Universidad Magionial de Ingenterla

FACULTAD DE INGENIERIA GEOLOGICA MINERA Y METALURGICA

"HERRAMIENTAS ESTADISTICAS BASICAS PARA EL MEJORAMIENTO DE LA CALIDAD EN LA MINA ISCAYCRUZ"

PARA OPTAR EL TITULO PROFESIONAL DE INGENIERO DE MINAS

GHERCY GUSTAVO AYALA ORIHUELA

LIMA-PERU JUNIO 2002

HERRAMIENTAS ESTADISTICAS BÁSICAS PARA EL MEJORAMIENTO DE LA CALIDAD EN LA MINA ISCAYCRUZ

DEDICATORIA

A mi MADRE quién con su esfuerzo, me brindó educación y a mi Padre que desde el mundo astral, me iluminó espiritualmente.

A mi Esposa e hijos

Ouienes me apoyaron e incentivaron en la realización de esta tésis de grado.

AGRADECIMIENTO

Quiero expresar mi agradecimiento a todos los que hicieron posible la realización de mi tesis, especialmente a EMISA, así mismo a los que me orientaron e impartieron sus consejos, sobre manera al área de Operaciones.

INDI E

DEDICATO	PRIA	2
AGRADECI	IMIENTO	3
INDICE		4
OBJETIVOS	S DE ESTUDIO	6
RESUMEN		7
CAPITULO	1 UBICACIÓN Y ACCESIBILIDAD	
1 1	UBICACIÓN	_8
1.1	ACCESO	_ ₁₀
1.3	ACCESO CLIMA Y VEGETACIÓN	10
CAPITULO	2 GEOLOGÍA	
2.1	GEOLOGIA GENERAL	11
2.2	GEOLOGIA LOCAL Y REGIONAL	 13
2.3	GEOLOGIA LOCAL Y REGIONAL GEOLOGIA ECONÓMICA Y CÁLCULO DE RESERVAS	14
2.4	GEOLOGIA DE MINAS	16
2.5	GEOLOGIA DE LA MASA ROCOSA	17
CAPITULO	DESCRIPCIÓN DEL METODO DE EXPLOTACIÓN. "SUBNIVELES DESCENDENTES BAJO RELLENO CONSOLIDADO"(S.D.B.R.C.	.)
3.1	ANTECEDENTES DEL METODO DE MINADO	_18
3.2	EL METODO "SUBNIVELES DESCENDENTES BAJO RELLENO CONSOLIDADO"	
3.2.1	1 DESCRIPCIÓN DEL METODO	20
3.2.2	2 VENTAJAS Y DESVENTAJAS DEL METODO	_24
3.3	DISEÑO DEL METODO DE EXPLOTACIÓN	
3.3.1	1 CONDICIONES GEOMECÁNICAS	25
3 4	DESCRIPCIÓN DEL CICLO DE OPERACIONES	
3.4.1	1 PERFORACIÓN	
3	3.4.1.1 PERFORACIÓN HORIZONTAL	_31
_	3.4.1.2 PERFORACIÓN VERTICAL	35
	3.4.1.3 TIPOS DE MALLAS	42
	2 VOLADURA 3.4.2.1 VOLADURA EN FRENTE	47
3	3.4.2.1 VOLADURA EN FRENTE	
3.4.3	3 LIMPIEZA MINERAL Y DESMONTE	_52
	4 RELLENO CEMENTADO	_54
	3.4.5.1 SOSTENIMIENTO SHOTCRETE	63
3	3.4.5.2 SOSTENIMIENTO CIMBRA	66
3	3.4.5.3 SOSTENIMIENTO CON PERNOS	68
3.4.6		
3.5	SERVICIOS AUXILIARES	
3.6	PERSONAL	
CAPITULO	0 4 HERRAMIENTAS ESTADISTICAS BÁSICAS PARA EL MEJORAMIENTO DE LA CALIDAD EN LA MINA	
4.1	EL PAPEL DE LOS MÉTODOS ESTADISTICOS EN LOS	
•••	PROCESOS DE PRODUCCIÓN EN MINA	_78
	DIAGRAMA PARETO	
4.2.	1 ¿QUÉ SON LOS DIAGRAMAS DE PARETO?	$-^{79}_{81}$
4.2.4	Z ZOONO LLADONAN DIAGNANIA DL FARETO!	01

	DIAGRAMAS DE CAUSA EFECTO. 3.1 ¿QUÉ SON LOS DIAGRAMAS CAUSA EFECTO?	85
4	3.2 TIPOS DE DIAGRAMAS CAUSA EFECTO 3.3 ¿PARA QUE SIRVE EL DIAGRAMA DE CAUSA EFECTO?	87 90
4.4	DIAGRAMA DE PARETO EN LAS OPERACIONES DEL CICLO DE MINADO	
4.	4.1 PERFORACIÓN.	
	4.4.1.1 PERFORACIÓN AVANCES	91 93
1		96
	4.2 VOLADURA4.3 LIMPIEZA MINERAL Y DESMONTE	96 98
	4.4 RELLENO CEMENTADO	102
4.4	4.5. SOSTENIMIENTO	107
4.5	DIAGRAMAS DE CAUSA EFECTO EN LAS OPERACIONES DEL CICLO DEL M	<i>MINADO</i>
4.	5.1 PERFORACIÓN	
	4.5.1.1 PERFORACIÓN TALADROS LARGOS	109 111
	4.5.1.2 FERFORACION AVANCE	
4.	5.2 RELLENO CEMENTADO	
4.:	5.3 SOSTENIMIENTO	116
	METODOLOGIA DE TRABAJO	
4.	6.1 DESARROLLO DEL ESTUDIO	118 118
	4.6.1.2 RESULTADOS	118
4.	6.2 ANÁLISIS DE RESULTADOS Y TENDENCIAS OBTENIDAS	122
CAPITUL	O 5 EFECTO DE LA UTILIZACIÓN DE LAS HERRAMIENTAS ESTADISTICAS EN LA REDUCCIÓN DE LOS COSTOS DE OPERACIÓN MINA	BASICAS
5.1	EFECTO EN EL COSTO DE PERFORACIÓN	125
5.2	EFECTO EN EL COSTO DE VOLADURA	127
5.3	EFECTO EN EL COSTO DE EXTRACCIÓN	128
5.4	EFECTO EN EL COSTO DE SOSTENIMIENTO	131
5.5	EFECTO EN EL COSTO DE SERVICIOS AUXILIARES	140
5.6	COMPARACIÓN DE COSTOS UNITARIOS DE LOS AÑOS 97, 98 Y 99	143
CAPITUL	LO 6 CONCLUSIONES Y RECOMENDACIONES	
6.1 6.2	CONCLUSIONESRECOMENDACIONES.	153 157
		137
BIBLIOG	RAFIA	
ANEXOS		
 	HOJAS DE REGISTRO DE LOCALIZACIÓN DEL DEFECTO VISTA ISOMETRICA DE PROFUNDIZACION LIMPE CENTRO	
,,]]]	VISTA ISOMETRICA DE PROFUNDIZACION LIMPE CENTRO VISTA ISOMETRICA DE PROYECTO PIQUE INCLINADO	
IV V	SECCION TIPICA RAMPA	
V VI	SECCION TIPICA CRUCERO SECCION LONGITUDINAL MINA LIMPE CENTRO	
VII	FLUJOS DE VENTILACION	

OBJETIVO

- Demostrar que los métodos estadísticos aplicados a la mineria, proporcionan un medio eficaz para renovar e implantar una nueva tecnología y que a la vez nos va a permitir realizar un control estricto en el proceso de producción, de cada una de las Operaciones Unitarias; que se viene realizando en el ciclo de minado de la Mina Iscaycruz.
- Aplicar la tecnología de los métodos estadísticos elementales tomando como base los diagramas de Pareto y Causa - Efecto, en todo el proceso productivo de la mina, que va a minimizar los errores, valorando la calidad y mejorando continuamente su eficiencia y producción.
- Utilizar un cambio organizacional, para maximizar la eficiencia de los equipos mineros, diseñando e implantando un plan estratégico de comprobación y acciones correctivas, eliminando las fallas, desperfectos y averías, usando para su logro los métodos estadísticos como un plan pre-establecido.
- Controlar la calidad en el proceso del ciclo de minado, mediante diagramas y gráficos de barras especializados, que puedan ser empleados para mostrar la frecuencia relativa de diferentes hechos tales como paradas de equipos voluntaria e involuntarias y que permitan un incremento en sus costos, logrando con las herramientas estadísticas un mejoramiento de la calidad y a su vez alcanzar un abaratamiento significativo en sus costos de producción
- El presente trabajo de investigación, ha realizado el suscrito con la finalidad de optar el Título Profesional de Ingeniero de Minas.

RESUMEN

La actividad minera se desenvuelve en un marco económico muy especial, con costos de producción creciente, pero cuyos ingresos están sujetos a los precios internacionales de los metales, que escapan a su posibilidad de control. En el momento actual con precios bastantes deprimildos la minería tiene que seguir enfrentando al crecimiento de los costos operativos, siendo una de sus alternativas de compensación, el incremento de la productividad, para lo cual es importante y necesaria una conjunción de esfuerzos en los campos tecnológicos, administrativos y humanos

La mina Iscaycruz no escapa de esta problemática, adoleciendo de una serie de problemas que ha hecho dificil su mejora y optimización, entre cuyas causas podemos mencionar la carencia de evaluación de las problemas que originan determinados resultados, falta de capacitación en nuevas tecnologías compatibles con el desarrollo actual, personal con métodos y sistemas de trabajo reacios al cambio por la ley del menor esfuerzo, que redundan negativamente en la productividad, en tal sentido el suscrito ha visto por conveniente investigar y plantear la aplicación de las HERRAMIENTAS ESTADISTICAS BASICAS PARA EL MEJORAMIENTO DE LA CALIDAD DE LA MINA IZCAYCRUZ, y que involucra una serie de aspectos en cada una de las operaciones unitarias del ciclo de minado, con el uso de diagramas tanto de Pareto como de Causa y Efecto; nos logran explicar la manera como diversos factores afectan el proceso productivo, ocasionan pérmidas y poder controlarlos para mejorar su calidad, obtener altas eficiencias y ser competitivos a todo nivel

Para su implementación y aplicación de los métodos estadísticos elementales; se tuvo que realizar una capacitación y entrenamiento de todo el personal de la mina a todo nivel, a fin de contar con elementos compatibles bien calificados y conscientes de sus responsabilidades, en base a una política de mejora continua y desarrollo sostenible, dando como resultado, un avance y optimización de la obtención de las metas propuestas, incrementos en la productividad, reducción de costos unitarios y un mejoramiento en general de la calidad de la mina Iscaycruz.

CAPITULO 1 UBICACIÓN Y ACCESIBILIDAD

1.1 UBICACIÓN

Iscaycruz está situada en el flanco Oeste de la Cordillera Occidental de los Andes, a 300 Km. al Norte de Lima y a una altura comprendida entre los 4500 y 4900 m.s.n.m.

Pertenece al distrito de Pachangara, provincia de Oyón, departamento de Lima.

Latitud Sur 10° 45'

Longitud Oeste 78° 44'

La empresa minera Iscaycruz inició sus operaciones en Julio de 1996, con una capacidad de producción de 1000 TM/día, explorando a cielo abierto algunos afloramientos mineralizados correspondientes al cuerpo Olga y la zona de Tinyag y por métodos subterráneos los cuerpos Estela y Olga en la zona de Limpe Centro.

Actualmente Iscaycruz viene operando a 1450 Tm/día significando un incremento del 45% respecto de lo inicialmente proyectado, lo cual ha conllevado especialmente a una inversión adicional en equipos para mina y replanteo del sistema de exploración subterτánea originalmente proyectada.

FIGURA Nº 1.1 Ubicación Geográfica de la Mina Iscaycruz

1.2 ACCESO

Hay dos vías de acceso:

Desde Lima por la carretera vía Chancay – Sayán – Oyón – Pamapahuay, con un recorrido de 260 Km. (aprox. 8 horas).

La otra ruta es por San Mateo - La Oroya - Cerro de Pasco - Oyón - Pampahuay.

El acceso normalmente se realiza por carretera asfaltada hacia el norte (por la Panamericana Norte) hasta llegar a la ciudad de Huacho y luego por carretera afirmada hacia el este por la vía Sayán-Churín-Oyón-Iscaycruz, totalizando 260 Km. de recorrido.

1.3 CLIMA Y VEGETACIÓN

Clima:

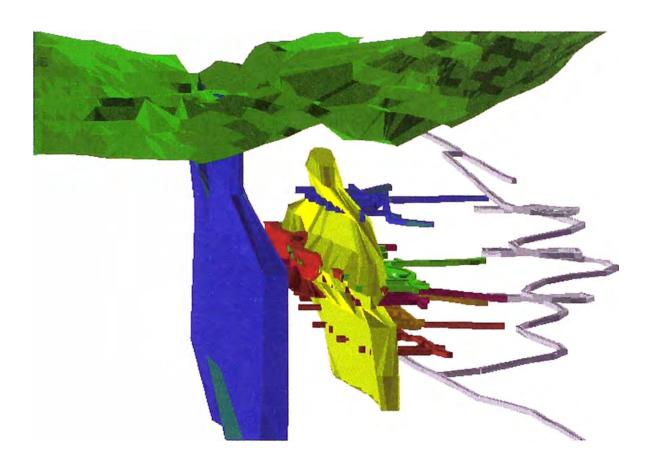
La variación de temperatura durante el día es conspicua. Este pasa los 20°C por las mañanas y llega por debajo de los –10°C por las noches. El clima durante el año esta controlado por el viento estacional de la zona Amazónica y esta dividida en dos estaciones, estas son de clima seco de Mayo a Setiembre y la estación lluviosa de octubre a Abril.

Vegetación:

Los tipos de plantas en esta área están limitadas al clima seco y frío. Un tipo de cactus, tales como Huacro, Chuco y Viscayna, que se encuentran de los 3000 m. a los 4000 m sobre el nivel del mar. Solo hierba alpina especial, tales como Ichu o Paja, Piriula y Chapcha, que crecen en las montañas localizadas sobre los 4000 m.

CAPITULO 2 GEOLOGÍA

2.1 GEOLOGIA GENERAL


Iscaycruz es uno de los yacimientos de un importante grupo de yacimientos de metales base en los Andes del Centro del Perú. Se explota el Zn, Cu, Pb, Ag. La mineralización se encuentra en cuerpos, siendo los principales Estela y Olga de la zona de Limpe Centro.

La mineralización ocurre en la formación Santa que consta de una secuencia de calizas, lutitas, margas y dolomitas. Al este se presenta la formación Chimú conformada principalmente por cuarcitas y secundariamente por areniscas con intercalación de lutitas

FIGURA 2.1 Vista Isometrica de la Mina Limpe Centro

EMPRESA MINERA ISCAYCRUZ S.A. LIMPE CENTRO

En Amarillo el Cuerpo Estela-Zinc En Rojo el Cuerpo Estela-Cobre En Azul el Cuerpo Olga En Verde la Topografia Superficial Vista Mirando al Norte.

FIGURA 2.2 Vista Isometrica de los Cuerpos Estela y Olga

2.2 GEOLOGIA LOCAL Y REGIONAL

El área de Iscaycruz se encuentra situada en el flanco Oeste de la Cordillera Occidental de los Andes.

Estructuralmente está situada en la zona de pliegues y sobreescurrimientos, siendo el anticlinal fallado el que está directamente vinculado con la mineralización, la falla del anticlinal referido pasa entre los cuerpos estela y Olga, creando una gran perturbación de la masa rocosa.

La zona se encuentra emplazada en la Cuenca del Cretáceo. Representada principalmente por rocas sedimentarias, en cuya parte inferior tenemos areniscas silíceas y lutitas, y en la parte superior tenemos calizas, dolomitas y lutitas.

Estas rocas sedimentarias pertenecen a las formaciones Oyòn, Chimu, Santa, Carhuaz y Farrat, estas cuatro últimas pertenecen al Grupo Goyllarisquizga, luego continua una secuencia calcárea de las formaciones le intuyen rocas ígneas de composición tonalítica, dacítica y pórfidos graníticos, algunos derrames volcánicos de edad terciaria de la formación Clipuy han cubierto a estas formaciones discordantemente.

Al Oeste se presenta la formación Carhuaz, conformada por areniscas, margas y delgados horizontes calcáreos. El área se ubica en una zona de pliegues sobre escurrimientos, siendo el anticlinal fallado el que está directamente vinculado con el depósito de mineral, la falla del anticlinal referido pasa entre los cuerpos Estela y Olga, creando una gran perturbación en la masa rocosa.

2.3 GEOLOGIA ECONÔMICA Y CÁLCULO DE RESERVAS

Las características de la mena de zinc son de alta ley forma un cuerpo principal en el área de Limpe, esta compuesto principalmente de esfalerita, mientras que los minerales de ganga son, de acuerdo al análisis de difracción de rayos-x, principalmente el cuarzo asociado con clorita y siderita.

Su característica megascopica de la mena es una brechación bien notable. La esfalerita he reemplazado las rocas encajonantes brechadas. También, la esfalerita de otra calidad es encontrada que ha precipitado en los espacios en la masa mineralizada brechada que ha precipitado en los espacios en la masa mineralizada brechada, asociado con pirita y galena.

Tres calidades de esfalerita son reconocidas en la mena.

Esfalerita gris oscura verdosa: incluye calcopirita muy fina y que presenta una estructura de exsolución. Compuesta casi solamente de esfalerita y de leyes que alcanzan de 40% hasta 50% de zinc.

Esfalerita marrón oscura: la esfalerita es controlada incluyendo puntos y agregados de pirita y galena. Las leyes alcanzan de 30% hasta 40% de zinc.

Esfalerita marrón pálida amarillenta: Este tipo de esfalerita es usualmente pálida y transparente en color, y se estima que contiene menos contenido de Fe. La esfalerita es reconocida en finas suturas y diseminaciones.

Las reservas minerales en Limpe Centro suman 2 567 000 tm, con 19,21% Zn; 2,34% Pb; 1,92 oz/Tm Ag. y 0,46% Cu, el cuadro siguiente muestra las reservas de cada unidad y el porcentaje que aporta cada mineral.

	Limpe Centro	Tinyag	Chupa	Total
Toneladas	2 567 058	536 128	350 000	3 453 186
%Zn	19,21	10,14	11,64	17,03
%Pb	2,34	0,04	0,01	1,75
Ag(oz/Ton)	1,92	0,16	0,25	1,46
%Cu	0,46	0,44	0,22	0,43

Tabla 2.1 Reservas de Mineral Concesión Iscaycruz

En Tinyag se ha concluido con la explotación de tajo abierto y se encuentra desarrollando una rampa negativa con fines de exploración para reconocer Tinyag en la profundidad.

Actualmente sean encontrado reservas probadas de 536 128 Tm con 10,14% de Zn.

Iscaycruz ha implementado un programa para evaluación de reservas y diseño de minado el cual viene dando resultados muy favorables para el manejo de información de taladros diamantinos, muestreos, geomecánica y topografía.

La correcta interpretación de toda esta información resulta en una herramienta importante para la toma de decisiones en el planeamiento de mina, exploración y explotación

2.4 GEOLOGIA DE MINAS

Al Oeste del sistema de plegamiento Pico yanqui se tiene el sinclinal de Rapaz, el cual tiene una persistencia continua, modelado por la secuencia calcárea del cretáceo. Fallas longitudinales de tipo normal se ubican en los horizontales menos competentes, principalmente en la formación Santa. También se ha reconocido un sistema de fallas NE – SW al Norte de Limpe Centro y en la bocamina Sur, nivel de extracción.

Se tiene un sistema de fallas post mineral de extensión regional. En el área es reconocido en la bocamina del nivel 4690, se emplaza a lo largo de la formación Santa, se bifurca al ingresar de Norte a Sur al yacimiento principal (Limpe Centro), uno al piso y el otro al techo estratigráfico. La profundidad afecta a la zona mineralizada, formando cuerpos de brechas mineralizados.

También se tienen fallas transversales a los cuerpos mineralizados (Estela Olga), de rumbo N 60° - 70° W y con buzamientos de 55° a 65° SW. Algunas de estas fallas controlan la mineralización indistintamente a uno u otro de los cuerpos.

La mineralización corresponde al tipo reemplazamiento metasomático conformado por minerales de Zn, Pb, Ag y Cu.

La mineralización reconocida consiste de esfalerita, galena, calcopirita, marmatita y algo de argentita.

La ganga está constituida por pirita, covelita, siderita, calcita, cuarzo, especularita y pirrotita.

2.5 GEOLOGIA DE LA MASA ROCOSA

Se observan las siguientes estructuras geológicas: fallas de direcciones WNW-ESE y NNE_SSE, ambas de las cuales son oblicuas al eje de plegamiento, la fractura de tensión de ENE-WSW, la cual muestra ángulos recto al eje de plegamientos, y la falla de sobre escurrimiento y las fracturas de los estratos paralelas al eje de plegamiento son observadas en esta área.

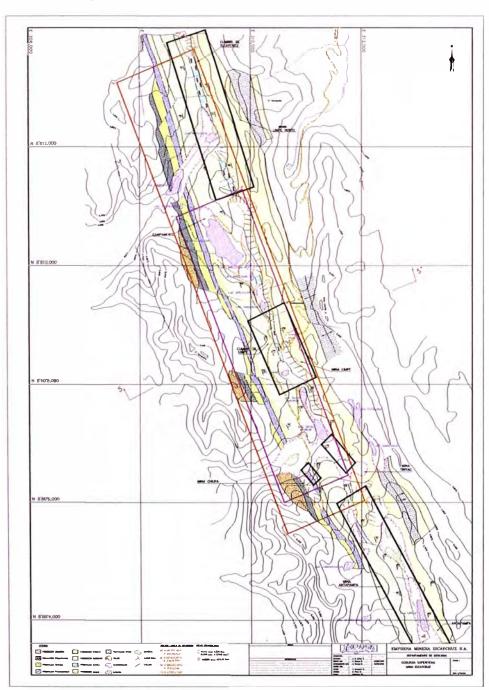


Fig. 2.3. Masa Rocosa Zona Iscaycruz

CAPITULO 3 DESCRIPCIÓN DEL METODO DE EXPLOTACIÓN. "SUBNIVELES DESCENDENTES BAJO RELLENO CONSOLIDADO" (S.D.B.R.C.)

3.1 ANTECEDENTES DEL METODO DE MINADO

En las diferentes etapas de los estudios de preinversión se seleccionaron y diseñaron métodos de explotación de corte y relleno convencional, tanto ascendente como descendente. Inicialmente se estableció el uso del relleno hidráulico con relaves (cementado para el caso descendente), descartándose su aplicación por problemas de inestabilidad en la roca ante la presencia de agua del relleno, y por problemas de inestabilidad química de la pirita contenida en el relave que al reaccionar con el cemento origina un fenómeno de expansión que desintegra el elemento ligante. La necesidad de contar con un relleno de bajo contenido de agua y adecuada resistencia condujo a investigar nuevas posibilidades de relleno, estableciéndose el uso del relleno consolidado, viabilizando la aplicación de los métodos señalados.

Paralelo al inicio de la preparación de la infraestructura principal de la mina, se hizo una evaluación detallada de los métodos propuestos: corte y relleno ascendente convencional, corte y relleno ascendente tipo "drift & fill", y corte y relleno descendente convencional.

El corte y relleno ascendente convencional planteaba situaciones de riesgo dada la heterogeneidad de calidades de masa rocosa y de la orientación desfavorable de las excavaciones consideradas en el diseño, lo cual obligaba a utilizar rigurosos sistemas de sostenimiento en tajeos que mermaban la productividad y seguridad de la operación.

El corte y relleno ascendente tipo "drift & fill" no mejoraba la situación anterior, con el agravante de tener excesivos tajeos abiertos que no garantizaban las cuotas de producción. La posibilidad de encontrar terreno perturbado en los cortes superiores por inadecuado contacto del relleno con el techo significaba un riesgo adicional en la aplicación del método.

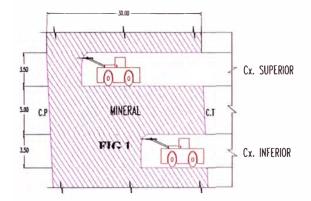
El corte y relleno descendente convencional brindaba mejores posibilidades de aplicación en cuanto a las condiciones de estabilidad de las excavaciones y seguridad en la operación, sin embargo, es por todos conocido que este método es muy costoso y de baja productividad.

Ante esta situación, directivos de EMISA realizan visitas técnicas a las minas Carlín y Escay Creek en U.S.A. y Lupin en Canadá, trayendo las ideas iniciales sobre el nuevo método de explotación:

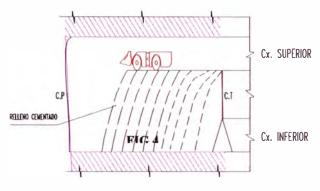
"Subniveles Descendentes Bajo Relleno Consolidado" o SRUCF (Sublevel Retreat Under Consolidated Fill). EMISA investiga y evalúa las posibilidades de este método basado en las condiciones naturales del yacimiento Iscaycruz, y toma la decisión de implementarlo por las mejores condiciones de seguridad y eficiencia en la operación frente a los métodos planteados anteriormente.

3.2 EL METODO "SUBNIVELES DESCENDENTES BAJO RELLENO CONSOLIDADO

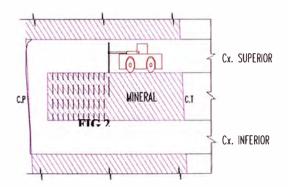
El principio de utilización de este nuevo método de minado debía adecuarse a las condiciones naturales encontradas en el yacimiento y a los recursos disponibles. Los altos valores de Zn y las condiciones desfavorables de la masa rocosa determinaron la necesidad de que el método seleccionado permitiera asegurar una alta recuperación del yacimiento con condiciones de seguridad óptimas para el personal y equipo, además de asegurar una mínima dilución, que haría económicamente viable el método a aplicarse. En tal sentido, las investigaciones y evaluaciones realizadas dieron como resultado la selección del método SDBRC.

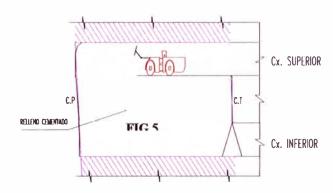

3.2.1 DESCRIPCIÓN DEL METODO

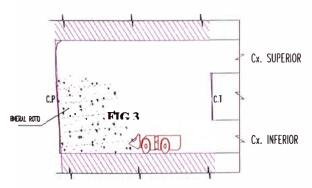
Las figura 3.1, detallan los esquemas y secuencias típicas del minado, que en forma resumida consiste en lo siguiente:


- Desde la rampa de acceso se construye en cada nivel un crucero de 3.5 m x 3.5 m, a partir del cual se desarrolla la galería principal paralela al cuerpo mineralizado en caja techo.
- Desde las galerías de nivel, se elaboran cruceros de 3.5x3.5 m en dirección perpendicular al rumbo de los cuerpos, un crucero superior y uno inferior, espaciados verticalmente 12 m de techo a piso, correspondiente a la altura del tajeo.
- El puente de 5 m de altura y 3.5 m de ancho que queda entre crucero y crucero, es arrancado utilizando taladros largos verticales. La rotura, extracción y relleno son ejecutados en retirada con longitudes variables de tajeos de 10 m a 30 m. El crucero superior se convierte en la corona del tajeo por lo que previo a la rotura vertical se aplica un sostenimiento adecuado.
- ➢ El mineral arrancado es extraído del tajeo por el crucero inferior mediante scoops a control remoto.
- El relleno cementado es vaciado desde el crucero superior colocando un dique en el crucero inferior. Cuando el relleno alcanza el nivel del crucero superior, este es

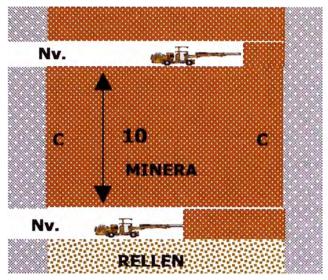
empujado con un "topeador" o "rammer jammer", de tal manera que el relleno logre un buen contacto con el techo del tajeo (ver figura 3.1).


- En una secuencia adecuada, se extraen tajeos ubicados entre los mismos niveles, llegando momentos en que se tienen tajeos con una pared autoestable en relleno y la otra en mineral o ambas paredes autoestables en relleno cementado.
- La explotación procede descendentemente en forma similar bajo un techo de relleno cementado.


a) Explotación horizontal, crucero superior e inferior.


d) Relleno del tajeo con agregado + cemento + agua.

b) Explotación vertical,perforación por taladros largos para voladura contralada.


e) Topeo de relleno al techo con equipa de rommer jammer.

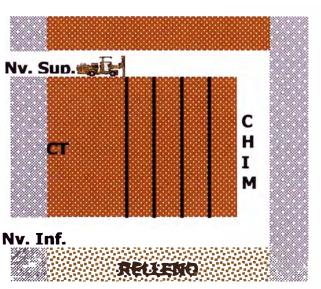
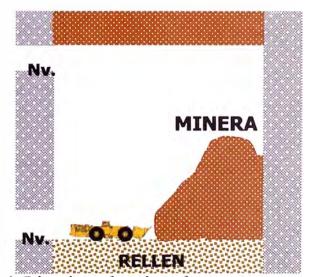

 c) Limpieza del mineral roto, mediante scoop eléctrico a control remoto.

Fig 3.1 METODO SUBNIVELES DESCENDENTES
BAJO RELLENO CONSOLIDADO
SECCION TIPICA ANTIGUA


SECUENCIA DE MINADO ACTUAL LIMPE CENTRO


1. Preparcion de Cruceros

3. Perforacion y Voladura Tajeo

2. Perforacion v Voladura

4. Limpieza de mineral

3.2.2 VENTAJAS Y DESVENTAJAS DEL METODO

Ventajas:

- Se trabaja bajo techo seguro (bajo relleno consolidado), evitándose así el trabajo continuo de sostenimiento,
- > Se pueden mantener condiciones adecuadas de estabilidad bajo orientaciones favorables de las excavaciones para todos los tajeos,
- Los cortes por subniveles permiten lograr mayor productividad,
- ➤ La flexibilidad del método permite variar las dimensiones de los tajeos descendentes, según la calidad de la masa rocosa y el comportamiento estructural del relleno colocado como techo de estas nuevas excavaciones,
- Se asegura prácticamente un 100% de recuperación y una dilución promedia de 5
 % por la sobrerotura de las cajas techo y piso.

Desventajas:

- ➤ La preparación de cada nivel de producción implica un desarrollo considerablemente alto de labores en desmonte previos a la explotación,
- > Se debe llevar un control estricto y continuo de las mezclas en la preparación del relleno y su aplicación in situ, de no ser así, los problemas de estabilidad podrían tomarse serios,
- > El costo del relleno consolidado es mayor respecto al relleno hidráulico cementado y convencional.

3.3 DISEÑO DEL METODO DE EXPLOTACIÓN

3.3.1 CONDICIONES GEOMECÁNICAS

Desde el punto de vista del diseño fueron determinantes las condiciones geomecánicas desfavorables de la masa rocosa del yacimiento. En tal sentido se implementó y se mantiene un programa de investigaciones geomecánicas para apoyar al planeamiento de la mina. Este programa comprende dos etapas: la primera, de acopio y procesamiento de la información básica; y la segunda, de aplicaciones al minado utilizando la información básica.

La primera es una actividad rutinaria en la que se realizan:

- mapeos geomecánicos,
- caracterización de la masa rocosa según normas sugeridas por ISRM (International Society for Rock Mechanics),
- determinación de las propiedades físicas y mecánicas de las rocas, en laboratorio in-situ, según normas ISRM,
- clasificación geomecánica de la masa rocosa, y
- zonificación geomecánica de la mina.

Las aplicaciones al minado comprenden:

- definición de las orientaciones preferenciales de las excavaciones para mejorar las condiciones de estabilidad,
- definición de las aberturas máximas y tiempos de autosostenimiento,
- evaluación de la estabilidad controlada por discontinuidades estructurales,
- establecimiento de los esquemas y secuencias de avance de las excavaciones,
- determinación de los requerimientos de sostenimiento de los diferentes tipos de excavaciones
- especificaciones de las resistencias requeridas por el relleno,
- implementar programas de monitoreo de la estabilidad de excavaciones asociadas al minado del yacimiento.

En el trabajo que se realiza, hay una interacción entre el diseño, el planeamiento mina y la geomecánica, esta última evalúa geomecánicamente lo que se pretende hacer con la mina para lograr condiciones de estabilidad adecuadas tanto localmente como globalmente. El apoyo geomecánico al diseño y planeamiento de la mina se realiza mediante la utilización de técnicas sencillas que la mecánica de rocas pone a nuestra disposición, como también se utilizan técnicas de mayor precisión como el modelamiento numérico con el software "Plastic Hybrid Analysis of Stress for Estimation of Support" (PHASES), con el cual se analizan diferentes situaciones de minado para luego ponerlas en práctica.

Para el diseño del método de explotación se establecieron los siguientes criterios geomecánicos:

- Dadas las características de heterogeneidad en la calidad de la masa rocosa, el diseño del método de explotación estaría condicionado por las rocas mineralizadas de menor calidad, por que es aquí donde se presentarían los mayores problemas de estabilidad. En las rocas de mejor calidad el comportamiento estructural deseado estaría garantizado.
- La dirección de avance preferencial de los tajeos seria perpendicular a la estratificación o rumbo de los cuerpos mineralizados, por las siguientes razones:
 - Se lograría mejor estabilidad de paredes rocosas.
 - ◆ Se evitaría o minimizaría el sostenimiento de cajas, debido a que las áreas expuestas serían menores.
 - Se lograrían mejores condiciones de estabilidad global del sistema (caja techo, mineral y caja piso), por actuar el relleno cementado a manera de pilares estabilizantes.
 - Se lograrían mejores resultados en la voladura, al estar los estratos paralelos a la cara libre.
- Feniendo en cuenta el abierto máximo sin sostenimiento y el tiempo de autosostenimiento estable de las rocas mineralizadas de menor calidad (brechas), se determiné que el ancho mínimo de los tajeos sería de 4 m, con tiempos de autosostenimiento estable de aproximadamente dos semanas. Sin embargo, en rocas extremadamente malas sería necesario aplicar como sostenimiento en tajeos concreto lanzado (shotcrete).

- Considerando el comportamiento de las rocas de menor calidad y la autoestabilidad de las paredes del relleno se estableció que 12 m era una altura razonable para los tajeos.
- La velocidad de minado (menor tiempo de exposición de las aberturas), debía constituirse en una variable del control de la estabilidad.
- No era recomendable extraer los tajeos a todo el ancho de los cuerpos mineralizados debido a que se creaban condiciones adversas de esfuerzos en la interfase mineral brechoso-mineral masivo. Sería más ventajoso extraer en forma secuencial primero la brecha, luego, el masivo; una vez rellenada la brecha se extraería el mineral masivo.
- Al modelar las diferentes situaciones de minado, resultaba que no habrían mayores problemas de estabilidad en la roca de la caja techo del cuerpo Estela. Las perturbaciones debidas a los esfuerzos serian mínimas en el paquete incompetente de margas.
- Dada la pobre calidad de la brecha estéril (caballo), este sería perturbado considerablemente por el minado de los cuerpos Estela y Olga, esta perturbación sería menor si el minado secuencial empezaba en el cuerpo Estela que se encuentra al techo del cuerpo Olga. Luego era recomendable primero minar Estela y después Olga, esta última ubicada en el piso, donde el terreno estaría menos perturbado.
- No era recomendable extraer los tajeos en toda la longitud de la brecha mineralizada, por que las áreas expuestas (paredes de los tajeos) serían grandes, causando problemas de inestabilidad. Sería más conveniente extraer la brecha mineralizada en longitudes de tajeos menores, habiéndose determinado que para iniciar la operación minera esta longitud seria de 10 m.
- ➤ En los cortes descendentes, era más ventajoso desde el punto de vista de la estabilidad extraer los tajeos comenzando en la parte central de los bloques de relleno cementado, que comenzar desde los extremos de los mismos.

Se establecieron los niveles de sostenimiento según calidades de la masa rocosa y por tipos de excavaciones (labores de preparación y tajeos).

En cuanto a los requerimientos de resistencia del relleno, se estableció que con una resistencia compresiva uniaxial de 2 MPa a 7 días y 5 MPa a 14 días se aseguraba la

autoestabilidad de las paredes del relleno en los tajeos y la estabilidad del techo de las labores descendentes. Además, una premisa importante era que el relleno contenga un mínimo de agua debido a las condiciones geomecánicas.

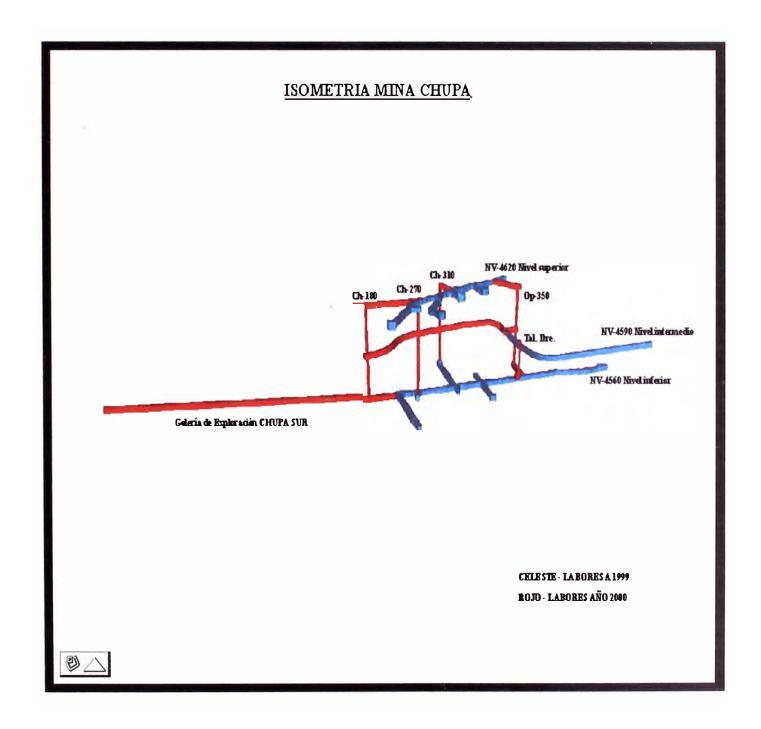


Figura 3.3 Vista Isometrica Mina Chupa

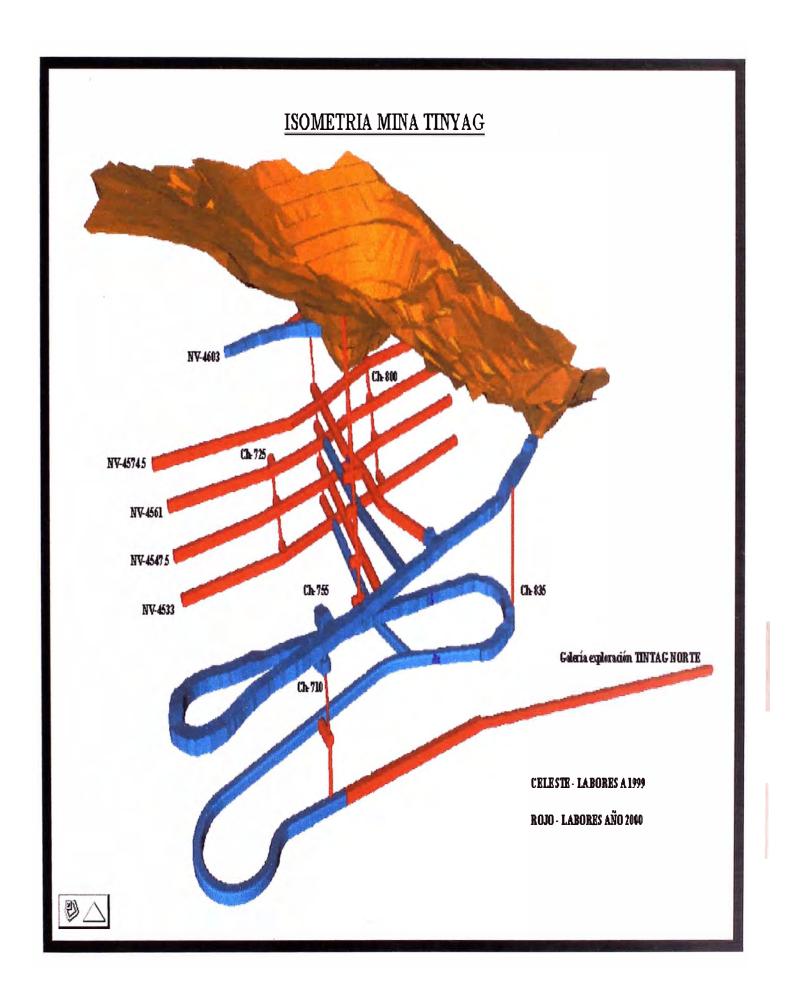


Figura 3.4 Vita Isometrica Tajo Tinyag

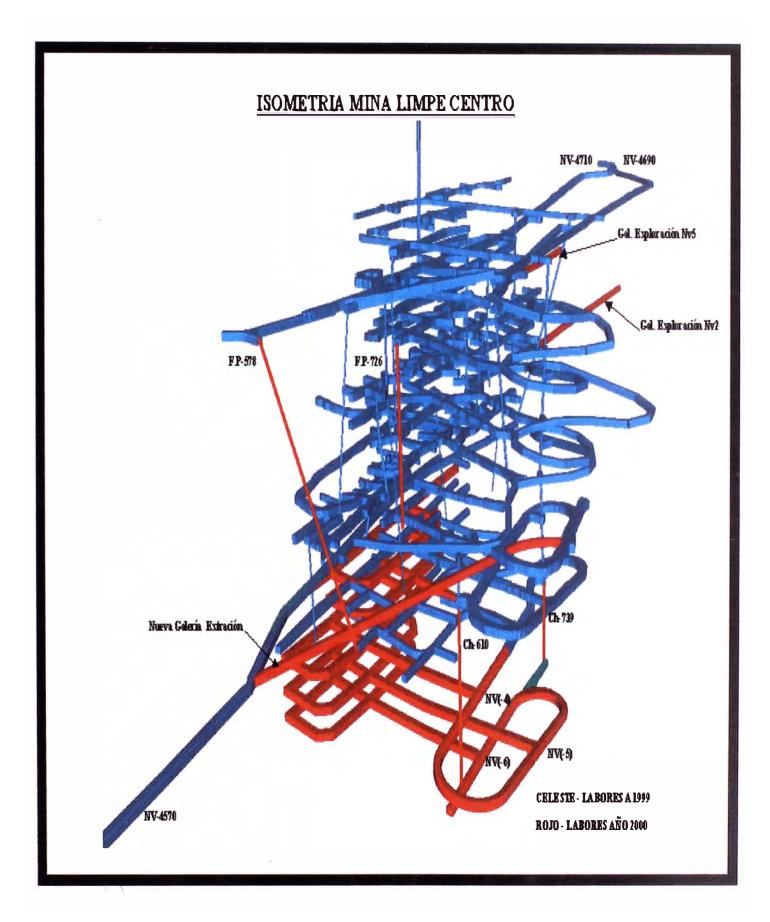


Fig. 3.5 Profundización Mina Limpe Centro

3.4 DESCRIPCIÓN DEL CICLO DE OPERACIONES

3.4.1 PERFORACIÓN

Los equipos utilizados para la perforación de frentes son:

- Jumbo Boomer electrohidráulico Atlas Copco H 281 con barras de 12 pies de longitud.
- Jumbo Hidráulico Atlas Coopco H 281 con dispositivo Simba de 4 pies de longitud.
- Simba H 357 de 4 pies de longitud.

3.4.1.1 PERFORACIÓN EN FRENTES (HORIZONTAL)

Para la perforación de frentes (avances) tanto en desmontes como en mineral, se utilizan jumbos electro hidráulicos, Boomer marca Atlas Copco modelo H281.Utilizando como acero de perforación, barras de 12 pies de longitud modelo SP T38-R32 12.

Con brocas de botones de diámetro de 45mm. y 51mm. En la perforación de frentes se tiene de dos tipos de sección de 3.5 x 3.5m y 4 x 3.5m, tanto en desmonte y mineral.

JUMBO ELECTROHIDRAULICO - BOOMER H-281.

- * BARRAS DE 12 PIES.
- * DIAMETRO DE BROCA 51mm.
- * AVANCE EFECTIVO DE PERFORACION = 10.86'
- * EFICIENCIA DE PERFORACION

	TIPO I	TIPO II
N° Taladro por Frente	25	28
Sección	3.5x3.5mts.	4 x 3.5mts.
Longitud Taladro	3mts	3 mts
Diámetro Taladro	51 mm.	51 mm.
Diámetro Taladro rimado	5 pulgadas	5 pulgadas
Tipo Material	Mineral	Desmonte
Dureza Material	Semi duro	Duro
N° taladro de alivio	2	2

Tabla N° 3.1 Parámetros de Perforación para tipo I y II de Roca

REQUERIMIENTOS PARA LA PERFORACIÓN

PRESIONES: PERCUSION EN ALTA 180 BARES PERCUSION EN BAJA 130 BARES ROTACION 40 A 70 BARES AVANCE EN ALTA 80 A 90 BARES AVANCE EN BAJA 40 BARES AIRE 6 BARES AGUA 10 BARES

TABLA 3.2 Presiones de Perforación

RESUMEN PIES PERFORADOS (BOOMER)

PIES PERFORADOS		ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO
HORIZONT	AL MNERAL.							
	Boomer 07	24,229	20,648	27,759	31,080	28,350	17,588	20,356
HORIZONTA	L DESMONTE.							
	Boomer 07	7,047	11,108	4,546	1,805	5,589	6,304	12,327
TOTAL PIES PERFORADOS.		31,276	31,756	32,305	32,885	33,539	23,892	32,683
COSTO TOTAL US\$.		9,195	1,135	5,203	4,414	6,506	4,474	5,799
COSTO UNITARIO EQUIPO.		0.29	0.04	0.16	0.13	0.19	0.19	0.18
	ACEROS	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	MANO OBRA	0.03	0.03	0.03	0.03	0.03	0.04	0.03
earla Ul	tario (USSPP)		0.17	Alib	02		0.30	OM
	0.30							
Parents			00/25				, ,	

TABLA 3.3 RESUMEN DE PIES PERFORADOS (HORIZONTAL)

F E	HORIZONTALES						BOOMER - N° 07					12
	GUARDIA "A"						GUARDIA'B"					31/0
	Think I'v	MAERAL			DESVICIN			WEST			DESMONTE	
Fecha	TAL	FER.	ALLA	TAL	FER.	ACLAI	TAL	PER PER	ACLAN	N" TAL	RE RER	ACLA
01-Jul-00	49	490	490	21	210	210	66	432	432	12	144	14
02-Jul-00	53	530	1,020			210			432	54	649	79
03-Jul-00	-	-	1,020	-	-	210	25	300	732	24	289	1,08
04~Jul-00	66	680	1,680	4	40	250	80	720	1,452	12	144	1,22
05-Jul-00	73	722	2,402	5	50	300	74	740	2.192			1.22
06-Jul-00	70	700	3,102	19	190	490	46	552	2.744	8	64	1,28
07-Jul-00	54	540	3,642			490	29	338	3,080	16	128	1,41
08-Jnl-00	35	350	3.992	17	170	660	54	649	3.728	3	24	1.44
09-Jul-00	37	370	4,362	20	200	860	52	520	4,248	12	96	1.53
10-711-00	28	280	4.642	21	210	1.070	37	383	4.611	14	28	1,56
11-Jul-00	29	290	4.932	10	100	1,170	30	60	4.671	7	35	1.59
12-Jul-00	31	372	5.304	- 10	100	1,170	44	529	5.199			1.59
13-Jul-00	12	144	5.448	40	120	1,290	22	131	5.330	32	168	1.76
14-Jul-00	54	448	5.896	30	360	1.650			5,330	46	297	2.06
15-Jul-00	20	240	6.136	30	360	2.010			5.330	52	449	2.51
16-Jul-00	34	409	6.544	9	109	2.118	75	820	6.150	UZ.	777	2.51
17-Jul-00	49	578	7.120	9	100	2,226	19	229	6,378	50	460	2.97
18-Jul-00	25	300	7,420	48	576	2.802	19	228	6.606	32	394	3.35
19-Jui-00	20	•	7.420	40	0,4	2,802	13	130	6.736	27	270	3.62
20-Jul-00	14	169	7.588	8	72	2.874	14	169	6.904	28	338	3.98
21-Jul-00	23	276	7.864	22	264	3, 138	7	84	6.988	28	338	4,29
22-Jul-00	20	240	B. 104	29	349	3,486	9	109	7.096	29	348	4.64
23-Jul-00	23	276	8.380	28	338	3.822	20	240	7.338	29	349	4.99
24-Jul-00	8	96	8.476	36	432	4.254	18	216	7.552	41	492	5,48
25-Jul-00	15	180	8.656	29	348	4,602	41	492	8.044	41	12	5.49
28-Jul-00	84	840	9,496	23	340	4.602	45	450	8,494	29	290	5.78
27-Jul-00	15	90	9,586	32	182	4.784	61	610	9.104	2.3	2.00	5.78
28-Jul-00	15	90	9,676	18	198	4,184	01]	010	9, 104	37	326	6.11
29-Jul-00	4	32	9,708	42	324	5,306	37	370	9,474	17	170	6.28
30-Jul-00	50	394	10.092	9	32	5.338	46	420	9,894	18	180	6.46
31-711-00	26	280	10,092	29	254	5,592	10 [110	10.004	42	270	6,73
21/201/00	20	200	10,332	23	204	0,032	10	110	10,004	42	2/0	פנים
	1,015	10,352		562	5,592		972	10,004		700	6,735	
	P. FER				P. FER.				P. FER. I			
	MIN	1	20,356		065	1	2,327		TOTAL	3	32,683	

3.4.1.2 PERFORACIÓN VERTICAL

TABLA 3.4 REPORTE DE PIES PERFORADOS (HORIZONTAL)

Para la Perforación Vertical (taladros largos) con mineral y desmonte se utiliza jumbos electro hidráulicos y simba marca atlas copco modelos H281 (adaptado) y H357.

Utilizando barras de 4pies de longitud modelo SP T38x4 con brocas de diámetro de 64mm.

En la perforación de taladros largos se tiene de dos tipos.

- A. Perforación de chimenea vertical (cara libre)
- B. Perforación vertical al corte (BHL)

A. Perforación chimenea vertical

En la perforación de chimenea se realiza con los siguientes equipos .

- Un jumbo hidráulico Simba Atlas Copco H281(adaptado)
- Un jumbo hidráulico Simba Atlas Copco H357

Que perforan taladros descendentes y ascendentes con un rango de 360° y hasta una longitud de 30mts.

- * JUMBO ELECTROHIDRAULICO SIMBA H-357.
- * BARRAS DE 4 PIES.
- * DIAMETRO DE BROCA 64mm.
- * TIEMPO DE PENETRACION 93 seg.
- * TIEMPO DE CAMBIO DE BARRA 57 seg.

REPORTE DE PIES PERFORADOS - VERTICAL (SIMBA)

		/ER		State of the last	5	I M	BA	and along the color	l° 08		4	
		VINERAL	UARD		DESMONT	E		WINERAL	GUARDI		EMONT	
Fecha	N° BAR	FER FER	ACLM	N' BAR	RE FER	ACUA	N° BAR	RE PER	ACLM	N' BAR	RE PER	ACUA
01-JuH00	65	280	260	DAIL.			40	100	160	BAIL		
02-Jul-00	92	369	628				52	209	368			-
03-Jul-00	63	252	880	49	192	192	87	349	716	11	44	4
04-Jul-00	83	332	1,212			192	56	224	940			4
05-Jul-00	99	398	1,608			192	70	280	1,220			4
06-Jul-00	70	280	1,888			192	97	399	1,608		-	4
07-JuH00	90	359	2,246	28	112	304	40	180	1,768			4
00-Jul-80	82	328	2,574		10.500	304	65	280	2,028		6-6	4
09-Jul-00	87	346	2,920	17	69	372	96	394	2,412		-	4
10-Jul-00	9	38	2,956			372	12	49	2,460		-	4
11-Jul-00	50	198	3,154		-	372	48	192	2,652		-	4
12-Jul-00	-		3,154	-	-	372		-	2,652	50	198	24
13-Jul-00	63	252	3,406	79	316	688	59	234	2,886			24
14-JuF00	45	190	3,586		1	688	58	232	3,118		7.	24
15-Jul-00	72	289	3,874	35	140	828		ALC: U	3,118			24
16-Jul-00	7	29	3,902	32	129	956	94	338	3,454			24
17-Jul-00	39	152	4,054			956	72	288	3,742			24
18-Jul-00	75	300	4,354			956	74	298	4,038			24
19-JuH00	54	216	4,570			956			4,038	22	89	33
20-JuH00	44	176	4,746			956	59	236	4,274			33
21-JuH00	39	152	4,898			956	44	176	4,450			33
22-Jul-00	54	216	5,114		100	956	46	194	4,634		TOR	33
23-Jul-00	38	152	5,266	35	140	1,096	51	204	4,838		-	33
24-Jul-00	60	240	5,506			1,096	13	52	4,890	40	160	49
25-Jul-00	37	149	5,654			1,096	4	16	4,906	18	72	56
28-Jul-00		70	5,654			1,096	49	198	5,102	24	96	65
27-JuH00	61	244	5,898	6	24	1,120	61	244	5,346			65
28-Jul-00	101	404	6,302			1,120	108	422	5,768	3	12	67
29-Jul-00	67	288	6,570			1,120	61	244	6,012		#80	67
30-Jul-00	29	116	6,686	5	20	1,140	87	349	6,360			67
31-JuH00	106	424	7,110			1,140	9	36	6,396		(cN-1)	674
	1,778	7,110		285	1,140		1,599	6,396		168	670	
	P. FER.	1	3,506		P. FER.		1,810		P. FER TOTAL	15	,316	

^{*}LONGITUD TALADROS (HORIZONTAL) * 12 pies.

TABLA 3.5 REPORTE DE PIES PERFORADOS -VERTICAL

^{*}LONGITUD BARRAS (VERTICAL) +4 Pies / Cad. Uno.

1								
PIES PERFORA DO	S pour residence of the	ENERO	FE BRERO	MAR ZO	ABRIL	MAYO	JUNIO	JULIO
ÆRTICAL M	INERAL.							
	Boomer 08 (Simba)	8,539	6,351	11,084	8,200	12,038	12,860	13,506
VERTICAL DE	SMONTE.							
	Boomer 08 (Simba)	3,238	2,751	1,727	2,832	1,464	2,492	1,810
TOTAL PIES	PERFORADOS.	11,777	9, 102	12,811	11,032	13,502	15,352	15,316
COSTO TOT	AL US\$	8,456	3,651	8,704	8,688	5,902	6,073	7,681
COSTO UNIT	ARIO EQUIPO.	0.72	0.40	0.68	0.79	0.44	0.40	C . 50
	ACEROS	0.32	0.32	0.32	0.32	0.32	0.32	0.32
1.00	MANO OBRA	0.00	0.00	0.00	0.00	0.00	0.00	0.00
costo unn	ARIO (USSP.P)	1.04	0.72	1.00	1:11	0.76	0.72	0.82
	0.88		a vi					
VERTICAL M	INFRAI .							
	Boomer 09 (Simba)	8,398	7,462	9,167	6,529	9,637	9,732	14,963
VERTICAL DI								
	Boomer 09 (Simba)	2,393	1,060	826	3,551	464	896	1,348
TOTAL PIES	PERFORADOS.	10,791	8,522	9,993	10,080	10,101	10,628	16,311
COSTO TOT	AL US\$	9,810	2,096	9,855	13,884	4,839	7,249	10,091
COSTO UNIT	ARIO EQUIPO.	0.91	0.25	0.99	1.38	0.48	0.68	0.62
	ACEROS	0.32	0.32	0.32	0.32	0.32	0.32	0.32
	MANO OBRA	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maly Establish	#RIO (USSP.P)	1.23	0.57	131	1.70	0.80	4.00	0.94

TABLA 3.6 RESUMEN DE PÍES PERFORADOS VERTICAL

B.- Perforación Vertical al Corte (BHL)

La perforación vertical en tajos de explotación es de banqueo invertido. La perforación se realiza desde los niveles superiores que tienen 10 mts .en promedio de puente, ya sea ascende o descendente, en sucesiones paralelas. Los equipos utilizados son:

El simba H281, Simba H357.

El simba H357, único en su genero en Latinoamérica, es totalmente electrohidráulico, cuenta con un sistema completo destinado para la perforación de taladros largos, la perforadora es una Cop.1238, con barras de extensión 1.2 mts. provisto de un carrusel para el manejo de las barras modelo 12HS-17, puede perforar taladros ascendentes y descendente con un diámetro de taladros de 2 pulgadas (64mm).

DISEÑO DE MALLAS: PERFORACION EN TAJO: RESULTADO FINAL: TONELAJE TOTAL ROTO =7.200 TOTAL PIES PERFORADOS = 3.550 TOTAL EXPLOSIVO UTILIZADO ANFO = 2.415 DIN = 48.21 *Tonelaje / Pie Perforado = 2.03 *Kg. Explosivo / Tonelada = 0.33

TABLA 3.7 DISEÑO MALLAS DE PERFORACION

TABLA 3.8- DETALLES CICLO DE MINADO CHUPA

	Labor	Ava	nc/Guardia	#Quar.	Dia#	
	Dos Frentes en paralelo	10,0 m	2,8	4	1	
	mineral horizontal roto	1.008,0 tan				
	Desquinche (20m3/m)	360,0 m3	100	4	3	
	Limpieza mineral desquinche	1.296,0 tan	400	3	5	
CHPA .	Sosterimiento	80,0 m2	80	1	6	100
krgtudablejo 100 m	Vertical:Perf.Chimenea	266,0 m	128	2	7	
androinidial 40 m	Carguio de talactros	199,5 m	200	1	8	
attoiridal 3,5 m	Mneral roto chimeneal	270,0 tan	400	1	8	
androfinal 80 m	Vertical:Perf.Chimenea	247,0 m	90	3	9	
atofinel 40 m seccionOhmenee3x3 90 m2	Carguio de talachos	1853 m	200	1	10	100
#taladosendrimenea 130 uri.	Mineral roto chimenee2	292,5 tan	400	1	10	
#taladrosobalivio 60 uri.	Perforación taladros de corte 1	2731 m	128	2	11	
krgitudeprimer cate 140 m	mineral roto corte1	31855 tan	400	8	12	
averoedeprimercote 12 m krajtuddepuerte 250 m	Perforación taladros de corte 2	296,0 m	90	3	16	
Maladaperforación (e) 1,8 m	Carguio de taladros	222,0 m	200	1	17	
Mallade perforación (b) 1,8 m	mineral roto corte 2	3452,0 ton	400	9	18	
	Relleno rockfill	2400,0 m3	250	10	22	
	Otros			2	27	
				54,3	27	Días/ci
	mineral horizontal	2.304 ton		21	11	Dias
	mineral vertical	7.200 ton	Tin/mt.perf.			
	Demanda de Simba	1.082,1 m	6,65	10	5	Dias
	Relleno rockfill	2400,0 m8		10		Días

TABLA 3.9 DETALLES CICLO DE MINADO LIMPE CENTRO

CICLO MINADO:

LIMECENIFO

Labor		AV	anc/Guan	#Quardi	as
Espera del fraguado				8	1
Avance dos frente	25	m	28	9	5
Limpieza de Mineral	1260	ton	400	0	9
Vertical:Perf.Chimenea	221	m	120	2	9
Limpieza de Mineral	453,60	ton	400	1	10
Perforación taladros de corte	361	m	120	3	11
Limpieza de Mineral	3326	ton	400	8	12
Relleno	1.400	тв	350	4	17
Otros				2	19
		F		37,2	19

Minado de Taj	o superior	Adyac	ente(2)		
Labor		Av	anc/Guard	#Guardia	sDia#
Frente superior ya preparado	0	m	28	0	20
Limpieza de Mineral	2520	ton	400	0	20
Vertical:Perf.Chimenea	221	m	120	2	20
Limpieza de Mineral	453,60	ton	400	1	21
Perforación taladros de corte	361	m	120	3	21
Limpieza de Mineral	3326	ton	400	8	23
Relleno	1.750,0	тв	350	5	27
Otros				2	30
	BACKS SELECTION OF	SARSTA		200	44

21,3 11 Dias/ciclo

11.340

mineral horizontal 3.780 ton mineral vertical 7.560 ton Demanda de Simba 1.162 m 6,51 10 5 Dias

Relleno Cementado 3.150 5 3 Dias

TABLA 3.10.- CARACTERISTICAS DE LOS EQUIPOS DE PERFORACION

MARCA	Atlas copco hidráulico	Atlas copco hidráulico
NOMBRE	Simba (adaptado)	Simba
MODELO	H281	H 357
MARTILLO	cop 1238	Cop 1238
N° PERSONAS	2	2
PRESION DE AGUA (psi)	70	90
LONGITUD BARRA (mts.)	1.2	1.2
LONGITUD BARRA (pulg.)	1.25	1.25
DIAMETRO BROCA (pulg.)	2.5	2.5

TABLA 3.11.- COMPARACION DE EQUIPOS TALADROS LARGOS

MODELO	SIMBA H281	SIMBA H357
PESO EQUIPO	10,000 KG	12.000 KG
ALTURA DE TRASLADO DE EQUIPO	3MTS.	3.6 MTS
ALTURA DE PERFORACION	3MTS.	3.8 MTS
ANCHO DE LA GALERIA DE TRANSP.	змтѕ.	3.5 MTS
LONGITUD DE BARRA (mts)	1.2 MTS	1.2 MTS
TIPO DE AVANCE	PISTON	PISTON
N° DE BARRAS DE CARRUSEL	SIN CARRUSEL	27 BARRAS
GIRO DE TORNAMEZA	360°	360°
N° DE GATAS	4	4
DIAMETRO DE PERFORACION	64mm	64mm
MEDIDOR DIGITAL ANGULOS	NO	SI
PERFORADORA	COP.1238 ME	COP.1238 ME
PESO PERFORADORA	151 Kg.	151 Kg.

3.4.1.3 Tipos de Mallas.

Diseños de mallas de perforación

Se realiza aplicando el algoritmo de langefons, el cual arroja resultados de diseño para una malla cuadrada con rango del burden de perforación y el espaciamiento requerido teniendo en cuenta la dureza del mineral, fragmentación, diámetro del taladro, longitud del taladro, orientación, tipo de explosivo etc.

Formula de langenfons.

```
B = (D/33)^* V (dc*prp) / (c*f*(s/b))
```

B: Burden (mts)

D: diámetro taladro (mm.)

c: constante de roca = 0.40 +0.75 rocas duras =0.30+0.75 rocas medias

prp: potencia relativa del explosivo en peso f: factor de fijación = 0,85 (taladros largos) s/b : relación burden - espaciamiento = 1,25 dc= densidad carga (kg./ dm³)

El valor del burden (BP) práctico esta en función al burden máximo "Bm" aplicando

una corrección por desviación de los taladros y error de emboquillado.

BP = Bm-2D -0,02L L= longitud taladro

TIPOS DE MALLA

Los tipos de mallas se cálculan de acuerdo al tipo de material a perforar.

TIPO MATERIAL	SECCIÓN m	ARRANQUE (taladros)	Ayuda Arranque (taladros)	(taladros)	Ayuda Arrastre (taladros)	AYUDAS (taladros)		ALZAS (taladro)	
Min.Zn. Suave	3*3	4	4	4	2	-	2	3	18
Min.Zn. Duro	3*3.5	4	4	4	2	2	4	3	23
Relleno	3.5*3.5	4	4	4	3	3	4	3	25
Desmonte	4.0*3.5	4	4	4	3	4	4	3	26

TABLA 3.12.- TIPOS DE MALLAS

En general el tipo de malla varia de acuerdo con el material a perforar y a la sección de la labor, siendo lo más importante la perforación sobre mineral, comúnmente se suele perforar mallas entre 21 a 23 taladros de carga.

En el siguiente figura se muestra algunas de las mallas mas utilizadas de acuerdo al tipo de material a perforar

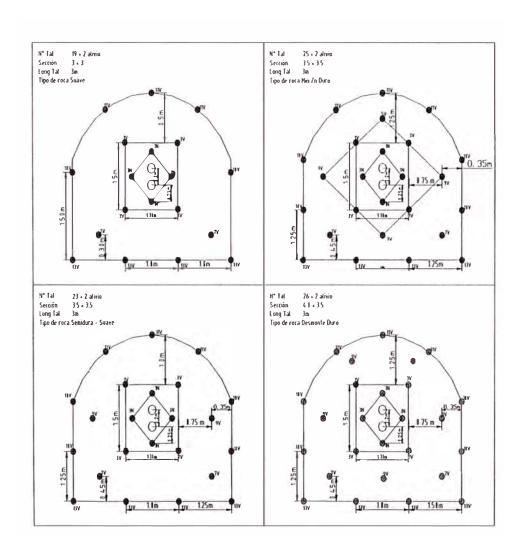


FIGURA 3.6 TIPOS DE MALLAS DE PERFORACION

MALLA TIPICA DE PERFORACIÓN HORIZONTAL

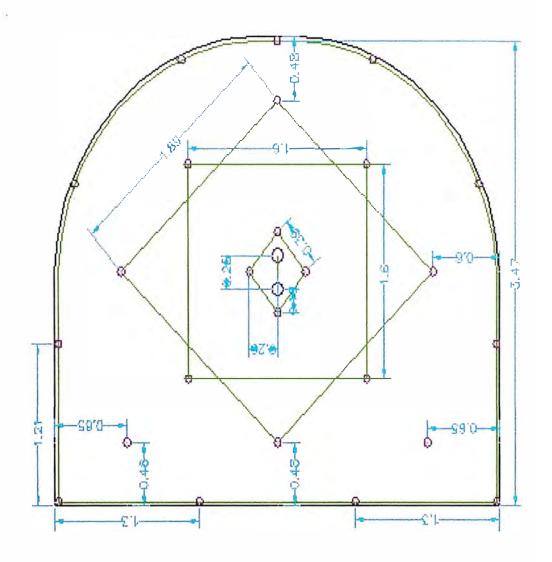


FIGURA 3.7 MALLA TIPICA DE PERFORACION HORIZONTAL

MALLA TIPICA DE PERFORACIÓN VERTICAL

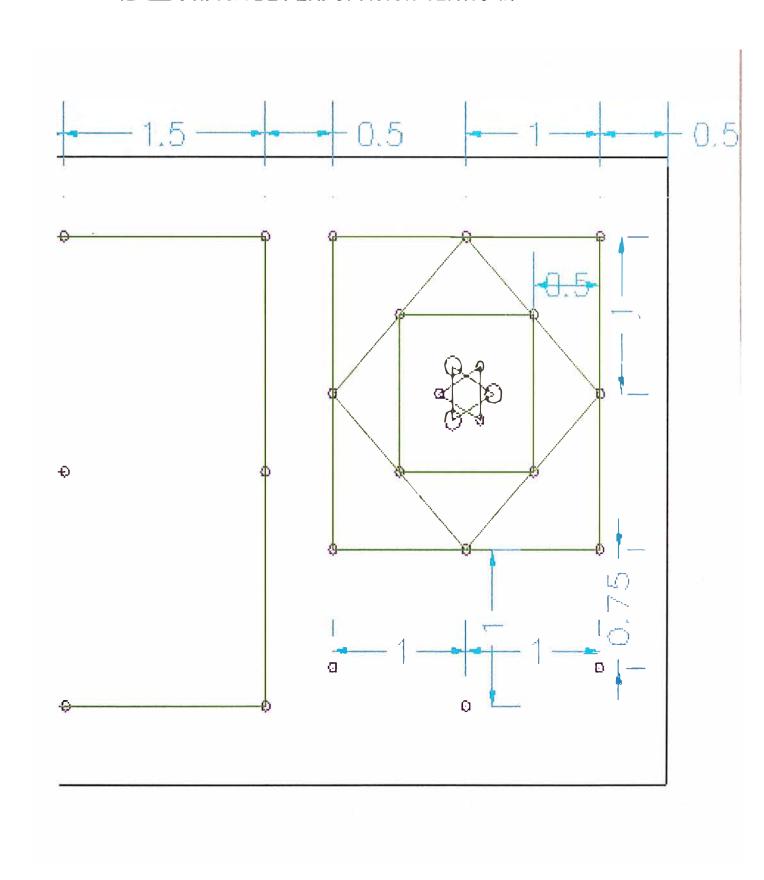


FIGURA 3.8 MALLA TIPICA DE PERFORACION VERTICAL

3.4.2 VOLADURA

3.4.2.1 **VOLADURA EN FRENTES**

Para la voladura en frentes se realiza en forma manual con cucharilla y atacadores de madera. y mecanizada con la utilización del cargador de anfo (anfo loader)

CARACTERISTICAS VOLADURA

26 u.
26 u.
75 Kg.
7m.
0.47 kg./ton.

Tabla 3.13 - CARACTERISTICAS DE LA VOLADURA EN FRENTES

CARACTERISTICAS VOLADURA

SL/C				
	4			
	3.5		ton. Roto	
	2.8		141	ton.
# Taladros	dinamita (Kg) 11/2" * 12"	anfo (Kg)		
4	1.43	9.2		
4	1.43	9.2		
4	1.43	9.2		
4	1.43	9.2		
3	1.07	6.9		
4	12.9			
2	0.71	4.6		
25	20.36	48.30		
	total explosivos	68.66	Kg.	
	Factor de Potencia	0.49	Kg/ton.	
		costo unit	Total (\$)	
Kg	20.36	1.65	33.59	39 . 1
Kg	48.30	0.48	23.18	27.0
c/u	25	1.07	26.75	31 .1
m	4.8	0.08	0.38	0.4
c/u	2	0.08	0.16	0.2
c/u	2	0.14	0.28	0.3
m	0.5	0.26	0.13	0.2
m	12	0.12	1.44	1.7
			85.92	100
			0.61	\$/ton
Hr	3	4.16	0.09	\$/ton
	4 4 4 3 4 2 25 Kg C/U m c/U c/U m m	dinamita (Kg) # Taladros 11/2" * 12" 4 1.43 4 1.43 4 1.43 4 1.43 3 1.07 4 12.9 2 0.71 25 20.36 total explosivos Factor de Potencia Kg 20.36 Kg 48.30 c/u 25 m 4.8 c/u 2 c/u 2 m 0.5 m 12	4 3.5 2.8	4 3.5 ton. Roto 2.8 141

TABLA 3.14.- COSTO UNITARIO DE VOLADURA

3.4.2.2 VOLADURA EN TAJOS VERTICAL

La voladura en vertical se considera de dos tipos:

- A.- Voladura en chimenea vertical
- B.- Voladura vertical en corte (BHL)

El carguio de taladros largos es en forma manual y cuando los taladros son ciegos se utiliza :

El cargador de anfo (anfo kar). En general se utiliza en retirada, desde la cara libre ubicada en uno de los extremos de los blocks perforados.

El carguio de los taladros se realizan de arriba hacia abajo, con mayor facilidad y eficiencia en su ejecución, los resultados de la voladura son excelentes.

CARACTERISTICAS DE VOLADURA

Iniciadores no eléctricos	11 u.	40 u.
Explosivo (dinamita 80%)	11 u.	
Explosivo (dinamita 45%)		600 u.
Anfo	50 Kg.	
Cordón detonante (5 – P)	12m.	200 m.
Factor de Carga	0.46 kg./ton.	0.07 kg./ton.

Tabla 3.15 -CARACTERISTICAS DE LA VOLAD URAEN VERTICAL

PERFORACION - CHIMENEAS:

PIES PERFORADOS

= 19x14 mt. = 266 mts. = 873 pies.

TONELAJE ROTO = 270 Tn.

CONSUMOS:

TIPO TALADRO	CANTI	DAD DIN(Kg) ANFO(Kg)	
ARRANQUE	01	1.071	33	
AYUDA ARRANQUE	04	4.284	132	
AYUDA CUADRADOR	04	4.284	132	
CUADRADOR	04	4.284	132	
ALIMO	06	******		
TOTAL	40	42 022	420	
TOTAL:	19	13.923	429	

(MS)		(MTS)	
01		15	
-	3, 3, 5, 5	60	
-	7,7,8,8	60	
-	10,10,10,10	60	
01	12	195	

Tabla 3.16 – CONSUMO DE EXPLOSIVOS EN CHIMENEAS

				costo unit.	
	Dinamita	Kg	20.36	1.65	33.59
	Examon		48.30	0.48	23.18
	Faneles	-	25	1.07	26.75
	Mecha de Seguridad	m	4.8	0.08	0.38
	Fulminantes	c/u	2	0.08	0.10
	Conectores	c/u	2	0.14	0.28
1.00	Mecha rápida	m	0.5	0.26	0.13
	Cordón detonante	m	12	0.12	1.44
					85.92
					0.6
mobra		3	4.16		0.09
	0.13				
VOL	ADURA DE TAJOS L/C				
	Ancho		4		Kg.Anfo / m.
	Alto		3.5		ton. Roto
	Long. de Tajo		25		3780
			dinamita (Kg)	anfo (Kg)	
		# Taladros	11/2" * 12"		
	Arranques	3	1.07	55.125	
	Ayuda de arranques	4	1.43	73.5	
	Cuadradores	4	1.43	73.5	
	Ayuda de cuadradores	7	2.50	128.625	
	Taladros de corte	33.0	11.79	606.375	
		51.0	18.21	937.125	

955.34 Kg.

0.25 Kg / ton.

total explosivos

Factor de Potencia

TABLA 3.17. COSTO DE MANO DE OBRA Y CONSUMO DE EXPLOSIVOS

3.4.3 LIMPIEZA MINERAL Y DESMONTE

Los equipos LHD son utilizados tanto para la limpieza de mineral y desmonte.

Los scoop diesel y eléctricos cuyas capacidades son de 1.5yd³, 3.5yd³, y 5.5yd³

SCOOP	CAPACIDAD	TIPO	MARCA	MODELO	OBSERVACIONES
	YD³				
107	1.5	DIESEL	TAMROCK	EJC 61D	
108	1.5	DIESEL	TAMROCK	EJC 61D	LV8
301E	3.5	ELECTRICO	TAMROCK	EJC 130E	
305	0.5	DIESEL	MACNED	67.05	FOUIDADO CON
305	3.5	DIESEL	WAGNER	ST. 3.5	EQUIPADO CON
					CONTROL REMOTO
306	3.5	DIESEL	TAMROCK	EJC 130D	EQUIPADO CON
					CONTROL REMOTO
309	3.5	DIESEL	TAMROCK	EJC 130D	EQUIPADO CON
	是是不是一个				CONTROL REMOTO
310	3.5	DIESEL	TAMROCK	EJC 130D	EQUIPADO CON
					CONTROL REMOTO
311	3.5	DIESEL	TAMROCK	EJC 130D	
510	5.5	DIESEL	TAMROCK	EJC 210D	
511	5.5	DIESEL	TAMROCK	EJC 210D	EQUIPADO CON
					CONTROL REMOTO

TABLA 3.18 LISTADO DE EQUIPOS DE DESMONTE

Para la evacuación de desmonte y mineral se utiliza los volquetes y/o dumper diesel de capacidad de 15 toneladas y 20 toneladas

DUMPER	MODELO	CAPACIDAD	MARCA	TIPO
DØ2	DTZ 416	15 TON.	TAMROCK	DIESEL
DØ3	DTZ 416	15TON	TAMROCK	DIESEL
DØ4		20 TON	TAMROCK	DIESEL
DØ6		20 TON	TAMROCK	DIESEL

TABLA 3.19 Listado de Camiones Dumper

3.4.4 RELLENO CEMENTADO

El relleno es parte importante en el ciclo de operaciones de la mina, debido a las desfavorables características geomecánicas de la masa rocosa, ya que esta debe brindar la seguridad para las operaciones en las labores, por ello se ha implementado un laboratorio de concreto en la cual se realizan constantes evaluaciones de las condiciones del relleno que se utiliza, además de realizar las mejoras en las condiciones mecánicas de esta realizando estudios y pruebas in situ con aditivos nuevos y nuevas dosificaciones que permitan tener mayor resistencia y menores costos en su elaboración.

Ensayos con relleno:

La realización de pruebas de resistencia sobre muestras tiene el objetivo de monitorear y controlar la adecuada proporción de mezcla del relleno, para ello se elaboran ensayos uni axiales sobre muestras que son ensayadas al 3er al 7mo y 14avo día de secado la muestra.

Prueba de relleno con relave.

Se ha probado exitosamente el uso del relave (3%) con el relleno, dando como resultado un relleno de mayor resistencia.

El cuadro siguiente muestra algunos de los resultados de las diferentes pruebas realizadas en el laboratorio de concreto.

RESISTENCIA PROMEDIA 3%

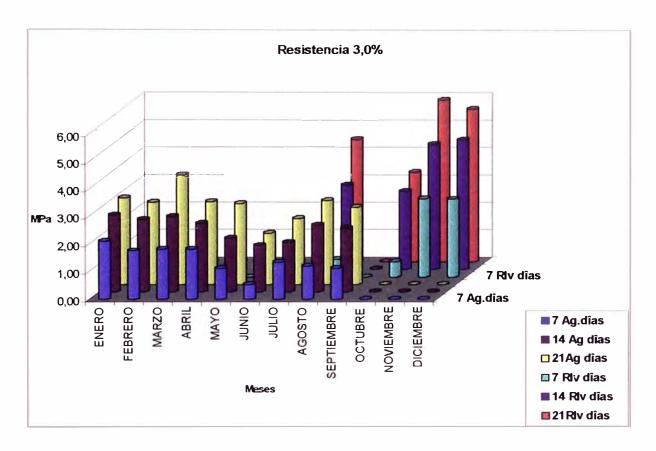


GRAFICO 3.1 RESISTENCIA DEL RELLENO

Los siguientes cuadros muestran algunos valores obtenidos en el laboratorio, se observa el aumento de las resistencias a medida que pasa el tiempo (del 7 al 21ª día)

RELLENO CEMENTADO CON AGREGADOS

DIAS	MESES											
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
7	2.11	1.77	1.83	1.83	1.12	0.55	1.35	1.21	1.13	0.00	0.00	0.00
14	2.80	2.64	2.74	2.49	1.95	1.70	1.80	2.44	2.32	0.00	0.00	0.00
21	3.14	2.99	3.99	3.02	2.95	1.87	2.40	3.05	2.82	0.00	0.00	0.00

TABLA 3.20 RELLENO CEMENTADO CON AGREGADOS

RELLENO CEMENTADO CON RELAVE

DIAS	MESES											
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65	0.00	0.55	2.86	2.84
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.07	0.00	2.84	4.57	4.71
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.47	0.00	3.27	5.90	5.57

TABLA 3.21 RELLENO CEMENTADO CON RELAVES

El siguiente cuadro muestra la dosificación que se utiliza actualmente para elaborar el relleno, el tipo C-210 es el más utilizado.

DISEÑO DE MEZCLA

		C-100	C-140	C-175	C-210	C-280	C-350
CEMENTO	(A.G. 1")	242	283	317	375	443	568
CEMENTO	(A.G. 3/4")			324	385	460	580
CEMENTO	(A.G. 1/2")				388	463	
AGREGADO FI	NO (A.G. 1")	740	640	749	668	622	526
AGREGADO FI	NO (A.G. 3/4")			741	659	609	518
AGREGADO FI	NO (A.G. 1/2")				656	606	
AGREGADO G	RUESO (1")	1130	1131	972	940	952	876
AGREGADO G	RUESO (3/4")			961	928	931	662
AGREGADO G	RUESO (1/2")				924	927	
AGUA	(A.G. 1")	170	196	204	230	222	250
AGUA	(A.G.3/4")			209	235	230	255
AGUA	(A.G.1/2")				237	232	
RELACION	A/C	0.70	0.69	0.64	0.61	0.50	0.44

TABLA 3.22 DOSIFICACION DE RELLENO

Periódicamente se realizan visitas a la planta de relleno por diferentes empresas dedicadas a realizar pruebas con diferentes aditivos, sistemas de control de la hidratación del concreto lanzado, con la finalidad de evaluar nuevas dosificaciones para mejorar el relleno y en el shotcrete.

DOSIFICACIONES DE RELLENO ROCOSO (ROCK FILL) RELLENO CEMENTADO CON RELAVE DOSIFICACION PARA 1m3

PESOS SECOS

% CEMENTO	8.5%	7%	6%	5.5%	4.5%
CEMENTO (Kg.)	140	115	99	90	74
RELAVE (Kg.)	0	0	0	0	0
ZARAND. (Kg.)	1400	1443	1470	1485	1513
AGUA (Lt.)	98	81	69	63	52
RELACION A/C	0.7	0.7	0.7	0.7	0.7

DOSIFICACIONES DE RELLENO ROCOSO (ROCK FILL) RELLENO CEMENTADO CON RELAVE DOSIFICACION PARA 1m3

PESOS SECOS

% CEMENTO	8.0%	7%	6%	5.5%	5.0%
CEMENTO (Kg.)	132	115	99	94	86
RELAVE (Kg.)	20	45	61	70	86
ZARAND. (Kg.)	1414	1443	1470	1479	1492
AGUA (Lt.)	92	81	69	66	60
RELACION A/C	0.7	0.7	0.7	0.7	0.7

DOSIFICACIONES DE RELLENO ROCOSO (ROCK FILL) RELLENO CEMENTADO CON RELAVE DOSIFICACION PARA 1m3

PESOS SECOS

% CEMENTO	6.0%	5%	4%	4.2%	3.9%
CEMENTO (Kg.)	132	115	99	94	86
RELAVE (Kg.)	558	570	580	584	589
ZARAND. (Kg.)	1414	1443	1470	1479	1492
AGUA (Lt.)	92	81	69	66	60
RELACION A/C	0.7	0.7	0.7	0.7	0.7

DOSIFICACIONES DE CONCRETO CON RELAVE (10%) RELLENO CEMENTADO CON RELAVE DOSIFICACION PARA 1m3

PESOS SECOS

% CEMENTO	5%	4.5%	4%	3.6%	3%	2.6%	2.0%
CEMENTO (Kg.)	117	106	95	84	72	61	49
RELAVE (Kg.)	287	293	299	292	300	308	316
ZARAND. (Kg.)	1791.08	1828	1866	1818	1871	1919	1972
AGUA (Lt.)	140	127	114	139	119	101	81
RELACION A/C	1.2	1.2	1.2	1.65	1.65	1.65	1.65

DOSIFICACIONES DE CONCRETO LANZADO CON RELAVE PORCENTAJE DE RELAVE

MATERIALES	10%	20%	30%	40%	50%
CEMENTO (Kg.)	340	340	340	340	340
RELAVE (Kg.)	251	503	754	1005	1257
FINOS (Kg.)	1592	1415	1238	1062	885
ADITIVO (Kg.)	11.37	11.37	11.37	11.37	11.37
AGUA (Lt.)	170	170	170	170	170
RELACION A/C	0.5	0.5	0.5	0.5	0.5

DOSIFICACIONES DE CONCRETO RELLENO POBRE

PESOS SECOS

M:	3	1	2	3	4	5
CEMENT	O (Kg.)	35	70	105	140	175
RELAVE	(Kg.)	3,406	6,812	10,218	13,624	17,030
FINOS	(Kg.)	0	0	0	0	0
AGUA	(Lt.)	18	35	53	70	88
RELACIO	N A/C	0.5	0.5	0.5	0.5	0.5

DOSIFICACIONES DE CONCRETO RELLENO POBRE CON FINOS

PESOS SECOS

М3	1	2	3	4	5
CEMENTO (Kg.)	35	70	105	140	175
RELAVE (Kg.)	0	0	0	0	0
FINOS (Kg.)	2,398	4,795	7,193	9,590	11,988
AGUA (Lt.)	18	35	53	70	88
RELACION A/C	0.5	0.5	0.5	0.5	0.5

DOSIFICACIONES DE CONCRETO RELLENO POBRE

PESOS SECOS

МЗ	1	2	3	4	5
CEMENTO (Kg.)	35	70	105	140	175
RELAVE (Kg.)	0	0	0	0	0
ZARANDEADO (Kg.)	2,359	4,719	7,078	9,438	11,797
AGUA (Lt.)	18	35	53	70	88
RELACION A/C	0.5	0.5	0.5	0.5	0.5

DOSIFICACIONES DE CONCRETO CON RELAVE (10%) RELLENO CEMENTADO CON RELAVE DOSIFICACION PARA 1m3

PESOS SECOS

% CEMENTO	5%	4.5%	4%	3.6%	3%	2.6%	2.0%
CEMENTO (Kg.)	117	106	95	84	72	61	49
RELAVE (Kg.)	287	293	299	292	300	308	316
ZARAND. (Kg.)	1791.08	1828	1866	1818	1871	1919	1972
AGUA (Lt.)	140	127	114	139	119	101	81
RELACION A/C	1.2	1.2	1.2	1.65	1.65	1.65	1.65

DOSIFICACIONES DE CONCRETO CON RELAVE (20%) RELLENO CEMENTADO CON RELAVE DOSIFICACION PARA 1m3

PESOS SECOS

% CEMENTO	5%	4.5%	4%	3.5%	3%	2.5%	2%	1.5%
CEMENTO (Kg.)	120	110	99	84	75	62	51	38
RELAVE (Kg.)	571	582	594	574	588	608	624	639
ZARAND. (Kg.)	1583	1613	1646	1591	1629	1684	1730	1770
AGUA (Lt.)	144	132	119	151	135	112	92	76
RELACION A/C	1.2	1.2	1.2	1.8	1.8	1.8	1.8	2.0

DOSIFICACIONES DE CONCRETO LANZADO

PESOS SECOS

M3	1	2	3	4	5
CEMENTO (Kg.)	340	680	1020	1360	1700
FINOS (Kg.)	1769	3538	5308	7077	8846
ADITIVO SIGUNIT L - 22 (Kg.)	11.37	22.74	34.11	45.48	56.85
AGUA (Lt.)	170	340	510	680	850
RELACION A/C	0.5	0.5	0.5	0.5	0.5

3.4.5 SOSTENIMIENTO

El sostenimiento se implementa y diseña de acuerdo a las características geomecánicas del macizo rocoso, a continuación se muestra una guía del tipo de sostenimiento que se aplica:

Labores	Tipo	RMR	Descripción
Preparación	1	>45	Pernos esporádicos según se requiera
	11	35-45	Concreto lanzado 2" + pernos de 7' (1- 1.5 m esparcimiento)
	III	25-35	Concreto lanzado 2" + pernos de 7' (1 m esparcimiento) + malla
	IV	<25	Soporte rigido más cimbras metálicas
Tajeos	1	35-45	Concreto lanzado 1" a 2"
Explotación	11	25-35	Concreto lanzado 2" con malla de refuerzo
Horizontal	III	<25	Concreto lanzado 2" a 3" con malla de refuerzo.

3.4.5.1 SOSTENIMIENTO SHOTCRETE

En shotcrete adecuadamente aplicado es un material estructuralmente sólido y durable. Presenta excelentes características de adhesión con el concreto, roca, acero y muchos otros materiales.

Sus características son, alta resistencia, baja absorción, buena resistencia a la intemperización y a varias clases de ataque químico así como buenas características de protección contra el fuego.

Estas propiedades favorables del shotcrete se consiguen con buenas dosificaciones y con preparaciones adecuadas de la superficie y con buenas prácticas de mezclado.

A continuación se muestra algunas características y requerimientos para el sostenimiento con shocrete.

Equipo utilizado:

Equipo de proyección (shocreteo) Tanque de agua Pistola Tuberías (agua, aire, corriente eléctrica)

Personal:

Un pistolero. Un operador. Dos cargadores

• El rendimiento promedio de la proyección del shocret es:

Rendimiento efectivo 2.5m3 /hora. (sin tiempos muertos)

Rendimiento del grupo (real) 1.8 m3/hora (considerando instalación

de equipos y otros)

Insumos

Energía eléctrica 440 V Aire comprimido

Agua (tanque 700 litros / 185 galones). Aditivos (Sigunit L 22)

Rendimiento del aditivo

1.5 galones de aditivo rinde para un metro cubico de shotcrete.

Dosificación de aditivo.

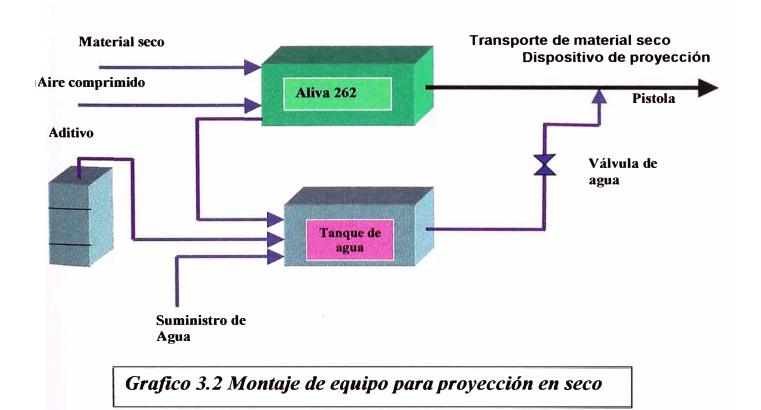
16 galones de agua con un galón de aditivo (aditivo 6.07%)

Dosificación de shotcrete

Para un metro cubico de shotcrete

340
1769
11.37
0.5

Dimensiones


Largo	1.9m
Ancho	0. 9m
Altura	1.5m
Peso Aprox.	1200 Kg.
Consumo do air	o 0 m2/min

Consumo de aire 9 m3/min.

Presión 4.5 bar.

Voltaje 3x 380 V/50 Hz.

	Posición I	Posición II
Capacidad (kW).	4.4	6.7
Revoluciones (r.p.m.)	1000	1500
Producción (m3/h)	5-7	7-10

3.4.5.2 SOSTENIMIENTO CIMBRA

• Equipo utilizado

Lampas Picos

Escalera Soldador

Personal

1 maestro en cimbra

2 o 3 ayudantes

Insumos

Cimbra H4 (4 pulg) o H6 (6 pulg).

Alambre de 8mm.

Distanciadores.

Pernos y tuercas.

- Pasos para la colocación de una cimbra
 - 1. Desate del terreno.
 - 2. Llevar gradiente.
 - 3. Preparar patillas.
 - 4. Colocar distanciadores superiores.
 - 5. Levantar cimbra.
 - 6. Colocar distanciadores inferiores.
 - 7. Colocar y soldar calaminas.
 - 8. Preparar canales para el encofrado.
 - 9. Encofrado.
 - 10. Rellenado de las bases del encofrado con concreto.

PERFIL DE COLOCACIÓN DE UNA CIMBRA ESTÁNDAR.

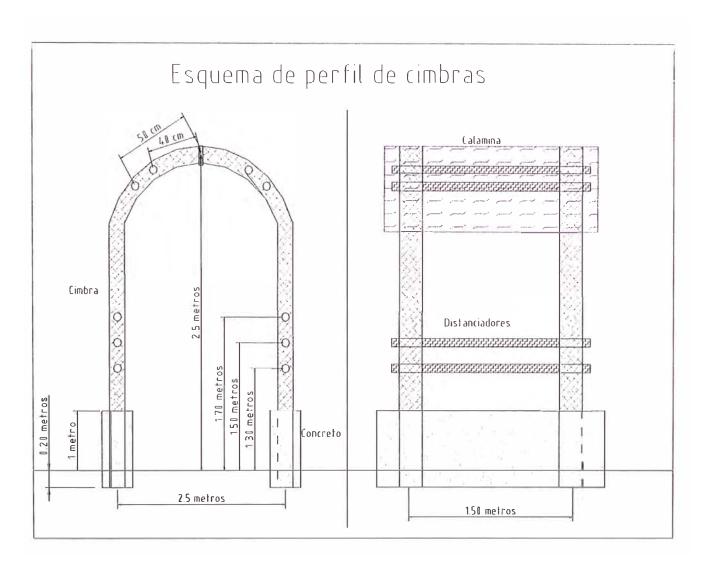


Gráfico 3.3 Estandar de colocación de Cimbras

3.4.5.3 SOSTENIMIENTO CON PERNOS

Las pruebas de arranque de los pernos de roca anclados con resina y cembolt llegando entre 12 a 17 TM.

Para propósitos de pago en la mina se ha establecido como capacidad mínima de anclaje 12 TM.

Es importante para el sostenimiento con pernos, realizar un trabajo sistemático que establezca la capacidad mínima de anclaje para propósitos de pago.

Por ejemplo las pruebas indican que en masas rocosas trituradas los valores de arranque de los pernos llegan a lo más a 5 TM

Existen lugares de la mina donde se aplicaría pernos de más de 7", como por ejemplo el portal de ingreso a Chupa intermedio y el crucero 654 del nivel –2. Nv. 4570 o nivel de extracción donde se instalara la tolva No 3 en cuyo hastial Oeste será necesario utilizar estos pernos.

Se utliza los siguientes tipos de pernos

A.- Pemos barra corrugada con resina tensionada

Se utiliza una barra de fierro corrugado de acero de grado 400 (60) de un diámetro de 3/4" rosca de 3/4". Utiliza cartucho de resina cuya resistencia es de 12 toneladas

Ventajas

Gran resistencia en tracción y cizalla

Alta resistencia ala corrosión

Desventajas

Alto costo

Tiempo de instalación

Necesita un buen control de la calidad de la instalación

B.- Perno de barra corrugado cementado

Se utiliza una barilla de fierro corrugado de grado 400 (60) mpa. (60,000psi)de diámetro de 3/4"; de rosca 3/4". Utiliza una bomba de cemento cuya resistencia es de 16 tonelada

Ventajas

Resistencia grande en tracción Resistencia ala corrosión menos costo Instalación, sellado rápido

Desventaja

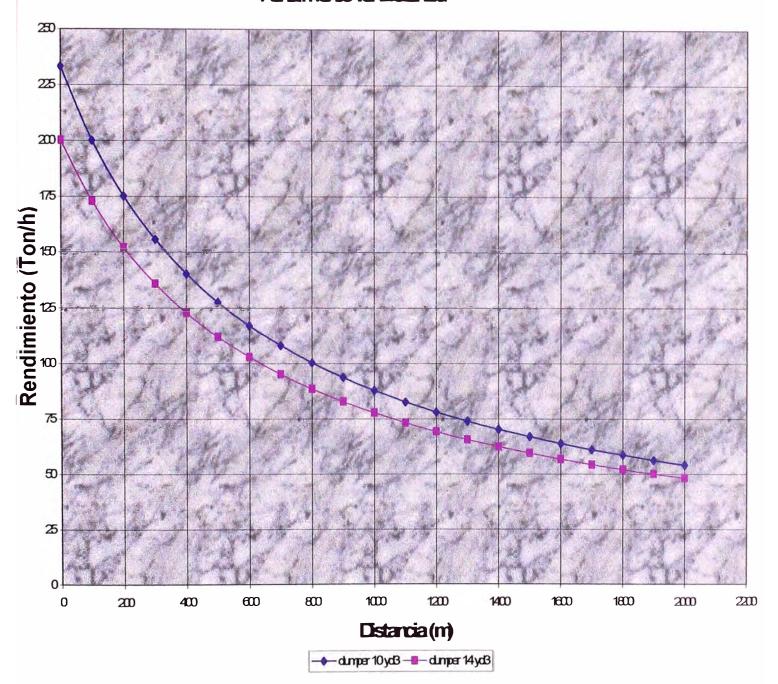
No se puede tensionar el perno

3.4.6 ACARREO DE MINERAL

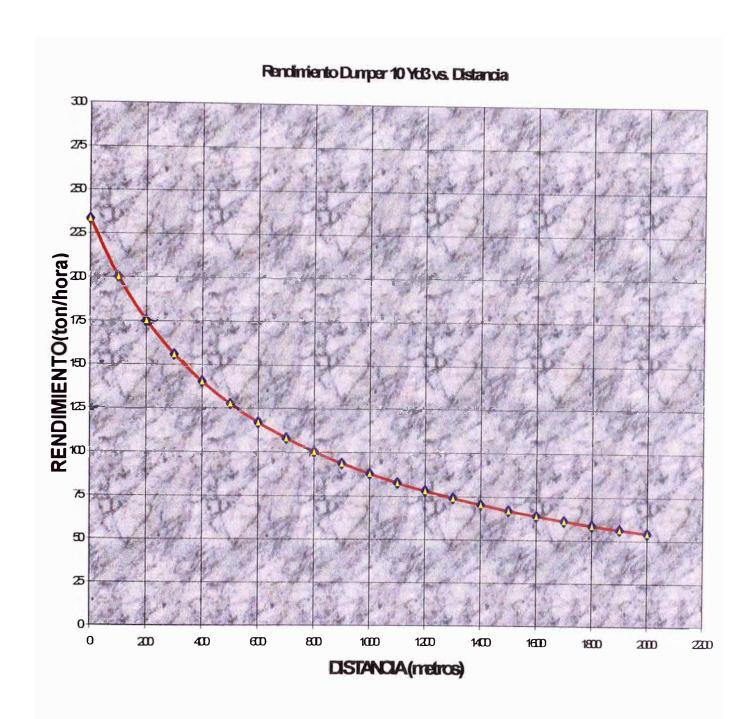
1. TRANSPORTE Y ACARREO

Los equipos utilizados en el transporte y acarreo de mineral y desmonte son los siguientes:

SCOOP	CAPACIDAD	TIPO
N° 05	3,5 Yd ³	ELECTRICO
N° 09	3,5 Yd ³	DIESEL
N° 107	3,5 Yd ³	DIESEL
Nº 108	3,5 Yd ³	DIESEL
N° 301	5,5 Yd3	DIESEL
N°310	5,5 Yd3	DIESEL

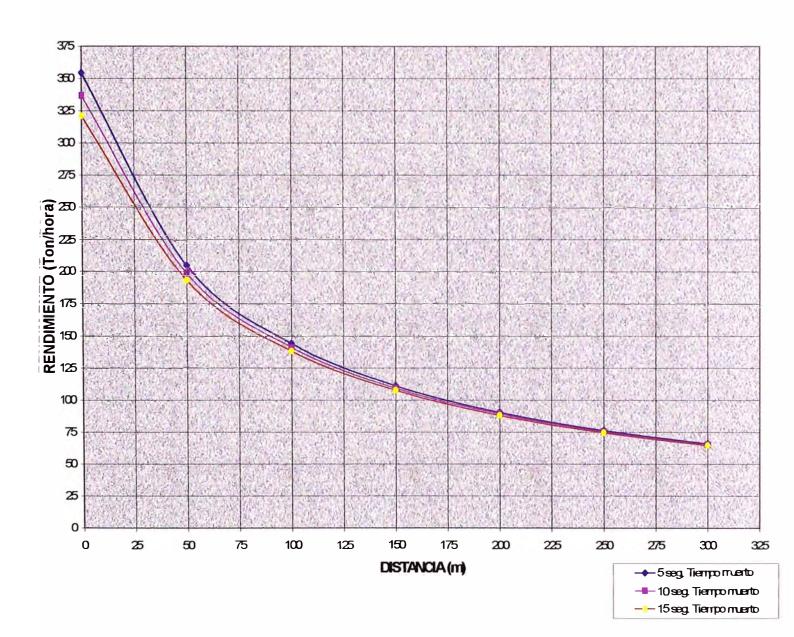

RENDIMIENTO DE LOS SCOOPS Y DUMPER

Los rendimientos de los equipos varia de acuerdo a los diferentes niveles de la mina donde han trabajado en conjunto Scoops con Dumper y en algunas ocasiones solo los Scoops acumulando carga, de estudios sean determinado los siguientes rendimientos.

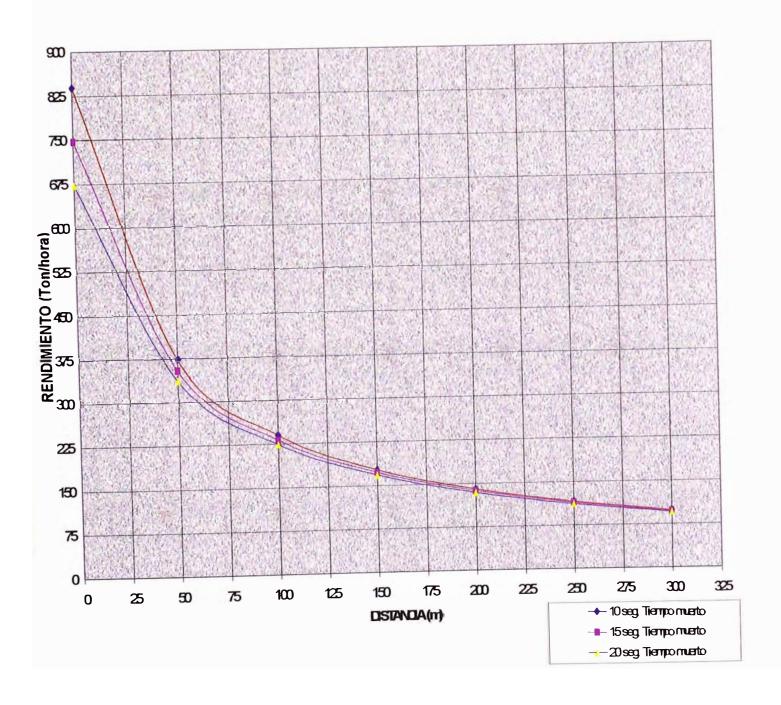

- El Cuadro N° 3.1y N° 3.2 muestra el rendimiento de los Dumper de 14 y 10 yd3.
- El Cuadro N° 3.3 muestra el rendimiento del scoop de 5Yd3 los dos gráficos fueron desarrollados con diferentes distancias, la gráfica inferior muestra que estas son muy similares, es importante notar la diferencia en el rendimiento en los tramos cortos (de 0 a 50 metros), esto se debe a que sea considerado diferentes tiempos muertos para la inferencia de cada gráfica.
- El Cuadro N° 3.4 muestra el rendimiento de los diferentes scoops para diferentes distancias, se muestra las gráficas de sus rendimientos con la curva de inferencia que aproxima otros valores.

CUADRO 3.1 RENDIMIENTO DE DUMPER 14 Yd3

Rendmentovs Distancia



CUADRO 3.2 RENDIMIENTO DUMPER DE 10 YD3


CUADRO Nº 3.3 RENDIMIENTO DE SCOOP 5 YD3

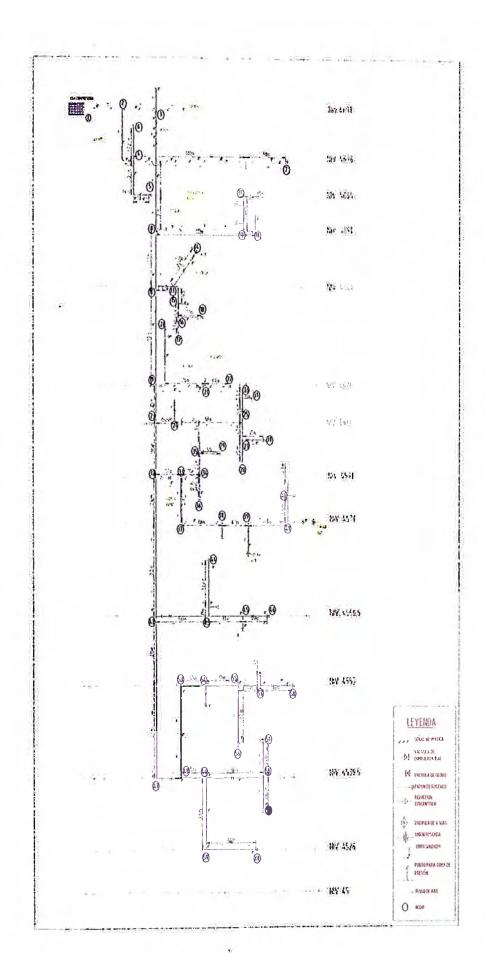
RENDIMENTO SCOOP BLECTRICO 3.5 YeB vs. DISTANCIA

CUADRO Nº 3.4 RENDIMIENTO DE SCOOP ELECTRICO DE 3.5 YD3

RENDIMENTOSCOOP 5 Yell3 vs. DISTANDIA

1.5 SERVICIOS AUXILIARES

SISTEMA DE VENTILACIÓN


La mina cuenta con un sistema de ventilación que permite un ambiente seguro y adecuado para el trabajo. Para lograr este objetivo se debe proveer una cantidad adecuada de aire fresco a las zonas de trabajo con el fin de diluir la contaminación del aire hasta concentraciones aceptables y dotar al aire de una velocidad suficiente para dispersar la contaminación.

SISTEMA DE AIRE COMPRIMIDO Y ENERGIA ELECTRICA.

Los equipos con que se cuenta necesitan de ciertos requerimientos como son aire comprimido y energía eléctrica, para ello sea implementado toda una red en el interior de la mina para satisfacer adecuadamente los requerimientos de los diferentes equipos de perforación, equipos de proyección de shocret y de proyección del anfo en la voladura.

A continuación se muestra los unifilares de aire comprimido en cada nivel de la mina.

DIAGRAMA DE UNIFILARES DE AIRE COMPRIMIDO EN CADA NIVEL DE LA MINA.

3.6 PERSONAL

EMISA cuenta en la actualidad con una fuerza laboral de 317 personas, desde el inicio de nuestras operaciones se implementó el sistema acumulativo de trabajo 14 x 7 es decir cada trabajador labora 14 días, 10 horas día en dos turnos y luego descansa 7 días. Iscaycruz cubre el 100% del costo de alimentación, alojamiento y transporte de la mina a la ciudad de Lima para cada trabajador.

Campamento Central – EMISA

DISTRIBUCION DE LA FUERZA LABORA	44	
EMPRESA MINERA ISCAYCRUZ S.A.		
e		
Lima	2	
Mina	315	
Sub Total	317	
EMPRESAS DE SERVICIOS		
Operaciones Mina	97	
Operaciones Superficie	305	
Seguridad	30	
Alimentación	33	
8		
Sub Total	465	
Total	782	

CAPITULO 4 : HERRAMIENTAS ESTADISTICAS BASICAS PARA EL MEJORAMIENTO DE LA CALIDAD EN LA MINA

4.1 EL PAPEL DE LOS MÉTODOS ESTADISTICOS EN LOS PROCESOS DE PRODUCCIÓN EN MINA

La maximización de la efectividad del equipo en la mina Iscaycruz, requiere la completa eliminación de fallas defectos y otros fenómenos negativos en otras palabras, las perdidas Incurridas en la operación de equipo. Nuestra meta es el cero averías y el cero defectos. Para ello hacemos uso de las herramientas estadísticas básicas para el mejoramiento de la calidad en nuestra mina

Los métodos estadísticos proporcionan un medio eficaz para desarrollar una nueva tecnología y controlar la calidad en las operaciones del ciclo de minado, perforación, voladura, limpieza, relleno cementado, sostenimiento.

El conocimiento de los métodos estadísticos se ha convertido en parte normal de la capacitación de un ingeniero, pero el conocimiento de los métodos estadísticos no proporcionan inmediatamente la habilidad para usarlos. La habilidad para analizar las cosas desde el punto de vista estadístico es más importante que los métodos individuales.

Finalmente, queremos subrayar que lo importante no es solamente el conocimiento de los métodos estadísticos como tal sino mas bien la actitud mental hacia su utilización.

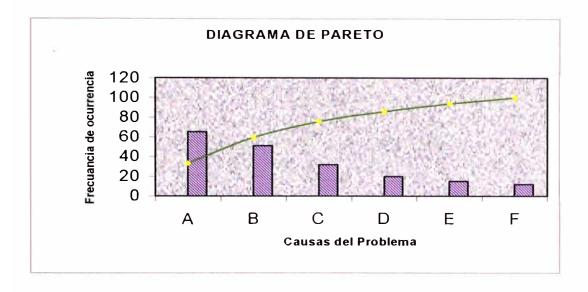
4.2 DIAGRAMA PARETO

4.2.1 ¿QUÉ SON LOS DIAGRAMAS DE PARETO?

El diagrama de Pareto es una gráfica que representa en forma ordenada el grado de importancia que tienen los diferentes factores en un determinado problema, tomando en consideración la frecuencia con que ocurre cada uno de dichos factores.

Su nombre se debe a Vilfredo Pareto, un economista Italiano que centraba su atención en el concepto de los "pocos vitales" contra los "muchos vitales. Los primeros se refieren a aquellos pocos factores que representan la parte más grande o el porcentaje más alto de un total, mientras que los segundos son aquellos numerosos factores que representan la pequeña parte restante.

Esta herramienta fue popularizada por Joseph Juran y Alan Lakelin; este último formuló la **regla 80-20** basando en los estudios y principios de Pareto:


Aproximadamente el 80% de un valor o de un costo se debe al 20% de los elementos causantes de éste.

Ejemplo 1:

- a) El 80% de las entradas por ventas de una compañía se debe al 20% de sus clientes.
- b) El 80% del valor de un inventario de artículos se debe al 20% de estos artículos.
- c) El 80% del total de defectos encontrados en un producto se debe al 20% de los tipos de causas identificados.

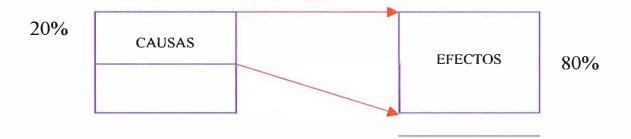
4.2.2 ¿PARA QUÉ SIRVE EL DIAGRAMA DE PARETO?

El objetivo del diagrama de pareto es el identificar los pocos vitales o ese 20% de tal manera que la acción correctiva que se tome, se aplique donde nos produzca un mayor beneficio. El diagrama de Pareto, al catalogar los factores por orden de importancia, facilita una correcta toma de decisiones. A continuación se muestra el esquema general de un Diagrama de Pareto.

Beneficios

- Canalizar los esfuerzos hacia los "pocos vitales", es decir, los más importantes.
- Ayuda a priorizar y a señalar la importancia de cada una de las áreas de oportunidad.
- Es el primer paso para la realización de mejoras.
- Se aplica en todas las situaciones en donde se pretende efectuar una mejora, en cualquier de los componentes de la Calidad en Todo, la calidad del producto / servicio, costos, entrega, seguridad y moral.
- Permite la comparación antes / después, ayudando a cuantificar el impacto de las acciones tomadas para lograr mejoras.
- Promueve el trabajo en equipo ya que se requiere la participación de todos los individuos relacionados con el área para analizar el problema, obtener información y llevar a cabo acciones para su solución.
- El Diagrama de Pareto se utiliza también para expresar los costos que significan cada tipo de defecto y los ahorros logrados mediante el efecto correctivo llevado a cabo a través de determinadas acciones.

Los diagramas de Pareto son gráficos de barras especializados que pueden emplearse para mostrar la frecuencia relativa de hechos tales como son las paradas de equipo, las reparaciones, fallas o accidentes, etc., durante las operaciones de ciclo de minado.


Un diagrama de Pareto presenta la información de orden descendente, desde la categoría mayor hasta la más pequeña. Los puntos se dibujan para el total agregado en cada barra y se conectan con una línea para crear un gráfico que muestra la adición incremental relativa de cada categoría respecto al total.

4.2.2 ¿CÔMO ELABORAR EL DIAGRAMA DE PARETO?

PASO 1:

Identificar el problema o área de mejora en la que se va a trabajar.

En todo fenómeno, que resulte como consecuencia de varias causas o factores, se encontrará que un pequeño número de causas contribuyen a la mayor parte del efecto.

EJEMPLO:

EQUIPO	DEMORAS (minutos)
D	20
F	12
E	15
A	65
С	32
В	51

EQUIPO	DEMORAS (minutos)	%Rt.	%acumulado
A	65	33	33
8	51	26	59
c	32	16	76
D	20	10	86
E	15	8	94
F	12	6	100

PASO 2:

Elabore una lista de los factores incidentes en el problema, considerando por ejemplo las características, tipos de defectos, tiempos, etc.

PASO 3:

Establezca el período de tiempo dentro del cual se recolectarán los datos. El tiempo a ser estudiado dependerá de la situación en la que sé este analizando.

PASO 4:

Elabore una tabla de datos para la lista de ítems, los totales individuales, la composición porcentual y la frecuencia con que ocurre cada factor o tipo de defecto dentro del período fijado, especificando el número total de casos verificados.

PASO 5:

Con base a los datos tomados en la tabla de datos, ordene los distintos factores conforme a su frecuencia, comenzando con la que se da un número mayor de veces. Registre además, el número de casos de cada factor, n_i (i=1, 2, 3,...m) siendo m el número total de factores distintos en la lista tal que:

$$n_1 + n_2 + n_3 + n_4 + \dots + n_m = d$$

Donde d es el número total de veces que se presentó el problema.

PASO 6:

En caso de conocer el número total de observaciones N, se puede calcular el porcentaje absoluta de casos con respecto a ese total para cada factor analizado.

$$a_i\% = \underline{n_i} x \ 100$$

Cada ai, representa el porcentaje de mejora que se obtendría al eliminar el factor i correspondiente.

PASO 7:

Obtenga el porcentaje de mejora que se obtendría al eliminar el factor, con respecto a d:

$$r_i\% = \underline{n_i} \times 100$$
 d donde $i=1,2,3....m$; tal que $r_1+r_2+r_3+.....+r_m=100\%$

PASO 8:

Calcule el porcentaje relativo acumulado (R_i %), sumando en forma consecutiva los porcentajes de cada factor. Con esta información se señala el porcentaje de veces que se presenta el problema y que se eliminaría si se emprendiesen acciones efectivas que supriman los factores principales de los productos defectuosos.

PASO 9:

Presente la información obtenida hasta este paso en una tabla como la que se muestra a continuación.

Factores del problema	Frecuencia de ocurrencia	%absoluto ai% = <u>n; x</u> 100 N	% relativo r;% = <u>n,</u> x 100 d	% relativo acumulado j Rj=∑ r; i=1
1				
2				
•				
M				Ra=100%
	$\sum n_i = d$		\(\sum_{i} \% = 100\%	

PASO 10:

Construya el Diagrama de Pareto.

- 10.1 En el eje horizontal se anotan los factores de izquierda a derecha, en orden decreciente en cuanto a su frecuencia. En el eje vertical izquierdo se gradúa en tal forma que sirva para mostrar el número de casos que se da en razón de cada uno de los factores. El eje vertical derecho mostrará el porcentaje relativo acumulado.
- 10.2 Trace las barras correspondientes a los distintos factores. La altura de las barras representa el número de veces que ocurrió el factor, y se dibujan con la misma amplitud, una tras otra.
- 10.3 Coloque los puntos que representan el porcentaje relativo acumulado, teniendo en cuenta la graduación da la barra vertical derecha; los puntos se colocan en la posición que corresponde al extremo derecho de cada barra, y

se traza una curva que una dichos puntos. En esta forma queda graficada la curva del porcentaje relativo.

10.4 El Diagrama de Pareto debe acompañarse de la debida documentación, mencionando el problema, fechas, responsables, lugares, etc.

4.3 DIAGRAMAS DE CAUSA EFECTO.

4.3.1 ¿QUÉ SON LOS DIAGRAMAS CAUSA EFECTO?

Un Diagrama Causa Efecto es una técnica de análisis en la resolución de problemas desarrollada formalmente por el profesor Kaoru Ishikawa, de la universidad de Tokio, en 1943, quien la utilizó con un grupo de ingenieros en una planta de la Kawasaki Steel Works, para explicar cómo diversos factores que afectan un proceso pueden ser clasificados y relacionados de cierta manera.

El Diagrama muestra la relación sistemática entre un **resultado fijo** y sus causas.

El **resultado fijo** de la definición es comúnmente denominado el "efecto", el cual representa un área de mejora, un problema a resolver, un proceso o una **característica** de calidad.

Un diagrama de Causa - Efecto es un método útil para clarificar las causas de un problema. Clasifica las diversas causas que se piensan afectan los resultados del trabajo, señalando con flechas la relación Causa - Efecto entre ellas.

El diagrama de Causa - Efecto se denomina a veces diagrama de espinas o pescado. Obsérvese que el diagrama tiene un lado de causas y un lado de efectos. Los efectos se definen como características de calidad particulares o problemas del trabajo.

Una vez que el problema / efecto es definido, se identifican los factores que contribuyen a él (causas).

CAUSA(S) EFECTO

Mientras que puede haber solamente una o varias causas del problema, existen probablemente muchas causas potenciales (subcausas) que podrían aparecer en el Diagrama Causa – Efecto. En general, la presentación que el Diagrama de Causa – Efecto da a la relación existente entre las causas/subcausas y el efecto,

asume la forma de un esqueleto de pescado, razón por la cual el diagrama toma este otro nombre.

A continuación se muestra un esquema general del Diagrama Causa - Efecto

Lluvia de ideas

Es importante que el diagrama Causa Efecto represente las perspectivas de varias personas diferentes implicadas en el problema/área de oportunidad más que la visión de uno o dos individuos. Una técnica adecuada para este fin es la "lluvia de ideas" efectuada por un grupo de trabajo.

Las siguientes son algunos de los puntos que deben cuidarse al organizar una sesión de "lluvia de ideas":

Sugerencias

- Debe alentarse la participación de todos y cada uno de los participantes.
 - No se hará ninguna crítica a alguna sugerencia. Abstenerse de juzgar entre lo bueno y lo malo.
 - Las sugerencias no deben limitarse al área personal del trabajo.
 - Puede ser útil un período de observación entre el tiempo que el diagrama es propuesto al tiempo que es terminado.
 - Los participantes deben concentrarse en el análisis de un problema, y no entretenerse en justificar la aparición del problema.

4.3.2 TIPOS DE DIAGRAMAS CAUSA EFECTO

Existen tres tipos básicos del diagrama Causa Efecto:

- Análisis de Variabilidad
- Análisis del proceso por etapas
- Diagrama para el proceso

4.3.2.1 Análisis de Variabilidad

El diagrama Causa Efecto básico es el utilizado para analizar la variabilidad o dispersión de una característica de calidad. Los siguientes pasos son recomendados para construir el diagrama:

PASO 1:

Defina el Efecto, el efecto debe ser definido de un modo claro. Escriba el enunciado del efecto en una hoja. Encierre el enunciado en un cuadro y dibuje una flecha con su punta conectada con el cuadro.

PASO 2:

Identifique las Causas mayores y subcausas. El equipo de trabajo sesionará, mediante una "lluvia de ideas", para reconocer las causas principales y subcausas que contribuyan al efecto, y éstas deben registrarse en el diagrama (las causas y subcausas constituyen sus ramas o espinas); las ramas principales corresponden al concepto como material, método, máquina, medio ambiente y hombre.

PASO 3:

Verifique las causas probables. Las causas más probables deben ser analizadas, recolectando datos para ver si el impacto sobre el problema es significativo.

PASO 4:

Ponderar las causas antes de evaluarlas. Algunas de las cuestiones a considerar en este momento son las siguientes:

¿Es esta causa una variable o un atributo?

¿Ha sido la causa definida operacionalmente?

¿Existe una gráfica de control o un registro para esta causa?

¿Interactúa esta causa con las otras?

PASO 5:

Remarque las causas más probables. De la lista de causas probables que afectan al proceso remarque aquellas que se considera tienen más impacto sobre el problema (por ejemplo, enciérrelas en un circulo).

PASO 6:

Verifique las causas probables. La causa más probables debe ser analizada, recolectando datos para ver si el impacto sobre el problema es significativo. En caso negativo, se hace lo mismo con las otras.

Es importante señalar que en el Diagrama Causa- Efecto sólo se anotan las causas y no las soluciones del problema / área de oportunidad.

Cada una de las causas potenciales que han sido identificadas pueden ser potencialmente examinadas de un modo detallado preguntando para cada una de ellas lo siguiente

Quién qué dónde cuándo porqué

La meta que se busca es llegar al corazón mismo del problema.

4.3.1.2 Análisis del proceso por etapas

Esta forma del diagrama Causa- Efecto se usa cuando una serie de eventos (pasos en un proceso) crea un problema en un producto / servicio y no está claro cuál evento o paso es la causa mayor del problema. Cada categoría o sub – proceso es examinada para ver si hay causas posibles; después de que las causas de cada etapa son descubiertas, se seleccionan y verifican las causas significativas del problema.

En cada etapa del proceso la pregunta a efectuar sería:

¿ Qué problemas de calidad podrían ocurrir en esta fase del proceso?

El Diagrama Causa – Efecto elaborado por faces del proceso facilita la comunicación entre las operaciones y pueden ser usados para prevenir problemas en el proceso.

4.3.1.3 Diagrama para el proceso

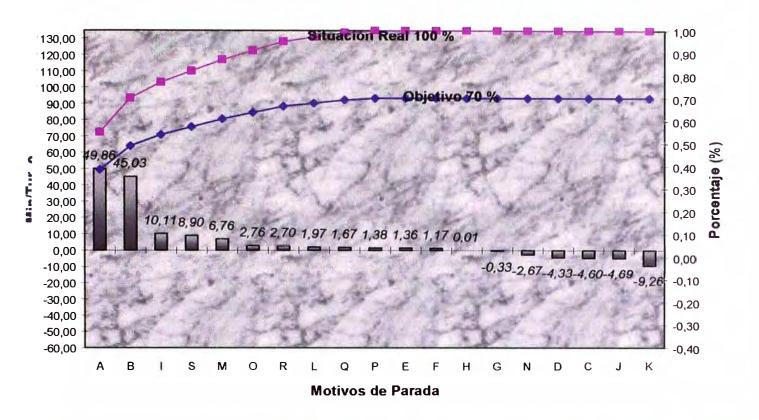
Esto resulta de la combinación del diagrama Causa – Efecto con un modelo (a escala o un dibujo o fotografía) del proceso (o máquina, pieza, etc.), señalando las diversas causas que impacten en cada parte del mismo.

4.3.3 ¿PARA QUÉ SIRVE EL DIAGRAMA DE CAUSA- EFECTO?

- El elaborar un Diagrama Causa Efecto es una labor educativa en si misma, en la cual se favorece el intercambio de técnicas y experiencias entre los miembros del grupo de trabajo, cada uno de los cuales ganará nuevo conocimiento ya sea al realizar el diagrama o al estudiar uno terminado.
- El diagrama puede ser utilizado para el análisis de cualquier problema, ya que sirve tanto para identificar los diversos factores que afectan un resultado, como para clasificarlos y relacionarlos entre sí.
- El análisis que supone la elaboración del diagrama ayuda también a determinar el tipo de datos a obtener con el fin de confirmar si los factores seleccionados fueron realmente las causas del problema.
- El diagrama se puede emplear, por otra parte, para prevenir problemas, pues proporciona una visión de conjunto, bien sea de los factores de una determinada característica de calidad, o bien, de las fases que integran el proceso. Cuando se detectan causas potenciales de un problema, éstas pueden prevenirse si se adoptan controles apropiados.
- Finalmente, el diagrama Causa-Efecto muestra la habilidad profesional que posee el personal encargado del proceso; entre más alto sea el nivel, mejor será el diagrama resultante.

4.4 DIAGRAMA DE PARETO EN LAS OPERACIONES DEL CICLO DE MINADO

4.4.1 PERFORACIÓN.


4.4.1.1 PERFORACIÓN AVANCES.

La perforación se realiza de acuerdo a normas y procedimientos de trabajo en interior mina (NOSA).

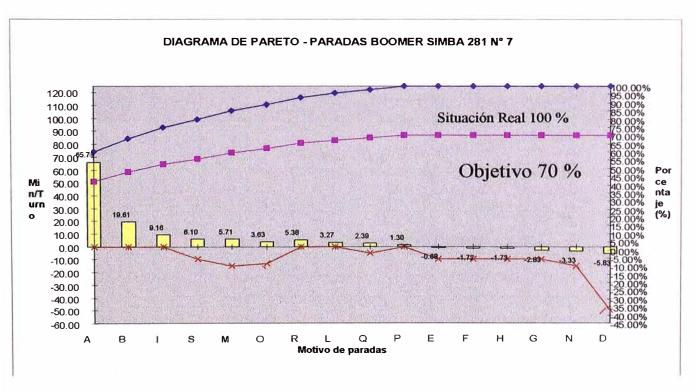
Se utilizan Jumbos Electro-Hidráulicos BOMER ATLAS COPCO modelo 281, H 104. De un solo brazo, con perforadora COP 1238, con barras R32 de 12' de longitud, con brocas de 51 y 41 mm de diámetro. Con secciones de frente 4 x 3.5 m y 3 x 3.5 m esto tanto en desmonte y mineral.

A continuación detallamos los diagramas de pareto para los Jumbos Electro-Hidráulicos:

DIAGRAMAS DE PARETO - PARADAS JUMBO BOOMER 281 N° 8

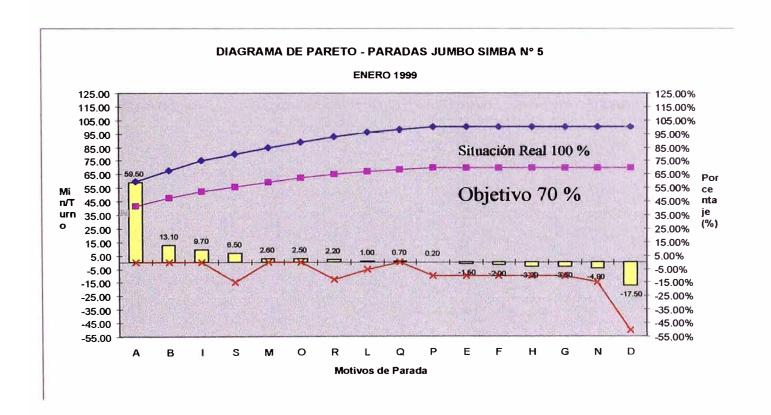
GRAFICO 4.1 PARADA DE JUMBO BOOMER 281

70	Motivos de Parada	Condición	Tiempo Stand.	Tiempo Real	% Diferencia	Diferencia
	REPARACION MECANICA	NO DEBE EXISTIR		49.86		49.86
	PLANIFICADO PARA NO TRABAJAR	NO DEBE EXISTIR		45.03		45.03
-	FALTA DE AGUA	NO DEBE EXISTIR		10.11		10.11
	FALTA DE VENTILACION	NO DEBE EXISTIR		8.90		8.90
	REPARACION ELECTRICA	NO DEBE EXISTIR		6.76		6.76
	ESPERANDO LIMPIEZA	NO DEBE EXISTIR		2.76		2.76
	FALTA LABOR	NO DEBE EXISTIR		2.70		2.70
	ORDEN DE TRABAJO	MANTENER	5	6.97	39.40	1.97
	FALTA DE ENERGIA	NO DEBE EXISTIR		1.67		1.67
	DESATADOS	NO DEBE EXISTIR		1.38		1.38
	TRASLADO DEL OPERADOR A LA LABOR	MANTENER	10	11.36	13.60	1.36
	SALIDA DEL OPERADOR	MANTENER	10	11.17	11.70	1.17
	CHEQUEO DE LA LABOR	MANTENER	10	10.01	0.10	0.01
	CHEQUEO DEL EQUIPO	MANTENER	10	9.67	-3.30	-0.33
1	OTROS	MANTENER	10	7.33	-26.70	-2.67
, =	AFILADO DE BROCAS	MANTENER	20	15.67	-21.65	-4.33
	INSTALACIONES	MANTENER	20	15.40	-23.00	-4.60
	REFRIGERIO	MANTENER	15	10.31	-31.27	-4.69
	MANTENIMIENTO PROGRAMADO	MANTENER	17	7.74	-54.47	-9.26
			127	234.80	84.88	107.80


De acuerdo con los resultados obtenidos en los diagramas de pareto se observa que el mayor número de paradas en los Jumbos son las siguientes:

- Reparación mecánica.
- Planificado para no trabajar.
- Mantenimiento programado.
- Instalaciones.
- Afilado de brocas.
- Salida del operador.
- Chequeo de labor.
- Traslado del operador hacia la labor (inicio de guardia)
- Reparación y/o cambio de llanta.

4.4.1.2 PERFORACIÓN TALADROS LARGOS.


La perforación se realiza de acuerdo a normas de trabajo en interior mina (NOSA). Se utilizan Jumbos Electro-Hidráulicos Boomer 281, Simba H157. Utilizando una perforadora COP 1238, con barras de extensión T38 de 4' de longitud, con brocas de 64 mm de diámetro.

A continuación detallamos los diagramas de pareto para los Jumbos Simba:

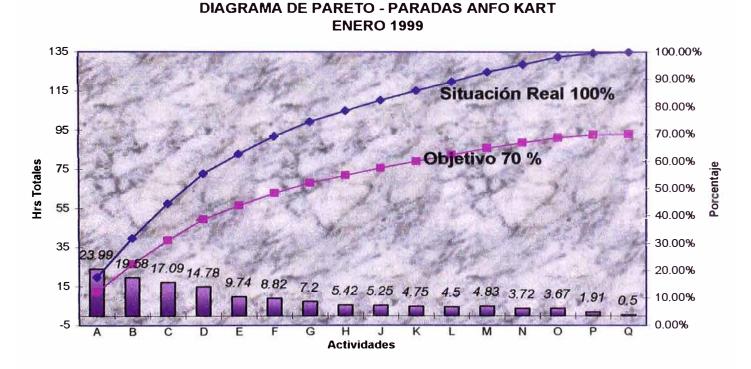
GRAFICO 4.2 PARADA DEL BOOMER SIMBA 281

Código	Motivos de Parada	Condición	Tiempo Stand.	Tlempo		Difere
	DI ANISIOADO DADA NO TRADA IAD	INCORPER ENTER		Real	Diferencia	
	PLANIFICADO PARA NO TRABAJAR	NO DEBE EXISTIR		65.78	l	65.78
В	REPARACIÓN NO MECANICA	NO DEBE EXISTIR		19.61		19.61
	FALTA DE AGUA	NO DEBE EXISTIR		9.16		9.16
S	REFRIGERIO	MANTENER	10	16.10		6.10
M	INSTALACIONES	MANTENER	15	20.71		5.71
0	MANTENIMIENTO PROGRAMADO	MANTENER	13	16.63		3.63
R	REPARACIÓN ELECTRICA	NO DEBE EXISTIR		5.38		5.38
L	OTROS	NO DEBE EXISTIR		3.27		3.27
Q	ORDEN DE TRABAJO	MANTENER	5	7.39		2.39
P	VENTILACIÓN	NO DEBE EXISTIR		1.30		1.30
E	SALIDA DE OPERACIÓN	MANTENER	10	9.32	-6.80	-0.68
F	TRASLADO DEL OPERADOR A LA LABOR	MANTENER	10	8.28	-17.20	-1.72
Н	CHEQUEO DE LA LABOR	MANTENER	10	8.27	-17.30	-1.73
G	CHEQUEO DEL EQUIPO	MANTENER	10	7.17	-28.30	-2.83
N	AFILADO DE BROCA	MANTENER	15	11.67	-22.20	-3.33
D	DISPARO	MANTENER	50	44.17	-11.66	-5.83
			148	254.21	71.76	[106.21]

GRAFICO 4.3 PARADA DEL JUMBO SIMBA

Código	Motivos de Parada	Condición	Tiempo Stand.	Tiempo Real	% Diferencia	Diferencia
A	PLANIFICADO PARA NO TRABAJAR	NO DEBE EXISTIR		59.50		59.50
В	FALTA DE AGUA	NO DEBE EXISTIR		13.10		13.10
	REPARACIÓN MECANICA	NO DEBE EXISTIR		9.70		9.70
S	INSTALACIONES	MANTENER	15	21.50	43.33	6.50
M	OTROS	NO DEBE EXISTIR		2.60		2.60
0	REPARACIÓN ELECTRICA	NO DEBE EXISTIR		2.50		2.50
R	MANTENIMIENTO PROGRAMADO	MANTENER	13	15.20	16.92	2.20
	ORDEN DE TRABAJO	MANTENER	5	6.00	20.00	1.00
Q	VENTILACIÓN	NO DEBE EXISTIR		0.70		0.70
P	REFRIGERIO	MANTENER	10	10.20	2.00	0.20
E	CHEQUEO DE LABOR	MANTENER	10	8.50	-15.00	-1.50
F	SALIDA DEL OPERADOR	MANTENER	10	8.00	-20.00	-2.00
Н	CHEQUEO DEL EQUIPO	MANTENER	10	6.80	-32.00	-3.20
G	TRASLADO OPERADOR A LA LABOR	MANTENER	10	6.50	-35.00	-3.50
N	AFILADO DE BROCA	MANTENER	15	10.10	-32.67	-4.90
D	DISPARO	MANTENER	50	32.50	-35.00	-17.50
			148	213.40	44.19	65.40

De acuerdo con los resultados obtenidos en los diagramas de pareto se observa que el mayor numero de paradas en los Jumbos son las siguientes:


- Planificado para no trabajar.
- Reparación mecánica.
- Mantenimiento programado.
- Apoyo a disparadores.
- Instalaciones.

- Afilado de brocas.
- Traslado del operador a la labor (inicio de guardia)
- Reparación y/o cambio de llantas.
- Otros.

4.4.2 VOLADURA

La voladura se realiza de acuerdo a normas de trabajo en interior mina (NOSA). El objetivo de la voladura en frentes es conseguir un buen avance manteniendo una sección definida, tomando como parámetros de calidad de la roca, la geométrica del disparo, la cantidad de explosivo. Para el carguio de taladros con anfo se utiliza el Anfokart de MILLER TECHNOLOGY INC.

A continuación detallamos los diagramas de pareto para el ANFOKART:

GRAFICO 4.4 PARADAS DE ANFO KART

copigo	ACTIVIDAD
Α	TRASLADO DEL EQUIPO
В	FALTA AIRE COMPROMIDO
С	REPARACIŌNES MECĀNICAS
D	INSTALACIONES
E	REFRIGERIO
F	REPERACIÓN ELECTRICA
G	INSPECCIÓN Y DESATADO
Н	CHEQUEO DEL EQUIPO EN FRIO
J	CHEQUEO DEL EQUIPO ENCENDIDO
K	REPARACIÓN LLANTA
L	DESINSTALACIÓN
М	FALTA DE VENTILACIÓN
N	TANQUEO DE PETROLEO
0	LIMPIEZA DE TALADROS
Р	ESPERANDO LIMPIEZA SCOOP
Q	CAMBIO MANGUERAS ALTA TENSIÓN

De acuerdo con los resultados obtenidos en los diagramas de pareto se observa que el mayor numero de paradas en el ANFOKART son las siguientes:

- Traslado de equipo.
- Falta de aire comprimido.
- Reparación mecánica.
- Instalaciones.
- Reparación eléctrica.
- Inspección y desatado.
- Chequeo de equipo.
- Reparación y/o cambio de llanta.
- Desinstalación.
- Otros

4.4.3 LIMPIEZA MINERAL Y DESMONTE

La limpieza se realiza de acuerdo a normas y procedimientos de trabajo en interior mina (NOSA).

Para ello utilizamos los equipos LHD, scoops de marca Tamrock. Diesel de capacidad 3.5 yd³, 5. yd³ y scoops eléctrico de capacidad 3.5 yd³. La limpieza de mineral y/o desmonte se realiza de los tajeos hacia los echaderos (ore pass), con un radio de acción promedio de 150m.

A continuación detallamos los diagramas de pareto para los scoops de 3.5 y 5 yd3

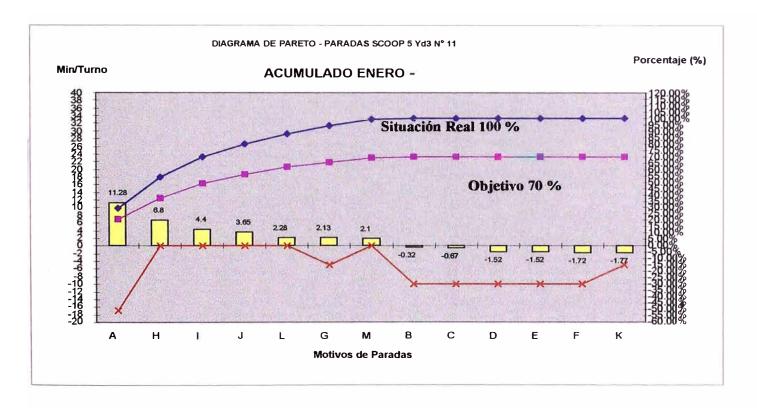
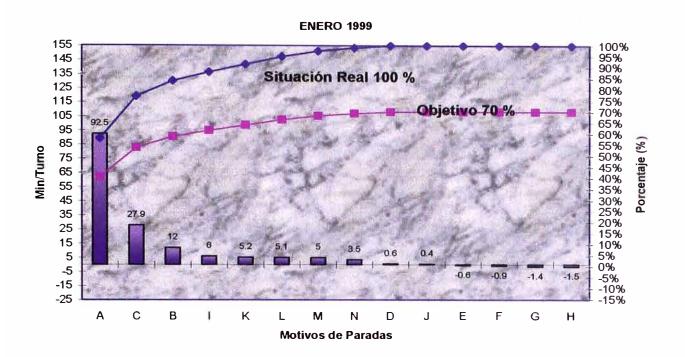



GRAFICO 4.5 PARADAS SCOOP 5 YD3

Código	Motivos de Parada	Condición	Tiempo Stand.	Tiempo Real	% Diferencia	Diferencia
Α	PLANIFICADO PARA NO TRABAJAR	MANTENER	17	28.28	66.35	11.28
Н	REPARACIÓN MECÁNICA	NO DEBE EXISTIR		6.80		6.80
1	APOYO A SOSTENIMIENTO	NO DEBE EXISTIR		4.40		4.40
J	OTROS	NO DEBE EXISTIR		3.65		3.65
L	DESATADOS	NO DEBE EXISTIR		2.28		2.28
G	ORDEN DE TRABAJO	MANTENER	5	7.13	42.60	2.13
М	REPARACIÓN DE TUBERIAS	NO DEBE EXISTIR		2.10		2.10
В	REFRIGERIO	MANTENER	10	9.68	-3.20	-0.32
С	SALIDA DEL OPERADOR	MANTENER	10	9.33	-6.70	-0.67
D	CHEQUEO DE LA LABOR	MANTENER	10	8.48	-15.20	-1.52
Ε	CHEQUEO DEL EQUIPO	MANTENER	10	8.48	-15.20	-1.52
F	TRASLADO OPERADOR A LA LABOR	MANTENER	10	8.28	-17.20	-1.72
К	LLENADO DE PETROLEO	MANTENER	5	3.23	-35.40	-1.77
			77	102.12	32.62	25.12

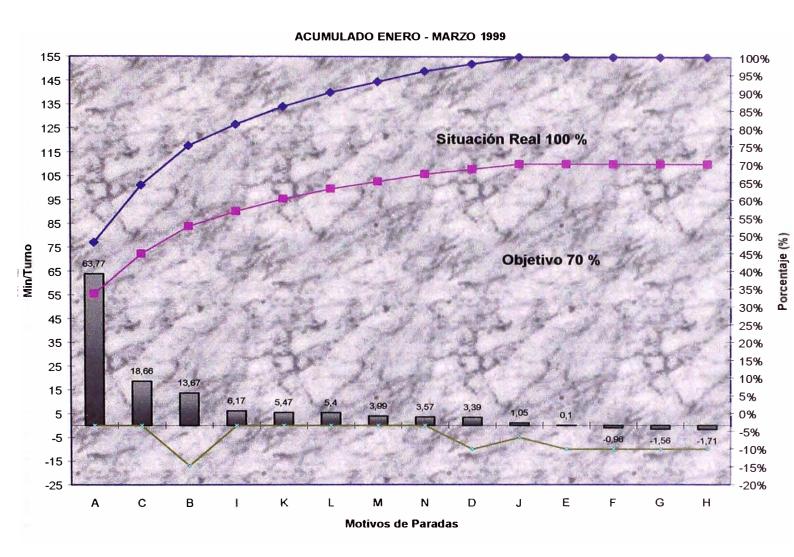
DIAGRAMA DE PARETO - PARADAS SCOOP 3.5 Yd3 N° 6

GRAFICO 4.6 PARADAS SCOOP 3.5 YD3

Código	Motivos de Parada	Condición	Tiempo Stand.	Tiempo Real	% Diferencia	Diferencia
Α	REPARACIÓN MECÁNICA	NO DEBE EXISTIR		92.50		92.50
В	MANTENIMIENTO MECÁNICO	MANTENER	17	44.90	164.12	27.90
С	PLANIFICADO PARA NO TRABAJAR	NO DEBE EXISTIR		12.00		12.00
1	ORDEN DE TRABAJO	NO DEBE EXISTIR		6.00		6.00
К	LLENADO DE PETROLEO	NO DEBE EXISTIR		5.20		5.20
L	REPARACIÓN DE LLANTA	NO DEBE EXISTIR		5.10		5.10
М	OTROS	NO DEBE EXISTIR		5.00		5.00
N	REPARACIÓN ELECTRICA	NO DEBE EXISTIR		3.50		3.50
J	APOYO A SOSTENIMIENTO	MANTENER	5	5.60	12.00	0.60
D	REFRIGERIO	MANTENER	10	10.40	4.00	0.40
E	CHEQUEO DEL EQUIPO	MANTENER	10	9.40	-6.00	-0.60
F	CHEQUEO DE LA LABOR	MANTENER	10	9.10	-9.00	-0.90
G	TRASLADO OPERADOR A LA LABOR	MANTENER	10	8.60	-14.00	-1.40
Н	SALIDA DEL OPERADOR	MANTENER	10	8.50	-15.00	-1.50
			72	225.80	213.61	153.80

De acuerdo con los resultados obtenidos en los diagramas de pareto se observa que el mayor número de paradas en los scoops son las siguientes:

- Reparación mecánica.
- Mantenimiento programado.
- Salida del operador.
- Chequeo de labor.
- Traslado del operador.
- Refrigerio.
- Reparación y/o cambio de llantas.
- Apoyo a sostenimiento


4.4.4 RELLENO CEMENTADO

El relleno se realiza de acuerdo a normas y procedimientos de trabajo en interior mina (NOSA).

El objetivo del ciclo de relleno permite dar estabilidad en la zona adyacente al tajo que se concreta, obteniéndose luego de fraguado una labor nueva a minar (labor vecina). Es por eso la importancia de hacer llegar a la labor una mezcla de relleno sin contaminantes, de manera que se obtenga un sólido de concreto, con la resistencia requerida. Para ello utilizamos los equipos LHD, scoops de marca Tamrock. Diesel de capacidad 3.5 yd³, 5.5 yd³ y scoops eléctrico de capacidad 3.5 yd³.

A continuación detallamos los diagramas de pareto para los scoops de 3.5 y 5.5 yd3

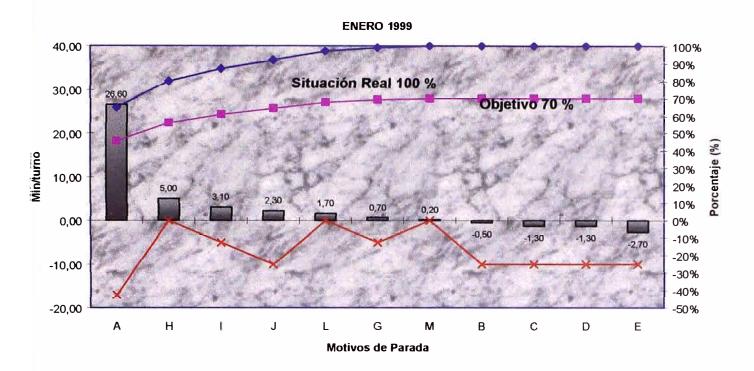

DIAGRAMA DE PARETO - PARADAS SCOOP 3.5 Yd3 N° 9

GRAFICO 4.7 PARADA DEL SCOOP 3.5 Yd3

dig	Motivos de Parada	Condición	Tiempo Stand.	Tiempo Real	% Diferencia	Diferencia
o						
A	REPARACIÓN MECÁNICA	NO DEBE EXISTIR		63.77		63.77
С	PLANIFICADO PARA NO TRABAJAR	NO DEBE EXISTIR		18.66		18.66
В	MANTENIMIENTO MECÁNICO	MANTENER	17	30.67	80.41	13.67
T	ORDEN DE TRABAJO	NO DEBE EXISTIR		6.17		6.17
K	LLENADO DE PETROLEO	NO DEBE EXISTIR		5.47		5.47
L	REPARACIÓN DE LLANTA	NO DEBE EXISTIR		5.40		5.40
М	OTROS	NO DEBE EXISTIR		3.99		3.99
N	REPARACIÓN ELECTRICA	NO DEBE EXISTIR		3.57		3.57
D	REFRIGERIO	MANTENER	10	13.39	33.90	3.39
J	APOYO A SOSTENIMIENTO	MANTENER	5	6.05	21.00	1.05
Ε	CHEQUEO DEL EQUIPO	MANTENER	10	10.10	1.00	0.10
F	CHEQUEO DE LA LABOR	MANTENER	10	9.04	-9.60	-0.96
G	TRASLADO OPERADOR A LA LABOR	MANTENER	10	8.44	-15.60	-1.56
Н	SALIDA DEL OPERADOR	MANTENER	10	8.29	-17.10	-1.71
			72	193.01	168.07	121.01

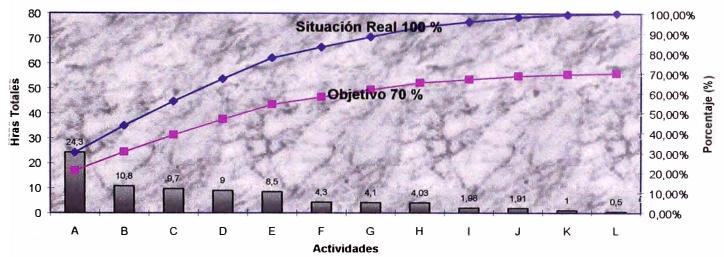
DIAGRAMA DE PARETO - PARADAS SCOOP 5 Yd3 N° 10

GRAFICO 4.8 PARADAS DEL SCOOP 5 Yd3

:6digo	Motivos de Parada	Condición	Tiempo Stand.	Tiempo Real	% Diferencia	Diferencia
Α	MANTENIMIENTO PROGRAMADO	MANTENER	17	43.60	156.47	26.60
I	OTROS	NO DEBE EXISTIR		5.00		5.00
F	ORDEN DE TRABAJO	MANTENER	5	8.10	62.00	3.10
В	REFRIGERIO	MANTENER	10	12.30	23.00	2.30
J	REPARACIÓN MECANICA	NO DEBE EXISTIR		1.70		1.70
Н	LLENADO DE PETROLEO	MANTENER	5	5.70	14.00	0.70
K	DESATADOS	NO DEBE EXISTIR		0.20		0.20
С	SALIDA DEL OPERADOR	MANTENER	10	9.50	-5.00	-0.50
D	CHEQUEO DE LABOR	MANTENER	10	8.70	-13.00	-1.30
Ε	CHEQUEO DEL EQUIPO	MANTENER	10	8.70	-13.00	-1.30
G	TRASLADO DEL OPERADOR	MANTENER	10	7.30	-27.00	-2.70
			77	110.80	43.90	33.80

De acuerdo con los resultados obtenidos en los diagramas de pareto se observa que el mayor número de paradas en los scoops son las siguientes:

- Reparación mecánica.
- Planificado para no trabajar.
- Mantenimiento programado.
- Refrigerio.
- Salida del operador.
- Chequeo de la labor.
- Traslado del operador a la labor.
- Apoyo a sostenimiento.


4.4.5 SOSTENIMIENTO

El sostenimiento se realiza de acuerdo a normas y procedimientos de trabajo en interior mina (NOSA).

El objetivo es definir la modalidad y procedimiento aplicado en la determinación del tipo de sostenimiento a ejecutar en una labor. Se realiza utilizando pernos cementado, malla, cimbras y shotcrete. El equipo utilizado para el sostenimiento con shotcrete es la Aliva modelo 262.

A continuación detallamos los diagramas de pareto para la Aliva:

DIAGRAMA DE PARETO - PARADAS ALIVA 262 ENERO 1999

GRAFICO 4.10 PARADA DE ALIVA 262

Código	Motivos de Parada
A	DEMORAS FALTA AIRE COMPRIMIDO
В	TRASLADO DEL EQUIPO
С	INSTALACIONES
D	REPARACION ELECTRICO/MECANICO
Ε	FALTA DE VENTILACION
F	REFRIGERIO
G	ESPERANDO SCOOP PARA TRASLADO
Н	CHEQUEO DEL EQUIPO EN FRIO
ı	FALTA DE ELECTRICIDAD
J	INSPECCION Y DESATADO
K	CHEQUEO DEL EQUIPO ENCENDIDO
L	DESINSTALACIONES

De acuerdo con los resultados obtenidos en los diagramas de pareto se observa que el mayor numero de paradas en la Aliva son las siguientes:

- Falta de aire comprimido.
- Traslado de equipo.
- Instalaciones
- Reparación eléctrica.
- Falta ventilación.
- Esperando scoop para traslado.
- Falta de electricidad.
- Inspección y desatado.

4.5 DIAGRAMAS DE CAUSA EFECTO EN LAS OPERACIONES DEL CICLO DEL MINADO

4.5.1 PERFORACIÓN

4.5.1.1 PERFORACIÓN TALADROS LARGOS

Con los resultados obtenidos con los diagramas de pareto se hicieron los diagramas de causa efecto para solucionar los tiempos improductivos por paradas encontradas en el Jumbo Simba 281, H104. Además se plantearon las acciones que se deberán de tomar para reducir los tiempos improductivos.

JUMBO SIMBA PERFORANDO TALADROS LARGOS

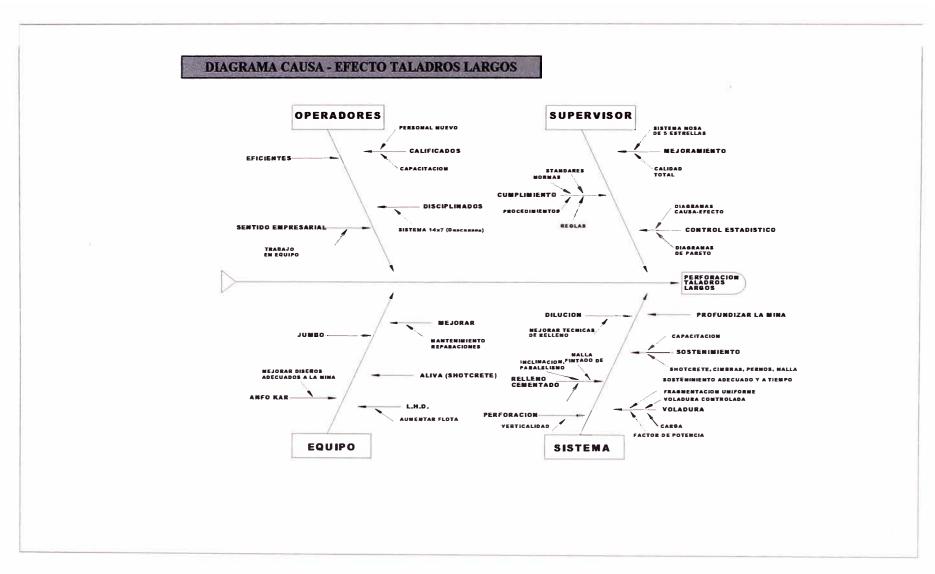


GRAFICO 4.11 DIAGRAMA CAUSA-EFECTO TALADROS LARGOS

4.5.1.2 PERFORACIÓN AVANCES

Con los resultados obtenidos con los diagramas de pareto se hicieron los diagramas de causa efecto para solucionar los tiempos improductivos por paradas encontradas en el Jumbo Boomer 281,H104; en perforación horizontal. Se plantean las acciones que se deberán emplear para reducir los tiempos improductivos.

JUMBO BOOMER 281 - PERFORANDO EN AVANCE HORIZONTALES

JUMBO BOOMER 281 – PERFORANDO TALADROS DE ARRANQUE EN EL FRENTE

DIAGRAMA CAUSA - EFECTO PERFORACION AVANCES

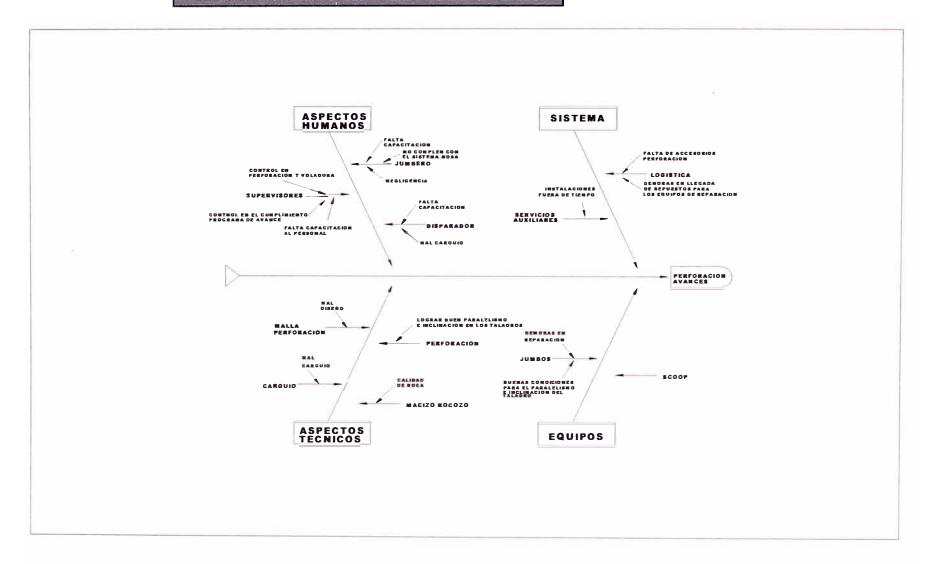
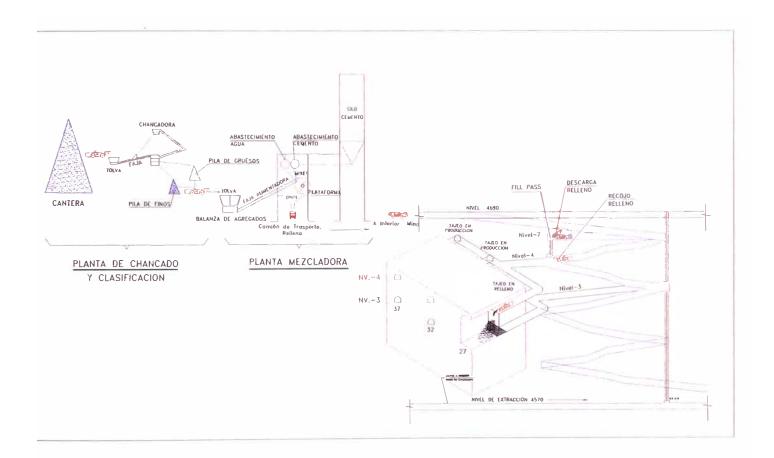



GRAFICO 4.12 DIAGRAMA DE CAUSA - EFECTO PERFORACION AVANCES

4.5.2 RELLENO CEMENTADO

Con los resultados obtenidos con los diagramas de pareto se hicieron los diagramas de causa efecto para solucionar los tiempos improductivos por paradas encontradas en los Scooptrams 3.5 yd³, 5 yd³. Se plantean las acciones que se deberán emplear para reducir los tiempos improductivos.

FLUJOGRAMA DEL SISTEMA DE RELLENO CEMENTADO

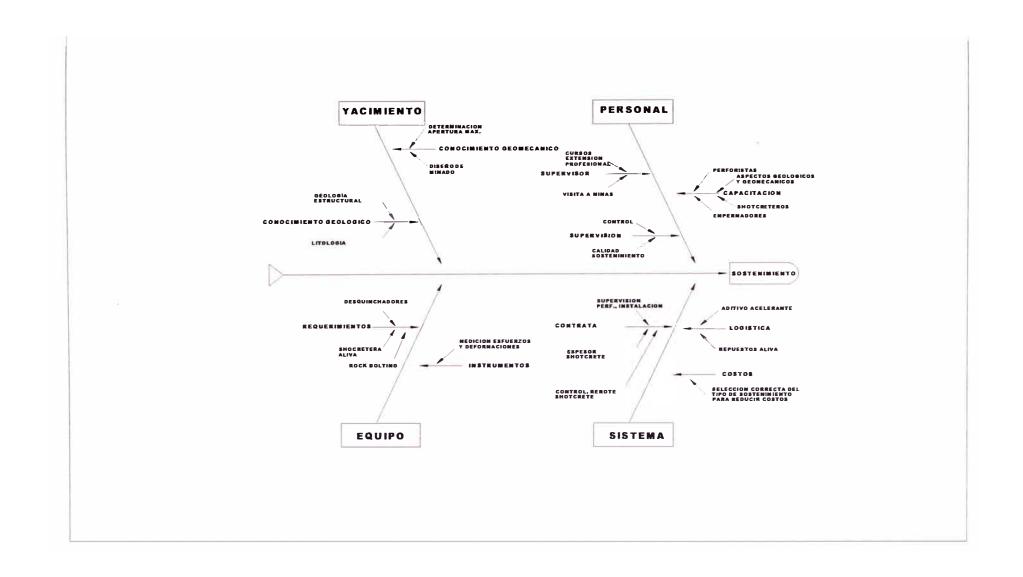


GRAFICO 4.13 DIAGRAMA DE CAUSA – EFECTO RELLENO CEMENTADO

4.5.3 SOSTENIMIENTO

Con los resultados obtenidos con los diagramas de pareto se hicieron los diagramas de causa efecto para solucionar los tiempos improductivos por paradas encontradas en el equipo de shotcrete Aliva. Se plantean las acciones que se deberán emplear para reducir los tiempos improductivos.

SOSTENIMIENTO CON SHOTCRETE EN AVANCE HORIZONTAL

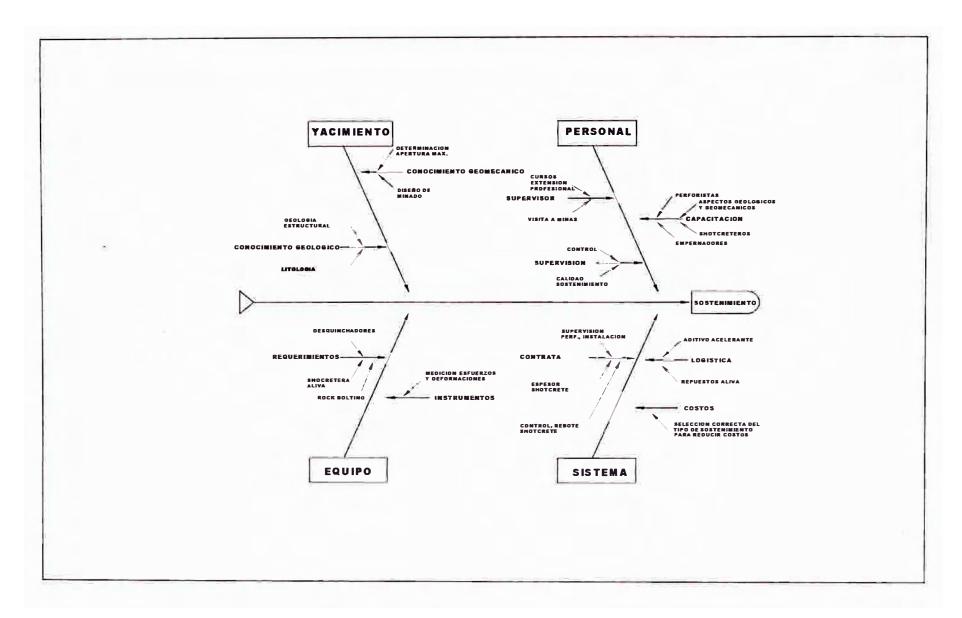


GRAFICO 4.14 DIAGRAMA CAUSA – EFECTO SOSTENIMIENTO

4.6 METODOLOGIA DE TRABAJO

4.6.1 DESARROLLO DEL ESTUDIO

Este se ha desarrollado en base a datos obtenidos desde 1998 hasta 2000.

4.6.1.1 Análisis y Control

Diagramas de Control: Se elaboró en un primer estudio tomándose datos en los años de 1998, 1999 y 2000 con ello se determinaría los tiempos productivos, motivos de paradas de equipos, como se estaban trabajando los equipos de perforación y limpieza, de igual manera sus rendimientos; además se tomaría las medidas para lograr una mayor productividad. Se elaboraran las gráficas de control.

Diagramas paretto

En base a datos obtenidos se elaboraron los diagramas pareto relativo a las paradas de los equipos; Jumbo Boomer, Jumbo Simba, Soop 3.5 y Soop 5 yd3 (Se adjunta las gráficas obtenidas, aquí se detallan los principales motivos de para).

Diagramas de Causa - Efecto

Con los resultados obtenidos en los diagramas pareto, se hicieron los diagramas causaefecto para solucionar los tiempos improductivos por paradas.

Se plantearon las acciones que se deberían de tomar para reducir los tiempos improductivos.

4.6.1.2 Resultados

Este primer estudio los años de 1998, 1999 y 2000, relativo a los tiempos efectivos de trabajo por equipos, llegándose a obtener los siguientes resultados:

Tiempos Productivos

En el año 1998 el tiempo productivo neto por equipo es en promedio 3 Hrs 49 min. Equipos de perforación 2 h 56 min. y equipos de limpieza 4 h 42 min.

En el año 1999 el tiempo productivo neto por equipo aumento ligeramente con respecto al año anterior, el promedio es de 4 hrs. 20 min. Equipo de perforación 3 h 39min. y equipos de limpieza 5 Hrs 08 min.

En el año 2000 el tiempo productivo neto por equipo 6 Hrs 47 min. Equipo de perforación 5Hrs 45 min y de equipos de limpieza 7 Hrs 50 min

Rendimientos de Equipo

En el año de 1998 se obtiene los siguientes rendimientos:

Equipos de Limpieza

	Cucharadas/ gdia
Scoop 3.5 y d3	29
Scoop 5 C	26

Equipos de Perforación

Taladros/gdia

Jumbo Boomer

39

- En el año de 1999 se obtiene los siguientes rendimientos:

Equipos de Limpieza

	Cucharadas/ gdia
Scoop 3.5 y d3	27
Scoop 5 C	28

Equipos de Perforación

Taladros/gdia

Jumbo Boomer 43

Motivos de Paradas

De acuerdo con los resultados obtenidos en los Diagramas Pareto se observa, que el mayor número de paradas en los equipos era las siguientes razones:

Scoop 3.5 y d3

Reparación Mecánica

Planificado para no Trabajar

Mantenimiento Programado

Refrigerio

Salida del operador al finalizar su guardia.

TPM de labor.

Traslado del operador a la labor (al iniciar su guardia).

Apoyos

Scoop 5 C

Reparación Mecánica

Mantenimiento Programado

Salida del operador al finalizar su guardia.

Chequeo de labor.

Traslado del operador a la labor (al iniciar su guardia).

Refrigerio

Reparación y/o cambio de llanta.

Apoyos

Jumbo Booner

Reparación Mecánica

Planificado para no trabajar

Mantenimiento Programado

Instalaciones

Afiliados de Brocas.

Salidas del operador al finalizar su guardia.

Chequeo del Equipo

Traslado del operador a la labor (al iniciar su guardia).

Reparación y7o cambio de llanta.

Otros.

Jumbo Booner

Planificado para no trabajar

Reparación Mecánica

Mantenimiento programado

Apoyo a Disparadores

Instalaciones

Afilado de brocas.

Salida del operador al finalizar su guardia.

Chequeo de Equipo

Traslado del operador a la labor (al iniciar su guardia).

Reparación y/o cambio de llanta.

Otros

4.6.2 ANALISIS DE RESULTADOS Y TENDENCIAS OBTENIDAS Y ACCIONES CORRECTIVAS

Se observa que las paradas reparaciones y/o mantenimiento, y de operaciones de mina son las que mayormente se presentan, por lo que se dio énfasis en:

Capacitación:

La empresa con el fin tener un personal competente y calificado, inicia en el año de 1999 entrenamiento de personal nuevo, esta gente debía tener como principal requisito el haber culminado la secundaria.

Primeramente se inicia la capacitación en el taller mecánica (1 mes y medio) esto a cargo de los supervisores de mantenimiento, aquí se dan a conocer los principales aspectos mecánicos: conocimiento de motor diesel, sistema de trasmisión, sistema hidráulicos, etc. Así mismo conocimientos del mantenimiento preventivo, reparaciones mecánicas, chequeo del equipo: lavado, engrase, pequeños ajustes, etc.

Esto debe de conocer bien el operador de un equipo pesado para poder trabajar.

Después se da entrenamiento "in situ" en mina interior (2 meses), aquí se dan conocimientos prácticos: Traslado de equipo, técnicas cuchareo en scoops, técnicas de perforación con jumbos, movimientos de brazo en jumbos, desatado, etc.

Además este personal nuevo pasa capacitación por los departamentos de Ingeniería por Area de Mecánica de Rocas. Después este personal nuevo pasa capacitación por los departamentos de seguridad y geología.

Después de una rigurosa evaluación se selección el personal más competente, con el cual se vienen operando los equipos pesados.

Esta capacitación continuó los siguientes años 1998, 1999 y actualmente en 2000 en plena ejecución.

Reducción de Tiempos Improductivos

Para reducir tiempos improductivos por reparación y/o cambio de llantas se asignó un personal con un taller de llantería para equipo pesado.

Se creo un taller de afilado de brocas en interior mina en un contrato de pies perforados con Atlas Copco, asignándose 04 brocas en promedio por equipo, el operador ya no afila brocas, sino el personal designado de Atlas..

Se designaron líderes de producción y de seguridad por zonas de trabajo. Esto con el fin de lograr que el personal tenga mayor participación activa en las actividades de la mina, pudiendo tomar decisiones y sugerencias.

ACCIONES CORRECTIVAS

1.- Programación Inadecuadas de actividades en el ciclo de minado:

Antes de realizar la programación de actividades, inspeccionar las labores al final de la guardia a fin de dar una información más certera a la guardia que ingresa y evitar los tiempos improductivos, como es la espera de limpieza de la labor, falta de ventilación y relleno.

2.- Existe interrupciones de Equipo

De acuerdo a la distribución realizar el ordenamiento de los equipos de perforación, limpieza y relleno.

3.- Defectos en la comunicación radial con interior Mina

Aumentar la cobertura radial del sistema FlexCom hacia los niveles inferiores a fin de evitar retrazos en las reparaciones mecánicas.

4.- Movilidad

Apoyo de unidades de transporte para el traslado del personal y mecánicos hacia las zonas más alejadas.

5.- Desconocimiento del defecto o Avería de parte del operador

Una buena capacitación practica a los operadores de jumbo, scoop y otros en el reconocimiento de fallas mecánicas

6.- Comunicación

Falta una buena comunicación entre los operadores de equipo pesado con los mecánicos del area de mantenimiento de equipo pesado, sobre el reporte ó información de fallas mecánicas

7.- Inspecciones

Realizar una inspeccion periodica de equipos y no cruzarse con las actividades que se realizan dentro de la guardía.

8.- Tiempos Inactivos

Aporovecha los tiempos inactivos, los refrigerios y cambios de guardía, para realizar las correciones de fallas presentadas con los equipos de perforación, limpieza, relleno y otros.

CAPITULO 5 EFECTO DE LA UTILIZACIÓN DE LAS HERRAMIENTAS ESTADISTICAS BASICAS EN LA REDUCCIÓN DE LOS COSTOS DE OPERACIÓN MINA

5.1 EFECTO EN EL COSTO DE PERFORACIÓN

La influencia en los costos de perforación han variado en porcentajes que se muestran en los siguientes gráficos

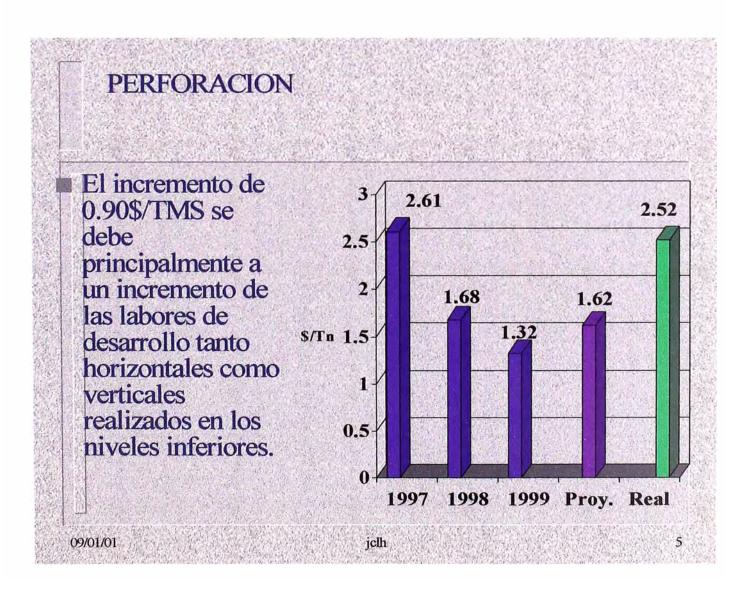
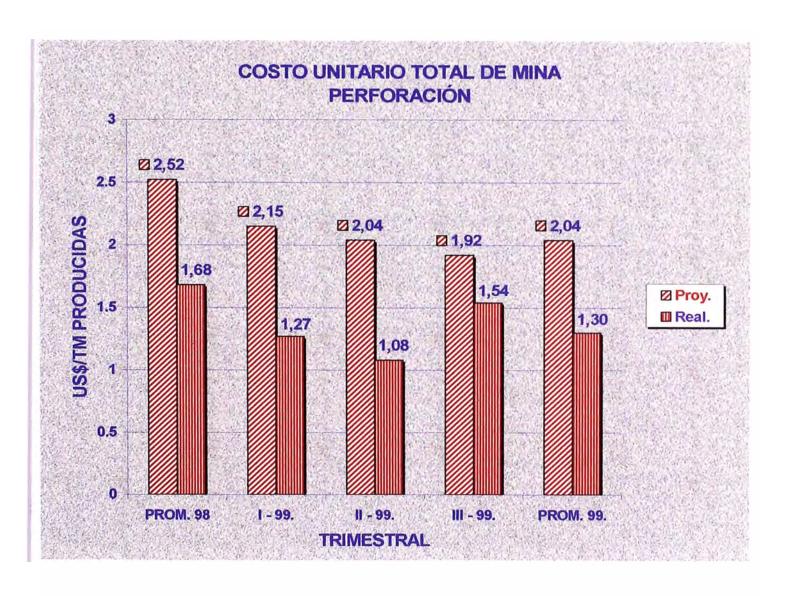
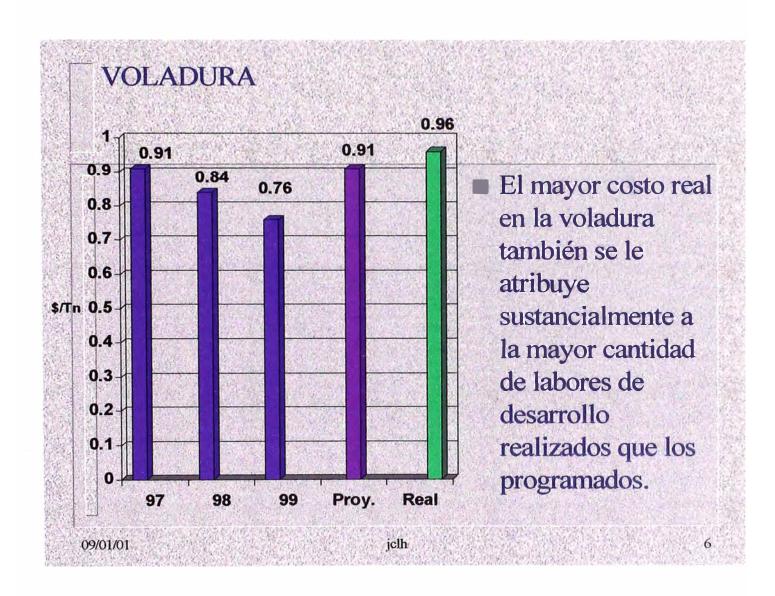
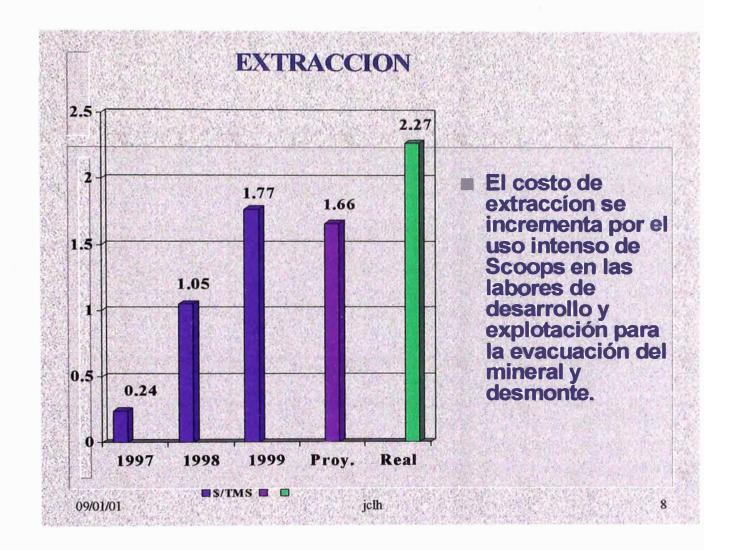


GRAFICO 5.1 COSTOS DE PERFORACION/TON


GRAFICO 5.2 COSTO UNITARIO TOTAL DE PERFORACION

5.2 EFECTO EN EL COSTO DE VOLADURA

GRAFICO 5.3 COSTO DE LA VOLADURA

5.3 EFECTO EN EL COSTO DE EXTRACCIÓN

GRAFICO 5.4 COSTO DE EXTRACCION

CONSUMO DE EXPLOSIVOS DEL AÑO 2000

ITEM	DESCRIPCION			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	PROM
1	Dinamita Semexa 65 7/8 x 7 (Cj=308 crt)	308	12.3	0	0	2,653	2,994	40,519	16,514	18,645	19,002	13,229	6,569			12,013
2	Dinamita Semexa 65 1 1/2 x 12 (Cj=70 crt)	70	2.8	0	0	8,779	13,719	40,983	24,878	17,784	22,962	25,592	19,071			17,377
3	DINAMITA SEMEXSA 65% 1-1/8"x 7" (CJ= 204 CTR)	204	8.16	0	0	0	155	11,290	8,717	481	1,717	11,476	5,832			3,967
4	EMULSION EXSAGEL-E 65% 1-1/2 x 8 (Cj= 88 CRT)	88	3.52	0	0	22	1,219	4,094	331	1,546	1,974	0	3,012			1,220
5	EMULSION semexa -E 65% 1-1/2 x 12 (Cj= 64 CRT)	64	2.56	0	0	1,325	1,325	4,736	5,483	6,101	2,176	1,920	6,656			2,972
6	IREMITA 42% 1 x 8 (240)	240	9.6	3,703	3,886	0	0	0	0	0	0	0	0			759
7	IREMITA 62% 11/2 x 12 (68)	68	2.72	13,333	13,333	0	0	0	0	0	0	0	0			2,667

ITEM	DESCRIPCION			ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ			PROM
1	Dinamita Semexa 65 7/8 x 7 (Cj=308 crt)	308	12.3	0	0	2,653	2,994	3,289	1,340	1,513	1,542	1,074	533			1,494
2	Dinamita Semexa 65 1 1/2 x 12 (Cj=70 crt)	70	2.8	0	0	8,779	13,719	14,637	8,885	6,351	8,201	9,140	6,811			7,652
3	DINAMITA SEMEXSA 65% 1-1/8"x 7" (CJ= 204 CTR)	204	8.16	0	0	0	155	1,384	1,068	59	210	1,406	715			500
4	EMULSION EXSAGEL-E 65% 1-1/2 x 8 (Cj= 88 CRT)	88	3.52	0	0	22	1,219	1,163	94	439	561	0	856			435
5	EMULSION semexa -E 65% 1-1/2 x 12 (Cj= 64 CRT)	64	2.56	0	0	1,325	1,325	1,850	2,142	2,383	850	750	2,600			1,323
6	IREMITA 42% 1 x 8 (240)	240	9.6	3,703	3,886	0	0	0	0	0	0	0	0			759
7	IREMITA 62% 11/2 x 12 (68)	68	2.72	13,333	13,333	0	0	0	0	0	0	0	0			2,667
		*		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	PROM
	DINAMITAS			17,037	17,219	12,779	19,412	22,322	13,530	10,746	11,364	12,370	11,515			14,829
8	EXAMON		25	14,050	15,450	21,250	14,275	20,625	28,700	31,300	24,225	28,700	17,050			21,563
				31,087	32,669	34,029	33,687	42,947	42,230	42,046	35,589	41,070	28,565			36,392
																-
	MIN. EXTR.			46961	46155	49046	52899	58035	53690	57259	56772	59139	64473			54,443

TABLA Nº 5.1 CONSUMO DE EXPLOSIVOS AÑO 2000

CONSUMO DE EXPLOSIVOS

Datos tomados del año 2000

CONSUMO DE EXPLOSIVOS 2000

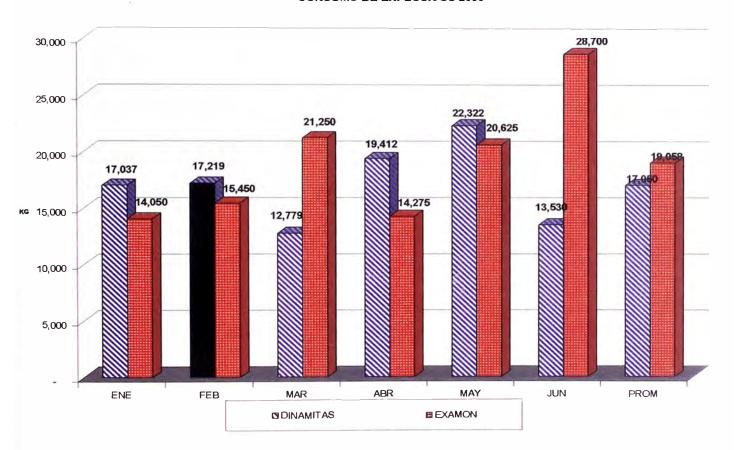
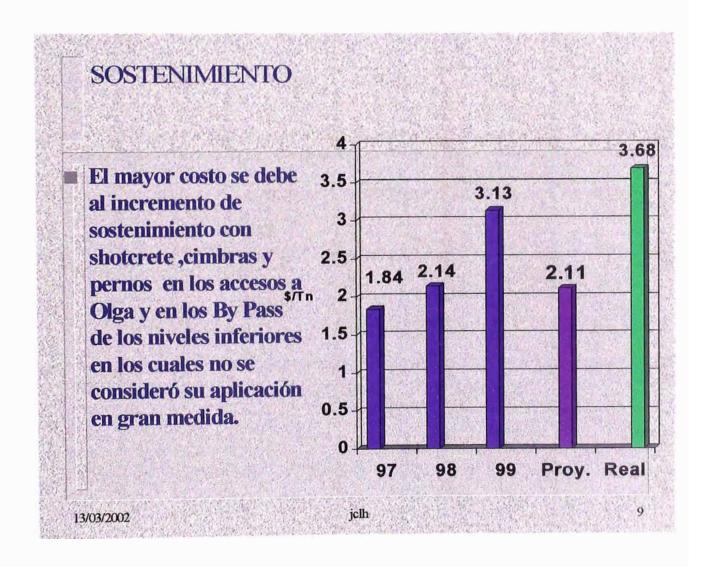



GRAFICO 5.5 DISTRIBUCION DE EXPLOSIVOS AÑO 2000

5.4 EFECTO EN EL COSTO DE SOSTENIMIENTO

Los costos en sostenimiento disminuyeron en el ultimo año en aproximadamente un 11%, a continuación se muestra los gráficos de costos unitarios en sostenimiento.

GRAFICO 5.6 COSTO DE SOSTENIMIENTO

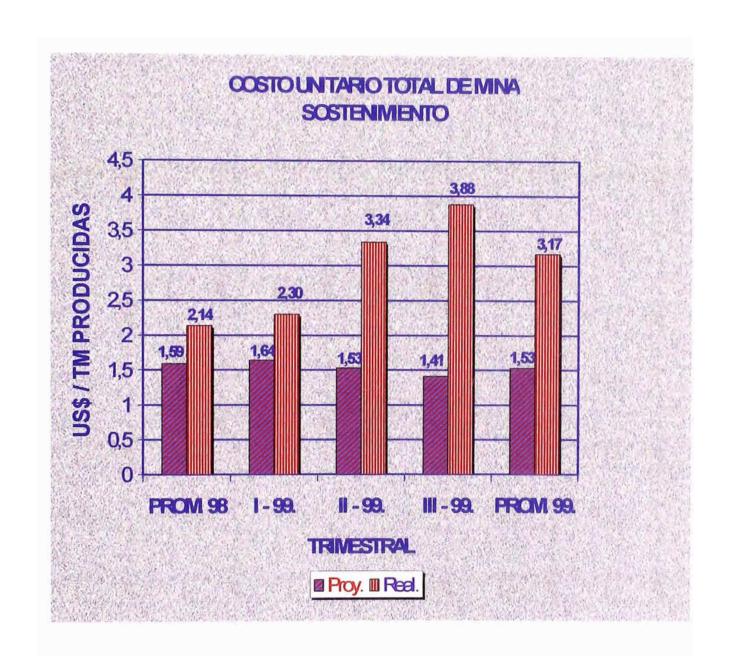
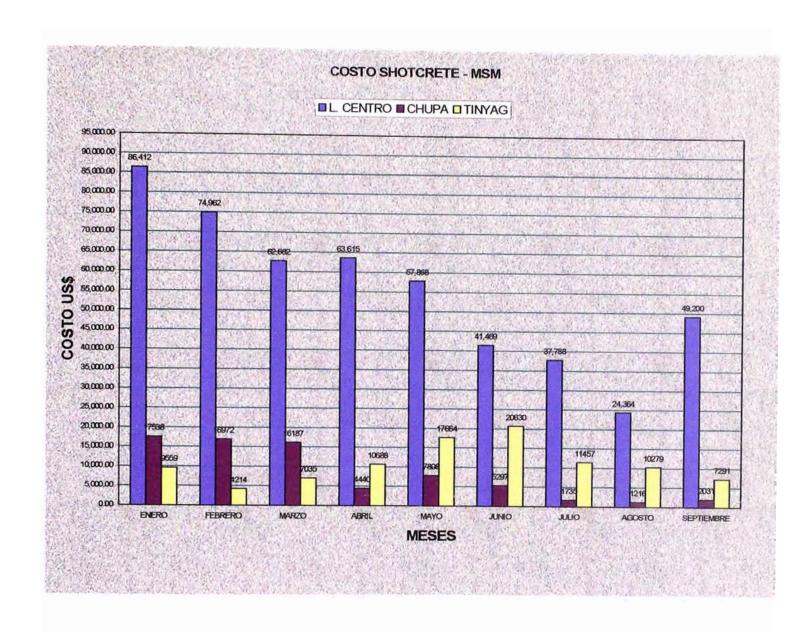



GRAFICO 5.7 COSTO TOTAL DE SOSTENIMIENTO EN MINA

	locación d peraciones									
	LIMPE CE	NTRO		CHUPA			TINYAG			
	Unid. m2	C. Unid. US\$	C. Total US\$	Unid. m2	C. Unid. US\$	C. Total US\$	Unid. m2	C. Unid. US\$	C. Total US\$	TOTAL US\$
ENE	6,740.38	12.82	86,411.67	1,090.00	16.09	17,538.10	594.10	16.09	9,559.07	113,508.84
FEB	5,847.26	12.82	74,961.87	1,054.84	16.09	16,972.38	261.90	16.09	4,213.97	96,148.22
MAR	4,264.09	14.70	62,682.12	1,006.00	16.09	16,186.54	437.20	16.09	7,034.55	85,903.21
ABR	4,275.02	14.70	62,842.79	224.92	16.09	3,618.96	664.24	16.09	10,687.62	77,149.38
	87.54	8.82	772.10	85.05	9.65	820.73				1,592.84
MAY	3,936.60	14.70	57,868.02	485.28	16.09	7,808.16	1,097.83	16.09	17,664.08	83,340.26
JUN	2,821.05	14.70	41,469.44	329.19	16.09	5,296.67	1,282.19	16.09	20,630.44	67,396.54
JUL	2,570.61	14.70	37,787.97	107.85	16.09	1,735.31	712.05	16.09	11,456.88	50,980.16
AGO	1,657.39	14.70	24,363.63	75.60	16.09	1,216.40	638.82	16.09	10,278.61	35,858.65
SEP	3,346.97	14.70	49, 200. 46	126.23	16.09	2,031.04	453.14	16.09	7,291.02	58, 522. 52
ост			0.00			0.00			0.00	0.00
NOV			0.00			0.00			0.00	0.00
DIC			0.00			0.00			0.00	0.00
			498,360.08			73,224.28			98,816.25	670,400.62
Marzo a Setie mbre	22,871.73	12.82	293215.58							
mbre	22,871.73	14.70	336214.43							
	Diferencia		-42,998.85							

GRAFICO 5.8 COSTO UNITARIO DEL SHOTCRETE

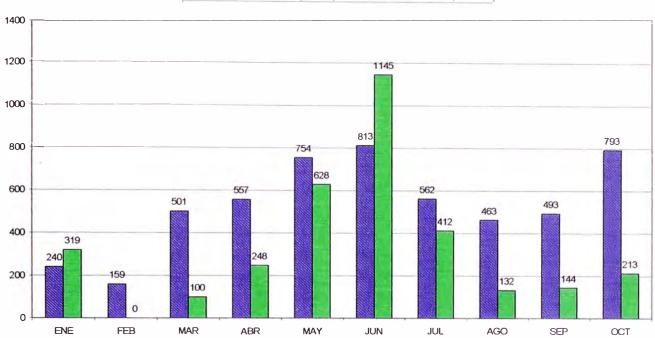
METRADO DE SOSTENIMIENTO LIMPE CENTRO

	CIMBRAS	PLANCHAS	PERNOS (UN)	MALLAS (M2)
ENE	3774	1655	223	199
FEB	2556	2269	132	0
MAR	10436	3413	259	16
ABR	7245	2139	253	0
MAY	3307	1332	524	0
JUN	7676	2845	484	395
JUL	4401	1402	326	250
AGO	6204	2992	189	0
SEP	3086	957	272	0
ост	2952	299	389	0
NOV	0	0	0	0
DIC	0	0	0	0
TOTAL	51637.60	19304.00	3051.00	859.69

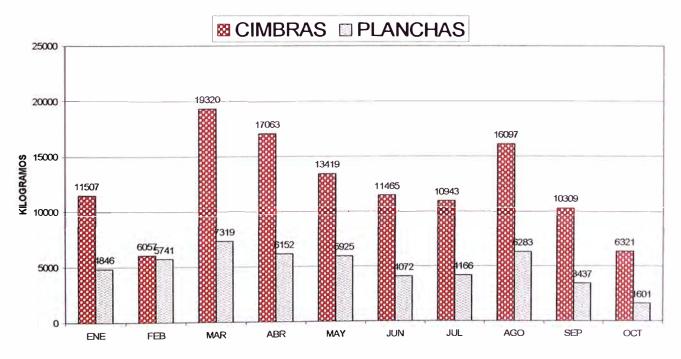
CHUPA - TINYAG

	CIMBRAS	PLANCHAS	PERNOS (UN)	MALLAS (M2)
ENE	3330	318	0	121
FEB	2215	1371	27	0
MAR	2960	629	37	0
ABR	2735	251	91	0
MAY	4609	1347	79	472
JUN	1115	359	83	292
JUL	4043	1987	139	127
AGO	2272	598	202	132
SEP	590	276	203	117
ОСТ	635	434	308	155
NOV	0	0	0	0
DIC	0	0	0	0
TOTAL	24505.21	7569.76	1169.00	1415.91

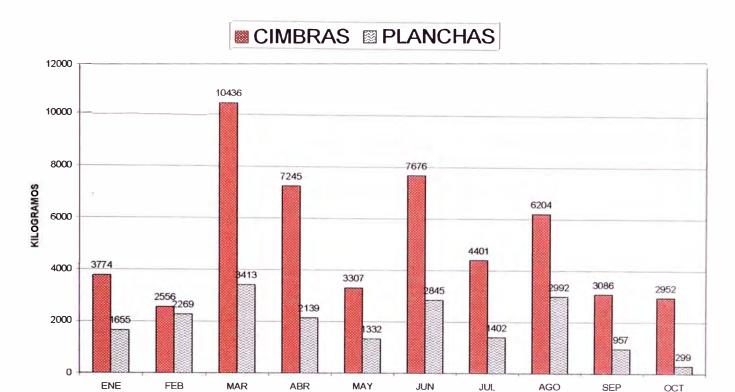
METRADO DE SOSTENIMIENTO

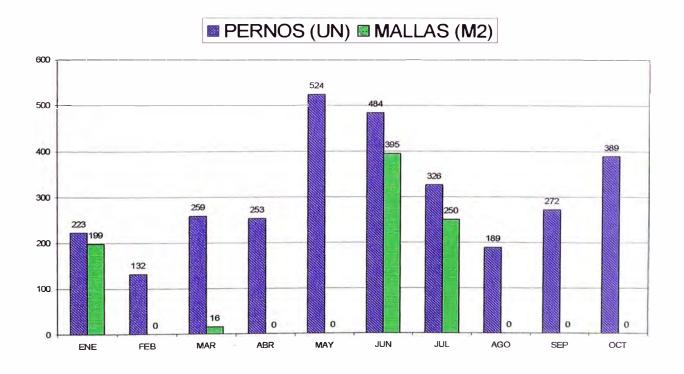

LIMPE CENTRO – PROFUNDIZACION - CHUPA - TINYAG

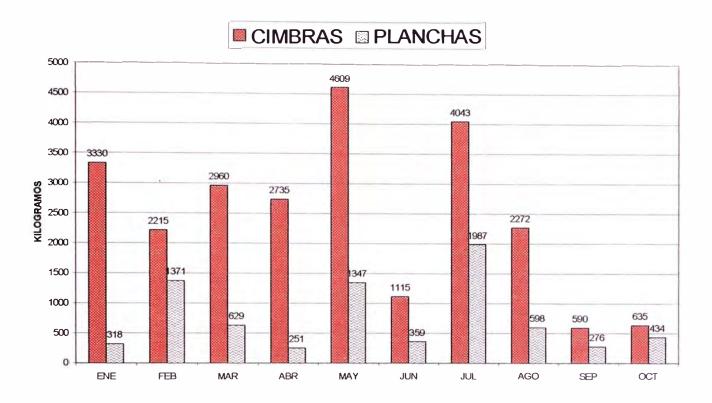
Los datos corresponden al año 2000


	CIMBRAS	PLANCHAS	PERNOS (UN)	MALLAS (M2)
ENE	11507	4846	240	319
FEB	6057	5741	159	0
MAR	19320	7319	501	100
ABR	17063	6152	557	248
MAY	13419	5925	754	628
JUN	11465	4072	813	1145
JUL	10943	4166	562	412
AGO	16097	6283	463	132
SEP	10309	3437	493	144
ОСТ	6321	1601	793	213
NOV	0	0	0	0
DIC	0	0	0	0
TOTAL	122500.40	49542.15	5335.00	3341.88

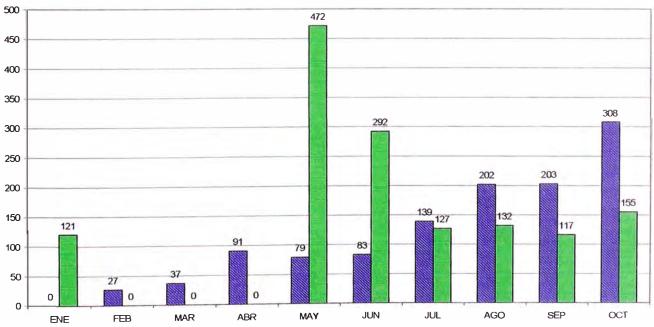
TOTAL ISCAYCRUZ 2000



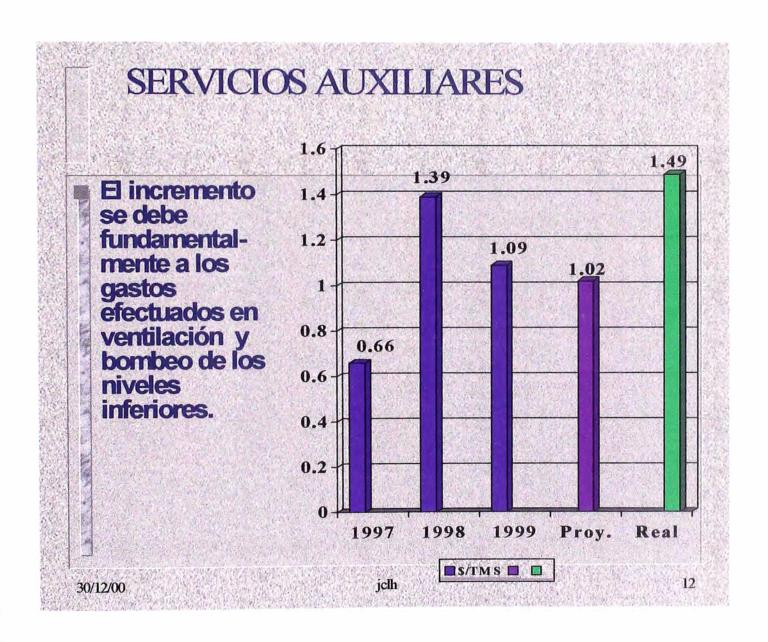

TOTAL ISCAYCRUZ 2000


LIMPE CENTRO

LIMPE CENTRO



CHUPA - TINYAG



CHUPA - TINYAG

5.5 EFECTO EN EL COSTO DE SERVICIOS AUXILIARES

GRAFICO 5.9 COSTO DE SERVICIOS AUXILIARES

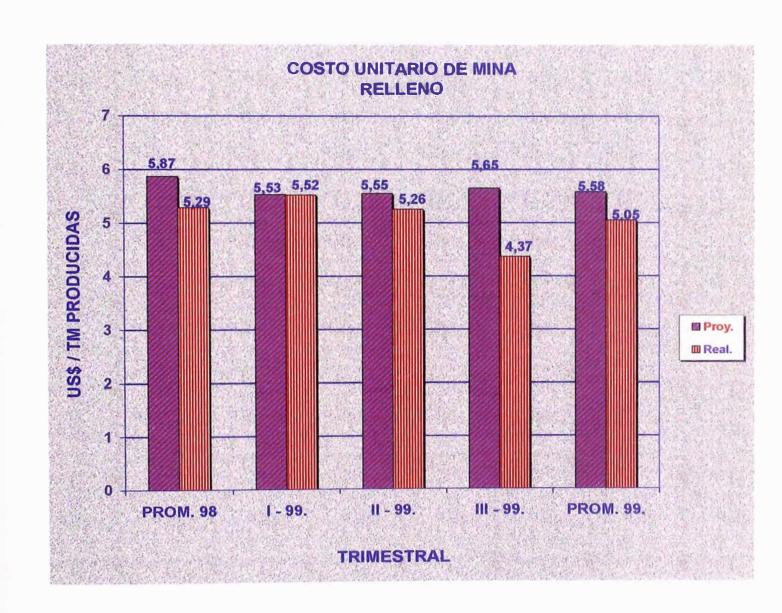


GRAFICO 5.10 COSTO UNITARIO DE RELLENO POR TRIMESTRES

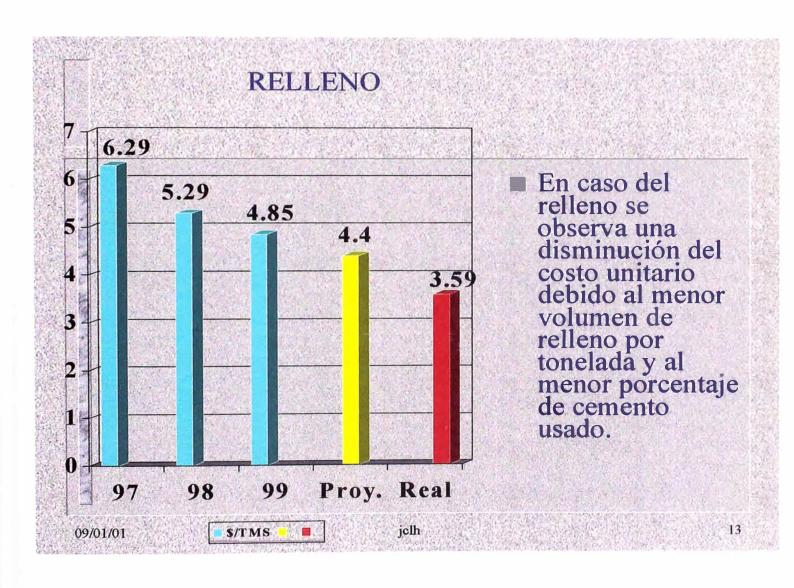


GRAFICO 5.11 VOLUMEN DE RELLENO POR TONELADA

5.6 COMPARACIÓN DE COSTOS UNITARIOS DE LOS AÑOS 97, 98 Y 99.

Analizando los costos unitarios (\$/TMS) de los años 97, 98,99, 2000 se observa una tendencia a disminuir en razón de 5% aproximadamente a partir del año 98.

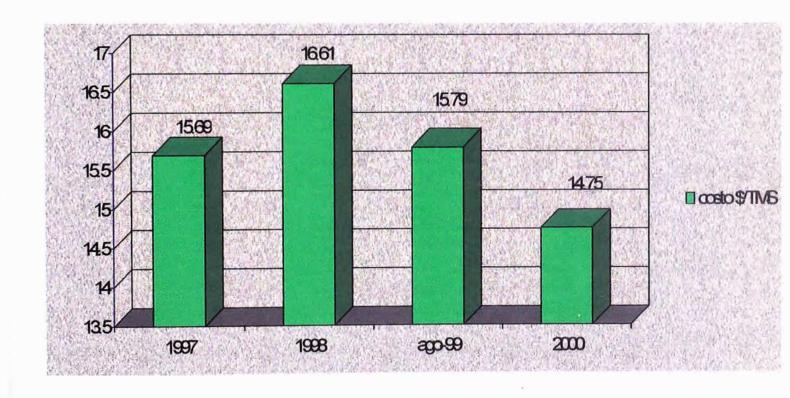
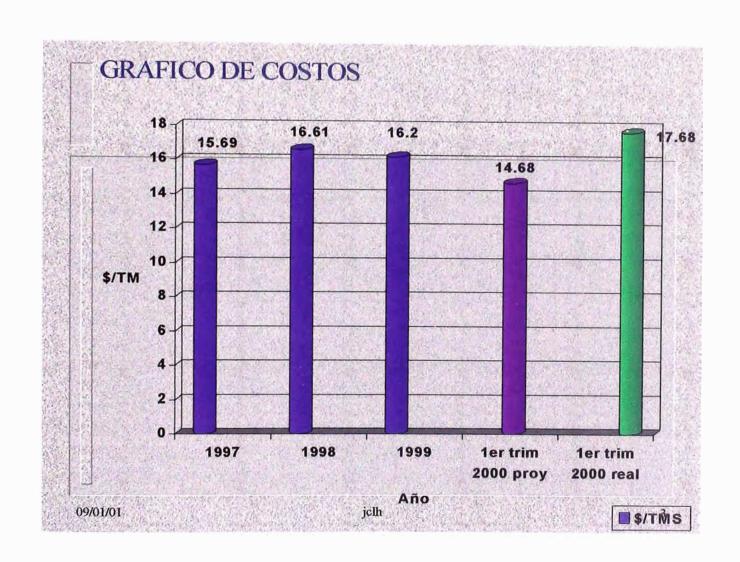



GRAFICO 5.12 COMPARACION DE COSTOS UNITARIOS POR AÑOS

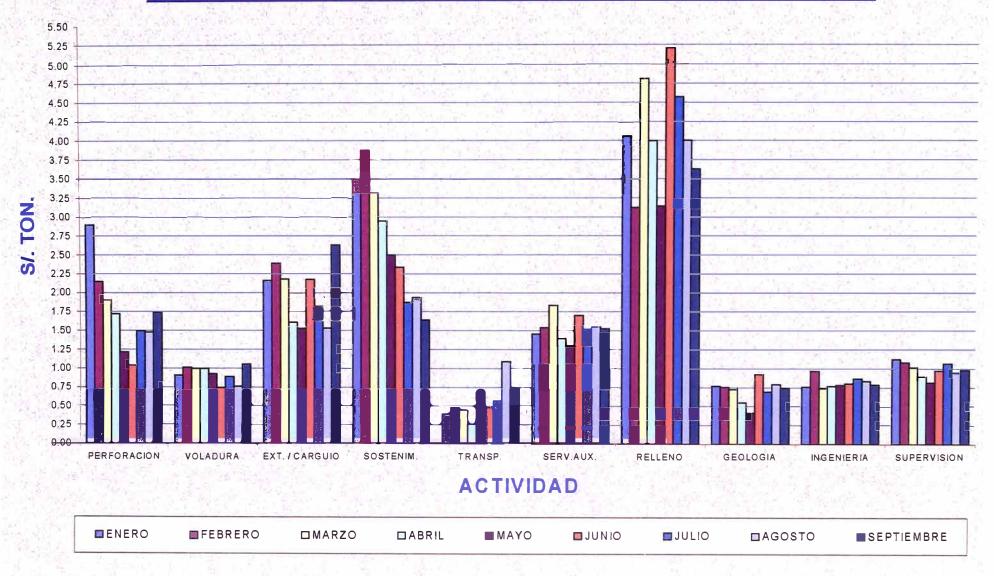


GRAFICO 5.13 COMPARACION DE COSTOS POR TONELADA

	COSTOS	POR ACTIV	IDAD			
PERIODO	97	98	99	1er Trim. 2000		
				Proy.	Real	
PRODUCCION TMS	31,521	40,247	47,636	46,250	46,558	
PERFORACION	2.61	1.68	1.32	1.62	2.52	
VOLADURA	0.91	0.84	0.76	0.91	0.96	
EXTRACCION	0.24	1.05	1.77	1.66	2.27	
SOSTENIMIENTO	1.84	2.14	3.13	2.11	3.68	
TRANSPORTE	0.23	0.3	0.38	0.82	0.44	
SERV. AUXIL.	0.66	1.39	1.09	1.02	1.49	
RELLENO	6.29	5.29	4.85	4.4	3.59	
GEOLOGIA	0.97	0.73	0.77	0.55	0.76	
INGENIERIA		1.94	0.69	0.84	0.86	
SUPERVISION	1.94	1.23	0.94	0.75	1.1	
TOTAL	15.69	16.59	15.7	14.68	17.67	

TABLA 5.2 COSTOS POR ACTIVIDAD

COSTOS TONELADAS EXTRAIDAS POR ACTIVIDAD ENERO - SEPTIEMBRE

COSTO UNITARIO POR ACTIVIDAD

AÑO	97	98	99	00
PERFORACION	2.61	1.68	1.30	1.47
VOLADURA	0.91	0.84	0.76	0.84
EXTRACCION	0.24	1.05	1.55	1.29
SOSTENIMIEN.	1.84	2.14	3.18	2.29
TRANSPORTES	0.23	0.30	0.31	0.90
SERV. AUXIL.	0.66	1.39	1.03	1.03
RELLENO	6.29	5.29	5.13	4.81
GEOLOGIA	0.97	0.73	0.78	0.71
INGENIERIA		1.94	0.68	0.89
SUPERVISION	1.94	1.23	0.93	0.74
TOTAL \$/TMS	15.69	16.61	15.66	14.74

De lo expuesto anteriormente se concluye que el costo unitario se ha incrementado por la mayor cantidad de labores de desarrollo realizados y el sostenimiento intenso que ha sido objeto estas labores para poder accesar a los blocks de mineral de Estela y Olga y proceder a su correcto minado.

COSTOS DE OPERACIÓN MINA AÑO 1,999

PRODUCCIÓN TM.	PROMEDIO TOTAL - 1998.		1er. TRIMESTRE - 99.		2do. TRIMESTRE - 99.		3er. TRIMESTRE - 99.		PROM. TOTAL		VARIACIÓN %	
	Proy.	Real.	Real.	Proy.	Real.	Proy.	Real.	Proy.	Real.	PROG.	REAL	
PERFORACIÓN.	2.52	1.68	2.15	1.27	2.04	1.08	1.92	1.54	2.04	1.30	-36%	
VOLADURA.	0.51	0.84	0.74	0.83	0.74	0.65	1.08	0.76	0.85	0.75	-12%	
EXTRACCIÓN	0.46	1.05	1.35	1.48	1.26	1.44	1.40	1.96	1.34	1.63	22%	
OSTENIMIENTO	1.59	2.14	1.64	2.30	1.53	3.34	1.41	3.88	1.53	3.17	107%	
TRANSPORTE	0.18	0.30	0.21	0.28	0.19	0.31	0.19	0.40	0.20	0.33	65%	
SERVICIOS AUXILIARES	1.29	1.39	0.90	0.99	0.89	0.96	0.88	1.16	0.89	1.04	17%	
RELLENO	5.87	5.29	5.53	5.52	5.55	5.26	5.65	4.37	5.58	5.05	-9%	
GEOLOGIA	1.27	0.73	0.62	0.83	0.58	0.73	0.54	0.80	0.58	0.78	34%	
INGENIERIA	2.05	1.94	0.73	0.60	0.68	0.64	0.64	0.81	0.68	0.68	0%	
SUPERVISIÓN	0.99	1.23	1.01	0.86	0.96	0.87	0.89	1.06	0.95	0.93	-2%	
TOTAL	16.73	16.59	14.88	14.96	14.42	15.27	14.60	16.74	14.63	15.66	7%	

TABLA 5.3 COSTOS DE OPERACIÓN AÑO 1999

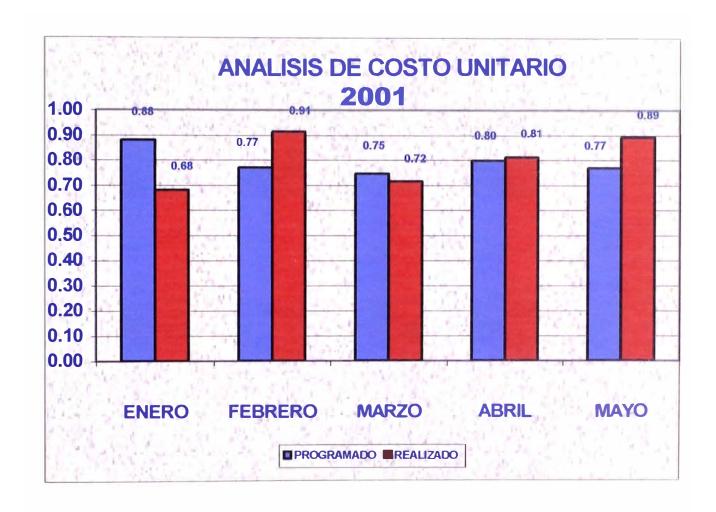
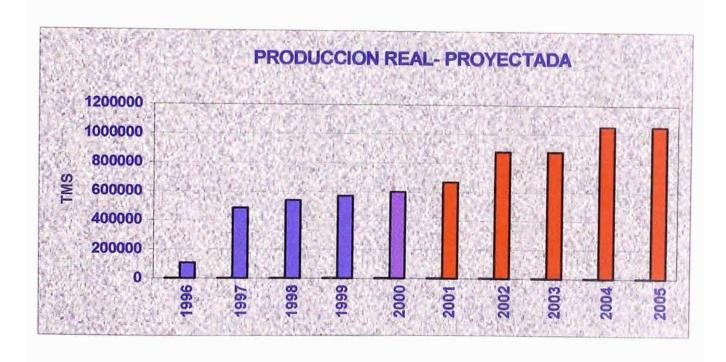



GRAFICO 5.14 ANALISIS DE COSTO UNITARIO (PROGRAMADO VS REALIZADO)

Costos unitarios de operación

PERFORACIÓN.	PROM. 98	1 - 99.	11 - 99.	III - 99.	PROM. 99.
Proy.	2.52	2.15	2.04	1.92	2.04
Real.	1.68	1.27	1.08	1.54	1.30
SOSTENIMIENTO	PROM. 98	1 - 99.	<i>II -</i> 99.	<i>III</i> - 99.	PROM. 99.
Proy.	1.59	1.64	1.53	1.41	1.53
Real.	2.14	2.3	3.34	3.88	3.17
RELLENO	PROM. 98	1-99.	<i>II</i> - 99.	<i>III -</i> 99.	PROM. 99.
Proy.	5.87	5.53	5.55	5.65	5.58
Real.	5.29	5.52	5.26	4.37	5.05

GRAFICO 5.15 PRODUCCION REAL Y PROYECTADA(5 AÑOS)

COSTO MINA POR TONELADAS EXTRAIDAS POR ACTIVIDAD INGENIERIA SUPERVISION TOTAL SOSTENIM. TRANSP. SERV.AUX. **RELLENO GEOLOGIA EXTRAIDAS PERFOR** VOLAD EXT./ **CARGUIO** MINA 36076 35644 52726 845632 135919 42580 101452 164076 18364 68168 190627 ENE 44667 49902 801039 22171 144005 34708 99192 46550 110069 178780 70995 FEB 35506 49731 880913 93382 48731 106846 162642 22196 90019 235709 36151 MAR 29219 40519 46973 800194 ABR 91055 52552 84892 155826 13785 73904 211469 23891 45293 47164 773699 MAY 70300 53622 88608 144815 42088 75769 182149 878944 25890 279556 49677 42782 52221 JUN 55743 39581 116759 125381 91354 261631 39535 49505 60972 878372 JUL 85482 50745 103943 107032 32470 87057 47251 44874 53708 845798 AGO 83839 42857 86896 109575 61732 87946 227120 44406 90107 214434 43556 46448 57920 913598 SEP 102439 62103 155297 96889 817351 439320 954763 1245017 283102 735318 1946700 337041 388260 471317 7618189 TOTAL **PERFOR VOLAD** SERV.AUX. **RELLENO GEOLOGIA** INGENIERIA SUPERVISION EXT./ SOSTENIM. TRANSP. **CARGUIO** 0.91 ENE 2.89 2.16 3.49 0.39 1.45 4.06 0.77 0.76 1.12 18.01 2.15 2.38 3.87 1.54 0.75 0.97 17.36 FEB 1.01 0.48 3.12 1.08 1.90 0.99 2.18 3.32 1.01 17.96 MAR 0.45 1.84 4.81 0.72 0.74 ABR 1.72 0.99 1.60 2.95 0.26 1.40 4.00 0.55 0.77 0.89 15.13 MAY 1.21 0.92 1.53 2.50 0.73 1.31 3.14 0.41 0.78 0.81 13.33 JUN 1.04 0.74 2.17 2.34 0.48 1.70 5.21 0.93 0.80 0.97 16.37 JUL 1.49 0.89 1.82 1.87 0.57 1.52 4.57 0.69 0.86 1.06 15.34 0.75 AGO 1.48 1.53 1.93 1.09 1.55 4.00 0.79 0.83 0.95 14.90 SEP 1.73 1.05 2.63 1.64 0.75 1.52 3.63 0.74 0.79 0.98 15.45 ACUMULADO 1.70 0.92 1.99 2.59 0.59 1.53 4.06 0.70 0.81 0.98 15.87 **ENE-SEPT**

TABLA 5.4 COSTO DE TONELADAS EXTRAIDAS POR ACTIVIDAD

Resumen

Los costos de producción depende en gran medida de la productividad, del tipo de método de explotación aplicados en el yacimiento y a una buena Supervisión y Gestión Administrativa.

Los costos de producción han disminuidos en 5% comparado a un incremento en el nivel de producción del 10%.

Estos costos son bajos comparados a otras empresas mineras, esto como consecuencias debe haber atacado los problemas de Productividad, Seguridad y de Capacitación a Nivel General.

Los costos anuales conseguidos han sido menos en 10% con respecto a los objetivos trazados y lo más importante el promedio del1,999 fue de 15.79 US \$/TMS y al año 2,000, se ha conseguido al 14.75 US \$/TMS una disminución al 7%.

Estos costos anuales resultantes han sido menos al objetivo debido a que el nivel de producción mejoro en 13% con respecto al objetivo propuesto.

Es convenientes adicionar que durante los años 1,998 y 1,999 se tuvieron gastos adicionales en el sostenimiento por efectos climatológicos.

CAPITULO 6 CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES.

- 1.- Iscaycruz es unos de los yacimientos más importantes de producción en los Andes del Centro del Perú, la mineralogía del yacimiento se encuentra emplazada en las calizas, lutitas, margas y dolomitas, de la formación Santa y corresponde el tipo de reemplazamiento metasómatico, con una inyección hidrotermal tardía y con minerales de valor económico del Zn, Cu, Pb, Ag.
- 2.- La mineralización reconocida consiste en esfalerita, galena, calcopirita, marmatita y algo de argentita y ocurren generalmente en cuerpos mineralizados, siendo los principales Estela y Olga en la Zona de Limpe Centro, sus reservas minerales suman un total de 2'567,000 TM, con leyes de 19.21% de Zn, 2.34% de Pb, 0.46% de Cu y 1.92 Oz/TM de Ag
- 3.- Iscaycruz a diseñado un moderno método de explotación, el cual resulta ser el primero en Sudamérica éste es el "Método por Subniveles Descendentes bajo Relleno Consolidado", la bondad del método es que permite recuperar todo el mineral en forma vacía con baja dilución en forma rápida y segura.
- 4.- La aplicación en la mina Iscaycruz de las herramientas estadísticas básicas, como métodos de optimización ha permitido la implementación de estándares de calidad, como un plan estratégico eficaz para mejorar el proceso de producción, permitiendo controlar la calidad en el ciclo de proceso de minado.
- 5.- El método de herramientas estadísticas básicas, es un estimador lineal óptimo que nos permite no solo conocer el error que se comete en cada una de las operaciones unitarias, sino que también sirve para minimizar éste error de estimación, lo que hace que el planeamiento de la mina funcione en base a las estrategias operativas debidamente establecidas a corto y mediano plazo.

- 6.- En el caso de la mina Iscaycruz, para mantener un desarrollo sostenible ha sido necesario aplicar estas herramientas de estadística básica para el control de calidad y cuyos resultados son satisfactorios.
 - Anteriormente en la mina existía una misión definida a largo plazo por lo que ha sido necesario diseñar y aplicar un plan estadístico, con las intenciones de mejorar los estándares de operación a corto y mediano plazo.
 - En cuanto se refiere a los
 - recursos humanos, se ha logrado contar con puestos de trabajo especializados y alta práctica de polifuncionalidad.
 - Las diferentes jefaturas cuentan con cierta libertad para la toma de decisiones, para efectuar cambios organizacionales, y aplicación de técnicas para el cambio y gerencia grupal, con una práctica en la delegación de autoridad.
- 7.- En la actualidad nuestra unidad minera, no cuenta con un sindicato organizado por lo tanto no existe presión política hacia la patronal, lo que coadyuda a realizar cambios que se realizan en aras de mejorar las horas efectivas de trabajo, productividad y por ende de producción.
- 8.- Con la aplicación de las herramientas estadísticas se ha logrado garantizar el mejoramiento continuo, previa capacitación y entrenamiento general de todo el personal a todo nivel, con lo que se logra contar con elementos competentes, bien calificados consientes de su trabajo encomendado, se evita paradas innecesarias o tiempos improductivos con una política de mejora continua.
- 9.- La utilización de la estadística, significó el uso de diagramas de Pareto y de Causa y Efecto, con el fin de identificar los supuestos errores, paradas improductivas, fallas en los equipos, etc. por ende incrementos de costo, para ello se toma la acción correctiva necesaria, de acuerdo a un orden de importancia y prioridad para cuantificar y explicar la manera como diversos factores afectan e impactan los diferentes factores y acciones.
- 10.- No existe un alto porcentaje de rotación del personal sobre todo en planillas de terceros lo que facilita, los avances programados, un alto sentido de liderazgo, incremento de la productividad, tomando como base las tareas de mina en relación con toda la unidad, obteniéndose un rendimiento promedio de : 20Tn/h-guardia, logrados como consecuencia de las siguientes causas:
 - Buen estándar de horas efectivas de trabajo promedio de 7 horas/guardia.

- Control en los aspectos de perforación y voladura.
- Contamos con un programa de seguridad Sistema NOSA CINCO ESTRELLAS, con bajos índices de accidentes incapacitantes y fatales registrados.
- 11.- Con la implementación y aplicación de las herramientas estadísticas, en las toma de decisiones y la formulación de los objetivos trazados se ha logrado obtener las metas propuestas en base de los siguientes factores:
 - Capacitación y desarrollo de los recursos humanos, incremento en 20% las hora hombre de capacitación.
 - Mejoras en la productividad en 15%.
 - Aumento en la producción en un 15%.
 - Disminución de los costos de producción en un 10%.

12.- Desplazamiento del Personal y Traslado de Equipo

El tiempo improductivo actual es del 15% del total de una guardia y como el objetivo es reducir al 10% se plantea las siguientes soluciones para las causas descritas a continuación

- 12.1.- Para programaciones inadecuadas de actividades en el ciclo de mina, se plantea como alternativa de solución, que antes de realizar las programaciones de actividades, se debe inspeccionar las labores al final de la guardia y/o con el programa dado , inspecionar la labor al inicio de guardia
- 12.2.- Para interrupciones de Equipo, se plantea, que de acuerdo a la programacion realizar una distribuacion optima de equipos.

13.- Reparaciones Mecanicas Electrica(Mantenimiento Correctivo)

El tiempo improductivo actual es del 10% del total de horas trabajadas por una guardia y se tiene como objetivo reducir a 0%, se plantea las siguientes soluciones para las causas de lo problemas descritos a continuación

- 13.1.- Para defectos en la comunicación radial (zonas en donde no se puede comunicar), se plantea ampliar la cobertura radial del circuito telefonico genral (Sistema FLEXCOM) en toda la zona.
- 13.2.- Para la ausencia de movilidad en algunos casos para el traslado de mecanico electrico, se plantea mas apoyo para el traslado del personal por terceras personas.
- 13.3.- A veces el operador desconoce el defecto o averia del equipo, para este caso se plantea como solucion una buena capacitacion a los operadores de los equipos, para el reconocimiento de los defectos y averias en los equipos.
- 13.4.- Existe falta de comunicación entre el operador y manteniemiento (se da cuando el equipo esta mal), para lo que se plantea comunicaciones y/o reuniones personales entre la supervición, el operador y mantenimiento.

- 13.5.- No se realiza inspecciones a los equipos en las actividades en la guardia, para lo que se plantea como alternativa de solucion, que deberia tenerse un programa de inspeccion periodica.
- 13.6.- En los tiempos inactivos del equipo, no se realizan las correcciones de averias presentadas, para lo cual se deberia implantar un horario para la solucion de averias, como aprovechar las horas de refrigerio y/o cambio de guardia
- 14.- Como resultados de aplicación de estas Estrategias Operativas, a nuestra mina se le ha permitido mantener, crecer y mejorar su rentabilidad económica y situarse como una empresa sólida en el contexto de la minería subterránea la base de estos logros fue efecto de:

Los conceptos, metodologías y aplicaciones de un planeamiento estratégico. Son consideradas como herramientas de Gestión en la Administración Moderna en la Minería.

Finalmente queremos conceptuar que:

La Eficiencia, consiste en esencia en hacer las cosas bien. Y la Eficacia es la capacidad para obtener resultados y que normalmente es el premio de la efectividad, porque para lograr resultados es necesario ser efectivos.

6.3 RECOMENDACIONES.

1. Si bien es cierto que los resultados han sido satisfactorios con la aplicación de los Herramientas Estadísticas, no debemos de ser conformistas; muy por el contrario, tenemos que proseguir en la mejora continua basado en programas y evaluaciones constantes, mediante la retroalimentación. Para ellos debemos aprovechar las experiencias de estos tres años de mejoras para no estancarnos ó retroceder, para lo cual deseamos hacer las sgtes, recomendaciones:

Los recursos humanos, requieren contar con programas de actualización y renovación en los diferentes niveles a fin de que sea más fácil en la supervisión con trabajos de calidad a futuro.

Renovar paulatinamente los equipos con el fin de abaratar los costo en las operaciones.

Con el modelo experimentado en el presente proyecto de nuestra mina puede ser aplicada en otras empresas mineras con similares características y problemas.

Que el presente trabajo sirva como guía operativa y alcance para la ejecución de otros proyectos a los estudiantes de la Universidad Nacional de Ingeniería,

- 2. Se ha comprobado los buenos resultados que se obtienen con la implantación y manejo adecuado de las herramientas estadísticas que proporcionan los diagramas de pareto, para ello es importante que se realice una adecuada interpretación de datos proporcionados de las estadísticas implicadas en cada una de las operaciones que se desea evaluar.
- 3. Es importante realizar una reseña de la utilización de estas herramientas e las diferentes áreas de las operaciones en la mina para que estas sean evaluadas, su implicancia inmediata se ve reflejada en la disminución de los costos unitarios como son los efectos en el costo de la voladura, en el costo de la extracción, en el costo del sostenimiento y en el costo de los servicios auxiliares.

BIBLIOGRAFIA

1. La Ruta de Deming a la Calidad Total y la Productividad

Willian W. Sherkenbach

Compañía Editorial Continental S.A. México 1992

2. Kaizen La Clave de la Ventaja Competitiva Japonesa

Masaki Imai

Compañía Editorial Continental S.A. México 1992

3. Manual de Herramientas de Calidad

Kazuo Ozeki - Tetsuichi Asaka

Productivity Press Estados Unidos 1993.

4. El Libro de las Mejoras

Tomo Sugiyama

Productivity Press Estados Unidos 1993.

5. Como Instalar con Exito el TPM en su Empresa

Edward H. Hartmann

Seminario desarrollado en Lima 14 – 15 Abril 1994.

6. Reingenierìa

Daniel Morris - Joel Brandon

Editorial Mc Graw Hill

 Herramientas Estadísticas Básicas Para el Control de la Calidad en la Mina Iscaycruz.

Ghercy Ayala Orihuela

XXIV Convención de Ingenieros de Minas del Perú 1999 - Arequipa Perú

8. Manual Práctico de Voladura

EXSA - PERU 1990

9. Sub - Level Stoping Mining Eng. Handboor

Pag. 156-165 Helsinki 1982

10. Metodo Sub-Level Stoping

Andrzei Zoblochi D.

Atlas Copco Chilena

11. Manual de Evaluación y Diseño de Explotaciones Mineras

M. Bustillo Revuelta

C. López Jimeno MADRID 1997

12. SME Mining Engineering Handbook

Howard L. Hartman, Senior Editor

C. López Jimeno MADRID 1997

Littleton, Colorado - 1992

ANEXOS

I.- HOJAS DE REGISTRO DE LOCALIZACION DEL DEFECTO

Para la obtención de datos, lo más importante era organizarlos adecuadamente con el objeto de facilitar su procesamiento. Se tomo las siguientes consideraciones para la toma de datos:

El origen de los datos debe registrarse claramente. Los datos cuyo origen no se conoce con claridad se convierten en información inútil. En Iscaycruz sucedía que con frecuencia se obtenía poca información útil a pesar de haber gastado una semana reuniendo datos sobre alguna característica de calidad, debido a que las personas olvidaron en que días de la semana recogieron los datos de las paradas mecánicas, que máquinas hicieron el proceso de perforación, voladura, limpieza, quienes fueron los trabajadores.

Los datos deben registrarse de tal manera que puedan usarse fácilmente Se elaboro los siguientes formatos para registro de datos en las siguientes actividades en el ciclo de minado.

1.- PERFORACION

1.1 PERFORACION AVANCES:

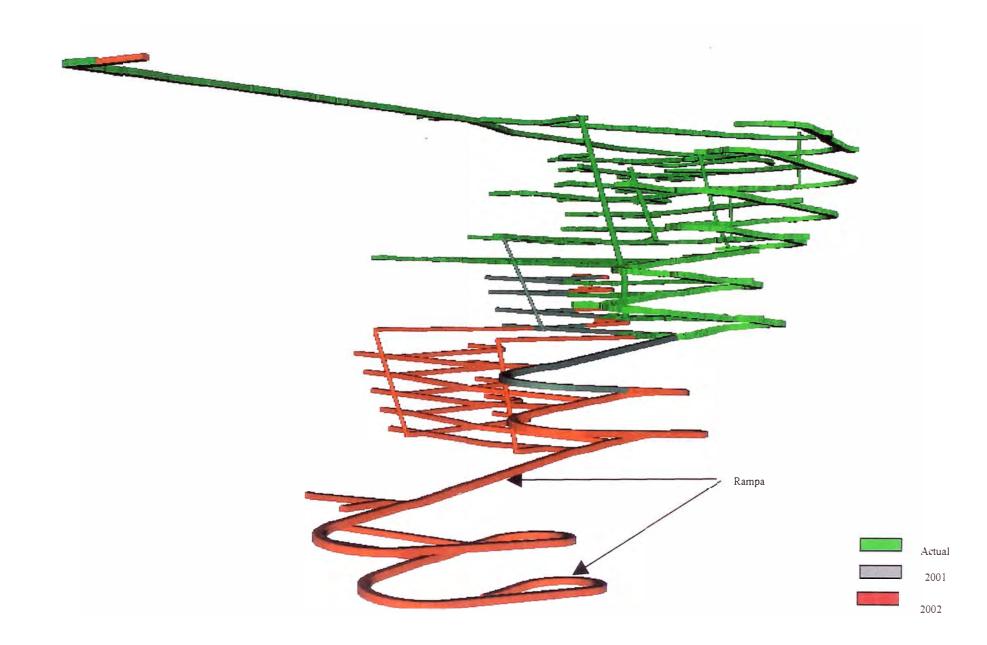
				RE	PORT	E DIAR	10 - B00	MER			
UARDIA:						FECHA					
OPERADOR:											
EQUIPO:				JEFE GUARDIA:							
CODIGO	INICIO	RA FINAL	MINA	CUERPO	NIVEL	LABOR	N° BROCA	CAN. TAL.	LOG. TALADRO	RIMA.	PIES PERF.
											İ
											1
		_									1
											-
*											
HOROMETRO	INICIO										
	FINAL										
OBSERVACIO	NES:										
											-
		-									
	FIDAA	OPERA	NDOB	V°B° JEFE G	IAPDIA				FIRMA MA	NITENIIAII	NTO
	FIRIVIA	OPERA	ADUR	V B JEFE G	JAKDIA				FIRIVIA IVIA	AIA I CIAIIAII	INTO
CODIGOS DE	OPERAC	IONES	- BOOM	IER:							
					1 AC	TIVIDAD:					
	LOCAL	IDAD -			101 F	Perforación 1	rente Desmor	te (Desarroll	0)		
	MINA:	0			102	Dorfornajón (rente Mineral	(Dronorosion	Calaria		
	01 Lin	pe Cent	ro.				rente Mineral				
	03 Ch						Chimenea Min				
	03.5 011	upa.					Mineral Tajo (8		leioir vertical)		
						Perforación (, ,	zapiotacion,		_	
-								mos, cachor	eo, desquinche)		
					108 F	Perforación (en Sostenimie	nto.			
2 HORAS					3 HO	RAS MANT	ENIMIENTO				
DISPONIBLES					- HM.	204					
200. - Charla de 201 Traslado					302 - M	antenimient	Mantenimiento	Preventivo.			
202 Chequeo			o., Aceit	e, Freno, Etc.)			to Mecánico.				
203 Traslado	de Equip	0.				alta de Ener					
204. - Chequeo		r		_	305 In	operativo po	r falla Mecáni	ca / Eléctrica			
205 Refrigerio			Acrondo	Ob strussián)							
206 Falta de la 207 Falta de C			narcado	, Obstruccion)							
208 Mantenim								-		-	
209. - Stand By.											
210. - Apoyo (C											
211 Falta de A		talación	de Tub	erias.							
212 Falta de A 213 Trancad		ras									
- IV ITAIICAU	o ac Dal	ıus.									

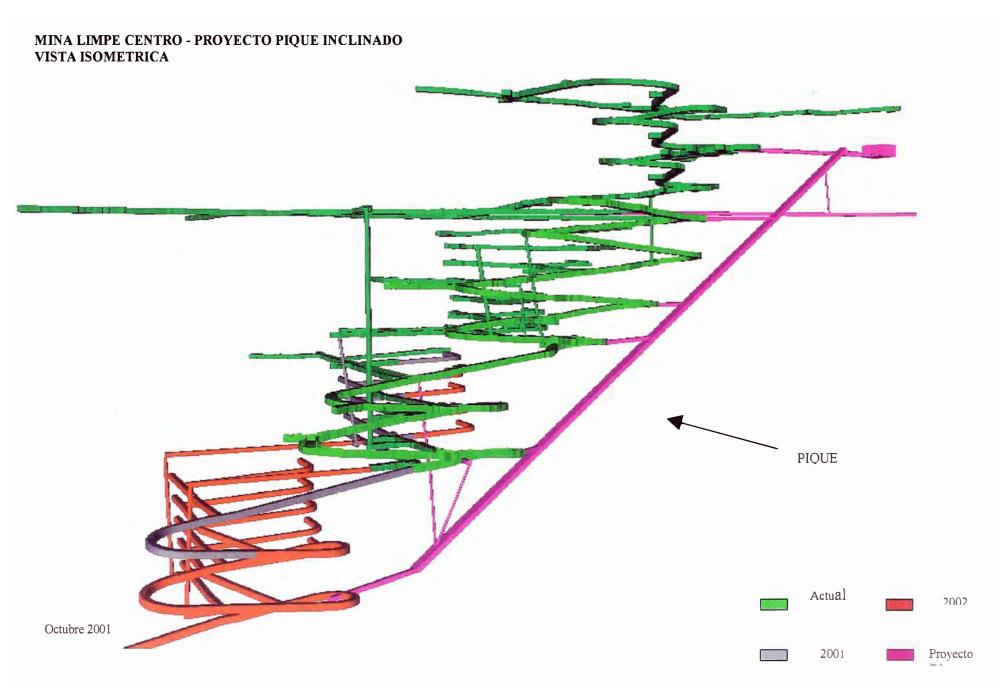
.2.- PERFORACION VERTICAL

				R	EPOR	TE DIA	ARIO - SII	MBA			
UARDIA:						FECH	A :				
PERADOR:											
QUIPO:				JEFE GUARD	IA:						
CODIGO	HORA		MINA	CUERPO	NIVEL	LABOR	N° BROCA	CAN. TAL.	CANT. BARRAS	RIMA.	PIES PERF.
	INICIO	FINAL									
								i i			
											1
					-						
										-	
IOROMETR O	INICIO										
O	FINAL										
OBSERVACI	ONES:				-						
					-						
	-		-		ļ						
					1						
					1						
	FIRM	OPERA	ADOR	V°B° JEI	FE GUAF	RDIA			FIRMA N	MANTENIMI	ENTO
		CODIG	OS DE	OPERACIONE	S - SIME	BA:					
					1 AC	TIVIDAD:					
	LOCAL	IDAD -	MINA:		101	Perforació	n frente Desmo	onte (Desarrollo))		
	01 Lim	pe Centi	ro.		102	Perforació	n frente Minera	I (Preparacion	Galería)		
	02. - Tin							d (Preparacion			
	03 Ch	upa.						ineral (Prepara	cion Vertical)		
							n Mineral Tajo	(Explotación)			
							n en Repaso.				
							n Auxiliar (cand n en Sostenimi		eo, desquinche)		
2,- HORAS D	ICRONIE	I EC H					NTENIMIENTO				
			U								
200. - Charla d 201 Traslado							ento Preventiv ento Eléctrico.	0.			
			b., Acei	ı te, Freno, Etc.)			ento Mecánico				
203 Traslado	de Equi	po.			304	Falta de Ei					
204. - Cheque		or.			305	noperativo	por falla Meca	ánica / Eléctrica	1.		
205 Refrigeri		mnioza ¹	Marcada), Obstrucción)							
207 Falta de			Viarcauc	Obstruccion							
208 Manteni											
209. - Stand B		1									
210 Apoyo (0											
211 Falta de 212 Falta de		stalacion	iae iub	erias.							
213 Trancad		ras.	1								

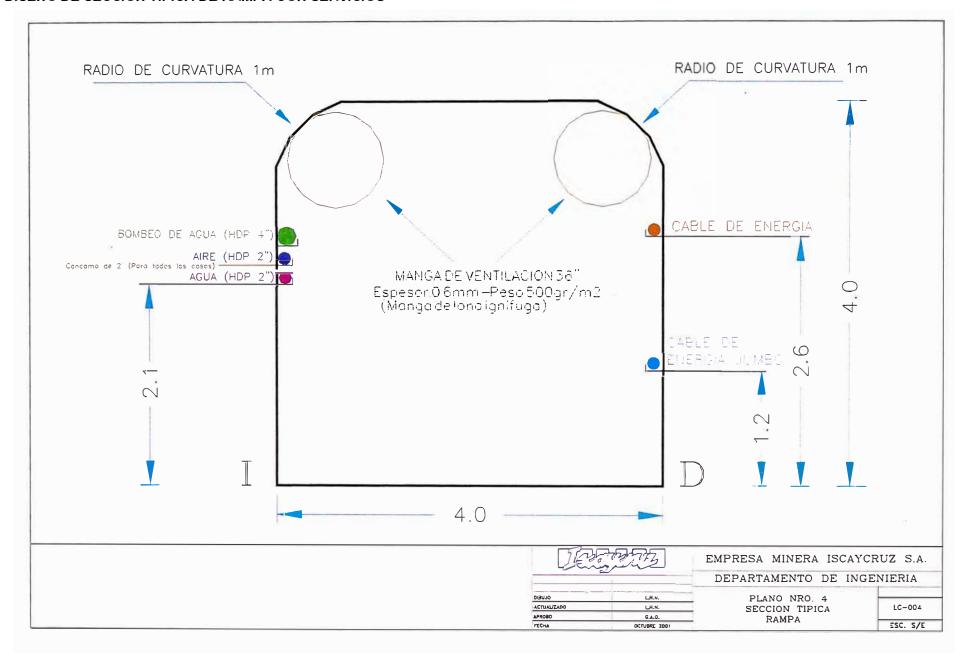
1.3.- LIMPEZA DE MINERAL, DESMONTE Y RELLENO

				REPORT	E DIARIO S	COOP				
SUARDIA:						FECHA:				
OPERADOR:							-			
EQUIPO:				JEFE GUARDI	ΙΔ.					
CODIGO	ИС	RA	MINA	CUERPO	NIVEL		A LABOR	NO OLIGINADA		
CODIGO		FINAL	IVIIIVA	CUERFO	NIVEL		A LABOR	N° CUCHARA		
						1				
							1 -			
					-	-				
	1									
	1									
HOROMETRO	INICIO									
	FINAL									
OBSERVACION	NES:									
	FIDAAA	OPED	DOD	\ 40D0_1EE	F OUADDIA		EIDAMA AMAA	TENUNIENTO		
	FIRMA	OPERA	ADOR	A.B. JELI	E GUARDIA		FIRMA MAN	ITENIMIENTO		
	CODIG	OS DE	OPERA	CIONES - SCO	OP:		-			
	-			-	1 ACTIVIDAD);				
	LOCAL	IDAD -	MINA.			de Desmonte (Desarrollo)			
		npe Cent					ral (Preparación de	Galería)		
	02 Tin	-	10.		103 Limpieza de Frente mineral (Preparación de Crucero)					
	03 Ch						imenea (Preparaci			
						de mineral Tajo				
						de mineral Acu				
					107 Limpieza	de Desmonte A	cumulado.			
					108 Relleno.					
2 HORAS DIS	PONIBL	ES - HD			3 HORAS MA	ANTENIM HM	-			
200 Charla de	Segurida	ad.			301 Mantenim	niento Preventiv	0.			
201 Traslado d	de persor	nal.			302 Reparacio					
202 Chequeo			ustible,	Aceite, Freno)	303 Reparació		faine (Elfatrica			
203 Traslado d 204 Chequeo			llumin	Sostenimiento)	304 Inoperativ	o por ralla Mec	ánica / Eléctrica.			
205 Refrigerio		(ventil.,	dilli.,	Josefiilileillo)						
206 Falta de la		nte, Tajo)							
207 Falta de C	perador.			1						
208 Mantenim										
209 Apoyo de 210 Stand By	Servicios	(Tuber	as, Sos	tenim)						
211 Otros	1									

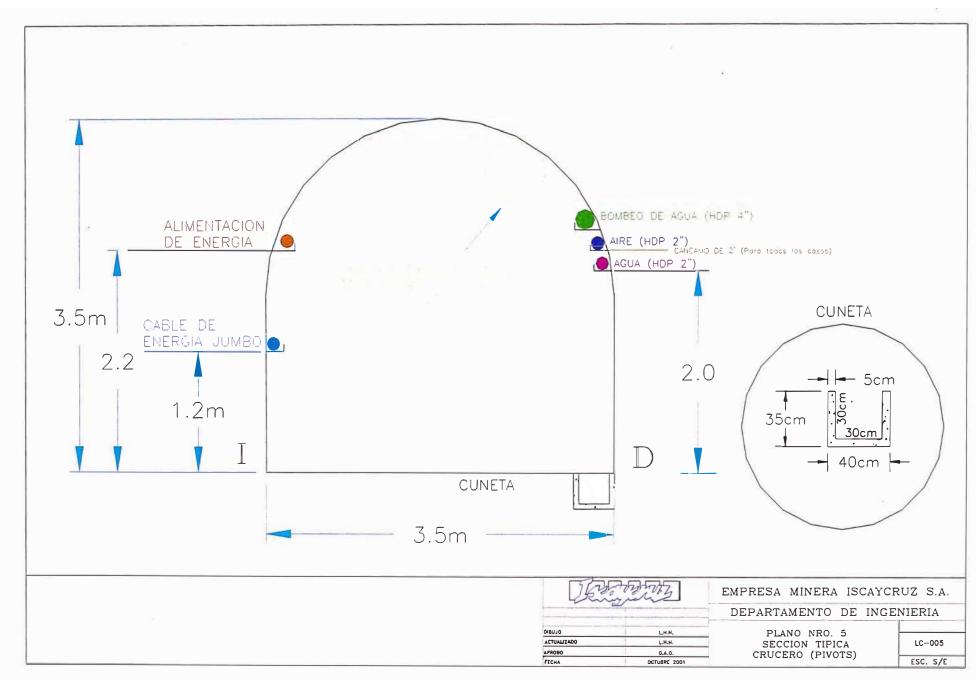

1.4.- TRANSPORTE MINERAL Y DESMONTE

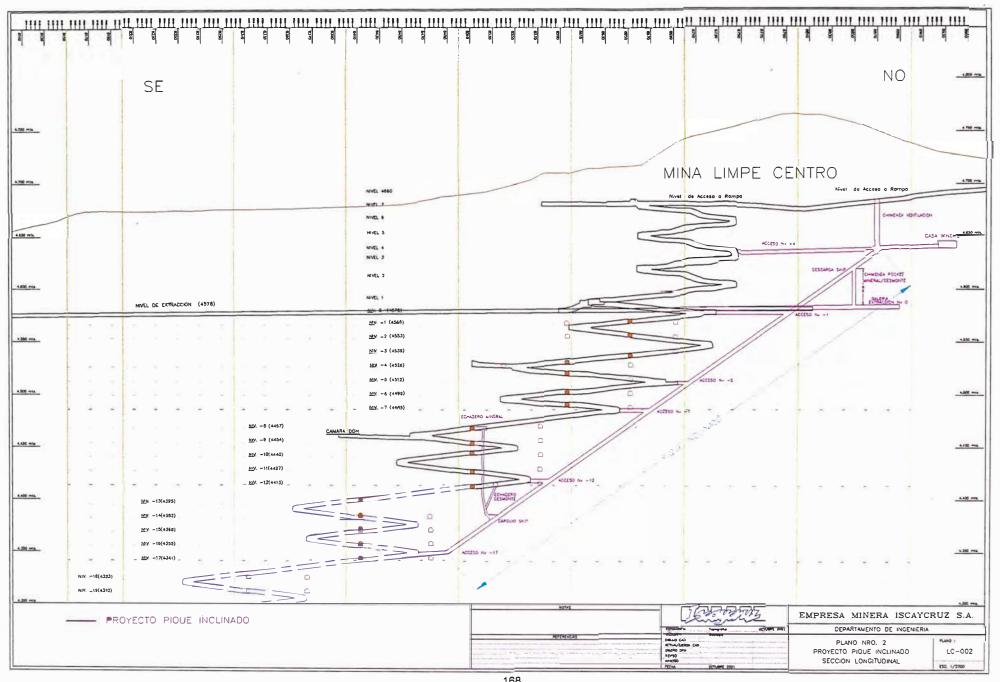

				KEPORT	E DIARIO	DUMPER		
JUARDIA:						FECHA:		
OPERADOR:								
EQUIPO:				JEFE GUARDIA	:			
CODIGO	HORA		MINA	CUERPO	NIVEL		A LABOR	N° DE VIAJES
	INICIO	FINAL						
					¥			
-								
HOROMETRO	INICIO						1	
	FINAL						1	
OBSERVACION	NES:							
	FIRMA	OPERA	DOR	V°B° JEFE	GUARDIA		FIRMA MA	NTENIMIENTO
	CODIG	OS DE (PERA	CIONES - DUMPE	R:			
					1 ACTIVIDA	ND:		
	LOCAL	IDAD -	MINA:			a de Desmonte (D		
		ipe Cent	ro.				al (Preparación de G	
	02. - Tin						al (Preparación de C	
	03. - Ch	upa.					menea (Preparación	Vertical)
						a de mineral Tajo a de Mineral Acun		
						a de Milleral Acul a de Desmonte A		
					108 Relleno		Jamaiaao.	
2 HORAS DIS	PONIRI	ES - HD				· MANTENIM HM.		
200 Charla de						imiento Preventivo		
201 Traslado					4	ción Eléctrica.		
202 Chequeo	de Equip	o (Comb	ustible,	Aceite, Freno)	4	ción Mecánica.		
203 Traslado				0 4 i : - : - : - : - : - : - : - :	304 Inopera	tivo por falla Mecá	inica / Eléctrica.	
204 Chequeo 205 Refrigerio		(ventil., l	iumin.,	Sostenimiento)	1			
206 Falta de la		nte, Tajo)					
207 Falta de 0	Operador.							
208 Mantenim			0	(a = ima)				
209 Apoyo de 210 Stand By		s (Tuberi	as, Sos	tenim)				
211 Otros								
		1						

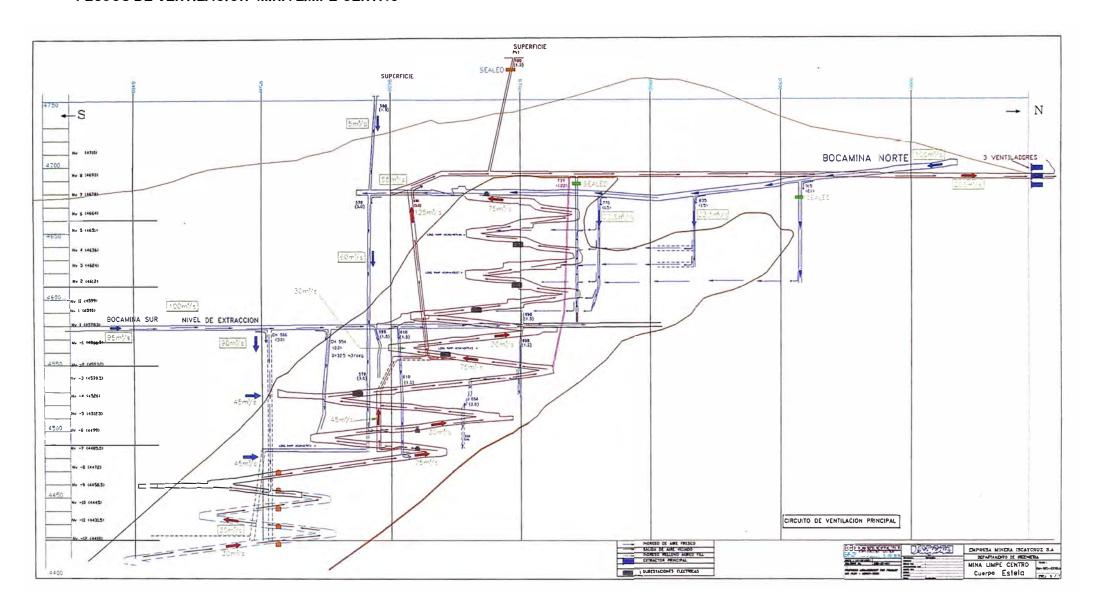
II SERVICIOS AUXILIARES


Octubre

1.- VISTA ISOMETRICA DE PROFUNDIZACION




DISEÑO DE SECCION TIPICA DE RAMPA CON SERVICIOS


SECCION TIPICA DE CRUCERO

SECCION TIPICA DEL PIQUE INCLINADO

FLUJOS DE VENTILACION MINA LIMPE CENTRO

