UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLÓGICA MINERA Y METALÚRGICA

"OPTIMIZACIÓN DEL BOMBEO DE AGUA SUBTERRÁNEA EN UN TAJO ABIERTO"

INFORME DE SUFICIENCIA

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO DE MINAS

ELABORADO POR: ILIAM ISARIO AGUIRRE HUAMAN

ASESOR: ING. ENRIQUE RUIZ GONZALES

LIMA - PERÚ 2014

AGRADECIMIENTO

A Dios por darme la oportunidad de compartir y disfrutar de esto llamado vida

Al excelente grupo de profesionales del Área de Servicios Mina – Drenaje Mina, por su compromiso y esfuerzo en conseguir de los objetivos del año

2013.

DEDICATORIA

A mis padres César y Catalina por sus incansables ánimos en ayudarme a alcanzar este objetivo.

A mi esposa Jessyca, a mis hijos Sergio, Claudia y Valentina por su paciencia, apoyo y motivación para seguir desarrollándome.

A mi hermano Niltón por ser mi ejemplo de dedicación y esfuerzo.

ÍNDICE

INTRODUCCIÓN

CAPITULO I MARCO TEÓRICO

1.1	DEFIN	NICIONES HIDROGEOLÓGICAS	21
	1.1.1	Sistema de Bombeo	21
	1.1.2	Flujos	21
	1.1.3	Usages	22
	1.1.4	Pozos	22
	1.1.5	Napa Featica	22
	1.1.6	Nivel Estático	22
	1.1.7	Nivel Dinámico	23
	1.1.8	Nivel de Succión	24
	1.1.9	Collar de Pozo	24
	1.1.10	Nivel Final de Pozo	24
	1.1.11	Perfil Hidráulico	24
	1.1.12	Curva de Rendimiento de Bombas	25
	1.1.13	Altura Dinámica Total (HDT)	25
	1.1.14	Altura Neta Positiva de Aspiración	25
	1.1.15	Abatimiento	25
	1.1.16	Capacidad Especifica de Pozos	26

1.2	EQU	IPOS MECÁNICOS	26
	1.2.1	Bombas	26
	1.2.2	Motor	27
	1.2.3	Casing o Línea	27
	1.2.4	Tubería	28
	1.2.5	Flujometro	29
	1.2.6	Sensor de Presión	29
	1.2.7	Válvula de Control	29
	1.2.8	Válvula Check	30
	1.2.9	Tableros	30
	1.2.1	O Tanques de Rebombeo Móviles	30
	1.2.1	1 Sub-estación de Energía	31
CAPITUI	LO II SIS	TEMAS DE BOMBEO SUBTERRANEO TAJO OEST	E
2.1	ANT	ECEDENTES	32
2.2	sist	EMAS EXISTENTES	33
	2.2.1	Pozos	35
	2.2.2	Tanque de Rebombeo	38
	2.2.3	Sub-estación de Energía	40
		2.2.3.1 Transformadores de Alta Media	39
		2.2.3.2 Transformadores de Media Baja	40
	2.2.4	Tubería	43

CAPITU	JLO I	II NU	EVO PLAN HIDROGEOLÓGICO 2013	
3.	.1	NUEV	A CURVA DE DESCENSO FREÁTICO 2013 – 2014	54
CAPITU	JLO I	V AN	ÁLISIS DE OPTIMIZACIÓN DE POZOS EXISTENT	ES
4.	.1	OPTIN	MIZACIÓN DE FLUJOS	57
		4.1.1	Capacidad Específica de Pozos	57
		4.1.2	Perfil Hidráulico	61
		4.1.3	Curva de Rendimiento de Bombas	65
		4.1.4	Selección de Bomba y Altura Dinámica Total	70
4.	.2	Optimi	ización de Usage	77
CAPITU	JLO V	V ANÁ	LISI DE SISTEMAS DE REBOMBEO	
5.	.1	DEFIN	NICIÓN DE UBICACIONES	83
5.	.2	TANQ	UES DE REBOMBEO	90
		5.2.1	Capacidad de Rebombeo	91
		5.2.2	Tiempo de Construcción	91
		5.2.3	Costos	92
5.	.3	POZA	S DE REBOMBEO	94
		5.3.1	Capacidad de Rebombeo	94
		5.3.2	Tiempo de Construcción	94
		5.3.3	Costos	95

43

2.3 PLAN INICIAL DE BOMBEO

5.4	BOMBAS EN SERIE	95
	5.4.1 Capacidad de Rebombeo	95
	5.4.2 Tiempo de Construcción	96
	5.4.3 Costos	96
5.5	RESUMEN DE LOS SISTEMAS DE REBOMBEO	96
CAPITUL	O VI CONSTRUCCIÓN Y MONITOREO	
6.1.	DEFINICIÓN DE LOS SISTEMAS DE REBOMBEO	98
6.2.	CONSTRUCCIÓN DE LOS SISTEMAS	99
6.3.	RESULTADOS EN OPERACIÓN	107
6.4.	SUMPS	115

CONCLUSIONES

BIBLIOGRAFÍA

ANEXOS

INDICE DE FIGURAS

Figura 1.1 Diagrama de pozo	23
Figura 2.1 Plan de drenaje subterráneo 2012 – 2013	34
Figura 2.2 Plano de Ubicación de pozos en el Tajo Oeste	36
Figura 2.3 Plano de Ubicación de Piezómetros	37
Figura 2.4 Plano de Planta del sistema de Rebombeo Machupichu	39
Figura 2.5 Plano de Distribución de energía Tajo oeste	42
Figura 2.6 Curva de flujos 2012 plan vs real	45
Figura 2.7 Pozo PTO -01	46
Figura 2.8 Pozo PTO -02	46
Figura 2.9 Pozo PTO -04	46
Figura 2.10 Pozo PTO -06	46
Figura 2.11 Pozo PTO -03	47
Figura 2.12 pozo PTO -05	47
Figura 2.13 Pozo PTO -07	48
Figura 2.14 Pozo PTO -08	48
Figura 2.15 Pozo PTO -09	48
Figura 2.16 Pozo PTO -10	49
Figura 2.17Usages 2012 plan vs real	50
Figura 2.18 Usages Zona I	51

Figura 2.19 Usage Zona II	51
Figura 2.20 Usage Zona III	52
Figura 2.21Curva napa freática 2012	53
Figura 3.1 Plan Hidrogeológico 2013-2014	56
Figura 4.1 Plano de ubicación de los pozos nuevos	60
Figura 4.2 Altura estática	62
Figura 4.3 Diagrama Altura Dinámica total	64
Figura 4.4 Curva de rendimiento de una bomba	69
Figura 4.5 Curva de bomba 9HL (8 etapas)	69
Figura 4.6 Curva de la bomba 9 ML (7 etapas)	69
Figura 4.7 Rangos de HDT óptimos	71
Figura 4.8 Rangos de HDT óptimos	72
Figura 4.9 Rango óptimo de HDT	78
Figura 4.10 Voladura en pozos con cara libre	78
Figura 4.11 Zona critica para voladura	78
Figura 4.12 Voladura de paquetes	79
Figura 4.13 Descreste con voladura	80
Figura 4.14 Voladura masiva	81
Figura 4.15 Secuencia de salida	81
Figura 4.16 Zona de influencia de los disparos	82
Figura 5.1 Ubicaciones para los nuevos sistemas de rebombeo	85
Figura 5.2 Perfil hidráulico Zona I	87

Figura 5.3 Perfil hidráulico Zona II	88
Figura 5.4 Perfil hidráulico Zona III	89
Figura 5.5 Esquema de tanques de bombeo	91
Figura 5.6 Cronograma de construcción	92
Figura 5.7 Cronograma de construcción	92
Figura 5.8 Cronograma de construcción	94
Figura 6.1 Tiempo de construcción del sistema de rebombeo Machupichu	100
Figura 6.2 Plano del sistema de rebombeo Machupichu	101
Figura 6.3 Tiempo de construcción del sistema de rebombeo El Alto	102
Figura 6.4 Plano delsistema de rebombeo EL Alto	104
Figura 6.5 Tiempo de construcción del sistema de rebombeo en Moche	105
Figura 6.6 Diseño de poza Moche	106
Figura 6.7 Curva de usages 2013	108
Figura 6.8 Curva de usages 2012-2013	108
Figura 6.9 Curva usage Zona I	109
Figura 6.10 Curva de usage Zona II	109
Figura 6.11 Curva de usage Zona III	110
Figura 6.12 Flujos 2013	110
Figura 6.13 Flujos zona I	111
Figura 6.14 Flujos Zona II	112
Figura 6.15 Flujos Zona III	112
Figura 6.16 Curva Hidrogena 2013	114

Figura 6.17 Sump	116
Figura 6.18 Vista Tajo Oeste	116

INDICE DE TABLAS

Tabla 1.1 Especificaciones de tuberías	28
Tabla 1.2 Presiones en tuberías	29
Tabla 2.1 Datos de pozos a diciembre 2012	35
Tabla 2.2 Capacidad tanque Machupichu	38
Tabla 2.3 Costos tanque Machupichu	38
Tabla 2.4 Capacidad tanque El alto	40
Tabla 2.5 Subestación	40
Tabla 2.6 Capacidad de Energía Tajo Oeste	41
Tabla 2.7 Datos de tuberías	43
Tabla 2.8 Plan Flujos 2012	44
Tabla 2.9 Flujos obtenidos 2012 tajo oeste	44
Tabla 2.10 Plan usages 2012	49
Tabla 2.11 Usages obtenidos 2012	50
Tabla 3.1 Plan flujos y usages 2013	51
Tabla 4.1 Capacidad de Pozos	58
Tabla 4.2 Altura Dinámica total	65
Tabla 4.3 Tipos de bombas en los pozos	66
Tabla 4.4 Incremento de flujo	70
Tabla 4.5 Incremento de flujo	71

Tabla 4.6 Incremento de flujo	73
Tabla 4.7 Resumen análisis de HDT óptimos	74
Tabla 4.8 Ubicación de pozos nuevos	75
Tabla 4.9 Oportunidades de pozos	76
Tabla 5.1 Ubicaciones de los sistemas de rebombeo	84
Tabla 5.2 Nuevas ubicaciones	84
Tabla 5.3 Validación de ubicaciones	86
Tabla 5.4 Flujos y HDT para Zona I	88
Tabla 5.4 Flujos y HDT para Zona II	88
Tabla 5.5 Flujos HDT para Zona III	89
Tabla 5.6 Costos segunda opción	93
Tabla 5.7 Costos tercera opción	93
Tabla 5.8 Costos de poza de rebombeo	95
Tabla 5.9 Sistema de Rebombeo	96
Tabla 6.1 Sistema de rebombeo Zona I	98
Tabla 6.2 Sistema de rebombeo Zona II	99
Tabla 6.3 Sistema de rebombeo Zona III	99
Tabla 6.4 Capacidad de bombeo en Machupichu	100
Tabla 6.5 Costos del sistema de rebombeo Machupichu	100
Tabla 6.6 Capacidad sistema de rebombeo El Alto	102
Tabla 6.7 Costos delsistema de rebombeo El Alto	103
Tabla 6.8 Capacidad del sistema de rebombeo Moche	105

Tabla 6.9 Costos del sistema de rebombeo Moche	106
Tabla 6.10 Costos unitarios y tiempos	107
Tabla 6.11 Ahorros en la construcción de los sistemas de rebombeo	107

NOMENCLATURA

TDH: Total Dynamic Head – Altura dinámica total.

NPSH: Altura Neta Positiva de Aspiración.

HP: HorsePower – Caballos de Fuerza.

PH: Medida de acidez.

l/s: litros por segundo.

SDR: Standard Dimension Ratio.

m3/hr: Metros cúbicos por hora.

RESUMEN

El Objetivo de la presente Tesina es asegurar el descenso de la napa freática en el Tajo Oeste de Minera Colorado, mediante la optimización de los sistemas de bombeo subterráneos, para el cumplimiento del plan de producción de onzas 2013.

El Plan de Producción 2013 contempla una extracción de 1 Millón de onzas de oro, de las cuales un 46% serán extraídas del Tajo Oeste, la napa freática se encontraba en el nivel 3354 a inicios del 2013 y requiere ser deprimida según los planes de minado hasta el nivel 3288 para Diciembre del año en mención.

Los estudios Hidrogeológicos realizados por una consultora especializada han determinado la necesidad de incrementar el Flujo Total de bombeo en el Tajo Oeste de 560 l/s a 700 l/s, concluyendo en aumentar los flujos en los pozos existentes y la construcción de 7pozos nuevos.

Mediante el análisis y optimización de los sistemas de rebombeo, realizado en el área de Servicios Mina, se ha podido reducir las Alturas Dinámicas Totales (TDH)en los perfiles hidráulicos de los pozos subterráneos incrementando el flujo en sus bombas y mejorando los usage.

Las facilidades para la ingeniería, construcción, disponibilidad de equipos y el bajo costo en comparación con los sistemas tradicionales de rebombeo han ayudado a implementareficientemente Pozas y Tanques Móviles de Rebombeo para el

cumplimiento del descenso de la napa freática, esto con el soporte de las áreas de Hidrogeología, Planeamiento Corto Plazo y Operaciones Mina.

ABSTRACT

The aim of this study is to decrease water table decrease on West pit in Colorado mine; this has been attained through an underground pumping system optimization in order to compline with production planning for this year

2013 production planning considers one million ounces of gold extraction, 46% of this amount will be extracted from West pit. Level of water table was 3354 at the beginning of 2013, and according to mine planning it needs to be decreased to level 3288 byl December 2013.

Hydrogeological studies made by a specialized consulting company have established that a total pumping flow must be increase on west pit from of 560 l/s to 700 l/s; in order to attain our objectives, current pond flows must be increased and 7 new ponds must be drilled.

Through the analysis and repumping systems optimization, activities that were made in mine services area, it was possible to reduce total dynamic height on hydraulic profiles of underground ponds increasing pumps flow and improving the usages.

Engineering facilities, building facilities, equipment availability and low cost, if we compare traditional repumping systems, have helped to implement efficiently ponds and mobile tanks repumping to achieve water table decrease, it could be also possible with Hydrogeological department, short term planning department and mine operation support.

INTRODUCCIÓN

Minera Colorado se encuentra localizada en la Sierra Norte del Perú en el departamento de Cajamarca, es una empresa del rubro aurífero con una producción anual de 1 millón de onzas, ubicándose entre las principales minas de oro del país.

El desarrollo y profundización de los Tajos conllevada a establecer sistemas de bombeo subterráneo, los cuales mediante bombas instaladas en los pozos evacuan el agua de la napa freática reduciendo el nivel temporalmente hasta poder descender con el minado en forma vertical.

Según los estudios Hidrogeológicos se tenía previsto un flujo de 560 l/s para cumplir con la curva de descenso de la napa freática, sin embrago durante los meses de Septiembre, Octubre y Noviembre del 2012 debido a diversos factores no se llegó a cumplir con los flujos requeridos, motivando un aumento de la napa freática respecto al plan, generando un riesgo en el avance del minado para el 2013.

Mediante una actualización del estudio Hidrogeológico la empresa consultora especialista determinó la necesidad de incrementar el flujo de bombeoen los pozos

existentes y la construcción de 7 nuevos pozos para cumplir con las curvas de descenso freático que requiere el plan de minado.

El Plan de Flujos establece un total de 700 l/s de bombeo del Tajo Oeste y si bien las Capacidades Específicas de los pozos mencionados en el estudio hic aceptables, los perfiles hidráulicos cada vez tienen mayor Altura Dinámica Total, las interacciones del minado con los pozos son más frecuente y la baja disponibilidad de equipos en el mercado; incrementan el riesgo de cumplir con el nuevo plan de flujos del 2013.

El área de Servicios Mina encargada de la operación de los pozos asume el proyecto de optimización de flujos en el Tajo Oeste, para lo cual se realiza un estudio que incluye Análisis de las Capacidades Específicas de los pozos, los Perfiles Hidráulicos, Curva de Rendimiento de Bombas, Interacción y Ubicación de Estructuras, Evaluación de Sistemas de Rebombeo, revisión de facilidades y Construcción de la Infraestructura que se requiera.

Los estudios concluyen que los pozos existentes no cuentan con los sistemas de bombeo necesarios para incrementar a los flujos requeridos y que las horas operativas de los pozos están considerablemente impactadas por las paradas debido a la interacción con el proceso de minado; por lo cual es necesario instalar sistemas de rebombeo de rápida implementación, baja interacción con el minado y que no afecte los costos presupuestados.

Se decide utilizar Tanques de Rebombeo yPozas de Rebombeo, las cuales son construidas en zonas de fase de minado o cercanas a la operación, reduciendo las

horas de parada por la interacción con el minado y las Alturas Dinámicas Totales de los sistemas de bombeo; logrando incrementar los flujos por encima de lo planeado.

Se cuenta con las facilidades para desarrollar la ingeniería en la operación, equipos de bombeo listos en mina, disponibilidad de contratistas y apoyo de la flota gigante en la construcción; aportando en reducir los plazos y costos para la optimización del sistma.

En el presente proyecto damos por aceptado y validado el Plan Hidrogeológico diseñado por una empresa consultora especialista, enfocándonos en cumplir con los Flujos y Usages para cada uno de los pozos del Tajo Oeste.

Para el desarrollo del proyecto se ha coordinado constantemente con los departamentos de Planeamiento de Minado, Operaciones Mina e Hidrogeología; siendo importante el soporte de estos en el monitoreo y control de los resultados; logrando en conjunto cumplir con el plan de minado de onzas 2013 en el Tajo Oeste.

CAPITULO I

MARCO TEÓRICO

1.1. Definiciones Hidrogeológicas

Es necesario conocer las definiciones de los términos Hidrogeológicos a ser usados en el presente informe, se detallan los siguientes:

1.1.1. Sistemas de Bombeo

Es el conjunto de pozos y bombas que evacúan el agua de una zona específica, para el Tajo Oeste tenemos varios sistemas de bombeo y rebombeo que conforma en su conjunto el Sistema de Bombeo del Tajo Oeste.

1.1.2. Flujos

Es la cantidad de agua que es evacuada por cada uno de los pozos o sistemas de bombeo, su unidad de medida es litros por segundo (1/S).

1.1.3. Usages

Es el porcentaje (%) total del tiempo operativo de cada uno de los pozos o de los sistemas de bombeo, se toma en base a los turnos, días, semanas o rangos de tiempo en los cuales se quiera evaluar el funcionamiento de los sistemas.

1.1.4. Pozos

Son hoyos perforados en el macizo rocoso que tiene un diámetro entre 17.5" y 24" y con una profundidad que varía entre 200 m. y 250 m., estos son ubicados de acuerdo al estudio Hidrogeológico en zona de gran capacidad de transmisibilidad y almacenamiento de agua para poder aprovechar al máximo las capacidades de las bombas instaladas en su interior.

1.1.5. Napa freática

También denominado nivel freático es la cota o nivel que determina la ubicación del agua subterránea dentro del subsuelo o macizo rocoso.

1.1.6. Nivel Estático

Es el nivel de agua de la napa freática en el pozo antes de iniciar el bombeo, mediante su cota se determina la ubicación de la bomba dentro del pozo para asegurar el bombeo constante, teniendo en cuenta el NPSH (Altura Neta Positiva de Aspiración).

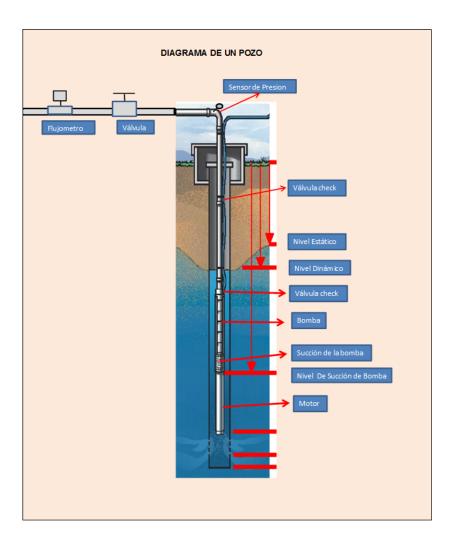


Figura 1.1 Diagrama de un pozo

1.1.7. Nivel Dinámico

Es el nivel de agua freática que se produce como efecto del bombeo, se forma el efecto cono invertido que genera un vacío hacia el nivel estático.

1.1.8. Nivel de Succión

Es la cota en la cual se ubica la succión de la bomba, depende del NPSH (Altura Neta de Aspiración) y es importante ya que de esto dependerá evitar cavitaciones que puedan dañar el equipo.

1.1.9. Collar de Pozo

Se denomina así a la parte superior del pozo que se encuentra expuesto en la superficie, ahí es colocado el árbol de instalación entre el casing del pozo y la tubería de HDP que va conducir el flujo.

1.1.10. Nivel Final de Pozo

Es la cota final de la perforación, determina la profundidad total del pozo y su vida útil en el Tajo de acuerdo a los planes de avance del minado.

1.1.11. Perfil Hidráulico

Es el diagrama en el cual se muestran los sistemas de bombeo con parámetros hidráulicos como: Ubicación o cotas, profundidad de pozos, Altura Dinámica Total, punto de bombeo, cota de descarga y flujos; en algunos diagramas puede considerarse alguna otra información necesaria como tipos de bombas, diámetros de líneas u otros.

El perfil hidráulico es uno de los documentos que nos ayudan a analizar las oportunidades de mejora en los sistemas de bombeo, definiendo tipos de bomba adecuada o uso de sistemas de rebombeo principalmente.

1.1.12. Curva de Rendimiento de Bombas

Es la gráfica emitida por el fabricante de bombas en el cual se muestra la curva de rendimiento de las bombas de acuerdo a las Alturas Dinámicas Total (HDT), la eficiencia, el requerimiento de energía, el NPSH requerido y flujo esperado; es muy importante ya que de ello dependerá el poder seleccionar adecuadamente el equipo para el pozo de acuerdo al perfil hidráulico.

1.1.13. Altura Dinámica Total (TDH)

También denominada cabeza de bombeo o altura hidráulica, es la distancia vertical desde el nivel dinámico de la bomba hasta el punto de descarga considerando las pérdidas por resistencia en la línea y accesorios, es muy importante ya que con ella se puede determinar la bomba adecuada.

1.1.14 Altura Neta Positiva de Aspiración

Ampliamente conocida como NPSH es la distancia por debajo del nivel de agua a la cual se debe de instalar el punto de succión de la bomba para garantizar que la diferencia de presiones entre el interior de la bomba y el agua del pozo no genere cavitación.

1.1.15 Abatimiento

Es la distancia que se genera entre el nivel estático y nivel dinámico producto del bombeo en el pozo.

1.1.16 Capacidad Específica de Pozos

Es el valor que se halla al tener la relación entre el flujo de bombeo y el abatimiento, es decir, los litros por segundo por cada metro de abatimiento. El abatimiento es la diferencia entre el nivel estático y dinámico de la napa freática. Por ejemplo si bombeamos 100 l/s y el abatimiento es de 10 metros, la Capacidad específica será de 10 l/s – m, a mayor capacidad mayor posibilidad de aumentar la capacidad de bombeo en el pozo.

1.2. Equipos Mecánicos

Es importante conocer el concepto general de cada uno de los equipos que se usan en los sistemas de bombeo y rebombeo subterráneo, con la finalidad de poder tener un mejor entendimiento, entre ellos tenemos:

1.2.1. Bombas

Son los equipos principales del Sistema, se tienen de diferentes tipos de acuerdo a la naturaleza del trabajo, las bombas son equipos mecánicos que cumplenla función de succionar y enviar fluidos desde un punto hacia otro, transmitiendo una determinada cantidad denominado Caudal a una determinada distancia vertical denominada Altura Dinámica Total.

Para el presente informe se consideran bombas para agua subterránea, la cual tiene la particularidad de poseer bajos sólidos en suspensión (sedimentos) pero de bajo PH (agua corrosiva), generalmente con un PH entre 3 y 5.

En los pozos subterráneos se usan Bombas Turbina con diámetros menores a los 14" pulgadas, que se encuentran junto a las líneas de alimentación de energía y junto al Casing.

En los Tanques de Rebombeo y Pozas se usan Bombas Centrifugas que se encuentran ya sea sobre pedestales de concreto alineada o en las pozas con balsas flotantes.

Se posee Bombas turbinas de diferentes marcas, para el Tajo Oeste se cuenta con las Hidroflo modelo 9HL y 9ML; con curvas de bombeo que van desde 10 l/s hasta 110 l/s y con alturas entre 200 m. y 400 m. aproximadamente dependiendo de las necesidades de flujo.

1.2.2. Motor

Se encuentra ubicado en la parte final de la línea del pozo, es el encargado de transmitir la fuerza mecánica a la bomba, funciona mediante la alimentación de una línea de energía de 0.48KW, existen de diferentes potencias, en este caso disponemos de motores de 250 HP y 350HP.

1.2.3. Casing o Línea

Es la línea descendente dentro del pozo, se ubica desde la Cota Collar del Pozo hasta la bomba, está fabricada de acero inoxidable, tiene un diámetro de 10" y 14", se usa líneas de 5.5 m. con un sistema de acople rápido, el cual permite mayor maniobrabilidad para la instalación y desinstalación conforme se tenga que avanzar verticalmente el minado.

1.2.4. Tubería

Son las líneas de conducción del fluido, son de HDP (High Density Polyethylene) y se usan como medio de transporte para el flujo de agua emitido de los puntos de bombeo hacia las plantas, se usan tuberías de diferentes diámetros que varían entre 6" y 24" así como de diferente SDR (Standard Dimensión Ratio) (17, 11,9 y 7.3) dependiendo del flujo a transportar y de la presión a resistir de acuerdo al perfil hidráulico, se cuenta con la siguiente tabla de especificación de características.

Tabla 1.1 Especificaciones de tuberías

Ø Nominal Pulg	SDR	Espesor Pulg	Ø Interior Pulg	Caudal I/s Para V = 2.5 m/s
6"	17	0.39	5.85	43.29
	11	0.602	5.42	37.24
	9	0.736	5.15	33.65
	7.3	0.908	4.81	29.31

Ø Nominal Pulg	SDR	Espesor Pulg	Ø Interior Pulg	Caudal I/s Para V = 2.5 m/s
	17	0.507	7.61	73.4
8"	11	0.784	7.06	63.1
٥	9	0.958	6.71	57.03
	7.3	1.182	6.26	49.67

	Ø Nominal	SDR	Espesor	Ø Interior	Caudal I/s
	Pulg		Pulg	Pulg	Para V = 2.5 m/s
		17	0.941	14.12	252.49
	16"	11	1.455	13.09	217.06
		9	1.778	12.44	196.16
		7.3		11.44	165.81

Ø Nominal	SDR	Espesor	Ø Interior	Caudal I/s
Pulg		Pulg	Pulg	Para V = 2.5 m/s
	17	1.412	21.18	568.05
24"	11	2.182	19.64	488.43
24	9	2.667	18.67	441.37
	7.3	3.288	17.42	384.59

SDR = Standard Dimension Ratio

Tabla 1.2 Presiones en tuberías

SDR		ASTM F714 ia Estándar	Brida ANSI
17	6.90 Bar	100 PSI	150
11	11.00 Bar	160 PSI	150
9	13.80 Bar	200 PSI	300
7.3	17.50 Bar	254 PSI	300

SDR		ASTM F714 n resina PE4710	Brida ANSI
17	8.75 Bar 125 PSI		150
11	14.00 Bar 200 PSI		300
9	17.50 Bar	250 PSI	300
7.3	22.19 Bar	317 PSI	300

1.2.5. Flujometro

Es un equipo electrónico que permite la lectura del flujo o caudal que se transmite por la tubería, tiene la facilidad de poder ser conectado al sistema de Telemetría, el cual transfiere la información hacia la central de operación mediante radio frecuencia, para permitir la visualización en tiempo real del flujo emitido por cada pozo, esto permite detectar desviaciones como bajas de flujo intempestivas e inoperatividad de los pozos.

1.2.6. Sensor de Presión

Es un dispositivo de medición que ayuda a visualizar la presión que ejerce el bombeo en el sistema, su soporte es importante para monitorear el funcionamiento de la bomba así como para controlar que la tubería de bombeo cumpla con las especificaciones de presión que ejerce el sistema.

1.2.7. Válvula de Control

Es un dispositivo mecánico de control para abrir, cerrar, restringir o desviar el flujo hacia otras líneas, también se usa para evitar golpes de ariete por el lanzamiento de otros pozos conectados a la misma línea de salida, es decir controlan el ingreso de flujo hacia pozos inoperativos por efecto del flujo de otros.

1.2.8. Válvula Check

Es un accesorio de funcionamiento mecánico que por su diseño de compuertas permite el tránsito del flujo en un solo sentido, evitando reflujos y golpes de ariete en el sistema que puedan dañar la línea del pozo y/o la bomba o motor.

1.2.9. Tableros

Son equipos electrónicos que regulan el ingreso de energía hacia el motor permitiendo una alimentación homogénea al sistema, esto evita picos de energía que podría dañar el equipo, algunos de ellos tienen variadores que sirven para poder regular el ingreso de energía en forma gradual.

1.2.10. Tanques de Rebombeo

Son estructuras de paso para el flujo bombeado, permiten reducir la altura dinámica total de bombeo en los pozos para incrementar sus flujos.

Las capacidades de almacenamiento de agua no son mayores a los 5 minutos, por lo que cuentan con un sistema de sensores de nivel de agua dentro del tanque que regulan el encendido automático de las bombas instaladas, es decir a mayor ingreso de flujo que incremente el nivel en el tanque se encenderán bombas adicionales para mantener un nivel estable.

Estas estructuras están conectadas al sistema de Telemetría que se encarga de monitorear o controlar vía remota en caso de fallas en los equipos, a pesar de esto también cuentan con un sistema de rebose de agua conectada hacia las estructuras de drenaje dentro del Tajo para evitar eventos ambientales y/o sociales.

Tienen la facilidad de poder ser desinstaladas y reubicadas en diferentes zonas facilitando su uso en un mediano y largo plazo.

1.2.11 Sub-estaciones de Energía

Los Sistema de Bombeo usan energía de 0.48 KW, considerada energía de Baja Tensión, para lo cual hay que implementar Subestaciones y transformadores que puedan bajar el voltaje de Alta Tensión 22.9 KW a Media Tensión 4.16 KW y/o Baja Tensión 0.48KW.

Esta sub-estaciones son ubicada generalmente fuera de los límites de minado, pero en algunas oportunidades hay que ubicarlas en zonas temporales (entre 6 meses – 1 año) para poder acercar la energía hacía los pozos y evitar demasiado tendido de línea que genera un sobre costo.

CAPITULO II

SISTEMAS DE BOMBEO SUBTERRÁNEO TAJO OESTE

2.1 Antecedentes

El Tajo Oeste de Minera Colorado tiene un tiempo de explotación de 13 años, durante la primera etapa de minado se trabajó en un depósito de material sedimentario de naturaleza aluvial formado por deposición y arrastre, en esta fase de aproximadamente 8 añosno se tuvo la necesidad de usar sistemas de bombeo subterráneos; con el avance vertical del minado se dejó disponible el depósito de mineral del tipo epitermal diseminado, conforme se profundizó el tajose hizo necesario instalar un sistema de bombeo subterráneo, para lo cual se determinó el uso de pozos de alcance profundo, los quecuentan con bombas turbina en su interior que son ubicadas por debajo del nivel freático del agua para lograr que el bombeo cumpla con la curva de descenso de la napa freática que requiere el plan de minado.

Luego de definir los planes de minado de acuerdo al modelo geológico y las necesidades de producción se determina el plan Hidrogeológico estableciendo las

curvas de flujo de bombeo y curvas de descenso de napa freática para cada Tajo o zona de minado.

El área de Hidrogeología en conjunto con consultores especialistas determinan de acuerdo a los coeficientes de transmisibilidad y capacidad de almacenamiento de agua del macizo rocoso; el número de pozos, el plan de flujos y usages que se requieren para cumplir con el descenso de la napa freática, luego este plan es enviado al área de Servicios Mina, quien se encarga de la operación de los pozos, monitoreo y mantenimiento de los equipos para garantizar que se cumpla con lo planificado y el descenso vertical del minado no se vea interrumpido por la presencia de la napa freática.

2.2 Sistemas Existentes

El Tajo Oeste a finales del 2012 cuenta con un Sistema de Bombeo Subterráneo de10pozos,un aproximado de6.8 km de tubería y 4 subestaciones de energía con una capacidad 7200 KW.

Todo este sistema debe proveer una capacidad de bombeo de 560 l/s que debe ser alcanzado en Febrero del 2013, a un usage del 75%, sin embargo durante los meses de Agosto, Septiembre y Octubre 2012 no se ha llegado a cumplir con los objetivos de flujos y usages, generando un retraso en la curva de descenso de la napa freática.

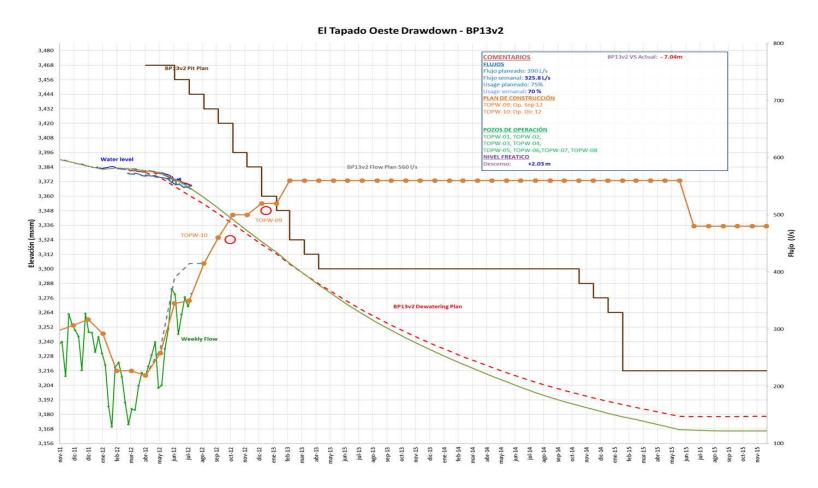


Figura 2.1 Plan de drenaje subterráneo 2012 -2013

Se tiene planificado construir el Tanque de Rebombeo Machupichu para empezar a operar en febrero 2013 como soporte para el incremento de flujo.

2.2.1 Pozos

A continuación se detalla cada uno de los pozos operados durante el 2012:

Tabla 2.1 Datos de Pozos a diciembre 2012

POZO	Profundidad m	Cota Collar msnm	Bomba	Flujo - Dic 2012 I/s	HDT m
PTO 1	325.5	3342.0	HIDROFLO 9ML (7 Etapas) - 350 HP	0	0
PTO 2	369.6	3396.7	HIDROFLO 9ML (7 Etapas) - 350 HP	78.0	199.7
PTO 3	314.7	3494.3	HIDROFLO 9ML (7 Etapas) - 350 HP	44.6	322.0
PTO 4	365.7	3342.9	HIDROFLO 9HL (8 Etapas) - 350 HP	78.0	199.7
PTO 5	320.8	3432.5	HIDROFLO 9ML (7 Etapas) - 350 HP	42.7	322.0
PTO 6	373.1	3344.6	HIDROFLO 9ML (7 Etapas) - 350 HP	78.5	199.7
PTO 7	394.0	3524.4	HIDROFLO 9HL (8 Etapas) - 350 HP	55.0	323.2
PTO 8	410.0	3517.2	HIDROFLO 9HL (8 Etapas) - 350 HP	54.0	313.2
PTO 9	422.0	3511.2	6M 250 19 Etapas	11.3	379.7
PTO 10	422.0	3516.2	6M 250 19 Etapas	8.0	379.7

Cabe mencionar que los pozos 1, 2, 3, 4, 5 y 6 se encuentran ubicados dentro del tajo, es decir están constantemente siendo puestos inoperativos por la interacción con el proceso de minado, con lo cual el usage de los mismos se ve afectado.

Los pozos 7, 8,9 y 10 se encuentran fuera del límite de minado con lo cual el usage de los mismos es alto.

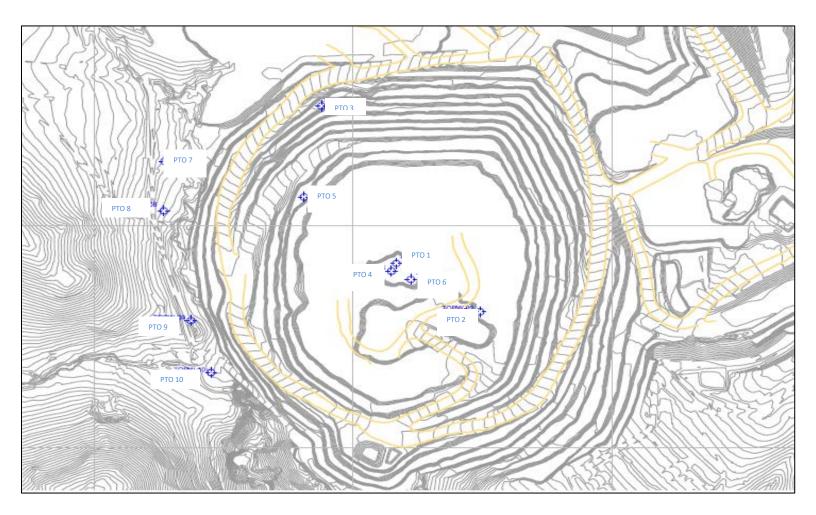
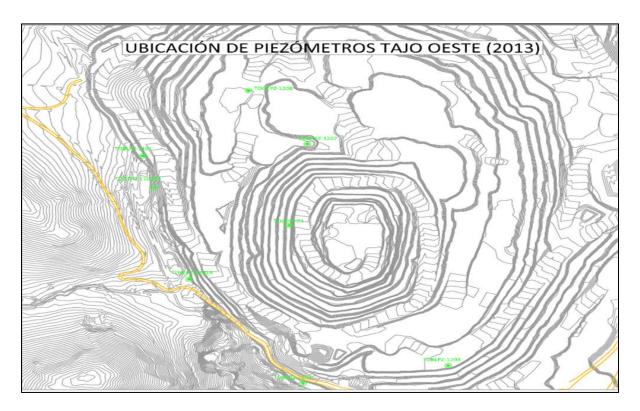



Figura 2.2. Plano de Ubicación de Pozos en el Tajo Oeste

Fecha	Cota de Agua de los Piezómetros								
1 CCIIA	TO- 4001	TO-3001	TO-2003	TO-2004	TO-2002	TO-2007	TO-2008	TO-2001	
22-feb-12		3384.233	3477.193		3403.933				
21-jul-12		3370.213		3400.439	3370.981				
18-dic-12		3360.173				3360.378			
23-ene-13		3354.873		3395.709	3372.221		3354.186		
12-feb-13		3352.093					3352.676	3352.34	
02-abr-13	3343.444	3341.103				3339.568			

Figura 2.3. Plano de Ubicación de Piezómetros

2.2.2 Tanque de Rebombeo

Se tiene planificado construir el Tanque de Rebombeo Machupichu, esta estructura se encuentra diseñada y planteada como parte del Plan de Bombeo 2013 – 2014.

Se encuentra ubicada al lado Sur del Tajo Oeste fuera del límite de minado, pudiendo ser usada en el futuro para nuevas ampliaciones o requerimientos, está ubicada en el nivel 3480, cuenta con 2 Tanques de con capacidad de 70 m3 cada uno y con 3 bombas operativas más una de stand by para cada Tanque, teniendo en total una capacidad de rebombeo de 560 l/s o 2016 m3/hr.

Tabla 2.2 Capacidad Tanque Machupichu

	Tanque 1					Tanque 2	
73.9 m3			73.9 m3				
Bomba 1	70	l/s	Operativa	Bomba 1	70	I/s	Operativa
Bomba 2	70	I/s	Operativa	Bomba 2	70	I/s	Operativa
Bomba 3	70	l/s	Operativa	Bomba 3	70	l/s	Operativa
Bomba 4	70	l/s	Operativa	Bomba 4	70	I/s	Operativa
Tanque 1	280	I/s	Flujo Efectivo	Tanque 2	280	l/s	Flujo Efectivo

Capacidad Total Bombeo : 560 I/s

Tabla 2.3 Costo Tanque Machupichu

Costos Materiales \$/					
Bombas y Motores	647,222				
Tableros	391,006				
Transformadores	230,000				
Cables	216,000				
Tanques	33,147				
Accesorios	85,000				
Materiales	1,602,375				

Ingeniería	10,000
Construcción	444,000
Servicios	454,000

Costos Servicio \$/

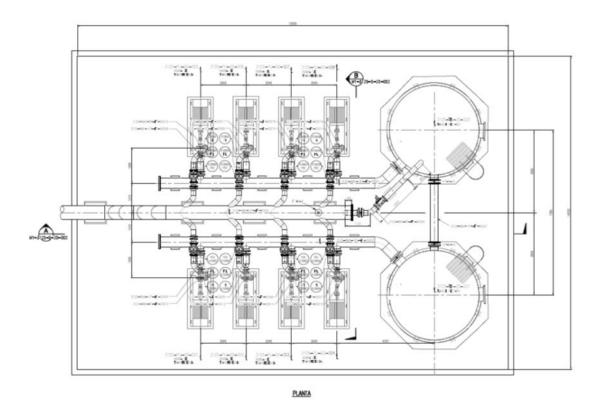


Figura 2.4 Plano de Planta del Sistema de Rebombeo Machupichu

Se cuenta con un tanque de rebombeo en la plataforma El Alto, este recibe actualmente el flujo del pozo 4 y 6 eventualmente se intercambian por el pozo 2, cuenta con 1 tanques de Capacidad de 79.3 m3 y con 4 bombas con una Capacidad de bombeo de 45 l/s teniendo en total una capacidad de bombeo de 180 l/s.

El Alto se encuentra ubicado al lado Oeste del Tajo fuera del límite de minado.

Tabla 2.4 Capacidad tanque El Alto

Tanque 1 m3							
Bomba 1	45	l/s	Operativa				
Bomba 2	45	l/s	Operativa				
Bomba 3	45	l/s	Operativa				
Bomba 4	45	l/s	Operativa				
Tanque 1	180	l/s	Flujo Efectivo				

Capacidad Total	180	1/c
Bombeo :	100	1/3

2.2.3 Sub-Estaciones de Energía

El Tajo Oeste cuenta con 2 Tipos de Subestaciones:

2.2.3.1 Transformadores de Alta a Media

Son Subestaciones en las cuales llega la energía de Alta Tensión y mediante transformadores es convertida a Media Tensión 4.16 KW, de este tipo de subestaciones se tiene04, con una capacidad Total de 7200 KW. Se encuentran ubicadas fuera del límite de minado del Tajo.

Tabla 2.5 Subestaciones

SUBESTACION	POTENCIA (KW)
WELL 03	1200
WELL 04	1200
WELL 06	3200
WELL 07	1600

2.2.3.2 Transformadores de Media a Baja.

Son aquellas estructuras mediante la cual la energía de Media Tensión 4.16 KW es transformada a Energía de Baja Tensión 0.48 KW, se encuentran

ubicadas en zonas dentro del Tajo acercando la disponibilidad de energía a los pozos, pozas y estructuras de rebombeo.

También son importantes a pesar de su temporalidad (entre 1 año y 2 años) para poder reducir la cantidad de tendido de cable de baja tensión, optimizando los costos operativos.

Tabla 2.6 Capacidad de Energía Tajo Oeste

Sub-Estación	Ingreso de Energía	Salida de Energía	Capacidad	
SE-O 1	Well 03, Well 07	TR El Alto, Pozos 3, 5, 7, 8, 9 y 10	2000	KW
SE-O 2	Well 06	Poza Lagarto, Pozos 2, 4 y 6	1600	KW
SE-O 3	Well 06	TR Machupichu	1600	KW
SE-O 4	Well 03	Poza Rudy - stand by	500	KW
SE-O 5	Well 03	Poza Canello	500	KW
SE-O 6	Well 04	Poza Agusta, Pozos Juliet	500	KW
SE-O 7	Well 04	Poza Lino	500	KW

	Total Capacidad Energía	7200	KW	
--	----------------------------	------	----	--

Figura 2.5 Plano de distribución de energía Tajo Oeste

2.2.4 Tuberías

Se tiene tuberías con diámetros de 6", 8", 16" y 24"; con SDR de 17, 11, 9 y 7.3 dependiendo de la presión a la que esté trabajando el sistema y el caudal a transportar.

Tabla 2.7 Datos de tuberías

Ø Nominal Pulg	SDR	Espesor Pulg	Ø Interior Pulg	Caudal I/s Para V = 2.5 m/s
6"	17	0.39	5.85	43.29
	11	0.602	5.42	37.24
В	9	0.736	5.15	33.65
	7.3	0.908	4.81	29.31

Ø Nominal	SDR	Espesor	Ø Interior	Caudal I/s
Pulg		Pulg	Pulg	Para V = 2.5 m/s
8"	17	0.507	7.61	73.4
	11	0.784	7.06	63.1
	9	0.958	6.71	57.03
	7.3	1.182	6.26	49.67

Ø Nominal	SDR	Espesor	Ø Interior	Caudal I/s
Pulg	JUK	Pulg	Pulg	Para V = 2.5 m/s
	17	0.941	14.12	252.49
16"	11	1.455	13.09	217.06
10	9	1.778	12.44	196.16
	7.3		11.44	165.81

Ø Nominal Pulg	SDR	Espesor Pulg	Ø Interior Pulg	Caudal I/s Para V = 2.5 m/s
	17	1.412	21.18	568.05
24"	11	2.182	19.64	488.43
24	9	2.667	18.67	441.37
	7.3	3.288	17.42	384.59

2.3 Plan Inicial de Bombeo 2012 – 2013

El plan Hidrogeológico desarrollado para el avance de minado 2012 – 2013 considera un Total de 10 pozos en el Tajo Oeste con un flujo máximo de 560 l/s para ser alcanzados durante el mes de Febrero del 2013.

La curva de descenso muestra que durante los meses de Agosto, Septiembre y Octubre 2012 no se llegó a cumplir con el flujo esperado, esto principalmente impactado por la pérdida del pozo 1 debido a daños producidos por la voladura y a la interacción del proceso de minado (perforación, voladura y carguío) lo cual disminuyó el Usage de los pozos ubicados dentro del Tajo Oeste así como por el bajo flujo obtenido en el bombeo de los pozos 09 y 10.

Tabla 2.8 Plan Flujos 2012

PLAN	вомвео		2012										
20:	12-2013	ene-12	feb-12	mar-12	abr-12	may-12	jun-12	jul-12	ago-12	sep-12	oct-12	nov-12	dic-12
	TOPW-01	40	40	40	40	40	40	40	55	55	55	55	55
	TOPW-02	50	50	50	50	50	50	50	50	50	50	50	50
	TOPW-03	55	55	55	55	55	55	55	55	55	55	55	55
te	TOPW-04	40	40	40	40	40	40	40	55	55	55	55	55
Oeste	TOPW-05	50	50	50	50	50	50	50	50	50	50	50	50
	TOPW-06	55	55	55	55	55	55	55	55	55	55	55	55
Tapado	TOPW-07			20	20	60	60	60	60	60	60	60	60
Та	TOPW-08					20	20	60	60	60	60	60	60
	TOPW-09												
	TOPW-10											20	20
	Total Plan	290	290	310	310	370	370	410	440	440	440	460	460

Tabla 2.9 Flujos obtenidos 2012 tajo Oeste

FLLUOS	2012 -2013						201	2					
FLUJUS	2012 -2013	ene-12	feb-12	mar-12	abr-12	may-12	jun-12	jul-12	ago-12	sep-12	oct-12	nov-12	dic-12
	TOPW-01	41	6	14	19	12	24	1	0	0	0	0	0
	TOPW-02	26	43	25	19	33	32	19	19	17	2	5	50
	TOPW-03	57	44	34	48	44	26	70	62	58	53	39	46
ţ.	TOPW-04	39	4	9	15	13	45	18	25	8	16	19	18
Oeste	TOPW-05	60	14	40	22	21	55	35	33	23	48	23	39
	TOPW-06	37	49	41	42	31	40	14	27	7	15	19	14
Tapado	TOPW-07	0	0	0	13	33	31	65	78	57	75	61	61
Та	TOPW-08	0	0	0	0	15	20	67	78	76	73	57	56
	TOPW-09	0	0	0	0	0	0	0	14	10	10	10	10
	TOPW-10	0	0	0	0	0	0	0	0	0	14	16	5
	Total Real	261	161	164	179	202	272	288	335	256	305	249	299

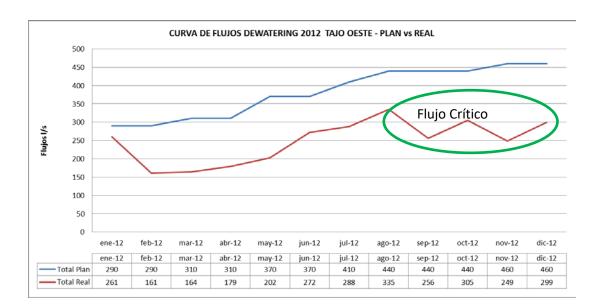


Figura 2.6 Curva de Flujos 2012 plan vs real

A continuación se muestra la tendencia de flujo de cada uno de los pozos durante el 2012 vs el planificado, teniendo en cuenta su ubicación e interacción con el minado.

Pozos dentro del Tajo con alta interacción con el minado : PTO 01, PTO 02, PTO 04 y PTO 06.

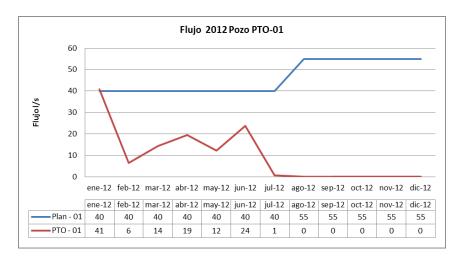


Figura 2.7 Pozo PTO-01

Figura 2.8 Pozo PTO-02

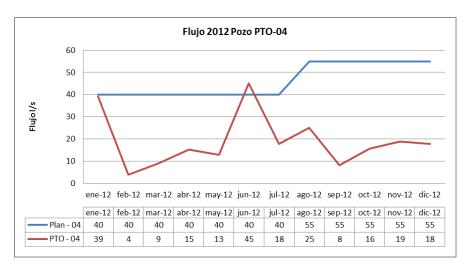


Figura 2.9 Pozo PTO-04

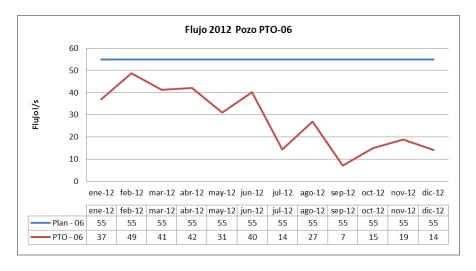


Figura 2.10 Pozo PTO-06

Pozos ubicados en zonas de ineracción media con el minado, se encuentran en paredes de fase de minado, los pozos PTO 03 y PTO 05.

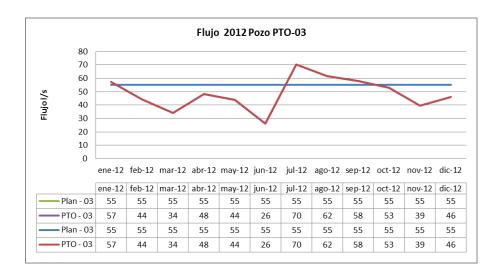


Figura 2.11 Pozo PTO-03

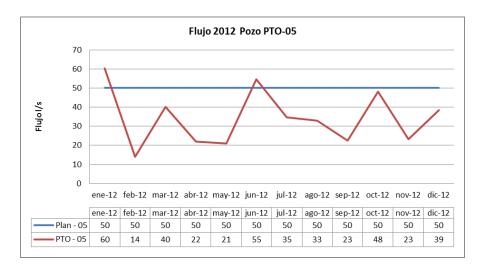


Figura 2.12 Pozo PTO-05

Pozos ubicados fuera de la zona de minado, con baja interacción con el minado, como los pozos PTO 07, PTO 08, PTO 09 y PTO 10.

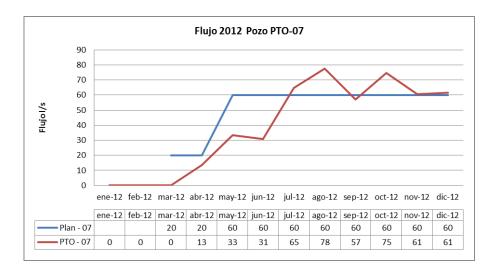


Figura 2.13 Pozo PTO-07

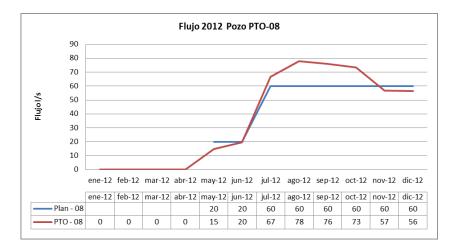


Figura 2.14 Pozo PTO-08

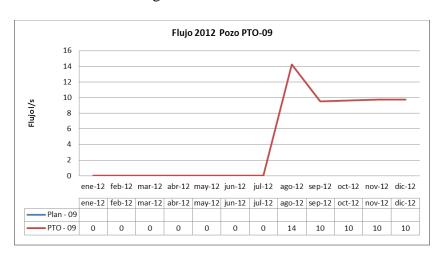


Figura 2.15 Pozo PTO-09

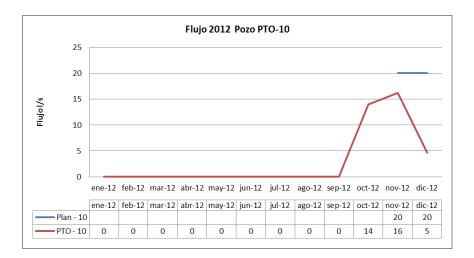


Figura 2.16 Pozo PTO-10

Los cuadros nos dan una referencia de los grupos de pozos que por su ubicación que están siendo más afectados por la interacción con las paradas operatvias por el proceso de minado (perforación, voladura y carguío), también son la línea base para definir nuestras prioridades en optimización de flujo, esto flujos mostrados son mensualizados.

Tabla 2.10 Plan usages 2012

PLAN U	JSAGES 2012-						20	12					
	2013	ene-12	feb-12	mar-12	abr-12	may-12	jun-12	jul-12	ago-12	sep-12	oct-12	nov-12	dic-12
	TOPW-01	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%
	TOPW-02	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%
	TOPW-03	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%
ę	TOPW-04	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%
o es.	TOPW-05	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%	85%
	TOPW-06	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%
pado	TOPW-07			95%	95%	95%	95%	95%	95%	95%	95%	95%	95%
⊒a	TOPW-08					95%	95%	95%	95%	95%	95%	95%	95%
	TOPW-09								95%	95%	95%	95%	95%
	TOPW-10										95%	95%	95%
	Usages Plan	75%	75%	78%	78%	80%	80%	80%	82%	82%	83%	83%	83%

77%

76%

83%

USAGES 2012-2013 ene-12 feb-12 dic-12 mar-12 abr-12 may-12 jun-12 jul-12 ago-12 sep-12 oct-12 nov-12 TOPW-01 95% 34% 74% 88% 61% 68% 9% TOPW-02 63% 49% 46% 17% 28% 89% 69% 84% 54% 66% 70% 45% TOPW-03 97% 87% 88% 85% 89% 57% 95% 97% 96% 89% 84% 94% TOPW-04 95% 34% 66% 88% 56% 87% 55% 63% 45% 51% 64% 51% TOPW-05 97% 44% 72% 58% 96% 69% 65% 94% 65% 95% TOPW-06 76% 78% 69% 68% 66% 73% 66% 34% 50% 53% 67% TOPW-07 63% 98% 92% 94% 96% 89% 98% 95% 98% TOPW-08 100% 94% 94% 96% 97% 98% 96% 97% TOPW-09 97% 95% 95% 89% 98% TOPW-10 93% 87% 72%

Usages 2012

Tabla 2.11 Usages obtenidos 2012

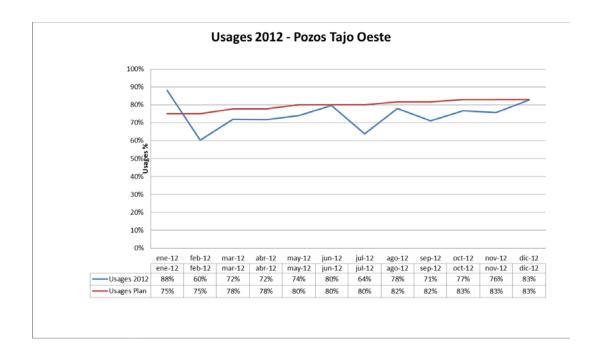


Figura 2.17 Usages 2012 plan vs real

Se muestra que a pesar de tener en los últimos meses operativos los pozos fuera del límite de minado el Usage no llega a alcanzar lo planificado, esto principalmente afectado por los pozos de la parte central 2, 4 y 6, como se muestra en las gráficas a continuación.

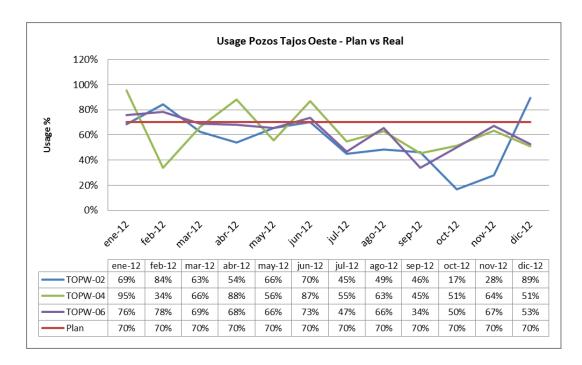


Figura 2.18 Usages Zona I

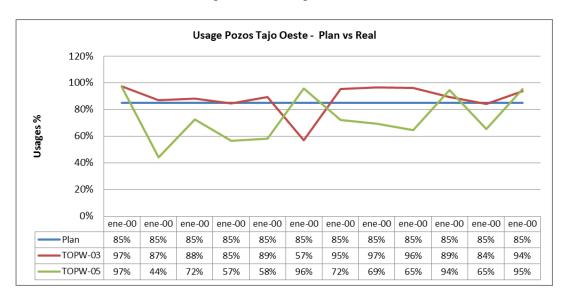


Figura 2.19 Usage Zona II

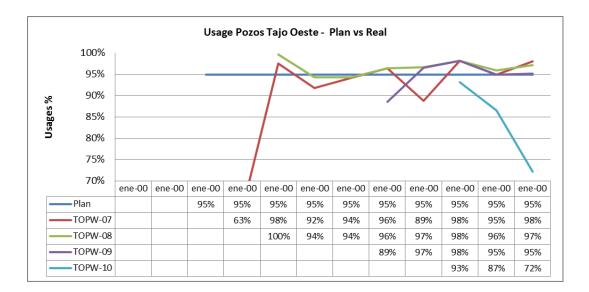


Figura 2.20 Usage Zona III

En la siguiente gráfica se observa que la curva de descenso de la napa freática muestra una tendencia casi horizontal, separándose de la curva de descenso planificada (línea roja punteada), de mantenerse la tendencia se corre el riesgo de impactar con el minado para el mes de enero 2013, afectando la producción de onzas de oro comprometidas en la zona.

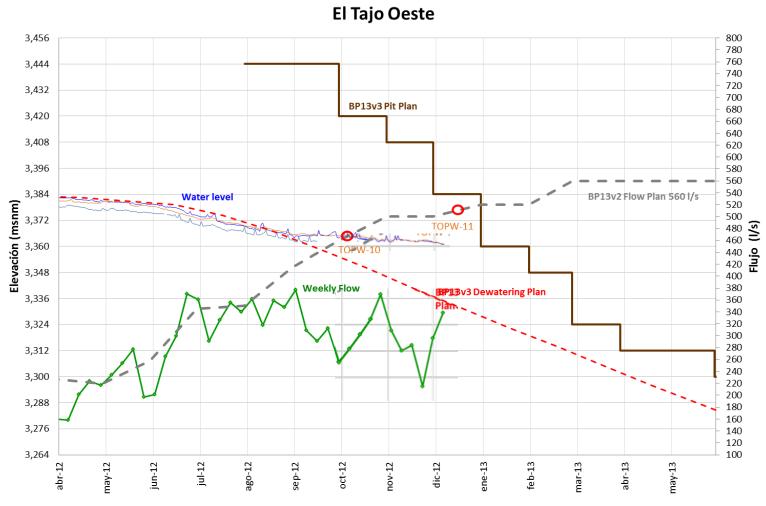


Figura 2.21 Curva napa freática 2012

CAPITULO III

NUEVO PLAN HIDROGEOLOGICO 2013

3.1 Nueva Curva de Descenso Freático 2013 - 2014

Los riegos de impactar el avance del minado en el Tajo Oeste con la napa freática durante el primer trimestre del año 2013 se incrementan debido a los bajos flujos y usages obtenidos particularmente durante los últimos meses del 2012; el bajo flujo en los pozos 09 y 10 que son pozos nuevos; y a la pérdida del pozo 01 por temas de voladura.

Debido a esto se necesita actualizar el plan de minado, las curvas de descenso de la napa freática y actualizar los flujos que se necesitan para asegurar el minado de onzas 2013, producto del estudio se determina incrementar el flujo total de bombeo del Tajo Oeste de 560 l/s a 700 l/s, para esto se analiza la capacidad específica de los pozos, se determina que no es posible recuperar el pozo 01 y que los pozos 09 y 10 no tienen capacidad por lo cual se procede a desinstalarlos, quedando solo 7 de los 10 pozos construidos, tomando la decisión de tener que construir 7 pozos nuevos, 3 para reemplazar a los perdidos (01, 09 y 10) y 4

pozos soportar el aumento de flujo en el bombeo; así como el incrementar el flujo en los pozos existentes.

Tabla 3.1 Plan flujos y usages 2013

POZO	Flujo Efectivo Plan 2012 - 2013	Flujo Efectivo Plan 2013 - 2014	Flujo Plan 2013 - 2014	Usage 2013 - 2014	Observación
PTO 1	55	0	0	0	Inoperativo por daños con la voladura
PTO 2	50	36	80	45%	Alta interacción con el minado
PTO 3	55	56	80	70%	Mediana interacción con el minado
PTO 4	55	32	80	40%	Alta interacción con el minado
PTO 5	50	56	80	70%	Mediana interacción con el minado
PTO 6	55	32	80	40%	Alta interacción con el minado
PTO 7	60	64	80	80%	Baja interacción con el minado
PTO 8	60	64	80	80%	Baja interacción con el minado
PTO 9	60	0	0	0	Inoperativo por baja Capacidad de Transmisibilidad de agua
PTO 10	60	0	0	0	Inoperativo por baja Capacidad de Transmisibilidad de agua
PTO 11	0	64	80	80%	Baja interacción con el minado
PTO 12	0	56	80	70%	Mediana interacción con el minado
PTO 13	0	56	80	70%	Mediana interacción con el minado
PTO 14	0	56	80	70%	Mediana interacción con el minado
PTO 15	0	64	80	80%	Baja interacción con el minado
PTO 16	0	32	80	40%	Alta interacción con el minado
PTO 17	0	32	80	40%	Alta interacción con el minado
TOTAL	560	700	1120	63%	

Para la ubicación de los nuevos pozos se determina zonas que tengan alta Capacidad Específica así como baja interacción con el minado, ya sea en zonas fuera del límite final de minado o en zonas de fase de minado con poca interacción con la operación.

Se observa que a pesar de los incrementos de flujo en los pozos existentesy la construcción de pozos nuevos, se tiene aún el riesgo de impactar el minado en el mes de Agosto 2013, ya que la curva de descenso de la napa freática va muy paralelo al avance vertical del minado en la Fase 1 del Tajo Oeste.

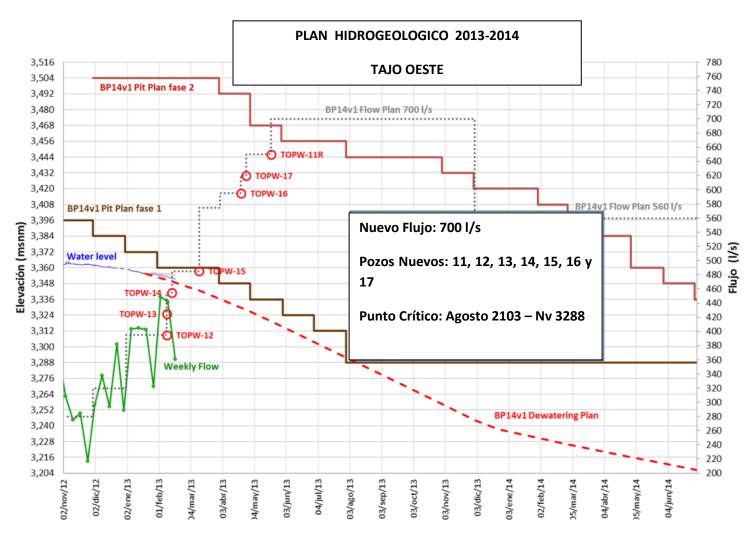


Figura 3.1 Plan Hidrogeológico 2013 - 2014

CAPITULO IV

ANÁLISIS DE OPTIMIZACIÓN DE POZOS EXISTENTES

4.1 Optimización de flujo

El presente Sub – Capítulo analiza los principales parámetros de eficiencia en el drenaje subterráneo definiéndose el tipo de bomba y TDH óptimos para cada pozo con la finalidad de llegar al flujo planeado.

4.1.1 Capacidad Específica de los Pozos

La personalidad Hidrogeológica de las formaciones rocosas está principalmente definidas por dos factores; su capacidad de almacenamiento (porosidad y coeficiente de almacenamiento); y su capacidad de trasmitir el agua (permeabilidad y transmisividad), estos son analizados por la empresa consultora para determinar las curvas de descenso freática y los flujos necesarios, para el presente estudio estos datos se dan por aceptados y validados.

A continuación se presenta el cuadro de Capacidades Específicas de Pozos, para iniciar el análisis de las oportunidades de incremento de flujo.

Tabla 4.1 Capacidades de Pozos

POZO	Nivel Estático	Nivel Dinámico	Abatimiento m	Flujo (I/s)	Capacidad Específica (I/s-m)
PTO 1	114.8	118.9	4.1	35.9	8.7
PTO 2	46.4	91.5	45.1	60.0	1.3
PTO 3	130.6	145.7	15.1	44.6	2.9
PTO 4	113.5	125.4	11.9	40.8	3.4
PTO 5	107.5	140.0	32.5	66.0	2.0
PTO 6	105.6	118.5	12.9	84.0	6.5
PTO 7	157.6	181.1	23.5	64.0	2.7
PTO 8	150.7	161.5	10.8	59.0	5.5
PTO 9	143.3	227.8	84.5	11.0	0.1
PTO 10	185.8	274.5	88.7	24.4	0.3

Se observa que los pozo 9 y 10 presentan Capacidades Específicas muy bajas, flujos de 10 l/s en su bombeo, que se encuentran muy por debajo de los planeados, debido a la baja transmisividad o capacidad de almacenamiento de agua en el macizo rocoso, esto complica el incrementar sus flujos, se realizan pruebas de campo logrando flujos de 80 l/s y 75 l/s respectivamente para los pozos 09 y 10, pero entre el lapso de 2 a 3 horas los pozos dejan de bombearquedándose sin agua, en campo se comprueba que solo se podría obtener 10 l/s de bombeo para cada pozo de manera constante.

Teniendo en cuenta que se prevé incrementar 4 pozos al total de los 10 ya planeados y que los equipos de bombeo no son de disponibilidad inmediata, se determina parar el bombeo de los pozos 09 y 10 para usar sus equipos en los pozos nuevos con mejores oportunidades de incremento de flujo.

Se observa que los pozos 01, 04 y 06 presentan capacidades específicas altas y se encuentran cercanos entre sí en la parte central del Tajo Oeste, por lo cual se determina reemplazar el pozo 01 y construir un pozo adicional dentro de la misma zona de sílice granular, pero se ubicarán en una de las banquetas de seguridad de fase de minado que estén disponible, para reducir la interacción con la operación y minimizar las paradas, se coordina con el área de Planeamiento para definir las plataformas y accesos sin que estos afecten la recuperación de onzas, definiéndose las posible siguientes ubicaciones.

Los pozos 08 y 07 se ubican fuera del límite de minado del tajo hacia la zona Sur – Oeste tienen capacidades específicas altas por lo cual también se determina ubicar en esta zona dos pozos nuevos que remplacen a los pozos 09 y 10, los cuales deberían contar con un Usage alto, debido a la baja interacción con el minado.

Los pozos 03 y 05 también presentan capacidades específicas altas, se encuentran ubicados dentro del Tajo, cerca al cuerpo hídrico que se desea deprimir, en una pared de Fase de Minado que no será impactada nuevamente hasta Octubre 2013, por lo tanto aseguran un buen usage y flujos; Se decide incluir 3 pozos nuevos en esta zona.

El análisis de las Capacidades de los pozos y flujos existentes ayudan a definir tentativamente las ubicaciones para los nuevos pozos, utilizando esta información como complemento para las siguientes evaluaciones en adelante.

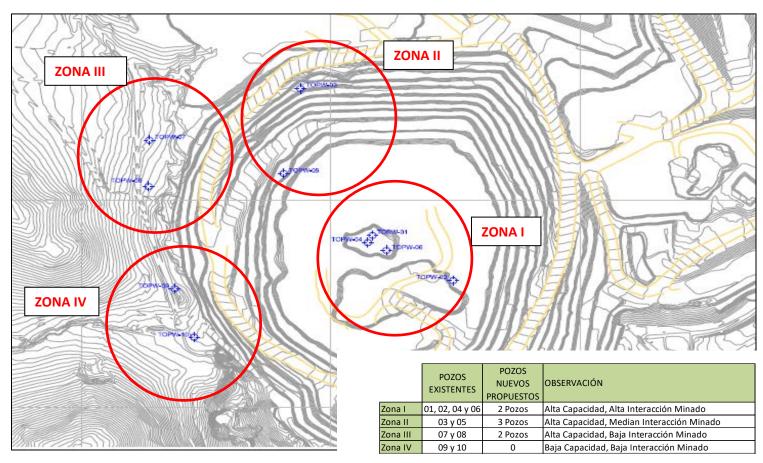


Figura 4.1 Plano de Ubicación de los pozos nuevos

4.1.2Perfil Hidráulico

Se analiza para cada uno de los pozos de acuerdo a la cota del nivel dinámico, la cota del punto de descarga, las pérdidas por tubería y accesorios; se gráfica y calcula el Perfil Hidráulico obteniéndose la Altura Dinámica Total (TDH) para cada pozo.

La Altura Dinámica Total es la presión que debe suministrar la bomba para vencer la altura estática de succión y descarga y las perdidas por fricción en las tuberías y accesorios. La altura dinámica total se expresa usualmente en metros (m).

Por consiguiente, la altura o carga dinámica total se obtiene sumando los siguientes factores:

- a) La diferencia de nivel, que se conoce como carga estática o carga a elevación.
 (He)
- b) Las pérdidas de carga debidas a la fricción de la línea de tubería (hf)
- c) Las pérdidas de carga locales debido a los accesorios (hl)
- d) La carga debido a la velocidad (hv)

$$TDH=He + hf + fl + hv$$

La altura estática (He), está representada por la diferencia de nivel entre la superficie del líquido donde tiene que tomarlo la bomba y la superficie del líquido en el lugar de descarga.

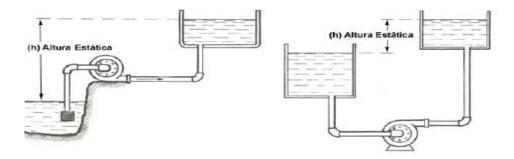


Figura 4.2 Altura Estática

Perdidas por fricción (hf), las pérdidas de carga representan las pérdidas de energía como consecuencia de la resistencia que presentan las tuberías y accesorios a la circulación del líquido.

El método más común es la ecuación de Hazen-Williams expresada como sigue:

$$Q_b = 0.2785 \cdot C \cdot D_c^{2.63} \cdot S^{0.54}$$

$$S = \left[\frac{Q_b}{0.2785 \cdot C \cdot D_c^{2.63}}\right]^{1.85}$$

$$H_f = S \cdot L$$

Dónde:

Qb: Caudal de bombeo (m3/s).

C: Coeficiente de rugosidad de Hazen-Williams.

DC: Diámetro interior comercial de la tubería seleccionada (m).

S: Pendiente de la línea de energía o gradiente Hidráulico (m/m).

Hf: Pérdida de carga por fricción (m)

L: Longitud de tubería con diámetro cte. (m).

Estas ecuaciones que nos permiten determinar la velocidad media y la pérdida de carga por fricción nos dan la posibilidad de identificar, para un diámetro determinado con una clase de tubería seleccionada, si estamos dentro de los intervalos establecidos según los criterios y parámetros de diseño estandarizados para flujo en tuberías.

Lo anterior nos sirve como un instrumento de decisión para descartar o confirmar que el diámetro determinado para el caudal de bombeo sea el adecuado según los criterios de diseño para las condiciones de trabajo optimas en la tubería evitando que se originen pérdidas de carga superiores a las que se requerirían para la conducción del flujo.

Perdidas Locales (hl), estas pérdidas son las producidas debido a los accesorios instalados en la línea de tuberías (codos, reducciones, válvulas, filtros, etc.). Existen diferentes métodos y tablas que permite determinar las pérdidas locales de los accesorios.

Carga de Velocidad (hv), la carga de velocidad, está representada por el término V2/2g generalmente, en la mayoría de los casos no se la toma en cuenta, porque su valor es muy pequeño: a no ser en casos especiales en que la velocidad es muy alta (y por consiguiente la fricción es alta también), o la carga total es muy pequeña y el volumen de agua bombeado es muy grande.

En el siguiente esquema observamos gráficamente la altura dinámica total de un pozo de drenaje subterráneo.

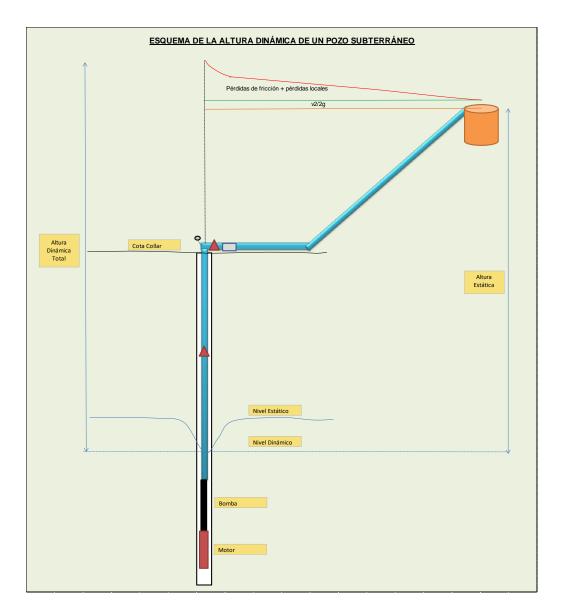


Figura 4.3 Diagrama Altura Dinámica Total

Ver Anexo N° 1:Alturas dinámicas totales Tajo Oeste – Diciembre 2012

Tabla 4.2 Altura Dinámica total

Pozo	Flujo Diciembre 2012 I/s	Nivel Dinámico	Punto Descarga	Cota Descarga	HDT m
PTO 2	78	3349.27	TR El Alto	3524	199.7
PTO 3	45	3343.00	El Mayor	3630	322.0
PTO 4	78	3349.27	TR El Alto	3524	199.7
PTO 5	43	3343.00	El Mayor	3630	322.0
PTO 6	79	3349.27	TR El Alto	3524	199.7
PTO 7	55	3341.80	El Mayor	3630	323.2
PTO 8	54	3351.80	El Mayor	3630	313.2
PTO 9	11	3285.30	El Mayor	3630	379.7
PTO 10	8	3285.30	El Mayor	3630	379.7
Flujo Total	450				

HDT: Altura Dinámica Total

Se observa que los pozos con TDH menores a 200 m presentan mayores flujos, el resto de pozos actualmente presentan TDH elevados que reducen sus flujos de bombeo.

La información del TDH se usará en el siguiente tópico para analizar las posibilidades de incremento en los flujos.

4.1.3Curva de Rendimiento de Bombas

En el presente informe se considera evaluar las bombas que se tienen instaladas en los pozos y disponibles en mina o en compras pendientes, para el bombeo del Tapado Oeste se consideró dentro del plan el uso de Bombas Hidroflo de dos tipos las 9ML de 7 etapas y las 9HL de 8 etapas.

Es importante tener la potencia adecuada para el uso óptimo de las bombas, se consideró migrar de los motores de 250 HP a los de 350 HP. La Potencia del conjunto elevador (motor – bomba) deberá vencer la diferencia de nivel entre los dos puntos, más las pérdidas de carga en todo el trayecto (pérdidas por fricción a lo largo de la tubería y pérdidas locales debidas a las piezas y accesorios).

$$Potencia (HP) = \frac{Q * HDT * \gamma}{76 * \varepsilon}$$

Dónde:

Q = Caudal (l/s)

TDH= Altura dinámica total (m)

 γ = Peso unitario del agua (1000 kg/m3)

 $\varepsilon = \text{Eficiencia} (70 - 85 \%)$

Tabla 4.3 Tipos de bombas en los pozos

Pozo	Flujo Dic. 2012	BOMBA ACTUAL	HDT
P020	l/s	BOWIBA ACTUAL	m
PTO 2	78	HIDROFLO 9ML (7) - 350 HP	199.7
PTO 3	45	HIDROFLO 9ML (7) - 300 HP	322.0
PTO 4	78	HIDROFLO 9HL (8) - 350 HP	199.7
PTO 5	43	HIDROFLO 9ML (7) - 300 HP	322.0
PTO 6	79	HIDROFLO 9ML (7) - 350 HP	199.7
PTO 7	55	HIDROFLO 9HL (8) - 350 HP	323.2
PTO 8	54	HIDROFLO 9HL (8) - 350 HP	313.2
Flujo Total	450		

Para la lectura de las curvas de bombas se debe considerar lo siguiente:

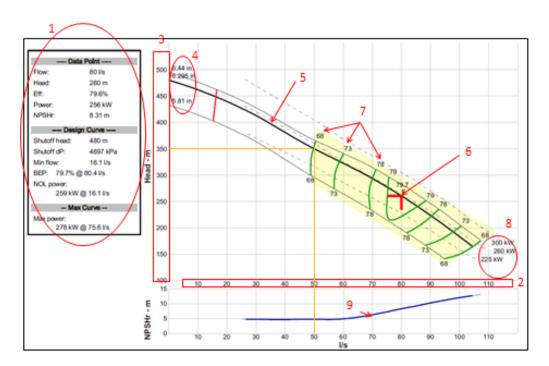


Figura 4.4 Curva de rendimiento de una bomba

- 1) Este recuadro contiene los parámetros de referencia de la curva característica para el punto de operación establecido (Flujo, TDH, eficiencia, energía requerida, NPSHr); asimismo contiene información general característica de la curva de la bomba.
- 2) En el eje horizontal de la gráfica se muestran los caudales a los que puede trabajar la bomba.
- 3) En el eje vertical se muestran las alturas dinámicas totales (TDH) que puede alcanzar la bomba.

- 4) En esta parte observamos el diámetro del impulsor, si el diámetro del impulsor es menor significa que la luz entre el impulsor y el tazón disminuye, por lo tanto la curva de la bomba se desplaza hacia abajo.
- 5) Esta curva de color negro es la curva de flujo de la bomba. Después de calcular el HDT del sistema, ubicamos este valor en el eje vertical proyectamos una línea horizontal en la gráfica, intersectamos la curva de la bomba y de la intersección trazamos una línea vertical hacia el eje horizontal, esta intersección nos da como resultado el caudal. En color anaranjado podemos observar como para un HDT de 350 m obtenemos un caudal de 50 lt/seg. En el punto de operación en esta curva también nos permitirá obtener otros parámetros como energía, eficiencia de la bomba y NPSHr que observamos en los puntos siguientes.
- 6) Punto de operación del fabricante. Es el punto de operación con el que el fabricante vendió la bomba, normalmente también coincide con el punto de máxima eficiencia.
- 7) Curvas de eficiencia. La eficiencia de una bomba es la relación entre lo que la bomba realmente bombea y la que teóricamente bombearía con el 100% de energía utilizada. Existe un punto de máxima eficiencia de la bomba, mientras nos alejamos de este punto en la curva la eficiencia disminuye.
- 8) Curvas de energía consumida, nos permiten ver la cantidad de energía que el motor debe suministrar a la bomba. Depende del TDH, caudal, eficiencia.
 - 9) La curva azul nos indica el NPSHr por la bomba.

A continuación ubicaremos los puntos en la curva de las bombas en las cuales están trabajando los pozos.

9 HL (8 Etapas)

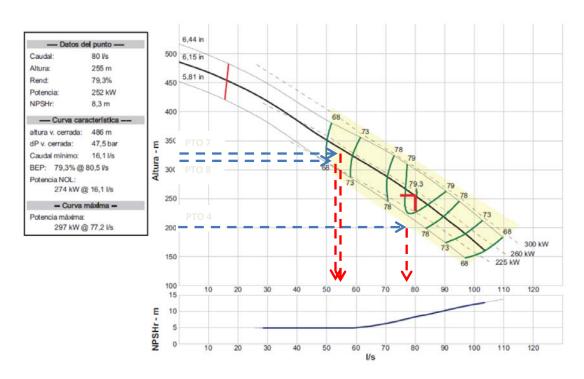


Figura 4.5 Curva de la bomba 9HL (8 Etapas)

9 ML (7 Etapas)

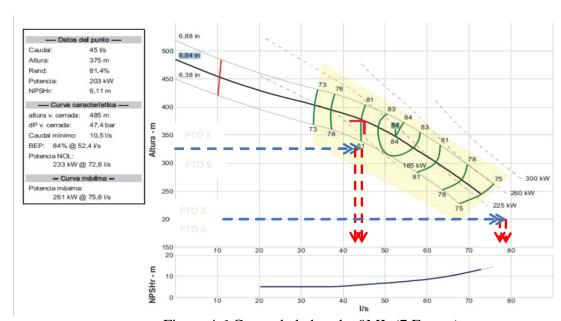


Figura 4.6 Curva de la bomba 9ML (7 Etapas)

En las gráficas se ha identificado los puntos en los cuales se encuentran trabajando las bombas, encontrándose muy cercanas de las curvas teóricas de rendimiento, en caso de decidir su desinstalación, mantenimiento y/o revisión de la luz entre el impulsor y tazón se podría obtener la siguiente mejora:

Tabla 4.4 Incremento de flujo

POZO	HDT	Ø IMPLUSOR	FLUJO ACTUAL	FLUJO MEJOARADO	▲ FLUJO
POZO	М	plg	l/s	l/s	l/s
PTO 2	199.7	6.64	78	78	0
PTO 3	322.0	6.38	45	48	3
PTO 4	199.7	5.81	78	84	6
PTO 5	322.0	6.38	43	48	5
PTO 6	199.7	6.64	79	79	0
PTO 7	323.2	6.15	55	58	3
PTO 8	313.2	6.15	54	62	8

El Incremento del flujo total sería de 25 l/s, es decir el 5.5%, resultando de bajo impacto a la operación, sin embargo es importante tener en cuenta al momento de los mantenimientos preventivos.

4.1.4 Selección de Bomba y Altura Dinámica Total

De acuerdo al nuevo plan de bombeo se requiere llegar a flujos de 80 l/s en cada pozo, en el presente ítem se analiza las curvas de bombeo, los TDH actuales y capacidades específicas de los pozos; para definir las acciones necesarias en el cumplimiento del plan respecto al incremento de flujo y determinar el tipo de bomba óptimo y la Altura Dinámica Total.

De la revisión de los flujos alcanzados y las curvas de Rendimiento de bombas, se determina que la bombas 9ML (7 Etapas) está diseñada para flujos medianos y alturas dinámicas mayores (Flujo = 55 l/s,TDH = 350 m), la bomba 9HL (8 Etapas) está diseñada para flujos altos y TDH menores (Flujo = 80 l/s, TDH = 250).

9HL(8Etapas)

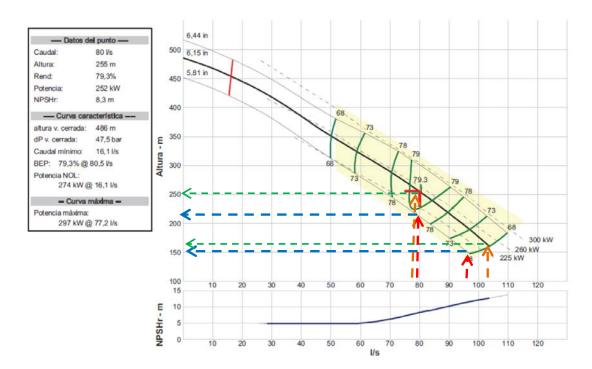


Figura 4.7 Rangos de HDT óptimos

Tabla 4.5 Incremento de flujo

POZO	CAPACIDAD	Ø IMPLUSOR	FLUJO	HDT	RANGO HDT	RANGO	A FLUJO
	ESPECÍFICA	plg	ACTUAL	М	M	FLUJO	l/s
			I/s			l/s	
PTO 4	3.4	5.81	78	199.7	150 - 215	80 - 95	2 – 17
PTO 7	2.7	6.15	55	323.2	160 - 250	80 - 104	25 – 49
PTO 8	5.5	6.15	54	313.2	160 - 250	80 - 104	26 – 50

Debido a que aún no es posible determinar cuánto se puede reducir la Altura Dinámica Total (TDH) en cada pozo, se hace referencia a rangos óptimos de TDH para poder alcanzar o superar los flujos planeados. El TDH para cada pozo será definido con la ubicación y determinación de la cota de los sistemas de rebombeo que se utilicen.

Del análisis del cuadro superior podemos detallar que con las reducciones en TDH se podría obtener un incremento del flujo acumulado de los pozos 4, 7 y 8 en un rango entre 28 % y 62%, priorizando los pozos 7 y 8 que presentan mayor oportunidad de incremento.

El PTO 4 tiene un impulsor de 5.81" el cual limita su incremento de flujo a 95 l/s, en caso de cambiarlo a un impulsor de 6.15 se podría incrementar el flujo hasta 104 l/s.

9 ML (7 Etapas)

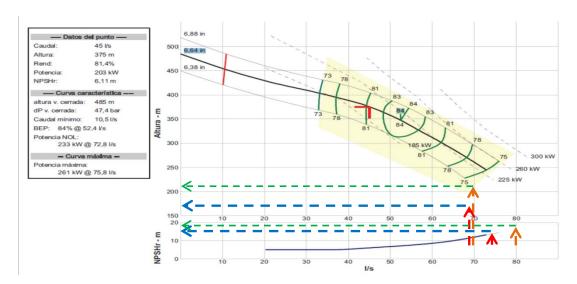


Figura 4.8 Rangos de HDT óptimos

Tabla 4.6 Incremento de flujo

POZO	CAPACIDAD	Ø IMPLUSOR	FLUJO	HDT	RANGO	RANGO	• FLUJO
	ESPECÍFICA	Plg	ACTUAL	М	HDT	FLUJO	I/s
			I/s		М	l/s	
PTO 2	1.3	6.64	78	199.7	190 – 260	70 - 80	0-2
PTO 3	2.9	6.38	45	322.0	180 – 225	70 – 75	25 - 30
PTO 5	2.0	6.38	43	322.0	180 - 225	70 – 75	27 - 32
PTO 6	6.5	6.64	79	199.7	190 - 260	70 – 80	0-1

En caso de reducir el TDH a los rangos recomendados, se conseguiría un incremento del flujo acumulado de los pozos 2, 3, 5 y 6 entre un rango de 21% y 26%, teniendo en cuenta que las bombas estarían trabajando fuera de la curva teórica de bombeo, generando una baja confiabilidad.

Se debe tener en cuenta que los pozos cuentan con buena capacidad específica y que además los pozos 2 y 6 están con sus bombas trabajando al máximo flujo, fuera de la curva teórica de rendimiento de la bomba, esto podría afectar la confiabilidad del equipo.

Las bombas de los pozos 3 y 5 tendrían que trabajar fuera de la curva de rendimiento teórica, y con un TDH de 180 m y consiguiendo llegar solo a 75 l/s debajo de los 80 l/s que solicita el nuevo plan.

Por lo mencionado, también se debe considerar como una oportunidad el cambio de bomba en estos pozos priorizando los pozos 3 y 5 en los cuales se tendría mayor oportunidad de incrementar el flujo.

Se presenta el resumen del análisis realizado de bombas, HDT e incrementos de flujo.

Tabla 4.7 Resumen análisis de TDH óptimos

POZO	FLUJO	FLUJO	HDT	RANGO TDH	ВОМВА	REBOMBEO	PRIORIDAD
	ACTUAL	PLANEADO	ACTUAL	ОРТІМО			
	l/s	I/s	М	М			
PTO 2	78	80	199.7	190 – 260	Se Mantiene	No	4
PTO 3	45	80	322.0	180 – 225	Cambio	Si	2
PTO 4	78	80	199.7	150 – 215	Se Mantiene	No	5
PTO 5	43	80	322.0	180 – 225	Cambio	Si	1
PTO 6	79	80	199.7	190 – 260	Se Mantiene	No	6
PTO 7	55	80	323.2	160 – 250	Se Mantiene	Si	4
PTO 8	54	80	313.2	160 – 250	Se Mantiene	Si	3

Del cuadro superior se concluye:

- Se necesita sistema de rebombeo para reducir TDH, principalmente en los pozos 3, 5, 7 y 8, se establece los rangos óptimos
- Definir con planeamiento las zonas disponibles para los sistemas de rebombeo.
- Se necesita cambio de bomba en los pozos 3 y 5 de 9ML (7 Etapas) a una 9HL (8 Etapas).
- Revisar Stock de Bombas y compras pendientes de 9HL (8 Etapas).
- Se define prioridades para enfocarse en mayores oportunidades.
- Incluir en el análisis los pozos nuevos a construir.

Para los pozos nuevos a construir el área de Planeamiento valida la ubicación propuesta de acuerdo a las capacidades específicas.

Tabla 4.8 Ubicación de pozos nuevos.

	POZOS EXISTENTES	POZOS NUEVOS PROPUESTOS	OBSERVACIÓN
Zona I	01, 02, 04 y 06	2 Pozos	Alta Capacidad, Alta Interacción Minado
Zona II	03 y 05	3 Pozos	Alta Capacidad, Median Interacción Minado
Zona III	07 y 08	2 Pozos	Alta Capacidad, Baja Interacción Minado
Zona IV	09 y 10	0	Baja Capacidad, Baja Interacción Minado

Se considera usar bombas 9HL (8 Etapas) con 6.15" de diámetro de impulsor, ya que brindan mayor flujo a mayor TDH que las 9ML (7 Etapas), se realiza el perfil hidráulico y se define sus rangos de TDH óptimo.

9HL (8 Etapas)

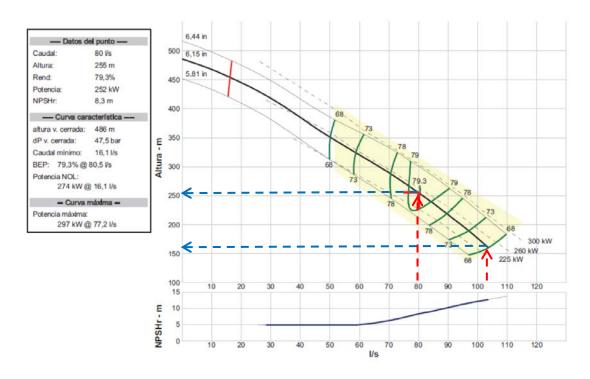


Figura 4.9 Rango óptimo de HDT

Cuadro resumen para todos los pozos a operar en el 2013, definiendo, tipo de bomba, HDT, oportunidad de incremento de flujo.

Tabla 4.9 Oportunidades en pozos

ZONA	POZO	CAPACIDAD	TDH	RANGO	ВОМВА	вомва	FLUJO	FLUJO
		ESPECIFICA	ACTUAL	TDH	ACTUAL	SUGERIDA	ACTUAL	PLAN
			М	М				
	PTO 2	1.3	199.7	190 – 260	9ML (7)	9ML(7)	78	80
	PTO 4	3.4	199.7	150 – 215	9HL (8)	9HL(8)	78	80
Zona I	PTO 6	6.5	199.7	190 – 260	9ML(7)	9ML(7)	79	80
2	PTO 16	3.0	No tiene	160 – 250	NA	9HL(8)	No tiene	80
	PTO 17	3.0	No tiene	160 – 250	NA	9HL(8)	No tiene	80
	PTO 3	2.9	322.0	160 - 250	9ML(7)	9HL(8)	45	80
	PTO 5	2.0	322.0	160 – 250	9ML(7)	9HL(8)	43	80
Zona II	PTO 12	2.5	No tiene	160 – 250	NA	9HL(8)	No tiene	80
Ž	PTO 13	2.5	No tiene	160 – 250	NA	9HL(8)	No tiene	80
	PTO 14	2.5	No tiene	160 – 250	NA	9HL(8)	No tiene	80
	PTO 7	2.7	323.2	160 – 250	9HL(8)	9HL(8)	55	80
≡	PTO 8	5.5	313.2	160 – 250	9HL(8)	9HL(8)	54	80
Zona III	PTO 11	3.0	No tiene	160 – 250		9HL(8)	No tiene	80
	PTO 15	3.0	No tiene	160 – 250		9HL(8)	No tiene	80

Las capacidades específicas de los pozos son las esperadas, estas fueron definidas teniendo en cuenta las capacidades específicas de los pozos en operación y la distancia entre los pozos nuevos y los operativos.

De la optimización de flujo se concluye:

 Los tipos de bombas más adecuadas son las 9HL (8 Etapas) con impulsores de 6.15", sin embargo se tiene que verificar la disponibilidad de los equipos, además los pozos PTO 2 y PTO 6 podrían seguir utilizando la bomba 9ML (7 Etapas).

- Respecto a las Alturas Dinámicas Totales (TDH) se necesita definir las zonas de rebombeo de acuerdo a los rangos de TDH definidos para cada zona.
- Se necesita definir los sistemas de rebombeo a utilizar, considerando los costos y tiempo de implementación.

4.2 Optimización de Usage.

En conjunto con el área de voladura se analiza el impacto de las demoras producto de la desinstalación e instalación del sistema de bombeo para los disparos, por lo cual se realizan mejoras en los diseños y tecnología para minimizar las paradas de los pozos durante los disparos.

Se clasificar en 4 etapas las mejoras de las voladuras cercanas a pozos que fueron realizadas durante el 2012 - 2013.

Primera Etapa, considera el estado inicial a inicios del 2012 para los diseños de voladura en los pozos. El procedimiento consideramantener un radio de 50 metros alrededor de los pozos con cara libre para luego ser perforado y volado, para esto se debe tener desinstalado toda la línea de bombeo. Este proceso tomaba aproximadamente 6 días desde que se desinstalaba hasta volver a poner operativo el pozo, sin tener en cuenta posibles los retrasos por temas de clima adverso.

Figura 4.10 Voladura en pozos con cara libre

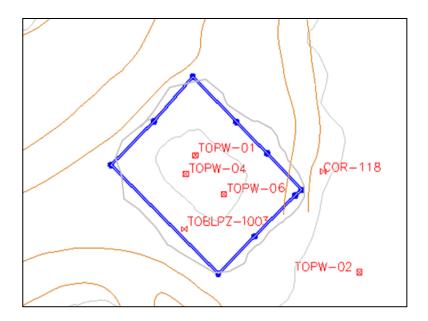


Figura 4.11 Zona crítica para voladura

Segunda Etapa, se consideró mantener la cara libre para los disparos, no retirar la línea de bombeo y realizar el procedimiento de descreste, en el cual se restringía a volar paquetes de taladros no mayores a 3 filas, la protección de los equipos superficiales tomaba 3 horas y en caso de tener que retirarlos el tiempo requerido era de 6 horas, reduciendo considerablemente a las 24 horas se necesitaba para poder instalar y desinstalar toda la línea de bombeo.

Figura 4.12 Voladura en paquetes

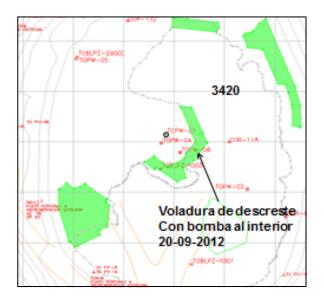


Figura 4.13 Descreste con voladura

Tercera Etapa, si bien las voladuras de descrestes de pozos disminuyeron el tiempo de parada, igual se debía de realizar hasta 6 voladuras con la finalidad de descubrir totalmente el pozo, por esto se implementa el procedimiento de Filtro, que introduce en el diseño un filtro alrededor de los pozos reduciendo el efecto de los taladros adicionales que debían salir, se perfora un collarín a 2 metros del pozo los que quedan sin cargar y adicional se perfora otro collarín a 4 metros que si es volado para generar el filtro hacia el pozo.

Este procedimiento elimina la necesidad de tener cara libre, la restricción de la cantidad de taladros por disparo y el retirar la línea de bombeo para las voladuras.

Figura 4.14 Voladura masiva

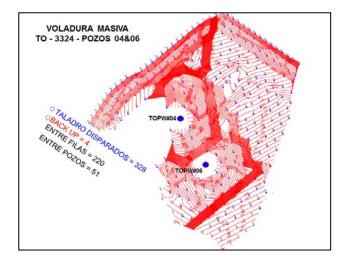


Figura 4.15 Secuencia de salida

Cuarta Etapa, en Minera Colorado el uso de detonadores electrónicos es masificado por las bondades que brinda en el control de estabilidad de paredes, reduce la dilución del mineral y ayuda en la eficiencia del consumo de explosivo, esta tecnología también es usada en las voladuras de pozos subterráneos, sin embargo la energía eléctrica de los trasformadores que alimentan a los pozos

afectaba la programación de los detonadores electrónicos IKON debido a la carga estática que producían, se realiza investigación en el mercado y se prueba con los detonadores Davey Tronics SP (Davey Bickford) con los cuales se elimina el apagado de los transformadores a 300 m que impactaban en tener 30 minuto antes de cada disparo apagar los pozos.

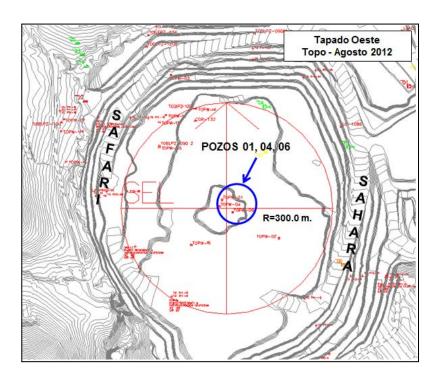


Figura 4.16 Zona de influencia de los disparos

CAPITULO V

ANALISIS DE LOS SISTEMAS DE REBOMBEO

5.1 Definición de Ubicaciones y Cotas

El propósito de este sub capítulo es poder definir las ubicaciones de las plataformas para los sistemas de rebombeo de los pozos, buscando la menor interacción con el minado, mayor cercanía a los pozos y que la cota o nivel de la plataforma cumpla con estar dentro del rango de Altura Dinámica Total definida en el capítulo anterior.

Para esto se reúnen las áreas de Servicios Mina, Hidrogeología y Planeamiento a analizar los planes de minado 2013 – 2014 y el cuadro de zonas ya definidas.

Tabla 5.1 Ubicaciones de los sistemas de rebombeo

ZONA	POZO	FLUJO	FLUJO	TDH	RANGO	DESCARGA	COTA
		ACTUAL	PLAN	ACTUAL	TDH		М
				М	М		
	PTO 2	78	80	199.7	190 – 260	TR El Alto	3524
	PTO 4	78	80	199.7	150 – 215	TR El Alto	3524
Zona I	PTO 6	79	80	199.7	190 – 260	TR El Alto	3524
2	PTO 16	No tiene	80	No tiene	160 – 250		
	PTO 17	No tiene	80	No tiene	160 – 250		
	PTO 3	45	80	322.0	160 - 250	El Mayor	3630
	PTO 5	43	80	322.0	160 – 250	El Mayor	3630
Zona II	PTO 12	No tiene	80	No tiene	160 – 250		
7	PTO 13	No tiene	80	No tiene	160 – 250		
	PTO 14	No tiene	80	No tiene	160 – 250		
	PTO 7	55	80	323.2	160 – 250	El Mayor	3630
	PTO 8	54	80	313.2	160 – 250	El Mayor	3630
Zona III	PTO 11	No tiene	80	No tiene	160 – 250		
	PTO 15	No tiene	80	No tiene	160 – 250		

Tabla 5.2 Nuevas ubicaciones

PLATAFORMAS	COTAS	UBICACIÓN	POSIBLES POZOS
El Alto	3524	Zona III	7, 8, 11, 15, 3,5, 12,13 y
Machupichu	3480	Lado Sur del Tajo	2,4,6,7,8,11, 15, 16 y 17
China	3444	Sur Oeste	2,4,6,16,17,3,5,12,13 y 14
Moche	3442	Zona II	3,5,12,13,14,2,4,6,16 y 17
Celeste	3380	Zona Central	2,4,6,16 y 17

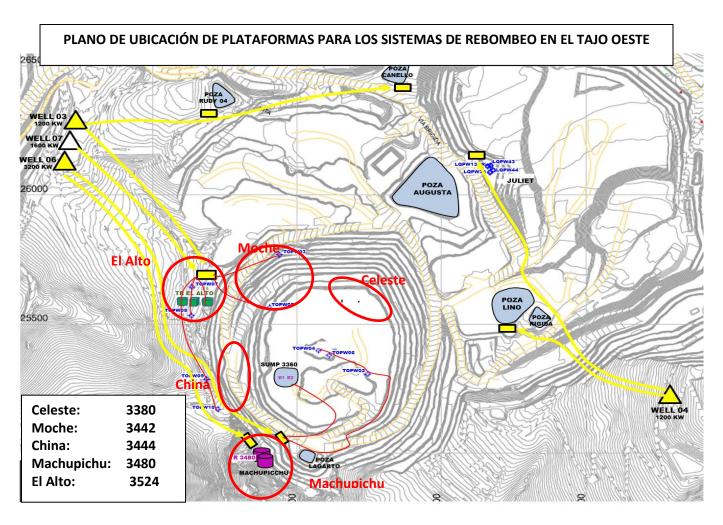


Figura 5.1 Ubicaciones para los nuevos sistemas de rebombeo

Se revisa con Planeamiento y geotecnia las posibilidades de nuevas ubicaciones para los sistemas de rebombeo.

Tabla 5.3 Validación de ubicaciones

PLATAFORMAS	COTAS	UBICACIÓN	ESTABILIDAD
El Alto	3524	Fuera de la zona de minado	Estable
Machupichu	3480	Fuera de la zona de minado	Estable
China	3444	Fuera de la zona de minado	Estable, plataforma reducida (6m x 10m)
Moche	3442	Minado de Fase – Hasta Octubre 2013	Estable, plataforma disponible (20m x 50m)
Celeste	3380	Minado de Fase – Hasta Diciembre 2013	Inestabilidad en la Pared.

Del cuadro superior se define tres plataformas: **El Alto, Moche y Machupichu**, además se toma la opción de usar poza Lagarto en caso tenga capacidad, mientras que el drenaje superficial lo permita.

Se realiza la revisión de las Alturas Dinámicas Totales y se propone los siguientes sistemas de rebombeo.

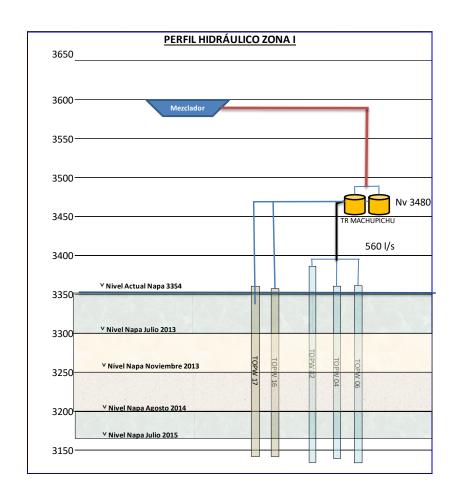


Figura 5.2 Perfil hidráulico Zona I

Tabla 5.4 Flujos y TDH para Zona I

POZO	TDH	TDH	BOMBA	TDH	FLUJO	FLUJO
	ACTUAL	ÓPTIMO		NUEVO	ACTUAL	NUEVO
PTO 2	199.7	190-260	9ML (7)	190	78	79
PTO 4	199.7	150-215	9HL (8)	190	78	85
PTO 6	199.7	190-260	9ML (7)	190	79	79
PTO 16	Nuevo	160-250	9HL (8)	190	Nuevo	95
PTO 17	Nuevo	160-250	9HL (8)	190	Nuevo	95

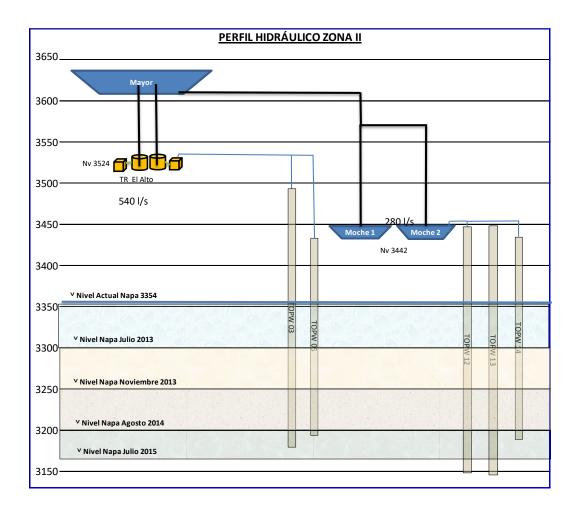


Figura 5.3 Perfil hidráulico Zona II

Tabla 5.4 Flujos y TDH para Zona II

POZO	TDH	TDH	BOMBA	TDH	FLUJO	FLUJO
	ACTUAL	ÓPTIMO		NUEVO	ACTUAL	NUEVO
PTO 3	322.0	160-250	9HL (8)	230	45	85
PTO 5	322.0	160-250	9HL (8)	230	43	85
PTO 12	Nuevo	160-250	9HL (8)	150	Nuevo	105
PTO 13	Nuevo	160-250	9HL (8)	150	Nuevo	105
PTO 14	Nuevo	160-250	9HL (8)	150	Nuevo	105

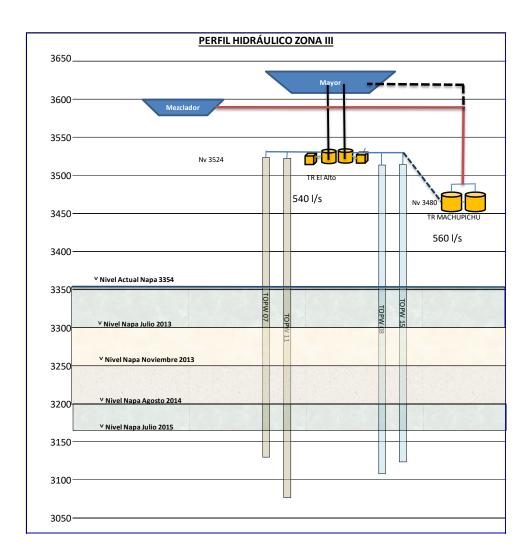


Figura 5.4 Perfil hidráulico Zona III

Tabla 5.5 Flujos y TDH para Zona III

POZO	TDH	TDH	BOMBA	TDH	FLUJO	FLUJO
	ACTUAL	ÓPTIMO		NUEVO	ACTUAL	NUEVO
PTO 7	323.2	160-250	9HL (8)	230	55	85
PTO 8	313.2	160-250	9HL (8)	230	54	85
PTO 11	Nuevo	160-250	9HL (8)	230	Nuevo	85
PTO 15	Nuevo	160-250	9HL (8)	230	Nuevo	85

Del presente sub capítulo se concluye:

- Las ubicaciones propuestas para los sistemas de rebombeo cumplen con reducir el TDH para incrementar el flujo de bombeo de acuerdo al último plan propuesto.
- La bomba 9HL (8 Etapas) es la que mejor se adecua al perfil actual del sistema de bombeo.
- Se necesita decidir los tipos de sistemas de rebombeo a utilizar, estas deben de ser rápida instalación y que cubran los flujos requeridos de acuerdo a la distribución de pozos.

5.2 Tanques de Rebombeo

Por la baja disposición de tiempo se decide usar los tanques disponibles en mina, se tiene disponibilidad de tanques cilíndricos de 79 m3 y cúbicos de 64 m3de capacidad, para la instalación se tiene 3 escenarios:

Uno de ellos que los sistemas sean instalados por el área de Ingeniería de Proyectos, lo que conlleva por los procesos de ingeniería, licitaciones y construcción un aproximado de 8 meses, y costos adicionales por el uso de contratistas temporales.

La segunda opción, mediante contratistas que realicen desde la ingeniería hasta la construcción bajo la supervisión del Área de Servicios Mina.

La tercera opción, el usar la capacidad de supervisión y contratistas que trabajan en el Área de Servicios Mina para la ejecución de los proyectos, así como equipos disponibles de otros sistemas de bombeo, esto beneficiaría en el reducir los tiempos de contratación, licitación y no incrementar los gastos generales con nuevos contratistas.

5.2.1 Capacidad de Rebombeo

Por cada Tanque se tiene la posibilidad de colocar 4 bombas de 45 l/s es decir una Capacidad Total de 180 l/s Máxima en cada tanque.

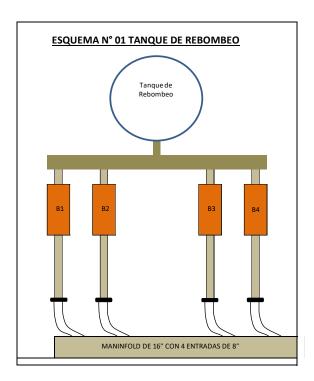


Figura 5.5 Esquema para tanques de rebombeo

5.2.2 Tiempo de Construcción

La primera opción queda desestimada debido a los tiempos que requeriría, mayores a 8 meses.

Para la segunda opción se considera que el Área de Servicios Mina contrate cada uno de los servicios para la ejecución y se adquieran los equipos.

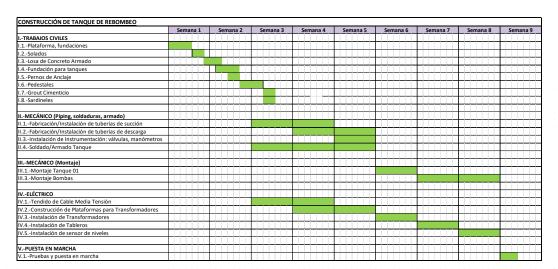


Figura 5.6 Cronograma de construcción

Para la tercera opción se considera el uso de supervisión, contratistas y equipos disponibles en el área de Servicios Mina.

	Semana 1	Semana 2	Semana 3	Semana 4	Semana 5	Semana 6	Semana 7
TANQUE 3							
I.1Plataforma, fundaciones, solados							
I.2Losa de Concreto Armado para bombas y tanques							
I.3Habilitación de Tanque y traslado a ubicación actual							
I.4Fabricación de línea de succión y de descarga							
I.5Instalación y Montajes							
I.6Instalación de Tableros y trasnformador							
I.7Energización							
I.8Puesta en Marcha							

Figura 5.7 Cronograma de construcción

5.2.3 Costos

Para la primera opción no se considera, pero se tiene referencia que los costos son mayores.

En la segunda opción se tiene el siguiente cuadro de costos, del cual se puede calcular que el costo de unitario de rebombeo es:

Capacidad Rebombeo: 280 l/s

Costo \$: 1'033,187

Costo Unitario: 3690 \$ l/s

Tabla 5.6 Costos segunda opción

Costos Materiales \$							
Bombas y Motores	323,611						
Tableros	195,503						
Transformadores	115,000						
Cables	108,000						
Tanques	16,573						
Accesorios	42,500						
Materiales	801,187						

Costos Servicio \$			
Ingeniería	10,000		
Construcción	222,000		
Servicios	232,000		

Para la tercera opción, se tiene el siguiente cuadro de costos, del cual se puede calcular que los costos de unitario de rebombeo:

Capacidad Rebombeo: 180 l/s

Costo \$: 458,800

Costo Unitario: 2548 \$ l/s

Tabla 5.7 Costos tercera opción

DESCRIPCIÓN	Cantidad	Materiales	Servicio	TOTAL
Tanque	0			0
Losa de Concreto	1	3,000	8,000	11000
Bombas (+motor)	4	35,000	2,000	148,000
Tuberías, accesorios INOX, soportería	1	25,000	12,500	37,500
Telemetria	4	2,000		8,000
Flujómetro y Manómetro	4	3,200		12,800
Tablero eléctrico	4	35,000		140,000
Transformador	1	75,000	9,000	84,000
Cable Eléctrico	500	35		17,500
TOTAL				458,800

Se concluye que la mejor opción por tiempo y costos es la que considera usar al área de Servicios Mina con sus recursos propios desde la ingeniería hasta la construcción.

5.3 Pozas de Rebombeo

5.3.1 Capacidad de Rebombeo

El límite de la capacidad de rebombeo de una poza está en función de las dimensiones, de la disponibilidad de espacio y equipos para instalar en este punto se tiene bombas 9ML (7Etapas) verticales que pueden ser fácilmente adaptadas para trabajar en las pozas.

Para la evaluación se considera una poza con capacidad de contener 4 bombas 9ML (7 Etapas) teniendo una capacidad de rebombeo de 280 l/s. Para de acuerdo a las dimensiones de las balsas se considera una poza de dimensiones de 25m x 10m con una altura de 10m.

5.3.2 Tiempo de Construcción

Se considera el poder usar flota gigante para la construcción masiva de la poza, esto reduce los tiempos y costos, quedando el acabado para las excavadoras de menor capacidad Cat 330 para perfilado de taludes y acabados.

POZA REBOMBEO	Semana 1	Semana 2	Semana 3
Accesos/trabajos preliminares			
Excavaciones y Minado			
Perfilado/compactación			
Instalación de Geosintéticos			
Fabricación de Balsas y Casing			
Instalación de energía			
Instalación del sistema de bombeo			

Figura 5.8 Cronograma de construcción

5.3.3 Costos

Se considera que las pozas estarán ubicadas dentro de límites temporales de minado, por lo cual el movimiento del material tiene un costo cero y suma al tonelaje de producción de la mina.

Del cuadro inferior se tiene que:

Capacidad de Rebombeo: 280 l/s

Costo \$: 711,644

Costo Unitario de Rebombeo: 2542 \$ l/s

Tabla 5.8 Costo de poza de rebombeo

		Unid	MAT	TERIAL	SERVICIO		соѕто
	METRADO		Costo Unitario	Sub Total	Costo Unitario	Sub Total	TOTAL
MOVIMIENTO DE TIERRAS				-		15,308	11,338
Top Soil (Limpieza, Carguío, Acarreo, Empuje, Conformación)		m3		-		-	-
Corte (Excavación, Carguío, Acarreo, Empuje, Conformación) Equipo MYSRL	2500	m3		-	3.4	8,438	8,438
Relleno (Carguío, acarreo, compactación)	0	m3		-	4.4	-	-
Perfilado de Taludes	850	m2		-	2.2	1,870	1,870
Otros		unid		-		5,000	1,031
GEOSINTÉTICOS				9,649		1,334	10,982
Geomembrana	1500	m2	5.2	7,772	0.7	1,026	8,798
Geotextil	1500	m2	1.3	1,876	0.2	308	2,184
EQUIPOS				541,500		55,000	596,500
Bombas	4		29500	118,000		-	118,000
Motor	4		35000	140,000			140,000
Tableros	4		35000	140,000		-	140,000
Transformador	2		60000	120,000		-	120,000
Balsas y Casing	5			-	8000	40,000	40,000
Accesorios	5			-	3000	15,000	15,000
Cable media tesnión	500		35	17,500		_	17,500
Cable baja tensión	100		60	6,000			6,000
CONTINGENCIA (15%)				82,672		10,746	92,823
TOTAL				633,821		82,387	711,644

5.4 Bombas en Serie

5.4.1 Capacidad de Rebombeo

Está limitada a la capacidad de la bomba que se tiene en el pozo, el sistema consiste en instalar una bomba adicional dentro del pozo que pueda trabajar comoun sistema en serie con la bomba que ya se tiene dentro del pozo para reducirle la altura dinámica total aumentando el flujo.

5.4.2 Tiempo de Construcción

Se iniciaron las pruebas, que tomaron aproximadamente un mes tiempo en el cual se logró incrementar 5 l/s (baja optimización) y se detectó temas de seguridad al trabajar en el izaje, motivos por el cual se tomó la decisión de descartar por el momento las pruebas.

5.4.3 Costos

No se llegaron a estimar debido a la paralización de las pruebas.

5.5 Resumen de los Sistemas de Rebombeo

Se puede observar en el cuadro inferior las comparaciones entre los sistemas de rebombeo propuestos, teniendo en cuenta sus plazos y costos.

Tabla 5.9 Sistemas de Rebombeo

OPCIÓN	COSTO	TIEMPO
Of Clorv	\$ 1/s	Semanas
Tanque Rebombeo 2	3690	8.4
Tanque Rebombeo 3	2548	6.5
Poza Rebombeo	2542	3.0

Hasta este punto ya tenemos definido las ubicaciones y costos de los sistemas de rebombeo que se pueden utilizar, de acuerdo al requerimiento del perfil

hidráulico (optimizando Alturas Dinámicas Totales) para obtener los flujos planeados para garantizar el minado de las onzas 2013 en el Tajo Oeste.

CAPITULO VI

CONSTRUCCIÓN Y MONITOREO

6.1 Definición de los Sistemas de Rebombeo

Luego de haber completado las evaluaciones hidráulicas y económicas, se define el nuevo sistema de bombeo y rebombeo del Tajo Oeste, el cual se detalle en los siguientes cuadros.

Tabla 6.1 Sistema de rebombeo Zona I

POZO	BOMBA	TDH	FLUJO	SISTEMA REBOMBEO
		M	1/s	
PTO 2	9ML (7)	190	79	Tanque Rebombeo Machupichu
PTO 4	9HL (8)	190	85	Tanque Rebombeo Machupichu
PTO 6	9ML (7)	190	79	Tanque Rebombeo Machupichu
PTO 16	9HL (8)	190	95	Tanque Rebombeo Machupichu
PTO 17	9HL (8)	190	95	Tanque Rebombeo Machupichu

Tabla 6.2 Sistema de rebombeo Zona II

POZO	BOMBA	TDH	FLUJO	SISTEMA REBOMBEO
		M	1/s	
PTO 3	9HL (8)	230	85	Tanque Rebombeo El Alto
PTO 5	9HL (8)	230	85	Tanque Rebombeo El Alto
PTO 12	9HL (8)	150	105	Poza Rebombeo Moche
PTO 13	9HL (8)	150	105	Poza Rebombeo Moche
PTO 14	9HL (8)	150	105	Poza Rebombeo Moche

Tabla 6.3 Sistema de rebombeo Zona III

POZO	BOMBA	TDH	FLUJO	SISTEMA REBOMBEO
		M	1/s	
PTO 7	9HL (8)	230	85	Tanque Rebombeo El Alto
PTO 8	9HL (8)	230	85	Tanque Rebombeo El Alto
PTO 11	9HL (8)	230	85	Tanque Rebombeo El Alto
PTO 15	9HL (8)	230	85	Tanque Rebombeo El Alto

6.2 Construcción de los Sistemas de Rebombeo

A continuación se va a detallar los planos, costos y cronogramas obtenidos en la construcción de los sistemas de rebombeo:

- Tanque de Rebombeo Machupichu.
- Tanque de Rebombeo El Alto.
- Poza de Rebombeo Moche.
- Tanque de Rebombeo Machupichu

Tabla 6.4 Capacidad rebombeo en Machupichu

Tanques de Rebombeo Machupichu					
Tanque 1			Tanque 2		
73.9 m3				73.9 m3	
Bomba 1	70 lt/seg	Operativa	Bomba 1	70 lt/seg	Operativa
Bomba 2	70 lt/seg	Operativa	Bomba 2	70 lt/seg	Operativa
Bomba 3	70 lt/seg	Operativa	Bomba 3	70 lt/seg	Operativa
	70 lt/seg	Operativa	Bomba 4	70 lt/seg	Operativa
Tanque 1	280 lt/seg	Efectivos	Tanque 1	280 lt/seg	Efectivos

Total de Capacidad de Bombeo: 560 lt/seg

Cronograma

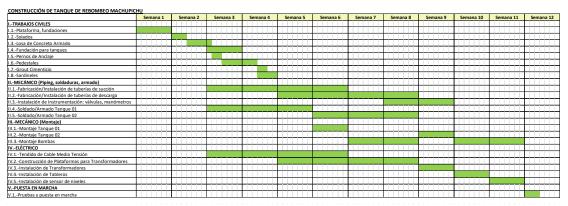


Figura 6.1 Tiempo de construcción del sistema de rebombeo Machupichu

Tabla 6.5 Costos del sistema de rebombeo Machupichu

Costos Materiales \$				
Bombas y Motores	647,222			
Tableros	391,006			
Transformadores	230,000			
Cables	216,000			
Tanques	33,147			
Accesorios	85,000			
Materiales	1,602,375			

Costos Servicio \$		
Ingeniería	10,000	
Construcción	444,000	
Servicios	454,000	

Costo Total 2,056,375

Costo Unitario de Rebombeo: 3672 \$ l/s

Tiempo: 11.4 Semanas

• Plano

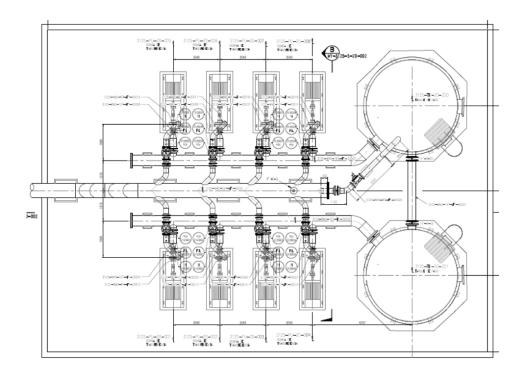


Figura 6.2 Plano del sistema de rebombeo Machupichu

Tanque de Rebombeo El Alto

Tabla 6.6 Capacidad sistema de rebombeo El Alto

Ta 73	Tanque 2 64 m3				
Bomba 1	45 lt/seg	Operativa	Bomba 1	45 lt/seg	Operativa
Bomba 2	45 lt/seg	Operativa	Bomba 2	45 lt/seg	Operativa
Bomba 3	45 lt/seg	Operativa			
Bomba 4	45 lt/seg	Operativa			
Tanque 1	180 lt/seg	Efectivos	Tanque 2	90 lt/seg	Efectivos

	Tanque 3		Tanque 4			
73.9 m3			73.9 m3			
Bomba 1	45 lt/seg	Operativa	Bomba 1	45 lt/seg	Operativa	
Bomba 2	45 lt/seg	Operativa	Bomba 2	45 lt/seg	Operativa	
Bomba 3	45 lt/seg	Operativa				
Bomba 4	45 lt/seg	Operativa				
Tanque 3	180 lt/seg	Efectivos	Tanque 4	90 lt/seg	Efectivos	

Total de Capacidad de Bombeo: 540 lt/seg

• Cronograma

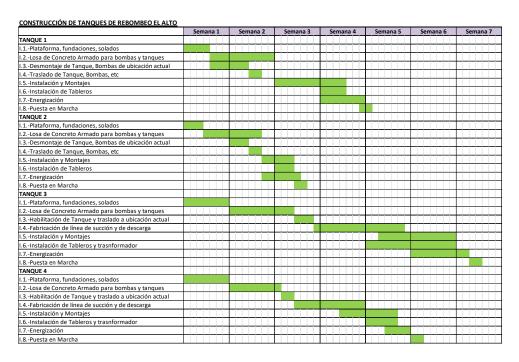


Figura 6.3 Tiempo de construcción del sistema de rebombeo El Alto

Tabla 6.7 Costos del sistema de rebombeo El Alto

1° TANQUE DE REBOMBEO EL ALTO 180 lt/seg - Solo reubicación

DESCRIPCIÓN	Cantidad	Materiales	Servicio	TOTAL
Tanque	0	-	-	0
Losa de Concreto	1	4,500	8,000	12,500
Bombas (+motor)	4	-	2,000	8,000
Tuberías, accesorios INOX, soportería	1	-	15,000	15,000
Telemetria	4	1,000	-	4,000
Flujómetro y Manómetro	4	3,200	-	12,800
Tablero eléctrico	0	-	-	-
Transformador	1	-	9,000	9,000
Cable Eléctrico	500	35	-	17,500
TOTAL				78,800

2° TANQUE DE REBOMBEO EL ALTO 90 lt/seg

DESCRIPCIÓN	Cantidad	Materiales	Servicio	TOTAL
Tanque	0	•	-	0
Losa de Concreto	1	2,500	5,000	7500
Bombas (+motor)	2	•	2,000	4,000
Tuberías, accesorios INOX, soportería	1	-	9,500	9,500
Telemetria	2	1,000	-	2,000
Flujómetro y Manómetro	2	5,500	-	11,000
Tablero eléctrico	0	-	-	-
Transformador	0	-	-	-
Cable Eléctrico	250	35	-	8,750
TOTAL				42,750

3° TANQUE DE REBOMBEO EL ALTO 180 lt/seg (SISTEMA TRS)

DESCRIPCIÓN	Cantidad	Materiales	Servicio	TOTAL
Tanque	0	-	-	0
Losa de Concreto	1	3,000	8,000	11000
Bombas (+motor)	4	35,000	2,000	148,000
Tuberías, accesorios INOX, soportería	1	25,000	12,500	37,500
Telemetria	4	2,000	-	8,000
Flujómetro y Manómetro	4	3,200	-	12,800
Tablero eléctrico	4	35,000	-	140,000
Transformador	1	75,000	9,000	84,000
Cable Eléctrico	500	35	-	17,500
TOTAL				458,800

4° TANQUE DE REBOMBEO EL ALTO 90 lt/seg (SISTEMA TRS)

DESCRIPCIÓN	Cantidad	Materiales	Servicio	TOTAL
Tanque	0	-	-	-
Losa de Concreto	1	2,500	5,000	7500
Bombas (+motor)	2	35,000	2,000	74,000
Tuberías, accesorios INOX, soportería	1	25,000	12,500	37,500
Telemetria	2	2,000	-	4,000
Flujómetro y Manómetro	2	3,200	-	6,400
Tablero eléctrico	2	35,000	-	70,000
Transformador	0	-	-	-
Cable Eléctrico	250	35	-	8,750
TOTAL				208,150

CAPACIDAD TOTAL DE REBOMBEO EN EL ALTO :	540 l/s
COSTO TOTAL DE REBOMBEO EN EL ALTO :	788,500 \$
COSTO UNITARIO DE REBOMBEO :	1,460 \$ I/s

Costo Unitario de Rebombeo: 1460 \$ l/s

Tiempo: 6.6 Semanas

• Plano

Figura 6.4 Plano del sistema de rebombeo El Alto

Poza de Rebombeo Moche

Tabla 6.8 Capacidad del sistema de rebombeo de Moche

Poza de Rebombeo Moche							
	Poza 1			Poza 2			
5000 m3			6500 m3				
Bomba 1	70 lt/seg	Operativa	Bomba 1	70 lt/seg	Operativa		
Bomba 2	70 lt/seg	Operativa	Bomba 2	70 lt/seg	Operativa		
Poza 1	140 lt/seg	Efectivos	Poza 2	140 lt/seg	Efectivos		

Total de Capacidad de Bombeo: 280 lt/seg

• Cronograma

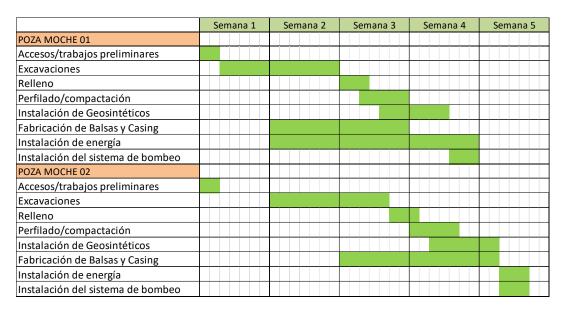


Figura 6.5 Tiempo de construcción del sistema de rebombeo en Moche.

Tabla 6.9 Costos del sistema de rebombeo Moche

POZA MOCHE 1 Y MOCHE 2

Volumen 11,500 m3 Área 1,352 m2

	METRADO	Unid	MATER	IAL	SERVIC	CIO	COSTO TOTAL
	METRADO		Costo Unitario	Sub Total	Costo Unitario	Sub Total	COSTO TOTAL
MOVIMIENTO DE TIERRAS				-		23,669	23,669
Corte (Excavación, Carguío, Acarreo, Empuje, Conformación) Equi	19800	m3		-	0.0	-	-
Relleno (compactación)	2000	m3		-	4.4	8,850	8,850
Relleno con material preparado (Zarandeo, carguío, acarreo, com	900	m3		-	14.2	12,758	12,758
Perfilado de Taludes	937	m2		-	2.2	2,061	2,061
GEOSINTÉTICOS				15,654		2,164	17,818
Geomembrana	2433.6	m2	5.2	12,610	0.7	1,665	14,275
Geotextil	2433.6	m2	1.3	3,044	0.2	499	3,543
EQUIPOS				585,000		44,000	190,000
Bombas	4		29500	118,000		-	88,500
Motor	4		35000	140,000			10,500
Tableros	4		40000	160,000		-	-
Transformador	2		60000	120,000		-	-
Balsas y Casing	4			-	8000	32,000	32,000
Accesorios	4			-	3000	12,000	12,000
Cable media tesnión	1000		35	35,000			35,000
Cable baja tensión	200		60	12,000			12,000
TOTAL				600,654		69,833	231,487

COSTO TOTAL:	231,487 \$
CAPACIDAD TOTAL DE REBOMBEO :	280 l/s

Costo Unitario de Rebombeo: 827 \$ l/s

Tiempo: 4.7 Semanas

• Planos

Figura 6.6 Diseño de la poza Moche

En el siguiente cuadro se muestra el resumen de los sistemas de rebombeo construidos y los ahorros obtenidos en los mismos.

Tabla 6.10 Costos unitarios y tiempos

			Planificado	Obtenido		
Sistemas de Rebombeo	Capacidad Rebombeo I/s	Tiempo semana	Costo Unitario Rebombeo \$ I/s	Tiempo semana	Costo Unitario Rebombeo \$ I/s	
Tanques Machupichu	560	8.4	3690	11.4	3672	
Tanques El Alto	540	6.5	2548	6.6	1460	
Poza Moche	280	3.0	2542	4.7	827	

Tabla 6.11 Ahorros obtenidos en la construcción de los sistemas de rebombeo

Sistemas de Rebombeo	Capacidad Rebombeo I/s	Costo Unitario Rebombeo \$ I/s	Costo \$	Costo Unitario Rebombe 0 \$ I/s	Costo \$	Ahorro \$
Rebombeo Machupichu	560	3,690	2,066,400	3,672	2,056,320	10,080
Rebombeo El Alto	540	3,690	1,992,600	1,460	788,400	1,204,200
Rebombeo Moche	280	3,690	1,033,200	827	231,560	801,640
Ahorro Obtenido \$						2,015,920

6.3 Resultados en Operación

A continuación se muestra las gráficas actualizadas del 2013 referente a los resultados obtenidos en Usage.

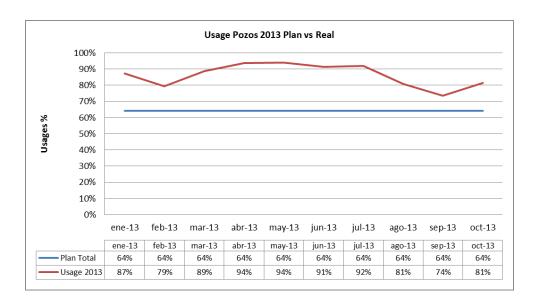


Figura 6.7 Curva de usages 2013

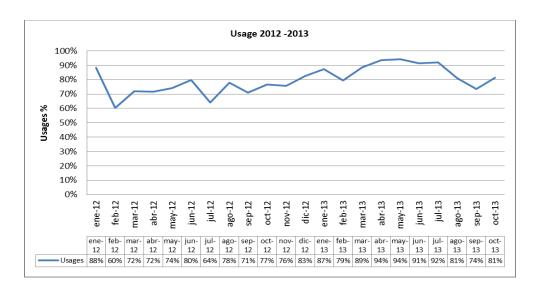


Figura 6.8 Curva de usages 2012 – 2013

El usage de los pozos del Tajo Oeste se muestra con una tendencia en el 2013 de mejora comparado con el 2012, así mismo los resultados en usage han superado los planificado para el año, sin embargo los meses de Septiembre y Agosto se

ven reducidos por la nueva interacción del minado en la pared de fase lado noroeste (Zona II y Zona III).

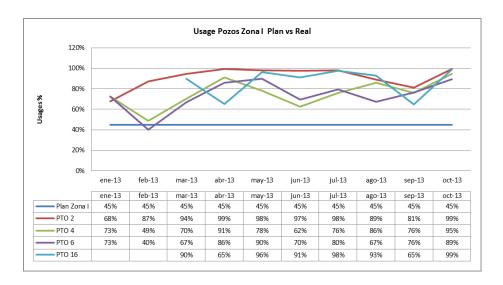


Figura 6.9 Curva usage Zona I

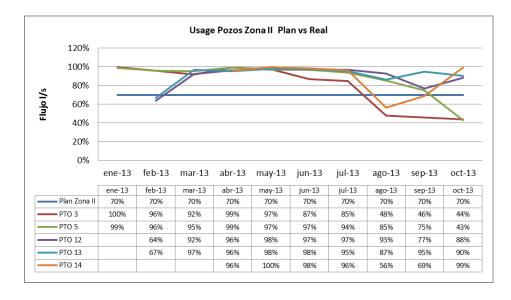


Figura 6.10 Curva de usage Zona II

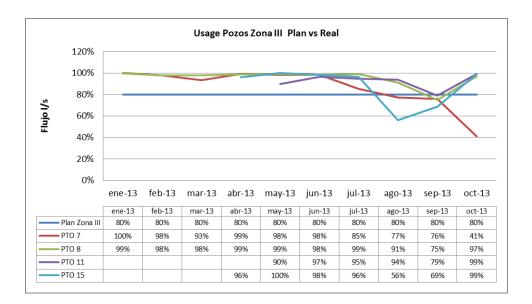


Figura 6.11 Curva de usage Zona III

De las gráficas de los usages por Zonas se nota la tendencia del 2013 a estar sobre lo planificado, pero a su vez se visualiza que para las Zona II y Zona III en los 2 últimos meses debido al minado de la pared de Fase los Usages están nuevamente afectados, lo cual está previsto en el plan inicial.

De la misma manera se presenta los gráficos de Flujos para el 2013.

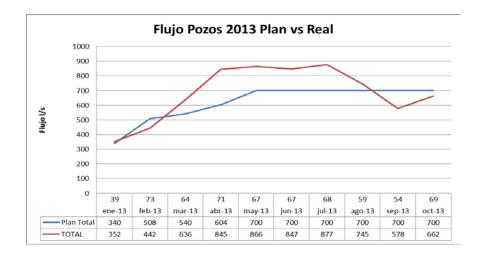


Figura 6.12 Flujos 2013

El gráfico muestra los resultados en Flujos Totales Efectivos que se han cumplido de acuerdo al plan de bombeo 2013, llegando a obtener picos de flujo de bombeo de 877 l/s y estando desde Febrero hasta Julio muy por encima de lo planificado, los 2 último meses al igual que el usage se tiene una baja debido al minado de la pared de fase, pero en esta oportunidad ya se han diseñado los cambios de los sistemas de rebombeo y se espera que los siguientes meses se recupere la performance del bombeo.

A continuación se presenta los flujos de bombeo por Zonas.

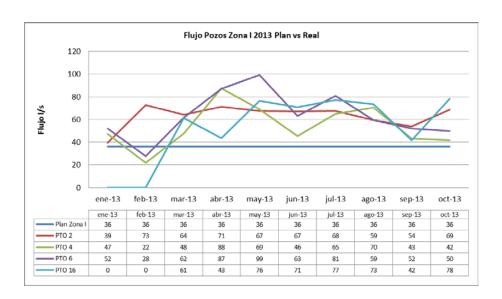


Figura 6.13 Flujos Zona I

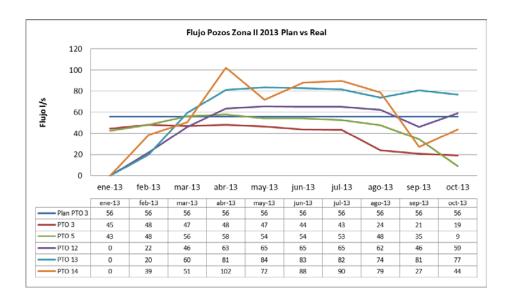


Figura 6.14 Flujos Zona II

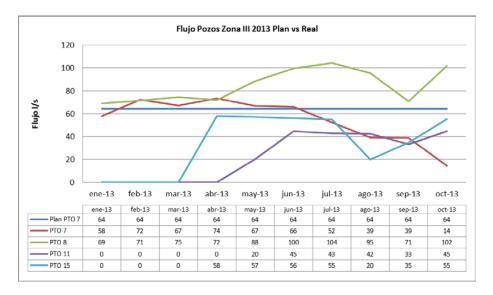


Figura 6.15 Flujos Zona III

En general se mantuvo una buena performance en el incremento de flujo en el primer semestre del año, sin embargo en los pozos de la Zona II y Zona II se muestra los últimos meses una disminución, los cuales se deben revertir con los nuevos sistemas de rebombeo.

El trabajo de mejora en usages y flujos 2013 debe repercutir en el descenso de la napa freática 2013 para el avance del minado, a continuación se presenta la curva actualizada.

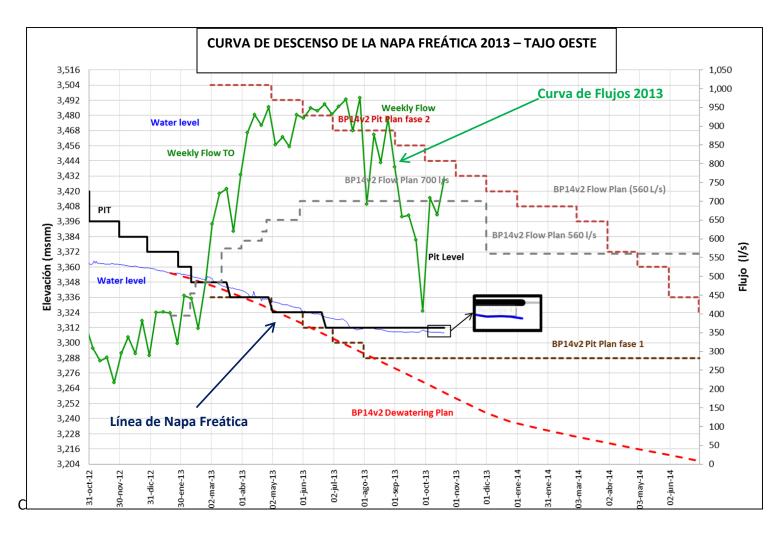


Figura 6.16 Curva Hidrogeológica 2013

Del gráfico se observa el descenso de la napa freática hasta el Nv 3308 y del avance vertical del minado al nivel 3312 hasta el mes de octubre, cumpliendo el plan de minado de onzas de acuerdo a lo planificado.

6.4 Sumps

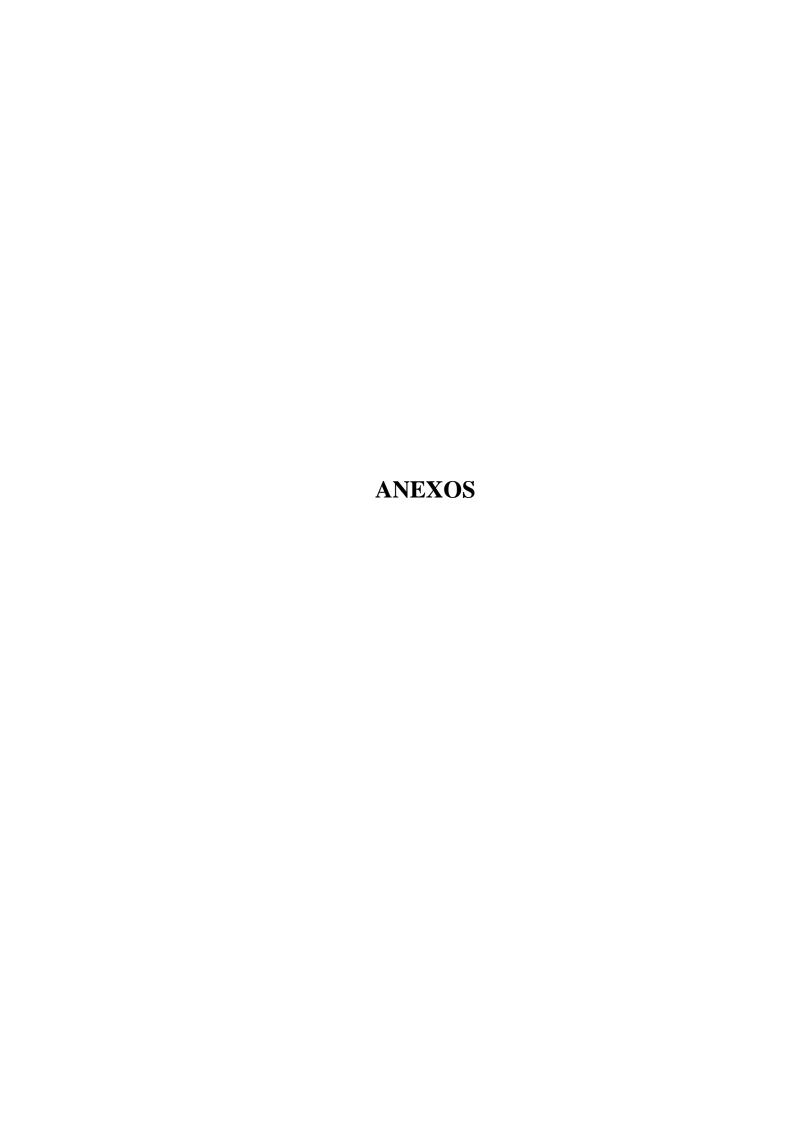
Si bien es cierto que los flujos de los pozos han superado considerablemente lo planificado, también es necesario mencionar que para el minado del Tajo Oeste se ha utilizado el bombeo superficial para los 2 últimos bancos para el soporte del drenaje subterráneo, esto consiste en forma pozas que lleguen a la napa freática e instalar bombas superficiales, si bien este bombeo no genera un efecto muy influyente en la napa, si es de gran ayuda para el avance del minado, ya que genera un cono de influencia localizado de la napa freática, de mayor impacto en la zona a avanzar con el minado vertical, conforme se profundiza el Tajo el área de minado se reduce, por lo tanto no es necesario bajar la napa freática en su totalidad con los pozos, sino generar el espacio vacío del cono entre los pozos y las bombas del sump (poza superficial de bombeo).

Nótese en la foto el efecto de descenso del nivel del agua, facilitando el proceso de perforación para continuar con el minado.

Fig 6.1 Sump

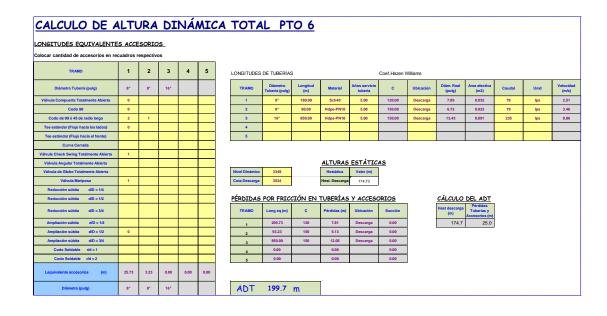
Fig 6.18 Vista Tajo Oeste

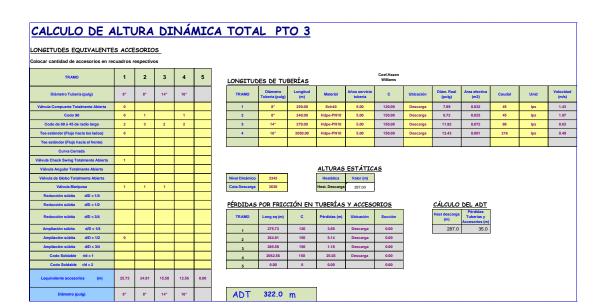
CONCLUSIONES

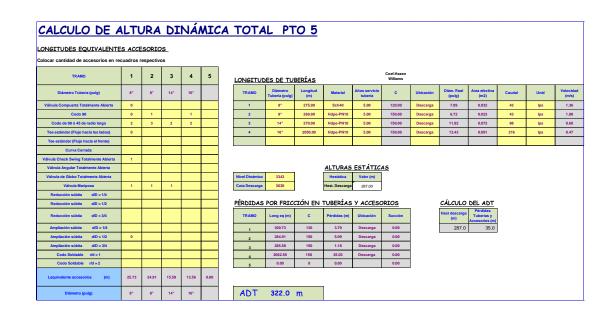

- Es necesario tener una metodología clara para el análisis de los perfiles hidráulicos de los sistemas de bombeo subterráneo:
 - a. Revisión de Capacidades Específicas y flujos obtenidos.
 - b. Cálculo de Alturas Dinámicas Totales.
 - c. Revisión de Curvas de Rendimiento de Bombas (selección de equipo).
 - d. Optimización de Alturas Dinámicas Totales (flujo y/o usage).
 - e. Definición y construcción de Sistemas de Rebombeo.
 - f. Monitoreo de resultados.
- 2. Los sistema de bombeo subterráneo necesitan un análisis continuó de las Alturas Dinámicas Totales (TDH) conforme avanza el descenso de la napa freática, esto con la finalidad de analizar los flujos de bombeo.

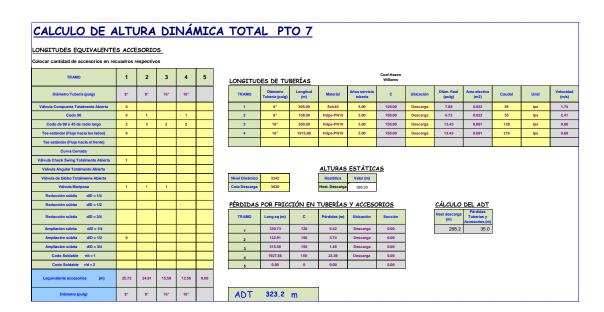
- Es necesario incluir en los Planes de Minado a Mediano Plazo las ubicaciones de las facilidades para los sistemas de bombeo y rebombeo.
- 4. La construcción de los sistemas de rebombeo deben ser considerados dentro del trabajo operativo para tajos con fases de minado e interacción de estructuras con el minado, estos ayudan a reducir el tiempo y costos en su implementación.
- Es importante analizar las optimizaciones de los sistemas de rebombeo versus la construcción de nuevos pozos.
- 6. Es importante planificar el descenso de la napa freática con la debida anticipación para evitar que la curva de descenso se encuentre demasiado cerca al avance vertical de minado, esto para reducir el riesgo de paralización de la operación por la presencia de la napa freática.

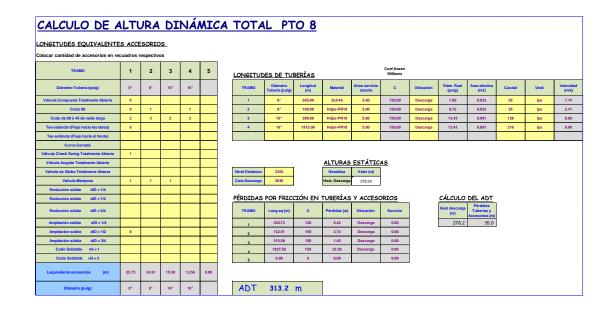
BIBLIOGRAFÍA


www.hidrostal.com.pe


www.la-llave.com




Anexo N° 1: Alturas dinámicas totales Tajo Oeste – Diciembre 2012


CALCULO DE A	LTU	JRA	DI	NÁI	MI	A TOT	AL PT	0 2	y 4									
ONGITUDES EQUIVALENTE colocar cantidad de accesorios en re-																		
TRAMO	1	2	3	4	5	LONGITUDES DE TUBERÍAS Williams												
Diámetro Tubería (pulg)	8"	8"	16"			TRAMO	Diámetro Tubería (pulg)	Longitud (m)	Material	Años servicio tubería	С	Ubicación	Diám. Real (pulg)	Area efectiva (m2)	Caudal	Unid	Velocidae (m/s)	
Válvula Compuerta Totalmente Abierta	0					1	8"	180.00	Sch40	5.00	120.00	Descarga	7.89	0.032	78	lps	2.47	
Codo 90	0					2	8"	95.00	Hdpe-PN10	5.00	150.00	Descarga	6.72	0.023	78	lps	3.41	
Codo de 90 ó 45 de radio largo	2	- 1				3	16"	850.00	Hdpe-PN10	5.00	150.00	Descarga	13.43	0.091	235	lps	0.85	
Tee estándar (Flujo hacia los lados)	0					4												
Tee estándar (Flujo hacia el frente)						5												
Curva Cerrada									•									
Válvula Check Swing Totalmente Abierta	- 1																	
Válvula Angular Totalmente Abierta									ALTURAS	ESTÁTIC	AS.							
Válvula de Globo Totalmente Abierta						Nivel Dinámic	3349		Hestática	Valor (m)								
Válvula Mariposa	- 1					Cota Descarg	a 3524		Hest. Descarga	174.73								
Reducción súbita d/D = 1/4								•										
Reducción súbita d/D = 1/2						PÉRDIDAS POR FRICCIÓN EN TUBERÍAS Y ACCESORIOS CÁLCULO DEL ADT												
Reducción súbita d/D = 3/4						TRAMO	Long eq (m)	С	Pérdidas (m)	Ubicación	Succión		Hest descarga (m)	Pérdidas Tuberías y Accesorios (m)				
Ampliación súbita d/D = 1/4						1	205.73	120	7.63	Descarga	0.00		174.7	25.0				
Ampliación súbita d/D = 1/2	0					2	98.23	150	5.28	Descarga	0.00							
Ampliación súbita d/D = 3/4						3	850.00	150	12.05	Descarga	0.00							
Codo Soldable r/d = 1						4	0.00		0.00		0.00							
Codo Soldable r/d = 2						5	0.00		0.00		0.00							
Lequivalente accesorios (m)	25.73	3.23	0.00	0.00	0.00							-						
Diámetro (pulg)	8"	8"	16"			ADT	199.7	m										

