UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA ESCUELA DE POSGRADO

TESIS

"ANÁLISIS DE SENSIBILIDAD APLICANDO SIMULACIÓN DE MONTECARLO PARA LA VIABILIDAD DE RENTABILIZAR UNA OPERACIÓN MINERA SUBTERRÁNEA"

PARA OBTENER EL GRADO ACADÉMICO DE MAESTRO EN GESTIÓN MINERA

ELABORADA POR: JIMMY ANTONY QUIPUSCOA SALAZAR

ASESOR: M.Sc. Ing. DIONISIO CARDENAS GONZALES

> LIMA – PERÚ 2024

Dedicatoria

Agradecer a Dios que me brindo la fortaleza Y salud para poder continuar reforzando mi Sabiduría en mi carrera profesional.

A mi familia por ser motivo de mi superación A mis hijos Erick, Anthony y Luana.

A mi esposa Sheila por su paciencia y Entendimiento.

Agradecimientos

Mi eterno agradecimiento a la Universidad Nacional de Ingeniería – Unidad de Posgrado y Docentes, por permitirme formar parte de la escuela de posgrado por incentivar al fortalecer las capacidades de los ingenieros de minas del Perú.

A mi asesor Ing. Dionisio Cárdenas por su buena predisposición, actitud y empatía para poder realizar y culminar la presente investigación.

A mis colegas y jefaturas de este proyecto minero quienes alimentaron con su input y experiencia la elaboración de la información para el desarrollo de la investigación.

Tabla de Contenidos

Ded	licatoria.		i
Agr	adecimie	entos	iii
Tab	la de Co	ntenidos	iv
Lista	a de Figu	uras	ix
Intro	oducción		xii
Res	umen		xiii
Abs	tract		xiv
Cap	itulo I: (Generalidades	15
1.1	Ant	tecedentes de la investigación	15
	1.1.1	Antecedentes bibliográficos Internacionales	15
	1.1.2	Antecedentes bibliográficos Nacionales	17
1.2	Des	scripción de la Realidad Problemática	18
	1.2.1	A nivel internacional	19
	1.2.2	A nivel nacional	20
	1.2.3	A nivel local	21
1.3	For	rmulación del problema	21
	1.3.1	Problema general	22
	1.3.2	Problemas específicos	22
1.4	Jus	stificación e importancia de la investigación	22
	1.4.1	Justificación práctica	23
	1.4.2	Justificación personal	24
1.5	Obj	jetivos	24
	1.5.1	Objetivo general	24
	1.5.2	Objetivos específicos	24
1.6		oótesis	
-	I-		

	1.6.1	Hipótesis general	24
	1.6.2	Hipótesis específicas	24
1.7	Var	riables e indicadores	25
	1.7.1	Variables	25
	1.7.2	Indicadores	25
	1.7.3	Operacionalización de variables	25
Cap	oítulo II:	El Marco teórico	27
2	Bases	s teóricas	27
	2.1.1	Riesgo en los proyectos	27
	2.1.2	Identificación del riesgo	28
	2.1.3	Análisis de riesgo	28
	2.1.4	Incertidumbre	29
	2.1.5	Análisis de sensibilidad	29
	2.1.6	Modelo Unidimensional de la sensibilización del VAN	29
	2.1.7	Modelo Bidimensional de la sensibilización del VAN	30
	2.1.8	Modelo multidimensional de la sensibilización del VAN y simulación de)
	Monte C	Carlo	30
	2.1.9	Modelo de simulación estocástica	31
	2.1.10	Estadística y modelización	31
	2.1.11	Distribuciones de probabilidad	32
	2.1.12	Números aleatorios	32
	2.1.13	Método de Montecarlo	33
	2.1.14	Pruebas de bondad de ajuste	33
	2.1.15	Variables aleatorias	33
	2.1.16	Variabilidad e incertidumbre	.36

	2.1.	17	Valor Actual Neto:	37
	2.1.	18	Simulación de Montecarlo:	38
2.2	.2 Marco conceptual		co conceptual	39
Cap	itulo	III:	Metodología de la Investigación	41
3	М	etod	ología	41
3.1		Tipo	de investigación	41
3.2		Nive	el de la investigación	41
3.3		Dise	eño de la investigación	41
3.4		Pob	lación y Muestra	42
	3.4.	1	Población	42
	3.4.	2	Muestra	42
3.5		Téc	nicas de recolección de datos	42
	3.5.	1	Fuentes de Recolección de datos	42
	3.5.	2	Instrumentos de recolección de datos	42
3.6	Pı	resup	ouesto	43
3.7.		Pres	sentación Datos generales	43
3.8.		Proy	ecto de sulfuro	43
3.9. Recursos y reservas		Rec	ursos y reservas	44
3.10. Diseño de mina		Dise	eño de mina	44
3.11. Desarrollo y Preparación		arrollo y Preparación	47	
3.12. Método de explotación		odo de explotación	47	
3.13. Life Operation Mine- mina JJL		Operation Mine- mina JJL	49	
3.14. Curva Tonelajes VS. Ley		va Tonelajes VS. Ley	50	
3.1	3.15. Dato		os técnicos económicos del provecto	51

3.16	.16. Resultados de datos generales para aplicar modelo de simulación		
M	lontecarlo		52
	3.16.1.	Estimación del NSR según precios de mineral y tipo de procesamient	:0
	metalúrg	ico	52
	3.16.2.	Resultados operativos de Producción y Tratamiento de mineral	
	2023-202	24	54
	3.16.3.	Resultado Cash Cost 2023 -2024	55
3.17	7. Esta	dísticos de las variables supuestas para el modelo estocástico utilizando	0
е	software	Oracle Crystal Ball	55
	3.17.1.	Simulación de Precio de Cu%	55
	3.17.2.	Simulación de la ley de Cabeza de Cu%	58
	3.17.3.	Simulación de los Costos de operación	61
	3.17.4.	Simulación de la Recuperación metalúrgica Cu%	64
3.18	3. Disc	susión de resultados	67
3.19	9. Prue	eba de Hipótesis	69
	3.19.1.	Contrastación de hipótesis general	69
Сар	ítulo IV:	Resultados de la Investigación	71
4.	Análisi	is de los resultados de la investigación y contrastación de hipótesis	71
4.1.	Contrasta	ación de la hipótesis especificas	71
	4.1.1.	Primera Hipótesis especifica	71
	4.1.2.	Segunda Hipótesis especifica	72
	4.1.3.	Tercera Hipótesis especifica	73
	4.2.4.	Cuarta Hipótesis especifica	74
4.2.	Com	nportamiento del VAN con respecto a las variables	75
Con	clusiones	,	77

Recomendaciones	78
Referencias bibliográficas	79
Anexos	83
Anexo Nº 1 Matriz de Consistencia	83
Anexo Nº 3: Estado de Perdidas y Ganancias	84
Anexo Nº 4: Flujo de Caja Financiero	85
Anexo N° 5 Otros	86
Anexo N° 6 Curriculum Vitae	.87

Lista de Figuras

Figura 1: Direccion de desintegracion de un atomo de radio	35
Figura 2: Valor integral para el area entre a' y b'	36
Figura 3: Valor actual neto	39
Figura 4: Estimacion de Recursos y Reservas 2022	44
Figura 5: Diseño de minas	46
Figura 6: Dimensión de sección de labores	47
Figura 7: Informe Geomecánico Agnitia Consultores SAC 2021	48
Figura 8: Diseño transversal	49
Figura 9: LOM Mina JJL	49
Figura 10: Secuencia de minado LOM para los primeros 05 años	50
Figura 11: Calculo Tonelaje VS. Ley	50
Figura 12: Curva Tonelaje VS. Ley	51
Figura 13 :Gráfico de probabilidad de Precios	56
Figura 14: Cálculo del Beta del Precio del Cu%	56
Figura 15: Probabilidad Acumulada del Precio del Cu	57
Figura 16: Resultados estadísticos del precio del Cu	57
Figura 17: Simulación de Datos de Ley de Cabeza de Cu%	58
Figura 18: Gráfico de comparación y/o incidencia de leyes de Cu	58
Figura 19: Cálculo del Beta del precio de las leyes de Cu	59
Figura 20: Gráfico de distribución logarítmica de Ley de Cu	59
Figura 21: Resultados estadísticos del Ley del Cu	60
Figura 22: Datos de Costo de producción	61
Figura 23: Gráfico de probabilidad de costos de operación	62
Figura 24: Cálculo del Beta del costo de operación	62
Figura 25: Probabilidad acumulada del costo de operación	63

Figura 26: Resultados estadísticos del costo de operación6	3
Figura 27: Datos simulados de Recuperación Metalúrgica de Cu%6	64
Figura 28: Probabilidad con respecto a recuperación metalúrgica del Cu%6	S5
Figura 29: Resultado del Beta con respecto a la recuperación metalúrgica del Cu%6	S5
Figura 30: Probabilidad acumulada de la recuperación metalúrgica6	66
Figura 31: Resultados estadísticos de probabilidad de proceso metalúrgico6	6
Figura 32: Simulación del VAN	67
Figura 33: Análisis de Sensibilidad	88
Figura 34: Gráfico Tornado para evaluar las variables6	88
Figura 35: Gráfico VAN vs. Certeza %	70
Figura 36: Gráfico variable Ley Cu% Vs VAN	72
Figura 37: Gráfico variable Precio Cu vs VAN	' 3
Figura 38: Gráfico variable Recuperación metalúrgica Cu vs VAN	74
Figura 39: Gráfico variable Costo de operación Cu vs VAN	7 5
Figura 40: Gráfico variable Costo de operación Cu vs VAN	7 5

Lista de Tablas

Tabla 1: Operacionalización de variables	.26
Tabla 2: Presupuesto del trabajo de tesis	.43
Tabla 3: Cálculo del NSR	.53
Tabla 4: Resultados operativos 2023-2024	54
Tabla 5: Resultado de Cash cost2023 -2024	.55
Tabla 6: Precio histórico del Cu%	.55
Tabla 7: Matriz de evaluación de mínimos y máximos de variables	.69

Introducción

La evaluación de proyectos mineros generalmente es realizada a través de un flujo de caja, el cual considera una tasa de evaluación que actualiza el dinero de los flujos anuales a valor presente neto. En el proceso estándar la incertidumbre es evaluada a través de la sensibilización de algunas variables claves dentro del proyecto como el precio, la ley, la recuperación metalúrgica y el costo de producción. Con ello poder determinar los drivers adecuados para la factibilidad del proyecto.

La presente tesis tiene como objetivo poder demostrar y determinar la viabilidad de una transición de método de explotación convencional a una mecanización de la operación minera, tomando en consideración las variables más relevantes haciendo uso de una herramienta tecnológica que permite determinar el VAN simulando aleatoriamente los datos de cada una de las variables y con ello poder alcanzar el VAN Aceptable que haga viable el proyecto minero.

La presente tesis ha permitido llevar una secuencia de investigación partiendo del planteamiento del problema, el objetivo general y describiéndolo a los objetivos específicos que han sido demostrados con los resultados y la discusión.

Esta tesis permitirá orientar a proyectos similares en poder enfocar que investigando y analizando las variables determinantes de un negocio minero soportados por un software podremos estimar la probabilidad y certeza de viabilidad de un proyecto minero para alcanzar su rentabilidad.

xiii

Resumen

El proyecto en estudio Minera JJL permite evaluar las diversas variables de evaluación

para la factibilidad considerando variables relevantes correspondientes al negocio

minero de una operación minera subterránea con contenidos metálicos de Cu, Au y Ag,

la cual en un inicio fue explotada mediante método convencional por tener

características mayormente auríferas (oxido).

Sin embargo, dada la transición de la mineralización de oxido a sulfuro, permite optar

por elegir un método de explotación con menores costos, alta productividad y mayor

recuperación de mineral, con procesos mecanizados y tratamiento metalúrgico que

permita mejores resultados en el valor de mineral

Para ello utilizamos el método de Montecarlo para simular el algoritmo usando números

pseudoaleatorios con apoyo del software Oracle Crystal Ball. Con el conseguimos

realizar las pruebas necesarias y analizar los resultados obtenidos.

Se contrastan tales resultados con el método de la valoración en riesgo, es decir VAN,

siendo posible con ello determinar la certeza del VAN. El análisis conjunto de todos los

factores de incertidumbre asociados a los factores de riesgo detectados arrojó un valor

esperado del proyecto de 200.00[MMUSD], determinado con un 80.8% de confianza, Lo

que significa que el proyecto es aceptable.

Palabras claves: Valor presente neto, análisis de sensibilidad, simulación de Montecarlo.

xiv

Abstract

The Minera JJL project under study allows the evaluation of the various evaluation

variables for feasibility considering relevant variables corresponding to the mining

business of an underground mining operation with metallic contents of Cu, Au and Ag,

which was initially exploited by conventional method because it has mostly gold (oxide)

characteristics.

However, given the transition of mineralization from oxide to sulfide, it allows the choice

of an exploitation method with lower costs, high productivity and greater ore recovery,

with mechanized processes and metallurgical treatment that allows better results in ore

value

We use the Monte Carlo method to simulate the algorithm using pseudorandom numbers

with the support of Oracle Crystal Ball software. With it we were able to carry out the

necessary tests and analyse the results obtained.

These results are contrasted with the risk assessment method, i.e. NPV, making it

possible to determine the certainty of the NPV. The joint analysis of all the uncertainty

factors associated with the risk factors detected, yielded an expected value of the project

of 200.00 [MMUSD], determined with 80.8% confidence, which means that the project is

acceptable.

Key words: Net present value, sensitivity analysis, Monte Carlo simulation.

Capítulo I: Generalidades

1.1 Antecedentes de la investigación

En este acápite se resumen las investigaciones realizadas a nivel internacional y nacional.

1.1.1 Antecedentes bibliográficos Internacionales

Flores, C. (2022) en la presente tesis de maestría titulada "Análisis de prefactibilidad de inversión en el ámbito minero de Sudamérica"; manifestó los resultados alcanzados en relación con el Valor Presente Neto (VPN) para la capacidad de 1.000, 1.500 y 2.000 [tpd], Aplica la simulación de Montecarlo para determinar el riesgo asociado al proyecto para una tasa de impuesto 12 % en tributos arancelarios. Así mismo le permitió evaluar los riesgos de incertidumbre de costo del diésel y precio del metal, determinando que Ecuador tiene más riesgo e incertidumbre que Chile y Perú.

Gutiérrez, J. (2022) en la presente tesis de maestría titulado "Análisis de riesgo considerando la incertidumbre de variables geológicas en minería subterránea" el autor considero evaluar el riesgo de un proyecto minero subterráneo, a través de la evaluación combinada de variables geológicas (leyes y límites del cuerpo mineralizado) y financieras (precio del oro), así como su impacto en el Valor Presente Neto del proyecto. El flujo de implementación de esta metodología hace posible adicionar otras variables importantes para el proceso de evaluación técnico – financiera de un proyecto, cómo son: los costos, la densidad, recuperación, etc.

Fernandez, **O**. **(2018)** en su tesis de maestría "Evaluación de riesgos de un proyecto de inversión minera y su aplicación a un proyecto de mediana minería";

Logró determinar mediante la utilización de simulación de Montecarlo determinar los principales riesgos en las siguientes variables: inversión inicial, precio del cobre, costo de operación de la mina y planta, así como la producción de fino. Considerando otros riesgos tales como la cantidad y calidad del recurso geológico, la ley del mineral y la

recuperación metalúrgica. La simulación de la valorización del proyecto y los resultados de distribución de probabilidad del VAN del proyecto indicaron que no se obtendrían valores negativos de VAN bajo las condiciones simuladas.

Gaytán, **J** (2023) said "Monte Carlo simulations offer a clearer picture than a deterministic forecast. The model has a wide range of applications that offer the probability of possible outcomes in various sectors that handle multiple random variables such as business, investment, engineering, biology, meteorology, astronomy, particle physics, etc. Among the practical applications in business, finance, and economics" (p. 96).

Also Based on the results of the use of the Monte Carlo simulation for the measurement of value at risk with the single index model approach as a determinant of the optimal portfolio of capital provided, which is 10 billion. The total number of shares of each issuer was UNIQ (10,470 lots), GJTL (8,120 lots), TSPC (4,504 lots), AXIO (2,395 lots), JSMR (2,189 lots), RCCC (724 lots), CASS (3,365 lots).and SEMA (12,425 lots). Eight selected issuers within 2 months obtained maximum profits by generating a margin of 1,454,232,030 with a risk of -318,548,097 from a capital of 10 billion. **Abdul, A. (2024) Román, D. (2022)** en su tesis de maestría "Valoración de riesgos de planes de cierre en proyectos mineros" logró determinar el análisis mediante la Simulación de Montecarlo frente a una variación económica de los procesos de remediación ambiental (aguas acidas, biorremediación, humedales anaerobios, electro remediación).

El porcentaje de simulación establecido, (±10%) permitió determinar una posible variación, con la consideración de un máximo y mínimo de variación histórico, en función de otros proyectos similares, esta variación permitió determinar diferencias significativas al momento de realizar una comparación.

Las semillas asignadas son aleatorias, aquellas permitieron tomar una decisión en función de la variación de estos, al realizar una variación con una semilla similar los

resultados alcanzados son diferentes, si se emplea diferente semilla, la variación no es significativa, colocándose en puntos no atractivos de inversión.

Urieta, E. (2021) en sus tesis de maestría "Valoración financiera bajo incertidumbre de un proyecto minero de agregados pétreos" concluye que, al buscar maximizar el VPN integrado a las herramientas estocásticas conocidas como los Algoritmos Genéticos y la Simulación Montecarlo, las cuales permiten optimizar el resultado del VPN, así como determinar la sensibilidad del valor del proyecto a las variables. Se concluye que el precio del mineral es el parámetro más influyente en el Valor Presente Neto en un proyecto de extracción de minerales.

Villalta, G.& Borja, R. (2023) said "This can be fitted to obtain a stochastic representation of each of them, and then the Monte Carlo simulation can be applied to gain more information about the uncertainty in the outcomes (R). The decision maker then has a range of plausible outcomes and the probabilities of occurrence of them."

1.1.2 Antecedentes bibliográficos Nacionales

Ramos, L. (2019) en su tesis de maestría "Análisis comparativo entre el método determinístico y el probabilístico en la evaluación financiera de un proyecto; demostró mediante la utilización del modelo de simulación de Montecarlo que el valor actual neto del proyecto fluctuó entre 1.2 a 2.9 millones de dólares con una probabilidad del 90% y 10% de que no va a ocurrir lo que se afirma.

Vila, J. (2019) en su tesis de maestría "Optimización de beneficios con gestión de riesgos en las minas subterráneas – grupo volcán" logro obtener que con el modelo determinístico su actual ritmo de producción no maximiza el VAN (192 M \$) a diferencia del modelo estocástico donde incluye los riesgos operativos obteniendo un resultado positivo de 207M \$. Mejorando el VAN en 15 M \$ al aplicar el modelo estocástico y mejorando el ritmo de producción.

Crisoles J., Vásquez G. & Olivera J. (2021) en su tesis de maestría "Valorización de Sociedad minera Cerro Verde" al aplicar la simulación de Montecarlo logro estimar la sensibilidad del precio del concentrado de cobre para los años 2021 al 2024; a la tasa del WACC y a los valores del cash cost de los años 2021 al 2027.

Al analizar la sensibilidad de las variables de cash cost y WACC, evalúan el comportamiento del precio de la acción en un escenario pesimista y optimista.

Gavilán, S. (2022) en su tesis de maestría "Planteamiento de un modelo de simulación estocástica para pronosticar el avance lineal mensual de la unidad minera San Jose, Argentina" manifiesta que aplicó el modelo de simulación estocástica que le permite a partir de un número de simulaciones, obtener la distribución de probabilidad de avance lineal mensual.

Con ello le permitió pronosticar el avance con mucha precisión en los meses de enero, febrero y marzo con una variabilidad de 01 m a 33 m aproximadamente. El pronóstico también le permitió identificar si era probable o no el cumplimiento, y ante ello poder tomar acciones positivas para trazar estrategias que mejoren la probabilidad de cumplimiento durante la ejecución de las operaciones.

Pinado, M. (2021) en su tesis de maestría "El método Montecarlo en la evaluación de la estabilidad física de taludes mineros de material granular", logró el desarrollo de la misma y se evidencia que existe una correlación fuerte positiva de 78.17, entre la confiabilidad obtenida con la simulación con el método Monte Carlo y la evaluación física de la estabilidad de taludes de componentes mineros de material granular.

1.2 Descripción de la Realidad Problemática

Según **Fernández**, **O. (2018)** La evaluación de riesgos en los proyectos mineros es una problemática recurrente debido a la incertidumbre presente en las distintas etapas de evaluación, esto hace que sea de gran interés el poder anticiparse a situaciones o eventos que se pueden producir y afectar negativamente al proyecto. Mediante la

utilización de herramientas de gestión de riesgos, se analizan cualitativamente los riesgos que impactan al proyecto, se caracteriza la incertidumbre asociada a la totalidad de los principales riesgos identificados y se procede a realizar la evaluación tradicional determinista, posteriormente incorporando un proceso de simulación de Montecarlo, se contrastan tales resultados con el método de la valoración en riesgo, es decir VAN, TIR y luego VaR,

Chávez, V. (2021) sostiene que Evaluar un proyecto minero es proceso complejo debido a la cantidad de variables involucradas, incertidumbres y riesgos; por consiguiente, la correcta evaluación es crucial para la decisión de inversión y puesta en marcha.

Franco, J. (2020) sostiene que ante una coyuntura de alta volatilidad de los mercados internacionales por la COVID-19, confirmada por el índice VIX31 en 82.69 el 16 de marzo 2020 y por la inestabilidad política local, el riesgo sistemático de los FCFF y el riesgo de potenciales rebrotes aumentaron; es por ello que requiere realizar una simulación sensibilizando por la tasa de descuento y días de para por rebrotes de la COVID-19.

1.2.1 A nivel internacional

Contreras, R. (2011) indica en su análisis que cuando un proyecto minero es identificado a partir de sus recursos medidos e indicados se necesitará definir algunas variables como tonelaje, precio de los metales, recuperación metalúrgica a fin de determinar sus reservas minables recuperables en base a un plan de mina, costos asociados y al ritmo de producción más adecuado al tamaño del yacimiento.

Botín, J. (2019) manifiesta que las decisiones de inversión se basan en modelos estocásticos del Valor Actual Neto (VAN) que apenas proporcionan información cuantitativa del impacto económico (positivo o negativo) asociado a la incertidumbre y, como resultado, son de escaso valor como herramienta de gestión del riesgo y optimización de proyecto. Sin embargo, son escasas las que se enfocan en aspectos de

gestión y no hemos encontrado ninguna que esté enfocada en el proceso de decisión por fases que caracteriza a la inversión minera, por lo que resultan poco útiles como herramienta de gestión y toma de decisión. Sin embargo, son escasas las que se enfocan en aspectos de gestión y no hemos encontrado ninguna que esté enfocada en el proceso de decisión por fases que caracteriza a la inversión minera, por lo que resultan poco útiles como herramienta de gestión y toma de decisión.

La incertidumbre asociada al proceso de estimación de reservas de mineral y el plan de producción, es frecuentemente el que implica mayor riesgo económico.

Riesco, J. & Urenda, C. (2024, 22 mayo) manifestaron que es inconcebible que desarrollar un proyecto minero implique obtener 439 tipos de permisos y que demoren 9 años. Con estas trabas es imposible llevar adelante nuevos proyectos y ampliación de las operaciones, por lo que es necesario agilizar los trámites e implementar nuevos procesos que permitan hacer la gestión mucho más expeditiva, señaló Urenda. En esa misma línea, Riesco dijo que como países con gran potencial geológico y con una gran oportunidad para seguir generando desarrollo a través de la minería, debemos trabajar de la mano con el Estado y así promover la inversión. Esto sin duda, es un gran reto y la única vía para poder cumplirla, creando lazos de confianza de largo plazo con las autoridades competentes.

1.2.2 A nivel nacional

Ramos, L. (2019) menciona que los proyectos se evalúan financieramente solo por el lado determinista, donde las variables analizadas o los supuestos se consideran ciertos, en base a solo la mejor estimación, dejando de lado el riesgo o la probabilidad de que algún evento o supuesto no sea cierto. Esto puede llevar a grandes pérdidas financieras ya que se pudieran estar gastando recursos persiguiendo riesgos fantasmas e ignorando riesgos reales.

Por lo que amerita evaluar las variables operativas de un proyecto minero para identificar algún riesgo durante su operación y/o determinar las variables técnicas para demostrar alternativas de mejorar el proceso.

Instituto Peruano de Economía (2023); público que en la última cartera de inversión minera 2023 del Minem se identificó un total de 23 proyectos mineros retrasados por razones ajenas a la voluntad de las empresas, tales como tramitología o conflictos sociales, con un monto de inversión global de \$29 667 millones. Ello generó pérdidas económicas y fiscales significativas. Las pérdidas en términos de PBI ascendieron a S/698 296 millones constantes del 2007, cifra que considera tanto la inversión que no llegó a ejecutarse como los volúmenes de producción que no se lograron extraer. En consecuencia, entre el 2008 y el 2022, se dejaron de recaudar S/122 689 millones en ingresos fiscales. Además, si se consideran los efectos directos, indirectos e inducidos de la actividad minera, en la etapa de producción minera se han dejado de generar hasta 541 000 empleos adicionales al año; y en la fase de inversión, hasta 125 000 empleos por año. Con estos resultados, se estima que el crecimiento promedio anual del PBI durante el periodo 2008-2022 pudo haber sido 4.7%, en lugar del 3.9% observado. En términos de bienestar, se calcula que con el crecimiento adicional que hubiera brindado la ejecución de proyectos mineros, al 2022 se tendría 1.7 millones de personas menos en situación de pobreza.

1.2.3 A nivel local

Es importante este trabajo de investigación porque en la zona de interés no existe ninguna investigación de este tipo.

1.3 Formulación del problema

La simulación de los diferentes escenarios con las variables cuantitativas de leyes, precio, costos, inversión y recuperación; permitirá evaluar el análisis de riesgo en los diferentes escenarios comparándolos con el VAN.

En el presente trabajo de investigación se plantea las siguientes preguntas:

1.3.1 Problema general

 ¿En qué medida el análisis de sensibilidad aplicando la simulación Monte Carlo permitirá determinar la viabilidad de la rentabilidad en una operación minera subterránea?

1.3.2 Problemas específicos

- ¿Determinar cómo influye en el VAN la simulación de Montecarlo en la sensibilidad del precio?
- ¿Determinar cómo influye en el VAN la simulación de Montecarlo en la sensibilidad de la ley de mineral?
- ¿Determinar cómo influye en el VAN la simulación de Montecarlo en la sensibilidad de la recuperación metalúrgica?
- ¿Determinar cómo influye en el VAN la simulación de Montecarlo en la sensibilidad del costo de operación?

1.4 Justificación e importancia de la investigación

Fernández, O. (2018) manifiesta que la evaluación de riesgos en los proyectos mineros es una problemática recurrente debido a la incertidumbre presente en las distintas etapas de la evaluación esto hace que sea de gran interés el poder anticiparse a situaciones o eventos que se pueden producir y afectar negativamente al proyecto. En caso resulta importante considerar esta oportunidad de evaluación por parámetros intrínsecos que podemos evaluar dentro de un proyecto y manifestarlos para proyectos futuros.

Cerda, C. (2016) manifiesta la importancia de la simulación enfocado en la planificación minera estocástica busca incluir en la generación de planes las incertidumbres que envuelven a los problemas mineros (que son incertidumbres geológicas, de mercado, operacionales, entre otras). La programación estocástica es una técnica de optimización

usada cuando los problemas tienen incertidumbre, donde estas pueden representarse por medio de distribuciones de probabilidad o a través de posibles escenarios; al momento de evaluar el plan para muchos futuros posibles, su VAN esperado sea superior al de otros planes mineros.

Arango, M.; Montes, L. & Arboleda, D. (2017) menciona que el análisis de viabilidad financiera exige su valoración y la identificación de variables que afecten el resultado final de los inversionistas. La existencia de múltiples fuentes de incertidumbre en estos proyectos demanda el uso de metodologías alternativas que relacione tanto los flujos de caja del proyecto, como las oportunidades estratégicas que origina una importancia en la evolución del proyecto.

1.4.1 Justificación práctica

Gutiérrez, J. (2022) menciona que la evaluación de proyectos mineros generalmente es realizada a través de un flujo de caja, el cual considera una tasa de evaluación que actualiza el dinero de los flujos anuales a valor presente. En el proceso estándar la incertidumbre es evaluada a través de la sensibilización de algunas variables claves dentro del proyecto como el precio, la ley y las toneladas producidas. Sin embargo, se adicionará variables al método seleccionado para evaluar el costo de operación el cual permitirá identificar de modificar el método de explotación con un menor costo de operación y una alta productividad.

Botín, J. (2019) resalta que la decisión de invertir en minería implica una fuerte exposición al riesgo por la incertidumbre asociada a parámetros intrínsecos y extrínsecos del proyecto, que influyen sobre las expectativas de beneficio. Sin embargo, en la mayoría de los casos, las decisiones de inversión se basan en modelos estocásticos del Valor Actual Neto (VAN) que apenas proporcionan información cuantitativa del impacto económico (positivo o negativo) asociado a la

incertidumbre y, como resultado, son de escaso valor como herramienta de gestión del riesgo y optimización de proyecto.

1.4.2 Justificación personal

Obtener el grado de Maestro con mención en Gestión minera.

1.5 Objetivos

1.5.1 Objetivo general

 Determinar el análisis de sensibilidad aplicando la simulación de Montecarlo y su influencia en la viabilidad del VAN en una operación minera subterránea.

1.5.2 Objetivos específicos

- Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad del precio.
- Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad de la ley del mineral
- Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad la recuperación metalúrgica
- Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad con el costo de operación.

1.6 Hipótesis

1.6.1 Hipótesis general

 Realizar el análisis de sensibilidad en una operación minera subterránea mediante la aplicación de la simulación de Montecarlo influirá significativamente en la viabilidad del VAN.

1.6.2 Hipótesis específicas

 La aplicación del Simulación de Montecarlo permitirá estimar el precio adecuado para la rentabilidad del VAN.

25

• La aplicación del Simulación de Montecarlo permitirá estimar la ley del mineral

adecuado para la rentabilidad del VAN.

• La aplicación del Simulación de Montecarlo permitirá estimar la recuperación

metalúrgica adecuado para la rentabilidad del VAN.

• La aplicación del Simulación de Montecarlo permitirá estimar el costo de

operación adecuado para la rentabilidad del VAN.

1.7 Variables e indicadores

1.7.1 Variables

Variables independientes

X1: Simulación Montecarlo

Variable dependiente

Y: Análisis de sensibilidad

Y1: VAN

1.7.2 Indicadores

Se están considerando un indicador para la variable independiente y un indicador para

la variable dependiente, que se listan seguidamente.

<u>Indicadores de X</u>

X₁: Simulación de Montecarlo

Indicadores de Y

Y: Análisis de Sensibilidad VAN

1.7.3 Operacionalización de variables

En la Tabla 1 se muestra la operacionalización de las variables.

Tabla 1 Operacionalización de variables

Variable	Definición conceptual	Indicadores
Modelo de simulación de Montecarlo	Modelo en el cual toma variables con datos al azar y relacionarlas entre ellas por distribuciones de probabilidad para obtener un pronóstico.	% Certeza
Análisis de sensibilidad VAN	Indicador de rentabilidad que indica si el proyecto es factible o no	Valor económico \$ >0

Fuente: Elaboración propia

Capítulo II: El Marco teórico

2 Bases teóricas

2.1.1 Riesgo en los proyectos

Sapag, N. (2011) El riesgo de un proyecto se define como la variabilidad que presentan los componentes del flujo de caja efectivo respecto de los estimados en el caso base. Cuanto más grande sea esta variabilidad, mayor es el riesgo del proyecto. Así, el riesgo se manifiesta en la variabilidad de los rendimientos del proyecto, puesto que se calculan sobre la proyección de los flujos de caja.

Como ya se indicó, el riesgo define una situación donde el comportamiento de un resultado está sujeto a un conjunto de resultados posibles, cada uno de los cuales con una probabilidad asignada. La **incertidumbre** caracteriza a una situación en la que los posibles resultados de una estrategia no son conocidos y, en consecuencia, sus probabilidades de ocurrencia no son cuantificables.

Es importante hacer notar la diferencia entre riesgo e incertidumbre; cuando un inversionista conoce los eventuales escenarios a los cuales puede verse enfrentado, así como sus probabilidades de ocurrencia y los efectos económicos a los cuales se verá enfrentado en el caso de que ocurran dichos eventos, el inversionista estará tomando decisiones bajo riesgo, pero no bajo incertidumbre; sin embargo, si el inversionista no conoce los diversos escenarios en los cuales puede verse implicado, ni sus probabilidades ni sus efectos económicos en caso de ocurrencia, el inversionista estará tomando decisiones bajo incertidumbre y riesgo.

La incertidumbre, por lo tanto, puede ser una característica de información incompleta, de exceso de datos o de información inexacta, sesgada o falsa, o simplemente la imposibilidad de poder identificar variables que podrían afectar los flujos del negocio.

2.1.2 Identificación del riesgo

Sapag, **N.** (2011) indica que es necesario identificar el riesgo, es decir, determinar los escenarios adversos a los que un proyecto pudiera verse enfrentado.

Las primeras tienen relación con los elementos de riesgo asociados a la empresa y a sus socios: la falta de experiencia y know how de quienes desarrollan y administran el proyecto, la inexistencia de objetivos y visiones comunes entre socios respecto del futuro del negocio, la falta de compromiso, la no existencia de pasiones y habilidades; todo ello hará del proyecto un negocio inviable.

Si bien es cierto que estos riesgos son diversificables y mitigables, es recomendable al menos tener conciencia de que el proyecto puede fracasar por la presencia de estos elementos. Por otra parte, desde el punto de vista de la empresa constituida, pudiera haber debilidades en los distintos elementos de la cadena de valor, que deriven en que el proyecto, siendo una buena idea, termine resultando un negocio ineficiente. En efecto, ineficiencias en las actividades de apoyo, como la carencia de un equipo ejecutivo y administrativo adecuado, la existencia de tecnología deficiente y obsoleta, la falta de liderazgo, deficientes mecanismos de incentivos, políticas y procedimientos mal definidos, carencia de mecanismos de control e infraestructura inadecuada, y procedimientos deficientes relacionados con las adquisiciones de materia prima, productos o servicios de terceros, pudieran llevar a que una buena iniciativa termine siendo un proyecto ineficiente.

2.1.3 Análisis de riesgo

Herrera J. (2018) define la decisión de viabilidad de un proyecto minero suele adoptarse en base a que las expectativas de rentabilidad del proyecto; cuantificadas mediante uno o varios índices de rentabilidad, superen un valor predeterminado o umbral. El análisis del riesgo financiero tiene por objeto el de estimar; cuantitativa o al menos cualitativamente; la probabilidad de que dichas expectativas no lleguen a materializarse en la realidad.

El payback o periodo de retorno de la inversión, es aparte el índice de rentabilidad, un excelente estimador del riesgo derivado de la incertidumbre a medio y largo plazo, muy utilizado.

Análisis de riesgo es el proceso de predecir el resultado de una decisión ante una incertidumbre en minería. **Azofeifa, C (2011)**

2.1.4 Incertidumbre

2.1.5 Análisis de sensibilidad

Herrera J. (2018) opina que el análisis de sensibilidad del índice de rentabilidad elegido (VAN, TIR, etc.) a la variación de las variables que intervienen en el cálculo de los flujos de fondos (ventas, costes, etc.) o de las variables de las que están se derivan (producción, ley, precio, etc.) es también muy empleado ya que permite determinar el efecto de la incertidumbre asociada a la estimación de una variable o analizar el efecto sobre el proyecto de un escenario económico determinado.

2.1.6 Modelo Unidimensional de la sensibilización del VAN

Sapag, N. & Sapag R. (2008) conceptualiza que el análisis unidimensional de la sensibilización del VAN determina hasta dónde puede modificarse el valor de una variable para que el proyecto siga siendo rentable.

Si en la evaluación del proyecto se concluyó que en el escenario proyectado como el más probable el VAN era positivo, es posible preguntarse hasta dónde puede bajarse el precio o caer la cantidad demandada o subir un costo, entre otras posibles variaciones, para que ese VAN positivo se haga cero. Se define el VAN de equilibrio como cero por ser el nivel mínimo de aprobación de un proyecto, pues corresponde a un punto donde no solo se recupera la inversión, sino que además se obtiene la rentabilidad exigida. De aquí que al hacer el VAN igual a cero se busca determinar el punto de quiebre o variabilidad máxima de una variable que resistiría el proyecto. También podría hablarse de variabilidad mínima si se trata de parámetros positivos en el flujo de caja, como el precio de venta del producto o la demanda. Por ello, este modelo pretende determinar

las fronteras, o puntos máximos o mínimos, del comportamiento de las principales variables del proyecto.

2.1.7 Modelo Bidimensional de la sensibilización del VAN

Sapag, N. & Sapag R. (2008) plante que el análisis de sensibilidad bidimensional busca establecer los resultados posibles del proyecto, tomando en consideración cambios en las dos variables de mayor incidencia. Para ello, en primera instancia deberán determinarse las dos principales variables que mayor incidencia tienen en el resultado del proyecto. En este sentido, la matriz de riesgo, construida a partir de la clasificación del riesgo, constituye un buen punto de partida. En segundo orden, deberá establecerse el rango de comportamiento de la variable, es decir, identificar cuál correspondería al mejor escenario y cuál al más adverso. Por último, deberá trabajarse en establecer los saltos discretos que tendrán las variables, es decir, las magnitudes de los intervalos. Mientras más sensible sea la variable al resultado, menores deberán ser las diferencias de intervalo

2.1.8 Modelo multidimensional de la sensibilización del VAN y simulación de Monte Carlo

Sapag, N. & Sapag R. (2008) expresa que la operatividad de los modelos de sensibilización radica en la mayor o menor complejidad de sus procedimientos. El análisis de sensibilidad multidimensional, a diferencia del unidimensional, además de incorporar el efecto combinado de dos o más variables, busca determinar de qué manera varía el VAN frente a cambios en los valores de esas variables, como una forma de definir el efecto que pueden tener en los resultados de la evaluación posibles errores cometidos en las estimaciones.

La **simulación de Monte Carlo** permite considerar una gran cantidad de combinaciones posibles respecto de las variables que afectan los resultados de un proyecto o negocio. Es una técnica basada en la simulación de distintos escenarios inciertos, lo que permite estimar los valores esperados para las distintas variables no controlables, por medio de

una selección aleatoria en la cual la probabilidad de escoger entre todos los resultados posibles está en estricta relación con sus respectivas distribuciones de probabilidades. La operatividad de los modelos de sensibilización radica en la mayor o menor complejidad de sus procedimientos.

Esta herramienta permite otorgar una mayor base científica a las predicciones sobre las que se fundamenta la toma de decisiones. Es muy útil en los procesos de toma de decisiones, así como en la formulación de estrategias y planes de acción.

2.1.9 Modelo de simulación estocástica

El método de Montecarlo es un método numérico que permite resolver problemas matemáticos mediante la simulación de variables aleatorias. Los Orígenes del método de Montecarlo. Se considera como fecha de nacimiento del método de Montecarlo el año 1949 en el que apareció el artículo titulado «The Monte Carlo method». Es curioso que la base teórica del método era bien conocida desde hace mucho tiempo. Es más, algunos problemas de la Estadística se resolvían a veces empleando las muestras aleatorias, o sea, aplicando de hecho el método de Montecarlo. Sin embargo, hasta la aparición de las máquinas calculadoras electrónicas (MCE), este método no encontraba aplicaciones suficientemente amplias ya que la simulación a mano de variables aleatorias constituye un proceso muy laborioso. (Sóbol, 1983, p.9)

2.1.10 Estadística y modelización

La construcción de modelos, su comparación con la realidad y su perfeccionamiento progresivo intervienen en cada fase de la resolución de problemas estadísticos, no sólo en el análisis de datos en situaciones prácticas, sino también en el trabajo de desarrollo teórico. Un ejemplo notable de modelización estadística a partir de un problema práctico son las distribuciones de probabilidad, que permiten describir en forma sintética el comportamiento de las distribuciones empíricas de datos estadísticos y hacer predicciones sobre su comportamiento. (Batanero, 2003, p.39)

2.1.11 Distribuciones de probabilidad

Una distribución de probabilidad indica toda la gama de valores que pueden representarse como resultado de un experimento si éste se llevase a cabo. Es decir, describe la probabilidad de que un evento se realice en el futuro, lo implica que se puede diseñar un escenario de acontecimientos futuros considerándolas tendencias actuales de diversos fenómenos naturales. Una distribución de probabilidades es una lista de las probabilidades de todos los resultados posibles que pudiera resultar si el experimento se hace; es decir, es la suma de todas las funciones en las que interviene la variable aleatoria "x" bajo estudio. Las distribuciones de probabilidad siempre es la suma de todas las funciones posibles, por tanto, su sumatoria siempre tiene que ser igual al espacio muestral;

esto es:
$$f(x) = 1$$
 $f(x) = 100\%$. (Cruz, 2016, p.1)

2.1.12 Números aleatorios

Los numero aleatorios son aquellos que ocurren al azar, y admiten reemplazo, como el lanzamiento de unos dados o como el giro de una ruleta en los juegos de azar. En cada evento el numero a salir es aleatorio, y la ocurrencia anterior no tiene relación con el evento siguiente. Pero para poder ser usados en un modelo matemático necesitan tener ciertas condiciones como: no deben tener ciclos repetitivos y los valores se distribuyen uniformemente en 0 y 1. Esto quiere decir que una corriente de números aleatorios viene definida por una distribución uniforme donde la media (o valor esperado) es ½ y su varianza es 1/12. Entonces si una distribución uniforme difiere en sus extremos de 0 y 1, a unos números tales como a y b, la media seria (a+b)/2, y la varianza [(b-a)] ^(2/12), por ende, los números ahora se distribuyen en los extremos de a y b, de la distribución uniforme. Ello significa que cada número tiene la misma probabilidad de salir sorteado, lo cual se corrobora cuando vemos su función de densidad f(x)=1/(a+b). (Centeno, 2002)

2.1.13 Método de Montecarlo

Herrera J. (2018) opina que el índice de rentabilidad se obtiene por simulación estocástica como una función estadística de las variables operativas que intervienen en su cálculo; las cuales se modelan mediante funciones estadísticas aleatorias (normal, triangular, etc.). El resultado final es la obtención de una función de distribución empírica de la rentabilidad que permite cuantificar la probabilidad de que la rentabilidad del proyecto supere el valor umbral y por tanto cuantificar el riesgo.

2.1.14 Pruebas de bondad de aiuste

Para conocer a que distribución de probabilidad se ajusta la variable aleatoria es importante realizar una prueba de bondad de ajuste, los más conocidos son 3:

- Prueba de Chi Cuadrado Valor de la Prueba > 0.5
- Prueba de Kolmogorov Smirnov Valor de la Prueba < 0.3 (valor que viene del criterio de Masey)
- Prueba de Anderson Darling Valor de la Prueba > 1.50

La prueba del chi cuadrado toma en consideración la frecuencia absoluta observada y suponiendo que se asemeja a una determinada distribución de popularidad se calcula la frecuencia absoluta esperada y se compara. La prueba de Kolmogorov Smirnov centra su análisis en la parte central de la distribución de probabilidades, en contra parte la prueba de Anderson Darling análisis los extremos de esta, así este es una buena prueba para realizar cuando deseas investigar los valores extremos de una data. (Centeno, 2002).

2.1.15 Variables aleatorias

Las palabras «variable aleatoria» suelen emplearse para subrayar que se ignora el valor concreto que tomará esta variable. Sucede también que estas palabras encierran incluso un desconocimiento de cuál es esta variable. En cambio, el matemático emplea estas mismas palabras. "variable aleatoria" dándoles un contenido positivo bien determinado. Efectivamente, dice él, no conocemos el valor que tomará esta variable en

un caso concreto dado, pero sabemos qué valores puede tomar y también las probabilidades de unos u otros valores. A base de estos datos no podemos predecir con exactitud el resultado de una prueba relacionada con esta variable aleatoria pero sí podemos prever con gran seguridad los resultados de un gran número de pruebas. Cuanto mayor sea el número de pruebas, mayor exactitud tendrán nuestras predicciones. Es decir, para definir una variable aleatoria es preciso señalar los valores que puede tomar y las probabilidades de estos valores. (Sobol, 1983, p.15)

A. Variables aleatorias discretas

Según Sóbol (1983):

Se dice que la variable aleatoria £ es discreta si puede tomar un conjunto discreto de valores (x1, x2, ..., xn,).

Una variable Aleatoria discreta £ se define mediante la siguiente expresión

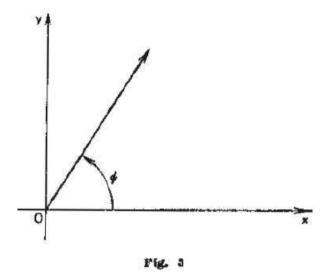
£ = $(x1, x2 \cdots xn)$: ... : $p1, p2 \cdots pn$), Donde (x1, x2, ..., xn), son los valores posibles de la variable y (p1, p2, ..., pn).son las probabilidades que les corresponden. Hablando con más precisión, la probabilidad de que la variable aleatoria £ tome el valor de xi (designaremos esta probabilidad por $P = \{£ = xi\}$) es igual a pi:

$$P = \{ \mathfrak{L} = xi \} = pi$$

Hablando en términos generales, los números pueden ser x1, x2, ..., xn cualesquiera. En cambio, las probabilidades p1, p2, ..., pn deben cumplir dos condiciones:

- a) todos los números pi deben ser positivos: pi > 0;
- b) la suma de todos los pi debe ser igual a 1: $p1 + p2 + \cdots + pn = 1$ La última condición significa que £ debe necesariamente tomar en cada caso uno de los valores x1, x2, ..., xn. (p.15-16).

B. Variables aleatorias continuas

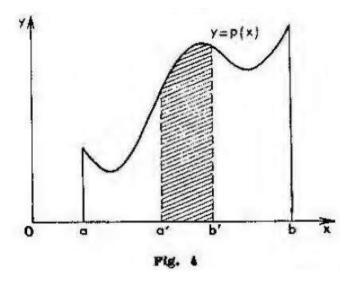

Según Sóbol (1983):

Supongamos que en el origen de coordenadas del plano se encuentra una cantidad

determinada de radio. Todo átomo de radio emite al desintegrarse una partícula a. Su dirección puede ser caracterizada mediante el ángulo ¥.

Figura 1

Direccion de desintegracion de un atomo de radio


Fuente: Tomado de Sóbol (1983)

Tanto desde el punto de vista teórico como practico, la emisión es posible en cualquier dirección; por eso, esta variable aleatoria puede tomar cualquier valor comprendido entre 0 y 2π . Diremos que una variable aleatoria £ es continua si puede tomar cualquier valor comprendido en un intervalo (a, b). Toda variable aleatoria continua £ queda definida si se da el intervalo (a, b) que contiene los valores posibles de esta variable y la función p(x) que lleva el nombre de densidad de probabilidad de la variable aleatoria £ (o densidad de distribución de £). El significado real de la función p(x) es el siguiente: sea (a', b') un intervalo cualquiera contenido en (a, b) (es decir. sea $a \le a'$ y $b \le b'$); entonces la probabilidad de que £ tome un valor perteneciente al intervalo (a', b') es igual a la integral $P\{a' < £ < b'\} = \int p(x) dx b'a'$.

El área sombreada en la fig. 2 es igual al valor de la integral.

Figura 2

Valor integral para el area entre a' y b'

Nota. Fuente tomado de Sóbol (1983)

El conjunto de los valores de £ puede formar un intervalo cualquiera. Puede darse incluso el caso de que $a = -\infty$ y también el de que $b = \infty$. En cambio, la densidad p(x) debe cumplir 2 condiciones análogas a las condiciones 1 y 2 para las variables discretas. a) la densidad p (x) debe ser positiva: p(x) > 0;

b) la integral de la densidad p(x) correspondiente a todo el intervalo (a, b) debe ser igual a 1: $\int p(x)dx = 1$

b'

a'. (p.18-20)

2.1.16 Variabilidad e incertidumbre

En la naturaleza, la variabilidad es referida al cambio constante de la data en estudio, y que sin importar el tamaño de la muestra no se puede eliminar. Al aumentar la muestra podemos reducir la incertidumbre de la data, pero la variabilidad es inherente al sistema mismo, como ejemplo la geología, aunque es más variable en sentido horizontal que

vertical, es propio del sistema, aunque se tome muchas muestras y pruebas, siempre existirá. Por ende, para los modelos es conveniente reducir la incertidumbre para administrar mejor la variabilidad, ajustando el tamaño de la muestra que ha de ser necesaria para un nivel de aceptación del modelo. Por el contrario, la incertidumbre proviene del no conocer la data, o tener data errónea. Es así entonces que cuando algo no es conocido se dice que la incertidumbre es alta. Para reducir ella debemos analizar las variables inciertas y el cómo eliminar o reducir aquella incertidumbre, como ejemplo podemos reducirla haciendo un estudio o seguimiento de esta, por terceros expertos en el campo a estudiar, y de no ser posible tomando alguna data histórica referencial que pudiera aproximarse a lo que necesitaremos. (Baecher y Cristian, 2001)

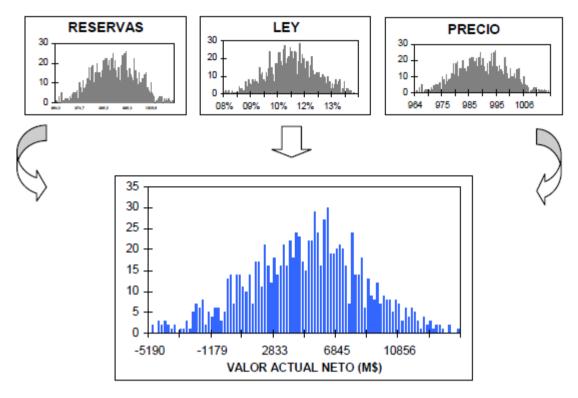
2.1.17 Valor Actual Neto:

Sapag, N (2011) plantea que el VAN es el método más conocido, mejor y más generalmente aceptado por los evaluadores de proyectos. Mide el excedente resultante después de obtener la rentabilidad deseada o exigida y después de recuperar toda la inversión. Para ello, calcula el valor actual de todos los flujos futuros de caja, proyectados a partir del primer periodo de operación, y le resta la inversión total expresada en el momento 0.

Si el resultado es mayor que 0, mostrará cuánto se gana con el proyecto, después de recuperar la inversión, por sobre la tasa de retorno que se exigía al proyecto; si el resultado es igual a 0, indica que el proyecto reporta exactamente la tasa que se quería obtener después de recuperar el capital invertido; y si el resultado es negativo, muestra el monto que falta para ganar la tasa que se deseaba obtener después de recuperada la inversión. Cuando el VAN es negativo, el proyecto es inviable. En algunos casos, como se explicará más adelante, el VAN negativo puede incluso indicar que, además de que no se obtiene rentabilidad, parte o toda la inversión no se recupera.

2.1.18 Simulación de Montecarlo:

Asofeifa, C (2011) sostiene que la simulación de Montecarlo es básicamente un muestreo experimental cuyo propósito es estimar las distribuciones de las variables de salida, que depende de variables probabilísticas de entrada. El modelo de Montecarlo puede simular los resultados que puede asumir el VAN de un proyecto. Pero lo más relevantes es que la simulación permite experimentar para observar los resultados que va observando dicho VAN.


El método de muestreo estadístico Montecarlo nos permite seleccionar números aleatorios mediante una distribución de probabilidad para aplicarlo en simulación. **Ortiz, O (2015).**

Gavilán, C (2022) manifiesta que un método de análisis de riesgo es el método de Montecarlo, que es una técnica de simulación conceptualmente muy simple, fácil de comprender y aplicar. Requiere un número elevado de cálculos repetitivos, que se realizan cómodamente, mediante un ordenador.

Variables indeterminadas de un proceso de simulación pueden evaluarse mediante métodos Montecarlo, debiendo elegir una función de probabilidad. Ortiz, O (2015). La simulación Monte Carlo es básicamente un muestreo experimental cuyo propósito es estimar las distribuciones de las variables de salida, que depende de variables probabilísticas de entrada. el modelo de MonteCarlo puede simular los resultados que puede asumir el VAN de un proyecto. Pero lo más relevante es que la simulación permite experimentar para observar los resultados que va mostrando dicho VAN. Azofeifa, C (2011)

Figura 3

Valor actual neto

Fuente: Gavilán S. (2022)

2.2 Marco conceptual

- Análisis de Sensibilidad: Los resultados que se obtienen al aplicar los criterios de evaluación no miden exactamente la rentabilidad del proyecto, si no la de uno de los tantos escenarios futuros posibles. (Sapag, 2001)
- Simulación de Montecarlo: El modelo de simulación de Montecarlo genera numerosos resultados que puede tomar el VAN del proyecto si a cada factor que condicione el flujo de caja se le asigna, aleatoriamente, un valor probable de ocurrencia. (Sapag, 2011)
- Rentabilidad: La rentabilidad es el beneficio obtenido de una inversión. En concreto, se mide como la ratio de ganancias o pérdidas obtenidas sobre la cantidad invertida. (Herrera, 2018)

 Valor actual neto: Conocido como VAN que mide, en valores monetarios, los recursos que aporta el proyecto por sobre la rentabilidad exigida a la inversión y después de recuperada todo ella. (Sapag, 2001)

Capítulo III: Metodología de la Investigación

3 Metodología

3.1 Tipo de investigación

Según Hernández et al. (2020), la presente investigación es aplicada porque después de una serie de procesos se podrá implementar las recomendaciones encontradas con las variables asociadas a la rentabilidad, busca aplicar conocimientos (análisis de riesgo e incertidumbre en proyectos mineros), así como también herramientas en modelo de simulación Montecarlo con orientación de responder problemas actuales y que se presenten en contexto similares porque se busca poner en práctica los conocimientos teóricos y empíricos que se tiene acerca del análisis de sensibilidad.

3.2 Nivel de la investigación

Según Arias (2006) considera la investigación con un nivel descriptivo, busca determinar características y describir las variables técnicas en un yacimiento tipo sulfuro.

Según Arias (2006) la investigación es correlacional porque determina el grado de relación entre las variables, busca establecer una relación directa entre las variables técnicas identificados con la simulación de Montecarlo por el método de sensibilidad.

3.3 Diseño de la investigación

Diseño experimental según Hernández et al, (2020) se manipula una variable independiente para analizar efectos en la variable; por ser de tipo cuantitativa, con un enfoque científico, donde las variables se mantienen relacionadas (simulación de Montecarlo), mientras que el otro conjunto de variables se mide como sujeto de experimento (ley, precio, recuperación metalúrgica y costo de operación).

3.4 Población y Muestra

3.4.1 Población

Hernández et al. (2014) indica que la población sobre la cual se recolectan datos se debe definir y delimitar con precisión; para nuestra investigación Operaciones mineras subterráneas de la empresa JJL, información y/o datos de resultados operativos durante 2023 – 2024.

3.4.2 Muestra

La muestra para considerar serán las operaciones mineras subterráneas JJL de la veta Disputada durante el periodo 2023 - 2024

3.5 Técnicas de recolección de datos

Para permitir resultados fiables, Vara, (2012), en caso de observación sistemática, registros en formatos preestablecidos, formulación de preguntas a manera de conversación y lluvia de ideas.

3.5.1 Fuentes de Recolección de datos

Las fuentes para obtener los datos son:

- Estimación de recursos
- Información histórica
- Resultados operativos

3.5.2 Instrumentos de recolección de datos

Resultado de la operacionalización de variables que contienen items que se aplican a la muestra, Calderón & Alzamora (2003). Un instrumento adecuado es aquel que registra datos observables que representan las variables que el investigador tiene en mente Bostwisk & Kyte (2005)

- Guía de observación
- Software Crystal Ball

3.6 Presupuesto

El presupuesto considerado para el presente trabajo de investigación es el que se lista en la tabla 2

Tabla 2

Presupuesto del trabajo de tesis

DESCRIPCIÓN	UNID.	CANT.	PRECIO (s/.)	PARCIAL(s/.)
Papel bond x 80gr.	Mill	4	25.00	100.00
Tinta para impresora.	Und.	5	50.00	250.00
Fotocopiado	Mes	5	30.00	150.00
Material bibliográfico	Glb	1	500.00	500.00
Total				1000.00

Fuente: Elaboración propia

Los recursos para realizar el presente informe de investigación fueron proporcionados por el autor de esta investigación

3.7. Presentación Datos generales

3.8. Proyecto de sulfuro

El proyecto en investigación a quien llamaremos proyecto JJL en el yacimiento Luana, presento una oportunidad de transformar sus procesos operativos de minado de convencional a mecanización, debido la oportunidad de transición mineralógica del yacimiento Luana de oxido con contenido de Au a sulfuro con contenido de Cu, Ag y Au. Por contar con los parámetros técnicos para el método.

Lo que permite mediante los estudios técnicos de Geomecanica dimensiones mayores para poder hacer uso de la mecanización de los procesos, brindado una operación más segura con alta recuperación, bajos costos y alta productividad.

Esta investigación permite demostrar que la simulación de las principales variables mediante la aplicación de la simulación de Montecarlo nos brinda los drivers ideales para poder hacer del proyecto rentable, viable y recuperable en el tiempo creando valor para la organización durante el periodo de operación del proyecto minero. Así mismo determina el VAN optimo.

3.9. Recursos y reservas

El yacimiento en estudio corresponde a un yacimiento de origen hidrotermal con las siguientes características:

Longitud potencial : 4500 m.

Longitud económica: 500 m.

Rumbo : N80° E

Potencia : 4.5 m

Buzamiento : 55°

Mineralogía : Cuarzo y calcita con pirita, calcopirita y arsenopirita.

La transición mineralógica de oxido a sulfuro permite una oportunidad de mejora para crear valor en la organización.

Figura 4

Estimacion de Recursos y Reservas 2022

	TMS	Ancho	gr.Au/t	gr.Ag/t	%Cu
Medidos	798,670	7.28	1.51	12.48	1.92
Indicados	1,192,928	4.34	1.37	12.49	1.36
Total Recursos	1,991,598	5.51	1.43	12.49	<i>1.58</i>

<i>Inferidos</i> 1,277,574	2.53	2.37	8.92	0.93
----------------------------	------	------	------	------

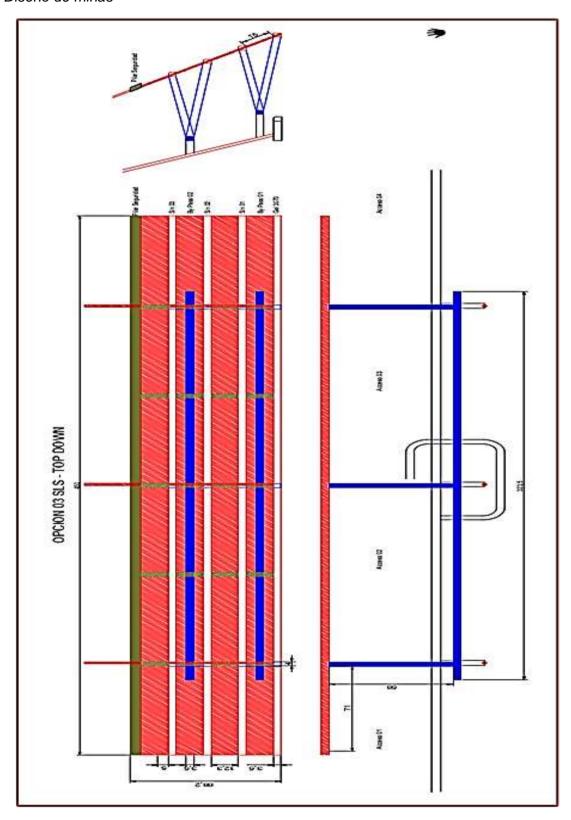
	TMS	gr.Au/t	gr.Ag/t	%Cu
Probadas	992,733	1.28	10.46	1.62
Probables	1,518,277	1.14	10.34	1.12
Total Reservas	2,511,010	1.19	10.39	1.32

Fuente: Planeamiento

3.10. Diseño de mina

El macizo rocoso en la zona de minado es buena, cuyo comportamiento es de un macizo compacto y con propiedades geomecánicas favorables con buena resistencia, sin alteración, sin agua y poco encampane, estructuralmente adecuado; por lo tanto, para los trabajos de minado no va a requerir sostenimiento; según las valuaciones Q y RMR del macizo rocoso de las labores subterráneas para la roca granodiorita – tonalita cuyo

RMR fluctúa entre 65 y 75; mientras que con el índice Q la valuación fluctúa entre 8.67 a 10, que califica a los intrusivos como roca regular a buena calidad y por otro lado la veta sulfuros es muy compacto de buenas condiciones geomecánicos, cuyos valores en RMR están entre 85 a 89 y con el Índice Q de Barton 14.22 hasta 35.56, que valúan a la roca como Buena, en forma general donde se consideró a y la veta de sulfuros, donde se realizará el minado presenta una valuación geomecánica de una roca de BUENA A MUY BUENA CALIDAD.


Por las características geomecánicas favorables de la veta Disputada y las cajas de granodiorita-tonalita, el método de explotación SLS con sus variantes Top Down y Bench and Fill son los adecuados para el minado de la veta Disputada; para el cual se realizó las simulaciones con los métodos numéricos y gráficos, considerando todas las dimensiones del Diseño, como la longitud, altura y ancho de minado, en todos los casos requeridos el factor de seguridad está por encima 1.19.

Se realizaron simulaciones con los softwares de Rockscience Phases2 v8, longitudes de 71m tajo, altura de banco de 15.m y ancho de veta de 2.0m y de 10m, considerando que la veta está dentro de ese rango; con cortes de 10m por disparo a partir del slot hacia los extremos; en todos los casos con un factor de seguridad por encima de lo requerido, como se muestra en las figuras del presente estudio.

Según el método gráfico de estabilidad de Mathews y modificado por et al, las condiciones de explotación son muy favorables.

Figura 5

Diseño de minas

Fuente: Planeamiento

3.11. Desarrollo y Preparación

Para la preparación de las zonas de explotación es necesario la ejecución de excavaciones dentro del plan de preminado estas serán llevadas a secciones que permitan una producción segura e eficiente considerando los aspectos geomecánicos descritos anteriormente. Se considera las siguientes secciones tipo para el plan de minado del año 2024.

DISEÑO DE TRABAJOS DE DESARROLLO Y PREPARACION

Figura 6

Dimensión de sección de labores

Tipo	Ancho	Alto
	(m)	(m)
Acceso a Subnivel	4.0	4.0
Acceso a chimenea	3.5	3.5
Subnivel	4.0	4.0
By Pass operativo	4.0	4.0
by I ass operative	4.0	4.0
Cámaras	4.0	4.0
Cámaras de carguío	4.0	4.0
Chimeneas	ф	2.1
Rampa Operativa	4.0	4.0
rampa oporativa	4.0	4.0
Nivel principal	4.0	4.0
Refugios	1.8	1.8

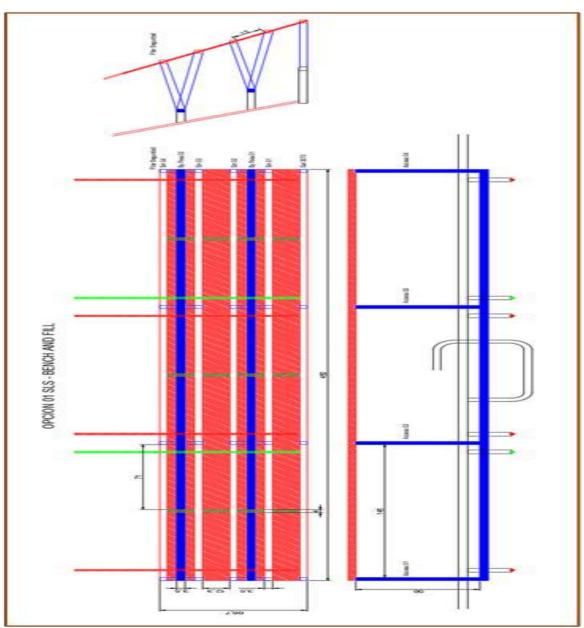
Fuente: Planeamiento

3.12. Método de explotación

Método de Minado SLS opción Bench and Fill, corte de bancos con relleno, se dejará un pilar de 4m en la parte superior y pilares transversales de 4m de espesor cada 150m.

Sección Típica sobre esta sección realizó la simulación con Phase2 v8 en rocas, con un espesor de veta de 2m y otro con un espesor de 10m: Altura de banco de 15m según diseño.

Veta de roca Muy Buena Tipo I, con RMR = 80

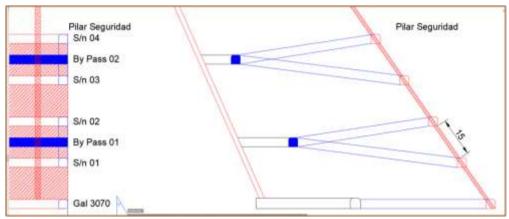

Roca caja techo Buena Tipo II, con RMR = 65

Roca caja piso Buena Tipo II, con RMR = 75.

DISEÑO SECCIÓN LONGITUDINAL MÉTODO SLS - OPCIÓN BENCH AND FILL

Figura 7

Informe Geomecánico Agnitia Consultores SAC 2021.



Fuente: Planeamiento

DISEÑO SECCIÓN TRANSVERSAL MÉTODO SLS - OPCIÓN BENCH AND FILL

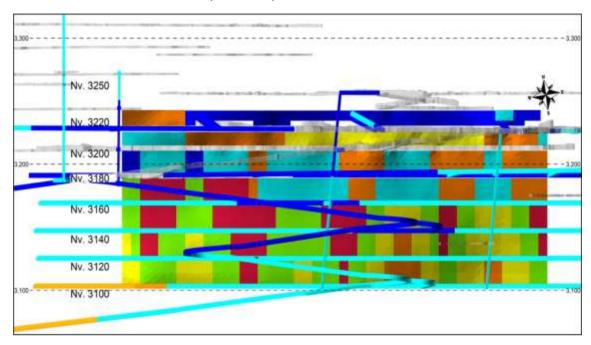
Figura 8

Diseño transversal

Fuente: Planeamiento

3.13. Life Operation Mine- mina JJL

El Life Operation mine está estimado para una vida útil de 09 años de operación de la unidad minera, con una estimación de 2, 391.561 TM de Recursos de mineral. Con un nivel de producción de 800 TPD y luego a 1000 TPD.


Figura 9

LOM Mina JJL

Plan de Minado	Unid	1	2	3	4	5	6	7	8	9	Total
Producción	t	288,000	288,000	288,000	288,000	288,000	288,000	288,000	288,000	87,560	2,391,561
Oro	gpt	1.18	1.15	1.07	1.82	1.33	1.08	2.05	2.05	2.05	1.49
Plata	gpt	13.64	11.61	13.26	6.71	11.30	10.71	7.73	7.73	7.73	10.24
Cobre	%	2.00	1.85	1.63	1.04	1.05	0.97	0.81	0.81	0.81	1.25
Valor por Tonelada	US\$/t	159.36	148.72	133.89	120.62	107.20	94.27	114.31	114.31	114.31	123.73

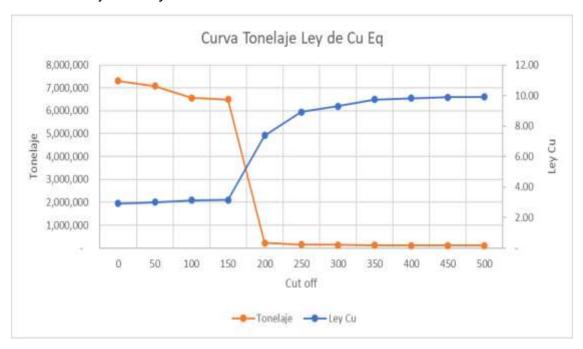
Fuente: Planeamiento

Figura 10
Secuencia de minado LOM para los primeros 05 años.

Año	Leyenda
Topografia	
2024	
2025	
2026	
2027	
2028	11
2029	

Fuente: Area de Planeamiento

3.14. Curva Tonelajes VS. Ley


Figura 11

Calculo Tonelaje VS. Ley

Leycorte	Criterio	Tonelaje	Ley Media Au	Ley Media Ag	Ley Media Cu	Ley Media Cu Eq
0	>=0	7,310,386	1.41	14.28	1.16	2.93
50	>=50	7,079,605	1.44	14.60	1.19	3.00
100	>=100	6,569,230	1.51	15.29	1.24	3.14
150	>=150	6,493,859	1.51	15.39	1.24	3.15
200	>=200	221,997	4.57	11.87	1.86	7.39
250	>=250	155,057	5.83	6.78	1.93	8.91
300	>=300	130,696	6.48	6.71	1.60	9.29
350	>=350	116,206	6.81	6.59	1.66	9.74
400	>=400	113,344	6.86	6.62	1.68	9.83
450	>=450	110,749	6.88	6.68	1.71	9.88
500	>=500	107,986	6.89	6.70	1.73	9.91

Fuente: Area de Planeamiento

Figura 12 Curva Tonelaje VS. Ley

Nota: Fuente Area de Planeamiento

3.15. Datos técnicos económicos del proyecto

DATOS DEL PROYECTO

Reservas	2,511	Miles TM de mineral de Cu
Precio del Cu	8,500	US\$/TM
Ley mineral	1.92	% Cu
Recuperación Metalúrgica	95%	
Capacidad	600	TM/día (300 días/año)
Inversión (US \$)	45	millones (se ejecuta en 1 año)
Financiamiento (US \$)	32	millones
Plazo	8	años, sin periodo de gracia
Tasa interés (costo deuda)	10%	anual
Costo oportunidad	12%	anual

Depreciación Activos y Amortización de Intangibles:

Equipos	8 años
Obras Civiles	10 años
Intangibles	6 años

	miles US
INVERSIONES	\$
Equipos (Mina, Planta)	25,800
Obras Civiles, Metal	
Mecánica	11,000
Activos Intangibles	5,400
Capital de Trabajo	2,800
Total	45,000
Aporte propio	13,000
	8.4%

- 3.16. Resultados de datos generales para aplicar modelo de simulación Montecarlo
- 3.16.1. Estimación del NSR según precios de mineral y tipo de procesamiento metalúrgico

Tabla 3Cálculo del NSR

DATOS DE PRODUCCIÓN		Flotación	Lixiviación
Precio del Cu	US\$/t	8,550	8,550
Precio del Cu	US\$/lb	3.88	3.88
Precio del Au	US\$/oz	1,900	1,900
Precio de la Ag	US\$/oz	22	22
Volumen de Tratamiento	t/mes	100	100
Ley de Cu	%	1.32%	1.32%
Ley de Au	g/t	1.19	1.19
Ley de Ag	g/t	10.39	10.39
Recuperación del Cu	%	90%	0%
Recuperación del Au	%	75%	85%
Recuperación del Ag	%	70%	80%
Ley de Concentrado Cu	%	23.80%	
Au en Cc de Cu	g/t	14.67	
Ag en Cc de Cu	g/t	98.09	
Ratio de Concentración	TMS/t CC	15.46	
VALOR DE MINERAL			
Cu Pagable	%	92%	0%
Cu-Finos Pagables	tmf	1	0
Cu-Finos Pagables	lbs	3,122	0
Au Pagable	%	90%	95%
Au Fino Pagable	ozs finas	3	3
Ag Pagable	%	90%	95%
Ag Fino Pagable	ozs finas	21	25
Valor de Mineral	US\$/TMS	175	64
VVI 00 00 0			
VALOR CC Cu	LICEN OR	4.500	
Valor del CcCu por Cu	US\$/t CC	1,533	
Valor del CcCu por Au	US\$/t CC	700	
Valor del CcCu por Ag	US\$/t CC	28.5	
Valor por tonelada d Cc de Cu	US\$/t CC	2,261.1	0.0
NSR - VPT			
Cu	US\$/t	105.10	
Au	US\$/t	48.00	58.70
Ag	US\$/t	1.96	5.59
NSR	US\$/t	155.05	64.28

Fuente: Área de Planeamiento

3.16.2. Resultados operativos de Producción y Tratamiento de mineral 2023-2024

Tabla 4

Resultados operativos 2023-2024

Resultados operativo	03 2023	-2024								
								Acum.		
			Ago-23	Set-23	Oct-23	Nov-23	Dic-23	2023	Ene-24	Feb-24
Tratamiento Cuantica	Mineral	TMH	3,845	7,601	10,682	11,215	11,208	44,551	11,222	10,012
	Humedad	%	0.83%	0.64%	0.66%	0.50%	0.49%	0.47%	0.66%	1.25%
	Mineral	TMS	3,813	7,552	10,612	11,159	11,153	44,289	11,148	9,887
	Cobre	%	1.31%	1.34%	1.35%	1.29%	1.19%	1.29%	1.84%	2.17%
	Oro	oz.Au/TM	0.027	0.019	0.021	0.022	0.021	0.021	0.018	0.024
	Plata	oz.Ag/TM	0.525	0.526	0.527	0.702	0.579	0.584	0.474	0.528
Concentrado de Cobre	Volumen	TMH	238	404	615	584	591	2,431	615	660
	Cobre	%	15.42%	15.88%	19.69%	22.76%	18.41%	19.07%	19.18%	20.71%
	Oro	oz.Au/TM	0.216	0.164	0.222	0.291	0.241	0.233	0.178	0.104
	Plata	oz.Ag/TM	4.138	4.216	5.188	8.673	6.609	6.11	4.11	3.113
	Ratio Cc		16.03	18.17	17.26	19.11	18.86	18.12	18.13	14.97
Stock CcCu en Planta		ТМН		213	236	168	238		204	165
Recuperación Metalurgica	Cobre	%	73.22%	64.99%	84.73%	91.99%	81.75%	79.34%	57.58%	63.69%
	Oro	%	50.50%	47.31%	62.48%	69.59%	67.32%	59.44%	55.14%	50.19%
	Plata	%	49.16%	44.11%	57.07%	64.61%	60.57%	55.10%	47.82%	46.26%

Nota. Área de Planeamiento

3.16.3. Resultado Cash Cost 2023 -2024

Tabla 5
Resultado de Cash cost2023 -2024

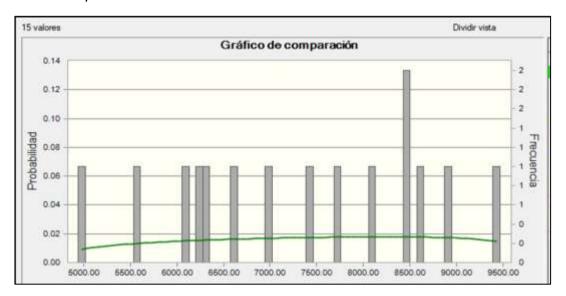
OPERACION	Unided	Ago-23	Set-23	Oct-23	Nov-23	Dic-23	Ene-24	TOTAL
Minado	TMH	8,744	10,689	14,012	17,808	6,305	6,098	73,686
Transportado a Tocota	TMH	8,922	9,528	11,513	10.688	2,014	8,390	59,536
Transportado a Nazca	TMH	8,827	10,891	13,369	11,721	5,644	5,963	57,817
Tratamiento	TMS	3,813	7,552	10,612	11,159	11,153	11,148	55,436
Producción-Concentrado	TMS	222	376	573	539	546	567	2,824
Venta-Concentrado	TMS	0	426	592	652	517	649	2.837
CONTRIBUCION	Unidad	Ago-23	Set-23	Oct-23	Nov-23	Dic-23	Ene-24	TOTAL
VENTA	US\$k	0.0	589.1	973.8	1,367.0	1,046.1	1,107.9	5,083.9
CASH COST	US\$k	791.4	1,030.3	1,139.3	1,221.4	911.7	946.9	7,451.0
MINA	US\$k	506.7	570.4	526.2	605.6	404.6	412.5	4,351.6
Spectra	USSk	215.8	195.0	183.4	184.4	159.2	154.8	1,714.6
Suministros	US\$k	186.9	243.3	222.6	296.2	186.9	179.2	1,849.7
Transporte	US\$k	104.1	132.1	120.2	125.1	58.5	78.5	787.3
PLANTA	US\$k	252.1	419.6	579.4	561.8	457.6	476.7	2,769.1
Transporte Mineral	US\$k	138.1	171.0	232.0	195.5	95.8	95.7	950.0
Quantica	US\$k	114.0	234.9	328.5	345.4	345.3	360.3	1,728.4
Transporte CC	US\$k	0.0	13.6	18.9	20.9	16.6	20.8	90.8
SSGG	US\$k	32.6	40.3	33.6	54.0	49.5	57.7	330.2
CONTRIBUCIÓN	US\$k	-791.4	-441.3	-165.4	145.6	134.4	160.9	-2,367.1
SERVICIO DE DEUDA	US\$k	101.2	101.2	104.3	82.6	82.6	82.6	894.1
MARGEN NETO	USSk	-892.6	-542.5	-269.7	63.0	51.9	78.4	-3,261.2

Fuente: Área de Planeamiento

3.17. Estadísticos de las variables supuestas para el modelo estocástico utilizando el software Oracle Crystal Ball

3.17.1. Simulación de Precio de Cu%

Tabla 6


Precio histórico del Cu%

	Precio	o Cu
	Cv.\$/lb	U\$S/TM
2011	343.250	7,688.80
2012	360.590	8,077.22
2013	332.120	7,439.49
2014	311.255	6,972.11
2015	249.226	5,582.66
2016	220.563	4,940.61
2017	279.684	6,264.92
2018	295.880	6,627.71
2019	272.143	6,096.00
2020	280.349	6,279.82
2021	422.634	9,467.00
2022	399.026	8,938.18
2023	384.545	8,613.81
Ene-24	378,491	8,478.20
Feb-24	376.969	8,444.11

Fuente: Elaboración propia

Figura 13

Gráfico de probabilidad de Precios

Nota. Elaboración propia

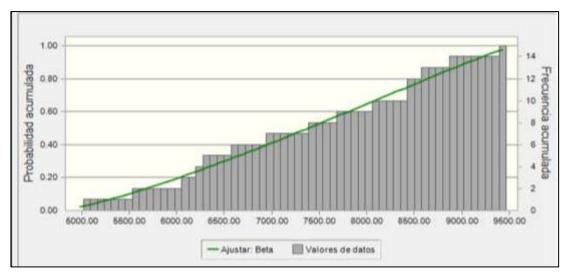

Considerado intervalos de valores de presiones entre 6000 \$/TM a 9000 \$/TM lo cual permite simular con los diferente valores según las votalidades que se puedan presentar en el mercado de cotizaciones de mineral.

Figura 14
Cálculo del Beta del Precio del Cu%.

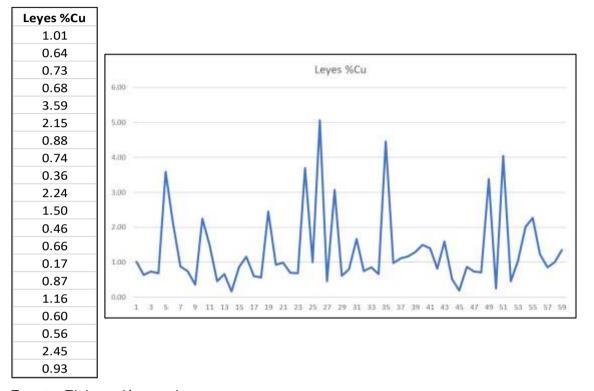
Distribución	A-D	Valor P A-D	K-S	Valor P K-S	Chi-cuadrado
Beta	.1651		.0865		.7333
Beta PERT	1.8123		.2142		5.5333
Exponencial	4.6659	0.000	.4905	0.000	37.5333
Extremo máximo	.3264	0.526	.1281	0.676	.7333
Extremo mínimo	.2749	0.664	.1326	0.618	1.8000
Gamma	.2690	0.883	.1391	0.755	1.8000
Logarítmico nor	.2717	0.437	.1310	0.464	1.8000
Logística	.2836	0.575	.1333	0.510	1.8000
Normal	.2366	0.734	.1307	0.635	1.8000
Pareto	1.8788		.3101		2.8667
t de Student	1.0406		.2060		5.5333
Triangular	.2521		.1212	***	.7333
Uniforme	.3198	0.797	.1491	0.793	1.2667
Weibull	.2094	0.763	.1224	0.710	1.8000

Fuente: Elaboración propia

Figura 15
Probabilidad Acumulada del Precio del Cu

Observamos que la probabilidad acumulada ha ido en crecimiento dado las fluctuaciones en el mercado.

Figura 16


Resultados estadísticos del precio del Cu.

Estadística	Ajustar: Beta	Valores de datos
Valores		15
Caso base		
Media	7327.38	7327.38
Mediana	7382.71	7439.49
Modo	8193.55	
Desviación e	1296.24	1341.73
Varianza	1680227.79	1800244.06
Sesgo	-0.1231	-0.1110
Curtosis	1.91	1.66
Coeficiente d	0.1769	0.1831
Mínimo	4753.12	4940.61
Máximo	9550.26	9467.00
Error estánda		346.43

Nota. Elaboración propia

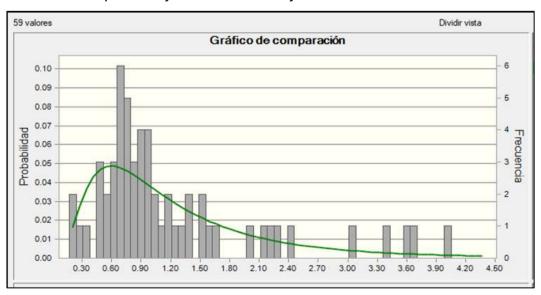

3.17.2. Simulación de la ley de Cabeza de Cu%

Figura 17
Simulación de Datos de Ley de Cabeza de Cu%

Fuente: Elaboración propia

Figura 18
Gráfico de comparación y/o incidencia de leyes de Cu

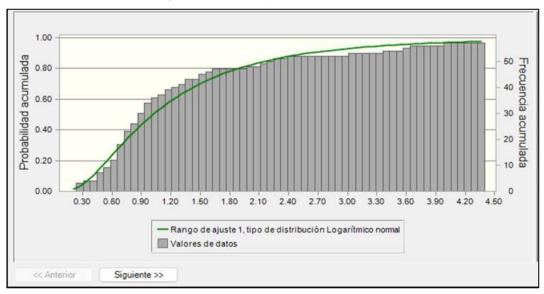

Nota. Elaboración propia

Figura 19
Cálculo del Beta del precio de las leyes de Cu.

Distribución	A-D	Valor P A-D	K-S	Valor P K-S	Chi-cuadrado
Logaritmico nor	.7179	0.026	.1023	0.072	7.6610
Gamma	1.2067	0.000	.1242	0.056	11.6271
Weibull	1.4110	0.033	.1222	0.019	14.6780
Extremo máximo	2.2200	0.000	.1664	0.000	18.6441
Exponencial	3.4702	0.000	.2190	0.000	27.1864
Beta PERT	3.5021		.1899		21.6949
Logística	3.5181	0.000	.1648	0.000	34.5085
de Student	4.6626	***	.2338		44.5763
Normal	4.8542	0.000	.2196	0.000	43.6610
Extremo mínimo	6.9195	0.000	.2495	0.000	82.4068
Pareto	10.0216	***	.3561		63.1864
Triangular	10.3503	•••	.3349		36.6441
Uniforme	25.9129	0.000	.4836	0.000	88.5085
Beta	36.2733		.1949		18.3390

Nota. Elaboración propia

Figura 20
Gráfico de distribución logarítmica de Ley de Cu

Nota. Elaboración propia

Las leyes de cabeza obtenidas han sido resultado de un proceso de ore control estricto dado el comportamiento del yacimiento a fin de contar con calidad para el proceso.

Figura 21

Resultados estadísticos del Ley del Cu

Estadística	Rango de ajuste 1, tipo de	Valores de datos
Valores		59
Caso base		
Media	1.33	1.33
Mediana	1.02	0.93
Modo	0.59	0.45
Desviación e	1.13	1.10
Varianza	1.27	1.20
Sesgo	3.18	1.70
Curtosis	25.25	5.19
Coeficiente d	0.8471	0.8230
Minimo	0.01	0.17
Máximo	80	5.06
Error estánda	224	0.14

Los datos obtenidos de la ley de cabeza obedecen a un resultado de muestreo sistemático in sito y post voladura, obtenidos de un análisis gravimétrico en los laboratorios.

El comportamiento de la estructura mineralizada del yacimiento es de una manera irregular por lo que el control esctricto amerita poder contar las las leyes del mineral previo a su dispocion a planta para su tratamiento.

Las leyes indican una media de 1.33 % el cual estaría muy cerca de la ley cut off de 1.8%

3.17.3. Simulación de los Costos de operación

Figura 22Datos de Costo de producción

Costos de	
Produccion	
\$/Ton	
90.5	
47.8	Costo de Produccion
35.3	
69.1	300
114.2	250
49.8	700
251.3	200
43.5	150
48.6	^ / \
73.2	100
75.64	50
91.34	0
42.3	Mes
49.1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
38.4	
126.3	
26.5	
83.7	
90.2	
153.9	

Nota. Elaboración propia

La variación del costos de producción unitario refleja una variación por el nivel de producción sin embargo deberían se estar por debajo del cut off económico que es de 94\$/tn.

Figura 23
Gráfico de probabilidad de costos de operación

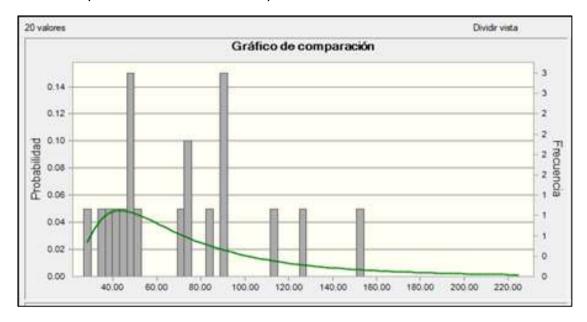


Figura 24

Cálculo del Beta del costo de operación

Distribución	A-D	Valor P A-D	K-S	Valor P K-S	Chi-cuadrado
Logaritmico nor	2282	0.630	.1347	0.280	1,2000
Weibull	3561	0.842	1451	0.183	1.2000
Extremo máximo	.4928	0.220	.1956	0.033	4.0000
Beta PERT	6955		.1448	-	2.0000
Logistica	.7520	0.026	.1518	0.139	8000
t de Student	1.0093		.1996		2.4000
Normal	1.1961	0.000	.2144	0.015	1,6000
Pareto	1.8127		2547	000	6.0000
Exponencial	2.1977	0.000	3066	0.000	9.2000
Extremo mínimo	2.2593	0.000	2648	0.000	16.8000
Gamma	2.4339	0.000	2953	0.000	8.4000
Triangular	3.9593		3785		8.0000
Uniforme	7.7004	0.000	4932	0.000	16.4000
Bets	14.5868	min	1500		1.2000

Fuente: Elaboración propia

Figura 25

Probabilidad acumulada del costo de operación

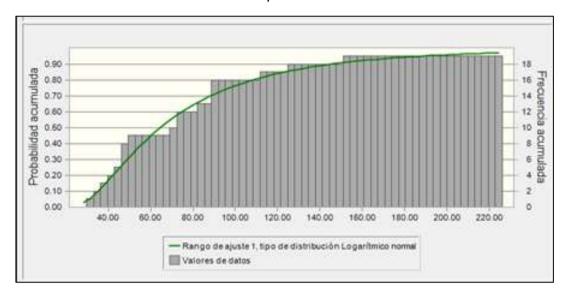


Figura 26

Resultados estadísticos del costo de operación

Estadistica	Rango de ajuste 1, tipo de distribución Logarítmico normal	Valores de dato
Valores		
Caso base	444	
Media	81.55	
Mediana	64.47	
Modo	42.88	
Desviación e	59.26	
Varianza	3,512.12	2
Sesgo	3.63	
Curtosis	33.11	
Coeficiente d	0.7267	
Minimo	18.21	
Máximo	-	
Error estánda	1 400	

Fuente: Elaboración propia

Representa un 80% de probabilidad que el costos de operación estaría por encima de 100\$/tn

3.17.4. Simulación de la Recuperación metalúrgica Cu%

Figura 27

Datos simulados de Recuperación Metalúrgica de Cu%

Recup. Met. Cu%																						
73.22%	-																					
64.99%																						
84.73%																						
91.99%																						
81.75%								Rec	upe	raci	on I	vieta	lur	gica	s Cu	%						
85.30%	100.00%																					
92.00%	90.00%			1	\frown	\	_		1				_							/		
90.00%	70.00%	-	/							1				/				-				
67.00%	50.00%													-	_		/	-				
75.20%	40.00%																					
82.00%	30.00%																					
81.50%	20.00%																					
62.10%	0.00%																					
57.20%	ASSESSED		Mes 2	Mes 3	Mes 4	Mes 5	Mes 6	Mes.	Mes 8	Mes 9		Mes 11					Mes 15			Mes 20	Mes 21	
53.10%																						
51.60%																						
69.00%																						
74.20%	1																					
76.80%	1																					
85.10%	1																					
90.60%	1																					
92.40%	1																					

Fuente: Elaboración propia

El proceso metalúrgico ha tenido variabilidad por la geometalurgia del mineral presentándose escenarios de transición de mineral oxido a mineral mixto y mineral sulfuro, ello genera la variación en los procesos metalúrgicos por el tipo de mineral impactando la ley de cabeza pero mejorando el grado de concentración de mineral.

Figura 28

Probabilidad con respecto a recuperación metalúrgica del Cu%

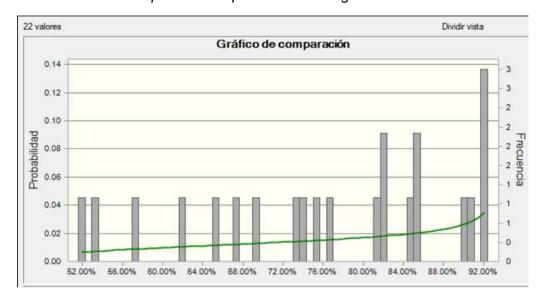


Figura 29

Resultado del Beta con respecto a la recuperación metalúrgica del Cu%

Distribución	A-D	Valor P A-D	K-S	Valor P K-S	Chi-cuadrado
Beta	.1666		.0935		.7273
Weibull	.3223	0.329	.1252	0.380	2.0909
Extremo mínimo	.3644	0.443	.1101	0.692	3.9091
Triangular	.4015		.1178		2.0909
Logística	.4395	0.227	.1348	0.239	2.0909
Normal	.4632	0.242	.1532	0.187	2.0909
Logarítmico nor	.4635	0.162	.1532	0.125	2.0909
Gamma	.5069	0.196	.1586	0.170	2.0909
Extremo máximo	.7996	0.035	.1672	0.095	1.1818
t de Student	1.3173		.2501		7.5455
Uniforme	1.5363	0.091	.2142	0.178	2.5455
Pareto	2.9981		.2866		33.9091
Beta PERT	3.5837		.2007		5.7273
Exponencial	7.0697	0.000	.4908	0.000	40.2727

Fuente: Elaboración propia

Figura 30

Probabilidad acumulada de la recuperación metalúrgica

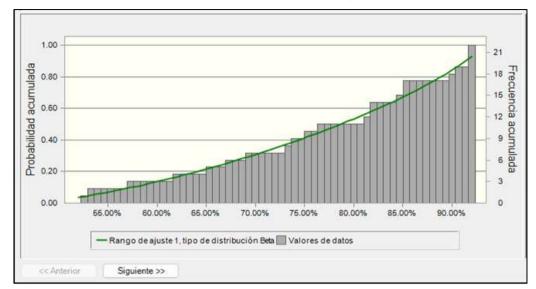
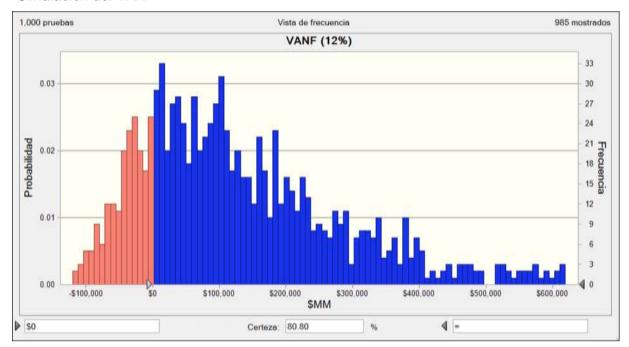


Figura 31
Resultados estadísticos de probabilidad de proceso metalúrgico

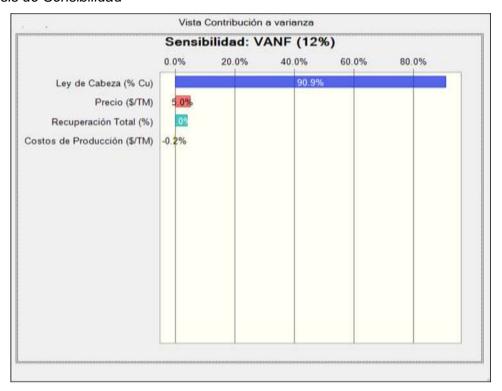

Estadística	Rango de ajuste 1, tipo de distribución Beta	Valores de datos		
Valores		22		
Caso base		***		
Media	76.44%	76.44%		
Mediana	78.72%	79.15%		
Modo	93.10%	***		
Desviación e	12.54%	12.84%		
Varianza	1.57%	1.65%		
Sesgo	-0.4994	-0.4657		
Curtosis	2.13	1.94		
Coeficiente d	0.1641	0.1679		
Minimo	46.85%	51.60%		
Máximo	93.10%	92.40%		
Error estánda	***	2.74%		

Nota. Elaboración propia

La media base determinadas es de 76.44% como promedio de recuperación metalúrgica lo cual determina que existe mayor probabilidad del tratamiento de mineral mixto a fin de conseguir un mayor grado de mineral concentrado.

3.18. Discusión de resultados

Figura 32
Simulación del VAN



Fuente: Elaboración propia

- Concluimos que al aplicar la situación de Montecarlo mediante el software Oracle
 Crystal Ball; la certeza simulada del VAN se obtendrá un 80.80%, lo cual es aceptable para la factibilidad del proyecto.
- Para el precio del Cu, observamos la figura 16 donde la media arroja un resultado de 7,327 \$ como valor para que el VAN sea positivo.
- Para la ley de Cu, obtenemos como resultado de la figura 19 donde la media arroja un resultado de 1.33% como valor para que el VAN sea positivo.
- Para el costo de producción, observamos la figura 26 donde la media arroja un resultado de 81.55 \$/t como valor para que el VAN sea positivo.
- Para la recuperación metalúrgica, observamos la figura 31 donde la media arroja un resultado de 76.44% como valor para que el VAN sea positivo.
- La determinación de VAN con una tasa de descuento del 12% asciende con un resultado de 100K \$.

Figura 33

Análisis de Sensibilidad

 Con respecto al análisis de sensibilidad de las variables relevantes de análisis, se evidencia que la ley de cabeza de Cu% representa el 90.9% de sensibilidad por lo que es la más representativa a la evaluación del VAN. Con ello conlleva a buscar leyes por encima de 1.8% Cu con la finalidad de ser viable.

Figura 34
Gráfico Tornado para evaluar las variables

Fuente: Elaboración propia

Tabla 7

Matriz de evaluación de mínimos y máximos de variables

	VANF (12%)				Entrada		
				Explicación de			
Variable de entrada	Hacia abajo	Hacia arriba	Rango	variación ¹	Hacia abajo	Hacia arriba	Caso base
Ley de Cabeza (% Cu)	-\$14,033	\$406,801	\$420,834	90.35%	0.98	3.44	1.92
Precio (\$/TM)	\$64,920	\$170,919	\$106,000	96.08%	6,385	9,122	8,500
Recuperación Total (%)	\$85,806	\$172,700	\$86,894	99.93%	69%	92%	85%
Costos de Producción (\$/TM)	\$155,008	\$143,365	\$11,643	100.00%	43.18	74.22	65.00

Mediante el grafico tornado (Fig.34) de la Simulación de Montecarlo determinamos que un mínimo de ley de 0.98% llega al mínimo del VAN.

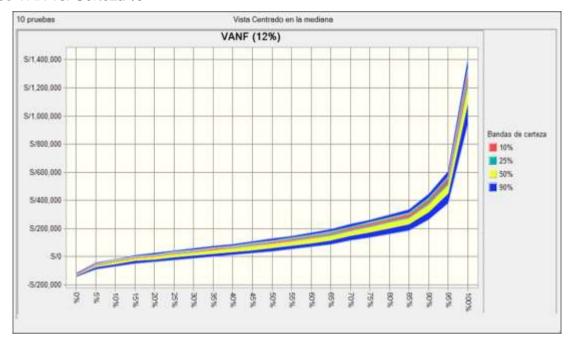
Por lo tanto con ley de 1.92 % Cu considerada como base seria óptimo para la viabilidad del VAN según cuadro de la Tabla 7

3.19. Prueba de Hipótesis

3.19.1. Contrastación de hipótesis general

Hipótesis general de trabajo

H₀ = El modelo de simulación de Montecarlo se relaciona positivamente con el pronóstico de la viabilidad del proyecto JJL, Perú 2024.


H₁= El modelo de simulación de Montecarlo No se relaciona positivamente con el pronóstico de la viabilidad del proyecto JJL, Perú 2024.

Por lo expuesto y calculado en el apartado anterior. El modelo de simulación de Montecarlo, nos permitió pronosticar la viabilidad durante año 2029 con una probabilidad aceptable del 88%. El pronóstico también nos permitió identificar la variabilidad de las variables relevantes y en que impactaban las variaciones, a fin de mejorar la probabilidad durante su ejecución.

Decisión: Se acepta la hipótesis H0, por cuanto el modelo de simulación Montecarlo si se relaciona positivamente con la viabilidad del proyecto JJL - 2024, lo cual nos permite una certeza aceptable y una precisión destacable

cuando comparamos lo pronosticado versus lo ejecutado realmente. Fig. 35 Muestra los percentiles

Figura 35
Gráfico VAN vs. Certeza %

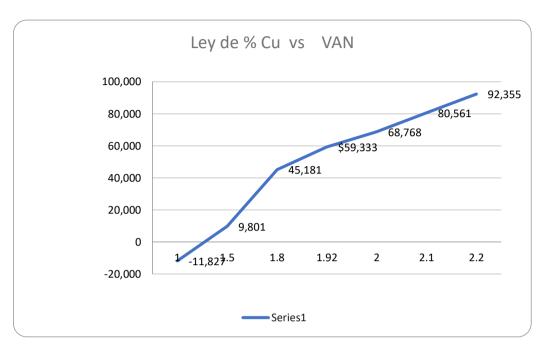
Fuente: Elaboración propia

Capítulo IV: Resultados de la Investigación

4. Análisis de los resultados de la investigación y contrastación de hipótesis

4.1. Contrastación de la hipótesis especificas

4.1.1. Primera Hipótesis especifica


H0: El Modelo de Simulación Montecarlo se relaciona positivamente con la ley de cabeza, para el pronóstico de viabilidad del proyecto JJL – 2024.

H1: El Modelo de Simulación Montecarlo No se relaciona positivamente con la ley de cabeza, para el pronóstico de viabilidad del proyecto JJL – 2024.

Discusión: El Modelo de Simulación Montecarlo, a través de la simulación tornado

nos permitió identificar la repercusión significativa de la ley de cabeza, la variación es representativa del 90.35%, por debajo de 0.98% el VAN tendrá una pérdida de 14,033 \$, mientras que por encima de 1.92% es más satisfactoria. Por tanto, la primera hipótesis específica H0 se da por aceptada. Como se muestra en la figura 36 donde al valor mínimos de la ley por debajo de 1% el VAN es sensible.

Figura 36
Gráfico variable Ley Cu% Vs VAN

4.1.2. Segunda Hipótesis especifica

H0: El Modelo de Simulación Montecarlo se relaciona positivamente con el precio de mineral, para el pronóstico de viabilidad del proyecto JJL – 2024.

H1: El Modelo de Simulación Montecarlo No se relaciona positivamente con el precio del mineral, para el pronóstico de viabilidad del proyecto JJL – 2024.

Discusión: El Modelo de Simulación Montecarlo, a través de la simulación tornado y pruebas de bondad de ajuste nos permitió identificar la repercusión significativa del precio de mineral, la variación es representativa del 96.08%, por debajo de 6,385\$/t el VAN tendrá una pérdida de 64,920 \$, Por tanto, la primera hipótesis específica H0 se da por aceptada. Como se muestra en la figura 37 el precio del Cu no es sensible a la variación manteniendo un VAN positivo.

Precio de Cu% vs VAN 180,000 160,000 146,823.**96**8,760 150,69*7*152,633 140,000 127,459 120,000 108.095 100,000 80,000 64.912 60,000 40,000 20,000 0 8,000 6,385 7,500 8,500 8,550 8,600 8,650 Series1

Figura 37
Gráfico variable Precio Cu vs VAN

Fuente: Elaboración propia

4.1.3. Tercera Hipótesis especifica

H0: El Modelo de Simulación Montecarlo se relaciona positivamente con la recuperación metalúrgica, para el pronóstico de viabilidad del proyecto JJL – 2024.

H1: El Modelo de Simulación Montecarlo No se relaciona positivamente con la recuperación metalúrgica, para el pronóstico de viabilidad del proyecto JJL – 2024.

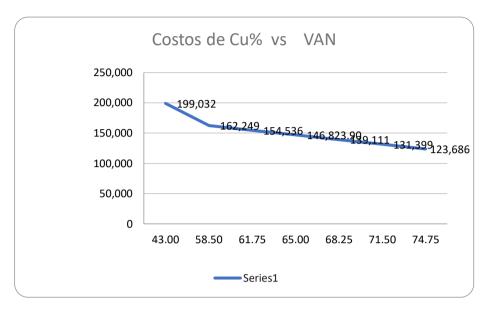
Discusión: El Modelo de Simulación Montecarlo, a través de la simulación tornado y pruebas de bondad de ajuste nos permitió identificar la repercusión significativa de la recuperación de mineral, la variación es representativa del 99.93%, por debajo de 69% como recuperación y el VAN tendrá una variación de 85,806 \$, Por tanto, la primera hipótesis específica H0 se da por aceptada. Como se muestra en la figura 38 la recuperación metalúrgica no es una variables sensible a la variación manteniendo un VAN positivo al valor mínimo.

Recuperación metalúrgica vs VAN 200,000 173,164 177,03 /180,910 180,000 160,000 146,053.71 140,000 120,000 107,325 100,000 84,087 87,960 80,000 60,000 40,000 20,000 70 75 62 85 92 93 94 Series1

Figura 38
Gráfico variable Recuperación metalúrgica Cu vs VAN

Fuente: Elaboración propia

4.1.4. Cuarta Hipótesis especifica

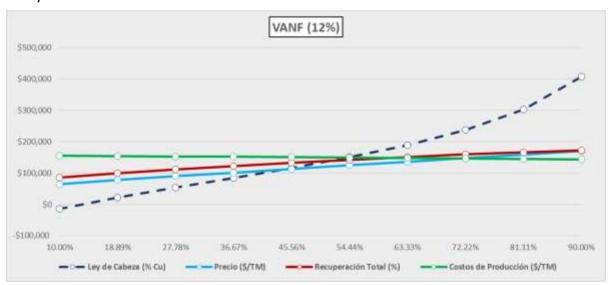

H0: El Modelo de Simulación Montecarlo se relaciona positivamente con el costo de producción, para el pronóstico de viabilidad del proyecto JJL – 2024.

H1: El Modelo de Simulación Montecarlo No se relaciona positivamente con el costo de producción, para el pronóstico de viabilidad del proyecto JJL – 2024.

Discusión: El Modelo de Simulación Montecarlo, a través de la simulación tornado y pruebas de bondad de ajuste nos permitió identificar la repercusión significativa del costo de producción, la variación al mínimo 43.18 \$/t; y por encima de 74.22\$/t siendo más satisfactorio, Por tanto, la primera hipótesis específica H0 se da por aceptada. Como se muestra en la figura 39 el costo de operación no es una variable sensible a la variación manteniendo un VAN positivo al valor mínimo.

Figura 39

Gráfico variable Costo de operación Cu vs VAN



Fuente: Elaboración propia

4.2. Comportamiento del VAN con respecto a las variables

Figura 40

Comportamiento del VAN

Fuente: Elaboración propia

En la gráfica se observa el comportamiento de las variables que inciden en el VAN en los cuales mientras la ley de Cu representa la más sensible a un 90% tendrá un valor del VAN de 400 000 US\$ y de tener menor certeza este hace de un VAN menos a 100 000US\$ no haciendo un proyecto rentable ni factible.

Conclusiones

- Mediante la aplicación de la simulación de Montecarlo se determinó que el proyecto es viable con una certeza de 80.80% lo cual es aceptable. Como se muestra en la figura 32
- Con respecto a la variable ley de cabeza la variación es representativa del 90.35%, por debajo de una ley de Cu de 0.98% el VAN tendrá una pérdida de -14033 \$, mientras que por encima de 1.92% en ley de Cu, como muestra el grafico de la figura 37
- Con respecto al precio la variación es de 96.08% por debajo de 6,385 \$/Tn el
 VAN se reduce a 64, 920 \$ no afectando el VAN como muestra la figura 38
- Con respecto a la recuperación metalúrgica la variación es mínima del 99.93% por debajo de 69% de recuperación metalúrgica el VAN varia a 85,806\$.
 Simulados valores mínimos en la figura 39 muestra que el VAN no impacta.
- Con respecto al costo de producción la variación ha sido nula, dado que no ha sido significativo la variación al mínimo de 43.18 \$/ton y por encima de 74.22 \$/t.
 Esta comprobación se muestra en la figura 40 donde el VAN no tiene variación.
- Determino que las variables evaluadas aplicando el análisis de sensibilidad la variable más significativa es la ley de cabeza de Cu% quien representa la variable más sensible y representativa del proyecto. Como muestra el grafico de tornado en la figura 35
- Mediante estas variables bases la mina puede optar por la mecanización dado que cumple las características para la transición del método, incrementar la productividad y reducir el costo de operación.
- La metodología es aplicable a minas que buscan poder tener alternativas de mecanización con mineral relevantes en precio y buscar alternativas de tratamiento.

Recomendaciones

- Profundizar la aplicación de la simulación de Montecarlo en arranque de proyectos para poder trazar una línea de probabilidades de las variables mas relevantes que competen a la industria minera.
- Establecer la metodología de estimación de recursos y reservas para tener mayor certeza en las leyes de mineral.
- Continuar con la investigación en probabilidades estocásticas en operaciones mineras.

Referencias bibliográficas

- Abdul, A. (2024). The use of monte carlo simulation for value at risk Measurement with the single index model approach as an Optimal portfolio determinant. Research Proposal. 10.13140/RG.2.2.21071.29608
- Arango, M.; Montes, L. & Arboleda, D. (2017) Aplicación de una opción real de abandono con simulación Monte Carlo y Volatilidad condicional GARCH: Un caso de estudio para un proyecto de inversión minera. Revista Espacios https://www.revistaespacios.com/a17v38n52/a17v38n52p22.pdf
- Arias, F. (2006) El proyecto de investigación Editorial Episteme 6ta Edición. Venezuela
- Azofeifa, C. (2011) Aplicación de la Simulación Monte Carlo en el cálculo del riesgo usando Excel. Tecnología en Marcha. Vol. 17 N° 1.
- Baecher G., Christian J. (2001), Natural variation, limited knowledge, and the nature of uncertainty in risk analysis, 2001.
- Batanero C. (2003). La simulación como instrumento de modelización en probabilidad.
 En: Revista Educación y Pedagogía. Medellín: Universidad de Antioquia,
 Facultad de Educación, XV, 39-54
- Botín, J. (2019). Gestión de riesgo en decisiones de inversión minera: un enfoque global.

 Boletín Geológico y Minero, 130 (1): 67-80
- Centeno, R. (2002). Simulación de Monte Carlo y Su Aplicación a la Ingeniería Geotécnica. En VIII Conferencia Gustavo Pérez Guerra. Caracas: XVII Seminario Venezolano de Geotecnia
- Cerda, C. (2016). Análisis de riesgo asociado a incertidumbre operacional en planes mineros para minería a cielo abierto [Tesis de maestría, Universidad de Chile]. Repositorio de la Universidad de Chile.
- Chávez, V. (2021). Análisis del valor presente neto, sensibilidad y Simulación en diferentes escenarios económicos y Operativos para la explotación open pit de

- un Yacimiento brownfield minera Hudbay [Tesis de maestría, Universidad de Chile]. Repositorio de la Universidad de Chile.
- Contreras, R (2011). Optimización de la vida de mina bajo un enfoque tradicional de maximizar el valor presente neto y bajo un enfoque de simulación probabilística de Montecarlo [Tesis de maestría, Universidad Nacional del Centro]. Repositorio de la Universidad Nacional del Centro.
- Crisoles J., Vásquez G. & Olivera J. (2021). Valorización de Sociedad minera Cerro Verde [Tesis de maestría, Universidad del Pacifico]. Repositorio de la Universidad del Pacifico.
- Fernández, O. (2018). Evaluación de riesgos de un proyecto de inversión minera y su aplicación a un proyecto de mediana minería [Tesis de maestría, Universidad de Chile]. Repositorio de la Universidad de Chile.
- Flores, C. (2022). Análisis de pre factibilidad de inversión en el ámbito minero de Sudamérica [Tesis de maestría, Universidad de Chile]. Repositorio de la Universidad de Chile.
- Franco, J. (2022). Valorización de la compañía de minas buenaventura S.A.A y subsidiarias [Tesis de maestría, Universidad del Pacifico]. Repositorio de la Universidad de Pacifico.
- Gaytán, J. (2023). The Monte Carlo method of random simulation simples. Mercados y Negocios, núm. 50, pp. 95-108. https://doi.org/10.32870/myn.vi50.7710
- Gutiérrez, J. (2022). Análisis de riesgo considerando la incertidumbre de variables geológicas en minería subterránea [Tesis de maestría, Universidad de Chile].

 Repositorio de la Universidad de Chile.
- Gavilán, S. (2022). Planteamiento de un modelo estocástico para pronosticar el avance lineal mensual de la unidad minera San Jose – Argentina [Tesis de maestría, Universidad Nacional del Centro]. Repositorio de la Universidad Nacional del Centro.

- Herrera, J. (2018). El proceso de evaluación de un proyecto minero. Madrid
- Hernández Sampieri, R., Mendoza, CH. (2020). Metodología de la Investigación, ed. Mc Graw Hill.
- Instituto Peruano de Economía (2023). El impacto económico de los conflictos sociales
 y la tramitología en la minería. https://www.ipe.org.pe/portal/wpcontent/uploads/2023/09/El-impacto-economico-de-los-conflictos-sociales-y-latramitología-en-la-mineria.pdf
- Ortiz, O. (2015). Simulación Montecarlo aplicada a un problema de acarreo en el minado superficial. Rev. del Instituto de Investigación (RIIGEO), FIGMMG-UNMSM Vol. 18, Nº 36, pp. 101 108 Julio Diciembre 2015
- Pinado, M. (2021). El método monte carlo en la evaluación de la estabilidad física de taludes mineros de material granular [Tesis de maestría, Universidad Nacional del Centro]. Repositorio de la Universidad Nacional del Centro.
- Ramos, L. (2019). Análisis comparativo entre el método determinístico y el probabilístico en la evaluación financiera de un proyecto [Tesis de maestría, Universidad Nacional del Centro]. Repositorio de la Universidad Nacional del Centro.
- Riesco, J. & Urenda, C. (2024, 22 mayo) "Competitividad en la Región. Desafíos Comunes de los Gremios en Latinoamérica" [minería] SIMPOSIO XV Encuentro internacional de minería. Perú https://www.snmpe.org.pe/prensa/notas-deprensa/notas-de-prensa-de-la-snmpe/8582-los-excesivos-permisos-y-desconfianza-en-el-estado-son-los-principales-problemas-para-desarollar-proyectos-mineros.html
- Román, D. (2022). Valoración de riesgos de planes de cierre en proyectos mineros [Tesis de maestría, Universidad de Chile]. Repositorio de la Universidad de Chile.
- Ramirez, A. &Calle G. (2016) Herramienta financiera para el cálculo de la rentabilidad de proyectos de exploración minera.

- Sampieri, R. et al (2020). *Metodología de la Investigación 6ta Edición*. Interamericana Editores, Mexico.
- Sapag, N. (2011). Proyectos de inversión. Formulación y evaluación. Pearson Educación, Chile.
- Sapag, N. (2001). Evaluación de proyectos de inversión en la empresa. Chile
- Sapag, N. (2008). Preparación y evaluación de Proyectos. McGRAW Hill.
- Sóbol, I.M. (1983). Método de Montecarlo, Lecciones populares de matemáticas (2daEdición). Moscú: Mir.
- Urieta, E. (2021) Valoración financiera bajo incertidumbre de un proyecto minero de agregados pétreos [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio de la Universidad de Nacional de Colombia.
- Vila, J. y Zafra, J. (2019). Optimización con beneficios con gestión de riesgos en las minas subterráneas GRUPO VOLCAN [Tesis de maestría, Pontificia Universidad Católica del Perú]. Repositorio de la Universidad de Chile.
- Villalta, G.& Borja, R. (2023). Application of Monte Carlo Simulation to the Probability

 Assessment in FMEA. Proceedings of Tailings and Mine Waste 2023.

 https://dx.doi.org/10.14288/1.0438119

Anexos

Anexo Nº 1 Matriz de Consistencia ANALISIS DE SENSIBILIDAD DEL VAN MEDIANTE LA SIMULACION DE MONTECARLO PARA LA VIABILIDAD DE UNA OPERACIÓN SUBTERRANEA

Formulación del problema	Objetivos	Hipótesis	Variables	Indicadores	Diseño metodológico
Problema general	Objetivo general	Hipótesis general	<u>Variables</u> Independientes	Indicadores de X	Tipo de investigación
¿En qué medida el análisis de sensibilidad aplicando la simulación Monte Carlo permitirá determinar la viabilidad de la rentabilidad en una operación minera subterránea?	Determinar el análisis de sensibilidad aplicando la simulación de Montecarlo y su influencia en la viabilidad del VAN en una operación minera subterránea.	Realizar el análisis de sensibilidad en una operación minera subterránea mediante la aplicación de la simulación de Montecarlo influirá significativamente en la viabilidad del VAN.	X1: Simulación de Montecarlo	% Certeza	*Aplicativo. Nivel de investigación *Descriptivo, correlacional. Diseño de la investigación *Experimental.
<u>Problemas específicos</u>	Objetivos específicos	<u>Hipótesis específica</u>	<u>Variable</u> <u>Dependiente</u>	<u>Indicadores de Y</u>	<u>Población</u>
 ¿Determinar cómo influye en el VAN la simulación de MC en la sensibilidad del precio? ¿Determinar cómo influye en el VAN la simulación de MC en la sensibilidad de la ley de mineral? ¿Determinar cómo influye en el VAN la simulación de MC en la sensibilidad de la recuperación de mineral? ¿Determinar cómo influye en el VAN la simulación de MC en la sensibilidad del costo de operación? 	Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad del precio. Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad de la ley del mineral Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad la recuperación metalúrgica Determinar el comportamiento del VAN mediante la simulación de Montecarlo con respecto a la sensibilidad con el costo de operación.	 La aplicación del Simulación de Montecarlo permitirá estimar el precio adecuado para la rentabilidad del VAN. La aplicación del Simulación de Montecarlo permitirá estimar la ley del mineral adecuado para la rentabilidad del VAN. La aplicación del Simulación de Montecarlo permitirá estimar la recuperación metalúrgica adecuado para la rentabilidad del VAN. La aplicación del Simulación de Montecarlo permitirá estimar el costo de operación adecuado para la rentabilidad del VAN. 	Y: Rentabilidad del Valor actual Neto	\$ (Valor económico del VAN)	* Operación minera subterránea mecanizada. * Muestra *Recursos y Reservas de mineral de la veta Disputada 2023 - 2024

Anexo Nº 2: Estado de Resultados

Año	1	2	3	4	5	6	7	8
Ley de Cabeza (% Cu)	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
Precio (\$/TM)	8,500	8,500	8,500	8,500	8,500	8,500	8,500	8,500
Recuperación Total (%)	95%	95%	95%	95%	95%	95%	95%	95%
Valor de Mineral (\$/TM)	108.53	108.53	108.53	108.53	108.53	108.53	108.53	108.53
Programa de Producción (miles TM)	600	600	600	600	600	600	600	600
Costos de Producción (\$/TM)	65	65	65	65	65	65	65	65
Gastos Adm. y Ventas (miles US\$)	1250	1250	1250	1250	1250	1250	1250	1250
Intereses deudas (miles US \$)	3000	2500	2000	1600	1500	1200	900	600
Amortización deuda (miles US \$)	4000	4000	4000	4000	4000	4000	4000	4000

Anexo Nº 3: Estado de Perdidas y Ganancias

	ESTADO DE US\$)	ESTADO DE GANANCIAS Y PERDIDAS (miles US\$)							
	1	2	3	4	5	6	7	8	
Ventas	65,117	65,117	65,117	65,117	65,117	65,117	65,117	65,117	
Ventas Activos								12,384	
Costos Ventas	39,000	39,000	39,000	39,000	39,000	39,000	39,000	39,000	
Depreciación Equipos	3,225	3,225	3,225	3,225	3,225	3,225	3,225	3,225	
Depreciación Obras	1,100	1,100	1,100	1,100	1,100	1,100	1,100	1,100	
Utilidad Bruta	21,792	21,792	21,792	21,792	21,792	21,792	21,792	34,176	
Gastos Administrativos	1,250	1,250	1,250	1,250	1,250	1,250	1,250	1,250	
Amortización Intangibles	900	900	900	900	900	900	0	0	
Utilidad Operativa	19,642	19,642	19,642	19,642	19,642	19,642	20,542	32,926	
Gastos Financieros	3,000	2,500	2,000	1,600	1,500	1,200	900	600	
UAI	16,642	17,142	17,642	18,042	18,142	18,442	19,642	32,326	
Impuesto Renta	4,993	5,143	5,293	5,413	5,443	5,533	5,893	9,698	
Utilidad Neta	11,649	11,999	12,349	12,629	12,699	12,909	13,749	22,628	

Anexo Nº 4: Flujo de Caja Financiero

FLUJO DE CAJA

FLUJO CAJA FINANCIERO (miles US\$) METODO DE LOS INGRESOS Y EGRESOS RELEVANTES

	0	1	2	3	4	5	6	7	8
INGRESOS Préstamos Ventas Recupero Capital de Trabajo Valor Residual de Activos TOTAL INGRESOS	32,000	65,117 65,117	65,117 65,117	65,117 65,117	65,117 65,117	65,117 65,117	65,117 65,117	65,117 65,117	65,117 2,800 12,384 80,301
EGRESOS Inversiones Costos Gastos Admin. + ventas Amortización Deuda Gastos Financieros Impuestos TOTAL EGRESOS	45,000 45,000	39,000 1,250 4000 3,000 4,993 52,243	39,000 1,250 4000 2,500 5,143 51,893	39,000 1,250 4000 2,000 5,293 51,543	39,000 1,250 4000 1,600 5,413 51,263	39,000 1,250 4000 1,500 5,443 51,193	39,000 1,250 4000 1,200 5,533 50,983	39,000 1,250 4000 900 5,893 51,043	39,000 1,250 4000 600 9,698 54,548
SALDO CAJA	-13,000	12,874	13,224	13,574	13,854	13,924	14,134	14,074	25,753
Medidas de Rentabilidad VANF (12%) TIR B/C PRC (años)	\$59,333 101% 1.20 2.7			VANE (8.4%) TIR B/C PRC (años)	20,924 19% 1.08 3.42				

Anexo N° 5

FORMULARIO DE AUTORIZACIÓN PARA LA PUBLICACIÓN ELECTRÓNICA EN EL PORTAL DEL REPOSITORIO INSTITUCIONAL DE LA UNI

1. DATOS PERSONALES

Apellidos y nombres: Jimmy Quipuscoa Salazar

D.N.I: 40582836

Teléfono casa: - celular: 941 040 542

Correos electrónicos: jquipuscoa@gmail.com

2. DATOS ACADÉMICOS

Grado académico: Bachiller

Mención: Ingeniería de Minas

3. DATOS DE LA TESIS

Título: "ANÁLISIS DE SENSIBILIDAD APLICANDO SIMULACIÓN DE MONTECARLO PARA LA VIABILIDAD DE RENTABILIZAR UNA OPERACIÓN MINERA SUBTERRÁNEA"

Año de publicación: 2024

A través del presente, autorizo a la Biblioteca Central de la Universidad Nacional de Ingeniería, la publicación electrónica a texto completo en el Repositorio Institucional, el citado título.

Firma:

with.

Fecha de recepción: 11/12/2024

Anexo Nº 6: Curriculum Vitae

JIMMY QUIPUSCOA SALAZAR Ingeniero de Minas CIP Nº 98832

Telf. 44-305375 Cel. 941040542 e-mail: jquipuscoa@gmail.com

DNI Nº 40582836. Lic. Conducir A-1 D40582836

I. PERFIL PROFESIONAL

Ingeniero de Minas Colegiado con estudios de Maestría en Gestión minera y empresarial, con 19 años de experiencia en gestión e implementación y transformación de operaciones mineras subterráneo con aplicación de métodos masivos mecanizados de explotación. Experiencia planeamiento corto, mediano y largo plazo aplicando NSR & Factor NSR, conocimientos geomecánica, geología estructural, metalurgia, gestión de activos, manejo de disposición relaves, buen manejo de indicadores de productividad, costos y valor de la producción, adecuado manejo de personal profesional y técnico. Capacidad de liderazgo y trabajo en equipo, con exitosos resultados. Experto en planificación y administración de proyectos mineros aplicando Valor esperado (Erned Value). Excelentes relaciones interpersonales a todo nivel. Orientado y predispuesto a los cambios y enfocado a resultados tangibles para la empresa y el directorio por la capacidad del conocimiento del Negocio minero en las diferentes áreas de la cadena de valor.

II. COMPETENCIAS

Diplomado : Gestión de costos y finanzas en empresas Minera

Gerens – Lima (Feb. 22 - Jun. 2022)

Gestión Estratégica Minera

Gerens – Lima (Ago. 2020 – Abr. 2021) **Administración y gerencia de empresas mineras** Universidad Nacional de Trujillo (Abr. 2014 – Dic. 2014)

Post grado : Maestría en Gestión Minera

Universidad Nacional de Ingeniería (Set. 2022 – Hoy)

Maestría en Gestión Empresarial

Universidad Nacional de Trujillo (Abr. 2015 – Dic. 2017)

• Formación Académica: Universidad Nacional de Trujillo (1998 – 2003)

Bachiller en Ingeniería de Minas (2004) Título de Ingeniero de Minas (2006) CIP 98832 (2006)

Idiomas: <u>inglés</u>: : Open English (Feb. 2022 – Mar. 2023)

Open English (Feb. 2020 – Mar. 2021) CIDUNT (Advanced Level) (Ene. 2000 – Mar. 2004)

Computación : AutoCAD 2D

Ms Project 2013 Ms Office 2010

Data mine 5D Studio - Diseño de Mina Subterránea

III. EXPERIENCIA PROFESIONAL

 COMPAÑÍA MINERA CARAVELI Superintendente de Mina – Mina Disputada Junio 2023 a la fecha

 JRC INGENIERIA Y CONSTRUCCION No Subgerente de Operaciones Subterránea U.M Yumpag

Noviembre 2022 a Mayo 2023

❖ UNIVERSIDAD NACIONAL DE TRUJILLO Octubre 2022 a la fecha DOCENTE UNIVERSITARIO TIEMPO PARCIAL Ciclo VI, VIII, IX y X

❖ ADMINISTRACION DE EMPRESAS (AESA)

Agosto 2019 - Setiembre 2022

Gerente de Proyecto UM San Cristobal (May. 2021 - Set. 22)

Gerente de Proyecto UM San Rafael (Ago. 2020 - Abr. 2021)

Gerente de Proyecto UM Raura (Ago. 2019 - Jul. 2020)

❖ DOE RUN PERU S.R.L. – U.M. COBRIZA

Superintendente de Mina (Set. 2014 - Jun. 2019)

❖ DOE RUN PERU S.R.L. – U.M. COBRIZA

Asistente de Superintendente de Mina (Set. 2013 - Abr. 2014)

❖ GLENCORE – EMPRESA MINERA QUENUALES U.M YAULIYACU

Jefe de Mina (2012 - 2013)

❖ DOE RUN PERU S.R.L. – U.M. COBRIZA

Jefe de Mina (2010 – 2012)

❖ JRC INGENIERIA & CONSTRUCCION - U.M. EL BROCAL

Jefe de Operaciones (2010)

❖ COORPORACION MINERA CASTROVIRREYNA - U.M. RELIQUIAS

Jefe de Zona (2009)

❖ INCIMMET - U.M. RELIQUIAS

Residente de Obra (2009)

❖ MAS ERRAZURIZ DEL PERU – U.M. COBRIZA

Jefe de Turno (2005 - 2008)

IV. PARTICIPACIÓN EN EVENTOS

- Ponente en el Curso de Planificación minera INGENIUM Marzo 2024
- Seminario "Boot CamPing Desing Thinking" noviembre 2019.
- Curso "Entrenando al entrenador y Técnicas de Feedback"; como asistente abril 2019.
- Curso de "Liderazgo, Trabajo en equipo, Comunicación y su influencia en la seguridad": Dictado los días 14,15 y 16 de diciembre del 2018.
- Expositor en el Congreso Nacional de Minería 2018; con el tema "Disposición del relave total en la mina Cobriza"
- Expositor en el "Seminario Internacional de Planeamiento de Minado 2014" UNT

V. REFERENCIAS PERSONALES

Ing. Mario Guerra Aris – Gerente Técnico y Proyectos Corporativo

Cia. Minera Caraveli

Cel. 975 544 572

Lic. Gianflavio Carozzi – CEO AESA

AESA Infraestructura & Minería

Cel. 986 134 859

• Lic. Guillermo San Miguel Zapata – Gerente de Operaciones Corporativo

AESA Infraestructura & Minería

Cel. 945 127 771

• Ing. Victor de la Cruz Matos – Gerente de Unidad

Minsur - Unidad San Rafael

Cel. 980 526038

• Ing. David Fredy Gutierrez Alvarez - Gerente de Unidad

Minsur - Unidad San Rafael

Cel. 986618212

• Ing. Jorge Medina Ruesta - Gerente de Mina

DRP - Unidad Minera Cobriza

Cel. 979356363

• Lic. Bartolome Puigross -Vicepresidente de Operaciones

DRP - Unidad Minera Cobriza

Cel. 939673066

Curriculum Vitae

JIMMY QUIPUSCOA SALAZAR

Mine engineer CIP No. 98832

Tel. 44-305375 Cell. 941040542 e-mail: jquipuscoa@gmail.com DNI No. 40582836. Driving License A-1 D40582836

I. PROFESSIONAL PROFILE

Chartered Mining Engineer with a Master's degree in Mining and Business Management, with 19 years of experience in management and implementation and transformation of underground mining operations with the application of massive mechanized exploitation methods. Experience in short, medium and long term planning applying NSR & NSR Factor, knowledge of geomechanics, structural geology, metallurgy, asset management, tailings disposal management, good management of productivity indicators, costs and production value, adequate management of professional personnel and technical. Leadership and teamwork capacity, with successful results. Expert in planning and administration of mining projects applying Expected Value (Erned Value). Excellent interpersonal relationships at all levels. Oriented and predisposed to changes and focused on tangible results for the company and the board due to the capacity of knowledge of the mining business in the different areas of the value chain.

II. COMPETENCES

• Diploma : Cost and finance management in Mining companies

Gerens – Lima (Feb. 22 - Jun. 2022)

Strategic Mining Management

Gerens – Lima (Aug. 2020 – Apr. 2021) **Administration and management of mining companies**National University of Trujillo (Apr. 2014 – Dec. 2014)

• Postgraduate : Master in Mining Management

National University of Engineering (Sept. 2022 – Today)

Master in Business Management

National University of Trujillo (Apr. 2015 – Dec. 2017)

• Academic Training: National University of Trujillo (1998 – 2003)

Bachelor in Mining Engineering (2004) **Mining Engineer Degree** (2006) **CIP 98832** (2006)

Languages: English : Open English (Feb. 2022 – Mar. 2023)

 Open English
 (Feb. 202 0 – Mar. 2021)

 CIDUNT (Advanced Level)
 (Jan. 2000 – Mar. 2004)

• Computing : AutoCAD 2D

Ms Project 2013 MS Office 2010

Data mine 5D Studio - Underground Mine Design

III. PROFESSIONAL EXPERIENCE

CARAVELI MINING COMPANY
 Mine Superintendent – Disputed Mine

June 2023 to date

JRC ENGINEERING AND CONSTRUCTION
 Deputy Manager of Underground Operations UM Yumpag

November 2022 to May 2023

❖ NATIONAL UNIVERSITY OF TRUJILLO PART-TIME UNIVERSITY TEACHER Cycle VI, VIII, IX and

October 2022 to date

AD MINISTRATION OF BUSINESS (AESA) August 2019 – September 2022
 Project Manager UM San Cristobal (May. 2021 – Sep. 22)

Project Manager UM San Rafael (Aug. 2020 - Apr. 2021)

UM Raura Project Manager (Aug. 2019 - Jul. 2020)

DOE RUN PERU SRL – UM COBRIZA Mine Superintendent (Sept. 2014 – Jun. 2019)

DOE RUN PERU SRL – UM COBRIZA Assistant Mine Superintendent (Sept. 2013 – Apr. 2014)

- GLENCORE QUENUALES MINING COMPANY UM YAULIYACU Mine Chief (2012 – 2013)
- DOE RUN PERU SRL UM COPPER Mine Chief (2010 – 2012)
- JRC ENGINEERING & CONSTRUCTION UM EL BROCAL Head of Operations (2010)
- CASTROVIRREYNA MINING COORPORATION UM RELICS Zone Head (2009)
- INCIMMET UM RELICS Construction Resident (2009)
- MORE ERRAZURIZ IN PERU UM COBRIZA Shift Manager (2005 – 2008)

IV. PARTICIPATION IN EVENTS

- Speaker at the INGENIUM Mining Planning Course March 2024
- "Boot CamPing Design Thinking" Seminar November 2019.
- Course "Training the trainer and Feedback Techniques"; as assistant April 2019.
- Course on " *Leadership, Teamwork, Communication and their influence on safety"*: Taught on December 14, 15 and 16, 2018.
- Speaker at the National Mining Congress 2018; with the topic "Disposal of total tailings in the Cobriza mine"
- Speaker at the "International Mining Planning Seminar 2014" UNT

V.PERSONAL REFERENCES

Eng. Mario Guerra Aris – Technical and Corporate Project Manager

Cia. Minera Caraveli

Cell. 975 544 572

• Lic. Gianflavio Carozzi - CEO AESA

AESA Infrastructure & Mining

Cell. 986 134 859

Lic. Guillermo San Miguel Zapata – Corporate Operations Manager

AESA Infrastructure & Mining

Cell. 945 127 771

• Eng. Victor de la Cruz Matos – Unit Manager

Minsur - San Rafael Unit

Cell. 980 526038

Eng. David Fredy Gutierrez Alvarez – Unit Manager

Minsur - San Rafael Unit

Cell. 986618212

Eng. Jorge Medina Ruesta – Mine Manager

DRP - Copper Mining Unit

Cell. 979356363

Lic. Bartolome Puigross –Vice President of Operations

DRP - Copper Mining Unit

Cell. 939673066