UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA GEOLÓGICA MINERA Y METALÚRGICA

ESTABILIDAD DE TALUDES EN TAJO

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO GEÓLOGO

ELABORADO POR: LIA ANGGELA PEÑA OTINIANO

ASESOR
Ing. GRACIELA GONZALES PACHECO
Lima – Perú
2014

AGRADECIMIENTO

A mi madre Leonor Otiniano y mis hermanos Lucho, Hans, Christian y Harry por todo el apoyo brindado durante la realización de esta tesis. A mis asesores Ing. Graciela Gonzales y Dr. Humberto Chirif por las instrucciones y consejos para el desarrollo de mi tesis.

DEDICATORIA

Dedico esta tesis a mi madre, la que nos ha impulsado durante toda nuestra vida a mis hermanos y a mí.

ÍNDICE

CAPÍTULO I: ASPECTOS GENERALES

1.1 Introducción	18
1.2 Antecedentes	19
1.3 Objetivos	19
1.4 Información General del Sitio	20
1.4.1 Ubicación	20
1.4.2 Marco Geológico Regional	20
1.4.2.1 Rocas Ígneas	21
CAPÍTULO II: GEOLOGÍA LOCAL	
2.1 Introducción	23
2.2 Geología Estructural	24
2.3 Geomorfología Local	25
2.3.1 Unidad Colinas Alineadas	25
2.3.2 Unidad Laderas	26
2.4 Riesgos Geológicos	26

2.5 Sismicidad	27
2.6 Hidrología	30
CAPÍTULO III: REVISIÓN DE INFORMACIÓN GEOTÉCNICA	
3.1 Generalidades	31
3.2 Antecedentes de Investigaciones Geotécnicas	32
3.3 Marco Teórico	32
3.3.1 Clasificación Geomecánica RMR	33
3.3.2 Martillo Schmidt	40
3.3.3 Tilt Test	42
3.4 Investigaciones Geotécnicas	44
3.4.1 Perforaciones Diamantinas	45
3.4.2 Estaciones Geomecánicas	47
3.4.3 Ensayos de Campo	50
3.5 Ensayos de Laboratorio	57
3.5.1 Ensayo de Propiedades Físicas del Basamento Rocoso	58
3.5.2 Ensayo de Carga Puntual	59
3.5.3 Ensayo de Resistencia de Corte Directo	61
3.5.4 Ensayo de Resistencia Cortante Triaxial	62

CAPÍTULO IV: EVALUACIÓN GEOTÉCNICA

4.1 Cartografiado Geológico – Geotécnico	64
4.2 Unidades Geológico-Geotécnicas	65
4.2.1 Depósito Coluvial (Unidad Geotécnica I)	65
4.2.2 Depósito Aluvial (Unidad Geotécnica II)	65
4.2.3 Suelo Residual (Unidad Geotécnica III)	66
4.2.4 Basamento Rocoso (Unidad Geotécnica IV)	66
4.3 Evaluación Geomecánica	67
4.3.1 Dureza o Resistencia	67
4.3.2 Grado de Fracturamiento (RQD)	67
4.3.3 Parámetros Geomecánicos de Discontinuidades	67
4.3.4 Clasificación Geomecánica SMR (Slope Mass Rating)	68
4.3.5 GSI (Índice Geológico de Resistencia)	73
4.4 Evaluación Estructural	7 4
4.4.1 Estructuras Orientadas en Mapeos Superficiales	7 4
CAPÍTULO V: CARACTERIZACIÓN GEOTÉCNICA DEL TAJO	
5.1 Generalidades	88
5.2 Caracterización de Materiales	89

5.2.1 Coluvial	89
5.2.2 Aluvial	89
5.2.3 Suelo Residual	90
5.2.4 Caliza	90
5.2.5 Volcánico Andesítico	91
5.2.6 Granodiorita	91
5.3 Resumen de Parámetros	91
5.4 Zonificación Geomecánica del Tajo	93
CAPÍTULO VI: ANÁLISIS GEOTÉCNICO	
6.1 Análisis de Estabilidad del Tajo	95
6.1.1 Metodología de Análisis de Estabilidad	95
6.1.1.1 Análisis de Estabilidad Local	95
6.1.1.2 Análisis de Estabilidad Global	101
6.1.2 Factores de Seguridad Mínimos	105
6.1.2.1 Análisis de Estabilidad Local	105
6.1.2.2 Análisis de Estabilidad Global	105
6.1.3 Condiciones de Análisis	106
6.1.3.1 Análisis para la Estabilidad Local	106

RECOMENDACIONES	
CONCLUSIONES	
6.1.4.2 Resultados del Análisis de Estabilidad Global	119
6.1.4.1 Resultados del Análisis de Estabilidad Local	113
6.1.4 Resultados del Análisis de Estabilidad del Tajo	113
6.1.3.2 Análisis para la Estabilidad Global	112

REFERENCIAS

ÍNDICE DE TABLAS

Tabla 3.1	RQD - Rock Quality Designation	34
Tabla 3.2	Resistencia de la Roca Sana – Estimación de la Resistencia a la	
Compresión	Simple de la roca a partir de índices de campo – ISMR 1981	35
Tabla 3.3	Espaciamiento de las Discontinuidades	35
Tabla 3.4	Abertura de Discontinuidades	36
Tabla 3.5	Persistencia de Discontinuidades	36
Tabla 3.6	Rugosidad de Discontinuidades	37
Tabla 3.7	Alteración de Discontinuidades	37
Tabla 3.8	Relleno de Discontinuidades	37
Tabla 3.9	Presencia de Agua	38
Tabla 3.10	Clasificación para la Determinación de los Buzamientos con Res	specto
al Efecto Rel	lativo con relación al Talud	39
Tabla 3.11	Calificativo para Taludes	39
Tabla 3.12	Calidad del Macizo Rocoso con relación al índice RMR	40
Tabla 3.13	Resumen de Perforaciones	45
Tabla 3.14	Valores de RMR Básico y Total en las Perforaciones	46
Tabla 3.15	Ubicación de Estaciones Geomecánicas	47

Tabla 3.16	Resumen de Pruebas No Destructivas - Matriz Rocosa	51
Tabla 3.17	Resumen de Pruebas No Destructivas en Discontinuidades	53
Tabla 3.18	Resumen de Ensayos de Tilt Test - Resistencia Pico	
(Discontinuid	ades)	57
Tabla 3.19	Resumen de Propiedades Físicas en Roca	59
Tabla 3.20	Resumen de Ensayo de Carga Puntual	60
Tabla 3.21	Resumen de Ensayos de Corte Directo – Discontinuidades	62
Tabla 3.22	Resumen del Ensayo Triaxial – Matriz Rocosa	63
Tabla 4.1	Resumen de Dureza	67
Tabla 4.2	Resumen de Propiedades Mecánicas de las Discontinuidades	68
Tabla 4.3	Factor de Ajuste por la Orientación de las Juntas	71
Tabla 4.4	Factor de Ajuste por el Método de Excavación	71
Tabla 4.5	Valores de RMR Básico y SMR en las perforaciones	72
Tabla 4.6	Resumen de GSI	74
Tabla 5.1	Resumen de Propiedad del Macizo Rocoso	92
Tabla 5.2	Resumen de Propiedades Mohr-Coulomb de los Suelos y Rocas	92
Tabla 5.3	Zonificación Geomecánica del Tajo	94
Tabla 6.1	Familias de Juntas Principales y Posibles Mecanismos de Falla	107

Tabla 6.2	Factor de Seguridad de Posibles Mecanismos de Falla Planar, por	
Cuña y por Vu	ielco del Tajo	114
Tabla 6.3	Factor de Seguridad de Posibles Mecanismos de Falla Planar, por	•
Cuña y por Vu	nelco, Taludes Optimizados (Buzamiento de talud 70°) del Tajo	117
Tabla 6.4	Factor de Seguridad de los Taludes del Tajo	120

ÍNDICE DE FIGURAS

Figura 1.1	Columna Estratigráfica	22
Figura 2.1	Geología Local	24
Figura 2.2	Mapa de Isoaceleraciones	29
Figura 3.1	Gráfica de Miller para la Obtención de la Resistencia a la Comp	oresión
Simple		41
Figura 3.2	Ensayo Martillo Schmidt	42
Figura 3.3	Ensayo Tilt Test	44
Figura 6.1	Mecanismo de Falla Planar	96
Figura 6.2	Análisis Cinemático para Falla Planar	97
Figura 6.3	Mecanismo de Falla por Cuña	98
Figura 6.4	Análisis Cinemático para Falla por Cuña	99
Figura 6.5	Mecanismo de Falla por Vuelco	100
Figura 6.6	Análisis Cinemático para Falla por Vuelco	101
Figura 6.7	Métodos de Equilibrio Límite	103
Figura 6.8	Análisis de Estabilidad Equilibrio Límite de Talud Global	105

ANEXOS

Anexo A	Geotecnia
Anexo A.1	Registro de Perforaciones
Anexo A.1.1	Registro de Logueo Geomecánico
Anexo A.1.2	Registro de Logueo de Juntas
Anexo A.2	Ensayos de Campo
Anexo A.2.1	Ensayos de Martillo Schmidt
Anexo A.2.2	Ensayos de Tilt Test
Anexo A.3	Estaciones Geomecánicas
Anexo A.4	Análisis Estereográfico para los Mecanismos de Falla Planar, Cuña
Vuelco	
Anexo A.5	Resultados de Programa RocData
Anexo A.6	Resultados de Análisis de Equilibrio Límite para los distintos
Mecanismos o	de Falla
Anexo A.6.1	Resultados de Análisis de Equilibrio Límite de Mecanismo de Falla
Planar	
Anexo A.6.2	Resultados de Análisis de Equilibrio Límite de Mecanismo de Falla
Cuña	

Anexo A.6.3 Resultados de Análisis de Equilibrio Límite de Mecanismo de Falla por Vuelco

Anexo A.7 Resultados de Análisis de Estabilidad de Equilibrio Límite de Taludes Interrampa

Anexo A.8 Resultados de Análisis de Estabilidad de Equilibrio Límite de Taludes Globales en Tajo

Anexo B Planos

PLANOS

001	Geología Regional
002	Mapeo Geológico - Geotécnico
003	Plano de Investigaciones Geotécnicas
004	Zonificación Geomecánica
005	Sección Geológica - Lamina 1 de 3
006	Sección Geológica - Lamina 2 de 3
007	Sección Geológica - Lamina 3 de 3

RESUMEN

La presente tesis documenta la evaluación de estabilidad de taludes realizado para un tajo, al cual se le realizó una evaluación geomecánica detallada.

Se realizó un programa de investigaciones geológico-geotécnicas que consistió en un mapeo geológico-geotécnico, mapeo estructural y 02 perforaciones. De estas se obtuvieron muestras representativas del macizo rocoso, las cuales fueron seleccionadas y enviadas al laboratorio geotécnico de Anddes y al laboratorio de Mecánica de rocas de la Universidad Nacional de Ingeniería en la ciudad de Lima. En el laboratorio de Anddes se realizaron ensayos estándar y en el de Mecánica de Rocas se realizaron ensayos especiales, con la finalidad de obtener parámetros de resistencia que permitan una caracterización física y mecánica.

Con respecto al tajo se realizó el mapeo geomecánico detallado para fines de evaluación de estabilidad, determinándose que en el área del tajo proyectado existen 04 unidades geológico-geotécnicas: depósito coluvial originado por el transporte de gravas mal gradadas, depósito aluvial originado por el transporte de sedimentos, suelo residual originado por la meteorización del macizo rocoso y basamento rocoso de 3 tipos diferentes de macizo rocoso: caliza, volcánico andesítico y granodiorita.

A partir de los trabajos de investigación de campo, se realizó la caracterización, zonificación y análisis de estabilidad, así como, las recomendaciones de dimensiones de bancos, taludes interrampa y taludes globales.

ABSTRACT

This document present the evaluation of the slope stability for a pit, wich underwent a detailed geomechanical evaluation.

A program of geological geotechnical field investigations consisted of a geological-geotechnical and structural mapping and two diamond drilling. This mentioned were obtained representative rock samples, which were selected and sent to the Anddes Laboratory Geotechnical and rock mechanics laboratory at the National University of Engineering from Lima. In Anddes Laboratory were performed standard assays and on Rock Mechanics were performed special assays, in order to obtain parameters that allow physical strength and mechanical characterization.

With regard to pit detailed geomechanical mapping for evaluation of stability was performed, concluding that in the pit area are projected 04 geological-geotechnical units: colluvial deposit originated by the transportation of poorly graded gravels, alluvial deposit originated by the transportation of sediment, residual soil originated by the weathering of the rock mass and bedrock of 3 different types of rock: limestone, volcanic andesite and granodiorita.

From the research field, characterization, zonation and stability analysis and the recommendations of dimensions of banks, global banks and slopes is estimated that pit slopes are stable for existing and operating conditions. It should be noted that as the holding pit advancement, it is recommended to evaluate new geomechanical conditions to verify the estimate.

CAPÍTULO I

ASPECTOS GENERALES

1.1 Introducción

En esta tesis se presentan todos los estudios de campo, laboratorio y caracterización realizados para la evaluación de la estabilidad del tajo.

Como parte de esta evaluación, se llevó a cabo las investigaciones geotécnicas en todo el tajo. Estas investigaciones comprendieron estaciones geomecánicas, ejecución de perforaciones diamantinas, ensayos de campo y cartografiado geológico-geotécnico, así como de ensayos de laboratorio y procesamiento de datos.

Como parte del programa de investigaciones geológicas-geotécnicas, se llevaron a cabo las investigaciones de campo entre los días 15 a 23 de agosto del 2013 y del 26 de agosto al 14 de octubre del 2013. Así también se revisó

la información de estudios existentes llevados a cabo por otra consultora de geotecnia en los años 1998 al 2010, referente a la estabilidad del tajo.

De acuerdo a la información recogida de la evaluación, la zona de estudio se encuentra ubicada en el departamento de Lima con una altitud promedio de 380 msnm.

1.2 Antecedentes

El alcance de la tesis fue desarrollado de acuerdo a las siguientes tareas:

- Revisión de la información existente de la zona de estudio.
- Ejecución de un programa de investigación geotécnica de campo y ensayos de laboratorio, para evaluar las características geológico-geotécnicas y la calidad de roca en los taludes del tajo.
- Análisis geotécnico del tajo.
- Optimización del diseño geométrico del tajo en función de los resultados de los análisis de falla local y global de los taludes.
- Elaboración de la tesis.
- Conclusiones y recomendaciones.

1.3 Objetivos

Los objetivos de la presente tesis son los siguientes:

• El objetivo principal es realizar el diseño de explotación del tajo en las condiciones actuales, mediante las investigaciones de campo realizadas durante la campaña de campo, así como con las correlaciones realizadas entre

estas y ensayos de laboratorio. Todo esto se verá reflejado en el análisis cinemático presentado en la tesis.

- Dejar un modelo de trabajo para colegas y estudiantes de la carrera o afines.
- Obtener el Título de Ingeniero Geólogo.

1.4 Información general del sitio

1.4.1 Ubicación

El proyecto se ubica en la provincia y departamento de Lima a una altitud promedio de 380 msnm. Geográficamente está en la Costa y dentro de la Cuenca del río Lurín.

Los aspectos geológicos tanto regional como local se presentan a continuación:

1.4.2 Marco Geológico Regional

Regionalmente, el tajo está ubicado en la costa central, extremo inferior de las estribaciones de la Codillera de los Andes, donde afloran depósitos de rocas sedimentarias y volcánicas, descritas desde la más antigua a la más reciente.

Formación Pamplona (Ki-pa), aflora al Suroeste del tajo, consiste en secuencias de intercalaciones de calizas grises oscuras en estratificaciones delgadas, intercaladas con margas y lutitas gris verdosas de disyunción astillosa; suprayace la Formación Atocongo (Ki-pa), que es de origen calcárea, aflora en la extensión del área de estudio, litológicamente, consiste de caliza de color gris plomiza de textura micrítica, en la base de esta

formación se notan facies arcillo-calcáreas a calcáreas en estratos delgados; suprayaciendo la **Formación Quilmaná** (**Kms-q**), aflora al norte del tajo, compuesta de una secuencia de derrames andesíticos masivos de coloración gris a gris verdosa, textura porfirítica con variaciones a afanítica y pseudo-estratificada con orientación Noreste-Suroeste y buzamiento 30° a 80° al Sureste, con presencia de silicificación por los efectos de la intrusión de cuerpos del Batolito andino.

1.4.2.1 Rocas Ígneas

Las intrusiones de la super unidad Patap / Granodiorita (Ks-gr)/ Andesita (Ks-an).

- Granodiorita: forma parte del batolito, se encuentra emplazado al este del tajo, presenta diaclasas con orientaciones al Sureste, presenta estructura masiva y textura porfirítica.
- Andesita: forma parte de un stock hipabisal emplazado al noreste del tajo, en contacto con la pseudo-estratificada de derrames andesíticos de la Formación Ouilmaná.

Suprayaciendo se encuentra los depósitos cuaternarios no consolidados de origen aluvial y coluvial, así como los depósitos antrópicos producidos durante la explotación de las canteras.

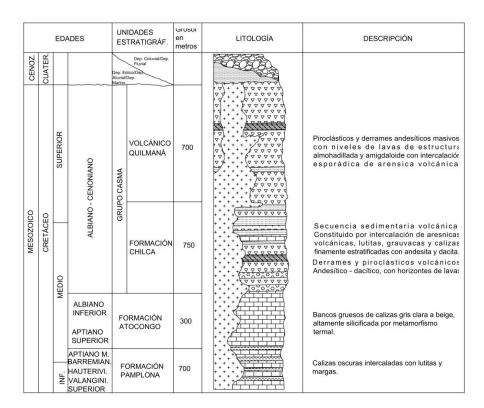


Figura 1.1 Columna Estratigráfica

En el Plano 001 se representa el marco geológico regional de la zona de estudio.

CAPÍTULO II

GEOLOGÍA LOCAL

2.1 Introducción

Localmente en el área de estudio se presentan secuencias sedimentarias del cretáceo inferior claramente observable en el estrato basal.

Esta secuencia sedimentaria es identificada como **Formación Atocongo**, cuya naturaleza consiste de calizas en bancos gruesos con intercalaciones de capas delgadas de color gris y grano fino; sobreyaciendo las secuencias pseudoestratificadas de andesitas de textura porfirítica, en el extremo Noreste-Este del Tajo presenta unidades intrusivas del batolito de la costa; el medio geológico presenta secuencias de deformaciones tectónicas que esta manifestado por numerosas fallas locales e intrusiones de diques andesíticos.

En los extremos sureste del tajo, emplazados en stock hipabisal de andesita de color gris verdoso, de estructura masiva, textura afanítica y limitada al Este

por una intrusión ígnea del batolito. En la zona también se han identificado depósitos Cuaternarios, los cuales están conformados por depósitos aluviales y coluviales, los cuales se describen a continuación.

- Depósitos coluviales: Se presentan mayormente en corrimientos laterales, en la ladera de la quebrada Blanca y Sureste del tajo, constituida por acumulaciones de sedimentos clásticos mal clasificados, con clastos gruesos, mayormente sub angulosos, con una matriz limo-arenosa.
- Depósitos aluviales: Se presentan en el cauce colgado de la Quebrada
 Atocongo y Quebrada Blanca de corta extensión. Constituidos por bloques
 subangulosos en matriz areno limosa con gravas en estado muy denso.

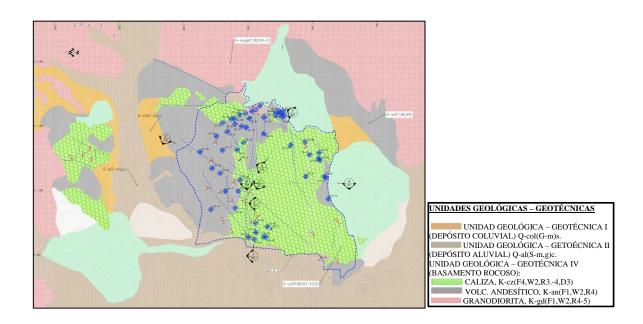


Figura 2.1 Geología Local

2.2 Geología Estructural

En el área estudiada han sido definidos rasgos estructurales que se enmarcan en sistemas de lineamientos de fallas paralelas, fracturas y sistema de diaclasamiento producto de la actividad tectónica, siendo el principal sistema NE-SW, además se infiere sistemas de fallas paralelas y cortadas al centro del tajo por un sistema principal regional de rumbo E-W.

En el área de estudio presenta fases de intrusión que forman parte del Batolito de la Costa, identificado como super unidad Patap. Dicha super unidad intruye a las formaciones Atocongo y Quilmaná, donde los mayores efectos han sido la deformación de las calizas con el consiguiente cambio brusco de los buzamientos de los estratos y la alteración hidrotermal que ha dado origen a cuerpos de skarn en la zona de contacto.

No se observaron planos de fallas tectónicas activas de extensión local.

2.3 Geomorfología Local

Dentro del marco fisiográfico se han identificado unidades geomorfológicas, en cuyo modelado externo han participado agentes como el clima actualmente desértico litoral de nieblas invernales y las corrientes fluviátiles. Las geoformas del área de estudio están marcadas por la actividad tectónica del batolito andino y rasgos estructurales, y por los subsiguientes procesos de meteorización y depositación. Producto de la escorrentía de la quebrada principal NW-SE y Quebrada Blanca de corta extensión. Las geoformas identificadas en la zona de estudio son colinas alineadas y laderas.

2.3.1 Unidad Colinas Alineadas

Constituyen colinas alargadas de afloramientos del batolito, referenciadas con los cerros Atocongo y Lúcumo de orientación de noreste a suroeste, presenta

elevaciones desde 500 a 700 msnm. Ambos flancos son de moderada a fuerte pendiente, limitada al sureste por la quebrada Río Seco.

2.3.2 Unidad Laderas

Esta morfología se distingue en orientación longitudinal a la quebrada Atocongo y tributarios con declives transversales desde las Colinas. Presenta flancos pronunciados y fondo amplio en ambas márgenes de la quebrada, su configuración sugiere una fuerte actividad de erosión deposición en periodos anteriores que originó una rápida profundización y subsiguiente colmatación en un ambiente desértico de interfluvios.

Asimismo el relieve refleja modificaciones antrópicas en el área del tajo, generando como resultado depresiones confinadas, observada en los cortes del tajo.

2.4 Riesgos Geológicos

En el área de interés se han registrado evidencias de actividad antrópica consistente principalmente de explotación mecanizada, resultando depresiones confinadas del tajo. En ellos ocurren caídas de rocas y grietas de tracción, los cuales son controlables mediante medidas preventivas de protección orientadas a mitigar los riesgos geológicos en caso que se ubiquen instalaciones o accesos.

2.5 Sismicidad

La zona donde se ubica las operaciones del tajo, de acuerdo a la clasificación del IGP (Instituto Geofísico del Perú), es considerada como de "Sismicidad Alta".

Cada vez que ocurre un sismo de mediana intensidad, se verifica caídas de roca en la zona de la operación.

Durante un evento sísmico, los taludes se ven sometidos a las siguientes acciones:

- Amplificación de la señal sísmica por efecto del relieve.
- Fuerzas de inercia inducidas por la propia masa del material del talud.
 - Cambio en los parámetros geotécnicos que caracterizan a los materiales; que constituyen el talud.

Por esto en los análisis de estabilidad de taludes se incluye el análisis denominado pseudo-estático, en donde se considera la influencia de un evento sísmico; la intervención del sismo se da a través de la fuerza sísmica, a la cual se le considera como una fuerza horizontal que actúa sobre la masa de suelo inestable, cuya magnitud es calculada al multiplicar el peso de dicha masa por un factor. Este factor es denominado coeficiente sísmico.

El coeficiente sísmico, es el cociente de la fuerza cortante horizontal que debe considerarse que actúa al pie del talud por efecto del sismo, entre el peso del material sobre dicho nivel.

El coeficiente sísmico dependerá del tipo de sismicidad de la zona, en la figura 2.2 se muestra el mapa de isoaceleraciones para el territorio del Perú. De acuerdo a la ubicación del área de estudio le corresponde un coeficiente sísmico de 0,32.

Además, debido a que las aceleraciones sísmicas máximas se manifiestan sólo durante un periodo muy corto, es una práctica aceptada internacionalmente definir la aceleración de diseño de manera empírica como una fracción de la aceleración máxima. De acuerdo con la Guía Ambiental para la Estabilidad de Taludes de Depósitos de Residuos Sólidos Provenientes de Actividades Mineras del MEM, dicha fracción está comprendida entre 1/3 y 1/2.

Para la presente tesis se ha previsto utilizar una fracción de ½; por lo que se recomienda utilizar un coeficiente sísmico de 0,16 para el análisis pseudo-estático de taludes finales.

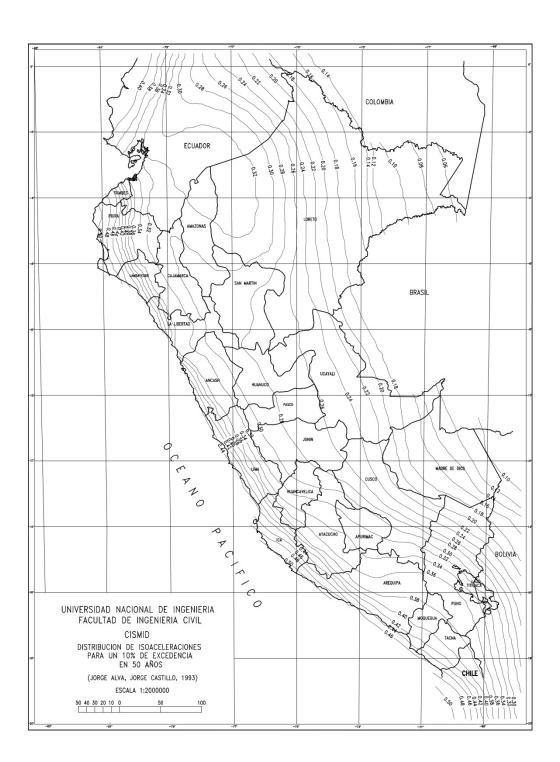


Figura 2.2 Mapa de Isoaceleraciones

2.6 Hidrología

La información hidrológica fue desarrollada por la consultora SVS Ingenieros (SVS) en el año 2006. De dicho estudio se extraen los niveles de agua subterránea monitoreada durante la ejecución de las campañas de campo.

CAPÍTULO III

REVISIÓN DE INFORMACIÓN GEOTÉCNICA

3.1 Generalidades

A fin de desarrollar el estudio de estabilidad del tajo, se ha revisado la siguiente información y documentos técnicos enviados por el cliente.

- Estudio de Estabilidad de Taludes Cantera Atocongo, SVS Ingenieros S.A., (Agosto, 1998).
- Cantera Caliza Atocongo Estudio Geotécnico de los Botaderos de Escombros, SVS Ingenieros S.A.C., (Diciembre, 2006).
- Evaluación de la Estabilidad del Talud Sur del Tajo Atocongo, SVS Ingenieros S.A.C., (Setiembre, 2010).

La información antes mencionada permitió complementar las investigaciones geotécnicas y los ensayos de laboratorio realizados para este proyecto. En los

capítulos siguientes se presentan los resultados cualitativos y cuantitativos obtenidos los estudios desarrollados anteriormente por SVS.

A continuación se describe la información que se considera de interés para el desarrollo de la presente tesis.

3.2 Antecedentes de Investigaciones Geotécnicas

SVS realizó estudios con fines de evaluar la estabilidad del tajo desde el año 1998. Los trabajos desarrollados por SVS corresponden a ejecución de perforaciones y calicatas. Así también, se evaluó los resultados de las pruebas de laboratorio realizadas por SVS con la finalidad de conocer las propiedades físicas y mecánicas de los materiales del tajo.

3.3 Marco Teórico

Con el objetivo de determinar la calidad del macizo rocoso del tajo en estudio, se realizó un registro geomecánico de los testigos de roca obtenidos de las perforaciones diamantinas y las estaciones geomecánicas. Para la elaboración de estos registros se siguieron las recomendaciones del ISRM (International Society of Rock Mechanics), a fin de obtener los parámetros relevantes tales como:

- RQD Rock Quality Designation.
- Resistencia a la compresión simple de la matriz rocosa.
- Espaciado de las discontinuidades.
- Condición de discontinuidades.
- Presencia de agua.

Los parámetros anteriores fueron utilizados para la valoración del macizo rocoso según el sistema RMR. Este sistema de clasificación considera 5 parámetros relacionados con la condición de roca intacta y la calidad del macizo rocoso, asignando una valoración o puntaje a cada uno de dichos parámetros. Estos puntajes son sumados para obtener una valoración de la calidad del macizo rocoso (RMR básico). Se describe a continuación:

3.3.1 Clasificación Geomecánica RMR (Rock Mass Rating)

Desarrollado por Bieniawski (1989), constituye un sistema de clasificación de macizos rocosos que permite a su vez relacionar índices de calidad con parámetros de diseño y de sostenimiento de taludes.

El parámetro que define la clasificación es el denominado índice RMR, que indica la calidad del macizo rocoso en cada dominio estructural a partir de los cinco parámetros, mencionados en el punto anterior, las características de cada uno de los parámetros se explica a continuación.

- a. R.Q.D. (Rock Quality Designation); indica el grado de fracturación del macizo rocoso. La calidad de roca R.Q.D se puede determinar:
 - Trozos de rocas mayores de 10 cm recuperados, para testigos de perforación. Se utiliza la siguiente fórmula:

$$RQD = \frac{\sum ripios > 10cm}{Total.de.la.perforación}$$

Número total de discontinuidades que interceptan una unidad de volumen
 (1m3) del macizo rocoso, definido mediante el parámetro Jv, para el caso de estaciones geomecánicas. Se utiliza la siguiente fórmula:

$$RQD = 115 - 3.3.J_{y}$$

El valor obtenido en las fórmulas anteriores es comparado en la tabla 3.1.

Tabla 3.1 RQD - Rock Quality Designation

Índice de Calidad RQD (%)	Calidad	Valoración
0 – 25	Muy mala	3
25 - 50	Mala	8
50 - 75	Regular	13
75 - 90	Buena	17
90 - 100	Excelente	20

b. Resistencia a la compresión simple de la matriz rocosa; ha sido estimada durante el registro geotécnico mediante apreciación con el martillo de geólogo; sin embargo, los ensayos de resistencia a la carga puntual y de martillo Schmidt sirvieron para calibrar los valores reportados. La tabla 3.2 muestra la valoración utilizada.

Tabla 3.2 Resistencia de la Roca Sana - Estimación de la resistencia a la compresión simple de la roca a partir de índices de campo - ISMR 1981

Clase	Descripción	Resistencia a la Compresión Simple (MPa)	Valoración
R0	Roca Extremadamente Blanda	0,25 – 1,0	0
R1	Roca muy Blanda	1,0 – 5,0	1
R2	Roca Blanda	5,0 - 25	2
R3	Roca Moderadamente Dura	25 - 50	4
R4	Roca Dura	50 - 100	7
R5	Roca muy Dura	100 - 250	12
R6	Roca Extremadamente Dura	> 250	15

Para propósitos de caracterización geotécnica, se considera que las rocas de calidad muy mala y dureza menor que R2.0, como suelos residuales.

c. Espaciado de las discontinuidades; la separación o el espaciamiento de las discontinuidades está clasificada según la tabla 3.3.

Tabla 3.3 Espaciamiento de discontinuidades

Descripción	Índice de Calidad RQD (%)	Tipo de Macizo Rocoso	Valoración
Muy separadas	> 2 m	Sólido	20
Separadas	0,6 – 2 m	Masivo	15
Moderadamente juntas	200 – 600 mm	En bloques	10
Juntas	60 – 200 mm	Fracturado	8
Muy juntas	< 60 mm	Triturado	5

- d. Condiciones de las discontinuidades; este parámetro se subdivide en 5 carácterísticas:
 - Abertura.
 - Persistencia.
 - Rugosidad.
 - Alteración.
 - Relleno.
 - ✓ Abertura de las caras de la discontinuidad.

Tabla 3.4 Abertura de discontinuidades

Grado	Descripción	Separación de las caras de las juntas	Valoración
1	Abierta	> 5 mm	0
2	Moderamente abierta	1 – 5 mm	1
3	Cerrada	0,1 - 1 mm	4
4	Muy cerrada	< 0,1 mm	5
5	Ninguna	0	6

✓ Persistencia o continuidad de la discontinuidad.

Tabla 3.5 Persistencia de discontinuidades

Grado	Descripción	Continuidad	Valoración
1	Muy baja	> 1 m	6
2	Baja	1 – 3 m	4
3	Media	3 - 10 m	2
4	Alta	10 - 20 m	1
5	Muy alta	> 20 m	0

✓ Rugosidad.

Tabla 3.6 Rugosidad de discontinuidades

Grado	Descripción	Valoración
1	Muy rugosa	6
2	Rugosa	5
3	Ligeramente rugosa	3
4	Lisa	1
5	Plana (espejo de falla)	0

✓ Alteración de la discontinuidad.

Tabla 3.7 Alteración de discontinuidades

Grado	Descripción	Valoración
1	Descompuesta	0
2	Muy alterada	1
3	Moderadamente alterada	3
4	Ligeramente alterada	5
5	Inalterada	6

✓ Relleno de las discontinuidades.

Tabla 3.8 Relleno de discontinuidades

Grado	Descripción	Valoración
1	Blando > 5 mm	0
2	Blando < 5 mm	2
3	Duro > 5 mm	2

Grado	Descripción	Valoración
4	Duro < 5 mm	4
5	Ninguno	6

e. **Presencia del Agua**; en un macizo rocoso el agua tiene gran influencia sobre su comportamiento, la descripción utilizada para este criterio son:

Tabla 3.9 Presencia de Agua

Caudal por 10 m de túnel	Descripción	Valoración
Nulo	Seco	15
< 10 litros/min	Ligeramente húmedo	10
10 – 25 litros/min	Húmedo	7
25 – 125 litros/min	Goteando	4
> 125 litros/min	Fluyendo	0

Otro parámetro adicional que se toma en cuenta para la obtención del RMR ajustado es la corrección por orientación de discontinuidades; se describe a continuación.

f. **Orientación de las discontinuidades;** para la valoración de este parámetro se debe clasificar la roca de acuerdo al rumbo y buzamiento con respecto a la obra civil que se va a ejecutar, esta clasificación se especifica en las tablas 3.10 y 3.11.

Tabla 3.10 Clasificación para la determinación de los buzamientos con respecto al efecto relativo con relación al talud

Dirección Perpendicular al Eje del talud Excavación con Excavación contra			Dirección Paralela al Eje del talud		Buzamiento 0° - 20°	
			buzamiento –.		Lje der tardd	
Buz 45° - 90°	Buz 20° - 45°	Buz 45° - 90°	Buz 20° - 45°	Buz 45° - 90°	Buz 20° - 45°	cualquier dirección
Muy favorable	Favorable	Medio	Desfavorable	Muy desfavorable	Medio	Desfavorable

Tabla 3.11 Calificativo para Taludes

Calificativo	Valoración
Muy favorable	0
Favorable	-5
Medio	-25
Desfavorable	-50
Muy desfavorable	-60

Para obtener el Índice RMR de Bieniawski se suma los 5 primeros parámetros calculados, eso da como resultado un valor índice (RMR básico). El sexto parámetro que se refiere a la orientación de las discontinuidades respecto a la excavación, es sumado para al RMR básico para dar como resultado el RMR ajustado. El valor del RMR varía entre 0 a 100. La calificación para el RMR se presenta en la tabla 3.12.

Tabla 3.12 Calidad del Macizo Rocoso con relación al índice RMR

Clase	Calidad	Valoración RMR
I	Muy buena	100 - 81
II	Buena	80 - 61
III	Media	60 - 41
IV	Mala	40 - 21
V	Muy mala	< 20

3.3.2 Martillo Schmidt

El ensayo con martillo Schmidt tipo "L", también llamado esclerómetro, es un ensayo no destructivo, el cual se realiza en el mismo afloramiento donde se realiza las estaciones geomecánicas, con el fin de complementar la caracterización del macizo rocoso.

Su uso es muy frecuente dada la manejabilidad del aparato, pudiendo aplicarse sobre roca matriz y sobre las discontinuidades (resistencia de los labios de las juntas). El ensayo consiste en medir la resistencia al rebote de la superficie de la roca ensayada. La medida del rebote se correlaciona con la resistencia a la compresión simple mediante la figura 3.1 creada por Miller (1965), que contempla la densidad de la roca y la orientación del martillo respecto del plano ensayado. Su uso es como se muestra en la figura 3.2.

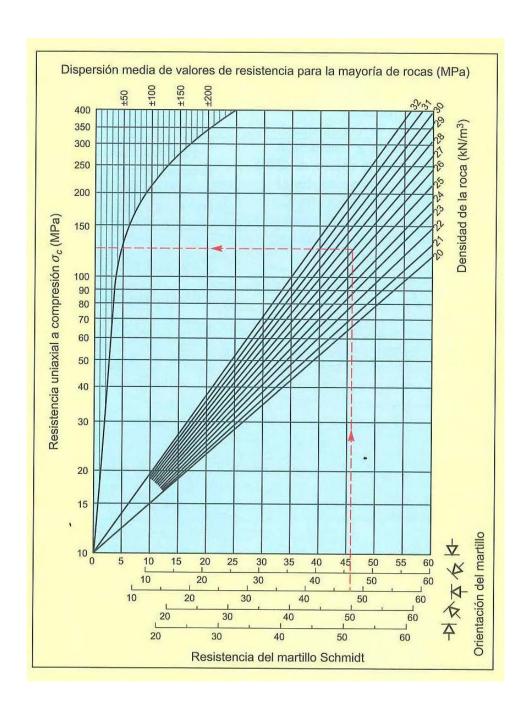


Figura 3.1 Gráfica de Miller para la obtención de la resistencia a la compresión

Figura 3.2 Ensayo martillo Schmidt

3.3.3 Tilt Test

El tilt test constituye un ensayo de corte en discontinuidades rocosas bajo cargas normales muy bajas. La resistencia al corte de pico τρ de discontinuidades rugosas sin cohesión viene dada por la expresión:

$$\tau_{p} = \sigma_{p}^{'} \cdot tan(\phi_{p})$$

Donde:

 σ'_p = esfuerzo normal efectivo sobre el plano de la discontinuidad.

$$\phi_p = \phi + i$$

 ϕ = ángulo de rozamiento interno de la discontinuidad.

i = ángulo de rugosidad de Barton (JRC).

El valor de τ_p depende del valor de σ'_p y del valor del ángulo ϕ_p que suele variar entre 30° y 70° y que resulta de la suma del ángulo de fricción interna del material ϕ y del ángulo de rugosidad i.

A partir de la determinación de la rugosidad en el campo, y de la medida de otros parámetros en afloramientos, puede estimarse el valor del ángulo de rozamiento pico, ϕ_p de una discontinuidad mediante la aplicación del criterio empírico de Barton y Choubey (1977):

$$\phi_p = JRC \cdot Log_{10} \left(JCS / \sigma_p \right) + \phi_r$$

Donde:

JCS = resistencia a compresión simple de la pared de la discontinuidad.

JRC = coeficiente de rugosidad de Barton de la discontinuidad.

 ϕ_r = ángulo de rozamiento interno residual de la discontinuidad.

El valor de ϕ_r puede ser estimado mediante la expresión:

$$\phi_r = (\phi_b - 20^\circ) + 20^\circ (r/R)$$

Donde:

r = valor de rebote del martillo Schmidt sobre la pared de la discontinuidad.

R = valor de rebote del martillo Schmidt sobre la masa rocosa.

 ϕ_b = ángulo de fricción básico del material.

Figura 3.3 Ensayo tilt test

3.4 Investigaciones Geotécnicas

Para la ejecución del presente estudio, se planificó un programa de investigación geotécnica de campo, las cuales se ejecutaron en el tajo. Adicionalmente se superviso el desarrollo de 2 perforaciones orientadas sobre el tajo, con la finalidad de evaluar la orientación de las juntas y obtener niveles de agua subterránea de la zona. La campaña de campo desarrollada fue aprovechada para el desarrollo de un cartografiado geológico-geotécnico, ejecución de ensayos de martillo Schmidt, tilt test y cartografiado de afloramiento (estaciones geomecánicas) para identificar los materiales que conforman los taludes de suelo y roca, respectivamente, y muestreo del tipo de materiales, para ejecutar posteriores ensayos de laboratorio en la ciudad de Lima. Esta tesis presenta los datos recogidos del tajo y su complemento con las otras investigaciones geotécnicas referidas en el punto 3.1.

Asimismo, en el Plano 003 se presentan las investigaciones geotécnicas desarrolladas en el presente estudio.

3.4.1 Perforaciones Diamantinas

El programa de perforaciones de investigaciones de campo comprendió dos (2) perforaciones orientadas del tipo diamantino. El programa de perforaciones alcanzó un total de 208,70 m en el tajo.

En la ejecución de las perforaciones orientadas, se llevó a cabo una detallada descripción de los tipos de suelos y rocas encontradas. Asimismo, se realizó un registro geomecánico del basamento rocoso a fin de determinar la calidad y resistencia del macizo subyacente además de detallar las características de las juntas encontradas en el macizo rocoso. En el Anexo A.1.1 – Registro Geomecánico, se presentan los registros de las perforaciones ejecutadas y sus respectivas fotografías.

Tabla 3.13 Resumen de Perforaciones

Perforación	Coordenadas Locales		Nivel Agua	Nivel Roca (m)	Prof. Total (m)	
	Este	Norte	(-112)	()	(111)	
PR-01	1 213	1 311	N.E.	4,40	100,0	
PR-02	2 086	1 273	N.E.	5,90	108,70	

Abreviaturas:

N.E.: No encontrado

A partir de los registros geotécnicos de las perforaciones diamantinas realizadas en el presente estudio y de los ensayos de laboratorio de Mecánica de Rocas, se ha efectuado la caracterización del macizo rocoso de la zona del tajo.

En el Anexo A.1.1 – Registro Geomecánico, se presentan los cálculos de los valores del RMR básico correspondiente a la descripción inicial de la calidad del macizo rocoso de acuerdo con la Tabla 3.14.

Asimismo, se realizó el registro de juntas de las perforaciones orientadas que se muestran en el Anexo A.1.2 – Registro de Juntas, para luego obtener un valor de RMR corregido. En el capítulo 6 se observa que las discontinuidades afectan sólo ciertos sectores de los taludes del tajo, lo que tomará una reducción de -7 a los valores de RMR básico. La Tabla 3.14 resume los valores básicos del RMR y valores totales, es decir ajustado en función de la influencia de la orientación de las discontinuidades, para cada una de las perforaciones realizadas en el área del proyecto.

Tabla 3.14 Valores de RMR Básico y Total en las Perforaciones

Perforación	Profundidad (m)	RMR Básico Promedio	RMR Total Promedio	Descripción
	0,00 – 5,90	53	46	Regular
PR-01	5,90 - 17,60	60	53	Regular
1 K-01	17,60 - 65,50	47	40	Regular
	65,50 - 108,70	37	30	Mala
	0,00 - 15,60	45	38	Mala
PR-02	15,60 - 28,40	59	52	Regular
1 K-02	28,40 - 60,85	42	35	Mala
	60,80 – 100,00	55	48	Regular

Abreviaturas:

RMR: Valoración geomecánica de Bieniawski

3.4.2 Estaciones Geomecánicas

Los mapeos geotécnicos de afloramientos rocosos superficiales y de los cortes existentes en el tajo, se llevaron a cabo utilizando el método directo de celdas de detalle, mediante este método se realizaron mediciones de las principales discontinuidades presentes en los afloramientos, incluida la orientación, la longitud máxima y el espaciamiento promedio.

Se realizaron un total de 50 estaciones identificadas en los tajos se muestran en el Plano 004; además, se presentan las rosetas de las principales familias.

Esta información es útil para definir las condiciones geomecánicas superficiales del tajo y poder realizar la zonificación geomecánica del mismo. La ubicación de las estaciones así como su litología se muestran en la Tabla 3.15. Los registros de las estaciones geomecánicas se presentan en el Anexo A.3; asimismo, se presenta el procesamiento correspondiente al cálculo del SMR y juntas representativas.

Tabla 3.15 Ubicación de Estaciones Geomecánicas

Estación Geomecánica	Coordenadas Locales		Roca	
Estacion Geomecanica	Este	Norte	Noca	
EG-01	1 967	1 652	Volcánico andesítico	
EG-02	2 025	1 593	Volcánico andesítico	
EG-03	2 072	1 480	Volcánico andesítico	
EG-04	2 076	1 367	Volcánico andesítico	
EG-05	2 079	1 223	Volcánico andesítico	

Estación Geomecánica Coordenadas Locales		Roca	
Estacion Geomecanica	Este	Norte	Roca
EG-06	1 886	1 048	Caliza
EG-07	1 787	1 013	Caliza
EG-08	1 618	0 898	Caliza
EG-09	1 758	0 944	Caliza
EG-10	1 446	0 867	Caliza
EG-11	1 505	1 667	Caliza
EG-12	2 009	1 540	Volcánico andesítico
EG-13	1 999	1 505	Volcánico andesítico
EG-14	1 364	1 779	Volcánico andesítico
EG-15	1 683	1 770	Volcánico andesítico
EG-16	1 644	1 707	Volcánico andesítico
EG-17	1 823	1 689	Volcánico andesítico
EG-18	1 149	1 368	Caliza
EG-19	1 184	1 430	Caliza
EG-20	1 131	1 442	Caliza
EG-21	1 826	1 574	Caliza
EG-22	1 882	1 525	Caliza
EG-23	1 950	1 368	Volcánico andesítico
EG-24	1 860	1 161	Caliza
EG-25	1 258	1 432	Caliza
EG-26	1 230	1 341	Caliza

Estación Geomecánica	Coordenadas Locale		Roca
Estacion Geomecanica	Este	Norte	Roca
EG-27	1 619	1 043	Caliza
EG-28	2 097	1 216	Volcánico andesítico
EG-29	2 112	1 276	Volcánico andesítico
EG-30	2 124	1 461	Granodiorita
EG-31	2 108	1 509	Granodioritao
EG-32	2 097	1 555	Volcánico andesítico
EG-33	2 067	1 621	Volcánico andesítico
EG-34	1 610	0 885	Caliza
EG-35	1 803	0 939	Caliza
EG-36	2 035	1 689	Volcánico andesítico
EG-37	1 932	1 736	Volcánico andesítico
EG-38	1 810	1 863	Volcánico andesítico
EG-39	1 747	0 933	Caliza
EG-40	1 374	1 589	Caliza
EG-41	1 505	1 566	Volcánico andesítico
EG-42	1 148	1 489	Caliza
EG-43	2 106	1 243	Volcánico andesítico
EG-44	2 128	1 252	Volcánico andesítico
EG-45	2 128	1 217	Volcánico andesítico
EG-46	2 167	1 398	Granodiorita
EG-47	2 137	1 429	Volcánico andesítico

Estación Geomecánica	Coordena	das Locales	Roca
Estacion Geomecanica	Este	Norte	Noca
EG-48	2 070	1 599	Volcánico andesítico
0EG-49	1 149	1 350	Caliza
EG-50	1 593	1 553	Caliza

3.4.3 Ensayos de Campo

Durante la investigación geotécnica de campo se realizaron ensayos in situ como pruebas de resistencia a la compresión en rocas (Martillo Schmidt tipo L), ensayos de corte en discontinuidades (tilt test). A continuación se detalla el resultado obtenido en cada uno de ellos.

a. Ensayo con Martillo Schmidt

Se ejecutó un total de 50 pruebas convenientemente ubicadas y distribuidas en los taludes del tajo, correlacionados con cada una de las estaciones geomecánicas. En el Anexo A.2.1 se presentan los resultados de cada una de estas pruebas.

La Tabla 3.16 presenta un resumen de las pruebas realizadas en matriz rocosa. Los resultados obtenidos no son indicadores directos de la resistencia de la roca, estos deben ser verificados con un ensayo destructivo del material. Así también en la Tabla 3.17 se muestra el resumen de este ensayo aplicado en las discontinuidades presentes en los taludes.

Tabla 3.16 Resumen de Pruebas No Destructivas - Matriz Rocosa

Estación Geomecánica	Posición del Martillo	Promedio de Valores	RCS (Mpa)	Resistencia ISRM	Descripción
EG-01	0	58,9	164	R5	Roca muy Resistente
EG-02	-45	57,7	186	R5	Roca muy Resistente
EG-03	-45	61,9	230	R5	Roca muy Resistente
EG-04	0	50,1	99	R4	Roca Resistente
EG-05	0	58,6	161	R5	Roca muy Resistente
EG-06	-45	52,4	168	R5	Roca muy Resistente
EG-07	45	56,7	179	R5	Roca muy Resistente
EG-08	-45	53,6	178	R5	Roca muy Resistente
EG-09	0	54,1	147	R5	Roca muy Resistente
EG-10	0	59,8	207	R5	Roca muy Resistente
EG-11	0	58,6	116	R5	Roca muy Resistente
EG-12	-45	54,6	114	R5	Roca muy Resistente
EG-13	-45	56,9	126	R5	Roca muy Resistente
EG-14	45	53,2	92	R4	Roca Resistente
EG-15	45	53,1	92	R4	Roca Resistente
EG-16	0	53,2	88	R4	Roca Resistente
EG-17	0	59,3	168	R5	Roca muy Resistente
EG-18	-45	51,9	162	R5	Roca muy Resistente
EG-19	-45	51,9	162	R5	Roca muy Resistente
EG-20	-45	44,5	109	R5	Roca muy Resistente
EG-21	45	58,7	168	R5	Roca muy Resistente
EG-22	45	55,1	138	R5	Roca muy Resistente
EG-23	0	51,9	128	R5	Roca muy Resistente
EG-24	0	51,9	128	R5	Roca muy Resistente

Estación Geomecánica	Posición del Martillo	Promedio de Valores	RCS (Mpa)	Resistencia ISRM	Descripción
EG-25	0	51,9	128	R5	Roca muy Resistente
EG-26	45	51,9	134	R5	Roca muy Resistente
EG-27	0	51,4	124	R5	Roca muy Resistente
EG-28	0	48,0	88	R4	Roca Resistente
EG-29	0	39,7	55	R4	Roca Resistente
EG-30	0	50,3	110	R5	Roca muy Resistente
EG-31	-45	59,9	235	R5	Roca muy Resistente
EG-32	45	52,3	130	R5	Roca muy Resistente
EG-33	45	52,1	129	R5	Roca muy Resistente
EG-34	0	51,8	127	R5	Roca muy Resistente
EG-35	0	52,0	129	R5	Roca muy Resistente
EG-36	45	58,0	162	R5	Roca muy Resistente
EG-37	45	58,4	166	R5	Roca muy Resistente
EG-38	-45	58,3	192	R5	Roca muy Resistente
EG-39	-45	51,8	162	R5	Roca muy Resistente
EG-40	0	51,9	128	R5	Roca muy Resistente
EG-41	0	52,6	85	R4	Roca Resistente
EG-42	0	51,7	126	R5	Roca muy Resistente
EG-43	45	54,0	129	R5	Roca muy Resistente
EG-44	45	53,9	128	R5	Roca muy Resistente
EG-45	0	60,4	178	R5	Roca muy Resistente
EG-46	45	51,1	121	R5	Roca muy Resistente
EG-47	45	48,3	94	R4	Roca Resistente
EG-48	45	60,4	185	R5	Roca muy Resistente
EG-49	-45	49,0	139	R5	Roca muy Resistente

Estación Geomecánica		Promedio de Valores	RCS (Mpa)	Resistencia ISRM	Descripción
EG-50	-45	57,7	131	R5	Roca muy Resistente

Abreviaturas:

RCS: Resistencia a la compresión simple.

Tabla 3.17 Resumen de Pruebas No Destructivas en Discontinuidades

Estación Geomecánica (Tipo de Relleno)	Posición del Martillo	Promedio de Valores	RCS (Mpa)	Resistencia ISRM	Descripción
EG-01 (Arcilla)	-45	11,0	15	R2	Relleno Frágil
EG-02 (Calcita)	-45	28,7	45	R3	Relleno Medianamente Resistente
EG-03 (Calcita)	0	29,6	32	R3	Relleno Medianamente Resistente
EG-04 (Arcilla)	-45	11,9	16	R2	Relleno Frágil
EG-04 (Óxido)	-45	17,1	20	R2	Relleno Frágil
EG-05 (Óxido)	0	21,5	18	R2	Relleno Frágil
EG-06 (Arcilla)	0	11,6	15	R2	Relleno Frágil
EG-07 (Calcita)	-45	29,4	46	R3	Relleno Medianamente Resistente
EG-07 (Óxido)	-45	15,9	19	R2	Relleno Frágil
EG-07 (Arcilla)	45	13,1	16	R2	Relleno Frágil
EG-08 (Calcita)	45	30,3	36	R3	Relleno Medianamente Resistente
EG-09 (Calcita)	-45	30,0	48	R3	Relleno Medianamente Resistente
EG-10 (Calcita)	-45	29,6	47	R3	Roca Medianamente Resistente
EG-10 (Óxido)	-45	15,6	19	R2	Relleno Frágil
EG-11 (Calcita)	0	29,4	32	R3	Relleno Medianamente

Estación Geomecánica (Tipo de Relleno)	Posición del Martillo	Promedio de Valores	RCS (Mpa)	Resistencia ISRM	Descripción
					Resistente
EG-12 (Calcita)	0	30,2	33	R3	Relleno Medianamente Resistente
EG-13 (Arcilla)	45	12,7	16	R2	Relleno Frágil
EG-13 (Calcita)	-45	30,7	49	R3	Relleno Medianamente Resistente
EG-14 (Arcilla)	-45	11,4	16	R2	Relleno Frágil
EG-15 (Arcilla)	-45	11,4	16	R2	Relleno Frágil
EG-16 (Calcita)	-45	30,0	48	R3	Relleno Medianamente Resistente
EG-17 (Calcita)	-45	30,1	48	R3	Relleno Medianamente Resistente
EG-17 (Arcilla)	-45	11,1	16	R2	Relleno Frágil
EG-18 (Arcilla)	-45	11,1	16	R2	Relleno Frágil
EG-19 (Arcilla)	-45	11,1	16	R2	Relleno Frágil
EG-20 (Arcilla)	0	11,2	15	R2	Relleno Frágil
EG-21 (Arcilla)	0	11,9	15	R2	Relleno Frágil
EG-21 (Calcita)	45	29,4	35	R3	Relleno Medianamente Resistente
EG-22 (Calcita)	-45	29,8	47	R3	Relleno Medianamente Resistente
EG-22 (Arcilla)	-45	12,0	16	R2	Relleno Frágil
EG-23 (Calcita)	-45	29,8	47	R3	Relleno Medianamente Resistente
EG-24 (Calcita)	-45	29,1	45	R3	Medianamente Resistente
EG-25 (Calcita)	-45	30,4	49	R3	Relleno Medianamente Resistente

Estación Geomecánica (Tipo de Relleno)	Posición del Martillo	Promedio de Valores	RCS (Mpa)	Resistencia ISRM	Descripción
EG-26 (Calcita)	0	29,4	32	R3	Relleno Medianamente Resistente
EG-27 (Calcita)	0	29,6	32	R3	Relleno Medianamente Resistente
EG-28 (Arcilla)	-45	10,2	15	R2	Relleno Frágil
EG-29 (Calcita)	-45	26,2	39	R3	Relleno Medianamente Resistente
EG-30 (Calcita)	45	11,3	15	R2	Relleno Frágil
EG-31 (Calcita)	-45	28,1	43	R3	Relleno Medianamente Resistente
EG-32 (Arcilla)	-45	10,9	15	R2	Relleno Frágil
EG-32 (Óxido)	45	22,6	20	R2	Relleno Frágil
EG-33 (Calcita)	0	29,7	32	R3	Relleno Medianamente Resistente
EG-34 (Calcita)	0	30,0	33	R3	Relleno Medianamente Resistente
EG-35 (Arcilla)	-45	30,3	48	R3	Relleno Medianamente Resistente
EG-36 (Óxido)	-45	17,0	20	R2	Relleno Frágil
EG-37 (Calcita)	-45	30,6	49	R3	Relleno Medianamente Resistente
EG-38 (Calcita)	-45	30,2	48	R3	Relleno Medianamente Resistente
EG-39 (Calcita)	45	29,9	36	R3	Relleno Medianamente Resistente
EG-40 (Calcita)	-45	30,1	48	R3	Relleno Medianamente Resistente
EG-41 (Calcita)	0	30,4	34	R3	Relleno Medianamente Resistente
EG-42 (Calcita)	0	30,1	33	R3	Relleno Medianamente

Estación Geomecánica (Tipo de Relleno)	Posición del Martillo	Promedio de Valores	RCS (Mpa)	Resistencia ISRM	Descripción
					Resistente
EG-43 (Óxido)	0	22,6	19	R2	Relleno Frágil
EG-44 (Óxido)	-45	16,9	20	R2	Relleno Frágil
EG-45 (Óxido)	45	22,1	20	R2	Relleno Frágil
EG-46 (Calcita)	45	30,1	36	R3	Relleno Medianamente Resistente
EG-46 (Óxido)	45	20,4	18	R2	Relleno Frágil
EG-47 (Óxido)	-45	14,7	18	R2	Relleno Frágil
EG-48 (Calcita)	-45	10,6	16	R2	Relleno Frágil
EG-49 (Óxido)	45	20,8	19	R2	Relleno Frágil
EG-49 (Calcita)	45	30,5	37	R3	Relleno Medianamente Resistente
EG-50 (Calcita)	45	30,5	37	R3	Relleno Medianamente Resistente

Resistencia al Corte de Discontinuidades - Método de Campo (Tilt Test)

Se ejecutó un total de 03 pruebas convenientemente ubicadas y distribuidas en los testigos de perforación. En el Anexo A.2.2 se presentan los ensayos de tilt test realizados en campo.

En la Tabla 3.18 se muestran los ángulos picos y residuales de las discontinuidades y del macizo.

Tabla 3.18 Resumen de Ensayos de Tilt Test - Resistencia Pico (Discontinuidades)

Perforación	Profundidad (m)	Relleno	φ _b (°)	φ _r (°)	φ _p (°)	$\tau_p \left(kN/m^2 \right)$
PR-01	59,02 – 59,28	Arcilla	24	12	14,94	4,67
PR-02	15,95 – 16,10	Calcita	33	24	34,96	12,20
PR-02	96,60 - 97,11	Óxido	30	20	26,29	8,65

Abreviaturas:

φ_b: Ángulo de Fricción Básico del material

φ_p: Ángulo de rozamiento pico

τ_r: Resistencia al corte de pico

3.5 Ensayos de Laboratorio

Durante el desarrollo de la exploración geotécnica de campo, se obtuvieron muestras representativas con la finalidad de llevar a cabo los ensayos de mecánica de rocas, obtenidas de muestras de las perforaciones y muestreo superficial de las estaciones geomecánicas. Estos ensayos tendrán la finalidad de determinar los parámetros geomecánicos de los taludes en el tajo.

Los ensayos de caracterización física y mecánica fueron realizados en el laboratorio geotécnico de Anddes y en el laboratorio de Mecánica de Rocas de la Universidad Nacional de Ingeniería, ambos con sede en la ciudad de Lima. Los ensayos de laboratorio fueron llevados a cabo siguiendo los procedimientos recomendados según las versiones actualizadas de los métodos de ensayo de la Sociedad Norteamericana de Ensayos y Materiales (ASTM).

A continuación se presenta la descripción de los ensayos realizados y algunos comentarios de los resultados obtenidos.

3.5.1 Ensayo de Propiedades Físicas del Basamento Rocoso

Los ensayos para la determinación de las propiedades físicas de la matriz rocosa fueron:

- a. Densidad Seca; es la densidad obtenida con la roca seca, se define como la masa del material seco por unidad de volumen total de la roca.
- b. Densidad Húmeda; es la densidad obtenida con la roca sometida a cierto porcentaje de humedad, se define como la masa del material húmedo por unidad de volumen total de la roca.
- c. Porosidad; es la relación existente entre el volumen ocupado por los poros en la muestra y la unidad de volumen.
- d. Absorción de la Humedad; de acuerdo con la norma ASTM C127, el contenido de humedad puede entenderse como el incremento de la masa de un agregado, debido a la penetración de agua dentro de los poros de la partícula durante un período establecido de tiempo, sin considerar el agua adherida a las paredes externas de dicha partícula.
- e. Peso Específico Aparente; es la relación entre el peso de la roca, con su humedad natural y el volumen total que ocupa.

Se seleccionaron muestras representativas de testigos de roca de ciertas áreas de los taludes del tajo, para desarrollar un programa de ensayos en el laboratorio de Anddes. Los ensayos fueron ejecutados según los procedimientos indicados en la norma ASTM D-2216-02. Los resultados de los ensayos de determinación de propiedades físicas se presentan en la Tabla 3.19.

Tabla 3.19 Resumen de Propiedades Físicas en Roca

Perforación	Profundidad (m)	Densidad Seca (gr/cm ³)	Densidad Húmeda (gr/cm³)	Poro. (%)	Absor.	Peso Específico Aparente (KN/m³)
	19,22 - 19,40	2,70	2,72	0,65	0,24	26,45
PR-01	58,84 - 59,09	2,73	2,74	0,66	0,24	26,76
	83,00 - 83,30	2,71	2,72	0,41	0,15	26,58
	4,35 - 4,53	3,23	3,24	1,03	0,31	31,65
	17,40 - 17,60	2,96	2,98	0,34	0,11	29,04
	29,07 - 29,25	2,85	2,87	0,39	0,14	27,93
	30,53 - 30,73	2,88	2,89	0,31	0,11	28,23
PR-02	41,93 - 42,13	2,79	2,81	0,49	0,17	27,36
	50,25 - 50,50	2,81	2,82	0,36	0,13	27,54
	60,90 - 70,05	2,67	2,69	0,52	0,19	26,17
	76,46 - 76,69	2,64	2,67	1,15	0,43	25,85
	80,70 - 80,90	2,72	2,74	0,88	0,32	26,67

Abreviaturas:

Poro.: Porosidad Aparente Absor.: Absorción de Humedad

3.5.2 Ensayo de Carga Puntual

Este ensayo se utiliza para determinar a resistencia mecánica a compresión de la roca al someterla a una carga puntual que se aplica mediante un par de piezas cónicas.

Se efectuaron ensayos de carga puntual en muestra de roca de la cimentación, con la finalidad de obtener su resistencia compresiva. Este ensayo sigue los procedimientos de la norma ASTM D-5731 y el resultado se presenta en la

Tabla 3.20 en términos de la resistencia del índice de carga puntual y de resistencia a la compresión no confinada equivalente de la roca.

Tabla 3.20 Resumen de Ensayo de Carga Puntual

	Prof.		Carga I	Puntual	Grado de
Perforación	(m)	Litología	Is ₍₅₀₎ (MPa)	σ _c (MPa)	Dureza
	16,6 - 16,8	Caliza	4,01	96	R4
	19,2 - 19,4	Caliza	3,34	80	R4
	51,9 - 52,1	Caliza	3,57	86	R4
	58,8 - 59,1	Caliza	3,56	85	R4
PR-01	68,8 - 69,0	Caliza	4,45	107	R5
FK-01	77,7 - 77,9	Caliza	3,73	90	R4
	83,0 - 83,3	Caliza	3,71	89	R4
	87,5 - 87,8	Caliza	3,95	95	R4
	91,1 - 91,4	Caliza	3,50	84	R4
	98,4 - 98,6	Intrusivo	3,55	85	R4
	4,35 - 4,53	Volcánicos Andesiticos	8,66	208	R5
	17,4 - 17,6	Volcánicos Andesiticos	9,48	228	R5
	29,1 - 29,3	Volcánicos Andesiticos	8,55	205	R5
PR-02	30,5 - 30,7	Volcánicos Andesiticos	9,42	226	R5
	41,9 - 42,1	Volcánicos Andesiticos	5,29	127	R5
	50,3 - 50,5	Volcánicos Andesiticos	5,85	140	R5
	69,0 - 70,1	Volcánicos	4,69	113	R5

	Prof.		Carga P	untual	Grado de	
Perforación	(m)	Litología	Is ₍₅₀₎ (MPa)	σ _c (MPa)	Dureza	
		Andesiticos				
PR-02	76,5 - 76,7	Intrusivo	4,89	117	R5	
	80,7 - 80,9	Intrusivo	3,58	86	R4	

Abreviaturas:

Is₍₅₀₎: Índice de Carga Puntual Corregido

 σ_c : Resistencia a la Compresión no Confinada

3.5.3 Ensayo de Resistencia de Corte Directo

El ensayo de corte directo tiene como finalidad encontrar el valor del ángulo de fricción residual (ϕ_r) en testigos de roca que han sido previamente fracturados. Este ensayo se puede aplicar en rocas duras o blandas y en testigos de roca que contengan planos de falla o discontinuidades naturales.

Es necesario distinguir dos conceptos: ángulo de fricción interna y ángulo de fricción residual. El ángulo de fricción interna actúa mientras la roca no ha fallado mientras que el ángulo de fricción residual actúa cuando se ha producido la falla. Con la finalidad de evaluar los parámetros de resistencia cortante, se realizaron ensayos de corte directo en muestras de roca de los taludes del tajo. En la Tabla 3.21 se muestran los resultados del ensayo de corte directo.

Tabla 3.21 Resumen de Ensayos de Corte Directo - Discontinuidades

Perforación	Litología	Prof. (m)	Ángulo de Fricción Residual (°)	Cohesión (KPa)
PR-01	Caliza	43,75 - 44,05	26,39	0,108
PR-01	Caliza	85,40 - 85,66	26,98	0,106
PR-02	Volcánico Andesítico	58,60 - 58,75	27,04	0,093

3.5.4 Ensayo de Resistencia Cortante Triaxial

Este ensayo representa las condiciones de las rocas in situ sometidas a esfuerzos confinantes, mediante la aplicación de presión hidráulica uniforme alrededor de la probeta. Permite determinar la envolvente o línea de resistencia del material rocoso ensayado a partir de la que se obtienen los valores de sus parámetros resistentes cohesión (c) y ángulo de fricción (φ).

Como parte del presente estudio se realizaron 2 ensayos triaxiales para el macizo rocoso. Los ensayos fueron ejecutados según los procedimientos indicados en las normas ASTM D-2664 y ASTM D-5407 para rocas. En la Tabla 3.22 se presentan los resultados de todos los ensayos triaxiales llevados a cabo en el presente estudio.

Tabla 3.22 Resumen del Ensayo Triaxial – Matriz Rocosa

Perforación	Prof. (m)	Litología	Resistencia (MPa)	mi	Esfuerzos Totales	
T CITOTUCION					c (MPa)	ф (°)
			100,7			
PR-01	62,43 - 63,29	Caliza	117,2	19,28	15,07	50,94
			132,5			
			146,4			
PR-02	30,31 - 30,90	Volcánico andesítico	166,9	23,63	20,11	54,77
			186,1			

Abreviaturas:

Prof.: Profundidad

φ: Ángulo de Fricción - Mohr Coulomb

c: Cohesión

La evaluación geotécnica del tajo se describe en el siguiente capítulo.

CAPÍTULO IV

EVALUACIÓN GEOTÉCNICA

4.1 Cartografiado Geológico - Geotécnico

Como parte de la investigación geotécnica del presente estudio se realizó un cartografiado geológico-geotécnico detallado de las áreas del tajo; este fue realizado utilizando el método de cartografiado de afloramientos cuyo fin comprende la identificación de los rasgos geológicos, unidades geotécnicas, además de la zonificación por resistencia geomecánica de sus unidades litológicas presentes en este sector, la cual se muestra en el Plano 004 del Anexo B. Asimismo, se realizaron secciones representativas y críticas para modelar la geología y estabilidad del tajo, las cuales se muestran en los Planos 005 al 007 del Anexo B. Las estaciones geomecánicas nos servirán como puntos de control estructural representados principalmente por las familias de juntas.

4.2 Unidades Geológico-Geotécnicas

En el área de estudio se han definido 04 unidades geológicas-geotécnicas denominadas de la siguiente manera: Depósito Coluvial (Unidad Geológica-Geotécnica II), Depósito Aluvial (Unidad Geológica-Geotécnica II), Suelo residual (Unidad Geológica-Geotécnica III), y Basamento Rocoso (Unidad Geológica-Geotécnica IV); asimismo, se tienen sectores de material de rellenos controlados y no controlados; los cuales fueron identificados visualmente. Estas unidades se presentan en los planos 002 y 005 al 007 del Anexo B.

La descripción que a continuación se presenta de cada una de las unidades geológicas-geotécnicas presentes en el área de estudio. Fue elaborada sobre la base del mapeo geológico-geotécnico realizado para el presente estudio.

4.2.1 Depósito Coluvial (Unidad Geotécnica I)

Suelo generado por meteorización y transporte de los detritos por la acción de la gravedad. Material constituido por gravas mal gradadas a gravas limosas; presentan plasticidad nula se encuentran ligeramente húmeda y son de estructura homogénea.

4.2.2 Depósito Aluvial (Unidad Geotécnica II)

Suelo conformado por arena mal gradada con limo y grava; presentan plasticidad nula, son de consistencia muy suelta a suelta, se encuentran ligeramente húmedas, de color marrón claro y son de estructura homogénea.

4.2.3 Suelo Residual (Unidad Geotécnica III)

Suelo generado por la meteorización del basamento. Material constituido por grava limosa, presentan plasticidad nula, consistencia medianamente densa a densa, se encuentra seca, de color gris marrón-amarillento, estructura homogénea con gravas angulosas de tamaño máximo 2,5".

4.2.4 Basamento Rocoso (Unidad Geotécnica IV)

Durante las investigaciones geotécnicas se identificó la presencia del basamento rocoso a través del cartografiado del tajo y las investigaciones geotécnicas.

Caliza

Esta roca se encuentra con un grado de resistencia medianamente dura (R3.0-R4.0), RQD promedio equivalente a 72%, ligeramente alterada, moderadamente fracturada, juntas con pátinas de óxidos y con una calidad geomecánica de mala a regular según el cálculo del índice del RMR básico.

Volcánico Andesítico

Esta roca se encuentra con un grado de resistencia medianamente dura (R3.5-R4.0), RQD promedio equivalente a 71%, ligeramente alterada, ligeramente fracturada, juntas con pátinas de óxidos y con una calidad geomecánica de regular según el cálculo del índice del RMR básico.

Granodiorita

Esta roca se encuentra con un grado de resistencia alta a muy alta (R4.0 a

R5.0), poco fracturada a fracturada (RQD 50 a 90%), muy alterada a ligeramente alterada y con una calidad geomecánica de regular a buena según el cálculo del índice del RMR básico.

4.3 Evaluación Geomecánica

4.3.1 Dureza o Resistencia

De acuerdo a los registros geomecánicos: Método clásico (picota), martillo Schmidt y ensayos de laboratorio como carga puntual, se pudo definir que las rocas que representarán el modelo geomecánico de acuerdo a la litología poseen las durezas indicadas en la Tabla 4.1.

Tabla 4.1 Resumen de Dureza

Litología	Resistencia a la Compresión No Confinada (MPa)	Grado de Dureza
Volcánico andesítico	220	R5.0
Caliza	95	R4.0
Granodiorita	140	R5.0

4.3.2 Grado de Fracturamiento (RQD)

Las estaciones geomecánicas y perforaciones diamantinas presentan una gran variabilidad en el grado de fracturamiento, el cual puede tener un impacto muy importante en el diseño de bancos y taludes interrampa. Las zonas identificadas mediante la perforación que se encuentran muy alteradas, presentan filtraciones de agua o fallas presentan valores de RQD=0.

4.3.3 Parámetros Geomecánicos de Discontinuidades

De las discontinuidades que se evaluaron durante los trabajos de

caracterización litológica y estructural superficial del macizo rocoso mediante las estaciones geomecánicas, perforaciones geotécnicas y el relleno presente en las juntas que presentaban principalmente calcita y arcilla, entre otros rellenos encontrados se tienen óxidos en forma de pátinas. De acuerdo a las referencias existentes y de los registros realizados en campo de las estaciones geomecánicas, las perforaciones, ensayos de laboratorio y ensayos de tilt test de campo, se puede definir los siguientes parámetros para las discontinuidades a nivel de superficie mostrados en la Tabla 4.2.

Tabla 4.2 Resumen de Propiedades Mecánicas de las Discontinuidades

	Parámetros Ba	arton Brandis	Parámetros Mohr Coulomb		
Relleno	JRC (Barton Bandis)	Ángulo de Fricción	ф (°)	Cohesión (kPa)	
Arcilla	7	19	30,79	0,007	
Calcita	10	30	49,97	0,031	
Óxido	11	21	39,33	0,019	

En los mecanismos de fallas tipo cuña, planares o vuelco, estos parámetros permitirán modelar y determinar su estabilidad mediante los análisis estereográficos, además de determinar su factor de seguridad de estabilidad bajo el modelamiento con programas como: Swedge, Rocplane y Roctopple.

4.3.4 Clasificación Geomecánica de Romana – SMR (Slope Mass Rating)

El índice SMR para la clasificación de taludes se obtiene del índice RMR básico, restando un "factor de ajuste" que es función de la orientación de las

discontinuidades (y producto de tres subfactores) y sumando un "factor de excavación" que depende del método utilizado.

$$SMR = RMR_{Básico} + (F_1 x F_2 x F_3) + F_4$$

El factor de ajuste de las discontinuidades es producto de tres subfactores:

F1, depende del paralelismo entre el rumbo de las discontinuidades y la cara del talud. Varía entre 1,00 (cuando ambos rumbos son paralelos) y 0,15 (cuando el ángulo entre ambos rumbos es mayor de 30° y la probabilidad de rotura es muy baja. Estos valores establecidos empíricamente ajustan aproximadamente a la expresión:

$$F_1 = (1 - sen(\alpha_i - \alpha_s))^2$$

Siendo α_j y α_s s los valores de dirección de la discontinuidad (α_j) y del talud (α_s) .

F2, depende del buzamiento de la discontinuidad en la rotura plana. Varía entre 1,00 (para discontinuidades con buzamiento superior a 45°) y 0,15 (para discontinuidades con buzamiento inferior a 20°). Puede ajustarse aproximadamente según la relación:

$$F_2 = \tan^2 \beta_j$$

Donde β_j es el buzamiento de la discontinuidad.

F3, refleja la relación entre los buzamientos de la discontinuidad y del talud.

El factor de ajuste según el método de excavación. F4, ha sido establecido empíricamente para:

Talud natural, es más estable a causa de los procesos previos de erosión sufridos por el talud, y de los mecanismos internos de protección que muchos de ellos poseen (vegetación, desecación superficial, drenaje torrencial, etc). F4 = +15.

Precorte, aumentan la estabilidad de los taludes en media clase. F4 = +10.

Voladura suave bien ejecutada, también aumentan la estabilidad de los taludes. ${\rm F4} = +8.$

Voladura normal aplicada con métodos razonables no modifican la estabilidad. ${\rm F4} = 0.$

Voladura defectuosa es muy frecuente y puede dañar seriamente a la estabilidad. F4 = -8.

La excavación mecánica de los taludes por ripado solo es posible cuando el macizo rocoso esta muy fracturado o la roca blanda. Con frecuencia se combina con prevoladuras poco cuidadosas. Las caras del talud presentan dificultades de acabado. Por ello el método ni mejora ni empeora la estabilidad.

Todo se resume en las tablas 4.3 y 4.4.

Tabla 4.3 Factor de Ajuste por la orientación de las Juntas (F₁, F₂ y F₃)

Caso		Muy Favorable	Favorable	Normal	Desfavorable	Muy desfavorable
Planar $ \alpha_{j}-\alpha_{s} $						
Vuelco	$ \alpha_{j}\text{-}\alpha_{s}\text{-}180^{\circ} $	> 30°	30° - 20°	20° - 10°	10° - 5°	< 5°
Cuña	$ \alpha_j$ - $\alpha_s $					
F	1	0,15	0,4	0,7	0,85	1
Planar/Cuña	$ \beta_j \ o \ \beta_i $	< 20°	20° - 30°	30° - 35°	35° - 45°	> 45°
	F_2	0,15	0,4	0,7	0,85	1
Vuelco	F ₂	1				
Planar	β_j - β_s	> 10°	100 00	00	00 (100)	. 100
Cuña	β_j - β_s	> 10	10° - 0°	0°	0° - (-10°)	<-10°
Vuelco	$\beta_j + \beta_s$	< 110°	110° - 120°	> 120°	-	-
F	F ₃		-6	-25	-50	-60

Tabla 4.4 Factor de Ajuste por el Método de Excavación (F₄)

N	Iétodo	Talud Natural	Precorte	Voladura suave	Voladura o Excavación mecánica	Voladura deficiente
	F_4	+15	+10	+8	0	-8

Asimismo, se realizó el registro de juntas de las perforaciones orientadas que se muestran en el Anexo A.1.2 para luego obtener un valor de RMR corregido. Los factores de reducción estimados para el tajo son de -10 a los valores de RMR básico para el cálculo del RMR total.

La Tabla 4.5 se resumen los valores básicos del RMR y valores de SMR ajustado en función de la influencia de la orientación de las discontinuidades, para cada una de las estaciones geomecánicas realizadas en los taludes del tajo.

Tabla 4.5 Valores de RMR Básico y SMR en las perforaciones

Estación Geomecánica	RMR Básico Promedio	SMR (*)	Descripción (**)
EG-01	63	56	Regular
EG-02	62	62	Regular
EG-03	63	56	Regular
EG-04	63	59	Regular
EG-05	63	63	Regular
EG-06	63	63	Regular
EG-07	62	62	Regular
EG-08	63	54	Regular
EG-09	65	56	Regular
EG-10	65	63	Regular
EG-11	59	58	Regular
EG-12	61	61	Regular
EG-13	55	55	Regular
EG-14	64	13	Regular
EG-15	63	56	Regular
EG-16	60	60	Regular
EG-17	67	67	Regular
EG-18	63	54	Regular
EG-19	60	53	Regular
EG-20	58	58	Regular
EG-21	61	61	Regular
EG-22	59	59	Regular
EG-23	65	56	Regular
EG-24	62	42	Regular
EG-25	59	59	Regular
EG-26	65	65	Regular
EG-27	66	59	Regular
EG-28	57	57	Regular
EG-29	58	57	Regular
EG-30	58	58	Regular
EG-31	66	59	Regular
EG-32	64	63	Regular
EG-33	65	65	Regular

Estación Geomecánica	RMR Básico Promedio	SMR (*)	Descripción (**)
EG-34	63	56	Regular
EG-35	62	53	Regular
EG-36	67	67	Regular
EG-37	66	66	Regular
EG-38	65	65	Regular
EG-39	66	66	Regular
EG-40	62	62	Regular
EG-41	55	47	Regular
EG-42	55	38	Regular
EG-43	58	54	Regular
EG-44	63	63	Regular
EG-45	62	55	Regular
EG-46	63	63	Regular
EG-47	60	60	Regular
EG-48	64	64	Regular
EG-49	61	61	Regular
EG-50	62	42	Regular

Abreviaturas:

RMR: Valoración geomecánica de Bieniawski

SMR: Slope Mass Rating (Coeficiente de macizo rocoso en taludes).

4.3.5 GSI (Índice Geológico de Resistencia)

Como parte de los parámetros que integran algunos modelos constitutivos de resistencia de la roca, se encuentra el llamado GSI. Este valor puede ser directamente calculado del RMR o mediante la inspección realizado en campo usando la recomendación de Hoek (1994). Con lo cual se determinaron los siguientes valores.

^{*} Los valores de los parámetros que determinan el SMR son considerados desfavorables a muy desfavorables y se considera voladura normal o excavación mecánica como método de excavación.

^{**} Calidad de Roca postulado por Romana (1985).

Tabla 4.6 Resumen de GSI

Litología	GSI
Caliza	57
Volcánico andesítico	60
Granodiorita	51

Abreviaturas:

GSI: Índice Geológico de Resistencia

4.4 Evaluación Estructural

4.4.1 Estructuras Orientadas en Mapeos Superficiales

Durante la realización del mapeo geomecánico en cada estación geomecánica se identificó el grupo de discontinuidades predominantes, las cuales se registraron teniendo en cuenta su dirección en forma azimutal y su dirección de buzamiento, para la cual se utilizó la regla de la mano derecha, también se tuvieron en cuenta parámetros como: la resistencia de la roca, RQD, condiciones de la discontinuidad, condición hidrológica, los cuales sirvieron para determinar el RMR básico y luego el SMR. En el Anexo A.4, se presentan los análisis estereográficos realizados a las estaciones geomecánicas.

EG-01: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 317/85, 55/10 y 263/58. El talud presenta una dirección de buzamiento de 210° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 56 el cual nos indica que es un macizo rocoso de calidad regular.

EG-02: El tipo de roca característico de esta estación es andesita. En gabinete

se obtuvieron 2 familias de juntas representativas: 345/79 y 152/79. El talud presenta una dirección de buzamiento de 234° y buzamiento de 63°. Con una valoración del RMR básico de 62 realizando la corrección por orientación para obtener un SMR de 62 el cual nos indica que es un macizo rocoso de calidad regular.

EG-03: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 280/71, 167/58 y 314/64. El talud presenta una dirección de buzamiento de 255° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 56 el cual nos indica que es un macizo rocoso de calidad regular.

EG-04: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 184/74, 13/70 y 265/34. El talud presenta una dirección de buzamiento de 265° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 56 el cual nos indica que es un macizo rocoso de calidad regular.

EG-05: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvo 1 familia de juntas representativas: 203/43. El talud presenta una dirección de buzamiento de 250° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 63 el cual nos indica que es un macizo rocoso de calidad regular.

EG-06: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 227/67, 227/41 y 78/73. El talud presenta una dirección de buzamiento de 320° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 63 el cual nos indica que es un macizo rocoso de calidad regular.

EG-07: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 328/69, 166/58, 65/81 y 246/31. El talud presenta una dirección de buzamiento de 330° y buzamiento de 63°. Con una valoración del RMR básico de 62 realizando la corrección por orientación para obtener un SMR de 62 el cual nos indica que es un macizo rocoso de calidad regular.

EG-08: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 331/61, 254/25, 45/52 y 73/64. El talud presenta una dirección de buzamiento de 003° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 54 el cual nos indica que es un macizo rocoso de calidad regular.

EG-09: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 83/63, 244/49 y 111/84. El talud presenta una dirección de buzamiento de 335° y buzamiento de 63°. Con una valoración del RMR básico de 65 realizando la corrección por orientación para obtener un SMR de 56 el cual nos indica que es un macizo

rocoso de calidad regular.

EG-10: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 102/82, 236/31, 309/67 y 349/67. El talud presenta una dirección de buzamiento de 325° y buzamiento de 63°. Con una valoración del RMR básico de 65 realizando la corrección por orientación para obtener un SMR de 63 el cual nos indica que es un macizo rocoso de calidad regular.

EG-11: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 285/44, 74/64 y 330/55. El talud presenta una dirección de buzamiento de 184° y buzamiento de 63°. Con una valoración del RMR básico de 59 realizando la corrección por orientación para obtener un SMR de 58 el cual nos indica que es un macizo rocoso de calidad regular.

EG-12: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 247/17, 178/75 y 154/67. El talud presenta una dirección de buzamiento de 240° y buzamiento de 63°. Con una valoración del RMR básico de 61 realizando la corrección por orientación para obtener un SMR de 61 el cual nos indica que es un macizo rocoso de calidad regular.

EG-13: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 228/16, 269/86 y 157/52. El talud presenta una dirección de buzamiento de 245° y buzamiento de 63°.

Con una valoración del RMR básico de 55 realizando la corrección por orientación para obtener un SMR de 55 el cual nos indica que es un macizo rocoso de calidad regular.

EG-14: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 4 familias de juntas representativas: 22/19, 210/65, 125/74 y 295/81. El talud presenta una dirección de buzamiento de 205° y buzamiento de 63°. Con una valoración del RMR básico de 64 realizando la corrección por orientación para obtener un SMR de 63 el cual nos indica que es un macizo rocoso de calidad regular.

EG-15: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 148/87, 221/35 y 25/79. El talud presenta una dirección de buzamiento de 190° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 56 el cual nos indica que es un macizo rocoso de calidad regular.

EG-16: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 155/74, 324/23 y 249/81. El talud presenta una dirección de buzamiento de 190° y buzamiento de 63°. Con una valoración del RMR básico de 60 realizando la corrección por orientación para obtener un SMR de 60 el cual nos indica que es un macizo rocoso de calidad regular.

EG-17: El tipo de roca característico de esta estación es andesita. En gabinete

se obtuvieron 3 familias de juntas representativas: 146/82, 85/16 y 24/49. El talud presenta una dirección de buzamiento de 185° y buzamiento de 63°. Con una valoración del RMR básico de 67 realizando la corrección por orientación para obtener un SMR de 67 el cual nos indica que es un macizo rocoso de calidad regular.

EG-18: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 360/31, 150/50 y 41/74. El talud presenta una dirección de buzamiento de 100° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 54 el cual nos indica que es un macizo rocoso de calidad regular.

EG-19: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 356/52, 81/82, 252/61 y 159/59. El talud presenta una dirección de buzamiento de 107° y buzamiento de 63°. Con una valoración del RMR básico de 60 realizando la corrección por orientación para obtener un SMR de 53 el cual nos indica que es un macizo rocoso de calidad regular.

EG-20: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 1/31, 157/76 y 88/87. El talud presenta una dirección de buzamiento de 108° y buzamiento de 63°. Con una valoración del RMR básico de 58 realizando la corrección por orientación para obtener un SMR de 58 el cual nos indica que es un macizo rocoso de calidad regular.

EG-21: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 232/15, 329/86 y 148/62. El talud presenta una dirección de buzamiento de 200° y buzamiento de 63°. Con una valoración del RMR básico de 61 realizando la corrección por orientación para obtener un SMR de 61 el cual nos indica que es un macizo rocoso de calidad regular.

EG-22: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 154/11, 323/87 y 156/82. El talud presenta una dirección de buzamiento de 230° y buzamiento de 63°. Con una valoración del RMR básico de 59 realizando la corrección por orientación para obtener un SMR de 59 el cual nos indica que es un macizo rocoso de calidad regular.

EG-23: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 261/22, 227/46 y 339/72. El talud presenta una dirección de buzamiento de 265° y buzamiento de 63°. Con una valoración del RMR básico de 65 realizando la corrección por orientación para obtener un SMR de 56 el cual nos indica que es un macizo rocoso de calidad regular.

EG-24: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 196/28, 314/59, 84/81 y 114/68. El talud presenta una dirección de buzamiento de 330° y buzamiento de 63°. Con una valoración del RMR básico de 62 realizando la corrección por orientación para obtener un SMR de 42 el cual nos indica que es un

macizo rocoso de calidad regular.

EG-25: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 355/29, 197/19, 155/69 y 135/37. El talud presenta una dirección de buzamiento de 102° y buzamiento de 63°. Con una valoración del RMR básico de 59 realizando la corrección por orientación para obtener un SMR de 59 el cual nos indica que es un macizo rocoso de calidad regular.

EG-26: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 329/70, 137/87, 161/53 y 284/72. El talud presenta una dirección de buzamiento de 005° y buzamiento de 63°. Con una valoración del RMR básico de 65 realizando la corrección por orientación para obtener un SMR de 65 el cual nos indica que es un macizo rocoso de calidad regular.

EG-27: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 289/60, 57/64, 132/81 y 230/30. El talud presenta una dirección de buzamiento de 350° y buzamiento de 63°. Con una valoración del RMR básico de 66 realizando la corrección por orientación para obtener un SMR de 59 el cual nos indica que es un macizo rocoso de calidad regular.

EG-28: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 4 familias de juntas representativas: 194/25, 334/80, 39/60 y 40/41. El talud presenta una dirección de buzamiento de 250° y buzamiento

de 63°. Con una valoración del RMR básico de 57 realizando la corrección por orientación para obtener un SMR de 57 el cual nos indica que es un macizo rocoso de calidad regular.

EG-29: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 333/67, 193/49 y 28/11. El talud presenta una dirección de buzamiento de 290° y buzamiento de 63°. Con una valoración del RMR básico de 58 realizando la corrección por orientación para obtener un SMR de 57 el cual nos indica que es un macizo rocoso de calidad regular.

EG-30: El tipo de roca característico de esta estación es granodiorita. En gabinete se obtuvieron 4 familias de juntas representativas: 311/64, 207/80, 159/70 y 250/27. El talud presenta una dirección de buzamiento de 245° y buzamiento de 63°. Con una valoración del RMR básico de 58 realizando la corrección por orientación para obtener un SMR de 58 el cual nos indica que es un macizo rocoso de calidad regular.

EG-31: El tipo de roca característico de esta estación es granodiorita. En gabinete se obtuvieron 3 familias de juntas representativas: 253/18, 158/48 y 171/79. El talud presenta una dirección de buzamiento de 240° y buzamiento de 63°. Con una valoración del RMR básico de 66 realizando la corrección por orientación para obtener un SMR de 59 el cual nos indica que es un macizo rocoso de calidad regular.

EG-32: El tipo de roca característico de esta estación es andesita. En gabinete

se obtuvieron 4 familias de juntas representativas: 313/65, 161/52, 264/23 y 235/69. El talud presenta una dirección de buzamiento de 250° y buzamiento de 63°. Con una valoración del RMR básico de 64 realizando la corrección por orientación para obtener un SMR de 63 el cual nos indica que es un macizo rocoso de calidad regular.

EG-33: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 4 familias de juntas representativas: 254/36, 230/5, 142/84 y 165/87. El talud presenta una dirección de buzamiento de 260° y buzamiento de 63°. Con una valoración del RMR básico de 65 realizando la corrección por orientación para obtener un SMR de 65 el cual nos indica que es un macizo rocoso de calidad regular.

EG-34: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 333/73, 221/26 y 85/53. El talud presenta una dirección de buzamiento de 003° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 56 el cual nos indica que es un macizo rocoso de calidad regular.

EG-35: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 353/52, 249/66 y 108/49. El talud presenta una dirección de buzamiento de 315° y buzamiento de 63°. Con una valoración del RMR básico de 62 realizando la corrección por orientación para obtener un SMR de 53 el cual nos indica que es un macizo rocoso de calidad regular.

EG-36: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 350/55, 160/78 y 213/12. El talud presenta una dirección de buzamiento de 220° y buzamiento de 63°. Con una valoración del RMR básico de 67 realizando la corrección por orientación para obtener un SMR de 67 el cual nos indica que es un macizo rocoso de calidad regular.

EG-37: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 4 familias de juntas representativas: 141/85, 168/80, 233/26 y 245/75. El talud presenta una dirección de buzamiento de 190° y buzamiento de 63°. Con una valoración del RMR básico de 66 realizando la corrección por orientación para obtener un SMR de 66 el cual nos indica que es un macizo rocoso de calidad regular.

EG-38: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 83/71, 243/33 y 162/74. El talud presenta una dirección de buzamiento de 200° y buzamiento de 63°. Con una valoración del RMR básico de 65 realizando la corrección por orientación para obtener un SMR de 65 el cual nos indica que es un macizo rocoso de calidad regular.

EG-39: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 165/72, 243/57, 83/52 y 287/35. El talud presenta una dirección de buzamiento de 315° y buzamiento de 63°. Con una valoración del RMR básico de 66 realizando la corrección por orientación para obtener un SMR de 66 el cual nos indica que es un

macizo rocoso de calidad regular.

EG-40: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 2 familias de juntas representativas: 134/69 y 302/30. El talud presenta una dirección de buzamiento de 180° y buzamiento de 63°. Con una valoración del RMR básico de 62 realizando la corrección por orientación para obtener un SMR de 62 el cual nos indica que es un macizo rocoso de calidad regular.

EG-41: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 4 familias de juntas representativas: 271/31, 113/39, 125/67 y 42/77. El talud presenta una dirección de buzamiento de 183° y buzamiento de 63°. Con una valoración del RMR básico de 55 realizando la corrección por orientación para obtener un SMR de 47 el cual nos indica que es un macizo rocoso de calidad regular.

EG-42: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 223/27, 169/72, 201/69 y 292/67. El talud presenta una dirección de buzamiento de 107° y buzamiento de 63°. Con una valoración del RMR básico de 55 realizando la corrección por orientación para obtener un SMR de 38 el cual nos indica que es un macizo rocoso de calidad regular.

EG-43: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 4 familias de juntas representativas: 199/69, 322/68, 342/32 y 148/27. El talud presenta una dirección de buzamiento de 285° y buzamiento

de 63°. Con una valoración del RMR básico de 58 realizando la corrección por orientación para obtener un SMR de 54 el cual nos indica que es un macizo rocoso de calidad regular.

EG-44: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 2 familias de juntas representativas: 137/90 y 253/28. El talud presenta una dirección de buzamiento de 285° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 63 el cual nos indica que es un macizo rocoso de calidad regular.

EG-45: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 4 familias de juntas representativas: 220/36, 289/61, 173/33 y 165/80. El talud presenta una dirección de buzamiento de 210° y buzamiento de 63°. Con una valoración del RMR básico de 62 realizando la corrección por orientación para obtener un SMR de 55 el cual nos indica que es un macizo rocoso de calidad regular.

EG-46: El tipo de roca característico de esta estación es granodiorita. En gabinete se obtuvieron 3 familias de juntas representativas: 294/86, 133/43 y 20/55. El talud presenta una dirección de buzamiento de 230° y buzamiento de 63°. Con una valoración del RMR básico de 63 realizando la corrección por orientación para obtener un SMR de 63 el cual nos indica que es un macizo rocoso de calidad regular.

EG-47: El tipo de roca característico de esta estación es andesita. En gabinete

se obtuvieron 2 familias de juntas representativas: 269/32 y 274/79. El talud presenta una dirección de buzamiento de 236° y buzamiento de 63°. Con una valoración del RMR básico de 60 realizando la corrección por orientación para obtener un SMR de 60 el cual nos indica que es un macizo rocoso de calidad regular.

EG-48: El tipo de roca característico de esta estación es andesita. En gabinete se obtuvieron 3 familias de juntas representativas: 133/77, 188/36 y 239/39. El talud presenta una dirección de buzamiento de 230° y buzamiento de 63°. Con una valoración del RMR básico de 64 realizando la corrección por orientación para obtener un SMR de 64 el cual nos indica que es un macizo rocoso de calidad regular.

EG-49: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 3 familias de juntas representativas: 5/30, 165/50 y 342/78. El talud presenta una dirección de buzamiento de 105° y buzamiento de 63°. Con una valoración del RMR básico de 61 realizando la corrección por orientación para obtener un SMR de 61 el cual nos indica que es un macizo rocoso de calidad regular.

EG-50: El tipo de roca característico de esta estación es caliza. En gabinete se obtuvieron 4 familias de juntas representativas: 208/36, 86/53, 335/80 y 126/50. El talud presenta una dirección de buzamiento de 190° y buzamiento de 63°. Con una valoración del RMR básico de 62 realizando la corrección por orientación para obtener un SMR de 42 el cual nos indica que es un macizo rocoso de calidad regular.

CAPÍTULO V

CARACTERIZACIÓN GEOTÉCNICA DEL TAJO

5.1 Generalidades

En este capítulo se presenta la descripción de las propiedades de los materiales que fueron utilizados para los análisis de estabilidad del tajo. La elección de parámetros se basó en la información obtenida de los ensayos de laboratorio, ensayos de campo realizados y de la información obtenida de los estudios anteriores.

Para el análisis de estabilidad del talud global del tajo se usó el modelo generalizado de Hoek y Brown (2002). Para el caso del análisis de talud local del tajo se realizó un análisis en base al tipo de falla que pudiese presentarse (falla Planar, por cuña, rotacional o compleja).

Las condiciones de contorno del modelo, han sido obtenidas en función a la

topografía, investigaciones geotécnicas y geología local.

A continuación, se discute los parámetros geotécnicos de los materiales que fueron identificados, los cuales fueron obtenidos de ensayos de laboratorio realizados en el presente estudio, de los trabajos de campo, de la información recopilada.

5.2 Caracterización de Materiales

5.2.1 Coluvial

En el mapeo geológico-geotécnico realizado en el área de estudio se determinó la existencia de depósitos de naturaleza coluvial, estos materiales han sido transportados y depositados por gravedad en las quebradas y laderas existentes. El suelo coluvial se encuentra con una potencia de hasta 10 m de profundidad aproximadamente.

Se ha considerado conservadoramente un ángulo de fricción interna de 34° y una cohesión de 0,0 kPa. Se consideró un peso específico de 20,0 kN/m³.

5.2.2 Aluvial

En el mapeo geológico-geotécnico realizado en el área de estudio se determinó la existencia de depósitos de naturaleza aluvial, estos materiales han sido transportados y depositados en las quebradas y laderas existentes. Se clasifican según SUCS como SP-SM (arena pobremente gradada con limo y arcilla), GC (grava arcillosa con arena), con 20 a 60% de grava, 30 a 60% de arena y 5 a 20 % de finos.

Se ha considerado conservadoramente un ángulo de fricción interna de 36° y una cohesión de 2,0 kPa. Se consideró un peso específico de 22,0 kN/m³.

5.2.3 Suelo Residual

Los materiales identificados como suelo residual provienen de la meteorización del basamento rocoso existente en la zona. El suelo residual se encuentra en la superficie como pequeños estratos, hasta 5 m de profundidad aproximadamente. Este material presenta una resistencia cortante apropiada para fines de cimentación.

Se infiere que el material posee parámetros geotécnicos de cohesión 20 kPa y un ángulo de fricción interna de 25°, la densidad de este material es de 20,0 kN/m³.

5.2.4 Caliza

Esta roca presenta características geomecánicas intermedias dentro del tajo. Para el modelamiento por el modelo de Hoek y Brown los parámetros utilizados fueron una resistencia a la compresión no confinada (UCS) de 95 MPa, un GSI de 57, índice de roca intacta de 19,28 y una disturbancia D de 1,0 debido a que si bien se explota con explosivos, se tendrá un excelente control en los taludes. Sus propiedades para el modelo Mohr-Coulomb, corresponden a una cohesión de 200 kPa y ángulo de fricción de 45°. La densidad seca adoptada para esta roca fue de 26,6 KN/m³.

5.2.5 Volcánico Andesítico

Esta roca presenta características geomecánicas altas dentro del tajo. Para el modelamiento por el modelo de Hoek y Brown los parámetros utilizados fueron una resistencia a la compresión no confinada (UCS) de 220 MPa, un GSI de 60, índice de roca intacta de 25,0 y una disturbancia D de 1,0 debido a que si bien se explota con explosivos, se tendrá un excelente control en los taludes. Sus propiedades para el modelo Mohr-Coulomb, corresponden a una cohesión de 250 kPa y ángulo de fricción de 45°. La densidad seca adoptada para esta roca fue de 25 KN/m³.

5.2.6 Granodiorita

Esta roca presenta características geomecánicas intermedias a altas dentro del tajo. Para el modelamiento por el modelo de Hoek y Brown los parámetros utilizados fueron una resistencia a la compresión no confinada (UCS) de 140 MPa, un GSI de 51, índice de roca intacta de 22 y una disturbancia D de 1,0 debido a que si bien se explota con explosivos, se tendrá un excelente control en los taludes. Sus propiedades para el modelo Mohr-Coulomb, corresponden a una cohesión de 250 kPa y ángulo de fricción de 50°. La densidad seca adoptada para esta roca fue de 26 KN/m³.

5.3 Resumen de Parámetros

En la Tabla 5.1 se presenta los parámetros del modelo Hoek y Brown así como también los usados para obtener dichos valores. Estos parámetros corresponden a las salidas del programa RocData y se encuentran en el Anexo

A.5.

Tabla 5.1 Resumen de Propiedad del Macizo Rocoso

Material	γ _{total} (kN/m³)	γ_{sat} (kN/m^3)	GSI	UCS (MPa)	m _i	mb*	s*	a*	D
Caliza	27,0	27,1	57	95	19,28	0,894	0,0008	0,504	1,0
Volcánico andesítico	31,0	31,1	60	220	25,0	1,436	0,0013	0,503	1,0
Granodiorita	29,0	29,1	51	140	22,00	0,664	0,0003	0,505	1,0

Abreviaturas:

γ_{Total}: Peso específico total de

del suelo

GSI: Índice geológico de resistencia

confinada

m_i: Constante de roca intacta

 $\gamma_{Sat}\!\!:$ Peso específico saturado

UCS: Compresión

no

D: Factor de Disturbancia.

En la Tabla 5.2 se presenta los parámetros del modelo Mohr-Coulomb para el análisis de bancos en suelos residuales o coluviales. Estos parámetros corresponden a los resultados obtenidos en laboratorio, investigaciones de campo.

Tabla 5.2 Resumen de Propiedades Mohr-Coulomb de los Suelos y Rocas

Matarial	γtotal	Propiedades Mecánicas			
Material	(kN/m ³)	c' (kPa)	φ' (°)		
Suelo coluvial	20,0	0	34		
Suelo aluvial	22,0	2	36		
Suelo residual	20,0	20	25		
Caliza	26,6	200	45		
Volcánico Andesítico	25,0	250	45		
Granodiorita	26,0	250	50		

Abreviaturas:

γ_{total}: Peso específico total del suelo

c: Cohesión

γ_{sat}: Peso específico saturado del suelo φ: Angulo de fricción interna del suelo

5.4 Zonificación Geomecánica del Tajo

Para la aplicación racional de los diferentes métodos de cálculo de estabilidad de los taludes del tajo, es necesario que la masa rocosa, bajo estudio, esté dividida en áreas de características estructurales y mecánicas similares, debido a que los criterios de diseño y el análisis de los resultados serán válidos solo dentro de masas rocosas que presenten propiedades físicas y mecánicas similares. Por ello, es práctica común en el diseño de taludes de minas a cielo abierto, sectorizar el tajo en zonas geomecánicas o dominios estructurales.

Considerando principalmente aspectos litológicos, estructurales, grado de intemperismo, alteración y calidad del macizo rocoso (RMR 89), se logró definir 02 zonas geomecánicas con taludes rocosos de características similares. En el plano 004 se observan a detalle la zonificación realizada.

Zona 1

Esta zona se caracteriza por presentar un basamento rocoso competente, que posee un RMR entre 50 a 60. Se obtuvieron 05 familias de juntas predominantes: 88°/141°; 80°/162°; 25°/239°; 60°/227°; 50°/83°.

Los intervalos de orientación de taludes que se mantienen estables en esta zona: 22°- 56°; 115°-132°; 202°- 236°; 295°-312°.

Zona 2

Esta zona se caracteriza por presentar un basamento rocoso de alta resistencia,

que posee un RMR mayor a 50. Se obtuvieron 03 familias de juntas predominantes: 63°/159°, 30°/01°, 25°/258°.

Los intervalos de orientación de taludes que se mantienen estables en esta zona: 08°- 48°; 111°-147°; 188°- 228°; 291°- 327°.

De la evaluación desarrollada, en la Tabla 5.3 se definió los siguientes parámetros para las zonas definidas en el tajo.

Tabla 5.3 Zonificación Geomecánica del Tajo

Zona	Altura de Banco (*)	Ancho Mínimo de Banqueta de seguridad (*)	Ángulo de Cara Local (°)
Zona 01	10,0 m	5,0	70
Zona 02	10,0 m	5,0	70

Notas:

^{(*):} El predimensionamiento del ancho mínimo ancho de banqueta se basa en la fórmula de Ritchie.

CAPÍTULO VI

ANÁLISIS GEOTÉCNICO

6.1 Análisis de Estabilidad del Tajo

El análisis de estabilidad de los taludes, consistió en la evaluación de la estabilidad local y global del tajo, considerando para el análisis de estabilidad local, fallas planares, en cuñas y por vuelco, asimismo, fallas rotacionales y compuestas para el análisis de estabilidad global.

6.1.1 Metodología de Análisis de Estabilidad

6.1.1.1 Análisis de Estabilidad Local

Para el análisis de estabilidad de taludes locales se utilizaron los programas de cómputo RocData versión 3.0, Dips 5.1, RocPlane versión 2.0, Swedge versión 4.0 y RocTopple 1.0. Estos programas permitirán la evaluación de los distintos tipos de falla a presentarse. A continuación se detalla cada mecanismo de falla.

• Falla Planar:

Se produce cuando existe una fractura dominante en la roca convenientemente orientada respecto al talud. La estabilidad del taludes para las fallas planares determinadas, se realiza mediante el programa RocPlane, este software evalúa la estabilidad de la falla en el talud de roca, mediante dos métodos; Determinístico (referido al factor de seguridad) y/o Probabilístico (ref. a la probabilidad de falla). En nuestro caso se determina la estabilidad del talud temporal, por el método determinístico ya que se cuenta con los datos de las juntas. En la figura 6.1 se muestra la disposición de las discontinuidades con respecto al talud para el deslizamiento planar.

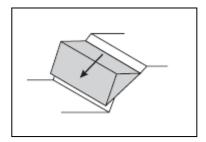


Figura 6.1 Mecanismo de Falla Planar

En el programa Dips se ingresan los valores de buzamiento y dirección de buzamiento de las discontinuidades que han sido tomadas en campo, luego se proyectan como polos (puntos, aspas, cuadrados en la figura 6.2) en el diagrama estereográfico. Cuando ya se tiene todos los polos proyectados se agrupan de tal manera que se formen las familias de discontinuidades. Se ingresa los datos del talud (en la figura 6.2 Pit Slope) para luego realizar el análisis cinemático de acuerdo al tipo de falla que se desea analizar.

En el caso del análisis de falla planar se debe activar la envolvente del talud

(en la figura 6.2 Daylight Envelope), colocar el cono de fricción (en la figura 6.2 Friction cone; correspondiente al material de relleno en la discontinuidad) y los límites laterales (en la figura 6.2 Lateral limits; típicamente el rango que se le da es de 20° a 30°). El área que se forma entre el exterior del cono de fricción, el interior de la envolvente y los límites laterales es la llamada "Zona de Falla Planar" (en la figura 6.2 Critical Zone for Planar Sliding, de color rosado). Si se observa algún polo en el interior de esta zona, es muy probable que se trate de una familia de discontinuidades que debe ser analizada de manera separada en el programa RocPlane, para verificar si es estable o no, de acuerdo al factor de seguridad.

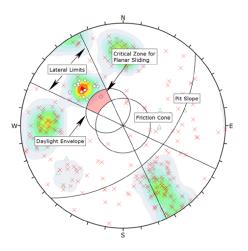


Figura 6.2 Análisis Cinemático para Falla Planar

• Falla por Cuña:

Se produce a través de dos discontinuidades dispuestas oblicuamente a la superficie del talud con la línea de intersección de ambas, aflorando en la superficie del mismo además del buzamiento desfavorable. La obtención del factor de seguridad es más compleja que en el caso de rotura planar debido a

que el cálculo debe hacerse en tres dimensiones, entrando en la caracterización geométrica, lo cual conlleva un número mucho mayor de variables angulares. Para el caso se ha determinado los factores de seguridad de los taludes de corte, para las fallas por cuña, mediante el software Swegde v4.0. En la figura 6.3 se muestra la orientación de las familias de discontinuidades respecto al talud para fallamientos en cuña.

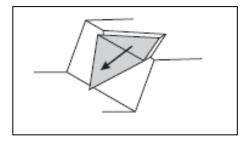


Figura 6.3 Mecanismo de Falla por Cuña

En el programa Dips se ingresan los valores de buzamiento y dirección de buzamiento de las discontinuidades que han sido tomadas en campo, luego se proyectan como polos en el diagrama estereográfico. Cuando ya se tiene todos los polos proyectados se agrupan de tal manera que se formen las familias de discontinuidades, y se pueda reflejar en el diagrama estereográfico como líneas (en la figura 6.4 líneas rojas). Se ingresa los datos del talud (en la figura 6.4 Pit Slope) para luego realizar el análisis cinemático de acuerdo al tipo de falla que se desea analizar.

En el caso del análisis de falla por cuña se debe colocar el plano del cono de fricción (en la figura 6.4 Plane Friction cone; correspondiente al complemento del cono de fricción). El área que se forma entre el interior del plano del cono de fricción y el exterior del talud es la llamada "Zona de Falla

por Cuña" (en la figura 6.4 Critical Zone for Wedge Sliding, de color rosado). Si se observa alguna intersección de las familias de discontinuidades en el interior de esta zona, es muy probable que se trate de una cuña que debe ser analizada de manera separada en el programa Swedge, para verificar si es estable o no, de acuerdo al factor de seguridad.

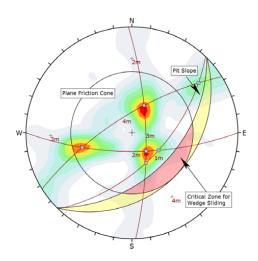


Figura 6.4 Análisis Cinemático para Falla por Cuña

• Falla por Vuelco:

Se produce cuando dos familias de discontinuidades ortogonales convenientemente orientadas originan un sistema de bloques. El empuje sobre los bloques inferiores origina su desplazamiento y una vez producido, el movimiento progresa hacia la parte superior del talud. Cuando las columnas menos esbeltas son desplazadas hacia fuera del talud, por carga que efectúan las ya giradas, se reinicia el progreso. En la figura 6.5 se muestra el mecanismo de falla por vuelco, además se muestra la orientación de las discontinuidades respecto al talud para fallamientos por vuelco.

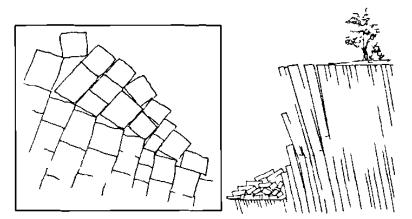


Figura 6.5 Mecanismos de Falla por Vuelco

En el programa Dips se ingresan los valores de buzamiento y dirección de buzamiento de las discontinuidades que han sido tomadas en campo, luego se proyectan como polos (puntos, aspas, cuadrados en la figura 6.6) en el diagrama estereográfico. Cuando ya se tiene todos los polos proyectados se agrupan de tal manera que se formen las familias de discontinuidades. Se ingresa los datos del talud (en la figura 6.6 Pit Slope) para luego realizar el análisis cinemático de acuerdo al tipo de falla que se desea analizar.

En el caso del análisis de falla por vuelco se debe ingresar el plano de vuelco (en la figura 6.6 Slip Limit) y los límites laterales (en la figura 6.6 Lateral limits; típicamente el rango que se le da es de 20° a 30°). El buzamiento y dirección de buzamiento del plano de vuelco se obtiene de la siguiente manera; buzamiento de plano de vuelco es la diferencia entre el buzamiento del talud y el ángulo de fricción; la dirección de buzamiento del plano de vuelco es igual a la dirección de buzamiento del talud.

El área que se forma entre el exterior del plano de vuelco, el interior del diagrama estereográfico y los límites laterales es la llamada "Zona de Falla

por Vuelco" (en la figura 6.6 Critical Zone for Flexural Toppling, de color rosado). Si se observa algún polo en el interior de esta zona, es muy probable que se trate de una familia de discontinuidades que debe ser analizada de manera separada en el programa RocTopple, para verificar si es estable o no, de acuerdo al factor de seguridad.

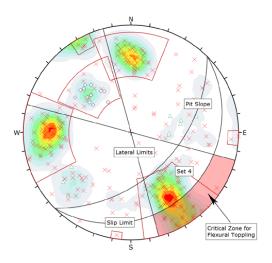


Figura 6.6 Análisis Cinemático para Falla por Vuelco

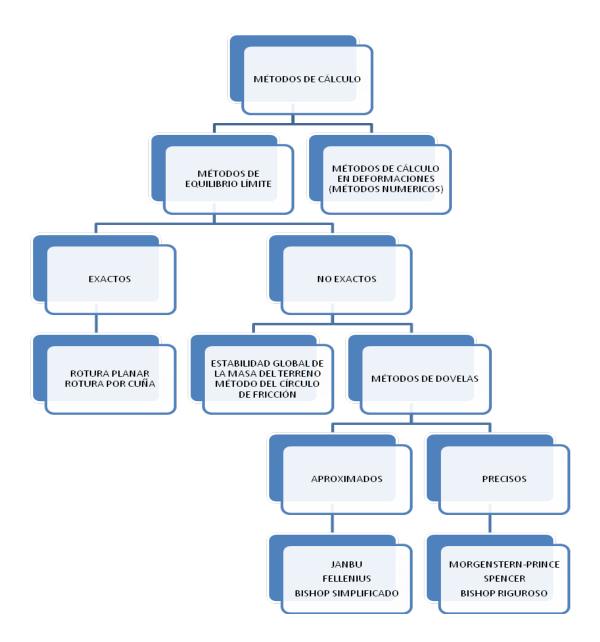
6.1.1.2 Análisis de Estabilidad Global

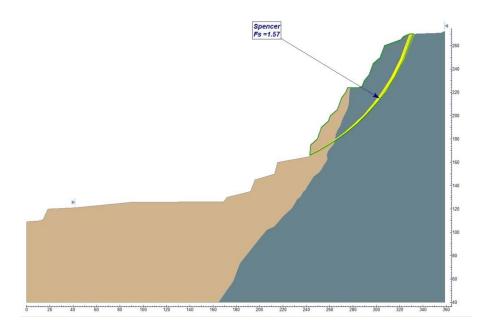
Para el análisis de estabilidad de taludes, se utilizó el programa de cómputo Slide versión 6.0, realizando un análisis por equilibrio límite, modelando la roca con el modelo constitutivo de macizo rocoso de Hoek y Brown, asimismo, utilizando el modelo de Barton Brandis y Mohr-Coulomb para el modelamiento de las principales juntas, las cuales se presentan en diferentes direcciones.

El método de equilibrio límite se basa exclusivamente en las leyes de la estática para determinar el estado de equilibrio de una masa de terreno potencialmente inestable. Se pueden clasificar a su vez en dos grupos:

Métodos exactos; proporcionan una solución exacta del problema con la única salvedad de las simplificaciones propias de todos los métodos de equilibrio límite (ausencia de deformaciones, factor de seguridad constante en toda la superficie de rotura, etc.). Esto sólo es posible en taludes de geometría sencilla. Métodos no exactos; se pueden considerar así los métodos que consideran el equilibrio global de la masa deslizante, hoy en desuso, y los métodos de las dovelas o rebanadas, que consideran a la masa deslizante dividida en una serie de fajas verticales. Este método puede clasificarse en dos grupos:

- Métodos aproximados: no cumplen todas las ecuaciones de la estática.
 Se pueden citar por ejemplo los métodos de Fellenius, Janbu y Bishop simplificado.
- Métodos precisos o completos: cumplen todas las ecuaciones de la estática. Los más conocidos son los de Morgenstern-Price, Spencer y Bishop riguroso.




Figura 6.7 Métodos de Equilibrio Límite

El método de Spencer es un método que satisface totalmente el equilibrio tanto de momentos como de esfuerzos. El procedimiento se basa en la suposición de que las fuerzas entre dovelas son paralelas las unas con las otras, o sea, que tienen el mismo ángulo de inclinación.

El método de Spencer se considera muy preciso y aplicable para casi todo tipo de geometría de talud y perfiles de suelo y es tal vez, el procedimiento de equilibrio más completo y más sencillo para el cálculo del factor de seguridad, además de ser un método conservador.

Antes de hacer uso del programa Slide, se debe realizar la interpretación de las secciones geológico-geotécnicas, para luego ingresar los contornos de los contactos litológicos, perfil topográfico y nivel de agua al programa, mediante el formato DXF del programa Autocad, como se observa en la figura 6.8. Se introduce las propiedades físicas para cada tipo de roca y suelo, estos valores son obtenidos en campo y/o laboratorio, así mismo se observan en el punto 5.2 del capítulo V – Caracterización Geotécnica del Tajo.

Luego de escoger el método de Spencer, se procede con la obtención de las líneas de falla (líneas amarillas y verdes en la figura 6.8), estas líneas nos muestran los volúmenes de talud que podrían mostrar falla tipo circular, así mismo nos muestra el factor de seguridad (FS=1,57 en la figura 6.8) más crítico o bajo, que se produce para esta sección. Debido a que las secciones analizadas se escogen de tal manera que sean las más críticas para la zona de estudio, se toman como representativas.

Materiales	$\gamma(kN/m^3)$	Modelo	mi	mb	S	а	D
Roca volcánica-Andesítico	31,0	Hoek-Brown	25,0	1,436	0,0013	0,503	1,0
Roca caliza	26,6	Hoek-Brown	19,28	0,894	0,0008	0,504	1,0

Figura 6.8 Análisis de Estabilidad de Equilibrio Límite de Talud Global

6.1.2 Factores de Seguridad Mínimos

6.1.2.1 Análisis de Estabilidad Local

Los factores de seguridad establecidos en este estudio fueron los siguientes:

Mínimo factor de seguridad estático a corto plazo igual a 1,3.

Este factor de seguridad toma en cuenta el riesgo de caída de bloques considerando la incertidumbre de materiales identificados en los taludes del tajo.

6.1.2.2 Análisis de Estabilidad Global

Los factores de seguridad establecidos en este estudio fueron los siguientes:

Mínimo factor de seguridad estático a corto plazo igual a 1,2.

Se tomó un factor de seguridad estático mínimo de 1,2, debido a que en el diseño del tajo abierto no existe preocupación a la protección de infraestructura específica.

6.1.3 Condiciones de Análisis

6.1.3.1 Análisis para la Estabilidad Local

Para el caso de la evaluación de los taludes locales (taludes interrampa), se tuvo en cuenta los tipos de falla más comunes en macizos rocosos, los cuales son: falla Planar, por cuña y por vuelco. Se ha tomado en cuenta las siguientes condiciones para el análisis:

El análisis estereográfico para las estaciones geomecánicas y las juntas presentadas en las perforaciones, identificándose tipo de fallas locales.

Las propiedades de los materiales, las cuales fueron obtenidas a partir de la información proporcionada por el cliente, de los ensayos de laboratorio realizados en muestras representativas y del trabajo de campo realizado a través de perforaciones y estaciones geomecánicas.

Para el análisis de estabilidad por equilibrio límite, se tomó en cuenta las siguientes consideraciones:

o En el tajo, una banqueta típica (actual) de 5 m de ancho, por 10 m de alto.

 Los ángulos del talud típicos de 70° (0.36H:1V) y 60° (0.58H:1V) se modifican dependiendo de las condiciones de estabilidad y orientación del talud variable.

En el Anexo A.4 de este informe se presentan las salidas del programa Dips versión 5.1 para cada tipo de mecanismo de falla originado. En la Tabla 6.1 se presentan el resumen de las fallas detectadas.

Tabla 6.1 Familias de Juntas Principales y Posibles Mecanismos de Falla

Estación	Familias Principales	Familias que Producen Fallas				
Geomecánica / (Buz/Dir. Buz. Talud (Buzamiento / Dirección de Buzamiento)		Falla Planar	Falla por Cuña	Falla por Vuelco		
EG-01 (63°/210°)	1 (85°/317°) 2 (10°/55°) 3 (58°/263°)	-	1 y 3	-		
EG-02 (63°/234°)	1 (79°/345°) 2 (79°/152°)	-	-	-		
EG-03 (63°/255°)	1 (71°/280°) 2 (58°/167°) 3 (64°/314°)	-	1 y 2	-		
EG-04(63°/265°)	1 (74°/184°) 2 (70°/13°) 3 (34°/265°) 4 (42°/51°)	-	-	-		
EG-05 (63°/250°)	1 (43°/203°)	-	-	-		
EG-06 (63°/320°)	1 (67°/227°) 2 (41°/227°) 3 (73°/78°)	-	-	-		
EG-07 (63°/330°)	1 (69°/328°) 2 (58°/166°) 3 (81°/65°) 4 (31°/246°)	-	-	-		
EG-08 (63°/003°)	1 (61°/331°) 2 (25°/254°) 3 (52°/45°)	-	1 y 3 2 y 3	-		

Estación	Familias Principales	Familias	Familias que Producen Fallas				
Geomecánica / (Buz/Dir. Buz. Talud	Oir. Buz. (Buzamiento / Dirección de Buzamiento)		Falla por Cuña	Falla por Vuelco			
	4 (64°/73°)						
	1 (63°/83°)						
EG-09 (63°/335°)	2 (49°/244°)	-	1 y 3	-			
	3 (84°/111°)						
	1 (82°/102°)						
EG-10 (63°/325°)	2 (31°/236°)		1 ,, 2				
EG-10 (03 /323)	3 (67°/309°)	_	1 y 3	-			
	4 (67°/349°)						
	1 (44°/285°)						
EG-11 (63°/184°)	2 (64°/74°)	_	_	-			
	3 (55°/330°)						
	1 (17°/247°)						
EG-12 (63°/240°)	2 (75°/178°)	_	_	-			
, , , ,	3 (67°/154°)						
	1 (16°/228°)						
EG-13 (63°/245°)	2 (86°/269°)	-	_	-			
	3 (52°/157°)						
	1 (19°/22°)						
EC 14 (620/2050)	2 (40°/205°)						
EG-14 (63°/205°)	3 (74°/125°)	-	_	-			
	4 (81°/295°)						
	1 (87°/148°)						
EG-15 (63°/190°)	2 (35°/221°)	-	1 y 2	3			
	3 (79°/25°)						
	1 (74°/155°)						
EG-16 (63°/190°)	2 (23°/324°)	-	-	-			
	3 (81°/249°)						
	1 (82°/146°)						
EG-17 (63°/185°)	2 (16°/85°)	-	-	-			
	3 (49°/24°)						
EG-18 (63°/100°)	1 (31°/360°)						
	2 (50°/150°)	-	1y2	-			
	3 (74°/41°)						
EG-19 (63°107°)	1 (52°/356°)						
EG-19 (03 10/°)	2 (82°/81°)		_	-			

Estación	Familias Principales	Familias	Familias que Producen Fallas								
Geomecánica / (Buz/Dir. Buz. Talud	(Buzamiento / Dirección de Buzamiento)	Falla Planar	Falla por Cuña	Falla por Vuelco							
	3 (61°/252°)										
	4 (59°/159°)										
	1 (31°/1°)										
EG-20 (63°/108°)	2 (76°/157°)	-	-	-							
	3 (87°/88°)										
	1 (15°/232°)										
EG-21 (63°/200°)	2 (86°/329°)	-	-	-							
	3 (62°/148°)										
	1 (11°/154°)										
FG 22 (620/2200)	2 (87°/323°)		2 2								
EG-22 (63°/230°)	3 (82°/156°)	-	2 y 3	-							
	4 (85°/225°)										
	1 (22°/261°)										
EG-23 (63°/265°)	2 (46°/227°)	_	2 y 3	_							
	3 (72°/339°)										
	1 (28°/196°)										
	2 (59°/314°)										
EG-24 (63°/330°)	3 (81°/84°)		1 y 2	-							
	4 (68°/114°)										
	1 (29°/355°)										
DG 07 (500 (1000)	2 (19°/197°)										
EG-25 (63°/102°)	3 (69°/155°)	-	-	-							
	4 (37°/135°)										
	1 (70°/329°)										
FG 26 (620/0050)	2 (87°/137°)										
EG-26 (63°/005°)	3 (53°/161°)	-	-	-							
	4 (72°/284°)										
	1 (60°/289°)										
FG 27 (620/2500)	2 (64°/57°)		1 0								
EG-27 (63°/350°)	3 (81°/132°)	-	1 y 2	-							
	4 (30°/230°)										
	1 (25°/194°)										
PG 20 (520)2500	2 (80°/334°)										
EG-28 (63°/250°)	3 (60°/39°)	-	-	-							
	4 (41°/40°)										

Estación	Familias Principales	Familias	Familias que Producen Fallas								
Geomecánica / (Buz/Dir. Buz. Talud	(Buzamiento / Dirección de Buzamiento)	Falla Planar	Falla por Cuña	Falla por Vuelco							
EG-29 (63°/290°)	1 (67°/333°) 2 (49°/193°)	-	-	-							
	3 (11°/28°)										
	1 (64°/311°)										
EG-30 (63°/245°)	2 (80°/207°)	_	_	_							
20 00 (00 /2.0)	3 (70°/159°)										
	4 (27°/250°)										
	1 (18°/253°)										
EG-31 (63°/240°)	2 (48°/158°)	-	-	-							
	3 (79°/171°)										
	1 (65°/313°)										
EG-32 (63°/250°)	2 (52°/161°)										
EG-32 (03 7230)	3 (23°/264°)	_	-	-							
	4 (69°/235°)										
	1 (36°/254°)										
EG-33 (63°/260°)	2 (5°/230°)										
EG-33 (03 /200)	3 (84°/142°)	_	-	-							
	4 (87°/165°)										
	1 (73°/333°)										
EG-34 (63°/003°)	2 (26°/221°)	-	1 y 3	-							
	3 (53°/85°)										
	1 (52°/353°)										
EG-35 (63°/315°)	2 (66°/249°)	-	1 y 2	-							
	3 (49°/108°)		-								
	1 (55°/350°)										
EG-36 (63°/220°)	2 (78°/160°)	_	-	-							
	3 (12°/213°)										
	1 (85°/141°)										
	2 (80°/168°)										
EG-37 (63°/190°)	3 (26°/233°)	-	-	-							
	4 (75°/245°)										
	1 (71°/83°)										
EG-38 (63°/200°)	2 (33°/243°)	_	_	_							
	3 (74°/162°)										
EG-39 (63°/315°)	1 (72°/165°)	_	-	-							

Estación	Familias Principales	Familias	que Produ	icen Fallas
Geomecánica / (Buz/Dir. Buz. Talud	(Buzamiento / Dirección de Buzamiento)	Falla Planar	Falla por Cuña	Falla por Vuelco
	2 (57°/243°)			
	3 (52°/83°)			
	4 (35°/287°)			
EC 40 (620/1000)	1 (69°/134°)			
EG-40 (63°/180°)	2 (30°/302°)	-	-	-
	1 (31°/271°)			
FG 44 (620/4020)	2 (39°/113°)		1 0	
EG-41 (63°/183°)	3 (67°/125°)	-	1 y 3	-
	4 (77°/42°)			
	1 (27°/223°)			
	2 (72°/169°)			_
EG-42 (63°/107°)	3 (69°/201°)	-	-	3
	4 (67°/292°)			
	1 (69°/199°)			
	2 (68°/322°)			
EG-43 (63°/285°)	3 (32°/342°)	-	1 y 2	-
	4 (27°/148°)			
	1 (90°/137°)			
EG-44 (63°/285°)	2 (28°/253°)	-	-	-
	1 (36°/220°)			
	2 (61°/289°)			
EG-45 (63°/210°)	3 (33°/173°)	-	2 y 4	-
	4 (80°/165°)			
	1 (86°/294°)			
EG-46 (63°/230°)	2 (43°/133°)	_	_	_
	3 (55°/20°)			
	1 (32°/269°)			
EG-47 (63°/236°)	2 (79°/274°)	-	-	-
	1 (77°/133°)			
EG-48 (63°/230°)	2 (36°/188°)	_	_	-
	3 (39°/239°)			
	1 (30°/5°)			
EG-49 (63°/105°)	2 (50°/165°)	_	_	_
	3 (78°/342°)			
EG-50 (63°/190°)	1 (36°/208°)	1	1 y 2	-

Estación	Familias Principales	Familias que Producen Fallas								
Geomecánica / (Buz/Dir. Buz. Talud	(Buzamiento / Dirección de Buzamiento)	Falla Planar	Falla por Cuña	Falla por Vuelco						
	2 (53°/86°)		1 y 3							
	3 (80°/335°)									
	4 (50°/126°)									
DD 01 (629/2249)	1 (62°/312°)									
PR-01 (63°/234°)	2 (18°/112°)	-	-	-						
DD 00 (620/0240)	1 (40°/226°)									
PR-02 (63°/234°)	2 (45°/186°)	-	-	-						

Abreviatura:

6.1.3.2 Análisis para la Estabilidad Global

Se ha tomado en cuenta las siguientes condiciones para el análisis global:

Dado que no se existirá interacción relevante entre el agua subterránea y la estructura del tajo, se concluye que no existirán problemas de infiltración por escorrentía ni se considera el efecto de presión de poros en el análisis de estabilidad del tajo.

Para la sección más crítica de los tajos, se ha evaluado el tajo proyectado por el cliente y el propuesto en este informe, considerado la zonificación geomecánica (ver Tabla 6.3). El resultado de estos dos análisis, garantiza la estabilidad de los taludes sugeridos por el cliente y el propuesto en la Tabla 6.3.

Las propiedades de los materiales fueron obtenidas a partir de la información proporcionada por el cliente, de los ensayos de laboratorio realizados en muestras representativas, del trabajo de campo realizado en la perforación, de las estaciones geomecánicas y del análisis por intermedio del programa

^{-:} No se produce mecanismo de falla por familia de juntas principales

RocLab, este último, para la obtención de los parámetros del modelo de Hoek y Brown.

6.1.4 Resultados del Análisis de Estabilidad del Tajo

6.1.4.1 Resultados del Análisis de Estabilidad Local

En el Anexo A.6 se encuentran los análisis de equilibrio límite por Rocplane, Swedge y Roctopple realizado a los diferentes mecanismos de falla planar, por cuña y por vuelco encontrados en el análisis estereográfico, las cuales contienen información de todas las secciones transversales, propiedades de los materiales y ubicación de la superficie de falla crítica con el menor factor de seguridad.

El análisis de equilibrio límite, podrá definir el grado de inestabilidad de las banquetas en las condiciones del diseño actual, bajo el sistema de fallas detectadas en la Tabla 6.1, de este modo, se podrá realizar las recomendaciones de perfilado y corte de taludes pertinentes, para la optimización del corte del tajo analizado.

En la Tabla 6.2 se presenta un resumen de los resultados obtenidos de los análisis de estabilidad local realizados.

Tabla 6.2 Factor de Seguridad de Posibles Mecanismos de Falla Planar, por Cuña y por Vuelco del Tajo

		Fai	milias	que P	roduc	en Falla	ıs
Estación Geomecánic a	Familias Principales (Buzamiento / Dirección de Buzamiento)	Falla Plana r	F.S.	Falla por Cuñ a	F.S.	Falla por Vuelc o	F.S.
EG-01	1 (85°/317°) 2 (10°/55°) 3 (58°/263°)	N.P.	N.P	1 y 3	3,2 7	N.P.	N.P.
EG-03	1 (71°/280°) 2 (58°/167°) 3 (64°/314°)	N.P.	N.P	1 y 2	3,6 7	N.P.	N.P.
EG-08	1 (61°/331°) 2 (25°/254°) 3 (52°/45°) 4 (64°/73°)	N.P.	N.P	1 y 3 2 y 3	1,9 5 12, 06	N.P.	N.P.
EG-09	1 (63°/83°) 2 (49°/244°) 3 (84°/111°)	N.P.	N.P	1 y 3	7,5 7	N.P.	N.P.
EG-10	1 (82°/102°) 2 (31°/236°) 3 (67°/309°) 4 (67°/349°)	N.P.	N.P	1 y 3	8,2	N.P.	N.P.
EG-14	1 (19°/22°) 2 (40°/205°) 3 (74°/125°) 4 (81°/295°)	N.P.	N.P	N.P.	N.P	N.P.	N.P.
EG-15	1 (87°/148°) 2 (35°/221°) 3 (79°/25°)	N.P.	N.P	1 y 2	1,3 2	3	3,05
EG-18	1 (31°/360°) 2 (50°/150°) 3 (74°/41°)	N.P.	N.P	1 y 2	3,3 1	N.P.	N.P.
EG-22	1 (11°/154°) 2 (87°/323°) 3 (82°/156°) 4 (85°/225°)	N.P.	N.P	2 y 3	14, 4	N.P.	N.P.
EG-23	1 (22°/261°) 2 (46°/227°)	N.P.	N.P	2 y 3	3,2 4	N.P.	N.P.

		Fai	milias	que P	roduc	en Falla	ıs
Estación Geomecánic a	Familias Principales (Buzamiento / Dirección de Buzamiento)	Falla Plana r	F.S.	Falla por Cuñ a	F.S.	Falla por Vuelc o	F.S.
	3 (72°/339°)						
	1 (28°/196°)						
EG-24	2 (59°/314°)	1	1,6 5	1 y 2	4,1	N.P.	N.P.
EG-24	3 (81°/84°)	1	5	1 y Z	8	N.P.	N.F.
	4 (68°/114°)						
	1 (60°/289°)						
EC 27	2 (64°/57°)	N D	N.P	1 2	3,7	ND	NI D
EG-27	3 (81°/132°)	N.P.		1 y 2	2	N.P.	N.P.
	4 (30°/230°)						
	1 (73°/333°)		ND		2.5		
EG-34	2 (26°/221°)	N.P.	N.P	1 y 3	3,5	N.P.	N.P.
	3 (53°/85°)		•		,		
	1 (52°/353°)		MD		2.1		
EG-35	2 (66°/249°)	N.P.	N.P	1 y 2	3,1	N.P.	N.P.
	3 (49°/108°)		•		4		
	1 (31°/271°)						
EC 41	2 (39°/113°)	N.P.	N.P	1 2	2,8	ND	ND
EG-41	3 (67°/125°)			1 y 3	3	N.P.	N.P.
	4 (77°/42°)						
	1 (27°/223°)						
EC 42	2 (72°/169°)	ND	N.P	ND	N.P	2	2.20
EG-42	3 (69°/201°)	N.P.		N.P.		3	2,29
	4 (67°/292°)						
	1 (69°/199°)						
EC 42	2 (68°/322°)	N.P.	N.P	1 2	3,7	ND	ND
EG-43	3 (32°/342°)	N.P.		1 y 2	3,7 5	N.P.	N.P.
	4 (27°/148°)						
	1 (36°/220°)						
EC 45	2 (61°/289°)	ND	N.P	2 4	3,8	NI D	ND
EG-45	3 (33°/173°)	N.P.		2 y 4	6	N.P.	N.P.
	4 (80°/165°)						
	1 (36°/208°)				2,2		
EC 50	2 (53°/86°)	1	1.0	1 y 2	4	ND	ND
EG-50	3 (80°/335°)	1	1,8	1 y 2	2,3	N.P.	N.P.
	4 (50°/126°)				9		

Abreviatura:

N.P.: No presenta mecanismo de falla por familia de juntas principales

De los resultados presentados en las tablas anteriores, no existe ningún problema en la estabilidad de condición local de los taludes analizados, en los mecanismos de falla desarrollados.

Recomendaciones de Taludes Finales para los Criterios de Falla Analizados

A partir de la evaluación de juntas principales y de los análisis de estabilidad local, se realizó un reajuste (corte y perfilado) del talud típico en las siguientes zonas:

Zonas donde no se presenta mecanismos de falla.

En zonas donde sí existen mecanismos de falla con un factor de seguridad elevado.

En zonas donde el factor de seguridad es menor y será necesario reducir el ángulo de talud típico.

A continuación se emite el recalculo del talud típico para las zonas de fallas locales.

Tabla 6.3 Factor de Seguridad de Posibles Mecanismos de Falla Planar, por Cuña y por Vuelco, Taludes Optimizados (Buzamiento de talud 70°) del Tajo

		Familias que Producen Fallas											
Estación Geomecánica	Familias Principales (Buzamiento / Dirección de Buzamiento)	Falla Plana r	F.S.	Falla por Cuñ a	F.S.	Falla por Vuelc o	F.S.						
EG-01	1 (85°/317°) 2 (10°/55°) 3 (58°/263°)	N.P.	N.P	1 y 3	3,1 7	N.P.	N.P.						
EG-03	1 (71°/280°) 2 (58°/167°) 3 (64°/314°)	N.P.	N.P	1 y 2	3,6 7	N.P.	N.P.						
EG-07	1 (69°/328°) 2 (58°/166°) 3 (81°/65°) 4 (31°/246°)	1	1,0 55	N.P.	N.P	2	1,78						
EG-08	1 (61°/331°) 2 (25°/254°) 3 (52°/45°) 4 (64°/73°)	N.P.	N.P	1 y 3 2 y 3	1,8 5 12, 06	N.P.	N.P						
EG-09	1 (63°/83°) 2 (49°/244°) 3 (84°/111°)	N.P.	N.P	1 y 3	6,6 1	N.P.	N.P						
EG-10	1 (82°/102°) 2 (31°/236°) 3 (67°/309°) 4 (67°/349°)	3	1,1 7	1 y 3 3 y 4	7,4 2 1,3 1	N.P.	N.P						
EG-11	1 (44°/285°) 2 (64°/74°) 3 (55°/330°)	N.P.	N.P	N.P.	N.P	3	0,96						
EG-13	1 (16°/228°) 2 (86°/269°) 3 (52°/157°)	N.P.	N.P	2 y 3	3,3 4	N.P.	N.P						
EG-14	1 (19°/22°) 2 (40°/205°) 3 (74°/125°) 4 (81°/295°)	N.P.	N.P	N.P.	N.P	N.P.	N.P						
EG-15	1 (87°/148°)	N.P.	N.P	1 y 2	1,2	3	2,96						

		Fai	milias	que P	roduc	en Falla	ıs
Estación Geomecánica	Familias Principales (Buzamiento / Dirección de Buzamiento)	Falla Plana r	F.S.	Falla por Cuñ a	F.S.	Falla por Vuelc o	F.S.
	2 (35°/221°) 3 (79°/25°)				8		
EG-18	1 (31°/360°) 2 (50°/150°) 3 (74°/41°)	N.P.	N.P	2 y 3	3,1	N.P.	N.P.
EG-19	1 (52°/356°) 2 (82°/81°) 3 (61°/252°) 4 (59°/159°)	N.P.	N.P	2 y 4	1,6	N.P.	N.P.
EG-22	1 (11°/154°) 2 (87°/323°) 3 (82°/156°) 4 (85°/225°)	N.P.	N.P	2 y 3	13, 15	N.P.	N.P.
EG-23	1 (22°/261°) 2 (46°/227°) 3 (72°/339°)	N.P.	N.P	2 y 3	3,1	N.P.	N.P.
EG-24	1 (28°/196°) 2 (59°/314°) 3 (81°/84°) 4 (68°/114°)	2	1,5	2 y 3	3,8	N.P.	N.P.
EG-27	1 (60°/289°) 2 (64°/57°) 3 (81°/132°) 4 (30°/230°)	N.P.	N.P	1 y 2	3,5	N.P.	N.P.
EG-30	1 (64°/311°) 2 (80°/207°) 3 (70°/159°) 4 (27°/250°)	N.P.	N.P	1 y 2	1,8 4	N.P.	N.P.
EG-32	1 (65°/313°) 2 (52°/161°) 3 (23°/264°) 4 (69°/235°)	4	1,0	1 y 4	1,7	N.P.	N.P.
EG-34	1 (73°/333°) 2 (26°/221°) 3 (53°/85°)	N.P.	N.P	1 y 3	3,3 6	N.P.	N.P.

		Fai	milias	que P	roduc	en Falla	ıs
Estación Geomecánica	Familias Principales (Buzamiento / Dirección de Buzamiento)	Falla Plana r	F.S.	Falla por Cuñ a	F.S.	Falla por Vuelc o	F.S.
EG-35	1 (52°/353°) 2 (66°/249°) 3 (49°/108°)	N.P.	N.P	1 y 2	2,9 9	N.P.	N.P.
EG-41	1 (31°/271°) 2 (39°/113°) 3 (67°/125°) 4 (77°/42°)	N.P.	N.P	2 y 4	2,4	N.P.	N.P.
EG-42	1 (27°/223°) 2 (72°/169°) 3 (69°/201°) 4 (67°/292°)	N.P.	N.P	N.P.	N.P	4	0,72
EG-43	1 (69°/199°) 2 (68°/322°) 3 (32°/342°) 4 (27°/148°)	N.P.	N.P	1 y 2	3,3 7	N.P.	N.P.
EG-45	1 (36°/220°) 2 (61°/289°) 3 (33°/173°) 4 (80°/165°)	N.P.	N.P	2 y 4	3,5	N.P.	N.P.
EG-50	1 (36°/208°) 2 (53°/86°) 3 (80°/335°) 4 (50°/126°)	1	1,7	1 y 3 1 y 4	2,1 5 2,3 9	3	2,79

Abreviatura:

N.P.: No presenta mecanismo de falla por familia de juntas principales

6.1.4.2 Resultados del Análisis de Estabilidad Global

En la Tabla 6.4, se presenta un resumen de los resultados obtenidos de los análisis de estabilidad global realizados en el tajo. En esta tabla se presentan los resultados para los casos estático y pseudo-estático actual y proyectado y los factores de seguridad obtenidos con el talud optimizado, para el caso de los

taludes actuales o proyectados, según corresponda. Esto se observa en el Anexo A.8.

Tabla 6.4 Factor de Seguridad de los Taludes del Tajo

Sección de Análisis	Estado	Factor de Seg	uridad (FS)
Section de Analisis	Estado	Propuesto (*)	Optimizado
Cassián 1 12	Actual	3,56	**
Sección 1-1'	Proyectado	1,20	1,38
S	Actual	2,02	**
Sección 2-2'	Proyectado	1,53	**
C:42-22	Actual	1,57	**
Sección 3-3'	Proyectado	1,88	**
	Actual	2,03	**
Sección 4-4'	Proyectado	1,30	**
	Proyectado	1,59	1,73

Nota:

- (*): Diseño propuesto por el cliente.
 (**): No requiere de Optimización.

CONCLUSIONES

Se presenta a continuación las conclusiones derivadas del desarrollo de la presente tesis:

- La información geotécnica que se presenta está basada en las investigaciones geotécnicas e inspecciones visuales realizadas en campo, que intentan representar las características de la zona en estudio, pudiéndose encontrar algunas condiciones distintas durante la construcción.
- 2. Se realizó el mapeo geológico-geotécnico del tajo tomando en cuenta la revisión de información, las 2 perforaciones geotécnicas y las 50 estaciones geomecánicas, así como la inspección visual de recorrido por toda el área del tajo. El macizo rocoso del tajo corresponde a Calizas, Volcánicos Andesiticos de diferentes alteraciones y Granodiorita ligeramente alterada a muy alterada.
- Con el mapeo geológico-geotécnico realizado se han definido 04 unidades geológicas-geotécnicas denominadas de la siguiente manera: Depósito Coluvial (Unidad Geológica-Geotécnica I), Depósito Aluvial (Unidad Geológica-

- Geotécnica II), Suelo residual (Unidad Geológica-Geotécnica III), y Basamento Rocoso (Unidad Geológica-Geotécnica IV).
- 4. Con los registros y análisis climáticos existentes en el área del estudio, se muestra que los niveles de precipitación extrema son insuficientes para generar escorrentía y la precipitación directa, aún bajo la consideración de eventos extremos, será principalmente evaporada. Es por ello, que la infiltración o percolación al subsuelo se considera despreciable en el entorno de las estructuras existentes y proyectadas.
- 5. Con respecto a las interacciones de aguas subterráneas con las zonas evaluadas, para el sector de entorno del tajo, se obtuvo que la huella actual de tajo se encuentra en condiciones absolutamente secas.
- El análisis de estabilidad local para el macizo rocoso fue evaluado considerando la presencia de fallas del tipo planar, cuña y por vuelco.
- 7. Las estaciones geomecánicas, el mapeo geológico-geotécnico y las perforaciones, permitieron zonificar el macizo rocoso que se presenta en el tajo, bajo criterios de características estructurales y mecánicas similares.
- 8. El análisis comprobó que la estabilidad global actual del tajo supera los factores de seguridad mínimos para este tipo de instalaciones para las condiciones analizadas. La estabilidad del talud global del tajo permitió verificar el adecuado comportamiento de los mismos bajo el diseño estipulado en la zonificación geomecánica propuesta. Por lo tanto, se concluye que el diseño actual y final del tajo, es factible.

RECOMENDACIONES

Se presenta a continuación las recomendaciones derivadas del desarrollo de la presente tesis:

Se recomienda la instalación de piezómetros del tipo Casagrande para el monitoreo de agua subterránea.

Se recomienda la instalación de hitos topográficos en el tajo, con la finalidad de monitorear las condiciones físicas que presentarán estas instalaciones.

REFERENCIAS BIBLIOGRÁFICAS

- BIENIAWSKI, Z.T. Engineering Rock Mass Classifications. Edición 1989, USA.
- BUENAVENTURA INGENIEROS S.A. Actualización de Estudio de Estabilidad de Taludes. Edición 2007, Perú.
- DIVISION OF MINES AND GEOLOGY DEPARTMENT OF CONSERVATION, DIVISION OF MINES AND GEOLOGY. Guidelines for Evaluating and Mitigating Seismic Hazards in California. Edición 1997, Publicación Especial 117, California - USA.
- 4. DUNCAN C WYLLIE y CHRISTOPHER W MAH. Rock Slope Engineering. Cuarta Edición, Taylor & Francis Group, USA.
- HOEK E. Strength of rock and rock masses. Edición 1994, News Journal International Society of Rock Mechanics - USA. P 4-16.
- KLICHE, CHARLES. Rock Slope Stability. Edición 1999, Society for Mining Metallurgy, and Exploration, Inc. - USA.

- ROCDATA V 3.0. Strength Analysis of Rock and Soil Masses Using the Generalized Hoek-Brown, Mohr-Coulomb, Barton-Bandis and Power Curve Failure Criteria. Edición 2004, User's Guide Rocsience.
- ROSE N. AND HUNGR O. Forecasting potential slope failure in open pit mines - contingency planning and remediation. Edición 2006, International Journal of Rock Mechanics & Mining Sciences.
- SLIDE V.6. 2D Limit Equilibrium Slope Stability for Soil and Rock Slopes.
 Edición 2006, User's Guide Rocsience.
- 10. U.S. ARMY CORPS OF ENGINEERS. Engineering and Desing Rock Foundation. Edición 1994, Washington DC - USA.
- U.S. ARMY CORPS OF ENGINEERS (2003), Slope Stability. Edición 2003,
 Engineering Manual, EM 1110-2-1902, USA.
- 12. WATER MANAGEMENT CONSULTANTS PERÚ S.A. Estudios Hidrológicos, Hidrogeológicos y Geoquímicos en Complemento al EIA del Proyecto CMB. 2008 - Perú.

Foto N°1: Perforación PR-01 de 0,00 m hasta 27,00 m.

Foto N°2: Perforación PR-01 de 27,00 m hasta 48,80 m.

Foto N°3: Perforación PR-01 de 48,80 m hasta 70,70 m.

Foto N°4: Perforación PR-01 de 70,70 m hasta 92,50 m.

Foto N°5: Perforación PR-01 de 92,50 m hasta 100,0 m.

Es	tudio de	Estabilida	ad de Taludes en Tajo	Fecha de término Tipo de perforación Equipo de Perforación: Dimensión Registrado por	30/09/20 02/10/20 Diamantii LG-44 HQ3 L.P. 0° / 90°	13			Norte Este Elevaci Nivel fr	PERFORAC ón (m.s.n.m.) eático (m) erforación (m)	Página 1 de 1.311.0 1.213.0 200.0 No encontrado. 100.0
o Profundidad (m)	sncs	Gráfico	Descripci	ón de campo	N° de muestra	Muestra rec. (frac.)	N° de golpes (cada 6")	N (valor de SPT/LPT)	Nº golpes gráfico		
2	GM		Cantinua perforación en roca	erillento, estructura homogenea. = 2 1/2". 0.0 % Finos = 30,0 %.						Relieno no controlada.	
5											

											DAT	os	E LC	SPA	RAM	ETR	OS Y	CAL	CULO	DEL	RMR BA	SICO	(198	9)									
IDEN	FICAC	IÓN DE	L PROYE	сто				COOR	RDENAD	AS						ORIEN	ITACIÓ	N DE	COLL	AR			DATO	S DEL	SOND	AJE							
PROY	сто:		Estudio de	e Estabilidad de Taludes	en Taj	0								_		DIREC	CIÓN:		140°	_	-		NOM	BRE DE	EL SON	IDAJE:			PR-01				
						_		NORT	E: .	1,311						INCLINACIÓN: -70°			_		COM	PAÑÍA	DE PEI	RFORA	CIÓN:		GEON	ASTE	R SAC	FECHA INICIO:	30/09/2013		
								ESTE:		1,213						TIPO E	BROCA	۱:	Diama	ntina	NIVEL DEL AGUA (m): No encontrado.							FECHA TÉRMINO:	02/10/2013				
								ELEVA	CIÓN:	200.0						DIAME	TRO:		ноз		_		PROF	UNDID	AD FI	VAL (m):		100.0			REGISTRADO:	L.P.
						P	ARAME	TROS	DEL RM	IR (1989	9)													VAL	ORACI	ÓN DE	LRME	(1989))				
_				,	Ê	%	ESTADO DE LAS DISCONTINUIDADES					T A A C C C C C C C C C C C C C C C C C																					
N* DE CORRIDA	DESDE (m)	HASTA (m)	AVANCE (m)	LITOLOGIA	RECUPERACION	RECUPERACION (%)	RQD (m)	RQD (%)	N° JUNTAS POR CORRIDA	RESISTENCIA DE L ROCA INTACTA (F	ESPACIAMIENTO (m)	PERSISTENCIA (m)	APERTURA (mm)	RUGOSIDAD (valoracion)	RELLENO (valoracion)	AL TERACIÓN (valoración)	CONDICIÓN DEL AGUA (valoracion)	MATERIAL DE RELLENO 1	MATERIAL DE RELLENO 2	MATERIAL DE RELLENO 3	RMR (1) RESISTENCIA DE L. ROCA INTACTA	RMR (2) RQ0		RMR (4-1) PERSISTENCIA	RMR (4-2) ABERTURA	RMR (4-3) RUGOSIDAD	RMR (4-4) RELLENO	RMR (4-5) ALTERACION	RMR (5) AGUA	RMR, 1989 (BASICO)	CALIDAD DE I	COMENTA	RIOS
1-4	0.00	4.40	4.40	Suelo																												Relienc no cons	rolado
5	4.40	6 00	1.60	Breche	1.60	100.0	0.00	0.0	10	35	0.15	1 0	0.0	5	4	3	15	Ox	Sd	0	5	3	8	4	6	5	4	3	15	53	REGULAR		
6	6.00	7.20	1.20	Brecha	0 60	50.0	0.00	0.0	10	35	0.05	10	0.0	5	4	3	15	Ox	Sd	0	5	3	5	4	6	5	4	3	15	50	REGULAR	Brecha de falla con clastos sub	
7	7.20	8.40	1.20	Brecha	1 20	100.0	0.46	38.3	10	35	0.11	2 0	0 0	5	2	3	15	Ox	Sd	Ca	5	5	8	4	6	5	2	3	15	53	REGULAR	TM 11/2" en una matriz 8 15 - 8 40 m. La roca se preser 9 65 -10 25 m. Brec	nta como suelo residua
8	8.40	9 50	1.10	Brecha	0.30	27.3	0.00	0.0	15	3 5	0.02	2 0	0.0	5	2	4	15	Ox	CI	Ca	5	3	5	4	6	5	2	4	15	49	REGULAR	10.25 m - 10.4 m. R	
9	9.50	40 40	0.90	Brecha	0.90	100.0	0.00	0.0	15	3.5	0.06	20.0	20	5	3	3	15	Ox	Sd		5	3	5	1	1	5	3	3	15	41	REGULAR		
10	10.40	11 90	1.50	Caliza	1.20	80.0	1.00	66.7	4	3.5	0.24	20	2.0	5	2	4	15	Ox	Sd		5	10	10	4	1	5	2	4	15	56	REGULAR	11.30 m - 11.40 m Brecha d	
11	11.90	13:40	1,50	Caliza	1 10	73.3	0 30	20.0	15	3.5	0.07	8.0	1.0	4	2	5	15	Ox	Sd	0	5	3	8	2	1	4	2	5	15	45	REGULAR	subangulosos - an 12 05 m - 12.55 m La roca se p	
12	13.40	14 00	0.60	Brecha	0.30	50.0	0.00	0.0	10	3.5	0 03	2 0	10	5	3	4	15	Ox	Sd		5	3	5	4	1	5	3	4	15	45	REGULAR	13.30 m - 14.40 m La ro extremadamente alterada part	cutas de arena roca
13	14.00	15 60	1 60	Bracha	1 40	87.5	0 55	34.4	15	3.5	0-09	30	1.0	5	3	4	15	Ox	Sd		5	5	8	2	1	5	3	4	15	48	REGULAR	desintegrada libre o 15.35 m - 15.55 m Presencia mecanico	
14	15.60	16.40	0.80	Caliza	0.80	100.0	0.70	87.5	2	3 5	0.27	0.5	10	4	2	4	15	Ox	Sd		5	17	10	6	1	4	2	4	15	64	BUENA		
15	16.40	17 90	1.50	Caliza	150	100.0	1 20	80.0	4	3.5	0.30	1.0	10	3	2	5	15	Ox	Sd		5	14	10	4	1	3	2	5	15	59	REGULAR		
16	17.90	19 40	1.50	Caliza	1.50	100.0	1.40	93.3	4	3.5	0.30	0.5	10	5	2	4	15	Ox	Sd		5	18	10	6	1	5	2	4	15	66	BUENA		
17	19 40	20 90	1.50	Caliza	1.50	100.0	1 10	73.3	9	3.5	0.15	5 0	30	3	4	3	10	Ox	Ca		5	12	8	2	c 1	3	4	3	10	48	REGULAR	Roca de grano fino, color gns n tigeramente alte 20,22 m - 22,30 m, 27,75 m - 29	rada
18	20.90	22 40	1.50	Caliza	1 50	100.0	0.60	40.0	7	35	0.19	50	3.0	3	4	3	10	Ox	Ca		5	5	8	2	1	3	4	3	10	41	REGULAR	caliza marmolizada, gns blanq paredes ligeramente alteradas	uecina, juntas con con una pequeña
19	22.40	24 00	1 60	Caliza	160	100,0	1.55	96.9	2	3.5	0.53	30	1.0	5	4	5	10	Са			5	19	10	2	1	5	4	5	10	61	BUENA	fraccion de arcilla rigida y oxidos por accion de la filtracion de a oquedades por lixiviacio	gua Presencia de
20	24 00	25 40	1 40	Caliza	1 40	100.0	1.30	92.9	3	3.5	0.35	5 0	20	3	4	3	10	Ox	Ca		5	18	10	2	1	3	4	3	10	56	REGULAR	18,00 m. 18,60 m. 18,80 m, 22.2 con evidencia de filtración de agua	4 26.60 m Juntas
21	25.40	26 90	1.50	Caliza	1,50	100.0	1.24	82.7	5	3 5	0.25	5 0	1 0	3	4	1	10	Ox	Ca	CI	5	16	10	2	1	3	4	1	10	52	REGULAR	en forma de patinas en las para 22.40 m - 30.80 m Tramo con pre	rsencia de juntas de
22	26.90	28 40	1.50	Caliza	1,30	86.7	1 10	73.3	7	35	0.16	5 0	3.0	3	2	1	10	Ox	Ca	CI	5	12	8	2	1	3	2	1	10	44	REGULAR	calcita selladas duras rigida:	s impermeables
23	28.40	29 20	0.80	Caliza	0.60	75.0	0.00	0.0	12	3.0	0.05	12 0	20	3	2	1	10	Ox	Ca	CI	4	3	5	1	1	3	2	1	10	30	MALA		
24	29.20	30 80	1.60	Caliza	1 60	100.0	0.93	58.1	6	3.5	0.23	5.0	2.0	3	4	5	10	Ox	Ca		5	8	10	2	1	3	4	5	10	48	REGULAR		
ī	oo de Ju	ıntas		Resistencia de la Roca In	tacta			RQD		Esp	aciamie	nto	Р	ersisten	cia		Apertura		Rug	osidad	Relier	no		Iteració	n	Condici	ones de	l agua	Tip			Tipo de Relleno	
	inta	J	El gol	pe sólo arranca esquirlas	R6	15	90%	⊬100%	20 0	>200	0 cm	20	<	1 m	6	Na	ıda	6	Muyr	ugosa (Ninguno	6	Inalte	erada	6	Sec	0	15	Arcı	lla	CI	Ninguna	No
(orte	SH	Se rom	pe can muchos golpes(>5)	R5	12	759	6-90%	17 0	60-20	00 cm	15	1-	3m	4	<0.1	mm	5	Rug	osa 5	Duro <5 mm	4	Lig Al	ter a da	5	Lig Hü	medo	10	Calc	ita	Ca	Cuarzo	Qz
-	tratif	В	Se ror	mpe con varios golpes (5)	R4	7	509	6-75%	13.0	20-60	00 cm	10	3-1	0 m	2	0 1-1	0 mm	3	l.ig R	ugosa 3	Duro >5 mm	2	Mod A	literada	3	Húm	edo	7	Clor	ta	Ch	Arena	Sd
-	nilia alla	۷	! 	ompe con un solo golpe	R3	4	+-	6-50%	60	6-20		8	-	20 m	1	1-5		1	-	ulada 1	Blando <5 mm Blando >5	2		terada	1	Gotea	-	4	Òxio	io	Ox	Ałunta	al
	orid	1,	Delez	nable bajo golpes fuertes	R2	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25%	3.0	<6	cm	5	>2	0 m	0	>5	mm	0	Sua	ave C	mm	0	Descon	npuesta	0	Agua flu	yendo	0					ia ia

DATOS DE LOS PARAMETROS Y CALCULO DEL RMR BASICO (1989) COORDENADAS ORIENTACIÓN DEL COLLAR DATOS DEL SONDAJE IDENTIFICACIÓN DEL PROYECTO DIRECCIÓN: NOMBRE DEL SONDAJE: PR-01 140° PROYECTO: Estudio de Estabilidad de Taludes en Tajo NORTE: 1,311 INCLINACIÓN -70° COMPAÑÍA DE PERFORACIÓN GEOMASTER SAC FECHA INICIO: 30/09/2013 ESTE: 1,213 TIPO BROCA Diamentina NIVEL DEL AGUA (m): No encontrado FECHA TÉRMINO: 02/10/2013 DIAMETRO: HQ3 PROFUNDIDAD FINAL (m) 100 0 REGISTRADO: ELEVACIÓN: 200.0 VALORACIÓN DEL RMR (1989) PARAMETROS DEL RMR (1989) ESTADO DE LAS DISCONTINUIDADES ESTADO DE LAS DISCONTINUIDADES COMDICION DEL AGUA (VAIONACION) MATERIAL DE RELLENO 1 MATERIAL DE RELLENO 2 MATERIAL DE RELLENO 3 Z RMR (1) ESISTENCIA DE L ROCA INTACTA RMR (2) RQD CORRIDA PERSISTENCIA (m) (BASIC JUNTAS SPACIAMIENTO RECUPERACIÓN Ē RMR (4-1) PERSISTENCU RMR (4-2) ABERTURA RMR (4-3) RUGOSIDAD RMR (4-4) RELLENO Ē Ê £ RESISTENCIA I RMR (3) ESPACIAMIE RMR (4-5) ALTERACION ROCA HASTA COMENTARIOS DESDE LITOLOGIA APERTURA 1989 POR. ä CAL 100.0 30 0 20 80 20 2 4 10 Oz Ca 4 10 10 2 1 3 4 5 10 49 REGULAR 30.80 32 40 1.60 1 09 25 Caliza ca de grano lino color gris negruzco meder fracturada ligeramente afterada 10 Ca 10 10 48 60.0 3.5 0.23 30 20 3 5 REGULAR 1.60 100.0 0.96 32 40 34 00 1.60 Caliza 34 65 m - 35 05 m Brecha de falla 35 50 m - 37.20 m Tramo con presencia de bitumen e 2 10 CI 27 34.00 35 60 1.60 1.60 100.0 0 65 406 10 30 0.15 50 20 Ca Sd 2 3 10 38 MALA Prersencia de sintas de calcita setadas duras irigidas empermeables de hasta 5 mm de espesor 30 0 15 10.0 40 10 Ca CI Sd 4 10 38 MALA 28 35.60 37.20 1.60 1 60 100.0 0 75 10 Caliza Roca de grano fino color gris claro moderadamente 0.21 30 2 10 Ca CI Ox 10 10 2 10 40 MALA 1 50 93.8 1 10 68.8 3.0 10.0 4 37.20 38 80 1.60 Caliza fracturada moduradamente afterada 38 10 m 39 10 m 40 45 m Paredes de las juntas CI Oz 38.80 40 30 1.50 1 50 100.0 1 25 83.3 3.0 030 100 20 2 10 Ca 4 16 10 2 2 10 47 REGULAR peramente alteradas presencia de óxidos en forma pétras por acción de la fitración de agua 100 0 1 20 75.0 35 0 20 5.0 20 2 10 Ca Sd Ox 12 10 2 2 3 10 48 REGULAR 31 1 60 41 13 m - 41.65 m Junta subparaista al eje del core 40.30 41 90 1.60 Caliza 0.22 10 5 4 10 Ca 5 13 2 4 5 10 55 REGULAR 1 30 100 0 0.98 754 3.5 30 10 32 4190 43 20 1.30 Caliza 43.20 4. 20 1.00 Caliza 100 100.0 0.92 92.0 35 0.25 30 20 4 10 Ca 5 18 10 2 4 5 10 60 REGULAR 10 Ca 10 REGULAR 45 60 1.40 Caliza 1 40 100.0 0 38 27.1 12 35 0.11 30 2.0 44.20 35 0.11 20 4 10 Ca 10 REGULAR 0.80 0.80 100.0 0.35 43.8 30 5 5 5 35 45.60 45 40 Caliza 48 46 40 47 80 1.40 Caliza 1 40 100.0 095 67.9 4 35 0.23 50 20 5 4 10 Ca 5 10 10 2 5 4 5 10 52 REGULAR 47.80 1 60 100.0 0.38 22.5 30 0.27 50 3.0 4 5 10 Ca 10 2 5 5 10 44 REGULAR 4940 50 90 1.50 140 | 933 1.15 78.7 35 0.20 20 20 3 4 10 Ca Ox 5 14 10 4 3 4 10 55 REGULAR Caliza 39 50.90 52 40 1.50 Calica 1 50 | 100.0 0.84 56.0 3.5 0.19 3.0 1.0 3 10 Ca Ру Ox 5 A 2 3 3 5 10 44 REGULAR 52.40 53 90 1.50 Caliza 1 50 100.0 1 20 80 0 35 0.21 30 20 3 10 Ca Ру 5 14 10 2 3 3 10 53 REGULAR Roca color gris ciaro moderadamente fracturada 53.90 55 40 1.50 1 50 100.0 1.21 80.7 35 0.19 30 20 10 Ca Ру 10 51 REGULAR moderadamente alterada todo el tramo presenta racturamiento mecanico y fracturas abiertas paralelas las venillas de calcita 42 55.40 56 90 1.50 Caliza 1 50 100.0 1.10 73.3 35 0 19 30 20 2 5 10 Ca Ру Ox 5 12 2 3 2 10 48 REGULAR 47.80 m - 49 40 m. Presencia de roca triturada por acciones mecánicas. 56 90 57 20 0.30 0.30 1000 000 3.5 0.04 3.0 2.0 2 . 10 Ca 43 Caliza 0.0 5 5 2 3 2 10 3 1 - 6 36 MALA Abundante presencia de juntas de calcita selladas dura rigidas impermeables de hasta 2 mm de espesor 10 2 3 2 57.20 58.40 1.20 Caliza 1 20 100.0 0 80 66.7 3.5 0.17 30 20 2 5 5 10 5 10 46 REGULAR 58.40 5÷ 90 1.50 Caliza 1 50 | 100.0 1 00 66 7 3.5 0 15 30 1.0 2 10 10 8 2 3 2 10 46 REGULAR 59.90 60.80 0.90 3.5 0 10 10 2 5 10 Ca Py 5 2 4 2 10 Caliza 0 90 100.0 0 20 22.2 50 3 8 5 40 MALA 47 35 0 19 20 2 5 10 Ca 9 2 4 60.80 62 30 1.50 Catiza 150 100.0 0.95 63.3 50 Ру Ox 5 8 2 5 10 46 REGULAR 2 10 62.30 63 90 1.60 Caliza 1 60 100.0 1.45 90.6 35 0.40 20 10 Ca 0 5 10 57 REGULAR 63.90 65 40 1.50 1.50 | 100.0 1 10 73.3 0.21 30 2.0 10 Ca Ох 12 10 2 2 10 51 REGULAR Caliza 5 65.40 67 00 1.60 1 60 1 100.0 1 40 87.5 0.27 30 2.0 10 Ca 17 10 2 REGULAR 50 Caliza 35 2 Ру 5 2 10 56 - 5 5 51 67.00 68.60 1.60 1 60 | 100.0 | 0 70 43 8 17 3.5 2.0 2 5 10 Ca Ру 2 10 REGULAR Caliza 0.09 50 4 5 0 8 4 2 5 43 52 88 60 70.20 1.60 Caliza 1 60 100.0 1 30 81.2 3.5 0.23 30 10 3 .2 5 10 Ca 16 10 2 3 2 10 54 REGULAR Tipo de Juntas Resistencia de la Roca intacta Espaciamiento Persistencia Apertura Rugosidad Relleno Alteracion Tipo de Relieno Condiciones del agua Junta El golpe sólo arranca esquirlas R6 15 90%-100% > 200 cm 200 <1 m Inatterada 20 Nada Muy ruposa Ninguno Seco 15 Arcılla CI Ninguna Duro <5 Corte Se rompe can muchos goipes(>5) R5 12 75%-90% 17 0 60-200 cm 1-3m <0.1 mm Rugosa Lig Alterada Lig Humedo 10 Calcita Ca Cuarzo Duro >5 Estrate 8 Se rompe con vanos goipes (5) R4 50%-75% 20-600 cm 3-10 m 0 1-1 0 mm Lig Rugosa Mod Alterada Humedo Clonta Ch Sa Arena

Venilla

Falla

Se rompe con un solo golpe

Deleznable bajo golpes fuertes

R3

R2

25%-50%

<2 5%

60

30

6-20 cm

<6 cm

10-2 0 m

>20 m

1-5 mm

>5 mm

Blando <

Biando >5

0

Muy atterada

Descompuesta .

Goteando

Agua fluyendo

Oxido

Ox

Alunita

Ondulada

Suave

DATOS DE LOS PARAMETROS Y CALCULO DEL RMR BASICO (1989) COORDENADAS ORIENTACIÓN DEL COLLAR DATOS DEL SONDAJE IDENTIFICACIÓN DEL PROYECTO PR-01 DIRECCIÓN: 140° NOMBRE DEL SONDAJE: PROYECTO: Estudio de Estabilidad de Taludes en Tajo INCLINACIÓN: -70° COMPAÑÍA DE PERFORACIÓN: GEOMASTER SAC **FECHA INICIO:** 30/09/2013 NORTE: 1,311 TIPO BROCA: 02/10/2013 ESTE: 1.213 Diamantina NIVEL DEL AGUA (m): No encontrado. FECHA TÉRMINO: REGISTRADO: DIAMETRO: HQ3 PROFUNDIDAD FINAL (m): 100.0 L.P. ELEVACIÓN: 200.0 VALORACIÓN DEL RMR (1989) PARAMETROS DEL RMR (1989) ESTADO DE LAS DISCONTINUIDADES A S ESTADO DE LAS DISCONTINUIDADES RESISTENCIA DE L. ROCA INTACTA RMR (2) RQD (BASICO) 8 MATERIAL DE RELLENO 2 MATERIAL DE RELLENO 3 RELLENO (valoracion) AL TERACION (valoracion) CONDICIÓN DEL JUNTAS RESISTENCIA DE I ROCA INTACTA (1 PERSISTENCIA (m) DE DE CORRIDA RECUPERACIÓN RECUPERACIÓN ESPACIAMIENTO Ē MATERIAL D RELLENO 1 Ē Ē RMR (4-5) ALTERACIÓN RMR (3) ESPACIAMIEN IDAD DE ROCA RQD (%) APERTURA (mi S A HASTA (DESDE COMENTARIOS LITOLOGIA 1989 ٨ \$ 8 SAL ZMR. ź 35 0.23 20 10 10 Ca 0 5 16 10 4 3 2 4 10 55 REGULAR 1 60 4 53 70.20 71 80 1 60 Caliza 100.0 1 30 813 6 1 05 65.6 13 35 0 11 30 20 10 Ca 0 5 0 8 2 3 5 10 45 REGULAR 54 1,60 1 60 100.0 71 80 73.40 73 4 m - 77.90 m. Tramo con presencia de 1.50 1 50 100.0 0 70 46.7 14 35 010 50 20 3 4 10 Ca Py 5 2 3 10 41 REGULAR 74 90 55 73.40 Caliza acturamiento mecanico y abertura paralela a las pinta selladas de calcita 56 74 90 1 50 1.50 1000 0.90 60.0 35 0 15 50 20 3 4 10 Ca Py 5 8 8 2 3 2 4 10 43 REGULAR Presença de pinta disemina en la matriz calcarea 76 40 Caliza Juntas subparaielas al ele del core 10 resencia escasa de venillas nobersistentes de calcita. 73.3 20 10 Py 12 10 3 4 49 REGULAR 57 76.40 77 90 1.50 Caliza 1 50 100.0 1 10 35 0.21 40 4 Ca 5 2 2 Presencia de bituminosa en las discontinuidades. 1 50 83.3 30 4 10 Ca Py 5 10 3 10 58 77.90 79 40 1.50 Caliza 100.0 1 25 6 35 0.21 50 3 5 16 2 4 5 56 REGULAR 1.50 1 50 100.0 0 85 56.7 35 0.25 30 40 4 10 Ca CI 5 10 2 5 3 10 REGULAR 59 79.40 80 90 Caliza C 50 30 10 4 10 Ca 16 10 10 60 80.90 82 40 1.50 Caliza 1.50 100.0 1 22 81.3 2 35 5 5 58 REGULAR 61 83 90 1 50 100.0 1 45 96.7 35 0.75 30 10 10 Ca 5 19 15 5 5 10 66 BUENA 82 40 150 Caliza 1 50 100.0 1 45 96.7 35 0.75 30 10 8 4 4 10 Са 19 15 2 5 10 62 83.90 85 40 1.50 Caliza 5 4 5 66 RUENA 10 17 63 85.40 86 90 1.50 Caliza 1 50 100 0 1 36 90.7 35 0.38 3.0 5 4 10 Ca 5 10 2 5 4 5 10 59 REGULAR 10 10 5 REGULAR 64 86.90 85 40 1.50 Caliza 1 50 100.0 1 24 82.7 4 35 0.30 50 20 4 Ca 5 16 2 4 5 10 58 65 88 40 8990 1.50 1 50 100.0 1 50 100.0 35 0.75 30 10 5 4 5 10 Ca 5 20 15 2 5 4 5 10 67 BUENA Roca de grano fino, color gns claro, poco fracturada Caliza ligeramente alterada 94, 40m - 95,70 m Presencia de fracturamiento 66 89.90 91 40 1.50 Caliza 1 50 100.0 93.3 35 0 50 30 10 5 10 Ca 5 18 10 2 10 60 REGULAR mecanico y abertura paralela a las jutitas selladas de calcita 83.3 4 67 91 40 92 90 1.50 1 50 100.0 1 25 2 35 0.50 50 30 5 10 Ca 5 16 10 2 4 5 10 58 REGULAR Caliza Presencia de tramos de roca intacta 86 7 17 68 9290 94.40 1.50 Caliza 1.50 1000 3 35 0 38 50 30 5 4 10 Ca 5 10 5 10 59 REGULAR 1 30 2 4 5 1 50 75.3 30 69 95 90 1.50 1000 1 13 3.5 0.38 50 4 10 Ce 13 10 5 10 55 REGULAR 94.40 Caliza 5 2 4 70 95.90 97 40 1.50 1 50 1000 1.32 88.0 0.50 30 20 10 Ca 17 10 Caliza 2 35 5 4 .5 5 10 2 5 4 59 REGULAR 71 20 67 97 40 98 70 1.30 Intrusivo 1 30 100.0 1 30 100.0 35 0.65 30 10 4 5 10 Ca 5 15 2 4 10 BUENA 72 10000 98.70 1.30 10 10 19 Intrusivo 1 30 100 0 1 25 96.2 35 0.65 30 5 4 5 Ca 5 15 2 4 5 10 66 BUENA Tipo de Juntas Resistencia de la Roca Intacta ROD Espaciamiento Persistencia Apertura Relleno Alteración Condiciones del agua Tipo de Relleno Rugosidad Junta El golpe sólo arrança esquirlas R6 15 90%-100% 20 0 >200 cm 20 Nada Muy rugosa Ninguno 15 Arcilla CI Ninguna Duro <5 Corte SH Se rompe con muchos golpes(>5) R5 12 75%-90% 60-200 cm <0.1 mm 170 15 1-3m Rugosa 4 Lig Alterada Lig Húmedo 10 Calcita Ca Cuarzo Estratif Duro >5 Mod Alterada Se rompe con varios golpes (5) R4 50%-75% 130 20-600 cm 10 3-10 m 0 1- 0 mm Lig Rugosa Húmedo Clorita Ch Arena mm Blando < Venilla Se rompe con un solo goipe R3 4 25%-50% 60 6-20 cm 10-20 m 1. 5 mm Onduiada Óxido Ox Muy alterada Goteando Alunta mm Blando >5 Falla Deleznable baio golpes fuertes R2 2 <25% 30 >20 m 0 <6 cm >5 mm Suave Descompuesta 0 Agua fluyendo

											REGISTRO DE L	OGUEO	DE JUNTAS			
ROYE	сто :	Estudio de Estat	oilidad de Ta	ludes en Tajo	COORD	ENADAS	LOCALES	: 1,311			ORIENTACIÓN DEL COLLAR AZIMUT : 140° BUZAMIENTO : 70°		SONDAJE : PR-01 CÍA. DE PERFORACIÓN : GEOMASTER TIPO DE PERFORACIÓN : Diamantina			
					ESTE : 1,213						DIÁMETRO : HQ3		NIVEL FREATICO (m) : No encontrado			
CHA	: 30/0	9/2013			ELEVACIÓN (msnm) : 200.0						REGISTRADO : L.P.	î	PROF. PERFORACIÓN : 100.00			
N°	PROF. (m)	ESTRUCTURA	ORIENTACIÓN			RELLENO		ESP.	F	R	LITOLOGÍA	COND. DISCON.	COMENTARIOS			
_			BUZ (°)	DIREC. BUZA (°)	1	2	3	В		4	Caliza	20	IN college callege de pirite sigide impormanhe			
1_	15.73	VN	5		0	Ox		В	S	5	Caliza	20	JN sellada rellena de pirita, rigida, impermeable. JN sellada de calcita, rigida, impermeable.			
2	15.88	VN	158		Ca	-	-	В	U	4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
3	15.90	VN	88		Ca	Ox	0				Caliza	20				
4	16.11	VN	18		0	Ca	Ox	В	U	4		-	JN sellada rellena de pirita, rigida, impermeable.			
5	16.13	VN	82		Ca	Ox		С	U	4	Caliza	20	JN sellada rellena de pirita, rigida, impermeable.			
6	16.35	VN	21	-	Ca	Ox	Q	В		3	Caliza	18	Paredes ligeramente alteradas, óxidos en forma de pátinas.			
7	16.56	JN	66		Ca	Ox		В	P	5	Caliza	20	Junta abierta de calcita de paredes sanas.			
В	17.05	JN	86		Ca			С	1	2	Caliza	20	Junta abierta de calcita de paredes sanas.			
9	1,7.30	VN	30	•	Ca		-	В	S	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
0	17.62	VN	15	- X	Ox		*	В	Р	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
1	18.05	JN	88		CI	Qz	Ox	В	Р	5	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
2	18.18	JN	14	,	Qz	Ca		В	S	5	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
3	18.59	VN	72		Ca	Ox		С	1	4	Caliza	20	JN sellada de calcita, rigida, impermeable. (> 5mm. De espesor).			
4	18.78	JN	80		Ox	CI		В	1	5	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
5	18.94	VN	24			Ca	*	В	S	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
6	19.23	VN	35		0	Ox		В	S	5	Caliza	20	JN sellada rellena de pirita, rigida.			
7	20.15	JN	25		0	Ox	Ca	В	S	5	Caliza	18	Paredes ligeramente alteradas, óxidos en forma de pátinas.			
8	20.35	JN	57	*	Ox			В	- 1	4	Caliza	18	Paredes ligeramente alteradas, óxidos en forma de pátinas.			
19	20.46	JN	60		Ca	CI	Ox	С	С	4	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
20	20.65	VN	15		Ox		-	В	S	5	Caliza	20	JN sellada con evidencia de óxido.			
21	20.80	JN	30		CI		Ox	В	1	4	Caliza	18	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
22	21.03	JN	15		CI	Ox	4	В	S	5	Caliza	18	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
23	21.05	JN	47		CI	Ox	7	В	Р	4	Caliza	18	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
24	21.26	VN	13		Ca	*	Ox	В	S	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
25	21.41	JN	24		Ca	Ox	CI	В	1	4	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
26	21.60	JN	20	-	CI	Ca		С	S	5	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
27	21.71	VN	25		Ca		Ox	В	S	5	Caliza	20	JN sellada de calcita, rígida, impermeable.			
28	21.82	JN	56		CI	Ох	-	В	С	4	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
29	21.96	JN	45	2	CI	Ox	708-15	В	С	4	Caliza	16	Paredes moderadamente alteradas, óxidos en forma de pátinas.			
30	21.31	VN	13	-	Ca	Ox	-	В	S	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
	ESTRUCTURA						RELLENO				FORMA (F)		RUGOSIDAD (R) ESPESOR (ESP)			
Pian		SR Corte		FN: Foliación		A Aure		O. Min		al	B Brecha P Planar		1 Pulido o brilloso 5 Muy rugoso A: 0 D: 1 - 2 cm			
V Con		TC Fractura de te	nsión	JN ⁻ Junta		S are			C. Arcilla		Q Cuarzo C Curvado		2. Liso 5. Sellado B 0 - 5 mm E. 2 - 5 cm			
Falla	stocidad	VN. Venas		SC Esquistocidad			K Conta		Z Calciti		OX Oxido U Ondulado		3 Estriado			
	stocidad la de juntas	BD Estratificación		SL Sill UC Inconformidad			E Evaporita		D Detrit		S Escalonado		4 Pequeños			
rami	na de juinds	DK Dique		UC Inconformidad			G Panizo		F Felde	spatos	l: Irregular		escalonamientos			

REGISTRO DE LOGUEO DE JUNTAS ORIENTACIÓN DEL COLLAR SONDAJE PR-01 COORDENADAS PROYECTO Estudio de Estabilidad de Taludes en Tajo CÍA, DE PERFORACIÓN : AZIMUT : 140° **GEOMASTER** BUZAMIENTO: 70° NORTE : 1,311 TIPO DE PERFORACIÓN : Diamantina ESTE : 1,213 DIÁMETRO HQ3 NIVEL FREATICO (m) : No encontrado : 200.0 REGISTRADO : L.P. PROF. PERFORACIÓN 100.00 : 30/09/2013 ELEVACIÓN (msnm) FECHA **ORIENTACIÓN** RELLENO R COND. DISCON. **ESTRUCTURA** ESP. LITOLOGIA COMENTARIOS N PROF. (m) 2 3 BUZ (°) DIREC. BUZA (°) 1 В S 5 Caliza 18 22,70 m - 23,00 m. Junta sub paralela al eje del core Ca 31 22.66 JN 35 187 В Caliza 20 23.40 VN 40 Ca V 5 JN sellada de calcita, rigida, impermeable. 32 Р Caliza 18 74 Ox В 4 Paredes ligeramente alteradas, óxidos en forma de pátinas. 33 23.61 JN В S 5 Caliza 18 Paredes ligeramente alteradas, óxidos en forma de patinas. 34 23.80 20 Ca Ox JN Р Caliza 18 35 24.38 13 CI Ox В 4 Paredes ligeramente alteradas, óxidos en forma de pátinas JN Ca В U 5 Caliza 20 JN sellada de calcita, rigida, impermeable, sub paralela al eje del core 36 24.80 7 Ox В 5 Caliza 18 37 26.11 71 191 Ox Ca C Paredes ligeramente alteradas, óxidos en forma de pátinas JN CI В С 4 Caliza 20 JN sellada de arcilla y limo. 38 26.66 VN 83 247 Ca 39 26.77 VN 61 175 Ca CI В C 4 Caliza 20 JN sellada de arcilla y limo. В 27.17 7 157 Ca C 5 Caliza 20 JN sellada de calcita, rigida, impermeable 40 VN 27.62 CI В Caliza 20 JN sellada de arcilla y limo. 2 41 VN В Caliza 42 28.34 VN 9 246 CI Ox C 4 20 JN sellada con evidencia de óxido. 43 29.28 24 311 Ox В C 4 Caliza 18 Paredes ligeramente alteradas, óxidos en forma de patinas. JN Ca 44 29 55 31 Ca В 4 Caliza 16 JN 30 CI Ox C Paredes moderadamente alteradas, óxidos en forma de pátinas. Caliza 45 30.17 VN 39 236 Ca В С 5 20 JN sellada de calcita, rigida, impermeable 46 30.65 VN 54 229 Ca С С 5 Caliza 20 JN sellada de calcita, rigida, impermeable 47 31.02 Ca В C 3 Caliza 18 JN 9 147 Ox Paredes ligeramente alteradas, óxidos en forma de pátinas Caliza 5 20 48 31.98 VN 28 302 Ca В С JN sellada de calcita, rigida, impermeable 49 32.16 VN Ca В C 3 Caliza 20 JN sellada de calcita, rigida, impermeable 44 50 32.73 JN 69 309 Ox 0 В С 5 Caliza 18 Paredes ligeramente alteradas, óxidos en forma de pátinas. 51 32.78 0 В 5 Caliza 18 JN 81 28 Ox C Paredes ligeramente alteradas, óxidos en forma de pátinas. 52 33.14 JN 9 14 Ca Ox CI В C 3 Caliza 16 Paredes moderadamente alteradas, óxidos en forma de pátinas 53 33.44 35 187 Ca В 3 Caliza 18 JN Ox Paredes ligeramente alteradas, óxidos en forma de pátinas. 35.10 22 277 В 54 JN CI Bi 3 Caliza 18 Junta con presencia de bitumen. 55 35.26 JN 35 187 CI Bi С 3 Caliza 18 Junta con presencia de bitumen 35.50 56 JN 81 237 CI В U 3 Caliza Bi 18 Junta con presencia de bitumen 57 36.19 10 333 CI JN Bi В С 3 Caliza 18 Junta con presencia de bitumen. 58 36.52 JN 42 249 CI Sd Bi-Ca С C 3 Caliza 16 Paredes moderadamente alteradas, óxidos en forma de pátinas. 59 36.77 JN 25 Ox 4 Caliza 18 Paredes ligeramente alteradas, óxidos en forma de patinas. 36.69 60 JN Ca Sd В Caliza 18 Paredes ligeramente alteradas, arenas de grano fino patinas IPO DE ESTRUCTURA RELLENO FORMA (F) RUGOSIDAD (R) SPESOR (ESP AP Plano axia SR: Corte FN Foliación A Aire O: Mineral B Brecha Pulido o brilloso P- Planar 5 Muy rugoso D: 1 - 2 cm CN Contacto TC Fractura de tensión JN Junta arena Arcilla Q Cuarzo 5 Sellado Curvado B 0 - 5 mm E 2-5 cm FL Falla VN Venas SC Esquistocidad Conta Calcita OX Oxido U Ondulado 3 Estnado C 5 - 10 mm F. 5 - 10 cm GS Gneistocidad BD Estratificación SL Sill D Detritos E Evaporita Escalonado Pequeños JS Familia de juntas DK Dique UC Inconformidad G. Panizo Feldespatos Irregular escalonamientos

											REGISTRO DE	LOGUEO	DE JUNTAS			
ROYE	:то :	Estudio de Estab	ludes en Tajo	NORTE ESTE	ENADAS		: 1,311 : 1,213			ORIENTACIÓN DEL COLL AZIMUT : 140° BUZAMIENTO : 70° DIÁMETRO : HQ3	AR	SONDAJE : PR-01 CÍA. DE PERFORACIÓN : GEOMASTER TIPO DE PERFORACIÓN : Diamantina NIVEL FREÁTICO (m) : No encontrado.				
ECHA	: 30/09	9/2013			ELEVAC	IÓN (ms	nm)	: 200.0			REGISTRADO : L.P.		PROF. PERFORACIÓN :	100.00		
N°	PROF. (m)	ESTRUCTURA		ENTACIÓN		RELLEN	_	ESP.	F	R	LITOLOGIA	COND. DISCON.	COMENTARIOS			
	07.50		BUZ (°)	DIREC. BUZA (°)	1	2	3	В	С	5	Caliza	20	JN sellada de calcita, rigida, ir	mnermeable		
61	37.50	JN	47	116	Ca	Ox		В		5	Caliza	18	Paredes ligeramente alterada	•	n fino nátinas	
62	38.12	VN	46	98	Ca	_		В	C	3	Caliza	16	Paredes moderadamente alte			
63	38.35	JN	40	110	CI	Sd	0.		_	_						
64	38.58	JN	42	114	CI	Ox	Sd, ca	В	С	3	Caliza	16	Paredes moderadamente alte		·	
65	39.10	JN	10	-	CI	Ox		В	1	3	Caliza	16	Paredes moderadamente alte		<u> </u>	
66	39.25	JN	58	184	CI	Ox		В	С	3	Caliza	16	Paredes moderadamente alte		orma de patinas.	
67	39.70	VN	49	281	Ca	Ox		В	С	5	Caliza	20	JN sellada de calcita, rigida, ir	npermeable.		
68	40.05	JN	20	354	CI	Ox		В	С	3	Caliza	16	Paredes moderadamente alte	radas, óxidos en f	orma de pátinas.	
69	40.32	JN	20	140	CI	Ox		В	С	3	Caliza	16	Paredes moderadamente alte	radas, óxidos en f	orma de pátinas.	
70	40.50	JN	41	43	Ca	Ox	CI	В	С	4	Caliza	18	Paredes ligeramente alterada:	s, arenas de grand	fino pátinas.	
71	41.36	Jn	43	211	Ox			В	С	4	Caliza	18	JN subparalela al eje de la per			
72	42.95	VN	43	122	Ca			В	С	5	Caliza	20	JN sellada de calcita, rígida, impermeable.			
73	43.74	VN	43	25	Ca			В	С	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
74	44.45	I VN	53	199	Ca			С	С	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
75	46.50	I VN	52	143	Ca			В	С	4	Caliza	20	JN sellada de calcita, rigida, in	npermeable.		
76	46.91	VN		1				- 0		-	Caliza		Buzamiento perpendicular al e	je del core.		
77	47.41	I VN	67	214	Ca			С	С	5	Caliza	20	JN sellada de calcita, rigida, in	npermeable.		
78	47.73	VN	12	238	Ca			В	С	5	Caliza	20	JN sellada de calcita, rigida, im	-		
79	47.85	JN	25		Ca			В	S	5	Caliza	20	Se pierde la orientación.			
80	48.04	VN	35		Ca			В	S	5	Caliza	20	JN sellada de calcita y mineral.	rigida impermeal	ole	
81	48.27	VN	32		Ca		-	В	1	4	Caliza	20				
82	48.60	VN	15		0	-		В		4	Caliza	20	JN sellada de calcita, rigida, impermeable. JN sellada de pirita, rigida, impermeable.			
83	48.86	VN	32		Ca		1	С	U	5	Caliza	20	JN sellada de calcita, rigida, imp			
84	49.50	VN	62	137	Ca			С	С	5	Caliza	20	JN sellada de calcita, rígida, im			
85	49.63	VN	59	307	Ca	-	-	C	C	5	Caliza	20				
86	49.85	JN	66	_	_		0-	В	_	5			Presencia de geodas de calcita		de nátinas	
87	50.00	-	-	212	Ca	1	Ox	В	S	5	Caliza	18	Paredes ligeramente alteradas			
	-	JN	57	202	Ca		Ox		S		Caliza	18	Paredes ligeramente alteradas		ue paillas.	
88	50.10	JN	76	342	Ca			С		4	Caliza	20	Junta abierta de calcita de pare			
89	50.32	JN	54	113	Ca		1	В		4	Caliza	18	Paredes ligeramente alteradas		de patinas.	
90	50.51	VN	49	78	Ca		DEU SUS	С	С	5	Caliza	20	JN sellada de calcita, rigida, im			
AP Plan	ESTRUCTURA			FN Foliación			RELLENO A: Airo				B. Brecha P: Plan	_	RUGOSIDAD (R)	ESPESOR (ESP)		
CN Cor		TC: Fractura de tel	nsión	JN: Junta			A: Aire S arena		O Miner		B. Brecha P: Plana Q. Cuarzo C. Curv		Pulido o brilloso Muy rugoso Sellado	A: 0 B: 0 - 5 mm	D: 1 - 2 cm	
L. Fall		VN Venas		SC Esquistocidad			K: Conta		Z Calcita		OX: Oxido U: Ondo		3 Estnado	C: 5 - 10 mm	E: 2 - 5 cm F 5 - 10 cm	
	stocidad	BD Estratificación		SL: Sill			E Evaporita		D. Detrit		S. Esca	1	4. Pequeños			
JS Fam	ia de juntas	DK: Dique		UC Inconformidad			G Panizo		F: Feldes		I Irregu		escalonamientos			

											REGISTRO DE L	.OGUEO	DE JUNTAS			
PROYEC	: 30/0	Estudio de Estal	bilidad de Tal	NORTE ESTE ELEVAC			: 1,311 : 1,213 : 200.0			ORIENTACIÓN DEL COLLAR AZIMUT : 140° BUZAMIENTO : 70° DIÁMETRO : HO3 REGISTRADO : L.P.		SONDAJE : PR-01 CÍA. DE PERFORACIÓN : GEOMASTER TIPO DE PERFORACIÓN : Diamantina NIVEL FREÁTICO (m) : No encontrado. PROF. PERFORACIÓN : 100.00				
N°	PROF. (m)	ESTRUCTURA	ORIENTACION			RELLENC)	ESP.	F	R	LITOLOGIA	COND. DISCON.	COMENTARIOS			
			BUZ (°)	DIREC. BUZA (°)	1	2	3					1				
91	50.60	JN	9	85	Ca			В	S	5	Caliza	20	Junta abierta de calcita de paredes sanas,			
92	50.73	VN	45	97	Ca			С	1	5	Caliza	20	50,62 m-50,90 m Presencia de venillas de calcita paralelas a la linea del co			
93	51.15	JN	54	242	Ca		11	С	1	5	Caliza	20	Junta abierta de calcita de paredes sanas.			
94	51.32	JN	49	50	0		Ox	В	S	5	Caliza	20	Junta abierta presencia de óxidos en forma de pátinas.			
95	51.45	JN	57	207	Ca	0	Ox	В	S	5	Caliza	20	JN abierta de calcita y pirita , rigida, óxidos en forma de pátinas.			
96	51.68	JN	49	141	Ca	0	Ox	В	I	4	Caliza	20	JN abierta de calcita y pirita , rígida, óxidos en forma de pátinas.			
97	51.90	VN	41	79	Ca			С	S	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
98	52.06	VN	47	89	Ca			В	1	4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
99	52.30	VN	47	255	Ca			В	Р	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
100	52.76	VN	51	106	Ca	Ì		В	Р	4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
101	52.81	VN	57	175	Ca			В	Р	4	Calıza	20	JN sellada de calcita, rigida, impermeable.			
102	52.90	VN	70	100	Ca			В	Р	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
103	53.18	VN	69	1	Ca			В		4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
104	53.22	VN	37	323	Ca			В	U	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
105	53.59	VN	58	229	Ca		1	В	Р	4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
106	54.12	VN	65	261	Ca			В		4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
107	54.27	VN	68	187	Ca	-	0	В	S	5	Caliza	20	JN sellada de calcita y pirita, rigida, impermeable.			
108	54.37	VN	70	315	Ca	-		В	S	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
109	54.44	T VN	42	310	Ca		-	В		4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
110	54.60	JN	51	170	Ca			В	S	3	Caliza	16	JN Con presencia de estrias.			
111	54.77	VN	47	18	Ca	0	1	В		5	Caliza	20	JN sellada de calcita y pirita, rigida, impermeable.			
112	55.00	VN	17	330	Ca	0	1	В	С	4	Caliza	20	JN sellada de calcita y pirita, rigida, impermeable.			
113	55.16	JN	11	5	Ca	0	Ox	В		5	Caliza	18	Paredes ligeramente alteradas, óxidos en forma de pátinas.			
114	55.55	VN	38	314	Ca		1	В	Р	4	Caliza	20	JN sellada de calcita, rigida, impermeable.			
115	55.64	VN	63	333	Ca			В	U	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
116	55.81	VN	68	129	Ca			С	С	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
117	56.36	VN	73	303	Ca		1	С	С	5	Caliza	20	JN sellada de calcita, rigida, impermeable.			
118	56.45	JN	76	164	Ca	0	1	В	Р	1	Caliza	20	JN abierta de calcita y pirita, rigida, impermeable.			
119	57.39	VN	67	104	Ca	+		В		3	Caliza	20	JN sellada de calcita, rigida, impermeable.			
120	57.48	JN	42		Ca	CI	1	В	P	4	Caliza	18	Paredes ligeramente alteradas.			
_	ESTRUCTURA	1 0	1	1		<u> </u>	RELLENO				FORMA (F)	1	RUGOSIDAD (R) ESPESOR (ESP)			
AP Plan				FN: Foliación	Foliación		A Aire		O. Mineral		B. Brecha P. Planar		1 Pulido o brilloso 5 Muy rugoso A: 0 D 1 - 2 cm			
CN. Cor	ntacto	TC: Fractura de te	ensión				S: arena		C Arcilla		Q Cuarzo C Curvado		2 Liso 5. Sellado B. 0 - 5 mm E. 2 - 5 cm			
FL Falla		VN. Venas		SC: Esquistocidad			K: Corita		Z Calcit	а	OX. Oxido U. Ondulado		3 Estnado C. 5 - 10 mm F. 5 - 10 cm			
	istocidad	BD. Estratificación	n	SL: Sill			E Evaporita		D. Detri		S Escalonad	0	4 Pequeños			
JS Fam	ilia de juntas	DK. Dique		UC: Inconformidad			G: Panizo		F. Felde	spatos	I. Irregular		escalonamientos			

REGISTRO DE LOGUEO DE JUNTAS COORDENADAS ORIENTACIÓN DEL COLLAR SONDAJE PR-01 Estudio de Estabilidad de Taludes en Tajo PROYECTO AZIMUT : 140° CÍA. DE PERFORACIÓN **GEOMASTER** 70° TIPO DE PERFORACIÓN : NORTE : 1.311 BUZAMIENTO Diamantina DIÁMETRO HQ3 NIVEL FREATICO (m) : No encontrado ESTE : 1,213 PROF, PERFORACIÓN ELEVACIÓN (msnm) : 200.0 REGISTRADO ; L.P. 100.00 FECHA : 30/09/2013 ORIENTACION **RELLENO** COND. DISCON. COMENTARIOS ESP. F R LITOLOGÍA PROF. (m) **ESTRUCTURA** N° 2 3 BUZ (°) DIREC, BUZA (°) 1 JN sellada de calcita, rigida, impermeable. 57.70 20 Ca В S 3 Caliza 20 VN 121 20 Ca 0 C С 5 Caliza Presencia de calcita cristalizada. 57.94 50 122 VN В 20 JN sellada de calcita, rigida, impermeable S 3 Caliza 54 Ca 123 58.20 VN 20 В Р 5 Caliza JN sellada de calcita, rigida, impermeable 58.35 VN 60 Ca 124 В Р 5 20 JN sellada de calcita y pirita, rigida, impermeable 58.59 Ca 0 Caliza 125 VN 15 320 В Caliza 20 58.63 4 130 Ca Ρ 4 JN sellada de calcita, rigida, impermeable. 126 VN 311 Ca CI В C 5 Caliza 18 Paredes ligeramente alteradas, óxidos en forma de pátinas. 127 58.80 JN 0 . 36 327 0 В Ρ 5 Caliza 20 JN abierta de calcita y pirita, rigida, impermeable. 128 58 89 JN Ca В Ca 0 Ρ 5 Caliza 20 JN abierta de calcita y pirita, rigida, impermeable. 129 59 14 JN 17 295 В 3 Caliza 20 309 Ca Р JN sellada de calcita, rigida, impermeable. 130 59.53 JN 48 131 59.61 JN 10 244 CI 0 В Ρ 3 Caliza 20 JN abierta de calcita y pinta, rigida, impermeable 132 59.78 VN 60 297 0 В Ρ 5 Caliza 20 JN abierta de pinta, rigida, impermeable 58 95 0 В 3 Caliza 20 JN abierta de calcita y pirita, rigida, impermeable 133 60.14 JN Ca В Caliza 20 134 60.33 28 289 Ca U 5 JN abierta de calcita rigida, impermeable JN В 5 135 60.39 JN 29 328 Ca 0 C Caliza 20 JN abierta de calcita y pirita, rigida, impermeable. Ca В Ρ 5 Caliza 20 60.72 m - 60.80 m Roca triturada 136 60.70 0 В 137 61.00 VN 41 285 0 Ca С 5 Caliza 20 JN sellada de pirita calcita, rigida, impermeable 138 61.30 VN 22 2 0 Ca В Ρ 5 Caliza 20 JN sellada de pirita calcita, rigida, impermeable 139 61.60 VN 4 111 Ca В S 4 Caliza 20 JN sellada de calcita, rigida, impermeable. 140 61.82 VN 32 281 Ca В 3 Caliza 20 JN sellada de calcita, rigida, impermeable. 62.11 C Ρ Caliza 141 VN 42 286 Ca 3 20 JN sellada de calcita, rigida, impermeable 142 62.19 Ca В 5 Caliza 20 VN 28 289 Ρ JN sellada de calcita, rigida, impermeable. В 143 62.40 JN 9 83 CI Р 4 Caliza 20 Paredes moderadamente alteradas 63.10 В 5 20 144 VN 63 5 Ca S Caliza JN sellada de calcita, rigida, impermeable 145 63.30 74 96 В 5 Caliza 20 Ca S JN sellada de calcita, rigida, impermeable 146 63.36 VN 43 294 В 5 Caliza 20 Ca S JN sellada de calcita, rigida, impermeable 147 63.47 В VN 76 89 Ca S 5 Caliza 20 JN sellada de calcita, rigida, impermeable 148 64.84 VN 48 327 Ca Py D Ρ 5 Caliza 20 JN sellada de calcitay pirita, rigida, impermeable 149 65.00 80 111 Ca В Р 5 Caliza 20 JN Paredes ligeramente alteradas, óxidos en forma de pátinas 150 65.12 JN 30 248 В 5 Caliza 20 Ca Ox JN sabiertta de calcita, rigida, óxido en forma de pátinas. IPO DE ESTRUCTURA RELLENO FORMA (F) RUGOSIDAD (R) ESPESOR (ESP) P Plano axial SR Corte FN Foliación B Brecha A Aire O Mineral P Planar Pulido o brilloso 5 Muy rugoso D: 1 - 2 cm CN Contacto TC Fractura de tensión JN Junta C. Arcilla Q Cuarzo Liso Sellado B 0 - 5 mm E 2 - 5 cm Curvado l Falla VN Venas SC Esquistocidad Conta Z Calcita OX Oxido Estnado C 5 - 10 mm F 5 - 10 cm J: Ondulado GS Gneistocidad BD Estratificación SL Sill E Evaporita D Detritos Escalonado Pequeños JS Familia de juntas DK Dique UC Inconformidad G Panizo Feldespatos Irregular escalonamientos

REGISTRO DE LOGUEO DE JUNTAS ORIENTACIÓN DEL COLLAR PR-01 COORDENADAS SONDAJE PROYECTO Estudio de Estabilidad de Taludes en Tajo AZIMUT : 140° CÍA. DE PERFORACIÓN : **GEOMASTER** : 70° TIPO DE PERFORACIÓN: NORTE : 1,311 BUZAMIENTO Diamantina DIÁMETRO HQ3 NIVEL FREATICO (m) : ESTE : 1.213 No encontrado REGISTRADO : L.P. PROF. PERFORACIÓN 100.00 ELEVACIÓN (msnm) : 200.0 : 30/09/2013 **FECHA** ORIENTACION RELLENO R LITOLOGIA COND. DISCON. COMENTARIOS **ESTRUCTURA** ESP. PROF. (m) BUZ (°) DIREC. BUZA (°) 1 2 3 C С 3 Caliza 20 JN sellada de calcita, rigida, impermeable 65.32 VN 73 76 Ca 151 В S 5 Caliza 20 JN sellada de calcita, rigida, impermeable. 3 273 Ca 152 65 48 VN В 4 Caliza 20 JN abiertta de pirita y calcita, rigida 153 65.58 JN 3 258 Ca Py Py В C 5 Caliza 20 JN abiertta de pirita y calcita, rigida 154 65.76 8 34 Ca JN 5 20 47 300 Py Ca В S Caliza JN abiertta de pirita y calcita, rigida. 65.87 155 JN В 5 Caliza 17 Paredes moderadamente alteradas, óxidos en forma de pátinas. 156 66.08 JN 62 256 Ox 3 10 244 Ox Ca В Р Caliza 17 Paredes moderadamente alteradas, óxidos en forma de pátinas, 157 66.32 JN В Р 3 Caliza 20 JN abiertta de calcita, rigida. 158 66.68 JN 26 286 Ca В Ca 3 Caliza 20 159 66.75 JN 39 258 1 JN abiertta de calcita, rigida. В Caliza 160 66.81 JN 6 146 Ox 5 18 Paredes ligeramente alteradas, óxidos en forma de pátinas 66.84 322 С С 5 Caliza 20 JN sellada de calcita, rigida, impermeable. 161 VN 23 Ca В Ca С 4 Caliza 20 162 67.05 JN 23 304 JN sellada de calcita, rigida, impermeable. В 17 163 67.33 56 329 CI Ca U 5 Caliza Paredes moderadamente alteradas, arcilla color negro. JN С 20 164 67.53 VN 26 318 Ca U 5 Caliza JN sellada de calcita, rígida, impermeable. Ca С S 5 Caliza 20 165 67.96 VN 87 271 JN sellada de calcita, rigida, impermeable. 68.34 Ox В Ρ 5 Caliza 166 JN 29 222 Ca 17 Paredes ligeramente alteradas, óxidos en forma de pátinas 167 68.71 48 0 В 0 5 Caliza 20 JN sellada de pinta, rigida, impermeable. VN С S 5 Caliza 20 168 69.35 VN 25 . Ca JN sellada de calcita, rigida, impermeable 169 69.63 80 В 3 Caliza VN Ca 20 JN sellada de calcita, rigida, impermeable 170 70.32 JN 81 82 Ca CI В 3 Caliza 18 Paredes ligeramente alteradas, óxidos en forma de pátinas. 255 В Р 5 171 70.50 VN 4 0 Ca Caliza 20 JN sellada de pirita y calcita, rigida, impermeable 172 70.69 VN 44 265 Ру Ca В 5 Caliza 20 JN sellada de pirita y calcita, rigida, impermeable. 173 70.78 VN 28 Ру В S 5 Caliza 20 JN sellada de pirita y calcita, rigida, impermeable 174 71.25 VN 74 101 Py Ca В S 4 Caliza 20 JN sellada de pirita y calcita, rigida, impermeable 175 71 40 В VN 36 90 Ca Py 3 Caliza 20 JN sellada de calcita y pirita, rigida, impermeable 71.75 176 VN 21 17 Ca В С 4 Caliza 20 JN sellada de calcita, rigida, impermeable. 177 71.97 VN 24 260 Ca С Р 5 Caliza 20 JN sellada de calcita, rigida, impermeable. 178 72.00 В 5 Caliza 20 VN 21 267 Ca 0 Р JN sellada de calcita y pirita, rigida, impermeable. 179 72.15 26 314 С VN Ca 5 20 S Caliza JN sellada de calcita, rigida, impermeable 180 72 24 5 VN 43 130 0 S Caliza 20 JN sellada de pirita y calcita, rigida, impermeable. IPO DE ESTRUCTURA RELLENO FORMA (F) RUGOSIDAD (R) ESPESOR (ESP) AP Plano axial SR Corte FN: Foliación A: Aire O: Mineral B: Brecha P Planar 1 Pulido o brilloso 5. Muy rugoso D: 1 - 2 cm CN Contacto TC. Fractura de tensión JN. Junta S. arena Arcilla Q. Cuarzo 5. Sellado Curvado 2. Liso B: 0 - 5 mm E 2 - 5 cm L Falla VN Venas SC: Esquistocidad Conta Z: Calcita OX Oxido . Estnado C: 5 - 10 mm Ondulado . 5 - 10 cm GS Gneistocidad SL Sill BD Estratificación E. Evaporita D Detritos Escalonado Pequeños JS Familia de juntas DK. Dique UC. Inconformidad . Panizo Feldespatos escalonamientos Irregular

REGISTRO DE LOGUEO DE JUNTAS COORDENADAS ORIENTACIÓN DEL COLLAR SONDAJE PR-01 Estudio de Estabilidad de Taludes en Tajo PROYECTO : 140° CÍA. DE PERFORACIÓN 🚼 **AZIMUT** GEOMASTER : 1,311 NORTE BUZAMIENTO : 70° TIPO DE PERFORACIÓN Diamantina : 1,213 DIÁMETRO : HQ3 NIVEL FREATICO (m) No encontrado. ESTE : L.P. PROF. PERFORACIÓN : 100.00 ELEVACIÓN (msnm) : 200.0 REGISTRADO : 30/09/2013 **FECHA** ORIENTACION RELLENO ESP. R LITOLOGIA COND. DISCON. COMENTARIOS **ESTRUCTURA** PROF, (m) DIREC. BUZA (°) 1 2 3 BUZ (°) В U 5 Caliza 20 JN sellada de pirita y calcita, rigida, impermeable. 0 Ca 8 26 181 72.29 VN C Ρ 5 Caliza 20 JN sellada de calcita y pirita, rigida, impermeable 8 Ca 182 72.33 VN 274 3 Caliza 20 72.39 4 189 Ca 0 В JN sellada de calcita y pinta, rigida, impermeable. 183 VN Ca 0 В S 5 Caliza 20 JN sellada de calcita y pinta, rigida, impermeable. 44 28 184 72.44 VN В 3 Caliza 20 JN sellada de calcita y pinta, rigida, impermeable. 185 72.51 VN 30 223 Ca 0 В 20 0 3 Caliza JN sellada de calcita y pirita, rigida, impermeable. 186 72.67 VN 14 30 Ca 243 В S 5 Caliza 20 JN sellada de calcita y pirita, rigida, impermeable. 187 72.75 VN 6 Ca 0 20 52 Ca В V Caliza JN sellada de calcita y pirita, rigida, impermeable. 188 72.77 17 0 5 VN 0 В 3 Caliza 20 JN sellada de pirita, rigida, impermeable 7,2 86 VN 11 156 1 189 P 17 55 0 Caliza 20 190 72.94 VN Ca В 5 JN sellada de pirita y calcita, rigida, impermeable. S 4 191 73.00 VN 15 351 Ca В Caliza 20 JN sellada de calcita, rigida, impermeable В Caliza 20 73.05 28 28 0 5 JN sellada de pirita, rigida, impermeable 192 VN 76 0 В Ρ 5 Caliza 20 JN sellada de pirita y calcita, rigida, impermeable. 193 73.10 VN 63 Ca 194 73.23 VN 26 40 Ca 0 В С 3 Caliza 18 JN sellada de calcita y pirita, rigida, impermeable. 195 73.26 23 9 Ca В С 5 Calıza 20 JN sellada de calcita, rigida, impermeable. VN 73.33 Ca 0 В S 5 Caliza 20 5 196 VN 19 JN sellada de calcita y pinta, rigida, impermeable. 73.90 В 197 VN 45 Ca Р 3 Caliza 20 JN sellada de calcita, rigida, impermeable . 198 74.01 VN 37 Ca В Ρ 3 Caliza 20 JN sellada de calcita, rigida, impermeable Caliza 199 74.20 VN 24 Ca 0 В Р 5 20 JN sellada de calcita y pirita, rigida, impermeable. . 200 74.50 VN 5 Ca 0 В S 4 Caliza 20 JN sellada de calcita y pirita, rigida, impermeable. 201 74.95 VN 200 51.00 Ca В C 5 Caliza 20 JN sellada de calcita, rigida, impermeable 202 75.34 VN 128 12.00 0 С Р 5 Caliza 20 JN sellada de calcita y pinta, rigida, impermeable 203 75.58 17.00 CI В P 3 Caliza 20 JN 108 Ch Paredes moderadamente alteradas . 75.74 204 VN 234 71.00 В S 5 Caliza 20 JN sellada de calcita, rigida, impermeable 205 75.79 73.00 В 5 Caliza 20 VN S JN sellada de calcita, rigida, impermeable 240 75.86 206 VN 220 72.00 В S 5 Caliza 20 JN sellada de calcita, rigida, impermeable. 207 75.89 240 В 5 Caliza 20 JN sellada de calcita, rigida, impermeable VN 74.00 76.06 208 239 12.00 Ch В Р 3 Caliza 20 Paredes ligeramente alteradas. JN . 209 76.16 VN 140 10.00 В 5 Caliza JN sellada de calcita, rigida, impermeable. S 20 210 76.25 220 В Р 3 Caliza 20 VN 65.00 JN sellada de calcita, rigida, impermeable. TIPO DE ESTRUCTURA RELLENO RUGOSIDAD (R) FORMA (F) ESPESOR (ESP) AP Plano axial SR. Corte FN Foliación A Aire O Mineral B. Brecha Planar 1 Pulido o brilloso 5. Muy rugoso D: 1 - 2 cm CN Contacto TC Fractura de tensión JN Junta Sarena C Arcilla Q Cuarzo 5 Sellado Curvado 2 Liso B 0 - 5 mm E 2 - 5 cm FL Falla VN Venas SC Esquistocidad Conta Calcita OX. Oxido Ondulado Estrado 5 - 10 cm 5 - 10 mm GS Gneistopidad BD Estratificación SL Sill E Evaporita D Detritos Pequeños Escalonado JS Familia de iuntas DK Dique UC Inconformidad G Panizo Feldespatos Irregular escalonamientos

					REGISTRO DE LOGUEO DE JUNTAS														
ROYEC	:то :	Estudio de Estab	oilidad de Tal	udes en Tajo	COORDE NORTE ESTE	NADAS		: 1,311 : 1,213			AZIMUT	BUZAMIENTO : 70°			SONDAJE : PR-01 CÍA. DE PERFORACIÓN : GEOMASTER TIPO DE PERFORACIÓN : Diamantina NIVEL FREÁTICO (m) : No encontrado.				
СНА	; 30/09	9/2013			ELEVACIÓN (msnm) : 200.0									PROF. PERFO		100.00			
N°	PROF. (m)	ESTRUCTURA	ORIENTACIÓN			RELLENC)	ESP.	F	R	LITOL	OGIA	COND, DISCON.	COMENTARIOS					
		LSTRUCTURA	BUZ (°)	DIREC. BUZA (*)	1	2	3							23/10/11/11/03					
211	76.35	VN	160	- 1	42.00			В	Р	4	Cal	za	20	JN sellada de p	ırıta, rigida, Impe	ermeable.			
212	76.58	VN	70		15.00			С	S	5	Cal	za	20	JN sellada de c	alcita, rigida, Im	permeable.			
213	76.91	VN	35		Ca			В	S	3	Cal	za	20	JN sellada de c	alcita, rigida, Im	permeable.			
214	77.32	VN	36	319	Ca		-	В	П	5	Cal	za	20	JN sellada de c	alcita, rigida, imp	permeable.			
215	77.83	JN	75	331	Ca		CI	В	Р	3	Cal	iza	12	Paredes ligeran	nente alteradas.				
216	78.72	VN	51	297	Ca	0		В	С	5	Cal	iza	20	JN sellada de c	alcita y pirita, rig	gida, Impermeable	l.		
217	79.08	VN	77	345	Ca	0		В	С	5	Cal	za	20	JN sellada de calcita y pirita. rígida, impermeable.					
218	79.57	VN	76	104	Ca	CI		В	С	3	Cal	za	18	JN sellada.					
219	79.82	VN	63	312	Ca	CI		В	С	3	Cal	īza	20	JN sellada,					
220	79.99	VN	12	95	Ca	CI		В	С	3	Cal	za	20	JN sellada.					
221	80.28	VN	85	42	Ca			В	С	5	Cal	za	20	JN sellada de calcita, rígida, impermeable.					
222	80.81	JN	59	310	Ca			В	С	5	Cal	za	20	JN sellada de calcita, rígida, impermeable.					
223	80,90	VN	65	317	Ca			В	С	5	Cal	za	20	JN sellada de calcita, rigida, impermeable.					
224	86.63	VN	63	311	Ca		CI	В	С	3	Cal	za	20	JN sellada de calcita y pirita, rígida, impermeable.					
225	87.40	I VN	61	308	Ca			В	С	5	Cal	za	20	JN sellada de calcita, rígida, impermeable.					
226	88.05	VN	14	115	Ca		i	С	С	5	Cal	za	20	JN sellada de calcita, rígida, impermeable.					
227	90.02	VN	25	291	Ca			В	С	5	Cal	za	20	JN sellada de calcita, rigida, Impermeable,					
228	92.20	VN	22	110	Ca			В	С	5	Cal	za	20	JN sellada de calcita, rigida, impermeable.					
229	93.34	VN	48	298	Ca			В	С	5	Cal	za	20	JN sellada de calcita, rigida, impermeable.					
230	94.29	VN	33	117	Ca			С	С	5	Cal		20	JN sellada de calcita, rígida, impermeable.					
231	94.52	VN	47	304	Ca			В	С	5	Cal	za	20	JN sellada de ca					
232	95.62	VN	48	111	Ca			В	С	5	Cal	za	20	JN sellada de ca					
233	96.60	VN	44		Ca			В	С	3	Cal		20	JN sellada de ca			_		
	i .																		
TIPO DE	ESTRUCTURA					1	RELLENO					FORMA (F)	1	RUGOSIDAD (R)		ESPESOR(ESP)			
AP Plano	axial	SR Corte FN Foliación			A Aire				O Miner	al	B Brecha	P Planar	1	1 Pulido o brilloso	5. Muy rugoso	A 0	D 1 - 2 cm		
CN Cont	acto	TC Fractura de tens	nois	JN Junta			S arena		C Arcilla		Q Cuarzo	C Curvado		2. Liso	5. Sellado	8 0 - 5 mm	E 2 - 5 cm		
FL Falla		VN Venas		SC Esquistocidad	K		K Corita		Z Calcita		OX Oxido	U Ondulado		3, Estnado		C 5 - 10 mm	F 5 - 10 cm		
GS Gnei		BD Estratificación		SL Sill			E Evaporna		D Detrito			S Escalonado		4 Pequeños					
JS Famil	a de juntas	DK Dique		UC Inconformidad			G Panzo	F Feldespa		spatos	A	l Irregular		escalonamientos					

Foto N°1: Perforación PR-02 de 0,0 m hasta 22,2 m.

Foto N°2: Perforación PR-02 de 22,2 m hasta 4 ,5 m.

Foto N°3: Perforación PR-02 de 43,5 m hasta 64,9 m.

Foto N°4: Perforación PR-02 de 64,9 m hasta 85,80 m.

Foto N°5: Perforación PR-02 de 85,8 m hasta 108,70 m.

Estud	io de Es	tabilidad	d de Taludes en Tajo	Fecha de inicio : 09/09/2013 Fecha de término : 09/09/2013 Tipo de perforación : Diamantina Equipo de perforaciór : LG-44 Dimensión : HQ3 Registrado por : L.P. Azimut/Buzamiento : 0°/ 90°		Nivel 1	PERFORACIÓN PR-02 Pagina 1 de 1 1,273.0 2,086.0 ción (m.s.n.m.) 310.0 Ireático (m) No encontrado. Perforación (m) 100.0
O Profundidad (m)	sncs	Gráfico	Condición de la muesi Disturbad En bloqu	da	Muestra	Código muestra	Comentarios
1	GM		estructura horrogene Grava = 40,0 % Arer	dad nula, suelta, seca, color gris amarillento, a, grava subangulosa y bolonena de TM = 5.0°, a = 20.0 % Finos = 40,0 %		S/M	Material de relleno no controlado.

DATOS DE LOS PARAMETROS Y CALCULO DEL RMR BASICO (1989) DATOS DEL SONDAJE ORIENTACIÓN DEL COLLAR COORDENADAS IDENTIFICACIÓN DEL PROYECTO PR-02 NOMBRE DEL SONDAJE: DIRECCIÓN: 130" Estudio de Estabilidad de Taludes en Tajo PROYECTO: GEOMASTER SAC **FECHA INICIO:** 09/09/2013 INCLINACIÓN: 70" COMPAÑÍA DE PERFORACIÓN: 1,273 NORTE: FECHA TÉRMINO: 12/09/2013 NIVEL DEL AGUA (m): No encontrado. 2.086 TIPO BROCA: Diamantina ESTE: L.P. REGISTRADO: DIAMETRO: HQ3 PROFUNDIDAD FINAL (m): 108.7 ELEVACIÓN: 310.0 VALORACIÓN DEL RMR (1989) PARAMETROS DEL RMR (1989) ESTADO DE LAS DISCONTINUIDADES RESISTENCIA DE LA ROCA INTACTA (R) ESTADO DE LAS DISCONTINUIDADES 1989 (BASICO) 8 E RESISTENCIA DE LA ROCA INTACTA RMR (2) RQD MATERIAL DE RELLENO 2 MATERIAL DE RELLENO 3 DEL ALTERACIÓN (valoracion) CONDICIÓN DEL AGUA (valoracion MATERIAL DE RELLENO 1 DE ESPACIAMIENTO PERSISTENCIA (m) RMR (4-1) PERSISTENCIA RMR (4-2) ABERTURA RMR (4-3) RUGOSIDAD RMR (4-4) RELLENO DE CORRIDA RECUPERACIÓN RECUPERACIÓN ROCA E RMR (4-5) ALTERACION E RQD (m) RQD (%) RELLENO (valoración) COMENTARIOS DESDE HASTA LITOLOGIA CAL RMR. Relieno no controlado 2.50 2.50 0.00 15 Ox Cc 5 8 4 15 REGULAR 100.0 0.32 64.0 6 3.5 0.07 5.0 1.0 4 0.50 0.50 2.50 3.00 Volcanico Tramo de roca ligeramente fracturada moderadamente alterada, color roizo 4 15 50 REGULAR 0.10 1.0 4 5 15 Ox. Cc 5 8 2 5 5 0.40 100.0 40.8 3 3.5 50 3.00 3.40 0.40 Volcanico 3,30 m - 3,40 m Presencia de fracturamiento mecánico REGULAR 2 15 50 55.6 5 3.5 0.15 8.0 1.0 2 15 Ox Ca Ch 8 2 4.30 0.90 Volcanico 0.90 100.0 0.50 3.40 15 Ch Ox 12 10 4 15 58 REGULAR 3.5 0.32 10.0 10 4 5 Ca 5 4.30 5.90 1.60 Volcanico 1.60 100.0 1 14 71.3 4 15 Ox Ca Ch 18 10 2 15 63 BUENA Tramo de roca moderadamente fracturada 1.0 4 5 1.40 100.0 1.30 92.9 4 3.5 0.28 8.0 6 5.90 7:30 1.40 Volcanico moderadamente alterada, color gris verdoso 6,30 m, 6,40 m, 10,20 m, 12,30 m, 12,90 m, 15 Ch 18 10 2 3 4 5 15 63 BUENA Ox Ca 1.50 1.50 100.0 40 93.3 3.5 0.50 8.0 1.0 4 5 8.80 7.30 Volcanico 14,10 m. Juntas de paredes ligeramente alteradas, presencia de óxidos en forma de REGULAR 47.5 4 3.5 0.30 8.0 1.0 3 4 5 15 Ox Ca Ch 5 6 10 2 3 4 5 15 51 1.50 100.0 1.35 10.30 1.50 8 8.80 Volcanico pátinas como resultado de la filtración de agua 12.30 m Junta sub paralela al eje del core 2 15 65 1.50 100.0 1.40 93.3 3 4.0 0.38 8.0 10 4 15 Ox Ca 18 10 4 5 BUENA 9 10.30 11.80 1.50 Volcanico resencia de venillas de calcita selladas, rigidas e mpermeable de paredes sanas con espesor no 4 15 Ox Ca 10 2 4 5 15 55 REGULAR 4 4.0 0.24 8.0 1.0 mayor a 3 mm 10 11.80 13.00 1.20 Volcanico 1.20 100.0 1.00 41.9 Ch 18 10 2 15 67 BUENA 4.0 0.38 80 2.0 4 15 Ox Ca 7 4 93.3 11 13.00 14.50 1.50 Volcanico 1.50 100.0 1 40 3 2.0 4 15 Ox Ca Ch 7 18 10 2 3 4 5 15 65 BUENA 1.47 91.9 5 4.0 0.27 8.0 12 14.50 16.10 1.60 Volcanico 1.60 100.0 0.38 1.0 4 5 15 Ca Ch 7 18 10 2 3 5 15 65 BUENA 13 16.10 17.60 1.50 Volcanico 1.50 100.0 1.40 93.3 3 4.0 6.0 10 2 5 15 56 REGULAR 1.0 15 Ca Ch Py 3 14 17.60 19.20 1.60 Volcanico 1.60 100.0 1.00 62.5 4.0 0.27 8.0 4 Tramo de roca moderadamente fracturada, moderadamente alterada, color gris negrusco. 10 15 REGULAR 15 Ox 7 12 5 5 60 1.60 1.30 81.2 1.20 75.0 5 4.0 0.22 10.0 3.0 4 5 Ca Ch 15 19.20 20.80 Volcanico 20,80 m - 20,60 m Roca color gris parduzco con presencia de oxidos en la matriz. 12 10 15 REGULAR 4.0 0.21 4.0 4 15 Ca Ch Ox 7 5 4 5 60 1.50 1.50 100.0 1.10 73.3 10.0 16 20.80 22.30 Volcanico 2.70 m - 22,90 m Tramo con evidencia de óxidos n forma de pátinas en las paredes de las juntas 7 4.0 0.19 12.0 5.0 2 3 15 Ca Ch CI 7 8 1 5 2 3 15 50 REGULAR 100.0 0.89 59.3 17 22.30 23.80 1.50 Volcanico 1.50 22.30 m - 26.30 m Tramo con presencia de fracturamiento mecánico 16 10 2 3 4 5 15 63 BUENA 1.50 100.0 1.22 81.3 5 4.0 0.25 8.0 3.0 15 Ca Ch 18 23.80 25.30 1.50 Volcanico 15 Ca Py Ch 10 2 5 4 5 15 57 REGULAR 3.0 4 19 25.30 26.80 1.50 Volcanico 1.50 100.0 1.20 58.7 4 4.0 0.30 8.0 Ca 15 Py Ch 18 10 2 5 4 5 15 67 BUENA 1.50 100.0 2 4.0 0.50 5.0 1.0 5 4 7 20 26.80 1.50 1.38 92.0 Volcanico Tipo de Relleno Tipo de Juntas Resistencia de la Roca Intacta RQD Espaciamiento Persistencia Apertura Rugosidad Relleno Alteración Condiciones del aqua CI R6 15 90%-100% >200 cm 20 <1 m Nada Muy rugosa Ninguno Inalterada Seco 15 Arcilla Ninguna Junta El golpe sólo arranca esquirlas 20.0 Duro <5 R5 12 75%-90% 60-200 cm 15 1-3m <0.1 mm Rugosa Lig Alterada Lig Hümedo 10 Calcita Ca Cuarzo Corte SH Se rompe con muchos golpes(>5) 17.0 mm Duro >5 Ch 3-10 m 0 1-1 0 mm Mod Alterada Húmedo Clorita Estratif Se rompe con varios golpes (5) 50%-75% 13.0 20-600 cm 10 Lig Rugosa Arena Blando < Venilla V R3 4 25%-50% 6.0 6-20 cm 10-20 m 1-5 mm Ondulada Muy alterada Goteando 4 Óxido Ox Alunita 8 Se rompe con un solo golpe Blando > Falla R2 2 <25% 3.0 <6 cm 5 >20 m >5 mm Suave Descompuesta Agua fluyendo 0 Deleznable bajo golpes fuertes

DATOS DE LOS PARAMETROS Y CALCULO DEL RMR BASICO (1989) ORIENTACIÓN DEL COLLAR DATOS DEL SONDAJE COORDENADAS IDENTIFICACIÓN DEL PROYECTO PR-02 DIRECCIÓN: 130 NOMBRE DEL SONDAJE: Estudio de Estabilidad de Taludes en Taio PROYECTO: **GEOMASTER SAC FECHA INICIO:** 09/09/2013 COMPAÑÍA DE PERFORACIÓN: 1,273 NORTE: INCLINACIÓN: Diamantina NIVEL DEL AGUA (m): No encontrado. FECHA TÉRMINO 12/09/2013 2.086 TIPO BROCA: ESTE: L.P. 108.7 REGISTRADO: DIAMETRO HQ3 PROFUNDIDAD FINAL (m): ELEVACIÓN: 310.0 VALORACIÓN DEL RMR (1989) PARAMETROS DEL RMR (1989) **ESTADO DE LAS DISCONTINUIDADES** (BASICO) ESTADO DE LAS DISCONTINUIDADES 25 8 RELLENO ALTERACION ALTERACION CONDICION DE AGUA (VAIORECION DE AGUA (VAIORECION DE RELLENO 1 MATERIAL DE RELLENO 1 MATERIAL DE RELLENO 2 90 RMR (4.1) ERSISTENCIA RMR (4.2) ABERTURA RMR (4.3) RUGOSIDAD RMR (4.4) RELLENO RESISTENCIA DE I ROCA INTACTA (F ESPACIAMIENTO ₩ ~ RECUPERACIÓN ROCA Ê RECUPERACION RMR (4-5) ALTERACIÓN RMR (5) PERSISTENCIA E Ê Ê COMENTARIOS 1989 DESDE HASTA LITOLOGIA ROD (R00 H RMR. CAL 2 2 4 5 15 69 BUENA Ch 7 20 10 5 100.0 2 40 0.50 50 10 4 15 PY : 50 1000 1.50 1.50 2830 29 80 Volcanico 21 Tramo de roca ligeramente fracturada 4 10 58 REGULAR 19 2 4 5 10 Ca Ch Py 4 10 3 5 26.80 m - 28.30 m Presença de vendas de 98 7 3 30 0.38 80 20 1 50 1000 1 48 22 3 1 30 1.50 Votcanico 29.80 Pienta subparalelas al eje de core 57 REGULAR 33.0 m - 33.50 m Roca oscura con venillas de Py 4 5 10 20 4 5 10 Ca Ch 4 18 10 2 3 038 1 50 100.0 140 93.3 3 30 8.0 32 80 1.50 Volcarisco 23 3130 18 10 3 4 10 56 REGULAR 10 Ca Py Ch 20 4 92 0 5 30 0.25 100 1.50 1 50 100.0 1 38 24 32.80 34 30 Voicanico 10 Py Ch 4 18 10 2 3 4 5 10 57 REGULAR 30 0.25 80 20 4 Ca 1 50 100.0 1 41 940 25 34.30 35 80 1.50 Voicanico ramo de roca moderadamente fracturada con 57 4 10 REGULAR 20 4 10 Ca Py Ch 4 19 10 3 5 ntercalación de tramos triturados Poca presencia 1.50 1 43 953 3 30 038 10.0 100.0 26 35 80 37 30 1.50 Volcanico de atcilla 4 10 49 REGULAR 37.70 m - 39 40 m fractura subparaiela al eje del 12 5 2 75.0 4 30 0.32 100 30 4 5 10 Сa Ch Py 4 10 37.30 38 90 1.60 Volcanico 1.60 100 0 1 20 27 core de 3mm de espesor REGULAR Ca Py 4 10 5 4 5 10 49 30 0.24 100 30 4 10 Ch 28 38 90 40 10 1.20 Voicanico 1 20 100.0 0.79 658 4 10 Св Py Ch 18 15 2 3 4 5 10 62 RIJENA 4 1.60 1 60 1000 1 48 92 5 30 0.80 80 20 29 40.10 41 70 Volcanico 10 10 m - 41 70 m Tramo de roca muy fracturada 3.0 4 10 Ca Ch Pv 4 17 10 3 5 10 55 REGULAR 0.38 con venillas de calida subparalelas a ele de con 1.50 1 50 100.0 1 30 86.7 3 30 100 43 20 Volcanico 30 41.70 de basta 4 mm, de espesor 13 10 3 4 5 10 51 REGULAR 45 60 m - 45 85 y 47 94 m - 48 52 m junta 1 60 100.0 120 75.0 5 30 0 27 15 0 40 4 10 Ca Py Ch 4 44.80 1 60 31 43.20 Volcarico paraiela al eje de la perforación REGULAR 10 1 3 2 5 10 45 5 : 50 100 0 1 03 68.7 7 35 0.19 100 30 2 10 Ca Ch 8 32 4480 46 30 1 50 Volcanico 10 48 REGULAR 5 35 0.50 30 30 2 :0 Ca Py Ch 5 10 10 2 3 2 1 50 100.0 1 42 68 3 2 33 46.30 47.80 1.50 Volcanico 5 10 46 REGULAR 10 Ca Ch 4 9 10 2 3 2 100 0 0.92 61.3 5 3.0 0.25 50 30 2 : 50 47.80 49 30 1.50 Volcanico 3.0 0.24 100 20 10 Ca Ch 17 10 2 5 10 53 REGULAR 51,70 m - 52 0mm Tramo de roca ligeramente 100 0 1.05 87.5 4 49.30 50 50 1.20 Volcanico 1 20 racturada con presencia de patinas de pirta en 1 4 5 10 44 REGULAR las juntas con roca Inturada 56.7 10 30 10.0 10 3 4 10 Ca Ch Py 4 8 8 3 36 50.50 52 00 1.50 Volcanico 1 50 100.0 0.85 0.14 3,86 m - 54,32 m y 54 50 m -54 86 m juntas sub paraleias al eje de la perforación 5 10 50 REGULAR Ca Ch Py 4 12 10 3 100.0 0.27 10.0 10 4 5 10 37 52.00 53.60 1.60 Volcanico 1 60 1 20 75.0 5 30 3 2 10 42 REGULAR Ca Ch 10 5 10 36 53.60 55 20 1.60 Voicanico 1 60 1000 0.68 425 6 30 0.23 100 10 Ca Ch Ox 4 17 10 3 2 5 10 53 REGULAR 87.5 30 0.20 100 20 2 5 10 55 20 56.40 1 20 1 20 100.0 1 05 39 Volcanico 4 5 10 49 REGULAR 56.40 m - 56.75 m Tramo de roca 57 90 1.50 1 50 100.0 0 93 620 6 30 0.21 100 20 4 10 Ca Ch 4 10 5 40 56.40 Volcanico moderadamente fracturada y normalizadio 50 REGULAR Presencia de venillas no persistentes de calcita 10 0.23 120 20 4 5 10 Ca Ch 4 12 10 1 3 4 5 4: 57.00 59 50 1.60 1 60 100.0 1 15 719 6 3.0 Volcanico 5 10 58 REGULAR 1 40 100.0 1 30 929 30 0 23 100 10 5 5 10 Ca Ox Ch 4 18 10 4 42 59 50 60.90 1.40 Volcanico Alteración Condiciones del aqua Tipo de Relleno RQD Persistencia Rugosidad Relieno Resistencia de la Roca Intacta Espaciamiento Tipo de Juntas 90%-100% 20.0 >200 cm <1 m Nada Muy rugosa 6 inatterada Seco 15 Arolla CI Ninguna Junta Fi goice sólo atrança esquirias R6 15 20 6 Ninguno Duro <5 10 Ca Lig Alterada Lig Hümedo Calcita Cone SH Se rampé son muchos galpes(>5) R5 12 75%-90% 170 60-200 cm 15 1.3m <0 1 mm Rugosa Duro >5 0 1-1 0 mm Mod Alterada Húmedo Clorita Ch Arena Lig Rugosa Estrat. 8 Se rompe con varios golpes (5) R4 7 50%-75% 130 20-600 cm 10 3,10 m 3 Blando <5 Goteando Óxico Ox 1-5 mm Muy atterada Alunta Venila Se rompe con un solo goipe **R3** 4 25%-50% 60 6-20 cm 10-20 m Ondulada Blando >5 R2 2 <25% >5 mm 0 Suava Descompuesta Aqua fluyendo 0 Falla Deleznable bajo go pes fueries 30 <6 cm 5 >20 m 0 0

DATOS DE LOS PARAMETROS Y CALCULO DEL RMR BASICO (1989) ORIENTACIÓN DEL COLLAR DATOS DEL SONDAJE COORDENADAS IDENTIFICACIÓN DEL PROYECTO 130" NOMBRE DEL SONDAJE: PR-02 DIRECCIÓN: Estudio de Estabilidad de Taludes en Tajo PROYECTO COMPAÑÍA DE PERFORACIÓN: GEOMASTER SAC **FECHA INICIO:** 09/09/2013 INCLINACIÓN: 70" NORTE: 1,273 TIPO BROCA: Diamantina NIVEL DEL AGUA (m): No encontrado. FECHA TÉRMINO: 12/09/2013 2.086 ESTE: REGISTRADO: DIAMETRO: HQ3 PROFUNDIDAD FINAL (m): 108.7 ELEVACIÓN: 310.0 VALORACIÓN DEL RMR (1989) PARAMETROS DEL RMR (1989) ESTADO DE LAS DISCONTINUIDADES ESTADO DE LAS DISCONTINUIDADES (BASICO) E 8 RESISTENCIA DE I ROCA INTACTA (F MATERIAL DE RELLENO 2 3 RMR (3) ESPACIAMIENT DE DE 3 RMR (4-1) RMR (4-2) ABERTURA RMR (4-3) RMG (4-3) RUGOSIDAD RELLENO PERSISTENCIA (m) RMR (1) RESISTENCIA DE ROCA INTACT RMR (2) RQD RECUPERACIÓN E RECUPERACION RELLENO (valoración) ALTERACIÓN (valoración) CONDICIÓN D AGUA (valoraci MATERIAL D RELLENO 1 ROCA E RMR (5) AGUA E 8 HASTA (COMENTARIOS DESDE 1989 LITOLOGIA ROD ROD DE CAL ž REGULAR 5 10 Ca Ox Qz 7 13 8 4 10 52 150 3.0 4 1.40 Volcanico 1.40 100.0 1.05 75.0 9 4.0 0.14 43 60.90 62.30 CI 0 10 43 REGULAR 37.5 12 4.0 0.12 180 0.0 0 10 Sd 8 6 3 1.60 100.0 0.60 44 62.30 63.90 1.60 Volcanico 10 3.0 0.15 18.0 1.0 3 4 10 Ox CI Ca 4 8 3 4 10 42 REGULAR 46.9 45 63.90 65.50 1.60 Volcanico 1.60 100.0 13.3 13 2.0 0.11 18.0 0.0 0 10 Ox CI Ca 2 8 0 3 10 34 MALA 100.0 0.20 46 65.50 67.00 1.50 Volcanico 1.50 Tramo de roca muy fracturada, ligeramente alterada con presencia de pátinas de óxido en la 10 Ox 3 10 40 MALA 68.50 1.50 1.50 100.0 0.67 44.7 12 3.0 0.12 12.0 1.0 4 Ca 4 3 superficie debido al flujo de agua y en las juntas 47 67.00 Volcanico 61,50 m zona de contacto entre roca volcanica y roca intrusiva Presencia de oquedades. CI 10 4 10 49 REGULAR 1.0 10 Ca Ox R 4 3 5 48 70.00 1.50 Volcanico 1.50 100.0 1.00 66.7 3.0 0.19 1.0 4 5 4 68.50 64.0 m -67.0 m Tramo de roca fracturada, color rojizo. 40.0 3.0 0.17 2.0 1.0 2 10 Ca Ox Sd 4 3 2 3 10 40 MALA 1.50 100.0 0.60 49 70.00 71.50 1.50 Volcanico / Intrusivo 2 3.0 20 10 2 3 10 Ca Ox Sd 4 3 8 4 3 3 10 38 MALA 0.50 100.0 0.00 0.0 0.06 0.50 50 71.50 72.00 Andesita Brechada 100.0 0.25 19.2 11 3.0 0.11 2.0 1.0 4 10 Ca Ox Sd 4 4 3 10 40 MALA 51 1.30 1.30 72.00 73.30 Andesita Brechada 10 100.0 43.7 30 0.18 2.0 10 4 10 Ca Ox 8 3 5 REGULAR 52 73.30 74.90 1.60 Andesita Brechada 1.60 0.70 CI Ox 12 8 4 3 2 3 44 REGULAR 100.0 1.00 30 0.18 2.0 10 2 Sd 4 53 74.90 76.30 1.40 Andesita Brechada 1.40 71.4 10 4 48 REGULAR Ox Sd 3 2 3 54 76.30 77.90 1.60 Andesita Brechada 1.60 100.0 1.05 65.6 3.0 0.20 1.0 0.0 2 CI 4 6 1.30 92.9 0.60 42.9 10 2.0 0.12 1.0 0.0 3 0 3 7 Ox CI Sd 2 6 8 4 6 3 0 3 7 39 MALA 55 77.90 79.30 1.40 Andesita Brechada Tramo de roca moderadamente fracturada. 56 79.30 80.90 1.60 1.60 100.0 1.42 88.7 6 3.5 0.23 8.0 2.0 10 Ca Py Ch 5 17 10 2 3 10 51 REGULAR Andesita Brechada moderamente alterada con presencia de oquedades 2 10 Ca Ch Ox 4 13 10 2 3 2 3 10 48 REGULAR 57 80.90 82.30 1.40 Andesita Brechada 1.40 100.0 1.05 75.0 6 3.0 0.20 5.0 2.0 75,30 m - 75,85 m fractura paralela al eje del 3.0 0.17 10.0 6.0 0 10 CI Ox Py 4 6 8 0 0 10 31 MALA 100.0 0.70 46.7 58 82.30 83.80 1.50 Andesita Brechada 1.50 8 77.90 m - 79,30 m Brecha de falla CI 0 10 Py Са 4 5 0 0 10 30 MALA 100.0 34.7 3.0 0.17 10.0 6.0 8 59 83.80 85.30 1.50 Andesita Brechada 1.50 0.52 8 Py 10 Ca 4 14 10 2 4 5 10 53 REGULAR 60 85.30 86.80 1.50 Andesita Brechada 1.50 100.0 1.15 76.7 5 3.0 0.25 5.0 3.0 4 5 Ox 3 10 REGULAR 61 86.80 88.30 1.50 Andesita Brechada 1.50 100.0 1.18 78.7 3.0 0.25 5.0 3.0 4 10 Ca 4 14 10 2 3 4 5 53 Tipo de Juntas Resistencia de la Roca Intacta RQD Espaciamiento Persistencia Apertura Rugosidad Relleno Alteración Condiciones del aqua Tipo de Relleno R6 15 90%-100% >200 cm 20 <1 m Nada Muy rugosa Inalterada Seco 15 Arcilla CI Junta El golpe sólo arranca esquirlas 20.0 Ninguno Ninguna Duro <5 Lig. Alterada Lig Húmedo Corte SH Se rompe con muchos golpes(>5) R5 12 75%-90% 17.0 60-200 cm 15 1-3m <0.1 mm Rugosa 10 Calcita Ca Cuarzo Duro >5 Estratif B Se rompe con varios golpes (5) R4 50%-75% 13.0 20-600 cm 10 3-10 m 0 1-1 0 mm Lig Rugosa Mod Alterada Húmedo Clorita Ch Arena Blando <5 25%-50% 1-5 mm Óxido Ox Venilla Se rompe con un solo golpe R3 6.0 6-20 cm 10-20 m Ondulada Muy alterada Goteando Alunita Blando >5 Falla Deleznable bajo golpes fuertes R2 2 <25% 3.0 <6 cm 5 >20 m 0 >5 mm Suave Agua fluyendo 0 Descompuesta

DATOS DE LOS PARAMETROS Y CALCULO DEL RMR BASICO (1989) ORIENTACIÓN DEL COLLAR DATOS DEL SONDAJE COORDENADAS IDENTIFICACIÓN DEL PROYECTO PR-02 NOMBRE DEL SONDAJE: DIRECCIÓN: 130° Estudio de Estabilidad de Taludes en Tajo PROYECTO: COMPAÑÍA DE PERFORACIÓN: GEOMASTER SAC **FECHA INICIO:** 09/09/2013 INCLINACIÓN: 70 NORTE: 1.273 12/09/2013 FECHA TÉRMINO: Diamantina NIVEL DEL AGUA (m): No encontrado. TIPO BROCA: ESTE: 2.086 REGISTRADO: L.P. 108.7 PROFUNDIDAD FINAL (m): DIAMETRO: HQ3 ELEVACIÓN: 310.0 VALORACIÓN DEL RMR (1989) PARAMETROS DEL RMR (1989) ESTADO DE LAS DISCONTINUIDADES RESISTENCIA DE LA ROCA INTACTA (R.) ESTADO DE LAS DISCONTINUIDADES 1989 (BASICO) £ RMR (1) RESISTENCIA DE LA ROCA INTACTA RMR (2) RQO CONDICION DEL AGUA (valoracion) MATERIAL DE RELLENO 1 MATERIAL DE RELLENO 2 N" JUNTAS POR CORRIDA CALIDAO DE L ROCA ESPACIAMIENTO PERSISTENCIA (m) RMR (4.2) ABERTURA RMR (4.3) RUGOSIDAD RMR (4.4) RELLENO RECUPERACION RMR (3) ESPACIAMIEN RQD (%) Ē RELLENO (valoracion) RQD (m) COMENTARIOS HASTA (NCE DESDE LITOLOGIA ŏ RMR. ż 10 29 MALA 10 CI Ox Ca 3 3 2 0 30 0 1 50 100 0 0 30 20.0 12 25 0.12 80 Andesda Brechada 62 68 30 8980 1 50 0 10 25 MALA CI Ca 10 O 3 25 0.05 100 30 0 1 20 100 0 0 00 0.0 20 63 89 80 91 00 1_20 Andesta Brechada 0 10 28 MALA 100 30 10 CI Ox Ca 3 3 20 2.5 0 08 0.0 54 91 00 92 60 1.60 Andesta Brechada 60 100.0 0.00 10 MALA 30 10 CI Ox Ca 3 3 0 28 20 25 800 100 92.60 94 20 1.60 Angesda Brechada : 60 100.0 0 00 0.0 65 MALA 10 37 20 4 3 10 0> 5 5 2 3 4 3 10 100.0 0.32 29 1 18 35 0.05 8.0 Angesita Brechada 66 9420 9530 1 10 4 3 10 38 MALA 20 4 3 10 Ca. 3 1 20 100.0 0 30 25.0 15 30 0.08 8.0 3 Ancesta Brechada 67 95.30 96 50 1.20 5 5 2 3 3 10 37 MALA 10 0 0 28 35.0 21 30 0.04 80 20 4 Andesda Brechada 080 100.0 68 96.50 97 30 0.80 0 3 3 10 32 MALA 10 Sd 100.0 0 10 11.1 25 30 0.03 120 40 2 3 0.90 0.90 69 97.30 95 20 Andesda Brechada Tramo de roca moderadamente fracturada a extremadamente fracturada, muy alterada, 2 3 10 34 MALA 0.04 100 30 10 От Sd 4 5 3 0 22 31.4 30 0.70 100.0 15 98.20 98 90 0.70 Andesda Brechada 70 82 67 m - 83 80 m y 83 80 m - 84 50 juntas subparalelas ala eje de la perforación 3 10 35 MALA 3 1 3 2 20 3.0 0.07 10.0 40 3 2 3 10 Os Sd Ca 4 8 98 90 100 30 1.40 Andes/la Brechada 1 40 100.0 0 28 200 98 20 m - 96 70 m. Tramo de roca con brecha 71 MALA 10 10 Oa Sd Ca 3 3 2 3 35 25 0.06 6.0 30 2 100 30 101 30 1.00 Andesta Brechada 1 20 120 0 0 20 20.0 18 3 72 4 2 3 2 3 10 42 REGULAR 3 10 Oa Sd Ca 9 8 61.1 13 30 0.11 90 30 1 60 88.9 1 10 73 101.30 103 10 1.80 Andesta Brechada 3 10 34 MALA 100.0 0 10 6.7 21 25 0.07 100 30 2 10 O Sđ Ca 3 3 8 3 1.50 74 103.10 104 60 1.50 Andesta Brechada 10 MALA 3 2 3 32 10 Oz So 3 3 - 5 2 25 0 02 90 30 3 2 3 Ca Andesda Brechada 0.50 100.0 0 00 0.0 20 75 104.60 105 10 0.50 3 5 2 3 2 3 10 32 MALA 00 22 25 0 04 80 30 10 Ox Sd Ca 3 1 00 76.9 0 00 7€ 105.10 :06.40 1.30 Andesita Brechada 3 10 32 MALA 10 Os. Ca 3 3 2 100 0 0 00 0.0 15 25 0.04 9.0 30 3 2 3 Sd 77 107.10 Andesda Brechada 0 70 106 40 0.70 3 5 2 3 2 3 10 32 MALA 2 10 Os Sd Ca 3 30 3 78 107 10 107 70 0.60 Andes/la Brechada 0 60 100.0 0 00 00 16 25 0.04 60 10 30 10 0 = Ca 3 2 3 2 3 32 MALA 17 25 0.06 80 2 3 79 107 70 : 08 70 1 00 100.0 0.00 0.0 1 00 Andesita Brechada Tipo de Relleno Rugosidad Relieno Alteración Condiciones del agua ROD Espaciamiento Persistencia Apertura Tipo de Juntas Resistencia de la Roca Intacta CI Nada Muy rugosa Ninguno Inalterada Seco 15 Arcilla Ninguna 90%-100% >200 cm 20 < 1 m Rf. 15 20.0 6 .kinta El golpe sólo arrança esquitas Duro <5 Lig Alterada Ca 60-200 cm 1-3m <0.1 mm Rugosa 4 Lig Humedo 10 Calcda Cuarzo 75%-90% 17.0 15 **R5** 12 Corte SH Se rompe son muchos galpes(>5 mm Duro >5 Ciorda Ch Arena 20-600 cm 3-10 m 0 1-1 0 mm Lig Rugosa Mod Alterada Humedo Estratif 6 R4 50%-75% 130 10 Se rompe con varios gaipes (5) Blando <! Óxido Ox Alunta 1.5 mm Ongulada Muy afterada Goteando R3 25%-50% 6-20 cm 10-20 m Vendia Se rompe can un solo gol pe Blando >5 >20 m >5 mm Suave 0 Descompuesta Agua fluyendo Fala Deleznable bayo golpes fuertes R2 2 <25°0 30 <6 cm 5

REGISTRO DE LOGUEO DE JUNTAS

					COORDE	NADAS					ORIENTACIÓN DEL COLLAR		SONDAJE : PR-02
OYEC	то :	Estudio de Estab	ilidad de Tal	udes en Tajo	NORTE ESTE			: 1,273 : 2,086			AZIMUT : 130° BUZAMIENTO : 70° DIÁMETRO : HO3		CÍA. DE PERFORACIÓN : GEOMASTER TIPO DE PERFORACIÓN : Diamantina NIVEL FREÁTICO (m) : No encontrado.
СНА	: 09/09	9/2013			ELEVAC	ÓN (msr	nm)	: 3100			REGISTRADO : L.P.		PROF. PERFORACIÓN : 100 30
N.	PROF. (m)	ESTRUCTURA	ORI	ENTACION		RELLENO		ESP.	F	R	LITOLOGIA	COND. DISCON.	COMENTARIOS
			BUZ (°)	DIREC. BUZA (°)	1	2	3						
1	3.49	Jn	37	272	Z	K	3.5	В	U	4	Volcánico	20	
2	3.80	Jn	65	286	Z	K	Ox	В	С	4	Volcánico	20	
3	3.95	Jn	60	82	Z	K		В	С	4	Volcánico	20	
4	4.08	Jn	17	8	Z			В	С	5	Volcánico	25	Junta sellada de calcita
5	4.22	Jn	42		Z	K		С	1	4	Caliza	20	
6	4 38	Jn	44	130	Z	K	Ox	В	S	4	Caliza	20	
7	4.84	Jn	71	8	Ox	Ру	К	В	Р	4	Caliza	20	
8	5.72	Jn	48	265	Ox	К	Z	С	С	4	Caliza	20	
9	6.14	Jn	58	260	Z	Ox	С	В	U	4	Caliza	20	
10	6.23	Jn	69	200	Z	Ox	0	В	U	4	Caliza	20	
11	7.24	Jn	77	170	Ox	К	0	В	1	4	Caliza	20	
12	8.44	Jn	47	340	Ox	Z	0	В	T	4	Caliza	20	
13	8.70	Jn	61	230	Z	С	Ox	В	Р	4	Caliza	20	
14	9.77	Jn	64	190	Z	Ox	0	В	Р	4	Volcánico	20	
15	9.90	Jn	62	140	Ox	Z	Py	В	P	4	Volcánico	20	
16	10 90	Jn	45	270	Cz	Ox	-	В	U	4	Volcánico	20	
17	10.12	Jn	28	330	Cz	Ox	С	В	Р	2	Volcánico	20	
18	11.10	Jn	64	200	Ox	Z	К	В	1	4	Caliza	20	Presencia de Vn de calcita paralela al eje del core de 4mm de espesor
19	11.40	Jn	43	180	Z	Ox	К	В	P	4	Caliza	20	
20	11.65	Jn	42	180	Z	4		В	U	4	Caliza	25	Junta sellada de calcita
21	11.70	Jn	41	180	Z			В	U	4	Caliza	25	Junta sellada de calcita
22	11.77	Jn	45	180	Z			В	U	4	Caliza	25	Junta sellada de calcita
23	13.70	Jn	43	180	Z	Ox	К	В	U	4	Caliza	20	
24	13.73	Jn	22	210	Z	Ox	S	В	U	4	Caliza	20	
25	13.50	Jn	48	280	Z	Ox	К	В	1.		Caliza	20	
26	14.15	Jn	62	320	Ox	Z	C	В	1.	2	Caliza	20	
27	14.25	Jn	20	240	Ox	Z	К	В			Caliza	20	
28	15.50	Jn	75	180	Ox	Z	S	В	U	4	Volcánico	20	
29	15.85	Jn	56	190	Z	Ox	0	В	P	5	Volcanico	20	
30	16.10	Jn	21	310	Z	-	1	В	P	3	Volcánico	20	
_	ESTRUCTURA	1 311	1 41	310	1 -	1	RELLENO		1	1	FORMA (F)		RUGOSIDAD (R) ESPESOR (ESP)
P Plan N Cor	axial tacto	SR Cone TC Fractura de te VN Venas	ensión	FN Foliacion JN Junta SC Esquistocidad			A Aire S arena K Conta		O Mine C Arall Z Calor	la	B Brecha P Planar O Cuarzo C Curvado OX Oxido U Ondulado		1 Pulido o brilloso
GS Gne	stoodad la de juntas	BD Estratificación DK Dique	1	SL Sill UC Incordormidad			E Evapont G Panizo	la	D Detre	tos espatos	S Escalonado		4 Pequeños escalonamientos

											REGISTRO DE	LOGUEO	DE JUNTAS	
OYEC	: 09/0S	Estudio de Estal	oilidad de Tal	udes en Tajo	NORTE ESTE ELEVAC	ENADAS		: 1,273 : 2,086 : 310.0			ORIENTACIÓN DEL COLLA AZIMUT : 130° BUZAMIENTO : 70° DIÁMETRO : HO3 REGISTRADO : L.P.	AR	SONDAJE : CÍA. DE PERFORACIÓN : TIPO DE PERFORACIÓN : NIVEL FREÁTICO (m) : PROF. PERFORACIÓN :	GEOMASTER Diamantina No encontrado.
1.	PROF. (m)	ESTRUCTURA	ORII	ENTACIÓN		RELLENC)	ESP.	F	R	LITOLOGIA	COND. DISCON		COMENTARIOS
			BUZ (°)	DIREC. BUZA (°)	1	2	3				0.425.63		Lista collede	
1	16.95	Jn	22	120	Z	•	-	В	Р	4	Volcánico	20	Junta sellada	
2	17.25	Jn	67	130	Z	0	•	В	Р	4	Volcánico	20	Junta sellada	
3	17.87	Jn	25	246	Z	Z	Ox	В	С	4	Volcánico	20		
4	18.52	Jn	61	130	Z	Z		В	1	4	Volcánico	20		
35	18.80	Jn	41	80	Z	Z	Ox	В	С	4	Volcánico	20	lunto collado do coleito	
36	17.46	Jn	51	256	Z	Z	- •	В	С	4	Volcánico	25	Junta sellada de calcita	
37	17.78	Jn	36	162	Z	Z	1.5	В	С	4	Volcánico	20	Drosonoio do caleita altera da	
38	18.22	Jn	52	234	Z	Z	K, Py	С	С	5	Volcánico	25	Presencia de calcita alterada	
39	18.44	Jn	45	230	Z	Z	K, Py	С	С	5	Volcánico	25		
40	20.96	Jn	64	98	Z	Z		В	U	4	Volcánico	20	Lucia collede de coleito	
41	21.05	Jn	50	252	Z	Z	К	С	C	5	Volcánico	25	Junta sellada de calcita	
42	21.78	Jn	48	266	Z	Z	- 7	В	С	4	Volcánico	20		
43	22.69	Jn	45	192	Z	Z	-	С	С	4	Volcánico	20		
44	22.79	Jn	52	150	Z	Z		В	С	3	Volcánico	15		
45	22.96	Jn	35	175	Z	Z	C, D	С	С	4	Volcánico	10		
46	23.73	Jn	70	170	Z	Z		В	С	3	Volcánico	15		
47	24.58	Jn	75		Z			В	-	4	Volcánico	20		
48	24.80	Jn	15	170	Z			В	С	5	Volcánico	25		
49	25.14	Jn	14	125	Z	K	Py	В	С	5	Volcánico	20	Junta Sellada	
50	25.36	Jn	48	295	Py	K	Z	В	С	4	Volcánico	25	Junta Sellada Junta Sellada	
51	25.98	Jn	30	220	К	Z		В	С	4	Volcánico	25	Junta Sellada	
52	29.80	Jn	63	250	K	Z		В	P	4	Caliza	20	lunta callada da 1 mm da acc	10290
53	30.30	Jn	70	245	Z	-	-	В	U	4	Caliza	20	Junta sellada de 1 mm de esp	pesoi
54	31.10	Jn	46	300	Z	Ру	К	В	P	4	Caliza	20	Junta sellada de 1 mm de esp	neenr
55	32.20	Jn	21	240	Z			В	P	4	Caliza Caliza	20	Junta sellada de 1 mm de esp	
56	32.40	Jn	62	270	Z	- Du		В	P	4	Caliza	10	Presencia de bitumen	
57	32.50	Jn	45	290	K	Ру		В	С		Caliza	10	, reserved de bitamen	
58	32.90	Jn	57	290	Z	К.	C	В	U	4	Caliza	10	Poca presencia de arcilla	
59	33.05	Jn	57	350 270	Z	_	C	В	U	2	Caliza	10	Poca presencia de arcilla	
60	STRUCTURA	Jn	73	2/0		Py	RELLENO	_ B	I		FORMA		RUGOSIDAD (R)	ESPESOR (ESP)
AP Pla CN: Co	no axial ntacto	SR. Corte TC. Fractura de t VN. Venas BD. Estratificació		FN: Foliación JN: Junta SC: Esquistocidad SL: Sill			A: Aire S: arena K: Conta E: Evaporit	,	O Mine C Arcill Z Calcit D Detri	a ta	B. Brecha P. Plana Q: Cuarzo C. Curvi OX: Oxido U. Ondu S: Escal	r ado lado	1: Pulido o brilloso 5 Muy rugoso 2. Liso 5 Sellado 3. Estnado 4. Pequeños	A: 0 D: 1 - 2 cm B: 0 - 5 mm E: 2 - 5 cm C: 5 - 10 mm F: 5 - 10 cm
100	nilia de juntas	DK: Dique		UC: Inconformidad			G: Panizo		100	spatos	I: Irregui		escalonamientos	

											REGISTRO DE L	UGUEO	DE JUNIAS		
CHA	: 09/0s	Estudio de Estat	oilidad de Ta	ludes en Tajo	NORTE ESTE ELEVAC			: 1,273 : 2,086 : 310.0			ORIENTACIÓN DEL COLLAR AZIMUT : 130° BUZAMIENTO : 70° DIÁMETRO : HQ3 REGISTRADO : L.P.		CÍA. DE PERFORACIÓN : (TIPO DE PERFORACIÓN : I NIVEL FREÁTICO (m) : I	PR-02 GEOMASTER Diamantina No encontrado. 100.30	
	PROF. (m)	ESTRUCTURA	ORI	ENTACIÓN		RELLENO		ESP.	F	R	LITOLOGÍA	COND. DISCON.		COMENTARIOS	
	T KOT . (m)	2011100101111	BUZ (°)	DIREC. BUZA (°)	1	2	3			-					
1	34.00	Jn	62	270	Z	Py		В	Р	4	Caliza	20			
32	34.30	Jn	52	300	Z	Ру	С	В	1	4	Caliza	10			
33	34.50	Jn	31	240	Z	Ру	1	В	U	4	Caliza	20	Junta sellada		
64	34.75	Jn	50	92	Ру	К	100	В	Р	2	Caliza	20			
35	34.95	Jn	61	250	С			В	U	4	Caliza	20	Junta sellada		
66	35.00	Jn	66	260	С			В	U	4	Caliza	20	Junta sellada		
67	35.80	Jn	69	250	Py	Z	С	В	1	4	Caliza	10			
68	35.95	Jn	61	270	К	Py	С	В	1	4	Caliza	10	Poca presencia de arcilla		
69	36.20	Jn	39	100	C			В	1	4	Caliza	20	Junta sellada		
70	36.60	Jn	50	80	С			В	1	4	Caliza	20	Junta sellada		
71	37.40	Jn	18	240	К	Z	Py	В	U	4	Caliza	20	Fractura sellada		
			67	240	K	Z	.,,	В	P	4	Caliza	20			
72	38.10	Jn			-	K	Py	В	1	5	Caliza	20	37.70 - 39.40 fractura paralela al	eie del core de 3	mm de espesor
73	37.70	Jn			Z				1	5	Caliza	20	or it o conto italiana paratola ai	0,0 20, 00,0 00	
74	39.40	Jn			Z	К	Ру	В	1	_		_	Junta sellada de 1 mm de espesor		
75	40.00	Jn	27	40	Z		•	В	1	5	Caliza	20	Junta sellada de 1 mm de espesor		
76	40.10	Jn	56	330	Py	-	-	В	Р	4	Caliza	20	I have a Wards		
77	40.60	Jn	17	50	Z	-		В	U	4	Caliza	20	Junta sellada		
78	40.70	Jn	47	230	Z	K	С	В	Р	2	Caliza	10			
79	40.80	Jn	19	70	Z	Py		В	Р	4	Caliza	20	Junta sellada		
80	41.50	Jn	25	210	Z	Py		В	U	4	Caliza	20	Junta sellada		
81	42.90	Jn		230	Z	Py	С	В	U	4	Caliza	10	Junta sellada subparalela al eje d	lel core de hasta 4	mm de espesor
82	43.40	Jn	63	260	Z		-	В	Р	4	Caliza	20			
83	43.70	Jn	42	70	Z	Py		В	1	5	Caliza	20			
84	44.00	Jn	32	10	Z			D	Р	4	Caliza	20	Junta sellada de 15 mm de espes	sor	
85	46.41	Jn	16	214	Z	К	Py	В	С	3	Volánico	20			
86	46.64	Vn	15	200	Z			В	С	4	Volánico	20	Junta sellada		
87	48.20	Jn	5	230	Z		-	В	U	5	Volánico	20	Junta sellada		
88	48.59	Jn	56	196	Z			В	С	5	Volánico	20	Junta sellada		
89	48.78	Jn	28	244	Z	1	-	В	С	5	Volánico	20			
90	49.73	Jn	62	230	Z			В	Р	3	Volánico	15			
	ESTRUCTURA	1	-				RELLENO		_		FORMA (F)		RUGOSIDAD (R)	ESPESOR (ESP)	
AP: Pla	no axial	SR: Corte		FN: Foliación		1	A Aire		O: Mine	al	B Brecha P Planar		Pulido o brilloso Muy rugoso	A: 0	D: 1 - 2 cm
CN: Co	ntacto	TC: Fractura de te	ensión	JN: Junta			S: arena		C: Arcilla	3	Q Cuarzo C Curvado		2 Liso 5 Sellado	B: 0 - 5 mm	E: 2 - 5 cm
FL Fal	a	VN; Venas		SC: Esquistocidad			K: Corita		Z: Calcit	а	OX: Oxido U: Ondulado		3 Estnado	C: 5 - 10 mm	F: 5 - 10 cm
GS: Gn	eistocidad	BD: Estratificación	n	SL: Sill			E Evaporita	3	D: Detrit	os	S: Escalonado	2	4 Pequeños		
JS: Fan	nilia de juntas	DK. Dique		UC: Inconformidad			G: Panizo		F: Felde	spatos	I: Irregular		escalonamientos		1

REGISTRO DE LOGUEO DE JUNTAS ORIENTACIÓN DEL COLLAR SONDAJE PR-02 COORDENADAS PROYECTO Estudio de Estabilidad de Taludes en Tajo : 130° CÍA. DE PERFORACIÓN : AZIMUT GEOMASTER BUZAMIENTO: 70° TIPO DE PERFORACIÓN : NORTE : 1,273 Diamantina ESTE : 2.086 DIÁMETRO HQ3 NIVEL FREATICO (m) : No encontrado REGISTRADO : L.P. PROF. PERFORACIÓN : 100.30 : 09/09/2013 ELEVACIÓN (msnm) : 310.0 FECHA ORIENTACION RELLENO R LITOLOGIA COND. DISCON. COMENTARIOS ESP. PROF. (m) **ESTRUCTURA** BUZ (*) DIREC. BUZA (°) 1 2 3 В С 3 Caliza 15 Z K 50 05 55 310 91 Jn Caliza 15 3 54 130 Z K В C 92 50.09 Jn В C 3 15 54 102 Z K Caliza 93 50 48 Jn Z В 3 Caliza 15 52 100 K C 50.65 94 Jn В 5 Z C Caliza 20 63 15 K 95 51.20 Jn C Caliza Z 3 15 96 51.74 Jn 50 C 97 52.08 58 270 Z В C 3 Caliza 15 Jn В 3 Caliza 15 52.96 5 98 Jn В C 3 Caliza 99 20 54 K 10 53.91 Jn В 100 55.13 9 52 Z K U 3 Caliza 15 Jn K В 5 Caliza 20 101 55 65 Jn 8 315 U Junta sellada de calcita C 4 102 55.76 50 192 K Z D C Caliza 15 Jn 55.77 45 144 Z Ox В C 5 Caliza 20 103 Jn K 104 55.91 Jn 56 200 Z Py В C 3 Caliza 15 В 3 Caliza 56.18 48 192 Z C 15 105 Jn C Caliza 56 44 264 K 3 15 106 8 Jn 57 32 Z В 20 107 C 5 Caliza Jn 55 150 Z В 108 57.60 Jn 58 154 C 5 Caliza 20 В 109 57.74 Jn 58 155 Z C 5 Caliza 20 Z В C 3 110 58.72 Vn 32 120 K Caliza 15 60 20 39 220 Ζ В Р 4 CALIZA 20 111 Jn K Ox 112 60.28 Vn 44 150 Z В U 6 CALIZA 20 JUNTA SELLADA 113 60.36 Jn 41 220 Z Ox В 1 4 CALIZA 20 114 60.41 Vn 55 220 Z В P 6 CALIZA 20 JUNTA SELLADA 115 436 60 Z В P CALIZA 60.50 Vn 6 20 JUNTA SELLADA 60 80 Z В 116 Vn 45 210 P 6 CALIZA 20 117 60 90 55 180 Z Ox В 5 CALIZA 20 61.15 Z 6 CALIZA 118 В 20 Vn 74 190 JUNTA SELLADA 119 61.35 Z В CONTACTO 70 190 Ox Р 6 20 JUNTA SELLADA 120 61.60 Jn 170 C Ox S В Ρ 4 INTRUSIVO 5 34 TIPO DE ESTRUCTURA RELLENO FORMA (F) RUGOSIDAD (R) ESPESOR (ESP) A Aire AP Piano axial SR Corte FN Foliacion O Mineral B Brecha P Planai Pulido o brilloso 5 Muy rugoso 0 1 - 2 cm CN Contacto TC Fractura de tensión JN Junta C Arcilla O Cuarzo S arena Curvado Liso Sellado 8 0 - 5 mm E 2 - 5 cm FL. Falla VN Venas SC Esquistocidad Conta Catcha OX Oxido Ondulado Estnado C 5 - 10 mm F 5 - 10 cm GS Gneistocidad BD Estratificación SL SIN E Evaporita D Detritos Pequeños Escalonado JS Familia de juntas DK Dique UC Inconformidad G Panizo Feldespatos Integular scalonamientos

											REGIST	RO DE L	OGUEO	DE JUN	ras .		
OYE	сто :	Estudio de Estat	oilidad de Ta	ludes en Tajo	NORTE ESTE	ENADAS		: 1.273 : 2.086			ORIENTACIÓN AZIMUT BUZAMIENTO DIÁMETRO	: 130° : 70° : HO3		SONDAJE CÍA. DE PERFO TIPO DE PERF NIVEL FREÀTIO	ORACIÓN :	PR-02 GEOMASTER Diamantina No encontrado.	
CHA	: 09/09	9/2013			ELEVAC	IÓN (msr	nm)	: 310.0			REGISTRADO	; L.P.	T	PROF. PERFOR	RACIÓN :	100 30	
N°	PROF. (m)	ESTRUCTURA	ORI	ENTACION		RELLENC)	ESP.	F	R	LITOLOG	IA	CONO. DISCON.			COMENTARIO	os
			BUZ (°)	DIREC. BUZA (°)	1	2	3										
21	61.70	Jn	55	210	С	Ox	S	В	Р	4	INTRUSI		5				
122	61.80	Jn	23	200	0	Ox		В	Р	4	INTRUSI	VO	20				
123	61.90	Jn	76	260	0	Ox		В	Р	4	INTRUSI	VO	20				
124	62.30	Jn	14	235	Ox	С	S	В			INTRUSI	vO	10				
125	62 40	Jn	48	30	Z	Ox		В			INTRUSI	VO	20				
126	62 50	Jn	46	220	Ox	С	Z	В	Р	4	INTRUSI	VO	10				
127	62 70	Vn	41	170	Z			В	Р	4	INTRUSI	VO	15	JUNTA SELLAD)A		
128	63 00	Jn			Ox	С	Z	В	Р	4	INTRUSIN	/0	10				
129	6,3.15	Vn	34	231	Z			В	Р	4	INTRUSIN	/0	15	JUNTA SELLAD)A		
130	63.40	FL	54	130	С	S	G	В	Р	2	INTRUSIN	/0	5	FALLA DE 25 m	m DE ESPESO	R CON FRAGME	ENTOS SUBANGULOSOS
131	64 00	VN	77	210	Z			В	Р	6	INTRUSIN	/ O	15				
132	64.60	JN	44	230	Ox	С		В	T	4	INTRUSIN	/ O	10	65 20-65 70 SUE	LO RESIDUAL		
133	64.80	JN	33	230	Ox	С		В	Р	4	INTRUSIN	/ O	10				
134	64 96	JN	46	220	Ox	С		В	1	4	INTRUSIN	/ O	10				
135	66 35	JN	25	130	Ox	С	S	В	1	4	INTRUSIV	/0	10				
136	66.45	VN	50	250	Z			С	1	6	INTRUSIN	VO	20	JUNTA SELLADA	A		
137	66.60	VN	38	230	Ox	С	S	В	Р	5	INTRUSIN	/0	10				
138	66 80	JN	22	340	Ox	С	S	В	Р	5	INTRUSIN	/0	10				
139	66.90	JN	30	210	С	Ox		В	Р	5	INTRUSIN	/0	5	PRESENCIA DE	CALCITA MUY	ALTERADA	
140	67.00	JN	21	70	С	Ox	S	В	1	4	INTRUSIN	/0	5				
141	67 20	JN	20	180	Ox	Z		В	Р	2	INTRUSIN	/0	20				
142	67.30	JN	•	90	Ox	Z	С	В	Р	2	INTRUSA	/0	10				
143	67.50	JN	80	240	Ox	Z	С	В	Р	4	INTRUSIV	/0	10				
144	67.60	JN	50	220	Ox	Z		В	Р	4	INTRUSIV	/0	20				
145	67.95	JN	48	220	Z	С	Ox	В	Р	4	INTRUSIV	/0	10	1			
146	68.15	VN	32	230	Ox	Z	С	В	Р	4	CALIZA		10				
147	68.20	JN	55	180	Ox	Z		С	Р	6	CALIZA		20	JUNTA SELLADA	4		
148	68.30	JN	36	230	Z	Ox	Z	В	1	5	CALIZA		20				
149	68 40	JN	34	240	Ox	Z	Ox	В	1	5	CALIZA		10				
150	68 65	VN	15	180	Z			В	U	6	CALIZA		20	JUNTA SELLADA	A DE 6 mm DE 6	ESPESOR DE CA	ALCITA
	ESTRUCTURA						RELLENO					FORMA (F)		RUGOSIDAD (R)		ESPESOR (ESP)	
P Plan		SR Cone		FN Foliación			A Aite		Q Mine		B Brecha	P Planar		1 Pulido o brilloso	5 Muy rugoso	A 0	D 1 - 2 cm
N Cor		TC Fractura de tel VN Venas	USION	JN Junta SC Esquistocidad			S arena K Conta		C Aralia		O Cuarzo	C Curvado		2 Liso	5 Sellado	B 0 - 5 mm	E 2 · 5 cm
	rstocidad	BD Estratificación		SL Sill			E Evaponta		Z Caicit D Detrit		OX Oxido	U Ondulado		3 Estnado 4 Pequeños		C 5 - 10 mm	F 5 - 10 cm
	lia de juntas	DK Dique		UC Inconformidad			G Panizo			spatos		S Escalonado		escalonamientos			

REGISTRO DE LOGUEO DE JUNTAS PR-02 ORIENTACIÓN DEL COLLAR SONDAJE COORDENADAS Estudio de Estabilidad de Taludes en Tajo PROYECTO : 130° CÍA. DE PERFORACIÓN : **AZIMUT** GEOMASTER : 70° TIPO DE PERFORACIÓN: Diamantina BUZAMIENTO NORTE : 1,273 ESTE : 2,086 DIÁMETRO : HQ3 NIVEL FREATICO (m) : No encontrado. REGISTRADO : L.P. PROF. PERFORACIÓN : 100.30 : 310.0 ELEVACIÓN (msnm) : 09/09/2013 **FECHA** ORIENTACIÓN RELLENO ESP. LITOLOGÍA COND. DISCON. COMENTARIOS R N° PROF. (m) **ESTRUCTURA** DIREC. BUZA (°) 2 3 BUZ (°) CALIZA 20 Z B U 4 52 190 151 69.05 VN 20 B P CALIZA 42 200 Z 4 152 69.08 VN Z В P 2 CALIZA 20 47 220 153 69.25 VN В CALIZA 20 4 37 230 Z CI U 69.35 VN 154 JUNTA SELLADA CALIZA 20 В P 4 69.40 VN 39 230 Z 155 CALIZA 20 40 235 Z Ox В P 4 69.45 JN 156 CALIZA 20 230 Z В 6 47 157 69.80 VN CALIZA 20 70.40-72.00 ROCA EXTREMADAMENTE FRACTURADA Z S B 4 200 Ox 158 70.25 JN 58 CALIZA 20 COLOR MARRÓN - PARDO, PRESENCIA DE OXIDOS, ARENAS Y ARCILLAS В 4 159 70.36 JN 60 190 Ox Z S Z B P 4 CALIZA 20 70.75 JN 55 180 Ox S 160 Z В P 4 CALIZA 10 70.30 21 60 Ox C.S 161 JN/VN В 4 **INTRUSIVO** 20 20 350 Ox Z S P 162 71.50 JN INTRUSIVO 71.70 20 340 Ox C S В P 4 10 163 JN S Z В 4 INTRUSIVO 20 164 71.90 JN 22 170 Ox P В P 2 INTRUSIVO 20 165 72.00 JN 42 185 Ox Z S INTRUSIVO 10 166 72.40 30 180 Ox Z C В P 3 JN INTRUSIVO 10 167 72.70 JN 47 350 Ox C S В P 4 В P **INTRUSIVO** 10 168 72.75 JN 29 240 Ox C S 4 Ox C Z В P 4 INTRUSIVO 10 169 72.95 JN 37 230 170 63 350 Ox Z В 4 INTRUSIVO 20 73.00 JN 73.50 Z В 4 INTRUSIVO 20 171 JN 79 320 Ox K 172 73.60 51 220 Z В U 6 INTRUSIVO 20 JN В 173 74.00 39 220 Z 4 INTRUSIVO 20 JN Ox 74.40 Z В P 4 INTRUSIVO 20 174 57 230 Ox JN 20 Z INTRUSIVO 175 74.75 JN 46 260 Ox Py В 4 176 75.10 JN 34 80 Ox CI S В U 5 INTRUSIVO 20 20 177 76.15 JN 79 230 Ox В 4 INTRUSIVO 76.30 В 4 INTRUSIVO 20 178 61 240 Ox JN INTRUSIVO 20 179 76.50 59 360 CI В 4 JN Ox Z 1 INTRUSIVO 180 76.60 JN 54 320 Ox Z K В 1 5 20 IPO DE ESTRUCTURA RELLENO FORMA (F) RUGOSIDAD (R) ESPESOR (ESP) AP Plano axial SR: Corte FN Foliación A. Aire O Mineral B: Brecha Planar Pulido o brilloso . Muy rugoso D: 1 - 2 cm CN: Contacto TC: Fractura de tensión JN: Junta S: arena C: Arcilla Q: Cuarzo 2 Liso 5. Sellado B: 0 - 5 mm E: 2 - 5 cm Curvado FL Falla VN: Venas SC: Esquistocidad Conta Calcita OX: Oxido Estriado 5 - 10 mm F: 5 - 10 cm Ondulado GS Gneistocidad BD. Estratificación SL: Sill E: Evaporita D: Detritos 4 Pequeños S Escalonado S Familia de juntas DK: Dique UC: Inconformidad G. Panizo Feldespatos Irregular escalonamientos

											REGISTRO DE I	OGUEO	DE JUNTAS		
ROYE	то :	Estudio de Estab	ilidad de Tal		COORD	ENADAS					ORIENTACIÓN DEL COLLAR AZIMUT : 130°		SONDAJE : CÍA, DE PERFORACIÓN :	PR-02	
								4.070					TIPO DE PERFORACIÓN :	GEOMASTER	
					NORTE			: 1.273			BUZAMIENTO : 70°			Diamantina	
					ESTE			: 2.086			DIÁMETRO : HO3		NIVEL FREATICO (m) :	No encontrado	
CHA	: 09/09	9/2013			ELEVAC	IÓN (ms	nm)	; 310.0			REGISTRADO : LP	1	PROF. PERFORACIÓN :	100.30	
N°	PROF. (m)	ESTRUCTURA	ORI	ENTACION		RELLEN	0	ESP.	F	R	LITOLOGIA	COND. DISCON.		COMENTARIOS	5
N.	PROF. (m)	ESIRUCTURA	BUZ (*)	DIREC. BUZA (°)	1	2	3	231.		"	2,70000	00.000			
31	76.70	JN	35	90	Α			В	Р	4	INTRUSIVO	20			
2	77.00	JN	45	50	Ox	С	Ox	В	1	5	INTRUSIVO	10	77.25 m - 75.35 m BRECHA D	E FALLA CON FR	AGMENTOS SUBANGULOSO
3	77.30	FL	25	240	В	С	Z	E	Р	6	INTRUSIVO	10	EN UNA MATRIZ ARCILLOSA		
84	77.50	JN		- 4	С	В	D	В	U	5	INTRUSIVO	15			
85	78 20	JN	12	70	В	С	D	В	Р	4	BRECHA	10	CLASTOS SUBANGULOSOS		
86	78.40	JN	37	350	В	С	D	В	Р	4	BRECHA	10			
87	78.50	JN	61	340	В	С	Ру	В	Р	4	BRECHA	10			
88	79 43	JN	44	284	Z		K	В	T	5	BRECHA	15			
89	80.53	JN	76	13	С	Z	К	В	С	3	BRECHA	10			
90	81 03	JN	36	86	Z	С		В	U	3	INTRUSIVO	10			
91	81 18	JN	25	230	Z	С		В	U	3	INTRUSIVO	10			
92	81.30	JN	46	190	Z	С		В	С	3	INTRUSIVO	10	Į .		
93	81.84	JN	32	15	Z			С	С	5	INTRUSIVO	20	JUNTA SELLADA		
94	82.03	JN	24	120	Z	С	Ox	В	С	3	INTRUSIVO	10			
95	82.32	JN	40	125	Z	С		В	С	3	INTRUSIVO	10			
96	82.30	JN	8		С	К	Z. Py	С	T	3	BRECHA	10			
97	83.02	JN	69		С			D	U	2	SKARN	5			
198	83.38	JN	5	165	С	К	Z. Py	С	1	3	BRECHA	10			
						1	lan					1		1 6	
_	ESTRUCTURA axial	SR Cone		FN Foliacion		-	RELLENO A Are		O Mine	(2)	FORMA (F)	-	RUGOSIDAD (R) 1 Pulido o brilloso 5 Muy rugoso	ESPESOR (ESP)	D 1 - 2 cm
Con		TC Fractura de ten	Sión	JN Junta			S atena		C Arall		B Brecha P Planai Q Cuarzo C Curvado		2 Liso 5 Seliado	B 0 - 5 mm	E 2-5 cm
Falia		VN Venas		SC Esquistocidad			K Conta		2 Calcii		OX, Oxido U Ondulado		3 Estnado	C 5 - 10 mm	F 5 - 10 cm
Gne	stocidad	BD Estratificación		SL Sill			E Evaporita		D Detri		S Escatonad		4 Pequeños		
Fami	a de juntas	DK Dique		UC Incomformidad			G Panizo		F Feide	spatos	i Inegular		escalonamientos		

Foto °1: Perforación PR-03 de 0,00 m hasta 22,30 m.

											DA	ros I	DE LO	OS PA	ARAM	METR	os y	CAL	CUL	D DEL	RMR BA	ASICC	(198	39)									
IDENT			EL PROYE	ESTABILIDAD DE TAILUDES	en Taj	ю		coo	RDENA	DAS							NTACION:	ÓN DEI	0	LAR				S DEL					PR-03				
			Lordone de		70.30			NORT	E:							INCLI	NACIÓ	N:	-90				COM	PAÑIA	DE PE	RFORA	CIÓN:		EXPL	OMIN		FECHA INICIO:	22/08/2013
								ESTE:								TIPO	BROCA	A:	Diama	antina			NIVE	DEL	GUA	(m):			No en	contra	do.	FECHA TÉRMINO	22/08/2013
								ELEVA	ACIÓN:	270.0						DIAM	ETRO:		на				PROF	UNDID	AD FI	VAL (m):		64.4			REGISTRADO:	L.P.
						P	ARAMI	ETROS	DELR	MR (198	9)													VAL	ORACI	ÓN DE	L RMR	(1989))				
		_			F	-				-	-	ESTA	DO DE L	AS DISC	ONTINUI	DADES	2				1 5			ESTA	DO DE L	AS DISC	ONTINUI	DADES		l ô	-		
N° DE CORRIDA	DESDE (m)	HASTA (m)	AVANCE (m)	LITOLOGIA	RECUPERACIÓN (m)	RECUPERACIÓN (%)	RQD (m)	RQO (%)	N° JUNTAS POR CORRIDA	RESISTENCIA DE LA ROCA INTACTA (R.)	ESPACIAMIENTO (m)	PERSISTENCIA (m)	APERTURA (mm)	RUGOSIDAD (valoración)	(valoración)	ALTERACIÓN (valoración)	CONDICIÓN DEL AGUA (valoración	MATERIAL DE RELLENO 1	MATERIAL DE RELLENO 2	MATERIAL DE RELLENO 3	RMR (1) RESISTENCIA DE L ROCA INTACTA	RMR (2) RQO	RMR (3) ESPACIAMIENTO	RMR (4-1) PERSISTENCIA	RMR (4-2) ABERTURA	RMR (4-3) RUGOSIDAD	RMR (4-4) RELLENO	RMR (4-5) ALTERACION	RMR (5) AGUA	RMR, 1989 (BASICO)	CALIDAD DE LA ROCA	COMENTA	RIOS
1	0.00	1.40	1.40	Caliza	1 20	85.7	0.73	52.1	5	30	0.20	80	30	3	2	3	10	Ca	Ox		4	7	10	2	1	3	2	3	10	42	REGULAR		Sales Lander
2	1.40	2 40	1.00	Caliza	0.80	80.0	0 23	23.0	8	3.0	0.09	100	50	1	0	1	10	Ca	CI		4	3	8	1	1	1	0	1	10	29	MALA	1,40 m - 1,80 m Tramo presencia de arenas, fra	agmentos de roca
3	2.40	3.80	1.40	Caliza	1.40	100.0	1 02	72.9	7	30	0.18	100	40	0	2	3	10	Ca	ÇI		4	12	8	1	1	0	2	3	10	41	REGULAR	2,40 m - 2,70 m, 4,4	10 m - 4,80 m
4	3.80	4.80	1.00	Caliza	1.00	100.0	0 59	59.0	7	35	0 13	12.0	5.0	3	0	3	10	Ca	CI		5	8	8	1	1	3	0	3	10	39	MALA	Presencia de fracturar	mento mecanico
5	4.80	6.90	2.10	Caliza	210	100.0	1.60	76.2	6	3.5	0.30	8.0	3.0	3	4	5	10	Ca			5	14	10	2	1	3	4	5	10	54	REGULAR		415.5
6	6.90	8.60	1.70	Caliza	1.70	100.0	1.64	96.5	4	3.5	0.34	80	30	3	4	5	10	Ca	Py		5	19	10	2	1	3	4	5	10	59	REGULAR	Roca ligeramente alterada: oscura, presencia de óxidos	
7	8.60	9.40	0.80	Caliza	0.80	100.0	0.78	97.5	,	3.5	0.40	80	20	3	4	5	10	Ca	Py		5	19	10	2	1	3	4	5	10	59	REGULAR	pinta diseminada en la Presencia de juntas sellada	
8	9.40	11.20	1.80	Caliza	1.80	100.0	1.57	87.2	2	3.5	0.60	40	30	1	2	3	10	Ca	CI	\vdash	5	17	15	2	1	1	2	3	10	56	REGULAR	impermeat	oles
9	11.20	14.20	3.00	Caliza	3 00	100.0	2 15	71.7	4	35	0.60	80	10	3	2	5	10	Ca	\vdash		5	12	15	2	1	3	2	5	10	55	REGULAR	Roca ligeramente alterada,	
10	14.20	16.40	2.20	Caliza	2.20	100.0	1.65	75.0	4	3.5	0.44	50	10	1	2	5	10	Ca			5	13	10	2	1	,	2	5	10	49	REGULAR	parduzco, presencia de o patinas, pinta diseminada e	en la matriz calcarea
11	16.40	-	2.90	Caliza	2 90	100.0	1.80	62.1	5	35	0.48	10.0	50	1	0	3	10	Ca	CI	\vdash	5	0	10	,	1	,	0	3	10	40	MALA	Roca ligeramente alterada	moderadamente
-	-	-		-4.0	-	100.0	-	90.7	3	35	0.68	50	10	3	4	5	10	Ca	-		5	17	15	2	,	3	4	5	10	62	BUENA	fracturada, color gris oscura en forma de patinas, pirta	diseminada en la
12	19,30	100	2.70	Caliza	2.70	75.0	-	66.7	5	3.5	0.35	50	3.0	3	4	5	10	Ca	-	\vdash	5	10	10	2	1	3	4	5	10	50	REGULAR	matriz calca 22,00 m - 22,83 m, Junta su	ib paralela al eje del
13	22.00		2.10	Caliza	2.10	100.0	1	003		-		-	-	-	-		-		-	+		-	1				- 23			1000	-3300	core, evidencia de fittr A 24,00 m. recubrimienti arcillosa reblandeciente, cai	o de limo o arena
14	24.10	26.60	2.50	Caliza	2.50	100.0	-	86.0	3	3.5	0.63	60	2.0	1	4	5	10	Ca	-		5	17	15	2	1	1	4	5	10	60	REGULAR	dé agua	
15	26.60	29 60	3.00	Caliza	3.00	100.0	2.63	87.7	8	3.5	0.33	12.0	2.0	3	4	5	10	Ca		\vdash	5	17	10	1	1	3	4	5	10	56	REGULAR		
16	29.60	32.00	2.40	Caliza	2.40	100.0	1.75	72.9	4	3.5	0.48	8.0	5.0	5	2	3	10	Ca			5	12	10	2	1	5	2	3	10	50	REGULAR	Roca ligeramente alterada, fi oscura, presencia de óxidos	
17	32,00	35.00	3.00	Caliza	3.00	100.0	1.97	65.7	10	3.5	0.27	8.0	40	5	4	3	10	Ca	D		5	9	10	2	1	5	4	3	10	49	REGULAR	Presencia de juntas sellada: impermeable	s de calcita, rigidas,
18	35.00	38.00	3.00	Caliza	3.00	100.0	2.70	90,0	5	3.5	0.50	50	30	3	4	5	10	Ca	Py		5	17	10	2	1	3	4	5	10	57	REGULAR	27,70 m - 27,75 m Tramo rell y arcillas	
19	38.00	41.10	3.10	Caliza	3 10	100.0	270	87.1	5	3.5	0.52	50	20	3	4	5	10	Ca			5	17	10	2	1	3	4	5	10	57	REGULAR	40,35 m - 40,60 m Presenci con clastos subangulosos en	
20	41,10	44.20	3.10	Caliza	3.10	100 0	2.60	83.9	7	3.5	0.39	80	3.0	3	4	5	10	Ca			5	16	10	2	1	3	4	5	10	56	REGULAR	presencia de bit Presencia de juntas selladas	tumen. s de calcita, rigidas.
21	44.20	47.30	3.10	Caliza	3.10	100.0	2.80	90.3	5	3.5	0.52	50	20	3	4	5	10	Ca	Py		5	17	10	2	1	3	4	5	10	57	REGULAR	impermeable	95
22	47.30	50 30	3.00	Caliza	3.00	100.0	2.90	96.7	3	35	0.75	50	1.0	3	4	5	10	Ca	Ch		5	19	15	2	1	3	4	5	10	64	BUENA		
23	50.30	53.30	3.00	Çalıza	3.00	100.0	2 75	91.7	4	3.5	0.60	5.0	20	3	4	5	10	Ca			5	18	15	2	1	3	4	5	10	63	BUENA		
24	53,30	56 30	3.00	Caliza	3.00	100.0	2.77	92.3	3	3.5	0.75	5.0	2.0	3	4	5	10	Ca			5	18	15	2	1	3	4	5	10	63	BUENA	Roca ligeramente alterada, froscura, presencia de óxidos e	en forma de patinas.
25	56.30	59.30	3.00	Caliza	3 00	100.0	2 32	77.3	3	3.5	0.75	5.0	20	3	1	5	10	Ca			5	14	15	2	1	3	1	5	10	56	REGULAR	Presencia de juntas selladas impermeable 59,00 m - 59,30 m Tramo lig	is .
26	59.30	62.30	3.00	Caliza	3 00	100.0	287	95.7	2	3.5	1.00	4.0	1.0	3	4	5	10	Ca			5	19	15	2	1	3	4	5	10	64	BUENA	color gris parduzco, como resi de agua	
27	62.30	65.40	3.10	Caliza	3.10	100.0	2.40	77.4	6	3.5	0.44	8.0	20	3	4	5	10	Ca			5	14	10	2	1	3	4	5	10	54	REGULAR	ut agua	
Т	ipo de J	untas		Resistencia de la Roca In	tacta			RQD		Es	paciami	ento	-	ersister	ncia		Apertur		Ru	gosidad	Relie	no	-	Alteració	n	Condici	iones de	el agua				Tipo de Relleno	
	Junta	J	El goi	pe sólo arranca esquirlas	R6	15	90%	-100%	20.0	>20	0 cm	20		1 m	6	N	ada	6	Muy	rugosa 6	Ninguno	6	Inalte	erada	6	Sei	00	15	Arci	dia	CI	Ninguna	No
	Corte	SH	Se rom	pe con muchos golpes(>5)	R5	12	759	6-90%	17.0	60-20	00 cm	15	,	-3m	4	<0	1 mm	5	Ru	gosa 5	Duro <5	4	Lig Al	terada	5	Lig Hú	imedo	10	Calc	ita	Ca	Cuarzo	Qž
E	stratif	В	Se ror	npe con vanos golpes (5)	R4	7	509	6-75%	13.0	20-60	00 cm	10	3.	10 m	2	0.1-	0 mm	3	Lig F	Rugosa 3	Duro >5	2	Mod A	Uterada	3	Húm	edo	7	Clor	ita	Ch	Arena	Sd
	/enila	v	Sen	ompe con un solo golpe	R3	4	259	6-50%	6.0	6-2	0 cm	8	10	-20 m	1	1-5	mm	1	Onc	fulada 1	Blando <5	2	Muy a	iterada	1	Gotea	ando	4	Óxi	do	Ox	Alunita	al
	Falla	F	Delez	nable bajo golpes fuertes	R2	2		25%	3.0	<6	cm	5	>	20 m	0	>5	mm	0	Si	ave (Blando >5	0	Descon	npuesta	0	Agua flu	yendo	0					

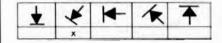
												NEGISTING DE EGGGEG DE SONTAS				
					COORD	COORDENADAS					ORIENTACIÓ	ORIENTACIÓN DEL COLLAR		SONDAJE	PR-03	
PROYECTO		Estudio de Estabilidad de Taludes en Tajo	ilidad de Talı	udes en Tajo							AZIMUT				EXPLOMIN	
					NORTE			: 939.0			BUZAMIENTO			TIPO DE PERFORACIÓN :	Diamantina	
AH CHA	. 09/09/2013	2013			ESTE	ESTE ELEVACIÓN (msnm)		: 971.0			DIAMETRO	 L. F.		NIVEL FREATICO (m) : PROF. PERFORACIÓN :	No encontrado. 65.40	
			ORIE	ORIENTACIÓN		RELLENO		4			Algologic	47	NOOSIU UNOO		SOMENTABIOS	
°N	PROF. (m)	ESTRUCTURA	BUZ (*)	DIREC. BUZA (°)	-	2	3	Ž.		×	TI OFF	¥i0	CORD. DISCO.			
-	0.25	N,	54		Ca		ō	8	n	4	Caliza		20	Paredes ligeramente alteradas	35.	
-	0.54	N	63		Ca			8	n	4	Caliza	8	22	JN sellada de calcita, rigida, impermeable	mpermeable	
8	72.0	N	42		Ca			8	n	4	Caliza	в	22	JN sellada de calcita, rigida, impermeable	mpermeable.	
4	1.95	N	53		S			8	n	4	Caliza	8	22	JN sellada de calcita, rigida, impermeable	mpermeable	
2	2.16	Z,	35		Ca	ō		В	Ь	2	Caliza	e	20	Paredes ligeramente alteradas	is.	
9	2.40	N	38		Ca			8	۵	2	Caliza	а	22	JN sellada de calcita, rígida, impermeable	mpermeable	
7	3.05	Ŋ	26		Ca	ō		В	n	4	Caliza	e	20	Paredes ligeramente alteradas	IS.	
8	3.45	Z,	61		Ca	ō		8	n	4	Caliza	e	22	Paredes ligeramente alteradas.	S.	
6	3.97	Z,	65		ō	Ca		В	Ь	2	Caliza	8	18	Paredes moderadamente alteradas	eradas.	
10	4.05	×	39		Ca			В	а	2	Caliza	B	22	JN sellada de calcita, rígida, impermeable,	mpermeable.	
11	4.60	Ŋ	22		Ca	ō		0	s	4	Caliza	e	22	JN Sub paralela al eje del core, paredes ligeramente alteradas	e, paredes ligerame	nte alteradas.
12	5.78	Ŋ	40		Ca	Ö		8	Ь	2	Caliza	e	20	Paredes ligeramente alteradas	S.	
13	6.24	S	29		Ca		Py	8	а.	2	Caliza	a	22	JN sellada de calcita y pirita, rigida, impermeable.	igida, impermeable.	
14	6.83	N/	69		S		Py	80	а	2	Caliza	в	22	JN sellada de calcita y pirita, rígida, impermeable.	igida, impermeable.	
15	7.05	z	48		S	ō		В	Ь	4	Caliza	e	20	Paredes ligeramente alteradas	S.	
16	7.25	8	49		Ca		Py	В	Ь	4	Caliza	a	22	JN sellada de calcita y pirita, rigida, impermeable.	igida, impermeable.	
17	8.20	N/	61		Ca		Py	В	Ь	4	Caliza	a	22	JN sellada de calcita y pirita, rigida, impermeable	igida, impermeable.	
18	10.28	N	30		Ca			В	0	9	Caliza	a	22	JN sellada de calcita, rigida, impermeable	npermeable	
19	11.06	Z,	11		Ca	ō		В	n	4	Caliza	e	20	Paredes ligeramente alteradas	S.	
20	12.86	N,	17		Ca		CI	В	n	4	Caliza	e	20	Paredes ligeramente alteradas.	Š.	
21	13.80	N	15		Ca			В	ď	3	Caliza	a	22	JN sellada de calcita, rigida, impermeable	npermeable.	
22	15.25	N	23		Ca			В	O	4	Caliza	a	22	JN sellada de calcita, rigida, impermeable.	npermeable.	
23	16.20	N	15		Ca			æ	O	4	Caliza	a	22	JN sellada de calcita, rigida, impermeable,	npermeable.	
24	17.15	N	15		S			œ	O	9	Caliza	en en	22	JN sellada de calcita, rígida, impermeable	npermeable.	
25	17.23	Ŋ	63		Ca		ō	ш	O	5	Caliza		15	Paredes ligeramente alteradas.	15	
26	17.67	N	09		Ca			ш	O	5	Caliza	n	15	JN sellada de calcita, rígida, impermeable	npermeable.	
27	17.96	N	27		Ca			В	O	4	Caliza	a	20	JN sellada de calcita, rígida, impermeable	npermeable.	
80	19.82	N	29		Ca			В	O	4	Caliza	m	25	JN sellada de calcita, rígida, impermeable	npermeable	
59	20.68	N	29		S			В	O	4	Caliza	e	20	JN sellada de calcita, rígida, impermeable	npermeable.	
30	21.05	N/	34		Ca			В	O	4	Caliza	а	20	JN sellada de calcita, rigida, impermeable	npermeable.	
IPO DE ESTRUCTURA	RUCTURA						RELLENO					FORMA (F)		RUGOSIDAD (R)	ESPESOR (ESP)	
AP. Plano axial	7	SR Corte		FN: Foliación			A: Aire		O. Mineral	B. Brecha		P. Planar		osolind o o	A: 0	D. 1-2 cm
CN. Contacto		TC: Fractura de tensión	nsión	JN: Junta			S. arena		C. Arcilla	Q. Cuarzo	0.	C. Curvado		2. Liso 5. Seliado	B: 0 - 5 mm	E: 2 - 5 cm
FL. Falla GS. Gneistocidad	pet	VN Venas BD Estratricación		SC: Esquistocidad			K. Conta E. Evaporita		Z. Calcita D. Detritos	OX: Oxido	op	U Ondulado S Escalonado		3. Estnado 4. Pequeños	C: 5 - 10 mm	F. 5 - 10 cm
						_					_					

					1						REGISTRO DE	LOGUEO	DE JUNTAS	
ROYE	: 09/0	Estudio de Estat	oilidad de Ta	uludes en Tajo	NORTE ESTE ELEVAC			: 939.0 : 971.0 : 270.0			ORIENTACIÓN DEL COLL AZIMUT : 0° BUZAMIENTO : -90° DIÁMETRO : HO REGISTRADO : L.P.	AR	SONDAJE : PR-03 CÍA. DE PERFORACIÓN : EXPLOMIN TIPO DE PERFORACIÓN : Diamantina NIVEL FREÁTICO (m) : PROF. PERFORACIÓN : 65.40	
N°	PROF. (m)	ESTRUCTURA	ORI	ENTACIÓN		RELLENC)	ESP.	F	R	LITOLOGIA	COND. DISCON.	COMENTARIOS	
			BUZ (°)	DIREC. BUZA (°)	1	2	3							
31	22.50	VN	12		Ca			В	Р	4	Caliza	20	JN Sub paralela al eje del core.	
32	23.36	VN	32		Ca			С	С	5	Caliza	25	JN sellada de calcita, rígida, impermeable.	
3	24.03	JN	20		Ca		CI	В	С	3	Caliza	12	Paredes ligeramente alteradas.	
4	25.10	VN	54		Ca			В	С	3	Caliza	18	JN sellada de calcita, rigida, impermeable.	
5	25.80	JN	61		Ca		Py	В	С	3	Caliza	25	Paredes ligeramente alteradas.	
6	26.50	VN	5	-	Ca			В	U	5	Caliza	25	JN sellada de calcita, rigida, impermeable.	
37	26.70	VN	24		Ca			В	С	4	Caliza	18	JN sellada de calcita, rigida, impermeable.	
88	27.10	VN	46		Ca			В	С	6	Caliza	18	JN sellada de calcita, rigida, impermeable.	
39	27.61	FL			Ca	CI		E	1	5	Caliza	10	Microfalla no se puede medir ángulo.	
40	28.52	JN	27		Ca	CI		В	С	3	Caliza	18	Paredes moderadamente alteradas.	
41	29.27	VN	25		Ca		7	В	U	4	Caliza	18	JN sellada de calcita, rígida, impermeable.	
12	30.86	VN	14	1	Ca			В	U	4	Caliza	18	JN sellada de calcita, rigida, impermeable.	
43	31.71	VN	35	-	Ca		-	В	Р	3	Caliza	18	JN sellada de calcita, rigida, impermeable.	
44	32.11	VN	56		Ca			В	C	4	Caliza	20	JN sellada de calcita, rigida, impermeable.	
_	33.01						D	В	U	6	Caliza	25	Paredes moderadamente alteradas.	
45		JN	36	4	Ca		U		-	-			Paredes moderadamente alteradas. JN sellada de calcita, rígida, impermeable.	
46	33.40	VN	20		Ca			В	U	6	Caliza	25		
47	34.29	VN	29	1	Ca			В	U	6	Caliza	25	JN sellada de calcita, rigida, impermeable.	
48	34.73	VN	7		Ca			С	1	5	Caliza	20	JN Sub paralela al eje del core.	
49	36.12	VN	37		Ca			В	U	4	Caliza	20	JN sellada de calcita, rigida, impermeable.	
50	36.40	VN	25		Ca			В	U	4	Caliza	20	JN sellada de calcita, rigida, impermeable.	
51	36.94	VN	59	1	Ca			В	С	4	Caliza	20	JN sellada de calcita, rígida, impermeable.	
52	37.73	VN	65		Ca		1	В	С	4	Caliza	20	JN sellada de calcita, rígida, impermeable.	
53	38.80	VN	41		Ca			В	Р	2	Caliza	20	JN sellada de calcita, rigida, impermeable.	
54	39.10	VN	28		Ca			С	Р	4	Caliza	15	JN sellada de calcita, rígida, impermeable.	
55	40.00	VN	75		Ca			В	Р	4	Caliza	20	JN sellada de calcita, rigida, impermeable.	
56	40.35	VN	61		Ca			В	U	4	Caliza	15	JN sellada de calcita, rigida, impermeable.	
57	40.60	JN	64		Ca			F	1	4	Brecha	10	Presencia de bitumen.	
58	41.55	VN	70		Ca			В	U	4	Caliza	25	JN sellada de calcita, rigida, impermeable.	
59	42.40	VN	17	1 4 -	Ca			В	Р	3	Caliza	25	JN sellada de calcita, rigida, impermeable.	
60	42.75	JN	73		Ca	CI		В	U	4	Caliza	20	Paredes moderadamente alteradas.	
PO DE	ESTRUCTURA						RELLENO				FORM	A (F)	RUGOSIDAD (R) ESPESOR (ESP)	
Plan N: Cor Falla		SR: Corte TC: Fractura de te VN: Venas	nsión	FN: Foliación JN: Junta SC: Esquistocidad			A Aire S arena K Corita		O: Mine C: Arcilli Z: Calcit	a	B: Brecha P. Plan Q: Cuarzo C: Curv OX: Oxido U: Ond	vado	1: Pulido o brilloso 5 Muy rugoso A. 0. D: 1 - 2 cm 2: Liso 5 Sellado B: 0 - 5 mm E: 2 - 5 cm 3: Estriado C: 5 - 10 mm F: 5 - 10 cm	
S: Gne	istocidad	BD: Estratificación		SL: Sill			E: Evaporita		D: Detrit		S Esca		4: Pequeños	
S Fam	lia de juntas	DK: Dique		UC: Inconformidad			G. Panizo		1000	spatos	i Irregu		escalonamientos	

REGISTRO DE LOGUEO DE JUNTAS PR-03 COORDENADAS ORIENTACIÓN DEL COLLAR SONDAJE Estudio de Estabilidad de Taludes en Tajo PROYECTO : 0° **AZIMUT** CÍA. DE PERFORACIÓN : **EXPLOMIN** : 939.0 NORTE BUZAMIENTO : -90° TIPO DE PERFORACIÓN: Diamantina ESTE : 971.0 DIÁMETRO : HQ NIVEL FREATICO (m) : : 270.0 REGISTRADO : L.P. PROF, PERFORACIÓN 65.40 ELEVACIÓN (msnm) : 09/09/2013 FECHA ORIENTACION RELLENO ESP. R LITOLOGÍA COND. DISCON. COMENTARIOS **ESTRUCTURA** PROF. (m) N° DIREC. BUZA (°) BUZ (°) 1 2 3 В Ca CI U 4 Caliza 20 61 43.70 JN 66 Paredes moderadamente alteradas 43.65 70 Ca CI В U 4 Caliza 15 Paredes moderadamente alteradas 62 JN 45.50 Ca CI В U 4 Caliza 20 Paredes moderadamente alteradas. 63 JN 52 Ca В Caliza 25 64 47.60 VN 64 U 4 JN sellada de calcita, rigida, impermeable В 20 65 48.65 VN 72 Ca U 4 Caliza JN sellada de calcita, rigida, impermeable 66 50 30 Ca С С 4 Caliza 25 VN 63 JN sellada de calcita, rigida, impermeable. В 67 51,05 VN 64 Ca U 5 Caliza 25 JN sellada de calcita, rigida, impermeable 68 54.83 Ca В C 5 Caliza 25 VN 54 JN sellada de calcita, rigida, impermeable 69 55.97 VN 20 Ca В C 4 Caliza 20 JN sellada de calcita, rigida, impermeable. В Caliza 58.50 Ca S 20 70 VN 14 Pγ 4 JN sellada de calcita y pirita, rigida, impermeable. JN sellada de calcita y pinta, rigida, impermeable 71 58 97 VN 12 Ca Py В C 4 Caliza 20 72 61.50 8 Ca В U Caliza VN 5 25 JN sellada de calcita, rigida, impermeable. TIPO DE ESTRUCTURA ESPESOR (ESP) RELLENO FORMA (F) RUGOSIDAD (R) AP Plano axial SR Corte FN Foliacion A. Aire O Mineral B Brecha Planar Pulido o brilloso 5 Muy rugaso A O D 1 - 2 cm TC Fractura de tensión CN Contacto JN Junta S arena C Arcilla Q Cuarzo 5 Seliado B 0 - 5 mm Curvado 2 Liso 2 - 5 cm FL Falla VN Venas SC Esquistocidad Conta Calcita OX Oxido Ondulado 3 Estnado C 5 - 10 mm F 5 - 10 cm GS Gnerstocidad BD Estrablicación SL Sill E Evaporita D Detritos 4 Pequeños Escalonado JS Familia de juntas DK Dique UC Inconformidad G Panizo Feldespatos Irregular escalonamientos

Estudio de Estabilidad de Taludes en

Tajo


Estación: EG-01 Relleno Arcilla

12/10/2013 Fecha Marca y Modelo de Equipo : Matest/ IP0316

Norte 1 652.0 Registrado por L.P. 1 967.0 Este

DATOS DEL ENSAYO IN SITU

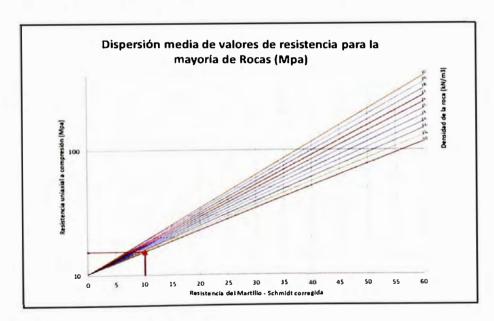
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

10		10		14	10	10
11	10	12	10	10	12	12

Promedio de valores

11.0


Valor corregido de acuerdo a la posición

10.2

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 15 R2 Resistencia ISRM

Descripción

Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo

Relleno

Calcita

L.P.

Estación: EG-02

Fecha

Registrado por

12/10/2013 Marca y Modelo de Equipo Matest/ IP0316

Norte Este

1 593.0 2 025.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

*	*	+	1	1
	×			

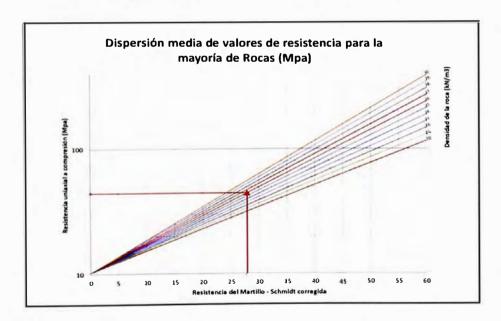
VALORES DE REBOTE DEL MARTILLO

30	30	25	26	27	28 28	30
26	28	30	32	30	28	32

Promedio de valores

28.7

Valor corregido de acuerdo a la posición


27.9

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpt. 45

Resistencia ISRM

R3

Descripción

Roca Medianamente Resistente

Este

1 480.0

2 072.0

Estudio de Estabilidad de Taludes en Tajo

Estación: EG-03 Relleno Calcita

Fecha 12/10/2013 Marca y Modelo de Equipo : Matest/ IP0316 Norte

L.P.

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

$\mathbf{\pm}$	*	-	1	
	100	x		

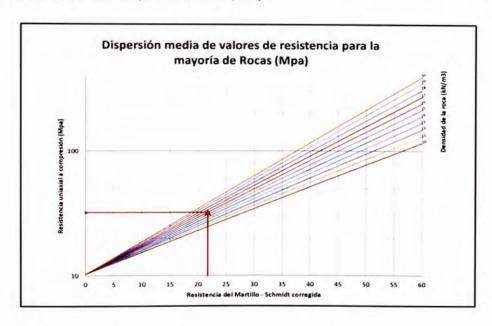
VALORES DE REBOTE DEL MARTILLO

30	30	28	28	28	32	32
28	32	30	28	30	28	30

Registrado por

Promedio de valores 29.6

Valor corregido de acuerdo a la posición


21.7

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 32 R3

Resistencia ISRM

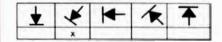
Roca Medianamente Resistente Descripción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Arcilla

Fecha 12/10/2013


Marca y Modelo de Equipo Matest/ IP0316 Registrado por L.P.

Estación: EG-04

1 367 0 Norte 2 076.0 Este

DATOS DEL ENSAYO IN SITU

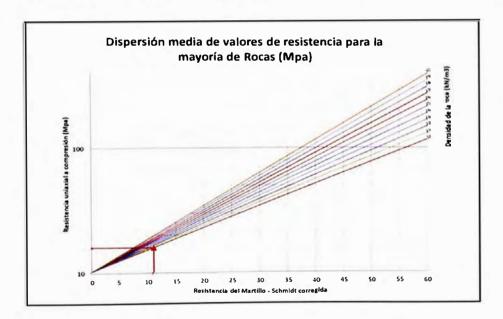
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

11	12	12	10	10	12	10
12	12	12	11	14	14	14

Promedio de valores

119


Valor corregido de acuerdo a la posición

110

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 16 R2 Resistencia ISRM

Descripción

Roca Fragil

Estudio de Estabilidad de Taludes en Tajo

Óxido Relleno Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316 L.P. Registrado por

Estación: EG-04

1 367.0 Norte 2 076 0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

*	*	-	1	*
	x			

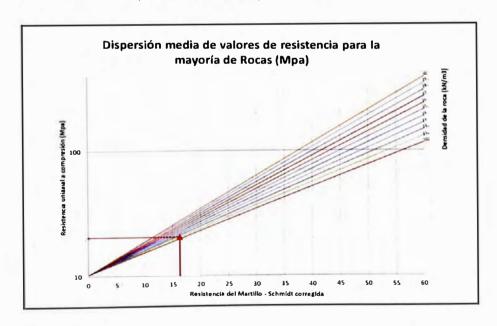
VALORES DE REBOTE DEL MARTILLO

1	16	18	18	17	16	18 16	17
1	17	16	17	19	17	16	18

Promedio de valores

17.1

Valor corregido de acuerdo a la posición


16.3

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

21 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

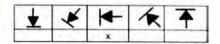
RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 20 Resistencia ISRM

Descripcion

Roca Fragi

Estudio de Estabilidad de Taludes en

Tajo


Estación: EG-05 Relleno Óxido

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316 L.P. Registrado por

Norte 1 223.0 2 079.0 Este

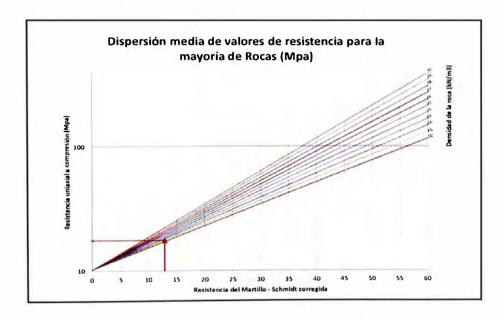
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

23	20	20	20	23	20	22
21	24	20	21	21	22	24

Promedio de valores 215


Vator corregido de acuerdo a la posición

129

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 18 R2

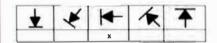
Resistencia ISRM

Descripción

Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo


Estación: EG-06 Relleno Arcilla

Focha 12/10/2013 Marca y Modelo de Equipo Motost/ tP0316 Registrado po LP

1 048 0 Norte 1 886 0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

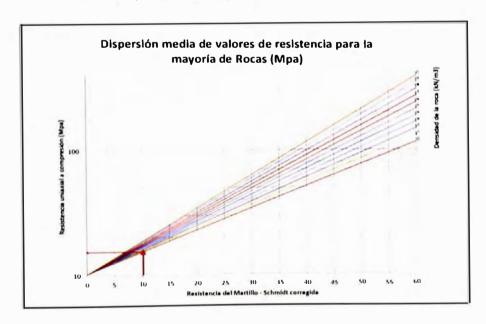
VALORES DE REBOTE DEL MARTILLO

16	12	10	10	10	12	12
12	11	12	10	10	12	1-1

Promedio de valores

116

Valor corregido de acuerdo a la posición


102

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qui (Mpr. 15 Resistencia ISRM Roca Frági Doscripción

Estudio de Estabilidad de Taludes en

Tajo

Retleno Calcita Fecha 12/10/2013

Marca y Modelo de Equipo Matest/ IP0316 Registrado por L.P.

Estación: EG-07

1 013.0 Norte 1 787 0 Este

DATOS DEL ENSAYO IN SITU

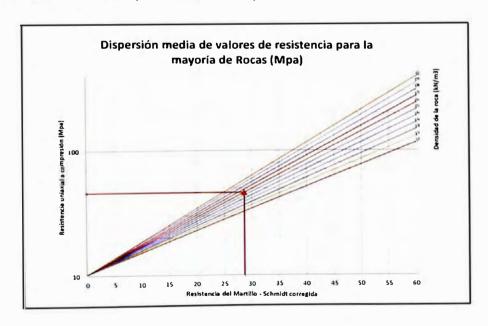
POSICIÓN DEL MARTILLO - SCHMIDT

±	*		1	1
	x			

VALORES DE REBOTE DEL MARTILLO

30		28		30	32	
28	27	30	32	30	30	28

29.4 Promedio de valores


Valor corregido de acuerdo a la posición

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz.: 46

Resistencia ISRM Descripción

Roca Medianamente Resistento

Estudio de Estabilidad de Taludes en

Тајо

Estación: EG-07

Relleno Óxido

Fecha 12/10/2013

Marca y Modelo de Equipo Matest/ IP0316 Norte L.P. Registrado por

1 013 0 Este 1 787.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

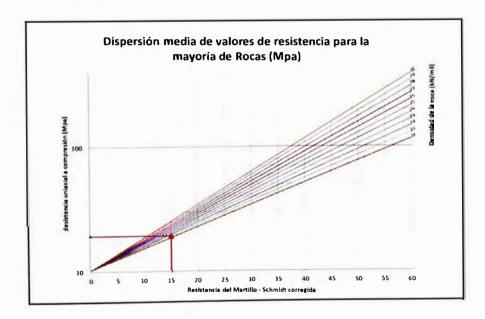
*	K	-	1	*
	x			

VALORES DE REBOTE DEL MARTILLO

17	15	14	17	16 16	18	12
17	16	17	15	16	18	15

Promedio de valores

159


Valor corregido de acuerdo a la posición

15.1

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz.: 19

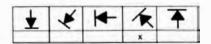
Resistencia ISRM

Descri pción

Roca Frag

Estudio de Estabilidad de Taludes en

Tajo


Relleno Estación: EG-07

Fecha 12/10/2013 Marca y Modeto de Equipo Matest/ IP0316 Registrado por L.P.

Norte 1 013.0 Este 1 787.0

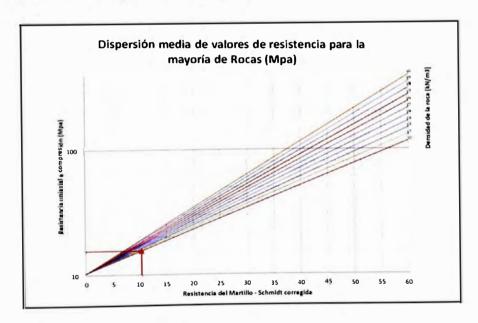
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

1	14	16	20	18	10	16	12
ı	10	12	12	10	12	11	10

Promedio de valores 13.1


Valor corregido de acuerdo a la posición

10.4

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu IMpa 16
Resistencia ISRM
Descriptión Roca Fragil

Estudio de Estabilidad de Taludes en Tajo

Relleno

Calcita

L.P.

Estación: EG-08

Fecha Marca y Modelo de Equipo

Registrado por

12/10/2013 Matest/ IP0316

Norte

Este 1618.0

898 0

DATOS DEL ENSAYO IN SITU

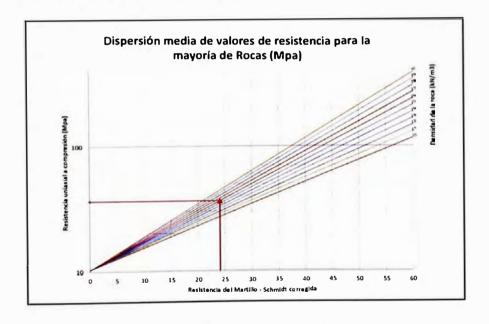
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

1	30	32	28	28	30	32	30
1	28	30	30	32	32	32	30

303 Promedio de valores

Valor corregido de


24 1

acuerdo a la posición

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mps. 36

Resistencia ISRM Descripción

Roca Medianamente Resistentes

Estudio de Estabilidad de Taludes en

Tajo

Estación: EG-08

Relleno Arcilla Fecha 12/10/2013

Marca y Modeło de Equipo Matest/ IP0316 Registrado por LP

898.0 Norte 1 618.0 Este

DATOS DEL ENSAYO IN SITU

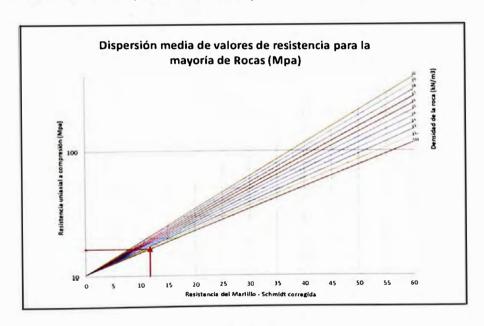
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

10	14	10	12	12	12	14
14	12	10	14	12	14	16

126 Promedio de valores

Valor corregido de


11.7 acuerdo a la posición

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 16 Resistencia ISRM Roca Fragi Descripción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita Fecha

12/10/2013

LP.

Malest/ IP0316

Marca y Modelo de Equipo Registrado por

Estación: EG-09

Norte Este

944 0 1 758.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

*	*	-	1	1
	x			100

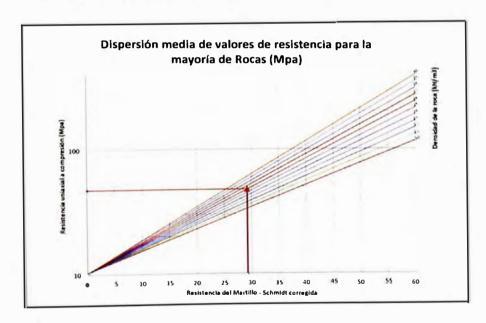
VALORES DE REBOTE DEL MARTILLO

	30	32	30 32	28	30	30 28	30
1	28	28	32	30	32	28	32

Promedio de valores

30.0

Vator corregido de acuerdo a la posición


292

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpt: 48

Resistencia ISRM

Roca Mudanamente Resistentes

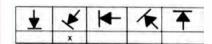
Descri nción

Estudio de Estabilidad de Taludes en

Тајо

Relleno Calcita
Fecha 12/10/2013

Marca y Modelo de Equipo Matest/ IP0316
Registrado por t..P.


Norte Este

Estación: EG-10

nte 867.0 e 1 446.0

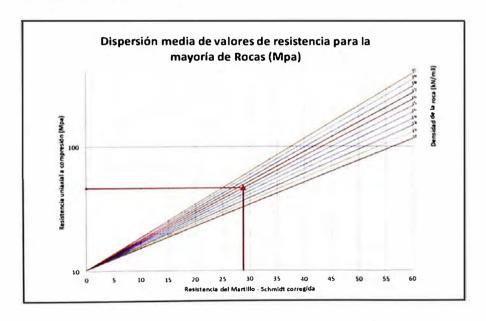
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

28	30	28	32	28	30	30
30	28	30	28	30	30	32

Promedio de valores 296


Valor corregido de acuerdo a la posición

288

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu IMPI: 47

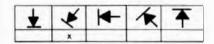
Resistencia ISRM Descripción

Roca Medianamente Resistente

Estudio de Estabilidad de Taludes en

Tajo

Relleno Oxido
Fecha 12/10/2013


Marca y Modelo de Equipo : Matest/ IP0316 Registrado por : L.P.

Estación: EG-10

Norte 867.0 Este 1 446.0

DATOS DEL ENSAYO IN SITU

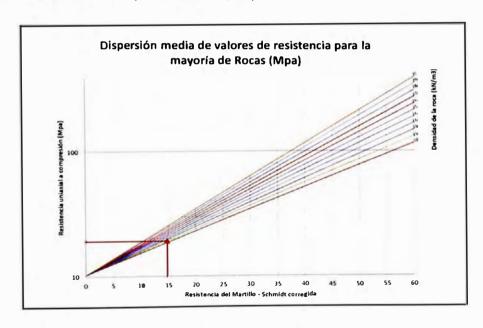
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

17	15 17	17	15	16	15	16
15	17	15	14	16	16	15

Promedio de valores 15.6

Valor corregido de acuerdo a la posición


148

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

21 kN/m³

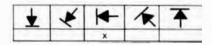
RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz. 19 Resistencia ISRM Descripción Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo


Calcita Relleno 12/10/2013 Fecha Marca y Modelo de Equipo - Matest/ IP0316 Registrado por LP.

Estación: EG-11

Norte 1 667.0 1 505.0 Este

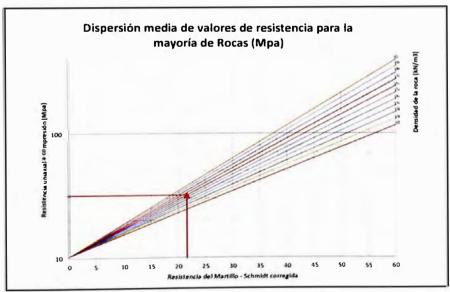
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

	28	28	28	32	28	30	30
I	28	28	30	32	30	28	32

294 Promedio de valores


Valor corregido de acuerdo a la posición

21.6

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m3

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mps. 32

Resistencia ISRM Descripción

Roca Medianamente Resistente

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita Fecha 12/10/2013

Marca y Modelo de Equipo Matest/ IP0316
Registrado por L.P.

Estación: EG-12

Norte 1 540.0 Este 2 009.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

*	*	-	1	1
		X		

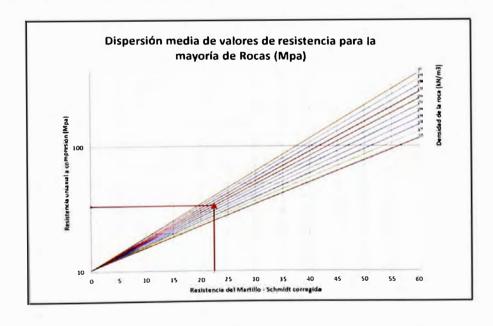
VALORES DE REBOTE DEL MARTILLO

34	28	32	33	30	27	30
28	30	33	30	30	28	30

Promedio de valores 302

Valor corregido de

acuerdo a la posición


.....

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

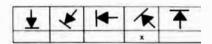
RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 33

Resistencia ISRM Descripción R3

Estudio de Estabilidad de Taludes en

Tajo


Relleno Arcilla
Fecha 12/10/2013
Marca y Modelo de Equipo : Matest/ IP0316
Registrado por L. P.

Estación: EG-13

Norte 1 505.0 Este 1 999.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

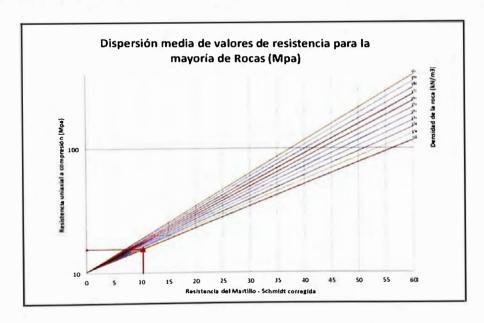
VALORES DE REBOTE DEL MARTILLO

10	14	12	12 15	15	12	14
12	11	14	15	10	12	15

Promedio de valores

127

Valor corregido de acuerdo a la posición


10.3

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 k

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz. 16 F2 Resistencia ISRM Roca Frágil

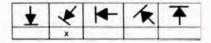
Descripción

Estudio de Estabilidad de Taludes en

Tajo

Calcita Relleno Fecha 12/10/2013 Marca y Modelo de Equipo . Matest/ IP0316

Registrado por


L P

Estación: EG-13

1 505.0 Norte 1 999.0 Este

DATOS DEL ENSAYO IN SITU

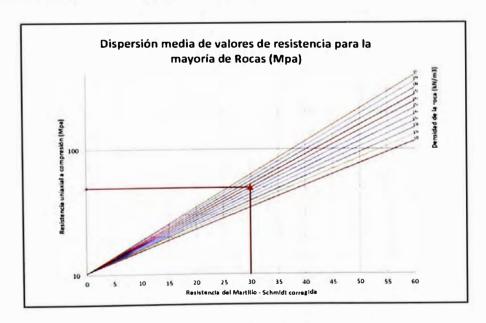
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

28	30	32	30	30	32	30
32	30	30	32	30	32 32	32

307 Promedio de valores

Valor corregido de acuerdo a la posición


299

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (MPA: 49

Resistencia ISRM

R3

Roca Medianamente Resistente Description

Estudio de Estabilidad de Taludes en Tajo

Arcilla Relleno

LP

Fecha 12/10/2013 Marca y Modelo de Equipo : Matest/ iP0316 Registrado por

Estación: EG-14

1 779.0 Norte 1 364.0 Este

DATOS DEL ENSAYO IN SITU

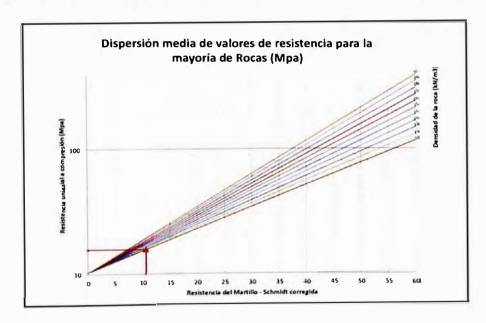
POSICIÓN DEL MARTILLO - SCHMIDT

±	*	-	1	1
	X			

VALORES DE REBOTE DEL MARTILLO

Γ	12	10	11	10	8	16	10
Г	10	10	12	12	11	12	16

Promedio de valores


Valor corregido de acuerdo a la posición

10.6

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESION SIMPLE, Qu (Mpz: 16 R2

Resistencia ISRM

Descripción

Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo

Relleno Arcilla

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316

Registrado por L.P. Estación: EG-15

1770.0 Norte 1 683.0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

±	*	+	1	1
	X			

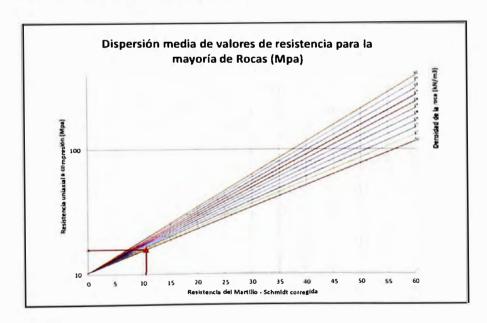
VALORES DE REBOTE DEL MARTILLO

	12	10	11	10	8	16 12	10
Ì	10	10	12	12	11	12	16

Promedio de valores

11.4

Valor corregido de acuerdo a la posición


106

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

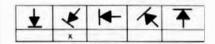
RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 16 Resistencia ISRM

Descripción

Roca Fragi

Estudio de Estabilidad de Taludes en

Tajo


Relleno Calcita

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316 Registrado por L.P. Estación: EG-16

Norte 1 707 0 Este 1 644 0

DATOS DEL ENSAYO IN SITU

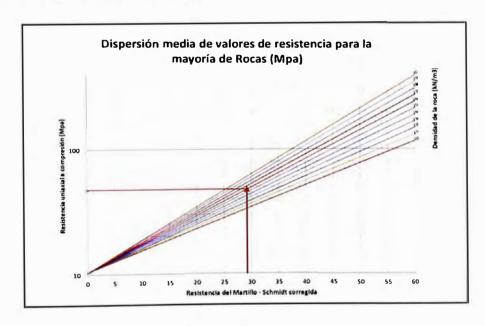
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

28	30	28	32	30	30 30	30
30	28	30	32	30	30	32

Promedio de valores 300

Valor corregido de acuerdo a la posición


292

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESION SIMPLE, Qu (Mpi: 48

Resistencia ISRM Descripción

Estudio de Estabilidad de Taludes en Tajo

Relleno

Registrado por

: Arcilla 12/10/2013

L.P.

Estación: EG-16

Fecha 12/10/2013 Marca y Modelo de Equipo Malest/ IP0316

IP0316 Norte Este 1 707 0 1 644.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

*	*	-	1	1
		×	-	

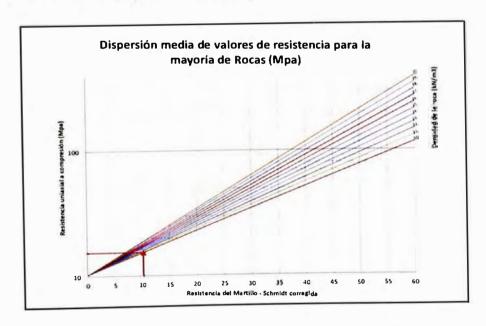
VALORES DE REBOTE DEL MARTILLO

12	14	10	12	8	12	10
10	10	12	12	12	14	16

Promedio de valores 11.7

Valor corregido de

10.2


acuerdo a la posición IU 2

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (MPA: 15 R2)
Resistencia ISRM

Descripción

Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita Fecha 12/10/2013

Matest/ IP0316

LP

Marca y Modelo de Equipo Registrado por

Estación: EG-17

Norte Este

1 689.0

1 823.0

DATOS DEL ENSAYO IN SITU

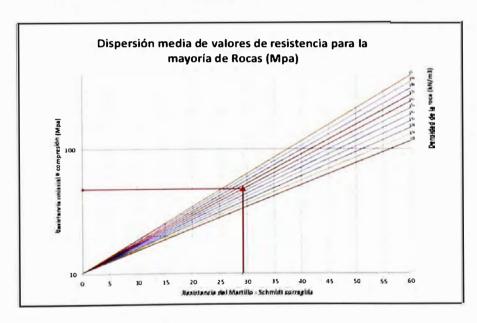
POSICIÓN DEL MARTILLO - SCHMIDT

*	*	-	1	1
	x			

VALORES DE REBOTE DEL MARTILLO

30	32	28	33	30	28 30	32
30	30	30	30	30	30	28

30,1 Promedio de valores


Valor corregido de acuerdo a la posición

293

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 48 83

Resistencia ISRM Descripción

Estudio de Estabilidad de Taludes en

Tajo

Refleno

Arcilla

L.P.

Estación: EG-17

Fecha

Registrado por

12/10/2013 Marca y Modelo de Equipo Malest/ IP0316

1 689 0 Norte 1 823.0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

±	*	+	1	1
	x			

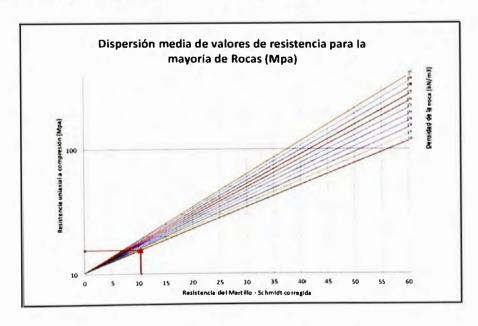
VALORES DE REBOTE DEL MARTILLO

8	10	11	10	10	12 14	14
8	12	12	12	11	14	12

Promedio de valores

11.1

Valor corregido de acuerdo a la posición


10.3

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (MPZ: 16 R2

Resistencia ISRM

Roca Fragil

Descri poón

Estudio de Estabilidad de Taludes en

Tajo

Arcilla Relleno

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316

L.P.

Registrado por

Estación: EG-18

1 368.0 Norte 1 149.0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

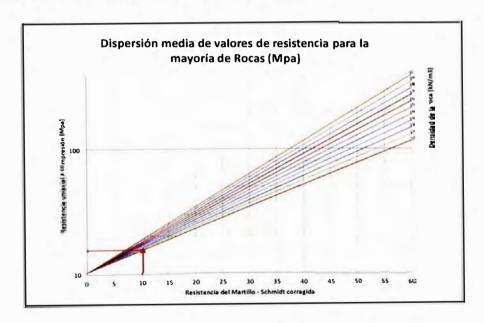
±	*	-	1	1
2 - 22	x			

VALORES DE REBOTE DEL MARTILLO

10	12	14	10	14	14	10
11	10	10	8	14	12	10

Promedio de valores

11.1


Valor corregido de acuerdo a la posición

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 16 RO

Resistencia (SRM

Descripción

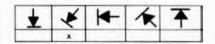
Roca Fragil

Estudio de Estabilidad de Taludes en

Тајо

Estación: EG-19

Relleno Arcilla Fecha 12/10/2013


Registrado por

Marca y Modelo de Equipo : Malest/ IP0316 LP.

1 430.0 Norte 1 184.0 Este

DATOS DEL ENSAYO IN SITU

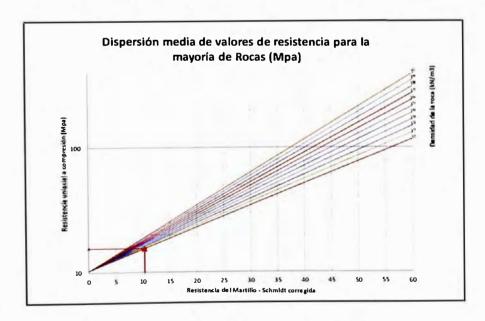
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

10	12	10	12	14	14	
11	11	10	8	10	12	10

Promedio de valores

11.1


Valor corregido de acuerdo a la posición

10.3

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 kN/m3

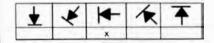
RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 16 Resistencia ISRM Roca Fragi Descripción

Estudio de Estabilidad de Taludes en

Tajo


Relleno Arcilla Fecha 12/10/2013

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316 Registrado por L.P Estación: EG-20

Norte 1 442.0 Este 1 131.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

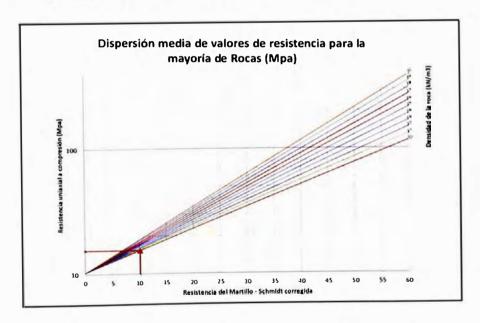
VALORES DE REBOTE DEL MARTILLO

							_
ļ	10	12	10	10	10	14	12
1	8	11	12	8	16	12	12

Promedio de valores

112

Valor corregido de acuerdo a la posición


10.1

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

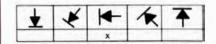
RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 15 R2 Resistencia ISRM Roca Frágil

Descripción

Estudio de Estabilidad de Taludes en

Tajo


Relleno Arcilla Estación: EG-21

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316 Registrado por L.P.

Norte 1 574 0 Este 1 826 0

DATOS DEL ENSAYO IN SITU

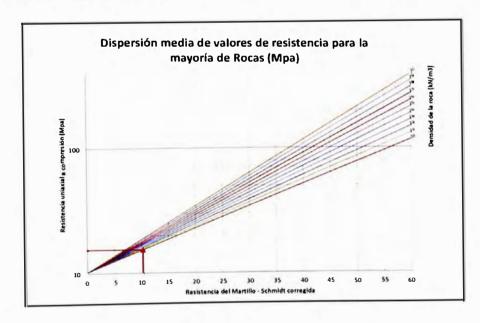
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

-							
	12	14	14	16	10	14	12
ij	10	12	8	10	8	10	16

Promedio de valores

11.9


Valor corregido de acuerdo a la posición

10.2

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 15 Resistencia ISRM

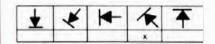
Descri pión Roca Fragi

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316


Registrado por LP

Estación: EG-21

Norte 1 574.0 Este 1 826.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

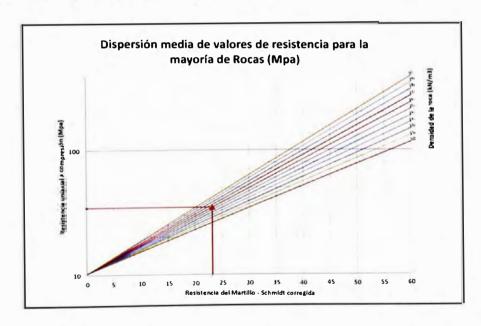
VALORES DE REBOTE DEL MARTILLO

1	30	30	28	31	31	28	30
1	28	29	30	30	28	28	31

Promedio de valores

29

Valor corregido de acuerdo a la posición


232

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 35

Resistencia ISRM Descripción

Estudio de Estabilidad de Taludes en

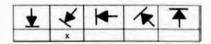
Tajo

Relleno Fecha

Calcita

12/10/2013

Marca y Modelo de Equipo : Matest/ IP0316 Registrado por LP.


Estación: EG-22

Norte Este

1 525.0 1 882.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

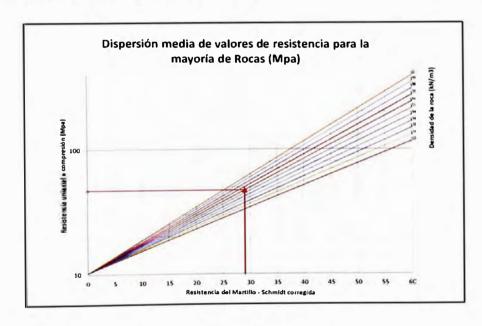
VALORES DE REBOTE DEL MARTILLO

30	30	28	32	31	36	28
26	28	30	30	28	28	32

Promedio de valores

298

Valor corregido de acuerdo a la posición


290

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESION SIMPLE, Qu (Mpa: 47

R3

Resistencia ISRM Descripción

Estudio de Estabilidad de Taludes en

Tajo

Arcilla Estación: EG-22

Fecha : 12/10/2013
Marca y Modelo de Equipo : Matest/ IP0316
Registrado por : L.P.

Norte Este

1 525.0 1 882.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

*	*	\blacksquare	1	*
	x			

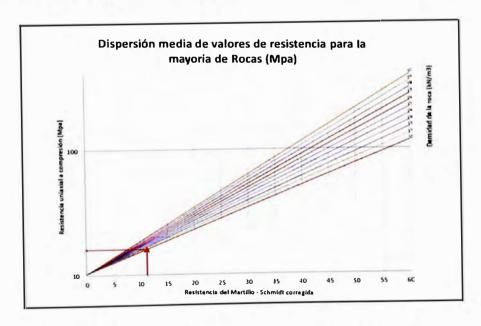
VALORES DE REBOTE DEL MARTILLO

10	12	10	12	12	16	10
12	10	14	16	12	10	12

Relleno

Promedio de valores

120


Valor corregido de acuerdo a la posición

11.2

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

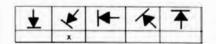
RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 16 R2 Resistencia ISRM | Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo

Estación: EG-23 Calcita


Relleno Fecha 12/10/2013

Marca y Modelo de Equipo Matest/ IP0316 Registrado por L.P.

1 368 0 Norte 1 950.0 Este

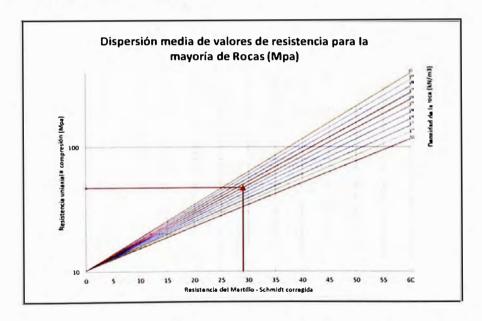
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

30	32	30	32	31	28	30
28	28	30	30	30	26	30 32

Promedio de valores 298


Valor corregido de acuerdo a la posición

29.0

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz.: 47

Resistencia ISRM

Descripción

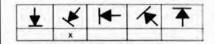
Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita

Fecha : 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316

Registrado por


LP

Estación: EG-24

1 161.0 Norte 1 860 0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

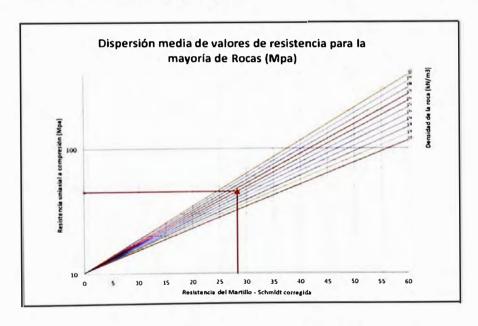
VALORES DE REBOTE DEL MARTILLO

28	26	32 28	32	31 28	30	30
28	30	28	26	28	30	28

Promedio de valores

291

Valor corregido de acuerdo a la posición


283

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 45 R3

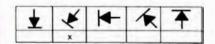
Resistencia ISRM

Descri poon

Estudio de Estabilidad de Taludes en

Tajo

Calcita Relleno Fecha


12/10/2013 Marca y Modelo de Equipo : Matest/ IP0316 Registrado por L.P.

Estación: EG-25

1 432 0 Norte 1 258.0 Este

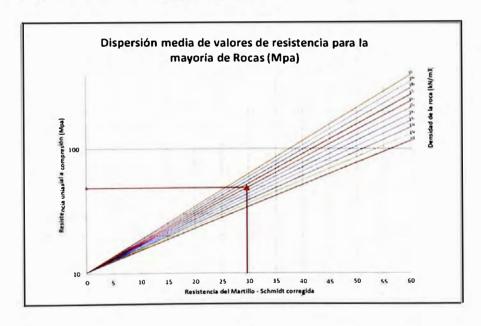
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

30	32	32	30	28	30 32	32
30	30	28	30	30	32	32

Promedio de valores 30.4


Valor corregido de acuerdo a la posición

296

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 49 R3

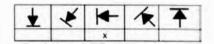
Resistencia ISRM

Roca Medianamente Resistente

Descripción

Estudio de Estabilidad de Taludes en

Tajo


Estación: EG-26 Calcita Relleno

Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316

1 341.0 Norte Registrado por 1 230.0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

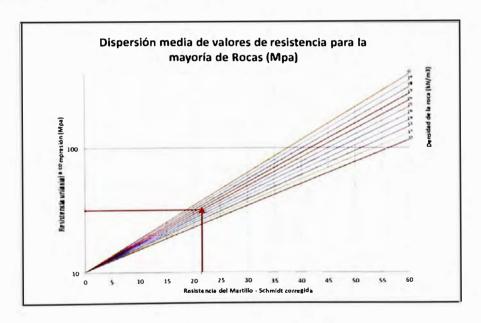
VALORES DE REBOTE DEL MARTILLO

30	30	28	31	30	28	28
30	30	28	30	28	28 30	31

Promedio de valores 29.4

Valor corregido de

acuerdo a la posición


21.6

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa) 32

Resistencia ISRM

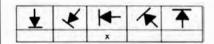
Roca Medianamente Resistentes Descrip ción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita 12/10/2013 Fecha Marca y Modelo de Equipo : Matest/ IP0316

L.P.


Registrado por

Estación: EG-27

1 043.0 Norte 1619.0 Este

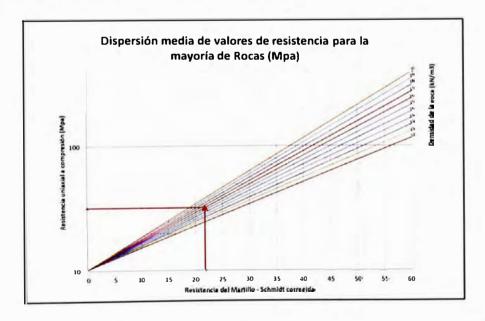
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

30	28	30	28	30	28	32
32	30	28	30	28	28	32

Promedio de valores 296


Valor corregido de acuerdo a la posición

21.7

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu IMPZ: 32

Resistencia ISRM

Roca Medianamente Resistente

Descri prión

Estudio de Estabilidad de Taludes en

Tajo

Relleno Arcilla Fecha 12/10/2013

Marca y Modelo de Equipo : Matest/ IP0316 Registrado por L.P.

test/ IP0316

Estación: EG-28

Norte 1 216.0 Este 2 097 0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

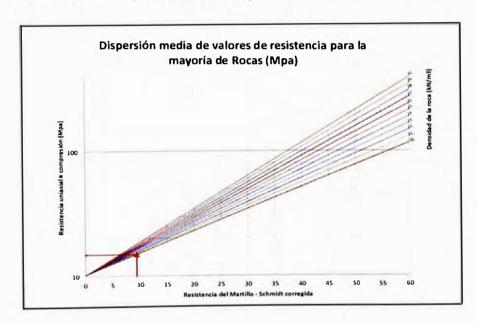
±	*	-	1	1
	x		1	

VALORES DE REBOTE DEL MARTILLO

10	12	8	10	12		12
11	10	12	10	8	10	10

Promedio de vatores 10.2

Valor corregido de acuerdo a la posición


94

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 15 Resistencia ISRM

Descripción Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo

Calcita Relleno Fecha 12/10/2013

Marca y Modelo de Equipo : Matest/ IP0316 L.P

Estación: EG-29

Norte 1 276 0 2 112.0 Este

DATOS DEL ENSAYO IN SITU

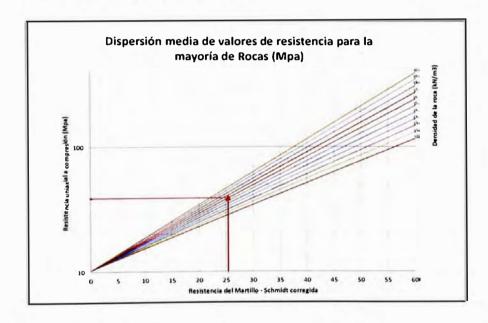
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

25	24	26	30	26	26	24
28	24	24	26	28	28	28

Registrado por

Promedio de valores 262


Valor corregido de

254 acuerdo a la posición

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpe: 39 R3

Resistencia ISRM

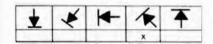
Descripción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita

Fecha 12/10/2013
Marca y Modelo de Equipo Matest/ IP0316


Registrado por L.P.

Estación: EG-30

Norte 1 461.0 Este 2 124.0

DATOS DEL ENSAYO IN SITU

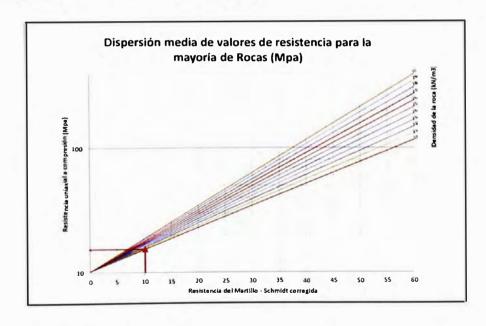
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

1	10	12	10	12	10	10	8
Ì	10	10	14	16	14	12	10

Promedio de valores 11.3

Valor corregido de acuerdo a la posición


10.2

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 15 Resistencia ISRM R2

Descripción

Roca Fragi

Estudio de Estabilidad de Taludes en Tajo

Relleno

Registrado por

Calcita

LP

Estación: EG-31

Fecha

12/10/2013 Marca y Modelo de Equipo : Matest/ IP0316

Norte Este

1 509.0 2 108 0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

*	*	-	人	1
	x			

VALORES DE REBOTE DEL MARTILLO

30	28	28	28	26	26	30
30	32	32	30	26	2.1	24

Promedio de valores

28 1

Valor corregido de acuerdo a la posición

27.3

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (MPZ: 43 R3

Resistencia ISRM

Roca Medianamente Resistente

Descripción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Arcilla Estación: EG-32

Fecha : 12/10/2013 Marca y Modelo de Equipo : Matest/ IP0316 Registrado por : L.P.

Norte 1 555 0 Este 2 097.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

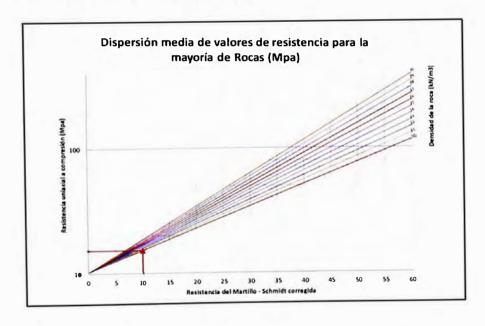
*	*	+	1	1
	×			100

VALORES DE REBOTE DEL MARTILLO

1	10	12	10	12	14	10	
	10	10	8	10	12	10	8

Promedio de valores 109

Valor corregido de acuerdo a la posición


10.0

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

20 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA ALA COMPRESIÓN SIMPLE, Qu (Mpa: 15 FQ Resistencia ISRM

Description

Roca Fragil

Estudio de Estabilidad de Taludes en Tajo

Estación: EG-32 Óxido Relleno

. 12/10/2013 Fecha


Marca y Modelo de Equipo : Matest/ IP0316 Registrado por L.P.

Este

1 555.0 Norte 2 097 0

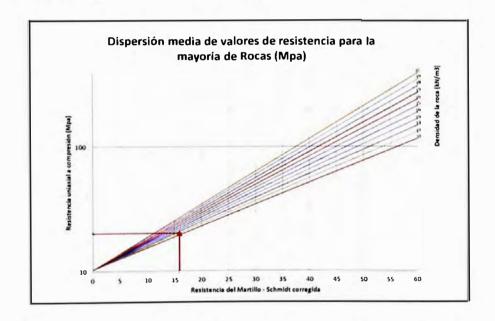
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

23	22	20	23	23	23	24
22	23	24	24	23 22	22	22

Promedio de valores 226


Valor corregido de acuerdo a la posición

159

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz. 20

Resistencia ISRM

Roca Fragil

Descripcion

Estudio de Estabilidad de Taludes en Tajo

Relleno Calcila Fecha 12/10/2013

Marca y Modelo de Equipo : Matest/ IP0316
Registrado por : L.P.

Norte 1 621.0

2 067.0

Estación: EG-33

Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

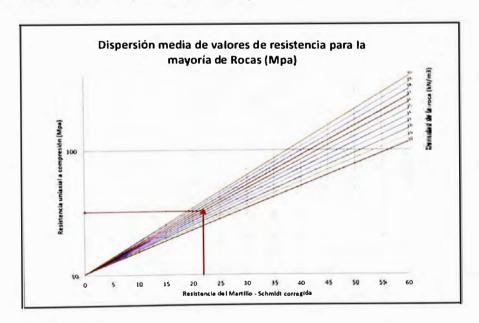
*	*	-	1	*
		×		1

VALORES DE REBOTE DEL MARTILLO

30	28	32	28	31	30	30
28	31	30	30	30	28	30

Promedio de valores 297

Valor corregido de acuerdo a la posición


21.9

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 32

Resistencia ISRM Descriptión

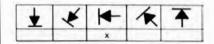
885,0

1610.0

Estudio de Estabilidad de Taludes en

Tajo

Estación: EG-34 Calcita Relleno


Fecha 12/10/2013

Marca y Modelo de Equipo : Malest/ IP0316

Norte Registrado por LP Este

DATOS DEL ENSAYO IN SITU

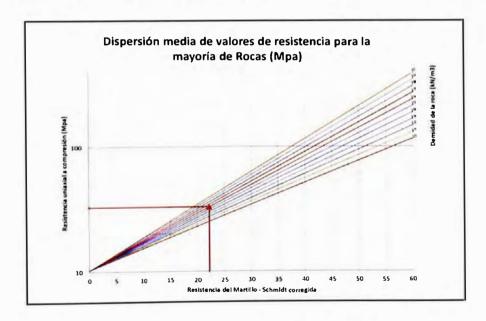
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

1	30	28	32	32	31	30	30
1	31	30	28	30	31 28	30	30

Promedio de valores

30.0


Valor corregido de acuerdo a la posición

222

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 33 . R3

Resistencia ISRM

Roca Medianamente Resistente

Descripción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita Fecha 12/10/2013

Marca y Modelo de Equipo : Matest/ IP0316 Registrado por L.P.

Estación: EG-35

939.0 Norte 1 803.0 Este

DATOS DEL ENSAYO IN SITU

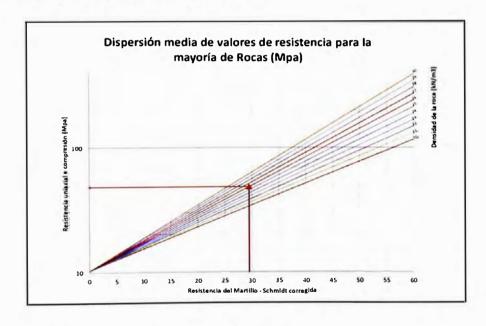
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

30				28	30	28
30	32	33	30	32	28	

30.3 Promedio de valores

Valor corregido de acuerdo a la posición


295

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 48 R

Resistencia ISRM

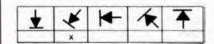
Roca Medianamente Resistente

Descripción

Estudio de Estabilidad de Taludes en

Tajo

Óxido Relleno


Fecha 12/10/2013 Marca y Modelo de Equipo Matest/ IP0316

Registrado por LP Estación: EG-36

1 689.0 Norte 2 035.0 Este

DATOS DEL ENSAYO IN SITU

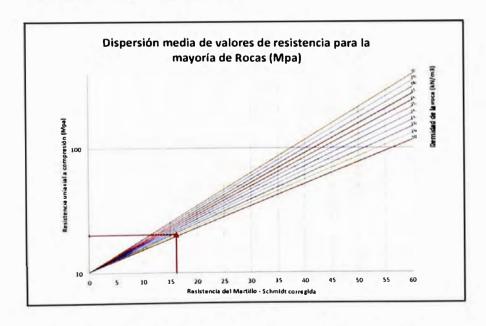
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

15	17	18	18	18 16	15	17
17	18	18	16	16	18	17

Promedio de vatores

17.0


Valor corregido de acuerdo a la posición

16.1

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 20 Resistencia ISRM

Roca Fragil Descripción

Estudio de Estabilidadde Taludes en

Tajo

Relleno Fecha

Registrado por

Calcita 12/10/2013

Marca y Modelo de Equipo Matest/ IP0316 LP

Estación: EG-37

1 736.0 Norte 1 932 0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

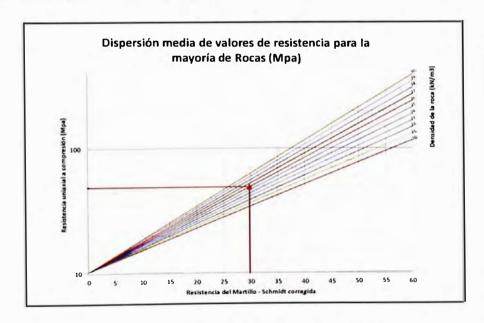
*	*	-	1	1
	x	1.00		1

VALORES DE REBOTE DEL MARTILLO

Ì	28	30	31	32	31	30	32
1	30	32	30	32	30	30	30

306 Promedio de valores

Valor corregido de acuerdo a la posición


298

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 49 R3

Resistencia ISRM

Descripción

Estudio de Estabilidad de Taludes en

Tajo

Relleno

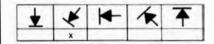
Calcita

I.P

Estación: EG-38

Fecha Marca y Modelo de Equipo

Registrado por


12/10/2013 Matest/ IP0316

Norte Este

1863.0 1 810.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

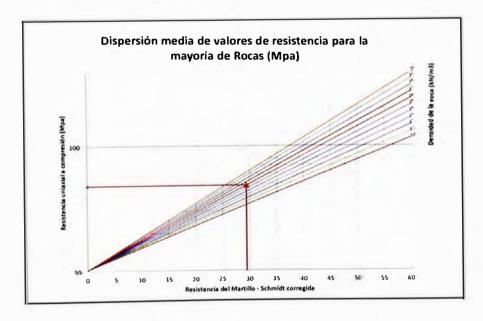
VALORES DE REBOTE DEL MARTILLO

28	35	30	33	31	28	28
28	31	30	30	31	30	30

Promedio de valores

302

Valor corregido de acuerdo a la posición


29.4

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 48

Resistencia ISRM

Roca Medianamente Resistente

Descri pción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita Fecha 12/10/2013

Marca y Modelo de Equipo ; Matest/ IP0316 Registrado por L.P.

Estación: EG-39

933.0 Este 1 747.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

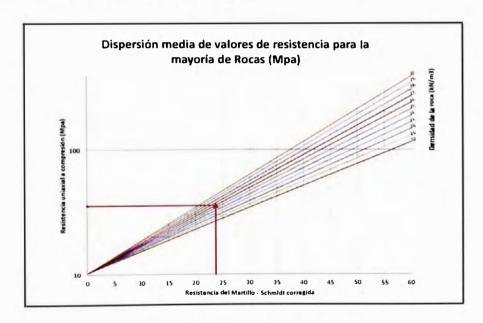
*	*	-	1	1
	100	1 - 1	x	

VALORES DE REBOTE DEL MARTILLO

1	30	30	28	33	30	29	28
I	30	30	31	33	31	28	28

Promedio de valores

299


Valor corregido de acuerdo a la posición

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 36 R3

Resistencia ISRM

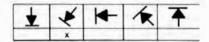
Descripción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Calcita 12/10/2013 Fecha Marca y Modelo de Equipo Matest/ IP0316

L.P.


Registrado por

Estación: EG-40

1 589.0 1 374.0

DATOS DEL ENSAYO IN SITU

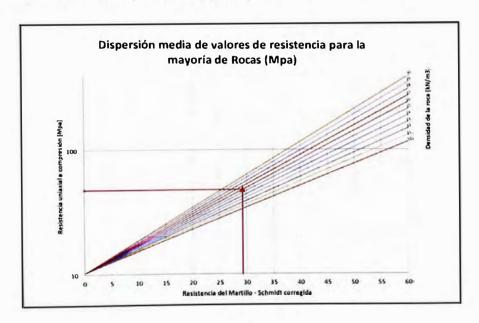
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

30	32	31	31	31	30	30
28	30	30	30	30	30	28

Promedio de valores 30.1

Valor corregido de acuerdo a la posición


293

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESION SIMPLE, Qu (Mpa: 48

Resistencia ISRM Descripción

Estudio de Estabilidad de Taludes en Tajo

Relleno

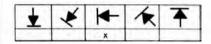
· Calcita

Estación: EG-41

Fecha

13/10/2013

1 566.0 1 505.0


Marca y Modelo de Equipo : Matest/ IP0316 Registrado por

I P

Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

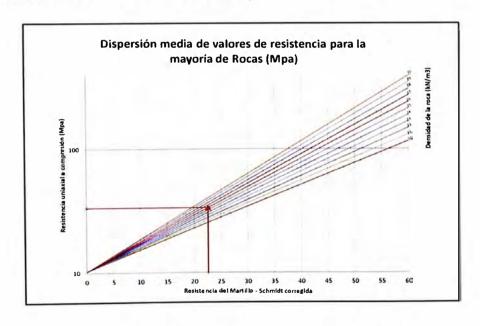
VALORES DE REBOTE DEL MARTILLO

31	32	31	31	31	30	30
28	31	30	30	28	30	32

Promedio de valores

30.4

Valor corregido de acuerdo a la posición


226

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 34

Resistencia ISRM

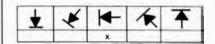
Descripción

Estudio de Estabilidad de Taludes en

Tajo

Calcita Relleno

Fecha 13/10/2013


Marca y Modelo de Equipo : Matest/ iP0316 Registrado por

Estación: EG-42

1 489.0 Norte 1 148 0 Este

DATOS DEL ENSAYO IN SITU

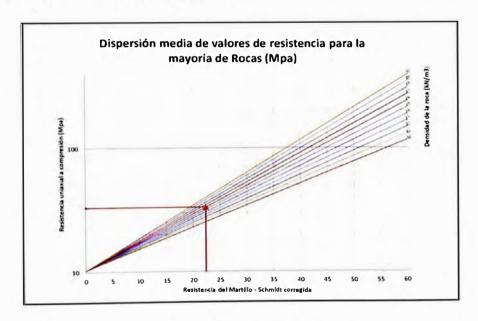
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

28	30	32	32	31	30	30
28	30	28	30	31	30	32

Promedio de valores 30.1

Valor corregido de acuerdo a la posición


224

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpr. 33

Resistencia ISRM

Descripción

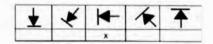
Roca Medianamente Resistentes

Estudio de Estabilidad de Taludes en

Tajo

Relleno Óxido

Fecha 13/10/2013 Marca y Modelo de Equipo Matest/ IP0316 Registrado por


LP.

Estación: EG-43

1 243.0 2 016.0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

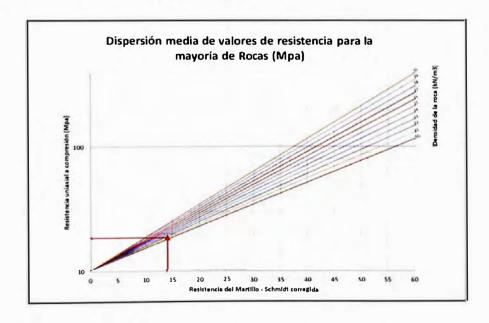
VALORES DE REBOTE DEL MARTILLO

25	22	21	20	20	22	24
22	25	24	22	23	25	22

Promedio de valores

226

Valor corregido de acuerdo a la posición


14.1

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

21 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 19 Resistencia ISRM

Descripción

Roca Fragil

Estudio de Estabilidad de Taludes en

Tajo

Relleno Óxido

Fecha 13/10/2013

Marca y Modelo de Equipo . Matest/ IP0316 Registrado por L.P.

Estación: EG-44

Norte 1 252.0 2 128.0 Este

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

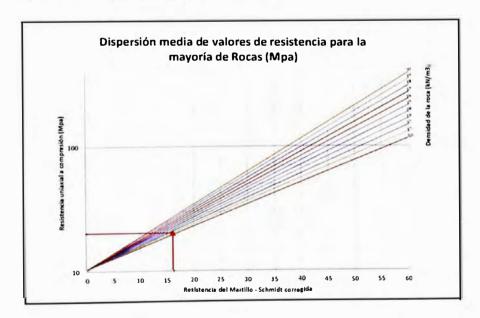
1	*	-	1	1
	x			

VALORES DE REBOTE DEL MARTILLO

18	15	17	16	16	19	17
17	18	16	18	17	18	15

Promedio de valores

169


Valor corregido de acuerdo a la posición

161

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 21 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 20

Resistencia ISRM

Roca Fragil

Descri pción

Estudio de Estabilidad de Taludes en

Tajo

Relleno Oxido Estación: EG-45

Fecha 13/10/2013
Marca y Modelo de Equipo Matest/ IP0316
Registrado por L.P.

e Equipo Matest/ IP0316 Norte 1 217 0 L.P. Este 2 128.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

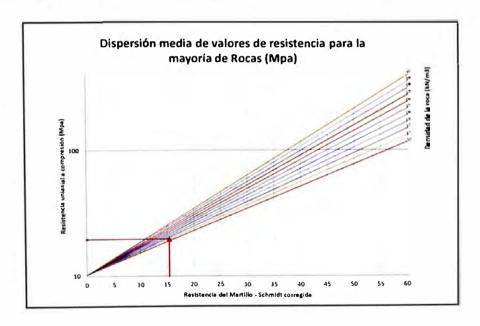
+	¥	-	1	*
			x	

VALORES DE REBOTE DEL MARTILLO

24	19	19	23	18	23	24
24	23	24	22	22	23	22

Promedio de valores

221


Valor corregido de acuerdo a la posición

154

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 21 kN/m

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz. 20
Resistencia ISRM
Descripción
Recafragi

Estudio de Estabilidad de Taludes en

Tajo

Estación: EG-46 Calcita Relleno

: 13/10/2013 Fecha Marca y Modelo de Equipo : Matest/ IP0316

L.P.

Registrado por

1 398.0 Norte Este 2 167.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

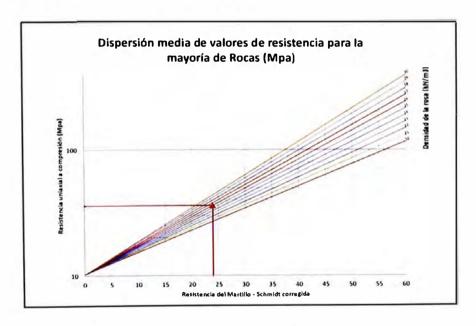
±	*	-	1	*
	7.01		x	

VALORES DE REBOTE DEL MARTILLO

30	32	32	32	26	30	30
28	32	32	32	30	28	28

Promedio de valores

30 1


Valor corregido de acuerdo a la posición

240

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER, 1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 36 R3 Resistencia ISRM

Roca Medanamente Resistente Descripción

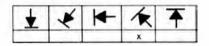
Estudio de Estabilidad de Taludes en

Тајо

Relleno Óxido

LP

Fecha 13/10/2013 Marca y Modelo de Equipo Matest/ IP0316


Registrado por

Estación: EG-46

Norte 1 398.0 Este 2 167.0

DATOS DEL ENSAYO IN SITU

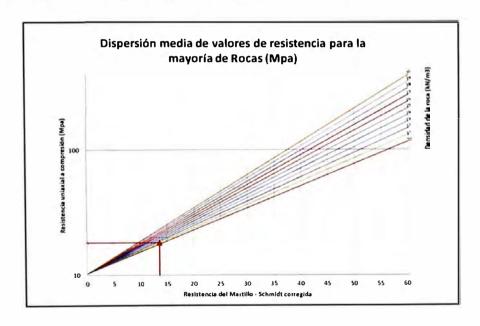
POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

23	20	19	12		20	
		23	21	19	22	23

Promedio de valores

20.4


Valor corregido de acuerdo a la posición

13.6

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 21 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (MPa: 18
Resistencia ISRM FQ

Descripción

Roca Fragil

Estudio de Estabilidad de Taludes en Tajo

Relleno

Óxido

Fecha 13/10/2013


Marca y Modelo de Equipo Matest/ IP0316
Registrado por L.P.

Estación: EG-47

Norte 1 429 0 Este 2 137 0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

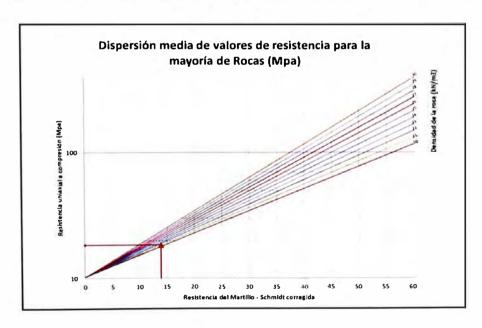
VALORES DE REBOTE DEL MARTILLO

Г	15	16	15	14	16	13	14
Е	14	15	16	15	14	16	13

Promedio de valores

14.7

Valor corregido de acuerdo a la posición


139

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

21 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 18

Resistencia ISRM

, F2

Descripción

RocaFragi

Estudio de Estabilidad de Taludes en Tajo

Relleno

Registrado por

Óxido

Estación: EG-48

Fecha

Fecha : 13/10/2013 Marca y Modelo de Equipo : Matest/ IP0316

Norte Este 1 599.0 2 070.0

DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

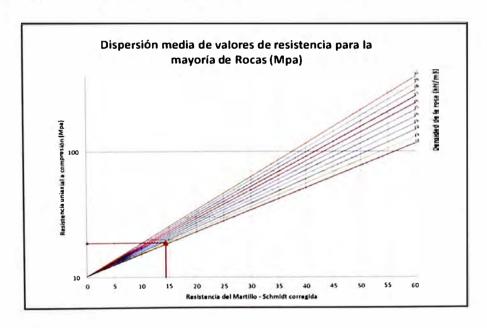
*	*	-	1	1
	x			

VALORES DE REBOTE DEL MARTILLO

I	15	15	14	17	13	15	17
ſ	15	14	17	14	17	15	15

Promedio de valores 15.2

Valor corregido de


14.4

acuerdo a la posición

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 21 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA ALA COMPRESIÓN SIMPLE, Qu (Mpa: 19

Resistencia ISRM

: 1/2

Descripción

Roca Fragi

Estudio de Estabilidad de Taludes en

Tajo

Óxido Relleno Fecha 13/10/2013

Registrado por

Marca y Modelo de Equipo Matest/ IP0316 LP

Norte Este

1 350 0

1 149.0

Estación: EG-49

DATOS DEL ENSAYO IN SITU

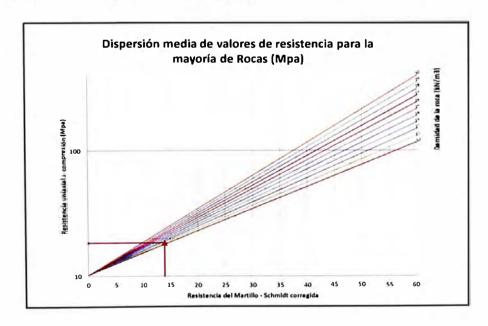
POSICIÓN DEL MARTILLO - SCHMIDT

+	*	-	1	*
- 1	·		x	

VALORES DE REBOTE DEL MARTILLO

23	22	22	23	22	22	21
19	21	20	10	23	22	21

208 Promedio de valores


Valor corregido de acuerdo a la posición

139

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 21 kN/m3

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpa: 19 R2

Resistencia ISRM

Descripción

Roca Fragi

Estudio de Estabilidad de Taludes en Tajo

Relleno Calcita
Fecha 13/10/2013

Marca y Modelo de Equipo Matest/ IP0316
Registrado por L.P.

Estación: EG-49

Norte 1 350.0 Este 1 149.0

DATOS DEL ENSAYO IN SITU

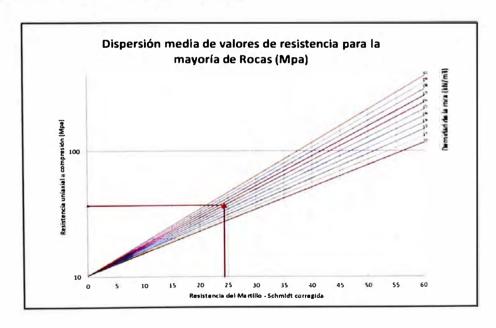
POSICIÓN DEL MARTILLO - SCHMIDT

*	*	-	1	1
	100		×	

VALORES DE REBOTE DEL MARTILLO

28	30	30	32	31	30	32
30	32	30	32	30	30	30

Promedio de valores 30.5


Valor corregido de acuerdo a la posición

24.3

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca 26 kN/m³

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz.: 37

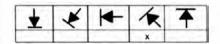
Resistencia ISRM

Descripción

Roca Modanamento Resistente

Estudio de Estabilidad de Taludes en

Estación: EG-50 Calcita Relleno


Fecha 13/10/2013 Marca y Modelo de Equipo . Matest/ IP0316

Registrado por

Norte 1 553.0 Este 1 593.0

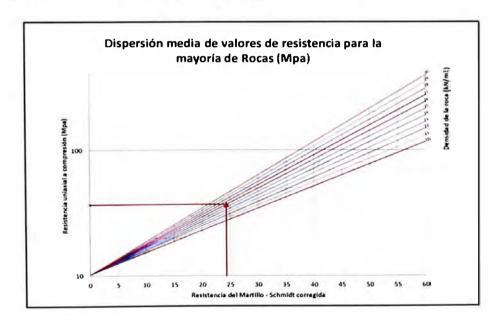
DATOS DEL ENSAYO IN SITU

POSICIÓN DEL MARTILLO - SCHMIDT

VALORES DE REBOTE DEL MARTILLO

28	30	30	32	31	30	32
30	32	30	32	30	30	30

30.5 Promedio de valores


Valor corregido de acuerdo a la posición

243

PROPIEDADES DE LA ROCA

Densidad Seca de la Roca

RELACIÓN GRÁFICA ENTRE EL VALOR OBTENIDO MEDIANTE EL MARTILLO DE SCHMIDT Y LA RESISTENCIA A LA COMPRESIÓN SIMPLE DE LA ROCA (DEERE Y MILLER,1968)

RESISTENCIA A LA COMPRESIÓN SIMPLE ESTIMADA Y CLASIFICACIÓN DE DEERE Y MILLER

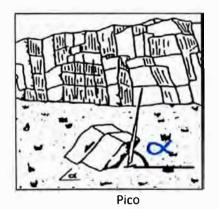
RESISTENCIA A LA COMPRESIÓN SIMPLE, Qu (Mpz: 37 RB

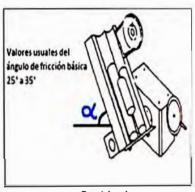
Resistencia ISRM Descripción

Roca Medanamente Resistente

"ENSAYO DE TILT TEST EN CAMPO"

Nombre del Proyecto Estudio de Estabilidad de Taludes en Tajo					
		Perforación	PR-01		
Ensayado (campo)	L.P.	Profundidad	59.02 - 5	59,28	
Fecha	23/10/2013	Litologia	Caliza	Relleno	Arcilla


1.0 DATOS GENERALES


Valor del rebote, martillo Schmidt / pared de discontinuidad Valor del rebote, martillo Schmidt / matriz roccsa Ángulo de Fricción Bésico del material

r=	20.0
R=	50.0
фЬ:	24.00°

Х	Pico
	Residua

N°	фь
1	25
2	25
3	24
4	25
5	24
6	24
7	24
8	24
9	24
10	24

Residual

Ángulo de Rozamiento interno Residual

Coeficiente de Rugosidad

Resistencia de la compresión simple

Esfuerzo Normal Efectivo

φr: 12 °

JRC: 7.0 °

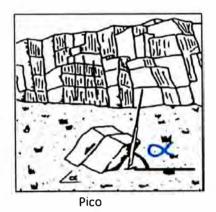
JCS: 46.1 kN/m²

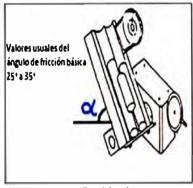
σ'n: 18 kN/m²

2.0 RESULTADOS OBTENIDOS

Ángulo de Rozamiento de Pico Resistencia al Corte de Pico φp: 14.94° τp: 467 kN/

"ENSAYO DE TILT TEST EN CAMPO"					
Nombre del Proyecto	Estudio de Estabilidad de	e Taludes en Tajo			
		Perforación	PR-02		
Ensayado (campo)	L.P.	Profundidad	15,95 - 1	16,10	
Fecha	23/10/2013	Litología	Caliza	Relleno Calcita	


1.0 DATOS GENERALES


Valor del rebote, martillo Schmidt / pared de discontinuidad Valor del rebote, martillo Schmidt / matriz roccsa Ángulo de Fricción Básico del material

ſĘ	27.0
R=	50.0
фЬ:	33.00°

Х	Pico
	Residual

N°	фь
1	33
2	33
3	33
4	34
5	35
6	33
7	33
8	33
9	33
10	33

Residual

Ángulo de Rozarriento interno Residual Coeficiente de Rugosidad

Resistencia de la compresión simple

Esfuerzo Normal Efectivo

φr: 24° JRC: 10.0°

JCS: 228.1 kN/m2

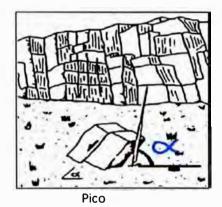
σ'n: 17 kN/m²

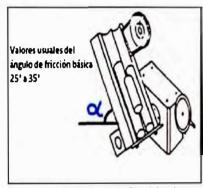
2.0 RESULTADOS OBTENIDOS

Ángulo de Rozamiento de Pico Resistencia al Corte de Pico

фр:

	"ENSAYO D	E TILT TEST EN CAMP	PO"		
Nombre del Proyecto	Estudio de Estabilidad de	e Taludes en Tajo			
		Perforación	PR-02		
Ensayado (campo)	L.P.	Profundidad	96,60 -	97,11	
Fecha	23/10/2013	Litología	Caliza	Relleno	Óxido


1.0 DATOS GENERALES


Valor del rebote, martillo Schmidt / pared de discontinuidad Valor del rebote, martillo Schmidt / matriz rocosa Ángulo de Fricción Básico del material

r=	25.0
R=	49.0
фЬ:	30. 00°

Х	Pico
	Residual

N°	ФЬ
1	30
2	32
3	28
4	29
5	29
6	30
7	30
8	29
9	29 30
10	30

Residual

Ángulo de Rozamiento interno Residual

Coeficiente de Rugosidad

Resistencia de la compresión simple

Esfuerzo Normal Efectivo

φr: 20°

JRC: 10.0 °

JCS: 71.0 kN/m²

σ'n: 18 kN/m²

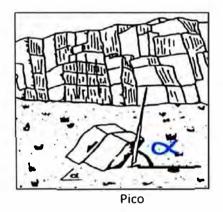
2.0 RESULTADOS OBTENIDOS

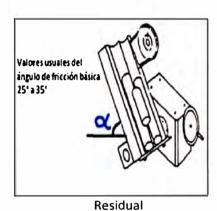
Ángulo de Rozarniento de Pico Resistencia al Corte de Pico фр :

26.29°

8.65 kN/m

"ENSAYO DE TILT TEST EN CAMPO" Nombre del Proyecto Estudio de Estabilidad de Taludes en Tajo Perforación PR-01 Ensayado (campo) L.P. Profundidad 59.02 - 59.28 Fecha 23/10/2013 Litología Caliza Relleno Arcilla


1.0 DATOS GENERALES


Valor del rebote, martillo Schmidt / pared de discontinuidad Valor del rebote, martillo Schmidt / matriz roccsa Ángulo de Fricción Básico del material

r=	11.8
R=	50.0
фь:	30.00°

	Pico
Х	Residual

N° .	Фb
1	30
2	28
3	30
4	28
5	30
6	28
7	30
8	28
9	30
10	30

Ángulo de Rozamiento interno Residual

Coeficiente de Rugosidad Resistencia de la compresión simple

Esfuerzo Normal Efectivo

φr: 15°

JRC: 7.0 °

JCS: 16.0 kN/m²

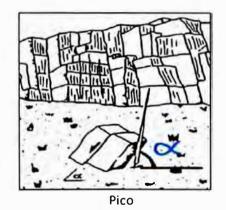
σ'n: 18 kN/m²

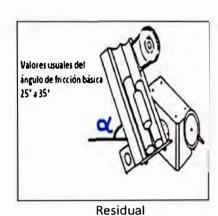
2.0 RESULTADOS OBTENIDOS

Ángulo de Rozamiento de Pico Resistencia al Corte de Pico φp: <u>14.45</u>° τp: <u>4.51</u> kN/m²

"ENSAYO DE TILT TEST EN CAMPO"

Nombre del Provecto	Estudio de Estabilidad de Ta	aludes en Taio			
		Perforación	PR-02		
Ensayado (campo)	L.P.	Profundidad	15.95 -	16.10	
Fecha	23/10/2013	Litología	Caliza	Relleno	Calcita


1.0 DATOS GENERALES


Valor del rebote, martillo Schmidt / pared de discontinuidad Valor del rebote, martillo Schmidt / matriz rocosa Ángulo de Fricción Básico del material

r=	29.9
R=	50.0
фЬ:	31.00°

Pico
Residual

Nº	фь
1	31
2	31
3	31
4	30
5	30
6	31
7	31
8	31
9	31
10	31

Ángulo de Rozamiento interno Residual

Coeficiente de Rugosidad

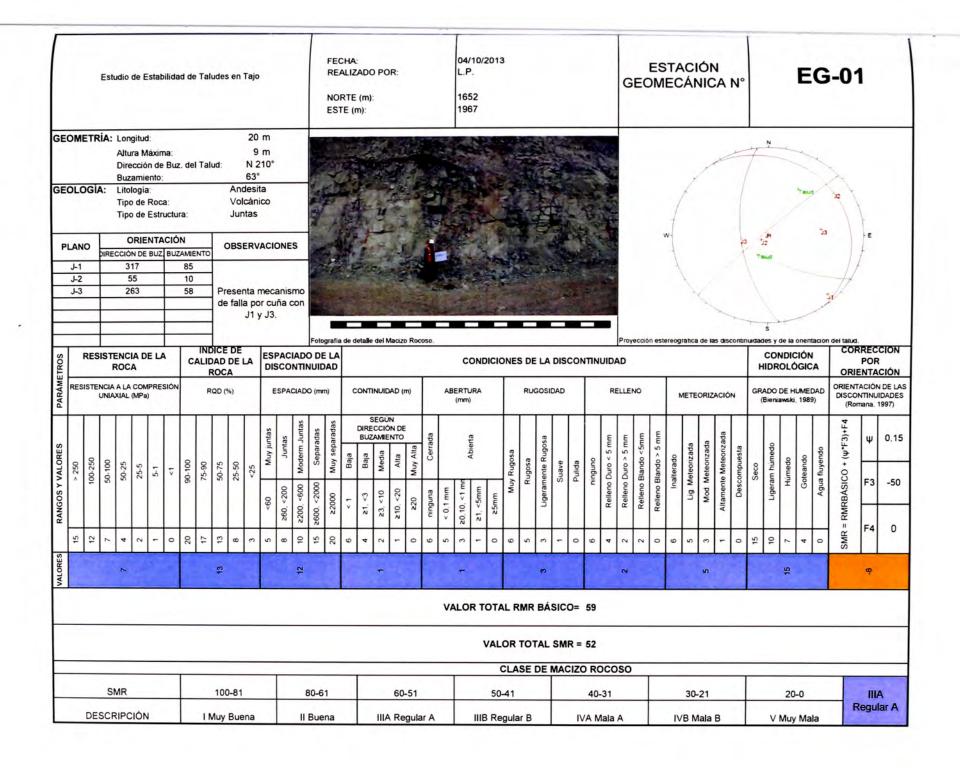
Resistencia de la compresión simple

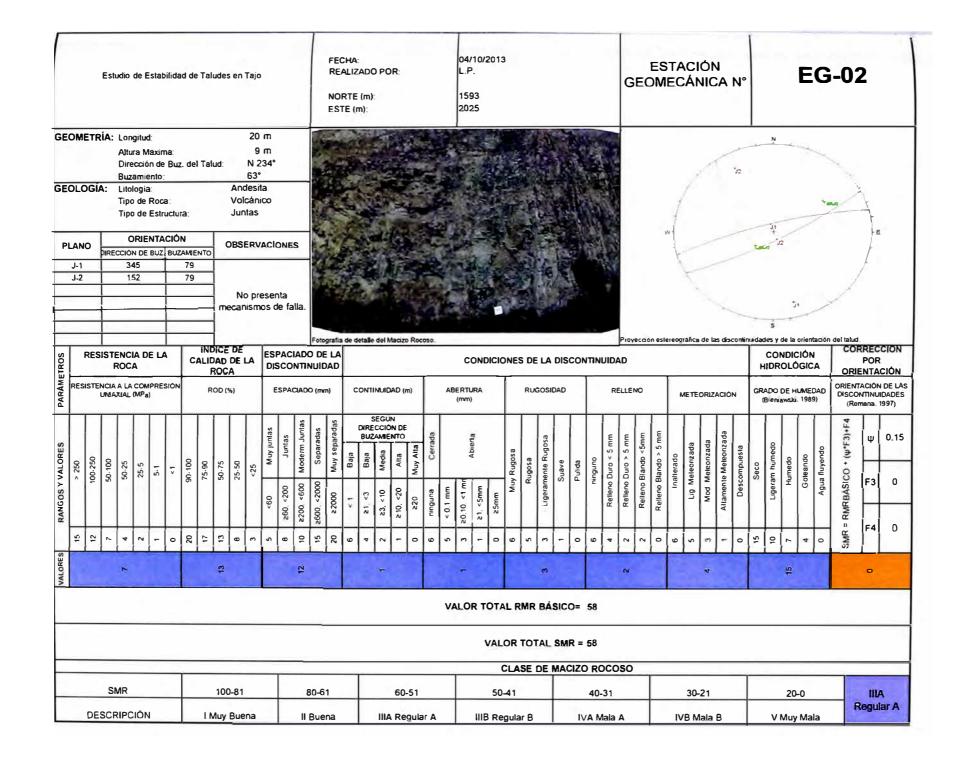
Esfuerzo Normal Efectivo

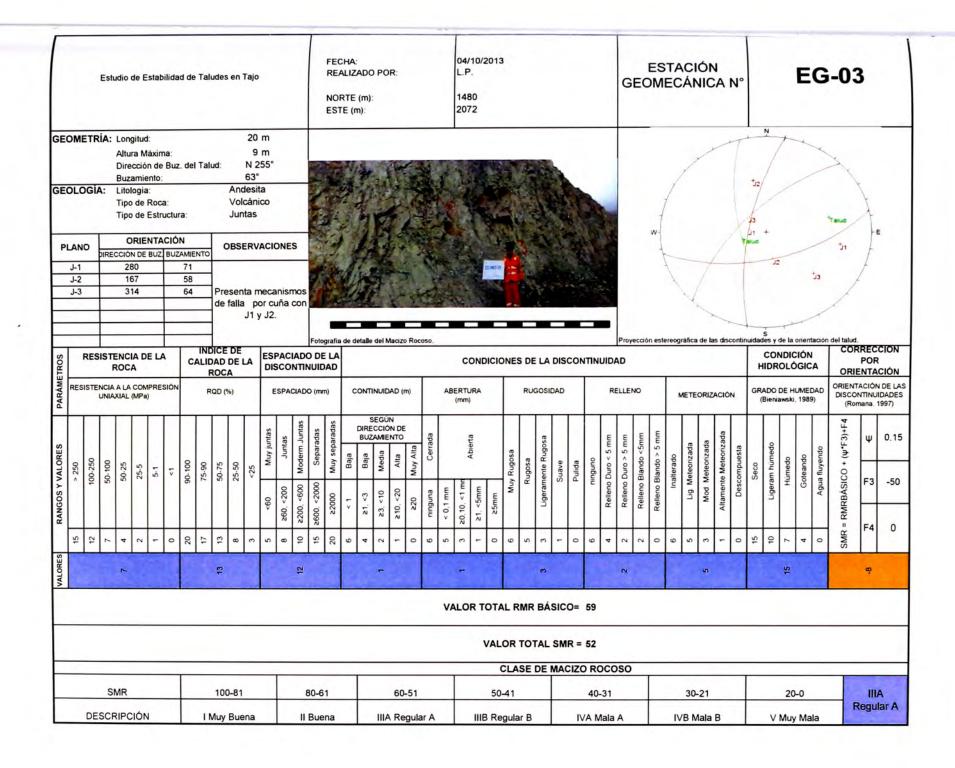
фr: 23°

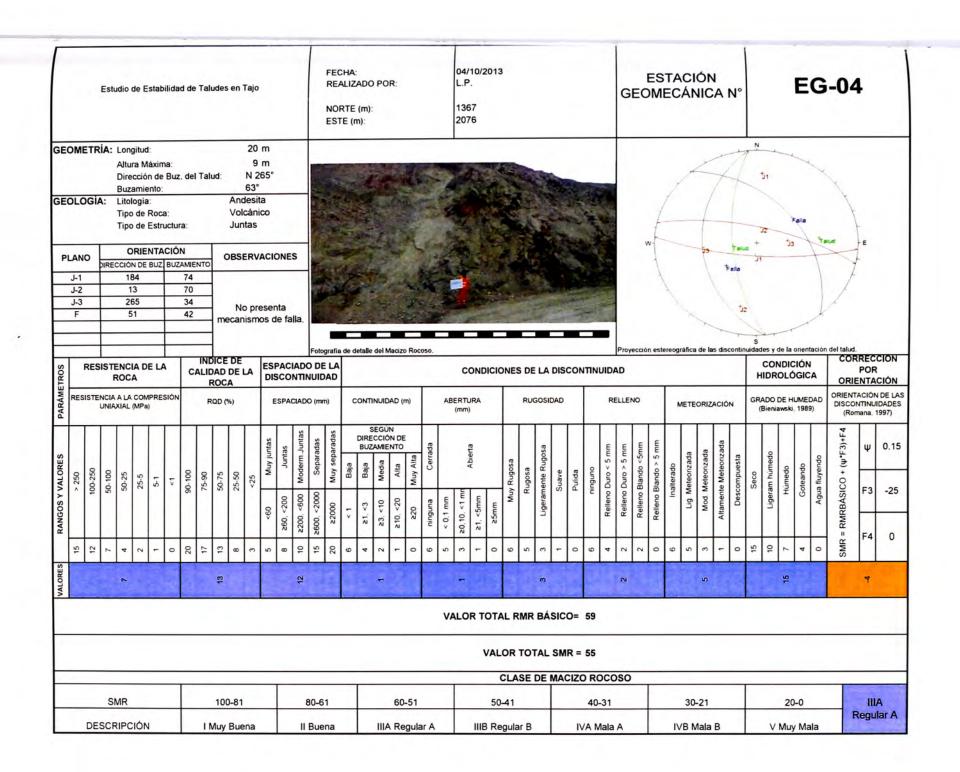
JRC: 10.0 °

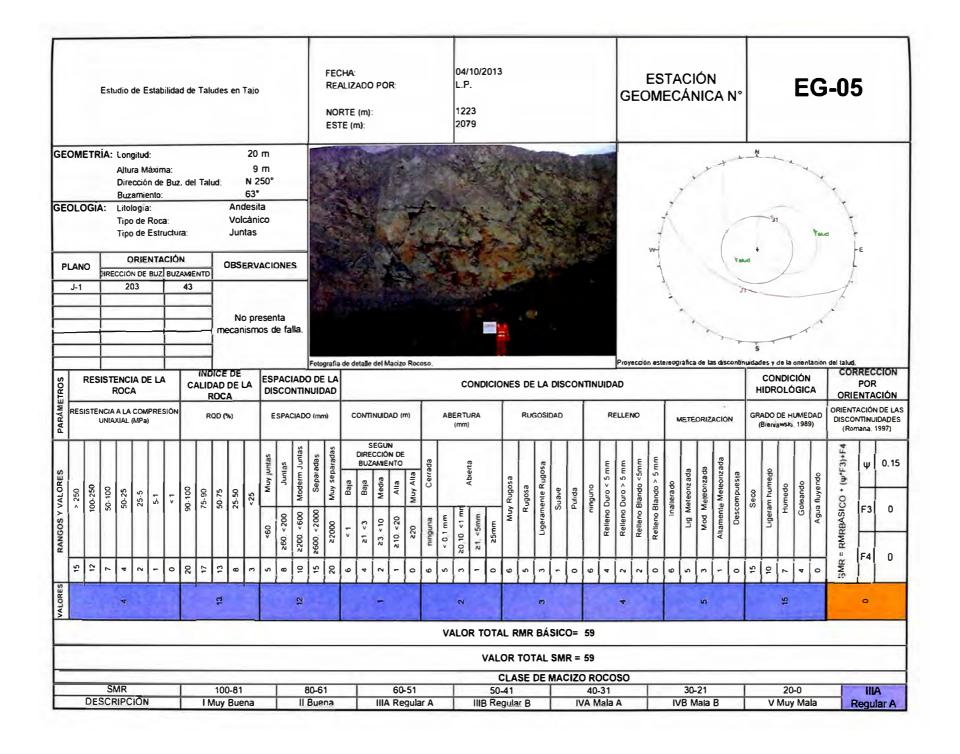
JCS:

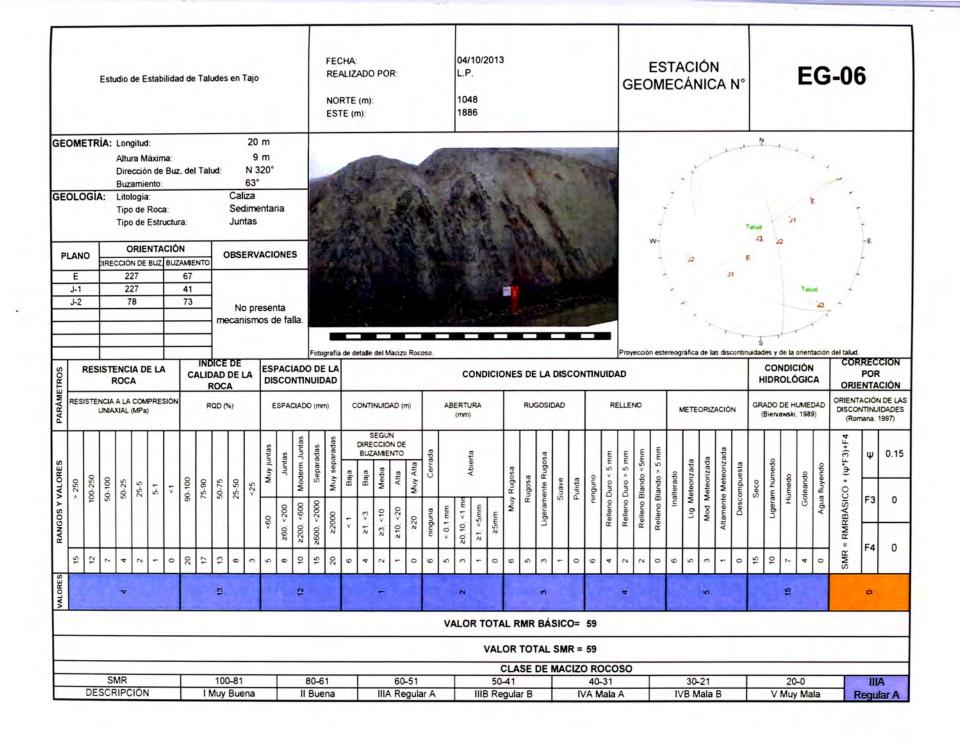

47.5 kN/m²

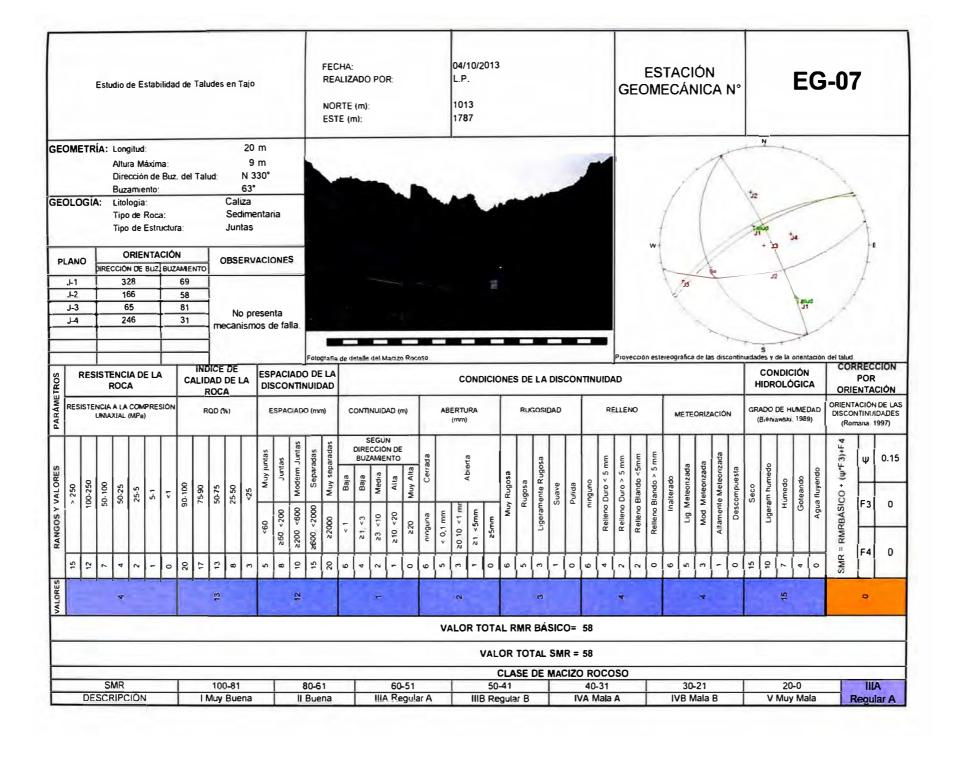

σ'n: 17 kN/m²

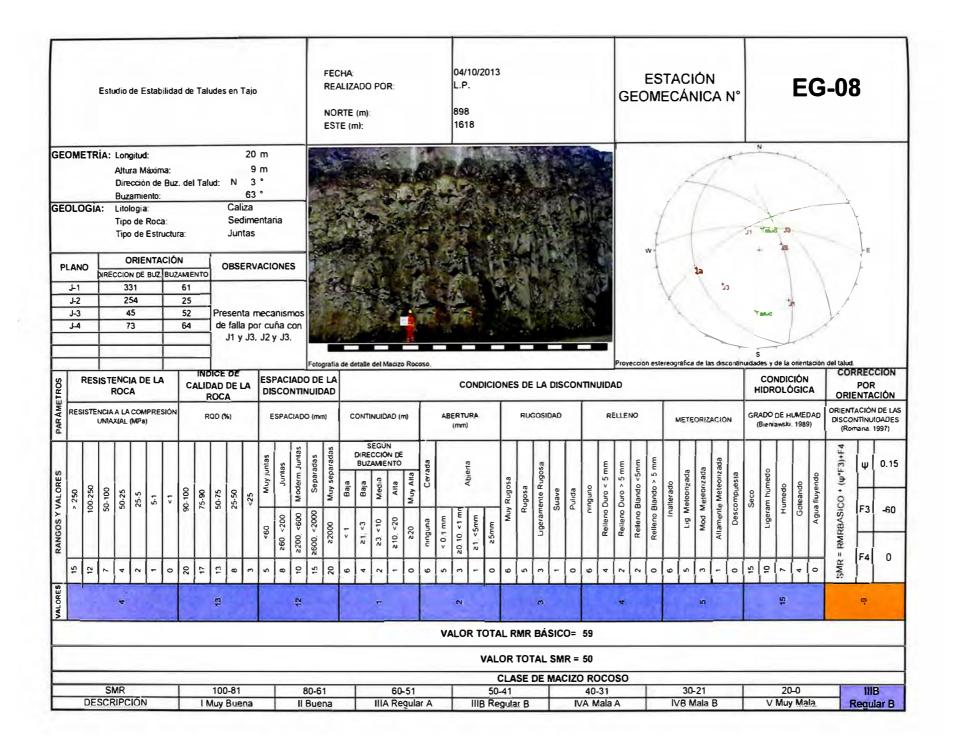

2.0 RESULTADOS OBTENIDOS

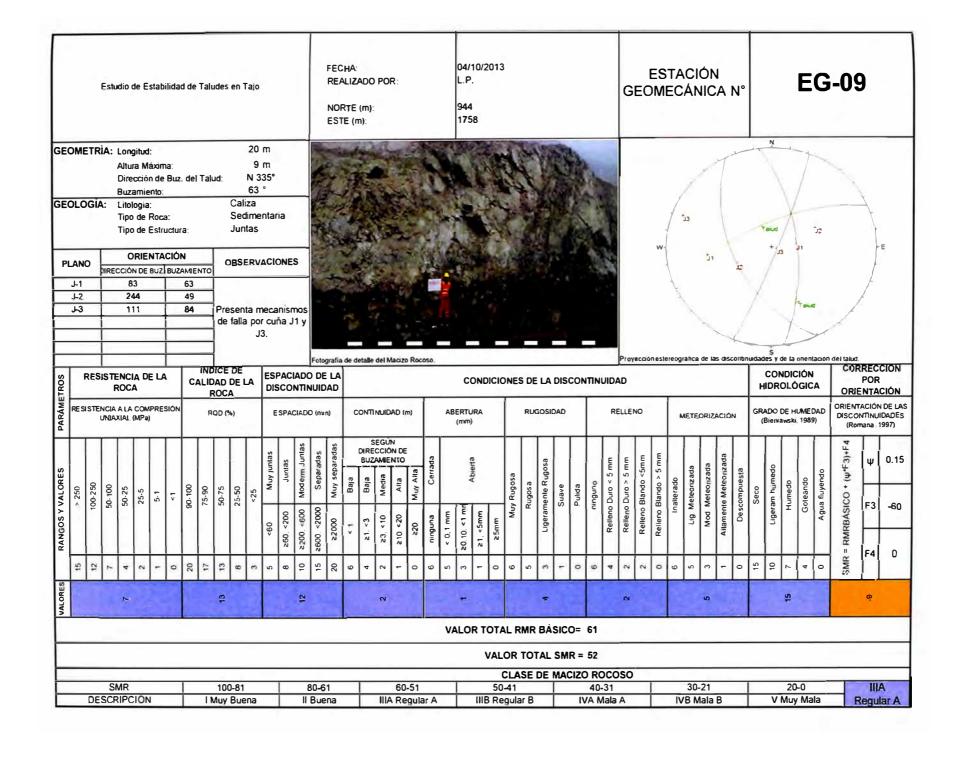

Ángulo de Rozamiento de Pico Resistencia al Corte de Pico фр: <u>27.31</u> °

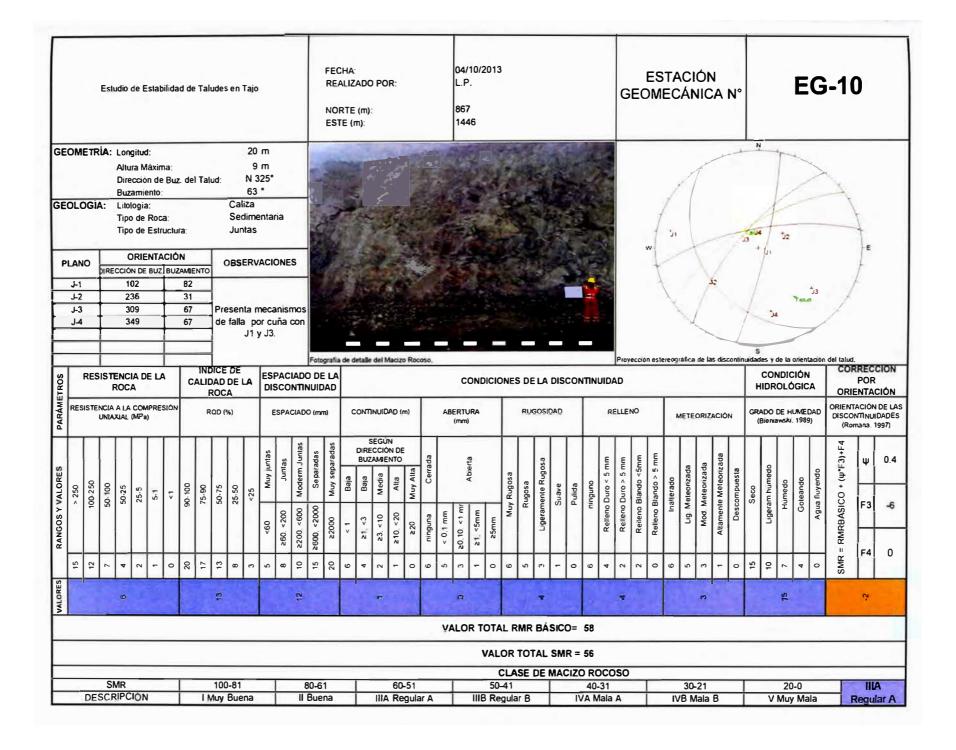

9.01 kN/m²

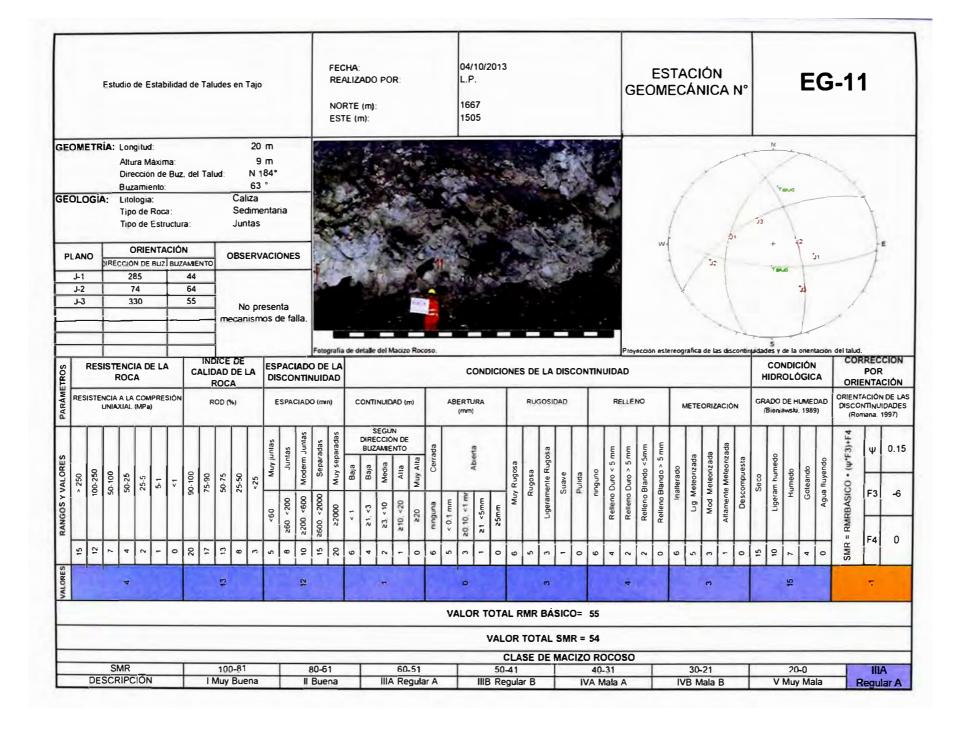


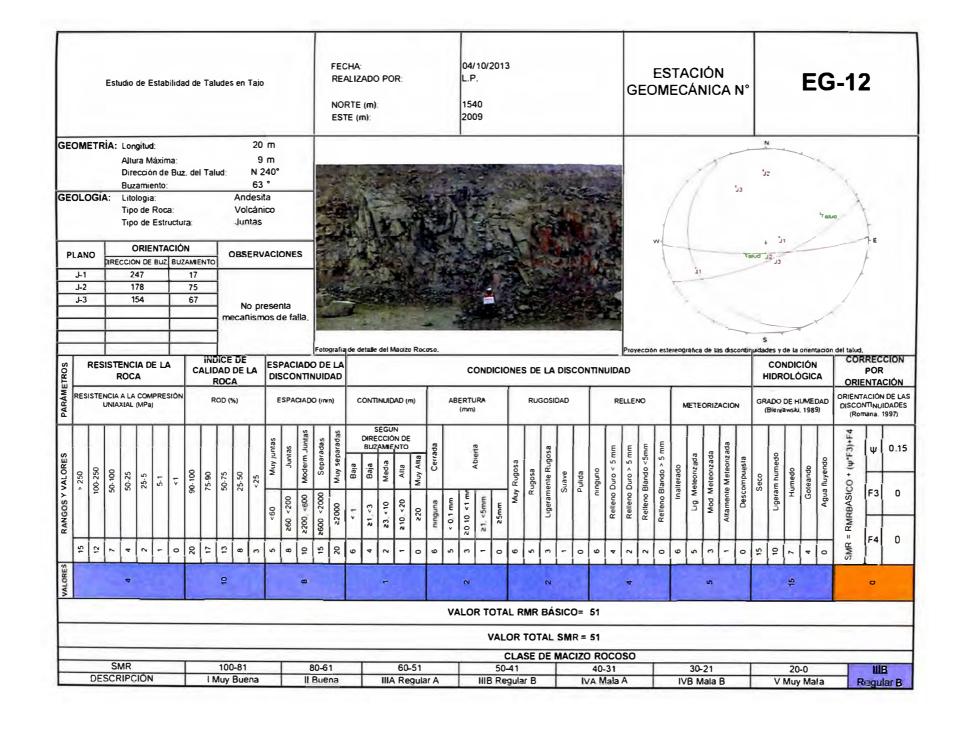


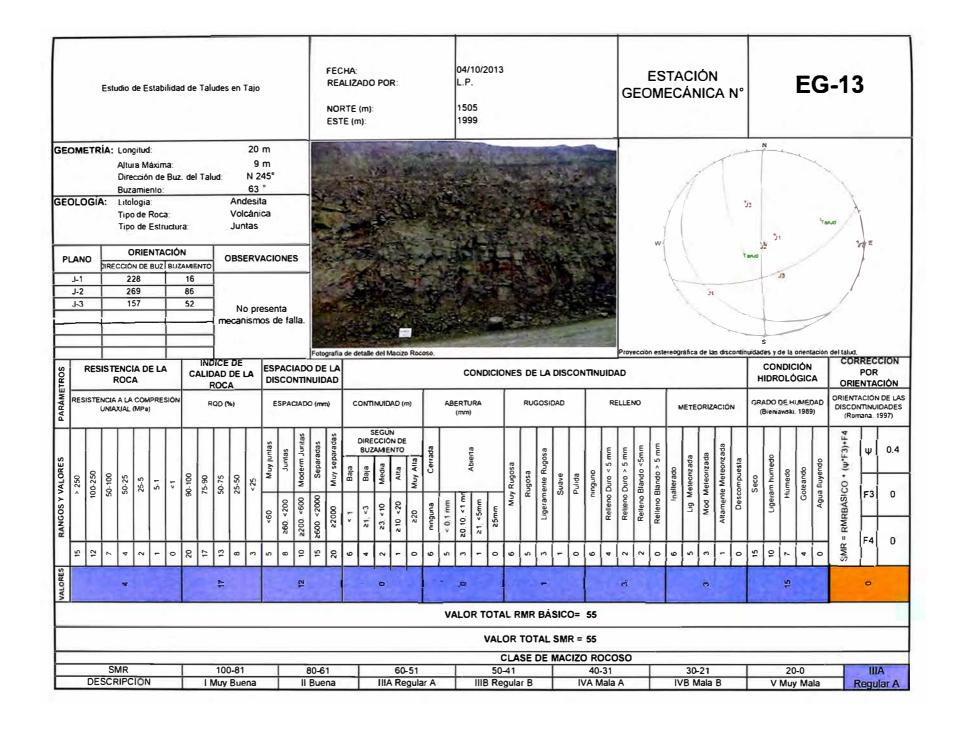


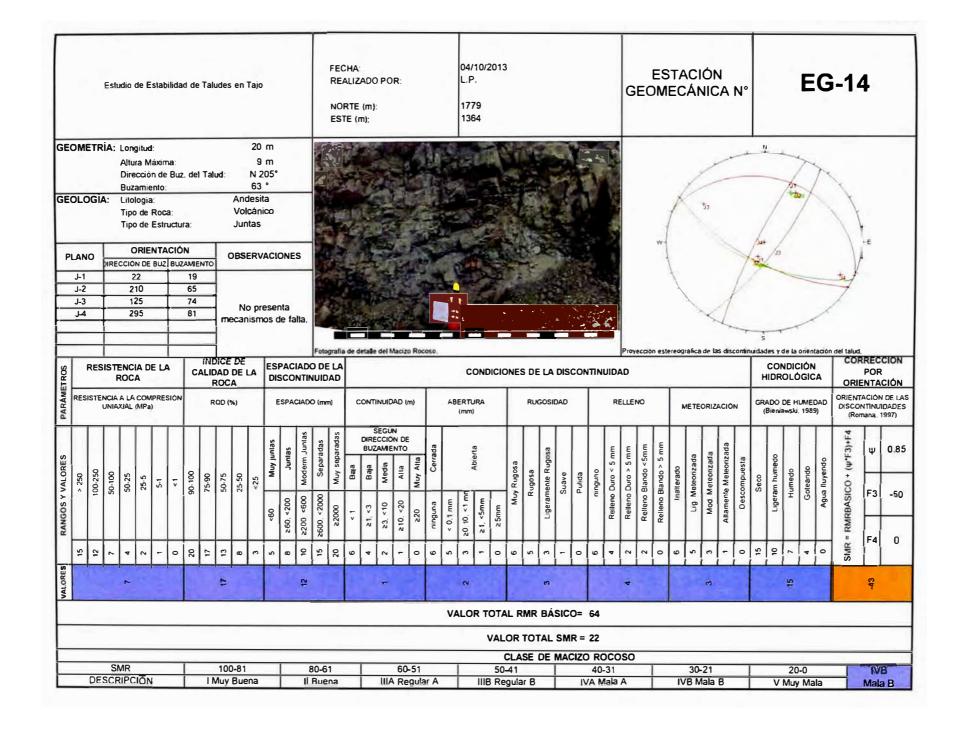


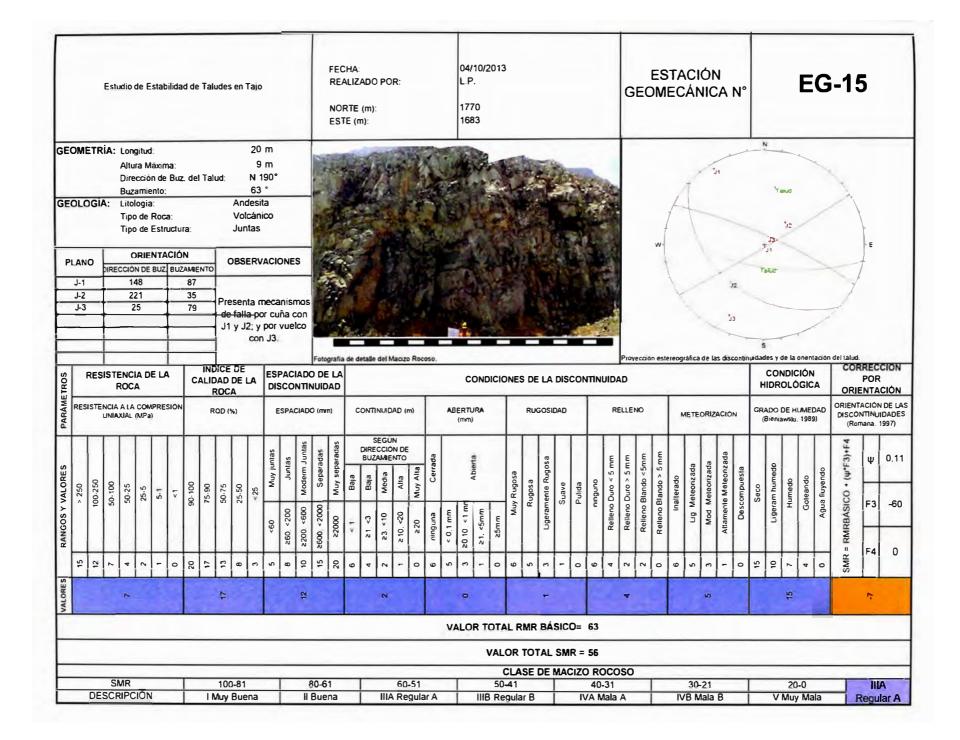


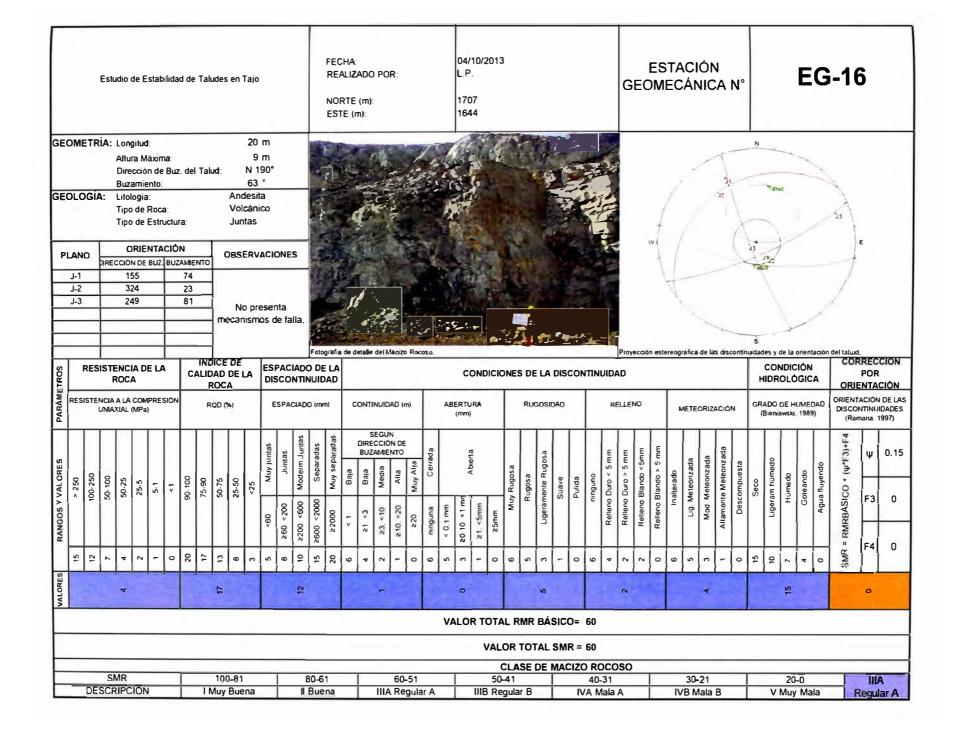


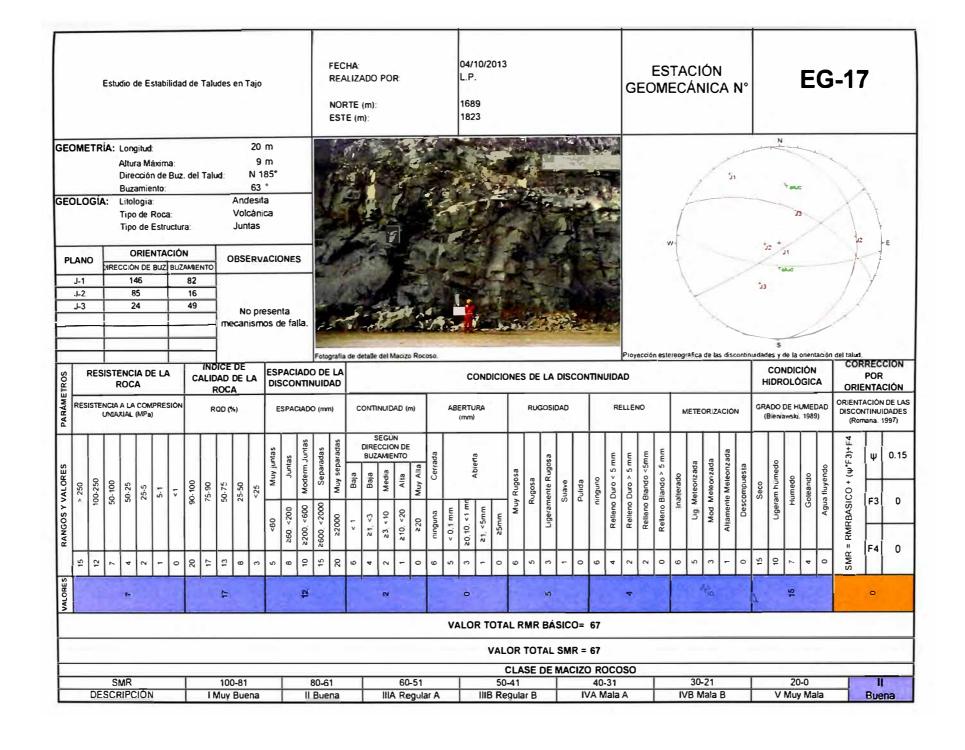


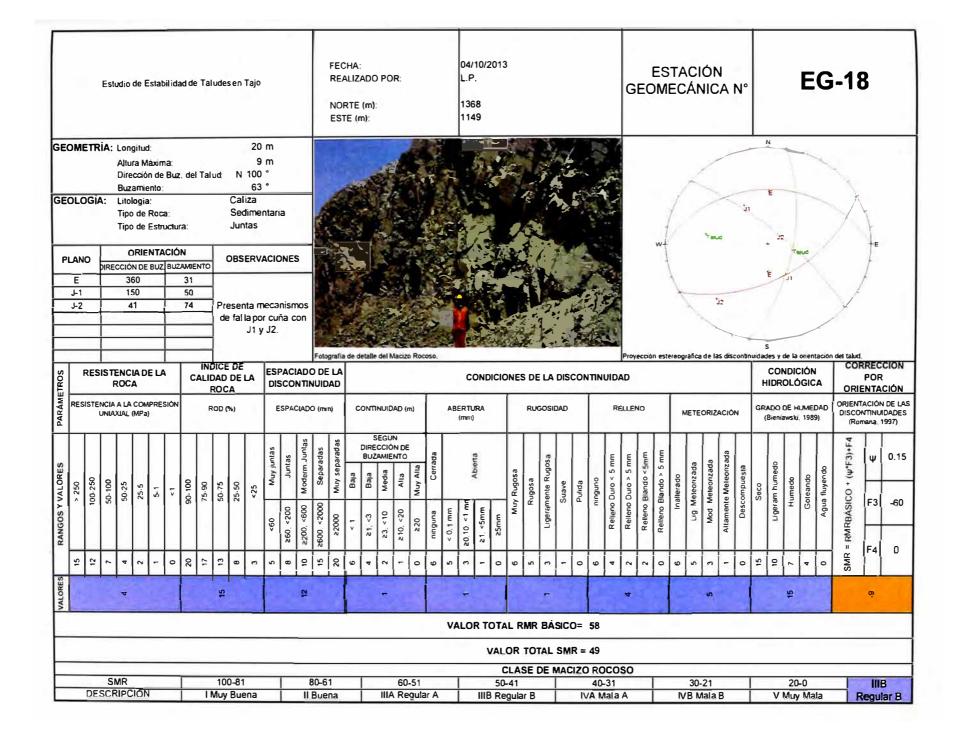


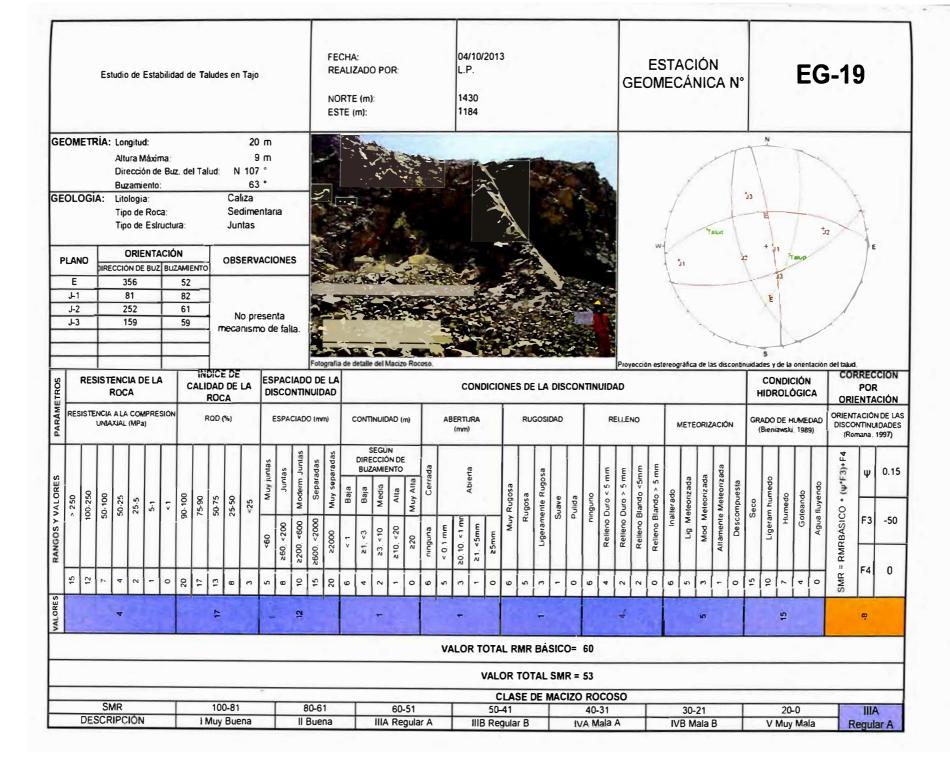


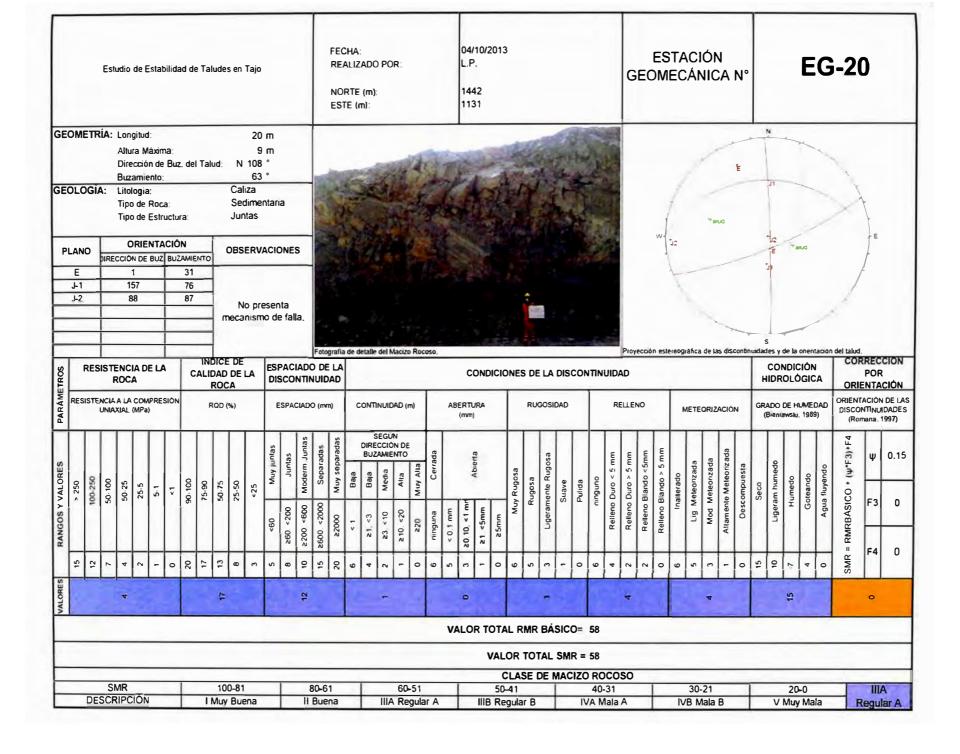


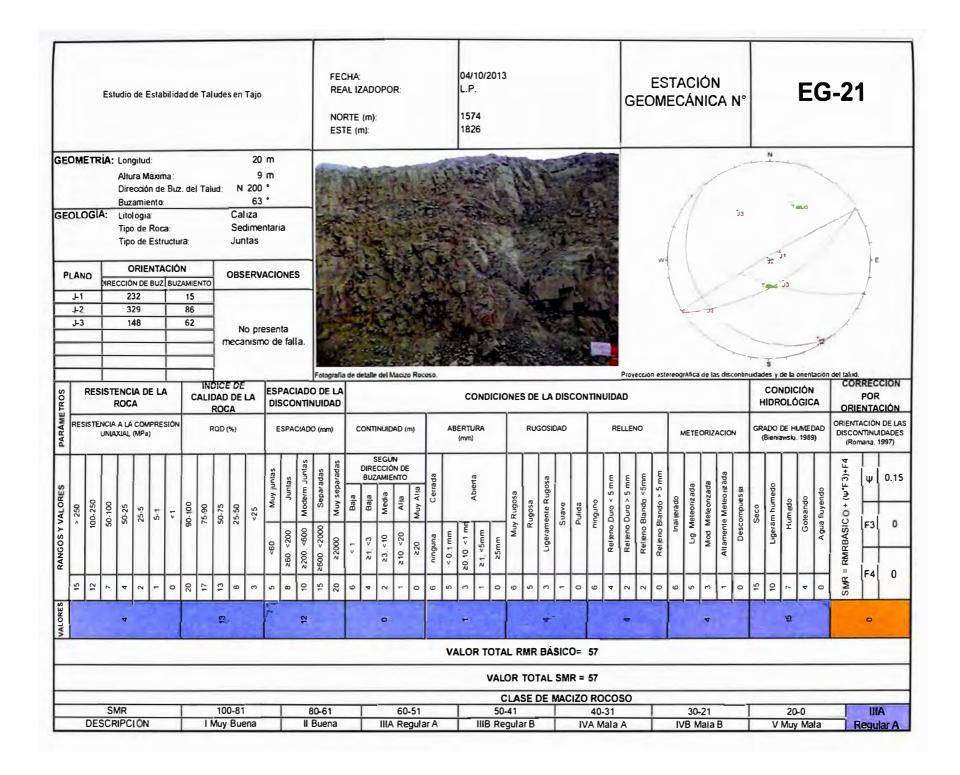


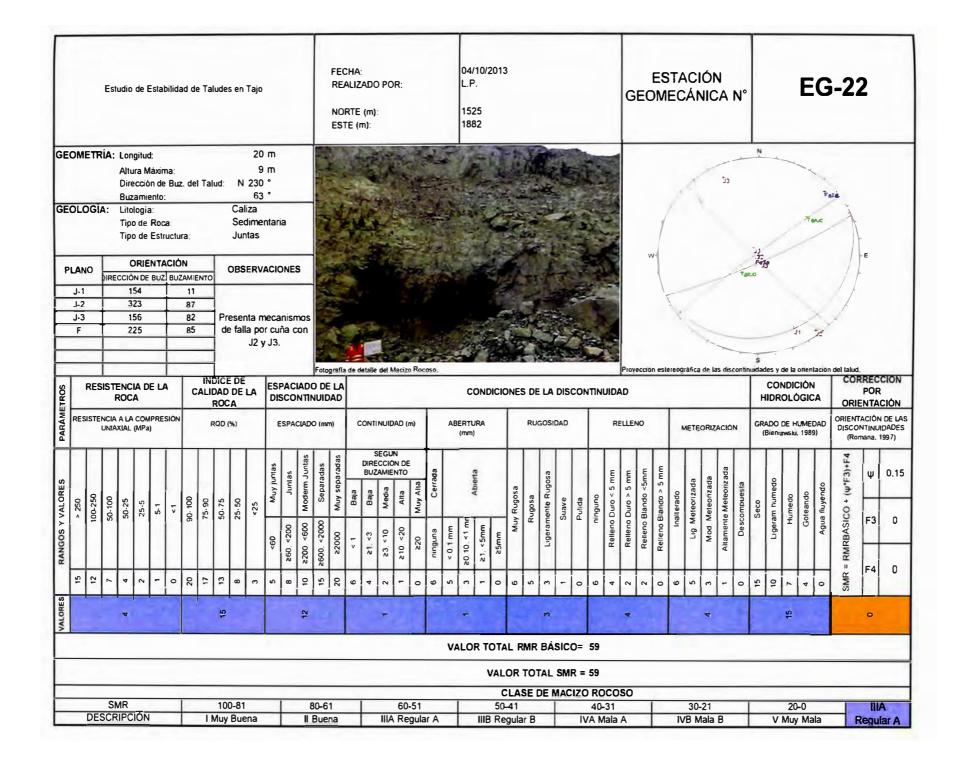


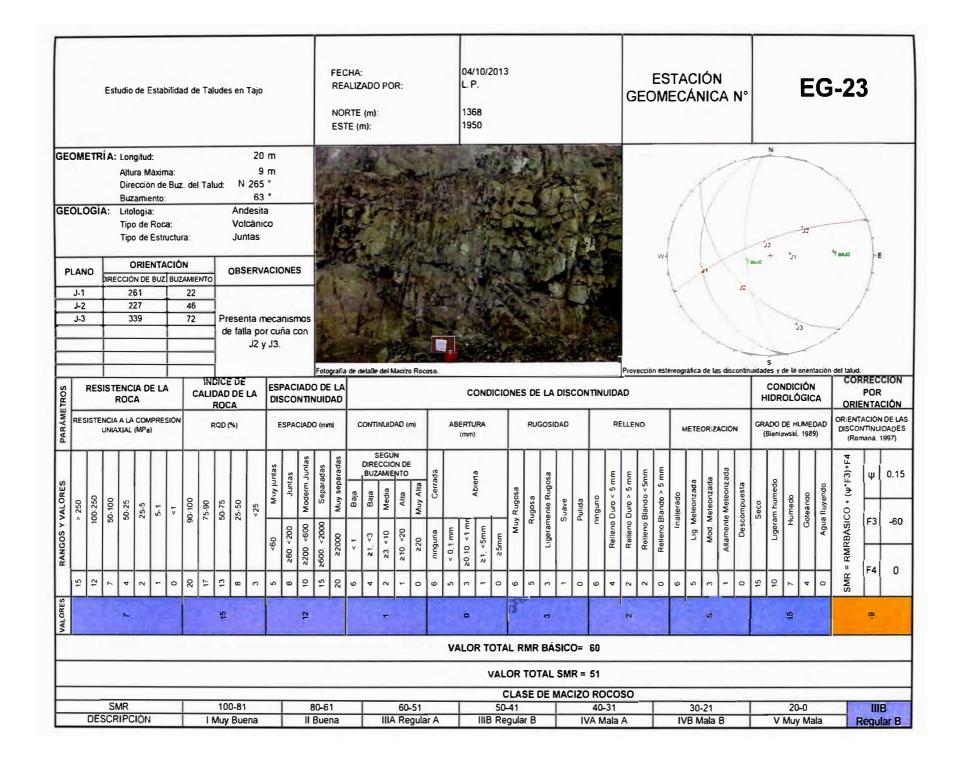


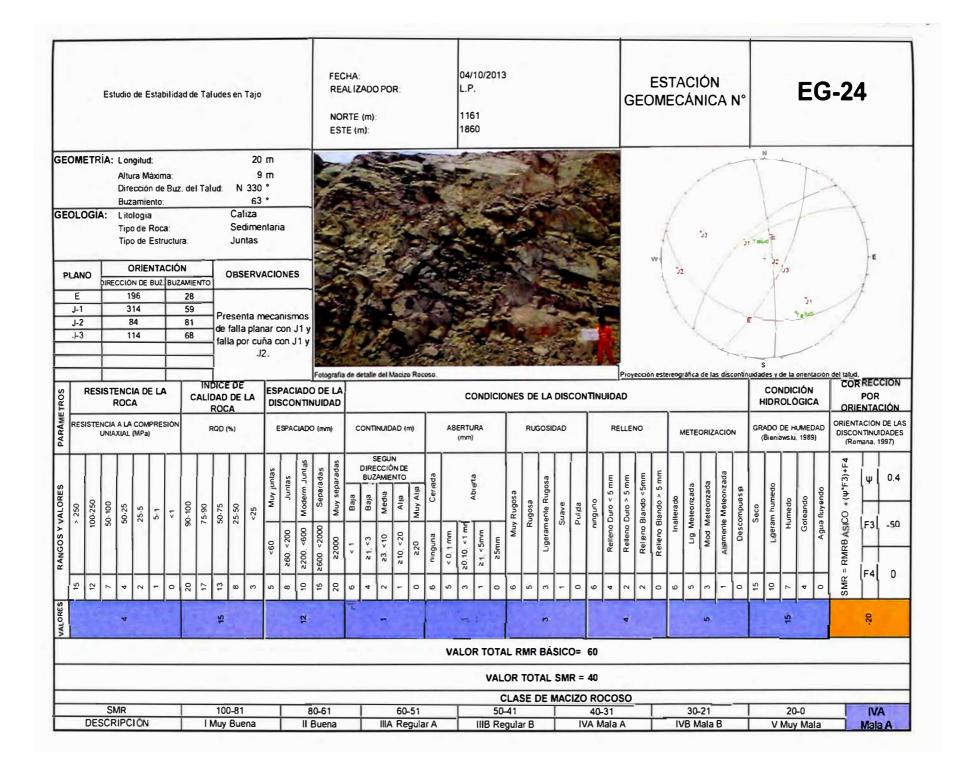


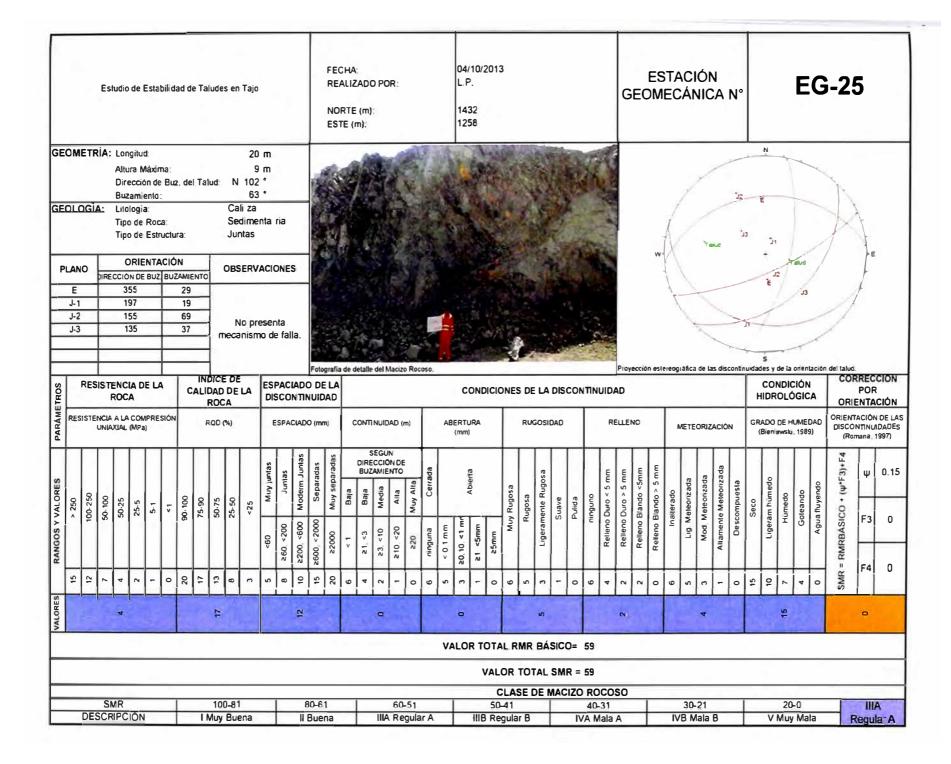


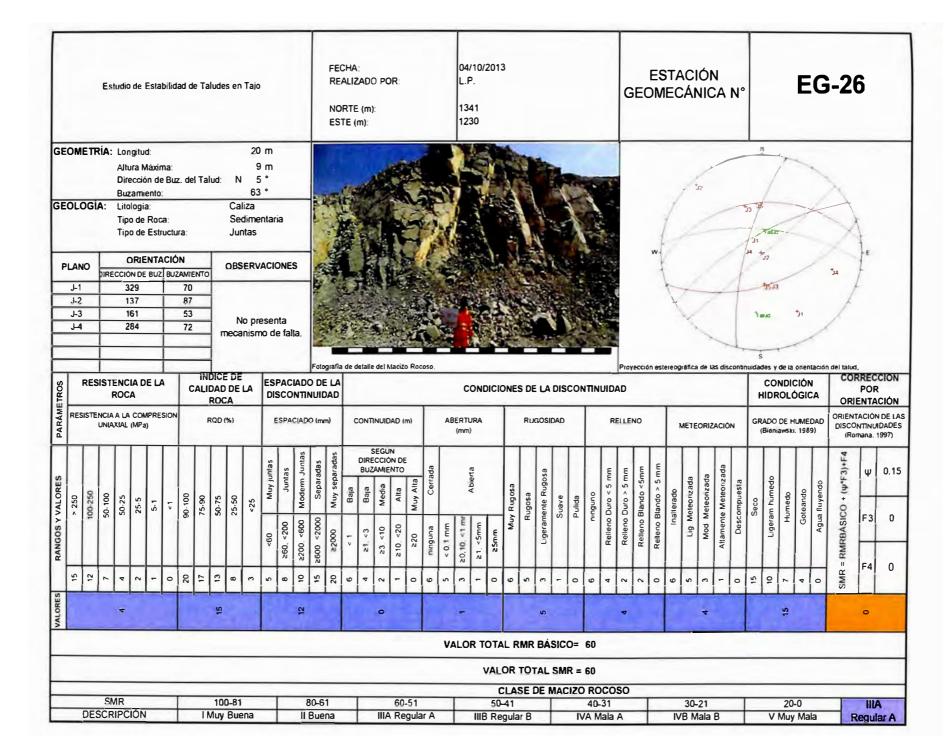


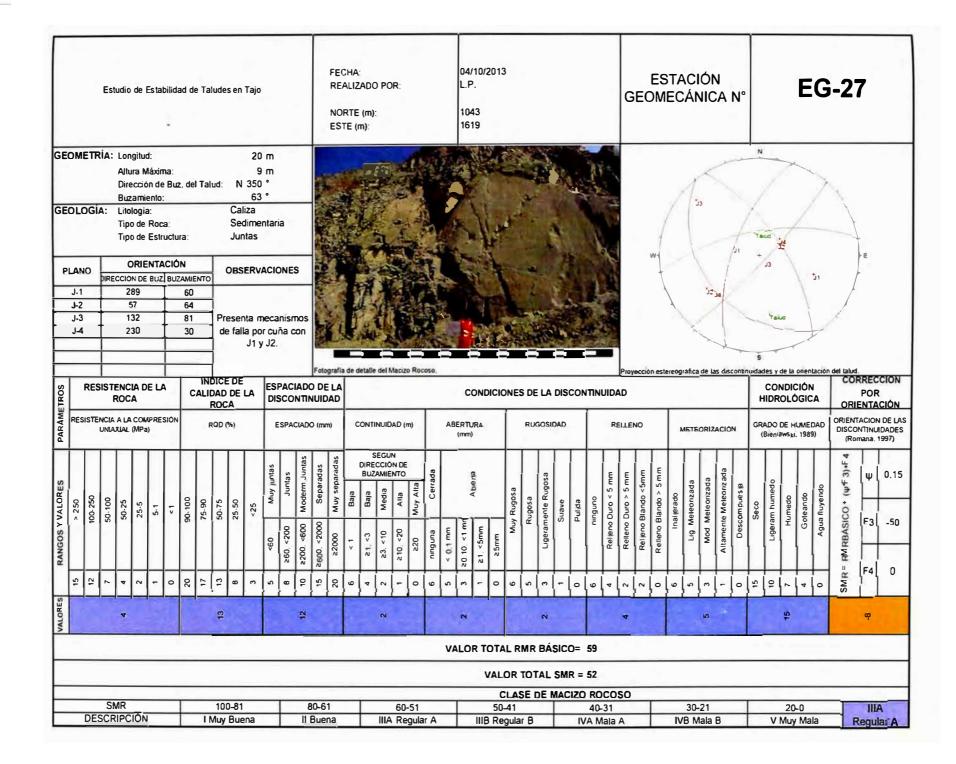


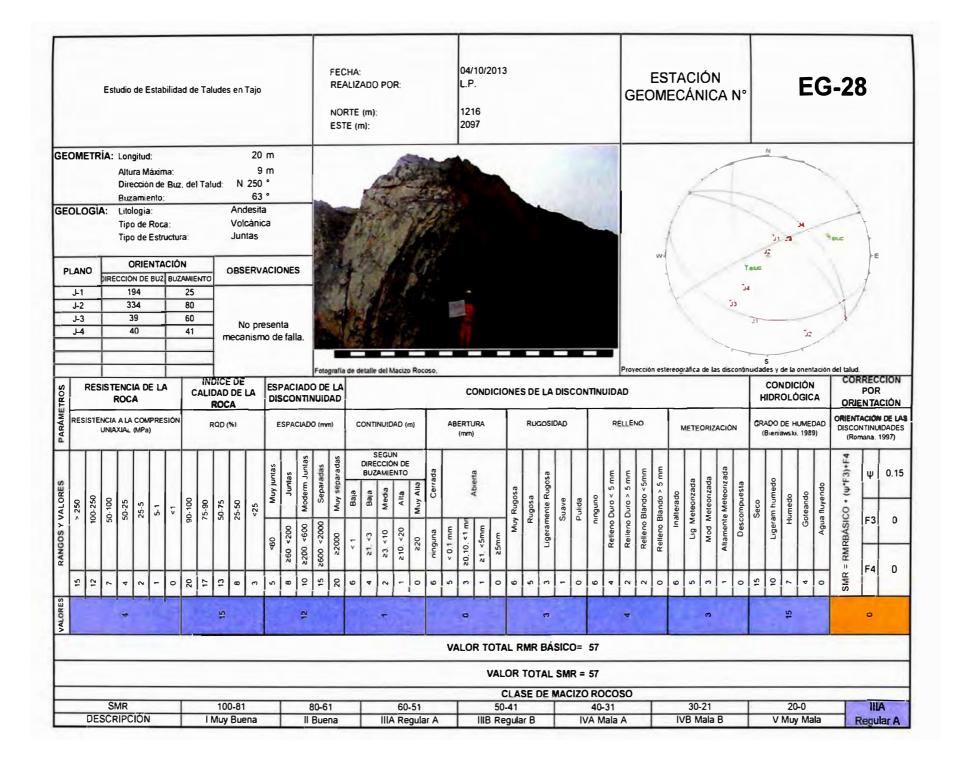


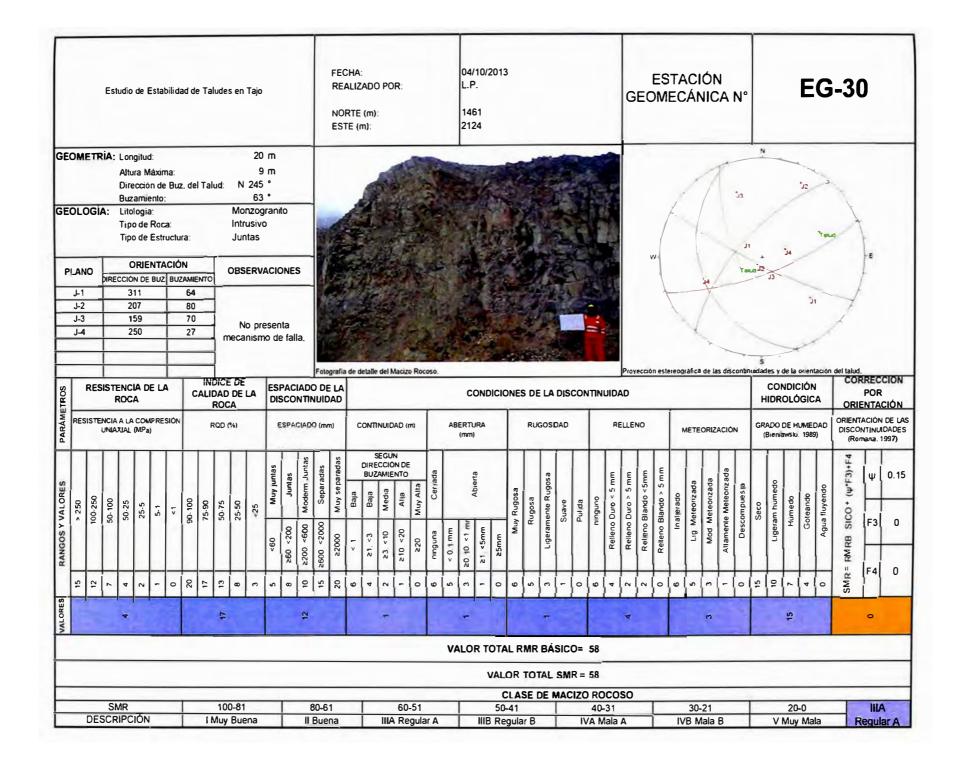


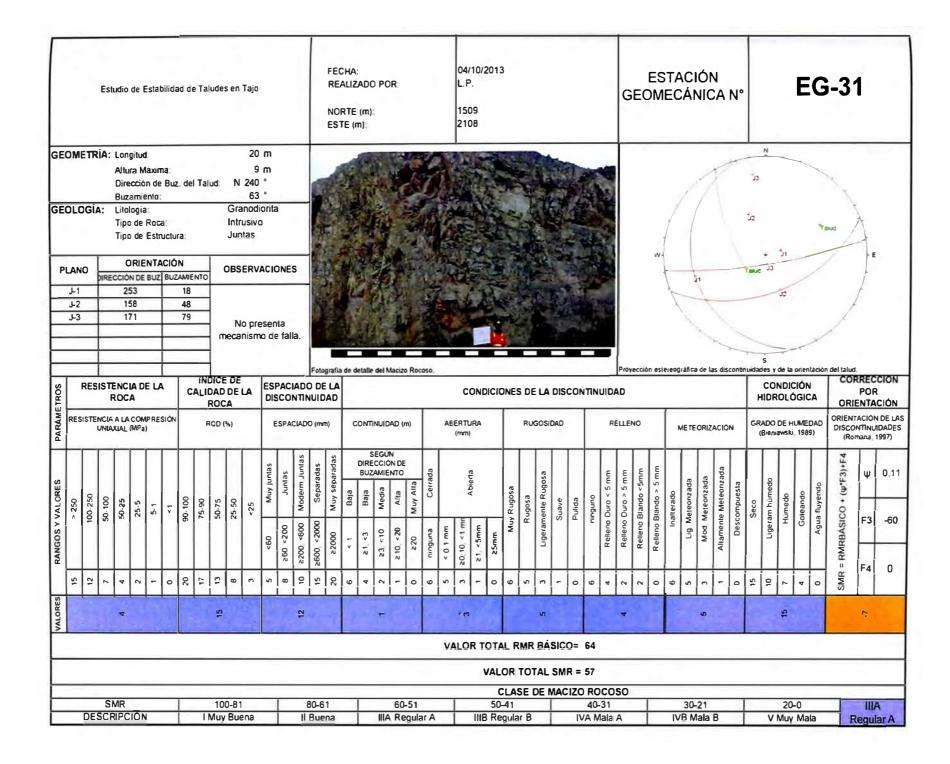


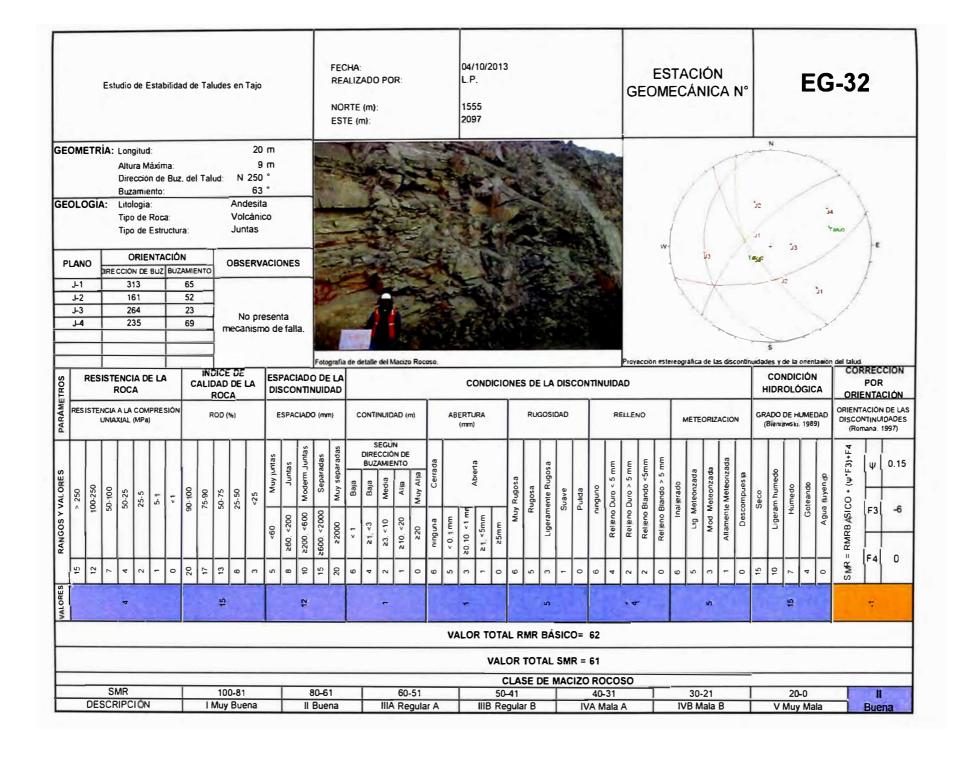


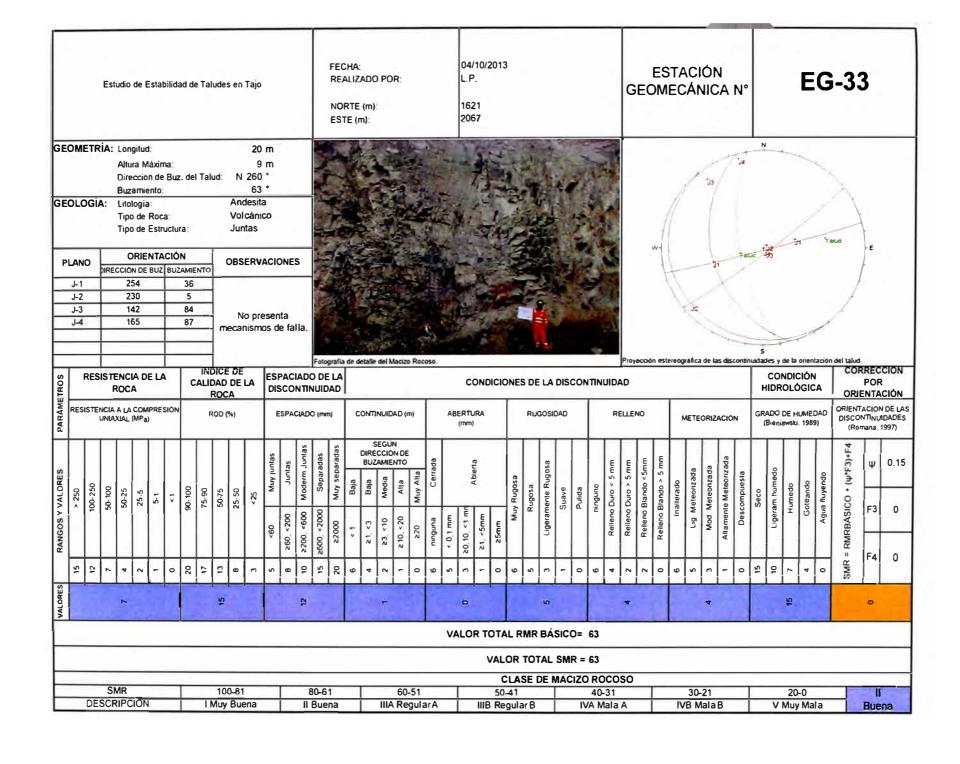


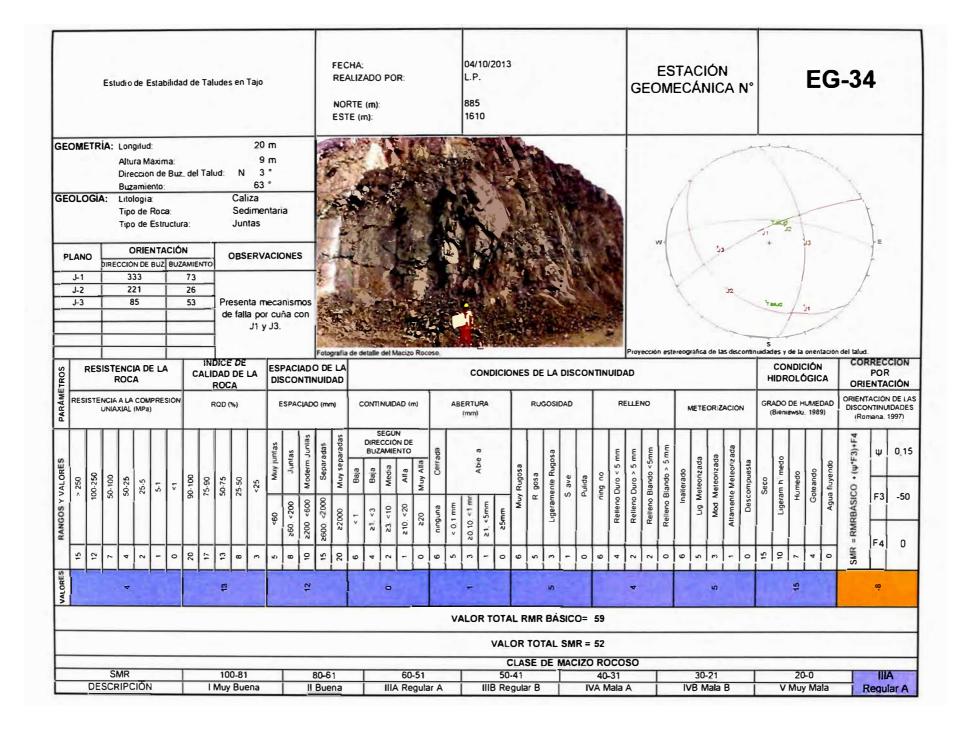


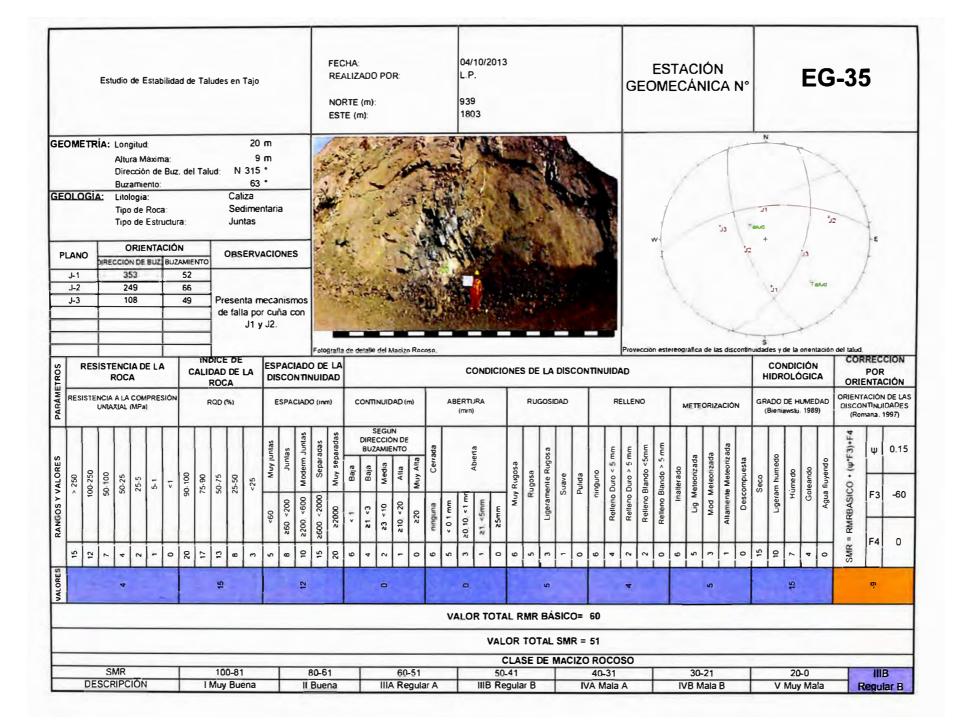


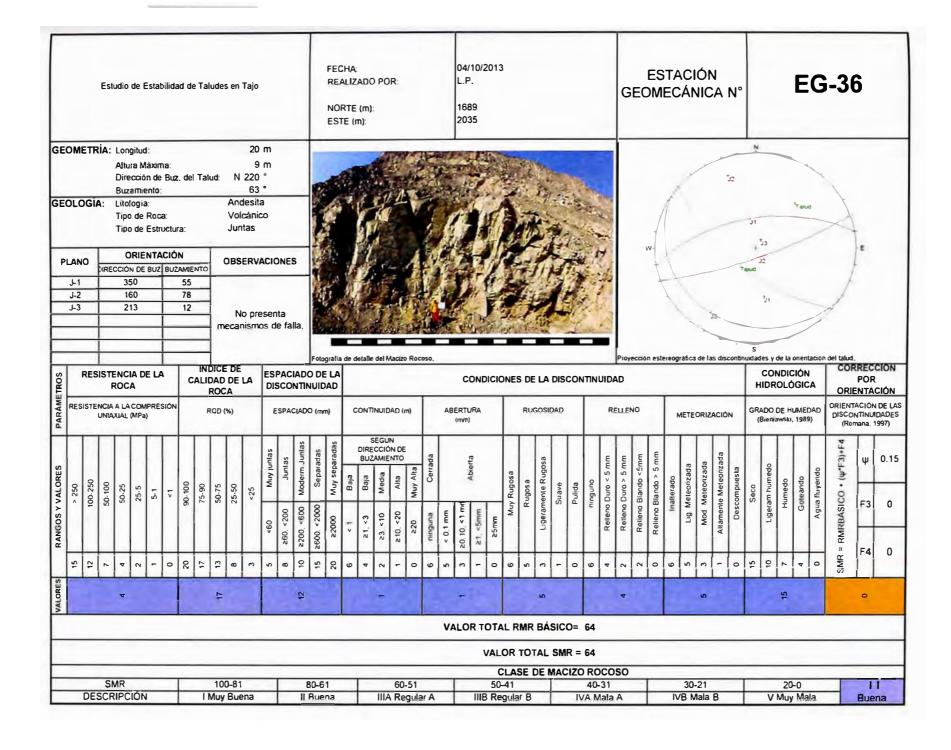


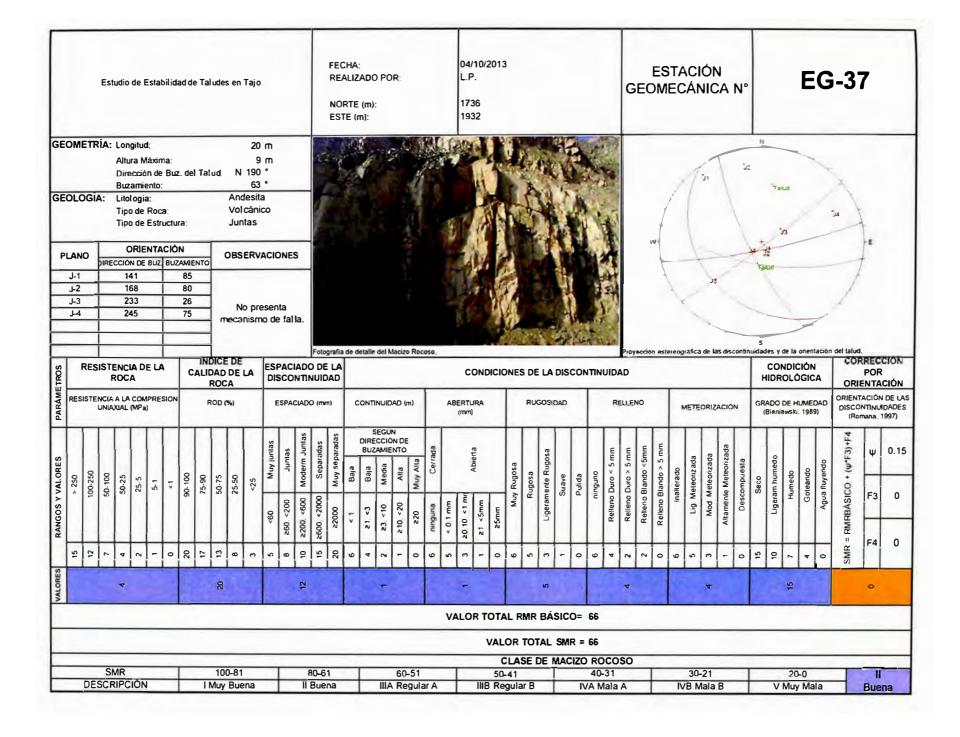


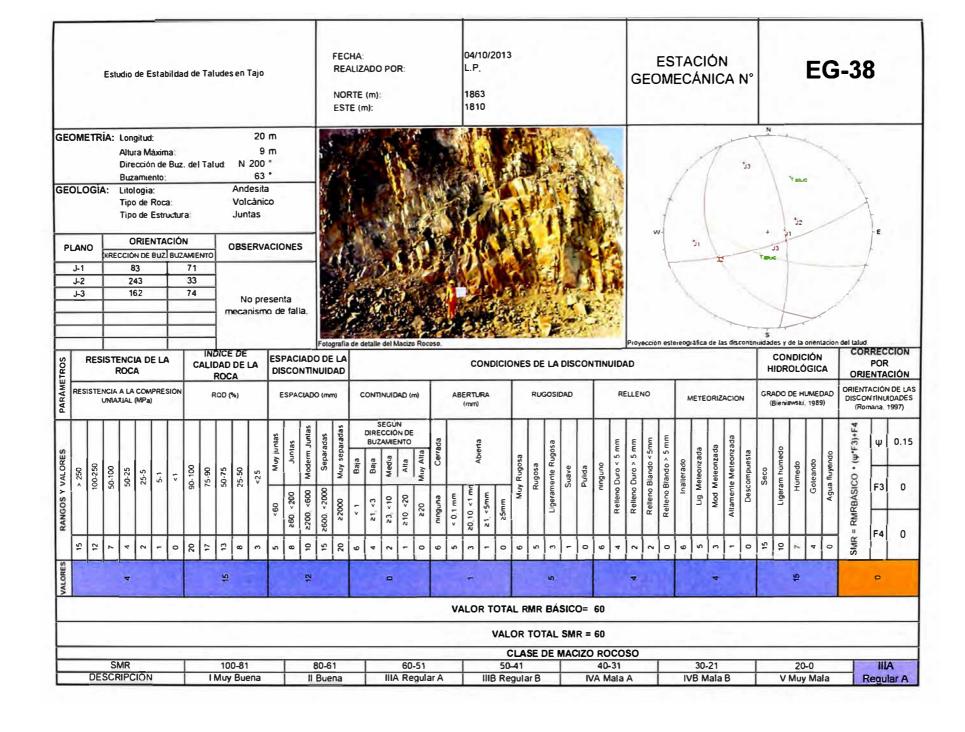


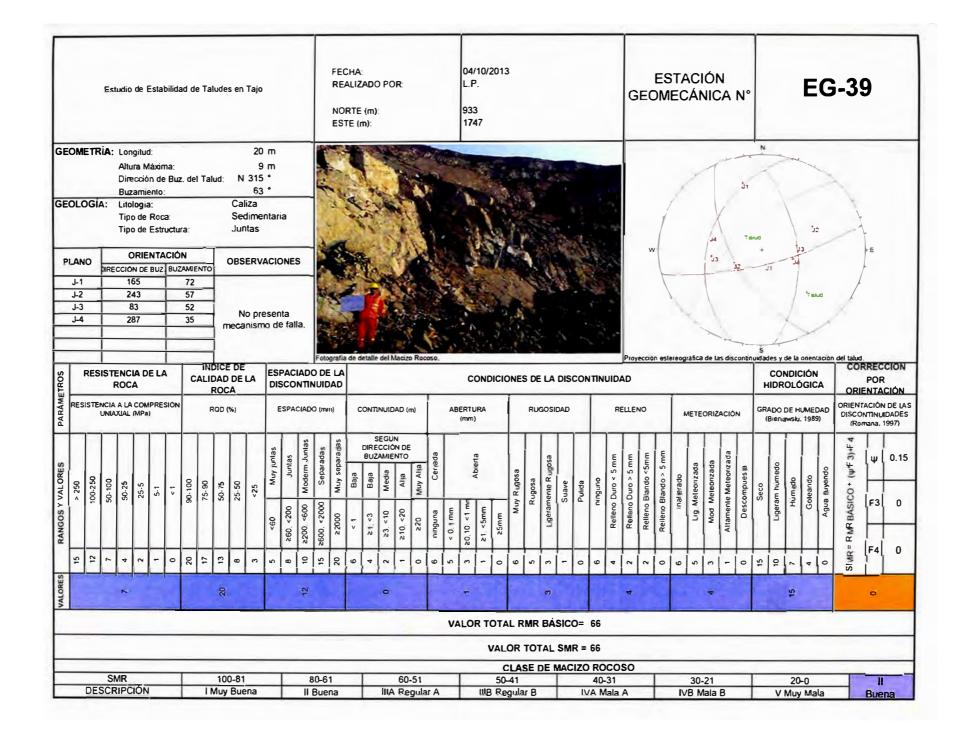

04/10/2013 FECHA: **ESTACIÓN EG-29** L.P. REALIZADO POR: Estudio de Estabilidad de Taludes en Tajo GEOMECÁNICA N° NORTE (m): 1276 2112 ESTE (m): 20 m GEOMETRÍA: Longitud: Altura Máxima: 9 m Dirección de Buz. del Talud: N 290 ° 63° Buzamiento: GEOLOGIA: Litologia: Andesita 72 Volcánica Tipo de Roca: Tipo de Estructura: Juntas **ORIENTACIÓN OBSERVACIONES J**3 PLANO IRECCIÓN DE BUZ BUZAMIENTO 333 J-1 67 J-2 193 49 J-3 28 11 Ť, No presenta mecanismo de falla. Fotografia de detalle del Macizo Rocoso. Proyección estereografica de las discontinuidades y de la onentación del talud. INDICE DE CORRECCION RESISTENCIA DE LA ESPACIADO DE LA CONDICIÓN CALIDAP DE LA CONDICIONES DE LA DISCONTINUIDAD POR DISCONTINUIDAD ROCA **HIDROLÓGICA** ROCA ORIENTACIÓN RESISTENCIA A LA COMPRESIÓN ORIENTACIÓN DE LAS ROD (%) ESPACIADO (mm) CONTINUIDAD (m) **ABERTURA** RUGOSIDAD RELLENO GRADO DE HUMEDAD UNIAXIAL (MPa) METEORIZACIÓN DISCONTINUIDADES (man) (Bieniawski, 1989) (Romana, 1997) SEGUN = RMRBASICO + (w*F3)+F4 Moderm Juntas DIRECCIÓN DE BUZAMIENTO 0.15 Ψ Relleno Duro < 5 mm Altamente Meteorizad Relleno Duro > 5 mm Mod Meteorizada Lig Meteorizada Ligeram hümedo Muy Alla Agua fluyendo Media Muy Rugosa Alla Goteando 75.90 50.75 25.50 Relieno Blando Μç 50.25 25.5 5.1 < 1 Descompu F3 -6 °600 2600, <2000 260, <200 ≥10. <20 23 <10 ninguna ≥200. 5 0 SIMR 15 20 17 13 0 15 õ 0 2 15 2 15 **VALOR TOTAL RMR BÁSICO= 56 VALOR TOTAL SMR = 55 CLASE DE MACIZO ROCOSO** SMR 100-81 80-61 60-51 50-41 40-31 30-21 20-0 IIIA DESCRIPCIÓN I Muy Buena II Buena IIIA Regular A IIIB Regular B IVA Mala A IVB Mala B V Muy Mala Regular A

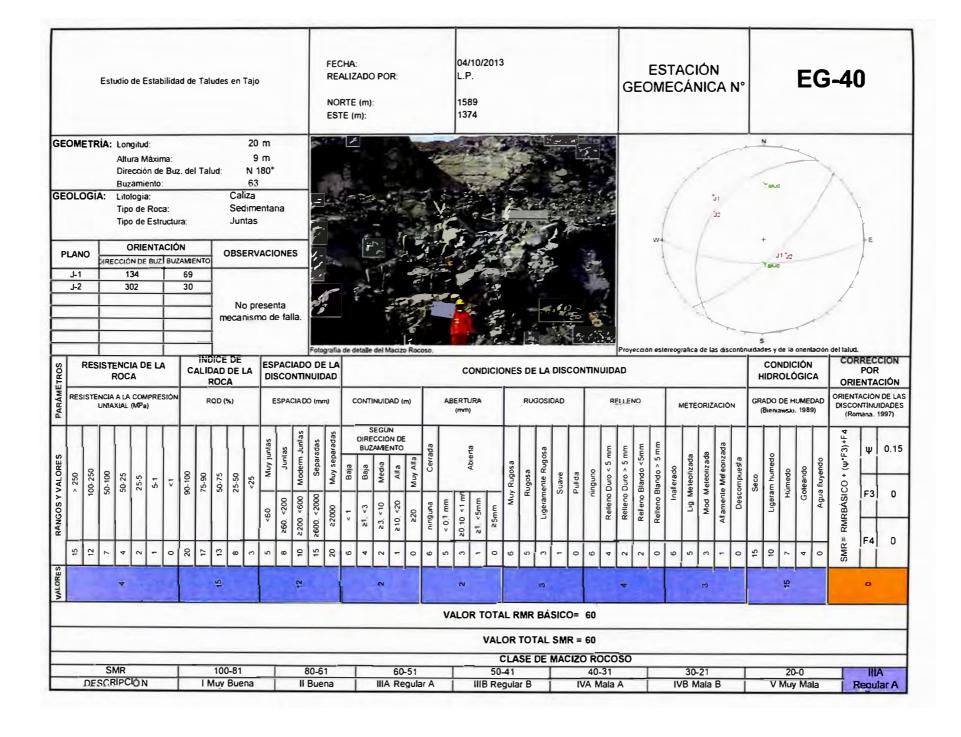


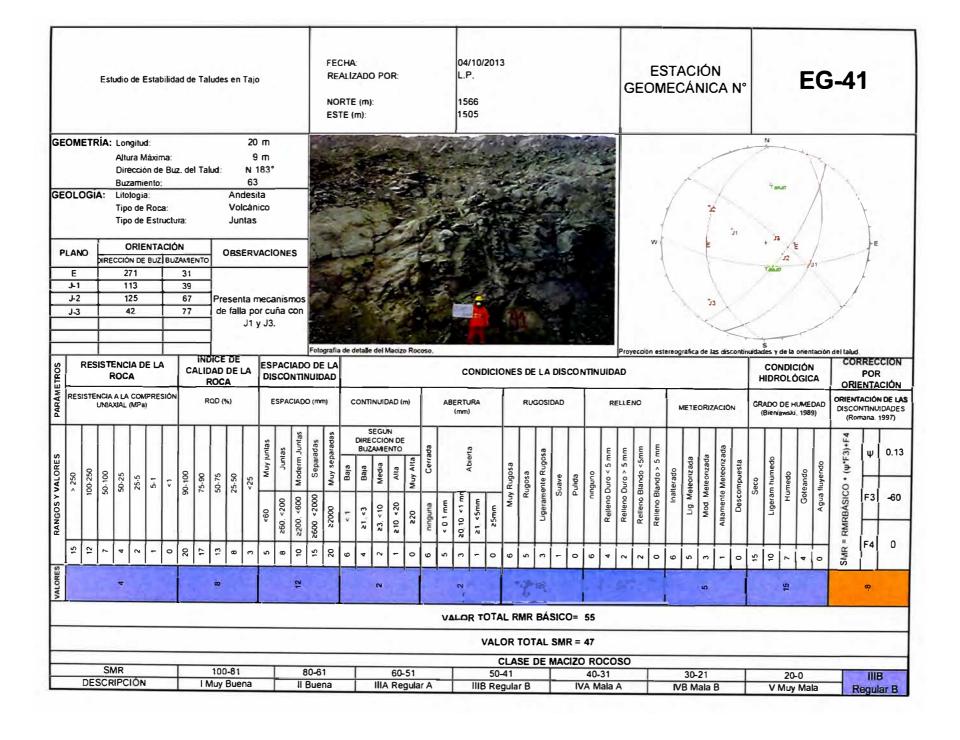


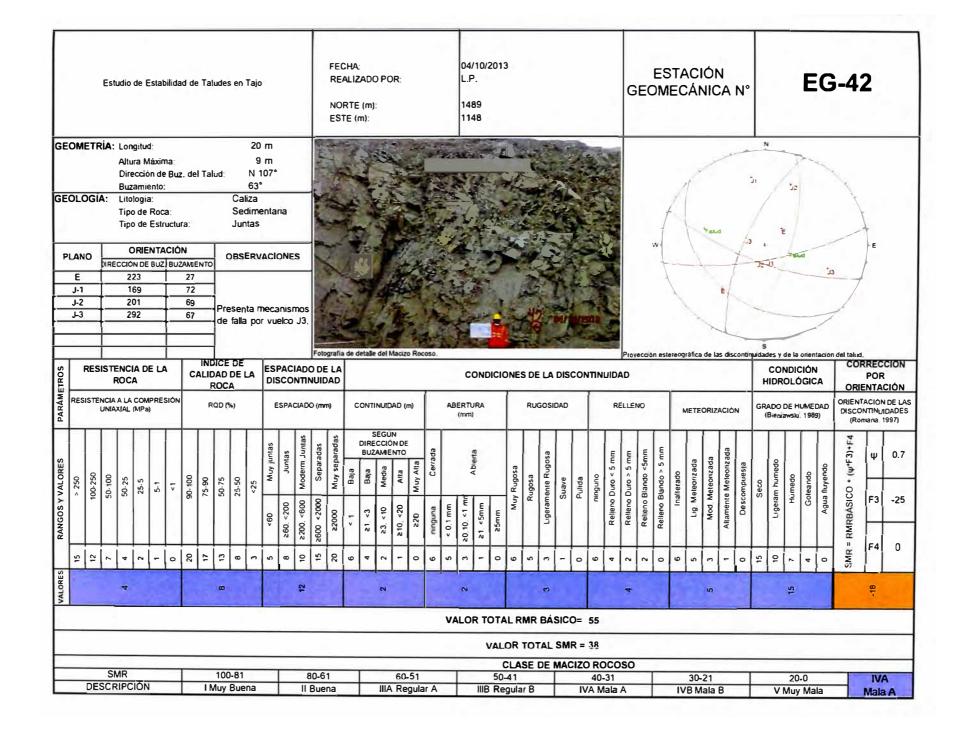


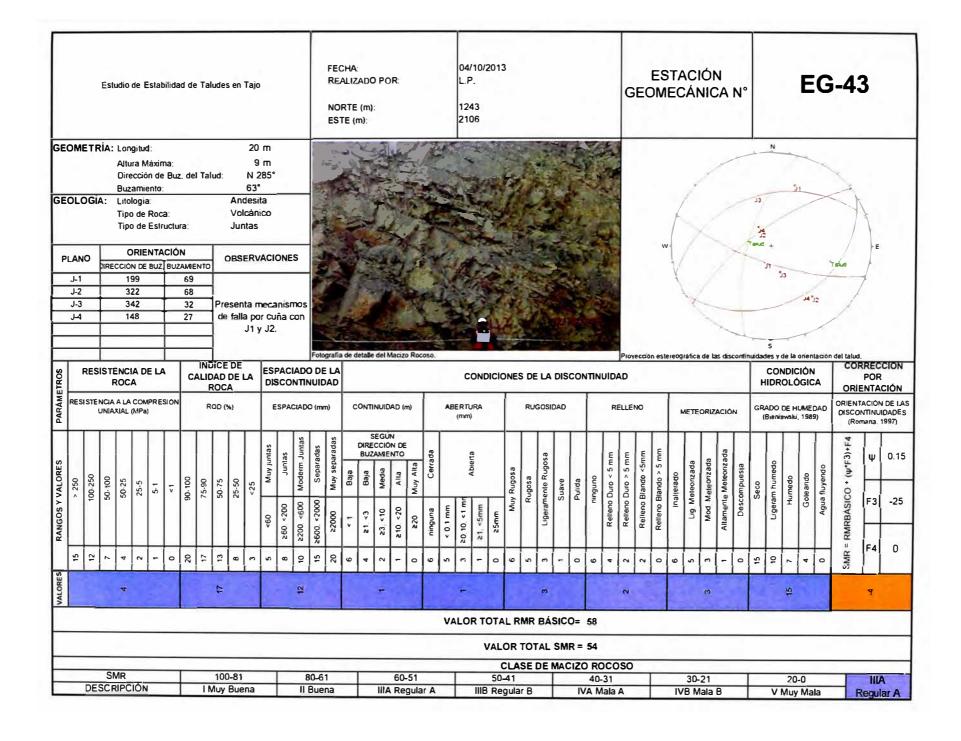


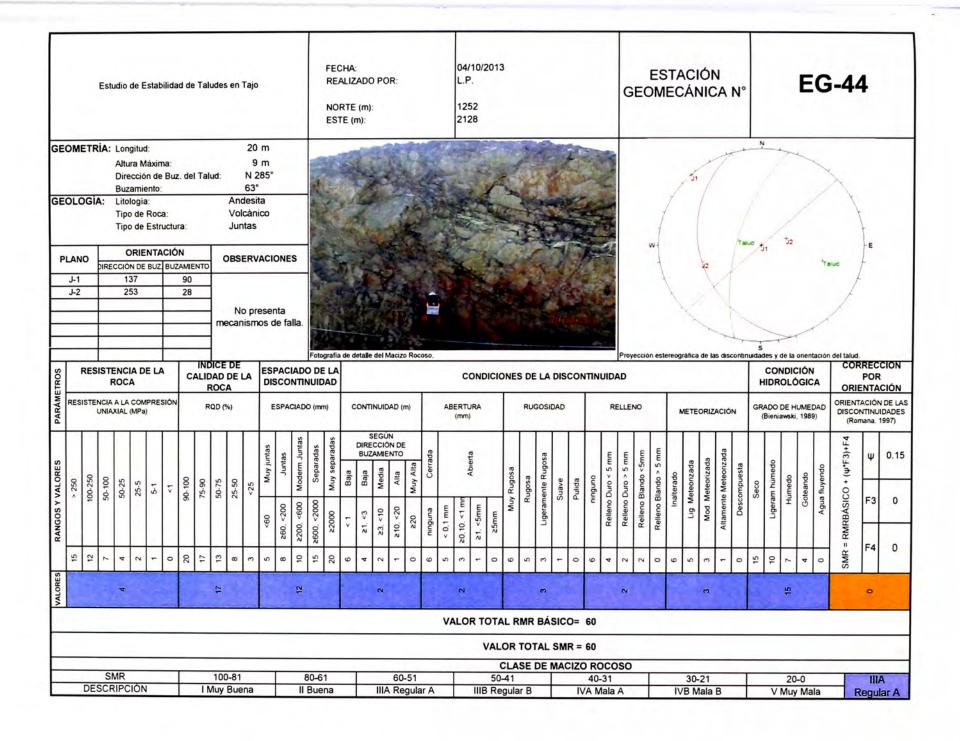


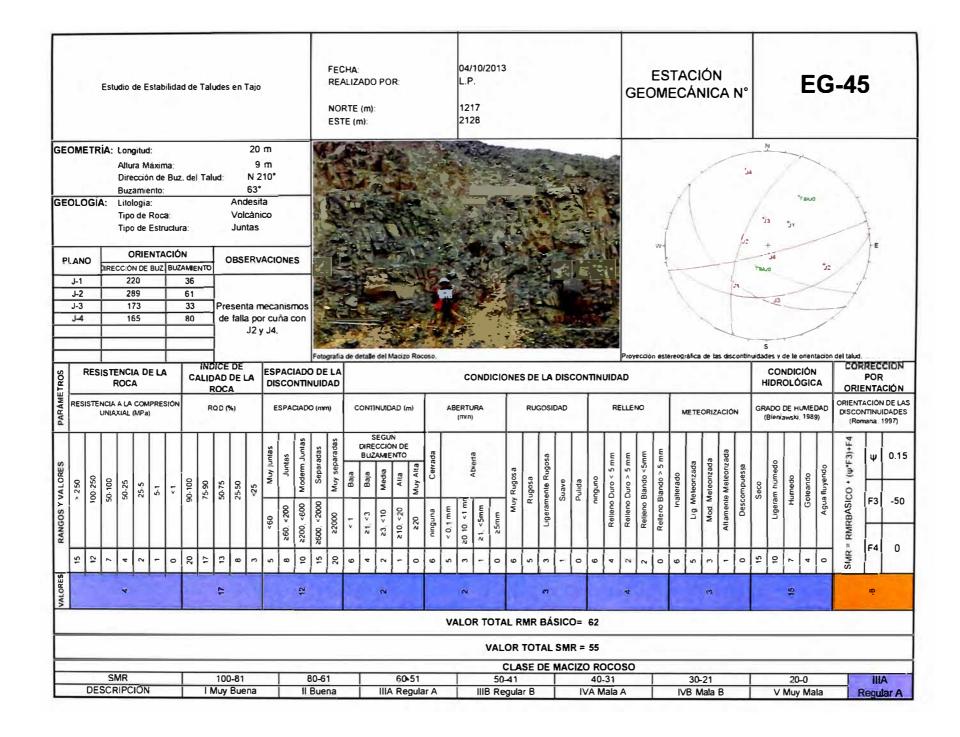


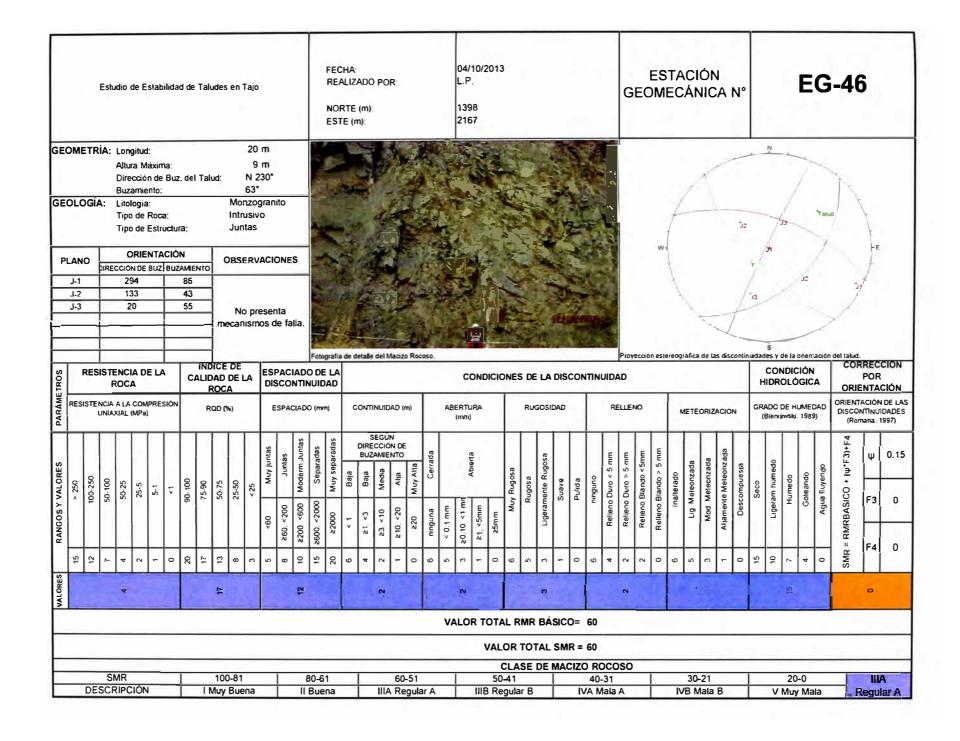


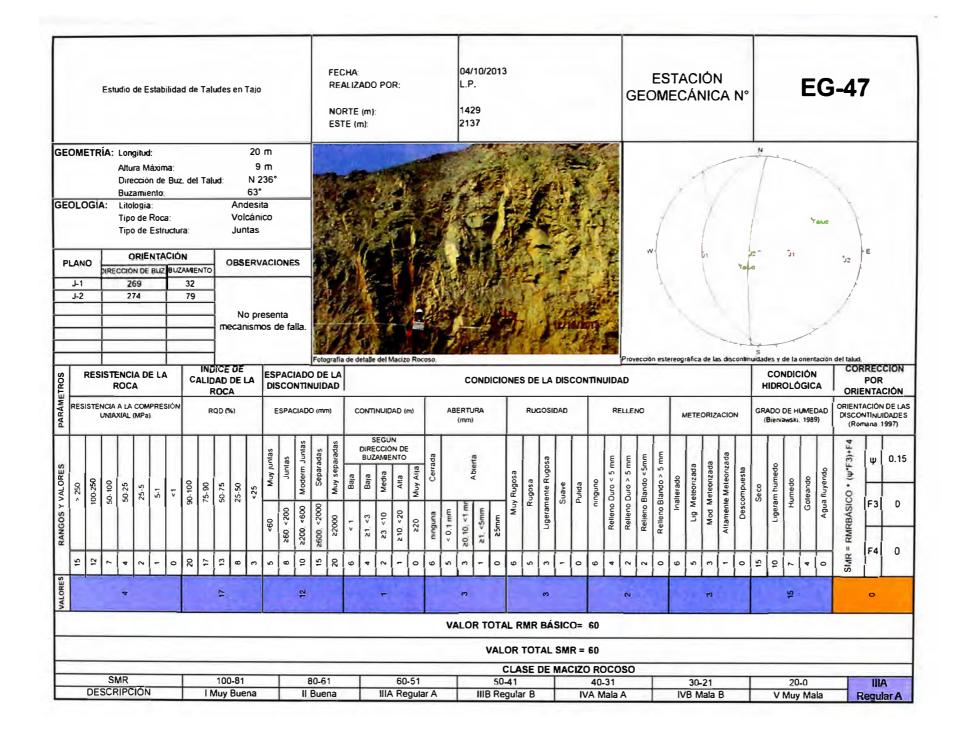


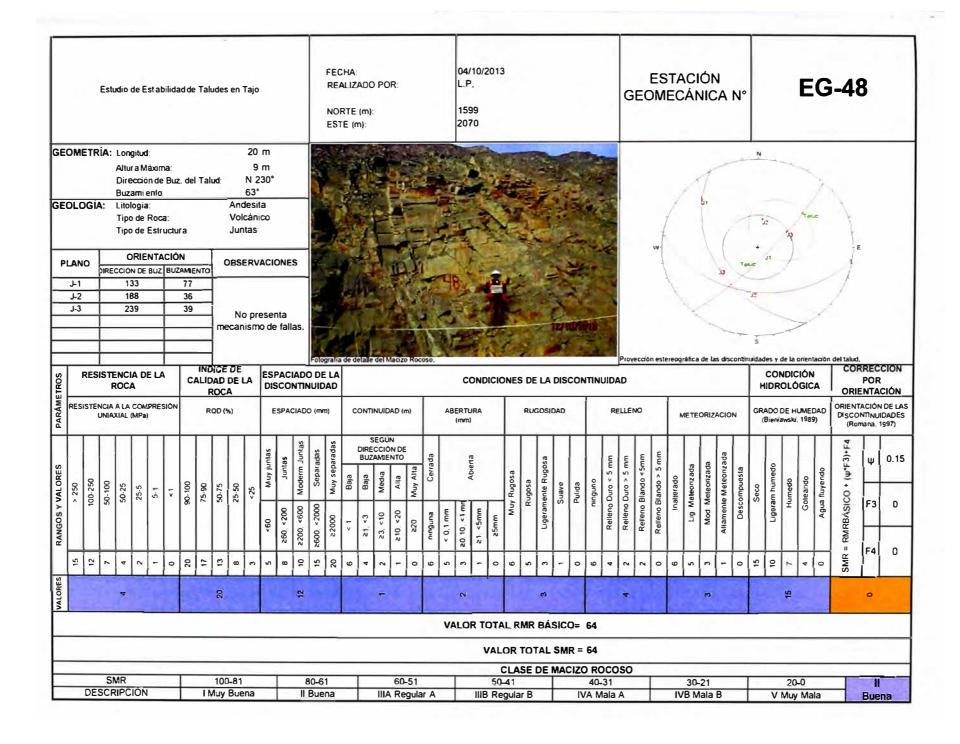


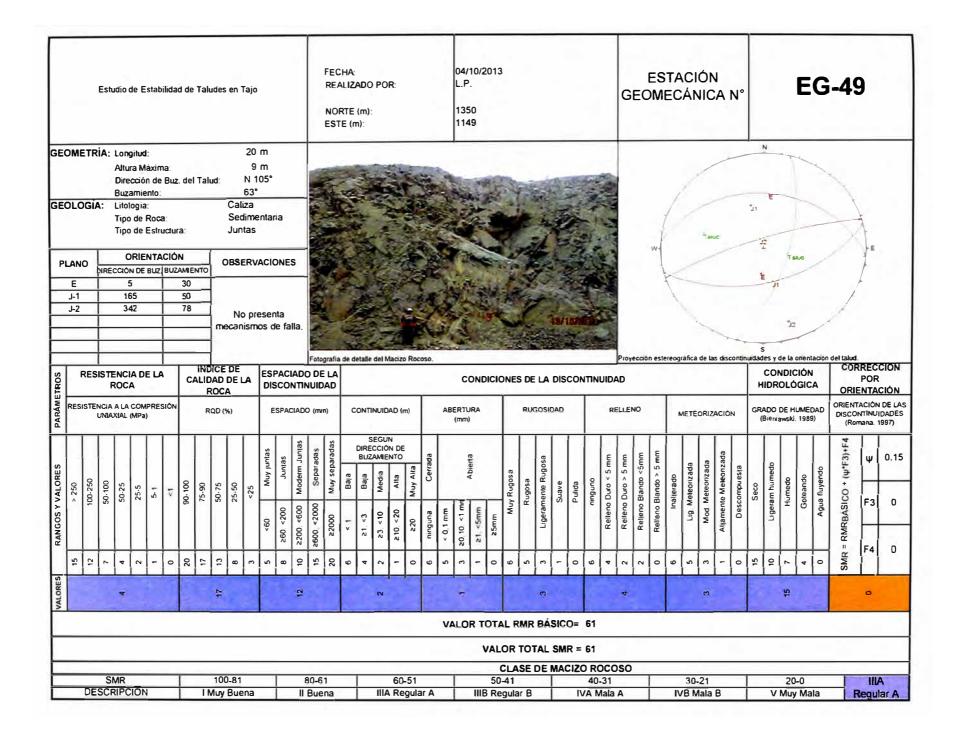


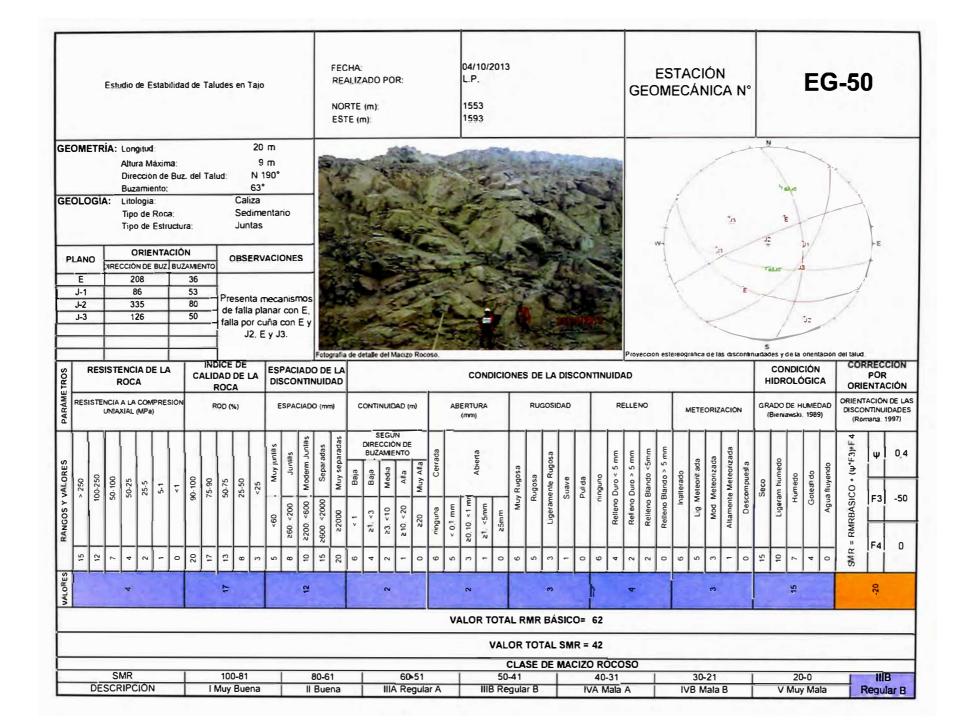












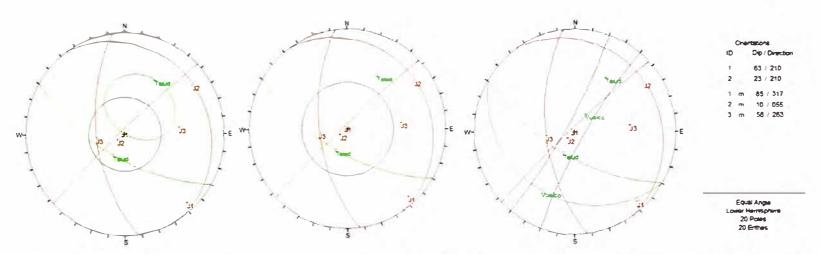


Figura Nº 1: EG-01 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y3) y Falla por Vuelco (Estable).

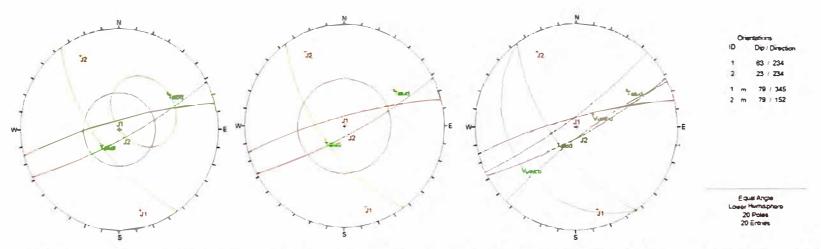
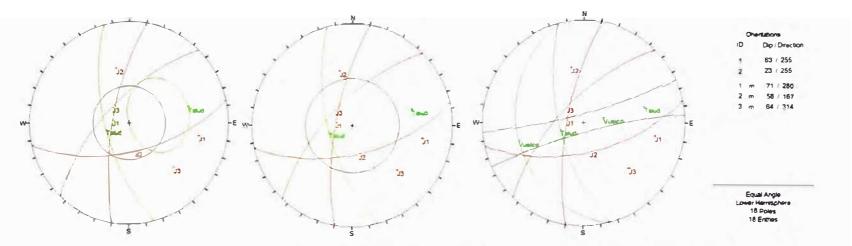
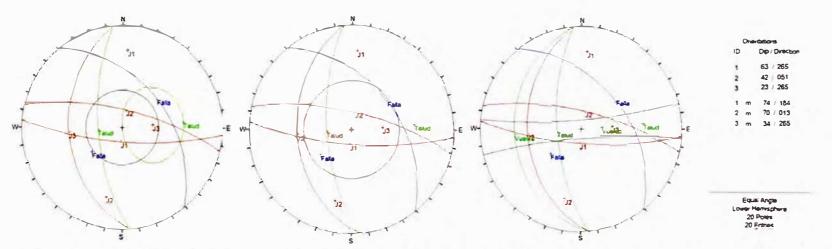




Figura Nº 2: EG-02 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

Figura Nº 3: EG-03 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y2) y Falla por Vuelco (Estable).

Figura Nº 4: EG-04 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

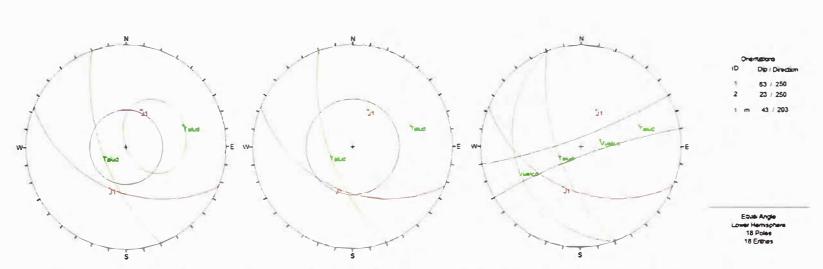
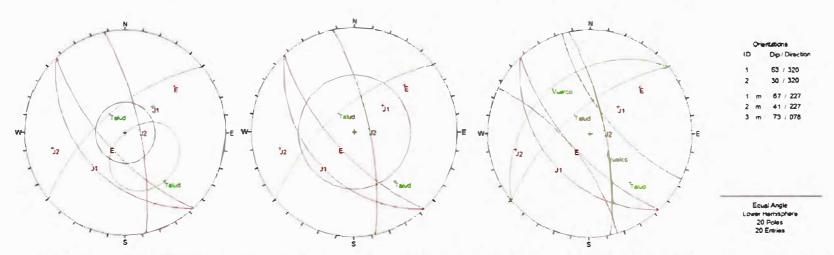



Figura Nº 5: EG-05 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

Figura Nº 6: EG-06 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

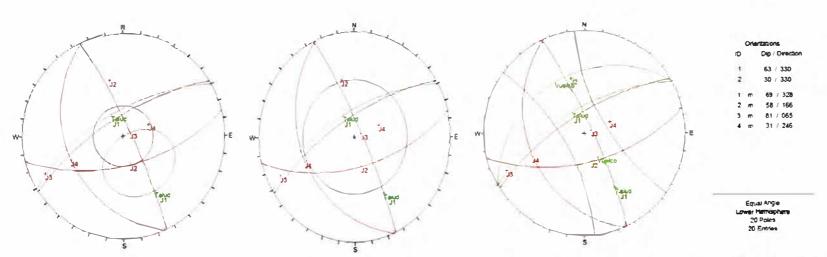


Figura Nº 7: EG-07 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

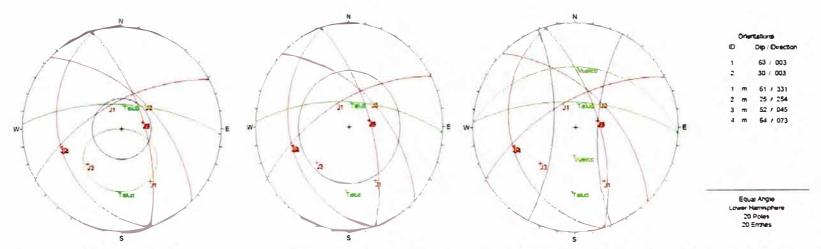


Figura Nº 8: EG-08 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y3, 2y3) y Falla por Vuelco (Estable).

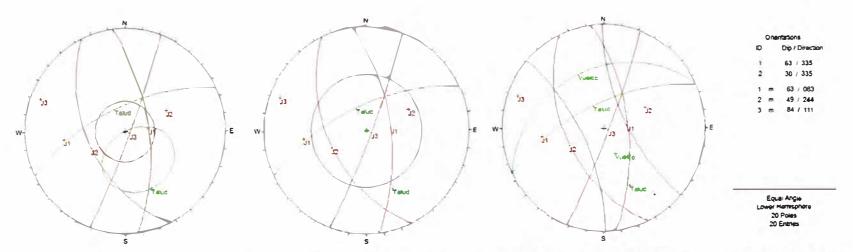


Figura Nº 9: EG-09 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y3) y Falla por Vuelco (Estable).

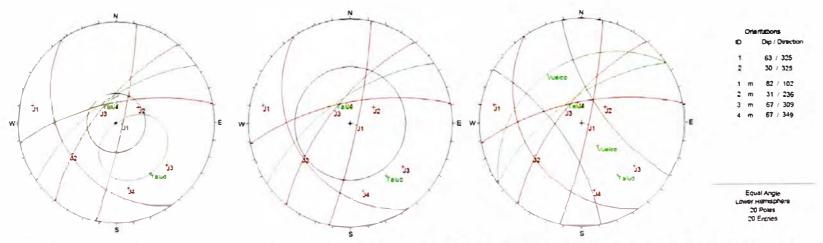


Figura Nº 10: EG-10 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y3) y Falla por Vuelco (Estable).

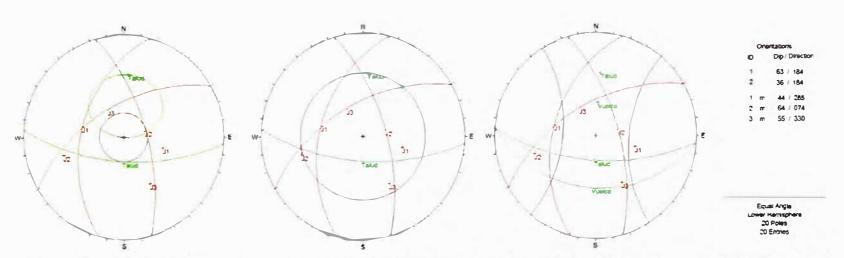


Figura Nº 11: EG-11 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

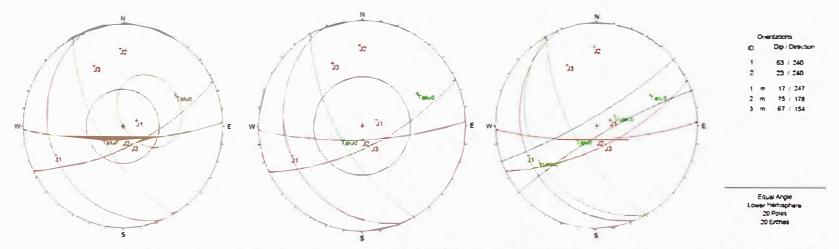


Figura Nº 12: EG-12 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

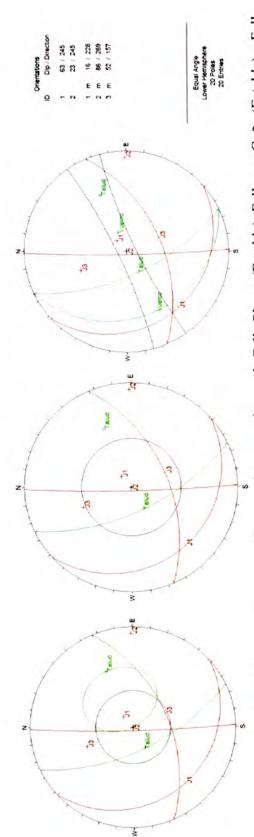


Figura Nº 13: EG-13 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

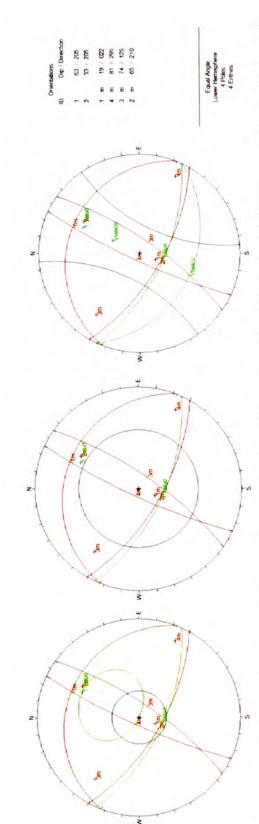


Figura Nº 14: EG-14 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

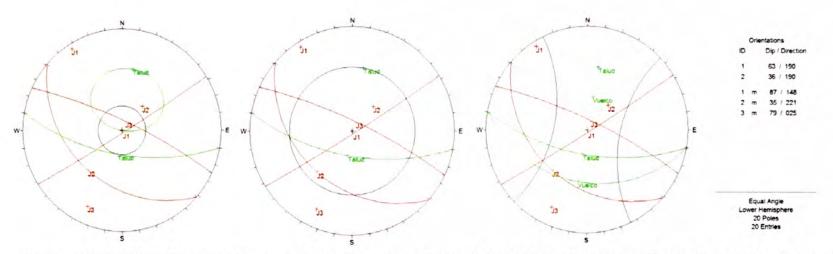
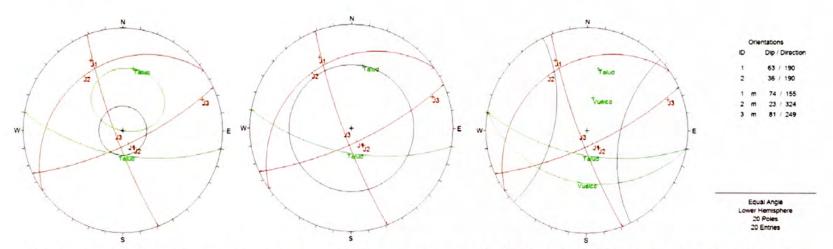



Figura Nº 15: EG-15 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y2) y Falla por Vuelco (3).

Figura Nº 16: EG-16 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

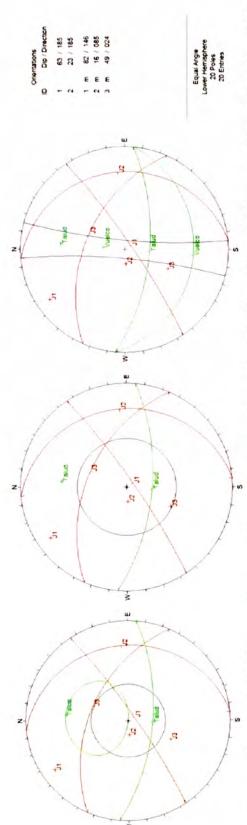


Figura Nº 17: EG-17 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

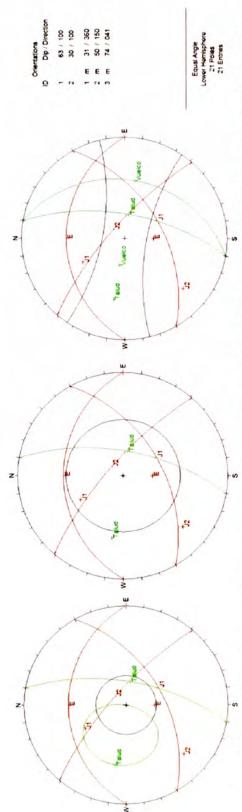


Figura Nº 18: EG-18 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y2) y Falla por Vuelco (Estable).

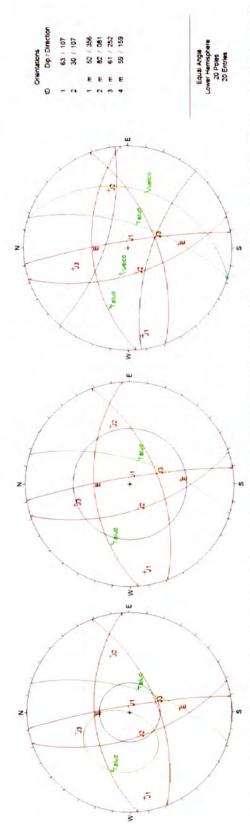


Figura Nº 19: EG-19 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

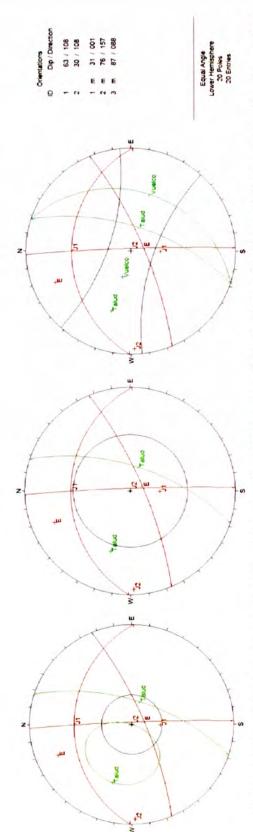


Figura Nº 20: EG-20 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

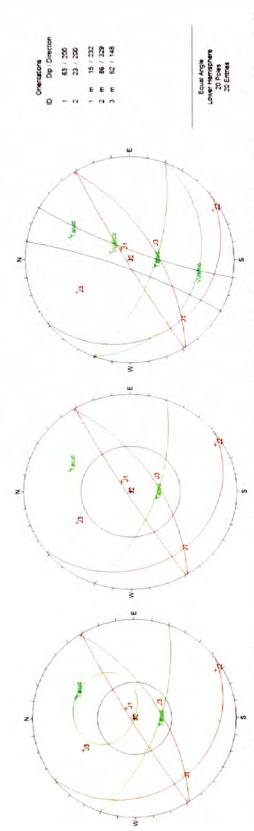


Figura Nº 21: EG-21 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

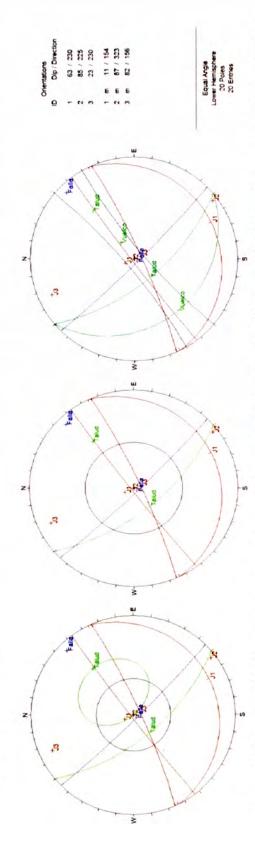


Figura Nº 22: EG-22 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (2y3) y Falla por Vuelco (Estable).

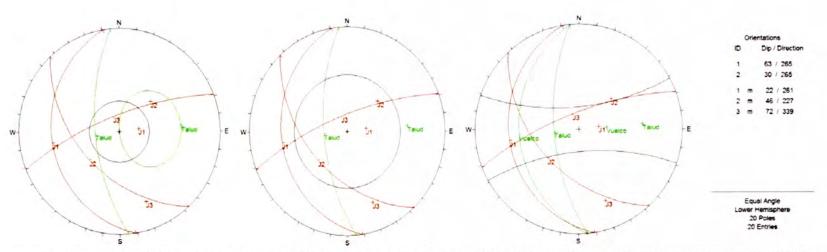
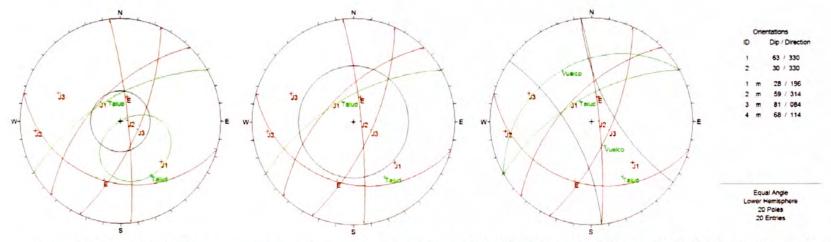



Figura Nº 23: EG-23 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (2y3) y Falla por Vuelco (Estable).

Figura Nº 24: EG-24 Diagrama Estereográfico para los mecanismos de Falla Planar (1), Falla por Cuña (1y2) y Falla por Vuelco (Estable).

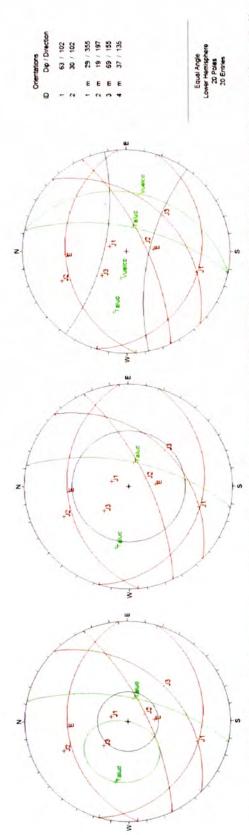


Figura Nº 25: EG-25 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

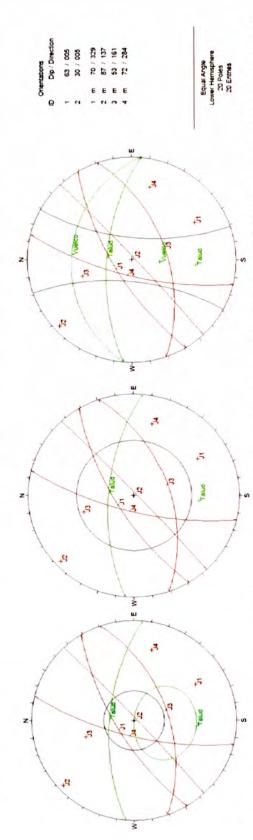


Figura Nº 26: EG-26 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

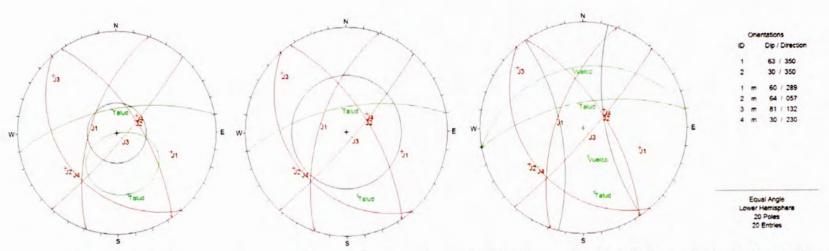


Figura Nº 27: EG-27 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y2) y Falla por Vuelco (Estable).

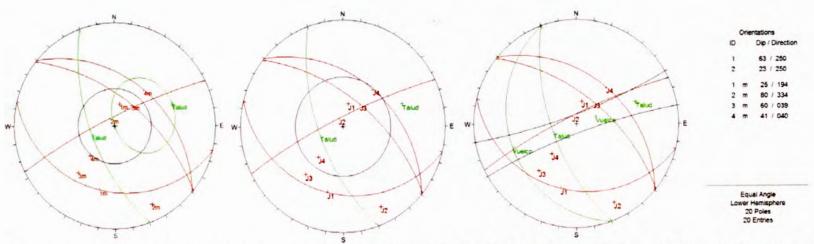


Figura Nº 28: EG-28 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

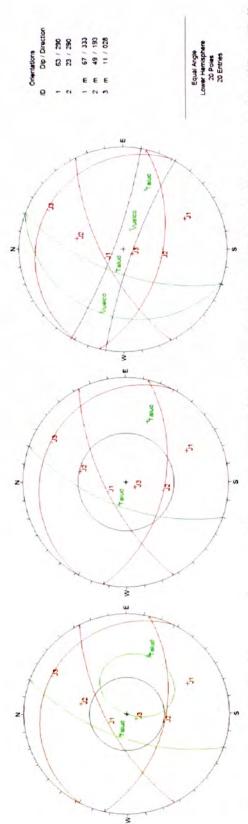


Figura Nº 29: EG-29 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

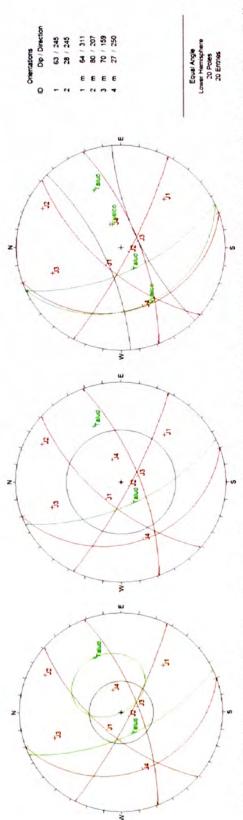


Figura Nº 30: EG-30 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

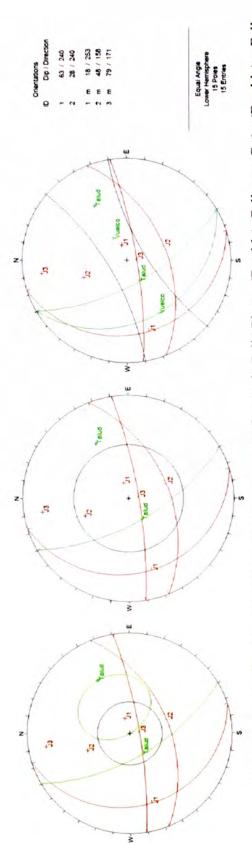


Figura Nº 31: EG-31 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

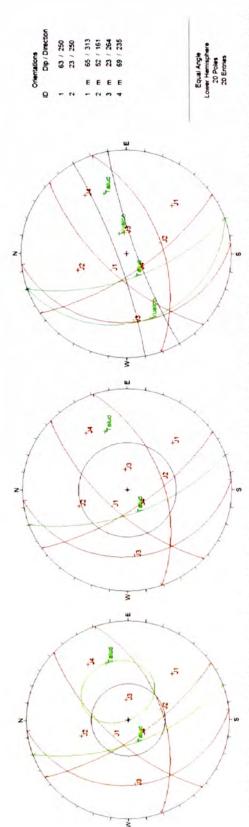


Figura Nº 32: EG-32 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

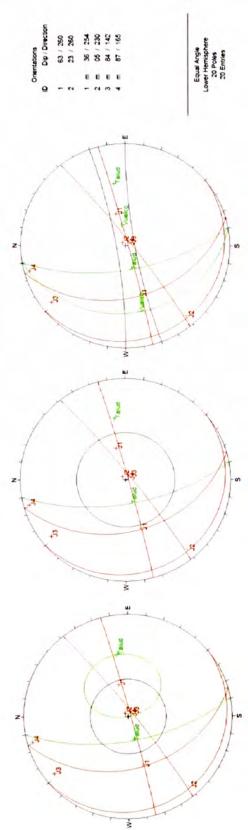


Figura Nº 33: EG-33 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

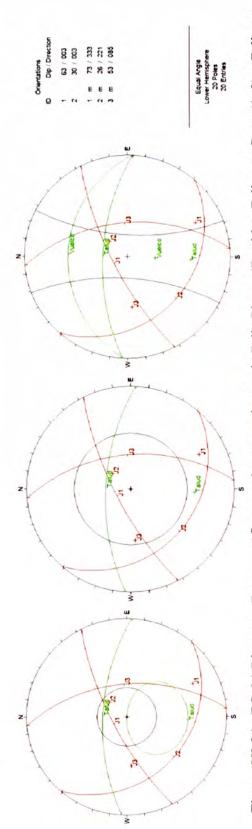


Figura Nº 34: EG-34 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y3) y Falla por Vuelco (Estable).

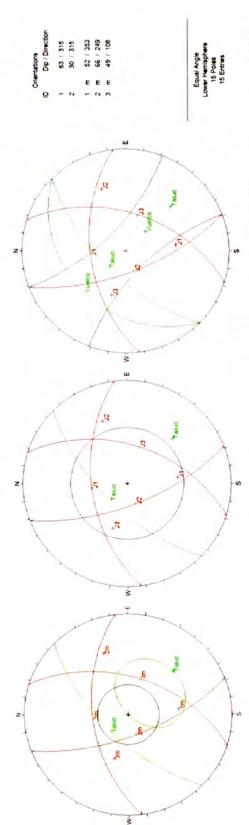


Figura Nº 35: EG-35 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y2) y Falla por Vuelco (Estable).

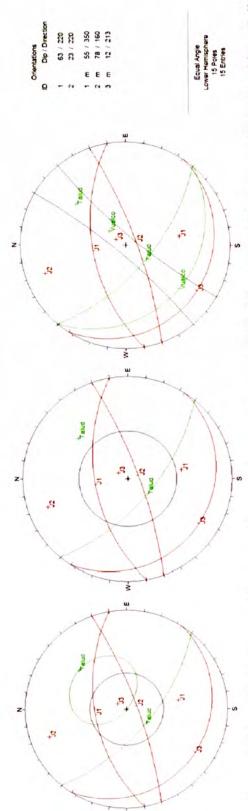


Figura Nº 36: EG-36 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

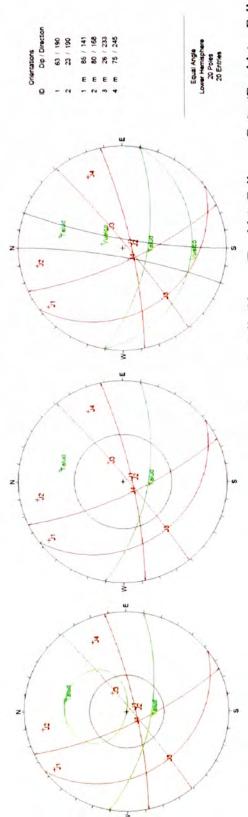


Figura Nº 37: EG-37 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

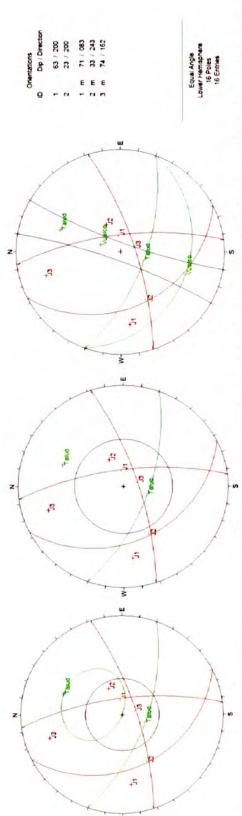


Figura Nº 38: EG-38 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

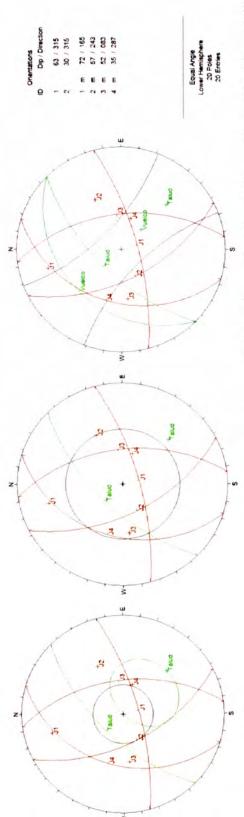


Figura Nº 39: EG-39 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

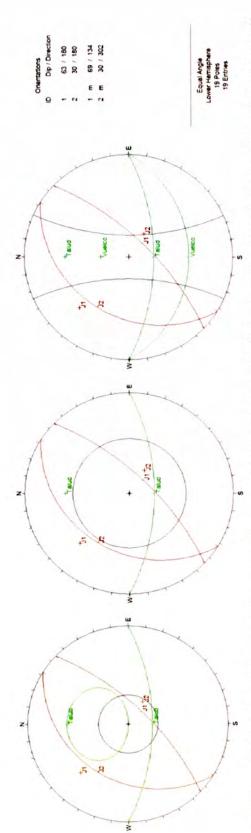


Figura Nº 40: EG-40 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

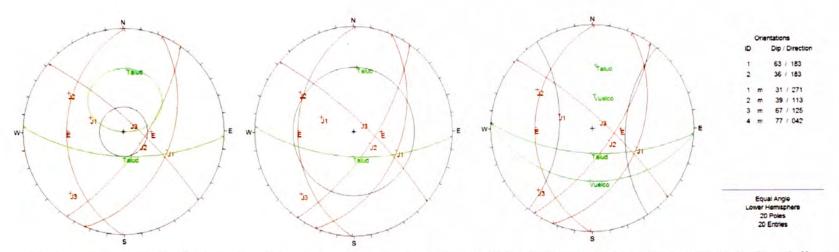


Figura Nº 41: EG-41 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y3) y Falla por Vuelco (Estable).

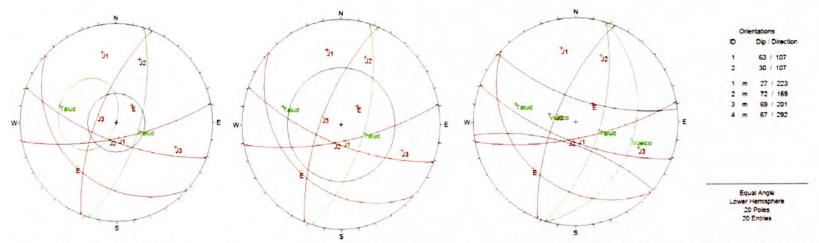


Figura Nº 42: EG-42 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (3).

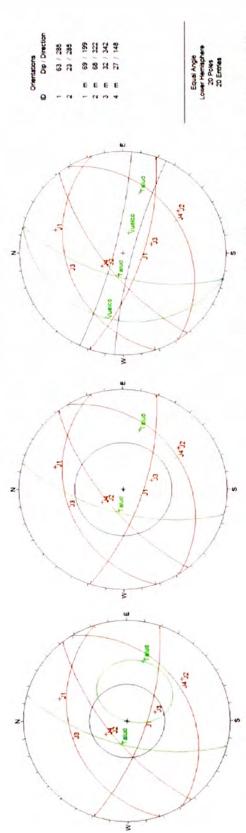


Figura Nº 43: EG-43 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (1y2) y Falla por Vuelco (Estable).

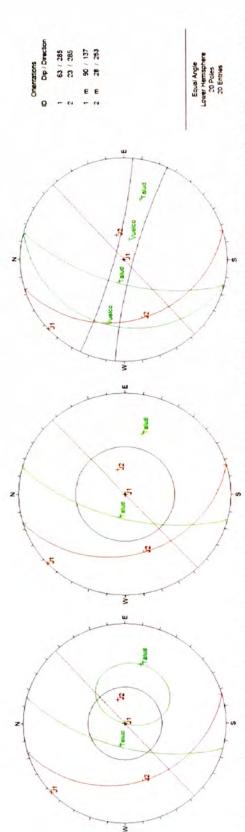


Figura Nº 44: EG-44 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

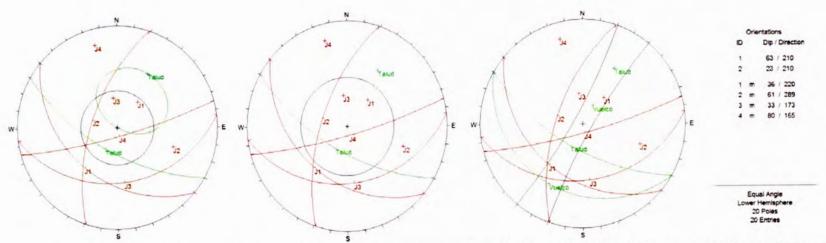


Figura Nº 45: EG-45 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (2y4) y Falla por Vuelco (Estable).

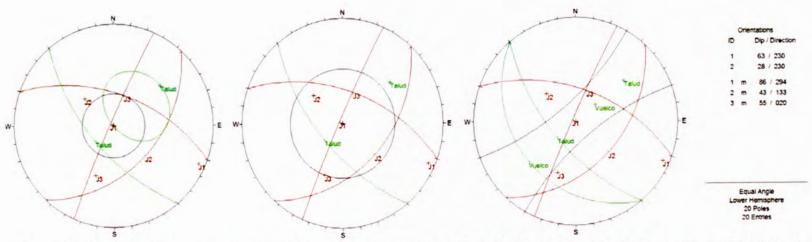


Figura Nº 46: EG-46 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

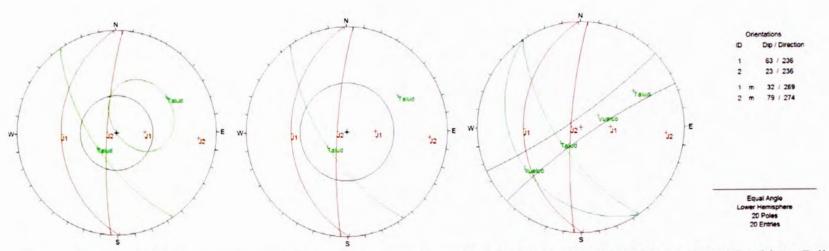


Figura Nº 47: EG-47 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

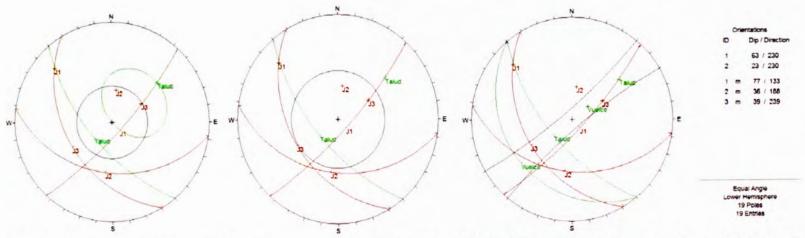


Figura Nº 48: EG-48 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

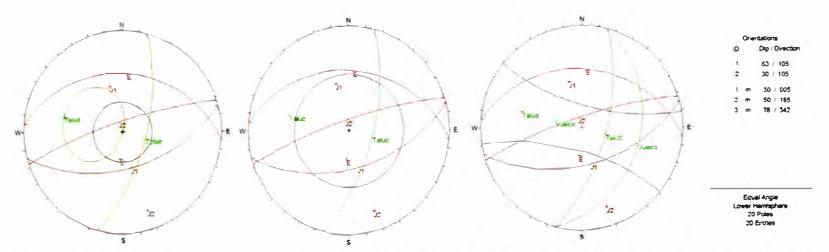


Figura Nº 49: EG-49 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

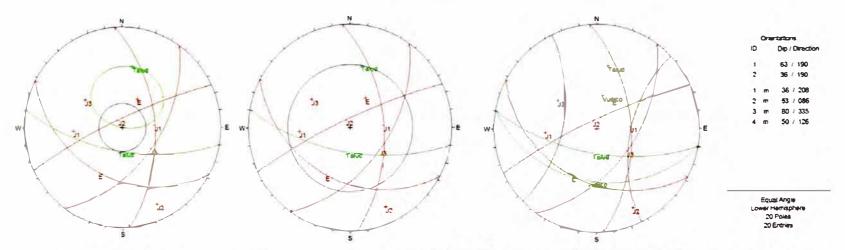
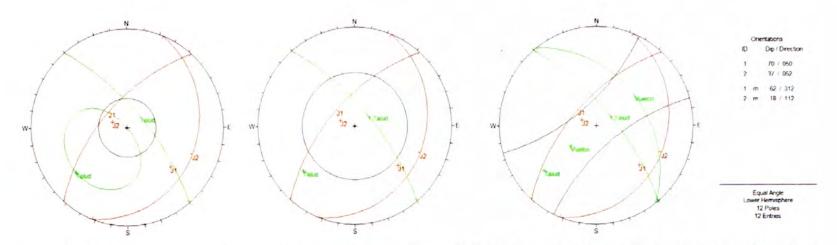
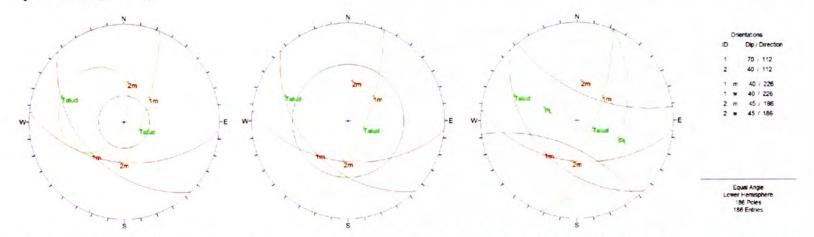
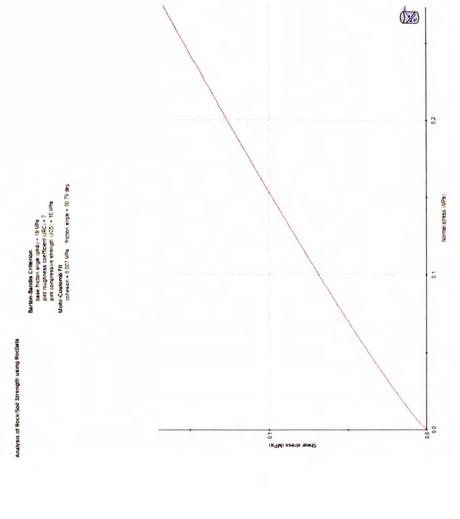
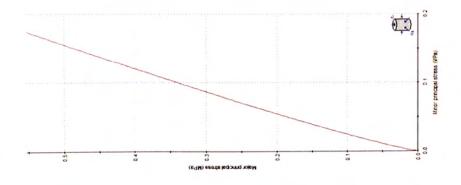
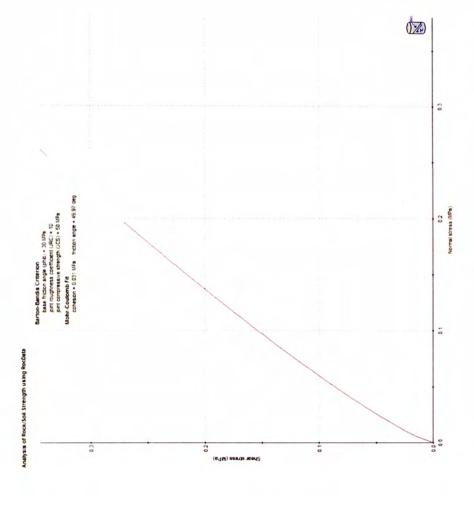
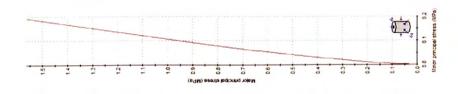


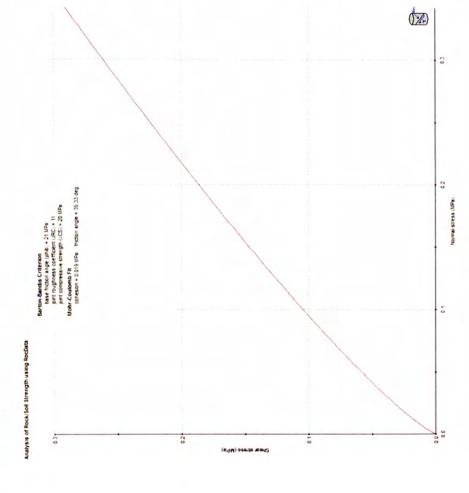
Figura Nº 50: EG-50 Diagrama Estereográfico para los mecanismos de Falla Planar (1), Falla por Cuña (1y2, 1y3) y Falla por Vuelco (Estable).

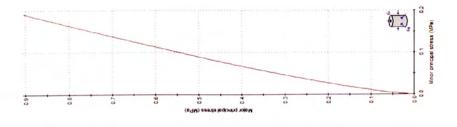





Figura Nº 51: PR-01 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).

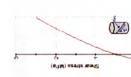

Figura Nº 52: PR-02 Diagrama Estereográfico para los mecanismos de Falla Planar (Estable), Falla por Cuña (Estable) y Falla por Vuelco (Estable).


Envolvente No Lineal Hoek - Brown Arcilla




Envolvente No Lineal Hoek - Brown Calcita

Envolvente No Lineal Hoek - Brown Óxidos



Envolvente No Lineal Hoek - Brown Caliza

Analysis of Rock/Soil Strength using Rocbata

Hoek-Arown Classification
match unable forgessure stropp = 55 MPs
react unable forgessure stropp = 55 MPs
031-57 m = 1928 Chartener factor = 0.5
Hoek-Arown Cirterion
m = 2-428 = 5-10022 s = 0.504
Mont-Coulomb Ff
cutessor = 0.543 MPs interior stope = 64.7 deg
Rock Mass Permetter = 0.744 MPs
unable correspon = 0.124 MPs
unable correspo

Normal stress (MPa)

Envolvente No Lineal Hoek - Brown

Monzogranodiorita

Analytis of Rock/Soil Strength using RocData

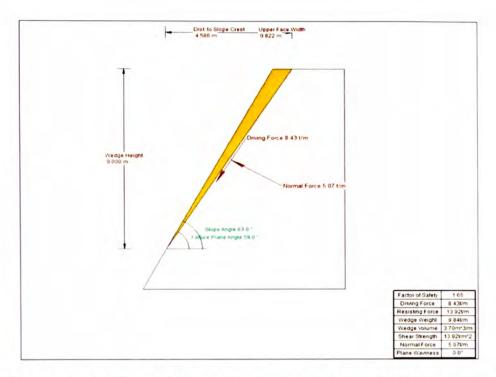
Hoek-Brown Classification

estact unappeal compressive strength + 140 NPs GSI + 51 mi + 22 Desturbance factor + 0.5 Moek-Brown Criterion mb • 2.132 s • 00015 s • 0.505

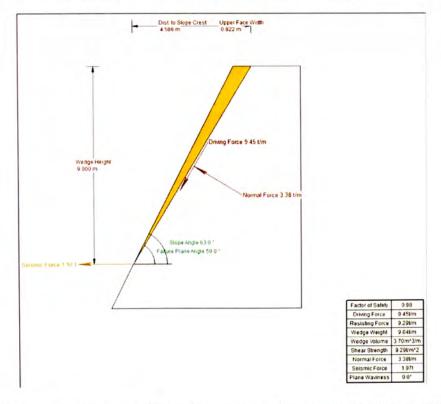
Mahr-Coulomb Fit

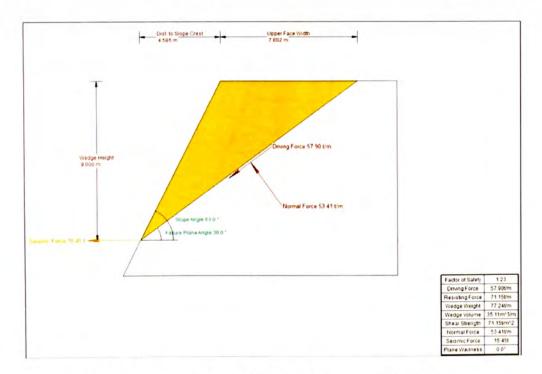
cohesion + 0 514 MPs - friction engle + 66 00 deg

mineson + 0.514 MPs Indian angle + 60.0 Rock Mass Parameters tenset strength + -0.095 MPs unacual compressive strength + 5.155 MPs global strength - 25.990 MPs indials of deformation + 7944 40 MPs


Envolvente No Lineal Hoek - Brown Volcánico Andesítico

Analysis of Rock/Soil Strength using RocData


Hoek, Brown Classification
intal classification
(SS - 60 m = 23.62 Defurtance factor = 6.5
Hoek-Brown Criterion
m = 23.65 = 6.0 M = 8 = 6.50
Hoek-Brown Criterion
constant - 1.32 = 1.0 M = 8.0 (S0
Rock Mass Parmeter ST = 6.0 M = 8.0 (S0
Rock Mass Parmeter st = 6.0 M = 8.0 (S0 M = 8.


Figura Nº 01: EG-24. Talud: Dip/Dip.Direc. = 63°/330°; Discontinuidad J1: Dip/Dip.Direc. = 28°/196°. Análisis Estático para Mecanismo de Falla Planar.

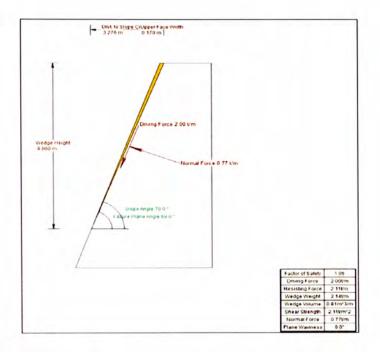
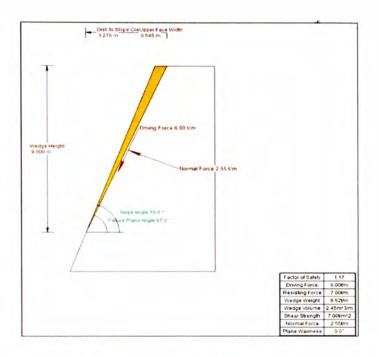
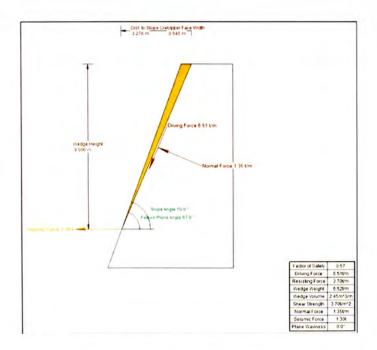
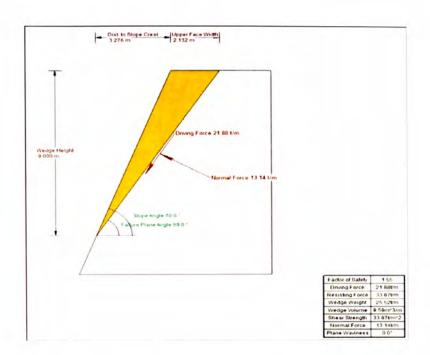
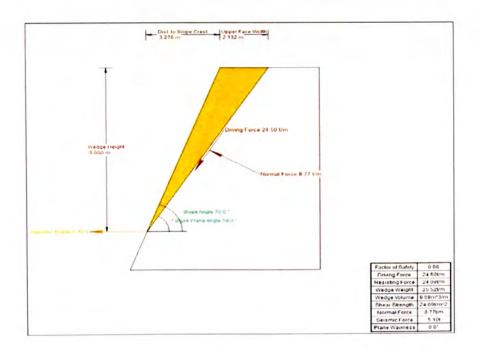

Figura Nº 02: EG-24. Talud: Dip/Dip.Direc. = 63°/330°; Discontinuidad J1: Dip/Dip.Direc. = 28°/196°. Análisis Pseudo-Estático para Mecanismo de Falla Planar.

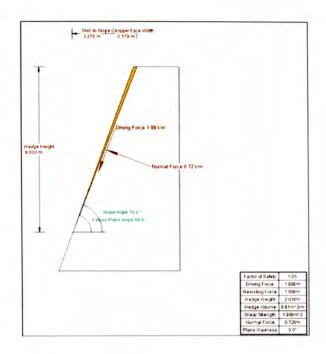

Figura Nº 03: EG-50. Talud: Dip/Dip.Direc. = 63°/190°; Estrato: Dip/Dip.Direc. = 36°/208°. Análisis Estático para Mecanismo de Falla Planar.

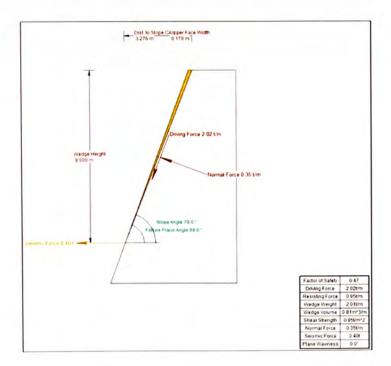

Figura Nº 04: EG-50. Talud: Dip/Dip.Direc. = 63°/190°; Estrato: Dip/Dip.Direc. = 36°/208°. Análisis Pseudo-Estático para Mecanismo de Falla Planar.

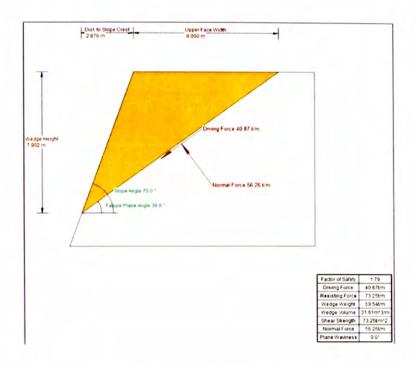

Figura Nº 01: EG-07. Talud: Dip/Dip.Direc. = 70°/330°; Discontinuidad J1: Dip/Dip.Direc. = 69°/328°. Análisis Estático para Mecanismo de Falla Planar.

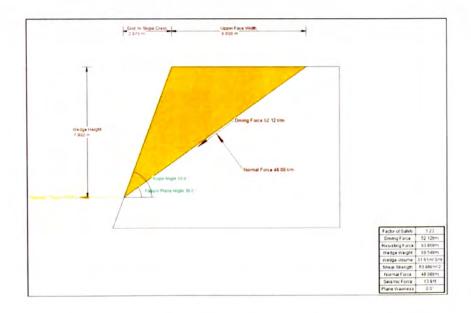

Figura Nº 02: EG-07. Talud: Dip/Dip.Direc. = 70°/330°; Discontinuidad J1: Dip/Dip.Direc. = 69°/328°. Análisis Pseudo-Estático para Mecanismo de Falla Planar.

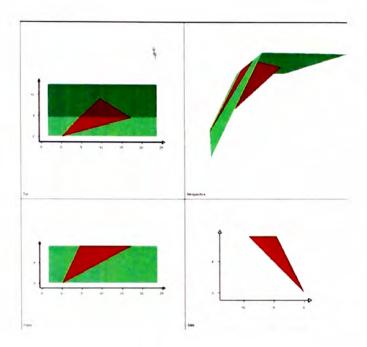

Figura Nº 03: EG-10. Talud: Dip/Dip.Direc. = 70°/325°; Discontinuidad J3: Dip/Dip.Direc. = 67°/309°. Análisis Estático para Mecanismo de Falla Planar.

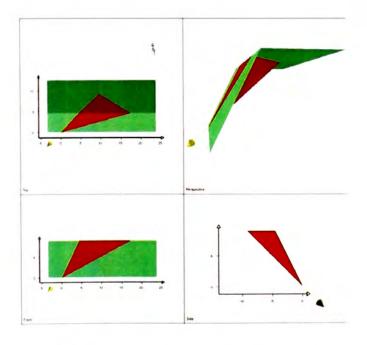

Figura Nº 04: EG-10. Talud: Dip/Dip.Direc. = 70°/325°; Discontinuidad J3: Dip/Dip.Direc. = 67°/309°. Análisis Pseudo-Estático para Mecanismo de Falla Planar.

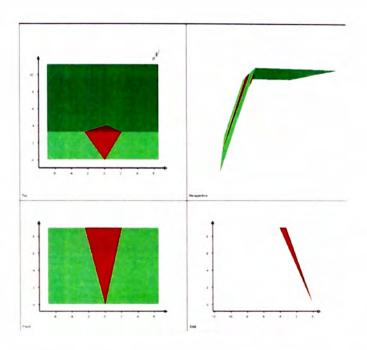

Figura Nº 05: EG-24. Talud: Dip/Dip.Direc. = 70°/330°; Discontinuidad J1: Dip/Dip.Direc. = 28°/196°. Análisis Estático para Mecanismo de Falla Planar.

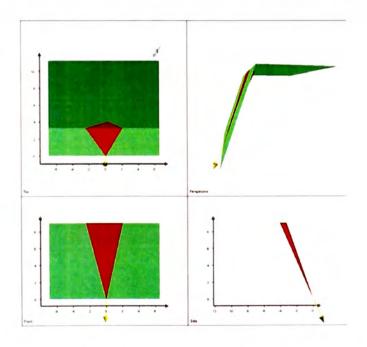

Figura Nº 07: EG-24. Talud: Dip/Dip.Direc. = 70°/330°; Discontinuidad J1: Dip/Dip.Direc. = 28°/196°. Análisis Pseudo-Estático para Mecanismo de Falla Planar.

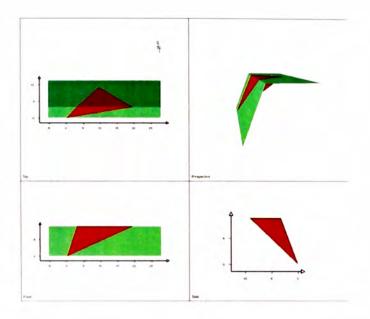

Figura Nº 08: EG-32. Talud: Dip/Dip.Direc. = 70°/250°; Discontinuidad J4: Dip/Dip.Direc. = 69°/235°. Análisis Estático para Mecanismo de Falla Planar.

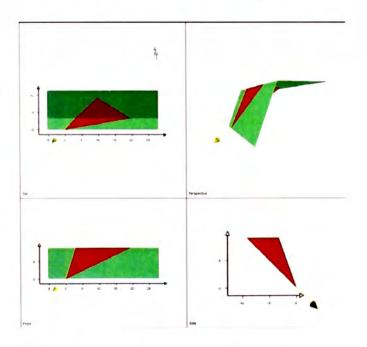

Figura Nº 09: EG-32. Talud: Dip/Dip.Direc. = 70°/250°; Discontinuidad J4: Dip/Dip.Direc. = 69°/235°. Análisis Pseudo-Estático para Mecanismo de Falla Planar.

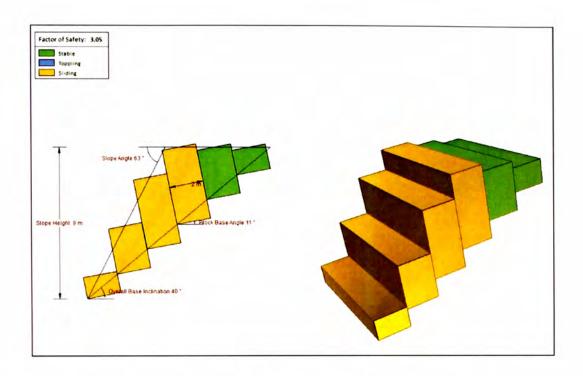

Figura Nº 10: EG-50. Talud: Dip/Dip.Direc. = 70°/190°; Estrato: Dip/Dip.Direc. = 36°/208°. Análisis Estático para Mecanismo de Falla Planar.

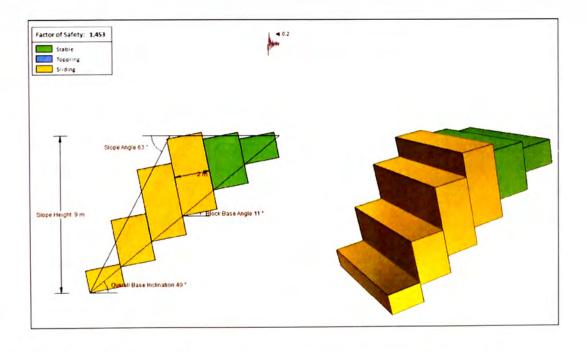

Figura Nº 11: EG-50. Talud: Dip/Dip.Direc. = 70°/190°; Estrato: Dip/Dip.Direc. = 36°/208°. Análisis Pseudo-Estático para Mecanismo de Falla Planar.

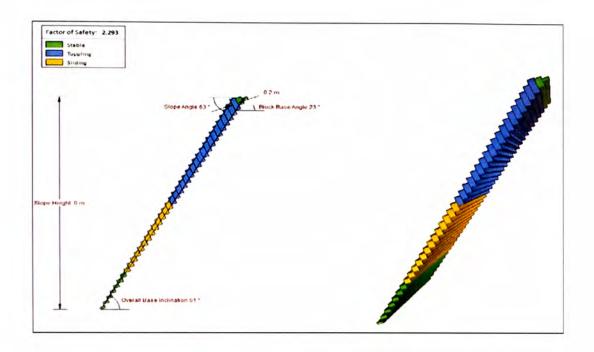

Figura Nº 01: EG-15. Talud: Dip/Dip.Direc. = 63°/190°; Discontinuidad J1: Dip/Dip.Direc. = 87°/148° y Discontinuidad J2: Dip/Dip.Direc. = 35°/221°. Análisis Estático para Mecanismo de Falla por Cuña F.S. =1.32.

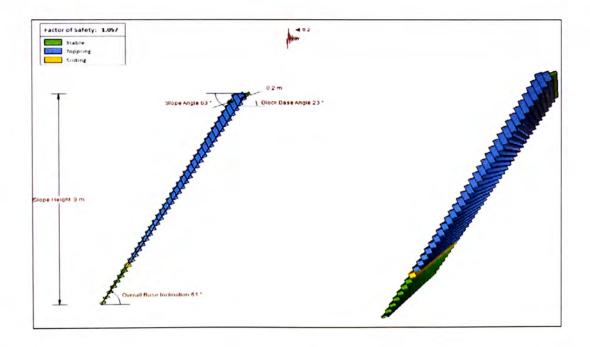

Figura Nº 02: EG-15. Talud: Dip/Dip.Direc. = 63°/190°; Discontinuidad J1: Dip/Dip.Direc. = 87°/148° y Discontinuidad J2: Dip/Dip.Direc. = 35°/221°. Análisis Pseudo-Estático para Mecanismo de Falla por Cuña F.S. =0.98.

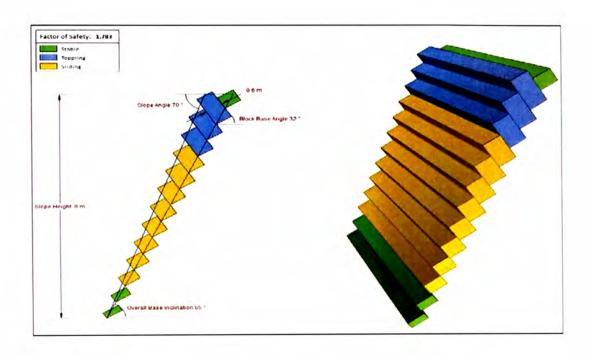

Figura Nº 01: EG-10. Talud: Dip/Dip.Direc. = 70°/325°; Discontinuidad J3: Dip/Dip.Direc. = 67°/309° y Discontinuidad J4: Dip/Dip.Direc. = 67°/349°. Análisis Estático para Mecanismo de Falla por Cuña F.S. =1.31.

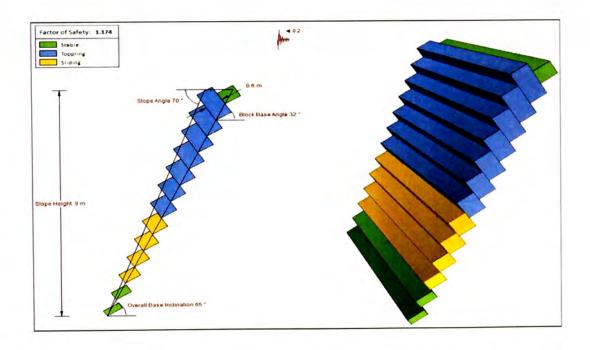

Figura Nº 02: EG-10. Talud: Dip/Dip.Direc. = 70°/325°; Discontinuidad J3: Dip/Dip.Direc. = 67°/309° y Discontinuidad J4: Dip/Dip.Direc. = 67°/349°. Análisis Estático para Mecanismo de Falla por Cuña F.S. =1.07.

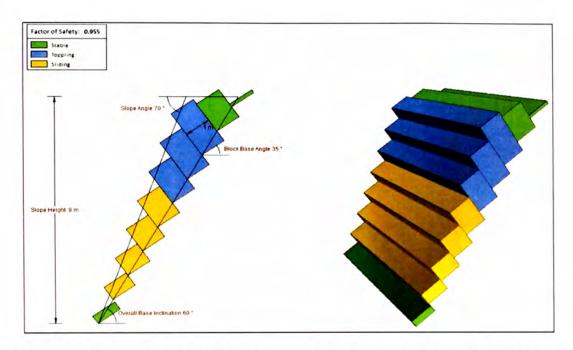

Figura Nº 03: EG-15. Talud: Dip/Dip.Direc. = 70°/190°; Discontinuidad J1: Dip/Dip.Direc. = 87°/148° y Discontinuidad J2: Dip/Dip.Direc. = 35°/221°. Análisis Estático para Mecanismo de Falla por Cuña F.S. =1.28.

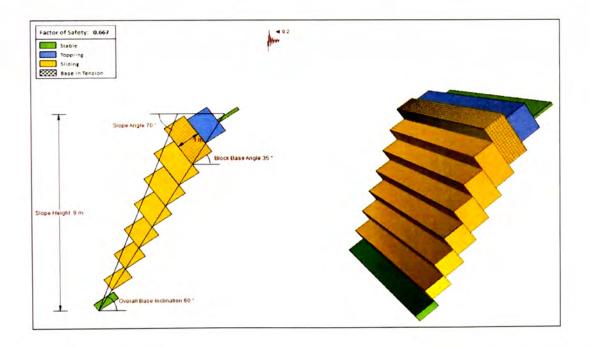

Figura Nº 04: EG-15. Talud: Dip/Dip.Direc. = 70°/190°; Discontinuidad J1: Dip/Dip.Direc. = 87°/148° y Discontinuidad J2: Dip/Dip.Direc. = 35°/221°. Análisis Estático para Mecanismo de Falla por Cuña F.S. =0.95.

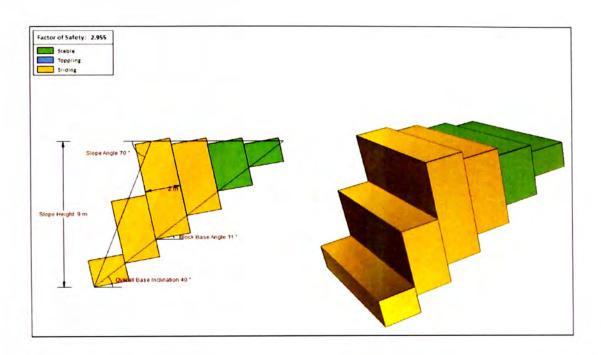

Figura Nº 01: EG-15. Talud: Dip/Dip.Direc. = 63°/190°; Discontinuidad J2: Dip/Dip.Direc. = 79°/25°. Análisis Estático para Mecanismo de Falla por Vuelco.

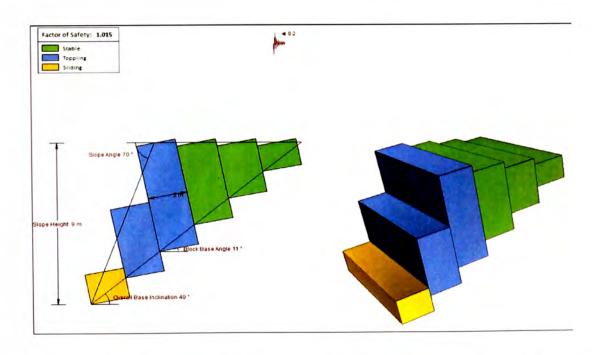

Figura Nº 02: EG-15. Talud: Dip/Dip.Direc. = 63°/190°; Discontinuidad J2: Dip/Dip.Direc. = 79°/25°. Análisis Pseudo-Estático para Mecanismo de Falla por Vuelco.

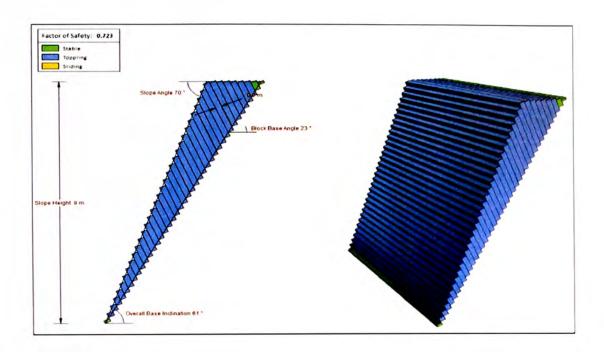

Figura Nº 03: EG-42. Talud: Dip/Dip.Direc. = 63°/107°; Discontinuidad J3: Dip/Dip.Direc. = 69°/201°. Análisis Estático para Mecanismo de Falla por Vuelco.


Figura Nº 04: EG-42. Talud: Dip/Dip.Direc. = 63°/107°; Discontinuidad J3: Dip/Dip.Direc. = 69°/201°. Análisis Pseudo-Estático para Mecanismo de Falla por Vuelco.


Figura Nº 01: EG-07. Talud: Dip/Dip.Direc. = 70°/330°; Discontinuidad J2: Dip/Dip.Direc. = 58°/166°. Análisis Estático para Mecanismo de Falla por Vuelco.


Figura Nº 02: EG-07. Talud: Dip/Dip.Direc. = 70°/330°; Discontinuidad J2: Dip/Dip.Direc. = 58°/166°. Análisis Pseudo-Estático para Mecanismo de Falla por Vuelco.


Figura Nº 03: EG-11. Talud: Dip/Dip.Direc. = 70°/184°; Discontinuidad J3: Dip/Dip.Direc. = 55°/330°. Análisis Estático para Mecanismo de Falla por Vuelco.


Figura Nº 04: EG-11. Talud: Dip/Dip.Direc. = 70°/184°; Discontinuidad J3: Dip/Dip.Direc. = 55°/330°. Análisis Pseudo-Estático para Mecanismo de Falla por Vuelco.

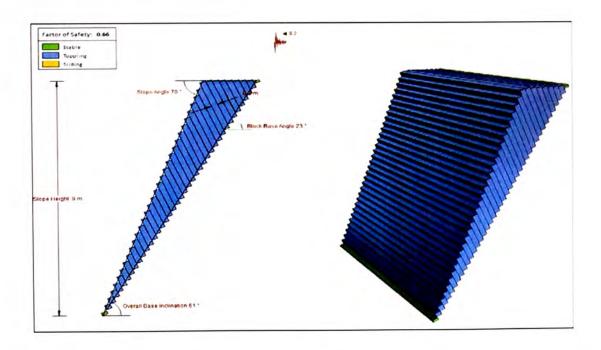

Figura Nº 05: EG-15. Talud: Dip/Dip.Direc. = 70°/190°; Discontinuidad J3: Dip/Dip.Direc. = 79°/25°. Análisis Estático para Mecanismo de Falla por Vuelco.

Figura Nº 06: EG-15. Talud: Dip/Dip.Direc. = 70°/190°; Discontinuidad J3: Dip/Dip.Direc. = 79°/25°. Análisis Pseudo-Estático para Mecanismo de Falla por Vuelco.

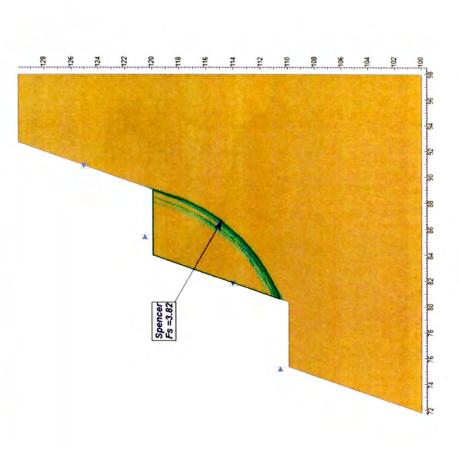
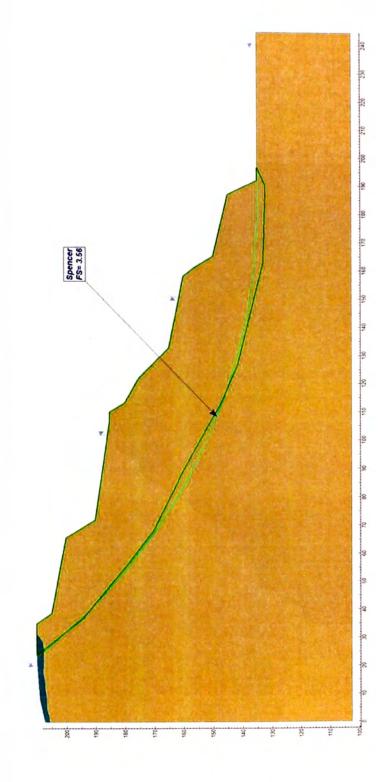
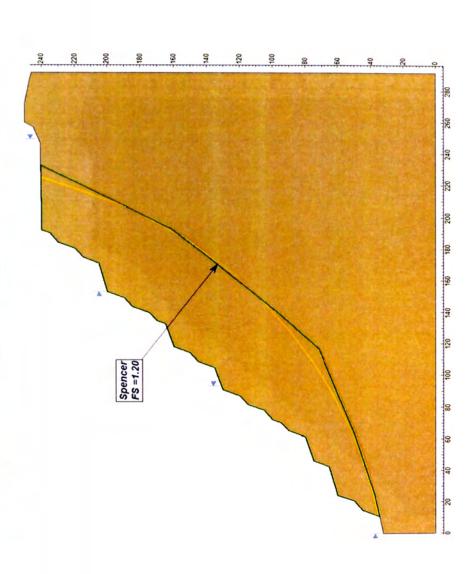

Figura Nº 07: EG-42. Talud: Dip/Dip.Direc. = 70°/107°; Discontinuidad J3: Dip/Dip.Direc. = 69°/201°. Análisis Estático para Mecanismo de Falla por Vuelco.

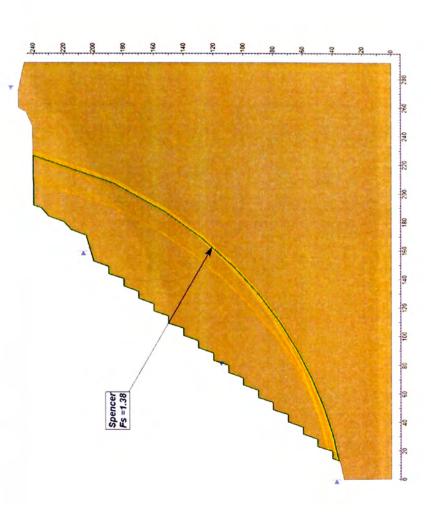
Figura Nº 08: EG-42. Talud: Dip/Dip.Direc. = 70°/107°; Discontinuidad J3: Dip/Dip.Direc. = 69°/201°. Análisis Pseudo-Estático para Mecanismo de Falla por Vuelco.


Análisis de Estabilidad de Talud Interrampa del Tajo - Optimizado Sección geotécnica 1-1'- Análisis Estático a Largo Plazo, Falla Circular, FS = 3,82

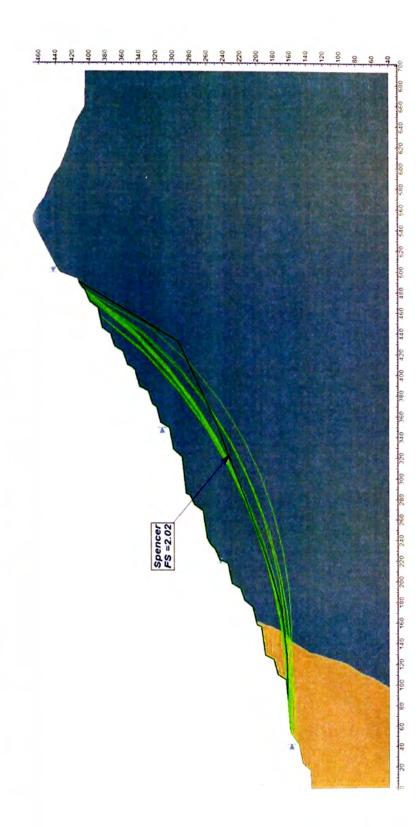
Materiales	(kN/m^3)	Modelo	mi	qu	s	a	D
Roca caliza	26,6	Hoek-Brown	19,28	0,894	8 0,894 0,0008 0	0,504	1,0


Análisis de Estabilidad de Talud Global del Tajo - Actual Sección geotécnica 1-1' - Análisis Estático a Largo Plazo, Falla No Circular - Global, FS = 3,56

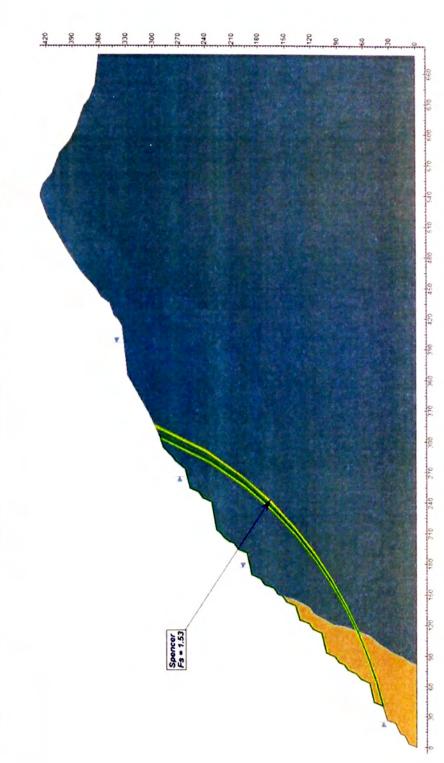
Materiales	(kN/m^3)	Modelo	mi	qu	s	a	D	$C' \phi'$ (kPa) $(^{\circ})$	`ø ©
Suelo Aluvial	22,0	Morh-Coulumb	,	•				7	36
Roca caliza	26,6	Hoek-Brown	19,28	0,894	19,28 0,894 0,0008 0,504 1,0	0,504	I,0		1


Análisis de Estabilidad de Talud Global del Tajo - Proyectado Sección geotécnica 1-1'- Análisis Estático a Largo Plazo, Falla No Circular - Global, FS = 1,20

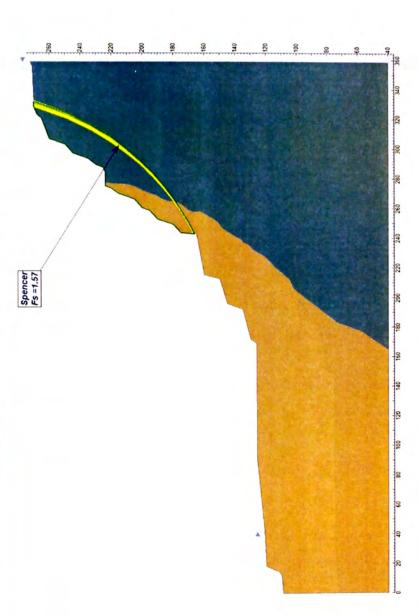
Materiales	(kN/m^3)	Modelo	mi	qm	s	a	D
Roca caliza	26,6	Hoek-Brown	19,28	0,894	9,28 0,894 0,0008	0,504	I,0


Análisis de Estabilidad de Talud Global del Tajo - Optimizado Sección geotécnica 1-1'- Análisis Estático a Largo Plazo, Falla No Circular - Global, FS = 1,38

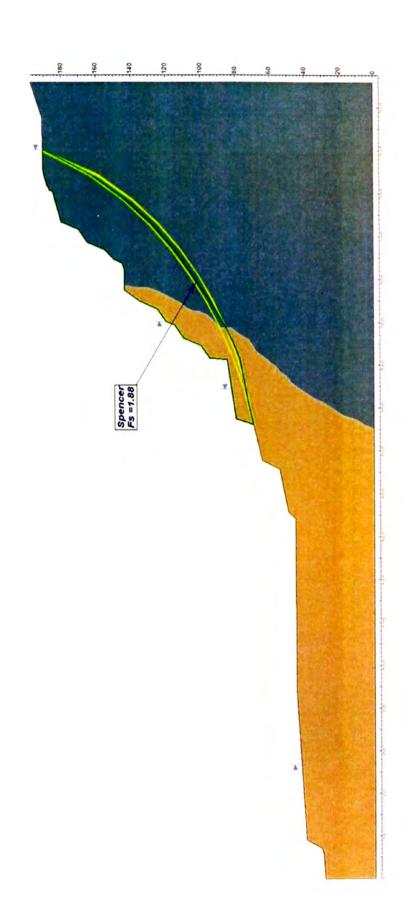
Materiales	(kN/m^3)	Modelo	mi	qm	S	a	D
Roca caliza	26,6	Hoek-Brown	19,28	0,894	19,28 0,894 0,0008 0,504	0,504	1,0


Análisis de Estabilidad de Talud Global del Tajo - Actual Sección geotécnica 2-2'- Análisis Estático a Largo Plazo, Falla No Circular - Global, FS = 2,02

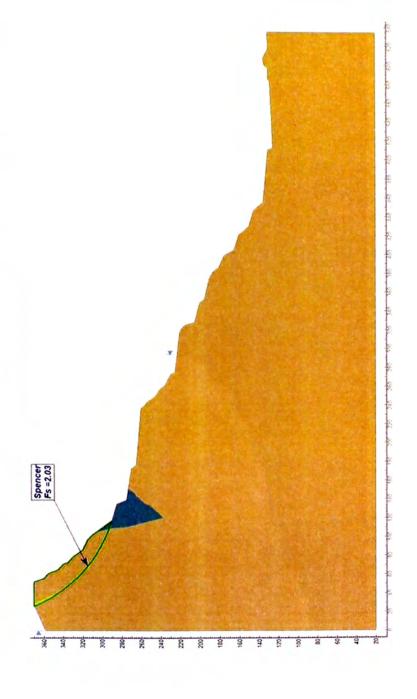
Materiales	(kN/m^3)	Modelo	mi	qm	S	a	D
Roca volcánica-	31,0	Hoek-Brown	25,0	1,436	25,0 1,436 0,0013 0,503 1,0	0,503	I, 0
Roca caliza	26,6	Hoek-Brown	19,28	0,894	19,28 0,894 0,0008 0,504 1,0	0,504	1,0


Análisis de Estabilidad de Talud Global del Tajo - Proyectado Sección geotécnica 2-2' - Análisis Estático a Largo Plazo, Falla No Circular - Global, FS = 1,53

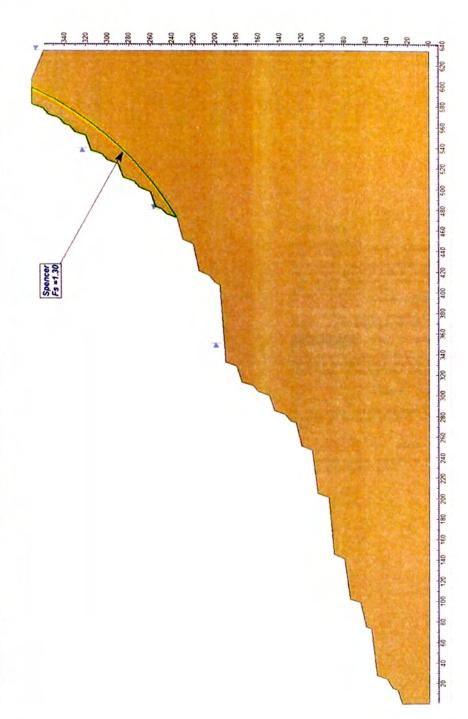
Materiales	(kN/m^3)	Modelo	ш	mi mb	s	В	7
Roca volcánica-	31.0	Hoek-Brown	25.0	1,436	25,0 1,436 0,0013 0,503 1,0	0,503	1,0
Roca caliza	26.6	Hoek-Brown	19,28	0,894	19,28 0,894 0,0008 0,504 1,0	0,504	1,0

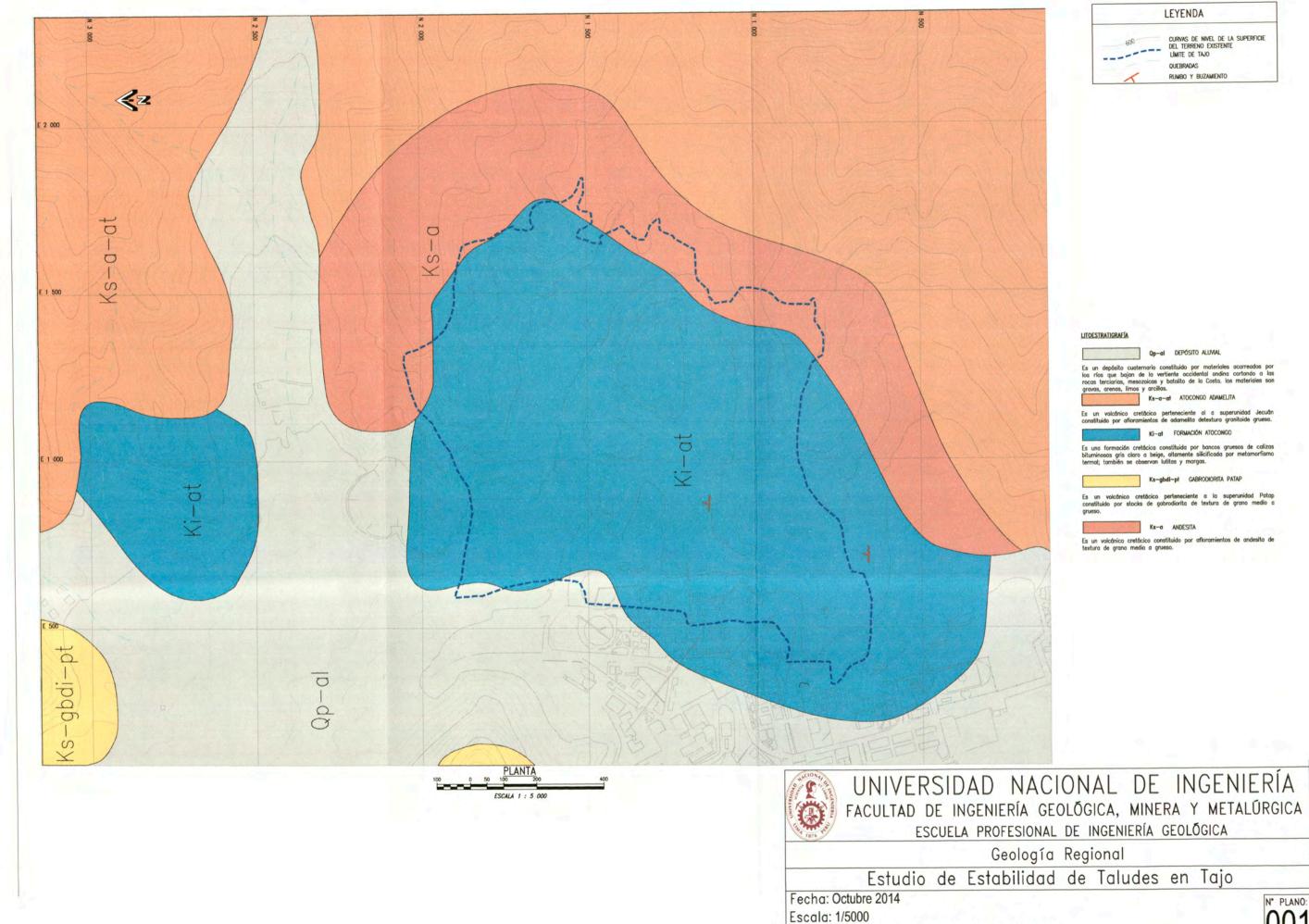

Análisis de Estabilidad de Talud Global del Tajo - Actual Sección geotécnica 3-3'- Análisis Estático a Largo Plazo, Falla No Circular - Global, FS = 1,57

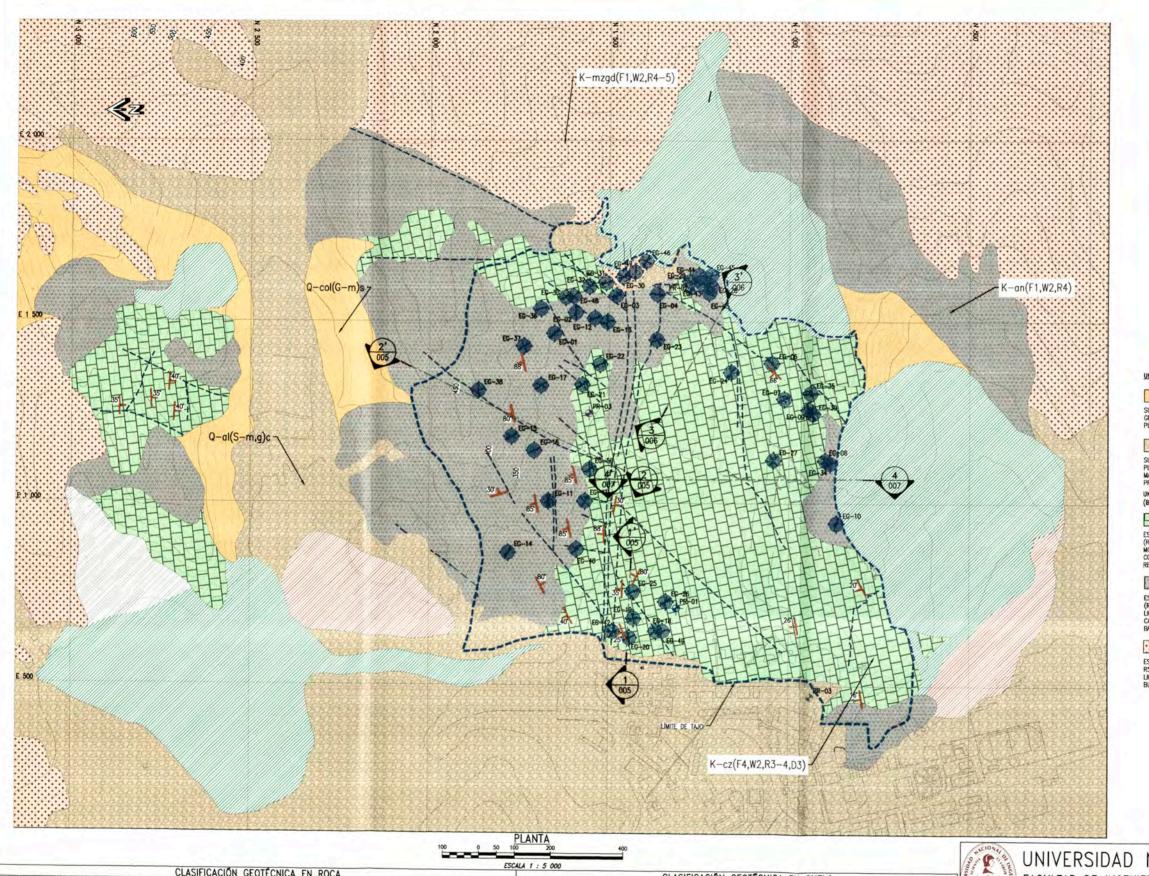
Materiales	(kN/m^3)	Modelo	THE STATE OF THE S	qui nu	s	а	n
Roca volcánica-	31,0	Hoek-Brown	25.0	1,436	25.0 1,436 0,0013 0,503 1	0,503	I.0
Roca caliza	26,6	Hoek-Brown	19,28	0,894	19,28 0,894 0,0008 0,504 1,0	0,504	1,6

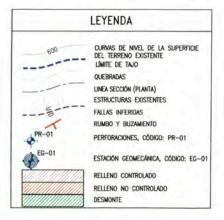

Análisis de Estabilidad de Talud Global del Tajo - Proyectado Sección geotécnica 3-3'- Análisis Estático a Largo Plazo, Falla No Circular - Global, FS = 1,88

Materiales	(kN/m^3)	Modelo	E .	ow nw	^	8	4
Roca volcánica-	31,0	Hoek-Brown	25,0	1,436	25,0 1,436 0,0013 0,503 1,0	0,503	1,0
Andesilico Roca caliza	26,6	Hoek-Brown	19,28	0,894	19,28 0,894 0,0008 0,504 1,0	0.504	I,0


Análisis de Estabilidad de Talud Global del Tajo - Actual Sección geotécnica 4-4' - Análisis Estático a Largo Plazo, Falla No Circular - Talud Superior, FS = 2,03


Materiales	(RN/m^3)	Modelo	mi	qm	s	а	D
Roca volcánica-	31,0	Hoek-Brown	25,0	1,436	25,0 1,436 0,0013 0,503 1,0	0,503	1,0
Roca caliza	26.6	Hoek-Brown	19,28	0,894	19,28 0,894 0,0008 0,504 1,0	0.504	1,0


Análisis de Estabilidad de Talud Global del Tajo - Proyectada Sección geotécnica 4-4' - Análisis Estático a Largo Plazo, Falla No Circular - Talud Superior, FS = 1,30


Materiales	(kN/m^3)	Modelo	mi	qu	s	а	D
Roca caliza	26,6	Hoek-Brown	19,28	0,894	9,28 0,894 0,0008 0,504	0,504	1,0

N° PLANO:

UNIDADES GEOLOGICAS - GEOTÉCNICA

UNIDAD GEOLÓGICA - GEOTÉCNICA I (DEPÓSITO COLUVIAL) Q-coi(G-m)s:

SUELO GENERADO POR METEORIZACIÓN TRANSPORTADOS POR LA ACCIÓN DE LA GRAVEDAD. CONSTITUIDOS POR GRAVAS MAL GRADADAS A GRAVAS LIMOSAS, PLASTICIDAD NULA, LIGERAMENTE HÓMEDA Y ESTRUCTURA HOMOGÉNEA.

UNIDAD GEOLÓGICA - GEOTÉCNICA II (DEPÓSITO ALUVIAL) Q-al(S-m,g)c:

SUELO CONFORMADO POR AFENA MAL GRADADA CON LIMO Y GRAVA, DE PLASTICIDAD NULA MUY SUELTA A SUELTA, LIGERAMENTE HÚMEDA, DE COLOR MARRON CLARO, ESTRUCTURA HOMOGENEA, GRAVAS SUBANGULOSAS. POTENCIA PROMEDIO 2,00 m.

UNIDAD GEOLÓGICA - GEOTÉCNICA IV (BASAMENTO ROCOSO) :

CALIZA, K-cz(F4,W2,R3-4,D3):

ESTA ROCA PRESENTA UN GRADO DE RESISTENCIA MEDIANAMENTE DURA (R3.0-R4.0), ROD PROMEDIO EQUIVALENTE A 72%, LIGERAMENTE ALTERADA, MODERADAMENTE FRACTURADA, BANCOS DE 0,5 A 1 m DE POTENCIA, JUNTAS CON PÁTINAS DE ÓXIDOS Y CON UNA CALIDAD GEOMECÁNICA DE MALA A REGULAR, SEGÚN EL CÁLCULO DEL ÍNDICE DEL RIAR BÁSICO.

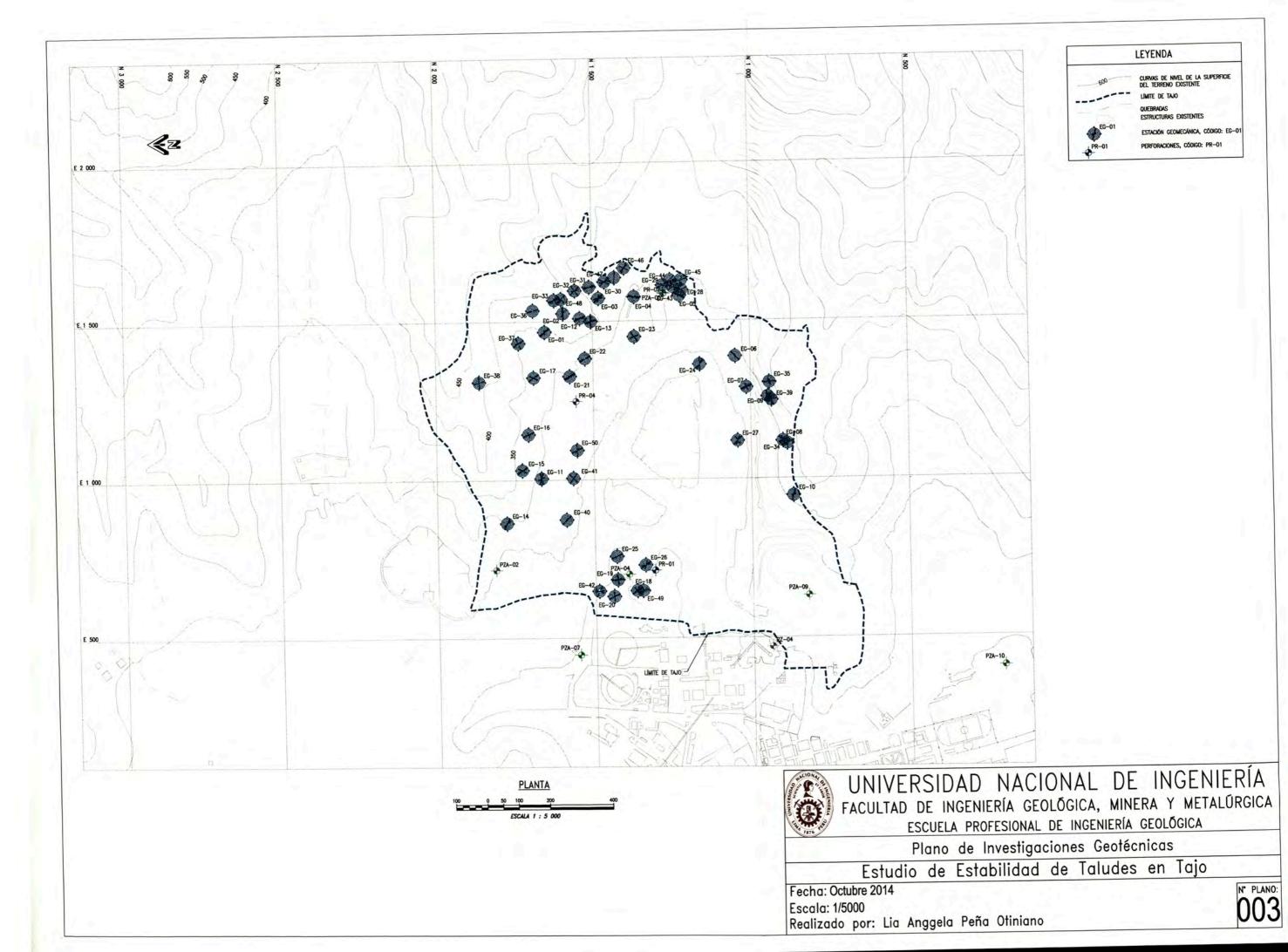
VOLCÁNICO ANDESÍTICO, K-an(F1,W2,R4

ESTA ROCA PRESENTA UN GRADO DE RESISTENCIA MEDIANAMENTE DURA (R3.5-R4.0), ROD PROMEDIO EQUIMALENTE A 71%, LIGERAMENTE ALTERADA, LIGERAMENTE FRACTURADA, JUNTAS CON PATINAS DE ÓXIDOS Y CON UNA CALIDAD GEOMECÁNICA DE REGULAR, SEGON EL CALCULO DEL INDICE DEL RIMR RÁSICIO.

GRANODIORITA, K-gd(F1,W2,R4-5):

ESTA ROCA PRESENTA UN GRADO DE RESISTENCIA ALTA A MUY ALTA (R4.0 A R5.0), POCO FRACTURADA A FRACTURADA (ROD 50 A 90%), MUY ALTERADA A LIGERAMENTE ALTERADA Y CON UNA CALIDAD GEOMECÁNICA DE REGULAR A BUENA, SEGÚN EL CÁLCULO DEL INDICE DEL RIVE BÁSICO.

		_	CI ACIFICACIÓN	OFOT	*0.1101 F11 B00		ESC	CALA 1 : 5 000								
FRA GRADO	CTURAMIENTO ESPACIAMIENTO	GRAD	METEORIZACIÓN		ECNICA EN ROCA RESISTENCIA DIMPa ESTIMADO	19,500	ESTRATIFICACIÓN CALIFICACIÓN	GRUPO	CONSTITUYEN	ITES DEL SI	UELO		NICA EN S RESIS	GUELO TENCIA ESTII CARACTERÍST		SUELO SÍMBOL
F1 F2 F3 F4	>200cm 60-200cm 20-60cm 6-20cm	W1 W2 W3 W4	Fresca Poco meteorizada Moderadamente meteorizada Muy meteorizada	R0 R1 R2 R3	<1 1-5 5-25 25-50	D3	Muy gruesa (potencia >2 m) Gruesa (potencia 1-2 m) Moderada (0.5-1 m) Delgada (potencia 0.01-0.5 m)	COMPONENTES GRUESOS	December 2 and a second	>300mm 70-300mm 5-70mm	В	b	SUELOS	Consistencia	Muy suelto Suelto	MSCD
F5	<6cm	W5 W6	Extremadamente meteorizado Roca descompuesta	R4 R5 R6	50-100 100-250 >250	D5	1 / 40.04	COMPONENTES FINOS	Arena Limo Arcilla	0.1-5mm <0.1mm <0.1mm	S M A	s m a	SUELOS CON COHESIÓN	Resistencia	Muy blando Blando Firme Duro	F T


UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

Mapeo Geológico Geotécnico

Estudio de Estabilidad de Taludes en Tajo

Fecha: Octubre 2014 Escala: 1/5000

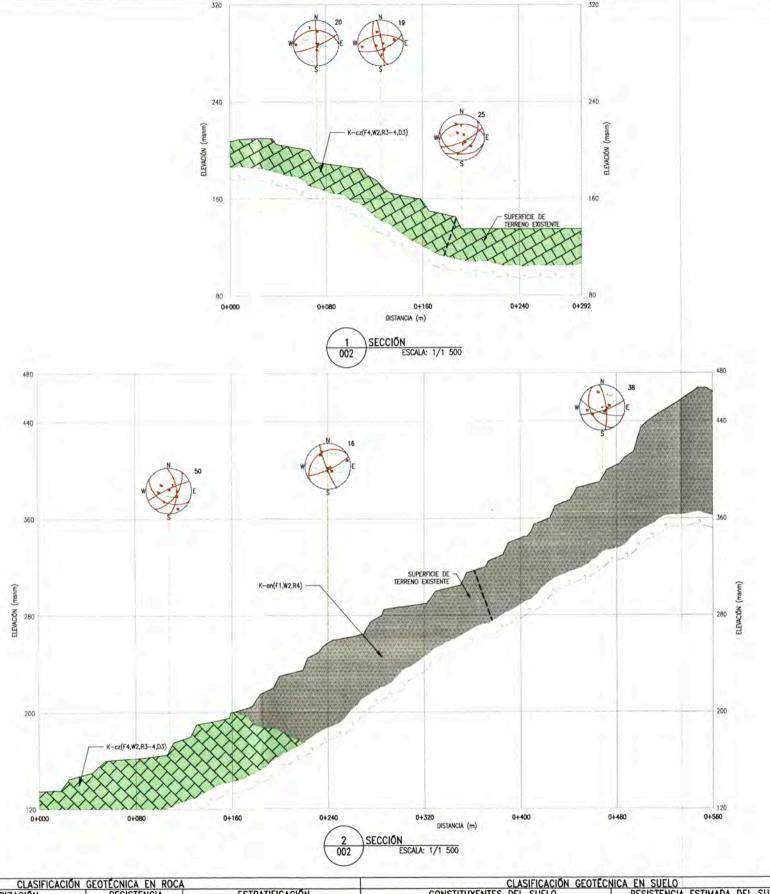
	ZONS	FICACION GEOMECANICA	
70NA	ALTURA DE BANCO (m)	ANCHO MINIMO DE BALIOUETA DE SEGURIDAD (m)	ANGULO DE CAPA LOCAL (1)
21	10,00	5,00	70
92	10,00	5,00	70

ROCOSO COMPETENTE CON PREDOMINANCIA DE ROCA CALCÁREA, QUE POSEE UN RMR ENTRE 50 A 60. SE OBTUMERON OS FAMILIAS DE

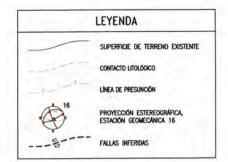
LOS INTERVALOS DE ORIENTACIÓN DE TALUDES QUE SE MANTIENEN ESTABLES EN ESTA ZONA: 12'-32'; 90'-116'; 192'-212'; 270'-

ESTA ZONA SE CARACTERIZA POR PRESENTAR UN BASAMENTO ROCOSO CON PREDOMINANCIA DE ROCA VOLCÁNICA ANDESTICA, QUE POSEE UN RIMR MENOR A 50. SE OBTUMERON 03 FAMILIAS DE JUNTAS PREDOMINANTES: 159'/63', 01'/30', 258'/25'.

LOS INTERVALOS DE ORIENTACIÓN DE TALUDES QUE SE MANTIENEN ESTABLES EN ESTA ZONA: 08-48; 111'-147; 188'-228'; 291'-


UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

Zonificación Geotécnica


Estudio de Estabilidad de Taludes en Tajo

Fecha: Octubre 2014 Escala: 1/5000

CLASIFICACIÓN GEOTÉCNICA EN ROCA
METEORIZACIÓN RESISTENCIA
CALIFICACIÓN GRADO MPO ESTIMADO GRADO CLASIFICACIÓN GEOTÉCNICA EN SUELO
CONSTITUYENTES DEL SUELO RESISTENCIA ESTIMADA DEL SUELO FRACTURAMIENTO
GRADO ESPACIAMIENTOGRADO ESTRATIFICACIÓN CALIFICACIÓN DESIGNACIÓN TAMAÑO SI>25%SI5-25 GRUPO CARACTERÍSTICAS Muy suelto Suelto Muy gruesa (potencia >2 m) COMPONENTES W1 >200cm Fresca RO SUELOS Bloque Canto SIN 1-5 F2 60-200cm W2 Poco meteorizada R1 Consistencia Compacto Denso D2 Gruesa (potencia 1-2 m) g GRUESOS 5-70mm Grava COHESIÓN F3 20-60cm W3 Moderadamente meteorizada 5-25 D3 Moderada (0.5-1 m) Muy denso F4 W4 Muy meteorizada R3 25-50 6-20cm D4 Delgada (potencia 0.01-0.5 m) Muy blando Blando Arena 0.1-5mm W5 E R4 SUELOS F5 xtremadamente meteorizada 50-100 <6cm D5 Laminar (<0.01 m) <0.1mm <0.1mm COMPONENTES CON Resistencia W6 Roca descompuesta R5 100-250 FINOS Duro Muy duro COHESIÓN >250

UNIDADES GEOLOGICAS - GEOTECHICAS:

42223

UNIDAD GEOLÓGICA - GEOTÉCNICA II (DEPÓSITO ALUVIAL) Q-al(S-m,g)c :

FORMADO POR ARENA MAL GRADADA CON LIMO Y GRAVA, DE NULA, MLY SUELTA A SUELTA, LIGERAMENTE HÓMEDA, DE COLOR MRO. ESTRUCTURA HOMOGÉNEA, GRAVAS SUBANGULOSAS. POTENCIA .00 m.

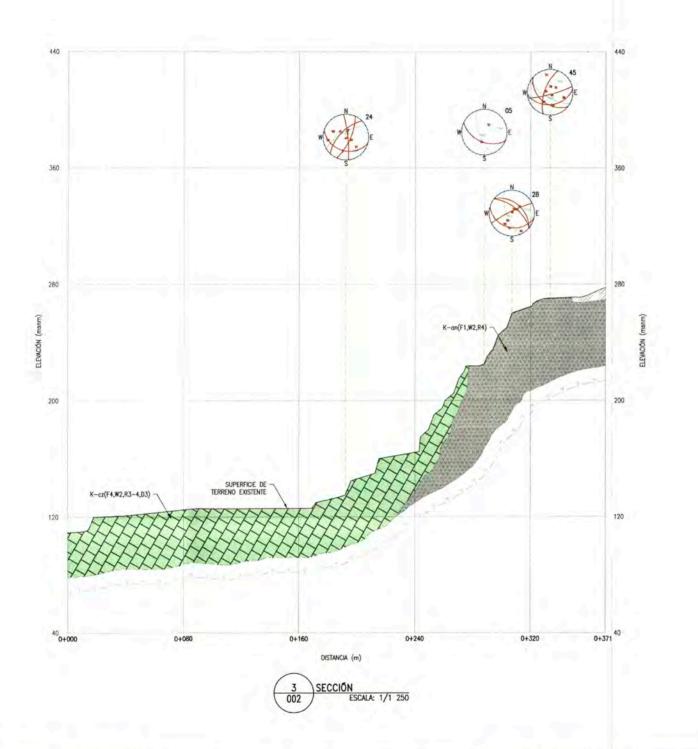
UNIDAD GEOLÓGICA - GEOTECNICA IV

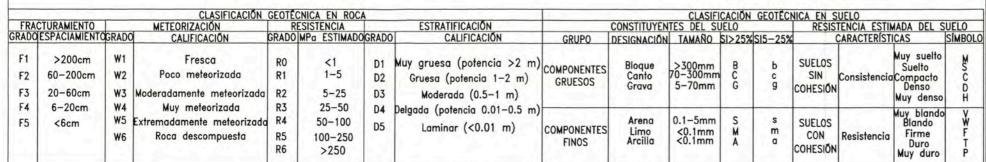
CALIZA, K-cz(F4,W2,R3-4,D3):

ESTA ROCA PRESENTA UN GRADO DE RESISTENCIA MEDIAMAMENTE DURA. (R3.0-R4.0), ROD PROMEDIO EDUMALENTE A 72%, LICERAMENTE ALTERADA, MODERADAMENTE FRACTURADA, BANCOS DE 0,5 A 1 m DE POTENCIA, JUNTAS CON PATINAS DE ÓXIDOS Y CON UNA CALIDAD GEOMECÁNICA DE MALA A REGULAR, SEGÚN EL CALCULO DEL INDICE DEL RAIR RÁSICO.

VOLCÁNICO ANDESÍTICO, K-an(F1,W2,R4):

ESTA ROCA PRESENTA UN GRADO DE RESISTENCIA MEDIANAMENTE DURA (R3.5-R4.0), ROD PROMEDIO EQUIVALENTE A 71%, LIGENAMENTE ALTENDA, LIGERAMENTE FRACTURADA, JUNTAS CON PÁTINAS DE ÓXIDOS Y CON UNA CALIDAD GEOMECÁNICA DE REGULAR, SEGÓN EL CÁLCULO DEL ÍNDICE DEL RIAR PÁSSOO.


UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA


ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

Sección Geológica Geotécnica Estudio de Estabilidad de Taludes en Tajo

Fecha: Octubre 2014

Escala: 1/1500 Realizado por: Lia Anggela Peña Otiniano N° PLANO:

UNIDADES GEOLOGICAS - GEOTÉCNICAS:

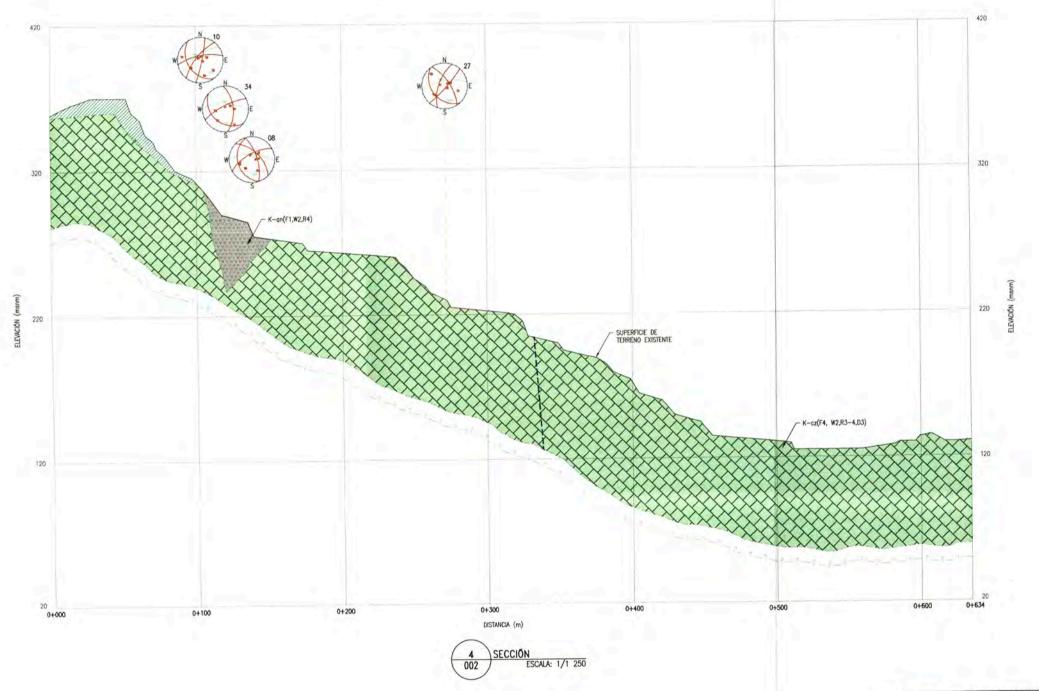
UNIDAD GEOLÓGICA - GEOTÉCNICA IV (BASAMENTO ROCOSO) :

CALIZA, K-cz(F4,W2,R3-4,D3):

ESTA ROCA PRESENTA UN GRADO DE RESISTENCIA MEDIAVAMENTE DURA (R3.0-R4.0), ROD PROMEDIO EQUIVALENTE A 72%, LIGERAMENTE ALTERADA, MODERADAMENTE FRACTURADA, BANCOS DE 0,5 A 1 m DE POTENCIA, JUNTAS CON PÁTINAS DE ÓRIDOS Y CON UNA CALIDAD GEOMECANICA DE MALA A REGULAR, SEGÚN EL CÁLCULO DEL INDICE DEL RIME BÁSICO.

VOLCÁNICO ANDESÍTICO, K-an(F1,W2,R4)

ESTA ROCA PRESENTA UN GRADO DE RESISTENCIA MEDIANAMENTE DURA (R3.5-R4.0), RÓD PROMEDIO EQUIVALENTE A 71%, LIGERAMENTE ALTERADA, LIGERAMENTE FRACTURADA, JUNTAS CON PATINAS DE ÓXIDOS Y CON UNA CALIDAD GEOMECÁNICA DE REGULAR, SEGÚN EL CÁLCULO DEL ÍNDICE DEL RMR BÁSICO.


UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

Sección Geológica Geotécnica

Estudio de Estabilidad de Taludes en Tajo

Fecha: Octubre 2014

Escala: 1/1250 Realizado por: Lia Anggela Peña Otiniano N° PLANO:

UNIDAD GEOLÓGICA - GEOTÉCNICA IV (BASAMENTO ROCOSO) :

CLASIFICACIÓN GEOTÉCNICA EN ROCA								CLASIFICACIÓN GEOTÉCNICA EN SUELO CONSTITUYENTES DEL SUELO RESISTENCIA ESTIMADA DEL SUELO								NIVERSI
	CTURAMIENTO DESPACIAMIENTO	OGRADO	METEORIZACIÓN	R	ESISTENCIA MPa ESTIMADO		ESTRATIFICACIÓN CALIFICACIÓN	GRUPO	DESIGNACIÓN				CARACTERÍST		SIMBOLO	3
F1 F2 F3	>200cm 60-200cm 20-60cm	W1 W2 W3	Fresca Poco meteorizada Moderadamente meteorizada	RO R1 R2	<1 1-5 5-25	D1 D2 D3	Muy gruesa (potencia >2 m) Gruesa (potencia 1-2 m) Moderada (0.5-1 m)	COMPONENTES GRUESOS	Bloque Canto Grava	>300mm 70-300mm 5-70mm	B b c c g	SUELOS SIN COHESIÓI	Consistencia	Muy suelto Suelto Compacto Denso Muy denso	SCD	
F4 F5	6-20cm <6cm	W4 W5 W6	Muy meteorizada Extremadamente meteorizado Roca descompuesta	R3 R4 R5 R6	25-50 50-100 100-250 >250	D4 D5	Delgada (potencia 0.01-0.5 m) Laminar (<0.01 m)	COMPONENTES FINOS	Arena Limo Arcilla	0.1-5mm <0.1mm <0.1mm	S s m a	SUELOS CON COHESIÓI	Resistencia	Muy blando Blando Firme Duro Muy duro	F T	FER

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

Sección Geológica Geotécnica

Estudio de Estabilidad de Taludes en Tajo

Fecha: Octubre 2014 Escala: 1/1250