UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

ANÁLISIS DEL CONTROL DE LA CALIDAD DE SUMINISTRO DESDE LA APLICACIÓN DE LA NORMA TÉCNICA DE CALIDAD DE LOS SERVICIOS ELÉCTRICOS

INFORME DE SUFICIENCIA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO ELECTRICISTA

PRESENTADO POR:

Luis Alberto Díaz de la Cruz

PROMOCIÓN 2000 - II

LIMA – PERÚ 2005

Dedico este trabajo a:

Mis padres y abuelos, por todo el apoyo y

confianza que en estos años han depositado

en mi, a mis hermanos y tíos, por el apoyo

incondicional y al amor de mi vida, que con sus

consejos me ha permitido finalizar mi sueño anhelado.

ANÁLISIS DEL CONTROL DE LA CALIDAD DE SUMINISTRO DESDE LA APLICACIÓN DE LA NORMA TÉCNICA DE CALIDAD DE LOS SERVICIOS ELÉCTRICOS

SUMARIO

El presente trabajo analiza la evolución de la calidad de servicio, en lo referente a continuidad de suministro, que las empresas distribuidoras del país han brindado desde la aplicación de la Norma Técnica de Calidad del los Servicios Eléctricos (NTCSE).

En el capítulo I se muestra los antecedentes históricos que tuvieron lugar para garantizar un servicio de calidad. Así también se plantea los objetivos y los alcances del informe.

En el capítulo II se muestra los conceptos generales necesarios para entender la problemática que representan las interrupciones en la calidad de servicio. También se estudiarán los indicadores más utilizados a nivel internacional para la evaluación de la calidad de suministro, así como los parámetros de control y las etapas de aplicación de la NTCSE.

En el capítulo III se evaluará la calidad de suministro a nivel nacional a través de los indicadores de calidad. Para ello se ha considerado realizar la comparación de cuatro empresas representativas del país, dos de Lima y dos de provincia.

En el capítulo IV se analizará el impacto de los indicadores de calidad, así como la variación del costo unitario en el cálculo de la compensación por mala calidad de suministro.

Finalmente concluiremos resaltando los aspectos más importantes que se han podido observar en el control y la evaluación de la calidad de suministro desde la aplicación de la NTCSE con el propósito de garantizar la continuidad de servicio eléctrico.

ÍNDICE

PRÓLOGO

CAPÍTULO I	
INTRODUCCIÓN	
1.1. Antecedentes	4
1.2. Objetivo	5
1.3. Alcances	5
CAPÍTULO II	
CONCEPTOS GENERALES	
2.1. Introducción	7
2.2. Definición de Continuidad de Suministro	8
2.3. Origen de las Interrupciones	8
2.4. Indicadores de Calidad de Suministro	10
2.4.1. Indicadores Individuales de Clientes	12
2.4.2. Indicadores de Sistema	13
a) Indicadores Basados en Clientes	13
b) Indicadores Basados en Potencia	15

c) Indicadores Basados en Energía	15
2.5. Norma Técnica de Calidad de los Servicios Eléctricos	17
2.5.1. Control de la Calidad del Servicio Eléctrico	18
2.6. Etapas de Aplicación de la Norma Técnica de Calidad de los	3
Servicios Eléctricos	19
2.6.1. Primera Etapa	19
2.6.2. Segunda Etapa	21
2.6.3. Tercera Etapa	21
2.7. Conclusiones	22
CAPÍTULO III	
PROCESAMIENTO DE LA INFORMACIÓN DE CALIDAD	DE
SUMINISTRO	
3.1. Introducción	23
3.2. Tolerancias de los Indicadores de Calidad de Suministro	24
3.3. Evolución del Número y Duración de las Interrupciones	28
3.3.1. Edelnor	28
3.3.2. Luz del Sur	39
3.3.3. Hidrandina	44
3.3.4. Enosa	53
3.4. Procedimiento de Cálculo de los Indicadores de Calidad de	
Suministro	58
3.5. Evolución de los Indicadores de Calidad de Suministro	60
3.6. Conclusiones	65

CAPÍTULO IV

	,			
COMPENS	CIÓN DOD	RATA	CALIDADD	E SUMINISTRO
		TVE AS LA		

4.1.	Introducción	67
4.2.	Impacto que Producen los Indicadores de Calidad de Suministro en la	
	Compensación	68
4.3.	Procedimiento de Calculo de la Compensación por Mala Calidad de	
	Suministro	68
4.4.	Evolución de la Compensación por Mala Calida de Suministro	70
4.5.	Análisis de la Compensación Sin Considerar la Variación de la	
	Tolerancia en los Indicadores de Calidad de Suministro	75
4.6.	Análisis de la Compensación Sin Considerar Variación del	
	Costo Unitario (e)	76
4.7.	Conclusiones	80
CON	NCLUSIONES	82
ANE	EXOS	84
BIB	LIOGRAFÍA	108

PRÓLOGO

En el presente informe se estudiará el problema que representan las interrupciones en la Calidad de Servicio. Si bien la normatividad vigente trata de alguna manera establecer parámetros que permitan su control, las empresas suministradoras son uno de los principales actores en el mejoramiento de este problema.

El procesamiento y análisis de la información se desarrollará en base a los reportes que las empresas elaboran y es considerado como declaración jurada.

Con el paso de los años la NTCSE se ha ido mejorando con la finalidad de poder aplicarse con equidad a cada cliente, puesto que no es lo mismo un cliente de Lima que uno de Provincia.

Para ello se ha modificado tomando en cuenta los Sectores de Distribución Típicos y la máxima demanda por localidad.

La NTCSE obliga a las empresas suministradoras a llevar un registro de las interrupciones que afectaron a sus clientes, en puntos de suministro de media y baja tensión. En base a estos registros se evaluará la calidad del suministro que recibió cada cliente y de detectarse mala calidad la distribuidora le compensará.

En este sentido, la NTCSE hace diferenciación entre interrupciones programadas y no programadas por medio de factores de ponderación y establece un precio unitario que se utiliza en el cálculo de dicha compensación.

Con esto la NTCSE controla la continuidad del servicio brindado por las empresas suministradoras del país.

CAPÍTULO I

INTRODUCCIÓN

La calidad en los servicios eléctricos se refiere a los requerimientos que deben satisfacerse para evitar en los usuarios molestias físicas directas, insatisfacciones y perjuicios económicos. Es un hecho que la satisfacción del usuario no sólo depende de la calidad de servicio que recibe, sino también de la expectativa que tiene sobre esta calidad. Es por ello que en el presente informe se evaluará la calidad de suministro en el Perú a través de los indicadores de calidad de suministro obtenidos de la información de las interrupciones reportadas por las 14 empresas distribuidoras del País. Así también se analizará el impacto que produjeron los cambios en la normativa peruana con respecto a los montos compensados por mala calidad de suministro. Es importante indicar que la información utilizada en el desarrollo del presente informe es aquella que las empresas distribuidoras presentan al OSINERG, conforme a lo dispuesto en la Norma Técnica de Calidad de los Servicios Eléctricos.

1.1. Antecedentes

Con la finalidad de poder garantizar un servicio de calidad, en el año 1992 se crea la Ley de Concesiones Eléctricas, la cual establece las reglas del mercado eléctrico peruano, en donde las empresas eléctricas están obligadas a brindar un servicio de calidad, lo cual quedo afianzado en el año 1993 mediante la publicación del Reglamento de la Ley de Concesiones Eléctricas, el cual precisa las nuevas reglas del subsector eléctrico. Si bien este nuevo marco regulatorio permitió promocionar el subsector eléctrico y atraer inversión privada, se observó que parte de las empresas no mejoraban sus instalaciones, afectando así la calidad de la energía eléctrica.

En ese sentido, el Ministerio de Energía y Minas (MEM) en su función de entidad normativa, en el año 1997 publicó la Norma Técnica de Calidad de los Servicios Eléctricos (NTCSE), con el propósito de establecer los parámetros de control, tolerancias y régimen de compensaciones. A partir de octubre de 1999 se comenzó con las mediciones para la evaluación de la calidad y las penalidades han aumentado progresivamente hasta junio del 2003, fecha a partir de la cual las penalidades se aplican en su máximo valor.

Una vez dadas las reglas de mercado eléctrico y la normatividad respectiva, era necesaria la creación de una entidad reguladora. Es por ello que el 31 de diciembre de 1996, mediante Ley Nº 26734, se crea el OSINERG (Organismo Supervisor de la Inversión en Energía), como organismo público encargado de supervisar y fiscalizar el cumplimiento de las disposiciones legales y técnicas de las actividades que desarrollan las empresas en los subsectores de electricidad e hidrocarburos, así como el cumplimiento de las normas legales y técnicas referidas a la conservación y protección del medio ambiente. El OSINERG inicia efectivamente el ejercicio de sus

funciones el 15 de octubre de 1997. Con ello y para efectos del control de cumplimiento de la NTCSE, el OSINERG establece una Base Metodológica de Aplicación de la NTCSE, que viene a ser un conjunto de procedimientos y formatos que las empresas concesionarias deben respetar para garantizar un adecuado control por parte del OSINERG.

1.2. Objetivo

El objetivo del presente informe es evaluar si la calidad de suministro que han brindado las empresas distribuidoras del país ha sido la adecuada. Este análisis se realizará en función de los resultados obtenidos al calcular los indicadores de calidad de suministro.

Así también se analizará si la variación de las tolerancias en los indicadores de calidad produjo cambios significativos en la compensación por mala calidad de suministro.

1.3. Alcances

El presente informe describe el análisis que he realizado a partir del procesamiento de la información correspondiente a las interrupciones observadas por los clientes de las empresas distribuidoras a lo largo de un periodo de cuatro años de gestión, desde la aplicación de la NTCSE.

Esta información corresponde a clientes que se encuentran afectos a la NTCSE, es decir, en las localidades más importantes del país, lo cual representa alrededor del 80% del total de clientes del país. Así también se debe indicar que este análisis se

plantea para los clientes afectados por interrupciones en los Sectores de Distribución Típico 1 y 2.

Para la evaluación de la calidad de suministro utilizaremos los indicadores más usados internacionalmente, los cuales toman en cuenta la frecuencia de las interrupciones y la duración de las mismas, y no hace diferencia por tipo de interrupción, es decir considera de igual forma las interrupciones programadas y no programadas.

Si bien la NTCSE establece para el cálculo de los indicadores factores de ponderación los cuales diferencian el tipo de interrupción, no se ha considerado este procedimiento por lo engorroso del cálculo, puesto que por cada semestre de control se reporta un gran número de clientes afectados por interrupciones.

Para determinar el monto a compensar, se debe tener presente el nivel de tensión y el lugar de residencia del cliente (en Lima metropolitana o provincias), debido a que se establecen las tolerancias para estos dos aspectos.

Cabe indicar que en el cálculo de la compensación por mala calidad de suministro no se están tomando en cuenta aquellas interrupciones originadas por fuerza mayor (o que siguen en trámite de calificación) y las interrupciones originadas por la actuación automática de los relevadores por mínima frecuencia (rechazo de carga). Para estos casos la NTCSE establece un procedimiento especial el cual no se ha considerado en el desarrollo del presente informe.

CAPÍTULO II

CONCEPTOS GENERALES

2.1. Introducción

Este capítulo lo iniciaremos definiendo la continuidad de suministro, el cual se refiere a interrupciones o cortes de fluido eléctrico originados por fallas en el sistema de distribución, el origen de los mismos y su clasificación, esto con la finalidad de tener una visión clara de los agentes que intervienen en la calidad de suministro.

Así también se definirán los indicadores de calidad más utilizados a nivel internacional, esto con el fin de contar con herramientas que nos permitan hacer un análisis con otros países.

Este capítulo también tratará la Norma Técnica de Calidad de los Servicios Eléctricos, su control y las etapas de aplicación, estableciendo los parámetros de calidad técnica y niveles mínimos de calidad de estos parámetros, así como también las obligaciones de las empresas de electricidad y de los clientes que operan bajo el régimen de la Ley de Concesiones Eléctricas.

Es importante mencionar que el estudio del presente informe se centra en el problema de continuidad de suministro en las redes de distribución, es decir, en el

desarrollo y evolución de los indicadores de calidad de suministro de las empresas distribuidoras.

2.2. Definición de Continuidad de Suministro

La continuidad de suministro esta referida a que un punto de suministro presente tensión o no. Cuando desaparece la tensión en el punto de suministro se dice que hay una interrupción de suministro. Entonces una interrupción es la condición en la que la tensión en los puntos del suministro no supera el 10% de la tensión declarada. Las interrupciones se caracterizan por el tiempo de afectación en un punto de suministro y pueden ser de larga de duración superior a tres minutos o de breve duración inferior o igual a los tres minutos.

En continuidad, únicamente se tiene en cuenta las interrupciones de más de tres minutos. Las interrupciones menores de tres minutos, se consideran un problema de calidad de onda, ya que son debidas a la operación de los sistemas de protección de las redes tales como reenganches rápidos debido a faltas transitorias o fugitivas, operación de aislamiento de tramos con falta, etc.

Las interrupciones mayores de tres minutos en cambio suelen necesitar de la reparación de algún elemento defectuoso de la red o, al menos, la inspección de los tramos con problemas, así como la reposición manual de la tensión.

2.3. Origen de las Interrupciones

Las interrupciones provocadas por fallos en el sistema de distribución tienen a su vez multitud de orígenes o causas distintas. Por lo tanto hacer una clasificación de las mismas permite entender mejor las soluciones de mejora de la continuidad, así como

las posibles implicaciones a la hora de medir la calidad de servicio con fines regulativos o incluso meramente informativos. Podemos clasificar las interrupciones en dos grupos:

a) Interrupciones Programadas

Estas interrupciones se distinguen de todas las demás, puesto que están previstas y por tanto los clientes afectados están avisados. De hecho, para ser consideradas previstas, deben ser avisadas con un periodo de anticipación a los clientes afectados, para que éstos puedan tomar las medidas oportunas para minimizar el impacto de las mismas. Suelen producirse por mantenimiento o por expansión o reforzamiento de redes.

b) Interrupciones Imprevistas

Son todas las demás interrupciones. Son mucho más dañinas, puesto que los clientes no han podido tomar medidas específicas contra ellas. Estas interrupciones se pueden presentar por las siguientes causas: fuerza mayor, agentes externos, climatología, fallo de componentes, operaciones de la distribuidora, causas desconocidas, etc.

En la tabla N° 2.1, se presenta una posible clasificación de las interrupciones por su origen. La asignación de las interrupciones a alguno de estos orígenes no siempre resulta sencilla.

La primera razón es que muchas veces se desconoce la causa por la que ha existido una interrupción.

La segunda es que no todo el mundo esta de acuerdo con que es de origen externo a la distribuidora, que es fuerza mayor, etc., debido a las posibles implicaciones de responsabilidad que pudiese conllevar.

Tabla Nº 2.1: Clasificación de las interrupciones por su origen

INTERRUPCIONES PROGRAMADOS	INTERRUPCIONES IMPREVISTAS		
Son las interrupciones	Se les llama tamb	pién interrupciones no programadas y	
previstas por las empresas	son todas la dei	más interrupciones que no estaban	
distribuidoras y avisadas	previstas ni av	isadas. Por su origen podemos	
con un periodo de	mencionar las sigu	uientes:	
anticipación a los clientes	Generación	Cuando no hay suficiente	
afectados.	Generation	generación para cubrir la demanda	
		Fallo en la red de transporte que	
	Transporte	provoque interrupciones en la red	
		de media o baja tensión	
	Origen	Cuando no se detecta ningún fallo:	
	Desconocido	suelen considerarse interrupciones	
	Descondend	transitorias	
	Climatología	Rayo, viento, etc.	
	Origan interna	Fallo de elementos, falsa maniobra,	
	Origen interno etc.		
	Origen externo Excavadora, pájaro, personas, etc.		
	Fuerza Mayor Terrorismo, terremoto, etc.		

2.4. Indicadores de Calidad de Suministro

Existen diferentes indicadores que permiten medir la calidad del servicio, cada uno de los cuales especializado en algún aspecto particular. Dependiendo de la utilización

que se le quiera dar, estos indicadores se pueden calcular de modo histórico o en modo predictivo.

En modo histórico, estos indicadores se calculan utilizando estadísticas de interrupciones de los usuarios, y/o registros de incidencias de la empresa y a partir de los datos de funcionamiento del sistema eléctrico durante un periodo de tiempo en el pasado. Permite evaluar la calidad del servicio proporcionada y realizar análisis comparativos.

En modo predictivo, se calculan los valores medios y/o máximos esperados, obtenidos a partir de modelos de fiabilidad aplicados al sistema eléctrico en un tiempo especificado en el futuro. Permiten establecer objetivos ligados al tipo de red, identificar puntos débiles, realizar análisis alternativos de expansión de red, evaluar el impacto de nuevas inversiones en calidad. Los datos necesarios serán datos de fiabilidad de componentes, topología del sistema eléctrico, demanda, clientes, criterios de explotación, etc.

Los indicadores de calidad de suministro miden la fiabilidad de suministro, es decir, el número de veces que se ve interrumpido el suministro y durante cuánto tiempo. Cualquier indicador de calidad de suministro toma estos dos datos, pero los puede interpretar en forma distinta, llegando a resultados muy diferentes dependiendo a qué aspecto de la continuidad de suministro se le da más importancia, tal como por ejemplo, puede darse más importancia al número de interrupciones que a la duración de las mismas, puede valorarse más la cantidad de potencia instalada interrumpida que el número de clientes interrumpidos, etc.

No sólo es importante el indicador utilizado, si no también la forma de calcularlo. Si bien las definiciones de los distintos indicadores de calidad de suministro tienen una aceptación a nivel internacional, la forma de calcularlo puede ser diferente.

Debido a la importancia del indicador elegido es necesario describir los indicadores que más se utilizan, los cuales son los indicadores individuales y los indicadores del sistema.

2.4.1. Indicadores Individuales de Clientes

Los indicadores individuales son propios de cada cliente y reflejan la calidad de suministro particular que ha recibido, independiente de la calidad que hayan podido tener los demás clientes de su entorno. Este indicador enfoca el problema desde el punto de vista del consumidor de electricidad.

Los indicadores de calidad de cada cliente recogen dos variables de continuidad individual básica: el número de interrupciones y la duración de cada interrupción. Con estas variables es posible elaborar los indicadores individuales de continuidad propiamente dichos, siendo los más habituales las siguientes:

- Número de interrupciones (int./periodo).
- Duración media de interrupciones (h/int.): media de las duraciones de las interrupciones registradas.
- Duración total de interrupciones (h/periodo): suma de las duraciones de todas las interrupciones registradas.
- ENS, Energía no suministrada (kWh/periodo): existen distintos métodos para estimar la energía no suministrada, ya que no es posible medirla. Puede utilizarse

la última medida realizada y extrapolarla, utilizar curvas de carga típicas por tipos de cliente, etc.

2.4.2. Indicadores de Sistema

Los indicadores de sistema son los más utilizados para medir la continuidad del suministro y reflejan el comportamiento medio de la calidad en el sistema. Estos indicadores suelen ser una media ponderada de los indicadores individuales de los clientes afectados y al igual que éstos utiliza dos índices, uno para medir el número de interrupciones y otro para medir la duración de estas interrupciones. Estos indicadores no ven directamente la calidad de cada cliente, si no más bien la calidad de una zona con un cierto número de clientes.

Para el cálculo de los indicadores de sistema son necesarios los registros de interrupciones, el número de los clientes suministrados y afectados, la potencia conectada y afectada, etc. Según se ponderen o se basen en datos de clientes, de carga, etc., estos indicadores se pueden clasificar como indicadores basados en clientes, en potencia o en energía.

a) Indicadores Basados en Clientes

• Número de interrupciones por cliente: (int./año)

Llamado también SAIFI (System Average Interruption Frecuency Index), viene a ser la frecuencia media de interrupciones de un cliente del sistema.

$$SAIFI = \frac{Número Total de Interrupciones a Clientes}{Número Total de Clientes}$$
 (2.1)

Tiempo de interrupción equivalente: (h/año)

Se le conoce también como **SAIDI** (System Average Interruption Duración Index), viene a ser la duración media de interrupciones de un cliente del sistema.

$$SAIDI = \frac{Suma \text{ de Duraciones de Interrupciones a Clientes}}{Número Total \text{ de Clientes}}$$
 (2.2)

• Índice de indisponibilidad o de interrupción del suministro: IIS (%)

Es el porcentaje de minutos de servicio interrumpidos sobre el total de los minutos de servicio demandados.

$$IIS = \frac{Suma \text{ de Minutos de Interrupción a Clientes}}{\text{Número Total de Minutos Demandados}} *100 \approx (1 - ASAI)*100 (2.3)$$

El índice complementario es el **ASAI** (**Average Service Availability Index**) y viene a ser la disponibilidad media del servicio. La diferencia con el IIS, es que el ASAI está en tanto por uno y mide el tiempo en horas.

• Frecuencia media de interrupciones por cliente: CAIFI (int./año)

(Customer Average Interruption Frecuency Index)

Este indicador promedia la frecuencia de las interrupciones para todos los clientes que hayan sido afectados por alguna interrupción.

$$CAIFI = \frac{Número Total de Interrupciones a Clientes}{Número Total de Clientes Afectados}$$
 (2.4)

Duración media de interrupciones por cliente: CAIDI (h/int.)
 (Customer Average Interruption Duración Index)

Este indicador mide el tiempo medio de duración de las interrupciones.

$$CAIDI = \frac{Suma de Duraciones de Interrupciones a Clientes}{Número Total de Interrupciones a Clientes}$$
 (2.5)

b) Indicadores Basados en Potencia

Tiempo de interrupción equivalente de la potencia del sistema: ASIDI (h)
 (Average System Interruption Duration Index)

Este indicador mide la duración media de la potencia conectada interrumpida en el sistema.

Número de interrupciones equivalente de la potencia del sistema: ASIFI
 (Average System Interruption Frequency Index)

Este indicador representa la frecuencia media de interrupciones de toda la potencia conectada interrumpida.

$$ASIFI = \frac{Potencia \quad Conectada \quad Interrumpida}{Potencia \quad Total \quad Conectada}$$
 (2.7)

• Índice de indisponibilidad de la potencia (ISS)

c) Indicadores Basados en Energía

Energía no suministrada: ENS (kWh)

Viene a ser la sumatoria de las energías no suministradas en todas las interrupciones.

Para este indicador es importante definir el método de estimación de la energía no suministrada en cada interrupción.

Promedio de energía no suministrada en el sistema: ASCI (kWh/clientes)
 (Average System Curtailment Index)

Promedio de energía no suministrada por cliente: ACCI
 (Average Customer Curtailment Index)

De los indicadores de sistema, los basados en clientes son los más fáciles de interpretar, aunque pueden inducir a confusión, ya que no se trata de indicadores individuales que el cliente tendrá, sino el promedio de nivel de continuidad que experimentaran los clientes del sistema. Los basados en potencia serán de utilidad para clientes con potencias significativas, mientras que los indicadores basados en energía estimarán en cuanto a la energía no suministrada, ya sea por proyecciones de la energía consumida en el momento de la interrupción, por registros históricos de consumo o por curvas de demandas típicas.

2.5. Norma Técnica de Calidad de los Servicios Eléctricos

El Ministerio de Energía y Minas en su función de entidad normativa diseñó la Norma Técnica de Calidad de los Servicios Eléctricos (NTCSE), la cual fue aprobada mediante Decreto Supremo Nº 020-97-EM el 09/10/1997, con el objetivo de establecer los parámetros de calidad técnica y niveles mínimos de calidad de estos parámetros, así como también las obligaciones de las empresas de electricidad y de los clientes que operan bajo el régimen de la Ley de Concesiones Eléctricas, Decreto Ley Nº 25844.

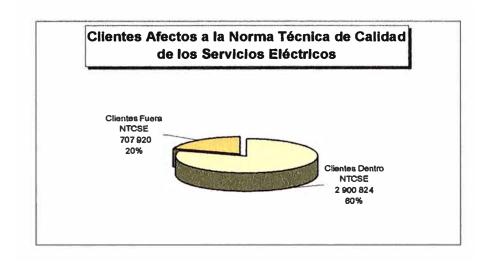
Desde su aprobación, la NTCSE se ha modificado 3 veces según Decreto Supremo N° 009-99-EM (11-04-1999), Decreto Supremo N° 013-2000-EM (27-07-2000) y Decreto Supremo N° 040-2001-EM (17-07-2001).

Los parámetros de calidad que define la NTCSE se pueden clasificar en tres grandes aspectos:

- La calidad de energía o calidad técnica, que se mide por el número de interrupciones, las variaciones de tensión y las perturbaciones en la misma.
- La calidad comercial, que se mide por el trato al cliente, precisión de la medición de la energía y facturación adecuada.
- La calidad de alumbrado público, que se mide por los niveles de iluminación de las vías públicas, conforme a lo establecido en la normatividad especifica de alumbrado.

El título sexto de la NTCSE se refiere a la Calidad de Suministro y establece los aspectos, parámetros e indicadores sobre los que se va a evaluar la Calidad de Suministro. Se fijan las tolerancias y las respectivas compensaciones y/o multas por

incumplimiento. Asimismo, se establecen las obligaciones de las entidades involucradas directa o indirectamente en la prestación y uso de este servicio en lo que se refiere al control de la calidad. Los indicadores de Calidad de Suministro son evaluados de acuerdo a la Norma, miden exclusivamente la calidad que entrega un Suministrador a sus Clientes.


2.5.1 Control de la Calidad del Servicio Eléctrico

Este control se realiza en las localidades más importantes del país, lo cual representa 2'900,824 de clientes (el 80% del total, 3'608,744), tal como se muestra en la gráfica Nº 2.1. Esto con el fin de garantizar que los clientes reciban un suministro continuo con un número mínimo de interrupciones propias de la red y que cumplan con las especificaciones técnicas de tensión y frecuencia.

Se evalúa la calidad de suministro para todo punto de entrega, debiendo registrarse en la correspondiente base de datos toda falta de fluido eléctrico, cuya causa es conocida o desconocida por el cliente y programada o no por el Suministrador. La duración se calcula desde el momento de la interrupción hasta el restablecimiento del suministro de manera estable.

Las compensaciones se calculan, en todos los casos, para cada Cliente. Para ello las empresas concesionarias realizan mediciones y registros de la calidad de servicio de acuerdo a lo especificado en la NTCSE y su Base Metodológica.

Cabe indicar que estas mediciones y registros son supervisados y analizados por el OSINERG.

Gráfica Nº 2.1: Clientes afectos a la aplicación de la NTCSE

Para efectos del control de la Calidad del Servicio Eléctrico, el OSINERG ha establecido una Base Metodológica de Aplicación de la NTCSE, la cual describe los principios conceptuales y procedimientos que deberán seguir las empresas concesionarias para garantizar un adecuado control por parte del ente regulador.

2.6. Etapas de Aplicación de la Norma Técnica de Calidad de los Servicios Eléctricos

La NTCSE fija estándares de calidad para el servicio de la electricidad que rigen desde la fecha de entrada en vigencia de la Norma. La adecuación de las empresas suministradoras se llevó a cabo en tres (3) etapas consecutivas en las que las compensaciones y/o multas por incumplimiento se incrementan gradualmente.

2.6.1 Primera Etapa

Esta primera etapa tuvo una duración de 18 meses y estuvo vigente desde el 12/10/1997 hasta el 11/04/1999. En esta etapa, las empresas suministradoras estuvieron obligadas a realizar las siguientes actividades:

- Adquirir equipos e instalar la infraestructura necesaria para la medición y registro de los parámetros de la Calidad de Producto, Calidad de Suministro, Calidad de Servicio Comercial y Calidad de Alumbrado Público a controlar; excepto en aquellos casos que, por mandato explícito de la Norma, puedan implementarse en etapas posteriores.
- Implementar todos los medios necesarios para garantizar la calidad del servicio comercial que les competa.
- Implementar todos los medios de registro necesarios y organizar todos los mecanismos de procesamiento de la información para el cálculo de los indicadores, para la comparación con los estándares de calidad y para la transferencia de la información requerida por la Autoridad.
- Efectuar una campaña piloto de medición y registro de las variables que intervienen en el cálculo de los indicadores de calidad, calcular los indicadores y actuar sobre ellos para mejorar la calidad, de ser necesario.
- Presentar, dentro de los primeros seis (6) meses, un Programa de Adecuación a la Norma que comprenda los puntos mencionados en los párrafos anteriores. La duración de estos programas estuvo dentro del periodo de aplicación de la Primera Etapa.

Las transgresiones de las tolerancias de los indicadores de calidad que se presentaron en esta etapa no dieron lugar a compensaciones y/o multas.

2.6.2 Segunda Etapa

Inicialmente la NTCSE había previsto que esta Segunda Etapa tenga una duración de 18 meses y que debería iniciar inmediatamente después de finalizada la Primera Etapa. Sin embargo este periodo de aplicación tuvo dos ampliaciones:

- En el artículo 1° del D.S. N° 013-2000-EM, se dispuso ampliar el plazo de aplicación de la Segunda Etapa hasta el 31/12/2000.
- En el artículo 4° del D.S. N° 017-2000-EM, se amplió el plazo indicado anteriormente hasta el 31/12/2001.

Finalmente esta Segunda Etapa estuvo vigente desde el 12/04/1999 hasta el 31/12/2001, con una duración aproximada de 32.5 meses.

El incumplimiento con los plazos y Programas de Adecuación planteados en la Primera Etapa da lugar a las sanciones establecidas en la Ley, su Reglamento y normas complementarias.

Las transgresiones de las tolerancias de los indicadores de calidad dan lugar a compensaciones y/o multas de acuerdo a procedimientos establecidos en la Norma.

2.6.3 Tercera Etapa

Tiene una duración indefinida y comienza inmediatamente después de finalizada la Segunda Etapa. Está vigente desde el 01/01/2002.

Las transgresiones de las tolerancias de los indicadores de calidad dan lugar a compensaciones y/o multas de acuerdo a procedimientos establecidos en la Norma.

2.7. Conclusiones

- 1. Para evaluar la calidad de suministro se utilizarán los indicadores de sistema basados en clientes (SAIFI y SAIDI), puesto que estos indicadores son los más utilizados a nivel internacional y además de fácil interpretación. Sin embargo pueden inducir a confusión, ya que no se trata de indicadores individuales que el cliente tendrá, sino el promedio de nivel de continuidad que experimentarán los clientes del sistema.
- 2. Con el propósito de adecuarse más a la realidad del país la NTCSE ha sufrido varias modificaciones en los parámetros y niveles mínimos de calidad, así como en las obligaciones de las empresas de electricidad y de los clientes.
- 3. El análisis se desarrolla en base a los clientes sujetos a la NTCSE, el cual representa el 80% de los clientes a nivel nacional. Para el 20% de clientes que no están sujetos a la aplicación de la NTCSE, es necesario establecer los niveles mínimos de calidad al que deben tener derecho estos clientes. Si bien por la topología de sus redes no es recomendable que tengan el mismo estándar de calidad que establece la NTCSE, se debe establecer una normativa que les asegure un nivel de calidad adecuado a su realidad.
- 4. En comparación a otros países de Sudamérica, observamos que nuestro país es el único que considera factores de ponderación para el cálculo de los indicadores de calidad, esto con el propósito de dar una calificación adecuada por tipo de interrupción, ya sea programada o imprevista.

CAPÍTULO III

PROCESAMIENTO DE LA INFORMACIÓN DE CALIDAD DE SUMINISTRO

3.1. Introducción

En este capitulo se está considerando la información desde la segunda etapa de aplicación de la NTCSE, puesto que en esta etapa las empresas distribuidoras empiezan a llevar un mejor control de las interrupciones que afectan a sus clientes. Cabe mencionar que debido a los cambios presentados en la NTCSE, se modificaron los diseños de registros de la calidad de suministro, esto con la finalidad de tener mayor información acerca de las interrupciones que reportan las empresas distribuidoras.

Debido al gran volumen de información reportada por las 14 empresas distribuidoras del país, sólo estamos considerando en el desarrollo del presente capítulo cuatro empresas, dos de Lima (Luz del Sur y Edelnor) y dos de provincia (Hidrandina y Enosa).

También analizaremos las variaciones sufridas de las tolerancias en los indicadores de Calidad de Suministro en cada una de las modificaciones que la NTCSE ha presentado desde el momento de su aplicación, teniendo presente que para efectos de

la NTCSE, se considera sólo los Sectores de Distribución Típico 1 y 2, puesto que como ya se mencionó en el capítulo anterior, se está tomando en cuenta la continuidad de suministro en las redes de distribución.

Para la evaluación de la Calidad de Suministro, haremos uso del los indicadores SAIFI (frecuencia media de interrupciones de un cliente) y SAIDI (duración media de interrupciones de un cliente), los cuales han sido calculados para períodos de control de un semestre. Si bien estos indicadores no son los que determina la NTCSE, es una ayuda para evaluar la calidad de suministro que las empresas distribuidoras brindan a sus clientes.

Cabe indicar que la información considerada en el presente capítulo corresponde a lo remitido por las empresas distribuidoras, así como la información estadística que he elaborado en la Unidad de Calidad de Servicio de la Gerencia de Fiscalización Eléctrica del OSINERG.

3.2. Tolerancias de los Indicadores de Calidad de Suministro

Conforme lo establece la NTCSE, se han fijado límites permisibles en los indicadores de calidad de suministro dependiendo del nivel de tensión y del sector típico, las cuales vienen a ser aquel valor que determina si presenta mala calidad o no. Estos indicadores vienen a ser el número de interrupciones por cliente (N') y la duración total ponderada de interrupciones por cliente (D').

En la tabla N° 3.1, se indican las tolerancias en los indicadores de calidad de suministro para los clientes conectados en distinto nivel de tensión.

Tabla N° 3.1: Tolerancia por nivel de tensión

Nivel de Tensión	N' (Int./semestre)	D' (h/semestre)
MAT y AT	2	4
MT	4	7
BT	6	10

Siendo:

MAT y AT : Muy Alta y Alta Tensión

MT : Media Tensión

BT : Baja Tensión

En un principio estas tolerancias se aplicaban de igual forma para clientes de los sectores típicos 1 y 2, sin embargo mediante el artículo 4º del D.S. Nº 040-2001-EM, se dispuso incrementar en un 30% las tolerancias de los indicadores de Calidad de Suministro (N'y D') establecidos en la NTCSE para el Sector de Distribución Típico 2. Este incremento estuvo vigente en todo el periodo de aplicación correspondiente a la Segunda Etapa.

A partir de la Tercera Etapa, durante el primer semestre, el factor se incrementó a 70%; durante el segundo y tercer semestre éste fue de 50% y a partir del cuarto semestre este factor será de 30%.

Tales incrementos se redondean al entero superior y son aplicables única y exclusivamente a la actividad eléctrica de distribución del mercado regulado.

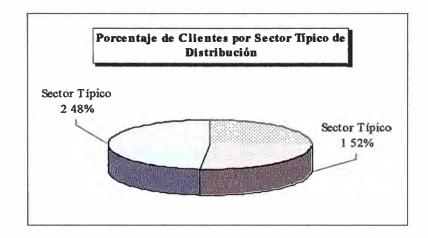
Tabla Nº 3.2: Tolerancias por etapas de aplicación de la NTCSE

Etapa de Aplicación			Indicador	Nivel de Tensión		
		Factor	de Calidad	MAT y AT	MT	ВТ
D.	imera		N'	2	4	6
II	шега		D'	4	7	10
Segunda		30%	N'	3	6	8
		30%	D'	6	10	13
	Company 1	70%	N'	4	7	11
4,000,74	Semestre 1	/0%	D'	7	12	17
Tercera	Semestre	500/	N'	3	6	9
2 y 3	50%	D'	6	11	15	
	Samastra 4 200/	30%	N'	3	6	8
	Semestre 4	30%	D'	6	10	13

En la tabla N° 3.2, se muestran las tolerancias en los indicadores de calidad de Suministro con los incrementos sufridos en cada una de las etapas de aplicación de la NTCSE para el Sector de Distribución Típico 2.

Cabe indicar que las tolerancias en los indicadores de Calidad de Suministro para el Sector de Distribución Típico 1 son iguales a la primera etapa.

En el país se tienen 14 empresas distribuidoras con más de 2'900,000 clientes que se encuentran dentro del ámbito de aplicación de la NTCSE. Tal como se puede apreciar en al tabla N° 3.3, la empresa Edelnor presenta el 92 % de sus clientes dentro del Sector de Distribución Típico 1 y el 8 % dentro del Sector de Distribución Típico 2.


Tabla Nº 3.3: Sectores típicos en Edelnor

Empresa	Localidad	Sector Tipico	N° Suministros
Luz del Sur	Lima Sur	1	694 328
	Lima Norte	1	807 857
Edelnor	Huacho-Supe-Barranca	2	44 227
Lueirioi	Huaral-Chancay	2	26 513
	Pativilca	2	2 797

En la tabla N° 3.4, se muestra el sector típico de cada empresa distribuidora del país, en donde se observa que el 52% corresponde al Sector de Distribución Típico 1 y el 48 % al Sector de Distribución Típico 2. Esta información corresponde a la calificación dada por la GART. (Ver gráfica N° 3.1)

Tabla Nº 3.4: Clasificación de sectores típicos por empresa distribuidora

Empresa	Sector Típico	Número de Suministros
Luz del Sur	1	694 328
Edolmon	1	807 857
Edelnor	2	73 537
Hidrandina	2	281 089
Seal	2	188 807
Enosa	2	145 874
Electro Centro	2	141 624
Electro Norte	2	126 944
Electro Sur Medio	2	97 886
Electro Sur	2	83 124
Electro Oriente	2	79 548
Electro Sur Este	2	62 854
Electro Puno	2	61 667
Electro Ucayali	2	36 696
Edecañete	2	18 989

Gráfica Nº 3.1: Porcentaje de clientes por sector típico de distribución

3.3. Evolución del Número y Duración de las Interrupciones

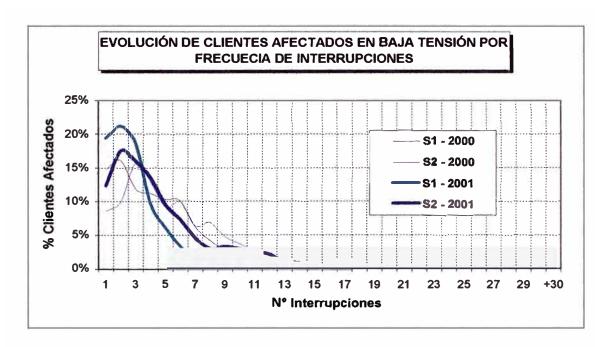
Mediante el control de la NTCSE, las empresas distribuidoras reportan todas las interrupciones que presentan sus clientes. Con esta información se puede analizar la incidencia por tipo de interrupción (programada o no programada), así como también la curva de distribución que presenta en cada semestre controlado.

Este análisis lo he desarrollado para las empresas distribuidoras Edelnor, Luz del Sur, Hidrandina y Enosa, debido a que presentan mayor número de clientes.

3.3.1 Edelnor

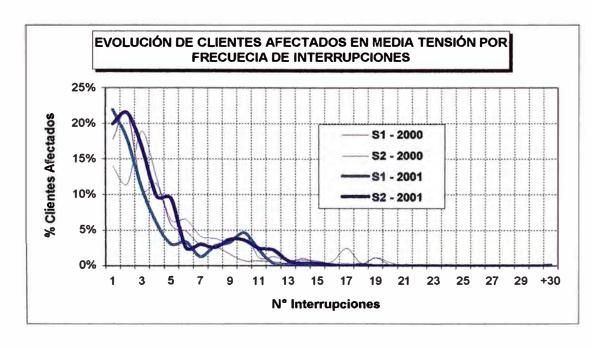
a) Evolución de clientes afectados por frecuencia de interrupciones

Segunda Etapa:


Para determinar el número de clientes que fueron afectados por interrupciones he utilizado los archivos de reporte de interrupciones semestrales de los años 2000 y 2001, con ello se puede clasificar por nivel de tensión cuantos clientes presentaron una, dos o más interrupciones.

En la tabla Nº 3.5, se puede apreciar que en los cuatro semestres de control el mayor número de clientes afectados en BT presentan menos de 11 interrupciones, mientras que en MT menos de 10.

Tabla Nº 3.5: Clientes afectados en Edelnor segunda etapa


N° Int	S1	- 2000	S2	- 2000	S1 -	2001	S2	- 2001
14 1116	MT	ВТ	MT	ВТ	MT	ВТ	MT	ВТ
1	152	130103	120	75489	188	170595	171	108608
2	184	141079	99	87574	152	186343	184	153654
3	91	104540	162	137603	93	163860	143	140265
4	99	98636	106	113224	51	84863	84	119346
5	49	91272	55	81062	26	53823	81	83915
6	42	88317	56	86821	29	29770	22	64448
7	25	54980	36	55960	11	14698	26	40321
8	23	36904	33	60480	24	19614	22	25697
9	14	24142	29	41639	28	7369	32	28844
10	6	18373	40	32208	40	9304	31	25708
11	6	12811	10	22252	19	6982	21	20861
12	5	6828	11	8580	3	830	19	19019
13	3	4578	7	2615	1	450	6	8994
14	9	6045	7	4188	1	349	3	7313
15	3	3163	6	2995	2	19	3	5686
16	5	4037	2	482	1	5	1	1734
17	21	10395	3	939				1882
18	3	1987	L	87			1	1027
19	10	740	10	4257				1663
20	1	242	4	287		1		344
21	1	3397		30		2		72
22		551		11		1		119
23		75		1	1			45
24		27					i i	14
25		31		1				17
26		5			nī.	1		14
27		8						5
28		1						8
29		23				1		7
30		3				1		2
+30	0	16	0	0	0	1	1	25

Para poder observar mejor lo indicado anteriormente, presentamos a continuación la curva de distribución de los clientes afectados tanto en baja como en media tensión, en cada uno de los cuatro semestres de control de la segunda etapa.

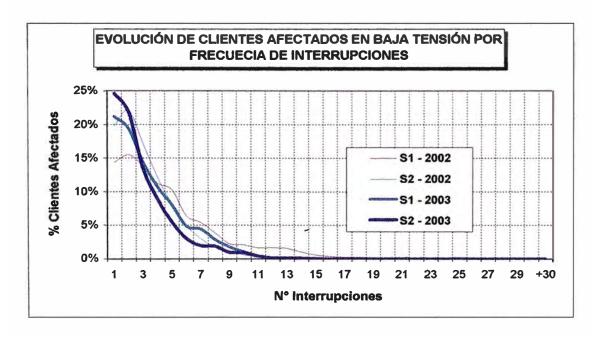
Gráfica Nº 3.2: Curva de distribución en BT de Edelnor segunda etapa

En la curva de BT se tiene que menos del 5% de clientes afectados presenta interrupciones que superan los límites permitidos, mientras que en MT el 10% superan la tolerancia de 4 interrupciones por semestre.

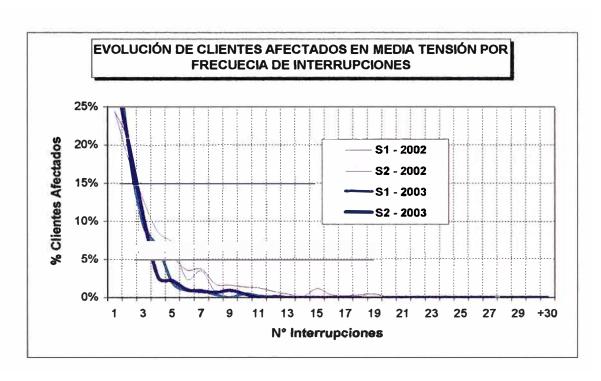
Gráfica Nº 3.3: Curva de distribución en MT de Edelnor segunda etapa

Tercera Etapa:

De manera similar a la segunda etapa, he utilizado los archivos de reporte de interrupciones semestrales de los años 2002 y 2003, con ello se puede clasificar por nivel de tensión cuantos clientes presentaron una, dos o más interrupciones.


Tabla Nº 3.6: Clientes afectados en Edelnor tercera etapa

N° Int	S1	- 2002	S2	- 2002	S1	- 2003	S2 -	2003
14 IIIC	MT	BT	MT	ВТ	MT	ВТ	MT	ВТ
1	209	126824	210	174139	307	186552	251	216447
2	174	136375	154	194811	167	170422	172	192276
3	91	121825	109	151510	81	126299	90	118243
4	55	99508	74	107465	57	94705	23	79029
5	46	90537	61	71961	17	70819	19	48023
6	31	56423	21	43271	8	43043	9	26912
7	32	47820	30	26427	8	39250	7	17224
8	15	33847	6	14907	3	25338	6	16631
9	14	19967	1	8926		15904	8	8724
10	12	18567		5556	4	9515	4	8208
11	11	14609	1	2588	2	3661		3544
12	7	14853		1374		1530	1	1123
13	4	13930		787		726		1108
14	1	9095		1038	1	391		954
15	10	4991		408	1	522		192
16	3	3103		486		105		24
17	2	2201		361		54		150
18	3	2329		104	1	1		51
19	4	1570		44		106		22
20		830		7		69		3
21		1880		707		415		1
22		274		126		2		
23	i i	49		25				
24		54		10			1	
25		50		1		239		
26		285		17		12		
27		29		1		4	W	
28		163		226		8		
29		148		16				
30		16		3				
+30	1	2	0	281	0	0		


En la tabla Nº 3.6, se puede apreciar claramente que en BT, si bien el mayor número de clientes afectados siempre se encuentran dentro los límites de tolerancia, en cada semestre de control el número de clientes afectados con una interrupción aumentó.

En las gráficas N° 3.4 y 3.5, se observa que en comparación de la segunda etapa, las curvas de distribución en BT se acentúan más entre 1 y 6 interrupciones, mientras que en MT entre 1 y 4. En ambos casos el mayor número de clientes afectados se encuentran dentro de la tolerancia.

Para poder observar mejor lo indicado anteriormente, presentamos a continuación la curva de distribución de los clientes afectados tanto en baja como en media tensión.

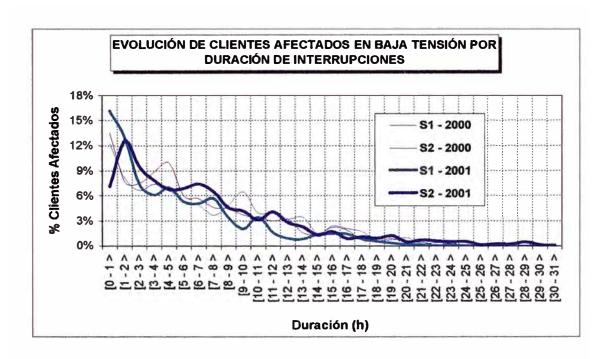
Gráfica Nº 3.4: Curva de distribución en BT de Edelnor tercera etapa

Gráfica Nº 3.5: Curva de distribución en MT de Edelnor tercera etapa

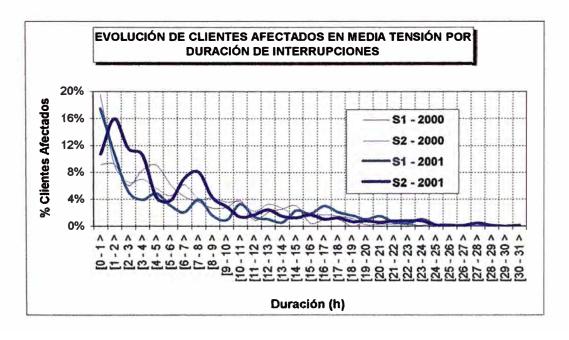
b) Evolución de clientes afectados por duración de interrupciones

Segunda etapa:

Para determinar el número de clientes que fueron afectados por interrupciones en un periodo de tiempo determinado primero he calculado por cliente afectado la duración en horas que presento la interrupción y de esta manera se puede agrupar aquellos clientes en un mismo rango de valores. Esta información corresponde al periodo 2000 y 2001.


Tabla Nº 3.7: Clientes afectados en Edelnor segunda etapa

Duración	S1 ·	- 2000	S2	- 2000	S1	- 2001	S	2 - 2001
Duracion	MT	ВТ	MT	ВТ	MT	ВТ	MT	ВТ
[0 - 1 >	79	119018	168	107809	150	142088	92	62686
[1 - 2 >	79	67904	78	71813	92	114302	137	110604
[2-3>	52	65884	56	58462	44	65168	99	83283
[3 - 4 >	72	78024	60	65258	34	53625	91	69132
[4 - 5 >	78	87152	49	58352	42	61270	37	59649
[5-6>	53	52527	39	48112	26	46654	33	60630
[6 - 7 >	38	49928	53	43089	18	45029	61	65437
[7 - 8 >	31	40504	35	32504	34	49941	69	56944
[8 - 9 >	23	39470	36	43388	14	29770	37	40436
[9 - 10 >	24	32674	31	56939	8	18111	25	36848
[10 - 11 >	33	29689	31	34817	28	30206	12	27392
[11 - 12 >	8	26271	19	36157	12	14370	15	36007
[12 - 13 >	18	27834	28	28602	9	8112	21	24785
[13 - 14 >	22	14273	23	30143	5	7409	13	19978
[14 - 15 >	26	12426	12	13347	20	12483	11	11688
[15 - 16 >	4	19720	14	21003	16	13149	15	15501
[16 - 17 >	9	16767	15	18253	26	12816	9	7908
[17 - 18 >	9	6172	13	15273	18	7484	11	9820
[18 - 19 >		5073	10	5981	14	4999	6	8258
[19 - 20 >	6	7805	2	6534	9	2982	7	11052
[20 - 21 >	4	4396	3	8540	13	1632	5	4444
[21 - 22 >	5	4092	3	2518	5	1194	7	6262
[22 - 23 >	2	925	3	3530	4	383	7	5222
[23 - 24 >	1	1706		2466	9	1474	7	4643
[24 - 25 >	3	1070	1	957	2	358	1	4768
[25 - 26 >	3	1635	1	328	1	251	1	1313
[26 - 27 >	1	363	2	842		276	1	2265
[27 - 28 >	1	831	1	1435		20	4	1850
[28 - 29 >		685		230		11	1	4254
[29 - 30 >		573	1	675	Ų	285	1	1272
[30 - 31 >	2	122		248		990	1	573


En la tabla Nº 3.7, se aprecia que un gran número de clientes afectados presentan interrupciones de hasta 16 horas y esta tendencia se mantiene a lo largo de los cuatro semestres de control.

En las gráficas N° 3.6 y 3.7, se observa la curva de distribución de los cuatro semestres de control de la segunda etapa. En las curvas de distribución de BT, el 3% de clientes afectados presentan interrupciones mayores a 10 horas,

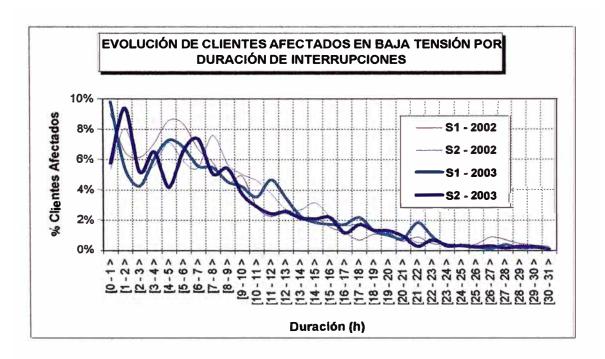
mientras que en la distribución en MT el 4% de los clientes afectados presenta interrupciones de más de 7 horas de afectación. En ambos casos la duración de las interrupciones supera las tolerancias.

Gráfica Nº 3.6: Curva de distribución en BT de Edelnor segunda etapa

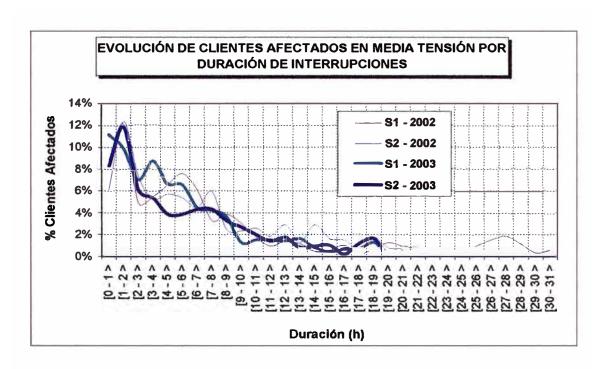
Gráfica Nº 3.7: Curva de distribución en MT de Edelnor segunda etapa

Tercera etapa:

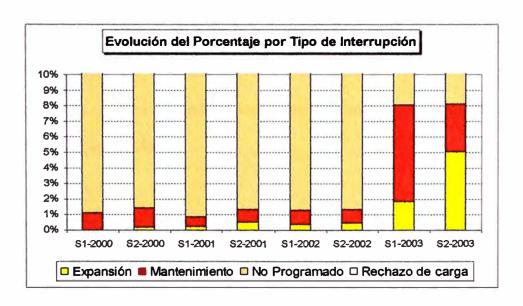
Al igual que la segunda etapa, he calculado la duración en horas que presento la interrupción para cada cliente afectado y de esta manera se puede agrupar aquellos clientes en un mismo rango de valores. Esta información corresponde al periodo 2002 y 2003.


Tabla Nº 3.8: Clientes afectados en Edelnor tercera etapa

Duración	S1	- 2002	S2 -	2002	S1 -	2003	S2	- 2003
Duracion	MT	BT	MT	BT	MT	BT	MT	ВТ
[0 - 1 >	76	79659	52	47347	96	86320	71	50956
[1 - 2 >	104	57210	106	70849	85	47620	102	82616
[2 - 3 >	42	54021	63	47062	60	37340	52	45834
[3 - 4 >	47	62412	45	49530	75	53279	46	57314
[4 - 5 >	56	75593	49	62882	57	64277	33	36799
[5-6>	65	73624	46	51854	56	60151	33	57833
[6 - 7 >	52	59075	38	48181	38	49170	37	64945
[7 - 8 >	28	51239	51	66938	36	48351	37	44721
[8-9>	33	39243	21	50375	31	40059	28	47961
[9 - 10 >	26	43299	20	44323	11	37085	23	32886
[10 - 11 >	15	25425	22	40594	13	31113	17	25546
[11 - 12 >	8	19939	16	33281	13	41088	12	21415
[12 - 13 >	12	23843	25	23913	12	30703	15	22623
[13 - 14 >	10	18145	11	23784	14	20036	7	19067
[14 - 15 >	4	19196	25	27993	7	16579	8	18618
[15 - 16 >	5	13638	14	19824	4	15398	9	19519
[16 - 17 >	9	10358	13	14750	6	15479	2	10278
[17 - 18 >	2	6188	6	15419	6	19482	10	15287
[18 - 19 >	6	9579	15	11356	11	11515	14	11890
[19 - 20 >	11	8153	7	10294	2	9370	1	11502
[20 - 21 >	8	5619	6	9012	1	6863	4	8426
[21 - 22 >	7	7934	1	4769	2	16365	2	2635
[22 - 23 >	6	4187	2	5665		8116	5	6300
[23 - 24 >	4	4028	1	4204	1	2574	3	2984
[24 - 25 >	1	3047	1	2620	2	3200	1	2914
[25 - 26 >	8	3823		3039	1	2299	2	2062
[26 - 27 >	13	7809		2551	1	1180	3	2845
[27 - 28 >	16	6222		2325	1	3472		1493
[28 - 29 >	10	4108	1	877		1449		2531
[29 - 30>	3	3176		1310		2577		2126
[30 – 31>	5	2466	L	1003		838	1	908


En la tabla Nº 3.8, se presenta una distribución similar a la de la segunda etapa. En BT el mayor número de clientes afectados presentan interrupciones menores a 16 horas, mientras que en MT los clientes afectados presentan interrupciones menores a 12 horas.

La gráfica N° 3.8, muestra la curva de distribución en los cuatro semestres de control de la tercera etapa, observándose que el 5% de clientes afectados presenta interrupciones mayores a 10 horas.


En la gráfica N° 3.9, se observa que el 6% de los clientes afectados presentan interrupciones mayores a 7 horas.

Gráfica Nº 3.8: Curva de distribución en BT de Edelnor tercera etapa

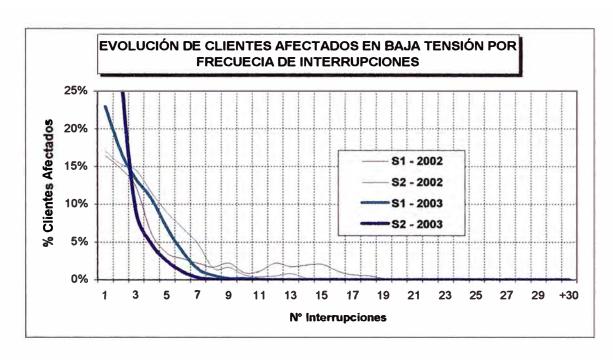
Gráfica Nº 3.9: Curva de distribución en MT de Edelnor tercera etapa

Gráfica Nº 3.10: Distribución en Edelnor por tipo de interrupción

En la gráfica N° 3.10 se muestra el porcentaje de incidencia por tipo de interrupción, observándose que en el año 2003, se ha presentado un mayor número de interrupciones programadas por mantenimiento que en los semestres anteriores.

3.3.2 Luz del Sur

Para el caso de Luz del Sur, las curvas de distribución son similares a Edelnor, puesto que corresponden a Lima; sin embargo para observar sus características tomaremos los datos correspondientes al periodo 2002 y 2003, tercera etapa de aplicación.


a) Evolución de clientes afectados por frecuencia de interrupciones

En la tabla N° 3.9 se puede apreciar claramente que en MT y BT el mayor número de clientes afectados siempre se encuentran dentro de los límites de tolerancia permitidos.

En las gráficas N° 3.11 y 3.12, la curva de distribución del segundo semestre 2003 se acentúa más que de los semestres anteriores.

Tabla Nº 3.9: Clientes afectados en Luz del Sur tercera etapa

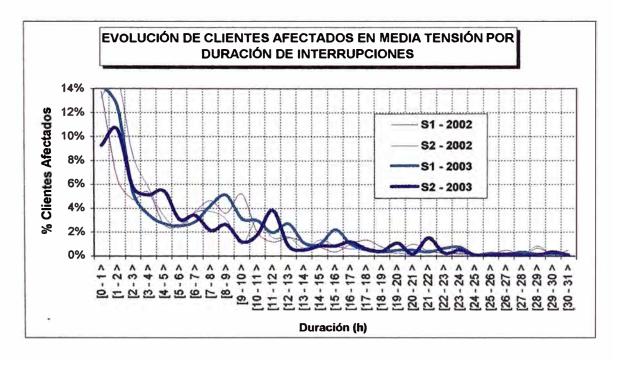
N° Int	S1	- 2002	S2 -	2002	S1	2003	S2	- 2003
N Int	MT	ВТ	MT	ВТ	MT	ВТ	MT	ВТ
1	241	114380	257	118333	275	159244	337	380790
2	177	102183	209	106138	236	117873	156	191085
3	110	85531	132	100864	121	92596	94	62395
4	47	42434	89	80150	137	74605	60	32804
5	42	24244	59	61622	46	47403	61	17172
6	36	19408	38	47699	37	25729	29	7410
7	44	15047	44	32696	8	9681	58	1936
8	21	11433	10	10221	8	4208	10	410
9	27	15407	6	11366	3	1354	6	146
10	10	6339	2	4276	2	1231	1	84
11	17	7901	5	2907		475	2	22
12	34	15406	12	3477		42	14	77
13	10	12026	4	5996	1	28	5	21
14	10	13539		1479		370		
15	7	14264	1	413	1	303		
16	6	7932		84		591		
17	4	4702		6	2	47	1	
18	6	3948		76				
19		1265		34				
20	3	1205		ĺ				
21		351	j	Î				
22	1	84	1					l)
23	1	183					/	
24	1	84		ĺ				
25	7	480			1			
26	1	136						
27		98						
28		110						
29		121						
30		3		(
+30								

Gráfica Nº 3.11: Curva de distribución en BT de Luz del Sur tercera etapa

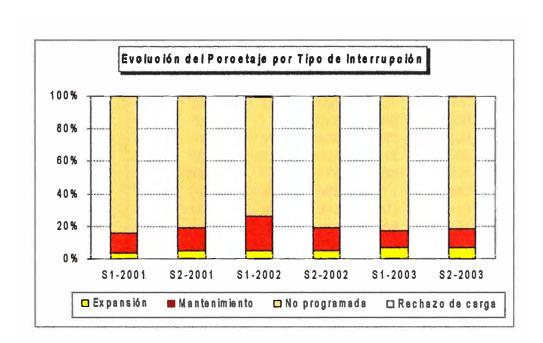
Gráfica Nº 3.12: Curva de distribución en MT de Luz del Sur tercera etapa

b) Evolución de clientes afectados por duración de interrupciones

En la tabla Nº 3.10, se aprecia que un gran número de clientes afectados presentan interrupciones de hasta 14 horas y esta tendencia se mantiene a lo largo de los cuatro semestres de control.


Tabla Nº 3.10: Clientes afectados en Luz del Sur tercera etapa

Duración	S1	- 2002	S2	- 2002	S1 ·	2003	S2	- 2003
Duracion	MT	ВТ	MT	ВТ	MT	ВТ	MT	ВТ
[0 - 1 >	162	89986	156	147506	168	98017	109	162040
[1-2>	76	58395	176	101629	148	101846	125	115765
[2-3>	56	38390	100	65928	63	49315	68	83097
[3 - 4 >	63	25369	68	34461	41	33592	60	44519
[4 - 5 >	31	25721	39	29654	32	23779	64	35567
[5-6>	30	25473	28	18702	30	33964	36	47269
[6 - 7 >	44	31153	43	30417	34	22796	40	34858
[7 - 8 >	55	36613	44	23834	50	21099	25	29334
[8-9>	42	18416	36	14117	60	20558	31	18240
[9 - 10 >	61	22778	12	11554	37	19361	14	19068
[10 - 11 >	23	18457	36	15001	35	25146	21	17140
[11 - 12 >	14	18405	18	12473	23	12172	45	25122
[12 - 13 >	18	13381	19	19096	32	8627	10	10609
[13 - 14 >	14	11672	8	8530	13	13916	6	7199
[14 - 15 >	9	8579	16	11592	12	14151	10	7055
[15 - 16 >	4	11707	10	9567	26	3731	10	7518
[16 - 17 >	12	8965	7	4628	12	9215	14	4437
[17 - 18 >	16	7729	8	4461	6	4220	7	3447
[18 - 19 >	9	6984	4	4024	4	4898	5	5622
[19 - 20 >	5	6548	3	4475	6	1597	13	2411
[20 - 21 >	12	3873	2	1360	6	3267	2	2684
[21 - 22 >	5	3602	6	3078	4	991	18	733
[22 - 23 >	3	3608	4	1209	8	1857	3	867
[23 - 24 >	3	2120	2	470	9	1267	6	937
[24 - 25 >	1	1093	2	485	1	422	1	476
[25 - 26 >	1	1824	1	1006	3	1260	1	301
[26 - 27 >	6	3896	1	617	2	1066	2	1931
[27 - 28 >	1	2390	1	671	4	403	1	186
[28 - 29 >	8	2127	10	843	2	53	1	1951
[29 - 30 >	2	906	1	796	2	122	4	684
[30 - 31 >	6	1007		103	1	449	1	199


En las gráficas N° 3.13 y 3.14, se observa que el 6% de los clientes afectados presentan interrupciones mayores a 3 horas.

Gráfica Nº 3.13: Curva de distribución en BT de Luz del Sur tercera etapa

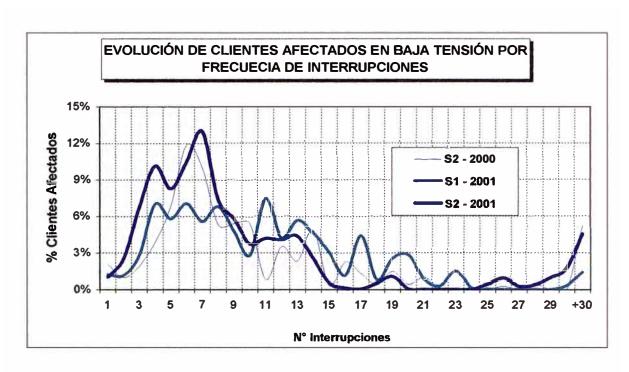
Gráfica Nº 3.14: Curva de distribución en MT de Luz del Sur tercera etapa

Gráfica Nº 3.15: Distribución en Luz del Sur por tipo de interrupción

La gráfica N° 3.15, muestra el porcentaje de incidencia por tipo de interrupción, observándose que en el primer semestre 2002, se ha presentado un mayor número de interrupciones programadas por mantenimiento en comparación a los otros semestres.

3.3.3 Hidrandina

a) Evolución de clientes afectados por frecuencia de interrupciones


Segunda etapa:

En la tabla Nº 3.11 se puede apreciar que el mayor número de clientes afectados en BT presentan menos de 20 interrupciones, mientras que en MT menos de 16.

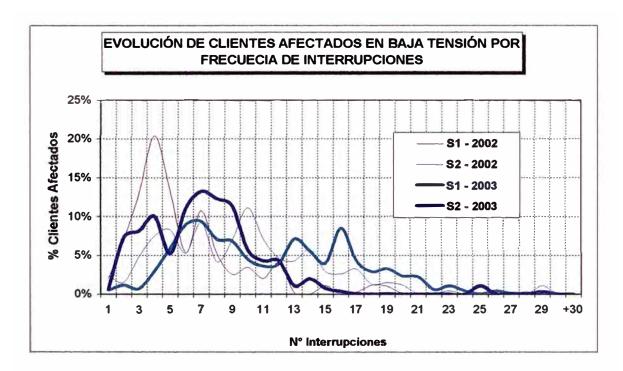
Tabla Nº 3.11: Clientes afectados en Hidrandina segunda etapa

N° Int	S2 -	2000	S1	- 2001	S2	- 2001
14 IIIC	MT	ВТ	MT	ВТ	MT	ВТ
1	42	5819	5	3475	11	2904
2	9	2746	10	3227	31	7155
3	4	5445	11	7902	59	18953
4	9	10770	51	19664	42	28408
5	56	19139	83	16260	42	23180
6	49	33235	54	19788	68	29381
7	67	28069	36	15662	71	36342
8	29	14974	36	19136	93	20618
9	12	15198	32	13318	48	16231
10	42	15212	39	7875	23	10529
11	18	2326	37	21026	38	11785
12	9	9882	35	11928	67	11466
13	19	6603	43	15767	33	12286
14	9	13469	26	12917	36	7175
15	9	873	8	8593	1	1530
16	3	6367	14	3280	14	386
17	1	3710	23	12291		176
18		1183	9	2309		1438
19	18	4249	18	7104	1	3022
20		1198	9	7850		178
21	13	2861	6	2382		100
22		303	7	920	1	75
23	l i	104	2	4184		69
24	1	6		375	2	111
25	1	7		168	3	1261
26	1	755		87	16	2535
27	4	63	1	147	6	774
28		1201		85	9	1133
29		16	1	75	14	2840
30			18	972	7	4947
+30	27	14826	29	4018	58	12850

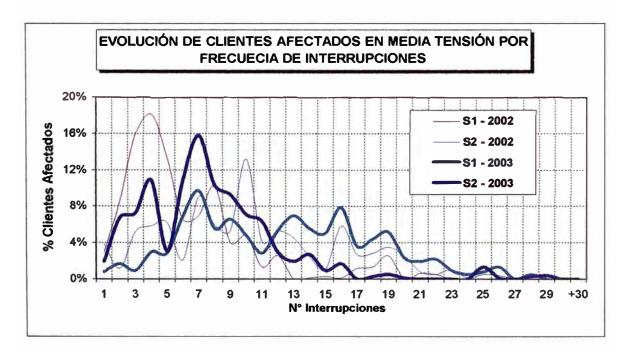
Como se puede observar la curva presenta una distribución irregular, esto debido a que corresponde al comportamiento de 22 localidades.

Gráfica Nº 3.16: Curva de distribución en BT de Hidrandina segunda etapa

Gráfica Nº 3.17: Curva de distribución en MT de Hidrandina segunda etapa


Tercera etapa:

En la tabla Nº 3.12, se puede apreciar claramente que en BT, si bien el mayor número de clientes afectados se encuentran dentro de los límites de tolerancia, en el año 2003 el número de clientes afectados con una interrupción es menor que el año anterior.

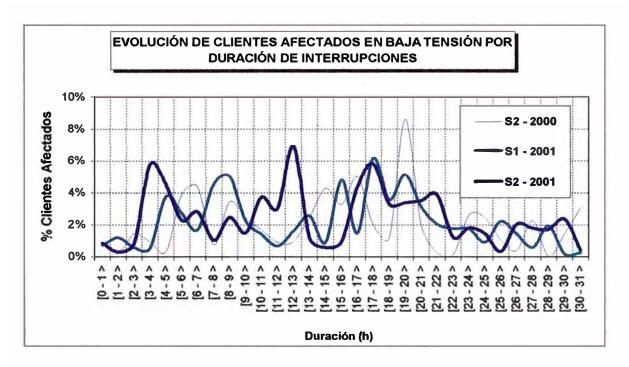

Tabla N° 3.12: Clientes afectados en Hidrandina tercera etapa

N° Int	S1 -	2002	S2 ·	2002	S1 -	2003	S2	- 2003
14 Kit	MT	ВТ	MT	BT	MT	ВТ	MT	ВТ
1	23	5641	30	6612	6	1554	15	1855
2	66	19856	9	4260	13	3255	52	20554
3	123	36610	40	13651	7	2007	56	22805
4	140	57245	45	21086	23	8431	84	28036
5	104	37418	48	23203	22	16539	24	14613
6	51	14969	16	14818	53	24990	83	30875
7	54	30061	70	25959	75	26322	122	37125
8	79	14703	46	11661	43	19790	80	34444
9	31	7111	41	19627	51	19236	72	31828
10	37	9758	102	31187	37	12612	55	16022
11	10	5636	32	19878	22	10108	49	11954
12	20	11217	41	13108	41	10970	23	12053
13		651	35	11970	54	19903	15	3053
14	1	70	19	16179	43	15585	21	5539
15	2	2973	8	8209	39	11308	7	2117
16	1	33	45	7315	61	23800	13	980
17	9	665	21	9133	28	12208		157
18	10	3226	22	3512	34	8099	2	42
19	20	2820	27	4121	40	9225	4	171
20		286	20	3260	18	6558	1	46
21	5	1 1	6	160	15	6269		13
22	4	2	4	189	17	1712		22
23			8	1192	7	3037		12
24			1	124	4	1162		24
25			4	227	6	80	10	2971
26			3	13	10	1167	1	61
27				8		273		10
28				52	4	369	2	7
29			1	3048		81	3	902
30				5		1		20
+30			0	1	0	0		1

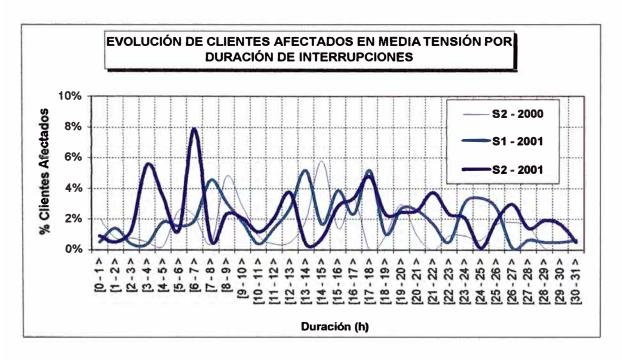
Para poder observar mejor lo indicado anteriormente, presentamos a continuación la distribución de los clientes afectados tanto en baja como en media tensión.

Gráfica Nº 3.18: Curva de distribución en BT de Hidrandina tercera etapa

Gráfica Nº 3.19: Curva de distribución en MT de Hidrandina tercera etapa


b) Evolución de clientes afectados por duración de interrupciones Segunda etapa:

En la tabla N° 3.13, se puede apreciar claramente que la mayoría de clientes afectados en BT ha presentado interrupciones con una duración mayor a las tolerancias.

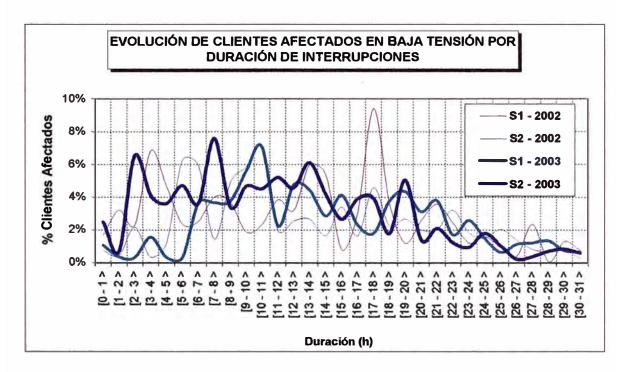

Tabla Nº 3.13: Clientes afectados en Hidrandina segunda etapa

Duración -	S2	- 2000	S1 -	2001	S2 -	2001
Duración .	MT	BT	MT	ВТ	MT	BT
[0 - 1 >	16	2283	4	2038	7	2404
[1-2>	6	741	11	3358	4	810
[2-3>	6	4029	3	1604	10	2368
[3 - 4 >	4	2676	3	1472	43	16117
[4 - 5 >	2	940	14	10569	27	12579
[5-6>	20	10908	12	7674	10	6457
[6 - 7 >	17	12249	15	4719	61	7899
[7 - 8 >	3	2140	35	12838	5	2943
[8-9>	37	9647	24	14109	18	6963
[9 - 10 >	22	6811	14	6346	16	4196
[10 - 11 >	7	4749	3	3967	9	10471
[11 - 12 >	3	2560	11	1893	16	8469
[12 - 13 >	4	2678	21	4500	29	19377
[13 - 14 >	15	6935	40	7193	3	3323
[14 - 15 >	45	11994	13	2548	6	1651
[15 - 16 >	11	9216	30	13478	22	2661
[16 - 17 >	26	14031	18	4156	26	12294
[17 - 18 >		5703	40	17296	37	16330
[18 - 19 >	7	3298	8	10020	18	9272
[19 - 20 >	23	24077	21	14420	19	9502
[20 - 21 >	7	5623	20	8765	20	9892
[21 - 22 >		710	13	5770	29	10857
[22 - 23 >	7	355	4	4920	18	3474
[23 - 24 >	7	7327	24	4920	16	5063
[24 - 25 >	5	6892	26	2581	1	4024
[25 - 26 >	13	2986	21	6218	15	912
[26 - 27 >	14	1131	1	4039	23	5702
[27 - 28 >	12	6332	5	1659	11	5030
[28 - 29 >	1	41	4	5396	15	4828
[29 - 30 >		4042	4	496	13	6626
[30 - 31 >		8603	5	675	4	1171

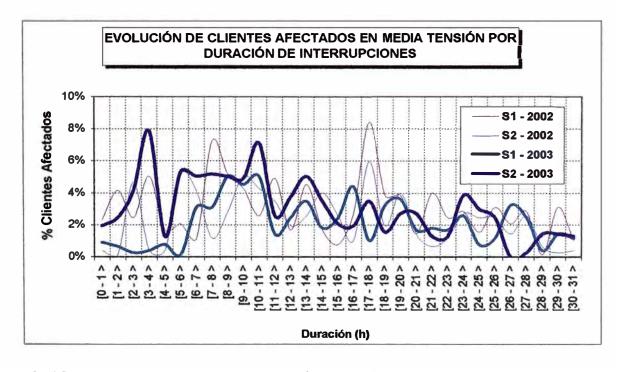
Para poder observar mejor lo indicado anteriormente, presentamos a continuación la distribución de los clientes afectados tanto en baja como en media tensión.

Gráfica Nº 3.20: Curva de distribución en BT de Hidrandina segunda etapa

Gráfica Nº 3.21: Curva de distribución en MT de Hidrandina segunda etapa

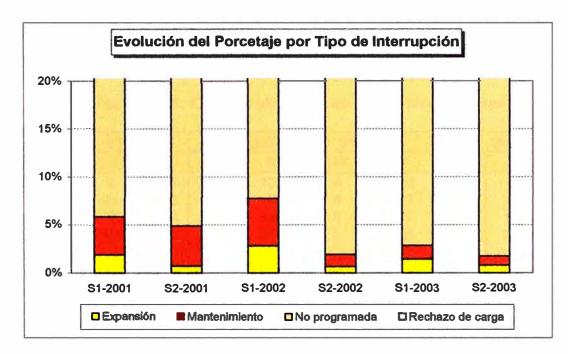

Tercera etapa:

En la tabla Nº 3.14, se presenta una distribución de manera similar a la segunda etapa; eso como ya se indicó anteriormente se debe a las diferentes características de las redes de distribución en las 22 localidades de su concesión.


Tabla Nº 3.14: Clientes afectados en Hidrandina tercera etapa

Duración	S1 ·	- 2002	S2 -	- 2002	S1	- 2003	S2	- 2003
Duracion	MT	BT	MT	ВТ	MT	ВТ	MT	ВТ
[0 - 1 >	18	4750	3	2103	7	3055	15	7012
[1-2>	32	8995	1	1219	5	1011	19	1957
[2-3>	19	6478	36	6084	2	890	32	18336
[3 - 4 >	39	19146	3	934	3	4372	61	11506
[4 - 5 >	13	13081	3	3363	6	886	10	10137
[5 - 6 >	16	6680	40	17485	1	850	41	13214
[6 - 7 >	9	7124	32	16635	24	10263	39	10197
[7 - 8 >	56	11302	9	4055	24	10281	40	21285
[8-9>	40	10374	22	13777	39	10542	39	9503
[9 - 10 >	33	5291	39	16376	35	15676	38	13100
[10 - 11 >	20	6565	33	19572	39	19853	55	12655
[11 - 12 >	38	10805	27	5512	11	6349	20	14591
[12 - 13 >	13	8996	15	7191	19	13330	29	12787
[13 - 14 >	35	16790	20	7475	27	12426	39	17150
[14 - 15 >	13	15061	31	4663	14	8013	27	11661
[15 - 16 >	6	2293	20	9573	19	11541	16	7457
[16 - 17 >	21	8481	8	4636	34	6531	15	10963
[17 - 18 >	65	26363	46	12872	8	5052	27	11045
[18 - 19 >	30	10212	15	6330	25	10571	12	4978
[19 - 20 >	30	3390	31	7524	28	12165	21	14193
[20 - 21 >	11	7291	11	5597	13	8712	21	3887
[21 - 22 >	31	10036	5	5694	14	10681	10	5916
[22 - 23 >	19	6846	9	8990	13	4738	10	3479
[23 - 24 >	22	3434	21	5131	20	7292	30	2657
[24 - 25 >	12	4487	19	4201	6	4141	23	5041
[25 - 26 >	24	2641	19	5727	9	1814	19	2900
[26 - 27 >	16	1107	11	3896	25	3189		625
[27 - 28 >	22	6629	20	2328	19	3413	2	1047
[28 - 29 >	1	184	5	1812	3	3765	11	2011
[29 - 30 >	24	3648	2	2378	11	2081	11	2374
[30 - 31 >	8	2133	3	658	9	1833	10	1689

Lo indicado a anteriormente se puede apreciar en las gráficas 3.22 y 3.23, en donde las curvas de distribución presentan las mismas características en los cuatro semestres de control.



Gráfica Nº 3.22: Curva de distribución en BT de Hidrandina tercera etapa

Gráfica Nº 3.23: Curva de distribución en MT de Hidrandina tercera etapa

En la gráfica N° 3.24, se muestra el porcentaje de incidencia por tipo de interrupción, observándose que en los tres últimos semestres el porcentaje de interrupciones programadas es menor a los semestres anteriores.

Gráfica Nº 3.24: Distribución en Hidrandina por tipo de interrupción

3.3.4 Enosa

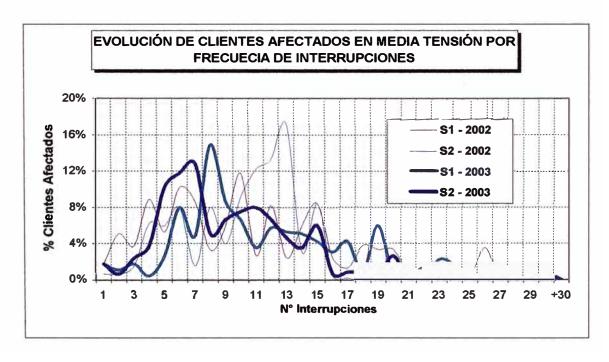
Para el caso de Enosa, las curvas de distribución son similares a Hidrandina, puesto que corresponden al comportamiento de 10 localidades; sin embargo para observar sus características tomaremos los datos correspondientes a la tercera etapa de aplicación.

Tercera etapa:

a) Evolución de clientes afectados por frecuencia de interrupciones

En la tabla Nº 3.15, se puede apreciar que en el segundo semestre 2003, el número de clientes afectados en BT, es menor que en los semestres anteriores.

En las gráficas N° 3.25 y 3.26, se observa que al igual que Hidrandina, las curvas de distribución de Enosa presentan un comportamiento irregular, debido a las características de las 10 localidades que se encuentran dentro de su concesión.

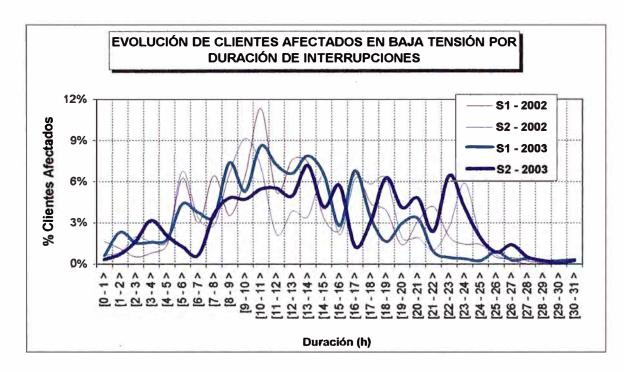

Tabla Nº 3.15: Clientes afectados en Enosa tercera etapa

N° Int	S1 -	2002	S2 ·	2002	S1 -	2003	S2	- 2003
14 BIL	MT	ВТ	MT	ВТ	MT	ВТ	MT	BT
1	8	2331	3	1098	8	2433	8	521
2	23	7196	3	906	5	2157	3	836
3	17	6504	7	1440	8	2979	11	1285
4	40	12383	28	6142	2	2833	17	2241
5	24	7121	27	12517	12	3920	46	13036
6	46	6470	36	7292	36	4843	53	7782
7	39	17529	7	3579	22	6003	58	12394
8	15	7025	36	8229	67	7556	23	10976
9	27	7845	18	4734	39	9320	30	11482
10	53	9130	41	14284	30	9122	34	13738
11	12	5590	55	19936	16	11716	36	9829
12	37	7816	60	15596	26	13267	30	13413
13	11	5419	77	9422	24	11027	21	7355
14	27	6181	14	9942	23	5278	16	7878
15	38	5011	38	14164	19	8826	27	6296
16	11	3937	2	4531	14	6882	3	3471
17	6	5601	1	2910	19	5415	4	3701
18	17	6064		459	4	934	4	827
19	15	7803	4	1497	27	2014	3	2191
20	15	6467	1	250	1	389	12	1253
21	4	1145		232		1094		497
22	3	1505	6	605		623	6	1554
23		420).		10	7688	1	58
24	1	136			7	3111		99
25		741	1 8			1146		503
26	16	1337				570	2	1231
27		1199	H (8	3674	1	570
28		137		1		335	į.	1502
29		44				50		105
30		1	1			94	3	293
+30						75		60

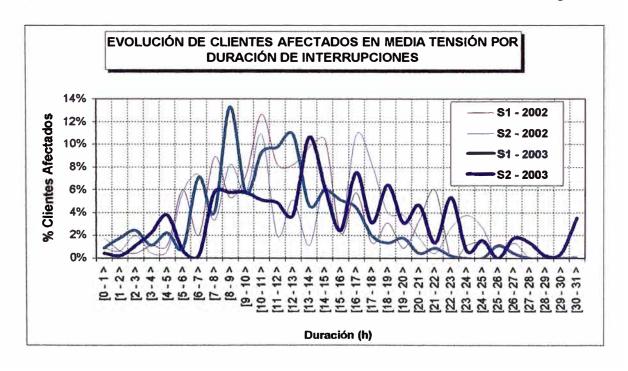
Para poder observar mejor lo indicado anteriormente, presentamos a continuación la distribución de los clientes afectados tanto en baja como en media tensión.

Gráfica Nº 3.25: Curva de distribución en BT de Enosa tercera etapa

Gráfica Nº 3.26: Curva de distribución en MT de Enosa tercera etapa

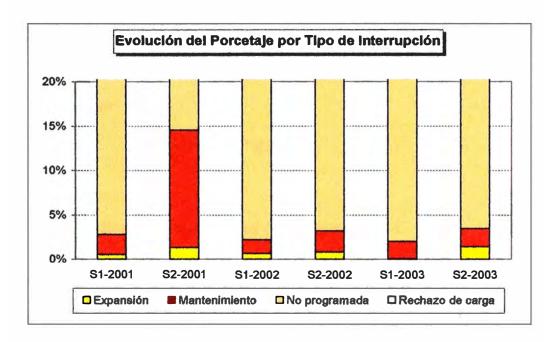

b) Evolución de clientes afectados por duración de interrupciones

En la tabla N° 3.16, se puede apreciar claramente que en MT y BT el mayor número de clientes afectados siempre se encuentra dentro de los límites de tolerancia permitido. Cabe indicar que en esta etapa en los tres primeros semestres de control los límites de tolerancia son mayores que en el segundo semestre 2003.


Tabla Nº 3.16: Clientes afectados en Enosa tercera etapa

Duración	S1	- 2002	S2 -	2002	S1	- 2003	S2	- 2003
Duración	MT	BT	MT	BT	MT	ВТ	MT	ВТ
[0 - 1 >	8	2429	4	907	4	896	2	473
[1-2>	3	1621	3	1265	8	3368	1	1031
[2-3>	2	744	9	2888	11	2240	5	2459
[3-4>	5	1190	2	2361	5	2333	10	4622
[4 - 5 >	5	2066	3	2396	10	2628	17	2995
[5-6>	27	9102	26	9825	4	6370	3	1817
[6 - 7 >	9	4377	33	4900	32	5463	1	948
[7 - 8 >	40	9376	15	4150	18	5026	26	5310
[8-9>	24	5160	37	9604	60	10718	26	7002
[9 - 10 >	33	9369	26	13308	26	7715	26	6867
[10 - 11 >	57	16477	49	10386	42	12490	23	7927
[11 - 12 >	37	7633	9	3162	44	10491	22	8031
[12 - 13 >	37	11040	23	5607	49	9600	17	7218
[13 - 14 >	44	10800	5	5033	21	11476	48	10435
[14 - 15 >	47	4877	29	9437	27	9508	28	6019
[15 - 16 >	10	3570	12	3098	23	4067	11	8300
[16 - 17 >	26	9478	49	9033	20	9906	34	1851
[17 - 18 >	6	6418	37	8448	9	4864	14	4559
[18 - 19 >	14	5634	18	9097	6	2374	29	9138
[19 - 20 >	4	2028	17	2802	8	4295	14	5945
[20 - 21 >	15	4533	8	2814	2	4830	21	6999
[21 - 22 >	27	6061	2	1487	4	1301	6	3451
[22 - 23 >		2854	12	3953	1	679	24	9379
[23 - 24 >	5	2105	17	8561		544	3	5926
[24 - 25 >	6	2056	12	2838		342	7	2738
[25 - 26 >	(666		939	5	1288		1236
[26 - 27 >		661	6	346	2	386	8	2035
[27 - 28 >		322		28	·	566	6	714
[28 - 29 >		101		36		305	1	367
[29 - 30 >		34		8		330	2	77
[30 - 31 >	1	320	1	22		431	16	376

Para poder observar mejor lo indicado anteriormente, presentamos a continuación la distribución de los clientes afectados tanto en baja como en media tensión.



Gráfica Nº 3.27: Curva de distribución en BT de Enosa tercera etapa

Gráfica Nº 3.28: Curva de distribución en MT de Enosa tercera etapa

En la gráfica N° 3.29, se muestra el porcentaje de incidencia por tipo de interrupción, observándose que en los cuatro últimos semestres el porcentaje de interrupciones programadas es menor que en el segundo semestre 2001.

Gráfica Nº 3.29: Distribución en Enosa por tipo de interrupción

3.4. Procedimiento de Cálculo de los Indicadores de Calidad de Suministro

Si bien para evaluar la Calidad de Suministro se utilizan los indicadores de sistema basados en clientes (SAIFI y SAIDI), la NTCSE para fines de compensación hace uso de los siguientes dos (2) indicadores que se calculan para períodos de control de un semestre, los cuales son:

1. Número total de interrupciones por cliente por semestre (N)

Viene a ser el número total de interrupciones (programadas y no programadas) en el suministro de cada cliente durante un período de control de un semestre.

N = Número de interrupciones (Int./sem)

Para el caso de interrupciones programadas por expansión o reforzamiento de redes, el número que debe incluirse en el cálculo de este indicador se pondera por un factor de cincuenta por ciento (50%).

2. Duración total ponderada de interrupciones por cliente (D)

Viene a ser la sumatoria de las duraciones individuales ponderadas de todas las interrupciones en el suministro del cliente durante un período de control de un semestre.

$$D = \sum (K_i * d_i) \qquad (h/sem) \qquad (3.1)$$

En donde:

d_i: Es la duración individual de la interrupción i.

 K_i : Son factores de ponderación de la duración de las interrupciones por tipo.

Tabla Nº 3.17: Factores de ponderación por tipo de interrupción

Tipo de Interrupción	Factor de Ponderación (K _i)
Programadas por expansión o reforzamiento de redes	0.25
Programadas por mantenimiento	0.50
Otras	1.00

Si hubiera diferencia entre la duración real y la duración programada de la interrupción, para el cálculo de la **Duración total ponderada de interrupciones** por cliente (**D**) se considera, para dicha diferencia de tiempo (Δ):

Ki = 0; si la duración real es menor a la programada

Ki = 1; si la duración real es mayor a la programada

La determinación del Número de interrupciones (N) y la Duración total ponderada de interrupciones (D) por cliente se lleva a cabo:

- a) Para todos los puntos de suministro a clientes en muy alta y alta tensión;
- b) Para todos los puntos de suministro a clientes en media tensión en función de los alimentadores o secciones de alimentadores a los que están conectados;
- c) Para todos los puntos de suministro a clientes en baja tensión en función de los alimentadores o secciones de alimentadores a los que están conectados. En este caso, el control se lleva a cabo por fase.

No se considerará para el cálculo de los indicadores N y D, las interrupciones por rechazo de carga por mínima frecuencia, las cuales se rigen según lo dispuesto en los numerales 6.1.8, 6.1.9 y la Décimo Tercera Disposición Final de la Norma.

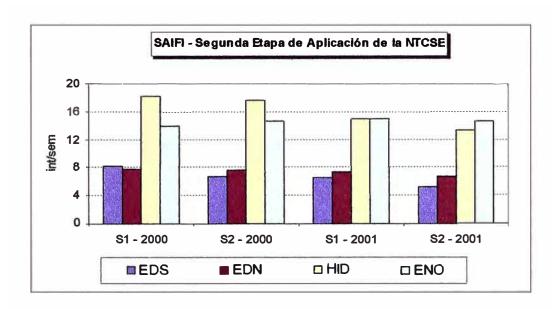
3.5. Evolución de los Indicadores de Calidad de Suministro

Para este análisis utilizaremos los indicadores SAIFI (frecuencia media de interrupciones de un cliente) y SAIDI (duración media de interrupciones de un cliente), de las cuatro empresas en estudio, los cuales han sido calculados para los periodos que comprende la segunda y tercera etapa de aplicación de la NTCSE.

Segunda Etapa

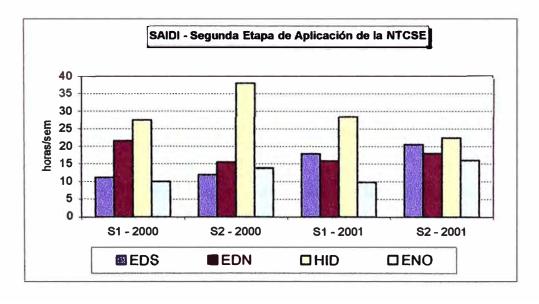
Para el cálculo de los indicadores de las tablas Nº 3.18 y 3.19, se utilizó la información de las interrupciones de los clientes compensados, esto debido a que en esta etapa la información real de las interrupciones no se remitían en forma correcta.

El resultado de estos indicadores no muestra claramente la calidad de suministro brindada por las empresas distribuidoras, pues sólo considera aquellos clientes que han sido compensados por interrupciones, dejando sin analizar una gran número clientes que habiendo sido afectados por interrupciones no superaron las tolerancias.


Tabla Nº 3.18: Frecuencia media de interrupciones en la segunda etapa

Periodo	SAIFI			
Periodo	Luz del Sur	Edelnor	Hidrandina	Enosa
S1 - 2000	8,25	7,82	18,27	13,82
S2 - 2000	6,79	7,67	17,60	14,68
S1 - 2001	6,58	7,31	14,89	14,88
S2 - 2001	5,26	6,73	13,29	14,70

Tabla Nº 3.19: Duración media de interrupciones en la segunda etapa


Periodo	SAIDI			
renodo	Luz del Sur	Edelnor	Hidrandina	Enosa
S1 - 2000	11,21	21,53	27,38	10,03
S2 - 2000	12,01	15,46	37,93	13,85
S1 - 2001	17,89	15,91	28,43	9,84
S2 - 2001	20,53	17,98	22,38	16,05

En la gráfica N° 3.30, se muestra la evolución de la frecuencia media de interrupciones por cliente compensado, observándose que en el segundo semestre 2001, Enosa registró el mayor número de interrupciones que las demás empresas.

Gráfica Nº 3.30: Evolución de la frecuencia media de interrupciones

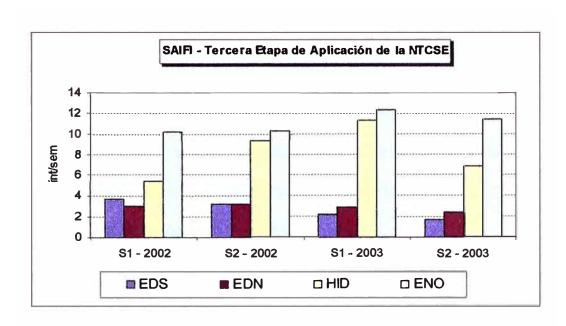
En la gráfica N° 3.31, se muestra la evolución de la duración media de interrupciones por cliente compensado, se observa que Hidrandina registra la mayor duración en el segundo semestre 2000. Los indicadores de calidad de suministro calculados para cada una de las empresas distribuidoras del país se muestran en el Anexo N° 1.

Gráfica Nº 3.31: Evolución de la duración media de interrupciones

Tercera Etapa

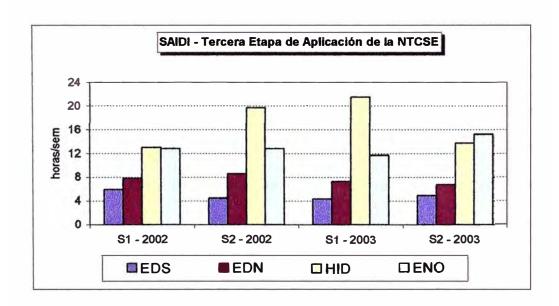
En esta etapa, la información reportada de las interrupciones es más completa. Es así que no sólo se pueden calcular los indicadores de calidad por empresa distribuidora sino también se puede hacer un análisis a nivel nacional de la Calidad de Suministro.

En las tablas Nº 3.20 y 3.21, se muestran los indicadores de calidad de las cuatro empresas en estudio.


Tabla Nº 3.20: Frecuencia media de interrupciones en la tercera etapa

Periodo	SAIFI			
renouo	Luz del Sur Ede	Edelnor	Hidrandina	Enosa
S1 - 2002	3,76	3,04	5,4	10,2
S2 - 2002	3,19	3,21	9,39	10,23
S1 - 2003	2,2	2,9	11,3	12,3
S2 - 2003	1,76	2,44	6,85	11,41

Tabla Nº 3.21: Duración media de interrupciones en la tercera etapa


Periodo	SAIDI			
renouo	Luz del Sur	Edelnor	Hidrandina	Enosa
S1 - 2002	5,91	7,83	12,98	12,81
S2 - 2002	4,48	8,57	19,65	12,8
S1 - 2003	4,4	7,3	21,5	11,7
S2 - 2003	4,88	6,78	13,77	15,22

En la gráfica Nº 3.32, se observa que las empresas de Lima no superan las 6 int/sem, mientras que las de provincia en el 2do semestre 2002 y 1er semestre 2003 superan las 8 int/sem.

Gráfica Nº 3.32: Evolución de la frecuencia media de interrupciones

En la gráfica Nº 3.33, se observa que Hidrandina supera en los últimos tres semestres las 13 int/sem.

Gráfica Nº 3.33: Evolución de la duración media de interrupciones

En el Anexo Nº 2, se analiza el caso de la localidad de Huaraz en donde se detectó mala calidad de suministro, así como las acciones que se están tomando para mejorar el servicio. Cabe indicar que la información considerada en el presente análisis corresponde a lo remitido por las empresas distribuidoras, así como la información estadística y los informes técnicos elaborados en la Unidad de Calidad de Servicio de la Gerencia de Fiscalización Eléctrica del OSINERG.

3.6. Conclusiones

- 1. Las curvas de distribución obtenidas para Edelnor y Luz del Sur, presentan similitudes, al igual que las empresas Hidrandina y Enosa, sin embargo, hacer una comparación entre dichas curvas no sería correcto, ya que las empresas de Lima y las de provincias presentan características diferentes en su topología de red.
- 2. Las curvas de distribución para las empresas de provincia tienen un comportamiento irregular, esto debido a que representan a varias localidades con características diferentes. Tal es el caso de las empresas Hidrandina y Enosa, las cuales representan las características de 22 y 10 localidades respectivamente.
- 3. De acuerdo a la clasificación de las interrupciones, se observa que más del 90% corresponde a interrupciones no programadas. Este porcentaje se mantiene para el total de las empresas distribuidoras del país.

- 4. Los indicadores obtenidos en la segunda etapa de aplicación de la NTCSE, no muestran claramente la calidad de suministro brindado por las empresas distribuidoras, pues sólo consideran aquellos clientes que han sido compensados por interrupciones, dejando sin analizar un gran número clientes que, habiendo sido afectados por interrupciones, no superaron las tolerancias.
- 5. En la tercera etapa de aplicación de la NTCSE, la información reportada de las interrupciones es más completa; es así que no sólo se calcularon los indicadores de calidad por empresa distribuidora sino también se pudo analizar a nivel nacional.
- Muchas de las empresas distribuidoras han presentado mejora en la calidad de suministro brindado a sus clientes, esto debido a que han invertido en mejorar sus redes de distribución.

CAPÍTULO IV

COMPENSACIÓN POR MALA CALIDAD DE SUMINISTRO

4.1. Introducción

En este capítulo se analizará primero el número de clientes con mala calidad de suministro, es decir, aquellos clientes afectados por interrupciones de los cuales obtendremos a los clientes que serán compensados por haber superado las tolerancias establecidas en la NTCSE. También analizaremos el impacto producido por las variaciones de las tolerancias en el cálculo de la compensación por mala calidad de suministro en la segunda y tercera etapa de aplicación de la NTCSE, puesto que en estas etapas recién se hicieron efectivas las compensaciones.

Finalmente se simularán los cálculos de compensación sin variación de los indicadores de calidad ni del costo unitario. Este análisis de desarrollará para las empresas de Lima (Luz del Sur y Edelnor) y las de provincia (Hidrandina y Enosa), con la finalidad de poder comparar los resultados estimados con los resultados reales. Cabe mencionar que la información considerada en el presente capítulo corresponde a la información estadística que he elaborado en la Unidad de Calidad de Servicio de la Gerencia de Fiscalización Eléctrica del OSINERG.

4.2. Impacto que Producen los Indicadores de Calidad de Suministro en la Compensación

La NTCSE establece que los Suministradores deben compensar a sus clientes por aquellos suministros en los que se haya comprobado que la calidad del servicio no satisface los estándares fijados.

Cuanto mayor sea la desviación de la calidad sobre la tolerancia permitida mayor será la compensación. Así mismo, esta compensación es directamente proporcional a la energía entregada en condiciones de mala calidad.

La siguiente ecuación representa la estructura básica utilizada para el cálculo de las compensaciones establecidas en la NTCSE.

En donde el **Factor de Intensidad** depende de la magnitud de los indicadores de calidad. Por esta razón, las variaciones sufridas en la tercera etapa en las tolerancias de los indicadores de calidad, han repercutido directamente en la compensación.

4.3. Procedimiento de Cálculo de la Compensación por Mala Calidad de Suministro

Las compensaciones por mala calidad de suministro se calculan semestralmente en función de la energía teóricamente no suministrada (ENS), el Número de interrupciones por cliente por semestre (N) y la Duración total acumulada de interrupciones (D), de acuerdo a las siguientes fórmulas:

Compensaciones por Interrupciones =
$$e * E * ENS$$
 (4.2)

En donde:

e : Es la compensación unitaria por incumplimiento en la calidad de suministro.

Tabla Nº 4.1: Compensación unitaria por etapa de aplicación de la NTCSE

Etapa	Compensación Unitaria (US\$/kWh)
Primera	0.00
Segunda	0.05
Tercera	0.35

E : Es el factor que toma en consideración la magnitud de los indicadores de calidad de suministro y está definido de la siguiente manera:

$$E = [1 + (N - N')/N' + (D - D')/D']$$
(4.3)

Las cantidades sin apóstrofe representan los indicadores de calidad, mientras que las que llevan apóstrofe representan los límites de tolerancia para los indicadores respectivos. El segundo y/o tercer término del miembro derecho de esta expresión serán considerados para evaluar las compensaciones, solamente si sus valores individuales son positivos. Si tanto N y D están dentro de las tolerancias, el factor E no se evalúa y asume el valor cero.

ENS : Es la energía teóricamente no suministrada a un cliente determinado y se calcula de la siguiente manera:

ENS = ERS / (NHS -
$$\sum d_i$$
) · D (kWh) (4.4)

En donde:

70

ERS: Es la energía registrada en el semestre.

NHS: Es el número de horas del semestre.

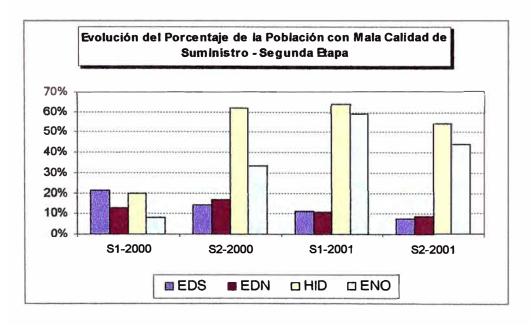
 Σd_i : Es la duración total real de las interrupciones ocurridas en el semestre.

Toda cadena de pago se iniciará cuando se haya transgredido las tolerancias de los indicadores de calidad del suministro que la Norma establece para el cliente final, durante el semestre de control. Asimismo, las respectivas compensaciones se efectúan culminado el semestre de control, sin postergar ni condicionar la obligación de este pago a que hagan efectivas las compensaciones que, en su caso, deban efectuar Terceros como responsables de dichas interrupciones.

Las compensaciones establecidas en la NTCSE son complementarias a las de los artículos 57° y 86° de la Ley y 131° y 168° del Reglamento. En consecuencia, de los montos de las compensaciones por mala calidad de suministro, calculadas de acuerdo a esta Norma, se descuentan aquellos montos pagados conforme a los artículos 57° y 86° de la Ley y 131° y 168° del Reglamento, abonándose la diferencia al Cliente por la mala calidad de suministro eléctrico recibido.

4.4. Evolución de la Compensación por Mala Calidad de Suministro

Para observar cómo ha evolucionado la compensación por mala calidad de suministro, es importante establecer qué porcentaje de clientes afectados por alguna interrupción han superado los límites en las tolerancias de los indicadores de calidad de suministro. En las tablas Nº 4.2 y 4.3, se muestra el porcentaje de clientes con mala calidad de suministro en la segunda y tercera etapa de aplicación de la NTCSE, los cuales han sido calculados utilizando los archivos de compensación, identificando los clientes compensados en comparación al total de clientes por empresa.


Tabla Nº 4.2: Población con mala calidad en la segunda etapa

Periodo	% Población con Mala Calidad						
Periodo	Luz del Sur	Edeinor	Hidrandina	Enosa			
S1 - 2000	21,3	12,8	20,0	8,3			
S2 - 2000	14,2	16,6	61,7	33,5			
S1 - 2001	11,3	10,6	64,1	59,2			
S2 - 2001	7,8	8,8	54,2	44,3			

Tabla Nº 4.3: Población con mala calidad en la tercera etapa

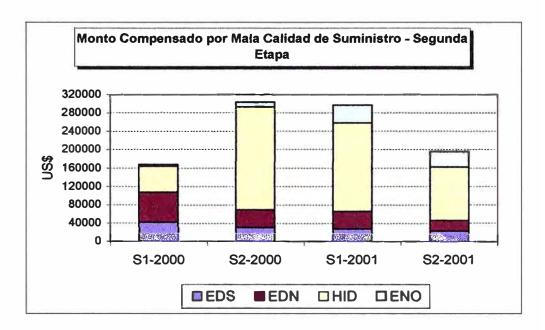
Periodo	% Población con Mala Calidad						
renodo	Luz del Sur	Edelnor	Hidrandina	Enosa			
S1 - 2002	13,1	14,8	27,1	38,6			
S2 - 2002	6,1	11,3	33,7	65,2			
S1 - 2003	6,8	9,7	39,1	72,2			
S2 - 2003	9,4	9,3	24,2	60,4			

En la gráfica Nº 4.1, se observa que en los últimos tres semestres, las empresas Hidrandina y Enosa han presentado un mayor número de clientes afectados con mala calidad de suministro.

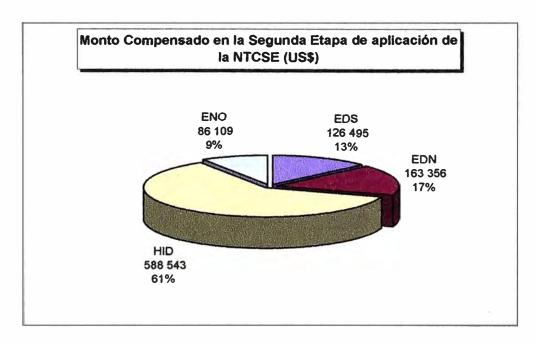
Gráfica Nº 4.1: Evolución de la población con mala calidad en la segunda etapa

En la gráfica Nº 4.2, se observa que Hidrandina en la tercera etapa ha reducido el porcentaje de clientes afectados con mala calidad de suministro en comparación con la segunda etapa.

Gráfica Nº 4.2: Evolución de la población con mala calidad en la tercera etapa


En el Anexo Nº 3, se muestra el porcentaje de clientes con mala calidad de suministro por empresa distribuidora.

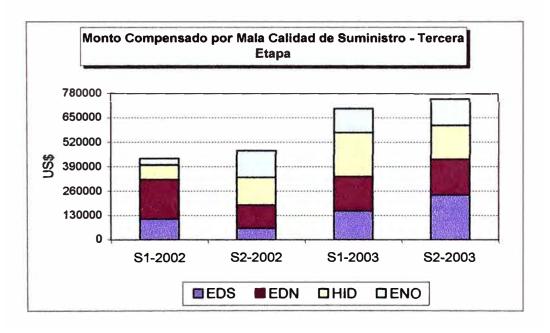
En la tabla N° 4.4, se muestran los montos compensados en la segunda etapa de aplicación de la NTCSE, observándose que el monto compensado por Hidrandina representa el 61% del total compensado por las cuatro empresas. (Ver gráfica N° 4.4)


Tabla Nº 4.4: Monto compensado en la segunda etapa

Periodo	Monto Compensado (US\$)						
renodo	Luz del Sur	Edelnor	Hidrandina	Enosa			
S1 - 2000	42 886	64 761	56 567	3 595			
S2 - 2000	31 492	38 200	223 930	10 197			
S1 - 2001	28 369	37 639	192 219	38 631			
S2 - 2001	23 748	22 755	115 827	33 686			

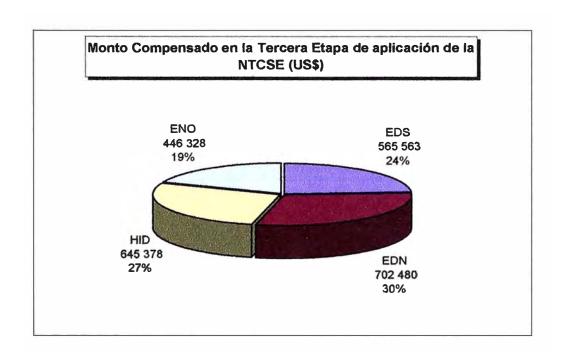
En la gráfica Nº 4.3, se observa que para las empresas Luz del Sur y Edelnor en los tres últimos semestres de la segunda etapa los montos compensados se han ido reduciendo en comparación del primer semestre 2000.

Gráfica Nº 4.3: Compensación por empresa en la segunda etapa


Gráfica Nº 4.4: Porcentaje compensado por empresa en la segunda etapa

En la tercera etapa, los montos compensados se incrementaron en 85.7%, esto debido a que en la tercera etapa el costo unitario aumentó a 0.35 US\$/kWh, tal como se muestra en la tabla N° 4.5.

Tabla Nº 4.5: Monto compensado en la tercera etapa


Periodo	Monto Compensado (US\$)						
renodo	Luz del Sur	Edelnor	Hidrandina	Enosa			
S1 - 2002	111 227	208 560	78 784	33 829			
S2 - 2002	60 033	124 756	146 748	142 951			
\$1 - 2003	155 200	180 303	236 926	128 432			
S2 - 2003	239 103	188 862	182 921	141 116			

En las gráficas Nº 4.5 y 4.6, se muestran los montos compensados por Luz del Sur, Edelnor, Hidrandina y Enosa, así como el porcentaje que representa cada una respecto al total compensado.

Gráfica Nº 4.5: Compensación por empresa en la tercera etapa

En el Anexo Nº 4, se muestra los montos compensados por las empresas distribuidoras del país.

Gráfica Nº 4.6: Porcentaje compensado por empresa en la tercera etapa

4.5. Análisis de la Compensación Sin Considerar la Variación de la Tolerancia en los Indicadores de Calidad de Suministro

Este análisis lo he desarrollado para dos clientes en baja tensión, uno de Luz del Sur (sector de distribución típico 1) y otro de Hidrandina (sector de distribución típico 2), esto debido a que ambos sectores presentan variación en las tolerancias en los indicadores de calidad de suministro.

En la tabla N° 4.6, se puede observar que para el cliente de Luz del Sur, la variación en la compensación básicamente se presenta por el incremento del costo unitario, mientras que para el cliente de Hidrandina se observa que en el primer semestre de

aplicación de la tercera etapa, el incremento en las tolerancias del 70% hace que los indicadores no superen los límites y por ello no presente compensación. Sin embargo en los semestres siguientes la compensación aumenta en comparación al monto calculado en la segunda etapa.

Tabla Nº 4.6: Comparación del monto compensado por etapa

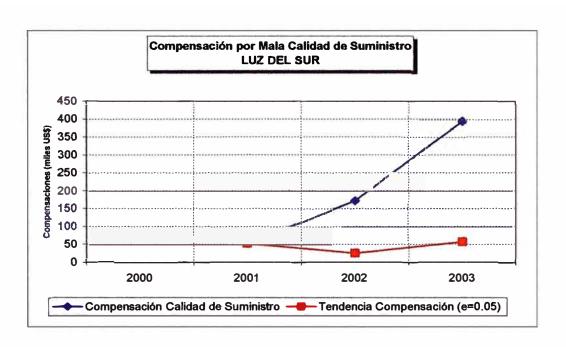
Empresa	Etapa	N' (int/sem)	D' (h/sem)	e (US\$/kWh)	Compensación (US\$)
Luz del Sur	Segunda	6	10	0.05	26.9
Luz dei Sui	Tercera	6	10	0.35	188.6
	Segunda	8	13	0.05	2.2
Hidrandina	Tercera - S1	11	17	0.35	0.0
niuranuma	Tercera - S2 y S3	9	15	0.35	13.3
	Tercera - S4	8	13	0.35	15.4

En el Anexo Nº 4, se muestra el detalle de las compensaciones calculadas, observándose que dicha compensación se debe a la duración y no a la frecuencia de las interrupciones.

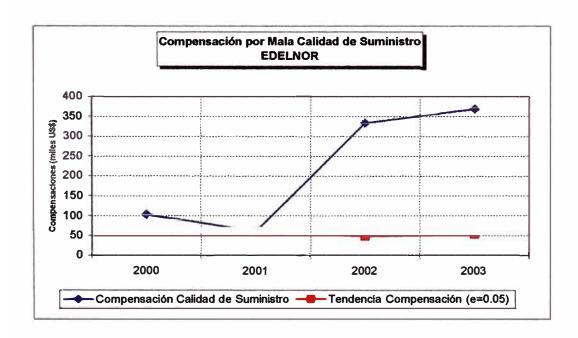
4.6. Análisis de la Compensación Sin Considerar la Variación del Costo Unitario (e)

Este análisis se desarrolla para las empresas Luz del Sur, Edelnor, Hidrandina y Enosa, considerando el costo unitario e = 0.05 US\$/kWh correspondiente a la segunda etapa de aplicación, debido a que justamente en esta etapa se hacen efectivas las compensaciones por mala calidad de suministro.

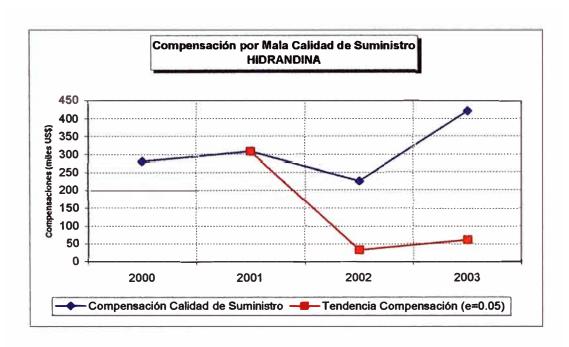
Tabla Nº 4.7: Monto real compensado por año


Periodo	Monto Compensado (miles US\$)						
1 011000	Luz del Sur	Edelnor	Hidrandina	Enosa			
2000	74,4	103,0	280,5	13,8			
2001	52,1	60,4	308,0	72,3			
2002	171,3	333,3	225,5	176,8			
2003	394,3	369,2	419,8	269,5			

En la tabla N° 4.7, se muestran los montos reales compensados por año para la segunda y tercera etapa de aplicación de la NTCSE. Nótese que para los años 2002 y 2003 de la tabla N° 4.8 se ha calculado el monto a compensar considerando e = 0.05 US\$/kWh, lo cual se reduce en 85.7%, en comparación del monto real compensado.


Tabla Nº 4.8: Monto calculado sin variación de la compensación unitaria

Periodo	Monto Compensado (miles US\$) (e=0.05)						
renodo	Luz del Sur	Edelnor	Hidrandina	Enosa			
2000	74,4	103,0	280,5	13,8			
2001	52,1	60,4	308,0	72,3			
2002	24,5	47,6	32,2	25,3			
2003	56,3	52,7	60,0	38,5			


Como se observa en las gráficas N° 4.7, 4.8, 4.9 y 4.10, el incremento del costo unitario de la compensación en la tercera etapa de aplicación (e = 0.35 US\$/kWh), tiene una marcada diferencia respecto a la compensación proyectada considerando (e = 0.05 US\$/kWh).

Gráfica Nº 4.7: Compensación real y proyectada en Luz del Sur

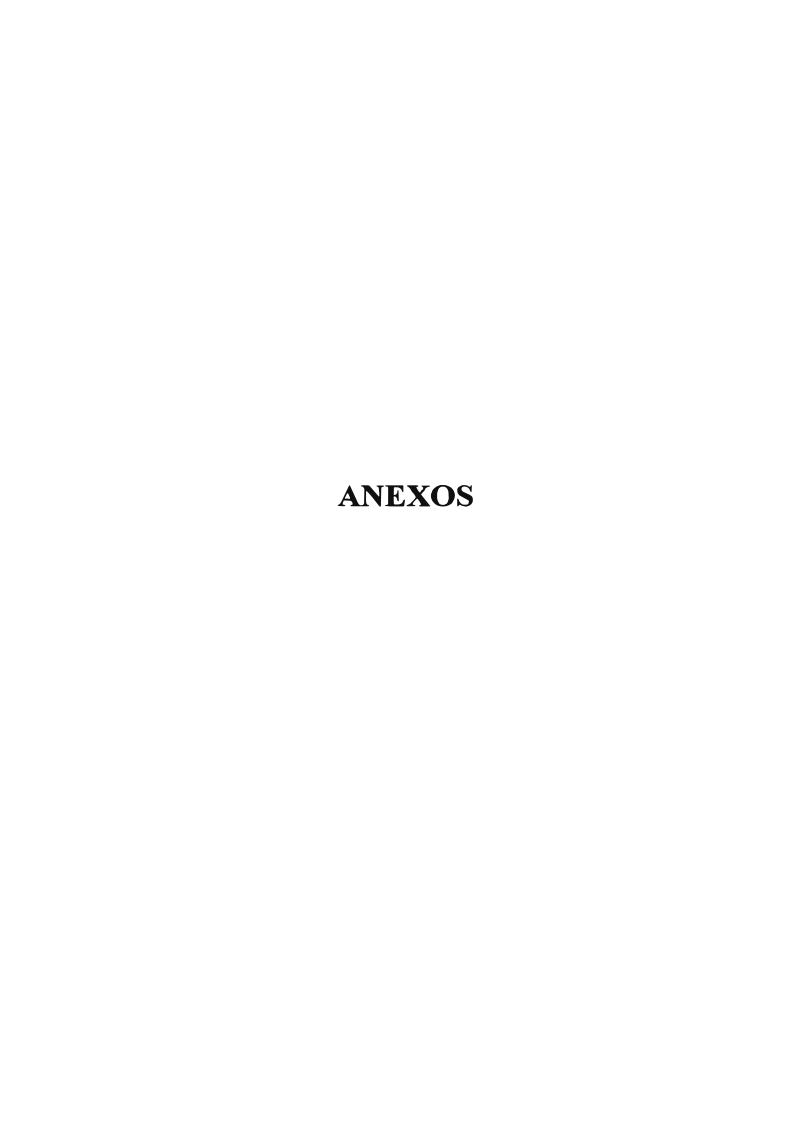
Gráfica Nº 4.8: Compensación real y proyectada en Edelnor

Gráfica Nº 4.9: Compensación real y proyectada en Hidrandina

Gráfica Nº 4.10: Compensación real y proyectada en Enosa

4.7. Conclusiones

- 1. El porcentaje de la población que supera las tolerancias establecidas por la NTCSE, es uno de los indicadores que ayuda a evaluar la calidad de suministro. Sin embargo este indicador no siempre refleja el real estado de la calidad de suministro pues no toma en cuenta aquellas interrupciones originadas por fuerza mayor (o que siguen en trámite de calificación) y las interrupciones originadas por la actuación automática de los relevadores por mínima frecuencia.
- 2. Se observa a nivel nacional un aumento progresivo de los montos compensados por las empresas distribuidoras; sin embargo, aun estos montos son insignificantes, menos del 1% en comparación a los montos facturados, por lo que aun es necesario ir mejorando la normativa con el propósito de hacer sentir a las empresas el riesgo que acarrea un servicio de mala calidad.(Ver Anexo Nº 4)
- 3. Desde la aplicación de la NTCSE, las empresas Edelnor y Luz del Sur, han mejorado la calidad servicio eléctrico que brindan a sus clientes, las mismas que se observan en sus indicadores de calidad, lo cual trae como consecuencia una disminución de las compensaciones.
- 4. Las empresas regionales (Hidrandina, Electrocentro, Enosa y Electronorte), tienen problemas para invertir debido a su baja rentabilidad y a que sus presupuestos son aprobados por el FONAFE.

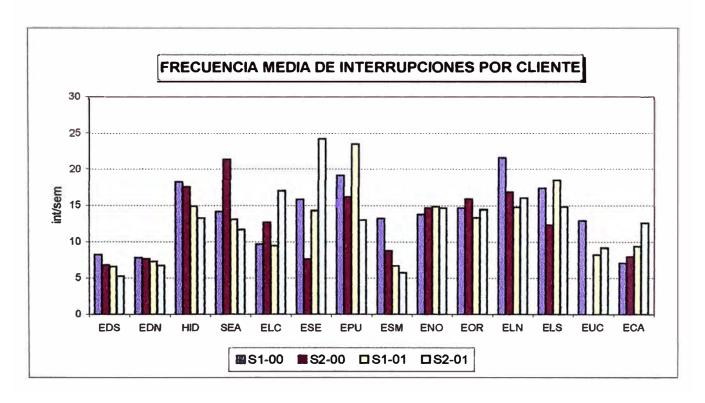

5. En julio del 2001, se modificó la NTCSE, el cual redujo sustancialmente el pago de las compensaciones por mala calidad (aproximadamente 50%). Esta situación genera que las empresas prefieran pagar las compensaciones a tener que invertir en mejorar la calidad. Esta puede ser otra de las razones del por qué las empresas no realizan inversiones para mejorar la calidad.

CONCLUSIONES

- 1. La Calidad de Suministro que las empresas distribuidoras han brindando a sus clientes desde que se aplicó la NTCSE ha mejorado sustancialmente; esto se puede observar en los resultados de los indicadores de calidad. Si bien esta mejora ha sido notoria en Lima, aun quedan algunas empresas de provincia a las cuales les falta mejorar algunos aspectos de seguridad en sus redes de distribución para así poder brindar una mejor calidad.
- 2. Los problemas de interrupciones que se presentan en provincia se deben a una inadecuada gestión de mantenimiento y/o falta de inversiones por parte de las concesionarias de distribución, tal es el caso de las empresas regionales (Hidrandina, Electrocentro, Enosa y Electronorte), las cuales tienen problemas para invertir debido a su baja rentabilidad y a que sus presupuestos son aprobados por el Fondo Nacional de Financiamiento de la Actividad Empresarial del Estado (FONAFE).
- 3. A pesar de los inconvenientes que cada una de las empresas distribuidoras pueda tener, se observa que a nivel nacional el porcentaje de clientes con mala

calidad de suministro se ha ido reduciendo. Sin embargo este porcentaje no siempre refleja el real estado de la calidad de suministro pues no toma en cuenta aquellas interrupciones originadas por fuerza mayor (o que siguen en trámite de calificación) y las interrupciones originadas por la actuación automática de los relevadores por mínima frecuencia.

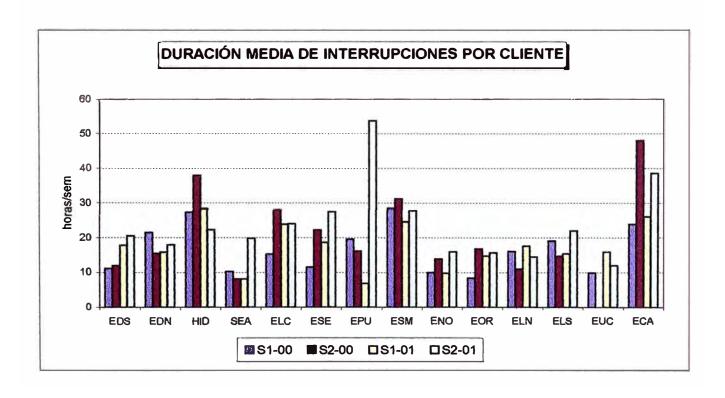
- 4. Las variaciones sufridas en las tolerancias de los indicadores de calidad si produjeron cambios en las compensaciones para los clientes de los sectores de distribución típicos 2, mayormente en las empresas de provincia, siendo más evidente en el primer semestre de la tercera etapa, debido al incremento del 70% en las tolerancias.
- 5. Otra de las razones que hace que las empresas no realicen inversiones para mejorar la calidad, es que en la modificación de la NTCSE de julio del 2001, se redujeron sustancialmente los pagos de las compensaciones por mala calidad de suministro (aproximadamente 50%). Esta situación generó que las empresas prefieran pagar las compensaciones a tener que invertir en mejorar la calidad.
- 6. Si bien montos compensados por las empresas distribuidoras han ido aumentando, aun son insignificantes en comparación a los montos facturados, por lo que aun es necesario ir mejorando la normativa con el propósito de hacer sentir a las empresas el riesgo que acarrea un servicio de mala calidad.



ANEXO Nº 1 INDICADORES DE CALIDAD DE SUMINISTRO

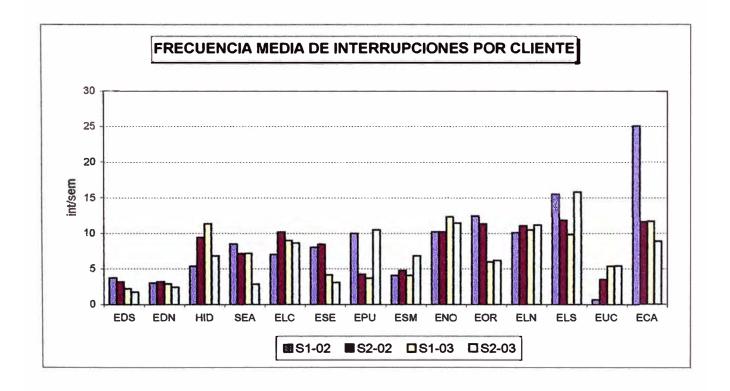
ANEXO N° 1.1

FRECUENCIA MEDIA DE INTERRUPCIONES POR CLIENTE SEGUNTA ETAPA DE APLICACIÓN DE LA NTCSE


Empmoo	CANADA CA	N	SA	(IFI	
Empresa			S2 - 2000	S1 - 2001	S2 - 2001
1 LUZ DEL SUR	(EDS)	8,25	6,79	6,58	5,26
2 EDELNOR	(EDN)	7,82	7,67	7,31	6,73
3 HIDRANDINA	(HID)	18,27	17,60	14,89	13,29
4 SEAL	(SEA)	14,19	21,36	13,11	11,69
5.~ ELECTRO CENTRO	(ELC)	9,68	12,69	9,44	17,04
6 ELECTRO SUR ESTE	(ESE)	15,89	7,64	14,30	24,19
7 ELECTRO PUNO	(EPU)	19,15	16,23	23,48	13,01
8 ELECTRO SUR MEDIO	(ESM)	13,27	8,80	6,70	5,79
9 ENOSA	(ENO)	13,82	14,68	14,88	14,70
10 ELECTRO ORIENTE	(EOR)	14,69	15,95	13,35	14,50
11 ELECTRO NORTE	(ELN)	21,62	16,93	14,82	16,09
12 ELECTRO SUR	(ELS)	17,43	12,33	18,50	14,85
13 ELECTRO UCAYALI	(EUC)	12,96		8,24	9,20
14 EDECAÑETE	(ECA)	7,08	7,97	9, 3 9	12,59

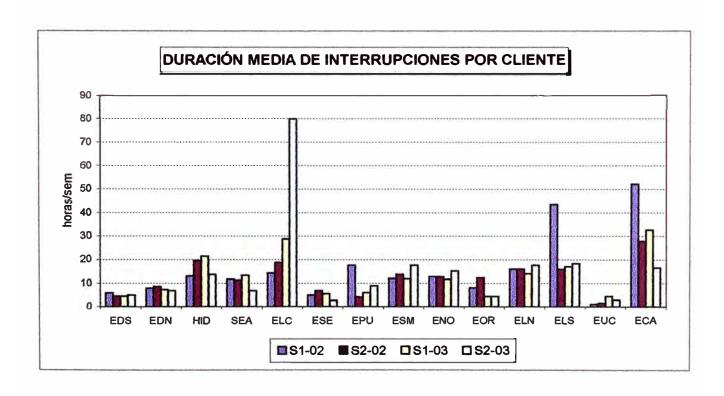
ANEXO Nº 1.2

DURACIÓN MEDIA DE INTERRUPCIONES POR CLIENTE SEGUNTA ETAPA DE APLICACIÓN DE LA NTCSE


Empess			SA	IDI	
Empresa		S1 - 2000	S2 - 2000	S1 - 2001	S2 - 2001
1 LUZ DEL SUR	(EDS)	11,21	12,01	17,89	20,53
2 EDELNOR	(EDN)	21,53	15,46	15,91	17,98
3 HIDRANDINA	(HID)	27,38	37,93	28,43	22,38
4 SEAL	(SEA)	10,33	8,09	8,09	19,82
5 ELECTRO CENTRO	(ELC)	15,32	28,00	23,98	24,15
6 ELECTRO SUR ESTE	(ESE)	11,57	22,30	18,73	27,55
7 ELECTRO PUNO	(EPU)	19,59	16,19	6,89	53,73
8 ELECTRO SUR MEDIO	(ESM)	28,48	31,20	24,67	27,82
9 ENOSA	(ENO)	10,03	13,85	9,84	16,05
10 ELECTRO ORIENTE	(EOR)	8,43	16,80	14,75	15,71
11 ELECTRO NORTE	(ELN)	16,12	11,01	17,69	14,56
12 ELECTRO SUR	(ELS)	19,16	14,74	15,43	22,07
13 ELECTRO UCAYALI	(EUC)	9,92		15,93	12,07
14 EDECAÑETE	(ECA)	23,96	48,05	26,13	38,55

ANEXO Nº 1.3

FRECUENCIA MEDIA DE INTERRUPCIONES POR CLIENTE TERCERA ETAPA DE APLICACIÓN DE LA NTCSE


Emmas			SA	lFI	
Empresa		S1 - 2002	S2 - 2002	S1 - 2003	S2 - 2003
1 LUZ DEL SUR	(EDS)	3,76	3,19	2,20	1,76
2 EDELNOR	(EDN)	3,04	3,21	2,90	2,44
3 HIDRANDINA	(HID)	5,40	9,39	11,30	6,85
4 SEAL	(SEA)	8,47	7,14	7,20	2,87
5 ELECTRO CENTRO	(ELC)	7,03	10,20	9,00	8,63
6 ELECTRO SUR ESTE	(ESE)	8,03	8,44	4,20	3,10
7 ELECTRO PUNO	(EPU)	9,98	4,27	3,70	10,50
8 ELECTRO SUR MEDIO	(ESM)	4,10	4,78	4,10	6,86
9 ENOSA	(ENO)	10,20	10,23	12,30	11,41
10 ELECTRO ORIENTE	(EOR)	12,41	11,31	6,00	6,18
11 ELECTRO NORTE	(ELN)	10,10	11,03	10,50	11,15
12 ELECTRO SUR	(ELS)	15,48	11,80	9,84	15,80
13 ELECTRO UCAYALI	(EUC)	0,68	3,54	5,40	5,42
14 EDECAÑETE	(ECA)	25,07	11,60	11,70	8,88
TOTAL		5,70	5,80	5,40	4,80

ANEXO N° 1.4

DURACIÓN MEDIA DE INTERRUPCIONES POR CLIENTE TERCERA ETAPA DE APLICACIÓN DE LA NTCSE

E		SAIDI			
Empresa		S1 - 2002	S2 - 2002	S1 - 2003	S2 - 2003
1 LUZ DEL SUR	(EDS)	5,91	4,48	4,40	4,88
2 EDELNOR	(EDN)	7,83	8,57	7,30	6,78
3 HIDRANDINA	(HID)	12,98	19,65	21,50	13,77
4 SEAL	(SEA)	11,74	11,28	13,40	6,74
5 ELECTRO CENTRO	(ELC)	14,35	18,84	28,80	79,97
6 ELECTRO SUR ESTE	(ESE)	4,89	6,75	5,50	2,71
7 ELECTRO PUNO	(EPU)	17,68	4,05	6,00	8,96
8 ELECTRO SUR MEDIO	(ESM)	12,03	13,76	12,00	17,72
9 ENOSA	(ENO)	12,81	12,80	11,70	15,22
10 ELECTRO ORIENTE	(EOR)	8,11	12,25	4,30	4,35
11 ELECTRO NORTE	(ELN)	16,03	16,11	14,10	17,69
12 ELECTRO SUR	(ELS)	43,44	15,92	17,13	18,37
13 ELECTRO UCAYALI	(EUC)	1,11	1,56	4,40	2,93
14 EDECAÑETE	(ECA)	52,13	27,91	32,70	16,68
TOTAL		10,60	10,20	10,40	12,10

ANEXO Nº 2

ANÁLISIS DE LA CALIDAD DE SUMINISTRO EN LA CIUDAD DE HUARAZ

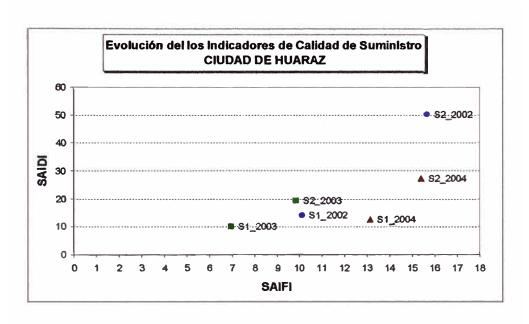
DIAGNÓSTICO DE LA MALA CALIDAD DE SUMINISTRO EN LA CIUDAD DE HUARAZ

La mala calidad de suministro en la ciudad de Huaraz está centrada en dos aspectos, el primero está relacionado a deficiencias en el sistema de transmisión, mientras que el segundo a deficiencias en el sistema de distribución. Estos dos aspectos se tratan de forma separada, pues obedecen a naturalezas distintas. Así tenemos que el sistema de transmisión Hidrandina ha puesto en operación una nueva línea en 66 kV que une Caraz y Huaraz, mientras que para el sistema de distribución se ha efectuado una serie de labores como el cambio de aisladores rotos en el sector de Picus – Chua y labores de limpieza de la servidumbre en el alimentador PIC281.

OSINERG está haciendo un seguimiento a la evolución de los indicadores de calidad de suministro en vista de la persistencia del problema, para ello se esta analizando la información de los reportes de interrupciones remitidos por la empresa distribuidora Hidrandina, correspondientes al periodo 2002, 2003 y 2004, observándose que los índices de frecuencia y duración de las interrupciones se mantienen elevados en comparación con los valores establecidos en la NTCSE, tal como se muestra en la tabla Nº 1.

Tabla Nº 1: Indicadores de calidad de suministro en Huaraz

Daviada	CAICI	CAIDI
Periodo	SAIFI	SAIDI
S1_2002	10.1	14.2
S2_2002	15.7	50.2
S1_2003	7.0	10.0
S2_2003	9.9	19.5
S1_2004	13.1	12.6
S2_2004	15.4	27.2


En el segundo semestre de 2004, si analizamos sólo las interrupciones programadas (por Expansión – Reforzamiento y Mantenimiento), representan la mayor duración en los eventos, así también se ha identificado la incidencia del motivo de la interrupción en los indicadores SAIFI y SAIDI, tal como se muestra en la tabla N° 2.

En las dos tablas se aprecia la misma tendencia, la mayor incidencia en el indicador de duración (SAIDI) se debe a la culminación de los trabajos programados de expansión y reforzamiento de redes, algunos de los cuales son denominados por la empresa como "Mantenimiento Preventivo".

Tabla N° 2: Incidencia del motivo de interrupción en los indicadores

Motivo de	2do. Semestre 2004									
Interrupciones	SAIFI	SAIDI	% SAIFI	% SAIDI						
Por Expansión y Reforzamiento	1.98	9.77	12.86%	35.95%						
Descarga Atmosférica	2.08	0.45	13.51%	1.66%						
De Generadora / Transmisora	3.19	3.04	20.71%	11.18%						
Por Mantenimiento Preventivo	1.04	7.7	6.75%	28.33%						
Otros	7.11	6.22	46.17%	22.88%						
Total	15.40	27.18	100.00%	100.00%						

Asimismo, para el mismo periodo Hidrandina atribuye la mayor incidencia en la frecuencia de las interrupciones (SAIFI) a la generadora Egenor y a la transmisora REP, pero también a fallas en sus propias instalaciones, causadas por la salida de servicio de su alimentador MT PIC284. En segundo lugar se tiene como causa a las descargas atmosféricas, seguido de interrupciones programadas de expansión y reforzamiento de redes.

Gráfica Nº 1: Diagrama de dispersión de los indicadores de calidad de suministro

En la gráfica Nº 1, se observa la evolución de los indicadores en estos tres años. Nótese que en 2003 el indicador SAIDI se redujo significativamente en comparación al año 2002.

Resumiendo, el alto índice de interrupciones en la localidad de Huaraz se debe básicamente a:

- En la frecuencia (N° de veces) a las constantes descargas atmosféricas en la zona del callejón de servicio, existiendo un deficiente sistema de puesta a tierra tanto en las líneas de transmisión secundaria como en los equipos en 66 kV de la celda de transformación de las subestaciones 66/13.8 kV y el sistema eléctrico en conjunto presenta una mala coordinación del aislamiento.
- Fallas por vandalismo (rotura de aisladores), interrupciones sin aviso para efectuar mantenimiento correctivo.

- No existe una adecuada coordinación de protección entre los equipos del sistema de transmisión secundaria de Hidrandina, tampoco con la subestación de transformación Huallanca de la generadora Egenor.
- Estas altas interrupciones se ven agudizados también por fallas en el SEIN,
 pese a que no están incluidas en el rechazo de carga.
- Se observa la falta de actividades complementarias de mantenimiento de carácter predictivo, tales como pruebas de resistencia de contactos, medición de tiempos de operación de interruptores, medición del aislamiento en equipos en CA y CC y pruebas en relés de protección y de esta manera incrementar la confiabilidad de sus instalaciones.

PROYECTOS QUE SOLUCIONARÍAN LOS PROBLEMAS

Conforme a la información remitida por la empresa Hidrandina, se tiene una lista de proyectos nuevos y continuación de algunos ya iniciados en transmisión y distribución, relacionados a la mejora de la calidad del suministro, las cuales se indican a continuación:

- Implementación CCO de Hidrandina I etapa, solucionaría el problema de control, supervisión y operación del sistema eléctrico. Específicamente los tiempos de ubicación de la falla y tiempos de reposición del servicio serían menores y el análisis de la información en tiempo real.
- Equipamiento de la subestación Huaraz (Picup), mejoraría la coordinación de la protección si se implementa el estudio de coordinación de la protección

que ya tienen culminado, en coordinación con la concesionaria de generación Egenor.

- Puestas a tierra de Líneas de Alta Tensión, disminuirían el problema de salidas de servicio por descargas atmosféricas sobre las Líneas de transmisión.
- Adquisición Equipos para Líneas Energizadas, ayudaría a disminuir el número de interrupciones debido a actividades de mantenimiento preventivo, predictivo y correctivo.
- Remodelación de los alimentadores PIC 281, PIC 282, PIC 283 y PIC 284
 con el fin de aislar las fallas en las zonas rurales de estos alimentadores.
- Remodelación de las redes primarias, secundarias y conexiones domiciliarias en los sectores Centenario, Patay, Nicrupampa, Zona Aluvionica, Centro Cívico, Alameda Grau y Barrio La Soledad de la ciudad de Huaraz, que mejorarían la confiabilidad de las redes de distribución.
- Igualmente, el proyecto de adquisición de equipos para subestaciones de distribución en la ciudad de Huaraz, mejorará la selectividad de la protección de redes con las instalaciones de transmisión.

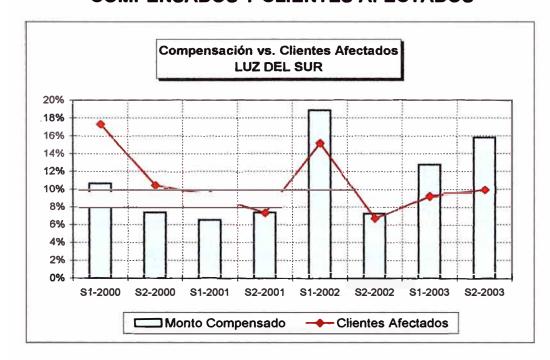
CONCLUSIONES

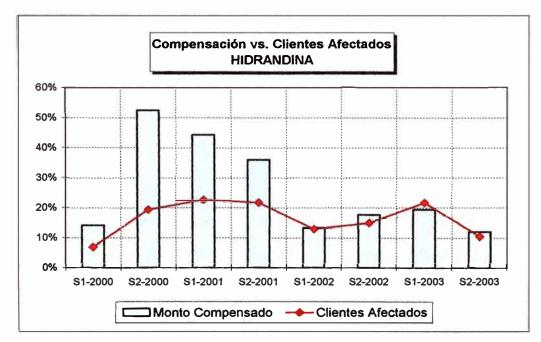
 La empresa Hidrandina está realizando un análisis de la problemática que incluya un diagnostico y ejecución de proyectos para solucionar o disminuir progresivamente los indicadores de interrupciones, seleccionando los proyectos con criterios técnico-económicos.

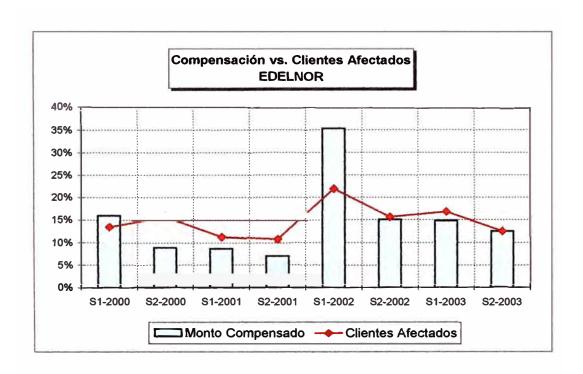
- El promedio de la duración de las interrupciones en la ciudad de Huaraz durante el año 2004, se ha debido mayormente a trabajos programados de remodelación en las redes de distribución; esto con la finalidad de mejorar el estado operativo de las redes a través del mantenimiento predictivo y preventivo de sus instalaciones.
- El promedio de la frecuencia de las interrupciones en la ciudad de Huaraz durante el año 2004, se ha debido a salidas de servicio en las instalaciones de transmisión y generación, por lo tanto es necesario implementar la línea Huallanca – Pierina de 138 kV, para mejorar el suministro en la ciudad de Huaraz.
- No existe una adecuada coordinación de la protección en el sistema de transmisión secundaria 66 kV del Callejón de Huaylas, asímismo falta la coordinación de la protección respectiva entre el sistema eléctrico de Hidrandina y de Egenor, por lo que se está coordinando una reunión conjunta entre Hidrandina, Egenor, COES y OSINERG con la finalidad de definir las acciones y procedimientos que cada entidad debe tomar, para resolver el tema.
- Es recomendable implementar en un mediano plazo los proyectos mencionados anteriormente, como solución definitiva para mejorar la calidad de suministro a la Ciudad de Huaraz y consecuentemente a las Ciudades del Callejón de Huaylas.

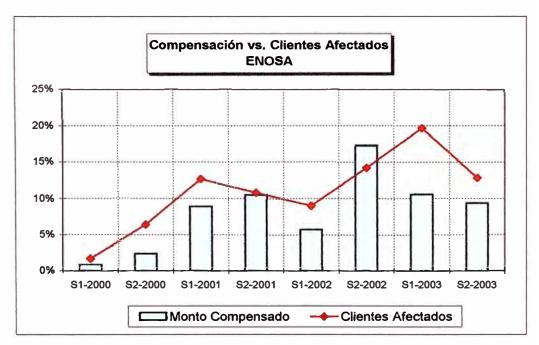
ANEXO N° 3

CLIENTES AFECTADOS CON MALA CALIDAD DE SUMINISTRO

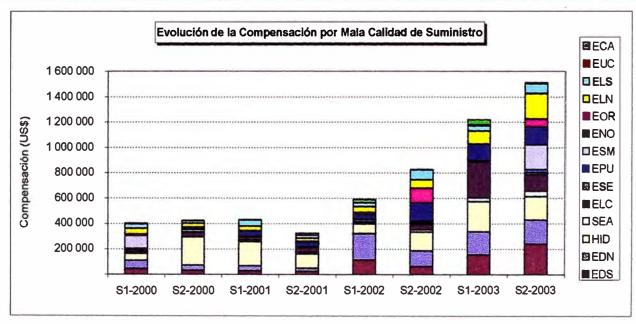

ANEXO Nº 3.1


PORCENTAJE DE LA POBLACIÓN CON MALA CALIDAD DE SUMINISTRO


	Emmana	11		Porcentaje de la Población con Mala Calidad Suministro									
	Empresa		S1-2000	S2-2000	S1-2001	S2-2001	S1-2002	S2-2002	S1-2003	S2-2003			
1	LUZ DEL SUR	EDS	21,3%	14,2%	11,3%	7,8%	13,1%	6,1%	6,8%	9,4%			
2	EDELNOR	EDN	12,8%	16,6%	10,6%	8,8%	14,8%	11,3%	9,7%	9,3%			
3	HIDRANDINA	HID	20,0%	61,7%	64,1%	54,2%	27,1%	33,7%	39,1%	24,2%			
4	SEAL	SEA	34,3%	17,4%	26,7%	17,3%	5,4%	14,5%	7,7%	12,3%			
5	ELECTRO CENTRO	ELC	17,2%	35,2%	20,4%	36,2%	15,5%	51,6%	33,6%	50,8%			
6	ELECTRO SUR ESTE	ESE	79,6%	11,6%	44,3%	19,1%	9,9%	32,2%	6,0%	19,6%			
7	ELECTRO PUNO	EPU	33,8%	53,6%	0,5%	9,7%	75,3%	13,4%	6,7%	56,3%			
8	ELECTRO SUR MEDIO	ESM	55,2%	24,8%	10,1%	11,5%	0,1%	7,8%	2,4%	47,6%			
9	ENOSA	ENO	8,3%	33,5%	59,2%	44,3%	38,6%	65,2%	72,2%	60,4%			
10	ELECTRO ORIENTE	EOR	41,7%	33,8%	26,7%	35,7%	55,8%	50,7%	0,5%	43,3%			
11	ELECTRO NORTE	ELN	61,0%	69,5%	61,0%	53,1%	27,4%	52,0%	34,8%	57,1%			
12	ELECTRO SUR	ELS	85,1%	76,5%	87,4%	61,5%	88,3%	75,7%	31,7%	68,8%			
13	ELECTRO UCAYALI	EUC	53,0%	36,7%	9,0%	16,6%	0,8%	10,9%	22,6%	19,4%			
14	EDECAÑETE	ECA	82,6%	74,0%	33,7%	44,8%	58,6%	15,0%	97,6%	2,2%			
	TOTAL		26,4%	29,2%	26,0%	22,9%	20,7%	22,1%	17,7%	22,9%			


ANEXO Nº 3.2

COMPARACIÓN DE LOS MONTOS COMPENSADOS Y CLIENTES AFECTADOS


ANEXO Nº 4

MONTOS COMPENSADOS POR MALA CALIDAD DE SUMINISTRO

ANEXO Nº 4.1

MONTO COMPENSADO POR MALA CALIDAD DE SUMINISTRO

	Emerce		Monto Compensado (US\$)										
	Empresa		S1-2000	S2-2000	S1-2001	S2-2001	S1-2002	S2-2002	S1-2003	S2-2003			
1	LUZ DEL SUR	EDS	42 886	31 492	28 369	23 748	111 227	60 033	155 200	239 103			
2	EDELNOR	EDN	64 761	38 200	37 639	22 755	208 560	124 756	180 303	188 862			
3	HIDRANDINA	HID	56 567	223 930	192 219	115 827	78 784	146 748	236 926	182 921			
4	SEAL	SEA	8 027	3 495	6 527	11 272	6 722	19 529	28 572	45 103			
5	ELECTRO CENTRO	ELC	9 560	30 158	9 655	34 289	8 681	40 121	281 638	127 479			
6	ELECTRO SUR ESTE	ESE	12 477	1 491	15 663	5 506	1 219	11 824	2 065	15 757			
7	ELECTRO PUNO	EPU	6 173	3 559	3 558	124	17 571	6 015	2 596	26 039			
8	ELECTRO SUR MEDIO	ESM	104 020	19 281	5 556	4 897	2 443	12 112	6 183	193 909			
9	ENO\$A	ENO	3 595	10 197	38 631	33 686	33 829	142 951	128 432	141 116			
10	ELECTRO ORIENTE	EOR	5 293	8 390	4 676	6 528	16 635	114 032	2 000	62 005			
11	ELECTRO NORTE	ELN	47 716	31 644	36 387	27 325	46 701	65 836	105 198	201 140			
12	ELECTRO SUR	ELS	33 577	18 712	49 779	21 955	31 741	78 484	41 316	77 544			
13	ELECTRO UCAYALI	EUC	1 222	3 435	782	592	46	3 632	7 101	8 877			
14	EDECAÑETE	ECA	6 729	2 828	4 389	13 498	26 302	1 832	40 091	2 184			
	TOTAL		402 602	426 813	433 830	322 003	590 459	827 903	1 217 621	1 512 038			

ANEXO Nº 4.2

Montos Reales Compensados por Empresa

Empres		Mon	to Compensa	do (miles US	5)
Empresa	2000	2000	2001	2002	2003
1 LUZ DEL SUR	(EDS)	74,4	52,1	171,3	394,3
2 EDELNOR	(EDN)	103,0	60,4	333,3	369,2
3 HIDRANDINA	(HID)	280,5	308,0	225,5	419,8
4 SEAL	(SEA)	11,5	17,8	26,3	73,7
5 ELECTRO CENTRO	(ELC)	39,7	43,9	48,8	409,1
6 ELECTRO SUR ESTE	(ESE)	14,0	21,2	13,0	17,8
7 ELECTRO PUNO	(EPU)	9,7	3,7	23,6	28,6
8 ELECTRO SUR MEDIO	(ESM)	123,3	10,5	14,6	200,1
9 ENOSA	(ENO)	13,8	72,3	176,8	269,5
10 ELECTRO ORIENTE	(EOR)	13,7	11,2	130,7	64,0
11 ELECTRO NORTE	(ELN)	79,4	63,7	112,5	306,3
12 ELECTRO SUR	(ELS)	52,3	71,7	110,2	118,9
13 ELECTRO UCAYALI	(EUC)	4,7	1,4	3,7	16,0
14 EDECAÑETE	(ECA)	9,6	17,9	28,1	42,3
TOTAL		829,4	755,8	1418,4	2729,7

Montos Compensados por Empresa considerando (e =0,05)

Empere		Monto C	ompensado (miles US\$) (e:	=0,05)
Empresa		2000	2001	2002	2003
1 LUZ DEL SUR	(EDS)	74,4	52,1	24,5	56,3
2 EDELNOR	(EDN)	103,0	60,4	47,6	52,7
3 HIDRANDINA	(HID)	280,5	308,0	32,2	60,0
4 SEAL	(SEA)	11,5	17,8	3,8	10,5
5 ELECTRO CENTRO	(ELC)	39,7	43,9	7,0	58,4
6 ELECTRO SUR ESTE	(ESE)	14,0	21,2	1,9	2,5
7 ELECTRO PUNO	(EPU)	9,7	3,7	3,4	4,1
8 ELECTRO SUR MEDIO	(ESM)	123,3	10,5	2,1	28,6
9 ENOSA	(ENO)	13,8	72,3	25,3	38,5
10 ELECTRO ORIENTE	(EOR)	13,7	11,2	18,7	9,1
11 ELECTRO NORTE	(ELN)	79,4	63,7	16,1	43,8
12 ELECTRO SUR	(ELS)	52,3	71,7	15,7	17,0
13 ELECTRO UCAYALI	(EUC)	4,7	1,4	0,5	2,3
14 EDECAÑETE	(ECA)	9,6	17,9	4,0	6,0
TOTAL		829,4	755,8	202,6	390,0

ANEXO N° 4.3

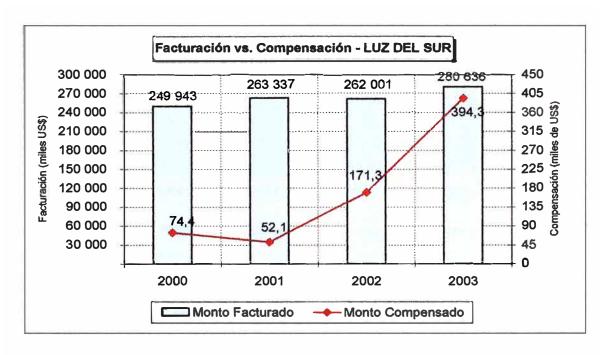
DETALLE DE LAS COMPENSACIONES POR ETAPA DE APLICACIÓN DE LA NTCSE

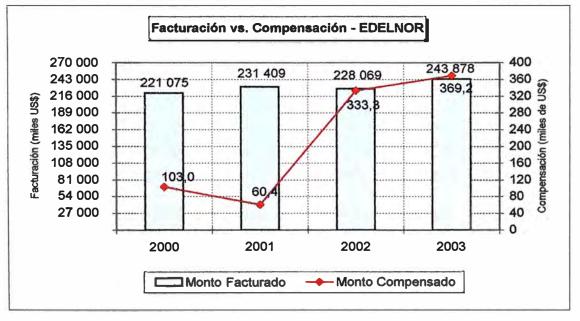
Empresa	Etapa	ERS (kWh)	di (h/sem)	N (int/sem)	D (h/sem)	N' (int/sem)	D' (h/sem)	e (US\$/kWh)	(N-N')/N'	(D-D')/D'	Е	NHS (h)	ENS (kWh)	Compensación (US\$)
Luz del Sur	Segunda	230398	10,15	4	10,2	6	10	0,05	0	0,015	1,015	4416	16 531 26,9	
Luz del Sul	Tercera	230398	10,15	4	10,2	6	10	0,35	0	0,015	1,015	4416	531	188,6
	Segunda	10218	19,67	3	15,7	8	13	0,05	0	0,205	1,205	4416	36	2,2
Hidrandina	Tercera - S1	10218	19,67	3	15,7	11	17	0,35	0	0,000	0,000	4416	36	0,0
niuranuma	Tercera - S2 y S3	10218	19,67	3	15,7	9	15	0,35	0	0,045	1,045	4416	36	13,3
	Tercera - S4	10218	19,67	3	15,7	8	13	0,35	0	0,205	1,205	4416	36	15,4

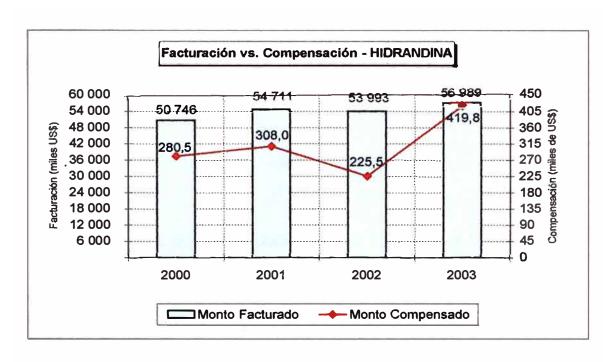
ANEXO N° 4.4

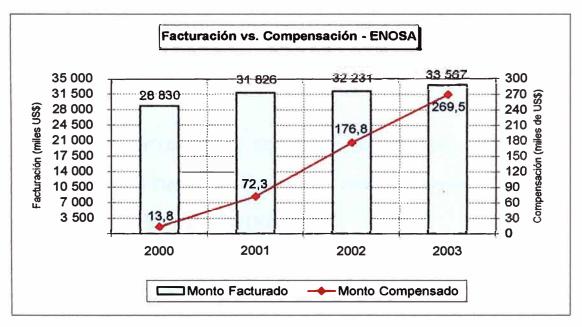
PORCENTAJE QUE CORRESPONDE LOS MONTOS COMPENSADOS RESPECTO A LOS MONTOS FACTURADOS POR LAS EMPRESAS DISTRIBUIDORAS (MILES DE US\$)

	Empresa -			2000			2001		墨克马里	2002		2003			
				Comp.	%	Fact.	Comp.	%	Fact.	Comp.	%	Fact	Comp.	%	
1	LUZ DEL SUR	(EDS)	249 943	74,4	0,030%	263 337	52,1	0,020%	262 001	171,3	0,065%	280 636	394,3	0,141%	
2	EDELNOR	(EDN)	221 075	103,0	0,047%	231 409	60,4	0,026%	228 069	333,3	0,146%	243 878	369,2	0,151%	
3	HIDRANDINA	(HID)	50 746	280,5	0,553%	54 711	308,0	0,563%	53 993	225,5	0,418%	56 989	419,8	0,737%	
4	SEAL	(SEA)	34 874	11,5	0,033%	33 941	17,8	0,052%	34 496	26,3	0,076%	36 789	73,7	0,200%	
5	ELECTRO CENTRO	(ELC)	30 845	39,7	0,129%	31 827	43,9	0,138%	31 446	48,8	0,155%	33 051	409,1	1,238%	
6	ELECTRO SUR ESTE	(ESE)	19 340	14,0	0,072%	18 264	21,2	0,116%	17 879	13,0	0,073%	19 270	17,8	0,092%	
7	ELECTRO PUNO	(EPU)	8 586	9,7	0,113%	8 127	3,7	0,045%	8 392	23,6	0,281%	8 938	28,6	0,320%	
8	ELECTRO SUR MEDIO	(ESM)	22 428	123,3	0,550%	22 763	10,5	0,046%	21 908	14,6	0,066%	23 631	200,1	0,847%	
9	ENOSA	(ENO)	28 830	13,8	0,048%	31 826	72,3	0,227%	32 231	176,8	0,548%	33 567	269,5	0,803%	
10	ELECTRO ORIENTE	(EOR)	21 233	13,7	0,064%	23 377	11,2	0,048%	24 707	130,7	0,529%	24 334	64,0	0,263%	
11	ELECTRO NORTE	(ELN)	22 983	79,4	0,345%	24 846	63,7	0,256%	24 753	112,5	0,455%	26 402	306,3	1,160%	
12	ELECTRO SUR	(ELS)	13 367	52,3	0,391%	12 011	71,7	0,597%	12 044	110,2	0,915%	12 891	118,9	0,922%	
13	ELECTRO UCAYALI	(EUC)	9 558	4,7	0,049%	10 623	1,4	0,013%	9 368	3,7	0,039%	8 850	16,0	0,181%	
14	EDECAÑETE	(ECA)	3 994	9,6	0,239%	4 256	17,9	0,420%	4 472	28,1	0,629%	4 558	42,3	0,928%	
	TOTAL		737 802	829,4	0,112%	771 318	755,8	0,098%	765 759	1418,4	0,185%	813 784	2729,7	0,335%	


Nota:


Corresponde a los montos facturados y compensados durante la **Segunda Etapa** de Aplicación de la NTCSE.


Corresponde a los montos facturados y compensados durante la **Tercera Etapa** de Aplicación de la NTCSE.


ANEXO Nº 4.5

COMPARACIÓN DE LOS MONTOS COMPENSADOS Y LOS MONTOS FACTURADOS

BIBLIOGRAFÍA

- Congreso de la Republica, "Ley de Concesiones Eléctricas, D.L. 25844", 1992.
- Ministerio de Energía y Minas, "Norma Técnica de Calidad de los Servicios Eléctricos, D.S. Nº 020-97-EM, D.S. Nº 009-99-EM, D.S. Nº 013-2000-EM, D.S. Nº 017-2000-EM y D.S. Nº 040-2001-EM", 1997.
- Dirección General de Electricidad del Ministerio de Energía y Minas,
 "Sectores Típicos de Distribución Período noviembre 2001 octubre 2005,
 R.D. Nº 005-2001-EM/DGE", 2001.
- 4. Organismo Supervisor de la Inversión en Energía (OSINERG), "Base Metodológica para la Aplicación de la Norma Técnica de Calidad de los Servicios Eléctricos, Resolución de Consejo Directivo Nº 15352-2001-OS/CD", 2001.

- Juan Rivier Abbad, "Calidad de Servicio, Regulación y Optimización de Inversiones", Tesis Doctoral Universidad Pontificia Comillas de Madrid – España, 1999.
- 6. Jorge García y Guillermo Layerenza, "Evaluación de los Limites Admisibles Establecidos en las Normativas para el Control de la Calidad del Servicio Técnico", Seminario Internacional sobre Planificación y Calidad en Sistemas de Distribución de Energía Eléctrica CIER Argentina, 2001.
- 7. Gerencia Adjunta de Regulación Tarifaria (OSINERG GART), "Información Comercial de las Empresas Eléctricas del Perú", 2000 al 2003.