UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA AMBIENTAL

DIAGNOSTICO DEL SISTEMA DE AGUA POTABLE DE LA CIUDAD DE CHIMBOTE

INFORME DE INGENIERIA

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO SANITARIO

PRESENTADO POR:

BACHILLER JUAN RONAL ALVITES BULLON

Dedico este trabajo a la memoria de mi madre, a mi padre y hermanos por su apoyo permanente en mi educación

> A mi tía Krnestina por haberme guiado en mi formación personal y profesional.

> A mi esposa Rosa Elvira y mis hijos Diego y Braulio

INDICE

I.- INTRODUCCION

- 1.1 Generalidades
- 1.2 Objetivos

II.- DESCRIPCION DEL ESTUDIO

- 2.1 Ubicación. Expansión y Topografía
- 2.2 Clima
- 2.3 Vias de Comunicación
- 2.4 Precipitación Anual
- 2.5 Condiciones Sísmicas
- 2.6 Servicios Existentes
- 2.7 Plan Director
- 2.8 Población

III. DESCRIPCION Y CARACTERISTICAS DEL SISTEMA AGUA POTABLE

- 3.1 Fuentes de Abastecimiento
 - 3.1.1 Fuente Superficial
 - 3.1.2 Fuente Subterránea
- 3.2 Sistema de Tratamiento
 - 3.2.1 Aguas Superficiales
 - 3.2.2 Aguas Subterráneas
- 3.3 Sistema de Conducción Impulsión
- 3.4 Sistema de Almacenamiento
- 3.5 Lineas de Aducción
- 3.6 Red de Distribución

IV.- EVALUACION DEL SISTEMA DE AGUA POTABLE

- 4.1 Sistema de Producción
 - 4.1.1 Recursos Hídricos
 - 4.1.1.1 Aguas Subterráneas
 - 4.1.1.2 Hidrología de Aguas Superficiales
 - 4.1.2 Toma v Conducción

- 4.2 Calidad de Agua y Sistema de Tratamiento
 - 4.2.1 Aduas Superficiales
 - -4.2.1.1 Calidad de Agua Cruda
 - 4.2.1.2 Tratamiento de Agua Cruda
 - 4.2.2 Abastecimiento de Aduas Subterráneas
- 4.3 Sistema de Conducción Impulsión
 - 4.3.1 Lineas de Impulsión de los Pozos
 - 4.3.2 Líneas de Impulsión de las Estaciones de Bombeo
- 4.4 Sistema de Almacenamiento
- 4.5 Lineas de Aducción. Red de Distribución
- 4.6 Balance de Aqua
 - 4.6.1 Producción
 - 4.6.2 Población Servida. cobertura
 - 4.6.3 Funcionamiento de Medidores
 - 4.6.4 Estimación de Pérdidas y Agua no Facturada
 - 4.6.4.1 Pérdidas Físicas
 - 4.6.4.2 Agua no Facturada

V.- MEDICIONES DE CAUDALES Y PRESIONES EN EL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE

- 5.1 Objetivos
- 5.2 Técnica de Medición Utilizada
 - 5.2.1 Pitometría
 - 5.2.2 Macromedición
 - 5.2.3 Niveles de Reservorio y Presiones
- 5.3 Resultados de las Mediciones
 - 5.3.1 Fuentes de Producción y Líneas de Impulsión Conducción
 - 5.3.2 Limea de Aducción Red de Distribución
- 5.4 Análisis de los Resultados
 - 5.4.1 Fuentes de Producción Aguas Subterráneas y Líneas de Impulsión
 - 5.4.2 Lineas de Aducción Red de Distribución

VI.- ACCIONES DE MEJORAMIENTO A TOMAR

6.1 Acciones de Producción

- 6.1.1 Fuente Subterranea
- 6.1.2 Fuente Supérficial
- 6.2 Acciones en Calidad de Aqua y Sistema de Tratamiento
 - 6.2.1 Aguas Superficiales
 - 6.2.2 Aquas Subterraneas
- 6.3 Líneas de Impulsión Conducción
- 6.4. Reservorios
- 6.5 Lineas de Aducción Red de Distribución

VII. ANEXOS

RELACION DE CUADROS

- 2.01 Actividad Sismica de la Región
- 3.01 Características de los Pozos
- 3.02 Características de la Linea de Impulsión Conducción
- 3.03 Características de los Reservorios Existentes
- 3.04 Tuberías Principales de Aducción y sus Sectores de Consumo
- 3.05 Redes Principales y Secundarias
- 3.06 Horario de Suministro por Sectores
- 4.01 Datos Hidrogeológicos de los Pozos de Chimbote
- 4.02 Descarças Medias Mensuales del Río Santa
- 4.03 Caudales Medios Mensuales y Disponibilidad de Agua del Río Santa
- 4.04 Características Físico-Químicas del Agua del Río Santa
- 4.05 Características Físico-Químicas del Agua Cruda (Entrada a la Planta)
- 4.06 Características Físico-Químicas del Aqua en la Entrada de la Planta de Tratamiento
- 4.07 Turbiedad Antes y Después de Sedimentación
- 4.08 Comparación entre los Parámetros de Lavado (Filtración)
- 4.09 Calidad del Agua Potable Tratada (Promedio del Año 1994
- 4.10 Características del Agua Tratada
- 4.11 Datos Promedios de los Análisis Físico-Químicos del Agua Potable
- 4.12 Producción de los Ultimos Tres Años en m3
- 4.13 Macromedidores Instalados en Chimbote
- 4.14 Número de Usuarios Empadronados y Facturados
- 4.15 Datos de Macromedición Enero 1996 con Referencia a Conexiones
- 4.16 Balance de Aqua No Facturada (ANF) para los Años 1994 y 1995
- 5.01 Area de Servicio de los Pozos del Sistema de Aqua Potable Chimbote
- 5.02 Pérdidas en la Línea de Impulsión de los Pozos

- 5.03 Medición, de Caudal Línea de Aducción : Laderas. Los Pinos y 2 de Junio
- 5.04 Medición de Caudal Línea de Aducción Santa Cruz
- 5.05 Medición de Caudal Línea de Aducción a Casuarinas y Sectores 1. 2 y 3
- 5.06 Medición de Caudal Línea de Aducción a Esperanza Baja
- 5.07 Medición de Caudal Línea de Aducción al Sector 4
- 5.08 Medición de Caudal Línea de Aducción al Sector 5
- 5.09 Medición de Caudal Línea de Aducción al Sector 6
- 5.10 Caudales y Presiones Línea de Aducción a Sectores 7 y 8
- 5.11 Mediciones de Presión y Caudal de Bombeo del Reservorio R-II al R-IV
- 5.12 Presiones en la Red de Distribución de Chimbo**t**e
- 5.13 Volúmenes de Consumo Mensual Estimado por Zonas de Servicio

RELACION DE FIGURAS

- 3.01 Esquema General del Sistema de Abastecimiento de Agua Potable de la Ciudad de Chimbote
- 3.1A Esquema de Flujo de la Planta de Tratamiento
- 3.02 Esquema de Tuberías de los Reservorios R-IIA, R-IIB y R-I
- 3.03 Esquema de Tuberías de los Reservorios RIII y RIIIA
- 3.04 Esquema de Tuberías del Reservorio RIV
- 3.05 Esquema de Tuberías de los Reservorios RVI-A, RVI-B o Reservorios Gemelos
- 4.01 Esquema de la Toma del Río Santa, Caudales de Riego y Suministro o Flanta de Tratamiento
- 4.02 Variación Mensual de Producción
- 5.01 Instalación del tubo Pitot Simplex

CAPITULO I

1.1 GENERALIDADES

El presente tema de Titulación Extraordinaria "DIAGNOSTICO DEL SISTEMA DE AGUA POTABLE DE CHIMBOTE", se ha realizado tomando como fuente:

- Información recopilada en las oficinas de la Empresa
 Prestadora de Servicio de Aqua Potable de Chimbote.
- Visitas de las diferentes instalaciones de la EPS de Chimbote.
- Trabajos de campo para evaluar las instalaciones existentes de la EPS.
- Plan Director de Desarrollo Urbano de la ciudad de Chimbote.
- Trabajos realizados por otras instituciones y organismos del Estado de la EPS de Chimbote.

La entidad responsable del Abastecimiento de Agua Potable para la ciudad de Chimbote es SEDACHIMBOTE (SERVICIO DE AGUA POTABLE Y ALCANTARILLADO DE CHIMBOTE, CASMA Y HUARMEY). Existen otros sistemas que abastecen a la población como el de COVARS y SIDERPERU.

Pero que representan menos del 1% de la población total de Chimbote.

El presente trabajo se ha realizado tomando como base el sistema de Agua Potable administrado por SEDACHIMBOTE.

La ciudad de Chimbote está ubicada a 440 km. al norte de la ciudad de Lima, sobre la costa del Pacífico, pertenece a la Provincia de Santa del departamento de Ancash, a una altura sobre el nivel del mar de 0 a 80 m.s.n.m., siendo uno de los más importantes puertos pesqueros del Perú;

presenta i una topografía plana en su mayor parte, principalmente en el centro de la ciudad y el sector de Nuevo Chimbote, sin embargo existen algunos cerros en cuyas laderas se han ubicado asentamientos humanos de importante tamaño.

El sector central de la ciudad en su mayoría se ubica a una elevación baja del orden de 6 m.s.n.m., pero en Nuevo Chimbote la población se ha extendido y continua expandiéndose hacia el este, hasta unos 80 m.s.n.m. La población total es de 297,659 habitantes, el censo del año 1993 arrojó 265,074 habitantes.

La población servida con agua potable es de 185.143 habitantes y con alcantarillado sanitario de 174,172 habitantes.

El clima es templado con lluvias escasas, la temperatura varía entre 15° y 25°C. Chimbote está ubicada en las coordenadas 09°-04'-15" latitud sur y 78°35'27" longitud oeste.

ciudad de Chimbote, como principal puerto pesquero constituye un importante centro comercial e industrial, localizándose gran cantidad de industrias relacionadas con la actividad marina y sobre todo con el procesamiento pescado y conservas), pescado (harina de industrias son grandes consumidores de agua, aunque actualmente no están conectadas al sistema y se abastecen cuenta mediante pozos. Constituyen sin embargo, en actualidad, potenciales usuarios clandestinos y en el futuro potenciales consumidores debidamente registrados.

Son también los mayores contaminadores de la bahía de Chimbote con aguas residuales y posiblemente también con desechos líquidos. Es apreciable la contaminación ambiental por malos olores que actualmente están ocasionando.

La 'industria siderúrgica del país está en Chimbote (SIDER-PERU). la cual también es una de las mayores fuentes de contaminación de la ciudad, por los humos que produce así como por las descargas de aguas industriales que son dispuestas directamente al mar.

Los principales recursos hídricos provienen de aguas subterráneas y del río Santa a través del canal de irrigación IRCHIM.

1.2 OBJETIVOS

La situación que presenta la ciudad de Chimbote. consecuencia de su vertiginoso y desordenado crecimiento poblacional y la exigencia de atender con los servicios saneamiento básico. que permita satisfacer necesidades primordiales que es el Suministro de Agua garantice las condiciones Potable y adecuadas a población. teniendo en cuenta el aprovechamiento máximo de las instalaciones existentes.

Con las premisas expuestas, con este trabajo nos proponemos:

1. Determinar la capacidad Hidráulica del Sistema.-Para cada uno de los componentes del sistema 50 capacidad determinará 5U У posibilidades de de optimizar Ampliación У SU utilización, además físico y considerando su edad, estado confiabilidad.

Determinar las Pérdidas de agua en el Sistema de Abastecimiento de Agua.--

Este incluirá una estimación de los volúmenes realmente producidos de los volúmenes facturados y de los volúmenes que realmente debe consumir la población, con el propósito de determinar las pérdidas y desperdicios de agua actuales y el agua no contabilizada.

3. Definir programas de optimización del sistema. – Dentro de los Programas de Optimización se definirán aquellas que involucran obras y modificaciones en la operación del sistema, las cuales serán en lo que respecta al desarrollo físico del sistema, el punto de Partida del Plan de Expansión.

CAPITULO II

DESCRIPCION DEL ESTUDIO

2.1 UBICACION, EXPANSION Y TOPOGRAFIA

La ciudad de Chimbote. Distrito de la Provincia del Santa en la Región Chavín, se encuentra ubicado en el litoral norte de la costa peruana, a la altura del km 414 de la panamericana norte entre las coordenadas 8'989,000 8'999,000N y 103,000-113,000E que corresponde a la Bahía denominado los Ferroles.

Tiene una superficie aproximada de 2,600 Has y una altitud de 10 m.s.n.m.

La ciudad està situada en una planicie que se extiende alrededor de la Bahía de los Ferroles, ostentando en sus límites urbanos un relieve bastante pronunciado con elevaciones de hasta 500 metros sobre el nivel del mar.

Por el lado Norte; limita con las instalaciones de SIDERPERU y colinas que constituye su frontera natural, los terrenos de expansión urbana se extiende en la dirección sur, al este, la planicie esta bordeada por una cadena de colinas con alturas de hasta 500 metros, recortada por el Valle de Lacramarca.

Por el lado Sur, el límite de Chimbote esta marcado por una cadena de colinas nacientes al sur de la Bahía de Samanco.

Limita por el Este, con el Canal de Abastecimiento denominado "Carlos Leigh ", y por el Oeste con el Océano Pacífico (Bahía de Chimbote).

El relieve de la ciudad es relativamente plano, existe en el sentido norte-sur suaves pendientes de hasta el 1 % de inclinación.

2.2 CLIMA

El clima en la ciudad de Chimbote es caluroso en verano, la temperatura alcanza hasta los 259 y en invierno llega a un mínimo de 1590. La humedad relativa media es de 70 %.

2.3 VIAS DE COMUNICACION

La ciudad se encuentra unida con la Capital de la República por vía terrestre y aérea.

Asimismo con el resto de localidades del país se comunica por vía terrestre. Cuenta además con vía marítima.

2.4 PRECIPITACION ANUAL

Conforme los principales indicadores climatológicos observados en la Estación Chimbote de la Región Chavín, durante los años 1989-90, dio la cifra de 2.0 m como precipitación pluvial media total con una humedad relativa de 78 % y con dirección predominante del viento hacia el Sur y a una velocidad media de 7.2 m/s.

2.5 <u>CONDICIONES SISMICAS</u>

El Perú esta ubicado en una Región de actividad sísmica, sus costas forman parte del circulo sísmico CircusPacífico donde el movimiento tectónico es causado por el desplazamiento de la Placa Oceánica bajo la Placa Continental, siendo responsable de la gran actividad sísmica de la Región.

CUADRO Nº 2.01

ACTIVIDAD SISMICA LA REGION				
FECHA	HORA	INTENSIDAD	MAGNI TUD	
L) 14-2-1658				
2) 20-5-1917				
3) 21-5-1937	10:13	νı	6.75	
1) 24-5-1940	11:35	VIII	8.20	
5) 10-11-1946	12:40	IX-X	7.25	
5) 18-2-1956	12:49	VII		
7) 29-10-1956	10:42	VI		
3) 24-9-1963	11:30	VI-VIII	6.75	
7) 17-10-1966	16:42	VIII	7.50	
10)31-5-1970	15:23	virì	7.70	

OBSERVACIONES:

- Destrucción de la ciudad de Trujillo con numerosas victimas.
- Rajadura en Trujillo, fuerte en Chimbote y Casma, daños moderados.
- 3) Diversos daños en Trujillo, Chimbote y Casma.
- 4) Terremoto en Lima.
- 5) Sismo destructor en Sihuas, Conchucos, deslizamientos de casas y agrietamiento del terreno.
- 6) Sismo destructor localizado en Carhuaz.
- 7) Minimas averías en Lima. Chimbote y Huánuco.
- 8) En Ancash fallaron las construcciones de adobe, derrumbes en gran escala, interrumpiendo caminos, enterrando canales, etc.
- 7) Terremoto destructor en Lima, Callao, Chimbote, Huacho tsunami en las costas del Callao, Chimbote, San Juan de 4.3 metros de altura con 29 replicas en 5 meses.
- 10) Epicentro localizado a 25 km. mar a dentro de Chimbote, abarco un área de 81,000 km2, hubo 50,000 muertos y 150,000 heridos.

La zona donde se efectuó el estudio está considerada de alta sismicidad.

2.6 SERVICIOS EXISTENTES

La ciudad de Chimbote cuenta con la provisión de los siguientes servicios:

- Agua Potable : 38,576 conexiones domiciliarias activas
- 🗎 Alcantarillado: 36,500 conexiones domiciliarias activas
- Salud : 437 camas. Hospitales IPSS.
- Teléfonos : 15,500 conexiones domiciliarias
- Correos : 2
- Estac. de Radio
 - Locales : 20
- Agencias de
 - Transporte
 - Terrestre : 20
- Agencias de
 - Transporte
 - Aéreo : 15
- Agencias
 - Bancarias : 08
- Parque
 - Automotor : 13,322
- Centros
 - Educativos : 459
- Centros
 - Policiales : 6
- Cuarteles
 - FF.AA. : 1

2.7 PLAN DIRECTOR

A raíz de la ocurrencia del sismo del 31 de mayo del año 1970 que originó marcados estragos en la ciudad de Chimbote, el Supremo Gobierno dispuso que en el año 1972 se formara una comisión de Reconstrucción y

Rehabilitación (CRYSA) que conjuntamente con el Programa de las Naciones Unidas para el desarrollo, estuvo encargado entre otras actividades básicas de la preparación del Plan Director de Chimbote.

El Plan Director de Chimbote con un Plan a largo plazo hasta el año 1990 contiene la concepción integral referente al programa y al espacio de desarrollo de la ciudad y esta constituido en 8 volúmenes.

Contiene los estudios demográficos detallados con estudios de migraciones, socio-económicos que le sirvieron de base para la predicción futura a largo plazo hasta el año 1990 de 640,000 habitantes.

A la fecha el Plan Director no ha sido actualizado por lo tanto habiendo analizado la documentación pertinente se puede comentar que no se ha alcanzado las metas previstas, habiendo dado el último Censo 1993 la cifra de 265,074 que representa un 40 % de la meta fijada en el Plan Director.

Igualmente con el área de expansión hacia la zona sur programado de 2,400 hectáreas sólo fue ocupada una extensión de 640 hectáreas.

2.8 POBLACION

La población de Chimbote, según censo ha tenido el siguiente crecimiento poblacional:

ARDS	PORLACION
1961	59,990 habitantes
1972	160,430 habitantes
1981	216,579 habitantes
1993	265,074 habitantes

Al año 1995 se ha estimado una población alrededor de los 279,000 habitantes tomando en consideración:

Haber mantenido la tasa de crecimiento de la población de 1.7 % correspondiente al último período Censal después de indicar factores socio económicos como la tendencia que tendrían las industrias pesqueras y siderúrgica en el futuro, que se presume sean moderadas y que no se repetirá el boom pesquero que ocurrió en años anteriores.

El análisis del Plan Director, cuyas metas propuestas para el año 1990 no fueron alcanzadas por el desarrollo de la población que si bien siguió la tendencia del crecimiento hacia la zona sur no cubrió la extensión prevista.

La compatibilización de densidades a las áreas delimitadas en el Plano de Zonificación, resultando 105 hab/Ha. para la extensión actual y 80 hab/Ha. como promedio de la densidad futura.

- Los actuales Programas de Control de la Natalidad.

CAPITULO III

DESCRIPCION. CARACTERISTICAS Y FUNCIONAMIENTO DEL SISTEMA DE AGUA POTABLE

3.1 FUENTES DE ABASTECIMIENTO DE AGUA

La ciudad de Chimbote se abastece de agua de 2 fuentes:

- La fuente de agua subterránea esta conformada por 15 Pozos tubulares.
- La fuente de agua superficial sustentada por una Planta de Tratamiento ubicada en la zona sur de la ciudad.

3.1.1 Aqua Superficial

La captación se realiza en la Toma de Vinzos en el Río Santa con una longitud de 80 km. de Canal, el agua es conducida por el Canal IRCHIM (50 km.) de donde se deriva al Canal Carlos Leigh (30 km.), que conduce hasta las Lagunas de Pre-Sedimentación.

El agua que trae el Canal Carlos Leigh es utilizada para propósitos múltiples: uso agrícola y fines de potabilización, siendo la Empresa SEDACHIMBOTE el ultimo usuario.

El agua que viene a través del Canal Carlos Leigh es almacenada en tres lagunas de Pre-Sedimentación con una capacidad total de 70,000 m3. (Laguna N91 de 30,000 m3, Laguna N92 de 15,000 m3 y Laguna N93 de 25,000 m3 de capacidad).

A la salida de las Lagunas el agua es conducida a través de una tubería de ϕ 14" de A.C. y a 350 m. antes de ingresar a la Planta de Tratamiento.

Cabe añadir, que las épocas de mayor turbiedad son Diciembre. Estas lagunas presentan actualmente abundante maleza la que no permite aprovechamiento de las mismas. actualidad n se encuentran impermeabilizadas motivo por el cual el Ministerio de Salud recomienda revestirlas, pero al no contar con partida necesaria, el almacenamiento actual tiene un proceso de filtración natural, que a su vez lento, produciendo una acumulación de barro y limo que llega a niveles de 1.00 mt. o más.

CUADRO Nº 3.01

CARACTERISTICAS DE LOS POZOS

				Mark Harmonia and Article State of the Control of t
POZO Nº	DIAMETRO POZO	RENDIMIENTO PROM. (lt/seg)	PROFUNDIDAD ACTUAL (m)	RENDIMIENTO PERFORACION (lt/seg)
3	15"	28	38.50	60
4	15"	50	37.35	70
5	15"	38	38.35	70
7	15"	48	46	60
8	15"	28	38.15	50
10	15"	34		40
11	15"	30	45.42	40
12	15"	25	39.50	45
13	15"	30	64.38	60
14	15"	20	37.60	40
15	15"	50	50	70
16	15"	25	55	60
• 17	15"	24	68	30
18	15"	48	54	60
19	15"	52	40	60

3.1.2 Aguas Subterráneas

El volumen total de agua Subterránea de Chimbote, se produce a través de 15 pozos tubulares.

Los Pozos están agrupados en baterías con el objeto de utilizar una misma línea de impulsión hasta los reservorios.

La producción promedio anual de por pozo en el año de 1995 se muestra en el cuadro 3.01, el mismo que indica también el rendimiento de cada pozo cuando fue perforado.

La mayor parte de los Pozos se encuentran ubicados al Nor-Este de la ciudad de Chimbote y en las zonas de la Campiña y Santo Domingo, que son eminentemente agrícolas.

De los 15 pozos, 12 trabajan con suministro eléctrico y 3 con equipo electrégeno, estando en estudio la electrificación de esos pozos. Los pozos trabajan durante las 24 horas del día.

3.2 SISTEMA DE TRATAMIENTO

3.2.1 Aquas Superficiales

El agua proveniente del canal Leigh es almacenada en las lagunas 1, 2, 3 mencionadas anteriormente. En algunas ocasiones el agua es captada directamente del canal, haciéndola pasar a través de un desarenador compuesto de cuatro baterías; el tratamiento del agua proveniente de las lagunas es conducido a la Flanta de Tratamiento mediante una tubería A.C. p 14", ingresando por una caja de válvulas.

La Planta de Tratamiento ha sido diseñada para tratar hasta 200 Lts./seg. Efectuando ajustes en la operación de la planta se llega a producir hasta 270 Lts./seg.

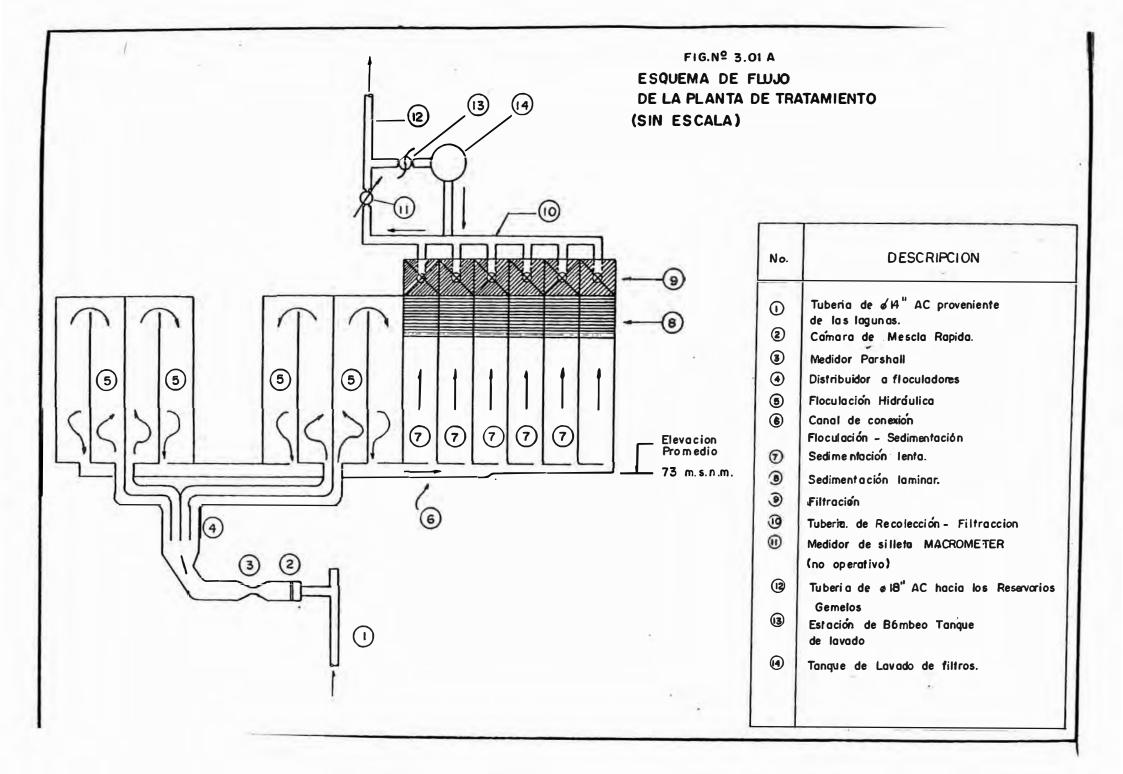
Esta constituida (ver figura N°3.01A) por "

Mezcla Rápida

Es una estructura de forma rectangular de Concreto Armado de 1.00×1.00×1.60 m3, donde aplican el coagulante (Sulfato de Aluminio) y ayudante de coagulación (Cal).

Floculadores

Está conformado por cuatro unidades de floculadores de pantallas de flujo horizontal de Concreto Armado. Cada unidad tiene una dimensión de 25x9.28x0.90 m3.


El ingreso a cada unidad de floculación es a través del canal que se deriva del Medidor Parshall.

Las unidades se encuentran en buen estado (dos construidas en 1,965 y las otras en 1,992.

Sedimentadores

Son de tipo convencional en número de 6, con ventanas, tiene forma rectangular y mide 24 m. de largo por 4.50 m. de ancho; su profundidad a la entrada es de 2.4 m. y al final de 3.75 m., el fondo es de plano inclinado hacia las tolvas de salida del barro que se acumula.

En el año 1,992 con la ampliación de planta se acondicionaron placas paralelas inclinadas a 60° de A.C. (105 placas por unidad) en una longitud de 7.00 m. con la finalidad de incrementar cinco veces más la carrera de sedimentación.

Filtro

Está conformado por una batería de 6 Filtros, los cuales están constituidos por estructuras abiertas en las que el agua fluye en forma descendente a través de la arena impulsado por la fuerza de gravedad. Los Filtros constan de tres partes:

La galería de operación, galería de tubos y caja de filtros.

Cloración

Esta se realiza a la salida de los filtros con un equipo de inyección al vacío, marca WALLAGE TIERNAM

3.2.2 Aguas Subterráneas

El tratamiento es realizada a`través de la desinfección a la salida de algunos pozos tubulares con cloro.

Los equipos utilizados para la desinfección es por inyección al vacío, aplicados en los pozos P-4, P-5, P-7, P-11, P-15.

3.3 SISTEMA DE CONDUCCION - IMPULSION

Este sistema se refiere a las tuberías que transportan agua desde los pozos hasta los reservorios, aquellas que impulsan el agua entre reservorios mediante estaciones de bombeo, la que conducen el agua de la Planta de Tratamiento a los Reservorios Gemelos RVI, tal como se observa en la figura Nº 3.01 y plano Nº 01.

En el cuadro № 3.02 se indican las características de las líneas instaladas.

Indicaremos que la Linea de Impulsión que interconecta los Pozos 15, 16, 17, 18 y que abastece los Reservorios R-II y R-III, simultáneamente existe una válvula de Compuerta de ϕ 14" que se ubica en esta Linea

a la altura del Pozo 17, cuya operación es la siguiente:
Trabaja abierta totalmente cuando existe rebombeo del
Reservorio R-III a los Reservorios Gemelos de Buenos
Aires, cuando la Planta de Tratamiento deja de
funcionar por falta de agua, originada por los períodos
de corte de agua al Canal Carlos Leigh, para la
realización de trabajos de mantenimiento que ejecuta el
Proyecto especial CHINECAS.

Al aperturarse dicha válvula nos permite que además de los pozos 15, 16 y 17 llegan también al R-III, aumentando el caudal de llegada a dicho Reservorio.

Cuando no existe rebombeo del R-III a los Reservorios Gemelos de Buenos Aires, está válvula trabaja cerrada, de tal manera que toda el agua que bombean los Pozos 15, 16 y 17 llegan al Reservorio R-IIA.

La línea de Impulsión que va del Reservorio R-IIA al R-IV, es utilizada desde el momento en que el Reservorio R-IIA tenga nivel de agua suficiente para poder rebombear al R-IV.

La línea de Impulsión que va del R-IV al R-V, es utilizado desde el momento en que el R-IV tenga nivel de agua suficiente para poder rebombear al R-V.

3.4 SISTEMA DE ALMACENAMIENTO

La capacidad de almacenamiento actual es de 21850 m3.

De los diferentes reservorios que reciben agua del campo de pozos y de la Planta de Tratamiento, se distribuye el agua a los diferentes sectores de la ciudad. En el cuadro Nº 3.03 se presentan las características de cada reservorio, así como el estado actual desde el punto de vista visual.

CARACTERISTICAS DE LA LINEA DE IMPULSION-CONDUCCION

CU.ADRO Nº 3.02

LINEA	DIAMETRO	LONGITUD	MATERIAL	FOAD	
	PULGADA	m		PROMEDIO	ESTADO
PII - A	8"	260	A.C.	20	EXCELENTE
PIO - A	10"	70	A.C.	30	REGULAR
A - B	12"	310	A.C.	30	REGULAR
B - All B	14"	ล30	A.C.	20	REQULAR
P13 - C	10"	350	A.C.	3 0	REGULAR
P12 - C	12"	60	A.C.	20	REGULAR
C - D	12"	356	A.C.	20	REGULAR
P8 - D	10"	420	A.C.	30	REGULAR
D - RIIA	14"	1280	A.C.	20	REGULAR
P7 - E	12"	540	A.C.	30	REGIULAR
P5 - E	12"	50	A.C.	30	REGULAR
E - FII A	12"	420	A.C.	30	REGULAR
P3 - RI	8"	1110	HF	40	MAL
P17 - F	6"	250	A.C.	20	REGULAR
F - G	14"	40	A.C.	20	REGULAR
P16 - G	·5"	20	A.C.	30	REGULAR
G - H	12"	300	A.C.	20	REGULAR
P15 - H	2"	270	A.C.	30	REGULAR
H-I	14"	280	A.C.	20	REGULAR
P14 - I	6"	290	A.C.	30	REGULAR
I - FIIA	16"	1200	A.C.	30	REGULAR
P4 - RIII A	8"	4800	A.C.	25	REGULAR
F4 - M	ළ"	410	P.V.C.	4	EXCELENTE
P16 - K	ð"	260	A.C.	Ġ	EXCELENTE
P19 - K	5"	150	A.C.	ß	EXCELENTE
K - L	16"	330	A.C.	t	EXCELENTE
L - R!!!	16"	3200	A.C.	25	BUENO
RIIA - PIV	8"	1590	A.C.	55	REGULAR
RIV - FV	e*	300	A.C.	22	REGULAR
Pili - AVI	14"	3930	A.C.	20	BUENO
Planta - RVI	18"	780	A.C.	20	BUEINO

FUENTE: SEDACHIMBOTE

CUADRO 3.03

CARACTERISTICAS DE LOS RESERVORIOS EXISTENTES

RESERVORIO	COTA FONDO	MOLUMEN	Pottentaje con respect al total	tipo de Aeservorio	Camara de Valvulas	TUB DE LIMPIEZA	OBSERVACION ESTADO	EDAL
	menm.		%		Y DE EQUIP.	PEBOSE	•	
RI	40	1100	5.03	APOYCONCRETO	MAL ESTADO		MALO	39
BUA	53.4	6000	27.46	APOYCONCRETO	REG. ESTADO	DIAM. 24"	BUENO	27
RIIB	53.4	6000	27.46	APOYCONCRETO	REG. ESTADO	DIAM. 24"	BUENO	12
RIII	45	3600	16.48	APOYCONCRETO	MAL ESTADO	1 14	BUENO	27
BIII.A	45	1000	4.58	APOYCONCRETO	MAL ESTADO	DIAM. 14"	BUENO	5
RIV	100	350	1.60	APOYCONCRETO	MAL ESTADO	DIAM. 6"	BUENO	22
RV	142	600	2.75	APOYCONCRETO	BUEN ESTADO	DIAM. 6"	BUENO	22
RVI A (1)	70	1600	7.32	APOYCONCRETO	BUEN ESTADO	DIAM. 12"	BUENO	6
RVI B (2)	70	1600	7.32	APOYCONCRETO	BUEN ESTADO	DIAM. 12"	BUENO	25
TOTALES		21850						

^{*} EL ESTADO DEL RESERVORIO SE REFIERE DESDE PUNTO DE VISTA ESTRUCTURAL

Él funcionamiento de los mismos es:

A. RESERVORIO R-I

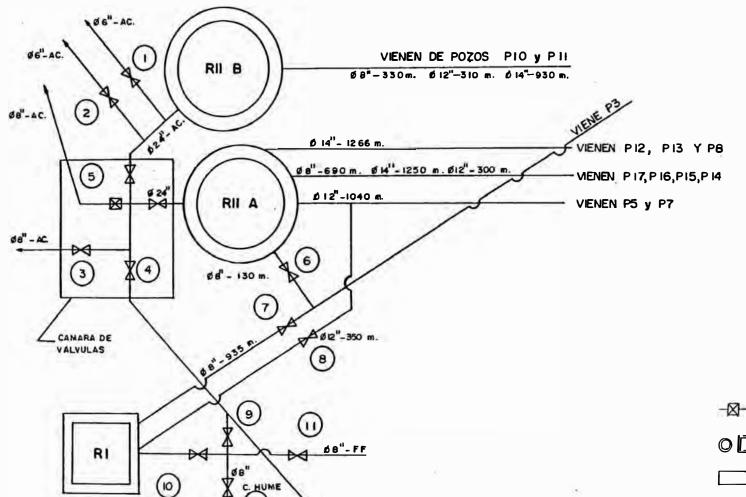
Este es abastecido por los Pozos 3A, 5 y 7A, ingresando un flujo de agua aproximado de 120 lps.

Al momento que se llene este Reservorio, el agua que llega de las Líneas de Impulsión son desviadas hacia el R-IIA a través del cerrado de válvulas, aperturandose al día siguiente a partir de las 5 a.m. El techo del Reservorio es de planchas corrugadas de A.C. No cuenta con tubería de rebose, ni de limpieza.

B. RESERVORIOS R-IIA Y R-IIB

Estos Reservorios se encuentran interconectados a través de una tubería de a 24" de fierro rolado.

Estos Reservorios son abastecidos de la siguiente manera:


- El R-IIA, a través de los ingresos que provienen de los Pozos 12, 13, 8, 15, 16, 17 y a partir de las 10 a.m. hasta las 6 a.m. del día siguiente por dos tuberías que provienen de los Pozos P-5, P-7A y P-3A.
- El R-IIB, a través de un ingreso que provienen de los Pozos 10 y 11.

El llenado de ambos Reservorios es simultáneo, ya que la válvula que se ubica en la interconexión de la tubería de los Reservorios permanece abierta.

Cada Reservorio cuenta con una tubería de rebose uniéndose luego a una Tubería de Limpieza de 4 24" de concreto reforzado, la misma que falta conectarla a la red de desagüe, ya que en la actualidad esta tubería

FIG. Nº 3.02

ESQUEMA DE TUBERIAS DE LOS RESERVORIOS RII-A, RII-B Y RESERVORIO RI

VALV.	SEC TOR ABAS TECIDO
	ESPERANZA BAJA
2	STA. CRUZ
3	LADERAS DEL NORTE
	DOS DE JUNIO (Porte Boj
	LOS PINOS
	HOSPITAL
4	ZONA NORTE
5	RN
6	RIIA
7	RI
8	RI
9	Puede acrecentar Ri cerrando (II y 12)
	abrienda (10)
10	Controla Val. II y Valvula 12
11	EL CARMEN
	EL PORVENIR
	SAN FRANCISCO
	21 DE ABRIL
12	EL PROGRESO
4	HAYA DE LA TORRE
	MANUEL AREVALO
	CUSCO URBANO
	LA BALANZA
	ACERO
	RAMON CASTILLA
	BOLIVAR A y B
	PUEBLO LIBRE

LEYENDA

ESTACION DE BOARBED

RESERVORIO

DEMANDA VA
ZONA DE CONSUMO

TUBERIA HAINCIPAL

O NOO DE PRODUCCIONE

VALVURA OPERATIVA

culmina en la bajada del Cerro donde se ubica este Reservorio, frente a la Urb. Laderas del Norte.

Del Reservorio R-IIA existen dos salidas:

- Una de 29", que abastece a los sectores 1, 2 y 3.

En la interconexión de los dos Reservorios, existe dos salidas de 🏚 6" que se encarga de abastecer: una al P.J. Esperanza Baja y la otra al P.J. Santa Cruz.

El Reservorio R-IIA hace también la función de cisterna, ya que existe en la caseta de válvulas, dos equipos de bombeo que impulsa el agua hacia el R-IV a través de una tubería de #8". En la figura Nº 3.02 se esquematiza la interconexión de los reservorios.

C. RESERVORIOS R-III Y R-IIIA

Estos Reservorios se encuentran interconectados a través de una tubería de 🖟 12" de fierro Schedule grado 40.

El abastecimiento es a través de una tubería de ϕ 16" que ingresa por el R-III proveniente de los Pozos 18 y 19 y ocasionalmente de los Pozos 15, 16 y 17 cuando se apertura la válvula de ϕ 14", que se ubica en la Línea de Impulsión a la altura del Pozo 17.

El Reservorio R-IIIA es abastecido a través de una Línea de Impulsión ϕ 8" que viene del Pozo P-4 y que se encarga de abastecer al sector 6.

El Reservorio R-III tiene tres salidas:

a) Una tubería de🏚 8" de A.C. clase 105, que luego de

FIG. Nº 3.03 ESQUEMA DE TUBERIAS SECTOR VALV. DE LOS RESERVORIOS RIII y RIIIA ABASTECIDO 1 y 6 SAN JUAN VIENE P4 MIRAFLORES 1 ed y 2 do 68"-4280 m. MRAFLORES 30 ZONA WENE DE PLANTA DE TRATAMIENTO DE TRATAMIENTO RELIBICACION MIRAFLORES 2 da. ZONA PLORIDA ALTA RIIIA LA LIBERTAD MERAFLORES BAJO 2 IS ABRIL TRAPECIO SENOR DE LOS MLAGROS PPAO 3 DE OCTUBRE ID. DE MAYO 6 VILLA MARIA LAS BRISAS Abjects on combinacion con io que permite alimentar PPAO. 3 de (5) Octubre. In de Mayo Ville Morio y Los Brisos Cerrondo 4 y Abriendo 3 (3) y 5 Permits aboutecer PPAO, 3 de Octubre. 4 iro. de Maya Villa Mada y Los Brisas MURO DE PROTECCION LEYENDA RESERVORIO ₫8" -1980 m. DEMANDA 1/6 ZONA DE CONSUMO *2 Ø16¹¹-1910 m TUBERIA PRINCIPAL \bowtie VALVULA OPERATI VA ESTACION DE BOMBEO

un metro de recorrido, se ha insertado una Yee de fierro fundido de & 8", bifurcándose en:

- Una tubería de 🖟 8" que trabaja como Línea de Aducción y que abastece al Sector 4.
- Una tubería de
 \$\phi\$ 8" de A.C. clase 105, que trabaja como Línea de Aducción, que luego de un recorrido de 11 m. se le ha colocado una ampliación de 8" a 16", instalada luego la tubería de A.C. \$\phi\$ 16" clase 105, que abastece al Sector 5. 5.
- b) Una tubería de ϕ 12" que es la que interconecta con el R-IIIA y que abastece al Sector 6.
- c) Una tubería de 🖟 14", que luego de un metro se bifurca en dos:
 - Una de p 14" que después de 60m. se conecta con la Linea de Aducción de p 16" con la finalidad de aumentar la capacidad de salida de la tubería del Reservorio y trabaje a presión en el abastecimiento al sector 5.
 - Una de p 14" que actúa como Línea de Impulsión hacia los Reservorios Gemelos de Buenos Aires, cuando no llega agua a la Planta de Tratamiento o su producción es mínima.

El Reservorio R-III hace la función de cisterna cuando se bombea el agua a los Reservorios Gemelos de Buenos Aires, para lo cual se cuenta con dos motores petroleros de 85 HP cada uno, trabajando en forma alternada o simultáneamente si las circunstancias lo requieren.

El R-III no cuenta con tubería de rebose ni de limpieza.

El Reservorio R-IIIA cuenta con tuberías de rebose y de limpieza, pero la longitud de esta ultima es muy corta, de tal manera que para poder usarla se tendrá que alargar está tubería, ya que de lo contrario, al momento de usarla malograría el camino de acceso al Reservorio.

En la figura № 3.03 se esquematiza el sistema de interconexión de los reservorios.

D. RESERVORIO R-IV

Es abastecido a través de un rebombeo que proviene de los reservorios del R-II, a través de una tubería de A.C. \$\phi 6".

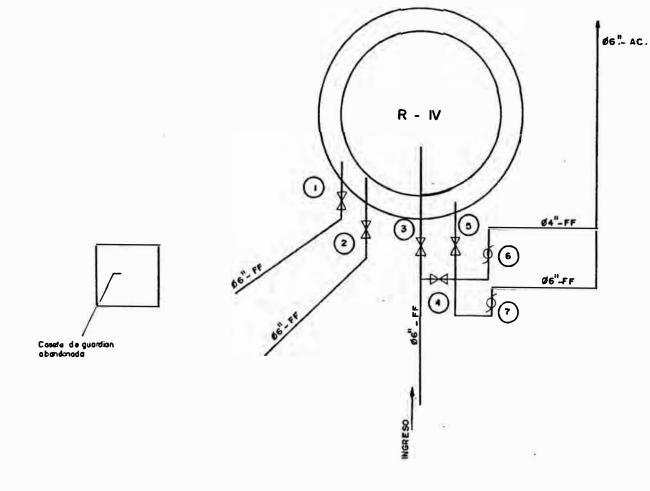
Se encarga de abastecer a: 2 de Junio (parte alta), Esperanza Alta (parte baja) y P.J. San Pedro (parte baja).

Cuenta con sistemas de rebose y limpieza y funciona adecuadamente. En la figura Nº 3.04 se esquematiza el sistema.

E. RESERVORIO R-V

Es abastecido a través del rebombeo que proviene del reservorio R-IV a través de una tubería de 6".

Se encarga del abastecimiento de la parte alta del P.J. San Pedro y Esperanza Alta.


Cuenta con un sistema de rebose y limpieza, y funciona adecuadamente.

F. RESERVORIOS RVI

Estos se encuentran en buen estado, interconectándose entre ellos.

FIG. Nº 3.04

ESQUEMA DE TUBERIAS DEL RESERVORIO RIV

VALK	SECTOR ABASTECIDO
-	REBOSE Y LIMPIEZA
2	ESPERANZA ALTA SAN PEDRO BAJO
3	2 DE JUNIO (Parte Alta Linea de Llegada
	DEL RII A
4	LINEA DE SUCCION
1	DE LA BOMBA # 6
5	LINEA DE SUCCION
	DE LA BOMBA 47
6	BONBA AL RV '
7	BOMBA ALRY
- 1	1
- 1	
1	

LEYENDA

YALVULA OPERATIVA

RESERVORIO

J DEMANDA 1/2

TUBERIA PRINCIPAL

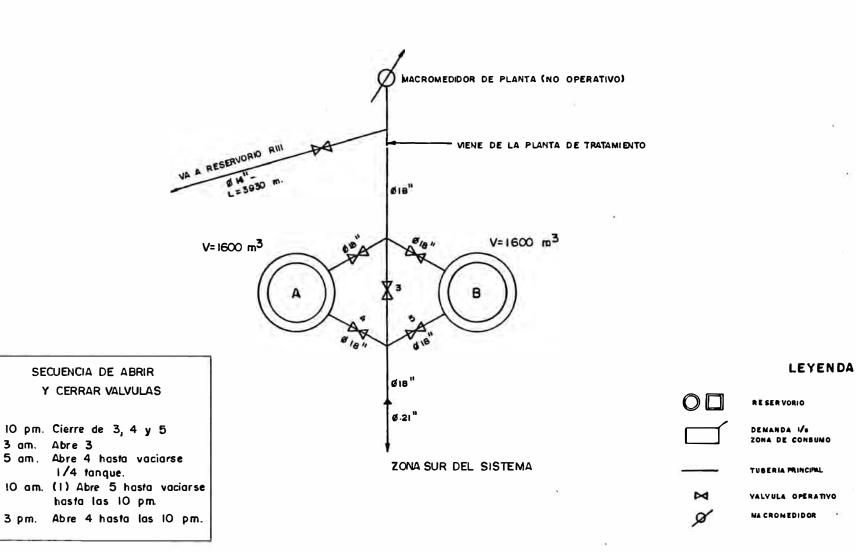
ESTACION DE BONDEO

Es abastecido a través de la Línea de Conducción de 🎪 18" de A.C. que viene de la Planta de Tratamiento, ingresando por el fondo de cada Reservorio (dos).

Se encarga del abastecimiento de los sectores 7 y 8 de la ciudad, aperturándose las válvulas desde la hora en que llenan los reservorios (4.00 A.M. aprox.), hasta las 10:00 p.m., hora en que se cierran las válvulas hasta el día siguiente.

Cuentan con sistemas de rebose y limpieza, los mismos que descargan aún mismo buzón, tal como se muestra en la figura Nº 3.05

3.5 LINEAS DE ADUCCION


De cada Reservorio existen una o más líneas de Aducción que se encargan del abastecimiento a los diferentes sectores de la ciudad.

En el Cuadro Nº 3.04 se indica las longuitudes, diámetros y zonas de abastecimiento de cada una de las líneas de Aducción.

La zona del Reservorio R-V, abastece al sector más alto de la ciudad, desde la elevación 142 hasta 80 m.s.n.m. la es 🍻6" A.C., tubería principal con una aproximada de 124 m. El sector abastecido es San Pedro y Esperanza Alta: la zona del reservorio RIV abarca el sector medio alto de la ciudad. desde la elevación 80 hasta los 40 m.n.s.m. la tubería principal es de A.C. de φ 6" y 114 m de longitud. abastece a San Pedro, 2 de Junio (Parte Alta).

La zona de los Reservorios R-II y R-I. Estos almacenamientos a pesar de contar con diferentes elevaciones, constituyen una sola zona, desde que las

ESQUEMA DE TUBERIAS DE LOS RESERVORIOS RVI-A, RVI-B O RESERVORIOS GEMELOS

(1) Hora aproximada

3 am. Abre 3

redes de distribución, se encuentran unidas en las redes secundarias, tal como se presenta en la figura № 3.01.

De los reservorios R-II, se abastecen en forma independiente a los sectores de: Santa Cruz, Esperanza así como el sector constituido por: Laderas, Los Pinos y 2 de Junio (parte baja). Las tuberías de Aducción para estos sectores son de P.V.C. y A.C. cuyas longitudes 120, 310 y 440, respectivamente. La tubería principal que sale de los tanques RII, tiene una longitud de 4280 metros, en diámetros que varían desde las 29" hasta las 8". Esta tubería va distribuyendo el agua hasta los sectores centrales de Chimbote, tal como se en la figura 3.01 y se resume en el cuadro 3.04

Del Reservorio RI sale una tubería de distribución de 8" AC, que suple de agua dos sectores que se encuentran en el parte central de la ciudad, pero cuyas redes están tuberías principales de interconectadas con las reservorios RII, constituyéndose prácticamente en una sola zona de presión. Esta situación hace que en horas de la tarde, cuando la presión del sistema aumenta, cierre la salida del tanque RI se abre una válvula instalada en una tubería "by pass", que se interconecta con las salidas de los tanques RII y RI. Veáse figura 3.02

La zona de consumo (de los tanques RI y RII) abarca desde los sectores del casco urbano hasta los sectores de Miramar, Alto Perú y parte de Miraflores, abastecidos por las tuberías principales que provienen de los tanques RII con tubería mayormente de 16", 14" y 12".

Esta gran zona de consumo está separada con respecto a la zona que abastece los reservorio RIII mediante válvulas de compuerta cerradas, tal como se muestra en las figuras 3.01 y 3.03

TUBERIAS PRINCIPALES DE ADUCCION Y SUS SECTORES DE CONSUMO

CUADRO Nº 3.04

ZONA DE GONSUMO	HESERVORIO QUE	DIAMETRO	MATERIAL		·····
	ABASTECE			m l	ma.n.m
ZONA I					
SECTORES	RV	8"	A.C.	124	CF=142 m.
PJ. SAN PEDRO	1				
PJ. ESPERANZA ALTA II					
ZONA II					
DOS DE JUNIO PARTE ALTA	1			1	
PJ. ESPERANZA ALTA II	RIV	6*	A.C.	114	CF=100 m.
PJ. SAN PEDRO BAJA					
ZONA III (NORTE)					
PJ. LADERAS DEL NORTE	R II A-B	8*	P.V.C	120	CF=53.4m.
PJ. DOS DE JUNIO BAJO	R II A-B	8*	A.C.	310	
PJ. LOS PINOS	RII A-B	ĺ			
PJ. SANTA CRUZ	P.II A-B	29"	A.C.	440	
PJ. EL PROGRESO	RI			1	CF=40 m.
PJ. EL CARMEN	RI		İ		
PJ. EL PORVENIR	l Bi			l i	
PJ. SAN FRANCISCO DE ASIS	RI-BII		•	1	
PJ. 21 DE ABRIL	RI-RII			i	
ANTENOR ORREGO	P.II A-B			1	
LA VICTORIA	R II A-B				
MAGDALENA	RII A-B			1	
MIRAMAR ALTO	R !! A-B				
MIRAMAR BAJO	RII A-B			1	
DOCE DE OCTUBRE	RII A-B			1	
FLORIDA BAJA	R II A-B				
MIRAFLORES 1era ZONA	R-III				
MIRAFLORES BAJO	R-III				
MIRAFLORES Sera ZONA	R II A-B	8-	A.C.	FALTA	
Reubicacion MIRAFLORES	RII A-B	1		1	
CASCO URBANO	P.II A-B	8*	C.A.	1	CF=53.4m
PJ. HAYA DE LA TORRE	RII A-B				
PJ. MANUEL AREVALO	RII A-B				
PJ. LA BALANZA	RII A-B				
PJ. EL ACERO	RII A-B				
PJ. RAMON CASTILLA	RII A-B	1			
PJ. BOLIVAR (A V B)	RII A-B				
PJ. PUEBLO LIBRE	RII A-B				

CUADRO Nº 3.04

TUBERIAS PRINCIPALES DE ADUCCION Y SUS SECTORES DE CONSUMO

ZONA DE CONSUMO	HESEAVORIO QUE	DIAMETRO	MATERIAL	TOMETTUD	COTAS
	ABASTECE			m	ma.n.m.
ZONA IV (CENTRAL)	R III A-B	16"	A.C.	2000	CF=45 m
NAUL MAE	R III A-B	8"	A.C.	2000	
MIRAFLORES ALTO	R III A-B			1	
da Zona MIRAFLORES	R III A-B	12"	A.C.	1020	
5 DE ABRIL	R !II A-B		8	1	
PAPECIO	R III A-B				
ENOR DE LOS MILAGROS	R III A-B				
LORIDA ALTA	R III A-B				
A LIBERTAD	R III A-B				
PAO	R III A-B				
DE OCTUBRE	R III A-B				
ro DE MAYO	R III A-B				
/ILLA MARIA	R III A-B				
AS BRISAS	R III A-B				
CONA V (SUR)	RVI	21*	A.C.		CF=70 n
INACE	RVI	12"	A.C.		
SAN DIEGO	RV!	6"	A.C.		
BELLAMAR	RVI				
DAVID DASSO	RVI	r .			
SAN LÜIS	RVI				
ONAS (1A - 1B)	AVI				
ONAS (2A - 2B)	₩VI	1	1	+	
ONAS 3A, 3B, 3C, 3D	RV!	ì		Í	
20NAS 4A - 4B	RVI	1		1	
ZONAS 5A, 5B, 5C, 5D	RVI	1		1	
JRB. LAS CASUARINAS	AVI			1	
BUENOS AIRES 1 ra y 2da ZONA	RVI				
URB. MIGUEL GRAU	RVI	ļ			
ZONA SEMIRUSTICA	RVI				
ZONA INDUSTRIAL	RVI				
GARATEA	RVI	1			
AGRUP. MARISCAL LUZURIAGA	RVI				

La zena IV de los reservorios RIII. comprende los sectores desde Miraflores (parte baja) hasta las urbanizaciones de 15 de Abril. Trapecio y el PPAO y otros sectores sobre la margen izquierda del río Lacramarca. De estos tanques salen cuatro tuberías que luego se reúnen en tres. véase figura 3.01, abasteciendo a los sectores de la siguiente forma: tubería de 16" A.C. que abastece a los sectores de Miraflores y otros, tubería de 8" A.C. que suple de agua a los sectores de 15 de Abril. Trapecio y los sectores bajos de esta zona central.

La tercera tubería de 12" A.C. abastece los sectores del PPAO y las partes bajas después del puente del Lacramarca. Es de mencionar que estas dos grandes zonas de consumo, zonas III y IV, no obstante estar separadas por válvulas cerradas en las tuberías principales, existen tuberías menores que los interconectan; que no afectan las condiciones de servicio, dado que problemas de desabastecimiento que se tiene la actualidad en ambas zonas son de las mismas V características, así como la cota de los reservorios es muy similar.

La última zona de consumo (V) esta definida como Nuevo Chimbote y se abastece de los Reservorios RVI (Gemelos), cuya agua procede de la planta de tratamiento.

La tubería principal de esta zona está conformada por una línea de 29" y 12" de A.C., abasteciendo las zona de Bella Mar, Piletas Garatea, David Dasso, y sectores 7 y 8 Esta zona de consumo, en la que mejor se encuentra desde el punto de vista de abastecimiento, ya existe sectores que poseen las 24 horas de servicio.

3.6 RED DE DISTRIBUCION

En el cuadro 3.05 se presenta un resumen de la red principal y una estimación de la red secundaria de aproximadamente 400 km, con diámetros que van desde los 4 3" hasta los 🍻 29". Es de subrayar, que el personal Control Operacional ha realizado un enorme esfuerzo para obtener un catastro confiable del 65% de las válvulas y de un 30 % de las tuberías. Aún persiste información verbal, a través de los fontaneros que tienen varios años de trabajar en el sistema que todavía no se ha verificado ni puesto en planos de catastro. en el cuadro 3.05 se presenta un resumen de las tuberías que comprende la red, aclarando que sus longitudes en algunos aproximados especialmente en sus tuberías de relleno.

En la actualidad el suministro de agua se lleva a cabo consumo, horarios de de los Reservorios principalmente, en cada una de las zonas descritas. El horario de suministro que se lleva a cabo se resume en el 3.06. observándose los cuadro que sectores perjudicados en la actualidad son los de las zonas altas, y los más favorecidos son los que abastecen RVI (Gemelos). Dentro de Reservorios de la red distribución únicamente en los sectores de PPAO, 9 Octubre y Villa María, se realiza el abastecimiento por subsectores, mediante el cierre completo de válvulas de compuerta. En la zona de los tanques Gemelos (RVI) por los problemas de capacidad que presenta la línea de aducción de 12" mencionada anteriormente, el suministro tiene que realizarse por sectores, especialmente en las horas de máximo consumo.

Resumiremos que el promedio de abastecimiento diario es de 7 horas, cubriéndose a una población aproximada del 71% con respecto al total.

CUADRO Nº 3.05

METRADO DE TUBERIA - RED DE DISTRIBUCION

MATERIAL	LONGITUD TUBERIA (ML)										
	2	3"	4*	6	8	101	181	14"	16"	29	
F.E.			1810	2910	8230				٠		
CONCRETO HUME					1730	100	•				
A.C.	1200	11000	300000	12000	21360	3040	5560	6370	7920	520	
P.V.C.	1000		5000		700				low-		
TOTAL	2200	11000	306810	14910	32020	30.40	5560	6370	792.0	520	

LONGITUD TOTAL : 390350

* LONGITUDES APROXIMADAS

Existen muchos sectores (4. 5 y 6 y parte del 1) en donde las presiones son muy pequeñas, lo que hace que existan frecuentes reclamos por parte de los usuarios.

CUADRO Nº 3.06 HORARIOS DE SUMINISTRO POR SECTORES

ZONA DE CONSUMO	RESERVORIO QUE		HORARIO DE SUMINISTRO			
			MANANA	TAROS		
ZONA I						
SECTORES	RV	877	5 AM - 9 AM			
PJ. SAN PEDRO		1				
PJ. ESPERANZA ALTA						
ZONA II						
PJ ESPERANZA ALTA	RIV	1072	5 AM - 9 AM			
DOS DE JUNIO ALTA	1			1 PM - 4 PM		
PJ. SAN PEDRO BAJO	į .		5 AM - 9 AM			
ZONA III (NORTE)						
PJ. LADERAS DEL NORTE	RII A-B	19522	2 AM - 9 AM	1 PM - 6 PM		
PJ. DOS DE JUNI O BAJO	RII A-B		2 AM - 9 AM	1 PM - 8 PM		
PJ. LOS PINOS	RII A-B		2 AM - 9 AM	1 PM - 6 PM		
PJ. SANTA CRUZ	RII A-B	ļ		2.3 PM - 8 PI		
PJ. EL PROGRESO	RI		5 AM - 9 AM	3 PM - 6 PM		
PJ. EL CARMEN	RI	1	5 AM - 9 AM	3 PM - 6 PM		
PJ. EL PORVENIR	RI	1	5 AM - 9 AM	3 PM - 6 PM		
PJ. SAN FRANCISCO DE ASIS	RI-RII	1	5 AM - 9 AM	3 PM - 6 PM		
PJ. 21 DE ABRIL ZONA A	81-81)	1	5 AM - 9 AM	3 PM - 6 PM		
PJ. 21 DE ABRIL ZONA B	RI-RII		5 AM - 9 AM	3 PM - 5 PM		
ANTENOR ORREGO	RIIA-B		5 AM - 9 AM	3 PM - 6 PM		
LA VICTORIA	RIIA-B	1	5 AM - 9 AM	3 PM - 5. 3PI		
MAGDALENA	RIIA-B		5 AM - 9 AM	3 PM - 6 PM		
MIRAMAR ALTO	RII A-B	1	5 AM - 9 AM	3 PM - 6 PM		
MIRAMAR BAJO	RII A-B		5 AM - 9 AM	3 PM - 6 PM		
DOCE DE OCTUBRE	RII A-B	3	5 AM - 9 AM	3 PM - 6 PM		
FLORIDA BAJA	R II A-B		5 AM - 9 AM	3 PM - 6 PM		
MIRAFLORES 1era ZONA	BIII		5 AM - 9 AM	3 PM - 5. 3PI		
MIRAFLORES	RIII		5 AM - 9 AM	3 PM - 5.3 PI		
MIRAFLORES Sera ZONA	8111	1	SAM-9AM	3 PM - 5.3 PI		
REUBICACION MIRAFLORES	RIII		5 AM - 9 AM	3 PM - 5.3 PI		
CASCO URBANO	R II A-B		5 AM - 9 AM	3 PM - 6 PM		
PJ. HAYA DE LA TORRE	RII A-B		5 AM - 9 AM	3 PM - 6 PM		
PJ. MANUEL AREVALO	R II A-B		5 AM - 9 AM	3 PM - 6 PM		
PJ. LA BALANZA	RII A-B		5 AM - 9 AM	3 PM - 6 PM		
PJ. EL ACERO	RII A-B		5 AM - 9 AM	3 PM - 6 PM		
PJ. RAMON CASTILLA	P.II A-B		5 AM - 9 AM	3 PM - 6 PM		
PJ. BOLIVAR (A y B)	RII A-B	5 3	5 AM - 9 AM	3 PM - 6 PM		
PJ. PUEBLO LIBRE	RII A-B		5 AM - 9 AM	3 PM - 6.3 PM		

CUADRO Nº J.06
HORARIOS DE SUMINISTRO POR SECTORES

ZONA DE CONSUMO	RESERVORIO GUE		HORARIO DE SUMINISTRO			
			MANANA	TARDE		
ZONA IV (CENTRAL)						
SAN JUAN	R III A-B	9505	5 AM - 9 AM	3 PM - 5.3 PM		
MIRAFLORES ALTO	R III A-B		5 AM - 9 AM	3 PM - 5.3 PM		
2da Zona	RIII A-B	1	5 AM - 9 AM	3 PM - 5.3 PM		
15 DE ABRIL	RIII A-B	4	5 AM - 9 AM	3 PM - 5.3 PN		
TRAPECIO	R III A-B		5 AM - 9 AM	3 PM - 5.3 PM		
SEÑOR DE LOS MILAGROS	R III A-B		5 AM - 9 AM	3 PM - 5.3 PN		
FLORIDA ALTA	R III A-B		5 AM - 9 AM	3 PM - 5.3 PN		
LA LIBERTAD	R III A-B		5 AM - 9 AM	3 PM - 5.3 PM		
PPAO	RIII A-B		5 AM - 9 AM			
3 DE OCTUBRE	R III A-B		5 AM - 9 AM			
1ro DE MAYO	R III A-B			1 PM - 6 PM		
VILLA MARIA	R III A-B		9 AM - 1 PM			
LAS BRISAS	RIII A-B			2 PM - 6 PM		
ZONA V (SUR)						
ENACE	RVI	7600	5 AM - 12 M	12 M - 10 PM		
SAN DIEGO	RVI		5 AM - 12 M	12 M - 10 PM		
BELLAMAR	RVI		5 AM - 12 M	12 M - 10 PM		
DAVID DASSO	RVI	1		12 M - 4 PM		
SAN LUIS	RVI	į į	5 AM - 9 AM			
ZONAS (1 A - 1 B)	RVI		5 AM - 9 AM	4 PM - 6 PM		
ZONAS (2A - 2B)	EVI .	1	5 AM - 9 AM	4 PM - 7 PM		
ZONAS 3A, 3B, 3C, 3D	RVI	i	5 AM - 9 AM	4 PM - 6 PM		
ZONAS 4A - 4B	SV!			9 PM - 3 PM		
ZONAS 5A, 5B, 5C, 5D	RVI			9 PM - 3 PM		
URB. LAS CASUARINAS	RVI	j	5 AM - 12 M			
BUENOS AIRES 1 ra y 2da ZONA	RVI		5 AM - 12 M	12 M - 11 PM		
URB. MIGUEL GRAU	. RVI	i i	5 AM - 12 M	12 M - 11 PM		
ZONA SEMIRUSTICA	RVI		5 AM - 12 M	12 M - 11 PM		
BUENOS AIRES	RVI		5 AM - 12 M	12 M - 11 PM		
ZONA INDUSTRIAL	RVI		5 AM - 12 M	12 M - 11 PM		
BUENOS AIRES	RVI		5 AM - 12 M	12 M - 11 PM		
GARATEA	RVI		5 AM - 12 M	12 M - 11 PM		
AĞRUP. MARISCAL LUZURIAGA	RVI		5 AM - 12 M	12 M - 11 PM		
TOTALES		38578				

NOTA: LA DOTACION PROMEDIO ES SEGUN NUMERO DE USUARIOS CON 5 PERSONAS POR CONEXION

CAPITULO IV

EVALUACION DEL SISTEMA DE AGUA POTABLE

4.1 SISTEMA DE PRODUCCION

4.1.1 Recursos Hidricos

Las fuentes de agua de origen subterráneo son captadas por medio de 15 pozos, cuya producción es de 520 l/s. A continuación se presenta la descripción detallada de las características hidrogeológicas del acuífero y del estado actual de los pozos, indicándose los problemas más relevantes que se presentan y el estado actual de los equipos electromecánicos instalados en cada uno de ellos.

Las características de la otra fuente, el río Santa, son adecuadas para el tipo de tratamiento actual, cuyas características principales se explican en la siguiente sección.

4.1.1.1 Aguas Subterráneas

En el sistema operan al presente 15 pozos. La mayoría de los pozos se encuentran en las partes NE de la ciudad y algunos afuera de la ciudad, que penetran en el acuífero aluvional que ocupa el valle de Chimbote desde el mar hacia tierra adentro al Noreste.

El bombeo total llega a 16 MCM/año (fuente: SEDA-CHIMBOTE véase cuadro 4.01). La observación de los pozos permite extraer las siguientes conclusiones:

* En todos los pozos se observa un

descenso de los caudales, desde su inicio hasta la fecha.

- * Paralelo con el descenso de los caudales se aprecia descenso en los niveles estáticos.
- * Independientemente del descenso de los caudales, se observa un significante ascenso en los niveles dinámicos.

El pequeño descenso en los niveles estáticos, atribuido a la densidad de la distribución de los pozos, no puede ser la causa del fuerte descenso en los caudales. Por otro lado, el ascenso de los niveles dinámicos indica claramente que descenso en los caudales es causado por factores mecánicos y no por causas hidrogeológicas.

El arenamiento apreciable de todos los pozos (cuadro 4.01) obstruye parte de los filtros por lo que llega menos agua al pozo, disminuyendo su caudal. Además, el daño causado por la arena es otro factor del descenso del caudal.

La concentración de los cloruros en los (cuadro 4.01) es relativamente pozos elevada variando entre un minimo de 250 mg/l de 710 mg/1. La un máximo concentración sube desde el NE (tierra adentro) hacia el SO (hacia el mar). Los valores relativamente altos son en resultado del gran flujo de retorno de

riego, que ocasionan niveles someros de agua, con el consiguiente incremento en la evapotranspiración y ascenso de la salinidad.

En cuanto a las instalaciones Electromecánicas podemos indicar:

las bombas existentes Todas de fabricación local (Hidrostal-BJ), cuentan sistemas de lubricación por Con respecto al rendimiento la mayoría de equipos trabajan en un punto operación diferente al determinado por el efectuada fabricante (evaluación por SEDACHIMBOTE), este parámetro debe ser considerado para mejorar la eficiencia del sistema de bombeo y lograr así una mejora sistema; no solo desde el punto de vista técnico sino económico.

Tres de los 15 pozos son activados por motores Diesel, los doce restantes son activados por motores eléctricos de 440 voltios; la energía eléctrica se toma de las redes locales de Hidrandina S.A.

Todos los pozos cuentan con un esquema eléctrico estándar consistente en una acometida de 13.2 Kv de las redes Hidrandina S.A. con Sub-Estaciones propias del equipo convencional (mayoría de ellas biposte aéreo), tablero de control y arranque por un Sistema Estrella-Triángulo general el estado del equipamiento eléctrico en las instalaciones no cumple con los requisitos de seguridad para operación y maniobra según disposiciones vigentes, por ejemplo:

- Cables sueltos y no protegidos
- Sub-Estaciones sin puertas
- Instrumentos de control y medición en gran parte averiados o no calibrados
- Falta de protecciones eléctricas: fusibles, relés de sobrecarga, etc.
- Los tableros en general están abandonados y necesitan un mantenimiento integral
- Falta de alumbrado en las casetas y patios.

pozos son operados en forma manual, contando con el personal permanente horas al día. En relación a la instalación de tuberías debemos indicar que alounos pozos no cuentan con medidores de caudal, ni tampoco con medidores de presión, casos dichos instrumentos están descalibrados por lo que el personal para la toma de datos la ejecuta con mayor dificultad.

En general las casetas se encuentran en un estado no adecuado de conservación, pero a pesar de lo indicado, el equipamiento está funcionando.

DATOS HIDROGEOLOGICOS DE LOS POZOS DE CHIMBOTE

COADRO Nº 4.01

P 026 0	AND DE PERFORAC	#ROF!	iaibabara ak	AT BAIR.	PROSES ESTA	NECO PROVERE.	#AKIFU DINU	NG NIVEL	CV*D	L m. Mars a	ABATA	u (Birlis) mi	EKUSIA m39	i perpetifi Um	\$09860 78021	2,081180
		WIGS#	pfekhnje			PREBENSE		# RSS ENTE	8Nicski,	P NERENTE	inocial	PREBENSE	and the second s	PEESENTE	US# 1005mg.	mg#1
3.8	1979	40	38	5	2.9	4.25	35	24.4	216	108	32.1	20.12	6.7	5.4	0.85	276
4	1970	5(1	37	13	3.2	4.13	16.8	12	252	805		7.87		26.5	1.78	26(1
5	1969	45	36	7		4.65		18		158		13.35		11.8	1.43	370
7	19E7	58	46	19	5.8	5.43	22,4	15	292	179	18.2	9.57	16	18.7	1 38	295
8	1972	Ba	35	30	3.4	4.65	15	18	120	122	11.6	13.35	15.6	9.4	0.92	290
10	1977	70	45	25	4.7	6.3	21,8	24	144	184					0.97	377
11	1977	68	'40	53	6.1	6.4	18	15	144	108					0.84	247
12	1973	70	36	31	3.6	4.65	39.7	14.26	178	65	35.8	9.41	5	6.9	0.93	355
13	1973	76	64	6	3.05	6.78	28.81	10	198	122	25.76	3.24	7.7	37.6	1.14	580
14	1987	67	38	\$9	4,86		38,86	24	184	108					0.64	550
15	1971	S Ú	50	10	3.6	6.3	£1.6	15.85	216	205	4.6	5.55	44.1	21.5	1.27	311
16	1971	đu	55	5	2.6	3 8	35	18.35	173	ទូល	2y.4	15.5	£1,9	5.8	0.69	292
17	1972	70	€8	5	2.6	5	48.94	2:4	151	124	46.44	-19	3.2	6.5	1.03	313
18	1987	60	84	5	3.95	42	13.5	15	263	173	11.46	10.8	4.92	16	1.15	640
19	1987	8(1	50	8	1,53	4.1	21.9	\$1)	227	187	19.67	15.9	14,6	11.8	1.3	710
10141								=====	====	*****		terment.	===-		16 16	-222

4.1.1.2 Hidrogeología de Aguas Superficiales

a) <u>Generalidades</u>

La ciudad de Chimbote recibe aqua potable no sólo de perforaciones sino también del canal Carlos Leigh, que es los canales principales de irrigación de l a región. 1 æ En actualidad. 1 a cantidad de aqua abastecida a la ciudad de esta fuente asciende a 200 l/seg.

b) <u>Flujos Mensuales del Río Santa</u>

El río Santa es uno de los pocos ríos en Perú que fluyen hacia el Océano Pacífico y llevan caudal todo el año. Ello se debe a que drena la región de la montaña alta, cuyas cúspides están cubiertas de nieve durante todo el año.

la estación lluviosa, durante meses diciembre-marzo, los flujos son torrenciales y las aguas arrastran grandes cantidades de sedimento. cantidades de sedimentos son durante el período de deshielo de nieve, en la estación seca. Durante el viaje de reconocimiento a la zona Huaraz realizado el día 16.02.96. durante el período más intenso de estación lluviosa, se observó el flujo del río santa antes y después de llover. y se comprobó que era limpio antes de la pero luego tormenta ésta arrastraba grandes cantidades de sedimentos.

En el área de drenaje de la cuenca del Río Santa existen varias estaciones

hidrométricas en las que se miden flujos en forma consecutiva a lo largo de muchos años. La estación hidrométrica relevante para el presente estudio hidrológico es la de Condorcerro. Esta estación abarca un área de drenaje de 10,400 Km², alrededor CUYA parte se halla ubicada a una altura los 2,000 superior ä m.s.n.m. L.a estación es operada por Electro-Perú y encuentra en la latitud 8°39′ y longitud 78°15'. El nivel topográfico de la estación es 450 m.s.n.m., aguas abajo de la planta de electricidad. Todas desviaciones a las zonas de irrigación hacia el norte y el sur del Río Santa (los proyectos especiales Chinecas Sur v Chavimochic Norte), están ubicadas aguas abajo de dicha estación.

El cuadro Nº 4.02 presenta un resumen de los flujos mensuales en el Condorcerro por el período 1956-1995 (40 años). el promedio de flujo en la estación durante el período señalado, llega a un orden de magnitud de 4.4x10 m 3/año y el año menos flujo (1992), el mismo que fue de 2.0x10° ₁ñ/año señalado. llega orden de magnitud de 4.4x10 m 3/año y el año de menos flujo (1992), el mismo fue de 2.0x10 m³/año. Los meses menores flujos van de julio a setiembre y el mes de flujo mínimo registrado en período mencionado, fue julio de 1992, con 30.5 m3/seg. El mes de agosto registra el promedio mínimo: 46 m3/seg.

	Condorect		-	*****			anaman tak	000000000000	THE RESERVOIS	Consequent I			TOTAL STREET
YNQ	ENE	FB€	WAR	ADR	HOY	JISH I	II3L	×GΫ	\$E3	OC1		องต	N Y SIL VANDY
1956	166. 12	216.11	356.27	366.02	105.68	64.39	45, 17	45.89	46.05	71.51	66.87	74.62	4267.37
1957	116.7	139.54	295.32	538.8	135.05	35.92	59.84	53.48	62.97	86.95	66.9	119.73	4652, 16
1958	136.98	195.25	289.98	239.88	80.08	58,29	47.86	48.42	76.01	95.97	108.91	124.89	3946.72
1959	132.2	137, 19	336.44	252.82	83.56	61.95	48.56	50.61	50.68	9 1.6	95, 14	19 1.83	4025.41
1960	194.27	243,15	3 18.96	3 14.97	117.8	68, 13	49.56	48.96	48.34	6 1, 19	97.18	102.89	4372.96
196 1	233, 18	197.44	390,16	313.06	114.72	82.06	42.04	39.97	55.8	6 1.(19	166.9	268	5212.2
1962	253,58	241.34	5 15.44	370.23	106.29	72.56	56.26	53.9	67.71	59.68	81.4	87.4	5 163.27
1963	153.96	291.65	47 1.65	290.62	100.77	53.49	42.3	42.02	48.79	63.55	130.15	237.5	5059.94
1964	196,47	252.72	312.22	277.68	118.79	118.79	61.56	65.41	47.68	44.35	73.94	103.64	4394.89
1965	115.43	126.65	415.48	223.6	97.23	50.23	42.13	44.83	34, 17	95.04	99.02	139.99	3897.29
1966	235.32	208.33	176.72	124.52	89.98	57.39	53,54	52.04	57.34	115.66	125.78	124.4	3732.53
1967	185.49	168,32	499.4	173.27	96.04	60.46	49.75	47.53	49.31	116.63	102.37	110 08	4356.54
1968	186.71	143.39	180.28	109.03	63.14	46.61	33.23	37.39	50.32	82.44	94.76	100	2829.59
1969	111.05	137.76	212.72	2 16. 16	100	68.58	51.74	49.53	53.21	85.85	106.32	150 21	3527.81
1970	254.79	171.61	184.54	224,46	77.51	59.45	48.1	52.77	66.25	104.42	164.89	285.66	4450.57
197 1	344.96	294.38	8 1 1. 19	483.22	126.06	89,69	59.74	53.35	60.95	84.59	66.87	64.8	6670.94
1972	172.49	262.41	511.84	548.07	96 54	51.74	67.83	60.17	60.55	70.78	93.52	134.58	5595.94
1973	220,6	295.85	403, 18	4 15.39	158.92	84.46	68.97	61.3	72.04	13 1.7	164.83	233	6068.04
1974	298. 89	224.81	412.72	253.96	99.98	76.4	57.87	52.44	68.24	98.04	229.84	43 1.27	6052.8
1975	228.83	235.39	377.61	324.59	97.71	71.66	52.5	51.89	66.77	95.04	160.97	276.75	5857.42
1976	232.62	304.99	352.13	166.25	73.89	63.33	48.43	43,71	46.24	68.22	75.53	85.92	4 100.74
1977	159.71	424.44	297.8	186.69	93.76	68.68	52.04	53.24	53.86	66.73	113.72	127	4459.83
1978	111.81	192.81	152.44	124.32	85.03	57.77	53.43	45.4	63.55	64.78	93.34	103.76	3029.58
1979	128.86	226.86	386.26	195,24	96.44	61.64	50 42	49.55	57.59	8:3,88	93.77	104.39	399153
1980	117,39	128.93	118.26	117.67	53.66	48.26	37	39,29	67.51	102.6 i8	128.33	221.14	3099.66
1981	159.38	477.12	394.02	177 74	86 75	66.86	54.73	47.59	44.09	89.26	171.02	195.03	5 157.49
1982	175.78	3 16.33	190.04	192.78	97.74	65.56	48.87	43.04	48.69	107. 13	18 1.83	257.07	4530 45
1983	339, 18	202.61	386.13	330.83	153.5	89.48	68.78	53,36	53.96	70.46	94.29	176 88	5288.47
1984	107.39	711.05	599.96	346.45	171.98	9:3.5	58.63	45.04	45.14	106.6i8	78.79	14-1.01	6667.84
1985	142.56	158.51	172,46	174.42	83.5	46.65	35.26	34.4	52.22	53.21	63	89.88	290 5, 13
1986	169.67	165.61	198. 15	269.23	105.86	52 48	40.77	38,22	39.74	57.01	82.96	13 1.62	3549.32
1987	301.59	292.59	215.41	159.07	113.71	55, 17	46.3	41.37	48.88	62.4	114.26	173.58	4266.4
1988	264.42	314.4	19 1.03	243.25	124,02	62.16	46, 13	41.38	31.38	48.48	61.81	85.66	3950,66
1989	203,24	339.42	345.22	3 12.69	106.01	61.29	39.88	33.78	37.45	100.53	98.54	67.83	4563.33
1990	183,24	131.26	116.6	88.7	52.02	47.96	8.88	38.36	37.77	84.72	144.04	113.1	2696.35
1991	1:20.5	143.84	357.97	184.75	89 98	49.22	38.81	38.5 6	39.34	54.2	61.61	78.1	3 169.94
1992	91, 17	76.16	116.6	108.77	59.13	38.16	30.54	38.56	37.77	48.15	54.1	60.06	1993,48
1993	96,39	317.74	867.54	253,54	169.15	61.64	44.09	38,74	56.84	96.22	19 1.99	276.92	6489.7
1994	369,2	471.44	390.87	262.42	46.03	41.42	47.85	40.63	46.17	44.3	70.27	104.14	5081.71
1495	145.03	160.43	228.18	229.1	78.93	46.71	40,09	4.1.09	4293	47,512	94.79	114.4	3333,25
PROM	186.9	243.5	338.73	253.36	100.19	64.26	488863	46.43	52.36	78.93	108.91	152.38	4393.96
STOV	71.13	118.34	166.24	110.96	29	15,54	9.01	7.35	10.84	22.38	41,41	79.68	1104.38
Minimo	91.17	76,16	116.6	88.7	46.03	38.16	30.54	3 3.78	31.38	44.3	54.1	60.06	1993,48

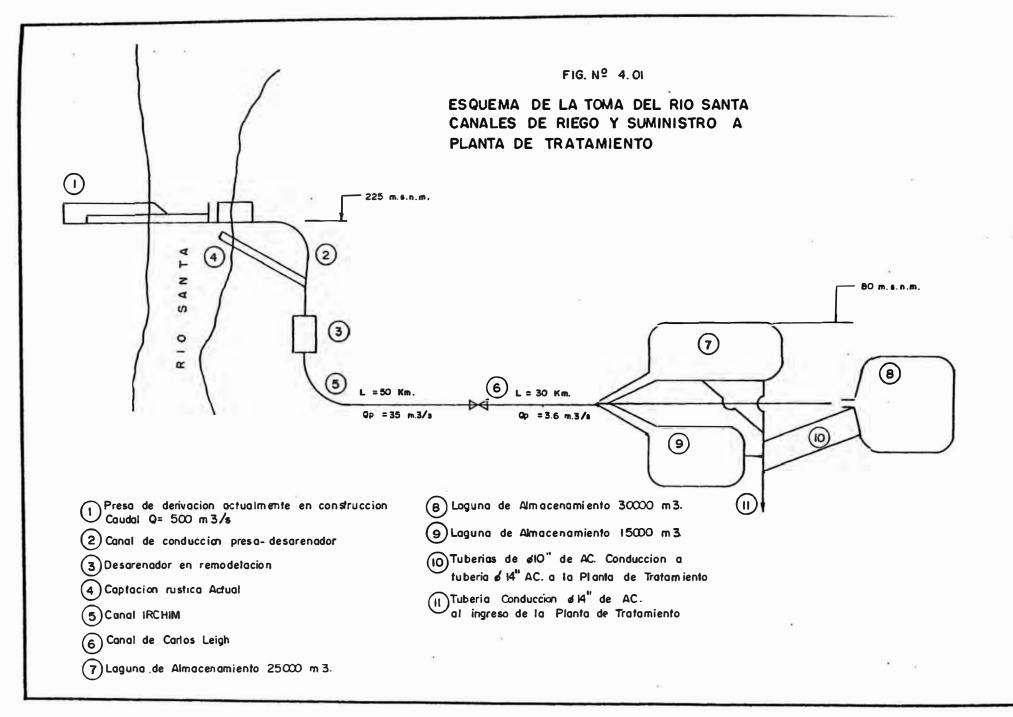
El cuadro Nº 4.03 presenta datos de la distribución mensual de los flujos en un año promedio y en un año en el cual la probabilidad de un flujo es de 75% o más (según distribución estadística Gumbel).

El volumen anual del flujo en 1992 3,636 × 10° m3 y la distribución mensual en dichos años fue determinada acuerdo al carácter distribución de los flujos del año 1986, que tuvo un flujo anual de 3,544 mJ. siguiendo las metodologías aceptadas. dichos valores mensuales fueron multiplicados por el coeficiente de relación de los mencionados flujos anuales: 3,636/3,544 = 1.026

4.1.2 Toma y Conducción

captación se halla ubicada en la cota 225 m.s.n.m., y se realiza en forma rudimentaria mediante un desvío del río en su margen izquierda, por medio de un canal excavado con maquinaria presentándose problemas durante pesada. avenidas. En el marco del proyecto de ampliación del sistema de regadio de IRCHIM se está construyendo una nueva bocatoma cuyo diseño es de unos 35 m3/seq. La misma consiste en una presa de derivación a lo ancho del río, que conduce el agua desarenador existente, que modificando para adecuar a los nuevos caudales. La construcción concluirá en los próximos meses. parte del proyecto, se contempla la ampliación de canales principales de conducción, el IRCHIM y el canal Carlos Leigh, de 50 y 30 Km, respectivamente. Este último canal quedó habilitado para conducir un caudal de 3.6 m3/seg, disponiéndose para SEDACHIMBOTE hasta 700 l/seg como concesión de agua.

Al final del Canal Carlos Leigh, el agua que suministra para la ciudad de Chimbote. el mismo ingresa a lagunas de 70,000 m3 de capacidad total. figura NO 4.01 se muestra el esquema del sistema de conducción, incluida la planta tratamiento. En total hay tres lagunas desde ellas, por medio de tuberías de A.C., el agua de conduce a Como parte de los planta. proyectos SEDACHIMBOTE se tiene previsto instalar una nueva tubería a los efectos de flexibilizar conducción en casos de emergencia o de disponibilidad de agua.


÷

CUADRO Nº 4.03

CAUDALES MEDIOS MENSUALES Y DISPONIBILIDAD DE AGUA DEL RIO SANTA

NES	Q	5% (Descarga	Yolumen .
	m3/s	Volumen MMC	Media Mensual m3/s	Media Mensual MMC
ENERO	174.1		186.9	500.6
FEBRERO	169.9		243.5	589.1
MARZO	203.3		338.7	907.3
ABRIL	276.2	i	253.4	656.7
MAYO	108.6		100.2	268.3
JUNIO	53.8		64.3	166.5
JULIO	41.8		48.9	130.9
AGOSTO	39.2		46.4	124.3
SETIEMBRE	40.8		52.4	135.7
OCTUBRE	58.5		78.9	211.4
NOVIEMBRE	85.1		108.9	282.3
DICIEMBRE	135.0		152.4	408.1
ANUAL		3636.00		4399.0

^{*} SEGUN DISTRIBUCION DE GUMBEL

4.2 CALIDAD DEL AGUA Y SISTEMAS DE TRATAMIENTO

En esta sección se presenta un análisis de la calidad del agua, tanto en su condición cruda como tratada, así como una evaluación de los sistemas de tratamiento existentes.

4.2.1 Aguas Superficiales

4.2.1.1 Calidad del Aqua Cruda

Los resultados disponibles referentes a la calidad del agua en la región del canal Madre Moche Chicama de la Junta de Usuarios de IRCHIM, se presentan en el cuadro Nº 4.04 a continuación.

Cuadro Nº 4.04

Características Físico - Químicas del Agua del Río Santa

		FECHA DE LA DETERMINACION					
PARAMETRO	UNIDAD	18.09.95	13.10.95	04.11.95			
Conductividad	µS/cm	380	367	316			
pH	unidades	7.16	7.0	7.82			
Turbiedad	ИТИ	26.00	51.00	461.00			
Sulfatos	mg/lt	75.00	75.00	75.0			
Sólidos Disueltos	mg/lt	187.2	184.6	158.7			

Fuente: Ministerio de Agricultura

En el cuadro Nº 4.05 se presentan datos diferentes a la calidad del agua en la entrada de la Planta de Tratamiento.

Cuadro Nº 4.05

Características Físico-Químicas del Agua Cruda (entrada de la Planta)

Año 1993

	UNIDADES DE	ESTACION DEL AMO			
PARAMETRO	MEDIDA	DE LLUVIA	SECA		
Turbiedad	NTU	70	37		
рН	unidades	7.3	7.4		
Alcalinidad	mg CaCO/1t	60	6 4		
Cloruros	mg/lt	30	31		
 Temperatura	°C	22	23		

Fuente: SEDA-CHIMBOTE

Año 1994

	UNIDADES DE	ESTACION DEL AMO			
PARAMETRO	MEDIDA	DE LLUVIA	SECA		
Turbiedad	NTU	74	42		
рH	unidades	7.13	7.19		
Alcalinidad	mg CaCO/1t	59	63		
Cloruros	mg/lt	28	30		
Temperatura	°C	22	23		

Fuente: SEDA-CHIMBOTE

Año 1995

	UNIDADES DE	ESTACION DEL AMO			
PARAMETRO	MEDIDA	DE LLUVIA	SECA		
Turbiedad	NTU	81	40		
рН	unidades	7.3	7.4		
Alcalinidad	mg CaCO/lt	61	62		
Cloruros	mg/lt	26	31		
 Temperatura	°C	22	23		

Fuente: SEDA-CHIMBOTE

El cuadro $N\Omega$ 4.06 se resume algunos parámetros químicos de importancia de la planta de tratamiento en su entrada.

CUADRO Nº 4.06

Características Físico-Químicas del Agua en la Entrada de la Planta de Tratamiento

PARAMETROS	UNIDADES
pH promedio	7.18
pH máximo	8.2
pH minimo	7.01
Alcalinidad (mg/lt) promedio	65
Alcalinidad (mg/lt) máximo	73
Alcalinidad (mg/lt) minimo	57
Dureza (mg/lt CaCO3) promedio	102
Dureza (mg/lt CaCO3) máximo	118
Dureza (mg/lt CaCO3) minimo	87
Turbidez (NTU) promedio	35
Turbidez (NTU) máximo	350
Turbidez (NTU) mínimo	20
Cloruros (mg/lt) promedio	30
Cloruros (mg/lt) máximo	36
Cloruros (mg/lt) minimo	24
Sólidos disueltos (mg/lt) promedio	203
Sólidos disueltos (mg/lt) máximo	250
Sólidos disueltos (mg/lt) mínimo	156

Fuente: SEDA - CHIMBOTE

La concentración de coliformes totales en el agua cruda varía entre 1.500 y 3,000 (NPM)/100 ml. (NMP: número más probable).

- Interpretación de los Resultados
 A continuación, se presentan comentarios e interpretaciones sobre la calidad física y química del agua cruda.
 - * No existe información sobre contaminantes pertenecientes a la categoría MCL (Maximum Contaminants Levels: niveles máximos de contaminante) salvo coliformes totales y turbidez.
 - * El olor y sabor del agua no son objetables.
 - * La turbidez se debe al material en suspensión, que en su mayor parte se halla constituido por substancias inorgánicas como limo y arcilla.
 - * El valor promedio de la alcalinidad (65 mg CaCO3/lt) corresponde al valor recomendado para aguas suministradas a través de sistemas de distribución (30 a 100 mg CaCO3/lt) que no causan corrosión de nivel significativo.
 - * Dureza (promedio de 102 mg CaCO3/lt): los valores obtenidos se encuentran en el rango de 100 aceptabilidad de 80 ā ma (moderadamente dura) de acuerdo a clasificación de la Organización Mundial de la Salud, OMS.
 - * Corrosión y estabilidad del agua. En este caso particular, los resultados no son interpretables en su totalidad por la falta de ciertos análisis químicos, especialmente los referentes a contenido

de oxigeno.

Con base en la composición promedio de:

- * Dureza 102 mg CaCO3/1t
- * Alcalinidad 65 mg CaCO3/lt
- * Sólidos disueltos totales 203 mg/lt
- * pH 7.2

La concentración resultante es de 9 mg C libre/lt. El valor de saturación del pH se encuentra entre 7.8 y 7.9, por lo que el valor del índice de Langelier es el siguiente:

$$I = pHr - pH_0 = 7.2 - 7.85 = -0.65$$

Donde:

I es el indice de Langelier

pH, es el valor real de pH

pH₂ es el valor de saturación del pH

Los valores negativos indican que el agua encuentra por debajo del nivel de la saturación del carbonato de calcio y que tenderá a disolver carbonato de calcio existente, que no será depositado sobre las superficies metálicas con las encuentra en contacto directo (agua corrosiva). Agregando alúmina a modo de coagulante, se producirá un exceso de CO, Por otra parte, la disolución continua del revestimiento protector carbonato de calcio en las áreas más allá de planta de tratamiento y la neutralización y disipación del CO_2 a lo largo de la red, explica perfectamente los atoros de la red en

proximidades de los reservorios y los consumidores.

De acuerdo a estos resultados, el objetivo del tratamiento del agua deberá ser alcanzar un valor mínimo positivo del índice Langelier.

* Turbidez. El agua contiene más de 20 pero menos de 1,000 unidades NTU. En consecuencia, el proceso de tratamiento debería ser (y es) de carácter químico: adición de productos químicos, mezclado y coagulación, floculación, sedimentación, filtración y desinfección mediante post-clorinación.

De acuerdo a diferentes normas de calidad de agua, del punto de vista de la turbidez, el agua pertenece al grupo de moderadamente turbias.

- * Sulfatos. No existen suficientes resultados analíticos concernientes a la concentración de sulfato en el agua cruda, que aparentemente es de 60 a 80 mg SO /lt. Se trata de un valor razonable y que se refiere a un agua que no tiene efectos laxativos y que tampoco causa reducción biológica en el curso del tratamiento de las aguas servidas.
- * Cloruros. Careciendo de resultados analíticos completos, aparentemente pueden considerarse cloruros en combinación con el sodio. manera menor, con el calcio y el magnesio. E1 valor de 20 ā 30 ma/lt se encuentra 10 suficientemente lejos de límite de los 250 mg/lt.
- * Conductividad. El valor de conductividad podría servir para verificar el valor de los sólidos disueltos totales. Para la mayor parte de las

aguas, ei factor 0.55-0.70 multiplicado por la conductividad ofrece una aproximación del valor de los sólidos disueltos, referentes al lapsos definidos de tiempo, constituyen un método fácil para el monitoreo continuo.

* Características Microbiológicas. El agua contiene más de 1,000 pero menos de 5,000 bacterías coliformes/100 ml y en consecuencia debe ser tratado por un proceso de pre-desinfección seguido por coagulación, sedimentación, filtración y post-desinfección continua.

4.2.1.2 Tratamiento del Aqua Cruda

El flujo de tratamiento comprende las siquiente fases:

- * Eliminación de la arena
- * Coaqulación con sulfato de aluminio
- * Sedimentación
- * Filtración
- * Clorinación

De acuerdo a las características de turbidez y valores de concentración de coliformes, se considera que la elección del proceso de tratamiento es correcta, salvo la necesidad de precloración opcional para altos valores de coliformes totales o fecales.

- Observaciones en el proceso de Tratamiento
 - de Agua Cruda. El * Almacenamiento período de almacenamiento, de unos tres días. es breve en términos de almacenamiento como una protección contra contaminaciones de distintos tipos, así el resultado obtenido es el insatisfactorio. Durante almacenamiento ocurre una importante contaminación causada por el elevado número de pájaros sobre la superficie agua y en sus proximidades. La situación general de los reservorios puede almacenamiento caracterizada como mala, por lo que resulta imperativa la rehabilitación,

la limoieza y la desinfección de los mismos.

- * Arena. evidentemente la carga de arena que debe ser separada es baja, porque los materiales más gruesos que sedimentan en el agua cruda lo hacen arriba, en las más lagunas almacenamiento mencionados precedentemente. En consecuencia, unidad desarenadora se halla sólo en parcial y aparentemente. eficiencia no es muy considerable.
- * Adición de Compuestos Químicos. La solución de sulfato de aluminio es adicionada en una cámara de mezclado hidráulico situado antes del aforador Farshall.

El volumen de esta unidad es de 1.6 m_{π}^{3} siendo la capacidad útil de 1.25 a 1.3 m_{g} . El tiempo de mezclado se calcula del siguiente modo:

$$t = \frac{1.25 \text{ m}^3}{864 \text{ m}^3 \text{ h}} = 5.20 \text{ seg.}$$

Resulta necesario mejorar la difusión de la solución en el agua, y en primer lugar, se debe repara la entrada existente del coagulante (veánse recomendaciones).

Existen cuatro cámaras de floculación. El parámetro que refleja la eficiencia de la mezcla de sulfato de aluminio es el gradiente de velocidad G definido en términos de insumo de potencia (Camp y Stein)

Donde:

G es la gradiente de velocidad (S⁻¹)
P es el insumo de potencia útil (watts)

V es el volumen en π³ μ es la viscosidad dinámica (NS/m²)

La eficiencia de mezclado se mide a través de la obtención de un alto grado de homogeneidad del compuesto químico en el agua, en un tiempo corto y con un bajo consumo de potencia. El valor de obtenido -5.2 seg. es relativamente bueno (El punto o los puntos) de toma deben encontrarse lo más arriba posible, cerca del muro de la toma de agua.

El cálculo del valor de P se verifica del siguiente modo:

P = d.g.Q.h

Donde:

d es la densidad del agua en kg/m³

g es la aceleración de la gravedad en m/seg²

Q es el flujo en m³/seg

h es la pérdida de altura en m

Por tanto:

P = 588.6 watt

 $G = 245 \text{ seg}^{-1}$

En consecuencia, el gradiente de velocidad es más bajo que el habitual, el valor de la pérdida de altura es correcto si bien no óptimo y en lo que se refiere al tiempo de mezclado, se considera demasiado prolongado.

La segunda fase de la coagulación tiene lugar en las unidades de floculación, cada una con 160 m3 de volumen correspondiente a un tiempo de retención de aproximadamente de 45 minutos (el valor recomendado varía entre 10 y 60 minutos).

A modo de observación general, se comenta que las principales desventajas de este tipo floculador consisten en la pérdida de altura en los ángulos de 180°, por que el valor de la potencia y del realidad gradiente G en es inadecuado. el segundo inconveniente es que el valor G variará de acuerdo las derivaciones del flujo Q. velocidad del flujo a través de las

unidades es apropiado (0.25 m/seg).

La calidad del agua varía en forma estacional y para evitar o minimizar sedimentación. especialmente casos de valores elevados de turbidez (entre 300 y 400 NTU), se recomienda que la velocidad sea de 0.25 a 0.30 Esta conclusión m/seg. posee una importancia indudable porque cuando la turbidez es demasiado elevada. la planta se encuentra trabajando con caudales de entrada reducidas para la facilitar sedimentación y operación de las unidades de filtración.

Respecto al proceso de floculación. durante el período de la visita, la calidad del aqua cruda satisfactoria (20 a 30 NTU en 1a entrada de la planta). El proceso de floculación no se realiza con base en los resultados de pruebas de jarra y correlación de los valores de pH alcalinidad = turbidez y el contenido sólidos suspendidos del cruda. Los flóculos observados eran débiles y de tamaño mediano. La concentración de sulfato de aluminio varía de acuerdo a los valores de la por lo que una misma turbidez, cantidad de agua recibe diferente de reactivos sólidos.

La sedimentación tiene lugar en seis

unidades de 100 m3 cada una. con flujo horizontal y eliminación manual de los sólidos sedimentados (10do). La eficiencia del estanque de sedimentación se resume en el cuadro Nº 4.07 basado en la reducción de la turbidez.

- EE 1 área de la superficie del estanque de la sedimentación es de 25 m² con una carga de superficie de 6 m3/m² (inicial) y actualmente, luego de la rehabilitación y como resultado directa de la introducción de placas, algo mayor de dicho valor. continuación presentan alounas ## E observaciones sobre dichas placas:
- * Las mismas han sido colocadas a demasiada altura (a una profundidad de 0.4 m en vez de un mínimo de 0.6 m.), lo que ejerce una influencia negativa sobre la sedimentación y causa cierta turbulencia.
- salida del agua luego del cambio * La dirección se realiza a través de ci 🕾 26 orificios de 4" cada uno y la velocidad del flujo saliente causa el reflote del lodo. Este fenómeno es consecuencia no sólo de la geometría las pérdidas de altura del estanque sedimentación renovado sino de también se debe a la temperatura del agua y del proceso de coagulación.
 - El lodo es extraído en forma

periódica, siendo eliminado en el río.

Cuadro № 4.07

Turbiedad antes y después de Sedimentación

CAUDAL	TURBIEDAD (NTU)			TEMPERATURA
(lt/seg)	AGUAS CRUDAS	D. SEDIMENTACION	PREVISTO	(°C)
280	77	6	1 - 5	20
210	59	7	1 - 3	23
240	50	8	1 - 5	20
280	20	5	1 - 2	23

El costo de la obtención de un valor turbidez aceptable para siguiente fase de filtración es 1 a reducción del canal de ingreso agua de alta turbidez. Asimismo, para agua de baja turbidez, la tasa de eficiencia de la sedimentación no resulta mejorada debido a dificultades de carácter hidráulico, causada por la salida de las aguas de los estanques de sedimentación, todo ello en adición a las dificultades de coagulación arriba detalladas.

En las tres primeras unidades de sedimentación se observaron algunas corrientes de densidad como consecuencia de la distribución desuniforme del influente entre las

seis unidades. La superficie del agua no es suficientemente límpida.

* Filtración

Existen seis filtros instalados, cada uno con 20 x 20 m² de superficie filtrante. Aparentemente filtración constituye el cuello de todo el proceso botella de de tratamiento. La tasa de filtración es 7.2 - 7.5 (m3/m²/h) m/h corresponden a un flujo normal unidades de filtración rápida (5 -10 m/h). Probablemente la coaqulación deficiente durante cargas elevadas de turbidez y a la falta de eficiencia lavado, sea la explicación de los problemas y la baja eficiencia de la filtración.

El proceso del lavado se realiza sin aireación У tiene lugar con aproximadamente 5 - 6 m3 de agua E1 limpia extraída de reservorio. tiempo de lavado es de 7 minutos. En cuadro Nº 4.08 se presenta 1 a comparación de los valores reales con los valores recomendables de la etapa de lavado.

Cuadro № 4.08

Comparación entre los Parámetros del Lavado (Filtración)

PARAMETRO	VALOR REAL	VALOR RECOMENDADO
Duración de lavado (minutos)	7	10 - 20
Cantidad el agua (m3)	5.5 : 55	60
Intensidad del lavado (lt/s.m2)	0.63	5

La duración del ciclo, parece ser demasiado prolongada.

El material filtrante es renovado con una frecuencia inferior a una vez por año. El mismo está constituido por antracita y arena.

La inspección visual de las unidades de filtración confirma la existencia de un fenómeno de flóculos (escamas) débiles y desintegración de flóculos en la parte final del ciclo filtración. La formación de bolas de obstruye 1a barro cámara de filtración e indica (o confirma) tasa de lavado existencia de una excesivamente bajo. La arena sobre las bolas de barro no es lavada en el curso del proceso y en consecuencia se reduce la superficie de las camas se torna desuniforme.

* Clorinación

La clorinación se realiza con cloro usando balones y un clorinador de vacío. El cloro es disuelto en aqua y se agrega la solución obtenida al agua filtrada antes de su entrada al reservorio. El sistema. simple eficiente, funciona, У resultados son controlados pesando el cloro introducido en el aqua. horas se controla 1a dos concentración de cloro en el agua a travės de indicadores D.P.D No colorimetría comparativa. se realiza control luego del mínimo 30 minutos de tiempo de contacto entre el agua y el cloro.

* Planta de Dosificación de Productos Químicos

La tubería de cal no funciona. El sulfato de aluminio sólido introducido manualmente en el del alimentador equipo dosificación. El agregado es continuo pero en cantidades cambiantes acuerdo a la carga de turbidez del agua cruda. El sistema es simple y dijo funciona tal como se presenta el inconveniente de que no ejerce control sobre 1 a concentración obtenida.

En el cuadro № 4.09 se muestra en resumen las principales características del agua tratada.

CUADRO Nº 4.09

CALIDAD DEL AGUA POTABLE TRATADA (PROMEDIO DEL AÑO 1994)

		Alcelinided	D	บาะรอ	Sulfato	Cloruros	Turbidez
Mee	pН	(mg/lt CaCO3)	Total	Temporaria	(mg/lt)	(mg/lt)	(NTU)
ENERO	7.1	60	115	90	58	27	1.1
FEBRERO	7.2	58	122	94	67	32	0.9
MARZO	7.1	58	115	91	78	25	0.7
ABRIL	7.2	57	117	87	74	24	0.6
MAYO	7	57	114	81	\$ 5	29	0.5
OINUL	73	67	119	95	7 0	36	0.6
JULIO	7.1	72	133	101	-	28	0.5
AGOSTO	7.3	72	144	115	i i di	32	0.5
SETIEMBRE	7.2	6 5	140	118	-	31	0.4
OCTUBRE	7.1	73	145	116	116	32	0.4
NOVIEMBRE	7.4	6 9	132	113	84	24	0.4
DICIEMBRE	7.2	67	127	110	39	30	0.5

Fuente: SEDACHIMBOTE

Los valores promedio de turbidez para el agua potable tratada correspondientes a ciertos períodos de los años 1995 y 1996 se resume a continuación.

<u>FECHA</u>	TURBIDEZ (NTU)
Enero 1995	0.4
Junio 1995	0.3
Diciembre 1995	0.6
24 Enero 1996	0.5
31 enero 1996	0.5
12 Febrero 1996	1.0

Dependiendo del caudal y de la turbidez inicial, los valores promedio de turbidez del agua potable oscilan entre 0.3 y 1.1 en NTU.

La concentración de cloro en el água tratada (cloro activo) corresponde a un valor promedio de 1.0 ppm. No hay datos positivos de análisis bacteriológicos (coli total y coli fecal) de aguas potables. En conclusión. cuadro Nº 4.10 en el resulta posible caracterizar el agua potable del siguiente modo:

Cuadro № 4.10

Características del Agua Tratada

PARAMETRO	VALOR			
Temperatura (°C)	23			
рН	7.1			
Color	7.1 aceptable aceptable 0.5			
 Sabor	aceptable			
Turbidez (NTU)	0.5			
Cloruro (mg/lt)	29			
Sulfato (mg/lt)	70			
Alcalinidad (mg/lt)	61			
Dureza total (mg/lt)	102			
Hierro (mg/lt)	0.01			
Manganeso (mg/lt)	0			
 Coli (unidades)	O			

Laboratorio Analítico y resultados del monitoreo en la planta de tratamiento.

El proceso de tratamiento es controlado por un laboratorio. El area del laboratorio y las condiciones de trabajo en la misma no cumplen lo requerido en los reglamentos.

- Dos actividades diferentes se realizan en un mismo lugar (las determinaciones Físico-Químicas y ciolócicas). Cada una de estas actividades deberían realizarse en habitación separada: **e**1 de laboratorio análisis quimico requiere 28 m² y el de biología, 14 (superficies calculadas para las dimensiones de 1 & planta de tratamiento en cuestión).

- No existe un espacio especial para el almacenamiento de los reactivo.
- No hay espacio (habitación y mesa) para realizar el pesado analítico.
- El laboratorio carece sistema de ventilación

4.2.2 Abastecimiento de Agua Subterránea

El cuadro № 4.11 presenta las características del agua producida en los pozos en Chimbote. El proceso de cloración se realiza en cinco pozos (14, 5, 7, 11 y 15). Se trata de clorinadores de vacío simples, con dosis de cloro de 2 mg/lt inyectados en la salida de agua de la tubería.

Cada uno de los tres reservorios (R_1, R_2, R_3) que recibe agua clorinada, debería tener una concentración mínima de 0.5 mg cloro activo/lt. Solamente el pozo NO 11 registra una elevada concentración de manganeso (0.3 ppm en vez del nivel recomendado de 0.05 ppm).

El agua contiene una elevada dureza, de la cual un tercio se encuentra en la forma de carbonato. Las concentraciones de cloruros y sulfatos son elevados.

Cuadro Nº 4.11

DATOS PROMEDIO DE LOS ANALISIS FISICO-QUIMICOS DEL AGUA POTABLE

N	o	No de	рн	Alcalınıdad	Dureza total	Dureza Ca	Cloruros	Sólidos	Sulfato	Hierro	Manganeso
İ	j	POZO		CaCO3 ppm	ppm	ppm	ppm	disueltos	ppm	ppm	ppm
	1	3	7.6	270	551	400	275	865	232	0.02	12
	2	4	7.6	216	430	526	260	775	258	0.05	7. 5
	3	5	7.5	213	753	540	370	1.043	347	: - :	: -
	4	7	7.5	253	574	400	292	884	295	0.01	-
	5	8	7.6	230	506	346	290	806	243	0.01	*
	8	10	7.5	158	830	430	377	925	262	0 ≆ (-
	7	11	7.4	200	480	404	247	774	280	0.02	Ē
	а	12	7.4	152	658	502	365	945	267	0.02	-
	9	13	7.3	155	480	327	235	730	232	0.03	-
	סי	14	7.4	230	560	560	550	1360	386	0.02	-
	11	15	7.4	254	430	286	311	884	292	0.05	0.3
1	12	16	7.5	255	496	355	292	958	337	-	
	13	17	7.5	250	544	393	313	927	299	0.01	: : ::::::::::::::::::::::::::::::::::
	14	18	7.4	144	324	632	340	1390	325	0.02	? = 8
	15	18	7.5	145	514	612	710	1564	392	0.027	

4.3 SISTEMA DE CONDUCCION, IMPULSION

Este sistema se refiere a las tuberías que transportan el aqua desde los pozos hasta los reservorios, aquellas que conducen el aqua entre tanques mediante estaciones de bombeo y de la planta de tratamiento de los reservorios Gemelos R-IV tal como se observa en la figura 3.1

4.3.1 <u>Lineas de Impulsión de los Pozos</u>

En el campo de pozos existen varias tuberías que conducen el agua hasta los tanques. En el cuadro 3.02 se indican las características principales.

Actualmente las tuberías presentan problemas de operación debido a la calidad del agua, la cual causa incrustación, de carbonato de calcio; asimismo, en algunos de los pozos se bombea arena por lo expuesto arriba, lo que provoca erosión y obstrucciones. Ello obviamente, está incidiendo sobre los coeficientes C de rugosidad de las tuberías y disminuyendo los diámetros efectivos, elevando las presiones del campo de pozos con el consiguiente gasto de energía y del deterioro de los equipos.

Un problema adicional que no ha sido cuantificado en toda su dimensión por parte del personal de la Subgerencia de Control Operacional de SEDACHIMBOTE, son las fugas que existen en estas tuberías, que se producen en las válvulas de compuerta de salida de pozos abandonados, que alcanzan el 5% del caudal producido.

4.3.2 <u>Líneas de Impulsión de las Estaciones de Bombeo</u> Dentro de estas líneas de impulsión están las tuberías que conducen el agua hasta los tanques RIV y RV que abastecen las partes más altas de la

ciudad.

Las tuberías, debido a la calidad de agua y por el aumento de la temperatura, en la estación de bombeo del reservorio RIV al RV, el problema de la incrustación de carbonatos de calcio se acentúa dificultando los problemas de operación de las estaciones de bombeo.

Existe una tercera línea de impulsión, que transporta el agua desde los reservorios RIII hasta los RVI o Gemelos, que proviene mayormente de los pozos de P4, P10 y P19, para cubrir los faltantes de producción que producen en la planta, cuando existen problemas operativos en la toma del río Santa o en los canales de riego.

En resumen, se concluye que las tuberías de conducción del sistema presentan problemas de incrustación y de erosión, lo cual está incidiendo sobre los sistemas electromecánicos y sobre las tuberías mismas, disminuyendo la capacidad de transporte, pero sin causar un impacto dramático.

4.4 SISTEMA DE ALMACENAMIENTO

La capacidad de almacenamiento actual es de unos 21,850 m3, que representa el 32% de producción promedio diario. De los diferentes reservorios que reciben agua del campo de pozos y de la planta de tratamiento, se distribuye el agua a los diferentes sectores de la ciudad.

Es de señalar que el almacenamiento está dentro de las normas, incluso para satisfacer demandas por emergencia e incendio.

El reservorio RI, de forma trapezoidal, de concreto y

apoyado, presenta un deterioro avanzado en su techo, que asbesto-cemento. No existe ningún sistema protección. como cercados u lotros obstáculos que impiden el acceso y más bien se encuentra ubicado en medio densos asentamientos humanos. Desde el punto de vista sanitario el reservorio es vulnerable, toda vez que cualquier persona puede causar problemas grandes contaminacion.

El estado de los reservorios RII es bueno. notándose unicamente problemas en cuanto a protecciones, dado que no existen muros o cercados que impidan el acceso de personas ajenas. Sin embargo, por la razón de que los tanques se regulan diariamente, existe un guardián que cumple estas funciones e impide el ingreso de extraños.

El estado físico de la cámara es aceptable, observándose quizás poco mantenimiento, básicamente referido a la limpieza en el sitio de los reservorios.

Los reservorios RIII, también de concreto y asentados, los cuales reciben el agua de los pozos de la parte alta del campo de pozos y de la planta de tratamiento, su condición actual es buena, con algunos problemas estructurales que fueron subsanados a su debido tiempo.

Algunas de las válvulas presentan igualmente algunas dificultades en cuanto a su operación, ya que se encuentran fuera del predio del tanque pueden manipularse sin que el operador pueda percatarse. El muro existente de concreto únicamente cubre al tanque RIII.

Véase figura 3.03 en este mismo sitio se encuentra la estación de bombeo que impulsa el agua desde estos reservorios hasta los reservorios RVI, cuyo estado físico no ofrece condiciones adecuadas de operación, más aún por

el hecho de que trabaja con Diesel.

Reservorio IV. Este reservorio de concreto y asentado, su bueno y no presenta problemas especificos, ni estructurales. ni hidráulicos. A1igual que anteriores, el predio no tiene protecciones con vallas impidan el ingreso de personas extrañas. En este sitio, por estar ubicado sobre laderas de arena. estaba presentando problemas de erosión eólica que se evitó con la construcción de un muro de retención parte baja del reservorio. Sin embargo, se aprecia falta de limpieza que puede subsanarse sin mayores problemas, principalmente por la caseta de quardián fue que abandonada. En la figura 3.04 se muestra un esquema del reservorio con sus instalaciones.

Reservorio V. Este tanque recibe agua de la estación de bombeo del reservorio RIV y abastece la parte más alta de la ciudad. El estado en la actualidad es bueno y también presenta protecciones para ingreso de el personas. Tanto este tanque como el RIV. no contienen ninguna válvula hidráulica de control que controlen las estaciones de bombeo y la operación se realiza a través con un operador de tanque de comunicación con radio. RIV. ubicado en el Toda la operación se realiza y mediante bombeos y manualmente horarios de 1 a comunicación es a través por radios portátiles.

Los reservorios RVI (tanques gemelos), véase figura 3.05 encuentran dentro del predio de la planta también de concreto y asentados: su tratamiento. satisfactoria y no se observan problemas apariencia es estructurales. La cámara de válvulas. es techada concreto armado, con problemas de estrechez para reparar cambiar una válvula en caso de mantenimiento. Existe también una cámara para la válvula de compuerta,

tubería que conduce agua hasta el reservorio RIII, con poco espacio para la manipulación de la válvula y con problemas de limpieza y drenaje.

4.5 SISTEMA DE ADUCCION Y RED DE DISTRIBUCION

En el caso de las líneas de Aducción, sobre todo las que abastecen a las partes altas de las zonas I, II y III; se ha observado que existe reducción de la capacidad de conducción de las tuberías debido a la presencia de carbonatos de calcio precipitado, que se incrustan en las tuberías.

Las líneas de aducción de 16" y 8" que abastecen a los sectores 4 y 5 se ubican en zonas donde por efectos de las inundaciones del año 1983 han sido rellenados hasta 5.00 m. de profundidad y luego se han formado pequeñas lagunas sobre ellas impidiendo una adecuada operación y mantenimiento.

Inclusive existen tramos en la actualidad averiadas, por donde existe fuga de agua permanente, que la empresa SEDACHIMBOTE no puede repararla por las condiciones arriba indicadas, que llega muchas veces a contaminar y arenar el agua suministrada.

Las zonas abastecidas por el Reservorio R-I presentan problemas de presiones en la red por su ubicación topográfica y por la limitación de la conducción de las líneas de aducción existentes. La línea de aducción que abastece a los sectores 7 y 8 alreducir el diámetro de 21" a 12"" forman un "cuello de botella", reduciéndose las presiones de entrega a la red de distribución, limitando el servicio a estas zonas, por lo que se tiene que sectorizar, es decir trabajar por horas.

Una gran parte de las válvulas instaladas en las redes de

distribución. trabajan cerradas o reguladas, la cual hace que las presiones disminuyan tremendamente, como se vera en el capítulo siguiente.

No existe una sectorización definida de la red, conectandose el agua en las partes bajas y restringiéndose a las partes altas y tener que efectuar un valvuleo permanente.

No existe micromedición, lo que permite que los usuarios utilicen en forma indiscriminada en las horas de servicio.

Al efectuarse valvuleo en los reservorios, en diferentes horarios se presenta el problema que las redes de distribución quedan vacías en su totalidad, presentando introducción de aire y riesgos por eventuales incendios en las horas de desabastecimiento.

Al tener un horario de servicio intermitente, hacen que los consumos sean mayores a los requeridos, ya que la población almacena agua en forma permanente cuando lo tiene.

En el capítulo siguiente, utilizando la Técnica de la Pitometria se ha efectuado mediciones en las líneas de Aducción y tomas de presión en la red de distribución, lo cual nos permitirá verificar el comportamiento hidráulico de los mismos.

4.6 BALANCE DE AGUA

4.6.1 Producción

La producción actual del sistema según las mediciones realizadas en el marco del presente estudio es de unos 762 lt/seg que varía mensualmente, tal como se muestra en el cuadro Nºº

4.12 con unos 512 lt/seq que provienen de los pozos \vee 250 lt/seq de la planta de tratamiento.

La figura Nº 4.02 muestra la variación mensual para el año 1995: el registro de mayor consumo se presentó en el mes de enero y el mínimo fue en febrero, con variación anual del 11 y el 17% con respecto al promedio. En resumen la producción de la ciudad de Chimbote se divide en 67% de agua subterránea y 33% de agua superficial.

En la mayoria de los pozos existe una macromedición del tipo Woltman tal como se muestra en el cuadro Nº 4.13, cuya instalación se efectuó en la época de la puesta de operación del campo de pozos el cual se ha ido construyendo según las necesidades. En la planta de tratamiento, se dispone de un canal Parshall a la entrada y un medidor tipo silleta marca MCROMETER que no funciona al haberse instalado en la salida de la planta donde las tuberías están trabajando a canal abierto.

4.6.2 Población Servida, Cobertura

La población servida de acuerdo con las conexiones actuales empadronadas y adoptando el promedio de 5 personas por conexión, es de aproximadamente unos 199,495 habitantes, dado en el cuadro Nº 4.14 Si se toma en cuenta la población actual estimada a partir del censo de 1993, está podría ascender aproximadamente en 279,846 habitantes, con un porcentaje de cobertura del abastecimiento de agua de 71%.

CUADRO Nº 4.12

PRODUCCION DE LOS ULTIMOS TRES AÑOS EN M3

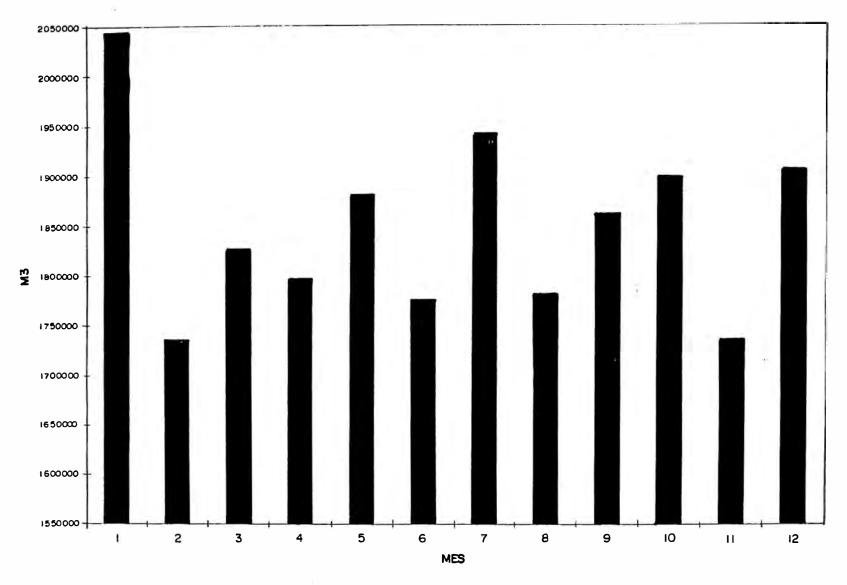
Fuente	Año							Meses						
		Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septie.	Octub.	Noviemb.	Diciem.	TOTALES
	1993	1128352	1231352	1323288	1362288	1333384	1222218	1299174	140:3552	1335672	1250231	1230600	1337088	15459192
Pozos	1994	1196333	1221622	1348292	1341030	1421479	135162:4	1480254	1431544	1436793	1289675	1358947	1437320	16316907
	1995	1513173	1279338	1372142	1331546	1348384	1296198	1363648	1303648	1232048	1253033	1228110	1290538	15813801
	1993	466856	339075	461376	457357	42'0776	408758	486933	424344	335493	406340	366768	460953	5037022
Pianta	1994	472155	470156	547733	456482	368914	368392	413469	449511	108083	375826	234404	272648	4559767
بيديد	1995	531964	45G149	454659	465257	502367	478883	578400	477462	629553	G45187	507490	614846	6374212
	1993	1595208	1570427	1784664	1819645	1754160	1630976	1786107	18:27896	1671165	1656571	1597368	1798041	20494221
Total	1994	1068468	1691778	1896025	1797512	1810393	1720016	1893723	1881055	1544876	1605501	1593351	1709968	20874680
	1995	2045137	1735487	1826801	1796803	188:0751	1775081	1942:048	1781110	1861601	1898220	1735600	1905384	2218G018

CUADRO Nº 4.13

MACROMEDIDORES INSTALADOS EN CHIMBOTE

SITIO	DIAMETRO PULG.	TIPO	MARCA	FABRICACION PAIS	FECHA INSTALACION	ESTADO
POZO 4	8	CARRETE CON TURBINA HORIZONTAL	WOLTMAN	ALEMANIA	ABRIL 1995	BUENO
POZO 5	8	CARRETE CON TURBINA HORIZONTAL	WOLTMAN	ALEMANIA	JUNIO 1995	BUENO
P0 Z 0 7	8	CARRETE CON TURBINA HORIZONTAL	WOLTMAN	ALEMANIA	MAYO 1995	BUENO
POZO 10	8	CARRETE CON TURBINA HORIZONTAL	WOLTMAN	ALEMANIA	OCTUBRE 1994	BUENO
POZO 14	8	S CARRETE CON TURBINA HORIZONTAL	WATER SPECIALTIES	ISRAEL	1992	REGULAR
POZO 15	8	CARRETE CON TURBINA HORIZONTAL	WOLTMAN	ALEMANIA	AGOSTO 1994	BUENO
POZO 16	8	SILLETA CON TURBINA	Mc CROMETER	EE.UU	1989	REGULAR
POZO 18	8	CARRETE CON TURBINA HORIZONTAL	WOLTMAN	ALEMANIA	MARZO 1994	BUENO
POZO 19	8	CARRETE CON TURBINA HORIZONTAL	Me CROMETER	EE.UU	MARZO 1994	BUENO
FLANTA	18	CARRETE CON TURBINA	Mic CROMETER	E:E.UU	1972	MALOGRADO

\.i


NUMERO DE USUARIOS EMPADRONADOS Y FACTURADOS

CUADRO Nº 4.14

SECTOR	NUMERO DE USL	IARIOS	POBLACION	POBLACION
	EMPADRONADOS	FACTURADOS	EST, EMP.	EST, FACT.
1	7233	6565	36165	32825
2	6785	6296	33925	31480
3	5466	5203	27330	26015
4	4666	4:280	23330	21400
5	4208	3937	21040	19685
6	3657	3263	18285	16315
7	2598	2430	12990	12150
8	5098	4946	25490	24730
9	188	176	940	880
TOTALES	39899	37096	199495	165480

NOTA: POBLACION ESTIMAD, AS PERSON, ASPOR CONEXION

Es de mencionar. que dentro de la ciudad de Chimbote tanto en la zona antiqua como de Nuevo Chimbote existen poplaciones no conectadas al sistema que se estan abasteciendo de la siguiente forma:

- ¿ Sector noreste de la ciudad, a través de una conexión del sistema de abastecimiento de SIDER PERU. Esta población prácticamente tendrá que ser asumida por SEDACHIMBOTE con la privatización de la primera empresa.
- sector La Unión. Son pueblos jóvenes que se han instalado en el sector este de la ciudad que se apastecen de una derivación del canal de riego Carlos Leigh, con un sistema rudimentario de tratamiento y tuberías de conducción que los abastecen independientemente. Al igual que el anterior, en cualquier momento SEDACHIMBOTE tendrá que asumir este sistema, dada la dificultad de operación que presenta el sistema independiente administrado por sus propios habitantes.
- Sectores Dispersos de Nuevas Urbanizaciones. Estos sectores se ubican sobre las zonas centrales y sur de abastecimiento del sistema, que aún no se han conectado por la inexistencia de sus redes internas, pero que SEDACHIMBOTE ya tiene el compromiso de asumir.

Otro de los problemas de determinar la cobertura exacta del abastecimiento de agua es la indeterminación de las conexiones clandestinas que existen, por la ausencia en un catastro de usuarios actualizado. A nivel preliminar se estima en el

orden de miles los clandestinos que podían representar hasta un 10 a 15% para un total de 3.000 a 5.000 conexiones aproximadamente.

4.6.3 Funcionamiento de Medidores

La cobertura de medición en la actualidad es del orden de 5% del total de conexiones del sistema así como del volumen total facturado, que ascienden a 38.576 en el mes de enero de este año.

Los medidores operativos, según se observa en el cuadro Nº 4.15 es del orden de 4%, representando la medición efectiva el 53%, prácticamente inexistente, lo cual no causa ningún efecto sobre el uso del agua. el tipo de medidores que están instalados son de la marca Inca, con diámetros que van desde 1/2" hasta 2".

Una de las características de esta medición es el hecho de que los medidores que son leídos y su lectura es inferior a los 20 m3, el cobro que se realiza es por los 20 m3, lo cual no incide al ahorro de agua por parte del usuario, es decir, si se tiene medidor se está autorizando a gastar 20 m3 como minimo ya que no va a cambiar su cobro de agua.

En SEDACHIMBOTE existe un taller de medidores con su respectivo banco de pruebas el cual no se utiliza regularmente, en razón de que el costo es bastante alto en relación con los beneficios que se obtiene.

CUADRO Nº 4.15

DATOS DE MICROMEDICION ENERO 1996 CON REFERENCIA A CONEXIONES

DESCRIPCION	CHIMBOTE	BUENOS	TOTAL	% DEL TOTAL
	CENTRO	AIRES		
No DE CONEXIONES	27670	10906	38576	100
MEDIDORES INSTALADOS	1512	1385	2897	7.51
MEDIDORES OPERATIVOS	972	580	1552	4.02
COBERTURA MEDICION	5.46	12.7	7.51	
MEDICION EFECTIVA	64.29	41.88	53.57	

4.6.4 <u>Estimacion de Pérdidas y Aqua no Facturada (ANF)</u>

4.6.4.1 Pérdidas Físicas

En la actualidad no existe forma para cuantificar las pérdidas físicas en el sistema. especialmente en la red distribución, dado que aún no se conoce en alto porcentaje las existentes. en sus diámetros y sus estados hasta la fecha no se ha evaluado sectorización que se muestra en la figura B.2.1, ya que existen interconexiones cruzadas, según lo descrito. que dificultan las labores para programas de control de pérdidas físicas. En el marco del presente estudio se realizará una prueba en un área piloto. la zona de Buenos Aires o Zona Sur que con un servicio cuenta adecuado abastecimiento.

4.6.4.2 Agua no Facturada (ANF)

Aún existe una facturación mensual así de la producción, no como se puede establecer una cifra valedera cuantifique el ANF, ya que la facturación se realiza por consumos asignados y de acuerdo con las zonas de consumo. Sin embargo, tomando en cuenta facturaciones de los años 1994 y 1995, así como la producción para esos mismos años y que se muestran en el cuadro NO 4.16 se observa que el ANF para el año 1994 fue de 44% y 52 % para el año 1995.

El hecho de que este porcentaje haya aumentado en el último año, refleja que

ios datos no tienen ningún significado y solo da una idea de los problemas comerciales que enfrenta la empresa. Esto posiblemente sea consecuencia de un alto porcentaje de usuarios clandestinos. estimaciones cual de acuerdo con oreliminares nor e l personal distribución podría llegar hasta un 10% del total de usuarios. de intradomiciliarias y desperdicio del especialmente en los sectores donde existe racionamiento, robos de agua con camiones por sectores donde el cisternas, aŭn no se ha conectado, y finalmente fugas en red. que podrían ser las menos en este tipo de sistema.

CUADRO Nº 4.16

BALANCE DE AGUA NO FACTURADA (ANF) PARA LOS AÑOS 1994 Y 1995

1994

CATEGORIA	NO MEDIDOS	MEDIDOS M3	TOTAL	% ANF
	MIS	MIS	MIS	
FACTURACION	11177027	458922	11635949	44.26
PRODUCCION			20874680	

1995

CATEGORIA	NO MEDIDOS	MEDIDOS M3	TOTAL M3	% ANF
	leis	IIIS	1815	
FACTURACION	10210298	525996	10736294	51.61
PRODUCCION			22186018	

CAPITULO V

MEDICIONES DE CAUDALES Y PRESIONES EN EL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE

5.1 OBJETIVOS:

Efectúan mediciones de caudales, presión y niveles con la finalidad de :

- Conocer el funcionamiento real de los sistemas principales, como Producción, líneas de Impulsión y Conducción, reservorio, Líneas de Aducción y redes de Distribución.
- Obtener datos de la producción real del sistema
- Comportamiento de la demanda: mediante la medición de los niveles de los reservorios y de los caudales hacia las redes de distribución, se conocerá el comportamiento de la demanda.
- Obtener información para realizar la estimación de las pérdidas y fugas.

5.2 TECNICA DE MEDICION UTILIZADA

De acuerdo con los objetivos descritos, la técnica ha priorizado las mediciones para obtener datos de producción actual; comportamiento de reservorios de la demanda y del suministro al sistema de distribución y presiones en redes.

 $E_{\rm B}$ líneas de impulsión y aducción que conduce caudales casi constantes, las mediciones fueron constantes. En las redes de distribución se midieron presiones durante las horas de probable mayor consumo.

Las mediciones de caudal se realizan por dos métodos: mediante técnicas de Pitometría y Volumétrica.

5.2.1 Pitometría

Es la técnica que nos permite hacer mediciones puntuales de caudal que pasa por una tubería presurizada.

Un estudio Pitométrico es el proceso a través del cual se examina, desde el punto de vista operación y control, la configuración real de funcionamiento del sistema de Abastecimiento de Agua, utilizando una serie de equipos portátiles de campo.

Utiliza el principio del tubo Pitot para obtener el diferencial de presión provocado por la carga de velocidad. Es decir, permite medir la velocidad del agua en la tubería, de la cual se deduce el caudal.

Mediante el uso del Pitómetro, se obtiene primero la curva de velocidades en un plano paralelo de flujo, de la cual de deduce la relación entre la velocidad promedio y la velocidad en el punto central de la tubería, la cual se mide directamente en lo sucesivo.

Los equipos utilizados han sido:

- Pitot Simplex, para instalación en tubería en carga utilizando válvulas de incorporación tipo Muellen, de diámetro 1". Presión de trabajo 20 kg/m2
- Calibrador simplex para medición de diámetros internos de tuberías, en carga utilizando válvulas de incorporación tipo Mueller de diámetro 1".

- Registro de derivación tipo Mueller (Válvula de incorporación) de diámetro 1" de bronce, de paso pleno para adaptación de pitometro y calibrador. Presión de trabajo: 20 kg/cm2
- Máquina tipo Mueller para perforar, hacer rosca y roscar válvulas de incorporación en tubería de A.C.

Presión de trabajo 20 kg/cm2

- Mangueras de caucho para adaptación de Pitómetro en tubo "U" de vidrio, conteniendo fijadores de mangueras y estranguladores, para uso con presiones de trabajo hasta 20 kg/cm2, diámetro 3/16".
- Tubo U pirex para Pitometría, 7 mm de diámetro interno, para presión hasta 20 kg/cm y lectura de deflexión hasta 30". Montado en base de materia aislante térmico y con Manifold ecualizador de presiones.
- Líquidos Manométricos:
 - * Tetracloruro de Carbono de densidad 1.60
 - * Benceno de densidad 0.87
 - * Mercurio, de densidad 13.58
- Colorante para líquido Manométrico
- Manómetro metálico de Fresión con elemento Sensor de Tipo Bourdon, escala concéntrica, diámetro mostrador de 4" y 6".

Escalas: 0-60 PS1, 0-150 PS1, 0-200 PS1

Manómetro Registrador portátil con elemento sensor Bourdon. con caja a prueba de humedad y polvo. gráfico de diámetro 12" con reloj de cuerda mecánico para 8 días, con una rotación cada 24 horas.

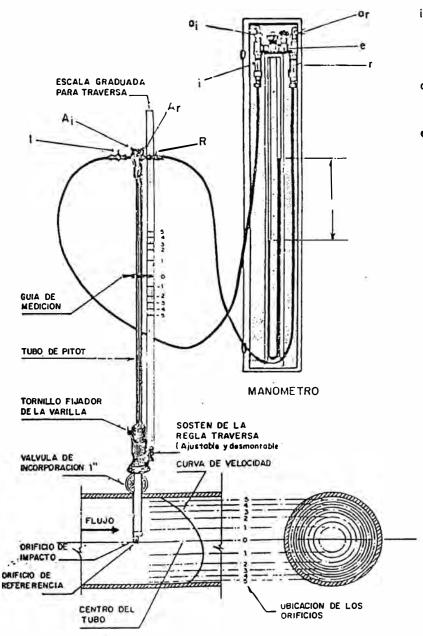
Escala de 0-160 PS1

En la figura NQ 5.01 se aprecia la instalación del tubo Pitot Simplex a la tubería instalada en el sistema con sus accesorios correspondientes.

Estación Pitométrica

Una Estación Pitométrica (EP), es el sitio donde se efectuara la medición del caudal de la tuberia presunizada instalada en el sistema con el Pitómetro.

La E.F. consta de una válvula de incorporación protegida por una caja de visita, instaladas en una tubería.


Las Estaciones Pitométricas deben instalarse en tramos rectos de tubería para asegurar una distribución uniforme de velocidades a lo largo de cualquier diámetro de la sección transversal de medición.

En el plano № 02 se puede verificar el Modelo de Estaciones Pitométricas que se utiliza en el Sistema de Agua Potable de Chimbote, las mismas que varían de acuerdo a:

- Profundidad de la tubería con respecto al nivel del terreno
- Tipo de terreno

FIGURA Nº 5.01

INSTALACION DEL TUBO PITOT SIMPLEX

- i,r = Valvulas donde se acoplar las mangueras provenientes de los orificios (y R del nitot.
- a_i,a_r= Valvulas para purgo de⁶
- e = Valvula que permite igualar las presiones entre los dos tramos del tubo U

Desado.

Ubicación de la Estación Pitométrica: Zona
no transitable o de tránsito fluido y

5.2.2 Macromedición

Especificamente en el Arbol Descarga de de los Pozos Tubulares. Donde se tienen instalados macromedidores, de manera permita saber en que forma puntual el caudal que esta produciendo determinado Pozo. acumula el asimismo volumen producido.

En el capítulo anterior, en el cuadro № 4.13 se indicó los pozos que cuentan con macromedidores.

5.2.3 Niveles de Reservorio y Presiones

Se utilizaron los flotadores instalados en los reservorios, sin embargo, en casos en que no habían, o para mediciones de precisión, se utilizó una sonda para pozo profundo.

Para mediciones de presiones en 1a red de distribución, se utilizaron manómetros tipo Bourdon convencionales. como los utilizados Estos se preparan especialmente para pitometria. los grifos adaptarlos contra incendio a conexiones domiciliarias para toma de presión.

5.3 <u>RESULTADO DE LAS MEDICIONES</u>

5.3.1 <u>Fuente de Producción y Lineas de Impulsión -</u> Conducción

En el anexo respectivo se presenta las mediciones efectuadas con la técnica de la Pitometría, de :

- Los pozos tubulares que no cuentan con macromedición Los caudales de llegada de cada una de batería de pozo a los Reservorios respectivos

En el cuadro $N\Omega$ 5.01 se presentan los caudales que producen cada uno de los pozos tubulares, de acuerdo al reservorio que abastece.

En el cuadro Nº 5.02 se presentan los caudales que llegan a los reservorios de cada una de las baterías de los pozos interconectados. Asimismo se aprecia la diferencia de los caudales de llegada a los reservorios, con el de salida de los pozos, estimándose las pérdidas que existen en las líneas de impulsión — conducción.

5.3.2 Linea de Aducción - Red de Distribución

En los cuadros Nº 5.03 al Nº 5.11 se han medido durante las horas de servicio los caudales de salida de los siguientes líneas de aducción:

- Reservorio R-II Red de Laderas, 2 de Junio (Farte Baja) y Los Pinos ϕ 8"
- Reservorio R-II Red del P.J Santa Cruz φ 6"
- = Reservorio R-II = Casco Urbano y resto sectores $1,\ 2$ y 3 ϕ 29"
- Reservorio R-II Red del P.J. Esperanza Baja μ 6"
- Reservorio R-III $^{\circ}$ v R-IIIA Red del Sector 6 ϕ 12"
- Reservorio R-III Red del Sector 4 (Trapecio y otros) φ 8"
- Reservorio R-III Red del Sector 5 y otros (416")
- 🚃 Reservorio RVIA y B Red de los Sectores 7 y 8

Las estaciones fitometricas han sido instaladas a la salida de cada uno e los reservorios, tal como se aprecia en los esquemas del capítulo III

En el cuadro № 5.11 se aprecian las mediciones efectuadas del Bombeo del reservorio R-II al R-IV

En el cuadro 5.12 se aprecian las mediciones de presión efectuadas a las redes de distribución en las horas de servicio, en grifos contra incendio o cajas de registro.

5.4 ANALISIS DE LOS RESULTADOS

5.4.1 <u>Fuente de Producción - Agua Subterránea y Líneas de</u> Impulsión

- La producción de los pozos está alrededor de los 510 lt/seg.
- 🗏 Los pozos de mayor producción son el 4 y 19
- Los pozos de menor producción son el 12 y el 17
- La línea de impulsión que mayor pérdida de agua se produce, es la batería que interconecta los pozos 14, 15, 16 y 17 al Reservorio R-IIA con el 23.48%
- La línea de impulsión que menor pérdida de agua se produce es la batería que interconecta el pozo F-4 con el Reservorio R-IIIA
- Las pérdida totales en las líneas de impulsión es de aproximadamente 51 lt/seg. que representa el 10% del caudal producido por los pozos. Esto se debe principalmente:
 - Conexiones existentes en las líneas de impulsión autorizados por SEDACHIMBOTE
 - * Conexiones Clandestinas
 - * Fugas en las tuberías

5.4.2 Lineas de Aducción - Red de Distribución

De acuerdo a los caudales de salida de cada una de las líneas de aducción medidas, las horas diarias de servicio y el número de conexiones servidas, obtenemos los volúmenes promedios mensuales estimados que se estarían suministrando a cada zona de servicio, tal como se aprecia en el cuadro $N\Omega$ 5.13 de ello podemos indicar:

- Los mayores consumos de agua se encuentra en los sectores 7 y 8 así como en la Urb. Laderas y Los Pinos, con un consumo promedio proyectado de 60 y 63 m3/mes el mismo que se refleja en las mayores horas de servicio que cuentan, pero que carece casi de micromedición.
- Los menores consumos promedios mensuales proyectados son de Santa Cruz, Esperanza Baja, san Pedro y otros, debido a que existe una sería restricción del servicio, con un promedio diario de 4 horas.

En el cuadro $N\Omega$ 5.12 vemos que las presiones están muy por debajo de la mínima requerida (15 M.C.A.) en su mayor parte, esto debido principalmente a:

- Regulación de las Válvulas de salida de los reservorios
- Estrangulamiento de las válvulas en la red de distribución
- Problemas de incrustación en las tuberías, disminuyendo la capacidad de conducción de las mismas.

- No obstante que existe una autorización premorizada para distribuir el agua, existen interconexiones dentro de la red de distribución tanto en la principal como en la secundaria que dificulta una adecuada y justa distribución del agua.
- La interconexión de los reservorios R-I y R-II, en sus líneas principales de salida como en la red secundaria, que hace que el R-I pierda su sentido funcional. Primero porque representa un volumen muy pequeño respecto al volumen total y luego al tener una cota de elevación muy baja, se pierde presión en el sistema de la red, especialmente en las horas de mayor consumo.
- El cuello de botella que existe en la línea de aducción que abastece a los sectores 7 y 8 ya que de 21" se reduce al diámetro a 12" llegando a la red con presiones bajisimas repercutiendo en las zonas altas de estos sectores.
- Los excesivos caudales de consumo en las horas de servicio, por la restricción del servicio, conduciendo caudales mayores a los diseñados, entregando a la red con presiones por debajo del mínimo requerido.

AREA DE SERVICIO DE LOS POZOS DEL SISTEMA DE AGUA POTABLE - CHIMBOTE

CUADRO Nº 5.01

POZO No	TIPODE	LLEGADA AL	CALIDAL	PRESION	HIVEL O COTA	TOTAL CARGA	FECHA DE
	MEDICION	HESERVORIO	i/seg	(m.c.a.)	(msn.m)	(ता.इ.इ.इत.)	MEDICION
3	PITOMETRIA		33.9	55.65	15.5	71.15	28.02.96
	PITOMETRIA	1 11	26.2	62.65	15.5	78, 15	28.02.96
4	MACROMEDIDOR	111	50.1	35	20	55	10.20.96
5	MACROMEDIDOR		47.4	41.3	13.5	54.8	12.02.96
		11	35.3	49	13.5	62.5	14.02.96
7	MACROMEDIDOR		47.9	41	16	57	28.02.96
		II II	42.7	49	16	65	28.02.96
8	PITOMETRIA	11	28	49	18	67	01.03.96
10	MACROMEDIDOR	IIA	30.8	48.5	20	68.5	28.02.96
11	PITOMETRIA	IIA	33.5	47.6	21	68.6	01.03.96
12	PITOMETRIA		24.6	46.9	22.5	69.4	29.02.96
13	PITOMETRIA	l fi	27	46.9	21.5	61.34	21302396
14	MACROMEDICION	ll ll	12		17		28.02.96
15	MACROMEDIDOR	II	41.6	49.5	17.5	67	29.02.96
16	MACROMETRO	li li	36.1	45	17.5	62.5	29.02.96
17	PITOMETRIA	Harris II	22.3	46.55	19.5	66.05	01.03.96
18	MACROMEDIDOR	III	45	37.5	18.5	56	29.02.96
19	MACROMEDIDOR	111	57	39	18.5	57.5	29.02.96

CUADRO Nº 5.02

PERDIDAS EN LAS LINEAS DE IMPULSION DE POZOS

CAUDALES DE LLEGADA À LOS	CAUDALES EN LA	PERDIDA POR BATERIA	AS (L. IMPULS.)
RESERVORIOS (LT./SEG.)	SALIDA DE LOS		
	POZOS (LT./SEG.)	LT/SEG	%
Batería del P-3	(4	*1	
al R-IIA 22.1	26,20	4.10	15.65
Batería P-5 y P-7			
al R-IIA 75.3	78.00	2.70	3.46
Bateria P-8, P-12			
y P-13 al R-IIA 74.8	79.60	4.90	6.03
Batería P-10 y P-11			
al A-IIA 56.7	64.30	7.60	11.82
Batería P-4			Vi.
al R-IIIA 49.0	50.10	1.10	2.20
Bateria P-18 y P-19			
al R-III 98.0	102.00	4.00	3.92
Batería P-14, P-15	112.00		
P-16 y P-17 at R-IIA 85.7		26.30	23.48

CUADRO Nº 5.03

MEDICION DE CAUDAL LINEA DE ADUCCION LADERAS, LOS PINOS Y 2 DE JUNIO

DIA	HORĀ	CAUDAL L/SEG	PRESION (M)	NIVEL DE AGUA RESERV⊕RIO R2
	6.24	60.80	21.01	
)	6.35	61.40	20.23	4.50
12-04-96	6.55	61.10	19.56	
	7.15	60.90	19.25	2.75
	7.35	60.80	18.55	
я.	7.55	60.90	17.85	1.10
	8.15	60.90	16.45	

CUADRO Nº 5.04

MEDICION DE CAUDAL LINEA DE ADUCCION SANTA CRUZ

DIA	AROH	CAUDAL L/SEG	PRESION (M)	NIVEL DE AGUA RESERVORIO R3 M
	14.3	10.80	5.60	3.10
	14.4	12.20	4.90	2.85
12-04-96	14.5	14.00	4.55	2.60
	15.0	13.60	4.55	2.35
1	15, 1	13.70	4.20	2.05
	15.2	12.80	3.85	1.85
	15.3	13. 10	3.50	1.55
	15.4	12.40	3.15	1.25
	15.5	13.40	2.80	1.00
1	16.0	12.40	1.75	0.80

CUADRO Nº 5.05

MEDICION DE CAUDAL LINEA ADUCCION A CASCO URBANO Y SECTORES 1, 2 Y 3

DIA	HORA	CAUDAL L/SEG	PRESION (M)	NIVEL DE AGUA RESERVORIO R2
	6.60	1071, 18	2.80	2.8
	7.00	1050.60	2.50	2.5
12-04-96	7.13	1019.40	2.10	2.1
	7.20	964.60	1.80	1.8
	7.30	1019.40	1.40	1.4

CUADRO Nº 5.06

MEDICION DE CAUDAL LINEA DE ADUCCION ESPERANZA BAJA

DIA	AROH	CAUDAL L/SEG	PRESION (M)	NIVEL DE AGUA RESERVORIO R3 M
	7.08	31, 10	- 3.90	3.90
1	7.15	31.00	2.75	3.90
. 12-04- 96	7.25	30.60	2.50	3.60
	7.35	29.60	2.00	2.60
	7.45	29.70	1.75	2.50

CUADRO Nº 5.07

MEDICION DE CAUDAL LINEA DE ADUCCION AL SECTOR 4

DIA	HORA	CAUDAL L/SEG	PRESION (M)	NIVEL DE AGUA RESERVORIO R3 M
	7.07	70.60	33.60	3.0
	7.15	70.60	33.60	2.9
15-04 96	7.25	70.60	33.25	2.ზ
	7.35	68.00	33.25	2.2
	7.44	£8.00	31.85	2.0
	7.55	60.40	31.50	1.7
	8.05	49.30	31.50	1.5
	8.15	49.30	31.50	1.2
	8.25	49.30	32.20	1.0
	8,35	42.70	31.85	0.7

CUADRO Nº 5.08

MEDICION DE CAUDAL LINEA DE ADUCCION DEL SECTOR 5

DIA	HORA	CAUDAL L/SEG	PRESION (M)	nivel de agua Reservorio R3 M
1	7.03	333.50	30.80	3.0
1	7.13	933.50	30.80	2.9
15-04-96	7.23	333.50	30,45	2.6
	7.33	339.40	30.45	2.2
1	7.43	339.40	29.40	2.0
1	7.53	348.10	29.40	1.7
1	8.03	356,50	27.65	1.5
1	8.13	356.50	27.30	1.2
1	8.23	356.50	26.95	1.0
1	8.33	356.50	29.95	0.7
1	8.43	049,10	26.60	0.5
	8.53	348.10	26,26	0.3
l]	9.53	348,10	25.90	0.1

GUADRO Nº 5.09 MEDIGION DE CAUDAL LINEA DE ADUGGION AL SECTOR 6

OIA .	ARON	CAUDAL	PRESION (M)	NIVEL DE AGUA
<u>.</u>		L/SEG		Reservoruio as a
	7.55	71.70	17.95	5.1
	9.05	78.20	17.95	5.1
	2.15	70.20	17.50	5.1
j	9.25	€9.50	17.15	5.1
	7.55 9.05 9.15 9.25 8.30 8.40 9.55 9.05 9.15 9.25 9.35 9.45 9.55 10.05 10.15 10.25 10.35 10.45 10.55 11.05 11.05 11.05 11.05 11.05 11.25 11.35 11.35 11.35 11.35 12.05 12.15 12.25 12.35 12.35 12.45 12.59 13.55 13.45 13.55	ĕ 3 .50	17.15	5.1
	ର.4ଟ	70.20	17.50	5.1
	9.55	87.20	18.45	
1	9.05	109.10	19.25	
į.	9.15	102.80	19.25	
	9.25	121.90	18.20	
15-04-96	9.35	117.80	17.95	
	9.45	117.80	17.50	
	9.55	118.00	17.15	1
	10.05	115.70	16.80	
	10.15	110.90	18.30	
	10.25	108.40	16.45	
i	10.35	106.90	16.10	
	10.45	103.60	15.75	
	10 55	101 60	15.75	
i	11.05	101.60	16.10	
1	11.05	100.20	18.10	
3	11 15	100.60	16.10	1
	11.25	99.50	16.10	
	11.35	98.50	16.10	j
	11.45	97.90	16.10	1
	11 55	97.50	18.10	
	12.05	97.90	16.10	
	12.15	99.50	16.45	
	12.25	99.10	16.45	
	12.35	97.50	16.45	
	12.45	92.10	16.45	
	12.59	98.10	18.45	
	13.05	99.20	16.45	
	13.15	99.20	18.45	
	13.25	99.50	18.45	
	13.35	98.50	16.45	
	13.45	99.50	16.45	
	13.55	100.20	18.45	
	14.05	100.20	16.45	
	14.15	100.20	16.45	1
	14.25	100.80	18.45	1
	14.35	99.50	16.45	1
	14.45	100.20	18.45	1
	14.55	99 80	16.45	
	14.05	99.90	16.45	1
	15.15	99.90	18.90	1

CUADRO Nº 5.10

CAUDALES Y PRESIONES MEDIDAS EN LA LINEA DE ADUCCION A SECTORES 7 Y 8

DIA	HORA	CAUDAL	PRESION	OBSERVACIONES
		(LT/SEG)	(m)	
20	8° 01' - 8° 19'	267.70	4.48	
	8* 22' - 8" 32'	287.50	4.48	
Э	10° 09' - 10° 19'	302.70	4.48	
	11° 09' - 11° 19'	300.40	4.48	
96	12* 10' - 12* 20'	297.50	4.48	
	13° 00' - 13° 10'	297.20	4.48	
	15° 14' - 15° 24'	265.00	4.48	4000000
	16* 14' - 16* 24'	253.20	4.48	
	17° 11' - 17° 21'	251.20	4.48	
	18° 11' - 18° 21'	251.20	4.48	
	19* 08' - 19* 18'	249.40	4.48	
	21° 28' - 21° 38'	250.00	4.48	
21	06° 40' - 06° 50'	288.10	4.48	ESTE DIA NO LLEGA EL AGUA POR EL CANAL POR
3	07* 10' - 07* 20'	296.10	4.48	PROBLEMA EN LA BOCATOMA, LA PRODUCCION
96	07* 40' - 07* 50'	298.50	4.48	DISMINUYO Y SE TRATO EN PROMEDIO 140 LT/SEG.
	08° 10' - 08° 20'	306.50	4.48	
	08° 56' - 09° 06'	321.70	4.48	A LAS 11 a.m. LOS RESERVORIOS QUED ARIAN CON
	10° 34' - 10° 34'	336.40	4.48	NIVEL 0 Y YA NO SE PUDO MEDIR CAUDAL, POFIQUE
				DEFLEXIONA EL LIQ. YA QUE LA TUB. TRAB. COMO CANAL

CUADRO Nº 5.11

MEDICIONES DE PRESION Y CAUDAL EN BOMBAS DEL RESERVORIO R-II AL RIV

ABNOS	PRESION	CAUDAL
	MCA	(L/SEG)
BOMBA 1		
1	55.7	19.5
2	60.6	14.3
3	63.0	2.5
BOMBA 2		
1	55.7	20.0
2	60.6	14.2
3	5.0	7.2
BOMBAS 1 Y 2		
1	60.6	28.5
2	62.0	20.2
3	63.4	9.6
4	64.1	5.8

CUADRO No 5.12

No	USE CACION	PUNTO DE	DIA.	HOFIA	PRESION	HORA	PRESION	HOMA	PRESIÓN	HORA	PRESION
		MEDICION			(17)		(m)		3m)		(m)
1	URB. LADERAS DEL NORTE MZA S LT. 13. FRENTE AL IPSS	GRIF O C/I	12.04.96	5'15'	11.20	6*35	7.70	8'05'	7.00		
2	PUSAN PEDRO ENTRE LOS JRNES NILO Y LOS ALAMOS	GRIF O C/I	12.04.96	6.00.	7.00	7'05'	4.50		71		
3	PUESFERANZA BAJA: FCO. PIZARRO Y CRISTOBAL COLON	GFIIF O C/I	12.04.96	5*35'	7.70	6'45'	7.00	8'10'	0.00		
4	PJ, DOS DE JUNIO: AV, CHIMU Y JR, MOCHICA	GFIFO C/I	12.04.96	14 23	7.00	15'07'	7.00	16*00"	3.50		
5	FJ. SANTA CRUZ: JR. PANAMARCA	GF(IFO C/I	12.04.96	15'20'	14.00	16"10"	1.50				
6	PJ. SAN FCO. DE ASIS: JR. SAN JUAN Y AV. AVIACION	GRIF O C/I	12.04.96	5'45'	7.00	6*55'	7.00	8'20'	4.20		
7	CASCO URBANO: SAENZ PEKA Y AV. PARDO	GRIF O C/I	12.04.98	7*03'	2.80	8,00,	2.45	8*50'	1.40		
8	CASCO URBANO: MANUEL RUIZ Y AV. PARDO	GFIIF O C/I	12.04.96	7°08'	10.15	7*55'	9.80	8'45'	4.55		
9	CASCO LIRBANO: JOSE OLAYA Y GUILLERMO MOORE	GFIFO C/I	12.04.96	7*14"	3.50	8*06'	3. 15				
10	PJ. EL PROGRESO: AV. JOSE GALVEZ CUADRA 11	GFIIF O C/I	12.04.96	7'23'	11.55	8*15'	4.20				
11	CASCO URBANO: JR. TUMBES Y FRANCISCO BOLOGNESI	GFIIF O C/I	12.04.96	G*58 '	8.40	7*50'	7.35	8'40'	3.50		
12	MIRAFLORES BAJO: AN TEN OR OFIREGO Y CAMINO REAL	GFIIF O C/I	12.04.96	6°35'	7.00	7*38'	5.95	8*29*	3.50		4 1
13	MIRAFLORES BAJO: JR. JOSE OLAYA Y MANUEL SEORNE	GRIF O C/I	12.04.96	6*50'	5.95	7*44'	5.60	8°32'	3.50		
14	PJ. SAN ISIDRO: JR. HUASCAR Y MANCO CAPAC	GFIIF O C/I	12.04.96	6'25'	15.40	7*30'	16.45	8*20'	9.80		
. 15	PJ. SAN JUAN: AV. PARDO Y JR. SAN MARTIN	GFIIF O C/I	15.04.96	6'45'	13.70	7'55'	12.60	8*55'	11.20	9'45'	0.00
16	PJ. SAN JUAN: CESAR VALLEJO Y J. C. MARIATEGUI	GFIIF O C/I	15.04.96	G'50'	8.05	8*05'	7.00	9,00.	7.00		
17	PJ. MIFIAFLORES ALTO: LEONGIO PRADO Y JR. PASCO	GF:IF O C/I	15.04.96	6°55'	7.00	8*10"	6.30	9*10'	1.75		
18	PJ MIRAFLORES ALTO: L. ESPINAR YUR AMAZONAS	GF/IF O C/I	15.04.96	7'05'	6.30	8*17"	3.50	9'15'	0.00		
19	PJ. FLORIDA ALTA: JR. LINA Y RAMON CASTELA	GFIIF O C/I	15.04.98	7°10'	6.30	8*25'	4.90	9.50.	3.20		
20	PJ. FLORIDA BAJA: JR. LIMA N≃695 Y ALTURA JR. DRENAJE	CARO DE AGUA	15.04.96	7*20	3.50	8.30.	2.80	9*25'	1.75		
21	PJ. FLORIDA BAJA: JR. LIMA Nº 415 ALTURA JR. MOQUEGU:	CARO DE AGUA	15,04,96	7'25'	6.30	8'35'	2.80	9*30'	2.10		
22	PJ. MIFIAF LORES I ZON A: ALMIRANTE QUISSE Y STA CHUZ	GFIIF O C/I	15.04.96	7"30"	4.20	8'40'	1.75	9*35*	1.75		
23	PJ. MIRAFLORES BAJO: LEONCIO PRADO Y JR. CASMA	GF(IF O C)I	15.04.96	7'40'	6.30	8'45'	3.50	9*37'	0.00		
24	PJ. ALTO PERU: JR. A. UGARTE Y JR. ICA	GRIF O C/I	15.04.96	7*50'	3.50	8*50'	1.75	9'40'	0.00		
25	PJ. SR DE LOS MILAGROS: MZA I LOTE 56	PUNTO DE AGUA	15.04.98	7'46'	7.00	8'19'	7.00				
26	URB. EL TRAPECIO: MZA, G LOTE 9	PLINTO DE AGUA	15,04,96	7*50'	4.20	3'28'	4.20				
27	URB EL TRAPECIO: MZA.1 LOTE 7	PUNTO DE AGUA	15, 04, 93	8'24'	8.40						
28	FPIAO: ENTRE LA CALLE 2 Y AV. "A"	GFIIF Q C/I	15.04.96	6'54'	8.40	8'05'	8.40	8'42'	7.70		
2.9	PJ. 8 DE OCTUBRE: FRENTE A LA MZA. F LOTE 36	GRIF O C/I	15.04.96	7"25"	8,40	7'59'	7.00	8°36'	4.2 P >1		

CUADRO No 5.12

No	UBICACION.	PUNTO DE MEDICION	Dia:	нова	PRESION	HCRA	PRESION	HCRA	PRESIDN (m)	±O ‡ u4	PRESIDA (115)
30	PJ. 3 DE OCTUBRE: AV. B. ENOS AIRES Y MIGUEL GRALI	GRIF O C/I	15. 04.96	12'00'	3.50	(a = 1					
31	PJ. 1DE MAYO: JR. CUZCO E IQUITOS	GFIFO CA	15.04.8 16	11*37'	4.55						
32	URB. LAS EIRISAS: CALLE 17 Y PASAJ 28	GFIIF O C/I	15.04.96	11'28'	2.45				N		
33	P.J. VILLA MARIA: PACASMAYO Y 28 DE JULIO	GFIIF O C/I	15.04.96	10'55'	0.20	12'08'	0.00				
34	PJ. VILLA MARIA: LEO NCIOPRADO Y MIRAFLORIES	GRIF O CA	15.04.96	11'10'	0.20	12" 15"	0.00				
35	PJ. VILLA MARIA: PACASMAYO Y AVIACION	GFIIF O C/I	15.04,86	11'00'	0.7	12'20'	0.7				
38	PJ. VILLAMARIA: AV. PERU Y JOSE OLAYA	GFIIF O C/I	15.04.96	11 '15'	0.2	12'25'	0		h		
37	ZON A SD: PRIG. AVICOUNTRY ENTRE MZAS M2 Y L2	GF:IF O C/I	20.03.5.16	11'53'	12.25						
38	ZON A 5A: MZAS F LOTE 57	CAJA DE AGUA	28.63.63-21.63.88	12/821-12/411	6.30-6.30						
39	ZON A 5B MZAS. R LOTE 19	CAJA DE AGUA	28.63.88 -2	1.0312107"	4.2						
40	ZONA SC: MZNAS, JLOTE 21	PTO DE AGUA JARDINI	\$8.03.08-£1.02 F.	12:12:-12	1.40-3.50						
41	2 ON A 5D: MZNAS, H 2/ID ET 16	CA JADEA GUA	20.03 .00- 21	1 820401542).	1.4070				M 1		
42	2 O LA 50: MZNA: .32 L @TE 45	CA JBE AGUA	20.03 00 21.0	.88*\$2*-12*58*	3.50-2.80						
43	ZON A SC: MZN A: £011LOTE 48	CA JADE AGUA	21,1 3.11: 2	.02 12002 1	7.00-5.60						
44	ZON A SA: MZN AS. A LOTE 8	CAJøE.AGUA	20.03,96	13'00'	4.9	1					
45	ZON A 5B MZN AS, KLOTES	CAJA DE AGUA	20.03.96	13'04'	2.8						
46	ZON A SC: MZN AS, C LOTE 9 (LOS ALAMOS)		21.03.96	13'12'	2.1						
47	URB. BELL AMAR: FRENTER LA MZA A LOTE 1	GFIIF O C/I	21.03.96	10'38'	2.8						
48	URB. B. IELAMAR: MZN A. ELOTE 6	PTO DE AG & (DERIN	21.03.5	10"5 14"	0.7						
49	URB. B EL LANN NIZNA. ILOTE 6	CAJA DE AGUA	21.03.96	11'00'	5.6						
50	UF INBELLAMAR: FRENTE A LA MZA, MILOTE 18	GFIIF O C/I	20.03.96	11*11'	NO MARIPRE S.						
51	ZON A 4B MZA CSLOTE 21	PUNTO DE AGUA	20.03.96	16'00'	10.5						
52	ZON, AMB MZA LSLOTE 16	PTO. DE AGUA (JARO)	24 3.31-21.010	18'11'-8'55'	6.30 4.20		War D				
53	ZON A 4B MZA PS LOTE 15	PUNTO DE AGUA	28.83.80 -2 1.	12.00 10 . 5	144 00-4.90	08'14'	4.2				
54	ZON A 4B: MZA OS LOTE 15	PUNTO DE AGUA	20.03.96	16'18'	.00						
55	ZONA 4A: MZA O 4 O TE 19	CAJ BE AGUA	20.52.50-21.5 12.	1 112.4.31.	2.10-2.10	12'51'-	4.90-3.50	1			
56	ZON A 4A: MIZA M4 LOTE 19	CAJA DE AGUA	21.03.96	D8f3i6'	.00						
57	ZON A 4A: MZA J4 LOTE 18	CAJ DE AGUA	21.82 It ct.15	1 21301-121201	1.40-4.90	08'47'	0.7				
58	ZONIA 4A: MZA K4 LOTE 13		21.03.96	13*25'	0.7						
59	ZONA 9A: MZA A2 LOTE 22	CAJA DE AGUA	20,82.98. 21.8		3.50-2.10	08'11'	2.45				
50	ZON A 3A; MZA N2 LOTE 39	PUNTO DE AI BIA	20.03.96	16,50,	8.4						
51	ZONA 3A: MZA N2 LOTE 36	CAJA DE AGUA	28.83.88-21.82,88	16/221-881421	.0000						

CUADRO No 5.12

No	UBICACION	PUNTO DE	DIA	HORA	PRESION	HOPW	FRESIÓN (m)	HORL	PRESICK (m)	HORA	PAESIO (m)
	22N 4 04 M2 6 FRI OTF 00	MEDICION CAJA DE AGUA	26.33.46-21.43.30	15,31,48,65,	(ກາ) 2.80-2.80	09*35	2.8			2-1-1-1-1-1-1-1-1-1	0.000.00484990
52	ZON A 3A: MZA F2 LOTE 29	PUNTO DE AGUA	20.03.96	16'40'	1.75	00 00	2.0				
63	ZON A 31: URB. LOS OLINOS MZA F6 LOTE 28 ZON A 3D: MZA R3 LOTE 16	CAJADE AGUA		10 40	1.40-1.75	107281	0.7				
64			21.03.96	08'09'	5.6	1130 20				-	
65	ZON A 3D: MZA S3 LOTE 36	CAJA DE AGUA									0
66	ZONA 3D: MZA T3 LOTE 33	CAJA DE AGUA	21.03.96	08"13"	3.5						
87	ZON A 3B: NZA M3 LOTE 27	PUNTO DE AGUA	21.03.96	08*17'	1.4						
89	ZON A 3B: MZA O3 LOTE 12	PUNTO DE AGUA	21.03.96	08,50,	2.8						
69	ZON A 3 C: AV. AFIGENTINA Y ANCHOVETA	GRIFO CAL	21.13.11-21.13.01	11/21/41/24	5.60-4.90	12"47"	7.7_				
70	ZON A 3C: MZA B3 LOTE ?	C.A.JA.DE.AGUA	21.03.96	08,30.	2.1						
71	ZON A 3 C:MZA H3 LOTE 32	CAJA DE AGUA	21.03.96	13*26'	.00						
72	ZONA 2: MZA G LOTE 35	CARO DE AGUA	20.03.01-21.03.01	191451-121421	2.80-7.00	16'43'	2.1			1	
73	ZONA 2 MZA LLOTE 1	CARO DE AGUA	\$1.65.01-21.07.00	C7'11'-11'52'	.70-4.20						
74	ZON A 2: MZA N LOTE 23	CA JAE AGUA	21.43.40-21.63.00	43'88'-13'12'	2.80-7.00		7 3				
75	ZON A 2: MZA A LOTE 45	CAJA DE AGUA	20.03.96	17"21"	0.7			1 9			
76	ZONA 1: NZA GLOTE 67	CAJA DE AGUA	21.13.11-21.12.11	17'AF 1F\$C	.2000						
77	ZONA 1: MZAH LOTE 70	CAJA DE AGUA	21.03.96	07*13'	2.1			1		j	
78	ZON A 1: MZA I LOTE 45	C.AIDE .A.GUA	21.03.96	07°16'	0.7						
79	ZONA 1: MZAKLOTE 31	CA AIDE AGUA	21.03.96	07*20'	2.45						
80	ZONA 1: MZA ATOTES	PUNTO DE AGUA	21.03.96	07*23'	3.5						
81	ZONA 1: MZA A LOTE 31	CARO DE A GUP= 1.20m	21.03.96	07"28"	4.9						
82	ZONA 1: MZA 12 LOTE 19	PUNTO DE AGUA	21.03.96	07'31'	3.5						
83	ZONA 1: MZA CLOTE 29	CA . QDE AGUA	21.03.96	07"46"	2.8						
84	20MA 1: MZA DLOTE 47	FTO. DE AGUA hp = 0.80m	21.03.96	07'49'	3.5						1
85	ZONA 1: AV. "C" CON AV. "A" (FRENTE MZA F)	GRIFO CAI	21.03.96	07'54'	2.8						
86	BLIENOS AIRES : AV. COUNTRY Nº 448	CA AJDE A GUA	20.03.96	10*50'	6.3						
87	BUENOS AIRES : A'U. COUNTRY Nº 190	CARO DE A GUA	20.03.96	10.40'	6.3						
88	BE AS: PJ. S. ANTONIO #112 CRUCE AV. LA MARINA	CAJA DE AGUA	20.03.96	10 '25'	4.9						
95	BUENOS AIRES: AV. LA MARINA Nº 1069	CAJA DE AGUA	20.03.96	10'23'	9.1						
ðÛ	BS AIRES 24# ET APA: JR. MORO MZA ULT 12	PUNTO DE AGUA	20.03.96	10.50.	5.6						
91	CASUARINAS: NZA. O LOTE 35	CAJADE A GUA	20.03.96	10'15'	4.0					j-	

CUADRO No 5.12

No	BECACION	PUNTO DE MEDICION	DIA	нова		HOFIA	PRESIGN	HORA	PRESION	НОПА	
92	URB, BUENOS AIRES; AV, PACIFICO Nº 484	DERIV. CAJA DE AGUA	20.03.96	11'04'	3,5	191509999	(m)		(11)		(m)
93	URB. MIGUEL GRAU: AV. PACIFICO MZA. W2 LT. 1	CAJA DE AGUA	20.03.96	12,56,	3.5	18'00'	4.9				
94	ZONA 4B: MZA BS LOTE 3	CAJA DE AGUA	20.03.96	07*52'	3.5					1 22	
95	ZON A 4B: 1. RA KSLOTE 18	CAJA DE AGUA	20.03.96	03.04,	4.9			4 2 2 1		L. T.	
96	ZON A 4A: MZA B4 LOTE 1	CAJA DE AGUA	20.03.96	13°18'	3.5						
97	ZON A SA: MZA H2 LOTE 22	CAJA DE AGUA	20.03.96	09*30'	3.5						
198	ZON A 2: MZA CLOTE 12	CAJA DE AGUA	20.03.96	10"10"	2.8					V	
i36	ZON A 2: MZA BLOTE 13	CAJA DE AGUA	20.03.96	10'11'	0.7				acos all		
100	ZON A 3: MZ/A, D2 LOTE 7	CAJA DE AGUA	21.03.96	08*57	1.4	08,00.	2.1		A I	2.3.3.2	

CUADRO Nº 5.13

VOLUMENES DE CONSUMO MENSUAL ESTIMADO POR ZONAS DE SERVICIO

ZONA DE SERVICIO	NUMERO DE USUARIOS	VOLUMEN MENSUAL CONSUMIDO M3
LADERAS, LOS PINOS) 	
2 DE JUNIO (PARTE BAJA)	1151	63
SANTA CURZ	250	15
ESPERANZA BAJA	787	16.7
CASCO URBANO Y PARTE		
DE LOS SECTORES 1, 2 Y 3	17334	38.3
SECTOR 4 (TRAPECIO Y		
OTROS)	1400	26
SECTOR 5 (MIRAFLORES Y		
OTROS)	5000	44
SAN PEDRO, ESPERANZA ALTA		
Y 2 DE JUNIO (PARTE ALTA)	1949	20
SECTOR 6 (VILLAVICENCIO, 1 DE		
MAYO, 3 DE OCTUBRE Y OTROS)	3105	30
SECTORES 7 Y 8	7600	60

CAPITULO VI

ACCIONES DE MEJORAMIENTO

Luego de haber efectuado la descripción, funcionamiento del sistema de agua potable de Chimbote, los problemas que se presentan, así como las causas que originan y haber efectuado una evaluación de su actual comportamiento, en el presente capítulo se plantearan las acciones que se proponen para mejorar las actuales condiciones de funcionamiento, y garantizar un adecuado servicio de la población de Chimbote en cuanto a:

- Continuidad del servicio
- Calidad del agua suministrada, que reune las condiciones que recomienda las Normas de la Organización Mundial de la Salud (O.M.S.)
- Presiones adecuadas en la red de distribución

6.1 ACCIONES EN LA PRODUCCION

6.1.1 Fuente Subterránea

- Efectuar un programa de rehabilitación de pozos que permita recuperar el caudal de perforación o aproximado, para lo cual se hará:
 - Limpieza con sustancias químicas de os filtros que permita un ingreso normal del flujo de agua para las condiciones iniciales de perforación.
 - Cambio de sistema de bomba, columna de bomba ya que la mayoría de ellas cuentan con tazones totalmente desgastados y

reparados y la columna parchada muchas veces. lo que imita la captación de flujo de aqua.

- Z. En cuanto a los árboles de Descarça se deberá contemplar:
 - Completar el funcionamiento completo del mismo, ya que la mayoría no cuanta o están en mal estado las válvulas de aire, válvulas de alivio de presión, las derivaciones para purga.
 - Instalación del sistema de desagüe para efectos de limpieza o algún tipo de mantenimiento, ya que actualmente la mayoría de pozos no lo cuentan.
 - Completar la instalación de los macromedidores de mano que permita cuantificar la producción de los pozos y llevan la estadística de los mismos
- 3. Efectuar la electrificación de los pozos que actualmente funcionan con motor Diesel de manera que nos permita:
 - Garantizar la continuidad de bombeo y no como actualmente sucede que constantemente estos pozos son paralizados por problemas en los motores Diesel.
 - A corto plazo recuperar la inversión
 - Reducir costos de operación y mantenimiento

4. Efectuar la automatización de los pozos, de manera que pueda reducir costos de operación, en lo que concierne al personal que se reducirá tremendamente.

6.1.2 Fuente Superficial

- 1. Aumentar la capacidad de almacenamiento de las lagunas de presedimentación, de manera que permita garantizar por lo menos durante cinco dias (en los cortes de agua del Canal Carlos Leight), la dotación de agua a la población, en las condiciones actuales de operación y funcionamiento de la planta de tratamiento.
- 2. Contemplar un programa de impermeabilización de las laquas de Pre-Sedimentación que permita:
 - Evitar prolongados tiempo de paralización de ellas, para efectos de limpieza como actualmente se viene dando (de 6 meses a un año) restando la capacidad de almacenamiento.
 - Evitar la pérdida del agua almacenada por filtración en el terreno (arena gruesa)
- 3. Contemplar la instalación de tuberías paralelas de conducción, a las que actualmente existen entre las lagunas de Pre-Sedimentación y la Planta de Tratamiento de manera que garantiza una producción permanente la planta, así bajen los niveles de agua en las mencionadas lagunas.

6.2 ACCIONES EN CALIDAD DE AGUA Y SISTEMAS DE TRATAMIENTO

6.2.1 Aquas Superficiales

- Mejorar las condiciones de operación de la Flanta de Tratamiento, de acuerdo a las normas recomendadas en cada proceso de tratamiento
- Mejorar las condiciones de ambiente en cuanto al almacenamiento de los productos químicos
- 3. ampliar la infraestructura del laboratorio de manera que reuna las condiciones de agua requerida.

6.2.2 Aquas Subterráneas

Implementar un equipo de cloración por pozo, de manera que garantice la calidad de agua producida.

6.3 LINEA DE IMPULSION - CONDUCCION

- Desconectar todas las conexiones domiciliarias que se encuentran instaladas en las líneas de impulsión.
- Iniciar una campaña para detectar las conexiones clandestinas instaladas en las líneas de impulsión.
- 3. Interconectar las baterias de las líneas de impulsión, de manera que permita aumentar la capacidad hidráulica de las mismas y contrarrestar la reducción de la capacidad de impulsión, por la disminución de "C" por efectos de incrustación.

6.4 RESERVORIOS

 Completar el sistema de rebose y limpieza en los reservorios que no cuenten o esten incompletos de manera que permita un adecuado mantenimiento.

- 2. Efectuar el cerco de los reservorios R-II. R-IV y RV de manera que se tenga la seguridad del caso y evitar cualquier incidente.
- 3. Completar la instalación de medidores de nivel en los reservorios que no cuenten.

6.5 LINEAS DE ADUCCION Y RED DE DISTRIBUCION

- 1. Eliminar los "cuellos de botella" en las líneas que lo tienen, de manera que permita entregar el flujo de agua con presiones adecuadas en la red de distribución. Particularmente en la línea que abastece a los sectores 7 y 8
- Modificar el trazo del tramo de las líneas de aducción de 16" y 8" que abastece a los sectores 4 y
 en las zonas donde existe fuga permanente de agua o donde la tubería es muy profunda.
- 3. Completar el catastro de redes y válvulas de manera que permita identificar el sistema de distribución.
- 4. Instalación de un programa de micromedición, que permita reducir las pérdidas de agua ya que actualmente al usuario solamente se le cobra con promedio.
- Continuar con el programa de control de pérdidas de manera que permita reducir las pérdidas físicas.
- Completar la sectorización de las redes de distribución.

CAPITULO VII

ANEXOS

En el presente capítulo se presenta los cálculos efectuados con Pitometria en las diferentes instalaciones del Sistema de Agua Potable de Chimbote, que ha permitido evaluarlo.

En el mismo se presenta 3 formatos:

- El primer formato es para anotar las deflecciones para determinar la curva de distribución de velocidades en el campo del flujo de agua que pasa por un conducto presunizado.
- El segundo formato es la construcción de la curva de velocidad. que nos permitirá determinar el factor de velocidad en la medición de campo realizada.
- El 3er formato es para determinar la velocidad central instantánea, que es la velocidad promedio, medida en el eje de la tuberia en un corto espacio de tiempo.

Obteniéndose esta, al ubicar el Orificio Pitométrico en el eje de la tuberia, cada 30 segundos durante 10 minutos.

En la última parte se hace el cálculo del caudal instantáneo obtenido como consecuencia de la medición de la velocidad.

ESTAC. FITOMETRICA NO Equipo: PITOT SIMPLEX

Fecha Diciembre 95 Hora : 9.30

D. nom. : 200 D. cal. : 190 Liquido d = 1.25

Local : Salida Pozo 3

Operadores : Juan Alvites Builon

(mm)	h (mm)	hc (mm)	V (m/s)	Vc (m/s)	Valores de V pars VC=1
Dn	284	432	0.905	1.157	0.78
0.9 Dn	302	429	0.968	1.153	0.84
0.8 Dn	353	434	1.048	1.160	0.90
0.7 Dn	401	434	1,115	1.180	0.93
0.6 Dn	424	427	1.147	1.151	1.00
0.4 Dn	424	432	1.147	1.157	0.99
0.3 Dn	414	434	1.133	1.160	69.0
0.2 Dn	363	429	1.081	1.153	0.92
0.1 Dn	249	434	0.879	1.160	0.76
0.05 Dn	185	434	0.757	1.160	0.65

NOM. 200 190 O REAL _ PROMEDIO LOCAL <u>SALIDA</u> P-3 BACHLLER <u>JUAN ALVITES BULLO</u>N DENS. 1.25 0.845 FECHA DIC -1995 BACHLLER 0.845 EP. No. 0.895 0.940 ج. 0.985 0.75 0.84 0.99 0.60 0.72 8.455 9.9 0.82 VELOCIDADES EN RELACION A V OC . MI DI 11 OI DO 1 DO 1 DE 188 DE CAC ESC 1 = -.= = 412 CAO 225 C DO 335 17.5 00 00 = 5 7. Z O

FORMATO PARA CALCULAR EL FACTOR VELOCIDAD

Local: Salid	ia Pozo 3		
D.Nom. 20	0 mm. D. Rea	mm 091 iz	
PITOT No:	2524 DENS	.: 1.80	
MANOMET	RO USG AL	. mm	
OPERADO	R: Juan Alvites Bullor	CAL.:	VER.:
Observ. : L	legada R-I		
TIEMPO	DEFLEXION (mm)	VELOC. (m/a)	PRESION (m)
10'05'	292	1.474	55.65
	290	1.469	
	290	1.469	
	297	1.461	
	297	1.497	
	295	1.482	
	282	1.449	
	292	1.474	
	292	1.474	
	290	1.469	
	290	1.489	
	297	1.461	
	267	1.461	
	295	1 492	
	295	1.482	
	290	1.469	
	297	1.487	
	295	1.482	
	290	1.469	
	297	1.497	
	297	1.487	
TOTAL		30.944	1169.65
PROMED.		1.474	55.65

	69.59	
1)	=	0.800
	114.3	
	79.74	
2)		0.584
	134.62	
	83.82	
3)		0.589
	142.24	
	93.92	
4)		0.597
	160.02	
	106.63	
5)	=	0.591
	190.34	
	119.39	
ල)	=	0.587
	205.2	
	134.62	
7)	=	0.592
	231.14	
TOTAL	=	4.120
MEDIA	=	0.598
DENSIDA	D REAL = 1+	0.588 = 1.58

0.031416 m2 2NN = Area Corregida Drest 190 200 Dnom. Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00 Dens. Real - 1,000 0.598 = 0.96 Cd = Correccion de la densidad= -----== Dens. Nom. - 1,000. 0.80 Vo = Velopidad Central = 1.474 Co = 1.00 0.0339 m3/s Q = FV x (SC) x Cdiam . x Ct x Cd x (Co) x Vo =

0.023012

Q = 33.91/s

FV = Factor de Velocidad =

Estas. Piton		Feoha: 07-0	7-95
Local: Salid		1.700	
D. Nom. 200			
PITOT No:		.: 1.25	
MANOMET			
	R: Juan Alvites Bullon	CAL:	VER.:
Observ. : L			
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)
09*15'	402	1.126	62.65
	414	1.153	
	419	1.140	
	404	1.119	
	409	1.126	
	411	1.129	
	409	1.126	
	411	1.129	
	411	1.129	
	409	1.126	
	414	1.133	
	419	1.140	
	409	1.126	
	419	1 140	
	411	1.129	1
	409	1.126	1
	414	1.133	
	414	1.133	
	417	1.137	
	419	1.140	1
	414	1.133	
TOTAL		23.753	1315.65
FROMED.	1 10 10 10 10 10	1,131	€2.65

	33.02	
1)		0.250
	132.09	
	40. 64	
2)	=	0.250
	162,56	
	48.26	
3)		0.243
	199.12	
	53.34	
))	=	0.244
	218.44	
	55,99	
)		0.244
	229.8	
	63.5	
))		0.247
	256.54	
	73.68	
")		0.245
	299.72	
CTAL	=	1.723
AICDIA	=	0.246

FV = Factor de Velocidad = 0.945 Nominal 0.031416 m2 2NN = Aren Corregida 190 Great Chom 300 Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00 Dens. Real - 1,000 0.248 Cd = Correspion de la densidad= -----== = 0.9690.25 Dens. Nom. - 1,000 $C_0 = 1.00$ Vo = Velopidad Central = 1.131 0.0282 m3/s Q = FV x (SC) x Cdiam, x Ct x Gd x (Co) x Vo = Q = 28.21/s0.023204 K =

ESTAC. PIT	OMETRICA N	lo		Equipo: PITO	OT SIMPLEX				
Fecha . 🕽	ciembre 95			Hora : 9:00 am					
D. nom. : 2	50	D. cal. : 24	19	Liquido d =	1.11				
LOCAL : S	anda del Poz	6 0							
Speradores	: Juan Alvite	es Bullon							
D (mm)	h (mm)	he (mm)	V (m/s)	V c (m/s)	Valores de V para VC=1				
⊡n	46	249	0.250	0.582	0.43				
0.9 <u>D</u> n	84	251	0.338	0.585	0.58				
0.8 On	132	251	0.424	0.585	0.72				
0.7 Dn	178	244	0.492	0.578	0.85				
0.6 Dn	221	246	0.549	0.579	0.95				
0.4 Dn	246	251	0.579	0.565	0.99				
0.3 Dn	236	249	0.567	0.582	0.97				
3.2 Dn	203	249	0.526	0.582	0.90				
0.1 Dn	163	246	0.471	0.579	0.81				
3.05 Dn	137	249	0.432	0.582	0.74				

	ft	CH	-	0.	-	- 5	99	5	BACHIL		UAN PA	AL	P~ 6		BL)LL	ON		PROM EDIO	0.748
.¥.>	14.0	0.52		0.64		0.77			0.91			86.0		0.91		0.00	0.78	0.71		7.48
DE 1 281 041 8:1 01 DC 1 DC 1 DC 1 810 C40 170 C70 C70 C70 S70 C70 C80 C80 C80 C70 181 C70 SEC C70 SEC C70 C70	T	H		1:1	-		-		T2 .		-:	-		T		=	1		3	
:	T		4		H				-	-	=	=				∄	E	1	3	TOTAL
2	+		÷	10	+	41				-32	7. 7.	=	-:-	1	-	=	Ē		5	10
:	+		0		H			2.	1		11				-	=	E	-1	=	
5	T	H			T	A.		1.4		==:	:	=	==			=	t	H	=	
8	+	H	-		H	-	÷		=-	Œ.	=	-	==	#	=	Ĭ	ţ	H	12	
ž	\dagger			1	H	-	ì		/	540	-	E				Ξ	1	H	i i	
0	+	H			H		3	1	3.7.		=:	-	7	1	=	Ξ	ļ		15	
2	\dagger	Т	Œ	1 :	Н	. :	7	-		12	- =	Ē	薑	1	Ż	=	t	H	1	
3	1	i	×	3.	H	-/	-	3	1	===	==	Ē		H		X	Ė	1	15	
3	1	H	-	E	Н	/		=	-=	薑		Ē		T			ľ	且	3	5
,	H	i	i	Ē,	7	Ξ		Ē	14		Ξ	E			=	Ξ	1	X	5	
5.	i.	H	Ť	1	H	7	÷		. -	EE V	=	E					Ī	7	15	2
	H	İΤ	1.	/	П	.==	Ξ.	-	===	=		Ē		Ц			Ė	Ħ	13	5
3	1	Ħ	1	-	H	4	37	7	:: <u>:</u> .		Ē	Ė		H	=	7.	T.	Ħ	16	2
0	H	1	-		H	-7:	-	-		1,515	=	F		H		Ė	Ē	П	100	a
0	IT	M		-	H	7.	:	Ξ	:=:		=	1=	=	H		Ξ	1		04 041 041 041 041 041 041 041 041 041 0	VELOCIDADES EN BELACION A
	7	1	-	1	H	Ē.		:7	2.2		=	Ξ	≡						1	E.S.
0	1	Ħ		1		-:-	:-	43	124.7	==:	=	E	=	H	=		E			0
25	1	Ħ		-	H	10	75	43	Part.		=	F	75	1	ī	T.		H	3	Š
	IT	Ħ		1	H	*			1.7	/E	-	1	三	I	7	Ξ	1	П	100	ī
20	1	Ħ		1	Ī		1		Ţ.,-	1733	.53	1	<u>==</u>	1.	##	4		H	. 0	>
3	IT	ľ			П	1.		1		17.22	-	1.	噩	П		-		H	3	
0		1		i –		- 1	1	1	= 2	1 ==	==	=	12	П	Ę	3	T	П		
8 0	T	Ti		1		500	1	4	-=	Æ.	1	ŀ	***	H	~	=	i	H	204 010	
0	T	1	-	1	1		-	1		135	14		135 135 145	H	:: ::	-	į.	į!	00	
	T		_	T	_	T	_	T									1			

D.Nom. 25	mm. D. Re:	al 2-19 mm						
PITOT No:	DENS.:	1.25						
MANOMET	RO AL	m m						
OPERADO	R: Juan Alvites Bullor	CAL:	VER.:					
Observ. :								
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)					
11*00	191	0.77	49.00					
	196	0.79	49.00					
	198	0.78	49.00					
	193	0.774	49.00					
	191	0.77	49.00					
	191	0.77	49.00					
	193	0.774	49.00					
	195	0.757	49.00					
	188	0.763	49.00					
	198	0.763	49.00					
	191	0.77	49.00					
	185	0.757	49.00					
	196	0.790	49.00					
	193	0 774	49.00					
	198	0.790	49.00					
	198	0.730	49.00					
	188	0.783	49.00					
	193	0.774	49.00					
	193	0.774	49.00					
	193	0.774	49.00					
	198	0.763	49.00					
TOTAL		18.190	1029.000					
PROMED.		0.771	49.00					

	CION DE LA I	
	27.94	
1)	=	0.255
	169.22	
	39.1	
2)	=	0.254
	149.96	
	43.18	
3)	=	0.250
	172.72	
	49.26	
4)	=	0.243
	198.12	
	55.99	
ଟ)	=	0.241
	231.14	
	69.59	
8)	=	0.259
	264.16	
	76.2	
7)	······· ±	0.250
	304.8	
TOTAL	=	1.752
MEDIA	=	0.250
DENSIDA	D REAL = 1	0.250 = 1.250

Nominal SNN = Area

0.049097 m2

Corregida

Crest

249

250 Dhom.

Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00

Dens. Real - 1,000

Cd = Correccion de la densidad= ------= 1.0

0.25 Dens. Nom. • 1,000

Vo = Velocidad Central = 0.771 Co = 1.00

SN

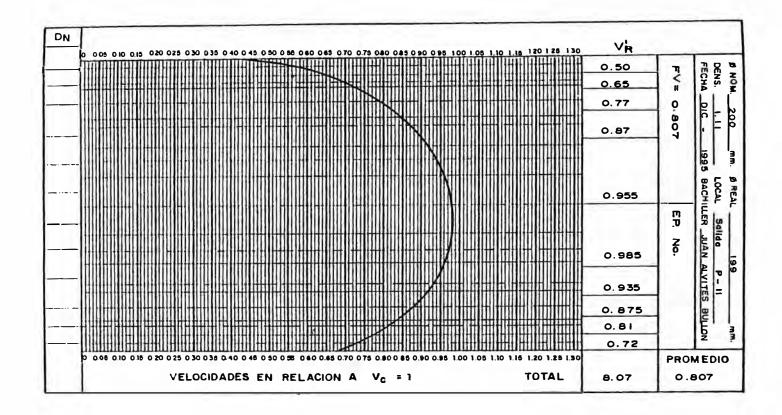
 $Q = FV \times (SC) \times Cdiam. \times Ct \times Cd \times (Co) \times Vo =$

0.0290 m3/s

0.036423

Q = 28.01/s

ESTAC. PITOMETRICA NO Equipo: PITOT SIMPLEX


Fecha . Diciembre 95 Hora : 14:10 pm

D. nom. : 200 D. cal. : 199 Liquido d = 1.11

Local : Salida del Pozo 11

Operadores : Juan Alvites Bullon

D h		he (mm)	V (m/s)	Vc (N)/5)	Valores de V para VC=1
0.95 Dn	94	295	0.358	0.634	0.56
0.9 <u>C</u> n	155	297	0.459	0.636	0.72
3.8 Cn	218	297	0.542	0.636	0.85
07 Dn	241	297	0.573	0.838	0.90
0.6 Dn	272	302	0.609	0.641	0.95
04 Dn	302	305	0 841	0.644	1.00
0.3 Dn	284	302	0.822	0.641	0.97
0.2 Dn	254	295	0.538	0.634	0.93
0.1 Dn	211	297	0.536	0.636	0.84
0.05 Dh	178	302	0.492	0.841	5.77

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

Estas. Pitor Local: Salid		5 Feoha: 01-0	7-80							
D.Nom. 201		i 199 mm								
PITOT No: DENS.: 1.25										
		The state of the s								
	R: Juan Alvites Bullor		VER.:							
Observ. : L		· · ·	7 2.1							
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)							
09*24"	597	1.360	47.60							
	592	1,355								
	594	1.346								
	592	1.355								
	599	1.351								
	594	1.357								
	597	1.360								
	594	1.357								
	594	1.357								
	539	1.383	İ							
	597	1.360								
	592	1.355								
	594	1,357								
	592	1.355								
	594	1.357								
	594	1.357								
	597	1.349								
	599	1.363								
	594	1.357								
	599	1.363								
	597	1.560								
TOTAL		28.494	999.60							
PROMED.		1.357	47.60							

	45.72	
1)	=	0.243
	187.98	
	53.34	
2)	=	0.241
	220.99	
	60.96	
3)	=	0.247
	246.39	
	38.04	
4)	=	0.245
	269.24	
	79.74	
න	=	0.254
	309.98	
	96.36	
8)	=	0.255
	337.92	
	91.44	
7)		0.251
	363.22	
TOTAL	=	1.736
MEDIA	=	0.249
DENSIDA	AD REAL = 1	0.248 = 1.24

FV = Factor de Velocidad = 0.907 Nominal 0.031416 m2 SNN = Area Corregida 199 Ereal Dnom. Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00 Dens. Real - 1,000 0.248 Od = Correccion de la densidad= ------= 0.9940.25 Dens. Nom. - 1,000 $C_0 = 1.00$ Vo = Velooidad Central = 1.357 SN 0.0335 m3/s Q = FV x (SC) x Cdiam, x Ct x Cd x (Co) x Vo = Q = 33.5 l/s0.024697 K =

ESTAG. PHOMETRICA NO 02	Equipo: PHOT SIMPLEX

Fecha : Diciembre 95 Hora : 10:00 - 11:25

D. nom. : 200 D. cai. : 145 Liquido d = 1.25

Local : Salida Pozo No 12

						Valores
D		n	he	v	Vc	de V pars
(mm)		(mm)	(mm)	(m/5)	(m/s)	VC=1
0.95	Dn	241	457	0.573	0.789	0.73
0.9	Dη	305	455	0.644	0.787	0.52
0.8	Dn	361	447	0.701	0.780	0.90
0.7	Dn	394	419	0.733	0.755	0.97
0.6	Dn	414	429	0.751	0.764	0.98
0.4	Dn	434	411	0.769	0.748	1.03
0.3	Dn	414	424	0.751	0.760	0.99
0.2	Dn	406	447	0.744	0.780	0.95
0.1	۵n	599	439	0.757	0.773	0.95
0.05	on	389	452	0.728	0.785	0.93

× ×		= 0	0. 905		EP. No.			PROMEDIO
× ×		FV= 0.905			PROMED 0.905			
	0.795	0.905	0.925	0	0 ~	76.0	0.935	
20 025 0 35 040 045 050 0 50 0 60 065 0 75 0 15 0 15 0 15 0 15 0 15 0 15 0 1								20 025 030 035 040 046 050 030 030 040 046 070 075 080 056 050 050 056 100 105 110 115 120 125 130 VELOCIDADES EN RELACION A V. = 1

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

	n. No Prueb. No	o Feoha: 29-0	2-96
Local: Salid			
D.Nom. 200) mm. D. Re:	197 mm	
PITOT No:	DENS.:	1.25	
MANOMET		mm	
OPERADO	R: Juan Alvites Bullor	CAL.:	VER.:
Observ. :			Vision III
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)
10*14'	251	0.992	46.90
	254	0.997	
	257	0.893	
	257	0.995	
	251	0.992	
	254	0.987	Î
	284	0.905	
	257	0.893	
	251	0.982	
	251	0.982	
	284	0.905	
	254	0.887	
	257	0.993	
	257	0.993	
	262	0.901	
	251	0.982	
	251	0.992	İ
	249	0.879	
	257	0.993	
	251	0.992	
	251	0.882	
TOTAL		19.865	984.900
PROMED.		0.988	46.90

	38.1	
1)	=	0.258
	147.32	
	43.19	
2)	=	0.246
	175.26	
	50.9	
3)	=	0.258
	198.12	
	55.88	
4)	=	0.255
	219.44	
	63.5	
5)	=	0.257
	246.39	
	66.04	
6)	-	0.242
	271.78	
	78.2	
7)	=	0.247
	307.34	
TOTAL	=	1.761
MEDIA	=	0.251
DENSIDA	D REAL = 1+	- 0.251

```
FV = Factor de Velocidad =
          Nominal
                               0.031416 m2
2NN = Area
          Corregida
                                        197
                             Dreal
200
                             Dnom.
Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00
                          Dens. Real - 1,000 0.251
Od = Correspion de la densidad = ----- =
                                                 = 1.009
                                           0.25
                          Dens. Nom. - 1,000
                               Co = 1.00
Vo = Velocidad Central = 0.888
                                       0.0246 m3/s
Q = FV x (SC) x Cdiam, x Ct x Cd x (Co) x Vo =
                                       Q = 24.81/s
                  0.027799
```

0.905

ESTAC, PITOMETRICA No 01

Equipo: PITOT SIMPLEX

Fecha : Diciembre 95

Hora: 12:45 - 13:30

D. nom. : 200

D. cal. : 197

Liquido d = 1.25

Local : Salida del Pozo P-13

Cperadores : Juan Alvites Bullon

D	n	he		Vc	Valores de V pars
(mm)	(mm)	(mm)	(m/s)	(m/s)	VC=1
0.95 Dn	157	300	0.698	0.964	0.72
0.9 Dn	170	302	0.726	0.967	0.75
0.8 Dn	208	305	E03.0	0.972	0.83
0.7 Dn	244	305	0.870	0.972	0.90
0.6 Dn	279	305	0.930	0.972	0.96
0.4 Dn	307	307	0.976	0.976	1.00
0.3 Dn	599	305	0.963	0.972	0.99
0.2 Dn	294	305 %	0.955	0.972	0.98
0.1 Dn	269	305	0.913	0.972	0.93
0.05 Dn	238	307	0.858	0.976	0.88

A 22 0		0. 79	971 90 0			0.935	EP.	No			T		7		PROMEDIO	0.87
0 74	\vdash		0.86			935										
						o			00.1		0.00	0.0	0.915	0.85		1
	1 1				-	<u> </u>	-22-		1		Ė			I	3	
	=		1:2	-	=		.===		=			킄	h		=	A
	-		1 =		-	-	-			===		3	Ħ	1	2	TOTAL
\dagger		-	1=	-			===	Ξ	-	== !				-1-: -1:	-	
	1		1::				-=:	= 1				-1		-	-	
T			1.=				==	=		=t	1.5			+	9	
Ħ	=		Ė	Н	7				=	\Rightarrow	Œ		1	t	2	
††	-		1	- 1	Ź			=:	-	==	=		Ė		0	
Ħ		1 -	17	H	:::		22.1	=	-1				N	Ė	0	
11	1	1	1					==	-	=1	1-		E	Y		
11	1	1.=	1:==	Н						=1	=		T	1	ă	>
И	1.5	=	1:3	Η	3	=	===				E		Ė	-	5	
1	6		=	h		==							Т	İ	0	
11	11		1					\equiv				-1	1	Ŧ	3	5
+	-	-	1	-	::		==	=			=	=	1	Ŧ	6	-
T	11:	1 -1	031	T	-				П	=	1=	=	:		0	ā
11	1	-	· · · ·	-	:1:	7.1 T				=	-	Ė		1		Š
Ħ	-	-		-	=	====		\equiv	Ξ		=		E	T	6	9
#	1		1=	=	=		==				1=	=	1=		0	A LOCAL TRA MR. BRACKOLOGISM
İ	1.		17.5	-	-				E		臣		E		700	,
#	1	-	1=	1.:	:										×	i
	1			=	=	F		Ξ					F		0	>
1	1 -	12				Link		:			1-		1	Ĩ	ő	
-	1	1		-1	Ξ	==	1===			=	E				0	
	+	-		=						=	-		-		0	
	1-	1	17	1	1	===	1.==	-=	H	-	=		1	1		
1																

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

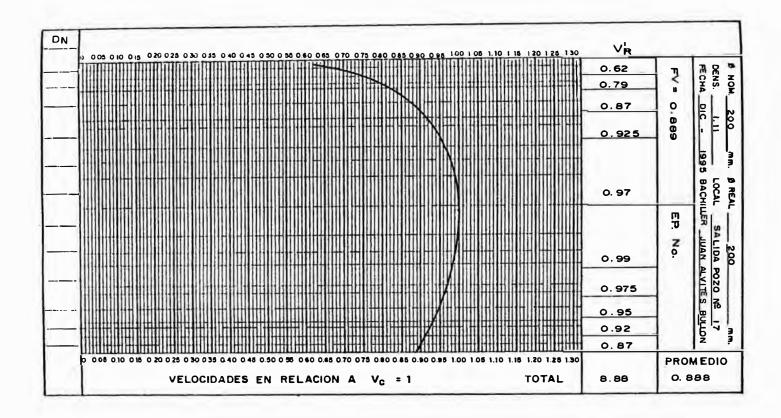
D.Nom. 20	da Pozo 13 10 mm. D. Rei	i 197 mm			20.7	
PITOT No:					83.5	
MANOMET		mm		1)		0.581
	R: Juan Alvites Bullor		VER:		1 09 .22	
Observ. :			1		76.2	
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)	=	0.588
08°51'	152	1.063	46.90		129.54	
	155	1.074	10.00		81.28	
	157	1.081		3)	A	0.501
	155	1.074		-2)	******* =	0.581
	157	1.091			139.7	
	155	1.074			93.92	
	150	1 058		4)		0.597
	157	1 081			160.02	
	152	1.063			106.69	
	157	1.091		<u>ත</u>	=	0.583
	155	1 974			192.99	
	105	1.074		V	116.94	
	157	1.061		21		0.500
	180	1 091	j	6)		0.582
	157	1.031			200.68	
	155	1.074			129.54	
	160	1.091		7)	=	0.598
	155	1.074			220.99	
	157	1.081		TOTAL	=	4.099
	157	1.081		MEDIA	=	0.584
	157	1.081				
TOTAL	İ	22.811	984.900	DENGIDAL	REAL = 1 ÷	0.584 = 1.5
PROMED.		1.077	46.90			
FV = Factor	r de Veleoidad = Nominal	0.971 0.031416	m2			
		Dreat	197			
ට්diam. = C	correccion del diametro	= (= ()2 = 0.8	7		
		Dhom.	200			
Ct = oorred	oion de la proyeccion	de la valvula de ir	noorporacion = 1.0	00		
1		Dens. Real - 1,00	0 0.584			
Cd = Corre	moion de la densidad=	•••••	= = 0). 94 7		
		Dens. Nom 1,00	03.0			
	pidad Central = 1.077	Co = 1.0	00			
Vo = Veloc S	pidad Central = 1.077 .N SC) x Cdiam . x Ct x Cd		0.0270 m 3/s	,		

ESTAC. PITOMETRICA No.

Equipo: PITOT SIMPLEX

Fecha : Diciembre 95

Hora: 9.10 A.M.


D. nom. : 200

D. cai. : 198

Liquido d = 1.11

Local : Salida Pozo 17

D (mm)	h (mm)	hc (mm)	V (m/s)	Vс (m/5)	Valores de V pars VC=1
0.95 Dn	236	470	0.587	0.801	0.71
0.9 Dn	325	465	0.666	0.796	0.54
0.8 On	396	470	0.735	0.801	0.92
0.7 Dn	432	487	0.767	0.798	0.98
0.6 Dn	452	472	0.765	0.802	0.98
0.4 Dn	465	478	0.796	0.607	0.99
0.3 Pn	460	470	0.792	0.801	0.98
0.2 Dn	446	470	0.779	0.801	0.97
0.1 Dn	409	467	0.747	0.798	0.94
0 Dn	320	485	0.661	0.796	0.83

Q = 22.31/s

Feoha: 01-03-98

ITOT No:	DENS.:	1.25	
ANOME	TRO AL	mm	
PERADO	R: Juan Alvites Bullor	CAL.:	VER:
baerv. :			
IEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)
3*30'	248	0.875	46.55
	241	0.964	
	241	0.534	
	239	0.961	
	294	0.952	
	239	0.881	
to the V	241	0.564	
	234	0.952	
	239	0.861	
	241	0.564	
	241	0.864	
	254	0.952	
	239	0.961	
	241	0 984	i
	234	0.952	
	238	0.855	İ
	239	0.961	
	231	0.848	1
-	230	0.981	
-	259	0.961	
-	236	0.855	
TOTAL	1	19.048	977.550
PROMED.		0.959	46.55
ROMED.		0.800	40.00
' = Faoto	Nominal = Corregida	0.999 0.031416	m2
		Dreat	199
liam. = (Correccion del diametro) = ()2 :	= ()2 = (
		Chon.	300
	noion de la provencion	cie la valvula de ir	noorporacion = 1
= 001Te	polou cie la bro Aconou		0 0 0 40
= 00176		Dens. Real - 1,00	0 0.243
	eccion de la densidad=	•	
		•	= =
Cd = Com	eccion de la densidad=	Sens. Nom 1,0	· = = = 00 0.25
d = Com	eccion de la densidad= cidad Central = 0.958	Sens. Nom 1,0	· = = = 00 0.25

0.026071

Estao. Pitom. No

Local: Salida Pozo 17

Prueb. No

	38.1	
1)	=	0.241
	157.48	
	40.64	
2)		0.246
	165.1	
	45.72	
3)		0.240
	190.5	
	50.9	
4)	=	0.243
	208.28	
	60.96	
୭)	=	0.247
	246.39	
	69.59	
6)	******** =	0.247
	276.96	
	78.2	
7)	-	0.243
	312.42	
TOTAL	=	1.707
MEDIA	=	0.243

ESTAC. PITO	METRICA N	io		Equipo: PITO	OT SIMPLEX
Fecha : Dio	ciem e re 95			Hora : 11.26	0
D. n o m. : 20	00	D. cai. : 20	00	Liquido d =	1.11
Local : Lie	egada RII P	ozo 3	*		
Operadores	: Juan Aivite	es Bullon			
D	n	nc	v	Vc	Valores de V pars
(mm)	(mm)	(mm)	(mys)	(m/s)	VC=1
0.95 Dn	264	432	0.905	1.157	, 0.78
0.9 En	302	429	0.958	1.153	0.84
0.8 Dn	ಚಾ	434	1.046	1.160	0.90
0.7 Dn	401	434	1.115	1.160	0.98
0.6 Dn	424	427	1.147	1.151	1.00
0.4 Dn	424	432	1.147	1.157	0.99
0.3 Dn	414	434	1.133	1.160	0.98
0.2 Dn	363	429	1.061	1.153	0.92
0.1 Dn	249	434	0.679	1.160	0.76
0.05 Dn	185	434	0.757	1.160	0.65

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

	ada R-IIA del Pozo P-	3 A		CORREC	CION DE LA D	ENSIDAD
D.Nom. 20	00 mm. D. Rea	⊒i 200 mm				
PITOT No:	DENS.:	1.11			3.7	
MANOME	TRO AL	mm		1)	*******	0.123 *
PERADO	R: Juan Alvites Bullor	CAL.:	VER.:		5.7	0.123
Obaerv. :						
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)		0.9	
10*04	460	0.792	10.15	2)	=	0.111 *
	452	0.795	10.15		7.2	
10.02,	455	0.799	10.15		0.9	
	460	0.792	10.15	3)		0.110
10"06"	465	0.796	10.15		ë.2	
	452	0.785	10.15		1.1	
1007'	460	0.792	10.15	4)		0.440
	457	0.799	10.15	,		0.118 *
10.05.	457	0.789	10.15	1	9.3	
	442	0.776	10.15		1.2	
10009	455	0.789	10.15	5)	*******	0.110
	452	0.795	10.15	i	10.9	
10*10'	485	0.796	10.15]	1.4	
	462	0.794	10.15	8)		0.114
10111	475	0.905	10.15	1 %		U.117
	487	0.798	10.15		12.3	
10°12'	457	0.799	10.15	1	1.3	
	487	0.798	10.15	7)		0.115
10"13"	470	0.901	10.15		13.9	
	472	0.802	10.15	TOTAL	=	0.560
10"14"	472	0.962	10.15	MEDIA	=	0.112
TOTAL		18.842	213.150	1	REAL = 1+	
PROMED.		0.792	10.15	JENSIDAL	THEAL - IT	0.112 = 1.11
	Nominal	0.99 0.031416	m2		ELIMINADO POR S IONANTE	SLIT
NN = Are	Comedide					
NN = Are	Corregida					
NN = Are	Corregida	Dunal	300			
		Dreal 32	200	20		
	Corregida Correccion del diametro			00		

ESTAC: PITO	METRICA N	Equipo: PITOT SIMPLEX			
Fecha : Did	nembre 95	3		Hora : 10:2	7
D. nom. : 30	0	D: cal. : 29	96	Liquido d =	1.25
LOCAI LIE	gada A-II Po	205 5 y 7			
Operadores :	Juan Alvite	s Bullan			
D	h	he	٧	Vc	de V pars
<u>(mm) !</u>	(mm).	(mm)	(m/s)	(n1/s)	VC=1
0.95 Dn	198	333	0.783	1.016	0.77
0.9 Dn	231	323	0.845	1.000	0.85
0.8 On	292	340	0.951	1.026	0.83
0.7 Dn	330	335	1.011	1.019	0.99
0.6 Dn	335	325	1.019	1.003	1.02
8 4 Cn	297	328	0.943	1.003	0.94
0.3 Dn	248	328	0.873	1.008	0.87
0.2 Dn	218	335	0.518	1.019	0.50
0.1 Dn	191	333	0.769	1.016	0.76

333

0.736

0.05 Da

175

1.016

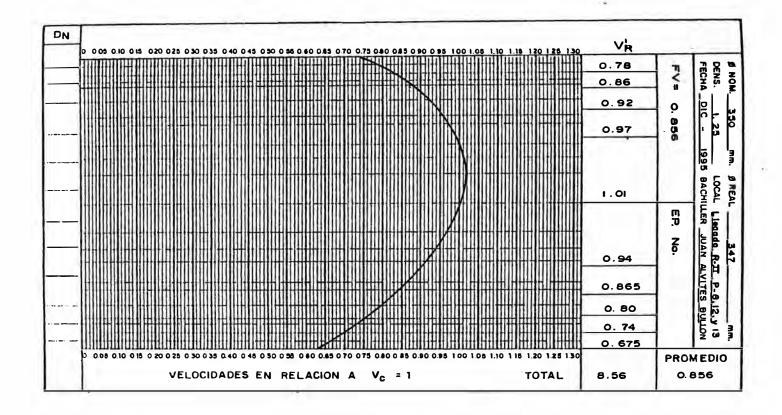
0.72

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

Estao. Pito Local: Lleg	m. No Prueb. No ada R-11A de los Pozo			COPPEC	CION DE LA DE	NEIDAD
D.Nom. 30				COHHEC	CION DE LA DE	NSIDAD
PITOT No:	DENS.:	1.80				
MANOMET	TRO AL	mm		1	2.3	
OPERADO	R: Juan Alvites Bullor	CAL:	VER.:	1 17	********	0.590
Observ. :				1	3.9	
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)		2.9	
0 8* 53'	229	1.305	10.85	2)		0.583
	229	1.305	10.≅5		4.9	
0€*54'	238	1.325	10.85]	3,2	
E .	221	1.292	10.85	3)		0.571 *
08.22,	231	1.311	10.95] ",		0.571
	229	1.305	10.25		5.6	
08.29.	226	1.297	10.85	į	3.6	
	234	1.319	10.85	4)	******* =	0.581
08*57*	229	1.305	10.95		6.2	
	254	1.375	10.85	_	4.2	
08.28.	234	1.319	10.95	5)		0.583
	234	1.319	10.85	1	7.2	
05.09	228	1.297	10.95	إ	4.9	
	239	1.333	10.85	1 2		0.674
G∋ <u>.</u> 00.	228	1.297	10.95	(8)		0.571 *
	234	1.312	10.95		3. 4	
09,01,	226	1.297	10.95	-	5.4	
	231	1.311	10.95	77)		0.575
09.05.	231	1.311	10.85	1	9.4	
771051	229	1.305	10.95	TOTAL	=	2.912
ŪĐ*03'	259	1.333		HECIA	=	0.592
TOTAL		27.570	227.850	DENSIDA	D REAL = 1 +	0.582 = 1.58
PROMED.		1.513	10.95	1		,,,,,,
FV = Factor		0.949 0.070696	m2		ELIMINADO POR S CIONANTE	ER
Cdiam. = C	¡Corregida orreccion del diametro			97		
	oion de la proyeccion coion de la densidad=	Dens. Real - 1,000	0.582	0.97 = 0.8	925	
S	oidad Central = 1.313 N SC) x Cdiam. x Ct x Cd		0.0753 m3/s	7		

Q = 75.31/s

0.05733


ESTAC PITOMETRICA NO	Equipo: PITOT SIMPLEX

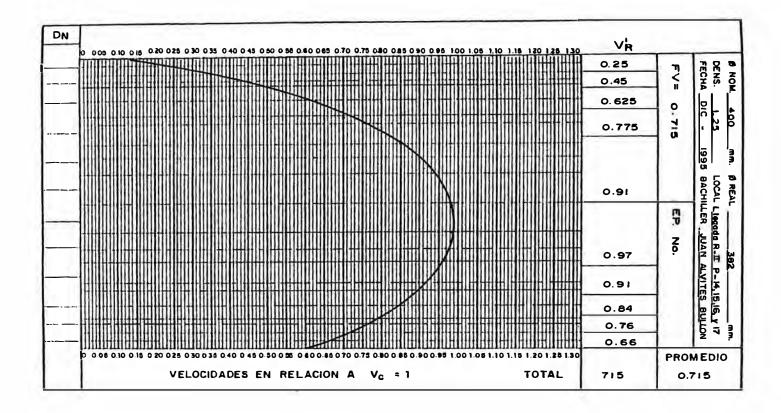
Fecha : Diciembre 95 Hora : 09:20

D. nom. : 350 D. cal. : 347 Liquido d = 1.25

Local : Llegada R-II Pozos 8, 12 y 13

					Valores
ב	h	he	٧	Vc	de V pars
(mm)	(mm)	(mm)	(m/s)	(m/s)	VC=1
0.95 Dn	175	257	0.738	0.892	0.83
0.9 Dn	201	264	0.789	0.904	0.87
C.8 On	246	257	0.873	0.892	0.98
0.7 Dn	279	277	0 930	0.926	1.00
0.6 Dn	274	262	0.921	0.901	1.02
0.4 Dn	244	262	0.869	0.901	0.96
0.3 Dn	221	264	0.827	0.904	0.91
0.2 Dn	198	272	0.783	0.918	0.85
0.1 Dn	170	257	0.725	0.592	0.61
0.05 Dn	157	264	0.897	0.904	0.77

	m. No Prueb. No pada R-IIA de Ios Pozo					-
D.Nom. 35		1 347 mm				
PITOT No:					2.3	
MANOMET				1)	=	0.590
	R: Juan Alvites Bullor	mm 	VED		3.9	
Observ. :	K: Juan Alvites Dullor	CAL.:	VER:		2.8	
IEMPO	DEEL EVION ()	V51.00 / / \	005010411	2)	=	0.583
	DEFLEXION (mm)		PRESION (m)	. 6	4.9	
09*26'	117	0.933	10.85			
03507/	124	0.960	10.95		3.2	
09*27'	119	0.941	10.95	3)	=	0.582
	122	0.953	10.55		5.5	
03,58,	117	0.935	10.95		3.8	
	119	0.241	10.85	4)		0.571 *
03,53,	114	0.921	10.95		6.3	2.271
	114	0.921	10.95			
09.30,	119	0.941	10.85		4.2	
	122	0.953	10.95	5)		0.583
09*31*	119	0.941	10.85		7.2	
	119	0.941	10.95		4.9	
O9 - 32,	117	0.933	10.95	6)		0.571 *
	119	0.941	10.85	-	9.4	AND THE ST
09*33	114	0.921	10.85			
	117	0.933	10.85		5.4	
09*34*	114	0.921	10.85	7)	=	0.574
	119	0.941	10.85	1	9.4	
09:35.	119	0.941	10.85	TOTAL	=	2.912
	122	0.953	10.95	MEDIA	=	0.592
09*36*	119	0.941	10.95	1		
TOTAL		19.704	227,850	DENSIDA	D REAL = 1+	0.082 = 1.0
FROMED.		0.959	10.85	i .	ELIMINADO POR S	
V = Factor	Nominal Corregida	0.956 0.0962115	m2	2.013.	CIONANTE	
		Dreal	347			
.a.a = €	orreccion del diametro	2nom.	350 = (9 €3		
Ct = oomeo	oion de la proyeccion :	de la valvula de ir	noorporacion = 1.	00		
		Dens. Real - 1,000				
ld = Corre	poion de la densidad=	Dens. Nom 1,0	0.600).97 = 0.9	95	
	oidad Central = 0.938	Co = 1.0	00			
S	oidad Central = 0.938 N SC) x Cdiam , x Ct x Cd		0.0749 m3/s]		


ESTAC, PITOMETRICA NO Equipo: PITOT SIMPLEX

Fecha : Diciembre 95 Hora : 09:30

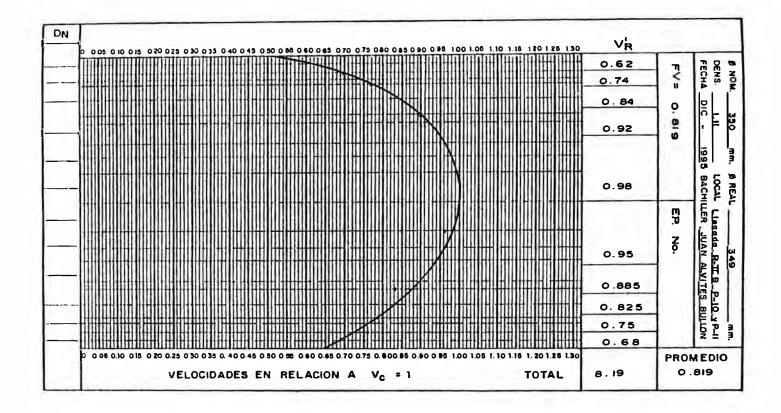
D. nom. : 400 D. cal. : 382 Liquido d = 1.25

Local : Liegada R-II Pozos 14, 15, 16 y 17

רי (mm)		h (mm)	he (mm)	V (m/s)	Vc (m/s)	Valores de V para VC=1
0.95	Dn	18	322	0.236	0.999	0.24
0.9	<u> En</u>	64	325	0.445	/ 1.004	0.44
3.0	On	162	328	0.709	1.008	0.70
0.7	Dn	234	(325	0.852	1.004	0.85
0.6	On	295	330	0.956	1.011	0.95
0.4	Dn	325	336	1.004	1.024	0.98
0.3	Dn	297	325	0.960	1.004	0.95
0.2	Du	254	330	0.887	1.011	C.38
0.1	Dn	196	325	0.760	1.004	0.78
0.05	Dn	172	330	0.780	1.011	0.72

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

D.Nom. mm. D. Real mm		ada A-II Pozos 14. 15.		3-96			
DENS.: 1,80	D.Nom.					55 60	
MANOMETRO AL mm 93.96	PITOT No:	DENS,:	1.80		• • •		0.504
DEFAIDOR: Juan Alvites Bullon CAL: VER:	MANOMET	TRO AL	mm		1)		0.084
DBSEV. V.IT certado fotal DBSEV. V.IT certado fotal DBSEV. V.IT certado fotal DBSEV. V.IT certado fotal DBSEV. DBSEV. V.IT certado fotal DBSEV. DBSE	OPERADO	R: Juan Alvites Bulion	CAL:	VER.:			
116.94 116.95 116.95 116.94 116.95 116.94 116.95 1						68.58	
165	TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)	=	0.588
165						116.94	
168		165				79.74	
168		188		10.85	3)		0.594
169		189	1.118	10.95	-/		0.004
183		163	1.101	10.95			
185 0.715 10.85 152.4 165 1.108 10.85 199.06 165 1.108 10.85 199.06 165 1.109 10.85 170.18 170.18 167 1.091 10.85 170.18 114.3 183 1.101 10.85 195.59 195.59 124.46 165 0.715 10.85 124.46 163 1.101 10.85 124.46 163 1.101 10.85 124.46 163 1.101 10.85 124.46 163 1.101 10.85 124.46 163 1.101 10.85 163 1.101 10.85 10.85 10.85 1.101 10.85 10.85 10.85 1.101 10.85 10.85 1.101 10.85 10.85 1.101 10.85 10.85 1.101 10.85 10.85 1.101 10.85 1		183	1.101			88.9	
185		185	0.715	10.95	4)	=	0.583
165						152.4	
165		165	1.102	-		99.06	
160				-	5)	=	0.582
157							
163							
160				10.95			
157					(6)		0.584
185		157	1.081			195.59	
163				10.95		124.48	
183					7)		0.523
183		160	1.091	10.85	1	213.36	
160	100		1.101	10.95	TOTAL	_	4.096
165			-				
TOTAL 22.304 227.850 FROMED. 1.062 10.85 FV = Factor de Velocidad = 0.715 Nominal		163	1.101	10.85			
Nominal	TOTAL		22,304	227,850	DENSIDA	ID REAL = 1+	0.525 = 1.58
Nominal Nominal NN = Area = 0.12566 m2 Corregida Creal 592 Cdiam. = Correction del diametro = (1		i		
Section Sect	FV = Factor 2NN = Are:	htominal =		m2			
Ediam. = Correccion del diametro = (i oon canon		E			
Ediam. = Correccion del diametro = (Crest	392			
	Cdiam. = C	orreggion del diametro		4.5) 1		
2.00.00			_		, i		
Ct = correccion de la proyeccion de la valvula de incorporacion =	Ct = oomeo	•	Sept. Seel . 1.000	0 0.595			
•	Ct = oorreo						
Dens. Real - 1,000 0.595		ooion de la denadad=		= = 0	0.975 = 0.9	987	
Dens. Real - 1,000 0.595		poion de la denadad=),975 = 0.9	997	
Dens. Real - 1,000 0.595 Od = Correccion de la densidad== = 0.975 = 0.997 Dens. Nom 1,000 0.600		poion de la denadad=	Dens. Nom 1,00	0.800).975 = 0.º	9 87	
Dens. Real - 1,000 0.595 Od = Correccion de la densidad=	Cd = Corre Vo = Veloc	oidad Central = 1.062	Dens. Nom 1.00	0.800),975 = 0.º	9 87	
Dens. Real - 1,000 0.595 Cd = Correccion de la densidad=	Cd = Corre Vo = Veloc S	oidad Gentral = 1.062 N	Dens. Nom 1,00	00 0.600 00),975 = 0.º	9 87	
Dens. Real - 1,000 0.595 Od = Correccion de la densidad=	Cd = Corre Vo = Veloc S	oidad Gentral = 1.062 N	Dens. Nom 1,00	00 0.600 00).975 = 0.º	9 97	


ESTAC PITOMETRICA No Equipo: PITOT SIMPLEX

Fecha : Diciembre 95 Hora : 09:25

D. nom. : 350 D. cal. : 349 Liquido d = 1.11

Local : Liegada R-II Pozos 10 y 11

					Valores
D	h	ho	V	Vc	de V para
(mm)	(mm)	(mm)	(m/s)	(m/s)	VC=1
0.95 Dn	142	290	0.440	0.828	0.70
0.9 Dn	168	282	0.478	0.620	0.77
0.8 On	234	290	0.564	0.628	0.90
0.7 Dn	279	295	0.616	0.634	0.97
0.6 Dn	297	295	0.636	0.834	1.00
0.4 Dn	274	300	0.611	0.639	0.96
0.3 Dn	234	300 ,	0.564	0.639	0.88
0.2 Dn	195	290	0.519	0.628	0.83
0.1 © n	183	290	0.499	0.628	0.79
0.05 Dn	168	290	0.478	0.628	0.76

Estao. Pitom			3-00				
	da R-IIA de los Po						
D.Nom. 350	mm. D. R	eai 349 mm			15.24		
PITOT No:	DENS.	: 1.11		1)		=	0.115
MANOMET	RO AL	mm +			132.08		
OPERADOR	: Juan Alvites Bull	on CAL:	VER:	i	20.32		
Observ. :							
TIEMPO I	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)	********	=	0.116
11*06	58 4	0.724	11.90		175.28		
	971	0.711	11.90		22.96		
11*07"	376	0.718	11.90	3)		o =	0.114
	391	0.721	11.90		200.€€		
11,08,	373	0.713	11.90		27.94		
	381	0.721	11.90				0.110
11"03"	271	0.711	11.90	4)	*********		0.118
	378	0.718	11.90	!	241.3		
11"10"	384	0.724	11.90		30.49		
	373	0.713	11.90	5)		=	0.110
11"11"	369	0.708	11.90	}	276.86		
	368	0.708	11.90	1	39.1		
11*12'	379	0.718	11.90	8)			0.122 *
	371	0.711	11.90). O			U. IEE
11"13"	384	0.724	11.90	1	312.42		
	368	0.709	11 90]	40.84		
11*14'	379	0.719	11.90	7)		=	0.115
	371	0.711	11.90	1	353. 0 8		
11"15"	366	0.708	11.90	TOTAL		=	0.696
	563	0.704	11.90	MEDIA		=	0.114
11"18"	373	0.713	11.90	DENSIDA	D DEAL		
TOTAL		15.001	249.900	DENGIDA	U NEAL	I T	U.117 =
PROMED.		0.714	11.90	• VALOR	=: :4 ::5 : 5 :		
FV = Factor SNN = Area	de Velocidad = Nominal	0.919	m2	21010111	CIONANTI	-	
Cdiam. = Co	preccion del diamen	Oreal	349 = ()2 = 0.0 350	9 9			
	ion de la proyeccio cion de la densidad	ିଲୀରେ ନିଲ୍ଲା - 1,000	0 0.114	0.036 = 1.0	វាខ្		
Vo = Velopio	dad Central = 0.71						
SN				_			
	C) x Cdiam x Ct x C		0.0567 m3/s	1			

ESTAC. PITOMETRICA NO

Equipo: PITOT SIMPLEX

recna : Diciembre 95

Hora : 15:20

D. nom. : 200

D. cal. :

Local : Salida A-II a Laderas, Los Pinos, 2 de Junio

Liquido d = 1.60

Operadores	: Juan Alvite	es Bullon			
D (mm)	h (mm)	he (Fom)	V (m/s)	Vc (m/s)	Valores de V para VC=1
Dn	508	719	1.944	2.313	0.84
0.9 Dn	589	711	2.093	2.300	0.91
0.8 Dn	635	716	2.174	2,308	0.94
0.7 Dn	ee e	711	2.229	2.300	0.97
0.6 Dn	699	714	2.281	2.305	0.59
0.4 Dn	716	716	2.308	2.308	1.00
0.3 Dn	686	711	2.263	2.300	0.98
0.2 Dn	673	709	2.238	2.297	0.97
0.1 Dn	635	716	2.174	2.308	0.94
0.05 Dn	597	718	2.108	2.308	0.91

1	*	٠ -		٥.	918				EP.	No). 	_	_				PROMEDIO	
	815	928		0.89	0.93			0.97			0.995		0.00	0.95	0	9		
526 ON G.M. GJO 025 G30 G39 G 40 G48 G30 G48 G43 G73 G73 G37 G30 G30 G30 G30 G30 G30 G30 G30 G30 G30	H	1	-		T'	T		===			=				i		OC 81 0 1 10 1 10 1 10 1 10 1 10 1 10 1 1	
1	T	+	+	=	-	1	-		-31		Ξ				I	Ħ	=======================================	
1	+	1	-	-	12	1	1.		====	=	=		=	E	H		2	
1	T	İ			1-	-	14:	-		11		= ;	=	E	ľ	1		
1	1	T			15	1	-	27.2	Ţ	=		=	=	1	П		18	
	Ţ	1	-	.:.	1.5	1	12-	<u> </u>	ill=	=	-	=	-	=	ŀ	=	2	
1		Ī		i	1 5	P	7	est e	==	==	11	/	=	Ī			=	
	Ţ			1		-	1-	æ.		=:	÷			1	¥		9	
			7		1 3		1	7.7.	25.5	÷	-	=		H	$\ $		0	
	V	li	٠.		j-		17	-	===	=	Ξ.			=	1		000	
3	1	П	. 5	5	=	:	-	-==	===	=	4		E	IĘ		+	30	
0	1.	I	.:	5.	13		=	-=	===	=	Ē		=	E		=	0 0	
0	1	П	:	. 0	15.		-	-=-	T-	12	=	=	=				9	
0	·	П	Γ	E	7		-1-	7	1	F	=	==	Ē	Ė	1	t	2	
2	1.	Ţ	-			-	100	=		Ξ	=	\equiv	13	1	1		H	
8	Π	П	-	12			7			Ξ	1-	=	-	1	Ш		l s	
			1	1:	1		3	-	14	E	÷		: =		Ц			
8	1		1	3	1:	-	=	====	1	E	Ē		=	E				ě
0	L	L		1=	11:					E	E				H		E S	
9	Ĺ		1	=	117	= -	- =	1	1		E	1	E				T S	-
9			Ė	1			1	117	125	135	E	=	ΙĘ	+			H:	
2	Į			1				Th:	1:-	=	1	=		1			1 0	
0	П	T			TI.				1	=	-	=					LI:	
9	П	T	1	1	T	1	. 2	==	1 ==			=	. 3	1			1 9	
9	T	T		T	1	-		155	4.55		1			-		-	H:	
0	IT	1	11	1	IT		10		130	1		5.50	1		-		1 0	

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

D.Nom. 200 mm. D. Real 188 mm	Estas. Pitom. I	Vo Prueb.	No Feoha: 12-0	4-96	CORREC	CION DE	LA DENSIDA
PITOT No: DENS: 13:58 MANOMETRO: AL mm OPERADOR: Juan Alvitee Bullon CAL:: VER: Observ.: TIEMPO DEFLEXION (mm) VELOC. (m/e) PRESION (m) 5°14' SO 2.184 21.70 30 2.164 21.70 30 2.164 21.04 30 2.164 21.07 30 2.164 21.01 30 2.164 21		Reservorio Lader	28				
MANOMETRO: AL mm OPERADOR: Juan Alvites Bullon CAL.: VER.: Observ.: TIEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) 6*14' S0 2.164 21.70 30 2.164 21.70 30 2.164 21.04 30 2.164 21.01 30	D.Nom. 200	mm. D. A	leal 198 mm				
MANOMETRO: AL mm OPERADOR: Juan Alvites Bullon CAL: VER: Observ: TIEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) 5°14' S0 2.164 21.70 50 2.164 21.70 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.01 50	PITOT No:	DENS	: 13.58		1)		=
Observ.: TIEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) 2) = 5°14' 30 2.164 21.70 3) = 30 2.164 21.70 3) = = 23 2.090 21.04 21.70 3) = = 23 2.090 21.04 21	MANOMETRO	: AL	mm				
TIEMPO DEFLEXION (mm) VELOC. (m/e) PRESION (m) 6*14' \$0 2.164 21.70 30 2.164 21.70 30 2.164 21.70 30 2.164 21.70 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 50 2.164 21.04 6) = 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.00 30 2.164 21.00 30 2.164 21.00 30 2.164 21.00 30 2.164 21.00 30 2.164 21.00 30 2.164 21.01 50	OPERADOR:	luan Alvites Bull	on CAL.: V	ER.:			
STATE SO 2.164 21.70 30 2.164 21.70 30 2.164 21.70 30 2.164 21.70 30 2.164 21.70 30 2.164 21.04 40 =	Observ. :		- W				
SQ 2.164 21.70 3) =	TIEMPO D	EFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)	********	=
30	6*14'	30	2.164	21.70			
29 2.090 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.01		30	2.164	21.70			
30		50	2.184	21.70	3)		=
30 2.164 21.04 4) = 30 2.164 21.04 4) = 30 2.164 21.04 5) = 30 2.164 21.04 5) = 30 2.164 21.04 5) = 30 2.164 21.04 5) = 30 2.164 21.04 5) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.04 6) = 30 2.164 21.01 7) = 30 2.164 21.01 7) = 30 2.164 21.01 7) = 30 2.164 21.01 7) = 30 2.164 21.01 7) = 30 2.164 21.01 7) = 30 2.164 21.01 7) = 30 2.164 21.01 70 = 30 2.1		28	2.090	21.04			
30 2.164 21.04 4) = 30 2.164 21.04 21.04 21.04 21.04 21.04 29 2.090 21.04 5) = 30 2.164 21.01 20 2.164 21.01 20 2.1		30	2.164	21.04			
30 2.164 21.04 30 2.164 21.04 29 2.090 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.01 30 30 2.164 21.01 30 30 30 30 30 30 30 30 30 30 30 30 30 3		30	2.184	21.04	-1)		
30 2.164 21.04 5) =		30	2.164	21.04	4)	********	=
29 2.090 21.04 5) = = = = = = = = = = = = = = = = = =		30	2.164	21.04			
30		50	2.164	21.04			
30 2.184 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 TOTAL = TOTAL 45.222 443.84 PROMED. 2.153 21.125 FV = Factor de Velocidad = 0.919 Nominal		29	2.090	21.04	5)		=
30 2.164 21.04 30 2.164 21.04 30 2.164 21.04 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 30 2.164 21.01 30 30 30 30 30 30 30 30 30 30 30 30 30 3		30	2.164	21.04			
30 2.164 21.04 30 2.164 21.04 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 30 30 30 30 30 30 30 30 30 30 30 30 3		30	2.184	21.04			4
30 2.164 21.04 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 30 2.164 21.01 TOTAL = MEDIA = DENSIDAD REAL = 1 + TOTAL 45.222 443.84 FROMED. 2.153 21.125 FV = Factor de Velocidad = 0.919 Nominal	1	30	2.164	21.04	a)		_
30 2.184 21.01 7) = 30 2.164 21.01 7) = 28 2.090 21.01 TOTAL = 30 2.164 21.01 MEDIA = 30 2.164 21.01 MEDIA = 30 2.164 21.01 DENSIDAD REAL = 1 + TOTAL 45.222 443.84 PROMED. 2.153 21.125		30	2.164	21.04	۵/	220703000	_
30 2.164 21.01 7) =		30	2.164	21.04			
28 2.090 21.01 30 2.184 21.01 30 2.184 21.01 MEDIA = 30 2.184 21.01 TOTAL 45.222 443.84 PROMED. 2.153 21.125 FV = Factor de Velocidad = 0.919 Nominal Nominal = 0.031416 m2		30	2.184	21.01			
30 2.184 21.01 TOTAL = 30 2.164 21.01 MEDIA = 50 2.164 21.01 MEDIA = 50 2.164 21.01 DENSIDAD REAL = 1 + 50 2.153 21.125 FV = Factor de Velocidad = 0.919 Nominal		50	2.164	21.01	7)	*******	=
30 2.164 21.01 MEDIA = 50 2.164 21.01 DENSIDAD REAL = 1 + TOTAL 45.222 443.84 PROMED. 2.153 21.125 TOTAL 2.153 TOTAL 2.153 21.125 TOTAL 2.153 21.125 TOTAL 2.153 21.125 TOTAL 2.153 21.125 TOTAL 2.153 2.153 TOTAL 2.153 TOTA		28	2.090	21.01			
30 2.184 21.01 DENSIDAD REAL = 1 +		30	2.184	21.01	TOTAL		=
SO 2.184 21.01 DENSIDAD REAL = 1 +		30	2.164	21.01	MEDIA		_
TOTAL 45.222 443.84 PROMED. 2.153 21.125 EV = Factor de Velocidad = 0.919 Nominal		30	2.184	21.01		O SEAL	- 1 -
FV = Factor de Velocidad = 0.919 Nominal SNN = Area = 0.031416 m2	TOTAL		45.222	443.84	DENSIDA	IL IILAL	- 17
Nominal	PROMED.		2.153	21.125	i		
VIII 2 C - 1 (2) - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	FROMED.	· Velooidad =	45.222 2.153	443.84	DENSIDA	D REAL	= 1+
	1000 - 100 - 100 M	= Conregida	0.031416	m2			
Dreat 199			Drest	199			
Odiam. = Correccion del ciametro = ()2 = ()2 = 0.98	Cdiam. = Corre	eooion del diame	ro = ()2 =	= ()2 = 0.9	3 8		
Dnom. 200			Dnom.	200			

stao. Pitom.	No Prueb. f	lo Feoha: 12-04	-98	1	CION DE LA DENSI
.ooal: Salida i	Reservorio Ladera	*		1	
).Nom. 200	mm. D. Re	mm 841 Les		1	
PITOT No:	DENS.:	13.58		1)	=
MANOMETRO		mm		1	
OPERADOR:	Juan Alvites Bullo		ER.:	1	
Observ. :		· · · · · · · · · · · · · · · · · · ·		2)	
	EFLEXION (mm)	VELOC. (m/s)	PRESION (m)	**	-
6*35'	28	2.090	20.30	1	
	30	2.164	20.31	1	
1	30	2.184	20.31	(3)	*******
	30	2.164	20.31	1	
	30	2.164	20.31	1	
- 1	30	2.184	20.31	(4)	=
	30	2.164	20.31	1 "	
	30	2.164	20.31	1	
-		2.164	-14		
	30	2.164	20.30	5	=
	30	2.209	20.30		
	50	2.184	20.30	1	
-	30	2.164	20.30	1 0)	
	30	2.164	20.30		
		1	20.23	1	
	30	2.164	20.23	1	
-	30 33	2.269	20.23	1 7)	
		-		i	
	30	2.164	20.23	TOTAL	=
	30	2.184	20.23	MEDIA	=
	33	2.269	20.23	DENSIDA	D REAL = 1+
	50.	2.164	20.23	1	
TOTAL		45.625	425.88	-	
PROMED.		2.175	20.280	1	
PROMED. V = Factor d	e Velopidad = Nominal =	0.919 0.031418	20.290 m2		
ķ	Corregida				
		Ereal	199		
Odiam. = Com	eooion del ciamen	0 = ()2 =	(······ /2 = 0.	92	
		Doom.	200		
St = oorrecoio	n de la proyeccion	de la valvula de in	porporacion = 1.	90	
	,	Dens. Real - 1,000			
Cd = Correcci	on de la densidad:	=	= =	1.00	
		Dens. Nom 1,00			
Vo = Velocida	ad Central = 2.17	5 m/s Co = 1	.00		
40 - 450015 3N	முடிப்பார் வி	- 417-5			
	x Cdiam x Ct x C	ta (Ca) v Va =	0.0814 m 3/s	7	
<u> </u>	A Selection & State	2 A 100/ X VU -		_	
v = 1	0.02928	3	Q = 81.4 lt/s		
K = 1	0.02020				

PITOT No: MANOMETRO: OPERADOR: Just Observ.:	DENS.: AL Alvites Bullon EXION (mm)	13.58 mm	ER.:	1)	********	=
PITOT No: MANOMETRO: DPERADOR: Jum Dbserv.: ILEMPO DEFI	DENS.: AL n Alvites Bullor LEXION (mm)	13.58 mm CAL: \	ER.:	t)	*******	=
PITOT No: MANOMETRO: DPERADOR: Jum Dbserv.: ILEMPO DEFI	DENS.: AL n Alvites Bullor LEXION (mm)	13.58 mm CAL: \	ÆR.:	1)	*******	=
MANOMETRO: DPERADOR: Juan Dbaerv.: TIEMPO DEFI	AL n Alvites Bullon LEXION (mm)	mm CAL: \	ER.:			
Observ. : TIEMPO DEFI	Alvites Bullon	CAL: \	ER.:			
Observ. : NEMPO DEFI	EXION (mm)					
TIEMPO DEFI		VELOC (- (-)		21		
		VELUG. (M/A)	PRESION (m)	2)	********	=
	28	2.090	18.55			
	30	2.164	19.55			
	30	2.184	18.55	3)		=
	30	2.164	18.55			
	30	2.164	19.55			
	30	2.184	18.55	4)	.000000	
	30	2.164	19.55	47	********	-
	28	2.090	18.55			
	30	2.184	18.55			
	30	2.164	19.55	5)	*********	=
	30	2.164	18.55			
	30	2.164	18.55			
	30	2.164		8)	*******	_
	30		18.55	0)		-
	28	2.164	19.55			
+	30	2.184	18.55			
	30	2.164	19.55	7)	********	=
	30	2.184	18.55	TOTAL		=
	30	2.184	18.55	MEDIA		=
	50	2.164	19.20	DENSIDAD	REAL	
	30			DENSIDAD	IILAL	- , -
			-			
FROMED.		2.153	18.510			
TOTAL PROMED. V = Factor de V Non	VIII.	2.184 40.7222 2.103 0.919	18.20 388.95 18.510	DENSIDAD	neal :	= ; +
Corr	egida					
		Drest	198			
Odiam. = Correcci	on del diametro	= (: ()2 = 0.9	2		
	÷	©nom.	200			

	a Reservorio Ladera		7-80	CORREC	CION DE LA DENSI
.Nom. 200				90711120	POIGH DE EN DENOIS
ITOT No:	DENS.:				
DEDADO		mm	VED.	1)	=
	R: Juan Alvites Bullo	on CAL:	VER.:		
baerv. :	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)		
7"15"	30	2.184		2)	=
7 10			19.25		
	30	2.164			
	30	2.164	19.25	6 5	
				3)	=
	30	2.164	19.25		
	30	2.164	19.25		
		+		4)	
	30	2.164	19.25		
	30	2.164	18.90		
	30	2.164	19.90	5)	22.00
	30	2.164	19.90		=
	30	2.164	18.90		
	30	2.164	18.90		
	29	2.090	19.90	8)	
	30	2.164	18.90		
	30	2.184	19.90		
	50	2.164	19.90	7)	
2	30	2.164	16.90	,	7//(CO =
	30	2.184	18.90		
	28	2.090	19.90	TOTAL	=
	30	2.164	18.90	MEDIA	=
TOTAL		45.298	399.70	DENSIDA	D REAL = 1+
FROMED.		2.157	19.030		
V = Factor NN = Area	Nominal =	0.919 0.031416			
	100eg.da	Dreal	199		
idiam. = C	orrecoion dei diamen			B	X
		Dnom.	200		
t = oorreo	oion de la proyeccion	ade la valvula de in Dens. Real - 1,00		0	
d = Corre	poion de la densidad	=	= = 1	.00	
		Cens. Nom 1,0	00		
			4.00		
/o = Veloc	idad Central = 2.15	7 m/s Co = 1	1.00		
31			0.0809 m3/s	l	

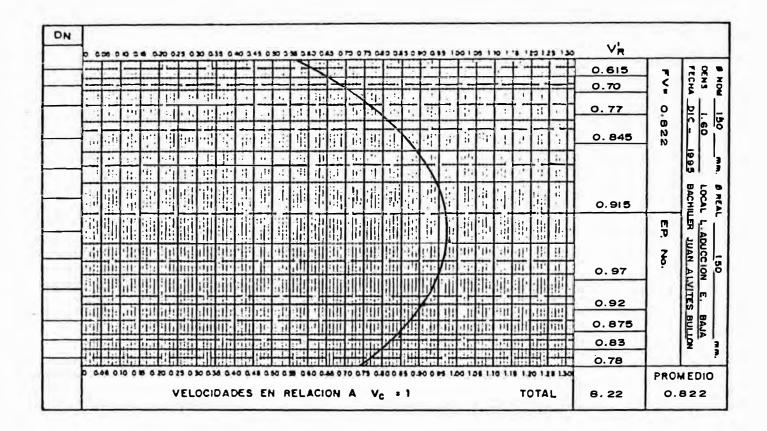
1 7 1 1						
	a Reservorio Laderas			CORREC	CION DE LA DENS	IDA
D.Nom. 200						
PITOT No:	DENS.: 1	3.58				
MANOMET		mm		1)	=	
	R: Juan Alvites Bullon	CAL.:	VER:			
Observ. :			125			
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	-	2)		
7"55"	30	2.184	17.85	2)		
	30	2.164	17.95			
	30	2.164	17.85			
	30	2.164	17.95	3)	=	
	30	2.184	17.95			
	30	2.164	17.65			
	29	2.090	17.95	-11.	Long-April	
	30	2.164	17.85	4)		
ĺ	30	2.184	17.85			
	30	2.164	17.95			
	30	2.164	17.85	5)	=	
	30	2.184	17.85			
	30	2.184	17.85			
	30	2.164	17.85	as.	150.000	
	30	2.1 84	17.50	6)		
	30	2.184	17.50			
	30	2.164	17.50			
	28	2.090	17.50	7)	=	
	30	2.164	17.50			
	50	2.164	17.50	TOTAL	=	
	30	2.164	17.50	MEDIA	_	
TOTAL		45.296	372.40			
PROMED.		2.157	17.730	DENSIDA	D REAL = 1+	
TV = Factor INN = Area		0.919				
	Corregida	Drest	199			
Odiam. = Co	orreccion del diametro	= ()2 Dnom	= ()2 = 0.9 200	8		
Ct = oorreod	oion de la proyeccion (de la valvula de i Dens. Real - 1,00	<u>_</u>	0		
Od = Correc	ooion de la densidad=	Dens. Nom 1.0		.00		
ioc l≘V = o V 18	idad Central = 2.157	m/s Co =	1.00			
	· (C) x Cdiam. x Ct x Cd	x (Co) x Vo =	0.0809 m3/s			

	m. No Prueb. No la Reservorio Laderas		1-60	CORREC	CION DE LA DE
D.Nom. 200					
PITOT No:	DENS.: 1				
MANOMET		mm		1)	
	R: Juan Alvites Bullon	CAL:	VER.:		
bserv. :	DEFLEXION (mm)	VELOO (- ()	Labraion		
TIEMPO			PRESION (m)	2)	=
ã * 55′	30	2.164	19.60		
	30	2.164	19.60		
-	30	2.164	19.60	3)	-
	30	2.164	19.60	٠,	31111111111
	50	2.164	19.60		
	30	2.164	19.60		
	30	2.164	19.60	4)	=
,	30	2.164	19.60		
	30	2.184	19.60		
	30	2.164	19.60	5)	=
	30	2.164	19.60	٠,	
	30	2.164	19.53		
	30	2.164	19.53		
	30	2.164	19.53	6)	
	30	2.164	19.53		
	30	2.164	19.53		
	30	2.164	19.53	7)	
	30	2.164	19,53		
	30	2.184	19.53		
	i 30	2.164	19.53	TOTAL	=
	30	2.164	19.53	MEDIA	=
TOTAL		45 444	410.90	DENSIDA	AD REAL = 1+
ROMED.		2.164	19.560		
ROMED.	de Velocidad =		19.560	BENGIDA	
	Corregida	2.00			
		Evest	199		
, a i am . = C	orreccion dei diametro	2nom.	= ()2 = 0.8 200) <u>e</u>	
Ot = conrect	oion de la proyeccion d	de la valvula de li Dens. Real - 1,00		00	
Od = Correc	ooion de la densidad=		= = 1	.00	
		Dens. Nom 1,0	~		
/o = Velco	idad Central = 2.164	m/s Co = 1	1.00		
	N				
SI	-				
	SC) x Cdiam x Ct x Cd	х (Co) х Vo =	0.0611 m3/s	I	

Contraction Contraction	D.Nom. 200 PITOT No: MANOMETRO: DPERADOR: Ju Dbserv.: TIEMPO DEF	mm. D. Rea DENS.: 1	i 198 mm				
Denomination Deno	PITOT No: MANOMETRO: DPERADOR: Ju Dbserv.:	DENS.:					
MANOMETRO: Juan Alvites Bullon CAL: VER: Decary: Depart De	MANOMETRO: DPERADOR: Ju Dbserv. : TIEMPO DEF	AL					
Description Description	DPERADOR: Ju Observ. : FIEMPO DEF						
Diserv. TIEMPO DEFLEXION (mm) VELOC. (m/o) PRESION (m) 2 2 2 2 2 2 2 2 2	Observ. : FIEMPO DEF			(=D	1)	********	=
TIEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) \$215' \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.45 \$30 \$2.164 \$16.10 \$30 \$2.164 \$16.10 \$40 \$28 \$2.090 \$16.10 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.50 \$30 \$2.164 \$17.50 \$30 \$2.164 \$17.50 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$17.15 \$30 \$2.164 \$16.80 \$100 \$	TIEMPO DEI	an Alvites Bullon	CAL: \	EH:			
### STIST SQ	+	TIEVION ()	VELOO (/)	000000			
30	8-10.			-	2)		=
28			-				
30 2.164 16.45 30 2.164 16.45 30 2.164 16.10 30 2.164 16.10 30 2.164 16.10 30 2.164 16.10 30 2.164 16.10 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 16.80 30 2.164 17.15 30 2.164 16.80 30 2.1							
30 2.164 16.45 30 2.164 18.10 4) = 29 2.080 16.10 4) = 29 2.080 16.10 4) = 29 2.080 16.10 4) = 29 2.080 16.10 4) = 29 2.080 16.10 4) = 29 2.080 2.164 17.15 5) = 30 2.164 17.15 5) = 30 2.164 17.15 5) = 30 2.164 17.50 6) = 30 2.164 17.50 6) = 30 2.164 17.15 50 2.164 17.15 7) = 30 2.164 17.15 7) = 30 2.164 17.15 7) = 30 2.164 17.15 7) = 30 2.164 16.80 MEDIA = 30 2.164 16.80 MEDIA = 45.298 352.80 DENSIDAD REAL 1 + 45.298 352.80 DENSIDAD REAL 1 + 45.298 20.298 DENSIDAD REAL 1 + 45.298 20.298 DENSIDAD REAL 1 + 45.298 DENSIDAD REAL 2 + 45.298 DENSIDA					6)		
30 2.184 16.10 30 2.184 16.10 29 2.090 16.10 30 2.184 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.50 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 17.15 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 2.164 16.80 30 30 2.164 16.80 30 30 30 30 30 30 30 30 30 30 30 30 30 3					3)	*********	=
30							
28 2.090 18.10 30 3.184 18.10 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 17.50 6) = 30 2.184 17.50 6) = 30 2.184 17.50 6) = 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 17.15 30 2.184 18.80 TOTAL = 30 2.184 18.80 MEDIA = TOTAL 45.296 332.80 DENSIDAD REAL 1 + FROMED. 2.167 18.600 DENSIDAD REAL 1 + FROMED. 2.167 18.600 DENSIDAD REAL 1 + ENDIR 200 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 1,000 Dens. Real 2,157 m/s Co 1,000 Dens. Nom. 1,000 Dens. Dens. Nom. 1,000 Dens. Dens. Nom. 1,000 Dens. Dens. Dens.				18.10			
SO 2.184 18.10				16.10	4)		=
SO 2.184 17.15 SO SO SO SO SO SO SO S		29	2.090	16.10			
30		30					
30					5	22200000	_
30			2.164 .				-
30		30	2.164	17.15			
SO 2.164 17.50 30 2.184 17.15 30 2.164 17.15 7) = 30 2.164 17.15 7) = 30 2.164 17.15 30 2.164 16.90 TOTAL = 30 2.164 16.90 MEDIA = TOTAL 45.298 352.50 DENSIDAD REAL 1 + PROMED. 2.197 16.900 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL 1 + PROMED. 2.197 DENSIDAD REAL		30	2.164	17.50			
30		30	2.164	17.50	6)		=
SO 2.164 17.15 7)		30	2.164	17.50			
30		30	2.184	17.15			
30		50	2.164	17.15	7)		_
SO 2.164 16.90 TOTAL =		30	2.164	17.15			-
30 2.164 16.80 MEDIA		30	2.164	17.15			
## TOTAL 45.298 352.90 DENSIDAD REAL = 1 + PROMED. 2.157 16.900 ## FROMED. 2.157 16.900 ## PROMED. 16.900 ## PROMED. 2.157 16.		30	2.164	18.90	TOTAL		=
FROMED. 2.157 16.900 FV = Factor de Velcoidad = 0.919 Nominal		30	2.164	16.90	MEDIA		=
FV = Factor de Velocidad = 0.919 Nominal	TOTAL		45, 296	352.90	DENSIDAD	REAL :	= 1 +
NN = Area = 0.031416 m2 Corregida	PROMED.		2.157	16.900	tr		
NN = Area = 0.031416 m2 Corregida Dreal 199 Correction del diametro = (PROMED. V = Factor de	30 Yelooidad =	2.164 45.296 2.157	16.90 352.90	MEDIA) REAL =	=
Corregida Dreal 199 Cdiam. = Correccion del diametro = (,		0.031416	m2			
Dreal 199 Cdiam. = Correccion del diametro = (rregida					
Cdiam. = Correccion del diametro = (\$77			E			
Dhom. 200 Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00 Etens. Real - 1,000 Cd = Correccion de la densidad = = = = = = = = = = = = = = = = = =			Drest	199			
Dhom. 200 Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00 Etens. Real - 1,000 Cd = Correccion de la densidad = = = = = = = = = = = = = = = = = =	odism. = Comeo	oion del diametro	= (= ()2 = 0.9	le		
Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00 Elens. Real - 1,000 Cd = Correccion de la densidad = = = = = = = = = = = = = = = = = =							
Dens. Real - 1,000							
Dens. Real - 1,000	St = oorreggion :	de la proveocion (de la valvula de in	oorporacion = 10	X O		
Cd = Correspion de la densidad = = = = 1,00 Dens. Nom 1,000 Vo = Velopidad Central = 2,157 m/s					· -		
Dens. Nom 1,000 Vo = Velooidad Central = 2.157 m/s	Cd = Correspice	de la densidade			. 00		
Vo = Velooidad Central = 2.157 m/s Co = 1.00	on = delication	. 다른 i의 다른 (의 다리다는			_		
SN			Della, Nont. * 1,0				
SN		.	0	. 00			
		Central = 2.157	m/s Co = 1	i.UU.			4.0
$Q = FV \times (SC) \times Cdiam. \times Ct \times Cd \times (Co) \times Vo = \underbrace{1 \cup 0.0008 \text{ m} 3/s}_{\text{Co}}$				0.0000 00	1		
	$Q = FV \times (SC) \times$	Cdiam. x Ct x Cd	ж (Са) ж Vo =	0. 0008 m3/s	1		

ESTAC, PITOMETRICA NO Equipo: PITOT SIMPLEX : Diciembre 95 Fecha Hora : 14:32 D. nom. : 150 D. CBI. : 150 Liquido d = 1.25LOCS : Salida R-II Santa Cruz Operadores : Juan Alvites Bullon Valores \Box h he ν Vc de V para VC=1 (mm) (mm) (mnn)(m/5)(M/S) 97 <u>On</u> 158 0.548 0.763 0.72 0.9 Dn 104 0.568 0.74 191 0.770 127 185 0.627 0.757 0.83 0.8 Dn 0.875 0.763 0.7 Dn 147 188 88.0 0.6 Dn 165 191 0.715 0.770 0.93 185 0.757 0.770 0.96 0.4 Dn 191 0.98 0.3 Dn 178 185 0.743 0.757 0.698 0.770 0.91 157 191 0.2 Dn 188 0.670 0.765 88.0 0.1 Dn 145 0.627 0.770 0.81 127 191 0.05 Dr.

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD


ESTAC. PITOMETRICA No Equipo: PITOT SIMPLEX

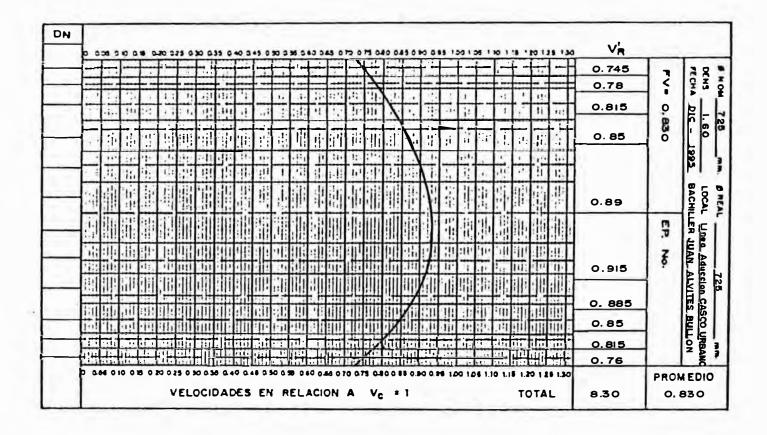
Fecha : Diciembre 95 Hora : 4:15

D. nom. : 150 D. cai. : 150 Liquido d = 1.80

LOCA! : Salida R-II Esperanza Baja

D (mm)	h (mm)	he (mm)	V (m/s)	Vc (m/s)	Valores de V pars VC=1
Dn	262	602	1.396	2.118	0.66
0.9 Dn	422	610	1.772	2.130	0.83
0.8 Dn	457	807	1.844	2.125	0.87
0.7 Dn	488	602	1.908	2.118	0.80
0.6 D n	536	605	1.997	2.122	0.94
0.4 Dn	589	602	2.093	2.116	0.99
0.3 Dn	533	607	1.991	2.125	0.94
0.⊵³ a n	508	607	1.944	2.125	0.91
0.1 Pn	460	610	1.890	2.130	0.89
0.05 Dn	409	602	1.745	2.118	0.82

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD


ESTAC. PITOMETRICA No Equipo: PITOT SIMPLEX

Fecha : Diciembre 95 Hora : 5:45

D. nom. : 725 D. cai. : 725 Liquido d = 1.60

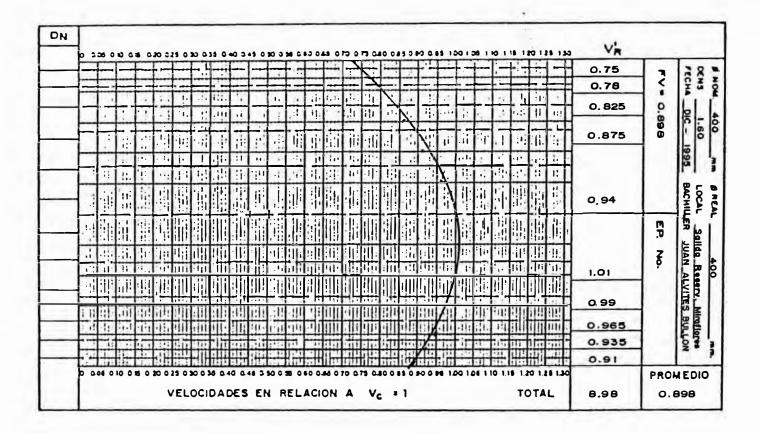
Local : Salida R-II Casco Urbano, Sectores 1, 2 y 3

Speradores	: Juan Alvite	es Bullon			
(mm)	h (mm)	hc (mm)	V (m/s)	Vc (m/s)	Valores de V para VC=1
⊡n	264	691	1.402	2.268	0.62
0.9 Dn	427	691	1.782	2.265	0.79
0.8 Dn	508	588	1.944	2.263	0.86
0.7 Dn	533	581	1.991	2.251	0.88
0.6 Dn	564	683	2.049	2.254	0.91
0.4 Dn	592	666	2.099	2.259	0.93
0.3 Dn	561	878	2.043	2.248	0.91
0.2 •n	554	691	2.030	2.268	0.90
0.1 Dn	516	665	1.959	2.263	0.87
0.05 Dn	442	693	1.814	2.271	08.0


ESTAC PITOMETRICA NO Equipa: PITOT SIMPLEX

Fecha : Diciembre 95 Hora : 07:20

D. nom. : 200 D. cal. : 198 Liquido d = 1.60


Losal : Siaida Reservorio R-III al Scetor 4

(mm)	(mm)	he (mm)	V (m/s)	Vc (m/s)	Valores de V pare VC≈1
0.85 Dn	518	671	1.963	2.234	0.88
0.9 Dn	541	663	2.006	2.221	0.90
0.8 Cn	574	878	2.067	2.243	0.92
0.7 Dn	625	681	2.157	2.251	0.98
0.8 Dn	658	681	2.213	2.251	0.98
0.4 Dn	663	,663	2.221	2.221	1.00
0.3 Dn	643	661	2.187	2.251	0.97
0.2 Dn	589	681	2.095	2.251	0.93
0.1 <u>D</u> n	536	676	1.997	2.243	0.89
0.05 O n	485	668	1.900	2.229	0.85

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

ESTAC. PITO	DMETRICA N	iO		Equipo: PITO	OT SIMPLEX
fecha : Di	ciembre 95			Hora : 6:40	
D. nom. : 4	00	D. Cai. : 40	10	Liquido d =	1.60
LOCAL : SE	alida Reserv	rono Alli al Se	ector 5		
Operadores	: Juan Alvite	es Bullon			
0	h	hc	ν	Ve	Valores de V pars
(mm)	(mm)	(mm)	(m/5)	(m/s)	VC=1
On	376	630	1.673	2.185	0.77
0.9 Dn	401	635	1.727	2.174	0.79
0.8 Dn	465	827	1.860	2.160	0.86
0.7 Dn	531	838	1.988	2.179	0.91
0.6 Dn	599	648	2.111	2.196	0.96
0.4 Dn	653	640	2.204	2.162	1.01
0.3 Dn	632	638	2.169	2.179	1.00
●.2 Dn	635	627	2.174	2.160	1.00
0.1 En	577	640·1	2.072	2.182	0.95
0.05 Dn	513	612	1.954	2.134	0.92

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

ESTAC. PITOMETRICA NO Equipo: PITOT SIMPLEX

Fecha : Diciembre 95 Hora : 9:26

D. nom. : 300 D. cai. : 298 Liquido d = 1.60

Local ... : Salida R-III - V. Maria - 3 de Octubre

Operadores : Juan Alvites Bullon

<u>ი</u> (mm)	h (mm)	he (mm)	V (m/s)	Vc (m/s)	Valores de V pars VC=1
0.95 Dr	229	417	1.305	1.761	0.74
0.9 Dr	259	414	-1.388	1.755	0.79
0.8 Dr	295	414	1.482	1.755	0.84
0.7 Dr	381	414	1.639	1.755	0.93
0.6 Dr	406	419	1.738	1.766	0.98
0.4 Dr	419	414	1.786	1.755	1.01
0.3 Dr	409	419	1.745	1.766	0.99
●.2 Dr	373	422	1.666	1.772	0.94
0.1 Dr	340	419	1.591	1.766	0.90
0.05 DI	320	417	1.543	1.761	88.0

,	• \	٠.		0.	8	79				EP.	No	٠.	,		_	_		PROMEDIO	
0715		0.773	40	200		0.00			0.00		800		80		ri.	0.885	0.81		
	+	H	-	+	1	\dashv	.:	-		-1-	-	-			1	ī		204 010 020 040 040 040 040 040 040 040 040 04	
T	1	#	5	=	1	=	-1	=								Ē		=	
1	1	1	-1	-:	i	91	-			=	=	Ē						=	
i	1	1	=	-	1	-:	=	Ē.		===	=	-	=;		=	-	-1-	1.0	
1	1	1	11		1	-	-4		==	==	=	I=	=			1		-	
-	1	ij	-			-=	-	Ξ.	==:	:==	Ξ	=	≣¦	=	=	E		2	
F				ē.,	П	Ξ		-	/	==	=			F	=	E	H	-	
Ħ		+	-	-		-	7	- :-	=5.	-		Ē.			>	F		0	
H	-		-	1.5	P	:::	72		.÷.'±	55	-	=		H		V	I	0	
		1	1	1	-		-	Ξ.			E					Ē	V	00	
F	Ē	1	-	=		=	0	-	-==						Ξ	-	À	3	
t	7	1	1.	=		-=	:	3	==	1==	Ξ	Ē		=		Į.	H	0	
1		T	ं	1.	T	7.	3	77	.=:	1	=	=		ΙĒ		ŀ	H	9	
-		П	3	-	T	=	=		===	1.55	=	-		-	=	F	H	0 0	
1		Ţ			T	-11	-	7.	=			=		Ξ:	=	1		-	
T	-	П	:		T	·	-	12		1,211	-	-	-	=	1			8	
T		Γ!		1	1	1:0	:	:	:2:		=	=	===	1	=	i	11	1:	
	1	П		72	1		:.	12		-		F						10	
T	T	T!		1	T	75	1	-	===	1		1=		=	E	ļ.		0	
F	1	П	10	1-	T	17.5	-	=	-	1		=			Ξ		Ħ		
1	1	T	=	1-	T	.a.	1	1:	-27						=	H		0 5	
İ	1	П	1	13	1	-	5	-:	E	1	=	Į=		4	=			. 0	
1	1		-	-	1	==	1	1=	-	-	: :	Ę		1	E	Ţ		-	
1	1	T	1	15				1	123	15=		=	175	=	13	I	1	. 0	
1	Ī	1		1	1	1	=	1	-			+	=		Ξ	i		- 0	
1	†	+	=		1	TE	1	1	1.75	1/27				1=	17	1		- 8	,

FORMATO PARA CALCULAR EL FACTOR DE VELOCIDAD

ESTAC, PITO	OMETRICA N	Ю	-	Equipo: PITO	T SIMPLEX
Fecha :	20-03-96			нога:	, , , , , , , , , , , , , , , , , , ,
D. nom. ;	533	D. cai. : 53	ig.	Liquido d =	1.60
Local :	Salida Line	ea de Aduccio	n Reservori	os Gemelos E	3s. Aires
Operadores	: Juan Alvite	es Bullon			
D	h	he	v	Ve	Valores
(mm)	(mm)	(mm)	(m/s)	(m/s)	de V para VC=1
	/	,y	()	\z/	
0.85 Dn	160	267	1.091	1.409	0.77
0.9 En	211	272	1.253	1.423	0.66
0.8 On	256	267	1.360	1.409	0.97
0.7 Dn	272	272	1.423	1.423	1.00
0.6 Dn	258	251	1.380	1.367	1.01
0.4 Dn	239	251	1.333	1.367	0.96
0.3 Dn	218	249	1.274	1,361	0.94
0.2 Dn	216	267	1.268	1.409	0.90
0.1 Dn	211	269	1.253	1.415	0.88
0.05 Dn	180	267	1.157	1.409	0.82

-	۲	V		0.	887	_			EP.	N	.	_	_				PROMEDIO	
	0.75	0.84	6	5	0.97			1.00			0.97		0.92	0.88	9.	0. 79		
-	Ŧ	H		=	1		-5	12.1	⇶	-			+		-		3	
1	1-	н	4		1	-					=		H		Н	H	=	
١	+	i	-		1 -	1	34			=				Ŀ	If.	Ē	2	
1	+	+	-	=	-	1	ź.		7.7.	=				=	1	-1	3	
2	ī	+			1:-	1-	- 1		===	1	-=	=		-	H		100	
1	+	+	Ë		1	=	=			=	=			1	I	Ħ	10	
1	1	H			1	1		1.11		1	Ξ		TE	+	1	Ħ	4	
	+	1	-	1	1	a	-	-5,5	7	=	-	×	= =		#	Ħ	0	
	+	H	7	1	1-2	1	•		32.	Ē	F		*	ŧ	1	Ħ		
	Ť	1			1-	1	1.5	-		=	Ξ				X	JI	0	
١	V	I	-		=	1.	=	· i=	-===	=	3				1	1	13	
0	1	1	. 6		1-			ر تو د	:.:: <u>:</u> :	=	1	=	-	-		11	0	
	1	П	-		1			£.	533	47	=	=	1 =		П		0	
2		П		-	127	- 1		##±	1	=	÷	=		-	1	1	2	
	1.	Ţ			100		V	₩.		=	=	==		- 5	1	П	0	
8			1.				47			Ŧ	=	=					8	
		L		7	13.	:	1	12.		=	H		Ė	Ė	li	1		
9	1		-	Ŧ	ij	-	==	===:	==		E	=		E	11	1	0	
2	i	Į.	1.	13	17	-	=	1	===	Ξ	Ħ	⊨		H	ŧ		0	
2	1		3	7			2:	1	===		Ę	==	Ė		\parallel	荳	0	
•	П	I	=				=	Œ.	-	Ξ	E			+	H		0	
8	Ţ	П	1:	!	W.	=		122		Ξ	E	=				1	0	
0	П	T	1	=	1		1_	idzi ;		÷	=	==			I		0	
2	П	T	- 1	-			1	4.5	1-==	æ	=	=	1	1	П	Ţ	0	
000 00 000 000 000 000 000 000 000 000	1	Ti			-			-	1.75	1	Ī	#		-	li	H	041 81.1 011 81.1 011 801 001 00 0 00 0 00	
ä	П	T	100	1	1	1	1	77.2	1.77		1.		11-		1	1	10	

FORMATO PARA CALCULAR EL FACTOR VELOCIDAD

_ooal: Salid	da L. Aduocion Reserv	vorios Gemelos 6	a. Airea	CORREC	CION DE LA DEN	ISIDAD
D.Nom. 529	5 mm. D. Rea	oi 539 mm				
PITOT No:	DENS.:	1.60			2.1	
MANOMET	RO: AL	mm		1)		0.570
JPERADO!	R: Juan Alvites Bullor	n CAL:	/ER.:		3.7	
Observ. :					2.9	
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)		0.610 *
QS.Q9.	277	1.458		-	4.6	0.070
	264	1.401				
08*10'	274	1.428			3.2	
	274	1.429		3)	=	0.570
09*11'	267	1.409			5.6	
	272	1.423			3.6	
09*12"	277	1.436		4)		0.570
	277	1.436			6.3	7716
08*13'	279	1.441				
	267	1.409			4.1	
08*14'	272	1.423		5)	******** =	0.580
	287	1.409			7.1	
08"15"	267	1.409			4.6	
Y	267	1.409		6)	*******	0.560
08*16'	269	1.415			9.2	
	279	1.441			5.3	
09*17'	-262	1.396		_		0.500
	259	1,338		7)		0.580
02"18"	262	1.396			₽.1	
	272	1.423		TOTAL	=	5. 4 50
02*19'	277	1.436		MEDIA	=	0.572
TOTAL		29.792		DENSIDA	D REAL = 1+	0.572 = 1.572
PROMED.		1.419		1		

Steal 539 Cham. Ct = oprevoion de la proyeccion de la valvula de incorporacion = 1.00Dens. Real - 1,000 0.572 Cd = Correccion de la densidad= -----== = 0.97603.0 Dens. Nom. - 1,000 Vo = Velocidad Central = 1.419 m/s Co = 1.00 0.2877 m3/s Q = FV x (SC) x Cdism. x Ct x Cd x (Co) x Vo = Q = 287.711/sC.138633 K =

		No Feoha: 20-0		-			SIDAD	
	a L. Aduooion Rese		Ba. Airea					
D.Nom. 525	mm. D. R	eal 539 mm						
PITOT No:	DENS.	: 1.80		D .		=		
MANOMET	RO: AL	mm						
OPERADO F	R: Juan Alvites Bulk	on CAL:	VER.:					
Observ. :								
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)		=		
08*22'	262	1.396						
	274	1.429						
05.53.	274	1.428		3)		=		
	262	1.398						
08*24	267	1.409						
	279	1.441						
03,52,	269	1.415		4)	*********	=		
	274	1.428						
02"28"	279	1.441						
	272	1.423		5)		=		
08*27'	277	1.436						
	279	1.441						
09*29'	267	1.409		as .		2		
	267	1.409		6)	********	=		
08-59.	274	1.428						
	277	1.436						
09.30.	267	1.409		7)		=		
	272	1.423						
08*31*	274	1.429		TOTAL		=	3.532	
	269	1.415		MEDIA		=	0.599	
08*321	267	1.409			DEN			_ 1 60
TOTAL		29,848		DENSIDAD	REAL	= 1+	0.588	= 1.00
FROMED.		1.421						
FV = Factor 2NN = Area	de Velocidad = Maminal	0.947 0.21 64 7						
	_							
		Dresi	539					
Cdiam. = Co	orreccion del diamet	ro = ()2 :	= ()2 = 1.0	254				
		Diram.	525					
_	oion de la proyeccio	n de la valvula de il	noorporacion = 1.0	oo				
Ct = 0017e00	. ,	Dens. Real - 1,00						
Ct = ooireoi		_	= 0). 8 8				
	ccion de la densidad	=	. =					
	poion de la densidad	Dens. Nom 1,0	0.000					
	poion de la densidad		0.000					
Cd = Correc	poion de la densidad idad Central = 1.42	Dens. Nom 1,0	00 0.800					
Cd = Correc	idad Central = 1.42	Dens. Nom 1,0	00 0.800					
Cd = Correc Vo = Veloci St	idad Central = 1.42	Dens. Nom 1,0	00 0.800	Ī				

	No Prueb. N			CORRECC	ION DE	LA DER	BIDAD	
	L. Aduooion Reser		Ba. Airea					
D.Nom. 525		al 539 mm						
PITOT No:	DENS.:		4	1)		=		
MANOMETRO		mm						
	Juan Alvites Bullo	n CAL:	VER.:					
Observ. :		4		2)		_		
-	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	-/		_		
10.02,	307	1.511						
	515	1.531						
10-10-	320	1.543		3)		=		
	302	1.499						
10*11'	290	1.469						
	310	1.519		(4)		_		
10°12'	312	1.524		. "	-41-1-27-5	7		
	307	1.511						
10"13"	307	1.511						
	315	1.531		5)	********	=		
10"14"	305	1.508						
	285	1.481						
10"15"	302	1.499		8)		_		
Ī	302	1.499		1 0)	31297111	_		
10°18'	305	1.506		1				
	310	1.519		1				
10"17"	305	1.508		7)		=		
	307	1.511		1				
10*18*	305	1,508		TOTAL		=	3.532	
	312	1.524	1775	1				
10*19'	312	1.524		MENA		=	0.599	
TOTAL		31.730		DENSIDAD	REAL	= 1 +	0.588	= 1.588
PROMED.		1.511		1				
NN = Ares	de Velocidad = Naminal = Corregida	0.947 0.21 64 7						
!	Conegica							
		Descri	539					
5 dia 5 a		Dresi						
Calam. = Con	recoion dei diametr			054				
		Disons.	525					

Local: Salic		Feoha: 20-0					
	to L. Aduocion Reserv		Sa. Airea				
D.Nom. 52		1 539 mm					
PITOT No:	DENS.:	1.80		1)		=	
MANOMET	RO: AL	mm					
OPERADO	R: Juan Alvites Bullor	CAL.:	VER.:				
Observ. :							
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)		=	
i 1°09'	307	1.511					
	302	1.499					
11*10'	302	1.499	1	3)		=	
	307	1.511					
11-11'	307	1.511					
	297	1.488					
11"12"	292	1.474		4)	*********	=	
	307	1.511					
11*13'	500	1.494					
	305	1.506		5)		=	
11*14	305	1.508					
	295	1.481					
11*15'	300	1.494					
	300	1.494	1	6)	*******	=	
11*18'	305	1.508					
11 10	300	1.494					
11*17'	505	1.508		7)		=	
17.17		1.511					
445454	307			TOTAL		_	3,532
11*18'	302	1.488		TOTAL		=	
4.494.51	505	1.508		MEDIA		=	0.588
11*19'	297	1.488	*	DENSIDAD	REAL	= 1 +	0.588 = 1
TOTAL		31.495					
FROMED.		1.499		1			
	Nominal	0.947 0.21 64 7					
	Johnston						
		French	550				
- -diens → -	anteraion del dispresso	Dreal	539	3.5.4			
Scliam. = C	oneccion del cilametro	2 2 1 TO 1		054			

Eatao. Pito	m. No Prueb. N	o Feoha: 20-0	3-98	CORREC	CION DE	E LA DEN	SIDAD
Local: Salid	da L. Aduooion Reserv	vorios Gemelos B	a. Airea	i			
D. Nom. 52	5 mm. D. Rea	od 538 mm					
PITOT No:	DENS.:	1.80		1)		-	
MANOMET	TRO: AL	mm				-	
OPERADO	R: Juan Alvites Bullor	CAL:	/ER.:				
Observ. :							
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	2)		- =	
12*10'	297	1.496			-		
	500	1.494					
12*11'	300	1.494	Y	3)	*******		
	300	1.494				_	
12"12"	302	1.499		1			
	305	1,508					
12*13'	300	1.494		4)		- =	
	297	1,486					
12"14"	290	1.469					
12 17	292	1.474		5)		. =	
12*15'	300	1.494		1			
12.10	290	1.469		1			
12*16'	292	1.474	<u> </u>				
12 10	302	1.486		- 6)		- =	
12*17'	297	1.498					
12 17	285	1.481					
12"18"	290	1.469		7)		- =	
12 18							
	295	1.481		1			
12*19'	292	1.474		TOTAL		=	3,532
	292	1.474		MEDIA		=	0.599
12*20'	305	1.508		DENSIDA	D REAL	= 1 +	0.588 = 1
TOTAL		31.190		4			
FROMED.		1.495					
Y = Factor	r de Velooidad =	0.947					
NN = Are		0.21647	m2				
	Corregida						
	inourchica						
		Oreal	539				
icliam = ∂	oneccion del diametro		2.20	054			
diam. = 0		Dnom.	525	U O4			
lt = oorreo	oion de la proyeccion		· ·	00			
		Dens. Resi - 1,00					
	cocion de la densidad=			0.99			

0.2975 m3/s

K = 0.200353 Q = 297.5 Ws

Vo = Velopidad Central = 1.485 m/s Co = 1.00

Q = FV x (SC) x Cdiam, x Ct x Cd x (Co) x Vo =

SN

Como. Pito	m. No Prueb. N	o Feoha: 20-0	3-96	CORRECCI	ON DE	LA DEN	BIDAD
Looal: Salid	da L. Aduooion Reserv	rorios Gemelos E	o. Aires				
D.Nom. 52	5 mm. D. Rea	d 539 mm					
PITOT No:	DENS.:	1.60		1)		=	
MANOMET	TRO: AL	mm					
OPERADO	R: Juan Alvites Bullor		/ER.:				
Observ. :				2)		_	
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	27		_	
13*00	292	1.474					
	302	1.499					
13*01'	302	1.499		3)	********	=	
-1-	297	1.496					
15*02*	292	1.474					
	302	1.499		4)		=	
13*03'	292	1.474					
	297	1.496					
13"04"	292	1.474		*			
	297	1.486		5)	********	=	
137051	297	1.496					
	502	1.499					
13"06"	295	1.481		8)	*******	=	
	292	1 474					
13*07'	297	1.496		3			
	295	1.491		7)		_	
13"08"	297	1.468		.,		-	
	290	1.469					
13*09'	292	1 474		TOTAL		=	3.532
	290	1.469		MEDIA		=	0.599
15"10"	300	1.494		DENSIDAD	REAL	= 1 +	0.588 = 1.58
TOTAL		31.150					
FROMED.		1.483		ĺ			
FV = Faoto	r de Velooidad =	0.947					
⊇NN = Are	CITTORN	0.21647	m2				
2NN = Are	Corregida	0.21 64 7	m2				
	Corregida	Oreal	539				
	CITTORN	Oreal	539	054			

Looal: Salid	la L. Aduooion Rese	rvorios Gemelos E	Ba. Airea				
D.Nom. 52	5 mm. D. R	ea) 539 mm		CORREC	CION DE	LA DEN	SIDAD
PITOT No:	DENS.	: 1.80		<u> </u>	0.0.0		
MANOMET	RO: AL	mm					
OPERADO	R: Juan Alvites Bulle	on CAL:	VER.:			7	
Observ. :				1)	***************************************	=	
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)				
15*14'	287	1.409					
	287	1.409		2)		=	
15"15"	254	1.374					
	259	1.399					
15"16"	262	1.596					
	258	1.360		3)	********	- =	
15"17"	262	1.396					
	228	1.297					
15"18"	229	1.305		4)		=	
	229	1.305					
15"19"	231	1,311					
	229	1.305		50	********	_	
15"20"	221	1.292		4,	3.50	_	
	221	1.292					
15*21'	221	1.292		0			
	221	1.232		8)	*******	=	
15"22"	221	1.282					
	218	1.288		1			
15*23'	218	1.262		7)			
	211	1.253					
15*24"	221	1.282		TOTAL			3.532
TOTAL		27.758		TOTAL		=	
FROMED.		1.322		MEDIA		=	0.599
FV = Factor	Nominal = Corregida	0.947 - 0.21647	m2				
			1				
		Crest	538				
ໄຜ່ເໝາ.` = C	oneccion del diames	ro = (= ()2 = 1.0 525	054			
	oion de la proyeccio	Cens. Real - 1,00	0 0.599				
Od = Corre	ooion de la densidad	Dens. Nem 1.0).99			
Yo = Yeloo 3:	idad Central = 1.32	22 m/s	1.00				
Q = FV x (SC) x Cdiam _e x Ct x C	d x (Co) x Vo =	0.265 m3/s]			

	da L. Aduooion Reserv		Sa. Airea				
D.Nom. 52		od 539 mm					
PITOT No:		1.80		CORREC	CION DE	LA DEN	SIDAD
MANOME		mm					
	R: Juan Alvites Bullor	n GAL:	VER.:				
Observ. :	T DEEL EVIOLET	VE. 00 (/)	PRESION (m)	1)		=	
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (M)				
18*14'	213	1.259					
18*15'	213	1.259		2)	-	=	
10 13	218	1.274					
16-16	216	1.269	1				
10.10	213	1.259		-			
16"17"	218	1.274		3)	*******	=	
	208	1.239					
16*18'	211	1.253					
	213	1.259		4)		=	
16*19'	219	1.274					
	213	1.259					
16*20'	216	1.269		ි න		=	
	208	1.239		i			
16*21"	218	1.269					
	221	1.282		8)		_	
16*22'	216	1.269				_	
	221	1.292		į.			
16*23*	211	1.253		_			
	221	1.282		7)	********	=	
18-24	221	1.292					
TOTAL		28.537		TOTAL		=	3.532
PROMED.		1.264	1	MEDIA		=	0.588
9 = 14010 2NN = Are	Nominal = Corregida	0.947 0.21647					
		W0777					
Calians - /	Corression del diametro	Dreal	559 - / / /	34.4			
- Circuit 1	Source of the stat	Dnom.	= ()2 = 1.0 525	J54			
		20000	325				
Ct = conrec	ooion de la proyeccion	cie ia vaivula de i	noorporacion = 1.0	00			
	20,0,1, 2,2 ,2 ,2 ,2 ,2 ,2 .2	Dens. Real - 1,00					
Cd = Com	eooion de la densidad=		. = = (99.0			
		Dens. Nom 1,0	003.0 00				
	oidad Central = 1,264	mjs Co =	1.00				
Vo = Velo							
3	374			7			
3	It4 (SC) x Cdiam . x Ct x Cd	x (Co) x Vo =	0.2532 m3/s]			

Estao. Pitor				CORREC		
	la L Aduocion Reserv	orios Gemelos E	Ba. Airea			
D.Nom. 52	5 mm. D. Rea	1 539 mm		4.		
PITOT No:	DENS.: 1	.60		1)	=	
MANOMET		mm				
OPERADO	R: Juan Alvites Bullon	CAL.:	VER.:			
Observ. :				2)	=	
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)			
17"11'	218	1.269				
	213	1.259		2)		
17*12'	213	1.259		3)	=	
	206	1.239				
17"15"	216	1.269				
	211	1.253		4)	=	
17*14'	203	1.229				
	208	1.238				
17*15'	213	1.259		5)		
	3 0 8	1.244		-5	- SCHOOLSE .	
17*16'	211	1.253				
	209	1.244				
17"17"	208	1.244		8)	=	
	211	1,253				
17*18'	211	1.253				
	211	1.253		7)		
17"19"	216	1.269				
	218	1.283		TOTAL		3.532
17*20'	211	1.253			=	
	223	1.299		MEDIA	=	0.588
17*21"	209	1.244		DENSIDA	D REAL = 1 +	0.588 = 1.58
TOTAL		26.338				
FROMED.		1.254				
	Nominal Corregies	0.947 0.21647				
Coiem – C	orreccion del diametro	Oreal	1 539	E d		
		Dhom	525			
Ct = oorr e o -	oion de la proyeccion (de la valvula de li Dens, Real - 1,00	•	0		
Cd = Corre	ooion de la densidad=	Dens. Nom 1.0		.99		
Vo = Veloc	ridad Central. = 1.254	m/s Ce =	1.00			
دة	14					

	n. No · Prueb. No		
	a L. Aduooion Reserv		la. Airea
D. Nom. 52:		d 539 mm	
PITOT No:	DENS.:	1.80	
MANOMET		mm	
	R: Juan Alvites Bullor	CAL.:	/ER.:
Observ.:			
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)
19.05,	216	1.269	
	213	1.259	
19*09'	208	1.244	
	218	1.274	
19*10'	308	1.244	
	208	1.244	
19"11"	206	1.239	
	203	1.229	
19*12*	208	1.238	
	203	1.229	
19*13'	208	1.244	
	211	1.253	
19*14'	206	1.238	
	209	1.244	
19*15'	208	1.244	
	208	1.244	
19*16	211	1.253	
	211	1.253	
19-17'	303	1.244	
	203	1.229	
19*18'	208	1.239	
TOTAL		26,151	
PROMED.		1.245	12/1-0-1

K =

Discription Discription	DENS.: 1.80	PITOT No: MANOMETRO: OPERADOR: Juan Observ.: TIEMPO DEFLI 18*11' 18*12' 19*13' 19*14'	DENS.: AL Alvites Bullor EXION (mm) 213 203 208 211 208 213	1.60 mm CAL: VELOC. (m/e) 1.259 1.229 1.238 1.253 1.244 1.259	PRESION (m)	2)		- =		
MANOMETRO: AL mm OPERADOR: Juan Alvites Bullon CAL.: VER: Observ.: TIEMPO DEFLEXION (mm) VELOC. (m/a) PRESION (m) 18"11' 213 1.259 203 1.229 30 30 211 1.253 211 1.253 213 1.259 214 213 1.259 216 1.268 216 1.268 216 1.268 217 208 1.244 218 208 1.244 218 218 1.259 218 218 1.269 218 218 1.269 218 218 1.269 218 218 1.269 218 218 1.269 218 218 1.269 218 218 1.269 218 218 1.269 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.268 218 218 1.269 218 218 218 218 218 218 218 218 218 218	MANOMETRO: AL min Min	MANOMETRO: OPERADOR: Juan Observ.: TIEMPO DEFLI 18*11' 18*12' 19*13' 19*14'	AL Alvites Bullon (mm) 213 203 208 211 208 213 213	mm CAL: VELOC. (m/a) 1.259 1.229 1.238 1.253 1.244 1.259	PRESION (m)	2)		- =		
OPERADOR: Juan Alvites Bullon CAL.: VER.: Observ.: TIEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) 18*11' 213 1.259 3) = 18*12' 206 1.238 3) = 18*12' 206 1.238 3) = 19*13' 206 1.244 4 = 19*13' 206 1.244 = 4) = 19*14' 213 1.259 = 4) = 19*14' 213 1.259 = - <	Description Description	OPERADOR: Juan Observ.: TIEMPO DEFLI 18*11' 18*12' 19*13'	EXION (mm) 213 203 208 211 208 213	VELOC. (m/a) 1.259 1.229 1.238 1.253 1.244 1.259	PRESION (m)					
Observ.: TIEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) 2) = 18*11' 213 1.259 3) = 18*12' 206 1.238 3) = 18*12' 206 1.238 3) = 18*12' 208 1.244 4) = 213 1.259 4) = 18*13' 208 1.259 4) = = 18*15' 213 1.259 4) = = 18*15' 213 1.269 5) = = 18*16' 209 1.244 4) = = 18*16' 209 1.244 6) = = 18*18' 218 1.263 7) = = 18*19' 216 1.263 7) = 18*19' 211 1.263 7) = 18*19' 211 1.263 7) = 18*20' 211 1.263 7) = 18*20' 211 1.269 MEDIA = 0.599	Description Description	Observ. : TIEMPO DEFLI 18*11' 18*12' 19*13'	EXION (mm) 213 203 208 211 208 213	1.259 1.229 1.238 1.253 1.244 1.259	PRESION (m)			. =		
TIEMPO DEFLEXION (mm) VELOC. (m/a) PRESION (m) 18"11' 213 1.259 18"12' 206 1.238 3)	TEMPO DEFLEXION (mm) VELOC. (m/o) PRESION (m)	18*12' 18*13' 18*14'	213 203 208 211 208 213 213	1.259 1.229 1.238 1.253 1.244 1.259				·· =		
TEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) 18"11" 213 1.259 18"12" 206 1.238 3) = 18"13" 208 1.244 213 1.259 4) = 18"14" 213 1.259 18"15" 216 1.268 5) = 18"16" 208 1.244 203 1.244 203 1.244 18"17" 208 1.244 18"18" 216 1.263 18"19" 211 1.253 18"19" 211 1.253 18"19" 211 1.253 18"20" 211 1.253 18"20" 211 1.269 18"20" 211 1.269 18"21" 218 1.269 18"21" 218 1.274 DENSIDAD REAL 1 + 0.588 =	IEMPO DEFLEXION (mm) VELOC. (m/s) PRESION (m) 18"11" 213 1.259 18"12" 206 1.238 3)	18*11' 18*12' 18*13'	213 203 208 211 208 213 213	1.259 1.229 1.238 1.253 1.244 1.259				. =		
18*12' 206 1.238 3)	18"12" 208	18*12' 19*13'	203 208 211 208 213 213	1.229 1.238 1.253 1.244 1.259		3)	*******	- =		
18*12' 206 1.238 3)	18"12" 208	19*13*	208 211 208 213 213	1.238 1.253 1.244 1.259		3)	*******	. =		
18°13' 208 1.244 213 1.259 18°14' 213 1.259 18°15' 216 1.268 216 1.269 18°16' 209 1.244 203 1.244 18°17' 209 1.244 18°18' 218 1.263 18°18' 218 1.263 18°19' 211 1.253 18°20' 211 1.253 18°20' 211 1.269 18°21' 218 1.269 MEDIA = 0.598 18°21' 218 1.274 DENSIDAD REAL = 1 + 0.588 =	18°13' 20\$ 1.244	19*13*	211 208 213 213	1.253 1.244 1.259		3)	******	- =		
18°15' 208 1.244 4)	18"13"	18*14'	20 8 213 213	1.244 1.259	-					
18"14" 213 1.259 4)	18"14" 213 1.259 4)	18*14'	213 213	1.259						
18"14" 213 1.259	19"14" 213 1.259 18"15" 216 1.268 218 1.269 19"16" 209 1.244 19"17" 208 1.244 19"19" 211 1.253 18"19" 211 1.253 18"19" 211 1.253 18"20" 211 1.263 18"20" 211 1.263 18"20" 211 1.253 18"20" 211 1.253 18"20" 211 218 1.269 18"21" 218 1.269 18"21" 218 1.274 TOTAL 26.340 PROMED. 1.254 Nominal NN = Area = 0.21647 m2		213							
18*14' 213 1.259 18*15' 216 1.268 218 1.269 18*16' 209 1.244 18*17' 209 1.244 18*18' 216 1.263 18*18' 216 1.263 18*19' 211 1.253 18*20' 211 1.253 18*20' 211 1.269 18*21' 218 1.274 TOTAL = 3.532 MEDIA = 0.598 DENSIDAD REAL = 1 + 0.588 =	18"14" 213 1.259 18"15" 216 1.268 216 1.268 19"16" 209 1.244 19"17" 209 1.244 19"18" 216 1.263 18"19" 211 1.253 18"19" 211 1.253 18"19" 211 1.253 18"20" 211 1.263 18"20" 211 1.269 18"20" 211 1.269 MEDIA = 0.598 18"21" 218 1.274 TOTAL = 3.532 MEDIA = 0.598 18"21" 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1.5 Nominet NN = Area = 0.21647 m2					4)		. <u>_</u>		
18"15" 216 1.268 5) == 18"16" 208 1.244 6) == 1244 6) == 1244 6) == 1248 6) =	18*15' 216 1.268 5) = = 18*16' 209 1.244 6) = 203 1.244 6) = 203 1.244 6) = 211 1.253 6) = = 18*19' 211 1.253 7) = = 18*19' 211 1.253 7) = = 18*19' 211 1.253 7) = = 18*19' 211 1.253 7) = = 18*20' 211 1.269 70 MEDIA = 0.588 18*21' 218 1.274 70TAL = 0.588 1.259 70 MEDIA = 0.588 18*21' 218 1.274 70TAL = 1.254 70	18"15"	213	1.259			311.00	_		
216 1.268 5) = = 18°16' 209 1.244 6) = 1.244 6) = 18°17' 209 1.244 6) = = 18°18' 216 1.263 7) = = 18°19' 211 1.253 7) = = 18°19' 211 1.253 7) = = 18°19' 211 1.253 7) = = 18°20' 211 1.253 7) = 3.532 70	216	18*15'		1.259						
18"16' 209 1.244 203 1.244 18"17' 208 1.253 18"18' 218 1.263 203 1.244 7) = 18"19' 211 1.253 18"19' 211 1.253 18"20' 211 1.253 18"20' 211 1.253 18"21' 218 1.269 MEDIA = 0.598 18"21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 10.588	18°16' 209 1.244 18°17' 209 1.244 18°18' 211 1.253 18°19' 211 1.253 18°19' 211 1.253 18°20' 211 1.259 18°21' 218 1.269 MEDIA = 0.598 18°21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1.5 VY = Factor de Velocidad = 0.987 Nominal NN = Area = 0.21647 m² m² m² m² m² m² m² m²		216	1.288						
18*17' 209 1.244 8) = 12*17' 209 1.244 8) = 13*18' 216 1.268 7) = 13*19' 211 1.253 7) = 13*19' 211 1.253 7) = 13*20' 211 1.253 70 TOTAL = 3.532 1.269 MEDIA = 0.588 18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 10*74L	18*17' 209 1.244 6)		218	1.269		5)	*******	- =		
18*17' 208 1.244 6) = 211 1.253 18*18' 216 1.268 203 1.244 18*19' 211 1.253 7) = 213 1.259 18*20' 211 1.253 TOTAL = 3.532 218 1.269 MEDIA = 0.588 18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = TOTAL 26.340	18°17' 208 1.244 6) = 211 1.253 18°19' 216 1.263 18°19' 211 1.253 18°20' 211 1.263 18°21' 218 1.274 TOTAL 26.340 FROMED 1.254 Nominal NN = Area = 0.21647 m2	18*16'	209	1.244						
211 1.253 18°19' 216 1.263 203 1.244 18°19' 211 1.253 213 1.259 18°20' 211 1.269 216 1.269 MEDIA = 0.588 18°21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 10000000000000000000000000000000000	18*18' 216 1.268		208	1.244		1				
18*18' 216 1.268 203 1.244 18*19' 211 1.263 213 1.259 18*20' 211 1.253 TOTAL = 3.532 218 1.269 MEDIA = 0.588 18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1000 TOTAL TOTAL 26.340	18*19' 216 1.268 203 1.244 18*19' 211 1.253 7) == 1.259 18*20' 211 1.259 TOTAL = 3.532 218 1.269 MEDIA = 0.588 18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1.0 FROMED. 1.254 Nominal NN = Area = 0.21647 m2	18*17'	209			e)	********	- =		
203 1.244 7) = 18*19' 211 1.253 7) = 19*20' 211 1.253 TOTAL = 3.532 MEDIA = 0.599 18*21' 218 1.274 DENSIDAD REAL = 1 + 0.599 = 10*21' 28.340	18*19' 211 1.253 7) =		211	-		1				
18*19* 211 1.253 7) = 1.253 7) 1.259 1.259 1.259 TOTAL = 3.532 1.269 MEDIA = 0.598 18*21* 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1.274 DENSIDAD REAL = 1.274 DENSIDAD	18*19' 211 1.253 7) = 213 1.259 18*20' 211 1.253 TOTAL = 3.532 218 1.269 MEDIA = 0.598 18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1.5 TOTAL 28.340 FROMED. 1.254 V = Factor de Velocidad = 0.997 Nomined Nomined	18*18'				1				
18*19 211 1.263 213 1.259 18*20' 211 1.263 TOTAL = 3.532 216 1.269 MEDIA = 0.598 18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1 TOTAL 28.340	18*19 211 1.253 TOTAL					- 7)	51257			
19°20' 211 1.253 TOTAL = 3.532 21° 1.269 MEDIA = 0.588 18°21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1 TOTAL 28.340	19°20' 211 1.253 TOTAL = 3.532 216 1.269 MEDIA = 0.598 18°21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1.5 TOTAL 28.340 FROMED. 1.254 V = Factor de Velocidad = 0.997 Nominal Nomin	18*19'				1 .,	120020044	_		
216 1.269 MEDIA	218 1.269 MEDIA									
18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 10.588	18*21' 218 1.274 DENSIDAD REAL = 1 + 0.588 = 1.0 TOTAL 26.340 FROMED. 1.254 V = Factor de Velocidad = 0.997 Nomined Nomined	18-20'		-		TOTAL		=	3.532	
TOTAL 28.340 DENSIDAD REAL = 1 + 0.588 =	TOTAL 28.340 FROMED. 1.254 V = Factor de Velocidad = 0.997 Nominal No No No No No No No N				10	MEDIA		=	0.588	
	Nominal Nominal No.21647 m2		218			DENSIDAD	REAL	= 1 +	0.588 :	= 1.58
PROMED. 1.204	V = Factor de Velocidad = 0.997 Nominel NN = Area = 0.21647 m ²				the state of the s	-				
	Nominal	FROMED.		1.254		1				
FV = Factor de Velocidad = 0.997	NN = Area = 0.21647 m2	18"20" 18"21" TOTAL FROMED.	213 211 218 218	1.259 1.253 1.269 1.274 28.340 1.254		TOTAL	REAL	=	0.599	=
		Corre	cicle							
Corregida				Dreat	539					

Estas. Pito	m. No. Prueb. N da L. Aduooion Reserv						
D.Nom. 52		2 538 mm	o. Aireo				
					2.1		
PITOT No:				1)	*********	=	0.553
MANOMET		mm	150		3.8		
	R: Juan Alvites Bullor	GAL:	/ER.:		2.7		
Observ. :				2)	********	_	0.574
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)	27		-	0.574
21*26'	208	1.238			4.7		
	213	1.259			3.5		
21*29'	213	1.250		3)		=	0.593
	206	1.239	-		5.9		
21*30*	203	1.229			3.9		
	213	1.259		ds			0.500
21*31'	219	1.274		4)		=	0.582
	211	1.253			3.7		
21*32*	209	1.244			4.5		
	208	1.239		ర)	*******	=	0.600
21*33*	213	1.259			7.5		
	213	1.259			5.1		
21*34'	211	1.253					0.000
	203	1.229		8)	********	-	0.600
21°35'	218	1.274			9.5		
	209	1 244			5.6		
21*38'	200	1.239		7)		=	0.583
	213	1.259			9.6		
21"37"	202	1.244		TOTAL		=	3,532
	209	1.244					
21*38'	213	1.259		MEDIA		=	0.588
TOTAL	1	28.253		DENSIDA	D REAL	= 1 +	0.588
FROMED.		1,250	1				

FV = Factor de Velocidad = 0.997 Nominal SNN = Area 0.21647 m2 Corregida

Drest 539 Cnom.

Ct = correccion de la proyeccion de la valvula de incorporacion = 1.00

Dens. Real - 1,000 0.599 = 0.99Cd = Correccion de la densidad= ------==

> 0.600 Dens. Nom. - 1,000

Co = 1.00Vo = Velocidad Central = 1.250 m/s SN

0.250 m3/s Q = FV x (SC) x Cdiam. x Ct x Cd x (Co) x Vo =

Q = 250 lt/s 0.200353 K =

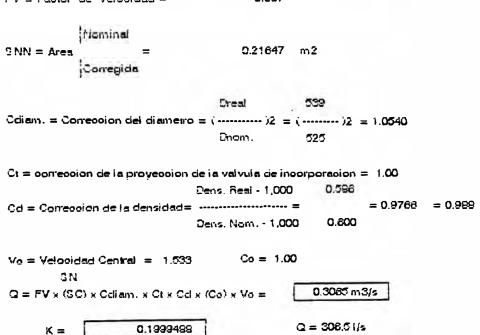
2.1 -----= 0.553 * 3.8 2.7 -----= 0.574 4.7 3.5 -----= 0.593 5.9 3.9 -----= 0.582 **3.7** 4.5 -----= 0.600 7.5 5.1 -----= 0.600 9.5 5.8 ----- = 0.583 9.6 3.552

DR ELIMINADO POR SER DISTORCIONANTE

0.588 = 1.588

Estao. Pitom				CORRECC				
	a L. Aduooion Rese		a. Airea					
D.Nom. 525	mm. D. A	eal 539 mm						
PITOT No:	DENS.	: 1.60		1)		=		
MANOMETI		mim						
OPERADOF	R: Juan Alvites Bull	on CAL.:	/ER,:					
Observ. :				- 21				
TIEMPO	DEFLEXION (mm)		PRESION (m)	2)	********	=		
08*40	229	1.505						
	251	1.511						
08*41'	238	1.325		3)		=		
	236	1.325						
06*42'	251	1.311						
	234	1.319		4)				
06*43'	231	1.311		~		_		
!	231	1.311						
08*44'	300	1.494						
	305	1.508		5)		=		
06*45"	305	1.508						
	312	1.524						
06*46'	312	1.524		8)		-		
	317	1.535						
08*47'	317	1.535						
	310	1.519						
08*48'	310	1.519		7)		=		
	310	1.519						
06*48'	317	1.535		TOTAL		=	3.514	
	305	1.50€		MEDIA		=	0.596	
06*50;	512	1.524		DENSIDAD	REAL	= 1 +	0.586	= 1.5
TOTAL		-	(f)					
FROMED.		1.441						
TOTAL FROMED.	de Velocidad =	30.264	m2	DENSIDAD	REAL	= 1+	0.586	= 1.3
	Corregida							
		Drest	539					
ට්cliam. = ට්ර	orreccion del diame	ro = ()2 :	= ()2 = 1.0	54				
		Dnom.	525					
Ct = oorreod	oion de la proyeccio	n de la valvula de is	noorporacion = 1.0	٥				
		Dens. Real - 1,00	0.596					
Cd = Correc	poien de la densidad	=	= 0	988				
		Dens. Nom 1,0	008.0					
	dad Central = 1.44	11 m/s Co = 1	1.00					
12	9							

LOOD: Salid	m. No. Prueb. No.			CORREC		
D.Nom. 52	da L. Aduooion Reserv		os. Aires			
PITOT No:				1)	=	
MANOMET		<u></u>				
	R: Juan Alvites Bullor	CAL.:	VER.:			
Observ. :	DEEL EVIOLE A	V5(00 / /)	L DDFOLON ()	2)		
	DEFLEXION (mm)	-	PRESION (m)			
07*10'	297	1.498				13
079111	295	1.491				
07*11*	284	1.454		3)		
078401	302	1.499				
07*12'	292	1.474				
0724.51	290	1.469		4)		
07°13'	295	1.491				
	302	1.499				
07*14'	290	1.469				
	297	1.496		5)	=	
07"15"	297	1.498				
	305	1.506				
07*16'	297	1.496		8)		
	297	1.461				
07-17	287	1.461				
	297	1.486		7)		
07*18	305	1.508		7)		
	302	1.499				
07-19'	297	1.481		TOTAL	=	S.514
	297	1.486	-	MEDIA	=	0.596
07*20'	295	1.461		DENSIDAD	REAL = 1+	0.586 = 1.58
TOTAL		31.117				
FROMED.		1.481				
FROMED.	r de Velocidad =	-	m2			
	Corregida		m			
	(C.C.) Level					
		Freel	450			
Odiena — C	samen oi on siei sliena ewo	Drest	559	.		
ටස්හෝ. = C	Correccion dei diametro	= ()2 =	= ()2 = 1.00	54		
Cdiam. = C	orreccion dei diametro	2.2.2	7.77	54		
		= ()2 = Cham	= ()2 = 1.00 525			
	oion de la proyeccion d	= ()2 = Chomi de la valvula de in	525 soorporaoion = 1.00			
Ct = oorreo	poion de la proyeccion d	= ()2 = Chom de la valvula de ir Dens. Real - 1,00	525 525 noorporacion = 1.00 0 0.596)		
Ct = oorreo	oion de la proyeccion d	= ()2 = Dhom	525 525 000rporation = 1.00 0 0.596 = = 0.)		
Ct = oorreo	poion de la proyeccion d	= ()2 = Chom de la valvula de ir Dens. Real - 1,00	525 525 000rporation = 1.00 0 0.596 = = 0.)		
Ct = oorreo Cd = Corre	poion de la proyeccion d poion de la densidad=	= (= ()		
Ct = oorreo Cd = Come Vo = Veloo	poion de la proyeccion de poion de la densidad= pidad Central = 1,481	= (= ()		
Ct = oorreo Cd = Come Vo = Veloo Si	poion de la proyeccion de eccion de la densidad= pidad Central = 1,481 N	= (= ()		
Ct = oorreo Cd = Come Vo = Veloo Si	poion de la proyeccion de poion de la densidad= pidad Central = 1,481	= (= ()		


					CA CCA	SIDAD
m. No Prueb. No	p Feoha: 21-0	3-98				
da L. Aduooi on Reserv	vorios Gemelos d	le Ba. Ara.				
mm. D. Real	mm		1)		=	
525 DENS.	: 539					
TRO: AL	mm					
R: Juan Alvites Bullor	CAL:	VER.:				
			2)		=	
DEFLEXION (mm)	VELOC. (m/a)	PRESION (m)				
315	1.551					
297	1.496		3)		=	
295	1.481					
302	1.499					
297	1.496					
302	1.499		4)		=	
300	1.494					
297	1 486					
300	1.494		5)		=	
+	1.496	4.				
			8)	********	=	
-i			7)		=	
	<u> </u>		TOTAL		_	5.514
			MELIA		=	0.586
	-		DENSIDAD	REAL	= 1 +	0.588 = 1.5
20,						
	1.493					
Nominal	0.997 0.21647	m2				
i-ou.ebiog						
	5 1	F00				
·		0.00				
onepolon del diametro			5 4 0			
	Dnom.	525				
poion de la proyeccion (•				
·	Dens. Real - 1,000	0.596	200			
poion de la proyeccion de Pocion de la densidad=	Dens. Real - 1,000	0.596	.999			
·	Dens. Real - 1,000	0.596	.998			
·	Dens. Real - 1,000 	0.596 = = 0 00 0.800	.999			
coolon de la densidad=	Dens. Real - 1,000 	0.596 = = 0 00 0.800	.999			
	Nominal	Description Description	Defection Defe	Date Date	da L. Aducción Reservorios Gemetos de Bs. Ars. mm. D. Real mm mm.	da L. Aducción Recervorios Gemelos de Bs. Ars. mm. D. Real mm

Q = 299.5 lt/s

0.1999488

ĸ =

2.1 1) = 0.593		da L. Aducción Reserv	Local: Salid
1)= 0.593	i 539 mm	5 mm. D. Rea	D.Nom. 52
	1.80	DENS.:	PITOT No:
3.6	mm	TRO AL	MANOME
.: 2.6	CAL.:	R: Juan Alvites Bullon	OPERADO
2)= 0.578			Observ. :
RESION (m)	VELOC. (m/s)	DEFLEXION (mm)	TIEMPO
3.2	1.400	302	0 9*10'
	1.469	290	
3) = 0.604 *	1.481	287	08*11*
5.3	1.499	302	
3.6	1.491	295	09"12"
4)= 0.581	1.508	305	
6.2	1.587	330	09*13'
4.1	1.536	317	
5)= 0.598	1.587	330	02*14'
	1.562	329	
7	1.536	317	08"15"
4.9	1.524	312	
6) = 0.592	1.550	323	08*16'
8.1	1.543	320	
5.7	1.536	317	C3*17'
7) = 0.594	1,555	325	
9.6	1.562	529	0ë*18'
	1.550	323	
TOTAL = 3.514	1.519	310	08-18.
MEDIA = 0.596	1.562	529	
DENSIDAD REAL = 1 + 0.586 = 1.58	1.621	353	08*201
	32.205		TOTAL
VALOR ELIMINADO POR SER	1.533		PROMED.

E-1 Dia-		N- 5 1 010	0.00	CORRECC	ION DE	LA DE	ISIDAD	
Estas. Pito								
	la L. Aducción Rese		Sa. Ara.					
D. Nom.	mm. D. Rea			1)				
PITOT No:	DENS.	: 1.60		.,	-0.00 157	-		
MANOMET		mm						
OPERADO	R: Juan Alvites Bull	on CAL:	VER.:					
Observ.:				2)		=		
TIEMPO	DEFLEXION (mm)	VELOC. (m/s)	PRESION (m)					- 1
O8 - 26,	358	1.830						
	350	1.614		31		_		
08"57"	353	1.821		3)		=		
	349	1.609						
08.26.	356	1.627						
	345	1.602		4)		=		
09,29,	353	1.621						
	350	1.614						
09.00.	369	1.855		5)		-		
	350	1.614		-,		_		
09.01,	345	1.602						
	538	1.588						
08,03,	340	1.590		6)	**********	=		
	348	1.609						
09.03,	350	1.614						
	350	1.814		7)		_		
09*04	340	1.590		,,		_		
	343	1.597						
09.02.	345	1.802		TOTAL		=	0.591	
44.44	345	1.602		MEDIA		=	0.591	
09"06"	335	1.579		DENSIDAD	REAL	= 1 +	0.5ଛୀ	= 1.58
TOTAL		33,792						
PROMED.	1	1.609		İ				
FV = Factor	Nominal =	0.997 0.21647	m2					
		Dreal	539					
ට්ස්කා. = ට	orreccion del diamer	ro = (= ()2 = 1.0 525	0540				
		Cristi						
Ot = conrec	oion de la proyeccio			00				
Cd = Corre	ooion de la densidad	Pens. Real - 1,00	•).984				
		Dens. Nom 1,0	co 0.800					
Vo = Veloc	idad Central = 1.60	09 Co =						
S				7.				
$Q = FV \times 6$	3C) v Cdiam . x Ct x C	'd x (Co) x Vo =	0.3217 m3/s	1				
K =	0.19914	17	Q = 321.71/s					

Loosi: Salid	da L. Aduccion Reserv	vorios Gemelos f	ia. Ara.			NSIDAD
D.Nom.	mm. D. Real	539 mm				
PITOT No:	DENS.:	1.80			2.1	
MANOMET	TRO AL	mm		1)	=	0.583
OPERADO	R: Juan Alvites Bullor	CAL:	VER.:		3.6	
Observ. :					2.6	
TIEMPO	DEFLEXION (mm)	VELOC. (m/a)	PRESION (m)	2)		0.578
10*34'	411	1.749		Σ,		0.078
	424	1.776			4.5	
10"35"	429	1.767			3.2	
	444	1.919	-	3)	=	0.604 *
10"36"	427	1.792			5.3	
	406	1.758			3.6	
10"37"	409	1.744		4)		0.580
	394	1.712			8.23	
10°3E	591	1.703				
	330	1.567			4.1	
10°39'	315	1.531		5)		0.585
	328	1.562			7	
10"40"	335	1.579			4.9	
	340	1 590		8)		0.592 *
10-41			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		9.1	
					5.7	
10°42'				-7\		2.50* *
				7)		0.594 *
10*43*					9.6	
				TOTAL	=	2.326
10*44				MEDIA	=	0.591
TOTAL		23.841		DENSIDA	REAL = 1+	0.581 = 1.5
FROMED.		1.609	7	1		
FV = Factor	Nominal Conregida	0.9 2 7 0.21647	m2			
		Oreal	539			
,uam. = Ç	orreccion del diamero	2nam.	525	15 4 0		
Ct = oorreo	oion de la proyeccion	de la valvula de il Dens. Real - 1,00		00		
3d ≕ Corre	eccion de la densidad=	Dens. Nom 1,0).984		9
	oidad Central = 1.688 N	Co = 1.0	00			
	SC) x Cdiam, x Ct x Cd		0.3364 m3/s	1		