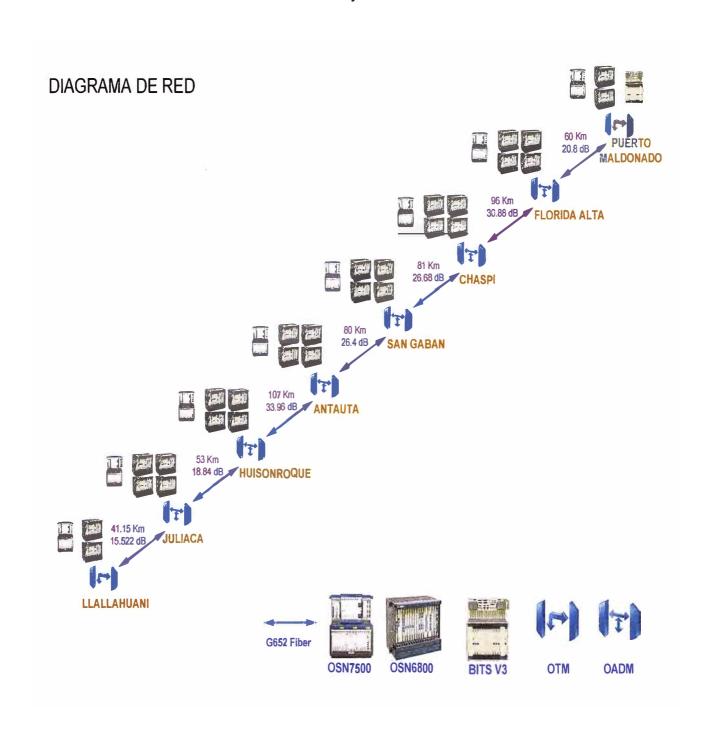


Fig. 3.21 Diagrama de Red

3.3.2 Equipamiento DWDM de la red

La TABLA N° 3.26 muestra el detalle de las tarjetas que se usarán en cada nodo DWDM de acuerdo al elemento de red y a la matriz de tráfico brindada por el cliente.

TABLA N° 3.26 Equipamiento DWDM de la Red: OSN6800

						No	odos	NII					
No.	Modelo	Descripción	Lialiahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto Maidonado	Cantidad Total		
1	Equipami	ento principal											
1.1	Rack												
	RACK07	Gabinete interior N63B Type ETSI Rack(2200*600*300mm),Dual Subrack	1	2	2	2	2	2	2	1	14		
	SUBRAC	OSN 6800	2	4	4	4	4	4	4	2	28		
1.2	Unidad C	omún									ATE IL		
	PIU02	Tarjeta de poder	4	8	8	8	8	8	8	4	56		
	AUX02	Tarjeta con interfaces auxiliares	2	4	4	4	4	4	4	2	28		
	SCC01	Tarjeta del control del sistema y comunicación	2	4	4	4	4	4	4	2	28		
	FIU01	Tarjeta de interfaz de fibra	1	2	2	2	2	2	2	1	14		
	SC101	Tarjeta de supervisión óptica unidireccional	1							1	2		
	SC201	Tarjeta de supervisión óptica bidireccional		1	1	1	1	1	1		6		
	MCA802	Tarjeta de análisis de espectro y monitoreo, 8 canales	1	1	1	1	1	1	1	1	8		
1.3	Unidad M	ultiplexación											
	D4001	Tarjeta demultiplexadora de 40 canales(C Even, 196.00THz~192.10THz, 100GHz ,Thermal AWG, LC)	1	2	2	2	2	2	2	1	14		
	M40V01	Tarjeta multiplexadora de 40 canales con antenuador variable por canal (C_Even,196.00THz~192.10THz,100 GHz,LC)	1	2	2	2	2	2	2	1	14		
1.4	Unidad A	mplificadora											
	OBU101	Tarjeta amplificadora(MAX -4dBm IN and 16dBm OUT,Gain 20dB)			1	1					2		
	OBU103	Tarjeta amplificadora(MAX -3dBm IN and 20dBm OUT,Gain 23dB)	1	1	2	3	2	2	1		12		
	OAU100	Tarjeta amplificadora(MAX 2dBm IN and 18dBm OUT,Gain 16~25.5dB)	1	2	1				1	1	6		
	OAU101	Tarjeta amplificadora(MAX 0dBm IN and 20dBm OUT,Gain 20~31dB)		1	1	1	1		1	1	6		
(Cor	OAU100 OAU101	Tarjeta amplificadora(MAX 2dBm IN and 18dBm OUT,Gain 16~25.5dB) Tarjeta amplificadora(MAX 0dBm IN		2	1					1	1 1		

					1011-11	No	dos				
No.	Modelo	Descripción	Llaffahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto Maldonado	Cantidad Total
-	OAU103	Tarjeta amplificadora(MAX -4dBm IN and 20dBm OUT,Gain 24~36dB)					1	2	1		4
1.5	Modulo c	ompensador de dispersión									
	DCM(S)- C- 652(5km	Modulo compensador de dispersión, 1525~1568nm(compensate G.652 fiber),-77~-87ps/nm@1545nm(compensate 5km),<=2.3dB,<=0.1dB,<=0.3ps,LC/UPC		1	2	1					4
	DCM(T)- C- 652(10k m)	Modulo compensador de dispersión,1525~1568nm(For G.652 Fiber),-170~-158ps/nm@1545nm(For 10km),2.8dB,0.1dB,0.3ps,LC/UPC		1	1						2
	DCM(A)- C- 652(20k m)	Modulo compensador de dispersión, 1525~1568nm(compensate G.652 fiber), -319~-337ps/nm@1545nm(compensate 20km), <=3.6dB, <=0.1dB, <=0.46ps, LC /UPC	2	4	3	2	2	2	2	1	18
	DCM(B)- C- 652(40k m)	Modulo compensador de dispersión,1525~1568nm(compensate G.652 fiber),-635~-673ps/nm@1545nm(compensate 40km),<=5.4dB,<=0.1dB,<=0.65ps,LC /UPC							1	1	2
	DCM(C)- C- 652(60k m)	Modulo compensador de dispersión,1525~1568nm(compensate G.652 fiber),-953~-1009ps/nm@1545nm(compensate 60km),<=7.4dB,<=0.1dB,<=0.79ps,LC /UPC				1	2	1			4
	DCM(D)- C- 652(80k m)	Modulo compensador de dispersión, 1525~1568nm(compensate G.652 fiber), -1270~-1340ps/nm@1545nm(compensate 80km), <=9.5dB, <=0.1dB, <=0.91ps, LC /UPC			1	1		1	1		4
2		ansponder	× .								
2.1	Transpon							-			30-)
	LSXT	Tarjeta de conversión de longitud de onda 10Gbit/s (AFEC,Super WDM,Tunable),50GHz(800ps/nm,Rx1 _PIN,Tx13dBm~+2dBm,LC)(1*XFP-1310-STM64/FC10G/10GbE/OTU2-10km)	4	8	8	8	8	8	8	4	56

3.3.3 Condiciones ambientales del equipo DWDM: OSN 6800

a) Requisitos de temperatura y humedad

TABLA N° 3.27 Requisitos de Temperatura y Humedad para los equipos DWDM: OSN6800

Temperatura del Gabinete	Temperatur	a del Bastidor	Humedad Relativa			
	Operación a largo plazo	Operación a corto plazo	Operación a largo plazo	Operación a corto plazo		
-5°C (23 °F) a 45°C (113 °F)	5°C (41 °F) a 45°C (113 °F)	-5°C (23 °F) a 55°C (131 °F)	10% a 90%	5% a 95%		

NOTA:

Punto de prueba de la temperatura y la humedad del producto: cuando el gabinete del producto no tiene ninguna placa de protección en la parte delantera y en la parte posterior, el valor se ha medido a 1.5 metros por encima del suelo ya 0,4 metros de la parte frontal del gabinete.

Las condiciones de trabajo a corto plazo significan que el tiempo de trabajo sucesivo no sea superior a 96 horas y el tiempo acumulado cada año no exceda de 15 días.

b) Requisitos del medio ambiente climático

TABLA N° 3.28 Requerimientos del medio ambiente climático para los equipos DWDM:

OSN6800

İtem	Rango		
Altitud	≤ 4000 m (13123 ft.)		
Presión de aire	70 kPa a 106 kPa		
Tasa de cambio de temperatura	≤ 5°C /h		
Radiación Solar	≤ 700 W/s ²		
Radiación Térmica	≤ 600 W/s²		
Velocidad del Viento	≤ 1 m/s		

c) Requisitos de densidad de la sustancia mecánicamente activa

TABLA N° 3.29 Requisitos de densidad de la sustancia mecánicamente activa para los equipos DWDM: OSN6800

Sustancia mecánicamente activa	Índice
Partículas de polvo	≤ 3 x 10 ⁵ partículas/m³
Suspensión de polvo	≤ 0.4 mg/m³
Precipitación de polvo	≤ 15 mg/m²•h
Arenilla	≤ 100 mg/m³

d) Requisitos de densidad de la sustancia químicamente activa

TABLA N° 3.30 Requisitos de densidad de la sustancia químicamente activa para los equipos DWDM: OSN6800

Sustancia químicamente activa	Índice
SO₂	≤ 0.20 mg/m³
H₂S	≤ 0.006 mg/m³
NH ₃	≤ 0.05 mg/m³
CI ₂	≤ 0.01 mg/m³
HCI	≤ 0.10 mg/m³
HF	≤ 0.01 mg/m³
O ₃	≤ 0.005 mg/m ³³
со	≤ 5.0 mg/m³

e) Requisitos relativos a la tensión mecánica

TABLA N° 3.31 Requisitos relativos a la tensión mecánica para los equipos DWDM:

OSN6800

Ítem	Sub-item	Ran	igo i i i i i i i i i i i i i i i i i i		
	Desplazamiento	≤ 3.5mm	_		
Vibración sinusoidal	Aceleración	_	$\leq 10.0 \text{ m/s}^2$		
	Rango de frecuencia	2 Hz a 9 Hz	9 Hz a 200 Hz		
Impacto no estacionario	Respuesta al impacto de espectro II	≤ 100	m/s ²		
estacionano	Carga estática	0			

NOTA:

Respuesta al Impacto de Espectro: la curva de respuesta de aceleración máxima es generada por el equipo bajo la estipulada motivación de impacto. La Respuesta al Impacto de Espectro II indica que duración del impacto de espectro semi-sinusoidal es 6ms.

Carga estática: La presión de la parte superior, que el equipo empaquetado puede soportar cuando el equipo se amontona de acuerdo con las especificaciones.

Las TABLAS N° 3.27, 3.28, 3.29, 3.30 y 3.31 nos indican las condiciones ambientales que deben cumplir los locales que albergarán los equipos DWDM, las condiciones hacen referencia a temperatura, humedad, clima, polvo y sustancias químicas.

3.3.4 Equipamiento SDH de la red

La TABLA N° 3.32 muestra el detalle de las tarjetas que se usarán en cada nodo SDH (servicios SDH, PDH y Ethernet) de acuerdo a la matriz de tráfico brindada por el cliente.

TABLA N° 3.32 Equipamiento SDH de la Red: OSN7500

			Nodos								To
No.	Modelo	Descripción	Liallahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto Maldonado	Cantidad Total
1	Equipan	niento principal									
1.1	Rack										
	RACK	Gabinete interior N63E (2200x600x300mm)	1	1	1	1	1	1	1	1	8
	SUBRA CK	OSN 7500	1	1	1	1	1	1	1	1	8
1.2	Tarjetas	comunes									
	SXCSA	Tarjeta Super Crossconectora y de sincronismo	2	2	2	2	2	2	2	2	16
	GSCC	Tarjeta de control de sistema y comunicación	2	2	2	2	2	2	2	2	16
	EOW	Tarjeta para el teléfono y otros auxiliares	1	1	1	1	1	1	1	1	8
	AUX	Tarjeta de interfaces auxiliares	1	1	1	1	1	1_	1	1	8
	PIUB	Tarjeta de poder	2	2	2	2	2	2	2	2	16
1.3	Tarjeta c	le Interface Óptica STM-64									
	SL6401	Tarjeta de interface óptica 1xSTM-64 (I-64.1,LC)	4	4	4	4	4	4	4	2	28
1.4	Tarjeta de Interface Óptica STM-16										
	SL16A	Tarjeta de interface óptica STM-16(S-16.1,LC)	1								1
1.5	Tarjeta d	le Interface Óptica STM-1									
	SLT1	Tarjeta de interface óptica 12xSTM-1 (S-1.1,LC)	3	1	1	1	1	1	1	1	10
1.6	Tarjeta F	PDH									
	PQ1A	Tarjeta de proceso de servicios 63xE1 (75ohm)		1	1	1	1	1	1	1	7
1.7	Tarjeta E	Ethernet									
	EGT21 2	Tarjeta Gigabit Ethernet 2-Port (1000BASE-LX,1310nm, LC)	2	1		1	1			1	6
	EFT8A	Tarjeta Ethernet 8-Port 10M/100M	4	1	2	2	2	1	1	1	14
1.8	Tarjeta c	le conexión									
	D75S	Tarjeta de interface eléctrica 32xE1/T1(75 Ohm)		2	2	2	2	2	2	2	14

Cabe mencionar que para el nodo Llallahuani (equipos OSN7500) se están considerando 4 tarjetas SL6401 adicionales para la interconexión de la nueva red con la red Lima-Llallahuani (también OSN7500).

La TABLA N° 3.33 muestra el detalle de las tarjetas que se usarán en el OSN3500 de Llallahuani, siendo este el único que tendrá dos equipos ADM por lá gran cantidad de tarjetas de acuerdo a la matriz de tráfico. El OSN3500 de Llallahuani se interconectara con el ONS7500 de Llallahuani a través de las tarjetas SL16A de ambos equipos.

TABLA N° 3.33 Equipamiento SDH de la Red: OSN3500

			Nodo	<u>a</u>
No.	Modelo	Descripción	Llallahuani	Cantidad Total
1	Equipan	niento principal		
1.1	Rack			
	RACK	Gabinete interior N63E (2200x600x300mm)	1	1
	SUBRA CK	OSN 3500	1	1
1.2	Tarjetas	comunes		
	SXCSA	Tarjeta Super Crossconectora y de sincronismo	2	2
	GSCC	Tarjeta de control de sistema y comunicación	2	2
	AUX	Tarjeta de interfaces auxiliares	1	1
	PIUB	Tarjeta de poder	2	2
1.3	Tarjeta d	de Interface Óptica STM-16		
	SL16A	Tarjeta de interface óptica STM-16(S-16.1,LC)	1	1
1.4	Tarjeta F	PDH		
	PQ1A	Tarjeta de proceso de servicios 63xE1 (75ohm)	7	7
1.5	Tarjeta d	de conexión		
	D75S	Tarjeta de interface eléctrica 32xE1/T1(75 Ohm)	14	14

3.3.5 Condiciones ambientales del equipo SDH: OSN 7500

a) Requisitos de temperatura y humedad

TABLA Nº 3.34 Requisitos de Temperatura y Humedad para los equipos SDH: OSN7500

Tempe	eratura	Humedad Relativa			
Condiciones de operación a largo plazo	Condiciones de operación a corto plazo	Condiciones de operación a largo plazo	Condiciones de operación a corto plazo		
0°C a 45°C	-5°C a +55°C	10% a 90%	5% a 95%		

NOTA:

La temperatura y la humedad se han medido a 1.5 metros por encima del suelo y a 0.4 metros de la parte frontal del equipo. Las condiciones de trabajo a corto plazo significan que el tiempo de trabajo sucesivo no sea superior a 96 horas y el tiempo acumulado cada año no exceda de 15 días.

b) Requisitos de densidad de la sustancia mecánicamente activa durante el funcionamiento

TABLA N° 3.35 Requisitos de densidad de la sustancia mecánicamente activa durante el funcionamiento de los equipos SDH: OSN7500

Sustancia mecánicamente activa	Índice		
Partículas de polvo	≤ 3 x 10 ⁵ partículas/m³		
Suspensión de polvo	≤ 0.2 mg/m³		
Precipitación de polvo	≤ 1.5 mg/m²·h		
Arenilla	≤ 20 mg/m³		

c) Requisitos de densidad de la sustancia químicamente activa durante el funcionamiento

TABLA N° 3.36 Requisitos de densidad de la sustancia químicamente activa durante el funcionamiento de los equipos SDH: OSN7500

Sustancia quimicamente activa	Índice		
SO ₂	≤ 0.30 mg/m³		
H ₂ S	≤ 0.10 mg/m³		
NH ₃	≤ 1.00 mg/m³		
Cl ₂	≤ 0.10 mg/m³		
HCI	≤ 0.10 mg/m³		
HF	≤ 0.01 mg/m³		
O ₃	≤ 0.05 mg/m³		
NO _X	≤ 0.50 mg/m³		

d) Requisitos relativos a la tensión mecánica

TABLA N° 3.37 Requisitos relativos a la tensión mecánica para los equipos SDH: OSN7500

İtem	Sub-item	Rango			
	Desplazamiento	≤ 5 mm/s	-		
Vibración sinusoidal	Aceleración	-	≤ 2 m/s ²		
	Rango de frecuencia	5 Hz a 62 Hz	62 Hz a 200 Hz		
Impacto no estacionario Respuesta al impacto de espectro II		Media onda sinusoidal, 30 m/s², 11 ms, tre veces en cada superficie.			
ESTACIONANO	Carga estática	0 kPa			

NOTA:

Respuesta al impacto de espectro es la curva de respuesta de aceleración máxima generada por el equipo bajo la estipulada motivación de impacto. La carga estática es la presión de la parte superior, que el equipo empaquetado puede soportar cuando el equipo se amontona de acuerdo con las especificaciones

Las TABLAS 3.34, 3.35, 3.36 y 3.37 nos indican las condiciones ambientales que deben cumplir los locales que albergarán los equipos SDH, las condiciones hacen referencia a temperatura, humedad, polvo, sustancias químicas y de tensión mecánica.

3.3.6 Cantidad de equipos a instalar

La TABLA N° 3.38 muestra la cantidad de subracks que se instalarán de acuerdo al equipamiento DWDM y SDH. Cabe recordar que se ha considerado tener en un nodo como mínimo dos gabinetes, los cuales estarán uno en dirección a Llallahuani y otro en la dirección a Puerto Maldonado.

TABLA Nº 3.38 Cantidad de equipos a instalar

Equipamiento / Nodo	Liallahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida alta	Puerto Matdonado
Equipamiento SDH	OSN 3500 + OSN 7500	OSN 7500	OSN 7500	OSN 7500	OSN 7500	OSN 7500	OSN 7500	OSN 7500
Equipamiento DWDM	2xOSN 6800	4xOSN 6800	4xOSN 6800	4xOSN 6800	4xOSN 6800	4xOSN 6800	4xOSN 6800	2xOSN 6800

Nota: Dos equipos son instalados en 1 gabinete o rack

3.3.7 Esquema de fibras y tarjetería dentro de los equipos DWDM y SDH.

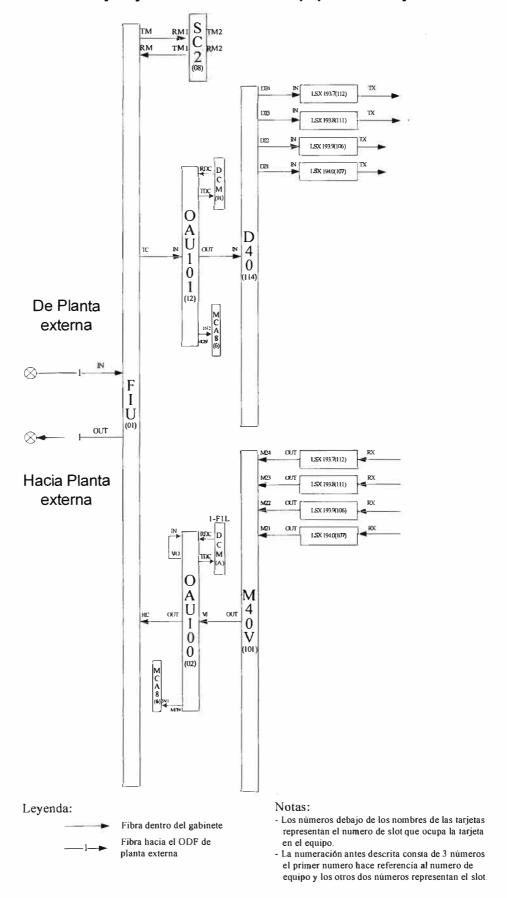


Fig. 3.22 Esquema general de interconexión de fibras dentro del equipo OSN 6800

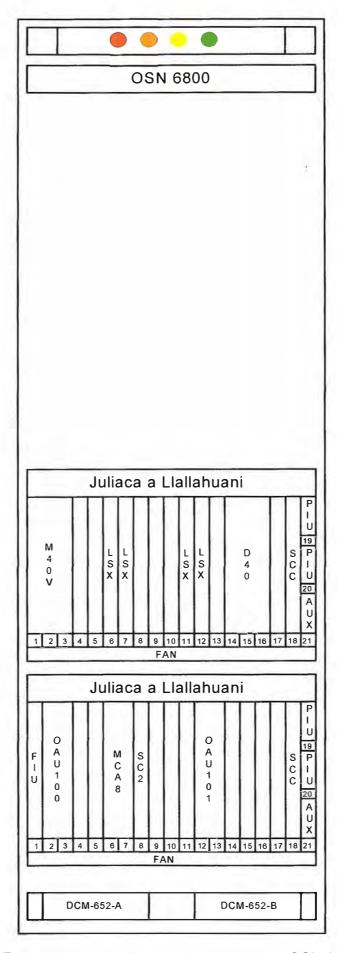


Fig. 3.23 Esquema general de tarjetas en el equipo OSN 6800

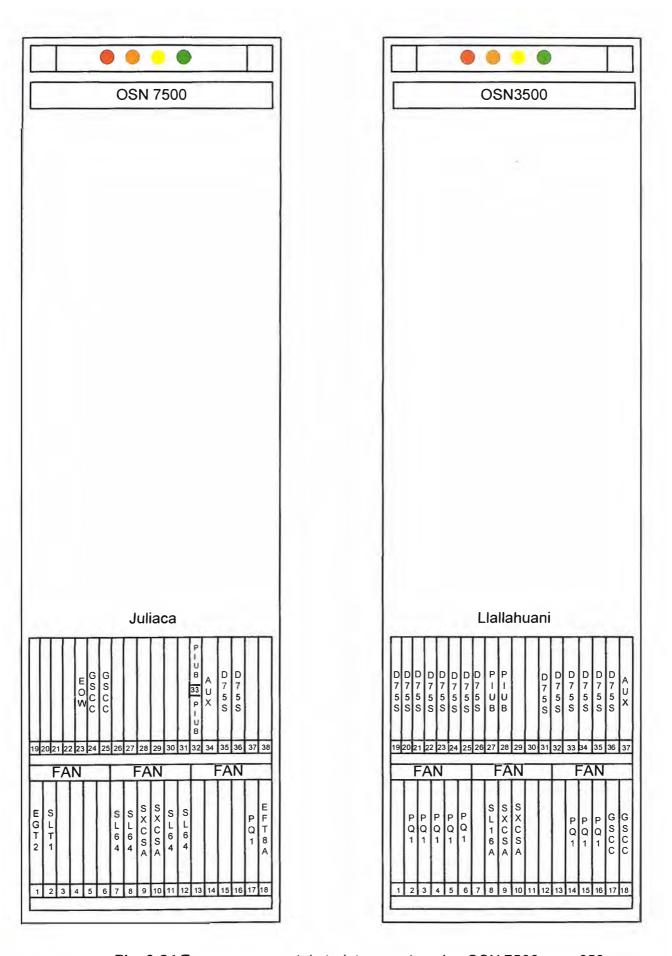


Fig. 3.24 Esquema general de tarjetas en el equipo OSN 7500 y osn350

3.3.8 Consumo de energía de los equipos DWDM y SDH por nodo.

La TABLA N° 3.39 nos muestra los detalles de energía de lose quipos DWDM y SDH por nodo.

TABLA N° 3.39 Consumo de energía de los equipos DWDM y SDH.

Nodo / Descripción	Llattahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida alta	Puerto Maldonado
Consumo Inicial SDH (OSN3500 + OSN7500)	956.0	528.0	525.0	909.0	737.0	499.0	499.0	484.0
Consumo Inicial DWDM (OSN6800)	568.7	1090.9	980.9	1100.9	1092.9	1092.9	1092.9	570.7
Breaker 48v dc (*)	8 x 63 A	10 x 63 A	10 x 63 A	10 x 63 A	10 x 63 A	10 x 63 A	10 x 63 A	6 x 63 A
Total consumo inicial DC (watts)	1525	1619	1506	2010	1830	1592	1592	1055
Tensión del sistema	48.0	48.0	48.0	48.0	48.0	48.0	48.0	48.0
Total consumo inicial DC (amperios)	31.8	33.7	31.4	41.9	38.1	33.2	33.2	22.0
Standard Battery Capacity (155H to 1,8 VDC)	200 AH 200 AH	200 AH	200 AH					
Tiempo Descarga en horas	12.0 Hrs	12.0 Hrs	12.0 Hrs	12.0 Hrs	12.0 Hrs	12.0 Hrs	12.0 Hrs	12.0 Hrs
Constant Current Discharge Data: To 12 Horas a 1.75V (42V x Banco)	17.2 AMP	17.2 AMP	17.2 AMP	17.2 AMP	17.2 AMP	17.2 AMP	17.2 AMP	17.2 AMP
Cantidad de Bancos de baterías (Consumo Inicial)	2.0	2.0	2.0	3.0	3.0	2.0	2.0	2.0
Approx. Backup Time (Consumo Inicial)	13.0 Hrs	12.2 Hrs	13.2 Hrs	14.8 Hrs	16.2 Hrs	12.4 Hrs	12.4 Hrs	18.8 Hrs
Recarga Batería en AMP (10% Bco Bat). Consumo Inicial	40.0	40.0	40.0	60.0	60.0	40.0	40.0	40.0
Total Consumo Inicial DC + Recarga Batería Inicial (AMP)	72.0	74.0	71.0	102.0	98.0	73.0	73.0	62.0
Capacidad Rectificador Flatpack 2	2000.0 Watts	2000.0 Watts	2000.0 Watts	2000.0 Watts	2000 Watts	2000.0 Watts	2000.0 Watts	2000.0 Watts
Cantidad de módulos rectificadores. Incluye redundancia	3	3	3	3	3	3	3	2
Potencia total del sistema powercore propuesto (**)	24000 Watts	32000 Watts	32000 Watts	32000 Watts	32000 Watts	32000 Watts	32000 Watts	24000 Watts

^(*) La cantidad de breakers para el equipamiento SDH es 2 y para el equipamiento DWDM es 4 por gabinete. (**) La potencia considerada es la máxima capacidad de crecimiento del sistema de energía en caso se requiera una demanda de energía no prevista.

3.3.9 Equipamiento y distribución de DDF y ODF por nodo

a) DDF

La TABLA N° 3.40 muestra los detalles de los DDF necesarios por nodos para poder reflejar los servicios E1'S requeridos por el cliente, se considera que un E1 primero se refleja en un modulo DDF del lado del equipo y luego se refleja a otro modulo DDF del lado cliente por lo que el total de módulos DDF son el doble.

TABLA Nº 3.40 Equipamiento y distribución de DDF

			iionto				ENT THE	To Aller			
			Lialiahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Afta	Puerto Maidonado	Total
		Cantidad de E1s	441	63	63	126	126	63	63	63	1008
		Cantidad de módulos reflejo del equipo	7	1	1	2	2	1	1	1	16
Ítem	Código	Descripción									
1	IBF- RSC021	Gabinete, 600mm Skeleton bay front cross-connect, cable troughs, Rings, Fuse	2	1	1	1	1	1	1	1	9
2	DFX- 210001	Módulos, BNC/LSA FlexDSX Four Pack Panel (64-Circuit - Wire Wrap) Dual Monitor (750hm)	14	2	2	4	4	2	2	2	32
3	RAC- EGK600	Kit 2 tapas laterales 600mm	2	1	1	1	1	1	1	1	9
4	RAC- MX0616	Kit de Instalación Bastidor NGF (piso concreto)	2	1	1	1	1	1	1	1	9
5	PJ772	Cables Bantam dobles de 6 pies (1.83m)	30	10	10	15	15	10	10	10	110
6	PJ722	Cables Bantam Simples de 6 pies (1.83m)	30	10	10	15	15	10	10	10	110
7	PJ746	Looping Plugs	30	10	10	15	15	10	10	10	110
8	DSXCC W/500	Cables para cross-conexion. 500 ft (150m)	3	1	1	1	1	1	1	1	10
9	AUX- 0x0165	Herramienta de entorchado	1	1	1	1	1	1	1	1	8
10	AUX- 0x0802	Herramienta de desentorchado (manual)	1	1	1	1	1	1	1	1	8
11	F-1/2	Fusibles de 0.5 amps	20	10	10	10	10	10	10	10	90
12		Cable vulcanizado (tipo 2x14 AWG marca Indeco) para energizar bastidor (inc. 4 terminales tipo U) - 15m.	2	1	1	1	1	1	1	1	9
13		Juego de cables de energía (tipo 20AWG marca Indeco) para energizar cada regleta (inc. 3 termiles tipo U) / por regleta - 1m	14	2	2	4	4	2	2	2	32

Nota: el consumo de los módulos DDF es 1 amperio aproximadamente por lo que no ha sido considerado en la tabla de consumo de energía (TABLA N° 3.38)

b) ODF

La TABLA N° 3.41 muestra los puertos ópticos requeridos por el cliente por nodo, los puertos ópticos pertenecen a las tarjetas SDH (STM64 Y STM1) y Ethernet (1 GiEth).

Huisonroque Florida Alta Lialiahuani San Gabán Maidonado Antauta Puerto Juliaca Chaspi Total 78 12 10 12 10 10 158 Cantidad de puertos ópticos Códigos item Descripción ADC p/n fmt-grt070a00-a72p FMTbandeja fmt 2 ru terminación 72 2 1 1 1 1 1 1 1 9 1 GRT070A00 acopladores sc monomodo ADC p/n fmt-dbs000000-a00p FMT-9 2 1 1 1 1 2 bandeja fmt 1 ru slack storage 1 1 **DBS000000**

TABLA Nº 3.41 Equipamiento y distribución de ODF

3.3.10 Sistema de sincronismo para la red SDH.

La necesidad de sincronismo existe en cada red digital para mejorar su calidad de transmisión y conmutación, así como para optimizar los recursos. La base de tiempo tanto para el transmisor como el receptor debe ser la misma, para evitar retardos, retransmisiones y/o errores en la información transmitida. La red digital de sincronización puede transmitir señales de sincronización de reloj de referencia a cada nodo de la red sincronizada a fin de calibrar y sincronizar los relojes de nodo

Las redes de sincronismo para este proyecto están constituidas por fuentes de referencia primaria y sistemas de distribución de sincronismo. Las fuentes de referencia primaria proveen las señales de sincronismo a los sistemas de distribución los cuales tienen la principal función de selección, procesamiento y distribución de sincronismo a cada elemento de red (NE) dentro de la red digital.

a) Fuentes de referencia primaria (PRC)

Las fuentes de referencia primaria son sistemas que cuentan con una alta precisión a largo plazo, que debe mantenerse a 1x10⁻¹¹ o mejor con respecto al UTC (Tiempo Universal Coordinado), según lo especifica la recomendación ITU-G.811.

Un PRC puede ser un reloj autónomo como el Cesio (DCD-Cs) el cual opera independientemente a otras fuentes. Alternativamente, el PRC puede ser un reloj no autónomo el cual está disciplinado por una señal de precisión derivada del UTC, recibida

por un radio o sistema satelital. En cualquier caso, los requerimientos de precisión a largo plazo aplican, como se especifica en la recomendación G.811.

PRC de cesio (DCD-CS)

El reloj de cesio de un DCD-Cs es un PRC autónomo que ha sido diseñado para el sincronizar a redes digitales considerando técnicas de compensación adaptivas para los campos magnéticos, potencia de micro-ondas y servo-mecanismos digitales mejorados para la corriente del tubo de cesio. La precisión del DCD-Cs es de 2x10⁻¹² a temperatura constante de 25°C y de 5x10⁻¹² en temperaturas entre 0°C y 50°C.

PRC de GPS (DCD-LPR)

La red satelital GPS proporciona señales de temporización de alta estabilidad trazables a UTC durante las 24 horas del día y virtualmente en cualquier parte del mundo. El sistema de referencia primaria del DCD-LPR recibe la señal de GPS y realiza una integración de los mejores seis satélites visibles por medio de una promediación dinámica, mitigando los efectos de disponibilidad selectiva y generando señales de alta estabilidad. La precisión del DCD-LPR al estar operando con GPS es mejor a 1x10⁻¹². Además el se cuenta con un oscilador interno de alta estabilidad, el cual operará en modo de holdover en caso de interrumpirse las señales provenientes de los satélites GPS.

b) Fuente de sincronización del elemento de red (NE)

Las señales de reloj necesarias para la operación del NE son producidas por un circuito de reloj que corre principalmente bajo el modo esclavo. Las fuentes de referencia disponibles son:

Fuente externa

El elemento de red normalmente se conecta o una señal de reloj externa proveniente de un reloj de referencia primario (G.811), o BITS (G.812 tránsito o local), o el reloj de un sistema de conmutación. En el BITS que es el usado para este proyecto, la señal máxima que entrega de sincronización de salida es 2048 kbit/s y 2048 kHz, mientras que otras entregas analógicas son 8 kHz, 16 kHz, 64 kHz, 1.544 MHz, 2.048 MHz, 5 MHz y 10 MHz

Señal de línea STM-N

El componente de la señal de reloj extraída de una señal de línea puede ser utilizado como fuente de referencia, estando éste conectado hacia el este, hacia el oeste o hacia una dirección tributaria proveniente de un equipo que tiene configurado un reloj.

c) Diagrama de sincronismo de red

El sincronismo de la red se establecerá en el nodo extremo de Puerto Maldonado y desde allí se brindará sincronismo a toda la Red a través de los equipos SDH (ver Fig. 3.25). El equipo a usar será un BITS que es la solución propuesta por el proveedor para el sincronismo. El equipo BITS será usado como una fuente de referencia primaria (PRC) de GPS.

El equipo SDH de Puerto Maldonado tendrá como primera prioridad de sincronismo el reloj de fuente externa, a su vez los demás equipos tendrán configurados como primera prioridad Señal de línea STM-N (STM-64) ya que el sincronismo viajara por las tarjetas STM-64 que interconectan los nodos SDH.

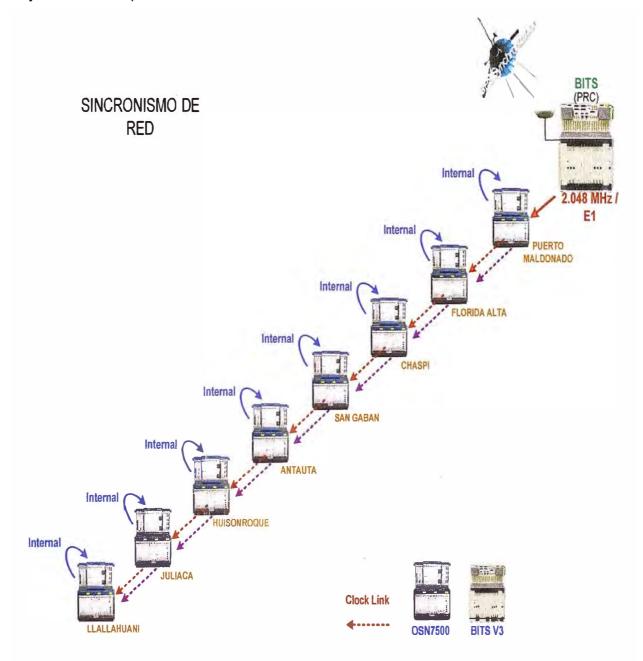


Fig. 3.25 Diagrama de Sincronismo de Red

3.3.11 Equipamiento de sincronismo para la red SDH

La TABLA N° 3.42 nos muestra el detalle del equipamiento del equipo de sincronismo utilizado como fuente PRC, el equipo de sincronismo será instalado en Puerto Maldonado.

TABLA N° 3.42 Equipamiento de Sincronismo para la red.SDH

No	Modelo	Descripción	Puerto Maldonado	Cantidad Total
	Synlock BITS			
1	Equipamiento prin	ncipal		
1.1	Gabinete			
	BT1B1MAS	Rack	1	1
	BT1B3TCA	Gabinete interior N63E (2200x600x600mm)	1	1
1.2	Rack			
	BT-MITU	Interface de mantenimiento y unidad TOD	1	1
	BT-LCIM	Entrada de reloj de línea y unidad de medición	2	2
	BT-SRCU	Receptor de señal de satélite y unidad de reloj de rubidio	2	2
	BT-TSOU	Unidad de salida de señal de tiempo	2	2
	BT1-TODI	Unidad de interface TOD	2	2
2	Sistema receptor	de satélite		7116
	H60X000GPS01	Tarjeta de satélite GPS	2	2
	WM1NANTENNO 0	Antena,1575.42 +/- 1.023MHZ,38dBi,Polarizacion circular derecha,Omni,0W,0Deg-N/Hembra, No rack	2	2
	WM1N0LIGHT00	Pararayos,10KA,200V,1200~2000MHz,300W, N-F/N-F	2	2
	WM1NANTEFD00	Alimentador de antena pararrayos , 20KA, Voltaje residual, 20V,1200~2500MHz,50W,N- F/N-M	2	2
3	Equipamiento adi	cional		
	NL-RJ45-RJ45- 40m	Cable RJ25,40.00m,MP8- IV,CC4P0.5P430U(S),MP8-IV,Expert 2.0	10	10
	SS-DL-SMB-75- 50	COSXISTOU DUM ADONIM ZIZIMIM SIVIDADE-		20
	GM-JMP-1 Cable RF, alambre de aluminio con revestimiento de cobre, 500hm, 13.5mm, 8.7mm, 3.55mm, Black, 1/2-Inch		240	240
	BT-CE	Soporte de Antena GPS	2	2

3.3.12 Condiciones ambientales del equipo de sincronismo: BITS

Las TABLAS N° 3.43, 3.44, 3.45 y 3.46 nos indican las condiciones ambientales que deben cumplir los locales que albergarán los equipos BITS, las condiciones hacen referencia a temperatura, humedad, polvo y sustancias químicas.

a) Requisitos de temperatura y humedad

TABLA N° 3.43 Requisitos de Temperatura y Humedad para el equipo de sincronismo:

BITS

Ter	mperatura	Hume	dad Relativa
Condiciones de operación a largo plazo	Condiciones de operación a corto plazo (dentro de las 24 horas)	Condiciones de operación a largo plazo	Condiciones de operación a corto plazo (dentro de las 24 horas)
5°C-35°C	0°C-45°C	5%–90%	5%–95%

b) Requisitos máximos de polvo en la sala de equipos

TABLA N° 3.44 Requisitos máximos de Polvo en la sala de equipos para el equipo de sincronismo: BITS

Max. Diámetro de Particulas de polvo		0.5	1	3	5
Max. De (partículas/m³)	nsidad	1.4*10 ⁷	7*10 ⁵	2.4*10 ⁵	1.3*10 ⁵

c) Restricción de gases nocivos en la sala de equipos

TABLA N° 3.45 Restricción de gases nocivos en la sala de equipos para el equipo de sincronismo: BITS

Gas	Promedio (mg/m³)	Máximo (mg/m³)	
SO₂	0.2	1.5	
H₂S	0.006	0.03	
NO ₂	0.04	0.15	
NH3	0.05	0.15	
Cl ₂	0.01	0.3	

d) Requerimientos de energía del equipos de sincronismo: BITS

TABLA N° 3.46 Requerimiento de energía del BITS

Ítem	Parámetro
Máximo consumo de energía en el subrack maestro	Aproximadamente 200W
Máximo consumo de energía en el subrack de expansión Menor a 100W	
Tensión de entrada	Voltaje nominal: –48 VDC Rango de voltaje: –40 VDC a –70VDC

3.3.13 Integración con la red existente

La Interconexión de la nueva red Llallahuani (Puno) – Puerto Maldonado (Madre de Dios) con la red existente de la Doral Sur se realizará en el nodo de Llallahuani en Puno (ver Fig. 3.26) y a través de esta última red dorsal se tendrá acceso a la red Dorsal Norte con lo que Puerto Maldonado se podrá interconectar atreves de la fibra óptica costera con la ciudad de Tumbes. La interconexión en el nodo Llallahuani será a nivel de equipamiento SDH con 4 tarjetas SL6401, 2 tarjetas en el nuevo OSN7500 de Llallahuani y 2 tarjetas SL6401 del OSN7500 existente de la antigua red Lima-Llallahuani.

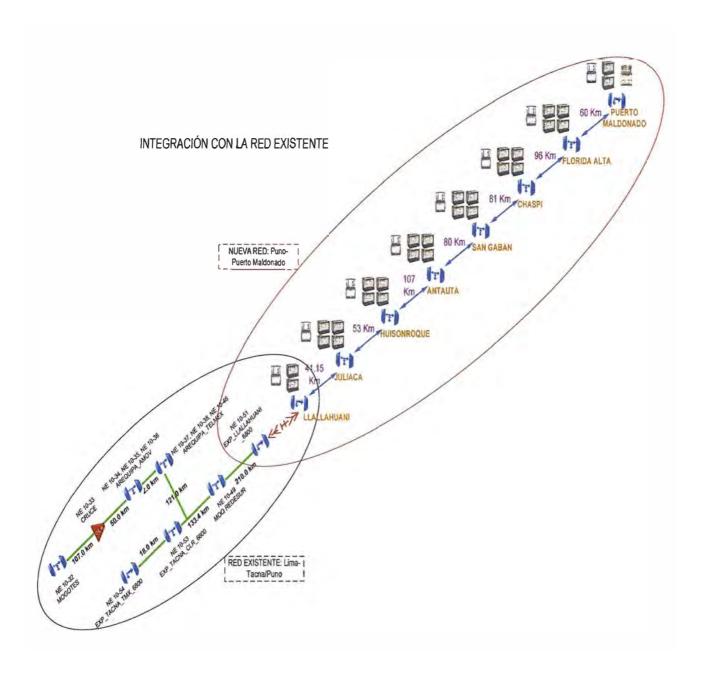


Fig. 3.26 Integración con la red existente

3.3.14 Gestión de la red

La gestión de red involucra el monitoreo y el control de todos los equipos de la red de telecomunicaciones, es muy importante ya que busca evitar que la red llegue a funcionar incorrectamente y además administrar los servicios que se cursan por la red. El proveedor tiene un software de gestión propietario llamado OptiX iManager T2000.

Debido a la importancia de la gestión de red se busca un sistema que posea una redundancia geográfica, es decir el servidor de respaldo estaría ubicado en una lugar geográfico distinto al servidor activo. Para las configuraciones de gestión con redundancia geográfica el proveedor de los equipos ofrece dos tipos de sistemas: El sistema distribuido y el sistema centralizado.

a) Sistema distribuido

El sistema distribuido se compone de un servidor maestro y un esclavo en cada lugar geográfico, siendo el servidor maestro el núcleo del sistema distribuido, mientras que en los servidores esclavos se ejecuta la base de datos y los subsistemas no esenciales del OptiX iManager T2000. De esta manera, el uso del CPU y la memoria en el servidor maestro disminuye y la carga se comparte de manera proporcional entre el servidor maestro y los servidores esclavos. El esquema del sistema distribuido se muestra en la Fig. 3.27.

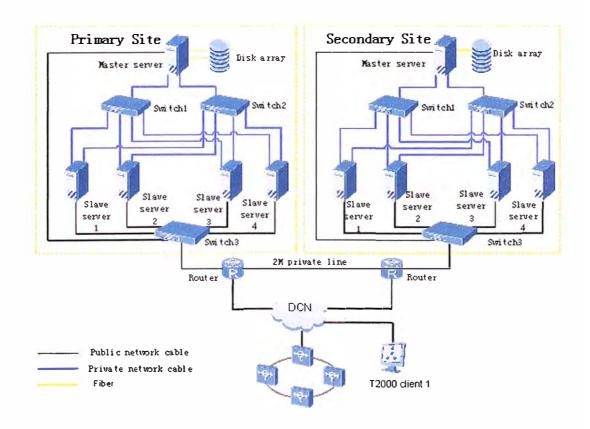


Fig. 3.27 Esquema del Sistema Distribuido de gestión.

b) Sistema centralizado

El sistema centralizado tiene las mismas características generales que los sistemas distribuidos, pero en comparación con estos últimos los sistemas centralizados solo tienen un servidor maestro por sitio y no tiene servidores esclavos, el esquema del sistema centralizado se muestra en la Fig. 3.28.

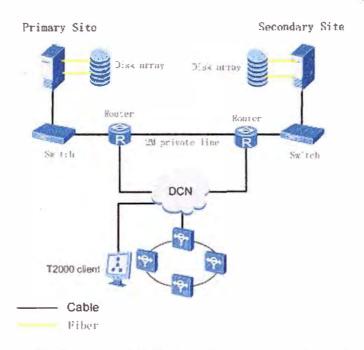


Fig. 3.28 Esquema del Sistema Centralizado de gestión

El presente proyecto usará el mismo sistema de gestión centralizado que se ha implementado y es usado actualmente para la gestión de la Dorsal Sur (Lima-Puno), pues la gestión de los equipos se da por la misma fibra óptica instalada. Los servidores que usaremos son los ya existentes para la Dorsal Sur y la misma plataforma de gestión OptiX iManager T2000. Solo será necesario adquirir las licencias de gestión correspondientes a los nuevos equipos instalados.

c) Cantidad total de NE del sistema de gestión OptiX iManager T2000

La TABLA N° 3.47 muestra la cantidad total de elementos de red soportados, la cantidad de elementos existentes y los la cantidad que se agregará al sistema de gestión.

TABLA N° 3.47 Cantidad total de NE del sistema de gestión OptiX iManager T2000

Equipos	Cantidad total de NE soportados	Cantidad NE usados	Cantidad de NE ha agregar
DWDM	1333	60	16
SDH	1500	32	8

NE=elemento de red

d) Diagrama de distribución de la red de gestión

Para gestionar la nueva red configuraremos los NE de Llallahuani (DWDM y SDH) como gateway, los demás equipos DWDM y SDH se comunicarán con el servidor mediante el gateway. La comunicación de los equipos entre nodo y nodo desde Puerto Maldonado hasta Llallahuani viaja a través de la fibra óptica usando los canales de comunicación OSC (Optical Supervisory Channel) hasta llegar al Gateway de Llallahuani, a partir de allí la comunicación con el servidor se realiza por la red interna del operador (ver Fig. 3.29). Se recomienda implementar una nueva ruta de conexión alterna a la fibra óptica entre los equipos de Puerto Maldonado con el servidor primario y/o secundario para garantizar la redundancia en caso de corte de fibra en la nueva red.

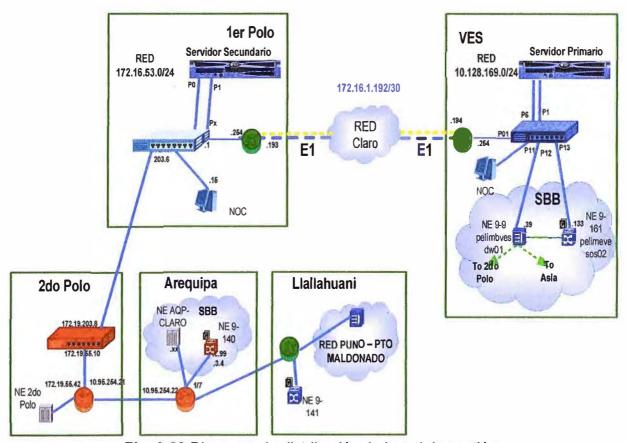


Fig. 3.29 Diagrama de distribución de la red de gestión.

e) Licencias para los nuevos equipos

Como la gestión se realizara por servidores y gestores ya existentes solo será necesario compara licencias para los nuevos equipos a instalar, ver TABLA N° 3.48.

TABLA Nº 3.48 Licencias necesarias para gestionar los nuevos equipos de la red.

No.	Modelo	Descripción	Cantidad Total
1	Licencia	Gestor iManager T2000, Licencia por equipo NE OSN7500 - SDH	8
2	Licencia	Gestor iManager T2000, Licencia por equipo NE OSN6800 - DWDM	28

3.3.15 Listado de tarjetas de repuestos

La TABLA N° 3.49 nos muestra el listado de repuestos realizado por el proveedor en base a la criticidad y función de las tarjetas en el sistema DWDM y SDH.

TABLA Nº 3.49 Listado de tarjetas de repuesto para tarjetas más críticas.

No.	Modelo	Descripción	Cantidad Total
1	SDH: OSN 7500	S	
	EGT212	Tarjeta Gigabit Ethernet 2-Port (1000BASE-LX, 1310-LC)	1
	SL16A(S-16.1,LC)	Tarjeta de interface óptica STM-16	1
	GSCC	Tarjeta de control de sistema y comunicación	2
	D75	Tarjeta de interface eléctrica 32xE1/T1(75 Ohm)	1
	EOW	Tarjeta para el teléfono y otros auxiliares	1
	AUX	Tarjeta de interfaces auxiliares	1
	SXCSA	Tarjeta Super Crossconectora y de sincronismo	1
	EFT8A	Tarjeta Ethernet 8-Port 10M/100M	2
	PQ1A	Tarjeta de proceso de servicios 63xE1 (75ohm)	2
	SL6401(I-64.1,LC)	Tarjeta de interface óptica 1xSTM-64	2
	SUBRACK01	OSN 7500	1
	PIUB	Tarjeta de poder	2
	SLT1(S-1.1,LC)	Tarjeta de interface óptica 12xSTM-1	1
	SL4A(S-4.1,LC)	Tarjeta de interface óptica STM-4	1
2	DWDM: OptiX OSN 6800		
- 1	PIU02	Tarjeta de poder	2
	M40V01	Tarjeta multiplexora de 40 canales con atenuador variable por canal (C_Even,196.00THz~192.10THz,100GHz,LC)	2
	D4001	Tarjeta demultiplexora de 40 canales(C Even,196.00THz~192.10THz,100GHz,Thermal AWG,LC)	1
	FIU01	Tarjeta de interfaz de fibra	1
	OLP03	Tarjeta de protección de línea	1
	SC101	Tarjeta de supervisión óptica unidireccional	1
	SC201	Tarjeta de supervisión óptica bidireccional	1
	OAU103	Tarjeta amplificadora(MAX -4dBm IN and 20dBm OUT,Gain 24~36dB)	1
	AUX02	Tarjeta con interfaces auxiliares	2
	OAU101	Tarjeta amplificadora(MAX 0dBm IN and 20dBm OUT,Gain 20~31dB)	1
	OAU100	Tarjeta amplificadora(MAX 2dBm IN and 18dBm OUT,Gain 16~25.5dB)	1
	OBU101	Tarjeta amplificadora(MAX -4dBm IN and 16dBm OUT,Gain 20dB)	1
	OBU103	Tarjeta amplificadora(MAX -3dBm IN and 20dBm OUT,Gain 23dB)	1
	SCC01	Tarjeta del control del sistema y comunicación	2
	LSXT	Tarjeta de conversión de longitud de onda 10Gbit/s (AFEC,Super WDM,Tunable), 50GHz(800ps/nm, Rx1_PIN, Tx13dBm~+2dBm, LC)(1*XFP-1310-STM64/FC10G/10GbE/OTU2-10km)	2

3.4 Cronograma de implementación del proyecto

La TABLA N° 3.50 nos muestra el cronograma tentativo de los tiempos que nos tomaría implementar el proyecto en sus diferentes etapas y/o nodos.

TABLA N° 3.50 Cronograma referencial de la implementación del proyecto.

cuaciones de cada nodo para la instalación de equipos	20 di
ición de fibras de planta externa	26 di
Medición de PMD/CD/OTDR de la fibras por tramo	16 dí
Recorrido de fibra (puntos de empalme por tramo)	7 día
Elaboración de documentación por tramo	3 día
DWDM/SDH/BITS (energia, ddf, odf)	114 c
Envío de equipos a zona- PUNO (DWDM, SDH, ENERGÍA, ODF, DDF	4 día
Llallahuani	10 dí
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día
Instalación de equipos (incluye cableados y energizados)	2 día
Configuración de software	2 días
Pruebas internas de aceptación de equipos/tarjetas	2 día
Pruebas de aceptación con el cliente	2 día
Juliaca	12 dí
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día
Instalación de equipos (incluye cableados y energizados)	3 día
Configuración de software	2 días
Pruebas internas de aceptación de equipos/tarjetas	3 día:
Pruebas de aceptación con el cliente	2 día:
Huisonroque	12 dí
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día
Instalación de equipos (incluye cableados y energizados)	3 días
Configuración de software	2 día:
Pruebas internas de aceptación de equipos/tarjetas	3 días
Pruebas de aceptación con el cliente	2 días
Antauta	12 día
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día
Instalación de equipos (incluye cableados y energizados)	3 días
Configuración de software	2 días
Pruebas internas de aceptación de equipos/tarjetas	3 días
Pruebas de aceptación con el cliente	2 día
San Gabán	12 día
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día

(Continúa en la siguiente hoja)

Instalación de equipos (incluye cableados y energizados)	3 días
Configuración de software	2 días
Pruebas internas de aceptación de equipos/tarjetas	3 días
Pruebas de aceptación con el cliente	2 días
Chaspi	12 días
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día
Instalación de equipos (incluye cableados y energizados)	3 días
Configuración de software	2 días
Pruebas internas de aceptación de equipos/tarjetas	3 días
Pruebas de aceptación con el cliente	2 días
Florida Alta	12 días
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día
Instalación de equipos (incluye cableados y energizados)	3 días
Configuración de software	2 días
Pruebas internas de aceptación de equipos/tarjetas	3 días
Pruebas de aceptación con el cliente	2 días
Puerto Maldonado	12 días
Envío de equipos a sitio	1 día
Revisión de equipos y verificación de artículos	1 día
Instalación de equipos (incluye cableados y energizados)	3 días
Configuración de software	2 días
Pruebas internas de aceptación de equipos/tarjetas	3 días
Pruebas de aceptación con el cliente	2 días
Pruebas de sistema	16 días
Prueba enlace Llallahuani - Juliaca	2 días
Prueba enlace Llallahuani - Puerto Maldonado	2 días
Prueba enlace Juliaca - Huisonroque	2 días
Prueba enlace Huisonroque - Antauta	2 días
Prueba enlace Antauta - San Gabán	2 días
Prueba enlace San Gabán - Chaspi	2 días
Prueba enlace Chaspi - Florida Alta	2 días
Prueba enlace Florida Alta - Puerto Maldonado	2 días

DÍAS TOTALES PARA LA IMPLEMENTACIÓN

160 dias

Nota: La cantidad de días para la implementación del proyecto puede variar de acuerdo a la cantidad de grupos de trabajo que se tenga y a los trabajos en paralelo que se puedan ejecutar. Para este caso se ha considerado un grupo de trabajo de 3 personas.

3.5 Costo aproximado de los equipos a implementar

Los gastos de capital (Capital Expenditures - CAPEX) son erogaciones o inversiones de capital que generan beneficios. Una Capex se realiza cuando un negocio invierte tanto en la compra de un activo fijo como para añadir valor a un activo existente con una vida útil que se extiende más allá del año imponible. Los CAPEX son utilizados por una compañía para adquirir o mejorar los activos fijos tales como equipamientos, propiedades o edificios industriales.

Los gatos de capital que involucran la implementación de esta nueva red de telecomunicaciones hacen referencia al aumento de la capacidad de la red en el sur del país en consecuencia este proyecto puede ser visto en términos económicos como una expansión de la red ya existente (CAPEX).

Cabe mencionar que los gastos de operación y mantenimiento de la red no serán tratados en el presente informe.

A continuación se presenta el costo total del grueso de los equipos necesarios para la implementación de la red, los cuales han sido divididos en 5 partes: costo aproximado del equipamiento DWDM (ver TABLA N° 3.51), costo aproximado del equipamiento SDH (ver TABLA N° 3.52), costo aproximado del equipamiento de sincronismo (ver TABLA N° 3.53), costo aproximado del equipamiento de Reflejos: ODF, DDF y patch panels (ver TABLA N° 3.54) y costo aproximado del equipamiento de energía (ver TABLA N° 3.55). Los precios corresponden a cotizaciones actualizadas al mes de enero del 2012.

3.5.1 Costo aproximado del equipamiento DWDM

TABLA N° 3.51 Costo aproximado del equipamiento DWDM

Nodo	Descripción	Cantidad	Precio (Dólar USA)		
Equipamiento DV	Equipamiento DWDM				
Llallahuani	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Juliaca.	1	49,876.30		
Juliaca	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Llallahuani.	1	36,801.14		
Juliaca	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Huisonroque.	1	36,801.14		
Huisonroque	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Juliaca.	1	48,801.31		
Huisonroque	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Antauta.	1	48,801.31		
Antauta	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Huisonroque.	1	47,992.77		
Antauta	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección San Gabán.	1	47,992.77		
San Gabán	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Antauta.	1	47,107.88		
San Gabán	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Chaspi.	1	47,107.88		
Chaspi	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección San Gabán.	1	47,241.96		
Chapi	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Florida Alta.	1	47,241.96		
Florida Alta	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Chaspi.	1	47,284.66		
Florida Alta	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dir. Puerto Maldonado.	1	47,284.66		
Puerto Maldonado TOTAL EQUIPAN	Un rack (gabinete) contiene dos subracks OSN6800, incluye licencia de software, dirección Florida Alta.	1	49,876.30 650,212.04		

3.5.2 Costo aproximado del equipamiento SDH

TABLA N° 3.52 Costo aproximado del equipamiento SDH.

Nodo	Descripción	Cantidad	Precio (Dólar USA)			
Equipamiento SDH	Equipamiento SDH					
Llallahuani	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	81,399.67			
Llallahuani	Un rack (gabinete) contiene un subrack: OSN3500, incluye licencia de software	1	39,238.90			
Juliaca	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	99,217.11			
Huisonroque	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	98,579.39			
Antauta	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	100,506.39			
San Gabán	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	101,610.13			
Chaspi	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	97,290.11			
Florida Alta	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	97,290.11			
Puerto Maldonado	Un rack (gabinete) contiene un subrack: OSN7500, incluye licencia de software	1	76,882.52			
TOTAL EQUIPAMIE	NTO SDH	Talk faktiy	752,775.43			

3.5.3 Costo aproximado del equipamiento de sincronismo

TABLA Nº 3.53 Costo aproximado del equipamiento de Sincronismo.

Nodo	Descripción	Cantidad	Precio (Dólar USA)
Equipamiento BITS			
Puerto Maldonado	Un rack (gabinete) contiene un subrack: BITS V3, incluye licencia de software	1	39,405.18
TOTAL EQUIPAMIENTO BITS			39,405.18

3.5.4 Costo aproximado del equipamiento de reflejos: ODF, DDF y patch panels

TABLA N° 3.54 Costo aproximado del equipamiento de Reflejos: ODF, DDF y patch panels.

Nodo	Descripción	Cantidad	Precio (Dólar USA)	
Equipamiento Refle	Equipamiento Reflejos de puertos de tarjetas eléctricas y ópticas			
	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	14	21,231.40	
Llallahuani	ODF: Optical Ditribution Frame-Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	2	1,896.34	
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00	
	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	2	6,662.23	
Juliaca	ODF:Optical Ditribution Frame- Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	1	948.17	
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00	
	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	2	6,662.23	
Huisonroque	ODF: Optical Ditribution Frame- Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	1	948.17	
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00	
_	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	4	9,089.58	
Antauta	ODF: Optical Ditribution Frame- Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	1	948.17	
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00	
	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	4	9,089.58	
San Gabán	ODF: Optical Ditribution Frame- Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	1	948.17	
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00	
	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	2	6,662.23	
Chaspi	ODF: Optical Ditribution Frame- Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	1	948.17	
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00	

(Continúa en la siguiente hoja)

Nodo	Descripción	Cantidad	Precio (Dólar USA)
	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	2	6,662.23
Florida Alta	ODF: Optical Ditribution Frame- Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	1	948.17
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00
Puerto M aldonado	DDF: Digital Ditribution Frame- Reflejos de puertos eléctricos E1, 75 ohm + gabinete	2	6,662.23
	ODF: Optical Ditribution Frame-Reflejos de puertos ópticos STM1, GiEth, 10 GiEth	1	948.17
	Patch Panel RJ45: Panel de reflejo 120 ohm, conectores RJ45, categoría 5e de 24 puertos	1	126.00
TOTAL EQUIPAMIENTO REFLEJOS (viene del cuadro anterior)			82,265.24

3.5.5 Costo aproximado del equipamiento de energía

TABLA Nº 3.55 Costo aproximado del equipamiento de Energía.

Nodo	Descripción	Cantidad	Precio (Dólar USA)
Equipamiento de E	Energía		
Llallahuani	Rectificador Eltek Valere: Sistemas Indoor Tipo 1 Flatpack 2 24 Kw y 2 Bancos de baterías de 200Ah	1	13,128.41
Juliaca	Rectificador Eltek Valere: Sistemas Indoor Tipo 2 Flatpack 2 32 Kw y 2 Bancos de baterías de 200Ah	1	12,401.00
Huisonroque	Rectificador Eltek Valere: Sistemas Indoor Tipo 2 Flatpack 2 32 Kw y 2 Bancos de baterías de 200Ah	1	12,401.00
Antauta	Rectificador Eltek Valere: Sistemas Indoor Tipo 3 Flatpack 2 32 Kw y 3 Bancos de baterías de 200Ah	1	11,470.40
San Gabán	Rectificador Eltek Valere: Sistemas Indoor Tipo 3 Flatpack 2 32 Kw y 3 Bancos de baterías de 200Ah	1	11,470.40
Chaspi	Rectificador Eltek Valere: Sistemas Indoor Tipo 2 Flatpack 2 32 Kw y 2 Bancos de baterías de 200Ah	1	12,401.00
Florida Alta	Rectificador Eltek Valere: Sistemas Indoor Tipo 2 Flatpack 2 32 Kw y 2 Bancos de baterías de 200Ah	1	12,401.00
Puerto Maldonado	Rectificador Eltek Valere: Sistemas Indoor Tipo 4 Flatpack 2 24 Kw y 2 Bancos de baterías de 200Ah	1	11,667.60
TOTAL EQUIPAN	NENTO ENERGÍA		97,340.81

3.5.6 Costo total aproximado del equipamiento

La TABLA N° 3.56 muestra el resumen de costos de todo el equipamiento principal a usarse en la implementación del proyecto.

TABLA N° 3.56 Costo total aproximado.

Descripción del costo	Precio (Dólar USA)
COSTO TOTAL EQUIPAMIENTO SDH	752,775.43
COSTO TOTAL EQUIPAMIENTO DWDM	650,212.04
TOTAL EQUIPAMIENTO REFLEJOS	82,265.24
TOTAL EQUIPAMIENTO ENERGÍA	97,340.81
TOTAL EQUIPAMIENTO BITS	184,685.99
PRECIO TOTAL	1,767,279.51

CONCLUSIONES Y RECOMENDACIONES

- La propuesta de diseño e implementación del proyecto "Servicio de Banda Ancha Rural Juliaca - Puerto Maldonado" resulta viable ya es subvencionado por el organismo estatal FITEL por el monto de 8'910,344.00 \$USD el cual cubre gran parte de la inversión inicial del proyecto (parte de equipos).
- 2. De acuerdo al estudio realizado por el instituto "Cuanto?" se puede apreciar que la puesta en marcha del proyecto tiene una gran expectativa para el desarrollo económico y al mismo tiempo una mejora en la calidad de vida de los pobladores de las zonas involucradas. Con esto el FITEL estaría contribuyendo a satisfacer los objetivos que tiene como institución.
- 3. Respecto a la teoría expuesta y a los diseños de la red por software y de manera manual podemos afirmar que la tasa de error (BER) caracteriza a un enlace cualitativamente, como es muy complejo de determinar en cada tramo, se toma la alternativa de calcular un parámetro auxiliar directamente relacionado con el BER que es la OSNR que es mucho más fácil de calcular. La OSNR sirve para caracterizar cuantitativa y cualitativamente cualquier enlace de transmisión óptico. Las características iniciales de diseño fueron proporcionadas por el operador de telecomunicaciones teniendo en consideración que en ese momento aún no se contaba con la fibra óptica de planta externa y que actualmente está instalada (Octubre 2012). Cabe resaltar que los parámetros considerados como atenuación, OSNR, etc. pueden variar ligeramente para lo cual el proveedor de equipos se compromete a brindar las soluciones que estén a su alcance.
- Los valores de OSNR y potencias ópticas calculadas para el proyecto hacen factible su implementación, pues están dentro de los rangos del diseño de acuerdo al hardware.
- 5. En relación a la instalación del hardware DWDM y SDH para la habilitación de una red troncal de fácil expansión y muy flexible. Los nodos primarios proveerán comunicaciones a nodos secundarios y estaciones terminales mediante enlaces inalámbricos. Dichos enlaces de radio proveerán servicios de comunicaciones de banda ancha que permitirán brindar servicios de voz y datos a bajo costo a nivel

local, además de posibilitar la integración de las localidades consideradas en el proyecto al resto del país y el mundo mediante acceso a Internet y mediante la interconexión con la red de servicios de telefonía. De esta manera el proyecto podrá contribuir a la reducción de la brecha digital en las regiones de Madre de Dios y Puno a través de la provisión de servicios básicos de telecomunicaciones (telefonía fija, telefonía pública y/o acceso a Internet de banda ancha) a 370 localidades.

- 6. Al final de la implementación se correrán pruebas de sistema de los enlaces de 10 Giga Ethernet y STM-64 de punto a punto a lo largo de la red. Con lo que se demostrará la calidad y confiabilidad del diseño.
- 7. El Tiempo de implementación del proyecto depende no solo de la cantidad de personal involucrado, grupos de trabajo, el tiempo de entrega de equipos sino de factores externos y que no se controlan como el clima y los eventos sociales que se puedan presentar en las diversas localidades ubicadas en la ruta de la red troncal y que finalmente impidan el libre desplazamiento del personal, equipamiento y materiales.
- 8. Finalmente se recomienda establecer un programa de capacitación a los pobladores en el uso de computadoras y celulares para una mejor penetración y uso de los servicios que se ofrecerán en la zona del proyecto y así poder recortar la brecha digital existente.

ANEXO A OYECTOS "BANDA ANCHA RURAL JULIACA – RURAL SAN GABÁN – PUERTO MALDONADO"

				W				RVICIO:		
Nro.	CodiNE/2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA	TELEFONÍA ABONADOS	INTERNET	PROYECTO INTEGRADO
1	1702040007	MADRE DE DIOS	MANU	HUEPETUHE	BARRANCA	NO	SI		SI	SAN GABÁN - PUERTO MALDONADO
2	1702040006	MADRE DE DIOS	MANU	HUEPETUHE	CAYCHIHUE	NO		SI	SI	SAN GABÁN - PUERTO MALDONADO
3	1702040001	MADRE DE DIOS	MANU	HUEPETUHE	HUEPETUH E	SI		SI	SI	SAN GABÁN - PUERTO MALDONADO
4	1702040010	MADRE DE DIOS	MANU	HUEPETUHE	KIMIRI	NO	SI			SAN GABÁN - PUERTO MALDONADO
5	1702040003	MADRE DE DIOS	MANU	HUEPETUHE	LIBERTAD	NO	SI			SAN GABÁN - PUERTO MALDONADO
6	1702040005	MADRE DE DIOS	MANU	HUEPETUHE	SANTA INES	NO	SI			SAN GABÁN - PUERTO MALDONADO
7	1702030001	MADRE DE DIOS	MANU	MADRE DE DIOS	BOCA COLORADO	SI		SI	SI	SAN GABÁN - PUERTO MALDONADO
8	1702030010	MADRE DE DIOS	MANU	MADRE DE DIOS	BOCA PUKIRI	NO	SI			SAN GABÁN - PUERTO MALDONADO
9	1702030015	MADRE DE DIOS	MANU	MADRE DE DIOS	HUASOROR QUITO	NO	SI			SAN GABAN - PUERTO MALDONADO
10	1702030007	MADRE DE DIOS	MANU	MADRE DE DIOS	MALVINAS	NO	SI			SAN GABÁN - PUERTO MALDONADO
11	1702030003	MADRE DE DIOS	MANU	MADRE DE DIOS	PACAL GUACAMAY O	NO		SI	SI	SAN GABÁN - PUERTO MALDONADO
12	1702030013	MADRE DE DIOS	MANU	MADRE DE DIOS	SAN JOSÉ DE CARENE	NO	SI			SAN GABÁN - PUERTO MALDONADO
13	1702030005	MADRE DE DIOS	MANU	MADRE DE DIOS	SAN JUAN CHICO	NO	SI			SAN GABÁN - PUERTO MALDONADO
14	1702030004	MADRE DE DIOS	MANU	MADRE DE DIOS	SAN JUAN GRANDE	NO		SI	SI	SAN GABÁN - PUERTO MALDONADO
15	1701020014	MADRE DE DIOS	TAMBOP ATA	INAMBARI	ALTO 2 DE MAYO	NO	SI			SAN GABÁN - PUERTO MALDONADO
16	1701020004	MADRE DE DIOS	TAMBOP ATA	INAMBARI	ALTO LIBERTAD	NO	SI			SAN GABÁN - PUERTO MALDONADO
17	1701020015	MADRE DE DIOS	TAMBOP ATA	INAMBARI	DOS DE MAYO	NO	SI			SAN GABÁN - PUERTO MALDONADO
18	1701020003	MADRE DE DIOS	TAMBOP ATA	INAMBARI	JAYAVE	NO	SI			SAN GABÁN - PUERTO MALDONADO
19	1701020001	MADRE DE DIOS	TAMBOP ATA	INAMBARI	MAZUKO	SI		SI	SI	SAN GABÁN - PUERTO MALDONADO
20	1701020017	MADRE DE DIOS	TAMBOP ATA	INAMBARI	PALMERA	NO	SI			SAN GABÁN - PUERTO MALDONADO
21	1701020008	MADRE DE DIOS	TAMBOP ATA	INAMBARI	PRIMAVERA ALTA	NO	SI			SAN GABÁN - PUERTO MALDONADO

Property.		T 7 7 8 8 9 7		processing a contract.	year			RVICIOS		
Nro.	Codinei2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
22	1701020016	MADRE DE DIOS	TAMBOP ATA	INAMBARI	PUERTO MAZUKO	NO	SI		22	SAN GABAN - PUERTO MALDONADO
23	1701020010	MADRE DE DIOS	TAMBOP ATA	INAMBARI	SANTA RITA ALTA	NO	SI			SAN GABÁN - PUERTO MALDONADO
24	1701020009	MADRE DE DIOS	TAMBOP ATA	INAMBARI	SANTA RITA BAJA	NO	SI			SAN GABÁN - PUERTO MALDONADO
25	1701020011	MADRE DE DIOS	TAMBOP ATA	INAMBARI	SANTA ROSA	NO		SI	SI	SAN GABÁN - PUERTO MALDONADO
26	1701020002	MADRE DE DIOS	TAMBOP ATA	INAMBARI	SARAYACU	NO	SI			SAN GABÁN - PUERTO MALDONADO
27	1701020013	MADRE DE DIOS	TAMBOP ATA	INAMBARI	VILLA SANTIAGO	NO	SI			SAN GABÁN - PUERTO MALDONADO
28	1701020006	MADRE DE DIOS	TAMBOP ATA	INAMBARI	VIRGEN DE LA CANDELARI A	NO	SI			SAN GABÁN - PUERTO MALDONADO
29	1701040022	MADRE DE DIOS	TAMBOP ATA	LABERINTO	FLORIDA ALTA	NO		SI	SI	SAN GABÁN - PUERTO MALDONADO
30	1701040021	MADRE DE DIOS	TAMBOP ATA	LABERINTO	FLORIDA BAJA	NO	SI			SAN GABÁN - PUERTO MALDONADO
31	1701040012	MADRE DE DIOS	TAMBOP ATA	LABERINTO	FORTUNA	NO	SI			SAN GABÁN - PUERTO MALDONADO
32	1701040007	MADRE DE DIOS	TAMBOP ATA	LABERINTO	INAMBARIL LO	NO	SI			SAN GABÁN - PUERTO MALDONADO
33	1701040017	MADRE DE DIOS	TAMBOP ATA	LABERINTO	LA MERCED	NO	SI			SAN GABÁN - PUERTO MALDONADO
34	1701040014	MADRE DE DIOS	TAMBOP ATA	LABERINTO	PASTORA GRANDE	NO	SI			SAN GABÁN - PUERTO MALDONADO
35	1701040001	MADRE DE DIOS	TAMBOP ATA	LABERINTO	PUERTO ROSARIO DE LABERINTO	SI		SI	SI	SAN GABÁN - PUERTO MALDONADO
36	1701040018	MADRE DE DIOS	TAMBOP ATA	LABERINTO	SAN BERNARDO	NO	SI			SAN GABÁN - PUERTO MALDONADO
37	1701040015	MADRE DE DIOS	TAMBOP ATA	LABERINTO	SAN JACINTO	NO	SI			SAN GABÁN - PUERTO MALDONADO
38	1701040024	MADRE DE DIOS	TAMBOP ATA	LABERINTO	SAN JUAN	NO	SI			SAN GABÁN - PUERTO MALDONADO
39	1701049001	MADRE DE DIOS	TAMBOP ATA	LABERINTO	SANTO DOMINGO	NO	SI			SAN GABÁN - PUERTO MALDONADO
40	1701040020	MADRE DE DIOS	TAMBOP ATA	LABERINTO	TAHUANTIN SUYO	NO	SI			SAN GABÁN - PUERTO MALDONADO
41	1701040005	MADRE DE DIOS	TAMBOP ATA	LABERINTO	ТИМІ	NO	SI			SAN GABÁN - PUERTO MALDONADO

	SERVICIOS A BRINDAR									
Nro.	CodiNE(2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIBAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
42	1701040025	MADRE DE DIOS	TAMBOP ATA	LABERINTO	UNION PROGRESO	NO	SI			SAN GABÁN - PUERTO MALDONADO
43	1701040019	MADRE DE DIOS	TAMBOP ATA	LABERINTO	VÍCTOR RAÚL HAYA DE LA TORRE	NO	SI			SAN GABÁN - PUERTO MALDONADO
44	1701040023	MADRE DE DIOS	TAMBOP ATA	LABERINTO	VÍRGENES DEL SOL	NO	SI			SAN GABAN - PUERTO MALDONADO
45	1701030019	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	ALEGRÍA	NO		SI	SI	SAN GABÁN - PUERTO MALDONADO
46	1701030036	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	ALTO LOBOYOC	NO	SI			SAN GABAN - PUERTO MALDONADO
47	1701030011	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	BAJO ALEGRÍA	NO	SI			SAN GABÁN - PUERTO MALDONADO
48	1701030042	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	BELLO HORIZONTE	NO	SI			SAN GABÁN - PUERTO MALDONADO
49	1701030039	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	CACHUELA OVIEDO	NO	SI			SAN GABAN - PUERTO MALDONADO
50	1701030007	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	CAFETAL	NO	SI			SAN GABÁN - PUERTO MALDONADO
51	1701030026	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	COLPAYOC	NO	SI			SAN GABÁN - PUERTO MALDONADO
52	1701030013	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	FRAY MARTIN	NO	SI			SAN GABAN - PUERTO MALDONADO
53	1701030001	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	LAS PIEDRAS	SI		SI	SI	SAN GABÁN - PUERTO MALDONADO
54	1701030006	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	MAVILA	NO		SI	SI	SAN GABAN - PUERTO MALDONADO
55	1701030047	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	RÍMAC O PARQUE EL TRIUNFO	NO	SI			SAN GABÁN - PUERTO MALDONADO
56	1701030028	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	SAN FRANCISCO	NO	SI			SAN GABÁN - PUERTO MALDONADO
57	1701030046	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	SAN FRANCISCO MADRE DE DIOS	NO	SI			SAN GABÁN - PUERTO MALDONADO
58	1701030041	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	SANTA TERESA	NO	SI			SAN GABÁN - PUERTO MALDONADO
59	1701030029	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	SUDADERO	NO	SI		SI	SAN GABÁN - PUERTO MALDONADO
60	1701030021	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	TRIUNFO	NO	SI			SAN GABÁN - PUERTO MALDONADO
61	1701030020	MADRE DE DIOS	TAMBOP ATA	LAS PIEDRAS	VÍRGENES DEL CARMEN	NO	SI			SAN GABÁN - PUERTO MALDONADO

		10						RVICIOS		
Nro.	CodiNEI2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO INTEGRADO
62	1701010007	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	ALTA CACHUELA	NO	SI	•		SAN GABÁN - PUERTO MALDONADO
63	1701010042	MADRE DE DIOS	TAMBOP ATA	ТАМВОРАТА	ALTO LOERO	NO	SI			SAN GABÁN - PUERTO MALDONADO
64	1701010022	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	BAJO MADRE DE DIOS	NO	SI			SAN GABÁN - PUERTO MALDONADO
65	1701010043	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	BAJO MADRE DE DIOS IZQUIERDA	NO	SI			SAN GABÁN - PUERTO MALDONADO
66	1701010037	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	BALTIMORI	NO	SI			SAN GABÁN - PUERTO MALDONADO
67	1701010008	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	CENTRO CACHUELA	NO	SI			SAN GABÁN - PUERTO MALDONADO
68	1701010020	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	CENTRO PASTORA	NO	SI			SAN GABÁN - PUERTO MALDONADO
69	1701010032	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	CHONTA	NO	SI			SAN GABÁN - PUERTO MALDONADO
70	1701010019	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	CHORRILLO S	NO	SI			SAN GABÁN - PUERTO MALDONADO
71	1701010023	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	EL CASTAÑAL	NO	SI			SAN GABÁN - PUERTO MALDONADO
72	1701010012	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	EL PILAR	NO	SI			SAN GABÁN - PUERTO MALDONADO
73	1701010006	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	EL PRADO	NO	SI			SAN GABÁN - PUERTO MALDONADO
74	1701010024	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	FITZCARRA LD	NO	SI		SI	SAN GABÁN - PUERTO MALDONADO
75	1701010047	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	ISLA ROLIN	NO	SI			SAN GABÁN - PUERTO MALDONADO
76	1701010040	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	IZUYANA	NO	SI			SAN GABÁN - PUERTO MALDONADO
77	1701010045	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	JORGE CHÁVEZ	NO	SI			SAN GABÁN - PUERTO MALDONADO
78	1701010021	MADRE DE DIOS	TAMBOP ATA	ТАМВОРАТА	LA JOYA	NO		SI	SI	SAN GABÁN - PUERTO MALDONADO
79	1701010010	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	LA PASTORA	NO	SI	SI	SI	SAN GABÁN - PUERTO MALDONADO
80	1701010034	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	LA TORRE	NO	SI			SAN GABÁN - PUERTO MALDONADO
81	1701010041	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	LOERO	NO	SI			SAN GABAN - PUERTO MALDONADO
82	1701010005	MADRE DE DIOS	TAMBOP ATA	ТАМВОРАТА	OTILIA	NO	SI			SAN GABÁN - PUERTO MALDONADO

					***			RVICIOS		
Nro,	CodiNEi2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO INTEGRADO
83	1701010004	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	PASTORA GRANDE	NO	SI	2.50		SAN GABAN - PUERTO MALDONADO
84	1701010009	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	ROMPEOLA S	NO	SI			SAN GABÁN - PUERTO MALDONADO
85	1701010035	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	SACHAVAC AYOC	NO	SI			SAN GABÁN - PUERTO MALDONADO
86	1701010027	MADRE DE DIOS	TAMBOP ATA	ТАМВОРАТА	SAN BERNARDO	NO	SI		SI	SAN GABAN - PUERTO MALDONADO
87	1701010038	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	SAN JACINTO	NO	SI			SAN GABAN - PUERTO MALDONADO
88	1701010025	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	TENIENTE ACEVEDO	NO	SI			SAN GABÁN - PUERTO MALDONADO
89	1701010018	MADRE DE DIOS	TAMBOP ATA	TAMBOPATA	TÚPAC AMARU	NO	SI			SAN GABÁN - PUERTO MALDONADO
90	2101100004	PUNO	PUNO	PAUCARCOLL A	MORO	NO	SI			JULIACA - SAN GABÁN
91	2102010045	PUNO	AZÁNGA RO	AZÁNGARO	SEGUNDO SAHUACASI	NO	SI			JULIACA - SAN GABÁN
92	2102020009	PUNO	AZÁNGA RO	ACHAYA	YUCAJACHI	NO	SI			JULIACA - SAN GABÁN
93	2102020017	PUNO	AZÁNGA RO	ACHAYA	CHEJCHAM OCCO	NO	SI			JULIACA - SAN GABÁN
94	2102020019	PUNO	AZÁNGA RO	ACHAYA	ACCOPUNC O	NO	SI			JULIACA - SAN GABÁN
95	2102020025	PUNO	AZÁNGA RO	ACHAYA	HUAYRAPA TA	NO	SI			JULIACA - SAN GABÁN
96	2102020029	PUNO	AZÁNGA RO	ACHAYA	CUTIPATA	NO	SI			JULIACA - SAN GABÁN
97	2102020034	PUNO	AZÁNGA RO	ACHAYA	PACARAQUI N	NO	SI			JULIACA - SAN GABÁN
98	2102030026	PUNO	AZÁNGA RO	ARAPA	PASINCHAN I	NO	SI			JULIACA - SAN GABÁN
99	2102030037	PUNO	AZÂNGA RO	ARAPA	PATAPAMP A	NO	SI			JULIACA - SAN GABÁN
100	2102030038	PUNO	AZÁNGA RO	ARAPA	OCORO	NO	SI			JULIACA - SAN GABÁN
101	2102030039	PUNO	AZÁNGA RO	ARAPA	GAMAGAMA	NO	SI			JULIACA - SAN GABÁN
102	2102030040	PUNO	AZÁNGA RO	ARAPA	SULLATA	NO	SI			JULIACA - SAN GABÁN
103	2102030042	PUNO	AZÁNGA RO	ARAPA	PUCCAMOC	NO	SI		SI	JULIACA - SAN GABÁN
104	2102030047	PUNO	AZÁNGA RO	ARAPA	BALSARUMI	NO	SI			JULIACA - SAN GABÁN
105	2102030050	PUNO	AZÁNGA RO	ARAPA	CHINGORA	NO	SI			JULIACA - SAN GABÁN
106	2102030052	PUNO	AZÁNGA RO	ARAPA	LLACHARA PI CHICO	NO	SI		SI	JULIACA - SAN GABÁN
107	2102030054	PUNO	AZÁNGA RO	ARAPA	TICARA	NO	SI			JULIACA - SAN GABÁN
108	2102050003	PUNO	AZÁNGA RO	CAMINACA	SAN SEBASTIÁN	NO	SI		SI	JULIACA - SAN GABÁN
109	2102050005	PUNO	AZÁNGA RO	CAMINACA	COLLANA COLLPAPA MPA	NO	SI		SI	JULIACA - SAN GABÁN

	R Z	DOM:	M			120		RVICIOS		
Nro.	CodiNEI2002	DEPARTAME	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA	TELEFONÍA	INTERNET	PROYECTO INTEGRADO
110	2102050009	PUNO	AZÁNGA RO	CAMINACA	MOROPACC O	NO	SI	22.114.17.19.2	SI	JULIACA - SAN GABÁN
111	2102050010	PUNO	AZÁNGA RO	CAMINACA	PILHUANI SAÑAMAYO	NO	SI			JULIACA - SAN GABÁN
112	2102050014	PUNO	AZÁNGA RO	CAMINACA	VILLAFLOR	NO	SI		SI	JULIACA - SAN GABÁN
113	2102050015	PUNO	AZÁNGA RO	CAMINACA	PILLUJO	NO	SI		SI	JULIACA - SAN GABÁN
114	2102050018	PUNO	AZÁNGA RO	CAMINACA	SANTA BARBARÁ	NO	SI		SI	JULIACA - SAN GABÁN
115	2102050019	PUNO	AZÁNGA RO	CAMINACA	AMPICHA	NO	SI			JULIACA - SAN GABÁN
116	2102050020	PUNO	AZÁNGA RO	CAMINACA	SAN BARTOLOM É	NO	SI			JULIACA - SAN GABÁN
117	2102050022	PUNO	AZÁNGA RO	CAMINACA	PAMPA	NO	SI		SI	JULIACA - SAN GABÁN
118	2102050025	PUNO	AZÁNGA RO	CAMINACA	СНОСАСНА	NO	SI			JULIACA - SAN GABÁN
119	2102100018	PUNO	AZÁNGA RO	SAMAN	ISILLUA	NO	SI		SI	JULIACA - SAN GABÁN
120	2102100019	PUNO	AZÁNGA RO	SAMAN	ICALLO	NO	SI		SI	JULIACA - SAN GABÁN
121	2102110002	PUNO	AZÁNGA RO	SAN ANTÓN	VILLA SAN ANTÓN	NO		SI	SI	JULIACA - SAN GABÁN
122	2102110056	PUNO	AZÁNGA RO	SAN ANTÓN	PAMPUYO	NO	SI			JULIACA - SAN GABÁN
123	2102130063	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	CHACAMAR CA	NO	SI			JULIACA - SAN GABÁN
124	2103010059	PUNO	CARABA YA	MACUSANI	PINAYA MOCCO	NO	SI			JULIACA - SAN GABÁN
125	2103090026	PUNO	CARABA YA	SAN GABÁN	CASA HUIRI	NO	SI			JULIACA - SAN GABÁN
126	2106050021	PUNO	HUANCA NÉ	PUSI	CACAMARA	NO	SI		SI	JULIACA - SAN GABÁN
127	2106050031	PUNO	HUANCA NÉ	PUSI	HUAÑINGU RA	NO	SI			JULIACA - SAN GABÁN
128	2106070005	PUNO	HUANCA NÉ	TARACO	PULTUCANI	NO	SI			JULIACA - SAN GABÁN
129	2106070010	PUNO	HUANCA NÉ	TARACO	KEOLLAMIN TEJEMORI	NO	SI			JULIACA - SAN GABÁN
130	2106070013	PUNO	HUANCA NÉ	TARACO	TASAR	NO	SI		SI	JULIACA - SAN GABÁN
131	2106070015	PUNO	HUANCA NÉ	TARACO	CHAPINAHU RO	NO	SI			JULIACA - SAN GABÁN
132	2106070018	PUNO	HUANCA NÉ	TARACO	TEQUELAQ UE	NO	SI			JULIACA - SAN GABÁN
133	2106070021	PUNO	HUANCA NÉ	TARACO	HUITO	NO	SI			JULIACA - SAN GABÁN
134	2107030027	PUNO	LAMPA	CALAPUJA	SARA	NO	SI		SI	JULIACA - SAN GABÁN
135	2107040004	PUNO	LAMPA	NICASIO	CHULLUMPI CHARAMIC AYA	NO	SI			JULIACA - SAN GABÁN
136	2107040009	PUNO	LAMPA	NICASIO	LARKAS	NO	SI			JULIACA - SAN GABÁN
137	2111010011	PUNO	SAN ROMÁN	JULIACA	AYABACAS SECTOR SUTUCA	NO	SI			JULIACA - SAN GABÁN
138	2111010018	PUNO	SAN ROMÁN	JULIACA	COCHA QUINRAY (PIÑANCUC HO)	NO	SI			JULIACA - SAN GABÁN

80							SERVICIOS A BRINDAR				
Nro.	CodiNEI2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO INTEGRADO	
139	2111010024	PUNO	SAN ROMÁN	JULIACA	ISLA POSTE PATA (PATAS PATAS)	NO	SI	*	ings, mari	JULIACA - SAN GABÁN	
140	2111010031	PUNO	SAN ROMÁN	JULIACA	ISCURÍ CORIHUATA	NO			SI	JULIACA - SAN GABÁN	
141	2111010034	PUNO	SAN ROMÁN	JULIACA	ESQUEN ANEXO	NO	SI			JULIACA - SAN GABÁN	
142	2111010041	PUNO	SAN ROMÁN	JULIACA	COLLANA JULIACA	NO	SI			JULIACA - SAN GABÁN	
143	2111010042	PUNO	SAN ROMÁN	JULIACA	COLLANA CHOJA	NO	SI			JULIACA - SAN GABÁN	
144	2111010044	PUNO	SAN ROMÁN	JULIACA	PAMPA TAPARACHI	NO	SI		SI	JULIACA - SAN GABÁN	
145	2111020007	PUNO	SAN ROMÁN	CABANA	SEGNACHU PA	NO	SI			JULIACA - SAN GABÁN	
146	2111040009	PUNO	SAN ROMÁN	CARACOTO	ISLAOCO	NO	SI			JULIACA - SAN GABÁN	
147	2111040014	PUNO	SAN ROMÁN	CARACOTO	LORI PUNCO III	NO	SI			JULIACA - SAN GABÁN	
148	2111040019	PUNO	SAN ROMÁN	CARACOTO	PISCACHEC UCHO	NO	SI			JULIACA - SAN GABÁN	
149	2111040022	PUNO	SAN ROMÁN	CARACOTO	JACHUSA	NO	SI			JULIACA - SAN GABÁN	
150	2111040037	PUNO	SAN ROMÁN	CARACOTO	ACCO ESQUINA QUINSAN	NO	Si			JULIACA - SAN GABÁN	
151	2111040038	PUNO	SAN ROMÁN	CARACOTO	HUARACHA NI ACCOPATA (HUARACH ANI)	NO	SI			JULIACA - SAN GABÁN	
152	2111040050	PUNO	SAN ROMÁN	CARACOTO	SEGNA	NO	SI			JULIACA - SAN GABÁN	
153	2111040055	PUNO	SAN ROMÁN	CARACOTO	YANARICO	NO	SI			JULIACA - SAN GABÁN	
154	2111040063	PUNO	SAN ROMÁN	CARACOTO	YANACHUP A I	NO	SI			JULIACA - SAN GABÁN	
155	2111040066	PUNO	SAN ROMÁN	CARACOTO	COLLANA II	NO	SI			JULIACA - SAN GABÁN	
156	2111040071	PUNO	SAN ROMÁN	CARACOTO	BUENA VISTA	NO	SI			JULIACA - SAN GABÁN	
157	2101010005	PUNO	PUNO	PUNO	SANTA MARÍA	NO	SI			JULIACA - SAN GABÁN	
158	2101010006	PUNO	PUNO	PUNO	KAPI CRUZ GRANDE	NO	SI			JULIACA - SAN GABÁN	
159	2101010008	PUNO	PUNO	PUNO	TRIBUNA	NO	SI			JULIACA - SAN GABÁN	
160	2101010014	PUNO	PUNO	PUNO	COLLAQUIP A (CULLAQUI PA)	NO	SI			JULIACA - SAN GABÁN	
161	2101040020	PUNO	PUNO	ATUNCOLLA	ALIGRANDE	NO	SI	SI	SI	JULIACA - SAN GABÁN	
162	2101040023	PUNO	PUNO	ATUNCOLLA	MUGACHE	NO	SI			JULIACA - SAN GABÁN	
163	2101040025	PUNO	PUNO	ATUNCOLLA	TICANI PAMPA (TICANE)	NO	SI			JULIACA - SAN GABÁN	
164	2101040031	PUNO	PUNO	ATUNCOLLA	UMAYO	NO			SI	JULIACA - SAN GABÁN	
165	2101050008	PUNO	PUNO	CAPACHICA	SAN JUAN LLANCACO	NO	SI	SI	SI	JULIACA - SAN GABÁN	

	A	***************	10.00				RVICIOS			
Nro.	CodiNE12002	OZU NTO NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
166	2101070002	PUNO	PUNO	COATA	MONOS	NO	SI			JULIACA - SAN GABÁN
167	2101070007	PUNO	PUNO	COATA	ULLARI	NO	SI			JULIACA - SAN GABÁN
168	2101070013	PUNO	PUNO	COATA	URCUNIMU NI	NO	SI			JULIACA - SAN GABÁN
169	2101070017	PUNO	PUNO	COATA	ARROYO	NO	SI			JULIACA - SAN GABÁN
170	2101070022	PUNO	PUNO	COATA	TARISANE	NO	SI			JULIACA - SAN GABÁN
171	2101070023	PUNO	PUNO	COATA	AYTICACHI	NO	SI			JULIACA - SAN GABÁN
172	2101070024	PUNO	PUNO	COATA	QUISPICUC	NO	SI			JULIACA - SAN GABÁN
173	2101070026	PUNO	PUNO	COATA	ALMOSANC HI	NO		SI	SI	JULIACA -
174	2101070028	PUNO	PUNO	COATA	YACHAHUY	NO	SI			SAN GABÁN JULIACA - SAN GABÁN
175	2101070029	PUNO	PUNO	COATA	LLACHAHUI CARATA	NO	SI			JULIACA -
176	2101070035	PUNO	PUNO	COATA	PENTECOS	NO	SI			SAN GABÁN JULIACA -
177	2101070037	PUNO	PUNO	COATA	TES	NO	SI			SAN GABÁN JULIACA -
178	2101070038	PUNO	PUNO	COATA	CRUZ	NO	SI			SAN GABÁN JULIACA -
179	2101070040	PUNO	PUNO	COATA	CHUPA	NO	SI			SAN GABÁN JULIACA -
180	2101070044	PUNO	PUNO	COATA	PACCACHE	NO	SI			SAN GABÁN JULIACA -
181	2101070045	PUNO	PUNO	COATA	PUTUCUNE	NO	SI			SAN GABÁN JULIACA -
182	2101070046	PUNO	PUNO	COATA	PATA COJELAQU E LLANTAPAT A	NO	SI			JULIACA - SAN GABÁN
183	2101070048	PUNO	PUNO	COATA	COJELAQU E PATA	NO	SI			JULIACA - SAN GABÁN
184	2101080004	PUNO	PUNO	HUATA	CHINCHER PAMPA	NO	SI			JULIACA - SAN GABÁN
185	2101080021	PUNO	PUNO	HUATA	TUFRECHA	NO	SI			JULIACA - SAN GABÁN
186	2101100012	PUNO	PUNO	PAUCARCOLL A	CANCHARA	NO	SI		SI	JULIACA - SAN GABÁN
187	2101100013	PUNO	PUNO	PAUCARCOLL	COAJATA	NO	SI			JULIACA - SAN GABÁN
188	2101100015	PUNO	PUNO	PAUCARCOLL	YLLPA	NO	SI			JULIACA - SAN GABÁN
189	2101100023	PUNO	PUNO	PAUCARCOLL	CORTE ESTACIÓN	NO	SI		_	JULIACA - SAN GABÁN
190	2101100037	PUNO	PUNO	PAUCARCOLL	TITILE	NO	SI			JULIACA -
191	2101100045	PUNO	PUNO	PAUCARCOLL	HUANCANE	NO			SI	SAN GABÁN JULIACA -
192	2101100053	PUNO	PUNO	PAUCARCOLL	PATA ATUNIANE	NO	SI			SAN GABÁN JULIACA -
193	2101100056	PUNO	PUNO	PAUCARCOLL A	PATALLANI	NO	SI		SI	JULIACA - SAN GABÁN
194	2101100059	PUNO	PUNO	PAUCARCOLL A	MACHALLA TA	NO	SI			JULIACA - SAN GABÁN
195	2101150004	PUNO	PUNO	VILQUE	CENTRAL YANARICO	NO	SI			JULIACA - SAN GABÁN

	Participan						SERVICIOS A BRINDAR			
Nro.	CodiNEi2002	DEPARTAME	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
196	2101150007	PUNO	PUNO	VILQUE	SAN GERONIMO ULLAGACHI	NO	SI	SI	SI	JULIACA - SAN GABÁN
197	2101150012	PUNO	PUNO	VILQUE	COTAÑA (YANARICO)	NO			SI	JULIACA - SAN GABÁN
198	2101150018	PUNO	PUNO	VILQUE	PETRARIA	NO	SI			JULIACA - SAN GABÁN
199	2101150038	PUNÒ	PUNO	VILQUE	LOS ROSALES	NO	SI			JULIACA - SAN GABÁN
200	2102020010	PUNO	AZÁNGA RO	ACHAYA	ACHOJ	NO	SI			JULIACA - SAN GABÁN
201	2102030023	PUNO	AZÁNGA RO	ARAPA	YANI CUTURI	NO	SI			JULIACA - SAN GABÁN
202	2102030027	PUNO	AZÁNGA RO	ARAPA	TUMUCO	NO	SI			JULIACA - SAN GABÁN
203	2102030028	PUNO	AZÁNGA RO	ARAPA	SUÑATA	NO	SI			JULIACA - SAN GABÁN
204	2102030053	PUNO	AZÂNGA RO	ARAPA	TRAPICHE	NO	SI			JULIACA - SAN GABÁN
205	2102030070	PUNO	AZĀNGA RO	ARAPA	CANCO	NO	SI		SI	JULIACA - SAN GABÁN
206	2102050007	PUNO	AZÁNGA RO	CAMINACA	SAN ROQUE	NO	SI	SI	SI	JULIACA - SAN GABÁN
207	2102060021	PUNO	AZÁNGA RO	CHUPA	RINCONAD A	NO	SI		SI	JULIACA - SAN GABÁN
208	2102060035	PUNO	AZÁNGA RO	CHUPA	ALTO ESCANTAPI	NO	SI			JULIACA - SAN GABÁN
209	2102070001	PUNO	AZÁNGA RO	JOSÉ DOMINGO CHOQUEHUA NCA	ESTACIÓN DE PUCARA	SI			SI	JULIACA - SAN GABÁN
210	2102130009	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	ASILLO PAMPA GRANDE (ASILLO)	NO	SI			JULIACA - SAN GABÁN
211	2102130012	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	HUAYLLANI 20 (HUALLANI)	NO	SI			JULIACA - SAN GABÁN
212	2102130020	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	PRIMER ORURILLO	NO	SI			JULIACA - SAN GABÁN
213	2102130034	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	PATACHI	NO	SI			JULIACA - SAN GABÁN
214	2102140010	PUNO	AZÁNGA RO	SANTIAGO DE PUPUJA	PUPUJA (CUCHO PUPUJA)	NO	SI			JULIACA - SAN GABÁN
215	2102140019	PUNO	AZÁNGA RO	SANTIAGO DE PUPUJA	SANTA ANA	NO	SI			JULIACA - SAN GABÁN
216	2102140020	PUNO	AZÁNGA RO	SANTIAGO DE PUPUJA	CAMPUCO	NO	SI			JULIACA - SAN GABÁN
217	2102140037	PUNO	AZÁNGA RO	SANTIAGO DE PUPUJA	VAREJON (HUARECC ON PUTIANO)	NO			SI	JULIACA - SAN GABÁN
218	2106010067	PUNO	HUANCA NÉ	HUANCANÉ	SECTOR CENTRAL LURIATA	NO	SI			JULIACA - SAN GABÁN
219	2106010072	PUNO	HUANCA NÉ	HUANCANÉ	YAPUPAMP A	NO	SI			JULIACA - SAN GABÁN
220	2106010073	PUNO	HUANCA NÉ	HUANCANÉ	сотоѕі	NO	SI			JULIACA - SAN GABÁN
221	2106010074	PUNO	HUANCA NÉ	HUANCANÉ	INCACACHI	NO	SI			JULIACA - SAN GABÁN

	-						SERVICIOS A BRINDAR			
Nro.	CodiNE12002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
222	2106010075	PUNO	HUANCA NÉ	HUANCANÉ	CHAPASANI	NO	SI	(N	e dăta II.	JULIACA - SAN GABÁN
223	2106010077	PUNO	HUANCA NÉ	HUANCANÉ	SECTOR COTA PATA	NO	SI			JULIACA - SAN GABÁN
224	2106010078	PUNO	HUANCA NÉ	HUANCANÉ	BALSAPATA	NO	SI		SI	JULIACA - SAN GABÁN
225	2106010079	PUNO	HUANCA NÉ	HUANCANÉ	YACAHUE	NO	SI		SI	JULIACA - SAN GABÁN
226	2106050002	PUNO	HUANCA NÉ	PUSI	PIRIN	NO	SI			JULIACA - SAN GABÁN
227	2106050004	PUNO	HUANCA NÉ	PUSI	COMPE	NO	SI			JULIACA - SAN GABÁN
228	2106050010	PUNO	HUANCA NÉ	PUSI	CHIMPA (POSUERO)	NO	SI	SI	SI	JULIACA - SAN GABÁN
229	2106050011	PUNO	HUANCA NÉ	PUSI	CAPISI	NO	SI			JULIACA - SAN GABÁN
230	2106050023	PUNO	HUANCA NÉ	PUSI	PATANTANI	NO	SI			JULIACA - SAN GABÁN
231	2106050024	PUNO	HUANCA NÉ	PUSI	VALLECITO	NO	SI			JULIACA - SAN GABÁN
232	2106050025	PUNO	HUANCA NÉ	PUSI	LACARA	NO	SI	SI	SI	JULIACA - SAN GABÁN
233	2106050037	PUNO	HUANCA NÉ	PUSI	URCUNIMU NI CENTRAL (URCUNIMU NE)	NO	SI	SI	SI	JULIACA - SAN GABÁN
234	2106070002	PUNO	HUANCA NÉ	TARACO	CARIÑA	NO	SI			JULIACA - SAN GABÁN
235	2106070003	PUNO	HUANCA NÉ	TARACO	SULLATA	NO	SI			JULIACA - SAN GABÁN
236	2106070004	PUNO	HUANCA NÉ	TARACO	ISLA (PILICHU)	NO	SI			JULIACA - SAN GABÁN
237	2106070026	PUNO	HUANCA NÉ	TARACO	TEJEMPATA	NO	SI		SI	JULIACA - SAN GABÁN
238	2106070027	PUNO	HUANCA NÉ	TARACO	HUACACAC HI	NO	SI			JULIACA - SAN GABÁN
239	2106070028	PUNO	HUANCA NÉ	TARACO	PELICANO	NO	SI		SI	JULIACA - SAN GABÁN
240	2106070030	PUNO	HUANCA NÉ	TARACO	OCCOCHAP ATA	NO	SI			JULIACA - SAN GABÁN
241	2106070036	PUNO	HUANCA NÉ	TARACO	TEJAPAMP A	NO	SI			JULIACA - SAN GABÁN
242	2106070037	PUNO	HUANCA NÉ	TARACO	HUARISAN	NO	SI	SI	SI	JULIACA - SAN GABÁN
243	2106070038	PUNO	HUANCA NÉ	TARACO	CHULLUHIN	NO	SI		SI	JULIACA - SAN GABÁN
244	2106070041	PUNO	HUANCA NÉ	TARACO	TUNI REQUENA	NO	SI			JULIACA - SAN GABÁN
245	2106070042	PUNO	HUANCA NÉ	TARACO	PALTAURO PATA	NO	SI		SI	JULIACA - SAN GABÁN
246	2106070043	PUNO	HUANCA NÉ	TARACO	JASANA KILOPATA (QUILOPAT A)	NO	SI			JULIACA - SAN GABÁN
247	2106070044	PUNO	HUANCA NÉ	TARACO	POCSILLIN TAÑAMOCC O (POCSILLIN)	NO	SI			JULIACA - SAN GABÁN
248	2106070045	PUNO	HUANCA NÉ	TARACO	TAÑA CRUCIA	NO	SI	SI	SI	JULIACA - SAN GABÁN
249	2106070047	PUNO	HUANCA NÉ	TARACO	VINOGACH E	NO	SI		SI	JULIACA - SAN GABÁN

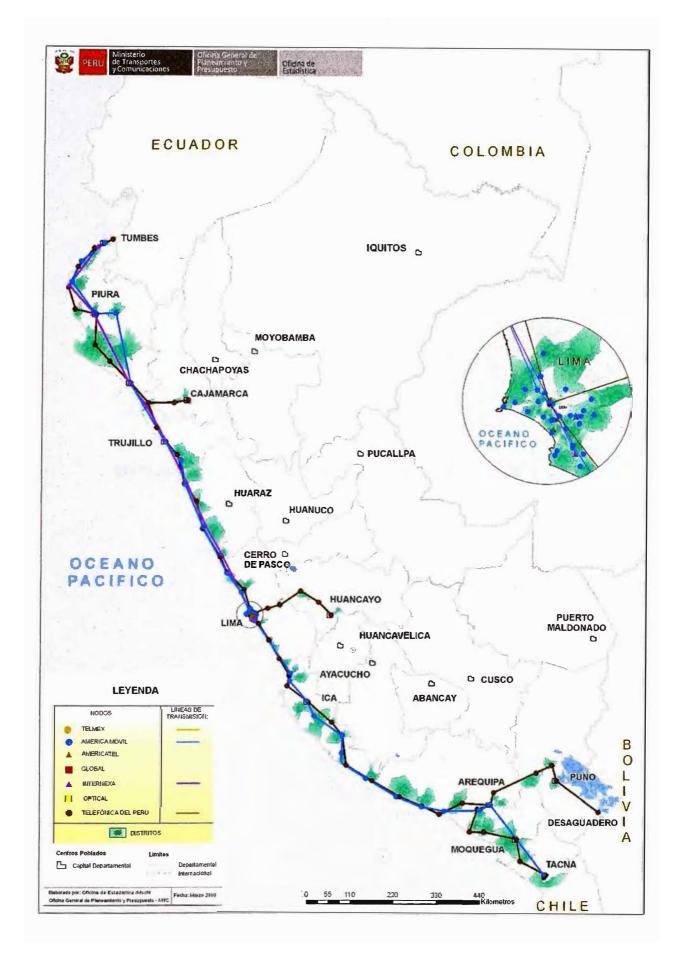
	1 271						SERVICIOS A BRINDAR			
Nro.	CodiNEI2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
250	2106070049	PUNO	HUANCA NÉ	TARACO	JOOS	NO	SI			JULIACA - SAN GABÁN
251	2106070050	PUNO	HUANCA NÉ	TARACO	HUERTA	NO	SI			JULIACA - SAN GABÁN
252	2106070051	PUNO	HUANCA NÉ	TARACO	ОССОРАТА	NO	SI		SI	JULIACA - SAN GABÁN
253	2106070053	PUNO	HUANCA NÉ	TARACO	CATALLIA	NO	SI			JULIACA - SAN GABÁN
254	2106070054	PUNO	HUANCA NÉ	TARACO	QUETA MORO	NO	SI			JULIACA - SAN GABÁN
255	2106070056	PUNO	HUANCA NÉ	TARACO	CAPUJATA	NO	SI	SI	SI	JULIACA - SAN GABÁN
256	2106070058	PUNO	HUANCA NÉ	TARACO	MACHOJRO	NO	SI			JULIACA - SAN GABÁN
257	2106070062	PUNO	HUANCA NÉ	TARACO	CORPA CUCHO	NO	SI		SI	JULIACA - SAN GABÁN
258	2106070063	PUNO	HUANCA NÉ	TARACO	PIRIN	NO	SI			JULIACA - SAN GABÁN
259	2107020016	PUNO	LAMPA	CABANILLA	CULILLACA (SAN JUAN DE CULILLACA)	NO	SI			JULIACA - SAN GABÁN
260	2107020036	PUNO	LAMPA	CABANILLA	CHILLHUAN E	NO	SI			JULIACA - SAN GABÁN
261	2107020047	PUNO	LAMPA	CABANILLA	SANTO TOMAS	NO	SI			JULIACA - SAN GABÁN
262	2107020066	PUNO	LAMPA	CABANILLA	OQUECHUP A CCOJE	NO	SI			JULIACA - SAN GABÁN
263	2107020067	PUNO	LAMPA	CABANILLA	CCOJE	NO	SI			JULIACA - SAN GABÁN
264	2107040020	PUNO	LAMPA	NICASIO	KAQUINGO RA	NO	SI			JULIACA - SAN GABÁN
265	2107080023	PUNO	LAMPA	PUCARA	TUNI REQUENA	NO			SI	JULIACA - SAN GABÁN
266	2111010019	PUNO	SAN ROMÁN	JULIACA	RANCHO SOLLATA (SOLLATA)	NO	SI			JULIACA - SAN GABÁN
267	2111020002	PUNO	SAN ROMÁN	CABANA	CUINCHAC A	NO	SI			JULIACA - SAN GABÁN
268	2111020035	PUNO	SAN ROMÁN	CABANA	CANTERIA	NO	SI			JULIACA - SAN GABÁN
269	2111020036	PUNO	SAN ROMÁN	CABANA	VIZALLANI	NO	SI			JULIACA - SAN GABÁN
270	2111020045	PUNO	SAN ROMÁN	CABANA	CEQUIA CASA	NO	SI			JULIACA - SAN GABÁN
271	2111020055	PUNO	SAN ROMÁN	CABANA	HUANCARA NE	NO	SI		SI	JULIACA - SAN GABÁN
272	2111040027	PUNO	SAN ROMÁN	CARACOTO	TUTUHUAC AS II	NO	SI			JULIACA - SAN GABÁN
273	2111040028	PUNO	SAN ROMÁN	CARACOTO	MAMANCHI	NO	SI			JULIACA - SAN GABÁN
274	2101010015	PUNO	PUNO	PUNO	YARACMAY O	NO	SI			JULIACA - SAN GABÁN
275	2101010029	PUNO	PUNO	PUNO	NUEVA ESPERANZ A	NO	SI			JULIACA - SAN GABÁN
276	2101010034	PUNO	PUNO	PUNO	SALLIHUA CALLEJON (CHJERANI ICHU)	NO	SI			JULIACA - SAN GABÁN
277	2101010039	PUNO	PUNO	PUNO	BUENOS AIRES ESTACIÓN	NO	SI		SI	JULIACA - SAN GABÁN

							SERVICIOS A BRINDAR			
Nro.	CodiNEI2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA A BONADOS	INTERNET	PROYECTO
278	2101010040	PUNO	PUNO	PUNO	CACHIMAY A	NO	SI		SI	JULIACA - SAN GABÁN
279	2101010048	PUNO	PUNO	PUNO	JAYLLIHUA YA KELLAYANI	NO	SI			JULIACA - SAN GABÁN
280	2101010051	PUNO	PUNO	PUNO	JALLU JALLUNI II	NO	SI			JULIACA - SAN GABÁN
281	2101010053	PUNO	PUNO	PUNO	LOS ANDES CANCHARA NI (MUÑAY`PA TA)	NO		SI	SI	JULIACA - SAN GABÁN
282	2101030006	PUNO	PUNO	AMANTANI	INCATIANA (ORCO SUYO)	NO	SI			JULIACA - SAN GABÁN
283	2101050004	PUNO	PUNO	CAPACHICA	ISAÑURA SECTOR	NO	SI	SI	SI	JULIACA - SAN GABÁN
284	2101050013	PUNO	PUNO	CAPACHICA	TOCCTORO	NO	SI		SI	JULIACA - SAN GABÁN
285	2101050014	PUNO	PUNO	CAPACHICA	CHIFRON	NO	SI		SI	JULIACA - SAN GABÁN
286	2101050015	PUNO	PUNO	CAPACHICA	JAJANPA (YERBACHU PA)	NO	SI			JULIACA - SAN GABÁN
287	2101050021	PUNO	PUNO	CAPACHICA	JORILAJE	NO	SI		SI	JULIACA - SAN GABÁN
288	2101060018	PUNO	PUNO	снисито	HUANCARA NE					JULIACA - SAN GABÁN
289	2101060019	PUNO	PUNO	СНИСИІТО	HUITTO	NO	SI			JULIACA - SAN GABÁN
290	2101060020	PUNO	PUNO	CHUCUITO	BARCO	NO	SI		SI	JULIACA - SAN GABÁN
291	2101090013	PUNO	PUNO	MAÑAZO	CARI CARI	NO	SI			JULIACA - SAN GABÁN
292	2101090014	PUNO	PUNO	MAÑAZO	AÑASANI	NO	SI			JULIACA - SAN GABÁN
293	2101090016	PUNO	PUNO	MAÑAZO	JATUN MAYO	NO	SI			JULIACA - SAN GABÁN
294	2101090017	PUNO	PUNO	MAÑAZO	OCOCCOLL	NO	SI			JULIACA - SAN GABÁN
295	2101090021	PUNO	PUNO	MAÑAZO	JOTORANE	NO	SI			JULIACA - SAN GABÁN
296	2101090056	PUNO	PUNO	MAÑAZO	COPANI DEL ROSARIO	NO	SI			JULIACA - SAN GABÁN
297	2101100030	PUNO	PUNO	PAUCARCOLL A	CHALE	NO	SI		SI	JULIACA - SAN GABÁN
298	2101100039	PUNO	PUNO	PAUCARCOLL A	CHOLARAP ATA	NO	SI			JULIACA - SAN GABÁN
299	2101100046	PUNO	PUNO	PAUCARCOLL A	PUCAMOCO					JULIACA - SAN GABÁN
300	2101120012	PUNO	PUNO	PLATERIA	SAYGUANA					JULIACA - SAN GABÁN
301	2101140033	PUNO	PUNO	TIQUILLACA	OCUMANI	JMANI NO				JULIACA - SAN GABÁN
302	2101150006	PUNO	PUNO	VILQUE	MACHACMA RCA	NO	SI			JULIACA - SAN GABÁN
303	2102010042	PUNO	AZÁNGA RO	AZÁNGARO	ALTO JURINSAYA	NO	SI			JULIACA - SAN GABÁN
304	2102030002	PUNO	AZÁNGA RO	ARAPA	NUEVA ESPERANZ A	NO	SI			JULIACA - SAN GABÁN

(S						SE E	RVICIOS RINDAI		
Nro.	CodiNEI2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO INTEGRADO
305	2102030006	PUNO	AZÁNGA RO	ARAPA	CUTUTONE (ALTO CUTUTUNI)	NO	SI			JULIACA - SAN GABÁN
306	2102030013	PUNO	AZÁNGA RO	ARAPA	MILLIPUNC	NO	SI			JULIACA - SAN GABÁN
307	2102070012	PUNO	AZÁNGA RO	JOSÉ DOMINGO CHOQUEHUA NCA	KOJRA GRANDE	NO	SI			JULIACA - SAN GABÁN
308	2102130023	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	CATUPATA	NO	SI			JULIACA - SAN GABÁN
309	2102130031	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	ACOMAYO	NO	SI			JULIACA - SAN GABÁN
310	2102130032	PUNO	AZÁNGA RO	SAN JUAN DE SALINAS	PUCARA	NO	SI			JULIACA - SAN GABÁN
311	2102150016	PUNO	AZÁNGA RO	TIRAPATA	CORPA	NO	SI			JULIACA - SAN GABÁN
312	2102150025	PUNO	AZÁNGA RO	TIRAPATA	CORAZÓN DE JESÚS (SAYHUAPU CRO)	NO	SI			JULIACA - SAN GABÁN
313	2106010023	PUNO	HUANCA NÉ	HUANCANÉ	TOTORANI	NO	SI			JULIACA - SAN GABÁN
314	2106010058	PUNO	HUANCA NÉ	HUANCANÉ	QUIALLATA	NO	SI			JULIACA - SAN GABÁN
315	2106010065	PUNO	HUANCA NÉ	HUANCANÉ	SECTOR TICA PARQUE	NO	SI	SI		JULIACA - SAN GABÁN
316	2106050026	PUNO	HUANCA NÉ	PUSI	SIPIN (SIPILUNA)	NO	NO SI			JULIACA - SAN GABÁN
317	2106080110	PUNO	HUANCA NÉ	VILQUE CHICO	HUERTACU YO	NO	SI			JULIACA - SAN GABÁN
318	2107010020	PUNO	LAMPA	LAMPA	ANCORIN HUARAL	NO	SI			JULIACA - SAN GABÁN
319	2107040006	PUNO	LAMPA	NICASIO	PICHACANE	NO	SI			JULIACA - SAN GABÁN
320	2107080014	PUNO	LAMPA	PUCARA	PUCACHUP A SECSENCA NI	NO	SI			JULIACA - SAN GABÁN
321	2107080025	PUNO	LAMPA	PUCARA	CENTRO QQUEPA (CHINYORA	NO	SI		SI	JULIACA - SAN GABÁN
322	2107080028	PUNO	LAMPA	PUCARA	CHILLIN	NO	SI			JULIACA - SAN GABÁN
323	2107080029	PUNO	LAMPA	PUCARA	CCACCO (CACO CHICO)	NO	SI	SI		JULIACA - SAN GABÁN
324	2108010095	PUNO	MELGAR	AYAVIRI	VELUYO 2	NO	SI			JULIACA - SAN GABÁN
325	2109010002	PUNO	моно	моно	CHEJECHEJ E	NO	SI			JULIACA - SAN GABÁN
326	2109010004	PUNO	моно	моно	HUAJRAPE	NO	SI			JULIACA - SAN GABÁN
327	2111010002	PUNO	SAN ROMÁN	JULIACA	CHAÑO CAHUA	NO	SI		JULIACA - SAN GABÁN	
328	2101010038	PUNO	PUNO	PUNO	INGENIO	NO	SI		SI	JULIACA - SAN GABÁN
329	2101010041	PUNO	PUNO	PUNO	TUNUHUIRI GRANDE	NO	SI		SI	JULIACA - SAN GABÁN
330	2101020003	PUNO	PUNO	ACORA	QUENACCO	NO	SI	SI	SI	JULIACA - SAN GABÁN

	Icon Bone In the Control of the Cont	te de la la la la la la la la la la la la la		T			SERVICIOS A BRINDAR			
Nro.	CodiNEI2002	DEPARTAME	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
331	2101020004	PUNO	PUNO	ACORA	HUITARA	NO	SI	SI	SI	JULIACA - SAN GABÁN
332	2101020016	PUNO	PUNO	ACORA	PARCOCOT	NO	SI			JULIACA - SAN GABÁN
333	2101020017	PUNO	PUNO	ACORA	HUILACAYA	NO	SI		SI	JULIACA - SAN GABÁN
334	2101020018	PUŅO	PUNO	ACORA	CHUSAMAR CA	NO	SI			JULIACA - SAN GABÁN
335	2101020030	PUNO	PUNO	ACORA	SAN MARTIN	NO	SI			JULIACA - SAN GABÁN
336	2101020034	PUNO	PUNO	ACORA	SILLUNI HAMAYA (SARAPAMP A)	NO	SI			JULIACA - SAN GABÁN
337	2101020045	PUNO	PUNO	ACORA	YANAMURE	NO	SI		SI	JULIACA - SAN GABÁN
338	2101020061	PUNO	PUNO	ACORA	CHALLACO	NO	SI			JULIACA - SAN GABÁN
339	2101030009	PUNO	PUNO	AMANTANI	ESTANCIA	NO	SI			JULIACA - SAN GABÁN
340	2101060017	PUNO	PUNO	CHUCUITO	SIHUINTA (CEVENTA)	NO	SI			JULIACA - SAN GABÁN
341	2101060025	PUNO	PUNO	СНИСИІТО	INCUYLAYA OCCOPAMP A	NO	SI			JULIACA - SAN GABÁN
342	2101060028	PUNO	PUNO	СНИСИІТО	MARCA JILAPUNTA	NO	SI			JULIACA - SAN GABÁN
343	2101060032	PUNO	PUNO	снисито	ACHARA	NO	SI	SI	SI	JULIACA - SAN GABÁN
344	2101120011	PUNO	PUNO	PLATERIA	CACATA	NO	SI			JULIACA - SAN GABÁN
345	2101120016	PUNO	PUNO	PLATERIA	VENCALLA	NO			SI	JULIACA - SAN GABÁN
346	2101120017	PUNO	PUNO	PLATERIA	MACHAC MARCA	NO	SI	SI	SI	JULIACA - SAN GABÁN
347	2101120022	PUNO	PUNO	PLATERIA	CCATAREC	NO	SI	SI	SI	JULIACA - SAN GABÁN
348	2101120024	PUNO	PUNO	PLATERIA	JANTHA (SANTA)	NO	SI			JULIACA - SAN GABÁN
349	2101120030	PUNO	PUNO	PLATERIA	CHICA BOTIJA	NO	SI		SI	JULIACA - SAN GABÁN
350	2102010027	PUNO	AZÁNGA RO	AZÁNGARO	FILLIQUERI	NO	SI			JULIACA -
351	2102010040	PUNO	AZÁNGA RO	AZÁNGARO	BAJO JURINSALL A	NO	SI			JULIACA - SAN GABÁN
352	2102030003	PUNO	AZÁNGA RO	ARAPA	SAN MIGUEL	NO	SI			JULIACA - SAN GABÁN
353	2102030008	PUNO	AZÁNGA RO	ARAPA	HUAYRAPA TA CURAYLLU (HUAYRAPA TA)	NO SI				JULIACA - SAN GABÁN
354	2102060008	PUNO	AZÁNGA RO	CHUPA	ARAPASI (FIRACUCH O)	NO	SI			JULIACA - SAN GABÁN
355	2102150012	PUNO	AZÁNGA RO	TIRAPATA	IPACUÑA	NO	SI			JULIACA - SAN GABÁN
356	2102150015	PUNO	AZÁNGA RO	TIRAPATA	SAN PEDRO (CHEJA)	NO	SI			JULIACA - SAN GABÁN
357	2105010027	PUNO	EL COLLAO	ILAVE	TAMANÁ HUATANCA CHI	NO	SI		SI	JULIACA - SAN GABÁN

				RVICIO:	4					
Nro.	CodiNEI2002	DEPARTAME NTO	PROVINCIA	DISTRITO	LOCALIDAD	CAPITAL DE DISTRITO	TELEFONÍA PUBLICA	TELEFONÍA ABONADOS	INTERNET	PROYECTO
358	2106010021	PUNO	HUANCA NÉ	HUANCANÉ	QUENCHA	NO	SI			JULIACA - SAN GABÁN
359	2106010060	PUNO	HUANCA NÉ	HUANCANÉ	СНОЈАСНІ	NO	SI		SI	JULIACA - SAN GABÁN
360	2106010087	PUNO	HUANCA NÉ	HUANCANÉ	JACINCOYO	NO	SI			JULIACA - SAN GABÁN
361	2106010088	PUNO	HUANCA NÉ	HUANCANÉ	KANE	NO	SI			JULIACA - SAN GABÁN
362	2106010091	PUNO	HUANCA NÉ	HUANCANÉ	RENJACHE	NO	SI			JULIACA - SAN GABÁN
363	2106010092	PUNO	HUANCA NÉ	HUANCANÉ	LLACHAHU ANI (LLOCHOJA NE)	NO	SI		SI	JULIACA - SAN GABÁN
364	2106080088	PUNO	HUANCA NÉ	VILQUE CHICO	UTATA	NO	SI			JULIACA - SAN GABÁN
365	2107010006	PUNO	LAMPA	LAMPA	RIVERA COILATA	NO	SI			JULIACA - SAN GABÁN
366	2107010023	PUNO	LAMPA	LAMPA	MOQUEGA CHE JAPO	NO	SI			JULIACA - SAN GABÁN
367	2107020084	PUNO	LAMPA	CABANILLA	CALLAPOC A	NO	SI			JULIACA - SAN GABÁN
368	2109010003	PUNO	моно	МОНО	PALLATA	NO	SI	SI		JULIACA - SAN GABÁN
369	2109010006	PUNO	моно	моно	PUTINACUC HO	NO	SI			JULIACA - SAN GABÁN
370	2111030003	PUNO	SAN ROMÁN	CABANILLAS	CHILLO	NO	SI		SI	JULIACA - SAN GABÁN


Fuente: FITEL

Nota:

Para mayor información descargue los Códigos de Ubicación Geográfica, del siguiente enlace del INEI: http://iinei.inei.gob.pe/iinei/siscodes/UbigeoMarco.htm

^{*} CodINEI2002: Código INEI 2002 correspondiente a cada localidad. (Los códigos del tipo XXXXXX9XXX Han sido generados por el FITEL, debido a que no se ubicaron dichas localidades en el listado de centros poblados del INEI al año 2002.

ANEXO B DESPLIEGUE DE FIBRA ÓPTICA EN EL PAÍS A MARZO DEL 2011

Fuente: MTC-Ministerio de Transportes y Comunicaciones.

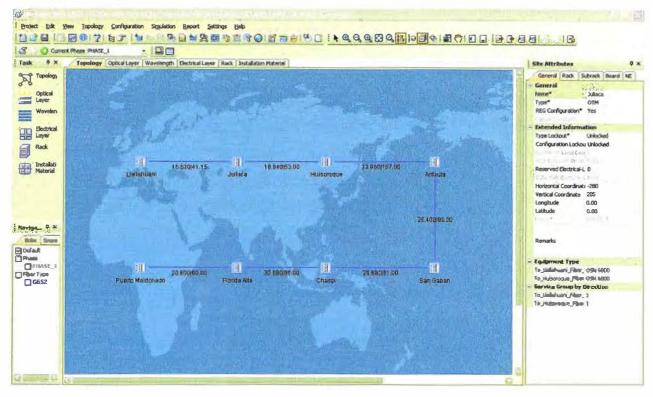
ANEXO C MATERIALES PARA INSTALACIÓN DE EQUIPOS DWDM Y SDH

Material de Instalación para equipos DWDM

Modelo: OptiX OSN 6800

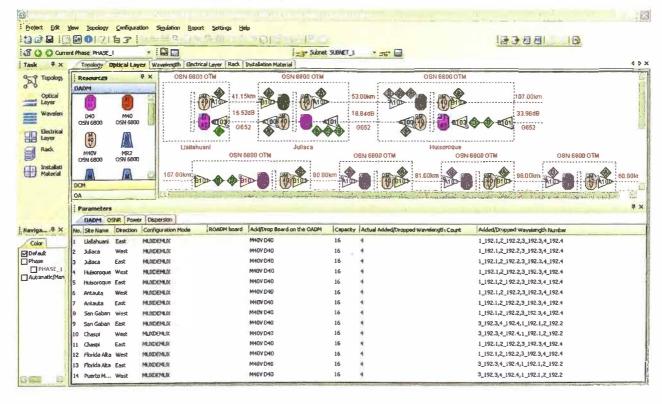
		Descripción		NODOS									
No	Modelo			Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto	Cantidad Total		
1	Material de	Instalación											
1.1	Cableado E	xterno											
	C1025BL0 0	Cable ,450/750V,60227 IEC 02(RV)25mm^2,blue,110A	60	120	120	120	120	120	120	60	840		
	C1025BK0 0	Cable,450/750V,60227 IEC 02(RV)25mm^2,black	60	120	120	120	120	120	120	60	840		
	C1025YG0 0	Cable,450/750V,60227 IEC 02(RV)25mm^2,yellow green,110A	15	30	30	30	30	30	30	15	210		
1.2	Fibras												
	OP-LC-LC- S- 3,G.657B	Fibra,LC/PC-LC/PC,Single mode,G.657A2,2mm,3m	40	60	40	40	40	40	40	40	340		
	OP-D-LC- S-10	Fibra,LC/PC- LC/PC,Singlemode,2mm,1 0m			6						6		
	OP-LC-LC- S-20, G.657B	Fibra,LC/PC-LC/PC,Single mode,G.657A2,2mm,20m	10	20	20	20	20	20	20	20	150		
	Fibra exter	na (FC-LC)											
	F000OPS0	Fibra (FC/PC-LC/PC) Single mode,G652D,2mm,30m	10	20	20	20	20	20	20	12	142		
1.3	Atenuadore	es											
	OP-ATN- LC-3	Atenuador óptico fijo,1310/1550nm,3dB- LC/PC,>45dB	4	4	4	4	4	4	4	4	32		
	OP-ATN- LC-5	Atenuador óptico fijo,1310/1550nm-5dB- LC/PC->45dB			2	4	2	2	2		12		
	OP-ATN- LC-7	Atenuador óptico fijo,1310/1550nm,7dB,LC/P C,>45dB	4	4	2		2	2	2	4	20		
1.4	Accesorios	de instalación											
	Telephone	Telefono para comunicación entre nodos	1	1	1	1	1	1	1	1	8		
	C0000FE0 0	Cable UTP,100ohm,,Category 5e UTP,0.51mm,24AWG,8Cor es,PANTONE 430U,Use with Plug:14080082	14	28	28	28	28	28	28	14	196		

Material de Instalación para equipos SDH

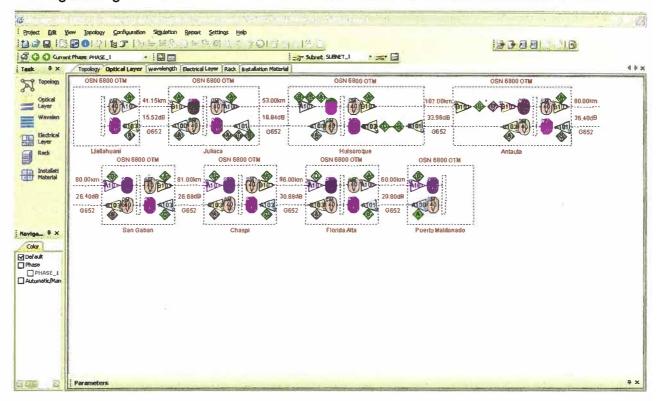

Modelo: OptiX OSN 7500

				NODOS										
No.	Modelo	Descripción	Llallahuani	Juliaca	Huisonroque	Antauta	San Gabán	Chaspi	Florida Alta	Puerto Maldonado	Cantidad Total			
1	Material de	Instalación					1							
1.1	Cableado e	xterno												
	C1025BL0 0	Cable ,450/750V,60227 IEC 02(RV)25mm^2,blue,1 10A	120	120	120	120	120	120	120	120	960			
	C1025BK0 0	Cable,450/750V,60227 IEC 02(RV)25mm^2,black	120	120	120	120	120	120	120	120	960			
	C1025YG0 0	Cable,450/750V,60227 IEC 02(RV)25mm^2,yellow green,110A	30	30	30	30	30	30	30	30	240			
	T-75-8- D44-20	Cable troncal,20m,75ohm,8E 1,2.2mm,D44M- I,SYFVZP75- 1.2/0.25*16(S)-I,-45deg		8	8	8	8	8	8	8	56			
1.2	Fibra													
	F000FSL0 0	Fibra óptica (PCS)	86	36	32	36	38	32	32	32	324			
1.3	Atenuador													
	OFOAPCS 00	Atenuador óptico fijo (PCS)	39	16	16	16	17	16	16	14	150			

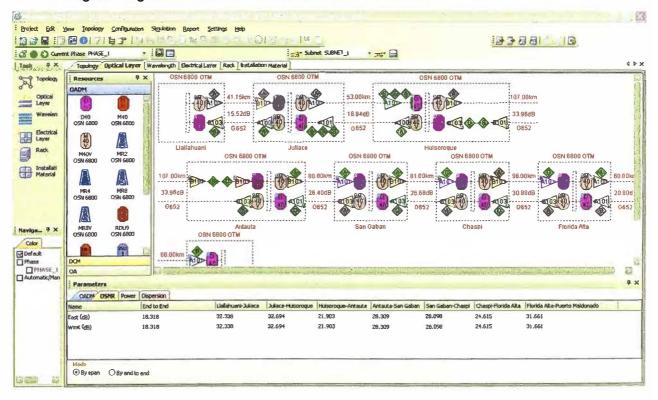
ANEXO D CONFIGURACIONES DE DISEÑO USANDO MDS6600


TOPOLOGÍA DE RED:

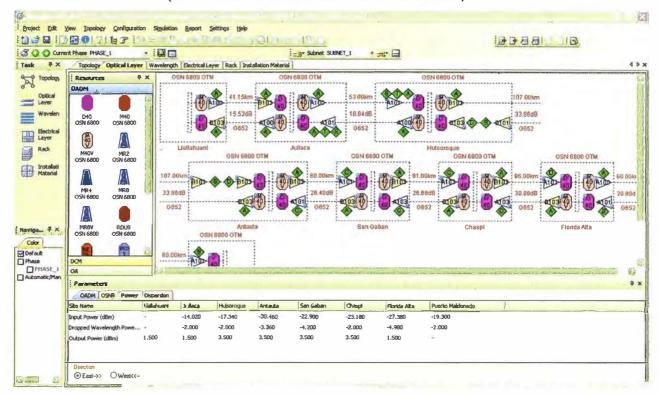
El siguiente grafico muestra la interconexión de todos los nodos en la red a diseñar.


CONFIGURACIONES DE NODOS OADM:

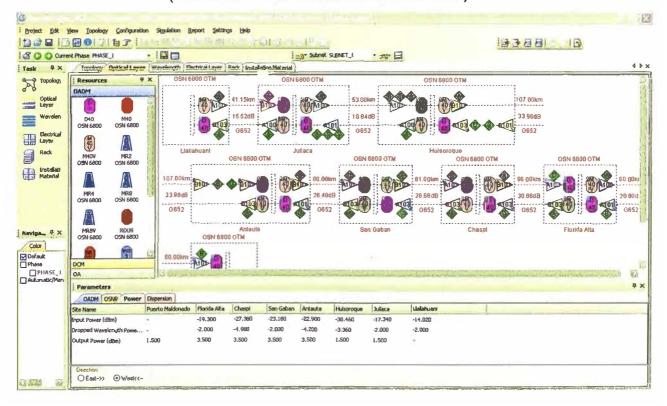
El siguiente grafico muestra el diseño a detalle de los elementos de cada nodo: mux/demux, amplificadores y módulos de compensación cromática.


DISEÑO DE RED:

El siguiente grafico muestra los cálculos de los valores de atenuación en cada tramo.

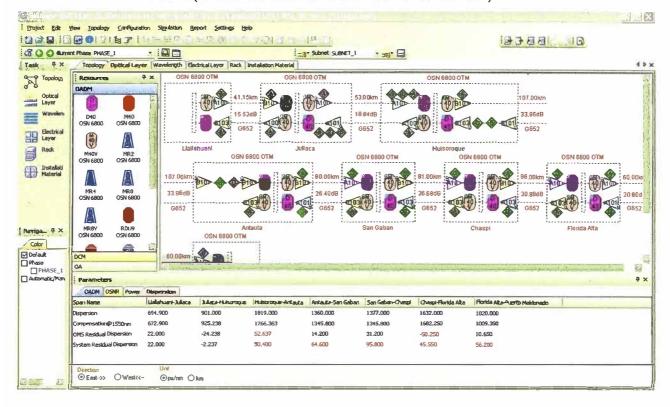

VALORES DE OSNR ENTRE TRAMO Y TRAMO:

El siguiente grafico muestra los cálculos de los valores OSNR en cada tramo.

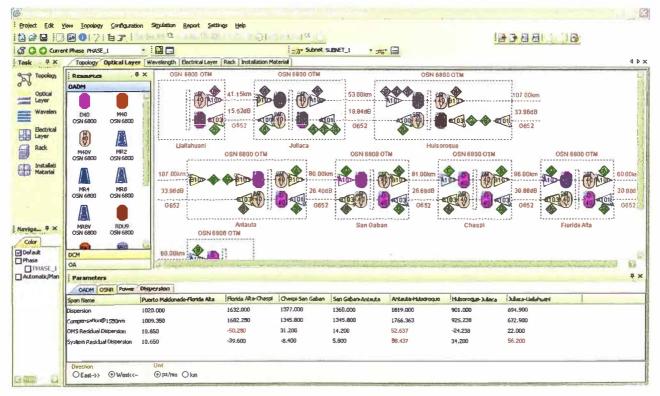


VALORES DE POTENCIA ÓPTICA

El siguiente grafico muestra los cálculos de los valores potencia de tx y rx en cada tramo (sentido de Llallahuani a Puerto Maldonado).



El siguiente grafico muestra los cálculos de los valores potencia de tx y rx en cada tramo (sentido de Puerto Maldonado a Llallahuani).



Valores de Dispersión Cromática

El siguiente grafico muestra los cálculos de los valores dispersión cromática en cada tramo (sentido de Llallahuani a Puerto Maldonado).

El siguiente grafico muestra los cálculos de los valores dispersión cromática en cada tramo (sentido de Puerto Maldonado a Llallahuani).

ANEXO E COMPARACIÓN ENTRE PRINCIPALES PROVEDORES

Proveedores lideres en equipos de transmisión y conmutación óptica

Criterio	Número 1	Número 2	Número 3	
Tecnología	Alcatel-Lucent	Ciena	Infinera	
Menor precio	Huawei	ZTE	Alcatel-Lucent	
Servicio y soporte	Alcatel-Lucent	Ciena	Huawei	
Confiabilidad	Alcatel-Lucent y Ciena	Huawei		
Estabilidad Financiera	Ciena	Huawei	Cisco	
Herramientas de gestión	Alcatel-Lucent	Ciena	Infinera	
Inversión I+D (R&D)	Ciena	Huawei	Alcatel-Lucent	
Costo total de propiedad	Huawei	Alcatel-Lucent y Ciena		

Información obtenida de http://www.infonetics.com, Infonetics Research Survey Excerpts "Service Providers Name Top Optical Vendors, 2012, Andrew Schmitt, Noviembre 2012.

Nota: La diferencia de precios de los equipos ópticos entre los proveedores número 1 y 2, es aproximadamente 10% y entre el número 2 y 3 es de aproximadamente 15%.

ANEXO F GLOSARIO DE TÉRMINOS

3R: Abreviación, en ingles, de Reshape, Retime, Reamplification, que significa Re muestrear, Re-sincronizar y Reamplificar. Las características de las 3R son aplicadas en los regeneradores ópticos.

ADM: Es el acrónimo, en ingles de Add Drop Multiplexer, que significa Multiplexor de Inserción-Extracción. En este caso, ADM es un elemento de la red DWDM.

APD: Es el acrónimo, en ingles, de avalanche photodiode, que significa fotodiodo de avalancha. APD son fotodetectores que se pueden considerar como el equivalente semiconductor de los fotomultiplicadores.

ASE: Es el acrónimo, en ingles, de Amplified Spontaneous Emission, que significa Emisión Espontánea Amplificada.

ATM: Es el acrónimo, en ingles, de Asynchronous Transfer Mode, que significa Modo de Transferencia Asíncrona. ATM es un protocolo de telecomunicaciones usado en networking.

AWG: Es el acrónimo, en ingles, de Arrayed waveguide gratings, que significa matriz de rejillas de quía de onda. AWG es usado en mulitplexores y demultiplexores ópticos.

BA/LA/PA: Es el acrónimo, en ingles, de Booster Amplifier/Line Amplifier/Pre Amplifier. El Booster Amplifier es usado regularmente en la recepción del amplificador. El Line Amplifier es un amplificador de línea y el Pre Amplifier es regularmente usado en la transmisión del amplificador.

BER: Es el acrónimo, en ingles, de Bit Error Ratio, que significa Tasa de Errores de Bit. El BER es el número de bits o bloques incorrectamente recibidos, con respecto a los enviados.

B-ISDN: Es el acrónimo, en ingles, de Broadband Integrated Services Digital Network, que significa Red Digital de Servicios Integrados de Banda Ancha. B-ISDN es un conjunto de estándares de comunicación de transmisión digital.

BITS: Es el acrónimo, en ingles, de Building Integrated Timing Supply, que significa Fuente de Reloj en un Edificio de Telecomunicaciones. El BITS es una fuente de reloj para los equipos de telecomunicaciones.

CATV: Es el acrónimo, en ingles, de Cable Television, que significa Televisión por Cable. CATV es un sistema de servicios de televisión prestado a través de señales de radiofrecuencia usando las fibras ópticas o cables coaxiales.

CD: Es el acrónimo, en ingles, de Chromatic Dispersion, que significa Dispersión Cromática. El CD es un efecto lineal propio de la fibra óptica.

DCM: Es el acrónimo, en ingles, de Dispersion Compensation Module, que significa Modulo de Compensación de Dispersión. El DCM es usado para disminuir los efectos de la dispersión cromática.

DDF: Es el acrónimo, en ingles, de Digital Distribution Frame que significa Bastidor de Distribución Digital. El DDF es un dispositivo donde terminan y se distribuyen los cableados de E1s.

DEMUX: abreviatura de Demultiplexor (demultiplexador) es un circuito combinacional con una entrada y varias salidas de datos.

DFB: Es el acrónimo, en ingles, de distributed feedback laser, que significa láser con realimentación distribuida. DFB es un tipo de diodo laser.

DGD: Es el acrónimo, en ingles, de Differential Group Delay, que significa Retardo Diferencial de Grupo. DGD es la diferencia del tiempo de propagación entre dos modos de propagación.

DRZ: Es el acrónimo, en ingles, de return to zero doubinary. DRZ en un código de línea propietario del proveedor de equipos Huawei.

DWDM: Es el acrónimo, en ingles, de Dense Wavelength Division Multiplexing, que significa Multiplicación por división de longitud es de onda densas. DWDM es una técnica de transmisión de señales por fibra óptica.

E1: Es una jerarquía Europea definida por el sistema G.732 del CCITT, que agrupa 30+2 canales de 64Kb/s para obtener 2048 kbit/s.

EDFA: Es el acrónimo, en ingles, de Erbium Doped Fiber Amplifier, que significa Amplificador de fibra dopada con Erbio.

ETSI: Son las siglas, en ingles, de European Telecommunications Standards Institute, que significa Instituto Europeo de Normas de Telecomunicaciones. ETSI es una organización de estandarización de la industria de las telecomunicaciones de Europa, con proyección mundial.

Fast Ethernet: es el nombre de una serie de estándares de IEEE de redes Ethernet de 100 Mbps (megabits por segundo).

FDM: Es el acrónimo, en ingles, de frequency division multiplexing, que significa Multiplexación por División de Frecuencia. FDM es una técnica de multiplexación usada en múltiples protocolos de comunicaciones, tanto digitales como analógicas.

FITEL: Son las siglas de Fondo de Inversión en Telecomunicaciones (del Estado Peruano).

FIU: Es una tarjeta del equipo DWDM OSN6800 (Huawei) que sirve de interface hacia planta externa y que tiene la función de multiplexar la señal óptica de datos con la de supervisión.

FRA: Es el acrónimo, en ingles, de Fiber Raman Amplifier, que significa Amplificador Raman en fibra. El FRA amplifica mediante una interacción no lineal entre la señal y la energía del laser en una fibra óptica.

FWM: Es el acrónimo, en ingles, de Four-Wave Mixing, que significa mezcla de cuatro ondas. FWM es causada por la naturaleza no lineal del índice de refracción de la fibra óptica.

GiEth: Es una abreviación de Gigabit Ethernet, es una ampliación del estándar Ethernet que consigue una capacidad de transmisión de 1 gigabit por segundo.

HDTV: Es el acrónimo, en ingles, de High Definition Televisión, que significa Televisión de Alta Definición. HDTV es uno de los formatos que se caracterizan por emitir señales televisivas en una calidad digital superior a los sistemas tradicionales analógicos.

IP: Es el acrónimo, en ingles, de Internet Protocol, que significa Protocolo de Internet. IP es un protocolo de comunicación de datos digitales.

ITU: Son las siglas, en ingles, de International Telecommunication Union, que significa Unión Internacional de Telecomunicaciones. La ITU es un organismo especializado de Telecomunicaciones de la Organización de las Naciones Unidas encargado de regular las telecomunicaciones a nivel internacional.

ITU-T: Son las siglas, en ingles, de ITU Telecommunication Standardization Sector, que significa Sector de Normalización de Telecomunicaciones de la ITU.

LED: Es el acrónimo, en ingles, de Light-Emitting Diode, que significa Diodo emisor de Luz. LED es un diodo semiconductor que emite luz.

MTC: Son las siglas de Ministerio de Transportes y Comunicaciones (del Estado Peruano).

MUX: abreviatura de Multiplexor. Un multiplexor (multiplexador) es un circuito combinacional con varias entradas y una salida de datos.

NRZ: Es el acrónimo, en ingles, de Non-Return-to-Zero, que significa No Retorno a cero. NRZ es un código línea comúnmente usado.

NZ-DSF: Es el acrónimo, en ingles, de Non-zero dispersion-shifted fiber, que significa dispersión desplazada no nula. NZ-DSF es un tipo de fibra óptica monomodo.

O/E/O: Es el acrónimo, en ingles de Optical/Electrical/Optical, que significa conversión Óptica –Eléctrica-Óptica.

OA: Es el acrónimo, en ingles, de Optical Amplifier, que significa Amplificador Óptico.

OADM: Es el acrónimo, en ingles, de Optical Add Drop Multiplexer, que significa Multiplexor Óptico de Inserción-Extracción. En este caso, OADM es un elemento de la red DWDM.

OAU: Es acrónimo, en ingles, de Optical Amplifier Unit, que significa Unidad de Amplificador Óptico. OAU es uno de los tipos de amplificadores usados en el proyecto.

OBU: Es acrónimo, en ingles, de Optical Booster Unit, que significa Unidad de Amplificador Óptico. OBU es uno de los tipos de amplificadores usados en el proyecto.

ODF: Es el acrónimo, en ingles, de Optical Distribution Frame, que significa Bastidor de Distribución Óptico. El ODF es un dispositivo donde terminan y se distribuyen los cableados de fibra óptica.

ODU: Es el acrónimo, en ingles, de Optical Demultiplexer Unit, que significa Unidad de demultiplexor óptico. El ODU puede ser una de las tarjetas demultiplexoras.

OLA: Es el acrónimo, en ingles, de Optical Line Amplifier, que significa Amplificador de Línea Óptico. En este caso, OLA es un elemento de la red DWDM.

OMU: Es el acrónimo, en ingles, de Opticcal Multiplexer Unit, que significa Unidad de multiplexor óptico. El OMU puede ser una de las tarjetas multiplexoras.

OPGW: Es el acrónimo, en ingles, de Optical Ground Wire. OPGW es un cable que está diseñado para extenderse por varios kilómetros, a lo largo de una red de transmisión eléctrica.

OSC: Es el acrónimo, en ingles, de Optical Supervisory Chanel, que significa Canal de supervisión óptico. El OSC es usado para transportar la información de los equipos hacia el gestor.

OSNR: Es el acrónimo, en ingles, de Óptical Signal-to-Noise Ratio, que significa Relación Señal a Ruido Óptico.

OTM: Es el acrónimo, en ingles, de Optical Terminal Multiplexer, que significa Terminal Multiplexor Óptico. En este caso, OTM es un elemento de la red DWDM.

OTU: Es el acrónimo, en ingles, de Optical Tranponder Unit, que significa Unidad de Transponder óptico. La OTU es una tarjeta entre la interfaz cliente (router, switch, ADM) y el sistema DWDM.

PIN: Es el acrónimo, en ingles, de Positive- Intrinsic-Negative, que significa Positivo-Intrinseco-Negativo. PIN es un semiconductor intrínseco que junta los semiconductores tipo P y tipo N.

PMD: Es el acrónimo, en ingles, de Polarization Mode Dispersion, que significa Dispersión por Modo de Polarización. El PMD es un efecto no lineal propio de la fibra óptica.

PMDQ: Es el acrónimo, en ingles, de PMD coefficient, que significa coeficiente de PMD.

REG: Es la abreviación, en ingles, de Regenerator, que significa Regenerador. En este caso, REG es un elemento de la red DWDM.

SDH: Es el acrónimo, en ingles, de Synchronous Digital Hierarchy, que significa Jerarquía digital síncrona. SDH es un protocolo estandarizado de transmisión de datos.

SOA: Es el acrónimo, en ingles, de Semiconductor Optical Amplifier, que significa Amplificador Óptico Semiconductor. SOA son amplificadores que usan semiconductores para obtener una ganancia media.

SONET: Es el acrónimo, en ingles, de Synchronous Optical Network, que significa Redes ópticas síncronas. SONET es un protocolo estandarizado de transmisión de datos.

SPM: Es el acrónimo, en ingles, de Self-phase Modulation, que significa Automodulación de Fase. SPM es un efecto no lineal en la fibra óptica.

STM-1: Es la trama básica de SDH (Synchronous Transport Module level 1), con una velocidad de 155 Mbit/s.

Tbit/s: Significa un terabit por segundo (Tbit/s o Tbit/s) es una unidad de tasa de transferencia equivalente a 1.000 gigabits por segundo.

TDM: Es el acronimo, en ingles, de Time-division multiplexing, que significa multiplexación por división de tiempo. TDM es el tipo de multiplexación más utilizado en la actualidad, especialmente en los sistemas de transmisión digitales.

TIC: Son las siglas de Tecnologías de la Información y las Comunicaciones. Las TIC agrupan los elementos y las técnicas usadas en el tratamiento y la transmisión de la información.

WDM: Es el acronimo, en ingles, de Wavelength Division Multiplexing, que significa Multiplicación por división de longitud es de onda. WDM es una técnica de transmisión de señales por fibra óptica.

CPM: Es el acrónimo, en ingles, de Cross-phase modulation, que significa modulación de fase cruzada. CPM es un efecto no lineal en la fibra óptica.

BIBLIOGRAFÍA

- [1] Salomón Guevara, "Análisis y Diseño de un sistema redundante de fibra óptica para la red de Fastnet CIA Ltda. en Riobamba", http://dspace.espoch.edu.ec/bitstream/123456789/375/1/38T00184.pdf, 2010.
- [2] Ricardo Gomez, "Estudio y análisis de pérdidas en redes de fibra óptica basadas en el estándar SONET/SDH y su evolución hacia el DWDM", http://cybertesis.uach.cl/tesis/uach/2007/bmfcig633e/doc/bmfcig633e.pdf, 2007.
- [3] Secretaría Técnica del FITEL, Proyecto "Servicio de Banda Ancha Rural Juliaca Puerto Maldonado", http://www.fitel.gob.pe/contenido.php?ID=56, 2012.
- [4] Secretaría Técnica del FITEL, Adjudicación de proyectos "Servicio de Banda Ancha Rural San Gabán Puerto Maldonado" y "Servicio de Banda Ancha Rural Juliaca San Gabán", http://www.fitel.gob.pe/contenido.php?ID=56&tipo=H&pagina=contenidos/ProyN/SanGaban/Adjudicacion SanGaban.html, 2012.
- [5] Ministerio de Energía y Minas, "Líneas de Transmisón Eléctrica 2011, http://www.minem.gob.pe/publicacion.php?idSector=6&idPublicacion=406, 2011.
- [6] Huawei Electronic Documentation Explorer (for customer), OptiX OSN 6800 Product Documentation, http://www.huawei.com/en/, 2009.
- [7] Huawei Electronic Documentation Explorer (for customer), OptiX OSN 7500 Product Documentation, http://www.huawei.com/en/, 2009.
- [8] International Telecomunication Union, "Transmission media and optical systems characteristics Optical fiber cables", Recomendación ITU-T G.652, 2009.
- [9] International Telecomunication Union, "Características de los medios de transmisión Características de los componentes y los subsistemas ópticos", Recomendación ITU-T G.692, 1998.
- [10] Instituto Cuanto, "Elaboración de estudio base del proyecto banda ancha Juliaca -San Gabán", http://www.fitel.gob.pe/contenidos/prensa_publicaciones/publicaciones/Informe_Fin al_LB_Juliaca_SanGaban.pdf, 2009.
- [11] Instituto Cuanto, "Elaboración de estudio base del proyecto banda ancha San Gabán Puerto Maldonado", http://www.fitel.gob.pe/contenidos/prensa_publicaciones/publicaciones/Informe_Fin al LB SanGaban PtoMaldonado.pdf, 2009.

- [12] Dirección general de regulación y asuntos internacionales de comunicaciones-MTC, "Diagnóstico sobre el despliegue de las redes de transporte de fibra óptica para prestar servicios públicos de telecomunicaciones en el país", http://www.mtc.gob.pe/portal/fibraoptica/Diagnostico%20fibra%20optica%20para%2 0web%20-%20final.pdf, 2011.
- [13] Huawei, "Synchronization Technology Fundamentals-C", http://www.huawei.com/en/, 1998.
- [14] Carlos Herrera, "Estudio para la integración de la técnica de multiplexación dwdm (dense wavelength division multiplexing) dentro de un enlace quito – guayaquil que utilice sdh como técnica de transmisión para una mediana empresa portadora", http://biblioteca.cenace.org.ec/jspui/bitstream/123456789/1007/3/CAIZALUISA%20 PALMA.pdf, 2011.
- [15] DG Operaciones, "Curso de Introdución DWDM", http://www.uv.es/~alfred/TEMA1_FIBRAS_Y_DISPERSION.pdf, fecha de ingreso 2012.
- [16] Cisco, "Introduction to DWDM Technology", http://www.cisco.com/application/pdf/en/us/guest/products/ps2011/c2001/ccmigratio n_09186a00802342cf.pdf, 2012.
- [17] Simetricom, "Soluciones de sincronismo", http://poli.br/~pan/R%20C%20F%20L/Apostilha%20-%20Solu%E7oes%20de%20sincronismo.pdf, 1998.
- [18] Huawei, "Network Planning and Design", http://www.huawei.com/en/, 2008.
- [19] Glosario de Términos, http://en.wikipedia.org
- [20] Optical fibres, cables and systems, ITU-T 2009, http://www.itu.int/dms_pub/itu-t/opb/hdb/T-HDB-OUT.10-2009-1-PDF-E.pdf