UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

APLICACIÓN DEL SVC EN EL CONTROL DE LA TENSION EN SISTEMAS ELECTRICOS DE POTENCIA

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO ELÉCTRICISTA

PRESENTADO POR:

CARLOS ALBERTO AVILA MENDOZA

PROMOCIÓN 2007- I

LIMA – PERÚ 2010 APLICACIÓN DEL SVC EN EL CONTROL DE LA TENSION EN SISTEMAS ELECTRICOS DE POTENCIA Dedicado a mis padres, hermanos y familia.

SUMARIO

El presente informe de suficiencia está enfocado a mostrar el funcionamiento del SVC (Compensador Estático de Potencia Reactiva, por sus siglas en ingles) como equipo de compensación automática de potencia reactiva que mejora el perfil de la tensión, en un Sistema Eléctrico de Potencia.

Se realiza una breve descripción histórica del surgimiento de esta tecnología y su aplicación como alternativa de solución a diferentes problemas que se presentan en la operación de sistemas eléctricos industriales y de potencia.

Se presentan las ecuaciones matemáticas que describen el comportamiento del SVC en función del ángulo de disparo de los tiristores que la componen.

Posteriormente se plantean las ecuaciones generales de flujo de potencia, incluyendo las ecuaciones del SVC, y se resuelve el sistema mediante el método numérico de Newton-Raphson a través de un programa elaborado en MATLAB.

Se emplea un Sistema Eléctrico de Potencia de 5 barras como sistema de prueba donde se analiza los efectos en el perfil de las tensiones cuando se instala un SVC en una de las barras de carga cuyo nivel de tensión nominal es de 66kV.

Finalmente, se presentan las conclusiones sobre la base de los resultados obtenidos en el análisis realizado al sistema de prueba.

INDICE

INTR	ODUCCION	1
CAPI	TULO I	
OBJE	CTIVOS Y REVISION BIBLIOGRAFICA	2
1.1	Objetivo	2
1.2	Alcances	2
1.3	Estado del Arte	2
CAPI	TULO II	
FUNI	DAMENTO TEORICO	
2.1	Definición del SVC	5
2.2	Modelación Matemática de la Susceptancia Equivalente del SVC	7
2.2.1	Susceptancia Equivalente del SVC	7
2.3	Característica del SVC en estado estacionario	10
2.4	Modelos del SVC en estado estacionario para cálculos de flujo de carga	10
2.4.1	Modelo de generador-susceptancia fija	11
2.4.2	Modelo de susceptancia total del SVC ($B = B_{SVC}$)	11
2.4.3	Modelo del ángulo de disparo del SVC	12
CAPI	TULO III	
FLUJ	O DE POTENCIA Y DESARROLLO DE UN PROGRAMA EN MATLAB	
3.1	Solución del Flujo de Potencia por el método Newton-Raphson	13
3.2	Programa en Matlab para la solución del Flujo de Potencia por el	14
	método Newton-Raphson. Diagrama de Flujo	
3.3	Inclusión del modelo del ángulo de disparo del SVC en la solución	16
	del Flujo de Potencia por el método Newton-Raphson	
3.3.1	Inclusión del modelo del ángulo de disparo del SVC en el programa	16
	de Matlab. Diagrama de Flujo	

CAPITULO IV

ANA	LISIS DEL SVC EN UN SISTEMA ELECTRICO DE 5 BARRAS	
4.1	Variaciones de Potencia Reactiva Inductiva	18
4.1.1	Sistema eléctrico en 66kV de 5 barras sin SVC	18
4.1.2	Perfil de tensiones, sin SVC, en la barra 3 de 66kV frente	21
	a variaciones de potencia reactiva inductiva	
4.1.3	Sistema eléctrico de 5 barras con SVC instalado en la barra 3 de 66kV	24
4.1.4	Perfil de tensiones, con SVC, en la barra 3 de 66kV frente	28
	a variaciones de potencia reactiva inductiva	
4.2	Variaciones de Potencia Reactiva Capacitiva	34
4.2.1	Perfil de tensiones, sin SVC, en la barra 3 de 66kV frente	34
	a variaciones de potencia reactiva capacitiva	
4.2.2	Perfil de tensiones, con SVC, en la barra 3 de 66kV frente	37
	a variaciones de potencia reactiva capacitiva	
4.3	Variaciones de Tensión en las barras de carga 4 y 5 de 66kV	43
4.3.1	Perfil de tensiones en las barras de carga 4 y 5 frente a variaciones	43
	de potencia reactiva inductiva en la barra 3 de 66kV	
4.3.2	Perfil de tensiones en las barras de carga 4 y 5 frente a variaciones	44
	de potencia reactiva capacitiva en la barra 3 de 66kV	
CON	CLUSIONES Y RECOMENDACIONES	45
ANE	XOS	46
BIBL	LIOGRAFIA	49

INTRODUCCIÓN

Antecedentes

El propósito del presente informe es mostrar el uso de la tecnología de los SVC's como alternativa de solución para algunos de los problemas que se presentan durante la operación de los sistemas eléctricos.

La aplicación de los SVC's en el Perú se inicia en el año 1998 con el objetivo de mejorar el perfil de tensiones que se tienen en las barras de la red eléctrica de Lima, instalándose dos SVC's en las subestaciones de Chavarría y Balnearios.

En este sentido, este trabajo se orienta a mostrar el principio de funcionamiento del sistema de compensación a través del planteamiento de sus ecuaciones matemáticas y de su solución mediante un método numérico elaborado a través del cual se muestran sus ventajas operativas en el control de la tensión.

Para demostrar esa mejora en la regulación de tensión, se plantea un sistema eléctrico de 5 barras, se desarrollan las ecuaciones de flujo de potencia y se incorporan las ecuaciones del SVC. Se resuelve el sistema de ecuaciones empleando el método iterativo de Newton-Raphson; a través de un programa de simulación implementado en MATLAB.

Finalmente, se analizan de los resultados de las simulaciones de diversos escenarios de operación del sistema de prueba a fin de verificar la conveniencia del uso del SVC y se presentan las conclusiones.

CAPITULO I

OBJETIVOS Y REVISION BIBLIOGRAFICA

1.1 Objetivo

El presente informe tiene los siguientes objetivos:

- a) Evaluar la conveniencia del uso de la tecnología del SVC.
- b) Mostrar los modelos matemáticos que gobiernan el comportamiento del SVC.
- c) Hacer un programa de simulación de flujo de carga en MATLAB para un sistema eléctrico demostrativo de 5 barras; los cuales constituyen tres barras de carga, una barra de generación y una barra de referencia; que incluye el modelo del SVC para la regulación de tensión.
- d) Analizar los resultados de la simulación del SVC en el sistema eléctrico de 5 barras

1.2 Alcances

En el presente informe se realiza el análisis del SVC, en estado estacionario, en un sistema eléctrico de 5 barras enfocando su comportamiento como equipo de regulación automático de tensiones en la barra que es instalado.

Las ecuaciones indicadas y el programa elaborado en Matlab pueden servir de base para estudios de análisis dinámico del SVC y estudios de sensibilidad del perfil de tensiones según la ubicación del SVC; los cuales no son temas tratados en el presente informe.

1.3 Estado del arte

En el pasado, los sistemas eléctricos de potencia eran relativamente simples y diseñados para ser autónomos. Actualmente, los sistemas de Potencia constan de una gran cantidad de interconexiones, no sólo entre compañías prestadoras de servicio eléctrico pertenecientes a un país, sino también entre sistemas de diferentes países; esto obedece principalmente a cuestiones de carácter económico, de seguridad en la operación del sistema y de la confiabilidad de suministro.

Las nuevas estructuras requieren que la potencia eléctrica sea transportada a través de líneas de transmisión bien definidas; sin embargo, las redes convencionales de los sistemas de potencia no pueden prever las expectativas futuras de flexibilidad en el control de la potencia. En los últimos años la demanda en los sistemas de potencia ha aumentado y a futuro seguirá incrementándose, lo que conlleva a una serie de problemas como la sobrecarga en las líneas de transmisión, cuellos de botella y oscilaciones de potencia. Soluciones tradicionales para resolver estos problemas fue la de instalar nuevas y costosas líneas de transmisión, sin embargo las dificultades que se presentan para su construcción, su localización, derecho de servidumbre, aspectos sociales y ambientales, etc. a menudo han motivado el desarrollo de nuevas tecnologías que permitan mitigar estos inconvenientes [1].

Como solución a los problemas indicados surgió la tecnología FACTS "Sistema Flexibles de Transmisión AC" (por sus siglas en ingles). El Compensador Estático de Potencia Reactiva-SVC (por sus siglas en ingles) es uno de estos sistemas inventados a los inicios de la década de 1970, primeramente para la atenuación del efecto flicker en los hornos de arco eléctrico y luego en los sistemas de transmisión de potencia [2]. La principal función del SVC es regular la tensión a través de generación ó absorción continua de potencia reactiva en una barra, manteniendo al sistema dentro de márgenes aceptables de operación. Fuera del rango de regulación del SVC, éste se comportará como una reactancia capacitiva o inductiva y sin capacidad de control de la tensión de la barra donde es instalada. Debido a los beneficios indicados, el SVC ha sido instalado en diferentes países del mundo brindando una alternativa técnica y económica para obtener una mejor operación y expansión de los sistemas eléctricos de potencia actuales.

El surgimiento del SVC se debe básicamente al desarrollo que se ha obtenido en el campo de la electrónica de potencia, consiguiéndose mayores niveles de capacidad de conducción de corriente y niveles de aislamiento en las válvulas de tiristores. La característica estática se debe a que el SVC no contiene elementos rotatorios para su funcionamiento como si los tiene la máquina síncrona operando como compensador síncrono.

En la Figura 1.1 se presenta el número aproximado de SVC instalados en el mundo [3].

Problemas de regulación inadecuada de la tensión en sistemas de transmisión en 345kV fueron resueltos instalando un SVC -35/+100MVAr en St. George, ubicado entre Arizona y Nevada [4].

Con el objetivo de transmitir mayor potencia, a través de las líneas de alta tensión en 550kV que conectan los centros de carga del estado de California y los centros de generación ubicados al este del río Colorado, se instaló un SVC de -120/+200MVAr en la subestación de Devers ubicado en California [5].

Números de SVC Instalados en el Mundo

Fig. 1.1 Número aproximado de SVC's instalados desde 1970 a 2004 [3] El remplazo de antiguos compensadores síncronos, debido principalmente a sus altos costos de mantenimiento y mejorar la regulación de la tensión, por un avanzado SVC en la ciudad de San Francisco se muestra en la referencia [6].

Actualmente, muchos SVCs han sido instalados en empresas de fundición de metales, los cuales realizan este proceso con hornos de arco eléctrico. En 1989 la empresa de fundición Washington Steel corporation remplazó un viejo horno de arco eléctrico por uno de mayor capacidad, 50 ton. Después de unos meses de haberse instalado esta nueva unidad, la empresa suministradora de energía recibió muchos reclamos, respecto a la fluctuación del voltaje (flicker), de los clientes residenciales que se encontraban en los alrededores de esta planta de fundición. Investigaciones de ingeniería confirmaron que la planta de fundición [7].

4

CAPITULO II

FUNDAMENTO TEORICO

2.1 Definición del SVC

Un SVC está constituido principalmente por los siguientes componentes:

- Transformador de Acoplamiento
- Válvula de tiristores
- Reactores
- Capacitores

La Figura 2.1 muestra las disposiciones más comunes para un SVC

Fig. 2.1 Principales Configuraciones de Circuitos de SVC's [8]

- TCR: Reactor Controlado por Tiristor
- TSR: Reactor Conmutado (On/Off) por Tiristor
- TSC: Capacitor Conmutado (On/Off) por Tiristor
- FC: Capacitor fijo
- TR: Transformador de Acoplamiento
- L,C: Inductancia y Capacitancia
- T1,T2: Tiristores de Potencia

Un SVC es una susceptancia (B) controlable que inyecta/absorbe potencia reactiva (Q) al sistema proporcional al cuadrado de la tensión en sus terminales. La Figura 2.2 ilustra a un SVC del tipo TCR/FC, mostrando el concepto de su operación. [3].

El objetivo del SVC es mantener, dentro del rango aceptable, la tensión de la barra en el lado de alta tensión para lo cual se lleva las señales de tensión y corriente hacia el regulador automático de tensión (AVR) y con ellos determinar el margen de error de la tensión en esta barra. Si la tensión decae el SVC inyectará potencia reactiva capacitiva neta, si la tensión aumenta el SVC consumirá potencia reactiva inductiva neta.

Para ambos casos, el control neto de la potencia reactiva inyectada o absorbida en el sistema es controlado por la rama TCR a través de la regulación del ángulo de disparo de las válvulas de tiristores los cuales modifican su valor dependiendo de la magnitud del error que existe entre la comparación de la tensión de referencia y la tensión registrada por el bloque de medición; el signo producto de esta comparación indicará el comportamiento del SVC, ya sea inyectando o absorbiendo potencia reactiva. Esta característica de regulación sólo se puede presentar entre los límites de potencia reactiva inductiva y capacitiva del SVC.

Fig. 2.2 Principio de Operación del SVC tipo TCR/FC [3]

2.2 Modelación Matemática de la Susceptancia Equivalente del SVC

2.2.1 Susceptancia Equivalente del SVC

A continuación se presenta la ecuación del SVC del tipo TCR/FC, disposición que es la más utilizada entre las aplicaciones existentes, ver Figura 2.3.

Fig. 2.3 Circuito del SVC del tipo TCR/FC [3]

El modelo en función del ángulo de disparo para este tipo de SVC se presenta a continuación:

$$I_{SVC} = -jB_{SVC}V_{SVC}$$
(2.1)

A frecuencia fundamental, la reactancia del equivalente del TCR está dado por [Ver Anexo A]:

$$X_{TCR} = \frac{\pi X_L}{\sigma - sen(\sigma)}$$
(2.2)

Donde: $\sigma = 2(\pi - \alpha)$, $X_L = wL$

Y en términos del ángulo de disparo se tiene:

$$X_{TCR} = X_L \frac{\pi}{\left[2(\pi - \alpha) + sen(2\alpha)\right]}$$
(2.3)

 σ y α son el ángulo de conducción y disparo respectivamente.

Para $\alpha = \frac{\pi}{2}$, el TCR conduce plenamente y la reactancia equivalente es igual a X_L . Para $\alpha = \pi$, el TCR se bloquea plenamente y la reactancia equivalente se vuelve infinito. La reactancia efectiva del SVC, X_{SVC} es determinado por la equivalencia en paralelo de X_C y X_{TCR} .

$$X_{SVC} = \frac{\pi X_L X_C}{X_C \left[2(\pi - \alpha) + sen(2\alpha) \right] - \pi X_L}$$
(2.4)

$$Q_{SVC} = -V_{SVC}^{2} \left[\frac{X_{c} \left[2(\pi - \alpha) + sen(2\alpha) \right] - \pi X_{L}}{\pi X_{c} X_{L}} \right]$$
(2.5)

Dependiendo de la relación entre la reactancia capacitiva y la reactancia inductiva, X_C / X_L , hay un valor para el ángulo de disparo " α ", de las válvulas de los tiristores, que causa la resonancia entre la inductancia y capacitancia que componen al SVC según se puede observar en la Figura 2.4. En este punto de resonancia el SVC no entrega ni absorbe potencia reactiva.

Fig. 2.4 Reactancia equivalente del SVC (X_{SVC}) vs. Ángulo de disparo (α) según la ecuación 2.4. $X_L=0.1134\Omega$, $X_C=0.2267\Omega$

La susceptancia equivalente $(B_{SVC} = -\frac{1}{X_{SVC}})$ como función del ángulo de disparo está

dado por:

$$B_{SVC} = \left[\frac{X_C \left[2(\pi - \alpha) + sen(2\alpha)\right] - \pi X_L}{\pi X_C X_L}\right]$$
(2.6)

Donde:

 B_{SVC} varía de manera continua en la región capacitiva como en la inductiva.

La Figura 2.5 muestra la gráfica de la susceptancia equivalente del SVC en función del ángulo de disparo, para los siguientes valores de reactancia inductiva y capacitiva $X_L = 0.1134\Omega$, $X_C = 0.2267\Omega$

En la gráfica se puede mostrar que el punto de resonancia para estos datos se presenta para un ángulo de disparo de las válvulas de tiristores de aproximadamente 105°. Para ángulos mayores a este valor el SVC entregará potencia reactiva al sistema, mientras tanto para ángulos menores el SVC absorberá potencia reactiva del sistema.

Fig. 2.5 Susceptancia equivalente del SVC (B_{SVC}) vs. Ángulo de disparo (α) según la ecuación 2.6. $X_L=0.1134\Omega$, $X_C=0.2267\Omega$

2.3 Característica del SVC en estado estacionario

La característica V-I en operación de estado estacionario del SVC se muestra en la Figura 2.6. En la práctica, un SVC regula la tensión en una barra entre un determinado rango de tensión [Vmin, Vmax] a través del ajuste de la tensión de referencia con una determinada pendiente establecida en el circuito de control. El valor de esta pendiente oscila generalmente entre [1%-5%]. V

2.4 Modelos del SVC en estado estacionario para cálculos de flujo de carga.

En términos prácticos el SVC puede ser visto como una reactancia ajustable con límites en la reactancia (B_{SVC}) o en el ángulo de disparo (α). Este modelo es colocado en una barra de tensión como se muestra en la Figura 2.7 del cual se obtendrá las ecuaciones no lineales de potencia del SVC y las ecuaciones linealizadas requeridas por el método Newton-Raphson.

Fig. 2.7 Susceptancia variable [5]

En general se tiene las siguientes ecuaciones para el circuito de la Figura 2.7:

$$I = jBV \tag{2.7}$$

$$Q_k = -V^2 B \tag{2.8}$$

Principalmente existen tres modelos del SVC para cálculos de flujo de potencia; el modelo de generador-susceptancia fija, el modelo de susceptancia total y el modelo del ángulo de disparo.

2.4.1 Modelo de generador-susceptancia fija

Cuando un SVC está operando entre sus límites, la relación entre la potencia reactiva inyectada y la tensión de la barra donde es instalada sigue la pendiente característica mostrada en la figura 2.4. Cuando el SVC está operando fuera de sus límites, se comporta como una susceptancia fija y la potencia reactiva que inyecta es proporcional al cuadrado de la tensión de la barra donde es instalada. Por lo tanto el SVC no puede ser simplemente modelado como una barra del tipo PV con límites fijos de potencia reactiva.

El modelo generador representa la pendiente conectando el SVC a una barra auxiliar separado de la barra de alta tensión a través de una reactancia, que es igual en por unidad a la pendiente característica. Este modelo puede ser directamente usado en un programa de flujo de potencia. Sin embargo, el modelo es válido solamente cuando el SVC está operando entre sus límites de regulación. Fuera de estos límites el modelo tiene que ser cambiado a un modelo de capacitor o inductor fijo dependiendo del límite de operación.

2.4.2 Modelo de susceptancia total del SVC ($B = B_{SVC}$)

Este modelo representa al SVC como una susceptancia ajustable dentro de un rango de límites $[B_{SVC\min} \le B_{SVC} \le B_{SVC\max}]$. Este modelo asume una tensión fija en la barra de conexión del SVC cuando opera dentro de sus límites. Por lo tanto, es similar a un modelo de barra tipo PV. Sin embargo, en lugar que la potencia reactiva dependa directamente de la tensión en la matriz Jacobiana, esta es reemplazada en términos de B_{SVC} , por lo tanto, tomando la susceptancia total B_{SVC} como una variable de estado, la ecuación linealizada usando la correspondiente matriz Jacobiana está dado por:

$$\Delta Q^{k}_{SVC} = \left(\partial Q_{SVC} / \partial B_{SVC}\right)^{k} \Delta B^{k}_{SVC}$$
(2.9)

$$\left(\partial Q_{SVC} / \partial B_{SVC}\right)^{k} = \left(V^{k}_{SVC}\right)^{2} = Q^{k}_{SVC} / B^{k}_{svc}$$

$$(2.10)$$

k: Barra donde es instalado el SVC.

Como B_{SVC} se vuelve una variable de estado en lugar de la tensión V, la barra ahora es llamada de tipo PVB. Cuando la operación del SVC se encuentra fuera de los límites, la barra tipo PVB debe cambiar a una barra del tipo PQ. La ventaja de este modelo es que solamente necesita un nodo para el SVC en el algoritmo de flujo de carga cuando se encuentre operando dentro o en los límites.

El problema del Modelo de Susceptancia Total es que se asume el voltaje del SVC como constante cuando opera dentro de los límites. Esto puede causar un error en el valor final de la susceptancia del SVC debido a la no inclusión de la pendiente de regulación del SVC. Este modelo, además, necesita otro proceso iterativo para obtener el ángulo de disparo del TCR a partir del valor de la susceptancia obtenida del flujo de carga.

2.4.3 Modelo del ángulo de disparo del SVC.

Este modelo puede ser visto como una extensión del modelo de susceptancia total, pero con el ángulo de disparo " α " como variable de estado que reemplaza directamente a la susceptancia del SVC " B_{SVC} ".

La matriz Jacobiana correspondiente a la derivada parcial de la potencia reactiva con respecto al ángulo de disparo se modifica según:

$$\Delta Q^{k}_{SVC} = \left(\partial Q_{SVC} / \partial \alpha_{SVC}\right)^{k} \Delta \alpha^{k}_{SVC}$$
(2.11)

$$\left(\partial Q_{SVC} / \partial \alpha_{SVC}\right)^{k} = 2\left(V_{SVC}^{k}\right)^{2} \left(\cos(2\alpha_{SVC}^{k}) - 1\right) / \left(\pi X_{L\max}\right)$$
(2.12)

La susceptancia equivalente puede ser calculado por:

 $X_{L_{\text{max}}}$: Reactancia del inductor.

 $X_{C_{\text{max}}}$: Reactancia del capacitor.

k : Barra donde es instalado el SVC.

Este modelo del SVC se usará para elaborar un programa para la solución de las ecuaciones de flujo de potencia y posteriormente analizar su aplicación en un sistema eléctrico de 5 barras. La ventaja de usar este modelo es el de poder obtener directamente el ángulo de disparo que se va obteniendo en cada análisis y tener un panorama de su comportamiento ya sea dentro de la región inductivo o dentro de la región capacitiva.

CAPITULO III

FLUJO DE POTENCIA Y DESARROLLO DE UN PROGRAMA EN MATLAB

3.1 Solución del Flujo de Potencia por el método Newton-Raphson

Las siguientes ecuaciones resuelven el sistema de ecuaciones del flujo de potencia no lineal:

$$\Delta P_i = P_i^{espec} - P_i^{calc} \tag{3.1}$$

$$\Delta Q_i = Q_i^{espec} - Q_i^{calc} \tag{3.2}$$

$$P_{i}^{calc} = \sum_{k=1}^{n} \left| \overline{V_{i}} \right| \left| \overline{Y_{ik}} \right| \left| \overline{V_{k}} \right| \cos \left(\theta_{ik} + \delta_{k} - \delta_{i} \right)$$
(3.3)

$$P_{i}^{calc} = \left| V_{i} \right|^{2} \left| Y_{ii} \right| \cos\left(\theta_{ii}\right) + \sum_{\substack{k=1\\k\neq i}}^{n} \left| \overline{V_{i}} \right| \left| \overline{Y_{ik}} \right| \left| \overline{V_{k}} \right| \cos\left(\theta_{ik} + \delta_{k} - \delta_{i}\right)$$

$$(3.4)$$

$$Q_{i}^{calc} = -\sum_{k=1}^{n} \left| \overline{V_{i}} \right| \left| \overline{Y_{ik}} \right| \left| \overline{V_{k}} \right| sen(\theta_{ik} + \delta_{k} - \delta_{i})$$
(3.5)

$$Q_{i}^{calc} = -\left|V_{i}\right|^{2}\left|Y_{ii}\right| sen\left(\theta_{ii}\right) - \sum_{\substack{k=1\\k\neq i}}^{n} \left|\overline{V_{i}}\right| \left|\overline{Y_{k}}\right| sen\left(\theta_{ik} + \delta_{k} - \delta_{i}\right)$$

$$(3.6)$$

En General:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} J_1 \end{bmatrix} \begin{bmatrix} J_2 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta | V | \end{bmatrix}$$
(3.7)

$$\begin{bmatrix} J_1 \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial \delta} \end{bmatrix}$$
(3.8)

$$\begin{bmatrix} J_2 \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial |V|} \end{bmatrix}$$
(3.9)

$$\begin{bmatrix} J_3 \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathcal{Q}}{\partial \delta} \end{bmatrix}$$
(3.10)

$$\begin{bmatrix} J_4 \end{bmatrix} = \begin{bmatrix} \frac{\partial Q}{\partial |V|} \end{bmatrix}$$
(3.11)

Elemento $[J_1]$:

$$\frac{\partial P_i}{\partial \delta_k} = -\left|\overline{V_i}\right| \left|\overline{Y_{ik}}\right| \left|\overline{V_k}\right| sen(\theta_{ik} + \delta_k - \delta_i) , \quad i \neq k$$
(3.12)

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{\substack{k=1\\k\neq i}}^n \left| \overline{V_i} \right| \left| \overline{Y_{ik}} \right| \left| \overline{V_k} \right| sen(\theta_{ik} + \delta_k - \delta_i) \quad \text{, elementos diagonales} \quad (3.13)$$

Elemento $[J_2]$:

$$\frac{\partial P_i}{\partial |V_k|} = \left| \overline{V_i} \right| \left| \overline{Y_{ik}} \right| \cos\left(\theta_{ik} + \delta_k - \delta_i\right) \qquad , \quad i \neq k$$
(3.14)

$$\frac{\partial P_i}{\partial |V_i|} = 2|V_i||Y_{ii}|\cos(\theta_{ii}) + \sum_{\substack{k=1\\k\neq i}}^{n} |\overline{Y_{ik}}||\overline{V_k}|\cos(\theta_{ik} + \delta_k - \delta_i) \quad \text{, elementos diagonales}$$
(3.15)

Elemento $[J_3]$:

$$\frac{\partial Q_i}{\partial \delta_k} = -\left|\overline{V_i}\right| \left|\overline{Y_{ik}}\right| \left|\overline{V_k}\right| \cos\left(\theta_{ik} + \delta_k - \delta_i\right) \qquad , \quad i \neq k$$
(3.16)

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{\substack{k=1\\k\neq i}}^n \left| \overline{Y_i} \right| \left| \overline{Y_{ik}} \right| \left| \overline{Y_k} \right| \cos \left(\theta_{ik} + \delta_k - \delta_i \right) \quad \text{, elementos diagonales} \quad (3.17)$$

Elemento [J4]:

$$\frac{\partial Q_i}{\partial |V_k|} = -\left|\overline{V_i}\right| \left|\overline{Y_{ik}}\right| sen\left(\theta_{ik} + \delta_k - \delta_i\right) , \quad i \neq k$$
(3.18)

$$\frac{\partial Q_i}{\partial |V_i|} = -2|V_i||Y_{ii}|sen(\theta_{ii}) - \sum_{\substack{k=1\\k\neq i}}^n |\overline{Y_{ik}}||\overline{V_k}|sen(\theta_{ik} + \delta_k - \delta_i) \quad \text{, elementos diagonales} \quad (3.19)$$

3.2 Programa en MATLAB para la solución del Flujo de Potencia por el método Newton-Raphson. Diagrama de Flujo.

El siguiente diagrama de flujo ha permitido implementar un programa en MATLAB para resolver el flujo de potencia por el método Newton-Raphson:

3.3 Inclusión del modelo del SVC con el ángulo de disparo en la solución del Flujo de Potencia por el método Newton-Raphson.

Cuando el SVC se instala en una de estas barras de consumo automáticamente los términos de la matriz jacobiana correspondientes a los cambios de potencia activa y reactiva respecto a la tensión de esta barra se hacen cero. En vez de disminuir en una orden la matriz jacobiana se procede a incluir la dependencia de la variación de la potencia reactiva y el ángulo de disparo del SVC para esta barra según la ecuación 2.12.

3.3.1 Inclusión del ángulo de disparo en el modelo del SVC en el programa en MATLAB para la solución del Flujo de Potencia. Diagrama de Flujo

CAPITULO IV

ANALISIS DEL SVC EN UN SISTEMA ELECTRICO DE 5 BARRAS

4.1 Variaciones de Potencia Reactiva Inductiva

4.1.1 Sistema eléctrico de 5 barras sin SVC

La figura 4.1 muestra el sistema eléctrico de 5 barras, sin SVC, que se empleará para realizar las simulaciones de flujo de potencia.

Fig. 4.1 Sistema Eléctrico de 5 barras sin SVC para estudios de Flujo de Potencia [5].

De	Hacia	R	Х	B/2
Barra	Barra	p.u	p.u	p.u
1	2	0.020	0.060	0.030
1	3	0.080	0.240	0.025
2	3	0.060	0.180	0.020
2	4	0.060	0.180	0.020
2	5	0.040	0.120	0.015
3	4	0.010	0.030	0.010
4	5	0.080	0.240	0.025

Tabla Nº 4.1 Datos de Líneas

Tabla Nº 4.2 Datos de Barras

6							
Barra	Тіро	Vsp	theta	PGi	QGi	PLi	QLi
1	1	1.06	0	0	0	0	0
2	2	1	0	40	0	20	10
3	3	1	0	0	0	45	5
4	3	1	0	0	0	40	5
5	3	1	0	0	0	60	10
Tipo 1: E	Barra de r	eferencia					
Tipo 2: Barra tipo PV							
Tipo 3: E	Barra tipo	PQ					

A continuación se presenta la tabla 4.3 el cual muestra los resultados obtenidos del flujo de potencia para el sistema eléctrico de 5 barras y según los datos indicados en las tablas 4.1 y 4.2:

Tabla Nº 4.3 Resultado de Flujo de Potencia

	Análisis Flujo de Carga Newton Raphson							
Bai No	rra V pu	Angulo Grados	Iny MW	ección MVAr	Gene MW	ración MVAr	Ca MW	arga MVAr
1	1.0500	0.0000	131.067	88.129	131.067	88.129	0.000	0.00
2	1.0000	-2.0568	20.000	-79.209	40.000	-69.209	20.000	10.00

	Análisis Flujo de Carga Newton Raphson							
B N	Barra V Angulo Inyección Generación Carga No pu Grados MW MVAr MW MVAr MW MVAr							
3	0.9935	-4.7352	-45.000	-5.000	-0.000	-0.000	45.000	5.00
4	0.9892	-5.0303	-40.000	-5.000	0.000	0.000	40.000	5.00
5	0.9734	-5.7803	-60.000	-10.000	0.000	0.000	60.000	10.00
Tc	otal		6.067	-11.08	171.07	18.92	165.00	30.00

Los resultados del flujo de potencia muestran que es necesario una generación total de 171.07MW y 18.92MVAr para satisfacer la demanda total de 165MW y 30MVAr. La barra de referencia presenta una tensión del 5%.

Tabla Nº 4.4 Resultado de Pérdidas y Flujo en Líneas

Pérdidas y Flujos en Líneas									
De Barra	Hacia Barra	1 P a MW	Q MVAr	De Barra	Hacia Barra	P MW	Q MVAr	Pérdida MW	en Líneas MVAr
1	2	89.208	77.402	2	1 -	86.725	-69.953	2.483	7.449
1	3	41.859	16.906	3	1 -	40.408	-12.553	1.451	4.353
2	3	24.474	-3.955	3	2 -	24.105	5.062	0.369	1.106
2	4	27.681	-2.475	4	2 -	27.218	3.865	0.463	1.390

Pérdidas y Flujos en Líneas | De |Hacia | P | Q | De | Hacia | P | Q | Pérdida en Líneas | |Barra|Barra | MW | MVAr | Barra | Barra | MW | MVAr | MW | MVAr | 2 5 54.570 5.675 5 2 -53.366 -2.063 1.204 3.612 3 4 19.513 7.921 4 3 -19.468 -7.786 0.045 0.135 4 5 6.686 4.302 5 4 -6.634 -4.147 0.052 0.155 Pérdidas Totales 6.067 18.200

Los resultados muestran el flujo de potencia en las líneas de transmisión que interconectan las barras del sistema, el valor total de pérdidas es 6.067MW. El mayor flujo de potencia se presenta en la línea que interconecta las barras 1 y 2 generando una mayor contribución al valor total de las pérdidas.

4.1.2 Perfil de tensiones, sin SVC, en la barra 3 frente a variaciones de potencia reactiva inductiva.

Para el análisis de perfil de tensiones en la barra 3, como consecuencia de cambios de potencia reactiva inductiva, se realizará los cambios de potencia en esta barra según la tabla 4.5.

PL3 (MW)	QL3(MVAr)
45	5
45	10
45	15
45	20
45	25
45	30
45	35
45	40

Tabla Nº 4.5 Cambios de potencia reactiva inductiva en la barra 3

N. Second St.	Sel march
PL3 (MW)	QL3(MVAr)
45	45
45	50
45	55
45	60
45	65
45	70
45	75
45	80
45	90
45	100
45	110
45	120
45	130
45	140
45	150
45	160
45	170
45	180
45	190
45	200

Tabla Nº 4.5 Cambios de potencia reactiva inductiva en la barra 3

La tabla 4.6 muestra los resultados obtenidos del flujo de potencia para los casos indicados en la tabla 4.5

PL3 (MW)	QL3(MVAr)	V3(p.u)	Perd.Tot. (MW)
45	5	0.9935	6.067
45	10	0.9904	6.089
45	15	0.9872	6.122
45	20	0.9841	6.167
45	25	0.9809	6.223
45	30	0.9777	6.292
45	35	0.9744	6.372

Tabla Nº 4.6 Resultados de flujo de potencia

PL3 (MW)	QL3(MVAr)	V3(p.u)	Perd.Tot. (MW)
45	40	0.9712	6.465
45	45	0.9679	6.571
45	50	0.9646	6.689
45	55	0.9612	6.821
45	60	0.9579	6.967
45	65	0.9545	7.126
45	70	0.9511	7.299
45	75	0.9476	7.487
45	80	0.9442	7.690
45	90	0.9371	8.141
45	100	0.9300	8.656
45	110	0.9227	9.238
45	120	0.9153	9.891
45	130	0.9078	10.619
45	140	0.9000	11.426
45	150	0.8922	12.316
45	160	0.8841	13.296
45	170	0.8759	14.371
45	180	0.8675	15.548
45	190	0.8589	16.834
45	200	0.8500	18.237

Tabla Nº 4.6 Resultados de flujo de potencia

La figura 4.2 muestra el perfil de la tensión en la barra 3 versus los cambios de potencia reactiva inductiva en esta barra.

Fig. 4.2 V3 [p.u] vs. Q3 [MVAr] en la barra 3 sin SVC Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.5.

La magnitud del nivel de tensión en la barra 3 va decayendo conforme la carga instalado en esta barra va aumentando de valor; el nivel de tensión decae a menos de 0.95p.u para valores superiores a los 70MVAr de potencia instalada en esta barra.

La figura 4.3 muestra el perfil de las pérdidas totales de potencia activa del sistema eléctrico versus los cambios de potencia reactiva inductiva en esta barra.

Fig. 4.3 Pérdidas [MW] vs. Q3 [MVAr] para el sistema eléctrico de 5 barras sin SVC Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.5.

4.1.3 Sistema eléctrico de 5 barras con SVC instalado en la barra 3.

La figura 4.4 muestra el sistema eléctrico de 5 barras que se empleará para realizar las simulaciones de flujo de potencia y analizar el comportamiento del SVC en este sistema. Los datos del SVC instalado en la barra 3 se muestran en la tabla 4.7.

Ubicación del SVC:	Barra3	
Potencia capacitiva del SVC:	+100	MVAr
Potencia inductiva del SVC:	-50	MVAr
Reactancia capacitiva de TSC:	1.0	p.u
Reactancia inductiva de TCR:	0.667	p.u
Ángulo inicial de disparo del SVC:	140°	
Ángulo mínimo de disparo del SVC:	90°	
Ángulo máximo de disparo del SVC:	180°	
Tensión de referencia del SVC:	1.0	p.u
Pendiente de regulación del SVC:	1.0	%

Fig. 4.4 Sistema Eléctrico de 5 barras con SVC para estudios de Flujo de Potencia [5]

A continuación se presenta la tabla 4.8 el cual muestra los resultados obtenidos del flujo de potencia para el sistema eléctrico de 5 barras con un SVC instalado en la barra 3 y según los datos indicados en las tablas 4.1, 4.2 y 4.8.

Tabla Nº 4.8	Resultado de Flujo de	Potencia con SVC

		Anál	isis Flujo	de Carga	Newton R	aphson-co	on SVC	
Ba Nc	rra V o pu	Angulo Grados	Inye MW	cción MVAr	Genei MW	ración MVAr	Ca MW	arga MVAr
1	1.0500	0.0000	131.055	85.731	131.055	85.731	0.000	0.000
2	1.0000	-2.0538	20.000	-85.975	40.000	-75.975	20.000	10.000

	Análisis Flujo de Carga Newton Raphson-con SVC								
Ba No	urra V D pu	Angulo Grados	Inye MW	cción MVAr	Gener MW	ración MVA	C r MV	Carga V MVAr	
3	0.9991	-4.8236	-45.000	4.004	-0.000	9.004	45.000	5.000	
4	0.9937	-5.0965	-40.000	-4.999	0.000	0.001	40.000	5.000	
5	0.9749	-5.7950	-60.000	-10.000	-0.000	0.000	60.000	10.000	
To	tal		6.055	-11.238	171.055	18.762	165.000	30.000	

Los resultados del flujo de potencia muestran que es necesaria una generación total de 171.05MW y 18.76Mvar para satisfacer la demanda total de 165MW y 30MVAr. La barra de referencia presenta una tensión del 5%, mientras que en la barra N°3 donde es instalada el SVC se mantiene la tensión muy cercano al valor de 1.0p.u. En las barras restantes el valor de la tensión está dentro de los márgenes aceptables.

Tabla Nº 4.9 Resultado de Pérdidas y Flujo en Líneas

	Pérdidas y Flujos en Líneas								
De Barra	Hacia Barra	a P MW	Q MVAr	De Barra	Hacia Barra	P MW	Q MVAr	Pérdida MW	en Líneas MVAr
1	2	89.122	77.428	2	1	-86.641	-69.985	2.481	7.443

Pérdidas y Flujos en Líneas									
De Barra	Haci Barra	ia P a MW	Q MVAr E	De Barra	Hac Barr	ia P a MW	Q MVAr	Pérdida MW	en Líneas MVAr
1	2	89.122	77.428	2	1	-86.641	-69.985	2.481	7.443
1	3	41.933	14.483	3	1	-40.532	-10.279	1.401	4.204
2	3	24.485	-7.012	3	2	-24.095	8.180	0.389	1.168
2	4	27.661	-4.922	4	2	-27.188	6.343	0.474	1.421
2	5	54.495	4.445	5	2	-53.299	-0.858	1.196	3.587
3	4	19.627	11.594	4	3	-19.575	-11.438	0.052	0.156
4	5	6.763	5.526	5	4	-6.701	-5.340	0.062	0.185
Pérdi	das 7	Fotales						6.055	18.164

Tabla Nº 4.9 Resultado de Pérdidas y Flujo en Líneas

4.1.4 Perfil de tensiones, con SVC, en la barra 3 frente a variaciones de potencia reactiva inductiva.

Para el análisis de perfil de tensiones con SVC en la barra 3 como consecuencia de cambios de potencia reactiva inductiva en esta barra se realizará los cambios de potencia en esta barra según la tabla 4.10.

PL3 (MW)	QL3(MVAr)				
45	30				
45	35				
45	40				
45	45				
45	50				
45	55				
45	60				
45	65				
45	70				
45	75				
45	80				
45	85				
45	90				
45	95				
45	100				
45	105				
45	107				
45	108				
45	112				
45	115				
45	120				
45	125				
45	130				
45	135				
45	140				
45	145				
45	150				
45	155				
45	160				
45	165				
45	170				
45	175				
45	180				
45	185				
45	190				
45	195				
45	200				

Tabla Nº 4.10 Cambios de potencia reactiva inductiva en la barra 3

La tabla 4.11 muestra los resultados obtenidos del flujo de potencia para los casos indicados en la tabla 4.10.

PL3 (MW)	QL3(MVAr)	V3(p.u)	Perd.Tot. (MW)	FA(Grados)	BSVC(p.u)
45	5	0.9991	6.055	108.30	0.090
45	10	0.9987	6.054	109.75	0.133
45	15	0.9982	6.054	111.23	0.177
45	20	0.9978	6.054	111.75	0.220
45	25	0.9974	6.055	114.30	0.264
45	30	0.9969	6.055	115.89	0.307
45	35	0.9965	6.056	117.53	0.351
45	40	0.9961	6.057	119.22	0.394
45	45	0.9956	6.058	120.97	0.438
45	50	0.9952	6.059	122.79	0.482
45	55	0.9948	6.061	124.70	0.526
45	60	0.9943	6.063	126.70	0.570
45	65	0.9939	6.065	128.82	0.614
45	70	0.9935	6.067	131.07	0.658
45	75	0.9930	6.070	133.49	0.702
45	80	0.9926	6.072	136.14	0.746
45	85	0.9922	6.075	139.06	0.791
45	90	0.9917	6.078	142.39	0.835
45	95	0.9913	6.082	146.32	0.879
45	100	0.9908	6.085	151.31	0.924
45	105	0.9904	6.089	158.81	0.969
45	107	0.9902	6.090	164.08	0.987
45	108	0.9901	6.091	168.99	0.996
45	112	0.9876	6.118	180.00	1.000
45	115	0.9854	6.147	180.00	1.000
45	120	0.9818	6.207	180.00	1.000
45	125	0.9781	6.282	180.00	1.000
45	130	0.9744	6.373	180.00	1.000
45	135	0.9707	6.481	180.00	1.000
45	140	0.9669	6.605	180.00	1.000
45	145	0.9631	6.747	180.00	1.000
45	150	0.9592	6.906	180.00	1.000
45	155	0.9554	7.084	180.00	1.000
45	160	0.9514	7.280	180.00	1.000
45	165	0.9475	7.496	180.00	1.000
45	170	0.9435	7.731	180.00	1.000
45	175	0.9394	7.987	180.00	1.000
45	180	0.9354	8.264	180.00	1.000
45	185	0.9312	8.563	180.00	1.000
45	190	0.9271	8.884	180.00	1.000
45	195	0.9228	9.228	180.00	1.000
45	200	0.9186	9.596	180.00	1.000

Tabla Nº 4.11 Resultados de Flujo de Potencia

La figura 4.5 muestra el perfil de la tensión en la barra 3 versus los cambios de potencia reactiva inductiva en esta barra.

La instalación del SVC permite mantener el valor de la tensión en la barra 3 en el rango de 0.99pu a 1.0p.u hasta un valor de potencia de carga de 112MVAr a partir del cual el SVC no tiene más capacidad de inyectar potencia reactiva capacitiva y en consecuencia la tensión va decayendo según se incrementa la carga instalada en esta barra.

Fig. 4.6 Pérdidas [MW] vs. Q3 [MVAr] para el sistema eléctrico de 5 barras con SVC Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.7 y 4.10.

La figura 4.6 muestra el perfil de las pérdidas totales de potencia activa del sistema eléctrico versus los cambios de potencia reactiva inductiva en esta barra.

La figura 4.7 muestra el perfil del ángulo de disparo de los tiristores del SVC versus los cambios de potencia reactiva inductiva en esta barra.

El ángulo de disparo de los tiristores aumenta hasta que se produce su apagado completo, 180°, donde se obtiene el mayor aporte de potencia reactiva capacitiva al sistema.

La figura 4.8 muestra el perfil de la susceptancia del SVC versus los cambios de potencia reactiva inductiva en esta barra. La susceptancia equivalente del SVC aumenta hasta su valor límite de 1.0p.u, a partir del cual el SVC se comporta como un capacitor fijo para potencias mayores a 112MVAr instalados en la barra 3.

La figura 4.9 muestra el perfil de la susceptancia del SVC versus el ángulo de disparo de los tiristores del SVC.

La figura 4.10 muestra la comparación de los perfiles de la tensión en la barra 3 versus los cambios de potencia reactiva inductiva en esta barra para los casos en el que no es instalado el SVC (línea de color rojo) y cuando es instalado el SVC (línea de color azul) en el sistema eléctrico de 5 barras planteado.

De la figura 4.10 mostrada se puede observar la capacidad de regulación de la tensión que tiene el SVC hasta una potencia de carga inductiva instalada de 112MVAr. Cuando no es

instalado un SVC el límite inferior de tensión, 0.95p.u, se da para una potencia de carga de 70MVAr; cuando se instala el SVC la potencia de carga para este límite es de 160MVAr.

Fig. 4.9 BSVC [p.u] vs Ángulo de disparo del SVC[°] Resultados del Flujo de Potencia en MATLAB para los datos de la tabla N°4.7 y 4.10.

La figura 4.11 muestra la comparación de los perfiles de pérdidas totales de potencia activa del sistema eléctrico versus los cambios de potencia reactiva inductiva en esta barra para los casos en el que no es instalado el SVC (línea de color rojo) y cuando es instalado el SVC (línea de color azul) en el sistema eléctrico de 5 barras planteado.

4.2 Variaciones de Potencia Reactiva Capacitiva

4.2.1 Perfil de tensiones, sin SVC, en la barra 3 frente a variaciones de potencia reactiva capacitiva.

Para el análisis de perfil de tensiones en la barra 3, como consecuencia de cambios de potencia reactiva capacitiva, se realizará los cambios de potencia en esta barra según la tabla 4.12.

PL3 (MW)	QL3(MVAr)
45	-5
45	-10
45	-15
45	-20
45	-25
45	-30
45	-35
45	-40
45	-45
45	-50
45	-55
45	-60
45	-65
45	-70
45	-75
45	-80
45	-85
45	-90
45	-95
45	-100
45	-105
45	-110
45	-115
45	-120
45	-125
45	-130
45	-135
45	-140
45	-145
45	-150

Tabla Nº 4.12 Cambios de potencia reactiva capacitiva en la barra 3

La tabla 4.13 muestra los resultados obtenidos del flujo de potencia para los casos indicados en la tabla 4.12.

PL3 (MW)	QL3(MVAr)	V3(p.u)	Perd.Tot. (MW)
45	-5	0.9997	6.055
45	-10	1.0028	6.066
45	-15	1.0058	6.087
45	-20	1.0088	6.117
45	-25	1.0119	6.158
45	-30	1.0148	6.209
45	-35	1.0178	6.270
45	-40	1.0208	6.340
45	-45	1.0237	6.419
45	-50	1.0266	6.508
45	-55	1.0295	6.606
45	-60	1.0324	6.712
45	-65	1.0353	6.828
45	-70	1.0381	6.951
45	-75	1.0409	7.084
45	-80	1.0438	7.225
45	-85	1.0466	7.374
45	-90	1.0494	7.531
45	-95	1.0521	7.696
45	-100	1.0549	7.869
45	-105	1.0576	8.049
45	-110	1.0604	8.237
45	-115	1.0631	8.433
45	-120	1.0658	8.636
45	-125	1.0685	8.847
45	-130	1.0711	9.064
45	-135	1.0738	9.289
45	-140	1.0764	9.521
45	-145	1.0791	9.760
45	-150	1.0817	10.005

Tabla Nº 4.13 Resultados de flujo de potencia

La figura 4.12 muestra el perfil de la tensión en la barra 3 versus los cambios de potencia reactiva capacitiva en esta barra.

La magnitud del nivel de tensión en la barra 3 va aumentando conforme la carga instalada en esta barra va aumentando de valor; el nivel de tensión se incrementa a más de 1.05p.u para valores superiores a los 90MVAr de potencia capacitiva instalada en esta barra. La figura 4.13 muestra el perfil de las pérdidas totales de potencia activa del sistema eléctrico versus los cambios de potencia reactiva capacitiva en esta barra.

Fig. 4.13 Pérdidas[MW] vs. Q3[MVAr] para el sistema eléctrico de 5 barras sin SVC Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.12.

4.2.2 Perfil de tensiones, con SVC, en la barra 3 frente a variaciones de potencia reactiva capacitiva.

Para el análisis de perfil de tensiones con SVC en la barra 3 como consecuencia de cambios de potencia reactiva capacitiva en esta barra se realizará los cambios de potencia en esta barra según la tabla 4.14.

PL3 (MW)	QL3(MVAr)
45	-5
45	-10
45	-15
45	-20
45	-25
45	-30
45	-35
45	-40
45	-45
45	-50
45	-55
45	-60
45	-65
45	-70
45	-75
45	-80
45	-85
45	-90
45	-95
45	-100
45	-105
45	-110
45	-115
45	-120
45	-125
45	-130
45	-135
45	-140
45	-145
45	-150

Tabla Nº 4.14 Cambios de potencia reactiva capacitiva en la barra 3

La tabla 4.15 muestra los resultados obtenidos del flujo de potencia para los casos indicados en la tabla 4.14.

PL3 (MW)	QL3(MVAr)	V3(p.u)	Perd.Tot. (MW)	FA(Grados)	BSVC(p.u)
45	-5	1.0000	6.056	105.48	0.004
45	-10	1.0004	6.057	104.10	-0.039
45	-15	1.0008	6.058	102.74	-0.082
45	-20	1.0012	6.059	101.39	-0.125
45	-25	1.0017	6.061	100.06	-0.167
45	-30	1.0021	6.063	98.75	-0.210
45	-35	1.0025	6.065	97.44	-0.253
45	-40	1.0030	6.067	96.15	-0.295
45	-45	1.0034	6.069	94.86	-0.338
45	-50	1.0038	6.072	93.58	-0.380
45	-55	1.0042	6.074	92.31	-0.422
45	-60	1.0047	6.077	91.04	-0.465
45	-65	1.0055	6.084	90.00	-0.500
45	-70	1.0084	6.112	90.00	-0.500
45	-75	1.0112	6.149	90.00	-0.500
45	-80	1.0140	6.195	90.00	-0.500
45	-85	1.0168	6.249	90.00	-0.500
45	-90	1.0196	6.312	90.00	-0.500
45	-95	1.0224	6.383	90.00	-0.500
45	-100	1.0252	6.463	90.00	-0.500
45	-105	1.0279	6.551	90.00	-0.500
45	-110	1.0306	6.647	90.00	-0.500
45	-115	1.0334	6.750	90.00	-0.500
45	-120	1.0361	6.862	90.00	-0.500
45	-125	1.0388	6.981	90.00	-0.500
45	-130	1.0414	7.107	90.00	-0.500
45	-135	1.0441	7.241	90.00	-0.500
45	-140	1.0467	7.383	90.00	-0.500
45	-145	1.0494	7.531	90.00	-0.500
45	-150	1.0520	7.687	90.00	-0.500

Tabla Nº 4.15 Resultados de flujo de potencia

Fig. 4.14 V3[p.u] vs. Q3[MVAr] en la barra 3 con SVC Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.14.

La instalación del SVC permite mantener el valor de la tensión en la barra 3 en el rango de 1.00pu a 1.005p.u hasta un valor de potencia de carga capacitiva de 65MVAr a partir del cual el SVC no tiene más capacidad de absorber potencia reactiva capacitiva y en consecuencia la tensión va aumentando según se incrementa la carga capacitiva instalada en esta barra.

Fig. 4.15 Pérdidas[MW] vs. Q3[MVAr] para el sistema eléctrico de 5 barras con SVC Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.14.

La figura 4.15 muestra el perfil de las pérdidas totales de potencia activa del sistema eléctrico versus los cambios de potencia reactiva capacitiva en esta barra.

La figura 4.16 muestra el perfil del ángulo de disparo de los tiristores del SVC versus los cambios de potencia reactiva capacitiva en esta barra.

El ángulo de disparo de los tiristores disminuye hasta que se produce su conducción completa, 90°, donde se obtiene la mayor absorción de potencia reactiva capacitiva del sistema.

La figura 4.17 muestra el perfil de la susceptancia del SVC versus los cambios de potencia reactiva capacitiva en esta barra.

La susceptancia equivalente del SVC disminuye hasta su valor límite de 0.5p.u, a partir del cual el SV – se comporta como un inductor fijo para potencias mayores a 65MVAr capacitivos instalados en la barra 3.

La figura 4.18 muestra el perfil de la susceptancia del SVC versus el ángulo de disparo de los tiristores del SVC.

Fig. 4.18 BSVC [p.u] vs Ángulo de disparo del SVC [°] Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.14.

para los datos de la tabla Nº4.12 y 4.14.

La figura 4.19 muestra la comparación de los perfiles de la tensión en la barra 3 versus los cambios de potencia reactiva capacitiva en esta barra para los casos en el que no es instalado el SVC (línea de color rojo) y cuando es instalado el SVC (línea de color azul) en el sistema eléctrico de 5 barras planteado.

De la figura mostrada se puede observar la capacidad de regulación de la tensión que tiene el SVC hasta una potencia de carga capacitiva instalada de 65MVAr. Cuando no es instalado un SVC el límite superior de tensión, 1.05p.u, se da para una potencia de carga de 90MVAr; cuando se instala el SVC la potencia de carga para este límite es de 145MVAr.

La figura 4.20 muestra la comparación de los perfiles de pérdidas totales de potencia activa del sistema eléctrico versus los cambios de potencia reactiva capacitiva en esta barra para los casos en el que no es instalado el SVC (línea de color rojo) y cuando es instalado el SVC (línea de color azul) en el sistema eléctrico de 5 barras planteado. De las curvas mostradas se observa la disminución de las pérdidas totales del sistema cuando es instalado un SVC.

4.3 Variaciones de Tensión en las barras de carga 4 y 5.

4.3.1 Perfil de tensiones en las barras de carga 4 y 5 frente a variaciones de potencia reactiva inductiva en la barra 3.

Las figuras 4.21 y 4.22 muestran la comparación de los perfiles de la tensión en las barra 4 y 5, respectivamente, versus los cambios de potencia reactiva inductiva en la barra 3 para los casos en el que no es instalado el SVC (línea de color rojo) y cuando es instalado el SVC (línea de color azul) en el sistema eléctrico de 5 barras planteado.

Resultados del Flujo de Potencia en MATLAB para los datos de la tabla Nº4.5, 4.9 y 4.12.

4.3.2 Perfil de tensiones en las barras de carga 4 y 5 frente a variaciones de potencia reactiva capacitiva en la barra 3.

Las figuras 4.23 y 4.24 muestran la comparación de los perfiles de la tensión en las barra 4 y 5, respectivamente, versus los cambios de potencia reactiva capacitiva en la barra 3 para los casos en el que no es instalado el SVC (línea de color rojo) y cuando es instalado el SVC (línea de color azul) en el sistema eléctrico de 5 barras planteado.

CONCLUSIONES

- El SVC permite mantener la tensión en la barra, donde es instalado, dentro de los márgenes técnicos aceptables y de manera automática a través de la absorción o inyección de potencia reactiva.
- El SVC realiza la regulación automática de la tensión, en la barra donde es instalada, cuando los requerimientos de potencia reactiva se encuentran dentro de sus límites inductivos o capacitivos.
- 3. La operación del SVC fuera de sus límites reactivos tiene el comportamiento de una carga pasiva (reactor o capacitor) conectada a la barra sin capacidad de regulación. En estos casos los tiristores que componen al SVC operan a sus valores angulares límites de 90° para la operación inductiva y 180° para la operación capacitiva.

RECOMENDACIONES

- El SVC reduce las pérdidas de potencia por efecto joule en un sistema eléctrico debido a que la potencia reactiva necesaria para mantener la tensión dentro de los límites es inyectada en la barra donde es instalado y ya no se requiere que sea transportada desde los centros de generación hasta las barras de carga donde son requeridos.
- 2. El SVC mejora el perfil de tensiones de las barras de carga que se encuentran próximas a la barra donde es instalado.

ANEXOS

ANEXO A: CALCULO DE LA REACTANCIA EQUIVALENTE DEL TCR (REACTOR CONTROLADO POR TIRISTORES)

La relación entre el ángulo de disparo " α " y el ángulo de conducción " σ " está dado por:

$$\alpha + \frac{\sigma}{2} = \pi \qquad \Rightarrow \alpha = 2.(\pi - \alpha)$$

De la Figura se define los siguientes intervalos para la tensión en el reactor:

$$v_{L}(wt) = V_{m}Sen(wt)$$

$$0 \le wt \le \pi - \alpha$$

$$\alpha \le wt \le 2\pi - \alpha$$

$$\pi + \alpha \le wt \le 2\pi$$

$$v_{L}(wt) = 0$$

$$\pi - \alpha \le wt \le \alpha$$

$$2\pi - \alpha \le wt \le \pi + \alpha$$

Además la tensión en el reactor está dado por:

$$v_L = L \frac{di_L}{dt}$$

De las ecuaciones () y () se obtiene los siguientes intervalos para la corriente en el reactor:

$$i_{L}(\alpha, wt) = I_{m}(-\cos(\alpha) - \cos(wt)) \qquad 0 \le wt \le \pi - \alpha$$
$$I_{m}(\cos(\alpha) - \cos(wt)) \qquad \alpha \le wt \le 2\pi - \alpha$$
$$I_{m}(-\cos(\alpha) - \cos(wt)) \qquad \pi + \alpha \le wt \le 2\pi$$

Donde $I_m = \frac{V_m}{X_L}$ es el valor máximo de la corriente y X_L es la reactancia del reactor a la

frecuencia fundamental.

La serie de Fourier de la función de corriente tiene la foma:

$$i_{L}(wt) = \frac{A_{0}}{2} + \sum_{n=1}^{\infty} (A_{n} \cos(nwt) + B_{n} sen(nwt))$$

La corriente presenta simetría par y por lo tanto los coeficientes A_0 y B_n son cero para todo valor de n. Considerando solo la componente fundamental se tiene:

$$A_1 = \frac{1}{\pi} \int_0^{2\pi} i_L(wt) \cos(wt) d(wt)$$

Por tanto, la componente fundamental de la corriente será:

$$i_{L}(wt) = -\frac{I_{m}}{\pi} [2(\pi - \alpha) + sen(2\alpha)] .\cos(wt)$$

En general, la componente fundamental de corriente se atrasa $\frac{\pi}{2}$ respecto a la tensión:

$$i_L(wt) = I_m sen(wt - \frac{\pi}{2})$$

En términos de la función coseno:

$$i_L(wt) = -\frac{V_m}{X_V}\cos(wt)$$

Igualando los coeficientes de las expresiones anteriores

$$\frac{V_m}{X_v} = \frac{I_m}{\pi} [2(\pi - \alpha) + sen(2\alpha)]$$

Sustituyendo $I_m = \frac{V_m}{X_L}$ se tiene:

$$X_{v} = X_{L} \frac{\pi}{\left[2(\pi - \alpha) + sen(2\alpha)\right]} \quad , \quad 90^{\circ} \le \alpha \le 180^{\circ}$$

ANEXO B: PROGRAMA FUENTE ELABORADO EN MATLAB

% Datos de Barras del Sistema Eléctrico

function barradt = barradatas(num) % Tipo de Barra.... % 1 - Compensacion.. % 2 - Barra PV..

% 3 - Barra PQ..

% |Barra | Tipo | Vsp | theta | PGi | QGi | PLi | QLi | Qmin | Qmax |

barradat5 =[1	1	1.06	0	0	0	0	0	-500	500;
2	2	1.00	0	40	0	20	10	-300	300;
3	3	1.00	0	0	0	45	108	0	0;
4	3	1.00	0	0	0	40	5	0	0;
5	3	1.00	0	0	0	60	10	0	0;];

switch num

case 5 barradt = barradat5;

end

% Datos de Lineas del Sistema Eléctrico

function lineadt = lineadatas(num)

%	De	Hacia	R	X	B/2
%	Barra	1 Barra	pu	pu	pu
lineadat5 =	=[1 1 2 2 2 3 4	2 3 4 5 4 5	0.02 0.08 0.06 0.06 0.04 0.01 0.08	0.06 0.24 0.18 0.18 0.12 0.03 0.24	0.03 0.025 0.02 0.02 0.015 0.01 0.025];

switch num

case 5

lineadt = lineadat5;

end

% Datos de elementos shunts del Sistema Eléctrico

1

function shdt = shdatas(num)

```
%
       | De | Hacia | G | B
%
       | Bus | Bus | pu
                         | pu
                                1
shdat5 = [1]
                     0.0
                            0.0
                0
           2
                0
                     0.0
                            0.0
           3
                     0.0
               0
                            0.0
           4
                     0.0
               0
                            0.0
           5
               0
                     0.0
                            0.0];
switch num
  case 5
    shdt = shdat5;
 end
```

% Programa para la formación de la Matriz Impedancia y la Matriz Admitancia.... function Y = ybusppg(num) % Obtiene matriz admitancia Y

linedata = lineadatas(num);	% Llamado Lineadatas
shdata = shdatas(num);	% Llamado shdatas
fb = linedata(:, 1);	% De N° barra
tb = linedata(:,2);	% Hacia N° barra
r = linedata(:,3);	% Resistencia, R
x = linedata(:,4);	% Reactancia, X
b = linedata(:,5);	% Admitancia shunt, B/2
$z = r + i^*x;$	% Matriz impedancia z
y = 1./z;	% Inversa de cada elemento z
gsh = shdata(:,3);	% Conductancia del elemento shunt
bsh = shdata(:,4);	% Susceptancia del elemento shunt
sh = gsh + i*bsh;	% Admitancia del elemento shunt
$b = i^*b;$	% Elabora B imaginario
	0/ No. of homes

nb = max(max(fb),max(fb));	% No. of barras
nl = length(fb);	% No. of lineas
Y = zeros(nb,nb);	% Inicio de YBus

```
% Formación de los elementos fuera de la diagonal
for k = 1:nl
  Y(fb(k),tb(k)) = Y(fb(k),tb(k)) - y(k);
  Y(tb(k), fb(k)) = Y(fb(k), tb(k));
end
```

```
% Formación de los elementos en la diagonal
for m = 1:nb
  for n = 1:nl
     if fb(n) = m
       Y(m,m) = Y(m,m) + y(n) + b(n);
```

```
elseif tb(n) == m
Y(m,m) = Y(m,m) + y(n) + b(n);
end
end
% Adición de los elementos shunt a la matriz Admitancia
for m = 1:nb
Y(m,m) = Y(m,m) + sh(m);
end
%Y; % Matriz de admitancia
%Z = inv(Y); % Matriz de impedancia
```

% Programa Inyección de Potencia en las Barras y Líneas

function [Pi,Qi,Pg,Qg,Pl,Ql] = loadflow(nb,V,del,BMva)

```
Y = ybusppg(nb);
                             % Llamado al programa Ybus
lined = lineadatas(nb);
                             % Llamado a los datos de líneas
                             % Llamado a los datos de barras
busd = barradatas(nb);
Vm = pol2rect(V,del);
                             % Conversión polar hacia rectangular
Del = 1.80/pi*del;
                             % Angulo de la tensión de barra en grados
fb = lined(:, 1);
                             % De numero de barra
tb = lined(:,2);
                             % Hacia numero de barra
                             % No. de líneas
nl = length(fb);
                             % PLi
Pl = busd(:,7);
Ql = busd(:,8);
                              % QLi
lij = zeros(nb,nb);
Sij = zeros(nb,nb);
Si = zeros(nb, 1);
% Inyección de corriente en barra
I = Y * Vm:
Im = abs(I);
la = angle(1);
%Flujo de Corriente en líneas
for m = 1:nl
  p = fb(m); q = tb(m);
  Iij(p,q) = -(Vm(p) - Vm(q))*Y(p,q); % Y(m,n) = -y(m,n)
  Iij(q,p) = -Iij(p,q);
end
lij = sparse(lij);
lijm = abs(lij);
lija = angle(lij);
%Flujo de Potencia en líneas
for m = 1:nb
  for n = 1:nb
```

```
if m \sim = n
     Sij(m,n) = Vm(m)*conj(Iij(m,n))*BMva;
   end
 end
end
Sij = sparse(Sij);
Pij = real(Sij);
Qij = imag(Sij);
% Potencia de pérdidas en las líneas
Lij = zeros(nl, 1);
for m = 1:nl
 p = fb(m); q = tb(m);
 Lij(m) = Sij(p,q) + Sij(q,p);
end
Lpij = real(Lij);
Lqij = imag(Lij);
% Inyección de potencia en barra
for i = 1:nb
 for k = 1:nb
   Si(i) = Si(i) + conj(Vm(i))* Vm(k)*Y(i,k)*BMva;
 end
end
Pi = real(Si);
Qi = -imag(Si);
Pg = Pi + Pl;
Og = Oi + Ol;
disp('-----');
      Análisis Flujo de Carga Newton Raphson ');
disp('
disp('-----');
disp(| Barra | V | Angulo | Inveccion | Generacion | Load |');
disp(| No | pu | Grados | MW | MVar | MW | Mvar | MW | MVar | ');
for m = 1:nb
 r m = 1:nb
disp('-----');
 fprintf('%3g', m); fprintf(' %8.4f', V(m)); fprintf(' %8.4f', Del(m));
 fprintf(' %8.3f, Pi(m)); fprintf(' %8.3f, Qi(m));
 fprintf(' %8.3f', Pg(m)); fprintf(' %8.3f', Qg(m));
 fprintf(' %8.3f', Pl(m)); fprintf(' %8.3f', Ql(m)); fprintf('\n');
end
disp('-----'):
fprintf(' Total ');fprintf(' %8.3f', sum(Pi)); fprintf(' %8.3f', sum(Qi));
fprintf(' %8.3f', sum(Pi+Pl)); fprintf(' %8.3f', sum(Qi+Ql));
fprintf(' %8.3f', sum(Pl)); fprintf(' %8.3f', sum(Ql)); fprintf('\n');
disp('-----');
disp('-----'):
disp('
        Perdidas y Flujos en Líneas ');
```

disp('-----'); disp('| De |Hacia | P | Q | De | Hacia | P | Q | Perdida en Lineas |'); disp('|Barra|Barra | MW | MVar | Barra | Barra | MW | MVar | MW | MVar |'); for m = 1:nIp = fb(m); q = tb(m); disp('-----'); fprintf('%4g', p); fprintf('%4g', q); fprintf(' %8.3f', Pij(p,q)); fprintf(' %8.3f', Qij(p,q)); fprintf(' %4g', q); fprintf('%4g', p); fprintf(' %8.3f', Pij(q,p)); fprintf(' %8.3f', Qij(q,p); fprintf(' %8.3f', Lpij(m)); fprintf(' %8.3f', Lqij(m)); fprintf('\n'); end disp('-----'); '); fprintf(' Perdidas Totales fprintf(' %8.3f', sum(Lpij)); fprintf(' %8.3f', sum(Lqij)); fprintf('\n'); disp('-----');

% Programa para Análisis de Flujo de Carga Newton-Raphson..

nbus = 5;	% N° de barras
Y = ybusppg(nbus);	% Llamado de ybusppgl.m para obtener la matriz admitancia
<pre>busdt = barradatas(nbus);</pre>	% Llamado datos de barras
BMva = 100;	% Base MVA
bus = busdt(:, 1);	% N° de barra
type = busdt(:,2);	% Tipo de barra 1-Compensacion, 2-PV, 3-PQ
V = busdt(:,3);	% Voltaje especificado
del = busdt(:,4);	% Angulo de voltaje
Pg = busdt(:,5)/BMva;	% PGi
Qg = busdt(:,6)/BMva;	% QGi
PI = busdt(:,7)/BMva;	% PLi
Ql = busdt(:,8)/BMva;	% QLi
Qmin = busdt(:,9)/BMva;	% Limite Mínimo de Potencia reactiva
Qmax = busdt(:,10)/BMva;	% Limite Máximo de Potencia reactiva
$\mathbf{P} = \mathbf{P}\mathbf{g} - \mathbf{P}\mathbf{l};$	% Pi = PGi - PLi
Q = Qg - Ql;	% Qi = QGi - QLi
Psp = P;	% P especificado
Qsp = Q;	% Q especificado
G = real(Y);	% Matriz Conductancia
B = imag(Y);	% Matriz Susceptancia
pv = find(type = 2 type =	= 1); % Barra PV
pq = find(type == 3);	% Barra PQ
npv = length(pv);	% No. of barras PV
npq = length(pq);	% No. of barras PQ

```
% SVC Datos
NSVC = 1;
                      % Cantidad de SVCs
SVCbus = 3;
                       % Ubicación en barra del SVC
Xc(SVCbus)=1;
XI(SVCbus)=0.667;
FA(SVCbus)=140;
FALo(SVCbus)=90;
FAHi(SVCbus)=180;
Vref(SVCbus)=1;
Vmax(SVCbus)=1.05;
Vmin(SVCbus)=0.95;
s=0.01;
VSta(SVCbus)=1;
                          % 1=ON, 0=OFF
uu=find(pq==SVCbus);
Tol = 1:
lter = 1;
while (Tol > 1e-5) % Comienzo de iteración
    P = zeros(nbus, 1);
    Q = zeros(nbus, 1);
  % Calculo de P y Q
  for i = 1:nbus
     for k = 1:nbus
       P(i) = P(i) + V(i)* V(k)*(G(i,k)*\cos(del(i)-del(k)) + B(i,k)*\sin(del(i)-del(k)));
       Q(i) = Q(i) + V(i) + V(k) + (G(i,k) + \sin(del(i) - del(k)) - B(i,k) + \cos(del(i) - del(k)));
    end
  end
  % Calculo de Q para el SVC
  for i =SVCbus
     FAr(i) = FA(i)*pi/180;
     BSVC(i)=(2*(pi-FAr(i))+sin(2*FAr(i)))*Xc(i)/pi;
     BSVC(i) = -(BSVC(i) - XI(i))/(Xc(i) + XI(i));
     Q(i) = Q(i)-V(i)^2 BSVC(i);
  end
  % Revisión de límites de Q en la generación
  if lter <= 7 && lter > 2
                              % Solo se revisa hasta 7ma iteración
     for n = 2:nbus
       if type(n) == 2
          QG = Q(n)+Ql(n);
          if QG < Qmin(n)
            V(n) = V(n) + 0.01;
          elseif QG > Qmax(n)
            V(n) = V(n) - 0.01;
          end
       end
```

```
end
          end
          % Calculo de los cambios en los valores especificados de P y Q
          dPa = Psp-P;
          dQa = Qsp-Q;
          k = 1;
          dQ = zeros(npq, 1);
          for i = 1:nbus
                    if type(i) = 3
                             dQ(k,1) = dQa(i);
                             k = k+1;
                   end
          end
          dP = dPa(2:nbus);
          M = [dP; dQ];
                                                                                                              % Vector de cambios
         % Jacobiano
          % J1 - Derivada de la inyección de Potencia activa respecto a los ángulos
          JI = zeros(nbus-1,nbus-1);
          for i = 1:(nbus-1)
                    m = i+1;
                    for k = 1:(nbus-1)
                             n = k+1;
                             if n = m
                                        for n = 1:nbus
                                                 JI(i,k) = JI(i,k) + V(m) V(n)(-G(m,n)) (del(m)-del(n)) + V(n)(-G(m,n)) (del(m)-del(n)) + V(n)(del(m)-del(n)) + V(n)(del(m)-del(n)) (del(m)-del(n)) + V(n)(del(m)-del(n)) (del(m)-del(n)) + V(n)(del(m)-del(n)) (del(m)-del(n)) (del(m)-del(n)) + V(n)(del(m)-del(n)) (del(m)-del(n)) (del(m)-del(m)-del(n)) (del(m)-del(m)-del(n)) (del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)) (del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)
B(m,n)*cos(del(m)-del(n)));
                                        end
                                        JI(i,k) = JI(i,k) - V(m)^{2}B(m,m);
                             else
                                        J_1(i,k) = V(m)^* V(n)^* (G(m,n)^* sin(del(m) - del(n)) - B(m,n)^* cos(del(m) - del(n)));
                             end
                    end
          end
```

% J2 - Derivada de la inyección de Potencia activa respecto a la magnitud de las tensiones..

```
J2 = zeros(nbus-1,npq);
for i = 1:(nbus-1)
m = i+1;
for k = 1:npq
n = pq(k);
if n == m
for n = 1:nbus
J2(i,k) = J2(i,k) + V(n)*(G(m,n)*cos(del(m)-del(n)) + B(m,n)*sin(del(m)-del(n)));
end
J2(i,k) = J2(i,k) + V(m)*G(m,m);
```

```
else
          J2(i,k) = V(m)^*(G(m,n)^*\cos(del(m)-del(n)) + B(m,n)^*\sin(del(m)-del(n)));
       end
     end
  end
  % J3 - Derivada de la inyección de Potencia reactiva respecto a los ángulos
  J3 = zeros(npq,nbus-1);
  for i = 1:npq
     m = pq(i);
     for k = 1:(nbus-1)
       n = k+1;
       if n = m
          for n = 1:nbus
            J_{3}(i,k) = J_{3}(i,k) + V(m) V(n) (G(m,n) \cos(del(m)-del(n)) +
B(m,n)*sin(del(m)-del(n)));
          end
          J3(i,k) = J3(i,k) - V(m)^{2}G(m,m);
       else
          J_{3}(i,k) = V(m) V(n) (-G(m,n) \cos(del(m) - del(n)) - B(m,n) \sin(del(m) - del(n)));
       end
     end
  end
```

% J4 - Derivada de la inyección de Potencia reactiva respecto a la magnitud de las tensiones

```
J4 = zeros(npq,npq);
              for i = 1:npq
                             m = pq(i);
                            for k = 1:npq
                                           n = pq(k);
                                          if n = m
                                                         for n = 1:nbus
                                                                       J4(i,k) = J4(i,k) + V(n)^*(G(m,n)^*sin(del(m)-del(n)) - B(m,n)^*cos(del(m)-del(n)) - B(m,n)^*cos(del(m)-del(m)-del(n)) - B(m,n)^*cos(del(m)-del(m)-del(n)) - B(m,n)^*cos(del(m)-del(m)-del(m)) - B(m,n)^*cos(del(m)-del(m)-del(m)-del(m)) - B(m,n)^*cos(del(m)-del(m)-del(m)-del(m)-del(m)-del(m)) - B(m,n)^*cos(del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-del(m)-
del(n)));
                                                         end
                                                         J4(i,k) = J4(i,k) - V(m)^*B(m,m);
                                          else
                                                          J4(i,k) = V(m)^*(G(m,n)^*sin(del(m)-del(n)) - B(m,n)^*cos(del(m)-del(n)));
                                          end
                             end
               end
                                                                                                                                 % Matriz Jacobiana
               J = [J] J2; J3 J4];
               for i=SVCbus
                         if VSta(i)=1
                                        %Tension en la barra del SVC igual a cero
```

```
J(:,uu+nbus-1)=0;
```

```
%Elementos añadidos por el SVC al Jacobiano
     FAr(i) = FA(i) * pi / 180;
     J(uu+nbus-1,uu+nbus-1)=-2*V(i)^{2*}(cos(2*FAr(i))-1)/(pi*Xl(i));
  end
end
J = [J] J2; J3 J4]; % Actualización de Matriz Jacobiana..
X = inv(J)^*M;
                        % Vector Corrección
dTh = X(1:nbus-1);
dFA = X(nbus);
                        % Cambio en el ángulo de voltaje..
                        % Cambio en el ángulo de disparo del SVC..
dV = X(nbus+l:end); % Cambio en la magnitud de voltaje..
% Actualización del vector de estado...
del(2:nbus) = dTh + del(2:nbus); % Angulo del Voltaje
k = 1;
for i = 4:nbus
  if type(i) = 3
     V(i) = dV(k) + V(i); % Magnitud del Voltage
     k = k+1;
  end
end
 % Actualización del vector de estado del SVC
for i=SVCbus
  if(VSta(i) = 1)
     %Ajustando la tensión al valor de referencia según la pendiente
     %del SVC
   V(i)=Vref(i)/(1+s*BSVC(i));
  end
  FA(i) = FA(i) - dFA(1);
end
% Revisión de límites del ángulo de disparo del SVC
 for i=SVCbus
     if(FA(i)>FAHi(i))
       FA(i)=FAHi(i);
  elseif(FA(i)<FALo(i))
       FA(i)=FALo(i);
     end
 end
 % Revisión de límites de la tensión en la barra del SVC
 for i=SVCbus
```

if(V(i)>Vmax(i)) V(i)=Vmax(i);

```
elseif(V(i)<Vmin(i))</pre>
     V(i)=Vmin(i);
   end
```

end

Iter = Iter + I; Tol = max(abs(M));

% Tolerancia

end

loadflow(nbus,V,del,BMva); % Llamado a Loadflow.m

BIBLIOGRAFIA

- Ixtláhuatl Coronado, Pável Zúñiga, "FACTS: Soluciones modernas para la industria eléctrica". Avance y perspectiva vol.20, Julio-Agosto de 2001.
- [2] Boudjella Houari, F.Z Gherbi, "Modelling and Simulation of Static Var Compensator with Matlab".
 4th International Conference on Computer Integrated Manufacturing CIP, 2007.
- [3] J. Sullivan Daniel, "Improvements in Voltage Control and Dynamic performance of Power Transmission Systems using Static Var Compensators (SVC)". University of Pittsburgh, 2006.
- [4] J. Sullivan Daniel, "Voltage Control in Southwest Utah with the St. George Static Var System" IEEE PES Power Systems Conference and Exposition, Oct 29-Nov1 2006.
- [5] Kowalski Janet, "Application of Static VAR Compensation on the Southern California Edison System to Improve Transmission System Capacity and Address Voltage Stability Issues" IEEE PSCE, February 2006.
- [6] Kowalski Janet, "Static VAR Compensator installation in the city of San Francisco" IEEE PES Power Systems Conference and Exposition, 10-13 Oct. 2004.
- [7] Carnegie Mellon Research Institute, "Static VAR Control for Electric Arc Furnaces" The EPRI Center for Materials Production CMP-100, April 1995.
- [8] Fuerte Esquivel Claudio, "FACTS: Modelling and Simulation in Power Networks" Wiley First Edition, 2004.
- [9] Fuerte Esquivel Claudio, "Advanced SVC Models for Newton-Raphson Load Flow and Newton Optimal Power Flow Studies" IEEE Transactions on Power Systems Vol. 15, February 2000.