UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

TESIS

EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA DE UNA EDIFICACIÓN DE CONCRETO ARMADO MEDIANTE CARGAS ESTÁTICA Y DINÁMICO INCREMENTAL

PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

ELABORADO POR

CARLOS YAIR MÉLENDEZ LEÓN ID: 0009-0001-8756-0961

ASESORA

Ing. CLAUDIA DEL PILAR VILLANUEVA FLORES
ID: 0009-0000-8177-2560

Lima- Perú

2024

© 2024 Universidad Nacional de Ingeniería. Todos los derechos reconvedes
© 2024, Universidad Nacional de Ingeniería. Todos los derechos reservados
"El autor autoriza a la UNI a reproducir la Tesis en su totalidad o en parte,
con fines estrictamente académicos."
Meléndez León, Carlos Yair
cmelendezl@uni.pe.
932063041

DEDICATORIA

A mi madre Lidia, por su amor infinito; a mi abuelo Jorge, quien me brindó su apoyo en todo momento; a mi familia entera, por su apoyo incondicional.

AGRADECIMIENTOS

El desarrollo de la presente tesis no hubiese sido posible sin la participación de personas y empresas que han facilitado su culminación. Por ello, es para mí un verdadero placer expresar mis agradecimientos:

- A Dios, por derramarme sus bendiciones y permitirme estar día a día en este mundo.
- A mi familia, en especial a mi madre Lidia y a mi abuelo Jorge por su amor incondicional y brindarme su apoyo moral en cada uno de mis retos profesionales.
- A mi asesora, la Ing. Claudia Villanueva por haberme brindado la oportunidad de recurrir a su experiencia y conocimiento científico; también por su apoyo y consejos los cuales fueron fundamentales para la realización de la presente tesis.
- A la empresa HVS INGENIEROS CONSULTORES, por brindar las herramientas necesarias para la realización de la tesis.
- Al Dr. Miguel Díaz, director de investigación del CISMID, por brindarme sus conocimientos y algunos consejos para la realización de la presente tesis.
- Por último, sin restar importancia, a mi alma mater, la Universidad Nacional de Ingeniería, en especial a la Facultad de Ingeniería Civil, por haberme brindado la oportunidad de realizar mis estudios de pregrado y así formarme profesionalmente.

ÍNDICE

Resume	en	4
Abstrac	rt	6
Prólogo		8
Lista de	Tablas	9
Lista de	Figuras	. 13
Lista de	Símbolos y Siglas	. 17
Capítulo	o I: Introducción	. 29
1.1.	Generalidades	. 29
1.2.	Problemática	. 30
1.3.	Objetivos	. 30
1.3.1.	Objetivo general	. 30
1.3.2.	Objetivos específicos	. 30
1.4.	Antecedentes investigativos	. 31
Capítulo	o II: Marcos teórico y conceptual	. 33
2.1	Marco teórico	. 33
2.1.1.	Propiedades de los materiales componentes del concreto armado	. 33
2.1.2.	Acero de refuerzo	. 43
2.1.3.	Ductilidad	. 46
2.1.4.	Diagrama momento-curvatura	. 50
2.1.5.	Rigidez efectiva	. 52
2.1.6.	Longitud de desarrollo del acero de refuerzo ld	. 54
2.1.7.	Modelamiento no lineal de elementos estructurales	. 58
2.2	Marco conceptual	. 64
2.2.1.	Análisis estático no lineal	. 64
2.2.2.	Análisis dinámico incremental	. 64
2.2.3.	Curva IDA	. 65
2.2.4.	Punto de desempeño	. 65
2.2.5.	Nivel de desempeño	. 65
Capítulo	o III: Metodología del análisis estático no lineal	. 66
3.1.	Patrón de carga	. 66
3.2.	Efecto de segundo orden	. 67
3.3.	Método de linealización equivalente	. 68
3.3.1.	Amortiguamiento efectivo	. 70
3.3.2.	Periodo efectivo	. 70

3.3.3.	Espectro de respuesta aceleración – desplazamiento modificado (MADRS)	
3.3.4.	Procedimientos para la obtención del punto de desempeño	
Capítulo	o IV: Metodología del análisis dinámico incremental	
4.1	Parámetros del análisis dinámico incremental	77
4.1.1	Medida de intensidad	77
4.1.2	Medida de daño	77
4.1.3	Factor de escala	77
4.2	Curva IDA	. 78
4.2.1	Elección de los parámetros medida de intensidad	79
4.2.2	Elección del parámetro medida de daño	79
4.3	Procedimientos del análisis dinámico incremental	80
4.3.1	Selección de registros sísmicos	80
4.3.2	Corrección por línea base y filtrado	80
4.3.3	Escalamiento de registros sísmicos.	82
4.3.4	Aplicación de los registros sísmicos al modelo estructural	82
4.3.5	Obtención de la curva IDA	82
Capítulo	o V: Aplicación del análisis estático no lineal y análisis dinámico	
	incremental	83
5.1	Descripción de la estructura	83
5.2	Sistema estructural	84
5.2.1	Geometría	84
5.2.2	Materiales	84
5.3	Modelo matemático	85
5.3.1	Elementos estructurales	85
5.3.2	Condiciones de apoyo vigas-columnas	86
5.4	Criterios del análisis no lineal de la edificación	87
5.4.1	Cargas sísmicas	87
5.4.2	Definición de niveles sísmicos	90
5.4.3	Espectro de demanda característico del sitio	91
5.4.4	Espectro de demanda de pseudo-aceleraciones	93
5.4.5	Definición de niveles de desempeño sísmico	96
5.4.6	Evaluación de vulnerabilidad sísmica según SEAOC	98
5.4.7	Sectorización de la curva de capacidad	99
5.4.8	Evaluación de la vulnerabilidad sísmica según HAZUS	100
5.5	Registros sísmicos	104
Capítulo	o VI: Discusión de Resultados	106
6.1	Análisis modal espectral	106

6.2	Análisis de irregularidades	108
6.2.1	Irregularidad en altura	108
6.2.2	Irregularidad en planta	112
6.2.3	Determinación del factor de irregularidad	115
6.3	Análisis estático no lineal	116
6.3.1	Efecto de segundo orden (P-delta)	116
6.3.2	Patrones de carga	117
6.3.3	Curva de capacidad y mecanismo de colapso	118
6.3.4	Espectro de capacidad	123
6.3.5	Puntos de desempeño según FEMA440	124
6.3.6	Evaluación del desempeño de la estructura según SEAOC	135
6.3.7	Evaluación de desempeño de la estructura según HAZUS	141
6.4	Análisis dinámico incremental	142
6.4.1	Curvas IDA	142
6.4.2	Puntos de desempeño de la estructura	148
6.4.3	Evaluación de desempeño de la estructura	152
6.5	Comparación de resultados	154
6.5.1	Desplazamiento en el techo y fuerza cortante basal	154
6.5.2	Niveles de daño	156
Concl	usiones	157
Recon	Recomendaciones160	
Refere	ncias Bibliográficas	161
Anexo	s	168

Resumen

La presente tesis trata sobre la evaluación de la vulnerabilidad sísmica de una edificación de concreto armado de 9 niveles y 3 sótanos destinada a un edificio multifamiliar mediante análisis no lineales bajo la aplicación de cargas estáticas y dinámicas incrementales.

Previamente, se definen los niveles sísmicos: Sismo Frecuente, Sismo Ocasional, Sismo Raro, Sismo Muy Raro y Sismo Máximo, con sus respectivos periodos de retorno y probabilidad de excedencia. A partir de la ubicación de la edificación, se determinó la aceleración pico del suelo PGA característica del sitio para cada uno de estos 5 niveles sísmicos.

Posteriormente, se realizó el Análisis Estático No Lineal de la edificación mediante cargas estáticas incrementales hasta llegar al colapso. En dicho análisis se determinaron los puntos de desempeño, en términos de la cortante basal y desplazamiento en el centro de masa en el último techo, según la normativa FEMA440. También, se determina la máxima deriva de todos los entrepisos de la edificación en cada nivel sísmico. Con estos puntos de desempeño se procedió a evaluar la vulnerabilidad sísmica global de la edificación mediante la metodología propuesta por el comité SEAOC VISION 2000, mediante la sectorización de la curva de capacidad y así determinar los niveles de desempeño para cada nivel sísmico. Además, se empleó la metodología propuesta por el manual HAZUS 4.2 SP3 para determinar los niveles de daño estructural del edificio a nivel global a partir de la máxima deriva de entrepiso en cada nivel sísmico.

Luego, se realizó un segundo análisis no lineal mediante aceleraciones en el suelo variables con el tiempo como patrón de carga, los cuales fueron corregidos y escalados para 8 demandas sísmicas incrementales; este análisis es denominado como Análisis Dinámico Incremental (IDA por sus siglas en inglés). Se realizó este análisis las componentes horizontales de 4 eventos sísmicos locales (Lima 1966, Áncash 1970, Lima 1974, Atico 2001) y 3 eventos sísmicos internacionales (Maule 2010, Iquique 2014, Illapel 2015). De este análisis se obtuvieron los desplazamientos del centro de masa en el techo del último nivel, máximas derivas de entrepiso y cortante en la base de la edificación (parámetros definidos como Medida de Daño DM) para cada PGA (parámetro definido como intensidad de daño IM), las cuales se grafican sus correspondientes curvas IDA. En cada curva IDA se determinan sus respectivos parámetros DM de los 5 niveles sísmicos. A

RESUMEN

partir de las máximas derivas de entrepiso se evalúa la vulnerabilidad sísmica mediante la metodología propuesta por el manual HAZUS 4.2 SP3, con el cual se determina los niveles de daño estructural del edificio en cada nivel sísmico.

Finalmente, se compararon los resultados de desplazamientos del centro de masa del techo del último nivel, cortantes basales y niveles de daño estructura de la edificación a nivel global de ambos análisis no lineales en cada uno de los niveles sísmicos.

6

Abstract

This thesis is about the seismic vulnerability assessment of a 9-story and 3-basement reinforced concrete building intended for a multi-family building through non-linear analysis under the application of incremental static and dynamic loads. Previously, seismic levels are defined: Frequent Earthquake, Occasional Earthquake, Rare Earthquake, Very Rare Earthquake and Maximum Earthquake, with their respective return periods and probability of exceedance. From the location of the building, the peak ground acceleration PGA characteristic of the site was determined for each of these 4 seismic levels.

Subsequently, the Non-Linear Static Analysis of the building was conducted using incremental static loads until its collapse. In this analysis, the performance points were determined, in terms of the basal shear and displacement in the center of mass in the roof, according to the FEMA440. Also, the maximum inter-story drift of the building at each seismic level is determined. With these performance points, the overall seismic vulnerability of the building was evaluated using the methodology proposed by the SEAOC VISION 2000 committee, by sectoring the capacity curve, and thus determining the performance levels for each seismic level. In addition, the methodology proposed by the HAZUS 4.2 SP3 manual was used to determine the overall structural damage levels of the building based on the maximum inter-story drift at each seismic level.

Then, an Incremental Dynamic Analysis was performed using time-history ground accelerations as loading pattern, which were corrected and scaled for 8 incremental seismic demands. This analysis was conducted on the horizontal components of 4 local seismic events (Lima 1966, Áncash 1970, Lima 1974, Atico 2001) and 3 international seismic events (Maule 2010, Iquique 2014, Illapel 2015). From this analysis, the displacements of the center of mass on the roof, maximum inter-story drifts and basal shear of the building (parameters defined as Damage Measurement - DM) were obtained for each PGA (parameter defined as Intensity Measurement - IM), which their corresponding IDA curves are graphed. In each IDA curve, their respective DM parameters of the 5 seismic levels are determined. With the maximum inter-story drifts, the seismic vulnerability is evaluated using the methodology proposed by the HAZUS 4.2 SP3 manual, in which the levels of structural damage of the building at each seismic level are determined.

Finally, the results of displacements of the center of mass on the roof, basal shears and levels of overall structural damage of the building from both non-linear analyzes were compared at each of the seismic levels.

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVII

PRÓLOGO

Prólogo

Es para mí un honor presentar la tesis de uno de mis mejores alumnos de la universidad. El estudio se realizó a un proyecto de estructuras que se diseñó de forma tradicional, específicamente se trata del primer edificio completo que realizamos con Carlos Meléndez y a raíz del proyecto surgieron las interrogantes

de saber cuál era el nivel de desempeño de la estructura.

Normalmente en el Perú la norma exige para el diseño de

Normalmente en el Perú la norma exige para el diseño de edificios, el análisis estático o análisis dinámico estos análisis se hacen en el rango lineal. Es por ello por lo que se planteó la hipótesis de dos comparativos el primero haciendo un análisis estático no lineal y el segundo haciendo un análisis por dinámico

incremental para ver el nivel del desempeño de la estructura.

La tesis consta de seis capítulos con trece anexos se presenta un marco teórico y toda la metodología usada será de acuerdo con el FEMA 273, VISION 2000, ATC-40 para diferentes niveles de sismo a fin de determinar los puntos de desempeño

de la estructura Finalmente se realizan las conclusiones del estudio.

Esta tesis de investigación puede servir a futuros profesionales dedicado a este campo de la ingeniería civil puedan utilizar la metodología más apropiada para

este tipo de estructuras.

Agradecemos a nuestra querida y prestigiosa Universidad Nacional de Ingeniería por todos los conocimientos impartidos y a la empresa HVS que proporcionó la información para hacer posible la presente tesis.

Asesora

8

Lista de Tablas

Tabla N°1: Rigidez efectiva de elementos de concreto armado	. 53
Tabla N°2: Longitud de desarrollo de barras corrugadas sin gancho estándar	
en tracción	. 55
Tabla N°3: Factores de modificación de la longitud de desarrollo de barras	
corrugadas	. 56
Tabla N°4: Longitud de desarrollo (en cm) de barras corrugadas sin gancho	
estándar en tracción	. 57
Tabla N°5: Longitud de desarrollo (en cm) de barras corrugadas con gancho	
estándar en tracción	. 57
Tabla N°6: Parámetros para el modelamiento de rótulas en vigas	. 60
Tabla N°7: Parámetros para el modelamiento de rótulas en columnas	. 61
Tabla N°8: Parámetros para el modelamiento de rótulas en muros	. 62
Tabla N°9: Expresiones del amortiguamiento equivalente	. 70
Tabla N°10: Expresiones del periodo efectivo	. 70
Tabla N°11: Niveles de medida de intensidad - IM	. 79
Tabla N°12: Propiedades del acero corrugado grado 60	. 84
Tabla N°13: Propiedades del acero corrugado grado 60	. 85
Tabla N°14: Categoría de las edificaciones	. 88
Tabla N°15: Periodo de retorno y probabilidad de excedencia	. 91
Tabla N°16: PGA para diferentes niveles sísmicos	. 93
Tabla N°17: Niveles de daño esperado para cada nivel de desempeño	
estructural	. 97
Tabla N°18: Niveles de daño esperado para cada nivel de desempeño	
estructural	. 98
Tabla N°19: Objetivos del desempeño sísmico recomendado para	
edificaciones	. 99
Tabla N°20: Límites de niveles de los niveles de desempeño sobre la curva	
de capacidad	100
Tabla N°21: Límites de niveles de los niveles de desempeño sobre la curva	
de capacidad	100
Tabla N°22: Criterios de selección del nivel de diseño sísmico	101
Tabla N°23: Categorización de edificaciones según HAZUS	102
Tabla N°24: Tipo de edificaciones de concreto armado según HAZUS	102

Tabla N°25:	Ratios límites de deriva de entrepiso según estado de daño	
	estructural	103
Tabla N°26:	Límites para una edificación tipo C2H diseñada con código	
	sísmico alto	103
Tabla N°27:	Registros sísmicos seleccionados	105
Tabla N°28:	Periodos de vibración y porcentaje de participación de masa	106
Tabla N°29:	Verificación 1 de la irregularidad de rigidez en dirección X	108
Tabla N°30:	Verificación 2 de la irregularidad de rigidez en dirección X	109
Tabla N°31:	Verificación 1 de la irregularidad de rigidez en dirección Y	109
Tabla N°32:	Verificación 2 de la irregularidad de rigidez en dirección Y	110
Tabla N°33:	Verificación de la irregularidad de resistencia en dirección X	110
Tabla N°34:	Verificación de la irregularidad de resistencia en dirección Y	111
Tabla N°35:	Verificación de la Irregularidad de Peso	111
Tabla N°36:	Verificación de la irregularidad torsional en dirección X	112
Tabla N°37:	Verificación de la irregularidad torsional en dirección Y	113
Tabla N°38:	Porcentaje de esquina entrante de la estructura en dirección X	113
Tabla N°39:	Porcentaje de abertura en la planta típica de la estructura	114
Tabla N°40:	Factor de irregularidad en planta en dirección X	115
Tabla N°41:	Coeficiente de estabilidad en la dirección X	116
Tabla N°42:	Coeficiente de estabilidad en la dirección Y	116
Tabla N°43:	Fuerzas inerciales de la edificación	117
Tabla N°44:	Puntos de desempeño espectral durante un sismo frecuente	
	dirección X	125
Tabla N°45:	Puntos de desempeño durante un sismo frecuente dirección $X \dots$	125
Tabla N°46:	Puntos de desempeño espectral durante un sismo ocasional	
	dirección X	126
Tabla N°47:	Puntos de desempeño durante un sismo ocasional dirección X	126
Tabla N°48:	Puntos de desempeño espectral durante un sismo raro	
	dirección X	127
Tabla N°49:	Puntos de desempeño durante un sismo raro dirección X	127
Tabla N°50:	Puntos de desempeño espectral durante un sismo muy raro	
	dirección X	128
Tabla N°51:	Puntos de desempeño durante un sismo muy raro dirección X	128
Tabla N°52:	Puntos de desempeño espectral durante un sismo máximo	
	dirección X	129

Tabla N°53:	Puntos de desempeño durante un sismo máximo dirección X	129
Tabla N°54:	Puntos de desempeño del análisis estático no lineal en la	
	dirección X	130
Tabla N°55:	Puntos de desempeño espectral durante un sismo frecuente	
	dirección Y	130
Tabla N°56:	Puntos de desempeño durante un sismo frecuente dirección Y	131
Tabla N°57:	Puntos de desempeño espectral durante un sismo ocasional	
	dirección Y	131
Tabla N°58:	Puntos de desempeño durante un sismo ocasional dirección Y	132
Tabla N°59:	Puntos de desempeño espectral durante un sismo raro	
	dirección Y	132
Tabla N°60:	Puntos de desempeño durante un sismo raro dirección Y	133
Tabla N°61:	Puntos de desempeño espectral durante un sismo muy raro	
	dirección Y	133
Tabla N°62:	Puntos de desempeño durante un sismo muy raro dirección Y	134
Tabla N°63:	Puntos de desempeño espectral durante un sismo máximo	
	dirección Y	134
Tabla N°64:	Puntos de desempeño durante un sismo máximo dirección Y	135
Tabla N°65:	Puntos de desempeño del análisis estático no lineal en la	
	dirección Y	135
Tabla N°66:	Puntos de fluencia y de colapso de la curva de capacidad en	
	dirección X	136
Tabla N°67:	Puntos de fluencia y de colapso de la curva de capacidad en	
	dirección Y	137
Tabla N°68:	Límite superior de desplazamientos sobre la curva de	
	capacidad en dirección X	138
Tabla N°69:	Límite superior de desplazamientos sobre la curva de	
	capacidad en dirección Y	138
Tabla N°70:	Verificación nivel de desempeño del análisis estático no lineal	
	en dirección X	139
Tabla N°71:	Verificación nivel de desempeño del análisis estático no lineal	
	en dirección Y	141
Tabla N°72:	Niveles de daños análisis estático no lineal en dirección X	
	según método HAZUS	141

Tabla N°73:	Niveles de daños análisis estático no lineal en dirección Y	
	según método HAZUS	142
Tabla N°74:	Desplazamientos en el techo en dirección X	143
Tabla N°75:	Desviación estándar, promedio y percentiles 16%, 50% y 84%	
	de los desplazamientos en el techo en dirección X	143
Tabla N°76:	Desplazamientos en el techo de la estructura en dirección Y	144
Tabla N°77:	Desviación estándar, promedio y percentiles 16%, 50% y 84%	
	de los desplazamientos en el techo en dirección Y	144
Tabla N°78:	Máximas derivas de entrepiso en dirección X	145
Tabla N°79:	Desviación estándar, promedio y percentiles 16%, 50% y 84%	
	de las máximas derivas de entrepiso en dirección X	145
Tabla N°80:	Máximas derivas de entrepiso en dirección Y	146
Tabla N°81:	Desviación estándar, promedio y percentiles 16%, 50% y 84%	
	de las máximas derivas de entrepiso en dirección Y	146
Tabla N°82:	Fuerzas cortantes en la base de la estructura en dirección X	147
Tabla N°83:	Desviación estándar, promedio y percentiles 16%, 50% y 84%	
	de las fuerzas cortantes basales en dirección X	147
Tabla N°84:	Fuerzas cortantes en la base de la estructura en dirección Y	148
Tabla N°85:	Desviación estándar, promedio y percentiles 16%, 50% y 84%	
	de las fuerzas cortantes basales en dirección Y	148
Tabla N°86:	Desplazamientos de desempeño en el techo de la estructura	150
Tabla N°87:	Fuerzas Cortantes basales de desempeño de la estructura	151
Tabla N°88:	Puntos de desempeño del análisis dinámico incremental en	
	dirección X	152
Tabla N°89:	Puntos de desempeño del análisis dinámico incremental en	
	dirección Y	152
Tabla N°90:	Máximas derivas de entrepiso y nivel de daño estructural en	
	dirección X	154
Tabla N°91:	Máximas derivas de entrepiso y nivel de daño estructural en	
	dirección Y	154
Tabla N°92:	Puntos de desempeño de la estructura en dirección X	155
Tabla N°93:	Puntos de desempeño de la estructura en dirección Y	155
Tabla N°94:	Niveles de daño del análisis estático no lineal y dinámico	
	incremental	156

Lista de Figuras

Figura N°1: Curva esfuerzo deformación de concreto no confinados	33
Figura N°2: Modelo de Whitney sección concreto sin confinar	34
Figura N°3: Modelo de Hognestad	35
Figura N°4: Modelo de Kent y Park del concreto confinado y sin confina	r 36
Figura N°5: Modelo de Mander del concreto confinado y sin confinar	36
Figura N°6: Núcleo efectivo de una estructura con sección circular de	
concreto confinado	38
Figura N°7: Núcleo efectivo de una estructura con sección rectangular o	de
concreto confinado	40
Figura N°8: Factor de confinamiento λ para elementos cuadrados y	
rectangulares	40
Figura N°9: Modelo histerético de Takeda	41
Figura N°10: Modelo histerético modificado de Takeda	42
Figura N°11: Curva esfuerzo deformación del acero de refuerzo	43
Figura N°12: Comportamiento cíclico del acero de refuerzo	44
Figura N°13: Modelo de Park & Paulay del acero de refuerzo	45
Figura N°14: Modelo de Mander del acero de refuerzo	46
Figura N°15: Curva esfuerzo-deformación del acero de refuerzo	47
Figura N°16: Curva momento-curvatura de un elemento estructural	48
Figura N°17: Curva momento-rotación de un elemento estructural	49
Figura N°18: Curva fuerza-desplazamiento de un sistema estructural	50
Figura N°19: Diagrama momento – curvatura de un miembro a flexión	51
Figura N°20: Deformación de un elemento a flexión	51
Figura N°21: Diagrama momento-curvatura de una sección de concreto)
armado	52
Figura N°22: Longitud de desarrollo de la barra corrugada en tracción s	in
gancho estándar	54
Figura N°23: Longitud de desarrollo de la barra corrugada en tracción c	on
gancho estándar	54
Figura N°24: Modelos de plasticidad concentrada y plasticidad distribuio	da 58
Figura N°25: Elemento estructural con rótulas plásticas en resortes	58
Figura N°26: Distribución idealizada de curvaturas de una columna en	
voladizo	59

Figura N°27	7: Relación fuerza-rotación/desplazamiento de un elemento	
	estructural	60
Figura N°28	3: Discretización de elementos viga-columna mediante fibras	63
Figura N°29	9: Discretización de muros mediante fibras	64
Figura N°30): Efecto P-delta sobre una columna	67
Figura N°3	1: Método de linealización equivalente	69
Figura N°3	2: Obtención del punto de desempeño de iteración inicial	72
Figura N°3	3: Método de iteración directa	74
Figura N°34	4: Intersección del espectro de capacidad con la curva MADRS	75
Figura N°3	5: Intersección espectro de capacidad con curva de posibles	
	puntos de desempeño	76
Figura N°36	6: Curvas IDA probabilísticas	78
Figura N°3	7: Velocidad y desplazamiento de los acelerogramas sin corregir	80
Figura N°38	3: Corrección por línea base y filtrado de los registros sísmicos	81
Figura N°39	9: Registros de velocidades y desplazamientos corregidos y sin	
	corregir	81
Figura N°40): Ubicación en planta de la edificación	83
Figura N°4	1: Modelamiento matemático de la edificación	85
Figura N°42	2: Liberación de momentos en vigas de concreto armado	86
Figura N°43	3: Zonificación sísmica del Perú	87
Figura N°4	4: Ubicación de coordenadas geográficas de la edificación	92
Figura N°4	5: Espectros de aceleraciones de suelo característicos de la	
	edificación	92
Figura N°46	6: Espectro de pseudo aceleraciones correspondiente al sismo	
	frecuente	94
Figura N°47	7: Espectro de pseudo aceleraciones correspondiente al sismo	
	ocasional	94
Figura N°48	3: Espectro de pseudo aceleraciones correspondiente al sismo	
	raro	95
Figura N°49	9: Espectro de pseudo aceleraciones correspondiente al sismo	
	muy raro	95
Figura N°50): Espectro de pseudo aceleraciones correspondiente al sismo	
	máximo	96
Figura N°5	1: Sectorización de la curva de capacidad	99
Figura N°5	P. Modo 1 de vibración de la edificación	107

Figura N°53:	Modo 2 de vibración de la edificación	107
Figura N°54:	Modo 3 de vibración de la edificación	108
Figura N°55:	Longitud de esquina entrante de la planta típica dirección X	113
Figura N°56:	Áreas de abertura de la planta típica de la edificación	114
Figura N°57:	Distribución de fuerzas inerciales en dirección X	118
Figura N°58:	Distribución de fuerzas inerciales en dirección Y	118
Figura N°59:	Curva de capacidad en la dirección X	119
Figura N°60:	Desempeño de elementos eje 1 (punto A de la curva de	
	capacidad dirección X)	119
Figura N°61:	Desempeño de elementos eje 1 (punto B de la curva de	
	capacidad dirección X)	120
Figura N°62:	Desempeño de muros y columnas (punto C de la curva de	
	capacidad X)	120
Figura N°63:	Curva de Capacidad en la dirección Y	121
Figura N°64:	Desempeño de elementos eje 1 (punto A de la curva de	
	capacidad dirección Y)	122
Figura N°65:	Desempeño de elementos eje 1 (punto B de la curva de	
	capacidad dirección Y)	122
Figura N°66:	Desempeño de muros y columnas (punto C de la curva de	
	capacidad Y)	123
Figura N°67:	Espectro de capacidad en la dirección X	123
Figura N°68:	Espectro de capacidad en la dirección Y	124
Figura N°69:	Bilinealización equivalente de la curva de capacidad en	
	dirección X	136
Figura N°70:	Bilinealización equivalente de la curva de capacidad en	
	dirección Y	137
Figura N°71:	Sectorización de la curva de capacidad en dirección X	139
Figura N°72:	Sectorización de la curva de capacidad en dirección Y	140
Figura N°73:	Desplazamientos de desempeño de la edificación sobre su	
	curva IDA percentil 50% de en dirección X	149
Figura N°74:	Desplazamientos de desempeño de la edificación sobre su	
	curva IDA percentil 50% de en dirección Y	149
Figura N°75:	Fuerzas Cortantes de desempeño de la edificación en	
	dirección X	150

Figura N°76: Fuerzas Cortantes de desempeño de la edificación en	
dirección Y1	51
Figura N°77: Máximas derivas de entrepiso de la estructura en dirección X 1	53
Figura N°78: Máximas derivas de entrepiso de la estructura en dirección Y 1	53

17

Lista de Símbolos y Siglas

Símbolos

 $A_{abertura}$: Área de la parte no techada o abertura de una planta de la

edificación.

 A_{ρ} : Área confinada efectiva del elemento estructural.

 A_{qc} : Área bruta de la sección de columna.

 A_{qm} : Área bruta de la sección del muro.

 A_{qv} : Área bruta de la sección de viga.

 A_{qva} : Área bruta de la sección de viga de acople.

 A_{planta} : Área techada de un nivel de una planta de la edificación

 A_s : Área de acero de refuerzo a tracción.

 A'_s : Área de acero de refuerzo a compresión.

 A_{sp} : Área de refuerzo transversal de la sección del elemento

estructural.

 A_{sx} : Área confinada efectiva cuando la sección del elemento estructural

es paralela al eje X.

 A_{sv} : Área confinada efectiva cuando la sección del elemento estructural

es paralela al eje Y.

 A_{tr} : Área total del refuerzo transversal dentro de un espaciamiento s.

B : Factor de reducción de aceleración espectral debido al

amortiguamiento.

 $B_{D/C-i}$: Relación entre la cortante de demanda y cortante de capacidad

del entrepiso i.

C : Factor de amplificación sísmica.

 C_d : Factor de amplificación de deflexión.

 C_m : Factor de participación de masas modales.

 D_{x-i} : Desplazamiento lateral del nivel *i* debido a fuerzas estáticas

incrementales en dirección X.

 D_{y-i} : Desplazamiento lateral del nivel i debido a fuerzas estáticas

incrementales en dirección Y.

E_c: Módulo de elasticidad del concreto no confinado.

 E_{sec} : Módulo secante del concreto confinado correspondiente al

máximo esfuerzo de concreto confinado.

 E_{sh} : Módulo de elasticidad del acero de refuerzo en el punto límite de

la plasticidad.

 I_{ax}, I_{ay} : Factor de irregularidad en altura de la edificación en las

direcciones X e Y respectivamente.

 I_e : Factor de Importancia de la edificación.

 I_{ac} : Inercia de la sección bruta de columna.

 I_{qm} : Inercia de la sección bruta del muro.

 I_{qv} : Inercia de la sección bruta de viga.

 I_{qva} : Inercia de la sección bruta de viga de acople.

 I_{px} , I_{py} : Factor de irregularidad en planta de la edificación en las

direcciones X e Y respectivamente.

 K_0 : Rigidez elástica del sistema estructural.

 K_e : Rigidez efectiva del sistema estructural.

 K_i : Rigidez del entrepiso i de la estructura.

 K_{i+1} : Rigidez del entrepiso superior al nivel i de la estructura.

 K_{tr} : Índice de refuerzo transversal.

 K_u : Rigidez en la curva de descarga en el comportamiento histerético

de la estructura.

 $L_{esq.entrante}$: Longitud en planta de la esquina entrante.

 $L_{planta X}$: Longitud en planta de la dirección X de la edificación.

 L_p : Longitud de rótula plástica.

 M_{ν} : Momento resistente de la sección del elemento estructural.

 M'_{ν} : Momento de primera fluencia de la sección del elemento

estructural.

P : Fuerza Axial de diseño debido a cargas de gravedad.

P_i: Sumatoria de cargas gravitacionales sin amplificar sobre el nivel *i*.

 P_{i-1} : Sumatoria de cargas gravitacionales sin amplificar sobre el nivel

anterior al nivel i.

 P_T : Peso total de la edificación.

 R_i : Resistencia del nivel i de la estructura frente a la acción de fuerzas

sísmicas

 R_{i+1} : Resistencia del entrepiso superior al nivel i de la estructura frente

a la acción de fuerzas sísmicas

R_{0X}, R_{0Y}	: Coeficientes básicos de reducción de fuerzas sísmica en la
	dirección X e Y respectivamente.
R_X , R_Y	: Coeficientes de reducción de fuerzas sísmica en la dirección X e
	Y respectivamente.
S	: Factor de amplificación del suelo.
S_a	: Pseudo aceleración espectral.
S_x	: Carga de la acción sísmica (fuerza axial, momento o cortante) en
	la dirección X de la edificación
S_y	: Carga de la acción sísmica (fuerza axial, momento o cortante) en
	la dirección Y de la edificación
$(Sa)_{5\%}$: Pseudo aceleración espectral correspondiente al porcentaje de
	amortiguamiento de 5% de la estructura.
$Sa_{(T=1s)}$: Pseudo aceleración espectral correspondiente al periodo de
	vibración de 1 segundo.
Sa_{push_SFX}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo frecuente en dirección X.
Sa_{push_SFY}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo frecuente en dirección Y.
Sa_{push_SMX}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo máximo en dirección X.
Sa_{push_SMY}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo máximo en dirección Y.
Sa_{push_SMRX}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo muy raro en dirección X.
Sa_{push_SMRY}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo muy raro en dirección Y.
Sa_{push_SOX}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo ocasional en dirección X.
Sa_{push_SOY}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo ocasional en dirección Y.
Sa_{push_SRX}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo raro en dirección X.
Sa_{push_SRY}	: Pseudo aceleración espectral de desempeño obtenido del Análisis
	Estático No Lineal mediante un sismo raro en dirección Y.

 $(Sa)_{eta_{eff}}$: Pseudo aceleración espectral correspondiente al porcentaje de amortiguamiento efectivo eta_{eff} de la estructura.

Sd : Pseudo desplazamiento espectral.

 Sd_{push_SFX} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo frecuente en dirección X.

 Sd_{push_SFY} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo frecuente en dirección Y.

 Sd_{push_SMX} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo máximo en dirección X.

 Sd_{push_SMY} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo máximo en dirección Y.

 Sd_{push_SMRX} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo muy raro en dirección X.

 Sd_{push_SMRY} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo muy raro en dirección Y.

 Sd_{push_SOX} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo ocasional en dirección X.

 Sd_{push_SOY} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo ocasional en dirección Y.

 Sd_{push_SRX} : Pseudo desplazamiento espectral de desempeño obtenido del Análisis Estático No Lineal mediante un sismo raro en dirección X. $Sd_{push\ SRY}$: Pseudo desplazamiento espectral de desempeño obtenido del

Análisis Estático No Lineal mediante un sismo raro en dirección Y.

T : Periodo fundamental de vibración. T_{eff} : Periodo efectivo de la estructura.

 T_{eq} : Periodo de vibración equivalente del sistema lineal.

 T_L : Periodo que define el inicio de la zona del factor de amplificación

sísmica C con desplazamiento constante

 T_{max} : Máximo valor entre los periodos traslacionales.

 T_{min} : Máximo valor entre los periodos traslacionales.

T_P: Periodo que define el fin de la zona del factor de amplificación

sísmica C con aceleración constante.

 T_R : Período de retorno de ocurrencia sísmica.

 T_{Ri} : Periodo de retorno correspondiente a la probabilidad de

excedencia p_i .

 T_x , T_y : Periodo fundamental de vibración en los periodos X e Y de la

estructura respectivamente.

U : Factor de uso de la edificación.

 $V_{90\% X}, V_{90\% Y}$: Fuerza cortante del análisis espectral de la edificación en dirección

X e Y considerando los modos necesarios que completen el 90%

de masa participativa.

 V_{fund_X}, V_{fund_Y} : Fuerza cortante del análisis espectral de la edificación en dirección

X e Y considerando sólo sus respectivos modos fundamentales de

vibración

 V_i : Fuerza cortante sísmica en el nivel i de la edificación.

 V_{IDA-X} : Cortante de desempeño obtenida del Análisis Dinámico

Incremental en la dirección X.

 V_{IDA-Y} : Cortante de desempeño obtenida del Análisis Dinámico

Incremental en la dirección Y.

 V_{push} : Cortante basal de desempeño obtenida del Análisis Estático No

Lineal

 V_{push-X} : Cortante basal de desempeño obtenida del Análisis Estático No

Lineal en dirección X.

 V_{push-Y} : Cortante basal de desempeño obtenida del Análisis Estático No

Lineal en dirección Y.

 $V_{push\ SFX}$: Cortante basal de desempeño obtenido del Análisis Estático No

Lineal mediante un sismo frecuente en dirección X.

 $V_{push SFY}$: Cortante basal de desempeño obtenido del Análisis Estático No

Lineal mediante un sismo frecuente en dirección Y.

: Cortante basal de desempeño obtenido del Análisis Estático No $V_{push\ SMX}$

Lineal mediante un sismo máximo en dirección X.

: Cortante basal de desempeño obtenido del Análisis Estático No V_{push_SMY}

Lineal mediante un sismo máximo en dirección Y.

: Cortante basal de desempeño obtenido del Análisis Estático No V_{push_SMRX}

Lineal mediante un sismo muy raro en dirección X.

: Cortante basal de desempeño obtenido del Análisis Estático No $V_{push\ SMRY}$

Lineal mediante un sismo muy raro en dirección Y.

: Cortante basal de desempeño obtenido del Análisis Estático No $V_{push\ SOX}$

Lineal mediante un sismo ocasional en dirección X.

: Cortante basal de desempeño obtenido del Análisis Estático No V_{push_SOY}

Lineal mediante un sismo ocasional en dirección Y.

 V_{push_SRX} : Cortante basal de desempeño obtenido del Análisis Estático No

Lineal mediante un sismo raro en dirección X.

: Cortante basal de desempeño obtenido del Análisis Estático No V_{push_SRY}

Lineal mediante un sismo raro en dirección Y.

 V_{s} : Velocidad Promedio de las Ondas de Corte.

 Vu_X , Vu_Y : Cortante del punto de falla de la idealización bilineal de la curva

de capacidad de la edificación en las direcciones X e Y

respectivamente.

: Cortante de fluencia de la idealización bilineal de la curva de Vy_X , Vy_Y

capacidad de la edificación en las direcciones X e Y

respectivamente.

W : Peso efectivo sísmico de la edificación.

Z: Factor de zonificación sísmica.

: Aceleración espectral correspondiente al amortiguamiento a_{eff}

efectivo β_{eff} .

: Aceleración espectral de desempeño final de la edificación. a_i

: Aceleración espectral correspondiente al máximo desplazamiento a_{max}

en el espectro de capacidad.

: Aceleración espectral de la iteración inicial de desempeño de la a_{pi}

estructura.

 b_w : Ancho de la viga o columna

: Distancia de la fibra extrema a compresión al eje neutro del С elemento estructural. : Menor distancia medida del centro de una barra a la superficie C_h más cercana del concreto o la mitad de la separación centro a centro de la barra que desarrolla. : Peralte efectivo de la viga o columna. d : Diámetro nominal del acero de refuerzo. d_b : Desplazamiento de desempeño final en el último nivel de la d_i estructura. : Desplazamiento de desempeño obtenido del Análisis Dinámico d_{IDA-X} Incremental en la dirección X. d_{IDA-Y} : Desplazamiento de desempeño obtenido del Análisis Dinámico Incremental en la dirección Y. : Deformación máxima antes de la primera descarga. d_m : Desplazamiento de desempeño de la iteración inicial en el último d_{vi} nivel de la estructura. : Desplazamiento de desempeño obtenida del Análisis Estático No d_{push} d_{push-X} : Desplazamiento de desempeño obtenida del Análisis Estático No Lineal en dirección X. : Desplazamiento de desempeño obtenida del Análisis Estático No d_{push-Y} Lineal en dirección Y. : Desplazamiento de desempeño obtenida del Análisis Estático No d_{push_SFX} Lineal mediante un sismo frecuente en la dirección X. : Desplazamiento de desempeño obtenida del Análisis Estático No $d_{\mathit{push_SFY}}$ Lineal mediante un sismo frecuente en la dirección Y. : Desplazamiento de desempeño obtenida del Análisis Estático No $d_{push\ SOX}$ Lineal mediante un sismo ocasional en la dirección X. : Desplazamiento de desempeño obtenida del Análisis Estático No $d_{push\ SOY}$ Lineal mediante un sismo ocasional en la dirección Y. : Desplazamiento de desempeño obtenida del Análisis Estático No d_{push_SMX} Lineal mediante un sismo máximo en la dirección X. : Desplazamiento de desempeño obtenida del Análisis Estático No d_{push_SMY} Lineal mediante un sismo máximo en la dirección Y.

: Desplazamiento de desempeño obtenida del Análisis Estático No $d_{push\ SMRX}$

Lineal mediante un sismo muy raro en la dirección X.

: Desplazamiento de desempeño obtenida del Análisis Estático No d_{push_SMRY}

Lineal mediante un sismo muy raro en la dirección Y.

: Desplazamiento de desempeño obtenida del Análisis Estático No $d_{\mathit{push_SRX}}$

Lineal mediante un sismo raro en la dirección X.

: Desplazamiento de desempeño obtenida del Análisis Estático No $d_{push\ SRY}$:

Lineal mediante un sismo raro en la dirección Y.

: Diámetro del reforzamiento transversal (estribos) d_{ς}

 d_{ν} : Deformación de fluencia del elemento estructural.

: Resistencia a la compresión máxima del concreto no confinado. f_c

: Fuerza lateral de confinamiento efectivo. f_{le}

: Fuerza lateral de confinamiento efectivo en la dirección X. f_{lx}

: Fuerza lateral de confinamiento efectivo en la dirección Y. f_{lv}

: Esfuerzo de endurecimiento por deformación del acero de f_{s}

refuerzo.

: Esfuerzo del acero de refuerzo en el punto de fractura. f_u

: Esfuerzo de fluencia del acero de refuerzo. $f_{\mathbf{v}}$

: Resistencia a la compresión del concreto.

: Resistencia a la compresión máxima del concreto confinado. f'_{cc}

: Resistencia a la compresión última fc_{ult}

h. : Peralte total de la viga de acople.

: Altura del *i*-ésimo nivel de la estructura. h_i

: Altura del x-ésimo nivel de la estructura. h_x

: Altura del nivel i con respecto al nivel 0 de la edificación. h_{si}

 k_e : Factor de confinamiento efectivo dependiente de la sección y la

forma de confinamiento del elemento estructural.

: Factor de confinamiento efectivo para elementos estructurales k_{ec}

confinados con estribos circulares.

: Factor de confinamiento efectivo para elementos estructurales k_{es}

confinados con estribos helicoidales.

: Longitud de desarrollo en tracción del acero de refuerzo sin l_d

gancho estándar.

: Longitud de desarrollo en tracción del acero de refuerzo con l_{da}

gancho estándar.

: Luz libre de la viga de acople. l_n

: Longitud del muro de concreto armado. l_w

: Cantidad de modos de vibración para que la estructura alcance el m

90% de participación de masa.

: Número de Niveles de la Edificación. n

: Número de barras que se empalman o desarrollan dentro del plano n_h

de hendimiento.

Probabilidad de excedencia de severidad del sismo p_e

correspondiente a un intervalo i de probabilidades.

: Respuesta máxima esperada de todos los modos. r

: Respuesta modal del modo de vibración i. r_i

s' : Separación entre los estribos a paño interior.

: Separación entre estribos a paño exterior. S

: Separación centro a centro del refuerzo vertical. s_b

: Periodo de tiempo en que el efecto sísmico excede su probabilidad

de severidad.

: Ancho del alma del muro de concreto armado. t_w

: Peso del i-ésimo nivel de la estructura. W_i

: Peso del x-ésimo nivel de la estructura. W_{χ}

: Desplazamiento relativo promedio del entrepiso i. Δ_{i-prom}

: Desplazamiento relativo máximo del entrepiso i. Δ_{i-max}

: Desplazamiento relativo en el centro de masa del entrepiso i. Δ_{i-CM}

: Máximo desplazamiento relativo de entrepiso obtenida del Análisis Δ_{IDA-X}

Dinámico Incremental en dirección X.

: Máximo desplazamiento relativo de entrepiso obtenida del Análisis Δ_{IDA-Y}

Dinámico Incremental en dirección Y.

: Máximo desplazamiento relativo de entrepiso obtenida del Análisis Δ_{push-X}

Estático No Lineal en dirección X.

: Máximo desplazamiento relativo de entrepiso obtenida del Análisis Δ_{push-Y}

Estático No Lineal en dirección Y.

: Desplazamiento relativo lateral del entrepiso i debido a fuerzas Δ_{x-i}

estáticas incrementales en dirección X.

 Δ_{y-i} : Desplazamiento relativo lateral del entrepiso i debido a fuerzas estáticas incrementales en dirección Y.

 $\phi_{\mathcal{Y}}$: Curvatura correspondiente al momento resistente de la sección del elemento estructural.

 ϕ'_y : Curvatura correspondiente al momento de primera fluencia de la sección del elemento estructural.

α : Rigidez post elástica de la representación bilineal de la estructura.

 $\alpha_{P-\Delta}$: Pendiente negativa post-fluencia ocasionada por el efecto P-delta.

 α_u : Exponente de reducción de rigidez en la descarga.

 β_0 : Porcentaje de amortiguamiento inherente de la estructura

 β_{eff} : Porcentaje de amortiguamiento efectivo del sistema estructural.

 β_{eq} : Porcentaje de amortiguamiento equivalente del sistema lineal.

 δu_X , δu_Y : Desplazamiento último del sistema estructural de la bilinealización

de la curva de capacidad en dirección X e Y respectivamente.

 δy_X , δy_Y : Desplazamiento de fluencia del sistema estructural de la bilinealización de la curva de capacidad en dirección X e Y

respectivamente.

 ε_c : Deformación unitaria del concreto.

 ε_{cmax} : Deformación unitaria de resistencia máxima.

 ε_{co} : Deformación asociada a la resistencia máxima del concreto f'_c .

 ε_{cu} : Deformación última o de ruptura.

 ε_s : Deformación del acero de refuerzo en la zona de endurecimiento

por deformación.

 ε_{sh} : Deformación al final de la fluencia del acero de refuerzo.

 ε_{su} : Deformación del acero de refuerzo en su punto de fractura.

 ε_u : Deformación del material en su punto de fractura.

 ϵ_{v} : Deformación por fluencia del material.

 θ_i : Índice de estabilidad en un entrepiso i de la estructura.

 θ_{max} : Índice de estabilidad máximo.

 θ_u : Rotación última del elemento estructural.

 θ_{ν} : Rotación de fluencia del elemento estructural.

 λ : Factor de esfuerzo confinado.

: Factor de modificación relacionado con la densidad del concreto.

 λ_n : Factor de efecto de campo cercano.

: Factor de escala de la medida de intensidad IM. λ_{IM}

: Ductilidad de la estructura global. μ_D

: Cuantía de acero de reforzamiento en tracción. ρ

 ρ' : Cuantía de acero de reforzamiento en compresión.

: Cuantía balanceada. ρ_{bal}

: Relación entre el volumen del acero de confinamiento y el volumen ρ_{s}

de concreto confinado.

: Relación entre el área de acero longitudinal y el área de concreto ρ_{cc}

confinado.

: Desviación estándar. σ

: Curvatura última del elemento estructural. φ_u

: Factor de modificación para la longitud de desarrollo con base en ψ_e

el tratamiento superficial de refuerzo.

: Factor de modificación para la longitud de desarrollo con base en ψ_s

el diámetro del refuerzo.

: Factor de modificación para la longitud de desarrollo con base en ψ_t

la localización del refuerzo.

: Curvatura de fluencia del elemento estructural. φ_{ν}

: Frecuencia angular del modo de vibración i. ω_i

Siglas

ACI : (American Concrete Institute). Instituto Americano del Concreto

ADRS : (Acceleration-Displacement Response Spectrum). Espectro de

Respuesta de Aceleración-Desplazamiento.

AENL : Análisis Estático No Lineal.

ASCE : (American Society of Civil Engineers). Sociedad Estadounidense

de Ingenieros Civiles.

ATC : (Applied Technology Council). Consejo de Tecnología Aplicada.

BSO : (Basic Safety Objective). Objetivo Básico de Seguridad.

CM : Carga Muerta.

CP : (Collapse Prevention). Prevención al Colapso.

CV : Carga Viva.

DM : (Damage Measure). Medida de Daño.

FEMA : (Federal Emergency Management Agency). Agencia Federal para

el Manejo de Emergencias.

FO : (Fully Operational). Completamente Operacional

IDA : (Incremental Dynamic Analysis). Análisis Dinámico Incremental

IM : (Intensity Measure). Medida de Intensidad.

Ю : (Immediate Occupancy). Inmediatamente Ocupacional.

LS : (Life Safety). Seguridad de Vida.

MADRS : (Modified Acceleration-Displacement Response Spectrum).

> Espectro de Respuesta de Aceleración-Desplazamiento

Modificado.

PGA : (Peak Ground Acceleration). Aceleración Máxima del Suelo.

RNE : Reglamento Nacional de Edificaciones.

SEAOC : (Structural Engineers Association of California). Asociación de

Ingenieros Estructurales de California.

UNSCH : Universidad Nacional San Cristóbal de Huamanga

Capítulo I: Introducción

1.1. Generalidades

La ciudad de Lima se encuentra ubicada en una zona altamente sísmica donde los sismos registrados son debido al fenómeno de subducción de la placa Nazca bajo la placa Sudamericana. Además, mantiene un silencio sísmico desde el sismo de 1746, esto es debido a que se acumula la mayor cantidad de energía sísmica que se liberaría con un sismo de magnitud de 8.8Mw ocasionando grandes pérdidas materiales y humanas (Instituto Geofísico del Perú, 2014)

Las estructuras al experimentar un sismo de magnitud considerable pueden sufrir determinados daños asociados directamente con sus características físicas y estructurales de diseño (Bozzo & Barbat, 1995), esta predisposición intrínseca es denominada como Vulnerabilidad Sísmica. Por tal motivo, es necesario conocer los posibles daños estructurales mediante la evaluación de la vulnerabilidad sísmica estructural.

Existen diversas metodologías para la evaluación de vulnerabilidad sísmica, entre las cuales se encuentran el Análisis Lineal Estático y Dinámico, y el Análisis No Lineal Estático y Dinámico. Sin embargo, los Análisis No Lineales son los más confiables y precisos debido a que considera el comportamiento real de la estructura al ser sometido a fuerzas sísmicas (Merca, 2021)

Los análisis sísmicos no lineales más conocidos en la Ingeniería Estructural son:

- Análisis Estático No Lineal: Consiste en la aplicación de un patrón de cargas estáticas que se incrementan hasta llegar al colapso de la edificación. Uno de los métodos estáticos no lineales más empleados es el método de capacidad, el cual se encuentra descrito en la normativa ATC-40 y mejorado en la normativa FEMA 440 (Huerta, 2022)
- Análisis No Lineal Tiempo-Historia, el cual consiste en la aplicación de un registro de aceleraciones variables con el tiempo en la base del edificio como patrón de carga.

Sin embargo, trabajar con un solo registro de aceleraciones es insuficiente debido a cada registro ocasiona su respectiva respuesta de la edificación; por tal motivo, se necesitan contar con un número suficiente de registros para luego corregir y escalar a diferentes demandas sísmicas.

1.2. Problemática

La evaluación sísmica de edificaciones se ha convertido en un gran desafío tanto para los ingenieros estructurales como los propietarios de las edificaciones, ya que sus objetivos principales son: "asegurar la rentabilidad de la inversión y salvaguardar la vida de sus ocupantes" (Applied Technology Council [ATC], 1996) En la vida real las componentes de un sistema estructural presentan un comportamiento no lineal geométrico; debido a ello, las metodologías de evaluación de vulnerabilidad sísmica en estructuras comunes para este tipo de comportamiento son el Análisis Estático No Lineal y el Análisis Dinámico No Lineal; siendo el primero de ellos el análisis no lineal más empleado, debido a que demanda menor tiempo de análisis y recursos computacionales.

En el Análisis Estático No Lineal se emplean patrones de carga sísmica estática equivalentes, generalmente se obtienen resultados aproximados de capacidad y demanda sísmica. Además, la aplicación de este mismo análisis se limita a estructuras cuyos modos de vibración fundamentales sean traslacionales y que no presente ningún tipo de irregularidad, sea de planta o de altura (Torres & Zavala, 2022)

Por lo cual, se implementará la metodología del Análisis Dinámico Incremental (IDA) como nueva alternativa de evaluación de vulnerabilidad sísmica, que vendría a ser una sucesión de varios análisis dinámicos no lineal tiempo historia mediante eventos sísmicos escalados a varias intensidades de demanda sísmica.

1.3. Objetivos

1.3.1. Objetivo general

Evaluar la vulnerabilidad sísmica de una edificación de Concreto Armado de 9 niveles mediante la aplicación de cargas estáticas no lineales y cargas dinámicas incremental no lineales.

1.3.2. Objetivos específicos

- Determinar los puntos de desempeño sismorresistente de la edificación de Concreto Armado mediante el método del espectro de capacidad en el Análisis Estático No Lineal para cada nivel de peligro sísmico.
- Determinar los puntos de desempeño sismorresistente para cada nivel sísmico en el Análisis Dinámico Incremental.

 Evaluar el desempeño sísmico de la edificación de Concreto Armado con los puntos de desempeño obtenidos en ambos análisis no lineales.

1.4. Antecedentes investigativos

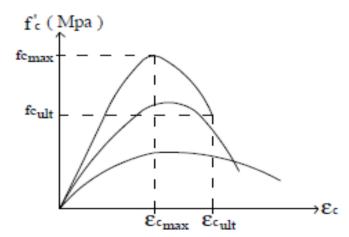
- Tavárez (2016) realizó un análisis comparativo entre las curvas de capacidad producto del análisis estático no lineal y la curva de Análisis Dinámico Incremental (IDA) producto de varios Análisis Dinámico Tiempo Historia No Lineal mediante los registros sísmicos de República Dominicana para una edificación de 4 niveles de concreto armado en cuanto a los desplazamientos en el techo. Se llegó a la conclusión de que el procedimiento seguido por el IDA es el más conservador, debido a que para su respectiva aceleración de suelo PGA (g), su desplazamiento es mayor al obtenido por el Análisis Estático No Lineal.
- Calcina (2017) realizó un análisis comparativo de los desplazamientos obtenidos del análisis estático y del dinámico no lineal incremental de una edificación 11 niveles, se llegó a la conclusión de que estos dos análisis mencionados sirven para determinar la magnitud del daño de los elementos estructurales a partir del desplazamiento de monitoreo ya que se determinó la edificación que se encuentra en el nivel de ocupación inmediata (IO).
- Quispe (2018) realizó la evaluación de desempeño sísmico del laboratorio de la Facultad de Ciencias Agrarias de la Universidad Nacional San Cristóbal de Huamanga (UNSCH) de 4 niveles con estructuras de concreto armado ubicado en Ayacucho, en donde se hizo un análisis comparativo de los puntos de desempeño obtenidos del Análisis Estático No Lineal y el Análisis Dinámico Incremental (IDA) en términos de desplazamiento y se llegó a la conclusión que el Análisis Estático No Lineal es el más conservador debido a que se obtiene mayor desplazamiento.
- Odegaard (2018) realizó un análisis sísmico por desempeño para el hospital Kanti Children's, Nepal para tres probabilidades de ocurrencia en 50 años: 50%, 10% y 2%. Para el caso de la probabilidad de 50% en 50

años que es el cual se realizó el análisis dinámico no lineal de integración directa y el análisis estático no lineal, se realizó un análisis comparativo de los resultados de las derivas de entrepiso obtenidas tras realizar ambos procedimientos sísmicos y se llegó a la conclusión de que los resultados obtenidos del análisis tiempo-historia Integración Directa fueron los más conservadores debido a que sus resultados obtenidos son mayores al del Análisis Estático No Lineal.

Capítulo II: Marcos teórico y conceptual

2.1 Marco teórico

2.1.1. Propiedades de los materiales componentes del concreto armado


2.1.1.1. Concreto no confinado

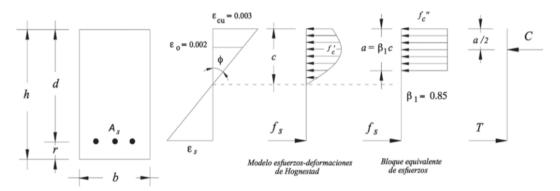
El concreto sin elementos de confinamiento es un material que tiene un buen desempeño ante esfuerzos de compresión, sin embargo, ante esfuerzos de tensión es un material frágil.

En la curva esfuerzo-deformación del concreto no confinado, inicialmente se muestra tiene un comportamiento lineal hasta alcanzar una resistencia a la compresión última, aproximadamente a un 50% de la resistencia máxima a la compresión (Paulay & Priestly, 1992). Luego, la curva presenta un comportamiento no lineal hasta alcanzar su deformación unitaria de resistencia máxima (ε_{cmax}). Generalmente, la deformación ε_{cu} tiene un valor de 0.002. Para concreto de alta resistencia, la curva tiende a ser más puntiaguda cerca de la resistencia máxima; mientras que, para concretos de baja resistencia, se muestran mesetas planas y amplias en la zona no lineal (ver figura N°1)

La pendiente de la última rama de la curva esfuerzo-deformación es negativa debido a que el material no resiste esfuerzos adicionales y su resistencia disminuye hasta llegar a una resistencia a la compresión última fc_{ult} correspondiente a una deformación última o de ruptura (ε_{cu}).

Figura N°1:
Curva esfuerzo deformación de concreto no confinados

Nota. De "Seismic Design of Reinforced Concrete and Masonry Buildings", por T. Paulay, M. Priestley, 1992.

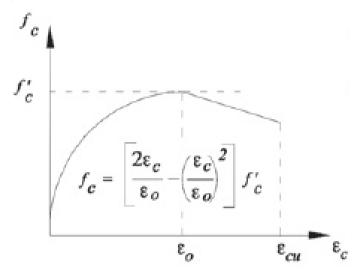

Los modelos de concreto no confinado son empleados principalmente para fines de diseño.

A continuación, se describen los modelos del concreto no confinado más utilizados:

Modelo de Whitney

Consiste en una distribución uniforme de esfuerzos de compresión con una amplitud del 85% de f´c actuando sobre un área rectangular limitada por los bordes de la sección transversal y una recta paralela al eje neutro localizada a una distancia a de la fibra en compresión de la sección. En la figura N°2 se muestra el diagrama de deformaciones y distribución de esfuerzos de una sección de concreto reforzado.

Figura N°2: Modelo de Whitney sección concreto sin confinar


Nota. De "Modelo Esfuerzo-Deformación para Elementos de Concretos Reforzado que Cumple con las Hipótesis de las NTC RCDF 2004", por Villagrán et al., 2013

Modelo de Hognestad

Uno de los métodos más conocidos y aceptados para el análisis del comportamiento del concreto sin confinar es el modelo esfuerzo-deformación propuesto por Hognestad et al. (1955). Este está compuesto por una parte curvilínea la cual está descrita mediante una parábola que comienza en cero hasta alcanzar su resistencia a la compresión máxima y otra parte lineal, en la cual los esfuerzos disminuyen conforme aumenta la deformación hasta una deformación última donde se produce la falla del elemento de concreto ε_{cu} (ver figura N°3).

Figura N°3:

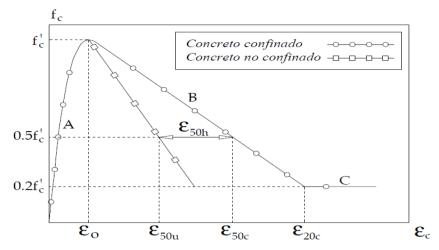
Modelo de Hognestad

Nota. De "Modelo Esfuerzo-Deformación para Elementos de Concretos Reforzado que Cumple con las Hipótesis de las NTC RCDF 2004", por Villagrán et al., 2013

2.1.1.2. Concreto confinado

El confinamiento del concreto mediante estribos hace que la estructura incremente su ductilidad.

Modelo de Kent y Park

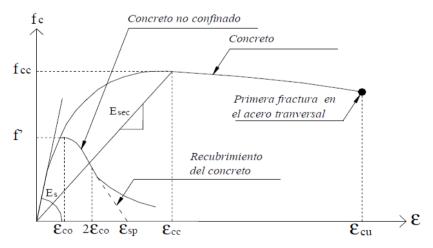

El modelo de esfuerzo-deformación de Kent y Park interpreta el comportamiento del concreto bajo cargas de compresión por flexión. Es aplicable mayormente para estructuras de secciones cuadradas o rectangulares.

Este modelo consiste en una curva está formada por tres ramas (A, B y C), como se aprecia en la figura 4. En la rama A, la cual es denotada por una forma parabólica de segundo grado, aún no se presenta el efecto del confinamiento y el comportamiento de la estructura es igual a la del concreto simple hasta que el concreto alcance su resistencia a la compresión máxima.

En la rama B, la relación entre la resistencia a la compresión y la deformación se aproxima a una recta hasta que la resistencia descienda al 20% del máximo f´c; mientras que en la rama C, se aprecia que la estructura de concreto sigue deformándose a pesar de que ya no pueda tomar esfuerzos adicionales.

Figura N°4:

Modelo de Kent y Park del concreto confinado y sin confinar


Nota. De "Theoretical Stress- Strain Model for Confined Concrete", por Mander et al., 1988

Modelo de Mander

Mander et al. (1988) propusieron un método unificado de esfuerzo-deformación mediante la aplicación de cargas monótonas en compresión para estructuras de secciones rectangulares y circulares confinadas transversalmente

Este método está definido por una curva continua, donde la deformación última (ε_{cu}) ocurre cuando se fractura el acero transversal, por lo que en consecuencia las deformaciones transversales del núcleo de concreto serán grandes (ver figura N°5)

Figura N°5:
Modelo de Mander del concreto confinado y sin confinar

Nota. De "Theoretical Stress- Strain Model for Confined Concrete", por Mander et al., 1988

La curva esfuerzo-deformación está definida por las siguientes expresiones:

$$f'_c = \frac{f'_{cc} * x * r}{r - 1 + x^r} \tag{2.1}$$

$$x = \frac{\varepsilon_c}{\varepsilon_{cc}} \tag{2.2}$$

$$r = \frac{E_C}{E_C - E_{SeC}} \tag{2.3}$$

$$\varepsilon_{cc} = \varepsilon_{co} * \left[1 + 5 * \left(\frac{f'_{cc}}{f'_{c}} - 1 \right) \right]$$
 (2.4)

Donde:

f'cc: resistencia a la compresión máxima del concreto confinado.

f'c: resistencia a la compresión máxima del concreto no confinado.

 ε_c : Deformación unitaria del concreto.

 ε_{co} : Deformación asociada a la resistencia máxima del concreto f'_c .

 E_c : Módulo de elasticidad del concreto no confinado.

 E_{sec} : Módulo secante del concreto confinado correspondiente al máximo esfuerzo de concreto confinado.

La resistencia máxima a compresión f'_{cc} depende de la fuerza lateral de confinamiento efectivo (f_{le}), y del tipo de estribo de confinamiento del elemento estructural, si es rectangular o espiral.

Para estructuras de secciones circulares con confinamiento circular o helicoidal, como lo mostrado en la figura N°6, la resistencia máxima a compresión (f'_{cc}) están definida mediante las siguientes expresiones:

$$f'_{cc} = f'_{c} * \left(2.254 * \sqrt{1 + \frac{7.94 f_{le}}{f'_{c}}} - \frac{2*f_{le}}{f'_{c}} - 1.254\right)$$
 (2.5)

$$f_{ie} = \frac{1}{2} * k_e * \rho_s * f_{yh}$$
 (2.6)

$$\rho_S = \frac{4*A_{SP}}{s*d_S} \tag{2.7}$$

$$k_{ec} = \frac{\left(1 - \frac{S'}{2 * d_S}\right)^2}{1 - \rho_{cc}} \tag{2.8}$$

$$k_{es} = \frac{1 - \frac{s'}{2 * d_s}}{1 - \rho_{cc}} \tag{2.9}$$

Donde:

 A_{sp} : Área de refuerzo transversal

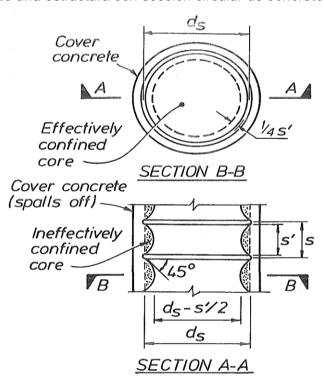
 ρ_s : Relación entre el volumen del acero de confinamiento y el volumen de concreto confinado.

 ρ_{cc} : Relación entre el área de acero longitudinal y el área de concreto confinado.

d_s: Diámetro del reforzamiento transversal (estribos)

 k_e : Factor de confinamiento efectivo. Dependiendo de la sección y la forma de confinamiento del elemento estructural, se emplearán los factores k_{ec} y k_{es}

 k_{ec} : Factor de confinamiento efectivo para elementos estructurales confinados con estribos circulares.


 k_{es} : Factor de confinamiento efectivo para elementos estructurales confinados con estribos helicoidales.

s': Separación entre los estribos a paño interior.

s: Separación entre estribos a paño exterior.

Figura N°6:

Núcleo efectivo de una estructura con sección circular de concreto confinado

Nota. De "Theoretical Stress- Strain Model for Confined Concrete", por Mander et al., 1988.

Para estructuras de secciones rectangulares o cuadradas, la resistencia máxima a compresión (f'_{cc}), se definen las siguientes expresiones:

$$f'_{cc} = \lambda * f'_{c} \tag{2.10}$$

$$f_{lx} = \frac{A_{sx}}{s*d_r} * k_e * f_{yh}$$
 (2.11)

$$f_{ly} = \frac{A_{sy}}{s*b_c} * k_e * f_{yh}$$
 (2.12)

$$A_e = \left(b_c * d_c - \sum_{i=1}^n \frac{(w_i)^2}{6}\right) * \left(1 - \frac{s'}{2*b_c}\right) * \left(1 - \frac{s'}{2*d_c}\right)$$
 (2.13)

$$k_e = \frac{\left(1 - \sum_{i=1}^{n} \frac{\left(w_i\right)^2}{6*b_c*d_c}\right) * \left(1 - \frac{s'}{2*b_c}\right) * \left(1 - \frac{s'}{2*d_c}\right)}{1 - \rho_{cc}} \tag{2.14}$$

Donde:

 f_{vh} : Esfuerzo de fluencia del acero de refuerzo transversal.

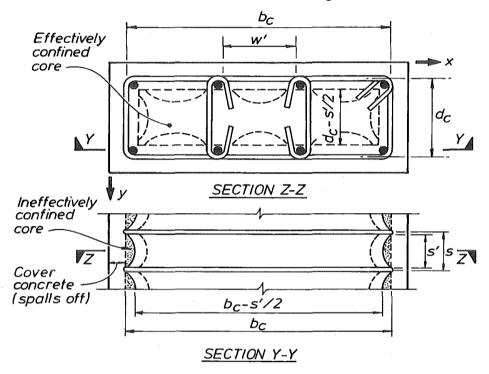
λ: Factor de esfuerzo confinado (ver figura N°8)

 ρ_{cc} : Relación entre el área de acero longitudinal y el área de concreto confinado.

 A_e : Área confinada efectiva del elemento estructural.

 A_{sx} : Área confinada efectiva cuando la sección del elemento estructural es paralela al eje X.

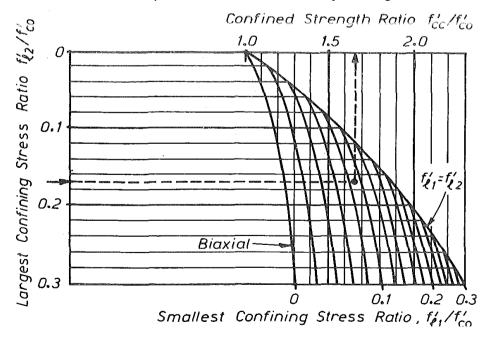
 A_{sy} : Área confinada efectiva cuando la sección del elemento estructural es paralela al eje Y.


 f_{lx} : Fuerza lateral de confinamiento efectivo en la dirección X.

 f_{ly} : Fuerza lateral de confinamiento efectivo en la dirección Y.

En la figura N°7 se muestra de manera esquemática el área de confinamiento de una sección rectangular, así también se especifican las variables empleadas en las expresiones que definen el modelo de Mander.

Figura N°7:


Núcleo efectivo de una estructura con sección rectangular de concreto confinado

Nota. De "Theoretical Stress- Strain Model for Confined Concrete", por Mander et al., 1988.

Figura N°8:

Factor de confinamiento λ para elementos cuadrados y rectangulares

Nota. De "Theoretical Stress- Strain Model for Confined Concrete", por Mander et al., 1988.

• Modelo histerético de Takeda

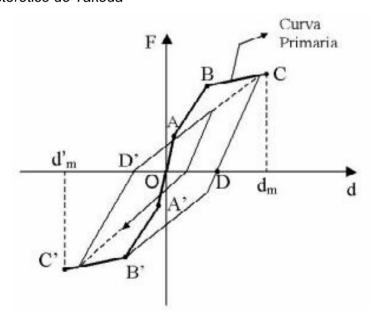
Takeda et al. (1970) introduce los conceptos de degradación de rigidez producto de la flexión en los elementos estructurales y del endurecimiento por deformación. Este modelo histerético es definido mediante una curva trilineal como una curva primaria, donde se aprecia cambio de rigidez en los puntos de agrietamiento A, A´ y en los puntos de fluencia B, B' (ver figura N°9).

La pendiente de curva de descarga (segmento CD) es degradada en función a la deformación máxima alcanzada previamente y a la pendiente S_{AB} del segmento que unen el punto de agrietamiento A y el punto de fluencia B. Dicha pendiente es expresada mediante la siguiente ecuación:

$$S_{CD} = S_{AB} \left(\frac{d_y}{d_m}\right)^{\alpha_u} \tag{2.15}$$

Donde:

 d_{ν} : Deformación de fluencia del elemento estructural (Punto B)


 d_m : Deformación máxima antes de la primera descarga (Punto C)

 α_u : Exponente de reducción de rigidez en la descarga.

La curva de recarga va en una dirección apuntando hacia la deflexión máxima previamente obtenida

Figura N°9:

Modelo histerético de Takeda

Nota. De "Reinforced Concrete Response to Simulated Earthquakes", por Takeda et al., 1970.

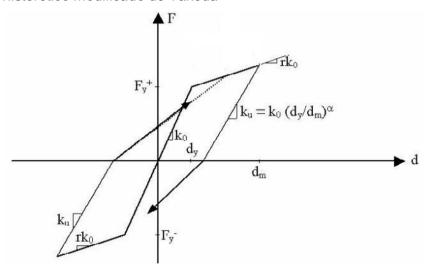
• Modelo histerético modificado de Takeda

Otani (1974) propone una simplificación de la curva envolvente con una sola esquina en el punto de fluencia; por lo tanto, la curva envolvente resultante se convertiría de una representación trilineal a una bilineal (ver figura N°10)

La rigidez de descarga K_u está en función de la rigidez de la sección elástica de la curva envolvente bilineal K_0 , la que conecta el punto de origen con el punto de fluencia. Esta pendiente es degradada en diferentes ciclos de carga mediante la siguiente expresión:

$$K_u = K_0 \left(\frac{d_y}{d_m}\right)^{\alpha_u} \tag{2.16}$$

Donde:


 d_{ν} : Deformación de fluencia del elemento estructural.

 d_m : Deformación máxima antes de la primera descarga.

 α_u : Exponente de reducción de rigidez en la descarga.

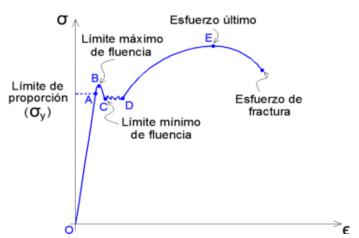
Figura N°10:

Modelo histerético modificado de Takeda

Nota. De "SAKE - A Computer Program for Inelastic Response of R/C Frames to Earthquakes", por S. Otani, 1974.

Para el análisis no lineal tiempo historia, como parte del análisis dinámico incremental (IDA) de la estructura, se debe emplear comportamientos histeréticos que deben ser modelados mediante propiedades verificadas experimentalmente en donde las propiedades de descarga y recarga deben representar características significativas de degradación de rigidez y resistencia (Structural Engineering Institute [SEI], 2017). Por tal motivo, en la definición de rótulas

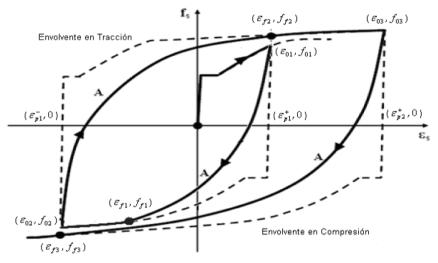
inelásticas de los elementos estructurales para el posterior Análisis Dinámico Incremental (IDA) de la edificación se trabajará con el modelo histerético modificado de Takeda, ya que considera la degradación de rigidez que un elemento de concreto puede sufrir ante carga cíclica (Nangullasmú, 2019).


Takeda et al. (1970) propone que el valor del exponente de reducción de la rigidez en la descarga α_u sea aproximadamente 0.4 para los elementos de concreto armado. Mientras que la rigidez en la región de post-fluencia tome un valor aproximado al 1% de la rigidez elástica.

2.1.2. Acero de refuerzo

El acero de refuerzo juega un papel importante en el desempeño de las estructuras de concreto armado. Su comportamiento depende del tipo de carga aplicado a la estructura.

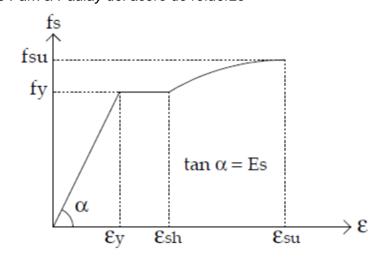
El comportamiento monotónico es ocasionado por la aplicación de cargas monotónicas pseudo estáticas. Se genera una curva relación esfuerzo-deformación (ver figura N°11) la cual es lineal hasta un punto denominado límite de proporcionalidad (punto A) y luego la gráfica sigue con una región en la cual la relación no es tan lineal hasta el límite máximo de fluencia. Después se grafica una platea de fluencia definida entre los puntos C y D, conocida como fujo plástico. Seguidamente, se da un endurecimiento por deformaciones lo cual conlleva a una resistencia última mayor al de la fluencia (punto E) y finalmente se da la falla del material debido a grandes deformaciones (esfuerzo de fractura) en donde el material pierde totalmente su resistencia.


Figura N°11:
Curva esfuerzo deformación del acero de refuerzo

Nota. De "Análisis No Lineal de Elementos de Concreto Armado Utilizando Elementos Finitos", por G. Beas, 2016.

Por otro lado, el comportamiento cíclico es ocasionado por la acción de cargas dinámicas generando como resultado una curva esfuerzo-deformación donde se grafican varias envolventes monotónicas de tracción y de compresión (ver figura N°12). Estas curvas son conectadas mediante una curva representada por el efecto de Bauschinger, en donde el material sufre una degradación de su resistencia debido a las fases de carga y descarga que someten al acero de refuerzo en cada ciclo (Rojas, 2011).

Figura N°12: Comportamiento cíclico del acero de refuerzo



Nota. De "Modelamiento de la fatiga de bajo número de ciclos para el refuerzo longitudinal de elementos de hormigón armado susceptible de pandeo", por P. Rojas, 2011.

2.1.2.1. Modelo de Park y Paulay

Este modelo consiste en el estudio de la curva esfuerzo-deformación de 3 regiones: región elástica, la cual la relación entre el esfuerzo y deformación del material es lineal; una región perfectamente plástica, en donde el material se deforma con un esfuerzo de fluencia y una región de endurecimiento de deformación, en esta zona el material incrementa su capacidad de carga hasta un esfuerzo último. Esta región comprende el rango de deformaciones entre la deformación al final de la fluencia (ε_{sh}) y la deformación del esfuerzo último (ε_u) (ver figura N°13).

Figura N°13: Modelo de Park & Paulay del acero de refuerzo

Nota. De "Estudio Comparativo de las tendencias actuales del método del empujo para la evaluación de estructuras reticulares", por M. Escamilla, 2010.

El esfuerzo del material en la zona de endurecimiento por deformación (f_s) según el modelo de Park & Paulay (1992) está expresado mediante la siguiente ecuación:

$$f_{S} = \left[\frac{m(\varepsilon_{S} - \varepsilon_{Sh}) + 2}{60(\varepsilon_{S} - \varepsilon_{Sh}) + 2} + \frac{(60 - m)(\varepsilon_{S} - \varepsilon_{Sh})}{2(30r + 1)^{2}} \right] * f_{y}$$
(2.17)

$$m = \frac{(f_{Su}/f_y)(30r+1)^2 - 60r - 1}{15r^2}$$
 (2.18)

$$r = \varepsilon_{su} - \varepsilon_{sh} \tag{2.19}$$

Donde:

 f_{ν} : Esfuerzo de fluencia del acero de refuerzo.

 ε_s : Deformación del acero de refuerzo en la zona de endurecimiento por deformación.

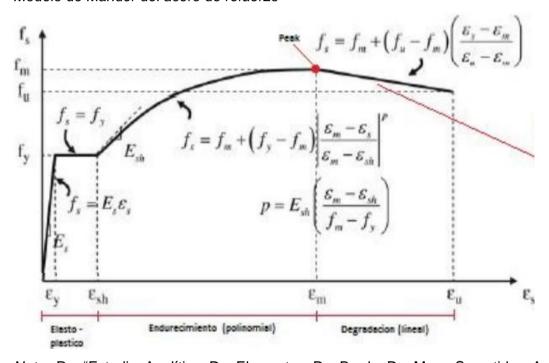
2.1.2.2. Modelo de Mander

En este modelo, la curva esfuerzo-deformación del acero de refuerzo difiere con respecto al modelo de Park en la región del endurecimiento por deformación, la cual hace que la relación esfuerzo-deformación sea polinomial, como se muestra en la figura N°14. Esto es debido a que el material es sometido a una carga cíclica reversible (Mander et al., 1988). En consecuencia, el esfuerzo del material en dicha región queda definido por la siguiente expresión:

$$f_{s} = f_{u} + (f_{y} - f_{u}) \left(\frac{\varepsilon_{su} - \varepsilon_{s}}{\varepsilon_{u} - \varepsilon_{sh}}\right)^{P}$$
(2.20)

$$P = E_{Sh} * \left(\frac{\varepsilon_{Su} - \varepsilon_S}{f_u - f_y}\right)$$
 (2.21)

Donde:


 f_{μ} : Esfuerzo del acero en el punto de fractura.

 ε_{su} : Deformación del acero de refuerzo en su punto de fractura.

 E_{sh} : Módulo de elasticidad del acero de refuerzo en el punto límite de la plasticidad.

Figura N° 14:

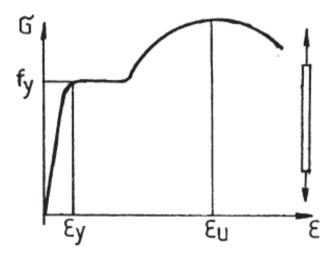
Modelo de Mander del acero de refuerzo

Nota. De "Estudio Analítico De Elementos De Borde De Muro Sometidos A Distintas Configuraciones De Confinamiento Y Pre-Tracción", por P. Herrera, 2013.

2.1.3. Ductilidad

Se define como ductilidad como la capacidad de un material de sufrir grandes deformaciones más allá del límite elástico hasta que ocurra la falla del elemento o sistema estructural.

En diseño sismorresistente de estructuras, el concepto de ductilidad es importante para que la estructura tenga un buen desempeño formando rótulas plásticas y junto a ellas permitir la absorción y disipación de energía durante un movimiento sísmico (Elnashai & Di Sarno, 2008)


Para asegurar el comportamiento dúctil de un elemento estructura de concreto reforzado, se debe tener especial atención a ciertos detalles, tales como la cuantía de acero de refuerzo longitudinal, anclaje de del refuerzo y confinamiento del concreto para así tratar de evitar la falla frágil de dicho elemento (Oviedo, 2019) Existen 4 tipos de ductilidad las cuales se describen a continuación:

2.1.3.1. Ductilidad del material (μ_{ϵ})

Denominada también ductilidad de deformación. En este tipo de ductilidad, el material tiene la capacidad de deformarse en el rango plástico ante diferentes magnitudes de carga. Esta ductilidad es determinada a partir de un diagrama esfuerzo-deformación de un cierto tipo de material, Como ejemplo, en la figura N°15 se muestra el diagrama esfuerzo-deformación del acero de refuerzo.

Figura N°15:

Curva esfuerzo-deformación del acero de refuerzo

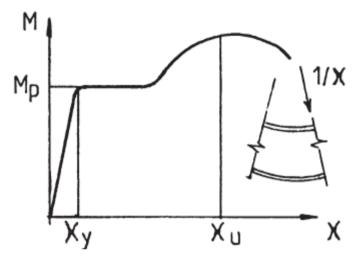
Nota. De "Framed structures. Ductility and Seismic Response", por V. Gioncu, 2000.

La ductilidad del material μ_{ϵ} se calcula mediante la siguiente expresión:

$$\mu_{\epsilon} = \frac{\epsilon_u}{\epsilon_v} \tag{2.22}$$

Donde:

 ϵ_u : Deformación última del material.


 ϵ_{ν} : Deformación por fluencia del material.

2.1.3.2. Ductilidad de la sección (μ_{λ})

Denominada también como ductilidad de curvatura. Se hace énfasis a la deformación plástica de la sección de un elemento estructural (sea columna, viga, etc.) considerando la interacción de sus elementos constituyentes. Este tipo de ductilidad se puede obtener a partir de las curvas momento-curvatura de un elemento estructural, como el que se muestra en la figura N°16.

Figura N°16:

Curva momento-curvatura de un elemento estructural

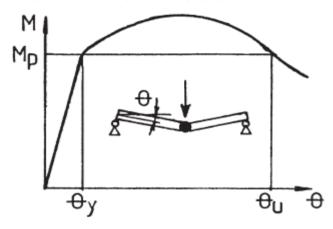
Nota. De "Framed structures. Ductility and Seismic Response", por V. Gioncu, 2000.

La ductilidad de la sección μ_{ϵ} es obtenida a partir de las curvaturas última y de fluencia para una pequeña porción del elemento.

$$\mu_{\epsilon} = \frac{\varphi_u}{\varphi_y} \tag{2.23}$$

Donde:

 φ_u : Curvatura última del elemento estructural.


 φ_{ν} : Curvatura de fluencia del elemento estructural.

2.1.3.3. Ductilidad del elemento (μ_{θ})

Denominada también como ductilidad de rotación de un elemento estructural; en este tipo de ductilidad se considera las propiedades del elemento estructural, sea vigas, columnas o placas. Esta ductilidad se determina a partir del diagrama momento-rotación del elemento en mención, como el mostrado en la figura N°17.

Figura N°17:

Curva momento-rotación de un elemento estructural

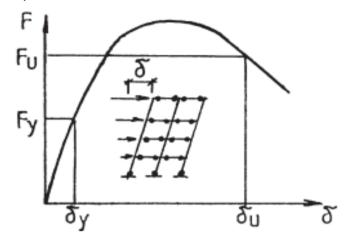
Nota. De "Framed structures. Ductility and Seismic Response", por V. Gioncu, 2000.

La ductilidad de la sección μ_{θ} es obtenida a partir de las rotaciones última y de fluencia del elemento estructural.

$$\mu_{\theta} = \frac{\theta_{u}}{\theta_{v}} \tag{2.24}$$

Donde:

 θ_u : Rotación última del elemento estructural


 θ_{ν} : Rotación de fluencia del elemento estructural

2.1.3.4. Ductilidad de la estructura global (μ_D)

Denominada también como ductilidad de desplazamiento. Este tipo de ductilidad considera el comportamiento de la estructura global y es determinada a partir de su diagrama Fuerza-Desplazamiento, como lo mostrado en la figura N°18.

Figura N°18:

Curva fuerza-desplazamiento de un sistema estructural

Nota. De "Framed structures. Ductility and Seismic Response", por V. Gioncu, 2000.

La ductilidad de la estructura global o de desplazamiento queda definida mediante la siguiente relación:

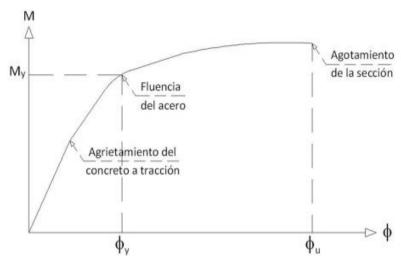
$$\mu_D = \frac{\delta_u}{\delta_v} \tag{2.25}$$

 δ_u : Desplazamiento último del sistema estructural.

 δ_{ν} : Desplazamiento de fluencia del sistema estructural.

2.1.4. Diagrama momento-curvatura

2.1.4.1. Relación con la ductilidad

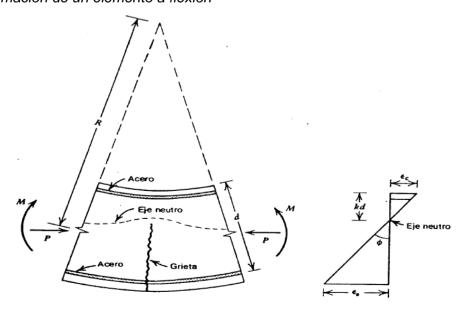

La relación momento-curvatura de una sección transversal juega un papel fundamental para la determinación la ductilidad del elemento estructural, esta relación se grafica en la figura N°19.

El aumento de la cuantía del acero de refuerzo a tracción provoca el aumento de la curvatura de fluencia φ_y pero hace disminuir la curvatura de rotura φ_u , con esto la ductilidad disminuye; mientras que el aumento de la cuantía del acero de refuerzo a compresión hace que disminuya la curvatura de fluencia φ_y y aumente la curvatura de rotura φ_u .

El aumento en la resistencia a fluencia del acero f_y ocasiona la reducción de la ductilidad debido a que aumenta la curvatura de fluencia φ_y y disminuye la curvatura de rotura φ_u ; mientras que el aumento de la resistencia f'_c hace que disminuya la curvatura de fluencia (φ_y) y se incremente la curvatura de rotura φ_u .

Figura N°19:

Diagrama momento – curvatura de un miembro a flexión

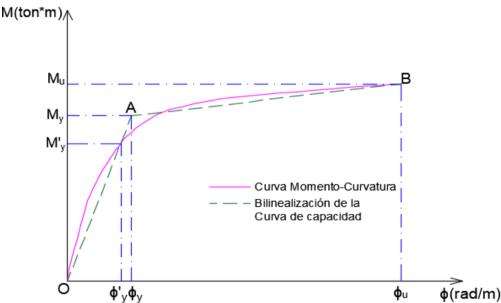

Nota. De "Aplicación de un método basado en el desempeño para el análisis y diseño sismo resistente de puentes de concreto reforzado", por Ospina et al., 2013.

2.1.4.2. Relación ductilidad-deformación del elemento estructural

Un aumento en la deformación de la fibra extrema del elemento de concreto reforzado en el momento último ocasiona el aumento en la curvatura última φ_u (ver figura N°20) y en consecuencia habría un aumento en la ductilidad.

Figura N°20:

Deformación de un elemento a flexión


Nota. De "Reinforced Concrete Structures", por R. Park, T. Paulay, 1975.

2.1.5. Rigidez efectiva

Cuando a una estructura se le somete alguna acción externa, esta se comporta linealmente hasta llegar a un punto de agrietamiento. Este efecto ocasiona que la rigidez y el área bruta de la estructura comience a reducir. Este comportamiento sigue mientras que el acero de refuerzo se desempeñe llegue a un punto donde comienza a ceder esfuerzos; en consecuencia, la rigidez de la sección estructural de concreto armado se reduce a una rigidez efectiva.

Para la obtención de la rigidez efectiva de un elemento de concreto armado EI_{eff} , primero se necesita conocer su comportamiento ante la acción de cargas cíclicas, dicho desempeño se representa mediante el diagrama momento-curvatura de la sección M- ϕ . Luego se realiza la bilinealización equivalente de dicha curva, en donde se determina el punto donde uno de los aceros de refuerzos de la sección alcanza una deformación unitaria de 0.0021 (punto de primera fluencia) M'_y - ϕ'_y , punto de fluencia de la sección M_y - ϕ_y y el punto de rotura de la sección M_u - ϕ_u (ver figura N°21).

Figura N°21: Diagrama momento-curvatura de una sección de concreto armado

La rigidez efectiva del elemento estructural EI_{eff} la pendiente del segmento que une el punto de origen (punto O) con el punto de fluencia de la sección del elemento estructural (punto A), obteniéndose la siguiente relación:

$$EI_{eff} = \frac{M_y}{\phi_y} \tag{2.26}$$

Donde:

 M_{ν} : Momento resistente de la sección del elemento estructural.

 M'_{y} : Momento de primera fluencia de la sección del elemento estructural

 ϕ_y : Curvatura correspondiente al momento resistente de la sección del elemento estructural

 ϕ'_y : Curvatura correspondiente al momento de primera fluencia de la sección del elemento estructural.

SEI (2017) establece que el factor de reducción de rigidez varía según el elemento estructural, sus características y a su comportamiento (ver tabla N°1)

Tabla N°1:
Rigidez efectiva de elementos de concreto armado

Componente		Axial	Flexión	Cortante
Vigos	No presforzadas	_	$0.3E_cI_{gv}$	$0.4E_cI_{gv}$
Vigas	Presforzadas	_	$1.0E_cI_{gv}$	$0.4E_cI_{gv}$
	$P \ge 0.5 A_{gc} f'_c$	$1.0E_cA_{gc}$	$0.7E_cI_{gc}$	$0.4E_cI_{gc}$
Columnas	$P \le 0.1 A_{gc} f'_c$	$1.0E_cA_{gc}$	$0.3E_cI_{gc}$	$0.4E_cI_{gc}$
	P en tracción	$1.0E_cA_{st}$	$0.3E_cI_{gc}$	$0.4E_cI_{gc}$
Muros	En el plano	$1.0E_cA_{gm}$	$0.35E_cI_{gm}$	$0.2E_cI_{gm}$
estructurales	Fuera del plano	$1.0E_cA_{am}$	$0.25E_cI_{gm}$	$0.4E_cI_{am}$

Nota. De "Seismic Evaluation and Retrofit of Existing Buildings", por American Society of Civil Engineers (ASCE), 2017.

Donde:

P: Fuerza Axial de diseño debido a cargas de gravedad.

 A_{ac} : Área bruta de la sección de columna.

 A_{am} : Área bruta de la sección del muro.

 A_{qv} : Área bruta de la sección de viga.

 I_{qc} : Inercia de la sección bruta de columna.

 I_{qm} : Inercia de la sección bruta del muro.

 I_{qv} : Inercia de la sección bruta de viga.

 l_n : Luz libre de la viga de acople.

2.1.6. Longitud de desarrollo del acero de refuerzo l_d

Es la longitud embebida del acero de refuerzo en el concreto en la cual se permite desarrollar adecuadamente la resistencia de diseño a lo largo del perímetro de la barra, sobre la cual se produce los esfuerzos de compresión y tracción debido a la adherencia entre ambos materiales (Canahuiri, 2022).

La determinación de la Longitud de Desarrollo depende de varios factores, entre los cuales se encuentran: la resistencia a compresión del concreto f'c, esfuerzo de fluencia de acero de refuerzo f_y , diámetro del acero de refuerzo d_b y si la barra se ancla directamente (ver figura N° 22) o termina en ganchos estándar (ver figura N° 23)

Figura N° 22: Longitud de desarrollo de la barra corrugada en tracción sin gancho estándar

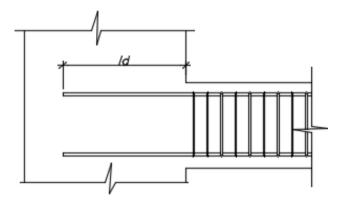
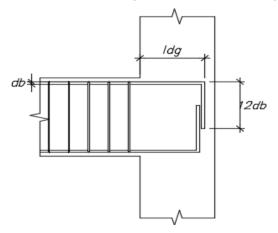



Figura N°23: Longitud de desarrollo de la barra corrugada en tracción con gancho estándar

En la tabla N°2 se muestran las expresiones para la determinación de la longitud de desarrollo l_d para barras corrugadas sin gancho estándar en tracción.

Tabla N°2: Longitud de desarrollo de barras corrugadas sin gancho estándar en tracción

Espaciamiento y recubrimiento	Barras corrugadas con diámetros menores o igual a 3/4"	Barras corrugadas con diámetros mayores a 3/4"
Espaciamiento libre entre barras		
corrugadas que están siendo		
empalmados o desarrolladas no		
menor a d_b , y estribos a lo largo de		
$oldsymbol{l_d}$ no menores al mínimo	(f 1/1 1/1)	(f 1/1 1/1)

reglamentario. Espaciamiento libre entre barras corrugadas que están siendo empalmadas o desarrolladas no sea menor a $2d_b$ y el recubrimiento libre no menor a d_h .

$$\left(\frac{f_y \psi_t \psi_e \lambda_c}{2.6 \sqrt{f'c}}\right) d_b \qquad \left(\frac{f_y \psi_t \psi_e \lambda_c}{2.1 \sqrt{f'c}}\right) d_b$$

Otros casos

$$\left(\frac{f_y \psi_t \psi_e \psi_s \lambda_c}{1.1 \sqrt{f'c} \left(\frac{c_b + K_{tr}}{d_b}\right)}\right) d_b$$

$$K_{tr} = \frac{A_{tr} f_y}{10 s_b n_b}$$

Nota. De "Norma Técnica Peruana E.060 – Concreto Armado", por Reglamento Nacional de Edificaciones, 2009

Donde:

 A_{tr} : Área total del refuerzo transversal dentro de un espaciamiento s.

 d_{p} : Diámetro nominal de la barra corrugada longitudinal.

c_h: Menor distancia medida del centro de una barra a la superficie más cercana del concreto o la mitad de la separación centro a centro de la barra que desarrolla.

 K_{tr} : Índice de refuerzo transversal.

 n_b : Número de barras que se empalman o desarrollan dentro del plano de hendimiento.

s_h: Separación centro a centro del refuerzo vertical.

 λ_c : Factor de modificación relacionado con la densidad del concreto.

 ψ_e : Factor de modificación para la longitud de desarrollo con base en el tratamiento superficial de refuerzo.

 ψ_s : Factor de modificación para la longitud de desarrollo con base en el diámetro del refuerzo.

 ψ_t : Factor de modificación para la longitud de desarrollo con base en la localización del refuerzo.

En la tabla N°3 se muestran los valores de los factores que afectan la longitud de desarrollo de las barras corrugadas en tracción.

Tabla N°3:
Factores de modificación de la longitud de desarrollo de barras corrugadas

Factor	Condiciones	Valor
2/1	Barras superiores	1.3
ψ_t	Otras barras	1.0
	Barras con tratamiento superficial epóxico y	
	recubrimiento menor a $3d_b$ o espaciamiento libre	1.5
ψ_e	menor a $6d_b$	
	Otras barras con tratamiento superficial epóxico	1.2
	Barras sin tratamiento superficial	1.0
ala	Barras con diámetros menores o iguales a 3/4"	0.8
ψ_s	Barras con diámetros mayores a 3/4"	1.0
1	Concreto liviano	1.3
λ_c	Concreto de peso normal.	1.0

Nota. De "Norma Técnica Peruana E.060 – Concreto Armado", por Reglamento Nacional de Edificaciones, 2009.

En el proyecto, se asume que todas las vigas tienen características de estar compuestas por concreto de peso normal y por barras corrugadas de grado 60 $(f_y$ =4200 kg/cm²). En la tabla N°4 se muestran las longitudes de desarrollo l_d (en cm) de las barras corrugadas a tracción sin gancho estándar dependientes de su diámetro d_b y de la resistencia a compresión de las vigas f'c

Tabla N°4:

Longitud de desarrollo (en cm) de barras corrugadas sin gancho estándar en tracción

d (in)		f'c (MPa)	
d_b (in) $\overline{}$	21	28	35
3/8	43.0	37.2	33.3
1/2	57.3	49.6	44.4
5/8	71.6	62.0	55.5
3/4	106.4	92.1	82.4
1	141.8	122.8	109.9

En la fórmula 2.27 se determina de la longitud de desarrollo l_{dg} para barras corrugadas con gancho estándar en tracción según la normativa E-060.

$$l_{dg} = \left(\frac{0.24\psi_e \lambda_c f_y}{\sqrt{f'c}}\right) d_b \tag{2.27}$$

Donde:

 $\psi_e = 1.2$; barras con recubrimiento epóxico.

 $\psi_e = 1.0$; para otros casos.

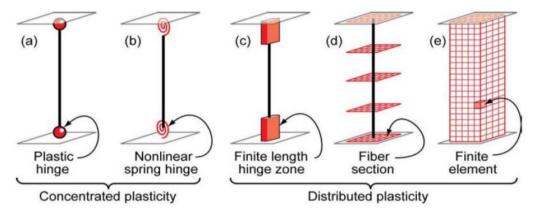
 $\lambda_c = 1.3$; para concretos livianos.

 $\lambda_c = 1.0$; para concretos con peso normal.

En la tabla N°5 se muestran las longitudes de desarrollo l_d (en cm) de las barras corrugadas a tracción con gancho estándar dependientes de su diámetro d_b y de la resistencia a compresión de las vigas f'c

Tabla N°5:

Longitud de desarrollo (en cm) de barras corrugadas con gancho estándar en tracción

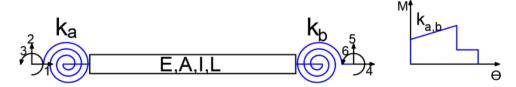

d (in)		f'c (MPa)	
d_b (in)	21	28	35
3/8	20.6	17.9	16.0
1/2	27.5	23.8	21.3
5/8	34.4	29.8	26.6
3/4	41.2	35.7	31.9
1	55.0	47.6	42.6

2.1.7. Modelamiento no lineal de elementos estructurales

La representación no lineal de los elementos de la estructura se puede realizar ya sea mediante su modelamiento con plasticidad concentrada, o mediante plasticidad distribuida (ver figura N°24)

Figura N°24:

Modelos de plasticidad concentrada y plasticidad distribuida

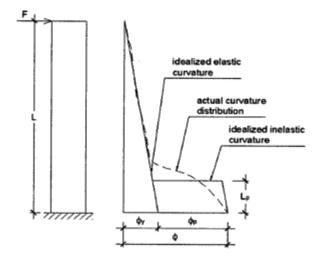

Nota. De "Nonlinear Structural Analysis for Seismic Design", por Deierlein et al., 2010

2.1.7.1. Modelamiento con plasticidad concentrada

También denominado modelamiento mediante rótulas plásticas. Se define como rótula plástica a la zona de daño de los elementos estructurales en donde se concentra la deformación inelástica y que permite la disipación de energía, mientras que en el resto de la estructura se comporta linealmente (ver figura N°25). La rótula plástica aparece cuando la sección no puede absorber mayor momento a flexión y empieza a rotar.

Figura N°25:

Elemento estructural con rótulas plásticas en resortes



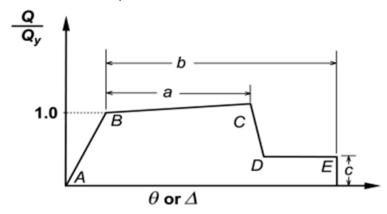
Nota. De "Evaluación del Comportamiento Sísmico de Edificios de Concreto Armado Aplicando la Metodología del Perfil Bio-Sísmico y Diseño por Desempeño", por F. Peinado, 2022.

Longitud experimental de la rótula plástica

El valor teórico de la longitud equivalente de rótula plástica (L_n) puede ser obtenido mediante la integración del diagrama de distribución de curvatura para un elemento de concreto reforzado. En la figura N°26 se muestra como ejemplo las idealizaciones de gráfica de curvatura en el rango elástico y plástico para una columna de concreto reforzado en voladizo. La longitud L_p corresponde a un pequeño tramo donde se considera constante la curvatura plástica $(\phi_{\nu} - \phi_{\nu})$ de dicho elemento.

Figura N°26: Distribución idealizada de curvaturas de una columna en voladizo

Nota. De "Reinforced Concrete Structures", por R. Park, T. Paulay, 1975.


La longitud de la rótula plástica depende de varios factores, entre ellas: fuerza axial, gradiente de momento, esfuerzo cortante en la región de rótula plástica, propiedades mecánicas del acero de refuerzo longitudinal y transversal, resistencia a la compresión del concreto y confinamiento del elemento estructural su efectividad en la región de rótula plástica (Bae & Bayrak, 2008).

Definición de rótula en elementos

En la figura N°27, el punto A es la condición sin carga lateral, el punto B representa la fluencia del elemento, el punto C define la máxima capacidad, el punto D es el esfuerzo residual que representa la disminución de la resistencia que puede estar asociada a la fractura, y el punto E es el punto de máxima deformación.

Figura N°27:

Relación fuerza-rotación/desplazamiento de un elemento estructural

Nota. De "Prestandard and Commentary for the Seismic Rehabilitation of Building (FEMA356)", por Federal Emergency Management Agency, 2000.

Rótulas en vigas

En la tabla N°6 se muestran los parámetros para definir la gráfica fuerzadeformación de las vigas de concreto armado.

Tabla N°6:
Parámetros para el modelamiento de rótulas en vigas

				Parámetro	os
Condición			Rotación	Resistencia Residual	
Condici	ón I: Vigas contro	oladas por fl	exión		
$\rho - \rho'$	Reforzamiento	V_d	а	b	С
$ ho_{bal}$	Transversal	$b_w d\sqrt{f'c}$	a		
≤0.0	С	≤0.25	0.025	0.05	0.2
≤0.0	С	≥0.50	0.02	0.04	0.2
≥0.5	С	≤0.25	0.02	0.03	0.2
≥0.5	С	≥0.50	0.015	0.02	0.2
≤0.0	NC	≤0.25	0.02	0.03	0.2
≤0.0	NC	≥0.50	0.01	0.015	0.2
≥0.5	NC	≤0.25	0.01	0.015	0.2
≥0.5	NC	≥0.50	0.005	0.01	0.2

Nota. De "Prestandard and Commentary for the Seismic Rehabilitation of Building (FEMA356)", por Federal Emergency Management Agency, 2000.

Donde:

ρ: Cuantía de acero de reforzamiento en tracción.

$$\rho = \frac{A_s}{b_w d} \tag{2.28}$$

 ρ' : Cuantía de acero de reforzamiento en compresión.

$$\rho' = \frac{A_{s}}{b_{w}d} \tag{2.29}$$

 ρ_{bal} : Cuantía balanceada.

 A_s : Área de acero de refuerzo a tracción.

 A'_s : Área de acero de refuerzo a compresión.

 b_w : Ancho de la viga.

d: Peralte efectivo de la viga.

f'_c: Resistencia a la compresión del concreto.

Rótulas en columnas

En la tabla N°7 se muestran los parámetros para definir la gráfica fuerzadeformación de las columnas de concreto armado.

Tabla N°7:Parámetros para el modelamiento de rótulas en columnas

Condición			Parámetros			
			Rotación Plástica		Resistencia Residual	
Condicio	ón I: Columnas c	ontroladas	por flexión			
		$\frac{V_d}{b_w d\sqrt{f'c}}$	a	b	С	
≤0.1	С	≤3	0.020	0.030	0.2	
≤0.1	С	≥6	0.016	0.024	0.2	
≥0.4	С	≤3	0.015	0.025	0.2	
≥0.4	С	≥6	0.012	0.02	0.2	
≤0.1	NC	≤3	0.006	0.015	0.2	
≤0.1	NC	≥6	0.005	0.012	0.2	
≥0.4	NC	≤3	0.003	0.01	0.2	
≥0.4	NC	≥6	0.002	0.008	0.2	

Nota. De "Prestandard and Commentary for the Seismic Rehabilitation of Building (FEMA356)", por Federal Emergency Management Agency, 2000.

Donde:

 f'_c : Resistencia a la compresión del concreto.

 f_{ν} : Esfuerzo de fluencia del acero de refuerzo.

 A_{ac} : Área bruta de la sección de columna.

 b_w : Ancho de la columna.

d: Peralte efectivo de la columna.

Rótula en muros

En la tabla N°8 se muestran los parámetros para definir la gráfica fuerzadeformación de los muros de concreto armado.

Tabla N°8:Parámetros para el modelamiento de rótulas en muros

Condición			Parámetros		
			Rotación Plástica		Resistencia Residual
Condición I: Mu	ros control	ados por flexión			
$\frac{(A_s - A'_s)f_y + P}{t_w l_w f'_c}$	$\frac{V_d}{t_w l_w \sqrt{f'c}}$	Confinamiento en sus núcleos	а	b	С
≤0.1	≤4	SI	0.015	0.020	0.75
≤0.1	≥6	SI	0.010	0.015	0.40
≥0.25	≤4	SI	0.009	0.012	0.60
≥0.25	≥6	SI	0.005	0.010	0.30
≤0.1	≤4	NO	0.008	0.015	0.60
≤0.1	≥6	NO	0.006	0.010	0.30
≥0.25	≤4	NO	0.003	0.005	0.25
≥0.25	≥6	NO	0.002	0.004	0.20

Nota. De "Prestandard and Commentary for the Seismic Rehabilitation of Building (FEMA356)", por Federal Emergency Management Agency, 2000.

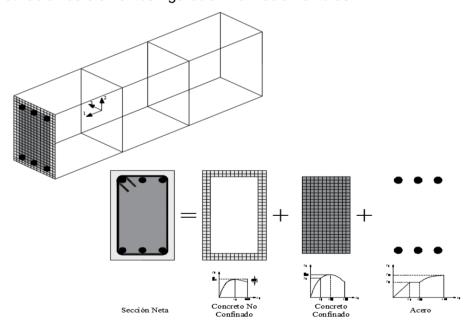
Donde:

 A_s : Área de acero de refuerzo a tracción.

 A'_s : Área de acero de refuerzo a compresión.

 f_{y} : Esfuerzo de fluencia del acero de refuerzo.

 f'_c : Resistencia a la compresión del concreto.


 l_w : Longitud del muro de concreto armado.

 t_w : Ancho del alma del muro de concreto armado.

2.1.7.2. Modelamiento con plasticidad distribuida

También denominado método de fibras. Es el tipo de modelamiento que más se asemeja a la realidad debido a que el elemento estructural es asignado con un comportamiento no lineal a lo largo de toda su longitud y de su sección. Dicho elemento es discretizado en fibras de tal manera todos sus componentes se asemejen al comportamiento de un modelo concentrado, con la diferencia de que solamente están constituido por una única sección inelástica. En la figura N°28 se muestra la discretización mediante fibras de elementos lineales (vigas y columnas), mientras que en la figura N°29 muestra la discretización de los muros mediante fibras.

Figura N°28:
Discretización de elementos viga-columna mediante fibras

Nota. De "Evaluación del Comportamiento Sísmico de Edificios de Concreto Armado Aplicando la Metodología del Perfil Bio-Sísmico y Diseño por Desempeño", por F. Peinado, 2022.

Figura N°29: Discretización de muros mediante fibras

Nota. De "Evaluación del Comportamiento Sísmico de Edificios de Concreto Armado Aplicando la Metodología del Perfil Bio-Sísmico y Diseño por Desempeño", por F. Peinado, 2022.

Sin embargo, una de las desventajas de este modelo es que no puede ser empleado para esfuerzos de cortes. Además, se requiere una mayor capacidad computacional de información y el tiempo de análisis es mayor.

2.2 Marco conceptual

2.2.1. Análisis estático no lineal

Consiste en la aplicación de cargas gravitacionales constantes y de fuerzas estáticas laterales, las cuales se distribuyen a lo largo de la altura del edificio y según el patrón de carga predefinido, la cual se incrementa monotónicamente hasta que la edificación o parte de ella alcance su capacidad máxima o el colapso. El objetivo principal del análisis estático no lineal es evaluar el desempeño estructural de la edificación mediante la estimación de su capacidad para luego comparar con la demanda de su respectivo nivel de desempeño.

2.2.2. Análisis dinámico incremental

Consiste en someter un sistema estructural a una sucesión de análisis no lineales tiempo-historia mediante registros sísmicos, cada uno de ellos escalados a diferentes niveles de intensidad hasta alcanzar algún límite predefinido. El objetivo principal de este análisis es determinar la respuesta inelástica no lineal y la respuesta elástica lineal de la estructura a medida que se incremente la acción sísmica (Tavárez, 2016)

2.2.3. Curva IDA

Es una gráfica que relaciona los niveles de intensidad sísmica con sus respectivas respuestas estructurales en un determinado evento sísmico.

2.2.4. Punto de desempeño

Es el punto de equilibrio entre la demanda sísmica, referida a movimientos sísmicos de diferentes intensidades, y la capacidad o comportamiento de la estructura frente a dichas solicitaciones sísmicas. Tanto en el Análisis Estático No Lineal como en el Análisis Dinámico Incremental, el desempeño está expresado en función al desplazamiento en el techo y cortante basal en la estructura.

2.2.5. Nivel de desempeño

El nivel de desempeño describe una condición límite de daño que puede ser considerada satisfactoria para una determinada edificación y para un movimiento sísmico dado. Esta condición límite es descrita mediante tres aspectos fundamentales: daño físico de las componentes estructurales y no estructurales, la amenaza sobre la seguridad de vida de los ocupantes del edificio ocasionada por el evento sísmico y la funcionalidad de la edificación luego del movimiento sísmico (ATC, 1996).

Capítulo III: Metodología del análisis estático no lineal

3.1. Patrón de carga

Para estructuras tridimensionales, la distribución horizontal de las fuerzas es representada como la distribución de fuerzas de inercia en cada techo con diafragma (Federal Emergency Management Agency [FEMA], 1997)

Los aspectos importantes que se tomarán en cuenta para determinar el patrón de distribución de fuerzas horizontales que se aplicará a la estructura son: la masa de cada uno de sus niveles y los porcentajes de participación de masa en cada uno de los modos de vibración.

FEMA (1997) establece dos tipos de distribuciones verticales de cargas laterales:

 Primer Patrón: Consiste en fuerzas laterales proporcionales al peso de cada nivel de la estructura, denotada por la ecuación (3.1).

$$C_{vx} = \frac{w_x}{\sum_{i=0}^n w_i} \tag{3.1}$$

- Segundo Patrón: Consiste en seleccionar uno de los siguientes sub-patrones modales, las cuales dependen principalmente del porcentaje de participación de masa en sus modos fundamentales:
 - Patrón de cargas laterales C_{vx} dada por la ecuación (3.2), la cual es aplicada cuando el porcentaje de masa participativa es mayor al 75% en sus modos fundamentales de vibración de la estructura.

$$C_{vx} = \frac{w_x(h_x)^k}{\sum_{i=0}^n w_i(h_i)^k}$$
 (3.2)

Donde:

k=1.0, para periodos $T \le 0.5$ sec; k=2.0, para periodos $T \ge 2.5$ sec.

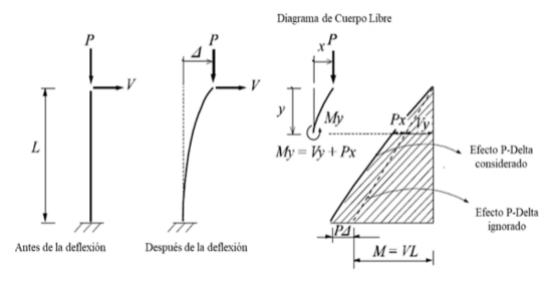
 w_x : Peso del nivel x.

 w_i : Peso del nivel i.

 h_x : Altura del nivel x con respecto al nivel 0 de la estructura.

 h_i : Altura del nivel i con respecto al nivel 0 de la estructura.

n: Número de Niveles de la Edificación.


 Patrón de cargas laterales proporcional a las fuerzas inerciales de cada entrepiso mediante la combinación modal de todos los modos de vibración que registren por lo menos el 90% de masa participativa.

3.2. Efecto de segundo orden

El efecto de segundo orden (efecto P-delta) es un tipo de no linealidad geométrica que toma en cuenta el comportamiento estructural de segundo orden cuando cargas externas axiales y transversales actúan sobre estructuras deformadas lateralmente, generando un momento adicional o de secundario que a su vez incrementa su deriva de entrepiso.

En la figura N°30, se observa a una columna la cual es sometida a una carga lateral dando como resultado momento y fuerza cortante en el miembro estructural, adicionalmente se le aplica una carga a compresión, esto hace que aumente el momento en la base y como se había mencionado anteriormente, el desplazamiento lateral, en conclusión, el efecto P-Delta sometiendo a cargas en compresión hace reducir la rigidez.

Figura N°30:
Efecto P-delta sobre una columna

Nota. De "Comportamiento Sísmico de Edificios de Concreto Reforzado con Disipadores Histeréticos. Propuesta de Diseño Resiliente Conforme a Reglamento", por H. Nangullasmú, 2019.

ASCE (2016) define un índice de estabilidad (θ_i) en cada uno de los pisos mediante la ecuación.

$$\theta_i = \frac{P_i \Delta_i I_e}{V_i h_{si} C_d} \tag{3.3}$$

Donde:

 P_i : Sumatoria de cargas gravitacionales sin amplificar sobre el nivel i.

 Δ_i : Desplazamiento relativo de entrepiso i de la edificación en el rango inelástico producida por la fuerza cortante V_i

I_e: Factor de Importancia de la edificación.

 V_i : Fuerza cortante sísmica en el nivel i.

 h_{si} : Altura del nivel i con respecto al nivel 0 de la edificación.

 C_d : Factor de amplificación de deflexión.

Este coeficiente de estabilidad θ_i debe ser menor a un índice de estabilidad máximo definido por:

$$\theta_{max} = \frac{0.5}{BC_d} \le 0.25$$
 (3.4)

Donde:

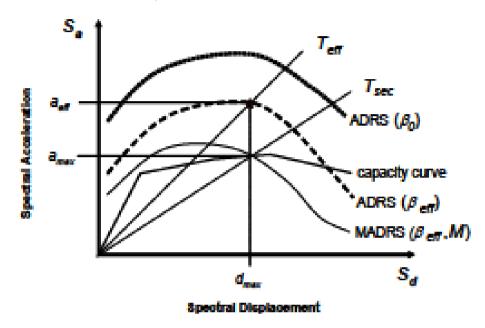
 $B_{D/C-i}$: Relación entre la cortante de demanda y cortante de capacidad del entrepiso i.

El efecto P-delta es despreciable cuando el coeficiente de estabilidad θ_i es menor a 0.10 Para valores de coeficiente de estabilidad θ_i entre 0.10 y θ_{max} , las fuerzas y desplazamientos deberán ser amplificada por $1/(1-\theta_i)$.

Se considera que la estructura es inestable cuando el coeficiente de estabilidad θ_i es mayor al coeficiente máximo θ_{max} (ASCE, 2016).

3.3. Método de linealización equivalente

Department of Homeland Security's Federal Emergency Management Agency (2005) presenta como un procedimiento denominado **Linealización Equivalente Mejorada** como modificación al Método del Espectro de Capacidad desarrollado por ATC (1996).


Este método está enfocado en encontrar el desplazamiento máximo de un sistema no lineal empleando un sistema lineal equivalente de periodo de vibración equivalente T_{eq} y amortiguamiento equivalente β_{eq} .

Además, en esta metodología se deberá modificar el espectro de demanda reducido hasta encontrar una intersección con el espectro de capacidad.

La solución se encuentra mediante un proceso iterativo o gráfico debido a que la ductilidad es el objetivo del análisis y los parámetros efectivos están en función de ella (ver figura N°31).

Figura N°31:

Método de linealización equivalente

Nota. De "Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA440)", por Department of Homeland Security's Federal Emergency Management Agency, 2005.

La curva de capacidad real puede ser idealizada con el fin de calcular la rigidez efectiva K_e , la resistencia de fluencia, el desplazamiento de fluencia y el desplazamiento último, para luego calcular la ductilidad μ y así poder determinar los parámetros lineales equivalentes de periodo efectivo T_{eq} y amortiguamiento equivalente β_{eq} .

Estos parámetros se determinan a través de un análisis estadístico que minimiza las diferencias o errores entre la respuesta máxima de un sistema inelástico real y su sistema lineal equivalente.

Una de las variables de la que depende el cálculo de los parámetros efectivos es el tipo de comportamiento histerético de la estructura.

3.3.1. Amortiguamiento efectivo

El amortiguamiento efectivo como se explicó anteriormente depende del comportamiento histerético y de la ductilidad. Sin embargo, como no se tiene claro el comportamiento histerético de la estructura, las expresiones del amortiguamiento efectivo quedarán definidas mediante las siguientes expresiones indicadas en la tabla N°9.

Tabla N°9:

Expresiones del amortiguamiento equivalente

Ductilidad μ_D	Amortiguamiento efectivo $oldsymbol{eta}_{eff}$
$1.0 \le \mu_D < 4.0$	$4.9(\mu_D - 1)^2 - 1.1(\mu_D - 1)^3 + \beta_0$
$4.0 \le \mu_D \le 6.5$	$14 + 0.32(\mu_D - 1) + \beta_0$
$6.5 < \mu_D$	$19 \left[\frac{0.644(\mu_D - 1) - 1}{\left(0.644(\mu_D - 1)\right)^2} \right] \left(\frac{T_{eff}}{T_0} \right)^2 + \beta_0$

Nota. De "Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA440)", por Department of Homeland Security's Federal Emergency Management Agency, 2005.

3.3.2. Periodo efectivo

El período efectivo dependiente de la ductilidad de la estructural global μ_D y del periodo elástico inicial de vibración T_0 . Independientemente del comportamiento histerético de la estructura, el periodo efectivo queda definido mediante las siguientes expresiones indicadas en la tabla N°10.

Tabla N°10: Expresiones del periodo efectivo

Ductilidad μ_D	Período efectivo T_{eff}		
$1.0 \le \mu_D < 4.0$	$\{0.20(\mu_D - 1)^2 - 0.038(\mu_D - 1)^3 + 1\}T_0$		
$4.0 \le \mu_D \le 6.5$	$\{0.28 + 0.13(\mu_D - 1) + 1\}T_0$		
$6.5 < \mu_D$	$\left\{0.89\left[\sqrt{\frac{(\mu_D - 1)}{1 + 0.05(\mu_D - 2)}} - 1\right] + 1\right\}T_0$		

Nota. De "Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA440)", por Department of Homeland Security's Federal Emergency Management Agency, 2005.

Estas expresiones aplican solo cuando el periodo inicial T_0 sea mayor a 0.2 segundos, pero menor que 2 segundos.

3.3.3. Espectro de respuesta aceleración – desplazamiento modificado (MADRS) Este espectro es obtenido mediante la multiplicación de la componente de aceleración espectral del espectro de demanda correspondiente al amortiguamiento efectivo (β_{eff}) y el factor de modificación M. Este espectro modificado debe intersecarse con el espectro de capacidad en el punto de desempeño.

El factor de modificación *M* se calcula mediante la siguiente expresión:

$$M = \frac{a_{max}}{a_{eff}} = \left(\frac{T_{eff}}{T_{sec}}\right)^2 \tag{3.5}$$

La ecuación 3.5 puede descomponerse en:

$$M = \left(\frac{T_{eff}}{T_0}\right)^2 \left(\frac{T_0}{T_{sec}}\right)^2 \tag{3.6}$$

Donde:

 a_{max} : Aceleración espectral correspondiente al máximo desplazamiento en el espectro de capacidad.

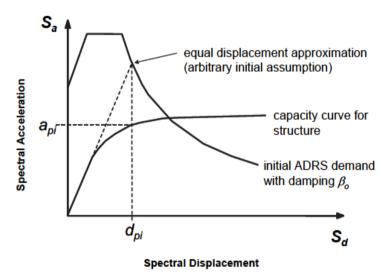
 a_{eff} : Aceleración espectral correspondiente al máximo desplazamiento en el espectro de demanda reducido por el amortiguamiento efectivo β_{eff} .

 T_{sec} : Periodo secante definido por el punto en la curva de capacidad correspondiente al desplazamiento máximo.

ATC (1996) establece que el periodo secante puede ser relacionado con el periodo equivalente a un Sistema de Un Grado de Libertad, por consiguiente, T_{sec} está expresado en término del periodo inicial T_0 mediante la ecuación 3.7.

$$T_{sec} = T_0 \sqrt{\frac{\mu_D}{1 + \alpha \mu_D - \alpha}} \tag{3.7}$$

 μ_D : Ductilidad de la estructura global


α: Rigidez post elástica de la representación bilineal de la estructura.

3.3.4. Procedimientos para la obtención del punto de desempeño.

En este método, el punto de desempeño de la estructura es obtenido mediante una serie de iteraciones y soluciones gráficas. Primero, se describirán los procedimientos generales, las cuales son:

- Definición del espectro de respuesta inicial (5% de amortiguamiento) según las características del suelo del lugar.
- Conversión del espectro de respuesta inicial al espectro demanda inicial, en términos de respuesta aceleración – desplazamiento espectral (ADRS).
- Conversión de la curva de capacidad a un espectro de capacidad.
- Seleccionar un punto de desempeño inicial (d_{pi}, a_{pi}) para la iteración inicial, el cual es obtenido mediante la intersección del espectro de demanda inicial y la proyección del segmento elástico inicial (ver figura N°32)

Figura N°32:
Obtención del punto de desempeño de iteración inicial

Nota. De "Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA440)", por Department of Homeland Security's Federal Emergency Management Agency, 2005.

 Desarrollar una representación bilineal del espectro de capacidad a partir del punto de desempeño asumido en el paso anterior y la rigidez inicial, de tal manera que las áreas encerradas entre la gráfica bilineal y la curva de capacidad sean iguales, definiéndose el punto de fluencia de la estructura (d_y, a_y) Para la representación bilineal, se calcula la rigidez post elástica α y la ductilidad de la estructura μ, mediante las siguientes expresiones:

$$\alpha = \frac{\left(\frac{a_{pi} - a_{y}}{d_{pi} - d_{y}}\right)}{\left(\frac{a_{y}}{d_{v}}\right)} \tag{3.8}$$

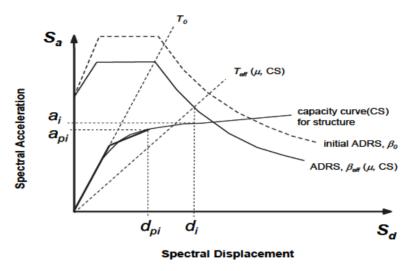
$$\mu = \frac{d_{pi}}{d_{v}} \tag{3.9}$$

• A partir de los valores calculados de la rigidez post elástica α y la ductilidad de la estructura μ en el punto anterior, se calcularán el amortiguamiento efectivo β_{eff} y el periodo efectivo T_{eff} según las tablas 3.1 y 3.2 respectivamente.

A continuación, se muestran 3 alternativas de procedimientos para la obtención del desplazamiento espectral de desempeño.

3.3.4.1. Procedimiento A (iteración directa)

Empleando el amortiguamiento efectivo β_{eff}, calcular el factor de reducción
 B definido en la ecuación, el cual da como resultado un espectro de demanda reducido.

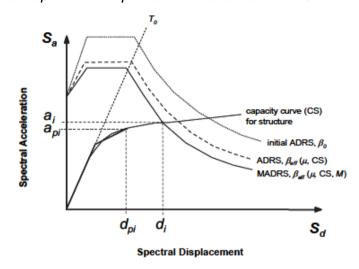

$$B = \frac{4}{5.6 - \ln \beta_{eff}(en \%)} \tag{3.10}$$

$$(Sa)_{\beta_{eff}} = \frac{(Sa)_{5\%}}{B}$$
 (3.11)

 Determinar el desplazamiento espectral objetivo d_i mediante la intersección de la línea del periodo efectivo y el espectro de respuesta reducido y esta se proyecta hacia la curva de capacidad para encontrar la aceleración espectral a_i correspondiente al desplazamiento espectral obtenido (ver figura N°33), obteniendo así el punto de desempeño (d_i, a_i)

Figura N°33:

Método de iteración directa


Nota. De "Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA440)", por Department of Homeland Security's Federal Emergency Management Agency, 2005.

• Comparar el desplazamiento espectral de desempeño (d_i) obtenido en el punto anterior con respecto al desplazamiento espectral asumido inicialmente (d_{vi}) de tal manera que sean aproximadamente iguales.

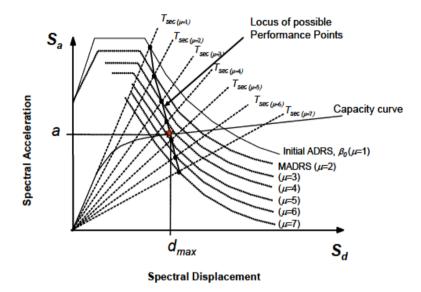
3.3.4.2. Procedimiento B (intersección con la curva MADRS)

- Empleando el amortiguamiento efectivo β_{eff} , calcular el factor de reducción B definido en la ecuación 3.10, el cual da como resultado un espectro de demanda reducido.
- Con el periodo efectivo T_{eff} , rigidez post elástica α , ductilidad global de la estructura μ previamente calculados, se procederá a calcular el factor de modificación M según la ecuación 3.6, este multiplica solamente a la aceleración espectral del espectro de demanda reducido (β_{eff}), generando el espectro de respuesta aceleración desplazamiento modificado (MADRS).
- Se determina el punto de desempeño mediante la intersección entre la curva de capacidad y el espectro MADRS (ver figura N°34)

Figura N°34:
Intersección del espectro de capacidad con la curva MADRS

Nota. De "Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA440)", por Department of Homeland Security's Federal Emergency Management Agency, 2005.

• Comparar el desplazamiento espectral de desempeño (d_i) obtenido en el punto anterior con respecto al desplazamiento espectral asumido inicialmente (d_{pi}) de tal manera que sean aproximadamente iguales.


3.3.4.3. Procedimiento C (curva de posibles puntos de desempeño)

- Empleando el amortiguamiento efectivo β_{eff} , calcular el factor de reducción B definido en la ecuación 3.10, el cual da como resultado un espectro de demanda reducido.
- Con el periodo efectivo T_{eff} , rigidez post elástica α previamente calculados, aplicando la ecuación se obtendrá factores de modificación M para cada valor ductilidad global de la estructura μ , estos multiplicando solamente a la aceleración espectral del espectro de demanda reducido (β_{eff}) se generan sus respectivos espectros de respuesta aceleración desplazamiento modificado (MADRS).
- Se obtendrá una curva donde se localizan los posibles puntos de desempeño mediante la intersección del periodo secante con el espectro de respuesta MADRS para cierta ductilidad global de la estructura μ y esto se repite incrementando esta última.

 El punto de desempeño real será la intersección de la curva resultante del punto anterior con la curva de capacidad (ver figura N°35)

Figura N°35:

Intersección espectro de capacidad con curva de posibles puntos de desempeño

Nota. De "Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA440)", por Department of Homeland Security's Federal Emergency Management Agency, 2005.

Capítulo IV: Metodología del análisis dinámico incremental

4.1 Parámetros del análisis dinámico incremental

4.1.1 Medida de intensidad

La medida de Intensidad (IM) es un indicador de peligro que representa a las estructuras durante una acción sísmica. Es un valor escalar positivo que relaciona la aceleración máxima de terreno característico de un acelerograma natural sin escalar a_1 , velocidad máxima del terreno o aceleración espectral del terreno con un porcentaje de amortiguamiento del 5% y un factor de escala λ_{IM} , lo que formaría una función dependiente de estas variables $f_{a_1}(\lambda)$.

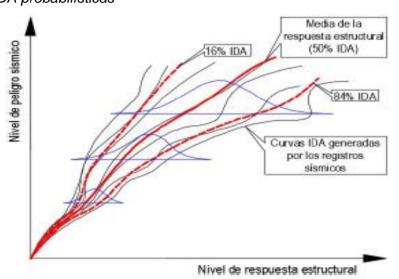
$$IM = f_{a_1}(\lambda) \tag{4.1}$$

4.1.2 Medida de daño

La medida de daño (DM) es un escalar mayor o igual a 0 que representa la respuesta estructural debido a una acción sísmica.

Esta variable puede esta expresada en términos de cortante basal, rotación en los nodos o máxima deriva de entrepiso. La elección de la medida de daños DM depende de la estructura y su objetivo de análisis. Por ejemplo, para evaluar el daño en elementos aporticados, la variable más adecuada es la rotación de los nodos o deriva de entrepiso; mientras que para evaluar el daño no estructural se recomienda emplear la aceleración máxima de piso (Vamvatsikos & Cornell, 2002).

4.1.3 Factor de escala


El factor de escala λ_{IM} es un valor escalar positivo que hace posible el incremento o reducción de la medida de la intensidad (IM) multiplicando a un acelerograma sin escalar.

Para un valor del factor de escala λ_{IM} igual a 1, se habla del acelerograma natural. Un valor de λ_{IM} mayor a 1 hace referencia a un factor que amplifica la medida de intensidad; mientras que un valor λ_{IM} menor a 1 corresponde a un factor que reduce a la medida de intensidad.

4.2 Curva IDA

En la figura N°36 se muestra las curvas que relacionan la medida de intensidad (IM) o nivel de peligro sísmico (aceleración espectral, aceleración máxima en el suelo PGA, etc), con la medida de daño (DM) o nivel de respuesta estructural (máximas derivas de entrepiso, desplazamiento máximo, etc) para cada registro sísmico. Cada curva (líneas color negro) está compuesta por una serie de puntos como resultado del análisis tiempo historia de la estructura, para un determinado nivel sísmico.

Figura N°36: Curvas IDA probabilísticas

Nota. De "Evaluación del Desempeño Sísmico del Laboratorio de la Facultad de Ciencias Agrarias de la UNSCH mediante métodos no lineales", por R. Quispe, 2018.

Se aprecia que conforme aumenta el nivel de peligro sísmico, aumenta la dispersión en la respuesta estructural. Entonces, las respuestas estructurales del Análisis Dinámico Incremental no se expresan de manera determinística, sino mediante probabilística (Vamvatsikos & Cornell, 2002).

Vamvatsikos & Cornell (2002) recomiendan dar respuestas con cuantiles del 16% (equivalente a la mediana menos una desviación estándar), 50% (equivalente a la mediana), 84% (equivalente a la mediana más una desviación estándar). Para el cálculo de la media y la desviación estándar, las respuestas estructurales deben ajustarse a una distribución log normal.

4.2.1 Elección de los parámetros medida de intensidad

Para la determinación del rango de los niveles de medida de intensidad de un determinado evento sísmico, se necesita conocer la curva de peligro sísmico característico de la zona en cada dirección de análisis.

Para la presente tesis, se considera que los niveles de medidas de intensidad (IM) sean en función de la aceleración pico de terreno (PGA). El máximo valor de este indicador será de 0.8g con una razón aritmética de 0.1g (ver tabla N°11). Dichos niveles de medida de intensidad serán aplicados en ambas direcciones del análisis.

Tabla N°11: Niveles de medida de intensidad - IM

IM	PGA (g)
IM1	0.10
IM2	0.20
IM3	0.30
IM4	0.40
IM5	0.50
IM6	0.60
IM7	0.70
IM8	0.80

Con cada uno de los PGA, se construye su respectivo espectro elástico de pseudo aceleraciones, para el posterior escalamiento de los registros sísmicos corregidos, como se detalla en la sección 4.3.3.

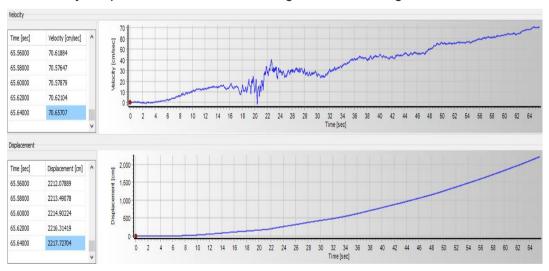
Elección del parámetro medida de daño

Uno de los objetivos de la presente tesis consiste en el análisis comparativo entre el Análisis Dinámico Incremental (IDA) y el Análisis Estático No Lineal mediante el desplazamiento y fuerza cortante basal de desempeño de la superestructura para cada nivel sísmico. Por consiguiente, los parámetros medida de daño (DM) a escoger serán: la fuerza cortante basal, el desplazamiento en el centro de masa del techo y la deriva de entrepiso máxima de la superestructura; Dichos parámetros se analizarán de manera independiente.

4.3 Procedimientos del análisis dinámico incremental

4.3.1 Selección de registros sísmicos

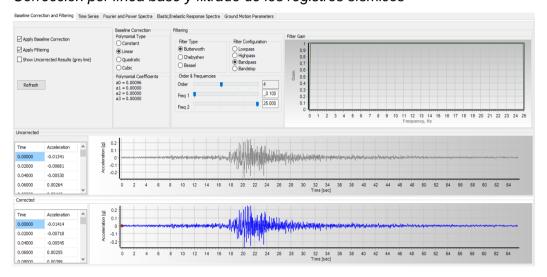
Según lo establecido en la Norma Sismorresistente E030, se requieren como mínimo tres conjuntos de registros de aceleraciones sísmicas, en donde cada uno de ellos incluye sus componentes longitudinales y transversales.


De acuerdo con la normativa sismorresistente E030, los registros seleccionados deben ser obtenidos de eventos cuyas magnitudes, distancias a las fallas, mecanismos de fuente y condiciones locales de suelo sean similares al proyecto.

4.3.2 Corrección por línea base y filtrado

Los acelerogramas por naturaleza ocasionan distorsiones en la velocidad y desplazamiento en la base de la estructura o en el suelo con respecto a sus líneas base, es decir, que la diferencia entre el instante final e inicial son diferentes de 0 (ver figura N°37).

Figura N°37:


Velocidad y desplazamiento de los acelerogramas sin corregir

Por ello, es necesario realizar la corrección del acelerograma a partir de sus valores registrados mediante el software SeismoSignal, para eliminar dichas distorsiones. Además, se debe tener en cuenta la influencia del ruido sobre el acelerograma, que puede ser ocasionado sea por fenómenos naturales o por tratamiento de los datos. Por ello, en el mismo Software, se debe realizar el filtrado de los registros sísmicos (ver figura N°38), de tal manera se elimine la información

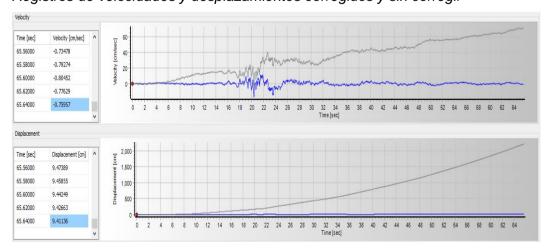

errada de baja frecuencia generado por los aparatos de registros, el ruido de alta y baja frecuencia de los sitios de registro, y las amplitudes de alta frecuencia que no son necesarios para el análisis de la respuesta dinámica de estructuras (Florez & Lozano, 2007).

Figura N°38:
Corrección por línea base y filtrado de los registros sísmicos

En la figura N°39 se muestra que luego de los procesos de corrección por línea base y filtrado, la diferencia entre los instantes finales e iniciales del registro de velocidades y desplazamientos en la base de la estructura reduce drásticamente (línea azul) con respecto al registro sin corregir (línea gris).

Figura N°39:
Registros de velocidades y desplazamientos corregidos y sin corregir

4.3.3 Escalamiento de registros sísmicos.

ASCE (2022) establece que los registros sísmicos deberán ser escalados de tal manera que en el rango de periodos entre T_{min} y T_{max} , donde T_{max} es equivalente a 1.5 veces del mayor de los 2 periodos fundamentales de vibración traslacionales de la estructura y T_{min} es el periodo en el cual el porcentaje de participación modal en ambas direcciones alcance el 90%, pero T_{min} no deberá exceder del 20% del menor de los periodos fundamentales de vibración traslacionales.

4.3.4 Aplicación de los registros sísmicos al modelo estructural

Una vez corregido y escalados los registros sísmicos, se procede a realizar los análisis dinámico no lineal tiempo-historia de la edificación con dichos registros modificados según cada nivel de intensidad sísmica (IM) de un evento sísmico.

4.3.5 Obtención de la curva IDA

A partir de los resultados de los máximos desplazamientos en el techo de la estructura de los análisis tiempo historia no lineal, se construirá la curva IDA donde se relaciona el máximo desplazamiento en el techo con la aceleración pico del suelo (PGA). Además, se construirá otra curva IDA que relaciona la fuerza cortante basal y la máxima deriva de entrepiso de la edificación con la aceleración pico del suelo (PGA).

Capítulo V: Aplicación del análisis estático no lineal y análisis dinámico incremental

5.1 Descripción de la estructura

El edificio está localizado en la Calle Bolognesi 373, 381-383, distrito de Miraflores, provincia de Lima, departamento de Lima. El edificio cuenta con 3 sótanos, 9 niveles y su uso está destinado a una edificación multifamiliar. La altura de cada entrepiso de la superestructura es de 2.60m. En caso de la subestructura, la altura de entrepiso del 1er sótano mínima es de 2.37m y máxima de 4.04m; mientras que la altura de entrepiso del 2do y 3er sótano es de 2.80m. En la figura N°40 se muestra la ubicación en planta de la edificación con sus puntos cardinales, donde la longitud corta es paralela al eje N-S, mientras que la longitud más larga es paralela al eje E-W.

Figura N°40:
Ubicación en planta de la edificación

Nota. Adaptado de [Bolognesi 373] por Google, s.f.-a (https://maps.app.goo.gl/BkyMChK1PYNmFEHX6)

5.2 Sistema estructural

5.2.1 Geometría

El sistema estructural de la edificación multifamiliar Bolognesi está conformado por columnas, vigas y muros de concreto armado, siendo estos últimos los sistemas resistentes en las direcciones X e Y, ya que el porcentaje de participación de fuerzas cortante basal sísmica de los muros es mayor al 70% de la fuerza cortante basal sísmica del primer entrepiso.

El sistema de techo está conformado por losas aligeradas mediante viguetas pretensadas y losas de concreto armado. Este sistema está cimentado sobre zapatas aisladas y combinadas.

5.2.2 Materiales

5.2.2.1 Concreto

La resistencia a la compresión del concreto (f´c) es propia según el elemento estructural. La resistencia a compresión del concreto a emplear en vigas, losas aligeradas y losas macizas es de 210 kg/cm². La resistencia a compresión del concreto en columnas, muros de corte varía entre 280 kg/cm² y 350 kg/cm². En la tabla N°12 se muestran las propiedades de los concretos de los elementos estructurales que se emplearán en el análisis no lineal.

Tabla N°12:Propiedades del acero corrugado grado 60

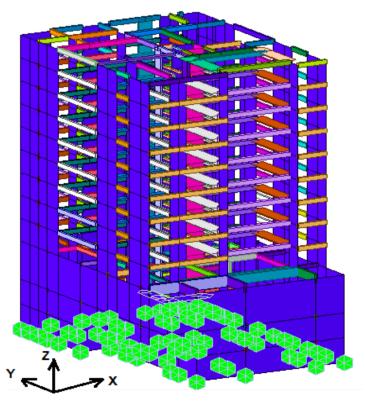
PROPIEDAD	Concreto f´c=210 kg/cm²	Concreto f'c=280 kg/cm ²	Concreto f'c=350 kg/cm ²
Módulo de Elasticidad (kg/cm²)	217370.65	250998.01	280624.30
Módulo de Posisson	0.2	0.2	0.2

5.2.2.2 Acero de Refuerzo

El acero de refuerzo grado 60 empleado tanto para el refuerzo longitudinal como el confinamiento de los elementos estructurales tiene las siguientes características, las cuales se muestran en la tabla N°13.

Tabla N°13:Propiedades del acero corrugado grado 60

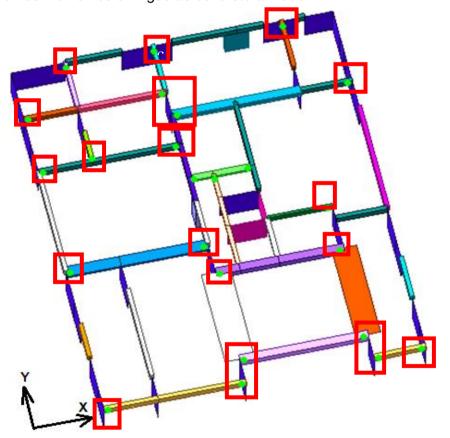
PROPIEDAD	Acero Grado 60
Límite de fluencia (kg/cm²)	4200
Módulo de Elasticidad (kg/cm²)	2000000
Esfuerzo de rotura (kg/cm²)	6300


5.3 Modelo matemático

5.3.1 Elementos estructurales

Para el análisis sísmico se elaboró un modelo tridimensional considerando todos los elementos estructurales representando las vigas y columnas con elementos lineales (Frame), muros de concreto armado como elementos de superficie (Wall Plate) y las losas aligeradas y macizas se modelarán como elementos membrana (Membrane). Se consideraron tres grados de libertad en cada nivel de la edificación (dos de traslación y uno de rotación). Se considera que los elementos verticales se empotran en la base. En la figura N°41 se muestra una vista en 3D de la edificación modelada en el programa de cómputo MIDAS GEN versión 2023 v2.1.

Figura N°41:


Modelamiento matemático de la edificación

5.3.2 Condiciones de apoyo vigas-columnas

En el apoyo discontinuo, las vigas de concreto armado se conectan a los muros y vigas de concreto de concreto armado de 25cm mediante barras corrugadas desarrollas con gancho estándar. En estas conexiones, las barras corrugadas en tracción se pueden desarrollar una longitud máxima de 20cm, la cual es inferior a lo establecido en la tabla N°5 para los diámetros de 1/2", 5/8" y 3/4", por consiguiente, en estas conexiones no se desarrolla adecuadamente la resistencia de diseño requerida. Por tal motivo en estas conexiones se liberarán momentos en las vigas de concreto armado (ver figura N°42), esto hace que los desplazamientos laterales aumenten.

Figura N°42:
Liberación de momentos en vigas de concreto armado

5.4 Criterios del análisis no lineal de la edificación

5.4.1 Cargas sísmicas

A continuación, se describe los parámetros sísmicos establecidos en la norma de diseño sismorresistente E030 del RNE.

5.4.1.1 Factor de zona (Z)

El territorio peruano se encuentra divido en cuatro zonas sísmicas (ver figura N°43). La zonificación consiste en la distribución de la sismicidad y de las características de los movimientos sísmicos.

A cada zona sísmica le corresponde un factor Z; este factor, expresado como una fracción de la aceleración de la gravedad, se interpreta como la aceleración máxima horizontal en suelo rígido con una probabilidad de 10% de ser excedida en 50 años.

Figura N°43:

Zonificación sísmica del Perú

Nota. De "Diseño Sismorresistente (Norma Técnica Peruana E.030)", por Servicio Nacional de Capacitación para la Industria de la Construcción, 2018.

La edificación se encuentra localizada en la Zona 4, en una zona altamente sísmica (Miraflores-Lima). Entonces, el factor de zona a trabajar será:

$$Z = 0.45$$

5.4.1.2 Factor de uso (U)

La Norma Peruana E030 (Ministerio de Vivienda, Construcción y Saneamiento, 2018) categoriza a las edificaciones según su uso o importancia (ver tabla N°14)

Tabla N°14:

Categoría de las edificaciones

CATEGORÍA	DESCRIPCIÓN		
	A1: Establecimientos de salud (públicos y privados), según lo normado por el Ministerio de Salud		
	A2: Edificaciones esenciales para el manejo de las emergencias, el funcionamiento del gobierno y en general aquellas edificaciones que puedan servir de refugio después de un desastre. Se incluyen las siguientes edificaciones: - Establecimientos de salud no comprendidos en la categoría A1 Puertos, aeropuertos, estaciones ferroviarias de pasajeros,		
A (Edificaciones	sistemas masivos de transporte, locales municipales, centrales de comunicaciones.		
Esenciales)	- Estaciones de bomberos, cuarteles de las fuerzas armadas y		
	policía Instalaciones de generación y transformación de electricidad, reservorios y plantas de tratamiento de agua.		
	- Instituciones educativas, institutos superiores tecnológicos y universidades.		
	- Edificaciones cuyo colapso puede representar un riesgo adicional, tales como grandes hornos, fábricas y depósitos de materiales inflamables o tóxicos.		
	- Edificios que almacenen archivos e información esencial del Estado.		
B (Edificaciones Importantes)	Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, coliseos, centros comerciales, terminales de buses de pasajeros, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos y bibliotecas.		
importantes)	También se consideran depósitos de granos y otros almacenes		
C (Edificaciones Comunes)	importantes para el abastecimiento. Edificaciones comunes tales como: viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios o fugas de contaminante		

Nota. De "Diseño Sismorresistente (Norma Técnica Peruana E.030)", por Ministerio de Vivienda, Construcción y Saneamiento, 2018

Esta edificación, la cual está destinada a un edificio multifamiliar, cuyo caso de falla no produce un peligro adicional a la sociedad, es categorizada como una edificación común (categoría C). Por lo tanto, el factor de uso (U) será:

$$U = 1.00$$

5.4.1.3 Factor de amplificación del suelo (S)

Este parámetro sísmico depende del factor de zona (Z) y del perfil del suelo (S0, S1, S2, S3 o S4)

Según el Estudio Mecánica de Suelos, el tipo de suelo obtenido es Gravoso, por lo que se asume como un Suelo Muy Rígido (S1). De acuerdo con el artículo 13 de la norma Sismorresistente E030, el factor de amplificación de suelo S para un perfil de suelo Muy Rígido S1 ubicado en una zona sísmica 4 será:

$$S = 1.00$$

Alternativamente para el perfil de suelo muy rígido S1, se definen los periodos T_P y T_L :

$$T_P = 0.40 \, s$$

$$T_l = 2.50 \, s$$

5.4.1.4 Factor de amplificación sísmica (C)

Este coeficiente es interpretado como un factor de amplificación de la aceleración de respuesta estructural con respecto a la aceleración del movimiento de suelo (Ministerio de Vivienda, Construcción y Saneamiento, 2018). Este factor depende del periodo de la estructura y de los parámetros de suelo, por lo que está expresado mediante las siguientes expresiones:

$$T < T_P C = 2.5 (5.1)$$

$$T_P < T < T_L C = 2.5 \left(\frac{T_P}{T}\right) (5.2)$$

$$T_L < T C = 2.5 \left(\frac{T_P * T_L}{T^2}\right) (5.3)$$

Para la generación de registros simulados con los que se realizarán el Análisis Dinámico Incremental, el valor del factor de amplificación sísmica C para los valores de periodos muy cortos ($T < 0.2T_P$) queda definido mediante la siguiente ecuación (5.4):

$$C = 1 + 7.5 \left(\frac{T}{T_P}\right) \tag{5.4}$$

5.4.1.5 Coeficiente básico de reducción de fuerzas sísmicas (R₀)

Este parámetro es necesario para el análisis sísmico espectral de la edificación: determinación de desplazamientos laterales, análisis de irregularidades y determinación de fuerzas inerciales para su posterior Análisis Estático No Lineal. Como se mencionó en la sección 5.2.1, la edificación está compuesta por muros de concreto armado en ambas direcciones, por lo tanto, el coeficiente R_0 será considerado en ambas direcciones:

$$R_{0X} = R_{0Y} = 6.00$$

5.4.2 Definición de niveles sísmicos

SEAOC Vision 2000 Committee (1995) contempla 4 niveles sísmicos (Sismo Frecuente, Ocasional, Raro y Muy Raro), las cuales dependen de su periodo de retorno y de su probabilidad de excedencia. Adicionalmente en la presente tesis se contemplará el nivel sísmico Máximo, con un periodo de retorno T_R de 2475 años.

El periodo de retorno T_R es el transcurso de ocurrencia de un sismo que ocasiona daños de similar severidad o superior con respecto a otro sismo de similares características. Mientras que la probabilidad de excedencia p_e representa la posibilidad que el sismo exceda cierto grado de daño estructural durante un intervalo de tiempo expresado en años.

Matemáticamente, el periodo de retorno T_R en términos de la probabilidad de excedencia p_e en un periodo determinado t está expresado mediante la ecuación 5.5:

$$T_R = -\frac{t}{\ln(1 - r_e)} \tag{5.5}$$

Donde:

 T_R : Periodo de retorno.

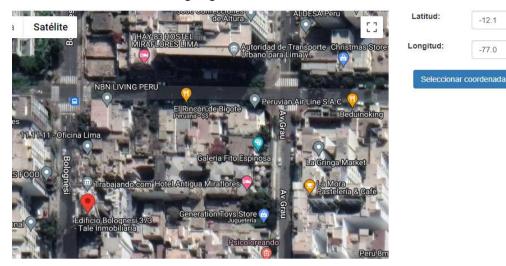
 p_e : Probabilidad de excedencia de severidad del sismo.

 t: Periodo de tiempo en que el efecto sísmico excede su probabilidad de severidad.

En la tabla N°15 se muestra los periodos de retorno y las probabilidades de excedencia para cada uno de los 5 niveles sísmicos.

Tabla N°15:
Periodo de retorno y probabilidad de excedencia

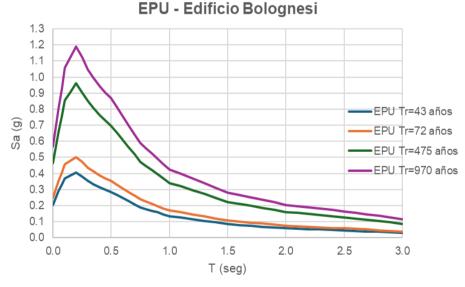
Fuente	NIVEL	PERIODO DE	PROBABILIDAD
Fuente	SÍSMICO	RETORNO	DE EXCEDENCIA
	Frecuente	43 años	50% en 30 años
SEAOC Vision 2000	Ocasional	72 años	50% en 50 años
Committee (1995)	Raro	475 años	10% en 50 años
	Muy Raro	970 años	10% en 100 años
FEMA (1997)	Máximo	2475 años	2% en 50 años


- Sismo Frecuente: Está definido como un evento sísmico con una probabilidad de 50% de excedencia en un período de 30 años. Representa un movimiento sísmico frecuente con un periodo de retorno de 43 años.
- Sismo Ocasional: Está definido como un evento sísmico con una probabilidad de 50% de excedencia en un período de 50 años. Representa un movimiento sísmico frecuente con un periodo de retorno de 72 años.
- Sismo Raro: Está definido como un evento sísmico con una probabilidad de 10% de excedencia en un período de 50 años. Representa un movimiento sísmico frecuente con un periodo de retorno de 475 años. Este sismo está contemplado en diferentes normativas de diseño sismorresistente como la Norma E.030.
- Sismo Muy Raro: Está definido como un evento sísmico con una probabilidad de 10% de excedencia en un período de 100 años. Representa un movimiento sísmico frecuente con un periodo de retorno de 970 años.
- Sismo Máximo: Está definido como un evento sísmico con una probabilidad de 2% de excedencia en un período de 50 años. Representa un movimiento sísmico frecuente con un periodo de retorno de 2475 años.

5.4.3 Espectro de demanda característico del sitio

La aceleración de suelo característico del lugar para diferentes periodos de retorno de sismo es determinada de acuerdo con las coordenadas geográficas de la estructura a analizar (ver figura N°44). La edificación se encuentra ubicada en las coordenadas geográficas de 12.1°S 77.0°O.

Figura N°44:


Ubicación de coordenadas geográficas de la edificación

Nota. De "Servicio Web de Consultas para la Determinación del Peligro Sísmico en el Territorio Nacional", por SENCICO, 2022 (http://ppsh.sencico.gob.pe/)

Una vez ubicadas las coordenadas, se procede a determinar el espectro de peligro uniforme característico del sitio para diferentes niveles de sismo (ver figura N°45)

Figura N°45: Espectros de aceleraciones de suelo característicos de la edificación

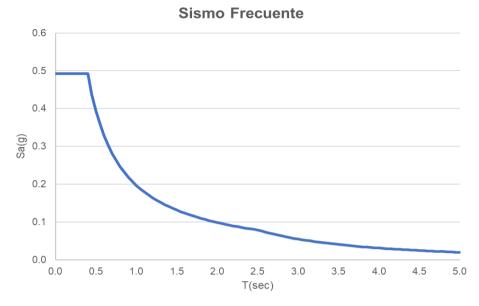
Nota. Elaborado a partir de "Servicio Web de Consultas para la Determinación del Peligro Sísmico en el Territorio Nacional", por SENCICO, 2022 (http://ppsh.sencico.gob.pe/)

La aceleración pico del suelo PGA característico del sitio para cada nivel sísmico, normalizando el PGA en el Sismo Raro a 0.45g se describen en la tabla N°16. La Aceleración Pico del Suelo (PGA) del Espectro de Peligro Uniforme mediante el Sismo Máximo se asume como 1.5 veces del PGA del Espectro de Peligro Uniforme mediante el Sismo Raro.

Tabla N°16:PGA para diferentes niveles sísmicos

SISMO	T_R	PGA (g)
Frecuente	43 años	0.197
Ocasional	72 años	0.240
Raro	475 años	0.450
Muy Raro	970 años	0.549
Máximo	2475 años	0.675

5.4.4 Espectro de demanda de pseudo-aceleraciones


El espectro de demanda sísmica de pseudo-aceleraciones es aquel que depende del lugar y de las características del terreno donde se asienta la estructura. Queda definido mediante la ecuación (5.6):

$$S_a = ZCS \tag{5.6}$$

De la expresión anterior, el espectro de demanda es variable con el factor de amplificación sísmica \mathcal{C} ya que los factores de zona \mathcal{Z} y el de suelo \mathcal{S} son constantes.

A continuación, se muestran los espectros de pseudo-aceleraciones de demanda para el Análisis Estático No Lineal y Análisis Dinámico Incremental, según los niveles sísmicos Frecuente (ver figura N°46), Ocasional (ver figura N°47), Raro (ver figura N°48), Muy Raro (ver figura N°49) y Máximo (ver figura N°50).

Figura N°46:Espectro de pseudo aceleraciones correspondiente al sismo frecuente

Figura N°47:Espectro de pseudo aceleraciones correspondiente al sismo ocasional

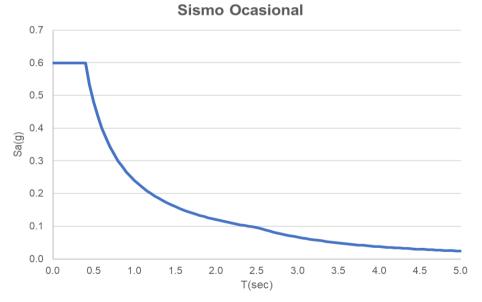
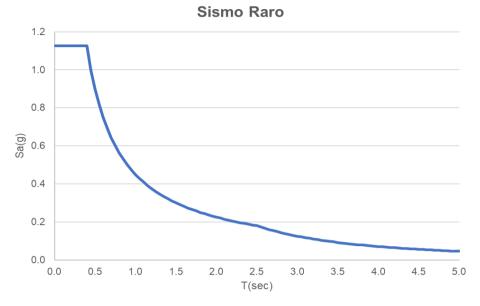



Figura N°48: Espectro de pseudo aceleraciones correspondiente al sismo raro

Figura N°49:Espectro de pseudo aceleraciones correspondiente al sismo muy raro

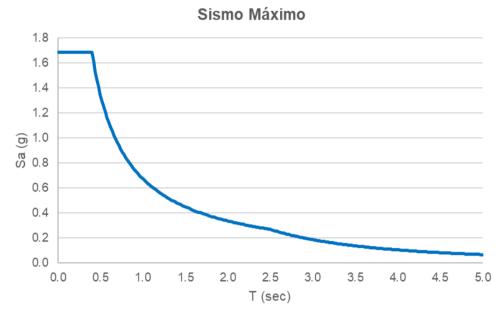



Figura N°50: Espectro de pseudo aceleraciones correspondiente al sismo máximo

5.4.5 Definición de niveles de desempeño sísmico

5.4.5.1 Según SEAOC

SEAOC Vision 2000 Committee (1995) define nivel de desempeño en términos de daño ya sea estructural o no estructural y de las consecuencias que acarrean a la vida de sus ocupantes. Este comité contempla 5 niveles de desempeño las cuales se describen a continuación:

- Totalmente Operacional (FO): En este nivel la edificación no sufre daños importantes a nivel estructural y no estructural, permaneciendo funcional inmediatamente ocurrido el evento sísmico. Este nivel de desempeño se encuentra en el rango elástico donde la edificación no sufre degradación de la resistencia ni de rigidez, además ninguno de sus componentes estructurales fluye.
- Operacional (O): La edificación sufre daños leves a nivel estructural, sin embargo, no compromete a la seguridad de la edificación continuando con sus operaciones luego del evento sísmico. Algunas componentes estructurales de la edificación fluyen, pero pueden fácilmente reparables.
- Seguridad de Vida (LS): La edificación sufren daños moderados que necesitan ser reparados; sin embargo, estas fallas aún no conllevan al colapso global de la edificación.

- Prevención al Colapso (CP): La edificación sufren daños estructurales severos que podrían ser difícilmente reparables. Estos daños son propensos al daño global de la edificación.
- Colapso: La edificación pierde resistencia y estabilidad debido a que uno o varios elementos primarios sufre daño total.

En la tabla N°17 se asocian los niveles de desempeño propuestos SEAOC Vision 2000 Committee (1995) con sus niveles de daños estructurales esperados.

Tabla N°17:

Niveles de daño esperado para cada nivel de desempeño estructural

NIVEL DESEMPEÑO	NIVEL DE
VISION 2000	DAÑO
Totalmente Operacional	Despreciable
Operacional	Leve
Seguridad de Vida	Moderado
Prevención al Colapso	Severo/Extensivo
Colapso	Completo

Nota. De "Performance Based Seismic Engineering of Building", por SEAOC Vision 2000 Committee, 1995.

5.4.5.2 Según FEMA 273

FEMA (1997) define 3 niveles de desempeño estructural las cuales se describen a continuación:

- Inmediatamente Ocupacional (IO): En este nivel la edificación sufre daños estructurales menores que son fácilmente reparables. Los elementos verticales, como columnas y muros, conservan su resistencia y rigidez durante el evento sísmico.
- Seguridad de Vida (LS): La edificación sufre daños moderados en los elementos estructurales, que si bien es cierto aún no conllevan al colapso, sin embargo, necesitan ser reparados para su reocupación.
- Prevención al Colapso (CP): La edificación sufre daños severos en los elementos estructurales que pueden ser difícilmente reparables. Estos daños hacen reducir la resistencia y rigidez global de la edificación.

En la tabla N°18 se asocian los niveles de desempeño propuestos por la normativa FEMA273 con sus niveles de daños estructurales esperados.

Tabla N°18:

Niveles de daño esperado para cada nivel de desempeño estructural

NIVEL DESEMPEÑO	NIVEL DE	
FEMA273	DAÑO	
Inmediatamente	Leve	
Ocupacional		
Seguridad de Vida	Moderado	
Prevención al Colapso	Severo/Extensivo	

Nota. De "NEHRP Guidelines for the Seismic Rehabilitation of Buildings", por Federal Emergency Management Agency, 1997.

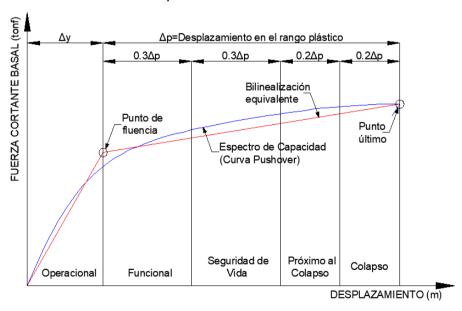
5.4.6 Evaluación de vulnerabilidad sísmica según SEAOC

La importancia de la estructura es un factor determinante para la determinación del desempeño esperado durante un movimiento sísmico. SEAOC Vision 2000 Committee (1995) contempla 3 objetivos de desempeño sísmico que debe cumplir las edificaciones según su uso:

- Objetivo de seguridad crítica: Este objetivo es aceptable para edificaciones que contienen materiales peligrosos que representan una amenaza para la comunidad en caso de colapso.
- Objetivo esencial: Este objetivo es aceptable para estructuras que permanecen operativas una vez ocurrido el evento sísmico, tales como hospitales, centros educativos, estación de bomberos, centros de control de emergencia, etc.
- Objetivo básico: Este objetivo es aceptable para edificaciones cuya falla no representa peligros adicionales para la comunidad, tales como, viviendas, oficinas, etc.

La tabla N°19 se muestra la matriz de desempeño donde se definen los objetivos esperados de cada categoría de edificación según la demanda sísmica.

Tabla N°19:
Objetivos del desempeño sísmico recomendado para edificaciones


Nivel	Nivel de Desempeño de la estructura			ura
Sísmico	Totalmente Operacional	Operacional	Seguridad de Vida	Próximo al Colapso
Frecuente	1	0	0	0
Ocasional	2	1	0	0
Raro	3	2	1	0
Muy Raro	3	3	2	1
0	Desempeño Inaceptable.			
1	Objetivo básico			
2	Objetivo esencial			
3	Objetivo de seguridad crítica.			

Nota. De "Performance Based Seismic Engineering of Building", por SEAOC Vision 2000 Committee, 1995.

5.4.7 Sectorización de la curva de capacidad

Previo a la sectorización de la curva de capacidad, es necesario conocer su punto de fluencia efectiva que separa el tramo elástico con el tramo inelástico. SEAOC Vision 2000 Committee (1995) propone la siguiente sectorización de la curva de capacidad mostrada en la figura N°51.

Figura N°51: Sectorización de la curva de capacidad

Nota. De "Performance Based Seismic Engineering of Building", por SEAOC Vision 2000 Committee, 1995.

En la tabla N°20 se muestran los umbrales máximos del desplazamiento en el techo de la estructura según cada nivel de desempeño.

Tabla N°20:
Límites de niveles de los niveles de desempeño sobre la curva de capacidad

Nivel de desempeño según SEAOC VISION 2000	Umbral Superior de desplazamiento
Totalmente Operacional	δ_{y}
Operacional	$\delta_y + 0.3(\delta_u - \delta_y)$
Seguridad de Vida	$\delta_y + 0.6(\delta_u - \delta_y)$
Próximo al Colapso	$\delta_y + 0.8(\delta_u - \delta_y)$
Colapso	δ_{n}

Nota. De "Performance Based Seismic Engineering of Building", por SEAOC Vision 2000 Committee, 1995.

SEAOC Vision 2000 Committee (1995) propone para cada nivel de desempeño su respectivo nivel de daño esperado de la estructura, así también como su rango aceptable de la máxima deriva de entrepiso las cuales se muestran en la tabla N°21.

Tabla N°21:
Límites de niveles de los niveles de desempeño sobre la curva de capacidad

Nivel de desempeño según SEAOC VISION 2000	Nivel de Daño Estructural Esperado	Deriva de entrepiso
Totalmente Operacional	Despreciable	< 0.2 %
Operacional	Leve	< 0.5 %
Seguridad de Vida	Moderado	< 1.5 %
Próximo al Colapso	Severo	< 2.5 %
Colapso	Completo	> 2.5 %

Nota. De "Performance Based Seismic Engineering of Building", por SEAOC Vision 2000 Committee, 1995.

5.4.8 Evaluación de la vulnerabilidad sísmica según HAZUS

HAZUS es la metodología desarrollada por FEMA (2020) que estima los daños causados por terremotos para posteriormente plantear medidas de respuesta necesaria para hacer frente a futuros desastres relacionados a terremotos.

5.4.8.1 Nivel de diseño sísmico

El manual HAZUS 4.2 SP3 define 5 niveles de diseño sísmico: alto, moderado, bajo y pre-código. El nivel Pre-Código contempla aquellas edificaciones que fueron diseñadas y construidas antes de la implementación de normas de diseño sismorresistente; mientras que los niveles de diseño sísmico alto, moderado y bajo se basan en función a las zonas sísmicas propuestas por la Uniform Building Code - UBC (FEMA, 2020). Estas zonas sísmicas propuestas por la UBC pueden ser adaptadas a la zonificación propuesta por la Norma Técnica Peruana E.030. En la tabla N°22 se muestran el criterio de selección del nivel de diseño sísmico en función a la ubicación y al tiempo en que fue construida la edificación.

Tabla N°22:

Criterios de selección del nivel de diseño sísmico

Zona Sísmica UBC	Zona Sísmica Norma E030	Después de 1975	Entre 1941- 1975	Antes de 1941
4	Zona 4	Alto	Moderado	Pre-Código
2B	Zona 2	Moderado	Bajo	Pre-Código
1	Zona 1	Bajo	Pre-Código	Pre-Código

Nota. De "Hazus Earthquake Model Technical Manual (HAZUS 4.2 SP3)", por Federal Emergency Management Agency, 2020.

En la presente tesis, los daños de la presente tesis serán evaluados mediante un nivel sísmico Alto (High-Code) debido a que los elementos estructurales fueron diseñados bajo la normativa internacional ACI318-19.

5.4.8.2 Categorías de edificación

Este manual categoriza a las edificaciones según su ocupación: Edificaciones Generales, Edificaciones Esenciales, Sistemas de Transportes, Sistema de Utilidades, Edificaciones de alto potencia de pérdidas. En la tabla N°23 se detallan cada una de estas categorías de edificaciones.

Tabla N°23:
Categorización de edificaciones según HAZUS

Categoría de Edificaciones	Descripción
Edificaciones Generales	Edificaciones Residenciales, Centros Comerciales
Edificaciones Esenciales	Hospitales, Centros Educativos.
Sistemas de Transporte	Estaciones de Buses, Estaciones de Tren, Aeropuertos.
Sistema de Utilidades	Plantas de Tratamiento de Aguas Residuales, Agua Potable, Torres de Telecomunicaciones.
Edificaciones de alto potencial de pérdida	Central nuclear, Represas, Diques, Instalaciones Militares

Nota. De "Hazus Earthquake Model Technical Manual (HAZUS 4.2 SP3)", por Federal Emergency Management Agency, 2020.

Esta edificación está destinada a una vivienda multifamiliar, por lo tanto, su categoría corresponde a una Edificación General (General Building Stock)

5.4.8.3 Tipo de edificación

En la tabla N°24 se detalla las características de las edificaciones de concreto armado.

Tabla N°24:
Tipo de edificaciones de concreto armado según HAZUS

	Tipo de _	Rango		
Edificación	Edificación	Altura	Número de Niveles	
Pórticos de Concreto	C1L	Bajo	1-3	
Armado	C1M C1H	Mediano Alto	4-7 >8	
Muros de Corte de Concreto Armado	C2L	Bajo	1-3	
	C2M	Mediano	4-7	
	C2H	Alto	>8	
Pórticos de Concreto con Muros de Albañilería No Reforzada	C3L	Bajo	1-3	
	C3M	Mediano	4-7	
	C3H	Alto	>8	

Nota. De "Hazus Earthquake Model Technical Manual (HAZUS 4.2 SP3)", por Federal Emergency Management Agency, 2020.

La edificación de 9 niveles en estudio está compuesta por muros de corte de concreto armado en ambas direcciones, por lo tanto, su tipología corresponde a una edificación C2H.

5.4.8.4 Niveles de daño y criterios de aceptación

Para determinar el objetivo de desempeño deseado, se corroborará la máxima deriva de entrepiso obtenida del análisis dinámico incremental con los límites de derivas de entrepiso para los niveles de desempeño admisibles acorde al nivel de demanda sísmica aplicado a la estructura. En la tabla N°25 se muestran las derivas de entrepiso límite para edificaciones de concreto armado diseñadas con un código sísmico Alto (High-Code) dependiente de su material y altura.

Tabla N°25:
Ratios límites de deriva de entrepiso según estado de daño estructural

Edificación	Tipo de	Ratio de Deriva de Entrepiso (Δ/h) según estado de daño estructural			
Lumcación	Edificación	Leve	Moderado	Extensivo	Completo
Pórticos de	C1L	0.0050	0.0100	0.0300	0.0800
Concreto Armado	C1M C1H	0.0033 0.0025	0.0067 0.0050	0.0200 0.0150	0.0533 0.0400
Muros de Corte	C2L	0.0040	0.0100	0.0300	0.0800
de Concreto Armado	C2M C2H	0.0027 0.0020	0.0067 0.0050	0.0200 0.0150	0.0533 0.0400

Nota. De "Hazus Earthquake Model Technical Manual (HAZUS 4.2 SP3)", por Federal Emergency Management Agency, 2020.

En la tabla N°26 se muestran las derivas de entrepiso límite de cada estado de daño estructura para una edificación compuesta de muros de concreto armado de gran altura C2H diseñadas mediante un código sísmico Alto.

Tabla N°26:
Límites para una edificación tipo C2H diseñada con código sísmico alto

Tipo de	Deriva de Entrepiso (Δ/h) según estado de				
Edificación	Leve		tructural Extensivo	Completo	
C2H	0.0020	0.0050	0.0150	0.0400	

Nota. De "Hazus Earthquake Model Technical Manual (HAZUS 4.2 SP3)", por Federal Emergency Management Agency, 2020.

5.5 Registros sísmicos

Se seleccionaron registros sísmicos o acelerogramas de tal manera que cumplan con los requisitos descritos en la sección 4.3.1 (ver tabla N°27).

Según lo descrito en la sección 5.1, se asignan que las componentes NS actuarán en la dirección X, mientras que las componentes EW actuarán en la dirección Y del Análisis Dinámico Incremental de la edificación.

En el anexo H se muestran los registros de aceleraciones (aceleración versus tiempo), de los eventos símicos. En cada uno de los gráficos se indica la aceleración máxima alcanzada en cada componente del evento sísmico.

Tabla N°27:Registros sísmicos seleccionados

Fuente	Fecha	Evento Sísmico	Estación		Magnitud (Mw)	Componente	PGA (g)
	17/10/66	Lima - Perú	Parque de la Reserva - PQR	Grava gruesa	7.0	EW	0.184
Centro Peruano	17/10/66	Lima- Perú	Parque de la Reserva - PQR	Grava gruesa	7.0	NS	0.273
Japonés de	31/05/70	Ancash - Perú	Parque de la Reserva - PQR	Grava gruesa	6.6	EW	0.107
Investigaciones Sísmicas v	31/05/70	Ancash - Perú	Parque de la Reserva - PQR	Grava gruesa	6.6	NS	0.100
Sísmicas y Mitigación de	00/40/74	Lima - Perú	Parque de la Reserva - PQR	Grava gruesa	6.6	EW	0.198
Desastres	03/10/74	Lima - Perú	Parque de la Reserva - PQR	Grava gruesa	6.6	NS	0.184
[CISMID-UNI] (s.f.)	23/06/01	Atico - Perú	César Vizcarra Vargas – MOQ001	Suelo rígido	8.4	EW	0.301
,	23/06/01	Atico - Perú	César Vizcarra Vargas – MOQ001	Suelo rígido	8.4	NS	0.224
Departamento de Ingeniería Civil -	27/02/10	Maule - Chile	Santiago Maipú	Grava gruesa	8.8	EW	0.488
Universidad de Chile (2010)	27/02/10	Maule - Chile	Santiago Maipú	Grava gruesa	8.8	NS	0.560
Facultad de Ciencias Físicas y	01/04/14	Iquique - Chile	Regimiento Granaderos de Iquique	Vs=613m/s	8.2	EW	0.576
Matemáticas Universidad de Chile (2014)	01/04/14	Iquique - Chile	Regimiento Granaderos de Iquique	Vs=613m/s	8.2	NS	0.605
Facultad de Ciencias Físicas y	16/09/15	Illapel - Chile	Estadio Municipal de Salamanca	Vs=751m/s	8.4	EW	0.552
Matemáticas Universidad de Chile (2015)	16/09/15	Illapel - Chile	Estadio Municipal de Salamanca	Vs=751m/s	8.4	NS	0.726

Capítulo VI: Discusión de Resultados

6.1 Análisis modal espectral

A partir del análisis modal espectral con el software MIDAS GEN, se obtuvieron los periodos y porcentaje de participación de masa de cada modo de vibración, las cuales se muestran en la tabla N°28.

Tabla N°28:Periodos de vibración y porcentaje de participación de masa

Mada	Periodo	TRA	N-X	TRA	N-Y	RO1	N-Z
Modo N°	(sec)	MASS	SUM	MASS	SUM	MASS	SUM
		(%)	(%)	(%)	(%)	(%)	(%)
1	0.850	47.001	47.001	0.053	0.053	2.775	2.775
2	0.402	0.067	47.069	52.790	52.843	0.041	2.816
3	0.316	6.109	53.178	0.007	52.850	45.918	48.734
4	0.214	12.230	65.407	0.030	52.879	1.797	50.531
5	0.105	0.018	65.425	24.896	77.775	0.050	50.581
6	0.101	11.581	77.006	0.058	77.833	0.233	50.814
7	0.087	0.815	77.821	0.000	77.833	19.247	70.061
8	0.065	10.600	88.420	0.009	77.843	1.422	71.483
9	0.055	0.002	88.423	12.771	90.614	0.018	71.500
10	0.050	4.940	93.362	0.012	90.626	0.446	71.946
11	0.045	0.724	94.086	0.016	90.642	16.416	88.363
12	0.038	1.546	95.633	0.000	90.642	0.612	88.975
13	0.035	0.003	95.636	3.819	94.461	0.018	88.993
14	0.032	0.080	95.716	0.010	94.472	5.778	94.771
15	0.030	0.585	96.301	0.000	94.472	0.100	94.872
16	0.026	0.515	96.816	0.000	94.472	0.000	94.872
17	0.025	0.006	96.822	1.757	96.229	0.002	94.873
18	0.024	1.151	97.973	0.011	96.240	0.701	95.574
19	0.023	0.016	97.988	0.001	96.241	0.559	96.134
20	0.022	0.386	98.374	0.000	96.241	0.141	96.274
21	0.021	0.595	98.969	0.000	96.241	0.057	96.331
22	0.020	0.001	98.970	1.856	98.097	0.009	96.340
23	0.017	0.045	99.015	0.002	98.099	0.914	97.254
24	0.017	0.002	99.016	0.690	98.790	0.064	97.318
25	0.015	0.004	99.020	0.024	98.814	1.422	98.740
26	0.015	0.000	99.020	0.101	98.915	0.000	98.740
27	0.014	0.463	99.484	0.003	98.918	0.218	98.958
28	0.013	0.505	99.989	0.002	98.919	0.157	99.115
29	0.013	0.000	99.989	0.034	98.954	0.000	99.115
30	0.012	0.002	99.991	0.000	98.954	0.049	99.164

Los periodos de vibración en las direcciones longitudinal y transversal de la edificación son:

 $T_x = 0.85sec$

 $T_y = 0.40sec$

Figura N°52:

Modo 1 de vibración de la edificación

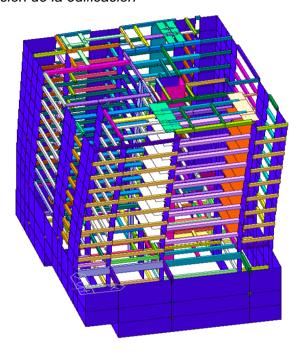


Figura N°53: Modo 2 de vibración de la edificación

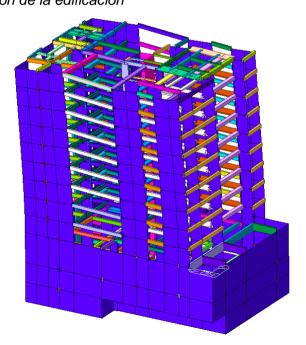
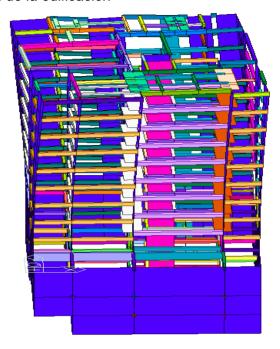



Figura N°54: Modo 3 de vibración de la edificación

6.2 Análisis de irregularidades

Irregularidad en altura

6.2.1.1 Irregularidad de rigidez

Dirección X:

En la tabla N°29 se verifica la irregularidad por Rigidez en la dirección X comparando la rigidez del entrepiso con el 70% de la rigidez del entrepiso adyacente superior.

Tabla N°29: Verificación 1 de la irregularidad de rigidez en dirección X

Caso de Carga	Nivel	Δ_i (m)	V _i (tonf)	K_i (tonf/m)	¿Ki<0.70k+1?
SDEFX	P9	0.0053	103.64	19554.72	
SDEFX	P8	0.0049	131.04	26742.86	NO
SDEFX	P7	0.0050	150.05	30010.00	NO
SDEFX	P6	0.0050	164.84	32968.00	NO
SDEFX	P5	0.0048	179.43	37381.25	NO
SDEFX	P4	0.0045	200.5	44555.56	NO
SDEFX	P3	0.0040	224.87	56217.50	NO
SDEFX	P2	0.0030	250.12	83373.33	NO
SDEFX	P1	0.0017	271.72	159835.29	NO

En la tabla N°30 se verifica la irregularidad por Rigidez en la dirección X comparando la rigidez del entrepiso con el 80% del promedio de rigideces de los 3 entrepisos superiores adyacentes.

Tabla N°30: Verificación 2 de la irregularidad de rigidez en dirección X

Caso de Carga	Nivel	K _i (tonf/m)	promedio (ki+1; ki+2; ki+3)	¿Ki<0.80* prom (ki+1; ki+2; ki+3)?
SDEFX	P9	19554.72		
SDEFX	P8	26742.86		
SDEFX	P7	30010.00		
SDEFX	P6	32968.00	25435.86	NO
SDEFX	P5	37381.25	29906.95	NO
SDEFX	P4	44555.56	33453.08	NO
SDEFX	P3	56217.50	38301.60	NO
SDEFX	P2	83373.33	46051.44	NO
SDEFX	P1	159835.29	61382.13	NO

Según los resultados mostrados se concluye que no existe irregularidad por rigidez en la dirección X

Dirección Y:

En la tabla N°31 se verifica la irregularidad por Rigidez en la dirección Y comparando la rigidez del entrepiso con el 70% de la rigidez del entrepiso adyacente superior.

Tabla N°31: Verificación 1 de la irregularidad de rigidez en dirección Y

Caso de Carga	Nivel	Δ_i (m)	V_i (tonf)	K_i (tonf/m)	¿Ki<0.70k+1?
SDEFY	P9	0.0017	135.46	103580.59	_
SDEFY	P8	0.0018	205.5	150080.48	NO
SDEFY	P7	0.0018	256.94	185858.11	NO
SDEFY	P6	0.0017	298.41	219982.92	NO
SDEFY	P5	0.0016	335.05	259741.26	NO
SDEFY	P4	0.0015	367.53	312569.87	NO
SDEFY	P3	0.0012	395.91	395266.34	NO
SDEFY	P2	0.001	419.65	560983.46	NO
SDEFY	P1	0.0005	438.51	1124455.47	NO

En la tabla N°32 se verifica la irregularidad por Rigidez en la dirección Y comparando la rigidez del entrepiso con el 80% del promedio de rigideces de los 3 entrepisos superiores adyacentes.

Tabla N°32:Verificación 2 de la irregularidad de rigidez en dirección Y

Caso de Carga	Nivel	K_i (tonf/m)	promedio (ki+1; ki+2; ki+3)	¿Ki<0.80* promedio (ki+1; ki+2; ki+3)?
SDEFY	P9	103580.59		
SDEFY	P8	150080.48		
SDEFY	P7	185858.11		
SDEFY	P6	219982.92	146506.39	NO
SDEFY	P5	259741.26	185307.17	NO
SDEFY	P4	312569.87	221860.76	NO
SDEFY	P3	395266.34	264098.02	NO
SDEFY	P2	560983.46	322525.82	NO
SDEFY	P1	1124455.47	422939.89	NO

Según los resultados mostrados se concluye que no existe irregularidad por rigidez en la dirección Y.

6.2.1.2 Irregularidad de resistencia

Dirección X:

En la tabla N°33 se verifica la irregularidad por resistencia de todos los entrepisos frente a la acción de fuerzas cortantes en la dirección X.

Tabla N°33:

Verificación de la irregularidad de resistencia en dirección X

Nivel	H (m)	Ri (tonf)	Ri+1 (tonf)	¿Ri<=0.8*Ri+1?
P9	21.0	1270.61	0	
P8	18.4	1240.85	1270.61	NO
P7	15.8	1351.71	1240.85	NO
P6	13.2	1351.71	1351.71	NO
P5	10.6	1490.47	1351.71	NO
P4	8.0	1539.82	1490.47	NO
P3	5.4	1539.82	1539.82	NO
P2	2.8	1539.82	1539.82	NO
P1	0.2	1539.82	1539.82	NO

Se observa que no existe irregularidad por resistencia en la dirección X.

Dirección Y:

En la tabla N°34 se verifica la irregularidad por resistencia de todos los entrepisos frente a la acción de fuerzas cortantes en la dirección Y.

Tabla N°34: Verificación de la irregularidad de resistencia en dirección Y

Nivel	H (m)	Ri (tonf)	Ri+1 (tonf)	¿Ri<=0.8*Ri+1?
P9	21.0	2590.28	0	
P8	18.4	2820.98	2590.28	NO
P7	15.8	3550.95	2820.98	NO
P6	13.2	3550.95	3550.95	NO
P5	10.6	3923.28	3550.95	NO
P4	8.0	4123.01	3923.28	NO
P3	5.4	4123.01	4123.01	NO
P2	2.8	4123.01	4123.01	NO
P1	0.2	4231.17	4123.01	NO

Se observa que no existe irregularidad por resistencia en la dirección Y.

6.2.1.3 Irregularidad de peso

En la tabla N°35 se verifica la irregularidad de peso de todos los entrepisos de la edificación. El peso propio contempla a los pesos de las estructuras de concreto armado de la edificación y de los aligerados; mientras que la carga muerta comprende las cargas del acabado y tabiquería.

Tabla N°35: Verificación de la Irregularidad de Peso

Nivel	Peso Propio (tonf)	Carga Muerta (tonf)	Carga Viva (tonf)	Pi (tonf)	¿Pi<=1.5* Pi-1?
P9	364.46	150.53	70.36	532.58	NO
P8	279.20	85.36	70.76	382.24	NO
P7	281.99	85.94	71.93	385.92	NO
P6	281.35	85.52	72.52	385.00	NO
P5	281.99	85.94	71.93	385.92	NO
P4	281.35	85.52	72.52	385.00	NO
P3	281.99	85.94	71.93	385.92	NO
P2	281.35	85.52	72.52	385.00	NO
P1	280.85	85.44	70.92	384.02	

Por lo tanto, se observa que no existe irregularidad de peso en ninguno de los entrepisos de la edificación.

Irregularidad en planta

6.2.2.1 Irregularidad torsional

Dirección X

En la tabla N°36 se verifica la irregularidad torsional en la dirección X, a partir de la relación entre el máximo desplazamiento relativo en el extremo del i-ésimo entrepiso (Δ_{i-nrom}) y el desplazamiento relativo promedio de los extremos del mismo entrepiso (Δ_{i-nrom})

Tabla N° 36: Verificación de la irregularidad torsional en dirección X

Caso de Carga	Nivel	h _i (m)	Δ_{i-prom} (m)	Δ_{i-max} (m)	$\Delta_{i-max}/\Delta_{i-prom}$
SDEFX	P9	2.6	0.0203	0.0264	1.302
SDEFX	P8	2.6	0.0187	0.0272	1.449
SDEFX	P7	2.6	0.0191	0.0275	1.440
SDEFX	P6	2.6	0.0191	0.0272	1.420
SDEFX	P5	2.6	0.0184	0.0260	1.417
SDEFX	P4	2.6	0.0172	0.0245	1.422
SDEFX	P3	2.6	0.0153	0.0210	1.375
SDEFX	P2	2.6	0.0115	0.0157	1.367
SDEFX	P1	2.6	0.0065	0.0084	1.294

Se observa que existe irregularidad torsional en la dirección X debido a que la relación $\Delta_{i-max}/\Delta_{i-prom}$ son mayores a 1.3 pero menores a 1.5 en todos los entrepisos a excepción del primer entrepiso.

Dirección Y

En la tabla N°37 se verifica la irregularidad torsional en la dirección Y, a partir de la relación entre el máximo desplazamiento relativo en el extremo del i-ésimo entrepiso (Δ_{i-prom}) y el desplazamiento relativo promedio de los extremos del mismo entrepiso (Δ_{i-prom})

Tabla N°37:Verificación de la irregularidad torsional en dirección Y

Caso de Carga	Nivel	h_i (m)	$\Delta_{i-prom}(\mathbf{m})$	Δ_{i-max} (m)	$\Delta_{i-max}/\Delta_{i-prom}$
SDEFY	P9	2.6	0.0076	0.0081	1.059
SDEFY	P8	2.6	0.0077	0.0081	1.052
SDEFY	P7	2.6	0.0081	0.0081	1.000
SDEFY	P6	2.6	0.0077	0.0081	1.059
SDEFY	P5	2.6	0.0072	0.0072	1.000
SDEFY	P4	2.6	0.0068	0.0068	1.000
SDEFY	P3	2.6	0.0054	0.0054	1.000
SDEFY	P2	2.6	0.0045	0.0045	1.000
SDEFY	P1	2.6	0.0023	0.0023	1.000

Se observa que existe no irregularidad torsional en la dirección Y debido a que la relación $\Delta_{i-max}/\Delta_{i-prom}$ son menores a 1.3 en todos los entrepisos.

6.2.2.2 Esquinas entrantes

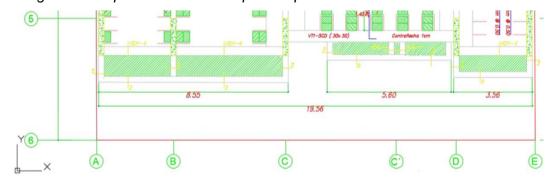

En la figura N°55 se muestra las longitudes de esquinas entrantes de una planta típica de la estructura en la dirección X, la cual se resume en la tabla N°38. En la dirección Y no existe ninguna esquina entrante, por lo cual no existe irregularidad en dicha dirección.

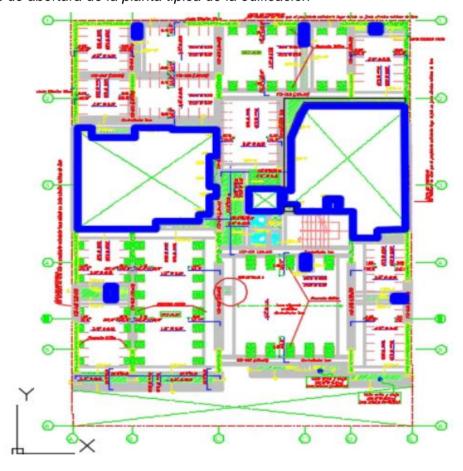
Tabla N°38:Porcentaje de esquina entrante de la estructura en dirección X

DIRECCIÓN	$L_{esq.entrante}$ (m)	L_{planta_X} (m)	%Esq. Entrante
X	5.60	19.56	28.62

Figura N°55:

Longitud de esquina entrante de la planta típica dirección X

Se observa que existe irregularidad por esquina entrante en la dirección X, ya que el porcentaje de esquina entrante es de 28.62%, mayor al 20%.


6.2.2.3 Discontinuidad del diafragma

En la figura N°56 se muestra el área de las aberturas en una planta típica de la estructura (encerradas de color azul), la cual se resume en la tabla N°39.

Tabla N° 39:
Porcentaje de abertura en la planta típica de la estructura

$A_{abertura}$ (m ²)	A_{planta} (m ²)	%Abertura
107.54	486.01	22.13%

Figura N°56: Áreas de abertura de la planta típica de la edificación

El porcentaje de abertura en la planta típica de la edificación es menor al 50%, por lo tanto, no existe irregularidad por discontinuidad de diafragma.

6.2.2.4 Sistemas no paralelos.

En esta edificación todos los elementos son paralelos entre sus similares, por lo tanto, no existe ningún sistema no paralelo.

6.2.3 Determinación del factor de irregularidad

En la sección 6.2.2 se determinó que en la dirección X de la edificación presenta irregularidad torsional y por esquina entrante, ambas irregularidades en planta; mientras que en la dirección Y no presenta ningún tipo de irregularidad.

Para determinar el factor de irregularidad en planta en la dirección X, se escogerá el menor de los factores I_{px} (ver tabla N°40).

Tabla N°40: Factor de irregularidad en planta en dirección X

Irregularidad	I_p	I_{px}
Torsional	0.75	0.75
Esquina Entrante	0.90	0.70

Mientras que el factor de irregularidad en altura I_{ax} será igual a 1.

$$I_{ax} = 1.00$$

En la dirección Y de la edificación no se encontró ningún tipo de irregularidad, por lo tanto, el factor de irregularidad tanto en planta como en altura serán considerados como 1.

$$I_{nv} = I_{av} = 1.00$$

Por consiguiente, los factores de reducción en ambas direcciones serán:

$$R_x = R_{0x} * I_{ax} * I_{px} = 4.50$$

$$R_y = R_{0y} * I_{ay} * I_{py} = 6.00$$

6.3 Análisis estático no lineal

6.3.1 Efecto de segundo orden (P-delta)

En esta sección se muestran los coeficientes de estabilidad θ_i de cada entrepiso de la estructura en las direcciones X (ver tabla N°41) e Y (ver tabla N°42).

Tabla N°41:Coeficiente de estabilidad en la dirección X

NIVEL	Pi(kN)	Δ_i (mm)	V_i (kN)	h_i (mm)	θi	Verificación
Nivel 9	5338.9	6.72	1042.6	2600	0.0132	No Aplica efecto P-Delta
Nivel 8	3700.2	6.92	1313.9	2600	0.0075	No Aplica efecto P-Delta
Nivel 7	3736.2	6.99	1493.5	2600	0.0067	No Aplica efecto P-Delta
Nivel 6	3727.3	6.94	1648.5	2600	0.0060	No Aplica efecto P-Delta
Nivel 5	3736.2	6.69	1780.5	2600	0.0054	No Aplica efecto P-Delta
Nivel 4	3727.3	6.20	1981.8	2600	0.0045	No Aplica efecto P-Delta
Nivel 3	3736.2	5.37	2231.2	2600	0.0035	No Aplica efecto P-Delta
Nivel 2	3727.3	4.11	2481.3	2600	0.0024	No Aplica efecto P-Delta
Nivel 1	3717.6	2.25	2706.4	2600	0.0012	No Aplica efecto P-Delta

Tabla N°42:Coeficiente de estabilidad en la dirección Y

NIVEL	Pi(kN)	Δ_i (mm)	V_i (kN)	h_i (mm)	θi	Verificación
Nivel 9	5338.9	1.71	1267.2	2600	0.0028	No Aplica efecto P-Delta
Nivel 8	3700.2	1.74	1873.5	2600	0.0013	No Aplica efecto P-Delta
Nivel 7	3736.2	1.75	2315.6	2600	0.0011	No Aplica efecto P-Delta
Nivel 6	3727.3	1.71	2679.7	2600	0.0009	No Aplica efecto P-Delta
Nivel 5	3736.2	1.62	3007.6	2600	8000.0	No Aplica efecto P-Delta
Nivel 4	3727.3	1.47	3298.0	2600	0.0006	No Aplica efecto P-Delta
Nivel 3	3736.2	1.24	3554.0	2600	0.0005	No Aplica efecto P-Delta
Nivel 2	3727.3	0.92	3770.3	2600	0.0004	No Aplica efecto P-Delta
Nivel 1	3717.6	0.50	3941.4	2600	0.0002	No Aplica efecto P-Delta

Se observa que los coeficientes de estabilidad θ_i son menores a 0.10 (ver capítulo 3.2) en ambas direcciones de la edificación; siendo el máximo valor de 0.0132 en dirección X y 0.0028 en la dirección Y ambos en el último nivel, los cuales son valores despreciables. Entonces, se desprecia el efecto P-delta para el análisis estático no lineal.

6.3.2 Patrones de carga

En la sección 6.1 se determinó que para llegar a un porcentaje de participación de masas del 90% se necesitan los 10 primeros modos de vibración. Entonces, para ejecutar el Análisis Estático No Lineal se deberá emplear un patrón de cargas proporcionales a las fuerzas inerciales de cada nivel de la edificación, las cuales se muestran en la tabla N°43.

Tabla N°43: Fuerzas inerciales de la edificación

Nivel	H(m)	Fi-x (ton)	Fi-y (ton)
P1	0.2	79.68	64.27
P2	2.8	61.04	48.41
P3	5.4	66.44	54.70
P4	8.0	70.10	59.97
P5	10.6	68.58	62.42
P6	13.2	67.68	64.65
P7	15.8	62.31	67.12
P8	18.4	60.40	68.67
P9	21.0	58.62	75.54

A continuación, se muestran gráficamente la distribución de las fuerzas inerciales de cada nivel de la edificación en las direcciones X (ver figura N°57) e Y (ver figura N°58).

Figura N°57:
Distribución de fuerzas inerciales en dirección X

Figura N°58:

Distribución de fuerzas inerciales en dirección Y

6.3.3 Curva de capacidad y mecanismo de colapso

6.3.3.1. Dirección X

En la figura N°59 se muestra la curva de capacidad como resultado de la aplicación del patrón de cargas en dirección X. En dicha curva se aprecia que cuando la edificación se desplaza lateralmente 17.5cm en la dirección X (Punto A), existe degradación de la resistencia de 59.6ton (segmento AB). En el Punto B las vigas que conectan dos muros de concreto armado de la edificación alcanzan un nivel de desempeño de Colapso (ver figura N°61), generándose una nueva

curva de capacidad (ATC,1996) en la cual se incrementa la resistencia hasta el punto de colapso (punto C), en donde uno de los muros de concreto armado alcanza el nivel de desempeño de Colapso (ver figura N°62).

Figura N°59: Curva de capacidad en la dirección X

Figura N° 60:

Desempeño de elementos eje 1 (punto A de la curva de capacidad dirección X)

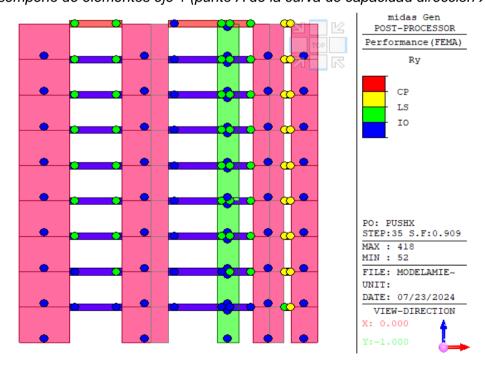
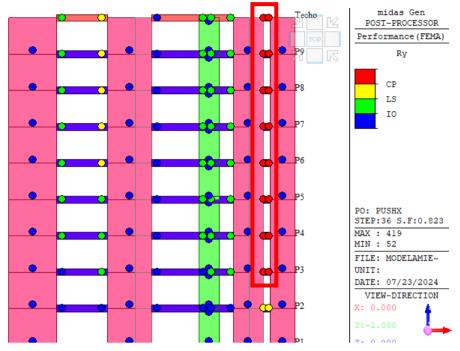
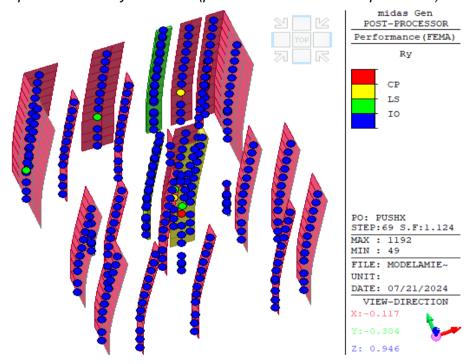




Figura N°61:

Desempeño de elementos eje 1 (punto B de la curva de capacidad dirección X)

Figura N°62:Desempeño de muros y columnas (punto C de la curva de capacidad X)

6.3.3.2. Dirección Y

En la figura N°63 se muestra la curva de capacidad como resultado de la aplicación del patrón de cargas en dirección Y. En dicha curva se aprecia que cuando la edificación se desplaza lateralmente 9.25cm en la dirección Y (punto A), existe degradación de la resistencia de 71.4ton (segmento AB). En el punto B las vigas que conectan dos muros de concreto armado alcanzan un nivel de desempeño de Colapso (ver figura N°65), generándose una nueva curva de capacidad (ATC,1996), en la cual se incrementa la resistencia hasta el punto de colapso (punto C) en donde uno de los muros de concreto armado alcanza el nivel de desempeño de Colapso (ver figura N°66).

Figura N°63: Curva de Capacidad en la dirección Y

Figura N°64:

Desempeño de elementos eje 1 (punto A de la curva de capacidad dirección Y)

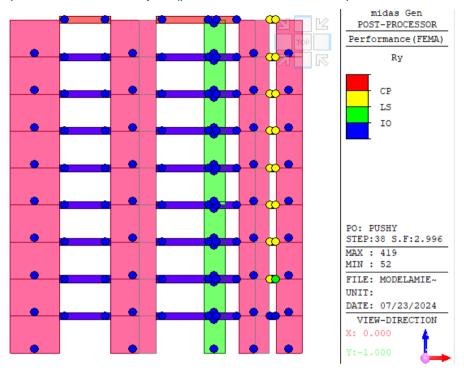


Figura N°65:

Desempeño de elementos eje 1 (punto B de la curva de capacidad dirección Y)

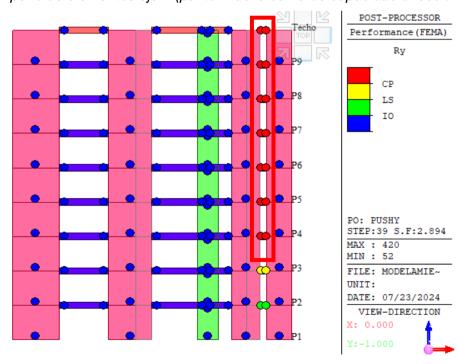
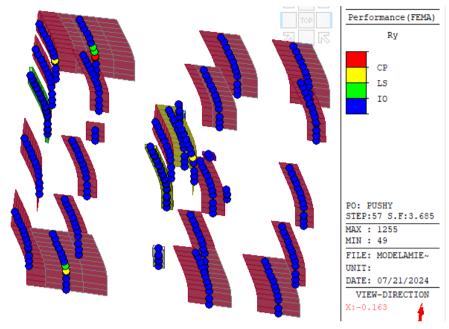



Figura N°66: Desempeño de muros y columnas (punto C de la curva de capacidad Y)

Espectro de capacidad

En esta sección se muestran los espectros de capacidad obtenidas del Análisis Estático No Lineal en la dirección X (ver figura N°67) e Y (ver figura N°68) de la estructura, que relacionan la pesudo-aceleración espectral S_a y pesudodesplazamiento espectral S_d ,

Figura N°67: Espectro de capacidad en la dirección X

Figura N°68: Espectro de capacidad en la dirección Y

Puntos de desempeño según FEMA440.

6.3.5.1 Dirección X

En esta sección se muestran los puntos de desempeño de la edificación calculados según los 3 procedimientos establecidos en la normativa FEMA440, como resultado de la intersección del espectro de capacidad con los espectros de demanda según el nivel sísmico sometido a la edificación en dirección X (ver anexo C)

Sismo frecuente

En la tabla N°44 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 43 años en la dirección X.

Tabla N°44: Puntos de desempeño espectral durante un sismo frecuente dirección X

Procedimiento	Punto de de Espectro de	•
	Sd_{push_SFX} (cm)	Sa_{push_SFX} (g)
Α	5.40	0.158
В	5.39	0.158
С	5.40	0.158

En la tabla N°45 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente un sismo con un periodo de retorno de 43 años en la dirección X.

Tabla N°45: Puntos de desempeño durante un sismo frecuente dirección X

Procedimiento		mpeño – Curva pacidad
	d_{push_SFX} (cm)	V_{push_SFX} (ton)
Α	7.18	369.6
В	7.17	369.2
С	7.18	369.7

Se escogerá el punto de desempeño obtenido mediante el procedimiento C, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SFX} = 7.18 cm$$

 $V_{push_{SFX}} = 369.7 ton$

Sismo ocasional

En la tabla N°46 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 72 años en la dirección X.

Tabla N°46: Puntos de desempeño espectral durante un sismo ocasional dirección X

	Punto de desempeño – Espectro de Capacidad		
Procedimiento			
	Sd_{push_SOX} (cm)	Sa_{push_SOX} (g)	
A	6.60	0.183	
В	6.58	0.183	
С	6.60	0.183	

En la tabla N°47 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 72 años en la dirección X.

Tabla N°47: Puntos de desempeño durante un sismo ocasional dirección X

Procedimiento	Punto de deser de Cap	•
•	d_{push_SOX} (cm)	V_{push_SOX} (ton)
Α	8.77	427.8
В	8.76	427.3
С	8.77	427.9

Se escogerá el punto de desempeño obtenido mediante el procedimiento C, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SOX} = 8.77 cm$$

 $V_{push_SOX} = 427.9 ton$

Sismo raro

En la tabla N°48 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 475 años en la dirección X.

Tabla N°48: Puntos de desempeño espectral durante un sismo raro dirección X

Procedimiento	Punto de de Espectro de	•
	Sd _{push_SRX} (cm)	Sa_{push_SRX} (g)
A	12.73	0.267
В	12.81	0.268
С	12.90	0.269

En la tabla N°49 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 475 años en la dirección X.

Tabla N°49: Puntos de desempeño durante un sismo raro dirección X

Procedimiento		mpeño – Curva pacidad
	d_{push_SRX} (cm)	V_{push_SRX} (ton)
Α	16.92	623.4
В	17.03	625.5
С	17.15	627.6

Se escogerá el punto de desempeño obtenido mediante el procedimiento C, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SRX} = 17.15 cm$$

 $V_{push_SRX} = 627.6 ton$

Sismo muy raro

En la tabla N°50 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 970 años en la dirección X.

Tabla N°50: Puntos de desempeño espectral durante un sismo muy raro dirección X

Procedimiento	Punto de desempeño – Espectro de Capacidad		
	Sd _{push_SMRX} (cm)	Sa_{push_SMRX} (g)	
A	15.47	0.264	
В	15.56	0.265	
С	15.55	0.264	

En la tabla N°51 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 970 años en la dirección X.

Tabla N°51: Puntos de desempeño durante un sismo muy raro dirección X

	Punto de desempeño – Curva de Capacidad	
Procedimiento		
	d_{push_SMRX} (cm)	V_{push_SMRX} (ton)
A	20.57	615.9
В	20.69	617.7
С	20.68	617.5

Se escogerá el punto de desempeño obtenido mediante el procedimiento B, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SMRX} = 20.69 cm$$

 $V_{push_SMRX} = 617.7 ton$

Sismo máximo

En la tabla N°52 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 2475 años en la dirección X.

Tabla N°52:
Puntos de desempeño espectral durante un sismo máximo dirección X

Procedimiento	Punto de desempeño – Espectro de Capacidad	
	$\mathit{Sd}_{\mathit{push_SMX}}$ (cm)	Sa_{push_SMX} (g)
A	20.37	0.301
В	20.54	0.302
С	20.10	0.300

En la tabla N°53 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 2475 años en la dirección X.

Tabla N°53:Puntos de desempeño durante un sismo máximo dirección X

Procedimiento	Punto de desempeño – Curva d Capacidad	
_	d_{push_SMX} (cm)	V_{push_SMX} (ton)
A	27.09	703.6
В	27.31	704.5
С	26.72	699.4

Se escogerá el punto de desempeño obtenido mediante el procedimiento B, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SMX} = 27.31 cm$$

 $V_{push_SMX} = 704.5 ton$

Resumen puntos de desempeño

En la tabla N°54 se muestra los puntos de desempeño más desfavorables, en término de desplazamiento y cortante basal, en cada uno de los 5 niveles sísmicos.

Tabla N°54: Puntos de desempeño del análisis estático no lineal en la dirección X

Nivel Sísmico	d_{push} (cm)	V_{push} (ton)
S. Frecuente	7.18	369.7
S. Ocasional	8.77	427.9
S. Raro	17.15	627.6
S. Muy Raro	20.69	617.7
S. Máximo	27.31	704.5

6.3.5.2 Dirección Y

En esta sección se muestran los puntos de desempeño de la edificación calculados según los 3 procedimientos establecidos en la normativa FEMA440, como resultado de la intersección del espectro de capacidad con los espectros de demanda según el nivel sísmico sometido a la edificación en la dirección Y (ver anexo D)

Sismo frecuente

En la tabla N°55 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 43 años en la dirección Y.

Tabla N°55: Puntos de desempeño espectral durante un sismo frecuente dirección Y

Procedimiento	Punto de desempeño – Espectro de Capacidad	
	$\mathit{Sd}_{\mathit{push_SFY}}$ (cm)	Sa _{push_SFY} (g)
A	2.42	0.385
В	2.45	0.390
С	2.43	0.386

En la tabla N°56 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente un sismo con un periodo de retorno de 43 años en la dirección Y.

Tabla N°56: Puntos de desempeño durante un sismo frecuente dirección Y

Procedimiento	Punto de desempeño – Curva de Capacidad	
	d _{push_SFY} (cm)	V_{push_SFY} (ton)
A	3.43	1000.0
В	3.47	1013.0
С	3.43	1002.0

Se escogerá el punto de desempeño obtenido mediante el procedimiento B, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SFY} = 3.47 cm$$

 $V_{push_SFY} = 1013.0 ton$

Sismo ocasional

En la tabla N°57 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 72 años en la dirección Y.

Tabla N°57: Puntos de desempeño espectral durante un sismo ocasional dirección Y

Procedimiento	Punto de desempeño – Espectro de Capacidad	
	Sd_{push_SOY} (cm)	Sa _{push_SOY} (g)
A	2.95	0.455
В	3.05	0.467
С	2.96	0.456

En la tabla N°58 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 72 años en la dirección Y.

Tabla N°58: Puntos de desempeño durante un sismo ocasional dirección Y

Procedimiento	Punto de desempeño – Curva de Capacidad	
	d _{push_SOY} (cm)	V _{push_Soy} (ton)
A	4.18	1183.0
В	4.32	1213.0
С	4.19	1185.0

Se escogerá el punto de desempeño obtenido mediante el procedimiento B, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SOY} = 4.32 cm$$

 $V_{push_SOY} = 1213.0 ton$

Sismo raro

En la tabla N°59 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 475 años en la dirección Y.

Tabla N°59: Puntos de desempeño espectral durante un sismo raro dirección Y

Procedimiento	Punto de desempeño – Espectro de Capacidad	
	Sd_{push_SRY} (cm)	Sa_{push_SRY} (g)
A	5.55	0.712
В	5.54	0.711
С	5.55	0.712

En la tabla N°60 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 475 años en la dirección Y.

Tabla N°60: Puntos de desempeño durante un sismo raro dirección Y

Procedimiento	Punto de desempeño – Curva de Capacidad	
	d_{push_SRY} (cm)	V_{push_SRY} (ton)
Α	7.85	1848.0
В	7.84	1848.0
С	7.85	1848.0

Se escogerá el punto de desempeño obtenido mediante el procedimiento C, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SRY} = 7.85 cm$$

$$V_{push_SRY} = 1848.0 ton$$

Sismo muy raro

En la tabla N°61 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 970 años en la dirección Y.

Tabla N°61: Puntos de desempeño espectral durante un sismo muy raro dirección Y

Procedimiento	Punto de desempeño – Espectro de Capacidad	
	Sd_{push_SMRY} (cm)	Sa_{push_SMRY} (g)
A	6.75	0.769
В	6.53	0.794
С	6.75	0.769

En la tabla N°62 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 970 años en la dirección Y.

Tabla N°62: Puntos de desempeño durante un sismo muy raro dirección Y

	Punto de desempeño – Curva de Capacidad	
Procedimiento		
	d_{push_SMRY} (cm)	V_{push_SMRY} (ton)
A	9.55	1998.0
В	9.24	2062.0
С	9.55	1998.0

Se escogerá el punto de desempeño obtenido mediante el procedimiento C, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SMRY} = 9.55 cm$$

 $V_{push_SMRY} = 1998 ton$

Sismo máximo

En la tabla N°63 se muestra los resultados de los puntos de desempeño sobre el espectro de capacidad obtenidos mediante los 3 procedimientos cuando la estructura experimenta una demanda sísmica equivalente a un sismo con un periodo de retorno de 2475 años en la dirección Y.

Tabla N°63: Puntos de desempeño espectral durante un sismo máximo dirección Y

Procedimiento	Punto de desempeño – Espectro de Capacidad	
•	d_{push_SMY} (cm)	V_{push_SMY} (ton)
A	8.53	0.891
В	8.59	0.894
С	8.65	0.897

En la tabla N°64 se muestra los resultados de los puntos de desempeño sobre la curva de capacidad obtenidos mediante los 3 procedimientos, cuando a la estructura se somete una demanda sísmica equivalente a un sismo con un periodo de retorno de 2475 años en la dirección Y.

Tabla N°64: Puntos de desempeño durante un sismo máximo dirección Y

Procedimiento	Punto de desempeño – Curv o de Capacidad	
	d_{push_SMY} (cm)	V_{push_SMY} (ton)
A	12.07	2313.0
В	12.15	2322.0
С	12.24	2331.0

Se escogerá el punto de desempeño obtenido mediante el procedimiento C, ya que presenta mayor desplazamiento y fuerza cortante en la base de la edificación.

$$d_{push_SMY} = 12.24 cm$$
$$V_{push_SMY} = 2322 ton$$

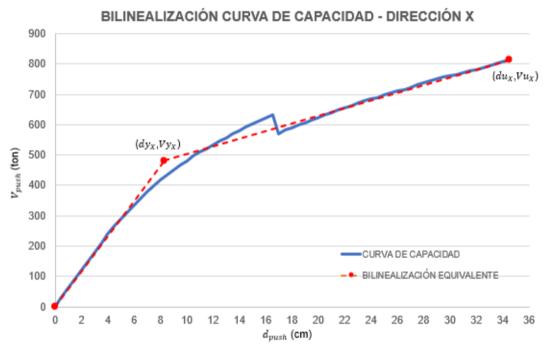
Resumen puntos de desempeño

En la tabla N°65 se muestra los puntos de desempeño más desfavorables, en término de desplazamiento y cortante basal, en cada uno de los 5 niveles sísmicos.

Tabla N°65: Puntos de desempeño del análisis estático no lineal en dirección Y

Nivel Sísmico	d_{push} (cm)	V_{push} (ton)
S. Frecuente	3.47	1013
S. Ocasional	4.32	1213
S. Raro	7.85	1848
S. Muy Raro	9.55	1998
S. Máximo	12.24	2322

6.3.6 Evaluación del desempeño de la estructura según SEAOC


En esta sección se determina los niveles de desempeño de la estructura en los 5 niveles sísmicos, a partir de la sectorización de la curva de capacidad según lo establecido en el comité SEAOC VISION 2000 y de los puntos de desempeño obtenidos en la sección 6.3.5 de la presente tesis.

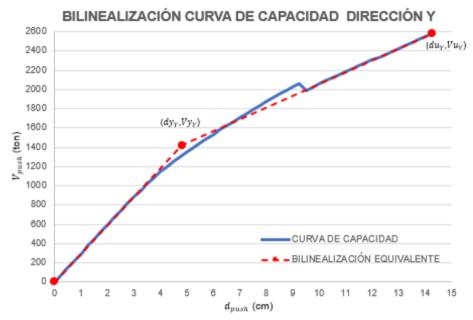
6.3.6.1 Bilinealización equivalente de la curva de capacidad

Dirección X:

En la figura N°69 se grafica la sectorización de la curva de capacidad del Análisis Estático No Lineal en la dirección X en donde se obtiene los puntos de fluencia (dy_X, Vy_X) y el punto último o de colapso de la edificación (du_X, Vu_X) .

Figura N°69: Bilinealización equivalente de la curva de capacidad en dirección X

En la tabla N°66 se resumen las coordenadas los puntos de fluencia y de colapso en función de desplazamiento en el techo y fuerza cortante basal de la estructura.


Tabla N°66:
Puntos de fluencia y de colapso de la curva de capacidad en dirección X

PUNTO DE FLUENCIA		PUNTO DE COLAPSO	
δy_X (cm)	8.30	δu_X (cm)	34.50
Vy_X (ton)	480.77	Vu_X (ton)	814.26

Dirección Y:

En la figura N°70 se grafica la sectorización de la curva de capacidad del Análisis Estático No Lineal en la dirección X en donde se obtiene los puntos de fluencia (dy_Y, Vy_Y) y el punto último o de colapso de la edificación (du_Y, Vu_Y) .

Figura N°70: Bilinealización equivalente de la curva de capacidad en dirección Y

En la tabla N°67 se resumen las coordenadas los puntos de fluencia y de colapso en función de desplazamiento en el techo y fuerza cortante basal de la estructura.

Tabla N°67: Puntos de fluencia y de colapso de la curva de capacidad en dirección Y

PUNTO DE	FLUENCIA	PUNTO DE	COLAPSO
dy_Y (cm)	5.33	du_Y (cm)	13.50
Vy_Y (ton)	1507.30	Vu_Y (ton)	2285.38

6.3.6.2 Sectorización de la curva de capacidad

Dirección X:

Con los puntos de fluencia y de colapso de la estructura calculados en la sección 6.3.6.1, se sectoriza la curva de capacidad de la edificación en la dirección X, obteniendo sus límites de los niveles de desempeño en términos de desplazamiento en el centro de masa del techo, de acuerdo con las expresiones definidas en la sección 5.4.7 de la presente tesis. Dichos límites son mostrados en la tabla N°68.

Tabla N°68: Límite superior de desplazamientos sobre la curva de capacidad en dirección X

Nivel de desempeño SEAOC VISION 2000		Límite Superior de desplazamiento (cm)
Totalmente Operacional (IO)	dy_X	9.13
Operacional (O)	$dy_X + 0.3(du_X - dy_X)$	18.09
Seguridad de Vida (LS)	$dy_X + 0.6(du_X - dy_X)$	27.05
Próximo al Colapso (CP)	$dy_X + 0.8(du_X - dy_X)$	33.03
Colapso (C)	du_X	39.00

Dirección Y:

Con los puntos de fluencia y de colapso de la estructura calculados en la sección 6.3.6.2, se sectoriza la curva de capacidad de la edificación en la dirección X, obteniendo sus límites de los niveles de desempeño en términos de desplazamiento en el centro de masa del techo, de acuerdo con las expresiones definidas en la sección 5.4.7 de la presente tesis. Dichos límites son mostrados en la tabla N°69.

Tabla N°69: Límite superior de desplazamientos sobre la curva de capacidad en dirección Y

Nivel de desempeño SE	Límite Superior de desplazamiento (cm)	
Totalmente Operacional (IO)	dy_Y	5.33
Operacional (O)	$dy_Y + 0.3(du_Y - dy_Y)$	7.78
Seguridad de Vida (LS)	$dy_Y + 0.6(du_Y - dy_Y)$	10.23
Próximo al Colapso (CP)	$dy_Y + 0.8(du_Y - dy_Y)$	11.87
Colapso (C)	du_{Y}	13.50

6.3.6.3 Evaluación de desempeño estructural

Una vez sectorizadas las curvas de capacidad en ambas direcciones, se procede a ubicar los puntos de desempeño de la estructura de cada nivel sísmico para la evaluación de su desempeño.

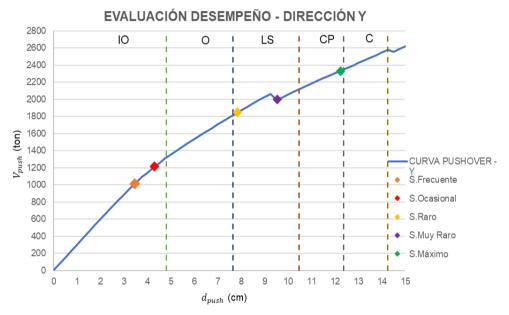
• Dirección X:

Se ubicarán los puntos de desempeño de los 5 niveles sísmicos sobre la curva de capacidad en dirección X sectorizada (ver figura N°71)

Figura N°71: Sectorización de la curva de capacidad en dirección X

En la tabla N°70 se muestran los niveles de desempeño estructural deseado según el comité VISION 2000 en cada nivel sísmico en dirección X. Se aprecia que la estructura se desempeña adecuadamente en los 5 niveles sísmicos.

Tabla N°70:Verificación nivel de desempeño del análisis estático no lineal en dirección X


Nivel Sísmico	Periodo de Retorno T_R	Nivel de Desempeño AENL	Comprobación
Frecuente	43 años	Totalmente	CUMPLE
riecuente		Operacional	DESEMPEÑO
Ocasional	72 años	Totalmente	CUMPLE
		Operacional	DESEMPEÑO
Raro	475 años	Operacional	CUMPLE DESEMPEÑO
Muy Raro	970 años	Seguridad	CUMPLE
	910 anos	de Vida DESEN	DESEMPEÑO
Máximo	2475 años	Prevención	CUMPLE
		al Colapso	DESEMPEÑO

En el anexo G.1 se muestra la evolución del desempeño de las rótulas plásticas según la normativa FEMA273 en los elementos estructurales (vigas, columnas y muros) durante el Análisis Estático No Lineal de la edificación en dirección X.

Dirección Y:

Se ubicarán los puntos de desempeño de los 5 niveles sísmicos sobre la curva de capacidad en dirección X sectorizada (ver figura N°72)

Figura N°72: Sectorización de la curva de capacidad en dirección Y

En la tabla N°71 se muestran los niveles de desempeño deseado según el SEAOC Vision 2000 Committee (1995) para cada nivel sísmico en la dirección Y. Se aprecia que la estructura se desempeña adecuadamente en los 5 niveles sísmicos.

Tabla N°71:
Verificación nivel de desempeño del análisis estático no lineal en dirección Y

Nivel Sísmico	Periodo de Retorno T_R	Nivel de Desempeño AENL	Comprobación
Frecuente	43 años	Totalmente	CUMPLE
riecuente	43 81105	Operacional	DESEMPEÑO
Ocasional	72 años	Totalmente	CUMPLE
Ocasionai	12 al 105	Operacional	DESEMPEÑO
Raro	475 años	Seguridad de	CUMPLE
Naio	475 anos	Vida	DESEMPEÑO
Muy Boro	970 años	Seguridad de	CUMPLE
Muy Raro	910 anos	Vida	DESEMPEÑO
Máximo	2475 años	Prevención al	CUMPLE
IVIAXIIIIU	2410 anos	Colapso	DESEMPEÑO

En el anexo G.2 se muestra la evolución del desempeño de las rótulas plásticas según la normativa FEMA273 en los elementos estructurales (vigas, columnas y muros) durante el Análisis Estático No Lineal de la edificación en dirección Y.

6.3.7 Evaluación de desempeño de la estructura según HAZUS

En esta sección se determinarán los niveles de daño de la edificación mediante las máximas derivas de entrepiso en los 5 niveles de desempeño y en las direcciones X e Y (mostradas en los anexos E y F respectivamente), tomando en cuenta sus umbrales máximos según lo establecido en el manual HAZUS.

A continuación, se determinan los niveles de daño de la edificación a partir de las máximas derivas de entrepiso en las direcciones X (ver tabla N°72) e Y (ver tabla N°73), y los límites establecidos en la sección 5.4.8.4 de la presente tesis.

Tabla N°72:
Niveles de daños análisis estático no lineal en dirección X según método HAZUS

Nivel	Periodo de	Máxima Deriva	Nivel de Daño
Sísmico	Retorno T_R	de Entrepiso	HAZUS
Frecuente	43 años	0.0036	Moderado
Ocasional	72 años	0.0042	Moderado
Raro	475 años	0.0086	Extensivo
Muy Raro	970 años	0.0104	Extensivo
Máximo	2475 años	0.0134	Extensivo

Tabla N°73: Niveles de daños análisis estático no lineal en dirección Y según método HAZUS

Nivel	Periodo de	Máxima Deriva	Nivel de Daño
Sísmico	Retorno T_R	de Entrepiso	HAZUS
Frecuente	43 años	0.0017	Leve
Ocasional	72 años	0.0022	Moderado
Raro	475 años	0.0039	Moderado
Muy Raro	970 años	0.0047	Moderado
Máximo	2475 años	0.0058	Extensivo

La estructura en la dirección X podría sufrir daños moderados cuando experimenta demandas sísmicas equivalentes a los sismos Frecuente y Ocasional, este daño estructural se incrementaría a un nivel extensivo o severo cuando la edificación es sometida mediante las demandas sísmicas restantes (Raro, Muy Raro y Máximo). En dirección Y, la edificación podría sufrir daños leves cuando experimenta una demanda sísmica equivalentes al sismo frecuente, este daño estructural se incrementaría a un nivel moderado cuando la edificación es sometida mediante las 3 demandas sísmicas equivalentes a los sismos Ocasional, Raro y Muy Raro. Esta misma edificación podría sufrir daños severos en las demandas sísmicas equivalentes al sismo Máximo.

6.4 Análisis dinámico incremental

En esta sección se presentan los resultados del análisis dinámico incremental (IDA) producto de los análisis dinámico no lineales de la estructura empleando los registros sísmicos descritos en la sección 5.5 amplificados con diferentes factores de escala.

Curvas IDA 6.4.1

En la presente tesis, la deriva de entrepiso, el desplazamiento en el centro de masa del techo de la estructura y la fuerza cortante en la base son considerados como parámetros de medida de daño (DM), mientras que las aceleraciones pico de suelo PGA, definidas en la sección 4.2.1, serán contempladas como medida de intensidad (IM). En toda curva IDA, la medida de daño (DM) se traza en el eje de las abscisas y la medida de intensidad (IM) se traza en el eje de las ordenadas.

6.4.1.1 Curvas IDA de desplazamiento en el techo de la estructura

En la tabla N°74 se muestra los desplazamientos en el centro de masa del techo en la dirección X de la estructura (d_{IDA-X}) como resultado de los análisis tiempohistoria no lineal escalados con 8 aceleraciones pico de suelo (PGA)

Tabla N°74:Desplazamientos en el techo en dirección X

PGA	DES	SPLAZAMIE	NTOS E	N EL TEC	HO (en cr	n.) – DIREC	CIÓN X
	LIMA	HUARAZ	LIMA	ATICO	MAULE	IQUIQUE	ILLAPEL
(g)	1966	1970	1974	2001	2010	2014	2015
0.1	2.62	2.37	2.58	2.51	2.55	2.94	2.56
0.2	5.54	5.01	7.50	5.32	5.16	5.59	5.34
0.3	7.46	7.10	7.98	9.97	7.17	8.60	8.17
0.4	10.90	11.45	11.86	13.13	11.75	12.51	13.31
0.5	13.83	14.58	16.61	17.74	18.20	14.14	17.68
0.6	19.96	18.98	19.63	26.66	21.96	17.63	21.14
0.7	19.53	25.26	24.20	27.67	20.94	16.82	26.57
8.0	29.71	34.14	26.49	33.65	26.58	21.09	32.72

En la tabla N°75 se muestra la desviación estándar, promedio y los percentiles 16%, 50% y 84% de los desplazamientos de la edificación en dirección X.

Tabla N°75:Desviación estándar, promedio y percentiles 16%, 50% y 84% de los desplazamientos en el techo en dirección X

PGA	DESPLAZAMIENTOS EN EL TECHO (en cm.) – DIRECCIÓN X								
(g)	σ	Promedio	Percentil	Percentil	Percentil				
(3)	U	Tiomedio	16%	50%	84%				
0.1	0.17	2.38	2.56	2.73	0.17				
0.2	0.85	4.49	5.34	6.19	0.85				
0.3	1.01	6.98	7.98	8.99	1.01				
0.4	0.89	10.97	11.86	12.75	0.89				
0.5	1.88	14.73	16.61	18.49	1.88				
0.6	2.92	17.04	19.96	22.88	2.92				
0.7	3.99	20.21	24.20	28.19	3.99				
8.0	4.78	24.93	29.71	34.49	4.78				

En la tabla N°76 se muestra los desplazamientos en el centro de masa del techo en la dirección Y de la estructura como resultado de los análisis tiempo-historia no lineal escalados con 8 aceleraciones pico de suelo (PGA).

Tabla N°76:Desplazamientos en el techo de la estructura en dirección Y

PGA	DESI	PLAZAMIEN	NTOS E	N EL TEC	CHO (en c	m.) – DIRE	CCIÓN Y
(g)	LIMA	HUARAZ	LIMA	ATICO	MAULE	IQUIQUE	ILLAPEL
(9)	1966	1970	1974	2001	2010	2014	2015
0.1	1.60	1.56	1.40	1.48	1.43	1.46	1.45
0.2	3.02	3.18	2.97	3.04	2.89	2.98	2.81
0.3	3.98	4.28	4.38	4.07	4.33	4.65	4.63
0.4	5.93	5.73	5.63	4.84	5.39	6.23	5.83
0.5	7.33	6.96	8.09	6.68	7.13	8.22	7.23
0.6	9.16	8.61	8.39	7.85	8.52	10.32	8.69
0.7	8.66	10.86	11.39	9.64	9.71	11.52	10.26
0.8	9.50	13.07	10.73	10.92	13.49	14.23	11.60

En la tabla N°77 se muestra la desviación estándar, promedio y los percentiles 16%, 50% y 84% de los desplazamientos de la edificación en dirección Y.

Tabla N° 77:Desviación estándar, promedio y percentiles 16%, 50% y 84% de los desplazamientos en el techo en dirección Y

PGA	DESPLA	ZAMIENTOS E	N EL TECHO) (en cm.) – D	IRECCIÓN Y
(g)	σ	Promedio	Percentil	Percentil	Percentil
(9)	U	FIOITIEUIO	16%	50%	84%
0.1	0.07	1.48	1.38	1.46	1.53
0.2	0.12	2.98	2.86	2.97	3.09
0.3	0.22	4.25	4.06	4.28	4.50
0.4	0.44	5.65	5.28	5.73	6.17
0.5	0.57	7.38	6.66	7.23	7.81
0.6	0.78	8.80	7.82	8.61	9.39
0.7	1.04	10.29	9.22	10.26	11.30
0.8	1.71	11.93	9.89	11.60	13.31

6.4.1.2 Curvas IDA de deriva de entrepiso

En la tabla N°78 se muestra las máximas derivas de entrepiso en dirección X de la estructura, como resultado de los análisis tiempo-historia no lineal escalados con 8 aceleraciones pico de suelo (PGA).

Tabla N° 78: *Máximas derivas de entrepiso en dirección X*

PGA	N	MÁXIMAS D	ERIVAS	DE ENT	REPISO -	DIRECCIÓ	N X
(g)	LIMA	HUARAZ	LIMA	ATICO	MAULE	IQUIQUE	ILLAPEL
(9)	1966	1970	1974	2001	2010	2014	2015
0.1	0.0015	0.0012	0.0013	0.0014	0.0013	0.0016	0.0013
0.2	0.0031	0.0028	0.0026	0.0031	0.0028	0.0031	0.0027
0.3	0.0038	0.0037	0.0042	0.0056	0.0037	0.0048	0.0043
0.4	0.0061	0.0062	0.0073	0.0071	0.0069	0.0065	0.0067
0.5	0.0066	0.0087	0.0091	0.0093	0.0093	0.0075	0.0095
0.6	0.0118	0.0100	0.0116	0.0133	0.0129	0.0092	0.0120
0.7	0.0105	0.0121	0.0141	0.0146	0.0113	0.0090	0.0147
8.0	0.0153	0.0161	0.0143	0.0177	0.0131	0.0113	0.0168

En la tabla N°79 se muestra la desviación estándar, promedio y los percentiles 16%, 50% y 84% de las derivas de entrepiso de la edificación en dirección X.

Tabla N°79:Desviación estándar, promedio y percentiles 16%, 50% y 84% de las máximas derivas de entrepiso en dirección X

PGA	MÁXIMA	MÁXIMAS DERIVAS DE ENTREPISO – DIRECCIÓN X							
(g)	σ	Promedio	Percentil	Percentil	Percentil				
(9)	U	Fiornedio	16%	50%	84%				
0.1	0.0001	0.0013	0.0012	0.0013	0.0013				
0.2	0.0002	0.0028	0.0026	0.0028	0.0028				
0.3	0.0007	0.0042	0.0035	0.0042	0.0042				
0.4	0.0004	0.0067	0.0063	0.0067	0.0067				
0.5	0.0011	0.0091	0.0080	0.0091	0.0091				
0.6	0.0015	0.0118	0.0104	0.0118	0.0118				
0.7	0.0022	0.0121	0.0099	0.0121	0.0121				
8.0	0.0022	0.0153	0.0131	0.0153	0.0153				

En la tabla N°80 se muestra las máximas deriva de entrepiso en dirección Y de la estructura como resultado de los análisis tiempo-historia no lineal escalados con 8 aceleraciones pico de suelo (PGA).

Tabla N°80: *Máximas derivas de entrepiso en dirección Y*

PGA	N	MÁXIMAS D	ERIVAS	DE ENT	REPISO -	DIRECCIÓ	NY
(g)	LIMA	HUARAZ	LIMA	ATICO	MAULE	IQUIQUE	ILLAPEL
(9)	1966	1970	1974	2001	2010	2014	2015
0.1	0.0009	0.0009	0.0007	0.0008	0.0008	0.0008	0.0008
0.2	0.0016	0.0017	0.0016	0.0017	0.0015	0.0016	0.0015
0.3	0.0021	0.0023	0.0024	0.0022	0.0023	0.0022	0.0026
0.4	0.0031	0.0029	0.0029	0.0027	0.0029	0.0032	0.0031
0.5	0.0038	0.0035	0.0043	0.0033	0.0037	0.0043	0.0038
0.6	0.0047	0.0044	0.0042	0.0039	0.0043	0.0050	0.0046
0.7	0.0045	0.0056	0.0059	0.0049	0.0049	0.0057	0.0051
0.8	0.0050	0.0066	0.0054	0.0054	0.0067	0.0070	0.0058

En la tabla N°81 se muestra la desviación estándar, promedio y los percentiles 16%, 50% y 84% de las derivas de entrepiso de la edificación en dirección Y.

Tabla N°81:Desviación estándar, promedio y percentiles 16%, 50% y 84% de las máximas derivas de entrepiso en dirección Y

PGA	MÁXIMA	MÁXIMAS DERIVAS DE ENTREPISO – DIRECCIÓN Y							
(g)	σ	Promedio	Percentil	Percentil	Percentil				
(9)	U	Fiomedio	16%	50%	84%				
0.1	0.0001	0.0008	0.0007	0.0008	0.0008				
0.2	0.0001	0.0016	0.0015	0.0016	0.0017				
0.3	0.0002	0.0023	0.0021	0.0023	0.0024				
0.4	0.0002	0.0029	0.0027	0.0029	0.0031				
0.5	0.0004	0.0038	0.0035	0.0038	0.0042				
0.6	0.0003	0.0044	0.0041	0.0044	0.0048				
0.7	0.0005	0.0052	0.0046	0.0051	0.0057				
8.0	0.0008	0.0060	0.0051	0.0058	0.0066				

6.4.1.3 Curvas IDA de la fuerza cortante en la base de la estructura.

En la tabla N°82 se muestra las fuerzas cortantes basales de la estructura en la dirección X como resultado de los análisis tiempo-historia no lineal escalados con 8 aceleraciones pico de suelo (PGA).

Tabla N°82:Fuerzas cortantes en la base de la estructura en dirección X

PGA		CORTA	NTE BAS	SAL (en t	on) – DIR	ECCIÓN X	
_	LIMA	HUARAZ	LIMA	ATICO	MAULE	IQUIQUE	ILLAPEL
(g)	1966	1970	1974	2001	2010	2014	2015
0.1	257.2	272.0	220.7	262.6	287.7	215.2	226.0
0.2	399.9	568.2	472.5	421.9	528.9	446.4	447.9
0.3	711.0	663.2	704.4	649.3	688.5	727.7	690.2
0.4	854.6	912.9	870.7	822.6	873.8	830.3	675.3
0.5	953.7	1144.0	1026.0	815.3	900.7	872.5	774.1
0.6	1053.0	1226.0	1152.0	1052.0	1059.0	981.1	1055.0
0.7	1296.0	1327.0	1281.0	1143.0	1155.0	984.4	1022.0
8.0	1343.0	1457.0	1654.0	1310.0	1191.0	1485.0	1195.0

En la tabla N°83 se muestra la desviación estándar, promedio y los percentiles 16%, 50% y 84% de las cortantes basales de la edificación en dirección X.

Tabla N°83:Desviación estándar, promedio y percentiles 16%, 50% y 84% de las fuerzas cortantes basales en dirección X

PGA -	COF	CORTANTE BASAL (en ton) – DIRECCIÓN X					
			Percentil	Percentil	Percentil		
(g)	σ	Promedio	16%	50%	84%		
0.1	28.2	248.8	229.0	257.2	285.4		
0.2	58.9	473.8	413.6	472.5	531.4		
0.3	26.8	690.3	663.4	690.2	717.0		
0.4	76.3	834.1	778.3	854.6	930.9		
0.5	127.2	926.6	773.5	900.7	1027.9		
0.6	88.4	1088.4	966.6	1055.0	1143.4		
0.7	135.6	1172.6	1019.4	1155.0	1290.6		
0.8	135.2	1279.6	1174.8	1310.0	1445.2		

En la tabla N°84 se muestra las fuerzas cortantes basales de la estructura en la dirección Y como resultado de los análisis tiempo-historia no lineal escalados con 8 aceleraciones pico de suelo (PGA).

Tabla N°84:
Fuerzas cortantes en la base de la estructura en dirección Y

PGA		CORTA	NTE BAS	SAL (en t	on) – DIR	ECCIÓN Y	
(g)	LIMA	HUARAZ	LIMA	ATICO	MAULE	IQUIQUE	ILLAPEL
(9)	1966	1970	1974	2001	2010	2014	2015
0.1	515.0	559.4	540.1	533.5	516.4	545.3	622.1
0.2	988.2	1022.0	944.4	1123.0	1180.0	1203.0	1044.0
0.3	1242.0	1525.0	1281.0	1608.0	1292.0	1430.0	1390.0
0.4	1480.0	1857.0	1714.0	1841.0	1504.0	1924.0	1639.0
0.5	1751.0	1995.0	2171.0	2087.0	1857.0	2174.0	1918.0
0.6	2128.0	2044.0	2431.0	2122.0	2012.0	2264.0	2069.0
0.7	2216.0	2107.0	2310.0	2403.0	2699.0	2411.0	2137.0
8.0	2395.0	2268.0	2615.0	2687.0	2520.0	2422.0	2695.0

En la tabla N°85 se muestra la desviación estándar, promedio y los percentiles 16%, 50% y 84% de las cortantes basales de la edificación en dirección Y.

Tabla N°85:Desviación estándar, promedio y percentiles 16%, 50% y 84% de las fuerzas cortantes basales en dirección Y

PGA	COF	CORTANTE BASAL (en ton) – DIRECCIÓN Y					
	σ	Promodio	Percentil	Percentil	Percentil		
(g)	U	Promedio	16%	50%	84%		
0.1	36.5	547.4	503.6	540.1	576.6		
0.2	98.3	1072.1	945.7	1044.0	1142.3		
0.3	135.7	1395.4	1254.3	1390.0	1525.7		
0.4	175.6	1708.4	1538.4	1714.0	1889.6		
0.5	161.2	1993.3	1833.8	1995.0	2156.2		
0.6	147.2	2152.9	1974.8	2122.0	2269.2		
0.7	203.4	2326.1	2106.6	2310.0	2513.4		
0.8	161.3	2514.6	2358.7	2520.0	2681.3		

6.4.2 Puntos de desempeño de la estructura

En esta sección se muestran los desplazamientos en techo y fuerzas cortantes en la base de la estructura, las cuales se obtienen mediante la intersección de sus respectivas curvas IDA promedio con la línea horizontal de las aceleraciones pico de suelo (PGA) para cada nivel de amenaza sísmica.

6.4.2.1 Desplazamiento en el techo de la estructura

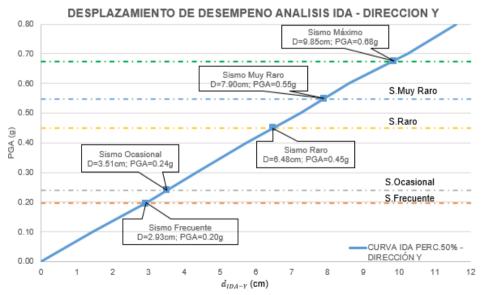

En esta sección se calculan para cada nivel de amenaza sísmica los desplazamientos de desempeño en el centro de masa del techo de la estructura sobre la curva IDA percentil 50% en las direcciones X (ver figura N°73) e Y (ver figura N°74), debido a que es el más se ajusta a la curva IDA Promedio.

Figura N°73:

Desplazamientos de desempeño de la edificación sobre su curva IDA percentil 50% de en dirección X

Figura N°74:
Desplazamientos de desempeño de la edificación sobre su curva IDA percentil 50% de en dirección Y

En la tabla N°86 se muestran los desplazamientos de desempeño en el techo de la estructura en la dirección longitudinal d_{IDA-X} y transversal d_{IDA-Y} para cada nivel de amenaza sísmica.

Tabla N°86: Desplazamientos de desempeño en el techo de la estructura

Nivel	Periodo de	PGA (g)	$d_{IDA-X}(cm)$	$d_{IDA-Y}(cm)$
Sísmico	Retorno T_R			
Frecuente	43 años	0.197	5.25	2.93
Ocasional	72 años	0.240	6.39	3.51
Raro	475 años	0.450	14.24	6.48
Muy Raro	970 años	0.549	18.19	7.90
Máximo	2475 años	0.675	23.12	9.85

6.4.2.2 Cortante basal

En esta sección se muestran las cortantes basales de desempeño de la estructura sobre la curva IDA promedio (con PGA como medida de intensidad IM) en las direcciones X (ver figura N°75) e Y (ver figura N°76), calculados para cada nivel sísmico.

Figura N°75: Fuerzas Cortantes de desempeño de la edificación en dirección X

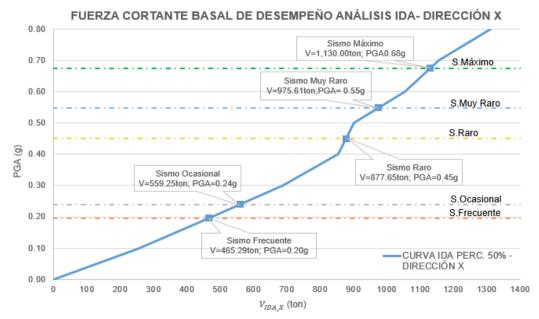
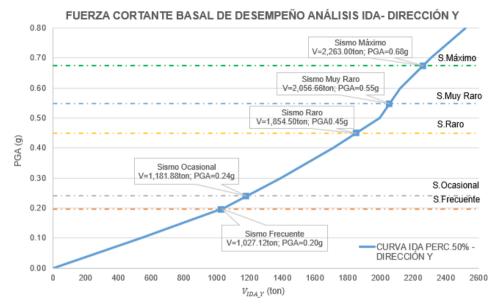



Figura N°76: Fuerzas Cortantes de desempeño de la edificación en dirección Y

En la tabla N°87 se muestran las fuerzas cortantes basales de la estructura en la dirección longitudinal V_{IDA-X} y transversal V_{IDA-Y} para cada nivel de amenaza sísmica.

Tabla N°87: Fuerzas Cortantes basales de desempeño de la estructura

Nivel Sísmico	Periodo de Retorno T_R	PGA (g)	V_{IDA-X} (ton)	V_{IDA-Y} (ton)
Frecuente	43 años	0.197	465.29	1027.12
Ocasional	72 años	0.240	559.25	1181.88
Raro	475 años	0.450	877.65	1854.50
Muy Raro	970 años	0.549	975.61	2056.66
Máximo	2475 años	0.675	1130.00	2263.00

6.4.2.3 Puntos de desempeño del análisis dinámico incremental

En las tablas N°88 y 89 se muestran los puntos de desempeño, en términos de desplazamiento en el techo y fuerza cortante basal de la estructura en las direcciones longitudinal (X) y transversal (Y) respectivamente, para cada nivel de amenaza sísmica.

Tabla N°88: Puntos de desempeño del análisis dinámico incremental en dirección X

Nivel Sísmico	Periodo de Retorno T_R	PGA (g)	$d_{IDA-X}(cm)$	V_{IDA-X} (ton)
Frecuente	43 años	0.197	5.24	441.5
Ocasional	72 años	0.240	6.39	544.5
Raro	475 años	0.450	14.23	877.6
Muy Raro	970 años	0.549	18.19	975.6
Máximo	2475 años	0.675	23.12	1130.0

Tabla N°89: Puntos de desempeño del análisis dinámico incremental en dirección Y

Nivel Sísmico	Periodo de Retorno T_R	PGA (g)	$d_{IDA-Y}(cm)$	V_{IDA-Y} (ton)
Frecuente	43 años	0.1967	2.93	1027.1
Ocasional	72 años	0.2399	3.51	1181.9
Raro	475 años	0.4500	6.48	1854.5
Muy Raro	970 años	0.5486	7.90	2056.7
Máximo	2475 años	0.675	9.85	2263.0

6.4.3 Evaluación de desempeño de la estructura

Se empleó la metodología establecida en el manual HAZUS (FEMA, 2020) para evaluar el desempeño sísmico mediante el Análisis Dinámico Incremental de la edificación. En esta sección se muestran la curva IDA percentil 50% que relaciona la máxima deriva de entrepiso de la edificación con el nivel de intensidad sísmica o aceleración pico en el suelo PGA en la dirección X (ver figura N°77) e Y (ver figura N°78), delimitadas con los umbrales máximos de derivas de entrepiso de cada nivel de daño con el fin de determinar el desempeño sísmico de la edificación en cada nivel sísmico.

Figura N°77: *Máximas derivas de entrepiso de la estructura en dirección X*

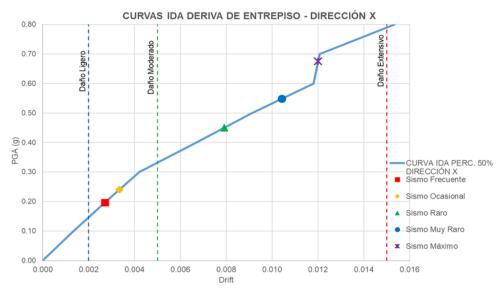
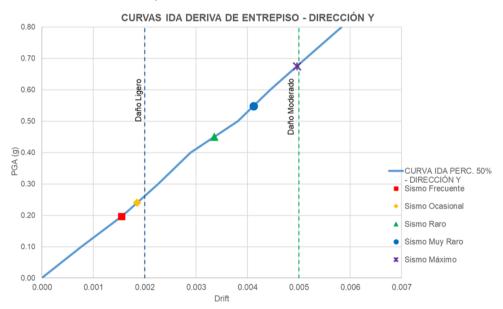



Figura N°78:

Máximas derivas de entrepiso de la estructura en dirección Y

A continuación, se obtienen los niveles de daño estructural en las direcciones X (ver figura N°90) e Y (ver figura N°91) según lo establecido en la sección 5.4.8.4 de la presente tesis.

Tabla N°90: Máximas derivas de entrepiso y nivel de daño estructural en dirección X

Nivel	Periodo de	Deriva de	Nivel de Daño
Sísmico	Retorno T_R	Entrepiso	Niver de Dano
Frecuente	43 años	0.0027	Moderado
Ocasional	72 años	0.0033	Moderado
Raro	475 años	0.0079	Extensivo
Muy Raro	970 años	0.0104	Extensivo
Máximo	2475 años	0.0120	Extensivo

Tabla N°91: Máximas derivas de entrepiso y nivel de daño estructural en dirección Y

Nivel	Periodo de	Deriva de	Nivel de Daño
Sísmico	Retorno T_R	Entrepiso	Nivei de Dallo
Frecuente	43 años	0.0015	Leve
Ocasional	72 años	0.0018	Leve
Raro	475 años	0.0034	Moderado
Muy Raro	970 años	0.0041	Moderado
Máximo	2475 años	0.0050	Extensivo

Cuando las fuerzas sísmicas en dirección X actúan sobre la edificación, podría sufrir daños moderados durante los sismos frecuente y ocasional; esta misma edificación podría sufrir daños severos o extensivos durante los sismos Raro, Muy Raro y Máximo.

En dirección Y, la edificación podría sufrir daños leves durante los sismos Frecuente y Ocasional; esta misma edificación podría sufrir daños moderados durante los sismos Raro y Muy Raro.

6.5 Comparación de resultados

Desplazamiento en el techo y fuerza cortante basal

En la tabla N°92 se muestra la comparación de los puntos de desempeño en términos de desplazamiento en el techo y cortante basal de la edificación obtenidos de los Análisis Estático No Lineal y Análisis Dinámico Incremental en dirección X.

Tabla N°92:Puntos de desempeño de la estructura en dirección X

Nivel	Periodo de	Análisis Estático No Lineal		Análisis Dinámico Incremental IDA	
Sísmico	Retorno T_R	$d_{push-X} \ ext{(cm)}$	V_{push-X} (ton)	$d_{IDA-X} \ ext{(cm)}$	<i>V_{IDA-X}</i> (ton)
Frecuente	43 años	7.18	369.7	5.24	441.5
Ocasional	72 años	8.77	427.9	6.39	544.5
Raro	475 años	17.15	627.6	14.23	877.6
Muy Raro	970 años	20.69	617.7	18.19	975.6
Máximo	2475 años	27.31	704.5	23.12	1130.0

En la tabla N°93 se muestra la comparación de los puntos de desempeño en términos de desplazamiento en el techo y cortante basal de la edificación obtenidos de los Análisis Estático No Lineal y Análisis Dinámico Incremental en dirección Y.

Tabla N°93:Puntos de desempeño de la estructura en dirección Y

Nivel	Davie de de	Análisis Estático No Lineal		Análisis Dinámico Incremental IDA	
Sísmico	Periodo de Retorno T_R	d _{push-Y} (cm)	V _{push-Y} (ton)	$d_{IDA-Y} \ ext{(cm)}$	V _{IDA-Y} (ton)
Frecuente	43 años	3.47	1013.0	2.93	1027.1
Ocasional	72 años	4.32	1213.0	3.51	1181.9
Raro	475 años	7.85	1848.0	6.48	1854.5
Muy Raro	970 años	9.55	1998.0	7.90	2056.7
Máximo	2475 años	12.24	2322.0	9.85	2263.0

En ambas direcciones de la estructura y para los 5 niveles de amenaza sísmica, se observa que el desplazamiento de desempeño en el techo de la estructura como resultado del Análisis Estático No Lineal son mayores al obtenido en el Análisis Estático No Lineal.

6.5.2 Niveles de daño

En esta sección se muestran para cada nivel sísmico los niveles de daño que puede sufrir la edificación en ambas direcciones del Análisis Estático No Lineal y Análisis Dinámico Incremental (ver tabla N°94).

Tabla N°94: Niveles de daño del análisis estático no lineal y dinámico incremental

	DIREC	CCIÓN X	DIRECCIÓN Y		
Nivel Sísmico	Análisis Estático No Lineal	Análisis Dinámico Incremental	Análisis Estático No Lineal	Análisis Dinámico Incremental	
Frecuente	Moderado	Moderado	Leve	Leve	
Ocasional	Moderado	Moderado	Moderado	Leve	
Raro	Extensivo	Extensivo	Moderado	Moderado	
Muy Raro	Extensivo	Extensivo	Moderado	Moderado	
Máximo	Extensivo	Extensivo	Extensivo	Extensivo	

En términos de la máxima de derivas de entrepiso, cuando las demandas sísmicas estáticas y/o dinámicas equivalentes a los sismos Frecuente y Ocasional actúan en la dirección X, la edificación podría sufrir daños moderados a nivel estructural; esta misma estructura alcanza daños extensivos o severos cuando son sometidas por demandas sísmicas estáticas y/o dinámicas equivalentes a los sismos Raro, Muy Raro y Máximo.

En la dirección Y, la edificación podría sufrir daños leves frente a cargas estáticas y dinámicas durante el sismo Frecuente. Esta misma edificación podría sufrir daños moderados durante los sismos Raro y Muy Raro, agravándose a niveles de daños extensivos durante un sismo máximo. Durante el sismo Ocasional, la estructura podría sufrir daños moderados frente a cargas estáticas.

CONCLUSIONES

Conclusiones

Se realizó la evaluación de vulnerabilidad sísmica empleando como medidas de

daño el desplazamiento en el techo del último nivel y derivas de entrepiso debido

a que los niveles de desempeño y de daño son determinados en función a dichos

parámetros.

El Efecto de Segundo Orden (P-Delta) de la estructura en estudio es despreciable

para el Análisis Estático No Lineal, porque los coeficientes de estabilidad θ en

ambas direcciones de análisis es menor al valor de 0.1, según lo especificado en

la normativa ASCE (ver tablas 6.14 y 6.15).

En la evaluación de vulnerabilidad sísmica mediante el Análisis Estático No Lineal

en dirección X, basándose en los objetivos de desempeño sísmico propuestos por

el comité SEAOC VISION 2000 (1995), la edificación se desempeña

adecuadamente frente a diferentes demandas sísmicas, ya que presenta un

desempeño Totalmente Operacional durante los sismos con un periodo de retorno

 T_R =43 años y T_R =72 años (Sismo Frecuente y Ocasional respectivamente); esta

misma presenta un desempeño Operacional durante el sismo con un T_R =475 años

(Sismo Raro), Seguridad de Vida durante el sismo con un T_R =970 años (Sismo

Muy Raro).

En la evaluación de vulnerabilidad sísmica mediante el Análisis Estático No Lineal

en dirección X, la edificación alcanza un nivel de desempeño de Prevención al

Colapso, durante un sismo con un periodo de retorno T_R =2475 años.

En la evaluación de vulnerabilidad sísmica mediante el Análisis Estático No Lineal

en dirección Y, basándose en los objetivos de desempeño sísmico propuestos por

el comité SEAOC VISION 2000, la edificación se desempeña adecuadamente

frente a diferentes demandas sísmicas, ya que presenta un desempeño

Totalmente Operacional durante los sismos con un periodo de retorno T_R =43 años

y T_R =72 años (Sismo Frecuente y Ocasional respectivamente); esta misma

presenta un desempeño Seguridad de Vida durante el sismo con un T_R =475 años

y T_R =970 años (Sismo Raro y Muy Raro respectivamente).

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

CONCLUSIONES

En la evaluación de vulnerabilidad sísmica mediante el Análisis Estático No Lineal en dirección Y, la edificación alcanza un nivel de desempeño de Prevención al

Colapso, durante un sismo con un periodo de retorno T_R =2475 años.

Las curvas IDA de la edificación con un percentil del 50% es la que mejor representa a la requerida en el capítulo de Análisis Tiempo Historia de la Norma Sismorresistente E030 mediante promedio de resultados cuando se ejecuta con 7 pares de registros sísmicos horizontales, cantidad con la que se trabajó para el

Análisis Dinámico Incremental de la edificación.

En la evaluación de vulnerabilidad sísmica mediante el Análisis Estático No Lineal, basándose en las derivas límites propuestas en el manual HAZUS, la edificación podría sufrir daños moderados frente a movimientos sísmicos con un periodo de retorno T_R =43 años y T_R =72 años (Sismo Frecuente y Ocasional respectivamente); dichos daños se podrían agravar a un nivel extensivo o severo frente a movimientos sísmicos con un periodo de retorno T_R =475 años, T_R =970 años y

 T_R =2475 años (Sismo Raro, Muy Raro y Máximo respectivamente).

En la evaluación de vulnerabilidad sísmica mediante el Análisis Estático No Lineal en dirección Y, basándose en las derivas límites propuestas en el manual HAZUS, la edificación podría sufrir daños leves frente a movimientos sísmicos con un periodo de retorno T_R =43 años (Sismo Frecuente); dichos daños se podrían agravar a un nivel moderado frente a movimientos sísmicos con un periodo de retorno T_R =72 años, T_R =475 años y T_R =970 años (Sismo Ocasional, Raro y Muy Raro respectivamente). Esta misma edificación podría sufrir daños extensivos o

severos en un sismo con T_R =2475 años (Sismo Máximo).

En las curvas de capacidad en ambas direcciones se genera una ligera degradación de resistencia debido a que las vigas que conectan muros de concreto armado son las primeras en alcanzar el nivel de desempeño de Colapso; estas vigas tienen insuficiente peralte y reforzamiento para resistir fuerzas

sísmicas.

En la evaluación de vulnerabilidad sísmica mediante el Análisis Dinámico Incremental en dirección X, basándose en las derivas límites propuestas en el manual HAZUS, la edificación podría sufrir daños moderados frente a movimientos

EVALUACIÓN DE LA VULNERABILIDAD SÍSMICA DE UNA EDIFICACIÓN DE CONCRETO ARMADO MEDIANTE CARGAS ESTÁTICA Y DINÁMICO INCREMENTAL Bach MFI ÉNDEZ I FÓN Carlos Yair

sísmicos con un periodo de retorno T_R =43 años y T_R =72 años (Sismo Frecuente y Ocasional respectivamente); dichos daños se podrían agravar a un nivel extensivo o severo frente a movimientos sísmicos con un periodo de retorno T_R =475 años, T_R =970 años y T_R =2475 años (Sismo Raro, Muy Raro y Máximo respectivamente).

En la evaluación de vulnerabilidad sísmica mediante el Análisis Dinámico Incremental en dirección Y empleando la metodología propuesta en el manual HAZUS, la edificación podría sufrir daños leves frente a movimientos sísmicos con un periodo de retorno T_R =43 años y T_R =72 años (Sismo Frecuente y Ocasional respectivamente); dichos daños se podrían agravar a un nivel moderado frente a movimientos sísmicos con un periodo de retorno T_R =475 años y T_R =970 años (Sismo Raro y Muy Raro respectivamente). Esta misma edificación podría sufrir daños extensivos o severos en un sismo con T_R =2475 años (Sismo Máximo).

En los niveles sísmicos Frecuente, Raro y Muy Raro las fuerzas cortantes basales resultantes del Análisis Estático No Lineal son menores en comparación al Análisis Dinámico Incremental, debido a que para ejecutar el Análisis Estático No Lineal se aplicó el factor de reducción de rigidez a los elementos estructurales de la edificación modelados no linealmente mediante rótulas bilineales (vigas, columnas y muros) con el fin de aproximar a su adecuado comportamiento histerético entre el punto de origen y el punto de fluencia; ocasionando una reducción en la resistencia y provoca una reducción de rigidez global de la edificación generando desplazamientos en el techo del último nivel sean mayores en comparación al Análisis IDA.

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

RECOMENDACIONES

Recomendaciones

Se recomienda modelar los elementos estructurales con las mismas propiedades

histeréticas para ejecutar tanto el Análisis Estático No Lineal como el Análisis

Dinámico Incremental, con la finalidad de una mejor aproximación de resultados

de desplazamientos laterales, derivas de entrepiso y cortante basal entre ambos

análisis no lineales.

En la presente tesis, en el Análisis Dinámico Incremental sólo se enfocó en la

respuesta de la edificación frente a diferentes demandas sísmicas en términos de

desplazamiento lateral en el techo, derivas de entrepiso y cortante basal. Se

recomienda realizar un Análisis Dinámico Incremental más exhaustivo mediante

curvas de fragilidad.

En la presente tesis, los muros de concreto armado fueron modelados mediante

rótulas inelásticas concentradas asumiendo que estos elementos tienen el mismo

comportamiento inelástico en toda su sección, pero este comportamiento es irreal;

por lo tanto, se recomienda modelar los muros mediante rótulas distribuidas de tal

manera que el comportamiento inelástico se distribuya a lo largo de toda su

sección según el material componente.

Referencias Bibliográficas

- ACI318 Committee. (2019). Building Code Requirements for Structural Concrete (ACI318-19). American Concrete Institute. https://www.concrete.org/Portals/0/Files/PDF/Previews/318-19_preview.pdf
- Applied Technology Council. (1996). Seismic Evaluation and Retrofit of Concrete. California Seismic Safety Commission. https://www.atcouncil.org/pdfs/atc40toc.pdf
- Bae, S., & Bayrak, O. (2008). Plastic Hinge Length of Reinforced Concrete Columns. *Structural Journal*, 105(3), 290-300. https://doi.org/10.14359/19788
- Beas, G. A. (2016). Análisis no lineal de elementos de concreto armado utilizando elementos finitos [Tesis de pregrado, Universidad Nacional de Ingeniería]. Repositorio Institucional UNI. http://hdl.handle.net/20.500.14076/5515
- Bozzo, L. M., & Barbat, H. A. (1995). Diseño sísmico de edificios de hormigón armado. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE). http://hdl.handle.net/2117/27340
- Calcina, R. M. (2017). Evaluación del Desempeño Sísmico de un Edificio de Once Pisos Utilizando Análisis Estático y Dinámico No-Lineal [Tesis de maestría, Universidad Privada de Tacna]. Repositorio Universidad Privada de Tacna. http://hdl.handle.net/20.500.12969/499
- Canahuiri, R. (2022). Diseño Estructural de un Edificio de Vivienda de Cinco Pisos en Concreto Armado [Tesis de Pregrado, Pontificia Universidad Católica del Perú]. Repositorio de Tesis PUCP. http://hdl.handle.net/20.500.12404/22131

- Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID-UNI). (s.f.). Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI. Centro de Observación Ingeniería Sísmica del CISMID/FIC/UNI. para https://www.cismid.uni.edu.pe/ceois/red/
- Deierlein, G., Reinhorn, A., & Willford, M. (2010). Nonlinear structural analysis for seismic design. NEHRP seismic design technical brief, 4, 1-36. https://nehrp.gov/pdf/nistgcr10-917-5.pdf
- Departamento de Ingeniería Civil Universidad de Chile. (2010). Red de Cobertura Nacional de Acelerógrafos Departamento de Ingeniería Civil Universidad de Chile. Red de Cobertura Nacional de Acelerógrafos Departamento de Ingeniería Civil Universidad de Chile (RENADIC). https://www.renadic.cl/
- Department of Homeland Security's Federal Emergency Management Agency. (2005). Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA 440). Federal Emergency Management Agency. https://mitigation.eeri.org/wp-content/uploads/fema-440.pdf
- Elnashai, A., & Di Sarno, L. (2008). Fundamentals of Earthquake Engineering. John Wiley & Sons. Ltd. https://www.wiley.com//legacy/wileychi/elnashai/
- Escamilla, M. A. (2010). Estudio comparativo de las tendencias actuales del método del empujón para la evaluación de estructuras reticulares [Tesis de maestría, Universidad Nacional Autónoma de México]. Repositorio de la Dirección General de Bibliotecas y Servicios Digitales de Información. https://repositorio.unam.mx/contenidos/62681
- Facultad de Ciencias Físicas y Matemáticas Universidad de Chile. (2014). Centro Sismológico Universidad de Chile. Centro Sismológico Universidad de Chile. https://evtdb.csn.uchile.cl/

- Facultad de Ciencias Físicas y Matemáticas Universidad de Chile. (2015).

 Centro Sismológico Nacional Universidad de Chile. Centro

 Sismológico Nacional Universidad de Chile. https://evtdb.csn.uchile.cl/
- Federal Emergency Management Agency. (1997). *NEHRP Guidelines for*the Seismic Rehabilitations of Buildings (FEMA273).

 https://www.scinc.co.jp/nanken/pdf/fema273.pdf
- Federal Emergency Management Agency. (2000). *Prestandard and Commentary for the Seismic Rehabilitation of Buildings* (FEMA356). https://www.nehrp.gov/pdf/fema356.pdf
- Federal Emergency Management Agency. (2020). Hazus Earthquake Model Technical Manual (Hazus 4.2 SP3). <a href="https://www.fema.gov/sites/default/files/2020-10/fema.gov/sites/default/files/default/files/2020-10/fema.gov/sites/default/files/default/files/default/files/default/files/default/files/default/files/default/files/default/files/defaul
- Florez, C., & Lozano, C. (2007). Análisis y tratamiento de señales de fuentes sismogénicas de campo cercano a San José de Cúcuta, Colombia. *Respuestas,* 12(2), 52-70. https://doi.org/10.22463/0122820X.569
- Gioncu, V. (2000). Framed structures. Ductility and seismic response: General Report. *Journal of Constructional Steel Research*, *55*(1-3), 125-154. https://doi.org/10.1016/S0143-974X(99)00081-4
- Herrera, P. S. (2013). Estudio analítico de elementos de borde de muro sometidos a distintas configuraciones de confinamiento y pretracción [Tesis de pregrado, universidad de Chile]. Repositorio Académico Universidad de Chile. https://repositorio.uchile.cl/handle/2250/115528
- Hognestad, E., Hanson, N. W., & McHenry, D. (1955). Concrete Stress Distribution in Ultimate Strength Design. *Journal Proceedings*, 455-480. https://doi.org/10.14359/11609

- Huerta, P. C. (2022). Desempeño sísmico de edificios multifamiliares de muros estructurales aplicando el método de espectro de capacidad [Tesis de pregrado, Pontificia Universidad Católica del Perú]. Repositorio de Tesis PUCP. http://hdl.handle.net/20.500.12404/22726
- Instituto Geofísico del Perú. (2014). Escenario de sismo y tsunami en el borde occidental de región central del Perú. http://hdl.handle.net/20.500.12816/779
- La Rosa, J., & Vila, G. (2019). Comportamiento estructural del Edificio Prisma Tower mediante el análisis dinámico no lineal [Tesis de pregrado, Universidad Ricardo Palma]. Repositorio Institucional de Universidad Ricardo Palma. https://hdl.handle.net/20.500.14138/2809
- Mander, J., Priestley, M., & Park, R. (1988). Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- Merca, J. (2021). Análisis dinámico no lineal del comportamiento sísmico de una edificación esencial de concreto armado usando aisladores de base en Ayacucho [Tesis de pregrado, Universidad César Vallejo]. Repositorio de la Universidad César Vallejo. https://hdl.handle.net/20.500.12692/77909
- Ministerio de Vivienda, Construcción y Saneamiento. (2006). Norma E.020 Cargas. Diario Oficial El Peruano 9 de junio de 2006. https://cdnweb.construccion.org/normas/rne2012/rne2006/files/titulo3/02 E/RNE200 6 E 020.pdf
- Ministerio de Vivienda, Construcción y Saneamiento. (2009). Norma E060 Concreto Armado. Servicio Nacional de Capacitación para la Industria de la Construcción SENCICO. https://www.gob.pe/institucion/munisantamariadelmar/informespublicaciones/2619713-e-060-concreto-armado-ds-n-010-2009

- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Norma Técnica E.030 Diseño Sismorresistente. https://cdn.www.gob.pe/uploads/document/file/2366641/51%20E.030%20 <a href="https://cdn.www.gob.pe/uploads/document/file/2366641/51%20E.030%20 <a href="https://cdn.www.gob.pe/uploa
- Nangullasmú, H. (2019). Comportamiento sísmico de edificios de concreto reforzado con disipadores histeréticos: propuesta de diseño resiliente conforme a reglamento [Tesis Doctoral, Universidad Autónoma Metropolitana de México]. Universidad Autónoma Metropolitana (México). Unidad Azcapotzalco. Coordinación de Servicios de Información. https://hdl.handle.net/11191/6353
- Odegaard, T. (2018). Seismic performance assessment of reinforce concrete: a case study of Kanti Children's Hospital, Kathmandu, Nepal [Tesis de maestría, Universidad de Stavanger]. Universidad de Stavanger. http://hdl.handle.net/11250/2562605
- Ospina, A., Urrego, H., & Botero, J. (2013). Aplicación de un método basado en el desempeño para el análisis y diseño sismo resistente de puentes de concreto reforzado. *Ingeniería y Ciencia, 9*(17), 209-236. http://www.eafit.edu.co/ingciencia
- Otani, S. (1974). SAKE: A Computer Program for Inelastic Response of R/C Frames to Earthquakes. University of Illinois Engineering Experiment Station. http://hdl.handle.net/2142/13826
- Oviedo, R. (2019). Diseño sismorresistente de edificaciones de concreto armado (2.ª ed.). Oviedo Ingeniería E.I.R.L.
- Park, R., & Paulay, T. (1975). Reinforced Concrete Structures. John Wiley & Sons. https://doi.org/10.1002/9780470172834

- Paulay, T., & Priestly, M. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & Sons. https://doi.org/10.1002/9780470172841
- Peinado, F. V. (2022). Evaluación del comportamiento sísmico de edificios de concreto armado aplicando la metodología del perfil bio-sísmico y diseño por desempeño [Tesis de pregrado, Universidad Nacional de Ingeniería]. Repositorio Institucional Universidad Nacional de Ingeniería. http://hdl.handle.net/20.500.14076/22537
- Quispe, R. (2018). Evaluación del desempeño sísmico del laboratorio de la Facultad de Ciencias Agrarias de la UNSCH mediante métodos no lineales [Tesis de pregado, Universidad Nacional San Cristóbal de Huamanga]. Repositorio Institucional UNSCH. http://repositorio.unsch.edu.pe/handle/UNSCH/3261
- Rojas, P. A. (2011). Modelamiento de la fatiga de bajo número de ciclos para el refuerzo longitudinal de elementos de hormigón armado susceptible de pandeo [Tesis de pregrado, Universidad de Chile]. Repositorio Académico de la Universidad de Chile. https://repositorio.uchile.cl/handle/2250/104042
- SEAOC Vision 2000 Committee. (1995). *Performance-Based Seismic Engineering*. Structural Engineers Association of California.
- Servicio Nacional de Capacitacion para la Industria de la Construcción. (2022). Servicio Web de Consultas para la Determinación del Peligro Sísmico en el Territorio Nacional [Aplicativo Informático]. http://ppsh.sencico.gob.pe/
- Structural Engineering Institute. (2017). Seismic evaluation and retrofit of existing buildings (ASCE/SEI 41-17). American Society of Civil Engineers. https://ascelibrary.org/doi/book/10.1061/9780784414859

- Structural Engineering Institute. (2022). *Minimum Design Loads and Associated Criteria for Buildings and Other Structures* (ASCE/SEI 7-22). American Society of Civil Engineers. https://doi.org/10.1061/9780784415788
- Takeda, T., Sozen, M., & Nielsen, N. (1970). Reinforced Concrete Response to Simulated Earthquakes. *Journal of the Structural Division*, 96(12), 2557-2573. https://doi.org/10.1061/JSDEAG.0002765
- Tavárez , J. (2016). Análisis Estático y Dinámico Incremental de una estructura de muros de hormigón armado en la República Dominicana [Tesis de maestría, Universitat Politécnica de Catalunya]. Depósito institucional Universitat Politécnica de Catalunya. http://hdl.handle.net/2117/100603
- Torres, C., & Zavala, D. (2022). Análisis del efecto P-Delta con Push Over en estructuras de mediana altura de concreto armado con presencia de irregularidades en altura en la Costa del Perú [Tesis de pregrado, Universidad Peruana de Ciencias Aplicadas]. Repositorio Académico UPC. http://hdl.handle.net/10757/660163
- Vamvatsikos, D., & Cornell, C. (2002). Incremental dynamic analysis. *Earthquake Engineering & Structural Dynamics*, 491-514.

 https://doi.org/10.1002/eqe.141
- Villagrán, E., Vera, C., & Posada, A. (2013). Modelo esfuerzo-deformación para elementos de concretos reforzado que cumple con las hipótesis de las NTC RCDF 2004. *Concreto y cemento. Investigación y desarrollo,* 5(1), 32-39. https://www.redalyc.org/articulo.oa?id=361233553003
- Wallace, J. (2012). Performance of Structural Walls in Recent Earthquakes and Tests and Implications for US Building Codes [Presentación de artículo]. 15th World Conference on Earthquake Engineering. Lisboa, Portugal.

Anexos

Anexo A: Criterios de análisis modal espectral de la edificación	169
Anexo B: Criterios de diseño estructural en elementos sismorresistentes	. 172
Anexo C: Puntos de desempeño del análisis estático no lineal dirección X	. 174
Anexo D: Puntos de desempeño del análisis estático no lineal dirección Y	. 182
Anexo E: Derivas de entrepiso del análisis estático no lineal dirección X	. 190
Anexo F: Derivas de entrepiso del análisis estático no lineal dirección Y	. 193
Anexo G: Evolución de rótulas plásticas	196
Anexo H: Registros sísmicos	206
Anexo I: Escalamiento de registros sísmicos	213
Anexo J: Máximos desplazamientos del análisis dinámico incremental	237
Anexo K: Desplazamientos relativos de entrepiso del análisis dinámico	
incremental	244
Anexo L: Derivas de entrepiso del análisis dinámico incremental	. 251
Anexo M: Planos estructurales	258

Anexo A: Criterios de análisis modal espectral de la edificación

A.1. Cargas de Gravedad

Las cargas de gravedad a contemplar se describen a continuación:

A.1.1. Carga Muerta (CM)

Conformado por el peso propio de los elementos estructurales y no estructurales de la edificación: Elementos de concreto armado, losas aligeradas y macizas compuesta de casetón de poliestireno, tabiquería, acabado y jardín. En la tabla A.1 se muestra el peso específico del concreto y del material que compone el jardín.

Tabla A.1: Peso Específico en kg/m3 de los materiales constituyentes de la edificación

MATERIAL	PESO ESPECIFICO (kg/m³)
Concreto Armado	2400
Tierra Jardín	2200

En la tabla A.2 se muestran los pesos por unidad de área de los elementos constitutivos de la edificación: acabado, tabiquería, prelosas aligeradas y macizas.

Tabla A.2: Peso por área en kg/m2 de los materiales y/o sistemas estructurales constituyentes de la edificación

CARGA MUERTA	PESO POR AREA (kg/m²)
Acabado	100
Tabiquería	285
Prelosa Aligerada 20cm	300
Prelosa Aligerada 25cm	350
Prelosa Maciza 12cm	288
Prelosa Maciza 15cm	360
Prelosa Maciza 20cm	480

A.1.2. Carga Viva (CV)

Incluye el peso de los ocupantes, muebles, equipos y otros elementos móviles que en su conjunto reciben el nombre de sobrecarga. En la tabla A.3, se tienen las sobrecargas de diversos ambientes de la edificación, como Estacionamientos, Dormitorio, Sala-Comedor, Escaleras y Gimnasio.

 Tabla A.3:

 Peso por área en kg/m² de la carga viva para los ambientes de la edificación

CARGA MUERTA	PESO POR AREA (kg/m²)
Estacionamiento	250
Dormitorio	200
Sala-Comedor	200
Escaleras	200
Gimnasio	400
Techo Azotea	100

Nota. De "Norma Técnica Peruana E.020 – Cargas", por Ministerio de Vivienda, Construcción y Saneamiento, 2006.

A.2. Carga Sísmicas

Se emplearán los mismos parámetros sísmicos mencionados en la sección 5.4.1 de la presente tesis.

A.3. Peso de la Edificación

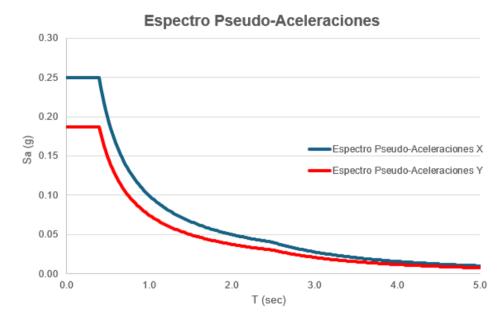
Para una edificación perteneciente a la categoría C, el peso total de la edificación (P_T) tomada en el primer nivel es determinado tomando la totalidad de la Carga Muerta más el 25% de la Carga Viva, la cual se describe en la ecuación (A.1)

$$P_T = 100\%(CM) + 25\%(CV) \tag{A.1}$$

A.4. Cortante Estática Basal de la Edificación (V_h)

De acuerdo con la normativa de Diseño Sismorresistente E030, la fuerza cortante en la base de la edificación en su dirección correspondiente es determinada mediante la ecuación (A.2)

$$V_b = \frac{Z*U*C*S}{R} * P \tag{A.2}$$


A.4. Espectro de Pseudo-Aceleraciones

Para el análisis dinámico lineal de la edificación, se empleará un espectro inelástico de pseudo-aceleraciones definido mediante la ecuación (A.3)

$$S_a = \frac{Z*U*C*S}{R} * g \tag{A.2}$$

En la figura A.1 se muestran los espectros inelásticos de pseudo-aceleraciones para el análisis modal espectral de la edificación en las direcciones X e Y.

Figura A.1:
Espectros Inelásticos de Pseudo-Aceleraciones para el Análisis Modal Espectral de la edificación – Direcciones X e Y

Anexo B: Criterios de diseño estructural en elementos sismorresistentes

B.1. Normativas

Los vigas, losas aligeradas y macizas y columnas fueron diseñadas mediante la normativa peruana de Concreto Armado E060 del RNE. Para el diseño de los muros de corte de concreto armado se optó por emplear la normativa peruana E060 y la normativa internacional ACI318-19 para la amplificación de la cortante de diseño y los criterios para el cálculo de la longitud de confinamiento, presenta lineamientos más sofisticados en comparación a lo especificado en la normativa peruana E060.

Además, los datos de peso propio del material de los elementos, carga muerta y viva son referenciados de la normativa de cargas E020 del RNE (ver anexo A); mientras que los parámetros sísmicos para definir los espectros de demanda sísmica son referenciados de la norma de Diseño Sismorresistente E030 del RNE.

B.2. Evolución de la Normativa del Diseño de Muros de Concreto Armado

Los eventos sísmicos experimentados en Chile (2010) y Nueva Zelanda (2011) pusieron en evidencia serias deficiencias en los lineamientos para el diseño sísmico y proceso constructivo de los muros de corte de concreto armado. Estos elementos estructurales, los cuales fueron diseñados mediante normativas de diseños anteriores al ACI318-11, sufrieron diversos tipos de daño como: aplastamiento en los núcleos de confinamiento, rotura de aceros de refuerzo y pandeo global (Wallace, 2012).

Las pautas para el diseño sísmico de muros de corte descritos en la normativa peruana E060 están influenciados de la normativa internacional ACI318-08, sin embargo, dicha versión se presentan lineamientos incompletos y poco sofisticados en comparación de la última versión ACI318-19.

B.3. Combinaciones de Diseño

En la tabla B.1 se muestran las combinaciones de diseño para el diseño de elementos estructurales de concreto armado (vigas, columnas y muros) basándose en la normativa internacional ACI318-19 y la normativa peruana de Diseño de Concreto Armado E060.

Tabla B.1: Combinaciones de Carga para el diseño de estructuras de concreto armado

СОМВО	COMBINACIÓN
C1	1.4(CM)+1.7(CV)
C2	$1.25(CM+CV) + 1.00(S_x)$
C3	$1.25(CM+CV) - 1.00(S_x)$
C4	$1.25(CM+CV) + 1.00(S_y)$
C5	$1.25(CM+CV) - 1.00(S_y)$
C6	$0.90(CM) + 1.00(S_x)$
C7	$0.90(CM) - 1.00(S_x)$
C8	$0.90(CM) + 1.00(S_y)$
C9	$0.90(CM) - 1.00(S_y)$

Nota. De "Requisitos de Reglamento para Concreto Estructural (ACI318-19)", por American Concrete Institute, 2019.

Donde:

 S_x : Carga de la acción sísmica (fuerza axial, momento o cortante) en la dirección X de la edificación

 S_{ν} : Carga de la acción sísmica (fuerza axial, momento o cortante) en la dirección Y de la edificación

Anexo C: Puntos de desempeño del análisis estático no lineal dirección X

Sismo Frecuente

Figura C.1:
Punto de desempeño debido al Sismo Frecuente dirección X – Procedimiento A

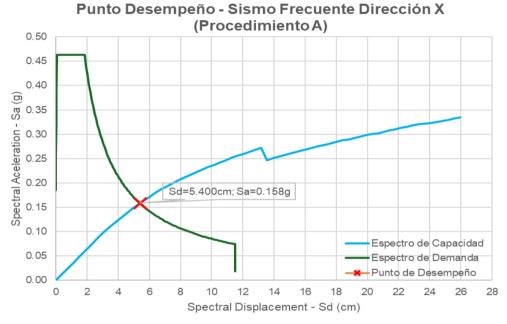


Figura C.2:

Punto de desempeño debido al Sismo Frecuente dirección X – Procedimiento B

Punto Desempeño - Sismo Frecuente Dirección X

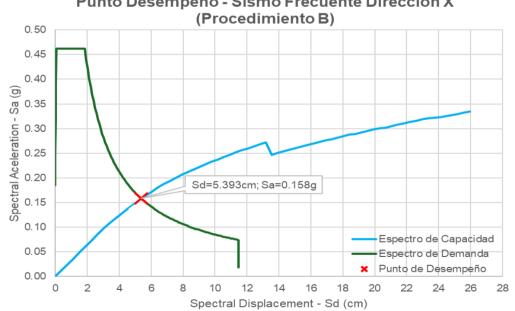
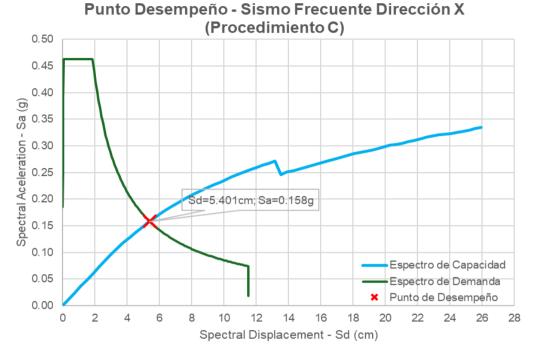



Figura C.3:
Punto de desempeño debido al Sismo Frecuente dirección X – Procedimiento C

Sismo Ocasional

Figura C.4:
Punto de desempeño debido al Sismo Ocasional dirección X – Procedimiento A

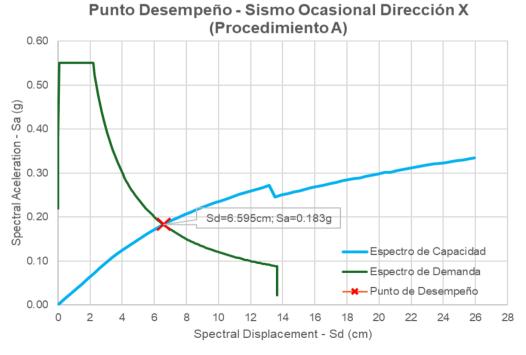


Figura C.5:

Punto de desempeño debido al Sismo Ocasional dirección X – Procedimiento B

Punto Desempeño - Sismo Ocasional Dirección X

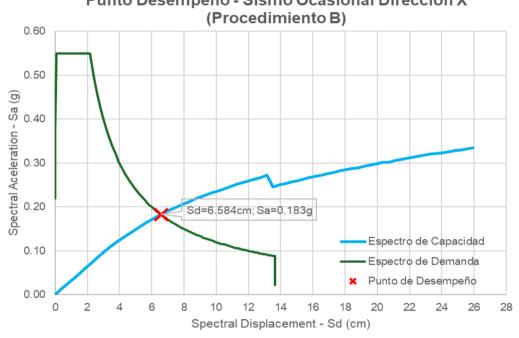
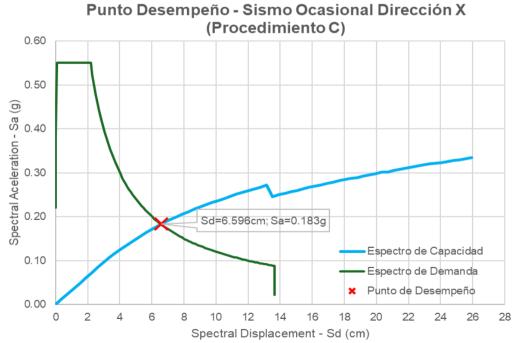



Figura C.6:
Punto de desempeño debido al Sismo Ocasional dirección X – Procedimiento C

Sismo Raro

Figura C.7: Punto de desempeño debido al Sismo Raro dirección X – Procedimiento A

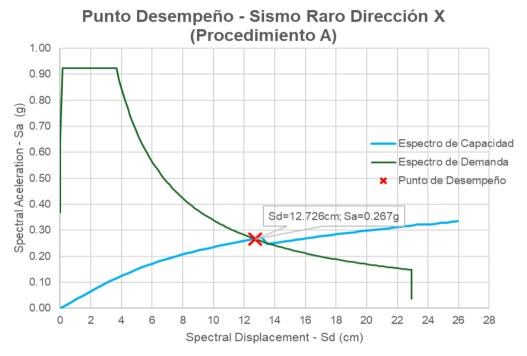


Figura C.8: Punto de desempeño debido al Sismo Raro dirección X – Procedimiento B

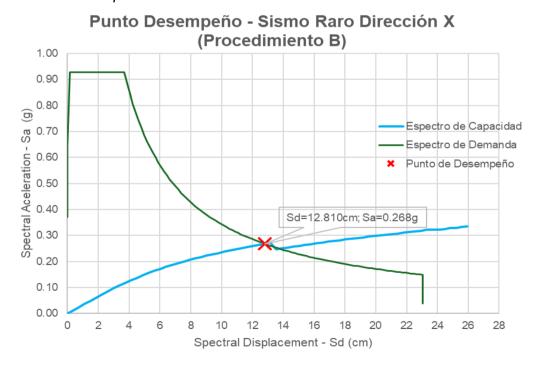
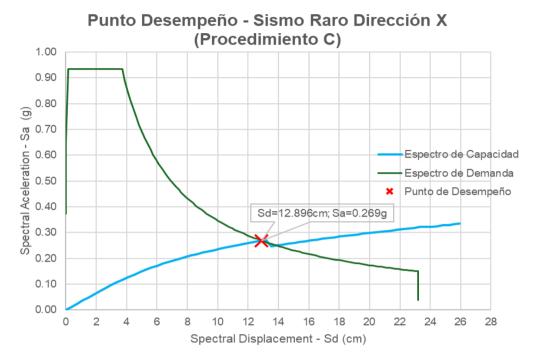



Figura C.9:

Punto de desempeño debido al Sismo Raro dirección X – Procedimiento C

Sismo Muy Raro

Figura C.10:
Punto de desempeño debido al Sismo Muy Raro dirección X – Procedimiento A

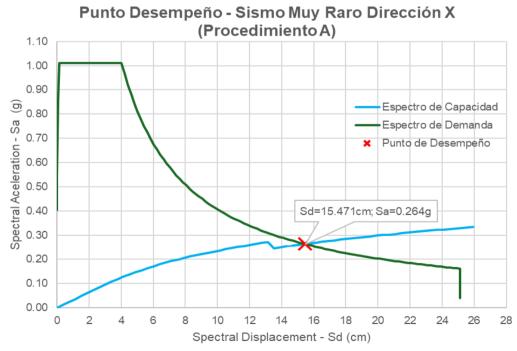


Figura C.11:
Punto de desempeño debido al Sismo Muy Raro dirección X – Procedimiento B

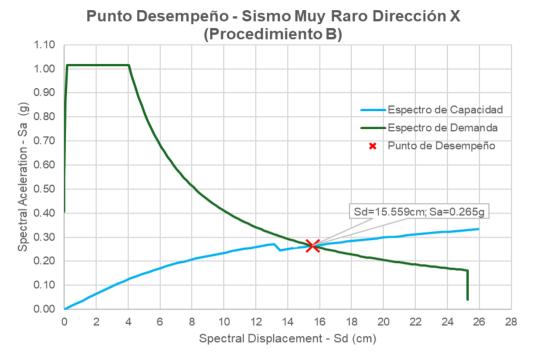
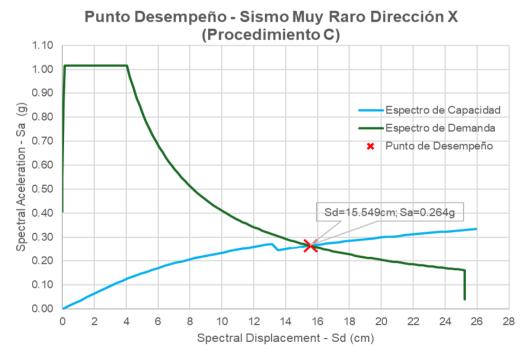



Figura C.12:
Punto de desempeño debido al Sismo Muy Raro dirección X – Procedimiento C

Sismo Máximo

Figura C.13:
Punto de desempeño debido al Sismo Máximo dirección X – Procedimiento A

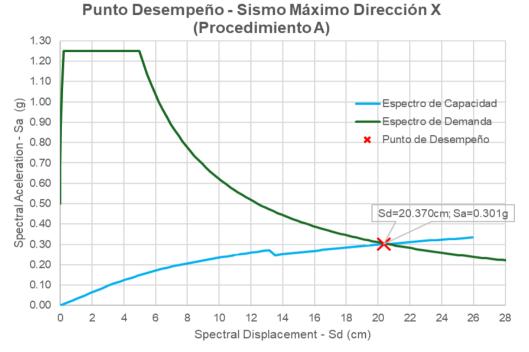


Figura C.14:
Punto de desempeño debido al Sismo Máximo dirección X – Procedimiento B

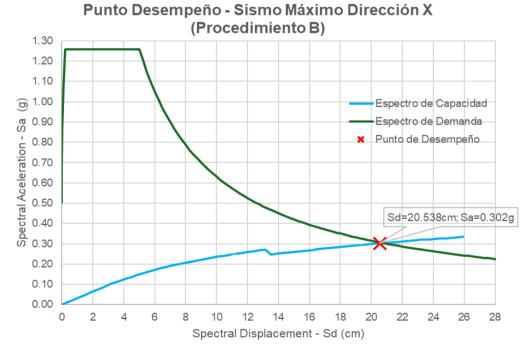
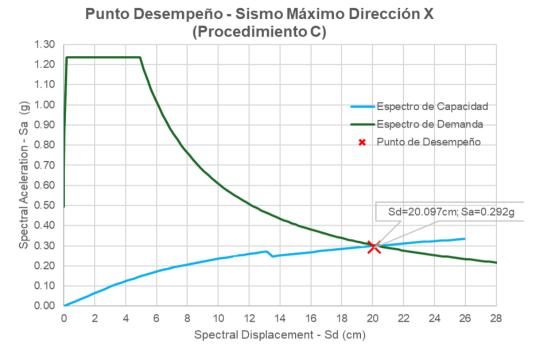



Figura C.15: Punto de desempeño debido al Sismo Máximo dirección X – Procedimiento C

Anexo D: Puntos de desempeño del análisis estático no lineal dirección Y

• Sismo Frecuente

Figura D.1:

Punto de desempeño debido al Sismo Frecuente dirección Y – Procedimiento A

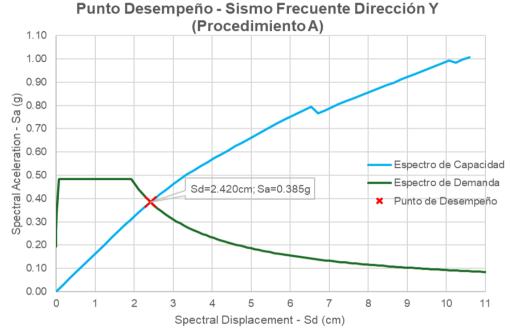


Figura D.2:
Punto de desempeño debido al Sismo Frecuente dirección Y – Procedimiento B

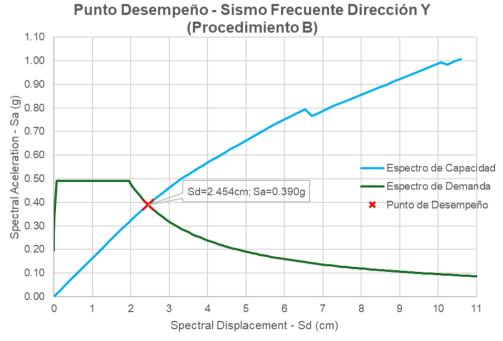
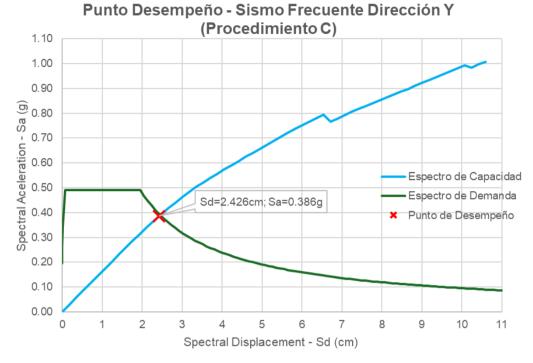



Figura D.3:
Punto de desempeño debido al Sismo Frecuente dirección Y – Procedimiento C

Sismo Ocasional

Figura D.4:

Punto de desempeño debido al Sismo Ocasional dirección Y – Procedimiento A

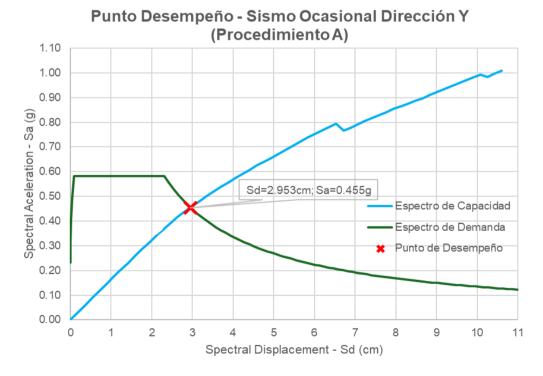


Figura D.5:

Punto de desempeño debido al Sismo Ocasional dirección Y – Procedimiento B

Punto Desempeño - Sismo Ocasional Dirección Y

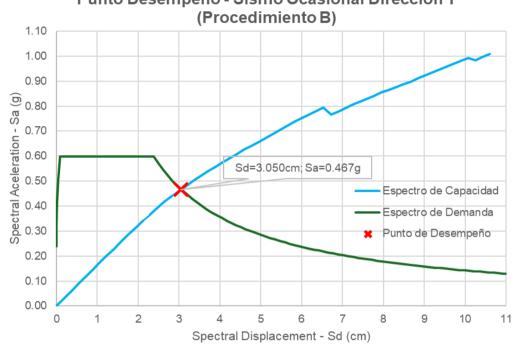
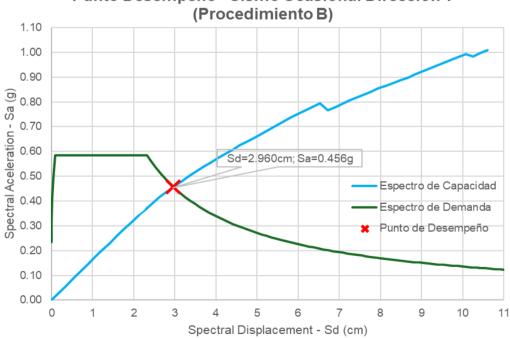



Figura D.6:

Punto de desempeño debido al Sismo Ocasional dirección Y – Procedimiento C

Punto Desempeño - Sismo Ocasional Dirección Y

Sismo Raro

Figura D.7:
Punto de desempeño debido al Sismo Raro dirección Y – Procedimiento A

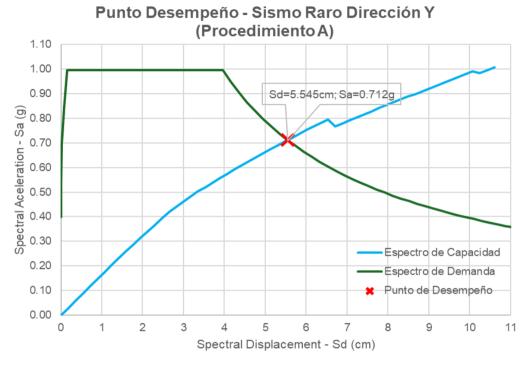


Figura D.8:
Punto de desempeño debido al Sismo Raro dirección Y – Procedimiento B

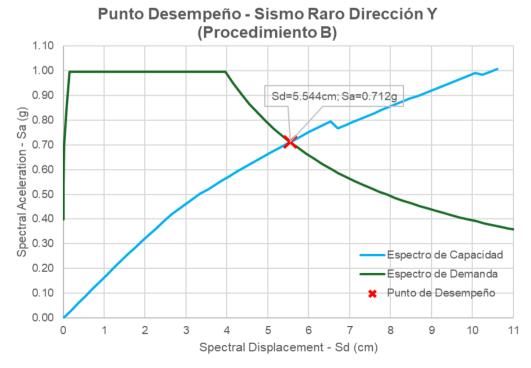
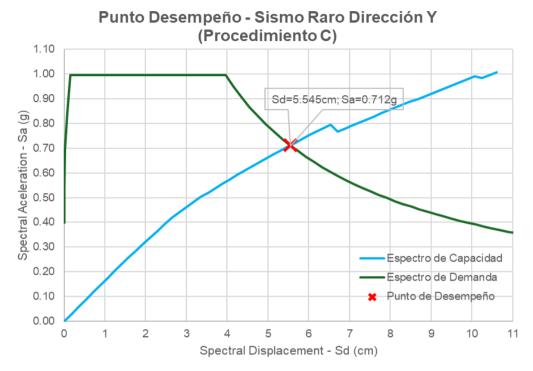



Figura D.9:

Punto de desempeño debido al Sismo Raro dirección Y – Procedimiento C

· Sismo Muy Raro

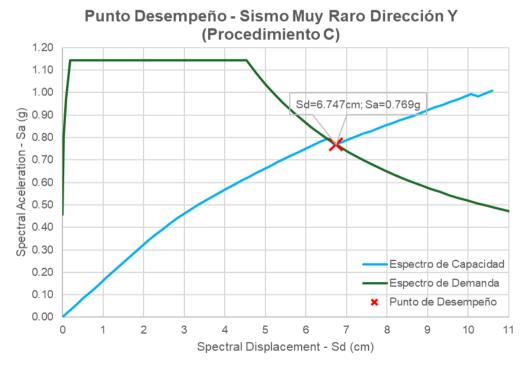

Figura D.10:
Punto de desempeño debido al Sismo Muy Raro dirección Y – Procedimiento A

Figura D.11:
Punto de desempeño debido al Sismo Muy Raro dirección Y – Procedimiento B

Figura D.12:
Punto de desempeño debido al Sismo Muy Raro dirección Y – Procedimiento C

Sismo Máximo

Figura D.13

Punto de desempeño debido al Sismo Máximo dirección Y – Procedimiento A

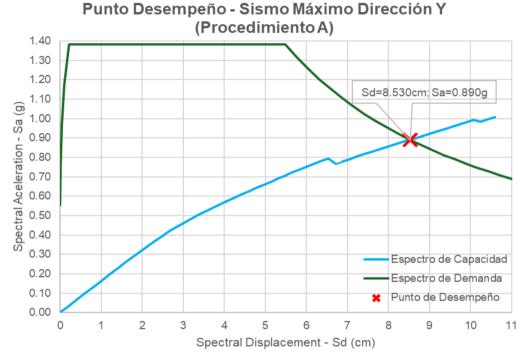


Figura D.14:
Punto de desempeño debido al Sismo Máximo dirección Y – Procedimiento B

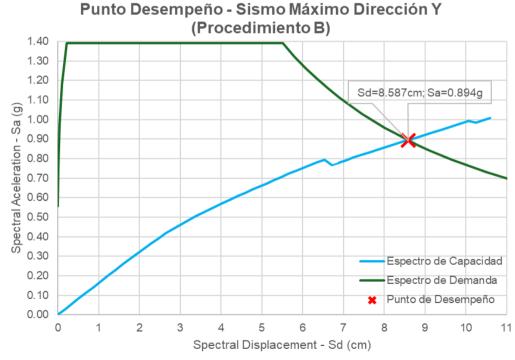



Figura D.15:
Punto de desempeño debido al Sismo Máximo dirección Y – Procedimiento C

Anexo E: Derivas de entrepiso del análisis estático no lineal dirección X

Tabla E.1:Derivas de entrepiso del Análisis Estático No Lineal dirección X – Sismo Frecuente

Nivel	h_i (cm)	D_{x-i} (cm)	Δ_{x-i} (cm)	Δ_{x-i}/h_i
Techo		7.000		
N9	260	6.206	0.794	0.0031
N8	260	5.372	0.834	0.0032
N7	260	4.497	0.875	0.0034
N6	260	3.583	0.914	0.0035
N5	260	2.659	0.924	0.0036
N4	260	1.772	0.887	0.0034
N3	260	0.979	0.793	0.0031
N2	260	0.362	0.617	0.0024
N1	260	0.042	0.320	0.0012
ST1	431	0.013	0.029	0.0001
ST2	280	0.000	0.013	0.0000
ST3	280	0.000	0.000	0.0000

Tabla E.2:Derivas de entrepiso del Análisis Estático No Lineal dirección X – Sismo Ocasional

Nivel	h_i (cm)	D_{x-i} (cm)	Δ_{x-i} (cm)	Δ_{x-i}/h_i
Techo		8.500		
N9	260	7.533	0.967	0.0037
N8	260	6.517	1.016	0.0039
N7	260	5.448	1.069	0.0041
N6	260	4.353	1.095	0.0042
N5	260	3.249	1.104	0.0042
N4	260	2.145	1.104	0.0042
N3	260	1.173	0.972	0.0037
N2	260	0.431	0.742	0.0029
N1	260	0.049	0.382	0.0015
ST1	431	0.015	0.034	0.0001
ST2	280	0.000	0.015	0.0001
ST3	280	0.000	0.000	0.0000

Tabla E.3:Derivas de entrepiso del Análisis Estático No Lineal dirección X – Sismo Raro

Nivel	h_i (cm)	D_{x-i} (cm)	Δ_{x-i} (cm)	Δ_{x-i}/h_i
Techo		17.000		
N9	260	14.933	2.067	0.0080
N8	260	12.792	2.141	0.0082
N7	260	10.589	2.203	0.0085
N6	260	8.349	2.240	0.0086
N5	260	6.140	2.209	0.0085
N4	260	4.055	2.085	0.0080
N3	260	2.217	1.838	0.0071
N2	260	0.795	1.422	0.0055
N1	260	0.074	0.721	0.0028
ST1	431	0.022	0.052	0.0001
ST2	280	0.000	0.022	0.0001
ST3	280	0.000	0.000	0.0000

Tabla E.4:Derivas de entrepiso del Análisis Estático No Lineal dirección X – Sismo Muy Raro

Nivel	h_i (cm)	D_{x-i} (cm)	Δ_{x-i} (cm)	Δ_{x-i}/h_i
Techo		20.500		_
N9	260	17.906	2.594	0.0100
N8	260	15.253	2.653	0.0102
N7	260	12.562	2.691	0.0104
N6	260	9.865	2.697	0.0104
N5	260	7.236	2.629	0.0101
N4	260	4.767	2.469	0.0095
N3	260	2.616	2.151	0.0083
N2	260	0.957	1.659	0.0064
N1	260	0.075	0.882	0.0034
ST1	431	0.022	0.053	0.0001
ST2	280	0.000	0.022	0.0001
ST3	280	0.000	0.000	0.0000

Tabla E.5:Derivas de entrepiso del Análisis Estático No Lineal dirección X – Sismo Máximo

Nivel	h_i (cm)	D_{x-i} (cm)	Δ_{x-i} (cm)	Δ_{x-i}/h_i
Techo		27.000		_
N9	260	23.606	3.394	0.0131
N8	260	20.148	3.458	0.0133
N7	260	16.653	3.495	0.0134
N6	260	13.159	3.494	0.0134
N5	260	9.748	3.411	0.0131
N4	260	6.527	3.221	0.0124
N3	260	3.688	2.839	0.0109
N2	260	1.438	2.250	0.0087
N1	260	0.089	1.349	0.0052
ST1	431	0.026	0.063	0.0001
ST2	280	0.000	0.026	0.0001
ST3	280	0.000	0.000	0.0000

Anexo F: Derivas de entrepiso del análisis estático no lineal dirección Y

Tabla F.1:Derivas de entrepiso del Análisis Estático No Lineal dirección Y – Sismo Frecuente

Nivel	h_i (cm)	D_{y-i} (cm)	Δ_{y-i} (cm)	Δ_{y-i}/h_i
Techo		3.250		_
P9	260	2.824	0.426	0.0016
P8	260	2.391	0.433	0.0017
P7	260	1.957	0.434	0.0017
P6	260	1.529	0.428	0.0016
P5	260	1.121	0.408	0.0016
P4	260	0.747	0.374	0.0014
P3	260	0.427	0.320	0.0012
P2	260	0.137	0.290	0.0011
P1	260	0.065	0.072	0.0003
ST1	431	0.021	0.044	0.0001
ST2	280	0.000	0.021	0.0001
ST3	280	0.000	0.000	0.0000

Tabla F.2:Derivas de entrepiso del Análisis Estático No Lineal dirección Y – Sismo Ocasional

Nivel	h_i (cm)	D_{y-i} (cm)	Δ_{y-i} (cm)	Δ_{y-i}/h_i
Techo		4.250		
P9	260	3.694	0.286	0.0011
P8	260	3.130	0.834	0.0022
P7	260	2.563	0.567	0.0022
P6	260	2.006	0.557	0.0021
P5	260	1.474	0.532	0.0020
P4	260	0.986	0.488	0.0019
P3	260	0.567	0.419	0.0016
P2	260	0.250	0.317	0.0012
P1	260	0.082	0.168	0.0006
ST1	431	0.027	0.055	0.0001
ST2	280	0.000	0.027	0.0001
ST3	280	0.000	0.000	0.0000

Tabla F.3:Derivas de entrepiso del Análisis Estático No Lineal dirección Y – Sismo Raro

Nivel	h_i (cm)	D_{y-i} (cm)	Δ_{y-i} (cm)	Δ_{y-i}/h_i
Techo		7.750		
P9	260	6.744	1.006	0.0039
P8	260	5.726	1.018	0.0039
P7	260	4.707	1.019	0.0039
P6	260	3.706	1.001	0.0039
P5	260	2.746	0.960	0.0037
P4	260	1.855	0.891	0.0034
P3	260	1.075	0.780	0.0030
P2	260	0.459	0.616	0.0024
P1	260	0.127	0.332	0.0013
ST1	431	0.041	0.086	0.0002
ST2	280	0.000	0.041	0.0001
ST3	280	0.000	0.000	0.0000

Tabla F.4:Derivas de entrepiso del Análisis Estático No Lineal dirección Y – Sismo Muy Raro

Nivel	h_i (cm)	D_{y-i} (cm)	Δ_{y-i} (cm)	Δ_{y-i}/h_i
Techo		9.250		
P9	260	8.051	1.199	0.0046
P8	260	6.840	1.211	0.0047
P7	260	5.627	1.213	0.0047
P6	260	4.434	1.193	0.0046
P5	260	3.293	1.141	0.0044
P4	260	2.232	1.061	0.0041
P3	260	1.297	0.935	0.0036
P2	260	0.556	0.741	0.0029
P1	260	0.144	0.412	0.0016
ST1	431	0.046	0.098	0.0004
ST2	280	0.000	0.046	0.0002
ST3	280	0.000	0.000	0.0000

Tabla F.5:Derivas de entrepiso del Análisis Estático No Lineal dirección Y – Sismo Máximo

Nivel	h_i (cm)	D_{y-i} (cm)	Δ_{y-i} (cm)	Δ_{y-i}/h_i
Techo		11.500		
P9	260	9.995	1.505	0.0058
P8	260	8.479	1.516	0.0058
P7	260	6.967	1.512	0.0058
P6	260	5.481	1.486	0.0057
P5	260	4.068	1.413	0.0054
P4	260	2.759	1.309	0.0050
P3	260	1.609	1.150	0.0044
P2	260	0.696	0.913	0.0035
P1	260	0.159	0.537	0.0021
ST1	431	0.050	0.109	0.0004
ST2	280	0.000	0.050	0.0002
ST3	280	0.000	0.000	0.0000

Anexo G: Evolución de rótulas plásticas

G.1. Análisis Estático No Lineal en dirección X:

• Sismo Frecuente (T_R=43 años)

Figura G.1: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =43 años en dirección X

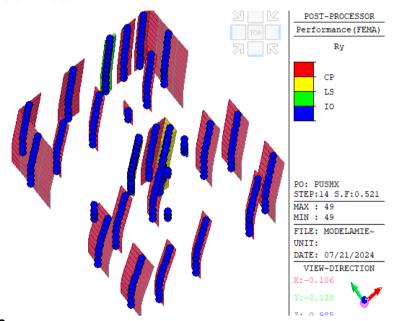
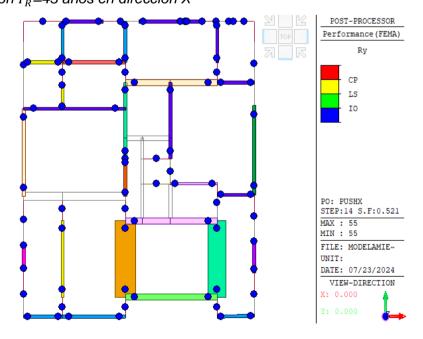



Figura G.2: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =43 años en dirección X

• Sismo Ocasional (T_R=72 años)

Figura G.3: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =72 años en dirección X

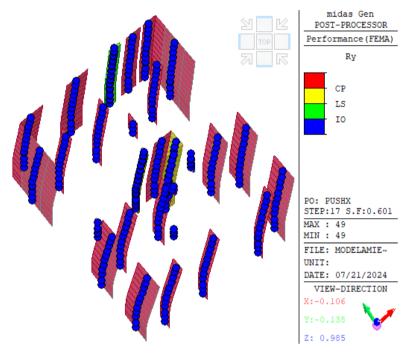
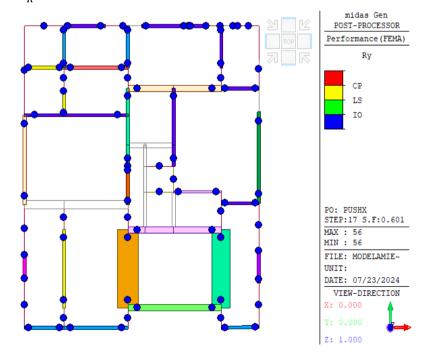



Figura G.4: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =72 años en dirección X

Sismo Raro (T_R=475 años)

Figura G.5: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =475 años en dirección X

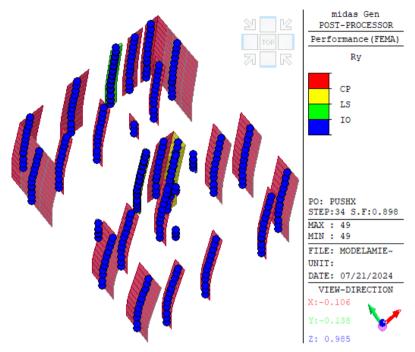
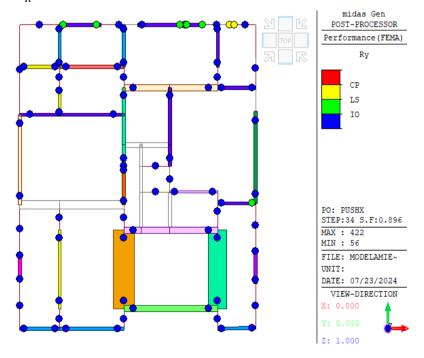



Figura G.6: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =475 años en dirección X

• Sismo Muy Raro (*T_R*=970 años)

Figura G.7: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =970 años en dirección X

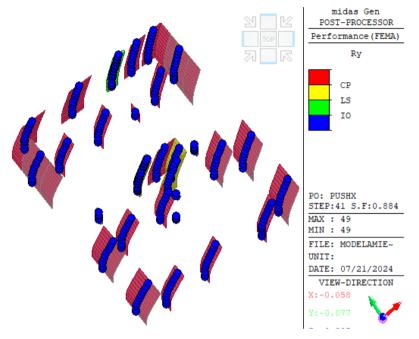
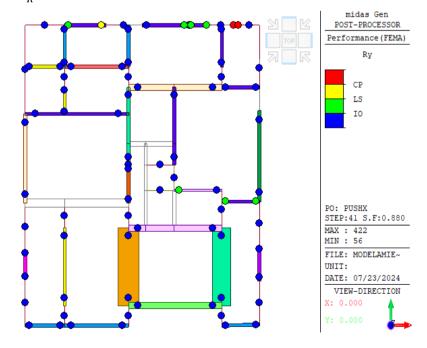



Figura G.8: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =970 años en dirección X

• Sismo Máximo (*T_R*=2475 años)

Figura G.9: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =2475 años en dirección X

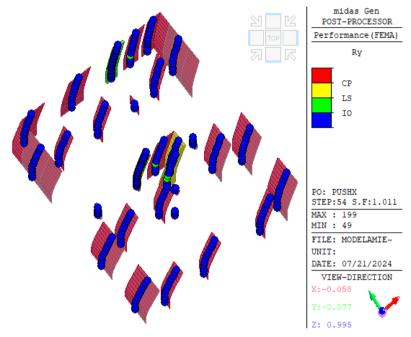
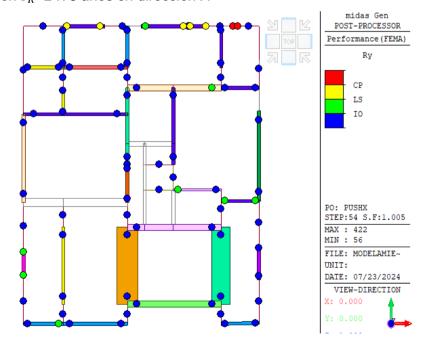



Figura G.10: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =2475 años en dirección X

G.2. Análisis Estático No Lineal en dirección Y:

Sismo Frecuente (T_R =43 años)

Figura G.11: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R=43 años en dirección Y

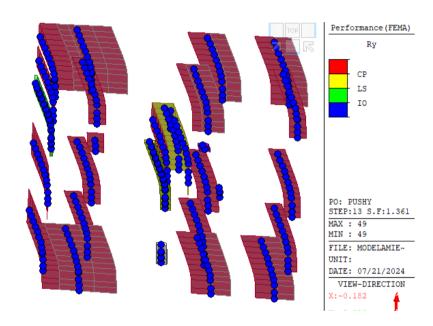
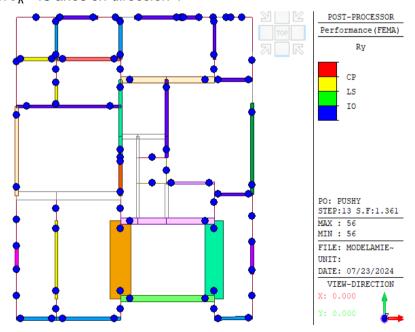



Figura G.12: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R=43 años en dirección Y

Sismo Ocasional (T_R =72 años)

Figura G.13: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R=72 años en dirección Y

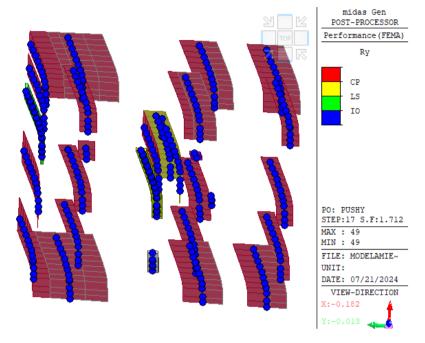
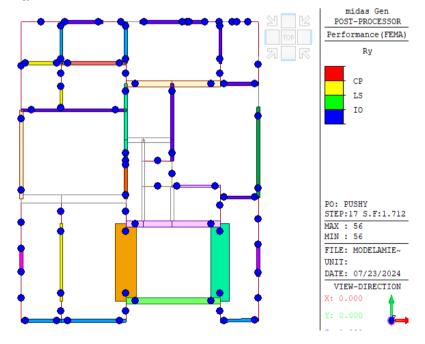



Figura G.14: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R=72 años en dirección Y

• Sismo Raro (T_R=475 años)

Figura G.15: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =475 años en dirección Y

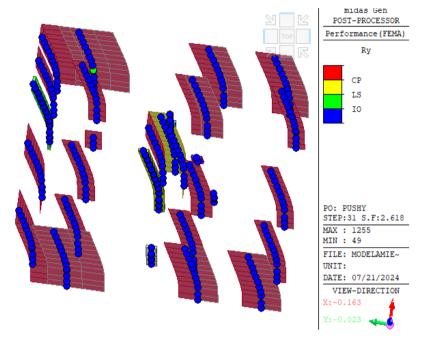
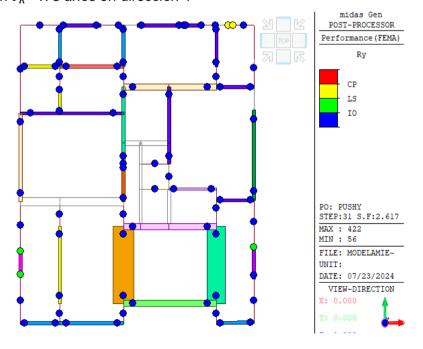



Figura G.16: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =475 años en dirección Y

• Sismo Muy Raro (T_R=970 años)

Figura G.17: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =970 años en dirección Y

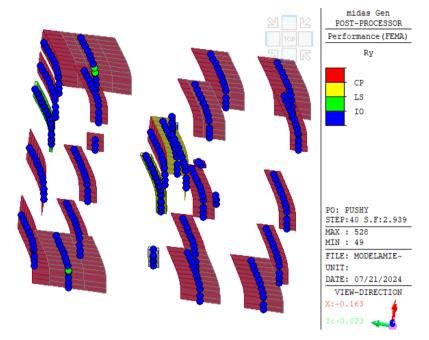
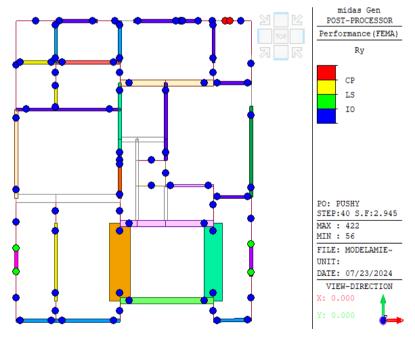



Figura G.18: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =970 años en dirección Y

• Sismo Máximo (T_R=2475 años)

Figura G.19: Desempeño de rótulas plásticas en muros y columnas durante un sismo con T_R =2475 años en dirección Y

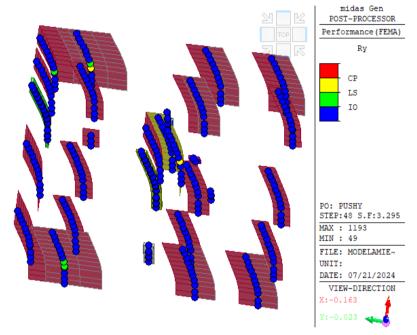
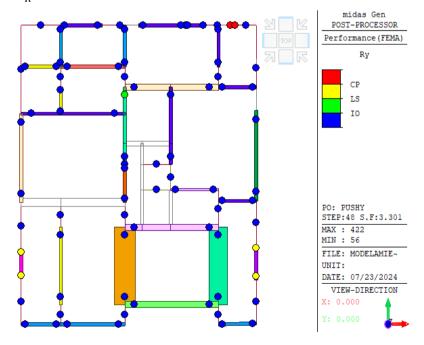
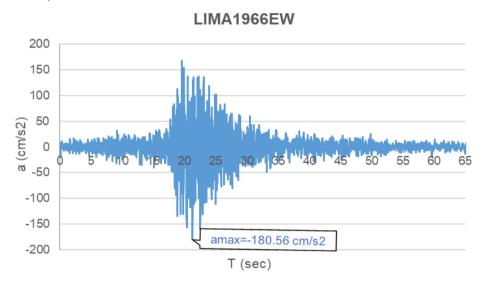



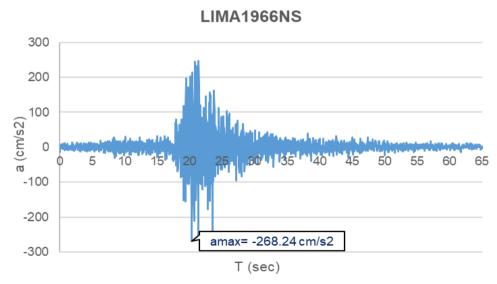
Figura G.20: Desempeño de rótulas plásticas en vigas de techo típico y muros durante un sismo con T_R =2475 años en dirección Y



Anexo H: Registros sísmicos

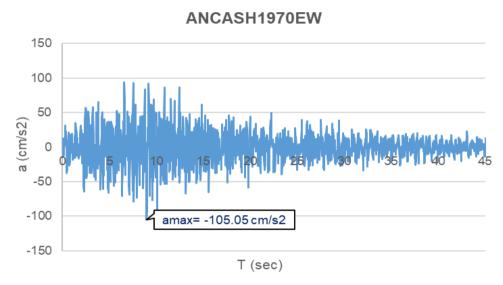
H.1. Registros de Aceleraciones del evento sísmico de Lima 1966

Figura H1:


Registro de aceleraciones del evento sísmico de Lima 1966 – Componente Horizontal. dirección EW

Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/)

Figura H2:


Registro de aceleraciones del evento sísmico de Lima 1966 – Componente Horizontal, dirección NS

Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/).

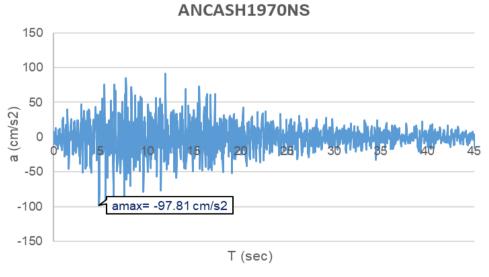
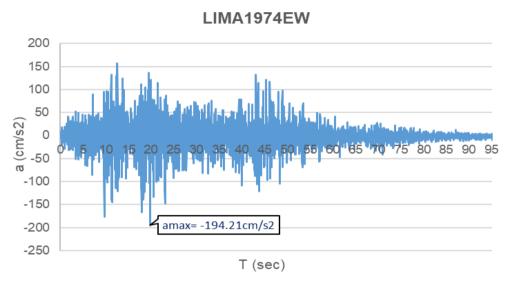

H.2. Registros de Aceleraciones del evento sísmico de Ancash 1970

Figura H.3:
Registro de aceleraciones del evento sísmico de Ancash 1970– Componente
Horizontal, dirección EW

Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/).


Figura H.4:
Registro de aceleraciones del evento sísmico de Ancash 1970– Componente Horizontal, dirección NS

Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/).

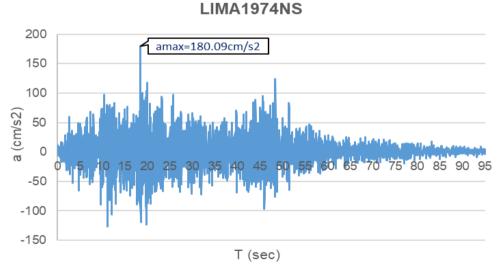
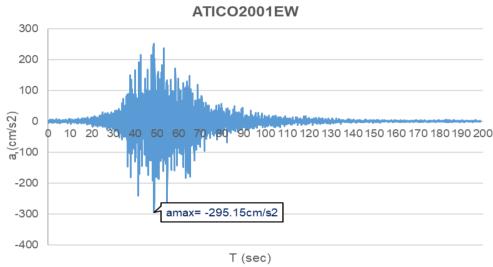

H.3. Registros de Aceleraciones del evento sísmico de Lima 1974

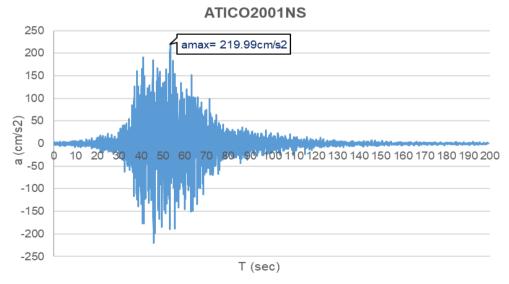
Figura H.5:
Registro de aceleraciones del evento sísmico de Lima 1974 – Componente Horizontal, dirección EW

Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/)


Figura H.6:
Registro de aceleraciones del evento sísmico de Lima 1974 – Componente Horizontal, dirección NS

Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/).

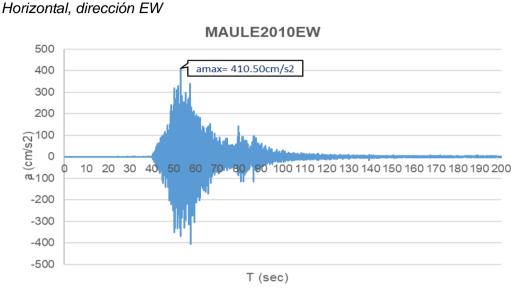
H.4. Registros de Aceleraciones del evento sísmico de Atico 2001


Figura H.7:
Registro de aceleraciones del evento sísmico de Atico 2001 – Componente Horizontal, dirección EW

Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/)

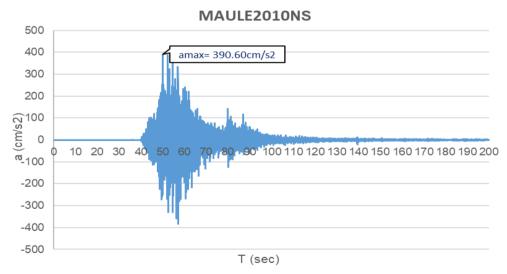
Figura H.8:

Registro de aceleraciones del evento sísmico de Atico 2001 – Componente Horizontal, dirección NS



Nota. Elaborado a partir de "Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI", por Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (https://www.cismid.uni.edu.pe/ceois/red/)

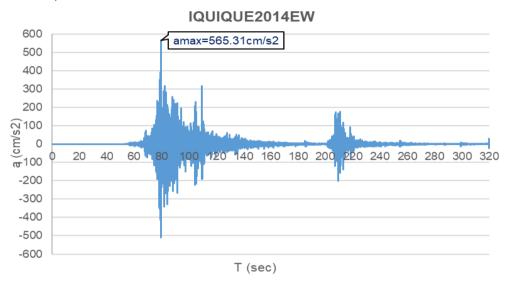
H.5. Registros de Aceleraciones del evento sísmico de Maule 2010


Figura H.9:

Registro de aceleraciones del evento sísmico de Maule 2010 – Componente

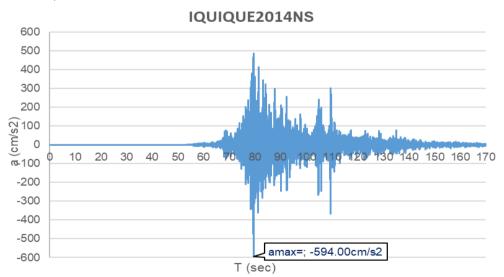
Nota. Elaborado a partir de "Red de Cobertura Nacional de Acelerógrafos Departamento de Ingeniería Civil Universidad de Chile. Obtenido de Red de Cobertura Nacional de Acelerógrafos", por Departamento de Ingeniería Civil - Universidad de Chile, 2010 (https://www.cismid.uni.edu.pe/ceois/red/)

Figura H.10:
Registro de aceleraciones del evento sísmico de Maule 2010 – Componente Horizontal, dirección NS



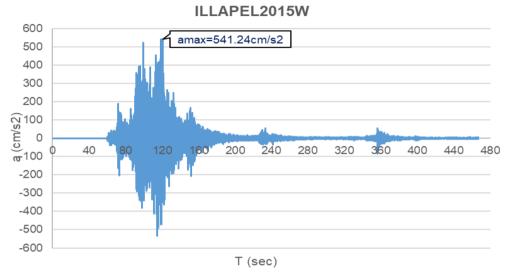
Nota. Elaborado a partir de "Red de Cobertura Nacional de Acelerógrafos Departamento de Ingeniería Civil Universidad de Chile. Obtenido de Red de Cobertura Nacional de Acelerógrafos", por Departamento de Ingeniería Civil - Universidad de Chile, 2010 (https://www.cismid.uni.edu.pe/ceois/red/)

H.6. Registros de Aceleraciones del evento sísmico de Iquique 2014


Figura H.11:

Registro de aceleraciones del evento sísmico de Iquique 2014 – Componente Horizontal, dirección EW

Nota. Elaborado a partir de "Centro Sismológico Universidad de Chile", por Facultad de Ciencias Físicas y Matemáticas - Universidad de Chile, 2014 (https://evtdb.csn.uchile.cl/)


Figura H.12:
Registro de aceleraciones del evento sísmico de Iquique 2014 – Componente Horizontal, dirección NS

Nota. Elaborado a partir de "Centro Sismológico Universidad de Chile", por Facultad de Ciencias Físicas y Matemáticas - Universidad de Chile, 2014 (https://evtdb.csn.uchile.cl/)

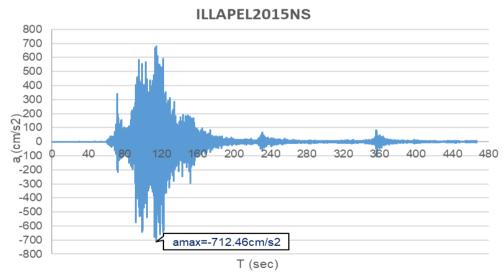

H.7. Registros de Aceleraciones del evento sísmico de Illapel 2015

Figura H.13:
Registro de aceleraciones del evento sísmico de Illapel 2015 – Componente Horizontal, dirección EW

Nota. Elaborado a partir de "Centro Sismológico Universidad de Chile", por Facultad de Ciencias Físicas y Matemáticas - Universidad de Chile, 2015 (https://evtdb.csn.uchile.cl/)

Figura H.14:
Registro de aceleraciones del evento sísmico de Illapel 2015 – Componente Horizontal, dirección NS

Nota. Elaborado a partir de "Centro Sismológico Universidad de Chile", por Facultad de Ciencias Físicas y Matemáticas - Universidad de Chile, 2015 (https://evtdb.csn.uchile.cl/)

Anexo I: Escalamiento de registros sísmicos

Tabla I.1:Espectros de pseudo-aceleraciones escalados a un PGA=0.1g

	Sa(g) - REGISTROS ESCALADOS PGA=0.1g														
T (sec)	LIMA	1966	_	ASH 70	LIMA	1974		ICO 101		ULE 110		QUE 14	ILLA 20	PEL 15	Espectro Elástico PGA=0.1g
	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	
0.00	0.09	0.12	0.11	0.12	0.11	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.10
0.04	0.10	0.13	0.11	0.12	0.11	0.13	0.11	0.13	0.14	0.13	0.14	0.12	0.12	0.13	0.18
0.06	0.16	0.19	0.16	0.18	0.17	0.16	0.17	0.16	0.19	0.18	0.19	0.18	0.20	0.15	0.21
0.08	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
0.12	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
0.16	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.27	0.26	0.25	0.25	0.25
0.20	0.25	0.25	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25
0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.27	0.25	0.25	0.25
0.28	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
0.32	0.25	0.25	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
0.36	0.25	0.26	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
0.40	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0.25	0.25
0.44	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
0.48	0.21	0.22	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
0.52	0.19	0.20	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.20	0.20	0.19	0.19	0.19
0.56	0.17	0.19	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.17	0.18	0.18	0.18	0.18
0.60	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17

0.64	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16
0.68	0.15	0.15	0.15	0.15	0.15	0.15	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
0.72	0.14	0.14	0.14	0.14	0.14	0.14	0.15	0.14	0.14	0.14	0.14	0.15	0.14	0.14	0.14
0.76	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.14	0.14	0.13	0.14	0.13
0.80	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.12	0.13
0.84	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
0.88	0.11	0.11	0.12	0.11	0.12	0.11	0.12	0.11	0.12	0.11	0.12	0.12	0.11	0.12	0.11
0.92	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.12	0.11	0.11	0.11	0.11	0.11	0.11
0.96	0.11	0.11	0.10	0.11	0.10	0.10	0.11	0.10	0.11	0.10	0.10	0.11	0.11	0.11	0.10
1.00	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.11	0.10	0.10	0.10
1.04	0.10	0.10	0.10	0.10	0.10	0.10	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
1.08	0.09	0.09	0.09	0.10	0.09	0.09	0.10	0.09	0.09	0.10	0.09	0.10	0.10	0.10	0.09
1.12	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
1.16	0.08	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.08	0.09	0.09
1.20	0.08	0.08	0.09	0.08	0.08	0.09	0.08	0.09	0.08	0.09	0.08	0.09	0.08	0.08	0.08
1.24	0.08	0.08	0.09	80.0	0.08	0.09	0.08	0.09	0.08	0.08	0.08	80.0	80.0	0.08	0.08
1.28	80.0	0.08	0.09	80.0	0.08	0.08	0.08	0.08	0.08	0.08	0.08	80.0	80.0	0.08	0.08
1.32	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
1.36	80.0	0.07	80.0	0.07	0.07	0.07	0.07	0.07	0.08	0.07	0.07	80.0	0.07	0.07	0.07
1.40	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
1.42	0.07	0.07	0.07	0.08	0.07	0.07	0.07	0.07	0.08	0.08	0.07	0.07	0.08	0.07	0.07
1.44	0.07	0.07	0.08	0.07	0.08	0.08	0.07	0.08	0.08	0.08	0.07	0.07	0.08	0.07	0.07
1.48	0.06	0.08	0.09	0.07	0.09	0.09	0.07	0.09	0.10	0.08	0.06	0.06	0.08	0.07	0.07
1.52	0.06	0.09	0.11	0.06	0.10	0.11	0.06	0.11	0.10	0.08	0.05	0.06	0.09	0.06	0.07
1.56	0.06	0.09	0.10	0.06	0.11	0.12	0.06	0.12	0.10	0.08	0.04	0.05	0.09	0.06	0.06
1.60	0.06	0.10	0.10	0.06	0.11	0.13	0.07	0.13	0.11	0.08	0.04	0.04	0.09	0.05	0.06

1.64	0.05	0.11	0.09	0.05	0.10	0.12	0.07	0.12	0.10	0.07	0.03	0.04	0.09	0.05	0.06
1.68	0.05	0.10	0.10	0.05	0.10	0.12	0.07	0.12	0.09	0.06	0.03	0.04	0.09	0.05	0.06
1.72	0.05	0.10	0.11	0.05	0.09	0.11	0.07	0.11	0.08	0.06	0.03	0.03	0.08	0.05	0.06
1.76	0.04	0.09	0.12	0.05	0.08	0.10	0.07	0.10	0.08	0.06	0.04	0.03	0.07	0.04	0.06
1.80	0.04	0.09	0.13	0.05	0.08	0.09	0.07	0.09	0.08	0.05	0.04	0.03	0.07	0.04	0.06
1.84	0.04	0.08	0.13	0.05	0.07	0.07	0.07	0.07	0.08	0.05	0.04	0.03	0.06	0.04	0.05
1.88	0.04	0.07	0.13	0.05	0.06	0.07	0.08	0.07	0.08	0.05	0.04	0.03	0.06	0.04	0.05
1.92	0.03	0.06	0.12	0.06	0.06	0.07	0.08	0.07	0.09	0.05	0.04	0.03	0.05	0.04	0.05
1.96	0.03	0.05	0.11	0.06	0.05	0.08	0.08	0.08	0.09	0.05	0.04	0.03	0.05	0.03	0.05
2.00	0.03	0.05	0.10	0.06	0.05	0.07	0.07	0.07	0.09	0.06	0.04	0.02	0.04	0.03	0.05

Tabla I.2:Espectros de pseudo-aceleraciones escalados a un PGA=0.2g

_	Sa(g) - REGISTROS ESCALADOS PGA=0.2g														Espectro
T (sec)	LIMA	1966	ANCAS	SH1970	LIMA	1974	ATIC	D2001	MAUL	E2010	IQUIQU	JE2014	ILLAPI	EL2015	Elástico
(300)	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	PGA=0.2g
0.00	0.18	0.22	0.23	0.23	0.23	0.23	0.28	0.27	0.28	0.23	0.28	0.27	0.21	0.27	0.20
0.04	0.20	0.24	0.25	0.24	0.24	0.23	0.24	0.21	0.33	0.24	0.27	0.31	0.26	0.25	0.35
0.08	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
0.12	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
0.16	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
0.20	0.50	0.50	0.50	0.50	0.50	0.51	0.50	0.50	0.50	0.51	0.50	0.50	0.50	0.50	0.50
0.24	0.50	0.50	0.50	0.50	0.50	0.54	0.50	0.50	0.52	0.50	0.50	0.50	0.50	0.50	0.50
0.28	0.50	0.54	0.50	0.51	0.50	0.50	0.50	0.50	0.49	0.51	0.50	0.50	0.50	0.50	0.50
0.32	0.53	0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.50
0.36	0.50	0.50	0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
0.40	0.50	0.51	0.50	0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
0.44	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.45	0.47	0.45
0.48	0.42	0.41	0.42	0.43	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
0.52	0.38	0.39	0.39	0.39	0.41	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.38
0.56	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
0.60	0.34	0.34	0.34	0.34	0.36	0.35	0.34	0.34	0.36	0.34	0.34	0.33	0.34	0.34	0.33
0.64	0.31	0.31	0.31	0.32	0.32	0.31	0.32	0.31	0.32	0.31	0.32	0.32	0.31	0.33	0.31
0.68	0.30	0.30	0.30	0.30	0.29	0.30	0.30	0.31	0.32	0.31	0.30	0.30	0.30	0.30	0.29
0.72	0.30	0.28	0.28	0.28	0.28	0.29	0.28	0.28	0.28	0.28	0.29	0.28	0.28	0.28	0.28
0.76	0.27	0.26	0.27	0.27	0.28	0.26	0.28	0.27	0.26	0.27	0.27	0.26	0.26	0.27	0.26

0.80	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.26	0.26	0.25	0.25	0.25	0.26	0.25
0.84	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.25	0.24	0.24	0.24	0.24	0.24
0.88	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.24	0.23	0.23	0.24	0.23
0.92	0.22	0.23	0.23	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.23	0.22	0.22	0.23	0.22
0.96	0.21	0.21	0.22	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.22	0.22	0.21	0.23	0.21
1.00	0.20	0.20	0.21	0.20	0.21	0.21	0.20	0.21	0.20	0.21	0.21	0.20	0.20	0.21	0.20
1.04	0.19	0.19	0.21	0.19	0.20	0.20	0.20	0.20	0.20	0.19	0.19	0.19	0.19	0.19	0.19
1.08	0.19	0.19	0.19	0.19	0.19	0.19	0.18	0.19	0.19	0.19	0.20	0.19	0.19	0.19	0.19
1.12	0.18	0.18	0.18	0.17	0.18	0.18	0.18	0.19	0.19	0.18	0.19	0.18	0.18	0.19	0.18
1.16	0.18	0.17	0.18	0.18	0.18	0.17	0.17	0.19	0.19	0.18	0.18	0.17	0.17	0.18	0.17
1.20	0.17	0.17	0.17	0.17	0.17	0.17	0.16	0.17	0.17	0.17	0.17	0.16	0.17	0.17	0.17
1.24	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.17	0.16	0.17	0.16	0.17	0.16
1.28	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.17	0.16	0.17	0.15	0.17	0.16
1.32	0.15	0.15	0.15	0.15	0.15	0.16	0.15	0.15	0.15	0.16	0.15	0.16	0.15	0.17	0.15
1.36	0.15	0.15	0.15	0.15	0.15	0.16	0.15	0.15	0.14	0.15	0.15	0.15	0.14	0.15	0.15
1.40	0.14	0.14	0.15	0.14	0.14	0.15	0.15	0.16	0.14	0.15	0.14	0.14	0.12	0.14	0.14
1.42	0.14	0.14	0.15	0.14	0.14	0.14	0.14	0.15	0.15	0.15	0.14	0.14	0.11	0.14	0.14
1.44	0.16	0.13	0.15	0.14	0.14	0.14	0.14	0.16	0.16	0.17	0.14	0.14	0.10	0.14	0.14
1.48	0.18	0.13	0.15	0.14	0.13	0.13	0.17	0.16	0.19	0.19	0.16	0.14	0.09	0.15	0.14
1.52	0.19	0.12	0.15	0.14	0.13	0.12	0.19	0.16	0.21	0.19	0.19	0.13	80.0	0.15	0.13
1.56	0.19	0.12	0.16	0.16	0.13	0.12	0.21	0.17	0.22	0.18	0.21	0.11	0.07	0.14	0.13
1.60	0.19	0.11	0.16	0.17	0.13	0.12	0.23	0.17	0.21	0.17	0.22	0.11	0.07	0.14	0.13
1.64	0.20	0.10	0.15	0.19	0.12	0.11	0.25	0.16	0.20	0.15	0.21	0.10	0.07	0.13	0.12
1.68	0.21	0.09	0.15	0.19	0.11	0.11	0.26	0.15	0.17	0.13	0.19	0.09	0.09	0.12	0.12
1.72	0.20	0.09	0.17	0.18	0.10	0.10	0.24	0.14	0.15	0.12	0.16	0.08	0.10	0.10	0.12
1.76	0.17	0.09	0.18	0.17	0.09	0.10	0.22	0.12	0.16	0.12	0.13	0.08	0.11	0.10	0.11

1.80	0.16	0.09	0.17	0.15	0.08	0.09	0.20	0.13	0.16	0.11	0.12	0.08	0.11	0.09	0.11
1.84	0.15	0.09	0.16	0.14	0.08	0.09	0.20	0.14	0.17	0.11	0.12	0.08	0.11	0.08	0.11
1.88	0.14	0.09	0.15	0.12	0.08	0.08	0.20	0.14	0.16	0.11	0.12	0.08	0.10	0.07	0.11
1.92	0.14	0.09	0.13	0.11	0.07	0.08	0.20	0.12	0.16	0.10	0.11	0.08	0.09	0.07	0.10
1.96	0.14	0.09	0.12	0.10	0.07	0.08	0.19	0.12	0.16	0.10	0.10	0.08	0.09	0.06	0.10
2.00	0.13	0.08	0.11	0.09	0.06	0.08	0.19	0.12	0.18	0.09	0.10	0.07	0.09	0.06	0.10

Tabla I.3:Espectros de pseudo-aceleraciones escalados a un PGA=0.3g

_	Sa(g) - REGISTROS ESCALADOS PGA=0.3g														Espectro
T (sec)	LIMA	1966	ANCAS	SH1970	LIMA	1974	ATIC	D2001	MAUL	E2010	IQUIQU	JE2014	ILLAPI	EL2015	Elástico
(300)	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	PGA=0.3g
0.00	0.34	0.37	0.34	0.34	0.34	0.31	0.30	0.32	0.35	0.34	0.32	0.31	0.33	0.32	0.30
0.04	0.37	0.42	0.39	0.37	0.41	0.33	0.31	0.36	0.39	0.42	0.42	0.35	0.40	0.45	0.53
0.08	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.80	0.75
0.12	0.75	0.75	0.75	0.75	0.75	0.76	0.75	0.76	0.75	0.76	0.75	0.75	0.75	0.76	0.75
0.16	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.75	0.75	0.75	0.75	0.75
0.20	0.75	0.75	0.75	0.75	0.75	0.76	0.75	0.75	0.75	0.76	0.75	0.75	0.75	0.75	0.75
0.24	0.76	0.75	0.76	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.75	0.76	0.76	0.75	0.75
0.28	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
0.32	0.75	0.75	0.75	0.75	0.76	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.75
0.36	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.75
0.40	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.76	0.75
0.44	0.68	0.68	0.69	0.69	0.69	0.69	0.68	0.69	0.70	0.69	0.68	0.68	0.69	0.69	0.68
0.48	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.62	0.63	0.63	0.63	0.63	0.63	0.63
0.52	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
0.56	0.54	0.54	0.54	0.54	0.54	0.54	0.55	0.54	0.54	0.54	0.53	0.54	0.54	0.53	0.54
0.60	0.50	0.51	0.50	0.50	0.50	0.51	0.55	0.51	0.51	0.50	0.50	0.50	0.50	0.51	0.50
0.64	0.48	0.47	0.47	0.47	0.47	0.46	0.48	0.47	0.47	0.47	0.47	0.47	0.48	0.49	0.47
0.68	0.45	0.44	0.44	0.44	0.44	0.45	0.44	0.44	0.45	0.44	0.44	0.47	0.45	0.44	0.44
0.72	0.43	0.42	0.43	0.42	0.43	0.42	0.42	0.42	0.42	0.42	0.43	0.42	0.42	0.43	0.42
0.76	0.41	0.40	0.39	0.40	0.40	0.40	0.40	0.40	0.39	0.40	0.40	0.39	0.40	0.40	0.39

0.80	0.39	0.39	0.38	0.38	0.38	0.39	0.37	0.41	0.38	0.38	0.38	0.38	0.37	0.38	0.38
0.84	0.37	0.37	0.36	0.36	0.36	0.36	0.37	0.37	0.37	0.36	0.36	0.36	0.36	0.36	0.36
0.88	0.35	0.34	0.34	0.35	0.34	0.35	0.34	0.35	0.34	0.35	0.35	0.34	0.34	0.36	0.34
0.92	0.33	0.35	0.33	0.33	0.33	0.33	0.35	0.33	0.33	0.32	0.33	0.33	0.33	0.33	0.33
0.96	0.31	0.33	0.31	0.31	0.31	0.34	0.34	0.32	0.32	0.32	0.32	0.31	0.31	0.33	0.31
1.00	0.30	0.30	0.30	0.30	0.30	0.32	0.32	0.30	0.30	0.30	0.32	0.31	0.30	0.31	0.30
1.04	0.29	0.31	0.29	0.29	0.30	0.29	0.29	0.30	0.31	0.29	0.29	0.29	0.29	0.30	0.29
1.08	0.28	0.28	0.28	0.28	0.28	0.28	0.29	0.29	0.28	0.28	0.28	0.28	0.29	0.30	0.28
1.12	0.27	0.27	0.27	0.27	0.27	0.28	0.26	0.27	0.27	0.27	0.27	0.27	0.27	0.29	0.27
1.16	0.26	0.26	0.26	0.26	0.27	0.27	0.27	0.26	0.27	0.26	0.26	0.27	0.28	0.26	0.26
1.20	0.25	0.26	0.25	0.25	0.28	0.25	0.24	0.25	0.26	0.25	0.25	0.25	0.26	0.26	0.25
1.24	0.24	0.24	0.25	0.24	0.25	0.24	0.25	0.25	0.24	0.24	0.24	0.25	0.24	0.24	0.24
1.28	0.26	0.23	0.24	0.24	0.23	0.25	0.26	0.26	0.26	0.24	0.24	0.23	0.24	0.25	0.23
1.32	0.29	0.24	0.24	0.28	0.21	0.28	0.31	0.28	0.26	0.25	0.27	0.24	0.26	0.25	0.23
1.36	0.31	0.25	0.24	0.29	0.19	0.32	0.34	0.29	0.27	0.28	0.31	0.22	0.28	0.26	0.22
1.40	0.32	0.25	0.26	0.27	0.19	0.34	0.39	0.32	0.30	0.27	0.36	0.21	0.28	0.28	0.21
1.42	0.33	0.24	0.26	0.25	0.19	0.33	0.39	0.34	0.33	0.26	0.37	0.21	0.27	0.29	0.21
1.44	0.33	0.24	0.27	0.23	0.18	0.32	0.39	0.35	0.36	0.25	0.39	0.20	0.28	0.29	0.21
1.48	0.32	0.22	0.28	0.20	0.17	0.32	0.36	0.34	0.40	0.26	0.41	0.20	0.28	0.29	0.20
1.52	0.29	0.21	0.29	0.20	0.18	0.33	0.32	0.34	0.42	0.27	0.40	0.18	0.29	0.28	0.20
1.56	0.26	0.19	0.33	0.20	0.19	0.31	0.29	0.33	0.40	0.25	0.38	0.16	0.29	0.26	0.19
1.60	0.22	0.18	0.35	0.22	0.19	0.28	0.28	0.31	0.38	0.24	0.35	0.15	0.29	0.23	0.19
1.64	0.22	0.17	0.35	0.24	0.18	0.24	0.28	0.31	0.36	0.22	0.31	0.14	0.28	0.20	0.18
1.68	0.20	0.16	0.34	0.24	0.19	0.21	0.28	0.29	0.34	0.20	0.27	0.15	0.27	0.17	0.18
1.72	0.19	0.14	0.32	0.24	0.21	0.22	0.26	0.27	0.34	0.20	0.22	0.14	0.25	0.14	0.17
1.76	0.18	0.12	0.28	0.25	0.21	0.22	0.22	0.26	0.32	0.21	0.20	0.14	0.23	0.13	0.17

1.80	0.17	0.12	0.24	0.24	0.21	0.20	0.18	0.26	0.29	0.20	0.18	0.12	0.22	0.12	0.17
1.84	0.16	0.11	0.21	0.23	0.19	0.19	0.15	0.26	0.28	0.18	0.16	0.11	0.21	0.11	0.16
1.88	0.16	0.11	0.19	0.20	0.17	0.19	0.13	0.28	0.26	0.17	0.15	0.11	0.20	0.11	0.16
1.92	0.16	0.11	0.17	0.18	0.16	0.19	0.13	0.30	0.27	0.17	0.14	0.11	0.19	0.11	0.16
1.96	0.15	0.11	0.16	0.17	0.15	0.19	0.13	0.30	0.29	0.18	0.14	0.11	0.17	0.11	0.15
2.00	0.15	0.11	0.14	0.15	0.14	0.18	0.13	0.27	0.29	0.18	0.13	0.10	0.15	0.11	0.15

Tabla I.4:Espectros de pseudo-aceleraciones escalados a un PGA=0.4g

_	Sa(g) - REGISTROS ESCALADOS PGA=0.4g														Espectro
T (sec)	LIMA	1966	ANCAS	SH1970	LIMA	1974	ATIC	D2001	MAUL	E2010	IQUIQU	JE2014	ILLAPI	EL2015	Elástico
(360)	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	PGA=0.4g
0.00	0.44	0.44	0.42	0.44	0.46	0.42	0.41	0.57	0.41	0.57	0.40	0.43	0.41	0.46	0.40
0.04	0.51	0.56	0.48	0.46	0.55	0.45	0.50	0.57	0.50	0.58	0.54	0.55	0.50	0.60	0.70
0.08	1.00	1.00	1.00	1.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.00
0.12	1.01	1.00	1.01	1.00	1.00	1.07	1.01	1.01	1.01	1.01	1.01	1.00	1.01	1.00	1.00
0.16	1.00	1.01	1.01	1.00	1.01	1.01	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
0.20	1.01	1.01	1.01	1.01	1.01	1.04	1.00	1.00	1.00	1.01	1.00	1.00	1.00	1.01	1.00
0.24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.00	1.01	1.00	1.00	1.00	1.00	1.00
0.28	1.00	1.01	1.01	1.01	1.00	1.01	1.00	1.01	1.00	1.01	1.00	1.01	1.00	1.01	1.00
0.32	1.01	1.00	1.01	1.01	1.00	1.01	1.01	1.00	1.01	1.00	1.00	1.07	1.01	1.01	1.00
0.36	1.00	1.00	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.01	1.05	1.01	1.01	1.00
0.40	1.00	1.01	1.01	1.01	1.00	1.01	1.01	1.01	1.01	1.01	1.00	1.01	1.01	1.00	1.00
0.44	0.92	0.91	0.92	0.92	0.91	0.91	0.91	0.92	0.91	0.92	0.92	0.93	0.91	0.91	0.91
0.48	0.84	0.84	0.84	0.83	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.82	0.84	0.83	0.83
0.52	0.78	0.78	0.77	0.78	0.77	0.77	0.78	0.78	0.78	0.78	0.77	0.77	0.78	0.77	0.77
0.56	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.74	0.71
0.60	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.68	0.67	0.69	0.67	0.67	0.67
0.64	0.63	0.63	0.63	0.63	0.67	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
0.68	0.61	0.60	0.63	0.59	0.60	0.60	0.61	0.60	0.61	0.60	0.60	0.59	0.61	0.59	0.59
0.72	0.56	0.56	0.56	0.56	0.58	0.56	0.56	0.56	0.56	0.56	0.57	0.56	0.56	0.57	0.56
0.76	0.55	0.52	0.54	0.54	0.54	0.52	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53

0.84 0.48 0.50 0.48 0.48 0.48 0.49 0.47 0.49 0.47 0.49 0.47 0.51 0.49 0.48 0.48 0.88 0.46 0.44 0.43 0.33 0.34 0.	0.80	0.50	0.51	0.50	0.50	0.51	0.50	0.52	0.51	0.52	0.51	0.51	0.51	0.52	0.51	0.50
0.92 0.44 0.44 0.44 0.46 0.48 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.43 0.42 0.43 0.42 0.42 0.44 0.41 0.42 0.41 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.42 0.43 0.42 0.43 0.42 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.30 0.33 0.33 <th< td=""><td>0.84</td><td>0.48</td><td>0.50</td><td>0.48</td><td>0.48</td><td>0.48</td><td>0.48</td><td>0.49</td><td>0.47</td><td>0.49</td><td>0.49</td><td>0.47</td><td>0.51</td><td>0.49</td><td>0.48</td><td>0.48</td></th<>	0.84	0.48	0.50	0.48	0.48	0.48	0.48	0.49	0.47	0.49	0.49	0.47	0.51	0.49	0.48	0.48
0.96 0.42 0.43 0.42 0.42 0.44 0.41 0.42 0.41 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.43 0.42 0.40 0.30 0.33 0.33 0.33 0.33 0.33 0.33 <th< td=""><td>0.88</td><td>0.46</td><td>0.46</td><td>0.46</td><td>0.46</td><td>0.46</td><td>0.46</td><td>0.46</td><td>0.46</td><td>0.46</td><td>0.47</td><td>0.45</td><td>0.48</td><td>0.46</td><td>0.47</td><td>0.45</td></th<>	0.88	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.47	0.45	0.48	0.46	0.47	0.45
1.00 0.42 0.40 0.41 0.40 0.40 0.41 0.40 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.37 0.39 0.37 0.36 0.36 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35 0.34 0.35 0.35 0.34 0.34 0.36 0.36 0.35 0.35 0.34 0.33 0.34 0.34 0.36 0.33 0.34 0.33 0.34 0.33 0.34 <th< td=""><td>0.92</td><td>0.44</td><td>0.44</td><td>0.44</td><td>0.46</td><td>0.48</td><td>0.45</td><td>0.44</td><td>0.44</td><td>0.44</td><td>0.44</td><td>0.44</td><td>0.44</td><td>0.44</td><td>0.43</td><td>0.43</td></th<>	0.92	0.44	0.44	0.44	0.46	0.48	0.45	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.43	0.43
1.04 0.38 0.40 0.39 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.37 0.39 0.37 0.39 0.36 0.37 0.36 0.35 0.35 0.34 0.34 0.36 0.36 0.36 0.35 0.35 0.34 0.34 0.36 0.36 0.36 0.35 0.34 0.34 0.34 0.36 0.34 0.35 0.34 0.34 0.33 0.34 0.33 0.34 0.34 0.33 0.32 0.32 0.32 0.34 <td< td=""><td>0.96</td><td>0.42</td><td>0.43</td><td>0.42</td><td>0.42</td><td>0.44</td><td>0.41</td><td>0.42</td><td>0.41</td><td>0.42</td><td>0.42</td><td>0.43</td><td>0.42</td><td>0.42</td><td>0.43</td><td>0.42</td></td<>	0.96	0.42	0.43	0.42	0.42	0.44	0.41	0.42	0.41	0.42	0.42	0.43	0.42	0.42	0.43	0.42
1.08 0.38 0.40 0.37 0.38 0.36 0.37 0.37 0.39 0.37 0.39 0.38 0.39 0.37 0.39 0.37 0.39 0.38 0.39 0.37 0.39 0.37 1.12 0.36 0.39 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.36 0.37 0.36 1.16 0.35 0.35 0.35 0.35 0.34 0.35 0.35 0.34 0.34 0.36 0.36 0.36 0.35 0.35 0.34 0.34 1.20 0.34 0.35 0.33 0.32 0.32 0.32 0.32 0.34 0.36 0.34 0.35 0.35 0.32 0.32 0.32 0.32 0.34 0.36 0.34 0.35 0.32 0.32 0.32 0.34 0.36 0.34 0.33 0.32 0.32 0.32 0.34 0.33 0.32 0.32 0.32 <td>1.00</td> <td>0.42</td> <td>0.40</td> <td>0.41</td> <td>0.41</td> <td>0.40</td> <td>0.40</td> <td>0.40</td> <td>0.41</td> <td>0.40</td> <td>0.40</td> <td>0.40</td> <td>0.40</td> <td>0.40</td> <td>0.40</td> <td>0.40</td>	1.00	0.42	0.40	0.41	0.41	0.40	0.40	0.40	0.41	0.40	0.40	0.40	0.40	0.40	0.40	0.40
1.12 0.36 0.39 0.36 0.36 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.36 0.37 0.36 1.16 0.35 0.35 0.35 0.35 0.34 0.35 0.35 0.35 0.34 0.34 1.20 0.34 0.35 0.33 0.34 0.33 0.34 0.34 0.36 0.34 0.35 0.34 0.34 0.33 1.24 0.34 0.35 0.33 0.32 0.32 0.32 0.32 0.34 0.36 0.34 0.35 0.32 0.32 0.32 0.34 0.36 0.31 0.33 0.32 0.32 0.32 0.34 0.32 0.33 0.32 0.32 0.34 0.33 0.32 0.32 0.34 0.33 0.32 0.32 0.34 0.33 0.32 0.31 0.33 0.32 0.31 <td>1.04</td> <td>0.38</td> <td>0.40</td> <td>0.39</td> <td>0.38</td> <td>0.39</td> <td>0.39</td> <td>0.39</td> <td>0.39</td> <td>0.39</td> <td>0.39</td> <td>0.40</td> <td>0.39</td> <td>0.39</td> <td>0.39</td> <td>0.38</td>	1.04	0.38	0.40	0.39	0.38	0.39	0.39	0.39	0.39	0.39	0.39	0.40	0.39	0.39	0.39	0.38
1.16 0.35 0.35 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.34 0.34 0.35 0.35 0.35 0.34 0.34 0.34 0.36 0.34 0.35 0.34 0.34 0.33 1.24 0.34 0.35 0.33 0.32 0.32 0.32 0.32 0.34 0.33 0.32 0.32 0.32 0.32 0.34 0.33 0.32 0.32 0.32 0.32 0.34 0.33 0.32 0.32 0.32 0.34 0.33 0.32 0.32 0.32 0.34 0.32 0.34 0.33 0.32 0.32 0.32 0.34 0.32 0.34 0.33 0.32 0.32 0.34 0.32 0.34 0.33 0.32 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.31 0.31 0.31 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.	1.08	0.38	0.40	0.37	0.38	0.36	0.37	0.37	0.39	0.37	0.39	0.38	0.39	0.37	0.39	0.37
1.20 0.34 0.35 0.33 0.34 0.34 0.36 0.34 0.36 0.34 0.35 0.34 0.34 0.33 1.24 0.34 0.35 0.33 0.32 0.32 0.32 0.32 0.32 0.34 0.33 0.32 0.32 0.32 1.28 0.31 0.31 0.33 0.34 0.32 0.32 0.34 0.32 0.33 0.32 0.32 0.34 0.32 0.33 0.32 0.31 0.33 0.32 0.31 0.31 0.33 0.32 0.31 0.31 0.33 0.32 0.31 0.31 0.33 0.32 0.31 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.23 0.43<	1.12	0.36	0.39	0.36	0.36	0.37	0.36	0.36	0.36	0.36	0.36	0.36	0.37	0.36	0.37	0.36
1.24 0.34 0.35 0.33 0.32 0.32 0.32 0.32 0.33 0.32 0.32 0.32 0.34 0.33 0.32 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.36 0.31 0.33 0.32 0.31 0.31 0.33 0.32 0.32 0.34 0.32 0.36 0.31 0.33 0.32 0.31 0.31 0.31 0.31 0.39 0.41 0.39 0.43 0.31 0.35 0.39 0.30 0.30 1.36 0.30 0.37 0.43 0.41 0.30 0.27 0.43 0.49 0.43 0.51 0.30 0.34 0.43 0.30 0.24 0.29 0.23 0.47 0.54 0.47 0.57 0.27 0.40 0.47 0.33 0.29 1.42 0.36 0.40 0.37 0.42 0.28 0.22 0.50 0.54 0.50 0.57 0.25<	1.16	0.35	0.35	0.35	0.35	0.35	0.34	0.35	0.35	0.35	0.36	0.35	0.35	0.35	0.34	0.34
1.28 0.31 0.31 0.33 0.34 0.32 0.32 0.34 0.32 0.36 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.31 0.33 0.32 0.30 0.30 1.36 0.30 0.37 0.43 0.41 0.30 0.27 0.43 0.49 0.43 0.51 0.30 0.34 0.43 0.30 0.24 0.29 0.23 0.47 0.54 0.47 0.57 0.27 0.40 0.47 0.33 0.29 1.42 0.36 0.40 0.37 0.42 0.28 0.22 0.50 0.54 0.50 0.57 0.25 0.43 0.50 0.33 0.28 1.44 0.36 0.39 0.36 0.42 0.29 0.21 0.54 0.53 0.54 0.55 0.24 0.45 <td>1.20</td> <td>0.34</td> <td>0.35</td> <td>0.33</td> <td>0.34</td> <td>0.33</td> <td>0.34</td> <td>0.34</td> <td>0.36</td> <td>0.34</td> <td>0.36</td> <td>0.34</td> <td>0.35</td> <td>0.34</td> <td>0.34</td> <td>0.33</td>	1.20	0.34	0.35	0.33	0.34	0.33	0.34	0.34	0.36	0.34	0.36	0.34	0.35	0.34	0.34	0.33
1.32 0.30 0.31 0.39 0.31 0.31 0.39 0.41 0.39 0.43 0.31 0.35 0.39 0.30 0.30 1.36 0.30 0.37 0.43 0.41 0.30 0.27 0.43 0.49 0.43 0.51 0.30 0.34 0.43 0.30 0.29 1.40 0.34 0.40 0.39 0.42 0.29 0.23 0.47 0.54 0.47 0.57 0.27 0.40 0.47 0.33 0.29 1.42 0.36 0.40 0.37 0.42 0.28 0.22 0.50 0.54 0.50 0.57 0.25 0.43 0.50 0.33 0.28 1.44 0.36 0.39 0.36 0.42 0.29 0.21 0.54 0.53 0.54 0.55 0.24 0.45 0.54 0.34 0.28 1.48 0.35 0.40 0.42 0.43 0.29 0.22 0.60 0.48	1.24	0.34	0.35	0.33	0.32	0.32	0.32	0.32	0.33	0.32	0.34	0.33	0.32	0.32	0.32	0.32
1.36 0.30 0.37 0.43 0.41 0.30 0.27 0.43 0.49 0.43 0.51 0.30 0.34 0.43 0.30 0.29 1.40 0.34 0.40 0.39 0.42 0.29 0.23 0.47 0.54 0.57 0.27 0.40 0.47 0.33 0.29 1.42 0.36 0.40 0.37 0.42 0.28 0.22 0.50 0.54 0.50 0.57 0.25 0.43 0.50 0.33 0.28 1.44 0.36 0.39 0.36 0.42 0.29 0.21 0.54 0.53 0.54 0.55 0.24 0.45 0.54 0.34 0.28 1.48 0.35 0.40 0.42 0.43 0.29 0.22 0.60 0.45 0.60 0.48 0.22 0.44 0.60 0.32 0.27 1.52 0.32 0.41 0.48 0.43 0.28 0.21 0.62 0.39	1.28	0.31	0.31	0.33	0.34	0.32	0.32	0.32	0.34	0.32	0.36	0.31	0.33	0.32	0.31	0.31
1.40 0.34 0.40 0.39 0.42 0.29 0.23 0.47 0.54 0.47 0.57 0.27 0.40 0.47 0.33 0.29 1.42 0.36 0.40 0.37 0.42 0.28 0.22 0.50 0.54 0.50 0.57 0.25 0.43 0.50 0.33 0.28 1.44 0.36 0.39 0.36 0.42 0.29 0.21 0.54 0.53 0.54 0.55 0.24 0.45 0.54 0.34 1.48 0.35 0.40 0.42 0.43 0.29 0.22 0.60 0.45 0.60 0.48 0.22 0.44 0.60 0.32 0.27 1.52 0.32 0.41 0.48 0.43 0.28 0.21 0.62 0.39 0.62 0.39 0.21 0.42 0.62 0.31 0.26 1.56 0.27 0.39 0.47 0.43 0.27 0.20 0.59 0.40	1.32	0.30	0.31	0.39	0.39	0.31	0.31	0.39	0.41	0.39	0.43	0.31	0.35	0.39	0.30	0.30
1.42 0.36 0.40 0.37 0.42 0.28 0.22 0.50 0.54 0.50 0.57 0.25 0.43 0.50 0.33 0.28 1.44 0.36 0.39 0.36 0.42 0.29 0.21 0.54 0.53 0.54 0.55 0.24 0.45 0.54 0.34 0.28 1.48 0.35 0.40 0.42 0.43 0.29 0.22 0.60 0.45 0.60 0.48 0.22 0.44 0.60 0.32 0.27 1.52 0.32 0.41 0.48 0.43 0.28 0.21 0.62 0.39 0.62 0.39 0.21 0.42 0.62 0.31 0.26 1.56 0.27 0.39 0.47 0.43 0.27 0.20 0.59 0.40 0.59 0.40 0.20 0.40 0.59 0.26 1.60 0.23 0.39 0.42 0.25 0.19 0.52 0.39 0.52 0.39 0.23 0.39 0.52 0.25 0.25 1.64 0	1.36	0.30	0.37	0.43	0.41	0.30	0.27	0.43	0.49	0.43	0.51	0.30	0.34	0.43	0.30	0.29
1.44 0.36 0.39 0.36 0.42 0.29 0.21 0.54 0.53 0.54 0.55 0.24 0.45 0.54 0.34 0.28 1.48 0.35 0.40 0.42 0.43 0.29 0.22 0.60 0.45 0.60 0.48 0.22 0.44 0.60 0.32 0.27 1.52 0.32 0.41 0.48 0.43 0.28 0.21 0.62 0.39 0.62 0.39 0.21 0.42 0.62 0.31 0.26 1.56 0.27 0.39 0.47 0.43 0.27 0.20 0.59 0.40 0.59 0.40 0.20 0.40 0.59 0.20 1.60 0.23 0.39 0.43 0.42 0.25 0.19 0.52 0.39 0.52 0.39 0.23 0.39 0.52 0.25 0.25 1.64 0.22 0.40 0.41 0.40 0.23 0.17 0.47 0.38 0.47 0.38 0.25 0.37 0.47 0.21 0.24 1	1.40	0.34	0.40	0.39	0.42	0.29	0.23	0.47	0.54	0.47	0.57	0.27	0.40	0.47	0.33	0.29
1.48 0.35 0.40 0.42 0.43 0.29 0.22 0.60 0.45 0.60 0.48 0.22 0.44 0.60 0.32 0.27 1.52 0.32 0.41 0.48 0.43 0.28 0.21 0.62 0.39 0.62 0.39 0.21 0.42 0.62 0.31 0.26 1.56 0.27 0.39 0.47 0.43 0.27 0.20 0.59 0.40 0.59 0.40 0.20 0.40 0.59 0.29 0.26 1.60 0.23 0.39 0.43 0.42 0.25 0.19 0.52 0.39 0.52 0.39 0.23 0.39 0.52 0.25 1.64 0.22 0.40 0.41 0.40 0.23 0.17 0.47 0.38 0.47 0.38 0.25 0.37 0.47 0.21 0.24 1.68 0.20 0.40 0.37 0.39 0.22 0.16 0.45 0.40 0.41 0.45 0.40 0.26 0.36 0.41 0.15 0.23	1.42	0.36	0.40	0.37	0.42	0.28	0.22	0.50	0.54	0.50	0.57	0.25	0.43	0.50	0.33	0.28
1.52 0.32 0.41 0.48 0.43 0.28 0.21 0.62 0.39 0.62 0.39 0.21 0.42 0.62 0.31 0.26 1.56 0.27 0.39 0.47 0.43 0.27 0.20 0.59 0.40 0.59 0.40 0.20 0.40 0.59 0.29 0.26 1.60 0.23 0.39 0.43 0.42 0.25 0.19 0.52 0.39 0.52 0.39 0.23 0.39 0.52 0.25 0.25 1.64 0.22 0.40 0.41 0.40 0.23 0.17 0.47 0.38 0.47 0.38 0.25 0.37 0.47 0.21 0.24 1.68 0.20 0.40 0.37 0.39 0.22 0.16 0.45 0.40 0.45 0.40 0.27 0.37 0.45 0.18 0.24 1.72 0.19 0.39 0.32 0.36 0.22 0.14 0.41	1.44	0.36	0.39	0.36	0.42	0.29	0.21	0.54	0.53	0.54	0.55	0.24	0.45	0.54	0.34	0.28
1.56 0.27 0.39 0.47 0.43 0.27 0.20 0.59 0.40 0.59 0.40 0.20 0.40 0.20 0.40 0.59 0.29 0.26 1.60 0.23 0.39 0.43 0.42 0.25 0.19 0.52 0.39 0.52 0.39 0.23 0.39 0.52 0.25 1.64 0.22 0.40 0.41 0.40 0.23 0.17 0.47 0.38 0.47 0.38 0.25 0.37 0.47 0.21 0.24 1.68 0.20 0.40 0.37 0.39 0.22 0.16 0.45 0.40 0.45 0.40 0.27 0.37 0.45 0.18 0.24 1.72 0.19 0.39 0.32 0.36 0.22 0.14 0.41 0.41 0.41 0.41 0.41 0.26 0.36 0.41 0.15 0.23	1.48	0.35	0.40	0.42	0.43	0.29	0.22	0.60	0.45	0.60	0.48	0.22	0.44	0.60	0.32	0.27
1.60 0.23 0.39 0.43 0.42 0.25 0.19 0.52 0.39 0.52 0.39 0.23 0.39 0.52 0.25 0.25 1.64 0.22 0.40 0.41 0.40 0.23 0.17 0.47 0.38 0.47 0.38 0.25 0.37 0.47 0.21 0.24 1.68 0.20 0.40 0.37 0.39 0.22 0.16 0.45 0.40 0.45 0.40 0.27 0.37 0.45 0.18 0.24 1.72 0.19 0.39 0.32 0.36 0.22 0.14 0.41 0.41 0.41 0.41 0.26 0.36 0.41 0.15 0.23	1.52	0.32	0.41	0.48	0.43	0.28	0.21	0.62	0.39	0.62	0.39	0.21	0.42	0.62	0.31	0.26
1.64 0.22 0.40 0.41 0.40 0.23 0.17 0.47 0.38 0.47 0.38 0.25 0.37 0.47 0.21 0.24 1.68 0.20 0.40 0.37 0.39 0.22 0.16 0.45 0.40 0.45 0.40 0.27 0.37 0.45 0.18 0.24 1.72 0.19 0.39 0.32 0.36 0.22 0.14 0.41 0.41 0.41 0.41 0.26 0.36 0.41 0.15 0.23	1.56	0.27	0.39	0.47	0.43	0.27	0.20	0.59	0.40	0.59	0.40	0.20	0.40	0.59	0.29	0.26
1.68 0.20 0.40 0.37 0.39 0.22 0.16 0.45 0.40 0.45 0.40 0.27 0.37 0.45 0.18 0.24 1.72 0.19 0.39 0.32 0.36 0.22 0.14 0.41 0.41 0.41 0.41 0.26 0.36 0.41 0.15 0.23	1.60	0.23	0.39	0.43	0.42	0.25	0.19	0.52	0.39	0.52	0.39	0.23	0.39	0.52	0.25	0.25
1.72 0.19 0.39 0.32 0.36 0.22 0.14 0.41 0.41 0.41 0.41 0.26 0.36 0.41 0.15 0.23	1.64	0.22	0.40	0.41	0.40	0.23	0.17	0.47	0.38	0.47	0.38	0.25	0.37	0.47	0.21	0.24
	1.68	0.20	0.40	0.37	0.39	0.22	0.16	0.45	0.40	0.45	0.40	0.27	0.37	0.45	0.18	0.24
1.76 0.20 0.38 0.28 0.34 0.23 0.14 0.36 0.39 0.36 0.39 0.23 0.34 0.36 0.14 0.23	1.72	0.19	0.39	0.32	0.36	0.22	0.14	0.41	0.41	0.41	0.41	0.26	0.36	0.41	0.15	0.23
	1.76	0.20	0.38	0.28	0.34	0.23	0.14	0.36	0.39	0.36	0.39	0.23	0.34	0.36	0.14	0.23

1.80	0.21	0.37	0.27	0.33	0.23	0.14	0.30	0.35	0.30	0.35	0.19	0.32	0.30	0.13	0.22
1.84	0.22	0.35	0.23	0.31	0.22	0.14	0.28	0.30	0.28	0.30	0.16	0.29	0.28	0.12	0.22
1.88	0.22	0.32	0.21	0.30	0.23	0.14	0.28	0.31	0.28	0.31	0.14	0.25	0.28	0.12	0.21
1.92	0.21	0.30	0.19	0.28	0.26	0.15	0.27	0.32	0.27	0.33	0.13	0.21	0.27	0.12	0.21
1.96	0.20	0.29	0.18	0.26	0.25	0.15	0.30	0.31	0.30	0.32	0.12	0.19	0.30	0.12	0.20
2.00	0.18	0.30	0.16	0.24	0.23	0.14	0.32	0.28	0.32	0.29	0.12	0.17	0.32	0.12	0.20

Tabla I.5:Espectros de pseudo-aceleraciones escalados a un PGA=0.5g

Sa(g) - REGISTROS ESCALADOS PGA=0.5g													Espectro		
T (sec)	LIMA	1966	ANCAS	SH1970	LIMA	1974	ATIC	D2001	MAUL	E2010	IQUIQU	JE2014	ILLAPI	EL2015	Elástico
(300)	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	PGA=0.5g
0.00	0.55	0.63	0.57	0.59	0.57	0.51	0.51	0.52	0.50	0.58	0.52	0.53	0.59	0.57	0.50
0.04	0.62	0.76	0.60	0.64	0.69	0.56	0.54	0.62	0.63	0.70	0.68	0.59	0.70	0.86	0.88
0.08	1.26	1.26	1.26	1.29	1.26	1.25	1.26	1.25	1.26	1.25	1.25	1.25	1.26	1.26	1.25
0.12	1.26	1.25	1.25	1.25	1.26	1.26	1.26	1.26	1.26	1.25	1.26	1.25	1.25	1.27	1.25
0.16	1.26	1.25	1.26	1.25	1.26	1.26	1.26	1.26	1.26	1.25	1.34	1.25	1.26	1.26	1.25
0.20	1.25	1.26	1.26	1.37	1.26	1.26	1.25	1.27	1.25	1.26	1.26	1.26	1.26	1.25	1.25
0.24	1.26	1.26	1.25	1.26	1.26	1.25	1.25	1.25	1.26	1.26	1.34	1.26	1.26	1.26	1.25
0.28	1.26	1.28	1.25	1.32	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.28	1.26	1.25
0.32	1.25	1.25	1.26	1.40	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.25
0.36	1.26	1.26	1.24	1.28	1.26	1.25	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.25
0.40	1.25	1.26	1.41	1.22	1.26	1.26	1.26	1.26	1.26	1.26	1.25	1.26	1.25	1.26	1.25
0.44	1.14	1.18	1.11	1.14	1.14	1.14	1.15	1.14	1.14	1.15	1.15	1.14	1.14	1.15	1.14
0.48	1.06	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.04	1.05	1.04
0.52	0.95	0.95	1.06	0.96	0.97	0.97	0.97	1.02	0.97	0.97	0.98	0.97	0.98	0.97	0.96
0.56	0.90	0.91	0.90	0.89	0.91	0.93	0.90	0.99	0.90	0.90	0.88	0.89	0.90	0.91	0.89
0.60	0.86	0.84	0.84	0.84	0.84	0.91	0.83	0.91	0.84	0.90	0.84	0.84	0.84	0.84	0.83
0.64	0.81	0.79	0.78	0.79	0.80	0.79	0.81	0.80	0.78	0.80	0.79	0.78	0.79	0.79	0.78
0.68	0.78	0.75	0.83	0.74	0.73	0.75	0.74	0.75	0.74	0.75	0.74	0.74	0.74	0.74	0.74
0.72	0.76	0.69	0.71	0.70	0.70	0.69	0.71	0.73	0.70	0.69	0.71	0.72	0.73	0.72	0.69
0.76	0.68	0.68	0.76	0.65	0.66	0.68	0.68	0.68	0.67	0.66	0.65	0.66	0.68	0.67	0.66

0.80	0.62	0.63	0.63	0.64	0.63	0.63	0.67	0.63	0.68	0.67	0.67	0.63	0.64	0.63	0.63
0.84	0.61	0.61	0.62	0.60	0.59	0.62	0.61	0.59	0.61	0.60	0.62	0.60	0.62	0.60	0.60
0.88	0.56	0.57	0.59	0.57	0.57	0.60	0.58	0.60	0.61	0.57	0.58	0.59	0.58	0.60	0.57
0.92	0.55	0.55	0.57	0.57	0.55	0.56	0.54	0.54	0.54	0.55	0.55	0.56	0.55	0.55	0.54
0.96	0.54	0.56	0.54	0.53	0.53	0.52	0.54	0.52	0.52	0.52	0.53	0.53	0.53	0.53	0.52
1.00	0.50	0.52	0.51	0.51	0.50	0.52	0.52	0.51	0.49	0.50	0.51	0.50	0.51	0.53	0.50
1.04	0.48	0.50	0.51	0.49	0.49	0.48	0.49	0.48	0.49	0.48	0.49	0.49	0.48	0.51	0.48
1.08	0.48	0.49	0.49	0.46	0.48	0.47	0.46	0.48	0.47	0.47	0.46	0.48	0.47	0.47	0.46
1.12	0.46	0.47	0.45	0.45	0.45	0.45	0.46	0.47	0.46	0.45	0.45	0.45	0.46	0.48	0.45
1.16	0.43	0.45	0.45	0.43	0.43	0.47	0.43	0.43	0.44	0.43	0.42	0.43	0.45	0.46	0.43
1.20	0.42	0.46	0.47	0.42	0.42	0.43	0.42	0.42	0.44	0.42	0.42	0.43	0.42	0.44	0.42
1.24	0.40	0.43	0.40	0.41	0.41	0.41	0.40	0.40	0.42	0.41	0.41	0.41	0.41	0.41	0.40
1.28	0.39	0.40	0.41	0.40	0.40	0.42	0.43	0.40	0.39	0.49	0.39	0.41	0.42	0.39	0.39
1.32	0.39	0.37	0.42	0.45	0.35	0.43	0.49	0.39	0.36	0.57	0.45	0.42	0.43	0.40	0.38
1.36	0.39	0.35	0.44	0.48	0.34	0.41	0.59	0.42	0.40	0.60	0.48	0.50	0.48	0.39	0.37
1.40	0.40	0.35	0.40	0.46	0.42	0.44	0.63	0.40	0.42	0.69	0.45	0.60	0.47	0.40	0.36
1.42	0.40	0.38	0.40	0.44	0.43	0.46	0.63	0.40	0.43	0.75	0.43	0.63	0.46	0.41	0.35
1.44	0.40	0.40	0.39	0.41	0.42	0.49	0.62	0.38	0.44	0.80	0.42	0.62	0.46	0.40	0.35
1.48	0.39	0.44	0.39	0.48	0.39	0.51	0.61	0.36	0.51	0.77	0.44	0.56	0.48	0.43	0.34
1.52	0.41	0.47	0.39	0.51	0.38	0.46	0.58	0.36	0.57	0.64	0.42	0.49	0.49	0.44	0.33
1.56	0.44	0.49	0.38	0.50	0.40	0.41	0.55	0.40	0.58	0.60	0.39	0.50	0.48	0.42	0.32
1.60	0.44	0.51	0.44	0.49	0.40	0.42	0.53	0.44	0.53	0.59	0.37	0.52	0.46	0.45	0.31
1.64	0.42	0.53	0.46	0.50	0.38	0.42	0.50	0.46	0.49	0.59	0.36	0.52	0.44	0.45	0.30
1.68	0.39	0.53	0.44	0.50	0.36	0.41	0.47	0.42	0.46	0.59	0.34	0.48	0.41	0.43	0.30
1.72	0.39	0.51	0.42	0.49	0.37	0.39	0.44	0.40	0.45	0.59	0.34	0.42	0.38	0.41	0.29
1.76	0.38	0.49	0.38	0.46	0.39	0.34	0.40	0.37	0.41	0.57	0.32	0.34	0.35	0.38	0.28

1.80	0.37	0.48	0.33	0.41	0.39	0.30	0.38	0.42	0.35	0.51	0.29	0.28	0.31	0.35	0.28
1.84	0.35	0.46	0.32	0.37	0.34	0.26	0.35	0.46	0.34	0.44	0.27	0.24	0.27	0.34	0.27
1.88	0.31	0.44	0.32	0.33	0.28	0.23	0.34	0.48	0.34	0.39	0.26	0.22	0.24	0.32	0.27
1.92	0.28	0.41	0.30	0.29	0.27	0.22	0.31	0.46	0.33	0.38	0.24	0.20	0.22	0.30	0.26
1.96	0.28	0.39	0.28	0.27	0.25	0.24	0.30	0.41	0.38	0.36	0.22	0.18	0.20	0.28	0.26
2.00	0.26	0.36	0.26	0.24	0.22	0.24	0.28	0.40	0.40	0.35	0.19	0.17	0.17	0.26	0.25

Tabla I.6:Espectros de pseudo-aceleraciones escalados a un PGA=0.6g

Sa(g) - REGISTROS ESCALADOS PGA=0.6g													Espectro		
T (sec)	LIMA	1966	ANCAS	SH1970	LIMA	1974	ATIC	D2001	MAUL	E2010	IQUIQU	JE2014	ILLAPI	EL2015	Elástico
(300)	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	PGA=0.6g
0.00	0.65	0.75	0.67	0.67	0.69	0.62	0.61	0.66	0.58	0.68	0.63	0.63	0.60	0.69	0.60
0.04	0.73	0.91	0.73	0.71	0.82	0.67	0.67	0.75	0.69	0.83	0.84	0.70	0.79	0.94	1.05
0.08	1.51	1.51	1.50	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.50
0.12	1.51	1.51	1.51	1.50	1.51	1.51	1.51	1.51	1.51	1.50	1.51	1.51	1.51	1.51	1.50
0.16	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.53	1.51	1.51	1.51	1.50
0.20	1.50	1.52	1.51	1.50	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.50
0.24	1.51	1.51	1.51	1.51	1.51	1.50	1.51	1.54	1.51	1.51	1.51	1.50	1.51	1.51	1.50
0.28	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.52	1.51	1.51	1.51	1.51	1.50
0.32	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.57	1.51	1.52	1.51	1.51	1.50
0.36	1.51	1.51	1.51	1.50	1.51	1.50	1.54	1.51	1.51	1.51	1.50	1.51	1.51	1.51	1.50
0.40	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.63	1.51	1.51	1.52	1.50
0.44	1.37	1.38	1.37	1.37	1.37	1.37	1.37	1.38	1.37	1.37	1.39	1.37	1.39	1.37	1.36
0.48	1.26	1.26	1.26	1.26	1.25	1.26	1.26	1.26	1.26	1.26	1.27	1.28	1.28	1.26	1.25
0.52	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.17	1.17	1.17	1.16	1.15
0.56	1.09	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.15	1.08	1.08	1.08	1.08	1.07
0.60	1.01	1.01	1.01	1.01	1.01	1.00	1.00	1.01	1.01	1.01	1.02	1.01	1.02	1.01	1.00
0.64	0.95	0.95	0.96	0.94	0.95	0.96	0.94	0.94	0.97	0.94	0.94	0.94	0.97	0.94	0.94
0.68	0.91	0.88	0.89	0.89	0.90	0.90	0.89	0.89	0.89	0.87	0.89	0.88	0.91	0.89	0.88
0.72	0.83	0.84	0.85	0.84	0.84	0.89	0.84	0.84	0.84	0.83	0.84	0.85	0.84	0.84	0.83
0.76	0.81	0.80	0.80	0.80	0.80	0.83	0.79	0.79	0.79	0.84	0.80	0.79	0.80	0.79	0.79

0.80	0.73	0.75	0.76	0.76	0.75	0.79	0.76	0.76	0.76	0.81	0.77	0.75	0.76	0.75	0.75
0.84	0.72	0.72	0.73	0.73	0.72	0.73	0.72	0.72	0.72	0.72	0.72	0.72	0.76	0.72	0.71
0.88	0.70	0.69	0.68	0.69	0.70	0.69	0.72	0.69	0.69	0.68	0.71	0.69	0.67	0.69	0.68
0.92	0.63	0.66	0.65	0.65	0.66	0.66	0.65	0.66	0.66	0.70	0.70	0.66	0.68	0.66	0.65
0.96	0.61	0.63	0.63	0.62	0.65	0.66	0.63	0.63	0.64	0.68	0.63	0.63	0.67	0.63	0.63
1.00	0.63	0.60	0.60	0.60	0.60	0.62	0.61	0.60	0.58	0.63	0.60	0.62	0.60	0.61	0.60
1.04	0.58	0.59	0.58	0.59	0.58	0.58	0.58	0.58	0.59	0.58	0.57	0.57	0.59	0.58	0.58
1.08	0.56	0.56	0.56	0.56	0.55	0.59	0.56	0.55	0.56	0.56	0.56	0.55	0.56	0.56	0.56
1.12	0.55	0.54	0.54	0.54	0.54	0.54	0.53	0.54	0.53	0.54	0.54	0.54	0.53	0.55	0.54
1.16	0.52	0.53	0.53	0.52	0.52	0.52	0.53	0.52	0.52	0.52	0.52	0.52	0.53	0.52	0.52
1.20	0.51	0.50	0.50	0.51	0.50	0.50	0.50	0.51	0.50	0.51	0.50	0.50	0.50	0.51	0.50
1.24	0.48	0.50	0.49	0.49	0.49	0.49	0.49	0.48	0.49	0.51	0.49	0.49	0.50	0.48	0.48
1.28	0.47	0.47	0.48	0.47	0.48	0.53	0.48	0.48	0.48	0.49	0.46	0.48	0.44	0.52	0.47
1.32	0.48	0.48	0.47	0.55	0.56	0.66	0.42	0.47	0.51	0.48	0.48	0.47	0.39	0.62	0.45
1.36	0.47	0.48	0.45	0.65	0.68	0.72	0.36	0.50	0.54	0.48	0.49	0.55	0.37	0.64	0.44
1.40	0.45	0.43	0.41	0.68	0.70	0.69	0.34	0.59	0.60	0.46	0.49	0.54	0.37	0.61	0.43
1.42	0.45	0.46	0.42	0.67	0.68	0.66	0.35	0.62	0.65	0.44	0.48	0.50	0.41	0.59	0.42
1.44	0.46	0.48	0.45	0.63	0.64	0.63	0.37	0.63	0.71	0.42	0.47	0.46	0.45	0.59	0.42
1.48	0.46	0.52	0.48	0.53	0.59	0.59	0.39	0.65	0.86	0.44	0.45	0.44	0.48	0.59	0.41
1.52	0.46	0.57	0.47	0.44	0.56	0.57	0.38	0.68	0.98	0.53	0.42	0.45	0.48	0.61	0.39
1.56	0.46	0.61	0.44	0.45	0.51	0.54	0.39	0.72	1.02	0.59	0.39	0.41	0.47	0.60	0.38
1.60	0.42	0.66	0.40	0.41	0.47	0.47	0.35	0.82	0.97	0.60	0.37	0.40	0.46	0.58	0.38
1.64	0.35	0.69	0.38	0.42	0.42	0.38	0.39	0.87	0.90	0.60	0.35	0.38	0.45	0.62	0.37
1.68	0.30	0.71	0.35	0.43	0.36	0.33	0.38	0.87	0.85	0.58	0.33	0.35	0.45	0.65	0.36
1.72	0.28	0.71	0.31	0.39	0.41	0.29	0.35	0.83	0.84	0.58	0.31	0.32	0.45	0.61	0.35
1.76	0.28	0.69	0.27	0.41	0.41	0.29	0.31	0.77	0.79	0.57	0.30	0.29	0.43	0.56	0.34

1.80	0.28	0.66	0.24	0.40	0.44	0.30	0.30	0.71	0.72	0.54	0.29	0.28	0.40	0.52	0.33	
1.84	0.28	0.61	0.24	0.39	0.44	0.31	0.30	0.71	0.64	0.50	0.29	0.28	0.37	0.48	0.33	
1.88	0.29	0.56	0.26	0.38	0.43	0.31	0.30	0.72	0.55	0.46	0.28	0.27	0.35	0.43	0.32	
1.92	0.27	0.52	0.26	0.37	0.39	0.30	0.30	0.71	0.50	0.44	0.27	0.25	0.32	0.41	0.31	
1.96	0.28	0.49	0.25	0.35	0.37	0.28	0.31	0.71	0.55	0.43	0.25	0.23	0.29	0.41	0.31	
2.00	0.27	0.46	0.24	0.32	0.35	0.29	0.32	0.72	0.56	0.43	0.24	0.21	0.27	0.44	0.30	

Tabla I.7:Espectros de pseudo-aceleraciones escalados a un PGA=0.7g

Sa(g) - REGISTROS ESCALADOS PGA=0.7g													Espectro		
T (sec)	LIMA	1966	ANCAS	SH1970	LIMA	1974	ATIC	D2001	MAUL	E2010	IQUIQU	JE2014	ILLAPI	EL2015	Elástico
(300)	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	PGA=0.7g
0.00	0.75	0.92	0.77	0.77	0.80	0.72	0.72	0.74	0.70	0.80	0.70	0.73	0.76	0.81	0.70
0.04	0.83	1.02	0.82	0.81	0.96	0.78	0.80	0.87	0.80	0.97	0.90	0.83	0.93	1.14	1.23
0.08	1.77	1.76	1.76	1.76	1.77	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.77	1.75
0.12	1.76	1.75	1.77	1.76	1.82	1.79	1.75	1.80	1.76	1.75	1.76	1.76	1.76	1.76	1.75
0.16	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.81	1.76	1.76	1.84	1.76	1.76	1.76	1.75
0.20	1.75	1.75	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.75
0.24	1.75	1.76	1.76	1.76	1.85	1.75	1.76	1.76	1.76	1.76	1.78	1.76	1.76	1.76	1.75
0.28	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.75
0.32	1.86	1.76	1.76	1.90	2.09	1.76	1.76	1.83	1.76	1.76	1.76	1.76	1.75	1.76	1.75
0.36	1.76	1.76	1.76	1.78	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.75
0.40	1.77	1.76	1.76	1.76	1.81	1.76	1.76	1.76	1.76	1.76	1.77	1.77	1.75	1.76	1.75
0.44	1.60	1.60	1.60	1.64	1.63	1.60	1.60	1.73	1.62	1.60	1.60	1.60	1.59	1.61	1.59
0.48	1.48	1.47	1.46	1.49	1.52	1.47	1.49	1.48	1.48	1.47	1.48	1.47	1.46	1.47	1.46
0.52	1.32	1.34	1.36	1.49	1.35	1.35	1.36	1.34	1.35	1.35	1.35	1.35	1.36	1.39	1.35
0.56	1.27	1.26	1.34	1.25	1.27	1.25	1.28	1.28	1.26	1.27	1.26	1.25	1.25	1.26	1.25
0.60	1.17	1.17	1.18	1.16	1.10	1.17	1.17	1.17	1.16	1.17	1.19	1.17	1.18	1.17	1.17
0.64	1.10	1.10	1.11	1.09	1.14	1.11	1.19	1.14	1.10	1.10	1.10	1.10	1.11	1.10	1.09
0.68	1.04	1.03	1.03	1.04	1.05	1.05	1.04	1.09	1.03	1.05	1.04	1.04	1.04	1.05	1.03
0.72	0.98	0.97	0.99	0.98	1.01	0.98	0.98	0.99	0.98	0.98	0.96	0.98	0.97	1.01	0.97
0.76	0.96	0.92	0.94	0.92	0.93	0.93	0.92	0.96	0.93	0.93	0.93	0.93	0.92	0.95	0.92

0.80	0.87	0.88	0.88	0.92	0.92	0.89	0.89	0.88	0.90	0.90	0.87	0.88	0.93	0.87	0.88
0.84	0.85	0.84	0.84	0.87	0.97	0.83	0.84	0.86	0.84	0.84	0.84	0.83	0.84	0.84	0.83
0.88	0.80	0.81	0.81	0.80	0.86	0.80	0.83	0.81	0.81	0.80	0.81	0.81	0.84	0.80	0.80
0.92	0.77	0.78	0.76	0.77	0.79	0.78	0.76	0.77	0.77	0.78	0.76	0.76	0.77	0.76	0.76
0.96	0.73	0.74	0.75	0.73	0.73	0.72	0.73	0.75	0.74	0.73	0.73	0.77	0.72	0.74	0.73
1.00	0.69	0.68	0.75	0.74	0.72	0.72	0.70	0.70	0.72	0.70	0.72	0.72	0.73	0.70	0.70
1.04	0.69	0.69	0.70	0.69	0.68	0.68	0.70	0.69	0.67	0.68	0.68	0.69	0.67	0.68	0.67
1.08	0.65	0.64	0.65	0.68	0.66	0.65	0.65	0.66	0.63	0.65	0.65	0.65	0.64	0.65	0.65
1.12	0.65	0.64	0.63	0.64	0.63	0.64	0.63	0.63	0.65	0.64	0.64	0.63	0.64	0.63	0.63
1.16	0.62	0.59	0.60	0.59	0.60	0.60	0.61	0.62	0.61	0.62	0.60	0.62	0.60	0.60	0.60
1.20	0.58	0.60	0.60	0.60	0.59	0.59	0.59	0.59	0.60	0.58	0.59	0.58	0.58	0.59	0.58
1.24	0.57	0.56	0.57	0.61	0.58	0.57	0.57	0.57	0.58	0.57	0.57	0.57	0.57	0.56	0.56
1.28	0.56	0.60	0.59	0.59	0.55	0.55	0.54	0.56	0.62	0.54	0.59	0.62	0.54	0.56	0.55
1.32	0.52	0.62	0.63	0.63	0.49	0.52	0.50	0.57	0.67	0.53	0.64	0.64	0.48	0.56	0.53
1.36	0.47	0.62	0.61	0.66	0.46	0.45	0.45	0.57	0.70	0.61	0.64	0.60	0.45	0.58	0.51
1.40	0.44	0.61	0.54	0.68	0.46	0.39	0.49	0.62	0.75	0.71	0.63	0.57	0.39	0.66	0.50
1.42	0.42	0.61	0.50	0.68	0.45	0.36	0.49	0.68	0.72	0.73	0.62	0.58	0.35	0.68	0.49
1.44	0.41	0.60	0.46	0.68	0.43	0.33	0.53	0.71	0.71	0.73	0.62	0.59	0.33	0.70	0.49
1.48	0.38	0.62	0.40	0.69	0.46	0.33	0.59	0.73	0.76	0.68	0.58	0.58	0.38	0.72	0.47
1.52	0.36	0.64	0.34	0.70	0.49	0.36	0.60	0.71	0.76	0.61	0.53	0.62	0.39	0.74	0.46
1.56	0.34	0.62	0.29	0.69	0.50	0.35	0.57	0.72	0.77	0.55	0.46	0.68	0.37	0.74	0.45
1.60	0.34	0.61	0.24	0.68	0.48	0.32	0.56	0.75	0.70	0.51	0.39	0.75	0.35	0.73	0.44
1.64	0.32	0.58	0.20	0.66	0.46	0.30	0.59	0.74	0.58	0.50	0.35	0.85	0.33	0.69	0.43
1.68	0.30	0.57	0.21	0.63	0.47	0.28	0.53	0.67	0.50	0.53	0.32	0.90	0.33	0.67	0.42
1.72	0.30	0.57	0.22	0.59	0.49	0.25	0.43	0.59	0.48	0.59	0.30	0.89	0.33	0.64	0.41
1.76	0.28	0.55	0.23	0.58	0.52	0.24	0.36	0.52	0.47	0.64	0.27	0.85	0.35	0.63	0.40

1.80	0.28	0.53	0.25	0.58	0.49	0.23	0.34	0.50	0.48	0.65	0.25	0.78	0.36	0.62	0.39	
1.84	0.28	0.52	0.27	0.56	0.43	0.23	0.36	0.55	0.48	0.61	0.23	0.71	0.35	0.61	0.38	
1.88	0.28	0.51	0.28	0.52	0.41	0.24	0.38	0.57	0.51	0.56	0.22	0.64	0.34	0.59	0.37	
1.92	0.28	0.50	0.27	0.48	0.39	0.25	0.38	0.55	0.58	0.52	0.21	0.57	0.31	0.57	0.36	
1.96	0.28	0.49	0.27	0.46	0.36	0.25	0.37	0.58	0.64	0.48	0.20	0.52	0.29	0.53	0.36	
2.00	0.27	0.49	0.27	0.44	0.33	0.24	0.36	0.59	0.69	0.43	0.19	0.47	0.26	0.49	0.35	

Tabla I.8:Espectros de pseudo-aceleraciones escalados a un PGA=0.8g

_ Sa(g) - REGISTROS ESCALADOS PGA=0.8g												Espectro			
T (sec)	LIMA	1966	ANCAS	SH1970	LIMA	1974	ATIC	D2001	MAUL	E2010	IQUIQU	JE2014	ILLAPI	EL2015	Elástico
(360)	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	PGA=0.8g
0.00	0.90	1.05	0.88	0.91	0.94	0.83	0.77	0.94	0.78	0.89	0.77	0.84	0.79	0.85	0.80
0.04	0.99	1.15	1.00	1.04	1.10	0.91	0.86	1.01	0.98	1.10	0.95	0.92	1.10	1.19	1.40
0.08	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.00
0.12	2.01	2.01	2.01	2.01	2.01	2.18	2.00	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.00
0.16	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.00
0.20	2.01	2.01	2.01	2.01	2.01	2.07	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.00
0.24	2.01	2.02	2.01	2.00	2.01	2.00	2.01	2.01	2.01	2.01	2.01	2.07	2.01	2.02	2.00
0.28	2.01	2.01	2.02	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.00	2.01	2.01	2.00
0.32	2.01	1.98	1.99	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.15	2.00	2.02	2.00
0.36	2.01	1.98	2.02	2.03	2.00	2.01	2.01	2.01	2.01	2.02	2.01	2.00	2.01	2.03	2.00
0.40	2.01	1.97	2.03	2.02	2.02	2.01	2.01	2.01	2.01	2.01	2.01	2.00	2.00	2.03	2.00
0.44	1.82	1.83	1.82	1.83	1.83	1.83	1.84	1.83	1.83	1.82	1.83	1.83	1.85	1.83	1.82
0.48	1.67	1.67	1.68	1.68	1.69	1.68	1.64	1.68	1.68	1.67	1.68	1.69	1.65	1.68	1.67
0.52	1.56	1.67	1.56	1.54	1.55	1.54	1.55	1.55	1.55	1.58	1.55	1.55	1.57	1.53	1.54
0.56	1.43	1.44	1.43	1.43	1.47	1.44	1.44	1.44	1.44	1.43	1.44	1.44	1.46	1.45	1.43
0.60	1.35	1.46	1.34	1.35	1.40	1.34	1.34	1.34	1.34	1.39	1.35	1.34	1.38	1.35	1.33
0.64	1.23	1.29	1.26	1.27	1.26	1.26	1.28	1.26	1.26	1.26	1.26	1.36	1.27	1.27	1.25
0.68	1.18	1.20	1.18	1.18	1.17	1.20	1.18	1.18	1.18	1.17	1.19	1.22	1.17	1.18	1.18
0.72	1.18	1.12	1.12	1.15	1.17	1.12	1.12	1.12	1.12	1.21	1.15	1.11	1.19	1.13	1.11
0.76	1.07	1.11	1.06	1.08	1.12	1.10	1.06	1.06	1.07	1.06	1.05	1.05	1.06	1.08	1.05

0.80	1.01	1.06	1.04	1.03	1.01	1.00	1.01	1.01	1.01	1.02	1.00	1.01	1.00	0.99	1.00
0.84	0.96	1.01	0.95	0.95	0.97	0.96	0.97	0.94	1.02	0.97	0.96	0.97	0.96	0.95	0.95
0.88	0.91	0.93	0.93	0.91	0.91	0.92	0.93	0.92	0.99	0.93	0.92	0.90	0.93	0.92	0.91
0.92	0.89	0.86	0.91	0.86	0.88	0.92	0.88	0.89	0.85	0.88	0.86	0.89	0.84	0.87	0.87
0.96	0.84	0.89	0.83	0.85	0.84	0.82	0.85	0.84	0.87	0.84	0.84	0.84	0.86	0.84	0.83
1.00	0.81	0.79	0.84	0.80	0.82	0.81	0.80	0.81	0.83	0.81	0.81	0.81	0.81	0.80	0.80
1.04	0.79	0.77	0.80	0.79	0.77	0.77	0.77	0.76	0.78	0.77	0.78	0.77	0.79	0.77	0.77
1.08	0.73	0.75	0.76	0.73	0.75	0.74	0.75	0.76	0.77	0.74	0.74	0.76	0.81	0.75	0.74
1.12	0.72	0.71	0.72	0.73	0.72	0.73	0.74	0.72	0.77	0.74	0.76	0.67	0.78	0.72	0.71
1.16	0.69	0.71	0.68	0.71	0.68	0.69	0.73	0.69	0.66	0.70	0.71	0.70	0.73	0.69	0.69
1.20	0.68	0.67	0.67	0.68	0.67	0.67	0.67	0.66	0.69	0.66	0.69	0.72	0.72	0.67	0.67
1.24	0.64	0.64	0.68	0.64	0.65	0.66	0.66	0.65	0.64	0.66	0.68	0.69	0.70	0.65	0.65
1.28	0.65	0.68	0.63	0.66	0.67	0.66	0.66	0.64	0.66	0.71	0.68	0.70	0.76	0.63	0.63
1.32	0.68	0.70	0.57	0.79	0.73	0.62	0.64	0.75	0.67	0.78	0.76	0.82	0.89	0.61	0.61
1.36	0.75	0.70	0.64	1.02	0.71	0.53	0.62	0.87	0.74	0.83	0.78	0.99	0.92	0.64	0.59
1.40	0.80	0.69	0.72	1.17	0.66	0.45	0.51	0.91	0.82	0.77	0.78	1.24	0.96	0.66	0.57
1.42	0.83	0.69	0.73	1.17	0.62	0.42	0.46	0.92	0.85	0.71	0.81	1.33	1.02	0.69	0.56
1.44	0.85	0.68	0.73	1.15	0.56	0.42	0.43	0.92	0.85	0.65	0.83	1.37	1.09	0.71	0.56
1.48	0.90	0.67	0.72	1.01	0.55	0.43	0.41	0.88	0.80	0.57	0.87	1.32	1.18	0.68	0.54
1.52	0.94	0.67	0.70	0.84	0.57	0.42	0.43	0.87	0.73	0.59	0.88	1.22	1.24	0.64	0.53
1.56	0.94	0.71	0.68	0.79	0.58	0.41	0.48	0.86	0.76	0.56	0.90	1.18	1.25	0.58	0.51
1.60	0.88	0.78	0.65	0.78	0.55	0.38	0.49	0.85	0.71	0.56	0.90	1.16	1.23	0.49	0.50
1.64	0.77	0.82	0.61	0.82	0.51	0.35	0.48	0.87	0.66	0.63	0.89	1.09	1.17	0.40	0.49
1.68	0.67	0.83	0.56	0.89	0.46	0.32	0.51	0.89	0.65	0.68	0.86	0.99	1.07	0.32	0.48
1.72	0.57	0.80	0.48	0.96	0.46	0.28	0.51	0.88	0.61	0.74	0.83	0.88	0.93	0.27	0.47
1.76	0.54	0.76	0.40	1.00	0.48	0.27	0.45	0.81	0.61	0.76	0.79	0.75	0.78	0.24	0.45

1	.80	0.51	0.74	0.33	1.00	0.48	0.26	0.39	0.67	0.59	0.71	0.76	0.64	0.66	0.23	0.44	
1	.84	0.49	0.72	0.30	0.95	0.47	0.27	0.34	0.67	0.55	0.62	0.78	0.56	0.58	0.21	0.43	
1	.88	0.48	0.69	0.29	0.87	0.43	0.28	0.32	0.71	0.55	0.59	0.75	0.51	0.53	0.22	0.43	
1	.92	0.47	0.67	0.27	0.80	0.38	0.29	0.33	0.72	0.63	0.56	0.67	0.48	0.52	0.22	0.42	
1	.96	0.46	0.66	0.25	0.73	0.35	0.29	0.34	0.70	0.69	0.49	0.61	0.46	0.51	0.23	0.41	
2	2.00	0.44	0.64	0.23	0.65	0.33	0.26	0.34	0.64	0.71	0.46	0.57	0.42	0.49	0.23	0.40	

Anexo J: Máximos desplazamientos del análisis dinámico incremental

Tabla J.1:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1966NS

NIVEL	M	ÁXIMO DESF	PLAZAMIENT	TO EN CENT	RO DE MAS	A DEL ÚLTII	MO NIVEL (c	m)
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	2.620	5.543	7.460	10.900	13.830	19.860	19.530	29.710
P9	2.245	4.771	6.528	9.315	12.110	16.790	16.800	25.770
P8	1.854	3.972	5.553	7.744	10.440	13.750	14.070	21.780
P7	1.468	3.191	4.555	6.166	8.807	11.110	11.350	17.790
P6	1.142	2.526	3.555	4.770	7.137	8.958	8.713	13.890
P5	0.868	1.892	2.579	3.512	5.427	6.803	6.263	10.160
P4	0.595	1.277	1.675	2.339	3.745	4.709	4.295	6.734
P3	0.352	0.723	0.907	1.310	2.190	2.791	2.507	4.079
P2	0.155	0.285	0.391	0.510	0.895	1.147	1.024	1.799
P1	0.050	0.050	0.120	0.096	0.112	0.141	0.172	0.174

Tabla J.2:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1966EW

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE	MASA DE TE	CHO (cm)	
INIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	1.602	3.015	3.980	5.927	7.333	9.161	8.664	9.504
P9	1.370	2.604	3.450	5.137	6.347	7.937	7.496	8.209
P8	1.135	2.188	2.912	4.337	5.353	6.708	6.321	6.907
P7	0.903	1.773	2.375	3.539	4.365	5.496	5.154	5.617
P6	0.685	1.370	1.853	2.756	3.402	4.312	4.017	4.366
P5	0.499	0.991	1.356	2.011	2.488	3.187	2.941	3.189
P4	0.331	0.651	0.903	1.332	1.656	2.159	1.962	2.144
P3	0.190	0.367	0.517	0.763	0.946	1.268	1.128	1.251
P2	0.087	0.163	0.229	0.328	0.403	0.559	0.485	0.560
P1	0.037	0.068	0.090	0.103	0.117	0.146	0.169	0.188

Tabla J.3:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ANCASH1970NS

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	2.370	5.005	7.096	11.450	14.580	18.980	25.260	34.140
P9	2.090	4.312	6.329	9.832	12.330	16.470	22.390	30.030
P8	1.816	3.715	5.522	8.236	10.320	13.900	19.450	25.980
P7	1.521	3.104	4.663	6.639	8.603	11.300	16.440	21.890
P6	1.210	2.459	3.748	5.082	6.885	8.721	13.350	17.710
P5	0.897	1.812	2.798	3.620	5.414	6.403	10.210	13.550
P4	0.604	1.195	1.865	2.314	3.884	4.362	7.115	9.548
P3	0.343	0.657	1.033	1.277	2.380	2.560	4.219	5.818
P2	0.145	0.267	0.398	0.510	1.033	1.083	1.740	2.503
P1	0.040	0.081	0.109	0.107	0.150	0.166	0.178	0.194

Tabla J.4:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ANCASH1970EW

AUV/FI		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	1.563	3.175	4.281	5.726	6.962	8.607	10.860	13.070
P9	1.348	2.744	3.694	4.980	6.060	7.452	9.410	11.360
P8	1.129	2.307	3.110	4.264	5.150	6.300	7.956	9.641
P7	0.911	1.873	2.551	3.542	4.238	5.217	6.515	7.953
P6	0.700	1.451	2.008	2.819	3.339	4.145	5.114	6.321
P5	0.507	1.064	1.503	2.113	2.476	3.108	3.814	4.739
P4	0.337	0.711	1.031	1.462	1.676	2.135	2.615	3.254
P3	0.194	0.410	0.614	0.878	0.979	1.269	1.568	1.924
P2	0.095	0.185	0.287	0.409	0.449	0.570	0.709	0.829
P1	0.040	0.070	0.102	0.127	0.145	0.151	0.159	0.171

Tabla J.5:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1974NS

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	2.580	5.177	7.983	11.860	16.610	19.630	24.200	26.490
P9	2.260	4.547	6.943	9.960	14.270	16.620	20.540	22.760
P8	1.922	3.887	5.865	8.051	11.900	13.840	17.110	19.200
P7	1.578	3.203	4.769	6.449	9.548	11.270	13.820	15.710
P6	1.232	2.523	3.682	5.019	7.265	8.743	10.680	12.400
P5	0.910	1.846	2.687	3.683	5.133	6.383	7.816	9.285
P4	0.640	1.207	1.772	2.438	3.259	4.280	5.274	6.360
P3	0.380	0.653	0.987	1.349	1.850	2.476	3.051	3.742
P2	0.166	0.260	0.406	0.511	0.735	0.998	1.239	1.545
P1	0.043	0.061	0.115	0.106	0.129	0.147	0.163	0.173

Tabla J.6:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1974EW

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	1.395	2.973	4.380	5.626	8.087	8.392	11.390	10.730
P9	1.207	2.567	3.771	4.882	6.988	7.307	9.855	9.346
P8	1.015	2.157	3.157	4.130	5.881	6.213	8.317	7.948
P7	0.825	1.749	2.548	3.378	4.783	5.119	6.807	6.549
P6	0.644	1.352	1.959	2.641	3.715	4.043	5.333	5.171
P5	0.473	0.979	1.408	1.938	2.719	3.009	3.931	3.843
P4	0.319	0.645	0.920	1.294	1.829	2.058	2.648	2.607
P3	0.188	0.365	0.527	0.743	1.056	1.222	1.547	1.527
P2	0.090	0.162	0.235	0.335	0.460	0.549	0.673	0.708
<u>P1</u>	0.037	0.065	0.093	0.126	0.165	0.190	0.176	0.200

Tabla J.7:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ATICO2001NS

NIVEL		MÁXIMO [DESPLAZAM	<mark>IIENTO EN C</mark>	ENTRO DE I	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	2.506	5.315	9.973	13.130	17.740	26.320	27.670	33.650
P9	2.157	4.519	8.508	11.320	15.340	22.980	23.870	29.050
P8	1.793	3.758	7.042	9.486	12.930	19.580	20.100	24.490
P7	1.472	3.103	5.633	7.684	10.550	16.160	16.490	20.070
P6	1.166	2.498	4.318	5.924	8.192	12.730	13.040	15.910
P5	0.857	1.914	3.116	4.257	5.937	9.402	9.708	11.930
P4	0.567	1.336	2.035	2.744	3.880	6.290	6.569	8.154
P3	0.317	0.789	1.130	1.473	2.125	3.638	3.766	4.734
P2	0.142	0.341	0.454	0.562	0.788	1.516	1.532	1.880
_P1	0.043	0.085	0.075	0.093	0.100	0.149	0.165	0.180

Tabla J.8:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ATICO2001EW

AUN/FI		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE	MASA DE TE	ECHO (cm)	
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	1.482	3.038	4.069	4.842	6.675	7.852	9.637	10.910
P9	1.282	2.602	3.499	4.161	5.823	6.840	8.375	9.520
P8	1.078	2.177	2.951	3.473	4.962	5.819	7.139	8.121
P7	0.875	1.768	2.423	2.798	4.098	4.799	5.924	6.722
P6	0.679	1.390	1.901	2.215	3.243	3.797	4.739	5.342
P5	0.495	1.030	1.403	1.647	2.417	2.835	3.584	4.008
P4	0.328	0.704	0.944	1.117	1.648	1.939	2.486	2.759
P3	0.189	0.417	0.548	0.670	0.971	1.158	1.495	1.640
P2	0.089	0.199	0.247	0.330	0.434	0.534	0.677	0.723
P1	0.036	0.080	0.091	0.129	0.149	0.154	0.167	0.191

Tabla J.9:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental MAULE2010NS

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	2.552	5.161	7.165	11.750	18.200	21.960	20.940	26.580
P9	2.259	4.484	6.224	10.060	15.830	18.610	18.120	23.310
P8	1.951	3.778	5.269	8.353	13.430	15.320	15.310	20.110
P7	1.630	3.061	4.317	6.662	11.010	12.240	12.550	16.850
P6	1.298	2.356	3.374	5.337	8.612	9.579	9.872	13.520
P5	0.963	1.694	2.581	4.084	6.303	7.241	7.303	10.180
P4	0.645	1.138	1.781	2.840	4.174	5.036	4.919	7.015
P3	0.364	0.665	1.036	1.670	2.443	2.996	2.814	4.155
P2	0.152	0.285	0.428	0.696	1.006	1.251	1.175	1.715
P1	0.043	0.070	0.116	0.103	0.110	0.137	0.149	0.149

Tabla J.10:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental MAULE2010EW

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	1.429	2.890	4.328	5.385	7.132	8.522	9.707	13.450
P9	1.238	2.506	3.733	4.648	6.167	7.418	8.438	11.730
P8	1.043	2.115	3.145	3.905	5.195	6.306	7.162	10.010
P7	0.848	1.723	2.559	3.166	4.229	5.195	5.890	8.287
P6	0.657	1.340	1.986	2.458	3.289	4.102	4.642	6.593
P5	0.482	0.976	1.443	1.791	2.407	3.052	3.446	4.955
P4	0.323	0.646	0.953	1.195	1.601	2.077	2.343	3.421
P3	0.189	0.369	0.540	0.686	0.909	1.218	1.383	2.037
P2	0.089	0.164	0.238	0.302	0.411	0.534	0.618	0.887
P1	0.035	0.065	0.092	0.109	0.135	0.151	0.195	0.170

Tabla J.11:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental IQUIQUE2014NS

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	2.939	5.593	8.602	12.510	14.140	17.630	16.820	21.090
P9	2.542	4.798	7.362	10.870	12.230	15.250	14.480	18.190
P8	2.137	4.081	6.109	9.191	10.300	12.850	12.160	15.300
P7	1.733	3.393	4.994	7.500	8.363	10.480	9.882	12.450
P6	1.367	2.691	3.887	5.827	6.465	8.176	7.687	9.678
P5	1.005	1.989	2.818	4.225	4.664	5.977	5.660	7.040
P4	0.663	1.316	1.837	2.760	3.033	3.960	3.870	4.641
P3	0.364	0.723	1.000	1.505	1.647	2.210	2.248	2.600
P2	0.138	0.272	0.395	0.557	0.680	0.834	0.941	1.111
P1	0.024	0.055	0.082	0.090	0.097	0.114	0.119	0.134

Tabla J.12:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental IQUIQUE2014EW

		,						
NIVEL			DESPLAZAM	<u>IIENTO EN C</u>	ENTRO DE I	MASA DE TE	ECHO (cm)	
INIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	1.456	2.976	4.119	6.231	8.217	10.320	11.520	14.230
P9	1.262	2.571	3.565	5.404	7.113	9.056	10.040	12.420
P8	1.065	2.162	3.004	4.586	6.004	7.777	8.552	10.610
P7	0.866	1.762	2.442	3.780	4.909	6.491	7.081	8.791
P6	0.673	1.373	1.892	2.994	3.858	5.210	5.639	7.003
P5	0.490	1.002	1.372	2.239	2.865	3.953	4.244	5.272
P4	0.326	0.683	0.931	1.537	1.947	2.754	2.931	3.645
P3	0.188	0.411	0.547	0.914	1.141	1.668	1.749	2.174
P2	0.090	0.198	0.253	0.420	0.521	0.762	0.774	0.944
P1	0.037	0.080	0.092	0.132	0.153	0.168	0.176	0.182

Tabla J.13:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ILLAPEL2015NS

NIVEL		MÁXIMO [DESPLAZAM	IIENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
Techo	2.557	5.340	8.171	13.310	17.680	21.140	26.570	32.720
P9	2.236	4.710	7.048	11.610	15.250	18.190	22.790	28.370
P8	1.900	4.046	5.962	9.874	12.780	15.230	18.980	23.990
P7	1.554	3.356	4.868	8.127	10.330	12.370	15.260	19.610
P6	1.205	2.648	3.766	6.392	7.988	9.649	11.740	15.320
P5	1.205	2.648	3.766	6.392	7.988	9.649	11.740	15.320
P4	0.571	1.285	1.850	3.139	3.777	4.979	5.636	7.472
P3	0.329	0.741	1.060	1.763	2.061	2.877	3.198	4.191
P2	0.142	0.318	0.440	0.686	0.747	1.127	1.237	1.562
P1	0.039	0.083	0.108	0.089	0.088	0.124	0.129	0.130

Tabla J.14:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ILLAPEL2015EW

NIVEL		MÁXIMO [DESPLAZAM	IENTO EN C	ENTRO DE I	MASA DE TE	CHO (cm)	11.690 10.180 8.664				
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g				
Techo	1.449	2.809	4.627	5.827	7.232	8.693	10.260	11.690				
P9	1.253	2.426	3.963	5.025	6.248	7.507	8.925	10.180				
P8	1.056	2.038	3.304	4.223	5.257	6.314	7.597	8.664				
P7	0.866	1.651	2.664	3.436	4.282	5.139	6.286	7.152				
P6	0.684	1.277	2.058	2.682	3.340	4.005	4.999	5.664				
P5	0.511	0.929	1.498	1.969	2.456	2.947	3.757	4.230				
P4	0.351	0.629	0.997	1.317	1.652	1.993	2.590	2.892				
P3	0.210	0.371	0.577	0.758	0.959	1.170	1.545	1.716				
P2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
P1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				

Anexo K: Desplazamientos relativos de entrepiso del análisis dinámico incremental

Tabla K.1: *Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1966NS*

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENT	REPISO (cm)		
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.375	0.772	0.932	1.585	1.720	3.070	2.730	3.940
P8	0.391	0.799	0.975	1.571	1.670	3.040	2.730	3.990
P7	0.386	0.781	0.998	1.578	1.633	2.640	2.720	3.990
P6	0.357	0.770	1.000	1.396	1.670	2.152	2.637	3.900
P5	0.291	0.705	0.976	1.258	1.710	2.155	2.450	3.730
P4	0.272	0.615	0.904	1.173	1.682	2.094	2.125	3.426
P3	0.243	0.554	0.768	1.029	1.555	1.918	1.839	2.999
P2	0.199	0.438	0.529	0.800	1.295	1.644	1.483	2.373
P1	0.110	0.235	0.275	0.414	0.789	1.006	0.852	1.625
Máximo	0.391	0.799	1.000	1.585	1.720	3.070	2.730	3.990

Tabla K.2: *Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1966EW*

NIVEL			DESPLAZAI	MIENTO REL	ATIVO ENT	REPISO (cm)		
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.232	0.411	0.530	0.790	0.986	1.224	1.168	1.295
P8	0.235	0.416	0.538	0.800	0.994	1.229	1.175	1.302
P7	0.232	0.415	0.537	0.798	0.988	1.212	1.167	1.290
P6	0.218	0.403	0.522	0.783	0.963	1.184	1.137	1.251
P5	0.186	0.379	0.497	0.745	0.914	1.125	1.076	1.177
P4	0.168	0.340	0.453	0.679	0.832	1.028	0.979	1.045
P3	0.141	0.284	0.385	0.569	0.710	0.891	0.834	0.893
P2	0.104	0.204	0.288	0.435	0.543	0.709	0.643	0.697
P1	0.054	0.095	0.151	0.230	0.286	0.432	0.336	0.390
Máximo	0.235	0.416	0.538	0.800	0.994	1.229	1.175	1.302

Tabla K.3:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ANCASH1970NS

NIVEL			DESPLAZAI	MIENTO REL	ATIVO ENT	REPISO (cm)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.280	0.693	0.852	1.618	2.250	2.510	2.870	4.110
P8	0.274	0.718	0.887	1.596	2.010	2.570	2.940	4.050
P7	0.295	0.717	0.898	1.597	1.908	2.600	3.010	4.090
P6	0.311	0.645	0.915	1.557	1.756	2.579	3.090	4.180
P5	0.317	0.647	0.950	1.462	1.521	2.318	3.140	4.160
P4	0.303	0.617	0.933	1.306	1.530	2.041	3.095	4.002
P3	0.264	0.538	0.832	1.037	1.504	1.802	2.896	3.730
P2	0.199	0.397	0.635	0.767	1.347	1.477	2.479	3.315
P1	0.105	0.192	0.297	0.403	0.883	0.917	1.562	2.309
Máximo	0.317	0.718	0.950	1.618	2.250	2.600	3.140	4.180

Tabla K.4:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ANCASH1970NS

NIVEL		DESPLAZAMIENTO RELATIVO ENTREPISO (cm)							
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g	
P9	0.215	0.431	0.587	0.746	0.902	1.155	1.450	1.710	
P8	0.219	0.437	0.584	0.716	0.910	1.152	1.454	1.719	
P7	0.218	0.434	0.559	0.722	0.912	1.083	1.441	1.688	
P6	0.211	0.422	0.543	0.723	0.899	1.072	1.401	1.632	
P5	0.193	0.387	0.505	0.706	0.863	1.037	1.300	1.582	
P4	0.170	0.354	0.472	0.651	0.800	0.973	1.199	1.485	
P3	0.143	0.301	0.418	0.584	0.697	0.866	1.047	1.330	
P2	0.106	0.225	0.326	0.469	0.530	0.699	0.859	1.095	
P1	0.055	0.115	0.185	0.282	0.304	0.419	0.550	0.658	
Máximo	0.219	0.437	0.587	0.746	0.912	1.155	1.454	1.719	

Tabla K.5:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1974NS

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENTE	REPISO (cm))	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.320	0.630	1.040	1.900	2.340	3.010	3.660	3.730
P8	0.338	0.660	1.078	1.909	2.370	2.780	3.430	3.560
P7	0.344	0.684	1.096	1.602	2.352	2.570	3.290	3.490
P6	0.346	0.680	1.087	1.471	2.283	2.527	3.140	3.310
P5	0.336	0.677	0.995	1.408	2.132	2.360	2.864	3.115
P4	0.306	0.639	0.915	1.272	1.874	2.103	2.542	2.925
P3	0.259	0.554	0.785	1.089	1.409	1.804	2.223	2.618
P2	0.214	0.405	0.597	0.838	1.115	1.478	1.812	2.197
P1	0.123	0.199	0.291	0.429	0.606	0.850	1.076	1.372
Máximo	0.346	0.684	1.096	1.909	2.370	3.010	3.660	3.730

Tabla K.6: *Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental LIMA1974EW*

NIIV/E1		I	DESPLAZAN	MENTO REL	ATIVO ENTI	REPISO (cm)	
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.188	0.406	0.609	0.744	1.099	1.085	1.535	1.386
P8	0.192	0.410	0.614	0.752	1.107	1.094	1.538	1.398
P7	0.190	0.408	0.609	0.752	1.098	1.094	1.510	1.399
P6	0.181	0.397	0.589	0.737	1.068	1.076	1.474	1.378
P5	0.170	0.373	0.551	0.703	0.996	1.034	1.402	1.328
P4	0.154	0.335	0.488	0.644	0.890	0.951	1.283	1.236
P3	0.131	0.280	0.394	0.552	0.773	0.836	1.101	1.080
P2	0.098	0.203	0.292	0.407	0.596	0.674	0.874	0.862
P1	0.053	0.097	0.151	0.215	0.325	0.410	0.520	0.508
Máximo	0.192	0.410	0.614	0.752	1.107	1.094	1.538	1.399

Tabla K.7:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ATICO2001NS

NIVEL		I	DESPLAZAN	IIENTO REL	ATIVO ENT	REPISO (cm)	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.349	0.796	1.465	1.810	2.400	3.340	3.800	4.600
P8	0.364	0.818	1.466	1.834	2.410	3.400	3.770	4.560
P7	0.368	0.736	1.409	1.802	2.380	3.420	3.610	4.420
P6	0.359	0.605	1.315	1.760	2.358	3.430	3.450	4.160
P5	0.309	0.584	1.202	1.667	2.255	3.328	3.332	3.980
P4	0.290	0.578	1.081	1.513	2.057	3.112	3.139	3.776
P3	0.253	0.547	0.905	1.271	1.755	2.652	2.803	3.420
P2	0.189	0.449	0.676	0.911	1.338	2.122	2.259	2.854
P1	0.099	0.256	0.379	0.473	0.692	1.385	1.388	1.701
Máximo	0.368	0.818	1.466	1.834	2.410	3.430	3.800	4.600

Tabla K.8:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ATICO2001EW

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENTE	REPISO (cm)		
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.200	0.436	0.570	0.698	0.852	1.012	1.262	1.390
P8	0.204	0.425	0.577	0.688	0.861	1.021	1.236	1.399
P7	0.204	0.409	0.573	0.683	0.864	1.020	1.215	1.399
P6	0.196	0.388	0.553	0.643	0.855	1.002	1.185	1.380
P5	0.184	0.361	0.514	0.568	0.826	0.962	1.155	1.334
P4	0.166	0.326	0.459	0.530	0.769	0.896	1.098	1.249
P3	0.140	0.287	0.396	0.463	0.677	0.781	0.991	1.119
P2	0.102	0.218	0.301	0.355	0.537	0.624	0.818	0.917
P1	0.053	0.119	0.164	0.201	0.307	0.395	0.526	0.571
Máximo	0.204	0.436	0.577	0.698	0.864	1.021	1.262	1.399

Tabla K.9:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental MAULE2010NS

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENT	REPISO (cm)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.293	0.677	0.941	1.792	2.370	3.350	2.930	3.410
P8	0.308	0.706	0.955	1.744	2.400	3.290	2.810	3.200
P7	0.321	0.717	0.952	1.691	2.420	3.080	2.760	3.260
P6	0.332	0.705	0.955	1.624	2.398	2.661	2.678	3.330
P5	0.335	0.666	0.931	1.496	2.309	2.338	2.569	3.340
P4	0.318	0.566	0.863	1.253	2.129	2.205	2.384	3.165
P3	0.282	0.495	0.745	1.170	1.763	2.040	2.105	2.860
P2	0.216	0.382	0.608	0.974	1.437	1.745	1.641	2.440
P1	0.114	0.214	0.329	0.593	0.899	1.122	1.047	1.566
Máximo	0.335	0.717	0.955	1.792	2.420	3.350	2.930	3.410

Tabla K.10: *Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental MAULE2010EW*

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENTE	REPISO (cm)		
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.191	0.384	0.595	0.737	0.965	1.104	1.269	1.720
P8	0.195	0.391	0.588	0.743	0.972	1.112	1.276	1.720
P7	0.195	0.392	0.586	0.739	0.966	1.111	1.272	1.723
P6	0.191	0.383	0.573	0.708	0.940	1.093	1.248	1.694
P5	0.180	0.364	0.543	0.667	0.882	1.050	1.196	1.638
P4	0.161	0.330	0.490	0.596	0.806	0.975	1.103	1.534
P3	0.135	0.278	0.413	0.509	0.692	0.859	0.960	1.384
P2	0.100	0.205	0.302	0.384	0.498	0.684	0.765	1.150
P1	0.054	0.101	0.146	0.204	0.276	0.383	0.474	0.738
Máximo	0.195	0.392	0.595	0.743	0.972	1.112	1.276	1.723

Tabla K.11:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental IQUIQUE2014NS

NIVEL			DESPLAZAN	MIENTO REL	ATIVO ENTE	REPISO (cm)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.397	0.795	1.240	1.640	1.910	2.390	2.340	2.940
P8	0.405	0.788	1.253	1.679	1.930	2.400	2.320	2.940
P7	0.404	0.716	1.217	1.691	1.937	2.370	2.278	2.860
P6	0.400	0.719	1.120	1.673	1.898	2.304	2.195	2.772
P5	0.381	0.703	1.069	1.602	1.801	2.199	2.073	2.638
P4	0.343	0.673	0.981	1.465	1.631	2.017	1.901	2.399
P3	0.299	0.593	0.837	1.255	1.386	1.750	1.650	2.041
P2	0.226	0.451	0.625	0.948	0.967	1.376	1.307	1.501
P1	0.114	0.217	0.314	0.472	0.583	0.727	0.831	0.991
Máximo	0.405	0.795	1.253	1.691	1.937	2.400	2.340	2.940

Tabla K.12:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental IQUIQUE2014EW

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENTE	REPISO (cm)		PGA=0.8g 1.810 1.810 1.819 1.788				
INIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g				
P9	0.194	0.405	0.554	0.827	1.104	1.264	1.480	1.810				
P8	0.198	0.409	0.561	0.818	1.109	1.279	1.488	1.810				
P7	0.199	0.400	0.562	0.806	1.095	1.286	1.471	1.819				
P6	0.193	0.389	0.550	0.786	1.051	1.281	1.442	1.788				
P5	0.183	0.371	0.520	0.755	0.993	1.257	1.395	1.731				
P4	0.165	0.319	0.441	0.702	0.918	1.199	1.313	1.627				
P3	0.138	0.272	0.384	0.623	0.806	1.086	1.182	1.471				
P2	0.101	0.213	0.295	0.494	0.620	0.906	0.976	1.230				
P1	0.053	0.118	0.161	0.288	0.368	0.595	0.598	0.763				
Máximo	0.199	0.409	0.562	0.827	1.109	1.286	1.488	1.819				

Tabla K.13:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ILLAPEL2015NS

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENT	REPISO (cm))	
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.321	0.630	1.123	1.700	2.430	3.110	3.780	4.350
P8	0.336	0.664	1.086	1.736	2.470	3.080	3.810	4.380
P7	0.346	0.690	1.094	1.747	2.450	2.860	3.720	4.380
P6	0.349	0.708	1.102	1.735	2.342	2.721	3.520	4.290
P5	0.337	0.702	1.020	1.684	2.206	2.395	3.286	4.100
P4	0.297	0.661	0.896	1.569	2.005	2.275	2.818	3.748
P3	0.249	0.544	0.790	1.376	1.716	2.102	2.438	3.281
P2	0.187	0.423	0.620	1.077	1.314	1.750	1.961	2.629
P1	0.103	0.235	0.333	0.597	0.663	1.019	1.108	1.432
Máximo	0.349	0.708	1.123	1.747	2.470	3.110	3.810	4.380

Tabla K.14:

Máximos desplazamientos en el centro de masa de techo – Análisis Dinámico Incremental ILLAPEL2015EW

NIVEL			DESPLAZA	MIENTO REL	ATIVO ENT	REPISO (cm)		
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.196	0.383	0.664	0.802	0.984	1.186	1.335	1.510
P8	0.197	0.388	0.659	0.802	0.991	1.193	1.328	1.516
P7	0.194	0.387	0.640	0.787	0.975	1.175	1.311	1.512
P6	0.189	0.374	0.606	0.754	0.942	1.134	1.287	1.488
P5	0.179	0.348	0.560	0.713	0.884	1.058	1.242	1.434
P4	0.161	0.306	0.501	0.652	0.804	0.954	1.167	1.338
P3	0.140	0.262	0.421	0.559	0.693	0.823	1.045	1.176
P2	0.108	0.195	0.314	0.426	0.538	0.651	0.849	0.947
P1	0.061	0.104	0.169	0.227	0.299	0.381	0.533	0.588
Máximo	0.197	0.388	0.664	0.802	0.991	1.193	1.335	1.516

Anexo L: Derivas de entrepiso del análisis dinámico incremental

Tabla L.1:Derivas de entrepiso- Análisis Dinámico Incremental LIMA 1966NS

NIVEL				DERIVAS DE	ENTREPISO)		
INIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0014	0.0030	0.0036	0.0061	0.0066	0.0118	0.0105	0.0152
P8	0.0015	0.0031	0.0038	0.0060	0.0064	0.0117	0.0105	0.0153
P7	0.0015	0.0030	0.0038	0.0061	0.0063	0.0102	0.0105	0.0153
P6	0.0014	0.0030	0.0038	0.0054	0.0064	0.0083	0.0101	0.0150
P5	0.0011	0.0027	0.0038	0.0048	0.0066	0.0083	0.0094	0.0143
P4	0.0010	0.0024	0.0035	0.0045	0.0065	0.0081	0.0082	0.0132
P3	0.0009	0.0021	0.0030	0.0040	0.0060	0.0074	0.0071	0.0115
P2	0.0008	0.0017	0.0020	0.0031	0.0050	0.0063	0.0057	0.0091
P1	0.0004	0.0009	0.0011	0.0016	0.0030	0.0039	0.0033	0.0063
Máximo	0.0015	0.0031	0.0038	0.0061	0.0066	0.0118	0.0105	0.0153

Tabla L.2:

Derivas de entrepiso- Análisis Dinámico Incremental LIMA1966EW

NIVEL				DERIVAS DE	ENTREPISO)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0009	0.0016	0.0020	0.0030	0.0038	0.0047	0.0045	0.0050
P8	0.0009	0.0016	0.0021	0.0031	0.0038	0.0047	0.0045	0.0050
P7	0.0009	0.0016	0.0021	0.0031	0.0038	0.0047	0.0045	0.0050
P6	0.0008	0.0016	0.0020	0.0030	0.0037	0.0046	0.0044	0.0048
P5	0.0007	0.0015	0.0019	0.0029	0.0035	0.0043	0.0041	0.0045
P4	0.0006	0.0013	0.0017	0.0026	0.0032	0.0040	0.0038	0.0040
P3	0.0005	0.0011	0.0015	0.0022	0.0027	0.0034	0.0032	0.0034
P2	0.0004	0.0008	0.0011	0.0017	0.0021	0.0027	0.0025	0.0027
P1	0.0002	0.0004	0.0006	0.0009	0.0011	0.0017	0.0013	0.0015
Máximo	0.0009	0.0016	0.0021	0.0031	0.0038	0.0047	0.0045	0.0050

Tabla L.3:Derivas de entrepiso- Análisis Dinámico Incremental ANCASH1970NS

NIVEL				DERIVAS DE	ENTREPISO)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0011	0.0027	0.0033	0.0062	0.0087	0.0097	0.0110	0.0158
P8	0.0011	0.0028	0.0034	0.0061	0.0077	0.0099	0.0113	0.0156
P7	0.0011	0.0028	0.0035	0.0061	0.0073	0.0100	0.0116	0.0157
P6	0.0012	0.0025	0.0035	0.0060	0.0068	0.0099	0.0119	0.0161
P5	0.0012	0.0025	0.0037	0.0056	0.0059	0.0089	0.0121	0.0160
P4	0.0012	0.0024	0.0036	0.0050	0.0059	0.0079	0.0119	0.0154
P3	0.0010	0.0021	0.0032	0.0040	0.0058	0.0069	0.0111	0.0143
P2	0.0008	0.0015	0.0024	0.0030	0.0052	0.0057	0.0095	0.0128
P1	0.0004	0.0007	0.0011	0.0016	0.0034	0.0035	0.0060	0.0089
Máximo	0.0012	0.0028	0.0037	0.0062	0.0087	0.0100	0.0121	0.0161

Tabla L.4:Derivas de entrepiso- Análisis Dinámico Incremental ANCASH1970EW

NIVEL			[DERIVAS DE	ENTREPISO)		
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0008	0.0017	0.0023	0.0029	0.0035	0.0044	0.0056	0.0066
P8	0.0008	0.0017	0.0022	0.0028	0.0035	0.0044	0.0056	0.0066
P7	0.0008	0.0017	0.0022	0.0028	0.0035	0.0042	0.0055	0.0065
P6	0.0008	0.0016	0.0021	0.0028	0.0035	0.0041	0.0054	0.0063
P5	0.0007	0.0015	0.0019	0.0027	0.0033	0.0040	0.0050	0.0061
P4	0.0007	0.0014	0.0018	0.0025	0.0031	0.0037	0.0046	0.0057
P3	0.0006	0.0012	0.0016	0.0022	0.0027	0.0033	0.0040	0.0051
P2	0.0004	0.0009	0.0013	0.0018	0.0020	0.0027	0.0033	0.0042
P1	0.0002	0.0004	0.0007	0.0011	0.0012	0.0016	0.0021	0.0025
Máximo	0.0008	0.0017	0.0023	0.0029	0.0035	0.0044	0.0056	0.0066

Tabla L.5:Derivas de entrepiso- Análisis Dinámico Incremental LIMA1974NS

NIVEL				DERIVAS DE	ENTREPISO)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0012	0.0024	0.0040	0.0073	0.0090	0.0116	0.0141	0.0143
P8	0.0013	0.0025	0.0041	0.0073	0.0091	0.0107	0.0132	0.0137
P7	0.0013	0.0026	0.0042	0.0062	0.0090	0.0099	0.0127	0.0134
P6	0.0013	0.0026	0.0042	0.0057	0.0088	0.0097	0.0121	0.0127
P5	0.0013	0.0026	0.0038	0.0054	0.0082	0.0091	0.0110	0.0120
P4	0.0012	0.0025	0.0035	0.0049	0.0072	0.0081	0.0098	0.0113
P3	0.0010	0.0021	0.0030	0.0042	0.0054	0.0069	0.0086	0.0101
P2	0.0008	0.0016	0.0023	0.0032	0.0043	0.0057	0.0070	0.0085
P1	0.0005	0.0008	0.0011	0.0017	0.0023	0.0033	0.0041	0.0053
Máximo	0.0013	0.0026	0.0042	0.0073	0.0091	0.0116	0.0141	0.0143

Tabla L.6:Derivas de entrepiso- Análisis Dinámico Incremental LIMA1974EW

NIVEL				DERIVAS DE	ENTREPISO)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0007	0.0016	0.0023	0.0029	0.0042	0.0042	0.0059	0.0053
P8	0.0007	0.0016	0.0024	0.0029	0.0043	0.0042	0.0059	0.0054
P7	0.0007	0.0016	0.0023	0.0029	0.0042	0.0042	0.0058	0.0054
P6	0.0007	0.0015	0.0023	0.0028	0.0041	0.0041	0.0057	0.0053
P5	0.0007	0.0014	0.0021	0.0027	0.0038	0.0040	0.0054	0.0051
P4	0.0006	0.0013	0.0019	0.0025	0.0034	0.0037	0.0049	0.0048
P3	0.0005	0.0011	0.0015	0.0021	0.0030	0.0032	0.0042	0.0042
P2	0.0004	0.0008	0.0011	0.0016	0.0023	0.0026	0.0034	0.0033
P1	0.0002	0.0004	0.0006	0.0008	0.0012	0.0016	0.0020	0.0020
Máximo	0.0007	0.0016	0.0024	0.0029	0.0043	0.0042	0.0059	0.0054

Tabla L.7:Derivas de entrepiso- Análisis Dinámico Incremental ATICO2001NS

NIVEL			[DERIVAS DE	ENTREPISO)		
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0013	0.0031	0.0056	0.0070	0.0092	0.0128	0.0146	0.0177
P8	0.0014	0.0031	0.0056	0.0071	0.0093	0.0131	0.0145	0.0175
P7	0.0014	0.0028	0.0054	0.0069	0.0092	0.0132	0.0139	0.0170
P6	0.0014	0.0023	0.0051	0.0068	0.0091	0.0132	0.0133	0.0160
P5	0.0012	0.0022	0.0046	0.0064	0.0087	0.0128	0.0128	0.0153
P4	0.0011	0.0022	0.0042	0.0058	0.0079	0.0120	0.0121	0.0145
P3	0.0010	0.0021	0.0035	0.0049	0.0068	0.0102	0.0108	0.0132
P2	0.0007	0.0017	0.0026	0.0035	0.0051	0.0082	0.0087	0.0110
P1	0.0004	0.0010	0.0015	0.0018	0.0027	0.0053	0.0053	0.0065
Máximo	0.0014	0.0031	0.0056	0.0071	0.0093	0.0132	0.0146	0.0177

Tabla L.8:Derivas de entrepiso- Análisis Dinámico Incremental ATICO2001EW

NIVEL				DERIVAS DE	ENTREPISO)		_
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0008	0.0017	0.0022	0.0027	0.0033	0.0039	0.0049	0.0053
P8	0.0008	0.0016	0.0022	0.0026	0.0033	0.0039	0.0048	0.0054
P7	0.0008	0.0016	0.0022	0.0026	0.0033	0.0039	0.0047	0.0054
P6	0.0008	0.0015	0.0021	0.0025	0.0033	0.0039	0.0046	0.0053
P5	0.0007	0.0014	0.0020	0.0022	0.0032	0.0037	0.0044	0.0051
P4	0.0006	0.0013	0.0018	0.0020	0.0030	0.0034	0.0042	0.0048
P3	0.0005	0.0011	0.0015	0.0018	0.0026	0.0030	0.0038	0.0043
P2	0.0004	0.0008	0.0012	0.0014	0.0021	0.0024	0.0031	0.0035
P1	0.0002	0.0005	0.0006	0.0008	0.0012	0.0015	0.0020	0.0022
Máximo	8000.0	0.0017	0.0022	0.0027	0.0033	0.0039	0.0049	0.0054

Tabla L.9:Derivas de entrepiso- Análisis Dinámico Incremental MAULE2010NS

NIVEL	DERIVAS DE ENTREPISO							
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0011	0.0026	0.0036	0.0069	0.0091	0.0129	0.0113	0.0131
P8	0.0012	0.0027	0.0037	0.0067	0.0092	0.0127	0.0108	0.0123
P7	0.0012	0.0028	0.0037	0.0065	0.0093	0.0118	0.0106	0.0125
P6	0.0013	0.0027	0.0037	0.0062	0.0092	0.0102	0.0103	0.0128
P5	0.0013	0.0026	0.0036	0.0058	0.0089	0.0090	0.0099	0.0128
P4	0.0012	0.0022	0.0033	0.0048	0.0082	0.0085	0.0092	0.0122
P3	0.0011	0.0019	0.0029	0.0045	0.0068	0.0078	0.0081	0.0110
P2	0.0008	0.0015	0.0023	0.0037	0.0055	0.0067	0.0063	0.0094
P1	0.0004	0.0008	0.0013	0.0023	0.0035	0.0043	0.0040	0.0060
Máximo	0.0013	0.0028	0.0037	0.0069	0.0093	0.0129	0.0113	0.0131

Tabla L.10:Derivas de entrepiso— Análisis Dinámico Incremental MAULE2010EW

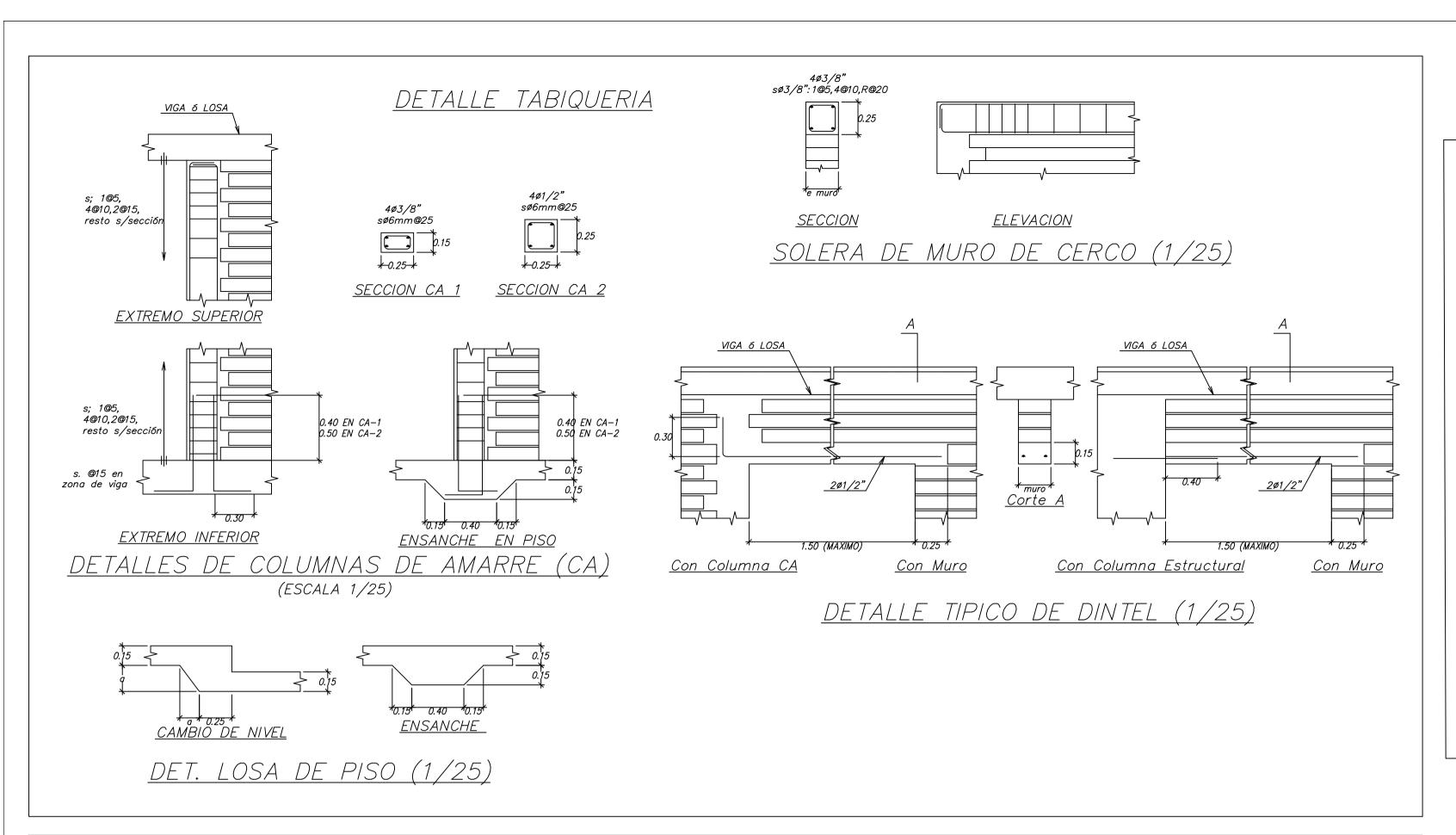
NIVEL	DERIVAS DE ENTREPISO							
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0007	0.0015	0.0023	0.0028	0.0037	0.0042	0.0049	0.0066
P8	0.0008	0.0015	0.0023	0.0029	0.0037	0.0043	0.0049	0.0066
P7	0.0007	0.0015	0.0023	0.0028	0.0037	0.0043	0.0049	0.0066
P6	0.0007	0.0015	0.0022	0.0027	0.0036	0.0042	0.0048	0.0065
P5	0.0007	0.0014	0.0021	0.0026	0.0034	0.0040	0.0046	0.0063
P4	0.0006	0.0013	0.0019	0.0023	0.0031	0.0038	0.0042	0.0059
P3	0.0005	0.0011	0.0016	0.0020	0.0027	0.0033	0.0037	0.0053
P2	0.0004	0.0008	0.0012	0.0015	0.0019	0.0026	0.0029	0.0044
P1	0.0002	0.0004	0.0006	0.0008	0.0011	0.0015	0.0018	0.0028
Máximo	8000.0	0.0015	0.0023	0.0029	0.0037	0.0043	0.0049	0.0066

Tabla L.11:Derivas de entrepiso- Análisis Dinámico Incremental IQUIQUE2014NS

NIVEL	DERIVAS DE ENTREPISO							
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0015	0.0031	0.0048	0.0063	0.0073	0.0092	0.0090	0.0113
P8	0.0016	0.0030	0.0048	0.0065	0.0074	0.0092	0.0089	0.0113
P7	0.0016	0.0028	0.0047	0.0065	0.0075	0.0091	0.0088	0.0110
P6	0.0015	0.0028	0.0043	0.0064	0.0073	0.0089	0.0084	0.0107
P5	0.0015	0.0027	0.0041	0.0062	0.0069	0.0085	0.0080	0.0101
P4	0.0013	0.0026	0.0038	0.0056	0.0063	0.0078	0.0073	0.0092
P3	0.0011	0.0023	0.0032	0.0048	0.0053	0.0067	0.0063	0.0079
P2	0.0009	0.0017	0.0024	0.0036	0.0037	0.0053	0.0050	0.0058
P1	0.0004	0.0008	0.0012	0.0018	0.0022	0.0028	0.0032	0.0038
Máximo	0.0016	0.0031	0.0048	0.0065	0.0075	0.0092	0.0090	0.0113

Tabla L.12:Derivas de entrepiso— Análisis Dinámico Incremental IQUIQUE2014EW

NIVEL				DERIVAS DE	ENTREPISO)		
NIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0007	0.0016	0.0021	0.0032	0.0042	0.0049	0.0057	0.0070
P8	0.0008	0.0016	0.0022	0.0031	0.0043	0.0049	0.0057	0.0070
P7	0.0008	0.0015	0.0022	0.0031	0.0042	0.0049	0.0057	0.0070
P6	0.0007	0.0015	0.0021	0.0030	0.0040	0.0049	0.0055	0.0069
P5	0.0007	0.0014	0.0020	0.0029	0.0038	0.0048	0.0054	0.0067
P4	0.0006	0.0012	0.0017	0.0027	0.0035	0.0046	0.0051	0.0063
P3	0.0005	0.0010	0.0015	0.0024	0.0031	0.0042	0.0045	0.0057
P2	0.0004	0.0008	0.0011	0.0019	0.0024	0.0035	0.0038	0.0047
P1	0.0002	0.0005	0.0006	0.0011	0.0014	0.0023	0.0023	0.0029
Máximo	0.0008	0.0016	0.0022	0.0032	0.0043	0.0049	0.0057	0.0070


Tabla L.13:
Derivas de entrepiso- Análisis Dinámico Incremental ILLAPEL2015NS

NIVEL	DERIVAS DE ENTREPISO							
MIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0012	0.0024	0.0043	0.0065	0.0093	0.0120	0.0145	0.0167
P8	0.0013	0.0026	0.0042	0.0067	0.0095	0.0118	0.0147	0.0168
P7	0.0013	0.0027	0.0042	0.0067	0.0094	0.0110	0.0143	0.0168
P6	0.0013	0.0027	0.0042	0.0067	0.0090	0.0105	0.0135	0.0165
P5	0.0013	0.0027	0.0039	0.0065	0.0085	0.0092	0.0126	0.0158
P4	0.0011	0.0025	0.0034	0.0060	0.0077	0.0088	0.0108	0.0144
P3	0.0010	0.0021	0.0030	0.0053	0.0066	0.0081	0.0094	0.0126
P2	0.0007	0.0016	0.0024	0.0041	0.0051	0.0067	0.0075	0.0101
P1	0.0004	0.0009	0.0013	0.0023	0.0026	0.0039	0.0043	0.0055
Máximo	0.0013	0.0027	0.0043	0.0067	0.0095	0.0120	0.0147	0.0168

Tabla L.14:Derivas de entrepiso- Análisis Dinámico Incremental ILLAPEL2015EW

NIVEL	DERIVAS DE ENTREPISO							
INIVEL	PGA=0.1g	PGA=0.2g	PGA=0.3g	PGA=0.4g	PGA=0.5g	PGA=0.6g	PGA=0.7g	PGA=0.8g
P9	0.0008	0.0015	0.0026	0.0031	0.0038	0.0046	0.0051	0.0058
P8	0.0008	0.0015	0.0025	0.0031	0.0038	0.0046	0.0051	0.0058
P7	0.0007	0.0015	0.0025	0.0030	0.0038	0.0045	0.0050	0.0058
P6	0.0007	0.0014	0.0023	0.0029	0.0036	0.0044	0.0050	0.0057
P5	0.0007	0.0013	0.0022	0.0027	0.0034	0.0041	0.0048	0.0055
P4	0.0006	0.0012	0.0019	0.0025	0.0031	0.0037	0.0045	0.0051
P3	0.0005	0.0010	0.0016	0.0021	0.0027	0.0032	0.0040	0.0045
P2	0.0004	0.0007	0.0012	0.0016	0.0021	0.0025	0.0033	0.0036
P1	0.0002	0.0004	0.0006	0.0009	0.0012	0.0015	0.0020	0.0023
Máximo	0.0008	0.0015	0.0026	0.0031	0.0038	0.0046	0.0051	0.0058

Anexo M: Planos estructurales

LONGITUD DE TRASLAPE (It)

ESPECIFICACIONES TECNICAS 1.- CONCRETO :

CONCRETO ARMADO :f'c= 210 Kg/cm2 CONCRETO :f'c= 210 Kg/cm2 :f'c= 210, 280 Kg/cm2 (ZAPATAS) CONCRETO CONCRETO :f'c= 280 Kg/cm2 (CISTERNA) CONCRETO :f'c= 280,350 Kg/cm2 (PLACAS)

:f'c= 280 Kg/cm2 (VER COLUMNAS INDICADAS EN E-08) CONCRETO

CONCRETO EN MURO ANCLADO CONCRETO

:f'c= 280 Kg/cm2 (MURO ANCLADO) f'cl= 245 Kg/cm2 (en la Etapa de Tensado)

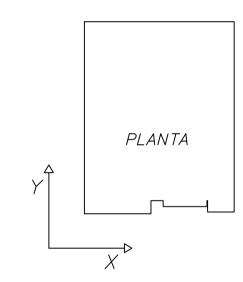
CONCRETO CICLOPEO CIMIENTOS CORRIDOS

: CONCRETO CICLOPEO 1:10 (CEMENTO-HORMIGON) MAS 30% DE PIEDRA GRANDE DE TAMAÑO MAX 6" : CONCRETO CICLOPEO 1:8 (CEMENTO-HORMIGON) MAS 25% DE PIEDRA GRANDE DE TAMAÑO MAX 2" SOBRECIMIENTOS : CONCRETO CICLOPEO 1:10 (CEMENTO—HORMIGON) MAS 30% DE PIEDRA GRANDE DE TAMAÑO MAX 6 FALSA CIMENTACION

2.- ACERO :

ACERO EN CONCRETO ARMADO _ Usar barras corrugadas: Grado 60 ASTM A615 $fy = 4200 \, \text{Kg/cm2}$

3. - RECUBRIMIENTOS

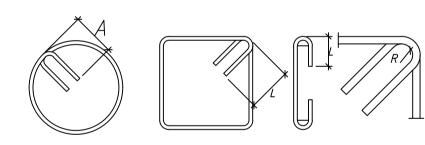

Superficie en contacto con el terreno 7.5 cm. _ Columnas y Vigas peraltadas 4.0 cm. _ Recubrimiento de Columnas en Cisterna 4.0 cm. _ Elementos de confinamiento y/o arriostre de la albanileria 2.5 cm. _ Losas y escaleras 2.5 cm. _ Aligerados y Vigas Chatas 2.5 cm.

4.— ALBAÑILERIA .

- Unidades de Albanileria tipo ITINTEC IV (arcilla)

fb = 130 Kg/cm2Asentados con mortero cemento: arena, 1:6

PARAMETROS PARA EL ANÁLISIS SISMICO									
Z :	0.45	U : 1	.0	S	: 1.0			2.5	
Tx : 0.85 seg. Cx : 1.18					Ty: 0.40 seg. Cy: 2.49				
Rx: 4.5 (IRREGULAR) Ia (x): 1.0 Ip (x): 0.75					Ry: 6.0 (REGULAR) Ia (Y): 1.0 Ip (Y): 1.0				
Rox	: 6.0 (M	MUROS E	PE CC	ORTE)	Roy: 6.0 (MUROS DE CORTE)				
	DESPLAZI MAXIMO ULTIMO	D DEL			LIMITE DE AZAMIENTO DESPLAZAMIENTO DE ENTREPISO LATERAL DE ENTREPI			NTO	
X	18.11	cm.		1.6	9 cm. 1.82 cm.				
Y	5.60	cm.		0.7	'3 cm. 1.82 cm.				



1.- VER LAS TOLERANCIAS PARA LA CONSTRUCCIÓN EN LAS ESPECIFICACIONES TÉCNICAS. PARA LOS EQUIPOS LA TOLERANCIA ADMISIBLE SERÁ LA PERMITIDA EN EL PROYECTO DE EQUIPAMIENTO MECÁNICO O SIMILAR.

2.- PARA EL TRAZO EN OBRA, TODAS LAS COTAS Y NIVELES DEBERÁN VERIFICARSE CON LA ÚLTIMA VERSIÓN DE ARQUITECTURA O LO QUE CORRESPONDA SEGÚN EL CASO.

3.- PARA UNA MEJOR VISUALIZACIÓN, LAS BARRAS DE REFUERZO NO ESTAN DIBUJADAS EN SU POSICIÓN REAL, POR TANTO SE DEBERÁ DETERMINAR SU UBICACIÓN SEGÚN LOS RECUBRIMIENTOS LIBRES Y ESPACIAMIENTOS MÁXIMOS INDICADOS EN LAS ESPECIFICACIONES TÉCNICAS.

DETALLES TIPICOS D

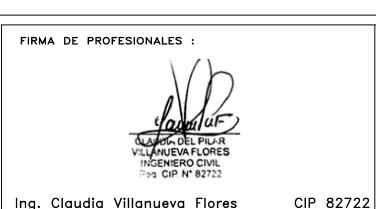
VX(cortante): 271.72 TON

	8mm	15cm	1.75c
	3/8"	15cm	2.0ci
<u>DE ESTRIBOS</u>	1/2"	17.5cm	2.5ci

6mm

7.5cm

1.5cm

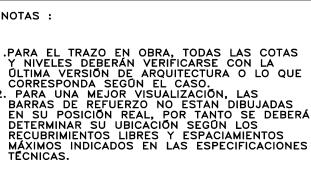

VY(cortante):438.51 TON

RESUMEN DE CONDICIONES DE CIMENTACION				
TIPO DE CIMENTACION	Zapatas Aisladas, Combinadas			
ESTRATO DE APOYO DE CIMENTACION	Gravo-arenoso			
PROFUNDIDAD DE CIMENTACION	Min 1.20 m. por debajo del nivel 3º sótano			
PRESION ADMISIBLE	Ver estudios de suelos			
RECOMENDACIONES ADICIONALES Durante las excavaciones para la cimentación deberá verificarse que se sobrepasen las				

f'm = 45 Kg/cm2

capas superiores de relleno y arcilla limosa en por lo menos 0.30 m. En los casos en que al excavar hasta las profundidades mínimas de cimentación recomendadas no se cumpla con este requisito deberá profundizarse la cimentación hasta cumplirlo. Procediendose luego a llenar una falsa zapata de concreto ciclopeo (f'c=60 Kg/cm2) en la altura que haya sido necesario sobre excavar.

- R C - N - E - E - IN A 0 - C	PEALIZAR LOS EMPALMES EN EL TERCIO ENTRAL DE LA ALTURA DE LA COLUMNA. NO EMPALMAR MAS DE 50% DEL AREA TOTAL. NO UNA SECCION. NO CASO DE NO EMPALMARSE EN LA ZONA IDICADA O CON EL PORCENTAJE ESPECIFICADO UMENTAR LA LONGITUD DE EMPALME EN UN 30% CONSULTAR AL PROYECTISTA. OLOCAR ESTRIBOS CERRADOS A UN SPACIAMIENTO MÁXIMO DE 100mm 6 B/4 EN ODDA LA LONGITUD DEL EMPALME.	50 11 11 ELEVACIONES	Ø I(cm) 3/8" 25 1/2" 30 5/8" 35	Diámetro traccion traccion Barras Sup. 3/8" 30 42 1/2" 32 45 5/8" 40 56 3/4" 50 70 1" 90 125
H/4	$D = LADO \ MAYOR \ DE \ COLUMNA$ $B = LADO \ MENOR \ DE \ COLUMNA$ $VALORES \ DE \ E \ (mm)$ $kg/cm^{2} \ 210 \ 280 \ 350$ $3/8" \ 550 \ 500 \ 450$ $1/2" \ 750 \ 650 \ 600$ $5/8" \ 900 \ 800 \ 700$ $3/4" \ 1100 \ 950 \ 850$ $1" \ 1800 \ 1550 \ 1400$	0.25 PARA Ø3/0.40 PARA Ø1/0.10 (TIPICO ESQUINAS		ENCUENTROS
EMPALMES POR TRASLAPE E	TN COLUMNAS	<u>DETALLES</u>	TIPICOS DE ANCLAJE DE	ARMADURAS


Ing. Claudia Villanueva Flores

ESPECIALISTA: INGENIEROS CONSULTORES 6 www.hvs.com.pe

NOTAS:

PROPIETARIO:

RESIDENCIAL **BOLOGNESI S.A.C**

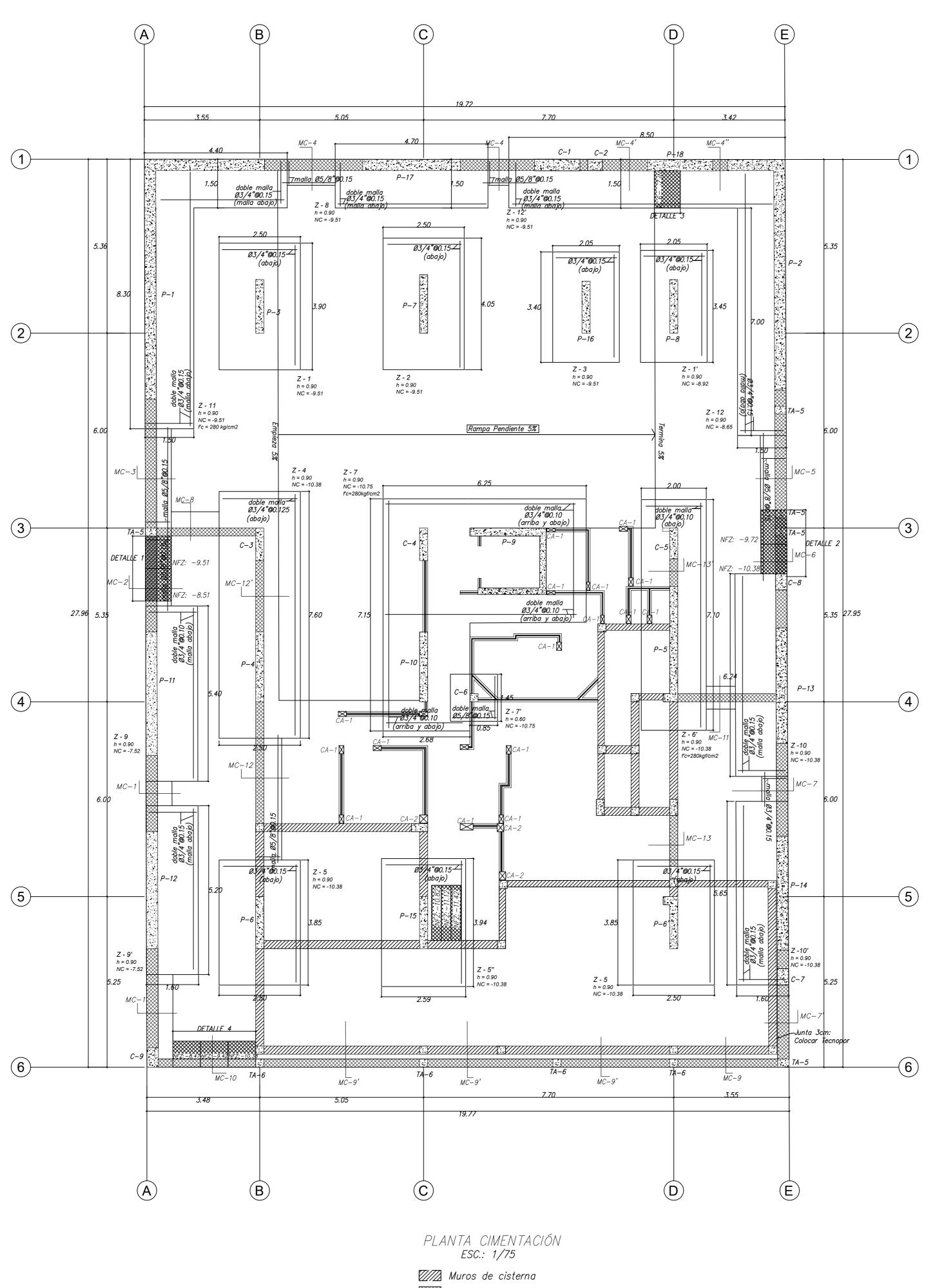
ING. CLAUDIA VILLANUEVA FLORES 1.PARA EL TRAZO EN OBRA, TODAS LAS COTAS
Y NIVELES DEBERÁN VERIFICARSE CON LA
ÚLTIMA VERSIÓN DE ARQUITECTURA O LO QUE
CORRESPONDA SEGÚN EL CASO.
2. PARA UNA MEJOR VISUALIZACIÓN, LAS
BARRAS DE REFUERZO NO ESTAN DIBUJADAS
EN SU POSICIÓN REAL, POR TANTO SE DEBERÁ
DETERMINAR SU UBICACIÓN SEGÚN LOS
RECUBRIMIENTOS LIBRES Y ESPACIAMIENTOS
MÁXIMOS INDICADOS EN LAS ESPECIFICACIONES
TÉCNICAS.

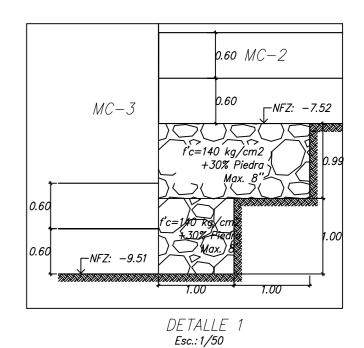
HECHO:

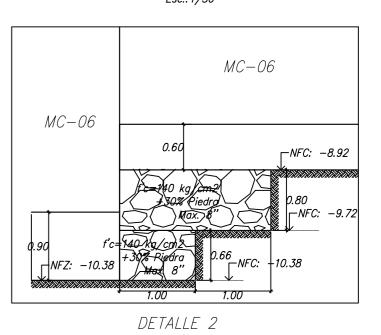
C. REVISIÓN:

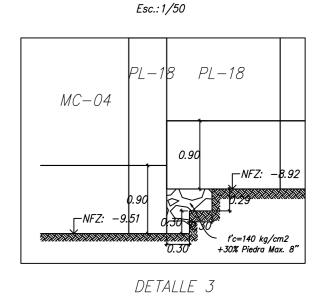
APROBACIÓN: C.MELENDEZ M.VILLANUEVA - C.VILLANUEVA C.VILLANUEVA

RESIDENCIAL **BOLOGNESI**

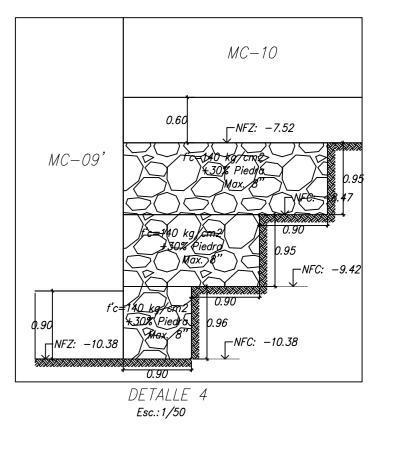

PROYECTO:


TÉCNICAS I


PLANO :


ESPECIFICACIONES

ESPECIALIDAD: **REVISION:** E-01 **ESTRUCTURAS JUNIO 2021** 01 DE 43 INDICADA



Esc.: 1/50

Muro de contención

RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN

Profesional responsable (PR) :Eddy Teofilo Scipión Piñella Ing. Civil CIP: 29935

Tipo de Cimentación: Zapatas Aisladas

Estrato de apoyo de la cimentación : Gravas Arenosas (GP)

Profundidad de la Napa Freática : No encontrado.

Parámetros de diseño de la cimentación: Profundidad de Cimentación (Df): -1.20 m.

Presión Admisible (Zapata: 4.90 Kg/cm2.) Factor de seguridad por corte (Estático, Dinámico): 3.0

Asentamiento Diferencial Máximo Aceptable: 0.49 cm

RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN

Parámetros sísmicos del suelo (De acuerdo a la Norma E.030)

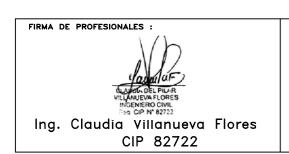
Zona Sísmica: 0.45 Tipo de perfil del suelo: Perfil Tipo S1: Suelos muy rígidos

Factor del suelo (S):1.0 Periodo TP (s): 0.40

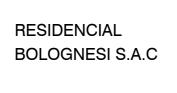
Periodo TL (s): 2.50

Agresividad del suelo a la Cimentación : No detectada.

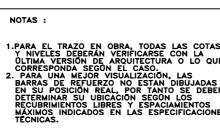
Se podrá emplear Cemento Portland Tipo I.

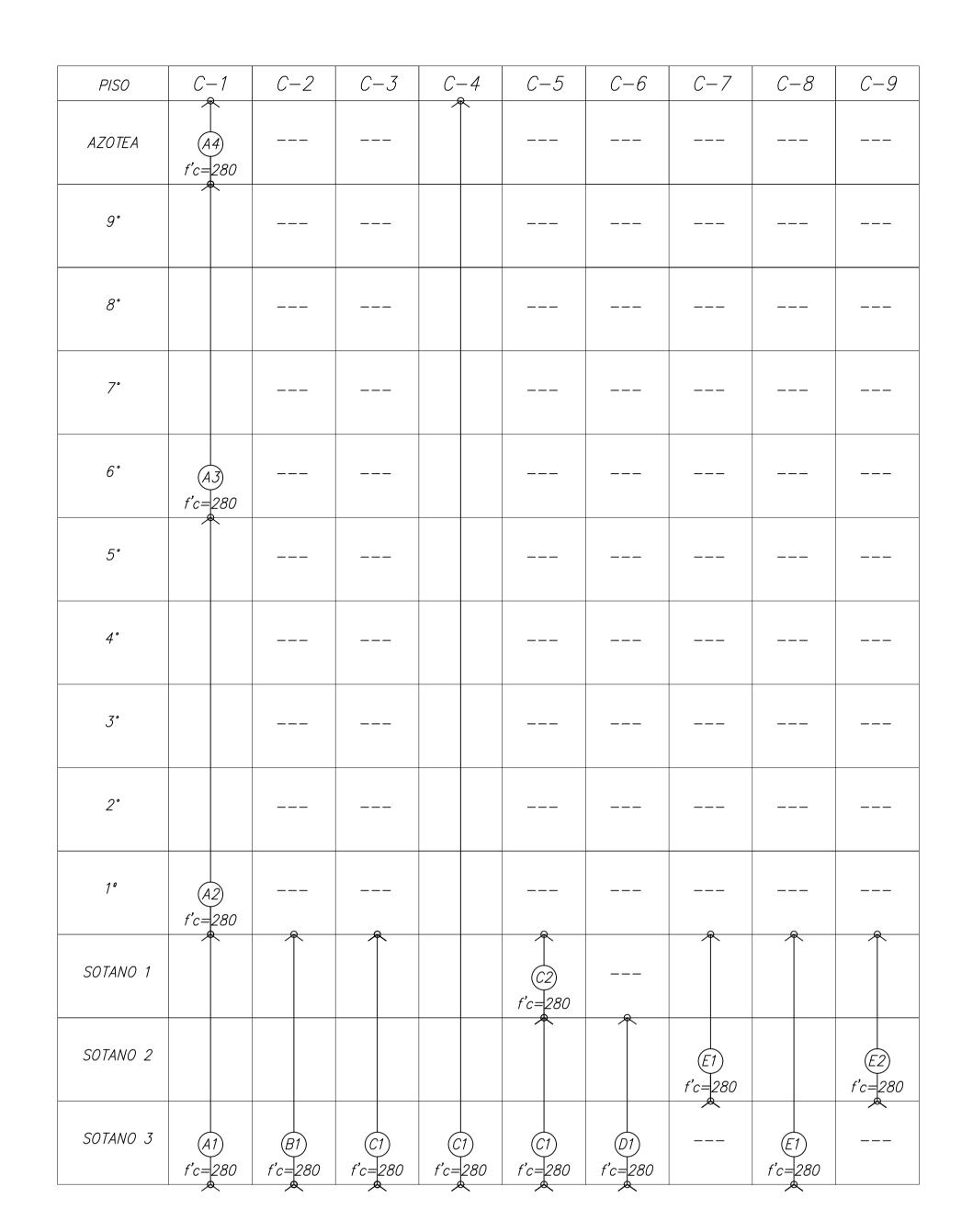

Problemas especiales de cimentación:

Licuación: No presenta Colapso: No presenta

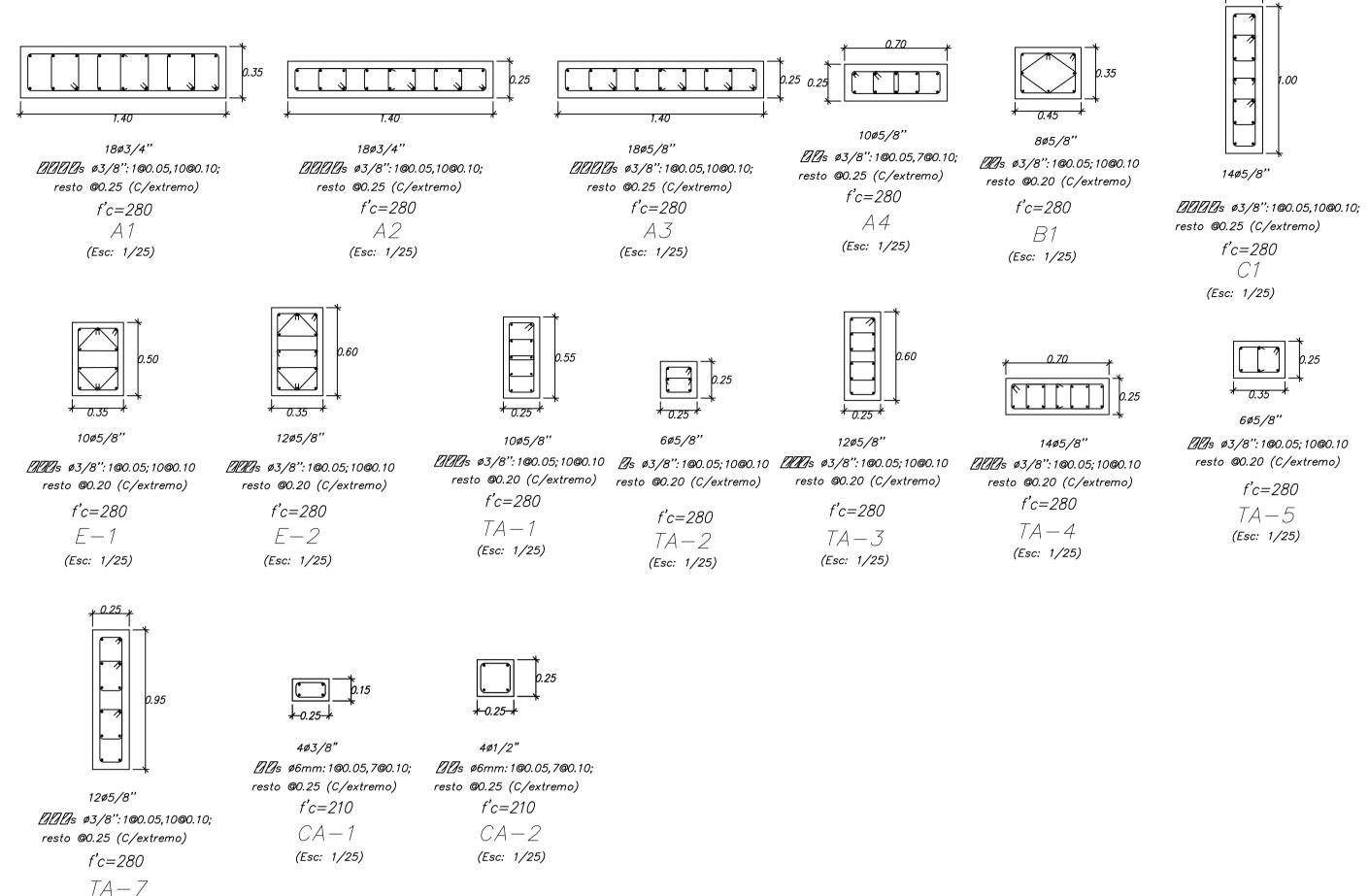

Expansión: No presenta

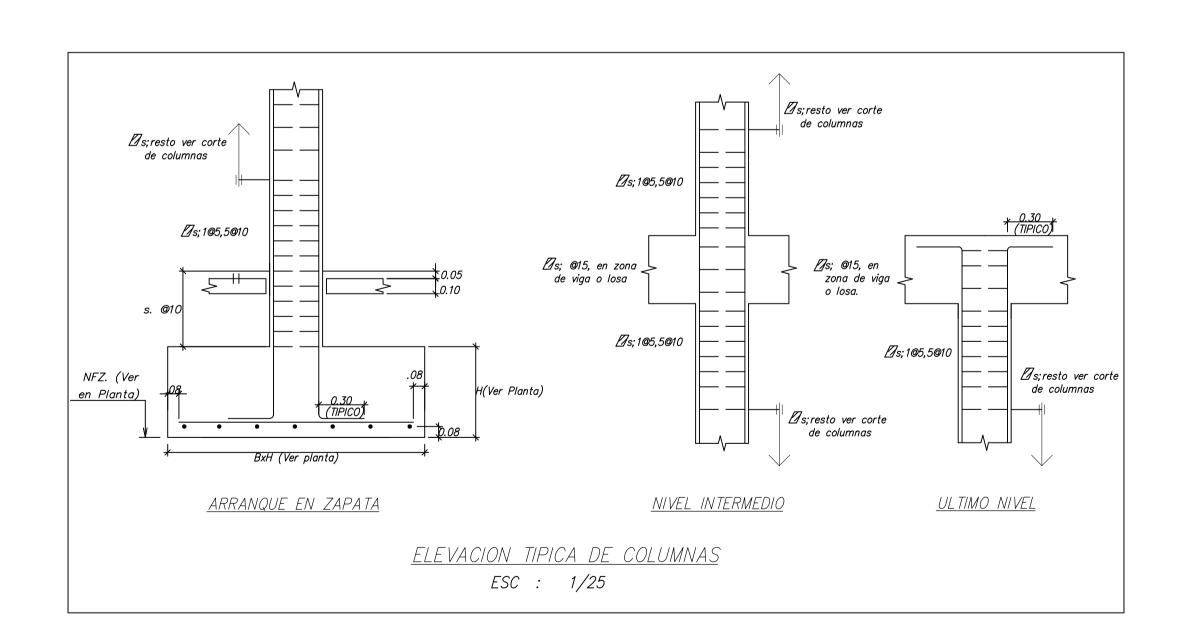
Indicaciones Adicionales: No debe cimentarse sobre suelos contaminados en el caso de hallarse rellenos de gran altura, se deberá realizar sub—zapatas de concreto ciclópeo, hasta llegar al terreno natural.

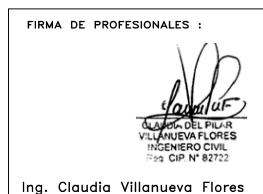

PROYECTO :


PROPIETARIO :

	DISEÑO:
	ING. CLAUDIA VILLANUEVA FLORES
TAS	HECHO:
QUE	C.MELENDEZ
AS BERÁ	REVISIÓN:
	M.VILLANUEVA — C.VILLANUEVA
S ONES	APROBACIÓN:
	M.VILLANUEVA - C.VILLANUEVA

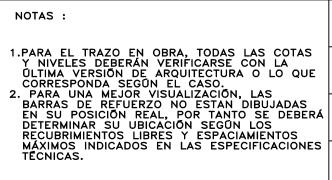

есто :	PLANO :
RESIDENCIAL BOLOGNESI	PLANTA DE CIMENTAC


	ESPECIALIDAD:	LAMINA:		REVISION:
CIÓN	ESTRUCTURAS		E-05	2
	FECHA:	DE:		ESCALA:
	JUNIO 2021		05 DE 43	INDICADA



NOTA: LOS TRASLAPES DE VARILLAS DE ACEROS PARA EMPALMAR VARILLAS DEL MISMO O DE OTRO DIÁMETRO DEBEN UBICARSE SIEMPRE EN EL TERCIO CENTRAL DE LAS COLUMNAS. EN CADA CASO SOLO SE PODRÁ EMPALMAR HASTA EL 50% DE LAS VARILLAS DE UNA SECCIÓN. EN NINGÚN ENTREPISO SE PODRÁ COLOCAR MENOS ACERO DE REFUERZO QUE EL INDICADO EN ESTE PLANO. LA LONGITUD DE TRASLAPE ES LA INDICADA EN EL PLANO E-01.

CIP 82722



RESIDENCIAL
BOLOGNESI S.A.C

(Esc: 1/25)

	DISEÑO:	ING.	CLAUDIA	VILLANUEVA	FLORES	PROYECTO :
QUE	несно:	C.ME	ELENDEZ			RE
DAS EBERÁ DS	REVISIÓN:	M.VII	LANUEVA	- C.VILLAN	NUEVA	ВС
IONES	APROBACIÓ		LANUEVA			

RESIDENCIAL	
BOLOGNESI	
BOLOGINESI	

PLANO :	ESPECIALIDAD:	LAMINA:
COLUMNAS	ESTRUCTURAS	E-08
	JUNIO 2021	08 DE 43

0.25

//s ø3/8":1@0.05;10@0.10

resto @0.20 (C/extremo)

f**'**c=280

D1

(Esc: 1/25)

REVISION:

INDICADA

¥ 0.25 *¥*

6ø5/8"

DDs ø3/8":1@0.05,7@0.10;

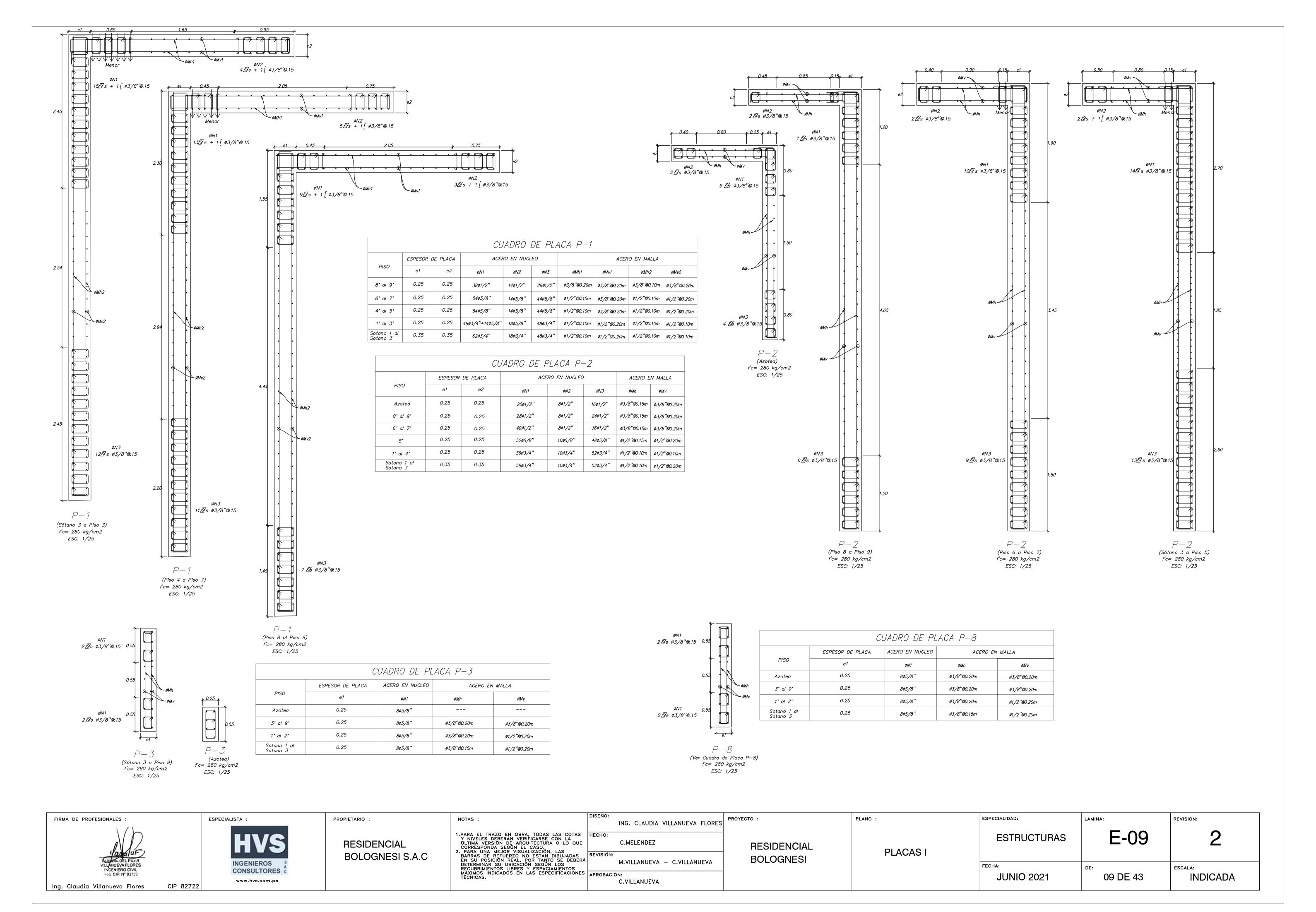
resto @0.25 (C/extremo)

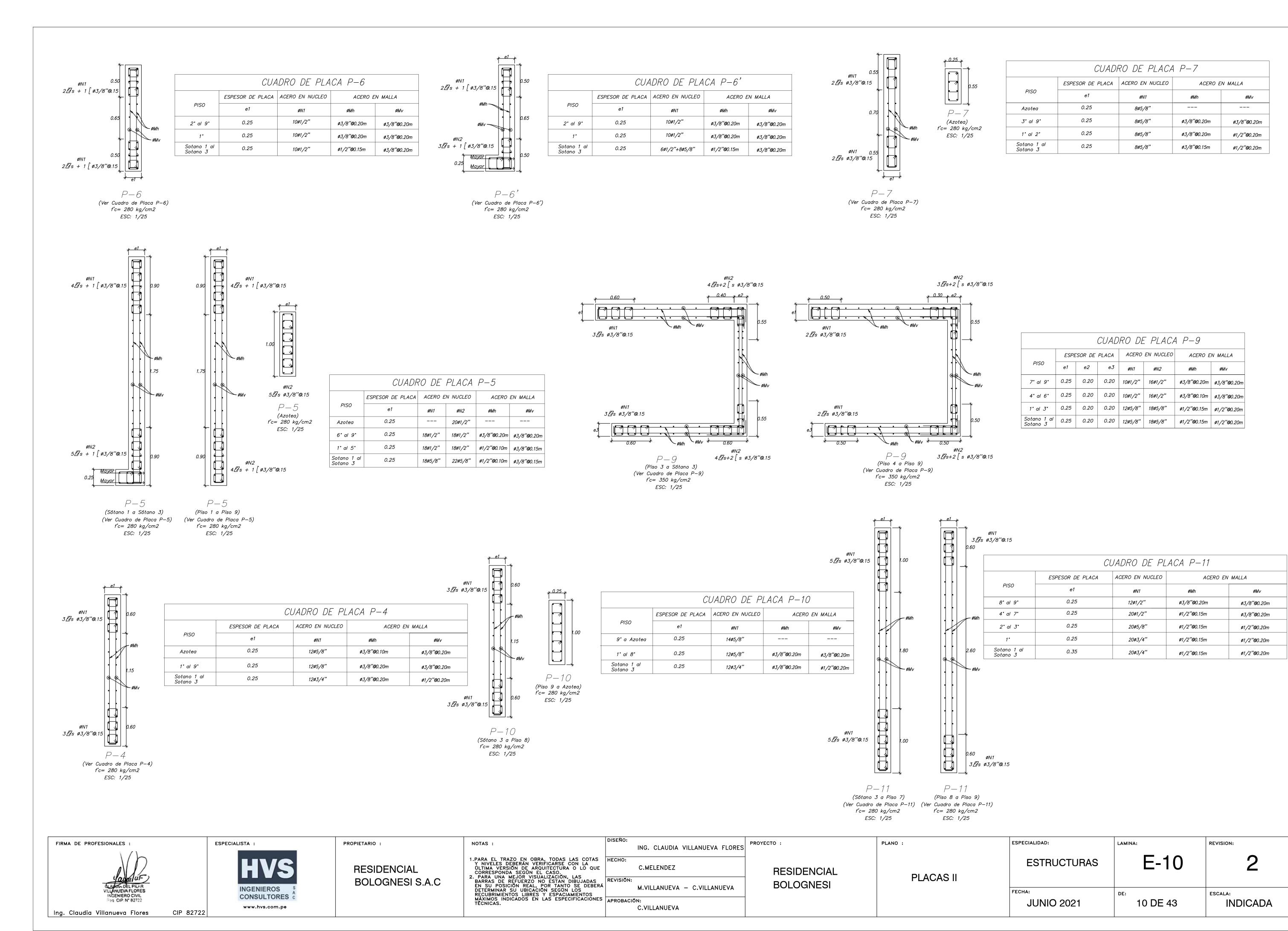
f'c=280

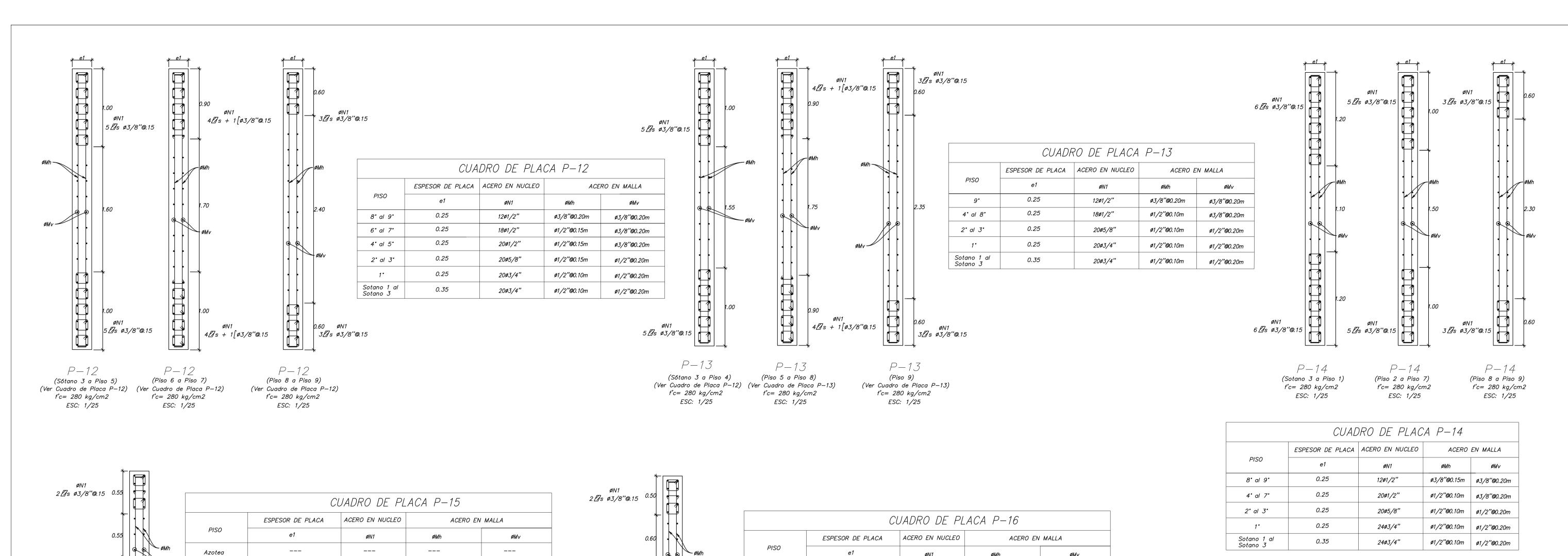
(Esc: 1/25)

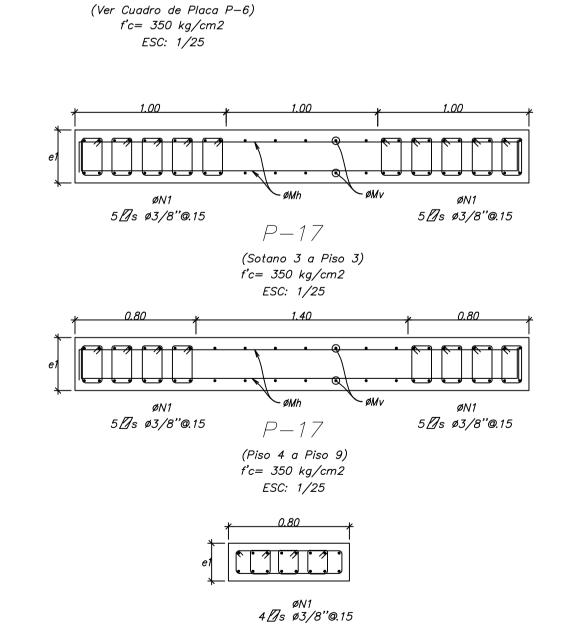
| 0.25 |

4ø5/8"


Øs ø3/8":1@0.05;10@0.10

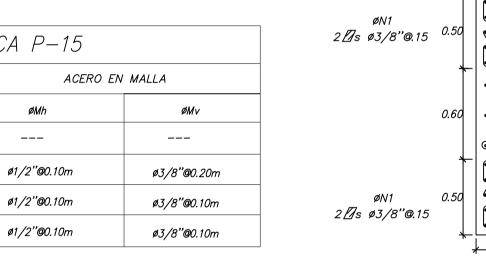

resto @0.20 (C/extremo)


f'c=280


TA-6

(Esc: 1/25)

P - 17


(Azotea) f'c= 350 kg/cm2 ESC: 1/25

CIP 82722

5° al 9°

1° al 4°

Sotano 1 al Sotano 3

ESPESOR DE PLACA

0.25

0.25

0.25

0.25

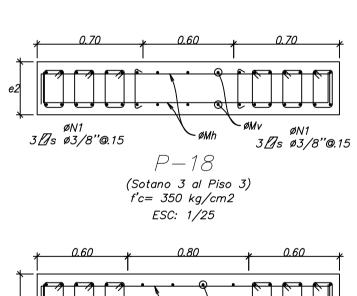
0.25

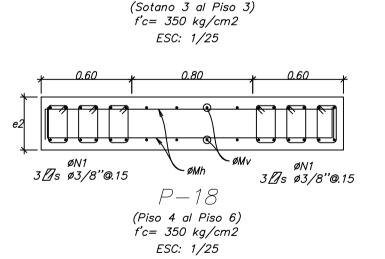
0.35

PISO

Azotea

8° al 9°


4° al 7°


2° al 3°

1.

Sotano 1 al Sotano 3

	CUADRO DE PLACA P-16				
	ESPESOR DE PLACA	ACERO EN NUCLEO	.EO ACERO EN MALLA		
PISO	e1	ØN1	ØMh	ØM v	
Azotea					
1° al 9°					
Sotano 1 al Sotano 3	0.25	10ø5/8"	ø3/8"@0.20m	ø3/8"@0.20m	

CUADRO DE PLACA P-18						
	ESPESOR DE PLACA	ACERO EN NUCLEO ACERO EN MALLA		EN MALLA		
PISO	e1	ØN1	ØMh	ØMV		
8° al 9°	0.25	10ø1/2"	ø3/8''@0.10m	ø3/8"@0.20m		
7 °	0.25	10ø1/2"	ø1/2"@0.10m	ø3/8"@0.20m		
4° al 6°	0.25	12ø5/8"	ø1/2"@0.10m	ø3/8"@0.20m		
2° al 3°	0.25	14ø5/8"	ø1/2"@0.10m	ø1/2"@0.20m		
1.	0.25	14ø3/4"	ø1/2"@0.10m	ø1/2"@0.20m		
Sotano 1 al Sotano 3	0.35	14ø3/4"	ø1/2"@0.10m	ø1/2"@0.15m		

	(Sotano 3 al F f'c= 350 kg/d ESC: 1/25	cm2
0.60	0.80	0.60
e2 ØN1 3 Ø \$ \$\ \text{Ø3} / 8'' @.15	ØMh P-18 (Piso 4 al Piso f'c= 350 kg/d	o 6)
	ESC: 1/25	į

† 0.50 †	1.00	*	0.50
e2			
ØN1 2₫s Ø3/8"@.15	™ øMh	∽øMv 2 <i>∐</i> s	ØN1 Ø3/8"@.15
	P—18 7 al Piso 9 350 kg/cm		

0.50	1.00	1	0.50
e2 ØN1 2 Øs ø3/8"@.15	øMh	- ØMv	ØN1 Ø3/8"@.15
(Piso	P—18 p 7 al Piso 9) = 350 kg/cm2		\$370 9 .13

FIRM	A DE	PROF	ESIONALES	:
			CLANDIA DE VILLANUERA INGENIERA Peg CIP. N	OCIVIL
Ing.	Clau	dia V	/illanueva	Flores

2 \$\overline{\pi}s \ \phi 3/8"@.15

P - 15

ESPECIA	LISTA :
	HVS
	INGENIEROS S CONSULTORES C
	www.hvs.com.pe

0.25

0.25

0.25

10ø5/8"

10ø5/8"

10ø5/8"

RESIDENCIAL **BOLOGNESI S.A.C**

PROPIETARIO:

NOTAS :	
1.PARA EL TRAZO EN OBRA, TODAS LAS Y NIVELES DEBERÁN VERIFICARSE CON ÚLTIMA VERSIÓN DE ARQUITECTURA O CORRESPONDA SEGÚN EL CASO. 2. PARA UNA MEJOR VISUALIZACIÓN, LA: BARRAS DE REFUERZO NO ESTAN DIBLEN SU POSICIÓN REAL, POR TANTO SE DETERMINAR SU UBICACIÓN SEGÚN LO: RECUBRIMIENTOS LIBRES Y ESPACIAMIE MÁXIMOS INDICADOS EN LAS ESPECIFICATECNICAS.	LA LO QUE S JADAS I DEBERÁ S NTOS

:	DISEÑO:	ING.	CLAUDIA	VILLANUEVA	FLORI
ELES DEBERÁN VERIFICARSE CON LA A VERSIÓN DE ARQUITECTURA O LO QUE SPONDA SEGÚN EL CASO. UNA MEJOR VISUALIZACIÓN LAS	HECHO:	C.ME	ILENDEZ		
	REVISIÓN:	M.VIL	LANUEVA	- C.VILLAN	UEVA
	APROBACIÓ		LANUEVA		

P - 16

(Ver Cuadro de Placa P-16)

f'c= 280 kg/cm2

ESC: 1/25

ACERO EN MALLA

ø3/8"@0.20m

ø1/2"@0.10m

ø1/2"@0.10m

ø1/2"@0.10m

ø1/2"@0.10m

 $\phi M v$

ø3/8"@0.20m

ø3/8"@0.20m

ø1/2"@0.20m

ø1/2"@0.20m

ø1/2"@0.20m

CUADRO DE PLACA P-17

ACERO EN NUCLEO

øN1

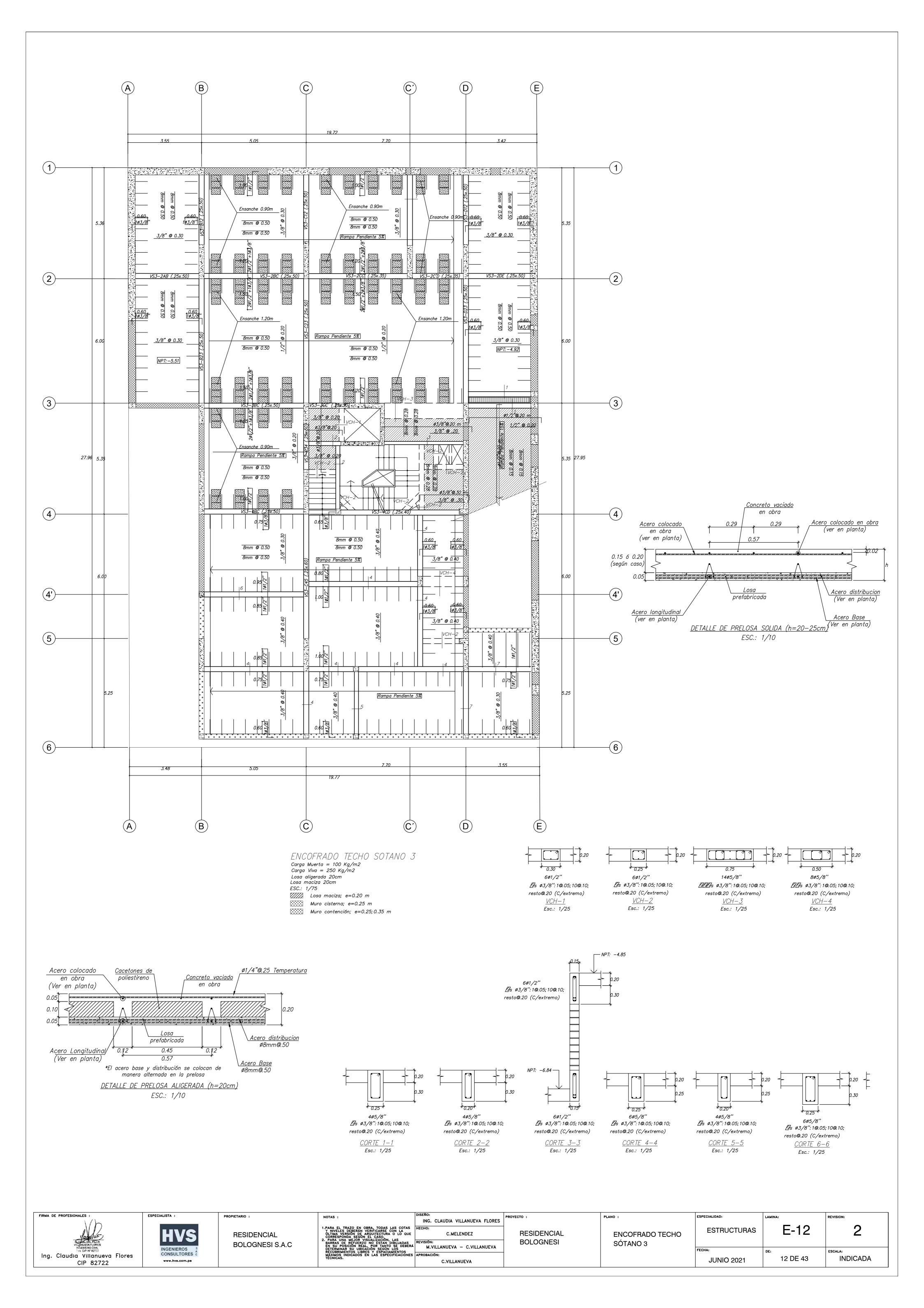
16ø1/2"

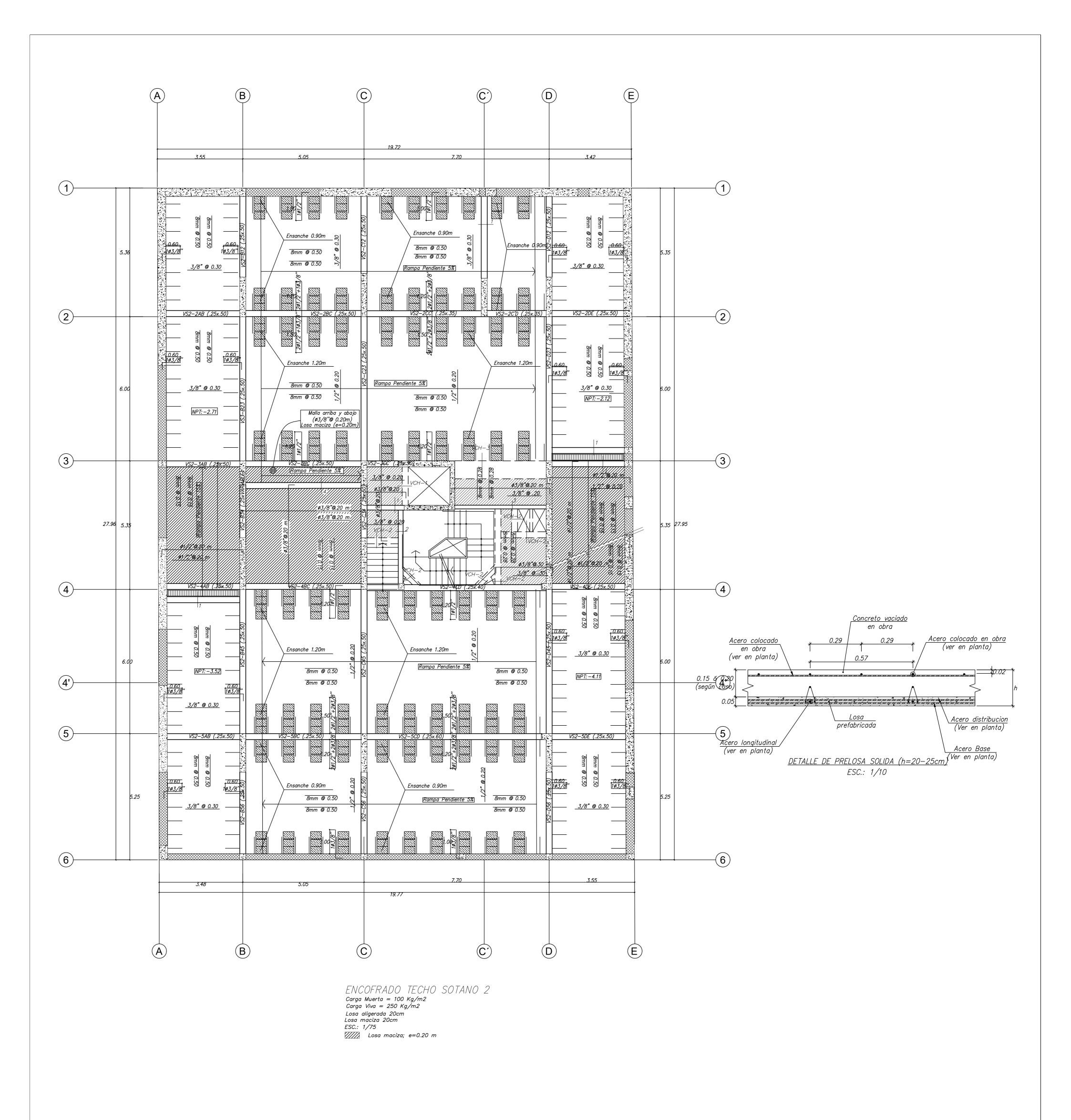
16ø1/2"

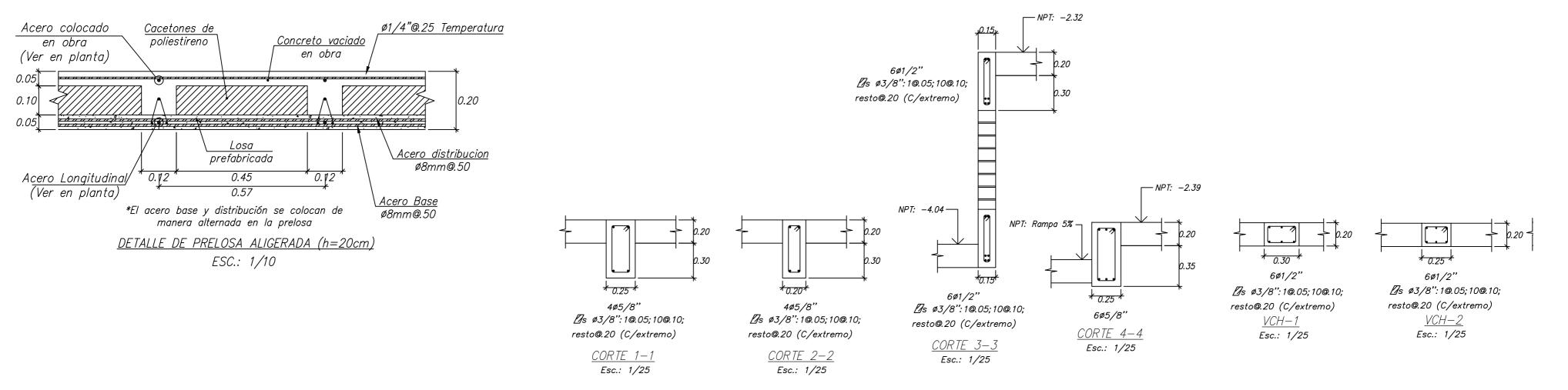
16ø1/2"

20ø5/8"

20ø3/4"

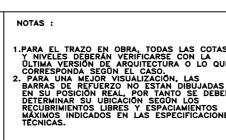

20ø3/4"


RESIDENCIAL	
BOLOGNESI	
2020011201	


PROYECTO:

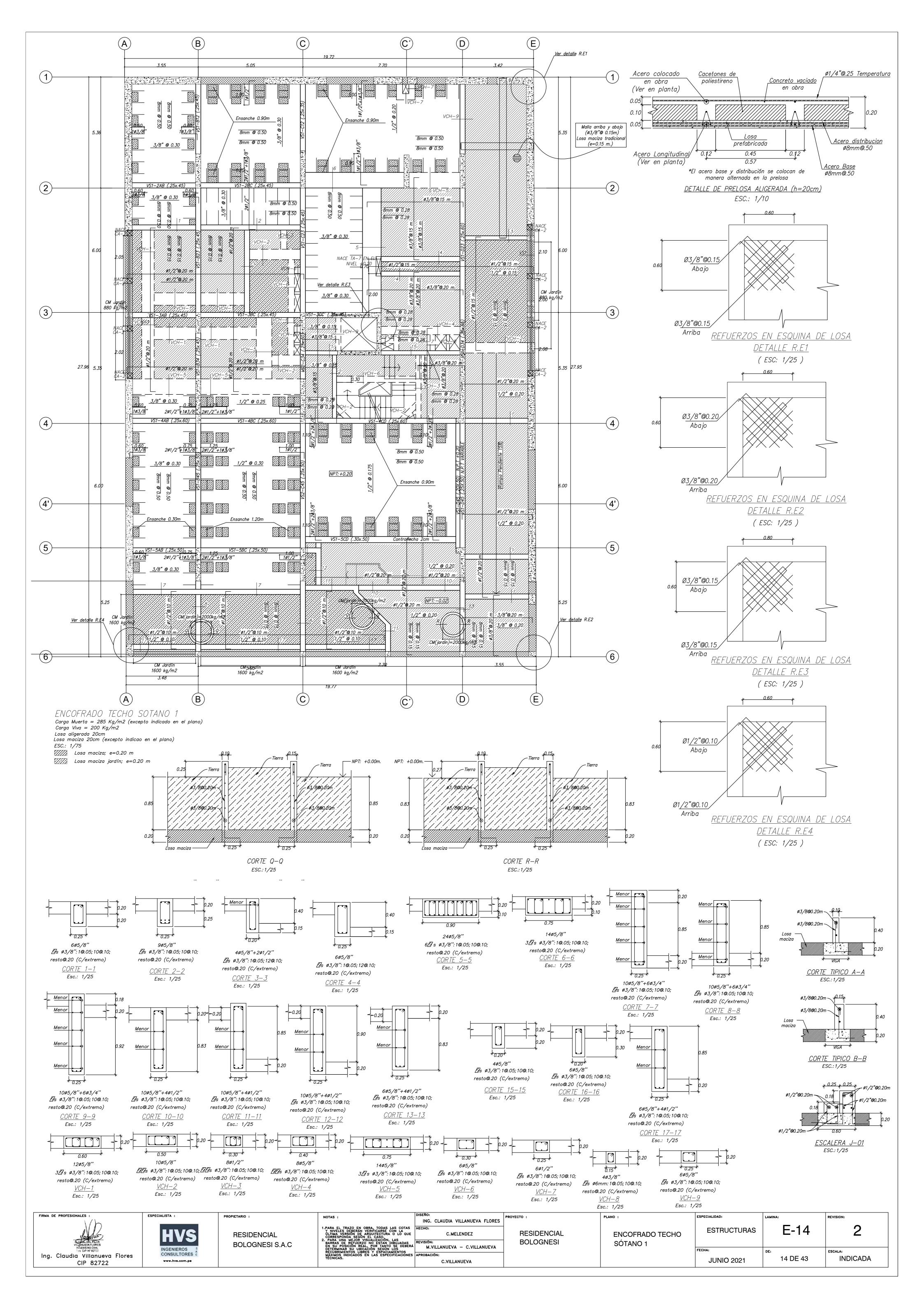
ESC: 1/25

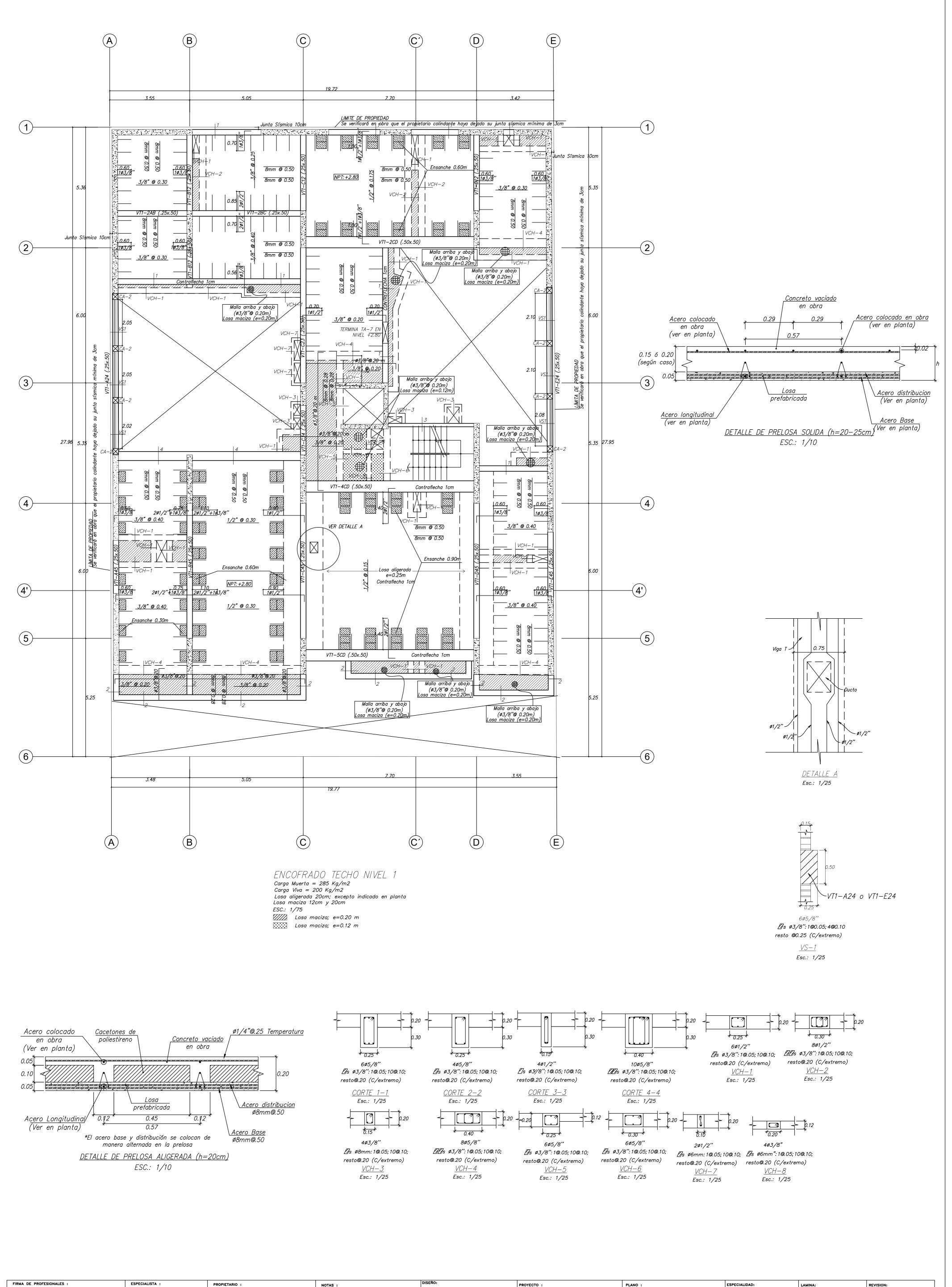
PLANO :	ESPECIALIDAD:	LAMINA:	REVISION:
PLACAS III	ESTRUCTURAS	E-11	2
	JUNIO 2021	11 DE 43	ESCALA: INDICADA



RESIDENCIAL BOLOGNESI S.A.C

PROPIETARIO:

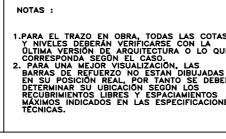



	DISEÑO:	PROYECTO :
	ING. CLAUDIA VILLANUEVA FLORES	
S	HECHO:	
UE	C.MELENDEZ	RE
	REVISIÓN:	BO
S Erá	M.VILLANUEVA - C.VILLANUEVA	
NES	APROBACIÓN:	
	C.VILLANUEVA	

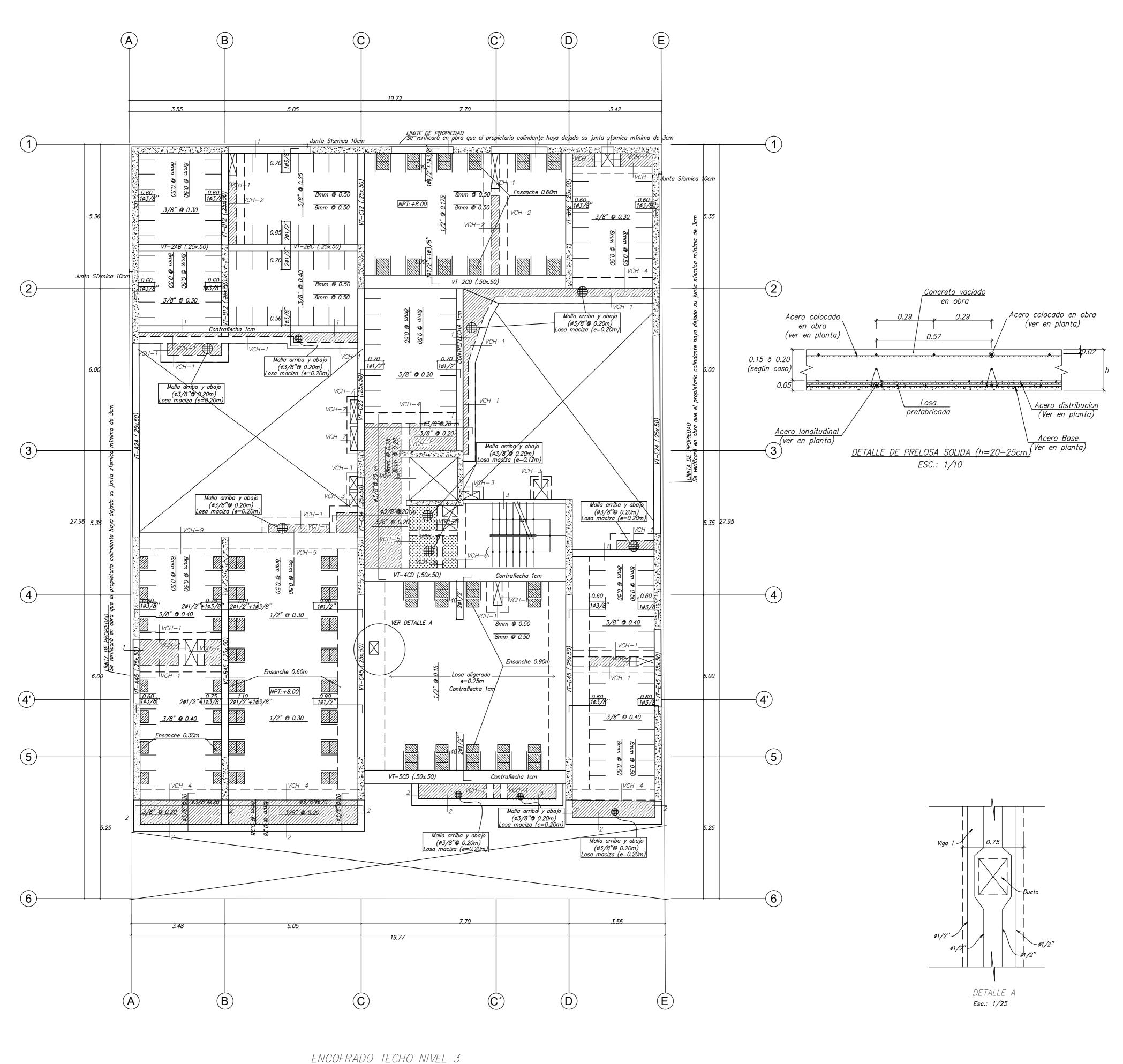
RESIDENCIAL ENCOFRADO TECHO SÓTANO 2

PLANO :

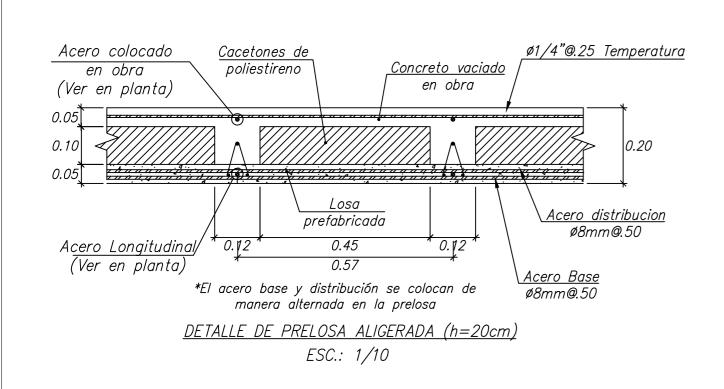
ESPECIALIDAD:	LAMINA:	REVISION:	
ESTRUCTURAS	E-13	2	
FECHA:	DE:	ESCALA:	
JUNIO 2021	13 DE 43	INDICADA	

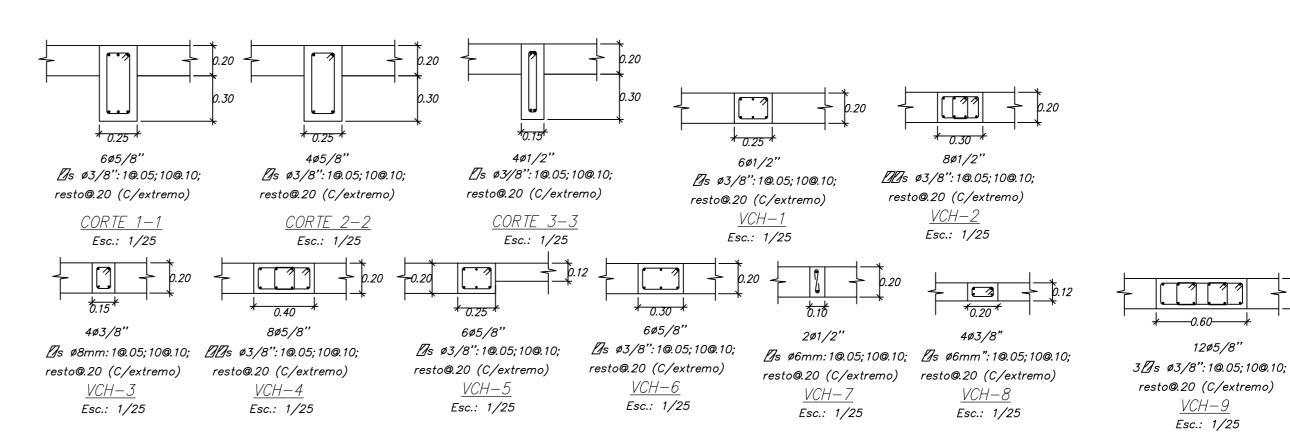


RESIDENCIAL **BOLOGNESI S.A.C**



	DISEÑO:	PROYECTO :
	ING. CLAUDIA VILLANUEVA FLORES	
\$	HECHO:	
E	C.MELENDEZ	RE
RÁ	REVISIÓN:	BO
KA	M.VILLANUEVA - C.VILLANUEVA	
ES	APROBACIÓN:	
	C.VILLANUEVA	


RESIDENCIAL **ENCOFRADO TECHO BOLOGNESI** NIVEL 1


PLANO :

ESPECIALIDAD:	LAMINA:	REVISION:	
ESTRUCTURAS	E-15	2	
FECHA:	DE:	ESCALA:	
JUNIO 2021	15 DE 43	INDICADA	



Carga Muerta = 285 Kg/m2 Carga Viva = 200 Kg/m2Losa aligerada 20cm; excepto indicado en planta Losa maciza 12cm y 20cm ESC.: 1/75 ///// Losa maciza; e=0.20 m Losa maciza; e=0.12 m

PLANO :

	DISERO: ING. CLAUDIA VILLANUEVA FLORES	PROYECTO :
O EN OBRA, TODAS LAS COTAS	HECHO:	
BERÁN VERIFICARSE CON LA NO DE ARQUITECTURA O LO QUE SEGON EL CASO. EJOR VISUALIZACIÓN, LAS FFUERZO NO ESTAN DIBUJADAS ON REAL, POR TANTO SE DEBERÁ U UBICACIÓN SEGON LOS SS LIBRES Y ESPACIAMIENTOS	C.MELENDEZ	RESIDENCIAL
	REVISIÓN: M.VILLANUEVA — C.VILLANUEVA	BOLOGNESI
	APROBACIÓN:	
	C.VILLANUEVA	

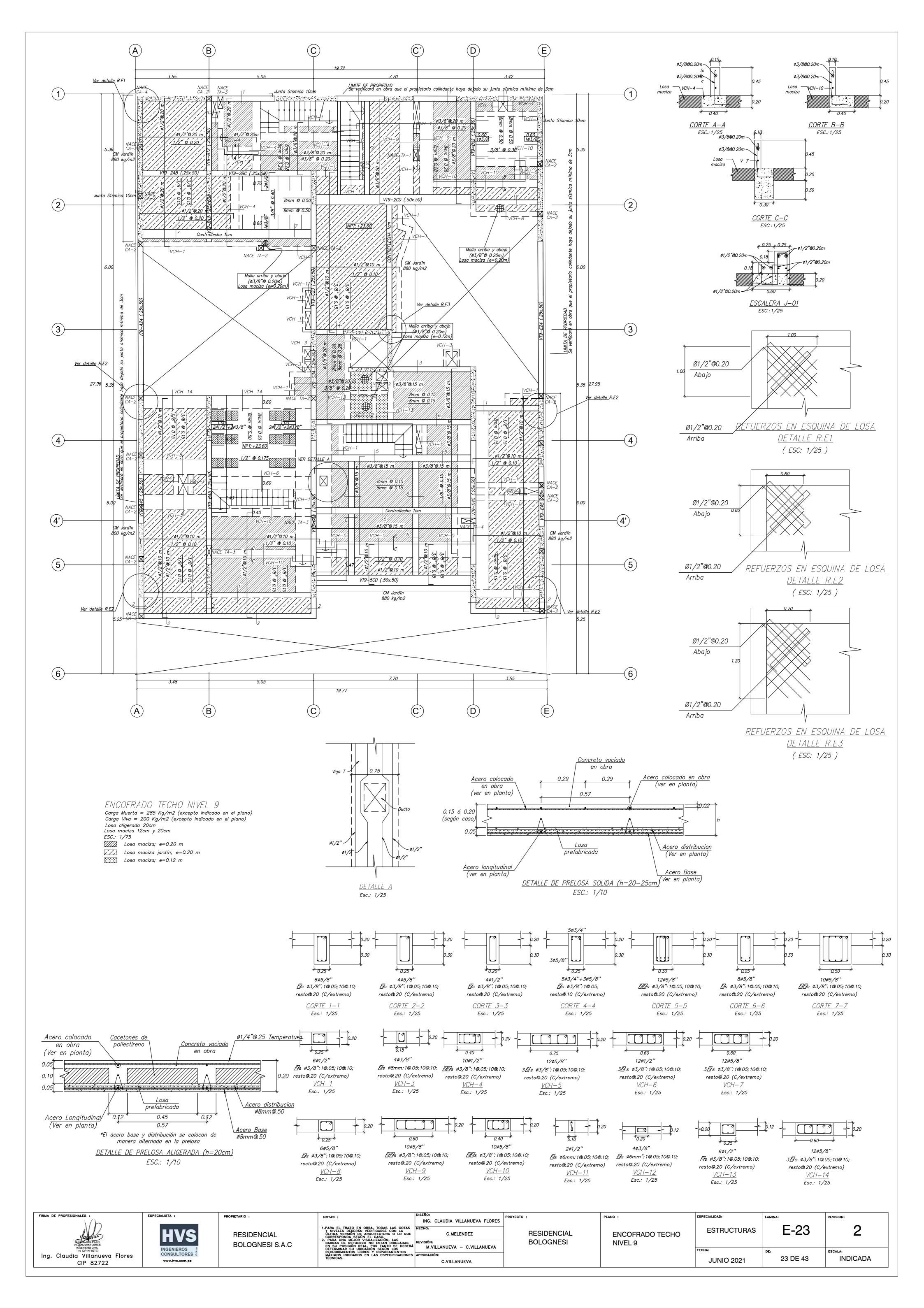
ENCOFRADO TECHO NIVEL 3	ESTRUCTURAS		E-17
	FECHA:	DE:	
	JUNIO 2021		17 DE 43

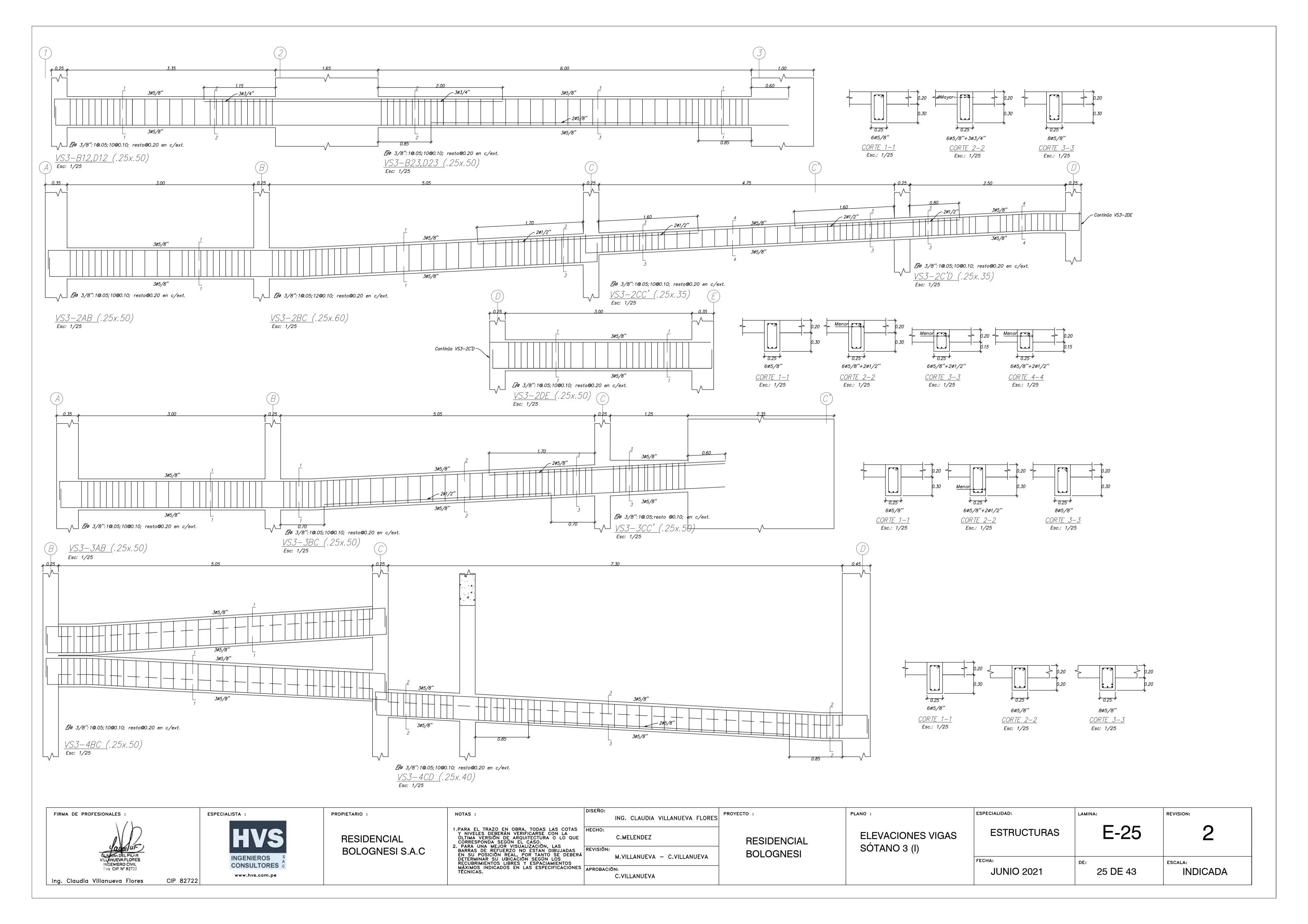
ESPECIALIDAD:

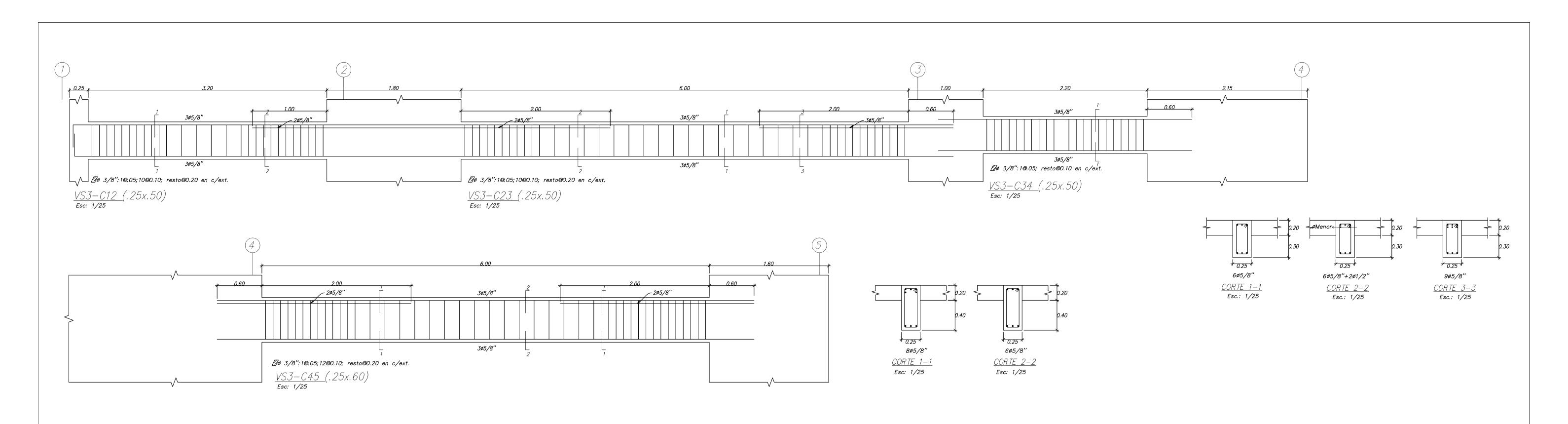
LAMINA:

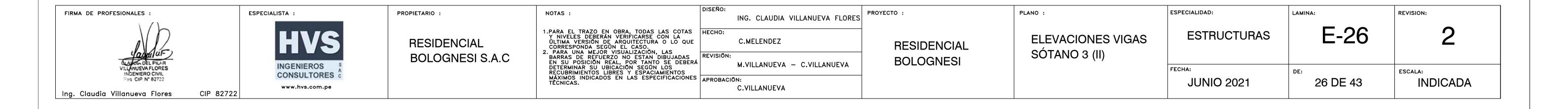
12ø5/8"

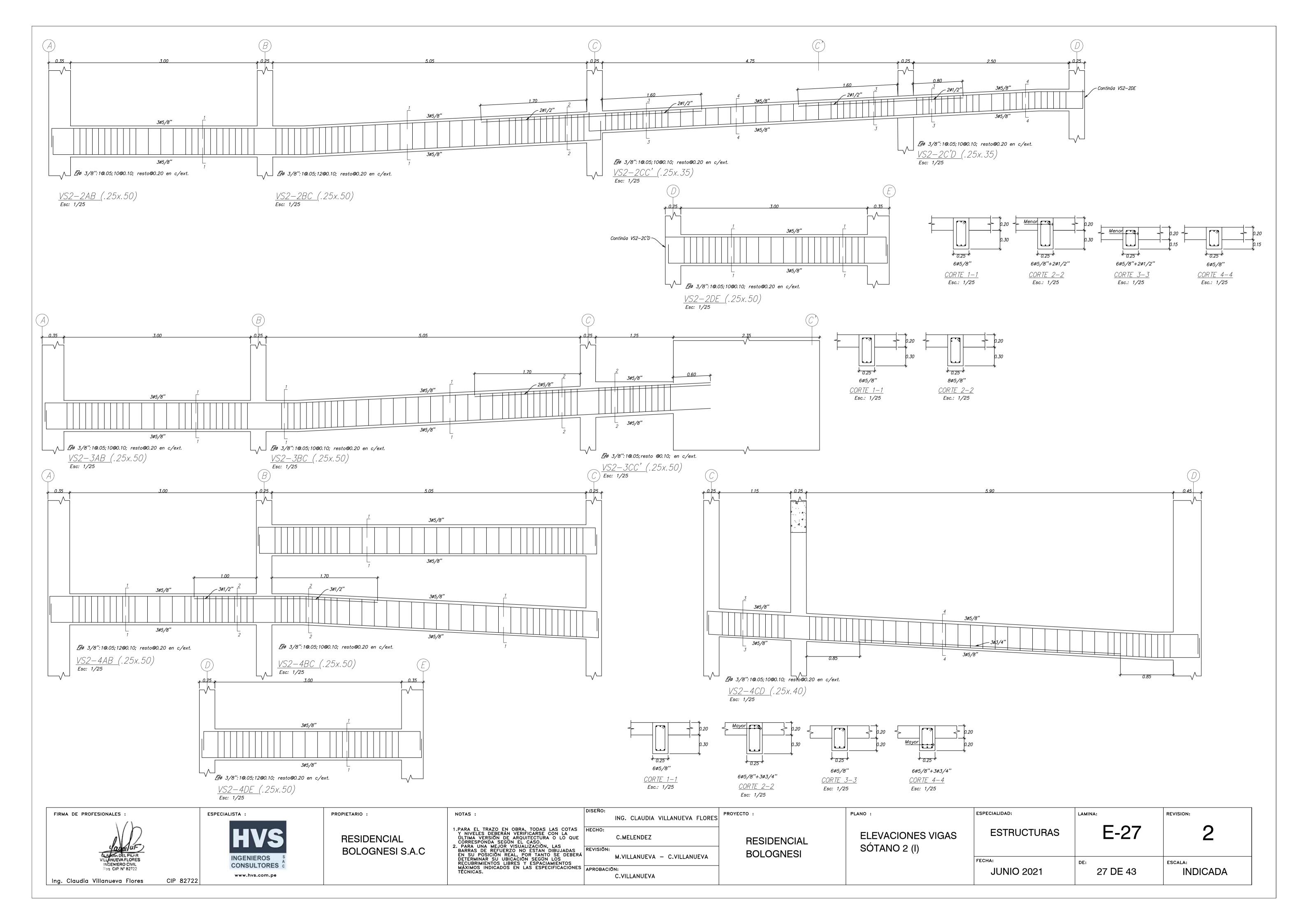
resto@.20 (C/extremo)


<u>VCH-9</u>


Esc.: 1/25


REVISION:


ESCALA:


INDICADA

