UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL

TESIS

INFLUENCIA DEL AGREGADO GRUESO RECICLADO EN CONCRETOS DE MEDIANA A BAJA RESISTENCIA, UTILIZANDO CEMENTO PORTLAND PUZOLÁNICO TIPO IP

PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

ELABORADO POR

TONMY RICHARD QUEZADA CHÁVEZ ID: 0009-0001-1901-1987

ASESOR

Mag. MAX HUAYNALAYA RASHUAMAN ID: 0000-0002-8956-2194

Lima – Perú 2024

© 2024, Universidad Nacional de Ingeniería. Todos los derechos reservados
"El autor autoriza a la UNI a reproducir la Tesis en su totalidad o en parte, con fines estrictamente académicos."
Quezada Chávez, Tonmy Richard
tonmyq@gmail.com
919280830

Dedicatoria

A mi madre, Myriam Chávez, por estar incondicionalmente en cada momento dándome sus consejos y palabras de aliento para afrontar la vida y ser de mí una mejor persona.

Agradecimientos

Un sincero agradecimiento a mi asesor Mag. Ing. Max Huaynalaya Rashuaman, por su apoyo y orientación en la realización de este trabajo de investigación.

Agradezco al personal administrativo y técnico del Laboratorio de Ensayo de Materiales LEM-UNI, por permitirme realizar los ensayos de este trabajo de investigación.

Agradezco al Ing. Marco Tejada, por la atención a mis consultas sobre tecnología del concreto. Mi agradecimiento a los técnicos del LEM-UNI el Sr. Luis, Sr. Monte y Sr. Ponte, por el apoyo técnico, personal y humano.

Agradezco al Msc. Ing. Jorge Gallardo Tapia, jefe del Departamento Académico de Estructuras de la Universidad Nacional de Ingeniería DAE-UNI, por permitirme utilizar los espacios colindantes al auditorio del DAE para el almacenamiento de agregados. Asimismo, un especial agradecimiento a la Sra. Angela, secretaria del DAE, por su inmenso apoyo y amabilidad desde que la conozco en la facultad.

Agradezco al Msc. Ing. Héctor Espinoza Ccente, jefe del Laboratorio de Mecánica de Suelos LMS-UNI, por apoyarme con sugerencias para el desarrollo de este trabajo de investigación y permitirme utilizar los espacios del LMS-UNI para instalar una poza de curado provisional.

Agradezco a mi familia y a mis padres, por el apoyo incondicional que me brindan y por los momentos felices que comparto con ellos. Mi agradecimiento especial a mi madre, por inculcarme y demostrarme que todo se consigue con trabajo, esfuerzo y dedicación.

Agradezco a mis grandes amigos Harold Ojeda Castañeda y Julián Ccencho de la O, con quienes he compartido ideas y experiencias en el proceso de este trabajo de investigación.

En memoria del Sr. Carlos Luján Huapaya, agradezco sus consejos de vida, por ayudarme a ser cada día mejor persona y alentarme a lograr el anhelado título profesional, pues ahora sé que estarías muy feliz que ya soy un ingeniero civil.

A todas las personas que me motivaron a empezar, continuar y finalizar este trabajo de investigación.

A todos, muchas gracias.

Índice

Resumen		6
Abstract		8
Prólogo		10
Lista de tal	olas	11
Lista de fig	uras	16
Lista de sír	nbolos y siglas	19
Capítulo I:	Introducción	20
1.1.	Antecedentes referenciales	20
1.1.1.	Antecedentes internacionales	20
1.1.2.	Antecedentes nacionales	21
1.2.	Planteamiento de la realidad problemática	24
1.3.	Objetivos	27
1.3.1.	Objetivo general	27
1.3.2.	Objetivos específicos	27
1.4.	Hipótesis	27
1.4.1.	Hipótesis general	27
1.4.2.	Hipótesis específicas	27
1.5.	Metodología de trabajo	28
1.5.1.	Tipo de investigación	28
1.5.2.	Diseño de investigación	28
1.5.3.	Población	28
1.5.4.	Muestra	28
Capítulo II:	Marco teórico y conceptual	31
2.1.	Agregados de concreto reciclado (ACR)	31
2.1.1.	Generalidades	31
2.1.2.	Procedimiento de obtención	32
2.2.	Agregados	33
2.2.1.	Agregado grueso	33
2.2.1.1.	Grava	33
2.2.1.2.	Piedra chanchada o triturada	33
2.2.2.	Agregado fino	33

2.2.2.1.	Arena	34
2.3.	Cemento hidráulico adicionado	34
2.3.1.	Cemento portland puzolánico	34
2.4.	Agua de mezcla	35
2.5.	Concreto reciclado (CR)	35
2.6.	Concreto	36
Capítulo I	III: Materiales	37
3.1.	Cemento hidráulico adicionado	37
3.2.	Agregados	38
3.2.1.	Agregado fino natural (AFN)	38
3.2.2.	Agregado grueso natural (AGN)	38
3.2.3.	Agregado grueso reciclado (AGR)	38
3.3.	Propiedades físicas de los agregados	38
3.3.1.	Granulometría	38
3.3.1.1.	Módulo de finura	40
3.3.1.2.	Materiales más finos que pasan el tamiz N°200	41
3.3.2.	Abrasión en máquina de los ángeles	41
3.3.3.	Peso unitario	42
3.3.3.1.	Peso unitario suelto (P.U.S.)	43
3.3.3.2.	Peso unitario compactado (P.U.C.)	43
3.3.4.	Contenido de humedad	43
3.3.5.	Peso específico	43
3.3.6.	Absorción	44
3.4.	Resultados de las propiedades físicas de los agregados	45
3.4.1.	Granulometría	45
3.4.1.1.	Agregado fino natural	45
3.4.1.2.	Agregado grueso natural	46
3.4.1.3.	Agregado grueso reciclado	46
3.4.1.4.	Agregado global	47
3.4.2.	Resumen de resultados de los ensayos	48
3.5.	Agua	49
3.6.	Moldes	49
3.7.	Zona de curado	49
Capítulo	IV: Diseño de mezcla	50

4.1.	Diseño de mezcla del concreto patrón	50
4.1.1.	Obtención experimental del agua patrón	50
4.1.1.1.	Procedimiento del diseño de mezcla	53
4.1.2.	Determinación de la proporción de agregados por resistencia	56
4.1.2.1.	Determinación proporción de agregados para a/c = 0.60	57
4.1.2.2.	Determinación proporción de agregados para a/c = 0.65	59
4.1.2.3.	Determinación proporción de agregados para a/c = 0.70	60
4.1.3.	Diseño de mezcla del concreto patrón	61
4.1.3.1.	Diseño de mezcla para a/c = 0.60	62
4.1.3.2.	Diseño de mezcla para a/c = 0.65	62
4.1.3.3.	Diseño de mezcla para a/c = 0.70	63
4.2.	Diseño de mezcla del concreto patrón con agregado	
	grueso reciclado (AGR)	63
4.2.1.	Diseño de mezcla con AGR para a/c = 0.60	64
4.2.2.	Diseño de mezcla con AGR para a/c = 0.65	66
4.2.3.	Diseño de mezcla con AGR para a/c = 0.70	68
Capítulo V	: Ensayos	70
5.1.	Ensayos en el concreto en estado fresco	70
5.1.1.	Asentamiento	70
5.1.2.	Peso unitario	70
5.1.3.	Contenido de aire	71
5.1.4.	Exudación	72
5.1.5.	Tiempo de fraguado	74
5.2.	Ensayos en el concreto en estado endurecido	74
5.2.1.	Resistencia a la compresión	74
5.2.2.	Resistencia a la tracción por compresión diametral	75
5.2.3.	Resistencia a la flexión	76
Capítulo V	: Resultados obtenidos	78
6.1.	Ensayos en el concreto en estado fresco	78
6.1.1.	Asentamiento	78
6.1.2.	Peso unitario	80
6.1.3.	Contenido de aire	83
6.1.4.	Exudación	86
6.1.5.	Tiempo de fraguado	90

6.2.	Ensayos en el concreto en estado endurecido	93
6.2.1.	Resistencia a la compresión	93
6.2.2.	Resistencia a la tracción por compresión diametral	98
6.2.3.	Resistencia a la flexión	101
Capítulo	VII: Discusión y contrastación de hipótesis	105
7.1.	Discusión	105
7.1.1.	Propiedades del concreto en estado fresco	105
7.1.1.1.	Asentamiento	105
7.1.1.2.	Peso unitario	105
7.1.1.3.	Contenido de aire	105
7.1.1.4.	Exudación	106
7.1.1.5.	Tiempo de fraguado	107
7.1.2.	Propiedades del concreto en estado endurecido	108
7.1.2.1.	Resistencia a la compresión	108
7.1.2.2.	Resistencia a la tracción por compresión diametral	110
7.1.2.3.	Resistencia a la flexión	111
7.2.	Contrastación de hipótesis	112
7.2.1.	Asentamiento	112
7.2.1.1.	Prueba de normalidad	112
7.2.1.2.	Prueba de ANOVA	113
7.2.2.	Peso unitario	116
7.2.2.1.	Prueba de normalidad	116
7.2.2.2.	Prueba de ANOVA	116
7.2.3.	Contenido de aire	118
7.2.3.1.	Prueba de normalidad	118
7.2.3.2.	Prueba de ANOVA	118
7.2.4.	Exudación	120
7.2.4.1.	Prueba de normalidad	120
7.2.4.2.	Prueba de ANOVA	120
7.2.5.	Tiempo de fraguado	121
7.2.5.1.	Prueba de normalidad	121
7.2.5.2.	Prueba de ANOVA	122
7.2.6.	Resistencia a la compresión	123
7261	Prueba de normalidad	123

7.2.6.2.	Prueba de ANOVA para resistencia a la compresión	
	a los 7 días	125
7.2.6.3.	Prueba de Kruskal-Wallis para resistencia a la compresión	
	a los 14 días	126
7.2.6.4.	Prueba de Kruskal-Wallis para resistencia a la compresión	
	a los 28 días	127
7.2.6.5.	Prueba de Kruskal-Wallis para resistencia a la compresión	
	a los 56 días	129
7.2.7.	Resistencia a la tracción por compresión diametral	129
7.2.7.1.	Prueba de normalidad	129
7.2.7.2.	Prueba de ANOVA	130
7.2.8.	Resistencia a la flexión	131
7.2.8.1.	Prueba de normalidad	131
7.2.8.2.	Prueba de ANOVA	131
7.2.8.3.	Prueba de Kruskal-Wallis para resistencia a la flexión	
	a los 28 días	132
Conclusi	ones	133
Recomer	ndaciones	135
Referenc	ias bibliográficas	136
Anexos		143

Resumen

En el Perú existen muy pocas empresas dedicadas al procesamiento de los residuos sólidos de la industria de la construcción y demolición para obtener agregados reciclados, esto es debido a una débil normativa que regule la gestión y el manejo de los residuos sólidos de la industria de la construcción y demolición, pues en la mayoría de los casos estos residuos sólidos son arrojados en botaderos informales (Organización de Evaluación y Fiscalización Ambiental [OEFA], 2014).

El presente trabajo de investigación consiste en determinar la influencia del agregado grueso reciclado en concretos de mediana a baja resistencia utilizando cemento portland puzolánico tipo IP; dicha influencia se determinó mediante la valoración de las propiedades del concreto en estado fresco y endurecido. El agregado grueso reciclado, usado en las mezclas, se obtuvo de una empresa especializada en el procesamiento de residuos de concreto de la industria de la construcción y demolición ubicado en el distrito de Villa el Salvador, provincia y departamento de Lima.

Se fabricaron 3 mezclas de concreto patrón con agregados naturales y 12 mezclas de concreto con cuatro porcentajes diferentes de sustitución de agregado grueso reciclado (25 %, 50 %, 75 % y 100 %) para tres valores de agua/cemento 0,60, 0,65 y 0,70.

Los resultados de los ensayos del concreto en estado fresco obtenidos en la investigación mostraron que el asentamiento, peso unitario, exudación y tiempo de fraguado disminuyen respecto del concreto patrón cuando la sustitución de agregado grueso reciclado es 100 %, mientras que el contenido de aire aumenta a medida que el porcentaje de agregado reciclado incrementa. Los resultados de los ensayos del concreto en estado endurecido obtenidos mostraron que la resistencia a la compresión, tracción y flexión son similares al del concreto patrón cuando el porcentaje de sustitución de agregado grueso reciclado es 25 %.

De manera complementaria se realizó la contrastación de hipótesis estadística de los diferentes grupos de concreto con sustitución de 25 %, 50 %, 75 % y 100 % respecto del grupo de concreto patrón comparando las medias de manera independiente concluyendo que los valores de asentamiento, exudación, tiempo de fraguado, resistencia a la comprensión, resistencia a la compresión

diametral y resistencia a la flexión no son significativos y los valores de peso unitario y contenido de aire son significativos.

Finalmente, con reemplazos de hasta 25 % de agregado grueso reciclado determinó que los diferentes concretos estudiados se comportan favorablemente.

Abstract

In Peru there are very few companies dedicated to the processing of solid waste from the construction and demolition industry to obtain recycled aggregates, this is due to weak laws that regulate the management and handling of solid waste from the construction and demolition industry, since in most cases these solid wastes are dumped in informal dumps (Organization of Environmental Evaluation and Supervision [OEFA], 2014).

The present research work consists of determining the influence of recycled coarse aggregate in medium to low resistance concrete using IP type Portland puzzolanic cement; This influence was determined by evaluating the properties of the concrete in its fresh and hardened state. The recycled coarse aggregate, used in the mixtures, was obtained from a company specialized in the processing of concrete waste from the construction and demolition industry located in the district of Villa el Salvador, province and department of Lima.

Three standard concrete mixes with natural aggregates and 12 concrete mixes with four different percentages of recycled coarse aggregate substitution (25 %, 50 %, 75 % and 100 %) were manufactured for three water/cement values 0,60, 0,65 and 0,70.

The results of the fresh concrete tests obtained in the research showed that the settlement, unit weight, exudation and setting time decrease with respect to the standard concrete when the replacement of recycled coarse aggregate is 100%, while the air content increases. as the percentage of recycled aggregate increases. The results of the tests of the concrete in the hardened state obtained showed that the compressive, tensile and flexural strength are similar to that of the standard concrete when the percentage of replacement of recycled coarse aggregate is 25%.

In a complementary manner, the statistical hypothesis contrast of the different groups of concrete with replacement of 25 %, 50 %, 75 % and 100 % was carried out with respect to the standard concrete group, comparing the means independently, concluding that the values of settlement, exudation, setting time, compressive strength, diametral compressive strength and flexural strength are not significant and the unit weight and air content values are significant.

Finally, with replacements of up to 25 % of recycled coarse aggregate, it was determined that the different concretes studied behave favorably.

Prólogo

Utilizar en su totalidad los materiales de residuos de construcción y demolición en el Perú para luego transformarlos en agregados reciclados y fabricar concreto con éstos para usarlos en infraestructura es una realidad muy lejana en el país, pues la normativa y la infraestructura para transformar los residuos son deficientes aún. Sin embargo, la línea de investigación en agregados reciclados para fabricar concreto no es indiferente, pues diferentes tesistas de todo el país han venido realizando investigaciones sobre este tipo de concreto encontrando resultados alentadores.

Por tanto, la tesis titulada "Influencia del agregado grueso reciclado en concretos de mediana a baja resistencia, utilizando cemento portland puzolánico tipo IP", plantea que porcentaje de sustitución de agregado grueso reciclado influye positiva o negativamente en un concreto convencional de mediana a baja resistencia con cemento portland puzolánico tipo IP. El resultado favorable obtenido permite considerar el concreto reciclado para usarlo en elementos no estructurales.

Finalmente, optar por nuevos materiales de construcción, como agregados reciclados y puzolanas, en la fabricación de concreto que contribuyan con el cuidado del medio ambiente permitirá en un futuro preservar las fuentes naturales de agregados y disminuir las emisiones de CO₂ al fabricar cemento. En consecuencia, la tesis seguramente será un aporte en futuras investigaciones de los agregados reciclados para fabricar concreto.

Asesor

Lista de tablas

Tabla N°1: Ensayos en estado fresco del CP y CR para cada a/c en estudio	29
Tabla N°2: Ensayos en estado endurecido del CP y CR para cada a/c	
Tabla N°3: Requisitos químicos para el cemento Tipo IP	
Tabla N°4: Requisitos físicos para el cemento Tipo IP	
Tabla N°5: Requisitos físicos y químicos para el cemento Nacional Tipo IP	37
Tabla N°6: Requisitos de granulometría para el agregado fino	39
Tabla N°7: Requisitos de granulometría para el agregado grueso	39
Tabla N°8: Requisitos de granulometría para el agregado global	40
Tabla N°9: Gradación de las muestras para el ensayo de abrasión	42
Tabla N°10: Masa de la carga abrasiva para el ensayo de abrasión	42
Tabla N°11: P.U.C. del agregado global	47
Tabla N°12: Resultados propiedades físicas de los agregados	48
Tabla N°13: Agua patrón para cada a/c en estudio	52
Tabla N°14: Proporciones de diseño de mezcla para agua estimada de 210 L	
Tabla N°15: Resultados resistencia a la compresión a los 7 días para a/c = 0.60	57
Tabla N°16: Resultados resistencia a la compresión a los 7 días para a/c = 0.65	
Tabla N°17: Resultados resistencia a la compresión a los 7 días para a/c = 0.70	60
Tabla N°18: Proporciones del diseño de mezcla de CP1	62
Tabla N°19: Proporciones del diseño de mezcla de CP2	62
Tabla N°20: Proporciones del diseño de mezcla de CP3	63
Tabla N°21: Proporciones del diseño de mezcla de CAGR25 para a/c = 0.60.	64

Tabla N°22: Proporciones del diseño de mezcla de CAGR50 para a/c = 0.60 64
Tabla N°23: Proporciones del diseño de mezcla de CAGR75 para a/c = 0.60 65
Tabla N°24: Proporciones del diseño de mezcla de CAGR100 para a/c = 0.60 .65
Tabla N°25: Proporciones del diseño de mezcla de CAGR25 para a/c = 0.65 66
Tabla N°26: Proporciones del diseño de mezcla de CAGR50 para a/c = 0.65 66
Tabla N°27: Proporciones del diseño de mezcla de CAGR75 para a/c = 0.65 67
Tabla N°28: Proporciones del diseño de mezcla de CAGR100 para a/c = 0.65.67
Tabla N°29: Proporciones del diseño de mezcla de CAGR25 para a/c = 0.70 68
Tabla N°30: Proporciones del diseño de mezcla de CAGR50 para a/c = 0.70 68
Tabla N°31: Proporciones del diseño de mezcla de CAGR75 para a/c = 0.70 69
Tabla N°32: Proporciones del diseño de mezcla de CAGR100 para a/c = 0.70.69
Tabla N°33: Resultados de ensayo de asentamiento para cada a/c en estudio.78
Tabla N°34: Resultados de ensayo de peso unitario para a/c = 0.6080
Tabla N°35: Resultados de ensayo de peso unitario para a/c = 0.6581
Tabla N°36: Resultados de ensayo de peso unitario para a/c = 0.7082
Tabla N°37: Resultados de ensayo de contenido de aire para a/c = 0.6083
Tabla N°38: Resultados de ensayo de contenido de aire para a/c = 0.6584
Tabla N°39: Resultados de ensayo de contenido de aire para a/c = 0.7085
Tabla N°40: Resultados de ensayo de exudación para a/c = 0.6086
Tabla N°41: Resultados de ensayo de exudación para a/c = 0.6587
Tabla N°42: Resultados de ensayo de exudación para a/c = 0.7088
Tabla N°43: Resultados de ensayo de tiempo de fraguado para a/c = 0.60 89
Tabla N°44: Resultados de ensayo de tiempo de fraguado para a/c = 0.6590
Tabla N°45: Resultados de ensayo de tiempo de fraguado para a/c = 0.7091
Tabla N°46: Resultados de ensayo de resistencia a la compresión para
cada a/c en estudio93

Tabla N°47:	Variaciones porcentuales de resistencia a la compresión	
	para cada edad de ensayo	96
Tabla N°48:	Resultados de ensayo de resistencia a la tracción para a/c = 0.60	98
Tabla N°49:	Resultados de ensayo de resistencia a la tracción para a/c = 0.65	99
Tabla N°50:	Resultados de ensayo de resistencia a la tracción para a/c = 0.70	100
Tabla N°51:	Resultados de ensayo de resistencia a la flexión para a/c = 0.60	101
Tabla N°52:	Resultados de ensayo de resistencia a la flexión para a/c = 0.65	102
Tabla N°53:	Resultados de ensayo de resistencia a la flexión para a/c = 0.70	103
Tabla N°54:	Prueba de normalidad de Shapiro-Wilk para el asentamiento	113
Tabla N°55:	Prueba de homogeneidad de varianzas para el asentamiento	114
Tabla N°56:	Prueba de ANOVA para el asentamiento	114
Tabla N°57:	Prueba post hoc de Tukey para el asentamiento	115
Tabla N°58:	Prueba de normalidad de Shapiro-Wilk para el peso unitario	116
Tabla N°59:	Prueba de homogeneidad de varianzas para el peso unitario	116
Tabla N°60:	Prueba de ANOVA para el peso unitario	117
Tabla N°61:	Prueba post hoc de Tukey para el peso unitario	117
Tabla N°62:	Prueba de normalidad de Shapiro-Wilk para el contenido de aire	118
Tabla N°63:	Prueba de homogeneidad de varianzas para el contenido de aire	118
Tabla N°64:	Prueba de ANOVA para el contenido de aire	119
Tabla N°65:	Prueba post hoc de Tukey para el contenido de aire	119
Tabla N°66·	Prueba de normalidad de Shapiro-Wilk para la exudación	120

Tabla N°67:	Prueba de homogeneidad de varianzas para la exudación	120
Tabla N°68:	Prueba de ANOVA para la exudación	121
	Prueba de normalidad de Shapiro-Wilk para el tiempo fraguado inicial y final	122
Tabla N°70:	Prueba de homogeneidad de varianzas para el tiempo de fraguado inicial y final	122
Tabla N°71:	Prueba de ANOVA para el tiempo de fraguado inicial y final	123
Tabla N°72:	Prueba de normalidad de Shapiro-Wilk para la resistencia a la compresión a los 7, 14, 28 y 56 días	124
Tabla N°73:	Prueba de homogeneidad de varianzas para la resistencia a la compresión a los 7 días	125
Tabla N°74:	Prueba de ANOVA para la resistencia a la compresión a los 7 días	126
Tabla N°75:	Prueba de Kruskal-Wallis para la resistencia a la compresión a los 14 días	126
Tabla N°76:	Prueba de Kruskal-Wallis para la resistencia a la compresión a los 28 días	127
Tabla N°77:	Comparaciones por parejas para la resistencia a la compresión a los 28 días	128
	Prueba de Kruskal-Wallis para la resistencia a la compresión a los 56 días	129
Tabla N°79:	Prueba de normalidad de Shapiro-Wilk para la resistencia a la tracción por compresión diametral a los 28 días	129
Tabla N°80:	Prueba de homogeneidad de varianzas para la resistencia a la tracción por compresión diametral a los 28 días	130
Tabla N°81:	Prueba de ANOVA para la resistencia a la tracción por compresión diametral a los 28 días	130
Tabla N°82:	Prueba de normalidad de Shapiro-Wilk para la resistencia a la flexión en vigas de concreto a los 28 días	131

Tabla N°83:	Prueba de homogeneidad de varianzas para la resistencia a la	
f	flexión en vigas de concreto a los 28 días	131
Tabla N°84:	Prueba de Kruskal-Wallis para la resistencia a la flexión en vigas	de
(concreto a los 28 días	132

Lista de figuras

Figura N°1: Curva granulométrica de agregado fino natural	45
Figura N°2: Curva granulométrica de agregado grueso natural	46
Figura N°3: Curva granulométrica de agregado grueso reciclado	46
Figura N°4: Curva del P.U.C. del agregado global	47
Figura N°5: Curva granulométrica de agregado global	48
Figura N°6: Estimación de agua patrón para CP1	51
Figura N°7: Estimación de agua patrón para CP2	51
Figura N°8: Estimación de agua patrón para CP3	52
Figura N°9: Resistencia a la compresión vs %Arena para a/c = 0.60	58
Figura N°10: P.U.C. Agregado global y Resistencia a la compresión para a/c = 0.60	58
Figura N°11: Resistencia a la compresión vs %Arena para a/c = 0.65	59
Figura N°12: P.U.C. Agregado global y Resistencia a la compresión para a/c = 0.65	60
Figura N°13: Resistencia a la compresión vs %Arena para a/c = 0.70	61
Figura N°14: P.U.C. Agregado global y Resistencia a la compresión para a/c = 0.70	61
Figura N°15: Ensayo de asentamiento en el concreto fresco	70
Figura N°16: Ensayo de peso unitario en el concreto fresco	71
Figura N°17: Ensayo de contenido de aire en el concreto fresco	72
Figura N°18: Ensayo de exudación en el concreto fresco	73
Figura N°19: Ensayo de tiempo de fraguado en el concreto fresco	74
Figura N°20: Ensayo de resistencia a la compresión en el concreto endurecido	75
Figura N°21: Ensayo de resistencia a la tracción por compresión diametral en el concreto endurecido	76

Figura N°22: Ensayo de resistencia a la flexión en el concreto endurecido	77
Figura N°23: Comparativo de asentamientos para a/c = 0.60, 0.65 y 0.70	78
Figura N°24: Asentamiento y variación porcentual, a/c = 0.60	79
Figura N°25: Asentamiento y variación porcentual, a/c = 0.65	79
Figura N°26: Asentamiento y variación porcentual, a/c = 0.70	80
Figura N°27: Peso unitario y variación porcentual, a/c = 0.60	81
Figura N°28: Peso unitario y variación porcentual, a/c = 0.65	82
Figura N°29: Peso unitario y variación porcentual, a/c = 0.70	83
Figura N°30: Contenido de aire y variación porcentual, a/c = 0.60	84
Figura N°31: Contenido de aire y variación porcentual, a/c = 0.65	85
Figura N°32: Contenido de aire y variación porcentual, a/c = 0.70	86
Figura N°33: Exudación y variación porcentual, a/c = 0.60	87
Figura N°34: Exudación y variación porcentual, a/c = 0.65	88
Figura N°35: Exudación y variación porcentual, a/c = 0.70	89
Figura N°36: Comparativo de tiempo de fraguado inicial y final, $a/c = 0.60$	90
Figura N°37: Comparativo de tiempo de fraguado inicial y final, $a/c = 0.65$	91
Figura N°38: Comparativo de tiempo de fraguado inicial y final, $a/c = 0.70$	92
Figura N°39: Resistencia a la compresión vs Tiempo, a/c = 0.60	94
Figura N°40: Resistencia a la compresión vs Tiempo, a/c = 0.65	94
Figura N°41: Resistencia a la compresión vs Tiempo, a/c = 0.70	95
Figura N°42: Variaciones porcentuales de resistencia a la compresión, a/c = 0.60	97
Figura N°43: Variaciones porcentuales de resistencia a la compresión, a/c = 0.65	97
Figura N°44: Variaciones porcentuales de resistencia a la compresión, a/c = 0.70	98
Figura N°45: Resistencia a la tracción y variación porcentual, a/c = 0.60	99
Figura N°46: Resistencia a la tracción y variación porcentual, a/c = 0.65	100

Figura N°47: Resistencia a la tracción y variación porcentual, a/c = 0.70 1	101
Figura N°48: Resistencia a la flexión y variación porcentual, a/c = 0.601	102
Figura N°49: Resistencia a la flexión y variación porcentual, a/c = 0.651	103
Figura N°50: Resistencia a la flexión y variación porcentual, a/c = 0.701	104

Lista de símbolos y siglas

a/c : Relación agua/cemento

ACR : Agregado de concreto reciclado

AGN : Agregado grueso natural

AGR : Agregado grueso reciclado

AFN : Agregado fino natural

CAGR : Concreto con agregado grueso reciclado

CAGR25 : Concreto patrón con agregado grueso reciclado en 25% de

sustitución

CAGR50 : Concreto patrón con agregado grueso reciclado en 50% de

sustitución

CAGR75 : Concreto patrón con agregado grueso reciclado en 75% de

sustitución

CAGR100 : Concreto patrón con agregado grueso reciclado en 100% de

sustitución

CP : Concreto patrón

CP1 : Concreto patrón 1 para a/c = 0.60 CP2 : Concreto patrón 2 para a/c = 0.65 CP3 : Concreto patrón 3 para a/c = 0.70

CR : Concreto reciclado

D.U.O. : Diseño unitario de obra

D.U.S. : Diseño unitario seco

T.F.I. : Tiempo de fraguado inicial T.F.F. : Tiempo de fraguado final

T.M.N. : Tamaño máximo nominal

OD : Del inglés oven drying que significa secado al horno.

P.U.S. : Peso unitario suelto

P.U.C. : Peso unitario compactado

Capítulo I: Introducción

1.1. Antecedentes referenciales

1.1.1. Antecedentes internacionales

Abera (2022), en su investigación titulada "Performance of concrete materials containing recycled aggregate from construction and demolition waste" y realizada en la ciudad de Delhi, India tuvo como objetivos determinar el comportamiento de las propiedades físico mecánicas del concreto que contiene agregado reciclado y encontrar el porcentaje óptimo de sustitución de agregado reciclado a los agregados naturales. Para ello el investigador obtuvo el agregado reciclado fino y grueso de los desperdicios de construcción y demolición colectados y procesados por la planta de reciclaje de Burari, Jahangir puri, Delhi. Preparó un diseño patrón y diez diseños con porcentajes de reemplazo desde 0% hasta 100% de agregado fino reciclado, agregado grueso reciclado y agregado fino y grueso reciclado, obteniendo como resultado para un reemplazo de 0% a 100% de agregado grueso reciclado un incremento en el asentamiento del concreto, disminución de la resistencia a la compresión del concreto, disminución del factor de compactación en concreto fresco, disminución de la permeabilidad del concreto y disminución de la densidad. Concluyendo que un incremento en el porcentaje de sustitución de agregado reciclado en la elaboración de un concreto disminuirá el desempeño de dicho concreto y que la incorporación de hasta 40% de agregado reciclado no traerá daños masivos a estructuras ligeras de proyectos de ingeniería civil.

Laverde (2014), en su investigación titulada "Propiedades mecánicas, eléctricas y de durabilidad de concretos con agregados reciclados" tuvo como objetivo general evaluar el comportamiento del concreto con diferentes porcentajes de agregado grueso reciclado y determinar la correlación entre las propiedades mecánicas y eléctricas del concreto reciclado. Desarrollando para ello, diseños de mezcla con la metodología ACI 211.1 y la metodología de Fuller y Thompson para optimizar la proporción de agregados. El investigador realizó un diseño patrón y tres diseños con porcentajes de sustitución de 25%, 50% y 100% de agregado grueso reciclado para relaciones a/c de 0.50 y 0.60. Los ensayos de resistencia a la compresión se realizaron a edades de 3, 7, 28 y 90 días ensayando tres muestras por cada mezcla. Concluyendo que la resistencia a la compresión

disminuye respecto del concreto patrón para un a/c de 0.60 a medida que avanza la edad de ensayo y el porcentaje de sustitución.

Bojacá (2013), en su investigación titulada "Propiedades mecánicas y de durabilidad de concretos con agregado reciclado" tuvo como objetivo general estudiar la influencia del agregado grueso reciclado con diferentes porcentajes de sustitución, en la resistencia a la compresión y en la durabilidad del concreto reciclado. Desarrollando para ello, la obtención del agregado grueso reciclado mediante la trituración de probetas cilíndricas. Realizó ensayos para determinar las propiedades físicas del cemento y de los agregados naturales y reciclados. Realizó un diseñó de mezcla de concreto patrón con 0% de sustitución de agregado grueso reciclado y dos diseños de mezcla de concreto reciclado con 20% y 40% de sustitución de agregado grueso reciclado, todos los diseños fueron hechos con una relación agua cemento de 0.50 y un asentamiento de 10 cm. A todos los diseños se incorporó aditivo superfluidificante marca pozzolith. Ensayó el concreto patrón y reciclado en estado fresco y en estado endurecido a los 3, 28, 56 y 100 días. Además, realizó ensayos de cloruros, carbonatación, sulfatos, sortividad y absorción ISAT a los 3, 28, 56 y 100 días para valorar la durabilidad. Concluyendo que el agregado grueso reciclado presentó un mayor porcentaje de absorción y menor densidad, lo cual es similar con otras investigaciones consultadas por el investigador. La resistencia a la compresión del concreto reciclado con 20% de sustitución fue ligeramente mayor y para 40% de sustitución fue similar a la del concreto patrón, es decir, no se produjo disminución considerable en la resistencia a la compresión del concreto reciclado respecto del concreto patrón. La resistencia a la flexión del concreto reciclado disminuyó un 10% con 40% de sustitución respecto del concreto patrón mientras que con un 20% de sustitución los valores fueron similares a la del concreto patrón. Por último, conforme a la investigación se puede decir que con un porcentaje de sustitución del 20% el concreto reciclado tiene un buen comportamiento mecánico, así como lo sugieren diferentes normas consultadas por el investigador.

1.1.2. Antecedentes nacionales

Caycho y Espinoza (2019), en su investigación titulada "Mezcla de concreto con agregado grueso reciclado usando cemento portland tipo HS para cimentaciones, distrito La Molina, año-2019" tuvo como objetivo general optimizar las propiedades del concreto reciclado para cimentaciones determinando un

porcentaje óptimo de agregado grueso reciclado en la mezcla y utilizando cemento portland tipo HS. La investigación fue explicativa, de nivel aplicativa y con enfoque cuantitativo. Para ello los investigadores realizaron un diseño patrón y cuatro diseños con porcentajes de sustitución de 25%, 50%, 75% y 100% de agregado grueso reciclado para relaciones a/c de 0.53 y 0.60. Fabricaron en total 60 vigas rectangulares los cuales fueron ensayados a flexión a las edades de 7, 14 y 28 días; y 240 probetas cilíndricas los cuales fueron ensayados a compresión y tracción a las edades de 3, 7, 14 y 28 días. Concluyendo que las propiedades del concreto reciclado en estado fresco como el asentamiento y el peso unitario disminuyeron a medida que aumenta el porcentaje de agregado grueso reciclado en la mezcla, y el contenido de aire aumentó a medida que aumenta el porcentaje de agregado grueso reciclado en la mezcla. Por otro lado, concluyeron que las propiedades del concreto en estado endurecido como la resistencia a la compresión y tracción tuvieron valores similares que el concreto patrón con sustitución del 25% de agregado grueso reciclado y valores inferiores que el concreto patrón con sustituciones de 50%, 75% y 100% de agregado grueso reciclado conforme avanza la edad de ensayo. La resistencia a la flexión disminuyó respecto del concreto patrón a medida que aumentó el porcentaje de agregado grueso reciclado a la edad de 28 días.

Meza (2019), en su trabajo de investigación "Estudio de las características del concreto reciclado fresco y endurecido, con sustitución parcial y total del agregado grueso", presentó como objetivos ampliar el conocimiento en el campo del estudio del concreto reciclado en el Departamento de Construcción de la Facultad de Ingeniería Civil de la Universidad Nacional de Ingeniería, y la influencia que ejerce el agregado grueso reciclado, proveniente de la trituración de probetas cilíndricas de concreto, en diferentes porcentajes de reemplazo del agregado grueso convencional. Desarrolló un diseño patrón o referencial para diferentes relaciones a/c: 0.60, 0.65 y 0.70. Además, diseñó concretos reciclados con 20%, 50% y 100% de agregado grueso reciclado, para sustituir al agregado grueso convencional, para cada relación a/c mencionados. En total realizó tres diseños de mezcla con agregados convencionales para el concreto patrón y 9 diseños de mezcla con agregado grueso reciclado y agregado fino convencional para el concreto reciclado, todos con un asentamiento en el rango de 3" - 4". Concluyó que la absorción en el agregado grueso reciclado es 7.20%, aproximadamente 10 veces del agregado natural, lo cual se verifica con otras investigaciones que indican un rango de 4% - 13% para la absorción de los agregados reciclados (ACHE, 2006). En las propiedades del concreto reciclado el asentamiento disminuyó aproximadamente 15% respecto del concreto patrón, para el 100% de sustitución de agregado reciclado. El peso unitario disminuyó aproximadamente 1.5%, 3% y 5%, del peso unitario del concreto patrón, para sustituciones del 20%, 50% y 100% del agregado grueso reciclado, respectivamente. El contenido de aire para el concreto con 100% de sustitución de agregado grueso reciclado aumentó alrededor del 100% respecto del concreto patrón. Respecto a las propiedades del concreto reciclado en estado endurecido concluyó lo siguiente: la resistencia a la compresión del concreto reciclado tiene pérdidas máximas de resistencia de 5%, 15% y 25%, respecto del concreto patrón, para sustituciones del 20%, 50% y 100% del agregado grueso reciclado, respectivamente. La resistencia a la flexión tiene un incremento máximo de 9% para una sustitución de 20% del agregado reciclado, resultado incongruente, ya que según ACHE (2016) las pérdidas de resistencia a la flexión están en el rango de 6% - 20%; caso opuesto ocurrió con las sustituciones de 50% y 100% del agregado grueso reciclado el cual la resistencia disminuye a un máximo de 8% y 15%, respectivamente. Por último, en la investigación se recomendó la pre saturación del agregado reciclado, debido a que la absorción de agua por parte del agregado reciclado grueso es mucho mayor comparado al agregado grueso natural. Sustituir hasta un 20% de agregado grueso reciclado debido a que las propiedades físico mecánicas de un concreto con agregados convencionales son similares, de lo contrario un mayor porcentaje de sustitución de agregado grueso reciclado implicaría un mayor contenido de cemento o una menor relación a/c.

Ponce (2014), en su investigación titulada "Estudio del concreto reciclado de mediana a baja resistencia, utilizando cemento portland Tipo I" tuvo como objetivo estudiar las propiedades físicas y mecánicas del concreto reciclado, desarrollando para ello la selección de los áridos de concreto reciclado proveniente de la trituración manual de probetas cilíndricas de concreto y su posterior tamizaje para obtener agregado fino y grueso reciclado. Elaboró un concreto patrón con agregado fino y grueso naturales con diferentes relaciones a/c de 0.60, 0.70 y 0.80, y tres diseños de concreto reciclado sustituyendo el agregado fino y grueso al 100% por el agregado reciclado ambos concretos para un asentamiento de rango 3" – 4". Las relaciones a/c de los concretos reciclados aumentaron a 0.66, 0.77 y 0.87 ya que añadió más agua al diseño debido al alto

porcentaje de absorción de los agregados reciclados. Ensayó el concreto patrón y reciclado en estado fresco y en estado endurecido a los 7, 14, 28 y 56 días. Para las propiedades en estado fresco realizó los ensayos de fluidez, tiempo de fraqua, asentamiento y densidad del concreto. Para las propiedades en estado endurecido realizó lo ensayos de resistencia a la compresión, tracción y absorción de agua. Para los ensayos en estado endurecido elaboró probetas cilíndricas de concreto de 6" x 12". Concluyendo que para un mismo asentamiento y manteniendo constante la cantidad de cemento, la demanda de agua incrementó en un concreto reciclado. El peso volumétrico del concreto reciclado disminuyó en 8.2% en comparación con el concreto patrón debido a la alta porosidad de los agregados reciclados producto del mortero que los cubre parcial o totalmente. El tiempo de fragua y la exudación reflejaron valores mayores respecto del concreto patrón. La resistencia a la compresión de los concretos reciclados presentó valores cercanos a las del concreto patrón para contenidos de cemento menores a 300.00 kg/m³ y disminuyó para cantidades mayores de cemento. La resistencia a la tracción del concreto reciclado fluctúa entre 86% y 92% del concreto patrón según diferentes contenidos de cemento.

1.2. Planteamiento de la realidad problemática

A nivel mundial, en la industria de la construcción y demolición, se estima que aproximadamente el 35% de los residuos generados por éstos se destinan a los vertederos sin ningún tipo de tratamiento de reciclaje (Menegaki M., Damigos D., 2018).

Sin duda alguna el sector de la construcción es un gran generador de residuos y es responsable del 30% y 40% de la generación total de los países industrializados. Sin embargo, en algunos países como Países Bajos, Irlanda y Hungría su porcentaje de reciclaje varía entre el 99% y 100% en el periodo 2017 – 2018, mientras que en otros países está entre 0% y 69%. En su mayoría el material reciclado recuperado se destina en aplicaciones no estructurales como relleno en la construcción de carreteras, cimientos o terraplenes de edificios. Es por eso, que el modelo de producción de la economía circular no funciona del todo bien, ya que el material recuperado no sustituye ni reduce de forma significativa el uso de materias primas (Peters, 2022).

De acuerdo con Bedoya y Dzul (2015), los costos de fabricación de estos concretos con agregados reciclados indican que son muy parecidos al concreto convencional, dado que si bien se necesita mayor cantidad de cemento por metro cúbico se compensa con el bajo costo del agregado reciclado. De hecho, la utilización del concreto reciclado de construcción y demolición es factible en proyectos de sostenibilidad urbana especialmente en donde las canteras de los agregados naturales están muy alejadas de la obra civil elevando el precio del transporte de los agregados y de igual manera con los residuos de las obras demolidas para transportarlos a un botadero (Martínez, 2020).

En el Perú no existen escombreras para la disposición final de los residuos de la industria de la construcción y demolición. En su defecto, éstos son arrojados al mar, a las riberas de los ríos, a lo largo de las carreteras y en botaderos informales sin ningún tipo de tratamiento previo. La Organización de Evaluación y Fiscalización Ambiental (OEFA) identificó 1585 botaderos informales a nivel nacional y solo 27 botaderos han sido categorizados como áreas que pueden ser reconvertidas en infraestructuras formales de disposición de residuos sólidos (Organización de Evaluación y Fiscalización Ambiental [OEFA], 2014).

Ante tantas deficiencias aún en nuestro país, resulta necesario constantemente adecuar la normativa que regula la gestión y el manejo de los residuos sólidos de la construcción y demolición basado en el principio de la economía circular, ya que "la construcción es una etapa inherente a la ejecución de todo tipo de proyecto, sea este público o privado" (Ministerio de Vivienda, Construcción y Saneamiento [MVCS], 2020).

La empresa privada por su parte viene creando esfuerzos en contribuir con el medio ambiente. Para la industria del premezclado, eliminar o disminuir el uso de áreas de residuo implica, además, un beneficio económico al no tener que elegir entre tirar o disponer del material de retorno. Así mismo, al generar su propio agregado, puede reemplazar un determinado volumen de agregado natural por este agregado reciclado y disminuir el consumo del primero al fabricar nuevos concretos (Vernal, s. f.). De igual manera Martínez y Mendoza (2006) indican que las fuentes de recursos de agregados gruesos son cada día más escasas dando como alternativa el uso de agregado grueso reciclado en la fabricación de concretos.

Por otra parte, con el Acuerdo de París, celebrado el 12 de diciembre de 2015 en la COP21 en París, se ha marcado un hito importante para el Perú. El objetivo principal de este Acuerdo es mantener el aumento de la temperatura media mundial por debajo de los 2°C (Naciones Unidas [UN], 2015).

El cambio climático, siendo un problema ambiental global, es producto de los gases de efecto invernadero (GEI) provenientes de diferentes actividades económicas y productivas siendo una de ellas la industria de la construcción con el sector de procesos industriales en la producción de cemento (Gobierno del Perú, 2023). En ese contexto, la industria cementera peruana ha implementado una Hoja de Ruta bajo los estándares de la Federación Interamericana de Cemento (FICEM) concretado en el año 2022, para reducir las emisiones de CO₂ en la producción del cemento. Perú tiene la meta de llegar al año 2030 con 520kgCO₂ / toneladas de cemento, siendo 607kgCO₂ / toneladas de cemento al año 2022 (Asociación de Productores de Cemento [ASOCEM], 2022).

La producción de clínker para el año 2023 es 9452 TM (13% superior a la producción anual promedio para el periodo 2014-2019); y para la producción de cemento es 11404 TM (11% superior a la producción anual promedio para el periodo 2014-2019). Estos valores reflejan un incremento respecto de la producción anual promedio para el periodo 2014-2019, lo cual indica un aumento del factor clínker en el cemento (ASOCEM, 2023).

Siguiendo la Hoja de Ruta, Perú viene juntando esfuerzos para el desarrollo de investigación en nuevas tecnologías y seguir aportando en el desafío de la reducción de emisiones de CO₂ y la lucha contra el cambio climático, es decir, reducir la huella de carbono en la producción de cemento y lograr la carbono-neutralidad al 2050. La industria cementera peruana destaca entre sus esfuerzos la reducción del factor clínker del cemento portland incorporando otros materiales cementicios como puzolanas, cenizas y escorias; además del uso de combustibles alternativos limpios en el proceso de fabricación de clínker (ASOCEM, 2022).

1.3. Objetivos

1.3.1. Objetivo general

 Determinar la influencia del agregado grueso reciclado en concretos de mediana a baja resistencia para relaciones a/c de 0.60, 0.65 y 0.70 utilizando cemento portland puzolánico tipo IP.

1.3.2. Objetivos específicos

- Determinar las propiedades del concreto reciclado en estado fresco, asentamiento, contenido de aire, tiempo de fraguado y exudación utilizando agregado grueso reciclado con porcentajes de sustitución de 25%, 50%, 75% y 100% respecto del agregado grueso convencional y cemento portland puzolánico tipo IP.
- Determinar las propiedades del concreto reciclado en estado endurecido, resistencia a la compresión, tracción y flexión utilizando agregado grueso reciclado con porcentajes de sustitución de 25%, 50%, 75% y 100% respecto del agregado grueso convencional y cemento portland puzolánico tipo IP.

1.4. Hipótesis

1.4.1. Hipótesis general

 El agregado grueso reciclado influirá en concretos de mediana a baja resistencia para relaciones a/c de 0.60, 0.65 y 0.70 utilizando cemento portland puzolánico tipo IP.

1.4.2. Hipótesis específicas

- El concreto reciclado con agregado grueso reciclado en estado fresco tendrá valores similares de asentamiento y contenido de aire y mayores valores de tiempo de fragua y exudación, utilizando porcentajes de sustitución de 25%, 50%, 75% y 100%, y cemento pórtland puzolánico tipo IP.
- El concreto reciclado con agregado grueso reciclado en estado endurecido tendrá valores similares y ligeramente mayores de resistencia a la compresión, menores valores de tracción y flexión, utilizando porcentajes de sustitución de 25%, 50%, 75% y 100%

respecto del agregado grueso convencional y cemento portland puzolánico tipo IP.

1.5. Metodología de trabajo

El método que siguió la investigación fue la siguiente:

1.5.1. Tipo de investigación

Según Murillo (2008, como se citó en Vargas, 2009) y Lozada (2014), la investigación aplicada permite generar o ampliar los conocimientos, a partir de la investigación básica, con aplicación puntual a los diferentes problemas de la sociedad. Por esta razón la presente investigación fue aplicada, ya que se ampliaron los conocimientos sobre cómo influyó el agregado grueso reciclado en el comportamiento de los concretos de mediana a baja resistencia utilizando cemento portland puzolánico tipo IP.

1.5.2. Diseño de investigación

Según Hernández et al. (2014), el diseño experimental tiene como propósito encontrar los posibles efectos o consecuencias generados producto de la manipulación de una causa o influencia. En ese sentido, la presente investigación fue experimental, ya que se determinó el comportamiento de las propiedades del concreto en estado fresco y endurecido al manipular diferentes porcentajes de sustitución de agregado grueso convencional por agregado grueso reciclado.

1.5.3. Población

Según Lepkowski (2008, como se citó en Hernández et al., 2014), la población es el universo de todos los casos que cuentan con ciertas características únicas permitiendo delimitarla y estudiarla para posteriormente realizar generalizaciones de dichas características.

La población de esta investigación fue el concreto convencional de mediana a baja resistencia fabricado con agregado fino natural (AFN), agregado grueso reciclado (AGR) y cemento portland puzolánico tipo IP.

1.5.4. Muestra

Según Hernández et al. (2014), la muestra es un subconjunto de elementos que pertenecen a ese universo llamado población el cual está definido con características únicas.

La muestra de esta investigación fueron diseños de mezcla con relaciones a/c de 0.60, 0.65 y 0.70 y con porcentajes de sustitución de agregado grueso natural (AGN) por agregado grueso reciclado (AGR) del 25%, 50%, 75% y 100%, buscando un asentamiento entre 3" a 4" en las mezclas.

El diseño de mezcla se realizó con el método de agregado global teniendo en total 5 diseños de mezcla para cada a/c en estudio, encontrando la mejor proporción entre el AFN y AGN, de acuerdo con las pruebas y ensayos realizados en el Laboratorio de Ensayo de Materiales de la Universidad Nacional de Ingeniería (LEM-UNI).

Para cada a/c en estudio se realizaron los ensayos en estado fresco del concreto patrón (CP) y concreto reciclado (CR), los cuales se muestran en la Tabla N°1.

Tabla N°1: Ensayos en estado fresco del CP y CR para cada a/c en estudio

Ensayo	S B	CAGR25	CAGR50	CAGR75	CAGR100	TOTAL
Asentamiento	1	1	1	1	1	5
Peso unitario	1	1	1	1	1	5
Contenido de aire	1	1	1	1	1	5
Tiempo de Fraguado	1	1	1	1	1	5
Exudación	1	1	1	1	1	5

Fuente: Elaboración propia

Todos los ensayos se realizaron siguiendo las indicaciones de las normas NTP 339.035 (Instituto Nacional de Calidad [INACAL], 2022b), NTP 339.046 (INACAL, 2019a), NTP 339.077 (INACAL, 2020e), NTP 339.080 (INACAL, 2017a) y NTP 339.082 (INACAL, 2017b).

Igualmente, para cada a/c en estudio se realizaron los ensayos en estado endurecido del CP y CR en probetas cilíndricas y vigas rectangulares, dichos especímenes se desmoldaron y curaron hasta la fecha de su ensayo.

Los ensayos que se realizaron fueron:

- Ensayo de resistencia a la compresión, en probetas cilíndricas de 4"x8" ensayados a los 7, 14, 28 y 56 días.
- Ensayo de resistencia a la tracción, en probetas cilíndricas de 4"x8" ensayados a los 28 días.
- Ensayo de resistencia a la flexión, en vigas rectangulares de 15cmx15cmx50cm ensayados a los 28 días

Los ensayos se detallan en la Tabla N°2.

Tabla N°2: Ensayos en estado endurecido del CP y CR para cada a/c en estudio

Ensayo de resistencia	Edad de Ensayo	G	CAGR25	CAGR50	CAGR75	CAGR100	Parcial (Probetas y/o vigas)	TOTAL
	7	3	3	3	3	3	15	
Compresión	14	3	3	3	3	3	15	120
	28	15	15	15	15	15	75	
	56	3	3	3	3	3	15	
Tracción	28	3	3	3	3	3	15	15
Flexión	28	2	2	2	2	2	10	10

Fuente: Elaboración propia

Todos los ensayos se realizaron siguiendo las indicaciones de las normas NTP 339.034 (INACAL, 2021b), NTP 339.078 (INACAL, 2022a) y NTP 339.084 (INACAL, 2022c).

Se tuvo en ese sentido un total de 360 ensayos a la compresión, 45 a la tracción y 30 a la flexión.

Capítulo II: Marco teórico y conceptual

2.1. Agregados de concreto reciclado (ACR)

Los agregados de concreto reciclado (ACR) son aquellos que son provenientes del tratamiento de los residuos de concreto producto de las demoliciones o desechos de la construcción mediante trituración de los mismos; estos ACR pueden ser agregados reciclados finos o gruesos (Hansen, 1986).

2.1.1. Generalidades

El ACR está cubierto principalmente de mortero y pasta de cemento el cual representa aproximadamente el 20% - 30% de volumen del mortero viejo, dependiendo principalmente del concreto original y su elaboración. El mortero y pasta de cemento adherido al agregado viejo es lo que diferencia entre los agregados reciclados de concreto y los agregados naturales (Li J., 2004, como se citó en Li X., 2008).

Según Li J. (2004, como se citó en Li X., 2008) los ACR presentan las siguientes propiedades físicas:

- Peso unitario suelto y compactado de los agregados de concreto reciclado oscila entre 1290 kg/m³ – 1470 kg/m³
- La densidad saturada superficialmente seca de los agregados de concreto reciclado oscila entre 2.31 g/cm³ – 2.62 g/cm³
- La absorción de los agregados de concreto reciclado oscila entre 4% -9.5%, siendo esta la propiedad más importante.
- La porosidad es alta debido al mortero y pasta de cemento adherido.
- Propiedades mecánicas y químicas son bajas.

El ACR, proveniente de sobrantes de concretos en plantas de producción, tiende a tener un menor porcentaje de mortero adherido al ser triturado a una etapa menor. De acuerdo con investigaciones realizadas por McNeil & Kang (2013), esta característica es fundamental teniendo en cuenta que el mortero adherido es una de las causas principales por las cuales se presentan mayores absorciones de agua y reducciones en la resistencia a la compresión en concretos con ACR, ya que este mortero puede romperse en la zona de transición en la

interfase agregado - pasta de cemento, la cual se constituye en una zona débil en la estructura interna del concreto.

De igual manera Butler et al. (2014) observó los mecanismos de falla que presentan los concretos con agregados reciclados que son influenciados por las mismas propiedades físicas de los agregados. El concreto con agregados naturales presenta tres modos de falla en el que la fase más débil es la más predominante. Estas fases son: las partículas del agregado grueso, el mortero y la interfase mortero – agregado o zona de transición interfacial. En el concreto con agregados reciclados se consideran 5 modos de falla, ya que los agregados de concreto reciclado provienen de un concreto de agregado natural que consta de tres modos de falla. Los dos nuevos modos de falla incluidos son: segundo modo de falla de mortero y una segunda zona de transición interfacial.

2.1.2. Procedimiento de obtención

Los procedimientos de obtención de los agregados secundarios (agregados reciclados) han iniciado con la clasificación y separación de materiales contaminantes como papel, plástico, madera, paneles aislantes, etc. de los residuos de construcción y demolición; procesos que han sido realizados por una empresa clasificadora o la misma empresa que ha generado desechos por sus actividades de construcción. Dependiendo el tipo de construcción se han elegido una planta estacionaria o móvil para desperdicios de construcción y demolición. Cual haya sido la elección, en ambos el material se redujo previamente en trituradoras de mandíbula, giratorias o de cono, seguido de una trituradora de impacto llamado también impactador (Hendriks y Pietersen, 2000).

Según el origen del material se han obtenido los siguientes agregados reciclados.

- Agregado de concreto
- Agregado de albañilería (ladrillo)
- Agregado mixto
- Agregado asfáltico

Las primeras recomendaciones que fueron dadas sobre las especificaciones y clasificaciones del agregado grueso reciclado fueron hechas por la Réunion Internationale des Laboratoires et Experts des Matériaux (RILEM, 1994). El agregado grueso reciclado se ha clasificado en tres categorías:

- Tipo I: Agregados que se han originado principalmente a partir de escombros de albañilería.
- Tipo II: Agregados que se han originado principalmente a partir de escombros de concreto.
- Tipo III: Agregados que se han originado de la mezcla de agregados reciclados y agregados naturales.

2.2. Agregados

Se define como agregados, a los materiales granulares obtenidos de manera artificial o natural cuyas dimensiones o gradaciones están normalizadas para poder clasificarlas como agregado fino o grueso (INACAL, 2020a).

2.2.1. Agregado grueso

Se define como agregado grueso, al material granular obtenido de la desintegración artificial o natural del material pétreo, cuya gradación inicia desde el retenido en el tamiz normalizado 4.75mm (N°4), y que cumple con los límites establecidos en la NTP 400.037 (INACAL, 2021a).

2.2.1.1. Grava

Se define como grava, al agregado grueso obtenido de la desintegración natural de materiales pétreos, encontrándose principalmente en canteras y lechos de ríos, depositado en forma natural (INACAL, 2021a).

2.2.1.2. Piedra chanchada o triturada

Se define como piedra chancada o triturada, al agregado grueso obtenido por trituración artificial o mecánica de rocas o gravas, escorias u otros (INACAL, 2021a).

Por uso tradicional de la terminología, en la investigación el término "Piedra" se usó para referirse a la piedra chancada o triturada.

2.2.2. Agregado fino

Se define como agregado fino, al material granular obtenido de la desintegración artificial o natural del material pétreo, cuya gradación inicia en lo que pasa el tamiz normalizado 9.5 mm (3/8 pulg) y queda retenido en el tamiz normalizado µm (N° 200), y que cumple con los límites establecidos en la NTP 400.037 (INACAL, 2021a).

2.2.2.1. Arena

Se define como arena, al agregado fino proveniente de la desintegración natural de las rocas (INACAL, 2021a).

2.3. Cemento hidráulico adicionado

Según INACAL (2020c), considera actualmente los cementos siguientes:

- Cemento adicionado binario: Es una mezcla íntima y uniforme por molienda y mezclado de Clinker de cemento Portland y escoria, puzolanas o filler.
- Cemento adicionado ternario: Es una mezcla íntima y uniforme por molienda y mezclado de Clinker de cemento Portland y: dos puzolanas diferentes, escoria de alto horno y puzolana, puzolana y caliza, escoria y caliza.

Así mismo, los cementos adicionados se clasifican según su uso en la construcción con concreto.

- Tipo IS: Cemento Portland con escoria de alto horno.
- Tipo IP: Cemento Portland puzolánico.
- Tipo IL: Cemento Portland caliza.
- Tipo I(PM): Cemento Portland puzolánico modificado.
- Tipo IT: Cemento adicionado ternário.
- Tipo ICo: Cemento Portland compuesto.

2.3.1. Cemento portland puzolánico

Según INACAL (2020c), la puzolana constituyente es hasta el 40% en masa del cemento adicionado. En la Table N°3 se presentan los requisitos químicos que deben tener los cementos adicionados.

Tabla N°3: Requisitos químicos para el cemento Tipo IP

Requisitos químicos	Cemento Tipo IP
Óxido de magnesio (MgO), %	6.0 máximo
Trióxido de azufre (SO ₃), %	4.0 máximo
Pérdida por ignición, %	5.0 máximo
Azufre (S), %	No especifica
Residuo insoluble, %	No especifica

Fuente: NTP 334.090 (INACAL, 2020c)

En la Table N°4 se presentan los requisitos físicos que deben tener los cementos adicionados.

Tabla N°4: Requisitos físicos para el cemento Tipo IP

Requisitos físicos	Cemento Tipo IP
Expansión en autoclave, %	0.80 máximo
Contenido de aire, %	12 máximo
Peso específico, g/cm ³	No especifica
Tiempo de fraguado, ensayo Vicat	
Fraguado inicial, minutos	45 mínimo
Fraguado final, minutos	420 máximo
Resistencia a la compresión, Kg/cm²	
3 días	133 mínimo
7 días	204 mínimo
28 días	255 mínimo

Fuente: NTP 334.090 (INACAL, 2020c)

2.4. Agua de mezcla

Según INACAL (2019c), el agua de mezcla utilizada para la fabricación del concreto puede ser potable o no potable, calificando esta última para su uso en conformidad con los requisitos que estipula la NTP 339.088.

2.5. Concreto reciclado (CR)

Se define como concreto reciclado (CR), aquel concreto fabricado con agregados reciclados provenientes de escombros de albañilería y concretos usándolos parcial o completamente, junto con el agua y un medio cementante (INACAL, 2019b).

Breccolotti y Materazzi (2010) indican que un número limitado de normas técnicas internacionales, como la NEN 5950 y la ACI 555R-01, permiten el reemplazo al 100% de los agregados reciclados en concretos. Siendo en algunos casos el uso de agregados reciclados solo para aplicaciones específicas y para resistencias inferiores a 20 N/mm² (204 kg/cm²).

Los resultados de Martínez y Mendoza (2006) indican que el concreto reciclado puede ser utilizado como concreto clase dos (concreto no estructural) con diversas aplicaciones en la industria de la construcción.

2.6. Concreto

El concreto es un producto artificial que consiste en un medio ligante denominado pasta, dentro del cual se encuentra embebidas partículas de un medio ligado denominado agregado. Los materiales que participan esencialmente en la fabricación del concreto son: Agregado, agua y cemento. Excepcionalmente, conforme al uso final que se le puede dar al concreto, ya sea en estado fresco o endurecido, se puede requerir de aditivos y de nuevos materiales que son sustitutos parcial o totalmente de los esencialmente ya mencionados (Riva, 2000).

Capítulo III: Materiales

3.1. Cemento hidráulico adicionado

El cemento adicionado utilizado fue del Tipo IP, marca Nacional.

En la Tabla N°5 se muestran los requisitos físicos y químicos del cemento Nacional Tipo IP comparados con los requisitos establecidos en la NTP 334.090.

Tabla N°5: Requisitos físicos y químicos para el cemento Nacional Tipo IP

Requisitos	Cemento Nacional Tipo IP	Requisitos NTP 334.090
Físicos		
Expansión en autoclave, %	0.001	0.80 máximo
Contenido de aire, %	8	12 máximo
Peso específico, g/cm ³	2.88	No especifica
Tiempo de fraguado, ensayo Vicat		
Fraguado inicial, minutos	130	45 mínimo
Fraguado final, minutos	280	420 máximo
Resistencia a la compresión, Kg/cm²		
3 días	180	133 mínimo
7 días	230	204 mínimo
28 días	310	255 mínimo
Químicos		
Óxido de magnesio (MgO), %	2.5	6.0 máximo
Trióxido de azufre (SO ₃), %	2.0	4.0 máximo
Pérdida por ignición, %	No especifica	5.0 máximo
Azufre (S), %	No especifica	No especifica
Residuo insoluble, %	No especifica	No especifica

Fuente: Ficha técnica cemento Nacional Tipo IP.

3.2. Agregados

3.2.1. Agregado fino natural (AFN)

El agregado fino natural provino de la cantera Trapiche, ubicado en el distrito de Santa Rosa de Quives, provincia de Canta y departamento de Lima.

3.2.2. Agregado grueso natural (AGN)

El agregado grueso natural provino de la cantera Unicon, ubicado en el distrito de Lurigancho-Chosica, provincia y departamento de Lima. Se utilizaron diferentes porcentajes de reemplazo en los diseños de mezcla tales como: 25%, 50%, 75% y 100%.

3.2.3. Agregado grueso reciclado (AGR)

El agregado grueso reciclado provino de los residuos de concreto de la industria de la construcción y demolición. Estos residuos de concreto previamente fueron clasificados para luego pasar por un proceso de trituración hasta obtener el AGR. El AGR se obtuvo de la empresa Construcciones Ecológicas que ha implementado una adecuada gestión de residuos de la construcción y demolición. Se utilizaron diferentes porcentajes de reemplazo en los diseños de mezcla tales como: 25%, 50%, 75% y 100%.

3.3. Propiedades físicas de los agregados

3.3.1. Granulometría

Es la distribución de los tamaños que posee el agregado (INACAL, 2020a).

De acuerdo con INACAL (2021c), el procedimiento para la distribución del tamaño de las partículas que posee el agregado seco se realizó a través de una serie de tamices en orden de abertura decreciente, que luego son agitadas manual o mecánicamente por un tiempo suficiente.

INACAL (2021a), estableció los requisitos de granulometría del agregado fino tal como se presenta en la Tabla N°6 para su uso en la fabricación de concreto.

Tabla N°6: Requisitos de granulometría para el agregado fino

Tamiz	Porcentaje que pasa (%)
9.5 mm (3/8")	100
4.75 mm (N° 4)	95 a 100
2.36 mm (N° 8)	80 a 100
1.18 mm (N°16)	50 a 85
600 µm (N° 30)	25 a 60
300 μm (N° 50)	5 a 30
150 μm (N° 100)	0 a 10

Fuente: NTP 400.037 (INACAL, 2021a)

INACAL (2021a), estableció los requisitos de granulometría del agregado grueso tal como se presenta en la Tabla N°7 para su uso en la fabricación de concreto.

Tabla N°7: Requisitos de granulometría para el agregado grueso

	Tamaño						%)		
Huso	máximo Nominal (T.M.N.)	37.5 mm 1 1/2"	25 mm 1"	19 mm 3/4"	12.5 mm 1/2"	9.5 mm 3/8"	4.75 mm N° 4	2.36 mm N° 8	
	25 mm a		90 a	20 a	0 a				
5	12.5 mm	100	100	55	10	0 a 5	-	-	
	(1" a 1/2")		100	55	10				
	25 mm a		00	40	40	•			
56	9.5 mm	100	100	90 a	40 a	10 a	0 a	0 a 5	-
	(1" a 3/8")		100 85 4	40	15				
	19 mm a		05 -		05 -		0 a 10	0 a 5	
57	4.75 mm	100	95 a	-	25 a	-			
	(1" a N° 4)		100		65				
	19 mm a			00 -	00 -	0 -			
6	9.5 mm	-	100	90 a	20 a	0 a	0 a 5	-	
	(3/4" a 3/8")	3/8")		100	55	15			
	19 mm a			90 a		20 a			
67	4.75 mm	- 10	100		-		0 a 10	0 a 5	
	(3/4" a N° 4)			100		55			

Fuente: NTP 400.037 (INACAL, 2021a)

Además, de los requisitos granulométricos establecidos para el agregado fino y grueso se establecieron otros requisitos granulométricos para el agregado global el cual proporciona una mayor información para su uso en la fabricación del concreto y control de calidad del agregado (INACAL, 2021a). Los requisitos granulométricos para el agregado global se presentan en la Tabla N°8.

Tabla N°8: Requisitos de granulometría para el agregado global

	Tamaño máximo nominal				
Tamiz	Tamaño máximo nominal 37.5 mm (1 1/2")	Tamaño máximo nominal 19.9 mm (3/4")	Tamaño máximo nominal 9.5 mm (3/8")		
50 mm (2")	100				
37.5 mm (1 1/2")	95 a 100	100			
19.0 mm (3/4")	45 a 80	95 a 100			
12.5 mm (1/2")			100		
9.5 mm (3/8")			95 a 100		
4.75 mm (N° 4)	25 a 50	35 a 55	30 a 65		
2.36 mm (N° 8)			20 a 50		
1.18 mm (N°16)			15 a 40		
600 µm (N° 30)	8 a 30	10 a 35	10 a 30		
300 µm (N° 50)			5 a 15		
150 µm (N° 100)	0 a 8ª	0 a 8ª	0 a 8ª		

Fuente: NTP 400.037 (INACAL, 2021a)

3.3.1.1. Módulo de finura

El módulo de finura (M.F.) es un indicador importante representado por un número adimensional que especifica el tamaño de los agregados.

De acuerdo con INACAL (2021c), el M.F. se calcula, sumando los porcentajes retenidos acumulados de los tamices que cumplan con la relación 2 a 1 iniciando desde el tamiz N°100 hasta el máximo tamiz presente. Para el cálculo no se considera los tamices de 1" y 1/2". En la Ecuación 1 se presenta la fórmula para calcular el M.F.

M.F.=
$$\frac{\sum \text{\%RetenidoAcumulado}(1\frac{1}{2}\text{"}, \frac{3}{4}\text{"}, \frac{3}{8}\text{"}, N^{\circ}4, N^{\circ}8, N^{\circ}16, N^{\circ}30, N^{\circ}50, N^{\circ}100)}{100}$$
 (1)

a: Incrementar 10% para finos de roca triturada

3.3.1.2. Materiales más finos que pasan el tamiz N°200

De acuerdo con INACAL (2020f), el método de ensayo de los materiales más finos que pasan el tamiz N°200 consiste en calcular el porcentaje del material fino que recubre superficialmente al agregado sometiéndose éste a un proceso de sedimentación y tamizado por vía húmeda.

Los requisitos de aceptabilidad de los agregados, contra sustancias nocivas como los limos y arcillas, son indicados en la NTP 400.037, en lo cual establece porcentajes máximos de sustancias nocivas para el agregado fino y agregado grueso de 5% y 1%, respectivamente. Un alto porcentaje de limos o arcillas es un alto riesgo y perjudicial para el comportamiento del concreto o mortero tanto en estado fresco y endurecido.

3.3.2. Abrasión en máquina de los ángeles

De acuerdo con INACAL (2020g), el método de ensayo para determinar la resistencia a la degradación en agregados gruesos de tamaños menores que 37.5 mm (1 1/2") en la máquina de Los Ángeles sirvió como un indicador de calidad relativo sobre la tenacidad de los agregados gruesos. El resultado permitió conocer cuanto resiste el agregado grueso al impacto de las cargas durante la fabricación, colocación y compactación del concreto.

La máquina de Los Ángeles es un cilindro hueco de acero que lleva en el interior una carga abrasiva que consiste en esferas de acero de 46 mm a 48 mm de diámetro con una masa de 390 g a 445 g cada una (INACAL, 2020g). La masa de la carga abrasiva se indica en la Tabla N°10 conforme a la granulometría escogida en la Tabla N°9.

Según la NTP 400.019 la degradación del agregado grueso como porcentaje de pérdida se calculó de la siguiente relación expresada en la Ecuación 2.

Porcentaje de pérdida =
$$\frac{W_0 - W_f}{W_0} \times 100$$
 (2)

Donde:

 W_0 = Masa de la muestra al comienzo del ensayo, (g)

W_f = Masa de la muestra después de las 500 rev., (g)

Tabla N°9: Gradación de las muestras para el ensayo de abrasión

Tamaño de Tamiz
(mm)
(aberturas cuadradas)

Masa de tamaños indicados (g)

Oue need	Retenido				
Que pasa	sobre	Α	В	С	D
37.5 mm (1 1/2")	25.0 mm (1")	1250 ± 25			
25.0 mm (1")	19.0 mm (3/4")	1250 ± 25			
19.0 mm (3/4")	12.5 mm (1/2")	1250 ± 10	2500 ± 10		
12.5 mm (1/2")	9.5 mm (3/8")	1250 ± 10	2500 ± 10		
9.5 mm (3/8")	6.3 mm (1/4")			2500 ± 10	
6.3 mm (1/4")	4.75 mm (N° 4)			2500 ± 10	
4.75 mm (N° 4)	2.36 mm (N° 8)				5000 ± 10
То	tal	5000 ± 10	5000 ± 10	5000 ± 10	5000 ± 10

Fuente: NTP 400.019 (INACAL, 2020g)

Tabla N°10: Masa de la carga abrasiva para el ensayo de abrasión

Gradación	Número de esferas	Masa de la carga (g)
Α	12	5000 ± 25
В	11	4584 ± 25
С	8	3330 ± 20
D	6	2500 ± 15

Fuente: NTP 400.019 (INACAL, 2020g)

3.3.3. Peso unitario

La NTP 400.017 define al peso unitario como la masa por unidad de volumen, sin embargo, ésta señaló que es preferible llamarla densidad de masa. Así mismo, se establecieron los procedimientos para calcular la densidad de masa suelto y compactado del agregado fino, grueso y global en condición seco (INACAL, 2020b).

Por uso tradicional de la terminología, en la investigación el término "Peso Unitario" se usó para referirse a la densidad de masa.

3.3.3.1. Peso unitario suelto (P.U.S.)

Es el valor obtenido de la relación masa/volumen expresado en Kg/m³ como se indica en la Ecuación 3.

P.U.S.=
$$\frac{\text{Masa del agregado (Kg)}}{\text{Volumen del recipiente (m}^3)}$$
 (3)

3.3.3.2. Peso unitario compactado (P.U.C.)

Es el valor obtenido de la relación masa/volumen expresado en Kg/m³ como se indica en la Ecuación 4.

P.U.C.=
$$\frac{\text{Masa del agregado compactado (Kg)}}{\text{Volumen del recipiente (m}^3)}$$
 (4)

3.3.4. Contenido de humedad

La NTP 339.185 definió al contenido de humedad total evaporable del agregado como el contenido de humedad evaporable que incluye la humedad superficial y la contenida en los poros del mismo, pero sin considerar el agua que se combina químicamente con los minerales de algunos agregados y que no es capaz de evaporarse (INACAL, 2021d).

El valor del contenido de humedad total evaporable se expresa en porcentaje (%) tal como se formula en la Ecuación 5.

3.3.5. Peso específico

La NTP 400.021 definió la densidad como la masa por unidad de volumen de un material, expresado en Kg/m³. También definió a la densidad (OD) como la masa de las partículas de agregado secado al horno por unidad de volumen de partículas de agregado (INACAL, 2020d).

Por uso tradicional de la terminología, en la investigación el término "Peso específico" se usó para referirse a la densidad (OD).

En la NTP 400.022 se establecieron los procedimientos para determinar el peso específico del agregado fino, expresado en g/cm³ tal como se indica en la Ecuación 6 (INACAL, 2021e).

P.E.=
$$\frac{(E-D)}{(V-(C-(A+B)))}$$
 (6)

Donde:

A = Masa de la muestra superficialmente seca, (g)

B = Masa de matraz aforado de 500ml, (g)

C = Masa de la muestra superficialmente seca más masa del matraz aforado y más la masa del agua, (g)

D = Masa de recipiente, (g)

E = Masa de la muestra secada al horno más masa del recipiente, (g)

V = Volumen del matraz aforado, 500 ml

En la NTP 400.021 se establecieron los procedimientos para determinar el peso específico del agregado grueso, expresado en g/cm³ tal como se indica en la Ecuación 7 (INACAL, 2020d).

$$P.E. = \frac{B}{(A-C)} \tag{7}$$

Donde:

A = Masa de la muestra superficialmente seca, (g)

B = Masa de la muestra secada al horno, (g)

C = Masa de la muestra saturada en agua, (g)

3.3.6. Absorción

La NTP 400.021 definió la absorción como el agua retenida en los poros de las partículas del agregado, durante un periodo de tiempo determinado, pero sin incluir el agua que se encuentra superficialmente en las partículas del agregado, generando un aumento en la masa del agregado. Así mismo, se establecieron los procedimientos para determinar la absorción del agregado grueso, expresada como porcentaje (%) de la masa seca como se indica en la Ecuación 8 (INACAL, 2020d).

%Absorción= 100 x
$$\frac{\text{(A-B)}}{\text{B}}$$
 (8)

Donde:

A = Masa de la muestra superficialmente seca, (g)

B = Masa de la muestra secada al horno, (g)

En la NTP 400.022 se establecieron los procedimientos para determinar la absorción del agregado fino, expresada como porcentaje (%) de la masa seca como se indica en la Ecuación 9 (INACAL, 2021e).

%Absorción= 100 x
$$\frac{(500-(E-D))}{(E-D)}$$
 (9)

Donde:

E = Masa de la muestra secada al horno más masa del recipiente, (g)

D = Masa del recipiente, (g)

Resultados de las propiedades físicas de los agregados 3.4.

3.4.1. Granulometría

3.4.1.1. Agregado fino natural

En la Figura N°1 se muestra la curva granulométrica del agregado fino natural utilizado en la investigación realizado acorde con los requisitos de granulometría estipulados por la NTP 400.037.

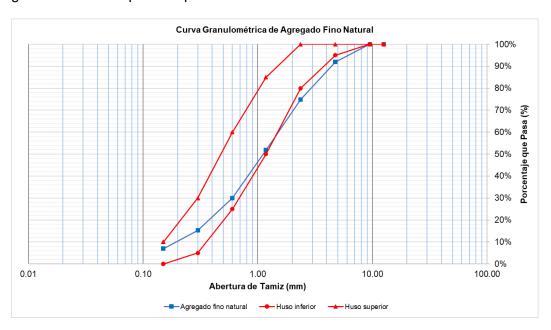


Figura N°1: Curva granulométrica de agregado fino natural Fuente: Elaboración propia

3.4.1.2. Agregado grueso natural

En la Figura N°2 se muestra la curva granulométrica del agregado grueso natural utilizado en la investigación realizado acorde con los requisitos de granulometría estipulados por la NTP 400.037.

Figura N°2: Curva granulométrica de agregado grueso natural

Fuente: Elaboración propia

3.4.1.3. Agregado grueso reciclado

En la Figura N°3 se muestra la curva granulométrica del agregado grueso reciclado utilizado en la investigación realizado acorde con los requisitos de granulometría estipulados por la NTP 400.037.

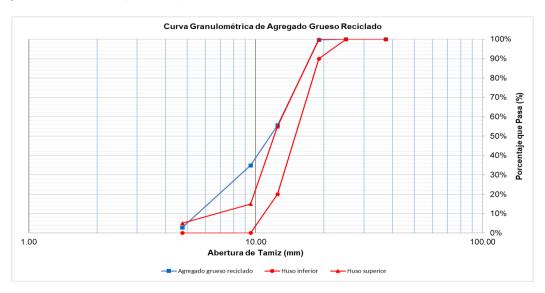


Figura N°3: Curva granulométrica de agregado grueso reciclado

3.4.1.4. Agregado global

Para obtener la óptima proporción de combinación de arena y piedra se calculó el mayor valor de P.U.C. del agregado global. En la Tabla N°11 se muestran los valores de diferentes P.U.C. del agregado global correspondiente a cada variación de porcentaje de arena y piedra en 5% para cada ensayo de P.U.C. Así mismo, en la Figura N°4 se mostró la curva del P.U.C. del agregado global vs el porcentaje de arena, del cual se obtuvo un P.U.C. máximo de 2076 kg/m³ y una óptima proporción de combinación de 52.50% arena y 47.50% piedra.

P.U.C. (kg/m³) Arena (%) Piedra (%) **Agregado Global** 40 1972 60 45 55 2019 50 50 2070 55 45 2074 60 40 2055

Tabla N°11: P.U.C. del agregado global

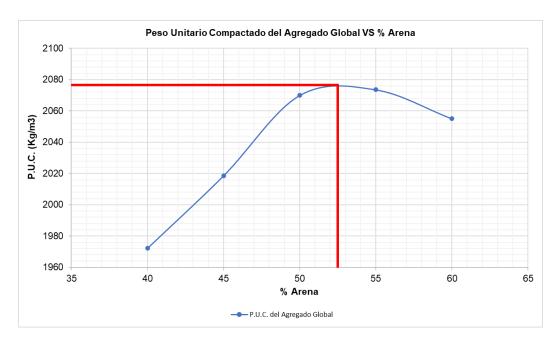


Figura N°4: Curva del P.U.C. del agregado global Fuente: Elaboración propia

Con los porcentajes óptimos de combinación de arena y piedra se realizó la curva granulométrica del agregado global acorde con los requisitos de granulometría estipulados por la NTP 400.037 tal como se muestra en la Figura N°5.

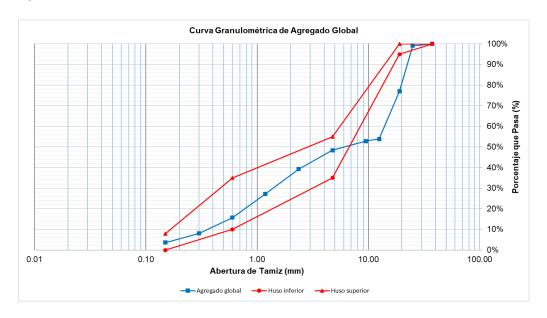


Figura N°5: Curva granulométrica de agregado global Fuente: Elaboración propia

3.4.2. Resumen de resultados de los ensayos

En la Tabla N°12 se muestra un resumen de resultados de los ensayos de las propiedades físicas del agregado fino natural, agregado grueso natural y agregado grueso reciclado.

Tabla N°12: Resultados propiedades físicas de los agregados

Descripción	Unidades	Agregado Fino Natural	Agregado Grueso Natural	Agregado Grueso Reciclado
Peso unitario suelto	Kg/m ³	1751	1465	1292
Peso unitario compactado	Kg/m ³	1904	1595	1377
Contenido de humedad	%	1.59	0.41	3.02
Peso específico	g/cm ³	2.65	2.69	2.34
Absorción	%	1.19	0.84	5.60
Abrasión	%	-	11.77	30.10
Material más fino que pasa tamiz N°200	%	4.9	-	-
Tamaño máximo nominal (T.M.N.)	pulgada	-	3/4"	1/2"
Módulo de finura (M.F.)	-	3.29	7.48	6.63

En el Anexo A se detallan y explican los resultados de los ensayos realizados a los agregados utilizados en la investigación.

3.5. Agua

Para los diseños de mezcla y curado se utilizó agua proveniente del grifo del Laboratorio de Ensayo de Materiales de la Universidad Nacional de Ingeniería (LEM-UNI) el cual cumplió con los limites químicos establecidos en la NTP 339.088.

En el Anexo D se incluyen los resultados del análisis físico - químico realizado al agua utilizada en la investigación.

3.6. Moldes

Para la fabricación de las probetas cilíndricas de concreto se utilizaron moldes plásticos cilíndricos de 4" de diámetro y 8" de altura, y para las vigas rectangulares de concreto se utilizaron moldes fenólicos de 15cmx15cmx50cm.

3.7. Zona de curado

La zona de curado es el lugar donde las probetas cilíndricas y vigas rectangulares de concreto después de ser desencofradas fueron sumergidas en agua hasta la fecha de ensayo.

Capítulo IV: Diseño de mezcla

Referirse al diseño de mezcla no es más que a la selección de proporciones de los componentes o ingredientes de la mezcla calculados con el método más ventajoso, con el objetivo de producir concretos económicos y con requisitos mínimos de resistencia, durabilidad y consistencia (Neville, 1999).

4.1. Diseño de mezcla del concreto patrón

En esta investigación se buscó obtener diseños de mezcla de concreto patrón (CP) con la mejor proporción de agregados y tomando como referencia las tablas del comité ACI 211.1.

Los diseños de mezcla de CP tendrán la siguiente nomenclatura relacionado a cada a/c en estudio.

CP1: Concreto patrón 1 para a/c = 0.60

CP2: Concreto patrón 2 para a/c = 0.65

CP3: Concreto patrón 3 para a/c = 0.70

En adelante, el término "patrón" fue usado en todo aquello que sirvió como punto de inicio o de referencia para analizar las propiedades del concreto en estado fresco y endurecido.

4.1.1. Obtención experimental del agua patrón

La obtención del agua patrón para los diferentes concretos patrones se obtuvo de manera experimental. Se realizó tres diseños de mezcla para cada CP con diferentes valores de agua, estimadas por tanteo, manteniendo constante el valor de a/c. Posteriormente estos valores de agua con su respectivo asentamiento obtenido fueron graficados para luego ajustarlos a una ecuación lineal y calcular el agua patrón con un asentamiento promedio entre 3" – 4" requerido en la investigación.

Las cantidades de agua estimadas para el diseño de mezcla del CP1 fueron 210 L/m³, 220 L/m³ y 230 L/m³.

Las cantidades de agua estimadas para el diseño de mezcla del CP2 fueron 200 L/m³, 210 L/m³ y 220 L/m³.

Las cantidades de agua estimadas para el diseño de mezcla del CP3 fueron 200 L/m³, 210 L/m³ y 220 L/m³.

En la Figura N°6 se muestra la curva lineal de Asentamiento vs Volumen de agua obtenida para CP1.

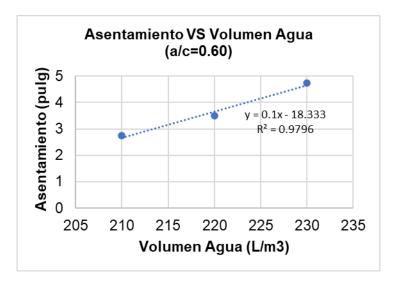


Figura N°6: Estimación de agua patrón para CP1 Fuente: Elaboración propia

En la Figura N°7 se muestra la curva lineal de Asentamiento vs Volumen de agua obtenida para CP2.

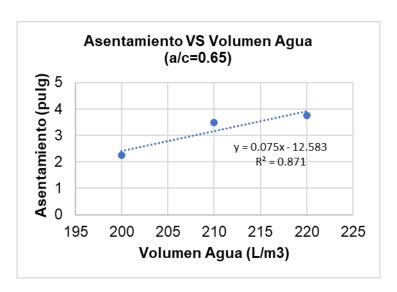


Figura N°7: Estimación de agua patrón para CP2 Fuente: Elaboración propia

En la Figura N°8 se muestra la curva lineal de Asentamiento vs Volumen de agua obtenida para CP3.

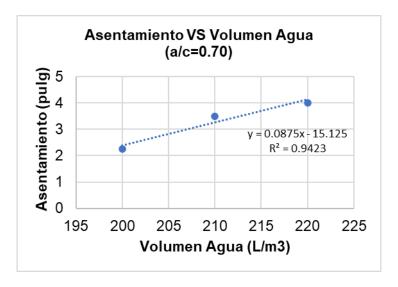


Figura N°8: Estimación de agua patrón para CP3

Fuente: Elaboración propia

Así mismo, en la Tabla N°13 se muestra un resumen de los valores obtenidos del agua patrón para cada a/c en estudio.

Tabla N°13: Agua patrón para cada a/c en estudio

a/c	Agua (L/m³)	Asentamiento (pulgada)	Agua Patrón (L/m³)	Asentamiento Requerido (pulgada)
	210	2.75		
0.60	220	3.50	220	3.50
	230	4.75		
	200	2.25		
0.65	210	3.50	214	3.50
	220	3.75		
	200	2.25		
0.70	210	3.50	213	3.50
	220	4.00		

4.1.1.1. Procedimiento del diseño de mezcla

Para explicar el procedimiento del diseño de mezcla se desarrolló una serie de pasos para lo cual se tomó como ejemplo el diseño de mezcla del CP1 con una cantidad de agua de 210 L/m³, con los resultados de las propiedades físicas de los agregados mostrados en la Tabla N°12 del subcapítulo 3.4.2. y con los valores mostrados en la Tabla N°5 del subcapítulo 3.1.

Los pasos se detallan a continuación:

a) Selección del T.M.N.

T.M.N. del agregado grueso natural = 3/4"

b) Selección de la relación agua/cemento

$$a/c = 0.60$$

c) Selección del asentamiento

Asentamiento =
$$3" - 4"$$

d) Selección del volumen de agua

En este caso el volumen de agua seleccionado ya estuvo preestablecido desde el inicio de la explicación de la metodología del diseño de mezcla. Cuando se obtenga la cantidad de agua patrón requerida para un asentamiento de 3" - 4" es la que usaremos en los demás diseños de mezcla correspondiente a cada a/c en estudio.

Agua =
$$210 \text{ L/m}^3 = 210 \text{ kg/m}^3$$

e) Selección del contenido de aire

Según las tablas del comité ACI 211.1, el aire atrapado para un T.M.N. de 3/4" es:

f) Determinación de la cantidad de cemento

$$\frac{a}{c} = \frac{\text{agua}}{\text{cemento}} = \frac{210 \text{ kg/m}^3}{\text{cemento}} = 0.60$$

g) Determinación de volúmenes absolutos para 1 m³

Vol. Cemento =
$$\frac{\text{Masa Cemento}}{\text{P.E. Cemento}} = \frac{350 \text{ kg}}{2880 \text{ kg/m}^3} = 0.122 \text{ m}^3$$

Vol. Agua = $\frac{\text{Masa Agua}}{\text{P.E. Agua}} = \frac{210 \text{ kg}}{1000 \text{ kg/m}^3} = 0.210 \text{ m}^3$

Vol. Aire = 2.0% = 0.020 m³

Vol. Agregados =
$$1 \text{ m}^3$$
 - $(0.122 \text{ m}^3 + 0.210 \text{ m}^3 + 0.020 \text{ m}^3)$

h) Determinación de volúmenes absolutos de los agregados

En el subcapítulo 3.4.1.4. se realizó el procedimiento para obtener la óptima proporción de agregados de arena y piedra mediante solo la combinación de ambos (agregado global), estos valores son 52.50% y 47.50%, respectivamente.

Vol. Arena =
$$52.50\% \times 0.648 \text{ m}^3 = 0.340 \text{ m}^3$$

Vol. Piedra = $47.50\% \times 0.648 \text{ m}^3 = 0.308 \text{ m}^3$

i) Determinación de pesos secos

Peso Seco Arena = P.E. Arena x Vol. Arena

Peso Seco Arena =
$$2650 \frac{\text{kg}}{\text{m}^3} \times 0.340 \text{ m}^3 = 901.50 \text{ kg}$$

Peso Seco Piedra = P.E. Piedra x Vol. Piedra

Peso Seco Piedra =
$$2690 \frac{\text{kg}}{\text{m}^3} \times 0.308 \text{ m}^3 = 828.26 \text{ kg}$$

j) Determinación de Diseño unitario seco (D.U.S.)

Cemento =
$$\frac{350.00 \text{ kg}}{350.00 \text{ kg}} = 1.00$$

$$Agua = \frac{210.00 \text{ kg}}{350.00 \text{ kg}} = 0.60$$

Arena =
$$\frac{901.50 \text{ kg}}{350.00 \text{ kg}}$$
 = 2.58

Piedra =
$$\frac{828.26 \text{ kg}}{350.00 \text{ kg}}$$
 = 2.37

k) Determinación de pesos húmedos de los agregados

Peso Húmedo Arena = Peso Seco x (1 + %C.H. Arena)

Peso Húmedo Arena = 901.50 kg x (1 + 1.59%) = 915.82 kg

Peso Húmedo Piedra = Peso Seco x (1 + %C.H. Piedra)

Peso Húmedo Piedra = 828.26 kg x (1 + 0.41%) = 831.67 kg

Determinación de aporte de humedad superficial de los agregados

Agua superficial de la arena = Peso seco x (%C.H. - %Absorción)

Agua superficial de la arena = 901.50 kg x (1.59%. - 1.19%) = 3.55 L

Agua superficial de la piedra = Peso seco x (%C.H. - %Absorción)

Agua superficial de la piedra = 828.26 kg x (0.41%. - 0.84%) = -3.56 L

Aporte Humedad = Agua superficial arena + Agua superficial piedra

Aporte Humedad =
$$3.55 L + (-3.56 L) = -0.01 L$$

El signo negativo en el aporte de humedad significa que no existe agua libre en los agregados, por lo que el 0.01 L es añadido al agua de diseño seco.

m) Determinación del agua de diseño húmedo o agua efectiva
Agua diseño húmedo = Agua diseño seco - Aporte humedad
Agua diseño húmedo = 210.00 L - (-0.01 L) = 210.01 L = 210.01 kg

n) Determinación de Diseño unitario de obra (D.U.O.)

Cemento =
$$\frac{350.00 \text{ kg}}{350.00 \text{ kg}} = 1.00$$

Agua =
$$\frac{210.01 \text{ kg}}{350.00 \text{ kg}} = 0.60$$

Arena =
$$\frac{915.82 \text{ kg}}{350.00 \text{ kg}}$$
 = 2.62

Piedra =
$$\frac{831.67 \text{ kg}}{350.00 \text{ kg}}$$
 = 2.38

o) Determinación de pesos de Tanda de vaciado

Una constante "C" es calculado para multiplicar al D.U.O. y obtener los pesos de tanda de vaciado para utilizar en el laboratorio.

La constante "C" es producto de la relación entre la tanda de vaciado y de la sumatoria del D.U.O.

$$C = \frac{\text{Tanda de vaciado}}{\sum D.U.O.} = \frac{50 \text{ kg}}{(1.00+0.60 + 2.62+2.38)} = 7.58 \text{ kg}$$

Los pesos de tanda de vaciado son los siguientes:

Cemento = D.U.O. cemento x C =
$$1.00 \times 7.58 \text{ kg} = 7.58 \text{ kg}$$

Agua = D.U.O. agua
$$\times$$
 C = 0.60 \times 7.58 kg = 4.55 kg

Arena = D.U.O. arena x C =
$$2.62 \times 7.58 \text{ kg} = 19.84 \text{ kg}$$

Piedra = D.U.O. piedra x C =
$$2.38 \times 7.58 \text{ kg} = 18.02 \text{ kg}$$

En la Tabla N°14 se muestra un resumen de los cálculos realizados.

Tabla N°14: Proporciones de diseño de mezcla para agua estimada de 210 L, CP1

Proporción para 1 m³ de Concreto						
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 50kg
Cemento	350.00	0.122	1.00	350.00	1.00	7.58
Agua	210.00	0.210	0.60	210.01	0.60	4.55
Arena	901.50	0.340	2.58	915.82	2.62	19.84
Piedra	828.26	0.308	2.37	831.67	2.38	18.02
Aire		0.020				
TOTAL		1.000			6.59	

Fuente: Elaboración propia

4.1.2. Determinación de la proporción de agregados por resistencia

Obtenido el agua patrón, procedemos a calcular la proporción óptima de los agregados involucrando los demás componentes del concreto.

El procedimiento seguido es el siguiente:

- Tres diseños de mezcla de prueba son realizados para cada a/c en estudio, manteniendo constante el agua patrón y variando en ±3% y ±1.5% la proporción óptima de agregados que fueron obtenidos en el subcapítulo 3.4.1.4.
- Probetas cilíndricas de 4"x8" son fabricadas y desencofradas a las 24 horas.
- Las probetas cilíndricas desencofradas son sumergidas en agua hasta la fecha de ensayo.
- Las probetas cilíndricas son retiradas de la zona de curado y luego son ensayadas para obtener su resistencia a la compresión. Con estos valores y las variaciones de porcentaje de arena se obtiene la gráfica de resistencia a la compresión vs % arena para cada a/c en estudio.
- Por último, para cada gráfica obtenida se superpone con la curva del peso unitario compactado del agregado global (ver subcapítulo 3.4.1.4.) y comparamos cuál de ellas tiene el máximo valor para un porcentaje de arena dado.

4.1.2.1. Determinación proporción de agregados para a/c = 0.60

En la Tabla N°15 se muestran los resultados de la resistencia a la compresión a los 7 días.

Tabla N°15: Resultados resistencia a la compresión a los 7 días para a/c = 0.60

Agre	- Resistencia	
%Arena	%Piedra	Promedio (Kg/cm²)
49.50	50.50	156.06
52.50	47.50	158.67
54.00	46.00	136.90
55.50	44.50	165.11
57.00	43.00	137.20

En la Figura N°9 se muestra la gráfica de los resultados de Resistencia a la compresión vs %Arena a los 7 días.

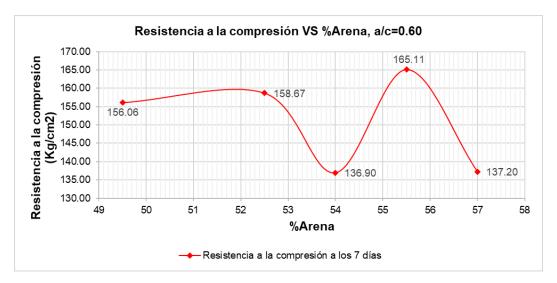


Figura N°9: Resistencia a la compresión vs %Arena para a/c = 0.60 Fuente: Elaboración propia

Posteriormente, en la Figura N°10 se muestra la superposición de la gráfica del P.U.C. del agregado global y de la resistencia a la compresión a los 7 días, obteniendo como resultado los siguientes porcentajes óptimos de agregados:

% Arena = 55.50% y % Piedra = 44.50%

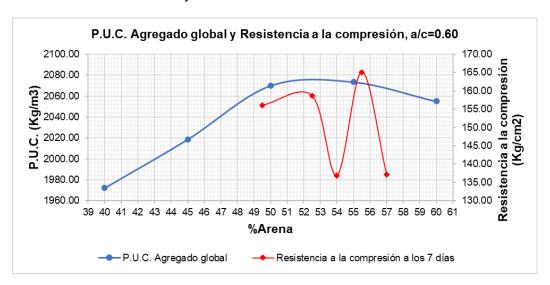


Figura N°10: P.U.C. Agregado global y Resistencia a la compresión para a/c = 0.60 Fuente: Elaboración propia

4.1.2.2. Determinación proporción de agregados para a/c = 0.65

En la Tabla N°16 se muestran los resultados de la resistencia a la compresión a los 7 días.

Tabla N°16: Resultados resistencia a la compresión a los 7 días para a/c = 0.65

Agre	- Resistencia	
%Arena	%Piedra	Promedio (Kg/cm²)
49.50	50.50	138.62
52.50	47.50	139.65
54.00	46.00	117.27
55.50	44.50	146.39
57.00	43.00	113.33

Fuente: Elaboración propia

En la Figura N°11 se muestra la gráfica de los resultados de Resistencia a la compresión vs %Arena a los 7 días.

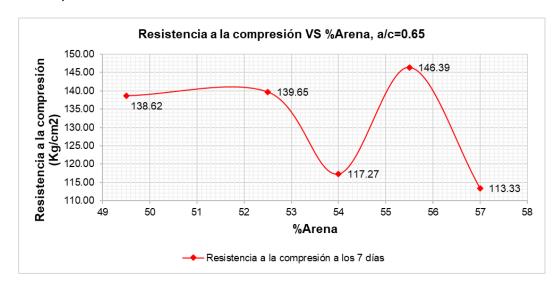


Figura N°11: Resistencia a la compresión vs %Arena para a/c = 0.65 Fuente: Elaboración propia

Posteriormente, en la Figura N°12 se muestra la superposición de la gráfica del P.U.C. del agregado global y de la resistencia a la compresión a los 7 días, obteniendo como resultado los siguientes porcentajes óptimos de agregados:

% Arena = 55.50% y % Piedra = 44.50%

Figura N°12: P.U.C. Agregado global y Resistencia a la compresión para a/c = 0.65 Fuente: Elaboración propia

4.1.2.3. Determinación proporción de agregados para a/c = 0.70

En la Tabla N°17 se muestran los resultados de la resistencia a la compresión a los 7 días.

Tabla N°17: Resultados resistencia a la compresión a los 7 días para a/c = 0.70

Agre	- Pasistansia	
%Arena	%Piedra	Resistencia Promedio (Kg/cm²)
49.50	50.50	94.65
52.50	47.50	106.46
55.50	44.50	88.58

Fuente: Elaboración propia

En la Figura N°13 se muestra la gráfica de los resultados de Resistencia a la compresión vs %Arena a los 7 días.

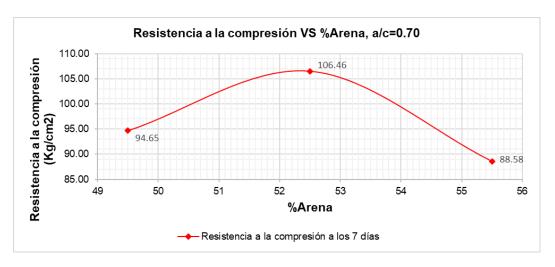


Figura N°13: Resistencia a la compresión vs %Arena para a/c = 0.70 Fuente: Elaboración propia

Posteriormente, en la Figura N°14 se muestra la superposición de la gráfica del P.U.C. del agregado global y de la resistencia a la compresión a los 7 días, obteniendo como resultado los siguientes porcentajes óptimos de agregados:

% Arena = 52.35% y % Piedra = 47.65%

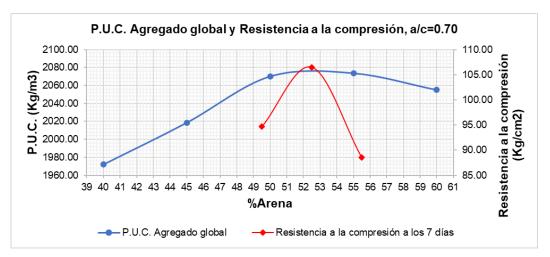


Figura N°14: P.U.C. Agregado global y Resistencia a la compresión para a/c = 0.70

Fuente: Elaboración propia

4.1.3. Diseño de mezcla del concreto patrón

Con los valores obtenidos de agua patrón, óptima proporción de agregados y las propiedades físicas de los agregados (ver subcapítulo 3.3.2.) se realizaron los diseños de mezcla para cada a/c en estudio, considerando el rango de asentamiento de 3"-4" y el aire atrapado de 2.00% para un T.M.N. de 3/4" según las tablas del comité ACI 211.1.

4.1.3.1. Diseño de mezcla para a/c = 0.60

En la Tabla N°18 se muestran las proporciones del diseño de mezcla del concreto patrón para un a/c = 0.60 y tanda de vaciado de 54 kg.

Tabla N°18: Proporciones del diseño de mezcla de CP1

	Proporción para 1 m³ de Concreto						
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg	
Cemento	366.67	0.127	1.00	366.67	1.00	8.64	
Agua	220.00	0.220	0.60	219.59	0.60	5.18	
Arena	929.81	0.351	2.54	944.58	2.58	22.26	
Piedra	757.06	0.282	2.06	760.18	2.07	17.92	
Aire		0.020					
TOTAL		1.000		2291.01	6.25		

Fuente: Elaboración propia

4.1.3.2. Diseño de mezcla para a/c = 0.65

En la Tabla N°19 se muestran las proporciones del diseño de mezcla del concreto patrón para un a/c = 0.65 y tanda de vaciado de 54 kg.

Tabla N°19: Proporciones del diseño de mezcla de CP2

	Proporción para 1 m³ de Concreto						
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg	
Cemento	329.23	0.114	1.00	329.23	1.00	7.73	
Agua	214.00	0.214	0.65	213.58	0.65	5.02	
Arena	957.73	0.362	2.91	972.94	2.96	22.86	
Piedra	779.79	0.290	2.37	783.00	2.38	18.39	
Aire		0.020					
TOTAL		1.000		2298.75	6.98		

4.1.3.3. Diseño de mezcla para a/c = 0.70

En la Tabla N°20 se muestran las proporciones del diseño de mezcla del concreto patrón para un a/c = 0.70 y tanda de vaciado de 54 kg.

Tabla N°20: Proporciones del diseño de mezcla de CP3

	Proporción para 1 m³ de Concreto						
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg	
Cemento	304.29	0.106	1.00	304.29	1.00	7.15	
Agua	213.00	0.213	0.70	213.03	0.70	5.00	
Arena	916.77	0.346	3.01	931.33	3.06	21.87	
Piedra	847.37	0.315	2.78	850.86	2.80	19.98	
Aire		0.020					
TOTAL		1.000		2299.50	7.56		

Fuente: Elaboración propia

4.2. Diseño de mezcla del concreto patrón con agregado grueso reciclado (AGR)

Los porcentajes de sustitución de agregado grueso reciclado fueron de 25%, 50%, 75% y 100% para cada a/c en estudio.

En el caso del 100% de sustitución de agregado grueso reciclado el aire atrapado considerado fue de 2.50%, ya que el AGR tuvo un T.M.N. de 1/2".

Los diseños de mezcla de concreto patrón con AGR tuvieron la siguiente nomenclatura:

- CAGR25: Concreto patrón con agregado grueso reciclado en 25% de sustitución.
- CAGR50: Concreto patrón con agregado grueso reciclado en 50% de sustitución.
- CAGR75: Concreto patrón con agregado grueso reciclado en 75% de sustitución.
- CAGR100: Concreto patrón con agregado grueso reciclado en 100% de sustitución.

4.2.1. Diseño de mezcla con AGR para a/c = 0.60

En la Tabla N°21 se muestran las proporciones del diseño de mezcla de CAGR25 para un a/c = 0.60.

Tabla N°21: Proporciones del diseño de mezcla de CAGR25 para a/c = 0.60

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	366.67	0.127	1.00	366.67	1.00	8.71
Agua	220.00	0.220	0.60	223.03	0.61	5.30
Arena	929.81	0.351	2.54	944.58	2.58	22.43
Piedra	567.79	0.211	1.55	570.13	1.55	13.54
AGR	164.37	0.070	0.45	169.33	0.46	4.02
Aire		0.020				
TOTAL		1.000		2273.74	6.20	

Fuente: Elaboración propia

En la Tabla N°22 se muestran las proporciones del diseño de mezcla de CAGR50 para un a/c = 0.60.

Tabla N°22: Proporciones del diseño de mezcla de CAGR50 para a/c = 0.60

	Proporción para 1 m³ de Concreto						
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg	
Cemento	366.67	0.127	1.00	366.67	1.00	8.77	
Agua	220.00	0.220	0.60	226.46	0.62	5.42	
Arena	929.81	0.351	2.54	944.58	2.58	22.60	
Piedra	378.53	0.141	1.03	380.09	1.04	9.10	
AGR	328.75	0.141	0.90	338.67	0.92	8.10	
Aire		0.020					
TOTAL		1.000		2256.46	6.15		

En la Tabla N°23 se muestran las proporciones del diseño de mezcla de CAGR75 para un a/c = 0.60.

Tabla N°23: Proporciones del diseño de mezcla de CAGR75 para a/c = 0.60

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	366.67	0.127	1.00	366.67	1.00	8.84
Agua	220.00	0.220	0.60	229.90	0.63	5.54
Arena	929.81	0.351	2.54	944.58	2.58	22.78
Piedra	189.26	0.070	0.52	190.04	0.52	4.58
AGR	493.12	0.211	1.34	508.00	1.39	12.25
Aire		0.020				
TOTAL		1.000		2239.18	6.11	

Fuente: Elaboración propia

En la Tabla N°24 se muestran las proporciones del diseño de mezcla de CAGR100 para un a/c = 0.60.

Tabla N°24: Proporciones del diseño de mezcla de CAGR100 para a/c = 0.60

	Proporción para 1 m³ de Concreto						
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg	
Cemento	366.67	0.127	1.00	366.67	1.00	8.96	
Agua	220.00	0.220	0.60	233.23	0.64	5.70	
Arena	922.46	0.348	2.52	937.11	2.56	22.91	
Piedra	0.00	0.000	0.00	0.00	0.00	0.00	
AGR	652.30	0.279	1.78	671.98	1.83	16.43	
Aire		0.025					
TOTAL		1.000		2208.99	6.02		

4.2.2. Diseño de mezcla con AGR para a/c = 0.65

En la Tabla N°25 se muestran las proporciones del diseño de mezcla de CAGR25 para un a/c = 0.65.

Tabla N°25: Proporciones del diseño de mezcla de CAGR25 para a/c = 0.65

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	329.23	0.114	1.00	329.23	1.00	7.79
Agua	214.00	0.214	0.65	217.12	0.66	5.14
Arena	957.73	0.362	2.91	972.94	2.96	23.03
Piedra	584.84	0.217	1.78	587.25	1.78	13.90
AGR	169.31	0.072	0.51	174.42	0.53	4.13
Aire		0.020				
TOTAL		1.000		2280.96	6.93	

Fuente: Elaboración propia

En la Tabla N°26 se muestran las proporciones del diseño de mezcla de CAGR50 para un a/c = 0.65.

Tabla N°26: Proporciones del diseño de mezcla de CAGR50 para a/c = 0.65

	Proporción para 1 m³ de Concreto						
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg	
Cemento	329.23	0.114	1.00	329.23	1.00	7.86	
Agua	214.00	0.214	0.65	220.66	0.67	5.26	
Arena	957.73	0.362	2.91	972.94	2.96	23.21	
Piedra	389.90	0.145	1.18	391.50	1.19	9.34	
AGR	338.62	0.145	1.03	348.83	1.06	8.32	
Aire		0.020					
TOTAL		1.000		2263.17	6.87		

En la Tabla N°27 se muestran las proporciones del diseño de mezcla de CAGR75 para un a/c = 0.65.

Tabla N°27: Proporciones del diseño de mezcla de CAGR75 para a/c = 0.65

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	329.23	0.114	1.00	329.23	1.00	7.92
Agua	214.00	0.214	0.65	224.19	0.68	5.39
Arena	957.73	0.362	2.91	972.94	2.96	23.40
Piedra	194.95	0.072	0.59	195.75	0.59	4.71
AGR	507.93	0.217	1.54	523.25	1.59	12.58
Aire		0.020				
TOTAL		1.000		2245.37	6.82	

Fuente: Elaboración propia

En la Tabla N°28 se muestran las proporciones del diseño de mezcla de CAGR100 para un a/c = 0.65.

Tabla N°28: Proporciones del diseño de mezcla de CAGR100 para a/c = 0.65

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	329.23	0.114	1.00	329.23	1.00	8.03
Agua	214.00	0.214	0.65	227.63	0.69	5.55
Arena	950.38	0.359	2.89	965.48	2.93	23.54
Piedra	0.00	0.000	0.00	0.00	0.00	0.00
AGR	672.04	0.288	2.04	692.32	2.10	16.88
Aire		0.025				
TOTAL		1.000		2214.65	6.73	

4.2.3. Diseño de mezcla con AGR para a/c = 0.70

En la Tabla N°29 se muestran las proporciones del diseño de mezcla de CAGR25 para un a/c = 0.70.

Tabla N°29: Proporciones del diseño de mezcla de CAGR25 para a/c = 0.70

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	304.29	0.106	1.00	304.29	1.00	7.21
Agua	213.00	0.213	0.70	216.87	0.71	5.14
Arena	916.77	0.346	3.01	931.33	3.06	22.06
Piedra	635.53	0.236	2.09	638.14	2.10	15.11
AGR	183.98	0.079	0.60	189.53	0.62	4.49
Aire		0.020				
TOTAL		1.000		2280.16	7.49	

Fuente: Elaboración propia

En la Tabla N°30 se muestran las proporciones del diseño de mezcla de CAGR50 para un a/c = 0.70.

Tabla N°30: Proporciones del diseño de mezcla de CAGR50 para a/c = 0.70

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	304.29	0.106	1.00	304.29	1.00	7.27
Agua	213.00	0.213	0.70	220.72	0.73	5.27
Arena	916.77	0.346	3.01	931.33	3.06	22.24
Piedra	423.68	0.158	1.39	425.43	1.40	10.16
AGR	367.96	0.158	1.21	379.07	1.25	9.05
Aire		0.020				
TOTAL		1.000		2260.83	7.43	

En la Tabla N°31 se muestran las proporciones del diseño de mezcla de CAGR75 para un a/c = 0.70.

Tabla N°31: Proporciones del diseño de mezcla de CAGR75 para a/c = 0.70

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	304.29	0.106	1.00	304.29	1.00	7.33
Agua	213.00	0.213	0.70	224.57	0.74	5.41
Arena	916.77	0.346	3.01	931.33	3.06	22.44
Piedra	211.84	0.079	0.70	212.71	0.70	5.12
AGR	551.95	0.236	1.81	568.60	1.87	13.70
Aire		0.020				
TOTAL		1.000		2241.49	7.37	

Fuente: Elaboración propia

En la Tabla N°32 se muestran las proporciones del diseño de mezcla de CAGR100 para un a/c = 0.70.

Tabla N°32: Proporciones del diseño de mezcla de CAGR100 para a/c = 0.70

	Proporción para 1 m³ de Concreto					
Componentes	Peso Seco (kg)	Volumen Absoluto (m³)	Diseño Unitario Seco D.U.S.	Peso Húmedo (kg)	Diseño Unitario Obra D.U.O.	Tanda de 54kg
Cemento	304.29	0.106	1.00	304.29	1.00	7.44
Agua	213.00	0.213	0.70	228.30	0.75	5.58
Arena	909.84	0.344	2.99	924.29	3.04	22.59
Piedra	0.00	0.000	0.00	0.00	0.00	0.00
AGR	730.37	0.313	2.40	752.40	2.47	18.39
Aire		0.025				
TOTAL		1.000		2209.27	7.26	

Capítulo V: Ensayos

En este capítulo se recopilaron los ensayos realizados al concreto en estado fresco y endurecido según la Normativa Técnica Peruana.

5.1. Ensayos en el concreto en estado fresco

5.1.1. Asentamiento

El asentamiento es un valor que representó la consistencia del concreto en estado fresco, en concretos plásticos y cohesivos. El método de ensayo para determinar el asentamiento consistió en colocar una muestra de mezcla de concreto en estado fresco en un molde con forma troncocónica (cono de Abrams). El molde se retiró vertical y firmemente hacia arriba dejando que el concreto fluya. La distancia vertical entre el borde superior del molde troncocónico y el centro de la cara superior del cono deformado fue el asentamiento (INACAL, 2022b).

En la Figura N°15 se muestra el ensayo de asentamiento en el concreto fresco.

Figura N°15: Ensayo de asentamiento en el concreto fresco Fuente: Elaboración propia

5.1.2. Peso unitario

El peso unitario se definió como la masa por unidad de volumen. El método de ensayo para determinar la densidad del concreto en estado fresco consistió en colocar una muestra de concreto fresco en un recipiente, cuya capacidad de recipiente dependió del T.M.N. del agregado grueso, usando una cuchara y moviendo uniformemente la mezcla para lograr una distribución homogénea. El

recipiente se llenó en 3 capas de aproximadamente igual volumen. Cada capa fue apisonada con 25 golpes por una barra compactadora y se golpeó los lados del recipiente con un mazo con cabeza de caucho para eliminar las burbujas de aire atrapadas causado por la barra compactadora. Después, se alisó la superficie superior del recipiente y se limpió todo el concreto en exceso en el borde y las paredes exteriores del recipiente. Por último, el recipiente se pesó en una balanza para obtener la masa del concreto fresco (INACAL, 2019a).

Según la NTP 339.046, el peso unitario o densidad de masa expresado en kg/m³ se calcula como se indica en la Ecuación 10.

$$P.U.concreto = \frac{(M_c - M_m)}{V_m}$$
 (10)

Donde:

M_c = Masa del recipiente lleno de concreto fresco, (kg)

 M_m = Masa del recipiente, (kg)

 V_m = Volumen del recipiente, (m³)

En la Figura N°16 se muestra el ensayo de peso unitario en el concreto fresco.

Figura N°16: Ensayo de peso unitario en el concreto fresco Fuente: Elaboración propia

5.1.3. Contenido de aire

Es un valor expresado en porcentaje que significa el aire atrapado en una muestra de concreto fresco, el cual se determinó a partir de la observación del cambio de volumen del concreto, con un cambio de presión (INACAL, 2017a).

De acuerdo con la NTP 339.080 el método de ensayo fue aplicado para concretos y morteros fabricados con agregados densos y permitiendo el uso de dos tipos de aparatos medidores el A y B. El aparato medidor Tipo B o equipo de medición llamado Olla de Washington es el más utilizado y conocido.

En la Figura N°17 se muestra el ensayo de contenido de aire en el concreto fresco.

Figura N°17: Ensayo de contenido de aire en el concreto fresco Fuente: Elaboración propia

5.1.4. Exudación

La exudación es un tipo de segregación en la cual una parte del agua de la mezcla de manera natural sube hacia la superficie del concreto recién colocado en un encofrado o molde. Esto sucedió debido al menor peso específico que tiene el agua comparada con los demás materiales que conforman la mezcla (Neville, 1999).

La NTP 339.077, estableció dos procedimientos para determinar la exudación siendo estos los siguientes:

 La velocidad de exudación, comparando el volumen del agua de exudación para intervalos de tiempo seleccionados. El cálculo del volumen de agua de exudación por unidad de superficie viene dado por la Ecuación 11.

$$V = \frac{V_1}{A} \tag{11}$$

Donde:

V₁ = Volumen de agua exudada medida durante el intervalo de tiempo seleccionado, en ml.

A = Área expuesta del concreto, en cm².

El agua de exudación acumulada, expresada como porcentaje del agua de mezclado neta contenida en la muestra de ensayo, como se indica en la Ecuación 12.

Exudación(%)=
$$\frac{D}{C}$$
x100 (12)
C= $\left(\frac{W}{W}\right)$ S

Donde:

C = Masa del agua en la muestra de ensayo, (g).

w = Agua de mezclado neta, (kg).

W = Masa total de la tanda, (kg).

S = Masa de la muestra, (g).

D = Masa total del agua de exudación, (g).

En la Figura N°18 se muestra el ensayo de exudación en el concreto fresco.

Figura N°18: Ensayo de exudación en el concreto fresco Fuente: Elaboración propia

5.1.5. Tiempo de fraguado

El tiempo de fraguado se refiere al tiempo necesario para que una muestra de mortero tamizado de la mezcla de concreto cambie del estado fluido al estado rígido, marcando dos términos que son muy usados en la práctica, el tiempo de fraguado inicial y fraguado final (Neville, 1999).

La NTP 339.082, estableció los procedimientos para determinar de manera arbitraria los tiempos de fraguado inicial y fraguado final con la ayuda de un dispositivo capaz de medir la fuerza de penetración sobre la muestra de cada una de las agujas de penetración normalizadas.

De manera arbitraria, el tiempo de fraguado inicial y final se obtuvieron en el tiempo en que la resistencia a la penetración es igual a 500 lb/pulg² y 4000 lb/pulg², respectivamente (INACAL, 2017b).

En la Figura N°19 se muestra el ensayo de tiempo de fraguado en el concreto fresco.

Figura N°19: Ensayo de tiempo de fraguado en el concreto fresco Fuente: Elaboración propia

5.2. Ensayos en el concreto en estado endurecido

5.2.1. Resistencia a la compresión

Es una de las propiedades de mayor importancia del concreto en estado endurecido, dependiendo del tipo de concreto fabricado, el cual sirvió de referencia para el control de calidad de este y el cumplimiento con las especificaciones de los diseños estructurales (Neville, 1999).

La resistencia a la compresión de un cilindro moldeado o probeta estuvo influenciada por diversos factores como: tamaño y forma de la probeta, relación a/c, dosificación, mezclado, cantidad de probetas, fabricación de las probetas, compactación, edad, temperatura y humedad durante el curado (INACAL, 2021b).

La NTP 339.034, estableció que la resistencia a la compresión se calcula dividiendo la carga de compresión axial máxima alcanzada en el ensayo, entre el área promedio de la sección transversal de la probeta cilíndrica. La relación se expresa en la Ecuación 13.

$$\dot{fc} = \frac{P}{A} \tag{13}$$

Donde:

f'c = Resistencia a la compresión, (Kg/cm²).

P = Carga axial máxima, (Kg).

 $A = \text{Área promedio de la sección transversal, (cm}^2).$

En la Figura N°20 se muestra el ensayo de resistencia a la compresión en el concreto endurecido.

Figura N°20: Ensayo de resistencia a la compresión en el concreto endurecido Fuente: Elaboración propia

5.2.2. Resistencia a la tracción por compresión diametral

También llamada resistencia a la tracción indirecta es por lo general mayor que la resistencia a la tracción directa y menor a la resistencia a la flexión (módulo de rotura). El método de ensayo consistió en aplicar una fuerza de compresión

diametral a toda la longitud de la probeta cilíndrica de concreto, hasta que ocurra la falla. Esta carga aplicada generó esfuerzos de tracción en el plano bajo la carga y esfuerzos de compresión en el área alrededor de la carga aplicada. La falla por tracción es la primera en ocurrir antes que la falla de compresión. El cálculo de la resistencia a la tracción por compresión diametral esta expresada en la Ecuación 14 (INACAL, 2022c).

$$T = \frac{2P}{\pi h d} \tag{14}$$

Donde:

T = Resistencia a la tracción indirecta, (Kg/cm²).

P = Carga máxima aplicada hasta la falla, (Kg).

h = Altura de probeta cilíndrica, (cm).

d = Diámetro de probeta cilíndrica, (cm).

En la Figura N°21 se muestra el ensayo de resistencia a la tracción por compresión diametral en el concreto endurecido.

Figura N°21: Ensayo de resistencia a la tracción por compresión diametral en el concreto endurecido

Fuente: Elaboración propia

5.2.3. Resistencia a la flexión

La resistencia a la flexión o módulo de rotura es una medida de la resistencia a la tracción que sirve para el cumplimiento con las especificaciones de los diseños estructurales de losas y pavimentos. El método de ensayo consistió en aplicar una carga a los tercios de la luz de una viga de concreto sin refuerzo

simplemente apoyada hasta que ocurra la falla. El módulo de rotura se calculó según la ubicación de la falla, siendo la primera ubicación dentro del tercio medio de la luz de la viga de concreto y la segunda ubicación fuera del tercio medio y a una distancia de este no mayor del 5% de la luz libre de la viga de concreto, las cuales están expresadas por la Ecuación 15 y Ecuación 16, respectivamente (INACAL, 2022a).

$$M_r = \frac{PL}{bh^2}$$
 (15)

$$M_r = \frac{3Pa}{bh^2} \tag{16}$$

Donde:

 $M_r = M\acute{o}dulo de rotura, (Kg/cm^2).$

P = Carga máxima de rotura, (Kg).

L = Luz libre entre apoyos, (cm).

b = Ancho promedio de la viga en la sección de falla, (cm).

h = Altura promedio de la viga en la sección de falla, (cm).

a = Es la distancia promedio entre la línea de falla y el apoyo más cercano, medida a lo largo de la línea central de la superficie inferior de la viga (cm).

En la Figura N°22 se muestra el ensayo de resistencia a la flexión en el concreto endurecido.

Figura N°22: Ensayo de resistencia a la flexión en el concreto endurecido Fuente: Elaboración propia

Capítulo VI: **Resultados obtenidos**

6.1. Ensayos en el concreto en estado fresco

6.1.1. Asentamiento

En la Tabla N°33 se muestran los resultados del ensayo de asentamiento.

Tabla N°33: Resultados de ensayo de asentamiento para cada a/c en estudio

a/c	Tipo de Concreto	Asentamiento (pulg.)	Variación (%)
	CP1	4.10	100.00
	CAGR25	4.50	109.76
0.60	CAGR50	4.13	100.73
	CAGR75	4.33	105.61
	CAGR100	3.35	81.71
	CP2	4.53	100.00
	CAGR25	4.72	104.19
0.65	CAGR50	4.50	99.34
	CAGR75	4.50	99.34
	CAGR100	3.63	80.13
	CP3	4.33	100.00
	CAGR25	4.63	106.93
0.70	CAGR50	4.45	102.77
	CAGR75	4.53	104.62
	CAGR100	4.00	92.38

Fuente: Elaboración propia

En la Figura N°23 se muestra un comparativo de los asentamientos para cada a/c en estudio.

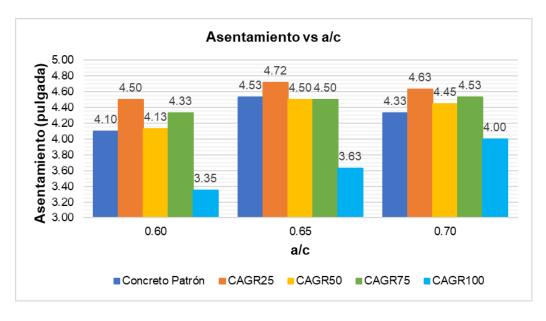


Figura N°23: Comparativo de asentamientos para a/c = 0.60, 0.65 y 0.70

Fuente: Elaboración propia

78

En la Figura N°24 se muestran las variaciones porcentuales de los asentamientos obtenidos, respecto al concreto patrón CP1.

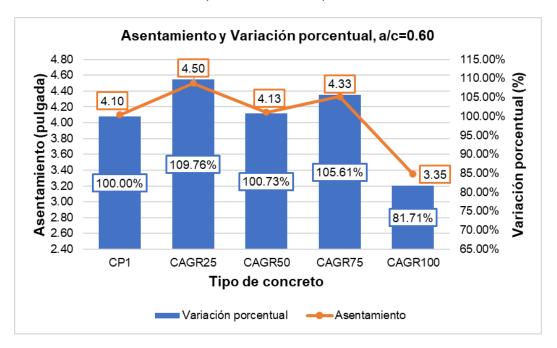


Figura N°24: Asentamiento y variación porcentual, a/c = 0.60 Fuente: Elaboración propia

En la Figura N°25 se muestran las variaciones porcentuales de los asentamientos obtenidos, respecto al concreto patrón CP2.

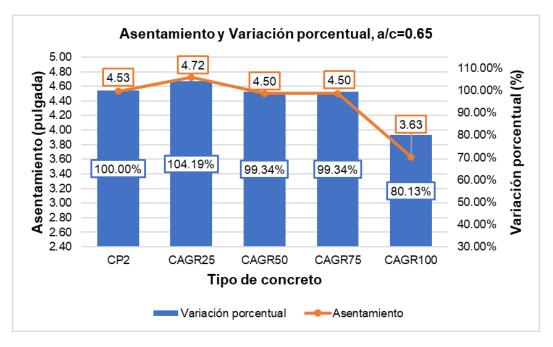


Figura N°25: Asentamiento y variación porcentual, a/c = 0.65 Fuente: Elaboración propia

Asentamiento y Variación porcentual, a/c=0.70 4.90 120.00% 4.63 4.70 4.53 110.00% **Asentamiento (bulgada)** 4.50 4.40 3.50 3.50 3.50 2.70 2.70 4.45 4.33 100.00% 4.00 90.00% 80.00% 70.00% 106.93% 104.62% 102.77% 100.00% 60.00% 92.38% 50.00% 40.00% 30.00% 2.50 20.00% CP3 CAGR25 CAGR50 CAGR75 CAGR100 Tipo de concreto ■ Variación porcentual Asentamiento

En la Figura N°26 se muestran las variaciones porcentuales de los asentamientos obtenidos, respecto al concreto patrón CP3.

Figura N°26: Asentamiento y variación porcentual, a/c = 0.70 Fuente: Elaboración propia

6.1.2. Peso unitario

En la Tabla N°34 se muestran los resultados del ensayo de peso unitario para un a/c = 0.60.

Tabla N°34: Resultados de ensayo de peso unitario para a/c = 0.60

Tipo de Concreto	Peso Unitario Kg/m³	Variación (%)
CP1	2357	100.00
CAGR25	2317	98.30
CAGR50	2291	97.20
CAGR75	2279	96.69
CAGR100	2250	95.46

Fuente: Elaboración propia

En el Anexo B1.1 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

En la Figura N°27 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP1.

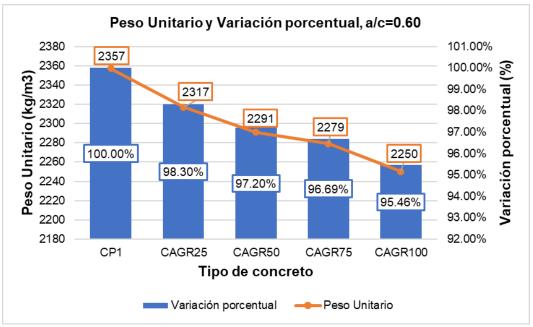


Figura N°27: Peso unitario y variación porcentual, a/c = 0.60 Fuente: Elaboración propia

En la Tabla N°35 se muestran los resultados del ensayo de peso unitario para un a/c = 0.65.

Tabla N°35: Resultados de ensavo de peso unitario para a/c = 0.65

Tipo de Concreto	Peso Unitario Kg/m³	Variación (%)
CP2	2380	100.00
CAGR25	2331	97.94
CAGR50	2293	96.34
CAGR75	2273	95.50
CAGR100	2260	94.96

Fuente: Elaboración propia

En el Anexo B1.1 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

En la Figura N°28 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP2.

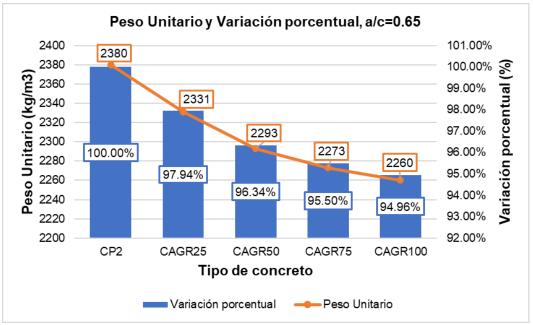


Figura N°28: Peso unitario y variación porcentual, a/c = 0.65 Fuente: Elaboración propia

En la Tabla N°36 se muestran los resultados del ensayo de peso unitario para un a/c = 0.70.

Tabla N°36: Resultados de ensavo de peso unitario para a/c = 0.70

Tipo de Concreto	Peso Unitario Kg/m³	Variación (%)
CP3	2366	100.00
CAGR25	2316	97.89
CAGR50	2294	96.96
CAGR75	2283	96.49
CAGR100	2246	94.93

Fuente: Elaboración propia

En el Anexo B1.1 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

Peso Unitario y Variación porcentual, a/c=0.70 2380 101.00% 2366 2360 100.00% Peso Unitario (kg/m3) 2320 2320 2280 2220 2220 2220 2220 99.00% 2316 98.00% 2294 2283 97.00% 100.00% 96.00% 2246 Variación 95.00% 97.89% 96.96% 96.49% 94.00% 94.93% 2200 93.00% 2180 92.00% CP3 CAGR25 CAGR50 CAGR75 CAGR100

Tipo de concreto

■ Variación porcentual

En la Figura N°29 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP3.

Figura N°29: Peso unitario y variación porcentual, a/c = 0.70 Fuente: Elaboración propia

---Peso Unitario

6.1.3. Contenido de aire

En la Tabla N°37 se muestran los resultados del ensayo de contenido de aire para un a/c = 0.60.

Tabla N°37: Resultados de ensayo de contenido de aire para a/c = 0.60

Tipo de Concreto	Contenido de aire (%)	Variación (%)
CP1	0.87	100.00
CAGR25	1.25	143.68
CAGR50	1.65	189.66
CAGR75	2.00	229.89
CAGR100	1.80	206.90

En la Figura N°30 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP1.

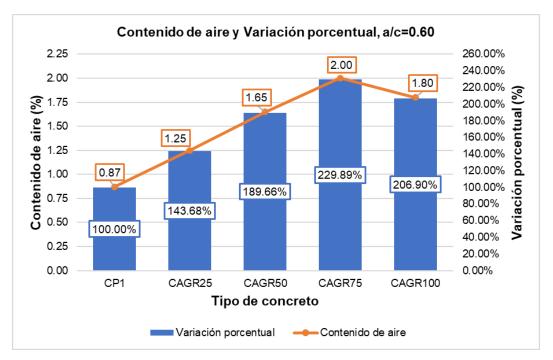


Figura N°30: Contenido de aire y variación porcentual, a/c = 0.60 Fuente: Elaboración propia

En la Tabla N°38 se muestran los resultados del ensayo de contenido de aire para un a/c = 0.65.

Tabla N°38: Resultados de ensayo de contenido de aire para a/c = 0.65

Tipo de Concreto	Contenido de aire (%)	Variación (%)
CP2	1.15	100.00
CAGR25	0.95	82.61
CAGR50	1.35	117.39
CAGR75	1.30	113.04
CAGR100	1.55	134.78

En la Figura N°31 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP2.

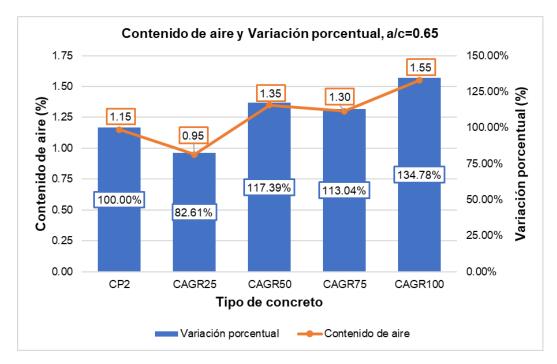


Figura N°31: Contenido de aire y variación porcentual, a/c = 0.65 Fuente: Elaboración propia

En la Tabla N°39 se muestran los resultados del ensayo de contenido de aire para un a/c = 0.70.

Tabla N°39: Resultados de ensayo de contenido de aire para a/c = 0.70

Tipo de Concreto	Contenido de aire (%)	Variación (%)
CP3	0.70	100.00
CAGR25	1.05	150.00
CAGR50	1.45	207.14
CAGR75	1.45	207.14
CAGR100	1.85	264.29

Contenido de aire y Variación porcentual, a/c=0.70 2.00 280.00% 1.85 260.00% 1.75 240.00% 1.45 1.45 220.00% Contenido de aire (%) 1.50 200.00% 180.00% 1.25 1.05 160.00% 1.00 140.00% 264.29% 120.00% 0.70 0.75 207.14% 207.14% 100.00% 80.00% 150.00% 0.50 60.00% 100.00% 40.00% 0.25 20.00% 0.00 0.00% CP3 CAGR25 CAGR50 CAGR75 CAGR100 Tipo de concreto Variación porcentual Contenido de aire

En la Figura N°32 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP3.

Figura N°32: Contenido de aire y variación porcentual, a/c = 0.70 Fuente: Elaboración propia

6.1.4. Exudación

En la Tabla N°40 se muestran los resultados del ensayo de exudación para un a/c = 0.60.

Tipo de Exudación Variación (%) Concreto (%) CP1 0.39 100.00 CAGR25 0.57 146.15 CAGR50 0.62 158.97 CAGR75 0.28 71.79

Tabla N°40: Resultados de ensayo de exudación para a/c = 0.60

Fuente: Elaboración propia

76.92

0.30

En el Anexo B1.2 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

CAGR100

En la Figura N°33 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP1.

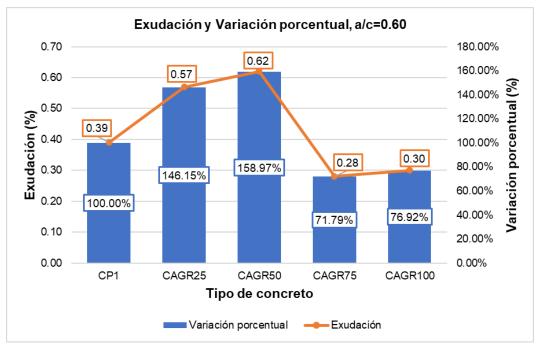


Figura N°33: Exudación y variación porcentual, a/c = 0.60 Fuente: Elaboración propia

En la Tabla N°41 se muestran los resultados del ensayo de exudación para un a/c = 0.65.

Tabla N°41: Resultados de ensayo de exudación para a/c = 0.65

Tipo de Concreto	Exudación (%)	Variación (%)
CP2	0.57	100.00
CAGR25	1.08	189.47
CAGR50	0.69	121.05
CAGR75	0.63	110.53
CAGR100	0.22	38.60

Fuente: Elaboración propia

En el Anexo B1.2 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

En la Figura N°34 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP2.

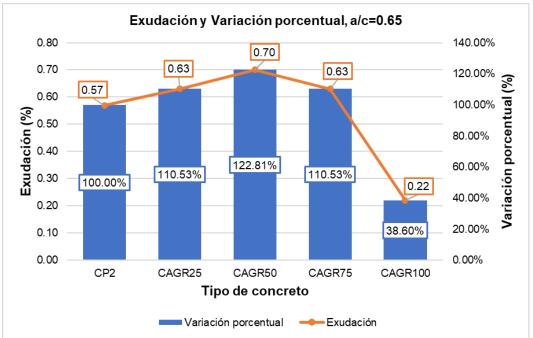


Figura N°34: Exudación y variación porcentual, a/c = 0.65 Fuente: Elaboración propia

En la Tabla N°42 se muestran los resultados del ensayo de exudación para un a/c = 0.70.

Tabla N°42: Resultados de ensayo de exudación para a/c = 0.70

Tipo de Concreto	Exudación (%)	Variación (%)
CP3	0.84	100.00
CAGR25	0.58	69.05
CAGR50	0.69	82.14
CAGR75	0.97	115.48
CAGR100	0.67	79.76

Fuente: Elaboración propia

En el Anexo B1.2 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

Exudación y Variación porcentual, a/c=0.70 1.20 140.00% 0.97 120.00% 1.00 0.84 100.00% **Exudación (%)**08.0
09.0
09.0
09.0 0.69 0.67 80.00% 0.58 60.00% 115.48% 100.00% 82.14% 40.00% 79.76% 69.05% 0.20 20.00% 0.00 0.00% CP3 CAGR25 CAGR50 CAGR75 CAGR100 Tipo de concreto ■ Variación porcentual -Exudación

En la Figura N°35 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP3.

Figura N°35: Exudación y variación porcentual, a/c = 0.70 Fuente: Elaboración propia

6.1.5. Tiempo de fraguado

En la Tabla N°43 se muestran los resultados del ensayo de tiempo de fraguado y las variaciones porcentuales respecto del concreto patrón CP1, para un a/c = 0.60.

Tipo de Concreto	T.F.I. (min)	T.F.F. (min)	Variación T.F.I. (%)	Variación T.F.F. (%)
CP1	353	464	100.00	100.00
CAGR25	322	435	91.22	93.75
CAGR50	343	453	97.17	97.63
CAGR75	309	451	87.54	97.20
CAGR100	333	449	94.33	96.77

Tabla N°43: Resultados de ensayo de tiempo de fraguado para a/c = 0.60

Fuente: Elaboración propia

En el Anexo B1.3 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

Tiempo de Fraquado Inicial - Final, a/c=0.60 500 450 400 Tiempo (minutos) 350 250 200 150 464 453 451 449 435 353 343 322 333 309 100 50 0 CP1 CAGR25 CAGR50 CAGR75 CAGR100 Tipo de concreto ■ Tiempo de fraguado inicial ■Tiempo de fraguado final

En la Figura N°36 se muestra un comparativo del tiempo de fraguado inicial y final para las mezclas, CP1, CAGR25, CAGR50, CAGR75 y CAGR100.

Figura N°36: Comparativo de tiempo de fraguado inicial y final, a/c = 0.60Fuente: Elaboración propia

En la Tabla N°44 se muestran los resultados del ensayo de tiempo de fraguado y las variaciones porcentuales respecto del concreto patrón CP2, para un a/c = 0.65.

Tabla N°44: Resultados de ensayo de tiempo de fraguado para a/c = 0.65

Tipo de Concreto	T.F.I. (min)	T.F.F. (min)	Variación T.F.I. (%)	Variación T.F.F. (%)
CP2	327	496	100.00	100.00
CAGR25	383	518	117.13	104.44
CAGR50	345	476	105.50	95.97
CAGR75	328	478	100.31	96.37
CAGR100	348	478	106.42	96.37

Fuente: Elaboración propia

En el Anexo B1.3 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

Tiempo de Fraquado Inicial - Final, a/c=0.65 550 500 450 Tiempo (minutos 400 350 300 518 250 496 478 478 476 200 383 345 348 327 328 150 100 50 0 CP2 CAGR25 CAGR50 CAGR75 CAGR100 Tipo de concreto ■ Tiempo de fraguado inicial ■Tiempo de fraguado final

En la Figura N°37 se muestra un comparativo del tiempo de fraguado inicial y final para las mezclas, CP2, CAGR25, CAGR50, CAGR75 y CAGR100.

Figura N°37: Comparativo de tiempo de fraguado inicial y final, a/c = 0.65 Fuente: Elaboración propia

En la Tabla N°45 se muestran los resultados del ensayo de tiempo de fraguado y las variaciones porcentuales respecto del concreto patrón CP3, para un a/c = 0.70.

Tabla N°45: Resultados de ensayo de tiempo de fraguado para a/c = 0.70

Tipo de Concreto	T.F.I. (min)	T.F.F. (min)	Variación T.F.I. (%)	Variación T.F.F. (%)
CP3	375	536	100.00	100.00
CAGR25	373	536	99.47	100.00
CAGR50	348	531	92.80	99.07
CAGR75	332	480	88.53	89.55
CAGR100	387	541	103.20	100.93

Fuente: Elaboración propia

En el Anexo B1.3 se detallan y explican los resultados de los ensayos realizados a los concretos en estado fresco utilizados en la investigación.

En la Figura N°38 se muestra un comparativo del tiempo de fraguado inicial y final para las mezclas, CP3, CAGR25, CAGR50, CAGR75 y CAGR100.

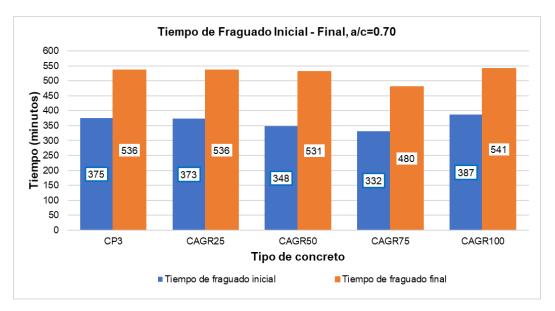


Figura N°38: Comparativo de tiempo de fraguado inicial y final, a/c = 0.70 Fuente: Elaboración propia

6.2. Ensayos en el concreto en estado endurecido

6.2.1. Resistencia a la compresión

En la Tabla N°46 se muestran los resultados del ensayo de resistencia a la compresión a las siguientes edades de ensayo: 7, 14, 28 y 56 días.

Tabla N°46: Resultados de ensayo de resistencia a la compresión para cada a/c en estudio

a/c	Tipo de	Resistencia promedio a la compresión a diferentes edades de ensayo (kg/cm²)			
a, o	Concreto	7 días	14 días	28 días	56 días
	CP1	160.3	187.1	214.4	245.5
	CAGR25	160.5	182.6	216.9	250.5
0.60	CAGR50	148.4	176.1	202.2	234.6
	CAGR75	135.1	154.8	187.3	221.0
	CAGR100	128.1	169.2	196.1	232.8
	CP2	120.3	135.1	161.9	187.5
	CAGR25	118.0	144.6	169.2	194.6
0.65	CAGR50	104.4	129.1	161.0	186.0
	CAGR75	111.8	132.7	161.5	200.7
	CAGR100	147.7	175.1	203.0	233.9
	CP3	101.1	131.7	142.0	150.4
	CAGR25	95.2	118.2	143.2	182.9
0.70	CAGR50	118.1	142.0	166.8	215.5
	CAGR75	92.6	122.7	148.2	187.6
	CAGR100	101.3	128.9	151.6	188.4

Fuente: Elaboración propia

En el Anexo B2.1 se detallan y explican los resultados de los ensayos realizados a los concretos en estado endurecido utilizados en la investigación.

En la Figura N°39 se muestra el desarrollo evolutivo de la resistencia a la compresión en el tiempo para un a/c = 0.60.

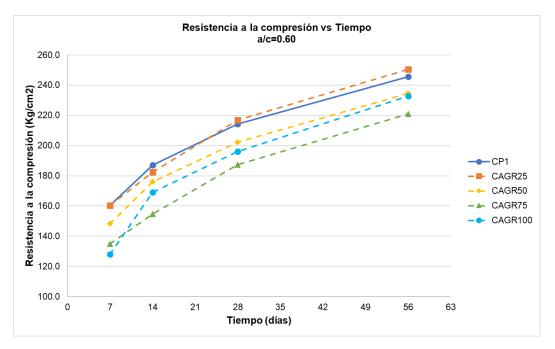


Figura N°39: Resistencia a la compresión vs Tiempo, a/c = 0.60 Fuente: Elaboración propia

En la Figura N°40 se muestra el desarrollo evolutivo de la resistencia a la compresión en el tiempo para un a/c = 0.65.

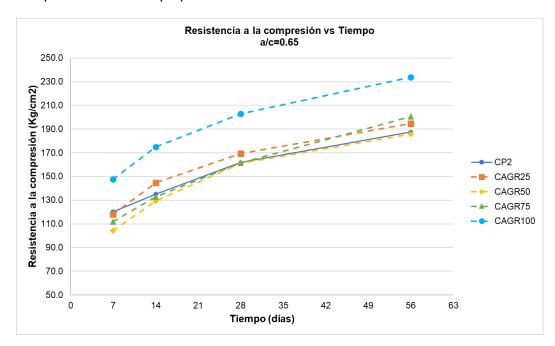


Figura N°40: Resistencia a la compresión vs Tiempo, a/c = 0.65 Fuente: Elaboración propia

En la Figura N°41 se muestra el desarrollo evolutivo de la resistencia a la compresión en el tiempo para un a/c = 0.70.

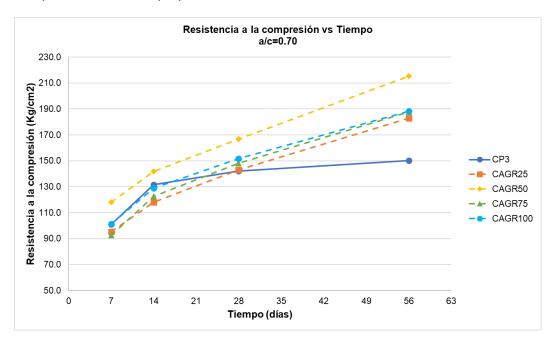


Figura N°41: Resistencia a la compresión vs Tiempo, a/c = 0.70 Fuente: Elaboración propia

95

A continuación, en la Tabla N°47 se muestran las variaciones porcentuales de la resistencia a la compresión de los diferentes concretos fabricados con 25%, 50%, 75% y 100% de sustitución de agregado grueso reciclado para cada edad de ensayo. Para calcular las variaciones porcentuales se tomó como referencia los concretos patrones CP1, CP2 y CP3.

Tabla N°47: Variaciones porcentuales de resistencia a la compresión para cada edad de ensayo

a/c	Tipo de Concreto	Variación porcentual de resistencia a la compresión a diferentes edades de ensayo (%)			
		7 días	14 días	28 días	56 días
	CP1	100.00	100.00	100.00	100.00
	CAGR25	100.11	97.59	101.13	102.50
0.60	CAGR50	95.55	94.12	94.29	95.58
	CAGR75	84.26	82.75	87.36	90.02
	CAGR100	79.88	90.45	91.45	94.82
	CP2	100.00	100.00	100.00	100.00
	CAGR25	98.09	107.02	104.56	103.78
0.65	CAGR50	86.80	95.55	99.46	99.17
	CAGR75	92.98	98.25	99.78	107.03
	CAGR100	122.82	129.59	125.44	124.72
	CP3	100.00	100.00	100.00	100.00
	CAGR25	94.25	89.80	100.81	121.64
0.70	CAGR50	116.84	107.82	117.44	143.30
	CAGR75	91.68	93.21	104.33	124.79
	CAGR100	100.22	97.89	106.77	125.32

En la Figuras N°42 se muestran el comparativo de las variaciones porcentuales de la resistencia a la compresión a las edades de 7, 14, 28 y 56 días de ensayo para un a/c = 0.60.

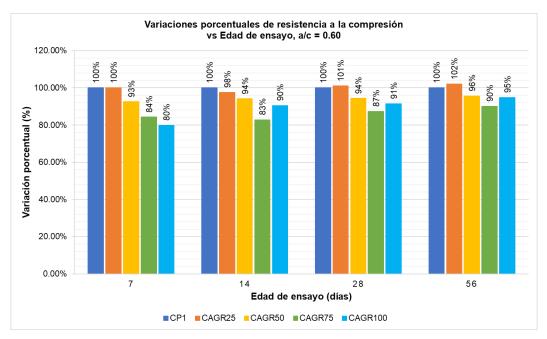


Figura N°42: Variaciones porcentuales de resistencia a la compresión, a/c = 0.60 Fuente: Elaboración propia

En la Figuras N°43 se muestran el comparativo de las variaciones porcentuales de la resistencia a la compresión a las edades de 7, 14, 28 y 56 días de ensayo para un a/c = 0.65.

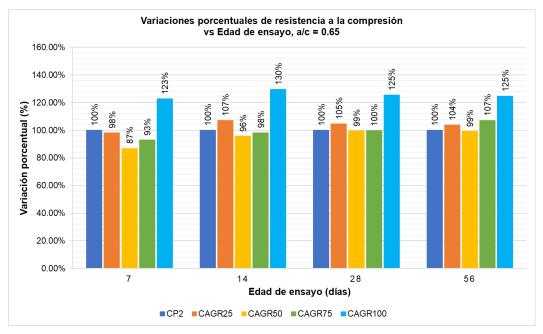


Figura N°43: Variaciones porcentuales de resistencia a la compresión, a/c = 0.65 Fuente: Elaboración propia

En la Figuras N°44 se muestran el comparativo de las variaciones porcentuales de la resistencia a la compresión a las edades de 7, 14, 28 y 56 días de ensayo para un a/c = 0.70.

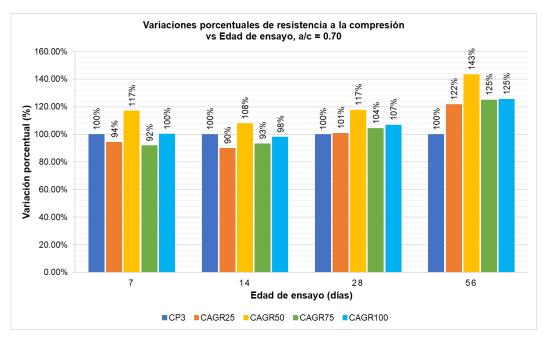


Figura N°44: Variaciones porcentuales de resistencia a la compresión, a/c = 0.70 Fuente: Elaboración propia

6.2.2. Resistencia a la tracción por compresión diametral

En la Tabla N°48 se muestran los resultados del ensayo de resistencia a la tracción por compresión diametral a una edad de ensayo de 28 días para un a/c=0.60.

Tabla N°48: Resultados de ensayo de resistencia a la tracción para a/c = 0.60

Tipo de Concreto	Resistencia a la tracción (kg/cm²)	Variación (%)
CP1	24.9	100.00
CAGR25	25.5	102.33
CAGR50	18.8	75.51
CAGR75	23.5	94.34
CAGR100	24.4	97.79

Fuente: Elaboración propia

En el Anexo B2.2 se detallan y explican los resultados de los ensayos realizados a los concretos en estado endurecido utilizados en la investigación.

CP1

CAGR25

■Variación porcentual

Resistencia a la tracción y Variación porcentual, a/c = 0.6030.0 120.00% 25.5 24.9 24.4 23.5 100.00% 18.8 Variación porcentual 80.00% 60.00% 102.33% 100.00% 97.79% 94.34% 40.00% 75.51% 20.00% 0.0 0.00%

En la Figura N°45 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP1.

Figura N°45: Resistencia a la tracción y variación porcentual, a/c = 0.60

CAGR75

Resistencia a la tracción

CAGR100

Fuente: Elaboración propia

CAGR50

Tipo de concreto

En la Tabla N°49 se muestran los resultados del ensayo de resistencia a la tracción por compresión diametral a una edad de ensayo de 28 días para un a/c=0.65.

Tabla N°49: Resultados de ensayo de resistencia a la tracción para a/c = 0.65

Tipo de Concreto	Resistencia a la tracción (kg/cm²)	Variación (%)
CP2	23.1	100.00
CAGR25	23.4	101.59
CAGR50	21.0	91.08
CAGR75	20.8	90.30
CAGR100	23.9	103.54

Fuente: Elaboración propia

En el Anexo B2.2 se detallan y explican los resultados de los ensayos realizados a los concretos en estado endurecido utilizados en la investigación.

0.0

CP2

CAGR25

Variación porcentual

0.00%

CAGR100

Resistencia a la tracción y Variación porcentual, a/c = 0.6527.5 25.0 120.00% 23.9 23.4 23.1 Resistencia a la Tracción (Kg/ 100.00% 21.0 22.5 20.8 20.0 Variación porcentual 80.00% 17.5 15.0 60.00% 12.5 103.54% 100.00% 101.59% 91.08% 90.30% 10.0 40.00% 7.5 5.0 20.00% 2.5

En la Figura N°46 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP2.

Figura N°46: Resistencia a la tracción y variación porcentual, a/c = 0.65

CAGR75

Resistencia a la tracción

Fuente: Elaboración propia

CAGR50

Tipo de concreto

En la Tabla N°50 se muestran los resultados del ensayo de resistencia a la tracción por compresión diametral a una edad de ensayo de 28 días para un a/c=0.70.

Tabla N°50: Resultados de ensayo de resistencia a la tracción para a/c = 0.70

Tipo de Concreto	Resistencia a la tracción (kg/cm²)	Variación (%)
CP3	16.6	100.00
CAGR25	19.2	116.19
CAGR50	20.3	122.34
CAGR75	20.2	121.83
CAGR100	19.4	117.37

Fuente: Elaboración propia

En el Anexo B2.2 se detallan y explican los resultados de los ensayos realizados a los concretos en estado endurecido utilizados en la investigación.

Resistencia a la tracción y Variación porcentual, a/c = 0.70140.00% 20.3 20.2 19.4 19.2 120.00% 16.6 100.00% Variación porcentual 80.00% 122.34% 121.83% 60.00% 117.37% 116.19% 100.00% 40.00% 20.00% 0.0 0.00% CP3 CAGR25 CAGR50 CAGR75 CAGR100 Tipo de concreto ■Variación porcentual Resistencia a la tracción

En la Figura N°47 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP3.

Figura N°47: Resistencia a la tracción y variación porcentual, a/c = 0.70 Fuente: Elaboración propia

6.2.3. Resistencia a la flexión

En la Tabla N°51 se muestran los resultados del ensayo de resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a una edad de ensayo de 28 días para un a/c = 0.60.

Tabla N°51: Resultados de ensayo de resistencia a la flexión para a/c = 0.60

Tipo de Concreto	Resistencia a la flexión (kg/cm²)	Variación (%)
CP1	28.4	100.00
CAGR25	30.8	108.41
CAGR50	35.3	124.27
CAGR75	30.2	106.23
CAGR100	28.2	99.33

En el Anexo B2.3 se detallan y explican los resultados de los ensayos realizados a los concretos en estado endurecido utilizados en la investigación.

En la Figura N°48 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP1.

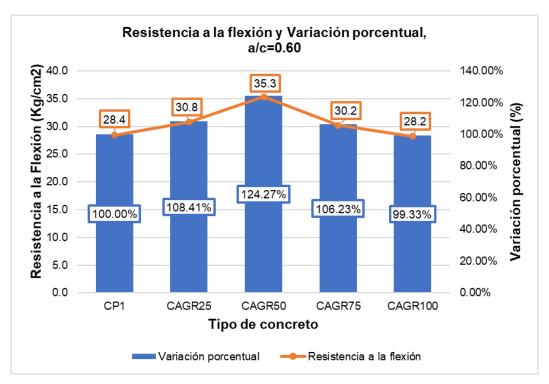


Figura N°48: Resistencia a la flexión y variación porcentual, a/c = 0.60

Fuente: Elaboración propia

En la Tabla N°52 se muestran los resultados del ensayo de resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a una edad de ensayo de 28 días para un a/c = 0.65.

Tabla N°52: Resultados de ensayo de resistencia a la flexión para a/c = 0.65

Tipo de Concreto	Resistencia a la flexión (kg/cm²)	Variación (%)
CP2	26.8	100.00
CAGR25	25.4	95.07
CAGR50	24.8	92.67
CAGR75	26.9	100.52
CAGR100	30.7	114.88

En el Anexo B2.3 se detallan y explican los resultados de los ensayos realizados a los concretos en estado endurecido utilizados en la investigación.

En la Figura N°49 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP2.

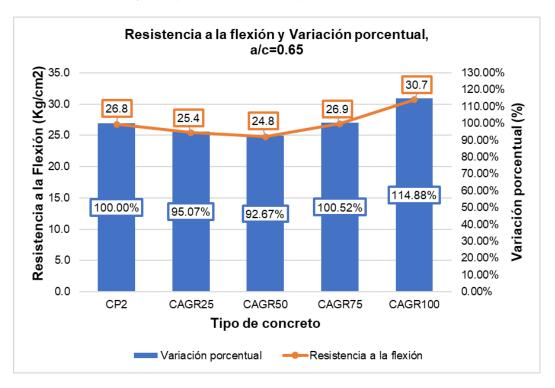


Figura N°49: Resistencia a la flexión y variación porcentual, a/c = 0.65 Fuente: Elaboración propia

En la Tabla N°53 se muestran los resultados del ensayo de resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a una edad de ensayo de 28 días para un a/c = 0.70.

Tabla N°53: Resultados de ensayo de resistencia a la flexión para a/c = 0.70

Tipo de Concreto	Resistencia a la flexión (kg/cm²)	Variación (%)
CP3	25.4	100.00
CAGR25	21.9	86.10
CAGR50	23.0	90.47
CAGR75	24.3	95.55
CAGR100	23.7	93.34

En el Anexo B2.3 se detallan y explican los resultados de los ensayos realizados a los concretos en estado endurecido utilizados en la investigación.

En la Figura N°50 se muestran las variaciones porcentuales de los valores obtenidos del ensayo respecto del concreto patrón CP3.

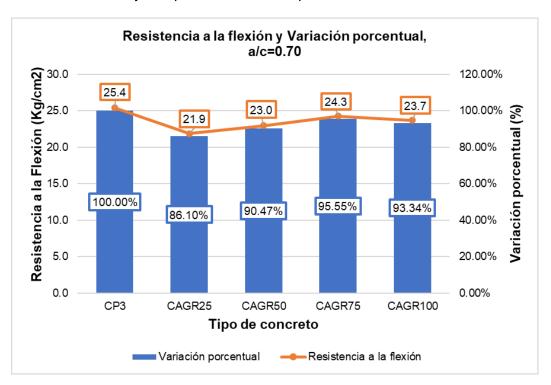


Figura N°50: Resistencia a la flexión y variación porcentual, a/c = 0.70 Fuente: Elaboración propia

Capítulo VII: Discusión y contrastación de hipótesis

7.1. Discusión

7.1.1. Propiedades del concreto en estado fresco

7.1.1.1. Asentamiento

En los resultados obtenidos de la investigación, para las relaciones a/c de 0.60, 0.65 y 0.70, el asentamiento de los concretos reciclados CAGR25, CAGR50 y CAGR75 fue similar o aumentó respecto del concreto patrón hasta reemplazos máximos del 75% de agregado grueso reciclado. No obstante, el concreto reciclado CAGR100 presentó una disminución significativa del asentamiento respecto del concreto patrón (Ver Figuras N°24, N°25 y N°26).

Estos resultados coincidieron con lo obtenido por Bojacá (2013), Caycho y Espinoza (2019) y Meza (2019), quienes encontraron que el asentamiento de los concretos reciclados fue similar o aumentó hasta reemplazos máximos del 40%, 25% y 50% de agregado grueso reciclado, respectivamente. Sin embargo, los resultados obtenidos difirieron con la investigación de Abera (2022) quien encontró que el asentamiento aumentó conforme aumentaba el porcentaje de reemplazo desde 0% hasta 100% de agregado grueso reciclado.

7.1.1.2. Peso unitario

En los resultados obtenidos de la investigación, para las relaciones a/c de 0.60, 0.65 y 0.70, el peso unitario de los concretos reciclados CAGR25, CAGR50, CAGR75 y CAGR100 disminuyó respecto del concreto patrón conforme aumentaba el porcentaje de reemplazo de agregado grueso reciclado (Ver Figuras N°27, N°28 y N°29).

Estos resultados coincidieron con lo obtenido por Bojacá (2013), Caycho y Espinoza (2019) y Meza (2019), quienes encontraron que el peso unitario de los concretos reciclados disminuyó conforme aumentaba el porcentaje de sustitución del agregado grueso reciclado. Ponce (2014), concluyó que sustituciones al 100% de agregado fino y grueso reciclado el peso unitario disminuyó en promedio 8% respecto de la muestra patrón.

7.1.1.3. Contenido de aire

En los resultados obtenidos de la investigación, para las relaciones a/c de 0.60 y 0.70, el contenido de aire de los concretos reciclados CAGR25, CAGR50,

CAGR75 y CAGR100 aumentó significativamente respecto del concreto patrón conforme aumentaba el porcentaje de reemplazo de agregado grueso reciclado (Ver Figuras N°30 y N°32). Sin embargo, para una relación a/c de 0.65, el contenido de aire del concreto reciclado CAGR25 disminuyó en 17.39% respecto del concreto patrón, y en los demás concretos reciclados CAGR50, CAGR75 y CAGR100 el contenido de aire aumentó (Ver Figura N°31).

Estos resultados difirieron con otras investigaciones. Bojacá (2013), encontró que para una relación a/c de 0.50, el contenido de aire de una muestra con 20% de reemplazo de agregado grueso reciclado aumentó en 10% respecto de la muestra control y para un 40% de reemplazo de agregado grueso reciclado no presentó variación respecto de la muestra control. Meza (2019), encontró que para relaciones a/c de 0.60 y 0.65, el contenido de aire de una muestra con 20% de reemplazo de agregado grueso reciclado aumentó levemente hasta en 4.76% respecto del concreto patrón, y para mayores porcentajes de reemplazo el contenido de aire aumentó significativamente. Por el contrario, para una relación a/c de 0.70, encontró que el contenido de aire aumentó significativamente respecto del concreto patrón conforme aumentaba el porcentaje de sustitución del agregado grueso reciclado. Caycho y Espinoza (2019), encontró que para relaciones a/c de 0.53 y 0.60, el contenido de aire de una muestra con 25% de reemplazo de agregado grueso reciclado aumentó levemente hasta en 2.00% respecto del concreto patrón, y para mayores porcentajes de reemplazo el contenido de aire aumentó significativamente.

7.1.1.4. Exudación

En los resultados obtenidos de la investigación, para una relación a/c de 0.60, la exudación de los concretos reciclados CAGR25 y CAGR50 aumentó significativamente respecto del concreto patrón a medida que aumentaba el porcentaje de reemplazo de agregado grueso reciclado. No obstante, para los concretos reciclados CAGR75 y CAGR100 la exudación disminuyó respecto del concreto patrón (Ver Figura N°33). Para una relación a/c de 0.65, la exudación de los concretos reciclados CAGR25, CAGR50 CAGR75 significativamente respecto del concreto patrón conforme aumentaba el porcentaje de reemplazo de agregado grueso reciclado. No obstante, para el concreto reciclado CAGR100 la exudación disminuyó en 61.40% respecto del concreto patrón (Ver Figura N°34). Por último, para una relación a/c de 0.70, la exudación

de los concretos reciclados CAGR25, CAGR50 y CAGR100 disminuyó significativamente respecto del concreto patrón a medida que aumentaba el porcentaje de reemplazo de agregado grueso reciclado, a excepción del concreto reciclado CAGR75 que aumentó en 15.48% respecto del concreto patrón (Ver Figura N°35).

Los resultados de los concretos reciclados con relación a/c de 0.60 y 0.65 en su mayoría fueron mayores a la del concreto patrón. Laverde (2014), en revisión bibliográfica encontró estudios que indicaron que la exudación fue más alta a medida que aumentaba el porcentaje de reemplazo de agregado grueso reciclado, ya que la mezcla del concreto fue más áspera y menos cohesiva.

Por el contrario, los resultados de los concretos reciclados con relación a/c 0.70 en su mayoría fueron menores a la del concreto patrón. Arriaga (2014), en revisión bibliográfica encontró estudios que indicaron que la exudación disminuyó cuando se utilizó agregado grueso reciclado seco, ya que la elevada absorción de los agregados gruesos reciclados retuvo el agua con mayor facilidad.

7.1.1.5. Tiempo de fraguado

En los resultados obtenidos de la investigación, para una relación a/c de 0.60, el tiempo de fraguado inicial y final de los concretos reciclados CAGR25, CAGR50, CAGR75 y CAGR100 disminuyó significativamente respecto del concreto patrón a medida que aumentaba el porcentaje de reemplazo de agregado grueso reciclado (Ver Figura N°36). Para una relación a/c de 0.65, el tiempo de fraguado inicial de los concretos reciclados CAGR25, CAGR50, CAGR75 y CAGR100 aumentó significativamente respecto del concreto patrón conforme aumentaba el porcentaje de reemplazo de agregado grueso reciclado. No obstante, el tiempo de fraguado final de los concreto reciclados CAGR50, CAGR75 y CAGR100 disminuyó significativamente respecto del concreto patrón (Ver Figura N°37), a excepción del concreto reciclado CAGR25 cuyo tiempo de fraguado final aumentó respecto del concreto patrón. Por último, para una relación a/c de 0.70, el tiempo de fraguado inicial y final de los concretos reciclados CAGR25, CAGR50 y CAGR75 disminuyeron significativamente respecto del concreto patrón a medida que aumentaba el porcentaje de reemplazo de agregado grueso reciclado, a excepción del concreto reciclado CAGR100 cuyo tiempo de fraguado inicial y final aumentaron en 3.20% y 0.93% respecto del concreto patrón, respectivamente (Ver Figura N°38).

Los resultados de los concretos reciclados con relación a/c de 0.60 y 0.70 difirieron con otras investigaciones. Meza (2019), encontró que para concretos reciclados con relación a/c 0.60, 0.65 y 0.70 el tiempo de fraguado inicial y final tuvieron una tendencia aumentar respecto del concreto patrón mientras se incrementaba el porcentaje de reemplazo de agregado grueso reciclado. Sin embargo, los resultados de los concretos reciclados con relación a/c=0.65 presentaron similitud con lo encontrado por Meza (2019), pero solo en el tiempo de fraguado inicial.

7.1.2. Propiedades del concreto en estado endurecido

7.1.2.1. Resistencia a la compresión

En los resultados obtenidos de la investigación para un a/c=0.60, el concreto reciclado CAGR25 tuvo levemente mayor resistencia a la compresión que el concreto patrón CP1 conforme avanzaba la edad de ensayo. Los concretos reciclados CAGR50, CAGR75 y CAGR100 tuvieron una disminución de la resistencia a la compresión respecto del concreto patrón CP1 a medida que avanzaba la edad de ensayo. Los resultados obtenidos en la investigación presentaron similitud con otras investigaciones. Meza (2019) y Laverde (2014), encontraron que para concretos reciclados con a/c=0.60 y sustituciones de 20%, 50% y 100% de AGR la resistencia a la compresión disminuyó significativamente respecto del concreto patrón conforme avanzaba la edad de ensayo. Caycho y Espinoza (2019), encontró que para un a/c=0.60, el concreto reciclado con sustitución de 25% de AGR tuvo mayor resistencia a la compresión que el concreto patrón conforme avanzaba la edad de ensayo, los concretos reciclados con sustitución de 50%, 75% y 100% tuvieron menor resistencia a la compresión que el concreto patrón conforme avanzaba la edad de ensayo. Ponce (2014), encontró que para un a/c=0.60, el concreto reciclado con sustitución de 100% de AGR y AFR tuvo menor resistencia a la compresión que el concreto patrón a los 7, 14, 28 y 56 días de ensayo. Bojacá (2013), encontró que para un a/c=0.50, el concreto reciclado con sustitución de 20% de AGR tuvo mayor resistencia a la compresión que el concreto convencional conforme avanzaba la edad de ensayo.

En los resultados obtenidos de la investigación para un a/c=0.65, el concreto reciclado CAGR25 tuvo levemente mayor resistencia a la compresión que el concreto patrón CP2 conforme avanzaba la edad de ensayo. El concreto reciclado CAGR50 tuvo menor resistencia a la compresión que el concreto patrón

CP2 conforme avanzaba la edad de ensayo. El concreto reciclado CAGR75 tuvo menor resistencia a la compresión que el concreto patrón CP2 a los 7, 14 y 28 días de ensayo, a excepción de los 56 días de ensayo, cuya resistencia a la compresión fue mayor. Mientras que el concreto reciclado CAGR100 tuvo mayor resistencia a la compresión que el concreto patrón CP2 conforme avanzaba la edad de ensayo. Los resultados obtenidos en la investigación presentaron similitud con lo encontrado por Meza (2019), para un a/c=0.65, el concreto reciclado con sustitución de 20% de AGR tuvo mayor resistencia a la compresión que el concreto patrón a los 7 y 28 días de ensayo, el concreto reciclado con sustitución de 50% de AGR tuvo menor resistencia a la compresión que el concreto patrón a los 7 y 28 días de ensayo. No obstante, los resultados encontrados por Meza (2019) para un concreto reciclado con sustitución de 100% de AGR difirieron con lo encontrado en la presente investigación, cuya resistencia a la compresión disminuyó a los 7 y 28 días de ensayo.

En los resultados obtenidos de la investigación para un a/c=0.70, los concretos reciclados CAGR25 y CAGR75 tuvieron menor resistencia a la compresión que el concreto patrón CP3 a los 7 y 14 días de ensayo, a excepción de los 28 y 56 días de ensayo, cuya resistencia a la compresión fue mayor. El concreto reciclado CAGR50 tuvo mayor resistencia a la compresión que el concreto patrón CP3 conforme avanzaba la edad de ensayo. Mientras que el concreto reciclado CAGR100 tuvo similar resistencia a la compresión que el concreto patrón CP3 a los 7 días de ensayo, menor resistencia a la compresión que el concreto patrón CP3 a los 14 días de ensayo y mayor resistencia a la compresión que el concreto patrón CP3 a los 28 y 56 días de ensayo. Los resultados obtenidos en la investigación difirieron con otras investigaciones. Meza (2019), encontró que para un a/c=0.70, el concreto reciclado con sustitución de 20% de AGR tuvo similares resistencias a la compresión que el concreto patrón a los 7 y 28 días de ensayo, los concretos reciclados con sustitución de 50% y 100% de AGR tuvieron menor resistencia a la compresión que el concreto patrón a los 7 y 28 días de ensayo. Ponce (2014), encontró que para un a/c=0.70, el concreto reciclado con sustitución de 100% de AGR y AFR tuvo menor resistencia a la compresión que el concreto patrón a los 7, 14, 28 y 56 días de ensayo.

7.1.2.2. Resistencia a la tracción por compresión diametral

En los resultados obtenidos de la investigación para un a/c=0.60, el concreto reciclado CAGR25 tuvo levemente mayor resistencia a la tracción que el concreto patrón CP1 a los 28 días de ensayo. Los concretos reciclados CAGR50, CAGR75 y CAGR100 tuvieron una disminución de la resistencia a la tracción respecto del concreto patrón CP1 a los 28 días de ensayo. Los resultados obtenidos en la investigación presentan similitud con otras investigaciones. Caycho y Espinoza (2019), encontró que para un a/c=0.60, el concreto reciclado con sustitución de 25% de AGR tuvo similar resistencia a la tracción que el concreto patrón a los 28 días de ensayo, los concretos reciclados con sustitución de 50%, 75% y 100% de AGR tuvieron menor resistencia a la tracción que el concreto patrón a los 28 días de ensayo. Ponce (2014), encontró que para un a/c=0.60, el concreto reciclado con sustitución de 100% de AGR y AFR tuvo menor resistencia a la tracción que el concreto patrón a los 28 días de ensayo.

En los resultados obtenidos de la investigación para un a/c=0.65, el concreto reciclado CAGR25 tuvo levemente mayor resistencia a la tracción que el concreto patrón CP2 a los 28 días de ensayo. Los concretos reciclados CAGR50 y CAGR75 tuvieron una disminución de la resistencia a la tracción respecto del concreto patrón CP2 a los 28 días de ensayo. Mientras que el concreto reciclado CAGR100 tuvo mayor resistencia a la tracción que el concreto patrón CP2 a los 28 días de ensayo.

En los resultados obtenidos de la investigación para un a/c=0.70, los concretos reciclados CAGR25, CAGR50, CAGR75 y CAGR100 tuvieron mayor resistencia a la tracción que el concreto patrón CP3 a los 28 días de ensayo. Los resultados obtenidos en la investigación difirieron con otras investigaciones. Ponce (2014), encontró que para un a/c=0.70, el concreto reciclado con sustitución de 100% de AGR y AFR tuvo menor resistencia a la tracción que el concreto patrón a los 28 días de ensayo.

7.1.2.3. Resistencia a la flexión

En los resultados obtenidos de la investigación para un a/c=0.60, los concretos reciclados CAGR25, CAGR50 y CAGR75 tuvieron mayor resistencia a la flexión que el concreto patrón CP1 a los 28 días de ensayo. Mientras que el concreto reciclado CAGR100 tuvo levemente menor resistencia a la flexión que el concreto patrón CP1 a los 28 días de ensayo. Los resultados obtenidos en la investigación presentaron similitud con otras investigaciones. Bojacá (2013), encontró que para un a/c=0.50, el concreto reciclado con sustitución de 20% de AGR tuvo mayor resistencia a la flexión que el concreto convencional a los 28 días de ensayo. No obstante, en su mismo estudio observó que el concreto reciclado con sustitución de 40% de AGR tuvo menor resistencia a la flexión que el concreto convencional a los 28 días de ensayo. Meza (2019), para un a/c=0.60, el concreto reciclado con sustitución de 20% de AGR tuvo mayor resistencia a la flexión que el concreto patrón a los 28 días de ensayo, los concretos reciclados con sustitución de 50% y 100% de AGR tuvieron menor resistencia a la flexión que el concreto patrón a los 28 días de ensayo. Caycho y Espinoza (2019), encontraron todo lo contrario que para un a/c=0.60, los concretos reciclados con sustitución de 25%, 50%, 75% y 100% de AGR tuvieron menor resistencia a la flexión que el concreto patrón a los 28 días de ensayo.

En los resultados obtenidos de la investigación para un a/c=0.65, los concretos reciclados CAGR25 y CAGR50 tuvieron menor resistencia a la flexión que el concreto patrón CP2 a los 28 días de ensayo, mientras que los concretos reciclados CAGR75 y CAGR100 tuvieron mayor resistencia a la flexión que el concreto patrón CP2 a los 28 días de ensayo. Los resultados obtenidos en la investigación difirieron con lo encontrado por Meza (2019), para un a/c=0.65, el concreto reciclado con sustitución de 20% de AGR tuvo mayor resistencia a la flexión que el concreto patrón a los 28 días de ensayo, los concretos reciclados con sustitución de 50% y 100% de AGR tuvieron menor resistencia a la flexión que el concreto patrón a los 28 días de ensayo.

En los resultados obtenidos de la investigación para un a/c=0.70, los concretos reciclados CAGR25, CAGR50, CAGR75 y CAGR100 tuvieron menor resistencia a la flexión que el concreto patrón CP3 a los 28 días de ensayo. Los resultados obtenidos en la investigación presentaron similitud con lo encontrado por Meza (2019), para un a/c=0.70, los concretos reciclados con sustitución de

50% y 100% de AGR tuvieron menor resistencia a la flexión que el concreto patrón a los 28 días de ensayo, a excepción del concreto reciclado con sustitución de 20% de AGR, cuya resistencia a la flexión fue mayor que el concreto patrón a los 28 días de ensayo.

7.2. Contrastación de hipótesis

Para la contrastación de hipótesis se analizó la influencia del agregado grueso reciclado en diferentes grupos de concreto con sustitución de 25%, 50%, 75% y 100% respecto del grupo de concreto patrón comparando las medias de manera independiente para las propiedades del concreto en estado fresco y endurecido. Las comparaciones realizadas sirvieron para aceptar o rechazar las hipótesis específicas planteadas.

Se usó el software estadístico SPSS v27 para procesar los datos con las pruebas estadísticas que sean convenientes. De acuerdo con Sánchez (2021), en esta investigación se estableció por convención estadística un nivel de significancia (α) de 5% lo cual representa la probabilidad de rechazar la hipótesis nula cuando es verdadera (llamado error tipo I) y por inferencia estadística un intervalo de confianza de 95% lo cual representa la máxima probabilidad de encontrar el verdadero valor del parámetro en el intervalo propuesto.

7.2.1. Asentamiento

7.2.1.1. Prueba de normalidad

Se planteó la hipótesis nula (H_0) y la hipótesis alternativa (H_1) las cuales se presentan a continuación:

H₀: Los resultados del ensayo de asentamiento del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tienen una distribución normal.

H₁: Los resultados del ensayo de asentamiento del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tienen una distribución normal.

Según la prueba de normalidad de Shapiro-Wilk en la Tabla N°54 se muestran los valores del valor de significancia (p-valor) de los grupos de sustitución para el asentamiento.

Tabla N°54: Prueba de normalidad de Shapiro-Wilk para el asentamiento

	Grupos de Sustitución	Estadístico	gl	p-valor
Asentamiento	СР	0.998	3	0.923
	CAGR25	0.989	3	0.800
	CAGR50	0.849	3	0.238
	CAGR75	0.860	3	0.266
	CAGR100	0.994	3	0.848

Fuente: Elaboración propia

La regla de decisión para la prueba de normalidad fue la siguiente:

p-valor < 0.05 se rechaza la H₀ y se acepta la H₁

p-valor >= 0.05 se acepta la H₀ y se rechaza la H₁

De la Tabla N°54 se observó en los diferentes grupos de sustitución el p-valor es mayor a 0.05, por lo tanto, no se rechazó la hipótesis nula, en consecuencia, los resultados del ensayo de asentamiento del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

7.2.1.2. Prueba de ANOVA

Se realizó la prueba de homogeneidad o prueba de Levene para saber si las varianzas de los grupos de sustitución fueron o no homogéneos. Para ello, se plantearon las siguientes hipótesis y reglas de decisión:

H₀: Las varianzas de los grupos de sustitución son iguales, los grupos de sustitución son homogéneos.

H₁: Las varianzas de los grupos de sustitución son diferentes, los grupos de sustitución no son homogéneos.

p-valor < 0.05 se rechaza la H₀ y se acepta la H₁

p-valor >= 0.05 se acepta la H₀ y se rechaza la H₁

En la Tabla N°55 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para el asentamiento.

Tabla N°55: Prueba de homogeneidad de varianzas para el asentamiento

Estadístico de Levene	gl1	gl2	p-valor
1.056	4	10	0.427

Fuente: Elaboración propia

De la Tabla N°55 se observó que el p-valor 0.427 > 0.05, en consecuencia, los grupos de sustitución fueron homogéneos.

Posteriormente, se realizó la prueba de ANOVA. Para ello, se plantearon las siguientes hipótesis y reglas de decisión:

H₀: Las medias de los grupos de sustitución son iguales.

H₁: Al menos una de las medias de los grupos de sustitución es diferente.

p-valor < 0.05 se rechaza la H₀ y se acepta la H₁

p-valor >= 0.05 se acepta la H₀ y se rechaza la H₁

En la Tabla N°56 se muestra el p-valor de la prueba de ANOVA de los grupos de sustitución para el asentamiento.

Tabla N°56: Prueba de ANOVA para el asentamiento

	Suma de cuadrados	gl	Media cuadrática	F	p-valor
Entre grupos	1.607	4	0.402	9.269	0.002
Dentro de grupos	0.434	10	0.043		
Total	2.041	14			

Fuente: Elaboración propia

De la Tabla N°56 se observó que el p-valor 0.002 < 0.05, en consecuencia, al menos una de las medias de los grupos de sustitución fue diferente.

Para determinar que grupos de sustitución tuvieron medias diferentes se utilizaron procedimientos post hoc, por eso se aplicó la prueba de Tukey.

En la Tabla N°57 se muestran los valores del p-valor de la prueba Post Hoc de Tukey de los grupos de sustitución para el asentamiento.

Tabla N°57: Prueba post hoc de Tukey para el asentamiento

Grupos de Sustitución	Diferencias de medias	p-valor
CP – CAGR25	0.29667	0.452
CP – CAGR50	0.04000	0.999
CP – CAGR75	0.13333	0.929
CP - CAGR100	0.66000	0.020
CAGR25 – CAGR50	0.25667	0.579
CAGR25 – CAGR75	0.16333	0.866
CAGR25 – CAGR100	0.95667	0.002
CAGR50 – CAGR75	0.09333	0.980
CAGR50 – CAGR100	0.70000	0.014
CAGR75 – CAGR100	0.79333	0.006

De la Tabla N°57 se observó que no hay diferencias significativas entre las medias debido a que el p-valor > 0.05 a excepción de CP – CAGR100 (p-valor = 0.020), CAGR25 – CAGR100 (p-valor = 0.002), CAGR50 – CAGR100 (p-valor = 0.014) y CAGR75 – CAGR100 (p-valor = 0.006). Por lo tanto, los valores de asentamiento del concreto patrón fresco con los del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50% y 75% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tienen diferencias significativas entre las medias, es decir, estadísticamente los resultados de asentamiento fueron los mismos, a excepción del concreto fresco fabricado con 100% de agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP.

7.2.2. Peso unitario

7.2.2.1. Prueba de normalidad

En la Tabla N°58 se muestran los valores del p-valor de la prueba de normalidad de los grupos de sustitución para el peso unitario.

Tabla N°58: Prueba de normalidad de Shapiro-Wilk para el peso unitario

	Grupos de Sustitución	Estadístico	gl	p-valor
Peso Unitario	CP	0.984	3	0.762
	CAGR25	0.800	3	0.114
	CAGR50	0.964	3	0.637
	CAGR75	0.987	3	0.780
	CAGR100	0.942	3	0.537

Fuente: Elaboración propia

De la Tabla N°58 se observó en los diferentes grupos de sustitución el pvalor es mayor a 0.05, en consecuencia, los resultados del ensayo de peso unitario del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

7.2.2.2. Prueba de ANOVA

En la Tabla N°59 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para el peso unitario.

Tabla N°59: Prueba de homogeneidad de varianzas para el peso unitario

Estadístico de Levene	gl1	gl2	p-valor
1.953	4	10	0.178

Fuente: Elaboración propia

De la Tabla N°59 se observó que el p-valor 0.178 > 0.05, en consecuencia, los grupos de sustitución fueron homogéneos.

En la Tabla N°60 se muestra el p-valor de la prueba de ANOVA de los grupos de sustitución para el peso unitario.

Tabla N°60: Prueba de ANOVA para el peso unitario

	Suma de cuadrados	gl	Media cuadrática	F	p-valor
Entre grupos	23496.933	4	5874.233	103.298	< 0.001
Dentro de grupos	568.667	10	56.867		
Total	24065.600	14			

De la Tabla N°60 se observó que el p-valor < 0.05, en consecuencia, al menos una de las medias de los grupos de sustitución fue diferente.

En la Tabla N°61 se muestran los valores del p-valor de la prueba Post Hoc de Tukey de los grupos de sustitución para el peso unitario.

Tabla N°61: Prueba post hoc de Tukey para el peso unitario

Grupos de Sustitución	Diferencias de medias	p-valor
CP – CAGR25	46.333	< 0.001
CP – CAGR50	75.000	< 0.001
CP – CAGR75	89.333	< 0.001
CP - CAGR100	115.667	< 0.001
CAGR25 – CAGR50	28.667	0.006
CAGR25 – CAGR75	43.000	< 0.001
CAGR25 – CAGR100	69.333	< 0.001
CAGR50 – CAGR75	14.333	0.213
CAGR50 - CAGR100	40.667	< 0.001
CAGR75 – CAGR100	26.333	0.011

Fuente: Elaboración propia

De la Tabla N°61 se observó que las diferencias de medias son significativas debido a que el p-valor < 0.05 a excepción de CAGR50 – CAGR75 (p-valor = 0.213). Por lo tanto, los valores de peso unitario del concreto patrón fresco con los del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron diferencias significativas entre las medias, es decir, estadísticamente tuvieron resultados de peso unitario diferentes. Por otro lado, el concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 50% y 75% por agregado grueso reciclado y

utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medias, es decir, estadísticamente los resultados de peso unitario fueron los mismos.

7.2.3. Contenido de aire

7.2.3.1. Prueba de normalidad

En la Tabla N°62 se muestran los valores del p-valor de la prueba de normalidad de los grupos de sustitución para el contenido de aire.

Tabla N°62: Prueba de normalidad de Shapiro-Wilk para el contenido de aire

	Grupos de Sustitución	Estadístico	gl	p-valor
Contenido de aire	СР	0.980	3	0.732
	CAGR25	0.964	3	0.637
	CAGR50	0.964	3	0.637
	CAGR75	0.902	3	0.391
	CAGR100	0.871	3	0.298

Fuente: Elaboración propia

De la Tabla N°62 se observó en los diferentes grupos de sustitución el pvalor es mayor a 0.05, en consecuencia, los resultados del ensayo de contenido de aire del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

7.2.3.2. Prueba de ANOVA

En la Tabla N°63 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para el contenido de aire.

Tabla N°63: Prueba de homogeneidad de varianzas para el contenido de aire

Estadístico de Levene	gl1	gl2	p-valor
1.658	4	10	0.235

Fuente: Elaboración propia

De la Tabla N°63 se observó que el p-valor 0.235 > 0.05, en consecuencia, los grupos de sustitución fueron homogéneos.

En la Tabla N°64 se muestra el p-valor de la prueba de ANOVA de los grupos de sustitución para el contenido de aire.

Tabla N°64: Prueba de ANOVA para el contenido de aire

	Suma de cuadrados	gl	Media cuadrática	F	p-valor
Entre grupos	1.460	4	0.365	7.018	0.006
Dentro de grupos	0.520	10	0.052		
Total	1.979	14			

De la Tabla N°64 se observó que el p-valor < 0.05, en consecuencia, al menos una de las medias de los grupos de sustitución fue diferente.

En la Tabla N°65 se muestran los valores del p-valor de la prueba Post Hoc de Tukey de los grupos de sustitución para el contenido de aire.

Tabla N°65: Prueba post hoc de Tukey para el contenido de aire

Grupos de Sustitución	Diferencias de medias	p-valor
CP – CAGR25	0.17667	0.871
CP – CAGR50	0.57667	0.067
CP – CAGR75	0.67667	0.029
CP - CAGR100	0.82667	0.009
CAGR25 – CAGR50	0.40000	0.273
CAGR25 – CAGR75	0.50000	0.126
CAGR25 – CAGR100	0.65000	0.037
CAGR50 – CAGR75	0.10000	0.981
CAGR50 - CAGR100	0.25000	0.673
CAGR75 – CAGR100	0.15000	0.923

Fuente: Elaboración propia

De la Tabla N°65 se observó que no hay diferencias significativas entre las medias debido a que el p-valor > 0.05 a excepción de CP – CAGR75 (p-valor = 0.029), CP – CAGR100 (p-valor = 0.009) y CAGR25 – CAGR100 (p-valor = 0.037). Por lo tanto, los valores de contenido de aire del concreto patrón fresco con los del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25% y 50% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medias, es decir, estadísticamente los resultados de contenido de aire fueron los mismos, a excepción del concreto fresco fabricado con sustitución de agregado grueso

natural en porcentajes de 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron estadísticamente resultados de contenido de aire diferentes.

Por otro lado, el concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron estadísticamente resultados de contenido de aire diferentes.

7.2.4. Exudación

7.2.4.1. Prueba de normalidad

En la Tabla N°66 se muestran los valores del p-valor de la prueba de normalidad de los grupos de sustitución para la exudación.

Tabla N°66: Prueba de normalidad de Shapiro-Wilk para la exudación

	Grupos de Sustitución	Estadístico	gl	p-valor
Exudación	CP	0.987	3	0.780
	CAGR25	0.871	3	0.298
	CAGR50	0.842	3	0.220
	CAGR75	1.000	3	0.984
	CAGR100	0.878	3	0.320

Fuente: Elaboración propia

De la Tabla N°66 se observó en los diferentes grupos de sustitución el pvalor es mayor a 0.05, en consecuencia, los resultados del ensayo de exudación del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

7.2.4.2. Prueba de ANOVA

En la Tabla N°67 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para la exudación.

Tabla N°67: Prueba de homogeneidad de varianzas para la exudación

Estadístico de Levene	gl1	gl2	p-valor
2.141	4	10	0.150

Fuente: Elaboración propia

De la Tabla N°67 se observó que el p-valor 0.150 > 0.05, en consecuencia, los grupos de sustitución fueron homogéneos.

En la Tabla N°68 se muestra el p-valor de la prueba de ANOVA de los grupos de sustitución para la exudación.

Tabla N°68: Prueba de ANOVA para la exudación

	Suma de cuadrados	gl	Media cuadrática	F	p-valor
Entre grupos	0.133	4	0.033	0.722	0.597
Dentro de grupos	0.462	10	0.046		
Total	0.595	14			

Fuente: Elaboración propia

De la Tabla N°68 se observó que el p-valor > 0.05, en consecuencia, las medias de los grupos de sustitución fueron iguales.

Por lo tanto, los valores de la exudación del concreto patrón fresco con los del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medias, es decir, estadísticamente los resultados de exudación fueron los mismos.

7.2.5. Tiempo de fraguado

7.2.5.1. Prueba de normalidad

En la Tabla N°69 se muestran los valores del p-valor de la prueba de normalidad de los grupos de sustitución para el tiempo de fraguado inicial y final.

Tabla N°69: Prueba de normalidad de Shapiro-Wilk para el tiempo fraguado inicial y final

	Grupos de Sustitución	Estadístico	gl	p-valor
Tiempo de fraguado inicial	СР	0.998	3	0.908
	CAGR25	0.869	3	0.293
	CAGR50	0.987	3	0.780
	CAGR75	0.876	3	0.312
	CAGR100	0.938	3	0.520
Tiempo de fraguado final	СР	0.996	3	0.878
	CAGR25	0.879	3	0.321
	CAGR50	0.947	3	0.556
	CAGR75	0.801	3	0.118
	CAGR100	0.956	3	0.599

De la Tabla N°69 se observó en los diferentes grupos de sustitución, tanto para el fraguado inicial y final, el p-valor es mayor a 0.05, en consecuencia, los resultados del ensayo de tiempo de fraguado del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

7.2.5.2. Prueba de ANOVA

En la Tabla N°70 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para el tiempo de fraguado inicial y final.

Tabla N°70: Prueba de homogeneidad de varianzas para el tiempo de fraguado inicial y final

	Estadístico de Levene	gl1	gl2	p-valor
T.F.I.	2.692	4	10	0.093
T.F.F.	1.133	4	10	0.395

Fuente: Elaboración propia

De la Tabla N°70 se observó que el p-valor fue 0.093 > 0.05 para el tiempo de fraguado inicial y el p-valor fue 0.395 > 0.05 para el tiempo de fraguado final, en consecuencia, los grupos de sustitución fueron homogéneos.

En la Tabla N°71 se muestra el p-valor de la prueba de ANOVA de los grupos de sustitución para el tiempo de fraguado inicial y final.

Suma de Media F gl p-valor cuadrados cuadrática T.F.I. Entre grupos 2500.933 4 625.233 0.365 1.211 Dentro de 516.400 5164.000 10 grupos Total 7664.933 14 T.F.F. 4 392.100 Entre grupos 1568.400 0.237 0.911 Dentro de 16569.333 10 1656.933 grupos Total 18137.733 14

Tabla N°71: Prueba de ANOVA para el tiempo de fraguado inicial y final

De la Tabla N°71 se observó que el p-valor > 0.05 tanto para el tiempo de fraguado inicial y final, en consecuencia, las medias de los grupos de sustitución fueron iguales.

Por lo tanto, los valores del tiempo de fraguado inicial del concreto patrón fresco con los del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medias, es decir, estadísticamente los resultados de tiempo de fraguado inicial fueron los mismos.

Por lo tanto, los valores del tiempo de fraguado final del concreto patrón fresco con los del concreto fresco fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medias, es decir, estadísticamente los resultados de tiempo de fraguado final fueron los mismos.

7.2.6. Resistencia a la compresión

7.2.6.1. Prueba de normalidad

En la Tabla N°72 se muestran los valores del p-valor de la prueba de normalidad de los grupos de sustitución para la resistencia a la compresión a los 7, 14, 28 y 56 días.

Tabla N°72: Prueba de normalidad de Shapiro-Wilk para la resistencia a la compresión a los 7, 14, 28 y 56 días

	Grupos de Sustitución	Estadístico	gl	p-valor
Resistencia	CP	0.899	9	0.248
a la	CAGR25	0.849	9	0.073
compresión	CAGR50	0.885	9	0.176
a los 7 días	CAGR75	0.891	9	0.203
	CAGR100	0.878	9	0.149
Resistencia	СР	0.800	9	0.020
a la	CAGR25	0.837	9	0.053
compresión	CAGR50	0.854	9	0.083
a los 14 días	CAGR75	0.883	9	0.171
	CAGR100	0.769	9	0.009
Resistencia	СР	0.875	45	< 0.001
a la	CAGR25	0.895	45	< 0.001
compresión	CAGR50	0.882	45	< 0.001
a los 28 días	CAGR75	0.929	45	0.009
	CAGR100	0.827	45	< 0.001
Resistencia	СР	0.853	9	0.081
a la	CAGR25	0.796	9	0.018
compresión	CAGR50	0.930	9	0.484
a los 56 días	CAGR75	0.900	9	0.250
	CAGR100	0.760	9	0.007

De la Tabla N°72 se observó que los resultados de resistencia a la compresión a los 7 días en los diferentes grupos de sustitución el p-valor es mayor a 0.05, en consecuencia, los resultados de resistencia a la compresión a los 7 días del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

De la Tabla N°72 se observó que los resultados de resistencia a la compresión a los 14 días en los diferentes grupos de sustitución el p-valor es menor a 0.05, en consecuencia, los resultados de resistencia a la compresión a los 14 días del concreto endurecido fabricado con sustitución de agregado grueso

natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron una distribución normal.

De la Tabla N°72 se observó que los resultados de resistencia a la compresión a los 28 días en los diferentes grupos de sustitución el p-valor es menor a 0.05, en consecuencia, los resultados de resistencia a la compresión a los 28 días del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron una distribución normal.

De la Tabla N°72 se observó que los resultados de resistencia a la compresión a los 56 días en los diferentes grupos de sustitución el p-valor es menor a 0.05, en consecuencia, los resultados de resistencia a la compresión a los 56 días del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron una distribución normal.

7.2.6.2. Prueba de ANOVA para resistencia a la compresión a los 7 días

En la Tabla N°73 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para la resistencia a la compresión a los 7 días.

Tabla N°73: Prueba de homogeneidad de varianzas para la resistencia a la compresión a los 7 días

Estadístico de Levene	gl1	gl2	p-valor
1.083	4	40	0.378

Fuente: Elaboración propia

De la Tabla N°73 se observó que el p-valor 0.378 > 0.05, en consecuencia, los grupos de sustitución fueron homogéneos.

En la Tabla N°74 se muestra el p-valor de la prueba de ANOVA de los grupos de sustitución para la resistencia a la compresión a los 7 días.

Tabla N°74: Prueba de ANOVA para la resistencia a la compresión a los 7 días

	Suma de cuadrados	gl	Media cuadrática	F	p-valor
Entre grupos	1116.668	4	279.167	0.519	0.722
Dentro de grupos	21521.885	40	538.047		
Total	22638.553	14			

De la Tabla N°74 se observó que el p-valor > 0.05, en consecuencia, las medias de los grupos de sustitución fueron iguales.

Por lo tanto, los valores de la resistencia a la compresión a los 7 días del concreto patrón endurecido con los del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medias, es decir, estadísticamente los resultados de resistencia a la compresión a los 7 días fueron los mismos.

7.2.6.3. Prueba de Kruskal-Wallis para resistencia a la compresión a los 14 días

Como los resultados de resistencia a la compresión a los 14 días no tuvieron distribución normal se realizó la prueba estadística no paramétrica de Kruskal-Wallis. Para ello, se plantearon las siguientes hipótesis y reglas de decisión:

H₀: Las medianas de los grupos de sustitución son iguales.

H₁: Al menos una de las medianas de los grupos de sustitución es diferente.

p-valor < 0.05 se rechaza la H₀ y se acepta la H₁

p-valor >= 0.05 se acepta la H₀ y se rechaza la H₁

En la Tabla N°75 se muestra el p-valor de la prueba de Kruskal-Wallis de los grupos de sustitución para la resistencia a la compresión a los 14 días.

Tabla N°75: Prueba de Kruskal-Wallis para la resistencia a la compresión a los 14 días

Estadístico de Kruskal-Wallis	gl	p-valor
3.473	4	0.482

Fuente: Elaboración propia

De la Tabla N°75 se observó que el p-valor > 0.05, en consecuencia, las medianas de los grupos de sustitución fueron iguales.

Por lo tanto, los valores de la resistencia a la compresión a los 14 días del concreto patrón endurecido con los del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medianas, es decir, estadísticamente los resultados de resistencia a la compresión a los 14 días fueron los mismos.

7.2.6.4. Prueba de Kruskal-Wallis para resistencia a la compresión a los 28 días

En la Tabla N°76 se muestra el p-valor de la prueba de Kruskal-Wallis de los grupos de sustitución para la resistencia a la compresión a los 28 días.

Tabla N°76: Prueba de Kruskal-Wallis para la resistencia a la compresión a los 28 días

Estadístico de Kruskal-Wallis	gl	p-valor
10.980	4	0.027

Fuente: Elaboración propia

De la Tabla N°76 se observó que el p-valor < 0.05, en consecuencia, las medianas de los grupos de sustitución fueron diferentes.

Para determinar que grupos de sustitución tienen medianas diferentes se realizaron comparaciones por parejas.

En la Tabla N°77 se muestran los valores del p-valor de las comparaciones por parejas de los grupos de sustitución para la resistencia a la compresión a los 28 días.

Tabla N°77: Comparaciones por parejas para la resistencia a la compresión a los 28 días

Grupos de Sustitución	Estadístico de prueba	p-valor
CP – CAGR25	10.889	0.428
CP – CAGR50	17.522	0.202
CP – CAGR75	15.400	0.262
CP - CAGR100	25.989	0.058
CAGR25 – CAGR50	6.633	0.629
CAGR25 – CAGR75	26.289	0.055
CAGR25 – CAGR100	15.100	0.271
CAGR50 – CAGR75	39.922	0.016
CAGR50 – CAGR100	8.467	0.537
CAGR75 – CAGR100	41.389	0.003

De la Tabla N°77 se observó que no hay diferencias significativas entre las medianas debido a que el p-valor > 0.05 a excepción de CAGR50 – CAGR75 (p-valor = 0.016) y CAGR75 – CAGR100 (p-valor = 0.003). Por lo tanto, los resultados de la resistencia a la compresión a los 28 días del concreto patrón endurecido con los del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medianas, es decir, estadísticamente los resultados de la resistencia a la compresión a los 28 días fueron los mismos.

Por otro lado, el concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 50% y 75% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron estadísticamente resultados diferentes de la resistencia a la compresión a los 28 días.

De igual manera, el concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron estadísticamente resultados diferentes de la resistencia a la compresión a los 28 días.

7.2.6.5. Prueba de Kruskal-Wallis para resistencia a la compresión a los 56 días

En la Tabla N°78 se muestra el p-valor de la prueba de Kruskal-Wallis de los grupos de sustitución para la resistencia a la compresión a los 56 días.

Tabla N°78: Prueba de Kruskal-Wallis para la resistencia a la compresión a los 56 días

Estadístico de Kruskal-Wallis	gl	p-valor
2.269	4	0.686

Fuente: Elaboración propia

De la Tabla N°78 se observó que el p-valor > 0.05, en consecuencia, las medianas de los grupos de sustitución fueron iguales.

Por lo tanto, los valores de la resistencia a la compresión a los 56 días del concreto patrón endurecido con los del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medianas, es decir, estadísticamente los resultados de resistencia a la compresión a los 56 días fueron los mismos.

7.2.7. Resistencia a la tracción por compresión diametral

7.2.7.1. Prueba de normalidad

En la Tabla N°79 se muestran los valores del p-valor de la prueba de normalidad de los grupos de sustitución para la resistencia a la tracción por compresión diametral a los 28 días.

Tabla N°79: Prueba de normalidad de Shapiro-Wilk para la resistencia a la tracción por compresión diametral a los 28 días

	Grupos de Sustitución	Estadístico	gl	p-valor
Resistencia	CP	0.851	9	0.077
a la	CAGR25	0.973	9	0.918
tracción por	CAGR50	0.967	9	0.866
compresión	CAGR75	0.950	9	0.687
diametral	CAGR100	0.891	9	0.206

Fuente: Elaboración propia

De la Tabla N°79 se observó que los resultados de resistencia a la tracción por compresión diametral a los 28 días en los diferentes grupos de sustitución el

p-valor es mayor a 0.05, en consecuencia, los resultados de resistencia a la tracción por compresión diametral a los 28 días del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

7.2.7.2. Prueba de ANOVA

En la Tabla N°80 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para la resistencia a la tracción por compresión diametral a los 28 días.

Tabla N°80: Prueba de homogeneidad de varianzas para la resistencia a la tracción por compresión diametral a los 28 días

Estadístico de Levene	gl1	gl2	p-valor
2.313	4	40	0.074

Fuente: Elaboración propia

De la Tabla N°80 se observó que el p-valor 0.074 > 0.05, en consecuencia, los grupos de sustitución fueron homogéneos.

En la Tabla N°81 se muestra el p-valor de la prueba de ANOVA de los grupos de sustitución para la resistencia a la tracción por compresión diametral a los 28 días.

Tabla N°81: Prueba de ANOVA para la resistencia a la tracción por compresión diametral a los 28 días

	Suma de cuadrados	gl	Media cuadrática	F	p-valor
Entre grupos	41.925	4	10.481	1.217	0.319
Dentro de grupos	344.420	40	8.611		
Total	386.346	44			

Fuente: Elaboración propia

De la Tabla N°81 se observó que el p-valor > 0.05, en consecuencia, las medias de los grupos de sustitución fueron iguales.

Por lo tanto, los valores de la resistencia a la tracción por compresión diametral a los 28 días del concreto patrón endurecido con los del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medias,

es decir, estadísticamente los resultados de resistencia a la tracción por compresión diametral a los 28 días fueron los mismos.

7.2.8. Resistencia a la flexión

7.2.8.1. Prueba de normalidad

En la Tabla N°82 se muestran los valores del p-valor de la prueba de normalidad de los grupos de sustitución para la resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a los 28 días.

Tabla N°82: Prueba de normalidad de Shapiro-Wilk para la resistencia a la flexión en vigas de concreto a los 28 días

	Grupos de Sustitución	Estadístico	gl	p-valor
Resistencia	CP	0.906	6	0.412
a la	CAGR25	0.937	6	0.633
flexión	CAGR50	0.805	6	0.065
	CAGR75	0.964	6	0.848
	CAGR100	0.898	6	0.360

Fuente: Elaboración propia

De la Tabla N°82 se observó que los resultados de resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a los 28 días en los diferentes grupos de sustitución el p-valor es mayor a 0.05, en consecuencia, los resultados de resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a los 28 días del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP tuvieron una distribución normal.

7.2.8.2. Prueba de ANOVA

En la Tabla N°83 se muestra el p-valor de la prueba de homogeneidad de varianzas de los grupos de sustitución para la resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a los 28 días.

Tabla N°83: Prueba de homogeneidad de varianzas para la resistencia a la flexión en vigas de concreto a los 28 días

Estadístico de Levene	gl1	gl2	p-valor
2.791	4	25	0.048

Fuente: Elaboración propia

De la Tabla N°83 se observó que el p-valor 0.048 < 0.05, en consecuencia, los grupos de sustitución no fueron homogéneos, por lo tanto, se realizó la prueba estadística no paramétrica de Kruskal-Wallis

7.2.8.3. Prueba de Kruskal-Wallis para resistencia a la flexión a los 28 días

En la Tabla N°84 se muestra el p-valor de la prueba de Kruskal-Wallis de los grupos de sustitución para la resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a los 28 días.

Tabla N°84: Prueba de Kruskal-Wallis para la resistencia a la flexión en vigas de concreto a los 28 días

Estadístico de Kruskal-Wallis	gl	p-valor
0.920	4	0.922

Fuente: Elaboración propia

De la Tabla N°84 se observó que el p-valor > 0.05, en consecuencia, las medianas de los grupos de sustitución fueron iguales.

Por lo tanto, los valores de la resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a los 28 días del concreto patrón endurecido con los del concreto endurecido fabricado con sustitución de agregado grueso natural en porcentajes de 25%, 50%, 75% y 100% por agregado grueso reciclado y utilizando cemento portland puzolánico tipo IP no tuvieron diferencias significativas entre las medianas, es decir, estadísticamente los resultados de resistencia a la flexión en vigas de concreto simplemente apoyadas con carga a los tercios a los 28 días fueron los mismos.

Conclusiones

En conclusión, se cumplieron con los objetivos planteados en la presente investigación, los cuales fueron determinar las propiedades de los concretos de mediana a baja resistencia en estado fresco y endurecido elaborados con agregado grueso reciclado y cemento portland puzolánico tipo IP. En consecuencia, se determinó la influencia positiva en sustituir el agregado grueso natural hasta en 25% por agregado grueso reciclado.

Se arriban las siguientes conclusiones para ensayos en concreto fresco:

En esta investigación se determinó que la variación del asentamiento no es tan significativa cuando el porcentaje de sustitución de AGR en las mezclas es hasta 75%. Sin embargo, el asentamiento disminuye entre un 7% a un 20% cuando el porcentaje de sustitución de AGR en las mezclas es de 100%.

En esta investigación se determinó que la variación del peso unitario es significativa, ya que disminuye en la medida que aumenta el porcentaje de sustitución de AGR. Lo anterior es debido a la mayor porosidad y lo ligero que es el AGR.

En esta investigación se determinó que la variación del contenido de aire es significativa, ya que aumenta en la medida que aumenta el porcentaje de sustitución de AGR. El aumento del contenido de aire se ve influenciado por el T.M.N. de AGR y los altos valores de a/c utilizados en la investigación tal como lo indica Arcos (1976).

En esta investigación se determinó que la variación de la exudación no es tan significativa. Para los a/c=0.60 y 0.65, la exudación aumenta cuando el porcentaje de sustitución de AGR en las mezclas es hasta 50%. Sin embargo, la exudación disminuye entre un 28% a un 61% cuando el porcentaje de sustitución de AGR en las mezclas es entre 75% y 100%. En la mezcla de a/c=0.70 se determinó que la exudación disminuye hasta en 31% cuando el porcentaje de sustitución de AGR en las mezclas es de 25%.

En esta investigación se determinó que la variación del tiempo de fraguado no es tan significativa. Para un a/c=0.60, el tiempo de fraguado inicial y final disminuyen hasta en un 12% y 6% cuando el porcentaje de sustitución de AGR en las mezclas es de 75% y 25%, respectivamente. Para un a/c=0.65, el tiempo de

fraguado inicial aumenta hasta en un 117% cuando el porcentaje de sustitución de AGR en las mezclas es de 25%, mientras que el tiempo de fraguado final disminuye hasta en un 4% cuando el porcentaje de sustitución de AGR en las mezclas es de 50%. Para un a/c=0.70, cuando el porcentaje de sustitución de AGR en las mezclas es de 75%, el tiempo de fraguado inicial y final disminuye hasta en un 11% y 10%, respectivamente,

Se arriban las siguientes conclusiones para ensayos en concreto endurecido:

En esta investigación se determinó que la variación de la resistencia a la compresión del concreto reciclado a los 28 días de ensayo no es tan significativa. Cuando la sustitución de AGR es 25%, para los a/c=0.60 y 0.70, la resistencia a la compresión aumenta 1% respecto del concreto patrón, y para un a/c= 0.65 la resistencia a la compresión aumenta 5% respecto del concreto patrón.

En esta investigación se determinó que la variación de la resistencia a la tracción del concreto reciclado a los 28 días de ensayo no es tan significativa. Cuando la sustitución de AGR es 25%, para los a/c=0.60, 0.65 y 0.70 aumenta 2.33%, 1.60% y 16.20%, respectivamente, respecto del concreto patrón.

En esta investigación se determinó que la variación de la resistencia a la flexión del concreto reciclado a los 28 días de ensayo no es tan significativa. Cuando la sustitución de AGR es 25%, para los a/c=0.60 y 0.70 aumenta 8.41% y 13.90%, respectivamente, respecto del concreto patrón. Sin embargo, para el a/c=0.65 disminuye 4.93% respecto del concreto patrón.

Recomendaciones

Con la intención de verificar la viabilidad del AGR como un sustituto parcial o total del agregado grueso natural, se recomienda realizar estudios similares al realizado en la presente investigación a concretos con AGR provenientes de otras empresas que se encargan del tratamiento de residuos de la construcción y demolición.

Se recomienda conocer la procedencia del agregado grueso reciclado, si son de elementos estructurales o no estructurales, ya que esto servirá para un mejor análisis e interpretación de los resultados del concreto en estado fresco y endurecido fabricado con AGR.

Se recomienda realizar investigaciones en concretos con AGR de mediana a baja resistencia utilizando aditivos plastificantes o superplastificantes para reducir la cantidad de agua de diseño de la mezcla y por consiguiente mejorar las propiedades mecánicas del concreto con AGR.

Se recomienda realizar investigaciones para evaluar la durabilidad del concreto con AGR utilizando aditivos plastificantes o superplastificantes.

Referencias bibliográficas

Abera, Y. S. A. (2022). Performance of concrete materials containing recycled aggregate from construction and demolition waste. *Results in Materials*, 14(100278), 1-11.

https://doi.org/10.1016/j.rinma.2022.100278

- Arcos D'Hainaut, C. (1976). Algunos aspectos de los hormigones con aire incorporado. *Informes de la Construcción*, 29(286), 87-91. https://doi.org/10.3989/ic.1976.v29.i286.2709
- Arriaga Tafhurt, L. E. (2014). *Utilización de agregado grueso de concreto reciclado* en elementos estructurales de concreto reforzado [Tesis de maestría, Escuela Colombiana de Ingeniería Julio Garavito]. Repositorio Digital. https://repositorio.escuelaing.edu.co/handle/001/118
- Asociación de Productores de Cemento (2022). Resumen Hoja de Ruta Industria del Cemento Perú [Folleto].
 - https://www.yura.com.pe/wp-content/uploads/Hoja-de-Ruta-Peru.pdf
- Asociación de Productores de Cemento (2023). Reporte Estadístico. Industria del cemento en Perú [Diapositiva PowerPoint].
 - https://www.asocem.org.pe/archivo/files/Reporte-Estad%C3%ADstico-Mensual/2023%20-%2012/2312_Reporte-Estadistico-Mensual.pdf
- Bedoya, C. y Dzul, L. (2015). El concreto con agregados reciclados como proyecto de sostenibilidad urbana. *Revista ingeniería de construcción, 30*(2), 99-108
 - https://dx.doi.org/10.4067/S0718-50732015000200002
- Breccolotti, M. y Materazzi, A. L. (2010). Structural reliability of eccentrically-loaded sections in RC columns made of recycled aggregate concrete. *Engineering Structures*, *32*(11), 3704-3712.
 - https://doi.org/10.1016/j.engstruct.2010.08.015
- Bojacá Castañeda, N. R. (2013). Propiedades mecánicas y de durabilidad de concretos con agregado reciclado [Tesis de maestría, Escuela Colombiana de Ingeniería Julio Garavito]. Repositorio Digital.
 - https://repositorio.escuelaing.edu.co/handle/001/132

Butler, L. J., West, J. S. y Tighe, S. L. (2014). Towards the classification of recycled concrete aggregates: influence of fundamental aggregate properties on recycled concrete performance. *Journal of Sustainable Cement-Based Materials*, *3*(2), 140-163.

https://doi.org/10.1080/21650373.2014.909752

- Caycho Hidalgo, T. y Espinoza Rodriguez, D. (2019). Mezcla de concreto con agregado grueso reciclado usando cemento portland tipo HS para cimentaciones, distrito La Molina, año-2019 [Tesis de grado, Universidad Ricardo Palma]. Repositorio Institucional.
 - https://hdl.handle.net/20.500.14138/2726
- Gobierno del Perú (2023). Tercer Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. https://unfccc.int/documents/630374
- Hansen, T. C. (1986). Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-1985. Materials and Structures, 19, 201-246.

https://doi.org/10.1007/BF02472036

Hernández Sampieri, R., Fernández Collado, C. y Baptista Lucio, M. (2014). *Metodología de la investigación, sexta edición.* McGraw Hill.

https://www.esup.edu.pe/wp-

content/uploads/2020/12/2.%20Hernandez,%20Fernandez%20y%20Bapti sta-

Metodolog%C3%ADa%20Investigacion%20Cientifica%206ta%20ed.pdf

- Instituto Nacional de Calidad (2022a). CONCRETO. Determinación de la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios de la distancia entre apoyos. Método de ensayo. 4ª Edición. (NTP 339.078:2022).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=34705&idtv=9474
- Instituto Nacional de Calidad (2022b). CONCRETO. Método del asentamiento del concreto de cemento hidráulico. Método de ensayo. 5ª Edición. (NTP 339.035:2022).

https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=34704&idtv=9473

- Instituto Nacional de Calidad (2022c). CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción indirecta del concreto, por compresión diametral de una probeta cilíndrica. 4ª Edición. (NTP 339.084:2022).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=35500&idtv=9945
- Instituto Nacional de Calidad (2021a). *AGREGADOS. Agregados para concreto. Especificaciones. 5ª Edición.* (NTP 400.037:2021).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=33406&idtv=9224
- Instituto Nacional de Calidad (2021b). CONCRETO. Determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Método de ensayo. 5ª Edición. (NTP 339.034:2021).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=33396&idtv=9214
- Instituto Nacional de Calidad (2021c). AGREGADOS. Análisis granulométrico del agregado fino y grueso. Método de ensayo. 4ª Edición (NTP 400.012:2021).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=33404&idtv=9222
- Instituto Nacional de Calidad (2021d). *AGREGADOS. Determinación del contenido de humedad total evaporable de agregados por secado. Método de ensayo.* 3ª Edición. (NTP 339.185:2021).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=33401&idtv=9219
- Instituto Nacional de Calidad (2021e). AGREGADOS. Determinación de la densidad relativa (peso específico) y absorción del agregado fino. Método de ensayo. 4ª Edición. (NTP 400.022:2021).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=37799&idtv= 10782
- Instituto Nacional de Calidad (2020a). AGREGADOS. Definición y clasificación de agregados para uso en morteros y concretos. 3ª Edición. (NTP 400.011:2020).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=31761&idtv=8198

- Instituto Nacional de Calidad (2020b). AGREGADOS. Método de ensayo para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados. 4ª Edición. (NTP 400.017:2020). https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=31763&idtv=8200
- Instituto Nacional de Calidad (2020c). CEMENTOS. Cementos hidráulicos adicionados. Requisitos. 8ª Edición. (NTP 334.090:2020). https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=37744&idtv=10751
- Instituto Nacional de Calidad (2020d). AGREGADOS. Densidad relativa (peso específico) y absorción del agregado grueso. Método de ensayo. 4ª Edición. (NTP 400.021:2020). https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=32439&idtv=8601
- Instituto Nacional de Calidad (2020e). CONCRETO. Determinación de la exudación del concreto. Métodos de ensayo. 4ª Edición. (NTP 339.077:2020). https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=32565&idtv=8703
- Instituto Nacional de Calidad (2020f). AGREGADOS. Determinación de materiales más finos que pasan por el tamiz normalizado 75um (No. 200) por lavado en agregados. Método de ensayo. 4ª Edición. (NTP 400.018:2020). https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=32570&idtv=8708
- Instituto Nacional de Calidad (2020g). AGREGADOS. Determinación de la resistencia al desgaste en agregados gruesos de tamaños menores por abrasión e impacto en la máquina de Los Ángeles. Método de ensayo. 4ª Edición. (NTP 400.019:2020).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=32437&idtv=8599
- Instituto Nacional de Calidad (2019a). CONCRETO. Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del concreto. 3ª Edición. (NTP 339.046:2019). https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=31457&idtv=7950

- Instituto Nacional de Calidad (2019b). MANEJO DE RESIDUOS DE LA ACTIVIDAD DE LA CONSTRUCCIÓN. Reciclaje de concreto de demolición. 1ª Edición. (NTP 400.053:2019).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=31535&idtv=8014
- Instituto Nacional de Calidad (2017a). CONCRETO. Método de ensayo para la determinación del contenido de aire en el concreto fresco. Método de presión. 3ª Edición. (NTP 339.080:2017).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=37314&idtv=10474
- Instituto Nacional de Calidad (2017b). CONCRETO. Método de ensayo para la determinación del tiempo de fraguado de mezclas por medio de la resistencia a la penetración. 4ª Edición. (NTP 339.082:2017).
 - https://salalecturavirtual.inacal.gob.pe:8098/detalle.aspx?id=37718&idtv=10733
- Laverde Laverde, J. A. (2014). Propiedades mecánicas, eléctricas y de durabilidad de concretos con agregados reciclados [Tesis de maestría, Escuela Colombiana de Ingeniería Julio Garavito]. Repositorio Digital. https://repositorio.escuelaing.edu.co/handle/001/111
- Li, X. (2008). Recycling and reuse of waste concrete in China: Part I. Material behaviour of recycled aggregate concrete. *Resources, Conservation and Recycling*, 53(Issue 1-2), 36-44.
 - https://doi.org/10.1016/j.resconrec.2008.09.006
- Lozada, J. (2014). Investigación Aplicada: Definición, Propiedad Intelectual e Industria. *CienciAmérica, 3*(1), 47-50.
 - https://dialnet.unirioja.es/servlet/articulo?codigo=6163749
- Martínez Soto, I. E. y Mendoza Escobedo, C. J. (2006). Comportamiento mecánico de concreto fabricado con agregados reciclados. *Ingeniería, investigación y tecnología, 7*(3), 151-164.
 - http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432006000300002&lng=es&tlng=es
- Martínez Urieles, P. E. (2020). El concreto con agregados reciclados como proyecto de sostenibilidad urbana. [Tesis de grado, Universidad Cooperativa de Colombia]. Repositorio Institucional.
 - https://hdl.handle.net/20.500.12494/28566

- Menegaki, M., Damigos, D. (2018). A review on current situation and challenges of construction and demolition waste management. *Current Opinion in Green and Sustainable Chemestry, 13,* 8-15. https://doi.org/10.1016/j.cogsc.2018.02.010
- Meza Ichpas, F. G. (2019). Estudio de las características del concreto reciclado fresco y endurecido, con sustitución parcial y total del agregado grueso [Tesis de grado, Universidad Nacional de Ingeniería]. Repositorio Institucional.

http://hdl.handle.net/20.500.14076/18706

- Naciones Unidas (2015). Acuerdo de París en la convención marco de las Naciones Unidas sobre el cambio climático.

 https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agre-ement_spanish_.pdf
- Neville, A. (1999). *Tecnología del concreto*. Instituto Mexicano del Cemento y del Concreto, A.C.

https://www.udocz.com/apuntes/66641/tecnologia-del-concreto-neville

- Organismo de Evaluación y Fiscalización Ambiental (2014). La Fiscalización Ambiental en Residuos Sólidos.
 - https://www.oefa.gob.pe/?wpfb_dl=6471#:~:text=(i)%20Fiscalizaci%C3% B3n%20ambiental%20en%20sentido,el%20cumplimiento%20de%20oblig aciones%20ambientales
- Peters Quiroga, C. (20 de mayo de 2022). Residuos de Construcción y Demolición. Construcción Latino Americana.
 - https://www.construccionlatinoamericana.com/news/Residuos-deconstruccion-y-demolicion/8020692.article
- Ponce Portocarrero, C. P. (2014). Estudio del concreto reciclado de mediana a baja resistencia, utilizando cemento portland tipo I [Tesis de grado, Universidad Nacional de Ingeniería]. Repositorio Institucional. http://hdl.handle.net/20.500.14076/3643
- Resolución Ministerial 257 de 2020. [Ministerio de Vivienda, Construcción y Saneamiento]. Proyecto de Decreto Supremo que Aprueba el Reglamento de Gestión y Manejo de Residuos Sólidos de la Construcción y Demolición. 13 de octubre de 2020.

https://www.gob.pe/institucion/vivienda/informes-publicaciones/1268315-proyecto-de-decreto-supremo-que-aprueba-el-reglamento-de-gestion-y-manejo-de-residuos-solidos-de-la-construccion-y-demolicion

Réunion Internationale des Laboratoires et Experts des Matériaux (1994).

Specifications for concrete with recycled aggregates. *Materials and Structures*, 27, 557-559.

https://doi.org/10.1007/BF02473217

Sánchez Rodriguez, M. A. (2021). La significancia estadística y los intervalos de confianza: ¿qué me indican y cómo puedo interpretarlos? Casos y revisiones de salud, 3(1), 74-82.

https://cyrs.zaragoza.unam.mx/wp-content/uploads/2021/08/08-M-La-significancia-estadi%CC%81stica-y-los-intervalos-de-confianza-%C2%BFque%CC%81-me-indican-y-co%CC%81mo-puedo-interpretarlos3-1.pdf

- Vargas Cordero, Z. R. (2009). La investigación aplicada: Una forma de conocer las realidades con evidencia científica. *Revista Educación, 33*(1), 155-165. https://www.redalyc.org/articulo.oa?id=44015082010
- Vernal Astudillo, R. (s. f.). *Agregados reciclados como alternativa*. P Y S Concreto. https://pysconcreto.com.pe/wp-content/uploads/2020/02/N%C2%B03-Agregado-reciclado-como-alternativa.pdf

Anexos

Anexo A:	Resultados de ensayos de los agregados	. 144
Anexo B:	Resultados de ensayos en el concreto en estado fresco y	
	endurecido	. 159
Anexo C:	Panel fotográfico	. 203
Anexo D:	Resultados de análisis físico-químico al aqua de mezcla	. 210

Anexo A: Resultados de ensayos de los agregados

Agregado fino natural A.1.

A.1.1. Granulometría

Tabla A1: Análisis granulométrico del agregado fino natural

Tamiz	Abertura (mm)	M1 (g)	M2 (g)	Promedio (g)	% Retenido	%Retenido Acumulado	% Pasa
1/2"	12.50	0	0	0	0.00	0.00	100.00
3/8"	9.50	0	0	0	0.00	0.00	100.00
N°4	4.75	38	42	40	8.00	8.00	92.00
N°8	2.36	85	86	86	17.10	25.10	74.90
N°16	1.18	115	116	116	23.10	48.20	51.80
N°30	0.60	104	114	109	21.80	70.00	30.00
N°50	0.30	76	71	74	14.70	84.70	15.30
N°100	0.15	44	39	42	8.30	93.00	7.00
Fondo	0.00	38	32	35	7.00	100.00	0.00
Т	otal	500	500	500	100.00		

Fuente: Elaboración propia

De la Ecuación 1 se obtiene el módulo de finura del agregado fino natural.

M.F. = 3.29

A.1.2. Materiales más finos que pasan el tamiz N°200

Tabla A2: Materiales que pasan el tamiz N°200

Descripción	M1	M2	М3
Peso de la muestra seca (g) (A)	500.0	500.0	500.0
Peso del recipiente (g) (B)	119.0	190.8	136.0
Peso de la muestra seca luego del lavado + Peso del recipiente (g) (C)	593.4	666.5	612.3
Peso de la muestra seca luego del lavado (g) (D=C-B)	474.4	475.7	476.3
Porcentaje del material más fino (%) [100*(A-D)/A]	5.12	4.86	4.74

Fuente: Elaboración propia

De la Tabla A2 se obtiene que el promedio del porcentaje del material más fino que pasa el tamiz N°200 del agregado fino natural es igual a 4.9%.

A.1.3. Peso unitario

Se utiliza la Ecuación 3 para calcular el peso unitario suelto del agregado fino natural.

Tabla A3: Cálculos realizados de P.U.S. del agregado fino natural

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	6.4771	6.4757	6.4705
Peso del recipiente (kg) (B)	1.5730	1.5730	1.5730
Peso de la muestra (kg) (A-B)	4.9041	4.9027	4.8975
Volumen del recipiente (m³) (V)	0.0028	0.0028	0.0028
Peso Unitario Suelto (kg/m³) [(A-B)/V]	1751	1751	1749

Fuente: Elaboración propia

De la Tabla A3 se obtiene que el promedio del peso unitario suelto del agregado fino natural es igual a 1751 kg/m³.

Se utiliza la Ecuación 4 para calcular el peso unitario compactado del agregado fino natural.

Tabla A4: Cálculos realizados de P.U.C. del agregado fino natural

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	6.9326	6.8565	6.9210
Peso del recipiente (kg) (B)	1.5730	1.5730	1.5730
Peso de la muestra (kg) (A-B)	5.3596	5.2835	5.3480
Volumen del recipiente (m³) (V)	0.0028	0.0028	0.0028
Peso Unitario Compactado (kg/m³) [(A-B)/V]	1914	1887	1910

Fuente: Elaboración propia

De la Tabla A4 se obtiene que el promedio del peso unitario compactado del agregado fino natural es igual a 1904 kg/m3.

A.1.4. Contenido de humedad

Se utiliza la Ecuación 5 para calcular el contenido de humedad del agregado fino natural.

Tabla A5: Cálculos realizados para contenido de humedad del agregado fino natural

Descripción	M1	M2	М3
Peso de la muestra en ambiente (g) (A)	1000.0	1000.0	1000.0
Peso de la muestra seca al horno (g) (B)	984.5	984.3	984.3
Peso del agua perdida (g) (A-B)	15.5	15.7	15.7
Contenido de humedad (%) [(A-B)/B]	1.57	1.60	1.60

De la Tabla A5 se obtiene que el promedio del contenido de humedad del agregado fino natural es igual a 1.59%.

A.1.5. Peso específico

Se utiliza la Ecuación 6 para calcular el peso específico en masa del agregado fino natural.

Tabla A6: Cálculos realizados para peso específico del agregado fino natural

Descripción	M1	M2	М3
Peso de la muestra superficialmente seca (g) (A)	500.0	500.0	500.0
Peso del balón (g) (B)	193.1	193.1	193.1
Peso de la muestra superficialmente seca + Peso del balón + Peso del agua (g) (C)	1007.7	1006.1	1005.7
Peso del agua (g) [W=C-(A+B)]	314.6	313.0	312.6
Peso recipiente (g) (D)	145.8	118.3	113.4
Peso muestra seca al horno + Peso recipiente (g) (E)	640.5	612.7	606.6
Peso muestra seca al horno (g) [F=E-D]	494.7	494.4	493.2
Volumen del balón (ml) (V)	500.0	500.0	500.0
Peso específico de masa (g/cm³) [F/(V-W)]	2.67	2.64	2.63
Peso específico de masa superficialmente seca (g/cm³) [500/(V-W)]	2.70	2.67	2.67
Peso específico aparente (g/cm³) [F/((V-W)-(500-F))]	2.75	2.73	2.73

Fuente: Elaboración propia

De la Tabla A6 se obtiene que el promedio del peso específico en masa del agregado fino natural es igual a 2.65 g/cm3.

A.1.6. Absorción

Se utiliza la Ecuación 9 para calcular el porcentaje de absorción del agregado fino natural.

Tabla A7: Cálculos realizados para el porcentaje de absorción del agregado fino natural

Descripción	M1	M2	М3
Peso recipiente (g) (D)	145.8	118.3	113.4
Peso muestra seca al horno + Peso recipiente (g) (E)	640.5	612.7	606.6
Peso muestra seca al horno (g) [F=E-D]	494.7	494.4	493.2
Porcentaje de Absorción (%) [100*(500-F)/F]	1.07	1.13	1.38

Fuente: Elaboración propia

De la Tabla A7 se obtiene que el promedio del porcentaje de absorción del agregado fino natural es igual a 1.19 g/cm³.

A.2. Agregado grueso natural

A.2.1. Granulometría

Tabla A8: Análisis granulométrico del agregado grueso natural

Tamiz	Abertura (mm)	M1 (g)	M2 (g)	Promedio (g)	% Retenido	%Retenido Acumulado	% Pasa
1 1/2"	37.50	0	0	0	0.00	0.00	100.00
1"	25.00	143	218	181	1.81	1.81	98.20
3/4"	19.00	4902	4417	4660	46.60	48.40	51.60
1/2"	12.50	4706	5027	4867	48.67	97.07	2.94
3/8"	9.50	199	255	227	2.27	99.34	0.67
N°4	4.75	29	61	45	0.45	99.79	0.22
Fondo	0.00	21	22	22	0.22	100.00	0.00
Т	otal	10000	10000	10000	100.00		

Fuente: Elaboración propia

De la Ecuación 1 se obtiene el módulo de finura del agregado grueso natural.

$$M.F. = 7.48$$

A.2.2. Abrasión en máquina de los ángeles

Conforme a las indicaciones de las Tablas N°9 y N°10 y usando la Ecuación 2 se calcula la degradación del agregado grueso natural como porcentaje de pérdida.

Tabla A9: Gradación de las muestras del agregado grueso natural

Tamaño de l' (aberturas d	` ,	Masa de	tamaños indi	icados (g)		
Que pasa	Retenido		Gradación			
Que pasa	sobre	M1	M2	М3		
37.5 mm (1 1/2")	25.0 mm (1")	1250.00	1250.30	1250.20		
25.0 mm (1")	19.0 mm (3/4")	1249.90	1250.00	1250.00		
19.0 mm (3/4")	12.5 mm (1/2")	1250.60	1250.50	1250.10		
12.5 mm (1/2")	9.5 mm (3/8")	1249.90	1250.50	1250.00		
9.5 mm (3/8")	6.3 mm (1/4")	-	-	-		
6.3 mm (1/4")	4.75 mm (N° 4)	-	-	-		
4.75 mm (N° 4)	2.36 mm (N° 8)	-	-	-		
Total		5000.40	5001.30	5000.30		

Tabla A10: Cálculos realizados para pérdida por abrasión del agregado grueso natural

Descripción	M1	M2	М3
Peso de la Muestra al comienzo del ensayo (g) (W0):	5000.40	5001.30	5000.30
Peso de la Muestra posterior a 100 rev. (g) (Wm):	4878.80	4892.50	4880.60
Peso de la Muestra posterior a 500 rev. (g) (Wf):	4392.80	4431.40	4412.60
Pérdida de peso de la Muestra (g) (W0-Wf):	607.60	569.90	587.70
Pérdida por abrasión e impacto (%) [(W0-Wf)/W0]:	12.15%	11.40%	11.75%
Coeficiente de uniformidad (%) [(W0-Wm)/(W0-Wf)]:	20.01%	19.09%	20.37%

De la Tabla A10 se obtiene que el promedio de la pérdida por abrasión e impacto del agregado grueso natural es igual a 11.77%.

A.2.3. Peso unitario

Se utiliza la Ecuación 3 para calcular el peso unitario suelto del agregado grueso natural.

Tabla A11: Cálculos realizados de P.U.S. del agregado grueso natural

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	17.9800	17.9300	17.9700
Peso del recipiente (kg) (B)	4.3400	4.3400	4.3400
Peso de la muestra (kg) (A-B)	13.6400	13.5900	13.6300
Volumen del recipiente (m³) (V)	0.0093	0.0093	0.0093
Peso Unitario Suelto (kg/m³) [(A-B)/V]	1467	1461	1466

Fuente: Elaboración propia

De la Tabla A11 se obtiene que el promedio del peso unitario suelto del agregado grueso natural es igual a 1465 kg/m³.

Se utiliza la Ecuación 4 para calcular el peso unitario compactado del agregado grueso natural.

Tabla A12: Cálculos realizados de P.U.C. del agregado grueso natural

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	19.1300	19.1200	19.2600
Peso del recipiente (kg) (B)	4.3400	4.3400	4.3400
Peso de la muestra (kg) (A-B)	14.7900	14.7800	14.9200
Volumen del recipiente (m³) (V)	0.0093	0.0093	0.0093
Peso Unitario Compactado (kg/m³) [(A-B)/V]	1590	1589	1604

Fuente: Elaboración propia

De la Tabla A12 se obtiene que el promedio del peso unitario compactado del agregado grueso natural es igual a 1595 kg/m3.

A.2.4. Contenido de humedad

Se utiliza la Ecuación 5 para calcular el contenido de humedad del agregado grueso natural.

Tabla A13: Cálculos realizados para contenido de humedad del agregado grueso natural

Descripción	M1	M2	М3
Peso de la muestra en ambiente (g) (A)	4000.3	4000.2	4000.0
Peso de la muestra seca al horno (g) (B)	3982.9	3984.8	3983.6
Peso del agua perdida (g) (A-B)	17.4	15.4	16.4
Contenido de humedad (%) [(A-B)/B]	0.44	0.39	0.41

Fuente: Elaboración propia

De la Tabla A13 se obtiene que el promedio del contenido de humedad del agregado grueso natural es igual a 0.41%.

A.2.5. Peso específico

Se utiliza la Ecuación 7 para calcular el peso específico en masa del agregado grueso natural.

Tabla A14: Cálculos realizados para peso específico del agregado grueso natural

Descripción	M1	M2	М3
Peso de la muestra saturada superficialmente seca (g) (A)	4000.0	4000.0	4000.0
Peso de la muestra secada al horno (g) (B)	3966.4	3964.2	3969.3
Peso de la muestra saturada en agua (g) (C)	2527.6	2523.5	2523.4
Peso específico de masa (g/cm³) [B/(A-C)]	2.69	2.68	2.69
Peso específico de masa superficialmente seca (g/cm³) [A/(A-C)]	2.72	2.71	2.71
Peso específico aparente (g/cm³) [B/(B-C)]	2.76	2.75	2.75

De la Tabla A14 se obtiene que el promedio del peso específico en masa del agregado grueso natural es igual a 2.69 g/cm3.

A.2.6. Absorción

Se utiliza la Ecuación 8 para calcular el porcentaje de absorción del agregado grueso natural.

Tabla A15: Cálculos realizados para el porcentaje de absorción del agregado grueso natural

Descripción	M1	M2	М3
Peso de la muestra saturada superficialmente seca (g) (A)	4000.0	4000.0	4000.0
Peso de la muestra secada al horno (g) (B)	3966.4	3964.2	3969.3
Porcentaje de Absorción (%) [100*(A-B)/B]	0.85	0.90	0.77

Fuente: Elaboración propia

De la Tabla A15 se obtiene que el promedio del porcentaje de absorción del agregado grueso natural es igual a 0.84 g/cm³.

A.3. Agregado grueso reciclado

A.3.1. Granulometría

Tabla A16: Análisis granulométrico del agregado grueso natural

Tamiz	Abertura (mm)	Muestra N°1 (g)	Muestra N°2 (g)	Muestra N°3 (g)	Promedio (g)	% Retenido	%Retenido Acumulado	% Pasa
1 1/2"	37.50	0	0	0	0	0.00	0.00	100.00
1"	25.00	0	0	0	0	0.00	0.00	100.00
3/4"	19.00	45	22	31	33	0.33	0.33	99.67
1/2"	12.50	4429	4557	4232	4406	44.06	44.39	55.61
3/8"	9.50	2043	2067	2100	2070	20.70	65.09	34.91
N°4	4.75	3181	3061	3388	3210	32.10	97.19	2.81
Fondo	0.00	302	293	249	281	2.81	100.00	0.00
Т	otal	10000	10000		10000	100.00		

Fuente: Elaboración propia

De la Ecuación 1 se obtiene el módulo de finura del agregado grueso reciclado.

$$M.F. = 6.63$$

A.3.2. Abrasión en máquina de los ángeles

Conforme a las indicaciones de las Tablas N°17 y N°18 y usando la Ecuación 2 se calcula la degradación del agregado grueso reciclado como porcentaje de pérdida.

Tabla A17: Gradación de las muestras del agregado grueso reciclado

Tamaño de Tamiz (mm) (aberturas cuadradas)		Masa de	tamaños ind	icados (g)		
Que pasa	Retenido		Gradación			
ue pasa	sobre	M1	M2	М3		
37.5 mm (1 1/2")	25.0 mm (1")	-	-	-		
25.0 mm (1")	19.0 mm (3/4")	-	-	-		
19.0 mm (3/4")	12.5 mm (1/2")	2500.00	2500.00	2500.10		
12.5 mm (1/2")	9.5 mm (3/8")	2500.20	2500.00	2500.20		
9.5 mm (3/8")	6.3 mm (1/4")	-	-	-		
6.3 mm (1/4")	4.75 mm (N° 4)	-	-	-		
4.75 mm (N° 4)	2.36 mm (N° 8)	-	-	-		
То	tal	5000.20	5001.00	5000.30		

Tabla A18: Cálculos realizados para pérdida por abrasión del agregado grueso reciclado

Descripción	M1	M2	М3
Peso de la Muestra al comienzo del ensayo (g) (W0):	5000.20	5000.00	5000.30
Peso de la Muestra posterior a 100 rev. (g) (Wm):	4638.70	4652.60	4654.20
Peso de la Muestra posterior a 500 rev. (g) (Wf):	3477.20	3509.70	3497.80
Pérdida de peso de la Muestra (g) (W0-Wf):	1523.00	1490.30	1502.50
Pérdida por abrasión e impacto (%) [(W0-Wf)/W0]:	30.46%	29.81%	30.05%
Coeficiente de uniformidad (%) [(W0-Wm)/(W0-Wf)]:	23.74%	23.31%	23.03%

De la Tabla A18 se obtiene que el promedio de la pérdida por abrasión e impacto del agregado grueso reciclado es igual a 30.10%.

A.3.3. Peso unitario

Se utiliza la Ecuación 3 para calcular el peso unitario suelto del agregado grueso reciclado.

Tabla A19: Cálculos realizados de P.U.S. del agregado grueso reciclado

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	16.3900	16.3200	16.3700
Peso del recipiente (kg) (B)	4.3400	4.3400	4.3400
Peso de la muestra (kg) (A-B)	12.0500	11.9800	12.0300
Volumen del recipiente (m³) (V)	0.0093	0.0093	0.0093
Peso Unitario Suelto (kg/m³) [(A-B)/V]	1296	1288	1294

Fuente: Elaboración propia

De la Tabla A19 se obtiene que el promedio del peso unitario suelto del agregado grueso reciclado es igual a 1292 kg/m³.

Se utiliza la Ecuación 4 para calcular el peso unitario compactado del agregado grueso reciclado.

Tabla A20: Cálculos realizados de P.U.C. del agregado grueso reciclado

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	17.0500	17.1900	17.2100
Peso del recipiente (kg) (B)	4.3400	4.3400	4.3400
Peso de la muestra (kg) (A-B)	12.7100	12.8500	12.8700
Volumen del recipiente (m³) (V)	0.0093	0.0093	0.0093
Peso Unitario Compactado (kg/m³) [(A-B)/V]	1367	1382	1384

Fuente: Elaboración propia

De la Tabla A20 se obtiene que el promedio del peso unitario compactado del agregado grueso reciclado es igual a 1377 kg/m3.

A.3.4. Contenido de humedad

Se utiliza la Ecuación 5 para calcular el contenido de humedad del agregado grueso reciclado.

Tabla A21: Cálculos realizados para contenido de humedad del agregado grueso reciclado

Descripción	M1	M2	М3
Peso de la muestra en ambiente (g) (A)	4000.0	4000.0	4000.0
Peso de la muestra seca al horno (g) (B)	3879.4	3883.7	3885.5
Peso del agua perdida (g) (A-B)	120.6	116.3	114.5
Contenido de humedad (%) [(A-B)/B]	3.11	2.99	2.95

Fuente: Elaboración propia

De la Tabla A21 se obtiene que el promedio del contenido de humedad del agregado grueso reciclado es igual a 3.02%.

A.3.5. Peso específico

Se utiliza la Ecuación 7 para calcular el peso específico en masa del agregado grueso reciclado.

Tabla A22: Cálculos realizados para peso específico del agregado grueso reciclado

Descripción	M1	M2	М3
Peso de la muestra saturada superficialmente seca (g) (A)	4000.0	4000.0	4000.0
Peso de la muestra secada al horno (g) (B)	3795.0	3791.4	3777.1
Peso de la muestra saturada en agua (g) (C)	2368.4	2382.3	2383.3
Peso específico de masa (g/cm³) [B/(A-C)]	2.33	2.34	2.34
Peso específico de masa superficialmente seca (g/cm³) [A/(A-C)]	2.45	2.47	2.47
Peso específico aparente (g/cm³) [B/(B-C)]	2.66	2.69	2.71

Fuente: Elaboración propia

De la Tabla A22 se obtiene que el promedio del peso específico en masa del agregado grueso reciclado es igual a 2.34 g/cm3.

A.3.6. Absorción

Se utiliza la Ecuación 8 para calcular el porcentaje de absorción del agregado grueso reciclado.

Tabla A23: Cálculos realizados para el porcentaje de absorción del agregado grueso reciclado

Descripción	M1	M2	М3
Peso de la muestra saturada superficialmente seca (g) (A)	4000.0	4000.0	4000.0
Peso de la muestra secada al horno (g) (B)	3795.0	3791.4	3777.1
Porcentaje de Absorción (%) [100*(A-B)/B]	5.40	5.50	5.90

Fuente: Elaboración propia

De la Tabla A23 se obtiene que el promedio del porcentaje de absorción del agregado grueso reciclado es igual a 5.60 g/cm3.

A.4. Agregado global

Se utiliza la Ecuación 4 para calcular el peso unitario compactado del agregado global con diferentes porcentajes de agregado fino natural (40%, 45%, 50%, 55% y 60%).

Tabla A24: Cálculos realizados de P.U.C. con 40% de A.F.N.

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	33.8700	33.8800	34.0400
Peso del recipiente (kg) (B)	6.3200	6.3200	6.3200
Peso de la muestra (kg) (A-B)	27.5500	27.5600	27.7200
Volumen del recipiente (m³) (V)	0.0140	0.0140	0.0140
Peso Unitario Compactado (kg/m³) [(A-B)/V]	1968	1969	1980

Fuente: Elaboración propia

De la Tabla A24 se obtiene que el promedio del peso unitario compactado del agregado global con 40% de agregado fino natural es igual a 1972 kg/m³.

Tabla A25: Cálculos realizados de P.U.C. con 45% de A.F.N.

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	34.6900	34.4600	34.5900
Peso del recipiente (kg) (B)	6.3200	6.3200	6.3200
Peso de la muestra (kg) (A-B)	28.3700	28.1400	28.2700
Volumen del recipiente (m³) (V)	0.0140	0.0140	0.0140
Peso Unitario Compactado (kg/m³) [(A-B)/V]	2026	2010	2019

Fuente: Elaboración propia

De la Tabla A25 se obtiene que el promedio del peso unitario compactado del agregado global con 45% de agregado fino natural es igual a 2019 kg/m³.

Tabla A26: Cálculos realizados de P.U.C. con 50% de A.F.N.

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	35.5300	35.1700	35.2000
Peso del recipiente (kg) (B)	6.3200	6.3200	6.3200
Peso de la muestra (kg) (A-B)	29.2100	28.8500	28.8800
Volumen del recipiente (m³) (V)	0.0140	0.0140	0.0140
Peso Unitario Compactado (kg/m³) [(A-B)/V]	2086	2061	2063

De la Tabla A26 se obtiene que el promedio del peso unitario compactado del agregado global con 50% de agregado fino natural es igual a 2070 kg/m³.

Tabla A27: Cálculos realizados de P.U.C. con 55% de A.F.N.

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	35.2500	35.3300	35.4700
Peso del recipiente (kg) (B)	6.3200	6.3200	6.3200
Peso de la muestra (kg) (A-B)	28.9300	29.0100	29.1500
Volumen del recipiente (m³) (V)	0.0140	0.0140	0.0140
Peso Unitario Compactado (kg/m³) [(A-B)/V]	2066	2072	2082

Fuente: Elaboración propia

De la Tabla A27 se obtiene que el promedio del peso unitario compactado del agregado global con 55% de agregado fino natural es igual a 2074 kg/m³.

Tabla A28: Cálculos realizados de P.U.C. con 60% de A.F.N.

Descripción	M1	M2	М3
Peso de la muestra + Recipiente (kg) (A)	35.1300	35.0300	35.1100
Peso del recipiente (kg) (B)	6.3200	6.3200	6.3200
Peso de la muestra (kg) (A-B)	28.8100	28.7100	28.7900
Volumen del recipiente (m³) (V)	0.0140	0.0140	0.0140
Peso Unitario Compactado (kg/m³) [(A-B)/V]	2058	2051	2056

Fuente: Elaboración propia

De la Tabla A28 se obtiene que el promedio del peso unitario compactado del agregado global con 60% de agregado fino natural es igual a 2055 kg/m³.

De la Figura N°4 (ver subcapítulo 3.4.1.4.) se obtiene la combinación óptima de agregados.

Con los resultados se obtiene el análisis granulométrico del agregado global.

Tabla A29: Análisis granulométrico del agregado global

Tamiz	Abertura (mm)	% Reten. A.F.N. (g)	% Reten. A.G.N. (g)	% Reten. *A.F.N. (g)	% Reten. *A.G.N. (g)	% Reten.	%Reten. Acumul.	% Pasa
1 1/2"	37.50	0	0.00	0.00	0.00	0.00	0.00	100.00
1"	25.00	0	1.81	0.00	0.86	0.86	0.86	99.14
3/4"	19.00	0	46.60	0.00	22.13	22.13	22.99	77.01
1/2"	12.50	0.00	48.67	0.00	23.12	23.12	46.11	53.89
3/8"	9.50	0.00	2.27	0.00	1.08	1.08	47.18	52.82
N°4	4.75	8.00	0.45	4.20	0.21	4.41	51.60	48.40
N°8	2.36	17.10	0.22	8.98	0.10	9.08	60.68	39.32
N°16	1.18	23.10	0	12.13	0.00	12.13	72.81	27.20
N°30	0.60	21.80	0	11.45	0.00	11.45	84.25	15.75
N°50	0.30	14.70	0	7.72	0.00	7.72	91.97	8.03
N°100	0.15	8.30	0	4.36	0.00	4.36	96.33	3.68
Fondo	0.00	7.00	0	3.68	0.00	3.68	100.00	0.00
Т	otal	100.0	100.0	52.50	47.50	100.00		

De la Ecuación 1 se obtiene el módulo de finura del agregado global.

M.F. = 5.28

Anexo B: Resultados de ensayos en el concreto en estado fresco y endurecido

B.1. Resultados de ensayos en el concreto en estado fresco

B.1.1. Peso unitario

Se utiliza la Ecuación 10 para calcular el peso unitario de los concretos en estado fresco.

Tabla B1: Resultados de ensayo de peso unitario

a/c	Tipo de Concreto	Balde + Muestra (kg)	Balde (kg)	Volumen Balde (m³)	Peso Unitario (kg/m³)
	CP1	18.98	2.48	0.0070	2357
	CAGR25	18.70	2.48	0.0070	2317
0.60	CAGR50	18.50	2.46	0.0070	2291
	CAGR75	18.41	2.46	0.0070	2279
	CAGR100	18.21	2.46	0.0070	2250
	CP2	19.14	2.48	0.0070	2380
	CAGR25	18.80	2.48	0.0070	2331
0.65	CAGR50	18.53	2.48	0.0070	2293
	CAGR75	18.39	2.48	0.0070	2273
	CAGR100	18.30	2.48	0.0070	2260
	CP3	19.04	2.48	0.0070	2366
	CAGR25	18.71	2.50	0.0070	2316
0.70	CAGR50	18.54	2.48	0.0070	2294
	CAGR75	18.46	2.48	0.0070	2283
	CAGR100	18.20	2.48	0.0070	2246

B.1.2. Exudación

Se utiliza la Ecuación 12 para calcular la exudación de los concretos en estado fresco.

Tabla B2: Resultados de ensayo de exudación, a/c=0.60

Descripción	Tipo de Concreto							
Descripción	CP1	CAGR25	CAGR50	CAGR75	CAGR100			
Fecha de ensayo (dd/mm/aaaa)	23/11/2022	05/12/2022	05/12/2022	05/12/2022	02/12/2022			
Peso de la muestra + Recipiente (kg) (A)	39.69	40.50	33.29	40.30	32.17			
Peso del recipiente (kg) (B)	11.88	11.91	5.15	12.19	5.21			
Peso de la muestra (g) [S=(A-B)]	27810.00	28590.00	28140.00	28110.00	26960.00			
Agua de mezclado neta (kg) (w)	7.67	7.85	8.03	8.21	8.45			
Masa total de la tanda (kg) (W)	80.00 80.00 80.00		80.00	80.00	80.00			
Masa del agua en la muestra de ensayo (g) [C=(w/W)*S]	2665.54	2804.33	2824.17	2886.06	2846.48			
Masa total del agua de exudación (cm³)(D)	10.45	16.00	17.50	8.00	8.50			
Exudación (%) [E=(D/C)*100]	0.39	0.57	0.62	0.28	0.30			

Tabla B3: Resultados de ensayo de exudación, a/c=0.65

Dogavinalán	Tipo de Concreto							
Descripción	CP2	CAGR25	CAGR50	CAGR75	CAGR100			
Fecha de ensayo (dd/mm/aaaa)	25/11/2022	28/11/2022	29/11/2022	30/11/2022	01/12/2022			
Peso de la muestra + Recipiente (kg) (A)	40.44	33.46	40.57	32.13	39.26			
Peso del recipiente (kg) (B)	12.19	5.13	12.19	5.13	12.19			
Peso de la muestra (g) [S=(A-B)]	28250.00	28330.00	28380.00	27000.00	27070.00			
Agua de mezclado neta (kg) (w)	7.43	7.61	7.80	7.99	8.22			
Masa total de la tanda (kg) (W)	80.00 80.00 80.00		80.00	80.00	80.00			
Masa del agua en la muestra de ensayo (g) [C=(w/W)*S]	2624.71	2696.63	2767.01	2695.88	2782.33			
Masa total del agua de exudación (cm³)(D)	15.00	17.00	19.50	17.00	6.00			
Exudación (%) [E=(D/C)*100]	0.57	0.63	0.70	0.63	0.22			

Tabla B4: Resultados de ensayo de exudación, a/c=0.70

Decembeión	Tipo de Concreto							
Descripción	CP3	CAGR25	CAGR50	CAGR75	CAGR100			
Fecha de ensayo (dd/mm/aaaa)	24/11/2022	28/11/2022	30/11/2022	01/12/2022	02/12/2022			
Peso de la muestra + Recipiente (kg) (A)	39.95	41.13	39.60	32.93	39.69			
Peso del recipiente (kg) (B)	12.18	12.19	12.19	5.13	12.20			
Peso de la muestra (g) [S=(A-B)]	27770.00	28940.00	27410.00	27800.00	27490.00			
Agua de mezclado neta (kg) (w)	7.41	7.61	7.81	8.01	8.27			
Masa total de la tanda (kg) (W)	80.00 80.00 80.00		80.00	80.00				
Masa del agua en la muestra de ensayo (g) [C=(w/W)*S]	2572.65	2752.59	2675.99	2785.18	2840.70			
Masa total del agua de exudación (cm³)(D)	21.50	16.00	18.50	27.00	19.00			
Exudación (%) [E=(D/C)*100]	0.84	0.58	0.69	0.97	0.67			

B.1.3. Tiempo de fraguado

Tabla B5: Resultados de ensayo de tiempo de fraguado del CP1, a/c=0.60

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:23	Inicio	-	-	-	-	-
	12:00	04:23	263	129	1	1.000	129.00
	12:30	04:53	293	100	2	0.500	200.00
23/11/2022	13:00	05:23	323	88	3	0.250	352.00
23/11/2022	13:30	05:53	353	50	4	0.100	500.00
	14:00	06:23	383	37	5	0.050	740.00
	15:00	07:23	443	50	6	0.025	2000.00
	15:30	07:53	473	126	6	0.025	5040.00

Fuente: Elaboración propia

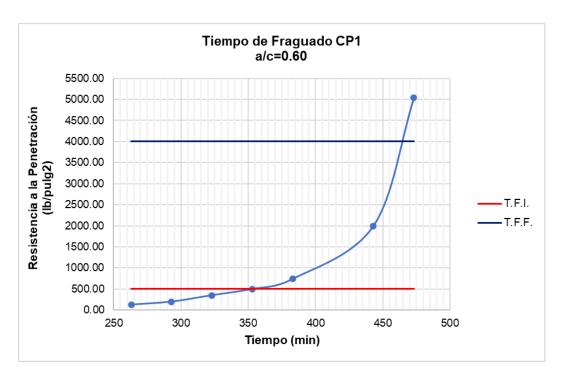


Figura B1: Curva manual de resistencia a la penetración vs. tiempo del CP1, a/c=0.60 Fuente: Elaboración propia

De la Figura B1 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 353 min = 05h:53min

T.F.F. = 464 min = 07h:44min

Tabla B6: Resultados de ensayo de tiempo de fraguado del CAGR25, a/c=0.60

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	08:10	Inicio	-	-	-	-	-
	12:00	03:50	230	129	1	1.000	106.00
	12:30	04:20	260	100	2	0.500	206.00
05/12/2022	13:00	04:50	290	88	3	0.250	328.00
03/12/2022	13:30	05:20	320	50	4	0.100	480.00
	14:00	05:50	350	37	5	0.050	960.00
	15:00	06:50	410	50	6	0.025	2640.00
	16:00	07:50	470	126	6	0.025	6200.00

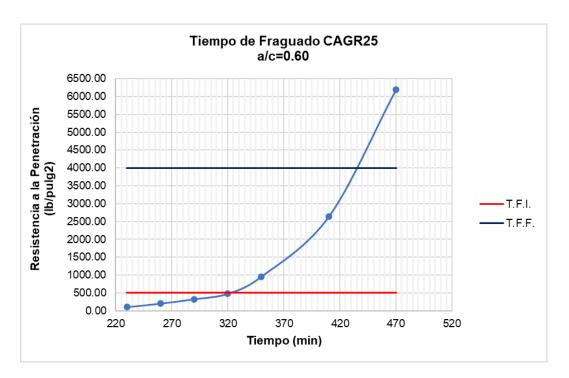


Figura B2: Curva manual de resistencia a la penetración vs. tiempo del CAGR25, a/c=0.60 Fuente: Elaboración propia

De la Figura B2 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 322 min = 05h:22min

T.F.F. = 435 min = 07h:15min

Tabla B7: Resultados de ensayo de tiempo de fraguado del CAGR50, a/c=0.60

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	08:58	Inicio	-	-	-	-	-
	12:40	03:42	222	76	1	1.000	76.00
	13:10	04:12	252	48	2	0.500	96.00
05/12/2022	13:40	04:42	282	37	3	0.250	148.00
	14:40	05:42	342	49	4	0.100	490.00
	15:40	06:42	402	68	5	0.050	1360.00
	16:40	07:42	462	113	6	0.025	4520.00

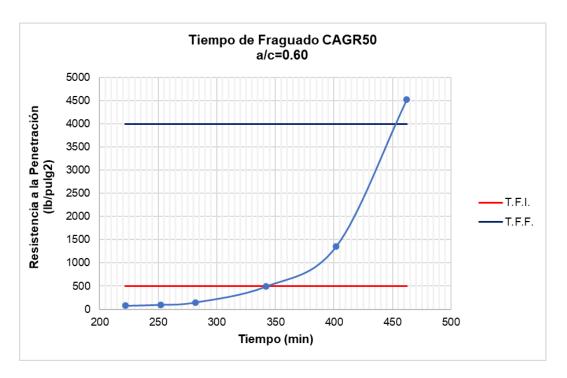


Figura B3: Curva manual de resistencia a la penetración vs. tiempo del CAGR50, a/c=0.60 Fuente: Elaboración propia

De la Figura B3 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 343 min = 05h:43min

T.F.F. = 453 min = 07h:33min

Tabla B8: Resultados de ensayo de tiempo de fraguado del CAGR75, a/c=0.60

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:51	Inicio	-	-	-	-	-
	12:00	04:09	249	152	1	1.000	152.00
	12:30	04:39	279	155	2	0.500	310.00
05/12/2022	13:00	05:09	309	121	3	0.250	484.00
05/12/2022	13:30	05:39	339	69	4	0.100	690.00
	14:00	06:09	369	56	5	0.050	1120.00
	15:00	07:09	429	73	6	0.025	2920.00
	16:00	08:09	489	155	6	0.025	6200.00

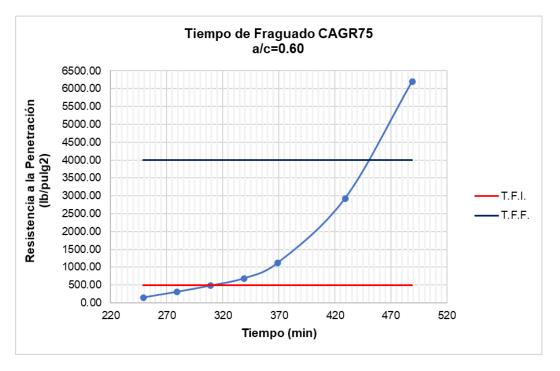


Figura B4: Curva manual de resistencia a la penetración vs. tiempo del CAGR75, a/c=0.60 Fuente: Elaboración propia

De la Figura B4 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 309 min = 05h:09min

T.F.F. = 451 min = 07h:31min

Tabla B9: Resultados de ensayo de tiempo de fraguado del CAGR100, a/c=0.60

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	09:18	Inicio	-	-	-	-	-
	12:30	03:12	192	56	1	1.000	56.00
	13:00	03:42	222	40	2	0.500	80.00
02/12/2022	13:30	04:12	252	40	3	0.250	160.00
02/12/2022	14:00	04:42	282	24	4	0.100	240.00
	15:00	05:42	342	28	5	0.05	560.00
	16:00	06:42	402	34	6	0.025	1360.00
	17:00	07:42	462	118	6	0.025	4720.00

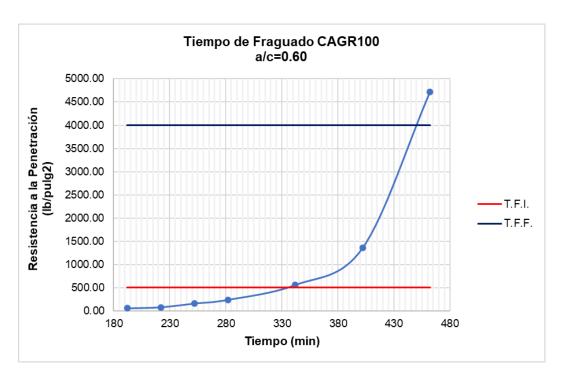


Figura B5: Curva manual de resistencia a la penetración vs. tiempo del CAGR100, a/c=0.60 Fuente: Elaboración propia

De la Figura B5 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 333 min = 05h:33min

 $T.F.F. = 449 \min = 07h:29\min$

Tabla B10: Resultados de ensayo de tiempo de fraguado del CP2, a/c=0.65

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:25	Inicio	-	-	-	-	-
	11:30	04:05	245	114	1	1.000	114.00
	12:00	04:35	275	105	2	0.500	210.00
	12:30	05:05	305	73	3	0.250	292.00
25/11/2022	13:00	05:35	335	57	4	0.100	570.00
	13:30	06:05	365	42	5	0.050	840.00
	14:30	07:05	425	42	6	0.025	1680.00
	15:30	08:05	485	81	6	0.025	3240.00
	16:00	08:35	515	149	6	0.025	5960.00

Tiempo de Fraguado CP2 a/c=0.65 6000.00 5500.00 Resistencia a la Penetración (lb/pulg2) 5000.00 4500.00 4000.00 3500.00 3000.00 -T.F.I. 2500.00 -T.F.F. 2000.00 1500.00 1000.00 500.00 0.00 320 370 420 470 220 270 520 570 Tiempo (min)

Figura B6: Curva manual de resistencia a la penetración vs. tiempo del CP2, a/c=0.65 Fuente: Elaboración propia

De la Figura B6 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 327 min = 05h:27min

T.F.F. = 496 min = 08h:16min

Tabla B11: Resultados de ensayo de tiempo de fraguado del CAGR25, a/c=0.65

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	09:05	Inicio	-	-	-	-	-
	13:00	03:55	235	54	1	1.000	54.00
	13:30	04:25	265	49	2	0.500	98.00
	14:00	04:55	295	32	3	0.250	128.00
28/11/2022	15:00	05:55	355	30	4	0.100	300.00
	16:00	06:55	415	40	5	0.050	800.00
	16:30	07:25	445	64	5	0.050	1280.00
	17:30	08:25	505	86	6	0.025	3440.00
	18:00	08:55	535	118	6	0.025	4720.00

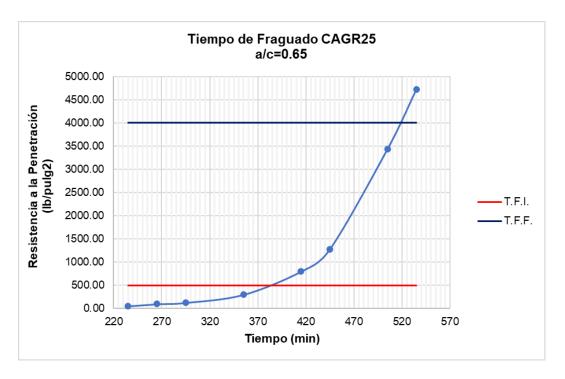


Figura B7: Curva manual de resistencia a la penetración vs. tiempo del CAGR25, a/c=0.65 Fuente: Elaboración propia

De la Figura B7 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 383 min = 06h:23min

T.F.F. = 518 min = 08h:38min

Tabla B12: Resultados de ensayo de tiempo de fraguado del CAGR50, a/c=0.65

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:28	Inicio	-	-	-	-	-
	11:50	04:22	262	108	1	1.000	108.00
	12:20	04:52	292	98	2	0.500	196.00
	12:50	05:22	322	78	3	0.250	312.00
29/11/2022	13:20	05:52	352	58	4	0.100	580.00
	13:50	06:22	382	50	5	0.050	1000.00
	14:20	06:52	412	41	6	0.025	1640.00
	15:20	07:52	472	96	6	0.025	3840.00
	15:50	08:22	502	128	6	0.025	5120.00

Tiempo de Fraguado CAGR50 a/c = 0.655500.00 5000.00 Resistencia a la Penetración (lb/pulg2) 4500.00 4000.00 3500.00 3000.00 -T.F.I. 2500.00 -T.F.F. 2000.00 1500.00 1000.00 500.00 0.00 400 450 250 300 350 500 550 Tiempo (min)

Figura B8: Curva manual de resistencia a la penetración vs. tiempo del CAGR50, a/c=0.65 Fuente: Elaboración propia

De la Figura B8 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 345 min = 05h:45min

T.F.F. = 476 min = 07h:56min

Tabla B13: Resultados de ensayo de tiempo de fraguado del CAGR75, a/c=0.65

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	08:53	Inicio	-	-	-	-	-
	12:30	03:23	203	64	1	1.000	64.00
	13:00	03:53	233	64	2	0.500	128.00
	13:30	04:23	263	46	3	0.250	184.00
30/11/2022	14:00	04:53	293	63	3	0.250	252.00
30/11/2022	14:30	05:23	323	46	4	0.100	460.00
	15:00	05:53	353	36	5	0.050	720.00
	16:00	06:53	413	42	6	0.025	1680.00
	17:00	07:53	473	94	6	0.025	3760.00
	18:00	08:53	533	152	6	0.025	6080.00

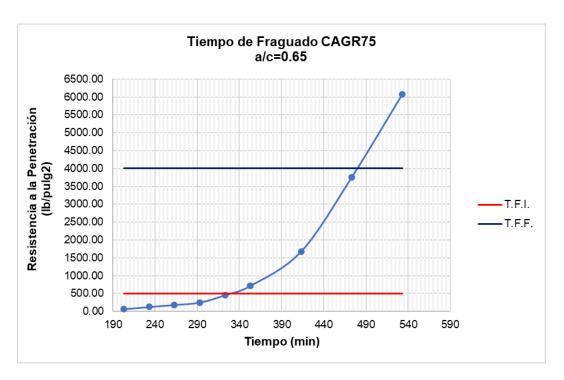


Figura B9: Curva manual de resistencia a la penetración vs. tiempo del CAGR75, a/c=0.65 Fuente: Elaboración propia

De la Figura B9 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 328 min = 05h:28min

T.F.F. = 478 min = 07h:58min

Tabla B14: Resultados de ensayo de tiempo de fraguado del CAGR100, a/c=0.65

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:28	Inicio	-	-	-	-	-
	11:30	04:02	242	150	1	1.000	150.00
	12:00	04:32	272	112	2	0.500	224.00
01/12/2022	12:30	05:02	302	76	3	0.250	304.00
01/12/2022	13:00	05:32	332	44	4	0.100	440.00
	13:30	06:02	362	32	5	0.05	640.00
	14:30	07:02	422	44	6	0.025	1760.00
	15:30	08:02	482	104	6	0.025	4160.00

Tiempo de Fraguado CAGR100 a/c=0.65 4500.00 4000.00 Resistencia a la Penetración (lb/pulg2) 3500.00 3000.00 2500.00 -T.F.I. 2000.00 -T.F.F. 1500.00 1000.00 500.00 0.00 480 230 280 330 380 430 530 Tiempo (min)

Figura B10: Curva manual de resistencia a la penetración vs. tiempo del CAGR100, a/c=0.65 Fuente: Elaboración propia

De la Figura B10 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 348 min = 05h:48min

T.F.F. = 478 min = 07h:58min

Tabla B15: Resultados de ensayo de tiempo de fraguado del CP3, a/c=0.70

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:25	Inicio	-	-	-	-	-
	11:30	04:05	245	94	1	1.000	94.00
	12:00	04:35	275	64	2	0.500	128.00
	12:30	05:05	305	52	3	0.250	208.00
24/11/2022	13:00	05:35	335	68	3	0.250	272.00
	14:00	06:35	395	68	4	0.100	680.00
	15:00	07:35	455	80	5	0.050	1600.00
	16:00	08:35	515	77	6	0.025	3080.00
	16:30	09:05	545	112	6	0.025	4480.00

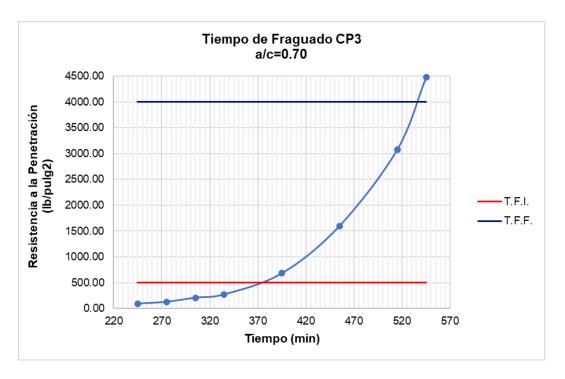


Figura B11: Curva manual de resistencia a la penetración vs. tiempo del CP3, a/c=0.70 Fuente: Elaboración propia

De la Figura B11 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 375 min = 06h:15min

T.F.F. = 536 min = 08h:56min

Tabla B16: Resultados de ensayo de tiempo de fraguado del CAGR25, a/c=0.70

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:37	Inicio	-	-	-	-	-
	11:30	03:53	233	76	1	1.000	76.00
	12:00	04:23	263	68	2	0.500	136.00
	12:30	04:53	293	48	3	0.250	192.00
28/11/2022	13:30	05:53	353	42	4	0.100	420.00
	14:30	06:53	413	40	5	0.050	800.00
	15:30	07:53	473	56	6	0.025	2240.00
	16:30	08:53	533	98	6	0.025	3920.00
	17:00	09:23	563	119	6	0.025	4760.00

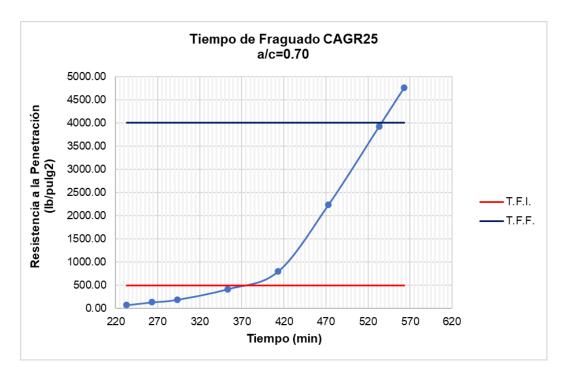


Figura B12: Curva manual de resistencia a la penetración vs. tiempo del CAGR25, a/c=0.70 Fuente: Elaboración propia

De la Figura B12 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 373 min = 06h:13min

T.F.F. = 536 min = 08h:56min

Tabla B17: Resultados de ensayo de tiempo de fraguado del CAGR50, a/c=0.70

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:29	Inicio	-	-	-	-	-
	12:00	04:31	271	112	1	1.000	112.00
	12:30	05:01	301	110	2	0.500	220.00
	13:00	05:31	331	99	3	0.250	396.00
30/11/2022	13:30	06:01	361	60	4	0.100	600.00
	14:00	06:31	391	42	5	0.050	840.00
	14:30	07:01	421	32	6	0.025	1280.00
	15:30	08:01	481	66	6	0.025	2640.00
	16:30	09:01	541	107	6	0.025	4280.00

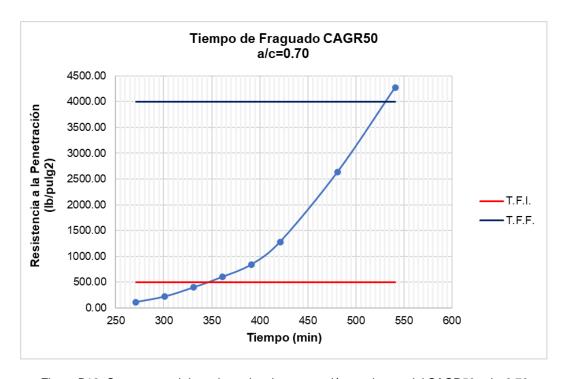


Figura B13: Curva manual de resistencia a la penetración vs. tiempo del CAGR50, a/c=0.70 Fuente: Elaboración propia

De la Figura B13 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 348 min = 05h:48min

T.F.F. = 531 min = 08h:51min

Tabla B18: Resultados de ensayo de tiempo de fraguado del CAGR75, a/c=0.70

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	08:51	Inicio	-	-	-	-	-
	12:00	03:09	189	59	1	1.000	59.00
	12:30	03:39	219	40	2	0.500	80.00
	13:00	04:09	249	73	2	0.500	146.00
01/12/2022	13:30	04:39	279	52	3	0.250	208.00
	14:00	05:09	309	30	4	0.100	300.00
	15:00	06:09	369	47	5	0.050	940.00
	16:00	07:09	429	57	6	0.025	2280.00
	17:00	08:09	489	108	6	0.025	4320.00

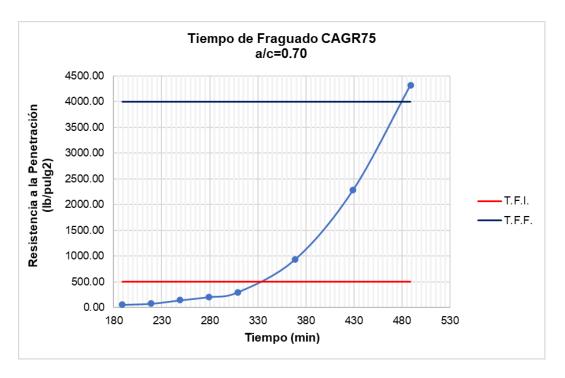


Figura B14: Curva manual de resistencia a la penetración vs. tiempo del CAGR75, a/c=0.70 Fuente: Elaboración propia

De la Figura B14 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 332 min = 05h:32min

T.F.F. = 480 min = 08h:00min

Tabla B19: Resultados de ensayo de tiempo de fraguado del CAGR100, a/c=0.70

Fecha de ensayo	Hora (h:min)	Tiempo absoluto (h:min)	Tiempo absoluto (min)	Fuerza (lb)	N° Aguja	Área aguja (pulg²)	Resistencia a la penetración (lb/pulg²)
	07:32	Inicio	-	-	-	-	-
	12:00	04:28	268	90	1	1.000	90.00
	12:30	04:58	298	84	2	0.500	168.00
	13:00	05:28	328	62	3	0.250	248.00
02/12/2022	13:30	05:58	358	35	4	0.100	350.00
	14:30	06:58	418	38	5	0.05	760.00
	15:30	07:58	478	48	6	0.025	1920.00
	16:30	08:58	538	97	6	0.025	3880.00
	17:00	09:28	568	143	6	0.025	5720.00

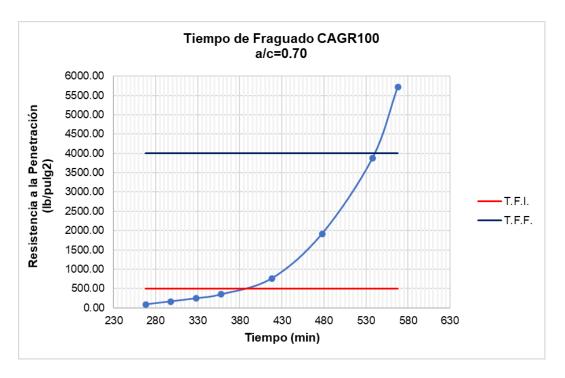


Figura B15: Curva manual de resistencia a la penetración vs. tiempo del CAGR100, a/c=0.70 Fuente: Elaboración propia

De la Figura B15 se obtiene el tiempo de fraguado inicial y final:

T.F.I. = 387 min = 06h:27min

T.F.F. = 541 min = 09h:01min

B.2. Resultados de ensayos en el concreto en estado endurecido

B.2.1. Resistencia a la compresión

Se utiliza la Ecuación 13 para calcular la resistencia a la compresión de los concretos en estado endurecido.

Tabla B20: Resultados de ensayo de resistencia a la compresión del CP1, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	02/11/2022	10.02	78.78	12290	156.01	
7	02/11/2022	10.03	79.01	12471	157.84	160.3
	02/11/2022	10.04	79.09	13213	167.06	
	09/11/2022	10.02	78.78	14134	179.42	
14	09/11/2022	10.03	78.93	16119	204.21	187.1
	09/11/2022	9.99	78.38	13920	177.59	
	23/11/2022	10.01	78.70	16935	215.19	
	23/11/2022	10.00	78.54	15494	197.28	
	23/11/2022	10.00	78.54	17638	224.57	
	23/11/2022	9.94	77.52	16478	212.56	
	23/11/2022	10.01	78.62	17146	218.09	
	23/11/2022	9.98	78.15	16581	212.18	
	23/11/2022	9.99	78.38	15275	194.88	
28	23/11/2022	9.97	78.07	16864	216.01	214.4
	23/11/2022	10.01	78.62	16051	204.16	
	23/11/2022	10.01	78.62	17528	222.95	
	23/11/2022	10.00	78.46	17007	216.76	
	23/11/2022	10.01	78.62	17626	224.20	
	23/11/2022	9.99	78.38	17090	218.03	
	23/11/2022	10.03	78.93	16866	213.67	
	23/11/2022	10.00	78.46	17717	225.81	
	21/12/2022	10.04	79.09	19416	245.49	
56	21/12/2022	10.04	79.17	19411	245.18	245.5
	21/12/2022	10.06	79.41	19518	245.80	

Fuente: Elaboración propia

De la Tabla B20 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 3.02%, 6.49%, 4.22% y 0.10% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B21: Resultados de ensayo de resistencia a la compresión del CAGR25, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	03/11/2022	10.00	78.46	12678	161.58	
7	03/11/2022	10.01	78.70	12372	157.21	160.5
	03/11/2022	10.02	78.85	12825	162.64	
	10/11/2022	10.03	78.93	14398	182.41	
14	10/11/2022	10.03	78.93	14472	183.35	182.6
	10/11/2022	10.00	78.46	14275	181.94	
	24/11/2022	10.02	78.85	17630.1	223.58	
	24/11/2022	10.02	78.85	17364.1	220.20	
	24/11/2022	10.01	78.70	17096.6	217.25	
	24/11/2022	10.01	78.70	17466.8	221.95	
	24/11/2022	10.00	78.46	17957.8	228.87	
	24/11/2022	10.03	78.93	15635.0	198.08	
	24/11/2022	10.03	79.01	17848.0	225.89	
28	24/11/2022	10.05	79.25	17814.7	224.80	216.9
	24/11/2022	10.01	78.70	16405.3	208.46	
	24/11/2022	10.02	78.85	16612.9	210.68	
	24/11/2022	10.07	79.56	16736.7	210.35	
	24/11/2022	10.01	78.70	17541.8	222.90	
	24/11/2022	10.01	78.70	16971.3	215.65	
	24/11/2022	10.06	79.49	16656.2	209.55	
	24/11/2022	10.03	78.93	16937.7	214.58	
	22/12/2022	10.00	78.54	19886	253.20	
56	22/12/2022	10.02	78.85	20144	255.46	250.5
	22/12/2022	10.08	79.72	19366	242.92	

De la Tabla B21 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 1.46%, 0.32%, 3.71% y 2.18% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B22: Resultados de ensayo de resistencia a la compresión del CAGR50, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	04/11/2022	10.02	78.85	11627	147.45	
7	04/11/2022	10.03	78.93	11553	146.36	148.4
	04/11/2022	10.03	79.01	11954	151.29	
	11/11/2022	10.03	79.01	13295	168.27	
14	11/11/2022	9.99	78.38	14418	183.94	176.1
	11/11/2022	10.00	78.46	13811	176.02	
	25/11/2022	10.00	78.46	15403	196.31	
	25/11/2022	10.02	78.78	15954	202.52	
	25/11/2022	10.02	78.85	16357	207.43	
	25/11/2022	10.00	78.54	16092	204.89	
	25/11/2022	10.01	78.62	15807	201.06	
	25/11/2022	10.01	78.70	15902	202.07	
	25/11/2022	10.02	78.78	15781	200.33	
28	25/11/2022	10.03	78.93	15918	201.66	202.2
	25/11/2022	10.02	78.78	15324	194.53	
	25/11/2022	10.03	79.01	16334	206.73	
	25/11/2022	10.01	78.62	16228	206.41	
	25/11/2022	10.02	78.85	15400	195.30	
	25/11/2022	10.03	78.93	16095	203.91	
	25/11/2022	10.04	79.17	15705	198.37	
	25/11/2022	10.03	79.01	16682	211.13	
	23/12/2022	10.04	79.09	18345	231.95	
56	23/12/2022	10.06	79.41	18487	232.82	234.6
	23/12/2022	10.07	79.64	19045	239.13	

De la Tabla B22 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 1.43%, 3.63%, 2.27% y 1.36% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B23: Resultados de ensayo de resistencia a la compresión del CAGR75, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	09/11/2022	10.00	78.54	10734	136.37	
7	09/11/2022	10.03	78.93	10719	135.80	135.1
	09/11/2022	10.00	78.46	10415	132.74	
	16/11/2022	10.03	78.93	12684	160.69	
14	16/11/2022	10.01	78.70	11322	143.87	154.8
	16/11/2022	10.00	78.46	12541	159.84	
	30/11/2022	10.02	78.78	14433	183.22	
	30/11/2022	10.01	78.70	14293	181.62	
	30/11/2022	9.99	78.38	14606	186.34	
	30/11/2022	10.00	78.54	14528	184.98	
	30/11/2022	10.00	78.54	14834	188.87	
	30/11/2022	9.99	78.38	14998	191.34	
	30/11/2022	10.00	78.54	14523	184.91	
28	30/11/2022	10.00	78.46	15195	193.66	187.3
	30/11/2022	9.98	78.23	14951	191.13	
	30/11/2022	10.01	78.70	13737	174.56	
	30/11/2022	10.03	79.01	14348	181.59	
	30/11/2022	10.02	78.78	15255	193.65	
	30/11/2022	10.02	78.85	14488	183.73	
	30/11/2022	10.02	78.78	15372	195.14	
	30/11/2022	9.99	78.38	15298	195.17	
	28/12/2022	10.04	79.09	16863	213.21	
56	28/12/2022	10.02	78.85	18601	235.89	221.0
	28/12/2022	10.07	79.56	17018	213.89	

De la Tabla B23 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 1.25%, 5.00%, 3.10% y 4.77% para los 7, 14, 28 y 56 días, respectivamente.

182

Tabla B24: Resultados de ensayo de resistencia a la compresión del CAGR100, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	10/11/2022	10.01	78.62	10123	128.76	
7	10/11/2022	9.99	78.38	10104	128.91	128.1
	10/11/2022	10.00	78.54	9936	126.51	
	17/11/2022	10.00	78.46	13218	168.47	
14	17/11/2022	10.01	78.62	13409	170.56	169.2
	17/11/2022	10.01	78.70	13267	168.58	
	01/12/2022	10.01	78.70	15278	194.14	
	01/12/2022	10.04	79.17	15090	190.60	
	01/12/2022	10.00	78.54	14905	189.78	
	01/12/2022	10.02	78.85	15849	200.99	
	01/12/2022	10.01	78.70	15685	199.31	
	01/12/2022	10.04	79.09	15089	190.78	
	01/12/2022	10.02	78.85	15495	196.50	
28	01/12/2022	10.03	78.93	14737	186.70	196.1
	01/12/2022	10.06	79.41	15452	194.59	
	01/12/2022	10.01	78.70	15639	198.72	
	01/12/2022	10.03	78.93	15289	193.70	
	01/12/2022	10.04	79.17	15146	191.31	
	01/12/2022	10.17	81.23	16756	206.27	
	01/12/2022	10.03	78.93	15987	202.54	
	01/12/2022	10.02	78.85	16193	205.35	
	29/12/2022	10.03	78.93	18733	237.33	
56	29/12/2022	10.04	79.09	18398	232.62	232.8
	29/12/2022	10.04	79.17	18078	228.35	

Fuente: Elaboración propia

De la Tabla B24 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 0.86%, 0.57%, 2.92% y 1.58% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B25: Resultados de ensayo de resistencia a la compresión del CP2, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	15/11/2022	9.93	77.44	9343	120.64	
7	15/11/2022	10.01	78.62	9445	120.14	120.3
	15/11/2022	10.00	78.54	9427	120.03	
	22/11/2022	10.01	78.62	10631.1	135.22	
14	22/11/2022	10.02	78.85	10662.0	135.21	135.1
	22/11/2022	10.02	78.85	10635.8	134.88	
	06/12/2022	10.05	79.25	12721	160.52	
	06/12/2022	10.02	78.78	12601	159.96	
	06/12/2022	10.06	79.41	12801	161.21	
	06/12/2022	10.01	78.70	12876	163.61	
	06/12/2022	10.01	78.62	13143	167.17	
	06/12/2022	10.02	78.78	12553	159.35	
	06/12/2022	10.01	78.70	12462	158.35	
28	06/12/2022	9.98	78.23	12053	154.08	161.9
	06/12/2022	10.04	79.17	13764	173.86	
	06/12/2022	10.05	79.25	12984	163.84	
	06/12/2022	10.02	78.85	13021	165.13	
	06/12/2022	10.03	79.01	12497	158.17	
	06/12/2022	10.02	78.78	13084	166.09	
	06/12/2022	10.02	78.78	12040	152.84	
	06/12/2022	10.04	79.09	12961	163.88	
	03/01/2023	10.03	79.01	14674	185.72	
56	03/01/2023	10.07	79.56	15386	193.38	187.5
	03/01/2023	10.01	78.62	14423	183.46	

De la Tabla B25 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 0.22%, 0.12%, 3.16% y 2.26% para los 7, 14, 28 y 56 $\,$ días, respectivamente.

Tabla B26: Resultados de ensayo de resistencia a la compresión del CAGR25, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	15/11/2022	10.02	78.85	9129	115.77	
7	15/11/2022	10.02	78.85	9520	120.73	118.0
	15/11/2022	10.00	78.54	9222	117.42	
	22/11/2022	10.01	78.62	11351.6	144.39	
14	22/11/2022	10.01	78.70	11628.6	147.76	144.6
	22/11/2022	10.03	79.01	11190.7	141.63	
	06/12/2022	10.04	79.09	13499	170.68	
	06/12/2022	10.02	78.85	13291	168.55	
	06/12/2022	10.06	79.41	14165	178.39	
	06/12/2022	10.03	78.93	12734	161.33	
	06/12/2022	10.05	79.25	13190	166.44	
	06/12/2022	10.02	78.78	13885	176.26	
	06/12/2022	10.04	79.09	13566	171.52	
28	06/12/2022	10.03	79.01	13077	165.51	169.2
	06/12/2022	10.04	79.17	13427	169.60	
	06/12/2022	10.03	78.93	13538	171.51	
	06/12/2022	10.01	78.70	12672	161.02	
	06/12/2022	10.03	79.01	13370	169.22	
	06/12/2022	10.03	78.93	13628	172.65	
	06/12/2022	10.04	79.17	13085	165.28	
	06/12/2022	10.03	79.01	13494	170.78	
	03/01/2023	10.02	78.78	15561	197.54	
56	03/01/2023	10.00	78.54	15097	192.22	194.6
	03/01/2023	10.02	78.78	15286	194.04	

De la Tabla B26 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 1.75%, 1.73%, 2.76% y 1.13% para los 7, 14, 28 y 56 días, respectivamente.

185

Tabla B27: Resultados de ensayo de resistencia a la compresión del CAGR50, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	16/11/2022	10.04	79.09	7704.7	97.42	
7	16/11/2022	10.04	79.17	8510.9	107.50	104.4
	16/11/2022	10.08	79.72	8630.7	108.26	
	23/11/2022	10.02	78.78	10111	128.35	
14	23/11/2022	10.01	78.62	10191	129.63	129.1
	23/11/2022	10.02	78.78	10186	129.30	
	07/12/2022	9.99	78.30	13342	170.39	
	07/12/2022	10.03	78.93	12277	155.54	
	07/12/2022	10.03	78.93	12332	156.23	
	07/12/2022	10.03	78.93	12481	158.12	
	07/12/2022	10.05	79.25	12917	162.99	
	07/12/2022	10.02	78.85	12715	161.25	
	07/12/2022	10.05	79.33	12062	152.05	
28	07/12/2022	10.04	79.17	12726	160.74	161.0
	07/12/2022	10.04	79.09	12183	154.04	
	07/12/2022	10.04	79.09	12842	162.37	
	07/12/2022	10.01	78.62	12722	161.82	
	07/12/2022	10.02	78.85	13133	166.55	
	07/12/2022	10.07	79.64	13069	164.09	
	07/12/2022	10.07	79.56	12934	162.56	
	07/12/2022	10.01	78.70	13077	166.17	
	04/01/2023	10.01	78.62	15355	195.31	
56	04/01/2023	10.04	79.17	14749	186.30	186.0
	04/01/2023	10.01	78.70	13873	176.28	

Fuente: Elaboración propia

De la Tabla B27 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 4.73%, 0.42%, 3.02% y 4.18% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B28: Resultados de ensayo de resistencia a la compresión del CAGR75, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	17/11/2022	10.04	79.09	8493	107.38	
7	17/11/2022	10.01	78.62	8750	111.30	111.8
	17/11/2022	10.02	78.85	9209	116.79	
	24/11/2022	9.99	78.30	10459.0	133.57	
14	24/11/2022	10.01	78.62	10605.5	134.90	132.7
	24/11/2022	10.03	79.01	10250.6	129.74	
	08/12/2022	10.07	79.64	12692.8	159.37	
	08/12/2022	10.02	78.85	12540.1	159.03	
	08/12/2022	10.03	79.01	12288.1	155.52	
	08/12/2022	10.04	79.09	12422.6	157.07	
	08/12/2022	10.04	79.17	13354.7	168.69	
	08/12/2022	10.04	79.17	12170.5	153.73	
	08/12/2022	10.05	79.25	13542.2	170.88	
28	08/12/2022	10.02	78.78	13737.9	174.39	161.5
	08/12/2022	10.06	79.49	13075.9	164.51	
	08/12/2022	10.05	79.25	12631.6	159.39	
	08/12/2022	10.08	79.72	12335.6	154.73	
	08/12/2022	10.05	79.25	12223.8	154.25	
	08/12/2022	9.96	77.91	12452.8	159.83	
	08/12/2022	10.06	79.41	13049.2	164.33	
	08/12/2022	10.06	79.49	13269.6	166.94	
	05/01/2023	10.04	79.17	15691	198.20	
56	05/01/2023	10.04	79.09	15799	199.76	200.7
	05/01/2023	10.06	79.41	16211	204.15	

De la Tabla B28 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 3.45%, 1.65%, 3.87% y 1.26% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B29: Resultados de ensayo de resistencia a la compresión del CAGR100, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	17/11/2022	10.04	79.09	11855	149.89	
7	17/11/2022	10.03	78.93	11516	145.90	147.7
	17/11/2022	10.21	81.79	12052	147.35	
	24/11/2022	9.99	78.38	14106.7	179.97	
14	24/11/2022	10.01	78.62	13739.6	174.76	175.1
	24/11/2022	10.01	78.70	13419.2	170.52	
	08/12/2022	10.03	79.01	15501	196.19	
	08/12/2022	10.06	79.41	16127	203.10	
	08/12/2022	10.04	79.09	16410	207.48	
	08/12/2022	10.04	79.17	16435	207.59	
	08/12/2022	10.00	78.46	16424	209.33	
	08/12/2022	10.06	79.41	15450	194.57	
	08/12/2022	10.06	79.49	15266	192.06	
28	08/12/2022	10.05	79.33	16261	204.99	203.0
	08/12/2022	10.00	78.54	16199	206.25	
	08/12/2022	10.05	79.25	17161	216.55	
	08/12/2022	10.04	79.09	15818	200.00	
	08/12/2022	10.06	79.41	16309	205.39	
	08/12/2022	10.19	81.55	16937	207.68	
	08/12/2022	10.07	79.56	15705	197.39	
	08/12/2022	10.06	79.49	15670	197.14	
	05/01/2023	10.02	78.85	18746	237.73	
56	05/01/2023	10.02	78.85	17931	227.39	233.9
	05/01/2023	10.03	79.01	18686	236.50	

De la Tabla B29 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 1.12%, 2.21%, 3.16% y 1.97% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B30: Resultados de ensayo de resistencia a la compresión del CP3, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	21/11/2022	10.00	78.54	8499.5	108.22	
7	21/11/2022	10.02	78.78	7236.6	91.86	101.1
	21/11/2022	10.00	78.54	8095.3	103.07	
	28/11/2022	10.05	79.33	9831	123.93	
14	28/11/2022	10.03	78.93	10476	132.72	131.7
	28/11/2022	10.03	78.93	10919	138.33	
	12/12/2022	10.04	79.09	10058	127.17	
	12/12/2022	10.03	79.01	10659	134.90	
	12/12/2022	10.02	78.78	10424	132.33	
	12/12/2022	10.00	78.46	11480	146.31	
	12/12/2022	10.03	78.93	10497	132.99	
	12/12/2022	10.05	79.25	10837	136.75	
	12/12/2022	10.02	78.85	11496	145.79	
28	12/12/2022	10.03	78.93	12692	160.79	142.0
	12/12/2022	10.05	79.25	11163	140.86	
	12/12/2022	10.03	78.93	11488	145.54	
	12/12/2022	10.06	79.41	10920	137.52	
	12/12/2022	10.05	79.25	11550	145.74	
	12/12/2022	10.04	79.17	11784	148.85	
	12/12/2022	10.03	79.01	10986	139.04	
	12/12/2022	10.05	79.25	12345	155.78	
	09/01/2023	10.04	79.09	12067	152.57	
56	09/01/2023	10.03	78.93	11372	144.07	150.4
	09/01/2023	10.03	79.01	12204	154.46	

De la Tabla B30 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 6.76%, 4.50%, 6.17% y 3.01% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B31: Resultados de ensayo de resistencia a la compresión del CAGR25, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	22/11/2022	10.00	78.54	7583.7	96.56	
7	22/11/2022	10.01	78.70	7639.6	97.08	95.2
	22/11/2022	10.02	78.85	7261.8	92.09	
	29/11/2022	10.04	79.17	9347	118.06	
14	29/11/2022	10.04	79.09	9307	117.68	118.2
	29/11/2022	10.00	78.46	9332	118.94	
	13/12/2022	10.04	79.17	10739	135.65	
	13/12/2022	10.05	79.25	10968	138.40	
	13/12/2022	10.03	78.93	12707	160.98	
	13/12/2022	10.02	78.85	10416	132.09	
	13/12/2022	10.01	78.70	11411	145.00	
	13/12/2022	10.01	78.70	11098	141.02	
	13/12/2022	10.05	79.25	11318	142.82	
28	13/12/2022	10.03	78.93	10482	132.80	143.2
	13/12/2022	10.04	79.09	11401	144.15	
	13/12/2022	9.99	78.38	11437	145.91	
	13/12/2022	10.03	79.01	11928	150.96	
	13/12/2022	10.05	79.33	10926	137.73	
	13/12/2022	10.01	78.62	12147	154.51	
	13/12/2022	10.07	79.56	11441	143.80	
	13/12/2022	10.03	79.01	11196	141.70	
	10/01/2023	10.15	80.91	14983	185.17	
56	10/01/2023	10.00	78.54	13939	177.48	182.9
	10/01/2023	10.04	79.09	14717	186.08	

De la Tabla B31 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 2.35%, 0.45%, 5.30% y 2.11% para los 7, 14, 28 y 56 días, respectivamente.

Tabla B32: Resultados de ensayo de resistencia a la compresión del CAGR50, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	23/11/2022	10.01	78.70	9042	114.90	
7	23/11/2022	10.01	78.70	9381	119.20	118.1
	23/11/2022	10.16	81.07	9738	120.11	
	30/11/2022	10.00	78.54	10962	139.57	
14	30/11/2022	10.01	78.62	11108	141.29	142.0
	30/11/2022	10.02	78.78	11422	144.99	
	14/12/2022	10.05	79.25	12252	154.60	
	14/12/2022	10.02	78.85	13248	168.01	
	14/12/2022	10.03	78.93	13077	165.67	
	14/12/2022	10.04	79.17	12758	161.15	
	14/12/2022	10.03	79.01	13762	174.18	
	14/12/2022	10.03	78.93	14164	179.44	
	14/12/2022	10.04	79.09	12765	161.40	
28	14/12/2022	10.02	78.78	11755	149.22	166.8
	14/12/2022	10.06	79.49	13686	172.18	
	14/12/2022	10.03	79.01	13678	173.11	
	14/12/2022	10.04	79.17	13549	171.14	
	14/12/2022	10.02	78.85	14036	178.00	
	14/12/2022	10.05	79.33	14159	178.49	
	14/12/2022	10.05	79.25	13088	165.15	
	14/12/2022	10.01	78.62	11807	150.18	
	11/01/2023	10.01	78.70	17094	217.21	
56	11/01/2023	10.02	78.78	16864	214.08	215.5
	11/01/2023	10.05	79.25	17049	215.13	

De la Tabla B32 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 1.93%, 1.59%, 5.72% y 0.60% para los 7, 14, 28 y 56 días, respectivamente.

191

Tabla B33: Resultados de ensayo de resistencia a la compresión del CAGR75, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	24/11/2022	10.02	78.78	7542.9	95.75	
7	24/11/2022	10.02	78.78	7122.9	90.42	92.6
	24/11/2022	10.01	78.70	7220.4	91.75	
	01/12/2022	10.03	78.93	9455	119.79	
14	01/12/2022	10.01	78.62	9688	123.23	122.7
	01/12/2022	10.03	79.01	9888	125.15	
	15/12/2022	10.01	78.70	11536	146.59	
	15/12/2022	10.06	79.41	12049	151.74	
	15/12/2022	10.06	79.41	11344	142.86	
	15/12/2022	10.11	80.20	11498	143.37	
	15/12/2022	10.04	79.17	12507	157.98	
	15/12/2022	10.04	79.09	10890	137.69	
	15/12/2022	10.01	78.70	11743	149.22	
28	15/12/2022	10.04	79.09	11563	146.20	148.2
	15/12/2022	10.03	78.93	11849	150.11	
	15/12/2022	10.03	79.01	11666	147.65	
	15/12/2022	10.06	79.41	12056	151.83	
	15/12/2022	10.04	79.09	12006	151.80	
	15/12/2022	10.04	79.09	12727	160.92	
	15/12/2022	10.04	79.17	11667	147.37	
	15/12/2022	10.00	78.46	10773	137.30	
	12/01/2023	10.04	79.17	14773	186.60	
56	12/01/2023	10.04	79.09	14854	187.81	187.6
	12/01/2023	9.99	78.38	14778	188.54	

Fuente: Elaboración propia

De la Tabla B33 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 2.45%, 1.81%, 4.23% y 0.43% para los 7, 14, 28 y 56 días, respectivamente.

192

Tabla B34: Resultados de ensayo de resistencia a la compresión del CAGR100, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Área (cm²)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	24/11/2022	10.03	79.01	7760.1	98.21	
7	24/11/2022	10.01	78.70	8140.0	103.43	101.3
	24/11/2022	10.01	78.62	8032.6	102.17	
	01/12/2022	10.02	78.85	9911	125.69	
14	01/12/2022	10.02	78.85	10290	130.49	128.9
	01/12/2022	10.03	78.93	10298	130.47	
	15/12/2022	10.03	79.01	11377	143.99	
	15/12/2022	9.99	78.38	11999	153.08	
	15/12/2022	10.02	78.78	11695	148.46	
	15/12/2022	10.06	79.49	11594	145.86	
	15/12/2022	10.06	79.49	12026	151.30	
	15/12/2022	10.00	78.54	11526	146.75	
	15/12/2022	10.03	78.93	11903	150.80	
28	15/12/2022	10.03	79.01	12482	157.98	151.6
	15/12/2022	10.03	79.01	12243	154.95	
	15/12/2022	10.05	79.33	12066	152.10	
	15/12/2022	10.00	78.54	11363	144.68	
	15/12/2022	10.04	79.17	12374	156.30	
	15/12/2022	10.02	78.78	12067	153.18	
	15/12/2022	10.17	81.23	12496	153.83	
	15/12/2022	10.01	78.62	12679	161.27	
	12/01/2023	10.00	78.54	14514	184.80	
56	12/01/2023	10.04	79.09	14967	189.24	188.4
	12/01/2023	10.03	78.93	15097	191.26	

Fuente: Elaboración propia

De la Tabla B34 se obtiene el coeficiente de variación de resistencia a la compresión que es igual a 2.20%, 1.75%, 3.19% y 1.43% para los 7, 14, 28 y 56 días, respectivamente.

B.2.2. Resistencia a la tracción por compresión diametral

Se utiliza la Ecuación 14 para calcular la resistencia a la tracción por compresión diametral de los concretos en estado endurecido.

Tabla B35: Resultados de ensayo de resistencia a la tracción del CP1, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	23/11/2022	9.93	20.71	7700.8	23.84	
28	23/11/2022	9.99	20.55	7975.6	24.74	24.9
	23/11/2022	10.02	20.48	8457.9	26.25	

Fuente: Elaboración propia

Tabla B36: Resultados de ensayo de resistencia a la tracción del CAGR25, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	24/11/2022	10.06	20.57	8178	25.17	
28	24/11/2022	10.03	20.53	9384	29.02	25.5
	24/11/2022	10.00	20.52	7214	22.38	

Fuente: Elaboración propia

Tabla B37: Resultados de ensayo de resistencia a la tracción del CAGR50, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	25/11/2022	10.10	20.63	6022.3	18.40	
28	25/11/2022	10.03	20.64	5384.1	16.57	18.8
	25/11/2022	10.04	20.68	7021.6	21.54	

Fuente: Elaboración propia

Tabla B38: Resultados de ensayo de resistencia a la tracción del CAGR75, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	30/11/2022	10.00	20.48	7572	23.55	
28	30/11/2022	10.13	20.53	8525	26.09	23.5
	30/11/2022	10.01	20.62	6793	20.95	

Tabla B39: Resultados de ensayo de resistencia a la tracción del CAGR100, a/c=0.60

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	01/12/2022	10.04	20.57	7534	23.23	
28	01/12/2022	10.06	20.60	7879	24.22	24.4
	01/12/2022	10.02	20.56	8324	25.72	

Tabla B40: Resultados de ensayo de resistencia a la tracción del CP2, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	06/12/2022	10.05	20.45	7788	24.12	
28	06/12/2022	10.04	20.55	6696	20.65	23.1
	06/12/2022	10.03	20.54	7890	24.38	

Fuente: Elaboración propia

Tabla B41: Resultados de ensayo de resistencia a la tracción del CAGR25, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	06/12/2022	10.04	20.55	7538	23.26	
28	06/12/2022	10.04	20.52	7732	23.89	23.4
	06/12/2022	10.03	20.51	7470	23.11	

Fuente: Elaboración propia

Tabla B42: Resultados de ensayo de resistencia a la tracción del CAGR50, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro promedio (cm)	Altura promedio (cm)	Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	07/12/2022	10.03	20.55	7363	22.74	
28	07/12/2022	10.04	20.45	6219	19.28	21.0
	07/12/2022	10.06	20.46	6777	20.97	

Tabla B43: Resultados de ensayo de resistencia a la tracción del CAGR75, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro Altura Carga promedio promedio máxima (cm) (cm) (kg)		Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)	
	08/12/2022	10.04	20.50	6611	20.44	
28	08/12/2022	10.03	20.47	6699	20.76	20.8
	08/12/2022	10.06	20.43	6853	21.24	

Tabla B44: Resultados de ensayo de resistencia a la tracción del CAGR100, a/c=0.65

Tiempo (días)	Fecha ensayo	Diámetro Altura Carga promedio promedio máxima (cm) (cm) (kg)		Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)	
	08/12/2022	10.00	20.42	7724	24.09	
28	08/12/2022	10.00	20.29	7417	23.29	23.9
	08/12/2022	10.03	20.50	7825	24.23	

Fuente: Elaboración propia

Tabla B45: Resultados de ensayo de resistencia a la tracción del CP3, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro Altura Carga promedio promedio máxima (cm) (kg)		Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)	
	12/12/2022	10.03	20.46	5323	16.52	
28	12/12/2022	10.03	20.44	5516	17.14	16.6
	12/12/2022	10.03	20.43	5159	16.04	

Fuente: Elaboración propia

Tabla B46: Resultados de ensayo de resistencia a la tracción del CAGR25, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro Altura Carga promedio promedio máxima (cm) (cm) (kg)		Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)	
	13/12/2022	10.07	20.59	5585	17.15	
28	13/12/2022	10.04	20.52	6208	19.19	19.2
	13/12/2022	10.01	20.50	6896	21.39	

Tabla B47: Resultados de ensayo de resistencia a la tracción del CAGR50, a/c=0.70

Tiempo (días)	Fecha ensayo	promedio promedio máxir		Carga máxima (kg)	Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)
	14/12/2022	10.02	20.62	6712	20.68	
28	14/12/2022	10.02	20.57	6720	20.75	20.3
	14/12/2022	10.04	20.62	6294	19.36	

Tabla B48: Resultados de ensayo de resistencia a la tracción del CAGR75, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro Altura Carga I promedio promedio máxima (cm) (cm) (kg)		Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)	
	15/12/2022	9.98	20.44	6242	19.49	
28	15/12/2022	10.00	20.50	5900	18.33	20.2
	15/12/2022	9.99	20.49	7305	22.72	

Fuente: Elaboración propia

Tabla B49: Resultados de ensayo de resistencia a la tracción del CAGR100, a/c=0.70

Tiempo (días)	Fecha ensayo	Diámetro Altura Carga promedio promedio máxima (cm) (cm) (kg)		Resistencia (kg/cm²)	Resistencia promedio (kg/cm²)	
	15/12/2022	10.00	20.53	6836	21.20	
28	15/12/2022	10.02	20.55	6224	19.24	19.4
	15/12/2022	9.98	20.56	5764	17.89	

Resistencia a la flexión B.2.3.

Se utiliza la Ecuación 15 para calcular la resistencia a la flexión de los concretos en estado endurecido.

Tabla B50: Resultados de ensayo de resistencia a la flexión del CP1, a/c=0.60

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.60	15.25	50.25	45.25			
	23/11/2022	15.80	15.20	50.25	45.25	2360	29.01	20.4
20		16.00	15.30	50.00	45.00			
28		16.10	14.95	50.00	45.00			28.4
	23/11/2022	16.20	15.05	50.00	45.00	2240	27.86	
		15.80	15.05	49.90	44.90			

Fuente: Elaboración propia

Tabla B51: Resultados de ensayo de resistencia a la flexión del CAGR25, a/c=0.60

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.15	15.35	50.10	45.10	2580		
	24/11/2022	15.15	15.20	50.00	45.00		32.94	- 30.8
28		15.30	15.15	50.00	45.00			
20	24/11/2022	15.60	14.95	50.10	45.10			
		15.20	14.95	50.10	45.10	2180 28.69	28.69	
		15.30	14.90	50.10	45.10			

Tabla B52: Resultados de ensayo de resistencia a la flexión del CAGR50, a/c=0.60

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.10	14.95	49.90	44.90			
	25/11/2022	15.10	15.00	49.95	44.95	2740	36.32	- 35.3
28		15.20	14.95	49.95	44.95			
		15.15	15.10	50.50	45.50			
	25/11/2022	15.15	15.10	50.10	45.10	2610	34.34	
		15.10	15.00	50.00	45.00			

Tabla B53: Resultados de ensayo de resistencia a la flexión del CAGR75, a/c=0.60

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.00	15.10	50.10	45.10			
	30/11/2022	15.05	15.10	50.00	45.00	2450	32.25	
28		15.20	15.00	50.10	45.10			30.2
20		15.25	15.25	50.00	45.00			30.2
	30/11/2022	15.20	15.20	50.00	45.00	2200	28.16	
		15.30	15.10	50.00	45.00			

Fuente: Elaboración propia

Tabla B54: Resultados de ensayo de resistencia a la flexión del CAGR100, a/c=0.60

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
28 -		15.20	15.25	49.85	44.85			_
	01/12/2022	15.05	15.30	49.95	44.95	2240	28.74	- 28.2
		14.90	15.20	49.90	44.90			
	01/12/2022	15.20	15.15	50.00	45.00		27.74	
		15.60	15.15	50.10	45.10	2200		
		16.00	15.10	50.05	45.05			

Tabla B55: Resultados de ensayo de resistencia a la flexión del CP2, a/c=0.65

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.20	15.20	49.90	44.90			
	06/12/2022	15.10	15.10	50.00	45.00	2220	28.72	
28		15.20	15.10	49.90	44.90			26.8
20		15.30	15.00	50.05	45.05			20.0
	06/12/2022	15.20	15.00	50.10	45.10	1890	24.79	
		15.10	15.10	50.00	45.00			

Tabla B56: Resultados de ensayo de resistencia a la flexión del CAGR25, a/c=0.65

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.00	14.80	50.00	45.00			
	06/12/2022	15.05	14.90	50.05	45.05	1920	25.86	
28		15.15	15.00	50.10	45.10			25.4
20		15.30	15.10	49.90	44.90			25.4
	06/12/2022	15.20	15.15	50.00	45.00	1940	25.00	
		15.10	15.20	49.95	44.95			

Fuente: Elaboración propia

Tabla B57: Resultados de ensayo de resistencia a la flexión del CAGR50, a/c=0.65

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.10	15.15	49.90	44.90			
	07/12/2022	15.05	15.05	49.90	44.90	1900	24.97	
28		15.10	14.95	49.90	44.90			24.8
20		15.25	15.00	50.00	45.00			24.0
	07/12/2022	15.05	14.95	50.00	45.00	1880	24.60	
		15.25	15.20	50.00	45.00			

Tabla B58: Resultados de ensayo de resistencia a la flexión del CAGR75, a/c=0.65

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.20	14.95	50.00	45.00			
	08/12/2022	15.00	15.10	50.00	45.00	2080	27.55	
28		15.00	15.00	50.00	45.00			26.9
20		15.20	15.30	50.05	45.05			20.9
	08/12/2022	15.10	15.05	50.10	45.10	2020	26.23	
		15.05	15.10	50.00	45.00			

Tabla B59: Resultados de ensayo de resistencia a la flexión del CAGR100, a/c=0.65

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.10	15.10	50.00	45.00			
	08/12/2022	15.05	15.15	50.10	45.10	2360	30.83	
28		15.10	15.10	50.00	45.00			30.7
20		15.10	15.30	50.05	45.05			30.7
	08/12/2022	15.20	15.20	50.05	45.05	2380	30.63	
		15.15	15.10	50.05	45.05			

Fuente: Elaboración propia

Tabla B60: Resultados de ensayo de resistencia a la flexión del CP3, a/c=0.70

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.10	15.20	50.05	45.05			
	12/12/2022	15.15	15.20	50.00	45.00	2080	26.82	
28		15.30	15.10	50.05	45.05			25.4
20		15.60	15.25	50.05	45.05			25.4
	12/12/2022	15.35	15.10	50.10	45.10	1880	23.95	
		15.20	15.15	50.10	45.10			

Tabla B61: Resultados de ensayo de resistencia a la flexión del CAGR25, a/c=0.70

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.20	15.25	50.05	45.05			_
	13/12/2022	15.05	15.20	50.00	45.00	1720	22.16	
28		15.15	15.15	50.10	45.10			21.9
20		15.30	15.25	50.10	45.10			21.9
	13/12/2022	15.25	15.30	50.00	45.00	1720	21.56	
		15.50	15.35	50.05	45.05			

Tabla B62: Resultados de ensayo de resistencia a la flexión del CAGR50, a/c=0.70

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.65	15.10	51.00	46.00			
	14/12/2022	15.40	15.20	50.00	45.00	1860	23.72	
28		15.55	15.25	51.00	46.00			23.0
20		15.40	15.65	49.50	44.50			23.0
	14/12/2022	15.35	15.25	49.50	44.50	1815	22.21	
		15.55	15.15	49.50	44.50			

Fuente: Elaboración propia

Tabla B63: Resultados de ensayo de resistencia a la flexión del CAGR75, a/c=0.70

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.10	15.45	50.00	45.00			_
	15/12/2022	15.15	15.40	50.00	45.00	2065	25.81	
28		15.20	15.40	50.00	45.00			24.3
20		15.20	15.15	50.20	45.20			24.3
	15/12/2022	15.00	15.05	50.00	45.00	1710	22.72	
		14.80	14.90	49.90	44.90			

Tabla B64: Resultados de ensayo de resistencia a la flexión del CAGR100, a/c=0.70

Tiempo (días)	Fecha ensayo	Ancho (cm)	Altura (cm)	Longitud (cm)	Luz libre	Carga máxima (kg)	Módulo de rotura (kg/cm²)	M.R. promedio (kg/cm²)
		15.55	15.15	50.00	45.00			
	15/12/2022	15.30	15.05	49.90	44.90	1900	24.30	
28		15.30	15.15	50.00	45.00			23.7
20		15.40	15.30	49.90	44.90			23.1
	15/12/2022	15.20	15.30	49.95	44.95	1830	23.09	
		15.15	15.25	50.00	45.00			

Panel fotográfico Anexo C:

Figura C1: Cemento portland puzolánico tipo IP marca Nacional Fuente: Elaboración propia

Figura C2: Cuarteo para ensayos del agregado fino natural Fuente: Elaboración propia

Figura C3: Cuarteo para ensayos del agregado grueso natural Fuente: Elaboración propia

Figura C4: Cuarteo para ensayos del agregado grueso reciclado Fuente: Elaboración propia

Figura C5: Ensayo de granulometría del agregado grueso (izquierda) y agregado fino (derecha) Fuente: Elaboración propia

Figura C6: Ensayo de peso unitario del agregado grueso reciclado Fuente: Elaboración propia

Figura C7: Muestras de agregado grueso y fino en el horno para ensayo de contenido de humedad Fuente: Elaboración propia

Figura C8: Ensayo de peso específico del agregado grueso (izquierda) y agregado fino (derecha) Fuente: Elaboración propia

Figura C9: Ensayo de materiales más finos que pasan el tamiz N°200 del agregado fino natural Fuente: Elaboración propia



Figura C10: Ensayo de abrasión del agregado grueso Fuente: Elaboración propia

Figura C11: Mezcla de concreto con agregado grueso reciclado para ensayos en el concreto fresco Fuente: Elaboración propia

Figura C12: Moldes utilizados para fabricar las muestras cilíndricas y prismáticas Fuente: Elaboración propia

Figura C13: Poza de curado para las muestras cilíndricas y prismáticas Fuente: Elaboración propia

Figura C14: Muestras de concreto con agregado grueso reciclado para ensayos en el concreto endurecido

Anexo D: Resultados de análisis físico-químico al agua de mezcla

UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Ingeniería Civil

LABORATORIO QUÍMICO FIC ANÁLISIS FÍSICO-QUÍMICO

SOLICITANTE : TONMY RICHARD QUEZADA CHAVEZ

REGISTRO : LQU24 - 301

: TESIS: "INFLUENCIA DEL AGREGADO GRUESO RECICLADO EN CONCRETO DE MEDIANA

A BAJA RESISTENCIA, UTILIZANDO CEMENTO PORTLAND PUZOLÁNICO TIPO IP"

UBICACIÓN : LABORATORIO DE ENSAYO DE MATERIALES-FIC-UNI

RECEPCIÓN DE LA MUESTRA: 10-05-2024

ANAI	LISIS DE:	SULFATOS (SO4)= NTP: 339.178	CLORUROS CI- NTP: 339.177	SALES SOLUBLES TOTALES
TIPO DE E	KPLORACIÓN:	mg/L	mg/L	NTP: 339.152 mg/L
TIPO DE MUESTRA:	AGUA DE POZO DE LA UNI			
FUENTE:	GRIFO ÁREA MEZCALDO LEM FIC UNI	2 118	184	2 386
FECHA Y HORA DE MUESTREO:	10/5/2024 // 10:00:00			

Lima, 16 de mayo del 2024

El Laboratorio no responsabiliza del muestreo ni de la procedencia de la muestra

Av. Tupac Amaru 210, Lima 25, Perú Apartado Postal 1301 Lima 100 - Perú / Telefax: (511) 481 - 9845 Central Telefónica: 481-1070 / Anexo: 295

Engineering Technology Accreditation Commission ABET

UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Ingeniería Civil

LABORATORIO QUÍMICO FIC ANÁLISIS FÍSICO-QUÍMICO

SOLICITANTE : TONMY RICHARD QUEZADA CHAVEZ

REGISTRO : LQU24 - 301

PROYECTO : TESIS: "INFLUENCIA DEL AGREGADO GRUESO RECICLADO EN CONCRETO DE MEDIANA

A BAJA RESISTENCIA, UTILIZANDO CEMENTO PORTLAND PUZOLÁNICO TIPO IP"

UBICACIÓN : LABORATORIO DE ENSAYO DE MATERIALES-FIC-UNI

RECEPCIÓN DE LA MUESTRA: 10-05-2024

	LISIS DE:	ALCALINIDAD TOTAL NaHCO3 ASTM D 1067 mg/L	pH NTP: 339,073	
TIPO DE MUESTRA:	AGUA DE POZO DE LA UNI			
FUENTE:	GRIFO ÁREA MEZCALDO LEM FIC UNI	392	7,86	
FECHA Y HORA DE MUESTREO;	10/5/2024 // 10:00:00	8		

Lima, 16 de mayo del 2024

CARMEN MAREYES OF BASTUR Dra. JEFA (e) DEL LABORA FORTE O Laboratorio de Química de la UNI-FIC

El Laboratorio no responsabiliza del muestreo ni de la procedencia de la muestra

Av. Tupac Amaru 210, Lima 25, Perú Apartado Postal 1301 Lima 100 - Perú / Telefax: (511) 481 - 9845 Central Telefónica: 481-1070 / Anexo: 295

ABET

Engineering Technology Accreditation Commission

211