UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA

TRABAJO DE SUFICIENCIA PROFESIONAL

"INTERPRETACIÓN GENÉTICA DE UN YACIMIENTO AURÍFERO-CUPRÍFERO EN LA FRANJA METALOGENÉTICA NAZCA - OCOÑA PARA DEFINIR LA CONTINUIDAD DE LA MINERALIZACIÓN ECONÓMICA EN PROFUNDIDAD"

PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO GEÓLOGO

ELABORADO POR

ROGER GELACIO RUIZ BORJA

ASESORA

M.Sc. Ing. NORA NELLY REVOLLÉ ALVAREZ

Lima-Perú

2022

DEDICATORIA

Con mucho aprecio dedico mi Trabajo de Suficiencia Profesional a mi padre Gelacio Víctor Ruiz Orihuela quien fue testigo del inicio de esta investigación, aunque no del final, siempre deseó que culminara mis estudios y sobre todo la titulación; a mi madre Eddy Clara Borja Sánchez viuda de Ruiz quien estuvo pendiente de mi bienestar físico y emocional, a mis hermanos por su apoyo incondicional en todo aspecto.

AGRADECIMIENTO

Mi sincera gratitud a mis padres, familiares, docentes, amigos y todas personas que contribuyeron en la realización de esta investigación.

Mi agradecimiento al Ing. Juan Gollan, por brindarme la oportunidad de trabajar en la empresa Kartikay Peruvian Mining Company SAC, y darme las facilidades para recopilar la información requerida en la elaboración de este trabajo.

Expreso también mi eterna gratitud a la Universidad Nacional de Ingeniería, Facultad de Ingeniería Geológica, Minera y Metalúrgica, que durante mi permanencia universitaria me brindó las herramientas necesarias para mi desempeño profesional.

RESUMEN

La presente investigación se enfoca en las vetas Mirian y Ñusta de la mina Los Incas, ubicada en el valle Las Trancas - Nazca, que al no poseer estudios mineragráficos texturales, ni de termometría, no se puede determinar las posibilidades de profundización del mineral económico.

Sin embargo, existen investigaciones recientes en Asia Central y Brasil sobre inclusiones fluidas donde detallan que el fluido formador del yacimiento proviene de fuentes magmáticas, del mismo modo existen estudios en mina Los Incas direccionado al proceso metalúrgico del mineral.

Las vetas investigadas se enmarcan en las rocas de la Formación Guaneros inferior, que no presentan deformaciones significativas, pero si tres sistemas de fallamiento por donde fluyeron las soluciones hidrotermales, que luego precipitaron y formaron los clavos mineralizados.

Las investigaciones geológicas del presente estudio, están basadas en las observaciones hechas en el campo, el cartografiado geológico, muestreo sistemático de los clavos mineralizados, el análisis del contenido mineragráfico, los estudios de microtermometría y la ejecución de perforación diamantina. Los clavos mineralizados poseen un comportamiento inclinado (60°) con mineral económico como agregados microcristalinos intercrecidos con minerales de ganga, donde se identificó IF bifásicas.

Finalmente, si se desea continuar con la exploración geológica subterránea, hacerlo mediante la ejecución de piques inclinados con 2.4 m x 2.1 m de sección y 50° de inclinación, denominadas labores de exploración, ya que se estaría perdiendo \$797 por metro lineal de avance.

ABSTRACT

The present investigation focuses on the Mirian and Ñusta veins of the Los Incas mine, located in the Las Trancas valley - Nazca, which by not having textural mineragraphic studies, nor thermometry, cannot determine the possibilities of deepening the economic mineral.

However, there are recent investigations in Central Asia and Brazil on fluid inclusions where it is detailed that reservoir forming fluid comes from magmatic sources, in the same way there are studies in the analysis unit directed to the metallurgical process of the mineral.

The investigated veins are framed in the rocks of the Lower Guaneros formation, which does not present significant deformations, but does present three fault systems through which the hydrothermal solutions flow, which later precipitated and formed the mineralized nails.

The geological investigations of the present study are based on the observations made in the field, geological mapping, systematic sampling of mineralized nails, the analysis of the mineragraphic content, the microthermometry studies and the execution of diamond drilling. The mineralized nails have an inclined behavior (60°) with economic minerals such as microcrystalline aggregates intergrown with gangue minerals, where biphasic IF was identified.

Finally, if you wish to continue with underground geological exploration, do so by executing inclined shafts with a 2.4 m x 2.1 m section and 50° inclination, called exploration work, since you would be losing \$797 per linear meter of progress.

PRÓLOGO

La presente investigación consta de 5 capítulos. En el capítulo I se describe la ubicación, accesibilidad, geomorfología, clima y vegetación de la mina Los Incas, así como la problemática actual de la investigación, para definir de esta manera los objetivos e hipótesis del presente trabajo. En el capítulo II se presenta el marco teórico, con los estudios relacionados con la investigación, se detalla las bases teóricas y la metodología empleada, desarrollando el tipo, diseño de la investigación según el enfoque, alcance y diseño.

En el capítulo III se desarrolla el marco geológico regional y local, describiendo la geomorfología, litología, estratigrafía, geología estructural, evolución tectónica y geología económica de la zona de estudio. En el capítulo IV **s**e desarrolla la investigación desde la recolección de datos, procesamiento de la información y análisis de la información, enfocándose en 3 temas principales: 1) Muestreo de veta en interior de mina, 2) Microscopía y microtermometría y 3) Perforación diamantina. También se describe el análisis del resultado de cada uno de los instrumentos de recolección de datos relacionado con el objetivo, y asimismo se desarrolla la contrastación de los resultados de la investigación con la hipótesis planteada. Finalmente, en el capítulo V se presenta la propuesta de ingeniería, que recomienda explorar el área mediante piques de exploración.

ÍNDICE

DED	DICATO	DRIA	
AGF	RADEC	IMIENTO	
RES	UMEN		iii
ABS	TRAC	Г	iv
PRÓ	LOGO		v
ÍND	ICE		vi
LIST	TA DE I	FIGURAS	ix
LIST	TA DE '	ΓABLAS	xiv
CAP	ÝTULO	I: INTRODUCCIÓN	
1.1	Ubica	ción y accesibilidad	2
1.2	Geom	orfología	4
1.3	Clima	y vegetación	5
1.4	Plante	amiento del problema de la investigación	7
	1.4.1	Situación problemática	7
	1.4.2	Formulación del problema	8
	1.4.3	Justificación de la investigación	9
1.5	Objeti	vo de la investigación	9
1.6	Hipóte	esis	9
CAP	PITULO	II: MARCO TEÓRICO	
2.1	Antec	edentes referenciales	10
	2.1.1	Antecedentes internacionales	10
	2.1.2	Antecedentes nacionales	12

2.2	Bases	teóricas	13
	2.2.1	Inclusiones fluidas	13
	2.2.2	Exploración mineral	14
	2.2.3	Muestreo geológico	14
2.3	Metod	dología de la investigación	15
	2.3.1	Tipo y diseño de la investigación	15
CAF	PÍTULC) III: MARCO GEOLÓGICO	
3.1	Geolo	gía regional	17
	3.1.1	Estratigrafía	17
	3.1.2	Litología	20
	3.1.3	Geología estructural	26
	3.1.4	Evolución tectónica	28
3.2	Geolo	gía local	30
	3.2.1	Estratigrafía	30
	3.2.2	Litología	34
	3.2.3	Geología estructural	35
	3.2.4	Geología económica	36
CAF	PITULC) IV: INVESTIGACIONES GEOLÓGICAS	
4.1	Muest	treo de veta en interior de mina	39
	4.1.1	Metodología del muestreo	40
	4.1.2	Clavos mineralizados muestreados	41
	4.1.3	Muestras de control	43
	4.1.4	Análisis químico de las muestras	44
4.2	Micro	scopía y microtermometría	47

	4.2.1	Relaciones texturales	49
	4.2.2	Inclusiones fluidas	56
	4.2.3	Análisis microtermométrico	68
4.3	Perfor	ación diamantina	76
	4.3.1	Programa de perforación	77
	4.3.2	Logueo geológico	78
	4.3.3	Análisis y discusión de resultados	81
CAP	ÍTULO	V: PROPUESTA DE INGENIERÍA	
CON	ICLUSI	ONES	87
REC	OMEN	DACIONES	89
REF	ERENC	CIAS BIBLIOGRÁFICAS	90
ANE	ANEXOS		

LISTA DE FIGURAS

Figura 1.1	Evolución tectonomagmática en los Andes Centrales	2
Figura 1.2	Ubicación de mina Los Incas	3
Figura 1.3	Acceso a mina Los Incas	4
Figura 1.4	Cadena de montañas costeras denominadas Estribaciones	
	Andinas, vista mirando al Noreste de la unidad minera	5
Figura 1.5	Sembrío de maíz en el valle Las Trancas rodeado por algarrobos,	
	vista mirando al Norte	6
Figura 1.6	Zorro andino cerca a la garita principal, al Norte de la mina	6
Figura 1.7	Precios deflactados por el ICP de EE.UU.	8
Figura 2.1	Canal de muestreo en interior de mina, nivel 260 veta Ñusta	15
Figura 2.2	Mina Los Incas situado en el cauce de la quebrada afluente	
	del Valle Las Trancas, vista mirando al Sur	16
Figura 3.1	Geología regional de mina Los Incas	18
Figura 3.2	Sección transversal regional de mina Los Incas	18
Figura 3.3	Estratigrafía regional de mina Los Incas	19
Figura 3.4	Afloramiento de gneis, perteneciente al Complejo Basal de	
	la Costa, vista mirando al Norte	20
Figura 3.5	Contacto entre la Formación Guaneros y Complejo Bella	
	Unión, vista mirando hacia el Este	22
Figura 3.6	Hacia el Sur de la mina Los Incas se observa afloramientos	
	del Grupo Nazca	25
Figura 3.7	Afloramiento de granodiorita del Batolito de la Costa,	

	envolviendo a cuarcitas de la Formación Guaneros	26
Figura 3.8	Unidades morfotectónicas reconocidas regionalmente	27
Figura 3.9	Sección transversal, donde se observa las deformaciones	
	pre-andinas	29
Figura 3.10	Geología local de mina Los Incas	31
Figura 3.11	Sección longitudinal de mina Los Incas	32
Figura 3.12	Sección transversal local de mina Los Incas	32
Figura 3.13	Columna estratigráfica local de mina Los Incas	33
Figura 3.14	Afloramientos rocosos correspondientes a la Formación	
	Guaneros, vista: mirando hacia el Noreste	34
Figura 3.15	Dique andesítico cortando la secuencia volcano-clástica de la	
	Formación Guaneros, vista mirando hacia el Este en el nivel 180	35
Figura 3.16	Manto correspondiente al clavo Ñusta, vista: mirando al Sur	
	en el subnivel 340	36
Figura 3.17	Manto correspondiente al clavo Miriam, vista: mirando al Sur	
	en el subnivel 28	37
Figura 4.1	Esquema representativo de los métodos de muestreo en minería	40
Figura 4.2	Canal de muestreo en interior de mina, nivel 260 veta Ñusta	41
Figura 4.3	Plano de muestreo del clavo Miriam en el nivel 340	42
Figura 4.4	Plano de muestreo del clavo Ñusta en el nivel 340	42
Figura 4.5	Plano de isovalores del clavo Miriam en el nivel 340	46
Figura 4.6	Plano de isovalores del clavo Ñusta en el nivel 340	46
Figura 4.7	Muestras de mano de los clavos Miriam y Ñusta	47
Figura 4.8	Descripción macroscópica de la muestra Miriam 1	48

Figura 4.9	Descripción macroscópica de la muestra Ñusta 1	49
Figura 4.10	Agregados de pirrotita (po) reemplazando a pirita (py) y	
	esfalerita (ef)	49
Figura 4.11	Pirrotita (po) intercrecida con pirita (py)	50
Figura 4.12	Agregados de calcopirita (cp) reemplazando a pirrotita (po)	50
Figura 4.13	Inclusiones de esfalerita (ef) en calcopirita (cp)	50
Figura 4.14	Agregados de ilmenita (il) reemplazados por pirrotita (po) y	
	hematita (hm)	51
Figura 4.15	Inclusión de electrum(el) en gangas no metálicas (GGs)	52
Figura 4.16	Pirita (py) intercrecida y reemplazada por marcasita (mc)	53
Figura 4.17	Calcopirita (cp) reemplazada por coronas de cc, cv y	
	goethita (goe)	53
Figura 4.18	Pirita (py) con gn y crecimientos en los bordes de cv	53
Figura 4.19	Calcopirita (cp) con covelita (cv) y reemplazamiento de	
	goethita (goe)	54
Figura 4.20	Calcopirita (cp) reemplazada por covelita (cv)	54
Figura 4.21	Inclusión fluida polifásica	56
Figura 4.22	Tipos de inclusiones fluidas	58
Figura 4.23	Criterios para la interpretación de poblaciones de datos de IF	58
Figura 4.24	Sección doblemente pulida del clavo Miriam con texturas de	
	relleno y reemplazamiento	60
Figura 4.25	Cp con po, rellenando cavidades en cz hidrotermal	61
Figura 4.26	Cp con po rellenando cavidades de cz III	61
Figura 4.27	Pirrotita (po) con calcopirita (cp) e inclusión de esfalerita (ef)	61

Figura 4.28	Cristal subhedral de py con inclusiones de cp y po	62
Figura 4.29	IF bifásicas con forma redondeada en cz III	62
Figura 4.30	IF bifásica con forma irregular en cz III	62
Figura 4.31	IF bifásica con forma alargada en cz III	63
Figura 4.32	IF bifásica con forma redondeada en cz III	63
Figura 4.33	Sección doblemente pulida del clavo Ñusta, con texturas de	
	Relleno y reemplazamiento	63
Figura 4.34	Cp reemplazada por minerales secundarios de cobre (MsCu),	
	rellenando cavidades de cz III	64
Figura 4.35	Cristal subhedral de py y relicto de cp reemplazada por MsCu	65
Figura 4.36	Py y cp reemplazadas por MsCu	65
Figura 4.37	Inclusión de py y gn en cp	65
Figura 4.38	Cristales subhedrales de py e inclusiones de rut en cz III	66
Figura 4.39	Cristales subhedrales de py rellenando fracturas en cz III	66
Figura 4.40	Familia de IF bifásicas de forma ovalada	67
Figura 4.41	Familia de IF bifásicas de forma irregular	67
Figura 4.42	IF bifásica de forma ovalada con mayor volumen de líquido	67
Figura 4.43	Familia de IF bifásica con formas irregulares	67
Figura 4.44	IF bifásica de forma irregular con volumen equivalente de L y V	67
Figura 4.45	Familia de IF bifásica de forma irregular en cuarzo hidrotermal	67
Figura 4.46	Platina calentadora y refrigeradora	68
Figura 4.47	Sección transversal de la platina de enfriamiento/calentamiento	69
Figura 4.48	Histograma Th°C vs número de medidas en Miriam 1	70
Figura 4.49	Histograma de salinidad vs número de medidas en Miriam 1	70

Figura 4.50	Diagrama Th °C vs salinidad en Miriam 1	73
Figura 4.51	Diagrama de Th °C vs salinidad vs tipo de yacimiento en Miriam	73
Figura 4.52	Histograma de Th °C vs número de medidas en Ñusta 1	75
Figura 4.53	Histograma de salinidad vs número de medidas en Ñusta 1	75
Figura 4.54	Diagrama Th °C vs salinidad en Ñusta 1	76
Figura 4.55	Caja con testigos de perforación del clavo Ñusta	77
Figura 4.56	Perforadora diamantina Pack Sack BBU2	77
Figura 4.57	Sección longitudinal del clavo Miriam	78
Figura 4.58	Sección longitudinal del clavo Ñusta	79
Figura 4.59	Interpretación de la perforación en el clavo Miriam	80
Figura 4.60	Interpretación de la perforación en el clavo Ñusta	81
Figura 5.1	Ingreso al pique 9641 en el nivel 300	83
Figura 5.2	Sostenimiento y ventilación en el pique 9641	83

LISTA DE TABLAS

Tabla 1.1	Accesibilidad a mina Los Incas	3
Tabla 2.1	Características epistemológicas de la investigación	15
Tabla 4.1	Contenido en oro del clavo Miriam	45
Tabla 4.2	Contenido en oro del clavo Ñusta	45
Tabla 4.3	Mineralogía de mina Los Incas	48
Tabla 4.4	Descripción de las relaciones texturales del clavo Miriam	51
Tabla 4.5	Secuencia paragenética del clavo Miriam	52
Tabla 4.6	Descripción de las relaciones texturales del clavo Ñusta	55
Tabla 4.7	Secuencia paragenética del clavo Ñusta	56
Tabla 4.8	Siglas empleadas en el análisis microtermométrico	59
Tabla 4.9	Minerales no metálicos en Miriam 1	60
Tabla 4.10	Minerales metálicos en Miriam 1	60
Tabla 4.11	Minerales no metálicos en Ñusta 1	63
Tabla 4.12	Minerales metálicos en Ñusta 1	64
Tabla 4.13	Tabla de salinidades según temperaturas de fin de fusión del	
	Hielo (Tm) de IF en presencia de vapor	71
Tabla 4.14	Datos microtermométricos de la muestra Miriam 1	72
Tabla 4.15	Datos microtermométricos de la muestra Ñusta 1	74
Tabla 4.16	Intercepto de sondajes diamantinos	76
Tabla 5.1	Parámetros del pique propuesto	84
Tabla 5.2	Metodología de trabajo en la ejecución del pique	84
Tabla 5.3	Características del winche y cable	85

Tabla 5.4	Costo variable unitario	85
Tabla 5.5	Valor del mineral por clavo mineralizado	86
Tabla 5.6	Utilidad por avance de pique en cada clavo mineralizado	86

CAPÍTULO I

INTRODUCCIÓN

Muchos de los yacimientos auríferos – cupríferos ubicados en la franja metalogénica Nazca – Ocoña, no cuentan con un estudio de mineragrafía, ni microtermometría, para explicar la génesis del yacimiento (Loaiza et al., 2008). Sin embargo, existe estudios de yacimientos del tipo Óxidos de hierro, cobre y oro (IOCG), cercanos a la mina Los Incas.

La parte central de Los Andes ha sido conocida como una provincia de Cu por más de 100 años (Sillitoe y Perelló, 2005), en la Figura 1.1 se observa a mina Los Incas cercana a los yacimientos Mina Justa, Marcona y Cobrepampa, que podrían guardar alguna relación.

La presente investigación tiene como objetivo examinar la génesis del yacimiento Los Incas, mediante estudios de texturas y termometría de la mineralización, para definir la persistencia del mineral económico en profundidad.

Figura 1.1 Evolución tectonomagmática en los Andes Centrales Fuente: Chen et al. (2013)

Con los resultados de los estudios realizados se decidirá la conveniencia de proponer un programa de exploración para cubicar reservas minerales que pudieran permitir y reactivar las actividades en esta unidad minera.

1.1 Ubicación y accesibilidad

La unidad minera Los Incas se encuentra ubicada en la margen izquierda del valle Las Trancas, distrito de Vista Alegre, provincia de Nazca, Región Ica, Perú. (ver Figura 1.2)

Figura 1.2 Ubicación de mina Los Incas Fuente: Elaboración propia

Mina Los Incas se encuentra a una altura de 1300 msnm y tiene las siguientes coordenadas: Longitud Oeste: 74°41'15'', Latitud Sur: 14°58'75''

En la Figura 1.3 se muestra la accesibilidad desde la ciudad de Lima, y se

detalla en la Tabla 1.1.

Tabla 1.1

De	Α	Distancia (km)	Característica
Lima	Nazca	445	Panamericana Sur
Nazca	Desvío mina	17	Panamericana Sur
Desvío mina	Mina	33	Carretera afirmada
Lima	Mina	495	

Accesibilidad a mina Los Incas

Fuente: Elaboración propia

Figura 1.3 Acceso a mina Los Incas Fuente: Elaboración propia

1.2 Geomorfología

El área de trabajo corresponde a la unidad de Estribaciones Andinas, comprendida entre la depresión de Ica - Nazca y las altiplanicies andinas de la Superficie Puna. Las Estribaciones Andinas se extienden paralelas al litoral del Pacífico, presentando una pendiente hacia el Oeste cuya altitud está entre 550 y 2400 m.s.n.m. Morfológicamente tiene una topografía irregular, ya que es la parte final de la cadena montañosa de los Andes (ver Figura 1.4), posee relieve moderado a abrupto, con un sistema de drenaje subparalelo a dendrítico.

Los valles y quebradas transversales que cortan el frente andino son numerosos y tienen secciones típicas de valles jóvenes, de paredes estrechas y encañonadas, con vertientes amplias, de fondo plano en sus desembocaduras, donde se registran gruesas acumulaciones de depósitos cuaternarios.

Figura 1.4 Cadena de montañas costeras denominadas Estribaciones Andinas, vista mirando al Noreste de la unidad minera Fuente: Elaboración propia

1.3 Clima y vegetación

El clima en la zona de trabajo es del tipo pre-árido a semi cálido, con precipitación total variable entre 2.4 y 5.1 mm anual. La temperatura varía de 24°C hasta 31°C (Montoya et al., 1994).

La vegetación en las estribaciones andinas es escasa, en los meses de diciembre hasta marzo donde existe precipitación, se cubre de matorrales de naturaleza heterogénea, como: cactus, palo santo, etc.

Sin embargo, como se observa en la Figura 1.5, en los valles y quebradas agrícolas se aprecia vegetación propia de la zona: huarangos, algarrobos, y como cultivos agrícolas se tiene: algodón, vid, maíz, pallar, hortalizas, tubérculos, frutales y alfalfa, que están en riesgo permanente por falta de agua.

Figura 1.5 Sembrío de maíz en el valle Las Trancas rodeado por algarrobos, vista mirando al Norte Fuente: Elaboración propia

Con respecto a la fauna, existe presencia de reptiles como lagartijas y culebras, escasa presencia de mamíferos como zorros andinos (ver Figura 1.6). Aves: pájaros carpinteros, gallinazos, palomas de campo, jilgueros, entre otros.

Figura 1.6 Zorro andino cerca a la garita principal, al Norte de la mina Fuente: Elaboración propia

1.4 Planteamiento del problema de la investigación

En este apartado se desarrolla la situación problemática, formulación del problema y la justificación de la investigación.

1.4.1 Situación problemática

Para las vetas Miriam y Ñusta que son materia de esta investigación, se desconoce la existencia de estudios mineragráficos texturales y de termometría necesarios para la interpretación de la génesis del yacimiento y para determinar las posibilidades de profundización del mineral económico.

Algunas empresas mineras desarrollan labores de exploración, sin sustento técnico científico apropiado, invirtiendo recursos económicos, y humanos, con escaso éxito en el descubrimiento de yacimientos minerales, y en encontrar mineralización económica que pueda sostener la operación minera en el tiempo (Loaiza et al., 2008).

En el caso de las vetas consideradas para este estudio, no se ha encontrado inversión en la investigación de estudios de inclusiones fluidas y de texturas del mineral, para encontrar las temperaturas de formación del fluido o fluidos que originaron la mineralización y su posible concentración de interés económico. Como consecuencia se tiene el cierre temporal y/o definitivo de los centros mineros por falta de reservas y recursos minerales.

En la Figura 1.7 se aprecia el aumento del precio de los metales en las últimas décadas, salvo una breve interrupción durante la crisis mundial de 2008-2009 (Adler y Sosa, 2011), haciendo atractiva la exploración de nuevas reservas de mineral y de estudios más especializados y de mayor detalle, donde el mineral económico ya este agotado.

Figura 1.7 Precios deflactados por el IPC de EE.UU. Fuente: Contreras y Gutiérrez. (2016)

El problema para investigar está referido al desconocimiento de las características texturales del mineral que contiene el metal oro, al no distinguirse macroscópicamente, por lo que es necesario efectuar estudios de microscopia que incluye análisis termométricos para encontrar las temperaturas de formación de sus minerales, así como la relación espacial para determinar sus texturas. Existen complicaciones metalúrgicas en el tratamiento del metal, que impiden su recuperación en un porcentaje importante, lo que influye negativamente en el valor del mineral y en la vida de la mina. Asimismo, el mineral aurífero depende del tipo de yacimiento y disminuye su ley al cambiar la temperatura de formación en profundidad, coincidiendo con la profundización de las labores mineras.

Con todas las investigaciones realizadas, se definirá si continúa o no el mineral aurífero económico en profundidad, que, de ser positivo permitiría aplicar un nuevo programa de exploración y a considerar la reactivación de la operación minera.

1.4.2 Formulación del problema

¿En qué medida afectan las relaciones texturales y de temperaturas del

yacimiento, la continuidad del mineral aurífero económico en profundidad?

1.4.3 Justificación de la investigación

Esta investigación permitiría la aplicación de un programa exploratorio y el reinicio de la producción aurífera con resultados económicos favorables de la operación:

La empresa se beneficiará mediante la utilidad que se obtenga principalmente considerando la necesidad de reinvertir en el incremento de la producción.

El personal que labora en la operación obtendría las remuneraciones adecuadas que le correspondan por su trabajo. Se incrementará además la oferta laboral en el área de influencia de la mina y de otras regiones.

La comunidad del valle Las Trancas y poblaciones aledañas, recibiría beneficios económicos que les permitirá realizar obras de infraestructura y otras relacionadas con la actividad agrícola que desarrollan en la zona.

El gobierno regional, por ley, es copartícipe de las utilidades de las empresas mineras, por tanto, obtendrá la contribución económica que le corresponda, para invertir en obras públicas en beneficio de la región.

1.5 Objetivos de la investigación

Analizar la génesis del yacimiento, mediante estudios de texturas y termometría de su mineralización, para definir la persistencia del mineral económico en profundidad.

1.6 Hipótesis

Al efectuar una apropiada interpretación genética del yacimiento aurífero, mediante los estudios de investigación propuestos, se demostrará el interés económico de la mineralización por debajo del último nivel inferior conocido.

CAPITULO II

MARCO TEÓRICO

2.1 Antecedentes referenciales

2.1.1 Antecedentes internacionales

Yuan et al. (2019) señalan que el depósito Erdaokan Ag-Pb-Zn ubicado en el cinturón metalogénico de oro y cobre de Duobaoshan (Asia Central), tiene cuerpos mineralizados en vetas alojadas en brecha. Reconocieron tres etapas de mineralización, que incluyen etapas tempranas de magnetita–cuarzo-pirita, etapa intermedia de sulfuro de plata–bitumen-cuarzo y etapas tardías de carbonato. Se hicieron análisis de microsonda electrónica (EPMA), isótopos S-Pb-H-O y estudios de inclusiones fluidas para obtener información sobre las características más destacadas de la mineralización del mineral y el mecanismo de precipitación de plata. La plata se presenta principalmente como argentita, pirargirita y iones plata en los granos de tetraedrita, en los que Ag, Fe y As sustituyeron isomórficamente a Cu, Zn y Sb, respectivamente. Las temperaturas de homogeneización de las inclusiones fluidas en las etapas temprana, media y tardía de la mineralización oscilan entre 96 y 179 °C, entre 78 y 178 °C y entre 98 y 191 °C, respectivamente. Las salinidades del fluido varían de 0,35 a 5,54 % equivalente (eq.) peso NaCl. Los valores de δ^{34} S de la pirita y galena muestran un rango de -0.97% a +9.31%. ²⁰⁶Pb/²⁰⁴Pb varían de 18,0125 a 18,1864, ²⁰⁷Pb/²⁰⁴Pb de 15,561 a 15,081 y ²⁰⁸Pb/²⁰⁴Pb de 38,0445 a 37,6979, con una media de 18,0298, 15,5125 y 37,7281 respectivamente. Los autores concluyen que los fluidos formadores del mineral se derivaron de una fuente magmática, con la mezcla de fluidos como el mecanismo dominante para la precipitación de plata, lo que implica la interacción de fluidos de hidrocarburos como se infiere de la presencia de bitumen en el mineral.

Torresi et al. (2012) indican que el yacimiento IOCG Alvo 118 (170 Mt con 1.0% Cu, 0.3 gr/t Au) se encuentra en la Faja de Corte de Itacaúnas - Brasil. El depósito está alojado en rocas volcánicas entrecruzadas con intrusivos que han sido sometidos a secuencias de alteraciones hidrotermales (alteración sódica, potásica, generalizada de clorita y cuarzo-sericita). La mineralización está conformada por calcopirita (~60%), bornita (~10%), hematita (~20%), magnetita (10%), calcosita, oro nativo, telururos de Au-Ag, galena, casiterita, apatito rico en F, xenotimo, monacita y britolita-(Y). Los estudios de inclusiones fluidas en cuarzo apuntan a un régimen de dos tipos distintos de fluidos que probablemente pueden haber coexistido dentro del marco de tiempo en el episodio de mineralización de Cu-Au: una solución salina caliente (>200 °C) (32,8 % a 40,6 % equivalente (eq.) peso NaCl). Además, los valores de sulfuro δ^{34} S (5,1% a 6,3%), junto con los datos del isótopo de boro y Cl/Br–Na/Cl proporcionan evidencia de un componente significativo de residuos de fluidos evaporíticos que, junto con las salmueras derivadas del magma, serían las principales fuentes de los fluidos altamente salinos involucrados en la formación del depósito IOCG Alvo 118. La alteración sódica restringida a alta temperatura, la sobreimpresión generalizada de los minerales de alteración potásica por clorita proximal a las zonas de mena, brechas de mineral con texturas de relleno en espacios abiertos en estructuras frágiles, los datos microtermométricos y de isótopos estables indican, colectivamente, que el sistema IOCG Alvo 118 se desarrolló en niveles estructuralmente altos y puede considerarse el representante menos profundo de los sistemas IOCG del CMP.

2.1.2 Antecedentes nacionales

Inga (2018) en su tesis Estudio mediante Microtermometría de Inclusiones Fluidas - Recuperada – Distrito Minero de Huachocolpa, describe la importancia de la microtermometría de inclusiones fluidas, como aporte para buscar nuevas zonas de exploración dentro de las operaciones mineras. Señala que Recuperada es controlada por la falla Chonta, enmarcada en calizas del Grupo Pucará y volcánicos del Terciario.

La investigación determina que la secuencia paragenética se compone de tres etapas, la primera comprendida por cuarzo y carbonatos, pirita, marcasita, esfalerita, calcopirita, galena, tetraedrita y bournonita, con porcentaje de salinidad (NaCl) entre 5 y 10 % y con temperaturas de homogeneización (Th) que varía entre 300 y 400 °C. La segunda etapa está formada por cuarzo, carbonatos, pirita, esfalerita, calcopirita, galena, famantinita, tetraedrita, bournonita y sterryita, con porcentaje de salinidad (NaCl) menores a 10% y Th que varía entre 200 y 300 °C. Finalmente, una tercera etapa conformada por cuarzo, carbonatos, pirita, esfalerita, galena, famantinita, tetraedrita, bournonito, pirita, esfalerita, galena, famantinita, tetraedrita, bournonita y sterryita, con porcentaje de salinidad (NaCl) menores a 10% y Th que varía entre 200 y 300 °C. Finalmente, una tercera etapa conformada por cuarzo, carbonatos, pirita, esfalerita, galena, famantinita, tetraedrita, yeso, basanita y óxidos de hierro, con salinidades comprendidas entre 1 y 8 % equivalente (eq.) peso NaCl y Th entre 150 y 200 °C. El autor interpreta que la dirección del fluido en las tres etapas de mineralización es al Noreste del yacimiento, clasificándolo como depósito epitermal a mesotermal con contacto de vetas de oro.

Huayhua y Ancco (2014) en su tesis Estudio de Factibilidad del Proyecto

Explotación de la Mina Los Incas Lucanas – Ayacucho, resumen los trabajos de explotación y procesamiento con una descripción general de la geología del yacimiento, con el fin de tener una producción mensual de 10.70 kg de oro fino contenido en carbón activado en el primer año con tratamiento de 1500 t de minerales por mes, con ley promedio de 8 gr/t, posteriormente se estima incrementos anuales de producción - tratamiento hasta llegar a 3000 t/mes, siendo cuatro años el tiempo necesario para incrementar las reservas adecuadas para este nivel de producción. La planta de tratamiento ha sido diseñada con una capacidad de 50 t/día y orientada fácilmente a una ampliación de 100 t/día. De acuerdo con los autores se aumentará la producción, debido a que se tienen varias vetas identificadas en el estudio geológico.

2.2 Bases teóricas

2.2.1 Inclusiones fluidas

Korzeniewski (2002) en su publicación Inclusiones fluidas aplicada a la exploración minera, define a las Inclusiones Fluidas (IF) como cavidades dentro de un mineral que pueden albergar fluidos (líquidos y/o gaseosos) y sólidos. Explica que cuando un cristal precipita desde un fluido, la superficie de crecimiento presenta imperfecciones, estas imperfecciones forman huecos que se cierran con el propio crecimiento cristalino y que atrapan al fluido presente responsable de la precipitación (fluido primario) del mineral.

También detalla que después que el mineral ha precipitado, son comunes los procesos de deformación, que generan pequeñas grietas, fracturas o planos deformados. Al cerrarse las microfracturas se forman las IF que atrapan pequeñas cantidades del fluido durante o después del evento de deformación. Las IF generadas por el sellado de microfracturas luego de que el cristal se formó por completo se denominan secundarias.

2.2.2 Exploración mineral

Wood y Hedenquist (2019) en su publicación Mineral Exploration: Discovering and Defining Ore Deposits, definen a la exploración mineral como el descubrimiento de concentraciones de minerales que puedan recuperarse económicamente para proporcionar recursos esenciales para la sociedad; que se ha logrado consistentemente hasta la primera década del siglo actual, pero la exploración desde entonces ha sido destructiva de la riqueza. Este resultado es un gran problema para la industria minera a menos que se revierta. Mencionan que las tecnologías empleadas en la actualidad para descubrir depósitos minerales serán tan útiles para descubrimientos futuros, como lo han sido en el pasado. Sin embargo, argumentan que se requiere un nuevo enfoque sobre cómo se lleva a cabo la exploración y cómo se aplican estas y las tecnologías emergentes. Los cambios requeridos en el enfoque incluyen modelos comerciales mejorados para llevar a cabo la exploración y la aceptación de que es probable que se descubran menos depósitos cerca de la superficie. Proponen que la mejor forma de que los geocientíficos exploren, es siendo más predictivos, que es la clave inmediata para aumentar el número de descubrimientos.

2.2.3 Muestreo geológico

Linares (2017) en su tesis Técnicas de muestreo y control de calidad para la Mina Españolita S.A.C. en el distrito de Cháparra, provincia de Caraveli, departamento Arequipa, define como muestreo geológico al proceso de extracción de una parte representativa realizada en una población considerada como "todo", esta población puede ser roca/sedimentos, mineral o alteración; para luego enviar el material extraído (muestra) al laboratorio de análisis químico y obtener el valor de concentración del elemento deseado.

En vetas auríferas el autor sugiere muestrear con canales a intervalos de 2 a 3 m, sin embargo, al atravesar una zona con leyes altas en oro, realizarlo cada metro. La longitud del canal de muestreo debe estar comprendido entre 0.40 y 1.50 m, el ancho debe ser 0.20 m (ver Figura 2.1).

Figura 2.1 Canal de muestreo en interior de mina, nivel 340 del clavo Miriam Fuente: Elaboración propia

2.3 Metodología de la investigación

2.3.1 Tipo y diseño de la investigación

El tipo de investigación es mixto, como se observa en la Tabla 2.1 y de

acuerdo con las características epistemológicas de la investigación.

Característica	Tipo de característica	Tipo de investigación
Percepción de la realidad	Objetiva	Cuantitativa
Razonamiento	Deductivo	Cuantitativa
Finalidad	Exploración y comprobación	Cualitativa y cuantitativa
Orientada	Al resultado	Cuantitativa
Principio de la verdad	Holística y estable	Cualitativa y cuantitativa
Perspectiva del investigador	Próximo a los datos	Cualitativa
Causalidad	Antecedentes específicos	Cuantitativa

Tabla 2.1 Características epistemológicas de la investigación

Fuente: Elaboración propia

Alcance

Desde el punto de vista de alcance es una investigación de nivel descriptivo, debido a que se recolecta y evalúa datos sobre diversas dimensiones del fenómeno a investigar, para este caso el yacimiento emplazado en la Formación Guaneros.

Diseño de la Investigación

La presente investigación es del tipo no experimental, no existe creación ni manipulación de variables, observando los yacimientos hidrotermales de Au-Cu (ver Figura 2.2) como un proceso de la naturaleza a través de fuentes magmáticas con formación, transporte y acumulación de fluidos mineralizantes, fenómeno natural que culmina con la formación de los yacimientos minerales de origen hidrotermal.

Figura 2.2 Mina Los Incas situado en el cauce de la quebrada afluente del valle Las Trancas, vista mirando al Sur Fuente: Elaboración propia

CAPÍTULO III

MARCO GEOLÓGICO

3.1 Geología regional

En la Figura 3.1, se aprecia las principales unidades litológicas que afloran en la concesión, así como las principales estructuras mapeadas regionalmente. Cabe resaltar que no se ubican minas importantes en las cercanías del área de investigación.

En la Figura 3.2, se muestra la sección transversal A-A`, generada a partir del mapeo geológico regional.

3.1.1 Estratigrafía

En el área afloran rocas de diferentes edades que van desde el Precámbrico, Jurásico, Cretácico, Terciario y depósitos recientes del Cuaternario.

Las rocas más antiguas como se observa en la columna estratigráfica mostrada en la Figura 3.3, están representadas por el Complejo Basal de la Costa, seguida por una secuencia volcano-sedimentaria del Jurásico superior (Formación Guaneros), que fue intruída por cuerpos subvolcánicos andesíticos del Cretácico superior (Complejo Bella Unión). Posterior al emplazamiento del Complejo se produce la intrusión del Batolito de la Costa, y cubriendo parte de la secuencia yace el paquete volcánicosedimentario correspondiente al Grupo Nazca del Terciario inferior.

Figura 3.1 Geología regional de mina Los Incas Fuente: Elaboración propia

Figura 3.2 Sección transversal regional de mina Los Incas Fuente: Elaboración propia

Figura 3.3 Estratigrafía regional de mina Los Incas Fuente: Elaboración propia

3.1.2 Litología

3.1.2.1 Complejo basal de la Costa

Está constituido por gneis, esquisto y granito alcalino, formando el substrato sobre el que yace las formaciones paleozoicas y cretácicas. En la franja Nazca - Ocoña aflora a lo largo de la desembocadura del río Ica, existiendo otros pequeños afloramientos al Suroeste de Nazca, el Complejo basal de la Costa es intruído a su vez por el Batolito San Nicolás, ver Figura 3.4.

Figura 3.4 Afloramiento de gneis, perteneciente al Complejo Basal de la Costa, vista mirando al Norte Fuente: Elaboración propia

El metamorfismo que corresponde al Complejo Basal de la Costa es regional de presión intermedia y alta temperatura. Los procesos tectónicos que afectaron el Complejo, corresponden a las fases orogénicas precámbricas sobre las que prosiguieron las orogenias paleozoicas, mesozoicas y cenozoicas.

A los gneis se le estima una edad comprendida entre 1424 +70 millones de años
y 540 + 27 millones de años. (Montoya et al., 1994).

3.1.2.2 Formación Guaneros

Montoya et al. (1994), afirma que la Formación Guaneros corresponde a una secuencia volcano-sedimentario del Jurásico superior, que aflora en varios puntos de los cuadrángulos de Palpa y Nazca. Algunos afloramientos de la Formación Guaneros han sido reconocidos al Sureste de Nazca, conformando un anticlinal asimétrico de flancos fallados, que han sido erosionados de manera profunda y transversal por los valles de la cuenca del Pacífico, también se observan en la ladera del cerro Toclla (mina Los Incas, ver Figura 3.5), específicamente en la Quebrada Trancas y camino a Puquio.

La Formación Guaneros inferior consiste en derrames andesíticos grises y verdes de textura porfirítica con intercalación de pizarras, areniscas y cuarcitas. La secuencia se encuentra interceptada por diques, sills y stocks de intrusivos subvolcánicos de composición andesítica y con menor frecuencia de naturaleza granodiorítica y micro monzonita. Sin embargo, el contacto superior de la Formación es concordante con el Grupo Yura y en discordancia angular con los volcánicos terciarios del Grupo Nazca.

Las pizarras de esta Formación son generalmente negras en estratos de hasta 2 m de potencia, ocurren también algunos horizontes de lutitas. Las areniscas son más frecuentes en la parte Sur, son blanquecinas y llegan a tener hasta 4 m de potencia. Las cuarcitas son más abundantes en el área de la mina, específicamente en la veta los Incas y Ríos, son blancas y grises en superficie y cerca de las vetas adquieren tonalidades rojizas causadas por la presencia de óxidos de hierro.

Figura 3.5 Contacto entre la Formación Guaneros y el Complejo Bella Unión, vista mirando hacia el Este Fuente: Elaboración propia

3.1.2.3 Complejo Bella Unión

Aflora en la parte central y al Este de la mina Los Incas (ver Figura 3.5), consiste un conjunto de cuerpos intrusivos subvolcánicos de naturaleza andesítica, que cortan a rocas de la Formación Guaneros y a su vez son intruidos por rocas del Batolito de la Costa. Los contactos del Complejo Bella Unión con el Batolito de la Costa son nítidos y subverticales, pero con la Formación Guaneros son en su mayoría concordantes con la estratificación, es decir rumbo N30°W y buzamiento de 30°-45° NE.

El Complejo Bella Unión es una intrusión múltiple, representada por pequeños stocks, brechas intrusivas, sistemas de diques y sills, todos de características litológicas homogéneas, son andesitas de textura porfirítica, color gris verdoso, compuesto por fenocristales de plagioclasa en una matriz afanítica. Los diques constituyen las facies más tardías del Complejo, son numerosos y cortan a los stocks y también a las rocas de la Formación Guaneros, donde son perceptibles por su coloración verdosa. Asimismo, la mayor parte de los afloramientos del Complejo están afectados por alteración del tipo clorítica, tanto a nivel regional como en el área de la mina.

En las zonas de exposición del Complejo Bella Unión ocurren vetas importantes como Ricotona, Carmen y Tembladera con minerales de cobre-oro que podrían estar genéticamente asociados al Complejo. En la veta los Incas ocurren múltiples diques andesíticos ligeramente concordante con la estratificación alguna de ellos con mineralización económica.

El Complejo Bella Unión corresponde al Cretácico superior temprano, ligeramente más antiguo que el Batolito de la Costa.

3.1.2.4 Grupo Yura

Wilson y García (1962), definen como Grupo Yura a los afloramientos de areniscas grises a gris clara, de capas finas a medianas, intercaladas con lutitas oscuras y ocasionalmente con niveles volcánicos piroclásticos de naturaleza andesítica, que afloran al Este y Sureste de Nazca, al Sur de la quebrada Las Trancas, también aflora al Sureste de la mina Los Incas.

Al Sureste de la localidad de Nazca, se observa al Grupo Yura, estratigráficamente concordante debajo de la Formación Copara y sobre la Formación Guaneros y a su vez cubierta discordantemente por el Grupo Nazca

Al Norte de la quebrada Trancas sobre las estribaciones andinas altas, se observan los afloramientos más extensos del Grupo Yura, donde se hallan intruídos por las unidades del Batolito de la Costa. Se le estima la edad del Jurásico superior (Js) y Cretácico inferior (K inf).

3.1.2.5 Grupo Nazca

Consiste en una secuencia de rocas volcánico-sedimentarias que cubren el 40% de la propiedad minera. Está ampliamente distribuido entre 1200 a 4000 msnm, secuencia sub-horizontal, inclinada ligeramente hacia el Oeste, que suprayace en discordancia angular sobre la Formación Guaneros, sobre el Batolito de la Costa y sobre el Complejo Bella Unión (ver Figura 3.6).

En la parte inferior del Grupo se encuentran conglomerados gris claro a marrón claro, conformado por cantos menores a 20 cm de diámetro de composición variada, en matriz arenosa, tobácea, intercaladas por areniscas tobáceas claras de grano fino a grueso mal clasificadas.

En la parte media a superior, se distingue horizontes de ignimbritas, de espesores menores a 6 m, de composición riolítica.

El límite superior no se observa en el área de estudio por estar erosionada, y la máxima potencia reconocida es de 550 m, que se sitúa al sudeste del cerro Toclla.

Figura 3.6 Hacia el Sur de la mina Los Incas, se observa afloramientos del Grupo Nazca Fuente: Elaboración propia

3.1.2.6 Rocas intrusivas

Batolito de la Costa

En el área de estudio el Batolito de la Costa aflora al Oeste y Noreste, son de naturaleza granodiorítica (ver Figura 3.7) a tonalítica. Es un complejo múltiple perteneciente al segmento Arequipa, que se extiende a lo largo de 800 km entre Arequipa y las inmediaciones de Lima, en Mina los Incas aflora la super unidad Tiabaya.

El Batolito se emplazó cortando a las rocas de la Formación Guaneros y el Complejo Bella Unión, y están cubiertas por los depósitos volcánico-clásticos del Grupo Nazca. El contacto de las rocas del Batolito con los sedimentos de la Formación Guaneros es subvertical y localmente aflora como diques cortando a la Formación Guaneros y al Complejo Bella Unión. Las rocas tienen composición granodiorítica, gradando ocasionalmente a tonalita. Posterior a la formación del Batolito se produjeron intrusiones menores (diques andesíticos), siendo los posibles mineralizadores. La edad del emplazamiento ocurrió entre 72 y 83 Ma. (Montoya et al., 1994).

La mayoría de los yacimientos en la franja Nazca - Ocoña están enmarcados dentro de las rocas del Batolito de la Costa, por ejemplo, las minas Huarangullo, Quemazón, Lindero y Ccalapoto.

Figura 3.7 Afloramiento de granodiorita perteneciente al Batolito de la Costa, envolviendo a cuarcitas de la Formación Guaneros Fuente: Elaboración propia

3.1.3 Geología estructural

Se distinguen dos unidades morfotectónicas principales: Región Costanera y la Cordillera Occidental, (Montoya et al., 1994).

Región costanera

Conformada por la plataforma continental emergida de la región, los principales elementos estructurales de la zona son la Cordillera de la Costa, las Pampas

Costaneras y la Depresión de Ica-Nazca. Como se observa en la Figura 3.8, las dos primeras constituyen la cima de un horts de orientación andina, afectado internamente y en sus flancos por fallas normales, longitudinales y paralelas al litoral que le otorga un estilo estructural de bloques fallados.

Figura 3.8 Unidades morfotectónicas reconocidas regionalmente Fuente: Google Earth. 2018

La depresión de Ica-Nazca es una cubeta tectónica de orientación andina, comprendida entre las estribaciones andinas al Este y la falla-flexura que limita el borde oriental del macizo costanero al Oeste.

Cordillera occidental

Posee rasgos estructurales, caracterizados de acuerdo con dos dominios: el frente andino y el área de altiplanicies.

El frente andino, limitado en 500 a 3000 msnm, posee elementos estructurales representados por la secuencia mesozoica plegada y el Batolito de la Costa.

En la parte baja de las estribaciones andinas, la estructura más resaltante es el anticlinal de Nazca, reconocida al Este de la ciudad. Se asemeja a un anticlinorium de

orientación NO-SE, con un flanco occidental más empinado y limitado lateralmente por fallas longitudinales inversas.

En el sector nororiental del cuadrángulo de Palpa, las secuencias mesozoicas son plegadas en numerosos anticlinales y sinclinales de orientación N-S y NE-SW, recortados por el Complejo Bella Unión y el Batolito de la Costa.

También es importante mencionar un fracturamiento transversal conjugado de movimientos horizontales, principalmente. Dichas estructuras son contemporáneas al plegamiento peruano y reactivadas durante la tectónica Incaica.

Con respecto a la región de las altiplanicies de la región, se caracteriza por una plataforma estructuralmente rígida no deformada, suprayaciendo las secuencias del Grupo Nazca y hacia el Este, por una zona de deformación moderada.

3.1.4 Evolución tectónica

La manifestación estructural del área es el resultado de la superposición de numerosas fases tectónicas comprendidas en edad desde el Precámbrico hasta el Cuaternario. Dichas fases pueden agruparse en las deformaciones pre-andinas que afectan el basamento pre-Mesozoico y la tectónica de cobertura vinculada al desarrollo andino de la región.

Las deformaciones pre-andinas son las siguientes: Tectónica Precambriana, Tectónica Caledónica y Tectónica Hercínica, que se dan sobre el basamento (ver Figura 3.9), conformado por el Complejo Basal de la Costa, reconocidas al Sur del área de estudio.

Figura 3.9 Sección transversal, donde se observa las deformaciones pre-andinas Fuente: Elaboración propia

La tectónica que ha contribuido a configurar las características estructurales del área y de la región en general es la Tectónica Andina (Montoya et al., 1994), después de la deposición de secuencias sedimentarias y volcánico-sedimentarias del Jurásico-Cretácico, se da inicio al margen pacífico activo por la colisión de las placas Sudamericana y Nazca.

Posteriormente, la deformación compresional con eje de acortamiento NO-SE de la Tectónica Peruana, que es la más importante en el área de estudio, expresada con estructuras de fallamientos y plegamientos en la región costera y andina. Durante este periodo se habría producido áreas de debilidad por fracturas a nivel del frente andino, lo que habría facilitado el subsecuente emplazamiento del Batolito de la Costa, cortando las series plegadas del Mesozoico.

Sin embargo, la principal fase de acortamiento de Los Andes peruanos corresponde a la Tectónica Incaica del Eoceno superior, considerada como la principal fase de acortamiento de Los Andes peruanos, que desarrolla el cinturón intensamente deformado y plegado al Este de la Cordillera Occidental. En la zona de estudio la deformación no es significativa.

La Tectónica Quechua, desarrollada en el Mioceno, ha sido divida en tres subfases, que produjeron el levantamiento y reactivación de las estructuras incaicas en la región, que han sido recortadas en algunos puntos por una superficie de erosión.

Finalmente es necesario indicar que el mayor levantamiento de Los Andes se ha producido en el Plio-Cuaternario (Montoya et al., 1994), correspondiente a la Epirogénesis Andina y Tectónica Reciente, dicho levantamiento es del orden de 200 m, evidenciado por el encajonamiento profundo de los valles andinos.

3.2 Geología local

En la Figura 3.10 se muestra el mapa geológico del área de estudio, donde aflora únicamente la Formación Guaneros inferior y el Complejo Bella Unión. Se registra las principales litologías que afloran en el área, así como las alteraciones, mineralizaciones y estructuras.

A partir del plano geológico local se elabora la sección longitudinal y la sección transversal (ver Figura 3.11 y 3.12), ubicando los clavos mineralizados que intercepta el corte.

3.2.1 Estratigrafía

La columna estratigráfica de la mina se elaboró identificando las litologías que afloran en la quebrada ubicada a 100 m al Norte del crucero del nivel 300 (cota: 1300 msnm), dichas litologías corresponden a la Formación Guaneros inferior y al Complejo Bella Unión, ver Figura 3.13. Asimismo, cabe mencionar que en la elaboración de la columna estratigráfica se identificaron labores mineras existentes, ejecutadas por mineros artesanales en el pasado, dichas labores se desarrollaron en zonas de alteración y/o mineralización concordantes a la estratificación, encontrando valores económicos en oro (hasta 1 oz/t).

Figura 3.10 Geología local de mina Los Incas Fuente: Elaboración propia

Figura 3.11 Sección Longitudinal de mina Los Incas Fuente: Elaboración propia

Figura 3.12 Sección transversal local de mina Los Incas Fuente: Elaboración propia

	R)	Estructuras	sFósilC	olor	Detalles	_		
Complejo Bella Unión	stat = = > Conti	cco CZ		YG	Andesita (and) por , fenocristales de PLGs			
		Fo]	L-Bg DG	Cuarcita (Qz) con zonas claras y			
	-	MSS	1	Bg	oscuras.			
	1.1.1	MSS		GG	Arenisca (ARN)			
				GBg GG	Qz gradando ARN			
	1	MSS Fo		LG	Qz con foleación			
	2 505000 000000 000000 000000	So : 5-10cm		GG	Pz int Qz + OxFe, vnIIs ARCs al			
	- destered	Co : E0om		00	techo.			
		- E00			Pz o lut nizarrosa			
	* 2 (74774) * 2 (74774) * 000000 * 000000 * 000000 000000 000000 000000 000000 000000	=FS3		DG	Pz			
	* [32532]			GG	And porfirítica.			
		=FS2	ι	L-Bg	Pz en So flaser Qz			
		=FS3		GG	Labores en And - Pz.			
erior	*	⁼ FS3		DG	Pz con vnlls de ARCs			
s infe	E 000000	VnIIs ARCs OxFe, Cz		W	Oz Eo 10am alaro			
neros	2 	1		DG	a oscuros. Pz int con Qz beige			
Gua		=FS3		DG				
nación					Qz con bandas oscuras y claras.			
Form		= FS1 So: 30cm			Pz lig compacta. Pz con Qz (02 estratos)			
			1	DBr	Pz int con Qz oscura.			
	* vename		L	-Bg	Cuarcita(Qz)-Blanca			
			σο L	Bg	Cuarcita (Qz) sup. oquerosa,clastos			
	\$			GG	And porfirítica, fenos de PLGs amigdaloides.	LEYENDA Litología	Estructur	ras
			[DG		Pizarra		Laminación pla
		∞mm So: 40 cm		DG	Pz laminada gris oscura.	Image: State Stat	AR MSS SO FS	Laminación on Contacto plana Masivo Estrattificación Fisible(FS3>F
	3	MSS		Ba	Cuarcita	Bivalvos 1 Bivalvos 2 Bivalos 2	Lp	Lapiaz(Lp3>L)
		=FS3		DG	Pizarra gris oscura con laminación	NSC No se observa	tab	Nodulos Load Cast (Sob Tabular

3.2.2 Litología

Las estructuras mineralizadas descritas en el presente trabajo están en la Formación Guaneros inferior, que es de naturaleza volcano-sedimentaria, conformada por cuarcitas, areniscas, andesitas y pizarras (ver Figura 3.14), todos los afloramientos están cortados por diques de composición andesítica.

Las cuarcitas se presentan en estratos de 10 a 20 m de potencia, donde se diferencia dos tipos de cuarcitas: una cuarcita blanca fácil de distinguir por su color, su persistencia y el relieve abrupto; otra cuarcita de color gris oscuro que se mimetiza con las rocas volcánicas silicificadas y pizarras masivas.

Figura 3.14 Afloramientos rocosos correspondientes a la Formación Guaneros, vista mirando hacia el Noreste Fuente: Elaboración propia

Otra roca que aflora en abundancia es la pizarra, que en realidad es un conjunto de rocas margosas fisibles, caracterizadas por su color gris oscuro y laminaciones. También se distingue derrames volcánicos masivos, que son producto de la acumulación de lava durante la sedimentación de las areniscas, muestran pseudoestratificación con espesores que van de 0.40 a 1.40 m, sin embargo, cuando se presentan estratos potentes, forman horizontes concordantes con la estratificación, pero con irregularidades tanto en el piso como en el techo. Finalmente, como se observa en la Figura 3.15, existe la presencia de diques andesíticos que generalmente están asociados a las vetas, dichos diques son de color verde y sus tonalidades, con potencias de 1 a 15 m.

Figura 3.15 Dique andesítico cortando la secuencia volcano-clástica de la Formación Guaneros, vista mirando hacia el Este en el nivel 180 Fuente: Elaboración propia

3.2.3 Geología estructural

Las estructuras mayores están conformadas por lineamientos de fallas con orientación andina (NW-SE), acompañadas de estructuras menores de la misma orientación, así como de lineamientos transversales, que delimitan áreas o bloques que pueden estar asociados a ambientes de mineralización.

La Formación Guaneros no presenta deformaciones significativas, los

afloramientos corresponden a un homoclinal de rumbo promedio N30°-40°W y buzamiento predominante de 30°-45°NE. El homoclinal es interrumpido por intrusiones del Batolito y del Complejo Bella Unión.

Se han reconocido hasta tres sistemas de fallamiento, con rumbos NW, N-S y E-W por donde fluyeron las soluciones hidrotermales.

3.2.4 Geología económica

La unidad minera Los Incas se clasifica como un yacimiento del tipo epitermal de intermedia sulfuración (Sánchez, 2003).

La mayoría de los cuerpos mineralizados son mantos paralelos a los estratos, cuya posición varía en el área de la mina, con azimut promedio N350° ($\pm 20^{\circ}$) y buzamiento 40° ($\pm 10^{\circ}$) E. Los mantos como se aprecia en la Figura 3.16 poseen forma de lente, con longitudes continuas de metros a decenas de metros (clavos).

Figura 3.16 Manto correspondiente al clavo Ñusta, vista: mirando al Sur en el subnivel 340 Fuente: Elaboración propia

La silicificación masiva de algunos estratos y venillas de cuarzo que llenan los espacios abiertos muestran que los cuerpos mineralizados son generados por

reemplazamiento e infiltración (ver Figura 3.17). La mineralogía incluye actinolita, pirita, limonita, hematita, calcita y cloritas, en menor proporción calcopirita, tetraedrita y rodocrosita. Es muy común encontrar zonas de cizalla asociadas a los mantos, estas zonas de cizalla están caracterizadas por presentar estructuras en forma de lente, eventualmente con estrías de fricción.

Figura 3.17 Manto correspondiente al clavo Miriam, vista: mirando al Sur en el subnivel 28 Fuente: Elaboración propia

Descripción de los clavos mineralizados

Los principales clavos reconocidos y trabajados en la zona Norte son Rompecabezas, Miriam y Murciélago-Trujillana; en la zona Sur se trabajó el clavo Ñusta. Los clavos mineralizados alcanzan 300 m de profundidad (hasta la elaboración del presente trabajo, marzo del 2022), y están asociados a un intrusivo de composición monzonítica, (Sánchez, 2003).

Cuando la roca caja del manto es cuarcita, la mineralización presenta bajos valores en oro (< 0.03 oz/t), sin embargo, cuando la roca caja es pizarra, los valores

tienden a incrementarse (> 0.15 oz/t).

Se ha denominado veta Incas a una zona de cizalla con más de 20 m de potencia, abarcando 4 vetas sub-paralelas (clavos) con diferente geometría y mineralización discontinua, debido al cambio litológico en su recorrido.

A continuación, se describen los clavos mineralizados:

Rompecabezas: Clavo mineralizado de mayor potencia, (0.3 m a 3 m) con rumbo N20°W y buzamiento comprendido entre 30°-50° NE. Las leyes varían entre 0.10 a 0.15 oz/t en concentración de oro.

Miriam: Es el principal clavo mineralizado de la unidad minera con rumbo N30°W y buzamiento entre 30° -70° NE, con potencia variable 0.2 a 2.5 m. Ley promedio de 0.3 oz/t.

Ñusta: Es el segundo clavo mineralizado en importancia económica, tanto por su contenido en oro y comportamiento estructural. Posee rumbo N10°E y buzamiento variable: 30° - 50° NW con potencia de 0.2 m hasta 4 m, cuyas leyes de mineral varían entre 0.32 a 1 oz/t.

Murciélago-Trujillana: Tercer clavo mineralizado en importancia económica que posee un afloramiento de 60 m de longitud de rumbo NS y buzamiento variable de 30°-50°E, la potencia y ley promedio es de 0.5 m y 0.30 oz/t, respectivamente.

CAPITULO IV

INVESTIGACIONES GEOLÓGICAS

4.1 Muestreo de veta en interior de mina

Esta actividad es la más importante y delicada durante el proceso productico de la mina, consiste en extraer partes representativas de un área para inferir el valor del conjunto. El objetivo del muestreo es determinar los contenidos de los elementos útiles, para definir sus reservas y su valor en base a las leyes de las muestras reportadas por el laboratorio.

Generalmente la mineralización de un yacimiento tiene distribución irregular, donde los valores metálicos y/o no metálicos varían de acuerdo con su posición, por lo que se deduce que una muestra tomada de manera puntual no tendrá la misma proporción de minerales que contiene el yacimiento (Ccama, 2017), por tanto, como se puede observar en la Figura 4.1 se han implementado métodos de muestreo como muestreo por puntos, muestreo lineal y muestreo volumétrico (Linares, 2017). El muestreo por puntos consiste en extraer chips de material de puntos distribuidos geométricamente en la masa mineral, de forma lineal o formando una malla regular en dos dimensiones. El muestreo lineal abarca el muestreo realizado en barrenos, en sondeos o testigos y en canales. El muestreo en canales está ampliamente extendido en minería y es el que se ha empleado en la investigación debido a la geometría que poseen las vetas.

Figura 4.1 Esquema representativo de los métodos de muestreo en minería Fuente: Linares. (2017)

El muestreo lineal consiste en la excavación de un canal estrecho y continuo, a lo largo de la capa o vena o en ángulo recto al trazado del canal. Por último, y no menos importante se tiene el muestreo volumétrico, consiste en extraer material representativo de una masa suelta, generalmente realizada en calicatas en superficie, en rocas sueltas y en sedimentos.

4.1.1 Metodología del muestreo

La metodología empleada para el muestreo de las vetas en mina Los Incas es el método por canales, este procedimiento se emplea en la mayoría de las minas peruanas cuando se trata de estructuras tabulares (Linares, 2017). Consiste en extraer muestras en canales rectangulares previamente marcados en el terreno, en forma transversal a las estructuras, ver Figura 4.2.

Figura 4.2 Canal de muestreo en interior de mina, nivel 260 veta Ñusta Fuente: Elaboración propia

Dimensiones: Las dimensiones del canal dependen del tipo de mineralización y de la potencia de la estructura, llegando a existir más de un canal contiguo en una misma ubicación. A continuación, se detalla las dimensiones empleadas en el muestreo en Los Incas, ancho: 0.30 m, profundidad del canal: 0.05 m, longitud de muestra: 1.5 m (potencia de la veta)

El muestreo en interior de mina se realizó de manera sistemática, a cada metro en labores de exploración, desarrollo y explotación, obteniendo de 3 a 5 kg de peso por muestra.

4.1.2 Clavos mineralizados muestreados

Los clavos muestreados fueron Miriam y Ñusta, y como se observa en la Figura 4.3 el clavo Miriam fue muestreado en el tajo 28, correspondiente al nivel 340, ubicado al Norte del crucero principal. Del mismo modo, como se observa en la Figura 4.4 el clavo Ñusta fue muestreado en el subnivel 117, ubicado al Sur del crucero principal en el nivel 340.

Figura 4.3 Plano de muestreo del clavo Miriam en el nivel 340 Fuente: Elaboración propia

Figura 4.4 Plano de muestreo del clavo Ñusta en el nivel 340 Fuente: Elaboración propia

4.1.3 Muestras de control

En mina Los Incas se realiza permanentemente Gestión de Calidad usando la norma ISO 9001 (2015), y se ha implementado un programa de Aseguramiento y Control de Calidad (QA/QC), para de esta manera validar los resultados del muestreo geológico.

En los lotes de muestras enviadas al laboratorio se insertaron muestras de control, que vienen a ser un porcentaje de muestras (20% del lote) con leyes ya conocidas (Ccama, 2017), cuya finalidad es validar la data reportada por el laboratorio. Para mina Los Incas, la inserción de muestras de control en los lotes de muestras ha dado resultados positivos, ya que el sesgo de los valores reportados está en el rango aceptable, de 0-5 % (Ccama, 2017).

Blanco grueso: Se empleó para controlar la contaminación de la máquina "chancadora de quijada" en la etapa del chancado del mineral.

Blanco Fino: Se empleó para controlar la contaminación del equipo "Espectrómetro de Difracción de Rayos X" al momento que determina las concentraciones de los elementos químicos.

Duplicado Grueso: Se empleó para controlar la precisión en la etapa de cuarteo, posterior al chancado del mineral.

Duplicado Fino: Se empleó para controlar la precisión del cuarteo posterior a la molienda del mineral.

Estándar: Se empleó para controlar la exactitud del equipo "Espectrómetro de Difracción de Rayos X" en el momento que determina las concentraciones de los elementos químicos.

Precisión y exactitud analítica

Los términos de precisión y exactitud en el análisis químico de minerales se plantean para todas las etapas del proyecto minero.

Precisión, indica el grado de concordancia entre los resultados obtenidos en el análisis químico de minerales, al aplicar el mismo proceso experimental repetidas veces sobre la misma muestra bajo condiciones constantes establecidas. Para cumplir este control, se emplearon muestras duplicadas de finos y gruesos.

Exactitud, la exactitud de un instrumento está relacionada a la cercanía de una medida al valor real. Para este concepto se emplearon muestras estándar de laboratorios certificados en análisis químico de minerales. Asimismo, es necesario señalar que el análisis químico de las muestras de minerales extraídas de la mina se realizó en un laboratorio externo, ubicado en la ciudad de Nazca, a 33 km al Oeste de la unidad minera.

4.1.4 Análisis químico de las muestras

Para la elaboración de la presente investigación se analizaron 15 muestras del clavo Miriam y 7 muestras del clavo Ñusta, dicho análisis se llevó a cabo en un laboratorio externo en la ciudad de Nazca, el resultado de los valores en oro se detalla en la Tabla 4.1 y Tabla 4.2. Sin embargo, para interpretar el comportamiento de los clavos y elaborar el plano de isovalores se tomaron en cuenta los resultados históricos de leyes que posee la mina, que se adjunta en el Anexo 4.1 (Histórico de leyes).

ID	MUESTRA	Pot. (m)	Au (oz/t)
1	M1	2.1	0.11
2	M2	2.2	0.15
3	M3	2.4	0.14
4	M4	2.4	0.15
5	M5	2.5	0.17
6	M6	2.4	0.16
7	M7	2.2	0.14
8	M8	2.1	0.12
9	M9	2.00	0.10
10	M-1.1	0.8	0.08
11	M-2.1	1.10	0.13
12	M-3.1	0.60	0.12
13	M-4.1	1.20	0.12
14	M-5.1	1.30	0.13
15	M-6.1	1.50	0.11

Tabla 4.1 Contenido en oro del clavo Miriam

Fuente: Elaboración propia

ID	MUESTRA	Pot. (m)	Ley (oz/t)
1	M-1	1.10	0.11
2	M-2	0.9	0.12
3	M-3	0.5	0.10
4	M-4	0.7	0.14
5	M-5	1.40	0.17
6	M-6	1.70	0.18
7	M-7	2.10	0.06

Tabla 4.2 Contenido en oro del clavo Ñusta

Fuente: Elaboración propia

Con las leyes reportadas de los análisis químicos se procedió a plasmar los resultados en las secciones longitudinales y a elaborar el plano de isovalores, ver Figura 4.5 y Figura 4.6, donde se observa los polígonos de baja, mediana y alta concentración en contenido de oro.

Figura 4.5 Plano de isovalores del clavo Miriam en el nivel 340 Fuente: Elaboración propia

Figura 4.6 Plano de isovalores del clavo Ñusta en el nivel 340 Fuente: Elaboración propia

4.2 Microscopía y microtermometría

Para el estudio microscópico de las vetas Miriam y Ñusta se recolectaron muestras de mineral compactas con 0.5 kg de peso en promedio y con dimensiones aproximadas de 10 cm x 10 cm x 5 cm, véase la Figura 4.7.

Figura 4.7 Muestras de mano de los clavos Miriam y Ñusta Las muestras del clavo Miriam muestran agregados masivos de mineralización metálica, por lo contrario, las muestras del clavo Ñusta presentan agregados masivos de óxidos de hierro Fuente: Elaboración propia

En la Tabla 4.3 se detalla las propiedades físicas de densidad y dureza de los

minerales identificados en las muestras de veta recolectadas y analizadas.

Nombro	Símbolo	Composición químico	Densidad	Dureza
Nombre	SIIIDOIO	Composición química	(g/cm ³)	Mohs
Arsenopirita	apy	FeAsS	6.07	5.0
Calcopirita	cp	CuFeS ₂	4.2	3.5
Calcosita	сс	Cu_2S	5.65	2.5-3
Covelita	cv	CuS	4.68	1.5-2
Electrum	el	(Au,Ag)	17.64	3.0
Esfalerita	ef	(Zn,Fe)S	3.9-4.2	3.5-4.0
Galena	gn	PbS	7.4	2.5
Goethita	goe	Fe ³⁺ O(OH)	3.3-4.3	5-5.5
Ilmenita	ilm	Fe ²⁺ TiO ₃	4.72	5-5.5
Marcasita	mc	FeS_2	4.89	6-6.5
Pirita	ру	FeS_2	5.01	6.5
Pirrotita	ро	Fe _(1-x) S, (x=0.1-0.2)	4.61	3.5-4
Rutilo	rut	TiO_2	4.25	6-6.5

Tabla 4.3 Mineralogía de mina Los Incas

Fuente: Betejtin. (1977)

En la Figura 4.8 y Figura 4.9 se describen las relaciones texturales a nivel macroscópico de las muestras recolectadas para el estudio mineragráfico y microtermométrico, de los clavos Miriam y Ñusta.

Figura 4.8 Descripción macroscópica de la muestra Miriam 1 Estructura de relleno compuesta por agregados masivos de cuarzo (cz) asociados a pirrotita (po), pirita (py) y calcopirita (cp). La muestra presenta densidad y magnetismo moderado.

Figura 4.9 Descripción macroscópica de la muestra Ñusta 1 Brecha monomíctica, compuesta por fragmentos líticos de origen ígneo, cortados y soportados por cuarzo (cz) asociado a pirita (py) y calcopirita (cp), así mismo se observan finas fracturas rellenas por goethita (goe).

Fuente: Elaboración propia

4.2.1 Relaciones texturales

Se realizó el estudio de los minerales con un microscopio de luz polarizada con la técnica de luz reflejada, usando secciones pulidas para determinar las relaciones texturales de los minerales metálicos de mina Los Incas. En las Figuras 4.10 a 4.14, se muestran las relaciones texturales del clavo Miriam.

Clavo Miriam

Figura 4.10 Agregados de pirrotita (po) reemplazando a pirita (py) y esfalerita (ef) Se percibe también diseminación de calcopirita (cp) en gangas no metálicas (GGs).

Figura 4.11 Pirrotita (po) intercrecida con pirita (py) Geometría simple de intercrecimiento entre pirrotita (po) y pirita (py).

Fuente: Elaboración propia

Figura 4.12 Agregados de calcopirita (cp) reemplazando a pirrotita (po) Se percibe también diseminación de calcopirita (cp) en gangas no metálicas (GGs).

Fuente: Elaboración propia

Figura 4.13 Inclusiones de esfalerita (ef) en calcopirita (cp), geometría simple entre los contactos de calcopirita (cp) y las gangas no metálicas (GGs), se observa también geometría del tipo inclusión de esfalerita (ef) en calcopirita (cp).

Figura 4.14 Agregados de ilmenita(il) reemplazados por pirrotita (po) y hematita (hm) Geometría simple de intercrecimiento entre los minerales: pirrotita (po), ilmenita (il) y hematita (hm).

Fuente: Elaboración propia

En la Tabla 4.4 se muestra la descripción de los minerales metálicos reconocidos en la muestra correspondiente al clavo Miriam, dimensiones y porcentaje de abundancia.

Tabla 4.4

Descripción de las relaciones texturales del clavo Miriam

ð
5
Z
Z
5
5
z
- 5 7 5 5

Fuente: Elaboración propia

A partir de las relaciones de campo, de la descripción de las muestras de mano

y de las secciones pulidas se presenta en la Tabla 4.5 la secuencia paragenética de formación en el clavo Mirian, nótese la formación de pirrotita en todas las etapas.

Tabla 4.5Secuencia paragenética del clavo Miriam

Mineralogía		Evento Temprano	Hipógena Evento Principal	Evento Tardío	Supérgena
	Ilmenita				
	Rutilo				
	Pirita				
Mineralización	Pirrotita				
	Calcopirita		-		
	Esfalerita				
+ T (Mayor temperatura inicial)				- T (Menor ter	nperatura final)
Escaso	Mo	derado		Abundante	

Fuente: Elaboración propia

En las Figuras 4.15 a 4.20, se muestran las relaciones texturales del clavo Ñusta.

Clavo Ñusta

Figura 4.15 Inclusión de electrum (el) en gangas no metálicas (GGs).

Figura 4.16 Pirita (py) intercrecida y reemplazada por marcasita (mc), también se distingue calcopirita (cp) siendo remplazada por covelita (cv)

Fuente: Elaboración propia

Figura 4.17 Calcopirita (cp) reemplazada por coronas de cc, cv y goethita (goe).

Fuente: Elaboración propia

Figura 4.18 Pirita (py) con gn y crecimiento en los bordes de cv.

Figura 4.19 Calcopirita (cp) con covelita (cv) y reemplazamiento de goetita (goe).

Fuente: Elaboración propia

Figura 4.20 Calcopirita (cp) reemplazada por covelita (cv)

Fuente: Elaboración propia

En la Tabla 4.6 se muestra la descripción de los minerales metálicos reconocidos en la muestra correspondiente al clavo Ñusta, dimensiones y porcentaje de abundancia.

Tabla 4.6 Descripción de las relaciones texturales del clavo Ñusta

Minerales Secundarios	Tamaño (mm)	%
Pirita		
Ocurren como agregados microcristalinos de formas cúbicas, están asociados al evento de cuarzo oscuro junto con la calcopirita. Algunos agregados están intercrecidos y reemplazados por marcasita.	2.4 a 4	3
Arsenopirita	- 7 0	Terr
Cristales anhedrales, intercrecida y también reemplazando a la pirita.	< 2.8	ITZ
Calcopirita		
De formas irregulares, asociada al cuarzo oscuro, también se presenta como relleno de fracturas asociadas al cuarzo hialino. Presenta coronas de reemplazamiento de calcosita, covelita y goetita.	< 2.8	1
Galena		
En agregados anhedrales, intercrecida y remplazando a algunos agregados	< 0.1	Trz
de calcopirita.		
Marcasita		
Se presentan en agregados de cristales anhedrales, se encuentran reemplazando a los agregados de pirita.	<1.5	0.5
Covelita		
Forman coronas de remplazamiento junto a la calcosita. Son reemplazados por goethita.	< 0.15	Trz
Calcosita		
Con formas irregulares, intercrecida con covelita, está siendo reemplazada	< 0.7	Trz
Coethita		
Se muestran como agregados masivos formando hábitos concéntricos y coloformes. Se encuentran alterando a la calcopirita, covelita y calcosita, además ocurren como finas vetillas sinuosas de hasta 0.01mm de espesor.	< 1.8	0.5
Electrum		
Se aprecian como formas irregulares, ocurren como inclusiones de los	< 6µm	Trz
minerales de gangas no metálicas. Medidas: 6 µm x 4 µm		
Fuente: Elaboración propia		

A partir de las relaciones de campo, de la descripción de las muestras de mano

y de las secciones pulidas se presenta en la Tabla 4.7 la secuencia paragenética de

formación en el clavo Ñusta, nótese que la formación del electrum se encuentra en la

etapa de formación intermedia y tardía.

Tabla 4.7				
Secuencia	paragenética	del	clavo	Ñusta

Minera	logía	Evento Temprano	Hipógena Evento Principal	Evento Tardío	Supérgena
Pirita					
	Arsenopirita				
	Calcopirita				
	Galena				
	Esfalerita				
Mineralización	Marcasita				
	Electrum				
	Covelita				
	Calcosita			-	
	Goethita				
+ T (mayor tempera	tura inicial)			- T (menor terr	peratura final)
Escaso Mo		derado		Abundante	

Fuente: Elaboración propia

4.2.2 Inclusiones fluidas

Las inclusiones de fluidos (IF) según Nash (1976) son porciones pequeñas de líquido o de gas (ver Figura 4.21), o de una mezcla de estas dos fases, que fueron atrapadas en imperfecciones de minerales durante su crecimiento. Sus tamaños varían de 1 a 100 μ m, usualmente entre 3 a 20 μ m. Dichos fluidos están relacionados a procesos hidrotermales que han ocurrido en los yacimientos. Debido a varias evidencias, se supone que las IF han conservado las propiedades químicas y físicas de las soluciones originales, y se les considera como muestras directas de las fases volátiles.

Figura 4.21 Inclusión fluida polifásica Vapor: H₂O (P<<1atm), CO₂, CH₄, N₂, H₂S Líquido: H₂O, CO₂, Petróleo Sólido: NaCl, KCl, hematita, anhidrita, moscovita, calcopirita, magnetita (otros aún no identificados). Fuente: Nash, (1976)
Los minerales que se utilizan tienen que ser minerales transparentes, incoloros o débilmente coloreados que se encuentren asociados e intercrecidos con la mineralización económica, principalmente se les encuentra en cuarzo y/o calcita.

El estudio brinda la siguiente información: a.- Temperatura de homogeneización (Th); b.- Presión (Paleoprofundidad) del yacimiento; c.- Cálculo de salinidad del fluido mineralizante; d.- Paleorelieves (desmantelamiento erosivo); e.-Secuencias paragenéticas, f.- Paleoisotermas; g.- Direcciones de flujos mineralizantes.

El contenido de las inclusiones fluidas puede ser (ver Figura 4.22):

Monofásicas, formadas completamente por líquido (L), gas (V) o sólidos (S o inclusiones minerales). Los fluidos más frecuentes son los de líquidos acuosos, en general formados a muy baja temperatura.

Bifásicas, presentan sólo dos fases, siendo más frecuente las que tienen vapor y líquido.

Trifásicas, cuando aparecen más de dos fases el esquema de clasificación se complica, ya que unas veces son predominantemente líquidas, otras gaseosas con líquidos inmiscibles o baja proporción de sólidos, mientras que en otras son muy abundantes los sólidos.

Poli o multifásicas, las inclusiones más complejas se tienen cuando aparecen varios tipos de sólidos ("daughter minerals") junto con el líquido o líquidos inmiscibles y la burbuja de gas. Son típicas de ambientes profundos tipo pórfidos.

Figura 4.22 Tipos de inclusiones fluidas Cuatro tipos de inclusiones fluidas (L = líquido; V = vapor; S = sólido; C = carbónicas). Fuente: Nash, (1976)

En la Figura 4.23, se puede observar la interpretación de los resultados, ya sea para dos o más fluidos de diferente composición. En el diagrama de la izquierda se muestra una población de datos que puede interpretarse como resultado de la mezcla de dos fluidos (F1 y F2) con temperatura y salinidad diferente. Las flechas en la gráfica de la derecha muestran diferentes tendencias que pueden producirse por mezcla, mezcla isoterma, enfriamiento y ebullición entre fluidos de diferente composición (FA, FB, FC, FC').

Figura 4.23 Criterios para la interpretación de poblaciones de datos de IF Fuente: Velasco. (2004)

En la Tabla 4.8, se describe la simbología utilizada en las tablas de análisis microtermométrico en cada estudio de inclusiones fluidas.

Tabla 4.8Siglas empleadas en el análisis microtermométrico

SIGLAS	DESCRIPCIÓN
\mathbf{N}°	Número de inclusiones de fluidos
CLAF	Clasificación de IF: primarias (P), secundarias (S), además, Lw-NaCl
CLAF.	(fluido con cloruro de sodio) y Lw-H ₂ O (fluido con agua)
MIN	Mineral donde está contenida la IF, para este caso es cuarzo (cz)
	BIF (IF bifásica)
TIPO	POL (IF polifásicas)
	TRI (IF trifásicas)
φμ	Diámetro de la IF en micrómetros
FILL	Grado de relleno IF
-Tf	Temperatura de fusión (°C)
Th	Temperatura de homogeneización (°C)
Th (L/V)	Temperatura de homogeneización del líquido-vapor (°C)
Ts KCl	Temperatura de disolución de la silvita (°C)
Ts NaCl	Temperatura de disolución de la halita (°C)
% eq. peso NaCl	Grado de salinidad (%)
ρ (g/cm ³)	Densidad de fluido mineralizante
P (bar)	Presión

Fuente: Elaboración propia

Para el estudio de inclusiones fluidas se prepararon secciones doblemente pulidas independientes para cada clavo (Miriam 1 y Ñusta 1). Se describen también las relaciones texturales de los minerales.

Miriam 1

En las Tablas 4.9 y 4.10 se describe la sección doblemente pulida (véase la Figura 4.24), mencionando los minerales encontrados.

Figura 4.24 Sección doblemente pulida del clavo Miriam, con textura de relleno y reemplazamiento

Fuente: Elaboración propia

Tabla 4.9 Minerales no metálicos en Miriam 1

Minerales No Metálicos	Tamaño (mm)	%
Cuarzo de relleno Se observa en agregados anhedrales, está asociado a la mineralización metálica. Presenta inclusiones fluidas (IF) bifásicas (tipo L) ricas en líquido con tamaños entre 4 y 8μm.	cm	61
Rutilo Presenta formas anhedrales, está incluida en cuarzo hidrotermal. Está diseminada en la muestra.	≤0.07	3
Fuente: Elaboración propia		

Tabla 4.10

Minerales metálicos en Miriam 1

Minerales Metálicos	Tamaño (mm)	%
Pirita Cristales subhedrales de hábitos cúbicos, está reemplazada por pirrotita y se encuentra incluida en cuarzo de relleno.	≤0.8	3
Pirrotita Con formas anhedrales y también masiva, rellenando oquedades y fracturas en cuarzo hidrotermal. Está reemplazando a la pirita e intercrecido con calcopirita.	cm	20
Calcopirita Rellenando oquedades y pequeñas fracturas en cuarzo III. Está intercrecido con pirrotita.	≤1.8	13

Fuente: Elaboración propia

De la Figura 4.25 a la Figura 4.28 se detalla las relaciones texturales de la

sección doblemente pulida del clavo Miriam.

Figura 4.25 Cp con po, rellenando cavidades en cz hidrotermal, geometría simple de intercrecimiento entre calcopirita (cp) y pirrotita (po). **LR:** Luz Reflejada

Fuente: Elaboración propia

Figura 4.26 Cp con po rellenando cavidades de cz III, geometría simple de intercrecimiento entre calcopirita (cp), pirrotita (po) y cuarzo hiddortermal (cz III). **LR:** Luz Reflejada

Fuente: Elaboración propia

Figura 4.27 Pirrotita (po) con calcopirita (cp) e inclusión de esfalerita (ef), con geometría simple de intercrecimiento entre pirrotita (po) y calcopirita (cp). **LR:** Luz Reflejada

Figura 4.28 Cristal subhedral de py con inclusiones de cp y po, hay inclusión de calcopirita (cp), pirrotita (po) en pirita (py), también se observa diseminación de calcopirita (cp) y pirrotita (po) en cuarzo (cz). **LR:** Luz Reflejada

Fuente: Elaboración propia

Los tipos de inclusiones fluidas determinadas en la muestra del clavo Miriam se observan en las Figuras 4.29, 4.30, 4.31 y 4.32, donde se reconocieron inclusiones fluidas primarias bifásicas ricas en líquido (Tipo L), con proporción predominante de vapor (V): líquido (L) = 1:3 para las formas alargadas y redondeadas; proporción V: L = 1:5 para formas irregulares, con tamaños entre 6 a 8 µm capturadas en cuarzo hidrotermal (cz III). La abreviatura LT es Luz Trasmitida.

Figura 4.29 IF bifásicas con forma redondeada en cz III Fuente: Elaboración propia

Figura 4.30 IF bifásica con forma irregular en cz III Fuente: Elaboración propia

Muestra Ñusta 1

En las Tablas 4.11 y 4.12 se describe de manera microscópica a la muestra del

clavo Ñusta que se observa en la Figura 4.33, mencionando los minerales metálicos y no metálicos presentes en ella.

Figura 4.33 Sección doblemente pulida del clavo Ñusta, con texturas de relleno y reemplazamiento

Fuente: Elaboración propia

Tabla 4.11 Minerales no metálicos reconocidos en Ñusta 1

Minerales No Metálicos	Tamaño (mm)	%
Cuarzo III Cuarzo hidrotermal, anhedral y masivo. Presenta diseminaciones de pirita, calcopirita, esfalerita y goethita. Está cortado por venillas irregulares de cuarzo IV. Presenta inclusiones fluidas (IF) bifásicas (Tipo L) ricas en líquido con tamaños entre 4 y 11um	cm	79
Cuarzo IV Con formas anhedrales que rellena venillas irregulares. Está cortando al cuarzo III.	≤0.05	4
Eventer Eleboración monio		

Tabla 4.12 Minerales metálicos en Ñusta 1

Minerales Metálicos	Tamaño (mm)	%
Pirita Cristales euhedrales a subhedrales cúbicos con bordes rectos y subredondeados. Además de formas anhedrales que rellena pequeñas fracturas irregulares. Están diseminadas en cuarzo de relleno (cz III).	≤1	1
Calcopirita Formas anhedrales en oquedades en cuarzo de relleno (cz III). Está reemplazada por esfalerita y minerales secundarios de cobre.	≤1.2	4
Esfalerita Formas anhedrales con bordes subredondeados e irregulares que rellena oquedades en cuarzo de relleno (cz III).	≤0.5	2
Galena Se muestra como formas anhedrales que están incluidas en pirita. Covelina-Calcosita	≤0.09	Trz
Se exhiben como formas anhedrales que rellena oquedades en el cuarzo de relleno (cz III). Además, reemplazan a la calcopirita desde los bordes.	≤0.5	Trz
Goethita Posee hábito masivo que rellena oquedades en cuarzo hidrotermal (cz III).	≤0.8	4
Fuente: Elaboración propia		

De la Figura 4.34 a la Figura 4.39 se detalla las relaciones texturales de la

sección doblemente pulida del clavo Miriam.

Figura 4.34 Cp reemplazada por minerales secundarios de cobre (MsCu), rellenando cavidades de cz III, con intercrecimiento tipo corona y entre calcopirita (cp) y los minerales secundarios de cobre (MsCu). LR: Luz Reflejada

Figura 4.35 Cristal subhedral de py y relicto de cp reemplazada por MsCu. Intercrecimiento entre py - cz III, también se observa geometría del tipo corona entre cp – MsCu. LR: Luz Reflejada

Fuente: Elaboración propia

Figura 4.36 Py y cp reemplazadas por MsCu Geometría simple de intercrecimiento entre py – cp, geometría del tipo su-corona entre cp-MsCu-goe. LR: Luz Reflejada

Fuente: Elaboración propia

Figura 4.37 Inclusión de py y gn en cp La geometría de intercrecimiento es simple entre pirita (py) y calcopirita (cp), con inclusión de galena (gn) en calcopirita (cp). LR: Luz Reflejada

Figura 4.38 Cristales subhedrales de py e inclusiones de rut en cz III Relleno de pirita (py) en gangas no metálicas (cz III), también se observa inclusión de rutilo (rut) en las gangas no metálicas. LR: Luz Reflejada

Fuente: Elaboración propia

Figura 4.39 Cristales anhedrales de py rellenando fracturas en cz III Relleno de pirita (py) en gangas no metálicas (cz III) LR: Luz Reflejada

Fuente: Elaboración propia

Los tipos de inclusiones fluidas determinadas en el clavo Ñusta se observan en las Figuras 4.40 a 4.45, donde se reconocieron familias de inclusiones fluidas primarias bifásicas ricas en líquido (tipo L) con proporción predominante de vapor (V): líquido (L) = 1:3 para las formas alargadas y redondeadas; proporción V: L = 1:5 para formas irregulares, con tamaños entre 4 a 12 μ m capturas en cuarzo hidrotermal (cz III). La abreviatura LT es Luz Trasmitida

Figura 4.40 Familia de IF bifásicas de forma ovalada Fuente: Elaboración propia

Figura 4.41 Familia de IF bifásicas de forma irregular Fuente: Elaboración propia

Figura 4.42 IF bifásica de forma ovalada con mayor volumen de líquido Fuente: Elaboración propia

Figura 4.43 Familia de IF bifásica con formas irregulares Fuente: Elaboración propia

Figura 4.44 IF bifásica de forma irregular con volumen equivalente de L y V Fuente: Elaboración propia

Figura 4.45 Familia de IF bifásica de forma irregular en cuarzo hidrotermal Fuente: Elaboración propia

4.3.2 Análisis microtermométrico

El laboratorio FA Ingenieros SAC se encargó del análisis microtermométrico, usándose el equipo que se observa en la Figura 4.46, que dispone de una platina calentadora – refrigeradora, acoplada a un microscopio óptico de luz polarizada, que a su vez tiene una cámara adaptada para la captura de imágenes.

Figura 4.46 Platina calentadora y refrigeradora Fuente: Inga (2018)

Se recolectó una muestra representativa para cada clavo, dos en total, con la siguiente codificación: Miriam 1 y Ñusta 1, tomadas del último nivel inferior conocido, cota 1280 msnm (nivel 340).

La platina calentadora – refrigeradora emplea gas pre-calentado (aire) o preenfriado (nitrógeno), para modificar la temperatura de la muestra. El flujo térmico es muy bajo, que permite producir variaciones controladas muy pequeñas de temperatura y trabajar con técnicas cíclicas para medir temperaturas de homogeneización (Th). La temperatura es medida ubicando una delgada termocupla directamente sobre la muestra, que puede tener un tamaño de hasta 20 mm de largo, ver Figura 4.47.

Figura 4.47 Sección transversal de la platina de enfriamiento/calentamiento Fuente: Korzeniewski (2002)

Previamente al estudio de IF se realizó el análisis mineragráfico, observándose las características generales de la muestra (mineragrafía de inclusiones), que permite definir el ambiente de formación de los depósitos de mena. Independientemente de su origen e historia, las inclusiones representan muestras concretas de los fluidos que conformaron el sistema del depósito mineral o que circularon por el depósito mineral en algún momento de la historia geológica del yacimiento. El estudio de IF proporciona información importante de temperatura, presión, densidad y composición del yacimiento.

Temperatura: según Korzeniewski (2002) las IF son empleadas para estimar la temperatura del mineral con diferentes niveles de precisión, dependiendo del tipo de IF presentes en la muestra. Los datos obtenidos proveen información con respecto a la temperatura mínima de formación del mineral. Esta aplicación consiste en apreciar la contracción diferencial por enfriamiento natural del mineral hospedante y del fluido desde la temperatura de entrampamiento (Te) hasta aquella temperatura de observación (temperatura de ambiente). Durante este proceso el fluido se contrae mucho más que el mineral hospedante generándose una burbuja en el fluido. Entonces es necesario revertir el proceso por calentamiento de la muestra hasta que la burbuja

desaparece (el fluido se homogeniza). Esta temperatura se denomina temperatura de homogeneización (Th). En esta etapa se obtiene la temperatura a la cual la burbuja apareció por primera vez en su historia geológica. Las temperaturas medidas pueden variar entre aquellas mayores a 1000°C y la temperatura ambiente o aún más bajas.

Presión, el estudio de IF proporciona información sobre la presión del sistema en el momento de entrampamiento. Se emplea varios procedimientos basados en datos experimentales de las propiedades termodinámicas de fluidos similares, y en general proporcionan información sobre la presión mínima de formación de la inclusión. La presión local en el momento de entrampamiento se considera hidrostática, ya que es una presión de fluidos.

Densidad y composición, en el estudio de IF se manejan numerosas técnicas para obtener información cualitativa, semicuantitativa y aún cuantitativa sobre la composición de las inclusiones. Las técnicas incluyen la identificación y determinación de la concentración de los principales iones presentes en la solución. En general en las IF se encuentran líquidos de baja viscosidad y una burbuja de gas o vapor. En la mayoría de los casos el líquido es una solución acuosa con menos de 10% en peso de solutos, aunque dichas concentraciones varían entre 50% y prácticamente 0%. Según Korzeniewski (2002), los solutos consisten principalmente en Na, Cl, y en menor proporción otros iones, la salinidad se calcula según la ecuación de Hall et al (1988), algunos valores calculados se aprecian en la Tabla 4.13.

Salinidad (% eq. peso NaCl) = $0 + 1.78*(Tm) - 0.0442*(Tm)^2 + 0.000557*(Tm)^3$

Tabla 4.13 Tabla de salinidades según temperaturas de fin de fusión del hielo (Tm) de IF en presencia de vapor

Tm (°C)	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
0.0	0.00	0.18	0.35	0.53	0.70	0.88	1.05	1.22	1.40	1.57
1.0	1.74	1.91	2.07	2.24	2.41	2.57	2.74	2.90	3.08	3.23
2.0	3.39	3.55	3.71	3.87	4.03	4.18	4.34	4.49	4.65	4.80
3.0	4.96	5.11	5.28	5.41	5.58	5.71	5.88	6.01	6.18	6.30
4.0	6.45	6.59	8.74	6.88	7.02	7.17	7.31	7.45	7.59	7.73
5.0	7.86	8.00	8.14	8.28	8.41	8.55	8.68	8.81	8.95	9.08
6.0	9.21	9.34	9.47	9.60	9.73	9.86	9.98	10.11	10.24	10.38
7.0	10.49	10.61	10.73	10.86	10.98	11.10	11.22	11.34	11.48	11.58
8.0	11.70	11.81	11.93	12.05	12.18	12.28	12.39	12.51	12.62	12.73
9.0	12.85	12.96	13.07	13.18	13.29	13.40	13.51	13.62	13.72	13.83
10.0	13.94	14.04	14.15	14.25	14.38	14.46	14.57	14.67	14.77	14.87
11.0	14.97	15.07	15.17	15.27	15.37	15.47	15.57	15.67	15.78	15.88
12.0	15.96	16.05	16.15	16.24	16.34	18.43	16.53	16.62	18.71	18.80
13.0	16.89	16.99	17.08	17.17	17.28	17.34	17.43	17.52	17.61	17.70
14.0	17.79	17.87	17.98	18.04	18.13	18.22	18.30	18.38	18.47	18.55
15.0	18.63	18.72	18.80	18.88	18.98	19.05	19.13	19.21	19.29	19.37
16.0	19.45	19.53	19.60	19.68	19.78	19.84	19.92	19.99	20.07	20.15
17.0	20.22	20.30	20.37	20.45	20.52	20.60	20.67	20.75	20.82	20.89
18.0	20.97	21.04	21.11	21.19	21.28	21.33	21.40	21.47	21.54	21.61
19.0	21.68	21.75	21.82	21.89	21.98	22.03	22.10	22.17	22.24	22.31
20.0	22.38	22.44	22.51	22.58	22.65	22.71	22.78	22.85	22.91	22.98
21.0	23.05	23.11	23.18	1000000			100006164		0.552550	

Fuente: Bodnar (1994)

Miriam 1

Con la metodología descrita líneas arriba se procedió a obtener los datos que se muestran en la Tabla 4.14, correspondientes a la muestra del clavo Miriam (Miriam 1), para luego elaborar los histogramas que se muestran en las Figuras 4.48 y 4.49, observándose que las temperaturas de homogeneización (Th) para el cuarzo relacionado con la mineralización económica, se encuentra entre 150 y 250 °C y la salinidad se encuentra entre 0.5 y 2.5 % equivalente (eq.) peso NaCl.

N°	Tipo	Min		φμ	Fill (L/v)	-Tf (°C)	Th (°C)	% eq. peso NaCl (%)	ρ (g/cm ³)	P (bar)
1	BIF	cz	P-Lw	7	0.60	1.10	229.70	1.91	1.10	19.64
2	BIF	cz	P-Lw	6	0.50	1.25	231.40	2.16	1.10	20.23
1	BIF	cz	P-Lw	8	0.80	0.50	169.70	0.88	1.14	6.03
2	BIF	cz	P-Lw	7	0.60	0.35	173.40	0.62	1.13	6.56

Tabla 4.14Datos microtermométricos de la muestra Miriam 1

NOTA: La diferencia de color entre las filas es por la agrupación según el grado de asociación (parámetros similares de Th y salinidad) de las inclusiones fluidas. Se estudiaron 4 inclusiones fluidas en total.

Fuente: Elaboración propia

Figura 4.48 Histograma Th°C vs número de medidas en Miriam 1 Fuente: Elaboración propia

Figura 4.49 Histograma de salinidad vs número de medidas en Miriam 1 Fuente: Elaboración propia

En las Figuras 4.50 y 4.51 se observa una mezcla de fluidos en el cuarzo hidrotermal relacionado con la mineralización económica. Se aprecian también dos posibles poblaciones:

- Población (F1-cz) conformada por 2 IF, con Th entre 150 °C y 180 °C, con salinidad entre 0.5 y 1 % equivalente (eq.) peso NaCl.
- 2. Población (F2-cz) conformada por 2 IF, con Th entre 220 a 240 °C, con salinidad promedio a 1 % equivalente (eq.) peso NaCl.

Según el diagrama modificado de Wilkinson (2001) se trata de fluidos que corresponden a depósitos epitermales.

Figura 4.51 Diagrama de Th °C vs salinidad y tipo de yacimiento en Miriam Fuente: Wilkinson (2001)

Ñusta 1

Para el caso del clavo Ñusta se obtuvieron los datos que se muestran en la Tabla 4.15, con los cuales se elaboraron los histogramas que se observan en las Figuras 4.52 y 4.53, donde se pueden apreciar que las temperaturas de homogeneización (Th) para el cuarzo relacionado con la mineralización económica está entre 200 y 350 °C y salinidad entre 3 y 8 % equivalente (eq.) peso NaCl.

Tabla 4.15 Datos microtermométricos de la muestra Ñusta 1

N°	Tipo	Min	Clas.	φμ	Fill (L/v)	Tf (°C)	Th (°C)	% eq. peso NaCl	ρ (g/cm ³)	P (bar)
1	BIF	67	P-I w	Δ	0.60	4 60	251.00	7 31	1.09	28.05
2	DIE	07	P_I w	- -	0.00	4.00	245.00	6.88	1.00	25.03
2	DII	CΖ		5	0.50	4.30	243.00	0.00	1.09	25.45
3	BIF	CZ	P-Lw	4	0.60	4.80	246.70	7.59	1.09	26.15
4	BIF	cz	P-Lw	4	0.40	4.20	239.90	6.74	1.09	23.37
1	BIF	cz	P-Lw	8	0.70	3.38	243.80	5.53	1.09	24.94
2	BIF	cz	P-Lw	7	0.75	3.90	246.50	6.30	1.09	26.07
1	BIF	cz	P-Lw	7	0.80	2.40	225.10	4.03	1.10	18.12
2	BIF	cz	P-Lw	6	0.70	2.15	223.70	3.63	1.10	17.68
1	BIF	cz	P-Lw	10	0.80	4.15	251.40	6.67	1.09	28.23
2	BIF	cz	P-Lw	11	0.80	4.10	248.20	6.59	1.09	26.80
1	BIF	cz	P-Lw	8	0.70	5.20	325.10	8.14	1.07	79.94
2	BIF	cz	P-Lw	7	0.60	4.90	322.80	7.73	1.07	77.73
3	BIF	cz	P-Lw	8	0.80	5.00	320.90	7.86	1.07	75.93

NOTA: La agrupación entre las diferentes filas es según el grado de asociación (parámetros similares) de las inclusiones fluidas. Se estudiaron 11 inclusiones fluidas en total. Fuente: Elaboración propia

Figura 4.52 Histograma de Th °C vs número de medidas en Ñusta 1 Fuente: Elaboración propia

Figura 4.53 Histograma de salinidad vs número de medidas en Ñusta 1 Fuente: Elaboración propia

En la Figura 4.55 se puede observar una mezcla de fluidos en el cuarzo hidrotermal. Se aprecian tres posibles poblaciones:

- Población (F1-cz) conformada por 2 IF, con Th entre 200 y 230 °C, salinidad entre 3 y 4 % equivalente (eq.) peso NaCl.
- 2. Población (F2-cz) conformada por 6 IF, con Th entre 230 a 250 °C, con salinidades entre 5 y 7.5 % equivalente (eq.) peso NaCl.
- 3. Población (F3-cz) conformada por 3 IF, con Th entre 300 y 330 °C, con salinidades entre 7 y 8 % equivalente (eq.) peso NaCl.

Según el diagrama modificado de Wilkinson (2001) se trata de fluidos que corresponden a depósitos de vetas de oro, compárese Figura 4.54 y Figura 4.51.

Figura 4.54 Diagrama Th °C vs salinidad en Ñusta 1

Fuente: Elaboración propia

4.3 Perforación diamantina

Según Rosales (2002) la perforación diamantina es aquella actividad donde la perforación se hace empleando una broca diamantada para perforar roca, obteniendo un testigo de la misma, que es extraído, registrado y colocado en cajas porta-testigo para protección y almacenamiento (ver Figura 4.55). La perforación diamantina juega un rol muy importante en el proceso de perforación de un terreno porque ayuda a confirmar la ubicación, profundidad y propiedades de los recursos existentes.

El logueo geológico permite conocer información como litología, alteración y mineralización del cuerpo perforado, así como también las estructuras que el sondaje intercepta.

Debido al comportamiento errático de los clavos mineralizados en mina Los Incas, donde las vetas se desplazan hacia la caja techo y hacia la caja piso. Se perforó de manera perpendicular a la estratificación, con longitud promedio de 10 m para cada caso. En la Figura 4.56 se observa la máquina perforadora BBU2 que se empleó en la campaña de perforación diamantina. El diámetro del taladro TT46 es de 35.1 mm.

Para perforar los clavos mineralizados Miriam y Ñusta, se habilitaron cámaras con dimensiones de 3 m x 3 m x 3 m.

Figura 4.55 Caja con testigos de perforación del clavo Ñusta Fuente: Elaboración propia

Figura 4.56 Perforadora diamantina Pack Sack BBU2 Fuente: Elaboración propia

4.3.2 Programa de perforación

Con la finalidad de comprobar la continuidad de la mineralización en profundidad y descartar el desplazamiento horizontal de los clavos mineralizados, se elaboró el programa de perforación en los clavos Miriam y Ñusta, para esta actividad se actualizó la base topográfica de las labores y con criterio geológico se procedió a definir los sondajes a ejecutar.

Según Versace (2018) un programa de perforación tiene por objetivo corroborar e intersectar estructuras mineralizadas, determinar el potencial minero para dar base a una proyección de crecimiento de la mina, también señala que la perforación diamantina proporciona la mayor parte de la información para la evaluación final de un prospecto y en última instancia determinará la viabilidad de explotación del proyecto. En las Figuras 4.57 y 4.58 se observa los sondajes planteados en el programa de perforación con Pack Sack, para los clavos Miriam y Ñusta, respectivamente.

Figura 4.57 Sección longitudinal del clavo Miriam Fuente: Elaboración propia

4.3.2 Logueo geológico

El logueo geológico es un procedimiento que consiste en plasmar los datos geológicos de los testigos de roca y/o mineral en un formato previamente establecido. Ver Anexo 4.2

Después del logueo geológico de los sondajes diamantinos, identificando los tramos de veta o vetillas se procedió al corte del testigo y posterior muestreo para el análisis químico y así determinar su contenido en oro, ver Tabla 4.16.

Los sondajes diamantinos ejecutados en el clavo Ñusta no interceptaron veta, por lo que no se enviaron muestras al laboratorio correspondientes al clavo mencionado.

Tabla 4.16 Intercepto de sondajes diamantinos

TALADRO	De (m)	Hasta (m)	Au (oz/t)
DDH-MI-NV340-1	0.40	0.55	0.028
DDH-MI-NV340-2	1.00	1.20	0.025
DDH-MI-NV340-4	1.10	1.25	0.056

Nota: MI (Miriam) Fuente: Elaboración propia

Figura 4.58 Sección longitudinal del clavo Ñusta Fuente: Elaboración propia

Resultados

Con los resultados de los análisis químicos de las muestras enviadas al laboratorio, que corresponden a los interceptos de sondajes en la perforación diamantina con Pack Sack, se realizaron interpretaciones del comportamiento de las vetas y de otras vetillas interceptadas.

En la Figura 4.59 se puede observar la intersección de una estructura de 15 cm de potencia con valores marginales no económicos.

Figura 4.59 Interpretación de la perforación en el clavo Miriam Fuente: Elaboración propia

Para el caso del clavo Ñusta, no se intersectó alguna estructura en la caja techo, ni en la caja piso. (ver Figura 4.60)

Figura 4.60 Interpretación de la perforación en el clavo Ñusta Fuente: Elaboración propia

4.3.3 Análisis y discusión de resultados

De acuerdo con el resultado del muestreo en las estructuras mineralizadas en el nivel 340, el clavo Miriam tiene 8 m de largo con mineralización económica con 0.14 oz/t en contenido en oro y 2.26 m de potencia en promedio, el clavo Ñusta tiene 6 m de longitud económica con 0.14 oz/t Au y 1.05 m de potencia en promedio.

Según el muestreo realizado en los clavos mineralizados se corrobora el comportamiento inclinado del mineral económico (buzamiento de 60°) en Ñusta (ver Figura 4.6, ítem 4.1.4), que soporta la recomendación de continuidad del mineral en profundidad.

Las descripciones de las relaciones texturales en las muestras de mano y secciones pulidas, correspondiente a los clavos Ñusta y Miriam, indican que los minerales económicos se encuentran intercrecidos con minerales de ganga. El proceso metalúrgico requiere una molienda fina (malla 200) para poder liberarlos.

Del estudio de termometría se identificó inclusiones fluidas bifásicas (tipo L), conformada por líquido y vapor, en cuarzo hidrotermal (III), asociado a la mineralización económica.

La secuencia paragenética desarrollada en el estudio mineragráfico concuerda con los estadios de mineralización hallada en el estudio microtermomètrico, con diferencia de algunos elementos metálicos adicionales que se hallaron en el estudio mineragráfico, debido al área de mayor dimensión.

Con la perforación diamantina ejecutada en los principales clavos mineralizados, se deduce que no existe desplazamiento de las estructuras hacia la caja techo o caja piso.

El valor del mineral económico del último nivel conocido en el clavo Miriam es de 0 \$/t, ya que la estructura se encuentra estrangulada, mientras que en el clavo Ñusta el valor del mineral es 76.52 \$/t, con 0.30 m de potencia de estructura, gradando a roca estéril.

Al efectuar la interpretación genética del yacimiento aurífero, mediante estudios de muestreo, mineragrafía, microtermometría y perforación diamantina se demostró que el interés económico por debajo del último nivel inferior conocido es nulo.

CAPÍTULO V

PROPUESTA DE INGENIERÍA

El procedimiento para desarrollar en las exploraciones subterráneas para alcanzar mineral económico es mediante la ejecución de piques inclinados, iniciados sobre las estructuras mineralizadas y siguiendo el buzamiento de las estructuras mineralizadas. En la Figura 5.1 se muestra el pique "PQ 9641" del clavo Murciélago– Trujillana en el nivel 300, y en la Figura 5.2 se observa el sostenimiento empleado en el mismo pique.

Figura 5.1 Ingreso al pique 9641 en el nivel 300 Fuente: Elaboración propia

Figura 5.2 Sostenimiento y ventilación en el pique 9641 Fuente: Elaboración propia

La forma que adopta el contorno del pique tiene influencia directa en la estabilidad del macizo rocoso (Arone, 2016), una forma ovalada tipo arco es favorable para la estabilidad de la labor minera.

En la Tabla 5.1 se muestran los parámetros del pique inclinado que se propone ejecutar.

Tabla 5.1 Parámetros del pique propuesto

Parámetro	Medidas
Ángulo de inclinación	50 °C
Sección	Largo 2.4 m, ancho 1.2 m
Longitud	20 m

Fuente: Elaboración propia

Los elementos de sostenimiento que tendrá el pique son pernos Split Set instalados de manera puntual donde lo amerite, ya que el yacimiento está en roca competente.

Para determinar la metodología del trabajo se consideran los parámetros geomecánicos que se evalúan después de cada ciclo de minado, en la Tabla 5.2 se muestran las actividades del trabajo propuesto.

Tabla 5.2

Metodología de trabajo en la ejecución del pique

ACTIVIDAD	DESCRIPCIÓN
Control topográfico	Marcar eje y sección de la labor
Perforación y voladura	Con barreno de 4 pies y broca de 38 mm
Ventilación	Durante 1/2hora, ventilador centrifugo
Desatado y regado	Con barretilla de 4 y 6 pies
Limpieza	Mediante izaje con winche eléctrico
Sostenimiento	Con cuadro de madera y perno Split Set
Servicios	Instalación de agua y aire

Fuente: Elaboración propia

El winche eléctrico es un equipo esencial para cumplir con la limpieza del pique a desarrollar, también se emplea para transportar materiales necesarios en las actividades de perforación, voladura, y sostenimiento. En la Tabla 5.3 se muestran las características del winche y del cable de acero.

Características del winche y cable Nº Nombre Medida Unidad Motor eléctrico 1 Potencia 45 HP 2 Rendimiento 86 % **Tambores del winche** Diámetro 0.96 1 m 2 Ancho 0.63 m 3 Capacidad de almacenamiento de cable 318 m Longitud máx. de cable a emplear 4 265 m Cable 1 Diámetro 5/8 Pulgadas 6 torones/cable - 19 hilos/toron 2 Diseño 6x19

Fuente: Elaboración propia

Tabla 5.3

La ejecución de la propuesta tiene costos fijos y costos variables, definiéndose *Costos Fijos*, aquellos costos donde el importe permanece constante, independiente al volumen de producción, tales como ventilación de mina, servicios de vigilancia externa, alquileres de servicio para uso administrativo, depreciaciones, seguros, impuestos fijos, sueldos y cargas sociales. *Costos Variables* son aquellos cuyos valores varían en forma proporcional, con el nivel de producción o actividad de la empresa, tales como mano de obra directa, materiales e insumos, impuestos específicos y transporte. En la Tabla 5.4 se muestran los costos variables unitarios en la unidad minera.

Tabla 5.4

Costo variable unita	rio
----------------------	-----

Labores	Sección	Costo Unitario	Unidades
Pique Inclinado	2.4m x 1.2m	420.00	\$/metro
Instalación de Split Set		10.00	\$/perno
Instalación de Puntal de línea		20.00	\$/puntal
Instalación de Descanso-escalera		20.00	\$/descanso-escalera

Fuente: Elaboración propia

El pique recomendado en el presente capítulo vendría a ser una labor de

exploración, ya que el mineral que se obtendría en el avance del pique no es

económico, ver Tablas 5.5 y 5.6

Tabla 5.5 Valor del mineral por clavo mineralizado

Clavo	Ley (oz/t)	Valor del mineral (\$/t)	Valor del mineral (\$/m)
Miriam	0	0	0
Ñusta	0.04	76.52	143
Euopto: Elabor	agión propio		

Fuente: Elaboración propia

Tabla 5.6			
Utilidad por ava	ance de pique	e en cada clavo mineraliz	ado
Clavo	Pique	Valor del mineral	Utilidad
	(\$/m)	(\$/m)	(\$/m)
Miriam	470	0	-470
Ñusta	470	143	-327

Fuente: Elaboración propia

De la Tabla 5.6 se concluye que al avanzar el pique en cada clavo mineralizado

se estaría perdiendo en total \$797 por metro lineal de avance.

CONCLUSIONES

- El yacimiento cuprífero-aurífero posee control estructural, conformado por mantos asociados a zonas de cizalla, identificadas por las estructuras en forma de lente y estrías de fricción. El yacimiento tiene control litológico, ya que la mineralización económica se incrementa en cajas conformadas por pizarras, y disminuye en cajas conformadas por areniscas y/o andesitas.
- La alteración principal en las cajas de los clavos mineralizados y en las partes no mineralizadas son cloritización y silicificación, correspondientes a las labores subterráneas. Mientras que los afloramientos se presentan argilizados y/o oxidados.
- Para los clavos estudiados, se identificaron tres eventos de mineralización, un evento temprano de formación de pirita, arsenopirita, pirrotita y rutilo en cuarzo tipo III, continuado por un evento principal donde precipita los siguientes minerales: calcopirita, galena, marcasita y pirrotita, para finalmente en un evento tardío precipitar electrum, pirrotita, cuarzo IV y formarse los sulfuros secundarios de cobre.
- El yacimiento cuprífero-aurífero está separado en dos clavos mineralizados. El clavo Miriam, según la temperatura de formación encontrada en las inclusiones fluidas (220-240°C) es de origen epitermal. El clavo Ñusta según la temperatura de formación encontrada en las inclusiones fluidas (330°C) corresponde a los yacimientos agrupados como vetas de oro.
- Las relaciones texturales no afectan significativamente la continuidad de los clavos mineralizados en profundidad, mientras que la temperatura de formación si, por lo

tanto, el yacimiento estaría pasando a otras condiciones de temperatura de formación $> 330^{\circ}$ C y presión > 25bar.

 La hipótesis planteada en esta investigación es nula, ya que el interés económico por debajo del último nivel conocido no es rentable con los precios del oro a marzo del 2022 (1913 \$/oz), por lo tanto, en cada metro lineal de avance en los piques se pierde \$797 en total.

RECOMENDACIONES

- Si se desea retomar las labores de exploración minera en la concesión, se recomienda la profundización de las labores (realizar piques sobre los mantos siguiendo el buzamiento del clavo) para encontrar mineral económico, ya que al realizar la perforación diamantina hacia las cajas de los clavos mineralizados no se evidenciaron desplazamiento alguno.
- En caso se encuentre mineral económico en el futuro, se recomienda para el proceso metalúrgico una molienda fina (malla -200), ya que el estudio mineragráfico mostro que el mineral económico "electrum" se encuentra con dimensiones menores a 5µm.
- En la presente investigación se realizó el estudio de microtermometría de dos muestras de mineral ubicado en el nivel 340, por lo que se recomienda realizar el mismo estudio con muestras ubicadas en diferentes niveles del yacimiento, para de esta manera graficar las isotermas y proyectar los vectores de formación.
- Se recomienda la aplicación de estudios de microtermometría en los yacimientos cupro-auríferos localizados en la franja Nazca - Ocoña, ya que se podrá determinar la temperatura de formación de dichos yacimientos.
- Para yacimientos con evidencia de desplazamiento horizontal o subhorizontal se recomienda la perforación diamantina hacia las cajas de la estructura mineral.

REFERENCIAS BIBLIOGRÁFICAS

- Adler, G. y Sosa, S. (2011). Commodity Price Cycles: The Perils of Mismanaging the Bomm. *International Monetary Fund.* v. 11. pp. 1-38.
- Arone, P. (2016). Planeamiento y diseño del pique inclinado 340 para el increment de producción en la unidad Chaparral, Compañía Minera Golden River Resorces
 Cháparra Caravelí Arequipa 2016 (tesis de pregrado). Universidad Nacional Micaela Bastidas de Apurímac, Perú.

Betejtin, A. (1977). Curso de Mineralogía. Moscú, URSS: Editorial MIR.

- Bodnar, R. (1994). The system H₂O-NaCl Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution. *Geochimica et Cosmochimica Acta.* v 58, pp 1053-1063.
- Ccama, M. (2017). Aplicación del QAQC en el proceso geológico, para validar la estimación de recursos y reservas de la Unidad Operativa Chungar (tesis de pregrado). Universidad Nacional de San Agustin de Arequipa, Perú.
- Chen, H., Cooke, D. y Baker, M. (2013). Mesozoic Iron Oxide Coopper-Gold Mineralization in the Central Andes and the Gondwana Supercontinent Breakup. *Economic Geology*. v. 108, pp. 37-44.
- Contreras, A. y Gutiérrez, B. (2016). Efecto de ciclos de precios de metales: Estimación de un modelo de equilibrio general con Time to Build para la economía peruana, 2001-2015 (tesis de postgrado). Universidad del Pacífico, Perú.
- Hall, D., Bodnar, S., Sterner, S. (1988). Solubility relations in the system NaCl-KCl-H₂O under vapor-saturated conditions. *Geochimica et Cosmochimica Acta*. v

52, pp 989-1005.

- Huayhua, R. y Ancco, R. (2014). Estudio de Factibilidad del Proyecto Explotación de la Mina Los Incas Lucanas – Ayacucho, (tesis de pregrado). Universidad Nacional de San Antonio de Abad del Cusco, Perú.
- Inga, F. (2018). Estudio mediante Microtermometría de Inclusiones Fluidas -Recuperada – Distrito Minero de Huachocolpa (tesis de pregrado). Universidad Nacional Daniel Alcides Carrión, Perú.

ISO 9001. (2015). Sistemas de gestión de calidad – Requisitos. Ginebra, Suiza.

- Korzeniewski, L. (2002). Inclusiones Fluidas aplicadas a la exploración minera. SEGEMAR: Servicio Geológico Argentino.
- Linares, M. (2017). Técnicas de muestreo y control de calidad para la Mina Españolita SAC en el distrito de Cháparra, provincia de Caravelí, departamento de Arequipa (tesis de pregrado). Universidad Nacional de San Agustín de Arequipa, Perú.
- Loaiza, E., Zárate, H. y Galloso, A. (2008). *Mineralización y Explotación Minera Artesanal en la Costa Media Sur del Perú*. Lima, Perú: Ingemmet.
- Montoya, M., García, W. y Caldas, J. (1994). *Geología de los Cuadrángulos de Lomitas, Palpa, Nasca y Puquio*. Lima: Bol. Cart. Geol. Nac. Perú Nº 53.
- Nash, J. (1976). Fluid Inclusion Petrology Data from Porphyry Copper Deposits and Applications to Exploration. *Geology and Resources of Copper Deposits*. Paper 907-D, pp. D2-D14.
- Rosales, O. (2002). Innovación tecnológica en perforación diamantina (tesis de pregrado). Universidad Nacional de Ingeniería, Perú.

Sánchez, D. (2003). Evaluación Geológica y Proyecto de Explotación – Tratamiento

Mina Los Incas (tesis de pregrado). Universidad Nacional de Ingeniería, Perú.

- Sillitoe, R. y Perelló, J. (2005). Andean copper province: Tecnomagmatic settings, deposit types, metallogeny, exploration, and discovery. *Economic Geology*. 100TH Anniversary Volume, pp. 845-890.
- Torresi, I., Xavier, R., Bortholoto, D., & Monteiro, L. (2012). Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide– copper–gold deposit, Carajás Mineral Province (Brazil): implications for ore genesis. *Mineralium Deposita*, 47(3), 299-323.
- Velasco, F. (2004). Introducción al estudio de las inclusiones fluidas. XXIII Curso Latinoamericano de Metalogénia, Mendoza, Argentina.
- Versace, P. (2018). Geología y programa de perforación diamantina de la veta Coyita
 Compañía Minera Cerro Bayo Mandalay y Resources Chile (tesis de pregrado).
 Universidad Nacional de San Agustín de Arequipa, Perú.
- Wilkinson, J. (2001). Fluid inclusions in hydrothermal ore deposits. *Lithos*. v. 55, pp. 229-272.
- Wilson, J. y García, W. (1962). Geología de los cuadrángulos de Pachía y Palca. Lima: Bol. Cart. Geol. Nac. Perú Nº 4.
- Wood, D. & Hedenquist, J. (2019). Mineral Exploration: Discovering and Defining Ore Deposits. SEG Newsletter. no.116, pp. 11-21.
- Yuan, M., Li, L., Li, S., Li, C., Santosh, M., Alam, M., & Bao, X. (2019). Mineralogy, fluid inclusions and S-Pb-HO isotopes of the Erdaokan Ag-Pb-Zn deposit, Duobaoshan metallogenic belt, NE China: Implications for ore genesis. *Ore Geology Reviews*. 113, 103074.
ANEXOS

ANEXO 4.1

								Ξ,																Pági	ina N	P				de		
Áre:	a	:	PQ-	9641																Inicia		:										
Hole	•	:	DDH	I-MT-I	W34	10-1														Térm	ino	:										
Ged	logo	1	Rog	er Rui:	Z															Equip HO m	0	:	BRU	2								
Dip	iut	:				Este	:			Nort	e:			Cota	a:					NQm	1	:										
_																					φ	=	TT4	6	=	35.1	mm					
	RECUPE	RACIÓ	N	GEO	QUÍM	ICA	GRÁ	ÍFICO	LITOL	.OGÍA)	MIN PF	RIMARI	4	Concession (M	IN SEC	UNDAR	A			-	1	ALTER	ACIÓI	-			ZONA	OBSERVACIÓN
Depth	Corr.	Rec.	RQD	Au Oz A	\g Oz	Cu%	Grafici	Estruc	Tipo	Texto F	MIN1	Estilo	Estim	MIN2	Estio	Estim	MINI	Estio	Estima	MIN2	Estilo	Estim	ALT1	Min 1	Estilo	Inten 9	ALT2	Min 2	Estilo	Inten.	%2	
		¥9			-				-		_		_	-		-							-			_	-					
	E	0.7	60/0						W							-	2 			1											1	
	.30r	n/ 8)= m												-																1	
1		.10	210		_				w				_			_	-			-										_		
⊢	1				-	-					-		_	-	_	_	-	-	-	-		-	-		-	_	_		_	-		
-									-				-										-		-	-						
		8%	36%					1.8	w																							
2	30m	n/ 8	47/						vv																							
	19	.15n	Dcm		_				w		_					_					_				_							
⊢	1	Ч	Σ_1		-				VVV		-		-				-	-		-	-		-	-	-	_	-		-	-		
		%t	50%						vv																						1	
3	- m06	94.4	cm/t						vvv																							
	0.9	.85/	1-54	\square	_				vv																			\square				
⊢	-	Ö	M	-	-			3.85	w				_		-	-		_	-	-	-				-	_			_	-		
F								5.05	vvv		Au	diss	-	DV	vnll	1%	po	vII	1%	CD	vnll	<1				-	_			-		
4		10	%	0.06	65			4.1	vv									1				_									1	
	1	0.69	/ 48				11		vvv																						ros	1
	1.60	5/9	7cm	0.00	06		111	4 5	vv				_			_				_					-	_					ulfu	
	92293	1.4	$\sum_{i=1}^{n}$	-	-			4.5	-	-			-			-	-			-			-		-	_				-	ŝ	
5	1																															
																	. 1		1													
	c	5.25	%0,		_											_	_			_			_						_			
	80r	5/ 56	Dcm/		-	-	-		-7-7-						-			-				-	-						_	-		
6	0	0.45	Ω.		-								-				2															
		8							vvv																							
	ε	6.25	%0/u		_				vv	_			_																			
⊢	1.1	5/5	=0cn	-	-	_			VVV		-		_			_				_	_	-	-			_			_			
7		0.4	M		-				vvv	-			-			-				_						_	_			-		
																															1	
		*	8																													
-	E	56.6	\$0/m		_						-													-								
8	1.	85/	190	\vdash									_			-				-												
F	1	O.	M	H																											1	
				\square						-			_													_						
0	1		*	\vdash	_				VVV				-			-	-		-	-		\vdash	-		-	-		\vdash	_	-		
F	Ę	80%	n/36	\square					w				_																			
	1.5	1.2/	:54cr						vvv						Ĩ																1	
F	1		ā	Ц					vvv																							
10	1			\vdash	_	_			VV	-			-			-	-	-		-	-	-							_	-		
				\vdash					~ ~ ~				-							-	-									-	-	
																LEY	END	4														
													Lito	logía			Min	erali	zació	n												
\vdash	-	\vdash	-	\vdash	_	_		\vdash	-	\vdash			w	And	esíta rra		11	Veti	lla illace	dan	,	-						\square		\vdash	<u> </u>	

																							Pág	ina N	1°				de		
Áre	a	:	TJ-3	40 N													Inicio	>	:												
Hole	•	:	DDH	I-NU-	-Nv34	40-1										Térm	ino	:													
Geó	logo	:	Rog	er Ru	liz											Equip	00	:	BBL	J2											
Azir	nut	1	24	I3°															HQ m	n	:										
Dip		:	- 25	5		Este):		Nort	te:			Cota	a:					NQ n	n	:										
										_						_				φ	-	TT4	6	= 34	35.1	mm					
	RECUPE	RACIÓ	N	GE	OQUÍM	IICA	GRÁFICO	LITOL	.OGÍA		_	MIN PF	RIMARI	A	_		N	IIN SE	CUNDAR	AB	_			_	ALTER	RACIÓN	1	_	_	ZONA	OBSERVACIÓN
Deptr	Corr.	Rec.	RQD	Au Oz	Ag Oz	Cu%	Grafico Estru	Tipo	Texto	MINI	Estio	Estim	MIN2	Estilo	Estim	MINI	Estilo	Estim	MIN2	Estilo	Estim	ALT1	Min 1	Estilo	Inten 9	ALT2	Min 2	Estilo	Inten.	%2	
		%	5%				~	w																							And alt color
	3	100	2/				7	w		Au	diss	t	ру	vnll	2							pro	cl	vnll	10	sil	CZ	vnll	20		verde violáceo
	9	/w	- L					vv	0.6														_								hacia el final
		8	100																						_			_			Pz laminada,
1		-	M																												estratificación brillo
		28	45%	_			X	_7_7															-								estratificación flaser
	Ξ	80	12/	_			N.	_*_*	1.4																					1	hacia el final.
	9	1º	T E					w											_			_	_								
		0.8	100				~	w																							
2			M					vv															L								
н		%0	2%					w		_		-					-		<u> </u>			-			Calar					1	
H	E	10	n/55					vv		_		-							<u> </u>			pro	cl	vnll	10					1	
\vdash	1.0	/m	Scin			-		w		_	-	-			-		_				-	-	-			-				1	
	1	1.00	N=				\vdash	w		-	-	-			-	-	-		-		-		-		-	-				1	<u> </u>
	-		<u> </u>	_				w		-																				1	
			10					vv		_																				1	
	-	38%	54%		-			w		⊢	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	\vdash		-	1	
н	30n	1º	cm/	_		-		w		⊢	-		-		<u> </u>	-	<u> </u>	-	<u> </u>	-	<u> </u>			_	_	_	-	<u> </u>		1	
	н,	151	=70					~~				-			<u> </u>		-		_				-		_						
4		-	M	-	-			~~		⊢	-		-	-	-		-	-	-	-	-		-	-	-						
	-		_	-				vv		_	-	-	-				-		-	-	-		-		_		-	-	_	ILOS	20cm de min,
H					_		~	~~		<u> </u>							-	-			-	61	i and a state of the state of t		60					- F	vnll de py + cz
н			v e	_		-	2B	~~~		Au	diss	T.	py	vnii	3		_	-	-	-	-	511	CZ	vnii	60	Pro	CI	Vnii	10	ŝ	en roca sil, cz
	-	8%	(639	-		-	<u> </u>	vv	4.8	⊢	-		-		-		-	-	-	-	-				-	-		-	-		int pz 10cm
	Sn	/ 80	E C							L-	-	-			-		-	-	-	-	-		-		-		-	-			
н	-	1.4	-0	-						⊢		-			-		-	-	-		-		+		-					1	
			N	-						⊢	-	-			-		-				-		-	-	-	-		-		1	
										-	-	-			-		-		-		-		-	-	-	-				1	
6	-		-							L-	-	<u> </u>			-			-	-		-		-		-			-	-	1	
H	1			-						⊢		-	-		-		-		<u> </u>		-		-			-		-		1	
H		3%	%0	-						⊢			-		-		-	-	-	-	-				-	-		-	-	1	
H	E B	6/1	m/4							-		-			-				-	-			+		-	-			-	1	
H	1.5	10 ^m	:60c	_					67	\vdash	-	 _	-		-		-		-		-		-	-						1	
7		Ľ,	ĥ						0.7	-			-				-		-				-		-	-					
H				-				W		-	1								<u> </u>	-		Pro	rd	m	30	Arg	cae	m	20		Toba con alteración
	-							VV	7 /			-			1		\vdash	\vdash	-	\vdash		1.0	1.0	<u> </u>			040		20	1	propilitica, vnils de
	1								1.4	-		-			-		+		-	\vdash	-	\vdash	1		-				-	1	
		%	%						7.8			-							1			F								1	
8	Ę	16/	1/63					W	7.0	H												F	-		-			-		1	
F		E	Scir					w		⊢		-					-		-		-	Pro	d	m	20					1	Toba verdosa
H		1.45	6=5					w	8.5														1	Ľ.						1	
	1	С	-(0						5.5		1	1			1							t		1	1					1	
Н	1							1	9								1			\vdash	1	\vdash			-	-				1	
9								w				1										F	1							1	
F	1							w											i –											1	
	1	%	1%					w																						1	Toba verdosa con
	ε	185	1/m					vv														Pro	cl	vnll	10					1	vnlls de cac
	1.7	E	20cr					w																						1	
10	1	1.45						vv																						1	
	1		M					1			Γ	1	Γ		Ī		Ē		Î	<u> </u>	1	Ē		Γ						Î 🗌	1
11	1										Г	-		-	LEY	END,	Ą			-							1				1
												Lito	logía			Min	erali	zació	'n												1
											1	w	And	esita			Veti	illa d	e cz												1
11												-	Piza	rra																	1

															20.									Pág	ina N	ľ				de		
Área	l.	:	TJ-3	40 N																Inicio)	:										
Hole		:	DDH	I-ÑU	-Nv34	40-1														Térm	ino	:										
Geó	logo	:	Rog	er Ru	liz															Equip	00	:	BBL	J2								
Dip	iut		24	њэ 5		Este	a:			Nort	te:			Cot	a:					NOn	1	-										
				-																	φ	-	TT4	6	=	35.1	mm					
	ECUPE	RACIÓ	N	GE	oquín	IICA	GRÍ	ÁFICO	LITO	LOGÍA		_	min Pf	RIMARI	A			h	1in se	CUNDAR	AL				9	ALTER	RACIÓI	N			ZONA	OBSERVACIÓN
Depth	Corr.	Rec.	RQD	Au Oz	Ag Oz	Cu%	Grafic	e E struc	Tipo	Texto P	MIN1	Estilo	Estim	MIN2	Estilo	Estim	MINI	Estilo	Estim	MIN2	Estilo	Estirr	ALT1	Min 1	Estilo	Inten [®]	ALT2	Min 2	Estio	Inten.	%2	Toba de comp
		\ 0	%5	-			5		w		_		-	-		-		_		-		-										andesita con
	ε	L009	0/7				~	~	VV		Au	diss	t	po	por	4		-	\vdash				sil	C7	ree	20	cl	d	viss	5		de cuarzo v
	1.20	/m	6= W					7	w				Ľ.	1.0		~															1	venilleos de
1		1.2	C100						vv																						1	cloritas
			PA				1	-	vv											1								1				
-				-		1.5			w					-			_				-	_										
H		Ŷ	3%						W		_		-	-	\vdash	-		-					\vdash	-		-						
2	E	939	55/4						vv																						1	
	1.50	4m/	cm=						w) —		<u>)</u>											1	1
		4	210						vv				_													_						
-				- 13		-			xv													-				-			-			
	-			- 2				\vdash	VX W			\vdash	-	-		⊢		-	\vdash	-												
_	-	88%	83%						vv		_							-		5											1	
	-100 ·	/m	2cm/						w								1	1		1											1	
	0	0.80	2=7		_			_	w		_																				1	
	_	10000		-			_		w			-	_								_				-	_						
4					—				W		-		-					-		4		-		38 90							s	
	-	%8/	44%	-	_				w		_							-		12											furc	
	80n	1/11	Jcm/						vvv																						Sul	
	Ч	1.40	Σ=8						w		_																					Andesita con
5				_	-				w		_	-	-			-		_				_	-									textura afanítica
	-								W		-	+	-	-			-	-					-								1	y venilleos de
			*						vv		-		-							1											1	culcitu
	c	%00	1/88						w																						1	
6	1.6r	1/ 10	40cm						w									1														
		1.4	E L						w		_			-			_	_									_					
				-			-		VV		_		-	-			_				-			-			_					
									w																						1	Fase intermedia
7								-	w																						1	entre andesita
		*	8%						w											1												de textura
	B	/ 60	m/8						vv		_																					afanítica y
-	1.6	40m	140c	-			_	-	w			-				-	_			s				-				-				pizarra.Volcano
8		1.	⁼						w		-													2							1	ciasuco
									w		_									1											1	
									w																						1	
	e	879	1725						w																							
9	-10G	m(Scm	-			_		VV				-	-			_	_		-												
F	0	0.8(å=6			\vdash		\vdash	w		F	+	1	-				-	\vdash				\vdash							-	1	
		*	389						w																						1	
	30m	/81	/mo						vv																							1
L	0.8	0.70]=70						xv	DOT	L																				1	Andesita
10	-			-		-	-	\vdash	VX	POR	-	+	-	-	H	-	-	-	⊢	<u> </u>	-	-	-	-		-	-		-	-		porfiritica
			-					1				h	L	-	-	LEY	END/	4	_		-											1
													Lito	logía	6		Min	erali	zació	n												1
-													w	And	lesita			Veti	illa d	e cz												1
11														Piza	rra																	

															LOC	90E	UG	EOI	LUG					Dár	ine N	0				da		
Área	a		TJ-3	40 N																Inicia	5	:		rag						ue		
Hole	•	:	DDH	-ÑU-N	v34	0-2														Térm	ino	:										
Geó	logo	:	Roge	er Ruiz																Equip	00	:	BBU	12								
Azin	nut		6	B°		-				10101010	575				5					HQm	1	8										
Dip			1	4	E.	este:				Nor	te:			Lota	a:					NUT	۱ م	-	TT4	6	-	35.1	mm					
	RECUPE	RACIÓ	N	GEOQ	UÍMIC	CA	GRÁ	FICO	LITO	LOGÍA			MIN PI	RIMARI	A			N	1IN SE	UNDAR	Ψ AB	-	T T	<u> </u>	-	ALTER	ACIÓ				ZONA	OBSERVACIÓN
Depth	Corr.	Rec.	RQD	Au Oz Aç) OZ (Cu%	Grafico	Estruc	Tipo	Tedo	MIN1	Estilo	Estim	MIN2	Estilo	Estim	MIN1	Estilo	Estim	MIN2	Estilo	Estim	ALT1	Min 1	Estilo	Inten 9	ALT2	Min 2	Estilo	Inten.	%2	Taba da
		8%	/13				16		w																							composición
	80m	1/38	n=10		_	_	Try		w						1.000												100					andesítica, con
H	0	0.3n	10cr	_	-	-	_	-	VV		Au	diss	s t	PY	par		ро	par	⊲			-	pro	cl	vnii	20	ARG	cao	m	5		propilítica, vnll de
1	-		M		-	-			vv																						1	cz py-po diss
	1	1128	2%						w											1											1	
	ε	93%	0/ 6						w																							
	1.50	/m	m=9		_	_	14		vv																							
2	100	1.4	C100	_	-	-	12		w		-	-		-		-		-		_					_				-		1	
É	1		.4		+			1				1																			1	
								X																							1	
	1	10.5%			T				22																					1	1	
	F	%16	/40%		+	_						-	-			_		-		-											1	
	.50r	/mg	Ocm,	_	+	-	-		VV			-				-		-					pro	cac	vnll	2	ARG	cao	in	10		And alt prop
		1.45	Σ=6																				p. 0	000		~		out			1	r and ant prop)
	1		85325					<i>.</i>																							1	
					_	_	_									_		_														
4			512		_	_	_					-	-			_		-		_						_	_		_	_	5	
		%06	(77%		+	-	-													-									-		furo	
	50m	5 /w	5cm/																												Sul	
		1.35]=11																													Pz mass,
5			M		_	_	_					-				-		_					-					-	-	_		Arcilla sen planos
	_		_	-	+	-	-				⊢	-	+			-		-		-	-		-	_	-						1	lustrosos de
					+									-											-				-		1	esciatificación
		%	57%																	1											1	
6	Sm	/ 90	cm/i																													
	H	1.35	=100	_	-	_	_					-				_		_		-										_		
			M	-	-	-																							-			
																												- î			1	
7									122																						1	
H	1	%(33%		+						\vdash	1	-																		1	
	E	/ 90	m/		+	-	_	-			⊢	-	⊢			-		-		-		-				-			-		ł	Estratificación
		35m	0.80		+	-					\vdash	1	\vdash																		1	flaser
8	1	Ļ	å=(1	0.00000
																															1	
\vdash		4%	%9		+	_					⊢	1	-					-													1	
	m0	1/9	m/5	-	+	-	_	-			⊢	⊢	⊢			-		-	\vdash	-		-			\vdash						ł	
9	0.8	75m	45ci		+																									1	1	
		Ö.	dan L						20																						1	
	-	%6	/78%																													
\vdash	90n	3/8	.0cm		+	_	_	-			\vdash	-	-	-		-		-				-					_		-		ł	
10	0	0.80	$\sum = 7$		+						\vdash	1	\vdash					-											-		1	Cuarcita gris, vnlls cac
										L		L	L																			
																LEY	END	4]
					+							1	Lito	logía	acit		Min	erali	zació	n do		1										4
11	-	\vdash	-		+	-	-			\vdash	\vdash	1	w	And Piza	esita			ven	meo	ue cz		⊢		-		-		\vdash	-		-	1
<u></u>			12		_		_																									

															200	301			200					Pág	ina N	l°				de		
Áre:	a	:	TJ-3	40 N																Inicic	•	:										
Hole	•	:	DDH	1-ÑU	-Nv34	40-5														Térm	ino	:										
Geó	logo	:	Rog	er Ru	liz															Equip	00	:	BBL	J2								
Din	iut	:	4	5 19		Este				Nor	te:			Cot	a.					NOn	1	:										
D .P						2010															φ		TT4	6	=	35.1	mm					
	RECUPE	RACIÓ	ÓN	GE	OQUÍN	IICA	GRA	ÁFICO	LITO	LOGÍA			MIN PI	rimari	A			N	ain seo	CUNDAR	JA					ALTER	RACIÓI	4			ZONA	OBSERVACIÓN
Depth	Corr.	Rec.	RQD	Au Oz	Ag Oz	Cu%	Grafic	eEstruc	Tipo	Texto	MIN1	Estilo	Estim	MIN2	Estilo	Estim	MINI	Estilo	Estim	MIN2	Estilo	Estim	ALT1	Min 1	Estilo	Inten 1	ALT2	Min 2	Estilo	Inten.	%2	
		*	%0						w													_										
H	- MO	1/35	10=0				-	-	W			-	-	-		-	-	-		-	-	-		-	-	-			-	-		volcanoclástico, con
H	1.0	35rr	.0cm				-		w									-				-		-		-						escasos vnlls de cac ron pátinas de Ox Fe.
1		0	Ŵ		_				vv											J	_										1	
. (*	%					4	w																							
	E	/ 90	01/n					X	w														ARG	cao	m	30	PRO	d	par	З		Parches de alt prop.
	1.00	0m)	70cr				-		W				-	-				-		-		-		-			-					
2		0.5	ų						w		-																					
		_							w																							
	1	*	3%						w																							
	E	06 /	m/7:						w																							
	1.50	12m	1100				-	\vdash	vv		-	\vdash	-			-	\vdash	-				-	\vdash			-				-	SO	
		4	$\sum_{i=1}^{n}$				-	\vdash	W		-			-			\vdash	-				-	⊢	-		-	-		-		Hur.	
			en sta	-					w																						SL	Concordante
		%	%(
	Zm.	1 57	m/c																													
4	Ö	0.40	3=0c	_	-		-							-				-						-		_			_			
	_	50		-				11					-	-				-				-		-		-			-			Pz fracturada, cao en
	ε	38%	60/u					X																								los planos de estratificación
	0.8	30/	=00					X																								
5		0	M					1										_		_									_		-	
-				-	-		-	-					-	-				-		-	-	-		-		-	_		_			
-											-																					
6																																
			-				_	-			_			-				-		_	_	-		-		_			_			
H																										-			-			
									1																			1				
7									1																						1	
	_													-				_			-	_		_		_	_		_			
	-	\vdash	+				-	\vdash			<u> </u>			-		-	\vdash	-		-		-	\vdash	-					-		ł	
8			t					\vdash	1		F												\vdash								1	
									1																						1	
									1																						ł	
	_	\vdash	-			\vdash	-	⊢	1		⊢		-			-	\vdash	-		-		-	\vdash	-		_					ł	
9			4				_	-			-		-	-				-											-			
F	-		t				-	\vdash	1		⊢													1							1	
									1																						1	
									1																						ł	
10	-	\vdash	┢			\vdash		\vdash	ł		┣—		-			-	\vdash	-					\vdash			-				\vdash	ł	
10	-	-						+	-	T	-		-	-		-	\vdash	-		-	-	-	\vdash	-		-	-		-		-	
												Ē			_	LEY	END	4			-		t									1
													Lito	logía	ě.,		Cọn	dicić	in	5								1]
												1	w	And	lesita		X	Fra	ctura	do												4
11								1		1			-	Piza	rra		11						1								1	I

															LOC	JUE	0.9	EOI	LUG					Pág	ina N	r				de		
Áre	a	:	TJ-3	40 N																Inicio)	:										
Hole		:	DDH	-ÑU-	Nv34	40-6														Térm	ino	:	0.01	10								
Geò	logo		Rog	er Ru R°	IIZ															Equip	00	:	BBC	12								
Dip	iut		1	4		Este	:			Nort	e:			Cota	a:					NQn	1	:										
			6755			11.05864	4.2			20161250	isen.			0132044	64 ·						φ	=	TT4	6	=	35.1	mm					
3	RECUPE	RACIÓ	2	GE	oquím	ICA	GRÁ	ÁFICO	LITO	LOGÍA			vin Pf	RIMARI	A			N	IIN SEC	UNDAR	JA	_			_	ALTER	ACIÓN	-	_	_	ZONA	OBSERVACIÓN
Depth	Corr.	Rec.	RQD	Au Oz	Ag Oz	Cu%	Grafic	c Estruc	Tipo	Tedo	MINI	Estilo	Estim	MIN2	Estilo	Estim	MINI	Estilo	Estim	MIN2	Estilo	Estim	ALT1	Min 1	Estilo	Inten 9	ALT2	Min 2	Estilo	Inten.	962	
	ε	36%	0/06				111	X	- vv		-				-	-						-						-	-			
	0.70	5m/)cm=					Vi	vv																							
	0.00	0.2	Σ1(1	X	vv																						1	
1									vv							_				_												
		%(960					K	vv		_				_	_	_			_							_					
H	m0	100	10=0			-		K	w							-	-			-		-	-				-		-			
F	4	5m/	LOCIN						w							-											-					
2	1	H	Ŵ						w																							
									vv																						1	Toba con alt prop,
H									w				<u> </u>			_				_					-		-				1	vnlls de cac-cl, pátinas de OxFe
H		25	10					F	W		-	\vdash	-	-		-		⊢		-	-		PROP	cl	m	40	ARG	cao	m	10	,	
3	Ξ	139	%0/u		-			+	w		-					-				-							-					
	1.50	0m/	=0cm						vv																							
		1.1	M						vv																							
_								_	w						_	_																
	_		á	_			11	1.	vv				_			4			_	_				-	_		_					
-							11	K-			Au	diss		CZ	vmi	41				-							_	-			s	
	c	53%	'13%					Vi.	w																						furc	
	50	/m	0cm)				/	X	w																						Su	
		0.80	Σ=2		_	_		K	vv		_					_	_			_												
-5					_			Và.	vv.		_	-		_	-	-	1	-		-	_	_					-		-	-		
H				-	-		-	$\frac{1}{1}$	w		-					-				-							-					
	1						1	R	w																							
	1	%	17%					4	w																							
6	Sm	1 47	cm/:				1	A	w							_																
		0.70]=25				~	K.	vv		_			-		_	-			-		-		-			-	_				Toba con alt prop
-			M					X												-												Pz con So lustroso
								X								1																Contraction of Contra
7		194							22																							
		33%	%0																												1	
\vdash	L.2m	/ w	/un/		_	-					-	-						-		_										\vdash	1	
H		0.40	ā=0														-			-							-				1	
8	1	5																						1							1	
	Ε.	:/1	m/																												1	
	09.0	55n	=32c																												1	Pz masiva, planos de
\vdash	Ľ,	Ö.	9.4			- 19					_					-	-			-							-				-	So con costras de py.
9			, 0								-		-			-				-							-				1	
F	1	3%	/67%																												1	
	L.Sm	6/C	Dom																												1	
		1.4	<u>]</u> =10																												1	
10	1		~					-			-	\vdash	-			-		-		-	-	-		-			-			-	1	
-10	-						-	+			-	\vdash	-			-		-		-		-		\vdash			-		-	+	t	<u> </u>
													_	_	_	LEY	END/	4		_												1
													Lito	logía	£.,.		Min	erali	zació	n	1				_]
									_				w	And	esita			Veti	lla de	e cz		_					_					4
11		1						1	1	1	L		-	Piza	rra			Ven	illeo	de cz		í i		1	L					1		1

			T 1.0	10.11																			Pág	ina N	ľ				de			
Area		-	IJ-3	40 N 4 ÑU	MAR	10.7														Inicic	ino	-										
Goál			Dor	or Di	-14V.J.	+0-7														Equir			RRI	12								
Anim	ugo		RUB	0°	112																	:	DDC	2								
Din	ut	50 • 1		14		Este				Norte: Cota:										NOm												
		51	87																		ф	<u></u>	TT4	6	=1	35.1	mm					
B	ECUPE	RACIÓ	N	GE	OQUÍM	IICA	GR	ÁFICO	што	LOGÍA			MIN PF	RIMAR	A	_		M	IIN SEC	UNDAR	Ψ	_	T		1	ALTER	ACIÓN			- 5	ZONA	OBSERVACIÓN
Depth	Corr.	Rec.	RQD	Au Oz	Aq Oz	Cu%	Grafic	Estruc	Tipo	Texto	MIN1	Estilo	Estim	MIN2	Estilo	Estim	MINI	Estilo	Estim	MIN2	Estilo	Estim	ALT1	Min 1	Estilo	Inten 9	ALT2	Min 2	Estilo	Inten.	%2	
									W																						1	
			20				11		w																							
		%	0/ 80						vv		Au	diss	t	po	par	0.5	cz	vnll	1				C	cl	vnll	30	ARG	cao	m	10		
	mg.	1/8	=12(w																						1	
1	H	L.3n	Com						vv																						1	
			Σ^{10}						w																							
									w							1																
								X	w		÷					1		1										1				
								1V	w																							
2	1000	%00	57%						w							Ĭ.																
	m	/ 10	m/m						vv																							
	1.5	Sm	100						w																							
11		1.1	Ē	. 1			1		vv		2					Ì				[]				_					1	1		
									vv																						Į	
3									W		Au	diss	t										d	cl	m	10	ARG	cao	m	20		
									vv																						1	
		*	1%						w																		_					
	Ξ	06,	1/u					-	w																							
	1.50	E B	15ci				6 X		vv		_					_						-										
4		1.3	T		-		177	_	w		-		<u> </u>	_		_		-				_					_		-			
_				_				-	vv		_		-	-		_		_			-	_		-	_		-		-	-	lros	
_				-	-		_		w		_									-	-	_		-						}	ulft	
							-	-	w				-	-				-		-		_	_			_			_	_	s.	
			28					-	cone.		⊢		-	-		-		-				-	-	-					_			
ು	-	%0	/60	-			-				-					_	-	-	-			-	-								-	
	-Sn	3 /0	, mg				-	-			⊢		-	-		-	-	-				-	-						-	-		
-		1.2	6				-	-			-		-	-		-		-		-		-	-	-			-					
2			M	-			1				-		-				-	-		1		10 10	-	-					-		-	
6								Vi			-	1	-					-		-		-		-					-			
- v				-				K			⊢		-			_		-				-	-									
							•																-				-					
		47%	30%																													
	3m	1	/m						10 A																							
7	H	70h	450																													Paron contector
		0									DV	vnll	t							1		e			-				-	1		lustrosos
									1.27		<u> </u>									1			Г								1	
																	Γ						Γ								1	Costras de py en So
		28	\$					1																				1			1	
8	F	535	61/1																												1	
	50	1	Cm				1	1.																								
	Ч	08.	=1(X																								
		0	40				1	1.	1																							
									1-1-1																						1	
9																																
		89	28%																												I .	
	2m	/ 96	m/:								_			-		_																
	H	.15	34c								_																					
		Ч	10					-	-4																						Į	
10		_						-	22	-																					ļ	-
			<u> </u>				L	1	<u> </u>	4	L_	\vdash		L								_							L			4
							-	_			\vdash	-				LEY	END.	4		00		_										4
							_			-			Lito	logía			Mir	erali	zació	n							-					4
			-				-	-	_	-			W	And	lesita		111	Veti	ila de	cz		-	⊢	-			_				—	4
11										1			-	Piza	rra			Ven	illeo	de cz												

ANEXO 4.2

LABORATORIO	MINA LOS INCAS
MUESTRAS DE	MINA LOS INCAS
CLAVO	MIRIAM
FECHA	2011

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	OLAT	Nivel
1	115	0.60	5.20		TAJO 24 Norte	260
2	117	0.60	6.30		TAJO 24 Norte	260
3	129	0.70	4.90		TAJO 24 Norte	260
4	130	0.80	2.50		TAJO 24 Norte	260
5	131	0.60	1.00		TAJO 24 Norte	260
6	132	0.60	4.80		TAJO 24 Norte	260
7	133	0.70	1.30		TAJO 24 Norte	260
8	134	0.80	2.00		TAJO 24 Norte	260
9	135	0.60	28.70		TAJO 24 Norte	260
10	157	0.60	3.57		TAJO 24 Norte	260
11	158	0.80	8.60		TAJO 24 Norte	260
12	159	0.60	24.10		TAJO 24 Norte	260
13	174	0.90	4.20		TAJO 24 Norte	260
14	175	0.80	8.00		TAJO 24 Norte	260
15	176	0.70	10.20		TAJO 24 Norte	260
16	178	1.10	0.80		TAJO 24 Norte	260
17	179	0.90	2.80		TAJO 24 Norte	260
18	180	0.90	3.00		TAJO 24 Norte	260
19	180	1.20	13.40		TAJO 24 Norte	260
20	181	0.90	1.33		TAJO 24 Norte	260
21	182	0.60	2.13		TAJO 24 Norte	260
22	183	0.50	6.53		TAJO 24 Norte	260
23	184	1.20	2.70		TAJO 24 Norte	260
24	185	1.30	12.70		TAJO 24 Norte	260
25	186	1.40	2.40		TAJO 24 Norte	260
26	187	1.60	0.50		TAJO 24 Norte	260
27	188	1.80	3.10		TAJO 24 Norte	260
28	189	0.90	6.75		TAJO 24 Norte	260
29	190	0.80	4.25		TAJO 24 Norte	260
30	191	0.90	4.60		TAJO 24 Norte	260
31	193	0.80	3.50		TAJO 24 Norte	260
32	212	0.90	5.60		TAJO 24 Norte	260
33	213	1.10	24.30		TAJO 24 Norte	260
34	216	1.10	9.70		TAJO 24 Norte	260
35	217	1.20	9.40		TAJO 24 Norte	260
36	218	1.00	9.10		TAJO 24 Norte	260
37	1046	0.42	0.19	0.05	TAJO 25	300
38	1047	0.74	0.03	0.05	TAJO 25	300
39	1048	1.00	0.02	т	TAJO 25	300
40	1049	0.68	0.02	т	TAJO 25	300
41	1050	0.61	0.82	0.54	TAJO 25	300
42	1051	0.86	0.18	0.12	TAIO 25	300

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	OLAT	Nivel
43	1052	0.76	0.05	т	TAJO 25	300
44	1053	0.56	0.02	т	TAJO 25	300
45	1054	0.51	1.59	0.85	TAJO 25	300
46	1055	0.60	0.48	0.27	TAJO 25	300
47	1056	0.62	0.19	0.01	TAJO 25	300
48	1057	0.60	0.58	0.08	TAJO 25	300
49	1058	0.82	0.23	т	TAJO 25	300
50	1059	0.72	0.02	т	TAJO 25	300
51	1060	0.63	0.64	0.01	TAJO 25	300
52	1061	0.53	0.13	0.05	TAJO 25	300
53	1062	0.62	1.29	0.37	TAJO 25	300
54	1063	0.44	0.01	т	TAJO 25	300
55	1064	0.90	0.01	т	TAJO 25	300
56	1065	1.13	0.21	0.03	TAJO 25	300
57	1066	0.90	0.67	0.02	TAJO 26	300
58	1067	0.93	0.08	т	TAJO 26	300
59	1068	1.53	1.59	0.15	TAJO 26	300
60	1071	1.48	0.69	0.29	TAJO 26	300
61	1074	1.30	0.51	0.82	TAJO 26	300
62	1076	1.31	1.50	0.23	TAJO 26	300
63	1077	1.48	0.80	0.25	TAJO 26	300
64	1078	1.30	0.39	0.16	TAJO 26	300
65	1079	0.32	22.50	0.49	TAJO 26	300
66	1080	0.50	12.20	0.22	TAJO 26	300
67	1081	1.00	1.09	0.03	TAJO 26	300
68	1082	1.93	1.93	т	TAJO 26	300
69	1083	0.96	0.44	0.05	TAJO 28	300
70	1084	1.48	0.37	0.07	TAJO 28	300
71	1085	1.20	0.88	0.05	TAJO 28	300
72	1086	1.46	0.60	0.4	TAJO 28	300
73	1087	1.20	0.84	0.14	TAJO 28	300
74	1088	1.70	1.70	0.11	TAJO 28	300
75	1089	0.54	1.44	0.07	TAJO 28	300
76	1090	1.56	0.58	0.04	TAJO 28	300
77	1091	1.64	2.39	0.24	TAJO 28	300
78	1092	1.40	1.25	0.11	TAJO 28	300
79	1121	0.95	2.22	0.12	TAJO 30	300
80	1122	0.68	1.10	0.08	TAJO 30	300
81	1123	0.30	1.80	0.05	TAJO 30	300
82	1124	0.56	3.94	0.06	TAJO 30	300
83	1125	0.45	0.20	0.04	TAJO 30	300
84	1126	0.33	4.63	0.4	TAJO 30	300
85	1127	0.30	14.95	0.6	TAJO 30	300
86	1128	0.45	3.12	0.15	TAJO 30	300
87	1129	0.85	0.73	0.16	TAJO 30	300
88	1130	0.58	0.73	т	TAJO 30	300
89	1131	0.65	1.28	0.02	TAJO 30	300
90	1132	0.50	1.30	0.05	TAJO 30	300
91	1133	0.65	2.42	0.05	TAJO 30	300
92	1134	0.70	0.81	0.05	TAJO 30	300

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	TAJO	Nivel
93	1135	0.60	0.63	0.02	TAJO 30	300
94	1136	0.68	0.68	0.08	TAJO 30	300
95	1137	0.60	0.68	0.02	TAJO 30	300
96	1138	0.70	1.94	0.06	TAJO 30	300
97	1139	0.85	0.58	0.02	TAJO 30	300
98	1140	0.87	3.86	0.12	TAJO 30	300
99	1141	0.85	5.29	0.73	TAJO 30	300
100	1142	1.10	1.39	0.09	TAJO 30	300
101	1143	1.60	4.01	0.52	TAJO 30	300
102	1144	1.80	2.77	0.1	TAJO 30	300
103	1145	1.80	2.58	0.11	TAJO 30	300
104	1146	1.50	4.21	0.4	TAJO 28	300
105	1147	1.54	1.95	0.31	TAJO 28	300
106	1148	0.40	0.36	0.05	TAJO 28	300
107	1149	0.70	2.38	0.09	TAJO 28	300
108	1150	1.06	0.11	0.11	TAJO 28	300
109	1151	1.52	9.47	0.94	TAIO 28	300
110	1152	1.60	1.09	0.11	TAIO 28	300
111	1153	1.06	9.95	0.38	TAIO 28	300
112	1154	1.90	2.29	0.22	TAIO 28	300
113	1155	0.90	1.19	1.19	TAIO 28	300
114	1156	1 30	7.60	0.57	TAIO 28	300
115	1693	0.60	0.24	0.07	GAL NORTE	260
116	1694	0.94	5.85		GAL NORTE	260
117	1695	0.30	4 35		GAL NORTE	260
118	1696	0.64	4.95		GAL NORTE	260
119	1697	0.46	0.52		GAL NORTE	260
120	1698	0.52	0.32		GAL NORTE	200
120	1699	0.52	2 20		GAL NORTE	200
121	1700	0.58	1.08			200
122	1700	0.66	7 70			200
125	1701	0.00	2.75			200
124	1702	0.32	5.00			200
125	1703	0.42	9.95 4 EE			200
120	1704	0.82	4.55			200
127	1705	0.34	13.95			200
120	1700	0.30	0.30			200
129	1707	0.24	0.70			260
130	1708	0.22	0.65		GALNORTE	260
131	1709	0.66	7.08		GALNORTE	260
132	1710	0.68	0.52		GALNORTE	260
133	1/11	0.76	4.18		GALNORTE	260
134	1/12	0.50	1.58		GALNORTE	260
135	1713	1.00	5.28		GALNORTE	260
135	1/14	0.70	0.84		GALNORTE	260
137	1/15	0.34	1.00		GALNORTE	260
138	1/16	1.20	1.00		GALNORTE	260
139	1/1/	0.45	1.00		GALNORTE	260
140	1/18	1.50	1.00		GALNORIE	260
141	1719	0.40	1.00		GAL NORTE	260
142	1720	1.10	1.00		GAL NORTE	260

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	OLAT	Nivel
143	1721	0.70	1.00		GAL NORTE	260
144	1722	1.24	1.00		GAL NORTE	260
145	1723	0.25	1.00		GAL NORTE	260
146	1724	0.90	1.00		GAL NORTE	260
147	1725	0.24	1.00		GAL NORTE	260
148	1726	0.44	1.00		GAL NORTE	260
149	1727	0.40	1.00		GAL NORTE	260
150	1728	0.34	1.00		GAL NORTE	260
151	1729	0.50	1.00		GAL NORTE	260
152	1730	0.26	1.00		GAL NORTE	260
153	1731	0.40	1.00		GAL NORTE	260
154	1732	0.16	1.00		GAL NORTE	260
155	2067	0.35	12.45		GAL NORTE	270
156	2068	0.25	22.20		GAL NORTE	270
157	2069	0.30	3.38		GAL NORTE	270
158	2071	0.35	30.90		GAL NORTE	270
159	2072	0.30	88.60		GAL NORTE	270
160	2073	0.13	42.50		GAL NORTE	270
161	2074	0.12	28.30		GAL NORTE	270
162	2075	0.20	1.67		GAL NORTE	270
163	2076	0.26	2.89		GAL NORTE	270
164	2077	0.16	3.98		GAL NORTE	270
165	2078	0.30	45.05		GAL NORTE	270
166	2079	0.30	4.22		GAL NORTE	270
167	2080	0.43	3.70		GAL NORTE	270
168	2081	0.53	9.89		GAL NORTE	270
169	2082	0.29	7.38		GAL NORTE	270
170	2083	0.35	9.92		GAL NORTE	270
171	2084	0.11	3.72		GAL NORTE	270
172	2085	0.22	6.97		GAL NORTE	270
173	2086	0.26	8.11		GAL NORTE	270
174	2087	0.23	4.58		GAL NORTE	270
175	2088	0.38	0.78		GAL NORTE	270
176	2089	0.20	0.56		GAL NORTE	270
177	2090	0.20	0.47		GAL NORTE	270

LABORATORIO	MINA LOS INCAS
MUESTRAS DE	MINA LOS INCAS
CLAVO	MURCIÉLAGO- TRUJILLA
FECHA	2011

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	TAJO	NIVEL
1	100	0.80	713.00		TAJO 24	260
2	101	0.70	30.40		TAJO 24	260
3	102	0.60	11.60		TAJO 24	260
4	103	0.80	58.30		TAJO 24	260
5	104	0.90	9.80		TAJO 24	260
6	105	1.00	181.00		TAJO 24	260
7	106	0.70	4.20		TAJO 24	260
8	107	0.80	10.20		TAJO 24	260
9	108	0.90	35.40		TAJO 24	260
10	109	1.10	3.90		TAJO 24	260
11	110	1.10	3.00		TAJO 24	260
12	111	1.20	11.10		TAJO 24	260
13	331	0.50	3.90		TAJO 24 Sur	260
14	332	0.60	2.60		TAJO 24 Sur	260
15	333	0.60	7.41		TAJO 24 Sur	260
16	334	0.50	20.26		TAJO 24 Sur	260
17	335	0.60	28.40		TAJO 24 Sur	260
18	336	0.80	16.10		TAJO 24 Sur	260
19	337	0.70	49.13		TAJO 24 Sur	260
20	338	0.60	11.90		TAJO 24 Sur	260
21	339	1.00	14.70		TAJO 24 Sur	260
22	340	1.10	16.30		TAJO 24 Sur	260
23	341	1.10	10.70		TAJO 24 Sur	260
24	342	0.90	12.60		TAJO 24 Sur	260
25	343	1.00	21.10		TAJO 24 Sur	260
26	1157	2.30	1.62	0.2	TAJO 14	300
27	1158	2.00	4.45	0.82	TAJO 14	300
28	1159	1.80	7.90	1.74	TAJO 14	300
29	1160	1.75	0.36	0.21	TAJO 14	300
30	1161	1.20	2.67	0.66	TAJO 14	300
31	1163	1.52	8.52	0.98	TAJO 14	300
32	1164	1.08	6.56	0.52	TAJO 14	300
33	1165	1.10	54.50	3.11	TAJO 14	300
34	1166	1.24	41.80	2.51	TAJO 14	300
35	1167	1.32	0.66	0.14	TAJO 14	300
36	1168	1.58	0.76	0.16	TAJO 14	300
37	1625	0.50	0.24		TAJO 13	260
38	1626	0.38	9.77		TAJO 13	260
39	1627	0.90	2.70		TAJO 13	260
40	1628	0.82	3.70		TAJO 13	260
41	1629	0.80	1.60		TAJO 13	260
42	1630	0.88	0.26		TAJO 13	260

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	TAJO	NIVEL
43	1631	0.60	0.29		TAJO 13	260
44	1632	0.58	1.89		TAJO 13	260
45	1633	0.88	1.08		TAJO 13	260
46	1634	0.45	5.25		TAJO 13	260
47	1635	0.45	4.23		TAJO 13	260
48	1636	0.48	6.08		TAJO 13	260
49	1637	0.26	1.38		TAJO 13	260
50	1638	0.25	3.80		TAJO 13	260
51	1639	0.10	0.25		TAJO 13	260
52	1640	0.28	6.82		TAJO 13	260
53	1641	0.18	2.09		TAJO 13	260
54	1642	0.10	4.26		TAJO 13	260
55	1643	0.19	0.81		TAJO 13	260
56	1644	0.25	0.85		TAJO 13	260
57	1645	1.12	1.22		TAJO 13	260
58	1646	1.15	6.54		TAJO 13	260
59	1647	0.44	3.07		TAJO 13	260
60	1648	0.25	3.89		TAJO 13	260
61	1649	0.18	6.38		TAJO 13	260
62	1650	0.34	8.84		TAJO 13	260
63	1651	0.88	5.30		TAJO 13	260
64	1652	1.74	4.98		TAJO 13	260
65	1653	1.12	0.92		TAJO 13	260
66	1654	0.58	2.85		TAJO 13	260
67	1655	0.58	2.52		TAJO 13	260
68	1656	0.28	9.23		TAJO 13	260
69	1657	0.70	1.58		TAJO 13	260
70	1658	1.02	5.46		TAJO 13	260
71	2112	0.28	0.05		GALERÍA	270
72	2113	0.22	0.20		GALERÍA	270
73	2114	0.60	4.63		GALERÍA	270
74	2115	0.40	1.54		GALERÍA	270
75	2116	0.54	1.78		GALERÍA	270
76	2117	0.34	1.93		GALERÍA	270
77	2118	0.20	0.37		GALERÍA	270
78	2119	0.68	0.48		GALERÍA	270
79	2120	0.90	3.18		GALERÍA	270
80	2121	0.45	2.05		GALERÍA	270
81	2122	0.38	3.12		GALERÍA	270
82	2123	0.60	4.75		GALERÍA	270
83	2124	0.40	1.33		GALERÍA	270
84	2125	0.58	0.16		GALERÍA	270
85	2126	0.20	0.05		GALERÍA	270
86	2127	0.70	0.75		GALERÍA	270
87	2128	0.30	0.09		GALERÍA	270
88	2129	1.10	1.58		GALERÍA	270
89	2130	0.47	0.62		GALERÍA	270
90	2143	0.58	0.49		GALERÍA	270
91	2144	0.37	1.38		GALERÍA	270
92	2145	0.34	7.80		GALERÍA	270

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	OLAT	NIVEL
93	2146	0.70	2.08		GALERÍA	270
94	2147	1.15	1.48		GALERÍA	270
95	2148	0.48	1.44		GALERÍA	270
96	2149	0.75	0.72		GALERÍA	270
97	2150	0.80	4.96		GALERÍA	270
98	2151	0.60	0.44		GALERÍA	270
99	2152	0.50	1.05		GALERÍA	270
100	2153	0.37	0.09		GALERÍA	270
101	2154	0.25	0.38		GALERÍA	270
102	2155	0.14	0.11		GALERÍA	270
103	2156	0.20	0.11		GALERÍA	270
104	2157	0.18	1.39		GALERÍA	270
105	2158	0.22	0.20		GALERÍA	270
106	2159	0.26	0.23		GALERÍA	270
107	2160	0.14	0.09		GALERÍA	270
108	2161	0.15	0.78		GALERÍA	270
109	2162	0.20	0.30		GALERÍA	270
110	2163	0.15	0.62		GALERÍA	270
111	2164	0.05	0.03		GALERÍA	270
112	2165	0.18	2.26		GALERÍA	270
113	2166	0.18	0.10		GALERÍA	270

4S
AS

ITEM	CÓDIGO	Pot(m)	Au(g/t)	Cu(%)	OLAT	Nivel
1	1001	0.27	5.54	т	TAJO 1	300
2	1002	0.66	5.28	т	TAJO 2	300
3	1003	0.44	6.01	0.04	TAJO 3	300
4	1004	0.55	3.34	0.02	TAJO 4	300
5	1005	1.10	2.38	0.04	TAJO 5	300
6	1006	1.08	0.81	0.06	TAJO 6	300
7	1007	1.20	0.40	0.04	TAJO 7	300
8	1008	0.90	0.45	0.03	8 OLAT	300
9	1010	0.47	0.45	0.01	TAJO 10	300
10	1011	0.52	8.45	0.04	TAJO 11	300
11	1012	0.80	4.55	0.07	TAJO 12	300
12	1013	0.90	0.09	0.01	TAJO 13	300
13	1014	0.70	0.12	0.01	TAJO 14	300
14	1015	1.00	0.10	0.01	TAJO 15	300
15	1016	0.66	3.46	0.02	TAJO 16	300
16	1017	0.68	15.35	0.17	TAJO 17	300
17	1018	0.60	8.06	т	TAJO 18	300
18	1019	0.65	11.05	0.22	TAJO 19	300
19	1020	0.55	20.70	0.25	TAJO 20	300
20	1021	0.90	20.10	0.03	TAJO 21	300
21	1022	1.10	5.58	0.21	TAJO 22	300