Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.14076/17432
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlas, H.-
dc.contributor.authorCarrión, H. L.-
dc.creatorCarrión, H. L.-
dc.creatorBlas, H.-
dc.date.accessioned2019-05-08T19:38:47Z-
dc.date.available2019-05-08T19:38:47Z-
dc.date.issued2012-12-
dc.identifier.citationBlas, H. & Carrión, H. (2012). Noncommutative (generalized) sine-Gordon/massive Thirring correspondence, integrability and solitons. REVCIUNI, 15(1).es
dc.identifier.issn1813 – 3894-
dc.identifier.urihttp://hdl.handle.net/20.500.14076/17432-
dc.description.abstractSome properties of the correspondence between the non-commutative versions of the (generalized) sine-Gordon (NCGSG1,2) and the massive Thirring (NCGMT1,2) models are studied. Our method relies on the master Lagrangian approach to deal with dual theories. The master Lagrangians turn out to be the NC versions of the so-called affine Toda model coupled to matter fields (NCATM1,2), in which the Toda field g belongs to certain subgroups of GL(3), and the matter fields lie in the higher grading directions of an affine Lie algebra. Depending on the form of g one arrives at two different NC versions of the NCGSG1,2/NCGMT1,2 correspondence. In the NCGSG1,2 sectors, through consistent reduction procedures, we find NC versions of some well-known models, such as the NC sine-Gordon (NCSG1,2) (Lechtenfeld et al and Grisaru-Penati proposals, respectively), NC (bosonized) Bukhvostov-Lipatov (NCbBL1,2) and NC double sine-Gordon (NCDSG1,2) models. The NCGMT1,2 models correspond to Moyal product extension of the generalized massive Thirring model. The NCGMT1 ,2 models posses constrained versions with relevant Lax pair formulations, and other sub-models such as the NC massive Thirring (NCMT1,2), the NC Bukhvostov-Lipatov (NCBL1,2) and constrained versions of the last models with Lax pair formulations. We have established that, except for the well known NCMT1,2 zero-curvature formulations, generalizations (nF ≥ 2, nF =number of flavors) of the massive Thirring model allow zero-curvature formulations only for constrained versions of the models and for each one of the various constrained sub-models defined for less than nF flavors, in the both NCGMT1,2 and ordinary space-time descriptions (GMT), respectively. The non-commutative solitons and kinks of the GL(3) NCGSG1,2 models are investigated.en
dc.formatapplication/pdfes
dc.language.isoengen
dc.publisherUniversidad Nacional de Ingenieríaes
dc.relation.ispartofseriesVolumen;15-
dc.relation.ispartofseriesNúmero;1-
dc.rightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.sourceUniversidad Nacional de Ingenieríaes
dc.sourceRepositorio Institucional - UNIes
dc.subjectIntegrable hierarchiesen
dc.subjectNon-commutativityen
dc.subjectIntegrable field theoriesen
dc.titleNoncommutative (generalized) sine-Gordon/massive Thirring correspondence, integrability and solitonsen
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.journalREVCIUNIes
dc.description.peer-reviewRevisión por pareses
Appears in Collections:Vol. 15 Núm. 1 (2012)

Files in This Item:
File Description SizeFormat 
REVCIUNI_Vol15-n1-Art.12.pdf3,44 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons

Indexado por:
Indexado por Scholar Google LaReferencia Concytec BASE renati ROAR ALICIA RepoLatin UNI