UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA CIVIL

TESIS

MÉTODO DEL ESPESOR EFECTIVO PARA EL CÁLCULO DEL ESFUERZO Y DEFORMACIÓN EN EL VIDRIO LAMINADO

PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

ELABORADO POR

JHON ERICK FUENTES TORRES

ASESOR

MSc. MARIBEL BURGOS NAMUCHE

LIMA- PERÚ

© 2023, Universidad Nacional de Ingeniería. Todos los derechos reservados

"El autor autoriza a la UNI a reproducir la Tesis en su totalidad o en parte, con fines estrictamente académicos."

Fuentes Torres, Jhon Erick jeft_uni@hotmail.com 954132994

DEDICATORIA:

A Dios, por el don de la vida y por la fortaleza que siempre me da en todo momento.

A mis padres Juan Fuentes Saravia y María Torres Tasayco y a mi hermano Edgar Fuentes Torres por brindarme su apoyo incondicional en todo momento.

A mi abuela Filomena Tasayco Ávalos que desde el cielo me sigue cuidando.

A mi asesora MSc. Maribel Burgos Namuche, por sus enseñanzas y paciencia en el desarrollo de la tesis.

ÍNDICE

		PÁG
RESUM	EN	4
ABSTR	ACT	6
PRÓLO	GO	8
LISTA I	DE TABLAS	9
LISTA I	DE FIGURAS	16
LISTA I	DE SÍMBOLOS Y SIGLAS	24
CAPÍTU	ILO I: INTRODUCCIÓN	27
1.1	CONTEXTO Y MOTIVACIÓN	27
1.2	DESCRIPCIÓN Y FORMULACIÓN DEL PROBLEMA	27
1.3	OBJETIVOS DEL ESTUDIO	28
1.3.1	Objetivo General	28
1.3.2	Objetivos Específicos	
1.4	ANTECEDENTES	28
CAPÍTU	ILO II: ESTADO DEL ARTE	29
2.1	ESTADO DE LA NORMATIVA	29
2.1.1	Nivel Internacional	29
2.1.1.1	UNE-EN 16612 (2020): Determinación por cálculo de la	
	resistencia de carga lateral de los vidrios	29
2.1.1.2	ASTM E1300 (2016): Práctica estándar para determinar la	
	resistencia a la carga del vidrio en edificios	29
2.1.2	Nivel Nacional	29
2.2	EL VIDRIO LAMINADO Y SUS COMPONENTES	29
2.2.1	El vidrio	29
2.2.1.1	Composición del vidrio de silicato sódico-cálcico	
2.2.1.2	Proceso de producción del vidrio flotado	31

2.2.1.3	Proceso de transformación del vidrio31
2.2.1.4	Propiedades del vidrio
2.2.2	Intercalario35
2.2.2.1	Poly-vinyl Butyral (PVB)
2.2.2.2	Etileno Vinil Acetato (EVA)
2.2.2.3	Ionómero
2.2.3	Vidrio laminado
2.3	ESPESOR EFECTIVO: EXPRESIÓN PARA ESFUERZO Y
	DEFORMACIÓN DE VIDRIOS LAMINANDOS
2.3.1	Concepto de espesor efectivo40
2.3.2	Espesor efectivo según norma UNE-EN 16612 (2020)40
2.3.3	Espesor efectivo según norma ASTM E1300 (2016)44
2.3.4	Espesor efectivo mejorado46
2.4	ESFUERZO Y DEFORMACIÓN DE PLACAS SUJETO A
	CARGAS LATERALES
2.4.1	La ecuación diferencial para placas54
2.4.2	Solución de Navier para placas de cuatro lados con apoyo simple56
2.4.3	Placas apoyadas en dos lados59
2.4.4	Software SJ Mepla v.5.0.1460
CAPÍTU	ILO III: METODOLOGÍA64
3.1	
••••	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN
	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO64
3.1.1	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 <i>3.1.1.1</i>	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 3.1.1.1 3.1.1.2	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.2	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.2.1	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.2.1 3.1.2.2	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓNDE DATOS Y ENSAYOS DE VIDRIO.Norma UNE-EN 1288 (2000)
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓNDE DATOS Y ENSAYOS DE VIDRIO64Norma UNE-EN 1288 (2000)64Ensayo con probetas soportadas en dos puntos (flexión 4 puntos)64Esfuerzo de flexión y flecha de las probetas65Número de probetas66Norma UNE-EN 12603 (2003)68Distribución de Weibull69Trazado de datos de la muestra en el diagrama de Weibull69Bondad del ajuste de la muestra70
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.2.5	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO
3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.2.5 3.1.2.6	NORMATIVAS INTERNACIONALES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DE VIDRIO

3.1.2.8	Intervalos de confianza para el valor de la función de distribución	
	G(x) para un valor dado de x, del atributo X74	
CAPÍTU	ILO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS	
4.1	ANÁLISIS	
4.1.1	Análisis del vidrio según Norma UNE-EN 1288 (2000) y	
	UNE-EN 12603 (2003)76	
4.1.1.1	Análisis de vidrios primarios76	
4.1.1.2	Análisis de vidrios laminados primarios99	
4.1.1.3	Análisis de vidrios templados121	
4.1.2	Análisis del vidrio laminado primario según norma	
	ASTM E1300 (2016), UNE-EN 16613 (2020) y método del	
	espesor efectivo mejorado136	
4.1.3	Análisis del vidrio laminado primario con software SJ Mepla	
	v.5.0.14	
4.2	DISCUSIÓN DE RESULTADOS146	
CONCL	USIONES 155	
RECOMENDACIONES		
\sim		
REFER	ENCIAS BIBLIOGRAFICAS159	
ANEXO	5162	

RESUMEN

El uso del vidrio en el Perú ha tenido un crecimiento considerable en la última década. El vidrio a diferencia de otros materiales utilizados en los revestimientos de los edificios, le da un alto valor estético y a su vez permite generar un gran ahorro de energía al utilizar la iluminación natural.

El vidrio recocido o primario al ser un material frágil presenta una baja resistencia a la flexión, es por ello que se somete a tratamientos térmicos y químicos con el fin de incrementar su resistencia a la flexión y darles mayor seguridad a los cerramientos. Los vidrios de seguridad que se consideran en normativas nacional e internacional es el vidrio laminado y el vidrio templado, sin embargo, en la normativa nacional no hay un método para dimensionar el adecuado del vidrio laminado a diferencia de espesor normativas internacionales, es por ello que, ante la necesidad de conocer un método para realizar un diseño preliminar, se presentará el método del espesor efectivo expuesto en normativas internacionales y últimas investigaciones desarrollados para el cálculo del vidrio laminado.

En el capítulo N°1, se realizará una breve descripción referente a la necesidad de conocer algún método para el cálculo del vidrio laminado recurriendo a normativas internacionales y últimas investigaciones desarrolladas en la actualidad.

En el capítulo N°2, se revisará el estado de la normativa a nivel nacional e internacional, así como, del método del espesor efectivo mejorado desarrollado en los últimos años referente al vidrio laminado. Así mismo, se realizará la descripción de los componentes del vidrio laminado. Por último, se describirá el método propuesto y un ejemplo de aplicación para placas rectangulares utilizando ecuaciones de cálculos y el software de elementos finitos SJ Mepla 5.0.14.

En el capítulo N°3, se describirán las normativas internacionales utilizadas para la metodología tanto para el ensayo de las probetas realizado en el laboratorio, así como del procesamiento de los datos obtenidos.

En el capítulo N°4, se realizará el análisis de los resultados obtenidos en el laboratorio en base a la metodología expuesta en el capítulo N°3, así mismo, se compararán estos resultados con los resultados obtenidos en el software de elementos finitos SJ Mepla 5.0.14.

En el capítulo N°5, se obtendrán conclusiones y recomendaciones en base al análisis y comparación realizados en el capítulo N°4.

ABSTRACT

The use of glass in Peru has had considerable growth in the last decade. Glass, unlike other materials used in building cladding, gives it a high aesthetic value and, in turn, allows for great energy savings when using natural lighting.

Annealed or primary glass, being a brittle material, has a low resistance to bending, which is why it is subjected to thermal and chemical treatments in order to increase its resistance to bending and give greater security to the enclosures. The safety glass that is considered in national and international regulations is laminated glass and tempered glass, however, in national regulations there is no method to size the appropriate thickness of laminated glass unlike international regulations, which is why Given the need to know a method to carry out a preliminary design, the method of effective thickness exposed in international regulations and latest research developed for the calculation of laminated glass will be presented.

In chapter No. 1, a brief description will be made regarding the need to know some method for calculating laminated glass using international regulations and latest research currently developed.

In chapter No. 2, the status of the regulations at a national and international level will be reviewed, as well as the method of improved effective thickness developed in recent years regarding laminated glass. Likewise, the description of the components of laminated glass will be made. Finally, the proposed method and an application example for rectangular plates will be described using calculation equations and the finite element software SJ Mepla 5.0.14.

In chapter No. 3, the international regulations used for the methodology will be described both for the test tubes carried out in the laboratory, as well as for the processing of the data obtained.

In chapter N°4, the analysis of the results obtained in the laboratory will be carried out based on the methodology presented in chapter N°3, likewise,

these results will be compared with the results obtained in the SJ Mepla finite element software 5.0.14.

In chapter N°5, conclusions and recommendations will be obtained based on the analysis and comparison carried out in chapter N°4.

PRÓLOGO

El vidrio es un material muy utilizado actualmente debido al alto valor estético, así como el gran ahorro de energía al utilizar la iluminación natural en los edificios actualmente, sin embargo, su fragilidad es uno de sus características más desfavorables, es así que a nivel nacional e internacional se define al vidrio de seguridad como el vidrio que en caso de rotura reduzca el riesgo de lesiones a las personas, en comparación con el vidrio común, es así que se considera al vidrio templado y vidrio laminado como vidrios de seguridad, es este último en el que la forma de cálculo presenta cierta complejidad debido al comportamiento de la lámina intercalaria, pues la respuesta de este polímero es no lineal, viscoelástica y dependiente de la temperatura.

En este contexto, esta tesis de grado se enfoca en proponer método para el cálculo del vidrio laminado siguiendo enfoques propuestos en la Norma Europea UNE-EN 16612 (2020), en la Norma Americana ASTM E1300 (2016) y el reciente método alternativo llamado Espesor Efectivo Mejorado, es así que siguiendo estos enfoques se calculó el espesor efectivo del vidrio laminado que servirá para obtener el esfuerzo y deflexión máximo necesario para el dimensionamiento del vidrio laminado.

Para ello, se ha realizado ensayos experimentales de probetas de vidrio siguiendo la Norma UNE-EN 1288 (2000) con el fin de verificar el método propuesto, así como obtener las propiedades mecánicas del vidrio.

Los resultados obtenidos muestran que el enfoque del Espesor Efectivo Mejorado fue el que más se aproximó a los que se obtuvieron en los ensayos experimentales, así como a los obtenidos con el software de elementos finitos SJ Mepla.

Esperamos que esta tesis de grado sea de utilidad para la comunidad ingenieril y contribuya al desarrollo una futura actualización de la normativa peruana E.040 (2006) en donde se considere algún método para el cálculo del vidrio laminado con las diversas solicitudes estructurales tales como barandas, pisos, columnas, etc. que se utiliza con mucha mayor frecuencia en los edificios.

LISTA DE TABLAS

PÁG

Tabla №2.1.	Magnitud de las proporciones en masa de los
	componentes del vidrio de silicato sódico-cálcico
Tabla №2.2.	Valores característicos generales del vidrio de silicato
	sódico-cálcico básico33
Tabla Nº2.3.	Valores de la resistencia característica a la flexión del
Tabla Nº2.4.	El comportamiento y la aplicación de EVA dependen del
Tadia N°2.5.	y a la condición de carga41
Tabla Nº2 6	Duraciones de la carga e intervalos de temperatura 42
Tabla №2.7.	Familia de rigidez del intercalario para la carga racha de
	Viento (otras areas)42
Tabla Nº2.8.	Familia de rigidez del intercalario para la carga de tormenta de viento (otras áreas)
T 100 0	
Tabla Nº2.9.	Família de rigidez del intercalario para cargas en barandillas – sin multitudes42
Tabla Nº2 10	Familia de rigidez del intercalario para cargas en
Tabla N 2.10.	barandillas – multitudes
T	
i adia Nº2.11.	ramilia de rigidez del intercalario para cargas de mantenimiento43
Tahla Nº2 12	Familia de rigidez del intercalario para cargas de
	nieve – toldos exteriores

Tabla №2.13.	Familia de rigidez del intercalario para cargas de
	nieve – cubiertas de edificios calefactados43
Tabla №2.14.	Familia de rigidez del intercalario para cargas
	permanentes43
Tabla №2.15.	Espesor de vidrio nominal y mínimo45
Tabla №2.16.	Valores de Ψ para una viga de vidrio laminado bajo
	diferentes condiciones de contorno y carga48
Tabla №2.17.	Valores de Ψ (mm ⁻²) x 10 ⁶ para placas de vidrio laminado
	bajo diferentes condiciones de contorno y carga (parte 1)52
Tabla №2.18.	Valores de Ψ (mm ⁻²) x 10 ⁶ para placas de vidrio laminado
	bajo diferentes condiciones de contorno y carga (parte 2)53
Tabla №2.19.	Valores de α y β para placas de 4 lados simplemente
	apoyado para cada relación de aspecto (a/b)59
Tabla №2.20.	Valores de α y β para placas de 2 lados simplemente
	apoyadas y libres de dos lados para cada relación de
	aspecto (a/b) donde a y b son las aristas libres y simplemente apovadas, respectivamente
	Variables files, independientes y dependientes
	vanables lijas, independientes y dependientes
Tabla №3.2.	Valores de F _{1-α} (ν_1 , ν_2), α =0.0571
Tabla NIO3 3	Cooficiente K 72
Tabla N 5.5.	
Tabla №3.4.	Valores de la función f ₁ /n73
Tabla №3.5.	Cuantiles 2.5% y 97.5% de la distribución X ² 73
Tabla №3.6.	Constantes A.n, B.n y C.n75

Tabla №3.7.	f_2 y H (f_2) como una función de v75
Tabla №4.1.	Resultados de vidrio primario de 6mm76
Tabla №4.2.	Ajuste de bondad del vidrio primario de 6mm77
Tabla №4.3.	Análisis de datos del vidrio primario de 6mm79
Tabla №4.4.	Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio primario de 6mm81
Tabla №4.5.	Intervalos de confianza para la función de distribución G(x) del vidrio primario de 6mm82
Tabla №4.6.	Módulo de elasticidad y resistencia a la flexión experimental del vidrio primario de 6mm83
Tabla №4.7.	Resultados de vidrio primario de 8mm84
Tabla №4.8.	Ajuste de bondad del vidrio primario de 8mm85
Tabla №4.9.	Análisis de datos del vidrio primario de 8mm87
Tabla №4.10.	Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio primario de 8mm89
Tabla №4.11.	Intervalos de confianza para la función de distribución G(x) del vidrio primario de 8mm90
Tabla №4.12.	Módulo de elasticidad y resistencia a la flexión experimental del vidrio primario de 8mm
Tabla Nº4.13.	Resultados de vidrio primario de 10mm92
Tabla №4.14.	Ajuste de bondad del vidrio primario de 10mm93
Tabla №4.15.	Análisis de datos del vidrio primario de 10mm94
Tabla №4.16.	Iteraciones para intervalo de confianza del parámetro

	de escala θ del vidrio primario de 10mm96
Tabla №4.17.	Intervalos de confianza para la función de distribución G(x) del vidrio primario de 10mm97
Tabla №4.18.	Módulo de elasticidad y resistencia a la flexión experimental del vidrio primario de 10mm98
Tabla №4.19.	Resultados de vidrio laminado primario 33.1 (6.38mm)99
Tabla №4.20.	Ajuste de bondad del vidrio laminado primario 33.1 (6.38mm)100
Tabla №4.21.	Análisis de datos del vidrio laminado primario 33.1 (6.38mm)101
Tabla №4.22.	Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio laminado primario 33.1 (6.38mm)103
Tabla №4.23.	Intervalos de confianza para la función de distribución G(x) del vidrio laminado primario 33.1 (6.38mm)104
Tabla №4.24.	Módulo de elasticidad y resistencia a la flexión Experimental del vidrio laminado primario 33.1 (6.38mm)106
Tabla №4.25.	Resultados de vidrio laminado primario 44.1 (8.38mm)106
Tabla №4.26.	Ajuste de bondad del vidrio laminado primario 44.1 (8.38mm)107
Tabla №4.27.	Análisis de datos del vidrio laminado primario 44.1 (8.38mm)109
Tabla №4.28.	Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio laminado primario 44.1 (8.38mm)111
Tabla №4.29.	Intervalos de confianza para la función de distribución G(x) del vidrio laminado primario 44.1 (8.38mm)112
Tabla №4.30.	Módulo de elasticidad y resistencia a la flexión

	experimental del vidrio laminado primario 44.1 (8.38mm)113
Tabla №4.31.	Resultados de vidrio laminado primario 55.1 (10.38mm)114
Tabla №4.32.	Ajuste de bondad del vidrio laminado primario 55.1 (10.38mm)115
Tabla №4.33.	Análisis de datos del vidrio laminado primario 55.1 (10.38mm)116
Tabla №4.34.	Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio laminado primario 55.1 (10.38mm)119
Tabla №4.35.	Intervalos de confianza para la función de distribución G(x) del vidrio laminado primario 55.1 (10.38mm)119
Tabla №4.36.	Módulo de elasticidad y resistencia a la flexión experimental del vidrio laminado primario 55.1 (10.38mm)121
Tabla №4.37.	Resultados de vidrio templado de 8mm122
Tabla №4.38.	Ajuste de bondad del vidrio templado de 8mm122
Tabla Nº4.39.	Análisis de datos del vidrio templado de 8mm124
Tabla №4.40.	Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio templado de 8mm126
Tabla №4.41.	Intervalos de confianza para la función de distribución G(x) del vidrio templado de 8mm127
Tabla №4.42.	Módulo de elasticidad y resistencia a la flexión Experimental del vidrio templado de 8mm128
Tabla №4.43.	Resultados de vidrio templado de 10mm129
Tabla №4.44.	Ajuste de bondad del vidrio templado de 10mm130
Tabla №4.45.	Análisis de datos del vidrio templado de 10mm131

Tabla Nº4.46.	Iteraciones para intervalo de confianza del parámetro
	de escala θ del vidrio templado de 10mm133
Tabla №4.47.	Intervalos de confianza para la función de distribución
	G(x) del vidrio templado de 10mm134
Tabla Nº4.48.	Módulo de elasticidad y resistencia a la flexión
	experimental del vidrio templado de 10mm136
Tabla Nº4.49.	Espesores efectivos de flexión y deflexión para el vidrio
	laminado primario 33.1 (6.38mm)137
Tabla Nº4.50.	Esfuerzo de flexión máximo para el vidrio laminado
	primario 33.1 (6.38mm)138
Tabla Nº4.51.	Deflexión máxima central para el vidrio laminado
	primario 33.1 (6.38mm)138
Tabla Nº4.52.	Espesores efectivos de flexión y deflexión para el vidrio
	laminado primario 44.1 (8.38mm)139
Tabla Nº4.53.	Esfuerzo de flexión máximo para el vidrio laminado
	primario 44.1 (8.38mm)140
Tabla Nº4.54.	Deflexión máxima central para el vidrio laminado
	primario 44.1 (8.38mm)141
Tabla №4.55.	Espesores efectivos de flexión y deflexión para el vidrio
	laminado primario 55.1 (10.38mm)142
Tabla Nº4.56.	Esfuerzo de flexión máximo para el vidrio laminado
	primario 55.1 (10.38mm)142
Tabla Nº4.57.	Deflexión máxima central para el vidrio laminado
	primario 55.1 (10.38mm)143
Tabla Nº4.58.	Esfuerzo de flexión máximo y deflexión máxima central
	con el software SJ Mepla para el vidrio laminado primario
	33.1 (6.38mm)144

Tabla №4.59.	Esfuerzo de flexión máximo y deflexión máxima central con el software SJ Mepla para el vidrio laminado primario 44.1 (8.38mm)
Tabla №4.60.	Esfuerzo de flexión máximo y deflexión máxima central con el software SJ Mepla para el vidrio laminado primario 55.1 (10.38mm)146
Tabla №4.61.	Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio primario de 6mm147
Tabla №4.62.	Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio primario de 8mm147
Tabla №4.63.	Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio primario de 10mm147
Tabla №4.64.	Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio laminado primario de 6.38mm148
Tabla №4.65.	Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio templado de 8mm153
Tabla №4.66.	Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio templado de 10mm153

LISTA DE FIGURAS

	PÁG
Figura №2.1.	Proceso de producción del vidrio flotado
Figura №2.2.	Rotura espontánea del vidrio templado33
Figura №2.3.	Representación del modelo de Maxwell generalizado36
Figura №2.4.	Módulo de almacenamiento (E'), módulo complejo (E'') y ángulo de compensación (tan(δ)=E'/E'') de PVB obtenido mediante análisis mecánico dinámico (DMA)36
Figura №2.5.	Estructura de la cadena de PVB37
Figura №2.6.	EVA contiene grupos etileno (n) y grupos acetato de vinilo (m)
Figura №2.7.	Estructura química: el catión metálico une dos aniones carboxilato
Figura №2.8.	Variación de esfuerzos de flexión en los estados límites de un vidrio laminado
Figura №2.9.	Ejemplo de dimensiones de espesor del vidrio laminado44
Figura №2.10.	Vista longitudinal y transversal de una viga compuesta por dos capas de vidrios unidas por una capa intermedia polimérica en escala referencial46
Figura №2.11.	Vista general y transversal de una placa compuesta por dos capas de vidrio unidas por una capa intermedia polimérica en escala referencial
Figura №2.12.	Placa de 4 lados simplemente apoyada en sus 4 lados a escala referencial56

Figura №2.13.	Placa de 4 lados simplemente apoyada en 2 lados a
	escala referencial59
Figura №2.14.	Ingreso de la geometría61
Figura №2.15.	Ingreso de los materiales61
Figura №2.16.	Ingreso de las condiciones de contorno62
Figura №2.17.	Ingreso de las cargas exteriores62
Figura №2.18.	Seleccionar el tipo de análisis a realizar63
Figura №2.19.	Interfaz de resultados63
Figura №3.1.	Montaje de la muestra de ensayo64
Figura №4.1.	Diagrama del análisis de datos del vidrio primario de 6mm82
Figura №4.2.	Diagrama de Weibull del vidrio primario de 6mm83
Figura №4.3.	Diagrama del análisis de datos del vidrio primario de 8mm90
Figura №4.4.	Diagrama de Weibull del vidrio primario de 8mm91
Figura №4.5.	Diagrama del análisis de datos del vidrio primario de 10mm97
Figura №4.6.	Diagrama de Weibull del vidrio primario de 10mm98
Figura №4.7.	Diagrama del análisis de datos del vidrio laminado primario 33.1 (6.38mm)105
Figura №4.8.	Diagrama de Weibull del vidrio laminado primario 33.1 (6.38mm)105

Figura №4.9.	Diagrama del análisis de datos del vidrio laminado primario 44.1 (8.38mm)112
Figura №4.10.	Diagrama de Weibull del vidrio laminado primario 44.1 (8.38mm)113
Figura №4.11.	Diagrama del análisis de datos del vidrio laminado primario 55.1 (10.38mm)120
Figura №4.12.	Diagrama de Weibull del vidrio laminado primario 55.1 (10.38mm)120
Figura №4.13.	Diagrama del análisis de datos del vidrio templado de 8mm127
Figura №4.14.	Diagrama de Weibull del vidrio templado de 8mm128
Figura №4.15.	Diagrama del análisis de datos del vidrio templado de 10mm
Figura Nº4.16.	Diagrama de Weibull del vidrio templado de 10mm135
Figura №4.17.	Comparativo del esfuerzo de flexión máximo del vidrio laminado primario de 6.38mm149
Figura №4.18.	Comparativo del esfuerzo de flexión máximo del vidrio laminado primario de 8.38mm150
Figura №4.19.	Comparativo del esfuerzo de flexión máximo del vidrio laminado primario de 10.38mm150
Figura №4.20.	Comparativo de las deflexiones máximas del vidrio laminado primario de 6.38mm151
Figura №4.21.	Comparativo de las deflexiones máximas del vidrio laminado primario de 8.38mm152
Figura №4.22.	Comparativo de las deflexiones máximas del vidrio laminado primario de 10.38mm152

Figura NºA-01.1. Esfuerzo de flexión de la muestra VL6-2164
Figura NºA-01.2. Deflexión de la muestra VL6-2164
Figura NºA-01.3. Esfuerzo de flexión de la muestra VL6-3165
Figura NºA-01.4. Deflexión de la muestra VL6-3165
Figura NºA-01.5. Esfuerzo de flexión de la muestra VL6-4165
Figura NºA-01.6. Deflexión de la muestra VL6-4166
Figura NºA-01.7. Esfuerzo de flexión de la muestra VL6-7166
Figura NºA-01.8. Deflexión de la muestra VL6-7166
Figura NºA-01.9. Esfuerzo de flexión de la muestra VL6-10167
Figura NºA-01.10. Deflexión de la muestra VL6-10167
Figura NºA-01.11. Esfuerzo de flexión de la muestra VL6-13167
Figura NºA-01.12. Deflexión de la muestra VL6-13168
Figura NºA-01.13. Esfuerzo de flexión de la muestra VL6-15168
Figura NºA-01.14. Deflexión de la muestra VL6-15168
Figura NºA-01.15. Esfuerzo de flexión de la muestra VL6-16169
Figura NºA-01.16. Deflexión de la muestra VL6-16169
Figura NºA-01.17. Esfuerzo de flexión de la muestra VL6-18169
Figura NºA-01.18. Deflexión de la muestra VL6-18170

Figura NºA-02.1. Esfuerzo de flexión de la muestra VL8-4171
Figura NºA-02.2. Deflexión de la muestra VL8-4171
Figura NºA-02.3. Esfuerzo de flexión de la muestra VL8-5172
Figura NºA-02.4. Deflexión de la muestra VL8-5172
Figura NºA-02.5. Esfuerzo de flexión de la muestra VL8-6172
Figura NºA-02.6. Deflexión de la muestra VL8-6173
Figura NºA-02.7. Esfuerzo de flexión de la muestra VL8-7173
Figura NºA-02.8. Deflexión de la muestra VL8-7173
Figura NºA-02.9. Esfuerzo de flexión de la muestra VL8-8174
Figura NºA-02.10. Deflexión de la muestra VL8-8174
Figura NºA-02.11. Esfuerzo de flexión de la muestra VL8-9174
Figura NºA-02.12. Deflexión de la muestra VL8-9175
Figura NºA-02.13. Esfuerzo de flexión de la muestra VL8-10175
Figura NºA-02.14. Deflexión de la muestra VL8-10175
Figura NºA-02.15. Esfuerzo de flexión de la muestra VL8-11176
Figura NºA-02.16. Deflexión de la muestra VL8-11176
Figura NºA-02.17. Esfuerzo de flexión de la muestra VL8-12176

Figura NºA-02.18. Deflexión de la muestra VL8-12177
Figura NºA-02.19. Esfuerzo de flexión de la muestra VL8-14177
Figura NºA-02.20. Deflexión de la muestra VL8-14177
Figura NºA-03.1. Esfuerzo de flexión de la muestra VL10-1178
Figura NºA-03.2. Deflexión de la muestra VL10-1178
Figura NºA-03.3. Esfuerzo de flexión de la muestra VL10-2179
Figura NºA-03.4. Deflexión de la muestra VL10-2179
Figura NºA-03.5. Esfuerzo de flexión de la muestra VL10-3179
Figura NºA-03.6. Deflexión de la muestra VL10-3180
Figura NºA-03.7. Esfuerzo de flexión de la muestra VL10-4180
Figura NºA-03.8. Deflexión de la muestra VL10-4180
Figura NºA-03.9. Esfuerzo de flexión de la muestra VL10-5
Figura NºA-03.10. Deflexión de la muestra VL10-5181
Figura NºA-03.11. Esfuerzo de flexión de la muestra VL10-6181
Figura NºA-03.12. Deflexión de la muestra VL10-6182
Figura NºA-03.13. Esfuerzo de flexión de la muestra VL10-7182
Figura NºA-03.14. Deflexión de la muestra VL10-7182
Figura NºA-03.15. Esfuerzo de flexión de la muestra VL10-8

Figura NºA-03.16.	Deflexión de la muestra VL10-8183
Figura №A-03.17.	Esfuerzo de flexión de la muestra VL10-9183
Figura №A-03.18.	Deflexión de la muestra VL10-9184
Figura №A-03.19.	Esfuerzo de flexión de la muestra VL10-10184
Figura №A-03.20.	Deflexión de la muestra VL10-10184
Figura №A-04.1.	Gráfica carga vs deformación de la muestra VC6-6185
Figura №A-05.1.	Gráfica carga vs deformación de la muestra VC8-5187
Figura №A-06.1.	Gráfica carga vs deformación de la muestra VC10-2189
Figura №A-07.1.	Gráfica carga vs deformación de la muestra VL6-18191
Figura №A-08.1.	Gráfica carga vs deformación de la muestra VL8-12193
Figura №A-09.1.	Gráfica carga vs deformación de la muestra VL10-6195
Figura №A-10.1.	Gráfica carga vs deformación de la muestra VT8-2197
Figura №A-11.1.	Gráfica carga vs deformación de la muestra VT10-7199
Figura №A-12.1. I	Rodillos de flexión201
Figura №A-12.2. I	Rodillos de carga201
Figura №A-12.3. I	Máquina de ensayo universal (LEM-FIC_UNI)202
Figura №A-12.4. I	Probetas de vidrio203

Figura №A-12.5. Colocación de probetas entre rodillos de flexión y carga		
	en máquina de ensayo universal2	203
Figura NºA-12.6.	Falla de probeta de vidrio primario 2	204
Figura NºA-12.7.	Falla de probeta de vidrio laminado primario2	204
Figura NºA-12.8.	Falla de probeta de vidrio templado2	205

LISTA DE SÍMBOLOS Y SIGLAS

Símbolos Griegos

1-α:	Nivel de confianza
β:	Parámetro de forma
β _{ob;z} :	Límite superior del intervalo de confianza para el parámetro de forma $\boldsymbol{\beta}$
β _{un;z} :	Límite inferior del intervalo de confianza para el parámetro de forma $\boldsymbol{\beta}$
Г:	Coeficiente de transferencia de cizalla
η:	Parámetro de peso adimensional
θ:	Parámetro de escala
$\theta_{ob;z}$:	Límite superior del intervalo de confianza para el parámetro de escala $\boldsymbol{\theta}$
θ _{un;z} :	Límite inferior del intervalo de confianza para el parámetro de escala $\boldsymbol{\theta}$
μ:	Coeficiente de Poisson
ρ:	Densidad
σ _{bB} :	Esfuerzo de flexión
σ_{bG} :	Esfuerzo de flexión debido al peso propio de la probeta
Ψ:	Valor adimensional
ω:	Coeficiente de transferencia de cizalladura del intercalario
Ω:	Dominio de la función

Símbolos Romanos

B:	Ancho de la probeta
d:	Nivel de precisión absoluta
D:	Rigidez a la flexión de la placa de vidrio
E:	Módulo de elasticidad
f _{b;k} :	Resistencia característica a la flexión
F _{máx} :	Fuerza máxima
g:	Aceleración debido a la gravedad
G:	Módulo de corte
G(X):	Función de distribución de X = porcentaje de fallo
G _{ob;z} :	Límite superior del intervalo de confianza para la función de distribución G(x)
G _{un;z} :	Límite inferior del intervalo de confianza para la función de distribución G(x)
h:	Espesor de la probeta
h _{i;j;k} :	Espesor nominal de la capa i,j,k de un vidrio laminado
h _{m;i,j} :	Distancia entre el plano medio de la capa i,j del vidrio y el plano medio del vidrio laminado
h _{ef;w} :	Espesor efectivo de deflexión del vidrio laminado
h _{ef;σ} :	Espesor efectivo de flexión del vidrio laminado
h _v :	Espesor de la lámina intercalaria
l:	Momento de inercia
k:	Factor adimensional

ℓ_i :	Valor utilizado para el ensayo de bondad del ajuste	
L:	Valor utilizado para el ensayo de bondad del ajuste	
L _s :	Distancia entre los ejes de los rodillos de soporte	
L _b :	Distancia entre los ejes de los rodillos de flexión	
n:	Tamaño de la muestra (número de probetas)	
r:	Número de probetas para las que los valores del atributo xi han sido medidos	
R _t :	Nivel de confiabilidad	
S ² :	Varianza de la población en estudio	
X ₀ :	Esfuerzo característico	
у:	Flecha central de la probeta relativa a los rodillos de soporte	
Z:	Valor de Z crítico, según el nivel de confianza elegido	
Siglas		
ASTM:	American Society for Testing and Materials	
EN:	Normativa Europea	
EVA:	Etileno Vinil Acetato	
ISO:	International Organization for Standardization	
PVB:	Poly-vinyl Butyral	
UNE:	Normalización Española	
UNE-EN:	Normativa Europea en versión español	

CAPÍTULO I INTRODUCCIÓN

1.1 CONTEXTO Y MOTIVACIÓN

El uso del vidrio en la construcción cada vez es usado con más frecuencia. Dentro de los edificios, por ejemplo, la iluminación natural es algo que se considera cada vez más fundamental. Los cerramientos de vidrio, que provienen de un material muy antiguo, brindan una solución a esta necesidad moderna, con algunas soluciones innovadoras que presentan un buen desempeño energético.

A la luz de las tendencias arquitectónicas actuales, el uso del vidrio se solicita para una multitud de aplicaciones, desde elementos no estructurales hasta soluciones estructurales que permitan una mayor claridad en comparación con soluciones previamente conocidas con otros materiales de construcción.

1.2 DESCRIPCIÓN Y FORMULACIÓN DEL PROBLEMA

El cálculo del vidrio laminado presenta cierta complejidad debido al comportamiento de la lámina intercalaria, pues la respuesta de este polímero es no lineal, viscoelástica y dependiente de la temperatura. Por eso, especialmente en el diseño preliminar, es muy útil confiar en métodos de cálculo aproximados.

Es por ello que se ha definido el concepto del espesor efectivo, es decir, el espesor de un vidrio monolítico con propiedades de flexión equivalentes en términos de tensión y deflexión al vidrio laminado. Más precisamente, el espesor efectivo de una placa de vidrio laminado es el espesor constante de una placa monolítica que, bajo las mismas condiciones de límite y carga, presenta la misma tensión o deflexión máximas.

En los últimos años diferentes enfoques teóricos han propuesto diversas expresiones para el espesor efectivo del vidrio laminado. Los enfoques más comunes son el prescrito en la Norma Europea UNE-EN 16612 (2020), en la Norma Americana ASTM E1300 (2016) y el reciente método alternativo llamado Espesor Efectivo Mejorado que buscan dar herramientas al diseñador para poder

dimensionar el espesor adecuado del vidrio laminado considerando las propiedades mecánicas de la lámina intercalaria.

1.3 OBJETIDOS DEL ESTUDIO

1.3.1 Objetivo General

Proponer método para el cálculo del espesor efectivo que será utilizado en el cálculo del esfuerzo y deformación del vidrio laminado.

1.3.2 Objetivos Específicos

Verificar el método propuesto con los resultados obtenidos de forma experimental del vidrio laminado con el software SJ Mepla (Software for Structural Glass Design) versión 5.0.14.

Determinar la resistencia a la flexión del vidrio primario o recocido, laminado primario y templado, así como el módulo de elasticidad del vidrio primario de forma experimental.

1.4 ANTECEDENTES

Si recurrimos a la norma E.040 (2006), encontraremos que no existe parámetros de diseño a tomar en cuenta para realizar el dimensionamiento de un vidrio laminado.

Por otro lado, recurriendo a Obando y Quiliche (2018) y a Medina (1990), quienes realizaron estudios de vidrios laminados en donde no consideraron en sus análisis las propiedades mecánicas de las láminas intercalarias usadas en el vidrio laminado.

En normativas a nivel internacional se han desarrollado en los últimos años investigaciones de las láminas intercalarias que son usadas en el vidrio laminado, donde se ha introducido el concepto de espesor efectivo que ofrece una determinación razonablemente precisa del esfuerzo y deformación del vidrio laminado cuando es sustituido en las ecuaciones de esfuerzo y deformación.

CAPÍTULO II ESTADO DEL ARTE

2.1 ESTADO DE LA NORMATIVA

2.1.1 Nivel Internacional

A continuación, se presentan algunas normativas que introducen el concepto de espesor efectivo del vidrio laminado en sus publicaciones recientes.

2.1.1.1 UNE-EN 16612 (2020): Determinación por cálculo de la resistencia de carga lateral de los vidrios

Esta norma europea agrupa todas las propiedades de la lámina intercalaria en un coeficiente ω , que depende de la familia de rigidez al cual pertenece la lámina intercalaria según el valor de su módulo de corte (UNE-EN16613, 2020). Así mismo, muestra un método simplificado de cálculo para el vidrio laminado introduciendo el concepto de espesor efectivo.

2.1.1.2 ASTM E1300 (2016): Práctica estándar para determinar la resistencia a la carga del vidrio en edificios

Esta norma americana desarrolla la formulación basada en el enfoque original de Wölfen, posteriormente desarrollado por Bennison y Stelzer donde se determina el coeficiente de transferencia de cizalla Γ que está relacionado directamente con el módulo de corte de la lámina intercalaria (ASTM E1300, 2016). Así mismo, muestra un método para determinar el espesor efectivo del vidrio laminado.

2.1.2 Nivel Nacional

En la normativa nacional de vidrio E.040 (2006) aún no se desarrolla alguna propuesta para el diseño del vidrio laminado.

2.2 EL VIDRIO LAMINADO Y SUS COMPONENTES

2.2.1 El vidrio

El vidrio más utilizado en la industria de la construcción es el vidrio de silicato sódico-cálcico, siendo el proceso de flotado el proceso de obtención más común, este vidrio llamado también vidrio primario o recocido es el que se utilizará en el desarrollo de todos los capítulos de la presente tesis.

El vidrio de silicato sódico-cálcico es una sustancia inorgánica amorfa obtenida a partir de diferentes materias primas inorgánicas que reaccionan a alta temperatura para formar una nueva red aleatoria, donde diferentes elementos se unen entre sí, típicamente por puentes de oxígeno, dispuestos de tal manera que no hay presentes óxidos libres (UNE-EN 572-1, 2012).

2.2.1.1 Composición del vidrio de silicato sódico-cálcico

El vidrio de silicato sódico-cálcico se puede representar por la siguiente fórmula química indicada en la norma UNE-EN 572-1 (2012):

$$Na_nCa_oMg_pAl_q....Si_mO_s$$
 (2.1)

Donde:

 $s = n/2 + o + p + 3q/2 + \dots + 2m$ (2.2)

Por otro lado, la magnitud de las proporciones en masa de los principales componentes del vidrio de silicato sódico-cálcico indicada en la norma UNE-EN 572-1 (2012) es la siguiente (véase la Tabla N°2.1):

Elementos	Proporción por masa del elemento	
Silicio (Si)	32% - 35%	
Calcio (Ca)	3.5% - 10.1%	
Sodio (Na)	7.4% - 11.9%	
Magnesio (Mg)	0% - 3.7%	
Aluminio (Al)	0% - 1.6%	
Otros ^a	< 5%	
a Las propiedades distintas de las características fotométricas no se verán modificadas de forma significativa por estos otros componentes.		

Tabla Nº2.1. Magnitud de las proporciones en masa de los componentes del vidrio de silicato sódico-cálcico

FUENTE: UNE-EN 572-1, 2012

2.2.1.2 Proceso de producción del vidrio flotado

En el año 1952, Sir Alastair Pilkington inventa el proceso de producción del vidrio flotado, proceso mediante el cual todavía se fabrica el 90% del vidrio plano en todo el mundo (Pilkington, 2010).

El proceso, originalmente capaz de producir solamente vidrios de 6 mm de espesor, ahora logra producir espesores tan delgados como 0.4 mm y tan gruesos como 25 mm. Las materias primas se mezclan en tolvas para luego pasar a los hornos de fusión a una temperatura de 1000°C para después vertirlo continuamente a una piscina de estaño de baja profundidad. El vidrio flota sobre el estaño, se desparrama a lo ancho y forma una superficie pareja. El espesor es controlado por la velocidad a la cual la cinta de vidrio solidificado es tirado hacia fuera de la piscina de estaño, pasando así a un enfriamiento controlado en un horno de fusión entre 500 y 180°C, evitando así la tensión residual en el material y permitiendo su contacto directo con la atmósfera sin romperse por choque térmico, pasando así a la zona de corte mediante rodillos para ser cortado transversal y longitudinalmente (Pilkington, 2010).

Los formatos de planchas de vidrio flotado que se pueden producir tienen un ancho nominal de 3.21 m y alturas nominales de 4.5, 5.1 y 6 m (Norma UNE-EN 527-1, 2012).

Figura N°2.1. Proceso de producción del vidrio flotado

FUENTE: O'Regan, 2014

2.2.1.3 Proceso de transformación del vidrio

El vidrio recocido no posee la resistencia mecánica necesaria para la mayoría de los proyectos de ingeniería debido a su baja resistencia a la flexión,

es por ello que se realizan diversos tratamientos térmicos y químicos con el fin de aumentar sus resistencias y puedan ser útiles para los diversos proyectos de ingeniería que lo requieran.

Vidrio Termoendurecido o heat-strengthened glass

El vidrio termoendurecido se obtiene calentando el vidrio recocido a 620°C para luego someterlo a un enfriamiento controlado mediante chorros de aire frío, este proceso de enfriado se realiza con el fin de aumentar su resistencia a tensiones mecánicas y térmicas.

El vidrio termoendurecido es menos susceptible de fallar que el vidrio templado debido a la presencia de impurezas de sulfuro de níquel.

Vidrio Templado o fully tempered glass

El vidrio templado se obtiene calentando el vidrio recocido a 680°C para luego someterlo a un enfriamiento brusco mediante chorros de aire frío para que la superficie del vidrio se endurezca de inmediato. Si bien la resistencia a las tensiones mecánicas obtenidas es mayor al vidrio termoendurecido, en este proceso de templado se pueden quedar atrapados en el vidrio partículas microscópicas de sulfuro de níquel que al calentarse durante un largo periodo de tiempo experimenten un cambio de fase y aumentan de tamaño produciéndose así la rotura espontánea del vidrio templado (véase la Figura N°2.2).

Existe una prueba destructiva llamado Heat Soak indicado en la norma UNE-EN 14179-1 (2017), que consiste en inducir prematuramente al calor a una temperatura de 290°C al vidrio con sulfuro de níquel a expandirse y, por lo tanto, hace que el vidrio falle en la cámara del Heat Soak. Este proceso reduce significativamente el riesgo de que el vidrio falle cuando se instala, ya que la mayoría de los paneles de vidrio con impurezas de sulfuro de níquel en su interior se descubren durante el proceso de fabricación. El tiempo de duración del ensayo está determinado por la relación de conversión esperada, siendo una guía aproximada la siguiente: Tiempo de conversión 60 min, 270 min y 540 min para una probabilidad de falla de 95%, 99% y 99.5% respectivamente.

Figura N°2.2. Rotura espontánea del vidrio templado

Vidrio endurecido químicamente o chemically strengthened glass

El vidrio endurecido químicamente se obtiene a través de un intercambio de iones de la superficie del vidrio sumergiéndolo a un baño caliente de sales de fusión donde se intercambian los iones de sodio del exterior con los grandes iones de potasio creando así fuerzas de compresión en una delgada capa de la superficie llegando a obtenerse tensiones mecánicas y mucho mayores al vidrio termoendurecido y templado.

2.2.1.4 Propiedades del vidrio

Los valores numéricos convencionales para las propiedades físicas y mecánicas del vidrio recocido son las que se indican a continuación (véase la Tabla N°2.2):

Características	Símbolo	Valor y unidad
Densidad (a 18°C)	ρ	2,500 kg/m ³
Dureza (Knoop)	HK _{0.1/20}	6 GPa ^a
Módulo de Young (Módulo de elasticidad)	E	7 x 10 ¹⁰ Pa
Coeficiente de Poisson	μ	0.23
Capacidad calorífica específica	Cp	0.72 x 10 ³ J/(kg.K)
Valor nominal del coeficiente medio de expansión lineal entre 20 °C y 300 °C	α	9 x 10 ⁻⁶ /K

Tabla Nº2.2. Valores característicos generales del vidrio de silicato sódico-cálcico básico
Resistencia al diferencial de temperatura y al cambio repentino de temperatura		40 K ^b	
Conductividad térmica	λ	1 W/(m.K)	
Índice de refracción medio de la radiación visible (a 589,3 nm)	n	1.5	
Emisividad (corregida)	ε	0.837	
a Dureza Knoop según ISO 9385 b Valor generalmente aceptado que está influenciado por la calidad del borde y el tipo de vidrio.			

FUENTE: UNE-EN 572-1, 2012

Por otro lado, el valor de resistencia a la flexión, $f_{g;k}$, del vidrio primario o recocido es de 45 N/mm² (UNE-EN 572-1, 2012), este valor ha sido obtenido con una probabilidad de rotura del 5% en el límite inferior del intervalo de confianza del 95%. Así mismo, para los vidrios con tratamiento térmico y químico los valores de resistencia característica a la flexión, $f_{b;k}$, son lo que se muestran a continuación (véase la Tabla N°2.3):

Tabla №2.3. Valores de la resistencia característica a la flexión del vidrio pretensado

	Valores de la resistencia característica a flexión f _{b;k} del vidrio pretensado obtenido a partir de:			
Tipo de vidrio por producto	Vidrio de seguridad termoendurecido según EN 12150-1, y vidrio de seguridad termoendurecido y con tratamiento "heat soaked" según EN 14179-1	Vidrio termoendurecido según EN 1863-1	Vidrio endurecido químicamente según EN 12337-1	
Vidrio plano o vidrio estirado	120 N/mm ²	70 N/mm ²	150 N/mm²	
Vidrio impreso	90 N/mm²	55 N/mm²	100 N/mm ²	
Vidrio esmaltado o vidrio estirado	75 N/mm²	45 N/mm ²		
Vidrio impreso esmaltado	75 N/mm²	45 N/mm ²		

NOTA 1: Los valores para el vidrio de seguridad termoendurecido y el vidrio de seguridad termoendurecido y con tratamiento "heat soaked" también pueden aplicarse a vidrios conformes a las Normas EN 13024-1, EN 14321-1 y EN 15682-1.

NOTA 2: Los valores de la resistencia característica a la flexión en la tabla son los mismos que en la norma de producto en el momento de publicación de esta norma europea. En el caso de que se revisen los valores en las normas de producto, los valores de las normas de producto tienen precedencia.

FUENTE: UNE EN-16612, 2020

2.2.2 Intercalario

El intercalario o capa intermedia es un material que tiene por objeto la adherencia y separación de uno o más hojas de vidrio y/o del material de hojas de plástico para acristalamiento.

Los intercalarios más usados actualmente para los vidrios laminados que son usados en las obras de ingeniería son: polivinilbutiral (PVB), etilvinilacetato (EVA) y ionoplasto. El comportamiento de estos y la mayoría de intercalarios es viscoelástico, es decir su rendimiento depende en gran medida tanto de la duración de la carga como de la temperatura.

El comportamiento de los materiales viscoelásticos es una combinación de respuesta elástica, gobernada por la ley de Hooke (Ec. (2.3)), y respuesta viscosa, gobernada por la ley de Newton (Ec. (2.4)). Los modelos más básicos para definir el comportamiento viscoelástico de un material son el modelo de Maxwell, donde un elemento elástico está conectado en serie con un elemento viscoso (Ec. (2.5)), y el modelo de Kelvin-Voigt, donde un elemento elástico está conectado en paralelo con un elemento viscoso (Ec. (2.6)). En el modelo de Maxwell generalizado (véase la Figura N°2.3), se conectan en paralelo varios modelos de Maxwell, lo que permite un mejor ajuste del modelo al comportamiento viscoelástico real (Marc Martín, Xavier Centelles, Aran Solé, Camila Barreneche, Inés Fernández y Luisa Cabeza, 2019).

$$\sigma_e = E\hat{A}.\,\varepsilon_e\tag{2.3}$$

$$\sigma_{\nu} = \eta \hat{A}.\frac{d\varepsilon_{\nu}}{dt}$$
(2.4)

$$\frac{d\varepsilon}{dt} = \frac{1}{E}\hat{A}.\frac{d\sigma}{dt} + \frac{1}{\eta}\hat{A}.\sigma$$
(2.5)

$$\sigma = E\hat{A}.\varepsilon + \eta\hat{A}.\frac{d\varepsilon}{dt}$$
(2.6)

Figura N°2.3. Representación del modelo de Maxwell generalizado FUENTE: Martín et al., 2019

En lugar de tener un módulo de elasticidad único e invariable, el comportamiento mecánico de los materiales viscoelásticos está definido por el módulo complejo (E^{*} o G^{*}), que tiene dos componentes: el módulo de almacenamiento (E['] o G[']), asociado a la energía elástica almacenada por el material, y el módulo de pérdida, asociado a la energía perdida por el material, principalmente en forma de calor, debido a su parte viscosa (Martín et al., 2019).

A bajas temperaturas y carga a corto plazo, predomina el componente elástico, mientras que a temperaturas más altas y carga a largo plazo, predomina el componente viscoso (véase la Figura N°2.4).

Figura N°2.4. Módulo de almacenamiento (E'), módulo complejo (E'') y ángulo de compensación (tan(δ) = E'/E'') de PVB obtenido mediante análisis mecánico dinámico (DMA)

FUENTE: Martín et al., 2019

Los intercalarios pueden tener un espesor de 0.38 mm a 6 mm y generalmente viene en múltiplos de 0.38 mm para el PVB.

2.2.2.1 Poly-vinyl Butyral (PVB)

El PVB fue el primer material utilizado como intercalario para el vidrio laminado. Se forma a partir de la reacción de alcohol polivinílico con butiraldehido (Martín et al., 2019). La estructura química utilizada en las capas intermedias comerciales de PVB es la misma para todos los fabricantes (véase la Figura N°2.5).

Figura N°2.5. Estructura de la cadena de PVB

FUENTE: Martín et al., 2019

Actualmente, el intercalario de PVB para vidrio laminado es fabricada y comercializada por pocas empresas en todo el mundo, lo que da como resultado un mercado muy concentrado y dominado: Eastman (EEUU), Kurarary Group (Trosifol y DuPont) y Sekisui (Japón).

2.2.2.2 Etileno Vinil Acetato (EVA)

EVA es el copolímero de etileno y acetato de vinilo (VA) (véase la Figura N°2.6), en el que el porcentaje en peso de acetato de vinilo varía del 10% al 40% en peso, por lo que pertenece a las poliolefinas (Martín et al., 2019). Al variar el contenido de VA en la composición, se obtiene EVA con propiedades significativamente diferentes, identificándose así 3 tipos de copolímero EVA (véase la Tabla N°2.4).

Figura N°2.6. EVA contiene grupos etileno (n) y grupos acetato de vinilo (m) FUENTE: Martín et al., 2019

Conte	nido VA	Tipo de polímero	Comportamiento de deformación
Raio	hasta 4		
Daju	wt%	Termoplástico	Similar al polietileno de baja densidad
Madia	4-30	Elastómero	No está vulcanizado, pero presenta algunas de las
iviedio	wt%	termoplástico	propiedades de un caucho (reticulación)
Alto	> 40		
Allo	wt%	Termoestable	Caucho

FUENTE: Martín et al., 2019

Actualmente, el intercalario de EVA para vidrio laminado es fabricada y comercializada principalmente por DuPont (ELVAX), Bridgestone Corporation (EVASAFE), Evguard y Argotec (SE-381 y SE-7381).

2.2.2.3 Ionómero

Los ionómeros son un tipo de polímeros iónicos que tienen un contenido iónico de como máximo 10% en moles dentro de un polímero no polar. Los ionómeros suelen alcanzar altos niveles de rigidez durante la reticulación (véase la Figura N°2.7). En este caso el entrecruzamiento no se obtiene mediante la adición de azufre (vulcanización) sino con iones metálicos que actúan como puntos físicos de entrecruzamiento (Martín et al., 2019).

Figura N°2.7. Estructura química: el catión metálico une dos aniones carboxilato

FUENTE: Martín et al., 2019

Actualmente, SentryGlass es el único intercalario para vidrio laminado basado en un ionómero que existe en el mercado. SentryGlass, desarrollado por Dupont, presenta alta rigidez en un amplio rango de temperatura y alta transparencia.

2.2.3 Vidrio laminado

El laminado es el proceso mediante el cual 1 o más hojas de vidrio se unen mediante los intercalarios formándose un "sándwich" que pasa a través de un horno que se calienta aproximadamente a 70°C, desde donde pasa entre los rodillos que expulsan el exceso de aire y forman la unión inicial. Luego, el laminado se traslada al autoclave donde se calienta a aproximadamente 140°C bajo una presión de aproximadamente 800 KPa en una bolsa de vacío.

El desempeño estructural del vidrio laminado se debe en gran parte a las propiedades mecánicas del intercalario, en especial al módulo de corte, esto debido a que si el intercalario presenta un módulo de corte bajo (G \rightarrow 0) funcionaría como 2 vidrios monolíticos independientes (límite de capas), y, por el contrario, si el módulo de corte es alto (G $\rightarrow \infty$) funcionaría como un vidrio monolítico (límite monolítico) haciendo que los esfuerzos varíen a través de la sección del vidrio (véase la Figura N°2.8).

Figura N°2.8. Variación de esfuerzos de flexión en los estados límites de un vidrio laminado

El vidrio laminado es considerado un vidrio de seguridad debido a que frente a la rotura de los vidrios que lo componen, estos se quedan adheridos al intercalario, haciendo que sea posible la reposición del vidrio reduciendo el riesgo a posibles accidentes como cortes y/o perforación.

2.3 ESPESOR EFECTIVO: EXPRESIÓN PARA ESFUERZO Y DEFORMACIÓN DE VIDRIOS LAMINADOS

2.3.1 Concepto de espesor efectivo

La rigidez y la resistencia del vidrio laminado pueden ser considerablemente menores que las de un vidrio monolítico con el mismo espesor total, porque la capa intermedia no puede proporcionar un acoplamiento de corte perfecto. De hecho, la respuesta se ve afectada por la rigidez al cizallamiento del polímero en particular por su módulo de cizallamiento G, que regula el deslizamiento relativo de las capas de vidrio constituyentes. La viga de vidrio laminado puede considerarse como una estructura sándwich muy particular, un problema ampliamente tratado desde la década de 1960, porque la rigidez a la flexión se concentra en las capas de vidrio, mientras que la capa intermedia solo proporciona rigidez al corte (Galuppi, Manara y Roger-Cargagni, 2013).

El concepto del espesor "efectivo" del vidrio laminado ha ganado terreno recientemente en la comunidad de diseñadores y se basa en el análisis de estructuras de sándwich compuestas desarrolladas originalmente por Wölfel. El análisis propone ecuaciones analíticas que proporcionan un método para calcular el espesor de una viga monolítica con propiedades de flexión equivalentes a una viga laminada. Este espesor se puede utilizar en lugar del espesor real en ecuaciones analíticas para la deformación de vigas y análisis simplificado de elementos finitos (Calderone et al., 2009).

2.3.2 Espesor efectivo según norma UNE-EN 16612 (2020):

El método presentado en la norma UNE-EN 16612 (2020) utiliza las siguientes ecuaciones para el cálculo del espesor efectivo de flexión y deflexión:

$$h_{ef;w} = \sqrt[3]{\sum_k h_k^3 + 12\omega(\sum_i h_i h_{m,i}^2)}$$
(2.1)

$$h_{ef;\sigma;j} = \sqrt{\frac{\left(h_{ef;w}\right)^3}{\left(h_j + 2\omega h_{m;j}\right)}}$$
(2.2)

Donde:

h_i = espesor nominal de la capa i de un vidrio laminado

h_j = espesor nominal de la capa j de un vidrio laminado

h_k = espesor nominal de la capa k de un vidrio laminado

 $h_{m;i}$ = distancia entre el plano medio de la capa i del vidrio y el plano medio del vidrio laminado.

 $h_{m;j}$ = distancia entre el plano medio de la capa j del vidrio y el plano medio del vidrio laminado.

 ω = coeficiente de transferencia de cizalladura del intercalario

 $h_{ef;w}$ = espesor efectivo de un vidrio laminado para calcular la flecha por flexión fuera del plano

 $h_{\text{ef};\sigma}$ = espesor efectivo de un vidrio laminado para calcular la tensión a flexión fuera del plano

Para conocer el valor de " ω " se debe conocer la duración de la carga (véase la tabla N°2.6) y el módulo de elasticidad de la lámina intercalaria (véase desde la tabla N°2.7 a la tabla N°2.14) según la condición de carga para poder obtener su valor según la familia y la condición de carga al cual pertenece (véase la tabla N°2.5), esto para poder reemplazarlo en las ecuaciones 2.1 y 2.2, obteniéndose así los valores de espesores efectivos de deflexión y flexión respectivamente.

Cabe resaltar que el valor de " ω " está entre 0 y 1, donde 0 indica que no hay transferencia de corte y 1 que hay una plena transferencia al corte entre las capas de vidrios que une la lámina intercalaria.

Condición de carga	Familia 0	Familia 1	Familia 2
1) Carga de rachas de viento (otras áreas)	0	0.3	0.7
2) Carga de tormenta de viento (otras áreas)	0	0.1	0.5
 Cargas en barandillas - sin multitudes (por ejemplo, categorías de uso del edificio A, B, C1 y E) 	0	0.1	0.5
4) Cargas en barandillas - multitudes	0	0.1	0.3
5) Cargas de mantenimiento	0	0	0.1
 Carga de nieve - toldos exteriores y cubiertas de edificios sin calefacción 	0	0.1	0.3
7) Carga de nieve - cubierta de edificios calefactados	0	0	0.1
8) Permanente	0	0	0

Tabla №2.5. Valor ω asociado a la rigidez de la familia del intercalario y a la condición de carga

FUENTE: UNE EN-16612, 2020

Condición de carga	Duración de la carga	Intervalo de temperatura del intercalario ^a
1) Carga de rachas de viento (otras áreas)	3s	0°C < T < 20°C
2) Carga de tormenta de viento (otras áreas)	10 min	0°C < T < 20°C
3) Cargas en barandillas - sin multitudes (por ejemplo, categorías de uso del edificio A, B, C1 y E)	30 s	0°C < T < 30°C ^b
4) Cargas en barandillas - multitudes	5 min	$0^{\circ}C < T < 30^{\circ}C^{b}$
5) Cargas de mantenimiento	30 min	0°C < T < 40°C
6) Carga de nieve - toldos exteriores y cubiertas de edificios sin calefacción	3 semanas	-20°C < T < 0°C
7) Carga de nieve - cubierta de edificios calefactados	5 días	-20°C < T < 20°C
8) Permanente	50 años	-20°C < T < 60°C

Tabla №2.6. Duraciones de la carga e intervalos de temperatura

a) Los anteriores intervalos de temperatura se escogen considerando la mayoría de situaciones. En circunstancias particulares, pueden considerarse otros intervalos de temperaturas, pero este método simplificado no puede considerar estas variaciones.

b) La temperatura puede ser más elevada en las barandillas exteriores.

FUENTE: UNE EN-16613, 2020

Tabla Nº2.7. Familia de rigidez del intercalario para la carga racha de viento (otras áreas)

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
E _L > 100 MPa	2
10 MPa < E∟ < 100 MPa	1
E∟ < 10 MPa	0

FUENTE: UNE EN-16613, 2020

Tabla Nº2.8. Familia de rigidez del intercalario para la carga de tormenta de viento (otras áreas)

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
E∟ > 20 MPa	2
1 MPa < E∟ < 20 MPa	1
E∟ < 1 MPa	0

FUENTE: UNE EN-16613, 2020

Tabla Nº2.9. Familia de rigidez del intercalario para cargas en barandillas – sin multitudes

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
E _L > 20 MPa	2
1 MPa < E∟ < 20 MPa	1
E∟ < 1 MPa	0

FUENTE: UNE EN-16613, 2020

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
E _L > 10 MPa	2
1 MPa < E∟ < 10 MPa	1
E∟ < 1 MPa	0

FUENTE: UNE EN-16613, 2020

Tabla №2.11.	Familia de rigi	dez del intercalario	para cargas	de mantenimiento
--------------	-----------------	----------------------	-------------	------------------

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
$E_L > 1 MPa$	2
E∟ < 1 MPa	0 y 1

FUENTE: UNE EN-16613, 2020

Tabla Nº2.12. Familia de rigidez del intercalario para cargas de nieve – toldos exteriores

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
E _L > 10 MPa	2
1 MPa < E∟ < 10 MPa	1
E _L < 1 MPa	0

FUENTE: UNE EN-16613, 2020

Tabla Nº2.13. Familia de rigidez del intercalario para cargas de nieve – cubiertas de edificios calefactados

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
E∟ > 1 MPa	2
E∟ < 1 MPa	0 y 1

FUENTE: UNE EN-16613, 2020

Tabla Nº2.14. Familia de rigidez del intercalario para cargas permanentes

Módulo de elasticidad del material intercalario para la temperatura más alta del intervalo especificado de temperatura	Familia de rigidez
EL > 1 MPa	Sin aplicación
EL < 1 MPa	0, 1 y 2

FUENTE: UNE EN-16613, 2020

Por otro lado, en la Fig. N°2.9 se muestra un ejemplo de dimensiones de espesor del vidrio laminado donde se aprecian los valores de h_i , h_j , h_k , $h_{m;k}$ y $h_{m;j}$

que deben ser considerados para el cálculo de los espesores efectivos de flexión y deflexión, donde los ejes 1 y 2 son los ejes centrales de los vidrios monolíticos y laminado respectivamente.

Figura Nº2.9. Ejemplo de dimensiones de espesor del vidrio laminado

FUENTE: UNE EN-16613, 2020

2.3.3 Espesor efectivo según norma ASTM E1300 (2016):

El método presentado en la norma ASTM E1300 (2016) utiliza las siguientes ecuaciones para el cálculo del espesor efectivo de flexión y deflexión:

El coeficiente de transferencia de cortante, Γ , viene dado por:

$$\Gamma = \frac{1}{1+9.6\frac{EI_Sh_v}{Gh_s^2 a^2}} \tag{2.3}$$

$$I_s = h_1 h_{s;2}^2 + h_2 h_{s;1}^2 \tag{2.4}$$

$$h_{s;1} = \frac{h_s h_1}{h_1 + h_2} \tag{2.5}$$

$$h_{s;2} = \frac{h_s h_2}{h_1 + h_2} \tag{2.6}$$

$$h_s = 0.5 (h_1 + h_2) + h_v \tag{2.7}$$

Por otro lado, el coeficiente de transferencia de cortante, Γ, varía de 0 a 1, que se reemplazará en las ecuaciones 2.8 y 2.9-2.10 para obtener los espesores efectivos de deflexión y flexión respectivamente.

$$h_{ef;w} = \sqrt[3]{h_1^3 + h_2^3 + 12\Gamma I_s}$$
(2.8)

$$h_{1;ef,s} = \sqrt{\frac{h_{ef;w}^3}{h_1 + 2\Gamma h_{s;2}}}$$
(2.9)

$$h_{2;ef,s} = \sqrt{\frac{h_{ef;w}^3}{h_2 + 2\Gamma h_{s;1}}}$$
(2.10)

Donde:

- h_v = espesor de la lámina intercalaria
- h₁ = espesor mínimo de la capa 1 (véase la tabla N°2.15)

h₂ = espesor mínimo de la capa 2 (véase la tabla N°2.15)

E = módulo de elasticidad del vidrio

a = menor dimensión en el plano de flexión del vidrio laminado

G = módulo de corte de la capa intermedia

hef;w = espesor efectivo de deflexión del vidrio laminado

h_{1;ef,s} = espesor efectivo de flexión para la capa 1 del vidrio laminado

h_{2;ef,s} = espesor efectivo de flexión para la capa 2 del vidrio laminado

Espesor Nominal (mm)	Espesor Mínimo (mm)
2	1.8
2.5	2.16
2.7	2.59
3	2.92
4	3.78
5	4.57
6	5.56
8	7.42
10	9.02
12	11.91
16	15.09
19	18.26
22	21.44
25	24.61

FUENTE: ASTM E1300, 2016

2.3.4 Espesor efectivo mejorado

El enfoque del espesor efectivo mejorado ha sido propuesto por Galuppi y Royer. Este método emplea un enfoque energético y las principales hipótesis para este modelo son: (1) La lámina intermedia no tiene rigidez axial ni a flexión, sino solo rigidez a cortante; (2) Se desprecia la deformación por cizallamiento del vidrio; (3) Todos los materiales son elásticos lineales; y (4) No se consideran las no linealidades geométricas (Galuppi y Royer, 2012).

Este enfoque se puede aplicar al caso unidimensional de vigas sometidas a flexión y al caso bidimensional de placas.

Caso Unidimensional: Viga de vidrio laminado

Considerando una viga laminada de largo I y ancho b compuestas por dos láminas de vidrio de espesor h₁ y h₂ y módulo de Young E, unidas por un intercalario polimérica de espesor t y módulo cortante G (véase la Figura N°2.10).

FUENTE: Galuppi et al., 2012

Entonces podemos conocer los siguientes valores:

$$A_1 = bh_1 \tag{2.11}$$

$$A_2 = bh_2 \tag{2.12}$$

$$H = t + \frac{h_1 + h_2}{2} \tag{2.13}$$

$$I_1 = \frac{bh_1^3}{12} \tag{2.14}$$

$$I_2 = \frac{bh_2^3}{12}$$
(2.15)

Cuando se alcanza el límite de capas (G \rightarrow 0), el momento de inercia de la viga laminada es igual a la suma I₁ + I₂. En el límite monolítico, el momento de inercia es igual a:

$$I_{tot} = I_1 + I_2 + \frac{A_1 A_2}{A_1 + A_2} H^2$$
(2.16)

Donde $\frac{A_1 A_2}{A_1 + A_2} H^2$ es la inercia baricéntrica de las 2 áreas A₁ y A₂, supuestamente concentradas en el centroide correspondiente. Según Bennison se pueden obtener los valores de h_{s;1}, h_{s;2} y l_s con las siguientes ecuaciones:

$$h_{s;1} = \frac{Hh_1}{h_1 + h_2} \tag{2.17}$$

$$h_{s;2} = \frac{Hh_2}{h_1 + h_2} \tag{2.18}$$

$$I_s = \frac{1}{b} \frac{A_1 A_2}{A_1 + A_2} H^2$$
 (2.19)

Por otro lado, la energía de deformación de la viga laminada se puede escribir como una función del desplazamiento vertical v(x), lo mismo para los dos componentes de vidrio, y los desplazamientos horizontales $u_1(x)$ y $u_2(x)$ del centroide de la capa de vidrio superior e inferior, respectivamente. Bajo la hipótesis de que las deformaciones son pequeñas y las rotaciones moderadas, la minimización de la energía de deformación conduce a ecuaciones de equilibrio diferencial con condiciones de contorno apropiadas, que difícilmente pueden resolverse sin el uso de un procedimiento numérico (Galuppi et al., 2012).

$$v(x) = \frac{g(x)}{EI_R} \tag{2.20}$$

Donde I_R es un parámetro desconocido que representa el momento de inercia de la viga de vidrio laminado. Además, asumimos que I_R es la media armónica ponderada de I_{tot} (límite monolítico) y I_1+I_2 (límite de capas), es decir:

$$\frac{1}{I_R} = \frac{\eta}{I_{tot}} + \frac{1-\eta}{I_1 + I_2}$$
(2.21)

Donde el parámetro de peso adimensional η se determina mediante la siguiente ecuación:

$$\eta = \frac{1}{1 + \frac{Et I_1 + I_2 A_1 A_2}{Gb I_{tot} A_1 + A_2} \Psi}$$
(2.22)

Sea Ω el dominio unidimensional representativo de la configuración de la viga (véase la Figura N°2.10), el valor de Ψ se define como:

$$\Psi = \frac{\int_{\Omega} p(x)g(x)dx}{\int_{\Omega} g'(x)^2 dx}$$
(2.23)

Donde p(x) está asociado con la carga distribuida en la Figura N°2.10. De la ecuación 2.23 podemos apreciar que Ψ depende de las condiciones de contorno y carga, estos valores se indican en la tabla N°2.16 para algunas condiciones de contorno y carga. Así mismo, de la ecuación 2.22 se aprecia que el valor de η depende de las propiedades mecánicas y geométricas de la viga laminada.

Tabla №2.16. Valores de Ψ para una viga de vidrio laminado bajo diferentes condiciones de contorno y carga

Cargas y condiciones de contorno	Ψ	Cargas y condiciones de contorno	Ψ
	$\frac{168}{17l^2}$		$\frac{42}{l^2}$
	$\frac{15}{l^2+2ab}$		$\frac{14}{5l^2}$
	$\frac{10}{l^2}$		$\frac{5}{2l^2}$
	$\frac{10}{l^2}$		$\frac{45}{14l^2}$
	$\frac{21}{l^2}$		$\frac{21}{l^2}$

FUENTE: Galuppi et al., 2012

Por lo tanto, al reemplazar los valores de h_1 , h_2 , $h_{s;1}$, $h_{s;2}$, I_s y η en las ecuaciones 2.24 y 2.25-2.26 para obtener los espesores efectivos de deflexión y flexión respectivamente.

$$h_{w} = \frac{1}{\left(\frac{\eta}{h_{1}^{3} + h_{2}^{3} + 12I_{S}} + \frac{1 - \eta}{h_{1}^{3} + h_{2}^{3}}\right)^{\frac{1}{3}}}$$
(2.24)

$$h_{1;\sigma} = \frac{1}{\sqrt{\frac{2\eta h_{s;2}}{h_1^3 + h_2^3 + 12I_s} + \frac{h_1}{h_w^3}}}$$
(2.25)

$$h_{2;\sigma} = \frac{1}{\sqrt{\frac{2\eta h_{S;1}}{h_1^3 + h_2^3 + 12I_S} + \frac{h_2}{h_W^3}}}$$
(2.26)

Donde:

h₁ = espesor del vidrio superior (véase la Figura N°2.10)

h₂ = espesor del vidrio inferior (véase la Figura N°2.10)

h_{s;1} = distancia baricéntrica del vidrio superior

h_{s;2} = distancia baricéntrica del vidrio interior

Is = momento de inercia de la sección

η = parámetro de peso adimensional

h_w = espesor efectivo de deflexión

h_{1;σ} = espesor efectivo de flexión del vidrio superior

 $h_{2;\sigma}$ = espesor efectivo de flexión del vidrio inferior

Caso Bidimensional: Placas de vidrios laminado

Al igual que para el caso de vigas, se hace una analogía considerando una placa de vidrio laminado en el plano x-y con dominio Ω (véase la Figura N°2.11) bajo carga distribuida p (x, y), la energía de deformación puede escribirse como una función del desplazamiento vertical w (x, y), lo mismo para las dos capas de vidrio y las componentes horizontales x e y de los desplazamientos del plano medio de la placa de vidrio superior e inferior. La minimización conduce a un sistema de ecuaciones diferenciales parciales con condiciones de contorno adecuadas (Galuppi et al., 2012).

Figura №2.11. Vista general y transversal de una placa compuesta por dos capas de vidrio unidas por una capa intermedia polimérica en escala referencial

FUENTE: Galuppi et al., 2012

Es entonces que, para simplificar el sistema de ecuaciones diferenciales necesarias, se introduce funciones de forma conveniente para los componentes de desplazamiento, es así que definimos la rigidez a la flexión de cada capa de vidrio como:

$$D_1 = \frac{Eh_1^3}{12(1-\nu^2)} \tag{2.27}$$

$$D_2 = \frac{Eh_2^3}{12(1-\nu^2)} \tag{2.28}$$

Así mismo, Galuppi y Roger-Cafagni demostraron que la rigidez a la flexión para el límite monolítico es igual a:

$$D_{tot} = D_1 + D_2 + 12 \frac{D_1 D_2}{D_1 h_2^2 + D_2 h_1^2} H^2$$
(2.29)

Entonces, la función de forma para w (x, y) se puede seleccionar como la superficie deformada elástica de una placa monolítica con espesor constante bajo las mismas condiciones de carga y de contorno. En analogía con la ecuación 2.20 establecemos que:

$$w(x,y) = \frac{g(x,y)}{D_R}$$
 (2.30)

50

Donde D_R es la rigidez equivalente y la función de forma g (x, y) está determinada únicamente por la forma de la placa de vidrio laminado en el plano x-y, por la carga externa p (x, y) y por las condiciones de contorno geométricas.

Haciendo una analogía con la ecuación 2.21 se tiene que:

$$\frac{1}{D_R} = \frac{\eta}{D_{tot}} + \frac{1 - \eta}{D_1 + D_2}$$
(2.31)

Por otra parte, la minimización de la energía de deformación permite determinar el parámetro de peso η para el caso bidimensional según:

$$\eta = \frac{1}{1 + \frac{tD_1 + D_2 - 12D_1D_2}{G D_{tot} D_1 h_2^2 + D_2 h_1^2} \Psi}$$
(2.32)

Sea Ω el dominio bidimensional representativo de la configuración de la placa de vidrio (véase la Figura N°2.11), el valor de Ψ se define como:

$$\Psi = \frac{\int_{\Omega} p(x,y)g(x,y)dxdy}{\int_{\Omega} [g_x(x,y)^2 + g_y(x,y)^2]dxdy}$$
(2.33)

Podemos apreciar en la ecuación 2.33 que Ψ depende de la forma de la placa, la distribución de carga p (x, y) y las condiciones de contorno, estos valores se indican en las tablas N°2.17 y N°2.18 para los casos más comunes en la práctica de diseño.

Sea la placa de vidrio laminado de dimensiones a y b, las tablas N°2.17 y N°2.18 indican valores de Ψ (mm⁻²) x10⁶ en función de la longitud de la placa a(mm) y de la relación de aspecto λ =b/a. Por otro lado, es importante conocer que para placas con el mismo límite y condición de carga en la dirección x e y (por ejemplo, placa apoyada en cuatro lados) bajo una carga distribuida constantemente, el parámetro a denota el borde más largo de la placa para estos casos las tablas 2.17 y 2.18 da λ = b/a<1, y para placas con diferentes condiciones de contorno y carga en las direcciones x e y (por ejemplo, placa apoyada en cuatro lados) bajo una carga distribuida constante, la identificación de

los bordes (a y b) se muestra en el esquema de las tablas 2.17 y 2.18, ya que dan valores de λ <1 o λ >1.

	a[mm]	every valu	е										
* * * * *	500	11.2000	Lea	end:									
	600	7.77778	1 ~	,									
	800	4.37500	1		F ree 6	daa				Clama			
→	1000	2,80000	1 —		Free e	age		Clamped edge					
a a	1500	1 24444	1										
•	2000	0.70000	4		Simpl	/ sun	nore	he	Ŧ	Suppo	orted corner		
→ →	2500	0.44900			odao	Jup	port	u	÷	Sabbo	ricu com	iei	
₩ * *	2000	0.94000	-		euge								
	3000	0.51111											
	a(mm)	0.1	0.2	0.3	0.4	(0.5	0.6	0.7	0.8	0.9	1	
	500	4018.00	1042.79	486.328	290.42	2 19	9.746	150.6	12 121.0	/0 101.94	7 88.8653	79.5280	
	600	2/90.28	724.160	337.728	201.68	2 13	8.713	104.5	92 84.07	56 70.796	2 61.7120	55.2278	
	800	1569.53	407.340	189.972	113.44	5 /8	.0259	58.83	28 47.29	39.822	9 34.7130	31.0656	
4 4 4 4	1000	1004.50	260.698	121.582	72.605	5 49	.9366	37.65	30 30.26	/6 25.486	6 22.2163	19.8820	
	1500	446.445	115.866	54.0364	32.269	1 22	.1940	16.73	47 13.45	23 11.32/	4 9.87392	8.83644	
	2000	251.125	65.1/44	30.3955	18.151	4 12	.4841	9.413	25 7.566	90 6.3/16	6 5.55408	4.97050	
l → la	2500	160.720	41./116	19.4531	11.616	9 7.9	8985	6.024	48 4.842	81 4.0778	6 3.55461	3.18112	
	3000	111.611	28.9664	13.5091	8.0672	8 5.5	4851	4.183	5/ 3.363	07 2.8318	5 2.46848	2.20911	
┕┟╣╚╾╴╾┙ᡟ	3500	82.0001	21.2814	9.92506	5.9269	5 4.0	1/645	3.073	/2 2.470	sz 2.0805	4 1.81358	1.62302	
↓ D →	4000	62.7813	16.2936	7.59887	4.5378	5 3.3	12104	2.353	31 1.891	72 1.5929	1 1.38852	1.24262	
	4500	49.6050	12.8740	6.00405	3.5854	5 2.4	16600	1.859	41 1.494	70 1.2586	0 1.09710	0.98183	
	5000	40.1800	10.4279	4.86328	2.9042	2 1.9	9746	1.506	12 1.210	/0 1.0194	7 0.88865	0.79528	
	5500	33.2066	8.61810	4.01924	2.4001	8 1.6	5080	1.244	73 1.000	58 0.8425	3 0.73442	0.65726	
	6000	27.9028	7.24160	3.37728	2.0168	2 1.:	88/13	1.045	92 0.840	77 0.7079	6 0.61712	0.55228	
	a[mm]	0.1	0.2	0.3	0.4	().5	0.6	0.7	0.8	0.9	1	
	500	4918.34	1232.69	567.067	334.99	230	0.168	177.77	2 153.44	0 148.95	8 162.509	193.633	
	600	3370.58	856.090	393.202	232.17	160	0.114	125.08	2 110.41	4 110.68	1 124.492	150.377	
_	800	1887.99	481.156	220.499	130.28	90.	4864	71.980	4 65.593	68.375	79.1656	96.0054	
	1000	1208.10	307.557	140.793	83.287	58.	1740	46.872	43.58	46.423	3 54.3862	65.7299	
	1500	536.820	136.349	62.3643	36.988	26.	0733	21.410	07 20.462	22.343	26.4174	31.6262	
-> ¹ ≪-	2000	301.823	76.5778	35.0205	20.806	3 14.	7442	12.230	9 11.846	9 13.073	2 15.4890	18.4274	
⊑ <u>∎</u> ₀ a	2500	193.088	48.9613	22.3909	13.318	9.4	6975	7.9047	9 7.716	6 8.56	10.1521	12.0289	
	3000	134.046	33.9778	15.5392	9.2510	6.5	9278	5.5265	5.4230	6.0398	1 7.15987	8.45939	
│ ॑ <u>॑</u> <u>॑</u> <u>└</u>	3500	98.4581	24.9511	11.4114	6.7978	4.8	5275	4.0802	5 4.018	4.4860	3 5.31751	6.26962	
• →	4000	75.3670	19.0961	8.73398	5.2054	3.7	2076	3.1356	3.096	6 3.4626	8 4.10387	4.83105	
	4500	59.5398	15.0839	6.89918	4.1134	2.9	4324	2.4847	9 2.4587	7 2.7532	3.26254	3.83589	
	5000	48.2209	12.2151	5.58722	3.3323	2.3	8625	2.0174	4 1.999	0 2.2412	2.65555	3.11911	
	5500	39.8477	10.0932	4.61679	2.7542	1.9	7363	1.6705	5 1.6579	9 1.8598	9 2.20335	2.58587	
	6000	33.4800	8.47979	3.87887	2.3145	1.6	5948	1.4060	1 1.3969	9 1.5681	3 1.85750	2.17847	
	a[mm]	0.2	0.4	0.6		0.8		1	1.25	1.667	2.5	5	
	500	1242.09	355.15	3 234.4	35 27	4.020	354	1.166	402.080	404.202	387.899	371.011	
	600	864.232	251.53	1 177.9	18 21	3.601	261	L.980	283.978	281.063	269.376	257.647	
	800	487.212	145.74	3 111.7	58 13	4.304	155	5.248	161.826	158.254	151.525	144.926	
	1000	312.029	95.157	5 76.07	56 90	4562	101	1.516	104.100	101.321	96.9761	92.7528	
	1500	138.661	43.503	0 36.39	93 42	3936	46.	0711	46.4920	45.0480	43.1006	41.2235	
<u>1</u> 10	2000	77.9587	24.826	2 21.15	63 24	3577	26.	1226	26.1994	25.3430	24.2441	23.1882	
10 a	2500	49.8734	16.027	0 13.79	00 15	7659	16.	7882	16.7835	16.2206	15.5162	14.8405	
	3000	34.6237	11.194	1 9.688	40 11	0252	11.	6882	11.6619	11.2648	10.7752	10.3059	
<u> </u> <u> </u> <u>-</u> +	3500	25.4319	8.2580	3 7.175	41 8.	3863	8.6	0194	8.57122	8.27642	7.91645	7.57166	
	4000	19.4678	6.3419	5 5.526	05 6.2	5249	6.5	9398	6.56416	6.33676	6.06103	5.79705	
	4500	15.3798	5.0228	3 4.385	88 4.9	5302	5.2	1489	5.18757	5.00690	4.78896	4.58039	
	5000	12.4562	4.0762	1 3.565	13 4.0	2007	4.2	2712	4.20262	4.05564	3.87906	3.71011	
	5500	10.2934	3.3739	8 2.954	81 3.3	2777	3.4	9551	3.47369	3.35180	3.20583	3.06621	
	6000	8.64860	2.8387	3 2.488	71 2.1	9998	2.9	3860	2.91917	2.81646	2.69379	2.57647	

Tabla Nº2.17. Valores de Ψ (mm⁻²) x 10⁶ para placas de vidrio laminado bajo diferentes condiciones de contorno y carga (parte 1)

FUENTE: Galuppi et al., 2012

	a[mm]	0.Z	0.4	0.6	0.	0	1	1.25	1.667	2.5	5
	500	59.8176	5 55.7770	51.676	62 48.5	518	46.3972	44.6462	42.9996	41.5644	41.6559
	600	41.5400	38.7340	35.886	62 33.7	165	32.2203	31.0043	29.8609	28.8641	28.5614
	800	23.3663	3 21.7879	20.188	60 18.9	655	18.1239	17.4399	16.7967	16.2361	15.6021
	1000	14.9544	1 13,9442	12,919	90 12.1	379	11 5993	11.1615	10.7499	10.3911	10.4140
	1500	6 64640	6 19744	5 7419	80 5 30	464	5 15525	4 96069	4 77774	4 61826	4 41235
	2000	3 7396/	3 49606	3 2202	76 3.03	440	2 80083	2 70030	2.68749	2 50777	2 60350
	2000	3.73000	3.40000	3.2237	70 3.03	207	1.05503	1 70505	1 71000	1.66257	1 70952
l → l a	2500	2.392/0	2.23108	2.06/0	1.94	207	1.85589	1.78585	1.71999	1.00257	1.70855
	3000	1.66160	1.54936	1.4354	45 1.34	866	1.28881	1.24017	1.19443	1.15457	1.10309
	3500	1.2207	/ 1.13831	1.0546	52 0.99	085	0.94688	0.91115	0.87754	0.84825	0.83878
→	4000	0.93465	5 0.87152	0.8074	44 0.75	862	0.72496	0.69760	0.67187	0.64944	0.65087
	4500	0.73849	9 0.68860	0.6379	98 0.59	940	0.57281	0.55119	0.53086	0.51314	0.47613
	5000	0.59818	3 0.55777	0.5167	76 0.48	552	0.46397	0.44646	0.43000	0.41564	0.42713
	5500	0.49436	5 0.46097	0.4270	08 0.40	125	0.38345	0.36898	0.35537	0.34351	0.33329
	6000	0.41540	0.38734	0.3588	86 0.33	717	0.32220	0.31004	0.29861	0.28864	0.27577
	alment	0.2	0.4	0.6	0	8	1	1 25	1 667	25	5
	500	37.6069	37 7268	37.905	83 38 1	086	38 20/3	38 4868	38 7153	38 9639	30 2186
	600	26 115	2 26 1002	26.225	53 36.1	642	26 5022	26 7270	36.7133	27.0592	33.2100
	000	20.1150	20.1992	20.525	70 14.0	045	20.3555	15.0220	20.0000	27.0365	15.2107
+++++	800	14.690/	2 14.7370	14.80/	14.8	002	14.958/	15.0339	15.1231	15.2203	15.319/
	1000	9.40170	9.43169	9.4//(9.52	/14	9.5/35/	9.621/1	9.6/881	9.74099	9.80464
	1500	4.17853	4.19186	4.2120	4.23	429	4.25492	4.27632	4.30169	4.32933	4.35762
	2000	2.35043	s 2.35792	2.3692	2/ 2.38	179	2.39339	2.40543	2.41970	2.43525	2.45116
⇒ a	2500	1.50427	1.50907	1.5163	33 1.52	434	1.53177	1.53947	1.54861	1.55856	1.56874
	3000	1.04463	3 1.04797	1.0530	01 1.05	857	1.06373	1.06908	1.07542	1.08233	1.08940
44====++	3500	0.76749	0.76993	0.7736	54 0.77	773	0.78152	0.78545	0.79011	0.79518	0.80038
- D - N	4000	0.58761	0.58948	0.5923	32 0.59	545	0.59835	0.60136	0.60493	0.60881	0.61279
	4500	0.46428	3 0.46576	0.4680	00 0.47	048	0.47277	0.47515	0.47797	0.48104	0.48418
	5000	0.37607	7 0.37727	0.3790	0.38	109	0.38294	0.38487	0.38715	0.38964	0.39219
	5500	0.31080	0.31179	0.3132	29 0.31	495	0.31648	0.31807	0.31996	0.32202	0.32412
	6000	0.26116	5 0.26199	0.2632	25 0.26	464	0.26593	0.26727	0.26886	0.27058	0.27235
	A=D/a	0.1	0.2	03	0.4	0.5	5 0.6	5 07	0.8	0.9	1
	aliuud /	0.1	0.2	0.5	0.4	0.5	,	, .,	0.0	0.5	-
	500	20 2020	20/17/15 2	21 0020	22 2022	24.69	101 201/	171 /2 52	10 16 620	0 /0 1000	45 6010
	500	30.2878	30.4745 3	31.0830	32.3923	34.68	361 38.14	42.53	40 46.629	8 48.1868	45.6010
	500 600	30.2878 21.0332	30.4745 3 21.1628 2	81.0830 21.5854	32.3923	34.68 24.08	361 38.14 375 26.49	171 42.53 111 29.53	40 46.629 75 32.381	8 48.1868 8 33.4631	45.6010 31.6674
	500 600 800	30.2878 21.0332 11.8312	30.4745 3 21.1628 2 11.9041 1	31.0830 21.5854 12.1418	32.3923 22.4946 12.6532	34.68 24.08 13.54	361 38.14 375 26.49 192 14.90	42.53 911 29.53 912 16.61	40 46.629 75 32.381 48 18.214	8 48.1868 8 33.4631 8 18.8230	45.6010 31.6674 17.8129
	500 600 800 1000	30.2878 21.0332 11.8312 7.57194	30.4745 3 21.1628 2 11.9041 1 7.61861 7	31.0830 21.5854 12.1418 7.77075	32.3923 22.4946 12.6532 8.09807	34.68 24.08 13.54 8.671	361 38.14 375 26.49 192 14.90 152 9.530	42.53 911 29.53 912 16.61 578 10.63	40 46.629 75 32.381 48 18.214 49 11.657	8 48.1868 8 33.4631 8 18.8230 5 12.0467	45.6010 31.6674 17.8129 11.4003
	500 600 800 1000 1500	30.2878 21.0332 11.8312 7.57194 3.36531	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3	31.0830 21.5854 12.1418 7.77075 3.45367	32.3923 22.4946 12.6532 8.09807 3.59914	34.68 24.08 13.54 8.671 3.854	361 38.14 375 26.45 192 14.90 152 9.536 101 4.238	42.53 911 29.53 912 16.61 578 10.63 857 4.726	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810	8 48.1868 8 33.4631 8 18.8230 5 12.0467 9 5.35409	45.6010 31.6674 17.8129 11.4003 5.06678
	500 600 800 1000 1500 2000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452	34.68 24.08 13.54 8.671 3.854 2.167	361 38.14 375 26.49 192 14.90 152 9.536 101 4.238 788 2.384	42.53 911 29.53 912 16.61 578 10.63 357 4.726 420 2.658	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143	8 48.1868 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006
	500 600 800 1000 1500 2000 2500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1	81.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569	34.68 24.08 13.54 8.671 3.854 2.167 1.387	361 38.14 375 26.49 192 14.90 152 9.530 101 4.238 788 2.384 744 1.525	42.53 911 29.53 912 16.61 578 10.63 857 4.726 420 2.658 588 1.701	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651	8 48.1868 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404
	500 600 800 1000 1500 2000 2500 3000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0	81.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963	361 38.14 375 26.49 492 14.90 152 9.536 101 4.238 788 2.386 744 1.525 502 1.059	171 42.53 911 29.53 912 16.61 578 10.63 357 4.726 120 2.658 588 1.701 594 1.181	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 1.2952	8 48.1868 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.82404
	500 600 800 1000 1500 2000 2500 3000 3500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0	81.0830 21.5854 12.1418 7.77075 8.45367 1.94269 1.24332 1.863417 1.634347	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707	38:1 38:14 375 26:45 192 14:90 152 9:536 401 4.238 788 2.384 744 1:525 502 1.055 879 0.778	42.53 911 29.53 912 16.61 578 10.63 587 4.726 420 2.658 588 1.701 964 1.181 513 0.868	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 40 0.95162	8 48.1868 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633
	500 600 800 1000 2500 3000 3500 4000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.476163 0	81.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.485672	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.9541	381 38.14 375 26.45 192 14.90 152 9.536 101 4.238 788 2.384 744 1.525 502 1.055 879 0.778 970 0.596	42.53 911 29.53 912 16.61 578 10.633 857 4.726 420 2.658 888 1.701 964 1.181 513 0.8688 049 0.664	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 240 0.95162 393 0.72859	8 48.1868 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 1 0.752919	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516
	500 600 800 1000 2500 3000 3500 4000 4500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.476163 0 0.376228 0	81.0830 21.5854 12.1418 7.77075 8.45367 1.94269 1.24332 8.863417 6.634347 4.485672 3.383741	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.541 0.541 0.428	381 38.14 375 26.49 192 14.90 152 9.530 101 4.238 788 2.384 744 1.525 502 1.059 879 0.778 970 0.596 223 0.470	42.53 911 29.53 912 16.61 578 10.633 587 4.726 420 2.658 688 1.701 964 1.181 513 0.8688 049 0.6644 952 0.525	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 40 0.95162 593 0.72859 111 0.57567	8 48.1868 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 99 0.983404 01 0.752919 70 0.594899	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976
	500 600 800 1000 2000 2500 3000 3500 4000 4500 5000	30.2878 21.0332 11.8312 7.57194 3.36531 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.476163 0 0.376228 0	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 .863417 .634347 .485672 .338741 .310830	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.963 0.707 0.5419 0.428 0.346	3861 38.14 375 26.45 192 14.90 152 9.536 101 4.238 102 1.525 502 1.059 879 0.778 970 0.596 223 0.470 8861 0.381	171 42.53 911 29.53 912 16.61 578 10.633 357 4.726 420 2.658 588 1.701 564 1.181 513 0.8680 049 0.6649 952 0.5253	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 340 0.95162 393 0.72859 111 0.57567	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 01 0.752919 77 0.594899 8 0.481868	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976
	500 600 800 1000 2000 2500 3000 3500 4000 4500 5500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.476163 0 0.304745 0 0.304745 0	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 .863417 .634347 .485672 .33741 .310830 .256884	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.267705	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5419 0.428 0.3460 0.286	38.14 375 26.49 9192 14.90 552 9.530 011 4.238 788 2.384 444 1.525 502 1.059 970 0.596 223 0.470 8861 0.381 6662 0.315	1471 42.53 171 29.53 171 29.53 172 16.61 177 47.26 170 2.658 170 2.658 1701 2.658	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 340 0.95162 393 0.72859 111 0.57567 340 0.46629 340 0.46629	8 48.1868 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 01 0.752919 77 0.594899 8 0.481868 71 0.398238	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.376868
	500 600 800 1000 2000 2500 3000 3500 4000 4500 5500 5500 6000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.476163 0 0.376228 0 0.304745 0 0.251855 0 0.211628 0	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 .863417 .634347 .485672 .383741 .310830 .256884 .215854	32,3923 22,4946 12,6532 8,09807 3,59914 2,02452 1,29569 0,899785 0,661067 0,506129 0,399904 0,323923 0,267705 0,224946	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5419 0.428 0.346 0.2860 0.240	38.14 375 26.49 392 14.90 552 9.530 001 4.238 788 2.384 444 1.525 502 1.059 970 0.596 223 0.470 8861 0.381 6662 0.315 875 0.264	1471 42.53 171 29.53 171 29.53 172 16.61 176 10.63 177 47.26 170 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.658 1701 2.659 1701 2.659 1701 2.659 1701 2.659 1701 2.659	40 46.629 75 32.381// 48 18.214// 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 300 0.72859 111 0.57567 340 0.46629 320 0.38537 337 0.32381	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 01 0.752919 77 0.594899 8 0.481868 71 0.398238 8 0.334631	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.356688 0.316674
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5500 6000 2,25/8 3,000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.2	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.476163 0 0.376228 0 0.304745 0 0.304745 0 0.251855 0 0.211628 0 0.4	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.634347 1.5854 1.258545 1.25854 1.25854 1.25854 1.25854 1.25854 1.25854	32,3923 22,4946 12,6532 8,09807 3,59914 2,02452 1,29569 0,899785 0,661067 0,506129 0,399904 0,323923 0,267705 0,224946 0,224946	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.541 0.286 0.240 0.240 8	361 38.14 375 26.49 192 14.90 152 9.530 001 4.238 788 2.384 44 1.525 502 1.059 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264	471 42.53 911 29.53 912 16.61 578 10.633 857 4.726 420 2.658 888 1.701 964 1.181 513 0.868 049 0.6643 952 0.5253 471 0.4253 265 0.3511 911 0.2953 11 0.2953	40 46.629 75 32.381 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 30 0.95162 39 0.72859 11 0.57567 40 0.46625 20 0.38537 375 0.32381 1.667	 48.1868 33.4631 18.8230 12.0467 5.35409 3.01168 1.92747 1.33852 0.983404 0.752919 0.594899 0.481868 0.396238 0.334631 2.5 	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.376868 0.316674 5
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5500 6000 5500 6000 5000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.2 325.303	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.476163 0 0.376228 0 0.304745 0 0.304745 0 0.251855 0 0.211628 0 1.14.750	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 .863417 .634347 .485672 .383741 .310830 .256884 .215854 0.6 74.932	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.267705 0.224946 0.77 6.0 4	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.963 0.707 0.5419 0.428 0.346 0.286 0.240 8 550	361 38.14 375 26.49 192 14.90 152 9.530 001 4.238 788 2.384 744 1.525 502 1.059 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 53.5051	471 42.53 911 29.53 912 16.61 578 10.633 857 4.726 420 2.658 888 1.701 964 1.181 513 0.868 9049 0.6645 952 0.5257 4/1 0.4253 265 0.3511 911 0.2953 911 0.2953 48,9526 4.5254	40 46.629 75 32.381// 48 18.214// 49 11.657// 00 5.1810// 37 2.9143// 36 1.8651// 50 1.2952 40 0.95162 33 0.72859 11 0.57567 40 0.46625 32 0.32837 375 0.32381 1.667 45.3585	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 10 0.752919 70 0.594899 80 0.481868 11 0.398238 12 0.34631 12 0.34631	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.356688 0.316674 5 37.9068
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4000 5500 6000 5000 600	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.2 325.393 225.965	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.304745 0 0.304745 0 0.304745 0 0.251855 0 0.211628 0 1.211648 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.485672 1.310830 1.25684 1.25684 1.25684 0.6 74.937 52.000	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.267705 0.224946 0.419 0.	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5419 0.428 0.346 0.286 0.240 8 550 827	361 38.14 375 26.45 192 14.90 152 9.536 001 4.238 788 2.384 744 1.525 502 1.059 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 53.5051 37 1.563	471 42.53 911 29.53 912 16.61 578 10.633 857 4.726 420 2.658 888 1.701 964 1.181 513 0.868 902 0.5525 4471 0.4253 2055 0.3511 911 0.29535 911 0.29535 912 0.2525 48.9526 3.9946	40 46.629 75 32.381// 48 18.214// 49 11.657// 00 5.1810// 37 2.9143// 36 1.8651// 50 1.2952 30 0.95162 30 0.72859 11 0.57567 30 0.46629 30 0.32831 1.667 45.3585 31_4090 31_4090	8 48.1868 33.4631 8 33.4631 9 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 0 0.752919 77 0.594899 8 0.481868 71 0.398238 18 0.334631 2.5 42.6990 29 6.521	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.562976 0.316674 5 37.9068 32.7445
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5500 6000 800 800	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.210332 0.2 0.2 325.393 225.963 127.102 127	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.621928 0 0.304745 0 0.304745 0 0.304745 0 0.251855 0 0.211628 0 211628 0 0.211628 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.21168 0 1.2116	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.485672 1.310830 1.25684 1.25684 1.25684 1.25854 0.6 74.937 52.040 20.327	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.257705 0.224946 0.4 0.77 60.4 0.5 0.2 4946 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.541 0.286	361 38.14 375 26.45 192 14.90 152 9.536 001 4.238 788 2.384 744 1.525 502 1.059 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 53.5051 37.1563 30.004	471 42.53 911 29.53 912 16.61 578 10.633 420 2.658 420 2.658 420 2.658 420 2.658 588 1.701 513 0.868 649 0.6645 652 0.5253 471 0.4253 265 0.3519 10.2953 1.255 48.9526 33.9994 33.9924 10.1223	40 46.629 75 32.3813 48 18.2144 49 11.657 00 5.1810 37 2.9143 36 1.86519 50 1.2952 30 0.95162 30 0.72859 11 0.57567 30 0.46625 30 0.32381 1.667 45.3585 31.4989 17.2192	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 0 0.752919 77 0.594899 8 0.481868 71 0.398238 18 0.334631 2.5 42.6990 29.6521 16.5792	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.562976 0.316674 5 37.9068 32.7445 32.7445 32.7445
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4000 5500 6000 5000 6000 8000 1000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.210332 0.2 325.393 225.968 127.100 81.246	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.476163 0 0.304745 0 0.251855 0 0.211628 0 211628 1 9.04745 0 0.251855 0 0.211628 0 141.750 1 3 14.750 44.8242 1 2 4.4.8242	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.485672 1.310830 1.25684 1.25684 1.25684 1.25854 0.6 74.937 52.0402 29.772 19.732	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.257705 0.224946 0.419 25 23.66 1.25 23.65 23.65 23.65 23.56 1.25 23.65 23.65 23.65 23.65 23.65 23.65 23.65 23.65 23.55 23.65 24.65 23.55 23.65 23.55 23.65 23.55 23.55 23.65 23.55 23.65 23.55 23.65 23.55 23.55 23.55 24.55 23.55 24.5	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.7074 0.963 0.7074 0.963 0.7074 0.9541 0.428 0.240000000000	361 38.14 375 26.49 192 14.90 152 9.536 001 4.238 788 2.384 744 1.525 502 1.059 970 0.596 223 0.470 861 0.381 662 0.315 53.5051 37.1563 20.9004 13.275	171 42.53 12 9.53 12 16.61 578 10.633 12 2.658 12 2.658 13 2.658 1420 2.658 1533 0.868 1420 2.658 1533 0.868 1420 0.643 1533 0.868 1471 0.4253 150 0.5551 1471 0.4253 151 0.8684 151 0.8684 151 0.8595 151 0.2553 151 0.2553 151 0.2553 161 0.2553 17 0.2553 181 0.2553 191 121 191 121	40 46.629 75 32.3813 48 18.2144 49 11.657 00 5.1810 37 2.9143 36 1.86519 50 1.2952 30 0.95162 30 0.72859 11 0.57567 30 0.46629 30 0.32381 1.667 45.3585 31.4989 17.7182 11 2205	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 29 0.983404 0 0.752919 77 0.594899 8 0.481868 71 0.398238 18 0.334631 25 2.5 42.6990 29.6521 16.6793 10.5747	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.562976 0.316674 5 37.9068 32.7455 19.9520 0.42576 0.425776 0.425777 0.425776 0.425777777777777777777777777777777777777
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5500 6000 5000 6000 800 1500 1500 1500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.210332 0.2 325.393 225.968 127.107 81.3484 3.6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.476163 0 0.376228 0 0.304745 0 0.304745 0 0.251855 0 0.211628 0 2.211628 0 0.211628 0 1.21855 0 0.211628 0 0.21168 0 0.21168 0 0.21168 0 0.21168 0 0.21168 0 0.21168 0 0.21168 0	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.485672 1.310830 1.25684 1.25684 1.25684 1.25684 0.6 74.937 52.040 29.272 18.744	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.27705 0.224946 0.399904 0.323923 0.27705 0.224946 0.41.9 25 23.61 4 1.1 5.7 1.25	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.7070 0.5415 0.24000 0.24000 0.240000000000	361 38.14 375 26.45 192 14.90 152 9.536 001 4.238 788 2.384 744 1.525 502 1.059 879 0.778 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 35.5051 37.1563 20.9004 13.3763 20.470	471 42.53 911 29.53 912 16.61 578 10.633 857 4.726 420 2.658 888 1.701 944 1.181 513 0.8684 949 0.6643 952 0.5253 4471 0.4253 951 0.29535 911 0.29535 912 0.5254 913 0.9294 19.12121 12.2382 12.2382 5.42929	40 46.629 75 32.381// 48 18.214// 49 11.657// 00 5.1810// 37 2.9143// 36 1.8651// 50 1.2952 30 0.95162 30 0.72859 11 0.57567 30 0.46625 30 0.32381 1.667 45.3585 31.4989 17.7182 11.3396 5.02922	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 29 0.983404 0 0.752919 77 0.594899 8 0.481868 71 0.398238 18 0.334631 29 0.521 10.6793 10.6793 10.6793 10.6747	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.316674 5 37.9068 32.7445 19.9520 9.47670 9.47670
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4000 5500 6000 5000 6000 800 1000 1000 1000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.210332 0.225.968 127.107 81.3484 36.1488	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.476163 0 0.376228 0 0.304745 0 0.304745 0 0.251855 0 0.211628 0 0.211628 0 0.211628 0 1.1.750 3 114.750 44.8242 44.8245 3 2.7500 1.	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.485672 1.310830 1.25884 1.25884 1.25884 0.6 74.937 52.040 29.272 18.734 8.3624	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.329923 0.27705 0.224946 0.399904 0.329923 0.27705 0.24946 0.41.9 25 23.6 14 15.1 1	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.7070 0.5415 0.2400 0.2400 0.2400 0.2400 0.2400 0.2400 0.2400 0.2550 153 138	361 38.14 375 26.45 192 14.90 152 9.536 001 4.238 788 2.384 744 1.525 502 1.059 879 0.778 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 53.5051 37.1563 20.9004 13.3763 5.94501	471 42.53 911 29.53 912 16.61 578 10.633 857 4.726 420 2.658 820 2.658 828 1.701 944 1.181 513 0.868 952 0.5253 447 1.4253 911 0.2953 911 0.2953 911 0.2953 912 1.25 48.9526 33.9949 19.1221 12.23828 5.43918 5.43918	40 46.629 75 32.381// 48 18.214// 49 11.657// 00 5.1810// 37 2.9143// 36 1.8651// 50 1.2952 40 0.5767 40 0.46629 30 0.72859 11 0.57567 440 0.46629 30 0.32381 1.667 45.3585 31.4989 17.7182 11.3396 5.03983	8 48.1868 33.4631 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 10 0.752919 7 0.594899 8 0.481868 10 0.398238 18 0.334631 29.6521 16.6793 10.6747 4.74433	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.562976 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.26016
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4000 4500 5000 5000 600 800 1000 1500 2,=b/8 500 600 800 1000 1000 1000 1000 1500 1000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.250312 0.210332 0.2 325.393 225.968 1.27.107 81.3484 36.1548 20.371 4.2 325.371 325.3	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.846513 0 0.476163 0 0.376228 0 0.304745 0 0.304745 0 0.251855 0 0.211628 0 0.211628 0 114.750 3 114.750 3 114.750 3 114.750 3 2.96875 44.8242 28.6875 3 12.7500 1 2.7500	31.0830 21.5854 12.1418 7.77075 3.45367 1.94269 1.24332 1.863417 1.634347 1.485672 1.310830 1.25884 1.25884 1.25884 0.6 74.937 52.040 29.272 18.734 8.3684 4.6684 4.6684	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.329923 0.257705 0.224946 0.329924 0.329904 0.32923 0.257705 0.224946 0.41.9 25 23.6 14 15.1 15.1 16.71 50 3.777 50 3.7777 50 3.7777 50 3.7777 50 3.7777 50 3.7777 50 3.7777 50 3.7777 50 3.7777 50 3.7777 50 3.77777 50 3.77777 50 3.77777 50 3.777777 50 3.777777 50 3.777777777777777777777777777777777777	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5415 0.2400 0.240000000000	361 38.14 375 26.45 192 14.90 152 9.536 011 4.238 788 2.384 744 1.525 502 1.059 879 0.778 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 53.5051 37.1563 20.9004 13.3763 5.94501 3.34407 3.4407	471 42.53 911 29.53 912 16.61 578 10.633 857 4.726 420 2.658 820 2.658 838 1.701 944 1.181 513 0.8684 952 0.5253 447 0.4253 921 0.2953 911 0.2953 911 0.2953 912 1.25 48.9526 33.9949 19.1221 12.2382 5.43918 3.05954	40 46.629 75 32.381// 75 32.381// 48 18.214// 49 11.657// 00 5.1810// 37 2.9143// 36 1.8651// 50 1.2952 40 0.95162 30 0.72859 11 0.57567 40 0.46629 30 0.32381 1.667 45.3585 31.4989 17.7182 11.3396 5.03983 2.8490 2.8490	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 29 0.983404 01 0.752919 77 0.594899 8 0.481868 71 0.398238 8 0.334631 29.6521 16.6793 10.6747 4.74433 2.66869 1.66869	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.456010 0.562976 0.456010 0.376868 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918
	500 600 800 1000 1500 2000 2500 3000 3500 4000 4000 4500 5000 5000 6000 8000 1000 1500 20	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.250312 0.250312 0.210332 0.250312 0.210332 0.250312 0.210332 0.25058 1.27.107 81.3486 36.1548 20.3371 13.0157 0.20157	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.621928 0 0.476163 0 0.37628 0 0.304745 0 0.251855 0 0.211628 0 114.750 3 79.6875 7 44.8242 4 28.6875 3 12.7500 1 7.17187 7 4.59000	31.0830 21.5854 21.5854 21.5854 21.5854 2.1418 7.7705 3.45367 2.94269 2.4332 2.4332 2.4332 2.4332 2.4332 2.5884 2.15854 0.6 74.937 52.040 2.9.272 18.734 8.3264 4.6836 2.9975 2.975	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.329923 0.27705 0.224946 0.329904 0.32905 0.329904 0.329904 0.32905 0.32906	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5411 0.428 0.286 0.286 0.286 8.27 1.387 1.387 0.707 0.5411 0.428 0.286 0	361 38.14 375 26.45 192 14.90 152 9.536 011 4.238 788 2.384 744 1.525 502 1.059 879 0.778 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 53.5051 37.1563 20.9004 13.3763 5.94501 3.344070 2.1407	171 42.53 12 9.53 12 16.61 578 10.633 12 2.658 12 2.658 12 2.658 13 2.658 1420 2.658 1533 0.868 104 1.181 513 0.868 049 0.6643 952 0.5253 471 0.4253 265 0.3511 911 0.2953 12 1.25 48.9526 33.9949 19.1221 12.2382 5.43918 3.05954 1.95811 1.95811	40 46.629 75 32.381// 75 32.381// 48 18.214// 49 11.657// 00 5.1810// 37 2.9143// 36 1.8651// 50 1.2952 40 0.9516// 30 0.72859 11 0.5756// 440 0.46629 30 0.2381 1.667 45.3585 31.4989 17.7182 11.3396 5.03983 2.83490 1.81434	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 0 0.752919 7 0.594899 8 0.481868 10 0.398238 10 0.394631 2 9.6521 16.6793 10.6747 4.74433 2.66869 1.70796 1.70796	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.456010 0.376868 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918 1.90751
	500 600 800 1000 2000 2500 3000 3500 4000 4000 4500 5000 5000 5000 6000 8000 1000 1500 2250 800 1000 1500 2000 100	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.250312 0.210332 0.250312 0.210332 225.968 1.27.107 81.3484 3.6.1548 20.3371 1.3.0157 9.03871	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.621928 0 0.37628 0 0.37628 0 0.304745 0 0.251855 0 0.211628 0 114.750 3 79.6875 7 44.8242 4 28.6875 3 12.7500 1 7.17187 7 4.59000 1 3.18750 1 4.18750 1 4.1875	31.0830 21.5854 ↓1418 ↓77075 ↓4269 ↓4269 ↓4332 ↓4332 ↓4332 ↓43672 ↓310830 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓3108000 ↓3108000 ↓3108000 ↓3108000 ↓31080000 ↓310800000000000000000000000000000000000	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.329923 0.27705 0.224946 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329323 0.27705 0.224946 0.329904 0.329904 0.329904 0.329323 0.25705 0.224946 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329323 0.22705 0.224946 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329904 0.329323 0.22705 0.329004 0.329323 0.22705 0.329004	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5415 0.240 0.286 0.226 8 8 723 138 723 844 820 931 0.555 138 138 138 138 138 138 138 138	361 38.14 375 26.49 192 14.90 152 9.536 011 4.238 828 2.388 201 4.236 878 2.386 9070 0.596 202 0.470 8879 0.778 970 0.596 203 0.470 8875 0.264 1 5.3.5051 37.1563 20.9004 13.3763 5.94501 3.3.4407 2.14020 1.4825 3.3.4407	142 53 141 29.53 112 29.53 112 16.61 578 10.63 157 4.726 120 2.658 183 1.701 164 1.181 513 0.868 049 0.6644 920 0.5253 48.9526 0.3519 3.9949 19.1221 12.2382 5.43918 3.05954 1.95811 1.35801 1.35801	40 46.629 75 32.381/ 48 18.214/ 49 11.657 00 5.1810 37 2.9143 36 1.8651/ 50 1.2952 40 0.95162 50 0.72859 11 0.57567 440 0.46625 50 0.32381 1.667 45.3585 31.4989 17.7182 11.3396 5.03983 2.83490 1.81434 1.25996 1.81434	8 48.1868 33.4631 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 0 0.752919 7 0.594899 8 0.481868 10 0.752919 70 0.594899 8 0.334631 2 0.98238 10 0.398238 10 0.396238 12 9.6521 16.6793 10.6747 4.74433 2.66869 1.70796 1.70796	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.456010 0.376868 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918 1.90781 1.00518
	500 600 800 1000 2000 2500 3000 3500 4000 4000 4500 5500 6000 5000 5000 5000 6000 800 1000 1500 2250 800 1000 1500 2000 800 1000 1500 1000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 0.210332 0.210332 0.210332 0.250312 0.210332 0.250312 0.210332 1.27.107 81.3484 3.6.1548 2.0.3371 1.3.0157 9.03871 6.64068	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.621928 0 0.476163 0 0.37628 0 0.37628 0 0.37628 0 0.211628 0 14.750 3 12.7500 44.8242 4 28.6875 3 12.7500 4 4.8242 4 28.6875 3 12.7500 4 3.1875 3 3.23184 3 3.23185 3 3.23184 3 3.23185 3 3.2318	31.0830 21.5854 ↓ 418 ↓ 77075 ↓ 4269 ↓ 4332 ↓ 4332 ↓ 4332 ↓ 4332 ↓ 4332 ↓ 43572 ↓ 43572 ↓ 43572 ↓ 310830 ↓ 310830 ↓ 526884 ↓ 5268	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.27705 0.224946 0.41.9 25 23.6 14 15.1 11 6.71 50 3.77 51 2.41 50 1.67 34 1.23 34 1.23 35 2.35 36 3.77 31 2.41 30 3.77 31 3.7	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5415 0.240 0.240 0.240 0.286 0.240 1.38 1.38 1.38 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.256 0.240 0.266 0.267 0.266 0.26	361 38.14 375 26.49 192 14.90 152 9.536 011 4.238 828 2.388 744 1.529 502 1.059 970 0.596 223 0.470 881 0.381 662 0.315 875 0.264 1 53.5051 37.1563 20.9004 13.3763 5.94501 3.34407 2.14020 1.48625 1.0914	42.53 311 29.53 312 16.61 578 10.63 587 4.726 420 2.658 88 1.701 513 0.868 513 0.868 649 0.664 652 0.525 471 0.425 265 0.3519 911 0.2953 48.9526 33.9949 19.1221 12.2382 5.43918 3.05954 1.95811 1.35980 0.99933	40 46.629 75 32.3812 48 18.2142 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 40 0.95162 39 0.72859 11 0.57567 40 0.46625 30 0.3281 1.667 45.3585 31.4989 17.7182 11.3396 5.03983 2.83490 1.81434 1.25996 0.92568	8 48.1868 33.4631 33.4631 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 19 0.983404 10 0.752919 7 0.594899 8 0.481868 10 0.398238 8 0.334631 2 6.6900 29.6521 16.6793 10.6747 4.74433 2.66869 1.70796 1.18608 0.87141	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.456010 0.376868 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918 1.90781 1.00518 0.63410
	500 600 800 1000 2000 2500 3000 3500 4000 4000 5500 5000 5000 5000 5000 5000 5000 600 800 1000 1500 2000 2000 3000 3500 4000 1500 2000 1500 100	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 225.968 127.107 81.3484 36.1548 20.3371 13.0157 9.03871 6.64058	30.4745 3 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.38605 3 1.90465 1 0.051928 0 0.07187 0 0.07187 0 0.37628 0	31.0830 11.5854 ↓1418 ↓77075 ↓4269 ↓24332 ↓863417 ↓34367 ↓485672 ↓383741 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓25884 ↓310830 ↓3108000 ↓3108000 ↓3108000 ↓310800000000000000000000000000000000000	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.661067 0.506129 0.399904 0.323923 0.27705 0.224946 0.41,9 25 23.6 14 15.1 15.1 16.71 17.75 17.7	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.5415 0.240 0.240 0.240 8 8 723 138 931 378 461	361 38.14 375 26.49 192 14.90 152 9.536 011 4.238 828 2.384 444 1.529 502 1.059 970 0.596 223 0.470 881 0.381 662 0.315 875 0.264 1 5.5051 37.1563 20.9004 13.3763 5.94501 3.34407 2.14020 1.48625 1.09194 0.83602 2.3402	142.53 121 29.53 112 29.53 112 16.61 1578 10.63 1577 4.726 120 2.658 131 0.868 141 1181 1513 0.868 104 1.181 1052 0.525 104 0.425 105 0.351 101 0.2553 11 0.2553 12 0.351 101 0.2553 11 0.2553 12 0.3519 10.2552 0.3519 10.2552 0.3519 10.2552 0.3519 10.2552 0.3519 10.2554 1.35980 0.9993 0.76489	40 46.629 75 32.3812 32.3812 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 40 0.95162 30 0.72859 11 0.57567 40 0.46625 30 0.32381 1.667 45.3585 31.4989 17.7182 11.3396 5.03983 2.83490 1.81434 1.25996 0.92568 0.70873	8 48.1868 33.4631 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 19 0.983404 11 0.752919 7 0.594899 8 0.34631 10 0.752919 7 0.398238 10 0.398238 10 0.34631 2 6.6793 10.6747 4.74433 2.66869 1.70796 1.18608 0.87141 0.66717 1.18608	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.456010 0.376868 2.7445 19.9520 9.47670 4.02073 2.36918 1.90781 1.00518 0.63410 0.59229
	500 600 800 1000 2000 2500 3000 3500 4000 4000 5500 600 5000 5000 5000 5000 600 800 1000 1500 2000 2500 3000 3500 4000 4000 1500 2000 2500 3000 3500 4000 1500 2000 3500 4000 5500 500 500 500 500 500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 225.968 127.107 81.3484 3.6.1548 20.3371 13.0157 9.03871 6.64068 5.08427 4.01720	30.4745 3 1.1628 2 1.9041 1 7.61861 7 3.38605 3 1.9465 3 0.21928 0 0.521928 0 0.37628 0 0	1.0830 1.5854 1.5854 ↓ 4269 ↓ 4269 ↓ 4332 ↓ 4332 ↓ 4332 ↓ 4337 ↓ 43777 ↓ 4 4 4 4 4 4 4 4 4 4 4 4 4	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.661067 0.506129 0.399904 0.323923 0.27705 0.224946 0.41.9 25 23.6 14 15.1 15.1 16.71 50 3.777 51 2.41 50 1.67 34 1.23 90 0.94 15.74 16.75 16.75 17.7	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.207 0.541 0.240 0.240 8 8 8 8 8 8 8 138 9 378 461 6366 9 378 461	361 38.14 375 26.45 192 14.90 152 9.536 101 4.238 288 2.384 44 1.525 502 1.059 970 0.596 223 0.470 881 0.381 662 0.315 875 0.264 1 5.5051 37.1563 20.9004 13.3763 5.94501 3.34407 2.14020 1.48625 1.09194 0.83602 0.66056	142.53 121 29.53 121 16.61 1578 10.63 120 2.658 120 2.658 120 2.658 131 0.868 141 1181 1513 0.868 1049 0.664 910 0.255 1051 0.351 911 0.2953 10.2552 0.3513 911 0.2953 10.2554 19.1221 12.2382 5.43918 3.05954 1.95811 1.35980 0.99933 0.76489 0.60435	40 46.629 75 32.3812 48 18.214 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 40 0.95162 93 0.72859 11 0.57563 40 0.46625 20 0.38537 7 0.32381 1.667 45.3585 31.4989 17.7182 11.3396 5.03983 2.83490 1.81434 1.25996 0.92568 0.70873 0.55998	8 48.1868 33.4631 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 19 0.983404 11 0.752919 7 0.594899 8 0.34631 7 0.398238 8 0.334631 2.6521 16.6793 10.6747 4.74433 2.66869 1.70796 1.18608 0.87141 0.66717 0.52715	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.456010 0.562976 0.456010 0.376868 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918 1.90781 1.90781 1.90781 0.059229 0.44643
	500 600 800 1000 2000 2500 3000 3500 4000 4000 5500 600 5000 600 800 1000 1500 2000 2500 3000 3500 4000 4000 1500 5000	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 225.968 127.107 81.3484 36.1548 20.3371 13.0157 9.03871 6.64068 5.08427 4.01720 3.25393	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.46513 0 0.21928 0 0.376228 0 0.376228 0 0.304745 0 0.376228 0 0.304745 0 0.376228 0 0.304745 0 0.376228 0 0.304745 0 0.376228 0 0.304745 0 0.376228 0 0.376208 0 0.	1.0830 1.5854 1.5854 ↓ 4269 ↓ 4336 ↓ 4337 ↓ 4337 ↓ 434347 ↓ 435672 ↓ 310830 ↓ 5884 ↓ 1.5854 0.6 74.937 52.040 29.272 18.734 8.3264 4.6836 2.9975 2.0816 1.5293 1.1709 0.9251 0.7493 0.7493 0.9251 0.7493 0.7493 0.9251 0.7493 0.7493 0.9251 0.7493	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.61067 0.506129 0.399904 0.339904 0.323923 0.27705 0.224946 0.41.9 25 23.6 14 15.1 15.1 16.71 50 3.777 51 2.41 50 1.67 34 1.23 90 0.94 15.5 16.74 17.5	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.207 0.541 0.286 0.240 8 8 8 8 8 8 8 8 8 8 8 8 8	361 38.14 375 26.45 192 14.90 152 9.536 101 4.238 288 2.384 44 1.525 502 1.059 970 0.596 223 0.470 881 0.381 662 0.315 875 0.264 1 5.5051 37.1563 20.9004 13.3763 5.94501 3.34407 2.14020 1.48625 1.09194 0.83602 0.66056 0.53505 3.5051	142.53 11 29.53 11 29.53 12 16.61 1578 10.63 120 2.658 120 2.658 131 0.868 141 1181 1513 0.868 1049 0.664 952 0.525 471 0.425 102 2.658 31 0.9253 11 0.2557 12 2.822 3.93949 19.1221 12.2382 5.43918 3.05954 1.95811 1.35980 0.99933 0.76489 0.60435 0.60435 0.64855	40.46.629 75 32.3813 48 18.2144 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 40 0.95162 93 0.72859 11 0.57562 40 0.46625 20 0.38337 75 0.32381 1.77182 11.3396 5.03983 2.83490 1.81434 1.25996 0.92568 0.70873 0.55998 0.45358	8 48.1868 33.4631 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 19 0.983404 10 0.752919 7 0.594899 8 0.34631 10 0.752919 7 0.398288 8 0.334631 2 0.983404 11 0.398288 8 0.334631 2 42.6690 29.6521 16.6793 10.6747 4.74433 2.66869 1.70796 1.18608 0.87141 0.66717 0.52715 0.42699 1	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.456010 0.562976 0.456010 0.562976 0.456010 0.376868 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918 1.90781 1.90781 1.90781 1.90781 1.90781 0.05929 0.44643 0.47695
	500 600 800 1000 2000 2500 3000 3500 4000 4000 5500 6000 800 1000 1500 2000 2500 3000 3500 4000 1500 2000 2500 3000 3500 4000 5500 3500 3500 3500 5500 3500 3500 3500 5500 3500 3500 3500 5500 3500 3500 3500 5500 3500 3500 3500 3500 5500 5500 3500 3500 5000 5500 5000 5500 5000 5500 5000 5500 5000 5500 5000 5000 5500 500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 2.250368 127.107 81.3484 3.6.1548 2.0.3371 13.0157 9.03871 6.64068 5.08427 4.01720 3.25393 2.68920	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.476163 0 0.376228 0 0.376208 0	1.0830 1.5854 1.5854 1.5854 1.545367 1.94269 1.4332 1.4332 1.435672 3.434347 4.455672 3.310630 2.56884 3.310630 2.56884 1.5268 74.937 52.040 29.272 18.734 8.3264 4.6836 2.9975 2.0816 1.5293 1.1709 0.9251 0.7493 0.6193	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.61067 0.506129 0.399904 0.339904 0.323923 0.27705 0.224946 0.41.9 25 23.6 14 15.1 15.1 16.71 17.75 17.	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.707 0.541 0.286 0.	361 38.14 375 26.45 192 14.90 152 9.536 011 4.238 288 2.384 44 1.525 502 1.059 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 5.5051 37.1563 20.9004 13.3763 5.94501 3.34407 2.14020 1.48625 1.09194 0.83602 0.66056 0.53505 0.44219	142.53 11 29.53 11 29.53 112 16.61 1578 10.63 120 2.658 120 2.658 131 0.868 141 1181 1513 0.868 049 0.6649 952 0.5257 471 0.4252 265 0.3519 911 0.2953 1.25 48.9526 33.9949 19.1221 12.2382 5.43918 3.05954 1.35980 0.99903 0.76489 0.60435 0.48953 0.60435 0.40457	40.46.629 75 32.3812 75 32.3812 48 18.2142 49 11.657 00 5.1810 37 2.9143 36 1.86512 50 1.2952 40 0.95162 93 0.72859 11 0.57567 40 0.46625 20 0.38837 75 0.32381 1.77182 11.3396 5.03983 2.83490 1.81434 1.25996 0.92568 0.70873 0.55998 0.37486	8 48.1868 33.4631 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 10 0.752919 7 0.594899 8 0.34631 10 0.752919 7 0.398238 8 0.334631 2 0.983404 10 0.398238 8 0.334631 2 0.5621 16.6793 10.6747 4.74433 2.66869 1.70796 1.18608 0.87141 0.66717 0.52715 0.42699 0.35288	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.456010 0.562976 0.376888 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918 1.90781 1.00518 0.63410 0.59229 0.44643 0.47695 0.27907
	500 600 800 1000 2000 2500 3000 3500 4000 4000 5500 6000 800 1000 1500 2000 2500 3000 3500 4000 1500 2000 2500 3000 3500 4000 5500 5500 5500 3500 5000 5500 500	30.2878 21.0332 11.8312 7.57194 3.36531 1.89298 1.21151 0.841326 0.618117 0.473246 0.618117 0.473246 0.373923 0.302878 0.250312 0.210332 2.25048 127.107 81.3484 3.6.1548 2.0.3371 13.0157 9.03871 6.64068 5.08427 4.01720 3.25393 2.25968	30.4745 3 21.1628 2 11.9041 1 7.61861 7 3.38605 3 1.90465 1 1.21898 1 0.476163 0 0.76228 0 0.376228 0 0.37628 0	1.0830 1.5854 1.5854 1.5854 1.418 7.7075 3.45367 1.94269 1.24332 3.45367 4.435672 3.310630 2.56884 3.310630 2.56884 3.310630 2.56884 4.6836 2.9975 2.0816 1.5293 1.1709 0.9251 1.709 0.9251 0.7493 0.6193 0.5204	32.3923 22.4946 12.6532 8.09807 3.59914 2.02452 1.29569 0.899785 0.61067 0.506129 0.399904 0.323923 0.27705 0.224946 0.41.9 25 23.6 14 15.1 15.1 16.71 17.75	34.68 24.08 13.54 8.671 3.854 2.167 1.387 0.963 0.207 0.541 0.286	361 38.14 375 26.45 375 26.45 912 14.90 152 9.536 011 4.238 288 2.384 44 1.525 502 1.059 970 0.596 223 0.470 861 0.381 662 0.315 875 0.264 1 5.5051 37.1563 20.9004 13.3763 5.94501 3.34407 2.14020 1.4825 1.09194 0.83602 0.66056 0.53505 0.44219 0.37156 1.097156	142.53 11 29.53 11 29.53 112 16.61 578 10.63 120 2.658 120 2.658 131 0.868 141 1181 513 0.868 049 0.6649 952 0.5257 471 0.4252 265 0.3519 911 0.2953 1.25 48.9526 33.9949 19.1221 12.2382 5.43918 3.05954 1.95811 1.35980 0.99903 0.76489 0.60435 0.40457 0.33995	40.46.629 75 32.3813 48 18.2144 49 11.657 00 5.1810 37 2.9143 36 1.8651 50 1.2952 30 0.95162 93 0.72859 11 0.57567 440 0.46625 20 0.38537 75 0.32381 1.77182 11.3396 5.03983 2.83490 1.81434 1.25996 0.92568 0.70873 0.55998 0.37486 0.31499 0.31499	8 48.1868 33.4631 8 33.4631 8 18.8230 5 12.0467 9 5.35409 6 3.01168 9 1.92747 7 1.33852 9 0.983404 11 0.752919 7 0.594899 8 0.481868 11 0.398238 8 0.334631 2.6690 29.6521 16.6793 10.6747 4.74433 2.66869 1.70796 1.18608 0.87141 0.66717 0.52715 0.42699 0.35288 0.29652	45.6010 31.6674 17.8129 11.4003 5.06678 2.85006 1.82404 1.26670 0.930633 0.712516 0.562976 0.562976 0.562976 0.562976 0.376868 0.316674 5 37.9068 32.7445 19.9520 9.47670 4.02073 2.36918 1.90781 1.90781 1.90781 1.90781 1.90781 0.63410 0.59229 0.44643 0.47695 0.27907 0.25130

Tabla Nº2.18. Valores de Ψ (mm⁻²) x 10⁶ para placas de vidrio laminado bajo diferentes condiciones de contorno y carga (parte 2)

FUENTE: Galuppi et al., 2012

Definiendo $h_{s;1}$ y $h_{s;2}$ según Bennison al igual que para el caso de vigas de vidrio laminado, estos valores se pueden obtener con las ecuaciones 2.17 y 2.18 respectivamente, para el caso de placas de vidrio laminado.

Por lo tanto, al reemplazar los valores de h_1 , h_2 , H, $h_{s;1}$, $h_{s;2}$, I_s y η en las ecuaciones 2.24 y 2.25-2.26 para obtener los espesores efectivos de deflexión y flexión respectivamente.

$$h_{w} = \frac{1}{\left(\frac{\eta}{h_{1}^{3} + h_{2}^{3} + 12\frac{h_{1}h_{2}}{h_{1} + h_{2}}H^{2}} + \frac{1 - \eta}{h_{1}^{3} + h_{2}^{3}}\right)^{\frac{1}{3}}}$$
(2.24)

$$h_{1;\sigma} = \frac{1}{\sqrt{\frac{2\eta h_{s;2}}{h_1^3 + h_2^3 + 12\frac{h_1 h_2}{h_1 + h_2}H} + \frac{h_1}{h_W^3}}}$$
(2.25)

$$h_{2;\sigma} = \frac{1}{\sqrt{\frac{2\eta h_{s;1}}{h_1^3 + h_2^2 + 12\frac{h_1 h_2}{h_1 + h_2} + \frac{h_2}{h_w^3}}}}$$
(2.26)

Donde:

 h_1 = espesor de la placa de vidrio superior (véase la Figura N°2.11)

 h_2 = espesor de la placa de vidrio inferior (véase la Figura N°2.11)

H = distancia baricéntrica de las placas de vidrio (véase la Figura N°2.11)

 $h_{s;1}$ = distancia baricéntrica de la placa de vidrio superior

h_{s;2} = distancia baricéntrica de la placa de vidrio interior

 η = parámetro de peso adimensional para placa de vidrio (ecuación 2.32)

h_w = espesor efectivo de deflexión

h_{1,σ} = espesor efectivo de flexión de la placa de vidrio superior

h_{2;σ} = espesor efectivo de flexión de la placa de vidrio inferior

2.4 ESFUERZO Y DEFORMACIÓN DE PLACAS SUJETO A CARGAS LATERALES

2.4.1 La ecuación diferencial para placas

Existen muchas investigaciones sobre teoría de placas. Debido al notable progreso del análisis numérico mediante softwares de elementos finitos, estos modelos teóricos no son utilizados mucho últimamente en los diseños. Sin embargo, al simplificarlos y personalizarlos para un caso en específico, se brindan herramientas muy útiles que permiten predecir su comportamiento mecánico en un tiempo más corto que al utilizar un software de elementos finitos. En el libro de texto sobre teoría de placas de Timoshenko (Timoshenko et al., 1959), se resumen muchas de estas teorías básicas. Cuando se aplica una carga a una placa, el equilibrio de la carga y la fuerza reactiva de la placa da la siguiente ecuación diferencial:

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q (x, y)}{D}$$
(2.27)

Donde:

w = deflexión

q (x, y) = función de carga aplicada

D = rigidez a la flexión de la placa

El valor de la rigidez de la placa D se obtiene mediante la siguiente ecuación:

$$D = \frac{Eh^3}{12(1-\nu^2)}$$
(2.28)

Donde:

E = módulo de Young de la placa

h = espesor de la placa

v = coeficiente de poisson de la placa

Es entonces que el momento en cada dirección está dado por:

$$M_{\chi} = -D\left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2}\right)$$
(2.29)

$$M_{y} = -D\left(\frac{\partial^{2}w}{\partial y^{2}} + v\frac{\partial^{2}w}{\partial x^{2}}\right)$$
(2.30)

$$M_{xy} = -M_{yx} = D(1-\nu)\frac{\partial^2 w}{\partial x \partial y}$$
(2.31)

Y los esfuerzos correspondientes están dados por:

55

$$(\sigma_x)_{max} = \frac{6M_x}{h^2} \tag{2.32}$$

$$\left(\sigma_{y}\right)_{max} = \frac{_{6M_{y}}}{h^{2}} \tag{2.33}$$

$$\left(\tau_{xy}\right)_{max} = \frac{6M_{xy}}{h^2} \tag{2.34}$$

En las ecuaciones 2.32, 2.33 y 2.34, "max" significa el esfuerzo más alto a lo largo de la dirección de la sección transversal "Z".

2.4.2 Solución de Navier para placas de cuatro lados con apoyo simple

Cuando se aplica una carga a una placa de 4 lados simplemente apoyada (véase la Figura N° 2.12), la condición de contorno viene dado por:

Figura Nº2.12. Placa de 4 lados simplemente apoyada en sus 4 lados a escala referencial

(1) $w = 0 y M_x = 0 para x = 0 y x = a$

(2) $w = 0 y M_y = 0 para y = 0 y y = b$

Dado que w = 0 a lo largo de los bordes, $\partial^2 w / \partial x^2 = 0$ a lo largo del eje x y $\partial^2 w / \partial y^2 = 0$ a lo largo del eje y.

Por lo tanto, las ecuaciones 2.29 y 2.30 la condición de frontera se reorganiza como:

(1) w = 0 y
$$\partial^2 w / \partial x^2 = 0$$
 para x = 0 y x = a

(2) w = 0 y
$$\partial^2$$
w / ∂ y² = 0 para y = 0 y y = b

Empleando el enfoque de Navier, la carga q (x, y) se expresa mediante la siguiente ecuación:

$$q(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$
(2.35)

Donde a_{mn} es el coeficiente. Entonces, la solución para la ecuación 2.27 estaría dado por:

$$w = \frac{1}{\pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{mn}}{\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$
(2.36)

Cuando q (x, y) es una presión uniforme q (x, y) = q_0 , a_{mn} está dado por:

$$a_{mn} = \frac{4q_0}{ab} \int_0^a \int_0^b \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} dx dy = \frac{16q_0}{\pi^2 mn}$$
(2.37)

Entonces la ecuación 2.36 se reduce a:

$$w = \frac{12(1-\nu^2)16q_0}{h^3 E \pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{mn\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2} \sin\frac{m\pi x}{a} \sin\frac{n\pi y}{b}$$
(2.38)

Donde m = 1, 3, 5, ..., n = 1, 3, 5, ...para uso práctico la ecuación se reduce a:

$$w = \alpha \frac{q_0 a^4}{h^3 E} \tag{2.39}$$

Donde:

$$\alpha\left(\frac{a}{b}, x, y\right) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{192(1-v^2)}{\pi^6 m n \left\{m^2 + n^2 \left(\frac{a}{b}\right)^2\right\}^2} \sin\frac{m\pi x}{a} \sin\frac{n\pi y}{b}$$
(2.40)

Entonces los momentos se obtienen por:

$$(\sigma_x)_{max} = \frac{6}{h^2} \frac{16q_0}{\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{m^2}{a^2} + \nu \frac{n^2}{b^2}\right) \frac{\pi^2}{mn\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2} \sin\frac{m\pi x}{a} \sin\frac{n\pi y}{b}$$
(2.41)

$$\left(\sigma_{y}\right)_{max} = \frac{6}{h^{2}} \frac{16q_{0}}{\pi^{6}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\nu \frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right) \frac{\pi^{2}}{mn\left(\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right)^{2}} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$
(2.42)

$$\left(\tau_{xy}\right)_{max} = \frac{6}{h^2} \frac{16q_0}{\pi^6} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (1-\nu) \frac{mn}{ab} \frac{\pi^2}{mn\left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)^2} \cos\frac{m\pi x}{a} \cos\frac{n\pi y}{b} \quad (2.43)$$

Entonces:

$$(\sigma_x)_{max} = \frac{96}{\pi^4} \frac{a^2 q_0}{h^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 + \nu n^2 \left(\frac{a}{b}\right)^2}{m n \left\{m^2 + n^2 \left(\frac{a}{b}\right)^2\right\}^2} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} = \frac{q_0 a^2}{h^2} \beta_x \quad (2.44)$$

$$\left(\sigma_{y}\right)_{max} = \frac{96}{\pi^{4}} \frac{a^{2}q_{0}}{h^{2}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{\nu m^{2} + n^{2} \left(\frac{a}{b}\right)^{2}}{mn \left\{m^{2} + n^{2} \left(\frac{a}{b}\right)^{2}\right\}^{2}} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} = \frac{q_{0}a^{2}}{h^{2}} \beta_{y} \quad (2.45)$$

$$\left(\tau_{xy}\right)_{max} = \frac{96}{\pi^4} \frac{a^2 q_0}{h^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(1-\nu)mn\left(\frac{a}{b}\right)}{\left\{m^2 + n^2\left(\frac{a}{b}\right)^2\right\}^2} \cos\frac{m\pi x}{a} \cos\frac{n\pi y}{b} = \frac{q_0 a^2}{h^2} \beta_{xy} \quad (2.46)$$

El esfuerzo principal op está dado por (Yound et al., 2002):

$$\sigma_p = \frac{1}{2} \left[\left(\sigma_x + \sigma_y \right) \pm \sqrt{\left(\sigma_x - \sigma_y \right)^2 + 4\tau_{xy}^2} \right]$$
(2.47)

Entonces el esfuerzo principal máximo está dado por:

$$\sigma_{p;max} = \beta_p \frac{q_0 a^2}{h^2} \tag{2.48}$$

Donde:

$$\beta_{p}\left(\frac{a}{b}, x, y\right) = \frac{48}{\pi^{4}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1+\nu}{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} + \frac{48}{\pi^{4}} \left\{ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(1-\nu)^{2} \left\{m^{2}-n^{2} \left(\frac{a}{b}\right)^{2}\right\}^{2}}{m^{2} n^{2} \left\{m^{2}+n^{2} \left(\frac{a}{b}\right)^{2}\right\}^{4}} \sin \frac{2 \frac{m\pi x}{a} \sin \frac{2 \frac{n\pi y}{b}}{b} + \frac{2 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{4(1-\nu)^{2} m^{2} n^{2} \left(\frac{a}{b}\right)^{2}}{\left\{m^{2}+n^{2} \left(\frac{a}{b}\right)^{2}\right\}^{4}} \cos \frac{2 \frac{m\pi x}{a} \cos \frac{2 n\pi y}{b}}{b} \right\}^{\frac{1}{2}}$$
(2.49)

58

Para la mayoría de los diseños, la deflexión y el esfuerzo máximos son los valores más requeridos. Por lo tanto, α y β en el centro de la placa (x = a/2, y = b/2) se indica para cada relación de aspecto en la tabla N°2.19.

Tabla Nº2.19. Valores de α y β para placas de 4 lados simplemente apoyado para cada relación de aspecto (a/b)

Relación de aspecto (a/b)	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
α	0.046	0.055	0.064	0.073	0.081	0.088	0.094	0.100	0.106	0.111	0.115
β _p (a/b, a/2, b/2)	0.272	0.318	0.362	0.403	0.441	0.475	0.507	0.535	0.560	0.583	0.603

FUENTE: Timoshenko et al., 1959

2.4.3 Placas apoyadas en dos lados

Cuando se aplica una carga a la placa cuyos dos lados opuestos están simplemente apoyados y los otros dos lados están libres (véase la Figura N°2.13), la condición de contorno está dada por:

Figura Nº2.13. Placa de 4 lados simplemente apoyada en 2 lados a escala referencial

- (1) $w = 0 y M_x = 0 para x = 0 y x = a$
- (2) cumpliendo las siguientes ecuaciones para y = +b/2 y y = -b/2

$$\left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2}\right)_{y=\pm b/2} = 0$$
(2.50)

$$D\left\{\frac{\partial^3 w}{\partial y^3} + (2-\nu)\frac{\partial^3 w}{\partial x^2 \partial y}\right\}_{y=\pm b/2} = 0$$
(2.51)

La deflexión de placas simplemente apoyada en dos lados está dada por:

$$w = q a^{4} \frac{12(1-\nu)}{Eh^{3}} \sum_{m=1,3,5,\dots}^{\infty} \left(\frac{4}{\pi^{5}m^{5}} + A_{m} \cosh \frac{m\pi y}{a} + B_{m} \frac{m\pi y}{a} \sinh \frac{m\pi y}{a}\right) \sin \frac{m\pi x}{a} = \frac{q a^{4}}{Eh^{3}} \alpha$$
(2.52)

Donde:

$$A_{m} = \frac{4}{\pi^{5}m^{5}} \frac{\nu(1+\nu)\sinh\frac{m\pi b}{2a} - \nu(1-\nu)\frac{m\pi b}{2a}\cosh\frac{m\pi b}{2a}}{(3+\nu)(1-\nu)\sinh\frac{m\pi b}{2a}\cosh\frac{m\pi b}{2a} - (1-\nu)\frac{2m\pi b}{2a}}$$
(2.53)

$$B_m = \frac{4}{\pi^5 m^5} \frac{\nu (1-\nu) \sinh\frac{m\pi b}{2a}}{(3+\nu)(1-\nu) \sinh\frac{m\pi b}{2a} \cosh\frac{m\pi b}{2a} - (1-\nu)^2 \frac{m\pi b}{2a}}$$
(2.54)

Por lo tanto, la deflexión y el esfuerzo principal máximo se expresan en las ecuaciones 2.39 y 2.48 respectivamente, teniendo en cuenta que estas se producen en el centro de los bordes libres (x = a/2 y y = b/2) en la figura N°2.12. En la tabla N°2.20 se indican los valores de α y β .

Tabla №2.20. Valores de α y β para placas de 2 lados simplemente apoyadas y libres de dos lados para cada relación de aspecto (a/b) donde a y b son las aristas libres y simplemente apoyadas, respectivamente.

Relación de aspecto (a/b)	0.1	0.2	0.3	0.4	0.5	0.7	1	1.2	1.6	2	8
α	0.156	0.157	0.158	0.159	0.159	0.161	0.163	0.164	0.164	0.165	0.165
B _p (a/b,a/2,b/2)	0.750	0.753	0.756	0.760	0.765	0.773	0.781	0.785	0.789	0.791	0.791

FUENTE: Timoshenko et al., 1959

2.4.4 Simulación por elementos finitos con el Software SJ Mepla v.5.0.14

El software SJ Mepla es un programa de elementos finitos que apareció en 1999-2000, este software es específico para el cálculo de vidrio. A continuación, se muestra el entorno del programa como lo es el ingreso de la geometría, los materiales, las condiciones de apoyo, las cargas externas, métodos de cálculo y resultados, según los siguientes pasos:

- Geometría:

En este punto ingresamos la geometría del elemento a calcular, las coordenadas de los vértices van en sentido antihorario. La geometría siempre es plana, no pudiendo introducir elementos tridimensionales (véase la Figura N°2.14).

Figura Nº2.14. Ingreso de la geometría

- Materiales:

Los materiales y sus propiedades vienen predefinidos, sin embargo, también es posible cambiarlas (véase la Figura N°2.15).

Figura Nº2.15. Ingreso de los materiales

- Condiciones de apoyo:

Se introducen las condiciones de contorno con sus grados de libertad predefinidas, siendo muy difícil analizar un caso de apoyo no previsto en el programa (véase la Figura N°2.16).

Figura Nº2.16. Ingreso de las condiciones de contorno

- Cargas exteriores:

Las cargas exteriores vienen predefinidas, teniendo que ajustar las cargas reales a las cargas integradas en el programa (véase la Figura N°2.17).

Figura Nº2.17. Ingreso de las cargas exteriores

- Método de cálculo:

En esta parte se elige el tipo de análisis que se desee realizar (véase la Figura N°2.18).

	SJ MEPLA Paquete	3 VERSIÓN DE PRUEBA Licencia por: UNI - Peru - Universidad Nacional de Ingenier	ía	- a ×	
Comenzar Visuali	zar Idioma Extras Ayuda				0
Configuraciones Configuraciones Info Finalizar Programa	iuevo 🕏 Borrar 🍃 Cortar 🎦 Abir Nmacenar 🌚 Anular 🏠 Copiar 😒 Cerrar Jodificar Editar 🖉 Carpeta superior Editar	Crear archivo zip Abrir archivo zip Archivo			
Áreas de trabajo	Proyecto: PROYECTO PRUEBA: Área de trabajo Opo	tiones			
Información del proyecto	Generalidades Verificación Capacidad de carga re	sidual		i	
Internación de projecto Constaliadas Venticación Capacidad de carga e Cagas Cargas Cargas		Emisiones de tensión (valores máximos): Tensión principal Tensión de presión principal Enersión de spite de Von Mises Fuerzas de reacción: Soporte el solarcos lineales Soporte de lasticos lineales Soporte de borde elástico	^		
LANT JAVIER PRADO JAVIER PRADO JAVIER PRADO JAVIER PRADO JAVIER PRADO JAVIER PRADO SANTA CRUZ ADOTA SANTA CRUZ PISO 1	Configuraciones de convergencia: O.1 N Zoterancia de error Desactivar automático Apólicar cargas en cuantos pasos:	Muelles Sarra de borde Soporte de punto Encolado del oristal Encolado del borde			^
VIDRIO LAM. 10MM	Emisiones de resultados locales: Si no se consigue una convergencia, primero debe en Com Desconcetar automático" se usa el mayor nivel Todos las emisiones de resultados locales aplicados Para cada agueta es puedon eseccionar las diferen	Emision Calcular volumen formado Menergias: Protocido contro la carga mediante varios gasos de carga de convegencias, que también significa el mayor tiempo de computación. terestones y deformaciones a se describen en el protocolo.	×	Activar Windows	

Figura Nº2.18. Seleccionar el tipo de análisis a realizar

- Resultados:

Aquí se muestran los botones inicio de cálculo, interfaz gráfica e informe con los resultados obtenidos (véase la Figura N°2.19).

	SJ MEPLA Paquete 3 V	ERSIÓN DE PRUEBA. Licencia por: UNI - Peru - Universidad Nacional de Ingeniería		– ø ×
Comenzar Visualiza	r Idioma Extras Ayuda			6
Configuraciones Info Finalizar	evo 🕷 Borrar % Cortar 🏗 Abrir 4 nacenar 🎱 Anular 🏠 Copiar 🔂 Cerrar dificar 👔 Insertar 🖄 Carpeta superior	© Crear archivo zip ≱ Abrir archivo zip Arshiva		
Áreas de trabaio	Provecto: PROVECTO PRUEBA: Área de trabajo Resulta	Ada		
Información del provecto	Astes del s'Astes		^	
Geometría	Antes del calculo:			
→ Canas	Vista previa del sistema			
Soportes	Cálaula			
→ Cargas	Calculo.			
Opciones	iniciar calculo			4
Resultados	Resultado del cálculo:			
Proyectos BAR-1 BAR-MIRAMAR BAR-MIRAMAR JAVIER PRADO	Interfaz gráfica Protocolo del caliculo Protocolo de casos de carga			x
PASEO REPÚBLICA	Representación de la curva			5/02/2023 12:44:33: PROYECTO PRUEBA - Calculando
SANTA CRUZ AZOTEA SANTA CRUZ PISO 1 SANTA CRUZ PISO 8 THE PALMS	Estado del cálculo/ Vista previa del sistema: Estado: ¡Se ha finalizado el cálculo! Duración del cá Progreso:	ilculo: 2.3 [seg.]		5/02/2023 12:44:33: PROYECTO PRUEBA - In-Core Solver 5/02/2023 12:44:34: PROYECTO PRUEBA - ilnicio en la versión 64 bit! 5/02/2023 12:44:34: PROYECTO PRUEBA -
	Controles de cálculo:	Nota:		Procesadores = 4
> - VIDRIO LAM. 10MM > - VIDRIO LAM. 6MM > - VIDRIO LAM. 8MM	Tipo de cálculo: Cálculo individual	In-Core Solver dinicin en la versión 64 hitt	^ v	5/02/2023 12:44:36: PROYECTO PRUEBA - Estado: (Se ha finalizado el cálculo! Duración del cálculo: 2.3 [seg.] Exospon2: 12:44:36: PROVECTO PRUEBA - Cálculo
	En función de la norma configurada, se establecerán aqu propiedades de resistencia, los factores de seguridad y n uso se requiere además el límite de deflección o la reduc	í los criterios necesarios para la verificación. Estos criterios incluyen las nodificación para los tipos de vidrio empleados. Para verificar la idoneidad de ción permitida de la cuerda.	^	Activar Windows

Figura Nº2.19. Interfaz de resultados

CAPÍTULO III METODOLOGÍA

3.1 NORMATIVAS INTERNACIONES PARA LA EVALUACIÓN DE DATOS Y ENSAYOS DEL VIDRIO

3.1.1 Norma UNE-EN 1288 (2000)

La norma UNE-EN 1288 (2000) describe en sus capítulos los pasos para la determinación de la resistencia a flexión del vidrio, en la presente tesis utilizaremos el Ensayo con probetas soportadas en dos puntos (flexión 4 puntos).

3.1.1.1 Ensayo con probetas soportadas en dos puntos (flexión 4 puntos)

El ensayo consiste en colocar probetas de 360 mm de ancho y 1100 mm de largo sobre 2 rodillos de soporte con una longitud mínima de 365 mm y 50 mm de diámetro separados 1000 mm, que a su vez serán cargadas por un sistema conformado por 2 rodillos de flexión con una longitud mínima de 365 mm y 50 mm de diámetro separados 200 mm fijado a una máquina de ensayo universal, se debe colocar cintas de caucho de 3 mm de espesor y de dureza (40 \pm 10) IRHD, entre la probeta, los rodillos de flexión y los rodillos de soporte para evitar un pre esfuerzo por el contacto que habrá entre el vidrio y los rodillos. La probeta deberá someterse a flexión con una tensión de flexión con aumento de forma constante a una velocidad de (2 \pm 0.4) MPa/s hasta que se produzca la rotura (véase la figura N°3.1) midiendo la carga máxima, $F_{máx}$, y el tiempo necesario para obtener esta carga. El ensayo de flexión debe llevarse a cabo a una temperatura de (23 \pm 5) °C y una tasa de humedad relativa comprendida entre el 40 y el 70%.

Figura Nº3.1. Montaje de la muestra de ensayo

FUENTE: UNE-EN 1288, 2000

3.1.1.2 Esfuerzo de flexión y flecha de las probetas

Para el cálculo del esfuerzo a la flexión y flecha de las probetas se utilizarán las siguientes ecuaciones:

Esfuerzo de flexión:

$$\sigma_{bB} = k \left[F_{máx} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
(3.1)

$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h} \tag{3.2}$$

Donde:

 σ_{bB} : Esfuerzo de flexión

F_{máx}: Fuerza máxima

Ls: Distancia entre los ejes de los rodillos de soporte

L_b: Distancia entre los ejes de los rodillos de flexión

B: Ancho de la probeta

h: Espesor de la probeta

k: Factor adimensional (k=1)

 σ_{bG} : Esfuerzo de flexión debido al peso propio de la probeta

ρ: Densidad de la probeta

g: Aceleración debida a la gravedad

Flecha central:

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$
(3.3)

Donde:

y: Flecha central de la probeta relativa a los rodillos de soporte

F_{máx}: Fuerza máxima

L_s: Distancia entre los ejes de rodillos de soporte

L_b: Distancia entre los ejes de los rodillos de flexión

E: Módulo de elasticidad de la probeta

B: Ancho de la probeta

h: Espesor de la probeta

3.1.1.3 Número de probetas

Para determinar el número de probetas, primero definimos el tipo de investigación y las variables insertadas en el objetivo de la presente tesis.

Luego de haber consultado bibliografías referentes a metodologías de la investigación, se ha adoptado la definición de Sampieri, es así que nuestra investigación cumple con las definiciones planteadas por este autor, por lo que se puede inferir que la investigación realizada es de tipo experimental, llamado también investigación cuantitativa. En este tipo de investigación tiene gran importancia dos tipos de variables: la variable independiente, cuyo efecto deseamos averiguar y la variable dependiente, ambas susceptibles de medición, observación y registro objetivo.

Por ello, en nuestro caso, tendremos una serie de variables fijas (F), variables independientes (I) y variables dependientes (D), en la tabla 3.1 se muestran estas variables.

VARIABLES FIJAS (F)	VARIABLES INDEPENDIENTES (I)	VARIABLES DEPENDIENTES (D)
Longitud entre rodillos de carga y apoyo	Espesor	Resistencia a la flexión
Tipo de intercalario	Tipo de vidrio de las vigas	Deflexión
Carga vertical		Módulo de elasticidad
Geometría de las vigas de vidrio		

Tabla Nº3.1. Variables fijas, independientes y dependientes

Es entonces que con el fin de obtener la cantidad de probetas mínimas necesarias para la investigación se ha consultado diversas bibliografías, siendo estas las siguientes:

 (Baro, 2020) En la ciudad de Juarez, en una tesis para la obtención del título de Doctor en Tecnología, sustentó "Metodología Estrés-Resistencia Weibull con Parámetro de Forma Diferente", el objetivo de la tesis fue determinar un parámetro de forma β común para diseño mecánico cuando tanto el esfuerzo como la resistencia siguen una distribución Weibull con parámetro de forma diferente, es así que el autor propone la metodología de análisis estrés-resistencia Weibull la cual emplea un parámetro de forma común β_c mediante el cual es posible obtener una forma cerrada en la determinación de la confiabilidad. En el desarrollo del método propuesto se obtiene una ecuación para el cálculo del número de muestras, siendo esta la siguiente:

$$n = \frac{-1}{\ln Rt} \tag{3.4}$$

Donde:

n: Tamaño de la muestra

Rt: Nivel de confiabilidad

Por ejemplo, para un nivel de confianza del 95% (Rt), tenemos que:

$$n = \frac{-1}{\ln 0.95}$$
$$n = 20$$

Por lo tanto, se requerirá un tamaño de muestra de 20 probetas como mínimo, tomando las consideraciones indicadas en el ejemplo.

(Nurhuda et al, 2010) En el artículo "Estimación de resistencias en grandes paneles de vidrio recocido, 2010" se presenta un nuevo modelo de la forma Log-Normal para predecir la distribución probabilística acumulativa de resistencia en paneles de vidrio recocido. El modelo propuesto, que está respaldado por evidencias experimentales, comparte ciertas características que son comunes con las predicciones del modelo de Weibull, es así que se construyeron curvas de distribución de probabilidad acumulada (CPD) con un tamaño de muestra de N = 15, 100 y 500, es así que se llegó a demostrar que valores de N pequeños daría lugar a curvas CPD muy variables, sin embargo, se pueden lograr coincidencias aún mejores

reduciendo el número de especímenes en la muestra simulada para que el valor de N tanto para las muestras simuladas como físicas sea consistente (es decir, N = 10 - 18), llegándose a demostrar inclusive que para una media de 25 muestras (probetas) proporciona una representación razonable del verdadero CPD.

Es así que en base a las bibliografías revisadas se optó por considerar 36 probetas de vidrio primario (15 unidades de 6 mm, 15 unidades de 8 mm y 6 unidades de 10 mm de espesor nominal), 29 probetas de vidrio laminado primario (9 unidades de 6.38 mm, 10 unidades de 8.38 mm y 10 unidades de 10.38 mm de espesor nominal) y 16 probetas de vidrio templado (8 unidades de 8 mm y 8 unidades de 10 mm de espesor nominal) para determinar la resistencia a la flexión de estos vidrios, con un nivel de confianza de 95%.

3.1.2 Norma UNE-EN 12603 (2003)

La norma UNE-EN 12603 (2003) describe los pasos para asegurar la bondad del ajuste y los intervalos de confianza de los datos de resistencia del vidrio según la distribución de Weibull.

3.1.2.1 Distribución de Weibull

En 1939 Weibull desarrolló una formulación para describir estadísticamente la rotura frágil en componentes sometidos a tensiones uniaxiales de tracción, en el análisis de Weibull se supone que el material es isotrópico, homogéneo y que la rotura del material la produce el defecto más crítico. La norma europea y americana propone usar la distribución de Weibull de 2 o 3 parámetros para ajustar la distribución de la tensión de rotura en materiales frágiles.

La función de Weibull con tres parámetros es:

$$G(X) = 1 - exp\left[-\left(\frac{X - Xo}{\theta}\right)^{\beta}\right]$$
(3.5)

Donde:

G(X): Función de distribución de X = porcentaje de fallo

- X₀: Esfuerzo característico
- θ: Parámetro de escala
- β: Parámetro de forma

Si se asume que $X_0 = 0$, la función de Weibull con dos parámetros resulta:

$$G(X) = 1 - exp\left[-\left(\frac{X}{\theta}\right)^{\beta}\right]$$
(3.6)

El modelo de Weibull con dos parámetros ha sido aceptado tradicionalmente en la literatura para componentes frágiles debido a que aporta resultados conservadores al suponer $X_0 = 0$. Esto supone que, para cualquier estado tensional, por muy pequeño que sea, existe una probabilidad de fallo, mientras que la inclusión de un factor de localización $X_0 \neq 0$ implica la definición de un umbral por debajo del cual nunca se produciría el fallo (Ramos et al, 2015).

3.1.2.2 Diagrama de Weibull

El diagrama de probabilidad de la ley de Weibull se traza de manera que al representar la función de distribución de una ley de Weibull con dos parámetros sea una línea recta.

El eje de las ordenadas se gradúa de acuerdo con la función

$$\eta = \ln\left(\ln\left(\frac{1}{1-G(x)}\right)\right) \tag{3.7}$$

y el eje de la abscisa de acuerdo con la función.

$$\xi = \ln x \ o \ \xi = \log x \tag{3.8}$$

3.1.2.3 Trazado de datos de la muestra en el Diagrama de Weibull
Las medidas de una muestra producen r o n valores x_i, respectivamente del atributo X. Estos valores de x_i deben ser ordenados para formar una muestra ordenada al cual se le asignará un valor estimado según la siguiente ecuación:

$$\hat{G}(x_i) = \frac{i-0.3}{n+0.4}$$
 (3.9)

3.1.2.4 Bondad del ajuste de la muestra

Para "n" probetas, se ordenan los valores de r y x en orden creciente. Se calcula para cada valor desde i = 1 a i = r - 1:

$$\ell_{i} = \frac{\ln(x_{i+1}) - \ln(x_{i})}{\ln\left[\frac{\ln(\frac{4(n-i-1)+3}{4n+1})}{\ln\left(\frac{4(n-i)+3}{4n+1}\right)}\right]}$$
(3.10)

Donde:

n: número de probetas

r: número de probetas para las que los valores del atributo x_i han sido medidos.

 ℓ_i : valor utilizado para el ensayo de bondad del ajuste

L: valor utilizado para el ensayo de bondad del ajuste

NOTA: La muestra está ordenada, es decir, x₁≤x₂≤x₃....≤x_r, r≤n

Se calcula la cantidad:

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
(3.11)

donde el símbolo [r/2] representa el mayor número entero inferior o igual

 $\frac{r}{2}$.

Se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α si:

$$L \ge F_{\alpha}(2[(r-1)/2], 2[r/2])$$
(3.12)

Los valores estadísticos de la distribución de F son suministrados en la tabla IV de la Norma Internacional ISO 2854 (1976), tal como se muestra en la tabla 3.2.

v ₁	4	5	6	7	8	10	12	15	20	24	30	40	60	120
4	6,39	6,26	6,16	6,09	6,04	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66
5	5,19	5,05	4,95	4,88	4,82	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40
6	4,53	4,39	4,28	4,21	4,15	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70
7	4,12	3,97	3,87	3,79	3,73	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27
8	3,84	3,69	3,58	3,50	3,44	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97
10	3,48	3,33	3,22	3,14	3,07	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58
12	3,26	3,11	3,00	2,91	2,85	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34
15	3,06	2,90	2,79	2,71	2,64	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,46	2,11
20	2,87	2,71	2,60	2,51	2,45	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90
24	2,78	2,62	2,51	2,42	2,36	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79
30	2,69	2,53	2,42	2,33	2,27	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68
40	2,61	2,45	2,34	2,25	2,18	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58
60	2,53	2,37	2,25	2,17	2,10	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47
120	2,45	2,29	2,17	2,09	2,02	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35

Tabla №3.2. Valores de F_{1-α} (v₁, v₂), α=0.05

FUENTE: ISO 2854, 1976

3.1.2.5 Puntos estimadores para los parámetros β y θ de la distribución

Para una muestra no truncada se tiene que los parámetros β y θ están definidas por las siguientes ecuaciones:

$$\hat{\beta} = \frac{n \, k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$
(3.13)

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_{i} + 0.5772\frac{1}{\beta}\right]$$
(3.14)

Los factores k_n aparecen en la tabla 3.3.

kn
0,6931
0,9808
1,1507
1,2674
1,3545
1,1828
1,2547
1,3141
1,3644
1,4079
1,4461
1,3332
1,3686
1,4004
1,4293
1,4556
1,4799
1,3960
1,4192

Tabla Nº3.3. Coeficiente kn

FUENTE: UNE-EN 12603, 2003

3.1.2.6 Intervalos de confianza para el parámetro de forma ß

El límite superior del intervalo de confianza para el parámetro de forma β al nivel de confianza (1- α) es:

$$\beta_{ob;z} = \hat{\beta} \, \frac{\chi_{f_{1;1-\frac{\alpha}{2}}}^2}{f_1} \tag{3.15}$$

y el límite inferior:

$$\beta_{un;z} = \hat{\beta} \, \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1} \tag{3.16}$$

 f_1 debe ser obtenido multiplicando las cifras de la tabla 3.4 por la dimensión de la muestra n.

					r/r	า				
n	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10		0.211	0.434	0.671	0.926	1.200	1.497	1.825	2.174	2.701
20	0.103	0.316	0.543	0.784	1.042	1.320	1.621	1.946	2.277	2.891
30	0.137	0.351	0.579	0.821	1.080	1.360	1.661	1.985	2.303	2.958
40	0.154	0.369	0.597	0.840	1.100	1.380	1.682	2.004	2.315	2.991
50	0.164	0.380	0.608	0.851	1.111	1.392	1.693	2.015	2.320	3.009
100	0.185	0.401	0.629	0.873	1.135	1.415	1.718	2.037	2.330	3.045
h0	0.2052	0.4218	0.6514	0.8959	1.1577	1.4391	1.7416	2.0598	2.3394	3.0850
h1	-2.052	-2.111	-2.175	-2.244	-2.314	-2.376	-2.390	-2.205	-0.856	
h2	0.000	0.008	0.002	-0.016	-0.064	-0.188	-0.526	-1.682	-7.928	

Tabla Nº3.4.	Valores de	la función f₁/n
--------------	------------	-----------------

FUENTE: UNE-EN 12603, 2003

Los valores $\chi^2_{f_1;1-\frac{\alpha}{2}}$ y $\chi^2_{f_1;\frac{\alpha}{2}}$ son cuantiles de la ley chi cuadrada con f_1 grados de libertad. Los valores se dan en la tabla 3.5.

Grados de libertad	р	
f	2,5%	97,5%
1	0.000982	5.02
2	0.0506	7.38
3	0.216	9.35
4	0.484	11.1
5	0.831	12.8
6	1.24	14.4
7	1.69	16.0
8	2.18	17.5
9	2.70	19.0
10	3.25	20.5
11	3.82	21.9
12	4.40	23.3
13	5.01	24.7
14	5.63	26.1
15	6.26	27.5
16	6.91	28.8
17	7.56	30.2
18	8.23	31.5
19	8.91	32.9
20	9.59	34.2

Tabla N°3.5. Cuantiles 2,5% y 97,5% de la distribución χ^2

FUENTE: UNE-EN 12603, 2003

3.1.2.7 Intervalos de confianza para el parámetro de escala θ

Los límites del intervalo de confianza bilateral para el parámetro de escala θ al nivel de confianza (1- α) deben ser calculados por iteración:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln\frac{1}{1-G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$
(3.17)

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln \frac{1}{1-G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$
(3.18)

La iteración puede comenzar con $\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta}$, y debe interrumpirse cuando dos valores sucesivos de $\theta_{ob;z}$ y $\theta_{un;z}$ son iguales dentro de los límites de precisión requerida.

3.1.2.8 Intervalos de confianza para el valor de la función de distribución G(x) para un valor dado de x, del atributo X

Los límites del intervalo de confianza bilateral para G al nivel de confianza (1- α) para un valor considerado x del atributo X deben ser calculados por medio de tres coeficientes auxiliares y, v y γ . Siendo las siguientes ecuaciones:

Ecuación del coeficiente auxiliar y:

$$y = \hat{\beta} \ln \frac{\hat{\theta}}{x} = -\ln \left[\ln \left(\frac{1}{1 - G(X)} \right) \right]$$
(3.19)

Ecuación del coeficiente auxiliar v:

$$v = A + By^2 - 2y \tag{3.20}$$

Las constantes A, B y C deben obtenerse dividiendo los valores obtenidos de la tabla 3.6 por la dimensión de la muestra.

n						r/n						
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
	B.n											
10		9.488	4.609	2.979	2.161	1.667	1.336	1.096	0.9197	0.7405		
20	19.49	6.324	3.686	2.552	1.920	1.515	1.234	1.028	0.8784	0.6919		
					С	.n						
10		17.58	6.109	2.868	1.474	0.7502	0.3344	0.0826	-0.0694	-0.1981		
20	49.91	10.75	4.505	2.254	1.184	0.5975	0.2500	0.0373	-0.0856	-0.2216		
	A.n											
10		39.04	12.052	5.609	3.233	2.172	1.65	1.384	1.255	1.170		
20	140.7	23.96	9.1360	4.666	2.850	2.000	1.57	1.350	1.248	1.159		

Tabla №3.6. Constantes A.n, B.n y C.n

FUENTE: UNE-EN 12603, 2003

Ecuación del coeficiente auxiliar y:

$$\gamma = \exp(-y + H(f_2)) \tag{3.21}$$

donde f_2 y H(f_2) están determinadas por la tabla 3.7.

v	0.221	0.49	1.645	1.774	1.923	2.096	2.299	2.541	2.681
f2	10	50	2	1.9	1.8	1.7	1.6	1.5	1.45
H(f2)	0.103	0.213	0.577	0.611	0.65	0.693	0.742	0.798	0.83
v	2.834	3.003	3.191	3.401	3.636	3.901	4.201	4.543	4.935
f2	1.4	1.35	1.3	1.25	1.2	1.15	1.1	1.105	1
H(f2)	0.863	0.9	0.94	0.983	1.03	1.081	1.138	1.201	1.27

Tabla №3.7. f2 y H(f2) como una función de v

FUENTE: UNE-EN 12603, 2003

Los límites del intervalo de confianza para G son:

$$G_{ob,z} = 1 - exp\left[-\gamma \frac{\chi_{f_2;1-\frac{\alpha}{2}}}{f_2}\right]$$
(3.22)

$$G_{un,z} = 1 - exp\left[-\gamma \frac{\chi_{f_2;\frac{\alpha}{2}}}{f_2}\right]$$
(3.23)

CAPÍTULO IV ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1 ANÁLISIS

Para el análisis de los resultados procedemos a utilizar la metodología descrita en el capítulo III.

4.1.1 Análisis de vidrios según Norma UNE-EN 1288 (2000) y UNE-EN 12603 (2003)

4.1.1.1 Análisis de vidrios primarios

a. Vidrio primario de 6 mm

En la tabla 4.1 se muestran los resultados de las probetas de vidrio primario de 6 mm.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA – L₀ (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	TIEMPO DE FALLA (s)
VC6-2	5.86	360	1000	200	450.4	19.39	22
VC6-3	5.91	359	1000	200	445.1	19.01	15
VC6-4	5.88	359	1000	200	388.2	16.51	11
VC6-6	5.89	359	1000	200	440.9	18.30	25
VC6-7	5.89	360	1000	200	431.2	18.05	25
VC6-8	5.89	360	1000	200	331.0	14.15	21
VC6-10	5.82	359	1000	200	288.7	12.90	11
VC6-11	5.82	359	1000	200	554.6	24.05	14
VC6-12	5.83	359	1000	200	428.5	18.20	21
VC6-13	5.84	359	1000	200	508.4	21.87	12
VC6-14	5.88	360	1000	200	485.7	21.45	25
VC6-15	5.82	359	1000	200	259.9	11.73	18
VC6-16	5.85	359	1000	200	476.6	20.78	25
VC6-17	5.82	359	1000	200	449.9	19.36	18
VC6-18	5.83	360	1000	200	561.8	24.35	45

Tabla Nº4.1. Resultados de vidrio primario de 6 mm

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ , intervalos de confianza, diagrama de Weibull, módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.1.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una distribución de Weibull. En la tabla 4.2 se muestra el ajuste de bondad del vidrio primario de 6 mm.

r	x _i (N/mm²)	ℓ_i
1	28.81	0.0822
2	31.62	0.1844
3	34.98	0.4023
4	40.69	0.3177
5	44.67	0.0565
6	45.29	0.0319
7	45.61	0.0199
8	45.79	0.1289
9	46.90	0.0735
10	47.52	0.2553
11	49.74	0.0274
12	49.99	0.2905
13	52.98	0.3858
14	57.99	0.0162
15	58.30	

Tabla Nº4.2. Ajuste de bondad del vidrio primario de 6 mm

n	15

$$\sum_{i=8}^{14} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.1682$$

$$\sum_{i=1}^{7} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.1564$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

a:

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
$$L = \frac{0.1682}{0.1564}$$
$$L = 1.08$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2[(r-1)/2], 2[r/2]) = F_{0.05}(14, 14) = 2.4$$

Entonces reemplazando los valores de L=1.08 y $F_{0.05}(14,14) = 2.4$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor)$$

 $L = 1.08 \ge F_{0.05}(14, 14) = 2.4$

Se observa que L=1.08 es menor a $F_{0.05}(14,14) = 2.4$, por lo tanto, **no se rechaza la hipótesis de que los datos provienen de una ley de Weibull**, es decir los datos se pueden ajustar a la distribución de Weibull.

• Análisis de datos de la muestra:

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.3 se muestra el análisis de datos del vidrio primario de 6 mm.

NÚMERO DE LA MUESTRA	TENSIÓN DE ROTURA (N/mm²)	$\widehat{G}(x_i)$ EXPERIMENTAL	G(x) WEIBULL
1	28.81	0.045	0.041
2	31.62	0.110	0.070
3	34.98	0.175	0.124
4	40.69	0.240	0.278
5	44.67	0.305	0.434
6	45.29	0.370	0.461
7	45.61	0.435	0.475
8	45.79	0.500	0.483
9	46.90	0.565	0.533
10	47.52	0.630	0.561
11	49.74	0.695	0.661
12	49.99	0.760	0.672
13	52.98	0.825	0.793
14	57.99	0.890	0.933
15	58.30	0.955	0.938

Tabla Nº4.3. Análisis de datos del vidrio primario de 6 mm

Reemplazando los valores de la tabla 4.3 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

 $\hat{\beta} = \frac{15(1.4004)}{4\sum_{i=13}^{15} \ln x_i - \sum_{i=1}^{12} \ln x_i} = 5.96$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_i + 0.5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{15}\sum_{i=1}^{15}\ln x_i + 0.5772\frac{1}{5.96}\right] = 49.10 \frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.829$$

 $f_1 = 42.44$

Por otro lado, los valores de $\chi^2_{f_1;1-\frac{\alpha}{2}}$ y $\chi^2_{f_1;\frac{\alpha}{2}}$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

- Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \ \frac{\chi^2_{f_{1;1-\frac{\alpha}{2}}}}{f_1}$$

$$\beta_{ob;z} = 5.96 \frac{\chi_{42.44;0.975}^2}{42.44} = 8.75$$
$$\beta_{un;z} = \hat{\beta} \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{un;z} = 5.96 \ \frac{\chi^2_{42.44;0.025}}{42.44} = 3.70$$

 Intervalo de confianza para el parámetro de escala θ, utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln\frac{1}{1 - G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$
$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 49.10 \frac{N}{mm^2}$$

Tabla Nº4.4. Iteraciones para intervalo de confianza del parámetro d	e
escala θ del vidrio primario de 6 mm	

Número de iteración	$oldsymbol{ heta}_{ob;z}$	$\theta_{un;z}$	
0	49.10	49.10	
1	54.13	45.09	
2	54.11	44.52	
3	54.10	44.41	

En la tabla 4.4 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 3 y 2 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 54.10 \frac{N}{mm^2}$$
$$\theta_{un;z} = 44.41 \frac{N}{mm^2}$$

- Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.5 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) %	У	x (N/mm²)	v	f2	H(f2)	Y	χ2 f2;0.975	χ2 f2;0.025	G _{ob,z}	G _{un,z}
99	-1.52	63.43	0.14	14.86	0.068	4.93	27.30	6.17	99.99%	87.12%
95	-1.09	59.02	0.10	20.39	0.049	3.14	34.68	9.86	99.53%	78.19%
80	-0.47	53.18	0.07	27.78	0.036	1.66	44.19	15.15	92.97%	59.75%
63.21	0	49.10	0.08	26.80	0.037	1.03	42.94	14.43	81.06%	42.82%
10	2.25	33.66	0.38	6.20	0.169	0.12	14.76	1.32	25.71%	2.64%
0.1	6.90	15.41	2.52	1.51	0.793	0.002	6.23	0.02	0.91%	0.00%

Tabla №4.5. Intervalos de confianza para la función de distribución G(x) del vidrio primario de 6 mm

• Diagrama de Weibull:

En la figura 4.1 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.3 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.1. Diagrama del análisis de datos del vidrio primario de 6 mm

En la figura 4.2 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura Nº4.2. Diagrama de Weibull del vidrio primario de 6 mm

• Módulo de elasticidad y resistencia a la flexión experimental:

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.6 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FLEXIÓN - σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VC6-2	5.86	360	1000	200	450.4	46.9	85,396.63
VC6-3	5.91	359	1000	200	445.1	45.8	84,246.74
VC6-4	5.88	359	1000	200	388.2	40.7	85,801.97
VC6-6	5.89	359	1000	200	440.9	45.6	87,398.94
VC6-7	5.89	360	1000	200	431.2	44.7	86,693.33
VC6-8	5.89	360	1000	200	331.0	35.0	84,776.76
VC6-10	5.82	359	1000	200	288.7	31.6	84,008.82
VC6-11	5.82	359	1000	200	554.6	58.0	86,913.06

Tabla Nº4.6. Módulo de elasticidad y resistencia a la flexión experimental del vidrio primario de 6 mm

83

VC6-12	5.83	359	1000	200	428.5	45.3	88,020.91
VC6-13	5.84	359	1000	200	508.4	53.0	86,463.78
VC6-14	5.88	360	1000	200	485.7	50.0	82,384.61
VC6-15	5.82	359	1000	200	259.9	28.8	83,298.56
VC6-16	5.85	359	1000	200	476.6	49.7	85,038.56
VC6-17	5.82	359	1000	200	449.9	47.5	87,237.35
VC6-18	5.83	360	1000	200	561.8	58.3	86,139.85

De la tabla 4.6 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio primario de 6 mm.

 $E_{Promedio} = 85,587.99 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 45.4 \text{ N/mm}^2$

Así mismo, en el anexo A-04 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC6-6.

b. Vidrio primario de 8 mm

En la tabla 4.7 se muestran los resultados de las probetas de vidrio primario de 8 mm.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTA L (mm)	TIEMPO DE FALLA (s)
VC8-1	7.77	360	1000	200	966.1	14.67	29
VC8-3	7.66	360	1000	200	879.6	16.68	14
VC8-4	7.71	358	1000	200	649.9	12.92	24
VC8-5	7.72	359	1000	200	830.9	16.45	33
VC8-6	7.69	360	1000	200	759.6	14.61	34
VC8-7	7.64	360	1000	200	641.4	13.47	27
VC8-8	7.69	359	1000	200	908.4	16.66	35
VC8-9	7.61	359	1000	200	639.7	12.25	21
VC8-10	7.63	359	1000	200	809.2	16.40	34
VC8-11	7.71	359	1000	200	987.7	18.56	37
VC8-12	7.64	359	1000	200	663.0	13.17	28
VC8-13	7.66	359	1000	200	575.7	11.46	18

Tabla Nº4.7. Resultados de vidrio primario de 8 mm

84

VC8-14	7.70	360	1000	200	860.4	16.41	32
VC8-16	7.64	357	1000	200	832.9	17.09	29
VC8-17	7.62	359	1000	200	1,012.3	19.88	35

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ , intervalos de confianza, diagrama de Weibull, módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.7.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una distribución de Weibull. En la tabla 4.8 se muestra el ajuste de bondad del vidrio primario de 8 mm.

r	x _i (N/mm²)	ℓ_i
1	35.17	0.0913
2	39.01	0.0024
3	39.06	0.0147
4	39.28	0.0959
5	40.40	0.4565
6	45.21	0.3660
7	48.94	0.0113
8	49.05	0.1388
9	50.33	0.0490
10	50.77	0.1801
11	52.44	0.1400
12	53.81	0.1800
13	55.78	0.1670
14	58.00	0.1371
15	60.69	

Tabla Nº4.8. Ajuste de bondad del vidrio primario de 8 mm

n 15

$$\sum_{i=8}^{14} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.1417$$

a:

$$\sum_{i=1}^{7} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.1483$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

~

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
$$L = \frac{0.1417}{0.1483}$$
$$L = 0.96$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2[(r-1)/2], 2[r/2]) = F_{0.05}(14, 14) = 2.4$$

Entonces reemplazando los valores de L=0.96 y $F_{0.05}(14,14) = 2.4$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor)$$

 $L = 0.96 \ge F_{0.05}(14, 14) = 2.4$

Se observa que L=0.96 es menor a $F_{0.05}(14,14) = 2.4$, por lo tanto, **no se rechaza la hipótesis de que los datos provienen de una ley de Weibull**, es decir los datos se pueden ajustar a la distribución de Weibull.

• Análisis de datos de la muestra:

86

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.9 se muestra el análisis de datos del vidrio primario de 8 mm.

NÚMERO DE LA MUESTRA	TENSIÓN DE ROTURA (N/mm²)	$\widehat{G}(x_i)$ EXPERIMENTAL	G(x) WEIBULL
1	35.17	0.045	0.073
2	39.01	0.110	0.142
3	39.06	0.175	0.144
4	39.28	0.240	0.149
5	40.40	0.305	0.177
6	45.21	0.370	0.341
7	48.94	0.435	0.509
8	49.05	0.500	0.515
9	50.33	0.565	0.577
10	50.77	0.630	0.599
11	52.44	0.695	0.679
12	53.81	0.760	0.741
13	55.78	0.825	0.822
14	58.00	0.890	0.894
15	60.69	0.955	0.953

Tabla Nº4.9. Análisis de datos del vidrio primario de 8 mm

Reemplazando los valores de la tabla 4.9 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

$$\hat{\beta} = \frac{15(1.4004)}{4\sum_{i=13}^{15} \ln x_i - \sum_{i=1}^{12} \ln x_i} = 6.76$$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_i + 0.5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{15}\sum_{i=1}^{15}\ln x_i + 0.5772\frac{1}{6.76}\right] = 51.46\frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.829$$

$$f_1 = 42.44$$

Por otro lado, los valores de $\chi^2_{f_1;1-\frac{\alpha}{2}}$ y $\chi^2_{f_1;\frac{\alpha}{2}}$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

- Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \; \frac{\chi_{f_{1;1-\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{ob;z} = 6.76 \frac{\chi^2_{42.44;0.975}}{42.44} = 9.93$$

$$\beta_{un;z} = \hat{\beta} \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{un;z} = 6.76 \frac{\chi^2_{42.44;0.025}}{42.44} = 4.20$$

 Intervalo de confianza para el parámetro de escala θ, utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln \frac{1}{1 - G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$

_

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 51.46 \frac{N}{mm^2}$$

Tabla Nº4.10.	Iteraciones para intervalo de confianza del parámetro de	е
	escala θ del vidrio primario de 8 mm	

Número de iteración	$\theta_{ob;z}$	$\theta_{un;z}$
0	51.46	51.46
1	56.08	47.74
2	56.06	47.21
3	56.06	47.10

En la tabla 4.10 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 3 y 2 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 56.06 \ \frac{N}{mm^2}$$

$$\theta_{un;z} = 47.10 \ \frac{N}{mm^2}$$

- Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.11 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) %	У	x (N/mm²)	v	f2	H(f2)	Y	χ2 f2;0.975	χ2 f2;0.025	G _{ob,z}	G un,z
99	-1.52	64.50	0.14	14.86	0.068	4.93	27.30	6.18	99.99%	87.12%
95	-1.09	60.52	0.10	20.39	0.049	3.15	34.68	9.86	99.53%	78.19%
80	-0.47	55.21	0.07	27.78	0.036	1.67	44.19	15.15	92.97%	59.75%
63.21	0	51.46	0.08	26.80	0.038	1.04	42.95	14.43	81.06%	42.82%
10	2.25	36.89	0.38	6.20	0.169	0.12	14.77	1.33	25.71%	2.64%
0.1	6.90	18.53	2.52	1.51	0.793	0.002	6.23	0.03	0.91%	0.00%

Tabla №4.11. Intervalos de confianza para la función de distribución G(x) del vidrio primario de 8 mm

• Diagrama de Weibull:

En la figura 4.3 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.9 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.3. Diagrama de análisis de datos vidrio primario de 8 mm

En la figura 4.4 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura Nº4.4. Diagrama de Weibull del vidrio primario de 8 mm

• Módulo de elasticidad y resistencia a la flexión experimental:

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.6 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FLEXIÓN - σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VC8-1	7.77	360	1000	200	966.1	55.8	10,3930.18
VC8-3	7.66	360	1000	200	879.6	52.4	86,859.08
VC8-4	7.71	358	1000	200	649.9	39.0	81,490.59
VC8-5	7.72	359	1000	200	830.9	49.0	81,522.34
VC8-6	7.69	360	1000	200	759.6	45.2	84,500.91
VC8-7	7.64	360	1000	200	641.4	39.1	78,973.29
VC8-8	7.69	359	1000	200	908.4	53.8	89,017.12
VC8-9	7.61	359	1000	200	639.7	39.3	87,596.27
VC8-10	7.63	359	1000	200	809.2	48.9	82,494.56
VC8-11	7.71	359	1000	200	987.7	58.0	86,202.24
VC8-12	7.64	359	1000	200	663.0	40.4	83,741.73
VC8-13	7.66	359	1000	200	575.7	35.2	82,751.80
VC8-14	7.70	360	1000	200	860.4	50.8	84,843.37

Tabla Nº4.12. Módulo de elasticidad y resistencia a la flexión experimental del vidrio primario de 8 mm

91

VC8-16	7.64	357	1000	200	832.9	50.3	81,368.55
VC8-17	7.62	359	1000	200	1,012.3	60.7	85,281.04

De la tabla 4.12 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio primario de 8 mm.

 $E_{Promedio} = 85,371.54 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 47.9 \text{ N/mm}^2$

Así mismo, en el anexo A-05 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC8-6.

c. Vidrio primario de 10 mm

En la tabla 4.13 se muestran los resultados de las probetas de vidrio primario de 10 mm.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	TIEMPO DE FALLA (s)
VC10-1	9.67	360	1000	200	1,047.2	9.69	14
VC10-2	9.59	360	1000	200	1,213.4	11.39	26
VC10-3	9.64	360	1000	200	971.9	8.72	21
VC10-5	9.77	360	1000	200	1,343.4	12.04	21
VC10-6	9.58	360	1000	200	954.9	9.05	17
VC10-7	9.55	360	1000	200	704.5	6.94	11

Tabla Nº4.13. Resultados de vidrio primario de 10 mm

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ , intervalos de confianza, diagrama de Weibull, módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.13.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una

a:

distribución de Weibull. En la tabla 4.14 se muestra el ajuste de bondad del vidrio primario de 10 mm.

r	x _i (N/mm²)	ℓ_i
1	27.70	0.2343
2	36.62	0.0064
3	36.77	0.1366
4	39.23	0.3602
5	45.95	0.1180
6	48.80	
	•	

Tabla №4.14. A	juste de bonda	del vidrio	primario (de 10	mm

n	6
n	6

$$\sum_{i=4}^{5} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.2391$$
$$\sum_{i=1}^{3} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.1258$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
$$L = \frac{0.2391}{0.1258}$$
$$L = 1.90$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor) = F_{0.05}(4,6) = 4.53$$

93

Entonces reemplazando los valores de L=1.90 y $F_{0.05}(4,6) = 4.53$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor)$$

 $L = 1.90 \ge F_{0.05}(4,6) = 4.53$

Se observa que L=1.90 es menor a $F_{0.05}(4,6) = 4.53$, por lo tanto, **no se** rechaza la hipótesis de que los datos provienen de una ley de Weibull, es decir los datos se pueden ajustar a la distribución de Weibull.

• Análisis de datos de la muestra:

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.15 se muestra el análisis de datos del vidrio primario de 10 mm.

NÚMERO DE LA MUESTRA	TENSIÓN DE ROTURA (N/mm²)	$\widehat{G}(x_i)$ EXPERIMENTAL	G(x) WEIBULL
1	27.70	0.109	0.081
2	36.62	0.266	0.342
3	36.77	0.422	0.348
4	39.23	0.578	0.463
5	45.95	0.734	0.786
6	48.80	0.891	0.886

Tabla Nº4.15. Análisis de datos del vidrio primario de 10 mm

Reemplazando los valores de la tabla 4.15 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

$$\hat{\beta} = \frac{6(1.3545)}{5\sum_{i=6}^{6} \ln x_i - \sum_{i=1}^{5} \ln x_i} = 5.75$$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_i + 0.5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{6}\sum_{i=1}^{6}\ln x_i + 0.5772\frac{1}{5.75}\right] = 42.62 \frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.445$$

 $f_1 = 14.67$

Por otro lado, los valores de $\chi_{f_1;1-\frac{\alpha}{2}}^2$ y $\chi_{f_1;\frac{\alpha}{2}}^2$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

 Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \frac{\chi_{f_{1;1-\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{ob;z} = 5.75 \frac{\chi^2_{14.67;0.975}}{14.67} = 10.59$$

$$\beta_{un;z} = \hat{\beta} \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{un;z} = 5.75 \ \frac{\chi^2_{14.67;0.025}}{14.67} = 2.37$$

 Intervalo de confianza para el parámetro de escala θ, utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 42.62 \frac{N}{mm^2}$$

Tabla №4.16. Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio primario de 10 mm

Número de iteración	$\theta_{ob;z}$	$\theta_{un;z}$
0	42.62	42.62
1	50.28	37.26
2	51.87	36.08
3	52.71	35.67
4	53.21	35.57

En la tabla 4.16 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 4 y 3 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 53.21 \ \frac{N}{mm^2}$$

$$\theta_{un;z} = 35.57 \ \frac{N}{mm^2}$$

 Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.17 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) %	У	x (N/mm²)	v	f2	H(f2)	Ŷ	χ2 f2;0.975	χ2 f2;0.025	$\mathbf{G}_{ob,z}$	G _{un,z}
99	-1.53	55.60	0.43	5.58	0.189	5.57	13.77	1.07	100.00%	65.50%
95	-1.09	51.59	0.30	7.62	0.137	3.44	16.96	1.99	99.95%	59.32%
80	-0.48	46.30	0.20	10.99	0.094	1.77	21.91	3.81	97.05%	45.82%
63.21	0	42.62	0.19	11.29	0.091	1.09	22.34	3.99	88.54%	32.08%
10	2.25	28.81	0.99	2.86	0.388	0.16	9.08	0.19	38.90%	1.04%
0.1	6.91	12.81	7.03	0.51	1.525	0.004	3.87	-0.02	3.43%	-0.02%

Tabla №4.17. Intervalos de confianza para la función de distribución G(x) del vidrio primario de 10 mm

• Diagrama de Weibull:

En la figura 4.5 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.15 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.5. Diagrama de análisis de datos vidrio primario de 10 mm

En la figura 4.6 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura №4.6. Diagrama de Weibull del vidrio primario de 10 mm

• Módulo de elasticidad y resistencia a la flexión experimental:

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.18 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FELXIÓN - σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VC10-1	9.67	360	1000	200	1047.2	39.2	88,332.56
VC10-2	9.59	360	1000	200	1213.4	45.9	89,411.53
VC10-3	9.64	360	1000	200	971.9	36.8	91,879.26
VC10-5	9.77	360	1000	200	1343.4	48.8	88,426.63
VC10-6	9.58	360	1000	200	954.9	36.6	88,703.90
VC10-7	9.55	360	1000	200	704.5	27.7	86,302.09

Tabla Nº4.18. Módulo de Elasticidad y resistencia a la flexión experimental del vidrio primario de 10 mm

De la tabla 4.18 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio primario de 10 mm.

 $E_{Promedio} = 88,842.66 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 39.2 \text{ N/mm}^2$

Así mismo, en el anexo A-06 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC10-5.

4.1.1.2 Análisis de vidrios laminados primarios

a. Vidrio laminado primario 33.1 (6.38 mm)

En la tabla 4.19 se muestran los resultados de las probetas de vidrio laminado primario 33.1 (6.38 mm).

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	TIEMPO DE FALLA (s)
VL6-2	5.97	360	1000	200	398.5	17.51	28
VL6-3	5.93	360	1000	200	514.6	22.49	33
VL6-4	5.93	360	1000	200	501.4	22.24	37
VL6-7	5.91	359	1000	200	544.8	24.06	36
VL6-10	5.91	360	1000	200	393.7	17.54	35
VL6-13	5.89	359	1000	200	422.3	19.15	27
VL6-15	5.89	360	1000	200	434.2	20.17	35
VL6-16	5.90	360	1000	200	475.8	21.38	35
VL6-18	5.91	360	1000	200	442.7	19.69	40

Tabla Nº4.19. Resultados de vidrio laminado primario 33.1 (6.38 mm)

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ , intervalos de confianza, diagrama de Weibull, módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.19.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una distribución de Weibull. En la tabla 4.20 se muestra el ajuste de bondad del vidrio laminado primario 33.1 (6.38 mm).

r	x _i (N/mm²)	l _i
1	40.39	0.0056
2	40.65	0.1285
3	43.78	0.0643
4	44.95	0.0291
5	45.40	0.2302
6	48.68	0.1327
7	50.63	0.0826
8	51.97	0.1508
9	55.30	

Tabla Nº4.20. Ajuste de bondad del vidrio laminado primario 33.1 (6.38 mm)

n 9
$$\sum_{i=5}^{8} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.1491$$

$$\sum_{i=1}^{3} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.0569$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

a:

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
$$L = \frac{0.1491}{0.0569}$$
$$L = 2.62$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor) = F_{0.05}(8,8) = 3.44$$

Entonces reemplazando los valores de L=2.62 y $F_{0.05}(8,8) = 3.44$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2[(r-1)/2], 2[r/2])$$

$$L = 2.62 \ge F_{0.05}(8,8) = 3.44$$

Se observa que L=2.62 es menor a $F_{0.05}(8,8) = 3.44$, por lo tanto, **no se rechaza la hipótesis de que los datos provienen de una ley de Weibull**, es decir los datos se pueden ajustar a la distribución de Weibull.

• Análisis de datos de la muestra:

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.21 se muestra el análisis de datos del vidrio laminado primario 33.1 (6.38 mm).

Tabla №4.21. Análisis de datos del vidrio laminado primario 33.1 (6.38 mm)

NÚMERO DE LA MUESTRA	TENSIÓN DE ROTURA (N/mm²)	$\widehat{G}(x_i)$ EXPERIMENTAL	G(x) WEIBULL
1	40.39	0.074	0.136
2	40.65	0.181	0.144
3	43.78	0.287	0.268
4	44.95	0.394	0.329
5	45.40	0.500	0.355
6	48.68	0.606	0.570
7	50.63	0.713	0.705
8	51.97	0.819	0.790
9	55.30	0.926	0.939

Reemplazando los valores de la tabla 4.21 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

$$\hat{\beta} = \frac{9(1.3141)}{3.5\sum_{i=8}^{9}\ln x_i - \sum_{i=1}^{7}\ln x_i} = 9.40$$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_i + 0,5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{9}\sum_{i=1}^{9}\ln x_i + 0.5772\frac{1}{9.40}\right] = 49.56 \frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.658$$

 $f_1 = 23.93$

Por otro lado, los valores de $\chi^2_{f_1;1-\frac{\alpha}{2}}$ y $\chi^2_{f_1;\frac{\alpha}{2}}$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

- Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \frac{\chi_{f_{1;1-\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{ob;z} = 9.40 \frac{\chi_{23.93;0.975}^2}{23.93} = 15.43$$

$$\beta_{un;z} = \hat{\beta} \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{un;z} = 9.40 \frac{\chi_{23.93;0.025}^2}{23.93} = 4.85$$

- Intervalo de confianza para el parámetro de escala θ , utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln\frac{1}{1 - G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$
$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 49.56 \frac{N}{mm^2}$$

Tabla Nº4.22. Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio laminado primario 33.1 (6.38 mm)

Número de iteración	$\theta_{ob;z}$	$\theta_{un;z}$	
0	49.56	49.56	
1	53.76	46.28	
2	54.04	45.67	
3	54.12	45.50	
4	54.14	45.45	

103

En la tabla 4.22 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 4 y 3 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 54.14 \ \frac{N}{mm^2}$$

$$\theta_{un;z} = 45.45 \ \frac{N}{mm^2}$$

- Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.23 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) %	У	x (N/mm²)	v	f2	H(f2)	Ŷ	χ2 f2;0.975	χ2 f2;0.025	G _{ob,z}	G un,z
99	-1.53	58.31	0.26	8.69	0.119	5.18	18.56	2.53	100.00%	78.05%
95	-1.09	55.70	0.18	11.91	0.086	3.26	23.21	4.35	99.83%	69.68%
80	-0.48	52.14	0.13	16.64	0.061	1.71	29.70	7.32	95.29%	52.93%
63.21	0	49.56	0.13	16.47	0.061	1.06	29.47	7.21	85.10%	37.26%
10	2.25	39.01	0.65	3.99	0.271	0.13	11.12	0.48	31.98%	1.65%
0.1	6.91	23.77	4.41	1.07	1.182	0.003	5.19	0.004	1.57%	0.00%

Tabla Nº4.23. Intervalos de confianza para la función de distribución G(x) del vidrio laminado primario 33.1 (6.38 mm)

• Diagrama de Weibull:

En la figura 4.7 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.21 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.7. Diagrama de análisis de datos del vidrio laminado primario 33.1 (6.38 mm)

En la figura 4.8 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura №4.8. Diagrama de Weibull del vidrio laminado primario 33.1 (6.38 mm)

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.24 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.
MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FLEXIÓN σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VL6-2	5.97	360	1000	200	398.5	40.4	79,152.77
VL6-3	5.93	360	1000	200	514.6	52.0	81,271.24
VL6-4	5.93	360	1000	200	501.4	50.6	79,866.12
VL6-7	5.91	359	1000	200	544.8	55.3	81,398.41
VL6-10	5.91	360	1000	200	393.7	40.6	80,218.39
VL6-13	5.89	359	1000	200	422.3	43.8	79,876.52
VL6-15	5.89	360	1000	200	434.2	45.0	78,096.01
VL6-16	5.90	360	1000	200	475.8	48.7	80,081.44
VL6-18	5.91	360	1000	200	442.7	45.4	80,559.91

Tabla Nº4.24. Módulo de Elasticidad y resistencia a la flexión experimental
del vidrio laminado primario 33.1 (6.38 mm)

De la tabla 4.24 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio laminado primario 33.1 (6.38 mm).

 $E_{Promedio} = 80,057.87 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 46.9 \text{ N/mm}^2$

Así mismo, en el anexo A-07 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL6-6.

b. Vidrio laminado primario 44.1 (8.38 mm)

En la tabla 4.25 se muestran los resultados de las probetas de vidrio laminado primario 44.1 (8.38 mm).

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	TIEMPO DE FALLA (s)
VL8-4	7.92	360	1000	200	749.9	14.10	25
VL8-5	7.89	360	1000	200	938.3	18.16	32

Tabla Nº4.25. Resultados de vidrio laminado primario 44.1 (8.38 mm)

VL8-6	7.93	360	1000	200	1,069.5	20.19	40
VL8-7	7.87	360	1000	200	940.6	18.24	38
VL8-8	7.92	360	1000	200	807.7	14.80	34
VL8-9	7.92	360	1000	200	806.4	15.79	22
VL8-10	7.90	360	1000	200	795.3	16.16	35
VL8-11	7.88	360	1000	200	731.9	13.95	27
VL8-12	7.93	360	1000	200	909.6	17.42	26
VL8-14	7.94	360	1000	200	728.5	13.83	20

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ , intervalos de confianza, diagrama de Weibull, módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.25.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una distribución de Weibull. En la tabla 4.26 se muestra el ajuste de bondad del vidrio laminado primario 44.1 (8.38 mm).

r	x _i (N/mm²)	ℓ_i
1	40.81	0.0177
2	41.65	0.0208
3	42.15	0.1524
4	44.81	0.0292
5	45.23	0.0084
6	45.34	0.4023
7	50.50	0.1492
8	52.57	0.0227
9	52.92	0.2812
10	59.08	

Tabla №4.26, Aiuste de	e bondad del	vidrio laminado	primario 44.	1 (8.38 m	nm)
1 abia 11 4.20. Ajuste a			primario 44.	1 (0.00 II	

$$\sum_{i=6}^{9} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.2138$$

a:

$$\sum_{i=1}^{5} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.0457$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

~

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
$$L = \frac{0.2138}{0.0457}$$
$$L = 4.67$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2[(r-1)/2], 2[r/2]) = F_{0.05}(8,10) = 3.07$$

Entonces reemplazando los valores de L=4.67 y $F_{0.05}(8,10) = 3.07$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor)$$

 $L = 4.67 \ge F_{0.05}(8,10) = 3.07$

Se observa que L=4.67 es mayor que $F_{0.05}(8,10) = 3.07$, por lo tanto, **se rechaza la hipótesis de que los datos provienen de una ley de Weibull**, es decir los datos no se pueden ajustar a la distribución de Weibull. Sin embargo, se continuará con el procedimiento como si fuese posible ajustar a la distribución de Weibull para que se compruebe gráficamente lo obtenido por cálculo.

• Análisis de datos de la muestra:

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.27 se muestra el análisis de datos del vidrio laminado primario 44.1 (8.38 mm).

NÚMERO DE LA MUESTRA	TENSIÓN DE ROTURA (N/mm²)	$\widehat{G}(x_i)$ EXPERIMENTAL	G(x) WEIBULL
1	40.81	0.067	0.161
2	41.65	0.163	0.186
3	42.15	0.260	0.203
4	44.81	0.356	0.310
5	45.23	0.452	0.330
6	45.34	0.548	0.335
7	50.50	0.644	0.621
8	52.57	0.740	0.738
9	52.92	0.837	0.756
10	59.08	0.933	0.967

Tabla №4.27. Análisis de datos del vidrio laminado primario 44.1 (8.38 mm)

Reemplazando los valores de la tabla 4.27 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

$$\hat{\beta} = \frac{10(1.3644)}{4\sum_{i=9}^{10} \ln x_i - \sum_{i=1}^{8} \ln x_i} = 8.03$$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_i + 0.5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{10}\sum_{i=1}^{10}\ln x_i + 0.5772\frac{1}{8.03}\right] = 50.70 \frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.701$$

 $f_1 = 27.01$

Por otro lado, los valores de $\chi^2_{f_1;1-\frac{\alpha}{2}}$ y $\chi^2_{f_1;\frac{\alpha}{2}}$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

- Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \frac{\chi_{f_{1;1-\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{ob;z} = 8.03 \frac{\chi^2_{27.01;0.975}}{27.01} = 12.84$$

$$\beta_{un;z} = \hat{\beta} \, \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{un;z} = 8.03 \ \frac{\chi^2_{27.01;0.025}}{27.01} = 4.33$$

 Intervalo de confianza para el parámetro de escala θ, utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln \frac{1}{1 - G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 50.70 \frac{N}{mm^2}$$

Tabla №4.28. Iteraciones para intervalo de confianza del p	oarámetro de
escala θ del vidrio laminado primario 44.1 (8.38 n	∩m)

Número de iteración	$\theta_{ob;z}$	$\theta_{un;z}$	
0	50.70	50.70	
1	55.46	46.97	
2	55.69	46.31	
3	55.74	46.14	
4	55.75	46.10	

En la tabla 4.28 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 4 y 3 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 55.75 \ \frac{N}{mm^2}$$

$$\theta_{un;z} = 46.10 \ \frac{N}{mm^2}$$

 Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.29 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) %	У	x (N/mm²)	v	f2	H(f2)	Ŷ	χ2 f2;0.975	χ2 f2;0.025	G _{ob,z}	G _{un,z}
99	-1.52	61.32	0.22	9.72	0.106	5.12	20.08	3.09	100.00%	80.42%
95	-1.09	58.12	0.16	13.33	0.076	3.24	25.19	5.22	99.78%	71.79%
80	-0.47	53.79	0.11	18.51	0.055	1.70	32.20	8.58	94.81%	54.52%
63.21	0	50.70	0.12	18.19	0.056	1.06	31.78	8.36	84.24%	38.49%
10	2.25	38.30	0.58	4.36	0.247	0.13	11.75	0.61	30.47%	1.86%
0.1	6.90	21.45	3.92	1.15	1.093	0.002	5.37	0.008	1.39%	0.00%

Tabla Nº4.29. Intervalos de confianza para la función de distribución G(x) del vidrio laminado primario 44.1 (8.38 mm)

• Diagrama de Weibull:

En la figura 4.9 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.27 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.9. Diagrama de análisis de datos del vidrio laminado primario 44.1 (8.38 mm)

En la figura 4.10 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura Nº4.10. Diagrama de Weibull del vidrio laminado primario 44.1 (8.38mm)

• Módulo de Elasticidad y resistencia a la flexión experimental:

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.30 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FLEXIÓN σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VL8-4	7.92	360	1000	200	749.9	42.1	79002.30
VL8-5	7.89	360	1000	200	938.3	52.6	77710.10
VL8-6	7.93	360	1000	200	1069.5	59.1	78644.81
VL8-7	7.87	360	1000	200	940.6	52.9	78101.61
VL8-8	7.92	360	1000	200	807.7	45.3	81412.15
VL8-9	7.92	360	1000	200	806.4	45.2	76102.72

Tabla №4.30. Módulo de Elasticidad y resistencia a la flexión experimental del vidrio laminado primario 44.1 (8.38 mm)

VL8-10	7.90	360	1000	200	795.3	44.8	73739.75
VL8-11	7.88	360	1000	200	731.9	41.6	79278.79
VL8-12	7.93	360	1000	200	909.6	50.5	77303.88
VL8-14	7.94	360	1000	200	728.5	40.8	77666.74

De la tabla 4.30 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio laminado primario 44.1 (8.38 mm).

 $E_{Promedio} = 77,896.28 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 47.5 \text{ N/mm}^2$

Así mismo, en el anexo A-08 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL8-6.

c. Vidrio laminado primario 55.1 (10.38 mm)

En la tabla 4.31 se muestran los resultados de las probetas de vidrio primario de 6 mm.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	TIEMPO DE FALLA (s)
VL10-1	9.82	360	1000	200	1,089.8	11.03	18
VL10-2	9.81	360	1000	200	901.1	8.42	28
VL10-3	9.84	360	1000	200	859.4	9.10	25
VL10-4	9.87	360	1000	200	926.1	9.19	21
VL10-5	9.83	358	1000	200	744.7	7.63	16
VL10-6	9.83	360	1000	200	881.3	8.93	14
VL10-7	9.83	359	1000	200	836.8	9.05	15
VL10-8	9.85	360	1000	200	866.1	9.08	26
VL10-9	9.83	360	1000	200	845.6	9.26	27
VL10-10	9.84	360	1000	200	805.4	8.14	16

Tabla Nº4.31. Resultados de vidrio laminado primario 55.1 (10.38 mm)

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ, intervalos de confianza, diagrama de Weibull,

módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.31.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una distribución de Weibull. En la tabla 4.32 se muestra el ajuste de bondad del vidrio laminado primario 55.1 (10.38 mm).

r	x _i (N/mm²)	ℓ_i
1	27.70	0.0583
2	29.63	0.0678
3	30.79	0.0201
4	31.04	0.0464
5	31.51	0.0123
6	31.62	0.0794
7	32.30	0.0869
8	33.07	0.0491
9	33.55	0.4222
10	39.58	

Tabla Nº4.32. Ajuste de bondad del vidrio laminado primario 55.1 (10.38 mm)

$$\sum_{i=6}^{9} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.1594$$

$$\sum_{i=1}^{5} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.0410$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

a:

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$

$$L = \frac{0.1594}{0.0410}$$
$$L = 3.89$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor) = F_{0.05}(8,10) = 3.07$$

Entonces reemplazando los valores de L=3.89 y $F_{0.05}(8,10) = 3.07$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor)$$

 $L = 3.89 \ge F_{0.05}(8,10) = 3.07$

Se observa que L=3.89 es mayor que $F_{0.05}(8,10) = 3.07$, por lo tanto, **se** rechaza la hipótesis de que los datos provienen de una ley de Weibull, es decir los datos no se pueden ajustar a la distribución de Weibull. Sin embargo, se continuará con el procedimiento como si fuese posible ajustar a la distribución de Weibull para que se compruebe gráficamente lo obtenido por cálculo.

• Análisis de datos de la muestra:

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.33 se muestra el análisis de datos del vidrio laminado primario 55.1 (10.38 mm).

Tabla №4.33. Análisis de datos del vidrio lam	ninado primario 55.1 (10.38 mm)
---	---------------------------------

NÚMERO DE LA MUESTRA	TENSIÓN DE	$\widehat{G}(x_i)$	G(x)
	ROTURA (N/mm²)	EXPERIMENTAL	WEIBULL
1	27.70	0.067	0.120

2	29.63	0.163	0.226
3	30.79	0.260	0.318
4	31.04	0.356	0.340
5	31.51	0.452	0.385
6	31.62	0.548	0.396
7	32.30	0.644	0.467
8	33.07	0.740	0.551
9	33.55	0.837	0.606
10	39.58	0.933	0.994

Reemplazando los valores de la tabla 4.33 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

$$\hat{\beta} = \frac{10(1.3644)}{4\sum_{i=9}^{10} \ln x_i - \sum_{i=1}^{8} \ln x_i} = 10.38$$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_{i} + 0.5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{10}\sum_{i=1}^{10}\ln x_i + 0.5772\frac{1}{10.38}\right] = 33.78\frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.701$$

$$f_1 = 27.01$$

Por otro lado, los valores de $\chi^2_{f_1;1-\frac{\alpha}{2}}$ y $\chi^2_{f_1;\frac{\alpha}{2}}$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

- Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \frac{\chi_{f_{1;1-\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{ob;z} = 10.38 \frac{\chi^2_{27.01;0.975}}{27.01} = 16.60$$
$$\beta_{un;z} = \hat{\beta} \frac{\chi^2_{f_{1;\frac{\alpha}{2}}}}{f_1}$$

$$\beta_{un;z} = 10.38 \frac{\chi^2_{27.01;0.025}}{27.01} = 5.60$$

 Intervalo de confianza para el parámetro de escala θ, utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln\frac{1}{1 - G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 33.78 \frac{N}{mm^2}$$

Número de iteración	$\boldsymbol{\theta}_{ob;z}$	$\theta_{un;z}$
0	33.78	33.78
1	36.21	31.84
2	36.33	31.50
3	36.35	31.41
4	36.36	31.38

Tabla №4.34. Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio laminado primario 55.1 (10.38 mm)

En la tabla 4.34 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 4 y 3 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 36.36 \frac{N}{mm^2}$$
$$\theta_{un;z} = 31.38 \frac{N}{mm^2}$$

 Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.35 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) х χ2 χ2 H(f2) f2 Y у v Gob,z G_{un,z} (N/mm²) f2;0.975 f2;0.025 % 99 -1.52 39.14 0.22 9.72 0.106 5.12 20.08 3.09 100.00% 80.42% -1.09 37.55 0.16 0.077 25.19 5.22 99.78% 71.79% 95 13.33 3.24 80 -0.47 35.37 0.11 18.51 0.055 1.70 32.20 8.58 94.81% 54.52% 63.21 0 33.78 0.12 18.19 0.056 1.06 31.78 8.36 84.24% 38.49% 10 2.25 27.19 0.58 4.36 0.247 0.13 11.75 0.61 30.47% 1.86% 0.1 6.90 17.36 3.92 1.15 1.093 0.003 5.37 0.008 1.39% 0.00%

Tabla Nº4.35. Intervalos de confianza para la función de distribución G(x) del vidrio laminado primario 55.1 (10.38 mm)

• Diagrama de Weibull:

En la figura 4.11 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.33 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.11. Diagrama del análisis de datos del vidrio laminado primario 55.1 (10.38 mm)

En la figura 4.12 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura Nº4.12. Diagrama de Weibull del vidrio laminado primario 55.1 (10.38 mm)

• Módulo de Elasticidad y resistencia a la flexión experimental:

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.36 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FLEXIÓN σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VL10-1	9.82	360	1000	200	1089.8	39.6	77229.90
VL10-2	9.81	360	1000	200	901.1	33.1	83679.60
VL10-3	9.84	360	1000	200	859.4	31.5	73457.29
VL10-4	9.87	360	1000	200	926.1	33.6	77466.04
VL10-5	9.83	360	1000	200	744.7	27.7	76313.23
VL10-6	9.83	360	1000	200	881.3	32.3	76869.96
VL10-7	9.83	360	1000	200	836.8	30.8	72088.87
VL10-8	9.85	360	1000	200	866.1	31.6	73789.42
VL10-9	9.83	360	1000	200	845.6	31.0	71024.15
VL10-10	9.84	360	1000	200	805.4	29.6	76866.29

Tabla Nº4.36. Módulo de Elasticidad y resistencia a la flexión experimental del vidrio laminado primario 55.1 (10.38 mm)

De la tabla 4.36 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio laminado primario 55.1 (10.38 mm).

 $E_{Promedio} = 75,878.48 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 32.1 \text{ N/mm}^2$

Así mismo, en el anexo A-09 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL10-6.

4.1.1.3 Análisis de vidrios templados

a. Vidrio templado de 8 mm

En la tabla 4.37 se muestran los resultados de las probetas de vidrio templado de 8 mm.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	TIEMPO DE FALLA (s)
VT8-1	7.74	360	1000	200	2,554.73	46.11	72
VT8-2	7.72	360	1000	200	2,244.26	38.91	55
VT8-3	7.68	359	1000	200	2,733.97	50.58	72
VT8-4	7.73	360	1000	200	2,445.71	44.76	61
VT8-5	7.72	360	1000	200	2,399.94	42.74	65
VT8-6	7.74	360	1000	200	2,480.74	42.76	61
VT8-7	7.68	359	1000	200	2,279.81	41.36	66
VT8-8	7.67	360	1000	200	2,146.34	38.61	58

Tabla Nº4.37. Resultados de vidrio templado de 8 mm

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ , intervalos de confianza, diagrama de Weibull, módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.37.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una distribución de Weibull. En la tabla 4.38 se muestra el ajuste de bondad del vidrio templado de 8 mm.

r	x _i (N/mm²)	ℓ_i
1	124.09	0.0254
2	127.82	0.0517
3	131.77	0.0850
4	136.61	0.0431
5	138.73	0.0383
6	140.50	0.0839
7	144.62	0.1933
8	157.33	

Tabla Nº4.38.	Ajuste	de bondad	del vidrio	templado	de 8 mm
---------------	--------	-----------	------------	----------	---------

a:

$$\sum_{i=5}^{7} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.1052$$

$$\sum_{i=1}^{4} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.0513$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
$$L = \frac{0.1052}{0.0513}$$
$$L = 2.05$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel de significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor) = F_{0.05}(6,8) = 3.58$$

Entonces reemplazando los valores de L=2.05 y $F_{0.05}(6,8) = 3.58$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2\lfloor (r-1)/2 \rfloor, 2\lfloor r/2 \rfloor)$$

 $L = 2.05 \ge F_{0.05}(6,8) = 3.58$

Se observa que L=2.05 es menor a $F_{0.05}(6,8) = 3.58$, por lo tanto, **no se rechaza la hipótesis de que los datos provienen de una ley de Weibull**, es decir los datos se pueden ajustar a la distribución de Weibull.

• Análisis de datos de la muestra:

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.39 se muestra el análisis de datos del vidrio templado de 8 mm.

NÚMERO DE LA MUESTRA	TENSIÓN DE ROTURA (N/mm²)	$\widehat{G}(x_i)$ EXPERIMENTAL	G(x) WEIBULL
1	124.09	0.083	0.134
2	127.82	0.202	0.193
3	131.77	0.321	0.275
4	136.61	0.440	0.407
5	138.73	0.560	0.474
6	140.50	0.679	0.533
7	144.62	0.798	0.674
8	157.33	0.917	0.969

Tabla Nº4.39. Análisis de datos del vidrio templado de 8 mm

Reemplazando los valores de la tabla 4.39 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

$$\hat{\beta} = \frac{8(1.2547)}{3\sum_{i=7}^{8} \ln x_i - \sum_{i=1}^{6} \ln x_i} = 13.39$$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_i + 0.5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{8}\sum_{i=1}^{8}\ln x_i + 0.5772\frac{1}{13.39}\right] = 143.40 \frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.605$$

$$f_1 = 20.84$$

Por otro lado, los valores de $\chi^2_{f_1;1-\frac{\alpha}{2}}$ y $\chi^2_{f_1;\frac{\alpha}{2}}$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

- Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \; \frac{\chi_{f_{1;1-\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{ob;z} = 13.39 \frac{\chi^2_{20.84;0.975}}{20.84} = 22.65$$

$$\beta_{un;z} = \hat{\beta} \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{un;z} = 13.39 \frac{\chi^2_{20.84;0.025}}{20.84} = 6.53$$

- Intervalo de confianza para el parámetro de escala θ , utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln \frac{1}{1 - G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 143.40 \frac{N}{mm^2}$$

Tabla Nº4.40.	Iteraciones para in	tervalo d	e confianza d	lel parámetro de
	escala θ del vid	rio templa	ado de 8 mm	

Número de iteración	$\theta_{ob;z}$	$\theta_{un;z}$
0	143.40	143.40
1	152.38	136.30
2	153.23	134.88
3	153.51	134.46
4	153.61	134.33

En la tabla 4.40 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 4 y 3 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 153.61 \ \frac{N}{mm^2}$$

$$\theta_{un;z} = 134.33 \ \frac{N}{mm^2}$$

 Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.41 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) %	У	x (N/mm²)	v	f2	H(f2)	Ŷ	χ2 f2;0.975	χ2 f2;0.025	G _{ob,z}	G _{un,z}
99	-1.52	160.73	0.29	7.65	0.136	5.27	17.01	2.01	100.00%	75.01%
95	-1.09	155.65	0.21	10.48	0.098	3.30	21.18	3.53	99.87%	67.07%
80	-0.47	148.59	0.14	14.77	0.069	1.72	27.13	6.12	95.80%	51.04%
63.21	0	143.40	0.15	14.74	0.069	1.07	27.11	6.10	86.06%	35.82%
10	2.25	121.21	0.73	3.61	0.301	0.14	10.45	0.38	33.75%	1.49%
0.1	6.91	85.59	5.03	0.99	1.285	0.003	4.99	0.0005	1.81%	0.00%

Tabla Nº4.41. Intervalos de confianza para la función de distribución G(x) del vidrio templado de 8 mm

• Diagrama de Weibull:

En la figura 4.13 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.3 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.13. Diagrama del análisis de datos del vidrio templado de 8 mm

En la figura 4.14 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura Nº4.14. Diagrama de Weibull del vidrio templado de 8 mm

• Módulo de Elasticidad y resistencia a la flexión experimental:

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.6 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FELXIÓN - σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VT8-1	7.74	360	1000	200	2,554.73	144.6	88,370.43
VT8-2	7.72	360	1000	200	2,244.26	127.8	92,534.34
VT8-3	7.68	359	1000	200	2,733.97	157.3	88,419.57
VT8-4	7.73	360	1000	200	2,445.71	138.7	87,331.31
VT8-5	7.72	360	1000	200	2,399.94	136.6	90,174.10
VT8-6	7.74	360	1000	200	2,480.74	140.5	92,529.31

Tabla Nº4.42. Módulo de Elasticidad y resistencia a la flexión experimental del vidrio templado de 8 mm

VT8-7	7.68	359	1000	200	2,279.81	131.8	90,343.17
VT8-8	7.67	360	1000	200	2,146.34	124.1	91,129.13

De la tabla 4.42 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio templado de 8 mm.

 $E_{Promedio} = 90,103.92 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 137.68 \text{ N/mm}^2$

Así mismo, en el anexo A-10 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VT8-6.

b. Vidrio templado de 10 mm

En la tabla 4.43 se muestran los resultados de las probetas de vidrio templado de 10 mm.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	TIEMPO DE FALLA (s)
VT10-1	9.70	360	1000	200	3,799.38	34.99	53
VT10-2	9.78	360	1000	200	4,438.92	39.35	61
VT10-3	9.78	360	1000	200	3,802.20	33.03	59
VT10-4	9.79	360	1000	200	4,144.70	36.12	51
VT10-5	9.84	360	1000	200	3,902.94	33.56	52
VT10-6	9.84	360	1000	200	3,858.47	33.81	59
VT10-7	9.85	358	1000	200	4,258.61	36.81	61
VT10-8	9.85	360	1000	200	2,888.55	25.60	34

Tabla Nº4.43. Resultados de vidrio templado de 10 mm

A continuación, se realizará el ajuste de bondad, cálculo de los parámetros de forma β y escala θ , intervalos de confianza, diagrama de Weibull, módulo de elasticidad y resistencia a la flexión experimental de los resultados obtenidos en la tabla 4.43.

• Ajuste de Bondad:

Se realizará el ajuste de bondad según se describe en el punto 3.1.2.4 del capítulo III para verificar si los resultados obtenidos pueden ajustarse a una distribución de Weibull. En la tabla 4.44 se muestra el ajuste de bondad del vidrio templado de 10 mm.

r	x _i (N/mm²)	ℓ_i
1	101.21	0.2427
2	134.32	0.0057
3	134.77	0.0242
4	136.16	0.0054
5	136.43	0.2034
6	145.95	0.0584
7	148.92	0.1138
8	156.50	

Tabla Nº4.44. Ajuste de bondad del vidrio templado de 10 mm

$$\sum_{i=5}^{7} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor} = 0.1252$$

$$\sum_{i=1}^{4} \frac{\ell_i}{\lfloor r/2 \rfloor} = 0.0695$$

Reemplazando estos valores en la ecuación 3.11, tenemos que L es igual

a:

$$L = \frac{\sum_{i=\lfloor r/2 \rfloor+1}^{r-1} \frac{\ell_i}{\lfloor (r-1)/2 \rfloor}}{\sum_{i=1}^{\lfloor r/2 \rfloor} \frac{\ell_i}{\lfloor r/2 \rfloor}}$$
$$L = \frac{0.1252}{0.0695}$$
$$L = 1.80$$

Para determinar si se rechaza la hipótesis de que los datos provienen de una ley de Weibull a nivel se significación α =0.05 utilizamos la ecuación 3.12 y el valor de F_a lo obtenemos de la tabla 3.2, es así que:

$$F_{\alpha}(2[(r-1)/2], 2[r/2]) = F_{0.05}(6,8) = 3.58$$

Entonces reemplazando los valores de L=1.80 y $F_{0.05}(6,8) = 3.58$ en la ecuación 3.12.

$$L \ge F_{\alpha}(2[(r-1)/2], 2[r/2])$$

$$L = 1.80 \ge F_{0.05}(6,8) = 3.58$$

Se observa que L=1.80 es menor a $F_{0.05}(6,8) = 3.58$, por lo tanto, **no se rechaza la hipótesis de que los datos provienen de una ley de Weibull**, es decir los datos se pueden ajustar a la distribución de Weibull.

• Análisis de datos de la muestra:

Se realizará el análisis de datos de la muestra para obtener los parámetros β y θ según se describe en el punto 3.1.2.5 del capítulo III. En la tabla 4.45 se muestra el análisis de datos del vidrio templado de 10 mm.

NÚMERO DE LA MUESTRA	TENSIÓN DE ROTURA (N/mm²)	$\widehat{G}(x_i)$ EXPERIMENTAL	G(x) WEIBULL
1	101.21	0.083	0.024
2	134.32	0.202	0.393
3	134.77	0.321	0.404
4	136.16	0.440	0.438
5	136.43	0.560	0.445
6	145.95	0.679	0.703
7	148.92	0.798	0.779
8	156.50	0.917	0.923

Tabla Nº4.45	. Análisis de	datos del	vidrio	templado	de 10 mm
--------------	---------------	-----------	--------	----------	----------

Reemplazando los valores de la tabla 4.45 en las ecuaciones 3.13 y 3.14 tenemos que los parámetros de forma β y escala θ son iguales a:

$$\hat{\beta} = \frac{n k_n}{\frac{s}{n-s} \sum_{i=s+1}^n \ln x_i - \sum_{i=1}^s \ln x_i}$$

$$\hat{\beta} = \frac{8(1.2547)}{3\sum_{i=7}^{8} \ln x_i - \sum_{i=1}^{6} \ln x_i} = 10.73$$

$$\hat{\theta} = \exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_{i} + 0.5772\frac{1}{\beta}\right]$$

$$\hat{\theta} = \exp\left[\frac{1}{8}\sum_{i=1}^{8}\ln x_i + 0.5772\frac{1}{10.73}\right] = 143.32\frac{N}{mm^2}$$

• Intervalos de confianza:

Se obtendrán los intervalos de confianza del parámetro de forma β , parámetro de escala θ y de la función de distribución G(x) según se describe en los puntos 3.1.2.6, 3.1.2.7 y 3.1.2.8 del capítulo III. Se adopta un nivel de confianza (1- α) del 95%, donde el valor de f_1 lo obtenemos de la tabla 3.4, entonces tenemos que:

$$\frac{f_1}{n} = 2.605$$

 $f_1 = 20.84$

Por otro lado, los valores de $\chi_{f_1;1-\frac{\alpha}{2}}^2$ y $\chi_{f_1;\frac{\alpha}{2}}^2$ que serán necesarios para el cálculo de los intervalos de confianza se tomarán de la tabla 3.5, siendo estos los siguientes:

- Intervalo de confianza para el parámetro de forma β, utilizamos las ecuaciones 3.15 y 3.16, entonces tenemos que:

$$\beta_{ob;z} = \hat{\beta} \frac{\chi_{f_{1;1}\underline{\alpha}}^2}{f_1}$$

$$\beta_{ob;z} = 10.73 \frac{\chi^2_{20.84;0.975}}{20.84} = 18.16$$

$$\beta_{un;z} = \hat{\beta} \frac{\chi_{f_{1;\frac{\alpha}{2}}}^2}{f_1}$$

$$\beta_{un;z} = 13.39 \frac{\chi^2_{20.84;0.025}}{20.84} = 5.24$$

 Intervalo de confianza para el parámetro de escala θ, utilizamos las ecuaciones 3.17 y 3.18, entonces tenemos que:

$$\theta_{ob;z;j+1} = \frac{\theta_{ob;z;j}}{\left[\ln \frac{1}{1 - G_{un;z}^{(x=\theta_{ob;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{un;z;j+1} = \frac{\theta_{un;z;j}}{\left[\ln\frac{1}{1 - G_{ob;z}^{(x=\theta_{un;z;j})}}\right]^{\frac{1}{\beta}}}$$

$$\theta_{ob;z;0} = \theta_{un;z;0} = \hat{\theta} = 143.32 \frac{N}{mm^2}$$

Tabla №4.46. Iteraciones para intervalo de confianza del parámetro de escala θ del vidrio templado de 10 mm

Número de iteración	$\theta_{ob;z}$	$\theta_{un;z}$
0	143.32	143.32
1	154.60	134.53
2	155.69	132.78
3	156.04	132.26
4	156.17	132.10

En la tabla 4.46 se aprecia que los valores de $\theta_{ob;z}$ y $\theta_{un;z}$ en la iteración 4 y 3 existe una diferencia inferior a 0.1% (iteraciones consecutivas) lo cual determina una exactitud suficiente para la evaluación de los resultados. Por lo tanto, tenemos que:

$$\theta_{ob;z} = 156.17 \ \frac{N}{mm^2}$$

$$\theta_{un;z} = 132.10 \ \frac{N}{mm^2}$$

 Intervalo de confianza para la función de distribución G(x), utilizamos las ecuaciones 3.22 y 3.23, entonces tenemos que:

En la tabla 4.47 se muestra los intervalos de confianza para la función de distribución G(x) que representa la probabilidad de rotura (en porcentaje), para ello se utilizaron las ecuaciones 3.19, 3.20 y 3.21 con las tablas 3.6 y 3.7.

G(x) %	У	x (N/mm²)	v	f2	H(f2)	Ŷ	χ2 f2;0.975	χ2 f2;0.025	Gob;z	Gun,z
99	-1.52	165.24	0.29	7.65	0.136	5.27	17.01	2.01	100.00%	75.01%
95	-1.09	158.75	0.21	10.48	0.098	3.30	21.18	3.53	99.87%	67.07%
80	-0.47	149.82	0.14	14.77	0.069	1.72	27.13	6.12	95.80%	51.04%
63.21	0	143.32	0.15	14.75	0.069	1.07	27.11	6.10	86.06%	35.82%
10	2.25	116.21	0.73	3.62	0.301	0.14	10.45	0.38	33.75%	1.49%
0.1	6.91	75.29	5.03	0.98	1.285	0.003	4.99	0.0005	1.81%	0.00%

Tabla №4.47. Intervalos de confianza para la función de distribución G(x) del vidrio templado de 10 mm

• Diagrama de Weibull:

En la figura 4.15 se muestra la gráfica de los valores de G experimental y Weibull indicados en la tabla 4.44 según se describe en el punto 3.1.2.3 del capítulo III.

Figura Nº4.15. Diagrama del análisis de datos del vidrio templado de 10 mm

En la figura 4.16 se muestra el diagrama de Weibull según se indica en el punto 3.1.2.2 del capítulo III utilizando las ecuaciones 3.7 y 3.8 el cual debe ser una función lineal.

Figura Nº4.16. Diagrama de Weibull del vidrio templado de 10 mm

• Módulo de Elasticidad y resistencia a la flexión experimental:

El módulo de elasticidad y resistencia a la flexión experimental que se indica en la tabla 4.48 fueron obtenidos según lo indicado en los puntos 3.1.1.1 y 3.1.1.2 del capítulo III con las ecuaciones 3.1, 3.2 y 3.3.

MUESTRA N°	ESPESOR h (mm)	ANCHO B (mm)	DISTANCIA DE APOYO - Ls (mm)	DISTANCIA DE RODILLOS DE CARGA - Lb (mm)	CARGA DE FALLA (N)	RESISTENCIA A LA FELXIÓN - σ(N/mm²)	MÓDULO DE ELASTICIDAD EXPERIMENTAL E(N/mm²)
VT10-1	9.70	360	1000	200	3799.38	136.4	87849.77
VT10-2	9.78	360	1000	200	4438.92	156.5	89027.40
VT10-3	9.78	360	1000	200	3802.20	134.3	90861.13
VT10-4	9.79	360	1000	200	4144.70	146.0	90297.45
VT10-5	9.84	360	1000	200	3902.94	136.2	90131.25
VT10-6	9.84	360	1000	200	3858.47	134.8	88561.78
VT10-7	9.85	358	1000	200	4258.61	148.9	89881.89
VT10-8	9.85	360	1000	200	2888.55	101.2	87366.90

Tabla Nº4.48. Módulo de Elasticidad y resistencia a la flexión experimental del vidrio templado de 10 mm

De la tabla 4.48 podemos obtener un valor promedio experimental del módulo de elasticidad y resistencia a la flexión del vidrio templado de 10 mm.

 $E_{Promedio} = 89,247.20 \text{ N/mm}^2$ $\sigma_{Flexión Promedio} = 136.78 \text{ N/mm}^2$

Así mismo, en el anexo A-11 se muestra la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VT10-6.

4.1.2 Análisis del vidrio laminado primario según norma ASTM E1300 (2016), UNE-EN 16613 (2020) y método del espesor efectivo mejorado

De acuerdo a lo expuesto en el Capítulo II, se calcularon los espesores efectivos de los vidrios laminados según lo indicado por las normas ASTM E1300 (2016), UNE-EN 16613 (2020) y método del espesor efectivo mejorado para el cálculo de los esfuerzos de flexión y deflexión máxima.

Las propiedades mecánicas del vidrio y lámina intercalaria que se utilizaron para el cálculo del espesor efectivo son los siguientes: $E_{vidrio} = 70,000$ MPa (Módulo de Elasticidad del vidrio) $v_{vidrio} = 0.23$ (Módulo de Poisson del vidrio) $E_{PVB} = 3.7$ MPa (Módulo de Elasticidad del PVB) $v_{PVB} = 0.5$ (Módulo de Poisson del PVB) $G_{PVB} = 1.23$ MPa (Módulo de corte del PVB)

Vidrio Laminado Primario 33.1 (6.38 mm)

En la tabla N°4.49 se muestran los espesores efectivos del vidrio laminado primario 33.1 que serán utilizados para calcular los esfuerzos de flexión y deflexión máxima central.

	ESPESOR EFECTIVO ASTM E1300 (2016)		ESPESOR EFECTIVO UNE EN 16613 (2020)		ESPESOR EFECTIVO MEJORADO	
MUESTRA N°	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)
VL6-2	4.75	5.23	4.21	4.73	5.94	6.14
VL6-3	4.75	5.23	4.21	4.73	5.94	6.14
VL6-4	4.75	5.23	4.21	4.73	5.94	6.14
VL6-7	4.75	5.23	4.21	4.73	5.94	6.14
VL6-10	4.75	5.23	4.21	4.73	5.94	6.14
VL6-13	4.75	5.23	4.21	4.73	5.94	6.14
VL6-15	4.75	5.23	4.21	4.73	5.94	6.14
VL6-16	4.75	5.23	4.21	4.73	5.94	6.14
VL6-17	4.75	5.23	4.21	4.73	5.94	6.14
VL6-18	4.75	5.23	4.21	4.73	5.94	6.14

Tabla Nº4.49. Espesores efectivo	s de flexión y deflexión p	ara el vidrio laminado p	orimario 33.1 (6.38 mm)
----------------------------------	----------------------------	--------------------------	-------------------------

En la tabla 4.50 se muestran los esfuerzos de flexión máximos obtenidos con los espesores efectivos calculados en la tabla 4.49 según la ecuación 3.1 y 3.2.

		ESPESOR EFECTIVO ASTM E1300 (2016)	ESPESOR EFECTIVO UNE EN 16613 (2020)	ESPESOR EFECTIVO MEJORADO
MUESTRA N°	ESFUERZO DE FLEXIÓN EXPERIMENTAL σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)
VL6-2	40.4	51.6	62.5	38.3
VL6-3	52.0	65.8	80.0	48.6
VL6-4	50.6	64.1	77.9	47.4
VL6-7	55.3	69.6	84.6	51.4
VL6-10	40.6	51.0	61.9	37.9
VL6-13	43.8	54.6	66.3	40.5
VL6-15	45.0	56.0	68.0	41.5
VL6-16	48.7	61.1	74.1	45.2
VL6-18	45.4	57.0	69.2	42.2

Tabla №4.50. Esfuerzo de flexión máxim	o para el vidrio laminado	primario 33.1	(6.38 mm)
--	---------------------------	---------------	-----------

A continuación, se muestran los esfuerzos máximos promedios de las probetas indicadas en la tabla 4.50.

 $\sigma_{\text{Experimental promedio}} = 46.9 \text{ N/mm}^2$ $\sigma_{\text{ASTM E1300 promedio}} = 59.0 \text{ N/mm}^2$ $\sigma_{\text{UNE-EN 16613 promedio}} = 71.6 \text{ N/mm}^2$ $\sigma_{\text{E-E-M promedio}} = 43.7 \text{ N/mm}^2$

En la tabla 4.51 se muestran las deflexiones máximas obtenidos con los espesores efectivos calculados en la tabla 4.49 según la ecuación 3.3.

Tabla №4.51. Deflexión máxima central para e	el vidrio laminado primario 33.1	(6.38 mm)
--	----------------------------------	-----------

		ESPESOR EFECTIVO ASTM E1300 (2016)	ESPESOR EFECTIVO UNE EN 16613 (2020)	ESPESOR EFECTIVO MEJORADO
MUESTRA N°	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)
VL6-2	17.51	39.26	56.37	20.03

VL6-3	22.49	50.79	72.92	25.91
VL6-4	22.24	49.44	70.97	25.22
VL6-7	24.06	53.87	77.34	27.48
VL6-10	17.54	38.82	55.73	19.80
VL6-13	19.15	41.72	59.90	21.29
VL6-15	20.17	42.85	61.52	21.86
VL6-16	21.38	46.92	67.36	23.94
VL6-18	19.69	43.65	62.67	22.27

A continuación, se muestran las deflexiones máximas promedios de las probetas indicadas en la tabla 4.51.

 $f_{M\acute{a}xima\ experimental\ promedio} = 20.5\ mm$ $f_{M\acute{a}xima\ ASTM\ E1300\ promedio} = 45.3\ mm$ $f_{M\acute{a}xima\ UNE-EN\ 16613\ promedio} = 65.0\ mm$ $f_{M\acute{a}xima\ E-E-M\ promedio} = 23.1\ mm$

Vidrio Laminado Primario 44.1 (8.38 mm)

En la tabla N°4.52 se muestran los espesores efectivos del vidrio laminado primario 44.1 que serán utilizados para calcular los esfuerzos de flexión y deflexión máxima central.

	ESPESOR EFECTIVO ASTM E1300 (2016)		ESPESOR EFECTIVO UNE EN 16613 (2020)		ESPESOR EFECTIVO MEJORADO	
MUESTRA N°	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)
VL8-4	5.90	6.54	5.58	6.26	7.67	7.98
VL8-5	5.90	6.54	5.58	6.26	7.67	7.98
VL8-6	5.90	6.54	5.58	6.26	7.67	7.98
VL8-7	5.90	6.54	5.58	6.26	7.67	7.98
VL8-8	5.90	6.54	5.58	6.26	7.67	7.98
VL8-9	5.90	6.54	5.58	6.26	7.67	7.98
VL8-10	5.90	6.54	5.58	6.26	7.67	7.98

VL8-11	5.90	6.54	5.58	6.26	7.67	7.98
VL8-12	5.90	6.54	5.58	6.26	7.67	7.98
VL8-14	5.90	6.54	5.58	6.26	7.67	7.98

En la tabla 4.53 se muestran los esfuerzos de flexión máximos obtenidos con los espesores efectivos calculados en la tabla 4.52 según la ecuación 3.1 y 3.2.

Tabla Nº4.53. Esfue	rzo de flexión máxi	mo para el vidrio	laminado primari	o 44.1 (8.38 mm)

		ESPESOR EFECTIVO ASTM E1300 (2016)	ESPESOR EFECTIVO UNE EN 16613 (2020)	ESPESOR EFECTIVO MEJORADO
MUESTRA N°	ESFUERZO DE FLEXIÓN EXPERIMENTAL σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)
VL8-4	42.1	60.8	66.1	41.5
VL8-5	52.6	75.6	82.1	51.4
VL8-6	59.1	85.8	93.2	58.2
VL8-7	52.9	75.7	82.3	51.5
VL8-8	45.3	65.4	71.0	44.6
VL8-9	45.2	65.3	70.9	44.5
VL8-10	44.8	64.4	69.9	43.9
VL8-11	41.6	59.5	64.5	40.6
VL8-12	50.5	73.3	79.6	49.9
VL8-14	40.8	59.2	64.2	40.4

A continuación, se muestran los esfuerzos máximos promedios de las probetas indicadas en la tabla 4.53.

 $\sigma_{\text{Experimental promedio}} = 47.5 \text{ N/mm}^2$ $\sigma_{\text{ASTM E1300 promedio}} = 68.5 \text{ N/mm}^2$ $\sigma_{\text{UNE-EN 16613 promedio}} = 74.4 \text{ N/mm}^2$ $\sigma_{\text{E-E-M promedio}} = 46.7 \text{ N/mm}^2$

En la tabla 4.54 se muestran las deflexiones máximas obtenidos con los espesores efectivos calculados en la tabla 4.52 según la ecuación 3.3.

		ESPESOR EFECTIVO ASTM E1300 (2016)	ESPESOR EFECTIVO UNE EN 16613 (2020)	ESPESOR EFECTIVO MEJORADO
MUESTRA N°	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)
VL8-4	14.10	38.49	45.48	17.56
VL8-5	18.16	48.15	56.90	21.97
VL8-6	20.19	54.89	64.87	25.04
VL8-7	18.24	48.27	57.05	22.02
VL8-8	14.80	41.49	49.03	18.93
VL8-9	15.79	41.39	48.91	18.88
VL8-10	16.16	40.82	48.23	18.62
VL8-11	13.95	37.56	44.39	17.14
VL8-12	17.42	46.68	55.17	21.30
VL8-14	13.83	37.39	44.18	17.06

Tabla №4.54. Deflexión máxima central para el vidrio laminado primario 44.1	(8.38 mm)
	(

A continuación, se muestran las deflexiones máximas promedios de las probetas indicadas en la tabla 4.54.

 $\label{eq:fMaxima experimental promedio} = 16.3 \mbox{ mm}$ $f_{Maxima ASTM E1300 \mbox{ promedio}} = 43.5 \mbox{ mm}$ $f_{Maxima UNE-EN 16613 \mbox{ promedio}} = 51.4 \mbox{ mm}$ $f_{Maxima E-E-M \mbox{ promedio}} = 19.9 \mbox{ mm}$

Vidrio Laminado Primario 55.1 (10.38 mm)

En la tabla N°4.55 se muestran los espesores efectivos del vidrio laminado primario 55.1 que serán utilizados para calcular los esfuerzos de flexión y deflexión máxima central.
	ESPESOR EFECTIVO ASTM E1300 (2016)		TIVO ESPESOR EFECTIVO UNE EN 16613 (2020)		ESPESOR EFECTIVO MEJORADO	
MUESTRA N°	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)	hef;w (mm)	hef;σ;1/hef;σ;2 (mm)	hef;w (mm)	hef; σ;1/hef; σ;2 (mm)
VL10-1	6.95	7.71	6.96	7.80	9.35	9.80
VL10-2	6.95	7.71	6.96	7.80	9.35	9.80
VL10-3	6.95	7.71	6.96	7.80	9.35	9.80
VL10-4	6.95	7.71	6.96	7.80	9.35	9.80
VL10-5	6.95	7.71	6.96	7.80	9.35	9.80
VL10-6	6.95	7.71	6.96	7.80	9.35	9.80
VL10-7	6.95	7.71	6.96	7.80	9.35	9.80
VL10-8	6.95	7.71	6.96	7.80	9.35	9.80
VL10-9	6.95	7.71	6.96	7.80	9.35	9.80
VL10-10	6.95	7.71	6.96	7.80	9.35	9.80

Tabla Nº4.55. Espesores efectivos de flexión y deflexión para el vidrio laminado primario 55.1 (10.38 mm)

En la tabla 4.56 se muestran los esfuerzos de flexión máximos obtenidos con los espesores efectivos calculados en la tabla 4.55 según la ecuación 3.1 y 3.2.

Tabla №4.56. Esfuerzo de flexión máxim	o para el vidrio laminado	primario 55.1	(10.38 mm)
--	---------------------------	---------------	------------

		ESPESOR EFECTIVO ASTM E1300 (2016)	ESPESOR EFECTIVO UNE EN 16613 (2020)	ESPESOR EFECTIVO MEJORADO
MUESTRA N°	ESFUERZO DE FLEXIÓN EXPERIMENTAL σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)	ESFUERZO DE FLEXIÓN σ(N/mm²)
VL10-1	39.6	62.9	61.6	39.7
VL10-2	33.1	52.3	51.3	33.2
VL10-3	31.5	50.0	49.0	31.8
VL10-4	33.6	53.7	52.6	34.0
VL10-5	27.7	43.8	42.9	27.9
VL10-6	32.3	51.2	50.2	32.5
VL10-7	30.8	48.8	47.8	31.0
VL10-8	31.6	50.4	49.3	32.0
VL10-9	31.0	49.2	48.2	31.3
VL10-10	29.6	47.0	46.0	29.9

142

A continuación, se muestran los esfuerzos máximos promedios de las probetas indicadas en la tabla 4.56.

$$\begin{split} &\sigma_{\text{Experimental promedio}} = 32.1 \text{ N/mm}^2 \\ &\sigma_{\text{ASTM E1300 promedio}} = 50.9 \text{ N/mm}^2 \\ &\sigma_{\text{UNE-EN 16613 promedio}} = 49.9 \text{ N/mm}^2 \\ &\sigma_{\text{E-E-M promedio}} = 32.3 \text{ N/mm}^2 \end{split}$$

En la tabla 4.57 se muestran las deflexiones máximas obtenidos con los espesores efectivos calculados en la tabla 4.55 según la ecuación 3.3.

		ESPESOR EFECTIVO ASTM E1300 (2016)	ESPESOR EFECTIVO UNE EN 16613 (2020)	ESPESOR EFECTIVO MEJORADO
MUESTRA N°	DEFLEXIÓN MÁXIMA EXPERIMENTAL (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)	DEFLEXIÓN MÁXIMA TEÓRICA (mm)
VL10-1	11.03	34.30	34.15	14.09
VL10-2	8.42	28.36	28.24	11.65
VL10-3	9.10	27.08	26.96	11.12
VL10-4	9.19	29.15	29.02	11.97
VL10-5	7.63	23.57	23.47	9.68
VL10-6	8.93	27.74	27.62	11.39
VL10-7	9.05	26.39	26.27	10.84
VL10-8	9.08	27.26	27.14	11.20
VL10-9	9.26	26.62	26.50	10.93
VL10-10	8.14	25.35	25.24	10.41

Tabla №4.57. Deflexión máxima central para el vidrio laminado primario 55.1 (10.38 mm)

A continuación, se muestran las deflexiones máximas promedios de las probetas indicadas en la tabla 4.57.

$$\label{eq:fMaxima experimental promedio} \begin{split} f_{Maxima experimental promedio} &= 9.0 \mbox{ mm} \\ f_{Maxima ASTM E1300 \mbox{ promedio}} &= 27.6 \mbox{ mm} \\ f_{Maxima UNE-EN 16613 \mbox{ promedio}} &= 27.5 \mbox{ mm} \end{split}$$

 $f_{Maxima E-E-M \text{ promedio}} = 11.3 \text{ mm}$

4.1.3 Análisis del vidrio laminado primario con software SJ Mepla v.5.0.14

En el anexo A se muestran los resultados gráficos obtenidos con el software SJ Mepla 5.0.14 que se muestran en las tablas N°4.58, N°4.59 y N°4.60.

Vidrio Laminado Primario 33.1 (6.38 mm)

En la tabla 4.58 se muestran los esfuerzos a la flexión y deflexiones máximas obtenidas con el software SJ Mepla 5.0.14 para el vidrio laminado primario 33.1 (6.38mm).

MUESTRA N°	ESFUERZO A LA FLEXIÓN σ(N/mm2)	DEFLEXIÓN MÁXIMA (mm)
VL6-2	39.7	19.56
VL6-3	50.4	24.79
VL6-4	49.2	24.17
VL6-7	53.2	26.15
VL6-10	39.3	19.34
VL6-13	41.9	20.63
VL6-15	43.0	21.16
VL6-16	46.8	23.04
VL6-18	43.8	21.54

Tabla Nº4.58. Esfuerzo de flexión máximo y deflexión máxima central con el software SJ Mepla 5.0.14 para el vidrio laminado primario 33.1 (6.38 mm)

A continuación, se muestran los esfuerzos a la flexión y deflexiones máximas promedios de las probetas indicadas en la tabla 4.58.

 $\sigma_{\text{SJ Mepla promedio}} = 45.3 \text{ N/mm}^2$

 $f_{Maxima SJ Mepla promedio} = 22.26 mm$

Vidrio Laminado Primario 44.1 (8.38 mm)

En la tabla 4.59 se muestran los esfuerzos a la flexión y deflexiones máximas obtenidas con el software SJ Mepla 5.0.14 para el vidrio laminado primario 44.1 (8.38mm).

MUESTRA N°	ESFUERZO A LA FLEXIÓN σ(N/mm2)	DEFLEXIÓN MÁXIMA (mm)
VL8-4	43.3	16.67
VL8-5	53.58	20.62
VL8-6	60.7	23.36
VL8-7	53.7	20.66
VL8-8	46.5	17.89
VL8-9	46.4	17.86
VL8-10	45.8	17.63
VL8-11	42.3	16.31
VL8-12	52.0	20.01
VL8-14	42.1	16.23

Tabla Nº4.59. Esfuerzo de flexión máximo y deflexión máxima central con el software SJ Mepla 5.0.14 para el vidrio laminado primario 44.1 (8.38 mm)

A continuación, se muestran los esfuerzos a la flexión y deflexiones máximas promedios de las probetas indicadas en la tabla 4.59.

 $\sigma_{SJ Mepla promedio} = 48.6 N/mm^2$

f_{Máxima SJ Mepla promedio} = 18.72 mm

Vidrio Laminado Primario 55.1 (10.38 mm)

En la tabla 4.60 se muestran los esfuerzos a la flexión y deflexiones máximas obtenidas con el software SJ Mepla 5.0.14 para el vidrio laminado primario 55.1 (10.38mm).

MUESTRA N°	ESFUERZO A LA FLEXIÓN σ(N/mm2)	DEFLEXIÓN MÁXIMA (mm)
VL10-1	41.5	13.27
VL10-2	34.6	11.08
VL10-3	33.1	10.61
VL10-4	35.5	11.37
VL10-5	28.94	9.28
VL10-6	33.9	10.86
VL10-7	32.3	10.34
VL10-8	33.4	10.68
VL10-9	32.6	10.44
VL10-10	31.2	9.98

Tabla Nº4.60. Esfuerzo de flexión máximo y deflexión máxima central con el software SJ Mepla 5.0.14 para el vidrio laminado primario 55.1 (10.38 mm)

A continuación, se muestran los esfuerzos a la flexión y deflexiones máximas promedios de las probetas indicadas en la tabla 4.60.

 $\sigma_{SJ Mepla promedio} = 33.7 N/mm^{2}$ $f_{Máxima SJ Mepla promedio} = 10.79 mm$

4.2 DISCUSIÓN DE RESULTADOS

Vidrio primario

Luego de haber realizado los ajustes de bondad a los resultados obtenidos en el ensayo de flexión de las probetas de vidrios primarios de 6, 8 y 10 mm podemos apreciar en las figuras N°4.1, N°4.3 y N°4.5 que es posible representar estos resultados mediante una función de Weibull representándolo así en un diagrama de Weibull (véase las Figuras N°4.2, N°4.4 y N°4.6), es entonces que solamente en estos casos las hipótesis planteadas en los ajustes de bondad han sido aceptadas.

Por otro lado, podemos apreciar en las Tablas N°4.61, N°4.62 y N°4.63 los valores de los parámetros de forma β y parámetros de escala θ de la función

de Weibull de dos parámetros para los vidrios primarios de 6, 8 y 10 mm respectivamente.

Parámetro de forma β (adimensional)				
$\beta_{un;z}$	β	$\beta_{ob;z}$		
3.70	5.96	8.75		
Parámetro de escala θ (N/mm²)				
$\theta_{un;z}$	θ	$\theta_{ob;z}$		
44.41	49.10	54.10		

Tabla №4.61. Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio primario de 6 mm

Tabla Nº4.62. Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio primario de 8 mm

Parámetro de forma β (adimensional)				
$\beta_{un;z}$	β	$\beta_{ob;z}$		
4.20	6.76	9.93		
Parámetro de escala θ (N/mm²)				
$\theta_{un;z}$	θ	$\theta_{ob;z}$		
47.10	51.46	56.06		

Tabla Nº4.63. Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio primario de 10 mm

Parámetro de forma β (adimensional)			
$\beta_{un;z}$	β	$\beta_{ob;z}$	
2.37	5.75	10.59	
Parámetro de escala θ (N/mm²)			
$\theta_{un;z}$	θ	$\theta_{ob;z}$	
35.67	42.62	52.71	

Además, podemos apreciar en las Tablas N°4.5, N°4.11 y N°4.17 que la resistencia a la flexión de diseño para los vidrios primarios de 6, 8 y 10 mm es de 15.41 N/mm², 18.53 N/mm² y 12.81 N/mm² respectivamente, esto considerando una probabilidad de rotura de 1x10⁻³ y un nivel de confianza del 95%.

Así mismo, podemos apreciar en las Tablas N°4.6, N°4.12 y N°4.18 que el módulo de elasticidad promedio experimental para los vidrios primarios de 6, 8 y 10 mm es de 85,587.99 N/mm², 85,371.54 N/mm² y 88,842.66 N/mm² respectivamente. En estas tablas, también podemos obtener que la resistencia a

la flexión promedio experimental para los vidrios primarios de 6, 8 y 10 mm es de 45.4 N/mm², 47.9 N/mm² y 39.2 N/mm² respectivamente.

Vidrio laminado

Luego de haber realizado los ajustes de bondad a los resultados obtenidos en el ensayo de flexión de las probetas de vidrios laminados primarios 33.1 (6.38 mm), 44.1 (8.38 mm) y 55.1 (10.38 mm) podemos apreciar en las figuras N°4.7, N°4.9 y N°4.11 que solamente es posible representar estos resultados mediante una función de Weibull para las probetas de 6.38 mm y representarlo así en un diagrama de Weibull (véase la Figura N°4.8), es entonces que solamente en este caso la hipótesis planteada en el ajuste de bondad es aceptada. Esto debido a que los resultados de las probetas de 8.38 y 10.38 mm presentan una distorsión muy notoria (véase las Figuras N°4.9 y N°4.11) y esto se puede ver claramente en el diagrama de Weibull en las Figuras N°4.10 y N°4.12 respectivamente. Estos resultados se obtienen debido a que la norma UNE-EN 1288 (2000) sólo es aplicable para vidrios monolíticos, y por ende la norma UNE-EN 12603 (2003) también es aplicable a los resultados obtenidos para estos vidrios, sin embargo, se realizaron estos procedimientos para poder analizar los resultados de los vidrios laminados primarios bajo estas normativas y poder obtener resultados valiosos que nos ayuden a realizar un buen dimensionamiento del vidrio laminado.

Por otro lado, podemos apreciar en la Tabla N°4.64 los valores de los parámetros de forma β y parámetros de escala θ de la función de Weibull de dos parámetros para el vidrio lamiando primario 33.1 (6.38 mm).

Parámetro de forma β (adimensional)			
$\beta_{un;z}$	β	$\beta_{ob;z}$	
4.85	9.40	15.43	
Parámetro de escala θ (N/mm²)			
$\theta_{un;z}$	θ	$\theta_{ob;z}$	
45.50	49.56	54.12	

Tabla №4.64. Parámetro de forma β y escala θ de la función de Weibull d	le
dos parámetros del vidrio laminado primario de 6.38 mm	

148

Además, podemos apreciar en la Tabla N°4.23 que la resistencia a la flexión de diseño para el vidrio laminado primario 33.1 (6.38 mm) es de 23.77 N/mm², esto considerando una probabilidad de rotura de 1×10^{-3} y un nivel de confianza del 95%.

Así mismo, podemos apreciar en las Tablas N°4.24, N°4.30 y N°4.36 que el módulo de elasticidad promedio experimental para los vidrios laminados primarios 33.1 (6.38 mm), 44.1 (8.38 mm) y 55.1 (10.38 mm) es de 80,057.87 N/mm², 77,896.28 N/mm² y 75,878.48 N/mm² respectivamente. En estas tablas, también podemos obtener que la resistencia a la flexión promedio experimental para los vidrios laminados primarios 33.1 (6.38 mm), 44.1 (8.38 mm) y 55.1 (10.38 mm), 55.1 (10.38 mm) y 55.1 (10.38 mm) es de 46.9 N/mm², 47.5 N/mm² y 32.1 N/mm² respectivamente.

Los esfuerzos de flexión máximos promedio de los vidrios laminados primarios 33.1 (6.38 mm), 44.1 (8.38 mm) y 55.1 (10.38 mm) se pueden apreciar en las Figuras N°4.17, N°4.18 y N°4.19 respectivamente, estos valores fueron obtenidos experimentalmente, con el software SJ Mepla 5.0.14 y por normativas internacionales como la ASTM E1300 (2016) y UNE-EN 16613 (2020).

Figura Nº4.17. Comparativo del esfuerzo de flexión máximo del vidrio laminado primario 33.1 (6.38 mm)

Figura Nº4.18. Comparativo del esfuerzo de flexión máximo del vidrio laminado primario 44.1 (8.38 mm)

Figura №4.19. Comparativo del esfuerzo de flexión máximo del vidrio laminado primario 55.1 (10.38 mm)

Se puede apreciar en las Figuras N°4.17, N°4.18 y N°4.19 que los valores obtenidos de esfuerzo de flexión máximo con el espesor efectivo mejorado y con el SJ Mepla Lineal son valores muy próximos al obtenido experimentalmente. Por otro lado, los valores obtenidos con el espesor efectivo con la norma ASTM E1300 (2016) y UNE EN 16613 (2020) no son tan próximos al obtenido experimentalmente, es decir, son valores más conservativos por lo que se necesitaría mayores espesores de vidrio.

Así mismo, las deflexiones máximas promedio de los vidrios laminados primarios 33.1 (6.38 mm), 44.1 (8.38 mm) y 55.1 (10.38 mm) se pueden apreciar en las Figuras N°4.20, N°4.21 y N°4.22 respectivamente, estos valores fueron obtenidos experimentalmente, con el software SJ Mepla 5.0.14 y por normativas internacionales como la ASTM E1300 (2016) y UNE-EN 16613 (2020).

Figura №4.20. Comparativo de las deflexiones máximas del vidrio laminado primario 33.1 (6.38 mm)

151

Figura Nº4.21. Comparativo de las deflexiones máximas del vidrio laminado primario 44.1 (8.38 mm)

Figura №4.22. Comparativo de las deflexiones máximas del vidrio laminado primario 55.1 (10.38 mm)

Se puede apreciar en las Figuras N°4.20, N°4.21 y N°4.22 que los valores obtenidos de deflexión máximo con el espesor efectivo mejorado y con el SJ Mepla Lineal son valores muy próximos al obtenido experimentalmente. Por otro lado, los valores obtenidos con el espesor efectivo con la norma ASTM E1300 (2016) y UNE-EN 16613 (2020) no son tan próximos al obtenido experimentalmente, es decir, son valores más conservativos por lo que se necesitaría mayores espesores de vidrio.

Vidrio templado

Luego de haber realizado los ajustes de bondad a los resultados obtenidos en el ensayo de flexión de las probetas de vidrios templados de 8 y 10 mm podemos apreciar en las figuras N°4.13 y N°4.15 que es posible representar estos resultados mediante una función de Weibull representándolo así en un diagrama de Weibull (véase las Figuras N°4.14 y N°4.16), es entonces que solamente en este caso la hipótesis planteada en el ajuste de bondad es aceptada.

Por otro lado, podemos apreciar en las Tablas N°4.65 y N°4.66 los valores de los parámetros de forma β y parámetros de escala θ de la función de Weibull de dos parámetros para los vidrios templados de 8 y 10 mm respectivamente.

Parámetro de forma β (adimensional)		
$\beta_{un;z}$	β	$\beta_{ob;z}$
6.53	13.39	22.65
Parámetro de escala θ (N/mm ²)		
$\theta_{un;z}$	θ	$\theta_{ob;z}$
134.46	143.40	153.51

Tabla Nº4.65. Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio templado de 8 mm

Tabla Nº4.66. Parámetro de forma β y escala θ de la función de Weibull de dos parámetros del vidrio templado de 10 mm

Parámetro de forma β (adimensional)		
$\beta_{un;z}$	β	$\beta_{ob;z}$
5.24	10.73	18.16

Parámetro de escala θ (N/mm²)		
$\theta_{un;z}$	θ	$\theta_{ob;z}$
132.26	143.32	156.04

Además, podemos apreciar en las Tablas N°4.41 y N°4.46 que la resistencia a la flexión de diseño para los vidrios templados de 8 y 10 mm es de 85.59 N/mm² y 75.29 N/mm² respectivamente, esto considerando una probabilidad de rotura de 1x10⁻³ y un nivel de confianza del 95%.

Así mismo, podemos apreciar en las Tablas N°4.42 y N°4.47 que el módulo de elasticidad promedio experimental para los vidrios templados de 8 y 10 mm es de 90,103.92 N/mm² y 89,247.20 N/mm² respectivamente. En estas tablas, también podemos obtener que la resistencia a la flexión promedio experimental para los vidrios templados de 8 y 10 mm es de 137.68 N/mm² y 136.78 N/mm² respectivamente.

CONCLUSIONES

Se comprobó que el método del espesor efectivo mejorado obtuvo resultados muy cercanos a los valores de esfuerzo y deflexión máxima obtenidos tanto experimentalmente como con el software SJ Mepla 5.0.14.

Se pudo observar que los resultados de esfuerzo y deflexión máxima obtenidos por las normativas ASTM E1300 (2016) y UNE EN 16613 (2020) son resultados más conservadores debido a que estas normativas no consideran las condiciones de apoyo, la geometría y el tipo de carga, ya que sólo está aplicado para placas sometido a cargas uniformemente repartidas y apoyos fijos.

Se obtuvo que el módulo de elasticidad promedio experimental para los vidrios laminados primarios 33.1 (6.38 mm), 44.1 (8.38 mm) y 55.1 (10.38 mm) es de 80,057.87 N/mm², 77,896.28 N/mm² y 75,878.48 N/mm² respectivamente, como se puede apreciar existe una variación de 2.70% y 5.22% para el vidrio laminado primario 44.1 y 55.1 respectivamente con respecto al vidrio laminado primario 33.1, estos porcentajes se debe a que en todo ensayo del tipo experimental siempre habrá errores humanos en medición, error calibración de equipo y hasta la misma naturaleza del material que para este caso es el vidrio.

Se obtuvo que la resistencia a la flexión promedio experimental para los vidrios primarios de 6, 8 y 10 mm es de 45.4 N/mm², 47.9 N/mm² y 39.2 N/mm² respectivamente, como se puede apreciar existe una variación de 5.51% y 13.66% para el vidrio primario de 8 y 10 mm respectivamente con respecto al vidrio primario de 6 mm, estos porcentajes se debe a que en todo ensayo del tipo experimental siempre habrá errores humanos en medición, error calibración de equipo y hasta la misma naturaleza del material que para este caso es el vidrio.

Se obtuvo que el módulo de elasticidad promedio experimental para los vidrios primarios de 6, 8 y 10 mm es de 85,587.99 N/mm², 85,371.54 N/mm² y 88,842.66 N/mm² respectivamente, como podemos apreciar existe una variación de 6.46%, 8.76% y 14.59% con respecto a los valores obtenidos para el vidrio laminado primario 33.1 (6.38 mm), 44.1 (8.38 mm) y 55.1 (10.38 mm), estos porcentajes se debe a que en todo ensayo del tipo experimental siempre habrá errores humanos

en medición, error calibración de equipo y hasta la misma naturaleza del material que para este caso es el vidrio.

Se obtuvo que la resistencia a la flexión de diseño para los vidrios primarios de 6, 8 y 10 mm es de 15.41 N/mm², 18.53 N/mm² y 12.81 N/mm² respectivamente, esto considerando una probabilidad de rotura de $1x10^{-3}$ y un nivel de confianza del 95%. En la norma ASTM E1300 (2016) utiliza una probabilidad de rotura de $8x10^{-3}$ y en la norma UNE EN16613 (2020) utiliza una probabilidad de rotura de $1x10^{-4}$, ambos con un nivel de confianza del 95%, es por ello que para la presente tesis hemos optado por un valor intermedio de $1x10^{-3}$, este valor me indica que de cada 1,000 unidades de vidrio existe una probabilidad de que una unidad de vidrio falle al superar cierto valor de esfuerzo máximo a la flexión.

Se obtuvo que la resistencia a la flexión promedio experimental para los vidrios templados de 8 y 10 mm es de 137.68 N/mm² y 136.78 N/mm² respectivamente, como se puede apreciar existe una pequeña variación del 0.65%, estos porcentajes se debe a que en todo ensayo del tipo experimental siempre habrá errores humanos en medición, error calibración de equipo y hasta la misma naturaleza del material que para este caso es el vidrio.

Se logró obtener el módulo de elasticidad promedio experimental para los vidrios templados de 8 y 10 mm es de 90,103.92 N/mm² y 89,247.20 N/mm² respectivamente, como se puede apreciar existe una pequeña variación del 0.95%, estos porcentajes se debe a que en todo ensayo del tipo experimental siempre habrá errores humanos en medición, error calibración de equipo y hasta la misma naturaleza del material que para este caso es el vidrio.

Se obtuvo que la resistencia a la flexión de diseño para los vidrios templado 8 y 10 mm es de 85.59 N/mm² y 75.29 N/mm² respectivamente, esto considerando una probabilidad de rotura de 1×10^{-3} y un nivel de confianza del 95%. En la norma ASTM E1300 (2016) utiliza una probabilidad de rotura de 8×10^{-3} y en la norma UNE EN16613 (2020) utiliza una probabilidad de rotura de 1×10^{-4} , ambos con un nivel de confianza del 95%, es por ello que para la presente tesis hemos optado por un valor intermedio de 1×10^{-3} , este valor me indica que de cada 1,000 unidades

de vidrio existe una probabilidad de que una unidad de vidrio falle al superar cierto valor de esfuerzo máximo a la flexión.

Se logró obtener el módulo de elasticidad promedio experimental para el vidrio primario, vidrio laminado primario y vidrio templado de 86,600.73 N/mm², 77,944.21 N/mm² y 89,675.56 N/mm² respectivamente.

Se pudieron obtener los valores del parámetro de forma β y escala θ para los vidrios primarios y templados, de donde se puede inferir que:

- A mayor valor de β, menor es el intervalo de esfuerzos para los cuales existe definida una probabilidad de fractura.
- A mayor valor de β , se reduce la dispersión de datos.
- A mayor valor de θ indica una alta resistencia del vidrio.

Al realizar una interpolación en base a los resultados obtenidos, podemos inferir que el método del espesor efectivo mejorado se puede aplicar no solo al vidrio laminado primario, sino a cualquier otro tipo de vidrio como el vidrio templado, vidrio termo endurecido y el vidrio endurecido químicamente.

Se comprobó que los resultados de las probetas de vidrios primarios y templados se ajustaban muy bien a la distribución de Weibull con una función biparamétrica.

RECOMENDACIONES

Se recomienda utilizar el método del espesor efectivo mejorado para el cálculo del espesor efectivo de un vidrio laminado para un análisis más simple con ecuaciones de esfuerzo y deformación o para utilizarlo en softwares comerciales de elementos finitos como el SAP, ETABS, Robot Structural, etc., en el análisis de un vidrio laminado para un correcto dimensionamiento.

Se recomienda el uso de vidrios de seguridad como lo es el vidrio laminado para los revestimientos exteriores e interiores de las edificaciones en las zonas que se requiera para reducir los daños frente a una posible rotura del vidrio permitiendo que pueda ser reemplazado sin ocasionar daño a las personas.

Se recomienda que para futuras investigaciones se puedan realizar ensayos a las láminas intercalarias más comerciales con el fin de conocer más a fondo sus propiedades mecánicas.

Se recomienda utilizar la distribución de Weibull de dos o tres parámetros para materiales frágiles como el vidrio.

REFERENCIAS BIBLIOGRÁFICAS

- Abascal, A. (2016). Identificación de prestaciones en nuevas aplicaciones de vidrio estructural [Trabajo fin de Grado]. Universidad Politécnica de Madrid, Departamento de Ingeniería Mecánica, Madrid, España.
- AENOR. (2006). Manual de producto Fachadas Ligeras. ASEFAVE.
- American Society Testing of Materials. (2016). Standard Practice for Determining Load Resistance of Glass in Buildings (ASTM E1300).
- Baro, M. (2020). Metodología Estrés-Resistencia Weibull con Parámetro e Forma Diferente [Tesis de Doctorado en Tecnología]. Universidad Autónoma de Ciudad Juárez, Facultad de Ingeniería Industrial y Manufactura, Juárez, México.
- Block, V.L. (2002). The Use of Glass in Buildings. USA: ASTM International.
- Calderone, I., Davies, P.S., Bennison, S.J., Xiaokun, H., & Gang, L. (2009). Effective laminate thickness for the design of laminated glass. Proceedings of glass performance days, Tampere, Finland, 1-3.
- Foraboschi, P. (2007). Behavior and failure strength of laminated glass beams. Journal of Engineering Mechanics – ASCE, 133, 1290-301.
- Foraboschi, P. (2012). Analytical model for laminated-glass plate. Composites Part B: Engineering, 43(5), 2094-2106.
- Galuppi, L., & Royer-Carfagni, G. (2012). Effective thickness of laminated glass beams: new expression via a variational approach. Engineering Structures, 38, 53-67.
- Galuppi, L., & Royer-Carfagni, G. (2012). The effective thickness of laminated glass plates. Journal of Mechanics of Materials and Structures, 7, 375-400.
- Galuppi, L., Manara, G., & Royer-Carfagni, G. (2013). Practical expressions for the design of laminated glass. Composites Part B: Engineering, 45, 1677-1688.
- Hernández Sampieri, R., Fernández collado, C., & Baptista Lucio, P. (2014). *Metodología de la investigación* (6 ^a ed.). Atlas.

- International Organization for Standardization. (1976). Statistical interpretation of data Techniques of estimation and tests relating to means and variances (ISO 2854).
- Martín, M., Centelles, X., Solé, A., Barreneche, C., Fernández, I. & Cabeza, L. (2019). Polymeric interlayer materials for laminated glass: A review. Construction and Building Materials, 230, 116897.
- Medina, A. (1990). El cristal laminado en edificaciones [Tesis de Grado en Ingeniería Civil]. Universidad Nacional de Ingeniería, Facultad de Ingeniería Civil, Lima, Perú.
- Ministerio de Vivienda, Construcción y Saneamiento (MVCS). (2006). E.040: Vidrio.
- Nurhuda, I., Lam, N.T.K., Gad, E.F., & Calderone, I. (2010). Estimation of strengths in large annealed glass panels. International Journal of Solids and Structures, 47, 2591-2599.
- O' Regan, C. (2014). Structural Use of Glass in Buildings (Second edition). IStructE Ltd.
- Obando, M. & Quiliche, P. (2018). Determinación de parámetros de diseño del vidrio laminado, para garantizar su comportamiento estructural [Tesis de Grado en Ingeniería Civil]. Universidad Privada del Norte, Facultad de Ingeniería Civil, Lima, Perú.
- Pilkington. (s.f.). Información sobre cristales. Pilkington. Recuperado de: <u>https://www.pilkington.com/es-mx/mx/arquitectos/informacion-sobre-</u> <u>cristales/informacion-sobre-cristales</u>
- Ramos, A., Muñiz, M., Fernández, P., Fernández, A., & Jesús, M. (2015). Análisis probabilístico de elementos de vidrio recocido mediante una distribución triparamétrica Weibull. Boletín de la Sociedad Española de Cerámica y Vidrio, 54, 153-158.
- SJ MEPLA. (2011). Manual usuario SJ MEPLA.
- Timoshenko, S., & Woinowsky, K. (1959). *Theory of plates and shells*. McGraw-Hill.
- UNE. (2000). EN 12337-1: Vidrio para la edificación. Vidrio de silicato sodocálcico endurecido químicamente. Parte 1: Definición y descripción.

- UNE. (2000). EN 1288-1: Vidrio para la edificación. Determinación de la resistencia a flexión del vidrio. Parte 1: Fundamentos de los ensayos a flexión.
- UNE. (2000). EN 1288-3: Vidrio para la edificación. Determinación de la resistencia a flexión del vidrio. Parte 3: Ensayo con probestas soportadas en dos puntos (flexión cuatro puntos).
- UNE. (2003). EN 12603: Vidrio para la edificación. Procedimientos para asegurar la bondad del ajuste y de los intervalos de confianza de los datos de resistencia del vidrio según la distribución de "Weibull".
- UNE. (2012). EN 1863-1: Vidrio para la edificación. Vidrio de silicato sodocálcico termoendurecido. Parte 1: Definición y descripción.
- UNE. (2012). EN 572-1: Vidrio para la edificación. Productos básicos de vidrio de silicato sodocálcico. Parte 1: Definiciones y propiedades generales físicas y mecánicas.
- UNE. (2016). EN 12150-1: Vidrio para la edificación. Vidrio de silicato sodocálcico de seguridad templado térmicamente. Parte 1: Definición y descripción.
- UNE. (2017). EN 14179-1: Vidrio para la edificación. Vidrio de silicato sodocálcico de seguridad templado térmicamente y tratado "heat soak". Parte 1: Definición y descripción.
- UNE. (2020). EN 16612: Vidrio para la edificación. Determinación por cálculo de la resistencia de carga lateral de los vidrios.
- UNE. (2020). EN 16613: Vidrio para la edificación. Vidrio laminado y vidrio laminado de seguridad. Determinación de las propiedades viscoelásticas del intercalario.
- UNE. (2022). EN ISO 12543-1: Vidrio para la edificación. Vidrio laminado y vidrio laminado de seguridad. Parte 1: Definiciones y descripción de los componentes.
- Yound, W.C., Budynas, R.G. (2002). *Roark's Formulas for Stress and Strain* (7th ed.). McGraw Hill.

ANEXOS

PÁG

ANEXO A-01:	Resultados del esfuerzo a la flexión y deflexión máxima de las probetas de vidrio laminado primario 33.1 (6.38mm) obtenido con el software SJ Mepla v.5.0.14164
ANEXO A-02:	Resultados del esfuerzo a la flexión y deflexión máxima de las probetas de vidrio laminado primario 44.1 (8.38mm) obtenido con el software SJ Mepla v.5.0.14171
ANEXO A-03:	Resultados del esfuerzo a la flexión y deflexión máxima de las probetas de vidrio laminado primario 55.1 (10.38mm) obtenido con el software SJ Mepla v.5.0.14178
ANEXO A-04:	Gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC6-6 de vidrio primario de 6 mm185
ANEXO A-05:	Gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC8-5 de vidrio primario de 8 mm
ANEXO A-06:	Gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC10-2 de vidrio primario de 10 mm189
ANEXO A-07:	Gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL6-18 de vidrio laminado primario 33.1191
ANEXO A-08:	Gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL8-12 de vidrio laminado primario 44.1193

ANEXO A-09:	Gráfica carga vs deformación, cálculo del módulo de
	elasticidad y la resistencia a la flexión experimental
	de la muestra VL10-6 de vidrio laminado primario 55.1195
ANEXO A-10:	Gráfica carga vs deformación, cálculo del módulo de
	elasticidad y la resistencia a la flexión experimental
	de la muestra VT8-2 de vidrio templado de 8 mm197
ANEXO A-11:	Gráfica carga vs deformación, cálculo del módulo de
	elasticidad y la resistencia a la flexión experimental
	de la muestra VT10-7 de vidrio templado de 10 mm199
ANEXO A-12:	Panel fotográfico201

ANEXO A-01

A continuación, se mostrarán los resultados del esfuerzo a la flexión y deflexión máxima de las probetas de vidrio laminado primario 33.1 (6.38mm) obtenido con el software SJ Mepla v.5.0.14.

Se realizó la simulación con las mismas cargas obtenidas en los ensayos experimentales.

Figura NºA-01.1. Esfuerzo de flexión de la muestra VL6-2

Figura NºA-01.2. Deflexión de la muestra VL6-2

Figura NºA-01.3. Esfuerzo de flexión de la muestra VL6-3

Figura NºA-01.4. Deflexión de la muestra VL6-3

Figura NºA-01.6. Deflexión de la muestra VL6-4

Figura NºA-01.7. Esfuerzo de flexión de la muestra VL6-7

Figura NºA-01.9. Esfuerzo de flexión de la muestra VL6-10

Figura NºA-01.10. Deflexión de la muestra VL6-10

Muestra VL6-13

Figura NºA-01.12. Deflexión de la muestra VL6-13

Figura NºA-01.13. Esfuerzo de flexión de la muestra VL6-15

Figura NºA-01.15. Esfuerzo de flexión de la muestra VL6-16

Figura NºA-01.16. Deflexión de la muestra VL6-16

Muestra VL6-18

Figura №A-01.18. Deflexión de la muestra VL6-16

ANEXO A-02

A continuación, se mostrarán los resultados del esfuerzo a la flexión y deflexión máxima de las probetas de vidrio laminado primario 44.1 (8.38mm) obtenido con el software SJ Mepla v.5.0.14.

Se realizó la simulación con las mismas cargas obtenidas en los ensayos experimentales.

Figura NºA-02.1. Esfuerzo de flexión de la muestra VL8-4

Figura NºA-02.2. Deflexión de la muestra VL8-4

Figura NºA-02.3. Esfuerzo de flexión de la muestra VL8-5

Figura NºA-02.4. Deflexión de la muestra VL8-5

Muestra VL8-6

Figura NºA-02.7. Esfuerzo de flexión de la muestra VL8-7

Figura NºA-02.9. Esfuerzo de flexión de la muestra VL8-8

Figura NºA-02.10. Deflexión de la muestra VL8-8

Muestra VL8-9

Figura NºA-02.11. Esfuerzo de flexión de la muestra VL8-9

Figura NºA-02.12. Deflexión de la muestra VL8-9

Figura NºA-02.13. Esfuerzo de flexión de la muestra VL8-10

Figura NºA-02.15. Esfuerzo de flexión de la muestra VL8-11

Figura NºA-02.16. Deflexión de la muestra VL8-11

Muestra VL8-12

Figura NºA-02.19. Esfuerzo de flexión de la muestra VL8-14

Figura NºA-02.20. Deflexión de la muestra VL8-14
A continuación, se mostrarán los resultados del esfuerzo a la flexión y deflexión máxima de las probetas de vidrio laminado primario 55.1 (10.38mm) obtenido con el software SJ Mepla v.5.0.14.

Se realizó la simulación con las mismas cargas obtenidas en los ensayos experimentales.

Muestra VL10-1

Figura NºA-03.1. Esfuerzo de flexión de la muestra VL10-1

Figura NºA-03.2. Deflexión de la muestra VL10-1

Muestra VL10-2

Figura NºA-03.3. Esfuerzo de flexión de la muestra VL10-2

Figura NºA-03.4. Deflexión de la muestra VL10-2

Muestra VL10-3

Figura NºA-03.7. Esfuerzo de flexión de la muestra VL10-4

Figura NºA-03.8. Deflexión de la muestra VL10-4

Muestra VL10-5

Figura NºA-03.9. Esfuerzo de flexión de la muestra VL10-5

Figura NºA-03.10. Deflexión de la muestra VL10-5

Figura NºA-03.12. Deflexión de la muestra VL10-6

Muestra VL10-7

Figura NºA-03.13. Esfuerzo de flexión de la muestra VL10-7

Muestra VL10-8

Figura NºA-03.15. Esfuerzo de flexión de la muestra VL10-8

Figura NºA-03.16. Deflexión de la muestra VL10-8

Figura NºA-03.19. Esfuerzo de flexión de la muestra VL10-10

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC6-6 de vidrio primario de 6 mm. Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-04.1. Gráfica carga vs deformación de la muestra VC6-6 (LEM-UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.1 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 440.9 N$ y = 18.30 mm $\begin{array}{l} B = 359 \mbox{ mm} \\ h = 5.89 \mbox{ mm} \\ L_{s} = 1000 \mbox{ mm} \\ L_{b} = 200 \mbox{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VC6-6 es:

E_{VC6-6} = 87,398.94 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.1 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{m\acute{a}x} &= 440.9 \ N \\ k &= 1 \\ B &= 359 \ mm \\ h &= 5.89 \ mm \\ L_s &= 1000 \ mm \\ L_b &= 200 \ mm \\ \rho &= 2500 \ Kg/m^3 \\ g &= 9.81 \ m/s^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VC6-6 es:

 $\sigma_{VC6-6} = 45.6 \text{ N/mm}^2$

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC8-5 de vidrio primario de 8 mm. Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-05.1. Gráfica carga vs deformación de la muestra VC8-5 (LEM – UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.7 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 830.9 \text{ N}$ y = 16.45 mm $\begin{array}{l} B = 359 \mbox{ mm} \\ h = 7.72 \mbox{ mm} \\ L_{s} = 1000 \mbox{ mm} \\ L_{b} = 200 \mbox{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VC8-5 es:

E_{VC8-5} = 81,522.34 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.7 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{m\acute{a}x} &= 830.9 \ N \\ k &= 1 \\ B &= 359 \ mm \\ h &= 7.72 \ mm \\ L_s &= 1000 \ mm \\ L_b &= 200 \ mm \\ \rho &= 2500 \ Kg/m^3 \\ g &= 9.81 \ m/s^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VC8-5 es:

 $\sigma_{VC8-5} = 49.0 \text{ N/mm}^2$

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VC10-2 de vidrio primario de 10 mm. Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-06.1. Gráfica carga vs deformación de la muestra VC10-2 (LEM – UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.13 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 1,213.4 \text{ N}$ y = 11.39 mm $\begin{array}{l} B = 360 \text{ mm} \\ h = 9.59 \text{ mm} \\ L_{s} = 1000 \text{ mm} \\ L_{b} = 200 \text{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VC10-2 es:

E_{VC10-2} = 89,411.53 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.13 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{m\acute{a}x} &= 1,213.4 \ N \\ k &= 1 \\ B &= 360 \ mm \\ h &= 9.59 \ mm \\ L_s &= 1000 \ mm \\ L_b &= 200 \ mm \\ \rho &= 2500 \ Kg/m^3 \\ g &= 9.81 \ m/s^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VC10-2 es:

 σ_{VC10-2} = 45.9 N/mm²

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL6-18 de vidrio laminado primario 33.1 (6.38 mm). Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-07.1. Gráfica carga vs deformación de la muestra VL6-18 (LEM – UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.19 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 442.7 \text{ N}$ y = 19.69 mm $\begin{array}{l} B = 360 \text{ mm} \\ h = 5.91 \text{ mm} \\ L_{s} = 1000 \text{ mm} \\ L_{b} = 200 \text{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VL6-18 es:

E_{VL6-18} = 80,559.91 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.19 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{max} &= 442.7 \text{ N} \\ k &= 1 \\ B &= 360 \text{ mm} \\ h &= 5.91 \text{ mm} \\ L_s &= 1000 \text{ mm} \\ L_b &= 200 \text{ mm} \\ \rho &= 2500 \text{ Kg/m}^3 \\ g &= 9.81 \text{ m/s}^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VL6-18 es:

 $\sigma_{VL6-18} = 45.4 \text{ N/mm}^2$

Se puede apreciar además en la Figura N°A-07.1 que para la muestra ensayada existen 2 intervalos con tendencia lineal, que representan la falla de la primera y segunda capa de vidrio que componen al vidrio laminado, esto ayuda a que al fallar la primera capa de vidrio ante una carga aplicada me permita poder cambiar el vidrio laminado antes de que se produzca la falla de la segunda capa de vidrio.

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL8-12 de vidrio laminado primario 44.1 (8.38 mm). Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-08.1. Gráfica carga vs deformación de la muestra VL8-12 (LEM – UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.25 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 909.6 N$ y = 17.42 mm $\begin{array}{l} B = 360 \text{ mm} \\ h = 7.93 \text{ mm} \\ L_{s} = 1000 \text{ mm} \\ L_{b} = 200 \text{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VL8-12 es:

E_{VL8-12} = 77,303.88 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.25 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{m \dot{a} x} &= 909.6 \ N \\ k &= 1 \\ B &= 360 \ mm \\ h &= 7.93 \ mm \\ L_s &= 1000 \ mm \\ L_b &= 200 \ mm \\ \rho &= 2500 \ Kg/m^3 \\ g &= 9.81 \ m/s^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VL8-12 es:

 σ_{VL8-12} = 50.5 N/mm²

Se puede apreciar además en la Figura N°A-08.1 que para la muestra ensayada existen 2 intervalos con tendencia lineal, que representan la falla de la primera y segunda capa de vidrio que componen al vidrio laminado, esto ayuda a que al fallar la primera capa de vidrio ante una carga aplicada me permita poder cambiar el vidrio laminado antes de que se produzca la falla de la segunda capa de vidrio.

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VL10-6 de vidrio laminado primario 55.1 (10.38 mm). Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-09.1. Gráfica carga vs deformación de la muestra VL10-6 (LEM – UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.31 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 881.3 \text{ N}$ y = 8.93 mm $\begin{array}{l} B = 360 \text{ mm} \\ h = 9.83 \text{ mm} \\ L_{s} = 1000 \text{ mm} \\ L_{b} = 200 \text{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VL10-6 es:

E_{VL10-6} = 76,869.96 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.31 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{max} &= 881.3 \text{ N} \\ k &= 1 \\ B &= 360 \text{ mm} \\ h &= 9.83 \text{ mm} \\ L_s &= 1000 \text{ mm} \\ L_b &= 200 \text{ mm} \\ \rho &= 2500 \text{ Kg/m}^3 \\ g &= 9.81 \text{ m/s}^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VL10-6 es:

 σ_{VL10-6} = 32.3 N/mm²

Se puede apreciar además en la Figura N°A-09.1 que para la muestra ensayada existen 2 intervalos con tendencia lineal, que representan la falla de la primera y segunda capa de vidrio que componen al vidrio laminado, esto ayuda a que al fallar la primera capa de vidrio ante una carga aplicada me permita poder cambiar el vidrio laminado antes de que se produzca la falla de la segunda capa de vidrio.

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VT8-2 de vidrio templado de 8 mm. Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-10.1. Gráfica carga vs deformación de la muestra VT8-2 (LEM – UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.37 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 2,244.3 \text{ N}$ y = 38.91 mm $\begin{array}{l} B = 360 \text{ mm} \\ h = 7.72 \text{ mm} \\ L_{s} = 1000 \text{ mm} \\ L_{b} = 200 \text{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VT8-2 es:

E_{VT8-2} = 92,534.34 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.37 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{m\acute{a}x} &= 2,244.3 \ N \\ k &= 1 \\ B &= 360 \ mm \\ h &= 7.72 \ mm \\ L_s &= 1000 \ mm \\ L_b &= 200 \ mm \\ \rho &= 2500 \ Kg/m^3 \\ g &= 9.81 \ m/s^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VT8-2 es:

 $\sigma_{VT8-2} = 127.8 \text{ N/mm}^2$

A continuación, se mostrará la gráfica carga vs deformación, cálculo del módulo de elasticidad y la resistencia a la flexión experimental de la muestra VT10-7 de vidrio templado de 10 mm. Los ensayos fueron realizados entre setiembre y noviembre del 2021.

Figura №A-11.1. Gráfica carga vs deformación de la muestra VT10-7 (LEM – UNI)

Para el cálculo del módulo de elasticidad utilizamos la ecuación 3.3.

$$y = \frac{3F_{máx}}{4EBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_s L_b^2}{2} \right]$$

Despejamos el valor de y de la ecuación 3.3, que es la flecha máxima obtenida experimentalmente, es entonces que obtenemos la siguiente expresión para obtener el módulo de elasticidad experimental:

$$E = \frac{3F_{máx}}{4yBh^3} \left[\frac{L_s^3}{3} + \frac{L_b^3}{6} + \frac{L_sL_b^2}{2} \right]$$

De la Tabla N°4.43 obtenemos todos los valores necesarios para obtener el valor de E.

 $F_{max} = 4,258.6 \text{ N}$ y = 36.81 mm $\begin{array}{l} B = 358 \mbox{ mm} \\ h = 9.85 \mbox{ mm} \\ L_{s} = 1000 \mbox{ mm} \\ L_{b} = 200 \mbox{ mm} \end{array}$

Reemplazando estos valores en la ecuación obtenida de la ecuación 3.3, tenemos que el módulo de elasticidad experimental de la probeta VT10-7 es:

E_{VT10-7} = 89,881.89 N/mm²

Para el cálculo del esfuerzo a la flexión utilizamos la ecuación 3.1 y 3.2.

$$\sigma_{bB} = k \left[F_{max} \frac{3(L_s - L_b)}{2Bh^2} + \sigma_{bG} \right]$$
$$\sigma_{bG} = \frac{3\rho g L_s^2}{4h}$$

De la Tabla N°4.43 obtenemos todos los valores necesarios para obtener el valor del esfuerzo de flexión.

$$\begin{split} F_{m\acute{a}x} &= 4,258.6 \ N \\ k &= 1 \\ B &= 358 \ mm \\ h &= 9.85 \ mm \\ L_s &= 1000 \ mm \\ L_b &= 200 \ mm \\ \rho &= 2500 \ Kg/m^3 \\ g &= 9.81 \ m/s^2 \end{split}$$

Reemplazando estos valores en las ecuaciones 3.1 y 3.2, tenemos que el esfuerzo de flexión de la probeta VT10-7 es:

 $\sigma_{VT10-7} = 148.9 \text{ N/mm}^2$

A continuación, se muestra un panel fotográfico del ensayo de flexión de las probetas que se realizaron en el laboratorio.

Figura NºA-12.1. Rodillos de soporte

En la Figura N°A-12.1 se pueden apreciar los rodillos de soporte de 50mm de diámetro en acero A36 soldado a unas planchas de 100x400mm de 10mm de espesor en acero A36 que servirá de apoyo para las probetas de vidrio que serán ensayadas.

Figura NºA-12.2. Rodillos de flexión

En la Figura N°A-12.2 se pueden apreciar los rodillos de flexión de 50mm de diámetro en acero A36, estos están soldados a una placa de acero de 290x400mm con 10mm de espesor al cual se soldó otra pequeña placa central de acero de 100x250mm con 20mm de espesor ambas placas en acero A36 al cuál se le realizaron hilos para que con la ayuda de 2 espárragos de 5/8" de diámetro sea fijado a la máquina de ensayo universal que transmitirá carga vertical al vidrio.

Figura NºA-12.3. Máquina de ensayo universal (LEM-FIC_UNI)

En la Figura N°A-12.3 se puede apreciar la máquina de ensayo universal uniaxial de 102 toneladas que se encuentra en el Laboratorio de Ensayo de Materiales (LEM) de la Facultad de Ingeniería Civil, la marca de esta máquina es ZWICK ROELL con certificado de calibración CMC-050-2021 calibrado el 30/10/2019.

Figura NºA-12.4. Probetas de vidrios

En la Figura N°A-12.4 se pueden apreciar las probetas de vidrio que se utilizaron en los ensayos de flexión, se encuentran sobre parihuelas de madera.

Figura №A-12.5. Colocación de probetas entre rodillos de flexión y carga en máquina de ensayo universal (LEM – UNI)

En la Figura N°A-12.5 se puede apreciar la colocación de la probeta sobre los rodillos de soporte y los rodillos de flexión actuando sobre la superficie del vidrio, cabe resaltar que se colocaron cintas de caucho de 3mm de espesor y de dureza (40 \pm 10) IRHD en los ejes de los rodillos de soporte y flexión, esto para evitar un pre esfuerzo por el contacto que habrá entre el vidrio y los rodillos. Es así que la probeta deberá someterse a flexión con una tensión de flexión con aumento de forma constante a una velocidad de (2 \pm 0.4) MPa/s anotando el tiempo desde el inicio de la carga hasta que se produzca la rotura del vidrio.

Figura NºA-12.6. Falla de probeta de vidrio primario

En la Figura N°A-12.6 se puede apreciar la forma de falla del vidrio primario, se puede notar que la falla se produjo entre los rodillos de flexión (entre las cintas de caucho), se pudo observar además que el triángulo de falla formaba un ángulo que oscilaba entre 60° y 75° en la mayoría de los casos.

Figura NºA-12.7. Falla de probeta de vidrio laminado

En la Figura N°A-12.7 se puede apreciar la forma de falla del vidrio laminado primario y como la falla se produjo entre los rodillos de flexión (entre las cintas de caucho), de la misma forma que se produjo en el vidrio primario, la única diferencia es que las partículas se encuentran adheridos a la lámina intercalaria de PVB haciendo que no presente riesgos como si lo haría un vidrio primario, es por ello que al vidrio laminado se le considera un vidrio de seguridad. Así mismo, se pudo observar que el triángulo de falla formaba un ángulo que oscilaba entre 60° y 75° en la mayoría de los casos, lo mismo que en el vidrio primario, y esto se debe a que este vidrio laminado primario está formado justamente por vidrios primarios.

Figura NºA-12.8. Falla de probeta de vidrio templado

En la Figura N°A-12.8 se puede apreciar la forma de falla del vidrio templado, es en forma de arrocillo el cual no genera mayor daño como si lo haría los restos de vidrio primario, es por ello que al vidrio templado se le considera un vidrio de seguridad.